Association study of taste preference: Analysis in the Lithuanian population

Ingrida Kavaliauskienė | Ingrida Domarkienė | Laima Ambrozaitytė | Lina Barauskienė | Raimonda Meškienė | Justas Arasimavičius | Algimantas Irnius | Vaidutis Kučinskas

Abstract
Taste has strong evolutionary basis in the sense of survival by influencing our behavior to obtain food/medicine or avoid poisoning. It is a complex trait and varies among individuals and distinct populations. We aimed to investigate the association between known genetic factors (673 SNPs) and taste preference in the Lithuanian population, as well as to determine a reasonable method for qualitative evaluation of a specific taste phenotype for further genetic analysis. Study group included individuals representing six ethnolinguistic regions of Lithuania. Case and control groups for each taste were determined according to the answers selected to the taste-specific and frequency of specific food consumption questions. Sample sizes (case/control) for each taste are as follows: sweetness (55/179), bitterness (82/208), sourness (32/259), saltiness (42/249), and umami (96/190). Genotypes were extracted from the Illumina HumanOmniExpress-12v1.1 arrays’ genotyping data. Analysis was performed using PLINK v1.9. We found associations between the main known genetic factors and four taste preferences in the Lithuanian population: sweetness—genes TAS1R3, TAS1R2, and GNAT3 (three SNPs); bitterness—genes CA6 and TAS2R38 (six SNPs); sourness—genes PKD2L1, ACCN2, PKD1L3, and ACCN1 (48 SNPs); and saltiness—genes SCNN1B and TRPV1 (five SNPs). We found our questionnaire as a beneficial aid for qualitative evaluation of taste preference. This was the first initiative to analyze genetic factors related to taste preference in the Lithuanian population. Besides, this study reproduces, supports, and complements results of previous limited taste genetic studies or ones that lack comprehensive results concerning distinct (ethnic) human populations.

Keywords
association study, bitterness, Lithuanian population, saltiness, SNP, sourness, sweetness, taste preference, umami
Taste perception is part of flavor perception, which results primarily from the combination of three discrete senses: taste, somatosensation (touch, pain, and temperature), and olfaction. (Simon et al., 2006) Taste perception is strongly evolutionary in terms of physiological behavior such as obtaining a balance of electrolytes (saltiness), acquiring energy (sweetness), synthesizing proteins (umami), and avoiding poisonous (bitterness) or rotten (sourness) substances. (Purves et al., 2001).

Taste preference has a genetic background, and evidence suggests that the perception of different tastes is a polygenic or complex trait, though some taste phenotypes (traits) were thought to be inherited as Mendelian traits. (Guo & Reed, 2001) Taste-related traits show different levels of heritability. Sweetness-related traits such as the pleasantness, frequency of consumption, and craving for sweet foods show significant heritability (40%, 50%, and 31%, respectively). (Keskitalo et al., 2007) Heritability modeling on bitter stimuli showed a common genetic factor for quinine, caffeine, and sucrose octaacetate (22%-28%) and separate and specific genetic factors for propylthiouracil (72%) and quinine (15%). (Hansen et al., 2006) Heritability may include different types of genetic variation, unidentified genetic factors, environmental factors, and interaction between those factors, which are yet to be discovered. The first demonstration of how genetic variants shape interindividual differences in human taste sense was for the bitter taste receptor TAS2R38. (Kim et al., 2003) Individuals are referred to as tasters if being PAV (Pro at 49, Ala at 262, and Val at 296) haplotype and non-taster if being AVI (Ala at position 49, Val at 262, and Ile at 296) haplotype of the receptor. (Newcomb et al., 2012) Thus, the different haplotypes within the gene contribute to the intermediate phenotypes and thereby explain the nature of the quantitative trait. (Kim et al., 2003; Mennella et al., 2011) Genetic mapping and candidate gene association studies show that taste phenotypes are influenced by allelic variation of genes involved in both peripheral and central taste processing. (Bachmanov et al., 2013) Many genome-wide association studies (GWASs) have been performed in the field of taste (Diószei et al., 2019), but some of them lack the support of replication studies and the majority of them were performed in heterogeneous populations. This has led us to the knowledge of what is common for human populations from the genetic point of view. Nevertheless, when performing those studies, do we not miss what is specific and unique for different populations? There are a growing number of publications emphasizing the need to translate the results into clinical practice lead us to the aim of defining the genetic factors associated with the different taste preference in the Lithuanian population and of further evaluating the potential of using the questionnaire as a qualitative tool for food preference evaluation.

2 | MATERIALS AND METHODS

2.1 | Study group

Study group included unrelated individuals representing six ethnolinguistic regions of Lithuania (West, North, and South Žemaitija and West, East, and South Aukštaitija). All self-reported healthy individuals indicated at least three generations of Lithuanian ethnicity and residency in the same ethnolinguistic region. Study participants were asked to fill in the dedicated questionnaire (see in a section “Questionnaire” below) and donate blood for DNA extraction and genotyping procedure. This is case–control genetic association study, so cases and controls were assigned as follows. Case and control groups for sweet, bitter, sour, umami, and salty food preference were determined according to the selected answers to the taste-specific questions (for more information, see the Questionnaire section below). Sample sizes (case/control) for each taste modality and preference are as follows: sweetness (55/179), bitterness (82/208), sourness (32/259), saltiness (42/249), and umami (96/190). Only few individuals overlapped between case groups; for example, the same individual assigned to the sweet taste preference case group was also assigned to the salty taste preference case group. Besides, individuals qualified as cases for particular taste preference were assigned as controls for the other; for example, the case for a sweet...
taste preference was also a control for a bitter, sour, umami, and/or sweet taste preferences.

2.2 | Questionnaire

Twenty-nine questions regarding certain tastes (sweetness, bitterness, sourness, saltiness, and umami) were asked in order to evaluate the food preference of every participant in the study. Food products were assigned to a certain taste group according to the literature that was reviewed. (Feeney et al., 2011; Garcia-Bailo et al., 2009) There were six questions for sweetness, seven for bitterness, five for sourness, four for saltiness, and seven for umami (for the list of questions and possible choices, see File S1). There were three types of multiple-choice questions: Type 1: the groups of food products representing a definite taste (sweetness, bitterness, sourness, saltiness, and umami); Type 2: periodicity of consumption of a product representing one of the five tastes; and Type 3: Yes/No questions reflecting the consumption of extra products (such as sugar, salt, or pepper) to enhance a certain taste. Individuals were grouped according to their preference for sweet, sour, salty, bitter, or umami flavors. If the sweet product group was chosen, that is, carrots, potatoes, or beetroot, while answering Type 1 questions, the individual was put into the sweet taste case group. If while answering Type 2 questions an individual admitted using certain products, that is, sweet ones, 3–5 times per week or more, that person was added to the sweet taste case group. If while answering Type 3 questions a subject indicated that he used certain taste-enhancing products, that is, sugar, that person would be placed into the sweet taste case group. The other four taste case groups were determined in the same manner. Individuals were listed as controls if answering Type 1 questions with other food preference than the tested one, Type 2 questions with the less frequent consumption of the food tested for food preference, and (or) Type 3 questions with a contrary answer.

2.3 | Genome-wide genotyping

Genomic DNA was extracted from venous blood using either the phenol–chloroform extraction method or automated nucleic acid purification using paramagnetic particles (Freedom EVO® Nucleic Acid Purification Workstation). The quality and quantity of purified genomic DNA were evaluated with a spectrophotometer (NanoDrop® ND-1000 Spectrophotometer). Genome-wide genotyping following manufacturer’s protocols was performed using high-density Illumina HumanOmniExpress-12v1.1 arrays (719,666 SNPs) on an Illumina HiScan™SQ system.

2.4 | Data analysis

Primary data quality control analysis was performed using GenomeStudio v2011.1 (Illumina® GenomeStudio 2011, Illumina, Inc. 2003–2011). PLINK v1.9 (Purcell et al., 2007) software was used for the secondary data analysis: filtering of SNPs and individuals, calculation of minor allele frequency (MAF), Hardy–Weinberg equilibrium (HWE), case–control association under different genetic models, and permutation test.

Association with five different phenotypes (taste preference for sweetness, bitterness, sourness, saltiness, and umami) was tested using the chi-square test of independence or Fisher’s exact test depending on the minimal number of genotypes (the minimal number of genotypes was five for the chi-square test of independence and 0 for the Fisher’s exact test). Five different genetic models (basic: genotypic, allelic and additive: Cochran–Armitage trend, dominant, and recessive) were used to evaluate association between phenotypes and known genetic factors. Genetic variants or SNPs (hereafter variants) of known candidate taste preference genes analyzed in this study are provided in Table 1. Covariates such as age, sex, body mass index (BMI), family history, or other environmental factors were not included in the analysis. A significance level (α) of 0.05 was set for this study. Permutation procedure (n = 10,000) was used to obtain empirical p-value for the chi-square test of independence or Fisher’s exact test.

3 | RESULTS

Analyzed variants were frequent in different populations and with different functions: synonymous or nonsynonymous (missense) in different genomic regions (introns or exons). Rare variants and variants from several candidate genes were not analyzed, since the genome-wide genotyping array did not include them.

HWE testing for all variants was conducted in three groups, that is, only cases, only controls, and combined case and control group. Because the genome-wide genotyping call rate was 0.97 and higher for all samples, variants with HWE p < .001 in any group were removed from further analysis. As a result, 46 variants were excluded from the analysis (sweetness=0 variants; bitterness=8 variants; sourness=30 variants; umami=4 variants; and saltiness=4 variants).

Statistically significant (p < .05) associations between SNPs and different taste preferences were shown: 3 for sweetness; 6 for bitterness; 48 for sourness; 5 for saltiness; and 1 nearly statistically significant association for umami.

3.1 | Variants associated with sweet taste preference

Three variants were significantly associated with sweet taste preference (Table 2, significant p-values in bold): TAS1R3 gene SNP rs35424002 (NM_152228.1:c.*141G>A); TAS1R2 gene SNP rs9988418 (NM_152232.2:c.2513G>A, NP_689418.2:p. (Arg838Lys)); and GNAT3 gene SNP rs10230573 (NM_001102386.1:c.118+56T>C).
3.2 Variants associated with bitter taste preference

Six variants were shown to be significantly associated with bitter taste preference (Table 3, significant \(p\)-values in bold): CA6 gene SNPs rs2274327 (NM_001215.3:c.164C>T, NP_001206.2:p.(Thr55Met)), rs2274328 (NM_001215.3:c.202A>C, NP_001206.2:p.(Met68Leu)), rs1832262 (NM_001215.3:c.502-1741T>C), and rs3765964 (NM_001215.3:c.845-260G>A) and TAS2R38 gene SNPs rs10246939 (NM_176817.4:c.886A>G, NP_789787.4:p.(Ile296Val)) and rs1726866 (NM_176817.4:c.785T>C, NP_789787.4:p.(Val262Ala)). Four more variants showed an association with bitter taste under basic allelic or genotypic models but were eliminated due to discrepancy from HWE (\(p < .001\)).

3.3 Variants associated with sour taste preference

Analysis showed 41 variants of the ACCN1 gene statistically significantly associated with sour taste preference under basic genotypic and/or allelic models and additive recessive and/or dominant models (Table S2). Seven significantly associated variants in other genes are provided in Table 4 (significant \(p\)-values in bold): PKD2L1 gene SNP rs12360462 (NM_016112.2:c.350-4085T>C); ACCN2 gene SNPs rs835592 (NM_001095.3:c.558+7094T>C), rs2272391 (NM_001095.3:c.710-153A>G), and rs7305558 (NM_001095.3:c.1052-308G>A); and PKD1L3 gene SNPs rs16973500 (NM_181536.1:c.4927-1110G>A), rs9925415 (NM_181536.1:c.1777G>A, NP_853514.1:p.(Val593Met)), rs9928317 (NM_181536.1:c.586-1755A>G), and rs4788592 (NM_181536.1:c.585+1238G>A).
3.4 | Variants associated with salty taste preference

Our analysis identified five variants statistically significantly associated with salty taste preference (Table 5, significant p-values in bold): SCNN1B gene SNPs rs12162045 (NM_000336.2:c.-9+17985G>A) and rs152733 (NM_000336.2:c.-312-1444T>C); and TRPV1 gene SNPs rs877610 (NM_018727.5:c.2157G>A, NP_061197.4:p.(Lys719=)), rs8078936 (NM_018727.5:c.1780+24G>A), and rs150908 (NM_018727.5:c.1477-547C>T).

3.5 | Variants associated with umami taste preference

Nearly statistically significant results (Table 6) were identified for TAS1R1 gene SNP rs12565181 (NM_138697.3:c.191+4921G>A).

4 | DISCUSSION

Sweetness is one of the most studied tastes. Statistically significant association of two variants, rs35424002 in 3’UTR of the TAS1R3 gene and rs9988418 in the coding region of the TAS1R2 gene, supports the results of previous studies in which the mammalian sweet taste heteromeric G-protein-coupled receptor complex (TAS1R3/TAS1R2) was proved to be the major player in the sense of sweetness, (Zhao et al., 2003) and variants found upstream of TAS1R3 and TAS1R2 genes’ sequences were associated with human taste sensitivity to sucrose (Fushan et al., 2010). The odds ratio for rs35424002 (OR = 2.365) was lower than the odds ratio for rs9988418 (OR = 6.717), but both variants showed significant impact on the taste phenotype. Difference in ORs could be explained by the nature of the molecular role played by a particular variant in either regulatory changes in TAS1R3 or conformational changes in the TAS1R2 protein. A TAS1R3 query in the STRING database (Jensen et al., 2009) alongside TAS1R1 and TAS1R3 revealed GNAT3 as another player in sweet taste pathway. This alpha subunit is further downstream of the sweet taste signal transduction cascade as it binds to the cell surface receptors through cGMP phosphodiesterase. (Kinnamon, 2005) The statistically significant association of rs10230573 in the GNAT3 gene confirms the involvement of this pathway in the sweet taste signal. The small effect size of the rs10230573 (OR = 0.6241) could be because the alpha subunit in the taste signal transduction pathway is not specific and has a role in different taste pathways too. (Jang et al., 2007; Li et al., 2002).

Bitterness is another well-studied taste. This study confirmed the statistically significant associations of rs2274327, rs2274328, rs1832262, and rs3765964 in the CA6 gene, two coding and two intronic, respectively, and coding rs10246939 and rs1726866 in the TAS2R38 gene. The product of the CA6 gene is known as the gustin, or carbonic anhydrase 6 (CA VI), isozyme of the carbonic anhydrase secreted in saliva and milk. (Pastorekova et al., 2004) CA VI was found to be associated with bitter taste, and CA6 SNP rs2274327 has been linked with picky eating behavior in preschool-age children.

TABLE 2 Statistically significant results of the analysis of the association between sweet taste preference and SNPs

Chr	Gene	SNP	A1	A2	Test	Aff	Unaff	p	Fisher’s p	Fisher’s p *	OR
1	TAS1R3	rs35424002	A	G	Geno	1/7/47	0/13/166	-	.101	2.365	
					Trend	9/101	13/345	.054	.054		
					Allelic	9/101	13/345	.049	.057	.068	.066
					Dom	8/47	13/166	-	.109		
					Rec	1/54	0/179	-	.235		
1	TAS1R2	rs9988418	A	G	Geno	0/4/51	0/2/177	-	.029	6.717	
					Trend	4/106	2/356	.012	.012		
					Allelic	4/106	2/356	.012	.016	.029	.017
					Dom	4/51	2/177	-	.029		
					Rec	0/55	0/179	-	1.000		
7	GNAT3	rs10230573	A	G	Geno	5/22/28	31/80/68	.151	.170	0.624	
					Trend	32/78	142/216	.052	.052		
					Allelic	32/78	142/216	.045	.096	.055	.089
					Dom	27/28	111/68	.088	.117		
					Rec	5/50	31/148	.139	.199		

Note: a—chromosome; b—allele 1; c—allele 2; d—distribution of alleles or genotypes in the case group; e—distribution of alleles or genotypes in the control group; f—empirical p-value for chi-square test of independence (permutation test based on the most significant result of allelic dominant and recessive models); g—empirical p-value for Fisher’s exact test (permutation test based on the most significant result of allelic dominant and recessive models); h—basic model: genotypic; i—additive model: Cochran–Armitage trend; j—basic model: allelic; k—additive model: dominant; l—additive model: recessive.
KOVALIAUSKIENĖ Et AL. (Cole et al., 2017) and implicated in taste bud function and salivary buffer capacity (Peres et al., 2010). It was postulated that CA VI may be a mechanistic link between 6-n-propylthiouracil tasting and fungiform taste papilla density and maintenance, (Melis et al.,) but a later study did not detect such an association (Feeney & Hayes, 2014). Thus, the role of this protein and interactions with other proteins is ambiguous and obscure. KEGG Database (Kanehisa & Goto, 2000) Pathway hsa00910 (Release 1/9/20) reveals enzyme CA VI as a participant in the nitrogen metabolism related to cyanate as an assistant reaction with bicarbonate and carbon dioxide. It is also known that cyanogenic glycosides present in plants have a bitter taste and if eaten without processing could be hydrolyzed to cyanide. According to the existing knowledge of cyanide metabolism, it might be transformed into cyanate (Petrova Simeonova & Fishbein, 2004) and here, hypothetically, comes the time for CA VI to act. The association of TAS2R38 gene variants (OR = 1.407 for both variants) supports previous studies finding it to be a gene important in phenylthiocarbamide sense. (Kim et al., 2003) The TAS2R38 gene encodes a receptor, the first element in the bitter taste pathway. Subsequent protein coupling this receptor is G-protein gustducin dissociates its α, Gnat3, and βγ subunits and further downstream the canonical T2R signal transduction cascade. (Lu et al., 2017) It is known that TAS2R38

Chr	Gene	SNP	A1	A2	Test	Aff	Unaff	p	p'	Fisher's p	Fisher's p'
1	CA6	rs2274327	A	G	Geno	9/27/46	19/112/77	.005	.004		
			Trend	45/119	150/266	.040	.040				
			Allelic	45/119	150/266	.048	.007	.051	.007		
			Dom	36/46	131/77	.003	.004				
			Rec	9/73	19/189	.633	.661				
rs2274328	C	A	Geno	15/32/34	34/113/60	.055	.057				
			Trend	62/100	181/233	.226	.226				
			Allelic	62/100	181/233	.234	.071	.260	.070		
			Dom	47/34	147/60	.035	.037				
			Rec	15/66	34/173	.671	.728				
rs1832262	A	G	Geno	23/31/28	45/115/48	.025	.024				
			Trend	77/87	205/211	.612	.612				
			Allelic	77/87	205/211	.614	.098	.645	.134		
			Dom	54/28	160/48	.054	.075				
			Rec	23/59	45/163	.246	.282				
rs3765964	A	G	Geno	17/34/31	19/115/74	.013	.016				
			Trend	68/96	153/263	.273	.273				
			Allelic	68/96	153/263	.296	.014	.298	.015		
			Dom	51/31	134/74	.722	.786				
			Rec	17/65	19/189	.007	.010				
7	TAS2R38	rs10246939	G	A	Geno	13/44/25	27/90/91	.116	.115		
			Trend	70/94	144/272	.071	.071				
			Allelic	70/94	144/272	.070	.076	.085	.090		
			Dom	57/25	117/91	.038	.046				
			Rec	13/69	27/181	.523	.571				
rs1726866	G	A	Geno	13/44/25	27/90/91	.116	.115				
			Trend	70/94	144/272	.071	.071				
			Allelic	70/94	144/272	.070	.076	.085	.090		
			Dom	57/25	117/91	.038	.046				
			Rec	13/69	27/181	.523	.571				

Note: a—chromosome; b—allele 1; c—allele 2; d—distribution of alleles or genotypes in the case group; e—distribution of alleles or genotypes in the control group; f—empirical p-value for chi-square test of independence (permutation test based on the most significant result of allelic dominant and recessive models); g—empirical p-value for Fisher’s exact test (permutation test based on the most significant result of allelic dominant and recessive models); h—basic model: genotypic; i—additive model: Cochran–Armitage trend; j—basic model: allelic; k—additive model: dominant; l—additive model: recessive.
Chr	Gene	SNP	A1	A2	Test	Aff	Unaff	p	p’	Fisher’s p	Fisher’s p
10	PKD2L1	rs12360462	G	A	Geno	11/12/9	49/122/87	.128	.142		
					Trend	34/30	220/296	.122	.122		
					Allelic	34/30	220/296	.111	.095	.141	.102
					Dom	23/9	171/87	.526	.691		
					Rec	11/21	49/209	.043	.061		
12	ACCN2	rs835592	G	A	Geno	8/16/8	31/137/90	.109	.118		
					Trend	32/32	199/317	.063	.063		
					Allelic	32/32	199/317	.078	.090	.080	.092
					Dom	24/8	168/90	.265	.324		
					Rec	8/24	31/227	.042	.054		
12		rs2272391	A	G	Geno	9/15/8	34/146/78	.081	.103		
					Trend	33/31	214/302	.098	.098		
					Allelic	33/31	214/302	.124	.065	.141	.055
					Dom	24/8	180/78	.541	.682		
					Rec	9/23	34/224	.025	.034		
12		rs7305558	A	G	Geno	1/1/0	0/12/23	–	.020		
					Trend	3/1	12/58	.003	.003		
					Allelic	3/1	12/58	.005	.005	.030	.014
					Dom	2/0	12/23	–	.137		
					Rec	1/1	0/35	–	.054		
16	PKD1L3	rs16973500	A	G	Geno	1/16/15	16/74/168	–	.050		
					Trend	18/46	106/410	.179	.179		
					Allelic	18/46	106/410	.163	.188	.195	.083
					Dom	17/15	90/168	–	.053		
					Rec	1/31	16/242	–	.704		
16		rs9925415	A	G	Geno	2/22/8	69/116/73	–	.010		
					Trend	26/38	254/262	.204	.204		
					Allelic	26/38	254/262	.194	.229	.233	.017
					Dom	24/8	185/73	–	.835		
					Rec	2/30	69/189	–	.009		
16		rs9928317	C	A	Geno	2/20/8	69/110/71	–	.016		
					Trend	24/36	248/252	.174	.174		
					Allelic	24/36	248/252	.160	.165	.173	.023
					Dom	22/8	179/71	–	1.000		
					Rec	2/28	69/181	–	.013		
16		rs4788592	A	G	Geno	1/20/11	51/119/88	–	.031		
					Trend	22/42	221/295	.200	.200		
					Allelic	22/42	221/295	.196	.215	.227	.044
					Dom	11/21	170/88	–	1.000		
					Rec	3/29	51/207	–	.025		

Note: a—chromosome; b—allele 1; c—allele 2; d—distribution of alleles or genotypes in the case group; e—distribution of alleles or genotypes in the control group; f—empirical p-value for chi-square test of independence (permutation test based on the most significant result of allelic dominant and recessive models); g—empirical p-value for Fisher’s exact test (permutation test based on the most significant result of allelic dominant and recessive models); h—basic model: genotypic; i—additive model: Cochran–Armitage trend; j—basic model: allelic; k—additive model: dominant; l—additive model: recessive; m—no data available.
could be co-expressed with GNAT3 in some tissues, making GNAT3-dependent signal transduction possible. (Imai et al., 2020) Still, this study did not find the association between GNAT3 variants (results not shown) and bitter taste preference. Variants of RGS21 (regulator of G-proteins), (Cohen et al., 2012) and TAS2R16 and TAS2R19 (TAS2 family receptors) genes were not associated with bitter taste preference either. These results imply the need for further research on the role of other G-proteins and their regulators in bitter taste pathway.

Sour taste stimuli are thought to be mainly acids (H⁺), and the mechanism of signal transduction is different than it is with sweet, bitter, or umami tastes. Sour and salty taste stimuli (Na⁺ or K⁺) are transported into the taste cells through ion channels rather than receptors as sweet, bitter, and umami stimuli are. (Roper, 2007) Instead of transporting molecules, ion channels translate chemical signals into electrophysiological signals. The polycystic kidney disease 1 and polycystic kidney disease 2-like proteins PKD2L1 and PKD1L3 have been identified as sour taste-related receptors in human taste cells (Ishimaru et al., 2006), and potential ion-channel OTOP1 was present in taste cells in mouse that express Pkd2l1. (Tu et al., 2018)

In our study, statistically significant association between sour taste preference and four variants (noncoding rs12360462 PKD2L1 gene; rs9925415, rs9928317, and rs4788592 PKD1L3 genes, only rs9928317 coding) was observed. This association of variants for both genes supports the involvement of these proteins in sour taste signal as heteromeric/homomeric complexes or separate parts. Statistically significant association of another 44 variants in ACCN2 (rs835592, rs2272391, and rs7305558 with the highest OR = 14.5 for rs7305558) and ACCN1 (full list in Table S2) genes was detected. This supports the assumption that acid taste pathway can start by several different channels in the taste cells. (Huque et al., 2009) It is likely that not independent variants but several haplotypes of the ACCN1 gene are responsible for variation in sour taste preference. It is known that a heterodimer of TAS1R1 and TAS1R3 (TAS1R1/TAS1R3) functions as an umami taste receptor in humans. (Li

TABLE 5 Statistically significant results of the analysis of the association between salty taste preference and genetic variants

Chr	Gene	SNP	A1	A2	Test	Aff	Unaff	p	p1	Fisher’s p	Fisher’s p
16	SCNN1B	rs12162045	A	G	Geno	0/10	32/10	12/90	147	.075	.075
					Trend	10/74	114/38	384	21	.021	.021
					Allelic	10/74	114/38	384	21	.021	.025
					Dom	10/32	102/147	384	21	.226	.040
					Rec	0/42	12/237	384	21	.406	.040
16		rs152733	G	A	Geno	37,953	1/58	188	384	.013	.013
					Trend	17/67	60/434	384	21	.040	.040
					Allelic	17/67	60/434	384	21	.044	.046
					Dom	14/28	59/188	384	21	.248	.056
					Rec	3/39	1/246	384	21	.010	.010
16	TRPV1	rs877610	A	G	Geno	0/0	42/32	3/23	223	.093	.093
					Trend	0/84	29/469	323	42	.036	.036
					Allelic	0/84	29/469	323	42	.023	.029
					Dom	0/42	26/223	323	42	.020	.020
					Rec	0/42	3/246	323	42	.010	.010
17		rs8078936	A	G	Geno	11/14/17	26/125/98	.010	.015		
					Trend	36/48	177/321	321	.191	.191	.191
					Allelic	36/48	177/321	321	.198	.221	.221
					Dom	25/17	151/98	321	.891	1.000	1.000
					Rec	11/31	26/223	321	.005	.010	.010
17		rs150908	A	G	Geno	8/28/6	63/115/71	.041	.048		
					Trend	44/40	241/257	257	.502	.502	.502
					Allelic	44/40	241/257	257	.499	.101	.056
					Dom	13/302	178/71	71	.053	.059	.059
					Rec	8/34	63/186	186	.383	.442	.442

Note: a—chromosome; b—allele 1; c—allele 2; d—distribution of alleles or genotypes in the case group; e—distribution of alleles or genotypes in the control group; f—empirical p-value for chi-square test of independence (permutation test based on the most significant result of allelic dominant and recessive models); g—empirical p-value for Fisher’s exact test (permutation test based on the most significant result of allelic dominant and recessive models); h—basic model: genotypic; i—additive model: Cochran–Armitage trend; j—basic model: allelic; k—additive model: dominant; l—additive model: recessive; m—no data available.
et al., 2002) Variants of the TAS1R1 and TAS1R3 genes were studied, but only one variant (rs2274327, TAS1R1 gene, OR = 1.64) showed nearly statistically significant association with umami taste preference. Association was not found with the TAS1R3 SNP possibly due to the small number of TAS1R3 SNPs analyzed (only one). Moreover, there was no association found with GNAT3. This could be because GNAT3 is involved in more than one different taste signal transduction pathway and is less specific.

Animal models showed that the sodium-specific and amiloride-sensitive epithelial sodium channel (ENaC) and the transient receptor potential cation subfamily V member 1 (TRPV1) amiloride insensitive channel are candidates for the pathway of salty taste. (Bigiani, 2020) The results of this study support this evidence as association between variants (noncoding rs12162045 and rs152733 in SCNN1B gene, OR = 0.455 and OR = 1.835, respectively; synonymous rs877610, noncoding rs8078936 and rs150908 in TRPV1 gene) and saltiness preference was observed. There is a lack of evidence for SCNN1A and SCNN1G genes being associated with saltiness and the involvement of these proteins in salty taste pathway in humans. Our study did not identify such an association either.

The results of this study reveal only a fragment of the full spectra network elements in complex signal transduction pathways for different tastes. The food preference too is a very complex trait and depends not only on biological factors (such as age, sex, genetics), but also on culture, socio-economic status. (Davide et al., 2017; Mennella & Beauchamp, 2005).

It became clear that science must unravel what was left behind by the GWASs in admixture populations. The studies on specific ethnic groups and their genetic differences in taste perception already began. If we looked at the genetic structure of the Lithuanian population, it would fall within the range of European populations. (Nelis et al., 2009) Lithuanians were found to be homogenous and genetically close to neighboring populations. (Kasperaviciute et al., 2004; Nelis et al., 2009) Nevertheless, it was confirmed that Lithuanian population preserved one of the highest proportions of western, Scandinavian, and eastern hunter–gather ancestry components found in European populations and also that of a steppe Early to Middle Bronze Age pastoralists, which show the genetic distinctiveness of the Lithuanian population. (Urnikyte et al., 2019)

This is one of the reasons why the Lithuanian population is unique of studying and why some genetic associations found in other studies do not reproduce. Nevertheless, our study was able to reproduce some of the valuable results of other taste genetics studies. This is quite an important result in the context of the huge reproducibility problem of scientific results (Amaral et al., 2019; Open Science Collaboration, 2015). Besides, the results can indicate that the questionnaire used in the study proved its value and might be a useful tool for a clinician for food preference evaluation, but further validity assessment is needed.

5 | CONCLUSION

The results of the study reproduced associations of the main known genetic factors and four of the five tastes: sweetness—the genes TAS1R1, TAS1R2, and GNAT3 (three variants); bitterness—the genes CA6 and TAS2R38 (six variants); sourness—the genes PKD2L1, ACCN2, PKD1L3, and ACCN1 (48 variants); and saltiness—the genes SCNN1B and TRPV1 (five variants). Most of the associations show genetic factors that are the primary taste signal transduction pathway players in the taste bud cells (G-protein-binding receptors or ion channels), since they are very specific to particular tastes. Genetic factors encoding proteins that are further downstream of the pathway usually are not that specific and that could be one of the reasons why this particular study design failed to find the associations. Other reasons might include the difference in genetic structure of the population, the sample size of the study, nongenetic factors that contribute to the food preference, and structure and content of the questionnaire. The lack of specific questions provides no chance to detect any significant association, as occurred in this study while analyzing the umami taste case. This study also supports some results of a few studies and complements ones that lack comprehensive results on distinct (ethnic) human populations. Finally, we found our questionnaire (based on very specific questions about nutritional habits) a beneficial aid for qualitative evaluation of taste preference. To reliably classify individuals for food preference, there must be a sufficient number of questions including all food groups and specifying certain tastes.

TABLE 6

Chr^a	Gene	SNP	A1^b	A2^c	Test	Aff^d	Unaff^e	p	Fisher’s p	p^f
1	TAS1R1	rs12565181	A	G	Geno^h	2/25/69	2/33/154	.05	.129	
					Trendⁱ	29/163	37/341	.062	.062	
					Allelic^j	29/163	37/341	.061	.063	.072
					Dom^k	27/69	35/154	–	.070	.081
					Rec^l	2/94	2/187	–	.605	

Note: a—chromosome; b—allele 1; c—allele 2; d—distribution of alleles or genotypes in the case group; e—distribution of alleles or genotypes in the control group; f—empirical p-value for chi-square test of independence (permutation test based on the most significant result of allelic dominant and recessive models); g—empirical p-value for Fisher’s exact test (permutation test based on the most significant result of allelic dominant and recessive models); h—basic model: genotypic; i—additive model: Cochran–Armitage trend; j—basic model: allelic; k—additive model: dominant; l—additive model: recessive; m—no data available.
ACKNOWLEDGMENTS

The authors would like to thank all Lithuanian people who donated blood samples and participated in the LITGEN project. The authors are grateful to all the specialists who were involved in the recruitment of individuals, collection of blood samples, informed consent forms and questionnaires, and genomic DNA extraction. This work was in part supported by the European Social Fund under the Global Grant measure (VP1-3.1-ŠMM-07-K-01-013).

CONFLICT OF INTEREST

The authors have no conflict of interest to declare.

AUTHOR CONTRIBUTIONS

Ingrida Kavaliauskienė: Conceptualization (supporting); Data curation (equal); Formal analysis (lead); Investigation (lead); Methodology (lead); Project administration (lead); Writing-original draft (equal); Writing-review & editing (equal).

Ingrida Domarkienė: Data curation (equal); Formal analysis (supporting); Project administration (equal); Writing-review & editing (equal).

Laima Ambrozaitytė: Data curation (equal); Formal analysis (supporting); Writing-original draft (equal); Writing-review & editing (equal).

Raimonda Meškienė: Conceptualization (supporting); Data curation (equal); Formal analysis (supporting); Methodology (supporting); Project administration (supporting); Resources (lead); Supervision (lead); Writing-review & editing (supporting).

Vaidutis Kučinskas: Methodology (supporting); Writing-original draft (supporting); Writing-review & editing (supporting).

Justas Arasimavičius: Data curation (equal); Software (lead); Writing-review & editing (supporting).

Algimantas Irius: Conceptualization (supporting); Methodology (supporting); Supervision (supporting); Writing-review & editing (supporting).

Vaidutis Kūčinskas: Conceptualization (lead); Data curation (lead); Funding acquisition (lead); Project administration (supporting); Resources (lead); Supervision (lead); Writing-review & editing (supporting).

STUDIES INVOLVING HUMAN SUBJECTS

The study conforms to the Declaration of Helsinki, US, and/or European Medicines Agency Guidelines for human subjects. Study’s protocols and procedures were ethically reviewed and approved by a recognized ethical body (the Vilnius Regional Biomedical Research Ethics Committee (Permission No. 158200-05-329-79), Lithuania). Informed written consent was obtained and documented from each individual included in the study.

DATA AVAILABILITY STATEMENT

All necessary data is provided in the article. The raw data that support the findings of this study is available from the corresponding author upon reasonable request.

ORCID

Ingrida Domarkienė https://orcid.org/0000-0002-2088-8620

REFERENCES

Amaral, O. B., Neves, K., Wasilewska-Sampaio, A. P., & Carneiro, C. F. (2019). The Brazilian reproducibility initiative. Elife, 8, 1–10. https://doi.org/10.7554/eLife.41602

Bachmanov, A. A., Bosak, N. P., Floriano, W. B., Inoue, M., Li, X., Lin, C., Murovets, V. O., Reed, D. R., Zolotarev, V. A., & Beauchamp, G. K. (2011). Genetics of sweet taste preferences: Sweet taste genetics. Flavour and Fragrance Journal, 26, 286–294. https://doi.org/10.1002/ffj.2074

Bachmanov, A. A., & Boughter, J. D. (2012). Genetics of taste perception. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0023587

Beauchamp, G. K., & Mennella, J. A. (2011). Flavor perception in human infants: Development and functional significance. Digestion, 83, 1–6. https://doi.org/10.1159/000323397

Biglani, A. (2020). Salt taste, nutrition, and Health. Nutrients, 12(5), 1537. https://doi.org/10.3390/nu12051537. PMID: 32466165; PMCID: PMC7284473

Cohen, S. P., Buckley, B. K., Kosloff, M., Garland, A. L., Bosch, D. E., Cheng, G., Radhakrishna, H., Brown, M. D., Willard, F. S., Arshavsky, V. Y., Tarran, R., Siderovski, D. P., & Kimple, A. J. (2012). Regulator of G-protein signaling-21 (RGS21) is an inhibitor of bitter gustatory signaling found in lingual and airway epithelia. Journal of Biological Chemistry, 287, 41706–41719. https://doi.org/10.1074/jbc.M112.423806

Cole, N. C., Wang, A. A., Donovan, S. M., Lee, S.-Y., & Teran-Garcia, M. (2017). Variants in chemosensory genes are associated with picky eating behavior in preschool-age children. Lifestyle Genetics, 10, 84–92. https://doi.org/10.1159/000478857

Davide, S. R., Giuliani, C., Antinucci, M., Morini, G., Garagnani, P., Tofanelli, S. & Luiselli, D. (2017). A bio-cultural approach to the study of food choice: The contribution of taste genetics, population and culture. Appetite, 114, 240–247.

Dias, A. G., Rousseau, D., Duizer, L., Cockburn, M., Chiu, W., Nielsen, D. & El-Sohemy, A. (2013). Genetic variation in putative salt taste receptors and salt taste perception in humans. Chemical Senses, 38, 137–145. https://doi.org/10.1093/chemse/bjs090

Diòszegi, J., Llanaj, E., & Ádány, R. (2019). Genetic background of taste perception, taste preferences, and its nutritional implications: A systematic review. Frontiers in Genetics, 19(10), 1272.

Eny, K. M., Corey, P. N., & El-Sohemy, A. (2009). Dopamine D2 receptor genotype (C957T) and habitual consumption of sugars in a free-living population of men and women. Journal of Nutrigenetics and Nutrigenomics, 2, 235–242. https://doi.org/10.1159/000276991

Feeney, E. L., & Hayes, J. E. (2014). Exploring associations between taste perception, oral anatomy and polymorphisms in the carbolic anhydrase (gustin) gene CA6. Physiology & Behavior, 128, 148–154. https://doi.org/10.1016/j.physbeh.2014.02.013

Feeney, E., O’Brien, S., Scannell, A., Markey, A., & Gibney, E. R. (2011). Genetic variation in taste perception: Does it have a role in healthy eating? Proceedings of the Nutrition Society, 70, 135–143. https://doi.org/10.1017/S0029665110003976

Fushan, A. A., Simons, C. T., Slack, J. P., & Drayna, D. (2010). Association between common variation in genes encoding sweet taste signaling components and human sucrose perception. Chemical Senses, 35, 579–592. https://doi.org/10.1093/chemse/bjq063

Garcia-Bailo, B., Toguri, C., Eny, K. M., & El-Sohemy, A. (2009). Genetic variation in taste and its influence on food selection. Annals of Human Biology, 36, 69–80. https://doi.org/10.1080/01946390802300031

Guo, S. W., & Reed, D. R. (2003). The genetics of phenylthiocarbamide perception. Annals of Human Biology, 28, 111–142.

Hansen, J. L., Reed, D. R., Wright, M. J., Martin, N. G., & Breslin, P. A. S. (2006). Heritability and genetic covariation of sensitivity to PROP, SOA, quinine HCI, and caffeine. Chemical Senses, 31, 403–413. https://doi.org/10.1093/chemse/bjj044

Hayes, J. E., Wallace, M. R., Knopik, V. S., Herbstman, D. M., Bartoshuk, L. M., & Duffy, V. B. (2011). Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive
behaviors toward common bitter beverages in adults. Chemicals Sensors, 36, 311–319. https://doi.org/10.1093/chemse/bjq132

Huque, T., Cowart, B. J., Dankulich-Nagrudny, L., Pribitkin, E. A., Bayley, D. L., Spielman, A. I., Feldman, R. S., Markler, A. C., & Brand, J. G. (2009). Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. Matsunami H, editor. PLoS One, 4, e7347. https://doi.org/10.1371/journal.pone.0007347

Imai, H., Hakukawa, M., Hayashi, M., Iwatsuki, K., & Masuda, K. (2020). Expression of bitter taste receptors in the intestinal cells of non-human primates. International Journal of Molecular Sciences, 21(3), 902. https://doi.org/10.3390/ijms21030902

Ishimaru, Y., Inada, H., Kubota, M., Zhuang, H., Tominaga, M., & Matsunami, H. (2006). Transient receptor potential family potential members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proceedings of the National Academy of Sciences, 103, 12569–12574. https://doi.org/10.1073/pnas.0602702013

Jang, H. J., Kokrashvili, Z., Theodorakis, M. J., Carlson, O. D., Kim, B. -J., Zhou, J., Kim, H. M., Xu, X., Chan, S. I., Juhaszova, M., Bernier, M., Mosinger, B., Margolskee, R. F., & Egan, J. M. (2007). Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proceedings of the National Academy of Sciences of the United States of America, 104(38), 15049–15074. https://doi.org/10.1073/pnas.0706890104

Jensen, L. J., Kuhn, M., Stark, M., Chaﬀron, S., Creevey, C., Muller, J., Doers, T., Julien, P., Roth, A., Simonovic, M., Bork, P., & von Mering, C. (2009). STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37, D412–D416. https://doi.org/10.1093/nar/gkn760

Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30. https://doi.org/10.1093/nar/28.1.27

Kaspersavic̆iūtė, D., Kucinskas, V., & Stoneking, M. (2004). Y chromosome and mitochondrial DNA variation in Lithuanians. Annals of Human Genetics, 68(Pt 5), 438–452. https://doi.org/10.1016/j.ajhg.2003.0119.x. Erratum: In: Ann Hum Genet. 2005;69(Pt 4):499

Keskitalo, K., Knaapila, A., Kallela, M., Palotie, A., Wessman, M., Sammalisto, S., Peltonen, L., Tuorila, H., & Perola, M. (2007). Sweet taste preferences are partly genetically determined: Identiﬁcation of a trait locus on chromosome 16. Annals of Human Genetics, 71(Pt 2), 135–140. https://doi.org/10.1111/j.1469-1809.2006.00299.x

Kinnannon, S. C. (2005). Downstream signaling eﬀectors for umami taste. Chemical Sensors, 30, i31–i32. https://doi.org/10.1093/chemse/bjh098

Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M., & Adler, E. (2002). Human receptors for sweet and umami taste. Proceedings of the National Academy of Sciences of the United States of America, 99, 4692. https://doi.org/10.1073/pnas.072090199

Lu, P., Zhang, C. H., Lifshitz, L. M., & ZhuGe, R. (2017). Extraoral bitter taste receptors in health and disease. Journal of General Physiology, 149(2), 181–197. https://doi.org/10.1085/jgp.201611637

Melis, M., Atzori, E., Cabrás, S., Zonza, A., Calò, C., Muroni, P., Nieddu, M., Padiglia, A., Sogos, V., Tepper, B. J., & Tomassini Barbarossa, I. (2013). The Gust (Ca6) Gene Polymorphism, rs2274333 (A/G), as a mechanistic link between PROP tasting and fungiform taste papilla density and maintenance. PLoS One, 8(9), e74151. https://doi.org/10.1371/journal.pone.0074151

Mennella, J. A., & Beauchamp, G. K. (2005). Understanding the origin of flavor preferences. Chemical Sensors, 30(1), i242–i243. https://doi.org/10.1093/chemse/bjh204

Mennella, J. A., Pepino, M. Y., Duke, F. F., & Reed, D. R. (2011). Psychophysical dissection of genotype eﬀects on human bitter perception. Chemical Sensors, 36, 161–167. https://doi.org/10.1093/chemse/bjq106

Mennella, J. A., Pepino, M. Y., & Reed, D. R. (2005). Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics, 115(2), e216–e222. https://doi.org/10.1542/peds.2004-1582. PMID: 15687429; PMCID: PMC1397914

Nelis, M., Esko, T., Mägi, R., Zimprich, F., Zimprich, A., Toncheva, D., Karachanak, S., Piskáčková, T., Balaščák, I., Peltonen, L., Jakula, E., Rehnström, K., Lathrop, M., Heath, S., Galan, P., Schreiber, S., Meitinger, T., Pfeifer, A., Wichmann, H.-E., ... Metspalu, A. (2009). Genetic structure of Europeans: A view from the north–east. PLoS One, 4(5), e5472. https://doi.org/10.1371/journal.pone.0005472

Newcomb, R. D., Xia, M. B., & Reed, D. R. (2012). Heritable diﬀerences in chemosensory ability among humans. Flavour, 1, 9. https://doi.org/10.1186/2044-7248-1-9

Nolden, A. A., & Feeney, E. L. (2020). Genetic diﬀerences in taste receptors: Implications for the food industry. Annual Review of Food Science and Technology, 11(1), 183–204.

Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349, aac4716. https://doi.org/10.1126/science.aac4716

Padiglia, A., Zonza, A., Atzori, E., Chilliotti, C., Calò, C., Tepper, B. J. & Barbarossa, I. T. (2010). Sensitivity to 6-n-propylthiouracil is associated with gustin (carbonic anhydrase VI) gene polymorphism, salivary zinc, and body mass index in humans. The American Journal of Clinical Nutrition, 92, 539–545. https://doi.org/10.3945/ajcn.2010.29418

Pastorekova, S., Parkkila, S., Pastorek, J., & Supuran, C. T. (2004). Carbonic anhydrases: Current state of the art, therapeutic applications and future prospects. Journal of Enzyme Inhibition and Medicinal Chemistry, 19, 199–229. https://doi.org/10.1080/14756360410001689540

Peres, R. C. R., Camargo, M., Mofatto, L. S., Cortellazzi, K. L., Santos, M. C. L. G., Santos, M. N., Bergamaschi, C. C. & Line, S. R. P. (2010). Association of polymorphisms in the carbonic anhydrase 6 gene with salivary buﬀer capacity, dental plaque pH, and caries index in children aged 7–9 years. The Pharmacogenomics Journal, 10, 114–119. https://doi.org/10.1038/pj.2009.37

Petrova Simeonova, F., & Fishbein, L. (2004). Hydrogen cyanide and cyanides: Human health aspects. World Health Organization.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559–575. https://doi.org/10.1086/519795

D. Purves, G. J. Augustin, D. Fitzpatrick, L. C. Katz, A. S. LaMantia, J. O. McMamara, & S. M. Williams. (2001). Neuroscience [Internet]. 2nd ed. Sinauer Associates. Available: https://www.ncbi.nlm.nih.gov/books/NBK10799/
Urnikyte, A., Flores-Bello, A., Mondal, M., Molyte, A., Comas, D., Calafell, F., Bosch, E., & Kučinskas, V. (2019). Patterns of genetic structure and adaptive positive selection in the Lithuanian population from high-density SNP data. Scientific Reports, 9, 9163. https://doi.org/10.1038/s41598-019-45746-3

Zhao, G. Q., Zhang, Y., Hoon, M. A., Chandrashekar, J., Erlenbach, I., Ryba, N. J. P., & Zuker, C. S. (2003). The receptors for mammalian sweet and umami taste. Cell, 115, 255–266. https://doi.org/10.1016/S0092-8674(03)00844-4

ZhuGe, R., Roura, E., & Behrens, M. (2020). Extra-oral taste receptors: Function, disease and evolution. Frontiers in Physiology, 11, 607134.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Kavaliauskienė I, Domarkienė I, Ambrozaitytė L, et al. Association study of taste preference: Analysis in the Lithuanian population. Food Sci Nutr. 2021:00:1-12. https://doi.org/10.1002/fsn3.2401