Tumores del estroma gastrointestinal
Gastrointestinal stromal tumors

Jorge Soriano-Lorenzo1,a, Mayte Lima-Pérez2,b, Jorge Soriano-García2,c, Karla Zaldívar-Blanco1,d, Vilma Fleites-Calvo2,e

1 Facultad de Medicina “Manuel Fajardo”, Universidad de Ciencias Médicas de La Habana. La Habana, Cuba.
2 Servicio de Oncología Clínica, Hospital Clínico-Quirúrgico “Hermanos Ameijeiras”. La Habana, Cuba.
a Estudiante de medicina. ORCID: https://orcid.org/0000-0003-2211-5696
b Especialista en oncología médica. ORCID: https://orcid.org/0000-0001-6607-3913
c Especialista en oncología médica. ORCID: https://orcid.org/0000-0002-7713-5750
d Estudiante de medicina. ORCID: https://orcid.org/0000-0002-9668-4839
e Especialista en oncología médica. ORCID: https://orcid.org/0000-0001-7218-4118

Correspondencia:
Jorge Soriano Lorenzo
sorianolorenzo@infomed.sld.cu

Recibido: 16 de abril 2019
Aprobado: 24 de mayo 2019
Publicación en línea: 28 de junio 2019

Conflicto de interés: Los autores declaran no tener conflictos de interés

Fuente de financiamiento: Autofinanciado

Citar como: Soriano-Lorenzo J, Lima-Pérez M, Soriano-García J, Zaldívar-Blanco K, Fleites-Calvo V. Tumores del estroma gastrointestinal. An Fac med. 2019;80(2):214-21. DOI: https://10.15381/anales.802.16418

Resumen
Los tumores del estroma gastrointestinal (GIST) son neoplasias mesenquimales originadas en el tracto gastrointestinal. Su localización más frecuente es en estómago e intestino delgado. Pueden originarse a cualquier edad, pero más del 80% de los casos son mayores de 50 años sin predilección de sexo, aunque puede observarse en pacientes más jóvenes asociados a síndromes que predisponen el desarrollo de estos tumores. Presentan sintomatología inespecífica. La tomografía axial computarizada está recomendada para realizar el estudio de extensión y seguimiento de estos pacientes. Los marcadores inmunohistoquímicos más sensibles y específicos son el KIT y DOG1. El tratamiento en caso de lesiones primarias localizadas es la resección quirúrgica, con o sin terapia adyuvante con imatinib durante 3 años en dependencia del riesgo de recidiva. En los casos avanzados o metastásicos se recomienda terapia neoadyuvante con imatinib por tiempo indefinido; el tratamiento en casos de progresión o intolerancia a imatinib es el sunitinib.

Palabras clave: Tumores del Estroma Gastrointestinal; Tracto Gastrointestinal; Mesilato de Imatinib

Abstract
Gastrointestinal stromal tumors (GIST) are mesenchymal neoplasms that arise in the gastrointestinal tract, usually in the stomach or the small intestine. GISTS can arise at any age, but more than 80% are reported in individuals older than 50 years men and women are affected at a roughly similar frequency. The few patients who are younger frequently have GIST associated with a syndrome. The clinical manifestations are non-specifics. The computer-tomography is recommended for staging and follow-up. The KIT and DFG1 are the most sensitive and specific immunohistochemistry markers. The standard treatment of localized GIST is complete surgical excision of the lesion, with or without adjuvant imatinib in dependence with the relapse risk. Neoadjuvant imatinib is the standard treatment for locally advanced and metastatic disease. In locally advanced and metastatic disease the imatinib treatment should be continued indefinitely. Following confirmed progression, or intolerance, to imatinib the standard second-line treatment is sunitinib.

Keywords: Gastrointestinal Stromal Tumors; Gastrointestinal Tract; Imatinib Mesylate
INTRODUCCIÓN

Los tumores del estroma gastrointestinal (GIST: Gastrointestinal Stromal Tumors) son neoplasias originadas a partir de tejido mesenquimal del tracto gastrointestinal, más raramente se originan en otros tejidos mesenquimales intraabdominales. Su origen celular más probable es de las células intersticiales de Cajal localizadas en el plexo mientérico del tracto gastrointestinal1,2.

Pueden originarse en cualquier sitio a lo largo del tracto digestivo, pero sus localizaciones más frecuentes son el estómago (50-60%), intestino delgado (30-35%), y son menos frecuentes en colon y recto (5%) y en esófago (<1%). Los casos encontrados en otras localizaciones de la cavidad abdominal corresponden al omento, mesenterio y retroperitoneo (<5%), que en ocasiones son resultado de metástasis de un GIST primario no detectado3.

Un 10 a 20% de los pacientes presentan metástasis al momento del diagnóstico, y un 40% de los pacientes con diagnóstico de GIST localizados lo desarrollarán evolutivamente. Los sitios más comunes son el hígado, el omento, y el peritoneo, mientras que las localizaciones extra-abdominales son infrecuentes1.

Se estima que la prevalencia es de aproximadamente 130 casos por millón de habitantes. La edad media de aparición es de 60-65 años sin predilección de sexo, aunque puede observarse en pacientes jóvenes sobre todo asociado a síndromes que predisponen el desarrollo de estos tumores3,4.

METODOLOGÍA DE LA BÚSQUEDA Y SELECCIÓN DE RESULTADOS

En el presente artículo presentamos una revisión de los aspectos clínico-patológicos y terapéuticos más importantes de este tipo de tumores, para ello se realizó una búsqueda en la base de datos PubMed. Los términos de búsqueda fueron “tumor de estroma gastrointestinal e imatinib”, “tumor de estroma gastrointestinal y cirugía”, “tumor de estroma gastrointestinal y sunitinib” y “tumor de estroma gastrointestinal y regorafenib”. El resultado fue un total de 3010 artículos; se analizaron aquellos artículos publicados a partir del año 2000 hasta la fecha. Se incluyeron solamente artículos originales y artículos de revisión. Los resultados de la búsqueda fueron obtenidos en idioma inglés. Los artículos fueron evaluados inicialmente por su título y resumen. Los artículos de interés fueron revisados a texto completo por los autores (358). Se excluyeron aquellos artículos publicados antes de año 2000, publicaciones de reportes de casos, artículos no disponibles a texto completo y artículos cuyo título y resumen no respondían a los objetivos de nuestro estudio.

DESARROLLO DEL TEMA

Factores de riesgo

Se reporta en la mayoría de los casos como una enfermedad esporádica en la cual no puede establecerse relación con un factor de riesgo causal. Sin embargo, algunos GIST surgen en relación con síndromes específicos1,5.

Las mutaciones hereditarias en el gen KIT exones 8, 11, 13 o 17 confieren un alto riesgo de desarrollar GIST de estómago o intestino delgado en edades tan tempranas como 18 años. Las mutaciones hereditarias de PDGFRA se asocian a un elevado riesgo de presentar GIST y frecuentemente desarrollan pólipos inflamatorios de localización gástrica y en intestino delgado. La asociación de GIST gástrico, paraganglioma y condroma pulmonar conocida como triada de Carney es una condición rara no hereditaria que se presenta mayormente en niñas y mujeres jóvenes. Estos casos no presentan expresión de KIT ni de PDGFRA en la inmunohistoquímica, pero muestran baja expresión de la subunidad B de la succinato deshidrogenasa. De forma similar ocurre con el síndrome de Carney-Stratakis, donde se presentan mutaciones en la línea germinal que afecta a subunidades de la enzima succinato deshidrogenasa (SDHA, SDHB, SDHC, SDHD). Los pacientes con neurofibromatosis tipo 1 también presentan un elevado riesgo de desarrollar uno o más tumores de localización principalmente en estómago o intestino delgado1,6,7.

Manifestaciones clínicas y diagnóstico

Aunque la mayoría de pacientes presentan síntomas o masa palpable, en un número considerable se detecta de forma accidental. Los síntomas frecuentes en este tipo de tumor son el sangrado intra-intestinal y en cavidad abdominal, la anemia, dolor abdominal, dispepsia, constipación, náuseas y vómitos. Puede desencadenarse también un cuadro de hemorragia por ruptura tumoral y perforación intestinal, la cual requiere tratamiento quirúrgico de emergencia8.

El estudio imagenológico mediante tomografía axial computarizada (TAC) multicorte de abdomen y pelvis es el método más apropiado para la realización del estudio de extensión y seguimiento de los GIST. La resonancia magnética (RM) se utiliza como complemento en GIST de recto para visualizar relación con otras estructuras, también se indica para evaluación de lesiones hepáticas indeterminadas en la TAC y en casos donde la TAC está contraindicada. En la imagen por TAC el tumor puede apreciarse como una masa exoluminal bien determinada, que luego de la administración de contraste muestra un realce heterogéneo sobre todo en los tumores de gran tamaño, los cuales pueden tener áreas de necrosis. La tomografía por emisión de positrones puede emplearse para seguimiento y evaluación de respuesta al tratamiento9.

En caso de lesión resecable y altamente sospechosa, no es necesaria la realización de biopsia prequirúrgica, debido al riesgo de sangrado y contaminación tumoral de la cavidad abdominal. En caso de que se presente una masa abdominal ≥ 2cm no apta para valoración mediante endoscopia, el abordaje estándar es la extirpación mediante laparotomía o laparoscopía para una posterior confirmación histológica. En casos de metástasis hepática, la toma de muestra de dicha lesión metastásica puede establecer el diagnóstico5,10.

Anatomía patológica

Se distinguen tres patrones morfológicos: fusocelulares, epitelioideos y mixtos. Las técnicas de inmunohistoquímica (IHQ) son de gran utilidad en el diagnóstico anatopatológico, los marcadores más sensibles y específicos son el KIT (CD117) y el DOG111. En diversos estudios el marcador DOG1 ha mostrado una gran sensibilidad y especificidad para el diagnóstico de GIST, sobre todo en casos KIT...
Los GIST que no muestran inmunorreactividad para la proteína KIT, presentan la mayoría mutaciones activadoras del PDGFRA. Otros marcadores de IHQ son el CD34 el cual es expresado en alrededor del 70%, un 20-30% de los casos son positivos para la actina, un 8-10% presentan la mayoría mutaciones activadoras del gen KIT, en el 75% de los casos las mutaciones en KIT y PDGFRA son mutuamente excluyentes. De un 10-15% de los GIST no presentan mutaciones en KIT ni en PDGFRA, los cuales son llamados tipo salvaje (en inglés: Wild-Type). Los GIST tipo salvaje pueden clasificarse en dos grupos: SDH-deficiente o no SDH-deficiente. Dentro del grupo SDH-deficiente se encuentran los casos de GIST que ocurren en los pacientes con triada de Carney y en el síndrome de Carney-Stratakty; en el grupo de los no SDH-deficiente están los casos de los GIST en pacientes con neurofibromatosis tipo 1.

Pronóstico y estadificación

Los factores pronósticos más importantes en el paciente con GIST son el tamaño tumoral, el sitio del tumor y el índice mitótico. Miettinen et al. en un estudio realizado con 1765 pacientes con diagnóstico de GIST gástrico, reportaron que el índice de metástasis fue de un 86% para los tumores >10 cm con un índice mitótico de >5 mitosis/50HPF, mientras que en los tumores de igual tamaño, pero con un índice mitótico <5 mitosis/50HPF era de un 11%, lo cual demuestra que para establecer el pronóstico de riesgo basado solamente en el tamaño tumoral el índice mitótico es muy difícil. Por otra parte, en un estudio posterior que incluyó 906 pacientes con diagnóstico de GIST de intestino delgado, un tamaño tumoral >10 cm con un índice mitótico de <5 mitosis/50HPF tuvo un índice de metástasis de un 50%, lo cual establecía que la diferencia en el sitio anatómico donde el tumor se desarrolla es un factor a considerar al momento de establecer un pronóstico. DeMatteo et al. en un estudio que incluyó 127 pacientes con GIST localizados de los cuales 74 pacientes tenían localización gástrica, 35 en intestino delgado, 14 en colon/recto y 4 en otras localizaciones, encontró mayor supervivencia en pacientes con GIST localizados de la región intestinal y de colon/recto, así como mayor supervivencia en aquellos que presentaban un tamaño tumoral <5 cm y un índice mitótico <5 mitosis/50HPF.

Se han propuesto varios sistemas de clasificación para el pronóstico de los GIST, dos de los más aceptados son los desarrollados por el Instituto Nacional de Cancerología de Estados Unidos y por la Sociedad Española de Carcinología.
de Salud de los Estados Unidos (NIH) y el Instituto de Patología de las Fuerzas Armadas (AFIP)30,31. Más recientemente, Joensuu et al.,32 propuso una clasificación modificada de estos criterios (tabla 1). Estos sistemas de clasificación han sido sometidos a comparación y validación en diferentes estudios, así como muchos de estos trabajos han propuesto la modificación de estos sistemas incluyendo factores adicionales como la invasión de la mucosa, la ulceración del tumor y la ruptura tumoral33,34,35.

En el año 2009, el Memorial Sloan-Kettering Cancer Center desarrolló un nomograma para la predicción del riesgo de recurrencia a 2 y 5 años luego de la resección quirúrgica de los GIST localizados36. Este nomograma ha sido comparado con los tres sistemas de clasificación anteriormente citados y mostró mayor sensibilidad en la predicción de recurrencias37.

Tabla 1. Sistemas de clasificación del riesgo para los tumores del estroma gastrointestinal.

Riesgo	Tamaño del tumor	Índice mitótico	Sitio de tumor primario
Criterios NIH38			
Muy bajo riesgo	<2	<5	Cualquiera
Bajo riesgo	≥ 2 < 5	<5	Cualquiera
Riesgo Intermedio	<5	5-10	Cualquiera
	5-10	<5	Cualquiera
Alto riesgo	≥5	≥5	Cualquiera
	>10	Cualquiera	Cualquiera
	Cualquiera	Cualquiera	Cualquiera

Criterios AFIP31			
Muy bajo riesgo	≤ 2	≤ 5	Cualquiera
Bajo riesgo	> 2 ≤ 5	≤ 5	Gástrico
Riesgo Intermedio	>5 ≤ 10	≤ 5	Gástrico
	≤ 2	> 5	Gástrico
Alto riesgo	>10	≤ 5	No Gástrico

Criterios de Joensuu et al.32			
Muy bajo riesgo	≤ 2	≤ 5	Cualquiera
Bajo riesgo	> 2 ≤ 5	>5 ≤ 10	Cualquiera
Riesgo Intermedio	>2 ≤ 5	>5 ≤ 10	Cualquiera
Alto riesgo	>5 ≤ 10	>5	No Gástrico

Tratamiento

- **Enfermedad local**

La resección quirúrgica completa sin disección de los ganglios linfáticos clínicamente negativos es el tratamiento de elección en caso de GIST localizado. El objetivo es conseguir una resección con márgenes libres de células tumorales (R0). En aquellos casos en los que no se puede conseguir una resección con márgenes libres y los tratamientos pre-operatorios sean inefectivos, se recomienda la cirugía con resección de márgenes microscópicamente positivos (R1). Los principales factores que condicionan una R1 son el tamaño tumoral ≥ 10 cm, la localización y el riesgo de ruptura tumoral. McCarter et al.,38 en un estudio que incluyó 819 pacientes procedentes de los estudios ACOSOG Z9000 y ACOSOG Z9001, registró un total de 72 pacientes con confirmación anatómopatológica de R1. Para los pacientes incluidos en el grupo placebo del estudio Z9001, la diferencia en la supervivencia libre de recurrencia (SLR) entre los R1 y R0 no fue significativa (60% vs 76% a 3 años, HR=1,51, 95% IC: 0,76-2,99, p=0,24). De forma similar, en aquellos pacientes de ambos estudios que recibieron tratamiento por 1 año con imatinib, la diferencia de SLR entre pacientes R1 y R0 no fue significativa (82% vs 79% a 3 años, HR=1,095, 95% IC: 0,66-1,82, p=0,73). Sin embargo, el riesgo global de recurrencia fue de 36% en R1 y 27% para R0. Se observó mayor riesgo de recurrencia entre los pacientes R1 que habían sufrido ruptura tumoral con respecto a aquellos que no la habían sufrido con una SLR de 60% en los casos de ruptura y un 80% en los que no (HR=3,58, 95% IC:1,65-7,79, p=0,001). Zhi et al.,39, en un meta-análisis realizado con el objetivo de estimar el valor pronóstico de los márgenes quirúrgicos para la supervivencia libre de enfermedad (SLE) y la supervivencia global (SG) en los pacientes con GIST, obtuvo que el índice de recurrencia global de para los grupos R1 y R0 eran de 0,364 (95% IC: 0,299–0,429) y 0,296 (95% IC: 0,161–0,430), respectivamente. Este meta-análisis confirmó que los márgenes microscópicos influyen en la SLE (HR=1,596, 95% IC: 1,128–2,258; I²=37,5%, p=0,091), pero no en la SG (HR=1,43, 95% IC: 0,608–3,363; I²= 60,8%, p=0,013). También concluyó que el tratamiento con imatinib puede atenuar el riesgo de recurrencia de GIST primarios con márgenes R1.

El abordaje quirúrgico mediante laparoscopia puede considerarse en aquellos casos con una localización anatómica favorable. Chen et al.,40, en un meta-análisis que incluyó 19 estudios reveló que no existen diferencias en cuanto al resul-
tado a largo plazo en la utilización de laparotomía o laparoscopía, aunque el empleo de la laparoscopía está asociado a un menor índice de complicaciones y corta estadía hospitalaria. Sin embargo, el abordaje laparoscópico no se aconseja en tumores de gran tamaño debido al riesgo de ruptura tumoral.

En los pacientes de alto riesgo de recidiva, el imatinib en terapia adyuvante es el tratamiento estándar. En los estudios ACOSOG Z9000 y ACOSOG Z9001, se demostró que el uso del imatinib en pacientes con alto riesgo de recurrencias prolongaba la SG, aunque la duración óptima de la terapia permanecía indefinida. Posteriormente, el estudio SSGXVIII/AIO59 demostró que la terapia extendida a tres años con imatinib posee mejores resultados de supervivencia respecto al tratamiento por un año.

En el estudio SSGXVIII/AIO59, se investigó el efecto de las mutaciones de los genes KIT y PDGFRA sobre la SLR en pacientes tratados con cirugía e imatinib adyuvante, este estudio concluyó que los pacientes con delecciones del exón 11 del gen KIT se beneficiaron con una terapia adyuvante de imatinib más prolongada (3 años) que aquellos que la recibieron durante menos tiempo (1 año). También se obtuvo que los pacientes con mutaciones de los genes PDGFRA y las inserciones o duplicaciones del exón 11 del gen KIT estaban asociadas a una menor SLR, no así en las mutaciones del exón 9 del gen KIT. Según las recomendaciones, para el diagnóstico y tratamiento de los GIST de la Sociedad Europea de Oncología Médica, los GIST modificados con PDGFRA D842V no deben tratarse con ninguna terapia adyuvante, dada la falta de sensibilidad de este genotipo tanto in vitro como in vivo. Igualmente, los GIST-WT, no poseen indicación de tratamiento adyuvante con imatinib debido a la falta de sensibilidad a este y a otros inhibidores de la tirosinkinasa.

Se reconocen 5 factores de riesgo para la recurrencia luego de la terapia con imatinib (alto índice mitótico, localización no gástrica, gran tamaño tumoral, ruptura tumoral, terapia adyuvante de 12 meses), los cuales están relacionados de forma independiente con una menor SLR.

- **Enfermedad localmente avanzada y metastásica**

La terapia estándar en casos de GIST localmente avanzado, inoperable y metastásico es el imatinib. En estos pacientes el tratamiento con imatinib es recomendable que se continúe indefinidamente, dado que su interrupción está seguida de rápida progresión tumoral. En los estudios 50033/ CALGB 150105 y EORTC 62005, se evaluó la eficacia de la administración de imatinib a dos dosis iniciales (400mg/día vs 800mg/día en dos dosis de 400mg) en pacientes con enfermedad metastásica o irresecable, ambos estudios mostraron respuestas equivalentes en cuanto a SG para ambas dosis, pero dosis más elevadas estaban asociadas a mayor presencia de efectos adversos. Actualmente la dosis recomendada de imatinib es 400mg/día, lo cual resulta seguro y eficaz; la elevación de la dosis a 800mg/día puede valorarse en casos de progresión con el uso de la dosis estándar.

Hay datos de que en pacientes con tumores portadores de la mutación KIT en el exón 9 tienen mejor Supervivencia Libre de Progresión (SLP) con dosis elevadas de imatinib, por lo que en este grupo de pacientes se recomienda la administración de 800mg/día. En los pacientes con WT-GIST SDH-deficientes hay dudas sobre el beneficio de los inhibidores de la tirosinkinasa, aunque existen reportes de beneficio con el uso del sunitinib.

El uso de la terapia neoadyuvante con imatinib es otra opción que ha resultado beneficioso. Los estudios orientados de análisis retrospectivos con el uso de terapia neoadyuvante han promovido el desarrollo de ensayos clínicos utilizando este esquema. El estudio fase II RTOG 0132/ACRIN 6665 evaluó la seguridad y eficacia del uso del imatinib neoadyuvante en pacientes con GIST primario potencialmente resecable, (Grupo A: 30 pacientes) y con enfermedad metastásica o recurrente potencialmente resecable, (Grupo B: 22 pacientes). La SLP a 2 años fue de 83% para el grupo A y 77% para el grupo B, y la SG fue de 93% para el grupo A y 91% para el grupo B. En el estudio fase III BFRC14, que incluyó a 25 pacientes con GIST avanzado no metastásico, el 60% tuvo una respuesta parcial a la terapia neoadyuvante con imatinib. A todos los pacientes incluidos en este estudio se les administró imatinib, con una mediana de seguimiento de 53,5 meses y se observó una mejora en la SG y la SG en los pacientes que habían sido sometidos a cirugía luego de la terapia con imatinib con respecto a aquellos que no habían sido operados. En el grupo de los pacientes sometidos a cirugía la SLP a 3 años y la SG fue de 67% y 89% respectivamente. El uso de la terapia neoadyuvante facilita la exéresis quirúrgica y reduce las complicaciones quirúrgicas.

En los casos de progresión de la enfermedad o aquellos pacientes que no toleran la terapia con imatinib, el tratamiento de segunda línea es el sunitinib. Demetri et al. en un estudio fase III evaluaron el beneficio del uso de sunitinib en pacientes con resistencia o intolerancia a imatinib. Este estudio demostró un significativo beneficio clínico en cuanto a control de la enfermedad y aumento de la supervivencia en los pacientes tratados con sunitinib luego de la terapia fallida con imatinib. Resultados de un estudio internacional incluyó 1124 pacientes, diseñado con el objetivo de evaluar los beneficios de la terapia con sunitinib, mostró una SLP de 8,3 meses y una SG de 16,6 meses. La dosis recomendada de sunitinib es de 50mg/día durante 4 semanas con 2 semanas de descanso. Otra alternativa que ha resultado ser muy efectiva es la administración de 37,5mg/día de forma ininterrumpida. Los eventos adversos más frecuentes con el uso de este fármaco son la astenia, toxicidad en piel, diarrea, hipertensión e hipotiroidismo. Por lo general son eventos ligeros, lo cual hace que la terapia sea bien tolerada en la mayoría de los casos.

La presencia de mutaciones KIT han sido identificadas como predictor de la respuesta terapéutica al tratamiento con imatinib. Las mutaciones del KIT exón 11 están asociadas con una mejor respuesta SLP y SG con respecto a las mutaciones de KIT exón 9 o los WT-GIST. El estudio EORTC-62005 identificó la presencia de mutaciones en KIT exón 9 como un factor pronóstico adverso. En este estudio, el tratamiento con dosis elevadas de imatinib a 800mg/día obtuvo mejores resultados de SLP en los pacientes con GIST por...
CONCLUSIONES
Los GIST son neoplasias originadas a partir del tejido mesenquimal del traco gastrointestinal. Su localización más frecuente es en estómago. Las manifestaciones clínicas son inespecíficas. El método para la realización del estudio de extensión en estos pacientes es la TAC. La realización de biopsia pre-quirúrgica no es necesaria en los casos de lesiones con alto índice de sospecha. Los marcardores más sensibles y específicos son KIT (CD117) y el DOG1, en los casos de negatividad a KIT la mayoría presenta mutación de PDGFRA. Aquellos GIST con negatividad a las mutaciones KIT y PDGFRA son denominados GIST salvajes. Los factores pronósticos más importantes son el tamaño, el índice mitótico, y el sitio del tumor. El nomograma desarrollado por el Memorial Sloan-Kettering Cancer Center, resulta adecuado para la predicción de recurrencias. En los GIST localizados el tratamiento estándar es la resección quirúrgica sin disección de ganglios clínicamente negativos, tratando siempre que sea posible conseguir una resección con bordes libre. El uso de terapia adyuvante con imatinib por 3 años se recomienda en aquellos casos de GIST primarios con alto riesgo de recurrencia. En los GIST localmente avanzados y metastásicos se recomienda el tratamiento con imatinib como tratamiento de primera línea, el cual debe ser administrado de forma indefinida, en los casos de intolerancia o progresión tumoral con este, el tratamiento de segunda línea es sunitinib.

REFERENCIAS BIBLIOGRÁFICAS
1. Joensuu H, Hohenberger P, Corless C. Gastrointestinal stromal tumor. Lancet. 2013; 382(9896):973-83. DOI: 10.1016/S0140-6736(13)60106-3
2. Corless C. Gastrointestinal stromal tumors: what do we know now?. Modern Pathology. 2014; 27(1): S16. DOI: 10.1038/modpathol.2013.173
3. Mucciarini C, Rossi G, Bertolini F, Valli R, Cirilli C, Rashid I, et al. Incidence and clinicopathologic features of gastrointestinal stromal tumors. A population-based study. BMC Cancer. 2007; 7:230-36. DOI: 10.1186/1471-2407-7-230
4. Chan KH, Chan CW, Chow WH, Kwan WK, Kong CK, Mak MF, et al. Gastrointestinal stromal tumors in a cohort of Chinese patients in Hong Kong. World J Gastroenterol. 2006; 12(14): 2223-28. DOI: 10.3748/wjg.v12.i14.2223
5. Lynch HT, Lynch JF, Shaw TG. Hereditary gastrointestinal cancer syndromes. Gastroenterology Res. 2011;4(suppl 1):S9-S17.
6. Gaal J, Stratakis CA, Carney JA, Ball ER, Kor-pershoek E, Lodish MB, et al. SDHB immunohistochemistry: a useful tool in the diagnosis of Carney-Stratakis and Carney triad gastrointestinal stromal tumors. Mod Pathol. 2011; 24(1): 147-51. DOI: 10.1038/modpathol.2010.185
7. Zhang L, Smyrk TC, Young WF, Stratakis CA, Carney JA. Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am J Surg Pathol. 2010; 34(1): 53-64. DOI: 10.1097/ PAS.0b013e3181c20da4.
8. Caterino S, Lorenzon L, Petrucciani N, Iannicelli E, Pillozzi E, Ronti A, et al. Gastrointestinal stromal tumor: correlation between symptoms at presentation, tumor location and prognosis factor in 47 consecutive patients. World J Surg Oncol. 2011; 9:13. DOI: 10.1186/1477-7819-9-13
9. Casali PG, Abecasis N, Bauer S, Bielack S, Bonvallot S, Boukovinas I, et al. Gastrointestinal stromal tumors: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018; 29(suppl 0): v1-v11. DOI: 10.1093/annonc/mdy095
10. Sepe PS, Moparty B, Pitman MB, Saltzman JR, Brugge WR. EUS-guide FNA for the diagnosis of GI stromal cell tumors: sensitivity and cytologic yield. Gastroenterol Endosc. 2009, 70(2):254-61. DOI: 10.1016/j.gie.2008.11.038.
11. Novelli M, Rossi S, Rodrigo-Justo M, Taniere P, Seddon B, Toftolettli A, et al. DOG1 and CD117 are the antibodies of choice in the diagnosis of gastrointestinal stromal tumors. Histopathology. 2010; 57(2): 259-70. DOI: 10.1111/j.1365-2559.2010.03624.x.
12. Güler B, Özyılmaz F, Tokuc B, Can N, Taşkıncı E. Histopathological features of gastrointestinal stromal tumor and the contribution of DOG1 expression to the diagnosis. Balkan Med J. 2015; 32(4):388-96. DOI: 10.5152/balkanmedj.2015.15912
13. Sahin S, Ekinci O, Seçkin S, Dursun A. The diagnosis and prognostic utility of DOG1 expression on gastrointestinal stromal tumors. Turk Patol Derg. 2017; 33(1):1-8. DOI: 10.5146/ tparchive.2016.01376
14. Kišluk J, Žižcová J, Kémona A, Gužifská-Usytnická K, Zuraw ska K, Kďdra B. Expression of CD117, DOG1 and IFG-1R in gastrointestinal stromal tumors- an analysis of 70 cases from 2004 to 2010. Gastroenterology Res. 2016; 1(2):115-22. DOI: 10.5114/gdr.2015.52587
15. Kövecsi A, Jung J, Szentirmai Z, Bara T, Bara (Jr) T, Popa D, Gurzu S. PKCβ utility in diagnosing c-KIT/ DOG1 double negative gastrointestinal stromal tumors. Oncotarget. 2017; 8(34): 55950-57. DOI: 10.18632/oncotarget.19116
16. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumors: origin and molecular oncology. Nat Rev Cancer. 2011; 11(12):685-78. DOI: 10.1038/nrc3143
17. Fletcher JA, Rubin B. KIT mutation in GIST. Current Opinion in Genetic & Development. 2007; 17(1):3-7. DOI: 10.1016/j.gde.2006.12.010
18. Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell. 2007; 130(2):323-34. DOI: 10.1016/j.cell.2007.05.055
Tumores del estroma gastrointestinal

Jorge Soriano-Lorenzo y col.

19. Lasota J, Corless, Heinrich MC, Debiec-Rychter M, Sciot R, Wardekingan E, et al. Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: a multicenter study on 54 cases. Mod. Pathol. 2008; 21(4):476–84. DOI: 10.1038/modpathol.2008.2

20. Duensing A, Medeiros F, McConathy B, Joseph NE, Panigraphy D, Singer S, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004; 23(22):3999–4006. DOI: 10.1080/026153704

21. Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3kinase/AKT is a crucial survival pathway. Oncogene. 2007; 26(44):7560–8. DOI: 10.1038/sj.onc.1210558

22. Heinrich MC, Corless CL, Duensing A, McSweeney L, Chen CJ, Joseph N, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003; 299(5607):708–10. DOI: 10.1126/science.1079666

23. Kang HJ, Nam SW, Kim H, Rhee H, Kim NG, Kim H, et al. Correlation of KIT and platelet-derived growth factor receptor-α mutations with KIT exon 9 mutation and expression profiles in gastrointestinal stromal tumors. Oncogene. 2008; 26(18):2066–74. DOI: 10.1080/026153708

24. Subramanian S, West RB, Corless CL, Ou W, Rubin BP, Chu KM, et al. Gastrointestinal stromal tumors (GISTs) with KIT and PDGFRA mutations have distinct gene expression profiles. Oncogene. 2004; 23(47):7790–806. DOI: 10.1080/026153704

25. Wada R, Arai H, Kure S, Pen WX, Naito Z. Wild type GIST: Clinicopathological features and clinical practice. Pathology International. 2014; 66(8):431–37. DOI: 10.1111/pdi.13124

26. Debiec-Rychter M, Lasota J, Sarlomo-Rikala M, Kordek R, Miettinen M. Chromosomal aberrations in malignant gastrointestinal stromal tumors: correlation with c-KIT gene mutation. Cancer Genet Cytogenet. 2001; 128(1):24–30.

27. Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol. 2008; 29(1):52–68.

28. Miettinen M, Markhoub H, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. Am J Surg Pathol. 2008; 32(4):477–89.

29. DeMatteo R, Gold JS, Saran L, Gönen M, Liau WL, van Boven H, et al. Clinical characteristic and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localized primary gastrointestinal stromal tumor: a retrospective analysis. Lancet Oncol. 2009; 10(11):1045–52. DOI: 10.1016/S1470-2045(09)70242-6

30. Chok AY, Goh B, Koh YK, Lye WK, Allen JC, Quer R, et al. Validation of the MSKCC gastrointestinal stromal tumor nomogram and the comparison with other prognostic systems: single-institution experience with 289 patients. Ann Surg Oncol. 2015; 22(11):3597–605. DOI: 10.1245/s10434-015-4400-z

31. McCarter MD, Antonescu CR, Ballman KV, Maki RG, Pisters PW, Demetri GD, et al. Microsopically positive margins for primary gastrointestinal stromal tumors: analysis of risk factors and tumor recurrence. J Am Coll Surg. 2012; 215(1):53–59. DOI: 10.1016/j.jamcollsurg.2012.05.008

32. Zhi, X, Jiang B, Yu J, Dimitri O, Quin J, Ni Q, et al. Prognostic role of microscopically positive margins for primary gastrointestinal stromal tumors: a systematic review and meta-analysis. Sci Rep. 2016; 6:21541. DOI: 10.1038/srep21541

33. Chen K, Zhou YC, Mou YP, Xu XW, Jin WW, Ajoo S, et al. Comparison of two dose of imatinib in patients with metastatic gastrointestinal stromal tumor patients: a randomized controlled trial. Eur J Cancer. 2015; 6736(09)60500-6

34. Corless CL, Ballman KV, Antonescu CR, Kolles V, Maki KG, Pisters PW, et al. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of predicted primary GI stromal tumor: the ACCOSG Z9001 trial. J Clin Oncol. 2014; 32(15):1563–70. DOI: 10.1200/JCO.2013.51.2046

35. Joensuu H, Eriksson M, Sundby Hall K, Hartmann JT, Pink D, Schütte J, et al. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA. 2012; 307(12):1265–72. DOI: 10.1001/jama.2012.347

36. Joensuu H, Erikson M, Sundby Hall KS, Reichardt A, Hartmann JT, Pink D. Adjuvant imatinib for high risk GI stromal tumor: analysis of randomized trial. J Clin Oncol. 2016; 34(3):244–50. DOI: 10.1200/JCO.2015.62.9170

37. Joensuu H, Westerholm E, Siitola H, Eriksson M, Sundby Hall K, Reichardt A. Effect of KIT and PDGFRA mutations on survival in patients with gastrointestinal stromal tumors treated with adjuvant imatinib: an exploratory analysis of a randomized clinical trial. JAMA Oncol. 2017; 3 (5):602-9. DOI: 10.1001/jamaoncol.2016.5751

38. Joensuu H, Eriksson M, Hall KS, Hartmann JT, Pink D, Schütte J. Risk factors for gastrointestinal stromal tumor recurrence in patients treated with adjuvant imatinib. Cancer. 2014; 120(15):2325–33. DOI: 10.1002/cncr.28669

39. Blanke CD, Demetri GD, von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, et al. Long-term results from a randomized phase II trial of standard-versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008; 26(4):620–25. DOI: 10.1200/JCO.2007.13.4403

40. Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, Benjamin RS, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kIT receptor tyrosine kinase: 50033. J Clin Oncol. 2009; 27(36):629–32. DOI: 10.1200/JCO.2007.13.4452.

41. Verweij J, Casali PG, Zagzag J, Le Cesne A, Reichardt P, Blay JY, et al. Progression-free survival in gastrointestinal stromal tumors with high-dose imatinib: randomized trial. Lancet. 2004;364(9440):1127-34. DOI: 10.1016/S0140-6736(04)17080-7

42. Casali PG, Zagzag J, Le Cesne A, Richardt P, Blay JY, Linder LH, et al. Ten-year progression-free and overall survival in patients with unresectable or metastatic GI stromal tumors: long term analysis of the European Organization for Research and Treatment of Cancer, Italian Sarcoma Group and Australasian Gastrointestinal Trials Groups. Inter-group phase III randomized trial on imatinib at two dose levels. J Clin Oncol. 2017; 35(15):1713-20. DOI: 10.1200/JCO.2016.71.0228

43. Gastrointestinal Stromal Tumor Meta-Analysis Group (MetaGIST). Comparison of two dose of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J Clin Oncol. 2010; 28(7):1247-53. DOI: 10.1200/JCO.2009.24.2099

44. Farag S, Somaiah N, Choi H, Heeres B, Wang WL, van Boven H, et al. Clinical characteristic and treatment outcome in a large multicenter observational cohort of PDGFRA exon 18 mutated gastrointestinal stromal tumor patients. Eur J Cancer. 2017; 76:76-83. DOI: 10.1016/j.ejca.2017.02.007
55. Eisenberg BL, Harris J, Blanke C, Demetri GD, Heinrich MC, Watson JC, et al. Phase II trial of neoadjuvant/adjuvant imatinib mesylate for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumor (GIST)-early results of RTOG 0132/ACRIN 6665. J Surg Oncol. 2009; 99(1):42-47. DOI: 10.1002/jso.21160

56. Blesius A, Cassier PS, Bertucci F, Fayette J, Ray Coquard I, Bui B, et al. Neoadjuvant imatinib in patients with locally advanced non metastatic GIST in the prospective BFR14 trial. BMC Cancer. 2011; 11:72. DOI: 10.1186/1471-2407-11-72

57. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomized controlled trial. Lancet. 2006; 368(9544):1329-38. DOI: 10.1016/S0140-6736(06)69446-4

58. Reichardt P, Kang YK, Rutkowski P, Schuette J, Rosen LS, Seddon B, et al. Clinical outcome of patients with advanced gastrointestinal stromal tumors: safety and efficacy in a worldwide treatment-use trial of sunitinib. Cancer. 2015; 121(9):1405-13. DOI: 10.1002/cncr.29220

59. Debiec-Rychter M, Dumez H, Judson I, Wasag B, Verweij J, Brown M, et al. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer. 2004; 40(5):689-95. DOI: 0.1016/ejca.2003.11.025

60. Heinrich MC, Ovzar K, Corless CL, Hollis D, Borden EC, Fletcher CD, et al. Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol. 2008; 26(33):5360-67. DOI: 10.1200/JCO.2008.17.4284

61. Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D. Primary and secondary kinase genotypes correlate with the biological and clinical activity of Sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008; 26(33):5352-58. DOI: 10.1200/JCO.2008.17.4284

62. Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelberdon H, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumors after failure of imatinib and Sunitinib: an international, multicenter, prospective, randomized, placebo-controlled phase 3 trial (GRID). Lancet. 2013; 381(9863):295-302. DOI: 10.1016/S0140-6736(12)61857-1

63. Reichardt P, Blay JY, Gelderblom H, Schlemmer M, Demetri GD, Bui-Nguyen B, et al. Phase III study of nilotinib versus best supportive care with or without a TKI in patients with gastrointestinal stromal tumors resistant or intolerant of imatinib and Sunitinib. Ann Oncol. 2012; 23(7):1680-87. DOI: 10.1093/annonc/mdr598

64. Cauchi C, Somaiah N, Engstrom PF, Litwin S, Lopez M, Lee J, et al. Evaluation of nilotinib in advanced GIST previously treated with imatinib and Sunitinib. Cancer Chemother Pharmacol. 2012; 69(4):977-82. DOI: 10.1007/s00280-011-1785-7

65. Dewaele B, Wasag B, Cools J, Sciot R, Prenen H, Vandenberghe P, et al. Activity of desatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRAD842V mutation. Clin Cancer Res. 2008; 14(18):5749-58. DOI: 10.1158/1078-0432.CCR-08-0533