1. Introduction: Pregnancy Diseases Vary Among Mammals

Live birth is a hallmark characteristic of eutherian mammals. This specialized reproductive strategy maximizes protection of offspring during fetal development, which is clearly effective as mammals are thriving—humans are now seven billion and counting. However, such a strategy comes with devastating tradeoffs in the form of diseases that profoundly affect mothers and their babies during pregnancy, including morning sickness, miscarriage, hemorrhage, growth restriction, gestational diabetes, premature labor, and preeclampsia. Diseases of pregnancy occur in all mammalian species, but notably, pregnancy diseases display substantial variability between species (Johnston et al., 2001; Noakes et al., 2001). In the horse, for example, neonatal/fetal death is often caused by sepsis, hypoxic–ischemic brain injury, twinning, and placental abnormalities (Acland, 1993; Hong et al., 1993; Smith et al., 2003). These diseases are much less common in multiparous species such as the cat or the dog (Acland, 1993; Jonker,
systems and respiratory functions in all eutherian species, it is widely consid-
ered that the placenta is essentially the primary physiological barrier between fetus and mother. A
simple protective function of the placenta is the provision of oxygen and nutrients to the fetus. But in addition, the placenta releases an armament of proteases and hormones to establish the invasive adaptation in humans, while having positive conse-
quences for the species, may have horrific consequences for individ-
uals (Fisher, 2004; Myatt, 2002; Norwitz, 2006). Further, animals such as cows and elephants with prolonged gestation times must contend with the immunological complication of hosting the fetus as a foreign tissue for long periods. These animals tend to have a less invasive placenta in comparison to smaller species, such as rodents, which only gestate for much shorter periods (Enders and Carter, 2004; Mossman, 1987). One could surmise that, in these animals, inappropriate invasion may cause early embryonic rejection, although this is not yet been documented. Overall, complex environ-
mental and ecological factors interact to determine the optimal repro-
ductive strategy for a species and these are unlikely to be static for a single species over time. Thus, it may be expected that the evolution of the placenta would reflect the immense variation in environments and exposures facing different mammals, including stresses from pre-
dation, nutrition, and exposure to toxins and – in turn – these adapta-
tions led to susceptibility to different diseases.

2. Placental variation at the heart of pregnancy disease

Placental pathology and failure are at the heart of diseases of pregnancy. While defects in placentation may not be the root cause of all pregnancy disease, the placenta is essentially the primary physiological interface between mother and fetus, and, as such, is central to all categories of pregnancy disease in all species. As the placenta, in essence, holds reproductive physiology together, its biological differences across species are likely to provide important clues as to why pregnancy diseases also differ across species. Interestingly, the unexpected variation of pregnancy disease across mammalian taxa may also be a result of divergent evolution of the placenta and consequent placental diseases and disorders. Placental anatomy and function vary vastly across species and may be the result of biological adaptations unique to each lineage. We suggest that the diversifying evolution of the placenta is primarily driven by intraspecies evolutionary conflict between mother and fetus, and that many pregnancy diseases are a consequence of this evolutionary force. Understanding how maternal–fetal conflict shapes both basic placental and reproductive biology will provide key insights into dis-
eases of pregnancy.

3. The placenta as the battlefield between parent and offspring

In addition to external ecological factors, strong intrinsic reproduc-
tive pressures are predicted to emerge from within a species. Because parent and offspring are genetically distinct, there exists inevitable evo-
lutionary conflict over the optimal allocation of parental investment (Haig, 1993). Parent–offspring conflict may be intrinsic to all sexually reproducing species, but the mammalian placenta importantly enabled offspring to directly influence parental investment during pregnancy. The placenta is thus predicted to be a “battlefield” of the maternal–fetal evolutionary arms race. As an organ, the placenta is unique in that it is actually a conglomerate of vascularized tissue derived from two genetically distinct individuals, mother and offspring. The fetal porti-
on is composed of vascularized trophoblast structures that invade and become tightly interdigitated with the maternal decidua, which is composed of vascularized epithelial tissue that forms at the site of blastocyst implantation in the uterus (Cha et al., 2012). Histologically, the maternal–fetal interface is crowded with cellular debris and maternal im-
mune cells, harkening to the battlefield metaphor in which the fetal placenta releases an armament of proteases and hormones to establish a hold in the uterus (Redman and Sargent, 2000).

Signatures of evolutionary conflict are clearly evident in the process of placentation. For example, the pig placenta is unique in that it only super-
icially attaches to the uterus (Enders and Carter, 2004; Mossman, 1987). However, if the blastocyst is implanted ex vivo in another maternal tissue
such as the lung, the trophoblast successfully invades (Samuel and Perry, 1972). This demonstrates that the fetal “interest” is to attempt invasion but this process is maternally repressed at the site of implantation, which suggests that the level of placental invasion in pigs represents a co-evolutionary standoff between maternal and fetal demands rather than a stable optimal resolution. Intriguingly, the pig has seemed to compensate for the lack of placental invasion by dramatically increasing the surface area of its placental interface. Between days 10 and 15 of development, the pig blastocyst rapidly expands from a 10 mm sphere to a 1000 mm long conceptus, and the placenta eventually grows to be a full meter long and covers the entire surface of the uterus (Bazer et al., 2012). Conversely, the human placenta is considered to be the most invasive of the eutherian placentas, penetrating deeply into maternal tissues (1987; Ramsey et al., 1976; Robillard et al., 2002). Evidence of maternal repression also exists in this context, as invasive placental cells can inappropriately extend as far as the mother’s bladder after the uterus has been compromised by scarring (Washecka and Behling, 2002). This inappropriate extension as far as the mother’s bladder after the uterus has been compromised by scarring (Washecka and Behling, 2002).

Evidence of maternal repression also exists in this context, as invasive placental cells can inappropriately extend as far as the mother’s bladder after the uterus has been compromised by scarring (Washecka and Behling, 2002). This inappropriate extension as far as the mother’s bladder after the uterus has been compromised by scarring (Washecka and Behling, 2002).

4. Molecular drivers of placental variation

How does parent–offspring conflict relate to the diversification of placental forms? As stated in (Crespi and Semeniuk, 2004), “outcomes of conflict vary among taxa, depending on differences in physiological and morphological starting points, sequences of mutational events, strengths of selection on the interacting parties, and the presence and form.” In other words, adaptations arising from parent–offspring conflict would be unique to each lineage, resulting in the diverse array of species-specific placental adaptations observed today. Given that parent–offspring conflict is a consequence of inherent genetic differences between mother and offspring, conflict-driven evolution should also be detectable at the genetic level. Though the placenta is much less understood at the molecular level than the embryo, our current knowledge has already revealed many clear signs of genetic conflict. Below we highlight the molecular conflicts that are supported by molecular evidence, including parent of origin bias (imprinting), gene evolution, and endogenous retroviral activity. We highlight these molecular forces as we see these areas as being central toward elucidating a more complete mechanistic knowledge of both reproduction and resulting pregnancy disease.

4.1. Imprinted genes

All diploid organisms inherit both a maternal and paternal copy of the genome, and genes are generally expressed equally from both their maternally and paternally derived alleles. In therian mammals (marsupials and eutherians, but not monotremes) however, hundreds of genes break this rule through a process known as genomic imprinting (Renfree et al., 2009). Through various epigenetic processes that can include differential status of DNA methylation, post-translational histone modifications, and non-coding RNAs, certain genes are only expressed from the maternal allele, and others only from the paternal allele (Lee and Bartolomei, 2013). Genomic imprinting is restricted to specific tissues and stages of development, but the most prominent and well-studied site of imprinting is the placenta (Frost and Moore, 2010). Furthermore, because imprinting is restricted to therian mammals, the initial evolution of imprinting was likely intimately tied with placental function (Renfree et al., 2009).

Why would the placenta exhibit genomic imprinting? The most widely accepted hypothesis is that imprinting has been maintained throughout evolution due to parent–offspring conflict (Renfree et al., 2009). Consistent with the conflict hypothesis, paternally expressed genes (representing “fetal interests”) are predominantly growth-promoting factors, such as Igf2, whereas maternally expressed genes (representing “maternal interests”) tend to be growth-repressing genes, such as Igf2r. The final product of paternal and maternal imprinted gene expression presumably balances to produce normal sized offspring. However, when the balance of imprinting is artificially disrupted – as in parthenogenetic embryos – embryonic development fails and placenta is either abnormally large (two paternal genomes) or abnormally small (two maternal genomes) (Barton et al., 1984).

Further evidence for the role of imprinting in parental conflict can be observed in hybrids between sister species that exhibit opposing reproductive strategies. For example, the deer mouse Peromyscus maniculatus is polyandrous, and its sister species Peromyscus polionotus is monogamous (Birdsall and Nash, 1973; Foltz, 1981). Parent–offspring conflict is predicted to be more severe in polyandrous species where siblings are less related to each other on average (Long, 2005; Parker and MacNair, 1979). Consistent with this prediction, a monogamous female P. polionotus mated to a male P. maniculatus produces significantly overgrown offspring, whereas a polyandrous female P. maniculatus mated to a male P. polionotus produces significantly underdeveloped offspring (Rogers and Dawson, 1970). This observation is thought to result from disrupted imprinting (Vrana et al., 1998, 2000). The monogamous female does not “expect” imprinted overexpression of paternally expressed growth factors, and did not coevolve mechanisms to repress these genes. Conversely, the polyandrous female P. maniculatus has coevolved with selfish offspring and the maternal genome appropriately expresses repressive factors, even within P. polionotus hybrids, which results in smaller offspring. This phenomenon is not restricted to rodents. Hybrids of female tigers and male lions (“ligers”) are much larger than either parental species, whereas hybrids of female lions and male lions (“tigons”) are not (McKinnell and Wessel, 2012). As in the case of deer mice, this may result from the promiscuous nature of lions relative to tigers, which are much more solitary by comparison.

Altogether, the discovery of imprinted genes in the placenta is convincing evidence for parent–offspring conflict driving placental evolution at the molecular level. Notably, flowering plants also exhibit genomic imprinting in the endosperm (Feil and Berger, 2007), which is a nourishing tissue in the seed analogous to the mammalian placenta, and contains both maternal and paternal genomes. The convergent evolution of genomic imprinting in flowering plants and mammals is a strong indication that imprinting is directly tied to parent–offspring conflict.

4.2. Genes in conflict

Most functionally important proteins are expected to exhibit conservation across species. However, comparative genomic analyses across many animal taxa have revealed that certain classes of proteins tend to evolve more rapidly than expected (Bustamante et al., 2005; Clark et al., 2003). In animals ranging from flies to humans, proteins involved in the immune response or sexual reproduction often show an excess of nonsynonymous mutations that cause amino acid substitutions compared to “silent” synonymous mutations (Swanson, 2003). When the rate of nonsynonymous mutations exceeds the rate of synonymous mutations for a gene, this pattern is considered a signature of positive selection, which is a characteristic of genes involved in conflict—such as those involved in host pathogen interactions, immunology, or reproduction (Crespi, 2010; Moffett and Loke, 2006; Swanson and Vaccquier, 2002; Wildman, 2011). Interestingly, in mammals, placentaly secreted
hormones exhibit clear patterns of positive selection — this has been shown in rodents, primates, and cows (Chuong et al., 2010; Hou et al., 2009; Liu et al., 2001; Maston and Ruvolo, 2002; Rawn and Cross, 2008). Furthermore, comparison between sister species within each taxa reveals additional variation between gene families at the copy number and amino acid levels (Rawn and Cross, 2008). Altogether, molecular characterization of placentation has revealed that the placenta is rapidly evolving at the physiological level in a manner strongly suggestive of parent–offspring conflict (Crespi, 2010; Hou et al., 2009; Moffett and Loke, 2006; Wildman, 2011).

4.3. Endogenous retroviruses in the placenta

One of the most unexpected observations of the placental transcriptome is that in addition to the host of secreted hormones, proteases, and other genes discussed above, the placenta is a major site of retroviral expression (Haig, 2012; Rowe and Trono, 2011). Viral particles have been observed in placentas across all mammalian taxa for decades, but the functional role of these viruses remains unknown (Harris, 1998; Johnson et al., 1990; Kalter et al., 1973, 1975; Simpson et al., 1996). Importantly, these viral particles are not the result of exogenous viral infections, but rather they are transcribed directly from the fetal genome (Rowe and Trono, 2011). When retroviruses infect germline cells, they become integrated into the host genome as heritable mutations known as endogenous retroviruses (ERVs). Once integrated, ERVs are highly mobile and often continue to expand within the genome. Due to this continued activity, ERVs make up 5–10% of mammalian genomes—a much greater portion than even native protein-coding genes, which comprise 1.5% of the genome (Gifford and Tristem, 2003). Unchecked, ERV activity promotes chromosomal instability and tumorigenesis, and is generally detrimental to host fitness (Feschotte and Gilbert, 2012). Therefore, all organisms have evolved multiple epigenetic mechanisms to repress the activity of ERVs and other transposable elements (TEs). In mammals, shortly after blastocyst implantation, a global wave of de novo DNA methylation proceeds in the inner cell mass (Koukoura et al., 2012). This process acts to stably restrict the gene expression program for cell differentiation and also to silence ERVs and TEs. Importantly, the wave of DNA methylation does not occur in the trophoblast lineage and its derivatives, which results in a relatively hypomethylated placenta that is epigenetically permissive to ERV activity (Chuong et al., 2013; Feschotte and Gilbert, 2012; Koukoura et al., 2012).

Why would the placenta allow retroviral activity? Several theories, which are generally not mutually exclusive, attempt to explain their potential function (Haig, 2012). The most basic explanation is that the placenta is transient and, therefore, the potential tumorigenic potential of ERVs is irrelevant. Alternatively, retroviruses able to integrate into the placenta gain a direct transmission route to both the mother and current and future offspring, which may explain placental ERV expression as a byproduct of this infection bias with no functional benefit to the host. A functional hypothesis is that ERVs may play a defensive role in blocking exogenous retroviral infection. This has been observed in sheep, where endogenous betaretroviruses enJSRV is highly expressed during pregnancy and directly blocks the infection cycle of sheep exogenous viruses ENTV and JSRV (Black et al., 2010), thereby protecting the developing fetus by “fighting fire with fire.” More intriguingly, an emerging theme is that ERVs frequently donate functional placental genes to their host. Though ERV cooption has been documented in embryonic tissues, it is far more prevalent in the placenta, where intrinsic placental ERV activity may facilitate cooption (Feschotte and Gilbert, 2012; Haig, 2012). Genome-wide screens for functional ERV proteins have revealed several putative functional proteins under purifying selection, most of which are specifically and highly expressed in the placenta. In humans, a pair of genes — named syncytinA and syncytinB — was derived from a human ERV family and has been shown to mediate cell fusion between trophoblast cells (Mi et al., 2000). These findings indicate that humans have recruited the retroviral Env protein that is normally used by the virus to penetrate the host cell, and have repurposed the protein to facilitate trophoblast cell fusion to form a multinucleate barrier between fetal and maternal bloodstreams. Similar placentally expressed syncytin-like genes have been identified in diverse mammalian taxa including mouse, pigs, rabbits, and most notably, all are independently derived from unrelated ERV families (Dupressoir et al., 2012; Feschotte and Gilbert, 2012). As ERVs are among the most rapidly evolving class of genomic mutations, this has led to speculation that recurrent cooption of placental ERVs may be a major factor underlying the rapid evolutionary diversification of the placenta (Chuong, 2013; Chuong et al., 2013; Malik, 2012).

5. Evolutionary perspectives will provide insight into placental biology and disease

Understanding the reproductive differences — and the underlying evolutionary changes such as imprinting, rapid gene evolution, or ERV co-option — between species will provide a fertile ground of which to identify causes of pregnancy disease. Genomic data can be used to target specific processes at the heart of maternal–fetal conflict. For example, aberrations in imprinting status of placental genes are strongly associated with placental diseases and many imprinted loci in the placenta are widely thought to have evolved in response to maternal–fetal conflict (Frost and Moore, 2010). Notably, though many genes exhibit conserved imprinting status across mammals, there are clear instances where the imprinting status of specific loci differs across species. For example, the placental transcription factor Ascl2 is imprinted in mouse, but not in human (Frost and Moore, 2010). However, there has been a lack of comprehensive genome-wide catalogs of placentially imprinted genes, and as a result there has been no accurate estimate of how many placental genes show conserved or species-specific imprinting status. Recently, RNA-Seq based assays of reciprocal hybrids in rodents and equids have generated unbiased genome-wide lists of placenta-specific imprinted genes (Finn et al., submitted for publication; Okae et al., 2012; Wang et al., 2011, 2013). Such data is not yet available for humans, but as data from sequencing family trios becomes available, a comprehensive list of human imprinted genes should soon be available. Ultimately, such studies will likely reveal that many genes show species-specific imprint status. While well-studied conserved imprinted genes such as the IGFI/IGF2R locus are clearly implicated in some placental disease, their imprint status may represent “stable” coevolutionary outcomes under the context of maternal–fetal conflict (Frost and Moore, 2010). Conversely, genes that are imprinted only in human have likely only recently evolved imprinted status, and may affect human–specific aspects of placentaion. As such, we suggest that aberrations in the imprinted state of genes may indicate that these are high value candidates for some species-specific placental diseases.

In addition to imprinted genes, the placenta is a major site of expression for species-specific, rapidly evolving proteins. For example, under maternal–fetal conflict, fetal hormones that influence the allocation of maternal nutrients may be subject to positive selection. By applying functional genomics to identify the genes and regulatory elements active during placentation, and comparative genomics to further highlight loci under positive selection, we may pinpoint genes that are likely involved in maternal–fetal conflict and are thus good candidates for further study. Indeed, several studies have turned to using gene evolution to inform genomic data. For example, examining genes under strong selection, and potentially functioning, during reproductive processes may provide candidates involved in birth timing and preclampsia (Brown et al., 2013; Plunkett et al., 2011). In rodents, molecular studies have revealed the placentally expressed Prolactin, Pregnancy-Specific Glycoprotein, and Cathepsin gene families have undergone massive recent gene duplications and show signatures of positive selection (Chuong et al., 2010; Knox and Baker, 2008). Furthermore, some genes, such as tpbpa, show
evolved polymorphism even across mus subspecies, strongly suggesting that they have undergone very recent adaptive evolution (Chuong et al., 2010; Knox and Baker, 2008). The human genome contains Galectins, as well as the Placental Lactogen and Chorionic Gonadotropin gene families, which are primate-specific placental genes derived from an ancestral Growth Hormone and show some evidence of adaptive evolution (Papper et al., 2009; Than et al., 2008). If these genes with human-specific placental expression have been under recent positive selection, such loci may exhibit genetic polymorphism within the human population, and as such may serve as excellent predictive markers of disease. Another way in which an evolutionary perspective is vital to understanding placental disease is the apparent elevated rate of ERV co-option in the placenta. ERVs are highly polymorphic genomic elements, yet mammals have repeatedly co-opted these elements for placental function, very possibly under the context of maternal–fetal conflict (Chuong 2013; Chuong et al., 2013; Haig, 2012; Malik, 2012). Therefore, while ERV and other reproductive elements are often ignored, they should be paid particular attention when examining the placenta. ERV biology is particularly relevant given that external stimuli during pregnancy may alter the epigenetic landscape of placental cells (Gheorghe et al., 2010; Novalovic and Safiyy, 2012), which may aberrantly silence or activate ERVs with potentially dramatic consequences for placentation (Ruebner et al., 2013). Such considerations may provide clues as to why some women with very similar genotypes may experience distinct pregnancy outcomes.

6. Placental biology across species

One of the primary outstanding challenges to understanding human placental disease is the absence of good animal models. Indeed, rodent and ruminant placentas have been well studied, yet they are clearly different from the human placenta both at the morphological and molecular levels. Under the context of maternal–fetal conflict, such species–specific variation is to be expected. However, we suggest that these species differences do not completely remove the utility of studying other animal models, but rather require more nuanced interpretation in order to apply these findings to human disease. In particular, the evolution of the placenta in different taxa has resulted in striking examples of convergent evolution. The “syncytin” genes are a prime example, where retroviral envelope genes have been independently co-opted for nearly identical purposes – facilitating multinucleate syncytiotrophoblast formation – in at least five taxa (Dupressoir et al., 2002; Fescotte and Gilbert, 2012). Further, the rapidly evolving hormones secreted by the placentas of each major taxa are different, while ERV and other repetitive elements are often ignored, they should be paid particular attention when examining the placenta. ERV biology is particularly relevant given that external stimuli during pregnancy may alter the epigenetic landscape of placental cells (Gheorghe et al., 2010; Novalovic and Safiyy, 2012), which may aberrantly silence or activate ERVs with potentially dramatic consequences for placentation (Ruebner et al., 2013). Such considerations may provide clues as to why some women with very similar genotypes may experience distinct pregnancy outcomes.

Acknowledgments

This work was supported by the Burroughs Welcome Prematurity Initiative (J.C.B.; 1008847).

References

Acland, H.M., 1993. Abortion in mares. In: McKinnon, A.O., voss, J.L. (Eds.), Equine Reproduction. Lea and Febiger, Philadelphia, pp. 554–562.
Barton, S.C., Surani, M.A., Norris, M.L., 1984. Role of paternal and maternal genomes in mouse development. Nature 311, 374–376.
Bazer, F.W., Song, G., Kim, J., Dunlap, K.A., Satterfield, M.C., Johnson, G.A., Burghardt, R.C., Wu, G., 2012. Uterine biology in pigs and sheep. J. Anim. Sci. Biotechnol. 3, 23.
Birdsell, D.A., Nash, D., 1973. Occurrence of successful multiple insemination of females in natural populations of deer mice (Peromyscus maniculatus). Evolution 27, 106–110.
Black, S.G., Arnaud, F., Palmarini, M., Spencer, T.E., 2010. Endogenous retroviruses in trophoblast differentiation and placental development. Am. J. Reprod. Immunol. 64, 255–264.
Brown, E.A., Ruvelo, M., Sabeti, P.C., 2013. Many ways to die, one way to arrive: how selection acts through pregnancy. Trends Genet. 29 (10), 585–592.
Bustamante, C.D., Fledel-Alon, A., Williamson, S., Nielsen, R., Hubisz, M.T., Glanowski, S., Tanenbaum, D.M., White, T.J., Sninsky, J.J., Henderson, R.D., Cevello, D., Adams, M.D., Cargill, M., Clark, A.G., 2005. Natural selection on protein-coding genes in the human genome. Nature 437, 1153–1157.
Chai, A.M., Pijnenborg, R., 2011. Evolution of invasive placentation with special reference to non-human primates. Pract. Rep. Clin. Obstet. Gynaecol. 25, 249–257.
Chang, J., Xu, X., Dey, S.K., 2012. Mechanisms of implantation: strategies for successful materno-fetal cohabitation. Placenta 33, 653–655.
Chuong, E.B., 2013. Retroviruses facilitate the rapid evolution of the mammalian placenta. Bioessays 35 (10), 853–861.
Chuong, E.B., Tong, W., Hoeckstra, H.E., 2010. Maternal–fetal conflict: rapidly evolving proteins in the rodent placenta. Mol. Biol. Evol. 27, 1221–1225.
Chuong, E.B., Rumi, M.A.K., Soares, M.J., Baker, J.C., 2013. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 45, 325–329.
Clark, A.G., Glanowski, S., Nielsen, R., Thomas, P.D., Kejarival, A., Todd, M.A., Tanenbaum, D.M., Cevello, D., Lu, F., Murphy, B., Ferriera, S., Wang, G., Zheng, X., White, T.J., Sninsky, J.J., Adams, M.D., Cargill, M., 2003. Inferring nonneutral evolution from human–chimp–mouse orthologous genes. Science 302, 1960–1963.
Crespi, B.J., 2010. The origins and evolution of genetic disease risk in modern humans. Ann. N. Y. Acad. Sci. 1206, 80–109.
Crespi, B., Semieniuk, C., 2004. Parent-offspring conflict in the evolution of vertebrate reproductive mode. Am. Nat. 163, 653–655.
Crosley, E.J., Elliot, M.G., Christians, J.K., Crespi, B.J., 2013. Placental invasion, preeclampsia risk and adaptive molecular evolution at the origin of the great apes: evidence from genome-wide analyses. Placenta 34, 127–132.
Cumane, S.C., Crawford, M.A., 2003. Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 136, 17–26.
Cumane, S.C., Harbige, I.S., Crawford, M.A., 1993. The importance of energy and nutrient supply in human brain evolution. Nutr. Health 9, 219–235.
Dupressoir, A., Lavialle, C., Heidmann, T., 2012. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentaion. Placenta 33, 663–671.
Enders, A.C., Carter, A.M., 2004. What can comparative studies of placental structure tell us? A review. Placenta 25 (Suppl. A), 53–59.
Feil, R., Berger, F., 2007. Convergent evolution of genomic imprinting in plants and mammals. Trends Genet. 23, 192–199.
Fessel, C., Gilbert, C., 2012. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13, 283–296.
Fisher, S.J., 2004. The placental problem: linking abnormal cytotrophoblast differentiation and placental development. Am. J. Reprod. Immunol. 64, 255–264.
Foltz, D.W., 1981. Genetic evidence for long-term monogamy in a small rodent, Peromyscus polionotus. Am. Nat. 117, 665–675.
Ford, S.P., 1997. Embryonic and fetal development in different genotypes in pigs. J. Reprod. Fertil. Suppl. 52, 165–176.
Frost, J.M., Moore, G.E., 2010. The importance of imprinting in the human placenta. PLoS Genet. 6, e1001015.
Fthenakis, G.C., Arsenos, G., Broszos, C., Fragkou, I.A., Giadinis, N.D., Giannenas, I., Mavrogianni, V.S., Papadopoulos, E., Valasi, I., 2012. Health management of ewes during pregnancy. Anim. Reprod. Sci. 130, 198–212.
Gheorghe, C.P., Goyal, R., Mittal, A., Longo, L.D., 2010. Gene expression in the placenta: maternal stress and epigenetic responses. Int. J. Dev. Biol. 54, 507–523.
Gifford, R., Tristem, M., 2003. The evolution, distribution and diversity of endogenous murine retroviruses. Virus Genes 26, 291–313.
Grosser, G., 1909. Vergleichende Anatomie und Entwicklungs geschichte der Eihüle und der Placenta (Comparative Anatomy of the Fetal Membranes and the Placenta). Wilhelm Braumüller, Vienna, Austria.
Haig, D., 1993. Genetic conflicts in human pregnancy. Q. Rev. Biol. 68, 495–532.
Haig, D., 2012. Retroviruses and the placenta. Curr. Biol. 22, R609–R613.
Harris, J.R., 1998. Placental endogenous retrovirus (ERV): structural, functional, and evolutionary significance. Bioessays 20, 307–316.
Hong, C.B., Donahue, J.M., Giles Jr, K.C., Petrites-Murphy, M.B., Poonacha, K.B., Roberts, A.W., Smith, B.J., Tramontin, R.R., Tuttle, P.A., Swerczek, T.W., 1993. Equine abortion and stillbirth in central Kentucky during 1988 and 1989 foaling seasons. J. Vet. Diagn. Invest. 5, 500–566.
