Spectral distortion of the CMB by the cumulative CO emission from galaxies throughout cosmic history

Citation
Mashian, Natalie, Abraham Loeb, and Amiel Sternberg. 2016. “Spectral Distortion of the CMB by the Cumulative CO Emission from Galaxies Throughout Cosmic History.” Monthly Notices of the Royal Astronomical Society: Letters 458 (1) (February 17): L99–L103. doi:10.1093/mnrasl/slw027.

Published Version
doi:10.1093/mnrasl/slw027

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32750962

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
1 INTRODUCTION

Since the measurements by COBE/Far Infrared Absolute Spectrophotometer (FIRAS), the average cosmic microwave background spectrum (CMB) spectrum is known to be extremely close to a perfect blackbody with a temperature $T_0 = 2.726\pm0.001 \text{ K}$ and no detected global spectral distortions to date (Mather et al. 1994; Fixsen et al. 1996; Fixsen 2009). However, the standard model of cosmology predicts tiny deviations from the Planckian spectrum due to cosmological processes which heat, cool, scatter, and create CMB photons throughout the history of the Universe (Sunyaev & Zeldovich 1969; 1970; Illarionov & Sunyaev 1975a,b; Danese & de Zotti 1991; Hu & Silk 1993; Chluba, Khatri, & Sunyaev 2012). While at redshifts $z \gtrsim 6$, the efficiency of double Compton and Bremsstrahlung processes in controlling the number of CMB photons gradually reduces while photons are still efficiently redistributed in energy by the Compton process. In this case, where thermalization stops being complete, electrons and photons are in kinetic equilibrium with respect to Compton scattering, and any energy injection produces a chemical potential characterized by $\mu(\nu)$. At lower redshifts, $z \lesssim 3\times10^4$, up-scattering of photons by electrons also becomes inefficient and photons diffuse only little in energy, creating a y-type distortion $y(\nu)$ which is an early-universe analogue of the thermal Sunyaev-Zeldovich effect. Both types of distortions are tightly constrained by COBE/FIRAS measurements, with upper limits of $|\mu| < 9\times10^{-5}$ and $|y| < 1.5\times10^{-5}$ at 95% confidence (Fixsen et al. 1996).

The amplitude of these signals, predicted within the standard cosmological paradigm, is expected to fall below the bounds set by COBE-FIRAS measurements. The average amplitude of the y-parameter, due to the large-scale structure and the reionization epoch, is expected to be $y \simeq 10^{-7}$-10^{-6}, with the most recent computations predicting $y \simeq 2\times10^{-8}$ (Hu, Scott, & Silk 1994; Refregier et al. 2000; Oh, Cooray, & Kamionkowski 2003; Hill et al. 2013). The μ-distortion signal is expected to be even weaker, with the damping of small-scale acoustic modes giving rise to $\mu \sim 2\times10^{-8}$ in the standard slow-roll inflation scenario (Daly 1991; Hu, Scott, & Silk 1994; Chluba, Khatri, & Sunyaev 2012). Although these distortions are small, significant progress in technology in the last two decades promises
to detect these spectral distortions. Experimental concepts, like the Primordial Inflation Explorer (PIXIE; Kogut et al. 2011) and Polarized Radiation Imaging and Spectroscopy Mission (PRISM, André et al. 2014), could possibly improve the absolute spectral sensitivity limits of COBE/FIRAS by 2-3 orders of magnitude and detect the aforementioned signals at the 5σ level, providing measurements at sensitivities $\mu = 5 \times 10^{-8}$ for a chemical potential distortion and $y = 10^{-8}$ for a Compton distortion (Fiesen & Maheu 2002; Kogut et al. 2011a; Chluba 2013; Chluba & Jeong 2014).

However, it is not yet clear what the foreground limitations to measuring these primordial spectral distortions will be. When considering the large angular scales of interest to PIXIE, focus has been geared towards the foreground subtraction of polarized emission from the Milky Way’s interstellar medium (ISM) which is dominated by synchrotron radiation from cosmic ray electrons accelerated in the Galactic magnetic field, and thermal emission from dust grains. Kogut et al. (2011b) claim that the CMB emission can be distinguished from Galactic foregrounds based on their different frequency spectra, as long as the number of independent frequency channels equals or exceeds the number of free parameters to be derived from a multi-frequency fit.

In addition to these Galactic foregrounds, there is another contaminant which has been primarily neglected in the literature, and that is the diffuse background of CO emission lines from external galaxies. Until recently, Righi, Hernández-Monteagudo, & Sunyaev (2008) provided the only estimate of this redshift-integrated CO emission signal. Assuming star formation is driven by major mergers, they calculated the resulting star-formation rate (SFR) and converted it to a CO luminosity, L_{CO}, using the measured ratio of L_{CO} to SFR in M82, a low-redshift starburst galaxy. The CO background they found, integrated over all redshifts, is expected to contribute $\sim 1 \mu$K at $\nu \geq 100$ GHz with an almost flat spectrum. De Zotti et al. (2015) also include estimates of the background contributed by CO lines from star-forming galaxies when they consider the Galactic and extragalactic foreground intensity compared with the CMB spectra. Using the L_{bol}-L_{CO} relations presented in Greve et al. (2014) for the CO rotational ladder from $J = 1 \rightarrow 0$ to $J = 5 \rightarrow 4$, they find that the CO signal is substantially higher than the PIXIE sensitivity, with the CO(4-3) line alone contributing $\sim 3 \times 10^{-24}$ erg s$^{-1}$ cm$^{-2}$ sr$^{-1}$ at sub-mm wavelengths.

In this paper, we apply the formalism and machinery presented in Mashian, Sternberg, & Loeb (2013) to predict the total CO emission signal generated by a population of star-forming halos with masses $M \geq 10^{10} M_\odot$ from the present-day, to redshifts as early as $z \sim 15$. Our comprehensive approach is based on large-velocity gradient (LGV) modeling, a radiative transfer modeling technique that produces the full CO spectral line energy distribution (SLED) for a specified set of parameters characterizing the emitting source. By linking these parameters to the global properties of the host halos, we calculate the CO line intensities emitted by a halo of mass M at redshift z, and then further integrate these CO luminosities over the range of halo masses hosting CO-luminous galaxies to derive the average surface brightness of each rotational line. We find that over a range of frequencies (30-300 GHz) spanned by a PIXIE-like mission, the signal strength of this diffuse background is 1-3 orders of magnitude larger than the spectral distortion limits PIXIE aims to provide. The CO foreground must be removed in order for the more subtle distortion signals from the earlier universe to be detected.

This Letter is organized as follows. Section 2 provides a brief overview of the formalism and key ingredients of our CO-signal modeling technique. Section 3 presents the results and Section 4 summarizes the main conclusions. We adopt a flat, ΛCDM cosmology with $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$, $\Omega_b = 0.045$, $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$ (i.e. $h = 0.7$), $\sigma_8 = 0.82$, and $n_s = 0.95$, consistent with the most recent measurements from Planck (Planck Collaboration et al. 2013).

2 THE FORMALISM

In Mashian, Sternberg, & Loeb (2013), we developed a novel approach to estimating the line intensity of any CO rotational transition emitted by a host halo with mass M at redshift z in the early universe, $z \geq 4$. Here, we briefly outline the model far enough to calculate the quantities relevant for the present work and refer the reader to our previous paper for further details.

In our formalism, the average specific intensity of a given CO line with rest-frame frequency ν_J emitted by gas at redshift z_J is,

$$I_{\nu_J} = \frac{c}{4\pi} \int_0^\infty \frac{dM}{dM} \frac{dn}{dn} \frac{L(M, z_J)}{H(z_J)}$$

where $H(z)$ is the Hubble parameter, dn/dM is the Sheth-Tormen halo mass function (Sheth & Tormen 1999), and $M_{min,CO}$ is the minimum host halo mass for CO-luminous galaxies. To determine the specific luminosity of the line, $L(M, z_J)$, we employ LGV modeling, a method of radiative transfer in which the excitation and opacity of CO lines are determined by the kinetic temperature T_{kin}, velocity gradient dv/dr, gas density n, CO-to-H$_2$ abundance ratio X_{CO}, and the CO column density N_{CO} of the emitting source. A background radiation term with temperature, $T_{CMB} = T_0(1+z)$, is included in the LGV calculations; the increasing CMB temperature with z is expected to depress the CO line luminosity at higher redshifts. Adopting the escape probability formalism (Castor, 1974; Goldreich & Kwan, 1974) for a spherical cloud undergoing uniform collapse and assuming that each emitting source consists of a large number of these unresolved collapsing clouds, the emergent LGV-modeled intensity of an emission line can be expressed as

$$I_J = \frac{h \nu_J}{4\pi} A_{J} x_J \beta_J (\tau_J) \chi CO N_{H_2}$$

where x_J is the population fraction in the J^{th} level, A_J is the Einstein radiative coefficient, N_{H_2} is the beam-averaged H$_2$ column density, and $\beta_J = (1 - e^{-\chi J})/\tau_J$ is the photon-escape probability. To carry out these computations, we use the Mark & Sternberg LGV radiative transfer code described in Davies et al. (2012).

We showed previously that the LGV parameters, $\{T_{kin}, \, n_{H_2}, \, dv/dr, \, \chi CO, \, N_{H_2}\}$, which drive the physics of CO transitions and ultimately dictate both the shape and amplitude of the resulting CO SLED, can be linked to the emitting galaxy’s global star formation rate, SFR, and the star formation rate surface density, Σ_{SFH}. The analytic expressions for these quantities can be found in Section 2.3
of Mashian, Sternberg, & Loeb (2014), and will not be derived here. The final ingredient in our model is thus a SFR – M relation that allows us to express these LVG parameters solely as functions of the global properties of the host halo, i.e. the halo mass M and redshift z.

For high redshifts, z ≥ 4, we adopt the average SFR – M relation derived in Mashian, Oesch, & Loeb (2016) via abundance-matching. Assuming each dark-matter halo hosts a single galaxy, they mapped the shape of the observed ultraviolet luminosity functions (UV LFs) at z ≈ 4-8 to that of the halo mass function at the respective redshifts and found that the SFR – M scaling law is roughly constant across this redshift range (within 0.2 dex). This average relation, which faithfully reproduces the observed z = 9 - 10 LFs, is therefore employed in our calculations for all redshifts greater than 4. For z < 4, we rely on the results of Behroozi, Wechsler, & Conroy (2013a,b) which empirically quantified the stellar mass history of dark matter halos, using a comprehensive compilation of observational data along with simulated halo merger trees to constrain a parameterized stellar mass-halo mass relation.

3 RESULTS

In Figure 1, we present our predictions of the contribution of each spectral line to the cumulative CO background from star-forming galaxies at redshifts as high as z ≈ 15 to the present. The low-J CO lines peak at frequencies corresponding to an emission redshift of z ≈ 2. This emission is dominated by star-forming halos with masses 10^{11}-10^{12} M_{⊙}, hosting molecular clouds that are characterized by a gas kinetic temperature T_{kin} ≈ 40 K and H_2 number densities n_{H_2} ≈ 100 - 1000 cm^{-3}. The higher-J (J > 5) CO signal is dominated by emission from 10^{11}-10^{12} M_{⊙} host halos residing at z ≥ 4; in the star-forming galaxies at these high redshifts, the physical conditions in the emitting molecular clouds are extreme enough to thermalize the higher-order CO transitions, with gas kinetic temperatures of ~ 60 K and number densities of order 10^{4} cm^{-3}. Integrating over the population of CO luminous halos between redshifts 0 ≤ z ≤ 15, we find that the total emission (black curve) predicted by our LVG-based model is not completely spectrally smooth, but rather has a prominent bump in the frequency interval ~ 100 - 200 GHz with a characteristic peak intensity of ~ 2×10^{-23} W m^{-2} Hz^{-1} sr^{-1}, i.e. Δ I_{ν}/I_{ν} ≃ (5±2)×10^{-6}.

This is the frequency range within which the most prominent redshifted CO line emissions, originating from sources at redshifts z ≈ 2 - 5, fall and accumulate to form the peak in the cumulative signal depicted in Figure 1. The total CO intensity is ~ 0.01% of the far-infrared background intensity computed in Fixsen et al. (1998) and Lutz (2014), where the former computes a total 125-2000 μm background of ~ 14 nW m^{-2}sr^{-1} and the latter computes a total 8-1000 μm background of ~ 27 nW m^{-2}sr^{-1}. The uncertainty in our estimates of the CO signal, represented by the shaded regions in Figures 1-3, primarily stems from the uncertainty in the average SFR – M relations we adopt to express the LVG parameters as functions of the global properties of the host halos.

In the case where we assume that local sources of CO emission can be identified and subtracted from observations, we find that the predicted foreground signal not only drops in magnitude as expected, but the shape of the CO spectrum is modified as well. These results are clearly demonstrated in Figure 2, where each curve is computed by integrating the CO intensity emitted by galaxies from some minimum redshift, z_{min}, out to redshift z ≈ 15. Starting off with z_{min} = 0, which corresponds to the original results shown in Fig-
Figure 3. μ-type and y-type spectral distortions corresponding to the current COBE/FIRAS limits (2σ; dotted curves) and the anticipated PIXIE sensitivity limits (5σ; dashed curves). The absolute value of the difference in intensity from the blackbody spectrum is shown where ΔI^μ and ΔI^y are given by equations (3) and (4), respectively. The green dash-dot curve represents the y-type distortions due to reionization and structure formation in the late Universe, $z \lesssim 10 - 20$. The cusp in each curve signifies the transition from a negative distortion to a positive distortion, with a zero point/crossing frequency of $\nu = 124$ and 217 GHz for μ- and y-type distortions, respectively.

In standard cosmology, there are a number of different heating/cooling processes in the early Universe which may have given rise to CMB spectral distortions of varying magnitudes and shapes. Silk damping of small-scale perturbations in the primordial baryon-electron-photon fluid is one of them, resulting in CMB distortions with magnitudes of $\Delta I^s / I^s \sim 10^{-10} - 10^{-11}$, depending on the shape and amplitude of the primordial power spectrum at scales $50 < k < 10^4$ Mpc$^{-1}$ (Daly 1991; Hu, Scott, & Silk 1994; Chluba, Khatri, & Sunyaev 2012). Residual annihilation of dark matter particles throughout the history of the Universe is another, releasing energy that leads to μ and y distortions of amplitude $\mu \approx 3 \times 10^{-9}$ ($z > 5 \times 10^5$) and $y \approx 5 \times 10^{-10}$ ($z < 5 \times 10^4$), respectively (Chluba & Sunyaev 2012).
Sources at redshifts
Based on the results depicted in Figure 2, CO luminous
that are at least comparable to the
tracted in order to reduce this cumulative signal to levels
magnitude but opposite sign distortions,
Array (ALMA) will miss CO emission from host halos with
in terms of field coverage. Even with ten hours of integra-
tion distortions one hopes to constrain. Removing all such
\[\Delta I_{\nu}^\text{CO} / I_{\nu} \sim 5 \times 10^{-6} \]
\[\Delta I_{\nu} / I_{\nu} \sim 10^{-9} \]
at redshifts \(z \sim 1100 - 6000\) (Chluba & Sunyaev 2004; Rubiño-Martín, Chluba, & Sunyaev 2006, 2008). Similar
magnitude but opposite sign distortions, \(\mu \sim -2.7 \times 10^{-4}
\) and \(y \sim -6 \times 10^{-10}\), are expected from energy losses of the CMB
to baryons and electrons as they cool adiabatically faster
than radiation with the expansion of the Universe (Chluba 2004; Chluba & Sunyaev 2012; Khatri, Sunyaev, & Chluba
2012). Experiments like PIXIE will be able to constrain these
spectral distortions in the CMB at the 5\(\sigma\) level, providing
measurements at sensitivities \(\mu = 5 \times 10^{-8}\) and \(y = 10^{-8}\).
However, as demonstrated above, the cumulative CO fore-
ground is an important contaminant to these cosmological
distortions, with a signal strength, \(\Delta I_{\nu}^\text{CO} / I_{\nu} \sim 5 \times 10^{-6}
\)
\[\Delta I_{\nu} / I_{\nu} \sim 10^{-7} \]
that is 1-3 orders of magnitude higher than PIXIE’s
sensitivity limits in the frequency range \(\nu \sim 20 - 360\) GHz.
Based on the results depicted in Figure 2, CO luminous
sources at redshifts \(z < 8\) need to be identified and sub-
tracted in order to reduce this cumulative signal to levels
that are at least comparable to the \(\mu-\) and \(y\)-type spec-
tral distortions one hopes to constrain. Removing all such
sources is challenging, both in terms of exposure time and
in terms of field coverage. Even with ten hours of integra-
tion time, instruments like the Atacama Large Millimeter
Array (ALMA) will miss CO emission from host halos with
masses \(M \lesssim 5 \times 10^{10}\) M\(_{\odot}\), which contribute tens of percent
of the cumulative CO signal at redshifts \(z \gtrsim 4\). (In this pa-
per, we integrate over the population of CO luminous halos
with masses \(M \gtrsim 10^{10}\) M\(_{\odot}\) and thus present conservative
estimates of the total CO foreground which do not account
for contributions from lower mass halos, \(M \lesssim 10^{10}\) M\(_{\odot}\).)
Removing the aggregate line emission from unresolved sources
throughout cosmic history poses its own difficulties. Unlike
the spectrally smooth synchrotron and thermal dust fore-
grounds which can be approximately described by power
laws, the CO foreground fluctuates in frequency due to the
clustering of sources over restricted regions on the sky; accu-
rate foreground subtraction therefore requires knowledge of
the emission spectrum to high order of precision, challenging
our ability to fully exploit PIXIE’s sensitivity to constrain
CMB spectral measurements.

5 ACKNOWLEDGEMENTS

This research was also supported by the Raymond and
Beverly Sackler Tel Aviv University - Harvard/ITC Astronomy
Program. This work was supported in part by NSF grant
AST-1312034. This material is based upon work supported
by the National Science Foundation Graduate Research Fel-
lowship under Grant No. DGE1144152. Any opinion, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
fect the views of the National Science Foundation.

REFERENCES

André P., et al., 2014, JCAP, 2, 006
Behroozi P. S., Wechsler R. H., Conroy C., 2013a, ApJ, 770, 57
Behroozi P. S., Wechsler R. H., Conroy C., 2013b, ApJ, 762, L31
Burigana C., Danese L., de Zotti G., 1991, A&A, 246, 49
Burigana C., Salvaterra R., 2003, MNRAS, 342, 543
Castor J. I., 1970, MNRAS, 149, 111
Chluba, J., 2005, PhD thesis, Ludwig Maximilians University
Chluba J., 2013, MNRAS, 436, 2232
Chluba J., 2014, arXiv:1405.6938
Chluba J., Sunyaev R. A., 2006, A&A, 458, L29
Chluba J., Sunyaev R. A., 2012, MNRAS, 419, 1294
Chluba J., Jeong D., 2014, MNRAS, 438, 2065
Chluba J., Hamann J., Patil S. P., 2015, IJMPD, 24, 1530023
Chluba J., Khatri R., Sunyaev R. A., 2012, MNRAS, 425, 1129
Daly R. A., 1991, ApJ, 371, 14
Danese L., de Zotti G., 1982, A&A, 107, 39
Davies R., Mark, D., Sternberg, A., 2012, A&A, 537, 133
Fixsen D. J., Cheng E. S., Gales J. M., Mather J. C., Shafer
R. A., Wright E. L., 1996, ApJ, 473, 576
Fixsen D. J., Dwek E., Mather J. C., Bennett C. L., Shafer
R. A., 1998, ApJ, 508, 123
Fixsen D. J., Mather J. C., 2002, ApJ, 581, 817
Fixsen D. J., 2009, ApJ, 707, 916
Goldreich P., Kwan J., 1974, ApJ, 189, 441
Greve T. R., et al., 2014, ApJ, 794, 142
Hill J. C., Battaglia N., Chluba J., Ferraro S., Schaan E.,
Spergel D. N., 2015, arXiv, arXiv:1507.01583
Hu W., Silk J., 1993, PhRvD, 48, 485
Hu W., Scott D., Silk J., 1994a, PhRvD, 49, 648
Hu W., Scott D., Silk J., 1994b, ApJ, 430, L5
Illarionov A. F., Sunyaev R. A., 1975a, SvA, 18, 413
Illarionov A. F., Sunyaev R. A., 1975b, SvA, 18, 691
Khatri R., Sunyaev R. A., Chluba J., 2012, A&A, 540, A124
Kogut A., et al., 2011a, ApJ, 738, L29
Kogut A., et al., 2011b, JCAP, 7, 025
Lutz D., 2014, ARA&A, 52, 373
Mashian N., Sternberg A., Loeb A., 2015, JCAP, 11, 028
Mashian N., Oesch P. A., Loeb A., 2016, MNRAS, 455, 2101
Mather J. C., et al., 1994, ApJ, 420, 439
Oh S. P., Cooray A., Kamionkowski M., 2003, MNRAS,
342, L20
Planck Collaboration, et al., 2015, arXiv, arXiv:1512.04816
Refregier A., Komatsu E., Spergel D. N., Pen U.-L., 2000,
PhRvD, 61, 123001
Righi M., Hernández-Monteagudo C., Sunyaev R. A., 2008,
A&A, 489, 489
Rubiño-Martín J. A., Chluba J., Sunyaev R. A., 2006, MNRAS,
371, 1939
Rubiño-Martín J. A., Chluba J., Sunyaev R. A., 2008,
A&A, 485, 377
Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
Sunyaev R. A., Zeldovich Y. B., 1969, Natur, 223, 721
Sunyaev R. A., Zeldovich Y. B., 1970, Ap&SS, 7, 20
Sunyaev R. A., Khatri R., 2013, IJMPD, 22, 1330014
Zeldovich Y. B., Sunyaev R. A., 1969, Ap&SS, 4, 301
De Zotti G., Negrello M., Castex G., Lapi A., Bonato M.,
2015, arXiv, arXiv:1512.04816