The dataset for the stages of concerns of public-school teachers towards the use of e-learning platform: Malaysian context

Yong Zheng He, Farrah Dina Yusop*

Department of Curriculum and Instructional Technology, Faculty of Education, University of Malaya, Malaysia

Abstract

This dataset contains demographic information of 355 respondents and a validated 32-items Stages of Concerns Questionnaire (SoCQ). The SoCQ questionnaire was developed based on the Concerns-Based Adoption Model (CBAM) which measures seven stages of concerns as the variables. They are unconcerned, informational, personal, management, consequence, collaboration and refocusing. The data was firstly tested with normality, followed by validity checking using confirmatory factor analysis (CFA). It is useful for policy makers and stakeholders to have a thorough understanding about teachers’ concerns on the use of the e-learning platform and thus, design suitable interventions to smoothen the adoption process of using the technology. This set of data could be used in a multi-racial developing country for more complex analyses.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data description

This dataset contains variables' definition (Table 1), different versions of the instrument throughout the validation process, a manual to interpret the stages of concerns [2] and a 32-items
Stages of Concerns Questionnaire (SoCQ). The SoCQ was distributed to all the public-school teachers that responded to the email sent out by the researcher. The values of Skewness and Kurtosis were calculated for the normality test. Then, the convergent and discriminant validity of the instrument is established by Covariance-Based Structural Equation Modelling (CB-SEM). The data were accessible at https://data.mendeley.com/datasets/ztgbtpn36p/1. Fig. 3 shows the final fitted model.

2. Experimental design, materials, and methods

2.1. Concerned-based adoption model (CBAM)

There are three diagnostic dimensions in Concerns-Based Adoption Model. They are (i) stages of concerns, (ii) level of use, and (iii) innovation configurations. In this study, the SoCQ was adapted and distributed to the public schools’ teachers. The stages of concerns were initially conceptualized as three phases and user would move from one phase to another. The phases are: (i) unconcerned, (ii) Self-
concerned, and (iii) concern with students [3]. The stages of concerns were then developed into different categories of concerns [4] and finally the revised stages of concerns (Table 1).

2.2. Normality test and confirmatory factor analysis (CFA)

After the data collection, normality test (Table 2) was conducted. Then the data is then tested for model fit. The initial order of measurement model analysis (Fig. 1) showed that \(\chi^2 \) (443, \(N = 355 \)) = 1260.889, \(p < .000 \), \(\chi^2/DF = 2.846 \), GFI = 0.816; AGFI = 0.781, CFI = 0.905; IFI = 0.906, RMSEA = 0.072. The model is considered unfit because the value of TLI is less than the recommended 0.900.

Item U1 was then removed due to low loading factor of 0.359 (Table 3) and also based on the modification indices recommended by AMOS (Fig. 2). Then, some of the error terms that belong to the same factor were covaried to see if the data fits the model. The final fitted model (Fig. 3) has all item loadings greater than 0.60 (Table 3), with \(\chi^2 \) (410, \(N = 355 \)) = 1017.733, \(p < .000 \), \(\chi^2/DF = 2.482 \), GFI = 0.843; AGFI = 0.810, CFI = 0.928; IFI = 0.929, RMSEA = 0.065.

These suggest that the data fits the model well based on the recommendations values (Table 4) of CMIN/df [5,6], GFI [7,8], CFI [6,9] and RMSEA [10].

2.3. Reliability, convergent validity and discriminant validity

The values of composite reliability (CR), Average Variance Extracted (AVE), Maximum Shared Variance (MSV) and the loadings of the constructs (Table 5) were calculated using “Master Validity Tool” – an AMOS plugin.

The reliability of constructs with values between 0.82 and 0.93 are said to be satisfactory [11]. Since the values of AVE of all stages are greater than 0.5 and the AVE are all lesser than CR, convergent validity of the items is established [12,13]. The values of MSV are all found to be lesser than AVE (Table 5) and values at the square root of AVE (values at the diagonal) are higher than the correlation, showing the discriminant validity of the instrument (Table 6) [13,14].

Table 1
7 Stages of Concerns and its definition.

Stage	Definition
Unrelated	User is not concerned or has little involvement with the technology.
Self	User knows about the technology but is unconcern about how the technology relates with his/her role. It might be another indication that the user is interested in understanding more about the technology.
Personal	User knows about the technology and its requirement, and the user is aware about his/her effort to use the technology. The user begin to concern about his/her relationship with the technology.
Task	User now focuses the on the process of using the innovation and how can the innovation affect his/her task.
Impact	User is now concern about how the technology could impact his/her students.
Collaboration	User begins to concern about working or using the innovation together other colleagues.
Refocusing	The user is willing to learn more about the innovation.

Y.Z. He, F.D. Yusop / Data in brief 29 (2020) 105230
Fig. 1. Initial order of measurement model.
Fig. 2. Measurement Model after removal of item U1.
Fig. 3. Final model.
Table 2
Values of Skewness and Kurtosis of all items.

Item	Skewness	Kurtosis	Item	Skewness	Kurtosis
U1	.007	-.611	M4	-.067	-.154
U2	-.379	-.626	M5	-.127	-.310
U3	-.010	-.606	CS1	-.160	-.191
U4	-.324	-.404	CS2	-.026	.021
I1	-.001	-.146	CS3	.006	.153
I2	-.212	-.199	CS4	-.036	-.072
I3	.009	-.208	CS5	-.090	.040
I4	-.185	.101	CO1	.441	-.147
P1	-.088	-.450	CO2	.045	-.302
P2	-.165	-.236	CO3	-.050	-.028
P3	-.262	.139	CO4	.038	.068
P4	-.327	.282	CO5	-.131	-.097
P5	-.063	-.588	R1	-.192	-.286
M1	-.128	-.210	R2	.011	-.377
M2	.073	-.659	R3	-.016	-.391
M3			R4	.045	-.420

Table 3
Loadings of items.

Stages of Concerns	Items	Before Removal of Item U1 (Estimate)	After Removal of Item U1 (Estimate)	After Covaried Error terms (Estimate)
Unconcerned Stage	U1	0.359	Removed	Removed
	U2	0.887	0.888	0.886
	U3	0.723	0.721	0.72
	U4	0.91	0.915	0.917
Informational Stage	I1	0.834	0.834	0.834
	I2	0.866	0.867	0.866
	I3	0.872	0.872	0.871
	I4	0.85	0.85	0.85
Personal Stage	P1	0.879	0.879	0.878
	P2	0.831	0.831	0.83
	P3	0.848	0.848	0.848
	P4	0.828	0.828	0.828
	P5	0.872	0.872	0.873
Management Stage	M1	0.862	0.862	0.808
	M2	0.903	0.903	0.858
	M3	0.828	0.828	0.845
	M4	0.74	0.74	0.76
	M5	0.832	0.832	0.854
Consequence Stage	CS1	0.791	0.791	0.767
	CS2	0.811	0.811	0.79
	CS3	0.806	0.806	0.803
	CS4	0.886	0.886	0.893
	CS5	0.833	0.833	0.843
Collaboration Stage	CO1	0.669	0.669	0.633
	CO2	0.819	0.819	0.798
	CO3	0.806	0.806	0.806
	CO4	0.848	0.848	0.854
	CO5	0.634	0.634	0.646
Refocusing Stage	R1	0.607	0.607	0.606
	R2	0.805	0.805	0.804
	R3	0.792	0.792	0.792
	R4	0.707	0.707	0.709
Acknowledgments

This study is partially supported by the Ministry of Education and University of Malaya research grants (no. IIRG006B-19SAH and RU008T-2017).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105230.

References

[2] G.E. Hall, Measuring Stages of Concern about the Innovation: A Manual for the Use of the SoC Questionnaire, 1977. http://www.sedl.org/pubs/catalog/items/cbam17.html.
[3] F.F. Fuller, Concerns of teachers: a developmental conceptualization, Am. Educ. Res. J. (1969) 207–226.
[4] G. Hall, R.C. Wallace, W.F. Dossett, A Developmental Conceptualization of the Adoption Process within Educational Institutions, 1973, https://doi.org/10.1007/s13398-014-0173-7.

[5] H.W. Marsh, D. Hocevar, Application of confirmatory factor analysis to the study of self-concept: first-and higher order factor models and their invariance across groups, Psychol. Bull. 97 (1985) 562.

[6] P.M. Bentler, Comparative fit indexes in structural models, Psychol. Bull. 107 (1990) 238.

[7] P.Y.K. Chau, Reexamining a Model for Evaluating Information Center Success Using a Structural Equation Modeling Approach, 1997, https://doi.org/10.1111/j.1540-5915.1997.tb01313.x.

[8] A.H. Segars, Pie-examining perceived ease of use and usefulness: a confirmatory factor Analysis, MIS Q. (1993) 517.

[9] L. Hatcher, A Step-by-step Approach to Using the SAS System for Factor Analysis and Structural Equation Modeling, 1994.

[10] B.M. Byrne, Structural equation modeling with AMOS, EQS, and LISREL: comparative approaches to testing for the factorial validity of a measuring instrument, Int. J. Test. 1 (2001) 55–86.

[11] J.F. Hair Jr., G.T.M. Hult, C. Ringle, M. Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), second ed., Sage publications, 2017.

[12] R.P. Bagozzi, Y. Yi, On the evaluation of structural equation models, J. Acad. Market. Sci. 16 (1988) 74–94.

[13] C. Fornell, D.F. Larcker, Evaluating structural equation models with unobservable variables and measurement error, J. Mar. Res. 18 (1981) 39–50.

[14] W.W. Chin, The partial least squares approach to structural equation modeling, Mod. Methods Bus. Res. 295 (1998) 295–336.