The alphabet of intrinsic disorder

I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins

Francois-Xavier Theillet,1 Lajos Kalmar,2 Peter Tompa,2,3 Kyou-Hoon Han,4,5 Philipp Selenko,1 A. Keith Dunker,6 Gary W. Daughdrill1 and Vladimir N. Uversky4,9,*

1 In-cell NMR Spectroscopy; Leibniz Institute of Molecular Pharmacology (FMP Berlin); Berlin, Germany; 2 VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium; 3 Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary; 4 Department of Bioinformatics; University of Science and Technology; Daejeon, Yuseong-gu, Korea; 5 Biomedical Translational Research Center; Division of Convergent Biomedical Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Yuseong-gu, Korea; 6 Center for Computational Biology and Bioinformatics; Department of Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis, IN USA; 7 Center for Drug Discovery and Innovation; Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute; College of Medicine; University of South Florida; Tampa, FL USA; 8 Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow Region, Russia

Keywords: protein surfaces, protein solubility, cis-trans isomerization, conformational restriction, posttranslational modification, intrinsically disordered protein

Abbreviations: IDPs, intrinsically disordered proteins; IDPRs, intrinsically disordered protein regions; PRMs, proline-rich motifs; PRDs, proline-recognition domains; PPII, polyproline type II; Hyp, hydroxyproline; Pin1, protein interacting with NIMA; NIMA, never in mitosis A

A significant fraction of every proteome is occupied by biologically active proteins that do not form unique three-dimensional structures. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) have essential biological functions and are characterized by extensive structural plasticity. Such structural and functional behavior is encoded in the amino acid sequences of IDPs/IDPRs, which are enriched in disorder-promoting residues and depleted in order-promoting residues. In fact, amino acid residues can be arranged according to their disorder-promoting tendency to form an alphabet of intrinsic disorder that defines the structural complexity and diversity of IDPs/IDPRs. This review is the first in a series of publications dedicated to the roles that different amino acid residues play in defining the phenomenon of protein intrinsic disorder. We start with proline because data suggests that of the 20 common amino acid residues, this one is the most disorder-promoting.

Introduction

Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) have recently become a hot topic in molecular and structural biology.1,2 Computational analyses show that about 10–20% of full-length eukaryotic proteins are IDPs and that 25–40% of all protein residues are classified as IDPRs.3-7 Furthermore, more than half of IDPs experimentally characterized by NMR are in fact IDPRs.4 Despite the fact that IDPs/IDPRs do not form regular, three dimensional structures on their own,3 they are nevertheless associated with various important cellular roles8,9,10,24 and implicated in a number of prominent human diseases.14,25-35 The unique structural properties of IDPs/IDPRs require new methods for their analyses36 and new concepts for understanding their functions.10,11,15

Structural and functional properties of a protein are encoded by the alphabet of the 20 naturally occurring amino acids. Therefore, to understand the unique structural and functional properties of IDPs/IDPRs it is necessary to determine how their amino acid sequences differ from ordered proteins. A number of research groups, including ours, have interrogated this problem using computational methods and determined that the amino acid compositions of IDPs and IDPRs are biased in relation to ordered proteins.5,9,10,37,38 Based on these studies, the concept of “order-promoting” (cysteine, tryptophan, tyrosine, isoleucine, phenylalanine, valine, leucine, histidine, threonine, asparagine) and “disorder-promoting” residues (aspartic acid, methionine, lysine, arginine, serine, glutamine, proline, glutamic acid) has been proposed.38 From a physico-chemical point of view, the majority of order-promoting residues are non-polar and commonly found within the hydrophobic cores of ordered proteins, whereas the majority of disorder-promoting residues are polar, often charged, and commonly found on the surfaces of ordered proteins. This notion is consistent with our current understanding of the highly dynamic structures of IDPs/IDPRs that do not form stable hydrophobic cores and probably expose most of their amino acids to the solvent.5,34 Important exceptions to the just
stated polar or charged tendencies are prolines, which are the most disorder-promoting residues39 despite the non-polar nature of their side chains.

The differences in composition between ordered and disordered proteins are coupled to distinct evolutionary patterns, with IDPs and IDPRs typically displaying higher global mutation rates than ordered proteins.40 Despite this, some IDP residues, such as aromatic amino acids (tryptophans, tyrosines, and phenylalanines), leucines and prolines are well-conserved.41 With the exception of prolines, all other conserved residues are generally less abundant in IDPs than in ordered proteins. Conserved aromatic and hydrophobic IDP residues are frequently found in protein segments with molecular recognition features (MoRFs)42,43 and in the pre-structured motifs (PreSMos).4 MoRFs are short IDPRs that often fold upon binding to other proteins, as well as to DNA. MoRFs determine the functions of many IDPs because they define specific protein-protein interaction surfaces, which likely explain their higher degree of evolutionary conservation.

Figure 1 and Table 1 show the statistics of amino acid compositions of proteins in four standard data sets, Swiss-Prot,45 PDB Select 25,46 surface residues37 and DisProt,44 where Figure 1A recapitulates Table 1 in a graphical form, and Figure 1B shows the compositional differences between the structured and disordered data sets. The Swiss-Prot database (UniProtKB/Swiss-Prot) was chosen because it contains sequence and functional information on ~550,000 proteins from all kingdoms of life and therefore represents the unbiased distribution of amino acids throughout nature.37 PDB Select 2546 contains a representative set of PDB entries with less than 25% sequence identity. This database was chosen because of its bias toward “structural” proteins that are likely to crystallize.37 Surface residues were determined with the Molecular Surface Package and a number of PDB structures of monomeric proteins that were found suitable for studying biological activities associated with protein surface properties, such as protein binding, for example.37 Finally, the DisProt database comprises entries of proteins and protein regions that had been experimentally verified to be intrinsically disordered.37 Figure 1A and Table 1 show that average proline contents in these four data sets are $4.83 \pm 0.03\%$, $4.57 \pm 0.05\%$, $5.6 \pm 0.1\%$ and $8.1 \pm 0.6\%$, respectively (cprofiler.org/help.html).37 Hence, IDPs contain, on average, 1.7- to 1.8-times more prolines than proteins in UniProt, or PDB Select 25, respectively. Furthermore, the overall proline content in IDPs is 1.4-times higher than on surfaces of folded proteins.

Figure 1B shows that proline exhibits the largest fractional change between structured and disordered proteins, and the fractional changes for the various residues provide the basis for estimating the disorder propensities given in Table 1 (see Table 1, footnote b). Indeed, the disorder propensities here yield the same P, E and S ranking for the most disorder-promoting residues
as obtained in a previous study, \(^{59}\) while the remaining amino acids show some alterations in the ranking compared with the previous study, especially for amino acids with similar disorder propensity values. Of course such estimates depend on both the methods used and the sets of proteins in the databases, which were both significantly different in the previous study \(^{59}\) as compared with this one. Overall, the disorder propensity ranking between the two studies differ in detail but these differences are not significant.

This article starts a series of publications on the alphabet of intrinsic disorder, which is dedicated to exploring the amino acid determinants of intrinsic protein disorder. Here, we review the functions of prolines in IDPs/IDPRs and provide compelling evidence for proline-specific biological activities that may provide evidence for their high levels of abundance and conservation in disordered proteins and protein regions.

Structural Properties of Prolines

Chemical structure of prolines. Among the 20 natural amino acids, proline is unique in that it is the only imino acid; that is, the proline backbone nitrogen is bound to two alkyl carbons and lacks the usual proton (see Fig. 2). Proline’s distinctive cyclic structure renders the backbone conformation more rigid than in any other amino acid. Hence, proline peptide bonds exhibit structural features that differ substantially from other residues, also because they do not contain backbone amide hydrogen atoms at physiological pH and therefore do not form stabilizing hydrogen bonds in α-helices, or β-sheets. In consequence, prolines are rarely found as integral parts of secondary structure elements, \(^{52,54}\) but rather at the ends of α-helices, or in protein loop regions. \(^{49}\) Their characteristic backbone angle properties and unique structural properties in proteins and polypeptides (see below) also give rise to atypical Ramachandran plot features. \(^{30-53}\) Prolines sample restricted areas of the Ramachandran space, which are primarily defined by their backbone pyrrolidine constraints. \(^{31}\) They also exert pronounced effects on the backbone geometries of residues preceding them, i.e., pre-prolines. \(^{35}\)

Cis-trans isomerization. Although most amino acids form peptide bonds that are in their trans-isomer conformations (> 99.5%), \(^{36,57}\) Xaa-Pro peptide bonds populate both cis- and trans-states. Xaa-Pro trans isomers are indeed less favored because of relatively high steric conflicts between Xaa-Cα atoms and Pro-Cβ’s (see Fig. 2). The energy differences between proline cis/trans conformers are less pronounced than in other amino acids, which, in connection with a high energy barrier between the two isomers (~20 kcal/mol) \(^{54,59}\) results in slow

![Table 1. Amino acid compositions of the standard data sets (modified from ref. 37)](image)

Residue*	Disorder propensityb	SwissProtc	PDB S25d	Surface residues*	DisProte
Cys (C)	0.000	1.50 ± 0.02	1.74 ± 0.05	0.78 ± 0.04	0.80 ± 0.08
Trp (W)	0.004	1.13 ± 0.01	1.44 ± 0.03	1.33 ± 0.05	0.67 ± 0.06
Ile (I)	0.090	5.90 ± 0.04	5.61 ± 0.06	2.77 ± 0.07	3.24 ± 0.13
Tyr (Y)	0.113	3.03 ± 0.02	3.50 ± 0.04	3.58 ± 0.08	2.13 ± 0.15
Phe (F)	0.117	3.96 ± 0.03	3.98 ± 0.04	2.38 ± 0.05	2.44 ± 0.13
Leu (L)	0.195	9.65 ± 0.04	8.68 ± 0.08	5.11 ± 0.08	6.22 ± 0.25
His (H)	0.259	2.29 ± 0.02	2.41 ± 0.04	2.60 ± 0.06	1.93 ± 0.11
Val (Y)	0.263	6.73 ± 0.03	6.72 ± 0.06	4.01 ± 0.06	5.41 ± 0.44
Asn (N)	0.285	4.13 ± 0.04	4.58 ± 0.06	6.23 ± 0.15	3.82 ± 0.27
Met (M)	0.291	2.38 ± 0.02	2.22 ± 0.04	1.13 ± 0.04	1.87 ± 0.10
Arg (R)	0.394	5.40 ± 0.04	4.93 ± 0.06	6.56 ± 0.13	4.82 ± 0.23
Thr (T)	0.401	5.41 ± 0.02	5.63 ± 0.05	6.08 ± 0.11	5.56 ± 0.24
Asp (D)	0.407	5.35 ± 0.03	5.83 ± 0.05	8.18 ± 0.10	5.80 ± 0.30
Gly (G)	0.437	6.96 ± 0.04	7.16 ± 0.07	7.06 ± 0.11	7.41 ± 0.40
Ala (A)	0.450	7.89 ± 0.05	7.70 ± 0.08	6.03 ± 0.13	8.10 ± 0.35
Lys (K)	0.588	5.92 ± 0.05	6.37 ± 0.08	9.75 ± 0.16	7.85 ± 0.45
Gln (Q)	0.665	3.95 ± 0.03	3.95 ± 0.05	5.21 ± 0.09	5.27 ± 0.37
Ser (S)	0.713	6.83 ± 0.04	6.19 ± 0.06	6.87 ± 0.13	8.65 ± 0.43
Glu (E)	0.781	6.67 ± 0.04	6.65 ± 0.07	8.70 ± 0.17	9.89 ± 0.61
Pro (P)	1.000	4.83 ± 0.03	4.57 ± 0.05	5.63 ± 0.10	8.11 ± 0.63

*Residues are arranged according to their decreasing intrinsic disorder propensity; bDisorder propensity is calculated based on the fractional difference in the amino acid compositions between the disordered and ordered proteins obtained by renormalizing these values to lie between 0 and 1; cSwissProt 51 is closest to the distribution of amino acids in nature among the four data sets; dPDB Select 25 is a subset of proteins from the Protein Data Bank with less than 25% sequence identity, biased toward the composition of proteins amenable to crystallization studies; eSurface residues determined by the Molecular Surface Package over a sample of PDB structures of monomeric proteins suitable for protein surface analysis; fDisProt 3.4 comprised of a set of experimentally determined disordered regions."
cis\textit{}/trans interconversion rates \((10^{-3} \text{ s}^{-1})\).56 Hence, on average, ordered proteins contain 5–10% cis-conformers of the Xaa-Pro peptide bonds, whereas the occurrence of cis-isomers of usual amide bonds in proteins is typically below 0.5%56,57. The cis-isomer content is influenced by the nature of the surrounding residues and by the types of surrounding secondary structure.60,62 Despite these similar energy levels in disordered peptides, prolines in natively folded proteins tend to display exclusive cis-, or trans-conformations, which are primarily established via the protein fold and the resulting specific interactions with residues close in space.63,64

Within protein Xaa-Pro motifs, \(C_a(\text{Xaa})/C_a(\text{Pro})\) distances of trans-proline conformations are on average 1.5 Å larger than for cis proline isomers;65,66 however, these effects are not systematic and strongly influenced by the nature of Xaa. In most folded proteins, isomer-specific structural changes are local, and vanish at a distance of 2–3 residues from the proline of interest. More extended conformational rearrangements have only been observed for a few cases.67 From a local point of view the effects that proline cis\textit{}/trans isomers induce in polypeptide chains are important. cis-isoforms result in turn-like structures, whereas trans-isoforms favor locally extended conformations (see Fig. 2). In protein folding cis\textit{}/trans isomerization plays an important role and often functions as the rate limiting step in the overall folding process.64 Important cellular enzymes such as peptidyl-prolyl isomerases (PPIases) accelerate proline isomerization processes and thereby enhance the kinetic rates with which thermodynamic equilibrium states are reached. The relationships between PPIases and IDPs will be discussed in more detail, later in the article. One aspect that we want to stress is that proline cis\textit{}/trans characteristics and behaviors of IDPs are similar to those of peptides. IDPs display cis population averages of ~5–10% and, therefore, IDPs with 10 or more prolines have high probabilities for multiple cis conformations. This creates substantial diversity in population conformers that sample a vast conformational space.

On the hydrophobicity of the proline residue. In the initial hydrophobicity scale development, the backbone was considered to be constant for all of the amino acids, and thus only the side chain was considered to be contributing to the values of the scale.68 However, with regard to residue hydrophobicity, the proline imine brings the backbone into play. That is, upon burying a typical amino acid residue, the backbone has both hydrogen bond donors and acceptors, leading to helices, sheets, turns or other structures in which the backbone hydrogen bonding potential is self-satisfied. For proline, on the other hand, the backbone has hydrogen bond acceptors but no donors, and for this reason it is costly from an energetic point of view to sequester the proline backbone from the solvent. The consequences of this donor/acceptor imbalance in the backbone are that, compared with valine, the other amino acid with a side chain containing 3 aliphatic carbons, proline is less frequently buried and more frequently on protein surfaces (Table 1; Fig. 1B). In this regard, the solubility of the individual amino acids is generally inversely correlated with hydrophobicity, yet proline is by far the most soluble of the amino acids at neutral pH,69 and furthermore, polyproline is much more water soluble than polyglycine, polyalanine and polyleucine due to polyproline’s lack of an NH group.70 Thus, despite its hydrophobic side chain, the proline residue is very hydrophilic.
Prolines in IDPs/IDPRs: Structural and Functional Roles

The polyproline type II helix as a unique binding interface.

The unusual chemistry of prolines imposes several constraints on neighboring residues and proline-rich motifs (PRMs) have high propensities for adopting non-classical conformations such as the polyproline type II (PPII) helix. PPII helices are left-handed, extended structures that contain three residues per turn and no internal hydrogen bonding. They are surprisingly abundant structural scaffolds in virtually every proteome. Even ordered proteins contain short PPII stretches, and PPII backbone dihedral angles (−75°, 150°) are frequently observed in amino acids other than prolines. In PPII helices, side-chain and backbone carbonyls are solvent-exposed and often engage in intermolecular hydrogen bonds, thereby mediating generic intermolecular recognition events of rather low ligand specificities. In turn, a great number of proline-recognition domains (PRDs) interact with PRMs and PPII helices, among which SH3 and WW domains are probably the most well-known examples. The giant human protein titin, with a total of 34,000 amino acids, contains ~550 SH3 binding motifs, of which 100 are found in PRMs.

PPII-mediated interactions regulate diverse sets of particular cellular functions. A statistical analysis on 74 scaffolding proteins for example, has revealed that this class of proteins contained predicted degrees of disorder (i.e., 49.7% by IUPred, 63.36% by VSL2 and 47.82% by FoldIndex) that were comparable to highly disordered classes of proteins, such as transcription factors and RNA chaperones. Furthermore, 26 of the most disordered scaffolding proteins contained average proline contents of 11.2 ± 0.4%, which appears to predispose PRM-proteins to function as hubs in protein-protein interaction networks. PRMs, or polyproline regions (PPRs) are also found in the proteomes of several viruses, such as hepatitis E (HEV), rubivirus and cutthroat virus (CTV). Although the functional significance of PPRs in viruses remains poorly understood, they appear to mediate interactions of viral proteins with cellular host factors to modulate viral replication efficiencies. A recent study further demonstrated that sequence variabilities in viral PPRs play important roles in adaptation and in specifying the range of host cells. PPRs of HEV genotypes 3 and 4, for example, indicating viral variants of zoonotic origins that can infect humans and animals, are twice as heterogeneous as PRPs in the HEV genotype 1 variant, which is purely anthropotropic and can infect humans only.

Also in these PRM-containing binding regions, proline not only is involved in maintaining an open conformational state compatible with binding, it is also the most important residue that contacts the partner protein. An analysis of short linear motifs (SLIMs, also termed Eukaryotic Linear Motifs, ELMs) showed that Pro is the residue most significantly enriched in sites that determine binding specificity of the motif (restricted sites, RSs).

PRMs and IDP conformations. Based on the high levels of PPII sequence conservations in folded proteins, it has been suggested that these structural elements constituted a separate class of secondary structure elements, with two major functions: To promote super-secondary structures, such as PPII/α-helical interactions, and to form inter-domain linkers. In IDPs, the unique propensities of PPII structures in rigidifying polypeptide backbone conformations is thought to spatially separate functionally important protein regions. An example for such a separation function is provided by the human oncoprotein and transcription factor p53 that contains two PRMs in PPII-type conformations. One separating the intrinsically disordered N-terminal transactivation domain (NTAD) of p53 from its folded DNA-binding domain (DBD), the other one within the NTAD separating a helical pre-structured segment and two pre-structured turns that mediate distinct protein-protein interactions. Similarly, two transactivation domains within the C-terminus of herpes simplex virus protein 16 (VP16) are separated by a conserved PRM (PPS PVK MPS PP), whereas a PRM in the human transcription factor FoxA3 (PPQ PPP PAP EP) separates its DNA- from its histone-binding domain.

Whereas PRMs often induce extended conformations, many IDPs are usually more compact than chemically denatured proteins of comparable lengths, whose conformational behaviors still cannot be described as random coils. Because most IDPs are not restricted to stable three-dimensional architectures, to seamlessly vary their degrees of global compactions is thought to constitute an important functional IDP feature. Therefore, the ability of PRMs to elongate and stiffen polypeptide chains has to be discussed in this context. For example, proline-rich salivary proteins possess significantly higher radii of gyration than are expected for unfolded polypeptides of similar lengths. It has been proposed that organized PPII helices in these proteins result in larger collisional cross sections that facilitate their interactions with tannins, which form the basis of the sensory perception of astringency.

Extending IDP structures via PRM-mediated effects may not necessarily be restricted to long proline sequences alone. In fact, a strong correlation between the number of prolines in an IDP and its radius of gyration has been established. Such expansions have been attributed to the unique properties of Xaa-Pro peptide bonds to adopt backbone dihedral angles that correspond to extended conformations. However, prolines can also promote β-turn conformations, which elicit various degrees of polypeptide chain compactions. The degree of compaction can moreover be tuned by cis-trans equilibrium. In line with these observations, mutating proline residues in a short, disordered elastin-like peptide has been shown to induce a stepwise expansion. In contrast, the overall stiffness of four disordered peptides were reported to be more correlated with their PPII contents than their proline counts, whereas the intrinsic capacities for hairpin structures strongly correlated with the numbers of glycines and prolines. Therefore, the possible role(s) of prolines...
in compacting, or expanding IDPs conformations would depend on the context. While increasing the number of prolines in PPII conformations appears to rigidify IDPs, a high-abundance of prolines in combination with favorable glycine contents, or with selective positioning of charged and/or hydrophobic residues, gives rise to preferred hairpin conformations that result in more collapsed structures. 114

Prolines as secondary structure-breakers. Because of their unique chemical and structural properties, and because of their negative influence on classical secondary structure, it is tantalizing to speculate that proline positions in folded, but also in intrinsically disordered proteins, had been evolutionarily selected, as well as conserved, for their unique capacities to modulate the structural propensities of neighboring protein residues. In folded proteins, a preference for prolines at helix-capping positions had been recognized very early on.115 Depending on the dataset, or the methods for defining secondary-structures, prolines in N- or C-cap positions preferentially occur between N\textsubscript{α} and N\textsubscript{α}+3 and between C\textsubscript{α} and C\textsubscript{α}+3, respectively.116-120 In these instances, high proline frequencies do not relate to helix stabilization effects, but more likely function as border elements that confine existing secondary structures to certain lengths.121,122 In IDPs, proline positions may have been evolutionarily conserved to ensure that protein regions with residual structural propensities, such as MoRFs for example, retain their partially folded states in a balanced manner. Recent findings support this notion by showing that prolines at positions that flank partially folded IDP segments (PreSMos) occur more frequently53 and display higher levels of positional conservation, than elsewhere in these proteins.94 In essence, this notion represents an extension of the “proline bracket” concept,123,124 according to which prolines in segments flanking protein interaction sites negatively modulate the propagation of α-helices and β-strands. Such effects may preserve various degrees of conformational IDP plasticity, which may eventually steer different binding behaviors in protein-protein interactions.

Prolines and prevention of amyloid-like aggregation. As mentioned earlier, positional proline effects in IDPs may preserve levels of disorder in regions with residual structural propensities. This, in turn, may also reduce the likelihood for spontaneous IDP aggregation, which is often cytotoxic, results in cell death and produces several devastating disease phenotypes.125 In fact, many different IDP aggregation processes proceed via intermediate conformations that harbor folded aggregation cores, which progressively expand into highly ordered macromolecular assemblies such as amyloids fibrils, for example. In folded proteins, uncontrolled association events via existing secondary structure elements are often prevented by combinations of dedicated structural features that “protect” aggregation-prone entities such as peripheral β-strands. These include “covering” interactions with loop- or helical-segments, β-strand distortions via inward-pointing, charged residues, incorporation of prolines, β-bulges, or glycine-promoted bends and twists, or via formations of continuous β-sheets to yield β-barrels.126 Therefore, prolines at the domain boundaries are often highly conserved and mutating them usually promotes aggregation.125,127 In depth analyses of various protein segments that display high propensities for β-aggregation have shown that β-breaking prolines, together with charged amino acids such as lysines, arginines, glutamates and aspartates, are specifically enriched at these positions and thought to serve as anti-aggregation “gatekeepers.”128

Elastomeric proteins. Elastomeric proteins exemplify another important aspect of the “usage” of prolines for specific biological functions. These proteins display remarkable propensities for elastic recoiling behaviors and undergo innumerable reversible deformations in the course of their lifetimes, which are directly related to their specific biological functions in tissues and other biomaterials.129 In all vertebrates, elastomeric proteins constitute the building blocks of blood vessels; in insects, they give rise to specialized structures such as a spider’s silk; in arthropods they make up the intrinsic energy storage apparatus that enables jumping. Some of these proteins are IDPs that have evolved to aggregate in a controlled manner to form dedicated, rubber-like structures that are able to be stretched under extreme physical circumstances and to recoil by itself later.129 Although these elastomeric proteins can spontaneously organize themselves into elastomeric protein complexes, they are surprisingly resistant to forming β-rich amyloid structures.125 Despite their sequence and functional diversities, all elastomeric proteins and IDPs contain unusually high proline and glycine contents,126 which clearly separates elastomeric proteins from amyloidogenic proteins and peptides (Fig. 3).130 Prolines in these structures, together with glycines, prevent the formation of long, stable amyloid structures, whereas their relatively high hydrophobicities promote aggregation-like behaviors such as recoiling. Thus, amino-acid compositions of elastomeric proteins depend on a fine balance between polypeptide hydrophobicity and high proline and glycine contents.125,130

Proline-Directed Post-translational Modifications

Post-translational protein modifications (PTMs) range from enzymatic cleavage reactions of peptide bonds to covalent additions of particular chemical groups, lipids, carbohydrates or even entire proteins onto selected subsets of amino acid side chains. PTMs extend the range of amino acid structures and properties and greatly diversify the functional space of virtually every proteome.131 With regard to our subject, strong correlations between predicted, and experimentally verified protein disorder and the occurrence of PTMs exist,26 the most common among which are phosphorylation,132,133 ubiquitination,134 acetylation,135 methylation136,137 and glycosylation138 reactions. These PTMs are typically involved in the regulation and control of various signaling and recognition processes (for example see ref. 139). Although direct post-translational modifications of proline residues only have a limited range of functions, prolines play important roles in the regulation of the occurrences of other PTMs.

Proline PTMs. Annotated lists of experimentally verified PTMs, in Swiss-Prot and other databases, clearly indicate that prolines are primarily subject to post-translational hydroxylation (selene.princeton.edu/PTMCuration/),140 which can occur on Cβ ((2S,3S)-3-hydroxyproline) or Cγ ((2S,4R)-4-hydroxyproline)
interaction with its TAZ1 domain. Upon elevation of oxygen level, Pro564 of HIF-1α becomes hydroxylated, it binds to the ubiquitin ligase von Hippel-Lindau factor and undergoes ubiquitination that targets the protein for degradation.

Structural disorder and the extended structure ensured by Pro residue(s) are also involved in directing the action of proteases in limited proteolysis. Due to being an irreversible modification, limited proteolysis is a serious and tightly regulated signaling decision by the cell. For example, calpain, the intracellular protease only cleaves specific substrates if activated by calcium and released by its tight inhibitor, calpastatin, and shows a strong preference for regions of local structural disorder dominated by Pro residues. Actually, Pro is depleted around the scissile bond (positions P2, P1 and P1'), but is highly significantly enriched in flanking regions (positions P4, P3 and P2' to P6').

Roles of prolines in protein phosphorylation. Many serine/threonine kinases modify substrate sites that constitute integral or distal parts of kinase consensus motifs. Within positions. These nonreversible conversions of prolines to (2S,4R)-4-hydroxyprolines (Hyps) are catalyzed by prolyl 4-hydroxylase enzymes and surprisingly, represent the most common PTM in humans. In fact, Hyps are more abundant in animals than seven of the most "common" amino-acid types: Cys, Gln, His, Met, Phe, Trp and Tyr. The best known roles for Hyp are in stabilizing collagen triple helices. Proline hydroxylation enhances the stability of trans-isoforms of Xaa-Pro peptide bonds relative to cis-isoforms. Since proline trans-isoforms already constitute the major conformations in IDPs (~90%), hydroxylation is not thought to play additional important roles in their conformational behaviors. Apart from their roles in collagen-like coiled-coil structures, Hyp's are also found in many other connective tissue proteins, in proteins with collagen-like domains, as well as in the (partially) disordered proteins elastin, conotoxin and argonaute 2.

The best example for Pro-hydroxylation generating a signal for regulation is hypoxia-inducible transcription factor 1α (HIF-1α). At low oxygen conditions (hypoxia), HIF-1α activates transcription by recruiting the general coactivator CBP/p300 via

positions. These nonreversible conversions of prolines to (2S,4R)-4-hydroxyprolines (Hyps) are catalyzed by prolyl 4-hydroxylase enzymes and surprisingly, represent the most common PTM in humans. In fact, Hyps are more abundant in animals than seven of the most "common" amino-acid types: Cys, Gln, His, Met, Phe, Trp and Tyr. The best known roles for Hyp are in stabilizing collagen triple helices. Proline hydroxylation enhances the stability of trans-isoforms of Xaa-Pro peptide bonds relative to cis-isoforms. Since proline trans-isoforms already constitute the major conformations in IDPs (~90%), hydroxylation is not thought to play additional important roles in their conformational behaviors. Apart from their roles in collagen-like coiled-coil structures, Hyp's are also found in many other connective tissue proteins, in proteins with collagen-like domains, as well as in the (partially) disordered proteins elastin, conotoxin and argonaute 2.

The best example for Pro-hydroxylation generating a signal for regulation is hypoxia-inducible transcription factor 1α (HIF-1α). At low oxygen conditions (hypoxia), HIF-1α activates transcription by recruiting the general coactivator CBP/p300 via

interaction with its TAZ1 domain. Upon elevation of oxygen level, Pro564 of HIF-1α becomes hydroxylated, it binds to the ubiquitin ligase von Hippel-Lindau factor and undergoes ubiquitination that targets the protein for degradation.

Proline-directed limited proteolysis. Structural disorder and the extended structure ensured by Pro residue(s) are also involved in directing the action of proteases in limited proteolysis. Due to being an irreversible modification, limited proteolysis is a serious and tightly regulated signaling decision by the cell. For example, calpain, the intracellular protease only cleaves specific substrates if activated by calcium and released by its tight inhibitor, calpastatin, and shows a strong preference for regions of local structural disorder dominated by Pro residues. Actually, Pro is depleted around the scissile bond (positions P2, P1 and P1'), but is highly significantly enriched in flanking regions (positions P4, P3 and P2' to P6').

Roles of prolines in protein phosphorylation. Many serine/threonine kinases modify substrate sites that constitute integral or distal parts of kinase consensus motifs. Within
these consensus motifs, proline residues often define substrate site specificities. Examples include many proline-directed protein kinases, such as cyclin-dependent kinases (CDKs),147,148 the mitogen-activated family of protein kinases (MAPKs),149,150 extracellular signal-regulated kinases (ERKs), stress-activated protein kinases/c-Jun-N-terminal kinases (SAPKs/JNKs), p38 kinases, glycogen synthase kinase-3 (GSK3) and Polo-like kinases (PLKs),151 all of which require prolines at positions +1 with respect to the sites of modification. These kinases play important roles in diverse cellular processes, such as cell-cycle progression, sensing of metabolic states, regulating of cellular growth, mediating of intracellular signaling, as well as executing deterministic cell response behaviors. In turn, mutations of proline-directed kinase consensus- and phosphorylation-sites are often involved in different forms of cancer and in neurodegenerative disorders.152-157 A second, less stringent proline −2 position has recently been identified as a supplementary specificity determinant for some proline +1-directed kinases.158,159

Whereas many prolines positively regulate kinase activities, by targeting them to their phosphorylation sites, proline residues within kinase consensus motifs can also weaken kinase activities, especially when they occur at positions −1 and −2, relative to the PTM sites,159 or even at positions +1.164,165 In other phosphorylation reactions, prolines play important roles in serving as specific kinase docking sites that are distal from actual phosphorylation sites but key to recruiting kinases to substrate proteins.164,166 In addition to kinases, the enzymatic properties of phosphatases are also modulated by prolines, either in the vicinities of phospho-sites167 or at distant docking sites.168,169 Finally, prolines that are close to modified substrate residues may critically influence PTM-mediated protein-protein interactions. It has been shown that phosphorylated serines, or threonines, followed by a proline, are more specifically recognized by subsets of 14–3–3 proteins170 or by Group IV WW domains.171,172

Roles of prolines in protein glycosylation. Glycosyltransferases are classes of enzymes that transfer sugar moieties onto proteins and they are strongly influenced by the presence of prolines in their substrate proteins. N-glycosylation of asparagines within the Asn-Xaa-Ser/Thr motif has been found to have a very low penetrance when the Xaa residue is a proline or when prolines are present at the +1 positions. In contrast, N-glycosylation is greatly enhanced when prolines are present at the −2 positions.173,174

O-glycosylation preferentially occurs in protein regions with high proline contents180,175 and particularly high proline frequencies have been reported for positions −1 and +3 relative to O-glycosylation sites.176 Both phosphorylation and glycosylation do not affect proline cis-conformer contents of phospho-Ser/Thr/Tyr-Pro motifs177,178 and of glyco-Ser-Pro motifs,180 respectively.

Roles of proline isomerasers in PTM establishments. As mentioned previously, proline cis/trans isomerization reactions play important roles in protein folding and refolding processes, via the establishment of rather long-lived kinetic intermediates. Therefore, classes of cellular enzymes, so-called peptidyl-prolyl isomerases (PPIases), specifically enhance proline cis/trans isomerization without affecting their thermodynamic equilibrium states.181 PPIases are evolutionarily conserved and often characterized as foldases, or annotated as catalytic structural chaperones.182 Due to their inherent differences in stereochemistry, proline cis/trans isomers can also define different functional states of proteins.183 In these cases, PPIase activity drastically impacts protein function, as has been shown for the folded SH2 domain of the interleukin-2 inducible T-cell kinase (Itk)184-188 and the PHD-BRD tandem domain of the MLL1 protein.189-190 In both cases, proline cis/trans isomerization leads to large interdomain conformational changes that subsequently affect protein-protein interaction behaviors.

Enhanced proline cis/trans isomerization in the presence of PPIases, leads to rapid sequestration of binding-competent protein states, which shifts the global population equilibrium toward the structure with which the more abundant binding partner interacts.184,189,190 Therefore, without changing protein free energies of cis/trans isomers, PPIases are capable of promoting new cis/trans distributions via additional factors that form complexes with, and thereby stabilize, individual isomer states. Because many IDPs are PPIase substrates,192,194 enzyme-controlled proline cis/trans isomerization processes provide intricate extensions to the long list of possible proline functions in IDPs. For example, proline isomerization controls switching of the adaptor protein Crk between two conformations: an auto-inhibitory state is stabilized by intramolecular association of two, tandem SH3 domains via a flexible linker IDPR containing a cis-proline isomer and a non-inhibited, activated conformation results from the promoted interconversion of this proline into its trans form. In turn, this particular cis/trans isomerization is targeted by the PPlase cyclophilin A.191

Among other PPIase enzymes, the phospho-dependent Pin1 [protein interacting with NIMA (never in mitosis A)-1] enzyme is of special interest. Pin1 functions in phospho-dependent signaling by catalyzing cis/trans interconversions of pSer/pThr-Pro peptide bonds in their phosphorylated states.191 Structurally, Pin1 consists of an N-terminal phospho-recognition WW domain and a C-terminal, catalytic PPIase domain.195 Whereas cis/trans population ratios in these Ser/Thr-Pro motifs are not affected by phosphorylation in a peptide/IPD context, cis/trans isomerization rates are severely reduced when the motif is modified.177,179 In folded proteins, the protein fold and amino acids that surround these Ser/Thr-Pro sites often stabilize, or de-stabilize one of the isomers. Enzymes such as Pin1 establish faster inter-conversion rates upon phosphorylation, which enables a 2-way control over the protein’s function.191,196-198 One way is regulation via phosphorylation, processed by a kinase or removed by a phosphatase, and a second way is control via isomerization, accelerated by a non-phospho-dependent PPlase or by the phospho-dependent PPlase Pin1.

Could similar 2-way controls be utilized by IDPs? A limitation is that Ser/Thr-Pro cis/trans thermodynamic equilibrium is not greatly affected by protein phosphorylation but is substantially affected in folded proteins. A supplementary IDP protein partner is thus required for the emergence of a function of the phospho-dependent cis/trans isomerization. For example, 2-way control like that discussed above has been observed for the pSer7-Pro8 motif within the intrinsically disordered, C-terminal domain (CTD) of RNA polymerase II, whose phosphorylation
status correlates with transcriptional activity. Only the cis-isomer of the modified peptide motif serves as a substrate for the Ssu72 phosphatase. Hence, Ssu72-mediated dephosphorylation of the CTD pSer7-Pro8 sequence occurred much faster when Pin1 was present and proline cis/trans isomerization has been identified as the rate-limiting step in Ser7 dephosphorylation.

Another interesting example is afforded by pSer62 of the c-Myc oncoprotein, a key regulator of cell growth that is stabilized by Ser62 phosphorylation. Dephosphorylation by PP2A only occurs when Thr58-Pro59 is phosphorylated and Pin1 is present. Therefore, pSer62 dephosphorylation may similarly require Pro59 to be in the cis isomer state. Analogous relations between the Alzheimer disease-associated proteinTau, Pin1 and PP2 are observed. Based on these examples, it is evident that PLPase activities represent important supplementary levels of regulatory controls in many cellular processes, although, in some cases, it remains unclear whether Pin1 binding, or catalysis, constitutes the mechanism of action.

Conclusions

Examples presented in this review show that there are multiple, distinct mechanisms by which proline regulates IDP and IDPR structure and function. The unique chemical properties of proline define its role as a modulator of secondary structural elements, but also its propensity to promote specific structural motifs such as the polyproline type II helix. In turn, these features appear to be especially important in regulating a multitude of functional IDP and IDPR properties that include their aggregation propensities. In addition, nature seems to have taken full advantage of the slow proline cis/trans isomerization characteristics in a number of biological processes that, altogether, extend the impressive functional range of this unique imino acid.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Uversky VN. Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 2011; 43:1090-103; PMID:21501695; http://dx.doi.org/10.1016/j.biocel.2011.03.012.
2. Tompa P. Unstructrual biology coming of age.Curr Opin Struct Biol 2011; 21:419-25; PMID:21514142; http://dx.doi.org/10.1016/j.sbi.2011.03.012.
3. Romero P, Obradovic Z, Kissingcr CR, Villarrea FE, Garner E, Guillott S, et al. Thousands of proteins likely to have long disordered regions. Pacing Symp Biocomput 1998; •••:437-48; PMID:9670922.
4. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. Intrinsinc protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 2001; 11:161-71; PMID:11790957.
5. Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; PMID:11205552; http://dx.doi.org/10.1002/1097-0134(200111)41:3<415::AID-PRT10>3.0.CO;2-7.
6. Waid JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004; 341:67-85; PMID:15019783; http://dx.doi.org/10.1016/j.jmb.2004.02.002.
7. Xue B, Uversky VN, Oldfield CJ. Orderly order in IDP structure and function. The unique chemical properties of proline define its role as a modulator of secondary structural elements, but also its propensity to promote specific structural motifs such as the polyproline type II helix. In turn, these features appear to be especially important in regulating a multitude of functional IDP and IDPR properties that include their aggregation propensities. In addition, nature seems to have taken full advantage of the slow proline cis/trans isomerization characteristics in a number of biological processes that, altogether, extend the impressive functional range of this unique imino acid.

Conclusions

Examples presented in this review show that there are multiple, distinct mechanisms by which proline regulates IDP and IDPR structure and function. The unique chemical properties of proline define its role as a modulator of secondary structural elements, but also its propensity to promote specific structural motifs such as the polyproline type II helix. In turn, these features appear to be especially important in regulating a multitude of functional IDP and IDPR properties that include their aggregation propensities. In addition, nature seems to have taken full advantage of the slow proline cis/trans isomerization characteristics in a number of biological processes that, altogether, extend the impressive functional range of this unique imino acid.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Uversky VN. Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 2011; 43:1090-103; PMID:21501695; http://dx.doi.org/10.1016/j.biocel.2011.03.012.
2. Tompa P. Unstructrual biology coming of age.Curr Opin Struct Biol 2011; 21:419-25; PMID:21514142; http://dx.doi.org/10.1016/j.sbi.2011.03.012.
3. Romero P, Obradovic Z, Kissingcr CR, Villarrea FE, Garner E, Guillott S, et al. Thousands of proteins likely to have long disordered regions. Pacing Symp Biocomput 1998; •••:437-48; PMID:9670922.
4. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. Intrinsinc protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 2001; 11:161-71; PMID:11790957.
5. Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; PMID:11205552; http://dx.doi.org/10.1002/1097-0134(200111)41:3<415::AID-PRT10>3.0.CO;2-7.
6. Waid JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004; 341:67-85; PMID:15019783; http://dx.doi.org/10.1016/j.jmb.2004.02.002.
7. Xue B, Dunker AK, Uversky VN. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteins from viruses and the three domains of life. J Biomol Struct Dyn 2012; 30:137-49; PMID:22720722; http://dx.doi.org/10.1080/07391102.2012.675145.
8. Lee SH, Kim DH, Han JJ, Cha EJ, Lim JE, Cho YJ, et al. Understanding pre-structured motifs (PreSMos) in intrinsically unfolded proteins. Curr Protein Pept Sci 2012; 13:94-54; PMID:22444148; http://dx.doi.org/10.2174/138920309789839377.
9. Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta 2010; 1804:1231-64; PMID:201177254; http://dx.doi.org/10.1016/j.bbabio.2010.01.017.
10. Wright PE, Dyson HJ. Intrinsically unstructured proteins: reassessing the protein structure-function paradigm. J Mol Biol 1999; 293:321-31; PMID:10550212; http://dx.doi.org/10.1006/jmbi.1999.3110.
11. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, et al. Intrinsically disordered protein. J Mol Graph Model 2001; 19:26-59; PMID:11383529; http://dx.doi.org/10.1016/S1093-3263(00)00138-8.
Lee H, Mok KH, Muthardram R, Park KH, Suk JE, Kim DH, et al. Local structural elements in the most unstably activated human protein p53. J Biol Chem 2000; 275:29426-32; PMID:10884388; http://dx.doi.org/10.1074/jbc.275.38.29426.

Choi SW, Lee SH, Kim DH, Ahn MJ, Kim JS, Woo JY, et al. Structural details on mdm2-p53 interaction. J Biol Chem 2005; 280:38795-802; PMID:16159876; http://dx.doi.org/10.1074/jbc.M508578200.

Uversky VN, Dunker AK. Multifunctional analysis of intrinsically disordered proteins: looking at intrinsic disorder through compound eyes. Anat Chem 2012; 84:2096-104; PMID:22242801; http://dx.doi.org/10.1015/j.acbr.2012.03.009.

Dunker AK, Garner E, Guillot S, Romero P, Albeck C, Hart J, et al. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 1998; 473-84; PMID:9607205.

Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Intrinsic disorder and functional bioprospecting. J Biol Chem 2007; 9:13495-56; PMID:17158572; http://dx.doi.org/10.1529/biophysj.106.094045.

Vacic V, Uversky VN, Dunker AK, Lonardi S. Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 2007; 8:211; PMID:17578581; http://dx.doi.org/10.1186/1471-2105-8-211.

Williams RM, Obradovi Z, Mathura V, Braun W, Garner EC, Young J, et al. The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput 2001; 89-100; PMID:11262981.

Cortese MS, Uversky VN, et al. Characterization of alpha-helix-forming molecular recognition elements. J Mol Biol 2007; 366; PMID:17469821; http://dx.doi.org/10.1021/bi070574b.

Williams RM, Obradovi Z, Mathura V, Braun W, Garner EC, Young J, et al. The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput 2001; 89-100; PMID:11262981.

Uversky VN, Dunker AK, Lonardi S. Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 2007; 8:211; PMID:17578581; http://dx.doi.org/10.1186/1471-2105-8-211.

Brown CJ, Johnson AK, Dunker AK, Daughdrill GW. Evolution and disorder. Curr Opin Struct Biol 2011; 21:441-6; PMID:21482101; http://dx.doi.org/10.1016/j.str.2011.02.005.

Brown CJ, Johnson AK, Daughdrill GW. Comparing models of evolution for ordered and disordered proteins. Mol Biol Evol 2010; 27:609-21; PMID:19923193; http://dx.doi.org/10.1093/molbev/msp007.

Orangiova P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 2005; 44:12454-70; PMID:16156568; http://dx.doi.org/10.1021/bi040753f.

Cubellis MV, Caillez F, Blundell TL, Lovell SC. Polyproline II helices in homologous proteins: implications and applications. J Mol Biol 1999; 294:271-82; PMID:10565045; http://dx.doi.org/10.1006/jmbi.1999.3217.

Steinberg IZ, Harrington WF, Berger A, Sela M, Ho MK, Brasseur R. The Ramachandran plots of amino acid residues on protein conformation. J Mol Biol 1963; 7:95-9; PMID:13990617; http://dx.doi.org/10.1016/0022-2836(63)80023-6.

Shimizu S, Uversky VN, Dunker AK. Intrinsic disorder and amino acid sequence. BMC Struct Biol 2005; 5:8; PMID:16156568; http://dx.doi.org/10.1186/1471-2105-5-8.

Troganis AN, Fotiadis DI. Detection of discriminative sequence patterns in the neighborhood of proline cis peptide bonds and amino acid sequence. BMC Struct Biol 2005; 5:8; PMID:16156568; http://dx.doi.org/10.1186/1471-2105-5-8.

Adzhubei AA, Sternberg MJ. Left-handed polyproline II helices commonly occur in globular proteins. J Mol Biol 1993; 229:472-93; PMID:8429588; http://dx.doi.org/10.1006/jmbi.1993.1047.

Adzhubei AA, Sternberg MJ. Conservation of polyproline II helices in homologous proteins: implications for structure prediction by model building. Protein Sci 1994; 3:2395-410; PMID:7756993; http://dx.doi.org/10.1002/pro.55603123.

Ma K, Wang K. Polyproline II helix is a key structural motif of the elastic PEVK segment of titin. Biochemistry 2001; 40:3427-38; PMID:11927408; http://dx.doi.org/10.1021/bi0102279.

Gutierrez-Cruz G, Van Heerden AH, Wang K. Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin. J Biol Chem 2001; 276:7424-9; PMID:11084039; http://dx.doi.org/10.1074/jbc.M008851200.

Ma K, Wang K. Malleable conformation of the elastic PEVK segment of titin: non-cooperative interconversion of polyproline II helix, beta-turn and unordered structures. Biochemistry 2003; 37:687-95; PMID:12816538; http://dx.doi.org/10.1021/bi0203702.

Ma K, Forbes JG, Gutierrez-Cruz G, Wang K. Titin as a giant scaffold for integrating stress and Src homology domain 3-mediated signaling pathways: the clustering of novel overlap ligand motifs in the elastic PEVK segment. J Biol Chem 2006; 281:27359-56; PMID:16766517; http://dx.doi.org/10.1074/jbc.M604523200.

Chou PY, Fojo AT, Smith JK, He P, et al. Intrinsic disorder and protein folding. Biochemistry 2001; 9:10635-47; PMID:11506584; http://dx.doi.org/10.1021/bi016066y.
94. Fuxreiter M, Tompa P, Simon I. Local structural disorder in the p53 transcriptional domain interaction with replication protein A. Proc Natl Acad Sci U S A 2005; 102:15412-7; PMID:16233422; http://dx.doi.org/10.1073/pnas.1051715102.

95. Bolognesi P, Baer M, Schroier E, Stoll R, Marx D. Conformational dynamics of minimal elastin-like polypeptides: the role of proline revealed by molecular dynamics and nuclear magnetic resonance. Chemphyschem 2008; 9:2759-65; PMID:18972488; http://dx.doi.org/10.1002/cphc.200800474.

96. Bochkaeva E, Kaustov L, Ayed A, Yi GS, Lu Y, Pineda-Lucena A, et al. Single-stranded DNA mimicry in the p53 transcriptional domain interaction with replication protein A. Proc Natl Acad Sci U S A 2005; 102:15412-7; PMID:16233422; http://dx.doi.org/10.1073/pnas.1051715102.

97. Di Lello P, Jenkins LM, Jones TN, Nguyen BD, Hara T, Yamaguchi H, et al. Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell 2006; 22:731-40; PMID:16793543; http://dx.doi.org/10.1016/j.molcel.2006.05.007.

98. Junier HK, Weisberger RW, Boelsen R, Folkers GE, Kaptein R. Structural properties of the promiscuous VP16 activation domain. Biochemistry 2004; 43:827-39; PMID:15654739; http://dx.doi.org/10.1021/bi0482912.

99. Kim DH, Lee SH, Kim KH, Chi SW, Chang I, Han KH. Multiple ηTAβ(II)-31-binding motifs in the intrinsically unfolded transcriptional activation domain of VP16. BMB Rep 2009; 42:411-7; PMID:19643037; http://dx.doi.org/10.5483/BMBRep.2009.42.7.411.

100. Ikeda K, Saurer T, Meisterernst M. The H1 and H2 regions of the activation domain of herpes simplex virus protein 16 stimulate transcription through distinct molecular mechanisms. Genes Cells 2002; 7:49-58; PMID:11858373; http://dx.doi.org/10.1046/j.1356-9597.2001.00942.x.

101. Ciucu M, Felli IC, Tompa P, Banci L, Bertini I. Structural and dynamic characterization of intrinsically disordered human securin by NMR spectroscopy. J Am Chem Soc 2008; 130:16783-9; PMID:19195369; http://dx.doi.org/10.1021/ja8053108.

102. Kohn JE, Millert IS, Jacob J, Zagrobcic B, Dillon TM, Cingel N, et al. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc Natl Acad Sci U S A 2004; 101:12491-6; PMID:15314241; http://dx.doi.org/10.1073/pnas.0400718101.

103. Muller-Spatz S, Soranno A, Hirschfeld V, Hofmann H, Ruesger S, Reidmont L, et al. From the Cover: Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci U S A 2010; 107:1669-204; PMID:20399465; http://dx.doi.org/10.1073/pnas.1010734107.

104. Yamada J, Phillips JL, Patel S, Goldfien G, Cafagliore-Morelli A, Huang H, et al. A bimodal distribution of the 'polypeptide' fold from four eukaryotic interactomes. Proc Natl Acad Sci U S A 2006; 103:9285-95; PMID:17091850; http://dx.doi.org/10.1073/pnas.1010607103.

105. Singh GP, Dush D. Intrinsically disordered yeast in yeast transcriptional regulatory network. Proteins 2007; 68:602-5; PMID:17510967; http://dx.doi.org/10.1002/prot.21497.

106. Singh GP, Ganapathy M, Dush D. Role of intrinsic disorder in transient interactions of hub proteins. Proteins 2007; 67:661-5; PMID:17154416; http://dx.doi.org/10.1002/prot.21480.

107. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Davidson NE, et al. The protein interaction network of Saccharomyces cerevisiae. Genes Dev 2006; 20:1101-32; PMID:16694310; http://dx.doi.org/10.1101/gad.147468.106.

108. Marsh JA, Forman-Kay JD. Sequence determinants of beta-turns and their implications for network evolution. J Proteome Res 2006; 5:2985-95; PMID:17081050; http://dx.doi.org/10.1021/pr060100z.

109. Fuxreiter M, Tompa P, Simon I, Tompa P. Disorder and sequence repeats in hub proteins and their implication for network evolution. J Proteome Res 2006; 5:2985-95; PMID:17091850; http://dx.doi.org/10.1073/pnas.0400718101.

110. Pierson NA, Chen L, Russell DH, Clemmer DE. cis-trans isomerizations of proline residues are key to bradykinin inhibition. J Am Chem Soc 2013; 135:3186-92; PMID:23537819; http://dx.doi.org/10.1021/ja3115405.

111. Wilmot CM, Thornton JM. Beta-turns and their distortions: a proposed new nomenclature. Protein Eng 1990; 3:3479-93; PMID:23721257; http://dx.doi.org/10.1093/protein/3.6.3479.

112. Pierson NA, Chen L, Russell DH, Clemmer DE. cis-trans isomerizations of proline residues are key to bradykinin inhibition. J Am Chem Soc 2013; 135:3186-92; PMID:23537819; http://dx.doi.org/10.1021/ja3115405.

113. Wilmot CM, Thornton JM. Beta-turns and their distortions: a proposed new nomenclature. Protein Eng 1990; 3:3479-93; PMID:23721257; http://dx.doi.org/10.1093/protein/3.6.3479.
128. Roussel F, Serrano L, Schymkowitz JW. How evo-
olutionary pressure against protein aggregation shaped chaperone specificity. J Mol Biol 2006; 355:1037-
47; PMID:16359707; http://dx.doi.org/10.1016/j.
jmb.2005.11.035.

129. Roussel F, Serrano R. Structural disorder and pro-
tein elasticity. Adv Exp Med Biol 2012; 725:159-83;
PMID:22399324; http://dx.doi.org/10.1007/978-1-
641-0695-4_10.

130. Rauscher S, Baud S, Miao M, Keeley FW, Pomé-
s P. Roline and glycine control protein self-organ-
ization into elastomeric or amyloid fibrils. Structure 2006;
14:1667-76; PMID:17098192; http://dx.doi.
org/10.1016/j.str.2006.09.008.

131. Walsh GT, Garneau-Tsodikova S, Gatto GJ Jr. Protein
posttranslational modifications: the chemistry of pro-
tein diversifications. Angew Chem Int Ed Engl 2005;
44:7342-72; PMID:16267872; http://dx.doi.
org/10.1002/anie.200501023.

132. Gsponer J, Futschik ME, Teichmann SA, Babu MM.
Tight regulation of unstructured proteins: from transcript
synthesis to protein degradation. Science 2008;
322:1365-8; PMID:19039133; http://dx.doi.
org/10.1126/science.1163581.

133. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor
TR, Sikes JG, Obadzovic Z, et al. The importance of
intrinsinc disorder for protein phosphorylation. Nucleic
Acids Res 2004; 32:4307-49; PMID:14900677; http://
dx.doi.org/10.1093/nar/gkh253.

134. Radivojac P, Vacic V, Haynes C, Cocklin RR,
Mohan A, Heyen JW, et al. Identification, analysis,
and prediction of protein ubiquitination sites. Proteins
2010; 78:365-80; PMID:19722269; http://dx.doi.
org/10.1002/prot.22557.

135. Xue B, Jeffers V, Sullivan WJ, Sullivan WJ, Uversky VN.
Protein intrinsic disorder in the acrylamide of intracellular
and extracellular T oxoplasma gondii. Mol Biov 2009;
35:2240-43; PMID:19647842; http://dx.doi.
org/10.1038/cmdb.2009.357.

136. Daly KM, Radivojac P, Dunker AK. Intrinsic disorder
and protein modifications: building an SVM predictor
for specific proteins. Proteins: Structure, Function, and
Disease 2010; 78:326-37; PMID:19722257; http://
dx.doi.org/10.1002/prot.22555.

137. Xue B, Jeffers V, Sullivan JWP. Uversky VN.
Protein intrinsic disorder in the acrylamide of intracellular
and extracellular T oxoplasma gondii. Mol Biov 2009;
35:2240-43; PMID:19647842; http://dx.doi.
org/10.1038/cmdb.2009.357.

138. Shao J, Xu D, Tsai SN, Wang Y, Ngai SM.
Computational identification of protein methylation
sites through bi-profile Bayes feature extraction. PLoS
One 2009; 4:e9020; PMID:19290960; http://dx.doi.
org/10.1371/journal.pone.0009020.

139. Nishikawa I, Nakajima Y, Ito M, Fukushima S,
Hommma K, Nishikawa K. Computational Prediction
of O-linked Glycosylation Sites That Preferentially
bind to O-glycosylation motifs. Glycobiology 2004;
14:95-101; PMID:15357143; http://dx.doi.
org/10.1038/sj.gly.6360725.

140. Nishikawa I, Nakajima Y, Ito M, Fukushima S,
Hommma K, Nishikawa K. Computational Prediction
of O-linked Glycosylation Sites That Preferentially
bind to O-glycosylation motifs. Glycobiology 2004;
14:95-101; PMID:15357143; http://dx.doi.
org/10.1038/sj.gly.6360725.

141. Deribe YL, Pawson T, Dikic I. Post-translational modi-
fications of O-linked Glycosylation Sites That Preferentially
bind to O-glycosylation motifs. Glycobiology 2004;
14:95-101; PMID:15357143; http://dx.doi.
org/10.1038/sj.gly.6360725.

142. McCaldon P, Argos P. Oligopeptide biases in protein
motifs and their use in predicting protein cod-
sequences and their use in predicting protein cod-
quences and their use in predicting protein cod-
175. Thanka Christer TH, Veluraja K. Database analysis of O-glycosylation sites in proteins. Biophys J 2001; 80:952-60; PMID:11519462; http://dx.doi.org/10.1016/S0006-3495(01)76704-2.

176. Wilson IB, Gavel Y, von Heijne G. Amino acid distributions around O-linked glycosylation sites. Biochem J 1991; 275:529-36; PMID:2025231.

177. Schurzokwi M, Bernhardt A, Zhou XZ, Shen M, Reimer U, Rahfeld JU, et al. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 1998; 37:5566-75; PMID:9548941; http://dx.doi.org/10.1021/bi970360o.

178. Guo YT, Li YM, Zhu ZT, Zhao YF. Effect of the phosphorylation site on the conformation of phosphorylated Ser/Thr-Pro motif. Int J Pept Res Ther 2005; 11:159-65; http://dx.doi.org/10.1007/s10989-005-4710-2.

179. Bury BJ, Kang YK. Conformational preferences and prolyl cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs. Biopolymers 2010; 93:330-9; PMID:19885922.

180. Pao YL, Wormwald MR, Dwek RA, Dwek RA, Lellouch AC. Effect of proline isomerase cyclophilin A. Proc Natl Acad Sci U S A 2002; 99:1899-904; PMID:11830645; http://dx.doi.org/10.1073/pnas.042529199.