New records of cheilostome Bryozoa from the eastern coast of India encrusting on the exoskeleton of live horseshoe crabs of Indian Sundarbans

Swati Das¹, Maria Susan Sanjay¹, Basudev Tripathy¹, C. Venkatraman¹,² & K.A. Subramanian¹

¹Zoological Survey of India, M- Block, New Alipore, Kolkata, West Bengal 700053, India.
²Department of Zoology, University of Madras, Chennai, Tamil Nadu 600025, India.

Abstract: Bryozoans are common commensal on hard surfaces and cover slow-moving animals like molluscs, sea turtles, brachyuran crabs, and horseshoe crabs. A total of six species of bryozoans belonging to four genus under three families of order Cheilostomatida were recorded encrusting on the carapaces of horseshoe crabs collected from Indian Sundarbans along the east coast of India and two among them, viz., Biflustra savartii (Audouin, 1826) and Sinoflustra arabianensis (Menon & Nair, 1975) are reported for the first time. Additionally, Jellyella tuberculata (Bosc, 1802) is reported for the first time from West Bengal coastal waters, previously known only from the Odisha coast of India. Both male and female horseshoe crabs were found to have been encrusted with bryozoan mats, although adequately not known about the life stages of their encrustation.

Keywords: Bryozoa, Carcinoscorpius rotundicauda, East coast, Epibionts, Indian Sundarbans, Tachypleus gigas, Xiphosura.
INTRODUCTION

Bryozoa is considered a minor phylum placed in between phylum Mollusca and Echinodermata and are ancient, microscopic, sessile, and colonial coelomates inhabiting both marine & freshwater ecosystem (Soja 2006). They can erect or encrust on all types of hard, permanent or ephemeral substrates (Cant & Bassler 1920; Harmer 1926; Osburn 1940; Cook 1968; Ziko & Hamza 1987; Xi-Xing 1992; Key et al. 1996). Although mostly found in the littoral zone, bryozoans have been reported up to 6,000 m depth in the marine realm. Studies on the Indian bryozoan fauna are scarce except for some notable documentation by Annandale (1912) and Thorney (1907, 1916), and after that by Menon (1967), Menon & Nair (1967), Nair (1973), Pillai (1978, 1981), Raveendran et al. (1990), Swami & Karande (1987, 1994), Geetha (1994), Swami & Udayakumar (2010), Soja (2006), Mankeshwar et al. (2015), Tripathy et al. (2016), and Venkatraman et al. (2018). However, very few scientific publications are available on the bryozoan fauna of the east coast of India (Robertson 1921; Srivinivasu et al. 2015).

The horseshoe crabs are marine chelicerates that migrate to nearshore waters during lunar cycles for spawning. Represented by only four extant species within Xiphosura, two species of horseshoe crabs, Tachypleus gigas (Müller, 1785) and Carcinoscorpius rotundicauda (Latreille, 1802) are known to occur along the upper east coast of India, co-occurring mainly along the West Bengal and Odisha Coast (Annandale 1909; Roonwal 1944; Debnath 1992; Tripathy et al. 2018). C. rotundicauda is the most abundant of the two species in Indian Sundarbans (Saha 1989; Debnath 1992; Tripathy et al. 2018). Xiphosurans serve as host species for a variety of organisms, viz., bryozoans, barnacles, oysters, tunicates, coelenterates, flatworms, annelids, isopods, diatoms, amphipods, gastropods, polychaetes, and green algae (Humm & Wharton 1942; Roonwal 1944; Rao & Rao 1972; Davis & Fried 1977; Mackenzie 1979; Shuster 1982; Jeffries et al. 1989; Saha 1989; Debnath 1992; Key et al. 1996). However, T. gigas and C. rotundicauda are found mainly infected by bryozoans, barnacles, mussels, oysters, limpets, and polychaetes (Botton 2009). There are scanty records on the epizoic bryozoans reported from exoskeleton of horseshoe crabs. Notable works have been carried out by Pearse (1947), Butler & Cuffey (1991), Allee (1922), Watts (1957), and Key et al. (1996). In India, in 1996. In India, Rao & Rao (1972), Debnath (1992) and Patil & Anil (2000) reported an unidentified species of Membranipora as epizoic bryozoan on both T. gigas and C. rotundicauda. As such, studies on biological studies on horseshoe crabs are limited and commensalism, symbiosis and parasitism on horseshoe crabs, are scantily known from India. The present work attempted documentation of bryozoan species encrusting on the carapaces of horseshoe crabs for the first time from India.

MATERIALS AND METHODS

Study area

Field surveys have been conducted in the Sagar Island and Patiboni areas of the Indian Sundarbans. The Sagar Island (21.791°N, 88.131°E) is situated at the western part of Indian Sundarbans and is the largest island of the Sundarban deltaic complex (Figure 1). Hoogly river borders north and west with Muriganga River in the east and Bay of Bengal in the south. It is a tidal dominated island and characterized by tidal creeks, mud flats/salt marshes, mangroves and sandy beaches/dunes. The Patiboni in Frezerganj (21.578°N, 88.246°E) is well known for its fishing activities, located eastward to the Sagar Island and having a more sandy substrate at the intertidal zones (Figure 1). The estuarine area of the Sagar Island (Tripathy et al. 2018) and Patiboni area of Frezerganj are considered as potential habitats for both species of horseshoe crabs.

METHODS

The present study was conducted from March to December 2019 as part of the first authors doctoral research. Sampling was done during the end of high tide and the beginning of low tide, keeping a gap of two hours during the full moon/new moon period to avail the maximum exposed intertidal zone. C. rotundicauda and T. gigas were observed carefully on the mudflats and wherever encountered on horseshoe crabs, the bryozoan colonies were scraped off from the exoskeleton (Cephalothorax, telson, appendages, gills, and eyes) using a scalpel blade (Tan et al. 2011). The bryozoan specimens were preserved using 70% ethanol in a glass/plastic container and labelled properly in the field itself. The specimens were brought to the base camp and washed thoroughly with freshwater for automatic removal of any debris. In the base camp laboratory, collected bryozoan specimens were soaked with sodium hypochlorite (0.5%) for eight hours to remove the organic tissue and later soaked in distilled water for four hours (Srivinivasu et al. 2015) and then dried for identification and thereafter photographed with Nikon.
D7000 with 105 mm VR lens, post-processing with Adobe Photoshop CS6. The specimen was brought to ZSI HQ, Kolkata, for comparing with other museum specimens of the same families and genus, present in the Zoological Survey of India, which is part of the National Zoological Collections. In the field, fouled horseshoe crabs were counted, sexed and measured. After data collection and sampling of bryozoan specimens, horseshoe crabs were released back to the sea. The bryozoan colonies were observed under a stereomicroscope (Leica EZ4), for which the identified colonies were given a gold-palladium coating under vacuum condition and scanning electron micrographs were prepared with a Zeiss Evo 18 special edition SEM, using the “Smart SEM version 5.09” image processing software.

RESULTS

A total of 58 *Carcinoscorpius rotundicauda* (Image 2) and six *Tachypleus gigas* were observed for bryozoan encrustation examination during the study period. Out of 58, 11 *C. rotundicauda* (six male and five female) and five *T. gigas* (four male and one female) were found encrusted with bryozoan mat. A total of six bryozoan species belonging to five genera under three families of order Cheilostomatida were documented encrusting on the exoskeleton of horseshoe crabs from the Indian Sundarbans. The study further confirmed the presence of two bryozoan species, viz., *Biflustra savartii* (Audouin, 1826) and *Sinoflustra arabianensis* (Menon & Nair, 1975), on the carapaces of horseshoe crabs, reported to be recorded for the first time from the Bay of Bengal, previously known from the Arabian sea (Menon & Menon 2006). *Jellyella tuberculata* (Bosc, 1802), previously known only from the Odisha coast of India (Menon & Menon 2006), was reported for the first time from the West Bengal coast during this study.

Systematic Account

Kingdom: Animalia
Phylum: Bryozoa
Class: Gymnolaemata
Order: Cheilostomatida
Suborder: Membraniporina
Superfamily: Membraniporoidea
Family: Membraniporidae
Genus *Biflustra* d’Orbigny, 1852

1. *Biflustra savartii* (Audouin, 1826)

 Image 1A

 Location: Bankimnagar, Sagar Island, Sundarbans
 Substratum: Encrusted on prosoma of *Carcinoscorpius rotundicauda* (A female without telson).
 Description: Colony encrusting, forming a unilaminar sheet on the substratum arranged in longitudinal rows. Zooids sub-rectangular or sub-hexagonal, curved and raised distally and angular at the two proximal corners, separated by a raised ridge with a distinct mural rim.
Opesia occupying most of the frontal area, deep and oval, slightly smaller than the frontal membrane, nearly occupying two-thirds of the frontal area.

Distribution: It is a very common species worldwide in the tropical and sub-tropical seas reported from Indonesia and all along the Pacific coast. Earlier, it was reported from Cape Comorin (Menon 1967) and the Mangalore coast (Thornely 1907) in India.

2. *Biflustra hugliensis* (Robertson, 1921)

Location: Patiboni (Frezerganj), Bankimnagar (Sagar Island)

Substratum: Encrusted on prosoma of male *Tachypleus gigas* and female *Carcinoscorpius rotundicauda*.

Description: Colony encrusting, zooecia elongated, aperture occupying three-fourths of the front, separated by a delicate calcareous mural rim. Distal portion of the zooid overarched the pre-seeding zooid. Operculum semi-circular, straight at its proximal border, much wider than long. Cryptocyst marginally developed, granular on its surface, serrated coarsely on its inner margin. Ovicells and avicularia are wanting.

Remarks: Earlier, a colony of encrusting *Biflustra hugliensis* was identified from the posterior of the carapace of *Lepidochelys olivacea* (Olive Ridley Sea Turtle) from the Gulf of Kachchh, Gujarat (Frazier et al. 1992).

Distribution: Although a species of tropical and subtropical seas, this species was first identified from the mouth of the Hugli River, Bay of Bengal (Robertson 1921) and subsequently reported from the Gulf of Kachchh, Gujarat (Frazier et al. 1992).

3. *Jellyella tuberculata* (Bosc, 1802)

Location: Bankimnagar (Sagar Island) and Patiboni (Frezerganj)

Substratum: Encrusted on ventral side of prosoma of a male *Tachypleus gigas* as well as encrusted on the shell of a mollusc found on the right prosoma of a female *Carcinoscorpius rotundicauda*.

Diagnosis: Colony encrusting, multi-serial. Zooids rectangular to sub-rectangular, quincuncially arranged, opesia elongate-oval, bordered by a very narrow cryptocystal rim laterally and a cryptocystal shelf proximally; cryptocyst sparsely tubercular. Gymnocyst proximally, starting at the corners of the zooid, then as a thin continuous proximal rim, the gymnocyst arches forward, forming small pockets beneath, especially at the corners; in fully calcified zooids the gymnocyst tubercles can be stoutly developed, completely concealing the proximal cryptocyst.

Distribution: A widely distributed species of the major oceans, this species is reported from North Carolina to Brazil along the Atlantic coast, California to up to Peru along the Pacific coast. Among the Indian Ocean countries, it is reported from Japan and Bangladesh and in India, it has been earlier reported from the coast of Odisha (Menon & Menon 2006).

Family: Electridae

Genus: *Conopeum* Gray, 1848

4. *Conopeum reticulum* (Linnaeus, 1767)

Location: Patiboni (Frezerganj)

Substratum: Encrusted on ventral side of prosoma of a male *Tachypleus gigas*.

Description: Encrusting, colonies appear as whitish patches with uneven growing margin. Zooecia quincuncially arranged, chitinous outline distinct. Shape of zooecia variable, but generally longer than wide, very much elongated in certain cases. Cryptocyst tuberculated, developed all-round the opesia with tubercles projecting into the opesia. The tubercles are more or less of the same length, small tubercles are present in the proximal region of the cryptocyst. In certain Zooids the proximal region of the opesia is broader than the distal region.

Remarks: This species is known to be found on fouling organisms which have been previously identified from the carapace and appendages of the *Neptunus pelagicus* (Swimming Crab) caught in a trawl net in Cochin (Menon 1967).

Distribution: *Conopeum reticulum* is a warm water Indo-Pacific species. This is recorded from Tortugas Island, Florida (Osburn 1950); Indonesia (Harmer 1926); Java, Sumatra, and Myanmar (Marcus 1937). In India, it has been reported from the Arabian Sea along with the Lakshadweep Islands and the Cochin coast (Menon 1967) as well as the Bay of Bengal from Chilka Lake (Annandale 1915).

Family: *Sinoflustridae*

Genus: *Sinoflustra* Liu & Yang, 1995

5. *Sinoflustra amoyensis* (Robertson, 1921)

Location: Patiboni (Frezerganj) and Bankimnagar

A widely distributed species of the tropical and subtropical seas reported from Indonesia and all along the Pacific coast. Earlier, it was reported from Cape Comorin (Menon 1967) as well as the Bay of Bengal from Chilka Lake (Annandale 1915).
Image 1. A—Biflustra savartii (Audouin 1826) | B—Biflustra hugliensis (Robertson, 1921) | C—Jellyella tuberculata (Bosc, 1802) | D—Conopeum reticulum (Linnaeus, 1767) | E—Sinoflustra amoyensis (Robertson, 1921) | F—Sinoflustra arabianensis (Menon & Nair, 1975).
Bryozoan encrustation on horseshoe crab

Substratum: Encrusted on prosoma of a male Carcinoscorpius rotundicauda and and also found encrusted on hardened sediments found on the right side of the prosoma of a female Carcinoscorpius rotundicauda.

Description: Colony encrusting, white. The zooecia are moderate in size and very delicate and chalk like, zooids elongated rectangular, arranged in quincuncial series, and separated by a distinct fine groove. The mural rim is thin, raised and smooth on its edge. No gymnocyist. Frontal membrane large, occupying the whole of the frontal area. Cryptocyst marginal, narrowest distal to the opesia, developed laterally and proximally, smooth and granular in younger colonies, and granular on its surface in older colonies, with strong cryptocystal spinules. It contains six strong cryptocystal spinules on each side equidistant from each other, on its inner border proximal to the orifice. Opesia elongate and reduced by the cryptocystic spinules. A strong conical spine is present on each distal corner of every zooid.

Distribution: This species has been reported to have its presence since the Pliocene era and distribution range in the Indo-Pacific region. It has been originally collected from Amoy of China; in India, this species has the report of its presence in the Holocene rocks of the west coast of Maharashtra, Ernakulam channel from Cochin, and also from the coast of West Bengal (Menon & Menon 2006).

6. Sinoflustra arabianensis (Menon & Nair, 1975)

Location: Patboni (Frezerganj)

Substratum: Encrusted on the dorsal side of prosoma of a male Tachypleus gigas.

Description: Colony encrusting. Grows flat, disk-like structures in the absence of any hindrance. Zooecia elongated, quadrangular the distal portion of the preceding zooecium slightly over arch the proximal portion of the succeeding zooid. Opecia occupying three-fourths of the front, being narrowed distally. Gymnocyst present, slightly extensive proximally. Cryptocyst with spinules, the size of the spinules decrease at the distal portion of the cryptocyst. Ancestrula possesses a pair of branched spines.

Distribution: It has been reported only from Cochin along the coast of the Arabian Sea (Menon 1967). This is the first report from the Bay of Bengal and also from the Indian Sundarbans region.

Discussion and Conclusion

Bryozoans are important macro fouling community in the coastal waters of India. So far, very little is known on the bryozoan species diversity and their association with horseshoe crabs and other organisms with hard surfaces and substratum. In India, the upper eastern coast is a preferred breeding and spawning ground for two species of horseshoe crabs: Tachypleus gigas and Carcinoscorpius rotundicauda. Both the species are in the data deficient category of the IUCN Red List; however, placed in the Schedule IV category of the Indian Wildlife Protection Act, 1972. The Mangrove Horseshoe Crab Carcinoscorpius rotundicauda (Latreille, 1802) is more common on the mudflats of the Indian Sundarbans than the Indian Horseshoe Crab Tachypleus gigas (Müller, 1785) although occurring in a sympatric habitat.

19778
Reporting of two species of Bryozoa for the first time from the east coast of India and one new report from the West Bengal coast clearly indicates that further intense surveys will bring more details on Bryozoa and their relationship with horseshoe crabs. Investigations are also required documenting ecological factors that regulate the epizoic bryozoan distribution on horseshoe crabs.

REFERENCES

Allee, W.C. (1922). Studies in marine ecology II. An annotated catalog of the distribution of common invertebrates of the Woods Hole littoral. Marine Biological Laboratory, Woods Hole, 123 pp.

Annandale, N. (1909). The habits of Indian king crabs. Records of the Indian Museum 3: 204–295.

Annandale, N. (1915). The genus Australella and some allied species of phylactolaematous polyzoa. Records of the Indian Museum 11: 163–169.

Botton, M.L. (2009). The ecological importance of horseshoe crabs in estuarine and coastal communities: a review and speculative summary, pp. 45–63. In: Tanacredi, J.T., M.L. Botton & D. Smith (eds.). Biology and Conservation of Horseshoe Crabs. Springer, USA.

Bowers, R.L. (1968). Observations on the orientation and feeding behavior of barnacles associated with lobsters. Journal of Experimental Marine Biology and Ecology 2: 105–112.

Butler, G.M. & R.J. Cuffey (1991). Bryozoans as estuarine indicators-paleoecologic implications from the modern fauna of Delaware Bay. Abstracts with programs - Geological Society of America 23: 14.

Cadee, G.C. (1991). Carapaces of the shore crab Carcinus maenas as a substrate for encrusting organisms, pp. 71–79. In: Bigey, F.P. (ed.). Bryozoa: Living and Fossil. Societe des Sciences Naturelles de l’Ouest de la France, Memoire hors serie, Nantes, France.

Canu, F. & R.S. Bassler (1920). North American early Tertiary Bryozoa. Bulletin of the United States National Museum 106(879): 1–162.

Connell, J.H. & M.J. Keough (1985). Disturbance and patch dynamics of subtidal marine animals on hard substrata, pp. 125–151. In: Pickett, S.T.A & P.S. White (eds.). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, San Diego.

Cook, P.L. (1968). Polyzoa from west Africa. The Malacostega, Part I. Bulletin of the British Museum (Natural History). Zoology 16: 116–160.

Davis, R.E. & B. Fried (1977). Histological and histochemical observations on Bdelloura candida (Turbellaria) maintained in vitro. Transactions of the American Microscopical Society 96: 258–263.

Debnath, R. (1992). Studies on Indian Horseshoe Crabs (Merostomata: Xiphosura) with special reference to its feeding behaviour. PhD Thesis. Department of Marine Science, University of Calcutta, vi+115 pp.

Frazier, J.G., J.E. Winston & C.A. Ruckdeschel (1992). Epizoan communities on marine turtles. III. Bryozoa. Bulletin of Marine Science 51(1): 1–8.

Geetha, P. (1994). Indian and Antarctic bryozoans taxonomy and observation on toxicology. PhD Thesis. Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Cochi, 234 pp.

Harmer, S.F. (1926). The Polyzoa of the Siboga expedition; II,
Chilelostoma Anasca. Siboga Expedition Reports 28b: 181–501.
Hum, H.J. & G.W. Wharton (1942). Ecology of sand beaches at Beaufort, North Carolina. Ecological Monographs 12: 135–190.
Jackson, J.B.C. (1977). Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. The American Naturalist 111: 743–767.
Jeffries, W.B., H.K. Voris & C.M. Yang (1989). Observations on the incidence of the pedunculate barnacle, Octolasmis warwickii (Gray, 1825) on horseshoe crabs (Xiphosura) in the seas adjacent to Singapore. Raffles Bulletin of Zoology 37(1–2): 58–62.
Key, Jr. M.M., W.B. Jeffries, H.K. Voris & C.M. Yang (2000). Bryozoan fouling pattern on the horseshoe crab Tachypleus gigas (Müller) from Singapore, pp. 265–271. In: Proceedings of the 11th International Bryozoology Association Conference. Balboa: Smithsonian Tropical Research Institute.
Key, Jr. M.M., W.B. Jeffries, H.K. Voris & C.M. Yang (1996). Epizoic bryozoans, horseshoe crab, and other mobile benthic substrates. Bulletin of Marine Science 52(2): 368–384.
Key, Jr. M.M., W.B. Jeffries, H.K. Voris & C.M. Yang (2000). Bryozoan fouling pattern on the horseshoe crab Tachypleus gigas (Müller) from Singapore, pp. 265–271. In: Proceedings of the 11th International Bryozoology Association Conference.
MacKenzie, C.L., Jr. (1979). The ectoproctous bryozoans of the Cheilostomata-Ascophora. Annals and Magazine of Natural History 47: 61–63.
Marcos, E. (1937). Observations on the biology, and ecology of the horseshoe crab Limulus polyphemus, with references to other Limulidae, pp. 1–52. In: Bonaventura, J., C. Bonaventura & S. Tesh (eds.). Physiology and biology of the horseshoe crab: Studies on normal and environmentally stressed animals. Alan R. Liss, New York.
Soja, L. (2006). Taxonomy, biometrics and biofouling of bryozoans from the coast of India and the Antarctic waters. PhD Thesis. Cochin University of Science and Technology, viii, 136 pp.
Stolicka, F. (1868). On the anatomy of Sagartia schilleriana and Membranipora bengalensis, a new coral and a Bryozoa living in brackish water at Port Canning. Journal of The Asiatic Society of Bengal 38: 28–63.
Swami, B.S. & A.A. Karande (1987). Encrusting bryozoans in coastal waters of Bombay. Mahasagar. Bulletin of the National Institute of Oceanography 20(4): 225–236.
Swami, B.S. & A.A. Karande (1994). Encrusting bryozoans in Karwar waters, central west coast of India. Indian Journal of Marine Sciences 23(3): 170–172.
Swami, B.S. & M. Udhayakumar (2010). Seasonal influence on settlement, distribution and diversity of organisms at Mumbai harbour. Indian Journal of Marine Sciences 39(1): 57–67.
Tan, A.N., A. Christianus & M.A. Satar (2011). Epibiotic infestation on horseshoe crab Tachypleus gigas (Müller) at Pantai Balok in Peninsular Malaysia. Our Nature 9(1): 9–15.
Thorhuly, L.R. (1907). Report on the marine Polychaeta in the collection of the Indian Museum. Records of the Indian Museum, Kolkata 1: 179–196.
Tripathy, B., A. Mohapatra & A.K. Mukhopadhyay (2016). An assessment of taxonomic status, conservation and sustainable utilization of the horseshoe crab resources along the east coast of India. Final technical report. Zoological Survey of India, Kolkata, 121 pp.
Tripathy, B., A. Mohapatra & A.K. Mukhopadhyay (2018). Status survey of Horseshoe Crabs along the East Coast of India. Status Survey Report. Zoological Survey India, Kolkata, 13: 109 pp.
Tripathy, S.K., S. Resmi & A. Lahiri (2016). Comparative study of bryozoans from inner shelf of Andaman and Nicobar Islands. Indian Journal of Geosciences 70(1): 79–90.
Nair, N.U. (1973). Observations on the fouling characteristics of four bryozoans in Cochin harbour. Fishery Technology 11(1): 61–65.
Venkatraman, C., P. Padmanabhan, S. Louis & S. Shrinivasan (2018). Marine bryozoans of Gujarat and Maharashtra. Records of the Zoological Survey of India 118(4): 389–404. https://doi.org/10.26515/zsi118/4/2018/122918
Watts, E. (1957). A Survey of the Bryozoa in the Southwest Portion of Delaware Bay, with Special Reference to those Species on the Blue Crab, Callinectes sapidus. Delaware Mar Lab 57(7): 1–19.
Xiao, L. (1992). On the genus Membranipora (Anasca: Chilelostomatida: Bryozoa) from south Chinese seas. Raffles Bulletin of Zoology 40: 103–144.
Ziko, A. & F. Hamza (1987). Bryozoan fauna from a post-Pliocene outcrop north of the Giza Pyramids Plateau, Egypt, pp. 301–308. In: Ross, J.R.P. (ed.). Bryozoa: Present and Past. Western University Bellingham, Washington.
Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSQG, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, EBSCO, Google Scholar, Index Copernicus, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners, the journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Birds
Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajiv Jayapal, SACON, Coimbatore, Tamil Nadu, India
Dr. Raju S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santaram, Rishi Valley Education Centre, Chitturp, Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praween, Bengaluru, India
Dr. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gobbooboo A. Sundar, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Birdwatching Centre, Eliat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskipp, Bishop Auckland Co., Durham, UK
Dr. Tim Inskipp, Bishop Auckland Co., Durham, UK
Dr. G. Kokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arindam Lele, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul-Islam, Prince Saud Al Faisil Wildlife Research Center, Taif, Saudi Arabia

Mammals
Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P. D. Namsar, The George Washington University, Washington, USA
Dr. Priyadasans Dharma Rajan, ATREE, Bengaluru, India
Dr. John E. N. Voron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmam, Centre for Australian Biodiversity, Rosetown, Germany.
Dr. Yu-Feng Hu, National Taiwan Normal University, Taipei, City, Taiwan
Dr. Keith V. Wolff, Antioch, California, USA
Dr. Siddharth Karnik, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Milhdy Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadasans Dharma Rajan, Asoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fish
Dr. Neelsh Bahanukar, IISER, Pune, Maharashtra, India
Dr. Topskyn Contreras MacKeth, Universidad Autónoma del estado de Morelos, México
Dr. Hoek Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert R. Skura, Chiltem Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekananda, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. Ar. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Ashleek K.V., ICMR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. D.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

Amphibians
Dr. Sudhi K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Museum national d'Histoire naturelle, Paris, France

Reptiles
Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritha S. Soorae, Environment Agency, Abu Dhabi, UAE
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gobbooboo A. Sundar, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Birdwatching Centre, Eliat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskipp, Bishop Auckland Co., Durham, UK
Dr. Tim Inskipp, Bishop Auckland Co., Durham, UK
Dr. G. Kokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arindam Lele, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul-Islam, Prince Saud Al Faisil Wildlife Research Center, Taif, Saudi Arabia

Other Disciplines
Dr. Anuradha Belarsi, Columbia MO 65203, USA (Veterinary)
Dr. M. Nithyanandan, Environmental Department, La Ala Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, Lonods, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjhi Sondhi, TITU TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Thuyuyen, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Netin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiang, National Parks Board, Singapore
Dr. Gonal Nomond, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Aashesh Shivas, Nehru Gram Bharat University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Para, Curitiba, Brazil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Glaboum, Missouri State University, Springfield, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Myoure University, Myoure, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Hansonnal V. Kumar, SACON, Anakatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nithsh Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Societa Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. R. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challenger, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Hansonnal V. Kumar, SACON, Anakatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nithsh Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Societa Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. R. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challenger, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Hansonnal V. Kumar, SACON, Anakatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nithsh Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Societa Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. R. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challenger, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India

Print copies of the Journal are available at cost. Write to: The Managing Editor, JOT, c/o Wildlife Information Liaison Development Society, No. 12, Thirumolvamallai Nagar, Saravanamattti - Kalpatari Road, Saravanamatti, Coimbatore, Tamil Nadu 641035, India
ravi@threatenedtaxa.org

Due to paucity of space, the list of reviewers for 2018-2020 is available online.
