Young Investigator Award Winner's Special Article

Conditional Relative Odds Ratio and Comparison of Accuracy of Diagnostic Tests Based on 2×2 Tables

Sadao Suzuki.¹

INTRODUCTION

Diagnostic accuracy is commonly measured by sensitivity and specificity of which trade-off relationship can be presented in the form of a receiver-operating characteristic (ROC) curve. One summary index of diagnostic test accuracy is based on the area under the ROC curve¹ representing for an integrated discriminative ability of a diagnostic test over cut-off points. Others are based on a single 2×2 table of a specific cut-off point.² In this paper, the author first selects several summary statistics belonging to the latter category, then focuses on the comparison of diagnostic accuracy using the odds ratio.³,⁴,⁵ Lastly, ways to summarize diagnostic accuracy using the meta-analytic method are introduced.

METHODS

As described in Table 1, diagnostic test accuracy based on a 2×2 table is most commonly presented by two trade-off indices, sensitivity=θ=a/D, and specificity=ϕ=d/ND. When we need to describe diagnostic accuracy by a single index, there are at least three options, i.e., agreement rate (AR), kappa (κ), and odds ratio (OR). The author presents these statistics along with their strengths and weaknesses, and then focuses on the odds ratio to compare the two diagnostic tests administered to the different or same subjects. In the last approach, two meta-analytic methods for a comparison of diagnostic accuracy are reviewed. For each approach, the author provides a hypothetical example to show the actual computational steps. All analyses were re-performed using the SAS release 8.2 (SAS Institute Inc., Cary, NC).¹³ The code is presented in the appendix.

APPROACHES

1. Approach to Evaluation of Diagnostic Test Accuracy

One of the widely used indices for diagnostic accuracy is AR, alternatively percent agreement. It is calculated as the number of
A valuable feature when comparing accuracy. In this section, the author demonstrates how to compare the diagnostic accuracy of two tests using the OR among both different and the same subjects.

Table 1. Indices of diagnostic accuracy based on 2 × 2 tables.

Observed	Diseased	Nondiseased	Total
Positive	a	c	P
Negative	b	d	N
Total	D	ND	T

Expected	Diseased	Nondiseased	Total
Positive	P × P′/T	P × P′N/N′	P
Negative	N × P′/T	N × P′N/N′	N
Total	D	ND	T

Prevalence = p = D/T
Sensitivity = θ = a/D
Specificity = ϕ = d/ND
Agreement rate = AR = (a + d)/T
Kappa = κ = [(a × P′ × T) + (d × N × P′ × N)] / (T × D × T + N × N′ × D × N′)
Odds ratio = OR = a × d

Correctly categorized subjects over the total number; AR = (a + d)/T in Table 1. AR is computationally simple and intuitively interpretable. It could be manipulated to p θ × (1 – p) ϕ , and this is interpreted as the weighted mean of sensitivity and specificity by prevalence.

Among several statistics proposed for 2 × 2 table data to improve AR with regard to removing chance agreement, κ has frequently received high marks. As shown in Table 1, the index is calculated by subtracting the expected number of correctly diagnosed individuals from both the numerator and denominator of AR. Prevalence remains in the formula as follows:

\[
κ = \frac{a \times d - \text{expected}(a) \times \text{expected}(d) \times (1 - P)}{\text{expected}(a) \times \text{expected}(d) \times (1 - P)}
\]

The OR, frequently used in causality studies, is also used to evaluate diagnostic accuracy. In causality studies, the ORs stand for the strength of the relationship between exposure and disease. This is easily interpreted as the relationship between test results and the presence of the disease. The OR is also interpreted as the ratio of true-positive to false-positive odds. The index is manipulated to \(1\{(1/θ – 1)(1/ϕ – 1)\}\), in which prevalence is cancelled out.

2. Approach to Comparison of Diagnostic Test Accuracy

Among the above three indices for the evaluation of diagnostic test accuracy, only the OR is not affected by prevalence, which is a valuable feature when comparing accuracy. In this section, the author demonstrates how to compare the diagnostic accuracy of two tests using the OR among both different and the same subjects.

2-1. Comparison of Diagnostic Accuracy of Two Tests Given to Different Subjects Indices Based on 2 × 2 Tables by Test

When we compare the diagnostic accuracy of two tests, X and Y, applied to different subjects, relative odds ratio (ROR), the ratio of the two ORs, is available. As shown in Table 2, the index is calculated as follows:

\[
ROR = \frac{OR_X}{OR_Y} = \frac{ad}{bc} = \frac{ad + c' \times b' \times c'}{ad + b' \times c'}
\]

Because the variance of the logOR is calculated as \((1/a) + (1/b) + (1/c) + (1/d)\), the variance of the difference between the logORs is var(logORX) + var(logORY) under the assumption of independence. Thus, we obtain the ROR, reflecting the relative diagnostic accuracy of test X to test Y, with a confidence interval (CI).

Indices based on 2 × 2 tables by disease status

Table 2 could be reconstructed to test results versus diagnostic tests by disease status as shown in Table 3. In this form, we can compare the sensitivities of the two tests as well as their specificities, applying the \(χ^2\) test for independence or a comparison of two proportions. These tests are mathematically equivalent.
Table 2. Relative odds ratio from 2×2 tables by test.

Test X	Diseased	Nondiseased	Total	Test Y	Diseased	Nondiseased	Total				
Positive	a	c	P_X	Negative	b	d	N_X	Positive	a'	c'	P_Y
Total	D_X	ND_X	T_X		D_Y	ND_Y	T_Y				

Test X	Diseased	Nondiseased	Total
Positive	900	900	1,800
Negative	100	8,100	8,200
Total	1,000	9,000	10,000

$\delta_X = \frac{900}{1,000} = 0.90$

$\delta_Y = \frac{8,100/9,000} = 0.90$

$OR_X = \frac{900 \times 9,000}{1,000 \times 900} = 81.0$

$OR_Y = \frac{80 \times 9,405}{(495 \times 20)} = 57.0$

$ROR_{XY} = 81.0 / 57.0 = 1.421$

$\text{Var}(\log ROR_{XY}) = 1/900 + 1/100 + 1/900 + 1/8,100 + 1/750 + 1/250 + 1/450 + 1/8,550 = 0.0220$

$\text{SE}(\log ROR_{XY}) = \sqrt{0.0220} = 0.1414$

$95\% \text{CI} (\log ROR_{XY}) = \exp(\log ROR_{XY} \pm 1.96 \times \text{SE}(\log ROR_{XY})) = \exp(1.421 \pm 1.96 \times 0.1414) = 1.076 \sim 1.875$

Table 3. Relative odds ratio from 2×2 tables by disease status.

Diseased	Test X	Test Y	Total	Non-diseased	Test X	Test Y	Total				
Positive	a	a'	P_D	Negative	b	b'	N_D	Positive	c	c'	P_{ND}
Total	D_X	D_Y	T_D								

Diseased	Test X	Test Y	Total
Positive	900	750	1,650
Negative	100	250	350
Total	1,000	1,000	2,000

$OR_D = \frac{900 \times 250}{(750 \times 100)} = 3.00$

$\text{Var}(\log OR_D) = 1/900 + 1/100 + 1/750 + 1/250 = 0.0164$

$\text{SE}(\log OR_D) = \sqrt{0.0164} = 0.1282$

$95\% \text{CI} (\log OR_D) = \exp(\log 3.00 \pm 1.96 \times 0.1282) = 2.333 \sim 3.856$

$ROR_{XY} = 3.00 / 2.11 = 1.421$

$95\% \text{CI} = 1.076 \sim 1.875$
Another index for a comparison of the sensitivities and specificities of two tests is the OR, which is the ratio of the positive odds of test X to that of test Y in diseased or nondiseased subjects. As a positive result among the diseased subjects denotes a true positive, the OR among the diseased group is the true positive odds ratio of test X against that of test Y, indicating the relative sensitivity of one to the other. CI of the OR is calculated using the variance of logOR, which is \((1/a) + (1/b) + (1/a') + (1/b')\) in Table 3. If OR is significantly greater than 1, the sensitivity of test X is higher than that of test Y. Similarly, a positive result in the nondiseased group is a false positive, and the OR being \(c'/d'\), denotes a false positive odds ratio of test X to test Y. This index could also be used for the comparison of specificities. If OR is smaller than 1, the specificity of test X is higher than that of test Y. The ratio of a true-positive to a false-positive odds ratio, i.e., \(a'b'/c'd'\) is identical to the ROR calculated in Table 2. The variance and CI of the ratio are also identical to those in Table 2.

2-2. Comparison of Diagnostic Accuracy of Two Tests Given to Same Individuals

When we compare the diagnostic accuracy of two tests given to different subjects, we should take into account the comparability of the subject groups to which each test was administered. Selection bias might invalidate the results on accuracy. Thus, we may give two diagnostic tests to the same individual, and try calculating the ROR in the same way. However, an ROR based on 2×2 tables by test requires the independence of both, which is not sufficient for a test with the same subjects. In that case, the ROR based on McNemar’s OR by disease status is available. As shown in Table 4, each number of the four cells in the ordinary 2×2 table (Table 3) moves to a marginal number in McNemar’s 2×2 table, and the result of test X with that of test Y of each individual is counted and classified into four cells. As McNemar’s table has more information than an ordinary 2×2 table, we can reconstruct the latter from the former, but not the other way around.

Table 4. McNemar’s 2×2 tables by disease status.

	Disease Status	Test X	Test Y	Total
	Positive	Negative		
Test X	Positive	a	y	a'
	Negative	b	b'	c'
Total	a	b	D	

	Disease Status	Test X	Test Y	Total
	Positive	Negative		
Test X	Positive	700	50	750
	Negative	200	50	250
Total	900	100	1000	

McNemar’s \(OR_D = \frac{200}{50} = 4.00\)
Var(\(log\) McNemar’s \(OR_D\)) = \(\frac{1}{200} + \frac{1}{50} = 0.025\)
SE(\(log\) McNemar’s \(OR_D\)) = \(\sqrt{0.025} = 0.1581\)
95% CI (\(log\) McNemar’s \(OR_D\)) = \(2.934 - 5.453\)

\(CROR_{XY} = 4.00 / 2.00 = 2.00\)
Var(\(log\) CROR) = 0.0283
SE(\(log\) CROR) = \(\sqrt{0.0283} = 0.1683\)
95% CI (\(log\) CROR) = \(2.00 \pm 1.96 \times 0.1683\) = 1.438 - 2.781
Because McNemar’s true-positive odds ratio is β/γ, and false-positive odds ratio is β'/γ', the ROR using McNemar’s OR, the conditional relative odds ratio[^4] (CROR), is $\beta \gamma'/\beta' \gamma$. The CI of the newly proposed index is calculated from $\text{var} \left(\log \text{CROR} \right) = (1/\beta) + (1/\gamma) + (1/\beta') + (1/\gamma')$. The CROR requires the number of individuals having discordant results on the two tests, and no concordant results are needed.

3. Approach to Meta-Analysis of Comparison of Diagnostic Test Accuracy

There are two ways to compare diagnostic test accuracy using meta-analysis, i.e., a comparison of two summary ORs of tests X and Y by extracting each OR from the original studies, and summarizing the CROR extracted from each. The SAS program for meta-analysis is provided elsewhere.[^16][^17]

Comparison of two summary ORs

Extracting the OR of each test from the original studies enables us to calculate summary ORs of tests X and Y with their variances. In order to summarize ORs, a proper model such as a fixed effect[^16][^19] model or a random effect model[^18][^20] can be used. A relative summary OR is calculated by dividing summary ORX by summary ORY. CI is computed using $\text{var} \left(\log \text{relative summary OR} \right) = \text{var} \left(\log \text{summary ORX} \right) + \text{var} \left(\log \text{summary ORY} \right)$. This method is used when test X was given to different subjects than those who took test Y.

Summarizing CROR

We sumarize the extracted CROR of test X to test Y using the same method as when summarizing the OR. This method is used when test X was given to the same individuals who took test Y.

DISCUSSION

To evaluate diagnostic accuracy, AR is commonly used for its simplicity and ease of interpretation. However, a number of papers have reported its pitfalls.[^4][^6][^21] As AR, which is $p \theta+(1-p) \phi$, is the weighted mean of sensitivity and specificity, when prevalence is low, the sensitivity is almost neglected. In that case, AR does not convey the diagnostic accuracy of the test. An
extreme example is shown in Table 5, showing a higher AR in test Y despite the fact that test Y has no diagnostic ability. In such a case, care should be taken to avoid accuracy comparison based on ARs of two groups.

In spite of the improvement of AR with regard to removing chance agreement, attention should be paid to evaluating diagnostic accuracy using κ. As shown in Table 6, κ diminishes under fixed sensitivity and specificity when the prevalence is closer to one or zero. Even with the same prevalence, κ would be changed when the sensitivity and specificity are switched. These are examples of some undesirable features of κ for evaluating diagnostic accuracy.

The OR was originally used as an index representing the strength of a relationship between exposure and disease. It is essentially identical to the relationship between test results and the presence of disease. The remarkable feature of OR is its independence from prevalence and symmetry in terms of sensitivity and specificity. Moreover its variance is given by a simple formula. Therefore, the OR is widely used to evaluate and compare diagnostic accuracy, including use of the meta-analytic technique. However, as this index is based on odds, very small differences may sometimes be exaggerated. For example, a test with $\theta = 0.9$ and $\phi = 0.9$ has the same OR of 81 as another test with $\theta = 0.99$ and $\phi = 0.45$.

The ROR is used if two different tests to be compared are given to different subjects. Although the index is statistically correct, we should be careful of selection bias based on subject differences. To remove the bias, it would be preferable to give two tests to the same individuals. However, ordinal ROR assumes independence of two groups. In that case, the CROR, the ratio of a true-positive to a false-positive McNemar’s odds ratio, yields the correct answer to the question. The CROR is identical to the ROR when and only when each cell of McNemar’s 2×2 table is identical to the expected number from the margin. The CROR has the following characteristics: less biased index with CI considering the correlation of individual level of two tests, and economically profitable and ethically less problematic, because no diagnosis of disease is needed for subjects with negative results from both diagnostic tests. In addition, the CROR could be used in a comparison between the strength of association of two exposures to a disease. On the other hand, the CROR tends to have a broad CI because of the sparseness of McNemar’s tables. This phenomenon is quite serious when diagnostic tests are accurate, and consequently they are highly concordant. Finally, we should generally pay attention to the differences in the characteristics of two tests when we summarize sensitivity and specificity, being especially aware of any loss of information when summarizing indices.

In meta-analysis, although it is statistically appropriate to calculate the ratio of summary ORs by extracting the OR from each original study, selection bias would be generated if two tests were given to groups with different characteristics. Extracting ratio of the OR is more valid, because a comparison among the same subjects avoids selection bias. As long as the CROR is extracted (meaning that the OR is McNemar’s), there is no methodological problem. However, use of the ordinal ROR may be problematic, in particular a t-test of logROR that ignores intra-study variations, which should be avoided since it leads to incorrectly low p-values.

The CROR is a new index, and at present can be extracted when raw data of discordant individuals are provided in an original study. In future studies of the comparative diagnostic accuracy of tests, the CROR should be presented if raw data of discordant individuals can not be presented for meta-analysis.

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to Drs. Takeo Moro-oka and Nitesh K. Choudhry, who were the co-authors of the CROR paper, and to Dr. Nan Laird for her helpful comments on the OR and the ROR from the statistical viewpoint. The author is also grateful to the Japan Epidemiological Association for the Young Investigator Award.

REFERENCES

1. Bamber D. The area above the ordinal dominance graph and the area below the receiver operating graph. J Math Psych 1975; 12: 387-415.
2. McClish DK. Combining and comparing area estimates across studies or strata. Med Decis Making 1992; 12: 274-9.
3. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29-36.
4. Cohen J. A coefficient of agreement for normal scales. Educ Psychol Measurement 1960; 20: 37-46.
5. Light RJ. Measures of response agreement for qualitative data: some generalizations and alternatives. Psychol Bull 1971; 76: 365-377.
6. Hartmann DP. Considerations in the choice of inter-observer reliability estimates. J Appl Behav Anal 1977; 10 : 103-116.
7. Littenberg B, Moses LE. Estimating diagnostic accuracy from multiple conflicting reports: a new meta-analytic method. Med Decis Making 1993; 13: 313-21.
8. Kardaun JWPF, Kardaun OJWF. Comparative diagnostic performance of three radiological procedures for the detection of lumber disk herniation. Meth Inform Med 1990; 29: 12-22.
9. Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med 1993; 12: 1293-316.
10. Scouller K, Conigrave KM, Macaskill P, Irvig L, Whitfield JB. Should we use carbohydrate-deficient transferrin instead of gamma-glutamyltransferase for detecting problem drinkers? A systematic review and metaanalysis. Clin Chemist 2000; 46: 1894-902.
11. Hallan S, Åsberg A. The accuracy of C-reactive protein in diagnosing acute appendicitis: a meta-analysis. Scand J Clin Lab Invest 1997; 57: 373-80.
12. Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL. Metastases from non-small cell lung cancer: mediastinal staging in the 1990s: meta-analytic comparison of PET and CT. Radiology 1999; 213: 530-6.
13. SAS Institute Inc. SAS/STAT user’s guide, version 8. SAS Institute Inc., Cary, NC, 1999.
14. Sackett DL, Haynes RB, Guyatt GH, Tugwell P. Clinical Epidemiology: A basic science for clinical medicine, 2nd ed. Boston, MA: Little Brown; 1991.
15. Begg CB. Biases in the assessment of diagnostic tests. Stat Med 1987; 6: 411-23.
16. Suzuki S, Moro-oka T, Choudhry NK. The conditional relative odds ratio provided less biased results for comparing diagnostic test accuracy in meta-analysis. J Clin Epidemiol 2004; 57: 461-9.
17. Shadish WR, Haddock CK. Combining estimates of effect size. In: Cooper H, Hedges AV, eds. The handbook of research synthesis. New York: Russell Sage Foundation; 1994: 261-81.
18. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719-48.

Appendix

*-----Table 1&2-----;
data table1;
do test='TestX', 'TestY' ; do disease=0 to 1; do result=0 to 1;
 input number @@; output; end; end; end;
cards;
 8100 900 100 900 8550 450 250 750
;
run;
proc format;
 value disfmt 1= 'Diseased' 0= 'Nondiseased' ;
 value pnfmt 1= '-Positive-' 0= ' =Negative=' ; run;
proc freq data=table1 order=formatted;
 tables test*result*disease /expected measures nocol norow nopct;
 format result pnfmt. disease disfmt. ; weight number; output out=out rror;
 title 'Table 1&2' ; run;
data OR; set out;
 OR=_rror_; logOR=log(_rror_); SE=(log(u_rror/l_rror))/2/1.96;
drop _rror_ u_rror l_rror;
proc sort; by test; run;
data table2; set OR; by dummy;
 retain OR0 SE0;
 drop test OR logOR SE dummy OR0 SE0 OR1 SE1 SEROR;
if test= 'TestX' then do; OR0=OR; SE0=SE; end;

19. Greenland S. Meta-analysis. In: Rothman KJ and Greenland S, eds. Modern epidemiology. 2nd ed. Philadelphia: Lippincot-Raven; 1998: 643-709.
20. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-88.
21. Stock WA. Systematic coding for research synthesis. Cooper H, Hedges AV, eds. The handbook of research synthesis. New York: Russell Sage Foundation; 1994: 125-62.
22. Vamvakas EC. Meta-analyses of studies of the diagnostic accuracy of laboratory tests: a review of the concepts and methods. Arch Pathol Lab Med 1988; 122: 675-86.
23. Shapiro DE. Issues in combining independent estimates of the sensitivity and specificity of a diagnostic test. Acad Radiol 1995; 2: S37-47.
24. Irwig L, Tosteson AN, Gatsonis C, Lau J, Colditz G, Chalmers TC, Mosteller F. Guidelines for meta-analyses evaluating diagnostic tests. Ann Intern Med 1994; 120: 667-76.
25. Irwig L, Macaskill P, Glasziou P, Fahey M. Meta-analytic methods for diagnostic test accuracy. J Clin Epidemiol 1995; 48: 119-30.
26. Okamoto Y, Tsuboi S, Suzuki S, Nakagaki H, Ogura Y, Maeda K, Tokudome S. Effects of smoking and drinking habits on the incidence of periodontal diseases and tooth loss among Japanese males: a four-year longitudinal study. J Periodontal Res (in press)
if test= 'TestY' then do; OR1=OR; SE1=SE; end;
SEROR=sqrt(SE0**2+SE1**2);
ROR=OR0/OR1; LowROR=exp(log(ROR)-1.96*SEROR);
HighROR=exp(log(ROR)+1.96*SEROR);
if last.dummy then output;
proc print; title 'Table 2' ; run;
*-----Table 3-----;
proc freq data=table1 order=formatted;
tables disease*result*test /measures nocol norow nopct;
format result pnfmt. disease disfmt.; weight number; output out=out rror;
title 'Table 3' ; run;
data OR; set out;
OR=_rror_; logOR=log(_rror_); SE=(log(u_rror/l_rror))/2/1.96;
dummy=1;
drop _rror_ u_rror l_rror; run;
proc sort; by disease; run;
data table3; set OR; by dummy;
retain OR0 SE0;
drop disease OR logOR SE dummy OR0 SE0 OR1 SE1 SEROR;
if disease=0 then do; OR0=OR; SE0=SE; end;
if disease=1 then do; OR1=OR; SE1=SE; end;
SEROR=sqrt(SE0**2+SE1**2);
ROR=OR1/OR0; LowROR=exp(log(ROR)-1.96*SEROR);
HighROR=exp(log(ROR)+1.96*SEROR);
if last.dummy then output;
proc print; title 'Table 3' ; run;
*-----Table 4-----;
data table4;
do disease=0 to 1; do X_Y= ' -P/N-' , '=N/P=' ;
 input number @@; output; end; end;
cards;
 900 450 200 50
;
run;
proc freq order=formatted;
tables X_Y*disease/measures nocol norow nopct;
format disease disfmt.; weight number;
title 'Table 4 (See Odds Ratio)'; run;
*-----Table 5-----;
data table5;
do test= 'TestX' , 'TestY' ; do disease=0 to 1; do result=0 to 1;
 input number @@; output; end; end;
cards;
 8910 990 10 90 9801 99 99 1
;
run;
proc freq order=formatted;
tables result*disease /agree expected measures nocol norow nopct;
format result pnfmt. disease disfmt.; weight number; by test;
title 'Table 5' ; run;
*-----Table 6-----;
data table6;
do test=1 to 9;
input sens spec p @@;
AR=p*sens+(1-p)*spec;
kappa=2*p*(1-p)*(sens+spec-1)/(2*p*(1-p)*(sens+spec-1)+1-AR);
OR=1/(1/sens-1)/(1/spec-1);
output; end;
cards;
0.9 0.8 0.01 0.9 0.8 0.5 0.9 0.8 0.99
0.8572 0.8572 0.01 0.8572 0.8572 0.5 0.8572 0.8572 0.99
0.8 0.9 0.01 0.8 0.9 0.5 0.8 0.9 0.99
;
run;
proc print; var test sens spec p OR AR kappa;
title 'Table 6'; run;