Chemotactic Activities in Nonmastitic and Mastitic Mammary Secretions: Presence of Interleukin-8 in Mastitic but Not Nonmastitic Secretions

MICHELE R. BARBER AND T. J. YANG*

Department of Pathobiology, University of Connecticut, Storrs, Connecticut

Received 8 August 1997/Returned for modification 22 September 1997/Accepted 23 October 1997

Due to its association with low-quality milk and a decrease in milk production in bovines, mastitis is a major cause of economic loss. Additionally, mastitis can be harmful to suckling newborns and can cause damage to the mammary gland. In mastitic mammary secretions there is a substantial increase in somatic cells, specifically neutrophils. In this study we examined the ability of mastitic and nonmastitic mammary secretions to cause in vitro neutrophil chemotaxis using a microchemotaxis assay. Also, the role of the inflammatory chemokine interleukin-8 (IL-8) in neutrophil recruitment during mastitis was addressed in these in vitro experiments. We found that both nonmastitic and mastitic mammary secretions were chemotactic, not chemokinetic, for neutrophils. The neutrophil chemotactic activity in mastitic, but not nonmastitic, mammary secretions was blocked by anti-IL-8 antibodies. Molecular mass separation of the active components showed that the chemotactic activity of the mastitic secretions was present in the 10-kDa-or-less fraction and was blocked by anti-IL-8 antibodies. These results indicate that IL-8 plays a major role in neutrophil recruitment during mastitis. An understanding of its role will be of help in designing strategies for immunomodulatory therapies for mastitis.

Mastitis is detrimental to both the suckling newborn and the mammary gland. For the bovine dairy industry, mastitis is also a major cause of economic loss due to its association with decreased milk production and low-quality milk (4). One hallmark feature of mastitis is the substantial increase in somatic cells found in mammary secretions (5, 17). Somatic cells include lymphocytes, a small percentage of epithelial cells, macrophages, and neutrophils (21). The increase in somatic cells, specifically neutrophils, is thought to serve as a mechanism against an increase in the infection of the gland (26). The migration of neutrophils from the peripheral blood, through the mammary tissue, and into the mammary secretions is called chemotaxis (22). Briefly, chemotaxis is a highly regulated process in which selectins, integrins, and chemokroytrants interact to generate cell migration (31). Selectins are adhesion molecules on leukocyte cell membranes that have an N-terminal domain homologous to Ca²⁺-dependent lectins and are responsible for the attachment of leukocytes to vessel walls (2). Integrins are responsible for leukocyte-endothelial cell interactions which precede the migration into tissue (15). Lastly, chemokroytrants are soluble mediators released at or near the site of chemotaxis. They function to regulate integrins as well as to bind leukocytes and modulate migration (22). The cytokine interleukin-8 (IL-8) is one such chemotactic factor.

IL-8 is a chemokine that is produced by numerous cell types including lymphocytes (9), neutrophils (33), monocytes/macrophages (27), and epithelial cells (8), including human mammary gland epithelial cells (19). Also, many different tumor cell lines are able to produce IL-8 (34). Additionally, human milk mononuclear cells that have been stimulated by lipopolysaccharide (LPS) are shown to produce IL-8 (30). IL-8 has several biological activities, including recruiting and activating neutrophils (10), inducing neutrophil degranulation (27), stimulating phagocytosis of opsonized particles (7), and recruiting T lymphocytes (12, 16). IL-8 does appear to be specific to neutrophils and T cells in that eosinophils and monocytes do not respond to it (27). In addition, IL-8 has been detected in human mammary secretions. Human maternal cells in breast milk express mRNA for IL-8 (32), and in bovine mammary secretions, IL-8 was detected in mammary secretions from glands that had been challenged with Escherichia coli (28, 29).

In this study we examined whether nonmastitic and mastitic mammary secretions were chemotactic for neutrophil chemotaxis and if IL-8 was responsible. Our results show both mastitic and nonmastitic secretions were chemotactic rather than chemokinetic for neutrophils. The neutrophil chemotactic activity in mastitic, but not nonmastitic, mammary secretions was blocked by anti-IL-8 antibodies.

MATERIALS AND METHODS

Reagents. All reagents were obtained from Sigma Chemical Co., St. Louis, Mo., unless otherwise noted.

Anti-human IL-8 antiserum produced in chickens that was found to cross-react with bovine IL-8 (23) was kindly provided by Donald L. Kreutzer (Departments of Pathology and Surgery, Vision Immunology Center, University of Connecticut).

Mammary secretions. Normal lactation-stage mammary secretions were collected from individual quarters of four Holstein cows as described previously (1) and from a mastitic Holstein cow (four quarters) housed at the Kellogg Dairy Center at the University of Connecticut. Samples were grouped as nonmastitic or mastitic based on an increase in somatic cell counts (>7.5 × 10⁶ cells/ml), bacteriological studies, and clinical signs of inflammation of the mammary gland (i.e., swelling, redness, and heat) or milk (i.e., clots and flakes) (1). The causative agent of mastitis in the mastitic samples was Staphylococcus aureus.

Isolation of responder cells. Bovine blood was collected via venipuncture into an EDTA vacutainer tube (Fisher Scientific, Pittsburgh, Pa.). Whole blood was centrifuged at 400 × g for 20 min. The plasma and buffy coat layers were aspirated, and the erythrocyte pellet, which contained neutrophils, was subjected to hypotonic lysis to remove the erythrocytes. Neutrophils were recovered (500 × (5 g, 5 min), washed three times with RPMI medium, and resuspended at a final concentration of 2 × 10⁵ cells/ml in RPMI medium. Typically, the viability was greater than 98% as shown by the trypan blue exclusion test.

Preparation of whey. Mammary secretions were centrifuged at 500 × g for 20 min to remove fat and cells. Samples were then centrifuged at 100,000 × g at 4°C.
Chemotactic activities in mammary secretions. The data are from a representative experiment with at least three separate nonmastitic or mastitic mammary secretions. Samples were run at physiological concentrations. Data are mean CI values (number of neutrophils which migrated towards a sample/number of neutrophils which migrated towards a control medium) ± standard errors of the means. * P < 0.05 compared to the control medium (media).

Since IL-8 is a potent inducer of neutrophil migration we used antibodies specific for IL-8 (23) to determine if IL-8 was involved in neutrophil chemotaxis towards mammary secretions. Figure 3 shows that anti-IL-8 antibodies significantly blocked the chemotactic activity of mastitic mammary secretions (P < 0.05). In contrast, anti-IL-8 antibodies did not have a significant effect on the chemotactic activity of nonmastitic mammary secretions.

Chemotactic activity of molecular mass fractions of mastitic mammary secretions. Bovine IL-8 has previously been shown to have a molecular mass of 7.8 kDa (11). We therefore fractionated mastitic samples to determine if the chemotactic activity falls within the anticipated fraction. Prior to this determination, and to facilitate molecular mass fractionation, casein (a milk protein found in significant amounts) had been precipitated by rennin and the casein-free whey was analyzed for chemotactic activity. Casein-free whey was found to retain its chemotactic activity, and this activity could be eliminated by anti-IL-8 antibodies (data not shown). The fraction of mastitic casein-free whey greater than 10 kDa did not cause significant chemotaxis, whereas the fraction smaller than 10 kDa did cause significant chemotaxis that could be abrogated by anti-IL-8 antibodies (Fig. 4).

Protein concentrations. In order to determine if an increase in IL-8 activity was due to an increase in protein concentration, the protein concentrations of the whey samples were determined. Table 1 shows that the protein concentrations of nonmastitic and mastitic secretions were not significantly different.

RESULTS

Chemotactic activity of mammary secretions. Figure 1 shows the chemotactic activity of mastitic and nonmastitic mammary secretions. Nonmastitic secretions had a CI of 3.4 ± 0.7 and mastitic secretions had a CI of 2.8 ± 0.4. Both nonmastitic and mastitic secretions had CIs that were significantly higher than that of the control medium.

Checkerboard analysis of mammary secretions. Checkerboard analysis was performed to determine whether neutrophil migration was due to either chemotaxis or chemokinesis. Dilutions of mammary secretions were added to the upper and lower wells of the Boyden chamber and neutrophil migration was quantitated. As shown in Fig. 2A (nonmastitic) and B (mastitic), neutrophil migration generally increased as the concentration gradient between the upper and lower chambers increased. This indicates that the migratory activity in the mammary secretions was chemotactic rather than chemokinetic.

Effects of anti-IL-8 antibodies on neutrophil chemotactic activities of nonmastitic and mastitic mammary secretions.

Since IL-8 is a potent inducer of neutrophil migration we used antibodies specific for IL-8 to determine if IL-8 was involved in neutrophil chemotaxis towards mammary secretions. Figure 3 shows that anti-IL-8 antibodies significantly blocked the chemotactic activity of mastitic mammary secretions (P < 0.05). In contrast, anti-IL-8 antibodies did not have a significant effect on the chemotactic activity of nonmastitic mammary secretions.

Chemotactic activity of molecular mass fractions of mastitic mammary secretions. Bovine IL-8 has previously been shown to have a molecular mass of 7.8 kDa (11). We therefore fractionated mastitic samples to determine if the chemotactic activity falls within the anticipated fraction. Prior to this determination, and to facilitate molecular mass fractionation, casein (a milk protein found in significant amounts) had been precipitated by rennin and the casein-free whey was analyzed for chemotactic activity. Casein-free whey was found to retain its chemotactic activity, and this activity could be eliminated by anti-IL-8 antibodies (data not shown). The fraction of mastitic casein-free whey greater than 10 kDa did not cause significant chemotaxis, whereas the fraction smaller than 10 kDa did cause significant chemotaxis that could be abrogated by anti-IL-8 antibodies (Fig. 4).

Protein concentrations. In order to determine if an increase in IL-8 activity was due to an increase in protein concentration, the protein concentrations of the whey samples were determined. Table 1 shows that the protein concentrations of nonmastitic and mastitic secretions were not significantly different.
chemotaxis, chemoattractants, help to regulate and control migration. IL-8 is one such mediator. It is an 8-kDa protein (11) which has been shown to induce leukocyte migration in vitro and to mediate inflammation in vivo (10). Its role in recruiting neutrophils during inflammation prompted us to examine the role of IL-8 in inflammation of the mammary gland (mastitis).

Mastitis is a major cause of economic loss to the dairy industry (4). It is characterized by increases in the somatic cell count and viable bacteria in the mammary secretions as well as by clinical signs. Others have shown that cytokines play an important regulatory role in mastitis (6, 20, 28, 29). In this study we determined whether nonmastitic and mastitic secretions could cause in vitro neutrophil chemotaxis and, if so, whether IL-8 was involved.

As shown in Fig. 1 both nonmastitic and mastitic secretions induced neutrophil migration in vitro. A checkerboard analysis indicated that the activity was chemotactic and not chemoki-
netic (Fig. 2). Since both nonmastitic and mastitic secretions caused neutrophil chemotaxis, we next determined if IL-8 was involved in either case. By using anti-human IL-8 antibodies produced in chickens (which cross-react to bovine IL-8 [23]) to block chemotaxis, it was determined that mastitic secretions, but not nonmastitic secretions, contained IL-8. The anti-IL-8 antibodies blocked nearly 100% of the chemotactic activities in mastitic secretions, whereas they had only a 25% inhibitory effect (which was not significant) on chemotaxis caused by normal secretions. Additionally, when the mastitic samples were fractionated according to molecular mass, the fraction less than 10 kDa was found to contain chemotactic activity that could be abrogated by anti-IL-8 antibodies, whereas the fraction greater than 10 kDa did not contain any chemotactic activity. Currently, nonmastitic mammary secretions are being further analyzed to characterize properties of the chemotactic activities. In this study, alleviated by serial dilutions.

Numerous cell types have the ability to produce IL-8, including leukocytes (9, 26, 33) and epithelial cells (8). Both of these cell types may produce IL-8 during mastitis. There is a breakdown of the mammary gland epithelium during mastitis which may allow leaking of IL-8 and other proteins into the secretions. Also, leukocytes in mammary secretions could be activated by other proinflammatory cytokines, such as tumor necrosis factor alpha and IL-1 (25, 32), to produce IL-8. Tumor necrosis factor alpha has been shown to be present in bovine mammary secretions. Further characterization of an interleukin-8-like peptide in the bovine species. J. Leukocyte Biol. 60:479–487.

ACKNOWLEDGMENTS

This work was supported by USDA AFD 9404477 and the Storrs Agricultural Experimental Station NE-112 project. We are grateful to Arnold Nieminen at the Kelloc Dairy Center (University of Connecticut) for assistance in collecting milk samples and Alexander Pankschenko for help in obtaining blood samples. We thank Lynn Hinckley and her staff at the Diagnostic Testing Services (University of Connecticut) for assistance with the bacteriological studies.

REFERENCES

1. Ayoub, I. A., R. B. Bendal, and T. J. Yang. 1996. Increase in the proportion of CD4+ T lymphocytes and the levels of transforming growth factor-β in the milk of mastitic cows. Infect. Dis. 6:145–150.
2. Bevilacqua, M. P. 1993. Endothelial-leukocyte adhesion molecules. Annu. Rev. Immunol. 11:767–804.
3. Boyd, S. 1992. Chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. Exp. Med. 115:453–459.
4. Christ, W. L., R. J. Harman, and L. E. Newman. 1983. How much does mastitis cost? Udder Top. 6:66–9.
5. Daley, M. J., E. R. Oldham, T. J. Williams, and P. A. Coyle. 1991. Bovine mastitis. I. Quantitative and qualitative properties of host polymorphonuclear cells during Staphylococcus aureus mastitis infection. Am. J. Vet. Res. 52:474–479.
6. Daley, M. J., T. J. Williams, P. A. Coyles, G. Furda, R. Dougherty, and P. Hayes. 1993. Prevention and treatment of Staphylococcus aureus infections with recombinant cytokines. Cytokine 5:276–284.
7. Detmers, P. A., D. E. Powell, A. Walz, I. Clark-Lewis, M. Baggionlini, and Z. A. Cohn. 1991. Differential effects of neutrophil-activating peptide/IL-8 and its homologues on leukocyte adhesion and phagocytosis. J. Immunol. 147:4211–4217.
8. Elmer, V. M., R. M. Streiter, S. G. Elner, M. Baggionlini, I. Lindley, and S. L. Kunkel. 1990. Neutrophil chemotactic factor (IL-8) gene expression by cytokine-treated retinal pigment epithelial cells. Am. J. Pathol. 136:745–750.
9. Gregory, H., J. Young, J. M. Schroder, U. Mirowitz, and E. Christophers. 1988. Structure determination of a human lymphocyte derived neutrophil activating peptide (LYNAP). Biochem. Biophys. Res. Commun. 151:863–890.
10. Harda, A., N. Sekido, T. Akahoshi, T. Wada, N. Mukaida, and K. Matsushima. 1994. Essential involvement of interleukin-8 (IL-8) in acute inflammatory response. J. Leukocyte Biol. 56:559–564.
11. Hassfurth, R. L., P. C. Canning, and R. W. Geib. 1994. Isolation and characterization of an interleukin-8-like peptide in the bovine species. Vet. Immunol. Immunopathol. 42:117–126.
12. Jinquan, T., B. Deleuran, B. Gesser, H. Maare, M. Deleuran, C. G. Larsen, and K. Thestrup-Pederson. 1995. Regulation of human T lymphocyte chemokinesis in vitro by T-cell derived cytokines IL-2, IFN-γ, IL-4, IL-10, and IL-13. J. Immunol. 154:3743–3752.
13. Kasama, T., R. M. Streiter, N. W. Lukacs, M. D. Burdick, and S. L. Kunkel. 1994. Regulation of neutrophil-derived chemokine expression by IL-10. J. Immunol. 152:3559–3569.
14. Keller, R. P., and M. C. Neville. 1986. Determination of total protein in human milk: comparison of methods. Clin. Chem. 32:120–123.
15. Larson, R. S., and T. A. Springer. 1990. Structure and function of leukocyte integrins. Immunol. Rev. 114:181–217.
16. Leonard, E. J., A. Skeel, T. Yoshimura, K. Noer, S. Kutivit, and D. VanEpps. 1990. Leukocyte specificity and binding of human neutrophilactivating protein-1. J. Immunol. 144:1323–1330.
17. Newbold, F. H. S., and F. K. Neave. 1965. The response of the bovine mammary gland to an infusion of Staphylococci. J. Dairy Res. 32:163–170.
18. Ormrod, J. D., and T. E. Miller. 1992. A low molecular weight component derived from the milk of hyperimmunised cows suppresses inflammation by inhibiting neutrophil emigration. Agents Actions 37:70–79.
19. Palkowitz, K. H., C. L. Royner, R. Garofalo, H. E. Rudoff, F. C. Schmalstieg, Jr., and A. S. Goldman. 1994. Production of interleukin-6 and interleukin-8 by human mammary gland epithelial cells. J. Reprod. Immunol. 26:57–64.
20. Persson, K., I. Larson, and C. Hallen Sandgren. 1993. Effects of certain inflammatory mediators on bovine neutrophil migration in vivo and in vitro. Vet. Immunol. Immunopathol. 37:99–112.
21. Philpot, W. N., and S. C. Nickerson. 1991. Mastitis: counterattack, p. 1–133. Babson Bros., Co., Naperville, Ill.
22. Pickett, L. J. 1994. Control of lymphocyte homing. Curr. Opin. Immunol. 6:394–396.
23. Qi, J., and D. L. Kreutzer. 1995. Fibrin activation of vascular endothelial cells: induction of IL-8 expression. J. Immunol. 155:867–876.
24. Rewinski, M. J., and T. J. Yang. 1994. Lactation stage-dependent changes in levels of tumor necrosis factor/cachectin in milk. Am. J. Reprod. Immunol. 31:170–176.
25. Rudolf, H. E., F. C. Schmalstieg, A. A. Mustaha, K. H. Palowitz, S. K. Liu, and A. S. Goldman. 1992. Tumor necrosis factor-α in human milk. Pediatr. Res. 32:29–33.

TABLE 1. Protein concentrations of nonmastitic and mastitic mammary secretions

Sample	Protein concn (mg/ml)
1M	10.17
4M	12.49
5M	12.40
7M	15.22
2NM	12.08
3NM	12.33
6NM	14.80
8NM	16.65

* Mammary secretions were collected from individual quarters and were classified as nonmastitic or mastitic based on criteria described in Materials and Methods. The secretion was assessed for protein concentration to determine if increased chemotactic activity was related to increased protein concentration. M, mastitic; NM, nonmastitic.
26. Sandholm, M., T. Honkanen-Buzalski, L. Kaartinen, and S. Pyorala. 1995. The bovine udder and mastitis. Gummerus Kirjapaino, Oy, Jyväskylä, Finland.

27. Schroder, J. M., U. Morwietz, E. Morita, and E. Christophers. 1987. Puriﬁcation and partial biochemical characterization of a human monocyte-derived, neutrophil-activating peptide that lacks interleukin-1 activity. J. Immunol. 139:3474–3483.

28. Shuster, D. E., E. K. Lee, and M. E. Kehrli. 1996. Bacterial growth, inﬂammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within ten days after calving, compared with cows at mid-lactation. Am. J. Vet. Res. 57:1569–1575.

29. Shuster, D. E., M. E. Kehrli, P. Rainard, and M. Paape. 1997. Complement fragment C5a and inﬂammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli. Infect. Immun. 65:3286–3292.

30. Skansen-Saphir, U. A., A. Lindfors, and U. Anderson. 1993. Cytokine pro-duction in mononuclear cells of human milk studied at the single-cell level. Pediatr. Res. 34:213–216.

31. Springer, T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–304.

32. Srivastava, M. D., A. Srivastava, B. Brouhard, R. Saneto, S. Groh-Wargo, and J. Kubit. 1996. Cytokines in human milk. Res. Commun. Mol. Pathol. Pharmacol. 93:263–287.

33. Strieter, R. M., K. Kasahara, R. Allen, H. J. Showell, T. J. Standiford, and S. L. Kunkel. 1990. Human neutrophils exhibit disparate chemotactic factor gene expression. Biochem. Biophys. Res. Commun. 173:725–730.

34. VanDamme, J. 1994. Interleukin-8 and related chemotactic cytokines, p. 185–208. In A. Thomson (ed.), The cytokine handbook. Academic Press, New York, N.Y.

35. Zigmund, S., and J. Hirsch. 1973. Leukocyte locomotion and chemotaxis: new methods for evaluation and demonstration of a cell derived chemotactic factor. J. Exp. Med. 137:387–410.