The role of surface-bound dihydropyridine analogs in pyridine-catalyzed CO$_2$ reduction over semiconductor photoelectrodes

*Thomas P. Senfile,*a *Martina Lessio,*b and *Emily A. Carter*,c,*

a Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263 (USA)
b Department of Chemistry, Princeton University, Princeton, NJ 08544-5263 (USA)
c School of Engineering and Applied Science, Princeton University, Princeton, NJ 08544-5263 (USA)

*eac@princeton.edu

Contents:

1) DFT Computational Details
2) Calculation of Standard Reduction Potentials
3) Cluster Models
 • Figure S1: GaP, CdTe, and CuInS$_2$ cluster model geometries
4) Geometry of 2-PyH* on CdTe and CuInS$_2$
 • Figure S2: Geometry of 2-PyH* adsorbed on reconstructed CdTe(111) and CuInS$_2$(112) surfaces
 • Figure S3: Electron density difference of 2-PyH* adsorbed on CdTe(111) and CuInS$_2$(112) surfaces
 • Figure S4: Transition state geometry for the reaction 2-PyH* + CO$_2$ \rightarrow Py* + HCOO$^-$ on CdTe(111) and CuInS$_2$(112) surfaces
5) Impact of explicit solvation on SRP and HT barrier
 • Figure S5: Geometry of 2-PyH* adsorbed on the reconstructed GaP(111), CdTe(111), and CuInS$_2$(112) surfaces with H$^+$, OH$^-$, or H$_2$O co-adsorbates
 • Figure S6: Transition state geometry for the reaction 2-PyH* + CO$_2$ \rightarrow Py* + HCOO$^-$ on GaP(111) with H$^+$, OH$^-$, and H$_2$O co-adsorbates
6) Reaction energy path for mechanism proceeding through DHP* intermediate
 • Figure S7: Reaction energy diagrams for the reaction 2-PyH** + CO$_2$ \rightarrow Py* + HCOO$^-$ proceeding though 2-PyH* and DHP* intermediates
7) Transition state for the HT reaction: H* + CO$_2$ \rightarrow * + HCOO$^-$ on GaP(111)
 • Figure S8: Transition state geometry for the reaction 2-PyH** + CO$_2$ \rightarrow Py* + HCOO$^-$ on GaP(111)
8) Interaction between Py, H$_2$O and β-Ga$_2$O$_3$
 • Figure S9: Adsorption of Py and H$_2$O on the β-Ga$_2$O$_3$(100) surface
7) Cartesian coordinates and total DFT energies of all reported geometries
1) DFT Computational Details

All computations were performed using the NWCHEM 6.6 simulation package1 with the hybrid B3LYP2,3 exchange-correlation (XC) functional and Grimme’s D24 semi-empirical dispersion correction. Continuum solvation was treated with the “Solvation Model based on solute electron Density” (SMD),5 where the default NWCHEM parameters were employed for all atomic radii as well as for the dielectric constant of water ($\varepsilon = 78.4$). Inner core electrons/nuclei and outer-core/valence electrons of Ga, Cd, Te, Cu, and In were respectively represented by the following effective core potentials (ECPs) and double zeta (DZ) basis sets: Stuttgart (28, MWB) + DZ,6 Stuttgart (28, MWB) + DZ,7 Stuttgart (46, MWB) + DZ,6 Stuttgart (10, MWB) + DZ,8,9 and Stuttgart + DZ (46, MWB).6 The numbers in parentheses are the number of core electrons replaced by the ECP. MWB is the designation in the Stuttgart database indicating that the ECP is derived through fitting to multi-electron, quasi-relativistic data sets. Ga-(4s24p1), Cd-(4s24p64d105s2), Te-(5s25p4), Cu-(3s23p63d104s1), and In-(5s25p1) outer-core/valence electrons were treated self-consistently. The Pople all-electron 6-31G** basis set10 was employed for all other atoms during geometry optimization and frequency analyses, and the Dunning all-electron aug-cc-pVDZ basis set11 was employed to refine single-point energies. Geometries were optimized with a quasi-Newton-Raphson algorithm (as available in NWCHEM 6.6) with a force convergence criterion of 0.00045 Ha bohr$^{-1}$. Minimum energy structures were verified with frequency analyses to ensure that all imaginary modes were eliminated. Transition state (TS) structures were also verified with frequency analyses, in which all reported TS structures have one imaginary frequency, and where optimization along both directions of the imaginary mode leads to minima corresponding to super-molecule structures characteristic of the reactant and product states (i.e., CO$_2$ and HCOO$^-$ weakly adsorbed above the 2-PyH$^+$ and Py$^+$.
surface models). Note that these super-molecule reactant states vary from the reference state used to determine the effective free energy barriers reported in the main text (i.e., there the effective reference state consists of CO$_{2(aq)}$ in solution at infinite separation from the surface). Numerical Hessians were employed to calculate frequencies, which were calculated with finite displacements (± 0.01 Å) of all atoms except the fixed pseudo-hydrogen saturators (see section 3 below).

2) Calculation of Standard Reduction Potentials (SRPs)

Standard reduction potentials were calculated from reaction free energies employing a previously established methodology.12,13 The SRP is calculated with the equation:

\[
E^0 = \frac{-\Delta G_{aq}}{nF} - \frac{mRT\ln(10)}{n}pH,
\]

where E^0 is the SRP, n is the number of electrons transferred in the reduction, m is the number of protons involved in the reaction, F is the Faraday constant, T is the temperature ($T = 298$ K at standard state), R is the gas constant, and $pH = 5.2$. ΔG_{aq} is the reaction free energy, which is calculated with the expression:

\[
\Delta G_{aq} = G_{\text{reduced}} - G_{\text{reactant}} - n \cdot G_{e^-} - m \cdot G_{H^+},
\]

where G_{reduced} and G_{reactant} are the free energies of the reduced product and the reactant (including implicit solvation, as well as all translational, rotational, and vibrational contributions), respectively, and G_{e^-} is the free energy of an electron in solution, as determined empirically from the standard hydrogen electrode (SHE = -4.281 V).14 G_{H^+} is the free energy of a proton in solution, determined empirically as -11.72 eV.15 All reduction potentials are reported relative to the standard calomel electrode (0 V-SHE = -0.244 V-SCE). Statistical mechanical expressions for the ideal gas, harmonic oscillator, and rigid rotor were employed to derive translational, vibrational, and rotational thermochemical properties. Translational and rotational
contributions were considered to be zero for species adsorbed on cluster model surfaces with no translational or rotational degrees of freedom. The appropriateness of the employed implicit solvation model for calculating SRP values of the species considered in this study was demonstrated previously by Keith and Carter. The computed SRP for the reduction of \(\text{PyH}^{+} \) to \(\text{PyH}^{\bullet} \) using this approach is corroborated in the works of multiple separate research groups employing both theory\(^{17-19}\) and experiment,\(^{20}\) demonstrating the feasibility of this method. Finally, Keith and Carter\(^{21}\) further demonstrated that SRP values for the Py-derived species considered in this study calculated with B3LYP/aug-cc-pVDZ and with high level (U)CCSD(T)-F12/aug-cc-pVTZ-F12 approached varied by less than 0.1 V. Thus, the B3LYP functional is an appropriate choice for the calculation of adsorption energies and SRP values presented in this manuscript.

3) Cluster Models

GaP(111) and CdTe(111) surfaces were represented with the cluster models derived in our previous study.\(^{22}\) These models were cleaved from the periodic structures of a (2×2) reconstruction featuring one surface Ga/Cd vacancy per unit cell, as this reconstruction was predicted to be stable under photoelectrochemical conditions (Figure S1). The resulting clusters have 24 P/Te atoms, with 12 residing in the surface layer and 12 residing in the sub-surface layer. They have 21 Ga/Cd atoms, with nine residing in the surface layer and 12 in the sub-surface layer (i.e., the surface layer has one Ga/Cd vacancy per four P/Te atoms). Innocent dangling bonds at the cluster boundary were saturated using a pseudo-hydrogen capping scheme, in which each pseudo-hydrogen cap has a core charge modified to represent the atom-type it is replacing. Core charges of \(Z = +3/4 \text{ e} \), \(Z = +5/4 \text{ e} \), \(Z = +2/4 \text{ e} \), and \(Z = +6/4 \text{ e} \) are used when replacing Ga, P, Cd, and Te, respectively. The core charge is determined from the number of
valence electrons divided by the number of bonds in the stoichiometric bulk (i.e., for Ga there are three valence electrons divided by four bonds in the zinc blende structure). This stoichiometry yields a neutral singlet with no dangling bonds. The cluster model of the CuInS$_2$(112) surface was derived from the periodic geometry of a (2×2) surface reconstruction, in which there is one Cu$_{\text{In}}$ anti-site defect per (2×2) surface cell. This defect was predicted to be thermodynamically stable using the same methodology that was applied to the GaP and CdTe surfaces.23 The resulting cluster has 12 Cu atoms, four In atoms, and 16 S atoms in the surface layer, and has eight Cu atoms, eight In atoms, and 16 S atoms in the sub-surface layer (i.e., there are four Cu$_{\text{In}}$ anti-site defects in the equivalent (4×4) surface layer). Pseudo-hydrogen saturators were employed with core charges of $Z = +1/4 \, e$, $Z = +3/4 \, e$, and $Z = +6/4 \, e$ when replacing Cu, In, and S, respectively. Pseudo-hydrogens were positioned by replacing a cation/anion in the geometry of the optimized extended surface, followed by an optimization of all pseudo-hydrogen bond lengths (where all atoms in the cluster are frozen and pseudo-hydrogen saturators are relaxed along their bond to the nearest atom in the cluster). Pseudo-hydrogens were then frozen in these positions during all subsequent geometry optimizations and vibrational frequency calculations. We note that these models of the surface assume that restructuring of the surface caused by exposure to visible light and the applied voltage is negligible. The voltages applied in the photo-electrochemical experiments are generally low—with the onset of Py-enhanced CO$_2$ reduction demonstrated to occur at potentials as low as -0.2 V vs. SCE.24 We therefore do not expect that voltage-induced restructuring of the surface will play a significant role in these systems.

The cluster model approach was extensively benchmarked and validated by Keith et al.13 where it was demonstrated that the cluster model approach yields adsorption energies that are
very similar to those computed with a periodic surface model. The cluster model approach was further refined, extended, and validated by Senftle et al.22,23 These studies show that the cluster models yield adsorption energies that are typically within \(-0.2\) eV of the values computed with periodic surface models. These studies also show that the B3LYP XC functional yields adsorption energies consistent with the widely used PBE25 XC functional.

\textbf{Figure S1.} Top (left) and (right) side views of the cluster models representing the reconstructed (a) GaP(111)-Ga\textsubscript{vac}, (b) CdTe(111)-Cd\textsubscript{vac}, and (c) CuInS\textsubscript{2}(112)-Cu\textsubscript{In} surfaces. Subsurface atoms
are omitted in top views for clarity. Core charge of pseudo-hydrogen saturators are indicated with color-coded labels.

4) Geometry of 2-PyH* on CdTe and CuInS₂

Figure S2. Side view of the geometry of 2-PyH* adsorbed on the reconstructed (a) CdTe(111) and (b) CuInS₂(112) surfaces. Pseudo-hydrogen saturators are omitted for clarity.
Figure S3. Electron density difference of 2-PyH⁺ adsorbed on the reconstructed (a) CdTe(111) and (b) CuInS₂(112) surfaces. The red (blue) isosurface indicates electron density depletion (accumulation), and the isosurface level corresponds to 0.003 e⁻ bohr⁻¹.
Figure S4. Side view of the TS geometry of a HT from the 2-PyH⁺ intermediate to CO₂ over the (a) CdTe(111) and (b) CuInS₂(112) surfaces. Pseudo-hydrogen saturators are omitted for clarity.

5) Impact of explicit solvation on SRP and HT barrier

Figure S5. (a-b) Top (left) and side (right) view of the geometry of 2-PyH⁺ adsorbed on the reconstructed GaP(111) surface with (a) a co-adsorbed H⁺ and (b) a co-adsorbed 2H₂O, 2OH⁻, and 2H⁺ layer. (c) Top (left) and side (right) view of the geometry of 2-PyH⁺ adsorbed on the reconstructed CdTe(111) surface with a co-adsorbed 4H₂O layer. (d) Top (left) and side (right)
view of the geometry of 2-PyH* adsorbed on the reconstructed CuInS$_2$(112) surface with co-adsorbed 6H$_2$O layer. Pseudo-hydrogen saturators are omitted for clarity.

Figure S6. Top view of the TS geometry of a HT from the 2-PyH* intermediate to CO$_2$ over the reconstructed GaP(111) surface in the presence of an explicit solvation layer (in addition to implicit solvation). The structure of the solvation layer was determined in a previous study.22 Pseudo-hydrogen saturators are omitted for clarity.

For further information regarding the impact of explicit solvation, included in addition to implicit solvation, we refer the reader to previous work reported by Lessio et al.26,27 For information regarding the interaction between water and the reconstructed GaP, CdTe, and CuInS$_2$ surface, we refer the reader to work reported by Senftle et al.22,23 Finally, for further experimental and theoretical work investigating the nature of Py, H$_2$O, H$^+$, and OH$^-$ adsorption on GaP, we refer the reader to Kronawitter et al.28,29

6) Reaction energy diagrams for mechanisms proceeding through 2-PyH* or DHP*
Figure S7. CO$_2$ reduction pathways proceeding through HT from surface-bound 2-PyH* (blue) or DHP* (orange) intermediates on GaP(111). Species labeled with an * are adsorbed on the surface. (Inset) Side view of the TS-(DHP* + CO$_2$) transition state structure.

In the above diagram we present the reaction free energy paths for two possible mechanisms for the overall reaction over the reconstructed GaP(111) surface:

$$2\text{-PyH}^* + \text{H}^+_{(aq)} + \text{CO}_2(aq) \rightarrow \text{Py}^* + \text{HCOOH}_{(aq)}$$

The first mechanism proceeds via an initial protonation of 2-PyH* forming DHP*, followed by a HT from DHP* to CO$_2(aq)$ yielding HCOO$^-$$_{aq}$ and PyH$^+$*, then completed by a proton transfer from PyH$^+$* to HCOO$^-$$_{aq}$ to obtain Py* and HCOOH$_{(aq)}$:

1. **$2\text{-PyH}^* + \text{H}^+_{(aq)} \rightleftharpoons \text{DHP}^*$** \hspace{1cm} $\Delta G^1 = -0.60 \text{ eV (pH = 5.2)}$
2. **$\text{DHP}^* + \text{CO}_2(aq) \rightarrow \text{HCOO}^-_{aq} + \text{PyH}^+*$** \hspace{1cm} $\Delta G^2 = -0.28 \text{ eV, } \Delta G^{TS} = 1.25 \text{ eV}$
3. **$\text{PyH}^+* + \text{HCOO}^-_{aq} \rightleftharpoons \text{HCOOH}_{(aq)} + \text{Py}^*$** \hspace{1cm} $\Delta G^3 = -0.31 \text{ eV}$

ΔG^1, ΔG^2, and ΔG^3 correspond to the reaction free energies of steps (1), (2), and (3), respectively, and ΔG^{TS} corresponds to the free energy barrier for the rate-limiting HT step. The apparent barrier for this mechanism is 0.65 eV, as shown in orange in Figure S7. This barrier is computed relative to a reference state that corresponds with $2\text{-PyH}^* + \text{H}^+_{(aq)} + \text{CO}_2(aq)$, and therefore assumes that step (1) is in equilibrium. This can be considered as the “best case” scenario yielding the lowest possible apparent barrier for this reaction path. Because ΔG^1 is very exergonic and the reaction is carried out at room temperature, the apparent barrier instead will likely resemble the ΔG^{TS} of step (2), which would be indicative of the system becoming trapped.
in the intermediate DHP* state. The above path can be directly compared to the barrier for the second reaction path featuring a direct HT from 2-PyH*, as proposed in Scheme 1 of the main text:

\[
\begin{align*}
(1) \quad 2\text{-PyH}^* + \text{CO}_2^{(aq)} & \rightarrow \text{Py}^* + \text{HCOO}^{(aq)} \quad \Delta G^1 = -1.42 \text{ eV}, \Delta G^{TS} = 0.59 \text{ eV} \\
(2) \quad \text{H}^+^{(aq)} + \text{HCOO}^{(aq)} & \rightleftharpoons \text{HCOOH}^{(aq)} \quad \Delta G^2 = 0.23 \text{ eV (pH = 5.2)}
\end{align*}
\]

This mechanism yields an apparent barrier of 0.59 eV—commensurate with the “best case” barrier for reaction path proceeding through the DHP* intermediate, where the latter would only be observed at elevated temperatures not practical in this system.

7) Transition state for the reaction: H^* + CO_2 \rightarrow * + HCOO^- on GaP(111)

Figure S8. Side view of the TS geometry of a HT directly from the reconstructed GaP(111) surface. Pseudo-hydrogen saturators are omitted for clarity.

8) Interaction between Py, H_2O and β-Ga_2O_3

In this section we consider the possible role of a native surface oxide on the photo-electrode surface. The GaP surfaces employed in the photo-electrochemical CO_2 reduction
experiments were pre-treated with aggressive etchants that would remove any native oxide on the surface. Furthermore, the electrodes are operated under cathodic conditions that would not favor the re-formation a native oxide layer. Ziegler et al.30 provide experimental evidence demonstrating the removal of a native oxide from p-type GaP via an etching procedure similar to the procedure employed by Bocarsly and co-workers in the original CO$_2$ reduction experiments.24 Nevertheless, surface regions with a thin oxide layer may persist, and as such we have investigated possible ways in which a native oxide could impact that surface-bound reaction mechanism presented in this work. Here we only consider Ga$_2$O$_3$ oxide structures because the oxidation of surface P atoms will not impact Py binding at Ga metal sites, and because native Ga$_2$O$_3$ was observed by Ziegler et al.30 to form on p-GaP electrode surfaces. We employ a slab model of the low-index (100) surface orientation of β-Ga$_2$O$_3$, as this is the most stable surface of β-Ga$_2$O$_3$ (see Bermudez31 for a comparison of different Ga$_2$O$_3$ surface structures and energies), which in turn is the most stable polymorph of Ga$_2$O$_3$. To test the strength of such dative bonds on the native oxide, we calculated the adsorption energy of Py and H$_2$O at the undercoordinated Ga site on Ga$_2$O$_3$(100), where we employ a (2×2) periodic surface model, the PBE XC functional,25 and a 4×4×1 Monkhorst-Pack32 k-point mesh with all other computational settings identical to those described in our previous work.22 The calculated adsorption energies of Py and H$_2$O are $\Delta E_{\text{ads}} = -0.96$ eV and $\Delta E_{\text{ads}} = -0.67$ eV, respectively.
Figure S9. (a) Side view of β-Ga$_2$O$_3$(100) surface, on which there is an open coordination site at the octahedral d^{10} metal center of the surface Ga atom. (b-c) Optimized adsorption geometry of (b) Py and (c) H$_2$O on the β-Ga$_2$O$_3$(100) surface forming donor-acceptor bonds at the open coordination site. Cartesian coordinates are provided in Section 9. Adsorption energies calculated with the formulae: $\Delta E_{\text{ads}} = E[\text{Py/Ga}_2\text{O}_3(100)] - E[\text{Py}] - E[\text{Ga}_2\text{O}_3(100)]$ or $\Delta E_{\text{ads}} = E[\text{H}_2\text{O/Ga}_2\text{O}_3(100)] - E[\text{H}_2\text{O}] - E[\text{Ga}_2\text{O}_3(100)]$.

References
(1) Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. NWCHEM: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations. *Comput. Phys. Commun.* 2010, 181, 1477-1489.
(2) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* 1988, 37, 785-789.
(3) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* 1988, 38, 3098-3100.
(4) Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. *J. Comput. Chem.* 2006, 27, 1787-1799.
(5) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, 113, 6378-6396.
(6) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab Initio Energy-Adjusted Pseudopotentials for Elements of Groups 13–17. *Mol. Phys.* **1993**, *80*, 1431-1441.

(7) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. *Theoretica chimica acta* **1990**, *77*, 123-141.

(8) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-Adjusted Ab Initio Pseudopotentials for the First Row Transition Elements. *J. Chem. Phys.* **1987**, *86*, 866-872.

(9) Martin, J. M. L.; Sundermann, A. Correlation Consistent Valence Basis Sets for Use with the Stuttgart–Dresden–Bonn Relativistic Effective Core Potentials: The Atoms Ga–Kr and in–Xe. *J. Chem. Phys.* **2001**, *114*, 3408-3420.

(10) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-Consistent Molecular Orbital Methods. Xxiii. A Polarization-Type Basis Set for Second-Row Elements. *J. Chem. Phys.* **1982**, *77*, 3654-3665.

(11) Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. *J. Chem. Phys.* **1989**, *90*, 1007-1023.

(12) Keith, J. A.; Carter, E. A. Theoretical Insights into Pyridinium-Based Photoelectrocatalytic Reduction of CO$_2$. *J. Am. Chem. Soc.* **2012**, *134*, 7580-7583.

(13) Keith, J.; Muñoz-García, A.; Lessio, M.; Carter, E. Cluster Models for Studying CO$_2$ Reduction on Semiconductor Photoelectrodes. *Top. Catal.* **2015**, *58*, 46-56.

(14) Isse, A. A.; Gennaro, A. Absolute Potential of the Standard Hydrogen Electrode and the Problem of Interconversion of Potentials in Different Solvents. *J. Phys. Chem. B* **2010**, *114*, 7894-7899.

(15) Tossell, J. A. Calculation of the Properties of Molecules in the Pyridine Catalyst System for the Photochemical Conversion of CO$_2$ to Methanol. *Comput. and Theor. Chem.* **2011**, *977*, 123-127.

(16) Senftle, T. P.; Lessio, M.; Carter, E. A. Interaction of Pyridine and Water with the Reconstructed Surfaces of GaP(111) and CdTe(111) Photoelectrodes: Implications for CO$_2$ Reduction. *Chem. Mater.* **2016**, *28*, 5799-5810.

(17) Senftle, T. P.; Carter, E. A. Theoretical Determination of Band Edge Alignments at the Water–CulnS$_2$(112) Semiconductor Interface. *Langmuir* **2017**, doi: 10.1021/acs.langmuir.7b00668.

(18) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.
(26) Lessio, M.; Senftle, T. P.; Carter, E. A. Is the Surface Playing a Role During Pyridine-Catalyzed CO₂ Reduction on p-Gap Photoelectrodes? *ACS Energy Lett.* 2016, 1, 464-468.

(27) Lessio, M.; Riplinger, C.; Carter, E. A. Stability of Surface Protons in Pyridine-Catalyzed CO₂ Reduction at p-GaP Photoelectrodes. *Phys. Chem. Chem. Phys.* 2016, 18, 26434-26443.

(28) Kronawitter, C. X.; Lessio, M.; Zhao, P.; Riplinger, C.; Boscoboinik, A.; Starr, D. E.; Sutter, P.; Carter, E. A.; Koel, B. E. Observation of Surface-Bound Negatively Charged Hydride and Hydroxide on GaP(110) in H₂O Environments. *J. Phys. Chem. C* 2015, 119, 17762-17772.

(29) Kronawitter, C. X.; Lessio, M.; Zahl, P.; Muñoz-García, A. B.; Sutter, P.; Carter, E. A.; Koel, B. E. Orbital-Resolved Imaging of the Adsorbed State of Pyridine on GaP(110) Identifies Sites Susceptible to Nucleophilic Attack. *J. Phys. Chem. C* 2015, 119, 28917-28924.

(30) Ziegler, J.; Fertig, D.; Kaiser, B.; Jaegermann, W.; Blug, M.; Hoch, S.; Busse, J. Preparation and Characterization of GaP Semiconductor Electrodes for Photoelectrochemical Water Splitting. *Energy Procedia* 2012, 22, 108-113.

(31) Bermudez, V. M. The Structure of Low-Index Surfaces of β-Ga₂O₃. *Chem. Phys.* 2006, 323, 193-203.

(32) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev. B* 1976, 13, 5188-5192.

9) Cartesian coordinates and total DFT energies of all reported geometries

All geometries are provided in cartesian coordinates (Å). Core charges (units of e) of pseudo-hydrogen saturators are indicated in brackets.

GaP(111) Cluster Model:

Total DFT Energy: -8254.24050487618 Ha

H[Z=1.25]	-7.16917963	-1.86191902	-1.50875678
H[Z=1.25]	-7.12359105	-4.05277974	1.45967287
H[Z=1.25]	-5.21877988	-5.27186105	-1.50210210
H[Z=1.25]	-1.93616368	7.12039741	-1.52727102
H[Z=1.25]	5.17649945	-5.31343078	-1.50257282
H[Z=1.25]	0.03308891	8.34359116	1.42738567
H[Z=1.25]	1.99229336	7.10424815	-1.52701504
H[Z=1.25]	7.15424499	-1.91909686	-1.50983857
H[Z=1.25]	7.09104932	-4.10925328	1.45902848
H[Z=0.75]	-7.04080034	1.80643186	-1.29546678
H[Z=0.75]	-5.86917827	1.12364620	-3.24865470
H[Z=0.75]	-1.98298596	-5.66960819	-3.23539736
H[Z=0.75]	-1.99138426	-7.01801045	-1.27867655
H[Z=0.75]	-3.89552936	4.51095106	-3.25417630
H[Z=0.75]	-5.06431158	5.19968792	-1.30186433
H[Z=0.75]	-5.11881160	3.03326049	1.48221186
H[Z=0.75]	-0.00933709	-2.28230504	-3.24178295
H[Z=0.75]	1.95706118	1.09255459	-3.24857649
H[Z=0.75]	-1.94885853	1.10807425	-3.24796642
H[Z=0.75]	-0.02380254	-5.97733262	1.50670662
H[Z=0.75]	1.93518640	-7.03632094	-1.27798518
H[Z=0.75]	1.93733378	-5.68518013	-3.23470908
H[Z=0.75]	3.93070915	4.47985638	-3.25539508
Element	X	Y	Z
H	5.10416108	5.15874627	-1.30275722
H	7.05519723	1.75097329	-1.29567388
H	5.14326766	2.99303266	1.48174557
H	5.87738005	1.07698214	-3.24789021
H	-3.92262892	-2.27080813	-3.23296450
H	3.90391917	-2.30244238	-3.2324523
H	0.01757191	4.49108197	-3.24614510
Ga	-5.84661933	-1.09920206	-0.98456779
Ga	-3.90029554	-4.51165063	-0.97995274
Ga	-5.70579606	-3.26433655	1.61018402
Ga	-3.86233258	2.23482566	-1.05243133
Ga	-1.94210938	5.60941681	-1.00133280
Ga	0.00921050	2.23894040	0.96092221
Ga	-3.96052871	-0.11602717	1.63849844
Ga	-1.95461305	-1.13916078	-0.96385777
Ga	-1.84054278	3.55870123	1.61613881
Ga	-0.01736303	-4.50042985	-1.02870032
Ga	1.94632262	-1.15425761	-0.96452758
Ga	-2.12406000	-3.37228023	1.63089164
Ga	3.86352163	-4.54254352	-0.97875063
Ga	2.09662172	-3.38313194	1.63037014
Ga	0.02694395	6.69269566	1.55332311
Ga	1.98666137	5.59358046	-1.00092376
Ga	3.87953034	2.20476164	-1.05274053
Ga	1.86784508	3.54428552	1.61641016
Ga	3.96182192	-0.14488879	1.63892950
Ga	5.83861889	-1.1448636	-0.98580291
Ga	5.67993614	-3.30890895	1.61140101
P	-6.12722130	-0.98202296	1.45669857
P	-5.85550677	1.13328809	-1.79975827
P	-3.96414313	-4.80280259	1.46281993
P	-3.92037508	-2.26399361	-1.77861209
P	-1.97461257	-5.65543390	-1.78527005
P	-3.89151014	4.50491963	-1.80441139
P	-2.16017112	5.87062471	1.43089598
P	-3.87169495	2.28394570	1.36646627
P	-0.00877504	-2.26512887	-1.78931130
P	0.00836946	2.16806067	1.48924070
P	-1.92975658	1.10468786	-1.79657554
P	1.83327719	-1.08132535	1.48603603
P	0.01766220	4.49667072	-1.79344264
P	-0.01755305	-4.51996900	1.38824613
P	1.93838799	1.08924441	-1.79735822
P	-1.84186049	-1.07469892	1.48617344
P	3.92387024	-4.83149977	1.46403734
P	1.92981600	-5.67300905	-1.78441656
---	---	---	---
P	3.90281381	-2.29501495	-1.77821880
P	3.92587579	4.47406553	-1.80572859
P	3.88983887	2.25485926	1.36599791
P	2.20714591	5.85339105	1.43080576
P	5.86409497	1.08808832	-1.79936483
P	6.12083043	-1.03015006	1.45511557

CdTe(111) Cluster Model:

Total DFT Energy: -3736.045677928867 Ha

H[Z=1.50]	-1.75138259	-8.59767089	-1.62855290
H[Z=1.50]	0.67037618	-9.68021338	1.89792430
H[Z=1.50]	2.92144564	-8.27366002	-1.62876616
H[Z=1.50]	8.32190144	2.78296660	-1.62896305
H[Z=1.50]	-8.71723167	4.25750973	1.89718348
H[Z=1.50]	-6.59451414	5.81604226	-1.62901244
H[Z=1.50]	5.70417563	6.66756438	-1.62859999
H[Z=1.50]	8.04652933	5.42077113	1.89711165
H[Z=1.50]	-8.63051339	1.60104928	-1.62466316
H[Z=0.50]	-5.65534902	-6.63734007	-1.37291300
H[Z=0.50]	-4.28657630	-5.70417316	-3.77447264
H[Z=0.50]	5.03384280	-5.05797325	-3.77589806
H[Z=0.50]	0.37363043	-5.38107397	-3.74268535
H[Z=0.50]	6.51795185	-5.79268882	-1.37301110
H[Z=0.50]	-6.89770712	-1.82899976	-3.77385721
H[Z=0.50]	-8.27585199	-2.74678081	-1.37280002
H[Z=0.50]	2.42291977	-1.18266106	-3.77428562
H[Z=0.50]	-0.18619891	2.69084977	-3.77442204
H[Z=0.50]	-4.84641206	2.36774853	-3.74170832
H[Z=0.50]	-2.23631846	-1.50631492	-3.77507182
H[Z=0.50]	8.57630985	-1.57859950	-1.37311172
H[Z=0.50]	4.47400676	3.01394833	-3.74063576
H[Z=0.50]	7.08430921	-0.85997569	-3.77500021
H[Z=0.50]	-0.49626403	7.14712653	1.92122225
H[Z=0.50]	-2.79698383	6.56595354	-3.77380959
H[Z=0.50]	-2.92074490	8.22064343	-1.37250560
H[Z=0.50]	6.43813024	-3.14515854	1.92158494
H[Z=0.50]	1.75908733	8.54181707	-1.37396620
H[Z=0.50]	1.86426608	6.88884632	-3.77577120
H[Z=0.50]	-5.94435086	-4.00383630	1.92191098
Cd	-1.89458200	-6.79919740	-1.02087214
Cd	2.81889624	-6.46928454	-1.01367521
Cd	-1.85096320	-4.27389105	1.74759816
Cd	0.54155304	-7.72941846	1.82403834
Cd	2.41899701	-3.98750839	1.72764337
Cd	-4.43179588	-2.98300771	-1.02876286
Cd	-7.01001264	0.79665685	-1.01117974
Element	X	Y	Z
---------	------------	------------	------------
Cd	-2.38003717	1.16960290	-1.02030700
Cd	-6.95615116	3.40012497	1.80208215
Cd	0.17853711	-2.64124723	-1.01628324
Cd	-4.66776536	-0.11574601	1.73384775
Cd	4.80627674	-2.34093156	-1.03013350
Cd	2.19279520	1.47598430	-1.01933909
Cd	-2.80130198	3.75715612	1.72794048
Cd	6.82778616	1.76835158	-1.00767598
Cd	2.24666636	4.10583040	1.73605893
Cd	4.66415577	0.52946166	1.73689478
Cd	6.41347131	4.33139061	1.81501472
Cd	-4.93815681	5.04301656	-1.00805026
Cd	-0.36827297	5.33396609	-1.03174338
Cd	4.19199365	5.67335683	-1.01044827
Te	-2.11287996	-7.03821702	1.82556782
Te	-4.29573971	-5.67856539	-2.00213737
Te	3.07568764	-6.68470526	1.82694035
Te	0.37389100	-5.36365348	-1.93864723
Te	5.04051300	-5.02968404	-2.00331180
Te	-6.87761282	-1.84631982	-2.00198762
Te	-7.32716305	0.68482439	1.82755614
Te	-4.44209215	-2.99312222	1.82090080
Te	2.41267832	-1.18141356	-2.00491719
Te	-2.18217091	1.07352997	1.82757630
Te	-2.22958483	-1.49544227	-2.00517439
Te	2.03301487	1.35911631	1.83003271
Te	-4.83870041	2.36750239	-1.93679987
Te	4.81137678	-2.35265099	1.81789571
Te	-0.18522496	2.68305476	-2.00607077
Te	0.16910790	-2.40251486	1.83048977
Te	7.18051665	1.70019763	1.82911878
Te	7.06961063	-0.87030550	-2.00092862
Te	4.45744680	3.01004857	-1.93733995
Te	-2.77241071	6.56364565	-2.00153277
Te	-0.37296079	5.34039617	1.81602962
Te	-5.05398349	5.37547459	1.82840623
Te	1.84020478	6.88210633	-2.00453130
Te	4.25705907	6.02097009	1.82754531

CulnS$_2$(112) Cluster Model:

Total DFT Energy: -16746.220389022201 Ha
Z	x	y	z
H[Z=0.25]	2.63494940	7.19964107	-3.37069240
H[Z=0.25]	-0.13025308	0.99322361	-3.54484812
H[Z=0.25]	3.49089212	-0.71040898	-3.30452282
H[Z=0.25]	0.72573547	-6.91682583	-3.47931789
H[Z=0.25]	1.95505660	-8.08608437	1.61050420
H[Z=0.25]	7.58790846	5.75381088	-0.67633629
H[Z=0.25]	6.03585088	7.78705249	1.92396976
H[Z=0.25]	6.63554540	1.72940552	-3.05973321
H[Z=0.25]	8.44227276	-2.15641529	-0.61092269
H[Z=0.25]	6.89179349	-0.12299656	1.99013933
H[Z=0.25]	7.49148801	-6.18064354	-2.99356364
H[Z=0.75]	-5.01843397	7.43705641	-1.89309912
H[Z=0.75]	-3.70200274	2.61262913	-3.43312293
H[Z=0.75]	-2.84606023	-5.29741893	-3.36695337
H[Z=0.75]	-0.51951939	4.85791074	-3.20575230
H[Z=0.75]	1.74731758	8.17323860	-1.40734493
H[Z=0.75]	3.06374980	3.34881142	-2.94736868
H[Z=0.75]	0.33642333	-3.05213931	-1.3958272
H[Z=0.75]	3.91969231	-4.56123664	-2.88119911
H[Z=0.75]	0.06568361	-8.04935328	-1.43633678
H[Z=0.75]	6.08154564	3.83922735	1.83089602
H[Z=0.75]	6.24623315	5.59409303	-2.71999805
H[Z=0.75]	6.93748836	-4.07082270	1.89706560
H[Z=0.75]	7.10217587	-2.31595702	-2.6538247
H[Z=0.75]	7.72546971	1.84435129	-0.96856027
H[Z=0.75]	6.83143615	-7.31317099	-0.95058252
H[Z=0.75]	8.58141233	-6.06569776	-0.90239070
Cu	-3.15543611	4.75214249	1.25962450
Cu	-5.21645780	4.43302878	-1.32328542
Cu	-2.66229125	0.76031221	1.26024883
Element	X	Y	Z
---------	-----	-----	-----
Cu	-6.87263050	6.44235022	0.92229489
Cu	-2.28479210	-3.24257099	1.26122717
Cu	-4.37230164	-3.43259532	-1.27323240
Cu	-1.74073404	-7.17405459	1.26653739
Cu	-6.03259825	-1.59501052	0.96041321
Cu	3.61050433	5.55993283	1.76903901
Cu	1.53295000	5.19303777	-0.81674610
Cu	4.08048580	1.47756834	1.71607071
Cu	-1.59593235	2.78009129	-1.03391158
Cu	-0.5501253	7.15346126	1.3893270
Cu	4.46505295	-2.37814355	1.74031674
Cu	2.35728641	-2.63308629	-0.77340859
Cu	4.99876975	-6.44441151	1.73454566
Cu	-0.71490460	-5.05625596	-0.97806947
Cu	0.72546718	-0.84290556	1.53219635
Cu	4.99198459	3.54494782	-0.58757191
Cu	5.88110453	-4.29467291	-0.53346414
In	-6.39548505	2.47176132	0.86408039
In	-5.53875132	-5.43803134	0.95089555
In	-4.67814147	0.48076693	-1.57214989
In	-3.85004433	-7.39302419	-1.50478950
In	-2.11606083	6.67840359	-1.22944853
In	0.40781662	3.19222951	1.60667926
In	-1.24128491	-1.11041813	-1.20477589
In	1.32343272	-4.72714352	1.67792368
In	1.96651521	1.15272206	-1.07521850
In	2.79862970	-6.67010843	-1.03650671
In	4.65410652	7.41293118	-0.70221956
In	5.56081073	-0.34105597	-0.71758693
S	-5.45457757	4.62766860	1.09118264
S	-4.98198999	0.47818983	0.92019861
S	-3.74857575	2.66860571	-2.03545343
S	-4.27994870	6.34777779	-2.33748175
S	-4.56176390	-3.30388303	1.15677877
S	-4.05996092	-7.42035126	0.94751035
S	-2.89284443	-5.22628112	-1.97331540
S	-3.45902978	-1.49643632	-2.2539864
S	-0.30309358	1.00906005	-1.99307551
S	1.34600962	5.36595141	1.54748130
S	-0.62586263	4.83406436	-1.81517872
S	1.78705721	1.19761708	1.40099386
S	2.88400017	3.36571024	-1.57485210
S	2.50737758	7.09811502	-1.85187690
S	-2.30281126	6.87576340	1.16625331
S	-1.93916773	2.86580960	1.35386057
S	0.54115235	-6.84878865	-1.94938269
S	2.20979171	-2.54239890	1.60264718
S	0.22016395	-3.02509133	-1.74784548
S	2.70665834	-6.73139016	1.42253207
S	3.76082602	-4.49772818	-1.51576671
S	3.35542326	-0.72571758	-1.76447820
S	-1.48561844	-1.13736014	1.23350311
S	-1.01859980	-5.07992807	1.41034109
S	6.44078914	1.81953112	-1.51945334
S	6.14675013	5.56771995	-1.32832786
S	4.51998759	7.66148852	1.67079636
S	4.72909629	3.62266785	1.77275865
S	7.28809739	-6.08323175	-1.42947975
S	6.99854217	-2.29649222	-1.26374762
S	5.40745779	-0.33557903	1.70389351
S	5.59299096	-4.31052876	1.84034844

Py* on GaP(111):

Total DFT Energy: -8502.604923179146 Ha

H[Z=1.25]	1.95820894	-7.37142164	-1.18662511
H[Z=1.25]	4.15694083	-7.08333694	1.76229146
H[Z=1.25]	5.33877757	-5.37581383	-1.33192937
H[Z=1.25]	-7.10094134	-2.28480043	-1.54001993
H[Z=1.25]	5.22577019	4.99273545	-2.06947660
H[Z=1.25]	-8.34451593	-0.12900059	1.27248858
H[Z=1.25]	-7.14320674	1.63359233	-1.81831376
H[Z=1.25]	1.80239715	6.91514004	-2.20330676
H[Z=1.25]	7.09474695	0.75376053	
H[Z=0.75]	-1.71099679	-7.28188594	-0.96825714
H[Z=0.75]	-1.05150175	-6.24191797	-3.00230985
H[Z=0.75]	5.68322596	-2.26566424	-3.29182793
H[Z=0.75]	7.03739944	-2.11551388	-1.34485989
H[Z=0.75]	-4.46778045	-4.32337275	-3.13413805
H[Z=0.75]	-5.13327084	-5.36065748	-1.10113652
H[Z=0.75]	-2.95802777	-5.18583388	1.67108508
H[Z=0.75]	2.26694640	-0.34718032	-3.42451796
H[Z=0.75]	-1.13678449	1.56422505	-3.55715083
H[Z=0.75]	-1.09422211	-2.33161892	-3.27959332
H[Z=0.75]	5.97584275	0.02927980	1.29818855
H[Z=0.75]	6.99732436	1.80105994	-1.62259439
H[Z=0.75]	5.64050560	1.64463481	-3.56911140
H[Z=0.75]	-4.55306395	3.48267738	-3.69027270
H[Z=0.75]	-5.24353504	4.78164172	-1.82302423
H[Z=0.75]	-1.86514340	6.77788295	-1.96793733
H[Z=0.75]	-3.07039629	5.04984588	0.94299007
H[Z=0.75]	-1.17950434	5.47452311	-3.83443624
H[Z=0.75]	2.31366501	-4.24973593	-3.13826631
Element	X1	X2	X3
H[Z=0.75]	2.22892154	3.55675352	-3.69270037
H[Z=0.75]	-4.50607507	-0.41968947	-3.40360266
Ga	1.16788590	-6.02931346	-0.75528691
Ga	4.56094222	-4.02927331	-0.89427984
Ga	3.34734867	-5.67031524	1.82026198
Ga	-2.19717676	-4.09697671	-0.95224278
Ga	-5.58750991	-2.23362293	-1.00657091
Ga	-2.24749713	-0.22687055	-1.12658459
Ga	0.17757749	-3.97347092	1.71869208
Ga	1.16260929	-2.14572487	-1.02209240
Ga	-3.54312590	-1.91072797	1.57622135
Ga	4.48136753	-0.15732277	-1.22959428
Ga	1.11858941	1.76613602	-1.27812239
Ga	3.38838788	-2.09647387	1.56695210
Ga	4.47456612	3.71359557	-1.43474880
Ga	3.34424773	2.12020062	1.29500637
Ga	-6.69027140	-0.10102651	1.38941185
Ga	-5.62735277	1.69023588	-1.29861730
Ga	-2.26391262	3.62628832	-1.48609529
Ga	-3.56536620	1.80506609	1.32735684
Ga	0.09702442	3.94775847	1.36741231
Ga	1.04782383	5.63010312	-1.54462029
Ga	3.21147364	5.68972623	1.01628786
P	1.06886726	-6.13873609	1.69927353
P	-1.06488127	-6.12203494	-1.55862249
P	4.85300026	-3.91862796	1.53551493
P	2.31434023	-4.14613920	-1.68896043
P	5.67252541	-2.14863492	-1.84555647
P	-4.46638901	-4.21341450	-1.69009274
P	-5.84977021	-2.28422765	1.42853706
P	-2.22917677	-3.93734129	1.45940104
P	2.24464474	-0.23508284	-1.98099108
P	-2.17612572	-0.05685028	1.31793348
P	-1.08726035	-2.20616176	-1.83313345
P	1.06096906	1.82089507	1.12318887
P	-4.50773797	-0.31233750	-1.95280714
P	4.51772090	0.01018326	1.17991012
P	-1.12683802	1.65289583	-2.10879516
P	1.08431111	-1.85305380	1.40447149
P	4.76841261	3.95164875	0.98502439
P	5.63203505	1.74729181	-2.12194580
P	2.22723604	3.67032734	-2.24240706
P	-4.53685375	3.58327583	-2.24490638
P	-2.29348762	3.81430557	0.89303996
P	-5.88387758	2.07592973	1.10735705
P	-1.17904969	5.56707205	-2.38799736
Py* on CdTe(111):

Total DFT Energy: -3984.403076647459 Ha

H[Z=1.50] -8.42921687 2.30603248 -1.84213644
H[Z=1.50] -9.70694616 0.09488896 1.75662825
H[Z=1.50] -8.49240732 -2.37524500 -1.69396379
H[Z=1.50] 2.08019889 -8.66775263 -1.49836062
H[Z=1.50] 4.95877141 8.29449058 1.49098189
H[Z=1.50] 6.33330416 5.91470396 -1.96203366
H[Z=1.50] 6.16780402 -6.38112434 -1.57187088
H[Z=1.50] 4.73294621 -8.49963212 2.02324589
H[Z=1.50] 2.30302097 8.31595912 -2.03240206
H[Z=0.50] -6.15293548 6.04087933 -1.70551853
H[Z=0.50] -5.33687845 4.52432340 -4.06049985
H[Z=0.50] -5.46299004 -4.81297424 -3.76595449
H[Z=0.50] -5.39992360 -0.14329303 -3.88074356
H[Z=0.50] -6.31699373 -6.15446479 -1.31905170
H[Z=0.50] -1.25921029 6.80516895 -4.13357093
H[Z=0.50] -2.05915987 8.32977358 -1.77935292
H[Z=0.50] -1.38520039 -2.53231556 -3.83802219
H[Z=0.50] 2.69064439 -0.25336075 -3.91178496
H[Z=0.50] 2.75371016 4.41630547 -4.02707279
H[Z=0.50] -1.32277737 2.13536404 -3.98676359
H[Z=0.50] -2.28738619 -8.55281736 -1.24452426
H[Z=0.50] 2.62759937 -4.92091276 -3.73003072
H[Z=0.50] -1.44876683 -7.20210545 -3.69071504
H[Z=0.50] 7.15925679 -0.13215321 1.78134414
H[Z=0.50] 6.76821456 2.02714591 -3.98484825
H[Z=0.50] 8.42829609 2.08982005 -1.58489459
H[Z=0.50] -3.67079073 -6.18926406 1.97739331
H[Z=0.50] 8.36169899 -2.59823911 -1.43775378
H[Z=0.50] 6.70486592 -2.64256165 -3.83879142
H[Z=0.50] -3.50342736 6.21560598 1.58451289
Cd -6.64531038 2.30844205 -1.23699499
Column 1	Column 2	Column 3	Column 4
Cd	-6.71402154	-2.41075640	-1.07356597
Cd	-4.08780585	2.21921808	1.52674751
Cd	-7.79089057	0.08678741	1.66203667
Cd	-4.15866840	-2.08616517	1.65871756
Cd	-2.62968173	4.55173932	-1.33723747
Cd	1.37496959	6.80410883	-1.35933039
Cd	1.33429116	2.20084871	-1.24279154
Cd	3.97266816	6.65393288	1.45624628
Cd	-2.67688702	-0.08975664	-1.17803279
Cd	0.34153707	4.61672692	1.91021367
Cd	-2.74482434	-4.73219609	-1.03598279
Cd	1.28554190	-2.42515936	-1.13124087
Cd	3.94031748	2.43859537	1.50695828
Cd	1.19115910	-7.10095363	-0.94482822
Cd	3.87816203	-2.59564844	1.63977957
Cd	0.14180280	-4.68227848	1.71901543
Cd	3.79146893	-6.83714560	1.86553796
Cd	5.43257110	4.38964935	-1.29885039
Cd	5.34013726	-0.19806533	-1.19218139
Cd	5.31646257	-4.79657957	-1.01365476
Te	-6.83673262	2.65129799	1.58120511
Te	-5.32400837	4.57458674	-2.28914721
Te	-6.90006424	-2.50408579	1.76462519
Te	-5.40430675	-0.09938108	-2.07289466
Te	-5.44193459	-4.75651705	-1.99160929
Te	-1.26513834	6.84682741	-2.36446406
Te	1.30151504	7.20412272	1.43794205
Te	-2.58643852	4.65549451	1.48174502
Te	-1.39294847	-2.46803959	-2.06739228
Te	1.23010897	1.99969882	1.57303253
Te	-1.33395872	2.18920878	-2.22071666
Te	1.16427532	-2.12445413	1.70683223
Te	2.76127998	4.48440803	-2.22868252
Te	-2.75122232	-4.62292770	1.80451249
Te	2.67422953	-0.16762908	-2.14457288
Te	-2.40073939	0.03368443	1.65926149
Te	1.08628310	-7.28648778	1.89697651
Te	-1.45709455	-7.12527013	-1.91765685
Te	2.62893990	-4.85576944	-1.92370234
Te	6.75755816	2.06865835	-2.20966708
Te	5.34716933	-0.10279000	1.64952397
Te	5.73185175	4.55013445	1.52860946
Te	6.69205259	-2.56709344	-2.06465835
Te	5.59149169	-4.77156500	1.82288437
C	-0.11815863	5.87455749	6.32874102
C	0.15229983	5.80753009	4.96193038
Py* on CuInS$_2$(112):

Total DFT Energy: -16994.595900683875 Ha

H[Z=0.25] -3.12976999 8.10923205 1.05054985
H[Z=0.25] -4.10288549 6.35714120 -4.02368237
H[Z=0.25] -3.30017619 -1.55653882 -3.84091284
H[Z=0.25] -4.86658155 -8.84584752 1.19152368
H[Z=0.25] 3.64253373 8.80650442 1.49944368
H[Z=0.25] 2.66945626 7.05440973 -3.57508878
H[Z=0.25] -0.13818453 0.86514520 -3.64456473
H[Z=0.25] 3.47214671 -0.85926756 -3.39202006
H[Z=0.25] 0.66454772 -7.04853677 -3.46209454
H[Z=0.25] 1.90547532 -8.1490558 1.64040297
H[Z=0.25] 7.62319189 5.61595516 -0.87807614
H[Z=0.25] 6.09491260 7.6908891 1.69700461
H[Z=0.25] 6.63417818 1.56241156 -3.19627061
H[Z=0.25] 8.42411873 -2.29791106 -0.69542284
H[Z=0.25] 6.89763573 -0.21488752 1.88008146
H[Z=0.25] 7.43687244 -6.35126430 -3.01320065
H[Z=0.25] -4.97614920 7.36644631 -2.07253506
H[Z=0.25] -3.69847032 2.51048035 -3.54390305
H[Z=0.25] -2.89577784 -5.40319771 -3.36083319
H[Z=0.25] -0.50003885 4.73726016 -3.36280857
H[Z=0.25] 1.79617473 8.06371669 -1.62364120
H[Z=0.25] 3.07385347 3.20775271 -3.09501021
H[Z=0.25] 0.30266473 -3.1761533 -3.17943537
H[Z=0.25] 3.87657773 -4.70622362 -2.91193530
H[Z=0.25] 0.00452787 -8.14547297 -1.39946905
H[Z=0.25] 6.11357022 3.74987175 1.66388785
H[Z=0.25] 6.27231594 5.43423215 -2.91391072
H[Z=0.25] 6.91626277 -4.16380632 1.84695671
H[Z=0.25] 7.07498873 -2.47944496 -2.73054252
H[Z=0.25] 7.73297248 1.70153296 -1.11133344
H[Z=0.25] 6.77715044 -7.44817044 -0.95055559
H[Z=0.25] 8.53564533 -6.21214416 -0.92796623
H[Z=1.50] -6.01255455 7.85278294 0.80477347
H[Z=1.50] -6.35846854 0.29024268 -2.23590487

C -0.21671099 3.52204616 4.92104364
C -0.49890921 3.49774374 6.28651223
C -0.44872904 4.69672908 7.00499519
H -0.66736831 4.71052011 8.07387061
H -0.75576425 2.5591079 6.77143276
H -0.24177464 2.61418157 4.31928175
H 0.41463720 6.69997213 4.39202049
H -0.06518000 6.83182309 6.84538053
N 0.10515714 4.65486036 4.27378998
Atom	x-coordinates	y-coordinates	z-coordinates
H[Z=1.50]	-6.70037470	4.09684145	-2.13550426
H[Z=1.50]	-8.44435343	6.19334516	0.73877933
H[Z=1.50]	-8.09952118	2.25524615	0.72902647
H[Z=1.50]	-5.55579585	-7.62343343	-2.05253667
H[Z=1.50]	-5.89765137	-3.81713500	-1.95243041
H[Z=1.50]	-7.64164982	-1.72062934	0.92215053
H[Z=1.50]	-7.29620228	-5.65866819	0.91213842
H[Z=1.50]	-3.04397665	-8.95156235	-1.88025823
H[Z=1.50]	-1.40541996	8.17015575	-1.97291210
H[Z=1.50]	0.75951358	8.54942843	1.2539209
H[Z=1.50]	3.72862491	-8.25425982	-1.43134477
H[Z=1.50]	-0.94737768	-8.54253372	1.48349479
H[Z=1.50]	5.36723257	8.86715979	-1.52399472
H[Z=1.50]	5.82494602	-7.84526234	1.93239062
Cu	-3.11608932	4.72362251	1.11185546
Cu	-5.18919611	4.36988789	-1.44756495
Cu	-2.62482556	0.74013000	1.18410172
Cu	-6.82313430	6.42246051	0.76700901
Cu	-2.30681713	-3.27725080	1.24861844
Cu	-4.40484646	-3.48145268	-1.28608967
Cu	-1.77893572	-7.21358202	1.29880412
Cu	-6.03842765	-1.60451424	0.92982921
Cu	3.62205674	5.47069074	1.58907526
Cu	1.55474460	5.08365841	-0.96697200
Cu	4.09228430	1.39800108	1.59842868
Cu	1.52018303	2.69168373	-1.18588849
Cu	0.00449643	7.08303552	1.20854020
Cu	4.44533654	-2.45393099	1.68244056
Cu	2.33642974	-2.71660707	-0.82525971
Cu	4.96215496	-6.52347663	1.72846633
Cu	-0.75442806	-5.13293014	-0.97480501
Cu	0.72535322	-0.88445152	1.45053740
Cu	5.00552668	3.41987762	-0.74020854
Cu	5.84158238	-4.41473150	-0.57331926
In	-6.37341032	2.44570175	0.76349216
In	-5.57411817	-5.46277375	0.97027478
In	-4.67600304	0.42326265	-1.64814752
In	-3.90063764	-7.45670619	-1.46559757
In	-2.06166556	6.58649993	-1.40688878
In	0.41300134	3.11003644	1.64622137
In	-1.25646671	-1.19674589	-1.26110060
In	1.29512872	-4.78796130	1.66396586
In	1.96109699	1.07015794	-1.17073333
In	2.74476389	-6.77916996	-1.03108892
In	4.69731870	7.28812128	-0.91372803
In	5.54691359	-0.46749746	-0.81770382
\begin{verbatim}			
S -5.42410011 4.60229475 0.96841293			
S -4.96887978 0.45237726 0.84129345			
S -3.72842518 2.59388457 -2.15163972			
S -4.24185668 6.26593820 -2.49708261			
S -4.58367237 -3.33087260 1.14254740			
S -4.10160638 -7.45006281 0.98990182			
S -2.93711663 -5.30003485 -1.97029584			
S -3.47767624 -1.57318840 -2.30657212			
S -0.29524352 0.88582939 -2.10710368			
S 1.36730562 5.27569613 1.35923554			
S -0.58150167 4.73507987 -1.97751283			
S 1.80876260 1.12210259 1.27399709			
S 2.89540724 3.25714363 -1.72058792			
S 2.54842111 6.97839856 -2.05598948			
S -2.25442672 6.84577612 0.98397106			
S -1.91598483 2.83766354 1.11651640			
S 0.48243975 -6.95477538 -1.93339381			
S 2.19097943 -2.61081260 1.55117730			
S 0.19343951 -3.12728420 -1.78768662			
S 2.66720552 -6.80196774 1.42602012			
S 3.71832205 -4.61983155 -1.54727776			
S 3.33914002 -0.83363962 -1.85674771			
S -1.48981735 -1.18138386 1.17910216			
S -1.05223011 -5.12162225 1.42013431			
S 6.44720192 1.67358815 -1.65916808			
S 6.18083897 5.42723392 -1.52099033			
S 4.56694315 7.56737007 1.45480758			
S 4.75968902 3.53916499 1.62174973			
S 7.23951405 -6.22735182 -1.44799535			
S 6.97415970 -2.43952194 -1.34103693			
S 5.41456659 -0.42251099 1.60374175			
S 5.56902417 -4.39206266 1.80303220			
C 0.08059447 3.78874759 6.07538501			
C 0.27584928 3.90868435 4.70407597			
C 0.12094221 1.60376079 4.41275277			
C -0.07820641 1.40483859 5.77368210			
C -0.09890468 2.51596895 6.62019512			
H -0.25362468 2.39125015 7.68707122			
H -0.21124955 0.39891819 6.15520309			
H 0.14012270 0.77324121 3.71327253			
H 0.41638409 4.87370281 4.22610787			
H 0.06986894 4.67736396 6.69604801			
N 0.29696104 2.83475555 3.88805877			
DHP* on GaP(111):			
Total DFT Energy: -8503.781029602360 Ha			
\end{verbatim}			
H[Z=1.25]	-3.11185828	-6.44580967	-2.10776926
H[Z=1.25]	-1.41705092	-7.99346424	0.78116079
H[Z=1.25]	0.75829139	-7.11937510	-2.11546307
H[Z=1.25]	-6.69208575	3.29699371	-1.53631429
H[Z=1.25]	7.42034554	0.84155227	-1.56389227
H[Z=1.25]	-6.39969337	5.40266961	1.55961700
H[Z=1.25]	-4.17410808	6.30518275	-1.32745363
H[Z=1.25]	6.06756424	4.52346658	-1.34820094
H[Z=1.25]	7.69244418	2.89264691	1.53539798
H[Z=0.75]	-5.85679852	-4.02428473	-1.76093768
H[Z=0.75]	-4.56946271	-3.43564348	-3.67146262
H[Z=0.75]	3.14101119	-4.77703452	-3.68656955
H[Z=0.75]	4.15991264	-5.76576539	-1.78116870
H[Z=0.75]	-5.91945592	0.23853628	-3.45492393
H[Z=0.75]	-7.20955757	-0.34407737	-1.54448417
H[Z=0.75]	-5.59606168	-1.94144041	1.15598257
H[Z=0.75]	1.79102556	-1.10280135	-3.47064905
H[Z=0.75]	0.44600221	2.55796129	-2.5576558
H[Z=0.75]	-2.05712273	-0.43336647	-3.46258379
H[Z=0.75]	4.59304068	-3.76693321	1.13941646
H[Z=0.75]	6.67834856	-2.76042973	-1.57204887
H[Z=0.75]	5.65335118	-1.77475751	-3.47787813
H[Z=0.75]	-0.90397980	6.23222024	-3.04008988
H[Z=0.75]	-0.69263975	7.44300628	-1.00538891
H[Z=0.75]	3.17624216	6.77128422	-1.01254586
H[Z=0.75]	0.98000489	5.91799500	1.70051225
H[Z=0.75]	2.95834204	5.56023744	-3.04688881
H[Z=0.75]	-0.71376279	-4.10287369	-3.66980740
H[Z=0.75]	4.30231375	1.89059536	-3.25361545
H[Z=0.75]	-3.40846373	3.23206663	-3.23881875
Ga	-2.85862353	-4.98129784	-1.46723789
Ga	1.01194280	-5.64738719	-1.47579070
Ga	-1.10227012	-6.41157218	1.06640497
Ga	-4.15330872	-1.33028062	-1.30870806
Ga	-5.35577023	2.28539595	-1.06006136
Ga	-1.69573562	1.65092915	-1.05742533
Ga	-2.39024124	-3.08137360	1.28646668
Ga	-0.34348958	-2.02928346	-1.27314366
Ga	-3.91597876	0.89662319	1.48100206
Ga	3.45748157	-2.67397953	-1.31343032
Ga	2.14514588	0.96218352	-1.05937853
Ga	1.18944928	-3.77455220	1.44516399
Ga	5.97915950	0.28015418	-1.09837448
Ga	3.95505835	-0.52654745	1.45649530
Ga	-5.13801499	4.33322294	1.63438935
Ga	-3.01389119	5.30678476	-0.84185698
Element	X	Y	Z
Ga	0.79191776	4.60797209	-0.91195819
Ga	-1.55006614	3.74815570	1.69068456
Ga	2.65122645	2.97475838	1.66094967
Ga	4.62701248	3.97561713	-0.86240102
Ga	6.16848439	2.30278437	1.62986173
P	-3.13278250	-5.27114487	0.93283175
P	-4.57518024	-3.51208815	-2.22023704
P	1.17965329	-6.05803018	0.87532680
P	-0.73072729	-4.19657877	-2.22253577
P	3.12258702	-4.85724752	-2.24079857
P	-5.91823780	0.13840313	-2.00631715
P	-5.89406045	2.14246371	1.36244395
P	-4.21238503	-1.46559885	1.10162327
P	1.76375709	-1.18816051	-2.02764312
P	-1.65776956	1.45225588	1.38428570
P	-2.04894735	-0.51591212	-2.01731179
P	2.01006320	0.76020016	1.37579119
P	-3.42748894	3.15091290	-1.78645147
P	3.44445931	-2.85508269	1.08721265
P	0.42899735	2.45370171	-1.80853474
P	-0.33220667	-2.03378824	1.10714514
P	6.23061837	-0.00378089	1.32783110
P	5.61719535	-1.87549745	-2.02912052
P	4.28195294	1.80443853	-1.80113446
P	-0.91681535	6.13526479	-1.59453082
P	0.75683026	4.48552957	1.49883345
P	-3.10687989	5.49558807	1.59707252
P	2.92725605	5.46592072	-1.60031256
P	4.69861788	4.10718517	1.58437624
H	1.94450569	-4.06487750	4.01572732
H	-1.47336981	-6.29203063	4.38583577
H	0.96735896	-6.13128852	3.96336274
C	0.32457950	-5.26282657	4.01796011
C	-1.00161181	-5.32809322	4.23031920
N	0.96696569	-4.01508749	3.73096641
H	0.64305166	-2.78745305	5.43741163
H	0.70878417	-1.93770484	3.87592998
H	-1.72810351	-1.97317736	4.34714174
C	-1.17348260	-2.90500040	4.30178460
C	0.33194172	-2.82934158	4.38181698
C	-1.79513084	-4.09787284	4.25596973
H	-2.87893712	-4.16391492	4.24984349

DHP on CdTe(111):

Total DFT Energy: -3985.584190890424 Ha

H[Z=1.50] -8.63901193 -1.69558945 -1.68015914
Element	X	Y	Z
H[Z=1.50]	-8.74672317	-4.25430034	1.91372190
H[Z=1.50]	-6.60963948	-5.91582947	-1.57235711
H[Z=1.50]	5.65986901	-6.84386729	-1.55708025
H[Z=1.50]	0.73059719	9.61819109	1.54769282
H[Z=1.50]	2.97052436	8.10838404	-1.94248907
H[Z=1.50]	8.30124312	-2.97631698	-1.65863111
H[Z=1.50]	8.01174948	-5.52173008	1.93434098
H[Z=1.50]	-1.70776757	8.46426973	-1.94382218
H[Z=0.50]	-8.26153344	2.66143959	-1.53749653
H[Z=0.50]	-6.88994991	1.67322481	-3.91516364
H[Z=0.50]	-2.84237849	-6.74492336	-3.70116724
H[Z=0.50]	-4.86594546	-2.53485562	-3.77567990
H[Z=0.50]	-2.97437234	-8.33273502	-1.25661415
H[Z=0.50]	-4.25548697	5.53085401	-4.01645133
H[Z=0.50]	-5.61626318	6.53360775	-1.63917604
H[Z=0.50]	-0.20746233	-2.88705166	-3.80145804
H[Z=0.50]	2.42629048	0.96856806	-3.90319144
H[Z=0.50]	0.40226920	5.17840430	-3.97819808
H[Z=0.50]	-2.23149844	1.32075927	-3.90092499
H[Z=0.50]	1.70218094	-8.68600546	-1.25084894
H[Z=0.50]	4.45029572	-3.23946074	-3.76170935
H[Z=0.50]	1.81652823	-7.09713734	-3.69443278
H[Z=0.50]	6.45568188	3.05154618	1.73775127
H[Z=0.50]	5.06075251	4.82619685	-4.00447810
H[Z=0.50]	6.55413496	5.61497672	-1.62367642
H[Z=0.50]	-0.54195568	-7.19448158	2.00823861
H[Z=0.50]	8.58358657	1.38753827	-1.51717812
H[Z=0.50]	7.08519503	0.61630060	-3.8945825
H[Z=0.50]	-5.91942669	3.98867232	1.72269722
Cd	-7.01388509	-0.86946369	-1.08058615
Cd	-4.97205367	-5.13406500	-0.97245711
Cd	-4.66703483	0.19678751	1.68492829
Cd	-6.97401770	-3.40779226	1.79358818
Cd	-2.84293210	-3.79664935	1.74599011
Cd	-4.39263996	2.90630429	-1.13992781
Cd	-1.85105741	6.66139940	-1.2856634
Cd	0.18315974	2.55228579	-1.23013464
Cd	0.54196485	7.61164322	1.69187267
Cd	-2.40265183	-1.26892051	-1.07471587
Cd	-1.63615699	4.35762928	1.99660913
Cd	-0.40534278	-5.44430333	-0.99145701
Cd	2.18773416	-1.60884560	-1.07891447
Cd	2.31785322	3.95465335	1.75455908
Cd	4.15403036	-5.82154672	-0.96744002
Cd	4.66110706	-0.55433881	1.66668772
Cd	2.22012830	-4.17202305	1.74285889
Element	X (Å)	Y (Å)	Z (Å)
---------	-------	-------	-------
Cd	6.38195546	-4.41958994	1.82524287
Cd	2.84816961	6.32141776	-1.25619766
Cd	4.79361024	2.20855528	-1.15129403
Cd	6.81518169	-1.91715108	-1.06832828
Te	-7.31642766	-0.68902656	1.75592440
Te	-6.85120514	1.75118923	-2.13302932
Te	-5.09870524	-5.40759347	1.87071778
Te	-4.85841700	-2.48504202	-1.97248622
Te	-2.81576270	-6.69244737	-1.92836894
Te	-4.26786097	5.55123192	-2.24896509
Te	-2.13174893	7.05939968	1.48850378
Te	-4.36453068	3.04714189	1.70055654
Te	-0.20954973	-2.81874697	-2.03157749
Te	0.14755817	2.28735242	1.56245596
Te	-2.23746685	1.35935357	-2.14885200
Te	2.03339581	-1.42339169	1.76900715
Te	0.40858336	5.23233916	-2.19418445
Te	-0.41215372	-5.38871033	1.85709009
Te	2.41542153	1.01951426	-2.14084821
Te	-2.2229131	-1.11224022	1.77138736
Te	4.21754142	-6.09919649	1.87958307
Te	1.79030565	-7.04051227	-1.92257776
Te	4.43757323	-3.18258862	-1.96003045
Te	5.06579207	4.85415591	-2.23030462
Te	4.79426625	2.31699318	1.69349712
Te	3.09356190	6.61382211	1.54445698
Te	7.05544837	0.69690860	-2.11885840
Te	7.15497291	-1.79113184	1.76921337
H	-2.05532065	4.60320748	4.80165261
H	1.06721121	7.28048599	4.78280899
H	-1.36051992	6.78135138	4.62695786
C	-0.60866305	6.00234998	4.63941974
C	0.71589501	6.25728334	4.70451184
N	-1.09992810	4.68994649	4.46213099
H	-0.43659139	3.49516300	6.09609479
H	-0.56062250	2.66123227	4.53507776
H	1.88936663	3.02456142	4.77529372
C	1.21064493	3.87236118	4.77450657
C	-0.25534735	3.59562631	5.01271440
C	1.66005891	5.13890402	4.66844855
H	2.71986484	5.34264917	4.55371269

DHP on CuInS₂(112):

Total DFT Energy: -16995.773655796373 Ha

Element	X (Å)	Y (Å)	Z (Å)					
H[Z=0.25]	-3.11549344	8.13274702	1.11355345					
H[Z=0.25]	-4.08543545	6.42037527	-3.97482646					
Z	Value1	Value2	Value3					
---------	---------	---------	---------					
0.25	-3.29276225	-1.49546129	-3.85119755					
0.25	-4.87354493	-8.82072615	1.12421051					
0.25	3.65721500	8.81811819	1.57480155					
0.25	2.68729442	7.10574484	-3.51387861					
0.25	-0.12796925	0.92070458	-3.63319509					
0.25	3.47994536	-0.81009122	-3.38995051					
0.25	0.66472411	-6.99513170	-3.50986549					
0.25	1.89889625	-8.13568495	1.58544127					
0.25	7.63638765	5.64069431	-0.82266539					
0.25	6.10798440	7.70616790	1.76652889					
0.25	6.64477880	1.60607423	-3.17254669					
0.25	8.42727518	-2.27532532	-0.69915598					
0.25	6.90066764	-0.20996740	1.89046288					
0.25	7.43743354	-6.30976043	-3.04861733					
0.75	-4.95949836	7.41595952	-2.01700043					
0.75	-3.68630961	2.56986808	-3.52379060					
0.75	-2.89365664	-5.34615077	-3.39986137					
0.75	-0.48530321	4.79102344	-3.32248033					
0.75	1.81321028	8.10132869	-1.55575233					
0.75	3.08639890	3.25505725	-3.06254351					
0.75	0.30736016	-3.12511314	-3.19825000					
0.75	3.87908327	-4.66107795	-2.93861144					
0.75	0.00116370	-8.10683833	-1.45630393					
0.75	6.12176380	3.75729479	1.70350298					
0.75	6.28743591	5.47609417	-2.86123046					
0.75	6.91441683	-4.15854206	1.82743122					
0.75	7.08006887	-2.43974397	-2.73700290					
0.75	7.74154440	1.72801757	-1.08546698					
0.75	6.77417100	-7.42143752	-0.99503567					
0.75	8.53417743	-6.18782057	-0.96124042					
1.50	-5.99833383	7.88177716	0.86282569					
1.50	-6.35044681	0.34293321	-2.23543908					
1.50	-6.68772277	4.14908702	-2.10655023					
1.50	-8.43212429	6.22593310	0.78171387					
1.50	-8.09218152	2.28759239	0.74247657					
1.50	-5.55781395	-7.57290393	-2.11121153					
1.50	-5.89503933	-3.76704827	-1.98261923					
1.50	-7.63946089	-1.69020482	0.90594219					
1.50	-7.29890248	-5.62848185	0.86644676					
1.50	-3.04785321	-8.90544396	-1.94637648					
1.50	-1.38787903	8.21441968	-1.90755483					
1.50	0.77411794	8.56651963	1.32435355					
1.50	3.72515409	-8.22004316	-1.48510822					
1.50	-0.95427706	-8.52454066	1.42257078					
1.50	5.38515776	8.89952194	-1.44628487					
1.50	5.81843135	-7.83917049	1.88382088					
---	---	---	---					
Cu	-3.09909152	4.73723510	1.14706305					
Cu	-5.17354738	4.41200846	-1.42244667					
Cu	-2.61055509	0.75503669	1.20006862					
Cu	-6.80978686	6.45140572	0.81255170					
Cu	-2.31467739	-3.27181492	1.21554187					
Cu	-4.40420434	-3.43627642	-1.31112713					
Cu	-1.78671644	-7.19637741	1.24555199					
Cu	-6.03622805	-1.56655533	0.91282966					
Cu	3.62914265	5.48277693	1.64269067					
Cu	1.57396040	5.11667276	-0.92741341					
Cu	4.09191302	1.41170480	1.63764956					
Cu	-1.49875276	2.73142976	-1.15404933					
Cu	0.01630971	7.10057935	1.26398907					
Cu	4.43655230	-2.44263253	1.67645779					
Cu	2.33378782	-2.67239131	-0.83296070					
Cu	4.95912475	-6.51236700	1.68994771					
Cu	-0.75395549	-5.09921811	-1.01188974					
Cu	0.70859082	-0.85068652	1.47259856					
Cu	5.01335025	3.44399309	-0.70019527					
Cu	5.83998393	-4.38261695	-0.59728741					
In	-6.36545811	2.47946514	0.78049451					
In	-5.57589090	-5.43620363	0.92779380					
In	-4.66584167	0.47058694	-1.64159020					
In	-3.90331914	-7.41226459	-1.52413249					
In	-2.04815660	6.62593749	-1.35201394					
In	0.43334840	3.12001368	1.69391259					
In	-1.24949618	-1.16027650	-1.27157962					
In	1.29416624	-4.76551865	1.63072320					
In	1.96252091	1.10748180	-1.14859781					
In	2.74559105	-6.74440443	-1.07193953					
In	4.71105392	7.31585701	-0.84645271					
In	5.54598275	-0.43559390	-0.79993599					
S	-5.40888662	4.63085575	0.99469756					
S	-4.96041199	0.48444560	0.84877005					
S	-3.71303391	2.64152350	-2.12960628					
S	-4.22504576	6.31976872	-2.45217724					
S	-4.59136146	-3.30482607	1.11752179					
S	-4.10707001	-7.42532412	0.92950022					
S	-2.93841418	-5.25328381	-2.00813214					
S	-3.47431537	-1.52362782	-2.31580560					
S	-0.28717407	0.92987973	-2.10002053					
S	1.37929422	5.29435613	1.39127802					
S	-0.56642035	4.78068783	-1.93718063					
S	1.81749119	1.14064877	1.28669138					
S	2.90744884	3.29410260	-1.68912092					
S	2.56690434	7.02226799	-2.00006892					
--------	--------	--------	--------	--------	--------	--------	--------	--------
S	-2.24400329	6.86606966	1.03994844					
S	-1.89428004	2.85270144	1.14766093					
S	0.48390657	-6.91350686	-1.97878700					
S	2.18086841	-2.58430922	1.53891417					
S	0.19746509	-3.08878399	-1.80687468					
S	2.66169229	-6.78432645	1.38498322					
S	3.71740844	-4.58087347	-1.57413333					
S	3.34288117	-0.79084477	-1.85194506					
S	-1.49869559	-1.17767667	1.15527957					
S	-1.05196129	-5.10895295	1.38209385					
S	6.45533195	1.70619871	-1.63218403					
S	6.19402651	5.45955622	-1.46818221					
S	4.58160596	7.58025828	1.52370567					
S	4.76758135	3.55067837	1.65936419					
S	7.23810344	-6.19685851	-1.48220056					
S	6.97682887	-2.40388343	-1.34649266					
S	5.41467024	-0.41204649	1.62173887					
S	5.5659973	-4.3808592	1.77790294					
H	0.52470611	4.06829703	4.27222675					
H	2.34113825	0.45888379	5.04175492					
H	2.47529910	2.93416555	4.67636643					
C	1.56940988	2.35487324	4.54750155					
C	1.47512916	1.02582588	4.71919319					
N	0.43835798	3.08105403	4.02889713					
H	-0.93601070	2.76132188	5.61852665					
H	-1.66177946	3.08664751	4.02248878					
H	-1.86388384	0.61542216	4.01370331					
C	-0.91313509	1.07020290	4.27173542					
C	-0.86219059	2.55410613	4.53932930					
C	0.21787492	0.35073366	4.39436055					
H	0.22098247	-0.72422698	4.23680193					

\(2-\text{PyH}^+\) on GaP(111):

Total DFT Energy: -8503.301904727501 Ha

H[Z=1.25]																1.17439210	-7.56844824	-1.15949550
H[Z=1.25]	3.37225046	-7.50649936	1.80345988															
H[Z=1.25]	4.75056774	-5.94787860	-1.28806380															
H[Z=1.25]	-7.28371455	-1.54010940	-1.59120130															
H[Z=1.25]	5.75633782	4.36990529	-2.05963568															
H[Z=1.25]	-8.30675455	0.74775801	1.20579829															
H[Z=1.25]	-6.90318659	2.35905286	-1.88235043															
H[Z=1.25]	2.56011883	6.64817430	-2.22305954															
H[Z=1.25]	4.74718571	6.60220694	0.74840067															
H[Z=0.75]	-2.46531854	-7.08466770	-0.96653209															
H[Z=0.75]	-1.68484115	-6.12950184	-2.99935052															
H[Z=0.75]	5.43964023	-2.90039839	-3.25552942															
	x	y	z
P	-2.6393	-3.6880	1.4538
P	2.2256	-0.5016	-1.9707
P	-2.1208	0.1804	1.2759
P	-1.2965	-2.1079	-1.8425
P	1.2169	1.7104	1.0978
P	-4.4922	0.1461	-1.9920
P	4.4924	-0.4946	1.2005
P	-0.9185	1.7341	-2.1357
P	0.8950	-2.0548	1.4379
P	5.1448	3.3960	1.0046
P	5.8113	1.0970	-2.0978
P	2.6385	3.3790	-2.2505
P	-4.0988	4.0179	-2.2970
P	-1.8553	4.0279	0.8442
P	-5.6068	2.6737	1.0639
P	-0.5489	5.6280	-2.4260
P	1.5867	5.9319	0.7947
C	-0.5597	3.2763	5.6472
C	-0.4956	3.0331	4.1548
C	1.6258	4.1185	4.1729
C	1.7981	3.8313	5.5075
C	0.5996	3.5651	6.2814
H	0.6293	3.6864	7.3632
H	2.7491	4.0304	5.9895
H	2.4374	4.5677	3.5977
H	-1.4778	3.1358	3.6801
H	-1.5029	3.1658	6.1750
N	0.4427	3.9754	3.5095
H	-0.1629	1.9910	3.9517

2-PyH* on CdTe(111):

Total DFT Energy: -3985.09415106 Ha

Z	x	y	z	
1.50	-8.3143	2.6513	-1.8587	
1.50	-9.6908	0.4986	1.7389	
1.50	-8.5726	-2.0231	-1.7068	
1.50	1.7286	-8.7498	-1.4824	
1.50	5.3038	8.0806	1.4994	
1.50	6.5857	5.6426	-1.9485	
1.50	5.9079	-6.6353	-1.5486	
1.50	4.3783	-8.6890	2.0450	
1.50	2.6590	8.2094	-2.0298	
0.50	-5.8849	6.2883	-1.7200	
0.50	-5.1275	4.7370	-4.0719	
0.50	-5.6426	-4.5866	-3.7700	
0.50	-5.3850	0.0762	-3.8885	
0.50	-6.5571	-5.8892	-1.3239	
--------	--------	--------	--------	--------
H[Z=0.50]	-0.95832388	6.84620431	-4.13776705	
H[Z=0.50]	-1.69933559	8.40491697	-1.78659763	
H[Z=0.50]	-1.47334199	-2.47768080	-3.83484417	
H[Z=0.50]	2.69394224	-0.37033504	-3.90134682	
H[Z=0.50]	2.95148881	4.29255739	-4.02032242	
H[Z=0.50]	-1.21644655	2.18322294	-3.98727303	
H[Z=0.50]	-2.63094266	-8.45306732	-1.23843717	
H[Z=0.50]	2.43635789	-5.03105529	-3.71590671	
H[Z=0.50]	-1.73146451	-7.14064674	-3.68385037	
H[Z=0.50]	7.15117168	-0.42994547	1.80167512	
H[Z=0.50]	6.86301338	1.73849008	-3.96714742	
H[Z=0.50]	8.51897236	1.73423542	-1.56353387	
H[Z=0.50]	-3.92191036	-6.03106738	1.97843458	
H[Z=0.50]	8.25706209	-2.94685802	-1.41269821	
H[Z=0.50]	6.60511466	-2.92440379	-3.81740351	
H[Z=0.50]	-3.23772180	6.35573622	1.57575757	
Cd	-6.53329085	2.58635905	-1.24193849	
Cd	-6.79457375	-2.11841048	-1.09727698	
Cd	-3.96587098	2.42451933	1.54587892	
Cd	-7.77679300	0.39780197	1.65812678	
Cd	-4.22415707	-1.91512891	1.65166727	
Cd	-2.41673584	4.67232965	-1.33301988	
Cd	1.68084845	6.72951573	-1.32821323	
Cd	1.44206854	2.13433736	-1.24118933	
Cd	4.24511081	6.48454733	1.49184432	
Cd	-2.65663252	0.03006010	-1.18646574	
Cd	0.59592981	4.61754758	2.11482842	
Cd	-2.93545775	-4.62120407	-1.04788559	
Cd	1.19376425	-2.48830948	-1.13427312	
Cd	4.03187809	2.25176971	1.52557873	
Cd	0.90399552	-7.14760772	-0.93430275	
Cd	3.76244644	-2.74571713	1.66845026	
Cd	-0.04965181	-4.67106420	1.73114563	
Cd	3.51179480	-6.98810874	1.89193421	
Cd	5.62692758	4.15999223	-1.28315210	
Cd	5.34945537	-0.42879708	-1.18615726	
Cd	5.11576784	-5.02057885	-0.99083972	
Te	-6.71312302	2.91847362	1.58103585	
Te	-5.11201130	4.79001266	-2.29910522	
Te	-6.98421268	-2.22689468	1.74540880	
Te	-5.38596935	0.13364174	-2.08655248	
Te	-5.62776580	-4.52681971	-1.99769156	
Te	-0.95111044	6.89707637	-2.36827066	
Te	1.60554095	7.16236875	1.45688382	
Te	-2.36756387	4.77168822	1.48046786	
Te	-1.48545804	-2.41120324	-2.06677063	
2-PyH* on CuInS₂(112):
Total DFT Energy: -16995.293230243748 Ha

H[Z=0.25] -3.18792511 8.10214490 1.05336199
H[Z=0.25] -4.17520701 6.34987223 -4.01807070
H[Z=0.25] -3.32041512 -1.55865829 -3.84907616
H[Z=0.25] -4.81430102 -8.86398064 1.18218957
H[Z=0.25] 3.58191957 8.84271005 1.46908930
H[Z=0.25] 2.59465731 7.09043402 -3.60264375
H[Z=0.25] -0.17320563 0.88320950 -3.66563333
H[Z=0.25] 3.44942874 -0.81809427 -3.43334991
H[Z=0.25] 0.68160463 -7.02532248 -3.49693822
H[Z=0.25] 1.95527889 -8.12374763 1.59790326
H[Z=0.25] 7.57109961 5.68085061 -0.93232128
H[Z=0.25] 6.04235298 7.75095902 1.65296586
H[Z=0.25] 6.59667508 1.62376962 -3.25050593
H[Z=0.25] 8.42410662 -2.22787753 -0.76343422
H[Z=0.25] 6.89715908 -0.15786820 1.82226730
H[Z=0.25] 7.45145030 -6.28475723 -3.08121087
Atom [Z=0.75]	X	Y	Z						
H	-5.04515031	7.35116369	-2.06132064						
H	-3.74350772	2.50533815	-3.54506383						
H	-2.88873425	-5.40319091	-3.37576886						
H	-0.55867570	4.75256017	-3.37729737						
H	1.72469461	8.09172685	-1.64559332						
H	3.02633703	3.24590329	-3.12933753						
H	0.29611232	-3.15626660	-3.20769948						
H	3.88114423	-4.66292383	-2.96003803						
H	0.03907929	-8.12897967	-1.43237503						
H	6.08638752	3.80198795	1.61489503						
H	6.21120201	5.49282513	-2.96156658						
H	6.94116105	-4.10654111	1.78418900						
H	7.06595728	-2.41570345	-2.79197317						
H	7.70502207	1.76750352	-1.17094488						
H	6.80922272	-7.38838246	-1.01662957						
H	8.55977740	-6.14102507	-1.00135246						
H	-6.07019064	7.82733196	0.82175407						
H	-6.38247516	0.26635972	-2.22645416						
H	-6.74848641	4.07054206	-2.11965218						
H	-8.49150639	6.15226514	0.76593376						
H	-8.12126255	2.21649571	0.74960175						
H	-5.52772000	-7.64216788	-2.05686075						
H	-5.89368014	-3.83828516	-1.95035373						
H	-7.63671836	-1.75656064	0.93552964						
H	-7.26586095	-5.69226562	0.91893538						
H	-3.00654886	-8.95421240	-1.89883657						
H	-1.47923816	8.17785417	-1.97864628						
H	0.69940395	8.56726824	1.23776667						
H	3.76359457	-8.21361519	-1.48309112						
H	-0.89572168	-8.53564934	1.45484314						
H	5.29093709	8.91815309	-1.56289742						
H	5.87412300	-7.79508518	1.87057245						
Cu	-3.14761033	4.70945611	1.10602901						
Cu	-5.22993585	4.34415938	-1.44264901						
Cu	-2.63470872	0.73511434	1.17864043						
Cu	-6.87114052	6.39060032	0.78577961						
Cu	-2.28451922	-3.27975966	1.22925169						
Cu	-4.39721694	-3.49765828	-1.29187765						
Cu	-1.74097610	-7.21367135	1.27686811						
Cu	-6.03371585	-1.63565809	0.93553098						
Cu	3.57518596	5.50260552	1.56740357						
Cu	1.50257711	5.09677953	-0.98253753						
Cu	4.06105793	1.43628198	1.57928986						
Cu	-1.52878137	2.70084699	-1.16601611						
Cu	-0.04514722	7.09129804	1.19223691						
Cu	4.45524770	-2.40773527	1.63776108						
Metal	X1	Y1	Z1	X2	Y2	Z2	X3	Y3	Z3
-------	----	----	----	----	----	----	----	----	----
Cu	2.33930535	-2.67472381	-0.85815123						
Cu	4.99883715	-6.47733241	1.67231618						
Cu	-0.73389374	-5.12185946	-1.00154539						
Cu	0.72989167	-0.84928913	1.42794786						
Cu	4.9594224	3.46383067	-0.77294613						
Cu	5.8584628	-4.35178472	-0.63168764						
In	-6.39288755	2.41735234	0.77243247						
In	-5.54335896	-5.4801865	0.97245115						
In	-4.69509936	0.40857842	-1.64751189						
In	-3.87495297	-7.46851204	-1.47260163						
In	-2.12117192	6.58770688	-1.40802326						
In	0.38654187	3.12841848	1.72068906						
In	-1.25983400	-1.18484347	-1.27753314						
In	1.32455906	-4.76531679	1.62392551						
In	1.93623553	1.10184470	-1.19760669						
In	2.77444874	-6.74487473	-1.07655970						
In	4.63052423	7.3302469	-0.94580953						
In	5.52819769	-0.40902427	-0.85861321						
S	-5.46095030	4.58066310	0.97834068						
S	-4.97958780	0.42913010	0.84154543						
S	-3.75651853	2.58243261	-2.15057782						
S	-4.30640462	6.25532696	-2.49052122						
S	-4.56316521	-3.34869838	1.14195082						
S	-4.06213497	-7.46675376	0.98085586						
S	-2.92239285	-5.30841343	-1.98431351						
S	-3.48794807	-1.58088926	-2.31185982						
S	-0.32551176	0.90339560	-2.13224822						
S	1.32888015	5.29803929	1.32718581						
S	-0.63350363	4.74835086	-1.99135148						
S	1.79863809	1.14577208	1.22289602						
S	2.85450972	3.29414042	-1.75794832						
S	2.48138795	7.01159925	-2.08314436						
S	-2.30886812	6.84561425	0.98166290						
S	-1.93103005	2.83544778	1.13064851						
S	0.50804106	-6.93486548	-1.96787601						
S	2.20014437	-2.58182659	1.52002913						
S	0.19545110	-3.10936904	-1.81489737						
S	2.70418400	-6.77493018	1.38079656						
S	3.73220117	-4.57917555	-1.59414850						
S	3.32739112	-0.79365125	-1.90222973						
S	-1.48473702	-1.17988187	1.15964323						
S	-1.02197243	-5.11908564	1.39322417						
S	6.41625646	1.73404007	-1.71093877						
S	6.12534880	5.48527059	-1.56798454						
S	4.51518226	7.61058253	1.42309605						
S	4.73381571	3.58189380	1.58482753						
2-PyH* + CO₂ Transition State on GaP(111):

Total DFT Energy: -8691.911829261793 Ha, 726.0 i cm⁻¹

H[Z=1.25]
- 2.32340933 -7.27085147 -1.30829128
- 4.54371097 -6.85537336 1.60823308
- 5.58440706 -5.08816919 -1.50258861
- 7.01244663 -2.70458076 -1.53639956
- 4.87489039 5.25662572 -2.24342071
- 8.33609929 -0.61882690 1.29242328
- 2.40378326 3.66240766 3.90085579
- 1.18769994 1.54340902 3.92594432
- 0.97114303 1.08619863 6.36790237
- 0.53021863 2.75183053 3.82077625
- 0.33333098 0.64142892 3.85408048

S 7.26135368 -6.1636916 -1.51486651
S 6.97393564 -2.37003218 -1.40143493
S 5.41621133 -0.37040792 1.56326335
S 5.59456257 -4.34177775 1.74440493
C 0.11162993 1.45174995 5.81228481
C 0.16002003 1.53486734 4.30399963
C 1.74433712 2.95908568 4.41135373
C 2.10583576 2.42193246 5.62729476
C 1.05197709 1.79976782 6.40988811
H 1.1774792 1.70898748 7.48788775
H 3.05659454 2.68920273 6.07649455
H 2.40378326 3.66240766 3.90085579
H -1.18769994 1.54340902 3.92594432
H -0.97114303 1.08619863 6.36790237
N 0.53021863 2.75183053 3.82077625
H 0.33333098 0.64142892 3.85408048

H[Z=0.75]
- 1.34714754 6.98228322 -2.32937571
- 3.57442122 7.28940087 0.59583307
- 1.34075429 -7.38900511 -1.03921368
- 0.77012589 -6.31621425 -3.08193314
- 5.72491694 -1.96545390 -3.46904169
- 7.09591775 -1.73720231 -1.54113840
- 4.29029110 -4.59336146 -3.16897326
- 4.86831279 -5.66433577 -1.12417291
- 2.66713361 -5.36364145 1.61653333
- 2.20392962 -0.24375085 -3.55414510
- 1.30391629 1.47201945 3.63953488
- 1.03782297 -2.41412388 -3.36023387
- 5.95132978 0.34763340 1.11587165
- 6.83036325 2.17031189 -1.81941669
- 5.45738294 1.93565088 -3.74728841
- 4.82408052 3.19487241 -3.72465382
- 5.56046458 4.45518833 -1.84872402
- 2.30256811 6.63836560 -2.04195499
- 3.36769052 4.84878549 0.88630618
- 1.57161339 5.37410982 -3.91777660

42
Element	x	y	z
H[Z=0.75]	2.47544203	-4.13714625	-3.26696900
H[Z=0.75]	1.94151042	3.65207260	-3.82350598
H[Z=0.75]	-4.55355445	-0.69868633	-3.43745619
Ga	1.46976760	-5.97392690	-0.86510352
Ga	4.73666481	-3.78452061	-1.06310620
Ga	3.65985863	-5.49180099	1.67844917
Ga	-2.00144156	-4.24029004	-1.01066210
Ga	-5.49285568	-2.56649672	-1.03810873
Ga	-2.28079113	-0.38031727	-1.19237503
Ga	0.39853482	-3.97906199	1.62511827
Ga	1.22564237	-2.09979009	-1.14042658
Ga	-3.43963620	-2.13956318	1.53506423
Ga	4.42840024	0.07335405	-1.38721489
Ga	0.96946469	1.82242441	-1.39958463
Ga	3.47201440	-1.91059374	1.43134981
Ga	4.20557621	3.94143178	-1.60007394
Ga	3.21419290	2.29008144	1.15632580
Ga	-6.68572785	-0.49398367	1.39524809
Ga	-5.76180750	1.34694677	-1.31330907
Ga	-2.51862275	3.46909957	-1.54291963
Ga	-3.64665520	1.58035928	1.27220104
Ga	-0.12684027	3.98148503	1.37787196
Ga	0.67333787	5.66071185	-1.65225266
Ga	2.86273553	5.84774569	0.87202052
P	1.40986807	-6.08883551	1.59308251
P	-0.76523577	-6.19625052	-1.63672254
P	5.04603251	-3.64779520	1.37002473
P	2.48675670	-4.02869395	-1.81838124
P	5.72754562	-1.84347140	-2.02298333
P	-4.27040477	-4.48355585	-1.72289026
P	-5.72488776	-2.63059284	1.40118373
P	-2.00767760	-4.07985647	1.40273985
P	2.18822021	-0.12874266	-2.10947369
P	-2.16976682	-0.22357236	1.25147943
P	-1.02631760	-2.29060441	-1.91582898
P	0.94917501	1.93083985	0.97284258
P	-4.54414588	-0.58884136	-1.98669175
P	4.49238235	0.24803835	1.01920919
P	-1.28012926	1.56359579	-2.19098736
P	1.15181088	-1.80951180	1.28386871
P	4.52403872	4.20590345	0.82256388
P	5.46233397	2.04050014	-2.29873854
P	1.95512360	3.77488619	-2.37812041
P	-4.79637350	3.29535745	-2.27918402
P	-2.51115607	3.66448436	0.83078967
P	-5.98666618	1.71702030	1.09938526
2-PyH$^+ + \text{CO}_2$ Transition State on CdTe(111):

Atom	$Z=1.50$	$Z=0.50$
P	-1.55835154 5.46448522	-2.47033907
P	0.57389247 6.13497823	0.70711072
C	-1.21712796 3.08322358	5.46608480
C	-0.77230247 2.85391346	4.07387767
C	0.42739148 4.90969808	4.20043124
C	0.33834396 4.93923733	5.57439229
C	-0.60521498 4.05480248	6.19653706
H	-0.86621771 4.20169594	7.24221050
H	0.85080836 5.70528711	6.13983947
H	0.98211304 5.67122728	3.65557824
H	-1.51098090 2.35591013	3.43899111
H	-1.95962604 2.41766532	5.89500464
N	-0.22327441 4.00411440	3.42721305
H	0.08389410 1.99765086	4.09420291
O	-0.09890733 -0.19369765	4.29090958
C	0.81358464 0.58270374	4.20707892
O	1.99141611 0.82220011	4.21149170

Total DFT Energy: -4173.707626196976 Ha, 583.2 i cm$^{-1}$
Substance	x (Å)	y (Å)	z (Å)
H[Z=0.50]	-3.92200000	-6.03100000	1.97800000
H[Z=0.50]	8.25700000	-2.94700000	-1.41300000
H[Z=0.50]	6.60500000	-2.92400000	-3.81700000
H[Z=0.50]	-3.23800000	6.35600000	1.57600000
Cd	-6.51175396	2.58922853	-1.23868246
Cd	-6.77385047	-2.11923657	-1.09833281
Cd	-3.95088330	2.42273439	1.56685466
Cd	-7.74509458	0.39328167	1.67096276
Cd	-4.21988839	-1.92839908	1.67935664
Cd	-2.41480449	4.6686516	-1.34849320
Cd	1.66395554	6.71464299	-1.30716989
Cd	1.44894005	2.13523795	-1.27653730
Cd	4.24051160	6.44424098	1.52341990
Cd	-2.64769781	0.02882849	-1.17433249
Cd	0.55839111	4.56457823	2.10639733
Cd	-2.93118661	-4.61349669	-1.04698763
Cd	1.19584960	-2.48335550	-1.11799311
Cd	3.98689067	2.26885064	1.58681457
Cd	0.89281890	-7.13095782	-0.93321221
Cd	3.77512723	-2.71923181	1.69799083
Cd	-0.05164438	-4.67260342	1.75127489
Cd	3.49685937	-6.95763612	1.90156397
Cd	5.62313366	4.13723476	-1.27437045
Cd	5.33945683	-0.41821620	-1.15796290
Cd	5.11362144	-4.99585658	-0.99339617
Te	-6.69948223	2.91884111	1.58775204
Te	-5.10961104	4.79642000	-2.30204896
Te	-6.98142864	-2.23644535	1.74839453
Te	-5.37401039	0.13492669	-2.08518639
Te	-5.62310884	-4.53139001	-1.99855558
Te	-0.95358767	6.89933116	-2.36886986
Te	1.59825381	7.10875262	1.49288687
Te	-2.36822907	4.77343153	1.46664196
Te	-1.47900789	-2.40733823	-2.06664549
Te	1.27445570	1.91814224	1.51003116
Te	-1.22793657	2.24801769	-2.23193325
Te	1.07284029	-2.16265851	1.72265162
Te	2.96677450	4.36799917	-2.22683928
Te	-2.93218759	-4.51230594	1.79730970
Te	2.68644222	-0.29489653	-2.14109462
Te	-2.39116823	0.12953766	1.67074678
Te	0.78240210	-7.31906659	1.91332138
Te	-1.74783588	-7.06292011	-1.91422538
Te	2.43227005	-4.96048763	-1.91138340
Te	6.85537504	1.77368437	-2.19405090
Te	5.34087599	-0.30905579	1.68532457
2-PyH* + CO2 Transition State on CuInS2(112):
Total DFT Energy: -17183.903738000088 Ha, 733.1 i cm⁻¹

H[Z=0.25] -3.18626551 8.12507234 1.06924746
H[Z=0.25] -4.22583844 6.40134682 -4.00093485
H[Z=0.25] -3.38911773 -1.51048714 -3.88016435
H[Z=0.25] -4.85353085 -8.83730382 1.12774934
H[Z=0.25] 3.58921844 8.84728272 1.42450988
H[Z=0.25] 2.54963450 7.12256230 -3.64667645
H[Z=0.25] -0.23440422 0.92279688 -3.71476775
H[Z=0.25] 3.38536628 -0.78827531 -3.52489141
H[Z=0.25] 0.60231900 -6.98038098 -3.59399218
H[Z=0.25] 1.92095165 -8.11609098 1.48301720
H[Z=0.25] 7.54725626 5.68774153 -1.03035774
H[Z=0.25] 6.04810825 7.74830975 1.57954024
H[Z=0.25] 6.54107123 1.64501135 -3.36050428
H[Z=0.25] 8.38197707 -2.22408751 -0.90956819
H[Z=0.25] 6.88482896 -0.16352422 1.70031074
H[Z=0.25] 7.37680049 -6.26682524 -3.23872531
H[Z=0.75] -5.07467384 7.39450861 -2.03069268
H[Z=0.75] -3.8000891 2.55294161 -3.55155065
H[Z=0.75] -2.96328669 -5.35789237 -3.43077508
H[Z=0.75] -0.60792667 4.79221159 -3.40249811
H[Z=0.75] 1.70080161 8.11672307 -1.67642922
H[Z=0.75] 2.97547604 3.27515099 -3.19628825
H[Z=0.75] 0.22879404 -3.11962337 -3.28172761
H[Z=0.75] 3.81219575 -4.63668298 -3.07551774
H[Z=0.75] -0.02378214 8.10095010 -1.52858474
H[Z=0.75]	6.08183599	3.79946006	1.52111237	
H[Z=0.75]	6.16754626	5.51342607	-3.04824071	
H[Z=0.75]	6.91855670	-4.11237390	1.64188287	
H[Z=0.75]	7.00427648	-2.39841298	-2.92647027	
H[Z=0.75]	7.66918580	1.77569308	-1.29044752	
H[Z=0.75]	6.75169330	-7.37873563	-1.17432228	
H[Z=0.75]	8.50588871	-6.13614596	-1.16867807	
H[Z=1.50]	-6.07101192	7.85834492	0.86431121	
H[Z=1.50]	-6.43095485	0.31375505	-2.21885391	
H[Z=1.50]	-6.78638167	4.11905323	-2.09052451	
H[Z=1.50]	-8.49762920	6.18961796	0.82289001	
H[Z=1.50]	-8.13667544	2.25285137	0.78341297	
H[Z=1.50]	-5.59523158	-7.59707647	-2.09806882	
H[Z=1.50]	-5.95065140	-3.79278336	-1.96831348	
H[Z=1.50]	-7.66089898	-1.72222110	0.94466054	
H[Z=1.50]	-7.29995322	-5.65798261	0.90418855	
H[Z=1.50]	-3.07614500	-8.91606367	-1.97073263	
H[Z=1.50]	-1.50592422	8.21230155	-1.97846397	
H[Z=1.50]	0.70347057	8.57955777	1.21957808	
H[Z=1.50]	3.70033740	-8.19485574	-1.61548381	
H[Z=1.50]	-0.93230315	-8.52034051	1.36508641	
H[Z=1.50]	5.26949003	8.93351194	-1.62320562	
H[Z=1.50]	5.84318182	-7.79813014	1.72034982	
Cu	-3.16638168	4.73724839	1.09655444	
Cu	-5.26330127	4.38507043	-1.42364384	
Cu	-2.63994370	0.76925536	1.15365353	
Cu	-6.87807605	6.42672621	0.82973069	
Cu	-2.31661107	-3.25472847	1.19358291	
Cu	-4.45181346	-3.46028998	-1.31114506	
Cu	-1.76980503	-7.19171381	1.20486954	
Cu	-6.05744718	-1.59996669	0.93330508	
Cu	3.58151852	5.50951047	1.49925894	
Cu	1.48065508	5.11974224	-1.02607122	
Cu	4.04040132	1.44100906	1.49120013	
Cu	-1.56070664	2.72693522	-1.22004143	
Cu	-0.04409007	7.10220387	1.17522860	
Cu	4.43686725	-2.39790677	1.54461141	
Cu	2.30885954	-2.66502423	-0.96634764	
Cu	4.96797733	-6.47476699	1.54043352	
Cu	-0.78810560	-5.09261778	-1.07074724	
Cu	0.70620174	-0.86165132	1.35612847	
Cu	4.93305954	3.47323188	-0.86104716	
Cu	5.81627345	-4.33887277	-0.75870368	
In	-6.40776802	2.44764832	0.79639237	
In	-5.57223104	-5.46279541	0.96409682	
In	-4.73743578	0.44743126	-1.65619778	
In	-3.93906883	-7.42709906	-1.53229281	
In	-2.14746812	6.62119314	-1.41112297	
In	0.38465502	3.13692060	1.65139231	
In	-1.30725342	-1.16782583	-1.32341883	
In	1.29511042	-4.75226296	1.52361984	
In	1.89239935	1.12015642	-1.26265715	
In	2.71987089	-6.72523442	-1.19179616	
In	4.61118147	7.34769884	-1.01384934	
In	5.48951024	-0.39999676	-0.96678118	
S	-5.47393292	4.60928525	1.00365069	
S	-4.99158268	0.45778469	0.82889892	
S	-3.80183867	2.62186573	-2.15802169	
S	-4.34489645	6.29759497	-2.47130722	
S	-4.59500312	-3.32441734	1.12627025	
S	-4.09405645	-7.44453078	0.91649951	
S	-2.98677233	-5.26790352	-2.03816043	
S	-3.54571284	-1.54408222	-2.33868145	
S	-0.37494928	0.92226012	-2.17955825	
S	1.32981311	5.30635178	1.28906911	
S	-0.66502115	4.78373062	-2.01704213	
S	1.77041060	1.14785462	1.16869342	
S	2.81485051	3.31185917	-1.82150536	
S	2.44860373	7.03484275	-2.12429682	
S	-2.31025353	6.86617543	0.98203842	
S	-1.94068092	2.86727435	1.07435163	
S	0.44276728	-6.90503467	-2.06207889	
S	2.18774263	-2.57809164	1.39526883	
S	0.14634481	-3.08411135	-1.88741991	
S	2.66747514	-6.76513202	1.26652852	
S	3.68451972	-4.56179279	-1.70802919	
S	3.27782139	-0.76751207	-1.99410086	
S	-1.51205310	-1.15698035	1.11457832	
S	-1.05576461	-5.09590194	1.33084355	
S	6.37481053	1.74608588	-1.81600931	
S	6.09669484	5.40839411	-1.65442017	
S	4.51813416	7.61377927	1.35796423	
S	4.72812063	3.58189816	1.49903043	
S	7.20247260	-6.15190192	-1.66832372	
S	6.92696904	-2.35912420	-1.53487215	
S	5.40050414	-0.36320144	1.45384626	
S	5.56964428	-4.33958562	1.61688613	
C	-0.48915735	1.73193048	5.76282733	
C	-0.11589402	1.64411749	4.33333119	
C	1.20671002	3.59835705	4.62195043	
C	1.20384218	3.45204877	5.99194793	
C	0.22851142	2.56624696	6.56396296	
$H^* + CO_2$ Transition State on GaP(111):
Total DFT Energy: -8443.497804313205 Ha, 740.5 i cm$^{-1}$

Element	X	Y	Z
H	0.03249424	2.60844713	7.63306741
H	1.80724799	4.10533714	6.61191103
H	1.77126222	4.39518100	4.14060749
H	-0.89771033	1.23946628	3.68125625
H	-1.25959873	1.07259745	6.15037047
N	0.44069700	2.84450041	3.78618764
H	0.72302223	0.77823466	4.22081532
O	0.68280000	-1.40447592	4.56495880
C	1.54571791	-0.58609557	4.39429898
O	2.70283325	-0.27142256	4.34945569
Ga	-5.43002045	-2.47009662	-0.93525343
Ga	-2.73972277	-5.33041016	-0.90540685
Ga	-4.79399986	-4.49144055	1.69212149
Element	x	y	z
---------	------------	------------	------------
Ga	-4.29856848	1.23925570	-1.06265669
Ga	-3.22997836	4.96539847	-1.02967234
Ga	-0.51983335	2.16530903	-1.04796259
Ga	-3.80378510	-1.04283379	1.63981891
Ga	-1.63235874	-1.59164832	0.97177319
Ga	-2.73588027	3.07591565	1.68401322
Ga	1.02461510	-4.40739823	-0.98645476
Ga	2.16205273	-0.67555327	-0.97820000
Ga	-1.27206168	-3.73980968	1.66851613
Ga	4.80688508	-3.53637170	-0.95002599
Ga	2.80359649	-2.73351847	1.63606974
Ga	-1.62456617	6.49538949	1.48561075
Ga	0.60148066	5.85335222	-1.00577601
Ga	3.22864734	3.05645534	-1.04471768
Ga	1.23641784	3.92209385	2.97047133
Ga	3.93352198	0.87381867	1.58598710
Ga	5.93816588	0.24907945	-1.02264811
Ga	6.29323819	-1.88895782	1.58414468
P	-5.72181120	-2.36754334	1.50052417
P	-5.97060305	-0.31228087	-1.77798940
P	-2.72699972	-5.56305097	1.54103894
P	-3.28736761	-3.15901007	1.73490409
P	-0.60656758	-6.00058523	-1.71627194
P	-4.85217950	3.42897758	-1.83345218
P	-3.59928578	5.23551067	1.37942126
P	-4.30384042	1.30366386	1.33398439
P	0.52345085	-2.23494476	-1.77106394
P	-0.42662351	2.69908595	1.34193926
P	-2.15115137	0.58788382	-1.79718342
P	2.04943125	-0.53449759	1.45824830
P	-1.06155272	4.36204966	-1.84630031
P	1.04519883	-4.38880586	1.43659565
P	1.63035615	1.49070728	-1.82826062
P	-1.51875527	-1.43002898	1.46278653
P	4.91304481	-3.75215326	1.48848536
P	3.19323103	-5.10190166	-1.73929453
P	4.33038146	-1.34966327	-1.78155116
P	2.74290617	5.24311534	-1.87826820
P	3.21938834	3.14053656	1.33625079
P	0.61925606	5.96365311	1.36778393
P	5.41604633	2.40915047	-1.84919475
P	6.22596811	0.41848218	1.41188168
H	-0.70824044	1.35151402	2.30982254
C	-1.07203235	1.16585956	3.56977164
O	-0.26828160	0.46104129	4.14879073
O	-2.09638273	1.81139085	3.81252624
DHP* + CO$_2$ Transition State on GaP(111):

Total DFT Energy: -8692.364675051274 Ha, 933.3 i cm$^{-1}$

Atom	Z=1.25	Z=0.75
H		
	-3.11185828	-6.44580967
	-1.41705092	-7.99346424
	0.75829139	-7.11937510
	-6.69208575	3.29699371
	7.42034554	0.84155227
	-6.39969337	5.40266961
	-4.17410808	6.30518275
	6.06756424	4.52346658
	7.69244418	2.89264691
	-5.85679852	-4.02428473
	-4.56946271	-3.43564348
	3.14101119	-4.77703452
	4.15991264	-5.76576539
	-5.91945592	0.23853628
	-7.20955757	-0.34407737
	-5.59606168	-1.94144041
	1.79102556	-1.10280135
	0.44600221	2.55796129
	-2.05712273	-0.43336647
	4.59304068	-3.76693321
	6.67834856	-2.76042973
	5.65335118	-1.77475751
	-0.90397980	6.23222024
	-0.69263975	7.44300628
	3.17624216	6.77128422
	0.98000489	5.91799500
	2.95834204	5.56023744
	-0.71376279	-4.10287369
	4.30231375	1.89059536
	-3.40846373	3.23206663

Atom	
Ga	-2.86696644
Ga	1.01475639
Ga	-1.12263025
Ga	-4.16193553
Ga	-5.53720234
Ga	-1.69633495
Ga	-2.39679870
Ga	-0.35797906
Ga	-3.91847696
Ga	3.46887220
Ga	2.14227739
Ga	1.23364221
Ga	5.97980632

Ga | -4.98001971 |
Ga | -5.65523798 |
Ga | -6.40894967 |
Ga | -1.32469003 |
Ga | 2.28911346 |
Ga | 1.65745538 |
Ga | -3.06756083 |
Ga | -2.01900394 |
Ga | 0.90320491 |
Ga | -2.65757221 |
Ga | 0.96540345 |
Ga | -3.70586643 |
Ga | 0.28795705 |
Ga	3.95813978	-0.49384715	1.45943862
Ga	-5.14022093	4.33573491	1.63527103
Ga	-3.01525391	5.30890518	-0.84116392
Ga	0.79060968	4.60960496	-0.91052097
Ga	-1.55208428	3.75060306	1.69531482
Ga	2.64928337	2.97863150	1.66397986
Ga	4.62755260	3.97857055	-0.86253679
Ga	6.17024301	2.31067162	1.63129317
P	-3.14184598	-5.25780114	0.94127122
P	-4.57809630	-3.50735173	-2.22044497
P	1.16978494	-6.02208629	0.93009113
P	-0.73347051	-4.19765329	-2.22319345
P	3.12634590	-4.85201094	-2.23859587
P	-5.92133135	0.14321193	-2.00676169
P	-5.89704810	2.14509678	1.36319581
P	-4.21466383	-1.45767398	1.09916573
P	1.75936226	-1.18434381	-2.02869078
P	-1.66052270	1.45381541	1.39067330
P	-2.05937989	-0.50628360	-2.01807822
P	2.00272942	0.76416060	1.38035969
P	-3.42862821	3.15303155	-1.78583676
P	3.47569772	-2.82416583	1.06833194
P	0.42743875	2.45560398	-1.80796421
P	-0.33734466	-2.00862591	1.10189827
P	6.23340928	0.00374590	1.32817331
P	5.62570779	-1.86797501	-2.03201926
P	4.27968013	1.80751250	-1.80098394
P	-0.91773700	6.13560858	-1.59437456
P	0.75477842	4.48636058	1.50005435
P	-3.10870232	5.49717404	1.59759958
P	2.92619146	5.46638153	-1.60021662
P	4.69655786	4.11086775	1.58439834
H	1.95683077	-2.50784565	4.14813085
H	-0.72283831	-5.64805289	5.01362801
H	1.61196441	-4.82232615	4.60877809
C	0.74512557	-4.17333927	4.58665860
C	-0.53396618	-4.60587755	4.79006250
N	0.99474054	-2.86908558	4.25503624
H	0.23835287	-1.37364024	5.60902874
H	0.25204288	-0.96870949	3.85113666
H	-2.14207021	-1.62323450	4.26158022
C	-1.35023548	-2.34896379	4.40444879
C	0.02865035	-1.86693196	4.42530993
C	-1.60864224	-3.66923682	4.62487140
H	-2.63417725	-4.02430970	4.64528700
C	1.07570908	-0.93309107	6.64868151
H^* on GaP(111):

Total DFT Energy: -8254.921005496215 Ha

Atom	x	y	z
O	2.19933019	-1.30661508	6.37648087
O	0.40014948	-0.32879760	7.45650440

Atom	x	y	z
Ga	-5.42901191	-2.47331011	-0.93704606
Ga	-2.73961381	-5.32979049	-0.90840673
Ga	-4.78993859	-4.49910571	1.68922328
Ga	-4.29499291	1.23509711	-1.05337018
Ga	-3.20925196	4.96758364	-1.04901411
Ga	-0.52468908	2.18556925	-1.04940719
Ga	-3.80621297	-1.06093720	1.64211673
Ga	-1.62869739	-1.58026112	-0.96384824
Ga	-2.69733823	3.03817318	1.59529179
Ga	1.02660731	-4.40812798	-0.98760480
Ga	2.15699239	-0.67064562	0.97303049
Element	X	Y	Z
---------	------------	------------	------------
Ga	-1.26819209	-3.75887398	1.67089118
Ga	4.80830619	-3.53415314	-0.95092640
Ga	2.82164661	-2.74650426	1.63202061
Ga	-1.51890773	6.51177115	1.49443115
Ga	0.61841974	5.86979946	-0.96674647
Ga	3.23155482	3.05647332	-1.04221518
Ga	1.11175767	3.98997110	2.86001014
Ga	3.93028275	0.88184102	1.58377508
Ga	5.93804656	0.24882686	-1.02195659
Ga	6.29338491	-1.88998422	1.58392629
P	-5.72467151	-2.37884070	1.49888357
P	-5.97018974	-0.31321079	-1.77540363
P	-2.72707439	-5.57739280	1.53649197
P	-3.28245467	-3.15535067	-1.73241911
P	-0.60579068	-6.00060775	-1.71668811
P	-4.84898642	3.42957831	-1.82990736
P	-3.49043373	5.22281246	1.36876510
P	-4.30679198	1.29239089	1.37468614
P	0.52321993	-2.23488479	-1.76929942
P	-0.46853924	2.41626846	1.34582007
P	-2.14789705	0.59403915	-1.80054893
P	2.06134189	-0.55189984	1.47059107
P	-1.04355186	4.37022989	-1.84517628
P	1.05058117	4.39123700	1.43493156
P	1.62672688	1.49473406	-1.82832029
P	-1.51729828	-1.44946125	1.48827841
P	4.92795989	-3.76522564	1.48510026
P	3.19502098	-5.10153965	-1.73961467
P	4.32753532	-1.34762029	-1.78077825
P	2.74367199	5.24346657	-1.87801236
P	3.20618289	3.14790106	1.33816397
P	0.74809589	6.13308232	1.39848042
P	5.41755282	2.40832819	-1.84979980
P	6.22423428	0.41830666	1.41162351
H	-0.57720272	1.06602158	1.74902045

2-PyH\(^+\) + H\(^+\) on GaP(111):

Total DFT Energy: -8503.773885754863 Ha
Atomic Species	Z = 1.25	Z = 0.75	
H	4.74718571	6.60220694	0.74840067
Ga	0.54779205	-6.14555839	-0.73462534
P	0.39842211	-6.20219164	1.71366134
H	-2.46531854	-7.08466770	-0.96653209
Ga	4.11773161	-4.52723375	-0.85613175
P	-1.68184767	-6.01050928	-1.55479012
H	-1.68484115	-6.12950184	-2.99935052
Ga	5.43964023	-2.90039839	-3.25552942
P	4.39359118	-4.44294534	1.57737198
H	5.43964023	-2.90039839	-3.25552942
Ga	6.78950200	-2.88885132	-1.29983125
P	-1.68184767	-6.01050928	-1.55479012
H	-4.87443433	-3.85582360	-3.16071156
Ga	7.17200865	1.00826957	-1.59040022
P	5.81884026	0.99076981	-3.54564536
H	-4.11742997	3.91202598	-3.74246334
Ga	2.25004520	-0.62678439	-3.41775206
P	-4.46747551	5.28492782	-1.88416194
H	-1.10239872	6.90636247	-2.01235601
Ga	-2.50517504	5.32914082	0.89578504
P	-0.54863398	5.52961222	-1.86992683
H	1.87559376	-4.51064798	-3.11866568
Ga	2.63317122	3.25758705	-3.69871465
P	-4.49159512	0.02832267	-3.44295734
H	7.17200865	1.00826957	-1.59040022
Ga	5.81884026	0.99076981	-3.54564536
P	-4.11742997	3.91202598	-3.74246334
H	-4.67647551	5.28492782	-1.88416194
Ga	-1.10239872	6.90636247	-2.01235601
P	-2.50517504	5.32914082	0.89578504
H	-0.54863398	5.52961222	-1.86992683
Ga	1.87559376	-4.51064798	-3.11866568
P	2.63317122	3.25758705	-3.69871465
H	-4.49159512	0.02832267	-3.44295734
Ga	0.54779205	-6.14555839	-0.73462534
P	4.11773161	-4.52723375	-0.85613175
Ga	2.71056284	-6.02277054	1.84742687
P	-2.59871476	-3.87372537	-0.96350344
Ga	-5.77080993	-1.64022264	-1.05393902
P	-2.23815861	-0.01910480	-1.15827231
Ga	-0.26280175	-3.95308845	1.72546030
P	0.92689451	-2.27687244	-1.00743320
Ga	-3.68779482	-1.50177100	1.55489348
P	4.47204174	-0.67721937	-1.21719389
Ga	1.34295986	1.59578010	-1.44194382
P	3.11560480	-2.49689474	1.61485176
Ga	4.87757546	3.17544427	-1.42208515
P	3.64624033	1.66720832	1.31846453
Ga	-6.66579470	0.60982471	1.32876758
P	-5.39248290	2.26599974	-1.34395094
Ga	-1.83564727	3.82321463	-1.52575536
P	-3.32238673	2.13492379	1.30219937
Ga	0.41079839	4.04008445	1.54727737
P	1.65345294	5.45942150	-1.55129916
Ga	3.80183113	5.29774866	1.02733127
P	0.39842211	-6.20219164	1.71366134
Py° + H** on GaP(111):

Total DFT Energy: -8503.070282380731 Ha

H[Z=1.25]	2.34284404	-7.26872700	-1.20276814
H[Z=1.25]	4.51768446	-6.87022439	1.75100713
H[Z=1.25]	5.61474468	-5.09892756	-1.33857897
H[Z=1.25]	6.96911980	-2.66213697	-1.56809703
H[Z=1.25]	4.96130507	5.25055958	2.06293623
H[Z=1.25]	-8.32924249	-0.57822998	1.24465121
H[Z=1.25]	-7.21562214	1.24907445	-1.84140532
H[Z=1.25]	1.44238534	6.99156471	-2.20127589
H[Z=1.25]	3.62379402	7.28177438	0.76051155

P

1.87573778	-4.39360207	-1.66858754
5.43243601	-2.78804362	-1.80916948
-4.86439637	-3.74257655	-1.71589988
-6.02092766	-1.63592249	1.38239547
-2.64210011	-3.68578315	1.44705765
2.24259281	-0.53079582	-1.97790294
-2.08397403	0.16334271	1.27831569
-1.30128125	-2.11186164	-1.84564228
1.35917718	1.90838809	0.92364804
-4.48990065	0.14630712	-1.99120398
4.49647243	-0.53817079	1.20011366
-0.92626602	1.72964164	-2.14040453
0.86946363	-1.93343710	1.42472136
5.16499711	3.40182567	0.99394798
5.81345915	1.09432801	-2.09914481
2.65407311	3.39488598	-2.25581451
-4.09897115	4.01714357	-2.29654294
-1.88853692	4.01659872	0.84622270
-5.59840030	2.66743953	1.06809783
-0.55073120	5.62758544	-2.42648923
1.58792137	5.93929671	0.81114920
-0.37707627	2.65994669	5.54090869
-0.41364124	2.71498573	4.03020171
1.67671078	3.86367542	4.12058774
1.94536541	3.33604965	5.35804805
0.81193279	2.87611182	6.14419190
0.91659965	2.78948059	7.22427723
2.92287964	3.47474160	5.80676611
2.43820875	4.43453717	3.58954236
-1.43041932	2.85894985	3.64877296
-1.27590889	2.40365874	6.09460003
0.44425113	3.80997931	3.52288998
-0.05724051	1.74889075	3.61068018
0.70513927	0.80667203	1.50435255
Element	Charges	X-coordinate	Y-coordinate	Z-coordinate
H	Z=0.75	-1.32644895	-7.37142663	-0.99178528
H	Z=0.75	-0.71820941	-6.29556038	-3.02313803
H	Z=0.75	5.79999853	-1.97228499	-3.29374258
H	Z=0.75	7.14062547	-1.75427516	-1.34381782
H	Z=0.75	-4.22984672	-4.55804126	-3.15946624
H	Z=0.75	-4.84421160	-5.63153989	-1.12917345
H	Z=0.75	-2.68655805	-5.34712402	1.64771279
H	Z=0.75	2.28836527	-0.23482594	-3.43093268
H	Z=0.75	-1.21036656	1.49622016	-3.56804914
H	Z=0.75	-0.96474498	-2.39245678	-3.2954738
H	Z=0.75	5.96318127	0.32839282	1.29982869
H	Z=0.75	6.89640442	2.15523353	-1.6165465
H	Z=0.75	5.55346297	1.93081861	-3.56605193
H	Z=0.75	-4.72199722	3.23364826	-3.70567113
H	Z=0.75	-5.48311487	4.49212822	-1.83815844
H	Z=0.75	-2.21342211	6.66244587	-1.97358173
H	Z=0.75	-3.33243223	4.86969555	0.93263705
H	Z=0.75	-1.45690156	5.39932277	-3.84036042
H	Z=0.75	2.53847110	-4.13000022	-3.14963700
H	Z=0.75	2.04683358	3.66215387	-3.69413965
H	Z=0.75	-4.47163218	-0.66132398	-3.42395626
Ga		1.48111072	-5.97086674	-0.76887243
Ga		4.76439686	-3.79933155	-0.90730682
Ga		3.64055280	-5.50728928	1.81104987
Ga		-1.97545123	-4.22148977	-0.96685538
Ga		-5.45478255	-2.53450730	-1.03918125
Ga		-2.23058737	-0.36006809	-1.14804687
Ga		0.38076255	-3.94526065	1.71349280
Ga		1.25819501	-2.09799402	-1.03979810
Ga		-3.39677751	-2.08846968	1.56383760
Ga		4.49618769	0.05933518	-1.24139071
Ga		1.04066344	1.80386928	-1.42992648
Ga		3.45673034	-1.96311123	1.57951083
Ga		4.28509489	3.93221937	-1.44185305
Ga		3.35536967	2.21678411	1.32566756
Ga		-6.68390574	-0.46115842	1.37211186
Ga		-5.70717322	1.37631510	-1.32096172
Ga		-2.45941310	3.49576088	-1.50682434
Ga		-3.66016896	1.56508890	1.31746707
Ga		-0.25400704	4.03060002	1.41981716
Ga		0.74187379	5.67736018	-1.54528736
Ga		2.90069388	5.83260277	1.03592855
P		1.38341192	-6.05939236	1.68633321
P		-0.73843554	-6.17973247	-1.57827067
P		5.04470852	-3.67481529	1.53082361
P		2.52720791	-4.02647457	-1.69927416
H	Z=1.25	5.79153459	-5.067538517	-1.24294804
---------	--------	------------	--------------	-------------
H	Z=1.25	7.43831119	-3.57503837	1.70135542
H	Z=1.25	7.46972292	-1.5189062	-1.40583298
H	Z=1.25	-4.55913304	-5.94838910	-1.62899983
H	Z=1.25	1.55596660	6.99163062	-2.22154269
H	Z=1.25	-6.80908935	-4.84433809	1.16804324
H	Z=1.25	-6.79290447	-2.73159949	-1.93652672
H	Z=1.25	-2.35534982	6.65897112	-2.36718113
H	Z=1.25	-0.64703593	8.06213309	0.58658361
H	Z=0.75	2.70541541	-7.05261609	-1.02387129
H	Z=0.75	2.67438333	-5.83558517	-3.06527320

Py^* + 2H^* + 2H_2O^* + 2OH^* on GaP(111):
Total DFT Energy: -8808.52313101235 Ha
Atom	X	Y	Z
H[Z=0.75]	6.01512612	1.23539124	-3.38977924
H[Z=0.75]	7.04460875	2.13252150	-1.44455951
H[Z=0.75]	-1.22900418	-6.16675681	-3.20995313
H[Z=0.75]	-1.20525010	-7.38603021	-1.16850631
H[Z=0.75]	0.48677117	-6.00147381	1.60045751
H[Z=0.75]	2.11162335	0.90281014	-3.53444780
H[Z=0.75]	-1.77755391	0.57189507	-3.67918343
H[Z=0.75]	0.44362079	-2.62541861	-3.37176004
H[Z=0.75]	4.95130577	3.32811090	1.18317480
H[Z=0.75]	4.81289772	5.34844120	-1.75108740
H[Z=0.75]	3.78501071	4.44479543	-3.69626261
H[Z=0.75]	-5.68094142	0.24072344	-3.82386336
H[Z=0.75]	-6.98858677	0.94016198	-1.96627800
H[Z=0.75]	-5.31332891	4.48766982	-2.12814274
H[Z=0.75]	-5.35143408	2.40010248	0.79630807
H[Z=0.75]	-4.00831645	3.78206163	-3.98567028
H[Z=0.75]	4.34105480	-2.29795213	-3.21902856
H[Z=0.75]	-0.11152579	4.11029824	-3.83194230
H[Z=0.75]	-3.45227236	-2.96068593	-3.50843622
Ga	4.38425895	-4.39147954	-0.81191704
Ga	6.06582704	-0.84102242	-0.99183581
Ga	5.96914836	-2.86725615	1.75101600
Ga	0.50547001	-4.69612406	-1.02084170
Ga	-3.33732496	-5.04728805	-1.06396210
Ga	-1.71462870	-1.53740201	-1.3625735
Ga	2.38788949	-3.21991100	1.64027347
Ga	2.18092951	-1.17723488	-1.11639482
Ga	-1.79395415	-3.69997208	1.71524948
Ga	3.83482953	2.33954535	-1.34560403
Ga	-0.02533793	2.03127716	-1.50963720
Ga	3.96854744	0.13058150	1.47932464
Ga	1.63677357	5.52635667	-1.51300166
Ga	1.72051193	3.67543765	1.39828522
Ga	-5.47325215	-3.88340137	1.30029246
Ga	-5.57444677	-1.81051996	-1.37677185
Ga	-3.88959006	1.66724069	-1.60919502
Ga	-4.11602658	-0.52997337	1.65075435
Ga	-2.32459088	3.30100686	1.31679079
Ga	-2.24859558	5.19354322	-1.63811372
Ga	-0.49534972	6.54753639	1.25546040
P	4.33339784	-4.51101141	1.63401607
P	2.58946846	-5.73042997	-1.62093241
P	6.20063327	-0.57662658	1.45303183
P	4.26338045	-2.20328481	-1.76923416
P	5.93405696	1.33666762	-1.94577267
P	-1.30116925	-6.06495059	-1.76557960

59
Symbol	X	Y	Z
P	-3.54716609	-5.20679725	1.33600615
P	0.40337479	-4.56590874	1.36727429
P	2.03764663	0.99864860	-2.09332047
P	-2.00777108	-1.46631543	1.00132252
P	0.37666979	-2.51659431	-1.93179994
P	-0.16958302	2.34384271	0.85731812
P	-3.54573938	-2.88119488	-2.06117566
P	3.76838756	2.48343404	1.04089346
P	-1.83642098	0.66863802	-2.24183900
P	1.90695156	-0.95773140	1.31724013
P	1.75762636	5.91870385	0.81693864
P	3.70250724	4.54904887	-2.25162060
P	-0.18077866	4.23885142	-2.38295186
P	-5.73060346	0.34199922	-2.37961233
P	-4.05531341	1.74692172	0.76086593
P	-6.06687669	-1.65872866	0.96732885
P	-4.05216477	3.87889268	-2.53171961
P	-2.58034190	5.53319330	0.68243849
C	-2.49558708	1.99152316	5.49075780
C	-2.71620855	2.17587786	4.13082512
C	-1.55999940	4.19184663	4.14201499
C	-1.29472432	4.07426221	5.50222186
C	-1.76299904	2.95125049	6.18941780
H	-1.56530206	2.83182720	7.24983009
H	-0.73319009	4.85453400	6.00322956
H	-1.22296240	5.05068675	3.57417273
H	-3.27543561	1.45629283	3.54923022
H	-2.89223768	1.10797616	5.97801447
N	-2.24721085	3.24802334	3.46714763
H	-0.00607896	1.08463609	1.46499993
O	1.65910861	3.69851734	3.55338786
H	-0.93564507	-0.75550175	1.57255328
H	0.81269888	3.36519328	3.89650351
H	2.34346198	3.12658996	3.94020326
H	0.14188765	6.55203857	3.56634809
O	-4.17713704	-0.60621869	3.56124138
H	-3.27854640	-0.57360005	3.92143244
O	-0.51155832	7.09650474	3.10382347
O	-1.85235450	-3.37362010	3.82423165
H	-2.00511242	-4.20796474	4.30093424
H	-1.00124405	-3.03901328	4.15492458

2-PyH⁺ + 2H⁺ + 2H₂O⁺ + 2OH⁻ on GaP(111):

Total DFT Energy: -8809.23508085191 Ha

H[Z=1.25] 5.78627258 -5.07644929 -1.24386920
H[Z=1.25] 7.43438908 -3.58541404 1.70045039
H[Z=1.25]	7.46906859	-1.52997163	-1.40715960
H[Z=1.25]	-4.56544571	-5.94398384	-1.63179232
H[Z=1.25]	1.56645526	6.98801482	-2.22581449
H[Z=1.25]	-6.81453066	-4.83644916	1.16457422
H[Z=1.25]	-6.79500550	-2.72438020	-1.94043213
H[Z=1.25]	-2.34525800	6.66036962	-2.37216011
H[Z=1.25]	-0.63572142	8.06194273	0.58165157
H[Z=0.75]	2.69755245	-7.05745276	-1.02499193
H[Z=0.75]	2.66849471	-5.84080825	-3.06665321
H[Z=0.75]	6.01841860	1.22578600	-3.39196778
H[Z=0.75]	7.04867180	2.12199314	-1.44673049
H[Z=0.75]	-1.23528792	-6.16697562	-3.21203905
H[Z=0.75]	-1.21351107	-7.38585320	-1.17033383
H[Z=0.75]	0.47974555	-6.00290314	1.59867757
H[Z=0.75]	2.11451890	0.89820933	-3.53734197
H[Z=0.75]	-1.77505315	0.57228018	-3.68278075
H[Z=0.75]	0.44193507	-2.62781312	-3.37425100
H[Z=0.75]	4.95639167	3.32082881	1.18033934
H[Z=0.75]	4.82111709	5.34072443	-1.75437071
H[Z=0.75]	3.79250510	4.43799972	-3.69956180
H[Z=0.75]	-5.67883578	0.24611282	-3.82816659
H[Z=0.75]	-6.98594617	0.94762431	-1.97098646
H[Z=0.75]	-5.30608234	4.49293484	-2.13325699
H[Z=0.75]	-5.34745960	2.40602784	0.79162062
H[Z=0.75]	-4.00161279	3.78525711	-3.99037854
H[Z=0.75]	4.33975781	-2.30535975	-3.22081402
H[Z=0.75]	-0.10443259	4.10849985	-3.83594535
H[Z=0.75]	-3.45436008	-2.95810236	-3.51163075

Ga
- 4.37996427 | -4.39760538 | -0.81313396 |
Ga
- 6.06563436 | -0.84822605 | -0.99313227 |
Ga
- 5.96560830 | -2.87445349 | 1.74935447 |
Ga
- 0.49950979 | -4.69684812 | -1.01966800 |
Ga
-3.34260117 | -5.04218053 | -1.06743467 |
Ga
-1.71281191 | -1.53171029 | -1.36439948 |
Ga
2.38501576 | -3.22764873 | 1.63972899 |
Ga
2.17991563 | -1.18163106 | -1.11635853 |
Ga
-1.80559971 | -3.68508827 | 1.71226049 |
Ga
3.83565327 | 2.33689282 | -1.33766712 |
Ga
-0.01363352 | 2.03504314 | -1.55718949 |
Ga
3.96920556 | 0.13367693 | 1.47527382 |
Ga
1.64313896 | 5.52270266 | -1.50469511 |
Ga
1.67727221 | 3.64757026 | 1.40530115 |
Ga
-5.47298787 | -3.87870413 | 1.30381114 |
Ga
-5.57458420 | -1.80238573 | -1.37122022 |
Ga
-3.88478060 | 1.67344213 | -1.60623048 |
Ga
-4.10574360 | -0.47375280 | 1.65778705 |
| | X | Y | Z |
|-----|------------|------------|------------|
| Ga | -2.29394269| 3.28530639 | 1.41798918 |
| Ga | -2.24200291| 5.19209308 | -1.62495254|
| Ga | -0.49349774| 6.55216329 | 1.26868075 |
| P | 4.33030571 | -4.51958434| 1.63258011 |
| P | 2.58270933 | -5.73476043| -1.62174353|
| P | 6.19956674 | -0.58400148| 1.45075793 |
| P | 4.26180501 | -2.20956078| -1.77069850|
| P | 5.93443983 | 1.33028380 | -1.94674794|
| P | -1.30757335| -6.06443304| -1.76750424|
| P | -3.54995541| -5.20611209| 1.33211451 |
| P | 0.39414793 | -4.56534794| 1.37025924 |
| P | 2.04676060 | 0.99241508 | -2.10065289|
| P | -2.01367372| -1.45155776| 0.99838923 |
| P | 0.37454371 | -2.51793228| -1.93398112|
| P | -0.16894228| 2.32182751 | 0.77420594 |
| P | -3.54689861| -2.87526999| -2.06329572|
| P | 3.76058719 | 2.48672571 | 1.05054263 |
| P | -1.83530508| 0.67149342 | -2.25091378|
| P | 1.91046930 | -0.96504315| 1.31718987 |
| P | 1.75708422 | 5.89685578 | 0.83015221 |
| P | 3.70815806 | 4.54408968 | -2.25362824|
| P | -0.17491923| 4.24692297 | -2.39422544|
| P | -5.72743742| 0.34845109 | -2.38246866|
| P | -4.04134454| 1.77201658 | 0.75686757 |
| P | -6.04470618| -1.64745144| 0.98139864 |
| P | -4.04517840| 3.88313888 | -2.53622859|
| P | -2.56015543| 5.50574754 | 0.69446477 |
| C | -1.33654915| 1.93396153 | 5.42709469 |
| C | -1.44385521| 1.92292103 | 3.92016379 |
| C | -1.59364545| 4.30380000 | 4.02254566 |
| C | -0.92922096| 4.31929400 | 5.23243309|
| C | -0.98033528| 3.09335333 | 6.01948182 |
| H | -0.82040870| 3.15002760 | 7.09463906 |
| H | -0.67994314| 5.27232274 | 5.68672787 |
| H | -1.83727934| 5.23794884 | 3.52643520|
| H | -2.04013708| 1.08423389 | 3.55208936 |
| H | -1.48802589| 1.01348843 | 5.98386363 |
| N | -2.04387810| 3.18074921 | 3.41319386 |
| H | -0.43298245| 1.80757885 | 3.48313277 |
| H | 0.04482671 | 1.05956846 | 1.35567855 |
| O | 1.57315073 | 3.61917140 | 3.53885098 |
| H | -0.93166969| -0.76287682| 1.57889898 |
| H | 0.73005311 | 3.99129313 | 3.90927238 |
| H | 1.57762932 | 2.70051517 | 3.86056153 |
| H | -0.15717848| 6.47332605 | 3.64356115 |
| O | -4.08894438| -0.47767643| 3.56893438 |
2-PyH* + 2H* + 2H2O* + 2OH* + CO2 TS on GaP(111):
Total DFT Energy: -899.7645055076912 Ha

H[Z=1.25] 5.10633912 -5.90081462 -1.09849254
H[Z=1.25] 6.88048746 -4.55779157 1.84381311
H[Z=1.25] 7.25533902 -2.61897112 -1.31589132
H[Z=1.25] -5.25771973 -5.38108522 -1.71268599
H[Z=1.25] 2.57417265 6.58656157 -2.50411559
H[Z=1.25] -7.93905795 -3.89880278 0.99800279
H[Z=1.25] -7.02563027 -1.90178170 -2.16097906
H[Z=1.25] -1.34218427 6.78314236 -2.73596934
H[Z=1.25] 0.48054284 8.02958576 0.21969649
H[Z=0.75] 1.77472126 -7.44156091 -0.90130885
H[Z=0.75] 1.95158534 -6.29329915 -2.97487075
H[Z=0.75] 6.23047852 0.24641879 -3.40807513
H[Z=0.75] 7.33255120 1.05355749 -1.46320597
H[Z=0.75] -1.95673604 -6.09629189 -3.20561351
H[Z=0.75] -2.14111432 -7.24578558 -1.13212266
H[Z=0.75] -0.33327632 -6.02109698 1.63896686
H[Z=0.75] 2.32185157 0.44204675 -3.63877142
H[Z=0.75] -1.57235897 0.63737946 -3.86923067
H[Z=0.75] 0.18573137 -2.82093128 -3.42187194
H[Z=0.75] 5.36830891 2.60017384 1.07963773
H[Z=0.75] 5.56654191 4.53175093 -1.91042715
H[Z=0.75] 4.46516104 3.71794482 -3.85503761
H[Z=0.75] -5.48067951 0.83438726 -4.09997345
H[Z=0.75] -6.71858804 1.76004213 -2.29428360
H[Z=0.75] -4.57267110 5.04115380 -2.51070271
H[Z=0.75] -4.95469379 3.06663268 0.46706846
H[Z=0.75] -3.33821293 4.10974729 -4.31623286
H[Z=0.75] 4.08748556 -3.02055974 -3.18312920
H[Z=0.75] 0.56298940 3.91099918 -4.07652970
H[Z=0.75] -3.71588897 -2.62875640 -3.64432349
C -2.38916999 2.32240721 5.16162376
C -1.88772170 2.27896456 3.76687086
C -1.51683062 4.63247598 3.90736919
C -1.59058679 4.60977591 5.28072472
C -2.15717159 3.44063135 5.89848494
H -2.45587872 3.48213058 6.94363231
H -1.37694083 5.50532905 5.85263959
H -1.28754991 5.54639842 3.36789185
H -2.41368752 1.56822000 3.13267475
H -2.86342775 1.43714721 5.57242929
N -1.80977465 3.55693854 3.13022838
H -0.79966307 1.78480533 3.77431637
O -0.70469636 -0.44932647 4.10579444
C 0.11453776 0.41203541 4.00745446
O 1.23888587 0.82836828 4.03658449
Ga 3.79534817 -5.02843634 -0.72156100
Ga 5.95067087 -1.73754223 -0.93872469
Ga 5.52565807 -3.65096919 1.83194218
Ga -0.08633231 -4.81152315 -1.01098895
Ga -3.93859871 -4.63549564 -1.13668383
Ga -1.83705804 -1.39254729 -1.50889815
Ga 1.90822695 -3.50719829 1.65109423
Ga 2.06236785 -1.56331936 -1.17437044
Ga -2.28458489 -3.40865485 1.64978312
Ga 4.17379744 1.70201376 -1.43798755
Ga 0.31658352 1.90340758 -1.71724376
Ga 3.93635679 -0.41898494 1.43384648
Ga 2.43786374 5.14856694 -1.75001862
Ga 2.18059135 3.38028042 1.20895951
Ga -5.94351921 -3.11021859 1.15342682
Ga -5.70365417 -1.13744380 -1.59803259
Ga -3.55872805 2.06986456 -1.86503642
Ga -4.13118533 0.03572685 1.42278415
Ga -1.82460079 3.59375571 1.10913485
Ga -1.45128824 5.33864725 -1.96179927
Ga 0.38998394 6.52930570 0.94291008
P 3.67437800 -5.04730943 1.73192740
P 1.85093682 -6.13540042 -1.53615479
P 6.05814586 -1.41412700 1.49469113
P 3.99993314 -2.87327160 -1.73928983
P 6.13094913 0.40378964 -1.96606254
P -2.04677601 -5.94185058 -1.76574070
P -4.21917177 -4.68975924 1.27080728
P -0.22687204 -4.59198008 1.36817540
P 2.23402763 0.58402775 -2.20489947
P -2.1699906 -1.20690542 0.83041525
P 0.10674185 -2.66873198 -1.98964733
P 0.15858490 2.30702666 0.61292786
P -3.82713637 -2.49371063 -2.20254117
P 4.07521421 1.92915102 0.94633880
P -1.65243695 0.78317908 -2.44104213
P 1.74991720 -1.21964528 1.23331031
P 2.54852970 5.58173022 0.57434415
P 4.36564563 3.87717454 -2.41450046
Py$^+$ + 4H$_2$O$^+$ on CdTe(111):

Total DFT Energy: -4290.288699739292 Ha

Z	x	y	z
1.5	-8.74412866	0.02127361	-1.89744196
1.5	-9.42620564	-2.38884482	1.73620925
1.5	-7.63096282	-4.52364144	-1.68470957
1.5	4.18264146	-7.96036032	-1.44176659
1.5	2.71350952	9.22264161	1.30525944
1.5	4.64069026	7.21514893	-2.12056784
1.5	7.56564085	-4.72242832	-1.56127597
1.5	6.70868793	-7.08199726	2.06735974
1.5	0.13742835	8.52687322	-2.20887484
0.5	-7.47687743	4.20859324	-1.81966259
0.5	-6.30704186	2.91199652	-1.4569227
0.5	-4.08695287	-6.15262706	-3.73464233
0.5	-5.19772636	-1.61891222	-3.91318653
0.5	-4.57727824	-7.63116871	-1.26598083
0.5	-2.93261972	6.14202809	-4.27608367
0.5	-4.08840645	7.44968272	-1.94021694
0.5	-0.71135115	-2.92333975	-3.85202011
0.5	2.66172129	0.30333313	-3.97235889
0.5	1.55192820	4.83723437	-4.15190513
0.5	-1.82265915	1.60764867	-4.06552545
0.5	-0.07442600	-8.94086909	-1.17370646
0.5	3.77201379	-4.22734074	-3.72685558
0.5	0.39860942	-7.45771917	-3.64146188
0.5	6.95791973	1.6224328	1.70293670
0.5	6.03732414	3.53260428	-4.09073654

P: phosphorus; O: oxygen; H: hydrogen; Z: coordination number.
Elemental	Symbol	Z	x	y	z
Hydrogen	H[Z=0.5]	7.62909751	4.04309991	-1.69886996	
Hydrogen	H[Z=0.5]	-2.00593709	-6.95441212	2.02042545	
Hydrogen	H[Z=0.5]	8.74054211	-0.50831379	-1.48703462	
Hydrogen	H[Z=0.5]	7.14708327	-1.00081217	-3.88119424	
Hydrogen	H[Z=0.5]	-4.95590337	5.08925097	1.45739046	
Cadmium	Cd	-6.99043159	0.49586854	-1.26207828	
Cadmium	Cd	-5.87982887	-4.07218031	-1.07649144	
Cadmium	Cd	-4.49951625	1.06210686	1.77440770	
Cadmium	Cd	-7.53051466	-1.93958357	1.66859280	
Cadmium	Cd	-3.48670784	-3.13238379	1.66837019	
Cadmium	Cd	-3.68688058	3.66975011	-1.49675744	
Cadmium	Cd	-0.35576995	6.81851160	-1.45718798	
Cadmium	Cd	0.76421725	2.35908794	-1.30447457	
Cadmium	Cd	2.19413598	7.35733277	1.66207862	
Cadmium	Cd	-2.57131469	-0.82423583	-1.20308414	
Cadmium	Cd	-0.93474967	4.42881348	1.74538539	
Cadmium	Cd	-1.48458367	-5.34326981	-1.03744595	
Cadmium	Cd	1.85987907	-2.10980791	-1.13778940	
Cadmium	Cd	3.14670021	3.36662852	1.55416941	
Cadmium	Cd	2.91200384	-6.64369470	-0.91534299	
Cadmium	Cd	4.42102036	-1.52289849	1.62196120	
Cadmium	Cd	1.30856076	-4.55050894	1.75799359	
Cadmium	Cd	5.35892383	-5.68704713	1.93654514	
Cadmium	Cd	4.13727299	5.51272002	-1.41085428	
Cadmium	Cd	5.22817957	1.06998915	-1.26542616	
Cadmium	Cd	6.32319157	-3.37763396	-1.02716450	
Tellurium	Te	-7.27922031	0.77809595	1.54791849	
Tellurium	Te	-6.31350166	2.99347455	-2.39418057	
Tellurium	Te	-6.03741594	-4.23386943	1.76840062	
Tellurium	Te	-5.20391320	-1.53163248	-2.11325722	
Tellurium	Te	-4.08714846	-6.06674070	-1.96364991	
Tellurium	Te	-2.92992683	6.22444543	-2.5112943	
Tellurium	Te	-0.53959008	7.16411701	1.32209337	
Tellurium	Te	-3.72653959	3.78130137	1.30716202	
Tellurium	Te	-0.72911444	-2.82375006	-2.08379898	
Tellurium	Te	0.68509387	2.17364942	1.51146012	
Tellurium	Te	-1.82445659	1.68936914	-2.30368326	
Tellurium	Te	1.67025888	-1.82015194	1.69731941	
Tellurium	Te	1.54060428	4.91046594	-2.35858218	
Tellurium	Te	-1.49490648	-5.22211168	1.80913679	
Tellurium	Te	2.64144320	0.39760849	-2.20875423	
Tellurium	Te	-2.30953773	-0.65121295	1.61966544	
Tellurium	Te	2.87488521	-6.83629852	1.93798288	
Tellurium	Te	0.36066612	-7.36154061	-1.87343039	
Tellurium	Te	3.74675083	-4.13449112	-1.92824137	
Tellurium	Te	6.02196361	3.60198944	-2.32427836	
2-PyH⁺ + 4H₂O⁺ on CdTe(111):
Total DFT Energy: -4290.986109451165 Ha

	X	Y	Z
Te	5.19165240	1.22746829	1.56582894
Te	4.45740550	5.78302824	1.37307762
Te	7.11972294	-0.90117337	-2.11241495
Te	6.59979923	-3.25030656	1.81181477
C	-1.97330351	5.33901140	6.15434498
C	-1.54929987	5.40607223	4.82913654
C	-1.42652845	3.09668337	4.67529707
C	-1.84510144	2.94057237	5.99350554
C	-2.12540947	4.08378351	6.74675135
H	-2.45742601	3.99868299	7.77642251
H	-1.94888233	1.94502976	6.41047414
H	-1.41372141	6.35736765	4.32150175
H	-2.17750244	6.25129251	6.70404691
N	-1.28528634	4.30605066	4.10393099
H	-1.20100396	2.23769701	4.05008529
O	-4.22591597	1.34011775	4.22958097
H	-3.93833045	2.26516397	4.31176950
H	-3.40831393	0.83753312	4.38362613
O	2.27126537	7.53995749	4.03661321
H	3.19925879	7.69035023	4.27566179
H	2.09110692	6.59113399	4.29475741
O	3.90323417	3.38228997	4.27198395
H	4.72268365	3.75948593	3.91165592
H	4.01459612	2.42108133	4.18328903
O	1.69045594	4.99400872	4.61695014
H	1.00562292	4.75633625	3.97339684
H	2.44834714	4.40432037	4.41397955

Total DFT Energy: -44290.986109451165 Ha
Element	X-coordinates	Y-coordinates	Z-coordinates
H[Z=0.5]	-0.71848677	-2.92319354	-3.85352464
H[Z=0.5]	2.66435404	0.29323460	-3.97392029
H[Z=0.5]	1.56831528	4.83044067	-4.15446963
H[Z=0.5]	-1.81604390	1.61109809	-4.06803279
H[Z=0.5]	-0.10019668	-8.94213237	-1.17401167
H[Z=0.5]	3.76089160	-4.24073356	-3.72741440
H[Z=0.5]	0.37771315	-7.46087263	-3.64196320
H[Z=0.5]	6.96363161	1.60017626	1.70181233
H[Z=0.5]	6.04973278	3.51225370	-4.09235489
H[Z=0.5]	7.4266759	4.01836775	-1.70033038
H[Z=0.5]	-2.02618962	-6.94925442	2.01945255
H[Z=0.5]	8.74029977	-0.53634979	-1.48748848
H[Z=0.5]	7.14573433	-1.02446199	-3.88180958
H[Z=0.5]	-4.93960591	5.10317766	1.45375267
Cd	-6.98690836	0.51912547	-1.25675280
Cd	-5.88923659	-4.05365535	-1.07762995
Cd	-4.8365256	1.18389977	1.86374514
Cd	-7.53149049	-1.90603333	1.67191053
Cd	-3.51976350	-3.09930006	1.68079978
Cd	-3.67298980	3.66351474	-1.46067387
Cd	-0.35158789	6.81944427	-1.46675343
Cd	0.77585871	2.37140008	-1.30222258
Cd	2.17226052	7.35652481	1.66876798
Cd	-2.57573486	-0.81156473	-1.18784686
Cd	-0.76187312	4.54832204	1.94431855
Cd	-1.49590412	-5.34079337	-1.03999661
Cd	1.85080811	-2.11387156	-1.14412359
Cd	3.16569008	3.29950149	1.71490659
Cd	2.89452492	-6.65213515	-0.91296636
Cd	4.40926209	-1.55313794	1.62908018
Cd	1.27291513	-4.54643489	1.75538648
Cd	5.34127268	-5.70799813	1.93426794
Cd	4.13618462	5.50070360	-1.39357084
Cd	5.22985942	1.06336555	-1.26886063
Cd	6.31436419	-3.39623414	-1.02737133
Te	-7.26797164	0.80806285	1.55007425
Te	-6.29967836	3.01181683	-2.39561179
Te	-6.06282168	-4.21754888	1.76682274
Te	-5.20753959	-1.51554957	-2.11510615
Te	-4.10350703	-6.05593850	-1.96545310
Te	-2.92340649	6.21976276	-2.51646672
Te	-0.55919935	7.25323114	1.29050689
Te	-3.65896010	3.84490781	1.32921085
Te	-0.74173112	-2.81978742	-2.08477454
Te	0.65985697	2.19175523	1.49268302
Te	-1.81617554	1.69085537	-2.30850935
$\text{Te} + 1.65620688 \times -1.81679356 \times 1.69138604$

$\text{Te} + 1.54705356 \times 4.91575254 \times -2.36803302$

$\text{Te} - 1.52889879 \times -5.21060723 \times 1.80671922$

$\text{Te} + 2.64147326 \times 0.39331145 \times -2.21118933$

$\text{Te} - 2.34189994 \times -0.62302853 \times 1.63399959$

$\text{Te} + 2.84550063 \times -6.83298361 \times 1.93908931$

$\text{Te} + 0.34174295 \times -7.36469817 \times -1.87376789$

$\text{Te} + 3.73393224 \times -4.14552224 \times -1.92879113$

$\text{Te} + 6.02841670 \times 3.59379018 \times -2.32419906$

$\text{Te} + 5.20499298 \times 1.18960570 \times 1.56427185$

$\text{Te} + 4.41900511 \times 5.76260888 \times 1.38501750$

$\text{Te} + 7.11694606 \times -0.92036951 \times -2.11237252$

$\text{Te} + 6.59086599 \times -3.27651555 \times 1.81165196$

$\text{C} - 3.25703494 \times 4.93581426 \times 5.43112936$

$\text{C} - 2.24716942 \times 5.22880469 \times 4.54495016$

$\text{C} - 1.47246850 \times 2.94424464 \times 4.50771709$

$\text{C} - 2.23999610 \times 2.75402841 \times 5.80183788$

$\text{C} - 3.14602831 \times 3.69173040 \times 6.17051657$

$\text{H} - 3.74045766 \times 3.55713055 \times 7.07267731$

$\text{H} - 2.06077779 \times 1.86373792 \times 6.39883931$

$\text{H} - 2.01543403 \times 2.45168780 \times 3.67566029$

$\text{H} - 2.16031735 \times 6.23552640 \times 4.13245628$

$\text{H} - 3.96565800 \times 5.70219869 \times 5.72571473$

$\text{N} + 1.25080191 \times 4.37471428 \times 4.17207392$

$\text{H} - 0.49523342 \times 2.44816836 \times 4.55209623$

$\text{O} - 4.35445681 \times 1.03485484 \times 4.32049702$

$\text{H} + 3.92944879 \times 1.80662266 \times 4.74954041$

$\text{H} - 3.68081471 \times 0.33880090 \times 4.39675726$

$\text{O} + 2.13614097 \times 7.61126060 \times 4.01862185$

$\text{H} + 3.05765155 \times 7.60032187 \times 4.32119584$

$\text{H} + 1.75450625 \times 6.73553325 \times 4.34079844$

$\text{O} + 3.29023849 \times 3.52426438 \times 4.16292232$

$\text{H} + 4.11876469 \times 3.99635556 \times 4.34380194$

$\text{H} + 3.37939718 \times 2.66282824 \times 4.60050600$

$\text{O} + 1.21167021 \times 5.29042767 \times 4.86735299$

$\text{H} + 0.30179862 \times 4.96199051 \times 4.57415474$

$\text{H} + 1.86042378 \times 4.62226362 \times 4.56854165$

$\text{Py} + 6\text{H}_2\text{O}^*$ on CuInS$_2$(112):

Total DFT Energy: -17453.424142286931 Ha

$\text{H}[Z=0.25] - 3.02301659 \times 8.02141232 \times 0.86738544$

$\text{H}[Z=0.25] + 4.22980239 \times 6.20529616 \times -4.17709852$

$\text{H}[Z=0.25] + 3.54644490 \times 8.79002099 \times 1.23976797$

$\text{H}[Z=0.25] + 2.53965743 \times 6.97289289 \times -3.80570390$
H[Z=0.25]	-0.2074498	0.75635135	-3.78002116
H[Z=0.25]	3.42146693	-0.92958911	-3.54518490
H[Z=0.25]	0.67535542	-7.14613933	-3.52050719
H[Z=0.25]	1.97797799	-8.17955526	1.58072609
H[Z=0.25]	7.53394557	5.61276514	-1.14351750
H[Z=0.25]	6.01105719	7.70855373	1.42425335
H[Z=0.25]	6.56200744	1.52494800	-3.40863854
H[Z=0.25]	3.42146693	-0.92958911	-3.54518490
H[Z=0.25]	0.67535542	-7.14613933	-3.52050719
H[Z=0.25]	1.97797799	-8.17955526	1.58072609
H[Z=0.25]	7.53394557	5.61276514	-1.14351750
H[Z=0.25]	6.01105719	7.70855373	1.42425335
H[Z=0.25]	6.56200744	1.52494800	-3.40863854
H[Z=0.75]	5.09325082	7.22682646	-2.22782105
H[Z=0.75]	-3.78329701	2.36772341	-3.66020074
H[Z=0.75]	-2.90049261	-5.53476727	-3.40068677
H[Z=0.75]	-0.60516695	4.62823124	-3.53551444
H[Z=0.75]	1.67620559	7.99542311	-1.85643844
H[Z=0.75]	2.98616449	3.13633208	-3.28781821
H[Z=0.75]	-3.78329701	2.36772341	-3.66020074
H[Z=0.75]	-2.90049261	-5.53476727	-3.40068677
H[Z=0.75]	-0.60516695	4.62823124	-3.53551444
H[Z=0.75]	1.67620559	7.99542311	-1.85643844
H[Z=0.75]	2.98616449	3.13633208	-3.28781821
H[Z=0.75]	3.86897230	-4.76715852	-3.02829224
H[Z=0.75]	0.04662847	-8.22738713	-1.43913851
H[Z=0.75]	6.06832682	3.75955170	1.43342577
H[Z=0.75]	6.16429288	5.39582797	-3.16411982
H[Z=0.75]	6.95113463	-4.14393890	1.69295173
H[Z=0.75]	7.04710577	-2.50765061	-2.90359394
H[Z=0.75]	7.68006903	1.69764582	-1.33622118
H[Z=0.75]	6.81608488	-7.45879048	-1.06775589
H[Z=0.75]	8.56288193	-6.20583275	-1.07569530
H[Z=1.5]	-6.10519928	7.73400819	0.65447266
H[Z=1.5]	-6.40690911	0.13591842	-2.30092444
H[Z=1.5]	-6.78533609	3.94067087	-2.23872451
H[Z=1.5]	-8.52172787	6.05035647	0.63099032
H[Z=1.5]	-8.13739686	2.11571266	0.66032933
H[Z=1.5]	-5.52510469	-7.76657560	-2.04140535
H[Z=1.5]	-5.90352318	-3.96281106	-1.97819351
H[Z=1.5]	-7.63891498	-1.85312211	0.89151620
H[Z=1.5]	-7.25459246	-5.78677802	0.91984330
H[Z=1.5]	-2.9987565	-9.06813399	-1.88058995
H[Z=1.5]	-1.52972034	8.06686888	-2.17402525
H[Z=1.5]	0.66326565	8.50161359	1.02687231
H[Z=1.5]	3.77158924	-8.30052190	-1.50820055
H[Z=1.5]	-0.87290886	-8.60278727	1.45729119
H[Z=1.5]	5.23974456	8.83429563	-1.80163072
H[Z=1.5]	5.89717064	-7.83417860	1.82967372
Cu	-3.17984631	4.64656656	1.02381129
Cu	-5.27646660	4.21926728	-1.55212884
Cu	-2.68392926	0.6678328	1.03666082
Cu	-6.90354221	6.29867567	0.65242214
Element	X-Coordinate	Y-Coordinate	Z-Coordinate
Cu	-2.27231851	-3.32852454	1.21140181
Cu	-4.40390730	-3.61563196	-1.32799822
Cu	-1.71781586	-7.27817956	1.27813047
Cu	-6.03947192	-1.76873628	0.89492948
Cu	3.54420778	5.43004735	1.35348927
Cu	1.46752679	5.00358033	-1.21444185
Cu	4.02572404	1.39480774	1.41812438
Cu	-1.59551392	2.58953939	-1.38871562
Cu	-0.07037556	7.01898674	1.03160844
Cu	4.46344835	-2.46041664	1.54861369
Cu	2.33626714	-2.78822868	-0.97883363
Cu	5.01084383	-6.52534466	1.62161672
Cu	-0.74205571	-5.21998871	-1.02132372
Cu	0.73724050	-0.94447686	1.31479377
Cu	4.93699226	3.38631490	-0.94568263
Cu	5.86120194	-4.42629446	-0.70781942
In	-6.3890625	2.30173064	0.88304874
In	-5.53221412	-5.58066544	0.97046876
In	-4.73616573	0.29283974	-1.72831554
In	-3.86966702	-7.58093632	-1.46560991
In	-2.16788291	6.48792477	-1.56891287
In	0.36050094	3.05387413	1.48246828
In	-1.28752631	-1.30955634	-1.36973001
In	1.33301220	-4.83337974	1.58050991
In	1.89981677	0.99969305	-1.36770428
In	2.7752477	-6.83484319	-1.11661905
In	4.58710474	7.25896326	-1.17805622
In	5.51709717	-0.48721567	-0.98535587
S	-5.48237260	4.48961157	0.81364602
S	-5.00554184	0.31411943	0.74170438
S	-3.82217638	2.45744875	-2.27722323
S	-4.35364164	6.12226727	-2.63728906
S	-4.54717857	-3.44408528	1.10847313
S	-4.03962628	-7.55400113	0.99071069
S	-2.92477514	-5.42352617	-2.00947096
S	-3.52170461	-1.70200004	-2.38073233
S	-0.37317374	0.77643876	-2.25282054
S	1.29520319	5.20888373	1.09894305
S	-0.68371307	4.63971358	-2.15297859
S	1.76622853	1.07042690	1.07651392
S	2.82281366	3.18989314	-1.91537079
S	2.42863996	6.90913822	-2.28499239
S	-2.33283073	6.76872440	0.81897041
S	-1.95478223	2.76847760	0.90555494
S	0.50277959	-7.03366087	-1.98962738
S	2.21544595	-2.65770608	1.37616801
2-PyH$^+$ + 6H$_2$O$^+$ on CuInS$_2$(112):			
Total DFT Energy: -17454.123877259830 Ha			
H[Z=0.25]	-3.22325805	8.02107726	0.86514659
H[Z=0.25]	-4.23016646	6.20477652	-4.17924644
H[Z=0.25]	-3.34727216	-1.69869625	-3.91947172
H[Z=0.25]	-4.79054873	-8.94749962	1.20671832
H[Z=0.25]	3.54620614	8.78976669	1.23731354
H[Z=0.25]	2.53929603	6.97245397	-3.80806737
H[Z=0.25]	-0.20774733	0.75588577	-3.78209288
H[Z=0.25]	3.42119204	-0.93001018	-3.54729962
H[Z=0.25]	0.67514355	-7.14658707	-3.52233020
H[Z=0.25]	1.97791889	-8.17981348	1.57890246
H[Z=0.25]	7.53367213	5.61246837	-1.14597335
H[Z=0.25]	6.01083442	7.70833052	1.42176752
H[Z=0.25]	6.56171174	1.52456314	-3.41092585
H[Z=0.25]	8.41456647	-2.29101111	-0.88618833
H[Z=0.25]	6.89372872	-0.19514224	1.68154223
H[Z=0.25]	7.44361117	-6.37890093	-3.15041606
H[Z=0.75]	-5.09357072	7.22636559	-2.2298020
H[Z=0.75]	-3.78360817	2.36722613	-3.6622837
H[Z=0.75]	-2.90071729	-5.53524672	-3.40245699
H[Z=0.75]	-0.60549730	4.62777013	-3.53770900
H[Z=0.75]	1.67588835	7.99504296	-1.85881317
H[Z=0.75]	2.98585601	3.13591555	-3.29006142
H[Z=0.75]	0.27739700	-3.2750264	-3.2793428
H[Z=0.75]	3.86875031	-4.76755722	-3.0302867
H[Z=0.75]	0.04648555	-8.22776918	-1.44090656
H[Z=0.75]	6.06814390	3.75932938	1.43107494
H[Z=0.75]	6.16396519	5.39544758	-3.16652993
H[Z=0.75]	6.95103820	-4.14414338	1.69084966
H[Z=0.75]	7.04686461	-2.50801314	-2.90575530
H[Z=0.75]	7.67982946	1.69734386	-1.33854567
H[Z=0.75]	6.81594462	-7.45909181	-1.06973952
H[Z=0.75]	8.56272888	-6.20611685	-1.07777104
H[Z=1.5]	-6.10544379	7.73363688	0.65232421
H[Z=1.5]	-6.40715994	0.13544186	-2.30280162
H[Z=1.5]	-6.78562334	3.94019266	-2.24072275
H[Z=1.5]	-8.52195616	6.04996012	0.62896759
H[Z=1.5]	-8.13758487	2.11532118	0.65843198
H[Z=1.5]	-5.52526904	-7.76703435	-2.0430337
H[Z=1.5]	-5.90372391	-3.96327141	-1.97994296
H[Z=1.5]	-7.63905675	-1.85350059	0.88974222
H[Z=1.5]	-7.25469399	-5.78715166	0.91819466
H[Z=1.5]	-2.99902247	-9.06856184	-1.88224390
H[Z=1.5]	-1.53004716	8.06626360	-2.17631294
H[Z=1.5]	0.66302383	8.50132302	1.02450835
H[Z=1.5]	3.77144512	-8.30086899	-1.51007007
H[Z=1.5]	-0.87234916	-8.60307833	1.45556178
Element	Coordinates	Distance	Angle
H[Z=1.5]	5.23942044 8.83395310 -1.80413396		
H[Z=1.5]	5.89711503 -7.83433891 1.82772873		
Cu	-3.14830792 4.62722278 0.99912968		
Cu	-5.26399219 4.20710406 -1.57276304		
Cu	-2.69259541 0.65234821 1.05400841		
Cu	-6.90100521 6.29254704 0.64707659		
Cu	-2.26993169 -3.33731421 1.19406158		
Cu	-4.40429040 -3.61364473 -1.32896313		
Cu	-1.71817065 -7.29785470 1.27259941		
Cu	-6.03949100 -1.77003733 0.89454955		
Cu	3.53049158 5.42604217 1.35209844		
Cu	1.45342178 5.00049209 -1.20793935		
Cu	4.01861625 1.37623184 1.42965013		
Cu	-1.57409708 2.58032918 -1.35733972		
Cu	-0.07003591 7.02254383 -1.02031746		
Cu	4.46041968 -2.45026302 1.55129114		
Cu	2.33801626 -2.76376069 -0.95483851		
Cu	5.01511201 -6.52076873 1.62075853		
Cu	-0.73517676 -5.21692827 -1.03198608		
Cu	0.73058965 -0.92769411 1.33269051		
Cu	4.94942398 3.36551758 -0.97870669		
Cu	5.85578065 -4.42064321 -0.70972977		
In	-6.39671873 2.30509873 0.86243461		
In	-5.53205626 -5.58052711 0.96701910		
In	-4.73602664 0.29804446 -1.72181741		
In	-3.86895389 -7.57996948 -1.46825051		
In	-2.16756188 6.48676909 -1.57258474		
In	0.33971281 3.05416474 1.59240515		
In	-1.28020695 -1.29958203 -1.37457208		
In	1.33767991 -4.82861083 1.57327045		
In	1.91031678 1.01056457 -1.32903103		
In	2.77775241 -6.83243660 -1.11943692		
In	4.58246899 7.25670458 -1.18470089		
In	5.51538905 -0.48950433 -0.97894620		
S	-5.46662605 4.48936161 0.79721161		
S	-5.01269293 0.31400911 0.75427357		
S	-3.80326743 2.45571517 -2.27887602		
S	-4.35294238 6.12424931 -2.64260085		
S	-4.54603473 -3.44489943 1.10969904		
S	-4.04067172 -7.55410909 0.98862756		
S	-2.92472955 -5.42293148 -2.01141713		
S	-3.51937981 -1.69576845 -2.37410087		
S	-0.35196861 0.78030182 -2.25122118		
S	1.28113917 5.19906339 1.09871740		
S	-0.68812548 4.63585874 -2.15485140		
S	1.76989012 1.08394918 1.10247409		
PyH⁺ on GaP(111):

Total DFT Energy: -8503.043987679019 Ha

Atoms	Z	X	Y	Z
H	Z=1.25	-7.17375728	-2.07441344	-1.55076653
H	Z=1.25	-7.13315525	-4.08555527	1.54231988
H	Z=1.25	-5.23155975	-5.48264556	-1.34188697
H	Z=1.25	-1.91916546	6.87839605	-2.10147018
H	Z=1.25	5.16358952	-5.54917359	-1.33939081
H	Z=1.25	0.05330081	8.26985132	0.77557410
H	Z=1.25	2.00924142	6.85284134	-2.10006769
H	Z=1.25	7.14948834	-2.16600663	-1.54776550
H	Z=1.25	7.08130816	-4.17615782	1.54571053
H	Z=0.75	-7.03653981	1.59981067	-1.55530644
H	Z=0.75	-5.86674687	0.79962418	-3.46452712
H	Z=0.75	-1.99689498	-5.99022527	-3.04839923
H	Z=0.75	-2.00834999	-7.22023718	-1.01518626
H	Z=0.75	-3.88496139	4.17588773	-3.67074424
H	Z=0.75	-5.05190027	4.98195617	-1.76275062
H	Z=0.75	-5.11134522	2.98451680	1.14485329
H	Z=0.75	-0.01510963	-2.61401466	-3.25547873
H	Z=0.75	1.95939520	0.74976762	-3.46222816
H	Z=0.75	-1.94647584	0.77469097	-3.46272772
H	Z=0.75	-0.03800932	-6.02100686	1.70370174
H	Z=0.75	1.91816536	-7.24791896	-1.01322113
H	Z=0.75	1.92337605	-6.01515849	-3.04659983
H	Z=0.75	3.94117960	4.12595122	-3.66973981
H	Z=0.75	5.11644446	4.91657563	-1.76072408
H	Z=0.75	7.05928364	1.51053260	-1.55154516
H	Z=0.75	5.15060760	2.91964895	1.14726788
H	Z=0.75	5.87966536	0.72483380	-3.46043072
H	Z=0.75	-3.92836166	-2.59260264	-3.24754623
H	Z=0.75	3.89808778	-2.64297601	-3.24478378
H	Z=0.75	0.02808155	4.14711759	-3.66136045

Atoms	X	Y	Z
Ga	-5.84786500	-1.27955127	-1.08229560
Ga	-3.91034514	-4.69511841	-0.85321228
Ga	-5.71522720	-3.29187446	1.66103870
Ga	-3.84915436	2.03658047	-1.32369062
Ga	-1.92960578	5.39882724	-1.48821760
Ga	0.01422267	2.04522043	-1.24149148
Ga	-3.96043831	-0.15754137	1.47505399
Ga	-1.96100401	-1.33557215	-1.05186812
Ga	-1.82961241	3.50162852	1.27615353
---	---	---	---
Ga	-0.02802877	-4.69098933	-0.91682999
Ga	1.94733295	-1.35679574	-1.05347250
Ga	-2.13332869	-3.41466163	1.68465246
Ga	3.85140782	-4.74560207	-0.84881191
Ga	2.08855986	-3.42986563	1.68428218
Ga	0.04243808	6.62144215	1.00972693
Ga	2.00132097	5.37305752	-1.48809651
Ga	3.87836343	1.98740351	-1.32165396
Ga	1.87564796	3.47807860	1.27179410
Ga	3.96068134	-0.20675300	1.47681454
Ga	5.83350863	-1.35477427	-1.07941319
Ga	5.67530921	-3.36174900	1.66398788
P	-6.12998674	-1.02280641	1.35383882
P	-5.84716013	0.90443475	-2.01846349
P	-3.97705936	-4.84269489	1.59942656
P	-3.92764981	-2.49977209	-1.79755534
P	-1.98952263	-5.88872755	-1.60075718
P	-3.87911543	4.25820807	-2.2244638
P	-2.14453162	5.79931396	0.91743905
P	-3.86622504	2.22358401	1.07587776
P	-0.01366525	-2.50222272	-1.80964832
P	0.01464667	2.10038190	1.19731705
P	-1.92498598	0.86087968	-2.01346873
P	1.82975122	-1.13926481	1.38757821
P	0.02794742	4.24829028	-2.21324865
P	-0.02823709	-4.57418382	1.49128250
P	1.93895426	0.83841810	-2.01367199
P	-1.84640409	-1.12900924	1.38918320
P	3.91295175	-4.88532823	1.60425042
P	1.91729180	-5.91585907	-1.59860822
P	3.89785445	-2.55025296	-1.79482670
P	3.93532932	4.20764531	-2.22350351
P	3.89632399	2.17491952	1.07806358
P	2.21907684	5.77215685	0.91677082
P	5.86167968	0.82930545	-2.01456256
P	6.11933405	-1.09856013	1.35613713
C	-1.19028371	4.25116103	4.45023986
C	-1.17309671	2.89617661	4.74218331
C	1.20144681	2.88350588	4.72447534
C	1.22793208	4.23838399	4.43227854
C	0.02129980	4.92584744	4.27899776
H	0.02528204	5.97632724	4.00662260
H	2.18143243	4.73477435	4.30194762
H	2.08496497	2.26907268	4.83627867
H	-2.06103843	2.29136867	4.87102225
H	-2.14014020	4.75871801	4.33728368
Atom	x	y	z
------	-----------	-----------	-----------
N	0.01201554	2.26678228	4.87211599
H	0.00840666	1.27055265	5.08263806

DHP\textsubscript{(aq)} + CO\textsubscript{2}(aq) Transition State:

Total DFT Energy: -438.105123234625 Ha, 875.8 i cm$^{-1}$

Atom	x	y	z
H	2.04384819	0.87197391	-2.04279296
C	1.51344016	0.32246233	1.19293833
C	2.67237142	-0.34231513	1.45761483
H	4.43785162	-1.31404634	0.56983937
H	3.99210477	-0.34128738	-1.69626768
H	0.47534271	-0.55306307	-0.50496023
H	0.82552535	0.62755176	1.97255333
H	2.95587580	-0.56505911	2.48202490
C	1.12865024	0.51817353	-0.20470800
C	3.54717902	-0.72617190	0.38615452
N	2.21354799	0.55897262	-1.09605747
C	3.31191981	-0.21793959	-0.86198313
C	0.42379204	-1.92879854	-0.80891447
O	0.22867976	-2.51520539	0.23514934
O	0.61965294	-2.04745375	-2.00103934
H	0.37080083	1.26880336	-0.42105889

DHP\textsubscript{(aq)}:

Total DFT Energy: -249.507366925698 Ha

Atom	x	y	z
C	-1.35233758	-0.39761536	0.10006854
C	-0.93779233	1.02330057	-0.22421973
C	1.36048004	0.23514276	-0.01085010
C	0.98198439	-1.06423212	-0.12269827
C	-0.42806787	-1.37858501	0.07912526
H	-0.71770120	-2.41178086	0.25857561
H	1.72299913	-1.84545523	-0.24304875
H	2.40025879	0.54704839	-0.02501743
H	-1.02448919	1.20968532	-1.31393118
H	-2.40312831	-0.60190151	0.28287263
H	0.78701194	2.17589925	0.09660096
H	-1.58794824	1.75018072	0.27178757
N	0.44159142	1.23640806	0.23991924

CO\textsubscript{2}(aq):

Total DFT Energy: -188.614429025041 Ha

Atom	x	y	z
C	0.00000000	0.00000000	0.00000000
O	0.00000000	0.00000000	1.16941774
O	0.00000000	0.00000000	-1.16941774

HCOOH\textsubscript{(aq)}:

Total DFT Energy: -189.808204723803 Ha
HCOO$^-_{(aq)}$
Total DFT Energy: -189.362204615794 Ha

H	1.25903881	0.04476835	0.29120330	0.00000000
C	0.19165277	-0.09580879	0.06376163	0.00000000
O	-0.31159882	-1.16741124	-0.2026553	0.00000000
O	-0.53919623	1.02999215	0.10138727	0.00000000
H	0.03714679	1.78102316	0.32410127	0.00000000

β-Ga$_2$O$_3$(100)
Total DFT Energy: -246.48057641 eV

Unit Cell (Å):

H	0.00000000	0.00000000	0.00000000	0.00000000
C	0.25670000	0.00000000	0.00000000	0.00000000
O	0.25670000	0.00000000	0.00000000	0.00000000
O	0.25670000	0.00000000	0.00000000	0.00000000

Direct Coordinates:

Ga-16 O-24

0.00000000	0.25670000	0.00000000	0.00000000	0.00000000
0.00000000	0.25670000	0.00000000	0.00000000	0.00000000
0.00000000	0.25670000	0.00000000	0.00000000	0.00000000

FROZEN
Py* on β-Ga2O3(100):
Total DFT Energy: -318.93879654 eV
Unit Cell (Å):

X	Y	Z
6.099999999999999	0.00000000000000000000000	0.000000000000000000000000000000000
0.00000000000000000000000	5.8200000000000003	0.000000000000000000000000000000000
0.00000000000000000000000	0.000000000000000000000000000000000	39.8203000000000031

Direct Coordinates:
Ga-16 O-24 C-5 H-5 N-1

X	Y	Z
0.00000000000000000000000	0.25267000000000000000000019	0.352919999999999975
0.0002434757876160	0.0175372896406950	0.4292847756602175
0.2494870293886894	0.9987789094072564	0.5063656037626304
0.2500000000000000	0.2693700000000021	0.27828999999999984
0.0008924990447978	0.5018994482831434	0.5235975924131256
0.2554095268167559	0.5021558573255223	0.4501663612542582
0.7500000000000000	0.735579999999999988	0.373629999999999986
0.5000000000000000	0.25267000000000000000000019	0.352919999999999975
0.5013763889811111	0.0162429214704405	0.4293329361787859
0.7516241962162414	0.0029410748597546	0.5061955798538140
0.7500000000000000	0.2693700000000021	0.278289999999999984
0.5000000000000000	0.7522900000000021	0.298999999999999995
0.5006427931646873	0.502513590580214	0.5286956936089275
0.7454098932406138	0.5028687966504383	0.4502711229910721
0.7500000000000000	0.7522900000000021	0.298999999999999995
0.00000000000000000000000	0.7522900000000021	0.298999999999999995
0.00000000000000000000000	0.7522900000000021	0.298999999999999995
0.00000000000000000000000	0.7522900000000021	0.298999999999999995
0.00000000000000000000000	0.7522900000000021	0.298999999999999995
0.00000000000000000000000	0.7522900000000021	0.298999999999999995
0.00000000000000000000000	0.7522900000000021	0.298999999999999995
0.00000000000000000000000	0.7522900000000021	0.298999999999999995

H$_2$O* on β-Ga$_2$O$_3$(100):

Total DFT Energy: -261.34697355 eV

Unit Cell (Å):

\[
\begin{align*}
&6.0999999999999996 & 0.0000000000000000 & 0.0000000000000000 \\
&0.0000000000000000 & 5.8200000000000000 & 0.0000000000000000 \\
&0.0000000000000000 & 0.0000000000000000 & 39.8203000000000000
\end{align*}
\]

Direct Coordinates:

Ga-16 O-25 H-1

\[
\begin{align*}
&0.0000000000000000 & 0.2526700000000019 & 0.3529199999999975 \\
&-0.0023788771106557 & 0.018523229301082 & 0.4293918591249700 \\
&0.245793696851881 & 0.0085430819404786 & 0.5065562890108497 \\
&0.2500000000000000 & 0.2693700000000021 & 0.2782899999999984 \\
&0.0000000000000000 & 0.7522900000000021 & 0.2989999999999995 \\
&-0.0030956943561248 & 0.50934717521705 & 0.5835821863402714 \\
&0.799140026324052 & 0.7201450112432000 & 0.6485094886340045 \\
&0.5107694335695898 & 0.4945248942748838 & 0.5841641531624032
\end{align*}
\]
0.5000000000000000	0.25267000000000019	0.3529199999999975	FROZEN				
0.4981166801291682	0.0170407810897670	0.429494779827694					
0.7478313187585287	0.0078712237433964	0.5069838570869554					
0.7500000000000000	0.2693700000000021	0.2782899999999984	FROZEN				
0.5000000000000000	0.7522900000000021	0.2989999999999995	FROZEN				
0.4940710641173969	0.5119501676351327	0.5273961155858308					
0.7434900682735744	0.5038156065255266	0.4501446755105943					
0.7500000000000000	0.7522900000000021	0.2989999999999995	FROZEN				
0.0000000000000000	0.5193200000000004	0.3758899999999983	FROZEN				
-0.0034378873483802	0.5116137772807475	0.4761179979293448					
0.0000000000000000	0.2497000000000003	0.2738999999999976	FROZEN				
0.2436076582731492	0.2867509368281693	0.5314748632045753					
0.2500000000000000	0.7596699999999998	0.3243099999999970	FROZEN				
0.2491763907534447	0.7786591435791985	0.4247508711219973					
0.0000000000000000	0.4856300000000005	0.2760299999999987	FROZEN				
-0.0040550176917376	0.0043451840413873	0.4790111077293086					
0.0000000000000000	0.9799799999999976	0.3780199999999994	FROZEN				
0.2487788433206561	0.2284726247806723	0.4265074786067479					
0.2500000000000000	0.2452800000000011	0.3276100000000000	FROZEN				
0.2418561632847927	0.7300894999037172	0.5312880881077965					
0.5000000000000000	0.5193200000000004	0.3758899999999983	FROZEN				
0.4970007884876728	0.5115900639680043	0.4778126857243948					
0.5000000000000000	0.0249700000000005	0.2738999999999970	FROZEN				
0.7500945378937484	0.2877961503089596	0.5315053827134816					
0.7500000000000000	0.7596699999999998	0.3243099999999970	FROZEN				
0.7476887414130091	0.7785162970154788	0.4247142562146632					
0.5000000000000000	0.4856300000000005	0.2760299999999987	FROZEN				
0.4978267606607918	0.0044158458231612	0.4794205700483052					
0.5000000000000000	0.9799799999999976	0.3780199999999994	FROZEN				
0.7467631469870368	0.2287972110751420	0.426321683733301					
0.7500000000000000	0.2452800000000011	0.3276100000000000	FROZEN				
0.7495963942676456	0.7297589323444071	0.5322738555439593					
0.4995268811575001	0.4927888622056820	0.5829837113930999					
0.6534051991268520	0.5282744995248542	0.5873663238760670					
0.4852923026680610	0.3269311316776694	0.5860523358917343					