Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Bat Influenza Viruses: Making a Double Agent of MHC Class II
Arinjay Banerjee,1,2 Karen L. Mossman,1,2 and Matthew S. Miller1,3,*

MHC class II (MHCII) has recently been identified as a cellular receptor for bat influenza viruses. Here, we discuss the possible implications of viral exploitation of this critical host defense molecule and highlight the need for more intense study of bat–influenza virus interactions.

Influenza A viruses (IAVs) circulate globally and, based on WHO estimates, annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness, and 300 000–500 000 deaths. The severity of pandemic influenza depends on multiple factors, such as the virulence of the pandemic virus strain and the level of pre-existing immunity in the population. The discovery of two novel bat influenza viruses, H17N10 and H18N11 (Table 1) [1–3] has raised several questions about the evolution, host range, tropism, and transmission potential of these viruses.

The hemagglutinin (HA) of avian IAVs has a preference for sialic acids that display an α2,6 linkage [4,5]. In two striking studies, Karakus et al. and Giotis et al. identified MHCII as a receptor for bat H17N10 and H18N11 viruses [6,7]. Karakus et al. used transcriptomic profiling and genome-wide CRISPR-Cas9 screening of susceptible and nonsusceptible cells to identify and characterize MHCII as an entry determinant for bat H17N10 and H18N11 viruses [6]. The authors also observed that bat H17N10 and H18N11 viruses could initiate virus entry via MHCII homologs encoded by multiple bat species, pigs, humans, and chickens [6]. In a subsequent study, Giotis et al. confirmed human HLA-DR as the receptor for H17 using pseudotyped vesicular stomatitis viruses expressing H17 as the surface glycoprotein [7].

The use of MHCII as a receptor is unique to bat H17N10 and H18N11 influenza viruses, which might suggest altered cellular tropism relative to other known IAVs. In bats, H17N10 RNA was detected in liver, kidney, lung, and intestinal tissues, whereas H18N11 RNA was found exclusively in the intestine [1]. Ciminski et al. demonstrated that, in bats experimentally infected with H18N11, virus could be detected in the feces and transmitted to housed naïve bats, presumably via the fecal–oral route [8]. This is akin to the behavior of avian influenza viruses in waterfowl. Going forward, it will be important to determine with greater resolution the specific cell types that are permissive for replication of H17N10 and H18N11 viruses in bats. This will be essential for understanding the coevolutionary relationship of the virus with these hosts. The discovery of MHCII as a receptor for bat influenza viruses also raises several important questions about the consequences of immune cell susceptibility in terms of both viral pathogenicity and host range.

The fact that viruses pseudotyped with bat influenza virus HAs could infect avian and human cells raised concerns regarding the potential for epizootic and zoonotic transmissions. The studies of Giotis et al. and Karakus et al. using viruses pseudotyped with bat H17 and H18 demonstrated that bat IAVs have broad tropism. In humans, certain cells of the immune system, as well as epithelial cells in human lung and intestine, constitutively express MHCII. However, it remained unclear whether wild-type (WT) bat IAVs were able to replicate and transmit in species other than bats. A recent study by Ciminski et al. has provided important insight into this critical question. Using WT and cell-culture-adapted H18N11, the authors performed in vivo replication and transmission studies in mice, ferrets, and bats. These viruses were produced from infectious clones since, as yet, there are no natural isolates. Serial passage of WT H18N11 in canine RIE1495 cells selected for adaptive mutations in the viral HA (S235Y or V254F) and deletions of the neuraminidase (NA) ectodomain [8]. Experimental infection of mice with H18N11 also selected for adaptive mutations in HA and deletion mutations in NA. Virus replication was limited to the upper respiratory tract and infected mice were unable to transmit the virus to naïve contact mice. Ferrets are considered the “gold-standard” model for studies of influenza virus pathogenesis and transmission. In these animals, a recombinant cell-culture-adapted bat virus (rP11), which contains adaptive mutations in HA and a stop codon in the stalk of NA that results in deletion of the ectodomain, replicated in multiple organs, including trachea, nasal conchae, lung, cerebrum, and cerebellum. However, the virus was not shed or transmitted to naïve contact ferrets. Interestingly, on passaging of rP11 in ferrets, a single point mutation restored the N11 open reading frame, suggesting it may have functional relevance. However, viral transcripts could not be detected in nasal lavage of ferrets infected with WT H18N11 [8].

The rP11 virus also contained K170R and N250S mutations in HA, which were shown to enhance infectivity in mammalian cells in vitro. These mutations were...
maintained in rP11 after passage in ferrets when the mutation restoring NA expression emerged. NA expression was also required for efficient transmission in bats. Infection of Artibeus jamaicensis bats (a close relative of Artibeus planirostris, the species from which H18N11 was initially characterized) with rP11 also resulted in restoration of the full-length N11 coding sequence collected from both index and contact animals. Therefore, while full-length N11 does not appear to be required for replication and shedding, it is likely to be necessary to facilitate efficient transmission in bats. Ciminski et al. demonstrated that ectopically expressed N11 reduced surface expression of MHCII. They speculated that this might facilitate progeny virus egress, just as cleavage of sialic acid facilitates the egress of other IAVs [6]. However, the ability to downregulate MHCII has implications for adaptive immune responses against bat influenza viruses and may contribute to viral pathogenesis.

MHCII is responsible for presenting antigen to CD4+ T cells, which, along with co-stimulatory factors, promotes their activation [9]. CD4+ T cells are then essential for the promotion of high-quality antibody responses by providing B cells with the signals required to induce somatic hypermutation/affinity maturation. Ciminski et al. reported seroconversion in bats after experimental infection with WT H18N11, demonstrating that antibody responses are generated in response to infection [8]. Nevertheless, it will be interesting to determine whether H18N11 infection impairs T cell activation and, as a result, the breadth and quality of the antibody response (Figure 1).

Emerging data have suggested that broadly neutralizing antibodies are capable of neutralizing H17N10 viruses [10]. However, the titers and prevalence of antibodies capable of neutralizing bat H17 and H18 viruses in humans have not yet been studied. It will be interesting to determine whether humans and other species in areas where bat influenza viruses are endemic (i.e., South America) have already been exposed to these viruses and have mounted specific adaptive immune responses. Sero-epidemiological studies could shed important light on this question.

The observed inability of bat influenza viruses to efficiently transmit within mice and ferrets, alongside their limited reassortment potential with conventional IAVs reviewed in [11]) reduces the probability that these viruses pose an imminent zoonotic threat. However, that does not rule out the potential for epizootic transmission, and gene segments of bat H17N10 and H18N11 viruses are compatible for reassortment [12]. Important questions therefore remain regarding the true diversity of bat influenza viruses and their evolutionary relationship to conventional IAVs. Frugivorous and insectivorous bats diverged over 50 million years ago and there are over 1400 known species of bats. Although H17N10 and H18N11 viruses have only been detected in New World fruit bats (Table 1), in vitro studies with pseudotyped viruses demonstrated that ectopically expressed MHCII from the insectivorous bats Eptesicus fuscus and Myotis lucifugus was sufficient to serve as a cellular receptor for entry of these viruses [6]. Thus, there is a pressing need to perform more detailed and systematic surveys of multiple bat species in different geographical locations to better understand the prevalence and diversity of bat influenza viruses.

Table 1. Serological and Genomic Detection of Bat Influenza Viruses

Subtype detected	Location	Genome positive (no. of bats)	Antibody positive (no. of bats)	Refs
H18N11	Brazil	2/129	NT	[3]
H18N11	Peru	0/3	3/3	[2]
Artibeus obscurus	Peru	0/10	9/10	[2]
Artibeus planirostris	Peru	1/15	13/15	[2]
Carollia brevicauda	Peru	0/2	1/2	[2]
Carollia castanea	Peru	0/2	0/2	[2]
Carollia perspicillata	Peru	0/29	11/29	[2]
Desmodus glaucus	Peru	0/1	0/1	[2]
Desmodus rotundus	Peru	0/8	7/18	[2]
Diphylla ecaudata	Peru	0/1	0/1	[2]
Glossophaga soricina	Peru	0/2	0/2	[2]
Molossus	Peru	0/10	3/10	[2]
Myotis sp.	Peru	0/6	1/6	[2]
Phyllostomus discolor	Peru	0/2	2/2	[2]
Phyllostomus hastatus	Peru	0/2	2/2	[2]
Plateyrrhinus rectus	Peru	0/1	1/1	[2]
Rhinophylla pumilio	Peru	0/2	1/2	[2]
Stumira ilium	Guatemala	3/29	NT	[2]
Stumira sp.	Peru	0/2	0/2	[2]
Vampyressa bidens	Peru	0/2	1/2	[2]

*aBased on serological data.

bNT, not tested.

H18N11 infection impairs T cell activation and, as a result, the breadth and quality of the antibody response (Figure 1).
The growing frequency of outbreaks caused by emerging viruses reinforces the critical need to adopt a ‘One Health’ approach to effectively control infectious diseases. Bats have proved to be an especially important reservoir for many pathogens with zoonotic potential, including SARS-CoV, SARS-CoV-2, and Ebola virus. The discovery and ongoing characterization of bat influenza viruses highlights the unpredictable nature of IAVs and the need for more intense study of their evolutionary diversity and pathobiology, especially in non-human hosts.

Acknowledgments
A.B. is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). K.L.M is funded by the NSERC and Canadian Institutes of Health Research (CIHR). M.S.M. received funding from CIHR, the Michael G. DeGroote Institute for Infectious Disease Research, and the Ontario Ministry of Research, Innovation and Science in support of this work.

© 2020 Elsevier Ltd. All rights reserved.

References
1. Tong, S. et al. (2012) A distinct lineage of influenza A virus from bats. Proc. Natl. Acad. Sci. U. S. A. 109, 4269–4274
2. Tong, S. et al. (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog. 9, e1003857
3. Rada, A.C.A. et al. (2019) Bat influenza A(H1N1L1) virus in fruit bats, Brazil. Emerg. Infect. Dis. 25, 333–337
4. Gambin, S.J. et al. (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303, 1839–1842
5. Weis, W. et al. (1998) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 429–431
6. Karakus, U. et al. (2010) MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature 467, 109–112
7. Gietz, E.S. et al. (2019) Entry of the bat influenza H1N10 virus into mammalian cells is enabled by the MHC class II HLA-DR receptor. Nat. Microbiol. 4, 2035–2039
8. Ciminski, K. et al. (2019) Bat influenza viruses transmit among bats but are poorly adapted to non-bat species. Nat. Microbiol. 4, 2039–2049
9. Roche, P.A. and Furuta, K. (2015) The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216
10. Carnell, G. et al. (2019) The bat influenza H1N10 can be neutralized by broadly-neutralizing monoclonal antibodies and its neuraminidase can facilitate viral egress. bioRxiv Published online January 12, 2019. https://doi.org/10.1101/599947
11. Ciminski, K. et al. (2017) Novel insights into bat influenza A viruses. J. Gen. Virol. 98, 2393–2400
12. Zhou, B. et al. (2014) Characterization of uncultivable bat influenza virus using a replicative synthetic virus. PLoS Pathog. 10, e1004420