A single Eu$^{2+}$-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes

Peng-Peng Dai¹, Cong Li¹, Xin-Tong Zhang¹, Jun Xu², Xi Chen¹, Xiu-Li Wang³, Yan Jia¹, Xiaojun Wang¹, ⁴ and Yi-Chun Liu¹

Single-phased, high-color-rendering index (CRI) white-light phosphors are emerging as potential phosphor-converted white-light-emitting diodes (WLEDs) and as an alternative to blends of tricolor phosphors. However, it is a challenge to create a high CRI white light from a single-doped activator. Here, we present a high CRI (Ra = 91) white-light phosphor, Sr$_5$(PO$_4$)$_3$(BO$_3$)$_x$Cl:Eu$^{2+}$, composed of Sr$_5$(PO$_4$)$_3$Cl as the beginning member and Sr$_5$(BO$_4$)$_3$Cl as the end member. This work utilized the solid-solution method, and tunable Eu$^{2+}$ emission was achieved. Color-tunable Eu$^{2+}$ emissions in response to structural variation were observed in Sr$_5$(PO$_4$)$_3-x$(BO$_3$)$_x$Cl solid solutions. This was further confirmed using X-ray Rietveld refinement, electron paramagnetic resonance spectroscopy, and in the photoluminescence spectra. The color-tunable emissions included the white light that originated from the combination of the blue emission of Sr$_5$(PO$_4$)$_3$Cl:Eu$^{2+}$ and an induced Eu$^{2+}$ yellow emission at approximately 550 nm in the solid solution. Importantly, the white-light phosphors showed a greater R9 = 90.2 under excitation at 365 nm. This result has rarely been reported in the literature and is greater than that of (R9 = 14.3) commercial Y$_3$Al$_2$O$_12$:Ce$^{3+}$-based WLEDs. These findings demonstrate the great potential of Sr$_5$(PO$_4$)$_3-x$(BO$_3$)$_x$Cl:0.04Eu$^{2+}$ as a white-light phosphor for near-UV phosphor-converted WLEDs. These results also provide a shortcut for developing a high CRI white-light phosphor from a single Eu$^{2+}$-doped compound.

Light: Science & Applications (2016) 5, e16024; doi:10.1038/lsa.2016.24; published online 12 February 2016

Keywords: high-color-rendering; single Eu$^{2+}$-activated; solid solution; white-emitting phosphor

INTRODUCTION

White-light-emitting diodes (WLED) fabricated with near ultraviolet LED (NUVLED) and tricolor phosphors are a potential substitute for current lighting sources. However, these types of WLED devices are rather complicated, and the color balance is difficult to control. Recently, single-phased, white-light phosphors have attracted more attention because they avoid most of these problems. A conventional strategy using single-phased white-light phosphors is to co-dope ion pairs based on the energy transfer principle, e.g., Eu$^{2+}$/Mn$^{2+}$, Tb$^{3+}$/Mn$^{2+}$, and Eu$^{2+}$/Tb$^{3+}$/Mn$^{2+}$ pairs. In these systems, the common feature is that Mn$^{2+}$ is the red-emitting activator. However, the weak Mn$^{2+}$ d-d transitions usually lead to additional excitation quenching paths to reduce the quantum yield (QY) and thermal stability. A single-doping activator-activated white-light phosphor that suppresses the energy loss related to energy transfer is highly desired for phosphor-converted WLEDs. However, it is difficult to achieve white light from a compound with a single-doped activator that must also cover the entire visible lighting range from 400 nm to 700 nm.

Solid-solution phosphors are an efficient tool with which to explore white-light phosphors activated by a single-doped activator because this phosphor has a variable composition. This variable composition can simultaneously alter multiple parameters of the host lattice and thereby induce multiple crystal field environments imposed on the emission centers. By utilizing this strategy, some novel phosphors and new luminescence phenomena have been identified, such as tunable emission color, efficient luminous output, and improved thermal/chemistry stability. For solid-solution phosphors, the end members usually must have high crystal chemical flexibility, or the end members are nearly isotypic despite crystallizing in structures with distinct space groups. Sr$_5$(PO$_4$)$_3$Cl is an important member of the apatite-type halophosphates M$_5$(XO$_4$)$_3$Cl compounds (M = Ca, Sr, Ba, X = P, V, Si) that has been widely investigated for nearly five decades. The compound crystallizes in a hexagonal structure with a P6$_3$/m space group, can incorporate various foreign ions, and can provide abundant crystal field environments. Sr$_5$(BO$_4$)$_3$Cl crystallizes in an orthorhombic structure with a C2221 space group that has stoichiometrically mimicked apatite-type compounds and has been studied for almost two decades. Sr$_5$(BO$_4$)$_3$Cl also presents a rich crystal chemistry due to the wide range of possible cationic substitution. Therefore, a novel oxychloride solid solution with a solid-solution containing the two traditional Sr$_5$(PO$_4$)$_3$Cl and Sr$_5$(BO$_4$)$_3$Cl compounds is possible based on their crystal chemistry.

¹Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; ²Department of Chemistry, University of Zurich, The X-ray Crystallography Facility and The Linden Research Group, Winterthurerstrasse, 190 CH-8057 Zurich, Switzerland; ³School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; ⁴Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA

Received 21 July 2015; revised 21 August 2015; accepted 2 September 2015; accepted article preview online 6 September 2015
and pestle, and were subsequently sintered for 3 h at 1350 °C in a reducing atmosphere. The products were reground and fired again for 1 h at 1350 °C to obtain a solid-solution compound.

In this study, the Eu2⁺-activated Sr5(PO4)3.x(BO3)xCl solid-solution phosphors comprised of Sr5(PO4)Cl as the oxychloride beginning member and Sr5(BO4)3Cl as the end member were synthesized via a solid-state reaction. Their structures were investigated using powder X-ray diffraction (XRD), XRD Rietveld refinement analysis, and electron paramagnetic resonance (EPR). The optical properties of the phosphors are discussed in detail using crystal structure analysis, photoluminescence (PL) excitation (PLE), transition decays, and fluorescence microscopy images. As expected, a tunable emission including white light with a high color rendering index (CRI; Ra = 91, R9 = 90.2) was achieved from the single-Eu2⁺-doped Sr5(PO4)3.x(BO3)xCl solid solution at an excitation of 365 nm. To the best of our knowledge, these are the greatest indices for white-light phosphors reported, especially for those obtained by single-Eu2⁺ doping of an oxychloride compound. This study provides a shortcut for developing a high CRI white-light phosphor from a single-Eu2⁺-doped compound. In addition, this work promotes the development of single-phased white-light phosphors.

MATERIALS AND METHODS

Materials synthesis

The Sr5(PO4)3.x(BO3)xCl powders were made using solid-state reaction routes. The starting materials were SrCl2·6H2O (99.95%), H3BO3 (99.99%), SrHPO4 (99.95%), SrCO3 (99.95%), and Eu2O3 (99.99%). The powder mixtures were quantitatively mixed using an agate mortar and pestle, and were subsequently sintered for 3 h at 1350 °C in a CO reducing atmosphere. The products were reground and fired again for 1 h at 1350 °C in a muffle furnace and were then ground again for further characterization.

Characterization methods

The structures of the samples were identified using a Rigaku D/max-2500 X-ray diffractometer (Rigaku Co., Japan) with Cu Kα radiation (λ = 0.15406 nm). The detector covers an angular range 10° < 2θ < 105° with a counting time of 5 s per step. The Rietveld refinement used a general structure analysis system (GSAS) program32. The peak shapes were handled using a pseudo-Voigt function with Finger-Cox-Jephcoat asymmetry to correct for axial divergence at low angles. The crystal constants of the samples were calculated using X-ray Rietveld refinement. The room temperature PL spectra were measured with a homemade PL measurement system consisting of a 365-nm NUVLED array as the excitation source and an Ocean Optics USB 4000 plug-and-play spectrometer. The PLE spectra were analyzed using a Horiba FL-3 fluorescence spectrophotometer equipped with a 450 W Xe lamp. Fluorescence microscope PL images (TE-2000 Instruments; Nikon, Japan) of the powder samples were recorded under dark-field mode using a 365-nm UV lamp excitation. Fluorescence decay time curves were measured using an Edinburgh FLs920 spectrophotometer with an nP900 flash lamp. The EPR spectroscopy was recorded using a JES-FA200 (JEOL, Japan) EPR spectrometer. The temperature-dependent luminescence was measured under temperature control (THMS-600) in combination with a homemade PL measurement system consisting of a 365-nm NUVLED array as the excitation source and a micro-Raman spectrometer (Jobin-Yvon HR800) as the detector. A full set of 14 CRIs and the average CRI (Ra) values of the powders were measured using a homemade PL measurement system with a 365-nm UV light source (LA-410, full width at half maximum (FWHM): 5 nm, Japan) and a band-pass filter (Asahi spectra, Japan) as well as the same miniature fiber optic spectrometer with an integrated sphere. The electroluminescent (EL) spectrum and the CRI values of the commercial WLED were also measured using the same miniature spectrometer. The quantum yield (QY) was measured using a PL quantum-yield measurement system (C9920-02, Hamamatsu Photonics).

RESULTS AND DISCUSSION

Figure 1 presents the structural differences between Sr5(PO4)3Cl (SPO_Cl) and Sr5(BO4)3Cl (SBO_Cl) and a coordinated polyhedron of anions/cations. SPO_Cl crystallizes as a hexagonal structure and has two cationic sites, referred to as Sr1 and Sr2. These sites reside in the 4f and 6h sites (Figure 1a)9. The coordination polyhedron of Sr1/O is composed of six O atoms, and the coordination polyhedron of Sr2/O is composed of two Cl and five O atoms. The P ions are connected with four O ions, forming the PO4 tetrahedron structure8. The crystalization of SBO_Cl in the orthorhombic structure is a complex three-dimensional framework of 7-, 8-, and 9-coordinate Sr-centered polyhedral and BO3 triangular planes (Figure 1b). There are four cationic sites, which are referred to as Sr1, Sr2, Sr3, and Sr4, that reside in the 4a, 8c, 4b, and 4b sites, respectively30. The B ions are surrounded by three O atoms forming a BO3 triangular plane with O-B-O bond angles near 120°.

The calculated and experimental results as well as their differences in the XRD refinement of SPO_Cl are shown in Figure 2a. The initial structural mode was established by the standard crystallographic data of the SPO_Cl (ICSD#09993). The zero point error, scale factor, and background lattice and parameters were refined first followed by the

Figure 1 Crystal structures of Sr5(PO4)3Cl (a) and Sr5(BO4)3Cl (b) viewed from the z-direction and the coordination of the Sr/P and B/Sr sites in the end members, respectively.
profile parameters (i.e., W, V, U, X, and Y). Finally, the structural parameters were refined. Based on the Finger-Cox-Jephcoat profile function model, the refinement of the low-angle asymmetry significantly improved the reliability of the pattern fitting. The final reliability factors for the complete pattern were $R_{wp} = 8.46\%$ and $R_p = 5.46\%$. The refined lattice parameters were $a = b = 9.872(5) \text{Å}$, $c = 7.187(9) \text{Å}$, and $V = 606.7(3) \text{Å}^3$. These results agree well with the results previously reported32.

Figure 2b shows the XRD patterns of the Sr$_5$(PO$_4$)$_3$$_x$(BO$_3$)$_x$Cl:0.04Eu$^{2+}$ (0 $\leqslant x \leqslant 0.5$) powders. The XRD patterns of the Sr$_5$(PO$_4$)$_3$$_x$(BO$_3$)$_x$Cl:0.04Eu$^{2+}$ (SPBO$_3$Cl:0.04Eu$^{2+}$) solid solution all maintain the characteristic pattern of the hexagonal structure of the SPO$_3$Cl end member. These are consistent with literature values (Sr$_5$(PO$_4$)$_3$Cl, PDF card No. 16-0666)33. No detectable XRD peaks corresponding to impurities or other phases were observed, indicating that solid solutions were obtained. When $x > 0.5$, some by-products appeared in the power sample due to the large mismatch (35%) of the ionic radii of P$^{5+}$ ($r = 0.17 \text{Å}$, CN = 4) and B$^{3+}$ ($r = 0.11 \text{Å}$, CN = 4). We therefore believe that the Sr$_5$(PO$_4$)$_3$$_x$(BO$_3$)$_x$Cl compounds for 0 $\leqslant x \leqslant 0.5$ were primarily solid solutions. The XRD peaks located at 30.3° and 31.4° correspond to the (211) and (300) crystal planes, respectively. These shift slightly to the higher scattering angle with an increase in the B$^{3+}$ ion concentrations, whereas the XRD peak at 30.7° shifts to the lower scattering angle side (Figure 2c). The XRD peaks shift toward the higher angle side. This trend is also seen on almost all of the other diffractive peaks except for the XRD peaks corresponding to the (002), (102), (222), (213), and (004) crystal planes. These observations indicate the substitution of smaller B$^{3+}$ ($r = 0.11 \text{Å}$, CN = 4), for P$^{5+}$ ($r = 0.17 \text{Å}$, CN = 4) changes the lattice parameters of the host. As shown in Figure 2d, the calculated lattice constants a and b decrease linearly as x increases, whereas the lattice constant c is mostly constant. The simultaneous expansion and contraction of the unit cell in different directions suggests that the anionic polyhedron substitution of PO$_4$ with BO$_3$ causes a greater distortion of the host lattice end member.

The distortion of the host lattice has a significant effect on Eu$^{2+}$ luminescence. As reported, Eu$^{2+}$ occupied the Sr2 sites in the SPO$_3$Cl

![Figure 2](image-url)

Figure 2 (a) Observed (crosses) and calculated (solid lines) XRD patterns of the Rietveld refinement of the as-prepared Sr$_5$(PO$_4$)$_3$Cl powder. (b) XRD patterns of the SPBO$_3$Cl:0.04Eu$^{2+}$ (0 $\leqslant x \leqslant 0.5$). As a reference, the standard XRD data for Sr$_5$(PO$_4$)$_3$Cl is shown. (c) Magnified XRD patterns in the region between 30° and 32° for the SPBO$_3$Cl:0.04Eu$^{2+}$ (0 $\leqslant x \leqslant 0.5$). (d) Unit cell parameters of the SPBO$_3$Cl:0.04Eu$^{2+}$ (0 $\leqslant x \leqslant 0.5$) show a contraction in the lattice parameters a and b but only a slight increase in lattice parameter c.

doi:10.1038/lsa.2016.24 Light: Science & Applications
host lattice more often than the Sr1 sites. Therefore, only one emission band in the blue spectral region was observed. In our case, SPO_Cl: yEu3+ (0.02 ≤ y ≤ 0.1) exhibited an asymmetric blue emission at approximately 446 nm under excitation at 365 nm (see Supplementary Fig. S1). As the Eu2+ content increased, the luminescent intensity was intensified and reached a maximum at y = 0.04 (see Supplementary Fig. S2). Herein, we consider that most Eu2+ ions occupy the Sr2 sites (446 nm) rather than Sr1 sites (462 nm) in the SPO_Cl host, which supports the findings of previous reports.

Interestingly, an additional distinct emission peak at approximately 550 nm was observed under excitation at the same wavelength when doped with B3+ ions (see Supplementary Fig. S1). This observation suggests that the introduction of B3+ ions induces a distinct Eu3+ center that originates from the Eu3+ occupying a distorted crystal field environment. The emission spectra can be deconvoluted into three Gaussian components with peaks centered at approximately 446 nm, 462 nm (Eu(1)) and 550 nm (Eu(2)), as shown in Supplementary Fig. S1. We assign the higher-energy emission (446 and 462 nm) to Eu2+Sr2 with a strong crystal field. With an increase in the B3+ content, the lower-energy emission of SPBO_Cl:0.04Eu2+ intensifies and reached a maximum at y = 0.5, whereas the intensity of the blue emission steadily decreases (Figure 3b). Therefore, a tunable color spectrum including white light can be obtained by combining the two emission bands located at approximately 446 and 550 nm in this SPBO_Cl:0.04Eu2+ solid-solution phosphors. The change in the emission ratio may be attributed to the higher number ratio of the Eu(2) relative to the Eu(1) sites. These are dependent on the structural variation in the solid-solution phosphor. Conversely, the energy transfer from the Eu(1) to Eu(2) sites also contributes to the change in the emission ratio. This will be shown and discussed in detail in the lifetime decay section.

Next, confocal fluorescence microscopy PL images were recorded using the 365-nm UV lamp excitation to demonstrate the PL characteristics of the phosphor particles. The emission color of these micro-crystalline powders was visible to the naked eye and was tunable from blue to blue-greenish and ultimately to white luminescence.

Color tunability is very significant for phosphors because it facilitates WLED color tuning. The normalized PL spectra (λex = 365 nm) of the SPBO_Cl:0.04Eu2+ powders (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) are presented in Figure 3a. The relative intensity of the yellow to blue emission increases gradually with an increase in the B3+ content. This reaches a maximum at x = 0.5, whereas the intensity of the blue emission steadily decreases (Figure 3b). Therefore, a tunable color spectrum including white light can be obtained by combining the two emission bands located at approximately 446 and 550 nm in this SPBO_Cl:0.04Eu2+ solid-solution phosphors.

Figure 3 (a) Normalized PL spectra of SPBO_Cl:0.04Eu2+ (0 ≤ x ≤ 0.5) under excitation at 365 nm. (b) The integrated PL intensity of the higher-energy emission and the lower-energy emission of SPBO_Cl:0.04Eu2+ as a function of the B3+ content (0 ≤ x ≤ 0.5) under excitation at 365 nm. (c), (d), and (e) the fluorescence microscope PL images for SPBO_Cl:0.04Eu2+ (x = 0, 0.2, and 0.5) under excitation at 365 nm.
The calculated CIE color coordinates can be used to characterize the emission spectra (Figure 7 and Supplementary Table S1). These values range from (0.162, 0.062) at x = 0 to (0.327, 0.361) at x = 0.5. The color tones are in accordance with the results of the fluorescence microscopy PL images.

In addition, the FWHM of the PL spectra was quite broad for samples x ≥ 0.3 and covers a wide range of the visible spectrum. This is helpful for creating highly CRI phosphor-converted WLEDs. For example, the composition at x = 0.5 can achieve greater CRI white-light versus commercial YAG:Ce^{3+}-based WLEDs. This will be shown and discussed in Figure 8. A continuous redshift is also observed in the two emission bands with an increase in the B^{3+} content (see Supplementary Table S1).

In our case, there are two possible causes for the PL redshift: (1) reabsorption; and (2) increased crystal field splitting of Eu^{2+}. In reabsorption, the greater energy emission generally resonates with the lower energy part of the excitation spectra. This results in the partial reabsorption of the high-energy emission and a shift in the emission to the red. Herein, it is clear that the higher-energy emission overlaps the low energy PLE spectra (λ_{em} = 550 nm). The extent of the overlap becomes more prominent with an increase in the B^{3+} content. In the case of increased Eu^{2+} crystal fields, the lowest 5d energy level of Eu^{2+} is strongly influenced by the crystal field splitting. Therefore, the PL spectrum will redshift when the splitting of the Eu^{2+} 5d energy levels increases. As shown in the XRD section, the anionic polyhedron PO_{4} units are successively replaced with BO_{3} by increasing the B^{3+} content. This reduces the unit cell volume and decreases the Sr-O (Eu-O) bond length. A decreased Eu-O bond length possibly increases the crystal field splitting of the Eu^{2+} ions in the 5d energy level. This causes a continuous redshift in the emission spectra.

To validate this hypothesis, the EPR data were used to investigate the surroundings of the Eu^{2+} ions because the EPR signals from the Eu^{2+} ions are very sensitive to the area surrounding the Eu^{2+} ions (4f^{7}, S = 7/2, L = 0). Figure 4 shows the EPR spectra of end member SPO_{CI} and SPBO_{Cl0.04Eu^{2+}} powders (x = 0, 0.2, 0.4, and 0.5). Respectively, at x = 0, there is a very weak EPR signal for the SPO_{CI} end member (no Eu) indicating that paramagnetic impurities exist in the host. These impurities may originate from sample defects. The weak EPR signal corresponding to the defects can be neglected compared with the EPR signal of the SPO_{Cl0.04Eu^{2+}}. Accordingly, the EPR signals of the SPO_{Cl0.04Eu^{2+}} can be totally attributed to the unpaired electrons in the Eu^{2+}. We consider that the local coordination environments of Eu^{2+} can be divided into two sections: with and without B^{3+} (x = 0 and x = 0.2–0.5, respectively). These sections yield different emissions, including Eu(1) at 446 nm and Eu(2) at 550 nm. In contrast, the difference in the EPR signals (indicated by *) is likely due to changes in the Eu^{2+} sites in the host lattice with the addition of B^{3+}. This result indicates that the introduction of B^{3+} induces a distinct Eu^{2+} site that may occupy the perturbed Sr site in the host lattice. Similar results have also been reported in the literature.55

By increasing B^{3+} content, we found that the FWHM of the EPR spectra of SPBO_{Cl0.04Eu}^{2+} (x = 0.2, 0.4, and 0.5) is gradually broadened. This result presents evidence that the introduction of B^{3+} significantly intensifies the interaction between Eu^{2+} centers and the host lattice, leading to an increase in the energy-level splitting of Eu^{2+} 5d. This redshifts the PL spectra. In addition, the Stokes shift for both emission bands changes with an increase in the B^{3+} content, but this change is not significant (see Supplementary Table S1). Therefore, we consider the redshift of the PL spectra to be primarily due to reabsorption and increased crystal field splitting of Eu^{2+}. Of course, the contribution of the Stokes shift to the observed redshift cannot be ruled out.

The normalized PLE spectra for Sr_{5}(PO_{4})_{3-x}(BO_{3})_{x}Cl:0.04Eu^{2+} (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) samples were obtained using the maxima value of each PL band. Monitoring the blue emission showed that the PLE spectrum has a broad band from 250 nm to 440 nm (Figure 5a). Similarly, when monitoring yellow emission, broad PLE spectra were observed in the range of 250–475 nm (Figure 5b). Both PLE spectra are ascribed to the 4f→5d transitions of Eu^{2+}. Nevertheless, different spectral profiles for the two PLE bands suggest that there is a difference in the splitting of the 4f→5d excited states for the two sites. This concurs with the PL and EPR results.

When increasing the B^{3+} content, the Eu^{2+} 5d bands in both PLE spectra shift to the lower-energy side along with profile changes. This is a consequence of the stronger crystal field splitting of the Eu^{2+} ions’ 5d energy level as discussed previously. In addition, the bandgaps (E_{g}) of SPO_{CI}, SPBO_{CI}, and SPBO_{Cl0.04Eu^{2+}} are calculated from their reflectance spectra. The undoped sample shows no absorption in the wavelength range greater than 375 nm and is thus white, which agrees with the PL results. The E_{g} of SPO_{CI} is estimated to be 3.836 eV. The SPBO_{Cl0.04Eu^{2+}} has a strong absorption from 250 nm to 475 nm, and the color turns light yellow (see Supplementary Figure S3). This result is attributed to the 4f→5d transitions at the Eu^{2+} center. The E_{g} of SPBO_{Cl0.04Eu^{2+}} is estimated to be 2.850 eV. The PL spectra (λ_{ex} = 365 nm) of SPBO_{Cl0.04Eu^{2+}} is also shown in Figure 5b as a reference. Obviously, there is a significant spectral overlap between the blue emission located at 446 nm (Eu(1)) and the PL spectra monitored by the lower-energy emissions of Eu(2) from 410 nm to 470 nm. This result implies the possibility of energy transfer from the Eu(1) to the Eu(2) site.

To further investigate the dynamic luminescence process between the higher-energy emission sites and the lower-energy emission sites, the lifetime decay of the higher-energy emission sites in the SPBO_{Cl0.04Eu^{2+}} powders (x = 0, 0.1, 0.3, and 0.5) was recorded (λ_{ex} = 365 nm; Figure 6a). At x = 0, the decay curve of the higher-energy emission at 446 nm presents a single exponential decay behavior. However, the fluorescence decay of the higher-energy emission becomes faster with an increase in the B^{3+} content, and the decay curves are non-exponential. This suggests that the incorporation of B^{3+} ions changes the luminescence dynamic process of Eu^{2+}. The average lifetime (τ) of these samples can be estimated using Equation (1)59:

![Figure 4 EPR spectra of the end member Sr5(PO4)3Cl (SPOCI) and SPBO_Cl0.04Eu2+](image-url)
the average lifetimes of higher-energy emission are 0.56, 0.47, 0.39, and 0.32 µs. In contrast, the decay monitored the higher-energy emission bands with a buildup characterized by a constant ~0.37 µs. The similarity in this time constant for the fastest decay component of the two bands suggests the occurrence of energy transfer from the higher-energy emission sites to the lower-energy emission sites.

The different decay profiles and lifetime values for the blue and yellow emissions further support the notion of the two emission bands from two distinct Eu²⁺ centers. In addition, the energy transfer efficiency (η) from the higher-energy emission to the lower-energy emission sites can be estimated using Equation (2):38,39

\[\eta = 1 - \frac{\tau_a}{\tau_b} \]

where \(\tau_a \) and \(\tau_b \) are the lifetimes of the higher-energy emission sites in the absence and in the presence of the lower-energy emissions, respectively. As shown in the inset of Figure 6b, η increases gradually with an increase in the doping content. Figures 5 and 6 show the decay profiles and lifetimes of the blue and yellow emissions from SPBO(Cl):0.04Eu²⁺ phosphors with varying Eu²⁺ doping levels. The decay curves are multi-exponential, and the lifetime decay coefficients are calculated using Equation (1) and Equation (2), respectively. The similarity in this time constant for the fastest decay component of the two bands suggests the occurrence of energy transfer from the higher-energy emission sites to the lower-energy emission sites. The different decay profiles and lifetime values for the blue and yellow emissions further support the notion of the two emission bands from two distinct Eu²⁺ centers. In addition, the energy transfer efficiency (η) from the higher-energy emission to the lower-energy emission sites can be estimated using Equation (2):38,39.
Therefore, the special CRI R9 value, which denotes the color reproduction PL spectrum of the SPBO_Cl:0.04Eu^{2+}0.4, 0.5, and 0.6, respectively.

minated objects43 because the Ra is calculated only using the first eight efficiencies, and 44.2% for SPBO_Cl:0.04Eu^{2+}0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, respectively.

To evaluate the potential application of an as-prepared sample, the PL spectrum of the SPBO_Cl:0.04Eu^{2+} phosphor (x = 0.5) at a 365-nm excitation is recorded and presented in Figure 8. White light can clearly be generated by combining the blue emission located at approximately 455 and the yellow emission at 550 nm. Interestingly, the white-light emission profile of the as-prepared sample is very similar to the emission profile of the commercial WLED (blue LED chip + Y_3Al_5O_12:Ce^{3+} (YAG:Ce^{3+}) yellow-emitting phosphor).

For comparison, the EL spectrum of the commercial WLED driven by a forward bias at 20 mA is also presented in Figure 8. The full set of 8 CRIs and the average CRI (Ra) of the as-prepared sample as well as the commercial WLEDs are listed in Supplementary Table S2, respectively. All 8 CRIs are greater than the YAG:Ce^{3+}-based commercial WLED, the as-prepared sample has greater Ra and R9 values. This is consistent with the fact that there was greater number of blue-greenish (470–515 nm) and deep-red components in the emission spectrum and a wider spectral distribution (~137 nm) at approximately 550 nm compared with the YAG:Ce^{3+} phosphor (~104 nm).

Thus far, there have been many investigations of single Eu^{2+/3+}-activated white-light phosphors, e.g., (BaSrMg)(PO_4)_2:Eu^{2+/3+} (Ra = 87)19, (Na_{1−x}Ca_x)(Sc_{1−x}Mg_x)SiO_2:Eu^{2+} (Ra = 72)20, (Gd_{1−x}Sr_{x+2})AlO_4:F_x:Eu^{2+} (Ra = 53)21, Sr,Ba(AlO_4)_{1−x}(SiO_4)_x:Ce^{3+} (Ra = 70)22, (La_{0.075−x}Ce_{0.025Sr_{x+3})}Al_{1−x}Si_{x}O_{4+F} (Ra = 69)23. However, indices greater than Ra = 91.0 and R9 = 90.2 have not yet been reported. These results indicate that this single-phased SPBO_Cl:0.04Eu^{2+} white-light phosphor is a promising candidate for NUVLED-excited devices for general illumination purposes.

Thermal stability is an important technological parameters for a WLED phosphor. The thermal quenching behavior of the SPBO_Cl:0.04Eu^{2+} phosphor (x = 0.5) in the temperature range of 20–200 °C under an excitation at 365 nm is shown in Figure 8. The emission intensity of Eu^{2+} increases with an elevated temperature (Supplementary Fig. S4a). The emission intensity decreased to 50% of the initial values at 120 °C (Supplementary Fig. S4b). Furthermore, the thermal quenching temperatures for both emission bands of the SPBO_Cl:0.04Eu^{2+} phosphor were different (Supplementary Fig. S4c). The thermal quenching temperature for the yellow emission was 150 °C, whereas for blue was 90 °C. Different thermal quenching temperatures for the blue and the yellow emissions may originate from the distinct Eu^{2+} ions with different rigid environments. As for the solid-solution white-light phosphor (x = 0.5), the thermally activated energy was calculated in terms of the Arrhenius equation $I(T) = I_0[1 + A \exp (−\Delta E/k_B T)]^{−1}$ (where I_0 is the initial intensity, T is the intensity at a given temperature, A is a constant, ΔE is the activation energy for the thermal quenching, and k_B is Boltzmann’s constant). The large decrease in luminescence might be attributed to the smaller barrier energy (~0.269 eV).
CONCLUSIONS

The Sr₅(PO₄)₃Cl:Eu²⁺ phosphors demonstrate a continuously tunable emission and were obtained using a solid-solution method and a solid-state reaction. Based on the Rietveld and EPR analysis, substituting PO₄ with BO₃ anionic polyhedrons contracts and distorts the lattice of the end member Sr₅(PO₄)₃Cl of the solid solution. This induces a new Eu²⁺ yellow emission at approximately 550 nm. The distinct Eu²⁺ center originates from the Eu³⁺, occupying a different crystal field site. Combining a blue emission near 464 nm and an induced yellow emission at 550 nm results in a tunable emission including white light via 365-nm excitation. Significantly, the white-light phosphor presents greater Ra and R9 values (91 and 90.2, respectively) relative to commercial YAG:Ce³⁺-based WLEDs (Ra = 80 and R9 = 14.3). This study provides an important shortcut for developing a high CRI white-light phosphor from single-Eu²⁺-doped compounds.

ACKNOWLEDGEMENTS

The work was supported by the National Natural Science Foundation of China (Grant No. 51303043, 1104035, 51173036, 31274142, and 91233024), the National Basic Research Program of China (2012CB933703), the Fundamental Research Funds for the Central Universities (Grant No. 12QNJJ007, 12JXNH01, and the International Science & Technology Cooperation Program of China (2013DFG50150), and 111 project (No. B13013). We appreciate the help of Prof. Guoong Li of Jinlin University in performing the EPR measurements.

1 Yamamoto H. White LED phosphors: the next step. In: Jiang SB, Digonnet MJF, editors. Proceedings of SPIE light-state lighting. In: Streubel KP, Jeon H, Tu LW, editors. Proceedings of SPIE light-state lighting. In: Streubel KP, Jeon H, Tu LW, editors. Proceedings of SPIE light-state lighting. San Jose, CA: SPIE; 2009. p 72310X.
2 Chang CK, Chen TM. White light generation under violet-blue excitation from tunable Sr₅(PO₄)₃Cl:Eu²⁺ phosphor. J Phys Condens Matter. 2013; 25: e50. doi:10.1088/0953-8984/25/12/123013.
3 Chang MG, Li X, Liu J. How to produce white light in a single-phase host? J Mater Chem. 2011; 21: 2300–2305.
4 Bachmann V, Ronda C, Oeckler O, Schnick WG, Meijerink A. Color point tuning for Sr₅(PO₄)₃Cl:E u²⁺ for white light LEDs. Chem Mater. 2009; 21: 316–325.
5 Song HY, You LP, Yang M, Zheng YH, Liu K et al. Facile synthesis and luminescence of Sr₅(PO₄)₃Cl:E u²⁺ nanorods via a hydrothermal route. Inorg Chem 2010; 49: 1674–1678.
6 Guo C, Luan D, Ding X, Zhang F, Shi FG et al. Luminiscence properties of Sr₅(PO₄)₃Cl:Eu²⁺, Mn²⁺ as a potential phosphor for UV-LED based white LEDs. Appl Phys B 2009; 95: 779–785.
7 Zeng Q, Liang HB, Zhang GB, Biowosudo MD, Tian ZF et al. Luminiscence of Ce³⁺ activated fluoro-apatite M₅(PO₄)₃F (M = Sr, Ca) under VUV–UV and x-ray excitation. J Phys Condens Matter. 2006; 18: 9596–9600.
8 Gruber JB, Zandi B, Merkle L. Crystal-field splitting of energy levels of rare-earth ions Dy³⁺ and Yb³⁺ in (M,Li) IIIIIIIIIIIIIIIIF in the fluorapatite crystal Sr₅(PO₄)₃F. J Phys Chem B. 1998; 103: 8009–1017.
9 Alekii T, Keszler DA. Structure of Sr₅(BO₄)₃Cl. Acta Cryst 1992; 48: 1382–1386.
10 Zhang QH, Wang J, Yu RJ, Zhang M, Su G. Luminiscence properties of Eu²⁺ ions in Sr₅(BO₄)₃Cl. Electrochem Solid-State Lett 2008; 11: H335–H337.
11 Hase K, Koch K, Bunzl W. General structure analysis system (GSAS). Report LAUR 86-748. Los Alamos National Laboratory, University of California, Los Alamos, NM, 2004.
12 Nagpure IM, Pitative SS, Coetsée ET, Ntwaeaborwa OM, Terblans JJ et al. Lattice site dependent cathodoluminescence behavior and surface chemical changes in a Sr₅(PO₄)₃F host. Phys B 2012; 407: 1505–1508.
13 Setlur AA, Shang MM, Li CX, Lin J. How to produce white light in a single-phase host? J Mater Chem. 2009; 19: 1325–1330.
14 Im WB, George N, Kurzman J, Brinkley S, Mikhailovskiy A et al. Efficient and color-tunable yellowish yellow emission solid solution phosphors for solid-state white-lighting. Adv Mater 2013; 25: 2300–2305.
15 Im WB, Fellows NN, DenBaars SP, Seshadri R. Efficient white-light-emitting diodes with Sr₅(PO₄)₃Cl:E u²⁺, Mn²⁺ as a potential phosphor for UV-LED based white LEDs. Appl Phys B 2009; 95: 779–785.
16 Mathai S, Seetharaman SS, Mallya SK, Srinivas K, Reddy K et al. Modeling and synthesis of Sr₅(PO₄)₃:Eu²⁺, Mn²⁺ solid solutions as tunable yellow phosphors for solid state white lighting. J Mater Chem. 2009; 19: 1325–1330.
17 Setlur AA, Shang MM, Li CX, Lin J. How to produce white light in a single-phase host? J Mater Chem. 2009; 19: 1325–1330.
Fukui T, Kamon K, Takeshita J, Hayashi H, Miyachi T et al. Superior illuminant characteristics of color rendering and luminous efficacy in multilayered phosphor conversion white light sources excited by near-ultraviolet light-emitting diodes. Jpn J Appl Phys 2009; 48: 112101.

Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T. White light emitting diodes with super-high luminous efficacy. J Phys D Appl Phys 2010; 43: 354002.

Narukawa Y, Narita J, Sakamoto T, Yamada T, Narimatsu H et al. Recent progress of high efficiency white LEDs. Phys Status Solidi A 2007; 204: 2087–2093.

Supplementary information for this article can be found on the Light: Science & Applications’ website (http://www.nature.com/lsa/).