Research on pricing model of uninterrupted maintenance for distribution network project of power grid enterprise

Tianqiong CHEN 1*, Kailin JI 1

1 State Grid Economic and Technological Research Institute Co., Ltd., Changping District, Beijing 102209, China

*chentianqiong@chinasperi.sgcc.com.cn

Abstract. Uninterrupted operation of distribution network engineering is an important means to ensure the safe and reliable operation of power supply equipment and improve the level of power supply reliability and quality service. In recent years, with the vigorous promotion of the power grid company, the uninterrupted operation of distribution network has a more rapid and standardized development. At present, the pricing basis of distribution network engineering has not included the content of uninterrupted power operation, which leads to the problems of unable to find the corresponding quota and unclear charging standard in the actual construction charging process. Therefore, it is urgent to study the pricing method of uninterrupted power operation, guide the uninterrupted power operation, standardize the charging, and promote the healthy development of power construction.

1. Introduction

The technology of uninterrupted power operation in distribution network of power supply enterprises is one of the important symbols to measure the management level of power enterprises and the construction level of power grid [1]. Uninterrupted power operation needs to be further studied, scientific management standards are formulated, the operation behavior of equipment is standardized, and the safety and reliability of urban power supply network system is guaranteed[2]. The service level of power supply needs to be continuously improved, so as to achieve the development goal of China's new urbanization faster and better.

The popularization and application of uninterrupted power operation in distribution network engineering needs continuous investment of personnel, equipment, tools and instruments. At present, there is no unified pricing basis for uninterrupted power operation, which leads to no corresponding quota in the preparation of estimation and budget estimate of uninterrupted power operation, and different construction cost standards, which affects the standardization and scientficity of work to a certain extent. At present, the research on uninterrupted maintenance of distribution network engineering focuses on improving the effect of power supply reliability [3,4]. There is less research on project charging, so it is urgent to study the pricing method of uninterrupted operation, so as to better guide the standardized charging of this operation and promote the healthy development of uninterrupted operation.

2. Contents and status quo of uninterrupted power supply operation

In 2016, power grid enterprise issued the specification for operation of 10kV distribution network without power outage, with a total of 33 items of operation without power outage, covering 10KV
overhead lines and cable lines[5]. According to the tools, equipment and operation methods used, the operation without power outage is divided into four categories, as follows:

The first type includes four simple insulation pole operation methods, including common defect elimination and removal of accessories, 10kV live line disconnection and connection of drainage line.

The second category includes 10 simple insulating glove operation methods, such as live replacement of fuse, 10kV live replacement of pole switch or disconnector.

The third category includes 13 complex insulating pole operation methods, such as 10kV on load replacement of pole switch or disconnector, changing loaded linear pole into tension pole, and complex insulating glove operation method.

The fourth category includes six comprehensive uninterrupted operation methods, such as replacing overhead lines by bypass operation and replacing post transformers without power failure.

3. Research on pricing method of uninterrupted power operation

Taking the overhead line overhauled by bypass operation as an example, this paper introduces the calculation method of the supplementary quota. According to the supplementary quota number standard, the quota number is bg-px7-1. The work contents of this item are: inspection of tools and equipment, overhead laying of bypass system, installation and removal of complete accessories, overhead laying and removal of bypass cable and bypass switch, insulation shielding and removal, phase verification, switching operation, live line disconnection and lead connection, live line operation measures and patrol inspection of bypass system Maintenance, completion cleaning, tools transportation, etc

3.1. Composition of fixed cost

According to relevant standards, technical regulations, construction scheme, human resources, machinery and survey data, the composition of labor, materials and machinery costs is determined, which is as shown in Table 1.

Fee	type	Indicator unit	Fee	type	Indicator unit
artificial	Ordinary workers	Man days	Bypass load switch	A set	
	Live mechanic	Man days	Bypass high voltage downlead cable	Item	
	Rubber insulated gloves (10kV)	A pair	Bypass cable	Item	
	Rubber insulated gloves (8kV)	A pair	T-head connecting cable	Item	
	Sheepskin protective gloves	A pair	Complete set of accessories for overhead laying bypass operation system	A set	
	Insulated safety protective gloves	A pair	Complete set of accessories for ground laying bypass operation system	A set	
	Insulated safety protective gloves	A piece	Insulated discharge pole	Item	
	Insulation blanket	A piece	Insulated transmission rope	kg	
	Insulation blanket clip	Item	Insulated wire tightener	Item	
	Wire shield	Item	Felt cloth 2m × 3m	A piece	
	Jumper insulation shield	Item	Other tools and materials	Yuan	
	Cross arm insulation shield	Item	Insulated boom truck		
	Pin insulator insulation shield	Item	Mobile box transformer		
	High voltage down cable support	A set	Cable car		
	Spare cable tools	A set	Bypass tool car		
			Generator car		
			Power engineering vehicle		

Machine shift (one day's work for a car)
3.2. Measurement of human resource and machine consumption

Select the "bypass operation maintenance overhead line" (quota No. bg-px7-1) in the new quota. In order to increase the reliability and representativeness of engineering calculation results, this paper selects Sample 1, 2, 3, 4 typical bypass operation maintenance overhead line sample project to carry out field survey, and compiles the labor, material, mechanical shift quota consumption measurement table, as shown in Table 2, table 3, and table 4.

Type of work	Indicator unit	Sample 1	Sample 2	Sample 3	Sample 4	Quota labor consumption
Live mechanic	Man days	9.3042	9.4125	9.5500	9.5333	9.45

Table 2: Measurement of labor quota consumption

Serial number	Material name and model	Indicator unit	Sample 1	Sample 2	Sample 3	Sample 4	Quota labor consumption
1	Rubber insulated gloves (10KV)	A pair	0.0889	0.0889	0.0889	0.0889	0.0889
2	Sheepskin protective gloves	A pair	0.2222	0.2222	0.2222	0.2222	0.2222
3	Insulated safety helmet	Item	0.0800	0.0800	0.0800	0.0800	0.0800
4	Goggles	A pair	0.1333	0.1333	0.1333	0.1333	0.1333
5	Insulating clothing	a suit	0.0635	0.0635	0.0635	0.0635	0.0635
6	Insulating overshoes	A pair	0.0430	0.0430	0.0430	0.0430	0.0430
7	Insulated safety belt	A set	0.0800	0.0800	0.0800	0.0800	0.0800
8	Insulation blanket	A piece	0.4444	0.4444	0.4444	0.4444	0.4444
9	Insulation blanket clip	Item	0.2857	0.2857	0.2857	0.2857	0.2857
10	Wire shield	Item	0.1224	0.1224	0.1224	0.1224	0.1224
11	Jumper insulation shield	Item	0.2105	0.2105	0.2105	0.2105	0.2105
12	Cross arm insulation shield	Item	0.0580	0.0580	0.0580	0.0580	0.0580
13	High voltage down cable support	A set	0.0100	0.0100	0.0100	0.0100	0.0100
14	Spare cable tools	A set	0.0100	0.0100	0.0100	0.0100	0.0100
15	Bypass load switch(A)	A set	0.0100	0.0100	0.0100	0.0100	0.0100
16	Bypass high voltage downlead cable	Item	0.0300	0.0300	0.0300	0.0300	0.0300
17	Bypass cable	Item	0.0150	0.0150	0.0150	0.0150	0.0150
18	Complete set of accessories for overhead laying bypass operation system	A set	0.0025	0.0025	0.0025	0.0025	0.0025
19	Discharge pole	Item	0.0083	0.0083	0.0083	0.0083	0.0083
20	Insulated transmission rope	kg	0.1026	0.1026	0.1026	0.1026	0.1026
21	Insulated wire tightener	Item	0.0526	0.0526	0.0526	0.0526	0.0526
22	Felt cloth 2m × 3m	A piece	0.0040	0.0040	0.0040	0.0040	0.0040
23	Other tools and materials	Yuan	128.65	128.65	128.65	128.65	128.65

Table 4: Measurement of quota consumption of machine shift

Serial number	Machine name and model	Indicator unit	Sample 1	Sample 2	Sample 3	Sample 4	Quota labor consumption
1	Insulated bucket arm truck, hybrid arm, 10kV, 21m	m one day work for a car	2.3260	2.3531	2.3875	2.3833	2.3625
2	Cable laying car, 10kV	1.1630	1.1766	1.1938	1.1917	1.1813	
3	Electric engineering vehicle, small	1.1630	1.1766	1.1938	1.1917	1.1813	

3.3. Price of manpower, material and machine

The average labor price of electric power construction workers in typical sample areas in 2020 is 345 yuan / workday. The labor price of electric power construction workers in electric power quota is 120 yuan / workday and 194 yuan / workday (taking the fees and adjustment coefficient), and the labor conversion adjustment coefficient is 1.78, which is converted to the measured labor consumption, The
manual adjustment consumption is obtained as manual adjustment consumption = manual conversion adjustment coefficient × The measured labor consumption is 1.78 × 9.52 = 16.94 man days.

The quota unit price is converted to the same caliber as the quota Beijing price in 2019, and the calculation is as follows:

\[
\text{Unit price of fixed labor in 2019} = \text{unit price of fixed labor in 2019} \times (1 + \text{fee rate}) \times (1 + \text{adjustment factor}) = 120 \times (1 + 31.8\% \times 1.15 + 12\% \times 1.15) \times (61\%) = 194.18 \text{ yuan / workday}
\]

In the process of determining the price of materials and machinery, according to the existing materials and machinery in the material and machinery warehouse, implement the "2013 quota benchmark material warehouse price of electric power industry" and "2013 quota benchmark machinery warehouse price of electric power industry". For the materials and machinery not included in the quota material and machinery warehouse, according to the price composition of materials and construction machinery shift, after investigating the relevant market price information and parameters, Detailed calculation. Tables 5 and 6 show the unit prices of new materials and machinery.

Table 5 Determination of unit price of new materials (Unit: Yuan)

Serial number	Material Science	Unit	Original price of materials	Material transportation cost	Premium rate	Transport loss rate	Purchase and storage rate	Unit price of materials (quota base price)
1	Insulated safety belt	A set	1088.32	11.50	17.26	5.75	27.61	1150.44
2	High voltage down cable support	A set	4654.65	49.20	73.81	24.60	118.09	4920.35
3	Spare cable tools	A set	2322.31	24.55	36.82	12.27	58.92	2454.87
4	Bypass load switch(200A)	A set	108831.86	1150.44	1725.66	575.22	2761.06	115044.3
5	Bypass high voltage downlead cable	Item	11720.35	123.89	185.84	61.95	297.35	12389.38
6	Bypass cable	Item	23340.71	247.79	371.68	123.89	594.69	24778.76
7	Complete set of accessories for overhead laying bypass operation system	A set	293192.19	3099.28	4648.92	1549.64	7438.28	309928.32
8	Insulated discharge pole	Item	293.00	3.10	4.65	1.55	7.43	309.73

Table 6 Unit price of new construction machinery (Unit: Yuan)

Machinery name	Model and specification	Composition of machine shift expenses	Unit price of machine shift (standard base price)
Cable car	10kV	depreciation charge: 2989.18 inspection fee: 59.00 maintenance fee: 0 installation and removal fee and off-site transportation fee: 0 labor cost: 191.06 fuel and power cost: 223.72 other expenses: 508.55	3971.51

3.4. Preparation of supplementary quota base price

Combine the quota consumption and unit price of labor, materials and machine shift to form the quota base price and quota items of actual measurement subhead, as shown in Table 7.

Table 7 basic price table of supplementary quota for uninterrupted power operation

Quota number	BG-PX7-3
project	Bypass operation maintenance of overhead lines (overhead laying)
Base price (Unit: yuan)	22423.94
in which	
artificial fee (Unit: yuan)	2015.23
Material fee (Unit: yuan)	4646.84
Machinery fee (Unit: yuan)	15761.87
4. Comparison with similar quota level
In the supplementary quota subitem, the work content of bg-pt7-1 bypass maintenance overhead line is completely consistent with that of Beijing local 10-144 10kV bypass maintenance overhead line. Therefore, these two quotas are selected, and their levels are compared and analyzed by taking the actual standard section of uninterrupted power operation - 400m (usually grade 8) as an example.

The supplementary quota is 44.5% higher than the base price of similar quota, and the construction and installation cost of the supplementary quota is 63.0% higher than that of the similar quota. From the third level, the supplementary quota level has been lower than that of Beijing, until the eighth level has been lower than that of Beijing by 36.82%.

The main reason is that the supplementary quota, combined with the actual construction situation of uninterrupted power operation, takes the first level as the research object, calculates the consumption of labor, materials and machinery to complete the first level of work, and then only considers increasing the corresponding materials and a small amount of labor and machinery costs on the basis of the first level for each additional level. The idea of local quota calculation is to comprehensively consider the overall consumption of labor, materials and machinery of multi-level operation, and then spread it to each level of operation to get the average price level after considering the scale effect. It can be seen that the supplementary quota calculation method is more in line with the actual work situation, and the price level calculated is more reasonable.

5. Conclusion
This paper puts forward the calculation method of pricing standard for 33 items of uninterrupted power operation of distribution network within the scope of State Grid Corporation of China, which supplements the quota base price of the operation and ensures the interests of all parties of uninterrupted power operation of distribution network. The research results provide guidance and reference for the formulation of the price level of uninterrupted power operation, and are of great significance to further improve the cost management and standardization level of uninterrupted power operation in distribution network.

Acknowledgements
This work is supported by Science and technology project of State Grid Corporation of China "Research on transmission and transformation project scheme optimization and Cost Intelligent approval technology based on wide area information value mining link design" (B3441021K003).

Reference
[1] QI Xiangyu, QI Mingjun, LEI Hongcai. Development Situation and Prospects of Condition Maintenance of Power Grid Equipment. Hunan Electric Power, 2018, 38(3): 1-3.
[2] LI Xin. Management improvement measures of distribution network operation without power cut. PEAK DATA SCIENCE, 2021, 10(5): 94-95.
[3] Qi Jiale. Application and innovation of power distribution without power cut in maintenance operation. China Strategic Emerging Industry, 2021(2):255-256.
[4] HUANG Haibo, LEI Hongcai, ZHOU Weihua. Research on Transformer Condition-based Maintenance Optimization Based on Non Power-off Detection. High Voltage Engineering, 2019, 45(10): 3300-3307.
[5] MAO Bo-bo, SHI Yu-qing, ZHU Di.Optimization Suggestions for Distribution Network Considering Uninterrupted Operation. Telecom Power Technologies, 2020, 37(5): 236-237.