Systematic drug perturbations on cancer cells reveal diverse exit paths from proliferative state

Supplementary Material

Figure S1. The breast cell development tree and the schema of differentiation therapy which induce breast cancer cells MCF7 to differentiated state.

Mammary stem cells differentiate to Basal progenitors, which differentiate to Basal Myoepithelial; They also differentiate to Luminal progenitors, which differentiate to Ductal and milk-secreting Alveolar cells. MCF7 cells derived from breast Luminal cells are induced to Alveola-like mature state through the selected drugs.
Figure S2. 16 drug dose response curves – comparisons between library and repurchased compound.

The horizontal axis is drug concentration (μM) in log scale. The vertical axis is the percentage of positive cells with LipidTOX fluorescent dye. We repeated the experiments twice for the repeatability. Blue, compound from the JHCCCL; Red, repurchased (Sigma)
Figure S3. Error Model: MCF7 Cells Gene Expression levels vs. their standard deviations between untreated and drug-treated samples.

The horizontal axis represents the gene expression level measured by Illumina BeadChip while the vertical axis represents the corresponding standard deviation of gene expression levels across certain samples (both in log scale). The blue dots represent 14 samples of untreated MCF7 Cells while red ones represent 54 drug treated samples. The gene expressions vs. standard deviation curves of the drug-treated samples are significantly higher than those of untreated MCF7 cell samples.
Figure S4. GEDI heatmap of untreated and 15 drug-treated MCF7 Cells Gene Expressions.

The GEDI heatmap project a high-dimensional transcriptome into a 2D self-organizing map to visualize the overall gene expression. Each pixel in the GEDI map (grid element) represents a mini-cluster of highly
similarly behaving genes. The pixel at the same position in each map represents the same genes. The color of each pixel represents the gene expression level. (Both Befemelane and Trimebutine have one transcriptome missed due to the failure to pass the quality control)
Figure S5. Heatmap of the differentially expressed genes identified using SAM.

(A) The heatmap of the differentially expressed genes between the samples untreated (at Day 0), drug treated samples at Day 1 and Day 5 based on SAM multiclass analysis; (B) The differentially expressed genes between the samples at Day 0 and Day 1 based on SAM analysis; (C) The differentially expressed genes between the samples at Day 0 and Day 5 based on SAM analysis.
Figure S6. The modified Pearson correlation coefficients distribution of MCF7 cell samples between Day 0 and Day 1,3,5

From 100-randomly chosen sets of 500 genes out of the entire transcripts of each drug at different time points (indicated by colors), we calculated the distribution of the modified Pearson correlation coefficients.
between the drug-treated and the untreated samples (see details in [1]). Except for Desloratadine, Flunisolide, Guanfacine and Maprotiline, the gene expressions of the drug-treated samples are less correlated between Day 0 and Day 3 than the ones between Day 0 and Day 1 / Day 5. The gene expressions of the drug-treated samples were diverging and converging during the transition.

Figure S7. The CAP-Net analysis of the transcriptome of drug-treated sample at Day 1

CAP-Net shows the downstream commonly affected pathways after 1 day drug treatments. Diamonds and circles respectively represent targets and differentially expressed genes. The color of a node shows the average expression level of the corresponding gene. If a gene has a stemness function, it is marked by bold black line.
Supplemental Tables

Table S1-1. List of 16 drugs names, optimal dose, cell differentiation efficiencies

No.	Full Name	Indication	C (μM)	p (%)	Survived Cells (%)
1	Acepromazine	Sedative	10.00	45.2	73.3
2	Amiodarone	Antiarrhythmic (class III)	5.00	44.8	48.3
3	Bifemelane	Nootropic	5.00	45.2	70.1
4	Chlorpromazine	Antiemetic	5.00	46.3	70.7
5	Clomipramine	Antidepressant	5.00	33.7	83.6
6	Desloratadine	Antihistaminic	10.00	55.5	65.3
7	Doxycycline	Antibiotic	5.00	38.3	86.0
8	Fluoxetine	Antidepressant	10.00	47.9	70.3
9	Flunisolide	Glucocorticoid	10.00	29.1	99.6
10	Guanfacine	Antihypertensive	10.00	46.3	59.6
11	Maprotiline	Antidepressant	5.00	35.8	85.7
12	Picrotoxin	Nootropic	10.00	19.7	100.0
13	Raloxifene	Bone resorption inhibitor	0.16	41.4	100.0
14	Sertraline	Antidepressant	10.00	67.2	66.7
15	Thiostrepton	Antibiotic	0.08	84.9	100.0
16	Trimebutine	Antispasmodic	10.00	22.9	75.4
Table S1.2. Drug concentrations for transcript profiling

No.	Drug name	Concentration (μM)
1	Acepromazine	10
2	Amiodarone	5
3	Bifemelane	5
4	Chlomipramine	5
5	Chlorpromazine	10
6	Desloratadine	10
7	Doxycycline hyclate	10
8	Fluoxetine	10
9	Flunisolide	10
10	Guanfacine	10
11	Maprotiline	10
12	Picrotoxin	10
13	Raloxifene HCl	5
14	Sertraline HCl	5
15	Thiostrepton	1
16	Trimebutine	10
Table S2. Differentially expressed genes identified by SAM analysis

Day 0 vs Day 1 vs Day 5 (138)	Day 0 vs Day 1 (49 genes)	Day 0 vs Day 5 (41 genes)
ABCC3	ALDH1A3	ACSL1
ACSL1	ANXA3	ACTG2
ALDH1A3	BST2	ARCN1
ANKRK13C	CAV1	ASAP3
ARCN1	CFB	BBS2
ARL6IP4	CKB	BST2
ARMX6	CRABP1	CDC2L6
ASAP3	CYP1A1	CFB
ASB8	CYP1B1	COX7A2L
ATAD1	DDX41	CTNNB1
BNI3P	DEGS2	DAGLA
BRF1	EPS1	DCPA6
BST2	GJA1	DHR54L2
C10orf16	HG20B	DYP19L4
C17orf90	HS3ST3A1	GAL
CAV1	IDH2	GCAT
CFB	IFIT27	GRHL3
CKB	IFIT6	HMG20B
CNN2	IFIT1	IFIT27
COX7A2L	IFITM1	MED28
CRABP2	IFITM2	MT1A
CSF1	IFITM3	MT1X
CTNNB1	IFITM4P	PGK1
CXorf39	IFGBP5	PGM1
CYP1B1	ILVBL	PLD3
DAGLA	IGF9	PRRC1
DDR1	ISG15	PTPLAD1
DDT	ISG20	RHOB1B3
DDX41	KRT13	S100A7
DEGS2	LGALS1	S100A8
DNAJ1B14	LGALS3BP	S100A9
DYP19L4	LRR5C8	SDCCAG1
DYNCT1L1	MSMB	SPRR1A
EHD1	MT1A	UGT1A6
EMD	MT1X	ZFP90
ENO1	MUC1.1	
EPAS1	NDRG1	
FBXL18	NQO1	
FIS1	PFKFB4	
FLVCR2	PPARG	
FOXJ3	PRRC1	
GAL	PTPN12	
GAPVD1	S100A7	
GCAT	SELENBP1	
GPER	S13GAL1	
GPI	TGFBI	
GPX2	TNS3	
GRHL3	UBE2L6	
HGFC1R1	UGT1A6	
HERC4	UGT1A6	
HIP2		
HLA-DRB5		
HLA-H		
HMG20B		
IDH2		
IFIT27		
IFIT6		
IFIT1		
IFITM1		
Gene Name		

IFITM2		
IFITM3		
IFITM4P		
IGFBP2		
ILVBL		
IRF9		
ISG15		
KLK11		
LCN2		
LGALS3BP		
LIN7C		
LMTK3		
LOC728037		
LPHN1		
LRRC58		
MAFB		
MAPK3		
MCOLN2		
ME1		
MEST		
MGA72		
MRPL54		
MT1A		
MT1X		
MTE		
MUCL1		
MYLIP		
NCOA6		
NDRG1		
NFE2L2		
OAS1		
OBF2C2A		
P2RX2		
PANX2		
PARP12		
PAWR		
PCP4		
PFDN4		
PFKFB4		
PGK1		
PGM1		
PHACTR2		
PIH1TD1		
PLD3		
PPARG		
PPM1B		
PREPL		
PRRC1		
RHOB1B3		
RSRC1		
S100A7		
S100A8		
S100A9		
SELENBP1		
SERPINA1		
SEZ8L2		
SIKE		
SLC2A1		
SPT10		
SPRR1A		
SQLE		
STK3		
STRBP		
SULF2		
SYTL1	TGFBI	TMEM1
---	---	---
TMEM43	TMEM72	TMEM79
TNNT1	UBE2L6	UGT1A6
VPS35	WDR54	YIPF4
YTHDC1	ZFP90	ZNF721
C1 (Const, diverge-converge)	C2 (Const, Concordant)	C3(change, diverge-converge)
-------------------------------	------------------------	------------------------------
ACOT11	ABCA12	ACGL1
ACOX2	ABCC3	ACL3
ACS52	ABHD3	AHCFT1
ANKRD11	ACAP2	AHNAP
ASPM	ACAT2	AP1M1
BRCA2	ACLY	ARHGEF16
C1ORF52	ACOT4	ARL6IP4
COL4A5	ACTR1B	ASAP3
COMMD7	ACTR6	ASB8
COX7B	ADCY1	ATP5B
CP110	ADM	ATP9A
CRIP2	AFAP1L2	BANF1
CUL5	AGL	BBS2
CUTA	AGR2	BCL6
ELF3	AHS2A	BTG1
EFA	AIDA	BUB3
FAM96A	AIP	C1SORF21
FDF11	AK3L1	C1BORF25
FTHL3	AKAP11	C1ORF33
GDPD3	AKR7A2	C2ORF64
GSDM1	AKR7A3	C3ORF59
H3F3A	ALDOC	CCDC124
HADH	ALG1L	CCDC23
HDAC1	ALKBH2	CCDC72
HIST1H2BE	AMMECR1	CDC216
HMox1	ANLN	CFL1
IDH2	ANP32B	CHCHD4
IFT74	AP1G2	CHMP2B
IMPA1	AP1S3	CKS1B
KBTBD8	AP2S1	CRY2
KDM5B	APH1A	CSNK2B
KIAA1033	ARF1	CTB
KLCD5	ARF5	DAPPP1
KRT8	ARFGEF2	DBNDD1
KRT80	ARHGAP21	DDX41
LAD1	ARID1A	DHCR7
LOC6353604	ARL2	DUSP3
LOC678635	ARL6IP5	DYRK2
MAP7	ARPC5	EIF3M
MGC16703	ARRD4C	EWSR1
MGST2	ASC1	FAM117B
MIF	ASH1L	FAM129B
MR6AP1	ASS1	FAM179B
NDUFA1	ATG16L1	FAM43A
NUBPL	ATIC	FAM96B
OCIAD2	ATOX1	FLJ3842
PAAFH1B3	ATP2B1	FLJ44124
PMEPA1	ATP2C1	FTHL11
POMP	ATP6V0C	GAK
PRDX1	ATP6V1B1	GCA
RCC2	ATP6V1F	GFMI1
RHBD2	ATPIF1	GLTP
RHEB	ATR	HIST1H4E
RNASET2	B4GALNT1	HMNC1
RPL11	BAIAP2L1	HMSGCS1
RPL15	BAT1	HSPA1A
RPS3A	BAT5	ID2
RPS6KB1	BAZ1A	ID1
Gene1	Gene2	Gene3
---------	-------------	-------
S1PR3	BBS7	KIAA0430
SEMA3E	BBX	KLF9
SH3GLB2	BCRAP29	KLHL12
SHCBP1	BCKD	LMTK3
SIAH2	BCL2L2	LSM7
SLC16A12	BCL7C	MCM2
SLC36A4	BIRC5	MED28
SLTM	BMS1	MED30
SQSTM1	BNIPL	METAP2
TBC1D8	BRD3	MRPL46
TINP1	BSG	MRPL51
TMEM165	BUB1	MT1A
TMEM205	C10orf118	MTX2
TMEM9	C10orf119	MYLIP
TMSB10	C10orf46	NARS
TTYH3	C10orf58	NAT12
UBR3	C10orf59	NCOA6
VNR2	C11orf10	NDUFA13
VPS28	C11orf60	NF1B
VPS72	C11orf61	NMD3
WDR67	C12orf10	NUDT7
XPNPEP1	C12orf35	PABPC1
XPNPEP3	C12orf44	PDLIM1
ZBTB42	C12orf57	PFDN4
ZNF146	C14orf126	PPS5
C1orf37	PP1IC	C6orf125
C1orf35	PRGR1	C7orf42
C1orf75	PSMAS2	C7orf42
C1orf91	PTPLB	C9orf127
C1orf61	RAB10	C9orf142
C1orf90	RAB11A	CAMSAP1L1
C1orf98	RAB5B	CAND1
C1orf22	RBM47	CAPN5
C1orf30	RBPM52	CAPZ2A
C1orf43	REPIN1	CB25
C1orf123	RF7X	CBS
C1orf128	RGP2D	CBX2
C1orf55	RGS17	CBX6
C1orf96	RHDF1	CBCE1
C2orf199	RHOBTB3	CCDC128
C2orf52	RNF114	CCDC132
C3orf25	RNF181	CCDC22
C5orf33	RNF216	CCDC50
C7orf20	ROCK1	CCDC83
C7orf30	RPL26	CCDC85A
C7orf43	RPL26L1	CCDC85B
C7orf50	RPL27	CCDC90A
C7orf68	RPL7L1	CCDC90B
C9orf162	RPS7	CCDC91
C9orf169	SAFB	CCDC93
C9orf41	SEK3A3B	CCME2
CAB39	3-Sep	CD164
CAB39L	SLC25A16	CD46
CABYR	SLC38A6	CD96
CAMK2B	SNORD3D	CDCI5L
CAMTA1	SNX27	CDC7
CAPG	SPAST	CDKN28
CAPN13	SPRYD5	CELSR2
CAPN7	SRI	CENPO
CARHPS1	STAG3	CEP27
CASA4	STARD10	CETN2
CASC5	STAT6	CFB
CAT	STC1	CFL2
CBX3	STRA13	CGGBP1
Gene Symbol	Gene Symbol	Gene Symbol
-------------	-------------	-------------
CCDC112	SUCLG2	CHES1
CCDC120	SULT1A1	CHMP4C
CCDC18	SUMF1	CHP
CCDC41	SYPL1	CHST1
CCDC56	TACSTD1	CIDECC
CCNE	TBL3	CLDN3
CCNE2	TCEA3	CLK4
CCNJ	TMEM126B	CMBL
CCNYL1	TMEM66	CMTM8
CD63	TMEM9B	CNN2
CD97	TOMM70A	COBL1
CD99	TRMT5	COMT
CDC2	TUBB2C	COMT1D1
CDC73	UBC	COX10
CDH3	UBLCP1	COX6B1
CDK4	USP38	CPD
CDKN1A	YBX1	CPEB4
CDR2L	ZC3H3	COPX
CDS1	ZNF281	CRELD2
CEBPZ	CRIP	
CENPA	CTNNB1	
CEP55	CTNNBL1	
CHCHD5	CTNND2	
CHKA	CWF19L1	
CHML	CXorf25	
CHORDC1	CXorf39	
CHP1	CYP1B1	
CICK0721Q1	DAGLA	
CIRBP	DAZAP2	
CKB	DBN1	
CKMT1A	DBT	
CKMT1B	DCFA6	
CKS2	DCTN4	
CLCN3	DCCDN1D1	
CLDN7	DDF2	
CLINT1	DDT	
CLIP1	DDX17	
CLIP4	DDX6	
CLK2	DEGS2	
COG4	DHR54	
COMMD4	DHR54L2	
COPS6	DHR57	
COX11P	DIRC2	
COX5B	DKC1	
CRABP2	Dlg1	
CRISPLD2	DMKN	
CRYZ	DNAJB14	
CSNK1G3	DNAJC9	
CSRP1	Dnal4	
CXXC5	DNlz	
CYC1	DPM3	
CYHR1	DPY19L4	
DAD1	DR1	
DARS	DRAM1	
DBNL	DYNC1LI1	
DC1	E2F2	
DCP2	E2F6	
DCTN1	EDF1	
DCTN2	EGLN3	
DCTPP1	EHD1	
DDAH2	EHD4	
DD8	EIF2AK3	
DDHD1	EIF3C	
DDR1	EIF3D	
DDX24	ELAVL3	
-------	--------	
DGUOK	ELF5	
DHCR24	ELK4	
DHFRL1	ELOF1	
DHRS3	EMB	
DHX32	EMD	
DHX40	ENO1	
DMXL1	ENO2	
DNAJB4	ENPP4	
DNMT3B	ENSA	
DNPEP	EPCAM	
DOCK6	ERICH1	
DOK4	ERMP1	
DOK7	ESF1	
DPP7	EXD2	
DSC2	EXO1	
DSTN	EXO4C	
DUSP4	EXOC8	
DYNLRB1	EXOSC5	
ECH1	FAHD2A	
ECHDC2	FAM105B	
EDC3	FAM107B	
EDEM3	FAM120A	
EEF1D	FAM120B	
EEF1E1	FAM160B1	
EEF1G	FAM188A	
EFCAB2	FAM45A	
EFHA1	FAM62B	
EFHD1	FAM83A	
EFNA1	FAM98A	
EGFL7	FAU	
EIF3A	FBL	
EIF3CL	FBXL18	
EIF3G	FBXO18	
EIF4E2	FBXO33	
EIF4E3	FGD3	
EIF4G2	FGF13	
ELK1	FGFR10P	
ELOVL5	FIS1	
ELOVL7	FLAD1	
EML1	FNB	
ENTPD8	FLVC2	
EPB4I5	FNBP1	
EPB4E4	FOXC2	
ERFCC1	FOXJ3	
ERGIC2	FRAT2	
ERGIC3	FSCN1	
ERI3	FTSJ3	
ESCO2	G3BP1	
ETNK1	GAB1	
EXOC3	GAL	
EXOSC7	GALK2	
FAM104A	GAPVD1	
FAM108B1	GATS	
FAM116A	GCAT	
FAM161A	GEMIN4	
FAM38A	GK5	
FAM57A	GKAP1	
FAM65A	GLB1	
FAM69A	GLS	
FAM72A	GNPT1	
FAM80A	GNPD4A	
FAM84B	GOLT1B	
FAM91A1	GPI	
FAT1 GPR137B		
FBXL15 GPR89A		
FBXL17 GRAMD1A		
FBXO30 GRHL3		
FBXO32 GRN		
FIBP GSDMC		
FKBP9L GSTO1		
FLJ33630 GTF2A2		
FLOT1 GTF3C4		
FLRT3 GTF3C5		
FNBP1 GTE1		
FTHL12 GUK1		
FTSD1 H19		
GABRB3 HARS2		
GAN HBP1		
GAPDH HDHD3		
GCH1 HEBP1		
GCLC HERC4		
GCLM HINT2		
GCNT1 HIP2		
GDI2 HIST1H2AB		
GFPT1 HIST1H3E		
GNA13 HIST1H4H		
GNAI3 HIST1H4J		
GNG12 HIST3H3		
GON4L HMGN2		
GPER HMGN4		
GPKOW HNRNPD		
GPR65 HNRNPM		
GPX2 HOXC6		
GPX3 HRASLS3		
GRAMD1A HSBP1		
GRK6 HSPC111		
GSN HTR3A		
GSTO2 IFI6		
GTF2F2 IFIT1		
GTF2I IFITM1		
GUf1 IFITM3		
H2AFV IFITM4P		
H2AFY2 IGFBP4		
HAC1 IGF5		
HAGH ILF2		
HCFC1R1 ILVBL		
HCFC2 INS-IGF2		
HDGF IRF9		
HDLBP IRS1		
HES4 ISCU		
HHEX ISG15		
HIATL1 ISG20		
HIST1H2BC JMJD1C		
HIST1H2BH JMY		
HIST2H2AC KAT2B		
HIST3H2A KCTD7		
HLA-A KIAA0101		
HLA-DRB1 KIAA0528		
HLA-DRB5 KIAA1267		
HLA-DRB6 KIAA1598		
HLA-G KIDINS220		
HLA-H KIF1A		
HMGCRC KIF22		
HNRNPA1L2 KLC1		
HNRNPHE KLHDC10		
HNRNPK KLHDC8B		
HNRPH3 KLHL2		
LOC552889	MID2	
LOC606724	MINPP1	
LOC653994	MIR1185-1	
LOC90624	MITD1	
LPIN1	MNX1	
LRPS	MORC3	
LRP8	MPG	
LRPAP1	MRGPRF	
LRRC8B	MRPL12	
LSM1	MRPL2	
LYAR	MRPL4	
LYN	MRPL42P5	
LYPD6	MRPL54	
M6PRBP1	MRPS15	
MACROD1	MRPS23	
MAD2L2	MRT04	
MAN1B1	MSX2	
MANBA1	MT1G	
MAP9	MT1X	
MAPRE3	MT2A	
MAR3	MTE	
MAST2	MTUS1	
MAT2B	MXD1	
MBNL1	MYCBP2	
MBNL3	MYH10	
MBOAT7	MYL12A	
MC1R	MYO1B	
MCF2L2	MYO5A	
ME1	MYO6	
MEIS3	MYPOP	
MEIS3P1	MZF1	
METRN	NBEA	
MFF	NCAM2	
MFN1	NCOA1	
MFSD6	NDRG1	
MGC12965	NDUFA4	
MKI67IP	NEDD1	
MLS1A	NEK8	
MMD	NELL2	
MNAT1	NEURL4	
MPHOSPH10	NFE2L2	
MPI	NMB	
MPP6	NME1	
MPV17	NNT	
MRLC2	NOL10	
MRPL1	NOL3	
MRPL22	NPNT	
MRPL23	NR1D1	
MRPL34	NR3C1	
MRPL43	NRB2	
MRPS12	NRCAM	
MT1F	NSDHL	
MTERFD1	NTSE	
MTFTMT	NUBP2	
MTMIR11	NUCB1	
MTMIR9	NUCB2	
MTSS1	NUP95	
MUC1	OAS1	
MXD3	OMA1	
MYL6B	OR1B12	
MYO18A	OSBPL8	
NAB2	OSGIN2	
NACA2	P4HA2	
NAP1L2	PA2G4	
Gene	Gene		
NARF	PAPD4		
NCAPH	PAPSS2		
NCKAP1	PARP12		
NDEL1	PAVR		
NDFIP1	PBLD		
NDFIP2	PBX3		
NDUFA11	PCSK6		
NDUFA2	PDCD2L		
NDUFAF3	PDLIM7		
NDUFB11	PDPR		
NDUFS5	PDS5A		
NETO1	PDZRN3		
NHP2	PERP		
NIT1	PKFB3		
NKX3-1	PKFB4		
NLRG2	PGAM1		
NME4	PGK1		
NMRA1L	PGM1		
NR2C2	PHACTR2		
NR2F2	PHACTR4		
NRAS	PHB		
NSMCE1	PHYH		
NT5C	PIGK		
NT5C2	PIH1D1		
NT5C3	PIK3CA		
NTN4	PKD2		
NUMA1	PKMYT1		
OAS3	PKP4		
OBFC2A	PLCG2		
OGF	PLD3		
OIP5	PLEC1		
OKL38	PLS1		
OPA1	POLD4		
ORC2L	POLR1D		
OTUB2	PPAP2B		
OTUD6B	PPIL2		
PALLD	PPM1B		
PAM	PPM2C		
PANX2	PPP2R3A		
PAPOLA	PPP2R4		
PAQR3	PPP2R5D		
PARK7	PRED1D		
PARP10	PREPL		
PARP4	PRICKLE2		
PARP9	PRICKLE4		
PBX2	PRKCSH		
PCDHB2	PRR15L		
PCGF5	PRR7		
PCNA	PRRC1		
PCP4	PSMB1		
PDS52	PSMB10		
PFKL	PSMC3		
PFN2	PSM3D		
PGA3	PSMF1		
PGL5	PTDSS1		
PHAX	PTGER4		
PHB2	PTPLAD1		
PHC3	PTPN3		
PHF11	PTPN4		
PHF2L1	PTPR3		
PHOSPHO2	PTPR6		
PHPT1	PTTG1P		
PHTF2	PUFG60		
PI4KB	PURB		
Gene 1	Gene 2	Gene 3	Gene 4
--------	--------	--------	--------
PIAS3	PUSL1	PICALM	PYCRL
PIGC	QTTR1	PKM2	R3HDM2
PKP1	RAB22A	PLOD3	RAB2A
POLR2H	RAD21	POLR2I	RALB
PPB9G1	RAP1GAP	PPAP2A	RAPGEF2
PPIA4A	RASA1	PPIF	RELB
PPM1E	RB1CC1	PPM1CA	RECQL4
PPP2R1A	RELB	PPP4C	RELB
PPP4R1	REXO2	PPP4R2	RFX3
PQBP1	RHBDF2	PRD4M	RHOQ
PRDX5	RHOU	PRIM2	RNA5EL
PRKIR	RNF11	PRPF19	RNF34
PRPF31	RNF40	PBR14	RNU4ATAC
PSENEN	RNU5A	PSMA3	RP11-529I10.4
PSMD2	RPL36A	PSME1	RPL39L
PSMG4	RPP21	PTGR1	RPS21
PTPN11	RRM2	PURA	RRP1
PYGB	RSR1C	PYGL	RUNDC3B
PURA	RTRPL1	PYNB	RXRA
RAB8A	S100A12	RAB2B	S100A2
RAB8C	S100A4	RAB3B	S100A7
RAB3GAP2	S100A8	RAB3JP	SALL1
RAB5C	SAMD9	RAB8A	SASH1
RAB8C	SCYL2	RABD1	SDCCAG1
RABGAP2	SF3A2	RABGAP1	SDCCAG1
RAB10A	SF3A3	RAIF	SEH2B
RALBP1	SFD2L1	RALBP1	SEC24B
RALGDS	SENP6	RALGDS	SENP7
RAMP1	SEPT11	RAP1GDS1	SEPT11
RAP2C	SERPIN1A	RAP1GDS1	SEPT11
RAPGEF1	SERPINB6	RAP1GDS1	SEPT11
RBM12B	SF3A2	RBM42	SF3A3
RBX1	SFN	RDH10	SFMR52
RDH11	SFMR52	REEP3	SFMR52
RFK	SFMR52	RFK	SFMR52
RMNDS5B	SFMR56	RMNDS5B	SFMR56
Gene1	Gene2		
----------	----------		
RNASEH2A	SGSH		
RNASEK	SGSM2		
RNF19B	SGTA		
RNU4-1	SH3BP1		
ROBLD3	SH3YL1		
ROMO1	SHRM		
RPE	SIKE		
RPL13A	SKP1		
RPL17	SIAH1N1		
RPL3	SLC25A1		
RPL36	SLC25A12		
RPN2	SLC27A1		
RPRD1A	SLC35F5		
RPS15	SLC38A2		
RPS24	SLC44A1		
RPS4X	SLC44A2		
RPS6KB2	SLC48A1		
RPS9	SLC4A5		
RPSA	SLC9A2		
RPSJD3	SLFN5		
RSU1	SLITRK6		
RTCD1	SMARCA2		
RTKN	SMARCD1		
RUFY2	SMC5		
RUNX2	SNHG9		
S100A14	SNORA40		
S100A16	SNORD3A		
SAC5	SNORD6S		
SALL2	SNRK		
SAPS1	SNRBP		
SBF1	SNRBP2		
SNBNO1	SNRPC		
SCP2	SNRPD2		
SCPEP1	SNX10		
SDCBP	SNX16		
SDF2	SNX3		
SDF4	SORT1		
SEC23B	SOX3		
SEC23IP	SOX4		
SEC24A	SP110		
SEC24D	SPATA7		
SEMA4B	SPG11		
SEMA6B	SPIRE1		
SERTAD1	SPPL2A		
SEZ6L2	SPBP1A		
SFRS14	SS18L2		
SFXN5	SSR1		
SH3D19	SSTR2		
SHISA5	STAG2		
SIGIRR	STK40		
SIK3	STMN3		
SIN3A	STRBP		
SIPA1	STX7		
SIX5	STXBP5		
SLC16A6	STYXL1		
SLC22A4	SUGT1		
SLC25A46	SULF2		
SLC29A3	SUPT16H		
SLC2A1	SVIP		
SLC2A6	SWAP70		
SLC30A6	SYNJ2		
SLC31A2	SYTL1		
SLC35A1	TACC1		
SLC35A3	TAGLN2		
SLC35B2	TAP2		
SLC35B3	TAPT1		
SLC35E1	TCF12		
SLC3A2	TEAD3		
SLC7A2	TERC		
SLC7A6OS	TGFB2		
SLK	TGOLN2		
SMARCD2	THAP10		
SNHG11	THBS3		
SNHG6	THOC2		
SNORD16	TIGD2		
SNRNP70	TIMM9		
SNX17	TIMP2		
SOAT1	TLE1		
SPOP	TM9SF4		
SPRED2	TMBIM4		
SULF2	TMC4		
SREBF1	TMEF2		
SRP72	TMEM1		
SSR4	TMEM108		
ST13	TMEM135		
ST3GAL1	TMEM150A		
STXB3	TMEM189		
SURF1	TMEM43		
SURF6	TMEM64		
SYK	TMEM79		
SYNM	TMEM83		
TAF10	TMF1		
TAF2	TMTC2		
TAF8	TNNT1		
TATDN1	TNS3		
TBX2	TOMM6		
TC2N	TOP1P1		
TCEA2	TOP1P2		
TCEA4	TOP2B		
TCF25	TPD52L2		
TEAD2	TRAK1		
THEX1	TRAPP3		
THNSL1	TRIM24		
TIAF1	TRIM4		
TIGA1	TRIM8		
TIMM178	TRIP12		
TJP2	TRMT61A		
TM9SF1	TSC22D1		
TMED2	TTC3		
TMED5	TTC3B		
TMEM121	TUBB8		
TMEM132A	TUBD1		
TMEM134	TUFT1		
TMEM147	UBE2E2		
TMEM159	UBE2F		
TMEM170A	UBE2H		
TMEM170B	UGDH		
TMEM184C	UGT1A6		
TMEM222	UGT2B7		
TMEM33	UHMK1		
TMEM41B	USHP1		
TMEM72	USP42		
TMX3	USP6NL		
TNS1BP1	VAMP7		
TOP2A	VASN		
TOR1AIP2	VDAC3		
TRAPP10	VPS35		
TRAPPC10	VPS54		
TRAPPC2L			
Left Column	Right Column		
-------------	--------------		
TRAPPC5	WASL		
TRAPPC6A	WBP2		
TREML1	WBSCR22		
TRIM33	WDR54		
TRIM59	WDSUB1		
TRIP11	WHAMM		
TRIP6	WISP2		
TROAP	WNT8A		
TSSC1	WS82		
TSTD1	YES1		
TTK	YIPF4		
TUBA4A	YIPF5		
TWF1	YIPF6		
TXNIP	YTHDC1		
UBA1	YWHAZ		
UBE1C	ZDHHC21		
UBE2D1	ZDHHC20		
UBE2L6	ZDHHC21		
UBE3C	ZFAND28		
UBXN1	ZFHX3		
UFC1	ZFP90		
UNKL	ZFPL1		
UPF2	ZMI22		
UPK1A	ZNF140		
USO1	ZNF16		
USP16	ZNF217		
USP3	ZNF322A		
USP5	ZNF330		
UTP14C	ZNF358		
UXT	ZNF446		
VBP1	ZNF467		
VCL	ZNF529		
VEGFA	ZNF629		
VKORC1	ZNF668		
VKORC1L1	ZNF721		
VPS37D	ZNF771		
VPS4A	ZNF773		
WBP1	ZNF777		
WDR44	ZNF787		
WDR61	ZNF800		
WDSOF1	ZNF816A		
WWC3	ZNF84		
XRCC5	ZPB		
YPEL3	ZWIN		
YWHAB	ZYG11B		
ZC3H4	ZZ3		
ZC3H7A			
ZC3HAV1L			
ZDHHC4			
ZDHHC9			
ZFR			
ZFYVE16			
ZFYVE19			
ZNF142			
ZNF286C			
ZNF317			
ZNF490			
ZNF503			
ZNF581			
ZNF611			
ZNF621			
ZNF770			
ZWILCH			
Table S4-1. GO Term Enrichment of genes in C1: Constant, diverge-converge

GO term	\(P_{\text{value}} \)	# genes
GO:0055114~oxidation reduction	0.001001623	10
GO:0005829~cytosol	0.001177962	15
oxidoreductase	0.001811866	9
GO:0006917~induction of apoptosis	0.001827765	7
GO:0012502~induction of programmed cell death	0.001856811	7
GO:0043065~positive regulation of apoptosis	0.007746022	7
GO:0043068~positive regulation of programmed cell death	0.008003318	7
GO:0010942~positive regulation of cell death	0.008178256	7
GO:0008283~cell proliferation	0.008266675	7
GO:0006631~fatty acid metabolic process	0.008486207	5
GO:0042127~regulation of cell proliferation	0.013602753	9
GO:0042981~regulation of apoptosis	0.015313907	9
GO:0043067~regulation of programmed cell death	0.016171712	9
GO:0010941~regulation of cell death	0.016502291	9
GO:0008629~induction of apoptosis by intracellular signals	0.020291167	3
GO:0043232~intracellular non-membrane-bounded organelle	0.020820249	19
GO:0043228~non-membrane-bounded organelle	0.020820249	19
GO:005198~structural molecule activity	0.022203014	8
Table S4-2. GO Term Enrichment of genes in C2: Constant, concordant

GO term	P-value	# genes
phosphoprotein	1.94E-13	367
cytoplasm	1.10E-07	180
GO:0065003~macromolecular complex assembly	1.13E-07	57
GO:0043933~macromolecular complex subunit organization	1.89E-07	59
golgi apparatus	3.58E-07	49
GO:0005829~cytosol	1.62E-06	89
GO:0005794~Golgi apparatus	3.82E-06	64
GO:0031090~organelle membrane	1.13E-05	74
er-golgi transport	1.18E-05	14
GO:0070271~protein complex biogenesis	1.47E-05	42
GO:0006461~protein complex assembly	1.47E-05	42
ubl conjugation	2.30E-05	44
ribonucleoprotein	5.21E-05	26
protein biosynthesis	8.38E-05	20
GO:0016192~vesicle-mediated transport	1.40E-04	43
cross-link:Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)	1.93E-04	20
GO:0034622~cellular macromolecular complex assembly	2.09E-04	28
GO:0034621~cellular macromolecular complex subunit organization	2.63E-04	30
nucleus	4.24E-04	199
endoplasmic reticulum	4.49E-04	46
Table S4-3. GO Term Enrichment of genes in C3: net change, diverge-converge

GO term	P-value	# genes
GO:0030529~ribonucleoprotein complex	6.07E-05	14
GO:0043232~intracellular non-membrane-bounded organelle	9.64E-05	35
GO:0043228~non-membrane-bounded organelle	9.64E-05	35
GO:0005829~cytosol	1.02E-04	23
protein biosynthesis	3.07E-04	8
ribosomal protein	3.07E-04	8
phosphoprotein	3.51E-04	70
ribonucleoprotein	6.58E-04	9
GO:0031974~membrane-enclosed lumen	7.87E-04	26
GO:0005840~ribosome	7.92E-04	8
GO:0006412~translation	8.17E-04	10
GO:0031968~organelle outer membrane	8.23E-04	6
GO:0006414~translational elongation	9.44E-04	6
GO:0019867~outer membrane	9.76E-04	6
GO:0070013~intracellular organelle lumen	0.001014	25
GO:0043233~organelle lumen	0.001398	25
GO:0003735~structural constituent of ribosome	0.001443	7
Table S4-4. GO Term Enrichment of genes in C4: net changed, concordant

GO term	P_value	# genes
phosphoprotein	6.47E-14	357
nucleus	4.84E-08	215
GO:0005829~cytosol	1.41E-06	84
GO:0031974~membrane-enclosed lumen	3.60E-05	102
GO:0043233~organelle lumen	7.48E-05	99
GO:0070013~intracellular organelle lumen	8.50E-05	97
GO:0005654~nucleoplasm	1.06E-04	56
GO:0031981~nuclear lumen	1.09E-04	82
GO:0043232~intracellular non-membrane-bounded organelle	1.14E-04	131
GO:0043228~non-membrane-bounded organelle	1.14E-04	131
phosphoric monoester hydrolase	1.70E-04	11
GO:0030532~small nuclear ribonucleoprotein complex	1.96E-04	7
transcription regulation	4.15E-04	102
GO:0003712~transcription cofactor activity	5.55E-04	28
Transcription	6.00E-04	103
actin-binding	6.47E-04	21
alternative splicing	7.79E-04	311
GO:0005794~Golgi apparatus	8.35E-04	52
GO:0005996~monosaccharide metabolic process	8.45E-04	20
GO:0008134~transcription factor binding	8.86E-04	35
Table S5. Breast basal cell and luminal cell gene signatures

up-regulated in Luminal cells vs. Basal (455 genes)	down-regulated in Luminal cells vs. Basal (3801 genes)
ABCD3	ABCA3
ACTN1	ABCG1
ADA	ABHD11
ADD3	ABHD12
ADM	ACVR1B
ADORA2B	ADCY6
ADRB2	AFF3
AGPS	AGR2
AIM1	ANKRD13D
AKR1B1	ANKRD30A
AKR1B10	ANXA6
AKR1C1	ANXA9
AKR1C2	API5
AKR1C3	AR
AKT3	ARF3
ALDH1A3	ARFIP2
ALDH3A2	ARHGEF26
AMD1	ARID2
ANKH	ARR81
ANKRD33B	AS8
ANTXR1	ASH1L
ANXA1	ASTN2
ANXA2	ATP2C2
ANX2AP2	ATP6AP1
ANX3	ATP6VOE2
ANXA4	ATP8B1
APOL6	ATXN7L3B
ARAP3	AVL9
ARHGAP23	BAI2
ARHGAPS	BAZ2A
ARNTL2	BCA51
ARPC2	BCO2
ASXL1	BLNK
ATP1D	BPTF
ATP1A1	CI0orf12
ATP1B3	CI0orf18
AXL	CI0orf51
B2M	CI4orf132
B3GNT5	CI0orf28
BICC1	CI7orf58
BICD2	CI7orf62
BIN1	CI9orf46
BIRC3	C4orf19
BMP1	C7orf26
BNC1	C9orf152
BTG3	C9orf7
BTN3A2	C9orf91
C10orf10	CA12
C12orf39	CACNA1D
C13orf15	CACNA2D2
C15orf52	CACNB3
C1R	CACNG4
Gene	Gene
-------	-------
C1S	CACYBP
C21orf63	CADM1
C21orf96	CAMSAP3
C3	CANT1
C6orf1145	CAPN9
C9orf5	CDCDC17
CALD1	CCND1
CAMTA1	CDC42SE1
CARD6	CEP350
CAPS1	CER52
CAPS4	CER56
CAV1	CFD
CAV2	CHN2
CBR1	CHTOP
CCDC28A	CIRBP
CCDC80	CISH
CCDC82	CLSTN2
CCDC88A	CREB3L1
CCNA1	CREB3L4
CCNYL1	CRRK1
CD109	CSNK1D
CD14	CSNK1D
CD44	CTNN2
CD58	CTXN1
CD59	CXCR5
CD97	CYB561
CDC42EP3	CYHR1
CDCP1	DAAM1
CDH13	DACH1
CDH3	DDAH2
CDK6	DDX42
CEBP0	DEGS2
CFB	DENND1A
CFI	DENND4B
CFL2	DEPTOR
CFLAR	DHR51
CHMP1B	DIP2C
CHST3	DNF2
CLIC4	DLG3
CLIP4	DNA1A4
CLMP	DNA1C1
CMKP1	DNAJ1
COL4A1	DOPEY2
COL4A2	DSCAM-AS1
COL8A1	DUSP8
COP58	EFR3B
COR01C	EIF3B
COTL1	ELOVL2
CRIP1	EMP2
CRK	ENPP1
CRYAB	EPS8L1
CSA	FAM10B
CSNK2A2	FAM11A
CTSC	FAM11A
CXCL1	FAM11A
CXCL2	FAM46C
CXCL3	FAM56C
CYB5R3	FBRSL1
CYB5D	F7
CYLD	F7
DCLD1	F7
DCLD2	F7
DCTD	F7
DGKA	F7
Protein	Gene
-----------	----------
DIRC2	FGFR4
DMD	FKBP4
DNAI1B4	FLJ2184
DOCK5	FLJ3879
DPYD	FLJ45983
DSC3	FOXA1
DSE	FRMD4A
DSG2	FRS2
DSG3	FTX
DST	FUS
DUOX1	FZD4
EGF	GALNT6
EHB1	GAMT
ELK3	GARNL3
ELL2	GARS
EMP1	GART
EMP3	GATA3
EPHA2	GGA1
ERAP2	GGA3
EREG	GNA12
ESYT2	GOLTI1A
ETF1	GP01L
ETS1	GPR160
ETS2	GPRSC
EXT1	GRAMD4
F2RL1	GSTP1
F3	GTF3C1
FAM101B	HEXDC
FAM171A1	HIP1R
FAM176A	HK2
FAM69A	HMG20B
FAM83A	HMGCS2
FAM83D	HNRNPA2B
FAM92A1	HPN
FAP	HPX
FAS	ICA1
FBLIM1	INHBB
FDP2T1	INPP5J
FERM1T1	INTS3
FG2	IQCE
GFBP1	IQSEC1
FH1L1	IRGQ
FKBP1A	ISG20
FMNL2	IVD
FNDC3B	JHDM1D
FOSL1	KAT6B
FOXO1	KCTD15
FRMD6	KDM4B
FSCN1	KIAA0040
FST	KIAA0182
FSTL1	KIAA0226
FXYD5	KIAA0232
FZD6	KIAA0556
GABRE	KIAA0889
GALNT2	KIAA0913
GART	KIAA1211
GAS1	KIAA1244
GBP1	KIAA1324
GBP3	KIAA1467
GFOD1	KIAA1598
GIP3	KIF12
GIC1	KIFC2
GJOR1	KLF2
GM2A	KLHDC9
GNA15	KLHL22
-------	------
GNAI1	KLRG2
GNA1	KRT19
GNG12	LARGE
GPM6A	LARP4B
GPM6B	LFNG
GPX1	LINC00312
GPX8	LLGL2
GSTP1	LMCD1
GTF2B	LNK1
HIF1A	LOC100130987
HLA-E	LOC100272216
HMG2A	LOC100506966
HOXA1	LOC643837
HOXA3	LOC692247
HOXA5	LONRF2
HPBP3	LR3
HRCT1	LRRN1
HRH1	LUC7L3
HSD17B1	L2TR1
HTRA1	MAGED2
ICAM1	MAPK9
IFI16	MAPT
IFI27	MARS
IFI44	MB21D2
IFIT3	MCCC2
IFNGR1	MDM4
IGF2BP2	MEGF9
IGF2BP3	MGAT4A
IGFBP6	MGRN1
IGFBP7	MIF4GD
IL15	MLL2
IL18	MLPH
IL1A	MTERFD3
IL1RAP	MXRA8
IL20R8	MY8
IL7R	MYCN
INHBA	MYEF2
INPP1	MYO5B
IRS2	MYO6
IRX1	NACA
ITCG3	NBPF1
ITCG6	NDUFS8
ITCG8	NKAIN1
ITCG8B	NLK
ITM2C	NME3
JAG1	NPDC1
KIF1B	NUCB2
KIRREL	NUDT4
KLF5	ONECUT2
KLHL29	PAHTM
KLK10	PATZ1
KLK5	PBX1
KPNA1	PCBP2
KRT14	PCK2
KRT15	PCP4
KRT16	PGT1B
KRT17	PGR
KRT5	PI4KA
KRT6A	PLA2G12A
KRT6B	PLCXD1
LAMA3	PLEKH1
LAMB3	PLXNA3
LAMC1	POGZ
Gene	Description
-------	-------------
LAMC2	POLE
LARP6	PPPM1
LBH	PPP1R16A
LEPREL1	PPP2R2C
LPC	PRKX1
LOC100499467	PRLR
LOC100505633	PRR14
LOC100506621	PRRC2C
LOC285812	PRRT2
LOC346887	PRRT3
LOX	PTPRF
LOXL2	PVRL2
LUZP1	PYCR1
LYS	RAB11FIP3
LYN	RAB17
MAML2	RAB3D
MAP4K4	RAB40C
MAP7D3	RABEP2
MBNL1	RALGAPA1
MBNL2	RALGAP1
MBP	RBK
MDF1C	RDH13
MDH1	REEP5
MET	RGL2
MFGE8	RHBDF1
MICAL1	RHOB
MIR100HG	RHOH
MIR22HG	RHPN1
MIR31HG	RIAD1
MMADHC	RND1
MME	RNF103
MMP14	RSD1
MPZL1	RSOP1
MN	RUSC1
MT1E	SBK1
MT1F	SCUBE2
MT1G	SCYL3
MT1H	SDCCAG3
MT1P2	SEC16A
MT1X	SEC5BP2
MT2A	SRF2
MTMR2	SF11
MYL12A	SFMBT2
MYO1B	SH3GLB2
MYO1E	SHANK2
NAB1	SIDT1
NAMPT	SIDT2
NAV2	SLC16A6
NCK1	SLC1A4
NDEL1	SLC2A4A
NDFIP2	SLC2A29
NFA1T5	SLC2A44
NFE2L2	SLC26A11
NMI	SLC2A10
NNMNT	SLC3A1
NOB1	SLC3A1
NR3C1	SLC3A1
NRP1	SLC3A10
NSF1C	SLC4A4
NT5E	SLC4A4
NUDT15	SLC7A8
NUP50	SLC9A3R1
NXN	SMARC2
OBFC2A	SNE1D
Gene 1	Gene 2
-------	-------
OGFR1	SNX27
ORM1L1	SOX12
OSBP3	SOX13
OSBP4	SPATA2L
OSMP1	SPDEF
PARP4	SPTLC2
POGF2	SRBM2
PDP1	STARD10
PDK1	STRADA
PELO	STRBP
PERP	SYCP2
PGF2	SYNGR2
PHLD1A	TADA2B
PHLD2B	TAP1
P13	TBC1D16
PIK3CD	TBC1D30
PKN2	TBL1X
PKP2	TBX3
PLA2G4A	TC2N
PLAT	TESK1
PLA5	TFF1
PLS5	TFF3
PLSZ1	TFGB3
PMLZD2	TGF2
PNLP1P3	THSD4
PPP1R14C	THUMP1D
PPP1R1	TJP3
PRKCDBP	TLE3
PRK3D	TMBIM6
PRTN	TMEM150C
PRTSS1	TMEM184A
PSAT1	TMEM2298
PSMB8	TMEM57
PSMB9	TMEM60
PTGS2	TNIP1
PT7	TNRC18
PT1N2	TOB1
PTI2M	TOMM70A
PTYRF	TRAPP9
RAC2	TRI1
RALB	TRIM3
RALBP1	TRPS1
RBFOX2	TSPAN13
RBM7	TSPAN15
RBMS1	TTC3
RBMS3	TTC39A
RETSAT	TCC9
RXO2	UAP1L1
RGL1	UBN1
RGNF	ULK1
RGS2	USP3
RGS20	USP42
RIOK3	USP7
RIPK4	VIPR1
RND3	VPS37C
RNF145	VPS72
RRRS2	WFS1
RUNX3	XBP1
S100A10	ZBTB42
S100A2	ZDHHC8P1
SAMD9	ZFYVE16
SCHIP1	ZMIZ1
SCPEP1	ZNF12
SEL113	ZNF24
Gene	Symbol
-------	--------
SEP15	ZNF296
SEP10	ZNF398
SERPINB2	ZNF444
SERPINB5	ZNF467
SERPINE2	ZNF703
SFN	ZNF704
SFRP1	ZNF74
SGK1	ZNF84
SH3D19	
SH3GLB1	
SH3KBP1	
SIRPA	
SKAP2	
SLC16A1	
SLC1A3	
SLC25A37	
SLC6A15	
SLC9A6	
SLP1	
SMAD3	
SMCHD1	
SNAI2	
SNX7	
SOAT1	
SOX7	
SPI100	
SPATS2L	
SPRY2	
SPTBN1	
SRI	
SRPX	
SRPX2	
SSFA2	
STAMBPL1	
STAT3	
STAT4	
STK17A	
SVIL	
TAP2	
TX1BP3	
TBC1D1	
TBPL1	
TGFA	
TGFB1	
TGFBR2	
TKT	
TLE4	
TLR2	
TM2D1	
TME05	
TMEM154	
TMEM173	
TMEM30A	
TNFAIP3	
TNFAIP8	
TNFRSF10D	
TOX2	
TP63	
TRIM22	
TRIM29	
TRIP10	
TRMT6	
TUBA4A	
TUBB6	
TWIST2	

TWSG1	
UBASH3B	
UBE2E3	
UPP1	
VAMP3	
VSNL1	
WBFR5	
WDR1	
WLS	
WWTR1	
YAP1	
YBX1	
YES1	
ZBTB16	
ZBTB38	
ZC3H12C	
ZDHHHC2	
ZMYM6	
Table S6-1. Gene set enrichment analysis (GSEA) Day 1 up-regulated pathways vs. Day 0

Gene set	Size	NES	NOM p-val
KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450	30	1.9015	0
KEGG_RETINOL_METABOLISM	19	1.7918	0.001862
KEGG_STEROID_HORMONE_BIOSYNTHESIS	16	1.758	0
Stress Response	33	1.6812	0
Stemness Markers	22	1.6572	0.003759
REACTOME BIOLOGICAL_OXIDATIONS	54	1.5728	0.001901
TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS LOBULAR_NORMAL_UP	49	1.5493	0.005435
PID_INTEGRIN3_PATHWAY	21	1.5448	0.01495
KEGG_TRYPTOPHAN_METABOLISM	24	1.5363	0.01132
REACTOME_PPARA_ACTIVATES_GENE_EXPRESSION	74	1.5246	0.007722
PID_WNT_NONCANONICAL_PATHWAY	24	1.4902	0.01845
REACTOME_FATTY_ACID_TRIACYLGLYCEROL_METABOLISM	124	1.4818	0.01512
TURASHVILI_BREAST_NORMAL_DUCTAL_VS LOBULAR_UP	45	1.4769	0.02239
KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM	24	1.4691	0.04656
PID_ERBB4_PATHWAY	27	1.4494	0.04934
TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS LOBULAR_NORMAL_UP	51	1.4255	0.02186
KEGG_OGLYCAN_BIOSYNTHESIS	15	1.4137	0.06814
BIOCARTA_Igf1_PATHWAY	15	1.4104	0.05311
BIOCARTA_INSULIN_PATHWAY	16	1.3738	0.06897
Prolactin signaling pathway	43	0.62659	0.9497
Table S6-2. Gene set enrichment analysis (GSEA) Day 1 down-regulated pathways vs. Day 0

Gene set	Size	NES	NOM p-val
REACTOME_INTERFERON_GAMMA_SIGNALING	37	1.7986	0.001984
REACTOME_INTERFERON_SIGNALING	111	1.7965	0
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM	179	1.7637	0
REACTOME_INTERFERON_ALPHA_BETA_SIGNALING	41	1.7234	0.001972
KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM	28	1.5556	0.01359
REACTOME_GLUCOSE_METABOLISM	52	1.5539	0.009766
REACTOME_METABOLISM_OF_CARBOHYDRATES	152	1.5428	0.001942
REACTOME_IMMUNOREGULATORY_INTERACTIONS_LYMPHOID_NON_LYMPHOID_CELL	23	1.5419	0.02299
REACTOME_GLYCOLYSIS	22	1.5296	0.01357
REACTOME_NEGATIVE_REGULATORS_OF_RIG_I_MDAS_SIGNALING	23	1.5176	0.04016
BIOCARTA_MCALPAIN_PATHWAY	17	1.512	0.02806
PID_MYC_REPRESSPATHWAY	51	1.5075	0.01461
HUPER_BREAST_BASAL_VS_LUMINAL_UP	29	1.4952	0.01047
PID_IL12_2PATHWAY	30	1.4814	0.03346
KEGG_SPLICEOSOME	104	1.4716	0.01553
REACTOME_GLUCONEOGENESIS	24	1.4512	0.03536
REACTOME_RESPIRATORY_ELECTRON_TRANSPORT	61	1.4106	0.1008
REACTOME_RNA_POL_I_TRANSCRIPTION	60	1.4082	0.03929
Table S6-3. Gene set enrichment analysis (GSEA) Day 5 up-regulated pathways vs. Day 0

Gene set	Size	NES	NOM p-val
KEGGTRYPTOPHANMETABOLISM	24	-1.6197	0.005859
BIOCARTAALKPATHWAY	21	-1.5426	0.01613
PIDERBB4PATHWAY	27	-1.5418	0.008264
REACTOMESYNTHESIS_OF_PIPS_AT_THE_PLASMA_MEMBRANE	24	-1.5	0.0409
REACTOMESIGNALINGBYHIPPO	15	-1.4979	0.06962
BIOCARTARASPATHWAY	22	-1.4779	0.04065
KEGGPORPHRYINANDCHLOROPHYLLMETABOLISM	24	-1.4294	0.06751
TURASHVILI_BREAST_NORMAL_DUCTAL_VS_LOBULAR_UP	45	1.421	0.04286
PIDPSI1PATHWAY	35	-1.4208	0.04732
BIOCARTAWNTPATHWAY	21	-1.4131	0.04277
REACTOMESIGNALINGBYRHOGTPASES	66	-1.4082	0.04848
KEGGPHOSPHATIDYLINSOLIGNALINGSYSTEM	52	-1.3904	0.04878
KEGGSTEROIDHORMONEBIOSYNTHESIS	16	-1.3848	0.0846
StressResponse	33	-1.3769	0.1175
BIOCARTAIGF1PATHWAY	15	-1.3701	0.08299
BIOCARTAINSULINPATHWAY	16	-1.358	0.07724
REACTOMETRANSCRIPTIONAL_REGULATIONOFWHITEADIPOCYTEDIFFERENTIATION	54	1.2819	0.1223
Prolactin signaling pathway	43	-1.207	0.233
Table S6-4. Gene set enrichment analysis (GSEA) Day 5 down-regulated pathways vs. Day 0

Gene set	Size	NES	NOM p-val
HUPER_BREAST_BASAL_VS_LUMINAL_UP	29	-1.5767	0.001992
Epithelial Signature Genes	31	1.5497	0.02505
REACTOME_INTERFERON_ALPHA_BETA_SIGNALING	41	1.5494	0.025
PID_MYC_REPRESSPATHWAY	51	1.5226	0.01663
REACTOME_S_PHASE	93	1.5045	0.0121
REACTOME_INTERFERON_SIGNALING	111	1.4954	0.05979
KEGG_DNA_REPLICATION	35	1.4902	0.02434
REACTOME_DNA_STRAND_ELONGATION	29	1.4734	0.02899
REACTOME_ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX	52	1.4701	0.04546
REACTOME_ORC1_REMOVAL_FROM_CHROMATIN	53	1.4698	0.03666
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES	16	1.4689	0.02053
REACTOME_SYNTHESIS_OF_DNA	77	1.4655	0.03106
REACTOME_G1_S_TRANSITION	89	1.4653	0.03279
REACTOME_GLUCOSE_METABOLISM	52	1.4652	0.02245
REACTOME_METABOLISM_OF_MRNA	191	1.4567	0.0167
REACTOME_M_G1_TRANSITION	64	1.4558	0.05405
REACTOME_SCFSKP2_MEDIATED_DEGRADATION_OF_P27_P21	49	1.4545	0.04481
REACTOME_ER_PHAGOSOME_PATHWAY	52	1.453	0.05955
REACTOME_G2_M_CHECKPOINTS	30	1.4457	0.064
KEGG_MISMATCH_REPAIR	22	1.4447	0.04508
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM	179	1.4424	0.05589
Table S7. Candidate genes identified from CAP-Net analysis which cause MCF7 cell to differentiate

Gene	Biological functions	Effects	Reference	
IFI27	A protein that promotes cell death and mediates IFN-induced apoptosis, characterized by a rapid and robust release of cytochrome C from the mitochondrial membrane.	Inhibition	[2,3]	
VEGFA	A growth factor that regulates angiogenesis. The CAP-Net shows a low expression of VEGFA, which indicates a reduction in the angiogenesis and tumor growth.	Inhibition	[4–6]	
CSF1	A cytokine that enhances the tumor growth via tumor-associated macrophages. It is highly expressed in several subtypes of breast cancer and causes the M2 macrophage differentiation by stimulating VEGFA. The down-regulation of CSF1 in the CAP-Net supports previous findings as a positive effect on breast cancer treatment.	Inhibition	[7–9]	
AKT1	A Serine-Threonine protein kinase that regulates metabolism, proliferation, cell survival, growth and angiogenesis.	-	[10]	
IL8	A chemotactic factor that attracts neutrophils, basophils and T-cells. It activates neutrophils. It is released from several cell types in response to an inflammatory stimulus.	inhibition	[11]	
CYP1B1	An enzyme that metabolizes drugs, involved in electron transport pathway.	activation	[12]	
DHCR24	An enzyme that protects cells from apoptosis induced by oxidative stress.	activation	[13,14]	
EDN1	A protein that is used to produce vasoconstrictive peptides.	activation	[15]	
HMOX1	An enzyme that cleaves the heme ring at the alpha methene bridge to form biliverdin, and exhibits cytoprotective effect since excess of heme sensitizes cells to apoptosis.	activation	[16]	
MAOA	A mitochondrial enzyme that degrades monoamines neuron transmitters and dietary amines, induces EMT through activation of VEGF.	Inhibition	[17,18]	
MUC1	A membrane protein that activated T-cells, influences the Ras/MAPK pathway, promotes tumor progression, regulates TP53-mediated transcription, determines cell fate in the genotoxic stress response and represses TP53 activity.	Inhibition	[19–21]	
SUPPLEMENTAL REFERENCES

1. Tsuchiya M, Piras V, Giuliani A, Tomita M, Selvarajoo K. Collective dynamics of specific gene ensembles crucial for neutrophil differentiation: the existence of genome vehicles revealed. PLoS ONE. 2010;5:e12116.

2. Cheriyath V, Leaman DW, Borden EC. Emerging roles of FAM14 family members (G1P3/ISG 6-16 and ISG12/IFI27) in innate immunity and cancer. Journal of interferon & cytokine research. 2011;31:173–181.

3. Suomela S, Cao L, Bowcock A, Saarialho-Kere U. Interferon alpha-inducible protein 27 (IFI27) is upregulated in psoriatic skin and certain epithelial cancers. Journal of Investigative Dermatology. 2004;122:717–721.

4. Goel H, Mercurio A. VEGF targets the tumour cell. Nature reviews Cancer. 2013;13:871–882.

5. Bender RJ, Gabhann F, Mac Gabhann F. Expression of VEGF and semaphorin genes define subgroups of triple negative breast cancer. PLoS ONE. 2013;8:e61788.

6. Pathak AP, McNutt S, Shah T, Wildes F, Raman V, Bhujuwalla ZM. In vivo “MRI phenotyping” reveals changes in extracellular matrix transport and vascularization that mediate VEGF-driven increase in breast cancer metastasis. PLoS ONE. 2013;8:e63146.

7. Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer research. 2013;73:2782–94.

8. Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, Daniel D. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8(+) T cells. Oncoimmunology. 2013;2:e26968.

9. Richardsen E, Uglehus RD, Johnsen SH, Busund L-T. Macrophage-Colony Stimulating Factor (CSF1) Predicts Breast Cancer Progression and Mortality. Anticancer research. 2015;35:865–74.

10. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, Bonal DM, Charytonowicz E, Gladoun N, de la Iglesia-Vicente J, et al. Suppression of Acquired Docetaxel Resistance in Prostate Cancer through Depletion of Notch- and Hedgehog-Dependent Tumor-Initiating Cells. Cancer cell. 2012;22:373–88.

11. Kim S, Goel S, Alexander CM. Differentiation Generates Paracrine Cell Pairs That Maintain Basaloid Mouse Mammary Tumors: Proof of Concept Oshima R, editor. PLoS ONE. 2011;6:e19310.

12. Faiq MA, Dada R, Sharma R, Saluja D, Dada T. CYP1B1: A Unique Gene with Unique Characteristics. Current drug metabolism. 2014;15:893–914.
13. Lee GT, Ha Y-S, Jung YS, Moon S-K, Kang HW, Lee O-J, Joung JY, Choi YH, Yun S-J, Kim W-J, et al. DHCR24 is an Independent Predictor of Progression in Patients with Non-Muscle-Invasive Urothelial Carcinoma, and Its Functional Role is Involved in the Aggressive Properties of Urothelial Carcinoma Cells. Annals of Surgical Oncology. 2014;21:538–545.

14. Battista M-C, Guimond M-O, Roberge C, Doueik AA, Fazli L, Gleave M, Sabbagh R, Gallo-Payet N. Inhibition of DHCR24/seladin-1 impairs cellular homeostasis in prostate cancer. Prostate. 2010;70:921–933.

15. Lu J-W, Liao C-Y, Yang W-Y, Lin Y-M, Jin S-LC, Wang H-D, Yuh C-H. Overexpression of endothelin 1 triggers hepatocarcinogenesis in zebrafish and promotes cell proliferation and migration through the AKT pathway. PLoS ONE. 2014;9:e85318.

16. Andrés NC, Fermento ME, Gandini NA, Romero AL, Ferro A, Donna LG, Curino AC, Facchinetti MM. Heme oxygenase-1 has antitumoral effects in colorectal cancer: involvement of p53. Experimental and molecular pathology. 2014;97:321–31.

17. White TA, Kwon EM, Fu R, Lucas JM, Ostrander EA, Stanford JL, Nelson PS. The Monoamine Oxidase A gene promoter repeat and prostate cancer risk. Prostate. 2012;72:1622–1627.

18. Wu JB, Shao C, Li X, Li Q, Hu P, Shi C, Li Y, Chen Y-T, Yin F, Liao C-P, et al. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. Journal of Clinical Investigation. 2014;124:2891–2908.

19. Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M. MUC1 and cancer. Biochimica et Biophysica Acta - Molecular Basis of Disease. 1999;1455:301–313.

20. Zaretsky JZ, Barnea I, Aylon Y, Gorivodsky M, Wreschner DH, Keydar I. MUC1 gene overexpressed in breast cancer: structure and transcriptional activity of the MUC1 promoter and role of estrogen receptor alpha (ERalpha) in regulation of the MUC1 gene expression. Molecular cancer. 2006;5:57.

21. Nath S, Mukherjee P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends in Molecular Medicine. 2014;20:332–342.