8Be and 9B nuclei in dissociation of relativistic 10B and 11C nuclei

D A Artemenkov1,2, V Bradnova1, E Firu3, N K Kornegrutsa1, M Haiduc3, K Z Mamatkulov1, R R Kattabekov1, A Neagu3, P A Rukoyatkin1, V V Rusakova1, R Stanoeva4, A A Zaitsev1,5, P I Zarubin1,5,6 and I G Zarubina1,5

1 Joint Institute for Nuclear Research, Dubna, Russia
2 National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow, 115409, Russia
3 Institute of Space Science, Magurele, Romania
4 South-Western University, Blagoevgrad, Bulgaria
5 P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

E-mail: zarubin@lhe.jinr.ru

Abstract. Progress in the study of nuclear clustering in the relativistic 10B and 11C nuclei dissociation in nuclear track emulsion is presented. The contribution of the unbound 8Be and 9B nuclei to their structure is determined on the basis of measurements of the emission angles of relativistic He and H fragments.

1. Introduction

Nuclear track emulsion (NTE) is exposed at the JINR Nuclotron to relativistic nuclei 7,9Be, 8,10B, 10,11C and 12N for the experimental study of the evolution of the cluster structure of light nuclei [reviewed in ref. [1], [2]]. Virtual cluster configurations in an incident nucleus are completely captured in coherent dissociation in which the target nucleus is not destroyed visibly (“white” stars, an example in figure 1). Therefore, the contributions of cluster states to the structure of the nucleus in question can be estimated by the probability of appearance of respective fragment ensembles. The nuclei 7Be, 8Be in the ground (8Beg.s.) and first excited states (8Be2+), as well as the 9B may serve as a basis for the neighboring nuclei contributing to them with particular probabilities. Verification of this concept can be carried out on the sequence of the nuclei 9Be, 10B, 10,11C and 12N.

Reconstruction of the decays of relativistic 8Be and 9B nuclei is possible by the energy variable Q = M* - M, where M*2 = \(\Sigma P_j^2\) = \(\Sigma (P_i.P_k)\), M the total mass of fragments, and their P\textsubscript{i,k} 4-momenta defined under the assumption of conservation of an initial momentum per nucleon by fragments. For the “white”stars of 9Be and 10C nuclei the assumption that He fragments correspond to 4He, and H ones in 10C – 1He is justified. Then 8Be and 9B identification is reduced to measurements the opening angles of between the directions of fragment emission.

Distributions over the opening angle \(\Theta_{2He}\) for pairs of He fragments of “white” stars 9Be\textrightarrow2He and 10C\textrightarrow2He + 2H (82% of the 10C statistics) produced at energy of 1.2 A GeV are presented.
Figure 1. Macro photo of the coherent dissociation event (“white” star) of 1 A GeV 10B nucleus into He nucleus pair and single H nucleus; IV - approximate position of the dissociation vertex ($\Theta_{2\alpha} = 5.3$ mrad, $Q_{2\alpha} = 87$ keV, $Q_{2\alpha p} = 352$ keV)

in figure 2. In both cases the values of Θ_{2He} of 75-80% of the pairs are distributed about equally in the intervals of $0 < \Theta_n(arrow) < 10.5$ mrad and $15.0 < \Theta_w(id) < 45.0$ mrad. The remaining pairs are attributed to a “medium” 10.5 $\leq \Theta_m < 15.0$ and “widest” of $15.0 < \Theta_{ew} < 45.0$ intervals. The Q distribution directly connected with Θ_{2He} point out that “narrow” pairs of Θ_n are produced via 8Be$_{g.s.}$, while pairs Θ_w via 8Be$_{2+}$. There is a peak in the interval Θ_m reflecting the level 5/2- (2.43 MeV) of 9Be. Fractions of events in the intervals Θ_n and Θ_w are equal to 0.56 ± 0.04 and 0.44 ± 0.04 for 9Be, while for 10C 0.49 ± 0.06 and 0.51 ± 0.06, i. e. they practically coincide. They indicate to a simultaneous presence of virtual 8Be$_{g.s.}$ and 8Be$_{2+}$ states in the ground states of the 9Be and 10C nuclei. Earlier, basing on the $Q_{2}\alpha$ energy distribution of the triples $2He + 2p$ from the “white” stars 10C!$2He + 2p$ it was concluded that in the structure of the 10C nucleus the core 9B is manifested with a probability of around (30 ± 4)%, and the 8Be$_{g.s.}$ decays are arise only through the 9B decays. These conclusions allow one to interpret a significant fraction of “white” stars produced by 11C and 10B nuclei only on the basis of angular measurements.

2. Dissociation of relativistic 11C nuclei

It is already established that 144 “white” stars produced by the 11C in NTE are distributed over the charge channels in the following way: $2He + 2H$ (50%), $3He$ (17%), 7Be + He (13%), He + 4H (11%), B+H (5%), Li + He + H (3%), 6H (2%). The distributions of He fragments over the opening angle Θ_{2He} (Figure 3) show that 8Be$_{g.s.}$ decays are presented in 21% $2He + 2H$ and 19% in the $3He$ events. These distributions allow one to assume a strong contribution of 8Be$_{2+}$ decays but it is a subject of future consideration.

The 9B nucleus can exist in 11C as an independent virtual component or as a component of a virtual basis 10B. Decays 9Be$_{g.s.}$ in “white” stars 10C!$2He + 2H$ are identified in accordance with a limitation on the opening angle between directions of 8Be$_{g.s.}$ and each H fragments $\Theta(^8$Be$_{g.s.}$ + H) < 40 mrad (figure 4) [3]. Application of such a condition the “white” stars 11C!$2He + 2H$ allows one to identify 20 9Be$_{g.s.}$ decays (figure 4) constituting 30% of events in this charge channel or 18% of the 11C “white” stars.

3. Dissociation of relativistic 10B nuclei

An analysis of the NTE exposure to 1 A GeV 10B nuclei has pointed out that triples $2He + H$ (about 65%) dominate among “white” stars. However, the nature of this effect has not been studied, being in the “shadow” of studies with radioactive nuclei. In connection with the discussed analysis the balance should be established of probabilities of 10B coherent dissociation via decays 8Be$_{g.s.}$, 8Be$_{2+}$ and 9B. Recently, 250 $2He + H$ “white” stars are selected in an
Figure 2. Distributions over the opening angle $\Theta_{2\text{He}}$ of α-particle pairs in “white” stars $^{10}\text{C} \rightarrow 2\text{He} + 2\text{H}$ (solid histogram) and $^{9}\text{Be} \rightarrow 2\text{He}$ (dashed histogram) at 1.2 A GeV; insertion part of the distribution in an interval Θ_n.

Figure 3. Distribution over the opening angle $\Theta_{2\text{He}}$ of α-particle pairs in “white” stars $^{11}\text{C} \rightarrow 2\text{He} + 2\text{H}$ (solid histogram), $^{11}\text{C} \rightarrow 3\text{He}$ (dashed histogram) at 1.2 A GeV and $^{10}\text{B} \rightarrow 2\text{He} + \text{H}$ (hatched histogram) at 1 A GeV; insertion part of the distribution in interval Θ_n.
Figure 4. Distributions over the opening angle Θ(8Be$_{g.s.} + H$) in “white”stars 10C \rightarrow 8Be$_{g.s.}$ + 2H (solid histogram), 11C \rightarrow 8Be$_{g.s.}$ + 2H (dashed histogram), 10B \rightarrow 8Be$_{g.s.} + H$ (hatched histogram) all found stars 11C \rightarrow 8Be$_{g.s.} + 2H$ (dotted histogram)

accelerated search. Measurements of the first 84 stars pointed to four decays 8Be$_{g.s.}$ (figure 3), six of which originated from 9B$_{g.s.}$ decays (figure 4). Perhaps, decays 9B$_{g.s.}$ will be the main source decays 8Be$_{g.s.}$ in 10B “white”stars as in the 10,11C cases. Then the cluster configuration involving the deuteron 8Be$_2 + d$ can be a source of 8Be$_2 +$ decays. Measurements of “white”stars 10B, including identification of He and H isotopes by a multiple scattering method, are in progress now. The distributions of the energy of α-particle pairs, $Q_{2\alpha}$ and triples $2\alpha + p$, $Q_{2\alpha p}$ from the 10B $\rightarrow 2 \alpha + p$ events for ongoing experiment are shown in figures 5 and 6 respectively.

Consideration of the nucleosynthesis toward 10,11B, 11,10C and 12N in the “hot break-out”7Be(3He,γ)10C(e^+,ν)10B assists to recognize the relationship of their structures. The increase of α-clustering in 10C provides a “window” for the synthesis via the intermediate states 9B + p, 8Be$_2 + 2p$ and 6Be + α. These clusters are preserved in subsequent reactions 10C(e^+,ν)10B(p,γ)11C(e^+,ν)11B. “Window” of the reaction 7Be(3He,γ)11C allows only association of the 7Be and 4He clusters, also contributing to the 11C and 10B structure. Thus a hidden variety of virtual configurations in the nuclei 10,11C and 10,11B arises. In turn, these nuclei provide a basis for capture reactions of protons or He isotopes (or in neutron exchange) for synthesis of the subsequent nuclei which leads to translation of the preceding structures.

Within the framework of the relativistic approach the following picture of nuclear clustering emerges. As the fundamental elements of its structure atomic nuclei contain a virtual association of nucleons and clusters. Their simplest observable manifestations the lightest nuclei 4He and 3H having no excited states. Superposition of lightest clusters and nucleons form 7Be, 8Be in the ground and first excited states and 9B ones which, in turn, serve as composing clusters. A balance of possible superpositions in states with an appropriate spin and parity determine binding and ground state parameters of corresponding nuclei. Further joining of nucleons and the lightest nuclei leads to shell type structure. Interlacing cluster and shell degrees of freedom does a group of nuclei in the beginning of the table of isotopes of a “laboratory” of nuclear
Figure 5. Distribution of the energy $Q_{α}$ of $α$-pairs from the $^{10}B \rightarrow 2 α + p$ events

Figure 6. Distribution of the total energy $Q_{2αp}$ of the triples $2α + p$ from the $^{10}B \rightarrow 2 α + p$ events
quantum mechanics and nuclear astrophysics.

Acknowledgments
The authors are grateful to A. I. Malakhov (JINR), N. G. Polukhina and S. P. Kharlamov (LPI) for their support and critical discussion of the results. This work was supported by the grant from the Russian Foundation for Basic Research 12-02-00067 and 16-02-00062 and grant of plenipotentiary representatives of the government of Bulgaria, Egypt, Romania and the Czech Republic at JINR.

References
[1] Zarubin P I 2013 Clusters in Nuclei, Vol 3 (Lecture Notes in Physics Vol 875) ed Beck Christian (Cham: Springer Int. Publ.) p 51 (arXiv:1309.4881)
[2] Artemenkov D A et al. 2015 Phys. At. Nucl. 78 794 (arXiv:11411.5806)
[3] Toshito T et al. 2008 Phys. Rev. C 78 067602