Enhancing the blocking temperature of perpendicular-exchange biased Cr$_2$O$_3$ thin films using spacer and buffer layers

Naoki Shimomura1, Satya Prakash Pati1, Tomohiro Nozaki1, Tatsuo Shibata2, and Masashi Sahashi1

1Department of Electronic Engineering, Graduate School of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan

2TDK Corporation, Ichikawa 272-8558, Japan

E-mail: nozaki@ecei.tohoku.ac.jp

In this study, we investigated the effect of spacer and buffer layers on the blocking temperature T_B of the perpendicular exchange bias of thin Cr$_2$O$_3$ films, and revealed a high T_B of 260 K for 20-nm-thick Cr$_2$O$_3$ thin films. By inserting a Ru spacer layer between the Cr$_2$O$_3$ and Co films and changing the spacer thickness, we controlled the magnitude of the exchange bias and T_B. By comparing the T_B values of the 20-nm-thick Cr$_2$O$_3$ films on Pt and α-Fe$_2$O$_3$ buffers, we investigated the lattice strain effect on the T_B. We show that higher T_B value can be obtained using an α-Fe$_2$O$_3$ buffer, which is likely because of the lattice-strain-induced increase of Cr$_2$O$_3$ magnetic anisotropy.
1. Introduction

Electric control of magnetization using the magnetoelectric (ME) effect has received considerable attention as a promising candidate for next generation low energy consumption magnetic recording devices\(^1\). The linear ME effect was theoretically predicted for Cr\(_2\)O\(_3\) in 1960\(^2\) and experimentally confirmed in 1961\(^3\). Few techniques at that time had utilized to deal antiferromagnets, so the practical potential of the discovery was not immediately realized. Since 2005, the ME effect in Cr\(_2\)O\(_3\) has captured renewed attention because the electrical switching of perpendicular exchange bias has been demonstrated in bulk Cr\(_2\)O\(_3\) single crystal/ferromagnet exchange coupling systems\(^4,5\). Here, antiferromagnetic domain reversal by applying both magnetic and electric fields\(^6\) has been used to switch the perpendicular exchange bias of a Cr\(_2\)O\(_3\)/ferromagnet. This perpendicular exchange bias switching has recently been demonstrated in several-hundred-nanometer-thick Cr\(_2\)O\(_3\) films deposited by the sputtering method, which yields more realistic device applications\(^7\)=\(^11\). One major issue for device application is simultaneous realization of both further reduction of the Cr\(_2\)O\(_3\) film thickness and increase in the operating temperature. Further reduction of the Cr\(_2\)O\(_3\) film thickness is necessary to decrease the applied voltage and the aspect ratio of the recording bit. However, for thin Cr\(_2\)O\(_3\) films, there is a rapid reduction in the blocking temperature \(T_B\) of the perpendicular exchange bias with decreasing Cr\(_2\)O\(_3\) thickness\(^12\). Here, \(T_B\) represents the temperature at which the perpendicular exchange bias disappears and it is the upper limit of the operating temperature. Thus, in addition to the enhancement of the Néel temperature \(T_N\), for which several attempts have been reported recently\(^13,14\), to achieve high \(T_B\) is also an important issue. Perpendicular exchange bias has been reported for Cr\(_2\)O\(_3\) film thicknesses \(\geq 30\) nm\(^12\). However, the \(T_B\) is as low as 80 K for 30-nm-thick Cr\(_2\)O\(_3\) film when the unidirectional magnetic anisotropy energy \(J_K\) (=\(H_{ex}M_St_{FM}\)) is 0.26 mJ/m\(^2\). Here, \(H_{ex}, M_S,\) and \(t_{FM}\) represent the exchange bias field, saturation magnetization and thickness of the ferromagnetic layer, respectively. If the Cr\(_2\)O\(_3\) thickness is further decreased, the perpendicular exchange bias is not observed even at very low temperatures. For Cr\(_2\)O\(_3\), the lower \(T_B\) than \(T_N\) (~307 K) can be qualitatively understood by using the Meiklejohn–Bean free-energy model (MB model)\(^17,18\). In the MB model, the \(T_B\) is explained by the competition between the interface exchange coupling energy \(J_{ex}\) and the product of the magnetic anisotropy energy \(K_{AF}\) and thickness \(t_{AF}\) of the antiferromagnet \((K_{AF}t_{AF})\). When \(K_{AF}t_{AF} > J_{ex}\), the exchange bias is observed (unidirectional anisotropy). When \(K_{AF}t_{AF} < J_{ex}\), the exchange bias disappears and only the enhancement of the coercivity \(H_c\) is observed (uniaxial anisotropy). Such appearance/disappearance of the exchange bias has also been observed for antiferromagnetic Mn–Ir alloy\(^19\). For the Mn–Ir alloy, the exchange bias at room temperature
disappears and the H_c increases when the Mn–Ir thickness decrease below ~5 nm. That is, for a 5-nm-thick Mn–Ir film, the T_b is approximately equal to the room temperature. For Cr$_2$O$_3$, because of its small K_{AF} ($\sim 2.0 \times 10^4$ J/m3 at low temperature20) and large J_{ex}, the T_b becomes much lower than the T_N even for a 500-nm-thick Cr$_2$O$_3$ film. The T_b of the Cr$_2$O$_3$/Co exchange coupling system is easily controlled by changing the t_{AF} or J_{ex}18, which indicates that the T_b of the Cr$_2$O$_3$/Co system can be well described by the MB model. According to the MB model, to realize a high T_b in thin Cr$_2$O$_3$ layers, either the J_{ex} needs to be decreased or the K_{AF} needs to be increased. Decreasing the J_{ex} can be achieved by inserting a thin metallic spacer between the Cr$_2$O$_3$ film and ferromagnet. Increasing T_b by inserting a Pt spacer layer has been reported, where the reduction in the J_{ex} was confirmed as a reduction in the H_{ex}18,21,22. A higher K_{AF} can be achieved by doping and inducing lattice strain. The K_{AF} consists of magnetic dipole anisotropy K_{MD} and magnetocrystalline anisotropy (the fine structure anisotropy) K_{FS}. Increasing the K_{AF} by Al-doping has been reported, which is mainly mediated by increasing the K_{FS}23. Artman et al. calculated the change in the K_{MD} induced by the lattice parameter variation and found that the K_{MD} increases with increasing c, decreasing a, or increasing ionic position w20. The K_{FS} may also be affected by the lattice strain, but this effect has not been quantified. Because lattice strain can be easily induced for thin films by adjusting the lattice parameter of the buffer layer, a thin Cr$_2$O$_3$/Co system is favorable for investigating the effect of the lattice strain on the K_{AF}. In this study, we attempted to achieve $T_b \approx T_N$ for a 20-nm-thick Cr$_2$O$_3$ thin film through controlling the J_{ex} by inserting a metallic spacer layer and enhancing the K_{AF} by inducing lattice strain.

2. Experimental details

All the samples were fabricated by RF-DC magnetron sputtering with a base pressure below 5×10^{-7} Pa. The sample structures were c-Al$_2$O$_3$ substrate/Pt 25 or α-Fe$_2$O$_3$ 20/Cr$_2$O$_3$ 20/Ru t_{Ru}/Co 1/Pt 5 (nm). In this study, we varied the Ru spacer layer thickness t_{Ru} and buffer layer material (Pt or α-Fe$_2$O$_3$). The oxygen reactive sputtering technique was used for deposition of Cr$_2$O$_3$ (α-Fe$_2$O$_3$) by sputtering the Cr (Fe) metal target in an Ar/O$_2$ mixed gas atmosphere. The substrate temperature during deposition was 873 K for the Pt buffer layer, 773 K for the Cr$_2$O$_3$ and α-Fe$_2$O$_3$ oxide layers, and 406 K for the Ru spacer, Co ferromagnetic, and Pt capping layers. The magnetic properties were measured by superconducting quantum interference device (SQUID) magnetometry after cooling the sample in the presence of an applied magnetic field (+10 kOe) from 340 K, which is sufficiently
above the T_N of Cr$_2$O$_3$. During the measurements, the magnetic field was applied normal to the film surface. Structural characterization was performed by X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM) measurements. Nanobeam electron diffraction was used for refining the lattice parameters of the thin Cr$_2$O$_3$ layer (20 nm thick)24.

3. Ru spacer layer effect

First, we investigated the effect of the Ru spacer layer on the H_{ex} using Pt-buffered samples. We measured the dependence of the H_{ex} on the Ru spacer layer thickness for the Ru spacer samples (Al$_2$O$_3$/Pt buffer 25/Cr$_2$O$_3$ 250/Ru spacer t_{Ru}/Co 1/Pt 5), and compared the results with those of the Pt spacer samples (Al$_2$O$_3$/Pt buffer 25/Cr$_2$O$_3$ 250/Pt spacer t_{Pt}/Co 1/Pt 5). In thin Cr$_2$O$_3$ films, because of the small K_{AF}, only the H_c enhancement will occur, making these films unsuitable for the H_{ex} comparison. Thus, we used relatively thick Cr$_2$O$_3$ films (250-nm-thick). Figure 1(a) shows the dependence of the J_K on the t_{Ru} at 50 K. For comparison, the results for the Pt spacer samples22 are also shown in figure 1(a). For the J_K calculations, the spacer layer thickness dependence of $M_{s,FM}$ was measured for both the Pt and Ru spacer samples. The $M_{s,FM}$ values of $1.70(17) \times 10^{-4}$ emu/cm2 for the no-spacer and Pt spacer samples, and $1.34(9) \times 10^{-4}$ emu/cm2 for the Ru spacer samples are obtained and its spacer thickness dependence are within the error. Due to the additional moment mainly comes from spin polarization of the 5 nm Pt cap layer, the no-spacer and Pt-spacer samples exhibit higher $M_{s,FM}$ than that of 1 nm Co ($\approx 1.4 \times 10^{-4}$ emu/cm2). The Ru spacer samples exhibit lower $M_{s,FM}$ values than the no-spacer and Pt spacer samples. It seems the spin polarization of the 5 nm Pt cap layer is suppressed by Ru spacer, possibly due to the change in the crystal structure of Co and Pt or change in the magnetic anisotropy of Co by using a Ru spacer layer. Figure 1(b) shows the M–H curves of the Ru and Pt spacer samples at 50 K. Compared to the Pt spacer samples, the Ru spacer samples exhibit lower H_c and lower squareness. There are two main effects of the spacer layer: the effect on the magnitude of exchange coupling and the effect on the magnetic properties of Co, especially the magnetic anisotropy of Co. Regarding the magnitude of exchange coupling, the H_{ex} generally decreases with increasing spacer layer thickness. The spacer layer lengthen the Cr$_2$O$_3$-Co distance and weaken the J_{ex}. Thus the magnitude of exchange coupling (H_{ex} and J_K) decrease. This is true for both the Ru and Pt spacers, although there is a slight difference in the thickness dependence. For the Pt spacer samples, there is a rapid decrease in the J_K with increasing t_{Pt} for $t_{Pt} > 0.7$ nm, while for the Ru spacer samples, the J_K linearly decreases with increasing t_{Ru}. From these results, we assume the island growth of Pt for the Pt spacer
samples when the Pt spacer layer is thin ($t_s < 0.7$ nm), which leads to a smaller change in the J_K, reflecting the small change in the Cr$_2$O$_3$-Co distance. In contrast, the layer growth is expected for Ru of the Ru spacer sample, which leads to a gradual change in Cr$_2$O$_3$-Co distance and J_K, reflecting the linear change in the Cr$_2$O$_3$-Co distance. It is noted that the thickness dependence is affected not only by the spacer material but also by the spacer layer deposition conditions (e.g., comparing the results of refs. 14, 18 and 25). These results show that the J_K of Cr$_2$O$_3$/Co films can be controlled more easily by using Ru spacers than Pt spacers. On the other hand, the changes in the magnetic properties of Co largely depend on the spacer layer material (Pt or Ru), and they are independent of the spacer thickness (t_s or t_{Ru}). A larger H_c value and higher squareness of the Pt spacer sample indicate interface perpendicular magnetic anisotropy at the Pt/Co interface. Although the magnitudes of the magnetic anisotropy of Co differ between the Pt and Ru spacer samples, the affection on the spacer thickness dependence of the J_K seems limited. For the Pt spacer samples, a rapid change in J_K occur when $t_s > 0.7$ nm, while the magnetic anisotropy of Co is almost unchanged in this region. For the Ru spacer samples, no abrupt change was observed for J_K values, while the magnetic anisotropy dramatically change between $t_{Ru} = 0.0$ to $t_{Ru} = 0.25$ nm.

Here, we demonstrate the enhancement of the T_B for a 20-nm-thick Cr$_2$O$_3$ film by inserting a Ru spacer layer. Figure 2 shows the dependence of the H_{ex} and H_c on temperature for c-Al$_2$O$_3$/Pt 25/Cr$_2$O$_3$ 20/Ru t_{Ru}/Co 1/Pt 5 (nm). In the sample without the Ru spacer, only the H_c enhancement is observed and no H_{ex} is observed from 10 to 300 K (black open triangles), owing to large J_{ex} and small K_{AF}/AF. In contrast, in the samples with $t_{Ru} > 1$ nm (red solid squares and blue solid circles), where the $H_{ex} < 1$ kOe ($J_K < 0.134$ mJ/m2), the H_{ex} is observed at low temperatures. For the sample with $t_{Ru} = 1.25$ nm, a relatively high T_B of 150 K is attained.

4. Buffer layer effect

We investigated the effect of lattice strain induced by changing the buffer layer material on the K_{AF} of Cr$_2$O$_3$. For a Cr$_2$O$_3$ buffer layer, good lattice matching and oxidative resistance at 773 K (deposition temperature of Cr$_2$O$_3$) are required. In this study, we chose α-Fe$_2$O$_3$ and Pt for the buffer layer materials. Both Cr$_2$O$_3$ and α-Fe$_2$O$_3$ possess the corundum structure, so an epitaxial growth of α-Fe$_2$O$_3$/Cr$_2$O$_3$ is expected. Pt is a face-centered cubic structure, but it preferentially orients along the [111] direction. Thus, the lattice matching is relatively good. In addition, both α-Fe$_2$O$_3$ and Pt show good oxidative resistances. Figure 3 shows the schematics of the
(0001) planes of Cr$_2$O$_3$ and α-Fe$_2$O$_3$, and the (111) plane of Pt. Table 1 summarizes the lattice mismatch between Cr$_2$O$_3$ and the buffer layers. Because α-Fe$_2$O$_3$ (Pt) has larger (smaller) lattice parameters than Cr$_2$O$_3$, we expected to obtain a-axis expanded (compressed) Cr$_2$O$_3$ using an (a) α-Fe$_2$O$_3$ (Pt) buffer. We investigated the change in the K_{AF} of these samples by measuring the T_B, and compared the results with the theoretical predictions.

4.1. Structural characterization

The lattice parameters and morphology can be affected by changing the buffer layer. Thus, we first characterized the structural properties. Figure 4 shows the XRD patterns for 2θ/ω (out of plane, figure 4(a)) and 2θ/φ (in plane, figure 4(b)) scans of α-Fe$_2$O$_3$-buffered and Pt-buffered samples. The 2θ/φ scan was carried out for the Al$_2$O$_3$ (10\textbar 10) plane. For the α-Fe$_2$O$_3$-buffered sample, a good epitaxial growth was observed. The epitaxial relations are Al$_2$O$_3$ (0001) [10\textbar 10]/α-Fe$_2$O$_3$ (0001) [10\textbar 10]/Cr$_2$O$_3$ (0001) [10\textbar 10]. For the Pt-buffered sample, although good (111) oriented Pt and (0001) oriented Cr$_2$O$_3$ were obtained, two types of domains appeared in the in-plane orientations. The epitaxial relations are Al$_2$O$_3$ (0001) [10\textbar 10]/Pt (111) [1\textbar 1\textbar 0] or [1\textbar 1\textbar 2]/Cr$_2$O$_3$ (0001) [10\textbar 10] or [1\textbar 1\textbar 20]. Figure 5 shows the cross-sectional TEM images of the α-Fe$_2$O$_3$-buffered (figure 5(a)) and Pt-buffered (figure 5(b)) samples. The TEM image confirmed the epitaxial growth of the α-Fe$_2$O$_3$-buffered sample and existence of the two types of domains in the Pt-buffered sample (domain sizes of several tens of nanometers). The different domain sizes can also affect the T_B. However, based on the MB model, the domain sizes perpendicular to the film surface are more important than the domain sizes in the film plane, because we discuss the relation between J_K and K_{AF}. In this paper, we neglect the grain size effect, and additional investigations are underway. We then checked the lattice parameter a of Cr$_2$O$_3$ on α-Fe$_2$O$_3$ and Pt. We have previously reported the a value of α-Fe$_2$O$_3$ and Pt-buffered 20-nm-thick Cr$_2$O$_3$ films from the XRD patterns. However, the a value of the α-Fe$_2$O$_3$-buffered sample could not be accurately determined owing to the overlap between the Cr$_2$O$_3$ (30\textbar 30) and α-Fe$_2$O$_3$ (30\textbar 30) Bragg peaks. In the present study, we performed nanobeam electron diffraction measurements of the α-Fe$_2$O$_3$-buffered sample and more precisely determined the a value of the Cr$_2$O$_3$ film. The a value of Cr$_2$O$_3$ estimated from the nanobeam electron diffraction was the same as that of the α-Fe$_2$O$_3$ buffer estimated from in-plane XRD. Thus, we confirmed that the a value of Cr$_2$O$_3$ is locked by the α-Fe$_2$O$_3$ buffer layer. From this result, we could identify that both the α-Fe$_2$O$_3$ (30\textbar 30) and Cr$_2$O$_3$ (30\textbar 30)
peaks are at 64.1° in figure 4(b). The refined lattice parameter values are listed in table 1. Both the present data and the data in20 show that the a values for α-Fe$_2$O$_3$-buffered Cr$_2$O$_3$ films are larger than that of the Pt-buffered Cr$_2$O$_3$ film, and both the samples have larger a values than bulk Cr$_2$O$_3$ ($a = 4.95$ Å). The unexpected a value of the Pt-buffered Cr$_2$O$_3$ could have resulted from the lattice relaxation due to misfit dislocations or dislocations at grain boundaries at Pt/Cr$_2$O$_3$ interface owing to a relatively bad lattice matching, while it is difficult to identify the dislocations from TEM images (Fig. 5 (b)).

4.2. Blocking temperature and magnetic anisotropy

Next, using 1.25-nm-thick Ru spacer samples, for which finite H_{ex} and T_B were obtained, we clarified the buffer layer effect on the T_B using Pt- and α-Fe$_2$O$_3$-buffered sample with 20-nm-thick Cr$_2$O$_3$. Figure 6 shows the temperature dependence of the J_K for Pt- and α-Fe$_2$O$_3$-buffered 20-nm-thick Cr$_2$O$_3$ (c-Al$_2$O$_3$/Pt 25 or α-Fe$_2$O$_3$ 20/Cr$_2$O$_3$ 20/Ru 1.25/Co 1/Pt 5 (nm)). As shown in figure 2, $T_B \approx 150$ K for the Pt-buffered sample. A much higher $T_B \approx 260$ K was obtained for the α-Fe$_2$O$_3$-buffered samples. Since the T_N of the α-Fe$_2$O$_3$-buffered 20-nm-thick Cr$_2$O$_3$ film was lowered to 269 K due to the lattice strain20, we managed to obtain $T_B \approx T_N$ for a 20-nm-thick Cr$_2$O$_3$ film. Because the J_K values of these samples are almost equal, or slightly larger for the α-Fe$_2$O$_3$-buffered samples, the $K_{AF/AF}$ of the α-Fe$_2$O$_3$-buffered samples must be much higher than that of the Pt-buffered samples. In other words, the K_{AF} of the Cr$_2$O$_3$ films increased by using the α-Fe$_2$O$_3$ buffer layer. If we assume the Mauri’s domain wall model27, the higher K_{AF} links to the higher $H_{ex}(J_K)$. The slightly larger J_K of α-Fe$_2$O$_3$-buffered samples can comes from the higher K_{AF}, while more works are required for the confirmations. Based on the Mauri’s model, the T_N change also affect to the magnitude of the H_{ex}. However the affection of H_{ex} by the less than 10% difference in T_N between α-Fe$_2$O$_3$-buffered sample ($T_N \sim 269$ K) and Pt-buffered sample ($T_N \sim 294$ K) should be negligible small. In addition, we investigated the relations between the J_K and T_B for the Pt- and α-Fe$_2$O$_3$-buffered samples with different Ru spacer thicknesses. Figure 7 shows the T_B values of the Pt- and α-Fe$_2$O$_3$-buffered samples plotted against the J_K at 50 K. Irrespective of the Ru spacer thickness, higher T_B values were obtained for the α-Fe$_2$O$_3$-buffered samples, while the T_B decreased with increasing J_K for both samples. These results clearly demonstrate that the K_{AF} of the Cr$_2$O$_3$ layer is higher when using an α-Fe$_2$O$_3$ buffer layer than a Pt buffer layer.

Moreover, we investigated the Cr$_2$O$_3$ layer thickness dependence of the J_K and T_B for the α-Fe$_2$O$_3$-buffered
sample. Figure 8 shows the temperature dependence of the J_K for Al₂O₃/α-Fe₂O₃ 20/Cr₂O₃ t_{Cr2O3}/Ru 1.25/Co 1/Pt 5 (nm) with various Cr₂O₃ thicknesses ($3 \text{ nm} \leq t_{Cr2O3} \leq 20 \text{ nm}$). We observed an exchange bias for a 5-nm-thick Cr₂O₃ sample ($T_B \approx 10 \text{ K}$), although thinner Cr₂O₃ samples exhibited no apparent exchange bias. As expected from the MB model, the T_B decreases with decreasing Cr₂O₃ thickness, while the magnitude of the J_K is almost unchanged in the 5 nm $\leq t_{Cr2O3} \leq 20$ nm range. These results indicate that the MB model is qualitatively applicable for this system even for thin Cr₂O₃ regions ($t_{Cr2O3} \leq 20$ nm).

Because α-Fe₂O₃ is an antiferromagnet, in addition to the lattice strain effect, an enhancement of K_{AF} due to the interlayer coupling between the antiferromagnetic α-Fe₂O₃ and Cr₂O₃ can be considered, as reported in the NiO/CoO system. However, the observed dependence of the T_B on the Cr₂O₃ thickness does not support this assumption. If the interlayer coupling effect is dominant, the T_B will not decrease with decreasing Cr₂O₃ thickness because the α-Fe₂O₃ thickness is constant. However, our data suggests that the T_B decreases with decreasing Cr₂O₃ thickness. Thus, the interlayer coupling effect is negligibly small in this case, probably owing to the small K_{AF} of α-Fe₂O₃ ($\sim 2 \times 10^4 \text{ J/m}^2$ at low temperature). Using the MB model, we estimated the change in the K_{AF} for 20-nm-thick Cr₂O₃ films due to the strain induced by the buffer layer. According to the MB model, at the critical point where the exchange bias abruptly disappears, the relationship $K_{AF} = J_{ex}/t_{AF}$ holds true. If we assume that the J_{ex} is almost the same as the J_K, we can estimate the K_{AF} as $K_{AF} = J_K/t_{AF}$. In fact, the K_{AF} values of FeMn/NiFe and IrMn/NiFe at room temperature have been estimated from $K_{AF} = J_K/t_{AF}$ by determining the critical antiferromagnet thickness t_{AF}. In this study, we estimated $K_{AF} = J_K/t_{AF}$. We determined the critical unidirectional magnetic anisotropy energy J_K^c at 100 K by changing the Ru spacer layer thickness for Al₂O₃/Pt 25 or α-Fe₂O₃ 20/Cr₂O₃ 20/Ru $t_{Ru}/Co 1/Pt 5$ (nm) structure sample. The critical Ru spacer layer thickness was 0.75 nm (1.25 nm) for the α-Fe₂O₃- (Pt-) buffered sample, and $J_K^c = 0.37 \text{ mJ/m}^2$ (0.09 mJ/m²) was obtained, as shown in Fig. 9. The estimated K_{AF} values at 100 K were $1.9 \times 10^4 \text{ J/m}^3$ for the α-Fe₂O₃-buffered sample and $4.5 \times 10^3 \text{ J/m}^3$ for the Pt-buffered sample. Note that the T_B of these samples are not exactly 100 K, but between 100 K and 150 K. Due to the rough determination of T_B, the J_K^c and the estimated K_{AF} values are slightly underestimated. Because the calculation of the K_{AF} using the MB model includes many assumptions, we could not obtain an exact absolute value of the K_{AF} from these calculations. However, it can be used to compare the two samples with similar structures. In this study, only the buffer layers were different. The other film properties such as the Cr₂O₃ layer thickness, spacer
layer, and Co layer thickness were maintained. Because the precise characterization of the K_{AF} of antiferromagnetic thin films is considerably difficult, we believe that this is a good method to approximately estimate the K_{AF}. Based on these concepts, it was found that the K_{AF} of the α-Fe$_2$O$_3$-buffered sample is nearly four times that of the Pt-buffered sample.

Here, we compare the experimental results and theoretical predictions assuming that the variation of the K_{AF} mainly originates from the lattice strain. The experimental a values of Cr$_2$O$_3$ and T_B values are summarized in table 2. In our results, the T_B increases with increasing a, indicating increasing K_{AF} of Cr$_2$O$_3$. Because Artman et al. predicted that the K_{MD} should decrease with increasing a, our experimental results cannot be explained based only on the lattice-strain-induced K_{MD} changes. We believe that other effects, such as the lattice strain effect on the K_{FS} or the effect of w on the K_{AF}, will mainly contribute to the change in the K_{AF}. In fact, for Al-doped Cr$_2$O$_3$, the change in the K_{AF} is dominated by the change in the K_{FS}.19 These results indicate the importance of the estimating the K_{FS}. The underlying mechanism has not been completely clarified, but we have experimentally demonstrated an increase in the T_B of Cr$_2$O$_3$ with increasing a, indicating increased K_{AF} of Cr$_2$O$_3$.

4.3. Lattice strain effect on blocking temperature and Néel temperature

Finally, we discuss the lattice strain effect on the T_B and T_N. The T_N data for these samples are included in table 2. As previously reported by us,26 the T_N of an α-Fe$_2$O$_3$-buffered sample is about 25 K less than that of a Pt-buffered sample, and the T_N decreases with increasing a. There is a trade-off between the lattice strain effects on the T_B and T_N: the T_B increases with increasing a, while the T_N decreases. This dependence appears to be unfavorable. However, the lattice strain effect is stronger for the T_B than the T_N. Compared to the Pt-buffered sample, a 100 K higher T_B was obtained for the α-Fe$_2$O$_3$-buffered sample, while the T_N reduction was about 25 K. Thus, it is possible to increase the T_B with only a small reduction in the T_N.

5. Conclusions

In this study, we discovered a high $T_B \approx 260$ K for a 20-nm-thick Cr$_2$O$_3$ thin film using a Ru spacer layer and an α-Fe$_2$O$_3$ buffer layer. The Ru spacer enabled reproducible control of the magnitude of the H_{ex} (J_K), and by reducing the H_{ex} (J_K) we enhanced the T_B. By changing the buffer layer material from Pt to α-Fe$_2$O$_3$, a higher T_B was attained. The enhancement of the T_B may be due to the lattice strain induced K_{AF} change, which we
estimate four times higher K_{AF} for α-Fe$_2$O$_3$-buffered Cr$_2$O$_3$ film compared for Pt-buffered Cr$_2$O$_3$ film. We also clarified the trade-off between the T_N and T_B with respect to the lattice strain of Cr$_2$O$_3$, and demonstrated that the T_B is more sensitive to lattice strain than the T_N. Such a control of the T_B is the first step towards utilizing the ME effect in Cr$_2$O$_3$ thin films. Combined with further improvement of material properties, these techniques for controlling the T_B open up doors for the device application.

Acknowledgements

This research was partly supported by the Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST), the Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT) of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), the Murata Science foundation, and a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows.
References

1) X. Chen, A. Hochstrat, P. Borisov, and W. Kleemann, Appl. Phys. Lett. 89, 202508 (2006).
2) I. E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1960).
3) D. N. Astrov, Sov. Phys. JETP 13, 729 (1961).
4) P. Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek, Phys. Rev. Lett. 94, 117203 (2005).
5) X. He, Y. Wang, N. Wu, A. N. Caruso, E. Vescovo, K. D. Belashchenko, P. A. Dowben, and C. Binek, Nat. Mater. 9, 579 (2010).
6) T. Martin and J. C. Anderson, IEEE Trans. Magn. 2, 446 (1966).
7) T. Ashida, M. Oida, N. Shimomura, T. Nozaki, T. Shibata, and M. Sahashi, Appl. Phys. Lett. 104, 152409 (2014).
8) K. Toyoki, Y. Shiratsuchi, T. Nakamura, C. Mitsumata, S. Harimoto, Y. Takechi, Y. Nishimura, H. Nomura, and R. Nakatani, Appl. Phys. Express 7, 114201 (2014).
9) K. Toyoki, Y. Shiratsuchi, A. Kobane, S. Harimoto, S. Onoue, H. Nomura, and R. Nakatani, J. Appl. Phys. 117, 17D902 (2015).
10) T. Ashida, M. Oida, N. Shimomura, T. Nozaki, T. Shibata, and M. Sahashi, Appl. Phys. Lett. 106, 132407 (2015).
11) K. Toyoki, Y. Shiratsuchi, A. Kobane, C. Mitsumata, Y. Kotani, T. Nakamura, and R. Nakatani, Appl. Phys. Lett. 106, 162404 (2015).
12) Y. Shiratsuchi, H. Noutomi, H. Oikawa, T. Fujita, and R. Nakatani, J. Appl. Phys. 109, 07C101 (2011).
13) S. Mu, A. L. Wysocki, and K. D. Belashchenko, Phys. Rev. B 87, 054435 (2013).
14) M. Street, W. Echtenkamp, T. Komesu, S. Cao, P. A. Dowben, and C. Binek, Appl. Phys. Lett. 104, 222402 (2014).
15) Y. Kota, H. Imamura, and M. Sasaki, Appl. Phys. Express 6, 113007 (2013).
16) Y. Kota, H. Imamura, and M. Sasaki, IEEE Trans. Magn. 50, 2505404 (2014).
17) W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
18) Y. Shiratsuchi, T. Fujita, H. Noutomi, H. Oikawa, and R. Nakatani, IEEE Trans. Magn. 47, 3909 (2011).
19) M. Tsunoda, Y. Tsuchiya, T. Hashimoto, and M. Takahashi, J. Appl. Phys. 87, 4375 (2000).
20) J. O. Artman, J. C. Murphy, and S. Foner, Phys. Rev. 138, A912 (1965).
21) Y. Shiratsuchi, Y. Takechi, K. Toyoki, Y. Nakano, S. Onoue, C. Mitsumara, and R. Nakatani, Appl. Phys. Express 6, 123004 (2013).
22) T. Nozaki, M. Oida, T. Ashida, N. Shimomura, T. Shibata, and M. Sahashi, Appl. Phys. Lett. 105, 212406 (2014).
23) J. O. Artman, J. C. Murphy, and S. Foner, J. Appl. Phys. 36, 986 (1965).
24) K. Saitoh, H. Nakahara, and N. Tanaka, Microscopy 62, 533 (2013).
25) Y. Shiratsuchi, Y. Takechi, K. Toyoki, Y. Nakano, S. Onoue, C. Mitsumara, and R. Nakatani, Appl. Phys. Express 6,
123004 (2013).

26) S. P. Pati, N. Shimomura, T. Nozaki, T. Shibata, and M. Sahashi, J. Appl. Phys. 117, 17D137 (2015).

27) D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987).

28) M. J. Carey and A. E. Berkowitz, J. Appl. Phys. 15, 6892 (1993).

29) D. Mauri, E. Kay, D. Scholl, and J. K. Howard, J. Appl. Phys. 62, 2929 (1987).
Figures and Tables.

Figure 1. (a) Relationship between J_K and spacer layer thickness for Ru and Pt spacer samples at 50 K. The dashed lines are just guide for eyes. (b) M–H curves for Ru and Pt spacer samples at 50 K.

Figure 2. Temperature dependence of $|H_{ex}|$ (left panel) and H_c (right panel) for c-Al_2O_3 substrate/Pt 25/\text{Cr}_2\text{O}_3$ 20/Ru t_{Ru}/Co 1/Pt 5 (nm).

Figure 3. Schematic diagrams of the (0001) plane of Cr_2O_3, (0001) plane of α-Fe_2O_3, and (111) plane of Pt. The black solid line and blue broken line in Pt (111) plane indicate triangular lattice along [$\bar{1}1\bar{0}$] and [$\bar{1}1\bar{2}$] direction, respectively.
Figure 4. XRD patterns of (a) 2θω (out of plane) and (b) 2θ/ϕ (in-plane) scans of α-Fe₂O₃- (red line) and Pt-buffered (black line) samples. The 2θ/ϕ scan was carried out for the Al₂O₃ (1010) plane.

Figure 5. Cross-sectional TEM images of (a) α-Fe₂O₃- and (b) Pt-buffered samples.
Figure 6. Temperature dependence of J_K for Pt- (blue solid circles) and α-Fe$_2$O$_3$-buffered (red open squares) 20-nm-thick Cr$_2$O$_3$ samples (c-Al$_2$O$_3$ substrate/Pt 25 or α-Fe$_2$O$_3$ 20/Cr$_2$O$_3$ 20/Ru 1.25/Co 1/Pt 5 (nm)).

Figure 7. Relationship between T_B and J_K for Pt- and α-Fe$_2$O$_3$-buffered 20-nm-thick Cr$_2$O$_3$ samples (c-Al$_2$O$_3$ substrate/Pt 25 or α-Fe$_2$O$_3$ 20/Cr$_2$O$_3$ 20/Ru t_{Ru}/Co 1/Pt 5 (nm)) at 50 K.

Figure 8. Temperature dependence of J_K for Al$_2$O$_3$/α-Fe$_2$O$_3$ 20/Cr$_2$O$_3$ t_{Cr2O3}/Ru 1.25/Co 1/Pt 5 (nm) with various Cr$_2$O$_3$ thicknesses (3 ≤ t_{Cr2O3} ≤ 20).
Figure 9. Temperature dependence of H_K and H_c for $\text{Al}_2\text{O}_3/\alpha$-$\text{Fe}_2\text{O}_3$ 20/Cr_2O_3 20/Ru 0.75/Co 1/Pt 5 (Fe_2O_3 buffer) and Al_2O_3/Pt 25/Cr_2O_3 20/Ru 1.25/Co 1/Pt 5 (Pt buffer).

Table 1. Lattice mismatch between Cr_2O_3 bulk and buffer layer materials, and experimental a value of Cr_2O_3 layer.

Buffer	a of buffer (difference from a of bulk Cr_2O_3)	Orientation	a of Cr_2O_3 layer from XRD (difference from a of bulk Cr_2O_3)
(Cr$_2$O$_3$)	4.95 Å (-)	Pt [110]/Cr$_2$O$_3$ [1120]	4.98 Å (+0.44%)
Pt	4.80 Å (-3.1%)	α-Fe$_2$O$_3$ [10\overline{1}0]/Cr$_2$O$_3$ [10\overline{1}0]	5.04 Å (+1.69%)
α-Fe$_2$O$_3$	5.04 Å (+1.8%)		

Table 2. Lattice parameter a of the Cr_2O_3 layer, and T_B and T_N [26] of Pt- and α-Fe$_2$O$_3$-buffered 20-nm-thick Cr_2O_3 samples (c-Al_2O_3 substrate/Pt 25 or α-Fe$_2$O$_3$ 20/Cr_2O_3 20/Ru 1.25/Co 1/Pt 5 (nm)).

Buffer	a of Cr_2O_3 layer from XRD (difference from a of bulk Cr_2O_3)	T_B	T_N [26]
Pt	4.98 Å (+0.44%)	150 K	294 K
α-Fe$_2$O$_3$	5.04 Å (+1.69%)	260 K	269 K