Abstract: In previous studies on the secondary metabolites of the Taiwanese octocoral *Isis hippuris*, specimens have always been collected at Green Island. In the course of our studies on bioactive compounds from marine organisms, the acetone-solubles of the Taiwanese octocoral *I. hippuris* collected at Orchid Island have led to the isolation of five new polyoxygenated steroids: hipposterone M–O (1–3), hipposterol G (4) and hippuristeroketal A (5). The structures of these compounds were determined on the basis of their spectroscopic and physical data. The anti-HCMV (human cytomegalovirus) activity of 1–5 and their cytotoxicity against selected cell lines were evaluated. Compound 2 exhibited inhibitory activity against HCMV, with an EC50 value of 6.0 μg/mL.

Keywords: octocoral; *Isis hippuris*; anti-HCMV activity

1. Introduction

The octocoral *Isis hippuris*, distributed widely in the western Pacific, has yielded a number of polyoxygenated steroids, including hippuristanol type [1–9], gorgosterol type [10–14], hippuristerone type [3,14,15], and hippuristerol type [3,14–16]. Those of the first type were originally reported as cytotoxins and later rediscovered as selective inhibitors against the translation factor eIF4A [17,18].
Some of the second types were reported to show cytotoxicity or a reversal of multidrug resistance activity [10]. The samples for previous studies on the secondary metabolites of Taiwanese octocoral *I. hippuris* were all collected at Green Island [5–7,12,14,15]. In our continued study of the bioactive metabolites from marine organism, the Taiwanese octocoral *I. hippuris* (Figure 1) collected at Orchid Island was selected for study since its acetone extract exhibited antiviral activity against HCMV. Bioactivity-guided fractionation resulted in the isolation of five polyoxygenated steroids: hipposterone M–O (1–3), hiposterol G (4), hippuristeroketal A (5) (Figure 2). We describe herein the isolation, structure elucidation, and biological activity of these compounds.

Figure 1. Bamboo coral *Isis hippuris*.

Figure 2. Structures of compounds 1–5.
2. Results and Discussion

The molecular formula C\textsubscript{33}H\textsubscript{52}O\textsubscript{8} was assigned to hipposterone M (1) on the basis of positive HRESIMS (found \textit{m}/\textit{z} 599.3556 [M + Na]+), implying eight degrees of unsaturation. Its IR spectrum revealed the absorptions for hydroxyl (\textit{\nu}\textsubscript{max} 3454 cm-1), ketone carbonyl (\textit{\nu}\textsubscript{max} 1717 cm-1), and ester carbonyl (\textit{\nu}\textsubscript{max} 1733 cm-1) groups. NMR data (Tables 1 and 2) of 1 indicated the presence of a ketone (\textit{\delta}_C 211.7), two ester carbonyls, two oxygenated sp3 methines, an oxygenated sp3 methylene, three oxygenated sp3 quaternary carbons, two secondary methyls, four tertiary methyls, six non-oxygenated sp3 methines, eight non-oxygenated sp3 methylenes, and two non-oxygenated sp3 quaternary carbons. NMR signals (Table 1) at \textit{\delta}_C 80.0 (qC) and 67.1 (qC) suggested the existence of a tetrasubstituted epoxy. The quaternary carbon at \textit{\delta}_C 85.5, which has HMBC correlation (Figure 3) with tertiary methyl signals at \textit{\delta}_H 1.56 (s) and 1.43 (s) (Table 2) disclosed the presence of –OC(CH\textsubscript{3})\textsubscript{2}. By extensive analysis of 2D NMR spectra, including COSY, HSQC, NOESY (Figure 4) and HMBC, 1 was shown to be a derivative of hippuristerone A [15]. HMBC correlations (Figure 3) from H\textsubscript{2}-18 (\textit{\delta}_H 3.94 and 3.75) to C-12, C-13, C-14, and C-17 established 1 as 18-hydroxyhippuristerone A. The stereochemistry of the side chain moiety was determined by comparison of the 1H and 13C NMR spectral data with those of hippuristerone A.

Hipposterone N (2) had a molecular formula of C\textsubscript{31}H\textsubscript{50}O\textsubscript{7}, as suggested by the NMR and HRESIMS data. Its IR spectrum also showed the absorptions for hydroxyl (\textit{\nu}\textsubscript{max} 3454 cm-1), ketone carbonyl (\textit{\nu}\textsubscript{max} 1715 cm-1), and ester carbonyl (\textit{\nu}\textsubscript{max} 1731 cm-1) groups. NMR data (Tables 1 and 2) of 2 revealed the presence of a ketone (\textit{\delta}_C 211.7), an ester carbonyl, two oxygenated sp3 methines, an oxygenated sp3 methylene, three oxygenated sp3 quaternary carbons, two secondary methyls, four tertiary methyls, six non-oxygenated sp3 methines, eight non-oxygenated sp3 methylenes, and two non-oxygenated sp3 quaternary carbons. NMR data (Tables 1 and 2) (Figure 3) of 2 resembled those of 1 except for a hydroxyl group replacing the tertiary acetoxyl in 1 [14]. HMBC correlations (Figure 3) from H\textsubscript{3}-26 (\textit{\delta}_H 1.24) and H\textsubscript{3}-27 (\textit{\delta}_H 1.21) to C-25 established 2 as a 25-deacetyl-18-hydroxy derivative of hippuristerone A. The stereochemistry of the side chain moiety was determined by comparison of the 1H and 13C NMR spectral data with those of hippuristerones F, H, and I isolated from \textit{I. hippuris} [16].

The positive HRESIMS of hipposterone O (3) established a molecular formula of C\textsubscript{35}H\textsubscript{54}O\textsubscript{10}. NMR data (Tables 1 and 2) of 3 showed the presence of a ketone (\textit{\delta}_C 211.5), three ester carbonyls, two oxygenated sp3 methines, two oxygenated sp3 methylene, three oxygenated sp3 quaternary carbons, two secondary methyls, three tertiary methyls, six non-oxygenated sp3 methines, eight non-oxygenated sp3 methylenes, and two non-oxygenated sp3 quaternary carbons. By comparison of NMR spectroscopic data (Tables 1 and 2) of 3 with those of hippuristerone J [14], the primary acetoxy group at C-21 was shift to C-18 on the basis of HMBC correlations (Figure 3) from H\textsubscript{2}-18 [\textit{\delta}_H 4.23 (1H, d, \textit{J} = 11.6 Hz) and 4.30 (1H, d, \textit{J} = 11.6 Hz)] to C-12, C-13, C-14, C-17, and carbonyl carbon of 18-OAc. The stereochemistry of the side chain moiety was determined by comparison of the 1H and 13C NMR spectral data with those of hippuristerones J and K previously isolated from \textit{I. hippuris} [14].
Table 1. 13C NMR data for compounds 1–5.

C#	1. $^{a}\delta_C$, type	2. $^{a}\delta_C$, type	3. $^{a}\delta_C$, type	4. $^{b}\delta_C$, type	5. $^{c}\delta_C$, type
1	38.3, CH₂	38.3, CH₂	38.2, CH₂	36.7, CH₂	35.6, CH₂
2	38.1, CH₂	38.1, CH₂	38.0, CH₂	31.4, CH₂	29.2, CH₂
3	211.7, qC	211.7, qC	211.5, qC	71.2, CH	100.7, qC
4	44.5, CH₂	44.5, CH₂	44.5, CH₂	38.0, CH₂	36.2, CH₂
5	46.5, CH	46.5, CH	46.4, CH	44.7, CH	43.0, CH
6	28.6, CH₂	28.5, CH₂	28.5, CH₂	28.3, CH₂	28.8, CH₂
7	31.7, CH₂	31.7, CH₂	31.5, CH₂	31.9, CH₂	32.7, CH₂
8	34.5, CH	34.4, CH	34.4, CH	34.5, CH	35.1, CH
9	53.1, CH	53.6, CH	53.4, CH	54.0, CH	55.1, CH
10	35.7, qC	35.7, qC	35.6, CH	35.5, qC	36.4, qC
11	21.0, CH₂	21.0, CH₂	21.5, CH₂	21.4, CH₂	22.0, CH₂
12	30.6, CH₂	31.0, CH₂	32.4, CH₂	32.2, CH₂	33.3, CH₂
13	46.8, qC	46.7, qC	45.6, qC	45.6, qC	46.5, qC
14	47.7, CH	48.7, CH	49.2, CH	48.7, CH	50.3, CH
15	33.3, CH₂	33.3, CH₂	33.5, CH₂	33.4, CH₂	34.4, CH₂
16	70.0, CH	70.1, CH	70.3, CH	70.1, CH	71.1, CH
17	80.0, qC	79.7, qC	77.2, qC	77.7,qC	78.6, qC
18	61.9, CH₂	61.9, CH₂	63.5, CH₂	63.5, CH₂	64.3, CH₂
19	11.3, CH₃	11.4, CH₃	11.4, CH₃	12.2, CH₃	12.0, CH₃
20	67.1, qC	67.5, qC	66.7, qC	66.4, qC	67.3, qC
21	16.1, CH₃	15.9, CH₃	16.1, CH₃	16.2, CH₃	17.1, CH₃
22	77.2, CH	77.2, CH	77.2, CH	77.2, CH	78.1, CH
23	33.5, CH	32.9, CH	32.5, CH	33.6, CH	33.6, CH
24	39.9, CH	41.7, CH	38.8, CH	40.1, CH	42.2, CH
25	85.5, qC	73.7, qC	74.2, qC	85.6, qC	73.5, qC
26	23.2, CH₃	30.9, CH₃	71.0, CH₂	22.8, CH₃	31.2, CH₃
27	25.1, CH₃	25.8, CH₃	20.3, CH₃	25.1, CH₃	25.9, CH₃
28	10.4, CH₃	11.4, CH₃	10.9, CH₃	10.5, CH₃	11.7, CH₃
29	11.9, CH₃	12.1, CH₃	12.3, CH₃	11.9, CH₃	12.6, CH₃
OAc	20.9, CH₃	20.9, CH₃	21.2, CH₃	21.2, CH₃	21.1, CH₃
	171.6, qC	171.6, qC	171.1, qC	171.0, qC	170.6, qC
	22.6, CH₃	21.1, CH₃	21.0, CH₃	20.9, CH₃	171.4, qC
	169.8, qC	171.3, qC	171.2, qC	21.1, CH₃	22.7, CH₃
				170.8, qC	169.9, qC

* Spectra were measured in CDCl₃ (100 MHz); † Spectra were measured in CDCl₃ (125 MHz); ‡ Spectra were measured in C₆D₆ (125 MHz).
Table 2. 1H NMR data for compounds 1–5.

H#	1, δ_H (J in Hz) a	2, δ_H (J in Hz) a	3, δ_H (J in Hz) a	4, δ_H (J in Hz) b	5, δ_H (J in Hz) c
1	α: 1.39 m	α: 1.35 m	α: 1.32 m	α: 1.02 m	α: 1.33 m
	β: 2.02 m	β: 2.00 m	β: 1.97 m	β: 1.69 m	β: 1.06 m
2	α: 2.32 m	α: 2.31 m	α: 2.31 m	α: 2.18 m	α: 1.86 m
	β: 2.38 m	β: 2.39 m	β: 2.37 m	β: 1.41 m	β: 1.41 m
3				3.60 m	
4	α: 2.12 dd ovvl	α: 2.09 dd ovvl	α: 2.12 dd ovvl	α: 1.58 m	α: 1.86 dd (13.6, 3.6)
	β: 2.28 t (13.6)	β: 2.27 t (13.6)	β: 2.26 t (13.6)	β: 1.29 m	β: 1.41 dd ovvl
5	1.56 m	1.54 m	1.55 m	1.54 m	1.34 m
6	1.38 m	1.38 m	1.39 m	1.34 m	1.08 m
7	1.79 m	1.78 m	1.82 m	1.78 m	1.54 m
8	1.58 m	1.58 m	1.72 m	1.67 m	1.45 m
9	0.85 m	0.74 m	0.81 m	0.75 m	0.70 m
11	α: 1.66 m	α: 1.65 m	α: 1.63 m	α: 1.60 m	α: 1.48 m
	β: 1.48 m	β: 1.44 m	β: 1.33 m	β: 1.23 m	β: 1.23 m
12	α: 1.28 m	α: 1.28 m	α: 1.34 m	α: 1.38 m	α: 1.44 m
	β: 2.44 m	β: 2.44 m	β: 2.16 m	β: 2.17 m	β: 2.28 m
14	1.36 m	1.18 m	1.23 m	1.31 m	1.28 m
15	α: 2.23 m	α: 2.24 m	α: 2.21 m	α: 2.21 m	α: 2.22 m
	β: 1.44 m	β: 1.46 m	β: 1.48 m	β: 1.46 m	β: 1.59 m
16	4.10 t (7.2)	4.13 t (7.6)	4.06 t (7.6)	4.04 dd (8.0, 7.5)	4.38 t (7.5)
18	3.75 t (10.4)	3.74 t (11.2)	4.23 d (11.6)	4.27 d (11.5)	4.55 d (11.5)
	3.94 d (11.6)	3.94 dd (11.6, 4.60 d (10.8)	4.66 d (10.8)	4.67 d (11.0)	5.04 d (10.5)
22	2.28 m	2.47 m	2.50 m	2.29 m	2.43 m
24	1.97 q (8.0)	1.47 q (6.8)	1.64 q (6.8)	1.92 q (7.0)	1.55 q (7.5)
26	1.56 s	1.24 s	3.89 d (11.6)	1.56 s	0.88 s
27	1.43 s	1.21 s	1.18 s	1.46 s	0.78 s
28	0.90 d (8.0)	0.90 d (6.8)	0.88 d (6.8)	0.91 d (7.0)	0.65 d (7.5)
29	0.88 d (6.4)	0.86 d (6.4)	0.88 d (6.8)	0.87 d (7.0)	0.80 d (7.0)
OAc	2.14 s, 1.99 s	2.14 s	2.07 s, 2.13 s, 2.13 s 2.06 s, 2.00 s, 2.13 s	1.76 s, 1.69 s	
OMe					3.12 s, 3.02 s
OH-16	3.36 s, 3.43 s	3.27 s	3.19 br s	3.83 br s	
OH-18	2.44 d ovvl	3.46 d ovvl			

a Spectra were measured in CDCl$_3$ (400 MHz); b Spectra were measured in CDCl$_3$ (500 MHz); c Spectra were measured in C$_6$D$_6$ (500 MHz).
Hiposterol G (4) was isolated as a white powder, and its molecular formula, C_{35}H_{56}O_{9}, was determined by HRESIMS. Its IR spectrum revealed the functionalities of hydroxyl (ν_{max} 3471 cm\(^{-1}\)) and ester carbonyl (ν_{max} 1734 cm\(^{-1}\)). NMR data (Tables 1 and 2) of 4 indicated the presence of three ester carbonyls, three oxygenated sp\(^3\) methines, an oxygenated sp\(^3\) methylene, three oxygenated sp\(^3\) quaternary carbons, two secondary methyls, four tertiary methyls, six non-oxygenated sp\(^3\) methines, eight non-oxygenated sp\(^3\) methylenes, and two non-oxygenated sp\(^3\) quaternary carbons. NMR data (Tables 1 and 2) of 4 were similar to those of hippuristerone G [16] with the absence of the ketone carbon signal at δ_{C} 211.6 ppm and the presence of signal at δ_{H} 3.60 ppm NOE correlation H-3/H-5.
and chemical shift values for C-1–C-7 nuclei. This is in agreement with the results reported for 5α-cholestan-3β-ol, which allowed us to propose a β orientation of OH group at C-3 (Figure 4). The stereochemistry of the side chain moiety was determined by comparison of the 1H and 13C NMR spectral data with those of hippuristerone A.

The molecular formula of hippuristeroketal A (5) was found to be C$_{35}$H$_{58}$O$_9$, as deduced from HRESIMS data. Its IR spectrum revealed the absorptions for hydroxyl (ν_{max} 3471 cm$^{-1}$) and ester carbonyl (ν_{max} 1731 cm$^{-1}$) groups. NMR data (Tables 1 and 2) of 5 indicated the presence of a ketal (δ_C 100.7), two ester carbonyls, two oxygenated sp3 methines, an oxygenated sp3 methylene, three oxygenated sp3 quaternary carbons, two secondary methyls, four tertiary methyls, six non-oxygenated sp3 methines, eight non-oxygenated sp3 methylenes, and two non-oxygenated sp3 quaternary carbons. By comparison of the NMR spectroscopic data (Tables 1 and 2) of 5 resembled those of hippuristerone F [14] with the absence of ketone carbon at δ_C 211.6 and the presence of two methoxy signals [δ_H 3.12 (3H, s), 3.02 (3H, s) and δ_C 47.6 (CH$_3$), 47.5 (CH$_3$)] in the molecule. The HMBC correlations (Figure 3) of the methoxyl protons with C-3 [δ_C 100.7 (qC)], suggesting that C-3 was substituted by two methoxy groups. The stereochemistry of the side chain moiety was determined by comparison of the 1H and 13C NMR spectral data with those of hippuristerones F, H, and I previously isolated from I. hippuris [16]. Compound 5 was not an artifact because 1H NMR signals for the dimethylketal were observed before MeOH treatment.

Metabolites 1–5 were not cytotoxic against P-388 (mouse lymphocytic leukemia), HT-29 (human colon adenocarcinoma) tumor cells, and human embryonic lung (HEL) cells with IC$_{50}$ values greater than 50 μg/mL. The anti-HCMV activity and cytotoxicity against of selected cell lines of 1–5 were evaluated. Compound 2 exhibited inhibitory activity against HCMV, with an EC$_{50}$ values of 6.0 μg/mL.

3. Experimental Section

3.1. General Experimental Procedures

Optical rotations were determined with a JASCO P1020 digital polarimeter. Ultraviolet (UV) and infrared (IR) spectra were obtained on JASCO V-650 and JASCO FT/IR-4100 spectrophotometers, respectively. NMR spectra were recorded on a Varian MR 400 NMR spectrometer at 400 MHz for 1H and 100 MHz for 13C or on a Varian Unity INOVA 500 FT-NMR spectrometer at 500 MHz for 1H and 125 MHz for 13C, respectively. 1H NMR chemical shifts are expressed in δ (ppm) referring to the solvent peaks δ_H 7.27 and 7.15 for CDCl$_3$ and C$_6$D$_6$, respectively, and coupling constants are expressed in Hz. 13C NMR chemical shifts are expressed in δ (ppm) referring to the solvent peaks δ_C 77.0 and 128.0 for CDCl$_3$ and C$_6$D$_6$, respectively. ESI-MS were recorded by ESI FT-MS on a Bruker APEX II mass spectrometer. Silica gel 60 (Merck, Germany, 230–400 mesh) and LiChroprep RP-18 (Merck, 40–63 μm) were used for column chromatography. Precoated silica gel plates (Merck, Kieselgel 60 F$_{254}$, 0.25 mm) and precoated RP-18 F$_{254s}$ plates (Merck) were used for thin-layer chromatography (TLC) analysis. High-performance liquid chromatography (HPLC) was carried out using a Hitachi L-7100 pump equipped with a Hitachi L-7400 UV detector at 220 nm together with a semi-preparative reversed-phase column (Merck, Hibar LiChrospher RP-18e, 5 μm, 250 × 25 mm).
3.2. Biological Material

The octocoral *I. hippuris* was collected by hand using scuba at Orchid Island, 70 km off the southeastern coast of Taiwan, in August 2008 at a depth of 9 m and stored in a freezer until extraction. The voucher specimen (LY-19) was identified by Prof. Chang-Feng Dai, National Taiwan University and deposited at the Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Taiwan.

3.3. Extraction and Isolation

A specimen of octocoral *I. hippuris* (4.0 kg, wet weight) was minced and exhaustively extracted with acetone (3 × 3 L) at room temperature. The combined acetone extracts was then partitioned between H$_2$O and EtOAc. The resulting EtOAc extract (25.6 g) was subjected to gravity silica gel 60 column chromatography (Si 60 CC) using *n*-hexane–EtOAc and EtOAc–MeOH of increasing polarity, to give 44 fractions. Fraction 28 (0.86 g), eluted with *n*-hexane–EtOAc (1:6), was further subjected to Si 60 CC (*n*-hexane–EtOAc, 5:3) to give 4 subfractions. A subfraction 28-2 (105 mg) was separated by a RP-18 flash column (MeOH–H$_2$O, 75:25 to 100:0) to give four fractions. In turn, a subfraction 28-2-2, eluted with MeOH–H$_2$O (80:20), was further purified by RP-18 HPLC (MeOH–H$_2$O–MeCN, 80:20:5) to afford 1 (3.0 mg) and 4 (0.5 mg). Similarly, the subfraction 28-3 (112 mg) was further subjected to a RP-18 flash column (MeOH–H$_2$O, 75:25 to 100:0) to give five subfractions. A subfraction 28-3-2 (112 mg), eluted with MeOH–H$_2$O (70:30), was further purified by RP-18 HPLC (MeOH–H$_2$O–MeCN, 75:25:5) to obtain 1 (0.2 mg) and 4 (0.3 mg). Likewise, the subfraction 28-3-3, eluted with MeOH–H$_2$O (80:20), was purified by RP-18 HPLC (MeOH–H$_2$O–MeCN, 75:25:5) to give 5 (1.2 mg). Fraction 29 (0.41 g), eluted with *n*-hexane–EtOAc (1:7), was subjected to Si 60 CC (*n*-hexane–EtOAc, 8:2 to 2:8) to give four subfractions. A subfraction 29-3 (309 mg), eluted with MeOH–H$_2$O (60:40 to 100:0) to give four subfractions. A subfraction 29-3-2, eluted with MeOH–H$_2$O (75:25), was further purified by RP-18 HPLC (MeOH–H$_2$O, 70:30) to afford 3 (1.0 mg), 2 (1.2 mg), and 1 (0.2 mg).

Hipposterone M (1): White amorphous powder; [α]$_D^{25}$ -8 (c 0.1, CHCl$_3$); IR (neat) $\nu$$_{max}$ 3454, 2954, 2922, 1733, 1717, 1558, 1456, 1374, 1238, 1152, 1019 cm$^{-1}$; 1H NMR (CDCl$_3$, 400 MHz) and 13C NMR (CDCl$_3$, 100 MHz) data in Tables 1 and 2; HRESIMS m/z 599.3556 [M + Na]$^+$ (calcd for C$_{33}$H$_{52}$O$_8$Na, 599.3560).

Hipposterone N (2): White amorphous powder; [α]$_D^{25}$ -11 (c 0.1, CHCl$_3$); IR (neat) $\nu$$_{max}$ 3463, 2970, 2933, 1731, 1715, 1374, 1244, 1021, 735 cm$^{-1}$; 1H NMR (CDCl$_3$, 400 MHz) and 13C NMR (CDCl$_3$, 100 MHz) data in Tables 1 and 2; HRESIMS m/z 557.3452 [M + Na]$^+$ (calcd for C$_{31}$H$_{50}$O$_7$Na, 557.3454).

Hipposterone O (3): White amorphous powder; [α]$_D^{25}$ -5 (c 0.1, CHCl$_3$); IR (neat) $\nu$$_{max}$ 3471, 2974, 2939, 1731, 1449, 1373, 1247, 1023, 739 cm$^{-1}$; 1H NMR (CDCl$_3$, 400 MHz) and 13C NMR (CDCl$_3$, 100 MHz) data in Tables 1 and 2; HRESIMS m/z 657.3616 [M + Na]$^+$ (calcd for C$_{35}$H$_{54}$O$_{10}$Na, 657.3614).
Hipposterol G (4): White amorphous powder; \([\alpha]_D^{25} +5\) (c 0.1, CHCl\(_3\)); IR (neat) \(\nu_{\text{max}}\) 3471, 2928, 2860, 1734, 1454, 1371, 1244, 1023, 736 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\), 500 MHz) and \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) data in Tables 1 and 2; HRESIMS \(m/z\) 643.3819 [M + Na]\(^+\) (cald for C\(_{35}\)H\(_{56}\)O\(_9\)Na, 643.3822).

Hppuristeroketal A (5): White amorphous powder; \([\alpha]_D^{25} +21\) (c 0.1, CHCl\(_3\)); IR (neat) \(\nu_{\text{max}}\) 3471, 2974, 1731, 1373, 1248, 1041, 739 cm\(^{-1}\); \(^1\)H NMR (C\(_6\)D\(_6\), 500 MHz) and \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) data in Tables 1 and 2; HRESIMS \(m/z\) 645.3975 [M + Na]\(^+\) (cald for C\(_{35}\)H\(_{58}\)O\(_9\)Na, 645.3978).

3.4. **Cytotoxicity Assay**

Cytotoxicity was determined on P-388 (mouse lymphocytic leukemia), HT-29 (human colon adenocarcinoma), and A-549 (human lung epithelial carcinoma) tumor cells using a modification of the MTT colorimetric method according to a previously described procedure [19,20]. The provision of the P-388 cell line was supported by J.M. Pezzuto, formerly of the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago. HT-29 and A-549 cell lines were purchased from the American Type Culture Collection.

3.5. **Anti-HCMV Assay**

To determine the effects of natural products upon HCMV cytopathic effect (CPE), confluent human embryonic lung (HEL) cells grown in 24-well plates were incubated for 1 h in the presence or absence of various concentrations of tested natural products. Then, cells were infected with HCMV at an input of 1000 pfu (plaque forming units) per well of 24-well dish. Antiviral activity was expressed as IC\(_{50}\) (50% inhibitory concentration), or compound concentration required to reduce virus induced CPE by 50% after 7 days as compared with the untreated control. To monitor the cell growth upon treating with natural products, an MTT-colorimetric assay was employed [21].

Acknowledgments

This research was financially supported by grants from the National Science Council (NSC99-2628-B-110-002-MY3) and Ministry of Education of Taiwan awarded to C.-Y.D.

References

1. Kazlauskas, R.; Murphy, P.T.; Quinn, R.J.; Wells, R.J.; Schonholzer, P. An unusual steroid from gorgonian *Isis hippuris*. *Tetrahedron Lett.* **1977**, *50*, 4439–4442.
2. Higa, T.; Tanaka, J.; Tsukitani, Y.; Kikuchi, H. Hippuristanols, cytotoxic polyoxygenated steroids from the gorgonian *Isis hippuris*. *Chem. Lett.* **1981**, *11*, 1647–1650.
3. Gonzalez, N.; Barral, M.A.; Rodriguez, J.; Jimenez, C. New cytotoxic steroids from the gorgonian *Isis hippuris*. *Tetrahedron* **2001**, *57*, 3487–3497.
4. Rao, C.B.; Ramana, K.V.; Rao, D.V.; Fahy, E.; Faulkner, D.J. Metabolites of the gorgonian *Isis hippuris* from India. *J. Nat. Prod.* **1988**, *51*, 954–958.
5. Shen, Y.C.; Prakash, C.V.S.; Chang, Y.T.; Hung, M.C.; Chen, S.J.; Chen, H.J.; Hsu, M.C. Bioactive steroids from the Formosan gorgonian *Isis hippuris*. *Chin. Pharm. J.* **2000**, *52*, 341–351.
6. Sheu, J.H.; Chao, C.H.; Wang, G.H.; Hung, K.C.; Duh, C.Y.; Chiang, M.Y.; Wu, Y.C.; Wu, C.C. The first A-nor-hippuristanol and two novel 4,5-secosuberosanoids from the gorgonian Isis hippuris. Tetrahedron Lett. 2004, 45, 6413–6416.

7. Chao, C.H.; Huang, L.F.; Yang, Y.L.; Su, J.H.; Wang, G.H.; Chiang, M.Y.; Wu, Y.C.; Dai, C.F.; Sheu, J.H. Polyoxygenated steroids from the gorgonian Isis hippuris. J. Nat. Prod. 2005, 68, 880–885.

8. Qi, S.H.; Miao, L.; Gao, C.H.; Xu, Y.; Zhang, S.; Qian, P.Y. New steroids and a new alkaloid from the gorgonian Isis minorbrachyblasta: structures, cytotoxicity, and antilarval activity. Helv. Chim. Acta 2010, 93, 511–516.

9. Higa, T.; Tanaka, J.; Tachibana, K. 18-Oxygenated polyfunctional steroids from the horgonian Isis hippuris. Tetrahedron Lett. 1981, 22, 2777–2780.

10. Tanaka, J.; Trianto, A.; Musman, M.; Issa, H.H.; Ohtani, I.I.; Ichiba, T.; Higa, T.; Yoshida, W.Y.; Scheuer, P.J. New polyoxygenated steroids exhibiting reversal of multidrug resistance from the gorgonian Isis hippuris. Tetrahedron 2002, 58, 6259–6266.

11. Tanaka, J.; Higa, T.; Tachibana, K.; Iwashita, T. Gorgost-5-ene-3β,7α,11α,12α-tetraol 12-monoacetate, a new marine sterol from the gorgonian Isis hippuris. Chem. Lett. 1982, 1295–1296.

12. Shen, Y.C.; Prakash, C.V.S.; Chang, Y.T. Two new polyhydroxysteroids from the gorgonian Isis hippuris. Steroids 2001, 66, 721–725.

13. Uddin, M.H.; Hanif, N.; Trianto, A.; Agarie, Y.; Higa, T.; Tanaka, J. Four new polyoxygenated gorgosterols from the gorgonian Isis hippuris. Nat. Prod. Res. 2011, 25, 585–591.

14. Chao, C.H.; Huang, L.F.; Wu, S.L.; Su, J.H.; Huang, H.C.; Sheu, J.H. Steroids from the gorgonian Isis hippuris. J. Nat. Prod. 2005, 68, 1366–1370.

15. Sheu, J.H.; Chen, S.P.; Sung, P.J.; Chiang, M.Y.; Dai, C.F. Hippuristerone A, a novel polyoxygenated steroid from the gorgonian Isis hippuris. Tetrahedron Lett. 2000, 41, 7885–7888.

16. Sheu, J.H.; Huang, L.F.; Chen, S.P.; Yang, Y.L.; Sung, P.J.; Wang, G.H.; Su, J.H.; Chao, C.H.; Hu, W.P.; Wang, J.J. Hippuristerones E–I, new polyoxygenated steroids from the gorgonian coral Isis hippuris. J. Nat. Prod. 2003, 66, 917–921.

17. Bordeleau, M.E.; Mori, A.; Oberer, M.; Lindqvist, L.; Chard, L.S.; Higa, T.; Belsham, G.J.; Wagner, G.; Tanaka, J.; Pelletier, J. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat. Chem. Biol. 2006, 2, 213–220.

18. Lindqvist, L.; Oberer, M.; Reibarkh, M.; Cencic, R.; Bordeleau, M.E.; Vogt, E.; Marintchev, A.; Tanaka, J.; Fagotto, F.; Altmann, M.; et al. Selective pharmacological targeting of a DEAD Box RNA helicase. PLoS One 2008, 3, e1583.

19. Geran, R.I.; Greenberg, N.H.; MacDonald, M.M.; Schumacher, A.M.; Abbott, B.J. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother. Rep. 1972, 3, 1–91.

20. Hou, R.S.; Duh, C.Y.; Chiang, M.Y.; Lin, C.N. Sinugibberol, a new cytotoxic cembranoid diterpene from the soft coral Sinularia gibberosa. J. Nat. Prod. 1995, 58, 1126–1130.
21. Stevens, M.; Balzarini, J.; Tabarrini, O.; Andrei, G.; Snoeck, R.; Cecchetti, V.; Fravolini, A.; De Clercq, E.; Pannecouque, C. Cell-dependent interference of a series of new 6-aminoquinolone derivatives with viral (HIV/CMV) transactivation. *J. Antimicrob. Chemother.* **2005**, 56, 847–855.

Samples Availability: Not available.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).