Regulatory approval for autologous human cells and tissue products in the United States, the European Union, and Japan

Kazuo Yano\textsuperscript{a, b, 1}, Natsumi Watanabe\textsuperscript{a, c, 2}, Kenichiro Tsuyuki\textsuperscript{c, 1}, Taisuke Ikawa\textsuperscript{c, 1}, Hiroshi Kasanuki\textsuperscript{b, c, 3}, Masayuki Yamato\textsuperscript{a, c, *}

\textsuperscript{a} Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-866, Japan

\textsuperscript{b} Research Institute for Science and Engineering, Waseda University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-866, Japan

\textsuperscript{c} Cooperative Major in Advanced Biomedical Sciences, Joint Graduate School of Tokyo Women's Medical University and Waseda University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-866, Japan

\textit{Article info}

\textbf{Article history:}
Received 20 June 2014
Accepted 11 October 2014

\textbf{Keywords:}
Autologous cell
Chondrocyte
Epithelial cell
Fibroblast
Macrophage
Regenerative medicine
Regulatory science
Tissue engineering

\textbf{Abstract}

Human cells and tissue products belong to a relatively new class of medical products. Therefore, limited information is available on the classification and premarket evaluation of human cells and tissue products in the United States (US), the European Union (EU), and Japan. In this study, the definition, legislation, and approval system of these products were surveyed. A total of nine autologous human cells and tissue products approved until October 2013 were collected. The definitions of human cells and tissue products were compatible among the US, the EU, and Japan. The products were classified as human cells, tissue, and cellular and tissue-based products (HCT/Ps) in the US, advanced therapy medicinal products (ATMPs) in the EU, and cell/tissue-engineered products in Japan. These products were categorized as biologics and medical device in the US and Japan, and drug in the EU. The issuance of new guidance induced regulatory impact for manufacturer, especially in the US. These products are subjected to the accelerated approval of biological product, the humanitarian device exemption approval, the premarket application approval, the biologics license application approval, and new drug application approval with specific targeting of postapproval registry or surveillance. Of nine autologous human cells and tissue products, four products had been evaluated using clinical experiences or open clinical trials with small subjects, although the rests of products had been evaluated using comparative clinical trials with control treatment. Our survey suggests that autologous human cells and tissue products would need postmarket-oriented evaluation rather than premarket-oriented evaluation for doctors and patients.

\textcopyright 2014 the Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. All rights reserved.

\textbf{1. Introduction}

Regenerative medicine and tissue engineering are novel ways of treating acute and chronic diseases and are expected to enable the regeneration of tissue-specific functions. Because they are derived from human cells and tissues, the products are regulated as biology that differ significantly from chemically synthesized drugs [1]. Recently, human cells or tissues intended for implantation, transplantation, infusion, or transfer into a human recipient have been regulated as human cells, tissues, and cellular and tissue-based products (HCT/PS) in the United States (US) [2]; somatic cell therapy medicinal products or tissue-engineered products of advanced therapy medicinal products (ATMPs) in the European...
Union (EU) [3], and cell/tissue-engineered products in Japan [4,5]. Although these innovative advanced products primarily belong to the class of cell-based medical products for human use because they contain or consist of living cells or tissues, the products have two lateral aspects that allow them to be classified as drugs or medical devices according to the primary mode of action [6] and to be divided based on their origins as autologous and allogeneic [2–5].

The definition of human cells and tissue products is similar but definitely not the same among the US, the EU, and Japan. The categorization or classification of human cells and tissue products is different among the US, the EU, and Japan [2–5].

The therapeutic areas of approved human cells and tissue products vary from epidermal transplantation for emergency use [7,8], fibroblast injection for cosmetic surgical repair [9], transplantation of tissue engineered cartilage [10–12], chondrocyte injection for orthopedic trauma [10,11,13] to activated mononuclear cell infusion for cancer treatment [14,15]. The premarket evaluation of human cells and tissue products also varies, including the accelerated approval [11], the humanitarian device exemption (HDE) [7], the ATMP approval [10,12,15], and the premarket approval [8–10,14].

However, few studies have been conducted to elucidate the similarity or difference of the definition, category, premarket approval evaluation by regulatory authorities, and adverse events of human cells and tissue products. Recently, we have published the regulation of allogeneic human cells and tissue products [16] that are seven products on the market in the US only, and five of seven products had evaluated using comparative clinical trials with control treatment. Otherwise, there is no such detailed study of autologous human cells and tissue products. In these products, some products had been on the market as cell bank and the target population of some indications such as orphan diseases is very small. We developed a hypothesis about premarket approval evaluation of autologous human cells and tissue products that may be limited information, and may need a special market evaluation system.

The aim of this study was to provide detailed information to enhance the discussion regarding the regulatory approval of human autologous cells and tissue products which have little consideration about transplant graft rejection, and microbiological or viral infections.

2. Materials and methods

This study included the autologous cells and tissue products in the US, the EU or Japan by October 2013. The classifications and definitions of the human cells and tissue products were different among these two countries and the EU. In the US, the HCT/Ps were defined under sections 351 and 361 of the Public Health Service (PHS) Act (42 the United State Code) according to Title 21, Part 1271.10 and 1271.20 in the Code of Federal Regulation (21CFR1271), respectively [2]. We focused on the HCT/Ps under section 351 of the PHS Act which require premarket approval. The HCT/Ps under section 361 were excluded due to the absence of a requirement for premarket approval. The information on the definition and classification of HCT/Ps was obtained from the Food and Drug Administration (FDA) website [2]. The information on the approved HCT/Ps was obtained from the FDA website of the approved cell therapy products [17] and the listing of the Center for Devices and Radiological Health (CDRH) HDE [18]. The information from the review reports for each HCT/P was obtained from the appropriate FDA websites for Carticel™ [19], Epicel® [20], Provenge® [21], and Laviv® [22]. In the EU, an ATMP is defined as a gene therapy medicinal product, a somatic cell therapy medicinal product, and a tissue-engineered product. We focused only on ATMPs because of a similar definition for HCT/Ps under section 351 of the PHS Act in the US. The information on the definition and classification of the ATMPs was obtained from the European Medicine Agency (EMA) website [3]. The information from the public assessment report for ChondroCelect® [23], MACI [24], and Provenge [25] as AMTPs was obtained from the EMA website because of central authorization. Although Glybera (generic name: alipogene tiparvovec) was approved as the second ATMP on October 25, 2012, in the EU [26], it was excepted from this article because of allogeneic human cells and tissue product. In Japan, the information on the definition and classification of cell/tissue-engineered products was obtained from the website of the Ministry of Health, Labour and Welfare (MHLW) Legislation Database, especially for Pharmaceutical and Food Safety Bureau (PFSB) notification No 0912006/2008 [4], and No 0208003/2008 [5]. The information from the review report for JACE [27] and JACC [28] were obtained from the website of the Pharmaceuticals and Medical Devices Agency (PMDA). The generic name and trade name, cell origin, approval date, market authorization holder, authority, indication and category of medicinal product for each product were obtained from the regulatory information. The history of regulatory action, preapproval and postapproval clinical evaluation was obtained from the appropriate review reports or public assessment reports.

3. Results

3.1. Approved autologous cells and tissue products in the US, the EU, and Japan

A total of nine approved autologous cells and tissue products in the US, the EU, and Japan were on the market as of October 2013 (Table 1, Fig. 1). Four products derived from autologous chondrocytes for the repair of cartilaginous defects of the femoral condyle were approved by the FDA, the EMA, and the MHLW in Japan. Two products derived from autologous epidermis for use in patients with deep dermal or full thickness burns (total body surface area greater than or equal to 30%) were approved by the FDA and the MHLW. Two products derived from autologous peripheral blood mononuclear cells to treat hormone refractory prostate cancer and a product from autologous fibroblasts to improve the appearance of nasolabial wrinkles were approved by the FDA and the EMA.

3.2. Classification, definition, and regulation of human cells and tissue products in the US, the EU, and Japan

The human cells and tissue products were classified and defined as HCT/Ps in the US, as ATMPs in the EU and as cell/tissue-engineered products in Japan (Table 2). The approved HCT/Ps were regulated under sections 351 of the PHS Act according to 21CFR1271, which were categorized as drug or biological product or medical device. The approved AMTP was regulated as the somatic cell therapy medicinal product and the tissue engineering product under Regulation (EC) No 1394/2007 of the European Parliament and the Council of 13 November, 2007, which was categorized as medicinal product (drug). In Japan, the approved cell/tissue-engineered products were regulated as medical devices by adapting existing legislation under clause 2 of the Pharmaceutical Affairs Law (PAL). The PFSB notification of No. 0280003/2008 describes the definition of cell/tissue-engineered products, and the quality and safety of these autologous products.
Table 1
Approved autologous human cells and tissue products in the US, EU, and Japan.

| Cell origin                                      | Approval date | Marketing authorization holder | Authority          | Indication                                                                 | Category             |
|-------------------------------------------------|---------------|--------------------------------|--------------------|----------------------------------------------------------------------------|----------------------|
| US                                              |               |                                 |                    |                                                                            |                      |
| Autologous cultured chondrocytes (Carticel®)     | August 22, 1997 | Genzyme Tissue Repair, Cambridge, MA, US | FDA/CBER          | Repair of clinically significant, systematic, cartilaginous defects of the femoral condyle caused by acute or repetitive trauma. In 2000, the indication has been changed to narrow that “in patients who have had an inadequate response to a prior arthroscopic or other surgical repair procedure”. | Biologics            |
| cultured epidermal autografts (Epícel®)         | October 25, 2007 | Genzyme Biosurgery, Cambridge, MA, US | FDA/CDRH          | Use in patients who have deep dermal or full thickness burns comprising a total body surface area of greater than or equal to 30%. | Medical device       |
| Sipuleucel-T (Provenge®)                        | April 29, 2010 | FDA/CBER                        |                    | Treatment of asymptomatic or minimally symptomatic metastatic hormone refractory prostate cancer. | Biologics            |
| Azficel-T (Laviv®)                              | June 21, 2011 | FDA/CBER                        |                    | Improvement of the appearance of moderate to severe nasolabial fold wrinkles in adults. | Biologics            |
| EU                                              |               |                                 |                    |                                                                            |                      |
| Characterized viable autologous cartilage cells expanded ex vivo expressing specific marker proteins (ChondroCelect®) | October 5, 2009 | Tigenix NV, Leuven, Belgium | EMA/CHMP          | Repair of single symptomatic cartilaginous defects of the femoral condyle of the knee (ICRS grade III or IV) in adults. | ATMP (Drug)          |
| Matrix-applied characterized autologous cultured chondrocytes (MACiT) | June 27, 2013 | Genzyme Biosurgery ApS, Kastrup, Denmark | EMA/CHMP          | Repair of symptomatic, full-thickness cartilage defects of the knee (grade III and IV of the Modified Outerbridge Scale) of 3–20 cm² in skeletally mature adult patients. Treatment of asymptomatic or minimally symptomatic metastatic (non-visceral) castrate resistant prostate cancer in male adults in whom chemotherapy is not yet clinically indicated. | ATMP (Drug)          |
| Autologous peripheral blood mononuclear cells activated with prostatic acid phosphatase granulocyte-macrophage colony-stimulating factor (Sipuleucel-T) (Provenge) | September 6, 2013 | Dendreon UK Ltd., London, UK  | EMA/CHMP          | Use in patients with serious, extensive burns when sufficient donor sites for autologous skin graft are not available and the total area of deep dermal and full-thickness burns is 30% or the total area of surface area. An autologous cultured cartilage to alleviate clinical symptoms by implanting it in the affected site of traumatic cartilage deficiency and osteochondritis dissecans (excluding knee osteoarthritis) in the knee joints with a cartilage defective area of 4 cm² or more for which there are no other options. | ATMP (Drug)          |
| EU                                              |               |                                 |                    |                                                                            |                      |
| Japan                                            |               |                                 |                    |                                                                            |                      |
| Autologous epidermis                            | October 29, 2007 | Japan Tissue Engineering Co., Ltd., Gamagori, Japan | MHLW-PMDA/ OB     | Use in patients who have had an inadequate response to a prior arthroscopic or other surgical repair procedure. | Medical device       |
| Human autologous cells and tissues (JACC)        | July 27, 2012 | Japan Tissue Engineering Co., Ltd., Gamagori, Japan | MHLW-PMDA/ OB     | Repair of symptomatic, full-thickness cartilage defects of the knee (grade III and IV of the Modified Outerbridge Scale) of 3–20 cm² in skeletally mature adult patients. Treatment of asymptomatic or minimally symptomatic metastatic (non-visceral) castrate resistant prostate cancer in male adults in whom chemotherapy is not yet clinically indicated. | Medical device       |

The US, the United States; The EU, the European Union; MA, Massachusetts; FDA, Food and Drug Administration; CBER, Center for Biologics Evaluation and Research; CDRH, Center for Devices and Radiological Health; MHLW, Ministry of Health, Labour and Welfare; PMDA, Pharmaceuticals Medical Device Administration; OB, Office of Biologics; EMA, European Medicines Agency; CHMP, Committee for Human Medicinal Products; AMTP, Advanced Therapy Medicinal Products; WA, Washington; CO, Colorado; UK: United Kingdom.

3.3. History of regulatory action, preapproval and postapproval clinical evaluation of autologous human cells and tissues products in the US, the EU, and Japan

In the US, prior to issuing of the guidance regarding manipulated autologous structural (MAS) cells on May 28, 1996 [29], three autologous human cells and tissues products such as Epícel®, Carticel™ and Laviv® had been on the market from cell banks. After issuing the guidance, Epícel® and Carticel™ were submitted as BLA and HDE, respectively in 1996. In compliance of FDA’s regulation of somatic cell therapy, Laviv® was removed to file Investigation New Drug Application (IND) in 1999 and BLA approval process. Provenge® was submitted as IND to conduct clinical trials in 1996 (Fig. 1).

After being submitted as BLA in 1996, the product derived from autologous chondrocytes, autologous cultured chondrocytes (Carticel™, Genzyme Tissue Repair, Cambridge, MA, US) was approved on August 22, 1997 for the accelerated approval of biological products for serious or life-threatening illnesses (21CFR601.40) [30] using the Swedish clinical experience of 153 patients and the US
registry data of 191 patients. The basis for the efficacy determination involved evidence such as functional outcomes compared with literature, in the same patients, and histological finding on biopsy that was judged to meet the standards for the accelerated approval of biological products under 21CFR801.40. Under the accelerated approval regulations, postapproval studies were required to confirm the long-term clinical benefits including Randomized clinical trial (RCT) with placebo, but due to the license holder’s request, the indication of Carticel™ has been approved to narrow to second line therapy in 2000. Postapproval clinical studies, including the registry-based study (RBS) of 97 US patients and the study of the treatment of articular repair (STAR) of 154 patients [31], were conducted to ensure the benefit and safety of this product (Table 3).

The product derived from autologous epidermis, cultured epidermal autografts (Epitel®, Genzyme Biosurgery, Cambridge, MA, US), was approved under the HDE on October 29, 2007 using clinical experience data (552 patients from 1989 to 1996 and 734 patients from 1997 to 2006) and a physician-sponsored study of 44 patients after being designated as a humanitarian use device (HUD, 21CFR814.100) that was intended to benefit patients by treating a disease affecting fewer than 4000 individuals per year in the US [32] (Table 3). Based on the preclinical and limited clinical data, Epitel® had been judged that it would not expose patients to an unreasonable risk or significant risk of illness or injury, and the probable benefit to health from using the device would outweigh the risk of illness or injury.

The product derived from autologous peripheral blood mononuclear cells, Sipuleucel-T (Provenge®, Dendreon Co., Seattle, WA, US), was approved on April 29, 2010 using the data from five clinical trials with a total of 1026 patients. The pivotal study with 512 patients (Provenge®, 341 patients vs. Placebo, 171 patients) revealed that the use of Provenge® prolonged overall survival (median 25.8 months) among men with metastatic castration-resistant prostate cancer compared with the placebo (median 21.7 months). The primary analysis showed a statistically significant difference in overall survival favoring Provenge® (p-value of 0.032) with hazard ratio of death of 0.075 (95% CI: 0.614, 0.979) [33]. Currently, the postapproval clinical study titled the registry of Sipuleucel-T therapy in men with advanced prostate cancer (PROCEED) is ongoing to enroll 1500 patients (Table 3).

The product of autologous fibroblasts, Azcível-T (Laviv®, Fibrocell Science Inc., Boulder, CO, US), was approved on June 21, 2011 using the data from seven clinical trials with a total of 907 patients. Two pivotal studies (IT-R-005 and IT-R-006) with total 421 patients (Laviv®, 210 patients vs. vehicle-control, 211 patients) showed that the co-primary endpoints of subject wrinkle assessment and evaluator wrinkle assessment of Laviv® were statistically superior to vehicle-control. The success rates for the evaluator wrinkle assessment were 33% (33/100 patients) of Laviv® and 7% (7/103 patients) in IT-R-005, and 19% (21/110 patients) of Laviv® and 7% (8/108 patients) in IT-R-006 [34] (Table 3). The FDA recommended that a postmarket registry study should be conducted to access the risk of skin cancer in the area of the Laviv® injection and immune-mediated hypersensitivity reactions in 2700 subjects.

In the EU, the product of characterized viable autologous cartilage cells expanded ex vivo expressing specific marker proteins (ChondroCelect™, Tigenix NV, Leuven, Belgium) were first approved as an ATMP on October 5, 2009 using the randomized, controlled clinical trial data of 118 patients (ChondroCelect™, 57 patients vs. microfracture, 61 patients) and the compassionate use data of 334 patients followed by pharmacovigilance. ChondroCelect™ resulted in better structural repair, as assessed by histomorphometry (p = 0.003) and overall histologic evaluation (p = 0.0103) (Table 3).

Matrix–applied characterized autologous cultured chondrocytes (MACI, Genzyme Biosurgery ApS, Kastrup, Denmark) consists of autologous chondrocytes, seeded on a collagen membrane of porcine origin (type I/III ACI-Maix) which is a CE marking device in the EU. MACI is an ATMP defined as combined tissue-engineering product. Prior to the introduction of the Regulation (EC) 1394/2007 and during the ATMP transitional period, MACI was available in certain European countries (i.e. Austria, Belgium, Denmark, Germany, Greece, Italy, Ireland, Italy, The Netherlands, Norway, Portugal, Spain, and the United Kingdom) and Australia, in accordance with national legislation since 1998. MACI was submitted through the centralized procedure on September 1, 2011, and approved as the ATMP on June 27, 2013. The product had been judged that it would not expose patients to an unreasonable risk or significant risk of illness or injury, and the probable benefit to health from using the device would outweigh the risk of illness or injury.
In Japan, a surgical/orthopedic material involving autologous cultured epidermis (JACE, Japan Tissue Engineering Co., Ltd., Aichi, Japan) was submitted through the centralized procedure on October 6, 2008, and was approved on October 29, 2007 using the data from 14 clinical trials with a total of 1382 patients and post-market registry of 28 patients. The pivotal study (IMPACT study) with 512 patients (Provenge®-arm, 341 patients vs. Placebo-arm, 171 patients) be submitted to EMA was same data as postmarket survey for all patients treated with JACE for seven years (Table 3).

### 3.4. Regulatory pathways and legislation issuance

In the US, since the first guidance on manipulated autologous cells was issued in 1996 [29], many rules regarding HCTPs were issued. In 1997, FDA proposed a new approach to the regulation of HCTPs, which would establish in 21CFR1271 a comprehensive regulatory program. Final rules of establishment registration and listing in 2001, final rules of donors eligibility as well as inspection and enforcement for current good tissue practice (CGTP) in 2004, and final rules of donor screening, testing, and labeling in 2007 are the most important guidance for HCTPs regulations (Table 4).

In the EU, the medicinal products directive was issued in 2001. The regulation of medicinal products for human use regarding EU-wide marketing authorization was issued in 2004 and ATMP regulation was issued in 2007. According to ATMP regulation, ATMP, other than tissue engineering products which were legally on the EU market in accordance with national legislation on December 30, 2008, shall be authorized using central application no later than December 30, 2011. Tissue engineering products which were legally on the EU market in accordance with national legislation on December 30, 2008, shall be authorized using central application no later than December 30, 2012 [3] (Table 4).

In Japan, a notification for quality and safety assurance for medical devices or drug products using cells or tissues was issued in 1999 and the confirming application prior to initiating clinical trials had continued until 2011. In 2008, notifications for quality and safety assurance for medical devices or drug products with processed autologous and allogeneic human-derived cells and tissue were issued [4,5] (Table 4).
| Generic name (trade name) | History of regulatory action | Preapproval evaluation | Postapproval evaluation |
|--------------------------|------------------------------|------------------------|-------------------------|
| **US**                   |                              |                        |                         |
| Autologous cultured      | • Began marketing in 1995 due | • Rabbit studies of    | • Goat studies of       |
| chondrocytes             | to not to be regulated for   | improved healing at    | histological healing    |
| (Carticel®)              | autologous cell therapy      | 52 weeks               | at 16 weeks             |
|                         | • Submitted BLA in 1996      | • Dog study of         | • Horse study of        |
|                         | • Issued guidance regarding | improved healing at    | histological healing     |
|                         | MAS cells on May 28, 1996    | 13 and 26 weeks        | at eight weeks           |
|                         | (FDA determined to be       |                        |                         |
|                         | regulated)                  |                        |                         |
|                         | • Approved on August 22, 1997|                        |                         |
|                         | • Approval of narrow        |                        |                         |
|                         | indication (second line     |                        |                         |
|                         | therapy) on March 2, 2000   |                        |                         |
|                         | Nonclinical studies         |                        |                         |
|                         | • In vitro and in vivo      |                        |                         |
|                         | efficacy studies            |                        |                         |
|                         | Clinical studies            |                        |                         |
|                         | • Swedish Clinical Experience|                        |                         |
|                         | of 153 patients with        |                        |                         |
|                         | retrospectively generated   |                        |                         |
|                         | CRF                        |                        |                         |
|                         | • US registry data of 191   |                        |                         |
|                         | patients repairing          |                        |                         |
|                         | of femoral condyle in 241   |                        |                         |
|                         | patients treated            |                        |                         |
|                         | Nonclinical studies         |                        |                         |
|                         | • In vitro study for PAP®   |                        |                         |
|                         | expression in human tissues |                        |                         |
|                         | • Five in vivo studies for  |                        |                         |
|                         | immunogenicity and          |                        |                         |
|                         | generation of PAP and efficacy model in mice and rats | | |
|                         | • No toxicology studies     |                        |                         |
|                         | Clinical studies            |                        |                         |
|                         | • Randomized clinical trial |                        |                         |
|                         | (RCT) as pivotal study of   |                        |                         |
|                         | 312 patients to compare Pro-|                        |                         |
|                         | venge®® (341 patients) to   |                        |                         |
|                         | placebo (171 patients)      |                        |                         |
|                         | • Other phase three, two    |                        |                         |
|                         | RCTs of 225 patients to     |                        |                         |
|                         | compare Provenge®® (147    |                        |                         |
|                         | patients) to placebo (78    |                        |                         |
|                         | patients)                   |                        |                         |
|                         | • Other phase three, a RCT  |                        |                         |
|                         | of 176 patients and phase    |                        |                         |
|                         | two, an open-label trial of |                        |                         |
|                         | 113 patients                |                        |                         |
|                         | Nonclinical studies         |                        |                         |
|                         | • No preclinical studies    |                        |                         |
|                         | conducted due to applicable |                        |                         |
|                         | five published articles of  |                        |                         |
|                         | various in vitro and in vivo|                        |                         |
|                         | studies                     |                        |                         |
|                         | Clinical studies            |                        |                         |
|                         | • Of 7 clinical trials, two |                        |                         |
|                         | randomized clinical trials  |                        |                         |
|                         | of phase 3 with 421 patients |                        |                         |
|                         | to compare Laviv®® (210     |                        |                         |
|                         | patients) to vehicle-control |                        |                         |
|                         | (211 patients) and phase    |                        |                         |
|                         | two an open-label trial of  |                        |                         |
|                         | 50 patients                 |                        |                         |
|                         | • Other indication for four  |                        |                         |
|                         | trials of 436 patients      |                        |                         |
|                         | • Commercial experience of  |                        |                         |
|                         | >9077 patients in the US and |                        |                         |
|                         | UK from 1995 to 2007        |                        |                         |
| **Cultured epidermal**   |                              |                        |                         |
| **autografts (Epicel®)** | • Commercialized from 1988   |                        |                         |
|                         | to 1996 as banked human     |                        |                         |
|                         | tissue                      |                        |                         |
|                         | • Issued guidance regarding |                        |                         |
|                         | MAS cells on May 28, 1996    |                        |                         |
|                         | (FDA determined to be        |                        |                         |
|                         | regulated)                  |                        |                         |
|                         | • Filed as Humanitarian      |                        |                         |
|                         | Device Exemption (HDE)       |                        |                         |
|                         | application on February 5, 1997 |                    |                         |
|                         | • Designated as Humanitarian|                        |                         |
|                         | Device Use Device (HUD) on  |                        |                         |
|                         | November 30, 1998           |                        |                         |
|                         | • Approved as HDE on         |                        |                         |
|                         | October 25, 2007             |                        |                         |
|                         | • Submitted IND on December |                        |                         |
|                         | 22, 1996                    |                        |                         |
|                         | • Submitted BLA on           |                        |                         |
|                         | August 21, 2006              |                        |                         |
|                         | • Approved as Biologic       |                        |                         |
|                         | Products on April 29, 2010   |                        |                         |
| **Sipuleucel-T (Provenge®)** | Nonclinical studies         |                        |                         |
|                         | • In vitro study for PAP®    |                        |                         |
|                         | expression in human tissues  |                        |                         |
|                         | • Five in vivo studies for   |                        |                         |
|                         | immunogenicity and generation of PAP and efficacy model in mice and rats | | |
|                         | • No toxicology studies     |                        |                         |
| **Azficel-T (Laviv®®)**  | Clinical studies            |                        |                         |
|                         | • Randomized clinical trials |                        |                         |
|                         | of estimated enrollment 1500|                        |                         |
|                         | patients, NCT01306890       |                        |                         |
|                      | Nonclinical studies         |                        |                         |
|                      | • Not conducted             |                        |                         |
|                      | Clinical studies            |                        |                         |
|                      | • A Registry of Sipuleucel-T |                        |                         |
|                      | therapy in men with advanced prostate cancer (PROCEED®) of estimated enrollment 2700 patients (No registry of ClinicalTrial.gov® website) | | |
| **EU**                 |                              |                        |                         |
| Characterized viable    | • Submitted through the      | • Goat study of        | • Not conducted          |
| autologous cartilage     | centralized procedure on     | improved repair at 52  |                          |
| cells expanded ex vivo   | June 1, 2007                 | weeks                  |                          |
| expressing specific      | Approved as ATMP on October  | Single dose toxicity of nude mice and sheep | (No registry of ClinicalTrial.gov® website) and EU Clinical Trials Register® website) |
| marker proteins (ChondroCelect®) | 5, 2009             |                        |                         |
|                         | Nonclinical studies         | • Carcinogenicity assay after serial passaging | (No registry of ClinicalTrial.gov® website) and EU Clinical Trials Register® website) |
|                         | • Randomized clinical trial  | • Randomized clinical trial of 144 patients to compare ChondroCelect to microfracture | |
|                         | of 144 patients to compare  | • Compassionate use of 334 patients | |
|                         | ChondroCelect to microfracture |                        |                         |
Matrix-applied characterized autologous cultured chondrocytes (MACI)  
- Available in certain European countries, and Australia in accordance with national legislations since 1998  
- Submitted through the centralized procedure on September 1, 2011  
- Approved as ATMP on June 27, 2013

Autologous peripheral-blood mononuclear cells activated with prostatic acid phosphatase-granulocyte-macrophage colony-stimulating factor (Sipuleucel-T) (Provenge)  
- Submitted through the centralized procedure on December 30, 2011  
- Approved as ATMP on September 6, 2013

Japan Other surgical/orthopedic materials; autologous cultured epidermis (JACE)  
- Submitted New Medical Device Application on October 6, 2004  
- Approved as New Medical Device on October 29, 2007

Human autologous cells and tissues (JACC)  
- Submitted confirmatory application on September 7, 2001 and confirmed on February 19, 2004  
- Submitted New Medical Device Application on August 24, 2009  
- Approved as New Medical Device on July 22, 2012

| Generic name (trade name) | History of regulatory action | Preapproval evaluation | Postapproval evaluation |
|--------------------------|-----------------------------|------------------------|-------------------------|
| Matrix-applied characterized autologous cultured chondrocytes (MACI) | Available in certain European countries, and Australia in accordance with national legislations since 1998 | **Nonclinical studies**  
- Rabbit, sheep, and horse of repair at 53 weeks  
- Single dose toxicity of mice and horse  
- Chromosomal stability testing with lack of tumorigenic findings | **Clinical studies**  
- Randomized clinical trial of 144 patients to compare MACI to microfracture  
- Supportive data of approximately 800 patients from 19 studies  
- Safety reports from post-market experience |  
**Nonclinical studies**  
- Not conducted  
**Clinical studies**  
- Proceeding pharmacovigilance activities  
- (5-year long term safety and efficacy)  
- EudraCT: 2009-016970-33  
- Planned retrospective and prospective study of pediatric patients |
| Autologous peripheral-blood mononuclear cells activated with prostatic acid phosphatase-granulocyte-macrophage colony-stimulating factor (Sipuleucel-T) (Provenge) | Submitted through the centralized procedure on December 30, 2011 | **Nonclinical studies**  
- In vitro study for PAP expression in human tissues  
- Five in vivo studies for immunogenicity and generation of PAP and efficacy model in mice and rats  
- No toxicity studies | **Clinical studies**  
- Randomized clinical trial (RCT) as pivotal study of 512 patients to compare Provenge (341 patients) to placebo (171 patients)  
- Other phase three, two RCTs of 225 patients to compare Provenge (147 patients) to placebo (78 patients)  
- Other phase three, a RCT of 175 patients, and phase one and two, eight open-label trials of 301 patients  
- Two salvage studies of 169 patients  
- Post-marketing experience of 28 patients as of July 29, 2011 (PROCEED) |  
**Nonclinical studies**  
- Not conducted  
**Clinical studies**  
- A Registry of Sipuleucel-T therapy in men with advanced prostate cancer (PROCEED) of estimated enrollment 1500 patients, NCT01306890  
- Proceeding phase 2 study with immunosuppressant therapies  
- Proposed post-approval study and EU registry study |
| Japan Other surgical/orthopedic materials; autologous cultured epidermis (JACE) | Submitted New Medical Device Application on October 6, 2004  
- Approved as New Medical Device on October 29, 2007 | **Nonclinical studies**  
- Biological safety studies |  
**Nonclinical studies**  
- Not conducted  
**Clinical studies**  
- Completed post-approval clinical trial with 30 patients  
- Proceeding post-market survey for all patients treated with JACE for 7 years | **Nonclinical studies**  
- Not conducted |
| Human autologous cells and tissues (JACC) | Submitted confirmatory application on September 7, 2001 and confirmed on February 19, 2004  
- Submitted New Medical Device Application on August 24, 2009  
- Approved as New Medical Device on July 22, 2012 | **Nonclinical studies**  
- Biological safety studies  
- Rabbit and Dog studies for graft treatments |  
**Nonclinical studies**  
- Not conducted  
**Clinical studies**  
- Proceeding post-market survey for all patients treated with JACC for 7 years |

The pathways of the nine approved autologous human cells and tissue products for market authorization in the US, the EU, and Japan demonstrated that the issuance of major regulations and guidance, especially in the US, induced various market authorizations, such as the accelerated application approval, the HDE approval, and the BLA (Fig. 1).

3.5. Safety information: recalls, alters, notification, and adverse event reports  
Recalls regarding two products were enforced three times (Table 5). The Dear Healthcare Professional Letter from the manufacturer of Carticel™ was issued on March 2000, which was...
Table 4  Major issuances of the legislation of human cells and tissue products in the US, the EU, and Japan.

| Country or area | Issuance date | Name of legislation                                                                 | Note                                                                 |
|-----------------|---------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| US              | 1996          | Guidance for application for Products Comprised of Living Autologous Cells Manipulated Ex Vivo and Intended for Structure Repair or Reconstruction; Availability (Federal Register Vol. 61, No. 103 P26523-26524, Notice May 28, 1996) Proposed Approach to Regulation of Cellular and Tissue-Based Products; Availability and Public Meeting (Federal Register Vol. 62, No. 42 P5721-9722, Proposed Rules March 4, 1997) | First guidance of manipulated autologous (MAS) cells                                     |
|                 | 1997          | Proposed rules of cellular and tissue-based products                                  |                                                                      |
|                 | 2001          | Human Cells, Tissues, and Cellular and Tissue-Based Products; Establishment Registration and Listing (Federal Register Vol. 66, No. 13 P5447-5469, Final Rules January 19, 2001) | Final rules of establishment registration and listing regarding human cells, tissues and cellular and tissue-based products (HCTPs) |
|                 | 2004          | Eligibility Determination for Donors of Human Cells, Tissues, and Cellular and Tissue-Based Products; Establishment; Inspection and Enforcement (Federal Register Vol. 69, No. 101 P2978629834, Final Rule May 25, 2004) | Final rules of donors eligibility for HCTPs |
|                 | 2007          | Human Cells, Tissues, and Cellular and Tissue-Based Products; Donor Screening and Testing, and Related Labeling (Federal Register Vol. 72, No. 117 P33667-33669, Final rule June 19, 2007) | Final rules of inspection and enforcement for current good tissue practice (CGTP) of HCTPs |
| EU              | 2001          | Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use | Medicinal products directive regarding to GMP- and GCP-compliance, advertising, labeling, classification and distribution |
|                 | 2004          | Regulation (EC) 726/2004 of the European Parliament and the Council of 31 March 2004 laying down Community procedures for the authorization and supervision of medicinal products for human and veterinary use and establishing a European Medicines Agency | Medicinal products for human use regarding to EU-wide marketing authorization |
|                 | 2007          | Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004 Official Journal of the European Union (L324/121 Dec.10, 2007) | Advanced therapy medicinal products (ATMP), ATMP definition, ATMP complying with existing market authorization requirements and the post-marketing pharmacovigilance rules, a new Committee for Advanced Therapies (CAT)’s responsibilities |
|                 | 2009          | Commission Directive 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products Commission Regulation (EC) No 668/2009 of 24 July 2009 implementing Regulation (EC) No 1394/2007 of the European Parliament and of the Council with regard to the evaluation and certification of quality and nonclinical data relating to advanced therapy medicinal products developed by micro, small, medium-sized enterprises |                                                                      |
| Japan           | 1999          | Quality and safety assurance for medical devices or drug products using cells or tissues. (Iyakuhatsu: PFSB notification No. 906 of July 30, 1999) (in Japanese) | Confirming application prior to initiating clinical trial. Records and documents retention of specified biologics for 30 years and biologics for 10 years |
|                 | 2000          | Quality and safety assurance for drug products manufactured using human- or animal-derived components as raw materials, Appendix 1: Basic policies for handling and using drug products using cells and tissue; Appendix 2: Guidance regarding quality and safety assurance for drug products manufactured by processing human-derived cells and tissue. (Iyakuhatsu: PFSB notification No. 1314 of December 26, 2000) (in Japanese) | Specifying notification regarding quality and safety assurance for drug products manufactured by processing human-derived cells and tissue |
|                 | 2004          | Guidance of regenerative medicine for epidermis using 3T3J2 and 3T3NH as feeder cells with regard to guidance of infectious issues for public health conducting xenotransplantation,(teikenhusatsu: MHLW/HPB/RDD notification No. 0702001 of July 2, 2004) (in Japanese) |Notification of regenerative medicine for epidermis using 3T3J2 and 3T3NH as feeder cells |
|                 | 2008          | Quality and safety assurance for drug products or medical devices with processed (autologous) human-derived cells and tissue (Yakushokubatsu: MHLW/PFSB notification No. 0208003 of February 8, 2008) (Partial amendment, Jimurenakazu: Administrative notification of September 12, 2008) (in Japanese) |Notification of drugs or medical devices with processed autologous human-derived cells and tissue |
|                 | 2010          | Notification of drugs or medical devices with processed allogenic human-derived cells and tissue (Yakushokubatsu: MHLW/PFSB notification No. 0912006 of September 12, 2008) (in Japanese) |Notification of drugs or medical devices with processed allogenic human-derived cells and tissue |
|                 | 2010          | Partial amendment with regard to quality and safety assurance for medical devices or drug products using cells or tissues. (Yakushoku hatusu: PFSB notification No. 1101-3 of November 1, 2010) (in Japanese) |Exemption of confirming application prior to initiating clinical trial |
intended to narrow the indication [35] (Table 1). Sixty three adverse event reports regarding Epicel® from Manufacture and User Device Experience (MAUDE) of the FDA were 54 death reports, seven other serious adverse events, and the rest of reports from publication in the United Kingdom. Of 63 reports, three reports mentioned that three serious adverse events as severe fever and poor outcome were possibility of related to use the Epicel®. One adverse event report for Carticel™ was voluntarily submitted as high fever at one day after transplantation to MAUDE of the FDA. In the EU and Japan, there was no recall and serious adverse event report.

4. Discussion

Our findings show that there were various kinds of premarket application approval for autologous human cells and tissue products, that the preapproval clinical evaluations were conducted with small population or using clinical experience, while five of the seven allogeneic human cells and tissue products were approved with small population or using clinical experience, while [36–40]. The results suggest that the products may lead to serious adverse health consequences. Our survey of nine autologous human cells and tissue products approved by October 2013 shows that the de

| Generic name (Trade name) | Approval date | Recall class | Date       | Reason                                                                 | Quantity |
|--------------------------|---------------|--------------|------------|------------------------------------------------------------------------|----------|
| US                       |               |              |            |                                                                        |          |
| Autologous cultured chondrocytes (Carticel™) | August 22, 1997 | Class 2      | May 17, 2006 | Carticel™, possible contaminated with Novosphingobium capsulatum, was distributed | 1 lot    |
|                          |               | Class 2      | September 1, 2010 | Revised labeling of Carticel™ Essentials Kit clarifies the non-sterile packing of the out clear plastic tray which should not be opened in the sterile fields | 3132 kits |
| Cultured epidermal autografts (Epicel®) | October 25, 2007 | NA           | April 29, 2010 | Provenge®, manufactured with a breach of disposal collection kit, was distributed | 1 unit   |
| Spuleucel-T (Provenge®)  | April 25, 2012 | Class 3      | April 25, 2012 |                                                                        |          |
| Azicel-T (Laviv®)        | June 21, 2011 | NA           |            |                                                                        |          |
| EU                       |               |              |            |                                                                        |          |
| Characterized viable autologous cartilage cells expanded ex vivo expressing specific marker proteins (ChondroCelect®) | October 5, 2009 | NA      |            |                                                                        |          |
| Matrix-applied characterized autologous cultured chondrocytes (MAC) | June 27, 2013 | NA     |            |                                                                        |          |
| Autologous peripheral-blood mononuclear cells activated with prostatic acid phosphatase granulocyte-macrophage colony-stimulating factor (Sipuleucel-T) (Provenge) | September 6, 2013 | NA     |            |                                                                        |          |
| Japan                    |               |              |            |                                                                        |          |
| Other surgical/orthopedic materials; autologous cultured epidermis (JACC) | October 29,2007 | NA     |            |                                                                        |          |
| Human autologous cells and tissues (JACC) | July 27, 2012 | NA     |            |                                                                        |          |

NA: Not available.

Tips and Articles on Device Safety: [http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/default.htm](http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/default.htm).

List of Device Recalls: [http://www.fda.gov/MedicalDevices/Safety/RecallsCorrectionsRemovals/RecallsofDevices/default.htm](http://www.fda.gov/MedicalDevices/Safety/RecallsCorrectionsRemovals/RecallsofDevices/default.htm).

Medical Device Safety Communications: [http://www.info.pmda.go.jp/medicaldevices/md-others.html](http://www.info.pmda.go.jp/medicaldevices/md-others.html) (in Japanese).

### Notes

- A recall is an action taken to address a problem with a medical device that violates FDA law. Recalls occur when a medical device is defective, when it could be a risk to health, or when it is both defective and a risk to health.

- Class 1 recall: a situation in which there is a reasonable probability that the use of or exposure to a violative product will cause serious adverse health consequences or death; Class 2 recall: a situation in which use of or exposure to a violative product may cause temporary or medically reversible adverse health consequences or where the probability of serious adverse health consequences is remote; Class 3 recall: a situation in which use of or exposure to a violative product is not likely to cause adverse health consequences.

### References

[35] Yano K, et al. / Regenerative Therapy 1 (2015) 45–56
products must be minimally manipulated, perform the same basic function in the donor as recipient (homologous use), not be combined with other agents and not have systemic affect [2]. Furthermore, the definition of ATMPs and cell/tissue-engineered products in the EU and Japan, respectively, is easily understandable [3,5]. The HCT/Ps under sections 351 and 361 of the PHS Act would be classified as biological products under the control of the Center for Biologics Evaluation and Research (CBER) or as medical devices under the control of the Center for Devices and Radiological Health (CDRH) or drugs (currently not identified) in the US [2]. Two cell/tissue-engineered products, JACE and JACC were classified as medical devices rather than drugs, and regulated by the PFSB of MHLW in Japan [5]. Otherwise, in the EU, ATMPs are classified as drugs, and are regulated by the EMA [3], since medical devices are applicable CE-marking which the manufacturer declares that the products confirm with the essential requirements of the applicable EC directives. Actually, the human cells and tissue products that were declared as medical devices using CE-marking prior to issuing the Regulation (EC) No 1394/2007 [3] have been on the market, which is only valid for selected member states in the EU. However, these products have to be applied the ATMPs’ rule for a centralized authorization until end of 2012. Since the marketing authorization of the EMA and EudraCT numbers were approved, three more ATMPs: ChondroCelect®, MACI and Provenge® has been approved in the EU until as of October 2013. Both the US and EU have already established sophisticated legislation, including 21CFR1271 [2], Regulation (EC) No 1394/2007 [3], Medical Products Directive 2001/83/EC [41], and Regulation (EC) No 726/2004 [42]. In contrast, Japan had adapted existing legislation under clause 2 of the PAL [43,44]. Currently, in Japan, the revised PAL which is changed the name of legislation as “Medicinal Products and Medical Device Law” is reformed the category of human cells and tissue products to “regenerative medicine products” [45].

A significant regulatory impact occurred in 1996 in the US, when the first guidance of MAS cells was issued [29]. At that time, some MAS cell products, including Epicel®, CartiCell™ and Laviv®, were on the market as banked human tissue (Fig. 1). Epicel® and CartiCell™ were withdrawn from marketing in 1996 [19,20], and Laviv® in 1999 [46]. Depending on the primary mode of action and the indication, the manufacturers can choose one of three different premarket approval applications: the accelerated approval application of biological products for serious or life-threatening illness as for CartiCell™, the HUD designation and HDE approval application as for Epicel®, and the IND application for conducting clinical trials following BLA application as for Laviv® and Provenge®. In the EU, a similar regulatory impact occurred in 2007, when the ATMP regulation was issued [3]. At the time, MACI were available in certain European countries and Australia in accordance with national legislations since 1998 [24]. After receiving a several scientific advices from EMA’s Committee for Medical Products for Human Use (CHMP) and Committee for Advanced Therapies (CAT), MACI was submitted through the centralized procedure on September 1, 2011, and was approved as an ATMP on September 6, 2013. Otherwise, both the products of JACE and JACC underwent new medical device approval applications [27,28], and ChondroCelect® and Provenge went through the centralized applications for ATMPs [23,25] for market authorization. These products might be applicable to the fast track application for a life-threatening or chronically debilitating condition similar to that for an orphan drug and medical device application to use in a small patient population, which is 50,000 patients in Japan [47] and no more than 5 in 10,000 people in the EU at the time submission of the rare disease (orphan) designation application [48]. Furthermore, the accelerated approval system of specifically targeted biological products for serious or life-threatening illnesses [30,49] should be focused on implementing relevant regulation in the EU and Japan for fast application to patients. In Japan, the regulatory reform of medical products has just implemented after the notice through official gazettes on November 27, 2013. The new legislation will be available the conditional/time-limited approval system for regenerative medicine products [45].

For premarket approval authorization, safety and efficacy data from nonclinical and clinical studies are the most important information to be included for the examination of submitted documents or dossiers. In the present study, we focused on which preapproval clinical evaluation had been conducted by the relevant regulatory authorities. Clinical experience data [19,20] were used to evaluate the safety of Epicel® and CartiCell™ in the US, which were on the market prior to their applications because these products were distributed as banked human tissue. The data from two pivotal trials with five supporting trials for Laviv® [22] were evaluated; however, nonclinical data were not submitted by the sponsor because this product had been on the market as cosmetic treatment for four years without FDA premarket approval, and because an appropriate animal model for wrinkles was unavailable, and much clinical information was available. As biologics and ATMPs applications, the primary endpoints of Provenge® [21,25], Laviv® [22], ChondroCelect® [23], and MACI [24] were evaluated. These kinds of products were approved as an ATMP in the EU or as HCTPs in the US, but no products have confirmed the primary endpoint in two clinical trials. According to the clinical reviewer’s comments from the clinical reviews of US FDA or public assessment report of EMA, these products needed additional efficacy information after premarket approval because two clinical trials are typically required to evaluate the primary endpoint in new drugs and biologics [22,23]. After premarket approval, postmarket registration and surveillance have been conducted according to the condition of approval: a postmarket clinical trial and surveillance of all patients for seven years for JACE [27] and JACC [28], a 1500-patient registry in US [21] and EU registry [25] for Provenge®, a 2700-patient registry for Laviv® [22], a postmarket safety and efficacy study for ChondroCelect® [23], and a postmarket safety and efficacy study for MACI [24]. During the postmarket surveillance, only three recalls were enforced for CartiCell™ and Provenge®. The FDA showed that a total of 497 adverse events among 294 patients receiving CartiCell™ were reported from 1996 to 2003 [50] and a serious adverse event was voluntarily reported from user facility. Furthermore, 63 serious adverse events for Epicel® were reported, while no serious adverse event was reported on the other autologous human cells and tissue products. Typical premarket-oriented evaluation is time-consuming, expensive, and needs abundant human resources. The advantages of postmarket-oriented review are easier access than conducting clinical trial for patients, and would provide much information on safety and efficacy from a real world of clinical experience and update safety information. Therefore, the latter should be employed in some specific occasions such as orphan disease and autologous human cells and tissue products. This should be along the line with what is advocated in “Adaptive licensing” [51]. We believe that adaptive licensing’s character of small population disease should fit the autologous human cells and tissue products, because the products are derived from autologous cells and tissue and applied specific area such as unmet medical needs which an ordinary drug or medical device do not enable to cover. A similar approval system as adaptive licensing, the conditional/time-limited approval system for regenerative medicine products in Japan would accelerate the development of regenerative medicine products.

For HCTPs, the FDA has focused on a risk-based approach to examine the risks and benefits [52]. In autologous HCT/Ps, it considers three major hazards: donor infection and contamination during processing or manufacturing, allergic reaction at the
administration site by the processing materials, and tumorigenic potential. The hazards are lessened by complying with the guidance on the labeling of Lavi® [55], JACE [56], JACC [57], Epicide® [58], and MACI [59], and other information of ChondroCelect® [60], Provenge®, [61,62] and Carticel™ [63] is described in the product labeling.

Although the tumorigenic potential is believed rare, the possibility cannot be completely excluded. Therefore, in vivo tumorigenicity test using immunodeficient mice was conducted in Epicide® [20], JACE [27] and JACC [28]. The risk-based approach would be the best way to develop a novel class product including human cells and tissue products. Adaptive licensing [51] and the conditional/time-limited approval system [45] should lessen the development period and review time for human cells and tissue products.

There are limitations to this study. We examined autologous human cells and tissue products in the US, EU and Japan. When more than 20 products are approved, further study should be conducted to compare the global evaluation system to determine an efficient and timely manner to deliver new products to patients. Further analyses should compare the requirements of those products and the regulatory safety among the agencies, including adverse reaction reporting such as the FDA MedWatch mandatory reporting [64], EudraVigilance [65] and Postmarketing Safety [66], during the postmarket surveillance because some of the premarket clinical trials did not include a sufficient patient population to be clarified the safety issues.

5. Conclusion

Autologous human cells and tissue products in the US, the EU and Japan were approved for market authorization using various kinds of premarket application system. The preapproval clinical evaluations were conducted with small population or using clinical experience, while most of allogeneic human cells and tissue products were approved for market authorization using relatively larger clinical trials. The clinical evaluation of the autologous human cells and tissue products would focus on postmarket-oriented evaluation to distribute the products of regenerative medicine, tissue engineering, and cell therapy to patients and to oversee the risk of these products using registry.

Conflict of interest

Dr. Kazuo Yano is an employee of Asahi Kasei Medical Co., Ltd. and Asahi Kasei Pharma Co., Ltd. and the holding company, Asahi Kasei Co., Ltd. is planning to develop a cell related products. Dr. Masayuki Yamato is a shareholder of CellSeed Inc.

Acknowledgments

This work was supported by the Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program in the Project for Developing Innovation Systems “Cell Sheet Tissue Engineering Center (CSTEC)” and the Global COE program, the Multidisciplinary Education and Research Center for Regenerative Medicine (MERCREM), from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

[1] US Food and Drug Administration. Strategic Plan for regulatory science and research 2012–2016. 2012. Available from: URL: http://www.fda.gov/downloads/BiologicsBloodVaccines/ScienceResearch/UCM303542.pdf.

[2] US Food and Drug Administration. Human cells, tissues, and cellular and tissue-based products, 21CFR1271. 2012. Available from: URL: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfFR胺FRPart-7271.

[3] European Parliament and the Council of the European Union. Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. Off J Eur Union 2007;L324:1–37.

[4] Pharmaceutical and Food Safety Bureau. Quality and safety assurance for drug products or medicinal devices with processed (homogeneous) human-derived cells or tissue. Yakushokuhatsu. 0208003. 2008.

[5] Pharmaceutical and Food Safety Bureau. Quality and safety assurance for drug products or medicinal devices with processed (allogeneic) human-derived cells or tissue. Yakushokuhatsu. 0208003. 2008.

[6] US Food and Drug Administration. Definition of primary mode of action of a combination product. Fed Regist 2005;70:49848–62.

[7] Tillman DB. Approval letter: Epicide cultured epidermal autograft (CEA) – H990002. 2007. Available from: URL: http://www.accessdata.fda.gov/cdrh_docs/pdf/H990002.pdf.

[8] Pharmaceuticals and Medical Devices Agency. Approval letter: other surgical/orthopedic materials, autologous cultured epidermis. JACE; 2007. Available from: URL: http://www.pmda.go.jp/opera tions/shomin/info/new/h19medi cale_device_beppyo.html [in Japanese].

[9] Malarkey MA, Witten CM. Approval letter – Laviv. June 21, 2011. Available from: URL: http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm260486.htm.

[10] European Medicines Agency. Authorisation: ChondroCelect. 2009. Available from: URL: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000878/human_med_000698.jsp&mid=WCOB01ac0580 01624.

[11] Shih JR, Donlon JA. Approval letter – Carticel. 1997. August 22, 1997. Available from: URL: http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm171702.htm.

[12] European Medicines Agency. Authorisation: MACI. 2013. Available from: URL: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/ medicines/002522/human_med_001660.jsp&mid=WCOB01ac058001d124.

[13] European Medicines Agency. Authorisation: Provenge. 2013. Available from: URL: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002513/human_med_001680.jsp&mid=WCOB01ac058001d124.

[14] Malarkey MA, Witten CM. Approval letter. Provenge. April 29, 2016. Available from: URL: http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm210215.htm.

[15] European Medicines Agency. Authorisation: Provenge. 2013. Available from: URL: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002522/human_med_001660.jsp&mid=WCOB01ac058001d124.

[16] Yano K, Tsuyuki K, Watanabe N, Kasanuki H, Yamato M. The regulation of allogeneic human cells and tissue products as biomaterials. Biomaterials 2013;34:3165–73.

[17] US Food and Drug Administration. Vaccines, blood & biologics, marketed products, approved products, 2012. Available from: URL: http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/default.htm.

[18] US Food and Drug Administration. Listing of CDRH humanitarian device extensions. 2012. Available from: URL: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/HDEAppro vals/ucm161827.htm.

[19] US Food and Drug Administration. Summary for basis of approval: autologous cultured chondrocytes. Carticel™; 1997. Available from: URL: http://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM109341.pdf.

[20] US Food and Drug Administration. Summary of safety and probable benefit: cultured epidermal autograft (CEA), Epicide®; 2007. Available from: URL: http://www.accessdata.fda.gov/cdrh_docs/pdf/H990002b.pdf.

[21] US Food and Drug Administration. Clinical review: Sipuleucel-T. Provenge®; 2010. Available from: URL: http://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM214540.pdf.

[22] US Food and Drug Administration. Clinical review: autologous human fibroblast cells. 2009. Available from: URL: http://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM263421.pdf.

[23] European Medicines Agency. Public assessment report: ChondroCelect. 2009. Available from: URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/000878/WC00026035.pdf.

[24] European Medicines Agency. Public assessment report. MACI; 2013. Available from: URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002513/WC000151101.pdf.

[25] European Medicines Agency. Public assessment report. Provenge; 2012. Available from: URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002522/WC000135476.pdf.

[26] European Medicines Agency. Public assessment report. Glybera; 2012. Available from: URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002215/WC000135476.pdf.

[27] Pharmaceuticals and Medical Devices Agency. Review report: other surgical/orthopedic material (autologous cultured epidermis). JACE 2007. Available
