Helicobacter pylori infection: How does age influence the inflammatory pattern?

Glauber Rocha Lima Araújo, Hanna Santos Marques, Maria Luísa Cordeiro Santos, Filipe Antônio França da Silva, Breno Bittencourt da Brito, Gabriel Lima Correa Santos, Fabrício Freire de Melo

ORCID number: Glauber Rocha Lima Araújo 0000-0002-5195-3632; Hanna Santos Marques 0000-0001-5741-1570; Maria Luisa Cordeiro Santos 0000-0001-7078-9789; Filipe Antônio França da Silva 0000-0002-0530-1109; Breno Bittencourt de Brito 0000-0002-1831-7909; Gabriel Lima Correa Santos 0000-0003-3673-9889; Fabrício Freire de Melo 0000-0002-5680-2753.

Author contributions: All authors equally contributed to this paper with conception and design of the study, literature review and analysis, drafting, critical revision, and editing of the manuscript, and final approval of the final version.

Conflict-of-interest statement: All authors declare no potential conflicts of interest for this article.

Country/Territory of origin: Brazil

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B
Grade C (Good): 0

Abstract

The inflammatory pattern during Helicobacter pylori (H. pylori) infection is changeable and complex. During childhood, it is possible to observe a predominantly regulatory response, evidenced by high concentrations of key cytokines for the maintenance of Treg responses such as TGF-β1 and IL-10, in addition to high expression of the transcription factor FOXP3. On the other hand, there is a predominance of cytokines associated with the Th1 and Th17 responses among H. pylori-positive adults. In the last few years, the participation of the Th17 response in the gastric inflammation against H. pylori infection has been highlighted due to the high levels of TGF-β1 and IL-17 found in this infectious scenario, and growing evidence has supported a close relationship between this immune response profile and unfavorable outcomes related to the infection. Moreover, this cytokine profile might play a pivotal role in the effectiveness of anti-H. pylori vaccines. It is evident that age is one of the main factors influencing the gastric inflammatory pattern during the infection with H. pylori, and understanding the immune response against the bacterium can assist in the development of alternative prophylactic and therapeutic strategies against the infection as well as in the comprehension of the pathogenesis of the outcomes related to that microorganism.

Key Words: Helicobacter pylori; Inflammation; Treg response; Th1 response; Th17 response; Gastric diseases

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Grade D (Fair): D
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Received: March 20, 2021
Peer-review started: March 20, 2021
First decision: June 14, 2021
Revised: June 21, 2021
Accepted: January 13, 2022
Article in press: January 13, 2022
Published online: January 28, 2022

P-Reviewer: Higashida-Konishi M, Jonaitis LV, Krzyżek P
S-Editor: Ma YJ
L-Editor: Wang TQ
P-Editor: Ma YJ

Core Tip: Helicobacter pylori (H. pylori) is a bacterium acquired mainly in childhood that increases the risk of developing certain gastric diseases. However, the main complications are noticed predominantly in adulthood. This can be explained based on the gastric inflammatory pattern against the pathogen, which changes as long as the infected individual gets older, favoring, during childhood, the persistence of the infection and then, in adulthood, the gastric damage. This article discusses the factors that can influence the gastric inflammatory pattern in individuals infected with H. pylori.

Citation: Araújo GRL, Marques HS, Santos MLC, da Silva FAF, da Brito BB, Correa Santos GL, de Melo FF. Helicobacter pylori infection: How does age influence the inflammatory pattern? World J Gastroenterol 2022; 28(4): 402-411
URL: https://www.wjgnet.com/1007-9327/full/v28/i4/402.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i4.402

BIOGRAPHY

Fabricio Freire de Melo (Figure 1), PhD, is a professor at the Multidisciplinary Institute of Health of the Universidade Federal da Bahia, Brazil. He is currently a Research and Extension Coordinator at the aforementioned institute. He holds a bachelor's degree in Biological Sciences from the Pontifícia Universidade Católica de Minas Gerais (2004), in Brazil, and a master's degree (2007), a PhD (2011), and a postdoctoral fellowship (2013) in Biological Sciences (Microbiology) from the Universidade Federal de Minas Gerais (UFMG), Brazil. Moreover, he was a visiting researcher at the Medical Entomology Laboratory at the Renê Rachou Institute, Fiocruz, Brazil.

He divides his professional activity between research work and academic teaching. His main research areas include Helicobacter pylori infection, arboviruses, and, currently, SARS-CoV-2. He has developed extensive work on Helicobacter pylori, which includes investigations on the differences between the immune responses observed in children and adults infected with the bacterium. His work in several areas has already been recognized and awarded worldwide, being the cover of the World Journal of Clinical Oncology (Volume 11, Issue 11).

He is a member of the editorial board of the World Journal of Clinical Oncology, an academic editor of the World Journal of Gastroenterology, and a reviewer for journals including the World Journal of Gastroenterology, World Journal of Clinical Cases, and World Journal of Gastrointestinal Oncology.

INTRODUCTION

Helicobacter pylori (H. pylori) is a microaerophilic, Gram-negative, rod-shaped, mobile bacterium of great clinical importance that is able to colonize the extremely hostile stomach environment[1].

Studies analyzing populations suggest that approximately 50% of the world population are infected with H. pylori. In addition, most H. pylori infections appear to be acquired during childhood, and estimates suggest that a third of the child population are or will be infected with the bacterium[2,3].

H. pylori infection is associated with the development of peptic ulcer and gastric cancer (GC), and the interactions between the virulence factors of the pathogen and the host immune response seem to be crucial in the development of those diseases[1, 4]. Reviews show that 10% of those infected with H. pylori develop a peptic ulcer and 1%-3% develop GC[3]. H. pylori is a Group I carcinogen according to the International Agency for Research on Cancer (IARC), with 89% of all gastric cancers being attributable to this infection[2].

The host immune response to H. pylori is complex and changeable. It is possible to notice during childhood a predominantly regulatory inflammatory pattern (Treg), with higher concentrations of TGF-β1 and IL-10 than colonized adults, in addition to the greater number of FOXP3+ Treg cells observed in the gastric mucosa of children. This predominantly regulatory pattern makes the gastric mucosa of children more...
vulnerable to *H. pylori* colonization, but with milder inflammation when compared to what occurs in the mucosa of infected adults. As a result, the immune system of pediatric patients is not able to eliminate the *H. pylori* infection, and the bacterium persists in the gastric environment if left untreated. Moreover, damage to the gastric mucosa is less frequent during childhood, despite persistent mucosal colonization[5-8].

In adults, there is a predominant Th1 response, with higher levels of IFN-γ and IL-12p70 in the gastric mucosa, in contrast to the predominance of the regulatory response found during childhood. Besides, adults have a more intense Th17 response when compared to children. This can be verified by the higher mucosal concentrations of cytokines such as IL-17A and IL-23 and lower concentrations of TGF-β1, which, despite participating in the Treg response, when expressed at lower levels, seems to synergize with IL-6, promoting the expression of IL-23 receptors (IL-23r) and favoring an intense Th17 response. This cytokine profile is closely associated with the occurrence of damage to the gastric epithelium. Therefore, adults have a higher susceptibility to developing peptic ulcers, gastric atrophy, and intestinal metaplasia, a well-known precancerous lesion[5,6,9].

Of note, an increase in pro-inflammatory cytokines such as TNFα, IL-1α, IL-1β, IL-6, IL-2, and IL-17A is observed in *H. pylori*-positive children compared to *H. pylori*-negative infants. However, the Treg profile seems to overcome the inflammatory responses promoted by Th1 and Th17 cytokines in those individuals. This predominance of a regulatory immune response observed in infants might favor the colonization and persistence of the infection in the gastric mucosa, whereas the Th1 and Th17 responses induce a higher inflammatory activity in adults, leading to a higher risk of *H. pylori*-related gastric damage.

PREVALENCE

H. pylori infect about 4.4 billion people worldwide[2]. The prevalence of the infection is variable around the world and has changed over the last few years, with a notable reduction of the *H. pylori*-infected population, especially in developed countries[2,10-12]. Hooi et al[2] showed, through a meta-analysis, that the seroprevalence is higher in underdeveloped regions, and the highest prevalences were found in Africa (79.1%), Latin America and the Caribbean (63.4%), and Asia (54.7%). Otherwise, developed regions such as North America (37.1%) and Oceania (24.4%) have lower prevalence rates[5].

The infection is mainly acquired during childhood, and this phenomenon is predominantly observed in countries with a higher prevalence of *H. pylori*-positive individuals[13-15]. Moreover, higher prevalences of *H. pylori* infection are associated with lower socioeconomic status, household overcrowding, and lower educational
levels[11]. Sex may also influence the risk of acquiring the infection. A higher prevalence of the disease is usually observed among male subjects than in females. This may be related to hormonal factors, especially estrogen, which stimulates the immune response, and to a lower exposure to environmental factors such as smoking among women[16,17].

Furthermore, the prevalence may vary based on ethnic groups: Indigenous people in most countries are more susceptible to being infected[2]; a study in the United Arab Emirates showed a higher H. pylori prevalence among Africans than in Asian and Arabic populations, and, despite living in similar conditions to other ethnic groups, Malays were notably less affected by H. pylori infection than other people in that country[18-20]. In another study, Jonaityte et al[21] found a decline in the seroprevalence of H. pylori among medical students from Lithuania, with seroprevalences of 51.7, 30.4, 26.3, and 14.2% in 1995, 2012, 2016, and 2020, respectively. Besides, Africa, Western Asia, and South America are the regions with the highest incidence of H. pylori, while Oceania, North America, and Western Europe have lower prevalences of the bacterium[2].

BACTERIAL DENSITY AND GASTRIC INFLAMMATION

Despite being able to colonize all regions of the stomach, H. pylori proliferates better in certain anatomical areas, and higher bacterial densities are found in the antrum and cardia. Many factors can be responsible for this difference, such as the different levels of acid production in each portion of the stomach. In this sense, the regions with slightly lower acidity (antrum and cardia) are the regions with the highest H. pylori density[22,23].

Margarida et al[24], when studying 21 children infected with H. pylori, found infiltration of mononuclear (MN) cells in 50% of the cases. Furthermore, they did not find any neutrophil infiltrate in 40% of the participants, and, in 60% of the individuals, there was a slight eosinophilic infiltrate. Moreover, they have also found a relationship between bacterial density and MN and neutrophil cell counts in the stomach. Besides, they concluded that the infiltration of MN cells and neutrophils is lower in children infected with H. pylori than in H. pylori-negative adults. These findings were probably due to the differences between the immune response profiles predominating in each age group[2,9]. Thus, it is evident that the host immune response directed to the H. pylori can be influenced by several factors such as age and bacterial density, being complex and changeable.

CYTOKINE CONCENTRATIONS IN THE GASTRIC MUCOSA OF CHILDREN AND ADULTS

Given that H. pylori colonization is established mainly during childhood, that severer clinical outcomes related to the infection tend to occur as age advances, and that the immune system plays pivotal roles in H. pylori-related diseases, the following question is raised: Is the cytokine pattern observed in the immune response against the bacterium influenced by the age of colonized patients?

In an investigation enrolling Brazilian children and adults, our group has demonstrated that, among H. pylori-infected persons, infants tend to present a gastric Treg-polarized cytokine profile instead of the significant expression of Th17-related cytokines observed in older individuals. The analysis of the expression of cytokines in the gastric environment evidenced that IL-10 and TGF-β1 are expressed at higher levels in the former group, whereas the contrary was observed regarding the expression of IL-1β, IL-17A, and IL-23[5]. Those findings corroborate a precedent study by Harris et al, which showed more intense expression of the Treg-related cytokines TGF-β1 and IL-10 in children than in adults in a Chilean population[6]. Another study carried out by our group evaluated cytokines associated with innate and Th1 immune response in H. pylori-positive patients from various age groups[3]. We found that the gastric levels of IL-1α and TNF-α were significantly higher in children than in adults, whereas IL-2, IL-12p70, and IFN-γ were less expressed in infants than in older individuals (Figure 2). Interestingly, a drop in the gastric concentrations of IFN-γ and IL-12p70 in adults and an increase in the gastric mucosa levels of IL-1, IL-2, IL-12p70, and IFN-γ in children were observed with aging.
Taken together, the aforementioned results show that age, indeed, influences the immune response against the bacterium and strongly suggest the occurrence of significant anti-inflammatory patterns among *H. pylori*-infected children, which might affect not only the development of gastric diseases but also other health-related aspects during the initial years of life. This hypothesis becomes even more relevant when considering that environmental stimuli are crucial for the development of the immune system in that life period, a position supported by the so-called hygiene hypothesis, which claims that the contact with microorganisms in early life is determinant for the maturation of the immune system[25]. Interestingly, a recent study by León et al[26] suggests that *H. pylori* may induce atopy modulation in children since they found that *H. pylori*-infected infants had higher expression of high-affinity IgE receptor (FcεRI) by peripheral dendritic cells and enhanced levels of FOXP3 and Latency Associated Peptide by T reg cells. The FcεRI is related to a regulatory dendritic cell profile since the interaction of IgE with that molecule fails to induce the maturation of these cells [27]. The possibility of systemic effects by *H. pylori* infection through the induction of immune system regulatory mechanisms makes us question the possible impacts of *H. pylori* eradication among children over the development of future immune system-related disorders. Although we understand and support the need for eliminating the bacterium, it has to be emphasized that this infection has been negatively correlated to the development of relevant immune system-linked diseases that are relevant among young people, including asthma[28]. In addition, the current scenario of widespread use of antibiotics and growing antimicrobial resistance among *H. pylori* strains should not be ignored[29]. Therefore, we hope that, along with the advances in the clinical analysis of genetic and epigenetic backgrounds, the future approaches to *H. pylori* infections and the decision on the necessity of bacterial eradication should be carried out in a more individualized manner, instead of the generalized, but necessary, treatments preconized by current guidelines.

Some studies have emphasized that immunizing agents against *H. pylori* should be able to induce a Th17 response to achieve satisfactory effectiveness. In that context, Velin et al induced mouse immunization using mucosally administered cholera toxin followed by *H. felis* challenge and observed that it induced a remarkable peak of CD4+IL-17+ T cells in the gastric mucosa[30]. Recently, a study by Chen et al[31] tried to immunize mice using a cyclic guanosine monophosphate-adenosine monophosphate as an adjuvant for the anti-*H. pylori* vaccine and observed that its effectiveness depended on high levels of antigen-specific Th1 and, mainly, Th17 responses. These findings draw attention to the aforementioned results showing low levels of Th17-related cytokines among *H. pylori*-infected children, which could represent an obstacle in the development of effective immunizing agents for that population. This is an important issue to be considered since the *H. pylori* infection is mainly acquired during childhood[31].
In our aforementioned study evaluating the variations of the Th1 immune response to the infection by *H. pylori* according to age, we observed that the increased levels of IFN-γ and IL-12p70 in the gastric environment were associated with an increase in MN cells in the gastric corpus and antrum. Moreover, when considering the group of young adults, IL-12p70 was linked to an increase in the count of both MN and PMN cells in the gastric antrum[9]. Interestingly, another study observed that the levels of IFN-γ and IL-12 were higher in infected children than in uninfected children (P < 0.001). In addition, these cytokines were positively correlated with the inflammation score (P < 0.01) and PMN infiltration, corroborating our findings[32]. In an analysis of polyclonal responses in CD4+ T cells in *H. pylori*-positive children, a potent production of IFN-γ was also observed. However, the responses were stronger in adults, due to their higher frequency of memory T cells[33]. Curiously, some authors have observed that the levels of IFN-γ mRNA in infected children were lower when compared to infected adults[8,34]. These data suggest an increased regulatory response conducted by Treg cells in children, thus reducing the inflammatory Th1 response in the gastric mucosa[5,8]. In a recent prospective Brazilian study, it was observed that IL-27 is increased in individuals with *H. pylori*-related duodenal ulcer and absent in patients with GC. Moreover, higher gastric concentrations of IL-12p70 (P < 0.001) and IFN-γ (P = 0.004) were observed in patients with duodenal ulcers than in those with GC. In addition, IL-27 is positively correlated to the expression of IL-12p70, an important cytokine that directly influences the pattern of inflammation in the antral mucosa of patients with duodenal ulcer[35]. The relationship between IL-12p70 and IFN-γ is well elucidated in the context of *H. pylori* infection. In a study that added neutralizing antibodies to IL-12 in gastric biopsies, authors observed a negative regulation of signal transducer and activator of transcription 4 (STAT4), an important factor for the production of IFN-γ, leading to a significant decrease in the concentrations of this cytokine (P < 0.001)[36]. Therefore, considerable progress has been achieved in the understanding of the important interplays between cytokine variations between different age groups and among regions of the gastric mucosa. Although the presence of MN and PMN cell infiltration associated with Th1 responses has been described, further studies are needed to aid in the understanding of the dynamics and frequency of these cells in the context of the *H. pylori*-induced gastric diseases.

As aforementioned, the *H. pylori* gastric environment colonization leads to a polarization toward Th1/Th17 responses, whereas Treg cells are responsible for the induction of anti-inflammatory responses. Of note, the Treg cells can be divided into IL-10-secreting cells, TGF-β1-producing Tr3 cells, and FOXP3-expressing CD4+CD25high Treg cells[37]. The latter cells seem to be crucial in the setting of *H. pylori* infection. As long as they suppress the immune response against the bacterium, the pathogen persistence in the gastric mucosa might be favored. In that context, when evaluating the host immune response against *H. pylori* in adults and children, our group found that the expression of FOXP3+ Treg cells was significantly higher in the antrum of *H. pylori*-positive patients than in *H. pylori*-negative individuals[38]. This finding corroborates a previous study by Kandulski et al[39], which reported that *H. pylori* infection leads to a remarkable proportional enhancement of FOXP3+ Treg cells in the gastric cardia and antrum. In addition, the study by Silva et al[40], in its turn, reported that the levels of FOXP3-positive cells depend on the presence of gastritis. They observed that individuals with active chronic gastritis have lower expression of this molecule than persons without gastritis. Against this background, it is possible to infer that those cells are crucial for the occurrence of *H. pylori*-related diseases since they are directly associated with the levels of gastric mucosa inflammation.

Another finding in our study was the significantly higher levels of Treg FOXP3+ cells in children than in adults in the setting of *H. pylori* infection. Along with the cytokine pattern in pediatric patients previously discussed in this paper, this data indicates a milder infection with the bacterium in infants than in older individuals. Furthermore, a recent investigation using animals observed that mice infected during the neonatal period are more intensely colonized with the bacterium than those infected during adulthood. The neonatally infected mice had an immune response characterized by an intense infiltration of FOXP3+ Treg cells, and this result was VacA-dependent. Moreover, the study identified that the presence of VacA led to enhanced expression of IL-10 and TGF-β in macrophages whereas it suppressed the production of IL-23 in dendritic cells[41]. Another subsequent study by Altobelli et al[41] corroborates our hypothesis that the younger the host, the milder the inflammatory response against the bacterium with increased levels of FOXP3+ Treg cells. They used mice to
evaluate the role of the induction of the co-inhibitory receptor B7-H1 in the chronic *H. pylori* infection and demonstrated that the induction of the Treg profile as well as the inhibition of T cell proliferation and IL-2 production are mediated by the B7-H1 expression, which results from the *T. pylori* type 4 secretion system (T4SS) action through the activation of the p38 MAPK pathway[42,43]. Interestingly, a recent study reported that animals infected with the *H. pylori* PMSS1 strain had higher levels of Treg cells and lower levels of Th17 cells than animals infected with the SS1 *H. pylori* strain[44]. Taken together, these studies show the plurality of factors influencing the induction of Treg cells in the gastric environment of *H. pylori*-positive individuals.

Notably, Wei et al[45] suggested that the immune response against *H. pylori* characterized by the expression of Treg FOXP3\(^+\) cells and IL-10 is not only observed in the gastric mucosa, but it is also enhanced in both superior and inferior gastrointestinal tracts after 10 wk of infection, suggesting a systemic character of this regulatory immune response. Data from another study identified significant enhancement of FOXP3 expression in patients with MALT lymphoma compared to individuals with active chronic gastritis. Interestingly, *H. pylori*-positive MALT lymphoma patients with increased expression of Treg FOXP3\(^+\) cells were significantly more responsive to the *H. pylori* eradication therapy than those with lower expression of Treg FOXP3\(^+\) cells[46].

In addition, Sen et al[47] reported significant enhancement in the levels of FOXP3 expressed by T CD25\(^+\) CD127\(^{-}\) cells in the peripheral blood of patients with GC compared to the control group, and the T CD25\(^+\) CD127\(^{-}\) cells were also present in the tumor microenvironment and contributed to the suppression of T effector cells against the tumor. These results suggest a relevant role of the *H. pylori*-induced immune system regulation by FOXP3-expressing cells in the scenario of the development and progression of malignancies associated with *H. pylori* gastric infection.

Finally, we demonstrated that children infected with *H. pylori* had Treg FOXP3 cell levels positively correlated with IL-10 expression in the gastric antrum and negatively correlated with the count of mononuclear and polymorphonuclear cells. Moreover, the levels of FOXP3\(^+\) Treg cells were also negatively correlated with mononuclear cells in adults. In that context, Gil et al[4] evaluated the expression of FOXP3, IL-10, TGF, and IL-17A as well as the dynamics of Th17/Treg FOXP3\(^+\) cells in the gastric mucosa of *H. pylori*-positive children. Their data showed that FOXP3, TGF-β1, and IL-10 were remarkably expressed in the infection and the number of FOXP3\(^+\) Treg cells was significantly enhanced among *H. pylori*-positive individuals compared to *H. pylori*-negatives. Moreover, FOXP3 was positively related to the bacterial density as well as with the number of polymorphonuclear and mononuclear cells among *H. pylori*-positive persons with gastritis. Therefore, the data provided by Gil et al[4] reinforce the influence of FOXP3 expression in the control of *H. pylori*-induced gastric inflammation and in the recruitment of mononuclear and polymorphonuclear cells, important components of the immune response against the pathogen and in the pathogenesis of diseases associated with this infection.

CONCLUSION

H. pylori infection remains an important determinant for gastric illness. Several factors can alter the host inflammation pattern directed to the bacterium, and it is evident that age is one of the most important variables in that setting. A better understanding of the immune system behavior at different ages, favoring, during childhood, the persistence of the infection and then, in adulthood, the gastric damage, can aid in the development of strategies aiming at the reduction of *H. pylori* prevalence, such as vaccines, and at the prevention of unfavorable infection-related clinical outcomes.

REFERENCES

1. Bagheri N, Salimzadeh L, Shirzad H. The role of T helper 1-cell response in Helicobacter pylori-infection. *Microb Pathog* 2018; 123: 1-8 [PMID: 29936093 DOI: 10.1016/j.micpath.2018.06.033]

2. Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, Malfertheiner P, Graham DY, Wong VWS, Wu JCY, Chan FKL, Sung JJY, Kaplan GG, Ng SC. Global Prevalence of *Helicobacter pylori* Infection: Systematic Review and Meta-Analysis. *Gastroenterology* 2017; 153: 420-429 [PMID: 28456631 DOI: 10.1053/j.gastro.2017.04.022]

3. Zhang RG, Duan GC, Fan QT, Chen SY. Role of Helicobacter pylori infection in pathogenesis of gastric carcinoma. *World J Gastrointest Pathophysiol* 2016; 7: 97-107 [PMID: 26909232 DOI: 10.4240/wjg6p.2016.7.97]
4. Gil JH, Seo JW, Cho MS, Ahn JH, Sung HY. Role of Treg and TH17 cells of the gastric mucosa in children with Helicobacter pylori gastritis. J Pediatr Gastroenterol Nutr 2014; 58: 245-251 [PMID: 24121150] DOI: 10.1097/MPG.0000000000001944

5. Freire de Melo F, Rocha AM, Rocha GA, Pedroso SH, de Assis Batista S, Fonseca de Castro LP, Carvalho SD, Bittencourt PF, de Oliveira CA, Corrêa-Oliveira R, Magalhães Queiroz DM. A regulatory instead of an IL-17 T response predominates in Helicobacter pylori-associated gastritis in children. Microbes Infect 2012; 14: 341-347 [PMID: 22155622] DOI: 10.1016/j.micinf.2011.11.008

6. Razavi A, Bagheri N, Azadegan-Dehkordi F, Shirzad M, Rahimian G, Rafieian-Kopaei M, Shirzad H. Comparative Immune Response in Children and Adults with H. pylori Infection. J Immunol Res 2015; 2015: 315957 [PMID: 26495322] DOI: 10.1155/2015/315957

7. Cho KY, Cho MS, Seo JW. FOXP3+ regulatory T cells in children with helicobacter pylori infection. Pediatr Dev Pathol 2012; 15: 118-126 [PMID: 22260624] DOI: 10.2350/11-06-1046-OA.1

8. Harris PR, Wright SW, Serrano C, Riera F, Duarte I, Torres J, Peña A, Rollán A, Viviani P, Guiraldes E, Schmitz JM, Lorenz RG, Novak L, Smythies LE, Smith PD. Helicobacter pylori gastritis in children is associated with a regulatory T-cell response. Gastroenterology 2008; 134: 491-499 [PMID: 18242215] DOI: 10.1053/j.gastro.2007.11.006

9. Freire de Melo F, Rocha GA, Rocha AM, Teixeira KN, Pedroso SH, Pereira Junior JB, Fonseca de Castro LP, Cabral MM, Carvalho SD, Bittencourt PF, de Oliveira CA, Queiroz DM. Th1 immune response to H. pylori infection varies according to the age of the patients and influences the gastric inflammatory patterns. Int J Med Microbiol 2014; 304: 300-306 [PMID: 24373859] DOI: 10.1016/j.ijmm.2013.11.001

10. Peleteiro B, Bastos A, Ferro A, Lunet N. Prevalence of Helicobacter pylori infection worldwide: a systematic review of studies with national coverage. Dig Dis Sci 2014; 59: 1698-1709 [PMID: 24563236] DOI: 10.1007/s0620-014-3063-0

11. Inoue M. Changing epidemiology of Helicobacter pylori in Japan. Gastrocancer 2017; 20: 3-7 [PMID: 27757699] DOI: 10.1007/s12287-016-0658-5

12. Yu X, Yang X, Yang T, Dong Q, Wang L, Feng L. Decreasing prevalence of Helicobacter pylori according to birth cohorts in urban China. Turk J Gastroenterol 2017; 28: 94-97 [PMID: 28142660] DOI: 10.5152/tjg.2017.16557

13. Ageirsdottir GA, Kjartansdottir I, Olafsdottir AS, Heinrinnsson JP, Hrafnkelsson H, Johannsson E, Björnssson ES. Helicobacter pylori infection in Icelandic children. Scand J Gastroenterol 2017; 52: 686-690 [PMID: 28355595] DOI: 10.1080/00365521.2017.1304986

14. Coelho LGV, Marinho JR, Genta R, Carvalhaes A, Chinzon D, Cury M, Domingues G, Jorge JL, Magulnik I, Marinho FP, Moraes-Filho JP, Parente JML, Paula-E-Silva CM, Pedrazzoli-Júnior J, Pereira Junior JB, Fonseca de Oliveira CA, Corrêa-Oliveira R, Magalhães Queiroz DM. A comparative immune response to H. pylori infection varies according to the age of the patients and influences the gastric inflammatory patterns. Int J Med Microbiol 2014; 304: 300-306 [PMID: 24373859] DOI: 10.1016/j.ijmm.2013.11.001

15. Peleteiro B, Bastos A, Ferro A, Lunet N. Prevalence of Helicobacter pylori infection worldwide: a systematic review of studies with national coverage. Dig Dis Sci 2014; 59: 1698-1709 [PMID: 24563236] DOI: 10.1007/s0620-014-3063-0

16. Ibrahim A, Morais S, Ferro A, Lunet N, Peleteiro B. Sex-differences in the prevalence of Helicobacter pylori infection in pediatric and adult populations: Systematic review and meta-analysis of 244 studies. Dig Liver Dis 2017; 49: 742-749 [PMID: 28495503] DOI: 10.1016/j.dld.2017.03.019

17. Khoder G, Muhammad JS, Mahmoud I, Soliman SSM, Burucoa C. Prevalence of Helicobacter pylori infection and gastric inflammatory pattern and its associated factors among healthy asymptomatic residents in the United Arab Emirates. Pathogens 2019; 8 [PMID: 30939800] DOI: 10.3390/pathogens8020044

18. Kohler KL, Parasakthi N, Araújo GRL. H. pylori and gastric inflammatory pattern.
Araújo GRL et al. *H. pylori* and gastric inflammatory pattern

10.1046/j.1523-5378.2003.00176.x]

25 Ege MJ. The Hygiene Hypothesis in the Age of the Microbiome. *Ann Am Thorac Soc* 2017; 14: S348-S353 [PMID: 29161087 DOI: 10.1513/AnnalsATS.201702-139AW]

26 León MA, Palma C, Hernández C, Sandoval M, Cofre C, Perez-Martelena G, Borutzky A, Harris PR, Serrano CA. Helicobacter pylori pediatric infection changes FcεRI expression in dendritic cells and Treg profile in vivo and in vitro. *Microbes Infect* 2019; 21: 449-455 [PMID: 31128278 DOI: 10.1016/j.micinf.2019.05.001]

27 Platzer B, Baker K, Vera MP, Singer K, Panduro M, Lexmond WS, Turner D, Vargas SO, Kinet JP, Maurer D, Baron RM, Blumberg RS, Fiebiger E. Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites. *Mucosal Immunol* 2015; 8: 516-532 [PMID: 25227985 DOI: 10.1038/mi.2014.85]

28 Santos MLC, de Brito BB, da Silva FAF, Sampaio MM, Marques HS, Oliveira E Silva N, de Magalhães Queiroz DM, de Melo FF. *Helicobacter pylori* infection: Beyond gastric manifestations. *World J Gastroenterol* 2020; 26: 4076–4093 [PMID: 32821071 DOI: 10.3748/wjg.v26.i28.4076]

29 Suzuki T, Esaki M, Kusano C, Ikehara H, Gotoda T. Development of *Helicobacter pylori* treatment: How do we manage antimicrobial resistance? *World J Gastroenterol* 2019; 25: 1907-1912 [PMID: 31086459 DOI: 10.3748/wjg.v25.i16.1907]

30 Velin D, Favre L, Bernasconi E, Bachmann D, Pythoud C, Saiji E, Bouzourene H, Michetti P. Interleukin-17 is a critical mediator of vaccine-induced reduction of Helicobacter infection in the mouse model. *Gastroenterology* 2009; 136: 2237-2246.e1 [PMID: 19272385 DOI: 10.1053/j.gastro.2009.02.077]

31 Chen J, Zhong Y, Liu Y, Tang C, Zhang Y, Wei B, Chen W, Liu M. Parenteral immunization with a cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) adjuvanted *Helicobacter pylori* vaccine induces protective immunity against *H. pylori* infection in mice. *Hum Vaccin Immunother* 2020; 16: 2849-2854 [PMID: 32298215 DOI: 10.1080/21645515.2020.1744364]

32 Luzza F, Parrello T, Sebkhova L, Pensabene L, Imenoe M, Mancuso M, La Vecchia AM, Monte Leone G, Strisciuglio P, Pallone F. Expression of proinflammatory and Th1 but not Th2 cytokines is enhanced in gastric mucosa of Helicobacter pylori infected children. *Dig Liver Dis* 2003; 31: 14-20 [PMID: 11303969 DOI: 10.1016/s1590-8658(01)80130-4]

33 Bhuiyan TR, Islam MM, Uddin T, Chowdhury MI, Janzon A, Adamsson J, Lundin SB, Qadri F, Lundgren A. Th1 and Th17 responses to Helicobacter pylori in Bangladeshi infants, children and adults. *PLoS One* 2014; 9: e93943 [PMID: 24714675 DOI: 10.1371/journal.pone.0093943]

34 Serrano C, Wright SW, Birmcek D, Shaffer CL, Cover TL, Venegas A, Salazar MG, Smythies LE, Harris PR, Smith PD. Downregulated Th17 responses are associated with reduced gastritis in Helicobacter pylori-infected children. *Mucosal Immunol* 2013; 6: 950-959 [PMID: 23299619 DOI: 10.1038/mi.2012.133]

35 Rocha GA, de Melo FF, Cabral MMDA, de Brito BB, da Silva FAF, Queiroz DMM. Interleukin-27 is abrogated in gastric cancer, but highly expressed in other Helicobacter pylori-associated gastroduodenal diseases. *Helicobacter* 2020; 25: e12667 [PMID: 31702083 DOI: 10.1111/hel.12667]

36 Pellicano A, Sebkhova L, Monte Leone G, Guarnieri G, Imenoe M, Pallone F, Luzza F. Interleukin-12 drives the Th1 signaling pathway in Helicobacter pylori-infected human gastric mucosa. *Infect Immun* 2007; 75: 1738-1744 [PMID: 17220306 DOI: 10.1128/iai.01446-06]

37 Heiber JF, Geiger TL. Context and location dependence of adaptive Foxp3(+) regulatory T cell formation during immunopathological conditions. *Cell Immunol* 2012; 279: 60-65 [PMID: 23689195 DOI: 10.1016/j.cellimm.2012.09.009]

38 de Brito BB, da Silva FAF, Soares AS, Pereira VA, Santos MLC, Sampaio MM, Neves PHM, de Melo FF. Pathogenesis and clinical management of Helicobacter pylori gastric infection. *World J Gastroenterol* 2019; 25: 5578-5589 [PMID: 31602159 DOI: 10.3748/wjg.v25.i37.5578]

39 Kandulska A, Wex T, Kuester D, Peitz U, Gebert I, Roessner A, Mallerfertheiner P. Naturally occurring regulatory T cells (CD4(+), CD25high, FOXP3(+)) in the antrum and cardiac are associated with higher *H. pylori* colonization and increased gene expression of TGF-beta. *Helicobacter* 2008; 13: 295-303 [PMID: 18665940 DOI: 10.1111/j.1523-5378.2008.00612.x]

40 da Silva EAW, da Silva NMJW, Rodrigues RR, Adad SJ, de Lima Pereira SA, Ribeiro BM, Mendonça MS, Helmo FR, Rodrigues V, Rodrigues DDB. Arginase-1 and Treg Profile Appear to Modulate Inflammatory Process in Patients with Chronic Gastritis: IL-33 May Be the Alarm Cytokine in *H. pylori*-Positive Patients. *Mediators Inflamm* 2019; 2019: 2536781 [PMID: 31320834 DOI: 10.1155/2019/2536781]

41 Altobelli A, Bauer M, Velez K, Cover TL, Müller A. Helicobacter pylori VacA Targets Myeloid Cells in the Gastric Lamina Propria To Promote Peripherally Induced Regulatory T-Cell Differentiation and Persistent Infection. *mBio* 2019; 10 [PMID: 30890606 DOI: 10.1128/mBio.00261-19]

42 Lina TT, Alzahrani S, House J, Yamaoka Y, Sharpe AH, Rampy BA, Pinchuk IV, Reyes VE. Helicobacter pylori cag pathogenicity island's role in B7-H1 induction and immune evasion. *PLoS One* 2015; 10: e0121841 [PMID: 25807464 DOI: 10.1371/journal.pone.0121841]

43 Lina TT, Pinchuk IV, House J, Yamaoka Y, Graham DY, Beswick EJ, Reyes VE. CagA-dependent downregulation of B7-H2 expression on gastric mucosa and inhibition of Th17 responses during Helicobacter pylori infection. *J Immunol* 2013; 191: 3838-3846 [PMID: 23997227 DOI: 10.4049/jimmunol.1300524]

44 Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. *Helicobacter pylori* elicits B7H3
expression on gastric epithelial cells: Implications in local T cell regulation and subset development during infection. *Clin Oncol Res* 2019; 2 [PMID: 31998864 DOI: 10.31487/j.cor.2019.05.05]

45 **Wei L**, Wang J, Liu Y. Prior to Foxp3⁺ regulatory T-cell induction, interleukin-10-producing B cells expand after Helicobacter pylori infection. *Pathog Dis* 2014; 72: 45-54 [PMID: 24753328 DOI: 10.1111/2049-632X.12182]

46 **García M**, Bellosillo B, Sánchez-González B, García-Payarols F, Secane A, Ferrer AM, Gimeno E, Barranco LE, Torner A, Solé F, Bessos C, Serrano S, Salar A. Study of regulatory T-cells in patients with gastric malt lymphoma: influence on treatment response and outcome. *PLoS One* 2012; 7:e51681 [PMID: 23284739 DOI: 10.1371/journal.pone.0051681]

47 **Shen LS**, Wang J, Shen DF, Yuan XL, Dong P, Li MX, Xue J, Zhang FM, Ge HL, Xu D. CD4⁺CD25⁺CD127⁻ regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. *Clin Immunol* 2009; 131: 109-118 [PMID: 19153062 DOI: 10.1016/j.clim.2008.11.010]
