Supplementary Material

Effects of meteorological factors and anthropogenic precursors on PM$_{2.5}$ concentrations in cities in China

Ziyun Jing1,2, Pengfei Liu1,2*, Tuanhui Wang3,4, Hongquan Song2,5,6*, Jay Lee5,6, Tao Xu7,8, Yu Xing9

1 Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, Henan 475004, China; lpf@henu.edu.cn
2 Institute of Urban Big Data, College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China; jzy@henu.edu.cn; thwang@henu.edu.cn; hqsong@henu.edu.cn
3 Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, Henan 475004, China
4 Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng, Henan 475004, China
5 College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China
6 Department of Geography, Kent State University, Kent, Ohio, USA; jlee@kent.edu
7 School of Computer and Information Engineering, Henan University, Kaifeng, Henan 475004, China; txu@henu.edu.cn
8 Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, Henan 475004, China;
9 Henan Ecological and Environmental Monitoring Center, Zhengzhou, Henan 450000, China; 8492682@qq.com

* Correspondence: lpf@henu.edu.cn; hqsong@henu.edu.cn Tel.: +86-1350-378-9673 (Z.J.)
† These authors contributed equally to this work and should be considered co-first authors.

List of Figures
Figure S1. Ten regions in China, including Northeastern Area (NE), Northern Coastal Area (NC), Eastern Coastal Area (EC), Southeastern Coastal Area (SC), the Middle Reaches of the Yellow River Area (MYR), the Middle and Upper Reaches of the Yangtze River Area (MUYR), the Middle and Upper Reaches of the Pearl River Area (MUPR), the Upper Reaches of the Yellow River Area (UYR), Xinjiang Area (XJ), and Qinghai-Tibetan Plateau Area (QTP) (Li et al., 2019).

Figure S2. Locations of air quality monitoring stations (a) and meteorological stations (b) (Li et al., 2019).

Figure S3. Annual mean concentrations of PM$_{2.5}$ in Chinese cities (2015-2017).
Figure S4. Seasonal mean concentrations in spring (a), summer (b), autumn (c), winter (d) of PM$_{2.5}$ in Chinese cities (2015-2017).
Figure S5. Spatial distributions of annual mean precipitation (a), surface pressure (b), relative humidity (c), sunshine duration (d), air temperature (e), and wind speed (f) in China during 2015-2017 (Li et al., 2019).
Figure S6. Spatial distributions of seasonal precipitations in spring (a), summer (b), autumn (c), and winter (d) in China during 2015-2017 (Li et al., 2019).

Figure S7. Spatial distributions of seasonal surface pressure in spring (a), summer (b), autumn (c), and winter (d) in China during 2015-2017 (Li et al., 2019).
Figure S8. Spatial distributions of seasonal relative humidity in spring (a), summer (b), autumn (c), and winter (d) in China during 2015-2017 (Li et al., 2019).

Figure S9. Spatial distributions of seasonal sunshine duration in spring (a), summer (b), autumn (c), and winter (d) in China during 2015-2017 (Li et al., 2019).
Figure S10. Spatial distributions of seasonal air temperature in spring (a), summer (b), autumn (c), and winter (d) in China during 2015-2017 (Li et al., 2019).

Figure S11. Spatial distributions of seasonal wind speed in spring (a), summer (b), autumn (c), and winter (d) in China during 2015-2017 (Li et al., 2019).
Figure S12. Maps of (a) NH$_3$ emissions, (b) NOx emissions, (c) SO$_2$ emissions, and (d) VOC$_3$ emissions in China in 2016 with resolution of 0.25° × 0.25°.
Figure S13. Correlations between PM$_{2.5}$ concentrations and impacting factors in 10 regions (a. EC, b. MUPR, c. MUYR, d. MYR, e. NC, f. NE, g. QTP, h. SC, i. UYR, and j. XJ) of China.
Figure S14. The seasonal interactive q values and the original q value of each pair of factors. Note that X_1 donates the first factor, X_2 donates the second factor, and $X_1 \cap X_2$ is the interaction between the two factors. For example, in the pair of (TE, RH), X_1 donates TE, X_2 donates RH, and $X_1 \cap X_2$ denotes the interaction between TE and RH. Note: VO denotes VOCs; NO denotes NOx; NH denotes NH$_3$; SO denotes SO$_2$.
Figure S15. The interactions between impacting factors in spring at the regional scale in China. Note: VO denotes VOCs; NO denotes NOx; NH denotes NH₃; SO denotes SO₂.
Figure S16. The interactions between impacting factors in summer at the regional scale in China. Note: VO denotes VOCs; NO denotes NOx; NH denotes NH$_3$; SO denotes SO$_2$.
Figure S17. The interactions between impacting factors in autumn at the regional scale in China. Note: VO denotes VOCs; NO denotes NOx; NH denotes NH$_3$; SO denotes SO$_2$.

Figure S18. The interactions between impacting factors in winter at the regional scale in China. Note: VO denotes VOCs; NO denotes NOx; NH denotes NH$_3$; SO denotes SO$_2$.
Table S1. Effect of various factors on PM$_{2.5}$ in China in 2016, value with *** is significant at the 0.01 level; value with ** is significant at the 0.05 level; value with * is significant at the 0.1 level.

Time	PRE	RHU	SSD	WIN	PRS	TEM	VOC	NOx	NH3	SO2
Year	0.22***	0.08***	0.08***	0.01***	0.17***	0.27***	0.07***	0.07***	0.07***	0.03***
Spring	0.12***	0.04***	0.04***	0.04***	0.1***	0.07***	0.06***	0.05***	0.06***	0.05***
Summer	0.06**	0.09***	0.01	0.06***	0.07***	0.09***	0.1***	0.11***	0.11***	0.08***
Autumn	0.13***	0.1***	0.07***	0.01	0.11***	0.18***	0.09***	0.11***	0.11***	0.1***
Winter	0.07***	0.11***	0.17***	0.07***	0.16***	0.21***	0.13***	0.12***	0.18***	0.08***

Table S2. Effect of various factors on PM$_{2.5}$ throughout the whole year at the regional scale, value with *** is significant at the 0.01 level; value with ** is significant at the 0.05 level; value with * is significant at the 0.1 level.

Region	Year	PRE	PRS	RHU	SSD	TEM	WIN	VOC	NOx	SO2	NH3
EC	2016	0.12***	0.14***	0.04***	0.08***	0.19***	0.12***	0.01***	0.01***	0.02***	0.03***
MUPR	2016	0.14***	0.09***	0.01***	0.00***	0.04***	0.01***	0.05***	0.03***	0.02***	0.03***
MUYR	2016	0.13***	0.11***	0.01***	0.02***	0.12***	0.04***	0.04***	0.03***	0.04***	0.00***
MYR	2016	0.05***	0.08***	0.02***	0.08***	0.2***	0.03***	0.04***	0.04***	0.03***	0.00***
NC	2016	0.04***	0.04***	0.01***	0.07***	0.12***	0.09***	0.04***	0.09***	0.05***	
NE	2016	0.05***	0.08***	0.02***	0.05***	0.13***	0.02***	0.04***	0.04***	0.06***	0.02***
QTP	2016	0.07***	0.21***	0.04***	0.02***	0.11***	0.01***	0.13***	0.15***	0.06***	0.14***
SC	2016	0.16***	0.09***	0.07***	0.02***	0.11***	0.03***	0.02***	0.03***	0.03***	0.01***
UYR	2016	0.04***	0.02***	0.00***	0.05***	0.12***	0.03***	0.03***	0.04***	0.01***	0.04***
Table S3. Effect of various factors on PM$_{2.5}$ in spring at the regional scale, value with *** is significant at the 0.01 level; value with ** is significant at the 0.05 level; value with * is significant at the 0.1 level.

Region	Season	PRE	PRS	RHU	SSD	TEM	WIN	VOC	NOx	SO2	NH3
EC	spring	0.13***	0.06***	0.02***	0.07***	0.04***	0.08***	0.03***	0.02***	0.02***	0.03***
MUPR	spring	0.11***	0.07***	0.01**	0.01**	0.02***	0.02***	0.03***	0.02***	0.02***	0.04***
MUYR	spring	0.12***	0.09***	0.01***	0.03***	0.05***	0.02***	0.06***	0.07***	0.03***	0.05***
MYR	spring	0.02***	0.07***	0.01***	0.09***	0.06***	0.02***	0.02***	0.05***	0.04***	0.01***
NC	spring	0.03***	0.02***	0.00***	0.07***	0.03***	0.04***	0.04***	0.03***	0.02***	0.02***
NE	spring	0.03***	0.06***	0.01**	0.03***	0.06***	0.04***	0.04***	0.05***	0.06***	0.04***
QTP	spring	0.02***	0.2***	0.03***	0.01**	0.06***	0.03***	0.12***	0.22***	0.13***	0.23***
SC	spring	0.12***	0.09***	0.07***	0.02***	0.12***	0.02***	0.03***	0.03***	0.07***	0.06***
UYR	spring	0.01**	0.06***	0.03***	0.05***	0.03***	0.01***	0.03***	0.04***	0.05***	0.04***
XJ	spring	0.01*	0.19***	0.03***	0.13***	0.01**	0.1***	0.11***	0.09***	0.12***	0.08***
Table S4. Effect of various factors on PM$_{2.5}$ in summer at the regional scale, value with *** is significant at the 0.01 level; value with ** is significant at the 0.05 level; value with * is significant at the 0.1 level.

Region	Season	PRE	PRS	RHU	SSD	TEM	WIN	VOC	NOx	SO2	NH3
EC	Summer	0.04***	0.00**	0.03***	0.02***	0.01***	0.08***	0.04***	0.02***	0.05***	0.04***
MUPR	Summer	0.06***	0.07***	0.03***	0.04***	0.05***	0.05***	0.1***	0.07***	0.12***	0.06***
MUYR	Summer	0.09***	0.09***	0.01***	0.05***	0.07***	0.03***	0.05***	0.07***	0.07***	0.05***
MYR	Summer	0.02***	0.04***	0.03***	0.04***	0.01***	0.01***	0.04***	0.05***	0.08***	0.05***
NC	Summer	0.03***	0.01***	0.04***	0.08***	0.04***	0.07***	0.04***	0.08***	0.07***	0.04***
NE	Summer	0.03***	0.09***	0.03***	0.01***	0.2***	0.02***	0.06***	0.09***	0.15***	0.08***
QTP	Summer	0.04***	0.4***	0.02***	0.04***	0.07***	0.01	0.25***	0.38***	0.18***	0.34***
SC	Summer	0.06***	0.05***	0.06***	0.02***	0.03***	0.02***	0.04***	0.05***	0.05***	0.07***
UYR	Summer	0.01*	0.02***	0.01**	0.01***	0.02***	0.02***	0.02***	0.03***	0.02***	0.01***
XJ	Summer	0.02***	0.27***	0.02***	0.02***	0.06***	0.04***	0.3***	0.25***	0.19***	0.28***
Table S5. Effect of various factors on PM$_{2.5}$ in autumn at the regional scale, value with *** is significant at the 0.01 level; value with ** is significant at the 0.05 level; value with * is significant at the 0.1 level.

Region	Season	PRE	PRS	RHU	SSD	TEM	WIN	VOC	NOx	SO2	NH3
EC	Autumn	0.17***	0.03***	0.02***	0.12***	0.1***	0.25***	0.02***	0.01***	0.03***	0.02***
MUPR	Autumn	0.12***	0.13***	0.06***	0.03***	0.11***	0.02***	0.1***	0.09***	0.08***	0.08***
MUYR	Autumn	0.14***	0.07***	0.06***	0.06***	0.03***	0.05***	0.05***	0.06***	0.07***	0.05***
MYR	Autumn	0.08***	0.04***	0.07***	0.07***	0.09***	0.01***	0.07***	0.07***	0.05***	0.06***
NC	Autumn	0.04***	0.01***	0.06***	0.09***	0.05***	0.11***	0.06***	0.09***	0.07***	0.06***
NE	Autumn	0.04***	0.03***	0.05***	0.05***	0.08***	0.01***	0.05***	0.04***	0.03***	0.06***
QTP	Autumn	0.12***	0.29***	0.06***	0.04***	0.17***	0.02*	0.21***	0.3***	0.26***	0.17***
SC	Autumn	0.22***	0.05***	0.1***	0.13***	0.08***	0.02***	0.05***	0.06***	0.05***	0.03***
UYR	Autumn	0.08***	0.03***	0.02***	0.05***	0.13***	0.02***	0.06***	0.06***	0.03***	0.08***
XJ	Autumn	0.04***	0.18***	0.01**	0.08***	0.08***	0.15***	0.22***	0.23***	0.14***	0.14***
Table S6. Effect of various factors on PM$_{2.5}$ in winter at the regional scale, value with *** is significant at the 0.01 level; value with ** is significant at the 0.05 level; value with * is significant at the 0.1 level.

Region	Season	PRE	PRS	RHU	SSD	TEM	WIN	VOC	NOx	SO2	NH3
EC	Winter	0.11***	0.04***	0.06***	0.13***	0.02***	0.2***	0.01***	0.01***	0.01***	0.02***
MUPR	Winter	0.04***	0.12***	0.02***	0.05***	0.06***	0.08***	0.07***	0.06***	0.06***	0.02***
MUYR	Winter	0.05***	0.08***	0.00	0.02***	0.03***	0.04***	0.06***	0.06***	0.07***	0.05***
MYR	Winter	0.01	0.08***	0.02***	0.23***	0.06***	0.15***	0.04***	0.04***	0.09***	0.05***
NC	Winter	0.02***	0.07***	0.01***	0.15***	0.04***	0.25***	0.06***	0.05***	0.09***	0.03***
NE	Winter	0.02***	0.02***	0.01***	0.12***	0.06***	0.18***	0.05***	0.02***	0.06***	0.03***
QTP	Winter	0.01	0.2***	0.02**	0.01**	0.05***	0.01	0.23***	0.28***	0.09***	0.18***
SC	Winter	0.13***	0.05***	0.05***	0.1***	0.08***	0.06***	0.04***	0.03***	0.1***	0.03***
UYR	Winter	0.02***	0.1***	0.02***	0.05***	0.11***	0.14***	0.09***	0.06***	0.04***	0.06***
XJ	Winter	0.03***	0.12***	0.03***	0.03***	0.02***	0.03***	0.34***	0.33***	0.21***	0.31***

References:

Li, X., Song, H., Zhai, S., Lu, S., Kong, Y., Xia, H., Zhao, H., 2019. Particulate matter pollution in Chinese cities: Areal-temporal variations and their relationships with meteorological conditions (2015–2017). Environmental Pollution. 246, 11-18.