Manganese Selectivity of Pmr1, the Yeast Secretory Pathway Ion Pump, Is Defined by Residue Gln783 in Transmembrane Segment 6

RESIDUE Asp778 IS ESSENTIAL FOR CATION TRANSPORT*

Debjani Mandal, Thomas B. Woolf, and Rajini Rao‡

From the Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

We have solubilized and purified the histidine-tagged yeast secretory pathway/Golgi ion pump Pmr1 to near homogeneity in one step, using nickel affinity chromatography. The purified pump demonstrates both Ca2+- and Mn2+-dependent ATP hydrolysis and phosphoenzyme intermediate formation in forward (ATP) and reverse (Pi) directions. This preparation has allowed us to examine, in detail, the properties of mutations D778A and Q783A in transmembrane segment M6 of Pmr1. In phenotypic screens of Ca2+ chelator and Mn2+ toxicity reported separately (Wei, Y., Chen, J., Rosas, G., Tompkins, D.A., Holt, P.A., and Rao, R. (2000) J. Biol. Chem. 275, XXXX–XXXX), D778A was a loss-of-function mutation apparently defective for transport of both Ca2+ and Mn2+, whereas mutant Q783A displayed a differential sensitivity consistent with the selective loss of Mn2+ transport. We show that mutant D778A is devoid of cation-dependent ATP hydrolytic activity and phosphoenzyme formation from ATP. However, reverse phosphorylation from Pi is preserved but is insensitive to inhibition by Ca2+ or Mn2+ ions, which is evidence for a specific inability to bind cations in this mutant. We also show that Ca2+ can activate ATP hydrolysis in the purified Q783A mutant, with a half-maximal concentration of 0.06 \textmu M, essentially identical to that of wild type (0.07 \textmu M). Mn2+ activation of ATP hydrolysis was half-maximal at 0.02 \textmu M in wild type, establishing a normal selectivity profile of Mn2+ > Ca2+. Strikingly, Mn2+-ATPase in the Q783A mutant was nearly abolished, even at concentrations of up to 10 \textmu M. These results were confirmed in assays of phosphoenzyme intermediates. Molecular modeling of the packing between helices M4 and M6 suggests that residue Gln783 in M6 may form a critical hydrophobic interaction with Val335 in M4, such that the Ala substitution modifies the packing or tilt of the helices and thus the ion pore. The data emphasize the critical role of transmembrane segment M6 in defining the cation binding pocket of P-type ATPases.

In recent years, there has been a growing awareness of Mn2+ as an effective surrogate for Ca2+ in supporting cell growth (1, 2). The ionic radius and coordination chemistry of Mn2+ is closer to that of Ca2+ than other physiological cations, and both Ca2+ and Mn2+ bind to oxygen- and nitrogen-based ligands on proteins (3–6). Support for speculation that Mn2+ and Ca2+ can function interchangeably in signal transduction comes from observations that Mn2+ can replace Ca2+ in a number of well established signaling systems, including calmodulin activation (7), cyclic nucleotide metabolism (8), and secretion (9). In yeast, free Mn2+ was shown to be 500–1000-fold more effective than free Ca2+ in supporting bud development and cell cycle progression (1). Manganese is believed to be abundantly available in the natural habitat of yeast, at an estimated concentration of 100 \textmu M in rotting vegetation (6, 10), and may well play a physiologically relevant role in mediating cell growth. Thus, the mobilization and transport of Mn2+ are likely to emulate that of Ca2+ (11).

The yeast ion pump Pmr1, which localizes to the medial Golgi, has been implicated in the delivery of both Ca2+ and Mn2+ to the secretory pathway (2, 12), where they have distinct roles in sustaining protein sorting (Ca2+) or protein glycosylation (Mn2+). Cytosolic Mn2+ accumulates in pmr1 mutants and can serve as an inorganic scavenger of superoxide radicals, thus bypassing the requirement for cytosolic superoxide dismutase in aerobic growth (12). Consequently, pmr1 mutants also display hypersensitivity to the growth toxicity of millimolar concentrations of extracellular Mn2+, indicating that delivery into the secretory pathway by Pmr1, and subsequent exocytosis, must be a major route for cellular detoxification of Mn2+. In earlier work, we have demonstrated that Mn2+ is a potent inhibitor of Pmr1-mediated 45Ca2+ transport in isolated Golgi vesicles, consistent with competition for transport sites (13).

In the accompanying work (14), we have taken advantage of the hypersensitivity of the pmr1 null strain to BAPTA1 and Mn\textsuperscript{2+2} toxicity and screened for mutants defective in cation transport and selectivity (14). The identification of the mutation Q783A in transmembrane segment M6 of Pmr1, which conferred hypersensitivity to Mn2+ but retained normal 45Ca2+ transport characteristics, provided a preliminary insight into the molecular basis of ion selectivity in transport ATPases (14). Several loss-of-function mutants, resembling the null strain in both BAPTA and Mn2+ hypersensitivity, were also identified. One such mutant, D778A, again in M6, retained normal biogenesis and ATP binding ability but had no detectable transport activity (14). This residue is conserved in all Pmr1 homologues sequenced to date and likely contributes

* This work was supported by American Cancer Society Grants IRG11-33 and JFRA 538, American Heart Association Grant-In-aid 99012290, and National Institutes of Health Grant GM52414 (to R. R.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Dept. of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore MD 21205. Tel.: 410-955-4732; Fax: 410-955-0461; E-mail: rr@jhu.edu.

1 The abbreviations used are: BAPTA, 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid; PAGE, polyacrylamide gel electrophoresis; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; Ni-NTA, nickel-nitrilotriacetic acid.
directly to cation binding, analogous to the proposed role of the equivalent aspartate in SERCA and the Na+/K+-ATPase (15, 16). Here, we describe the solubilization and purification of His-tagged Pmr1, by nickel affinity chromatography. The purified preparations were used to assay cation-dependent ATP hydrolysis and phosphoenzyme formation in wild type and mutants D778A and Q783A. The resulting inhibition of species was made earlier (14); additional substitutions of Gln783 with Leu, Glu, and Mn2+—octyl-mercaptoethanol, and protease inhibitors. The resulting suspension was mixed for 2 h on a rotary shaker at 4 °C. The mixture was then centrifuged at 10,000 × g for 1 h at 4 °C.

Meanwhile, 0.1 ml of bed volume of Ni-NTA-agarose (Qiagen) was placed in a 2-ml microcentrifuge tube and washed twice with 0.5 ml of cold water and washed twice with 1 ml of buffer S plus 10 mM imidazole. The detergent extract was added to the equilibrated resin and incubated at 4 °C for 2 h. After mild stirring for 10 min, the charcoal was precipitated by adding 0.2 ml of 50 mM NaH2PO4, 2 mM ATP, and 20% trichloroacetic acid, followed by the addition of 10 mM CaCl2 or MnCl2. Phosphorylation was initiated by the addition of 200 μM [γ-32P]ATP, to a final concentration of 20 μM. The reaction was terminated by addition of 15% trichloroacetic acid and 2 mM KH2PO4, and incubated on ice for 15 min. After microcentrifugation, the pellet was treated as described for ATP-dependent (forward) phosphorylation and subjected to acid gel electrophoresis and autoradiography.

RESULTS

Phosphorylation with ATP—Formation of the aspartyl-phosphate reaction intermediate was assayed as described (23), with some modifications. The 0.2-ml reaction mixture contained 25 mM Hepes/Tris, pH 7.0, 100 mM KCl, and 1 μM of purified Pmr1. To test cation dependence, EGTA was added to a final concentration of 1 mM such that the free Ca2+ concentration was less than 1 mM. Then 1 mM CaCl2 or MnCl2 was added to give free cation concentrations of 27 or 6 μM, respectively. The reaction was started by the addition of 10 μCi of [γ-32P]ATP, to a final concentration of 10 mM ATP, on ice. The reaction was terminated after 30 s by adding 0.2 ml of 50 mM NaH2PO4, 2 mM ATP, and 20% trichloroacetic acid. The resulting precipitate was pelleted by microcentrifugation and washed twice with a solution containing 25 mM NaH2PO4, 1 mM ATP, and 10% trichloroacetic acid. The pellet was finally resuspended in 20 μl of sample buffer and subjected to SDS-polyacrylamide gel electrophoresis at pH 6.0 according to the method of Weber and Osborn (24). The gel was dried, and the radioactivity was detected on a PhosphorImager (Fuji). SDS-PAGE and Western blotting were performed as described previously (26). Samples were prepared for electrophoresis by precipitating with 15% trichloroacetic acid, followed by microcentrifugation at 4 °C. Antibodies against the C-terminal one-third of Pmr1 have been described previously (19). Silver staining was performed according to Blum et al. (27). Protein concentration was determined by a modification of the method of Lowry et al. (28).

Enzyme Phosphorylation

Purification of Histidine-tagged Pmr1

A recently developed algorithm (29) was used to simulate packing of the M4 and M6 helices of Pmr1. Briefly, a reduced representation of the two helices was used in the first stage of modeling to simplify the search space. Each amino acid in a helix was considered to be a sphere with an empirical assigned volume that captures its packing attributes (30). The ball-helix representation used a simple model for the membrane bilayer, with the interior based on the Goldman-Engelman-Steitz transfer scale (31) and the interface on the Wimley-White scale (32). Over 350,000 independent helix-pair combinations were explored to eliminate sterically “impossible” combinations. In the next stage, a more realistic representation of the membrane environment was applied, along with a more detailed protein representation. Finally, constraints were imposed based on experimental data from Cys cross-linking in SERCA (33) and mutagenesis of cation-coordinating residues in M4 and M6, as depicted in Fig. 8.

Purification of Histidine-tagged Pmr1

A 15-residue extension of the N terminus of Pmr1, having the sequence RGSQHHHHHHHHHTR following the initiating Met, was constructed in earlier work (13). We showed that introduction of this polyhistidine tag had no effect on the biogenesis and Golgi localization of Pmr1, as determined by subcellular fractionation of yeast lysates, and on the overall protein conformation, as evidenced by the pattern of ATP-
within the first 30 s (Fig. 2). The presence of 500 mM phosphate reaction intermediate, at an invariant aspartate residue, we have shown that replacement of Asp371 in Pmr1.

Crude Golgi membranes were prepared from sucrose density gradients of yeast lysates solubilized with octylglucoside, and the supernatant was subjected to Ni-NTA chromatography, as described under “Experimental Procedures.”

Golgi membrane fractions, derived from sucrose density gradient centrifugation of yeast lysates (19), were His-Pmr1 by nickel affinity chromatography, in essentially one step. Golgi membrane fractions, derived from sucrose density gradient centrifugation of yeast lysates (19), were pooled and treated with the detergent n-octylglucoside, resulting in the solubilization of up to 70% of Pmr1 (Fig. 1). The supernatant was allowed to interact with Ni-NTA resin, as described under “Experimental Procedures.” The inclusion of 10 mM imidazole during this incubation was found to greatly reduce non-specific protein interactions with the resin while preserving complete retention of His-Pmr1. After washing the resin with salt and additional imidazole (“Experimental Procedures”), His-Pmr1 was eluted at >95% purity in buffer containing 300 mM imidazole, as judged from silver stains and Western blots of SDS-PAGE (Fig. 1). Yields of Pmr1 protein averaged 30 μg/g of column eluate were >95% pure and non-enzymatically cleaved with hydroxylamine (not shown). Conversely, in the reverse reaction, formation of E–P intermediate from ATP in the mutant or inhibit reverse phosphorylation from P
to P0, indicative of a defect in binding cations.

Cation Dependence of Pmr1 Activity

ATP Hydrolysis—The availability of a purified preparation of Pmr1 allowed an unambiguous demonstration of cation-dependent ATP hydrolysis, using a sensitive isotope-based method (“Experimental Procedures”). ATPase activity was strictly dependent on the presence of either Mn2+ or Ca2+ and was linear within the first 30 s (Fig. 2). The presence of 500 μM vanadate (not shown) or 100 μM La3+ (Fig. 2) nearly abolished ATP hydrolysis, similar to the effect of these inhibitors on ATP-dependent 45Ca transport in Golgi vesicles (19). No ATPase activity was observed with 10 μM concentrations of either Ba2+, Sr2+, Zn2+, Cd2+, Ni2+, or Cu2+, demonstrating the narrow cation selectivity profile of the pump.

Formation of the Phosphoenzyme Intermediate—A hallmark of P-type ATPases is the formation of a transient aspartyl phosphate reaction intermediate, at an invariant aspartate located in the large hydrophilic domain closely following membrane span M4. Consistent with an obligatory role for this residue, we have shown that replacement of Asp371 in Pmr1 with asparagine or glutamate completely inactivates transport (19). Here, we demonstrate phosphoenzyme formation in the purified, His-tagged enzyme. In the forward reaction, formation of the E–P intermediate from ATP requires activation by either Ca2+ or Mn2+ (Fig. 3A). Addition of La3+ resulted in only modest increases in the accumulation of phosphoenzyme, unlike the large effect documented for plasma membrane type Ca2+-ATPases (34). The aspartyl-phosphate intermediate could be completely chased with excess unlabeled ATP (Fig. 3A) and nonenzymatically cleaved with hydroxylamine (not shown). Conversely, in the reverse reaction, formation of E–P from inorganic phosphate (P3) was inhibited by Ca2+ and Mn2+ (Fig. 3B).
Mn$^{2+}$ (Fig. 3B), which shift the equilibrium toward the E$_1$ conformation.

Loss of Cation Binding in the D778A Mutant

Substitution of Asp778, conserved in all known Ca$^{2+}$-ATPases, with either alanine, asparagine, or glutamate, resulted in a complete loss of transport activity consistent with the loss-of-function phenotype in screens of BAPTA and Mn$^{2+}$ toxicity (14). However, to demonstrate a role for this residue in cation binding, it was necessary to examine cation-dependent formation of the catalytic intermediate. We first showed that mutant D778A was normal with respect to biogenesis, trafficking, and overall protein conformation (14). Next, mutant D778A was tagged with polyhistidine and purified, as described for wild type Pmr1. As expected, there was a complete absence of ATP hydrolysis in the purified mutant (not shown). Fig. 4 demonstrates an inability of this mutant to form the cation-activated phosphoenzyme intermediate from ATP, whereas reverse phosphorylation from inorganic phosphate is retained. Strikingly, reverse phosphorylation is insensitive to inhibition by cation (Ca$^{2+}$ and Mn$^{2+}$), indicative of a loss of cation binding (15).

Loss of Manganese Selectivity in the Q783A Mutant

In the phenotypic screens reported earlier, mutant Q783A appeared similar to wild type in BAPTA tolerance but was indistinguishable from the pmr1 null strain in Mn$^{2+}$ tolerance, suggesting a selective loss of Mn$^{2+}$ transport (14). Furthermore, Mn$^{2+}$ inhibition of 45Ca transport in Golgi vesicles was decreased by 60-fold, suggestive of a severe defect in Mn$^{2+}$ binding or transport in this mutant (14). Here, we demonstrate a dramatic change in ion selectivity of the mutant pump by direct assay of cation-dependent ATPase activity in histidine-tagged and purified preparations of wild type and Q783A enzymes. Wild type Pmr1 displayed a K_m of 0.07 μM for Ca$^{2+}$-dependent ATP hydrolysis, identical to the K_m for 45Ca transport reported earlier (13). Both K_m and V_{max} of Ca$^{2+}$-dependent ATPase activity in the Q783A mutant were essentially indistinguishable from wild type, as expected from the growth response to BAPTA in this mutant (Fig. 5A). Mn$^{2+}$-dependent ATPase activity in wild type had a K_m of 0.02 μM, indicative of a normal selectivity of Mn$^{2+}$ > Ca$^{2+}$ for the Golgi/secretory pathway pump. In striking contrast, Mn$^{2+}$-ATPase in the mutant was nearly abolished (Fig. 5B). We also show normal levels of Ca$^{2+}$-activated phosphoenzyme formation from ATP in this mutant, whereas Mn$^{2+}$ was required in excess (10 μM) to detect the catalytic intermediate (Fig. 6). Taken together, the data strongly indicate that residue 783 in M6 can define ion selectivity in Pmr1.

Loss of Mn$^{2+}$-dependent ATPase activity in the Q783A mutant. His-tagged wild type (WT; ○) and mutant Pmr1 (Q783A; □) were purified by Ni-NTA chromatography and assayed for [γ-32P]ATP hydrolysis in the presence of the free cation concentrations shown, as described in the text. Symbols are the average of duplicate determinations, and the lines represent the best fit of the data to the equation $v = V_{\text{max}}S(K_m + S)$ using Kaleidograph, version 3. Derived values for K_m are reported in the text. Note the loss of Mn$^{2+}$-ATPase activity in the mutant, as predicted by the loss of Mn$^{2+}$-tolerant growth (14).

Phenotypic Consequences of Amino Acid Substitutions at Residue 783 in M6

To further explore the effect of amino acid substitutions at position 783 on ion selectivity of the pump, additional mutations of Gln783 to Leu, Glu, Thr, Asn, Cys, and Ser were generated in the PMR1 gene. These substitutions were chosen to test the effect of side chain size, hydrophobicity, or charge. Mutants were expressed from the low copy vector YCpHR1 in the pmr1pmc1cnb1 null strain K616 and screened for tolerance to BAPTA and Mn$^{2+}$ as a test of Ca$^{2+}$ and Mn$^{2+}$ transport, respectively (14). As shown in Fig. 7, only the Ala substitution resulted in a differential response to BAPTA and Mn$^{2+}$ toxicity, indicative of a change in ion selectivity. Substitutions to Leu, Glu, or Thr showed substantial and parallel growth in both phenotypic screens, whereas substitutions to Asn, Ser, or Cys showed a hypersensitivity to BAPTA and Mn$^{2+}$ toxicity indistinguishable from the pmr1 null strain. Western analysis of total membrane preparations revealed that expression of the Leu, Glu, and Thr substitutions were similar to wild type, whereas substitutions to Asn, Ser, and Cys showed a significant decrease in abundance, suggestive of structural perturbations (not shown). These data reveal the importance of a bulky side chain (Gln, Leu, Glu, or Thr) at position 783 in M6 for effective transport of both Ca$^{2+}$ and Mn$^{2+}$ ions. Charge appears to be unimportant because both Leu and Glu can effectively substitute for Gln at this site. Interestingly, the small nonpolar side chain of alanine maintained normal pump structure but apparently altered pore characteristics such that Mn$^{2+}$ transport was selectively lost.

DISCUSSION

Of the five polar or charged residues in transmembrane segment M6, three (Asn774, Asp778, and Gln783) were found to...
be critical for pump function (14). The importance of M6 is underscored by a striking conservation of sequence among Pmr1 homologues, which include representatives from four other fungi and one each from *C. elegans*, rat, and human; with the exception of an Ile substitution for Leu, there is complete identity within the predicted M6 segment. Of the three Ca⁺⁺-
liganding residues (Asn796, Thr799, and Asp800) in M6 of SERCA, originally identified by Clarke et al. (15), two (Asn774 and Asp778) are conserved and sensitive to substitution in the Golgi/secretory pathway ion pump. Replacement of the equivalent residues in the plasma membrane Ca⁺⁺ pump (plasma membrane Ca⁺⁺-ATPase) have also been reported to inactivate transport and prevent phosphoenzyme formation from ATP (34, 35). Together with the conserved glutamate in M4 (Glu329 in Pmr1), these three residues are likely to contribute to the binding of one Ca⁺⁺ ion in all three Ca⁺⁺-ATPase subtypes. In SERCA, this site would be equivalent to binding site II, the more cytoplasmic of two stacked sites (36, 37). A subset of these residues also appear to contribute to ion binding in P-type ATPases of different ion selectivities. Thus, Asp804 and Asp808 in M6 of the Na⁺/K⁺-ATPase have been proposed to play a key role in cation transport and in binding K⁺ ions in particular (16). These observations have been corroborated by the mutagenesis of equivalent residues in the H⁺/K⁺-ATPase (38).

The differential contribution of other residues to this common cation binding pocket may alter ion binding characteristics and account for the widely different ion selectivities among the P-ATPases. Thus, replacement of Ser775 in M5 of the Na⁺/K⁺-ATPase had a profound effect on K⁺ binding (39), but mutation of the equivalent residue in Pmr1 (S774A) had no effect on Ca⁺⁺ or Mn⁺⁺ transport (14). Identifying the residues that contribute to ion selectivity remains a challenge in the field.

We report here that substitution of Gln783 with alanine results in a dramatic and selective loss of Mn⁺⁺- but not Ca⁺⁺- dependent ATPase activity and phosphoenzyme formation. We show that glutamine can be effectively replaced with either Leu (the equivalent residue in plasma membrane Ca⁺⁺-ATPase) or Thr (the equivalent residue in SERCA), suggesting that Mn⁺⁺ transport may be a common feature of all Ca⁺⁺ pump subtypes. The restoration of Mn⁺⁺ tolerance to a pmr1 mutant by heterologous expression of a plant homologue of SERCA, ECA1 (23), is consistent with this possibility. Curiously, introduction of an acidic residue (Glu) at this site preserved wild type phenotype, whereas small polar residues (Cys, Ser, or Asn) appeared to be deleterious to pump structure, based on the large reduction of Pmr1 expression levels. Because a helical representation of M6 placed Gln783 on the opposite face from the cation coordinating residues, we considered the possibility that this residue may be important in helix packing. Therefore, we simulated the packing interactions between transmembrane segments M4 and M6 (“Experimental Procedures”), using data from cysteine cross-links (33) to impose constraints on the models. Fig. 8 is an alignment of Pmr1 sequence with that of SERCA, showing the excellent conservation in the regions identified by strong cross-links between engineered Cys in transmembrane segments M4 and M6 of SERCA.

In a hierarchical approach to *ab initio* structure prediction, M4 PMR1 315-KFQIQIVSIALAVAIAIPPLPIIIIIVVTLLAL-341 SERCA 295-YFKIAVALAVAILVaCGLPADVIVTCLL-321 M6 PMR1 766-NAMQILWNLNIMGDPPAPQSLGV-787 SERCA 788-ITPVQLEKSVLVILLPATAGOF-809 FIG. 7. Phenotypic effects of substitutions at Gln783 on BAPTA and Mn⁺⁺ tolerance. The host strain K616 (∆pmr1∆pmr1∆cnh1) was transformed with vector alone (Δ) or low copy plasmids expressing wild type (WT) or mutant Pmr1 carrying the indicated substitution at position 783. Cultures were grown to saturation in media supplemented with BAPTA (A, 1.5 mM) or Mn⁺⁺ (B, 3 mM), as described (14). Growth (OD₆₀₀) was normalized to wild type. Only the Ala (column A) substitution showed differential sensitivity to BAPTA and Mn⁺⁺. Substitutions to Leu (column L), Glu (column E), and Thr (column T) showed substantial and similar growth in both screens, whereas substitutions to Asn (column N), Cys (column C), and Ser (column S) showed no growth above the null background (Δ).

FIG. 8. Alignment of Pmr1 and SERCA sequences in transmembrane segments M4 and M6. Circled residues are proposed to coordinate cation in both SERCA and Pmr1. Lines show the locations of strong cross-links between engineered Cys in SERCA, as reported by Rice et al. (33). Gln783, a residue that alters ion selectivity in Pmr1, is indicated as a white letter with black outlines. Note the excellent sequence conservation between SERCA and Pmr1 sequences in these segments.

FIG. 9. Molecular modeling of the packing interactions between transmembrane helices M4 and M6 of Pmr1. A minimum energy conformation of the two helices is shown, modeled as described in the text. A, side view of the helices, shown labeled at their N termini, in which the side chains of Glu783 (M4), Asn774 and Asp778 (M6), proposed to form the cation binding pocket, are shown pointing away from the viewer. Gln783 (M6) is shown extending toward the viewer and appears to make a hydrophobic contact with Val535 (M4). B, top view of the helices showing Gln783 extending in a direction opposite to the proposed cation coordinating side chains, in close proximity to Val535. Mutation Q783A is proposed to alter helix interaction and change the selectivity properties of the ion "pore" as described in the text.
we began with a reduced representation of the helices in which each amino acid was empirically assigned a spherical volume, characteristic of its packing attributes. Likewise, a reduced representation of the membrane environment was used (“Experimental Procedures”) to simplify the search space. This allowed over 350,000 candidate conformations to be tested in the first stage, resulting in the elimination of all sterically impossible combinations. Following a second modeling stage that employed a more detailed protein and membrane representation, we imposed experimental constraints from Cys cross-linking and orientation of cation coordinating residues (Fig. 8). Of the dozen or so plausible models that emerged, Fig. 9 represents the minimum energy structure and has several interesting features. The helices interact with a right-handed twist, consistent with the interpretation of electron diffraction densities reported by Zhang et al. (40). Neither M4 nor M6 are uniform helices; both display a significant unraveling in the vicinities of the prolines, followed by a change in backbone uniform helices; both display a significant unraveling in the mutant Q783A. It should be emphasized that although our tertiary structure prediction does not take into account other transmembrane helices or consider significant deviations from helical structure, our prediction does not take into account other transmembrane helices or consider significant deviations from helical structure, our tertiary structure provides a testable model for future experiments. It does satisfy our current experimental observations and therefore provides a testable model for future experiments. Thus, it suggests that the hydrophobic interaction with Val335 (M4) may form a hydrophobic contact with Val335 (M4), possibly stabilizing the helical interaction.

It should be emphasized that although our tertiary structure prediction does not take into account other transmembrane helices or consider significant deviations from helical structure, our prediction does not take into account other transmembrane helices or consider significant deviations from helical structure, our tertiary structure provides a testable model for future experiments. It does satisfy our current experimental observations and therefore provides a testable model for future experiments. Thus, it suggests that the hydrophobic interaction with Val335 may be maintained by the longer methyl- or methylene-containing side chains of Glu, Leu, or Thr but would be disrupted by introduction of shorter side chains carrying the polar amine (Asn), sulfhydryl (Cys), or hydroxyl (Ser) groups. Alamine substitution may maintain the hydrophobic interaction but with likely alterations in helix packing. We suggest that these changes would have repercussions on the architecture of the ion pore and hence on ion selectivity. The arrangement and tilt of the helices may be expected to have a profound effect on ion selectivity, as suggested by the recent structure of the KcsA K+ channel (41). In experiments currently underway in our laboratory, we are engineering reciprocal alterations in M4 in an attempt to suppress the Mn2+-sensitive phenotype of Pmr1 mutant Q783A.

REFERENCES
1. Loukin, S., and Kung, C. (1995) J. Cell Biol. 131, 1025–1037
2. Durr, G., Strayle, J., Plempner, R., Elbs, S., Klee, S. K., Catty, P., Wolf, D. H., and Rudolph, H. K. (1998) Mol. Biol. Cell 9, 1149–1162
3. Osterberg, R. (1974) in Metal Ions in Biological Systems: High Molecular Complexes (Siegel, H., ed) Vol. 3, pp. 45–88, Marcel Dekker, Inc., New York
4. Lawrence, G. D., and Sawyer, D. T. (1978) Coordination Chem. Rev. 27, 173–193
5. Williams, R. J. P. (1982) FEBS Lett. 140, 3–10
6. Reed, G. H. (1986) in Manganese in Metabolism and Enzyme Function (Schramm, V. L., and Wedler, F. C., eds) pp. 313–323, Academic Press, Inc., San Diego, CA
7. Kawasaki, H., Kuruse, Y., Kasai, H., Isobe, T., and Okuyama, T. (1986) J. Biochem. (Tokyo) 99, 1409–1416
8. Keller, C. H., LaPorte, D. C., Toccano, W. A., Jr., Storm, D. R., and Westcott, K. R. (1980) Ann. N. Y. Acad. Sci. 358, 205–219
9. Wilson, S. P., and Kirshner, M. (1983) J. Biol. Chem. 258, 4994–5000
10. Loneragan, J. F. (1986) in Manganese in Soil and Plants (Graham, R. D., Hannon, R. J., and Uren, N. C., eds) pp. 113–124, Kluwer Academic Publishers, Dordrecht, The Netherlands
11. Luckhoff, A., and Clapham, D. E. (1982) Nature 335, 356–358
12. Lapinskas, P. J., Cunningham, K. W., Liu, X. F., Fink, G. R., and Culotta, V. C. (1995) Mol. Cell. Biol. 15, 1382–1388
13. Wei, Y., Marchi, V., Wang, R., and Rao, R. (1999) Biochemistry 38, 14534–14541
14. Wei, Y., Chen, J., Rosas, G., Tompkins, D. A., Holt, P. A., and Rao, R. (2000) J. Biol. Chem. 275, 23897–23902
15. Clarke, D. M., Luo, T. W., Inesi, G., and MacLennan, D. H. (1989) Nature 339, 476–478
16. Kuntzweiler, T. A., Arguello, J. M., and Lingrel, J. B. (1996) J. Biol. Chem. 271, 29682–29687
17. Cunningham, K. W., and Fink, G. R. (1994) J. Cell Biol. 124, 351–363
18. Fisher, C. L., and Pei, G. K. (1997) BioTechniques 23, 570–574
19. Sorin, A., Rosas, G., and Rao, R. (1997) J. Biol. Chem. 272, 9895–9901
20. Fu, D., and Maloney, P. C. (1997) J. Biol. Chem. 272, 2129–2135
21. Ghosh, J., Ray, M., Sarkar, S., and Bhaduri, A. (1990) J. Biol. Chem. 265, 11345–11351
22. Bers, D., Patton, C., and Nuccitelli, R. (1994) Methods Cell Biol. 40, 3–29
23. Liang, F., Cunningham, K. W., Harper, J. F., and Sze, H. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8579–8584
24. Weber, K., and Osborn, M. (1969) J. Biol. Chem. 244, 4406–4412
25. Hawkins, S. C., Xu, A., and Narayanan, N. (1994) Biochem. Biophys. Acta 1191, 231–245
26. Nakamoto, R. K., Rao, R., and Slaysia, C. W. (1991) J. Biol. Chem. 266, 7940–7949
27. Burr, H., Beier, H., and Gros, H. J. (1987) Electrophoresis 8, 93–99
28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 183, 265–275
29. Wang, T. B., Grossfield, A., and Sachs, J. N. (2000) Biophys. J. 78, 159 (abstr.)
30. Pontius, J., Richelle, J., and Wodak, S. J. (1996) J. Mol. Biol. 264, 121–136
31. Engelmann, D. M., Steitz, T. A., and Goldman, A. (1986) Annu. Rev. Biophys. Chem. 15, 321–353
32. Wimley, W. C., and White, S. H. (1996) Nature Struct. Biol. 3, 842–848
33. Rice, W. J., Green, M. N., and MacLennan, D. H. (1997) J. Biol. Chem. 272, 31412–31419
34. Adebayo, A. O., Enyedi, A., Verma, A. K., Filoteo, A. G., and Penniston, J. T. (1995) J. Biol. Chem. 270, 27812–27816
35. Guerini, D., Foletti, D., Vellani, F., and Carafoli, E. (1996) Biochemistry 35, 3290–3296
36. Sverzut, J. I., Tsyganov, T., Richardson, C., and MacLennan, D. H. (1993) J. Biol. Chem. 268, 15944–15950
37. Andersen, J. P., and Vilsen, B. (1994) J. Biol. Chem. 269, 15931–15936
38. Swarts, H. G., Klauessen, C. H., de Boer, M., Fransen, J. A., and De Pont, J. J. (1996) J. Biol. Chem. 271, 29764–29772
39. Blostein, R., Wilczynska, A., Karlish, S. J. D., Arguello, J. M., and Lingrel, J. B. (1997) J. Biol. Chem. 272, 24987–24993
40. Zhang, P., Toyoshima, C., Yonekura, K., Green, N. M., and Stokes, D. L. (1998) Nature 392, 835–839
41. Doyle, D. A., Cahal, J. M., Plueetter, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) Science 280, 69–77