Epigenetic regulation of antigen receptor gene rearrangement

Ann J. Feeney
Department of Immunology and Microbial Science, IMM22, The Scripps Research Institute,
10550 N. Torrey Pines Rd., La Jolla, CA 920137

Summary
Recent studies of the regulation of antigen receptor rearrangement have revealed several completely new levels of control. Not only do antigen receptor loci undergo changes in histone modifications as they become accessible for recombination, but the number of different histone modifications and the variation at different parts of each receptor locus reveal great complexity. RAG2 is now known to bind to one of these histone modifications, H3K4me3, and this targets the initial RAG binding events to the J genes. The large megabase receptor loci undergo 3-D changes in their structure during rearrangement, and receptor loci move throughout the nucleus, transiently binding to heterochromatin, and transiently pairing with each other. RAG-mediated DNA breaks promote some of these movements, and also result in widespread changes in the transcriptional profile promoting differentiation.

Introduction
The V(D)J rearrangement process provides us with a highly diverse collection of antibodies and T cells to combat a wide variety of pathogens. This process rearranges V, D and J genes located in 6 distinct complex receptor loci, and it is under precise T vs. B lineage specificity. In addition, there is tight developmental stage specificity of the recombination process, with individual loci recombining in an ordered manner. Furthermore, within a locus, D to J recombination always occurs before V to DJ gene rearrangement. Alt and colleagues proposed the “accessibility hypothesis” to explain this complex regulation, and this model has been confirmed by extensive experimental support over the years, most strongly by the experiments demonstrating that in vitro cleavage at RSS within intact nuclei recapitulate the lineage- and stage-specificity observed in vivo [1,2]. In the intervening 25 years since this hypothesis was first proposed, we have learned a lot more about the epigenetic, transcriptional and 3-dimensional regulation of the complex process of V(D)J recombination, and I will review the current status in this article.

Epigenetic changes at histone tails at antigen receptor loci
The core unit of chromatin is the nucleosome, which consists of an octamer of histone proteins (Fig. 1). The tails of the histone proteins are subject to a variety of post-translational modifications. Genes in receptor loci that were actively undergoing recombination have been shown to be associated with acetylated histones and other histone posttranslational
modifications associated with active genes, whereas the histones did not have these marks in loci that were not yet recombining [3–7]. However, it is too simplistic to think of chromatin as either open and accessible or closed and inaccessible. The extent of specific histone modifications can be very different on V, D or J genes even when all of the genes are poised for recombination. For example, H3K4me3 is restricted to J genes and a few very closely located D genes, while dimethylation of H3K4 is more widely spread among V, D and J genes of poised loci [4,8–10]. Although V and D genes can be associated with acetylated histones, the level of acetylation is far higher on J genes than on any V genes, even during the stage of V\textsubscript{H} to DJ\textsubscript{H} rearrangement [4,9].

RAG1 and RAG2 as “readers” and “writers” of histone modifications

More recently, it has become appreciated that the predominant consequence of these various histone modifications was to act as docking sites for recruitment of complexes containing chromatin modifying proteins and/or transcription factors to that region (recruiting “readers” of epigenetic marks)[11]. One very exciting example of this with high relevance for V(D)J recombination was the finding that the PHD domain in the non-core portion of RAG2 specifically bound to H3 when it was trimethylated at lysine 4 (Fig. 1). Furthermore, mutations in the PHD domain that abolish binding H3K4me3 resulted in greatly impaired VDJ recombination activity [8,12]. Since antigen receptor loci that are rearranging have high levels of H3K4me3 on the J genes, this predicts that RAG2 would be directly recruited to J genes [8,9]. Preferential binding of RAG2 to J genes suggested a mechanism by which ordered recombination of D to J before V to DJ could be achieved [9,10]. In elegant demonstration of the validity of this hypothesis, Ji et al. have shown by ChIP that RAG2 binds to J genes at all of the receptor loci in a lineage specific manner, as well as binding to H3K4me3 throughout the genome of these cells [10]. In contrast, RAG1 binds only to RSS at J genes within the active loci. Thus, the RAG1 and RAG2 binding pattern results in ordered DJ before V to DJ rearrangement in a lineage-specific manner, and these studies directly link epigenetic changes in the receptor loci to recruitment of the recombinase. Although this data help explain the mechanism by which lineage restriction and the beginning of ordered rearrangement is controlled, it was observed that RAG1 and RAG2 continues to bind to the J\textsubscript{H} and J\textsubscript{B} genes in pre-B and double positive (DP) thymocytes, respectively, suggesting that the control of allelic exclusion, and cessation of rearrangement of IgH and TCR\textsubscript{B} genes at the second allele at the subsequent stage of development is not controlled by accessibility of the J genes. Rather, it is likely to be controlled at the level of accessibility of the V gene locus as described in more detail below. In addition to targeting RAG2 to the J genes, H3K4me3 serves an additional function in that binding of H3K4me3 to RAG2 increases the enzymatic activity of the RAG complex [13].

RAG2 is not alone in its epigenetic functions. RAG1 has a RING finger in its non-core region, and this domain functions as an E3 ubiquitin ligase (making it an epigenetic “writer”) [14]. It can ubiquitinate histone H3 and non-histone proteins in vitro, and it undergoes auto-ubiquitination in vivo [15]. Very little is known about any physiological substrates of this E3 ligase activity. However, the fact that mutations in the RING finger that reduce catalytic activity in vitro result in decreased recombination of a transfected extrachromosomal recombination substrate, and furthermore, that some of these ligase mutations have been found in Omenn’s Syndrome immunodeficiency patients, strongly suggests that the E3 ubiquitin ligase activity is likely to be of functional significance for V(D)J recombination [16,17].
Germline transcription: first sense and now antisense too

It has been known for over 25 years that unrearranged V gene segments and J-C regions are transcribed in a lineage- and stage-specific manner [18,19]. However, it remained unclear for a long time whether germline transcription was required to establish accessibility, or whether it was merely a byproduct of the fact that the region had been made accessible. Strong evidence that germline transcription was required for rearrangement came from a study in which a transcriptional terminator element was targeted into the Jα locus [20]. This abrogated transcription of several Jα genes downstream of the terminator, and it also abolished recombination to those Jα genes. Importantly, this same region also showed greatly reduced levels of histone acetylation and H3K4me3. Since histone methyltransferases that methylate H3K4 often travel with the RNA polymerase II complex, and since RAG2 is recruited to H3K4me3, these data suggest that germline transcription is important for inducing accessibility by adding the H3K4me3 mark onto histones surrounding J genes. It should be noted that the germline transcription through J-C regions is the most easily detectable germline transcription at all receptor loci, which may account for the fact that J genes are enriched in H3K4me3 and are the first genes to undergo rearrangement.

A newer role for germline transcription in influencing accessibility emerged with the discovery by Corcoran and colleagues that there is extensive antisense transcription throughout the large VH region of the IgH locus [21]. This antisense transcription is even more strictly regulated than sense germline transcription, in that it first appears after DJH rearrangement, and ceases after VH to DJH rearrangement. Based on this timing, it was proposed that the antisense transcription serves to open the VH locus for VH gene rearrangement. Subsequently, the Corcoran lab and the lab of Ranjan Sen both demonstrated that antisense transcription also occurs in the DH locus, and the timing of this antisense transcription suggests that it promotes accessibility for DH to JH rearrangement [22,23]. Chakraborty et al. further suggest that DH antisense transcripts may pair with the low level of sense transcripts from the DSP genes resulting in Dicer-dependent repression of rearrangement of the DSP genes [23]. In support of this hypothesis, Dicer ablation in the germline results in an antibody repertoire with higher usage of DSP genes [24]. These long antisense DH and VH transcripts are likely to play a key role in regulating accessibility for recombination.

Chromatin remodeling and enhancers

In addition to probably adding the H3K4me3 mark, the act of transcription may disrupt nucleosomal structure, at least transiently. It has been demonstrated that in vitro assembly of RSS-containing DNA into a nucleosomal structure will reduce the ability of that DNA to undergo RAG-mediated cleavage [25,26]. Thus, it is likely that ATP-dependent chromatin remodeling may be necessary to make regions of DNA accessible to RAG binding and recombination [27,28]. In this regard, it has been shown that SWI/SNF complexes are recruited to the JH genes in an Eμ-dependent manner, and knockdown of the ATPase subunit of SWI/SNF results in reduction of antisense transcription, which begins near Eμ [28]. This suggests that Eμ may initiate accessibility by recruiting the SWI/SNF chromatin remodeling complex, and that this recruitment is necessary for antisense transcription to make the DH-JH region accessible [28]. Germline deletion of Eμ greatly reduces histone acetylation on DH and JH genes, reduces H3K4me3 levels on JH genes 3-fold, and reduces germline transcription, both sense and antisense, within the DH-JH region [29]. Coincident with loss of all of these indications of accessibility, deletion of Eμ greatly reduces IgH rearrangement [30,31]. In contrast to the DH-JH region, sense and antisense transcription are only reduced in the most proximal VH genes upon Eμ deletion. Thus, Eμ controls accessibility for ~400
kb upstream [23]. Likewise, E_α acts in a very similar pattern in controlling histone modifications and germline transcription of V_α genes for a distance of up to 500 kb from E_α, but not throughout the distal portion of the TCRα locus [7].

Nuclear repositioning and 3-D changes in the structure of receptor loci

The pioneering study of Kosak et al. showed that Ig receptor loci are located at the nuclear periphery in non-B cells, and they become centrally located in pro-B cells [32]. The nuclear periphery is thought to be a repressive environment, and this group has more recently directly demonstrated that targeting genes to the nuclear lamina does indeed result in repression [33]. In addition, in their earlier study, they made the surprising discovery that the IgH locus becomes compacted at the time of rearrangement [32]. Subsequent 3D-FISH studies by several labs have confirmed this finding, and extended it to the IgK and TCRβ loci [34,35]. The TCR α/δ locus is the most complex locus, with the TCR D_δ, J_δ, and C_δ genes being located upstream of the J_α genes and downstream of the intermixed V_α and V_δ genes. TCRδ genes rearrange at the double negative (DN) thymocyte stage, while TCRα rearrangement occurs later in the double positive (DP) stage. Recently, detailed 3D-FISH studies demonstrated that the most distal part of the TCR α/δ locus is contracted only in DN cells whereas the central portion of the locus and the J_α region is equally compacted in DN and DP thymocytes [36]. Since TCRδ rearrangement utilizes V genes scattered throughout the large V_α/δ locus, it is logical that contraction of the entire locus would be necessary for the rearrangement of distal V_δ genes in DN thymocytes. On the other hand, distal V_α do not rearrange until very late in the DP stage. Rather, the most 3' V_α genes rearrange with the most 5' J_α genes, the cells attempt to pass positive and negative selection, and if that fails, rearrangement proceeds outward in subsequent rearrangement events, using progressively more 5' V_α genes and more 3' J_α genes. Thus, this complex pattern of locus contraction fits precisely with the distinct rearrangement patterns of TCRδ vs. TCRα genes.

An elegant study examining the 3D structure of the IgH locus during locus contraction was performed by Jhunjhunwala et al. [37]. Measurement of spatial distances between many small 10 kb probes located throughout the IgH locus demonstrated that distal and proximal V_H genes were equidistant from the D genes specifically in the pro-B cell stage when the V_H genes are rearranging. Trilateration and triple-point measurements suggested that the locus is organized into clusters of loops forming rosette-like structures that become closely juxtaposed specifically in pro-B cells, but that are separate at other stages (Fig. 2). That this locus compaction is essential for rearrangement for most of the V_H genes is strongly supported by the fact that deficiency of Pax5, Ezh2, YY1, and most recently Ikaros, have all been associated with impairment in rearrangement of all V_H genes except the most proximal V_H gene family, and also with a lack of locus contraction [38–41]. Ezh2 methylates H3K27, and it has been shown that the proximal V_H genes are normally associated with H3K27me3 chromatin [42]. Furthermore, this repressive mark is absent in Pax5 deficient pro-B cells suggesting an interrelationship of these pathways [42].

It has been proposed by Degner et al. that CTCF, a ubiquitously expressed protein which has been demonstrated to form long-range chromatin loops at other large loci, may play a major role in the looping of the IgH locus during V(D)J rearrangement [43] (Fig. 2). In support of this hypothesis, they demonstrated by ChIP-chip that there are a large number of sites within the V_H portion of the IgH locus that are bound by CTCF, as well as two close sites just 5' of the most 5' functional D_H gene, and a large cluster at the far 3' end of the locus, within the 3' regulatory region [43]. It is of interest that the antisense transcription which goes through the entire D_H locus at the time of D-J rearrangement falls off just beyond the CTCF site upstream of DFL16 [44], and that the high level of histone acetylation around DFL16 also drops off beyond that CTCF site [23]. Both of these observations suggest a boundary...
function for the DFL-flanking CTCF site. These two regions of CTCF binding at DFL and the 3' RR may create a domain, probably by looping, which will allow D-J rearrangement to occur in a physically distinct domain from the V_H regions, thus acting in concert with preferential RAG binding to J_H RSSs in promoting ordered rearrangement [10,43–45].

Allelic exclusion, chromosomal movement, and association with heterochromatin

The explanation for why VDJ rearrangement only occurs on one allele at a time is still not completely understood. It is generally held that for the IgH and TCRβ loci which rearrange first, the constraints on continued rearrangement in pre-B cells or DP cells, respectively, occur at the level of lack of accessibility of the V locus. Yet even this is not well understood on a mechanistic level, as exemplified by the study of Jackson et al. in which insertion of the TCRα enhancer into the Vβ locus caused increased germline transcription and histone acetylation of nearby Vβ genes in DP thymocytes, yet those Vβ genes did not undergo rearrangement in the DP stage despite having all of these hallmarks of accessibility [46]. The study of Ji et al. demonstrated that the J_H region is still marked by H3K4me3 in the pre-B cell stage, and RAG2 and RAG1 are still bound to it [10]. The same is true for the J_β region in DP T cells, yet rearrangements do not occur at these receptor loci at that time.

Since compaction of the large V gene regions are necessary for efficient V(D)J rearrangement of V genes throughout the locus, it follows that de-contraction of the locus may render distal V genes inaccessibile for rearrangement. Indeed, it has been demonstrated that the IgH and TCRβ loci de-contracts in pre-B and DP thymocytes, respectively [34,35]. In pre-B cells, the IgH allele lacking the productive rearrangement is transiently associated with pericentric heterochromatin. Thus, it has been proposed by Skok and colleagues that locus de-contraction, and transient association with pericentric heterochromatin both aid to enforce allelic exclusion at the differentiative stage following the stage at which those loci normally undergo rearrangement [34].

Even during the stage at which rearrangement is occurring, large scale chromosomal movement may limit simultaneous V gene rearrangement on both alleles. For the kappa locus, it was demonstrated that one kappa allele became transiently associated with heterochromatin in pre-B cells. This allele was the allele that replicated later, and was not enriched in acetylated histones but was associated with HP-1 and Ikaros [47]. Presumably this transient monoallelic association in this repressive environment resulted in temporary inhibition of accessibility for recombination while the other allele was actively undergoing rearrangement. Likewise, in DN thymocytes, it has been reported that one TCRβ allele [35], or even more than one TCRβ alleles [48], were recruited to pericentric heterochromatin or the nuclear lamina [35]. This latter study demonstrated that insertion of the TCRα enhancer into the TCR Vβ locus resulted in less heterochromatin association of that allele, and enhanced rearrangement of the neighboring Vβ genes, in some cases resulting in a lack of allelic exclusion. Thus, it appears that transient relocation of the receptor loci to repressive environments can indeed result in decreased ability of V gene rearrangement [48].

Chromosomal pairing of IgH and Igκ alleles

Crosstalk between the two Ig receptor loci in pre-B cells also aids in controlling rearrangement. Hewitt et al. demonstrated that in pre-B cells, the Igκ allele associated with pericentric heterochromatin recruits the nonrearranged IgH allele to associate with it via a mechanism requiring 3'Eκ [49]. This interaction stimulated the de-contraction of the IgH locus, thus preventing further rearrangement. More recently, Hewitt et al have demonstrated that the two IgH alleles are transiently paired in a process that was dependent upon RAG
binding, but not RAG-mediated DNA cleavage [50]. When DNA breaks at the RSS do occur on one allele, the authors suggest that this signals transient repositioning of the other allele to heterochromatin in an ATM-dependent manner. This dynamic feedback system thus would prevent V_H recombination from happening on both alleles simultaneously. However, these types of analyses are complex to analyze, as the authors discuss in the addendum to their paper. RAG-mediated double strand DNA breaks do more than just this feedback signaling. Bredemeyer et al. demonstrated that these DNA breaks induce a broad transcriptional program that includes many genes involved in lymphocyte development [51]. Thus, V(D)J recombination is not only necessary for lymphocyte development by creating the antigen receptor, but it also provides cues to induce transcription of genes necessary for lymphocyte differentiation.

Conclusions and future directions

The past few years have revealed several new layers in the elegant complexity and crosstalk that regulate V(D)J rearrangement. The fact that RAG2 is recruited by an epigenetic mark is now quite clear, and it remains to be determined if RAG1’s E3 ubiquitin ligase activity also plays a role in regulating or recruiting RAG recombinase activity. The factors that regulate the changes in the 3-dimensional structure of these large receptor loci during recombination have yet to be fully characterized. The changes in subnuclear localization, transient recruitment to pericentric heterochromatin, and crosstalk between receptor loci on different chromosomes provide the opportunity for such architectural changes to regulate V(D)J rearrangement, in addition to the genetic, transcriptional and chromatin modifications that have been intensively studied over the past several years.

Acknowledgments

This work was supported by R01 AI29672 and R01 AI082918. The help of Daniella Carlson with the artwork is gratefully appreciated.

References

1. Yancopoulos GD, Alt FW. Regulation of the assembly and expression of variable-region genes. Ann Rev Immunol. 1986; 4:339–368. [PubMed: 3085692]
2. Stanhope-Baker P, Hudson KM, Shaffer AL, Constantinescu A, Schlissel MS. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell. 1996; 85:887–897. [PubMed: 8681383]
3. McMurry MT, Krangel MS. A role for histone acetylation in the developmental regulation of VDJ recombination. Science. 2000; 287:495–498. [PubMed: 10642553]
4. Morshead KB, Ciccone DN, Taverna SD, Allis CD, Oettinger MA. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc Natl Acad Sci U S A. 2003; 100:11577–11582. [PubMed: 14500909]
5. Chowdhury D, Sen R. Stepwise activation of the immunoglobulin mu heavy chain gene locus. Embo J. 2001; 20:6394–6403. [PubMed: 11707410]
6. Johnson K, Angelin-Duclos C, Park S, Calame KL. Changes in histone acetylation are associated with differences in accessibility of V_H gene segments to V-DJ recombination during B-cell ontogeny and development. Mol Cell Biol. 2003; 23:2438–2450. [PubMed: 12640127]
7. Hawwari A, Krangel MS. Regulation of TCR delta and alpha repertoires by local and long-distance control of variable gene segment chromatin structure. J Exp Med. 2005; 202:467–472. [PubMed: 16087716]
8. Liu Y, Subrahmanyam R, Chakraborty T, Sen R, Desiderio S. A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity. 2007; 27:561–571. [PubMed: 17936034]
9. Xu CR, Feeney AJ. The epigenetic profile of immunoglobulin genes is dynamically regulated during B cell differentiation and is modulated by pre-BCR signaling. J. Immunol. 2009; 182:1362–1369. [PubMed: 19155482]

10. Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz DG. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell. 2010; 141:419–431. [PubMed: 20398922] ** Using ChIP and ChIP-seq on chromatin from RAG-deficient lymphocytes, the authors demonstrate that RAG2 binds to J regions in accessible loci, and that this pattern of binding directly mirrors the pattern of H3K4me3, which has been previously shown to bind to the PHD domain of RAG2. Using ChIP, they demonstrate that RAG1 binds only to RSS in accessible J regions. Together, this pattern of binding in vivo creates a "recombination center" which coordinates V(D)J rearrangement and results in ordered rearrangement.

11. Wang Y, Fischle W, Cheung W, Jacobs S, Khorasanizadeh S, Allis CD. Beyond the double helix: writing and reading the histone code. Novartis Found Symp. 2004; 259:3–17. [PubMed: 15171244]

12. Matthews AG, Kuo AJ, Ramon-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. 2007; 450:1106–1110. [PubMed: 18033247]

13. Shimazaki N, Tsai AG, Lieber MR. H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol Cell. 2009; 34:535–544. [PubMed: 19524534] * The authors demonstrate that interaction between H3K4me3 and RAG2 enhances its DNA binding and enzymatic activity. Thus, H3K4me3 not only recruits RAG2 to J genes, but it increases its catalytic activity.

14. Yurchenko V, Xue Z, Sadofsky M. The RAG1 N-terminal domain is an E3 ubiquitin ligase. Genes Dev. 2003; 17:581–585. [PubMed: 12692039]

15. Simkus C, Makiya M, Jones JM. Karyopherin alpha 1 is a putative substrate of the RAG1 ubiquitin ligase. Mol Immunol. 2009; 46:1319–1325. [PubMed: 19118899]

16. Simkus C, Anand P, Bhattacharyya A, Jones JM. Biochemical and folding defects in a RAG1 variant associated with Omenn syndrome. J Immunol. 2007; 179:8332–8340. [PubMed: 18056378]

17. Simkus C, Bhattacharyya A, Zhou M, Veenstra TD, Jones JM. Correlation between recombinase activating gene 1 ubiquitin ligase activity and V(D)J recombination. Immunology. 2009; 128:206–217. [PubMed: 19740377]

18. Van Ness BG, Weigert M, Coleclough C, Mather EL, Kelley DW, Perry RP. Transcription of the unrearranged mouse Ck locus: Sequence of the initiation region and comparison of activity with a rearranged Vk-Ck gene. Cell. 1981; 27:593–602. [PubMed: 6101210]

19. Yancopoulos GD, Alt FW. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell. 1985; 40:271–281. [PubMed: 2578321]

20. Abarrategui I, Krangel MS. Regulation of T cell receptor-alpha gene recombination by transcription. Nat Immunol. 2006; 7:1109–1115. [PubMed: 16936730]

21. Bolland DJ, Wood AL, Johnston CM, Bunting SF, Morgan G, Chakalova L, Fraser PJ, Corcoran AE. Antisense intergenic transcription in V(D)J recombination. Nat Immunol. 2004; 5:630–637. [PubMed: 15107847]

22. Bolland DJ, Wood AL, Afshar R, Featherstone K, Oltz EM, Corcoran AE. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol. 2007; 27:5523–5533. [PubMed: 17526723]

23. Chakraborty T, Chowdhury D, Keyes A, Jani A, Subrahmanyan R, Ivanova I, Sen R. Repeat organization and epigenetic regulation of the DH-Cμ domain of the immunoglobulin heavy-chain gene locus. Mol Cell. 2007; 27:842–850. [PubMed: 17803947]

24. Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C, Jensen K, Cobb BS, Merkenschlager M, Rajewsky N, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell. 2008; 132:860–874. [PubMed: 18329371]

25. Golding A, Chandler S, Ballestar E, Wolfle AP, Schlissel MS. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. Embo J. 1999; 18:3712–3723. [PubMed: 10393186]
26. Kwon J, Imbalzano AN, Matthews A, Oettinger MA. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol Cell. 1998; 2:829–839. [PubMed: 9885570]
27. Osipovich O, Cobb RM, Oestreich KJ, Pierce S, Ferrier P, Oltz EM. Essential function for SWI-SNF chromatin-remodeling complexes in the promoter-directed assembly of Tcrb genes. Nat Immunol. 2007; 8:809–816. [PubMed: 17589511]
28. Osipovich OA, Subrahmanyam R, Pierce S, Sen R, Oltz EM. Cutting edge: SWI/SNF mediates antisense Igh transcription and locus-wide accessibility in B cell precursors. J Immunol. 2009; 183:1509–1513. [PubMed: 19414554]
29. Chakraborty T, Perlot T, Subrahmanyam R, Jani A, Goff PH, Zhang Y, Ivanova I, Alt FW, Sen R. A 220-nucleotide deletion of the intronic enhancer reveals an epigenetic hierarchy in immunoglobulin heavy chain locus activation. J Exp Med. 2009; 206:1019–1027. [PubMed: 19414554]
30. Perlot T, Alt FW, Bassing CH, Suh H, Pinaud E. Elucidation of Igh intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci U S A. 2005; 102:14362–14367. [PubMed: 16186486]
31. Afshar R, Pierce S, Bolland DJ, Corcoran A, Oltz EM. Regulation of Igh gene assembly: role of the intronic enhancer and 5'DQ52 region in targeting DHJH recombination. J Immunol. 2006; 176:2439–2447. [PubMed: 16466003]
32. Kosak ST, Skok JA, Medina KL, Riblet R, Le Beau MM, Fisher AG, Singh H. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 2002; 296:158–162. [PubMed: 11935030]
33. Reddy KL, Zullo JM, Bertolino E, Singh H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature. 2008; 452:243–247. [PubMed: 18272965]
34. Roldan E, Fuxa M, Chong W, Martinez D, Novatchkova M, Busslinger M, Skok JA. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol. 2005; 6:31–41. [PubMed: 15580273]
35. Skok JA, Gisler R, Novatchkova M, Farmer D, de Laat W, Busslinger M. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat Immunol. 2007; 8:378–387. [PubMed: 17334367]
36. Shih HY, Krangel MS. Distinct contracted conformations of the Tcra/Tcra locus during Tcra and Tcrd recombination. J Exp Med. 2010; 207:1835–1841. [PubMed: 20696701]
37. Jhunjhunwala S, van Zelm MC, Peak MM, Cutchin S, Riblet R, van Dongen JJ, Grosveld FG, Knoch TA, Murre C. The 3D structure of the immunoglobulin heavy-chain locus: implications for longrange genomic interactions. Cell. 2008; 133:265–279. [PubMed: 18423198] ** This elegant 3D-FISH study, using 12 small DNA probes spanning the 2.5 Mb Igh locus, provides a detailed model of the 3-D changes that take place in the topology of the Igh locus during V(D)J rearrangement. The authors show that the Igh locus is organized into multiple compartments containing clusters of loops, and that during Igh rearrangement, these loops merge, with the result that distal and proximally located V_H genes are approximately equidistant from the DJ rearrangement, providing equal access of all V_H genes to undergo rearrangement.
38. Fuxa M, Skok J, Souabni A, Salvagiotto G, Roldan E, Busslinger M. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 2004; 18:411–422. [PubMed: 15004008]
39. Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A, Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003; 4:124–131. [PubMed: 12496962]
40. Liu H, Schmidt-Supprian M, Shi Y, Hobeika E, Barteneva N, Jumaa H, Pelanda R, Reth M, Skok J, Rajewsky K, et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 2007; 21:1179–1189. [PubMed: 17504937]
41. Reynaud D, Demarco IA, Reddy KL, Schjerven H, Bertolino E, Chen Z, Smale ST, Winandy S, Singh H. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nat Immunol. 2008; 9:927–936. [PubMed: 18568028]
42. Xu CR, Schaffer L, Head SR, Feeney AJ. Reciprocal patterns of methylation of H3K36 and H3K27 on proximal vs. distal IgVH genes are modulated by IL-7 and Pax5. Proc Natl Acad Sci U S A. 2008; 105:8685–8690. [PubMed: 18562282]
43. Degner SC, Wong TP, Jankevicius G, Feeney AJ. Cutting Edge: Developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development. J Immunol. 2009; 182:44–48. [PubMed: 19109133] * Using ChIP-chip, the authors show that CTCF and cohesin bind at a large number of sites within the Ig loci, and they propose that CTCF/cohesin complexes may be responsible for the large scale looping of receptor loci during recombination and for forming domains in which recombination occurs.
44. Featherstone K, Wood AL, Bowen AJ, Corcoran AE. The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination. J Biol Chem. 2010; 285:9327–9338. [PubMed: 20100833]
45. Degner-Leisso SC, Feeney AJ. Epigenetic and 3-dimensional regulation of V(D)J rearrangement of immunoglobulin genes. Semin Immunol. 2010; 22:346–352. [PubMed: 20833065]
46. Jackson A, Kondilis HD, Khor B, Sleckman BP, Krangel MS. Regulation of T cell receptor beta allelic exclusion at a level beyond accessibility. Nat Immunol. 2005; 6:189–197. [PubMed: 15640803]
47. Goldmit M, Ji Y, Skok J, Roldan E, Jung S, Cedar H, Bergman Y. Epigenetic ontogeny of the Igk locus during B cell development. Nat Immunol. 2005; 6:198–203. [PubMed: 15619624]
48. Schlimgen RJ, Reddy KL, Singh H, Krangel MS. Initiation of allelic exclusion by stochastic interaction of Tcrb alleles with repressive nuclear compartments. Nat Immunol. 2008; 9:802–809. [PubMed: 18536791] * The authors demonstrate that the TCRβ locus associates stochastically and at high frequency with pericentric heterochromatin or the nuclear lamina. They provide evidence that association with those repressive compartments reduced V(D)J recombination, and they propose that this may account for allelic exclusion at the TCRβ locus.
49. Hewitt SL, Farmer D, Marszalek K, Cadera E, Liang HE, Xu Y, Schlissel MS, Skok JA. Association between the Igk and Igh immunoglobulin loci mediated by the 3’ Igk enhancer induces ‘decontraction’ of the Igh locus in pre-B cells. Nat Immunol. 2008; 9:396–404. [PubMed: 18297074] * The authors demonstrate that one Igk allele binds to pericentric heterochromatin in pre-B cells and recruits the non-productively rearranged IgH allele to it, thus positioning that IgH allele in a repressive environment. Furthermore, this movement of the IgH allele is accompanied by locus de-contraction. Together, these two events provide a mechanism by which continued rearrangement of the non-productive IgH allele is prevented during pre-B cell stage, thus ensuring allelic exclusion of the IgH locus.
50. Hewitt SL, Yin B, Ji Y, Chaumeil J, Marszalek K, Tenthorey J, Salvagiotto G, Steinel N, Ramsey LB, Gysdael J, et al. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nat Immunol. 2009; 10:655–664. [PubMed: 19448632]
51. Bredemeyer AL, Helmink BA, Innes CL, Calderon B, McGinnis LM, Mahowald GK, Gapud EJ, Walker LM, Collins JB, Weaver BK, et al. DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature. 2008; 456:819–823. [PubMed: 18849970] ** The authors show that RAG-mediated double strand breaks not only elicit genes involved in the DNA-damage response pathway, but that they stimulate a much broader transcriptional program which includes many genes important for lymphocyte development. Thus, V(D)J recombination not only provides a complete receptor chain which is necessary for lymphocyte development, but the recombination event elicits a much wider array of genes to promote lymphocyte differentiation.
Fig. 1. Epigenetic regulation of V(D)J recombination at the *Igh* locus. A. Structure of the *Igh* locus.

B. The DNA is organized into nucleosomes with the DNA wound around the histone octamers (blue circles). Germline transcription occurs in the sense direction (straight red lines) and antisense direction (wavy red line) preceding D_H to J_H recombination. J_H genes have histone 3 trimethylated at lysine 4 (gold circles). C. RAG2 binds to the H3K4me3 associated with J_H genes, and D_H to J_H recombination ensues. D. After DJ rearrangement, antisense transcription occurs throughout the V_H regions. E. V_H to DJ_H rearrangement occurs.
Fig. 2.
Three dimensional changes at the *Igh* locus. Pre-pro-B cells have multiple rosette-like looping structures. The *DH* and *JH* genes and enhancers are distantly located from the *VH* genes. In the pro-B cell stage, these compartments come together in a process known as locus compaction. There are many CTCF sites throughout the *VH* locus (white squares) that may facilitate the large scale proteins. There are binding sites for a variety of other DNA binding proteins throughout the locus that may also play a role in locus compaction.