Electronically supplementary information

Computational Elucidation of the Reaction Mechanism for Synthesis of Pyrrolidinedione Derivatives via Nef-type Rearrangement – Cyclization Reaction

Eleonora D. Ilieva, Galina P. Petrova, Rositca D. Nikolova, and Georgi N. Vayssilov*

* Faculty of Chemistry and Pharmacy, Sofia University, 1, James Bourchier Blvd, 1164 Sofia, Bulgaria, E-mail: gnv@chem.uni-sofia.bg

Figure S1. Structures of reaction complexes, transition states and intermediates for Michael addition of nitromethane, CH₃NO₂ (a), and deprotonated nitromethane, CH₂NO₂⁻ (b), to coumarin 1 (only σ-skeleton is shown; interatomic distances in Å, angles in degrees).
Figure S2. Structures of reaction complexes, transition states and intermediates for O-atom migration assisted by a water molecule (a) and assisted by a water molecule in acidic solution (b). (only σ-skeleton is shown; interatomic distances in Å, angles in degrees).
Figure S3. Structures of reaction complexes, transition states and intermediates for O-atom migration via formation of a three-membered oxaziridine cycle. (only σ-skeleton is shown; interatomic distances in Å, angles in degrees).
Figure S4. Structures of reaction complexes, transition states and intermediates for O-atom migration via formation of a three-membered oxaziridine cycle, assisted by trimethylamine. (only σ-skeleton is shown; interatomic distances in Å, angles in degrees).

Figure S5. Structures of reaction complexes, transition states and intermediates for the transformation between different tautomeric forms of the nitrosohydroxymethyl group in intermediate 6. (only σ-skeleton is shown; interatomic distances in Å, angles in degrees).
Figure S6. Structures of reaction complexes, transition states and intermediates for formation of pyrrolidine ring from intermediate 6.2. (only σ-skeleton is shown; interatomic distances in Å, angles in degrees).
Figure S7. (a) Energy diagram of the mechanism for O-atom migration assisted by trimethylamine. (b) Schematic representation of the reaction paths.
Tables

Table S1. Reaction and activation energies, E_{rea} and E_{act} (in kJ/mol), for various reaction steps calculated as single point energy at MP2/6-311+G* level accounting the solvent effect by PCM. The corrections for the zero-point vibrational energy, ZPE (in kJ/mol), and entropy corrections, S_{tot} and S_{vib}, are obtained from frequency calculations at B3LYP/6-311+G* level. T is equal to 298.15 K.

Structure	E_{rea} or E_{act} (kJ/mol)	ZPE (kJ/mol)	$T*S_{\text{tot}}$ (kJ/mol)	$T*S_{\text{vib}}$ (kJ/mol)	ZPE-TAS (kJ/mol)	E+ZPE-TAS (kJ/mol)							
Michael addition													
Neutral system													
TS [RC 1/2]	69.6	-5.3	-25.5	-24.5	20.1	89.7							
2.1	-166.7	13.3	-20.0	-19.1	33.2	-133.4							
TS [2.1/2.2]	307.6	-17.1	-3.4	-3.4	-13.7	293.9							
2.2E	97.3	-3.7	-0.5	-0.6	-3.3	94.0							
2.2Z	90.0	-4.0	-0.5	-0.5	-3.5	86.5							
TS [2.1/2.2]w	197.8	-14.6	-13.1	-13.1	-1.5	196.3							
2.2w	88.9	-3.5	1.5	1.2	-5.0	83.9							
Negatively charged system													
TS [RC 1/-2.1-]	21.7	1.8	-14.7	-13.9	16.4	38.2							
2.1-	-46.1	6.3	-14.9	-14.1	21.2	-24.9							
Oxygen migration													
Neutral system													
TS [2.2w/3.1]	241.9	-6.9	-14.5	-14.1	7.6	249.5							
3.1	16.6	11.1	-13.5	-13.0	24.5	41.1							
TS [3.1/6.1w]	73.5	-26.1	-12.7	-12.8	-13.4	60.1							
TS [3.1/5+NH(OH)2]	58.7	-12.6	-6.4	-6.5	-6.2	52.5							
6.1w	-104.2	-11.6	12.3	12.1	-23.9	-128.2							
TS [2.2w/3.2]w	130.8	58.1	-22.3	-22.8	80.5	211.3							
3.2w	-36.6	73.9	7.0	6.3	66.8	30.3							
TS [3.2/6.1w]w	142.4	-9.0	-30.0	-29.8	21.1	163.5							
Protonated system													
TS [2.2+2w/3.1+]	149.2	7.1	-10.2	-9.4	17.3	166.6							
3.1+	1.3	15.2	-19.0	-18.2	34.2	35.4							
TS [3.1+/3.2+]	90.1	-13.7	-5.6	-5.5	-8.2	81.9							
TS [2.2+w/3.2+]	101.5	-1.0	-20.6	-20.4	19.6	121.2							
3.2+	27.0	9.9	-7.6	-7.5	17.5	44.5							
Nef reaction													
TS [2.2/4']	164.0	-6.9	-6.0	-6.0	-0.8	163.2							
TS [2.2/4'']	261.8	-8.4	-1.3	-1.0	-7.1	254.8							
4'	35.5	-0.2	-2.7	-2.5	2.5	38.0							
4''	29.0	0.0	-2.7	-2.5	2.7	31.8							
TS [4'/5+(NOH)2]	149.5	-8.5	-4.8	-5.0	-3.6	145.8							
TS [4''/6.3]	151.8	-8.3	-2.0	-1.7	-6.3	145.5							
	TS [4''/6.1]w	6.3	Base assisted Nef reaction										
------------------	---------------	--------------	--	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------
	99.5	-10.6	-3.8	-3.6	-6.8	92.6							
	-220.8	2.1	3.0	3.1	-0.9	-221.7							
TS [2.2/4]b'	254.3	-6.6	-0.4	0.1	-6.2	248.1							
TS [2.2/4]b''	225.8	-2.0	-8.9	-8.3	6.9	232.7							
4b	21.8	0.3	-1.0	-0.6	1.3	23.2							
TS [4b/4:bH+]	-1.8	-9.1	-5.9	-5.7	-3.1	-4.9							
4::bH+	-34.4	3.7	-21.9	-21.7	25.7	-8.7							
TS [4::bH+/6.1b]	-48.1	-14.2	19.5	19.8	-33.7	-81.8							
TS [4::bH+/6.2-::bH+]	276.8	-17.2	18.0	17.7	-35.2	241.5							
6.1b	-60.4	-5.0	25.5	25.7	-30.5	-90.9							
Tautomerisation of 6													
TS [6.1/6.2]	335.9	-19.6	-11.2	-11.3	-8.5	327.4							
6.2'	-88.4	3.8	0.9	0.8	2.9	-85.5							
6.2''	-69.2	4.3	-0.9	-0.8	5.3	-63.9							
TS [6.2/6.3]	174.5	-17.3	-6.3	-6.3	-11.0	163.4							
6.3	-39.6	-0.8	3.2	3.0	-4.1	-43.6							
TS [6.1/6.2]w	178.4	-27.1	-28.2	-27.7	1.1	179.5							
6.2w	-79.9	4.8	-5.5	-5.4	10.3	-69.7							
TS [6.2/6.3]w	87.4	-31.7	-22.9	-22.6	-8.9	78.6							
6.3w	-37.8	-1.4	2.3	2.6	-3.8	-41.6							
Cyclization													
TS [6.2/7]+w	11.9	-1.5	-16.4	-16.0	15.0	26.9							
7+w	-2.1	3.7	-9.1	-8.6	12.8	10.7							
TS [7/8]+w	199.4	-15.5	-24.1	-23.8	8.5	208.0							
TS [7/8]+2w	84.8	-7.9	-9.8	-9.6	1.9	86.8							
8+w	-36.2	-2.0	-8.4	-8.4	6.4	-29.8							
8+2w	-18.6	-4.6	10.3	10.0	-14.9	-33.5							
TS [8+2w/8:H3O+]	-12.6	-11.4	-5.9	-5.8	-5.5	-18.1							
8	-62.9	-96.8	-22.6	-21.3	-74.2	-137.2							

a Activation energy, \(E_{\text{act}} \), and reaction energy, \(E_{\text{rea}} \), of the corresponding reaction step.

b In entropy \(S_{\text{tot}} \) all degrees of freedom are included, while in \(S_{\text{vib}} \) only vibrational degrees of freedom are taken into account.
Table S2. Reaction and activation energies, E_{rea} and E_{act} (in kJ/mol), for various reaction steps in the case of the *ethyl ester of 3-coumarin-carboxylic acid* calculated as single point energy at MP2/6-311+G* level accounting the solvent effect by PCM.

Structure	Erel a	E_{rea}b	E_{act}b
I. Michael addition			
2.1	-88.7	-	
TS [2.1/2.2]	218.0	306.7	
2.2E	5.8	94.5	
2.2Z	-1.4	87.3	
2.1w	-107.4	-	
TS [2.1/2.2]w	87.4	194.8	
2.2w	-	-	
II. Oxygen migration			
Protonated system			
2.2'w	58.5		
2.2'2w	50.1		
TS [2.2'2w/3.1']	208.4	158.4	
3.1'	62.0	11.9	
TS [3.1'/3.2']	164.1	102.1	
TS [2.2'w/3.2']	144.7	86.2	
3.2'	90.1	31.6	
Nef reaction			
TS [2.2/4']	277.1	271.4	
TS [2.2/4'']	264.9	266.3	
4'	43.8	38.1	
4''	31.2	32.6	
Tautomerisation of 6			
6.1	-80.7		
TS [6.1/6.2]	252.5	333.2	
6.2'	-171.1	-90.3	
6.2''	-146.4	-65.7	
TS [6.2/6.3]	24.9	171.3	
6.3	-190.7	-44.2	
6.1w	-104.2		
TS [6.1/6.2]w	69.9	174.1	
6.2w	-182.5	-78.2	
TS [6.2/6.3]w	-94.9	87.5	
6.3w	-223.5	-41.0	
III. Cyclization			
6.2'w	-108.0		
TS [6.2/7]'w	-116.1	-	
7''w	-116.8	-8.8	
TS [7/8]'w	85.1	201.9	
Species	E_{rel}	E_{act}	E_{rea}
-------------------------	----------	-----------	-----------
TS [7/8]*2w	-49.9		67.0
8*2w	-	-	
8*2w	-123.9	-	-7.1
TS [8*2w/8:H2O*]	-134.4		
8	-199.4	-	-75.5

\(^a\) Relative energy of the species, E_{rel}, with respect to the energy of 1 and nitromethane at the corresponding level.

\(^b\) Activation energy, E_{act}, and reaction energy, E_{rea}, of the corresponding reaction step.
Description of the results obtained for the mechanism of the Nef rearrangement assisted by triethylamine

In recent experimental studies, we showed that the final product of the new rearrangement, pyrrolidinedion derivative, could be synthesized also in basic media in presence of triethylamine. By this reason, we modeled O-migration, in which such a base (with trimethylamine as a model) can influence the process of oxygen migration in the three-membered transition state $\text{TS} [2.2/4]b$ (Fig. S4, S7):

- forming hydrogen bonds between the NOH group and the base in the transition state $\text{TS} [2.2/4]b'$;
- coordination of the nitrogen atom from the amine to the migrating oxygen atom from $\text{CH}_2\text{NO}_2\text{H}$ in the transition state $\text{TS} [2.2/4]b''$.

The former approach is based on the basic properties of trialkylamine, while the latter one is connected with the possible formation of trialkylamino N-oxide. The formation of hydrogen bond stabilizes the starting compound $2.2b$ by 57.1 kJ mol$^{-1}$ with respect to $2.2Z$, while the stabilization of the transition state $\text{TS} [2.2/4]b'$ is weaker and the energy barrier of the reaction step, 254.3 kJ mol$^{-1}$, increases compared to the reaction without amine, 167.5 (164.1) kJ mol$^{-1}$. The transfer of O atom coordinated to N atom from Me_3N through $\text{TS} [2.2/4]b''$ has a slightly lower energy barrier, 225.8 kJ mol$^{-1}$, which is still by ~ 60 kJ mol$^{-1}$ higher than the barrier of the reaction without amine.

The reaction step via the presumed transition state $\text{pseudoTS} [4b/4\cdot\text{bH}^+]$ (which has lower energy than the preceding intermediate) instead of the neutral complex $4b$ spontaneously leads to formation of the ionic couple $4\cdot\text{bH}^+$, in which the NOH group of 4 is deprotonated and the amine is protonated. The formation of the ionic couple leads to the opening of the three-centered ring and complete migration of the oxygen atom to the carbon atom, which was not possible to achieve in absence of the base (see above). The intermediate 6.1 can be easily obtained from $[4\cdot\text{bH}^+]$ by reverse protonation of $4\cdot$ from the protonated base. This process is spontaneous via the structure denoted as $\text{TS} [4\cdot\text{bH}^+/6.1b]$ (Figs. S4, S7).

Intermediate	Transition state	E_{rel}	E_{act} or E_{rea}	
	$\text{TS} [2.2/4]b'$	-9.4	234.6	
	$\text{TS} [2.2/4]b''$	36.3	232.9	
$2.2b$	L1	243.9	225.8	
	L2	254.3	211.9	
	$\text{L2}\text{PCM}$	243.9	225.8	
Reaction Step	Relative Energy, E_{rel}	Activation Energy, E_{act}	Reaction Energy, E_{rea}	
---------------------	----------------------------	------------------------------	-----------------------------	
$4\text{b}\cdot\text{bH}^+$	49.2	-22.3	12.9	-1.8
6.1b	37.5	-54.9	1.2	-34.4
$4\text{b}\cdot\text{bH}^+/6.1\text{b}$	-24.6	-103.0	-62.1	-48.1
6.1b	323.3	221.8	285.8	276.8

a Relative energy of the species, E_{rel}, with respect to the energy of 1 and nitromethane at the corresponding level.

b Activation energy, E_{act}, and reaction energy, E_{rea}, of the corresponding reaction step.
TS structures (Energies at L1)

	TS [RC 1/2]	ImgFreq/IR Inten: -851.5222/12.3334
O	-0.91305	1.77920 -0.37935
C	0.29198	2.09008 0.26751
O	0.62625	3.24331 0.28722
C	1.03737	0.96203 0.81543
C	0.49231	-0.35913 0.81706
C	-0.91502	-0.50894 0.41735
C	-1.64923	-1.68757 0.61692
H	-1.17036	-2.53408 1.10083
C	-2.97341	-1.77691 0.21294
H	-3.53217	-2.69128 0.37821
C	-3.58424	-0.67988 -0.40529
H	-4.61850	-0.74483 -0.72586
C	-2.88090	0.50124 -0.60122
H	-3.33971	1.36916 -1.06033
C	-1.55200	0.58382 -0.18457
C	1.38266	-1.44969 -0.60819
H	0.90799	-1.05713 -1.49523
N	2.68510	-1.06404 -0.45595
O	2.90174	0.19732 -0.84144
O	3.52146	-1.65182 0.22209
H	1.76679	1.23321 1.57142
H	0.83484	-1.01504 1.61442
H	1.19675	-2.48151 -0.34092
H	2.17026	0.77539 -0.24679

	TS [2.1/2.2]	ImgFreq/IR inten: -2172.6740/541.3399	
O	-0.93507	1.76505 -0.38671	
C	0.26798	2.03500 0.22386	
O	0.81958	3.06676 -0.02672	
C	0.76377	0.98993 1.20026	
H	1.81734	1.19002 1.39487	
H	0.22714	1.13886 2.14496	
C	0.51107	-0.44375 0.69795	
H	0.73051	-1.13868 1.51859	
C	-0.95024	-0.56222 0.32723	
C	-1.68598	-1.74050 0.47044	
H	-1.19747	-2.62198 0.87642	
C	-3.02946	-1.79540 0.10852	
H	-3.58639	-2.71823 0.22826	
C	-3.65518	-0.65702 -0.40127	
H	-4.70202	-0.68998 -0.68358	
C	-2.94243	0.52875 -0.54609	
---	---	---	---
H	-3.40495	1.42712	-0.93846
C	-1.59919	0.56355	-0.18255
C	1.38161	-0.78999	-0.49738
O	3.38314	-1.17242	0.76573
N	2.77604	-0.96737	-0.24740
O	3.36489	-0.73586	-1.41052
H	1.04620	-1.64942	-1.08034
H	2.20515	-0.32454	-1.66911

TS [2.1/2.2]w

O	1.14768	1.75540	0.29575
C	0.03690	2.05236	-0.46764
O	-0.50648	3.10406	-0.29021
C	-0.37106	1.00513	-1.47838
H	-1.38849	1.22155	-1.79920
H	0.27915	1.12046	-2.35426
C	-0.22315	-0.42561	-0.92521
H	-0.37086	-1.12202	-1.75860
C	1.18395	-0.57685	-0.39264
C	1.89989	-1.77497	-0.44065
H	1.43425	-2.64880	-0.88758
C	3.19439	-1.85896	0.06656
H	3.73643	-2.79712	0.01763
C	3.79179	-0.73031	0.62921
H	4.80139	-0.78550	1.02226
C	3.09859	0.47503	0.68333
H	3.54039	1.36748	1.11180
C	1.80437	0.53731	0.17447
C	-1.22917	-0.74303	0.16940
O	-2.90162	-0.90904	-1.40709
N	-2.53355	-1.01985	-0.24705
O	-3.40185	-1.31705	0.68610
H	-0.91988	-1.47335	0.91370
H	-1.72260	0.25790	1.37339
H	-3.10688	-0.41850	1.69101
O	-2.52133	0.41952	2.12461
H	-2.19818	0.23309	3.01520

TS [RC 1/2.1]

O	2.30114	-0.60008	0.39959
C	1.86759	-1.89151	-0.03477
O	2.67164	-2.79038	0.14735
C	0.58470	-1.94884	-0.62933
C	0.29418	-0.85764	-0.68196
C	-0.28475	0.46315	-0.41935
C	0.38019	1.67012	-0.68385

Ilieva et al.

ESI
Element	TS [2.2w/3.1]	ImgFreq/IR inten: -811.7078/529.1724
H	1.38970	1.63524
C	-0.22082	2.89416
H	0.31508	3.81607
C	-1.50695	2.93111
H	-1.98143	3.88438
C	-2.18730	1.74911
H	-3.18895	1.75005
C	-1.57981	0.52119
C	1.78323	-1.07227
H	1.35299	-0.64073
N	2.89423	-0.39996
O	3.57808	-0.94457
O	3.11813	0.78186
H	-0.26915	-2.92858
H	1.11813	-0.89708
H	1.86258	-2.14574

Ilieva et al.

ESI
TS [3.1/6.1]w

TS [3.1/5+NH(OH)₂]

Ilieva et al.

ESI

S16
C	-3.23210	0.31488	-0.52319
H	-3.80448	1.13784	-0.93546
C	-1.90244	0.52534	-0.17245
C	1.25197	-0.57052	-0.43784
N	2.94728	-0.38843	0.21179
O	3.66053	0.48563	-0.66475
O	3.40616	-1.63819	0.18479
H	1.31960	0.18398	-1.23338
H	4.49569	0.01432	-0.82750
O	1.30268	-1.81604	-0.78827
H	2.45192	-2.09338	-0.38127
H	3.04947	0.00680	1.14707

TS [2.2w/3.2]w

O	-1.83800	1.63691	-0.45776
C	-0.84715	2.30122	0.23886
O	-0.70208	3.47054	0.04190
C	-0.05150	1.47029	1.22423
H	-0.62514	1.45038	2.15826
H	0.88241	1.99263	1.41599
C	0.15977	0.01549	0.76338
H	0.56903	-0.55063	1.60653
C	-1.18226	-0.55699	0.36283
C	-1.54612	-1.89059	0.56307
H	-0.83675	-2.57003	1.02598
C	-2.80007	-2.35815	0.18114
H	-3.06404	-3.39730	0.34427
C	-3.71400	-1.48448	-0.40928
H	-4.69348	-1.84065	-0.71003
C	-3.37825	-0.14924	-0.60677
H	-4.07190	0.55314	-1.05439
C	-2.11983	0.29989	-0.21650
C	1.18725	-0.07822	-0.36449
N	2.56259	0.32998	0.05459
O	2.62278	1.74601	-0.17236
O	3.44785	-0.28516	-0.83293
H	0.88094	0.44140	-1.27924
H	3.02925	1.81289	-1.05662
O	1.35272	-1.48937	-0.76321
H	2.08864	-1.35379	-1.43341
H	2.01352	-2.02178	0.00889
H	3.65624	-1.55583	0.05575
O	3.19966	-2.37470	0.51533
H	3.32267	-2.31942	1.46920
TS [3.2/6.1w]	ImgFreq/IR inten: -1326.5756/194.2267		
---------------	--		
TS [2.2*2w/3.1+]	ImgFreq/IR inten: -1487.8898/1295.6481		

Element	x1	y1	z1	x2	y2	z2	x3	y3	z3
O	-1.48825	1.78215	-0.57039						
C	-0.31750	2.11766	0.06492						
O	0.28456	3.08227	-0.31896						
C	0.09435	1.20919	1.20043						
H	-0.56392	1.42516	2.05020						
H	1.11430	1.45374	1.47898						
C	-0.08867	-0.27162	0.82358						
H	0.11606	-0.89007	1.70152						
C	-1.53610	-0.44677	0.40838						
C	-2.28467	-1.59609	0.69444						
H	-1.80269	-2.43350	1.16200						
C	-3.62265	-1.68059	0.29480						
H	-4.18707	-2.58274	0.50497						
C	-4.23391	-0.60488	-0.35052						
H	-5.27672	-0.66395	-0.64391						
C	-3.50904	0.55193	-0.61821						
H	-3.95680	1.40341	-1.11802						
C	-2.17304	0.61561	-0.23583						
C	0.86782	-0.77131	-0.27462						
N	2.29988	-0.85002	0.22790						
O	2.84120	0.88298	0.21210						
O	3.00879	-1.42818	-0.69996						
H	0.85589	-0.14045	-1.17620						
H	2.57601	1.28489	-0.63179						
O	0.49683	-2.08587	-0.58100						
H	1.14618	-2.43834	-1.20610						
H	4.21485	-1.08506	-0.32812						
O	4.94743	-0.30107	0.09120						
H	4.14204	0.45416	0.19975						
H	5.61862	-0.03409	-0.54661						
O	-1.11566	1.83089	-0.47678						
C	0.04886	2.18125	0.15878						
O	0.59509	3.20183	-0.12798						
C	0.56187	1.19052	1.19283						
H	0.00035	1.34044	2.12032						
H	1.59752	1.46111	1.40391						
C	0.35415	-0.27268	0.75347						
H	0.62309	-0.95370	1.56382						
C	-1.10603	-0.44790	0.38187						
C	-1.82230	-1.62554	0.62004						
H	-1.32576	-2.46890	1.08998						

Ilieva et al.
ESI
S18
C	-3.16875	-1.71265	0.27948
H	-3.71814	-2.62599	0.47591
C	-3.81183	-0.61630	-0.29855
H	-4.86240	-0.67848	-0.55874
C	-3.11841	0.56721	-0.53262
H	-3.60015	1.43378	-0.96996
C	-1.77326	0.63938	-0.18946
C	1.21741	-0.60487	-0.45022
N	2.70824	-0.85723	-0.26222
O	3.14975	-0.99463	1.04385
O	3.42057	0.12860	-0.94396
H	1.10531	0.06219	-1.30313
H	3.26225	-0.09887	1.41615
O	1.03074	-2.01634	-0.89329
H	0.52177	-2.15688	-1.70936
H	2.21889	-2.04646	-0.83979
H	4.28554	-0.26088	-1.16196

TS [3.1+/3.2+]
-818.9847008
ImgFreq/IR inten: -790.2056/1952.7991

O	-0.88616	1.83313	-0.36178
C	0.27450	1.75721	0.21731
O	1.28439	2.21150	-0.38698
C	0.41588	0.88812	1.41642
H	-0.37291	1.09468	2.14204
H	1.38492	1.00944	1.88939
C	0.18713	-0.51735	0.80402
H	0.33997	-1.27948	1.56857
C	-1.25950	-0.48516	0.32770
C	-2.13958	-1.56318	0.40072
H	-1.78042	-2.51918	0.76726
C	-3.47772	-1.41404	0.02973
H	-4.14893	-2.26226	0.09742
C	-3.95677	-0.18233	-0.41011
H	-4.99760	-0.06908	-0.68964
C	-3.10033	0.91646	-0.49809
H	-3.44091	1.88186	-0.85311
C	-1.78322	0.73458	-0.12876
C	1.18455	-0.81044	-0.35991
N	2.47555	-0.01764	-0.19098
O	3.33413	-0.29883	-1.24724
O	3.06353	-0.45020	1.02359
H	0.80166	-0.41951	-1.30653
H	3.49187	-1.26396	-1.21847
O	1.47596	-2.16603	-0.45459
H	1.21921	-2.52498	-1.31264
H	2.06745	1.40283	-0.25442
	TS [2.2*4']	ImgFreq/IR inten:	
---------	-------------	-------------------	
O	1.63521	1.67808	-0.23923
C	0.48239	2.35135	0.05631
O	0.43611	3.53451	-0.11618
C	-0.65024	1.52364	0.62899
H	-1.57025	2.09403	0.51745
H	-0.45003	1.40975	1.70220
C	-0.75716	0.12878	-0.04307
H	-1.11317	0.25933	-1.06771
C	0.60883	-0.52709	-0.03366
C	0.80697	-1.90988	0.01753
H	-0.05697	-2.56481	0.04224
C	2.09190	-2.44706	0.01218

O	3.86240	0.09337	1.12889
C	-1.40383	1.81772	-0.30938
O	-0.22882	2.05621	0.21438
C	0.58681	2.76695	-0.40433
H	0.19405	1.23805	1.39307
H	-0.58407	1.21746	2.15753
C	1.11336	1.62393	1.82670
C	0.32699	-0.17677	0.78394
H	0.64066	-0.86778	1.56517
C	-1.07151	-0.53019	0.29225
C	-1.59882	-1.82074	0.32963
H	-0.97016	-2.64309	0.65525
C	-2.92665	-2.05561	-0.02792
H	-3.32096	-3.06438	0.00893
C	-3.74906	-0.99898	0.41574
H	-4.78288	-1.18336	-0.68408
C	-3.24973	0.30184	-0.46528
H	-3.86218	1.13851	-0.77981
C	-1.92895	0.50270	-0.11402
C	1.40460	-0.21815	-0.33980
N	2.24356	-1.36803	-0.24042
O	2.87272	-1.47424	1.00485
O	3.22626	-1.21078	-1.24854
H	0.97946	-0.21240	-1.34147
H	3.52669	-0.75330	1.08057
H	3.44291	-2.10641	-1.54853
O	2.28222	1.04891	-0.27308
H	2.94264	0.99603	-0.98604
H	1.62353	2.05728	-0.33038
H 2.22573 -3.52256 0.04958
C 3.19987 -1.60257 -0.04818
H 4.20306 -2.01508 -0.05300
C 3.02388 -0.22403 -0.11178
H 3.86513 0.45665 -0.17357
C 1.73459 0.29653 -0.10691
C -1.78458 -0.63916 0.70611
N -3.15396 -0.72851 0.32624
O -3.40095 0.25041 -0.68479
O -2.62327 -1.94979 -0.29455
H -4.36318 0.23477 -0.77085
H -1.57817 -1.06110 1.68295

TS [2.2/4'']
-742.1249367 ImgFreq/IR inten: -914.2135/43.8485
O 0.49836 1.65963 0.58338
C -0.63987 1.89507 -0.17301
O -1.31415 2.83917 0.10627
C -0.88889 0.94736 -1.32687
H -0.33674 1.34084 -2.18776
H -1.95145 0.97078 -1.55856
C -0.41206 -0.48333 -1.05771
H -0.42184 -1.05413 -1.99385
C 1.00522 -0.45683 -0.50415
C 1.94641 -1.46274 -0.74056
H 1.67345 -2.31012 -1.36325
C 3.22443 -1.38371 -0.19750
H 3.94666 -2.16853 -0.39269
C 3.57244 -0.28610 0.59289
H 4.56745 -0.21657 1.01912
C 2.65223 0.72771 0.83354
H 2.90141 1.59199 1.43822
C 1.37379 0.63387 0.28742
C -1.23512 -1.25756 -0.07698
N -2.30925 -0.76228 0.51158
O -2.73606 -1.55987 1.59977
O -3.15332 -0.79610 -0.63028
H -3.28990 -0.96359 2.12412
H -0.87442 -2.23961 0.23810

TS [4'/5+(NOH)2]
-742.1536390 ImgFreq/IR inten: -170.4202/2.0477
O 1.08385 1.81242 0.34357
C -0.17588 2.15954 -0.08158
O -0.59639 3.24504 0.19834
C -0.90942 1.12950 -0.91333
H -0.55001 1.24445 -1.94294
H -1.96677 1.38901 -0.90416

Ilieva et al.
ESI S21
Atom	C	H	C
	-0.66429	-0.31765	-0.46616
	-1.04241	-1.01040	-1.22145
	0.82533	-0.53069	-0.28391
	1.44458	-1.77027	-0.46670
	0.83615	-2.62441	-0.74655
	2.81670	-1.91752	-0.28867
	3.28078	-2.88659	-0.43603
	3.59062	-0.81571	0.07911
	4.66115	-0.92224	0.21827
	2.99401	0.42603	0.27017
	3.57031	1.29720	0.55978
	1.61966	0.55426	0.09234
	-1.36548	-0.66617	0.84794
	-3.48198	-0.48570	0.45796
	-3.73104	-0.88929	-0.71862
	-1.71667	-1.81003	1.13080
	-4.43835	-1.58056	-0.72399
	-1.34998	0.12041	1.62329

TS [4''/6.3]

-742.1545510

Atom	C	H	C
	0.30364	1.75450	0.50909
	-0.89761	1.91598	-0.15770
	-1.61976	2.80030	0.19533
	-1.15424	0.99566	-1.33055
	-0.74045	1.50099	-2.21137
	-2.23288	0.92727	-1.47034
	-0.53632	-0.39966	-1.20136
	-0.51161	-0.86480	-2.19020
	0.84523	-0.33445	-0.62288
	1.81640	-1.31855	-0.85527
	1.57349	-2.15160	-1.50872
	3.07812	-1.23541	-0.28053
	3.81709	-2.00447	-0.47702
	3.39218	-0.15146	0.54576
	4.37596	-0.07809	0.99697
	2.45069	0.83963	0.78950
	2.67024	1.69142	1.42272
	1.18657	0.74147	0.20868
	-1.43227	-1.36793	-0.34640
	-1.31381	-0.87066	1.07574
	-2.05089	-1.51019	1.89173
	-2.72942	-1.35119	-0.55024
	-2.55297	-2.21966	1.39935
	-0.92324	-2.36543	-0.35427
TS [4''/6.1]w	ImgFreq/IR inten: -1006.4768/581.8438		
---------------------	--		
O	-1.35245 1.57632 -0.65636		
C	-0.37710 2.26192 0.03711		
O	-0.06970 3.35149 -0.34798		
C	0.16608 1.59510 1.28193		
H	-0.49665 1.89725 2.10175		
H	1.14882 2.01739 1.48599		
C	0.22069 0.06232 1.22472		
H	0.32745 -0.31266 2.24833		
C	-1.04999 -0.48236 0.61801		
C	-1.54687 -1.75654 0.91249		
H	-1.01235 -2.37765 1.62626		
C	-2.71235 -2.23230 0.31977		
H	-3.08141 -3.22245 0.56412		
C	-3.40602 -1.42419 -0.58271		
H	-4.31757 -1.78331 -1.04858		
C	-2.93674 -0.15101 -0.88460		
H	-3.45848 0.49851 -1.57807		
C	-1.76486 0.30796 -0.28601		
C	1.46845 -0.46756 0.49673		
N	1.53765 0.05668 -0.88240		
O	2.22571 -0.62631 -1.68639		
O	2.65138 0.11441 0.86665		
H	2.97476 -1.34641 -1.16342		
H	1.46552 -1.57184 0.50266		
O	3.90433 -1.66855 -0.31508		
H	4.80486 -1.54244 -0.63560		
H	3.63958 -0.91207 0.36201		

TS [2.2/4]b'	ImgFreq/IR inten: -894.6979/67.2922
O	-1.39132 1.65929 0.22523
C	-0.58332 1.33600 1.30198
O	0.26157 2.11850 1.62393
C	-0.89149 0.03203 2.00234
H	-1.70060 0.23197 2.71431
H	-0.00539 -0.27282 2.55367
C	-1.34823 -1.06949 1.04066
H	-1.73051 -1.92162 1.61397
C	-2.45500 -0.52816 0.14841
C	-3.50394 -1.30897 -0.34383
H	-3.55482 -2.35974 -0.07277
C	-4.48104 -0.75506 -1.16500
H	-5.29134 -1.37221 -1.53704
C	-4.41485 0.59842 -1.50126
H	-5.17341 1.03823 -2.13989
Ilieva et al.

ESI

C	-3.38209	1.39371	-1.01675		
H	-3.31220	2.44748	-1.26071		
C	-2.40823	0.82430	-0.19976		
C	-0.27782	-1.59275	0.12976		
N	0.95670	-1.12822	0.13236		
O	1.70625	-1.48920	-0.97925		
O	1.31590	-1.75978	1.37704		
H	2.49672	-0.85581	-0.95518		
H	-0.56711	-2.29749	-0.65443		
N	3.81118	0.22047	-0.71349		
C	4.37740	-0.19610	0.57612		
C	4.79005	0.08750	-1.79402		
C	3.28229	1.58784	-0.64123		
H	2.81066	1.85052	-1.59063		
H	4.07609	2.32237	-0.43250		
H	2.53089	1.65759	0.14590		
H	4.32992	0.35948	-2.74649		
H	5.12983	-0.94809	-1.86080		
H	5.66967	0.73224	-1.63792		
H	3.59887	-0.18525	1.34005		
H	5.20434	0.45962	0.89061		
H	4.75170	-1.21841	0.49771		

TS [2.2/4]b″

-916.6623065

O	3.04867	-0.12165	0.84069		
C	2.85927	-1.44705	0.50974		
O	3.57226	-2.26553	1.01503		
C	1.74981	-1.73007	-0.47627		
H	1.49152	-2.78241	-0.39193		
H	2.14337	-1.55795	-1.48607		
C	0.52870	-0.81799	-0.22394		
H	0.15738	-1.02962	0.78474		
C	1.02147	0.61393	-0.28419		
C	0.32992	1.68271	-0.85998		
H	-0.64539	1.50020	-1.29446		
C	0.87070	2.96793	-0.88056		
H	0.31562	3.78085	-1.33728		
C	2.12515	3.20437	-0.32071		
H	2.55234	4.20157	-0.33171		
C	2.84135	2.15326	0.24421		
H	3.82476	2.30058	0.67601		
C	2.28776	0.87731	0.24854		
C	-0.61126	-1.11825	-1.17882		
N	-1.16692	-2.31671	-1.32756		
O	-0.90302	-3.12603	-0.21193		
O	-2.09936	-0.60157	-0.46276		

ImgFreq/IR inten: -623.7936/365.4912
H	-1.46457	-3.89596	-0.35935
H	-0.60052	-0.58036	-2.12286
N	-3.10331	0.55232	0.54768
C	-3.53325	1.65652	-0.30560
C	-4.19966	-0.34201	0.91284
C	-2.30456	0.97107	1.69661
H	-3.79019	-1.20840	1.42905
H	-4.69667	-0.68256	0.00649
H	-4.92422	0.16902	1.56295
H	-2.67232	2.26555	-0.57624
H	-4.26740	2.29259	0.20937
H	-3.97868	1.24970	-1.21215
H	-1.94442	0.08456	2.21703
H	-2.90052	1.57949	2.39126
H	-1.44933	1.55180	1.35488

TS [4b/4::bH+]

-916.7322648
ImgFreq/IR inten: -860.8006/6016.3728

O	1.18397	-1.31140	1.06682
C	0.48519	-0.46830	1.90035
O	-0.38370	-0.94334	2.57896
C	0.92689	0.97629	1.91939
H	1.76840	1.04148	2.61989
H	0.10841	1.57028	2.32217
C	1.36394	1.49871	0.54272
H	1.86747	2.46192	0.68166
C	2.31601	0.51387	-0.08774
C	3.32760	0.88299	-0.97867
H	3.45423	1.93407	-1.22262
C	4.17105	-0.06726	-1.54867
H	4.94994	0.24188	-2.23750
C	4.01350	-1.41482	-1.22394
H	4.66856	-2.16256	-1.65861
C	3.01691	-1.80651	-0.33541
H	2.87400	-2.84625	-0.06343
C	2.17926	-0.84229	0.21775
C	0.15395	1.79229	-0.36791
N	-0.86590	0.77344	-0.33508
O	-1.48392	0.61103	-1.46171
O	-0.87687	2.49441	0.19068
H	-2.50880	0.03355	-1.10169
H	0.45349	2.09137	-1.38114
N	-3.54199	-0.51826	-0.59118
C	-3.09648	-1.72614	0.14128
C	-4.14013	0.47872	0.32619
C	-4.45959	-0.85845	-1.69557
H	-4.71686	0.04746	-2.24546
--------	------------	------------	------------
	-5.37709	-1.32072	-1.31610
	-3.96593	-1.55284	-2.37636
	-4.38601	1.38013	-0.23529
	-3.41229	0.73873	1.09224
	-5.04718	0.07921	0.79227
	-2.59300	-2.40031	-0.55248
	-3.95287	-2.24348	0.58735
	-2.39374	-1.44051	0.92242

TS [4·bH*/6.1]b

	ImgFreq/IR inten: -820.5050/5432.8938		
	-916.7603690		
O	1.18397		
C	0.48519		
O	-0.38370		
C	0.92689		
H	1.76840		
H	0.10841		
C	1.36394		
H	1.86747		
C	2.31601		
C	3.32760		
H	3.45423		
C	4.17105		
H	4.94994		
C	4.01350		
H	4.66856		
C	3.01691		
H	2.87400		
C	2.17926		
C	0.15395		
N	-0.86590		
O	-1.48392		
O	-0.87687		
H	-2.50880		
H	0.45349		
N	-3.54199		
C	-3.09648		
C	-4.14013		
C	-4.45959		
H	-4.71686		
H	-5.37709		
H	-3.96593		
H	-4.38601		
H	-3.41229		
H	-5.04718		
H	-2.59300		
H	-3.95287		
--------	------	--------	--------
	H	TS [4·bH*6.2]·bH*	ImgFreq/IR inten:
	-916.6279092	-	-1485.9711/2006.5186
H	-2.39374	-1.44051	0.92242
C	-2.06978	1.48418	-0.89267
O	-1.23231	2.16121	-0.03979
O	-0.70629	3.16397	-0.43594
C	-1.11213	1.60333	1.35923
H	-1.97168	1.99022	1.92203
H	-0.21063	2.02012	1.80398
C	-1.11754	0.06377	1.42054
H	-1.28352	-0.23042	2.46290
C	-2.26313	-0.45205	0.58093
C	-2.91958	-1.65727	0.84237
H	-2.59673	-2.25157	1.69187
C	-3.96236	-2.10272	0.03465
H	-4.45815	-3.04199	0.25659
C	-4.36593	-1.33545	1.05885
H	-5.17916	-1.67198	1.69370
C	-3.72652	-0.13256	-1.33981
H	-4.01647	0.48262	-2.18420
C	-2.68204	0.29329	-0.52274
C	0.18024	-0.62093	0.99140
N	0.88129	-0.06545	-0.14484
O	1.54764	-1.27662	-0.56881
O	1.38821	0.17782	1.25110
H	3.00039	-0.84830	-0.45486
H	0.93403	-1.77729	0.29112
N	4.00473	-0.42730	-0.36907
C	3.87091	1.04087	-0.59720
C	4.48007	-0.72618	1.00928
C	4.84054	-1.07735	-1.40995
H	4.85349	-2.15279	-1.23694
H	5.85839	-0.68554	-1.37204
H	4.40447	-0.87914	-2.38789
H	4.53574	-1.80675	1.13692
H	3.75274	-0.32050	1.70897
H	5.46553	-0.28348	1.16547
H	3.44333	1.20591	-1.58449
H	4.85345	1.51157	-0.52834
H	3.19319	1.44592	0.15012

		TS [6.1/6.2]	ImgFreq/IR inten: -2359.5993/442.3123
H	-742.1181135	ImgFreq/IR inten: -2359.5993/442.3123	
O	0.42755	1.76403	0.60656
C	-0.77569	2.01984	-0.00956
O	-1.45177	2.91531	0.40569

Ilieva et al.

ESI
Element	X1	Y1	Z1
C	-1.10618	1.16702	-1.21536
H	-0.60007	1.62863	-2.07209
H	-2.17804	1.23782	-1.39116
C	-0.64165	-0.29912	-1.09019
H	-0.68648	-0.74526	-2.08917
C	0.78676	-0.32640	-0.59663
C	1.68196	-1.35222	-0.91545
H	1.34213	-2.16759	-1.54767
C	2.98797	-1.34213	-0.43818
H	3.66759	-2.14678	-0.69691
C	3.41908	-0.28950	0.37254
H	4.43608	-0.27239	0.74970
C	2.54907	0.74359	0.69840
H	2.85746	1.57206	1.32557
C	1.24276	0.71587	0.21341
C	-1.55008	-1.15656	-0.21619
O	-2.92581	-0.97337	-0.54957
N	-1.38468	-0.99295	1.18149
O	-1.75613	-2.09627	1.67493
H	-3.28654	-1.77623	-0.93747
H	-1.77404	-2.53961	0.47121

TS [6.2/6.3]

Element	X1	Y1	Z1
O	-0.12819	-1.83583	0.25735
C	1.05676	-1.79696	-0.43943
O	1.81981	-2.70914	-0.32106
C	1.25744	-0.63030	-1.38393
H	0.86249	-0.95891	-2.35248
H	2.33145	-0.49941	-1.51264
C	0.54203	0.68189	-1.00741
H	0.44453	1.28860	-1.91017
C	-0.84493	0.38349	-0.46810
C	-1.88549	1.31441	-0.53609
H	-1.69463	2.28342	-0.98678
C	-3.14571	1.01614	-0.02870
H	-3.94169	1.75011	-0.08861
C	-3.37914	-0.23100	0.55333
H	-4.35974	-0.47426	0.94830
C	-2.35802	-1.17145	0.62617
H	-2.51389	-2.14879	1.06833
C	-1.09904	-0.85574	0.11969
C	1.29765	1.55358	-0.03733
O	1.40832	2.83195	-0.17108
N	1.92257	1.26709	1.07929
O	2.24011	-0.05191	1.43425
H	2.12097	2.58602	0.95222

Ilieva et al.

ESI
	TS [6.1/6.2]w	ImgFreq/IR inten:	
	-818.6277658		
O	-0.17672	-1.92095	0.65956
C	1.00489	-2.10932	-0.01706
O	1.77664	-2.93073	0.38556
C	1.19975	-1.25564	-1.25135
H	0.63631	-1.72099	-2.06874
H	2.25402	-1.27360	-1.51368
C	0.67100	0.18514	-1.05687
H	0.70638	0.68574	-2.02832
C	-0.76489	0.07350	-0.60191
C	-1.78192	0.92900	-1.03225
H	-1.53290	1.75804	-1.68687
C	-3.09855	0.74325	-0.62041
H	-3.87316	1.42251	-0.95972
C	-3.41726	-0.32270	0.22193
H	-4.44058	-0.47390	0.54874
C	-2.42632	-1.20719	0.63429
H	-2.64703	-2.05172	1.27676
C	-1.11675	-1.00596	0.21205
C	1.65049	0.95176	-0.12461
O	2.93870	0.85745	-0.64084
N	1.60611	1.05087	1.21370
O	0.46352	1.28364	1.77341
H	3.55795	1.00147	0.09110
H	1.03227	2.32781	-0.18048
H	-0.08834	2.40681	0.92537
O	0.13864	3.05983	0.12535
H	0.50355	3.87696	0.49282
	TS [6.2/6.3]w	ImgFreq/IR inten:	
	-818.7069622		
O	-1.55031	1.58862	-0.32618
C	-0.51589	2.25439	0.28275
O	-0.34387	3.40888	0.02013
C	0.25164	1.49666	1.34413
H	-0.30897	1.64930	2.27439
H	1.21065	1.99747	1.47452
C	0.40406	-0.02295	1.12946
H	0.54826	-0.48052	2.11007
C	-0.85634	-0.59849	0.51629
C	-1.16147	-1.96026	0.61622
H	-0.46608	-2.61585	1.13214
C	-2.32992	-2.47907	0.06933
H	-2.54662	-3.53804	0.15732
C	-3.22241	-1.62796	-0.58512
---	---	---	
H	-4.14011	-2.02014	-1.01051
C	-2.94129	-0.27120	-0.69173
H	-3.61711	0.41245	-1.19287
C	-1.76157	0.23248	-0.14499
C	1.66267	-0.43662	0.37246
O	2.50533	-1.18167	1.00490
N	1.94228	-0.09643	-0.86479
O	1.08016	0.84969	-1.44761
H	3.47864	-1.33604	0.22825
H	0.78689	0.45506	-2.28042
H	3.16646	-0.51171	-1.16774
O	4.08394	-1.18486	-0.80379
H	4.91311	-0.70410	-0.70410

TS [6.2/7]^+w

O	-0.54915	-1.09261	0.13240
C	-1.24055	-0.12272	0.77942
O	-2.48773	-0.42659	1.00717
C	-0.47822	0.64732	1.83680
H	-0.09265	-0.04521	2.58759
H	-1.14299	1.36581	2.31375
C	0.65632	1.30580	1.03219
H	1.23802	2.04202	1.58430
C	1.51139	0.18696	0.45112
C	2.89674	0.25362	0.30298
H	3.42661	1.14291	0.62819
C	3.59618	-0.81662	-0.24855
H	4.67369	-0.76099	-0.35004
C	2.91208	-1.95868	-0.66600
H	3.45651	-2.79180	-1.09544
C	1.52806	-2.04165	-0.53388
H	0.97993	-2.92094	-0.85134
C	0.84932	-0.96883	0.02257
C	-0.05796	1.90068	-0.15266
O	0.49542	2.80552	-0.91622
N	-1.19049	1.30788	-0.35300
O	-1.76824	1.49263	-1.59681
H	-0.04448	2.98320	-1.70746
H	-2.72628	1.53329	-1.44991
O	-3.66463	-2.21265	-0.52750
H	-2.84883	-1.14925	0.41683
H	-3.25017	-2.94789	-0.99255
H	-4.58148	-2.45189	-0.34904
TS [7/8]⁺w	ImgFreq/IR inten:		
---------------------	--------------------------		
-819.0097791	-1840.9797/1056.4662		
O	-0.52154		
C	0.65838		
O	0.95958		
C	0.09893		
H	-0.83302		
H	0.83403		
C	-0.07923		
H	-0.13298		
C	-1.30317		
C	-2.24073		
H	-2.08869		
C	-3.37769		
H	-4.10456		
C	-3.58543		
H	-4.47252		
C	-2.65686		
H	-2.79600		
C	-1.53877		
C	1.17662		
O	1.64525		
N	1.61161		
O	2.54083		
H	2.45033		
H	2.69841		
H	-0.18799		
O	3.66270		
H	4.07266		
H	4.07208		

TS [7/8]⁻²w	ImgFreq/IR inten:
-819.0457766	-392.6944/79.8358
O	0.36530
C	1.56486
O	2.63578
C	0.82979
H	0.38480
H	1.53924
C	-0.22730
H	-0.61779
C	-1.32993
C	-2.67339
H	-2.96074
C	-3.64112
H	-4.68327
\[
\begin{array}{ccc}
C & -3.26291 & 1.23432 & -0.62582 \\
H & -4.01185 & 1.88910 & -1.05707 \\
C & -1.92664 & 1.62462 & -0.64112 \\
H & -1.63084 & 2.56685 & -1.09045 \\
C & -0.96386 & 0.78695 & -0.08353 \\
C & 0.55259 & -1.83613 & -0.12316 \\
O & 0.22547 & -2.89280 & -0.80726 \\
N & 1.51991 & -1.01459 & -0.38205 \\
O & 2.26922 & -1.07937 & -1.51738 \\
H & 0.77776 & -3.02099 & -1.59910 \\
H & 3.09376 & -0.60279 & -1.29803 \\
H & 0.97212 & 2.41909 & -0.25917 \\
O & 1.84158 & 3.06489 & -0.24887 \\
H & 1.75771 & 3.86004 & 0.29705 \\
\end{array}
\]

TS [8w2H3O+]	ImgFreq/IR inten: -565.7872/3670.1894
-819.0948271	

O	-0.58889	-0.26831	1.67487
C	1.74675	-1.76937	-0.06437
O	2.57743	-2.50008	0.39216
C	0.37404	-1.97313	-0.64597
H	-0.25903	-2.44515	0.10617
H	0.43487	-2.65413	-1.49722
C	-0.13575	-0.55352	-1.04088
H	-0.16889	-0.46308	-2.13145
C	-1.49526	-0.16365	-0.49862
C	-2.57603	0.06144	-1.35249
H	-2.43303	-0.01821	-2.42587
C	-3.83302	0.38226	-0.84624
H	-4.66327	0.55052	-1.52184
C	-4.01342	0.48437	0.53098
H	-4.98776	0.73255	0.93673
C	-2.94541	0.27031	1.39999
H	-3.08738	0.35302	2.47408
C	-1.69463	-0.05023	0.88299
C	0.97830	0.37561	-0.59009
O	0.96132	1.62113	-0.67983
N	1.98944	-0.36407	-0.12788
O	3.15433	0.17124	0.36554
H	1.94193	2.34136	-0.25947
H	3.65266	-0.60919	0.68697
H	-0.81049	-0.18153	2.61029
O	2.82185	2.99373	0.14086
H	3.65066	2.52692	0.30803
H	2.96195	3.88924	-0.19189

\[\text{Ilieva et al.} \quad \text{ESI} \quad S32\]
Ethyl ester of 3-coumarin-carboxylic acid

TS [2.1/2.2]	ImgFreq/IR inten: -2165.4786/564.3904
-1009.3959879	
O	-0.42107 0.59259 1.76819
C	-0.15167 -0.72609 1.50586
O	-0.18152 -1.51689 2.40225
C	0.18679 -1.06641 0.06061
H	0.68866 -2.03723 0.08643
C	-1.05275 -1.26946 -0.82409
C	1.11172 0.00610 -0.56112
H	1.19314 -0.21324 -1.63147
C	0.45371 1.35424 -0.36938
C	0.55575 2.39653 -1.29308
H	1.12367 2.23938 -2.20539
C	-0.06778 3.61979 -1.06222
H	0.01930 4.41859 -1.79051
C	-0.81033 3.80958 0.10423
H	-1.30043 4.75932 0.29018
C	-0.93173 2.78143 1.03337
H	-1.50358 2.90221 1.94621
C	-0.29774 1.56726 0.78713
C	2.48885 0.00142 0.07696
O	3.32780 -1.87752 -1.15614
N	3.35353 -1.08627 -0.25725
O	4.21098 -1.16000 0.74978
H	3.05898 0.92106 -0.06310
H	3.37219 -0.36356 1.23960
O	-0.98673 -1.39563 -2.02068
O	-2.18164 -1.31384 -0.11122
C	-3.41651 -1.54908 -0.84518
C	-4.54999 -1.54834 0.15652
H	-3.32322 -2.50293 -1.36792
H	-3.52159 -0.76276 -1.59515
H	-4.41663 -2.33194 0.90521
H	-5.49616 -1.72808 -0.36108
H	-6.62159 -0.58845 0.67244

TS [2.1/2.2]w	ImgFreq/IR inten: -1383.0074/101.7790
-1085.8869486	
O	-0.42203 0.58579 1.70505
C	-0.23935 -0.73614 1.36795
O	-0.17390 -1.54862 2.24295
C	-0.09689 -1.03163 -0.11674
H	0.37003 -2.01608 -0.19412
C	-1.44409 -1.15364 -0.84257
C	0.79053 0.03159 -0.80485
H	0.74433 -0.16170 -1.88107

Ilieva et al.

ESI
Element	X	Y	Z
C	0.19344	1.38862	-0.50412
C	0.20452	2.45348	-1.40686
H	0.65211	2.30921	-2.38565
C	-0.35879	3.68214	-1.07074
H	-0.34450	4.49817	-1.78500
C	-0.95014	3.85501	0.18148
H	-1.39467	4.80804	0.44795
C	-0.97946	2.80446	1.09375
H	-1.43472	2.91098	2.07180
C	-0.40702	1.58635	0.74029
H	-0.34450	4.49817	-1.78500
C	-0.95014	3.85501	0.18148
O	2.23181	-0.01107	-0.32654
C	2.56637	-1.99594	-1.44658
N	3.01750	-1.06761	-0.79276
O	4.26854	-1.08684	-0.41006
C	2.75985	0.92174	-0.40946
H	2.75985	0.92174	-0.40946
C	-1.55177	-1.13969	-2.04221
O	-2.46228	-1.30882	0.01223
C	-3.78355	-1.49508	-0.56648
H	-4.76244	-1.66286	0.57484
C	-3.74946	-2.37109	-1.21710
H	-4.01080	-0.62514	-1.18588
C	-5.76961	-1.81028	0.17552
H	-4.77696	-0.77963	1.21713
C	-4.50850	-2.52958	1.18858
H	4.19916	-0.73043	0.92429
C	4.64422	-0.43116	1.83634
H	4.01142	0.35637	2.25743

TS [2.2\cdot2w/3.1⁺]

-1086.2166867	Imgfreq/IR inten:
-1423.7935/1170.4711	

Element	X	Y	Z
O	-1.02935	-1.47900	1.70118
C	0.21885	-0.95961	1.81259
O	0.90205	-1.24335	2.74835
C	0.70014	0.04697	0.76247
C	1.94231	-0.39556	-0.01995
H	1.09104	0.85976	1.38479
C	-0.36576	0.61524	-0.23255
H	0.07365	0.69310	-1.22961
C	-1.60530	-0.24874	-0.32985
C	-2.49642	-0.11929	-1.40615
H	-2.28795	0.60590	-2.18642
C	-3.62453	-0.92500	-1.50121
H	-4.29902	-0.81416	-2.34235
C	-3.87062	-1.89069	-0.52266
H	-4.74498	-2.52765	-0.59257

Ilieva et al.

ESI
Element	X1	Y1	Z1	X2	Y2	Z2	X3	Y3	Z3	X4	Y4	Z4
C	-2.98516	-2.05524	0.53455									
H	-3.13941	-2.81087	1.29575									
C	-1.86137	-1.23765	0.61817									
C	-0.66486	2.03199	0.21703									
N	0.39426	3.08719	-0.03732									
O	1.30890	2.81340	-1.02466									
O	1.00880	3.38051	1.19393									
H	-0.98753	2.13078	1.25158									
H	1.86542	2.01421	-0.78551									
O	-1.62608	2.76447	-0.66048									
H	-2.52392	2.88809	-0.30867									
H	-0.82157	3.61732	-0.61217									
O	1.47856	4.22095	1.05697									
O	2.56443	0.43805	-0.66246									
O	2.22417	-1.66438	0.07067									
C	3.43700	-2.18262	-0.59839									
H	3.74320	-2.99760	0.05396									
H	4.18761	-1.39446	-0.58117									
C	3.11447	-2.65235	-2.00030									
H	4.00909	-3.10345	-2.43736									
H	2.81210	-1.82467	-2.64487									
H	2.32806	-3.40965	-1.99442									

TS [2.2e+3.2e]

-1086.2448778 ImgFreq/IR inten: -820.6690/2136.9112

Element	X1	Y1	Z1	X2	Y2	Z2	X3	Y3	Z3	X4	Y4	Z4
O	-0.42009	0.16650	1.78406									
C	0.29870	-0.78281	1.26769									
O	1.22023	-1.29170	1.96435									
C	0.23783	-1.02623	-0.20531									
C	-1.14990	-1.37231	-0.78435									
H	0.87581	-1.87135	-0.45885									
C	0.80635	0.29667	-0.76530									
H	0.87067	0.22345	-1.85134									
C	-0.18939	1.36460	-0.33448									
C	-0.55722	2.45995	-1.11339									
H	-0.08661	2.60701	-2.07967									
C	-1.54213	3.34529	-0.67210									
H	-1.81845	4.18982	-1.29266									
C	-2.18166	3.14134	0.54897									
H	-2.94966	3.82837	0.88455									
C	-1.83747	2.05283	1.35122									
H	-2.30558	1.87764	2.31252									
C	-0.85714	1.19843	0.88760									
C	2.23713	0.57909	-0.20331									
N	2.94768	-0.70762	0.19969									
O	4.20356	-0.40195	0.70880									
O	3.09161	-1.48013	-0.98094									
-----	-----	-----	-----									
H	2.17772	1.11030	0.75055									
H	4.66897	0.08910	0.00179									
O	3.02739	1.27073	-1.11542									
H	3.25521	2.14954	-0.78879									
H	2.11500	-1.30005	1.26417									
H	3.53137	-2.29950	-0.69783									
O	-1.43624	-1.15388	-1.92789									
O	-1.88127	-2.00299	0.12858									
C	-3.19588	-2.53146	-0.28308									
H	-3.34545	-3.37303	0.39062									
H	-3.10117	-2.89457	-1.30557									
C	-4.27913	-1.48325	0.01752									
H	-5.24406	-1.93431	-0.38819									
H	-4.12075	-0.64615	-0.82433									
H	-4.33891	-1.10828	0.88170									

TS [3.1"/3.2"]	-1086.2410391		
O	-0.75858	0.20111	1.85642
C	-0.13567	-0.88543	1.48553
O	0.54777	-1.51476	2.31787
C	-0.00186	-1.17710	0.01752
C	-1.31743	-1.30236	-0.77931
H	0.50326	-2.13655	-0.10214
C	0.86583	-0.00483	-0.48378
H	0.99958	-0.12225	-1.55883
C	0.06858	1.25801	-0.18529
C	0.07398	2.38302	-1.00904
H	0.72153	2.40149	-1.87927
C	-0.75993	3.46665	-0.73522
H	-0.74414	4.33256	-1.38674
C	-1.62186	3.43395	0.35964
H	-2.27405	4.27458	0.56605
C	-1.65101	2.32187	1.20043
H	-2.29821	2.27617	2.06818
C	-0.80835	1.26642	0.90762
C	2.27032	-0.01313	0.18969
N	3.32132	0.19854	-0.75012
O	3.31078	-0.72795	-1.79633
O	4.52494	0.06146	-0.01394
H	2.37477	0.73925	0.96842
H	3.53697	-1.60510	-1.43245
H	5.15648	0.66931	-0.42699
O	2.50974	-1.36178	0.90911
H	3.38726	-1.32814	1.32795
H	1.62903	-1.63744	1.68815

Ilieva et al.
ESI
S36
Element	X	Y	Z
O	-1.37527	-1.07759	-1.95633
O	-2.28336	-1.76342	0.00594
C	-3.59102	-2.06162	-0.60815
H	-3.99125	-2.84618	0.03117
H	-3.40605	-2.46081	-1.60449
C	-4.47604	-0.83360	-0.63448
H	-5.45664	-1.11006	-1.03071
H	-4.06480	-0.05498	-1.27927
H	-4.62430	0.04297	0.36912

TS [2.2/4']

-1009.3845499

Element	X	Y	Z
O	-1.18943	-2.29431	-0.24983
C	0.09088	-2.11347	0.17343
O	0.87363	-3.01367	0.09284
C	0.41016	-0.75205	0.79101
H	0.00767	-0.77917	1.80995
C	1.92320	-0.58410	0.93097
C	-0.28183	0.40602	0.01047
H	0.18228	0.51059	-0.97222
C	-1.76164	0.07290	-0.12385
C	-2.76576	1.04570	-0.17483
H	-2.48585	2.09361	-0.10717
C	-4.10030	0.67321	-0.31347
H	-4.86833	1.43762	-0.35264
C	-4.44552	-0.67493	-0.40310
H	-5.48433	-0.96783	-0.51095
C	-3.45814	-1.65437	-0.36112
H	-3.69469	-2.70912	-0.44005
C	-2.13008	-1.26904	-0.22331
C	-0.10399	1.67134	0.78109
N	0.46270	2.79085	0.35313
O	1.00197	2.69072	-0.95071
O	-0.73573	3.56609	0.44742
H	1.50628	3.51102	-1.04834
H	-0.43303	1.72062	1.81217
O	2.49016	-0.54793	1.99335
O	2.50540	-0.46075	-0.26304
C	3.95482	-0.33885	-0.27780
H	4.37120	-1.21424	0.22378
H	4.22870	0.54564	0.30077
C	4.39039	-0.24166	-1.72307
H	5.47862	-0.14855	-1.77252
H	3.95149	0.63161	-2.21071
H	4.09991	-1.13311	-2.28286
TS [2.2/4’’]

	ImagFreq/IR inten: -897.0411/42.6806
O	0.12374 0.46193 1.71061
C	-0.32071 -0.77258 1.27250
O	-0.67531 -1.57055 2.08358
C	-0.31564 -0.99247 -0.23453
H	-0.24140 -2.07485 -0.37962
C	-1.61565 -0.53837 -0.91319
C	0.87775 -0.32134 -0.92439
H	0.70271 -0.33872 -2.00576
C	0.99118 1.12512 -0.46264
C	1.46726 2.15706 -1.27570
H	1.76770 1.93378 -2.29515
C	1.54118 3.46108 -0.79827
H	1.90743 4.25378 -1.44098
C	1.13175 3.74444 0.50661
H	1.18457 4.75973 0.88477
C	0.64722 2.73255 1.32759
H	0.31885 2.92870 2.34170
C	0.58539 1.42954 0.83885
C	2.20301 -0.95754 -0.66948
N	2.36864 -2.00054 -0.12613
O	3.73346 -2.23184 0.41881
O	1.76925 -2.95827 -0.73874
H	3.71173 -2.77134 1.22229
H	3.09054 -0.47134 -1.08102
O	-1.68449 -0.26350 -2.08595
O	-2.64529 -0.52909 -0.06620
C	-3.95142 -0.19790 -0.61650
H	-4.16938 -0.90278 -1.42102
H	-3.89491 0.80230 -1.05066
C	-4.95465 -0.28264 0.51255
H	-5.95221 -0.04215 0.13502
H	-4.71324 0.42263 1.31065
H	-4.98386 -1.28707 0.93955

TS [6.1/6.2]

	ImagFreq/IR inten: -2358.3760/451.6270
O	-0.06854 0.43936 1.68772
C	-0.41342 -0.85204 1.38164
O	-0.74195 -1.59036 2.26275
C	-0.34948 -1.24175 -0.08829
C	-1.64319 -0.92246 -0.84874
H	-0.24827 -2.32896 -0.11370
C	0.85550 -0.60347 -0.82359
H	0.67244 -0.74156 -1.89308
C	0.90334 0.87263 -0.50323

Ilieva et al.

ESI
	x	y	z
C	1.40390	1.82778	-1.39334
H	1.77491	1.50101	-2.36017
C	1.42830	3.17725	-1.05907
H	1.82015	3.90380	-1.76250
C	0.94224	3.59163	0.18325
H	0.05082	2.95494	2.05178
C	0.41960	1.31301	0.73057
C	2.18141	-1.29023	0.52479
C	0.42830	3.17725	-1.05907
H	1.82015	3.90380	-1.76250
C	0.94224	3.59163	0.18325
H	0.05082	2.95494	2.05178
C	0.41960	1.31301	0.73057
C	2.18141	-1.29023	0.52479
O	1.77491	1.50101	-2.36017
H	2.50184	-3.05935	-1.34674
H	3.71933	-1.28859	-0.76648
O	-1.75442	-1.08336	-2.03937
O	-2.61220	-0.47145	-0.04795
C	-3.89661	-0.17664	-0.66501
H	-4.26538	-1.09117	-1.13315
H	-3.73486	0.56314	-1.45156
C	-4.81934	0.32731	0.42239
H	-5.79940	0.55538	-0.00542
H	-4.42855	1.23747	0.88231
H	-4.95435	-0.42234	1.20475

TS [6.2/6.3]

-1009.4706740 ImgFreq/IR inten: -1882.8793/388.3928

	x	y	z
O	-0.04427	0.29626	1.74619
C	-0.30341	-0.95570	1.26302
O	-0.56556	-1.83733	2.03035
C	-0.19444	-1.12764	-0.24575
C	-1.45031	-0.67914	-1.00602
H	-0.10378	-2.20011	-0.41966
C	1.03537	-0.38098	-0.80309
H	0.96782	-0.40479	-1.89573
C	0.96566	1.06020	-0.33394
C	1.42352	2.13817	-1.09241
H	1.87598	1.94810	-2.05977
C	1.31141	3.44036	-0.61587
H	1.67420	4.26814	-1.21507
C	0.73250	3.67708	0.63193
H	0.64234	4.69059	1.00799
C	0.26630	2.61619	1.40105
H	-0.18339	2.77059	2.37508
C	0.39039	1.32084	0.90956
C	2.36007	-1.00300	-0.44631
O	3.48247	-0.39776	-0.63062

Ilieva et al.

ESI
Atom	X	Y	Z
N	2.68478	-2.16747	0.07744
O	1.80882	-3.26024	0.14928
H	3.87375	-1.59225	-0.16488
H	1.77208	-3.50534	1.08586
O	-1.46999	-0.52266	-2.20107
O	-2.50183	-0.53356	-0.19688
C	-3.76878	-0.17358	-0.81783
H	-4.03172	-0.95854	-1.52956
H	-3.62290	0.75311	-1.37582
C	-4.79252	-0.02979	0.28651
H	-5.76159	0.23513	-0.14486
H	-4.50724	0.75510	0.99011
H	-4.90972	-0.96312	0.84102

TS [6.1/6.2]w	ImgFreq/IR inten: -1591.9468/751.6748
O	-0.27101 0.20815 1.78077
C	-0.69254 -1.01883 1.33899
O	-1.09611 -1.81964 2.13022
C	-0.57786 -1.26624 -0.15893
C	-1.77683 -0.74951 -0.96300
H	-0.56897 -2.34902 -0.29058
C	0.73258 -0.66302 -0.73172
H	0.67039 -0.75294 -1.81816
C	0.75444 0.79592 -0.34169
C	1.18873 1.81571 -1.19175
H	1.57814 1.55669 -2.17061
C	1.13698 3.14865 -0.79519
H	1.48479 3.92662 -1.46624
C	0.62748 3.48006 0.46122
H	0.58565 4.51698 0.77744
C	0.15411 2.48370 1.30822
H	-0.26008 2.71248 2.28330
C	0.21331 1.15777 0.89392
C	1.92376 -1.53849 0.25601
O	1.66393 2.87166 -0.55637
N	2.68769 1.36692 0.83592
O	3.09798 -0.17379 1.11440
H	2.20499 -3.41614 0.03587
H	3.02713 -0.89176 -1.06058
H	3.58101 0.33022 -0.23184
O	3.74171 0.04715 -1.23589
H	4.65591 -0.25590 -1.32731
O	-1.78679 -0.70227 2.16793
O	-2.79972 -0.39882 0.17791
C	-4.01476 0.04980 0.83973
H	-4.35050 -0.74484 -1.50887

Ilieva et al.
ESI
S40
Element	X	Y	Z
H	-3.76905	0.92166	-1.44926
C	-5.03065	0.36457	0.23620
H	-5.96236	0.70125	-0.22660
H	-4.67380	1.15651	0.89815
H	-5.24955	-0.51692	0.84233

TS [6.2/6.3]w

X	Y	Z	
-1085.9655039	ImgFreq/IR inten: -1717.4712/137.0958		
O	-0.61659	0.68170	1.74190
C	-0.51235	-0.67707	1.60938
O	-0.65734	-1.37194	2.57035
C	-0.28650	-1.20553	0.19804
C	-1.62110	-1.39657	-0.55656
H	0.11610	-2.21489	0.31667
C	0.65933	-0.34555	-0.67394
H	0.42496	-0.59128	-1.71061
C	0.37587	1.12462	-0.44512
C	0.71167	2.08984	-1.40047
H	1.20738	1.77242	-2.31300
C	0.41769	3.43411	-1.19964
H	0.68772	4.16639	-1.95261
C	-0.23425	3.83168	-0.03072
H	-0.47426	4.87695	0.13291
C	-0.58295	2.88881	0.92886
H	-1.08883	3.16941	1.84571
C	-0.27246	1.54641	0.71688
C	2.13871	-0.70278	-0.55949
O	2.70051	-1.18898	-1.61302
N	2.87538	-0.54246	0.51659
O	2.18091	-0.18466	1.68508
H	3.87443	-1.47578	-1.27767
H	2.62463	0.60684	2.01981
H	4.07106	-1.07996	0.31145
O	4.80309	-1.54519	-0.51103
H	5.09003	-2.44579	-0.32377
O	-1.67276	-1.65085	-1.73354
O	-2.67672	-1.28244	0.25166
C	-3.99762	-1.49826	-0.32309
H	-4.59398	-1.83495	0.52424
H	-3.92642	-2.30044	-1.05766
C	-4.55031	-0.22274	-0.93120
H	-5.57140	-0.39859	-1.28205
H	-3.95231	0.10148	-1.78457
H	-4.58002	0.58254	-0.19378

TS [6.2/7]^w

X	Y	Z	
-1086.3392486	ImgFreq/IR inten: -156.1182/85.2664		
O	-0.03895	0.61962	1.01697
\[
\begin{array}{cccc}
C & 0.08204 & 1.21589 & -0.19435 \\
O & 0.78255 & 2.31514 & -0.17355 \\
C & 0.22495 & 0.28862 & -1.38262 \\
C & 1.44070 & -0.66226 & -1.36529 \\
H & 0.35559 & 0.87696 & -2.28955 \\
C & -1.09055 & -0.50942 & -1.35670 \\
H & -1.26239 & -1.13239 & -2.23281 \\
C & -1.12028 & -1.29639 & -0.05272 \\
C & -1.66032 & -2.57548 & 0.08031 \\
H & -2.07992 & -3.07127 & -0.78891 \\
C & -1.65224 & -3.21604 & 1.31659 \\
H & -2.06406 & -4.21417 & 1.40893 \\
C & -1.11225 & -2.57594 & 2.43256 \\
H & -1.10598 & -3.07444 & 3.39499 \\
C & -0.57520 & -1.29562 & 2.32226 \\
H & -0.15042 & -0.78329 & 3.17743 \\
C & -0.58685 & -0.67592 & 1.08233 \\
C & -2.14059 & 0.55690 & -1.18791 \\
O & -3.40562 & 0.33137 & -1.42602 \\
N & -1.62990 & 1.62893 & -0.67406 \\
O & -2.52376 & 2.53486 & -0.13073 \\
H & -3.96109 & 1.07937 & -1.14114 \\
H & -2.16699 & 3.41722 & -0.31875 \\
O & 0.98496 & 3.65438 & 2.08389 \\
H & 0.85549 & 2.73868 & 0.73009 \\
H & 0.94332 & 3.30070 & 2.97929 \\
H & 1.51759 & 4.45788 & 2.10538 \\
O & 1.44703 & 1.66450 & -2.03015 \\
O & 2.43361 & -0.20890 & -0.61217 \\
C & 3.67240 & -0.99818 & -0.60942 \\
H & 4.01838 & -1.07314 & -1.64100 \\
H & 3.42650 & -2.00099 & -0.25767 \\
C & 4.66298 & -0.29212 & 0.28629 \\
H & 5.59822 & -0.85693 & 0.30584 \\
H & 4.29326 & -0.21935 & 1.31138 \\
H & 4.88454 & 0.71269 & -0.07898 \\
\end{array}
\]

TS [7/8]**w**

TS [7/8]**w**	ImgFreq/IR inten: -1839.7895/970.5662
-1086.2689347	
O	0.08406
C	-0.28746
O	0.07164
C	0.22071
C	1.70454
H	-0.05454
C	-0.69001
H	-0.77698

Ilieva et al.

ESI
C	-0.19270	1.40713	0.38806
C	-0.11509	2.72247	0.84643
H	-0.44738	2.95874	1.85166
C	0.40878	3.72345	0.02974
H	0.47286	4.73992	0.40083
C	0.85841	3.41860	-1.25372
H	1.26763	4.20001	-1.88631
C	0.78350	2.11384	-1.74295
H	1.11288	1.86521	-2.74687
C	0.26119	1.14065	-0.91179
C	-2.01762	-0.24462	0.70225
O	-3.14873	0.26095	1.01149
N	-1.76152	-1.20566	-0.15642
O	-2.66400	-1.72984	-1.03926
H	-3.97845	-0.10447	0.54178
H	-2.16188	-2.44549	-1.48395
H	0.54867	-1.17193	-1.84882
O	-5.32543	-0.56003	-0.03372
H	-5.43594	-1.19739	-0.74801
H	-6.18968	-0.23300	0.24249
O	2.07253	-0.17786	2.26541
O	2.47453	-1.10819	0.24462
C	3.92581	-0.95481	0.42198
H	4.20092	-1.47367	1.34082
H	4.13295	0.10801	0.55418
C	4.60070	-1.53612	-0.79811
H	5.68416	-1.44880	-0.68617
H	4.31530	-1.00308	-1.70785
H	4.35886	-2.59345	-0.92156

TS [7/8]^2w		
-1086.3192152	ImgFreq/IR inten: -241.5133/103.9918	

O	1.12946	-0.32845	1.23109
C	1.04494	-1.39068	0.09142
O	1.32662	-2.52020	0.52634
C	-0.18667	-1.01586	-0.77318
C	-1.53165	-1.02251	-0.06197
H	-0.25155	-1.76060	-1.57295
C	0.24861	0.35502	-1.36575
H	-0.31872	0.67145	-2.23613
C	0.27109	1.39336	-0.25631
C	-0.10878	2.72419	-0.44094
H	-0.45332	3.04948	-1.41684
C	-0.05195	3.62649	0.61636
H	-0.35786	4.65561	0.46734
C	0.39782	3.20050	1.86537
H	0.44650	3.90037	2.69119

Ilieva et al.
ESI

S43
Element	x1	y1	z1	x2	y2	z2
C	0.79580	1.88177	2.06552			
H	1.16621	1.54967	3.02949			
C	0.72880	0.98223	1.00505			
C	1.69573	0.07247	-1.71632			
O	2.34889	0.74196	-2.6240			
N	2.14074	-0.84886	-0.93741			
O	3.42832	-1.26955	-0.88320			
H	3.29221	0.50633	-2.67057			
H	3.37496	-2.11070	-0.38158			
O	0.53154	-2.80744	2.42565			
H	0.60697	-1.26384	2.51646			
C	3.00000	0.00000	0.00000			
C	0.00000	0.00000	0.00000			
O	0.00000	0.00000	0.00000			
H	0.00000	0.00000	0.00000			
C	0.00000	0.00000	0.00000			
C	0.00000	0.00000	0.00000			
O	0.00000	0.00000	0.00000			
H	0.00000	0.00000	0.00000			

TS [8+2w:8:H3O+]

Element	x1	y1	z1	x2	y2	z2
O	0.84579	0.90551	1.45784			
C	1.09635	-1.93547	0.02528			
O	1.28568	-2.90840	0.70111			
C	-0.12253	-1.32698	-0.62093			
C	-1.34129	-1.30988	0.31559			
H	-0.37555	-1.96054	-1.47510			
C	0.36048	0.08689	-1.14785			
H	0.22617	0.12211	-2.23224			
C	-0.34045	1.29120	-0.54810			
C	-1.27778	2.02020	-1.28600			
H	-1.47004	1.75683	-2.32216			
C	-1.98545	3.06456	-0.69726			
H	-2.71679	3.61806	-1.27582			
C	-1.74970	3.39308	0.63755			
H	-2.29492	4.20712	1.10234			
C	-0.80710	2.68763	1.38199			
H	-0.60850	2.95155	2.41636			
C	-0.11116	1.64000	0.78741			
C	1.86881	0.08940	-0.88648			
N	2.67072	0.99953	-1.12165			
O	2.18315	-1.11810	-0.35624			
O	3.43940	-1.46087	0.11094			

Ilieva et al.

ESI
Element	X	Y	Z
H	3.93901	1.00447	-0.53374
H	3.27435	-2.27699	0.63278
H	0.58282	0.75597	2.37450
O	4.80041	0.75920	0.09365
H	4.59312	-0.16152	0.38487
H	5.67203	0.80771	-0.32973
O	-2.45079	-1.45929	-0.39987
O	-1.27683	-1.17520	1.50946
C	-3.72170	-1.43995	0.33299
C	-4.83078	-1.66448	-0.66834
H	-3.79861	-0.47491	0.83613
H	-3.67691	-2.22109	1.09285
H	-5.79330	-1.64531	-0.15130
H	-4.73301	-2.63382	-1.16111
H	-4.84311	-0.88402	-1.43189