Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report

Kanika Patel a, Dinesh Kumar Patel b, *

a Jubilant Life Sciences, Noida, Uttar Pradesh, 201301, India
b Department of Pharmacy, Galgotias University, Greater Noida, 201301, Uttar Pradesh, India

Keywords:
Analytical aspects
Herbal medicine
Hispidulin
Medicinal aspects
Pharmacological activities

A B S T R A C T

Herbal medicines have been played an important role in the human civilization since very ancient time as a food, cloth, medicine and other aspects. Some of the important drugs in the modern medicine were derived from the natural sources such as aspirin, digitalis, quinine, vincristine, vinblastine etc. Hispidulin (4', 5, 7-trihydroxy-6-methoxyflavone) is a flavones derivative found in plant such as Grindelia argentina, Arrabidaea chica, Saussurea involucrata, Crossostephium chinense, Artemisia and Salvia species. Hispidulin have antioxidant, anti fungal, anti-inflammatory, antimutagenic, and antineoplastic properties. So far, various analytical methods have been investigated and developed for detection of hispidulin in the plant materials. Productions of hispidulin through different tissue culture techniques have been also investigated. Present review summarized medicinal uses, pharmacological activities and analytical aspects of hispidulin. From the above mentioned aspects, we can conclude that, this review will be helpful to the researcher in the field of natural product for the development of novel molecule for the treatment of different disorders.

© 2017 Center for Food and Biologemolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Herbs play an important role in the human civilization as they have been used for different purpose in different field such as medicine, nutraceuticals, perfumery, beverages, fragrances, cosmetics and dyeing industry. From the ancient times herbs were mainly used for the treatments of various disorders until the synthetic drugs developed in the world. More than 40% of prescription drugs in the world were mainly derived from herbal source. Herbs, vegetables and fruits contain numerous phytochemicals such as phenolic compounds, nitrogen compounds, carotenoids, ascorbic acid etc. Different color, flavor and smell of plants were mainly due to the presence of different phytoconstituent present in the plants. They play an important role in the plant’s defense mechanism against various diseases. For the search of better therapeutic goal, plants are still considered as one of the important sources of materials. More than 50% of the prescribed drugs in the Europe and USA are derived from natural sources such as plants or their derivatives. Many of these plants products and their crude extracts were used in different types of traditional medicine. Medicinal plants play a key role in health care as more than 80% of the world's populations relying on the traditional medicine for their primary health care. In spite of tremendous development in the field of allopathy, medicinal plants and their derived products are still used in the modern medicine throughout the world. In India more than 7300 plant species are used in traditional health care systems for the treatment of different disorders. The most important chemical constituents of plants are alkaloids, tannin, flavonoid and phenolic compounds etc. In recent years, treatment of infectious disease using antimicrobial drugs has developed multiple drug resistance. Medicinal herbs have been used as remedy for the treatment of pain throughout history including some of most important analogues i.e. salicylic acid and morphine was originally derived from plant sources. Natural products are believed to be an important source of new chemical substances for the developments of Nobel medicine for the treatment of various disorders. Plants play a dominant role in the maintenance of human health since ancient times till today. According to World Health Organization (WHO), medicinal plants would be the best source to get a variety of medicines and nutraceuticals.

* Corresponding author.
E-mail address: dkpatel.rs.phe@itbhu.ac.in (D.K. Patel).

Peer review under responsibility of The Center for Food and Biomolecules, National Taiwan University.

http://dx.doi.org/10.1016/j.jtcme.2016.11.003
2225-4110/© 2017 Center for Food and Biologemolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
of drugs. Plants develop different bioactive molecules, making them a rich source of different types of medicinal compound. About 80% of individuals from developed countries use traditional medicine for their primary healthcare needs, which contain different compound derived from medicinal plants.6 For the determination of identity, purity and strength of the drug phytochemical standards are generally used in the herbal field. These parameters are also used to evaluate its genuine nature compared to the adulterated drugs. Phytochemical evaluation also plays an important role in the possible steps of adulteration.7

2. An overview of hispidulin

Hispidulin (4', 5, 7-trihydroxy-6-methoxyflavone) is a naturally occurring flavone found in different plant materials such as \textit{Saussurea involucrata} Kar. et Kir., a rare traditional Chinese medicinal herb, several Artemisia and Salvia species. Several in vitro studies have demonstrated its potent antioxidative, antifungal, anti-inflammatory, antimutagenic, and antineoplastic properties.3,9 Recently, hispidulin is identified as a potent ligand of the central human benzodiazepine (BZD) receptor in vitro. It also acts as a partial positive allosteric modulator at γ-aminobutyric acid (GABA) receptors, penetrates the blood–brain barrier and possesses anticonvulsant activity in the central nervous system.8,9 Hispidulin (Fig. 1) is the active compound which is also proven to be antimycobacterial, antiasthma, antimicrobial, antiprofiterative, and insect larvicidal. This natural flavone is reported to be 100-fold more potent than theophylline in its property of inhibiting platelet aggregation.10

3. Pharmacological activities

3.1. Effect of hispidulin on cancers

Treatments of cancer have focused the main attention and interest of researchers due to their great impact on the human population's and health. A considerable ratio of deaths (2–3\%) recorded worldwide annually due to different types of cancer.11 Effect of hispidulin on its anti-tumor effect of Temozolomide (TMZ) in glioblastoma was studied and revealed that hispidulin enhanced the anti-tumor activity of TMZ in glioblastoma because of its inhibiting effect on cell proliferation and cell apoptosis induction.11 Effect of the hispidulin, with sunitinib on renal cell carcinoma (RCC) cell proliferation in vitro and on in vivo tumor growth was studied. Hispidulin dose-dependently inhibited proliferation and induced apoptosis in both of the tested RCC cell lines. Inhibiting pStat3 signaling was found to be one of the main mechanisms for its antitumor activity. The result revealed that the combination treatment will be better therapeutic option for patients with RCC.12 Gastric cancer is one of the most common malignant cancers due to poor prognoses and high mortality rates worldwide. Hispidulin inhibits the growth of gastric cancer cells through induced G1/S phase arrest and apoptosis in time- and concentration-dependent manners.13 In another study, antiproliferative effects of hispidulin isolated from \textit{Inula viscosa} (L.) were tested and were found to be active at the tested concentration.7 Hispidulin significantly inhibited human pancreatic tumor growth in xenograft mice when treated at a dosage of 20 mg/kg daily. Further hispidulin also inhibited vascular endothelial growth factor (VEGF)-induced cell migration, invasion, and capillary-like structure formation in a dose-dependent manner.14 Hispidulin potentiated the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human ovarian cancer cells and converted TRAIL-resistant cells to TRAIL-sensitive cells. Moreover hispidulin also downregulated the expression of Mcl-1, Bcl-2 and Bcl-XL.15 \textit{Glioblastoma multiforme} (GBM) is the most common and lethal type of primary brain tumor. Treatment of hispidulin resulted in dose-dependent inhibition of GBM cellular proliferation. Moreover, hispidulin-activated AMPK decreases the activity and expression of lipogenic enzymes, such as fatty acid synthase and acetyl-CoA carboxylase.8 Effect of hispidulin on the cytotoxicity of the sesquiterpene lactone helenalin was studied in the human lung carcinoma cell line GLC4 using the microculture tetrazolium (MTT) assay. Hispidulin showed their modulating effect on helenalin-induced cytotoxicity in the significant range.16 Mutagenicity and antimutagenicity of hispidulin were performed using the liquid preincubation method of the Salmonella test. At the highest dose tested, compounds showed no mutagenicity and no cytotoxicity toward \textit{Salmonella typhimurium} strains TA98 and TA100 either in the presence or absence of S9 mix.17 Hispidulin were evaluated for their inhibitory activity against LPS/IFN-γ-induced NO production in RAW 264.7 macrophages and for their cytotoxic activities against the human leukemic cell line CCRF-CEM and MRC-5 lung fibroblasts. Hispidulin markedly reduced LPS/IFN-γ-induced NO production in the tested cell lines.18 In another study, hispidulin induces cell death in a dose and time-dependent manner in HepG2 cells whereas no toxic reaction was observed in normal human liver cells. Observed effect of hispidulin induces apoptosis in HepG2 cells suggested that the pro-apoptotic effect of Hispidulin was mediated through mitochondrial dysfunction and inhibition of P13k/Akt signaling pathway.19

3.2. Effect of hispidulin on radical system

Effects of hispidulin on the oxidative metabolism of isolated rat liver mitochondria were investigated. Hispidulin inhibited

Fig. 1. Chemical structure and overview of hispidulin.
enzymatic activities between complexes I and III of the respiratory chain. The results indicate that hispidulin as an uncoupler of oxidative phosphorylation, is able to release iron from ferritin. Hispidulin, were evaluated for free radical scavenging activity and tyrosinase inhibitory effect in cell-free systems for its antioxidant potentials was also evaluated. Hispidulin showed strong antioxidant potential at the tested concentration. Hispidulin isolated from Indian medicinal plants was tested for their activity as inhibitors of microsomal lipid peroxidation and scavengers of oxygen free radicals in vitro as well as in a model of xenobiotic toxicity in mice. Hispidulin inhibited lipid peroxidation in vitro and further treatment of mice with hispidulin after bromobenzene intoxication decreased serum glutamate-pyruvate transaminase activity.

3.3. Effect of hispidulin on hormones

Hispidulin have been proven to have estrogen-like and anti-osteoporotic activity and can be potentially used for the treatment of osteoporosis. Effect of hispidulin on ovariectomy (OVX)-induced bone loss in mice was investigated. Female mice subjected to OVX were treated with Hispidulin for 8 weeks. Hispidulin treatment effectively prevented OVX-induced body weight loss and attenuated OVX-induced bone loss. In another study, hispidulin significantly inhibited osteoclast activity in RAW 264.7 cell as well as stimulated the ALP activity of MC3T3E1 cells. Hispidulin was also found to inhibit RANKL-induced activation of Jun N-terminal kinase (JNK) and p38, in addition to NF-kappaB induction. 34

3.4. Effect of hispidulin on central nervous system

Hispidulin has been reported to have an antiepileptic profile. Hispidulin inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). Hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca2+ entry and ERK/synapsin I signaling pathway. Hispidulin from Cirsium rivulare was studied for anxiolytic and pro-cognitive properties and results suggest that the flavonoids from C. rivulare possess anxiolytic and pro-cognitive effects. In another study, hispidulin was able to penetrate the blood–brain barrier and found to possess antiepileptic activity. Effect of hispidulin administration on bupivacaine-induced neurotoxicity was also studied. Treatment with hispidulin significantly attenuated bupivacaine-induced cell injury. In addition, hispidulin treatment also increased the levels of phospho-AMPK and phospho-GSK3β and attenuated bupivacaine-induced loss in mitochondrial membrane potential.

3.5. Effect of hispidulin on blood

Hispidulin and theophylline inhibited platelet aggregation triggered by adenosine-5’-monophosphate, arachidonic acid, paf-acether and collagen. Hispidulin was 100-fold more potent than theophylline. A threshold concentration of PGE1 did not modify the anti-aggregatory effect of hispidulin but potentiated the effect of theophylline. These data suggest that hispidulin could inhibit platelet aggregation by elevating cAMP levels by a mechanism different from that of theophylline or PGE1. In small concentrations hispidulin caused concentration-dependent contraction of isolated guinea-pig ileum and only mild relaxation of guinea-pig tracheal rings. Larger concentrations caused concentration-dependent relaxation of the ileum and the trachea. All the effects on the ileum and the trachea are reversible upon removal of the compound. These observations suggest that hispidulin may interfere with Ca2+ binding to the Ca2+-receptor protein(s) in the smooth muscle cell and with the agonist-induced Ca2+-release from intracellular stores.

3.6. Effect of hispidulin on microorganism

In vitro trypanocidal and leishmanicidal activities of the flavonoids hispidulin, from Ambrosia tenuifolia, are investigated and found to be active. The IC50 values for hispidulin on Trypanosoma cruzi epimastigotes were 46.7 μM. On trypomastigotes, the IC50 values were 62.3 μM for hispidulin. Hispidulin was found to be more active on promastigotes of Leishmania mexicana. Hispidulin was extracted from the ethanolic extract of the aerial parts of Baccharis uncinella C. DC. and was found to have inhibitory effect against trypomastigotes of T. cruzi.

3.7. Effect of hispidulin on biological system

Hispidulin as well as their metabolites are present in the Sausurea involucrate. It inhibits nonoxidative advanced glycation end products, which is one of the mediators involved in physiological inflammation. To elucidate the metabolism of hispidulin in the large intestine, its biotransformation by the pig caecal microflora was studied. Despite of the flavonoid subclass, the presence of a hydroxy group at the 4’-position is responsible for its fast breakdown. However an additional hydroxy group at the B-ring did not affect the degradation level.

3.8. Effect of hispidulin on liver system

The effects of hispidulin on bromobenzene-induced hepatotoxicity in mice were investigated. Hispidulin at 50–150 mg/kg i.p. dose level were compared to the reference compound N-acetyl-L-cysteine for inhibition of liver injury and lipid peroxidation. Hispidulin at the highest dose was able to counteract reduced glutathione depletion induced by bromobenzene in starved mice. This hepatoprotective effect of hispidulin could be due to its antioxidant potentials.

3.9. Effect of hispidulin on inflammation

Hispidulin, nepetin and jaceosidin were isolated from Eupatorium arnottiunum Griseb and their anti-inflammatory activities were investigated in the TPA mouse ear edema and were found to be active. Nepetin and jaceosidin reduced the TPA mouse ear edema and also inhibited the NF kappaB induction. Topical anti-inflammatory activity of bioactivity-guided fractionation of methanolic extract of the leaves of Santolina insularis and all the isolated compounds including hispidulin were investigated in croton oil-induced dermatitis in mouse ear. Among all the active constituents and the crude fraction the most active compound was found to be luteolin and prevented ear edema more effectively compared to the standard drug indomethacin.

4. Analytical aspects of hispidulin

High performance liquid chromatography (HPLC) with photodiode array (PDA) and mass spectrometry (MS) detection tool were used for the identification and quantification of flavonoids and phenolic acid derivatives in Clerodendrum petasites S. Moore. Hispidulin was found to be one of the main active constituents present in the C. petasites extract with other compounds. Nine compounds were successfully separated from Salvia plebeia R.Br. using two-step high-speed counter-current chromatography with three elution modes. Elution–extraction counter-current chromatography was applied in the first step, while classical counter-current
chromatography and recycling counter-current chromatography were used in the second step. The separation yielded nine compounds including hispidulin in the Salvia plebeian extract. High-speed countercurrent chromatography (HSCCC) was successfully applied for the isolation and purification of flavonoids from Herba salviae. Other components were separated from the H. salviae sample in a one-step separation, with more than 95% purities as determined by high-performance liquid chromatography. A bioassay-guided phytochemical analysis of the ethanolic extract of Grindelia argentina yielded hispidulin. The isolated compounds were identified through UV, 1H NMR, 13C NMR, HMQC, HMBD, and COSY spectroscopic methods. Combined form of medium-pressure liquid chromatography and preparative high-pressure liquid chromatography, high-speed countercurrent chromatography was used for the separation and purification of isoflavonoids from the extract of belamcanda. Seven compounds including hispidulin were identified in the plant extract. Eleven compounds including hispidulin were isolated and identified from Iris dichotoma through various column chromatographic methods. Phytochemical analysis of Clerodendrum chinense (Osbeck) Mabberley cultivated in Egypt was performed. Hispidulin and other phytochemicals were isolated from the leaves of C. chinense. Fractionation of hydroalcoholic extract of S. racemosa Pers resulted in the isolation of four main constituents including hispidulin. Phytochemical study of leaves of Leuca carthamoides was performed and the result showed the presence of seven natural compounds including hispidulin. Cold stressed plants of both accessions showed different responses in both rosemary accessions accessions. Three anti-inflammatory compounds nepetin, jaceosidin and hispidulin have been isolated and identified from dichloromethane extract of Eupatorium anthocyanum Griseb. Two elemanolide sesquiterpenes and two eudesmenyltype sesquiterpene glycosides named hierapolitanins A-D, were isolated, with hispidulin from the aerial parts of Centaurea hierapolitana Boiss.

Bioactivity-guided fractionation of the methanol extract of the leaves of Santolina insularis led to the isolation of hispidulin and other xanthone. Seven flavonoid compounds including hispidulin were isolated from the flowers of C. rivulare (Jacq.) Further their structure were determined through chemical and UV, 1H NMR, 13C NMR spectroscopic methods. Hispidulin, pulchellin E and giellardin were isolated from the aerial parts of Inula oculus-christi. Cytotoxicity-guided fractionation of the methanol soluble part of the dichloromethane extract of the leaves of Waronia saharae led to the isolation of the hispidulin and other phytochemicals. Hispidulin and other phytochemicals were isolated from the methanolic extracts of the aerial parts of Artemisia argyi. Further their structures were elucidated on the basis of spectral data. Benzodiazepine receptor binding assay-guided fractionation of the methanol extract of sage leaves (Salvia officinalis L) revealed three flavones apigenin, hispidulin and cirsimaritin. Bioactivity-guided chemical investigation of the flavonoid fraction of the leaves of Lantana montevidensis Briq, has resulted in the isolation of hispidulin. A bioassay-guided fractionation of the ethanolic extract of C. petasis was performed through partitioning and centrifugal partition chromatography. Hispidulin was isolated and identified as the main active component. A reversed-phase high-performance liquid chromatography/ diode-array detector method was used for the determination of phenolic compounds in sage. Six phenolic compounds including hispidulin were found to be present in the sample. Foliar flavonoids of 31 species of the Annosaceae native to Brazil were studied. More than 76 compounds, were isolated and identified including hispidulin from the samples. In another method, a reversed-phase HPLC method were developed and used for the determination of some flavonoids including hispidulin in vervain samples. Bioassay-directed fractionation of the flowers and leaves of Ratibida columnifera led to the isolation of 10 cytotoxic substances.
including hispidulin. Phytochemical analysis of the aerial parts of Artemisia gilardii var. gilardii lead to the isolation of hispidulin and some other components. The ethanolic extract of the aerial parts of Centaurea scoparia Sieb. afforded five polyoxygenated flavones including hispidulin. Hispidulin and some new labdane diterpenes have been isolated from the aerial parts of Baccharis gaudichaudiana. Activity-based fractionation of Eridotycon californicum resulted in the isolation of 12 flavonoids including hispidulin.

5. Plant tissue cultures techniques data of hispidulin

Plant cell cultures techniques represent a potential renewable source of valuable medicinals, flavors, essences and colorants which cannot be produced by microbial cells or chemical synthesis. However, only a few cultures produce these compounds in a significant level. Different techniques using in vitro systems, have been extensively developed and studied with the aim of improving the production of these secondary metabolite.

S. no	Plant material	Method used	Phytoconstituents	Reference
1	Clerodendrum petasites S. Moore	High performance liquid chromatography (HPLC) with photodiode array (PDA) and mass spectrometry (MS) detection.	Vanillic acid, verbascoside, 4-coumaric acid, ferulic acid, nepten, luteolin, apigenin, naringenin, hispidulin, hesperetin and chrysin.	38
2	Saussurea involucrata	High-performance liquid chromatography electrospray ionization mass spectrometry method (LC-ESI-MS).	Apigenin, luteolin, hispidulin, luteolin-7-O-glucoside and rutin.	45
3	Salvia plebeia R.Br	High-performance liquid chromatography coupled with photodiode array detector (HPLC-DAD).	Caffeic acid, luteolin-7-glucoside, nepten-7-glucose, homoplantaginin, luteolin, nepten and hispidulin.	47
4	Centaurea jacea L	Bioassay-guided fractionation, UV, MS and NMR spectroscopy.	Cirsilol, apigenin, hispidulin, eupatorin, isoquercetin, asillarin, centaurea, 6-methoxy kaempferol 3-methyl ether, trachelogenin, cnicin, 4-acetylcylicin, alkaline diesters, scorvalin.	53
5	Onopordum alexandrinum L.	UV, 1H NMR, 13C NMR, HMQ, HMBC, and COSY.	Acacetin-7-O-galacturonic acid, flavonoids; 6-methoxy-apigenin (hispidulin), acacetin, luteolin, kaempferol, eriodictyol, apigenin-7-O-glucose, luteolin-7-O-glucose, and kaempferol-3-O-rutinoside.	55
6	Belamcanda	Combined with medium-pressure liquid chromatography (MPLC) and preparative high-pressure liquid chromatography (Prep-HPLC), high-speed countercurrent chromatography (HSCCC).	Apocynin, mangiferin, 7-O-methylmangiferin, hispidulin, 3-hydroxyltectoridin, iristectorin B and isoorisin.	56
7	Cirsium rivulare (Jacq.)	UV, 1H NMR, 13C NMR spectroscopy.	Tricin, apigenin, luteolin, hispidulin, acacetin 7-O-beta-o-rutinoside (linarin), apigenin 7-O-beta-D-glucoroside and apigenin 7-O-beta-D-glucoside.	63
8	Sage	Reversed-phase high-performance liquid chromatography/diode-array detector procedure.	Caffeic acid, luteolin 7-O-glucoside, rosmarinic acid, apigenin, hispidulin, and cirsimaritin.	70
9	Vervain	Reversed-phase HPLC.	Luteolin, nepten, hispidulin, jaceosidin, cirsimaritin, cirsioline and eupatorin.	72
6. Conclusion

Herbal remedies are used for the treatments of different disorders. Plants materials are tremendous source of natural drugs and some of the important drugs in the modern era were also derived from the herbal sources. Plant-derived products play an important role in the health care system in the developing countries and even in the developed country for the treatments of different disorders. Some of the important medicine such as aspirin, anti-malarial, anti-cancer and many more have derived from the herbal source. Herbal medicine can be used as a remedy against microorganism, inflammation, cardiovascular diseases, blood disorders, cerebral disorders, immune system, oxidative stress etc. A large number of the prescribed drugs including some of the most important medicine are derived from the plant sources. A large number of the prescribed drugs in the world are derived from plants such as and in India, about 80% of the rural population uses medicinal herbs for the treatment of different types of disorders. As per the World Health Organization survey more than 21000 plants are used in the world as a medicine for the treatments of different ailments. Herbal medicines are gaining popularity both in developing and developed countries due to its fewer side effects. Plants contain different types of phytoconstituent in the form of either primary metabolite or secondary metabolite. So many drugs used in the modern medicine are mainly derived from the medicinal plants such as morphine, reserpine, vincristine, vinblastine, quinine etc. Now day's scientists are focusing on pure natural compound instead of the herbal extract for the development of better medicine and hispidulin as one of among. It has different pharmacological activities and has potential to treat different ailment from the human body. In the present review we have collected all the information of hispidulin in regards with its medicinal importance, pharmacological activities, extraction, isolation, and other analytical aspects. So the present review will be helpful to the scientist for the development of better medicine for the natural sources in the future.

Conflict of interest

None.

Acknowledgments

The authors want to acknowledge Banaras Hindu University, Varanasi for online article support.

References

1. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem. 2001;49:5165–5170.
2. Patel DK, Patel K, Duraiswamy B, Dhanabal SP. Phytochemical analysis and standardization of Strychnos nux-vomica extract through HPTLC techniques. Asian J Trop Dis. 2012;2:556–560.
3. Talib WH, Abu Zarga MH, Mahasen AM. Antiproliferative, antimicrobial and apoptosis inducing effects of compounds isolated from Inula viscosa. Molecules. 2012;17:3291–3303.
4. Kumari A, Sharma RA. A review on Millingtonia hortensis L. Int J Pharm Sci Res. 2013;19:85–92.
5. Mounnissamy VM, Kavimani S, Balu V, Sankari G, Quine SD. Anti-nociceptive activity of Strychnos nux-vomica l.f. in chronic constriction injury model. Asian Pac J Trop Dis. 2013;3:205–210.
6. Singh MK, Khare C, Iyer SK, Sharwan G, Tripathi DK. Clerodendrum serratum: a clinical approach. J Appl Pharm Sci. 2012;2:11–15.
7. Patel DK, Patel K, Dhanabal SP. Standardization of Berberis aristata extract through conventional and modern HPTLC techniques. Asian J Trop Dis. 2012;2:5136–5140.
8. Lin YC, Hsing CM, Tsai JC, et al. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J Agric Food Chem. 2010;58:9511–9517.
9. Kawadias D, Sand P, Youdim KA, et al. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br J Pharmacol. 2004;142:811–820.
10. Khamir D, Devkar R, Reshma KK, Shreedhara CS, Serty MM, Hegde S. Enhanced hispidulin production in vitro from callus culture of millingtonia hortensis L. JIPRS. 2013;2:633–639.
11. Wang Y, Liu W, He X, Fei Z. Hispidulin enhances the anti-tumor effects of temozolomide in glioblastoma by activating AMPK. Cell Biochem Biophys. 2015 Mar;71(2):701–706. http://dx.doi.org/10.1007/s12013-014-0252-6.
12. Gao H, Jiang Q, Han Y, Peng J, Wang C. Hispidulin potentiates the anti-tumor effect of sunstitin against human renal cell carcinoma in laboratory models. Cell Biochem Biophys. 2015 Mar;71(2):757–764. http://dx.doi.org/10.1007/s12013-014-0260-6.
13. Yu CY, Su KY, Lee PL, et al. Potential therapeutic effect of hispidulin in gastric cancer through induction of apoptosis via NAG-1 signaling. Evid Based Complement Altern Med. 2013;2013, 518301.
14. He L, Wu Y, Lin L, et al. Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mtOR signaling pathway. Cancer Sci. 2011;102:215–225.
15. Yang JM, Hung CM, Fu CN, et al. Hispidulin sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by AMPK activation leading to Mcl-1 block in translation. J Agric Food Chem. 2010;58:10020–10026.
16. Woerdenberg HJ, Merfort I, Schmidt TJ, et al. Decreased helenalin-induced cytotoxicity by flavonoids from Arnica as studied in a human lung carcinoma cell line. Phytomedicine. 1995;2:127–132.
17. Chulasi M, Bunyapraphatsara N, Moongkandhar P. Mutagenicity and anti-mutagenicity of hispidulin and hortensin, the flavonoids from Millingtonia hortensis L. Environ Mol Mutagen. 1992:20:307–312.
18. Alza NP, Plersch-Wenzig EM, Ortmann S, et al. Inhibition of NO production by Grindelia argentina and isolation of three new cytotoxic saponins. Chem Biother 2014;11:311–322.
19. Gao H, Wang H, Peng J. Hispidulin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signalling pathway in HepG2 cancer cells. Cell Biochem Biophys. 2014;69:27–34.
20. Dabaghi-Barbosa P, Marante Rocha A, Franco da Cruz Lima A, et al. Hispidulin: antioxidant properties and effect on mitochondrial energy metabolism. Free Radic Res. 2005;39:1305–1315.
21. Lin FJ, Yen FL, Chen PC, et al. HPLC-fingerprints and antioxidant constituents of Phylla nodiflora. ScientificWorldJournal. 2014;2014, 528653.
22. Sanz MJ, Ferrandiz ML, Cejudo M, et al. Influence of a series of natural flavonoids on free radical generating systems and oxidative stress. Xenobiota. 1994;24:689–699.
23. Yang L, Yu Z, Qu H, Li M. Comparative effects of hispidulin, genistein, and icariin with estrogen on bone tissue in ovariectomized rats. Cell Biochem Biophys. 2014;70:485–490.
24. Zhou R, Wang Z, Ma C. Hispidulin exerts anti-osteogenic activity in ovariectomized mice via activating AMPK signaling pathway. Cell Biochem Biophys. 2014;69:311–317.
25. Nepal M, Choi HJ, Choi BY, et al. Hispidulin attenuates bone resorption and osteoastrogenesis via the RANKL-induced NF-κB and NFATc1 pathways. Eur J Pharmacol. 2013;715:96–104.
26. Lin TY, Lu CW, Wang CC, Lu JF, Wang SJ. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals. Toxicol Appl Pharmacol. 2012;263:233–243.
27. Waleusiuk A, Nazaruk J, Braszko JJ. Pro-cognitive effects of Cirsiurn rilavare extracts in rats. J Ethnopharmacol. 2010;129:261–266.
28. Niu X, Chen J, Wang P, Zhou H, Li S, Zhang M. The effects of hispidulin on bupivacaine-induced neurotoxicity: role of AMPK signaling pathway. Cell Biochem Biophys. 2014;70:241–249.
29. Bourdillat B, Delautier D, Labat C, Benveniste J, Potier P, Brink C. Hispidulin, a natural flavone, inhibits human platelet aggregation by increasing cAMP levels. Eur J Pharmacol. 1988;147:1–6.
30. Abdalla S, Abu-Zarga M, Affifi F, Al-Khalil S, Sabri S. Effects of hispidulin, a flavone isolated from Inula viscosa, on isolated Guinea-pig smooth muscle. Gen Pharmacol. 1988;19:559–564.
31. Sulsen VP, Cazorla SI, Frank JM, et al. Trypanocidal and leishmanicidal activities of flavonoids from Argentine medicinal plants. Am J Trop Med Hyg. 2007;77:654–659.
32. Greco Sdos S, Felix MJ, Lago JH, et al. Anti-trypanosomal phenolic derivatives from Baccharis uncinella. Nat Prod Commun. 2014;9:171–173.
33. Su KY, Yu CY, Chen YP, Hsu HF, Chen YL. 3,4-Dihydroxytrolole, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-κB signaling. BMC Complement Altern Med. 2014;14:21.
34. Labib S, Hummel S, Richling E, Humpf HU, Schreier P, Use of the pig caecum model to mimic the human intestinal metabolism of hispidulin and related compounds. Mol Nutr Food Res. 2006;50:78–86.
35. Ferrándiz ML, Busto S, Payá M, Gunasegaran R, Alcaraz MJ. Hispidulin protection against hepatotoxicity induced by bromobenzene in mice. Life Sci. 1994;55:Pl145–Pl150.
36. Clavín M, Gorzálczyk S, Macho A, et al. Anti-inflammatory activity of flavonoids from Euaptorium arnottianum. J Ethnopharmacol. 2007;112:585–589.
37. Cottiglia F, Casu L, Bonsignore L, et al. Topical anti-inflammatory activity of flavonoids and a new xanthone from Sintontina insulares. Z Naturforsch C. 2005;60:63–66.
