The Global Boundary Stratotype Section and Point (GSSP) for base of the Bathonian Stage (Middle Jurassic), Ravin du Bès Section, SE France

1 Departamento y UEl de Paleontología, Facultad de Ciencias Geológicas (UCM) e Instituto de Geología Económica (CSIC-UCM), 28040-Madrid (Spain). E-mail: sixto@geo.ucm.es
2 Dipartimento di Scienze della Terra, via Valperga Caluso 35, 10125-Torino (Italy). E-mail: giulio.pavia@unito.it, roberto.lanza@unito.it
3 Dipartimento di Scienze dalla Terra “Arditto Desio”, Università degli Studi di Milano, Via Mangiagalli, 34, 20133-Milano (Italy). E-mail: elisabetta.erba@unimi.it, daniele.tiraboschi@unimi.it
4 Centre de géologie – Parc Saint-Benoît, 04000-Digne-les-bains (France). E-mail: myette.guimomar@libertysurf.fr
5 Departamento Ciências da Terra e Centro de Geociências, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3000-272 Coimbra (Portugal). E-mail: hhenriq@ct.uc.pt
6 Université Claude Bernard, Lyon-1, UFR des Sciences de la Terre et CNRS, UMR 5125, 27-43, bd du 11-Novembre-1918, 69622-Villeurbanne cedex (France). E-mail: David.Olivero@univ-lyon1.fr
7 Le Chardon, Quartier Brugière, F-07200 Vogüé (France). E-mail: nicol.morton@orange.fr

Introduction

For chronostratigraphic classification and correlation of the Jurassic, one fossil group is of prime importance – the ammonites. This is reflected in the GSSP for the base of the Bathonian Stage. One significant difference of usage between Jurassic stratigraphers and many others is that the standard ammonite zones and subzones are regarded as related to stages, namely as part of a hierarchy of chronostratigraphic units that do not overlap or leave gaps. In other words, a stage is a group of zones/subzones defined by reference to its basal standard zone or subzone. This does not remove the relevance of the base-stage GSSP – it simply moves it down to a lower level in the chronostratigraphic hierarchy.

The zones and subzones that are used in the Jurassic are assemblage zones based on the co-occurrence of several species of ammonites. First/last appearances of specific taxa are rarely used. The name given to a zone/subzone follows the precedent of Albert Oppel, who chose to use a fossil name to label his zones rather than a geo-
The primary purpose of the proposal by the Bathonian Working Group (convenor S. R. Fernández-López), and supported by the Jurassic Subcommission, was to give the most precise definition practical and possible for this boundary. Since this must be based on the ammonites, they have selected the best available section to fulfill this purpose.

Bathonian GSSP history

The Bathonian is the third of the four stages of the Middle Jurassic Series, above the Bajocian and below the Callovian. The name was introduced by d’Halloy (1843) and used as a stage by d’Orbigny (1850, pp. 607-608; 1852, pp. 491-492), derived from the “Bath-Oolite”, in the vicinity of the city of Bath (SW England).

Zigzagiceras zigzag (d’Orbigny, 1846, p. 390, pl. 129, figs. 9-10; Arkell, 1958, p. 177, text-fig. 60, f. 1-3) and *Gonolkites convergens* Buckman (1925, pl. 546 A-B; Arkell, 1956, pl. 18, fig. 8; pl. 19, figs. 1-2) are the index species, respectively, of the Bathonian basal zone and subzone. The Zigzag Zone was distinguished from the underlying Parkinsoni Zone by Oppel (1857, p. 579, 1862), and later assigned to the “Bath-Gruppe” (Oppel, 1865, p. 309) in a discussion of the section at “Montagne de Crussol” in the Ardèche (France).

The Bathonian/Bathonian boundary established between the Parkinsoni and Zigzag zones was recommended at the two congresses called “Colloque du Jurassique” held in Luxembourg (1962, 1967; Rioult, 1964; Torrens, 1965, 1974a, b). The section is at Bath (England) and the “Montagne de Crussol” (France), however, were considered unsuitable for a typological definition of the Bathonian Stage, because they are condensed sections with discontinuous and lenticular beds (Torrens, 1974a, b; Page, 1996b).

The Convergens Subzone was mentioned by Maubeuge (1950, p. 4), based on the “Convergens horizon” that was used in letters by Arkell (1951-59, p. 10; 1956, p. 62). The Parvum Subzone was proposed by Mangold (1990) to denote the first Bathonian subzone of the Zigzag Zone in the Sub-Mediterranean Province, equivalent to the Convergens Subzone of the Northwest European Province and below the Macrescens Subzone. Analogously, due to palaeobiogeographical changes, the Dimorphitiformis Subzone was proposed by Sandoval (1983) as the basal Bathonian subzone of the Zigzag Zone in the Mediterranean Province. Therefore, placing the basal boundary of the Bathonian at the base of the Northwest European Convergens Subzone of the Zigzag Zone can be justified because this is well preserved and recorded also in the Bas-Auran area, as is the Sub-Mediterranean Parvum Subzone. The bases of these subzones can be precisely correlated (Fernández-López et al., 2007; Pavia et al., 2008).

This paper summarizes relevant results published by specialists (Fernández-López et al., 2009) and incorporates comments and responses of the Bathonian Working Group and International Subcommission on Jurassic Stratigraphy ballots (2007-2008) on the formal proposal for the Bathonian GSSP (Middle Jurassic) in the Ravin du Bès Section (Bas-Auran, SE France). The proposal was accepted by the International Commission on Stratigraphy (June, 2008) and ratified by the International Union of Geological Sciences in July, 2008.

Selecting the GSSP section and defining the boundary

The Bas-Auran locality was first mentioned by Haug (1891) and later visited by the French Geological Society (Zürcher, 1895). The Digne-Barrême area was noted by various authors as one of the most
important in the world for establishing the ammonite zonal succession of the Bathonian Stage (Garnier, 1872; Haug, 1891, p. 80; Guillaume, 1938; Arkell, 1956, p. 149). Sturani published in 1967 a detailed study of the Bajocian-Bathonian succession with a litho- and bistratigraphical log based on all the outcrops in the Bas-Auran area. Following the publication of Sturani (1967), the base of bed 23 in the Bas-Auran section, in which Gonoliktites convergens Buckman, Parkinsonia pachypleura Buckman and Morphocheras parvum Wetzell first appear, was designated as the type locality at which to define the base for the Convergens Subzone of the Zigzag Zone and the base of the Bathonian Stage by several authors (Morton, 1974; Torrens, 1974a, b, 1987, 2002; Harland et al., 1982; Cox, 1990). Later, there was general agreement among Bathonian specialists that the Bathonian Stage should start with the Standard Zigzag Zone, whose base is defined by the Convergens Subzone (Horizon 1 of Mangold, 1984) followed by the Macrecsens Subzone (Sturani, 1967). A partial revision of Sturani’s work by Torrens (1987) was mainly on the Tenuiplicatus Subzone in the uppermost part of the marly-calcareous succession. This section was formally proposed as a candidate for the basal boundary stratotype of the Bathonian Stage by Innocenti et al. (1990) during the 2nd International Symposium on Jurassic Stratigraphy in Lisbon (1987). Contributions on the lowermost Bathonian beds were presented by Innocenti et al. (1990), inserting into Sturani’s log new material derived from fieldwork over ten years.

Over the following 20 years, several meetings were organized by the Bathonian Working Group in Digne, La Palud, Budapest, Lyon and Torino. In the Bas-Auran area, the sections of Ravin du Bès, Ravin d’Auran and Ravin des Robines were remeasured and recollected for taphonomic, sedimentologic and palaeoichnological analyses during 2006 and 2007. Recent sampling, mainly concentrated on poorly documented and critical intervals, enlarged the Bas-Auran database from the Zigzag Zone, and furnished new and complementary results on the taphonomy of the ammonoid fossil-assemblages (Fernández-López, 2007), as well as on the taxonomy and phylogeny of Bajocian Bigotitinae and the origin of Zigzagiceratinae (Fernández-López et al., 2007). More recently Pavia et al. (2008): (1) Described the successive ammonite assemblages of the uppermost Bajocian and lowermost Bathonian in the Bas-Auran area; (2) Defined the subzonal bistratigraphic subdivision of the marly-calcareous succession; (3) Detailed the ammonoid content of the very base of the Zigzag Zone; (4) Demonstrated the general continuity of the ammonoid succession; (5) Attested to the suitability of one of those sections to be selected as the GSSP of the Bathonian Stage.

Reports from the Bathonian Working Group were published by Mangold (from 1985 to 1999) and Fernández-López (from 2003 to 2007) as mentioned by Fernández-López (2009). Over all these many years, no other candidate section (except Cabo Mondego) was judged worthy of consideration.

A dossier, defining the GSSP for the Bathonian Stage at the base of the Zigzag Zone in the Ravin du Bès Section, was developed by several specialists and members of the Bathonian Working Group (BtWG). The proposal dossier was submitted for voting to all members of the Bathonian Working Group (S.R. Fernández-López, convenor) in December, 2007. The members of the Bathonian Working Group are: Almérás Y. (France), Bardhan S. (India), Boderget A.M. (France), Callomon J.H. (UK), Cresta S. (Italy), Dietl G. (Germany), Dietze V. (Germany), Enay R. (France), Fernández-López S.R. (Spain), Galácz A. (Hungary), Hall R.L. (Canada), Henriques M.H. (Portugal), Hillebrandt A. von (Germany), Lanza R. (Italy), Mangold C. (France), Matyja B. (Poland), Meléndez G. (Spain), Mitta, V. (Russia), Mönnig, E. (Germany), Morton N. (France), Page K. (UK), Pandey D.K. (India), Pavia G. (Italy), Poulsen N. (Denmark), Poulsen T.P. (Canada), Riccardi A.C. (Argentina), Rogov M.A. (Russia), Sanford J. (Spain), Schlögl J. (Slovak Republic), Schweigert G. (Germany), Seyed-Emami K. (Iran), Wierzbowski A. (Poland), Yin J.-R. (China). The results of the vote (December 2007) were as follows: Total BtWG members = 33, YES votes = 31 (93.94%), NO votes = 1 (3.03%), ABSTAIN = 1 (3.03%), NO RESPONSE = 0. In order to achieve the formal ballot on the proposal of the Bathonian GSSP within the Voting Members of the International Subcommission on Jurassic Stratigraphy (ISJS) during February-March 2008, an upgraded version of the dossier incorporating comments and responses of the BtWG ballot 2007 was presented (Fernández-López et al., 2009). The voting by the Voting members of the Jurassic Subcommission (ISJS) on the proposal for the GSSP and ASSP for the base of the Bathonian Stage was completed on March, 2008: of 22 Voting Members, including the 3 Executive members, 21 (95.5%) returned a vote; of the 21 votes received 20 (95.2%) voted YES and 1 (4.8%) voted NO. The approved proposal, together with the dossier and a preface by the ISJS Chairman (N. Morton), were sent to the Secretary of the International Commission on Stratigraphy (J. Ogg), who forwarded it together with a voting form to all the members of the Commission, during May-June 2008. Voting result of the International Commission on Stratigraphy (ICS) was 13 YES (81%), approved in June 2008. Later, the ICS Secretary submitted the proposal to the Executive Committee of IUGS to ratify the Bathonian GSSP. The approved proposal was ratified by the IUGS in July, 2008.

The Ravin du Bès Section (Bas-Auran area)

The Bas-Auran sections are located in southeastern France, in the “Alpes de Haute Provence” French Department, in the Chaudon-Norante commune, approximately 25 km SSE of Digne-les-Bains (Fig. 1a). Three sections have been selected in two ravines (Fig. 1b). The first is the Ravin du Bès Section (RB), located near the l’Amata farm (the Bathonian GSSP site; coordinates: 43°53’38”N, 6°18’55”E, altitude 730 m). The second is the Ravin d’Auran Section (RA), located in front of the Bas-Auran farm (coordinates: 43°57’17”N, 6°18’56”E, altitude 790 m). The third, the Ravin des Robines Section (RR), is only 400 metres south of the RA section, along the Robines ravine (coordinates: 43°57’09”N, 6°18’50”E, altitude 830 m). All are located on the Castellane sheet of the “Carte géologique détaillée de la France” at the 1:80000 scale (Goguel, 1966), on the Digne sheet of the “Carte géologique de la France” at the 1:50000 scale (Graciansky et al., 1982) and on the topographic sheet, scale 1:25000, Barrême, no. IGN 3615.

Geological setting of the marly-calcareous succession from the Bajocian to Bathonian in the Digne area

The area studied is located in the French Subalpine Basin (FSB), corresponding to a gulf on the northwestern margin of the Tethyan Ocean (Fig. 2).

The basin is bordered by the “Massif Central” to the West and by the Alpine Chain to the East (Fig. 3a). During Middle Jurassic time, the basin margin was characterized by a network of tilted blocks similar.
to the present margin of the Atlantic Ocean (Lemoine, 1984, 1985). The maximum sea depth of the central part of the basin was probably about 700-800 metres (Ferry, 1990). The region was a transitional area between the epicontinental sea of the Paris Basin and the deep Piedmont oceanic domain. The thrust boundaries shown in the simplified tectonic map (Fig. 3b) correspond to the limits of the various tilted blocks. The Bas-Auran area, located in the middle of one of such block, was thus on the continental slope of the French Subalpine Basin. The succession studied is a cyclic marl-limestone alternation. In most previous works and on the geological map of Digne (Graciansky et al., 1982; Olivero and Atrops, 1996), it was described as the “Calcaires à Cancellophycus” Formation which, in this region, ranges from Aalenian to Bathonian and is covered by the “Terres Noires” Formation (Late Bathonian to Oxfordian). The “Calcaires à Cancellophycus” Formation should not be mistaken for the partially coeval “Calcaires à Zoophycos du Verdon” Formation, Lower Bathonian to Middle Callovian in age, proposed by Olivero and Atrops (1996) in the southernmost transitional area, between the Subalpine Basin and the Provence Platform.

These sections, which are free of significant disconformities, range from the Bomfordi Subzone (Parkinsoni Zone, Upper Bajocian) to the Tenuiplicatus Subzone (Aurigerus Zone, Lower Bathonian) and are over 13 m thick. Structural complexity, synsedimentary and tectonic disturbance, or significant alterations by metamorphism, are not relevant constraints in the Bas-Auran area.

Palaeoichnology, taphonomy, sedimentology and sequence stratigraphy of the upper Bajocian to lower Bathonian of the Bas-Auran area

In the Bas-Auran area, Lower Bathonian deposits comprise black or grey limestone beds alternating with marls usually known as “Marno-calcaires à Cancellophycus” (Graciansky et al., 1982; Olivero and Atrops 1996). Petrographically, and in terms of biofacies, these deposits are relatively uniform mudstones to wackestones, with common ammonoids, scarce sponges and very scarce nautiloids, brachiopods, bivalves, belemnites, echinoids, crinoids and gastropods. As to microfossils, the overall sedimentary facies shows a calcisphere-mudstone texture; the marls contain foraminifers (Lenticulina, Dentalina), ostracods and molluscs (cephalopods, bivalves, gastropods) along with detrital minerals, quartz, muscovite and biotite (Corbin et al., 2000).

Palaeoichnological studies have been carried out by Olivero (1994, 2003). Bioturbation textures are common and bioturbation structures are scarce, indicating dominant softgrounds. Zoophycos, Chondrites and Planolites occur in beds RB093 to RB001. Local concentrations of trace fossils of these ichnotaxa in bed RB039 suggest...
the development of a soft- to firmground at this stratigraphic level (Figs. 4-5). Bioturbation structures indicative of firmground (Thalassinoides, Rhizocorallium, Zoophycos and trace fossils related to large Halimedides) occur in a more calcareous layer just overlying the top of bed RB003. Biogenic borings indicative of hardground (Zapfella) are common, associated with very scarce encrusting serpulids, on the top of bed RB001 and the top of the whole RB section, indicating the exceptional development of a stratigraphic discontinuity at the top of the “Marno-calcaires à Cancellophycus” in the Bas-Auran area. Sedimentation appears irregular and condensed from bed RB093 towards the top of the Bathonian Zigzag Zone, compared with previous intervals where a more constant and expanded sedimentation is suggested. At the Bajocian-Bathonian transition, however, no stratigraphic gaps or hiatuses have been recorded.

From a taphonomic point of view (Fig. 6), the occurrence of reelaborated ammonoids (i.e. exhumed and displaced before their final burial) implies that some form of current flow or winnowing affected the burial of concretionary internal moulds (Fernández-López, 2007). Ammonoids show the following taphonomic characters at the Bajocian-Bathonian transition: (1) high values of stratigraphic persistence of ammonoid shells, (2) dominance of homogeneous concretionary internal moulds of phragmocones, completely filled with sediment, and (3) dominance of unflattened sedimentary moulds bearing no signs of rounding, bioerosion or dense encrusting by organisms (such as serpulids, bryozoans or oysters). These taphonomic features are indicative of a low rate of sedimentation and a low rate of accumulation of sediment, associated with sedimentary starvation in deep environments, according to the model of Fernández-López (1997, 2000a, 2008) and Fernández-López et al. (2002).

The bed-scale limestone-marl alternation is primary in origin, although accentuated by diagenetic redistribution of carbonate. Lithological differentiation between marly and limestone intervals resulted from alternating episodes of carbonate input and starvation. Both lithologies may contain evidence of sedimentary and taphonomic reworking, associated with scourcs, which reflect low rates of sedimentation and stratigraphic condensation. There is no evidence, however, of taphonomic condensation (i.e. mixture of fossils of different age or different chronostratigraphic units) in the ammonoid fossil-assemblages, except in level 002 (Fernández-López, 2007).

Sedimentological data and sequence-stratigraphy interpretations of these sections have been published by Ferry and Mangold (1995) and Olivero et al. (1997). In the Jurassic deposits of the French Subalpine Basin, sixth to second order cycles may be recognized (Ferry et al., 1989, 1991; Ferry and Mouterde, 1989; Mouterde et al., 1989; Zany et al., 1990; Ferry, 1991; Ferry and Dromart, 1991; Graciansky et al., 1993, 1998a, b; Ferry and Mangold, 1995; Olivero and Atrops, 1996; Hardenbol et al., 1998; Jacquin et al., 1998; Lemoine et al., 2000; Leonide et al., 2007; Olivero and Gaillard, 2007; De Baets et al., 2008).

Palaeoichnological, taphonomic and sedimentological results confirm, therefore, the development of a deepening phase associated with sedimentary starvation, within 3rd and 2nd order cycles, in the Bas-Auran area, during the Early Bathonian. The maximum deepening of a 2nd-order transgressive/regressive facies cycle (T/R 7, Upper Aalenian–Upper Bathonian, in Graciansky et al., 1993, 1998) is at the end of the Early Bathonian, which corresponds to an extensional and deepening phase of the basin. The outcrop successions at Bas-Auran show no obvious signs of non-sequence or discontinuity across the Bajocian/Bathonian boundary interval.
Palaeontological records

The Bomfordi and Convergens subzones in the Bas-Auran area contain an ammonoid succession that displays a maximum value of biostratigraphic and biochronostratigraphic completeness. Additional macrofossil groups occur in the sections (e.g. sponges, bivalves, brachiopods and belemnites), although they are scarce and have not yet been studied in detail.

Ammonites

Biochronostratigraphic data on ammonoids of the Bas-Auran sections have been published by Sturani (1967), Pavia (1973, 1983a, b, 1984, 1994, 2000, 2007), Torrens (1987), Innocenti et al. (1990), Olivero et al. (1997) and Joly (2000). New and complementary results from the biochronostratigraphic analyses of ammonoid fossil-assemblages at the Bajocian/Bathonian boundary in Bas-Auran have been recently published (Fig. 7; Fernández-López et al., 2007, Pavia et al., 2008). In the French Subalpine Basin, the successive ammonoid fossil-assemblages are composed of Mediterranean and Northwest European representatives, associated with some Sub-Mediterranean ones. Upper Bajocian and Lower Bathonian Phylloceratina and Lytoceratina, which represent Mediterranean taxa, are relatively common (up to 25% at subzonal scale). Northwest European taxa, such as Parkinsoniniidae, may surpass 25% at subzonal scale. Lower Bathonian Bigotitiinae, endemic and characteristic of the Sub-Mediterranean Province, reach 13%. This complex palaeobiogeographical pattern of the Upper Bajocian and Lower Bathonian ammonoid fossil-assemblages enables recognition of diverse subzonal schemes and accurate chronocorrelation between the three main provinces of the West Tethyan Subrealm.

Biochronostratigraphic features of the Bathonian boundary in Bas Auran area are the low biostratigraphic and faunal turnovers of the ammonoid succession across the Bajocian/Bathonian transition. Among the possible guide fossils for the Bajocian/Bathonian boundary, Parkinsoniniidae have a better record than Morphoceratidae. The lowest occurrences of Gonolkites [M] and Morphoceras [M] may be evidence of palaeobiological events, respectively, of origination of Gonolkites (from a species of Parkinsonia) and immigration of Morphoceras. The base of the Bathonian and of the Zigzag Zone corresponds to the first occurrence level of Gonolkites convergens and the renewal of parkinsoniids (first fossil assemblage including several species of Parkinsonia and Gonolkites) at the base of limestone bed RB071 (bed 23 in Sturani 1967) in the Ravin du Bès Section. Additionally, the base of the Bathonian in Bas-Auran sections also coincides with the lowest occurrence of Morphoceras parvum. Thus, the bases of the Northwest European primary standard Convergens Subzone and the Sub-Mediterranean secondary standard Parvum Subzone are in fact precisely coeval in the Bas-Auran area.

The basal ammonite assemblage includes the following ammonite species (Fig. 8):

- Oxycerites limosus (Buckman) [M],
- Cadomites deslongchampsi (d’Orbigny) [M+m],
- Cadomites crassispinosus Kopik [M+m],
- Cadomites stegeus (Buckman) [M+m],
- Cadomites psilacanthus (Wermter) [M+m],
- Cadomites gr. rectolobatus (Hauer) [M],
- Parkinsonia subplanulata Wetzel [m+M],
- Gonolkites subgaleatus (Buckman) [M],
- Gonolkites convergens Buckman [M],
- Morphoceras parvum Wetzel [M].

Figure 4. Ravin du Bès outcrop. Limestone bed 071 (above broken line) is the Bathonian GSSP level.

Figure 5. Detail of beds around the Bajocian/Bathonian boundary in the Ravin du Bès Section. Limestone bed 071 indicates (broken line) the base of the Bathonian. Scale bar 1 m.
The potential ammonite content of the basal Bathonian fossil-assemblage could be enlarged by the following taxa, known from below and above but not actually in the basal bed:

- *Cadomites sturanii* Galácz [M+m],
- *Polyplectites rozyckii* (Kopik) [m],
- *Parkinsonia* cf. *subplanulata* Wetzel [m+M],
- *Parkinsonia crassa* Nicolesco [m+M],
- *Parkinsonia schloenbachi* Schliper [m+M],
- *Planisphinctes planilobus* Buckman [m],
- *Phaulozigzag phaulomorphus* Buckman [m].

Similarly, the following species of Phylloceratina and Lytoceratina could also be part of a basal Bathonian fossil-assemblage (Pavia et al., 2008; Fernández-López et al., 2009):

- *Phylloceras kudernatschi* (Hauer),
- *Adabofoloceras subobtusum* (Kudernatsch),
- *Adabofoloceras wendti* (Sturani),
- *Phyllopachyceras ebrayi* (Ferry),
- *Calliphylloceras achtalense* (Redlich),
- *Calliphylloceras gr. disputabile* (Zittel),
- *Nannolytoceras tripartitum* (Raspail),
- *Lytoceras gr. eudesianum* (d’Orbigny).

New palaeontological data about the youngest members of

Figure 6. Ammonoid biochronostratigraphic data at the Bajocian/Bathonian boundary in the Ravin du Bès and Ravin d’Auran sections, indicating ammonoid preservation states, types of elementary cycles, and system tracts of 3rd and 2nd order cycles (modified from Fernández-López, 2007).

STAGE	Lower Bathonian	Upper Bajocian	Lower Bajocian
LEVEL			
Thickness (m)	Levels in Strunian 1967	Thickness (m)	Levels in Strunian 1967
Bajocian/Bathonian		Bajocian/Bathonian	
Avicennia Subzone		Avicennia Subzone	
Convergens Subzone		Convergens Subzone	
Zagzag Zone		Zagzag Zone	
New systems tract		New systems tract	
Type-1 elementary cycle		Type-1 elementary cycle	
Type-2 elementary cycle		Type-2 elementary cycle	
Type-3 elementary cycle		Type-3 elementary cycle	
Rate of sedimentation		Rate of sedimentation	
Water turbulence		Water turbulence	
3rd order cycle		3rd order cycle	
2nd order cycle		2nd order cycle	
Bigotitinae and the oldest members of Zigzagicerinatinae are of biochronostratigraphic importance for the subdivision and correlation of the basal Bathonian Zigzag Zone. Three successive biohorizons have been identified and chronocorrelated between the Bas-Auran (French Subalpine Basin) and Cabo Mondego (Lusitanian Basin) successions (Fernández-López et al., 2007; Pavia et al., 2008):

1. The Diniensis Biohorizon is characterized by the occurrence of *Bigotites diniensis* and corresponds to the lowest part of the Bathonian Zigzag Zone in the Sub-Mediterranean Province (e.g., Cabo Mondego and Bas-Auran). It encompasses the stratigraphic intervals RA085-RA062 (Fig. 6, levels 23-18 of Sturani, 1967) in Ravin d’Auran Section and RB071-RB054 (Fig. 8, levels 23-18 of Sturani, 1967) in Ravin du Bès Section.

2. The Mondegoensis Biohorizon is defined by the lowest occurrence of *Bigotites mondegoensis*. It comprises the stratigraphic intervals RA061-RA044 (Fig. 6, levels 17-14 of Sturani, 1967) in Ravin d’Auran Section and RB053-RB034 (Fig. 8, levels 17-14 of Sturani, 1967) in Ravin du Bès Section.

3. The Protozigzagiceras Biohorizon is defined by the lowest occurrence of *Zigzagiceras*, in particular *Protozigzagiceras [M+m]* and *Franchia [M+m]*. It encompasses the stratigraphic intervals RA043-RA034 (Fig. 6, level 13 of Sturani, 1967) in Ravin d’Auran Section and RB033-RB026 (Fig. 8, level 13 of Sturani, 1967) in Ravin du Bès Section.

According to Pavia et al. (2008), the quality of the record of the ammonoid biostratigraphic succession in the Bas-Auran area can be tested with various palaeontological criteria: the preservation state of fossil-specimens, taphonomic populations and fossil-assemblages; abundance, concentration, packing and stratigraphic persistence of fossil-specimens; completeness, constancy and persistence of stratigraphic ranges; completeness and taxonomic diversity of successive fossil-assemblages; biostratigraphic turnover; proportion of virtual and actual palaeontological gaps in successive stratigraphic intervals; proportion of first and last occurrences of taxa; proportion of lowest and highest occurrences of taxa; successive or coincident clustering of last and first occurrences. Values of these twenty-one palaeontological attributes indicate a relatively homogeneous and good record quality, gradual biostratigraphic change and high degree of taxonomic similarity between the Bomfordi and Convergens subzones. These criteria, applied to the ammonoid genera which are known from the Bas-Auran area, also indicate relatively high values of palaeontological and stratigraphic completeness at the base of levels RB070-RB071 (= level 23 in Sturani, 1967; i.e., the Bajocian/Bathonian boundary). The ammonoid biostratigraphic succession of Bas-Auran shows no evidence of biochronostratigraphic mixing, taphonomic condensation, signs of non-sequence or biostratigraphic discontinuities across the Bajocian/Bathonian boundary interval. Moreover, with forty-six successive ammonoid fossil-assemblages of the Convergens Subzone, through up to 5 metres of thickness belonging to three biohorizons, the Ravin du Bès Section displays maximum values of biostratigraphic and biochronostratigraphic completeness.

Microfossils

The Bajocian/Bathonian boundary may be characterized by secondary (auxiliary) biostratigraphic markers, such as nannofossils. According to the results of Erba (1990a, b; Cobianchi et al., 1992; Mattioli and Erba, 1999), calcareous nannofossils are present in all beds and facilitate the characterization of the Bajocian-Bathonian transition. The Ravin du Bès Section appears to be suitable for the biostatigraphical study of microfossils, such as foraminifers or ostracods, but there are at present no published studies. According to preliminary results (Boderget in Mangold, 1999), ostracods are present in all marly samples, but are badly preserved between bed RB071 and bed RB033. The marine taxa are different from those known in the Paris Basin and England. The Subalpine taxa, specially the genera *Pontocyprilla*, *Isobythocypris* and *Cordobairdia*, indicate deeper environments (more than 200 m). Palynomorphs are poorly preserved and are not yet stratigraphically useful across the boundary (Poulsen, 1997; Mangold, 1999).

Figure 7. Lower Bathonian ammonites from Bas-Auran area. Specimens have been whitened with magnesium oxide prior to photography. The black asterisk marks the last septum of the phragmocone. Scale bar 1 cm. (a) Gonolkites convergens Buckman [M], specimen PU11067, level BA15, Convergens Sbz. (b) Morphoceras parvum Wetzel [M], specimen PU11564, level BA17, Convergens Sbz. Sab.
Figure 8. Ammonitina biochronostratigraphic data at the Bajocian/Bathonian boundary in the Ravin du Bès Section [M= macroconchs, m= microconchs] (from Pavia et al., 2008).
Calcareous nannofossils

Nannofossil biostratigraphic investigation was performed on 59 samples (approximately every 20 cm) collected from the Ravin du Bès section in the Bas-Auran area; sample figures correspond to the bed numbers of the lithostratigraphic column of Fig. 6. This study is a revision of the previous work by Erba (1990a, b), extended to limestone layers and additional marlstone beds (Erba and Tiraboschi in Fernández-López et al., 2009).

All studied samples contain calcareous nannofossils. A total of 37 taxa were identified. The nannofossil total abundance fluctuates from extremely rare to common; the preservation is poor to moderate, with evidence of dissolution and overgrowth. Limestone levels generally contain depauperated and poorly preserved nannofloras, with stronger overgrowth and dissolution.

The nannofloras are characteristic of the Upper Bajocian–Lower Bathonian interval. Assemblages are dominated by Watznaueria britannica and Watznaueria communis, with common Schizosphaerella punctulata, Watznaueria aff. W. manivitiae, Watznaueria manivitiae, Cyclagelosphaera margerelii, Cyclagelosphaera deflandrei, Lotharingius crucicentralis, Lotharingius velatus, Lotharingius sigillatus and Ethmorhabdus gallicus.

Based on absence of Carinolithus superbus and of Watznaueria barnesiae, the lowermost portion of the investigated interval (samples 110 through 68b) corresponds to the Tethyan W. communis Subzone (NJT 10b) indicating a Late Bajocian age (Mattioli and Erba, 1999). This subzone corresponds to the upper part of the Boreal NJ 10 Zone and the lower part of the NJ 11 Zone of Bown and Cooper (1998). The first occurrence (FO) of Pseudoconus enigma in sample 89 identifies the NJ10/NJ11 zonal boundary (Figs. 9-10). This taxon is rare and occurs only in limestones, with the only exception of a single specimen in marlstone sample 20, and this is why Erba (1990b) did not report this species.

The last occurrence (LO) of Hexalithus magharensis was observed in sample 82 indicating a latest Bajocian age (Mattioli and Erba, 1999). Similarly, Erba (1990b) recorded this event in the Parkinsoni Zone (latest Bajocian) of the Digne area, whereas in Portugal and Morocco de Kaenel et al. (1996) found an older age for the LO of H. magharensis, calibrated between the end of the Early Bajocian and the beginning of the Late Bajocian.

The FO of Stephanolithion speciosum octum was observed in sample 76; the taxon is extremely rare and scarce in the studied section. This event has been correlated to the base of the Parkinsoni Zone in NW Europe and Portugal (de Kaenel et al., 1996), but within the Zigzag Zone in SE France (Erba, 1990b). Bown et al. (1988) and Bown and Cooper (1998) report the FO of S. speciosum octum at the base of the Boreal NJ 11 Zone.

The FO of W. barnesiae (NJT11) was observed in sample 68a of earliest Bathonian age (Zigzag Zone). This event defines the base of the Tethyan NJT11 Zone (Mattioli and Erba, 1999), comparable to most of the Boreal NJ11 Zone and NJ12a Subzone (Bown et al., 1988; Bown and Cooper, 1998).

The uppermost portion of the studied interval corresponds to the Tethyan NJT 11 Zone (Mattioli and Erba, 1999), since Cyclagelosphaera wiedmannii was not observed.

From sample 89 upwards, rosette-shaped specimens likely to belong to the genus Rucinolithus were consistently observed. They show highest abundance in the interval between sample 45 through 22 (Fig.9), both in limestone and marlstone beds. Two morphotypes were distinguished, namely small (< 7.5 microns) and large (> 7.5 microns) “Rucinolithus” spp., based on their diameter (Tiraboschi and Erba, 2008). More detailed investigations are in progress to characterize the taxonomy of these morphotypes.

Our results are consistent with previous biostratigraphic data from the Upper Bajocian–Lower Bathonian interval in SE France (Erba, 1990b), Portugal, NW Europe (de Kaenel et al., 1996), Lombardian Basin (Chiari et al., 2007) and Boreal Realm (Bown and Cooper, 1998). For the first time P. enigma has been documented from mid to low latitudes allowing a direct calibration between Tethyan and Boreal nannofossil events and biozones (Figs. 9-10).

Correlation

Ammonites are the most relevant taxonomic group for global
biochronostratigraphic correlation of the Bajocian/Bathonian boundary. Nevertheless, various other taxonomic groups of macroinvertebrates and microfossils are also of biochronostratigraphic relevance.

Ammonites

Late Bajocian and Early Bathonian ammonites are found worldwide in the three major, oceanic or marine, palaeobiogeographical units: Tethyan, Pacific and Boreal domains or realms (Fig. 11; Cariou et al., 1985; Hillebrandt et al., 1992a, b; Taylor et al., 1992; Westermann, 1993a, 2000; Page 1996a, 2008; Enay and Cariou, 1999; Zakharov et al., 2003). The most difficult problem in biochrono-correlation of the boundary is not the low biostratigraphic turnover of the ammonoid succession across the boundary in Bas Auran area (defined as the number of first occurrences minus the number of last occurrences in each stratigraphic interval; Pavia et al., 2008) or the low faunal turnover at the Bajocian/Bathonian transition (as defined by Guex, 1987; Sandoval et al., 2001), but the strong provincialism with three separate realms.

Figure 12 shows standard zonations for the three ammonite biogeographical provinces represented in western Europe. Ammonites of the Zigzag Zone have a wide distribution through the Northwest European, Sub-Mediterranean and Mediterranean provinces of the West Tethyan Subrealm. In the Bas-Auran area, where Northwest European and Sub-Mediterranean taxa are relatively common, the primary standard Convergens Subzone and the secondary standard Parvum Subzone can be recognized.

The Northwest European Province, in which parkinsoniids are common, comprises the following epeiric areas: England (Torrens, 1980; Callomon, 1995, 2003; Callomon and Cope, 1995; Page, 1996b, 2001; Dietze and Chandler, 1998; Chandler et al., 1999), Normandy, Boulonnais, Lorraine, Alsace, northern Jura (Mangold and Rioult, 1997, Rioult et al., 1997, Thierry, 2003), northern Germany (Westermann, 1958; Metz, 1990, 1992), northern and central Poland (Kopik, 2006; Zaton, 2007, 2008).

The Sub-Mediterranean Province, in which Bathonian *Morphoceras* [M] - *Ebrayiceras* [m] occur associated with parkinsoniids and scarce phylloceratids and lytoceratids, includes the following epeiric areas: Lusitanian Basin (Fernández-López et al., 2006a, b), Iberian Basin (Fernández-López, 2000b, 2001), Aquitaine, Causses, Centre-west France, Nièvre (Delance et al., 1979; Courville et al., 1999; Enay et al., 2001), Mâconnais, Ardèche, southern Jura (Elmi, 1967; Mangold, 1971a, b, 1997a, b; Rulleau, 2006), western Alps and Subalpine Basin (Sturani, 1967; Pavia and Sturani, 1968; Pavia, 1973, 1984; Torrens, 1987, Innocenti et al., 1990; Zany et al., 1990; Joly, 2000), southern Germany (Dietl, 1978, 1981, 1982, 1983, 1986, 1988; Dietl et al., 1978, 1983; Dietl and Hugger,
Bathonian morphoceratids occur associated with common
phylloceratids, parkinsoniids and morphoceratids have been described, below Middle Bathonian
species of *Bullatimorphites*, *Procerites* and *Siemiradzkia* (Beznosov and Mikhailova, 1981; Beznosov, 1982; Beznosov and
Kutuzova, 1982; 1990; Rostovtsev, 1985; Tseretely, 1989; Beznosov and
Mitta, 1995, 1998, 2000; Topchishvili et al., 1998; Mitta, 2001; Mitta and Beznosov, 2007; Galácz and Szente, 2008).

In the northeastern Tethyan border (Crimea, Caucasus, Great
Balkan, Turkmenistan, Tadjikistan, Uzbekistan, Kazakhstan) latest
Bajocian to Early Bathonian perisphinctids, parkinsoniids and
morphoceratids have been described, below Middle Bathonian
species of *Bullatimorphites*, *Procerites* and *Siemiradzkia*
(Beznosov and Mikhailova, 1981; Beznosov, 1982; Beznosov and
Kutuzova, 1982; 1990; Rostovtsev, 1985; Tseretely, 1989; Beznosov and
Mitta, 1995, 1998, 2000; Topchishvili et al., 1998; Mitta, 2001; Mitta and Beznosov, 2007; Galácz and Szente, 2008).

In the Indo-Malagach Province, latest Bajocian to Middle
Bathonian ammonites, but not Early Bathonian, have been described
from Kenya, Madagascar and India (Singh et al., 1982, 1983; Jaitly
and Singh, 1983, 1984; Pandey and Agrawal, 1984; Pandey and
Westermann, 1988; Galácz, 1990; Pandey and Callomon, 1995, Prasad
et al., 2007; Roy et al., 2007; Jain, 2008).

Separate Late Bajocian and Early Bathonian ammonoid faunas
have been distinguished, associated with characteristic
Eurycephalitinae, in the southern East-Pacific Subrealm of the Tethyan
Realm: New Zealand (Westermann and Hudson, 1991; Westermann
1993b; Westermann et al., 2000, 2002), Argentina, Chile and Peru
(Westermann and Riccardi, 1980; Westermann et al., 1980; Riccardi,
1985, 1991, 2008; Riccardi et al., 1990a, b, 1991, 1992, 1994; Riccardi
and Westermann, 1991a, b, 1999; Hillebrandt et al., 2002, b; Fernández-López et al., 1994; Grösche and Hillebrandt, 1994;
Hillebrandt, 1995, 2001; Grösche, 1996; Parent, 1998).

Figure 12. Ammonite zones and subzones of the Uppermost
Bajocian and Lower Bathonian in different palaeobiogeographical
provinces: Northwest European (Westermann and Callomon, 1988,
Callomon and Cope, 1995, Callomon, 2003), Sub-Mediterranean
(Mangold, 1990, Rioult et al., 1997, Mangold and Rioult, 1997)
and Mediterranean (Galácz, 1980, 1993; Sandøval, 1983, 1990;
Sandøval et al., 2001; O‘Dogherty et al., 2006) provinces.

Figure 11. Principal palaeobiogeographical units during Bajocian/
Bathonian transition, with location of Bas-Auran and Cabo
Mondiego areas (modified from Mayne and Neige, 2007).
Megasphaeroceras occur in the Upper Bajocian of the Andean Province. Lobosphinctes intersertus Buckman has been identified in Chacay Meleheu (Argentina) below a Bathonian Cadomites-Tutilitida mixed assemblage. The first occurrence of several genera such as Oxysterites, Zeissoceras, Prohecticoceras and Rugiferites, below the oldest representatives of Bathonian Bullatimorphites, have been used to recognize Lower Bathonian deposits. New species of Bathonian Zigzagiceras and Morphoceras have been proposed (Fig. 13; Gröschke and Hillebrandt, 1994; Hillebrandt, 2001; Riccardi, 2008).

In Mexico (Sandoval and Westermann, 1986; Sandoval et al., 1990) Upper Bajocian begins with the upper Floresi Zone of the Boreal Realm (modified from Imlay, 1981, 1984; Callomon, 1984; Hall, 1988; Westermann and Riccardi, 1991; Hillebrand et al., 1992a, b; Gröschke and Hillebrandt, 1994; Hillebrandt, 2001; Riccardi, 2008).

Several authors have proposed diverse biozonalions for the Upper Bajocian and Lower Bathonian based in different taxonomic groups of macroinvertebrates (Fig. 14): brachiopods (Mancenido and Dagys, 1992; Vorös, 2001; Alméras et al., 2007, Alméras and Fauré, 2008), belemnites (Challinor, 1992; Challinor et al., 1992; Combémorel, 1997), nautiloids (Branger, 2004), bivalves (Damborenea et al., 1992; Hallam, 1994; Damborenea, 2002; Ruban, 2006), echinoderms (Thiery et al., 1997, Moyne et al., 2005), corals (Beauvais, 1992).

The following taxonomic groups of microfossils are of biochronostratigraphic relevance also (Fig. 15): foraminifera (Bassoullet, 1997; Ruget and Nicollin, 1997; Grüe, 2005; Cai et al., 2006; Saltykov, 2007; Wernli and Görg, 2007), ostracods (Braun and Brooke, 1992; Bodergat, 1997; Tesakov et al., 2009), dinoflagellate cysts (Riding and Thomas, 1992; Fauconnier, 1997; Poulson and Riding, 2003), radiolarians and calcareous nanofossils.
Isotope stratigraphy

From a geochemical point of view, in the French Subalpine Basin during the Jurassic Period, several authors have emphasized that the manganese content of pelagic carbonates is related to second-order sea-level changes and episodes of hydrothermal activity that affected the chemistry of global sea water. According to this interpretation, the main transgressive phases are marked by a manganese content increase, whereas regressive phases are characterized by decreasing trends (Corbin, 1994; Corbin et al., 2000). In the Chaudon-Norante section, 4 km north of the Bas-Auran area, the Early Bathonian maximum transgressive is marked by sedimentary condensations, associated with high manganese content (from 300 to 1370 mg kg⁻¹). In contrast, the Middle and Late Bathonian regressive phase coincides with low manganese content periods. However, these stratigraphical patterns in divalent manganese can be of either local or regional significance, being concentrated, most probably as a very early diageneric phase, only in oxygen-depleted waters that typically underlie zones of elevated organic productivity (Jenkyns et al. 2002). No data are currently available for strontium isotope (⁸⁷Sr/⁸⁶Sr ratio), oxygen isotope (δ¹⁸O), or carbon isotope (δ¹³C) chemostratigraphy.

Volcanogenic deposits suitable for direct radio-isotope dating are not known in the section. The age of the Bajocian/Bathonian boundary 167.7 ± 3.5 Ma is an interpolated estimate (cf. Gradstein and Ogg, 2004; Gradstein et al., 2005; Ogg, 2005; Pálfy, 2007).

Magnetostratigraphy

Bajocian and Bathonian deposits have been remagnetized with a steady normal polarity (Lanza in Fernández-López et al., 2009). The requirement of suitability for magnetostratigraphy and geochronometry, however, can be indirectly satisfied by reference to the Bathonian magnetostratigraphic scale of Steiner et al. (1987), O’Dogherty et al. (2006) as defined in the Subbetic Cordillera.

Gamma-ray spectrometry

Field gamma-ray spectrometry data have been obtained by G. Pavia, P. Lazarin and L. Leroy (April 2007) and are presented in Fig. 16. Spectral gamma-ray data from the Ravin du Bès Section show an increase in the total gamma-ray counts at the Aurigerus Zone. The values are relatively low and display insignificant variation at the Bajocian-Bathonian boundary, but they show a positive peak at the top of the Lower Bathonian. Total gamma-ray logs have been used in sequence stratigraphy on the basis that gamma-ray peaks commonly correspond to maximum flooding surfaces (cf. Parkinson, 1996; Deconinck et al., 2003; Pawellek and Aigner 2003, 2004; Pellenard et al., 2003; Raddadi et al., 2005; Ruf et al., 2005; Schnyder et al., 2006). High gamma-ray counts, low sedimentation rates and high concentrations of ammonites may be associated with the development of condensed sections in carbonate environments. These features, however, developed both in condensed deposits of deep carbonate environments during transgressions or episodes of relative sea-level rise and in expanded deposits of shallow carbonate epicontinental platforms during regressions or episodes of relative sea-level fall (Fernández-López et al., 2002). The stratigraphic trend in spectral gamma-ray data associated with sedimentary condensation on the Bas-Auran area, from the Bajocian Bomfordi Subzone towards Bathonian Tenuiplicatus Subzone, provides support for an Early Bathonian deepening half-cycle of second order, lacking evidence of stratigraphic gaps at the Bajocian-Bathonian transition. Therefore, the current data do not support the existence of “a gap of the order of a whole biohorizon or even a subzone” at the Bathonian GSSP. The base of bed RB071 represents a minor sedimentary and stratigraphic discontinuity (tested with sequence stratigraphy and sedimentological data, as well as with palaeoichnological and
taphonomic analyses), lacking evidence of significant hiatus (such as a peak in the spectral gamma-ray data shown in Fig. 16), non-existing evidence of biostratigraphic gap (as argued with diverse criteria in the chapter of record quality by Pavia et al., 2008) or missing biochronostratigraphic unit (the first subzone at the base of the Zigzag Zone, with three successive biohorizons, shows the highest biochronostratigraphic completeness, so far only recognized in the Cabo Mondego and Bas Auran sections, Fernández-López et al., 2007).

Protection of the site

The sites of Bas-Auran and Le Bès are part of the protected territory of “La Réserve Naturelle Géologique de Haute Provence”. The Geological Reserve, which covers 55 communes in the “Alpes de Haute-Provence” and Var departments, has been entrusted with the main missions of protecting, enhancing and raising awareness of the environment and supporting economic development of this heritage (Guimaraes in Fernández-López et al., 2009).

The Bathonian ASSP in Cabo Mondego Section (Portugal)

An auxiliary section and point (ASSP) for the base of the Bathonian Stage is located in Cabo Mondego, 40 km west of Coimbra, 7 km north of Figueira da Foz (40°11’18”N, 8°54’30”W, Section 02 in Fig. 18). It provides complementary data about the ammonite succession and biochronostratigraphic subdivision of the Sub-Mediterranean Parvum Subzone and the Northwest European Convergens Subzone (Fernández-López et al., 2006a, b, 2009). Accessibility, conservation and protection are guaranteed, after the classification of the Cabo Mondego area as a Natural Monument of the Portuguese Republic in 2007.

Summary

The Global Boundary Stratotype Section and Point for the base of the Bathonian Stage is defined at the base of limestone bed RB071 in the Ravin du Bès Section, Bas-Auran area, southern Subalpine Chains (France). This GSSP satisfies most of the requirements recommended by the ICS (Remane et al., 1996; Gradstein et al., 2003, 2005; Morton, 2006, cf. Fig. 17):

- The exposure extends over 13 m in thickness, comprising five metres of fossiliferous levels below the boundary and eight metres above. The stratigraphic succession can be recognized laterally over several hundred metres distance.
- At the Bajocian-Bathonian transition, no vertical biofacies, ichnofacies or taphofacies changes, stratigraphic gaps or hiatuses have been recorded. There is no evidence of taphonomic condensation (i.e. mixture of fossils of different age or different chronostratigraphic units). In relation to the rate of sedimentation, the Bomfordi and Convergens subzones are over 10 m thick.
- Structural complexity, synsedimentary and tectonic disturbances, or important alterations by metamorphism are not relevant constraints in the Bas-Auran area.
- The hemipelagic, bed-scale limestone-marl alternations show a maximum value of biostratigraphic completeness for the Bajocian/Bathonian transition. The Northwest European primary standard Convergens Subzone and the Sub-Mediterranean secondary standard Parvum subzones are in fact precisely coeval in the Bas-Auran area. Through five metres of thickness, 46 successive ammonoid fossil-assemblages in Ravin du Bès Section belonging to three biohorizons of the Parvum Subzone have been recognized. The Bomfordi Subzone attains a minimum thickness of 5 m and includes 42 successive ammonoid fossil-assemblages.
- The boundary has been characterized by both primary and secondary (auxiliary) biostratigraphic markers. There is a well-preserved, abundant and diverse fossil record across the boundary interval, with key markers (ammonites and nannofossils) for worldwide correlation of the uppermost Bajocian and Lower Bathonian. The section appears to be suitable for biostratigraphic study of microfossils, such as foraminifera, but as yet there are no published studies.
- Regional analyses of sequence stratigraphy and manganese chemostratigraphy are available. A transgressive systems tract associated with a deepening phase and sedimentary starvation, within 3rd and 2nd order deepening/shallowing cycles, was developed in the Bas-Auran area of the French Subalpine Basin, during the Early Bathonian. No data are currently available for strontium isotope (87Sr/86Sr ratio), oxygen isotope (δ18O) or carbon isotope (δ13C) chemostratigraphy.
- The stratigraphic trend in spectral gamma-ray data provides support for an Early Bathonian deepening half-cycle of second order, lacking evidence of stratigraphic gaps at the Bajocian-Bathonian transition.
- Bajocian and Bathonian deposits have been remagnetized with a steady normal polarity. The requirement of suitability for magnetrostratigraphy and geochronometry, however, can be indirectly satisfied by reference to the Bathonian magneto-

The requirements for a GSSP (ICS) Ravin du Bès Section (Bas Auran)

REQUIREMENTS	Y	N
Exposure over an adequate thickness	Y	
Continuous sedimentation	Y	
No gaps or condensation close to boundary	Y	
Role of sedimentation	About 4.5 m for the Convergens Subzone and at least 5 m for the Bomfordi Subzone	
Absence of synsedimentary and tectonic disturbances	Y	
Absence of metasomatism and strong diageneric alteration	Y	
Gamma ray spectrometry	Supporting sequence-stratigraphy results	
Geochronometry	No information	
Magnetostratigraphy	No significant result	
Sequence stratigraphy	Oratiansky et al., 1983, 1998	
Absence of vertical facies changes at or near the boundary	Yes	
Absence of metamorphism and strong diageneric alteration	Yes	
Free access for research	Yes	
Permanent protection for the site	Part of the European Geopark Réserve Naturelle Géologique Haute de Provence	
Absence of synsedimentary and tectonic disturbances	Y	
Absence of vertical facies changes at or near the boundary	Y	
Absence of taphonomic condensation	Y	
Absence of intraformational taphonomic changes	Y	
Absence of stratigraphic gaps or hiatuses	Y	
Absence of taphonomic changes	Y	

Figure 17. Summary of the requirements of the International Commission on Stratigraphy for Ravin du Bès Section (Bas-Auran).

December 2009
Acknowledgements

We would like to thank all members of the Bathonian Working Group, and in particular J.H. Callomon, V. Dietze, V. Mitta, K. Page, D.K. Pandey, T.P. Poulton and A. Wierzbowski, for constructive comments and suggestions which improved the original dossier. We are grateful to G Pieńkowski (Polish Geological Institute, Warszawa), an anonymous referee and M. Jayananda (editor of Episodes) for constructive suggestions on the manuscript. This work has been supported by the CGL2004-0694/BTE (MEC-CSIC) and CGL2008-01273/BTE (MICINN) projects, and grants from the 2006 and 2007 Geocconservation Projects, respectively coordinated at the Madrid and Torino universities.

References

Alméras, Y., and Fauré, P., 2008, Les Brachiopodes du Jurassique moyen sur la marge sud de la Téthys occidentale (Maroc, Algérie occidentale). Paléontologie et échelles chronostratigraphiques: Revue de Paléobiologie, v. 27, pp. 575-857.

Alméras, Y., Fauré, P., Elmi S., Enay, R., and Mangold, C., 2007, Les grandes foraminifères: Bulletin du Centre Alméras, Y., Fauré, P., Elmi S., Enay, R., and Mangold, C., 2007, Les Brachiopodes du Jurassique moyen sur la marge sud de la Téthys occidentale (Maroc, Algérie occidentale). Paléontologie et échelles chronostratigraphiques: Revue de Paléobiologie, v. 27, pp. 575-857.

Bassoullet, J.-P., 1997, Les grandes foraminifères: Bulletin du Centre de Recherches Elf Exploration Production, Mémoires 17, pp. 293-304.

Beznosov, N.V., and Mitta, V.V., 1998, Catalogue of Ammonitida and key sections of the Upper Bajocian – Lower Bathonian of North Caucasus [in Russian]: Moscow, VNIGNI, Nedra, 72 p.

Beznosov, N.V., and Mitta, V.V., 2000, Jurassic geology and ammonites of Great Balkhan (Western Turkmenistan) [in Russian]: Moscow, VNIGNI, Nedra, 115 p.

Bodergat, A.-M., 1997, Les ostracodes marins du Jurassique européen. Utilisation stratigraphique: Bulletin du Centre de Recherches Elf Exploration Production, Mémoires 17, pp. 197-223.

Bown, P.R., and Cooper, M.K.E., 1998, Jurassic, in Bown, P.R., ed, Calcareous Nannofossil Biostratigraphy: London, Kluwer Academic Publishers, pp. 34-85.

Bown, P.R., Cooper, M.K.E., and Lord, A.R., 1988, A calcareous nannofossil biozonation scheme for the early to Mid Mesozoic: Newsletter on Stratigraphy, v. 20, pp. 91-114.

Branger, P., 2004, Middle Jurassic Nautiloida from western France: Revista Italiana di Paleontologia e Stratigrafia, v. 110, pp. 141-149.

Braun, W.K., and Brooke, M.M., 1992, Ostracods of western Canada, in Westermann, G.E.G., ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 296-299.

Buckman, S.S., 1909–1930, Yorkshire Type Ammonites and Type Ammonites: London, Wesley, 790 pls.

Cai, H.-W., Li, J.-G., and Zhang, B.-G., 2006, Early and Middle Jurassic foraminifera from Tingri and Nyalam regions of southern Tibet, China: Acta Palaeontologica Sinica, v. 45, no. 4, pp. 437-452.

Callomon, J.H., 1985, The evolution of the Jurassic ammonite family Cardioceratidae: Special Papers in Palaeontology, v. 33, pp. 49-90.

Callomon, J.H., 1994, The ammonite succession in the Middle Jurassic of East Greenland: Bulletin of the Geological Society of Denmark, v. 40, pp. 83-113.

Callomon, J.H., 1993, The ammonite succession in the Middle Jurassic of East Greenland: Bulletin of the Geological Society of Denmark, v. 40, pp. 83-113.

Baumgartner, O.P., O’Dogherty, L., Gorican, S. Urquhart, E., Pillevuit, A., and De Wever, P., 1995, Middle Jurassic to lower Cretaceous Radiolaria of Tethys: occurrences, systematics, Biochronology: Mémoires de Géologie, v. 23, pp. 1-1162.

Beauvais, L., 1992, Corals of the circum-Pacific region, in Westermann, G.E.G., ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 324-327.

Bown, P.R., ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 324-327.
Callomon, J.H., 1995, Time from fossils: S.S. Buckman and Jurassic high-resolution geochronology: Geological Society, London, Memoirs, v. 16, pp. 127-150.

Callomon, J.H., 2003, The Middle Jurassic of western and northern Europe: its subdivisions, geochronology and correlations: Geological Survey of Denmark and Greenland Bulletin, v. 1, pp. 61-73.

Callomon, J.H., and Cope, J.C.W., 1995, The Jurassic Geology of Dorset, in Taylor, P.D., ed, Field Geology of the British Jurassic: London, Geological Society, pp. 51-104.

Callomon, J.H., and Rose G., 2000, Middle Jurassic ammonites from the island of Babar in the southern Moluccan Forearc, Indonesia: Revue de Paléobiologie, v. 8, pp. 53-64.

Callomon, J.H., Dietl, G., Galázcz, A., Grandl, H., Niederhöfer, H.J., and Zeiss, A., 1987, Zur Stratigraphie des Mittel- und unteren Oberjuras in Sengenthal bei Neumarkt/Opf. (Franckische Alb): Stuttgart Beiträge zur Naturkunde, v. 132, pp. 1-53.

Cariou, E., and Enay, R., 1999, Les ammonites du Bathonien et du Callovien de Thakkhola (Népal Central): biochronologie et intérêt paléogéo-géographique: Geobios, v. 32, pp. 701-726.

Cariou, E., Contini, D., Dommergues, J.L., Enay, R., Geyssant, J.R., Mangold, C., and Thierry, J., 1985, Biogéographie des Ammonites et évolution structurale de la Théys au cours du Jurassique: Bulletin de la Société géologique de France, v. 1, pp. 679-697.

Challinor, A.B., 1992, Belemnites of the southwestern Pacific, in Westermann, G.E.G., ed., The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 308-310.

Challinor, A.B., Doyle, P., Howlett, P.J., and Nañyaeva, T.I., 1992, Belemnites of the circumpacific region, in Westermann, G.E.G., ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 334-341.

Chandler, R.B., Glover, L., and Smith, D., 1999, A temporary section in the Inferior Oolite (Middle Jurassic) at Coldharbour Business Park, Dodge Cross, Sherborne: Proceedings of the Dorset Natural History and Archaeological Society, v. 120 (1998), pp. 69-72.

Chiari, M., Cobianchi, M., and Picotti, V., 2007, Integrated stratigraphy (radiolarians and calcareous nannofossils) of the Middle to Upper Jurassic Alpine radiolarites (Lombardian Basin, Italy): Constraints to their genetic interpretation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 249, pp. 233-270.

Cleal, C.J., and Rees, P.M., 2003, The Middle Jurassic flora from Stonesfield, Oxfordshire, UK: Palaeontology, v. 46, pp. 739-801.

Cobianchi, M., Erba, E., and Pirini Radizzani, C., 1992, Evolutionary trends of calcareous nannofossil genera Lotharingius and Watznaussia during the Early and Middle Jurassic: Memorie Scienze Geologica, v. 43, pp. 19-25.

Combèmorel, R., 1997, Belemnites: Bulletin du Centre de Recherches Elf Exploration Production, Mémoires 17, pp. 157-167.

Corbin, J.C., 1994, Evolution géochimique du Jurassique du Sud-Est de la France: influence des variations du niveau marin et de la tectonique. Unpublished PhD thesis, University of Paris VI.

Corbin, J.C., Person, A., Iatourea, A., Ferre, B., and Renard, M., 2000, Manganese in pelagic carbonates: indication of major tectonic events during the geodynamic evolution of a passive continental margin (the Jurassic European Margin of the Tethys-Ligurian Sea): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 156, pp. 123-138.

Cordey, F., Boughdiri, M., and Sallouhi, H., 2005, First direct age determination from the Jurassic radiolarian-bearing siliceous series (Jédidi Formation) of northwestern Tunisia: Comptes Rendus Geoscience, v. 337, pp. 777-785.

Courville, P., Thierry, J., and Cariou, E., 1999, Modalités évolutives du genre Bullatimorphites (Ammonitina) au Bathonien-Callovien (Jurassique moyen) en Europe occidentale: Comptes Rendus de l’Académie des Sciences de Paris, v. 328, no 1, pp. 81-88.

Cox, B.M., 1990, A review of Jurassic chronostratigraphy and age indicators for the UK, in Hardman, R.F.P. and Brooks, J., eds, Tectonic events responsible for Britain’s oil and gas reserves: London, Geological Society Special Publication No 55, pp 169-190.
Dietl, G., Fligl, R., and Glück, E., 1978, Zur Stratigraphie der Ober-Bajocium (Braunjura a/b Grenzschichten) am Plattengraben bei Balingen, Württemberg. Stuttgart: Beiträge zur Naturkunde, v. 40, pp. 1-16.

Dietl, G., Hugger, R., and Schaaf, D., 1983, Die Lage der Bajocium/Bathonium-Grenze (Mittlerer Jura) in der südwestlichen Schwäbischen Alb, SW-Deutschland: Jahreshefte der Gesellschaft für Naturkunde in Württemberg, v. 138, pp. 75-84.

Dietze, V., 2000, Fein stratigraphie und Ammonitenfauna der Acris-Subzone (Parkinsoni-Zone, Ober-Bajocium, Mittlerer Jura) am Ipfb (östliche Schwäbische Alb, Südwestdeutschland): Beiträge zur Naturkunde, v. 295, pp. 1-43.

Dietze, V., and Chandler, R.B., 1998, New Ammonites from the Zigzag Bed of Dorset: Dorset Proceedings, v. 119 (1997), pp. 109-116.

Dietze, V., and Dietl, G., 2006, Fein stratigraphie und Ammoniten-Faunen-horizonte im Ober-Bajocium und Bathonium des Ipfb-Gebietes (Schwäbische Alb, Südwestdeutschland): Beiträge zur Naturkunde, v. 360, pp. 1-51.

Dietze, V., and Schweigert, G., 2000, Zur Stratigraphie und Ammonitenführung des Ober-Bajociums und Bathoniums, insbesondere der Zigzag-Zone, Convergens-Subzone, von Röttingen (östliche Schwäbische Alb, Südwestdeutschland): Beiträge zur Naturkunde, v. 284, pp. 1-15.

Dietze, V., Krieger, T., and Schweigert, G., 1997, Über Oecopticyuchus subrefractus (BUCKMAN), Asphinctites tenuiplicatus (BRAUNS) und Polyasphinctites secundus (WETZEL) (Ammonoidea) aus dem Unter-Bathonium (Mittlerer Jura) der Oberpfalz (Nordost-Bayern, Südwestdeutschland): Beiträge zur Naturkunde, v. 245, pp. 1-25.

Dietze, V., Schweigert, G., Callomon, J.H., and Gauthier, H., 2002, Garantiana- und frühe Parkinsoni-Zone (Ober-Bajocium, Mittlerer Jura) am Ipfb (östliche Schwäbische Alb, SW-Deutschland) mit Bemerkungen zur Phylogenie der Ammonitengattung Garantiana Masche, 1907: Beiträge zur Naturkunde, v. 315, pp. 1-89.

Dietze, V., Ermer, G., Görlich, M., Ivanovic, Z., Krieger, Th., and Röper, M., 2004, Das Bajocium und Bathonium (Mittel-Jura) bei Greding (Frankische Alb, Südwestdeutschland): Archaeopteryx, v. 22, pp. 61-74.

Dietze, V., Schweigert, G., Callomon, J.H., Dietl, G., and Kapitzke, M., 2007, Der Mitteljura des Ipfb-Gebietes (östliche Schwäbische Alb, Südwestdeutschland). Korrelation der südwestdeutschen Ammoniten-Faunenhorizonte vom Ober-Bajocium bis zum Unter-Callovium mit Süddeutschland und Frankreich. Zitteliana, A47, pp. 105-125.

Elmi, S., 1967, Le Lias supérieur et le Jurassique moyen de l’Ardèche: installation sur la marge européenne de la Téthys de formes sud-téthysiennes d’origine arabo-romaine et description d’un néotype de M. busqueti (de Gross.): Revue de Paléobiologie, v. 20, pp. 503-524.

Elmi, R., Mangold, C., Du Dresnay, R., and Rakus, M., 1987b, Arazas de Arabian origin among the ammonite faunas of Morocco during the Bajocioc-Bathonian: Palaeoecography, Palaeoclimatology, Palaeoecology, v. 61, pp. 107-120.

Erba, E., Gauthier, H., Trevisan, M., Berton, J.B., Brivet, L., Brodbeck, J.L., Demaizeres, J.F., Donie, F., pour, A., and Trehour, M., 2001, Les Micromphalites (Ammonitina) du Bathonien inférieur de la Nièvre (France): installation sur la marge européenne de la Téthys de formes sud-téthysiennes d’origine arabo-romaine et description d’un néotype de M. busqueti (de Gross.): Revue de Paléobiologie, v. 26, pp. 335-358.

Erba, E., 1990b, Calcereous nannofossils from the Bas Auran section, in Rocha, R.B. and Soares, A.F., eds, 2nd International Symposium on Jurassic Stratigraphy 1987 (1988): Lisbon, Centro de Estratigrafia e Paleobiologia, University Nova de Lisboa, pp. 334-345.
Graciansky, P.-C. de, Dardeau, G., Bodeur, Y., Elmi, S., Fortwengler, D., Jacquin, T., Marchand, D., and Thierry, J., 1998b, Les Terres Noires du Sud-Est de la France (Jurassique moyen et supérieur): interprétation en termes de stratigraphie séquentielle: Bulletin du Centre de Recherches Eléf Exploration–Production, v. 22, pp. 35-66.

Gradstein, F.M., and Ogg, J.G., 2004, Geologic Time Scale 2004 – why, how and where next!: Lethaia, v. 37, pp. 175-181.

Gradstein, F.M., Finney, S.C., Lane, R., and Ogg, J.G., 2003, ICS on stage: Lethaia, v. 36, pp. 371-378.

Gradstein, F.M., Ogg, J.G., and Smith, A.G., eds., 2005, A Geologic Time Scale 2004. Cambridge, Cambridge University Press, 589 p.

Gräfe, K.-U., 2005, Benthic foraminifers and palaeoenvironment in the Lower and Middle Jurassic of the Western Basque-Cantabrian Basin (Northern Spain): Journal of Iberian Geology, v. 31, pp. 217-233.

Gröschke, M., 1996, Zwei neue Ammoniten der Gattung Iniskinites aus dem Bathonium (Mitteljura) von Nordchile: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 1996, pp. 140-146.

Gröschke, M., and Hillebrandt, A. von, 1994, The Bathonian in Northern Chile: Geobios M.S., v. 17, pp. 255-264.

Guex, J., 1987, Corrélations biochronologiques et associations unitaires. Presses Polytechniques Romandes, Lausanne, 244 p.

Guillaume, L., 1938, Observations sur la limite inférieure des marnes à Posinomona alpina entre Digne et Castellane: Compte Rendu Sommaire des Séances de la Société Géologique de France, pp. 189-199.

Hall, R.L., 1984, Lithostratigraphy and biostratigraphy of the Fernie Formation (Jurassic) in the southern Canadian Rocky Mountains: Canadian Society of Petroleum Geologists Memoir, v. 9, pp. 233-247.

Hall, R.L., 1988, Late Bajocian and Bathonian (Middle Jurassic) ammonites from the Fernie Formation, Canadian Rocky Mountains: Journal of Paleontology, v. 62, pp. 575-586.

Hall, R.L., 1989, New Bathonian (Middle Jurassic) ammonite faunas from the Fernie Formation, southern Alberta: Canadian Journal of Earth Sciences, v. 26, pp. 16-22.

Hall, R.L., and Strophan, N.I., 1981, First record of late Bajocian (Jurassic) ammonites in the Fernie Formation, Alberta: Canadian Journal of Earth Sciences, v. 18, pp. 919-925.

Hall, R., and Westermann, G.E.G., 1980, Lower Bajocian (Jurassic) cephalopod faunas from Western Canada and proposed assemblage zones for the Lower Bajocian of North America: Palaeontographica Americana, v. 9, pp. 1-93.

Hallam, A., 1994, An outline of Phanerozoic Biogeography: Oxford, Oxford University Press, 246 p.

Halloy J.J. d’O., 1843, Précis élémentaire de géologie: Paris, A. Bertrand Ed., 790 p.

Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., Graciansky, P.-C. de, and Vail, P.R., 1998, Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. in Graciansky, P.C. de, Hardenbol, J., Jacquin, T. and Vail, P.R., eds, Mesozoic and Cenozoic Sequence Stratigraphy of European Basins: SEPM (Society for Sedimentary Geology) Special Publication, No. 60, pp. 3-14.

Harland, W.B., Cox, A.V., Llewellyn, P.G., Pickton, C.A.G., Smith, A.G., and Walters, R., 1982, A Geologic Time Scale: Cambridge, Cambridge University Press, 131 p.

Haug, E., 1891, Les Chaînes Subalpines entre Gap et Digne: Bulletin du Service de la Carte Géologique de France, v. 21, pp. 1-192.

Hillebrandt, A. von, 1995, A Late Bathonian morphoceratid (Jurassic, Ammonitina) from Peru: Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, v. 35, pp. 27-37.

Hillebrandt, A. von, 2001, Ammonite stratigraphy of the Bajocian in Northern Chile: Hanteniiana, v. 3, pp. 49-87.

Hillebrandt, A. von, Smith, P., Westermann, G.E.G. and Callomon, J.H., 1992a, Ammonites zones of the circum-Pacific region, in Westermann, G.E.G., ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 247-272.

Hillebrandt, A. von, Westermann, G.E.G., Callomon, J.H., Dettemer, R.L., 1992b, Ammonites of the circum-Pacific region, in Westermann, G.E.G., ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 342-359.

Imlay, R.W., 1980, Middle Jurassic (Bathonian) ammonites from Southern Alaska: U. S. Geological Survey Professional Paper, v. 1091, pp. 1-42.

Imlay, R.W., 1981, Jurassic (Bathonian and Callovian) ammonites in Eastern Oregon and Western Idaho: U. S. Geological Survey Professional Paper, v. 1142, pp. 1-24.

Imlay, R.W., 1982, Late Bajocian ammonites from Southern Alaska: U. S. Geological Survey Professional Paper, v. 1189, pp. 1-21.

Imlay, R.W., 1984, Jurassic ammonite successions in North America and biogeographic implications, in Westermann, G.E.G., ed, Jurassic-Cretaceous biochronology and paleontology of North America: Geological Association of Canada, Special Paper 27, pp. 1-12.

Innocenti, M., Mangold, C., Pavia, G., and Torrens, H.S., 1990, A proposal for the formal ratification of the basal boundary stratotype of the Bathonian Stage based on a Bas Auran section (S.E. France), in Rocha, R.B. and Soares, A.F., eds, 2nd International Symposium on Jurassic Stratigraphy 1987 (1988): Lisbon, Centro de Estratigrafia e Paleobiologia, University Nova de Lisboa, pp. 333-346.

Jacquin, T., Dardeau, G., Durlet, C., Graciansky, P.C. de, and Hantzpergue, P., 1998, The North Sea Cycle: an overview of 2nd-order transgressive/regressive facies cycles in Western Europe, in Graciansky, P.C. de, Hardenbol, J., Jacquin, T. and Vail, P.R., eds, Mesozoic and Cenozoic Sequence Stratigraphy of European Basins: SEPM (Society for Sedimentary Geology) Special Publication, No. 60, pp. 445-466.

Jain, S., 2008, Integrated Jurassic biostratigraphy: A closer look at nannofossil and ammonite evidences from the Indian subcontinent. Current Research, v. 95, pp. 326-331.

Jaitly, A.K., and Singh, C.S.P., 1983, Discovery of the Late Bajocian-Leptosphinctes BUCKMAN (Jurassic Ammonitina) from Kachchh, Western India: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1983, pp. 91-96.

Jaitly, A.K., and Singh, C.S.P., 1984, On the Bathonian (Middle Jurassic) ammonites Micromphalites Buckman and Gracilisphinctes Buckman from Kachchh, Western India: Geological Magazine, v. 121, pp. 319-321.

Jana, B.N. and Hilton, J., 2007, Resolving the age of the Mesozoic Kuar Bet Beds (Kachchh, Gujarat, India): A reinvestigation of palaeobotanical and palynological assemblages: Journal of Asian Earth Sciences, v. 30, pp. 457-463.

Jenkyns, H., Jones, C., Gröcke, D., Hesselbo, S., and Parkinson, N.,
2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography: Journal of the Geological Society, London, v. 159, pp. 351-378.

Joly, B., 2000, Les Juraphyllitidae, Phylloceratidae, Neophylloceratidae (Phyllocerataceae, Phylloceratina, Ammonoidea) de France au Jurrassique et au Cretace: Geobios M. S., v. 23, pp. 1-24.

Kaenel, E. de, and Bergen, J.A., 1993, New Early and Middle Jurassic calcocollith taxa and biostratigraphy from the eastern proto-Atlantic (Morocco, Portugal and DSDP Site 547B): Eclogae Geologicae Helvetiae, v. 86, pp. 861-907.

Kaenel, E. de, Bergen, J.A., and Salis Perch-Nielsen, K. von, 1996, Jurassic calcarceous nannofossil biostratigraphy of Western Europe. Compilation of recent studies and calibration of bioevents: Bulletin de la Société Géologique de France, v. 167, pp. 15-28.

Kimura, T., Lebedev, E.L., Markovich, E.M., and Samylina, V.A., 1996, Neophylloceratidae (Ammonoidea, Perisphinctidae) bathoniens du Jura méridional, de la Nièvre et du Portugal: Geobios, v. 3 (1970), pp. 43-130.

Krymholts, G. Ya., Mesezhnikov, M.S., Westermann, G.E.G., eds., The Jurassic Ammonite Zones of the Soviet Union. Geologial Society of America, Special Paper 223, pp. 23-28.

Krystyn, L., 1971c, Morphoceratidae (Ammonoidea, Perisphinctidae) bathoniens du Jura méridional, de la Nièvre et du Portugal: Geobios, v. 3 (1970), pp. 43-130.

Kostler, L., and Schairer, G., 1996, Morphoceras aus dem "Parkinsonien-Oolith" (Mittlerer Jura) von Segenthal/Opf: Mitteilungen der Bayerischen Staatsammlung für Paläontologie und Historische Geologie, v. 36, pp. 81-85.

Kopik, J., 2006, Bathanion ammonites of the families Sphaeroceratidae, BUCKMAN and Tulitidae BUCKMAN from the Polish Jura Chain (Southern Poland): Polish Geological Institute, Special Papers, v. 21, pp. 1-68.

Krymolots, G. Ya., 1989, Bajocian, in Krymolots, G. Ya., Mesezhnikov, M.S., Westermann, G.E.G., eds., The Jurassic Ammonite Zones of the Soviet Union. Geologial Society of America, Special Paper 223, pp. 23-28.

Krystyn, L., 1972, Die Oberbajocium- und Bathonium-Ammoniten der Klaus-Schichten des Steinbruches Neumühle bei Wien (Österreich): Annalen des Naturhistorischen Museum in Wien, v. 76, pp. 195-310.

Lemoine, M., 1984, Mesozoic evolution of the western Alps: Annales Geophysicae, v. 2, pp. 171-172.

Lemoine, M., 1985, Structuration jurassique des Alpes occidentales et palinspastiques de la Téthys ligure. Bulletin de la Société Géologique de France, v. 8, pp. 126-137.

Lemoine, M., Graciansky, P.C. de, and Tricart, P., 2000, De l'océan à la chaîne de montagnes: Tectonique des plaques dans les Alpes. Gordon and Breach Science Publishers, Paris, 206 p.

Léonide, P., Floquet, M., and Villier, L., 2007, Interaction of tectonics, eustasy, climate and carbonate production on the sedimentary evolution of an early/middle Jurassic extensional basin (Southern Provence Sub-basin, SE France). Basin Research, v. 19, pp. 125-152.

Luczynski, P., Matyja, B. A., and Wierzbowski, A., 2000, Ontogeny and ecological interpretation of the ammonites of the Aspichnites-Polyaspichnites group (Tenuiplicatus Zone, lower Bajocian): Budapest, Bajocian-Bathonian Working Groups Meeting, pp. 23-24.

Majidifard, M.R., 2003, Biostratigraphy, Lithostratigraphy, ammonite taxonomy and microfacies analysis of the Middle and Upper Jurassic of northeastern Iran. Dissertation zur Erlangung des Naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg, 201 p.

Manceño, M.O., and Dagys, A.S., 1992, Brachiopods of the circum-Pacific region, in Westermann, G.E.G, ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 328-333.

Mangold, C., 1971a, Stratigraphie des étages Bathonien et Callovien du Jura Méridional: Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon, v. 41, 1, (1970), pp. 1-376.

Mangold, C., 1971b, Les Perisphinctidae (Ammonitina) du Jura Méridional au Bathonien et au Callovien: Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon, v. 41 (1970), no. 2, pp. 1-246.

Mangold, C., 1971c, Morphoceratidae (Ammonoidea, Perisphinctidae) bathoniens du Jura méridional, de la Nièvre et du Portugal: Geobios, v. 3, 1970, pp. 43-130.

Mangold, C., 1981, Le Bathonien de l'Est du Subbétique (Espagne du Sud): Cuadernos de Geología, v. 10 (1979), pp. 271-281.

Mangold, C., 1984, Report of the Bajocian Working Group, in Michelsen O. and Zeiss A., eds., 1st International Symposium on Jurassic Stratigraphy (IUGS), Copenhagen, Geological Survey of Denmark, pp. 67-75.

Mangold, C., 1990, Le Bathonien du Cap Mondego (N de Figueira da Foz, Portugal). Biochronologie et corrélations: Cahiers de l'Université Catholique de Lyon, v. 4, pp. 89-105.

Mangold, C., 1997a, Tendances évolutives chez les Morphocéradités (Périsphinctactés, Ammonitina): Cahiers de l'Université Catholique de Lyon, v. 10, pp. 93-101.

Mangold, C., 1997b, Le Jurassic moyen: Bulletin du Centre de Recherches Elf Exploration Production, Mémoires, v. 17, pp. 355-361.

Mangold, C., 1999, Report of the Bajocian-Bathonian boundary Working Group: International Subcommission on Jurassic Stratigraphy, Newsletter, v. 26, pp. 50-52.

Mangold, C., and Gyg, R., 1997, Bathonien ammonites from Canton Aargau, Northern Switzerland: stratigraphy, taxonomy and biogeography: Geobios, v. 30, pp. 497-518.

Mangold, C., and Riout, M., 1997, Bathonien: Bulletin du Centre de Recherches Elf Exploration Production, Mémoires, v. 17, pp. 55-62.

Martire, L., 1989, Analisi biostratigrafica e sedimentologica del rosso ammonitico veronese dell'Altopiano di Asiago. Thesis, University of Turino, 166 pp.

Martire, L., and Pavia, G., 2004, Jurassic sedimentary and tectonic processes at Montagna Grande (Trapanese Domain, Western Sicily, Italy): Rivista Italiana di Paleontologia e Stratigrafia, v. 110, pp. 23-33.

Mattiodi, E., and Erba, E., 1999, Synthesis of calcarceous nannofossil events in the Tethyan Lower and Middle Jurassic: Rivista Italiana di Paleontologia e Stratigrafia, v. 105, pp. 343-376.

Matyja, B.A., and Wierzbowski, A., 2000, Ammonites and stratigraphy of the uppermost Bajocian and Lower Bathonian between Częstochowa and Wielun, Central Poland: Acta Geolocia Polonica, v. 50, pp. 191-209.

Matyja, B.A., and Wierzbowski, A., 2001, Palaeogeographical distribution of early Bajocian ammonites of the Aspichnites-Polyaspichnites group: Haktenkiana, v. 3, pp. 89-103.

Maubeuge, P.L., 1950, Sur le Bathonien et en particulier sur le Bathonien lorrain (note préliminaire). Nancy, Impr. Thomas, 16 p.

Meledina, S. V., 1989, Bathonian, in Krymolots, G. Ya., Mesezhnikov,
Mitteilungen aus dem Museum des Koeniglichen Bayerischen Staates, v. 3, pp. 127-266.

Oppel, A., 1865, Geognostische Studien in den Ardèche Departement: Paläontologische Mitteilungen aus dem Museum des Koeniglichen Bayerischen Staates, v. 5, pp. 305-322.

Orbigny, A. d’, 1842–1851, Paléontologie française. Terrain Jurassique. 1. Céphalopodes: Paris, Masson Ed., 641 p.

Orbigny, A. d’, 1849–1852, Cours élémentaire de paléontologie et de géologie stratigraphiques. Paris, Masson Ed., 1145 p.

Ouahhabi, B., 1994, Le Lias et le Dogger inférieur des Beni Snassen Orbigny, A. d’, 1849–1852, Cours élémentaire de paléontologie et de géologie stratigraphiques. Paris, Masson Ed., 1145 p.

Ouahhabi, B., 1994, Le Lias et le Dogger inférieur des Beni Snassen Orbigny, A. d’, 1849–1852, Cours élémentaire de paléontologie et de géologie stratigraphiques. Paris, Masson Ed., 1145 p.

Ouahhabi, B., 1994, Le Lias et le Dogger inférieur des Beni Snassen Orbigny, A. d’, 1849–1852, Cours élémentaire de paléontologie et de géologie stratigraphiques. Paris, Masson Ed., 1145 p.

Panda, D.K., 1996, Ammonites hétéromorphes et autres Parkinsoniidés du Bathonien-Callovien inférieur de Vadu Crisului (Monts Apuseni - Roumanie): Mémoires Institut de Géologie et de Géophysique, v. 36, pp. 13-19.

Pavia, G., 1973, Ammoniti del Bajociano superiore di Digne (Francia SE, Dip. Basses-Alpes): Bolletino della Società Paleontologica Italiana, v. 10, no. 2 (1971), pp. 75-142.

Pavia, G., 1983a, Il genere Psychopyhloceras Spath, 1927 (Ammonoidea, Phyllocerataceae) nel Bajociano sudeuropeo: Atti della Accademia Nazionale dei Lincei, Memorie 1982, v. 17, pp. 1-31.

Pavia, G., 1983b, New data on Orthogonaria (Torrensia) Strunari, 1971 (Ammonitina, Stephanocerataceae) in the European Upper Bajocian: Bolletino del Museo Regionale di Scienze Naturali di Torino, v. 1, pp. 201-214.

Pavia, G., 1984, Bajocien et Bajocien de l’Arc de Digne, in Debrand-Passard, S., ed, Synthèse géologique du Sud-Est de la France: Mémoire B.R.G.M., v. 125, pp. 199-200.

Pavia, G., 1994, Taphonomic remarks on d’Orbigny’s type-Bajocian Bayeux, west France): Servizio Geologico Nazionale, Miscelanea, v. 5, pp. 93-111.

Pavia, G., 2000, Subcollina (Ammonitida) from the topmost Lower Bajocian: their phylogenetic and palaeogeographic significance: GeoResearch Forum, v. 6, pp. 397-406.

Pavia, G., 2007, Lissoceras monachum (Gemmellaro), a ghost Ammonitida of the Tethyan Bajocian: Bolletino della Società Paleontologica Italiana, v. 45 (2006), pp. 217-226.

Pavia, G., and Cresta, S., coords., 2002, Revision of Jurassic ammonites of the Gemmellaro collections: Quaderni del Museo Geologico “G.G. Gemmellaro”, v. 6, pp. 1-408.

Pavia, G., and Sturani, C., 1968, Étude biostratigraphique du Bajocien des Chaînes Subalpines aux environs de Digne (Basses-Alpes): Bolletino della Società Geologica Italiana, v. 87, pp. 305-316.

Pavia, G., Martire, L., Canzoneri, V., and D’Arpa, C., 2002, Rocca chi Parra quarry, a condensed Rosso Ammonitico succession: depositional and erosional geometries, neptunian dykes and ammonite assemblages, in Santantonio, M., ed, General Field Trip Guidebook: Palermo, VI International Symposium on the Jurassic System, pp. 42-48.

Pavia, G., Fernández-López, S.R., and Mangold, C., 2008, Ammonoid succession at the Bajocian-Bathonian transition in the Bas Auran area, Digne district, South-East France: Rivista Italiana di Paleontologia e Stratigrafia, v. 114, pp. 287-311.

Paulelak, T., and Aigner, T., 2003, Stratigraphic architecture and gamma ray logs of deeper ramp carbonates (Upper Jurassic, SW Germany): Sedimentary Geology, v. 159, pp. 203-240.

Paulelak, T., and Aigner, T., 2004, Dynamic stratigraphy as a tool in economic mineral exploration: ultra-pure limestones (Upper Jurassic, SW Germany): Marine and Petroleum Geology, v. 21, pp. 499-516.

Pellenard, P., Deconinck, J.-F., Huff, W.D., Thierry, J., Marchand, D., Fortwengler, D., and Trouiller, A., 2003, Characterization and correlation of Upper Jurassic (Oxfordian) bentonite deposits in the Paris Basin and the Subalpine Basin, France: Sedimentology, v. 50, pp. 1035-1060.

Pessagno, E. Jr., and Mizutani, S., 1992, Radiolarian biozones of North America and Japan, in Westermann, G.E.G., ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. pp. 293-295.

December 2009
Poulsen, N.E., 1997, Report on samples from Bas Auran, SE France: Jurassic Microfossil Group Newsletter, v. 6, pp. 9-10.

Poulsen, N.E., and Riding, J.B., 2003, The Jurassic dinoflagellate cyst zonation of Subboreal Northwest Europe: Geological Survey of Denmark and Greenland Bulletin, v. 1, pp. 115-144.

Pouillon, T.P., 1987, Zonation and correlation of Middle Boreal Bajocian to lower Callovian (Jurassic) ammonites, Salmon Cache Canyon, Porcupine River, northern Yukon: Geological Survey of Canada, Bulletin, v. 358, pp. 1-155.

Pouillon, T.P., Hall, R.L., Tipper, H.W., Cameron, B.E.B., and Carter, E.S., 1991, Current status of Middle Jurassic biostratigraphy of the Queen Charlotte Islands, British Columbia: Geological Survey of Canada, Paper, v. 90-10, pp. 237-252.

Pouillon, T.P., Hall, R.L., and Callomon, J.H., 1994, Ammonite and bivalve assemblages in Bajocian through Oxfordian strata of northern Bowser Basin, northwestern British Columbia, Canada: Geobios M.S., v. 17, pp. 415-421.

Prasad, S., Jain, R.L., and Srivastava, M.S., 2007, Record of Middle Jurassic (Bathonian) ammonite genus Cydnoceras Blake from Jaisalmer Basin, western Rajasthan: Journal of the Geological Society of India, v. 69, pp. 53-56.

Raddadi, M.C., Vanneau, A.A., Poupeau, G., Carrio-Schaffhauser, E., Arnaud, H., and Rivera, A., 2005, Interpretation of gamma-ray logs: The distribution of uranium in carbonate platform: Comptes Rendus Geosciences, v. 337, pp. 1457-1461.

Remane, J., Bassett, M.G., Cowie, J.W., Gorbrhandt, K.H., Lane, H.R., Milchelson, O., and Wang, N., 1996, Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission of Stratigraphy (ICS): Episodes, v. 19, pp. 77-81.

Repin, Yu.S., Zakharov, V.A., Meledina, S.V. and Nalnyaeva, T.L., 2006, Atlas of the mollusks of the Pechora Jurassic. Bulletin of VNIGRI, v. 3, 262 p. [in Russian].

Repin, Yu.S., Fedorova, A.A., Bystrova, V.V., Kulikova, N.K. and Polubotko I.V., 2007, Mesozoic of the Barents Sea sedimentological basin, in Kirichkova, A.V. and Dmitrieva, T.V., eds., Stratigraphy and its role in development of the oil and gas complex of Russia: VNIGRI, Saint-Petersburg, pp. 112-161. [in Russian].

Riccardi, A.C., 1985, Los Eurycephalitinae andinos (Ammonitina, ammonite fauna and biochronology of the Argentine-Chilean Andes. Part III: Bajothonian-Callovian Eurycephalitinae, Stephanoceratidae: Palaeontographica, v. 216, pp. 1-110.

Riccardi, A.C., and Westermann, G.E.G., 1991a, Middle Jurassic ammonite fauna and biochronology of the Argentine-Chilean Andes. Part III: Bajothonian-Callovian Eurycephalitinae, Stephanoceratidae: Palaeontographica, v. 216, pp. 111-145.

Riccardi, A.C., and Westermann, G.E.G., 1999, An early Bajothonian ammonite fauna from Argentina: Palaeontology, v. 42, pp. 193-209.

Riccardi, A.C., Westermann, G.E.G., and Elmi, S., 1990a: The Middle Jurassic Bajothonian-Callovian Ammonite Zones of the Argentine-Chilean Andes: Geoibios, v. 22 (1989), pp. 553-597.

Riccardi, A.C., Westermann, G.E.G., and Damborenea, S.S.E., 1990b, Middle Jurassic of South America and Antarctic Peninsula: Newsletter on Stratigraphy, v. 21, pp. 105-128.

Riccardi, A.C., Westermann, G.E.G., and Elmi, S., 1991, Biostratigraphy of the upper Bajothonian-middle Callovian (Middle Jurassic), South America: Journal of South American Earth Sciences, v. 4, pp. 149-157.

Riccardi, A.C., Damborenea, S.E., Manceño, M.O., and Ballent, S.C., 1994, Middle Jurassic biostratigraphy of Argentina: Geobios M.S., v. 17, pp. 423-430.

Riding, J.B., and Thomas, J.E., 1992, Dinoflagellate cysts of the Jurassic System, in Powell A.J., ed, A stratigraphic index of dinoflagellate cysts. London, Chapman and Hall, pp. 7-97.

Riout, M., 1964, Le stratotype du Bajocien: Colloque du Jurassique Luxembourg 1962, Comptes Rendus et Mémoires, pp. 239-258.

Riout, M., Contini, D., Elmi, S., and Gabilly, J., 1997, Bajocien: Bulletin du Centre de Recherches Elf Exploration Production, Mémoires, v. 17, pp. 41-53.

Rogov, M., Zakharov, V., and Kiselev, D., 2009, Molluscan immigrations via biogeographical ecotone of the Middle Russian Sea during the Jurassic. Zovumia Jurassica, v. 6, pp. 143-152.

Rostovtsev, K.O., 1985, The Jurassic deposits of the south part of the Transcaucasia [in Russian], Leningrad, Nauka, 188 p.

Roy, P., Bardhan, S., Mitra, A., and Jana, S.K., 2007, New Bajothonian (Middle Jurassic) ammonite assemblages from Kutch, India: Journal of Asian Earth Sciences, v. 30, pp. 629-651.

Ruban, D.A., 2006, Taxonomic diversity dynamics of the Jurassic bivalves in the Caucasus: Regional trends and recognition of global patterns: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 239, pp. 63-74.

Ruf, M., Link, E., Pross, J., and Aigner, T., 2005, Integrated sequence stratigraphy: Facies, stable isotope and palynofacies analysis in a deeper epicontinental carbonate ramp (Late Jurassic, SW Germany): Sedimentary Geology, v. 175, pp. 391-414.

Rugt, C., and Nicollin, J.P., 1997, Les petits foraminifères benthoniques dégagés: Bulletin du Centre de Recherches Elf Exploration Production, Mémoires, v. 17, pp. 281-291.

Rulleau, L., 2006, Biostratigraphie et paléontologie du Lias supérieur et du Dogger de la région lyonnaise. Lozanne, Lafarge Ciments, 382 p.

Saltykov, V.F., 2007, The sequence of the ammonite and foraminifer zones in Bajocian – Bathonian section of the Lower Volga area [in Russian]: in Zakharov, V.A., ed, Jurassic System of Russia: problems of Stratigraphy and Paleogeography. Second all-Russian meeting: Yaroslavl, Yaroslavl State Pedagogical University, pp. 201-203.

Saltykov, V.F., 2008, The Middle Jurassic from the northern terminations of the Don-Medveditsa dislocations. Saratov, Nauka, 308 p. [in Russian].

Saltykov, V.F., Startseva, G.N. and Troitskaya, E.A. 2008, Stratigraphy
of the Bajocian – Bathonian marine deposits of the Volga Region, News of Saratov University, v. 8, Ser. Earth Sciences, pp. 56-71. [in Russian].

Sandoval, J., 1986, Middle Jurassic Haploceratidae (Ammonitina) from the Subbetic Zone (South Spain): Geobios, v. 19, pp. 435-463.

Sandoval, J., 1990, A revision of the Bajocian divisions in the Subbetic Domain (southern Spain): Memoire descrittive della Carta Geologica d’Italia, v. 40, pp. 141-162.

Sandoval, J., 1994, The Bajocian Stage in the Island of Majorca: biostratigraphy and ammonite assemblages: Servizio Geologico Nazionale, Miscellanea, v. 5, pp. 293-215.

Sandoval, J., and Westermann, G.E.G., 1986, The Bajocian ammonite fauna of Oaxaca: Journal of Paleontology, v. 60, pp. 1220-1271.

Sandoval, J., Westermann, G.E.G., and Marshall, M.C., 1990, Ammonite fauna, stratigraphy and ecology of the Bathonian-Callovian (Jurassic) Tecocoyunca Group, South Mexico: Palaeontographica, v. 210, pp. 93-149.

Sandoval, J., O’Dogherty, L., and Guex, J., 2001, Evolutionary rates of Jurassic ammonites in relation to sea-level fluctuations: Palaiso, v. 16, pp. 311-335.

Sarjeant, W.A.S., Volkheimer, W., and Zhang, W.P., 1992, Jurassic Sandoval, J., Westermann, G.E.G., and Marshall, M.C., 1990, Ammonite fauna, stratigraphy and ecology of the Bathonian-Callovian (Jurassic) Tecocoyunca Group, South Mexico: Palaeontographica, v. 210, pp. 93-149.

Sarjeant, W.A.S., Volkheimer, W., and Zhang, W.P., 1992, Jurassic Palynomorphs of the circum-Pacific region, in: Westermann, G.E.G. ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 273-292.

Sato, T., 1992, Southeast Asia and Japan, in: Westermann, G.E.G. ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 194-213.

Schaier, G., 1987, Ammoniten aus Bajoc und Bathon (mittlerer Jura) von Segenthal: Mitteilungen der Bayerischen Staatsammlung für Paläontologie und Historische Geologie, v. 27, pp. 31-50.

Schaier, G., 1994, Polysphinctites polysphinctus Buckman aus dem “Parkinsonien-Oolith” von Segenthal: Mitteilungen der Bayerischen Staatsammlung für Paläontologie und Historische Geologie, v. 34, pp. 159-162.

Schlögl, J., and Rakís, M., 2004, Ammonites of Arabian origin from the Early Bathonian of the Czorsztyń Unit, Pieniny Klippen Belt (Western Carpathians, Slovakia): Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 2004, pp. 449-460.

Schlögl, J., Rakís, M., Mangold, C., and Elmi, S., 2005, Bajocian–Bathonian ammonite fauna of the Czorsztyń Unit, Pieniny Klippen Belt (Western Carpathians, Slovakia); its biostratigraphical and palaeobiogeographical significance: Acta Geologica Polonica, v. 55, pp. 339-359.

Schlögl, J., Elmi, S., Rakís, M., Mangold, C., and Ouahhabi, M., 2006, Specialization and iterative evolution of some Western Tethyan Bathonian ammonites [Benatinites (B.) nov., B. (Lagariceras) nov. and Hemigarantiana]: Geobios, v. 39, pp. 113-124.

Schnyder, J., Ruffell, A., Deconinck, J.F., and Baudin, F., 2006, Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, U.K.): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 229, pp. 303-320.

Schweigert, G., and Dietze, V., 1998, Revision der dimorphener Ammoniten gattungen Phlycticeras HYATT – Oecoptychius NEUMAYR (Strigoceratidae, Mitteljura): Stuttgarter Beiträge zur Naturkunde, v. 269, pp. 1-59.

Schweigert, G., Dietze, V., and Dietz, G., 2002, Erstnachweis der Ammoniten-Gattung Parkinsonia BAYLE, 1878 in der Garantiana-Zone (Tetragona-Subzone): Stuttgarter Beiträge zur Naturkunde, v. 320, pp. 1-15.

Schweigert, G., Dietz, G., and Dietze, V., 2003, Neue Nachweise von Phlycticeras und Oecoptychius (Ammonitina: Strigoceratidae, Phlycticeratinae): Stuttgarter Beiträge zur Naturkunde, v. 335, pp. 1-21.

Schweigert, G., Dietze, V., Chandler, R.B., and Mitta, V., 2007, Revision of the Middle Jurassic dimorphic ammonite genera Strigoceras/Cadomoceras (Strigoceratidae) and related forms: Stuttgarter Beiträge zur Naturkunde, v. 373, pp. 1-74.

Sey, I.L., Repin, Y.S., Kalacheva E.D., Okuneva, T.M., Paraketsov, K.V., and Polubotko, I.V., 1992, Eastern Russia, in: Westermann, G.E.G., ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 225-245.

Sey, I.L., Okuneva, T.M., Novo, T.D., Kalacheva E.D., and Yazykova, E.A., 2004, Atlas of Mesozoic marine fauna of the Far East of Russia. A.P. Karpinsky All-Russian Geological Research Institute (VSEGEI), Saint-Petersburg, 234 p. [in Russian].

Seyed-Emami, K., Schairer, G., and Bolourchi, M.H., 1985, Ammoniten aus der unteren Dalichy-Formation (oberes Bajocium bis unteres Bathonium) der Umgebung von Abe-Garm (Avaj, NW-Zentraliran): Zitteliana, v. 12, pp. 57-85.

Seyed-Emami, K., Schairer, G., and Alavi-Naini, M., 1989, Ammoniten aus der unteren Dalichy-Formation (Unterbathon) östlich von Semnan (SE-Alborz, Iran): Müncher geowissenschaftliche Abhandlungen, v. 15, pp. 79-91.

Seyed-Emami, K., Schairer, G., Aghanabati, S.A., and Fazl, M., 1991, Ammoniten aus dem Bathon der Gegend von Tabas - Nayband (Zentraliran): Müncher Geowissenschaftliche Abhandlungen, v. A 19, pp. 65-100.

Seyed-Emami, K., Schairer, G., and Behroozi, A., 1994, Einige Ammoniten aus der Kasarafud-Formation (Mittlerer Jura) E Mashhad (NE-Iran): Mitteilungen der Bayerischen Staatsammlung für Paläontologie und Historische Geologie, v. 34, pp. 145-158.

Seyed-Emami, K., Schairer, G., Aghanabati, S.A., Fürsich, F.T., Senowbari-Daryan, B., and Majidifar, M.R., 1998a, Cadomites aus der unteren Baghamshah-Förmation (Unterbathon, Mittlerer Jura) SW Tabas (Zentraliran): Mitteilungen der Bayerischen Staatsammlung für Paläontologie und Historische Geologie, v. 38, pp. 111-119.

Seyed-Emami, K., Schairer, G., Aghanabati, S.A., Fürsich, F.T., Senowbari-Daryan, B., and Majidifar, M.R., 1998b, Bullatimorphites aus dem Oberbathon (Mittlerer Jura) SW Tabas (Zentraliran): Mitteilungen der Bayerischen Staatsammlung für Paläontologie und Historische Geologie, v. 38, pp. 121-134.

Singh, C.S.P., Jaitly, A.K., and Pandey, D.K., 1982, First report of some Bajocian-Bathonian (Middle Jurassic) ammonoids and the age of the oldest sediments from Kachchh, W. India: Newsletters on Stratigraphy, v. 11, pp. 37-40.

Singh, C.S.P., Pandey, D.K., and Jaitly, A.K., 1983, Discovery of Clydoniceras Blake and Gracilisphinctes Buckman (Bathonian-Middle Jurassic Ammonites) in Kachchh, Western India: Journal of Paleontology, v. 57, pp. 821-824.

Souassi, M., Mangold, C., Enay, R., Boughdiri, M., and Ben Ismail, D. December 2009
M.H., 2000, Le Jurassic inférieur et moyen de la Tunisie septentrionale; corrélations avec l’axe Nord-Sud et paléogéographie: Geobios, v. 33, pp. 437-446.

Steiner, M., Ogg, J., Sandvol, J., 1987, Jurassic magnetostratigraphy.

3. Bathonian-Bajocian of Carcabuey, Sierra Harana and Campillo de Arenas (Subbetic Cordillera, Southern Spain): Earth and Planetary Science Letters, v. 82, pp. 357-372.

Stephanov, J., 1972, Monograph on the Bathonian ammonite genus

Siemiradzkia Hyatt, 1900 (nomenclature, taxonomy and phylogeny): Travaux sur la Geologie de Bulgarie, v. 21, pp. 5-82.

Sturani, C., 1967, Ammonites and stratigraphy of the Bathonian in the Digne-Barrême area (South Eastern France): Bolletino della Società Paleontologica Italiana, v. 5, pp. 3-57.

Sturani, C., 1971, Ammonites and stratigraphy of the “Posidonina alpina” beds of the Venetian Alps (Middle Jurassic, mainly Bajocian): Memorie degli Istituti di Geologia e Mineralogia dell’ Universita di Padova, v. 28, pp. 1-190.

Sukamoto, R., and Westermann, G.E.G., 1992, Indonesia and Papua New Guinea, in Westermann, G.E.G., ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 181-193.

Taylor, D.G., Callomon, J.H., Hall, R., Smith, P.L., Tipper, H.W., and Westermann, G.E.G., 1992, Ammonites of the circum-Pacific region, in Westermann, G.E.G, ed, The Jurassic of the Circum-Pacific: Cambridge, Cambridge University Press, pp. 342-359.

Tesakova, E.M., Franz, M., Baykina, E., and Beher, E., 2009, A new view on Bathonian ostracods of Poland: Senckenbergiana lethae, v. 88, pp. 55-65.

Thierry, J., 2003, Les ammonites du Bathonien-Callovien du Boulonnais: biodiversité, biostatigraphie et biogéographie: Geobios, v. 36, pp. 93-126.

Thierry, J., Clavel, B., Hantzpergue, P., Neraudeau, D., Rigollet, L., and Vadet, A., 1997, Distribution chronologique et géographique des échinides jurassiques en France: essai d’utilisation biostatigraphique: Bulletin du Centre de Recherches Elf Exploration Production, Mémoires, v. 17, pp. 253-271.

Tiraboschi, D., and Erba, E., 2008, Calcareous nanofossils biостatigraphie (Upper Bajocian – Lower Bathonian) of the Ravan du Bès section (Bas Aurun, Subalpine Basin, SE France), evolutionary trends of Warznaueria barnesiae and new enigmatic morphotypes of genus Racinolithus: Journal of Nannoplankton Research, v. 2008, p. 118.

Topchishvili, M., Lominadze, T., and Tsereteli, L., 1998, Ammonite associations and biostatigraphy of the Middle Jurassic sediments of Georgia: Cuadernos de Geología Ibérica, v. 24, pp. 293-309.

Torrens, H., 1965, Revised zonal scheme for the Bathonian Stage of Europe: Carpatho-Balkan Geological Association, VII Congress, Reports II, 1, pp. 47-55.

Torrens, H., 1974a, Bathonian Stage. in Morton, N. ed, The definition of standard Jurassic stages: Mémoires du Bureau des Recherches Geologiques-Minieres (Paris), v. 75 (1971), pp. 83-93.

Torrens, H., 1974b, Standard zones of the Bathonian: Memoires du Bureau des Recherches Geologiques-Minieres (Paris), v. 75 (1971), pp. 581-604.

Torrens, H., 1980, Bathonian correlation chart, in Cope, J.C.W., Duff, K.L., Parsons, C.F., Torrens, H.S., Wimbledon, W.A. and Wright, J.K., eds, A correlation of Jurassic rocks in the British Isles. Part 2, Middle and Upper Jurassic: Geological Society, Spec. rep. 15, pp. 21-45.

Torrens, H., 1987, Ammonites and stratigraphy of the Bathonian rocks in the Digne-Barrême area (South-Eastern France, Dept. Alpes de Haute Provence): Bolletino della Società Paleontologica Italiana, v. 26, pp. 93-108.

Torrens, H., 2002, From d’ Orbigny to the Devonian: some thoughts on the history of the stratotype concept: Comptes rendues Palevol, v. 1, pp. 335-345.

Tseretely, L., 1989, The representations of family Oppeliidae BONARELLI in Bathonian deposits of Transcaucassus. Tbilisi, Metsniereba, 112 p.

Vaez-Javadi, F., and Mirzaei-Atabadi, M., 2006, Jurassic plant macrofossils from the Hojedk Formation, Kerman area, east-central Iran: Alcheringa, v. 30, pp. 63-96.

Vörös A., 2001, Bajocian and Bathonian brachiopods in Hungary: a review: Hantkeniana, v. 3, pp. 177-182.

Wang, Y., Mosbrugger, V., and Zhang, H., 2005, Early to Middle Jurassic vegetation and climatic events in the Qaidam Basin, Northwest China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, pp. 200-216.

Wendt, J., 1963, Stratigraphisch-paläontologische Untersuchungen im Dogger Westsizilien: Bolletino della Società Paleontologica Italiana, v. 2, pp. 57-145.

Wendt, J., 1971, Geologia del Monte Erice (provinciali di Trapani, Sicilia occidentale): Geologica Romana, v. 10, pp. 53-76.

Wernli, R., and Görög, A., 2007, Protoglobigerines and Oberhausserellidae (Foraminifères) du Bajocien-Bathonien du Jura méridional, France: Revue de micropaléontologie, v. 50, pp. 185-205.

Westermann, G., 1958, Ammoniten-Fauna und Stratigraphie des Bathonien NW-Deutschlands: Beihette zum Geologischen Jahrbuch, v. 32, pp. 1-103.

Westermann, G.E.G., ed, 1992, The Jurassic of the Circum-Pacific. Cambridge, Cambridge University Press. 676 p.

Westermann, G.E.G., 1993a, Global bio-events in mid-Jurassic ammonites controlled by seaways: Systematics Association Special Volume 47, pp. 187-226.

Westermann, G.E.G., 1993b, New Mid-Jurassic Ammonitina from New Zealand: implications for biogeography and oceanography: GeoResearch Forum, v. 1, pp. 179-185.

Westermann, G.E.G., 1995, Mid-Jurassic Ammonitina from the Central Ranges of Irian Jaya and the origin of stephanoceratids: Hantkeniana, v. 1, pp. 105-118.

Westermann, G.E.G., 2000, Marine faunal realms of the Mesozoic: review and revision under the new guidelines for biogeographic classification and nomenclature: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 163, pp. 49-68.

Westermann, G.E.G., and Callomon, J.H., 1988, The Macrocephalitinae and associated Bathonian and Early Callovian (Jurassic) ammonoids of the Sula Islands and New Guinea: Palaeonto-graphica, v. 203, pp. 1-90.

Westermann, G.E.G., and Getty, T.A., 1970, New Middle Jurassic Ammonitina from New Guinea: Bulletins of American Paleontology, v. 57, pp. 231-321.

Westermann, G.E.G., and Hudson, N., 1991, The first find of Eurycephalitinae (Jurassic Ammonitina) from New Zealand and biogeographic implications: Journal of Paleontology, v. 65, pp. 689-693.

Westermann, G.E.G., and Riccardi, A.C., 1980, The Upper Bajocian ammonite Strenoceras in Chile: first circum-Pacific record of
Sixto Rafael Fernández-López is Full Professor of Palaeontology at the Faculty of Geological Sciences in the Complutense University of Madrid, Spain. His research focuses on the taphonomy, biochronology and palaeobiology of Invertebrates, especially Middle Jurassic ammonites of the Iberian Range. He has been a voting member of the International Subcommission on Jurassic Stratigraphy in 1996-2008 and served as the Convener of the Bathonian Working Group (ISJS of the International Commission on Stratigraphy) since 2000.

Giulio Pavia is Full Professor of Palaeontology at the Faculty of Sciences in the University of Torino, Italy. His research focuses on the biostratigraphy, palaeoecology and palaeobiology of invertebrates, especially on the Middle Jurassic ammonite assemblages and their taphonomic constraints of southern French Subalpine Basin and Venetian Alps, and on the Neogene mollusc palaeocommunities of Northern Italy. He has been the Chairman of the International Subcommission on Jurassic Stratigraphy (ISJS of the International Commission on Stratigraphy) in 1996-2000 and served as the Convener of the ISJS Bathonian Working Group in 1984-1996.