Effect of Periarticular Injections of Triamcinolone Acetonide During Unicompartmental Knee Arthroplasty in the Perioperative Period: A Randomized Clinical Trial

He Gao
Aviation General Hospital

Yaling Zhai
Aviation General Hospital

Ju'an Yue (✉️ 20150941122@bucm.edu.cn)
Aviation General Hospital
https://orcid.org/0000-0001-6548-696X

Xiaozhong Guo
Aviation General Hospital

Randong Wang
Aviation General Hospital

Bing Li
Aviation General Hospital

Qiang Sun
Aviation General Hospital

Wangyan Liu
Aviation General Hospital

Jiao Chen
Aviation General Hospital

Yingnan Li
Aviation General Hospital

Research article

Keywords: Arthroplasty, Pain, Triamcinolone acetonide, cocktail

DOI: https://doi.org/10.21203/rs.3.rs-40538/v1

License: ☛ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Unicompartmental knee arthroplasty (UKA) is a minimally invasive procedure that preserves most knee tissue, but can also cause moderate-to-severe pain. We investigated if triamcinolone acetonide (TA) addition to a “cocktail” of agents in a periarticular injection could reduce postoperative pain and the inflammatory response, and promote rapid recovery after UKA.

Methods: This was a prospective randomized clinical trial undertaken from March 2018 to October 2019. Patients were divided randomly into a control group (A) and TA group (B). In group A, a 50-mL cocktail lacking TA was injected in tissue around the joint cavity. In group B, a 50-mL cocktail containing TA was injected. Primary-outcome measurements were the visual analog pain score upon rest (VASR) and exercise (VASE), morphine consumption, range of motion (RoM), level of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) in venous blood at different times. Complications were also monitored.

Results: Forty-five patients in group A and 46 patients in group B were assessed. At 6, 12 and 24 h postoperatively, VASR in group A was significantly higher than that in group B (P<0.05). At 6 and 12 h postoperatively, VASE in group A was significantly higher than that in group B (P<0.05). Morphine consumption in group A was significantly higher than that in group B at 0–24 h (P<0.05) and 0–48 h (P<0.05) after surgery. At postoperative day (POD)1–3, the RoM in group B was significantly higher than that in group A (P<0.05). There was a significant decrease in CRP level in group B vs. group A on POD1 (P<0.05) and POD3 (P<0.05). The ESR of group B was significantly lower than that of group B on POD3 (P<0.05) and POD5 (P<0.05). No serious complications occurred in either group.

Conclusion: TA addition to a cocktail of agents for periarticular injection effectively relieved pain, improved knee-joint function, reduced the inflammatory response, did not increase risk of complications, and promoted rapid recovery after UKA.

Introduction

In recent years, the effect of single-compartment osteoarthritis of the knee joint treated by unicompartmental knee arthroplasty (UKA) has improved significantly [1]. UKA involves replacement of only a single compartment. In this way, natural movement is retained, and proprioception is not destroyed. UKA also has the advantages of preserving the normal structure and bone mass of the knee, eliciting little surgical trauma and few complications, along with rapid recovery of joint function [2,3].

Although UKA is a minimally invasive procedure in which most knee tissue is preserved, it can also cause moderate-to-severe pain [4,5]. Pain management after UKA is also a focus of research [6]. In recent years, postoperative analgesia after joint replacement has changed gradually from using a single drug to using multiple drugs [7–9]. A periarticular multimodal injection consisting of a “cocktail” of agents is often used
after joint replacement, and is important for reducing pain and enhancing recovery after surgery \cite{10,11}. The ingredients of this cocktail are a popular research topic \cite{7,9,12}.

Glucocorticoids can alleviate swelling and pain by reducing the postoperative inflammatory response and immune regulation. They can also inhibit local vascular dilatation, as well as reduce capillary permeability, congestion, plasma exudation, leukocyte infiltration, and phagocytosis \cite{13}. Scholars have shown that addition of glucocorticoids to cocktails can reduce pain and the inflammatory response, as well as promote rapid recovery, after total knee arthroplasty (TKA) \cite{14,15}.

Whether addition of triamcinolone acetonide (TA) to a cocktail is also efficacious for UKA is not known. Hence, we conducted a randomized clinical trial to explore if TA addition to a cocktail could reduce pain and the inflammatory response, and promote rapid recovery, after UKA.

Materials And Methods

Ethical approval of the study protocol

The study protocol was approved by the Ethics Committee of our hospital. Procedures involving human participants were in accordance with the ethical standards set in the Declaration of Helsinki Ethical Principles for Medical Research by the World Medical Association. All patients provided written informed consent.

Inclusion criteria

The inclusion criteria were patients with: (i) unilateral and medial-compartment osteoarthritis; (ii) good stability of the knee; (iii) good function of the cruciate ligament and collateral ligament; (iv) degree of motion of the knee $> 90^\circ$; (v) flexion contracture $< 10^\circ$; (vi) varus deformity $< 15^\circ$ that could be corrected to a neutral position under passive stress.

Exclusion criteria

The exclusion criteria were patients with a history of acute and slow knee infection, or inflammatory joint disease (e.g., rheumatoid arthritis), pigmented villonodular synovitis, bone fusion, or severe deformity.

Patients and procedures

This was a prospective randomized clinical trial undertaken from March 2018 to October 2019. Patients scheduled for UKA were recruited to participate in our study.

UKA was performed in all patients using the third-generation Oxford® Unicompartmental Knee Replacement system (Biomet, Warsaw, IN, USA). All procedures were undertaken by the same senior surgeon.
Preoperatively, the envelope method of randomization was used to divide patients into two groups. Intraoperatively, all patients received spinal anesthesia.

In the control group (group A), a 50-mL intraoperative periarticular injection of cocktail of agents (ropivacaine (20 mL or 10 mL:100 mg), morphine (0.5 mL: 5 mg), epinephrine (0.1 or 1 mL; 1 mg), TA (1 mL: 40 mg), and physiologic (0.9%) saline (28.4 mL or 10 mL: 90 mg) was prepared in five 10-mL syringes. In the TA group (group B), a 50-mL intraoperative periarticular injection employing a cocktail using the same agents stated above but with addition of TA (1 mL: 40 mg) was employed. Before prosthesis implantation, 20 mL of the cocktail was injected into the posterior articular capsule. After the prosthesis had been implanted, 30 mL of the cocktail was injected into the synovium, medial collateral ligament, quadriceps femoris, fat, and surrounding patellar soft tissue (except the patellar tendon).

All patients were given a single dose of cefuroxime (1.5 g) 30 min before surgery and cefuroxime (1.5 g, b.d.) on postoperative day (POD)1 for prophylaxis. A drainage tube was placed intraoperatively, which was clipped routinely for 4 h after surgery, and was removed 24 h after surgery. Flurbiprofen (100 mg, b.d.) was used to relieve pain for POD1–3. Rivaroxaban (5 mg/day) was administered for 7 days to prevent deep-venous thrombosis (DVT).

Outcome measurements

The primary outcome measurements were: the visual analog pain score upon rest (VASR) and visual analog pain score on exercise (VASE) 6 h, 12 h as well as 1, 2, 3, 4 and 5 days after surgery; morphine consumption for patient-controlled anesthesia (PCA) for POD1 and POD2; range of motion (ROM; preoperative, and POD1, 2, 3, 4 and 5); level of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) in venous blood (preoperative, and POD1, 3, and 5).

The secondary outcome measures were nausea, vomiting, infection, DVT, hematoma, and nerve injury.

Statistical analyses

SPSS v22.0 (IBM, Armonk, NY, USA) was employed for statistical processing. Data are the mean ± standard deviation. The independent-sample t-test and Mann–Whitney test were used for comparison of measurement data between groups. The χ² test was used for comparison of count data. P < 0.05 was considered statistically significant.

Results

Initially, 96 patients were enrolled, and randomized into two groups. Three patients were excluded from group A because they were switched to TKA (n = 2), or lost to follow-up (n = 1). Two patients were excluded from group B (one patient was switched to TKA and one patient was lost to follow-up). Finally, 45 patients in group A and 46 patients in group B were evaluated. The demographic characteristics of the study cohort are listed in Table 1: there was no significant difference in any parameter between the two groups.
Table 1
Demographic characteristics of the patient cohort

Demographic	Group A (n = 45)	Group (n = 46)	p
Gender (male/femal)	11/34	7/39	0.269
Side (left/right)	22/23	27/19	0.185
Age (year)	67.56 ± 8.94	69.80 ± 6.95	0.185
Height (cm)	160.38 ± 4.108	161.37 ± 3.122	0.198
Weight (kg)	65.17 ± 8.183	66.09 ± 6.157	0.547
BMI (kg/m²)	25.34 ± 3.08	25.38 ± 2.31	0.943
Incision (cm)	8.56 ± 0.93	8.65 ± 1.01	0.545

At 6, 12, and 24 h postoperatively, there were significant differences between the two groups for VASR (4.05 ± 1.545 vs. 3.00 ± 1.664, P = 0.007; 4.21 ± 1.718 vs. 2.93 ± 1.207, P = 0.009; 3.53 ± 0.841 vs. 2.43 ± 0.514, P = 0.00, respectively) (Fig. 1). At 6 h and 12 h postoperatively, there were significant differences between two groups for VASE (6.00 ± 1.453 vs. 4.57 ± 1.342, P = 0.007; 5.32 ± 0.82 vs. 4.50 ± 1.019, P = 0.029, respectively) (Fig. 2). Thereafter, a significant difference was not observed between the two groups. Morphine consumption for PCA in group A was significantly higher than that in group B at 0–24 h (5.62 ± 2.41 vs. 3.17 ± 1.81, P = 0.016) and 0–48 h (10.25 ± 1.62 vs. 6.25 ± 1.77, P = 0.016) after surgery (Fig. 3).

At POD1, 2 and 3, the RoM of group B was significantly higher than that of group A (33.95 ± 12.313 vs. 47.86 ± 14.239, P = 0.004; 51.58 ± 17.001 vs. 65.71 ± 16.036, P = 0.022; 69.21 ± 16.772 vs. 83.57 ± 14.469, P = 0.016, respectively). Although there was no significant difference in knee flexion mobility between the two groups at POD4 and POD5, we observed from the curve that the RoM of group B was superior to that of group A (Fig. 4).

The mean level of CRP and ESR preoperatively as well as on POD0, 1, 3 and 5 for the two groups are displayed in Fig. 5A and B. There was a significant decrease in the CRP level for group B vs. group A on POD1 (41.67 ± 23.95 vs. 26.92 ± 11.279, P = 0.047) and POD3 (52.00 ± 25.74 vs. 26.37 ± 11.79, P = 0.001). The ESR of group B was significantly lower than that in group B on POD3 (50.20 ± 17.67 vs. 35.67 ± 14.606, P = 0.041) and POD5 (43.00 ± 15.91 vs. 27.00 ± 12.46, P = 0.005).

Mild-to-moderate nausea and vomiting occurred in four patients in group A and in three patients in group B. There was no significant difference in the prevalence of nausea and vomiting between the two groups. Their symptoms were relieved after metoclopramide (i.m.) administration. No patients had symptoms of infection (redness, swelling, heat, pain) around the wound. One patient in group A was found to have an intramuscular thrombus on POD5. No patients developed DVT.
Discussion

Efficacious pain management is necessary for effective recovery after arthroplasty \[16\]. Traditionally, pain control after TKA has been achieved through epidural analgesia or peripheral nerve blocks \[17\]. However, these methods are often costly, technically difficult, and can have side-effects. Some studies have shown that local injection of anesthetic agents into soft tissues can reduce pain scores and the amount of opioid analgesics used \[18–20\]. Toftdahl and colleagues compared the effect of local periarticular and intra-articular infiltration of agents with that of a continuous femoral nerve block. They found that patients receiving local infiltration of agents had better postoperative pain relief, faster recovery, and no increased risk compared with control group \[21\].

Fan and colleagues \[22\] injected ropivacaine, ketorolac, morphine, and epinephrine around the joints of patients undergoing knee arthroplasty. They found that the pain score decreased significantly, the patient satisfaction score increased, and the demand for intravenous controlled analgesia decreased within 24 h after surgery. In another randomized trial, local injections of bupivacaine, fentanyl, and methylprednisolone were given to patients undergoing simultaneous bilateral knee arthroplasty. Patients who received local injections after surgery had significantly lower pain scores and significantly improved knee motion than those who received contralateral knee arthroplasty \[23\]. Maheshwari et al. \[24\] emphasized the importance of periarticular injections in multimodal pain management. In view of the high incidence of the side-effects of systemic opioid use, local injection of cocktails has been used to replace intravenous controlled analgesia. Lamplot and collaborators \[25\] reported that injection of a cocktail of agents around joints could reduce the pain score (with fewer adverse reactions), significantly reduce use of anesthetic drugs, and lead to higher postoperative patient satisfaction and faster recovery.

Pain after joint replacement can be caused by soft-tissue injury or bone injury \[6, 26\]. Some scholars believe that there are opioid receptors in the synovial membrane of the knee \[27–29\]. Vendittoli et al. \[30\] reported that intraoperative local injection around the joint could target injured tissues and nerve endings accurately and alleviate postoperative pain. In addition, the drug was released slowly in soft tissue, thereby extending the postoperative duration of analgesia effectively \[8, 29\]. In addition to its direct effect, local injection can enhance the postoperative analgesic effect by inhibiting the response of neuroendocrine stress to surgery \[31\].

The anti-inflammatory effects of glucocorticoids include varying degrees of disruption of prostaglandin and cyclooxygenase pathways \[32–34\]. Glucocorticoids act directly on nuclear steroid receptors, and control the rate of mRNA/protein synthesis. They also cause inhibition of phospholipase A2, as well as changes in T- and B-cell functions, white-blood-cell activity, cytokine levels, and enzyme levels, and result in reduction of levels of the proinflammatory derivatives of arachidonic acid. Thus, injection of glucocorticoids into the soft tissues around the joint can reduce the inflammatory response at the site of the surgical wound, thereby relieving pain effectively. In addition, by reducing production of prostaglandins (especially vasodilators), postoperative blood loss can be reduced. Studies have
demonstrated that injection of hormones into the local infiltration around a joint does not increase the risk of complications such as joint infection, tissue atrophy, or osteonecrosis. Through strict aseptic operation/control and strict indications, Noticewala et al. [2] found that glucocorticoid replacement in local injections into a single condyle did not increase the risk of complications.

TA is an insoluble synthetic glucocorticoid that has anti-inflammatory effects and is intended for intra-articular use. Its effects last several weeks, longer than that of methylprednisolone. Studies have shown that at a single dose of TA (60–100 mg, i.m.) leads to adrenal suppression within 24–48 h that returns to normal gradually within 30–40 days [35–37]. In our study, patients receiving a periarticular injection of TA had significantly improved knee RoM in the early postoperative period compared with that of group A.

Our study had two main deficiencies. First, the study cohort was small. Studies with large sample sizes carried out at multiple centers are needed, and postoperative complications should be investigated further. Second, the duration of follow-up was short.

Conclusions

TA addition to a cocktail of agents for periarticular injection effectively relieved pain, improved knee-joint function, reduced the inflammatory response, did not increase risk of complications, and promoted rapid recovery after UKA.

List Of Abbreviations

Unicompartmental knee arthroplasty (UKA)

Triamcinolone acetonide (TA)

Total knee arthroplasty (TKA)

Visual analog pain score upon rest (VASR)

Visual analog pain score exercise (VASE),

Range of motion (ROM),

C-reactive protein (CRP) and

Erythrocyte sedimentation rate (ESR)

Postoperative day (POD)

Deep-venous thrombosis (DVT)

Patient-controlled anesthesia (PCA)
Declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. The Ethics Committee of Aviation General Hospital approved this study. All patients agreed to participate in it.

All authors agree to publish “Effect of Periarticular Injections of Triamcinolone Acetonide During Unicompartmental Knee Arthroplasty in the Perioperative Period: a Randomized Clinical Trial” in Journal of Orthopaedic Surgery and Research.

Data and materials availability statement:

All data and materials used to support the findings of this study are included within the article.

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Funding:

Special Fund for Doctor of Aviation General Hospital (Grant Number: BS2019-005)

HG and YLZ collect data and write articles; JAY did the surgery; XZG, RDW, BL, QS, WYL, JC and YNL were responsible for literature review. All authors read and approved the final manuscript.

This article conforms to the journal style.

We thank Arshad Makhdum, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

1. Price AJ, Svard U. A second decade lifetable survival analysis of the Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res. 2011. 469(1): 174-9.

2. Noticewala MS, Geller JA, Lee JH, Macaulay W. Unicompartmental knee arthroplasty relieves pain and improves function more than total knee arthroplasty. J Arthroplasty. 2012. 27(8 Suppl): 99-105.

3. Pandit H, Jenkins C, Gill HS, Barker K, Dodd CA, Murray DW. Minimally invasive Oxford phase 3 unicompartmental knee replacement: results of 1000 cases. J Bone Joint Surg Br. 2011. 93(2): 198-204.

4. Pinsornsak P, Nangnual S, Boontanapibul K. Multimodal infiltration of local anaesthetic in total knee arthroplasty; is posterior capsular infiltration worth the risk? a prospective, double-blind, randomised
controlled trial. Bone Joint J. 2017. 99-B(4): 483-488.

5. Andersen KV, Nikolajsen L, Haraldsted V, Odgaard A, Søballe K. Local infiltration analgesia for total knee arthroplasty: should ketorolac be added. Br J Anaesth. 2013. 111(2): 242-8.

6. Pang HN, Lo NN, Yang KY, Chong HC, Yeo S.J. Peri-articular steroid injection improves the outcome after unicompartmental knee replacement: a prospective, randomised controlled trial with a two-year follow-up. J Bone Joint Surg Br. 2008. 90(6): 738-44.

7. Deng Z, Li Y, Storm GR, et al. The efficiency and safety of steroid addition to multimodal cocktail periarticular injection in knee joint arthroplasty: a meta-analysis of randomized controlled trials. Sci Rep. 2019. 9(1): 7031.

8. Laoruengthana A, Jarusriwanna A, Rattanaprichavej P, Rasamimongkol S, Varakornpipat P, Pongpirul K. Timing of periarticular injection has no effect on postoperative pain and functional recovery in simultaneous bilateral total knee arthroplasty: a prospective randomized, double-blinded trial. BMC Musculoskelet Disord. 2019. 20(1): 162.

9. Tammachote N, Kanitnate S, Manuwong S, Panichkul P. Periarticular multimodal drug injection is better than single anesthetic drug in controlling pain after total knee arthroplasty. Eur J Orthop Surg Traumatol. 2018. 28(4): 667-675.

10. Carli F, Clemente A, Asenjo JF, et al. Analgesia and functional outcome after total knee arthroplasty: periarticular infiltration vs continuous femoral nerve block. Br J Anaesth. 2010. 105(2): 185-95.

11. Kim TW, Park SJ, Lim SH, Seong SC, Lee S, Lee MC. Which analgesic mixture is appropriate for periarticular injection after total knee arthroplasty? Prospective, randomized, double-blind study. Knee Surg Sports Traumatol Arthrosc. 2015. 23(3): 838-45.

12. Iwakiri K, Ohta Y, Kobayashi A, Minoda Y, Nakamura H. Local Efficacy of Periarticular Morphine Injection in Simultaneous Bilateral Total Knee Arthroplasty: A Prospective, Randomized, Double-Blind Trial. J Arthroplasty. 2017. 32(12): 3637-3642.

13. Fan Z, Ma J, Kuang M, et al. The efficacy of dexamethasone reducing postoperative pain and emesis after total knee arthroplasty: a systematic review and meta-analysis. Int J Surg. 2018. 52: 149-155.

14. Ikeuchi M, Kamimoto Y, Izumi M, et al. Effects of dexamethasone on local infiltration analgesia in total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2014. 22(7): 1638-43.

15. Mohammad HR, Hamilton TW, Strickland L, Trivella M, Murray D, Pandit H. Perioperative adjuvant corticosteroids for postoperative analgesia in knee arthroplasty. Acta Orthop. 2018. 89(1): 71-76.

16. Shi ZB, Dang XQ. Efficacy of multimodal perioperative analgesia protocol with periarticular medication injection and nonsteroidal anti-inflammatory drug use in total knee arthroplasty. Niger J Clin Pract. 2018. 21(9): 1221-1227.

17. Fischer HB, Simanski CJ. A procedure-specific systematic review and consensus recommendations for analgesia after total hip replacement. Anaesthesia. 2005. 60(12): 1189-202.

18. Truong A, Mujukian A, Fleshner P, Zaghiyan K. No Pain, More Gain: Reduced Postoperative Opioid Consumption with a Standardized Opioid-Sparing Multimodal Analgesia Protocol in Opioid-Tolerant
Patients Undergoing Colorectal Surgery. Am Surg. 2019. 85(10): 1155-1158.

19. Schneider J, Broome B, Keeley D. Narcotic-Free Perioperative Total Knee Arthroplasty: Does the Periarticular Injection Medication Make a Difference. J Knee Surg. 2019.

20. Lakra A, Grosso M, Jennings EL, Cooper HJ, Shah RP, Geller JA. Improved pain control with adductor canal block using liposomal bupivacaine after total knee replacement: a retrospective cohort study. Arthroplast Today. 2019. 5(3): 325-328.

21. Toftdahl K, Nikolajsen L, Haraldsted V, Madsen F, Tønnesen EK, Søballe K. Comparison of peri- and intraarticular analgesia with femoral nerve block after total knee arthroplasty: a randomized clinical trial. Acta Orthop. 2007. 78(2): 172-9.

22. Fan JC. Intra-operative periarticular multimodal injection in total knee arthroplasty: a local hospital experience in Hong Kong. Hong Kong Med J. 2018. 24(2): 145-151.

23. Mullaji A, Kanna R, Shetty GM, Chavda V, Singh DP. Efficacy of periarticular injection of bupivacaine, fentanyl, and methylprednisolone in total knee arthroplasty: a prospective, randomized trial. J Arthroplasty. 2010. 25(6): 851-7.

24. Maheshwari AV, Blum YC, Shekhar L, Ranawat AS, Ranawat CS. Multimodal pain management after total hip and knee arthroplasty at the Ranawat Orthopaedic Center. Clin Orthop Relat Res. 2009. 467(6): 1418-23.

25. Lamplot JD, Wagner ER, Manning DW. Multimodal pain management in total knee arthroplasty: a prospective randomized controlled trial. J Arthroplasty. 2014. 29(2): 329-34.

26. Yayac M, Li WT, Ong AC, Courtney PM, Saxena A. The Efficacy of Liposomal Bupivacaine Over Traditional Local Anesthetics in Periarticular Infiltration and Regional Anesthesia During Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. J Arthroplasty. 2019. 34(9): 2166-2183.

27. Affas F, Nygårds EB, Stiller CO, Wretenberg P, Olofsson C. Pain control after total knee arthroplasty: a randomized trial comparing local infiltration anesthesia and continuous femoral block. Acta Orthop. 2011. 82(4): 441-7.

28. Spangehl MJ, Clarke HD, Hentz JG, Misra L, Blocher JL, Seamans DP. The Chitranjan Ranawat Award: Periarticular injections and femoral & sciatic blocks provide similar pain relief after TKA: a randomized clinical trial. Clin Orthop Relat Res. 2015. 473(1): 45-53.

29. Hyland SJ, Deliberato DG, Fada RA, Romanelli MJ, Collins CL, Wasielewski RC. Liposomal Bupivacaine Versus Standard Periarticular Injection in Total Knee Arthroplasty With Regional Anesthesia: A Prospective Randomized Controlled Trial. J Arthroplasty. 2019. 34(3): 488-494.

30. Vendittoli PA, Makenin P, Grolet P, et al. A multimodal analgesia protocol for total knee arthroplasty. A randomized, controlled study. J Bone Joint Surg Am. 2006. 88(2): 282-9.

31. Rasmussen S, Kramhøft MU, Sperling KP, Pedersen JH. Increased flexion and reduced hospital stay with continuous intraarticular morphine and ropivacaine after primary total knee replacement: open intervention study of efficacy and safety in 154 patients. Acta Orthop Scand. 2004. 75(5): 606-9.

32. Hoshikawa N, Sakai A, Takai S, Suzuki H. Targeting Extracellular miR-21-TLR7 Signaling Provides Long-Lasting Analgesia in Osteoarthritis. Mol Ther Nucleic Acids. 2020. 19: 199-207.
33. Mehta S, Akhtar S, Porter RM, Önnerfjord P, Bajpayee AG. Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture. Arthritis Res Ther. 2019. 21(1): 238.

34. Lee JH, Wang SI, Noh SJ, Ham DH, Kim KB. Osteonecrosis of the medial tibial plateau after intra-articular corticosteroid injection: A case report. Medicine (Baltimore). 2019. 98(44): e17248.

35. Lazarevic MB, Skosey JL, Djordjevic-Denic G, Swedler WI, Zgradic I, Myones BL. Reduction of cortisol levels after single intra-articular and intramuscular steroid injection. Am J Med. 1995. 99(4): 370-3.

36. Ankay Yilbas A, Akca B, Buyukakkus B, et al. Procaine and saline have similar effects on articular cartilage and synovium in rat knee. BMC Anesthesiol. 2018. 18(1): 51.

37. Zlotnicki JP, Hamlin BR, Plakseychuk AY, Levison TJ, Rothenberger SD, Urish KL. Liposomal Bupivacaine vs Plain Bupivacaine in Periarticular Injection for Control of Pain and Early Motion in Total Knee Arthroplasty: A Randomized, Prospective Study. J Arthroplasty. 2018. 33(8): 2460-2464.

Figures

![Figure 1](image)

Figure 1

Curve for VASR. Data are the mean ± SD. The asterisk indicates a significant difference (P < 0.05) between the two groups.
Figure 2

Curve for VASE. Data are the mean ± SD. The asterisk indicates a significant difference (P < 0.05) in the composition ratio between the two groups.
Figure 3

Comparison of morphine consumption between two groups. Data are the mean ± SD. The asterisk indicates a significant difference (P < 0.05) between the two groups.
Figure 4

Curve for RoM. Data are the mean ± SD. The asterisk indicates a significant difference (P < 0.05) between the two groups.

Figure 5

Curve for CRP level. Data are the mean ± SD. The asterisk indicates a significant difference (P < 0.05) between the two groups.
Figure 6

Curve for ESR. Data are the mean ± SD. The asterisk indicates a significant difference (P < 0.05) between the two groups.