Clinical Course and Risk Factors for Recurrence of Positive SARS-CoV-2 RNA: A Retrospective Cohort Study from Wuhan, China

Jie Chen\(^1\,^2\), Xiaoping Xu\(^1\), Jing Hu\(^1\,^2\), Qiangda Chen\(^3\), Fengfeng Xu\(^1\,^2\), Hui Liang\(^1\), Nanmei Liu\(^1\,^2\), Hengmei Zhu\(^2\,^4\), Jinlong Lan\(^1\), Lan Zhou\(^1\,^2\), Jiajun Xing\(^1\), Ning Pu\(^3\), Zhigang Cai\(^1\,^2\)

\(^1\) Department of Cardiothoracic Surgery, Naval Medical Center of PLA, Shanghai, 200052, People’s Republic of China
\(^2\) Department of Infectious Disease, Guanggu Branch of Hubei Province Maternity and Childcare Hospital, Hubei, 430073, People’s Republic of China
\(^3\) Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
\(^4\) Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai, 200438, People’s Republic of China

* These authors contributed equally to this work and shared the co-first authorship.

Corresponding authors:
Zhigang Cai, caizg12345@aliyun.com, Department of Cardiothoracic Surgery, Naval Medical Center of PLA, 338 West Huaihai Road, Changning District, Shanghai, 200052, P.R. China;
Ning Pu, npu15@fudan.edu.cn, Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China.

Abstract word count: 351

Manuscript word count: 3412

Figure / table count: 2 / 5

References: 33

Keywords Coronavirus Disease 2019; SARS-CoV-2; recurrence; clinical course; risk factor

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Key Points

Question How is the clinical course of patients with recurrence of positive SARS-CoV-2 RNA and what clinical characteristics are associated with that?

Findings In this cohort involving 1067 COVID-19 patients discharged from the hospital, 81 (7.6%) patients found to develop a repeat positive SARS-CoV-2 RNA result. For patients with recurrent RT-PCR positivity, the median duration from illness onset to onset of complete RNA negative was 33.0 days (range, 6.0-82.0 days; IQR, 20.0-41.0 days), while that from illness onset to recurrence was 50.0 days (range, 21.0-95.0 days; IQR, 36.5-59.5 days). Risk factors associated with recurrence of positive SARS-Cov-2 RNA included elevated IL-6 levels, increased lymphocyte count and CT imaging features of lung consolidation during hospitalization.

Meaning The recurrence of positive SARS-CoV-2 RNA is speculated to be caused by a balance in immune regulation when fighting virus toxicity. For patients with a high risk of recurrent positivity, a prolonged observation and additional preventative measures should be implemented for at least 50 days after illness onset to prevent future outbreaks.
Abstract

Background Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a full-blown global pandemic. It has been reported that patients with COVID-19 meeting the criteria for hospital discharge (including two consecutive negative RT-PCR results) have experienced recurrent PCR positivity. However, the clinical course and risk factors for these patients have not been well described.

Methods In this retrospective cohort study, consecutive patients with COVID-19 confirmed by RT-PCR from the Guanggu Branch of Hubei Province Maternity and Childcare Hospital from February 24, 2020 to March 31, 2020 were enrolled. All patients received follow-up to April 15, 2020 from discharge. The epidemiological, radiographic, laboratory, treatment, and outcome data were extracted from medical records. Univariate and multivariable logistic regression methods were used to elucidate risk factors for patients with recurrence of positive SARS-CoV-2 RNA.

Results 1087 COVID-19 patients were included in this study. Of these, 20 (1.8%) died and 1067 (98.2%) were discharged from the hospital. Among the discharged cases, there were 81 (7.6%) patients found to develop a repeat positive SARS-Cov-2 RNA result. Older age was obviously associated with death. For patients with recurrent RT-PCR positivity, the median duration from illness onset to onset of complete RNA negative was 33.0 days (range, 6.0-82.0 days; IQR, 20.0-41.0 days), while that from illness onset to recurrence was 50.0 days (range, 21.0-95.0 days; IQR, 36.5-59.5 days). Multivariate regression analysis identified recurrence of positive SARS-CoV-2 RNA was associated with elevated IL-6 levels (P=0.004, OR=3.050; 95% CI, 1.432-6.499), increased lymphocyte count (P=0.038, OR=2.321; 95% CI, 1.048-5.138) and CT imaging features of lung consolidation (P=0.038, OR=1.641; 95% CI, 1.028-2.620) during hospitalization.

Conclusion Elevated lymphocyte counts and IL-6 levels in blood, and consolidation features on CT imaging are useful risk factors for clinicians to identify patients at risk of developing recurrent positivity of SARS-CoV-2 RNA. This is speculated to be caused by a balance in immune regulation when fighting virus toxicity. For patients with a high risk of recurrent positivity, a prolonged observation and additional preventative measures should be implemented for at least 50 days after illness onset to prevent future outbreaks.
Introduction

Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first reported in Wuhan, China and has been spreading globally.\(^1\)\(^2\) As of April 18, 2020, there have been 2,121,675 confirmed cases of COVID-19 and 142,299 related deaths from a total of 213 different countries according to the World Health Organization (WHO).\(^3\) Undoubtedly, COVID-19 has caused a global pandemic. Thus far, many studies have reported and summarized the epidemiological and clinical features of patients infected with SARS-CoV-2.\(^4\)\(^-\)\(^6\) Furthermore, the pathogenicity and mechanism of SARS-CoV-2 are being wrestled at full stretch and the mystery of SARS-CoV-2 is gradually being unraveled. However, the exact origin species that carried SARS-CoV-2 remains a controversial issue, which is a potential threat to a new outbreak.\(^7\)\(^-\)\(^8\) As we learn more about the origins and course of this disease, we must appropriately looking into the mechanisms of its eradication. Until now, very little know about how the human body regulates and clears a SARS-CoV-2 infection which, in turn, makes it difficult to assess a complete recovery with no risk of infectivity to others. This is essential to halt the COVID-19 spread, “flatten the curve” and prevent additional outbreaks.

In the early stages of the COVID-19 outbreak located in Wuhan, China, the severe shortage and limitations in the detection and accuracy of the RT-PCR test was severely problematic in identifying infected patients. Thankfully, this has since improved drastically with the support of national medical teams from every other provinces comprising of nationwide medical experts and nurses.\(^9\) This experience gave meaningful insight into the false negative rates of RT-PCR tests and possibility of recurrence of positive SARS-CoV-2 RNA. To counteract the potential probability of false negative rate of RT-PCR tests, patients have been routinely undergone two or more multipoint throat-swabs over 24 hours apart before discharge.\(^10\) Lan L et al.\(^11\) reported that four medical professionals with COVID-19 who met criteria for hospital discharge (including two consecutive negative RT-PCR results) experienced repeat RT-PCR positivity, implying potential asymptomatic carrier states. Although it has not been demonstrated that patients with recurrent SARS-CoV-2 RNA positive remain infectious after discharge, this is an inevitable matter that must be addressed. Furthermore, our understanding of clinical and radiological characteristics of the patients with COVID-19 who experience recurrence of positive SARS-CoV-2 RNA is very limited.

Herein, we report on 1087 patients with confirmed COVID-19 and further explore a population with repeat positivity of SARS-CoV-2 RNA on RT-PCR during post-hospital isolation and after at least two negative RT-PCR tests from one hospital in Wuhan, China. We aim to present outcomes
on this large sample and provide further insight into a unique and understudied population by exploring their clinical course and risk factors.

Methods

Study design and participants

This is a retrospective analysis of 1087 consecutive COVID-19 pneumonia patients at the Guanggu Branch of Hubei Province Maternity and Childcare Hospital in Wuhan, China diagnosed by SARS-CoV-2 RNA detection in accordance with the World Health Organization interim guidance. Since the COVID-19 pneumonia outbreak first developed in Wuhan, the military from Naval Medical Center of PLA have completely assumed governance over the Guanggu Branch of Hubei Province Maternity and Childcare Hospital to treat the local COVID-19 pneumonia patients. According to hospital record, all enrolled patients were discharged or died between February 24, 2020 and March 31, 2020. This study was approved by the Research Ethics Committee of Guanggu Branch of Hubei Province Maternity and Childcare Hospital and was granted with a waiver of informed consent from study participants.

Data collection

An experienced team of front-line medical personnel reviewed and collected the epidemiological, radiographic, laboratory, treatment, and outcome data from medical records to establish a database for COVID-19 pneumonia patients. All patients received follow-up to April 15, 2020 from discharge. The confidential information of patients was protected by assigning a new specific record number. All collected data were checked by two authors (JC and QC) and finally adjudicated by a third researcher (NP) for any differences in interpretation.

Procedures

In concordance with standard procedure, throat-swab specimens were obtained and tested using real-time RT-PCR methods to identify SARS-CoV-2 infection. The Academy of Military Medical Sciences and the hospital laboratory were responsible for SARS-CoV-2 detection in respiratory specimens. During the hospital stay and after clinical remission of symptoms, SARS-CoV-2 PCR re-examination by throat-swab specimens was performed at 24-hour intervals. During hospitalization, regular laboratory blood examinations were performed comprising of complete blood counts (including white blood cells, neutrophils, lymphocytes, monocytes and platelets), serum biochemical tests (including liver function tests, renal function indicators and electrolytes), coagulation indices, high-sensitivity C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), procalcitonin, myocardial enzymes, D-dimer and interleukin-6 (IL-6). At
an appropriate time determined by the attending physician, computed tomography (CT) scans were routinely performed for inpatients.

The criteria for discharge were as follows: 1) no fever for at least three days; 2) remission of clinical respiratory symptoms; 3) substantial improvement of pulmonary inflammation on chest CT scan; 4) two negative SARS-CoV-2 RNA tests at least 24 hours apart; 5) good general condition.

The illness severity of COVID-19 was defined according to the Chinese management guideline for COVID-19 (version 6.0).10 Fever was defined as axillary temperature of at least 37.3°C. Comorbid conditions included hypertension, diabetes and other internal visceral dysfunction during hospitalization (including hypoproteinaemia, coagulopathy, hyperuricemia, anemia, respiratory failure, liver injury, renal injury and cardiac injury).

Hypoproteinaemia was defined as blood albumin of less than 25 g/L, coagulopathy was defined as a 3-second increase in prothrombin time or a 5-second increase of activated partial thromboplastin time, and hyperuricemia was defined as blood trioxypurine greater than 420 umol/L (male) or 360 umol/L (female). Anemia was determined according to WHO guidelines.13 Acute respiratory distress syndrome (ARDS) was diagnosed according to the Berlin Definition.14 Acute liver failure was diagnosed according to EASL Clinical Practical Guidelines15, acute kidney injury was diagnosed according to the KDIGO clinical practice guidelines16, and acute cardiac injury was diagnosed as previously reported.6

Statistical analysis

Descriptive analyses of continuous and categorical variables were presented as a median with interquartile range (IQR) and counts with column percentages, respectively. The differences between recurrence and non-recurrence were compared using the Pearson Chi-squared test, Fisher’s exact test or Mann-Whitney U test as appropriate. To explore the risk indicators associated with recurrence of positive SARS-Cov-2 RNA, univariate and multivariate logistic regression models were implemented. Variables with P value <0.2 were selected for multivariable analysis on the basis of previous findings and clinical constraints. Missing data was not imputed and presented as is in Table 4 and 5, and analyses regarding different indicators were based on non-missing data. A two-sided P value less than 0.05 was considered statistically significant. All statistical analyses were performed using the SPSS v21.0 software (IBM Corporation, Armonk, NY, USA), and figures were plotted by GraphPad Prism 8.0 software (GraphPad Software, La Jolla, CA, USA).

Results

Demographics and Characteristics of Patients with COVID-19 Pneumonia
A total of 1087 consecutive COVID-19 pneumonia patients with positive SARS-CoV-2 RNA were enrolled in this study. In this cohort, the median patient age was 60.0 years ranging from 9.0 to 100.0 years (IQR, 49.0-69.0 years) and 635 (58.4%) were women. The proportion of general cases was 83.1%, and that of severe and critical cases were 13.2% and 3.7%, respectively. Other general features, inpatient laboratory examinations and imaging findings were shown in Table 1. Most of patients (874, 80.4%) had bilateral pulmonary infiltration on chest CT, while 730 patients (67.2%) had a ground-glass appearance, and 525 patients (48.3%) had features of consolidation. 887 out of 1007 (88.1%) patients revealed positive serum IgG, while 797 out of 1057 (75.4%) patients had positive serum IgM for COVID 19.

The median length of hospitalization was 12.0 days (range, 1.0-38.0 days; IQR, 8.0-17.0 days), and 20 patients died during hospitalization, while 1067 were discharged. The total mortality was 1.8% and discharge rate was 98.2%. Within these fatalities, 5 patients were graded as severe cases where the mortality was 3.5%, and 15 were labeled critical cases where the mortality rose to 37.5%. The total mortality of severe and critical cases was 10.6%. The median age of death was 83.0 years ranging from 65.0 to 92.0 years (IQR, 79.3-87.8 years). All of these patients died from multiple organ failure (MOSF), most commonly from lungs, heart, liver and kidneys.

Characteristics of Patients with Recurrence of Positive SARS-Cov-2 RNA

Among the discharged cases, there were 81 (7.6%) patients found to develop a repeat positive SARS-Cov-2 RNA result during their post-discharge isolation and after two negative RT-PCR tests to warrant initial discharge. In these recurrent cases, the median age was 62.0 years (range, 16-90 years; IQR, 50.5-68.0 years), and 51 (63.0%) patients were female. Twenty (24.7%) patients had comorbid disease of hypertension and 9 (11.1%) patients had diabetes. Divided by clinical severity, general, severe and critical cases accounted for 84.0% (68 cases), 14.8 (12 cases) and 1.2% (1 case), respectively. Most of these patients had initial symptoms before initial COVID-19 diagnosis. However, 15 (18.5%) patients were asymptomatic when first diagnosed by positive SARS-Cov-2 RNA. Before hospitalization, 70 patients were confirmed to harbor pulmonary infection via CT scan, and 65 (65.3%) patients have received therapeutic anti-viral agents.

Laboratory and CT imaging results from the inpatient hospital-stay are summarized in Table 2. Of these patients, 7 (8.6%) patients had lymphocytopenia, and only 4 (4.9%) patients had neutrophilia. High sensitivity CRP was elevated in 8 (9.9%) patients, increased ESR was found in 27 (33.3%) patients and increased procalcitonin in 14 (17.3%) patients. Additionally, the increased inflammatory factor of IL-6 was found in 11 (13.6%) patients. Regarding organ dysfunction, 10 (12.3%) patients developed liver injury with elevated ALT, 4 (4.9%) patients demonstrated
myocardial damage with elevated troponin, and 11 (13.6%) patients incurred kidney injury with elevated serum BUN and creatinine. Characteristics of inpatient CT images revealed consolidation, ground-glass opacity and bilateral pulmonary infiltration in 49 (60.5%), 56 (69.1%) and 70 (86.4%) patients, respectively. 72 out of 77 (93.5%) patients manifested positive serum IgG, while 68 out of 79 (86.1%) patients had positive serum IgM for COVID-19.

Clinical Course of Patients with Recurrence of Positive SARS-CoV-2 RNA

As depicted in Figure 1, the median length of hospitalization for patients with recurrence of positive SARS-CoV-2 RNA was 12.0 days (range, 4.0-27.0 days; IQR, 7.0-17.0 days). From Figure 2A, the median length from discharge to recurrence was 9.0 days (range, 3.0-18.0 days; IQR, 7.0-10.0 days), the median duration for these patients from illness onset to RT-PCR confirmation if COVID-19 was 11.0 days (range, 0-57.0 days; IQR, 1.5-21.0 days), and from illness onset to onset of complete RNA negative was 33.0 days (range, 6.0-82.0 days; IQR, 20.0-41.0 days), while that from illness onset to recurrence was 50.0 days (range, 21.0-95.0 days; IQR, 36.5-59.5 days). Then from Figure 2B, the median duration from initial diagnostic RT-PCR to recurrence was 36.0 days (range, 16.0-64.0 days; IQR, 26.5-45.0 days). In addition, the median duration between initial diagnostic RT-PCR and onset of complete RNA negative was 17.0 days (range, 1.0-45.0 days; IQR, 8.0-29.0 days), while between onset of complete RNA negative and recurrence it was 12.0 days (range, 4.0-27.0 days; IQR, 7.0-17.0 days).

Amongst these 81 patients, oxygen support was administrated in 37 (45.7%), however, no invasive mechanical ventilation (IMV) or IMV with extracorporeal membrane oxygenation (ECMO) was used. The optimal antiviral therapy was administrated in 69 (85.2%) patients; these included abidor hydrochloride (40 patients, 49.4%), interferon alfa (17 patients, 21.0%), entecavir/tenofovir (7 patients, 8.6%) and oseltamivir (5 patients, 6.2%). More than half of patients (51, 63.0%) were treated with Chinese patent drugs, such as Lianhuaqingwen capsule. Vitamin C was given to 41 (50.6%) patients, and immunomodulators, such as thymopentin and immunoglobulin, were administrated in 8 (9.9%) patients.

Associated Risk Factors with Recurrence of Positive SARS-CoV-2 RNA

As shown in Table 3, significant positive correlations were found between recurrence of positive SARS-CoV-2 RNA and serum IL-6 level (P=0.010) and CT imaging depicting consolidation (P=0.031). In the univariate analysis, elevated lymphocyte count (P=0.194, OR=1.644; 95% CI, 0.776-3.484), elevated serum IL-6 level (P=0.013, OR=2.504; 95% CI, 1.218-5.150), consolidation on CT imaging (P=0.033, OR=1.655; 95% CI, 1.042-2.629) and bilateral pulmonary infiltration (P=0.196, OR=1.540; 95% CI, 0.800-2.966) were considered as potential risk factors for recurrence.
of SARS-CoV-2 RNA positivity (Table 4). Multivariate analysis concluded that elevated lymphocyte count (P=0.038, OR=2.321; 95% CI, 1.048-5.138), serum IL-6 level (P=0.004, OR=3.050; 95% CI, 1.432-6.499) and consolidation features on CT imaging (P=0.038, OR=1.641; 95% CI, 1.028-2.620) remained as independent risk predictors for recurrence (Table 5).

Discussion

In this study, we provide comprehensive data on the demographic and clinical characteristics of 1087 consecutive patients with COVID-19 from Wuhan, China. According to the degree of severity of COVID 19, the enrolled patients were categorized as 903 (83.1%) general cases, 144 (13.2%) severe cases and 40 (3.7%) critical cases on admission. The total mortality of severe and critical cases was 10.6%. The mortality of the all patients with COVID-19 pneumonia was 1.8%, which was similar to that of a previous study, but lower than that reported in another studies. This difference may be partly attributed to the fact that the majority proportion of cases were classified as general severity and that more medical resources were made available in the later stages of this pandemic which matches our window of enrollment into this study. Liang WH et al. reported that the mortality of COVID-19 patients out of the Hubei Province was limited to 0.3%, as strict public health interventions were initiated in order to prevent further outbreak outside Hubei and medical resources were adequately provided for treatment. Additionally, previous studies indicated that older age was an important independent predictor for mortality in COVID-19 patients. Our findings support this claim; the median age of death was 83.0 years, distinctly higher than that of the discharged patients, which further suggests that increased age was associated with an increased risk of mortality.

Of 1067 discharged patients, we identified 81 (7.6%) patients that experienced recurrence of positive SARS-CoV-2 RNA after meeting criteria for discharge. This is similar to findings in previous case reports. However, Yuan J et al. reported a higher repeat positivity rate of 14.5% after discharge, which may be due to a small cohort of enrolled patients. This group of patients may pose a potential risk for further disease spread as persistent asymptomatic viral carriers. This not so rare phenomenon threatens potential future outbreaks of COVID-19 that seems to have been temporarily controlled in China after a series of unprecedented public health interventions. Thus, we aimed to explore the clinical course and risk predictors for recovered COVID-19 patients with recurrent PCR positivity to provide insight into this population and help guide clinical practice in order to help halt future outbreaks.

Various studies have reported on infectivity and viral shedding. Zhou F et al. showed that the
median duration of viral shedding was 20.0 days in survivors and the longest observed duration was 37 days. Moreover, Zhou B et al.22 reported that the median duration of viral shedding was 31.0 days from illness onset in severe COVID-19 patients. Xu K et al.23 reported that almost 3 in every 4 patients had viral RNA clearance within 21 days of illness onset, and male gender, older age, hypertension, delayed hospital admission after illness onset, severe illness upon admission, invasive mechanical ventilation and corticosteroid treatment were risk factors for extended viral RNA clearance. In our study, the median duration of viral shedding for patients with recurrence of positive SARS-CoV-2 RNA was 33.0 days from illness onset to onset of complete RNA negative. However, the median duration from illness onset to recurrent SARS-CoV-2 RNA positive was 50.0 days. Thus, our findings underscore the importance of a prolonged treatment or isolation for patients at increased risk of recurrence of SARS-CoV-2 RNA positivity.

Amongst the 81 discharged patients with recurrence of positive SARS-CoV-2 RNA, we found that age and comorbid diseases, which were previously described to be risk factors for mortality12, were not significant risk factors when compared with patients with no recurrence. However, three independent predictors were identified for patients with recurrence of positive SARS-Cov-2 RNA after treatment and hospital discharge. Elevated serum IL-6 level, lymphocyte count greater than \(1.1\times10^{8}/L\) and consolidation on CT imaging during hospitalization were associated with higher likelihoods of recurrent SARS-Cov-2 RNA positivity after discharged. Partly similar to previous study, it showed that lymphocyte concentrations before discharge were significantly positively correlated with the time interval for virus reappearing, which confirmed the role of lymphocytes in the potential recurrence of SARS-CoV-2 RNA positivity.20 No significant differences were found in other factors in our cohort, including clinical severity of disease, CRP, D-dimer level, etc. IL-6, one of the main pro-inflammatory factors of the immune system, plays an important role in host defense against infections. However, due to the ability of SARS-CoV-2 to infect the lower respiratory tract and rapidly replicated leads to excessive IL-6 release inducing an acute severe systemic inflammatory response known as cytokine release syndrome (CRS).24 Previously, increased serum IL-6 level was reported to be observed in severe and critical patients with COVID-19 and to be associated with poor outcomes25,26, which is a similar finding during severe acute respiratory syndrome (SARS) outbreak.27 Concurrently, lymphopenia was also commonly noted in patients with COVID-19, especially in severe and critical cases5,26,28, suggesting dysregulated immune responses in this sub-cohort. However in our study, only 175 (16.1\%) of 1087 cases showed a decrease in lymphocyte count, which again may be due to the fact that the cohort is largely comprised of general cases. Interestingly, we discovered that the discharged patients with
recurrence of positive SARS-CoV-2 RNA may potentially have an elevated serum IL-6 level and lymphocyte count than those with no recurrence, implying that the immune responses against SARS-CoV-2 might still be attempting to clear the infection. Perhaps the immune system could suppress but not eradicate SARS-CoV-2 completely, which may have led to the false-negative results due to lower viral loads. Theoretically, at some point further down the line, the virus started replicating again to cause recurrent positive RT-PCR test results in the already discharged patients with COVID-19.

The characteristics of chest CT imaging features of COVID-19 pneumonia are very useful for preliminary judgment and have contributed to a lower rate of missed diagnoses. Patients with features of consolidation on CT imaging were reported to associated with more critical cases. Progression of consolidation might represent further infiltration of the lung parenchyma and lung interstitium, indicating that the virus has invaded the respiratory epithelium which is characterized by diffuse alveolar damage and necrotizing bronchitis. This leads to alveoli being completely filled by inflammatory exudate. Thus, during the recovery process of COVID-19 patients with lung consolidation, a potentially undetectable amount of SARS-CoV-2 may persist in the respiratory epithelium. This may result in the recurrence of positive SARS-CoV-2 RNA after discharge. Interestingly, we found that most patients with recurrence of positive SARS-CoV-2 RNA had fluctuating positive and negative results in the course of the disease, typically in cases 7, 8, 41 amongst others (Figure 1). This, in itself, may partially reflect another potential sign for recurrent positivity after discharge. Also, such fluctuations in one case partly ruled out the randomly error probability in RT-PCR detection. Thus, individuals may have already had immunity to eradicate the virus, so a period of duration was needed for complete recovery yet. However, if the individual immunity cannot deal with the recurrence, further treatment may be still needed.

Limitations

This study has a few notable limitations. First, this study was conducted at a single-center hospital. As such, there may be an element of selection bias where identifying factors may influence the clinical outcomes. A larger cohort study of patients with COVID-19 pneumonia from different institutions nationwide or worldwide would help to further define the clinical characteristics and risk factors of recurrence. Second, only multipoint of throat-swab specimens were performed for patients in this study. Thus the chance of false negative results is still possible. Multisite sampling could be collected for RT-PCR detection, such as the fecal SARS-CoV-2 RNA test, particularly in patients with gastrointestinal symptoms.
Conclusions

Elevated lymphocyte counts and IL-6 level in blood, and consolidation on chest CT were associated with a greater risk of developing recurrent positivity of SARS-CoV-2 RNA, possibly due to a balance between immune regulation and virus toxicity. For patients with a higher risk of recurrent positivity, a prolonged treatment or isolation period for observation should be carried out for at least 50 days after illness onset in order to identify patients who may pose a risk for future outbreaks.

Author Contributions
Drs Cai and Pu had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Joint first authors are Drs J. Chen, X. Xu, Hu, and Q. Chen.

Concept and design: J. Chen, Pu, Cai.
Acquisition, analysis, or interpretation of data: All authors.
Drafting of the manuscript: J. Chen, Q. Chen, Pu, Cai.
Critical revision of the manuscript for important intellectual content: J. Chen, X. Xu, Hu, Q. Chen, Pu, Cai.
Statistical analysis: J. Chen, Q. Chen, Liu, Pu, Cai.
Obtained funding: J. Chen.
Administrative, technical, or material support: J. Chen, F. Xu, Pu, Cai.
Supervision: Pu, Cai.

Conflict of Interest Disclosures
We declare no competing interests.

Funding/Support
This study was funded by the Guanggu Branch of Hubei Province Maternity and Childcare Hospital Fund (2020-FYGG-085).

Role of the Funder/Sponsor
The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to
submit the manuscript for publication.

Additional Contributions

We acknowledge all health-care workers involved in the diagnosis and treatment of patients in Wuhan; and we thank Joseph R Habib (Johns Hopkins University School of Medicine, Baltimore, Maryland, USA) for review and revise of the manuscript.

References

1. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine. 2020;382(8):727-733. doi: 10.1056/NEJMoa2001017
2. Phelan AL, Katz R, Gostin LO. The Novel Coronavirus Originating in Wuhan, China: Challenges for Global Health Governance. JAMA. 2020. doi: 10.1001/jama.2020.1097
3. World Health Organization. Novel Coronavirus (2019-nCoV) Available at https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed April 18, 2020.
4. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. The New England journal of medicine. 2020. doi: 10.1056/NEJMoa2002032
5. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020. doi: 10.1001/jama.2020.1585
6. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England). 2020;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3
7. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nature medicine. 2020;26(4):450-452. doi: 10.1038/s41591-020-0820-9
8. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A. 2020. doi: 10.1073/pnas.2004999117
9. Li Y, Yao L, Li J, et al. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J Med Virol. 2020. doi: 10.1002/jmv.25786
10. National Health Commission of the People's Republic of China. Chinese management guideline for COVID-19 (version 6.0). Feb 19, 2020. (http://www.nhc.gov.cn/zyyj/s7653p/202002/8334a8326dd94d329df351d7da8aefc2/files/b1bc54639af227f922bf6b817.pdf, accessed Feb 19, 2020; in Chinese).
11. Lan L, Xu D, Ye G, et al. Positive RT-PCR Test Results in Patients Recovered From COVID-19. JAMA. 2020. doi: 10.1001/jama.2020.2783
12. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. *JAMA Intern Med.* 2020. doi: 10.1001/jamainternmed.2020.0994

13. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva, World Health Organization, 2011 (WHO/NMH/NHD/MNM/11.1) (http://www.who.int/vmnis/indicators/haemoglobin.pdf, accessed).

14. Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. *JAMA.* 2012;307(23):2526-2533. doi: 10.1001/jama.2012.5669

15. European Association for the Study of the Liver. Electronic address eee, Clinical practice guidelines p, Wendon J, et al. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. *Journal of hepatology.* 2017;66(5):1047-1081. doi: 10.1016/j.jhep.2016.12.003

16. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. *Nephron Clin Pract.* 2012;120(4):c179-184. doi: 10.1159/000339789

17. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet (London, England).* 2020;395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7

18. Liang WH, Guan WJ, Li CC, et al. Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicenter) and outside Hubei (non-epicenter): A Nationwide Analysis of China. *Eur Respir J.* 2020. doi: 10.1183/13993003.00562-2020

19. Chen D, Xu W, Lei Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. *Int J Infect Dis.* 2020;93:297-299. doi: 10.1016/j.ijid.2020.03.003

20. Yuan J, Kou S, Liang Y, Zeng J, Pan Y, Liu L. PCR Assays Turned Positive in 25 Discharged COVID-19 Patients. *Clin Infect Dis.* 2020. doi: 10.1093/cid/ciaa398

21. Pan A, Liu L, Wang C, et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. *JAMA.* 2020. doi: 10.1001/jama.2020.6130

22. Zhou B, She J, Wang Y, Ma X. The duration of viral shedding of discharged patients with severe COVID-19. *Clin Infect Dis.* 2020. doi: 10.1093/cid/ciaa451

23. Xu K, Chen Y, Yuan J, et al. Factors associated with prolonged viral RNA shedding in patients with COVID-19. *Clin Infect Dis.* 2020. doi: 10.1093/cid/ciaa351

24. Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? *J Autoimmun.* 2020;102452. doi: 10.1016/j.jaut.2020.102452
25. Chen X, Zhao B, Qu Y, et al. Detectable serum SARS-CoV-2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. *Clin Infect Dis.* 2020. doi: 10.1093/cid/ciaa449

26. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. *J Clin Invest.* 2020. doi: 10.1172/JCI137244

27. Zhang Y, Li J, Zhan Y, et al. Analysis of serum cytokines in patients with severe acute respiratory syndrome. *Infect Immun.* 2004;72(8):4410-4415. doi: 10.1128/IAI.72.8.4410-4415.2004

28. Yang P, Ding Y, Xu Z, et al. Epidemiological and clinical features of COVID-19 patients with and without pneumonia in Beijing, China. *medRxiv.* 2020:2020.2002.2028.20028068. doi: 10.1101/2020.02.28.20028068

29. Li Y, Xia L. Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. *AJR Am J Roentgenol.* 2020:1-7. doi: 10.2214/AJR.20.22954

30. Lyu P, Liu X, Zhang R, Shi L, Gao J. The performance of chest CT in evaluating the clinical severity of COVID-19 pneumonia: identifying critical cases based on CT characteristics. *Invest Radiol.* 2020. doi: 10.1097/RLI.0000000000000689

31. Zhou S, Wang Y, Zhu T, Xia L. CT Features of Coronavirus Disease 2019 (COVID-19) Pneumonia in 62 Patients in Wuhan, China. *AJR Am J Roentgenol.* 2020:1-8. doi: 10.2214/AJR.20.22975

32. Koo HJ, Lim S, Choe J, Choi SH, Sung H, Do KH. Radiographic and CT Features of Viral Pneumonia. *Radiographics : a review publication of the Radiological Society of North America, Inc.* 2018;38(3):719-739. doi: 10.1148/rg.2018170048

33. Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis. *Gastroenterology.* 2020. doi: 10.1053/j.gastro.2020.03.065

Figure legends

Figure 1. Individual duration of viral shedding and recurrence from illness onset to repeat positivity in patients with recurrence of positive SARS-CoV-2 RNA after discharge. Figure shows the timing and results of RT-PCR examinations for SARS-CoV-2 RNA in details. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. RT-PCR=reverse transcription-polymerase chain reaction.
Figure 2. The median duration of different stages in patients with recurrence of positive SARS-CoV-2 RNA after discharge. Figure 2A shows the median duration from illness onset to initial RT-PCR confirmed, onset of complete RNA negative and recurrent RT-PCR positivity after discharge, and from discharge to recurrence. Figure 2B shows the median duration from initial RT-PCR confirmed to onset of complete RNA negative and recurrent RT-PCR positivity after discharge, and from onset of complete RNA negative to recurrence. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. RT-PCR=reverse transcription-polymerase chain reaction.
Variables	No. (n=1087)	Percentage (%)	
General features			
Clinical severity of disease			
General	903	83.1%	
Severe	144	13.2%	
Critical	40	3.7%	
Age			
Median (IQR)	60.0 (49.0-69.0)		
Gender			
Male	452	41.6%	
Female	635	58.4%	
Hypertension			
Yes	337	31.0%	
No	750	69.0%	
Diabetes			
Yes	137	12.6%	
No	950	87.4%	
In hospital			
Fever			
Yes (>37.2°C once or more)	254	23.4%	
No	833	76.6%	
Internal visceral dysfunctions			
Yes	363	33.4%	
No	724	66.6%	
Comorbid diseases			
Yes	580	53.4%	
No	507	46.6%	
White blood cell count, ×10⁹ per L			
<4	102	9.4%	
4-10	938	86.3%	
>10	31	2.9%	
Unknown	16	1.5%	
Neutrophil count, ×10⁹ per L			
<=6.3	1005	92.5%	
>6.3	66	6.1%	
Unknown	16	1.5%	
Lymphocyte count, ×10⁹ per L			
<=1.1	175	16.1%	
>1.1	896	82.4%	
Unknown	16	1.5%	
Platelet count, ×10⁹ per L			
<125	52	4.8%	
125-350	967	89.0%	
>350	52	4.8%	
Unknown	16	1.5%	
ALT			
<40	867	79.8%	
>=40	185	17.0%	
Unknown	35	3.2%	
Albumin			
<35	171	15.7%	
>=35	883	81.2%	
Unknown	33	3.0%	
C-reactive protein			
Test	Cutoff 1	Cutoff 2	Unknown
---------------------	----------	----------	---------
<10	919	136	32
>=10	84.5%	12.5%	2.9%
ESR 30min			
<20	178	290	619
>=20	16.4%	26.7%	56.9%
Procalcitonin			
<=0.05	594	221	272
>0.05	54.6%	20.3%	25.0%
D-Dimer			
<0.5	510	265	312
>=0.5	46.9%	24.4%	28.7%
BUN			
<=6.5	859	162	66
>6.5	79.0%	14.9%	6.1%
Creatinine			
<90	917	104	66
>=90	84.4%	9.6%	6.1%
Accu Troponin			
<15.6	593	66	428
>=15.6	54.6%	6.1%	39.4%
IL-6			
<10	555	76	456
>=10	51.1%	7.0%	42.0%
IgG			
Positive	887	120	80
Negative	81.6%	11.0%	7.4%
Unknown			
IgM			
Positive	797	260	30
Negative	73.3%	23.9%	2.8%
Unknown			
Imaging features			
Consolidation			
Yes	525		
No	551		
Unknown	11		
Ground-glass opacity			
Yes	730		
No	346		
Unknown	11		
Bilateral pulmonary infiltration			
Yes	874		
No	202		
Unknown	11		
Variables	No. (n=81)	Percentage (%)	
---------------------------------	------------	----------------	
General features			
Clinical severity of disease			
General	68	84.0%	
Severe	12	14.8%	
Critical	1	1.2%	
Age	62.0	(50.5-68.0)	
Gender			
Male	30	37.0%	
Female	51	63.0%	
Hypertension			
Yes	20	24.7%	
No	61	75.3%	
Diabetes			
Yes	9	11.1%	
No	72	88.8%	
Illness onset			
Fever			
Yes	41	50.6%	
No	40	49.4%	
Cough			
Yes	44	54.3%	
No	37	45.7%	
Chest congestion			
Yes	18	22.2%	
No	63	77.8%	
Weak			
Yes	34	42.5%	
No	46	57.5%	
Muscular soreness			
Yes	15	18.5%	
No	66	81.5%	
Pulmonary infection (CT)			
Yes	70	86.4%	
No	5	6.2%	
Unknown	6	7.4%	
Anti-virus therapy			
Yes	53	65.4%	
No	15	18.5%	
Unknown	13	16.0%	
In hospital			
Fever			
Yes (>37.2℃ once or more)	18	22.2%	
No	63	77.8%	
Internal visceral dysfunctions			
Yes	30	37.0%	
No	51	63.0%	
Comorbid diseases			
Yes	46	56.8%	
No	35	43.2%	
White blood cell count, ×10^9 per L			
<4	6	7.4%	
4-10	71	87.7%	
Neutrophil count, $\times 10^3$ per L	3	3.7%	
-------------------------------------	---	------	
Unknown	1	1.2%	
<1.8	3	3.7%	
1.8-6.3	73	90.1%	
>6.3	4	4.9%	
Unknown	1	1.2%	

Lymphocyte count, $\times 10^3$ per L	7	8.6%
Unknown	72	88.9%
<1.1	1	1.2%
1.1-3.2	1	1.2%
>1.1	7	8.6%
Unknown	1	1.2%

Platelet count, $\times 10^3$ per L	4	4.9%
<125	69	85.2%
125-350	7	8.6%
>350	1	1.2%
Unknown	1	1.2%

ALT	71	87.7%
<40	10	12.3%
>=40		

Albumin	10	12.3%
<35	71	87.7%
>=35		

C-reactive protein	71	87.7%
<10	8	9.9%
>=10	2	2.5%
Unknown		

ESR 30min	13	16.0%
<20	27	33.3%
>=20	41	50.6%
Unknown		

Procalcitonin	47	58.0%
<=0.05	14	17.3%
>0.05	20	24.7%
Unknown		

D-dimer	47	58.0%
<0.5	18	22.2%
>=0.5	16	19.8%
Unknown		

BUN	68	84.0%
<=6.5	11	13.6%
>6.5		2.5%
Unknown		

Creatinine	68	84.0%
<90	11	13.6%
>=90		2.5%
Unknown		

Accu Troponin	47	58.0%
<15.6	4	4.9%
>=15.6	30	37.0%
Unknown		

IL-6	43	53.1%
<10	11	13.6%
>=10	27	33.3%
Unknown		

IgG	72	88.9%
Positive		6.2%
Negative		4.9%
Unknown		

IgM	68	84.0%
Positive		
Negative		
Unknown		

All rights reserved. No reuse allowed without permission.
Imaging features	Yes	No	Percentage
Consolidation			
Yes	49	32	60.5%
No			39.5%
Ground-glass opacity			
Yes	56	25	69.1%
No			30.9%
Bilateral pulmonary infiltration			
Yes	70	11	86.4%
No			13.6%
Table 3. Correlations between clinical characteristics and recurrence of positive SARS-Cov-2 RNA in discharged patients.

Variables	No. (n=1067)	No recurrence n=986	Recurrence n=81	P value		
General features						
Clinical severity of disease						
General	903	835	68	0.684		
Severe	139	127	12			
Critical	25	24	1			
Age						
Median (IQR)	60.0 (49.0-68.0)	60.0 (49.0-68.0)	62.0 (50.5-68.0)	0.700		
Gender						
Male	440	410	30	0.424		
Female	627	576	51			
Hypertension						
Yes	331	311	20	0.200		
No	736	675	61			
Diabetes						
Yes	135	126	9	0.664		
No	932	860	72			
In hospital						
Fever						
Yes (>37.2°C once or more)	246	228	18	0.853		
No	821	758	63			
Internal visceral dysfunctions						
Yes	343	313	30	0.327		
No	724	673	51			
Comorbid diseases						
Yes	560	514	46	0.419		
No	507	472	35			
White blood cell count, ×10⁹ per L						
<4	100	94	6	0.579		
4-10	927	856	71			
>10	24	21	3			
Unknown	16	15	1			
Neutrophil count, ×10⁹ per L						
<=6.3	994	918	76	1.000		
>6.3	57	53	4			
Unknown	16	15	1			
Lymphocyte count, ×10⁹ per L						
<=1.1	158	150	8	0.190		
>1.1	894	821	72			
Unknown	15	15	1			
Platelet count, ×10⁹ per L						
<125	44	40	4	0.297		
125-350	956	886	69			
>350	52	45	7			
Unknown	15	15	1			
ALT						
<40	852	781	71	0.202		
>=40	181	171	10			
Unknown	34	34	0			
Albumin						
<35	154	144	10	0.502		
>=35	880	809	71			
Unknown	33	33	0			
C-reactive protein	<10	914	121	32	71	0.653
------------------------	-----	-----	-----	----	----	-------
	>=10	843	113	30	8	
Unknown					2	

ESR 30min	<20	176	282	609	13	0.420
	>=20	163	255	568	27	
Unknown					41	

Procalcitonin	<=0.05	589	207	271	47	0.571
	>0.05	542	193	251	14	
Unknown		251	251	16		

D-dimer	<0.5	507	250	310	47	0.339
	>=0.5	460	232	294	18	
Unknown					16	

BUN	<=6.5	853	148	66	68	0.822
	>6.5	785	137	64	11	
Unknown		64	64		2	

Creatinine	<90	907	94	66	68	0.150
	>=90	839	83	64	11	
Unknown		64	64		2	

Accu Troponin	<15.6	590	54	423	47	1.000
	>=15.6	543	50	393	14	
Unknown		64	64		4	

IL-6	<10	552	63	452	43	0.010
	>=10	509	52	425	11	
Unknown		64	64		27	

Imaging features						

Consolidation	Yes	520	541	6	49	0.031
	No	471	509	6	32	
	Unknown	6	6	6	0	

Ground-glass opacity	Yes	720	341	6	56	0.798
	No	664	316	6	25	
	Unknown	6	6	6	0	

Bilateral pulmonary infiltration	Yes	859	202	6	70	0.193
	No	789	191	6	11	
	Unknown	6	6	6	0	
Variables	No.	Univariate OR (95% CI)	P value
Age	1067	1.000(0.985-1.015)	0.995
Gender	1067	1.210(0.757-1.933)	0.425
Clinical severity of disease	1067	0.976(0.579-1.645)	0.927
Hypertension	1067	0.712(0.422-1.200)	0.202
Diabetes	1067	0.853(0.416-1.749)	0.665
Fever	1067	0.950(0.551-1.637)	0.853
Internal visceral dysfunctions	1067	1.265(0.790-2.025)	0.328
Comorbid diseases	1067	1.207(0.764-1.906)	0.420
Neutrophil count, ×10^9 per L	1051	0.912(0.321-2.587)	0.862
Lymphocyte count, ×10^9 per L	1051	1.644(0.776-3.484)	**0.194**
Platelet count, ×10^11 per L	1051	1.417(0.676-2.969)	0.356
ALT	1033	0.643(0.325-1.273)	0.205
Albumin	1034	1.264(0.637-2.508)	0.503
C-reactive protein	1035	0.841(0.394-1.792)	0.653
ESR 30min	458	1.328(0.666-2.647)	0.421
Procalcitonin	796	0.837(0.450-1.553)	0.572
D-dimer	757	0.759(0.431-1.337)	0.340
Accu Troponin	644	0.924(0.320-2.671)	0.884
IL-6	615	2.504(1.218-5.150)	**0.013**
Consolidation	1061	1.655(1.042-2.629)	**0.033**
Ground-glass opacity	1061	1.066(0.653-1.740)	0.798
Bilateral pulmonary infiltration	1061	1.540(0.800-2.966)	**0.196**
Table 5. Multivariate regression analysis for risk factors of patients with recurrence of positive SARS-Cov-2 RNA.

Variables	Multivariate OR (95% CI)	P value
IL-6		
<10	Reference 3.050 (1.432-6.499)	0.004
>=10		
Consolidation		
No	Reference 1.641 (1.028-2.620)	0.038
Yes		
Lymphocyte count, \times10^3/\mu L		
<=1.1	Reference 2.321 (1.048-5.138)	0.038
>1.1		
Bilateral pulmonary infiltration		
No	Reference 1.482 (0.764-2.871)	0.244
Yes		