Response of Strawberry (*Fragaria annaena*) cv. Chandler to Different Mulching Materials

1Muhammad Sudheer Tariq, 1Asghari Bano and 2Khalid Mahmood Qureshi
1Department of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
2Department of Horticulture, PMAS-Arid Agriculture University, Rawalpindi, Pakistan

Abstract: The experiment under discussion was conducted at Fruit Crops Research Programme, of Horticulture Research Institute, National Agricultural Research Center, Islamabad, Pakistan (Latitude: 33.42°N; Longitude: 73.08°E; Elevation: 683 msl) during the years 2006-07. Effects of different mulching materials, such as, wheat straw, rice straw, transparent and black plastic mulch, were studied on the growth and performance of strawberry cultivar ‘Chandler’. Maximum plant height (17.70 cm) was observed in rice straw mulch treatment. Whereas, black plastic mulch increased root length (14.73 cm), soil moisture (39.45), soil temperature (22.33), vegetative growth (Leaf area index 17.81, crown diameter 7.76 cm), leaf chlorophyll (43.53), fruit yield (210.0) and total soluble solids (8.06). The rice and wheat straw mulch significantly ameliorated the fruit weight loss and spoilage percentage.

Key words: Moisture conservation, mulching, yield

INTRODUCTION

Mulching is the most important agricultural practice in strawberry crop, being exercised world-over. In addition to moisture conservation and temperature regulation, it avoids the contact of berries with soil and thus minimizes the chances of fruit rot, which adversely affects post-harvest life of the berries. Use of proper mulch is, thus, equally important for increasing shelf life (Sharma, 2002). Singh et al. (2005b) reported that, in northern plains of India, to get an early and high yield of the best quality strawberry could be planted in mid-September, if mulched with black polyethylene. Lareau and Lamarre (1993) compared straw mulch with black plastic mulch and concluded that black plastic mulch increased the yield, number and weight of crowns but decreased the fruit-size of tribute and tri-star strawberries.

Strawberry is known as the most delicious and refreshing fruit with high nutritive value (Cordenunsi et al., 2003) and high hexose/sucrose ratio (Nishizawa et al., 2005) to millions of people of the world. It is one of the most perishable fruits with short shelf life due to the susceptibility of berries to mechanical injury, water loss, decay and physiological deterioration (Nunes et al., 1995). Much research has been conducted and there were efforts of manipulating pre-harvest (Mukkun et al., 2001) and post harvest factors (Cordenunsi et al., 2005) that affect fruit quality in order to enhance strawberry shelf life. Its cultural practices are highly variable (Sharma, 2002). Superficial colour of berries determines the time of harvest, while fruit firmness is associated with shelf life. Recently, the determination of ascorbic acid has been of major interest (Aaby et al., 2005; Scalzo et al., 2005).

This study was conducted to measure the effect of mulching materials on yield, quality and shelf life of strawberry.

MATERIALS AND METHODS

Experiment was carried out during 2006-2007, at Fruit Crops Research Program, National Agricultural Research Center, Islamabad, Pakistan (Latitude: 33.42°N; Longitude: 73.08°E; Elevation: 683 msl). The present investigation was undertaken to determine the response of strawberry cultivar ‘Chandler’ to different mulching materials, such as wheat straw, rice straw, transparent plastic and black plastic mulch. Strawberry plants were grown in open field conditions, using different mulching materials as pre-harvest treatments. Field was ploughed up three times with disc harrow and leveled for better drainage. Farmyard manure was applied at 20 t ha⁻¹, ammonium sulfate at 500 kg ha⁻¹, super phosphate at 300 kg ha⁻¹ and potassium sulfate at 150 kg ha⁻¹, prior to plough the soil. Raised beds of width 70 cm with height of 30 cm were prepared.
Following treatments were applied during spring 2006 and 2007, under the field condition:

- T0 = Bare ground
- T1 = Wheat straw
- T2 = Rice straw
- T3 = Transparent plastic mulch
- T4 = Black plastic mulch

Periodic measurements of soil moisture from the same plot each day were taken from randomly selected plots for all treatments of a replication on an observation day. For soil moisture status, soil samples were taken in aluminum cans from 15-30 cm depth for each treatment and moisture percentage was determined by gravimetric method (Yasin et al., 1996). Root zone temperature was measured, using a bimetal thermometer (REOTEMP Instruments, San Diego, CA), that produced a direct measurement of soil temperature. Leaf area index was calculated, using the Leaf canopy analyzer 2000, LI-COR, Inc., 4421 (Welles and Norman, 1991). Leaf chlorophyll concentration was recorded by Spad-502 chlorophyll meter (Minolta Camera Co. Ltd., Osaka, Japan (Arenas et al., 2002).

RESULTS AND DISCUSSION

Available soil moisture: All mulched plots maintained higher soil moisture content at 30 cm depth from the top of the soil surface. Among the mulches used, the black plastic mulch had higher average soil moisture content, followed by transparent plastic mulch and wheat straw mulch had the least increase even that of the bare ground (Table 1). This occurs due to the fact that in the mulched soil, the evaporating soil moisture condenses on the mulch which serves as insulating substances and drips down again to the soil surface. Improvement of water infiltration and higher water retention resulting from mulches has also been reported by Swenson et al. (2004), Miller et al. (2002), Arriaga and Lowery (2003) and Hedau and Kumar (2002).

Soil temperature: Black plastic mulch treatment retained maximum (22.3°C) soil temperature followed by transparent plastic mulch (21.37°C). The potential of organic mulches (wheat and rice straw mulch) to retain soil temperature were lower than black plastic mulch (Table 1). Similar increase in soil temperature under black plastic mulch has been reported previously by Diaz-Perez et al. (2004). Minimum soil temperature was observed under rice straw mulch. These results are in agreement with those of Diaz-Perez et al. (2004), they found that mean soil temperature under black mulch was 9°C higher than that under organic mulch. Both wheat straw mulch and rice straw mulch resulted in significantly less soil moisture % as compared to the bare ground.

Vegetative growth of plants: Mulching improved plant growth and development. Rice straw mulch produced the tallest plants. The highest leaf area index and crown size were recorded in black plastic mulch, followed by rice straw mulch. Root length was markedly higher in rice straw mulch and transparent mulch, followed by wheat straw mulch (Table 2 and 3). Increase in growth characteristics by mulching has also been reported by Agele et al. (2000), Singh et al. (2005a) in tomato and Dobbelaere et al. (2000), for strawberry. The present investigation established the fact that mulching improves the vegetative growth in strawberry. Similar results have also been reported by Moor et al. (2004).

Mulching increased the leaf chlorophyll content as recorded in black plastic mulch and rice straw mulch, followed by wheat straw mulch. This could be due to the fact that mulching also improved the Leaf Area Index (LAI) and retained by available soil moisture. The

Table 1: DMRT of treatment means showing the effect of mulching on soil temperature and moisture contents, (Data on soil temperature and moisture were collected weekly (Transplanting to final harvest). Each mean represents three replications and twenty observations recorded for each mean)
Treatments
Bare ground
Wheat straw mulch
Rice straw mulch
Transparent plastic mulch
Black plastic mulch
LSD
Mean of years
Source F value
Treatments F value
Interaction F value

Figures followed by different letters are significantly different at (p>0.05), according to Duncan’s multiple range tests, NS: Non significant , *p>0.05, **p>0.01
Table 2: DMRT of treatment means showing the effect of mulching on vegetative growth of strawberry cv. Chandler. (Data on plant height, LAI and crown size were collected at final harvest. Each mean represents three replications and ten samples, collected for each mean.)

Treatments	Plant height (cm)	Leaf area index (LAI)	Crown size (cm)						
	2006	2007	Mean	2006	2007	Mean	2006	2007	Mean
Bare ground	16.70d	16.02e	16.36e	10.68g	11.50f	11.09e	0.97f	0.97f	0.97e
Wheat straw mulch	17.80ab	17.60b	17.70b	15.43d	13.755	14.59d	1.73f	1.05f	1.24f
Rice straw mulch	17.98bc	17.95c	17.96c	17.08d	16.25c	16.66d	1.75c	1.30c	1.52c
Transparent plastic mulch	17.58d	16.88ed	17.23ed	13.93d	11.65d	12.79d	0.99f	1.15f	1.07f
Black plastic mulch	17.92a	17.10a	17.51a	18.17e	17.45e	17.81e	1.87e	1.65e	1.76e
LSD	0.2485	0.1757	0.7667	0.7667	0.113	0.07993			

Mean of years 17.6a 17.11b 15.06a 14.12b 1.40a 1.22b

Source
F value
Years 42.5746** 23.6230** 52.0548**
Treatments 104.4698** 218.7743** 153.0590**
Interaction 8.4612** 9.9435** 23.0590**

Figures followed by different letters are significantly different at (p>0.05), according to Duncan’s multiple range tests, NS: Non significant *p>0.05 **p>0.01

increased vegetative growth and Leaf Area Index (LAI) promote the solar radiation intercepted by the canopy and thus increase leaf chlorophyll contents as stated earlier by Kirnak et al. (2001). The leaf area index was significantly and positively correlated with chlorophyll content (r = 0.721**) and fruit weight (r = 0.712**) and available soil moisture contents.

Yield: Black plastic, transparent plastic and rice straw mulches produced higher weight of single fruit. However, the maximum fruit length was found in wheat straw mulch followed by black plastic mulch. The fruit width was not significantly affected by mulching. It was observed that mulching influenced yield significantly in strawberry, maximum yield (210.0 g) was obtained by the use of black plastic mulch, followed by wheat (201.8 g) and rice straw (187.8 g) mulch, respectively (Table 3), whereas, Table 4 describes the DMRT of treatment mean and shows the effect of mulching on fruit size and fruit weight of strawberry. Similar studies have been reported by Moor et al. (2004), that mulches had significant influence on yield and quality of strawberry.

Fruit quality: Rice straw mulch and transparent plastic mulch have no significant effect on ascorbic acid contents of strawberry fruit, in contrast wheat straw mulch and black plastic mulch showed decrease in ascorbic acid content. Ascorbic acid contents were lower in black plastic mulch treatment as compared to bare ground treatment. The relatively low content of ascorbic acid could be the causes of high temperature during ripening of the fruit. This is in line with studies conducted by Lee and Kadir (2000). Total Soluble Solids (TSS) were considerably affected by the mulching treatments. All types of mulches showed increase in TSS (Table 5). Moor et al. (2004) have described that application of organic mulch is better than plastic mulch as for production of better quality of strawberry.
Table 4: DMRT of treatment mean, showing the effect of mulching on fruit size and single fruit weight of strawberry cv. Chandler. (Data on fruit size were collected periodically. Each mean represents three replications and ten observations, recorded for each mean)

Treatments	Single fruit weight (g)	Fruit length (cm)	Fruit width (cm)						
	2006	2007	Mean	2006	2007	Mean	2006	2007	Mean
Bare ground	12.95c	13.02c	12.99c	3.24d	3.08e	3.16d	2.83	2.81	2.82m
Wheat straw mulch	15.02b	14.85b	14.94b	3.45b	3.55a	3.40a	2.75	2.83	2.79h
Rice straw mulch	15.82a	15.73a	15.77a	3.08e	3.06e	3.07e	2.84	2.91	2.87h
Transparent plastic mulch	15.80b	15.27ab	15.54a	3.26c	3.21e	3.23d	2.74	2.78	2.76h
Black plastic mulch	15.93c	15.95c	15.94c	3.36c	3.48c	3.42c	2.78	2.78	2.78c
LSD	0.6157	0.4534	0.06527	0.04615	NS	0.07297			

Mean of years 15.11 14.97 3.28 3.28 2.79 2.82

Source F value F value F value
Years 0.8382** 0.0000** 1.4895**
Treatments 65.3526** 108.5471** 3.4561*
Interaction 0.6306 NS 10.7039** 0.6652NS

Figures followed by different letters are significantly different at (p>0.05), according to Duncan’s multiple range tests, NS : Non significant *p>0.05, **p>0.01

Table 5: DMRT of treatment means showing the effect of mulching on quality attributes of strawberry cv. Chandler. (Data on quality aspects were collected periodically after harvest. Each mean represents three replications and ten samples, collected for each mean)

Treatments	Ascorbic acid (mg 100 g⁻¹)	Fruit firmness (lbs)	TSS (°Brix)						
	2006	2007	Mean	2006	2007	Mean	2006	2007	Mean
Bare ground	66.75a	66.50a	66.63a	4.890b	4.900a	4.90c	7.33c	6.77a	7.02c
Wheat straw mulch	54.00b	50.50b	52.25b	4.900b	4.860b	4.88a	7.59c	7.63e	7.60h
Rice straw mulch	62.25b	60.00b	65.63b	4.900a	4.920a	4.91c	7.65c	8.28c	7.96e
Transparent plastic mulch	67.25b	66.25b	65.63b	4.825b	4.915a	4.91c	7.73c	8.23e	7.98b
Black plastic mulch	53.50c	53.75c	53.63b	4.903c	4.924c	4.91c	7.90c	8.23e	8.06a
LSD	3.32	2.348	0.06527	NS	0.1624	0.4242			

Mean of years 60.75 61.2 4.88 4.9 7.64 7.81

Source F value F value F value
Years 1.4211NS 0.6747NS 1.5685NS
Treatments 83.8816** 1.4425NS 8.9585**
Interaction 5.5966** 3.0915* 2.9215*

Figures followed by different letters are significantly different at (p>0.05), according to Duncan’s multiple range tests, NS : Non significant *p>0.05, **p>0.01

Shelf life: Organic mulching (wheat and rice straw mulch) reduced weight loss and fruit spoilage in strawberry fruits and improved the shelf life. Minimum fruit spoilage and weight loss was recorded in wheat straw mulch and rice straw mulch, respectively. The black and transparent plastic mulch increased the weight loss in strawberry cultivar ‘Chandler’. The increase in weight loss in strawberry fruit produced under plastic mulches could be due to high soil temperature which affects the growth inhibitory hormone and ethylene stress might be increased under high soil temperature produced by these mulches (Table 6). As per statistical analysis wheat straw and black mulch produced strawberry with maximum shelf life. Sharma and Agrawal (2004) also stated that mulching with black plastic and erection of row covers in winter is very beneficial for better growth and production of strawberry in sub-tropical conditions.
Although, interaction of treatments and year were highly significant regarding pH of fruit, there was not any consistency among treatments in both years.

CONCLUSION

It can be inferred that application of black plastic mulch and rice straw mulch could be highly effective in maintaining soil moisture content in strawberry fields. The black plastic mulch retained higher soil moisture and temperature than the rest of the treatments. Maximum plant height and root length was observed in rice straw mulch treatment, whereas, black plastic mulch resulted in increased Leaf Area Index (LAI), crown size, leaf chlorophyll and total fruit yield. The rice and wheat straw mulch significantly reduced the ascorbic acid content but increased the Total Soluble Solids (TSS).

REFERENCES

Aaby, K., G. Skrede and R.E. Wrolstad, 2005. Phenolic composition and antioxidant activities in flesh and achenes of strawberries (*Fragaria ananassa*). J. Agric. Food Chem., 53: 4032-4040.

Agele, S.O., G.O. Iremiren and S.O. Ojeniyi, 2000. Effects of tillage and mulching on the growth, development and yield of late-season tomato (*Lycopersicon esculentum* L.) in the humid south of Nigeria. J. Agric. Sci., 134: 55-59.

Arenas, M., C.S. Vavrina, J.A. Cornell, E.A. Hanlon and G.J. Hochmuth, 2002. Coir as an alternative to peat in media for tomato transplant production. HortScience, 37: 309-312.

Arriaga, F.J. and B. Lowery, 2003. Soil physical properties and crop productivity of an eroded soil amended with cattle manure. Soil Sci., 168: 888-899.

Cordenunsi, B.R., J.D. Nascimento and F.M. Lajolo, 2003. Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chem., 83: 167-173.

Cordenunsi, B.R., M.I. Genovese, J.R.O. do Nascimento, N.M.A. Hassimotto, R.J. dos Santos and F.M. Lajolo, 2005. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem., 91: 113-121.

Diaz-Perez, J.C., D. Granberry, D. Bertrand and D. Giddings, 2004. Tomato plant growth during establishment as affected by root zone temperature under colored mulches. Acta Horticult., 631: 119-124.

Dobbelaere, S., A. Cronenbogh, A. Thys, D. Ptacek and J. Vanderleyden et al., 2001. Responses of agronomically important crops to inoculation with *Azospirillum*. Aust. J. Plant Physiol., 28: 871-879.

Hedau, N.K. and M. Kumar, 2002. Effect of different mulches on yield, plant height, nitrogen uptake, weed control, soil moisture and economics of tomato cultivation. Prog. Hortic., 34: 208-210.

Kirmak, H., C. Kaya, D. Higgs and S. Gereck, 2001. A long-term experiment to study the role of mulches in the physiology and macro-nutrition of strawberry grown under water stress. Aust. J. Agric. Res., 52: 937-943.

Lareau, M.J. and M. Lamarre, 1993. Late planting of strawberry using bare root or plug plants. Acta Hortic., 348: 245-248.

Lee, S.K. and A.A. Kader, 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol., 20: 207-220.

Miller, J.J., N.J. Sweetland and C. Chang, 2002. Hydrological properties of a clay loam soil after long-term cattle manure application. J. Environ. Qual., 31: 989-996.

Moor, U., K. Karp and P. Poldma, 2004. Effect of mulching and fertilization on the quality of strawberries. Agric. Food Sci., 13: 256-267.

Mukkun, L., Z. Singh and D. Phillips, 2001. Nitrogen nutrition affects fruit firmness, quality and shelf life of strawberry. Acta Hortic., 553: 69-71.

Nishizawa, T., S. Nagasawa, Y. Mori, Y. Kondo, Y. Sasaki, J.B. Retamales and A. Lavin, 2005. Characteristics of soluble sugar accumulation in commercially grown *Fragaria chiloensis*. HortScience, 40: 1647-1648.

Nunes, M.C.N., J.K. Brecht, A.M.M.B. Morais and S.A. Sargent, 1995. Physical and chemical quality characteristics of strawberries after storage are reduced by a short delay to cooling. Postharvest Biol. Technol., 6: 17-28.

Scalzo, J., A. Politi, N. Pellegrini, B. Mezzetti and M. Battino, 2005. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition, 21: 207-213.

Sharma, H.G. and N. Agrawal, 2004. Effect of different color mulches on the growth and yield of tomato under drip irrigation. Plant-Arch., 4: 93-99.

Sharma, R.R., 2002. Growing Strawberries. International Book Distributing Co., India, ISBN-13: 978-8185860893, Pages: 164.

Singh, B., M. Kumar and G.C. Singh, 2005a. Effect of different plastic mulches on growth and yield of winter tomato. Indian J. Horticult., 62: 200-202.
Singh, R., R.R. Sharma and R.K. Jain, 2005b. Planting time and mulching influenced vegetative and reproductive traits in strawberry (*Fragaria x ananassa* Duch.) in India. Fruits, 60: 395-403.

Swenson, J.A., S.A. Walters and S.K. Chong, 2004. Influence of tillage and mulching systems on soil water and tomato fruit yield and quality. J. Veg. Crop Prod., 10: 81-95.

Welles, J.M. and J.M. Norman, 1991. Instrument for indirect measurement of canopy architecture. Agron. J., 83: 818-825.

Yasin, M., M.T. Rashid and A. Jabbar, 1996. Effect of 4-chlorophenoxy acetic acid on tomato yield under high temperature conditions: Management of heat, moisture and other physical stress factors of tomatoes and chilies in Pakistan. Proceedings of the Phase I Final Workshop of South Asian Vegetable Research Network, January 23-28, 1996, Kathmandu, Nepal.