Reduction of phosphates in sewage using kiln ash

D Mahmood1, A. Adnan1,*
1Department of Environment, Ministry of Oil, Iraq

* Corresponding author; Email: adnanhilla2021@gmail.com

Abstract. Phosphate is among few chemicals that abundantly occur in both soil and water environments at relatively high concentrations, and it is responsible for the promoted growth of algae in a phenomenon called eutrophication. Hence, many studies have been conducted to assess the ability of various treatments to remove phosphates from sewage. Recently, it has been discovered that phosphorus recovery may be accomplished by filtering the water. The cost of the filtering materials, on the other hand, is prohibitively expensive. As a result, current research has concentrated on utilising low-cost ones to minimise the expense of filtering. Steel production residues, such as kiln bottom ashes, are being utilised in this study to recover phosphates from contaminated wastewater. A variety of operational settings have been investigated in order to obtain the highest possible extraction efficiency at the lowest feasible cost. The results of this study showed 0.53 g/L of bottom ash needed not more than 40 minutes to reduce the phosphate concentration from 5 to 4.51 mg/L. Additionally, the results were modelled with an R2 value of more than 0.9, confirming the agreement between the theoretical and experimental results.

1. Introduction
The previous studies showed elevated concentrations of phosphate in nature (water and soil); however, urbanisation and industrial expansion drive huge global demand for drinkable water that exhausts the available freshwater rapidly, and in return, increasing the volumes of discharged wastewater that contains high concentrations of phosphate [1, 2]. In addition, the urban spread and industrial expansion are badly reflected in the availability of freshwater [3-5], global warming [6, 7], and precipitations [8, 9]. The growing population increases the rate of sewage released into waterways, which has severe effects on the health of consumers [10-12]. Furthermore, the increase in the population increased the dumping of solid wastes in landfills that pollute groundwater and then surface water [13-16]. Toxins must not be dumped directly into waterways, and all effluents, whether household or manufacturing, must be treated adequately to eliminate or limit the negative impacts of the contaminants. One of the types of impact of pollutants is algae flourishing which is due to phosphorous penetration into the water, which is harmful to the environment [17]. It is proved that the majority of sewage water contain phosphorus [18, 19] and nitrate [20, 21] besides other pollutants such as fluoride [22], heavy metals [23, 24], bacteria [25, 26], colouring pollutants [27-29] and organic matter [30-32]. Additionally, industrial and domestic wastewater [33-36] and atmospheric pollutants [37-39] are playing a role in the increasing of such pollutants in water bodies. The effluents of the construction industry [40-43], production plants [44-46] and food industry [33, 47]. The main effect of phosphate on freshwater sources is the depletion of oxygen due to algal blooms induced by phosphorus and nitrate contamination [12]. A large proportion of aquatic creatures and plants might die in a short period of time. As just a result of a substantial rise in organic matter content, the taste, smell, and structure of the water will be changed significantly.
A rise in algal development might have severe effects on health, industries, seafood, and agriculture, and farmers [21, 48]. Many studies revealed that microalgae types can generate poisonous chemicals that cause a range of severe illnesses and, sometimes, fatality. In drinkable water, the allowable concentration of phosphate is specified at 0.1 mg/L, whereas in streams and ponds, it is 0.05 mg/L [18, 19]. As far as the upper limit pollutant concentration in water is concerning, the Environmental Protection Agency has strict standards. It is therefore important to remove phosphates from contaminated water, depending on what has been said previously. When phosphate is removed via traditional methods, it generally requires a long and complicated procedure. As an instance, the normal filtering process [22], with some modifications, provides an effective approach for phosphate removal, according to the authors. However, the usage of expensive screens makes this approach uneconomical [47, 49]. It is possible to remove phosphate from the water bodies by converting it to a solid-state, which would be subsequently removed from the water via flotation or some other means. Thermal processing, lakes, anaerobic digestion, absorption, and other techniques are used to transform phosphorus [19]. The biological treatment methods for phosphate removal depend on bacteria and microalgae species to digest phosphate in solutions. Depends on the kind of microbe, anaerobic or aerobic techniques could be used in these situations. The pH, starting dosage, etc., are all factors that affect the efficacy of the treatments. In regards to employing biological intervention to reduce the existence of phosphate, several disadvantages are discovered [18]. Soluble carbon, fast development of microorganisms, and the pH level of the fluid are all factors to be considered. Phosphate particles can be converted by adding metallic compounds to water polluted with Phosphorus particles. Usually, sewer water encompassing phosphate is treated using chemical techniques. Calcium ion is amongst the most frequently utilised chemical additions for phosphorus removal for its availability, affordability, and convenience of usage. Especially in an acidic medium, aluminium hydroxide is believed to be highly successful in eliminating phosphate from wastewater. As a consequence of the usage of chemical substances, chemical treatment methods frequently lead to toxic sludge [21]. Due to the utilisation use reagents, the technique is much more costly than many other procedures. Physically, phosphate extraction methods do not change the chemical composition of the phosphate, which is resulting in a change. After the removal of phosphate pollution using this approach, it is possible to separate these contaminants (phosphate contaminants) from the removal medium. For phosphate removal, filtering and screening technologies are frequently employed [18, 19]. Additionally, phosphate removal from water could also be achieved using other approaches such as coagulation [10, 28], absorption [11, 50], and straining hybrid methods [20, 30]. To remove phosphates from water, several permeable mediums were employed. The general rule, the expense of filtering is determined based on the cost of the adsorbent materials employed. The phosphate removal capability of membranes has been demonstrated in previous studies. There are several methods to extract phosphates from water at low levels, but reverse osmosis is among the most popular. Polluted water is forced through a barrier with really limited porosity under high pressure. Assist in removing pollutants in water by means of high-pressured water. Membrane systems are rarely utilised due to their expensive running costs, difficulties in discarding them, and the requirement for specific equipment and expertise. Recently, studies have centred on the use of waste products or natural resources as economical and useful replacements for traditional materials [40, 51]. Fly ash is a standard manufacturing byproduct that would be used to remove phosphate from wastewater and also is widely used in the construction industry [52-54], and in concrete industry [55, 56]. Water with an acidity level of 7 can be effectively treated with this substance. Due to the above, our research focused primarily on the possibility of using furnaces bottom ashes as an absorbent to extract the phosphates from polluted effluent.

2. Methods
Depending on the procedures of the previous studies that used bottom ash to remove phosphate from the wastewater, the most important parameters in the adsorption process is the grain size, permeability, porous structure, and relative density of the bottom ashes is essential. The particle
size is highly essential because it is directly related to the adsorption surface. When sieve review is performed, sieve sizes of 4, 6, 10, 16, 30 and 50 are utilised, and the quantity of mass kept on each sieve is calculated by analysing the distribution of particle size of the waste. This formula is used to determine the specific gravity test using the gas jar method:

\[
\text{Specific Gravity} = \frac{L_1}{L_2 - L_3} \\
\text{Where}
\]

- \(L_1\): Weight of jar + weight of plates
- \(L_2\): The total weight of the sample, plate, and jar, including the plate and the jar itself.
- \(L_3\): Water, dry sample, plate, and jar weight together.
- \(L_4\): Weight of the jar plus water

The chemical structure of the bottom ash was examined using an X-ray fluorescence analyser. It is performed to assess the effectiveness of extracting phosphates from the furnace's bottom ashes since materials containing calcium, iron, and aluminium can be utilised for phosphate removal. To extract the phosphate in contaminated water, the bottom ashes were employed as a filter. The Box-Behnken design was utilised to improve the technique in terms of burner bottom ash dosage, duration of treatment, and temp. A potassium diphosphate solution in deionised water was used to modify the amounts of phosphate in synthetic water. An experiment was conducted in which polluted water was combined for various lengths of time with the furnace's bottom ashes to determine the effect of duration. In such tests, the retention duration ranging from 10 to 70 min, while the burner ash dosages varied from 100 to 1000 mg/L. Calculations of phosphate levels are made with the use of a Hach Lange spectrophotometer. As a result of this study, the Box-Behnken Design was utilised to create an estimation model in order to obtain the highest water treatment. The response variable was phosphorus removal in this research. The determinants were the phosphorus content level, bottom ash dose, and the duration of treatment. In order to construct the estimation matrix, Minitab 20 was chosen. The ranges of predictor factors considered are shown in Table 1.

Factors	Code	Range
Concentration of phosphate in water	CoF	5-15
The dose of bottom ashes	DoBA	100-1000
Time of the treatment	ToT	10-70

A powerful determinant of linearity and relevance is the \(\alpha\) value, which may be calculated using the formula below:

\[
\alpha = \frac{\sqrt{2X}}{X} \\
\text{Where } X \text{ is the number of variables included in the model.}
\]

3. Results and Discussion

The results of the grain size analysis showed the majority of the bottom ash grains are maintained on sieves of lower diameters of less than 16. The results of the sieving tests show that the majority of the bottom ash samples consisted of small particles within 1.180 mm and 4.750mm in size. It was computed using the formulas 3 and 4:

- Uniformity coefficient \(= \frac{x_2}{x_1}\) \hspace{1cm} (3)
- The gradation coefficient \(= \frac{x_3}{x_1^2 x_2}\) \hspace{1cm} (4)
When plotting the passing rate with particle diameter, \(x_2 \), \(x_3 \), and \(x_1 \) show the percentages of particles that pass through each size. Analysis indicated that \(x_2 \), \(x_3 \), and \(x_1 \) the quantity of the first term were 3.06, 1.36, and 0.48, correspondingly. Furthermore, the uniformity coefficient is 6.21 the gradation coefficient is 1.32. The specimens of bottom ash are judged to be of good quality. Because of this, it is unlikely that the bottom ashes would float, as their relative density is greater than those of the liquid. Permeability was 0.61 m\(^2\)/g, while the total area was 6.81 m\(^2\)/g. A wide surface, good permeability, and high relative density make the bottoms of the furnace excellent for phosphorus extraction. Chemists determined that the bottom ashes included aluminium, iron, and calcium oxide, magnesium in roughly 25% of the furnace's ash. As a result, it may be argued that the bottom ash of a burner is suitable for removing phosphates.

To investigate the effectiveness of burner ash in removing phosphorus compounds from wastewater, batch experiments were run. For each of the 15 tests, the experimental variables were modified in order to identify the optimal experimental set for achieving high removal efficiency at low costs. The findings are shown in Table 2 below. As can be seen in Table 2, the Box-Behnken Design and the removal efficiency obtained are provided.

test	DoBA	CoF	ToT	RE%
01	1000	10	40	90.1
02	1000	10	70	63.1
03	1000	5	40	77.3
04	550	10	40	83.5
05	550	15	70	79.1
06	10	10	10	77.2
07	550	10	40	66.4
08	550	5	10	58.2
09	550	15	10	59.9
10	550	5	70	65.7
11	1000	15	40	80.1
12	1000	15	40	79.2
13	1000	100	70	77.8
14	1000	5	40	79.2
15	550	10	40	70.1

As a result of this investigation, it was shown that the removal efficiencies are proportional to the dose of furnace bottom ashes and the length of time intervals. Phosphorus removal, on the other hand, has an adverse correlation with starting phosphorus concentrations. This is because the accessible surface area of the adsorption is insufficient to collect the phosphorus from the liquid. As a result, there is more surface area accessible for phosphate adsorption from the contaminated water in the furnace bottom ash. It also enhances the interaction of phosphate and the adsorbent. 90.1% of the phosphate concentration in the contaminated water could be removed by using 530 mg/L of bottom ashes for 40 minutes, as shown in Figures 1-3.
Figure 1: Contour plot of the effects of DoBA and CoP on the removal of phosphate by the bottom ash.

Figure 2: Contour plot of the effects of DoBA and ToT on the removal of phosphate by the bottom ash.

Figure 3: Contour plot of the effects of ToT and CoP on the removal of phosphate by the bottom ash.
To estimate the removal efficiency based on the employed parameters, Box-Behnken Design was used to construct Equation 5.

\[RE\% = 73.33 - 0.44 \, DoBA + 2.24 \, CoF - 0.10 \, ToT + 8.61 \, DoBA \times DoBA - 2.99 \, CoF \times CoF - 4.62 \, ToT \times ToT + 0.25 \, DoBA \times CoF - 7.17 \, DoBA \times ToT + 2.93 \, CoF \times ToT \]

(5)

It can be seen from the presented studies about the adsorption method, the depletion of the active sites results in a serious reduction in the adsorption process, therefore; the application of successful sensors (in the literature) helps the operators of the treatment plant to monitor the depletion process, two good examples of the sensors that widely used in the civil and water engineering are the microwave [57-59] and electromagnetic [60-63] sensors.

4. Conclusion

The prospect of using furnace bottom ashes to treat contaminated water for phosphate was studied in this investigation. The chemical and physical properties of furnace bottom ashes are essential to remove phosphorus from contaminated water, according to research. This is in line with earlier research findings of about 90% elimination using the bottom ashes. The dose of the bottom ashes as well as the detention time is positively correlated to the percentage of phosphorus removal from the polluted wastewater. Relative to phosphorus adsorption capacity, on the other hand, it is inversely correlated with the initial concentration of the pollutant. On the basis of furnace bottom ash dosage, phosphate content, and treatment duration, Box-model Behnken's may also forecast how the removal efficiency will vary.

References

[1] Zubaidi S L, Al-Bugharbee H, Muhsen Y R, Hashim K, Alkhaddar R M, Al-Jumeily D and Aljaaf A J 2019 The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate. In: 12th International Conference on Developments in eSystems Engineering (DeSE), (Kazan, Russia pp 274-7

[2] Salah Z, Abdulkareem I H, Hashim K S, Al-Bugharbee H, Ridha H M, Gharghan S K, Al-Qaim F F, Muradov M, Kot P and Alkhaddar R 2020 Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand Water 12 1-18

[3] Zubaidi S, Al-Bugharbee H, Muhsin Y R, Hashim K and Alkhaddar R 2020 Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing p 012018

[4] Al-Saati N H, Omran I I, Salman A A, Al-Saati Z and Hashim K S 2021 Statistical modeling of monthly streamflow using time series and artificial neural network models: Hindiya Barrage as a case study Water Practice and Technology 16 681-91

[5] Salah Z, Ortega-Martorell S, Kot P, Alkhaddar R M, Abdellatif M, Gharghan S K, Ahmed M S and Hashim K 2020 A Method for Predicting Long-Term Municipal Water Demands Under Climate Change Water Resources Management 34 1265-79

[6] Salah Z, Hashim K, Ethaib S, Al-Bdairi N S S, Al-Bugharbee H and Gharghan S K 2020 A novel methodology to predict monthly municipal water demand based on weather variables scenario Journal of King Saud University-Engineering Sciences 32 1-18

[7] Zubaidi S, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020 Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study Water 12 1-18

[8] Zubaidi S L, Kot P, Hashim K, Alkhaddar R, Abdellatif M and Muhsin Y R 2019 Using LARS–WG model for prediction of temperature in Columbia City, USA. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing p 012026

[9] Zubaidi Salah L, Al-Bugharbee H, Ortega Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairi N and Kot P 2020 A Novel Methodology for Prediction Urban Water Demand by
Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach Water 12 1-17

[10] Hashim K S, Al-Saati N H, Alquzweeni S S, Zubaidi S L, Kot P, Kraidi L, Hussein A H, Alkhaddar R, Shaw A and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. In: First International Conference on Civil and Environmental Engineering Technologies (ICCEET), (University of Kufa, Iraq pp 25-32

[11] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidi L, Alkhaddar R, Shaw A and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. In: 2nd International Scientific Conference, (Al-Qadisiyah University, Iraq pp 12-22

[12] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulredha M and Alwash R 2019 Electrocoagulation as a green technology for phosphate removal from River water Separation and Purification Technology 210 135-44

[13] Abdulredha M, Rafid A, Jordan D and Alattabi A 2017 Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? Procedia engineering 196 771-8

[14] Abdulredha M, Abdulridha A, Shubbar A, Alkhaddar R, Kot P and Jordan D 2020 Estimating municipal solid waste generation from service processions during the Ashura religious event. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012075

[15] Abdulredha M, Kot P, Al Khaddar R, Jordan D and Abdulridha A 2020 Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, Iraq Environmental, Development and Sustainability 22 1431-54

[16] Farhan S L, Antón D, Akef V S, Zubaidi S L and Hashim K S 2021 Factors influencing the transformation of Iraqi holy cities: the case of Al-Najaf Scientific Review Engineering and Environmental Sciences 30 365-75

[17] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dreged sediment: a case study metals leaching from dreged sediment. In: First International Conference on Materials Engineering & Science, (Istanbul Aydin University (IAU), Turkey pp 12-22

[18] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Aljefery M and Al-Khaddar R 2020 Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies Water Science and Technology 83 1-17

[19] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkontou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012031

[20] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, AlKizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012073

[21] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020 Electrochemical removal of nitrate from wastewater. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012037

[22] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faluji D, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012038
[23] Abdulraheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012034

[24] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Jumeily D, Shaw A, Ruddock F and Aljefery M 2019 Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel Desalination and Water Treatment 168 165-74

[25] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater Journal of Water Process Engineering 33 101079-86

[26] Hashim K S, Ali S S M, AlRifaie J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor Chemosphere 247 125868-75

[27] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012064

[28] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljefery M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study Desalination and Water Treatment 150 406-12

[29] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Faluji D and Hashim K S 2020 Electrochemical removal of brilliant green dye from wastewater. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012036

[30] Alnaimi H, Idan I J, Al-Janabi A, Hashim K, Gkantou M, Zubaidi S L, Kot P and Muradov M 2020 Ultrasonic-electrochemical treatment for effluents of concrete plants. In: IOP Conference Series Materials Science and Engineering: IOP Publishing) p 012032

[31] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faluji D and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012033

[32] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020 Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012033

[33] Emamjomeh M M, Kakavand S, Jamali H A, Alizadeh S M, Safdari M, Mousavi S E S, Hashim K S and Mousazade M 2020 The treatment of printing and packaging wastewater by electrocoagulation–flotation: the simultaneous efficacy of critical parameters and economics Desalination and water treatment 205 161-74

[34] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study Science of The Total Environment 760 1-16

[35] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment Journal of Cleaner Production 280 1-17

[36] Omran I I, Al-Saati N H, Al-Saati H H, Hashim K S and Al-Saati Z N 2021 Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA) Water Practice and Technology 16 648-60
[37] Grmasha R A, Al-sareji O J, Salman J M, Hashim K S and Jasim I A 2020 Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust Within Three Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment *Journal of King Saud University - Engineering Sciences* **33** 1-18

[38] Al-Sareji O J, Grmasha R A, Salman J M, Idowu I and Hashim K S 2021 Street dust contamination by heavy metals in Babylon governorate, Iraq. *Journal of Engineering Science and Technology* **16** 3528 - 46

[39] Chabuk A, Hammood Z A, Abed S A, Kadhim M M, Hashim K, Al-Ansari N and Laue J 2021 Noise Level in Textile Industries: Case Study Al-Hilla Factory Company for Textile Industries, Al-Hilla-Babylon-Iraq. In: *IOP Conference Series: Earth and Environmental Science* IOP Publishing p 012048

[40] Shubbbar A A, Al-Shaer A, Al-Kizwini R S, Hashim K, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortars. In: *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, (University of Kufa, Iraq pp 31-8

[41] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural Pozzolan Binders using Lime Waste as activation Agent *Advances in Cement Research* **32** 1-38

[42] Majdi H S, Shubbbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abduremeh M, Masoodi Z A, Sadique M and Hashim K 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations *Data in Brief* **31** 105961-72

[43] Al-Jumeily D, Hashim K, Alkaddar R, Al-Tufaily M and Lunn J 2019 Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). In: *11th International Conference on Developments in eSystems Engineering (DeSE)*, (Cambridge, UK pp 214-9

[44] Shubbbar A A, Sadique M, Nasr M S, Al-Khafaji Z S, and Hashim K S 2020 The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash *Karbala International Journal of Modern Science* **6** 1-23

[45] Shubbbar A A, Sadique M, Shanbara H K and Hashim K 2020 *The Development of a New Low Carbon Binder for Construction as an Alternative to Cement*. In *Advances in Sustainable Construction Materials and Geotechnical Engineering* (Berlin: Springer)

[46] Obaid M K, Nasr M S, Ali I M, Shubbbar A A and Hashim K S 2021 Performance of green mortar made from locally available waste tiles and silica fume *Journal of Engineering Science and Technology* **16** 136-51

[47] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Mafiabadi M, Baghdali Z, Hashim K S and Ghanbari R 2020 Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes *Separation Science and Technology* **55** 3184-94

[48] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter. In: *IOP Conference Series: Materials Science and Engineering* IOP Publishing p 012035

[49] Hashim K S, Al-Khadar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljeffery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In *Advances in Water Resources Engineering and Management* (Berlin: Springer)

[50] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019 Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/ electrofloation (EC/EF) process. In: *First International
Conference on Civil and Environmental Engineering Technologies (ICCEET), (University of Kufa, Iraq pp 12-22

[51] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust *Journal of Building Engineering* **32** 1-17

[52] Abdulraheem M S and Kadhum M M 2018 Experimental and numerical study on post-fire behaviour of concentrically loaded reinforced reactive powder concrete columns *Construction and Building Materials* **168** 877-92

[53] Hashim A M and Kadhum M M 2021 Numerical and Experimental Study of Postfire Behavior of Concentrically Loaded SIFCON Columns *ACI Structural Journal* **118** 73-86

[54] Khamees S S, Kadhum M M and Alwash N A 2020 Experimental and numerical investigation on the axial behavior of solid and hollow SIFCON columns *SN Applied Sciences* **2** 1-15

[55] Kadhum M 2015 Prediction of Mechanical Properties of Reactive Powder Concrete by Using Artificial Neural Network and Regression Technique after the Exposure to Fire Flame *Jordan Journal of Civil Engineering* **159** 1-19

[56] Kadhum M M, Alwash N A, Tuama W K and Abdulraheem M S 2019 Experimental and numerical study of influence of crude oil products on the behavior of reactive powder and normal strength concrete slabs *Journal of King Saud University-Engineering Sciences* **32** 293-302

[57] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019 Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection *Sensors* **19** 5175-89

[58] Ryecroft S P, Shaw A, Fergus P, Kot P, Hashim K and Conway L 2019 A Novel Gesomin Detection Method Based on Microwave Spectroscopy. In: *22nd International Conference on Developments in eSystems Engineering (DeSE)*, (Kazan, Russia pp 429-33

[59] Omer G, Kot P, Atherton W, Muradov M, Gkantou M, Shaw A, Riley M, Hashim K and Al-Shamma’a A 2020 A Non-Destructive Electromagnetic Sensing Technique to Determine Chloride Level in Maritime Concrete *Karbala International Journal of Modern Science* **6** 1-14

[60] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019 A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna *Sensors* **19** 1813-23

[61] Kot P, Muradov M, Gkantou M, Kamaris G S, Hashim K and Yeboah D 2021 Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring *Applied Sciences* **11** 1-28

[62] Omer G, Kot P, Atherton W, Muradov M, Gkantou M, Shaw A, Riley M, Hashim K and Al-Shamma’a A 2021 A Non-Destructive Electromagnetic Sensing Technique to Determine Chloride Level in Maritime Concrete *Karbala International Journal of Modern Science* **7** 61-71

[63] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Tang A, Moody A and Conway L 2021 An Implementation of a Multi-Hop Underwater Wireless Sensor Network using Bowtie Antenna *Karbala International Journal of Modern Science* **7** 113-29