Abstract

We study Langevin dynamics for recovering the planted signal in the spiked matrix model. We provide a “path-wise” characterization of the overlap between the output of the Langevin algorithm and the planted signal. This overlap is characterized in terms of a self-consistent system of integro-differential equations, usually referred to as the Crisanti-Horner-Sommers-Cugliandolo-Kurchan (CHSCK) equations in the spin glass literature. As a second contribution, we derive an explicit formula for the limiting overlap in terms of the signal-to-noise ratio and the injected noise in the diffusion. As an upshot, this uncovers a sharp phase transition—in one regime, the limiting overlap is strictly positive, while in the other, the injected noise overcomes the signal, and the limiting overlap is zero.

Keywords— Langevin dynamics, high-dimensional asymptotics, spiked matrices, spin-glasses

1 Introduction

Gradient descent based methods and their noisy counterparts are routinely used in modern Machine Learning. For a host of learning problems, it has now been established that gradient based methods converge to special estimators with attractive generalization properties ([SHN*18], [CB20], [GLSS18b], [GLSS18a], [MWCC18], [MBB18], [JT19], [NLG+19], [ACHL19], [JM20], [ZBH+21], [CLB21]). Thus the limiting performance of gradient descent and its variants can often be characterized via careful analyses of these special limiting estimators (c.f. [MRSY19], [BRT19], [DKT19], [LRZ20], [LS20], [CL21] and the references cited therein.) However, an understanding of “path-wise” properties of these algorithms still lies in its infancy. In this paper, we consider Langevin dynamics as a proxy for stochastic gradient descent, and a simple recovery problem with a non-convex objective function—that of recovering a planted rank 1 matrix under additive Gaussian noise.

Formally, we observe a symmetric matrix \(J \in \mathbb{R}^{N \times N} \), given by

\[
J = VV^T + Z,
\]

(1.1)
where $V \in \mathbb{R}^N$. We assume $Z = G^\top D G$ where D is diagonal and G is Haar distributed. Denote $D = \text{Diag}(\sigma^1, \ldots, \sigma^N)$ to be a sequence of deterministic diagonal matrices. As N increases, assume that $\mu_{DN} = \frac{1}{N} \sum_{i=1}^N \delta_{\sigma^i}$ converges weakly to a probability measure μ_D with compact support. Let d_+, d_- denote the upper and lower edges respectively of μ_D. We assume throughout that $\max_{1 \leq i \leq N} \sigma^i$ and $\min_{1 \leq i \leq N} \sigma^i$ converge to d_+ and d_- respectively. We assume that the entries of $V = (V^i)$ are iid $N(0, \frac{1}{N})$ for some $\lambda > 0$. We seek to recover the planted truth V, given the observation J. The natural estimator in this setting is derived from PCA—one computes the eigenvector \hat{v} corresponding to the largest eigenvalue of J, and uses $\hat{v}^\top V$ as an estimator for the latent subspace VV^\top. The performance of this estimator can be precisely characterized using recent advances in Random Matrix Theory ([BAP05, BGN11]). In particular, assume that the empirical spectral measure μ_{DN} converges weakly to a limiting measure μ_D supported on $[d_-, d_+]$.

Define $G_{\mu_D} : \mathbb{R} \setminus [d_-, d_+] \to \mathbb{R}$,

$$G_{\mu_D}(z) = \mathbb{E}_{X \sim \mu_D} \left[\frac{1}{z - X} \right]$$

as the Cauchy transform of μ_D. Further, define

$$G_{\mu_D}(d^+) = \lim_{z \uparrow d_+} G_{\mu_D}(z), \quad G_{\mu_D}(d^-) = \lim_{z \downarrow d_-} G_{\mu_D}(z).$$

The BBP phase transition establishes that if $\lambda > \frac{1}{G_{\mu_D}(d^+)}$, there exists an “outlier” eigenvalue at $G_{\mu_D}^{-1}(1/\lambda)$; otherwise, the largest sample eigenvalue sticks to the spectral edge d_+. In the first case, the eigenvector \hat{v} corresponding to the outlying eigenvalue has a non-trivial overlap with the planted signal V, i.e. with high probability, $|V^\top \hat{v}| > 0$. In the latter case, $V^\top \hat{v} \overset{P}{\to} 0$.

To study the Langevin dynamics in this setting, we introduce the following system of Stochastic Differential Equations

$$dX_t^i = \sum_{j=1}^N J_{ij} X_t^j dt - f'(\frac{1}{N} \sum_{j=1}^N (X_t^j)^2) X_t^i dt + \beta^{-1/2} dW_t^i. \quad (1.2)$$

We assume that $f : [0, \infty) \to \mathbb{R}$ satisfies f' to be non-negative and Lipschitz. Eventually, we will apply our results to the special case $f(x) = x^2/2$. Note that this SDE can be looked upon as a penalized version of the PCA problem on taking $\beta \to \infty$. The function f acts as a “confining” potential, so that we can work without a norm constraint on the diffusion. For any $N \geq 1$ and $T \geq 0$, the SDE (1.2) has a strong solution, which we denote by $X_t^i \equiv \{X_t^i : 1 \leq i \leq N, t \in [0, T]\}$ (see [BADG01, Lemma 6.7] for a proof).

The strong solution to the Langevin diffusion (1.2) defines a natural collection of estimators indexed by $t \in [0, \infty)$. We track the statistical performance of these estimators via the normalized “overlap” $R^N(t) = \frac{1}{\sqrt{N}} \sum_{i=1}^N \sqrt{N} V^i X_t^i$. We note that the entries of V are typically of order $1/\sqrt{N}$; the multiplicative factor \sqrt{N} normalizes these entries so that the resultant is of order 1. Armed with these notations, we can pose a natural question of interest:

How does the overlap $R^N(t)$ evolve over time?

In this paper, we provide sharp asymptotics for the evolution of $R^N(t)$ under a high-dimensional asymptotic limit where we send $N \to \infty$ with $t \geq 0$ fixed. In practice, one should interpret these limits as approximate characterizers of the overlap when the dimension N is large, while the diffusion has been run for a “short time”. In particular, we emphasize that the time scales involved are significantly shorter than those involved for “mixing” of these diffusion processes. We believe that these asymptotics are particularly relevant for Statistics and Machine Learning. In particular, it allows one to explicitly characterize the statistical effect of “early stopping” in this problem.

Our first result characterizes the limiting behavior of $R^N(t)$. We will see that the behavior of R^N is intricately tied to that of the “auto-correlation” function $K^N(t, s) = \frac{1}{N} \sum_{i=1}^N X_t^i X_s^i$. Note that for any
$T \geq 0$, R^N and K^N are sequences of (random) continuous functions on $[0,T]$ and $[0,T]^2$ respectively. In subsequent discussions, we equip these metric spaces with the sup-norm topology.

In addition, we need to specify the initial conditions for the Langevin diffusion $\{X_t : t \geq 0\}$. We work under the following two sets of initial conditions.

Initial Conditions:

(i) (I.I.D. initial conditions) Assume that $\{(\sqrt{N}V^i, X_0^i) : 1 \leq i \leq N\}$ are i.i.d., independent of G and $\{W_t : t \geq 0\}$. Assume furthermore that $\mathbb{E}[(X_0^i)^2] = 1$, $\mathbb{E}[V^i X_0^i] = \frac{\rho \sqrt{N}}{\sqrt{N}}$ for some $\rho \in [0,1]$.

(ii) (I.I.D. under rotated basis) Define $Y_t = G X_t$, $U = GV$, $B_t = GW_t$. Assume that $\{(Y_0^i, \sqrt{N}U^i) : 1 \leq i \leq N\}$ are i.i.d., independent of $\{B_t : t \geq 0\}$. Assume in addition that, $Y_0^i \sim F$ i.i.d., $\mathbb{E}[(Y_0^i)^2] = 1$, $\mathbb{E}[U Y_0^i] = \frac{\rho \sqrt{N}}{\sqrt{N}}$ for some $\rho \in [0,1]$.

Remark 1. Note that the parameter ρ governs the correlation between the initialization and the spike direction. For concreteness, we assume that $\rho \geq 0$. The results generalize directly to $\rho < 0$ if we replace V by $-V$. In addition, we require the second moments of X_0 and Y_0 to be finite. The precise value 1 is chosen merely for convenience.

Remark 2. The I.I.D. initial condition is arguably the most natural initialization in Statistics and Machine Learning. The I.I.D. under rotated basis condition, although a bit less natural from this perspective, is simpler to analyze with the same theoretical tools. We think of the second initialization throughout as a warm-up, with the first initialization being of principal interest.

Theorem 1.1. Assume one of the Initial Conditions specified above. Fix $T \geq 0$. As $N \rightarrow \infty$, R^N and K^N converge almost surely to deterministic limits R and K respectively. Furthermore, these limits are the unique solutions to the following system of integro-differential equations:

$$R(t) = \exp \left\{ -\int_0^t f'(K(s))ds \right\} \cdot \mathbb{E}_{(u,\sigma,Y_0) \sim \pi^\infty} \left[\exp(\sigma t)Y_0 u \right]$$

$$+ \int_0^t \exp \left\{ -\int_s^t f'(K(r))dr \right\} R(s) \mathbb{E}_{(u,\sigma,Y_0) \sim \pi^\infty} \left[\exp(\sigma(t-s))u^2 \right] ds . \quad (1.3)$$

$$K(t,s) = \beta^{-1} \int_0^t \exp \left\{ -\int_r^t f'(K(w))dw - \int_r^s f'(K(w))dw \right\} \mathbb{E}_{(u,\sigma,Y_0) \sim \pi^\infty} \left[\exp(\sigma(t+s-2r)) \right] dr$$

$$+ \exp \left\{ -\int_0^t f'(K(r))dr - \int_0^s f'(K(r))dr \right\} \cdot \mathbb{E}_{(u,\sigma,Y_0) \sim \pi^\infty} \left[\exp(\sigma(t+s))Y_0^2 \right]$$

$$+ \exp \left\{ -\int_0^t f'(K(r))dr \right\} \cdot \int_0^s \exp \left\{ -\int_r^s f'(K(w))dw \right\} R(r) \mathbb{E}_{(u,\sigma,Y_0) \sim \pi^\infty} \left[\exp(\sigma(t+s-r))Y_0 u \right] dr$$

$$+ \exp \left\{ -\int_0^t f'(K(r))dr \right\} \int_0^t \exp \left\{ -\int_r^t f'(K(w))dw \right\} R(t) \mathbb{E}_{(u,\sigma,Y_0) \sim \pi^\infty} \left[\exp(\sigma(t+s-r))Y_0 u \right] dr$$

$$+ \int_0^t dr_1 \int_0^t dr_2 \cdot \exp \left\{ -\int_r_1 f'(K(w))dw - \int_r_2 f'(K(w))dw \right\} R(r_1)R(r_2) \mathbb{E}_{(u,\sigma,Y_0) \sim \pi^\infty} \left[\exp(\sigma(t+s-r_1-r_2))u^2 \right] . \quad (1.4)$$

Here we use the abbreviated notation $K(t) := K(t,t)$. It remains to specify the distribution π^∞; this limit depends on the initial condition:

(i) Under I.I.D. initial conditions, $\pi^\infty = N(0,1) \otimes \mu_D \otimes N(0,1)$.

(ii) Under I.I.D. under rotated basis initialization, $\pi^\infty = N(0,1) \otimes \mu_D \otimes F$.

3
Theorem (1.1) holds for any \(t \in [0, T] \). This allows one to characterize the overlap at any time \(t \), for sufficiently large \(N \). In this light, Theorem (1.1) may be interpreted as a quantification of the effects of early stopping on Langevin dynamics. However, though the theorem provides a precise characterization of \(R^N(t) \) under a high-dimensional limit, it is a priori unclear whether this description yields an explicit understanding regarding the behavior of \(R^N(t) \). This is primarily due to the mathematically involved nature of the fixed point equations (1.3)-(1.4). To gain a better understanding of the CHSCK equations, our next theorem illustrates that Theorem (1.1) can yield explicit results on the correlation between the output \(X_t \) and the latent vector \(\sqrt{N}V \) under the double limit \(t \to \infty \), following \(N \to \infty \). To this end, first note that this correlation can be captured through the ratio \(R^2(t)/(\lambda K(t,t)) \), since

\[
\frac{\left(\sum_{i=1}^N \sqrt{N}V^iX_i \right)^2}{[\sum_{i=1}^N (X_i)^2][N \sum_{i=1}^N (V_i)^2]} = \frac{(R^N(t))^2}{[K^N(t,t)][\sum_{i=1}^N (V_i)^2]},
\]

and \(\|V\|_2^2 \to \lambda \) almost surely under our initial conditions.

To precisely characterize the limiting correlation, we specialize to the following setting: consider \(f(x) = x^2/2 \) and \(\mu_D \) to be the scaled semi-circle distribution, supported on \([-\sigma_*,\sigma_*] \), for some \(\sigma_* > 0 \). This corresponds to a setting where the additive noise \(Z \) in (1.1) is a symmetric Gaussian matrix. Note that \(f(x) = x^2/2 \) satisfies the regularity conditions required in Theorem 1.1. Formally, the semi-circle law on \([-\sigma_*,\sigma_*] \) has a density

\[
d\mu_D = \frac{2}{\pi \sigma_*^2} \sqrt{\sigma_*^2 - x^2}, \quad -\sigma_* \leq x \leq \sigma_*,
\]

Let \(S : \mathbb{R}[\mathbb{R}] \to \mathbb{R} \) denote the Stieltjes transform of \(\mu_D \), i.e.,

\[
S(z) = \mathbb{E}_{\sigma \sim \mu_D} \left[\frac{1}{z - \sigma} \right] = \frac{2}{z + \sqrt{z^2 - \sigma_*^2}}.
\]

Theorem 1.2. Assume \(\lambda > \sigma_*^2/2 \), and set \(\tilde{\lambda} = \lambda + \sigma_*^2/4\lambda \). If \(\beta < \frac{1}{\sigma_*^2} \), the equation \(z = \beta^{-1} S(z/2) \) has two real roots. Set \(s_\beta \) to be the largest real root of this equation if \(\beta < \frac{1}{\sigma_*^2} \), otherwise set \(s_\beta = 2\sigma_* \).

(i) If \(2\tilde{\lambda} < s_\beta \) or \(\rho = 0 \), \(\lim_{t \to \infty} \frac{R(t)}{\lambda K(t,t)} = 0 \).

(ii) If \(2\tilde{\lambda} > s_\beta \) and \(\rho > 0 \),

\[
\lim_{t \to \infty} \frac{R(t)^2}{\lambda K(t,t)} = \frac{1}{2 \lambda (\lambda + \sigma_*^2/4\lambda)} \left(1 - \frac{\beta^{-1}}{2 \lambda (\lambda + \sigma_*^2/4\lambda)} \right) \left(1 - \frac{\sigma_*^2}{4\lambda^2} \right).
\]

Several remarks are in order regarding Theorem 1.2. First, note that \(R^2(t)/(\lambda K(t,t)) \) captures the limiting correlation between the output \(X_t \) and the latent vector \(\sqrt{N}V \), since

\[
\frac{\left(\sum_{i=1}^N \sqrt{N}V^iX_i \right)^2}{[\sum_{i=1}^N (X_i)^2][N \sum_{i=1}^N (V_i)^2]} = \frac{(R^N(t))^2}{[K^N(t,t)][\sum_{i=1}^N (V_i)^2]},
\]

and \(\|V\|_2^2 \to \lambda \) almost surely under our initial conditions. Further, it is information theoretically impossible to recover the planted vector \(V \) below the BBP threshold (i.e., when \(\lambda < \sigma_*^2/2 \)). Thus we focus on the interesting regime \(\lambda > \sigma_*^2/2 \). In this setting, Theorem 1.2 can be interpreted as follows: first, if \(\rho = 0 \) i.e., if the initialization has \(o(1) \) correlation, then the limiting correlation stays at zero. We note that our asymptotics is different from non-asymptotic results (in \(N \)) which allow vanishing (in \(N \)) overlap of the initialization with the truth. This is specifically the notion considered in [AGJ21], [AGJ20]. We defer a detailed comparison of our results with this recent line of work to Section 1.1. Our result establishes that
if the diffusive noise is large ($2 \tilde{\lambda} < s_\beta$), the initial correlation washes off, and the correlation converges to zero in the limit $t \to \infty$. On the other hand, if the diffusive noise is small ($2 \lambda > s_\beta$), we obtain a non-trivial correlation in the limit. While our setup is quite simple, we can precisely quantify the tradeoff between the SNR (captured by λ) and the strength of the injected noise (captured by β^{-1}) in the limiting correlation—we consider this to be one of the main contributions of our work. In particular, the limiting correlation increases as a function of λ, as well as β^{-1}, as one would naturally expect.

1.1 Related literature

(i) Dynamical Mean Field Theory and Crisanti-Horner-Sommers-Cugliandolo-Kurchan (CHSCK) equations: Dynamical Mean-Field Theory originated in the theory of spin glasses in the 80’s [SZ82, SZ81]. In this approach, dynamics are characterized in terms of the “correlation” and “response” functions. In special cases, these functions satisfy a system of integro-differential equations [CK93, CS92] (we refer to such systems as CHSCK equations henceforth for simplicity). In general settings, the effective dynamics is described in terms of a non-Markovian stochastic process with long-term memory. Recently, this framework has been employed in the statistical physics literature to study high-dimensional inference problems such as Gaussian mixture models, max-margin classification, and tensor PCA [MKUZ19, MBC+20, CBS+20, MZ20, MKUZ20, SMU21, ABUZ18]. In these papers, versions of CHSCK equations have been proposed, and analyzed numerically to track the performance of specific algorithms. Our work differs from these earlier inquiries in some crucial ways—first, the derivations of the CHSCK equations in these works are non-rigorous, and the subsequent analysis is also numerical. In sharp contrast, our results are fully rigorous, furthermore, we characterize the precise tradeoff between the SNR and the injected noise in the Langevin algorithm. However, it should be noted that our model is, in some sense simpler than the other models described above. The main technical difference is that the spiked matrix model does not require a “response function”—this considerably simplifies the CHSCK system, and the subsequent analysis.

(ii) Prior rigorous results: Dynamical Mean-field Theory for mean-field spin glasses was established on rigorous footing in the works of [BADG01], [AG98, AG97], [Gru96], [Gru98], among others. The CHSCK equations were formally derived in [BADG04]. While some useful information could be extracted from these equations under special settings (e.g. Langevin dynamics for matrix models [BADG01] and at high-temperature [DGM07]), a general analysis of these equations has been quite challenging. Recently, there has been renewed interest in this area. [DS20] derived the CHSCK equations for spherical spin glasses starting from disorder dependent initial conditions. [DLZ21] examined the universality of these equations to the law of the disorder variables. [DG21] also introduced alternative techniques for establishing universality of such dynamical algorithms. We note that in sharp contrast to our setting, the models analyzed in this line of work correspond to “null” models, i.e. without any planted signal. As a result, our analysis is not directly comparable to the aforementioned papers. Despite this difference, our derivation of the CHSCK equations and its subsequent analysis relies partially on techniques from [BADG01], which studies the Langevin dynamics in matrix models in the absence of a spike. That said, we emphasize that planted models are closer to models typically observed in Statistics and Machine Learning problems. Thus, despite the simplicity of (1.1), Theorem (1.2) provides useful insights regarding the interplay between the SNR and the noise magnitude in determining the exact value of the limiting correlation. To the best of our knowledge, our work is the first to characterize this tradeoff for a planted model. We hope that this precise analysis would spark further investigations into Langevin-type dynamics for more complex planted models, as seen in contemporary Statistics and Machine Learning problems.

(iii) Recent flow-based analyses: There has been considerable interest in understanding gradient descent algorithms (i.e. $\beta = \infty$ dynamics) in Statistics and Machine Learning. [BM21a], [BM21b] derive novel systems of integro-differential equations for gradient descent dynamics for certain spiked models.
Although the equations are similar in spirit, there are crucial differences between these results, and the ones proved in this paper. First, for the spiked matrix model, the result in [BM21b] applies only to the $\beta = \infty$ case, and recovers the BBP phase transition. In contrast, we discover additional phase transitions depending on the strength of the injected noise. Further, the proof techniques are also completely different—[BM21a, BM21b] use recent advances in the random matrix literature on Green functions to derive their results. In a different line of work, [AKT19], [ADT20] have also used random matrix asymptotics to study the role of “early stopping” for gradient descent algorithms for linear regression. In this problem, the solution at any fixed time is available in closed form, which considerably simplifies the analysis.

Recently, [CCM21] derived the CHSCK equations for gradient descent (i.e. $\beta = \infty$) for empirical risk minimization. The approaches in these two papers are completely different—[CCM21] first use Approximate Message Passing (AMP) style algorithms to study first order methods, and subsequently take a continuous time limit. Our approach, on the other hand, is grounded in random matrix theory. (iv) We note that our results assume a “warm-start”, i.e. an $O(1)$-correlation between the initialization and the planted signal. This situation is different from a random initialization, where the initialization has $O(1/\sqrt N)$ correlation with the planted signal. The approach pursued in this paper does not seem suited to analyze the evolution of the correlation in this regime. Some answers are provided by the recent theory of “bounding flows” [BAGJ20] and the subsequent applications of this machinery to planted models [AGJ21], [AGJ20]. The main restriction of this approach is that it yields “non-sharp” answers, in contrast to the approach outlined in our paper.

Outline: The rest of the paper is structured as follows: we prove Theorem 1.2 in Section 2, while the proof of the CHSCK equations Theorem 1.1 is deferred to Section 3.

Acknowledgements Liang was supported by NSF CAREER Grant DMS-2042473. Sur was supported by NSF DMS-2113426. Sen was supported by a Harvard Dean’s Competitive Fund Award.

2 Proof of Theorem 1.2

Throughout this section, for notational convenience, we use the shorthand $K(t) = K(t, t)$. Let $E(t) := \exp\{\int_0^t f'(K(s))ds\}$. For our subsequent analysis, it will be convenient to transform the functions $R(t), K(t)$ into a new set of functions $g(t), h(t)$, defined as follows:

$$g(t) := E(t)R(t),$$
$$h(t) := E^2(t)K(t).$$

(2.1)

Observe that $(R(t))^2/K(t) = (g(t))^2/h(t)$, and thus it suffices to track $g(t), h(t)$. In turn, we observe that (1.3),(1.4) imply that $g(t), h(t)$ are uniquely specified as the solutions to the following fixed-point system.

$$g(t) = \mathbb{E}[Y_0u] \cdot \mathbb{E}[e^{\tau_0}] + \mathbb{E}[u^2] \cdot \int_0^t g(s)\mathbb{E}[e^{(t-s)\tau}]ds,$$

(2.2)

$$h(t) = \beta^{-1}\int_0^t E^2(s)\mathbb{E}[e^{(2t-2s)\tau}]ds + \mathbb{E}[Y_0^2] \cdot \mathbb{E}[e^{2t\tau}]$$

$$+ 2\mathbb{E}[Y_0u] \cdot \int_0^t g(s)\mathbb{E}[e^{(2t-s)\tau}]ds + \mathbb{E}[u^2] \cdot \int_0^t \int_0^t g(s_1)g(s_2)\mathbb{E}[e^{(2t-s_1-s_2)\tau}]ds_1 ds_2.$$

(2.3)

Our first lemma characterizes the behavior of $g(\cdot)$.

Lemma 2.1. With τ drawn from the semi-circle distribution with parameter τ_*, the function $g(\cdot)$ defined in (2.1) satisfies the following

$$g(t) = \sqrt{\lambda}e^t \left\{ (1 - \frac{\sigma^2}{4\lambda^2}) + \exp \left\{ (\lambda + \frac{\sigma^2}{4\lambda})t \right\} + \frac{1}{2\pi\lambda} \int_{-\tau_*}^{\tau_*} e^{\frac{x^2}{\lambda}} \sqrt{\frac{\sigma^2}{4\lambda} - x^2} dx \right\},$$

(2.5)
where \(x_+ = \max\{x, 0\} \).

Proof of Lemma 2.1. Note that the last term in the RHS of (2.2) contains a convolution, suggesting that the Laplace transform of \(g(\cdot) \) should provide useful information. For \(\text{Re}(z) > \sigma_\star \), recall that the Laplace transform of \(g \) is given by

\[
\mathcal{L}_g(z) := \int_0^\infty e^{-zt}g(t)dt,
\]

and the Stieltjes transform of \(\mu_D \) is given by

\[
\mathcal{S}(z) = \mathbb{E}\left[\frac{1}{z-\sigma}\right].
\]

Evaluating Laplace transforms, Eqn. (2.6) can be transformed as

\[
\mathcal{L}_g(z) = \frac{\mathbb{E}[Y_0 u] \cdot \mathcal{S}(z)}{1 - \mathbb{E}[u^2] \cdot \mathcal{S}(z)}.
\]

By the Fourier-Mellin formula (inverse Laplace transform), we know that

\[
g(t) = \frac{1}{2\pi i} \lim_{T \to +\infty} \int_{\gamma-iT}^{\gamma+iT} e^{zt} \mathcal{L}_g(z)dz.
\]

When \(\mu_D \) follows a semi-circle law, using (1.6), we have

\[
\mathcal{L}_g(z) = \frac{2\sqrt{\lambda}\rho}{z + \sqrt{z^2 - \sigma_\star^2} - 2\lambda}.
\]
Fix $\gamma \in \mathbb{R}$ with $\gamma > \lambda + \frac{\sigma^2}{4\lambda}$, we need to evaluate the Fourier-Mellin integral of the form

$$g_R(t) := \frac{1}{2\pi i} \int_{\gamma-iR}^{\gamma+iR} e^{zt} L_g(z) \, dz$$

$$= \frac{1}{2\pi i} \int_{S_1} e^{zt} L_g(z) \, dz.$$

In other words, we need to know the integral along the line segment S_1 in Fig 1. First, we observe that the function

$$f_t(z) := e^{zt} L_g(z) = e^{zt} \frac{2\sqrt{\lambda\rho}}{z + \sqrt{z^2 - \sigma^2} - 2\lambda}$$

$$= e^{zt} \frac{2\sqrt{\lambda\rho}}{4\lambda} \frac{\sqrt{z^2 - \sigma^2} - (z - 2\lambda)}{z - (\lambda + \frac{\sigma^2}{4\lambda})}$$

has a simple pole at $z = \lambda + \frac{\sigma^2}{4\lambda}$. Therefore using the Cauchy Residue Theorem, we have,

$$\frac{1}{2\pi i} \oint_{S_1 + S_2 + S_3} f_t(z) \, dz = \sqrt{\lambda\rho} \cdot \left(1 - \sigma^2 + 4\lambda^2\right) e^{(\lambda + \frac{\sigma^2}{4\lambda})t}.$$

Second, we evaluate the integral over the arc S_2. Parametrize the $z(\theta) \in S_2$ by $z(\theta) = \gamma - (R \cos \theta + iR \sin \theta)$ with $\theta \in [\frac{\pi}{2} + \epsilon, \frac{3\pi}{2} - \epsilon]$, therefore

$$\left|\frac{1}{2\pi i} \int_{S_2} f_t(z) \, dz\right| \leq \frac{R}{2} e^{t(\gamma - R \cos(\epsilon))} \sup_{\theta \in [\frac{\pi}{2} + \epsilon, \frac{3\pi}{2} - \epsilon]} \left|\gamma + Re^{i\theta} + \sqrt{(\gamma + Re^{i\theta})^2 - \sigma^2} - 2\lambda\right|$$

and thus for any fixed ϵ

$$\lim_{R \to \infty} \frac{1}{2\pi i} \int_{S_2} f_t(z) \, dz = 0.$$

For the part of the integral $S_2 \setminus S_2^*$, one can show that

$$\left|\frac{1}{2\pi i} \int_{S_2 \setminus S_2^*} f_t(z) \, dz\right| \leq \frac{\epsilon}{\pi} e^{t(\gamma)} \sup_{\theta \in [\frac{\pi}{2} + \epsilon]} \left|\gamma + Re^{i\theta} + \sqrt{(\gamma + Re^{i\theta})^2 - \sigma^2} - 2\lambda\right|$$

and thus with some universal constant $C(\lambda, \sigma_*, \rho, \gamma)$

$$\lim_{R \to \infty} \frac{1}{2\pi i} \int_{S_2^*} f_t(z) \, dz = C(\lambda, \sigma_*, \rho, \gamma) \cdot \epsilon.$$

Putting these estimates together and sending $\epsilon \to 0$, we have shown

$$\lim_{R \to \infty} \frac{1}{2\pi i} \int_{S_2^*} f_t(z) \, dz = 0.$$

Third, we evaluate the integral over the segment S_3 (corresponding to the branch point of $\sqrt{z^2 - \sigma_*^2}$), with $z = x + i\epsilon$ where $x \in [-\sigma_*, \sigma_*]$. We consider this since the function $z \mapsto \sqrt{z}$ is a well-defined single-valued
function only on $z \in \mathbb{C}\setminus(-\infty, 0)$. One can show that

$$\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{S_3} f_t(z) \, dz$$

(2.19)

$$= \frac{1}{2\pi i} \int_{-\sigma_*}^{\sigma_*} \frac{e^{xt} 2\sqrt{\lambda \rho}}{(x - 2\lambda) + i \sqrt{\sigma_*^2 - x^2}} \, dx - \frac{1}{2\pi i} \int_{-\sigma_*}^{\sigma_*} \frac{2\sqrt{\lambda \rho}}{(x - 2\lambda) - i \sqrt{\sigma_*^2 - x^2}} \, dx$$

(2.20)

$$= \frac{2\sqrt{\lambda \rho}}{2\pi i} \int_{-\sigma_*}^{\sigma_*} e^{xt} \left(-2i \sqrt{\sigma_*^2 - x^2} \right) \frac{d}{dx} \left(-4\lambda x + 4\lambda^2 + \sigma_*^2 \right) \, dx$$

(2.21)

$$= -\sqrt{\lambda \rho} \frac{1}{2\pi \lambda} \int_{-\sigma_*}^{\sigma_*} e^{xt} \frac{\sqrt{\sigma_*^2 - x^2}}{(\lambda + \frac{\sigma_*^2}{\lambda}) - x} \, dx.$$

(2.22)

Finally, we integrate over the semi-circular arc in S_3. Parametrizing $z = \sigma_* + \epsilon e^{i\theta}$, we have, $dz = \epsilon ie^{i\theta} \, d\theta$. In turn, the integral reduces to

$$\int_{\pi/2}^{-\pi/2} e^{(\sigma_* + \epsilon e^{i\theta})t} \frac{2\sqrt{\lambda \rho}}{\sigma_* + \epsilon e^{i\theta} + \sqrt{(\sigma_* + \epsilon e^{i\theta})^2 - \sigma_*^2} - 2\lambda} \epsilon ie^{i\theta} \, d\theta.$$

We note that this integral converges to zero as $\epsilon \to 0$. Putting three pieces together, we conclude the proof.

We next turn our attention to h. Recall $E(t) = \exp \{ \int_0^t K(s) \, ds \}$, and set $F(t) = E^2(t)$. Differentiating, we obtain that $F'(t) = 2K(t)F(t) = 2h(t)$, defined in (2.1). Coupled with (2.4), we have, F satisfies the integro-differential equation,

$$F'(t) = 2\beta^{-1} \int_0^t F(s)E \left[\exp(2(t-s)\sigma) \right] \, ds + \Phi(t),$$

$$\Phi(t) = 2E[Y_0^2]E[\exp(2t\sigma)] + 4E[Y_0u] \int_0^t g(s)E[\exp(\sigma(2t-s))] \, ds$$

$$+ 2E[u^2] \int_0^t \int_0^t g(s_1)g(s_2)E \left[\exp \left(\sigma(2t-s_1-s_2) \right) \right] \, ds_1 \, ds_2.$$

(2.23)

Lemma 2.2. The function h has Laplace transform

$$\mathcal{L}_h(z) = \frac{1}{2} \left[z \mathcal{L}_F(z) + \beta^{-1} S(z/2) \right].$$

Proof of Lemma 2.2. Taking Laplace transforms in (2.23), we obtain,

$$z \mathcal{L}_F(z) - 1 = 2\beta^{-1} \mathcal{L}_F(z) \mathcal{L}_M(z) + \mathcal{L}_\phi(z),$$

where we set $M(t) = E[\exp(2t\sigma)]$. Transposing, we obtain,

$$\mathcal{L}_F(z) = \frac{1 + \mathcal{L}_\phi(z)}{z - 2\beta^{-1} \mathcal{L}_M(z)}.$$

Recall that $F'(t) = 2h(t)$, and thus $\mathcal{L}_h(z) = \frac{1}{2} |z\mathcal{L}_F(z) - 1|$. This allows us to obtain the Laplace transform of h. Finally we note that by direct computation, $\mathcal{L}_M(z) = \frac{1}{2} S(z/2)$. This completes the calculation.

We set $\lambda = \lambda + \frac{\sigma_*^2}{4\lambda}$. Let s_β denote the largest real solution to the equation $z = \beta^{-1} S(z/2)$.

9
Lemma 2.3. If $2\tilde{\lambda} > s_\beta$, we have that

$$\lim_{z \to 0} \left| z\mathcal{L}_f(2\tilde{\lambda} + z) - 2\lambda^2 \rho^2 \left(1 - \frac{\sigma^2}{4\lambda^2}\right)^2 \mathbb{E} \left[\frac{1}{(\lambda - \sigma)^2} \right] \right| = 0.$$

Proof. By definition,

$$\mathcal{L}_f(2\tilde{\lambda} + z) = \int_0^\infty \exp(-(2\tilde{\lambda} + z)t) \Phi(t) dt := T_1 + T_2 + T_3,$$

$$T_1 := 2\mathbb{E}[Y_0^2] \int_0^\infty \exp(-(2\tilde{\lambda} + z)t) \mathbb{E}[\exp(2t\sigma)] dt,$$

$$T_2 := 4\mathbb{E}[Y_0 u] \int_0^\infty \int_0^t \exp(-(2\tilde{\lambda} + z)t) \mathbb{E}[\exp(\sigma(2t - s))] ds dt,$$

$$T_3 := 2\mathbb{E}[u^2] \int_0^\infty \int_0^t \int_0^s \exp(-(2\tilde{\lambda} + z)t) \mathbb{E}\left[\exp\left(\sigma(2t - s_1 - s_2)\right)\right] ds_1 ds_2 dt.$$

We first claim that there exists a constant $C > 0$ such that

$$\left| \int_0^\infty \exp(-(2\tilde{\lambda} + z)t) \mathbb{E}[\exp(2t\sigma)] dt \right| \leq C, \quad \left| \int_0^\infty \int_0^t \exp(-(2\tilde{\lambda} + z)t) g(s) \mathbb{E}[\exp(\sigma(2t - s))] ds dt \right| \leq C.$$

We establish each bound in turn. Set $z = z_1 + iz_2$ with $z_1, z_2 \in \mathbb{R}$, and note that $z_1, z_2 \to 0$. Choose z_1 small enough so that $2\tilde{\lambda} + z_1 > 4\sigma_*$, since $2\tilde{\lambda} > 4\sigma_*$ by assumption. Thus we have,

$$\left| \int_0^\infty \exp(-(2\tilde{\lambda} + z)t) \mathbb{E}[\exp(2t\sigma)] dt \right| \leq \int_0^\infty \exp(-(2\tilde{\lambda} + z_1)t) \mathbb{E}[\exp(2t\sigma)] dt \leq \int_0^\infty \exp\left(-(2\tilde{\lambda} - 2\sigma_* + z_1)t\right) dt \leq \frac{1}{2\lambda - 2\sigma_* + z_1}.$$

This remains bounded as $z_1 \to 0$. To analyze the second term, first observe from Lemma 2.1 that

$$\lim_{t \to \infty} \exp(-\tilde{\lambda}t) g(t) = \sqrt{\lambda} \rho \left(1 - \frac{\sigma^2}{4\lambda^2}\right)_+.$$

Thus for any $\varepsilon > 0$, there exists t_0 large enough such that for all $t \geq t_0$,

$$(1 - \varepsilon)\sqrt{\lambda} \rho \left(1 - \frac{\sigma^2}{4\lambda^2}\right)_+ \exp(\tilde{\lambda}t) \leq g(t) \leq (1 + \varepsilon)\sqrt{\lambda} \rho \left(1 - \frac{\sigma^2}{4\lambda^2}\right)_+ \exp(\tilde{\lambda}t).$$

Then we have, setting $z = z_1 + iz_2$ with z_1 small enough,

$$\left| \int_0^\infty \int_0^t \exp(-(2\tilde{\lambda} + z)t) g(s) \mathbb{E}[\exp(\sigma(2t - s))] ds dt \right| \leq \int_0^\infty \int_0^t \exp(-(2\tilde{\lambda} + z_1)t) g(s) \mathbb{E}[\exp(\sigma(2t - s))] ds dt \leq C_1 + \int_{t_0}^t \int_0^t \exp(-(2\tilde{\lambda} + z_1)t) g(s) \mathbb{E}[\exp(\sigma(2t - s))] ds dt + \int_0^t \exp(-(2\tilde{\lambda} + z_1)t) g(s) \mathbb{E}[\exp(\sigma(2t - s))] ds dt.$$

10
The control of this term is complete once we control the two integrals above. To this end,

\[
\int_{t_0}^\infty \int_0^{t_0} \exp \left(- (2\tilde{\lambda} + z_1) t \right) g(s) \mathbb{E} \left[\exp \left(\sigma (2t - s) \right) \right] ds \, dt \\
\leq \left(\max_{0 \leq s \leq t_0} g(s) \right) \int_{t_0}^\infty \exp \left(- (2\tilde{\lambda} + z_1 - 2\sigma_*) t \right) dt \\
\leq \left(\max_{0 \leq s \leq t_0} g(s) \right) \frac{\exp(-t_0(2\tilde{\lambda} + z_1 - 2\sigma_*))}{2\tilde{\lambda} + z_1 - 2\sigma_*}
\]

which remains bounded as \(z_1 \to 0 \). Finally,

\[
\int_{t_0}^\infty \int_0^{t_0} \exp \left(- (2\tilde{\lambda} + z_1) t \right) g(s) \mathbb{E} \left[\exp \left(\sigma (2t - s) \right) \right] ds \, dt \\
\leq (1 + \varepsilon) \sqrt{\lambda} \rho \left(1 - \frac{\sigma^2}{4\lambda^2} \right) + \int_{t_0}^\infty \int_0^{t_0} \exp \left(- (2\tilde{\lambda} + z_1) t \right) \exp(\tilde{\lambda} s + \sigma_* (2t - s)) ds \, dt \\
\leq \frac{(1 + \varepsilon)}{\lambda - \sigma_*} \sqrt{\lambda} \rho \left(1 - \frac{\sigma^2}{4\lambda^2} \right) + \int_{t_0}^\infty \exp \left(- (\tilde{\lambda} + z_1 - \sigma_*) t \right) dt
\]

which remains bounded as \(z_1 \to 0 \).

Finally, we turn to the term \(T_3 \). Recall that, using (2.5), \(g(s) = \sqrt{\lambda} \rho \left(1 - \frac{\sigma^2}{4\lambda^2} \right) + \exp(\tilde{\lambda} s) + g_1(s) \), where

\[
g_1(s) = \frac{\sigma^2}{4\lambda} \mathbb{E}_{x \sim \mu_D} \left[\frac{e^{xs}}{\lambda - x} \right].
\]

Further recalling that \(\mathbb{E}[u^2] = \lambda \), we have

\[
T_3 = 2 \mathbb{E}[u^2] \int_0^\infty \int_0^t \int_0^t \exp(-2\tilde{\lambda} z + s_1 + s_2) \mathbb{E} \left[\exp \left(\sigma (2t - s_1 - s_2) \right) \right] ds_1 ds_2 dt \\
= 2\lambda \rho^2 \left(1 - \frac{\sigma^2}{4\lambda^2} \right) + \int_0^\infty \int_0^t \int_0^t \exp(-2\tilde{\lambda} z + \tilde{\lambda} s_1 + s_2) \mathbb{E} \left[\exp \left(\sigma (2t - s_1 - s_2) \right) \right] ds_1 ds_2 dt + \text{Rem}
\]

(2.24)

where Rem is the remainder term which we will later show to be bounded as \(z \to 0 \). Computing the first term, we obtain,

\[
\int_0^\infty \int_0^t \int_0^t \exp(-2\tilde{\lambda} z + \tilde{\lambda} s_1 + s_2) \mathbb{E} \left[\exp \left(\sigma (2t - s_1 - s_2) \right) \right] ds_1 ds_2 dt \\
= \mathbb{E} \left[\int_0^\infty \int_0^t \int_0^t \exp(-2\tilde{\lambda} z + 2\sigma t + (\tilde{\lambda} - \sigma) s_1 + (\tilde{\lambda} - \sigma) s_2) ds_1 ds_2 dt \right] \\
= \mathbb{E} \left[\int_0^\infty \exp(-2\tilde{\lambda} z + 2\sigma t) \left(\frac{\exp(t(\tilde{\lambda} - \sigma)) - 1}{(\lambda - \sigma)^2} \right)^2 dt \right] \\
= \mathbb{E} \left[\int_0^\infty \exp(-2\tilde{\lambda} z + 2\sigma t) \left(\frac{\exp(2t(\tilde{\lambda} - \sigma)) - 2 \exp(t(\tilde{\lambda} - \sigma)) + 1}{(\lambda - \sigma)^2} \right) dt \right] \\
= \frac{1}{2} \mathbb{E} \left[\frac{1}{(\lambda - \sigma)^2} \right] + \text{Rem}_1,
\]

(2.25)

Note that \(\text{Rem}_1 \) involves two terms and remains bounded when \(z \to 0 \) since
\[
\text{Rem}_1 = -2E \left[\frac{1}{(\lambda - \sigma)^2} \int_0^\infty \exp((-\lambda - z + \sigma)t) \right] + E \left[\frac{1}{(\lambda - \sigma)^2} \int_0^\infty \exp((-2\lambda - z + 2\sigma)t) \right]
\]

\[
= -2E \left[\frac{1}{(\lambda - \sigma)^2(\lambda + z - \sigma)} \right] + E \left[\frac{1}{(\lambda - \sigma)^2(2\lambda + z - 2\sigma)} \right]
\]

Thus, the proof is complete on establishing that Rem remains bounded as \(z \to 0 \).

We note that Rem may be expressed as the sum of three terms, denoted as \(\text{Rem}_{T_j}, j = 1, \ldots, 3 \), where

\[
\text{Rem}_{T_1} = 2\sqrt{\lambda} \rho (1 - \frac{\sigma^2}{4\lambda^2}) + \frac{\sigma^2}{4\lambda} \int_0^\infty \int_0^t \exp(-(2\lambda + z)t + \hat{\lambda}s_1) E_{x \sim \mu_D} \left[\frac{\exp(xs_2)}{(\lambda - x)} \right] E \left[\exp(\sigma(2t - s_1 - s_2)) \right] ds_1 ds_2 dt,
\]

\(\text{Rem}_{T_2} \) is the same as above except the roles of \(s_1 \) and \(s_2 \) are reversed, and the third term is defined as below:

\[
\text{Rem}_{T_3} = \frac{2\sigma^4}{16\lambda} \int_0^\infty \int_0^t \exp(-(2\lambda + z)t) E_{x, \sigma} \sim \mu_D \left[\frac{\exp(x_1 s_1)}{(\lambda - x)} \right] E_{x_2 \sim \mu_D} \left[\frac{\exp(x_2 s_2)}{(\lambda - x)} \right] E \left[\exp(\sigma(2t - s_1 - s_2)) \right] ds_1 ds_2 dt
\]

Now the support of \(x, \sigma \) is upper bounded by \(\sigma_* \) and \(2t - s_1 - s_2 \geq 0, s_1, s_2 \leq t \) in the range of integration. Thus, we may upper bound \(\text{Rem}_{T_1} \) by

\[
\text{Rem}_{T_1} \leq 2\sqrt{\lambda} \rho (1 - \frac{\sigma^2}{4\lambda^2}) + \frac{\sigma^2}{4\lambda} \int_0^\infty \int_0^t \exp(-(2\lambda + z - 2\sigma_* t + (\hat{\lambda} - \sigma_*) t)) ds_1 ds_2 dt
\]

\[
= 2\sqrt{\lambda} \rho (1 - \frac{\sigma^2}{4\lambda^2}) + \frac{\sigma^2}{4\lambda} \frac{1}{(\lambda - x)} \int_0^t \int_0^\infty \exp(-(\lambda + z - \sigma_*) t) dt
\]

\[
= 2\sqrt{\lambda} \rho (1 - \frac{\sigma^2}{4\lambda^2}) + \frac{\sigma^2}{4\lambda} \frac{\Gamma(3)}{(\lambda + z - \sigma_*)^3} E_{x_1, x_2 \sim \mu_D} \left[\frac{1}{(\lambda - x)} \right],
\]

which remains bounded when \(z \to 0 \). Similarly, \(\text{Rem}_{T_2} \) can be bounded. Applying a similar trick, \(\text{Rem}_{T_3} \) can be bounded by

\[
\text{Rem}_{T_3} \leq \frac{2\sigma^4}{16\lambda} E_{(x_1, x_2) \sim \mu_D} \left[\frac{1}{(\lambda - x_1)(\lambda - x_2)} \right] \int_0^\infty \int_0^t \exp(-(2\lambda + z - 2\sigma_* t)) dt
\]

\[
= \frac{2\sigma^4}{16\lambda} \frac{\Gamma(3)}{(2\lambda + z - 2\sigma_*)^3} E_{(x_1, x_2) \sim \mu_D} \left[\frac{1}{(\lambda - x_1)(\lambda - x_2)} \right],
\]

and this once again remains bounded as \(z \to 0 \). Putting everything together and from (2.25), we have the desired result.

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. First, using (1.6), we have,

\[
\lim_{z \to \sigma_*} S(z) = \frac{2}{\sigma_*}, \quad \lim_{z \to \sigma_*} S(z) = -\frac{2}{\sigma_*}.
\]

If \(z_* \) is a real root of \(z = \beta^{-1} S(z/2) = 2z_* \), \(y = 2z_* \) is a real root of the fixed point equation \(2\beta y = S(y) \). In turn, such a root exists if and only if \(2\beta \sigma_* < 2/\sigma_* \), which immediately gives us the desired conclusion.
Consider first the regime $2\tilde{\lambda} > s_\beta$. Observe that (2.5) implies,
\[
\lim_{t \to \infty} \exp(-2\tilde{\lambda}t)g^2(t) = \lambda \rho^2 \left(1 - \frac{\sigma^2}{4\lambda^2}\right)^2.
\]
Further, Lemma 2.3 implies that as $z \to 0$ along a sector,
\[
zL_h(2\tilde{\lambda} + z) \to 2\lambda^2 \rho^2 \left(1 - \frac{\sigma^2}{4\lambda^2}\right) + \mathbb{E} \left[\frac{1}{(\lambda - \sigma)^2} \right].
\]
Thus Lemma 2.2 implies
\[
\lim_{z \to 0} zL_h(2\tilde{\lambda} + z) = \frac{2\tilde{\lambda}}{2\lambda - \beta^{-1}S(\tilde{\lambda})} \mathbb{E} \left[\frac{1}{(\lambda - \sigma)^2} \right] \lambda^2 \rho^2 \left(1 - \frac{\sigma^2}{4\lambda^2}\right)^2.
\]
Thus using [BADG01, Lemma 7.2],
\[
\lim_{t \to \infty} \exp(-2\tilde{\lambda}t)h(t) = \frac{2\tilde{\lambda}}{2\lambda - \beta^{-1}S(\tilde{\lambda})} \mathbb{E} \left[\frac{1}{(\lambda - \sigma)^2} \right] \lambda^2 \rho^2 \left(1 - \frac{\sigma^2}{4\lambda^2}\right)^2.
\]
Noting that $\rho > 0$, we have,
\[
\lim_{t \to \infty} \frac{g^2(t)}{h(t)} = \frac{2\tilde{\lambda} - \beta^{-1}S(\tilde{\lambda})}{2\lambda} \mathbb{E} \left(\frac{1}{(\lambda - \sigma)^2} \right)^{-1}.
\]
To simplify this, first note that $S'(z) = -\mathbb{E} \left(\frac{1}{(z - \sigma)^2} \right)$. Calculating the exact value of this derivative we obtain that
\[
-\mathbb{E} \left(\frac{1}{(z - \sigma)^2} \right) = \frac{2\sqrt{z^2 - \sigma^2} - z}{\sigma^2 \sqrt{z^2 - \sigma^2}}.
\]
Equating these for $z = \tilde{\lambda}$ yields that
\[
\left[\mathbb{E} \left(\frac{1}{(\lambda - \sigma)^2} \right) \right]^{-1} = \lambda^2 \left(1 - \frac{\sigma^2}{4\lambda^2}\right).
\]
Putting things together,
\[
\lim_{t \to \infty} \frac{g^2(t)}{h(t)} = \left(1 - \frac{\beta^{-1}S(\tilde{\lambda})}{2\lambda}\right) \left(1 - \frac{\sigma^2}{4\lambda^2}\right).
\]
Now note that $S(\tilde{\lambda}) = 1/\lambda$, so the final limit becomes
\[
\lim_{t \to \infty} \frac{g^2(t)}{h(t)} = \left(1 - \frac{\beta^{-1}}{2\lambda(\lambda + \sigma^2/4\lambda)}\right) \left(1 - \frac{\sigma^2}{4\lambda^2}\right).
\]
It remains to analyze the sub-critical regime $2\tilde{\lambda} < s_\beta$. Using Lemma 2.2, we note that $L_h(\cdot)$ has a simple pole at s_β. Thus there exists $C_1 > 0$ such that
\[
\lim_{z \to 0} zL_h(s_\beta + z) = C_1 \neq 0.
\]
In turn, this implies
\[
\lim_{t \to \infty} \exp(-s_\beta t)h(t) = C_1.
\]
This completes the proof in this sub-case, as $\lim_{t \to \infty} g^2(t)/h(t) = 0$ immediately in this case.

Finally, we focus on the case $\rho = 0$. Lemma 2.1 implies that $g = 0$ in this case. On the other hand, in this case $\Phi(t) = 2\mathbb{E}[\mathcal{Y}_0^2] \mathbb{E}[\exp(2t\sigma)]$. Thus using Lemma 2.2, we note that the leading asymptotics of $h(\cdot)$ is determined by the pole at s_β. Specifically, $\lim_{t \to \infty} h(t) \neq 0$, which concludes the proof.
3 Proof of Theorem 1.1

Setting $U = GV \in \mathbb{R}^N$, the dynamics under the rotated coordinate system $Y_t := GX_t$ can be expressed as

$$dY_t^i = U^i(U, Y_t)dt + \sigma^i Y_t^i dt - f'(\langle Y_t \rangle^2 / N)Y_t^i dt + \beta^{-1/2} dB_t^i. \quad (3.1)$$

Setting $u^i = \sqrt{N} u^i$, we note that Eqn. (3.1) reduces to

$$dY_t^i = u^i R^N(t) dt + (\sigma^i - f'(K^N(u)))Y_t^i dt + \beta^{-1/2} dB_t^i. \quad (3.2)$$

Utilizing this expression, one can verify that Y_t^i takes the following integral form

$$Y_t^i = \exp \left\{ \int_0^t \left[\sigma^i - f'(K^N(s)) \right] ds \right\} \left\{ Y_0^i + u^i \int_0^t \exp \left\{ - \int_0^s \left[\sigma^i - f'(K^N(r)) \right] dr \right\} R^N(s) ds \right\} + \beta^{-1/2} \int_0^t \exp \left\{ \int_s^t \left[\sigma^i - f'(K^N(r)) \right] dr \right\} dB_t^i. \quad (3.3)$$

We first re-express the solution of our SDE.

Lemma 3.1. Define $F_t(K, \lambda) = f'(K(t, t)) - \lambda$. Then we have,

$$Y_t^i = Y_0^i \exp \left[- \int_0^t F_s(K^N, \sigma_i) ds \right] + \int_0^t \exp \left[- \int_s^t F_s(K^N, \sigma_i) ds \right] u_t R^N(s) ds + \beta^{-1/2} B_t^i - \beta^{-1/2} \int_0^t B_t^i F_s(K^N, \sigma_i) \exp \left[- \int_s^t F_s(K^N, \sigma_i) ds \right] ds. \quad (3.5)$$

Proof. The proof follows by an application of the integration by parts formula $\int_0^t f_s dB_s = f_t B_t - \int_0^t B_s f'_s ds$ on the solution (3.3).

Definition 3.2. We define the empirical measure

$$\nu = \frac{1}{N} \sum_i \delta_{Y_0^i, u^i, \sigma^i, B_t^i}, \quad (3.6)$$

where the fourth marginal is an empirical distribution on the path space $C[0, T]$.

Consider the following collections of functions, with domain space $\mathbb{R}^3 \times C[0, T]$ and range space one of $C[0, T]^j$ for $j = 1, 2, 3$:

$$\mathcal{F}_j \subset \{ f : \mathbb{R}^3 \times C[0, T] \to C([0, T]^j) \}, \quad j = 1, 2, 3,$$

with

$$\begin{align*}
\mathcal{F}_1 &= \{ f_{j, j} : f_{1}(Y_0, u, \sigma, B_t)(w) = u Y_0 \exp(w \sigma), f_2(\cdot)(w) = u^2 \exp(w \sigma), f_3(\cdot)(t) = u B_t, \\
& \quad f_4(\cdot)(w) = Y_0^2 \exp(w \sigma), f_5(\cdot)(w) = \sigma Y_0 \exp(w \sigma) \}, \\
\mathcal{F}_2 &= \{ f_6, \ldots, f_9 : f_6(Y_0, u, \sigma, B_t)(t, w) = u B_t \exp(w \sigma), f_7(\cdot)(t, w) = u B_t \sigma \exp(w \sigma), \\
& \quad f_8(\cdot)(t, s) = B_t B_s, f_9(\cdot)(s, w) = Y_0 B_s \exp(w \sigma) \}, \\
\mathcal{F}_3 &= \{ f_{10}, f_{11}, f_{12} : f_{10}(Y, u, \sigma, B_t)(s_1, s_2, w) = B_{s_1} B_{s_2} \exp(w \sigma), \\
& \quad f_{11}(\cdot)(s_1, s_2, w) = \sigma B_{s_1} B_{s_2} \exp(w \sigma), f_{12}(\cdot)(s_1, s_2, w) = \sigma^2 B_{s_1} B_{s_2} \exp(w \sigma) \}
\end{align*}$$

Finally, define

$$\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3. \quad (3.7)$$
All functions in \mathcal{F} have the same domain. To simplify notation, for elements in \mathcal{F}_1, we use $f(\cdot)(w)$ to mean $f(Y_0, u, \sigma, B_s) \in R^3 \times C[0, T]$. Similarly for elements in \mathcal{F}_2 and \mathcal{F}_3.

Define $C_N = \{ \int fd\nu : f \in \mathcal{F} \}$ and note that for $f \in \mathcal{F}_j$, $\int fd\nu \in C[0, T]^j$, $j = 1, 2, 3$. We introduce the following convention: for a discrete set $S = \{s_1, \ldots, s_k\}$ and a function $f(\cdot)$, $f(S) = f(s_1, \ldots, s_k)$. The next result establishes that for all $N \geq 1$, (R_N, K_N) depend on ν through the statistics C_N.

Lemma 3.3. There exist functions

\[
\Phi^{(1)} : C[0, T] \times C([0, T]^2) \times C([0, T]^{2 \times |F_1|}) \times C([0, T]^{2 \times |F_2|}) \times C([0, T]^{2 \times |F_3|}) \rightarrow C[0, T],
\]

\[
\Phi^{(2)} : C[0, T] \times C([0, T]^2) \times C([0, T]^{2 \times |F_1|}) \times C([0, T]^{2 \times |F_2|}) \times C([0, T]^{2 \times |F_3|}) \rightarrow C([0, T]^2),
\]

such that

\[
R_N = \Phi^{(1)}(R_N, K_N, C_N), \quad K_N = \Phi^{(2)}(R_N, K_N, C_N). \tag{3.8}
\]

Proof. To this end, we combine (3.5) with the definition of R_N to get a fixed point equation

\[
R^N(t) = \frac{1}{N} \sum_{i=1}^N u_i Y_0^i \exp \left[- \int_0^t (f'(K^N(s)) - \sigma^i) ds \right] + \frac{1}{N} \sum_{i=1}^N (u_i)^2 \int_0^t \exp \left[- \int_s^t (f'(K^N(s_1)) - \sigma^i) ds_1 \right] R^N(s) ds
\]

\[+ \frac{\beta^{-1/2}}{N} \sum_{i=1}^N u_i B_i - \frac{1}{N} \sum_{i=1}^N u_i \int_0^t B^i_s (f'(K^N(s)) - \sigma^i) \exp \left[- \int_s^t (f'(K^N(s_1)) - \sigma^i) ds_1 \right] ds. \tag{3.9}
\]

This implicitly specifies the function $\Phi^{(1)}$. The corresponding equation for K^N is more involved. To track this representation systematically, we recall the representation of the solution Y_t^i from (3.5), and denote $Y_t^i := \sum_{j=1}^5 T_j^i(t)$, where the $T_j^i(t)$ represent the respective terms in the RHS of (3.5). Now, recall that $K^N(t, s) = \frac{1}{N} \sum_{i=1}^N Y_t^i Y_s^i$, and therefore

\[
K^N(t, s) = \sum_{j=1}^5 \frac{1}{N} \sum_{i=1}^N T_j^i(t) T_j^i(s) + \sum_{1 \leq j_1 < j_2 \leq 5} \left[\frac{1}{N} \sum_{i=1}^N T_{j_1}^i(t) T_{j_2}^i(s) + \frac{1}{N} \sum_{i=1}^N T_{j_1}^i(s) T_{j_2}^i(t) \right]. \tag{3.10}
\]

We argue that the RHS above is a continuous function of R_N, K^N and ν. To this end, we record these terms explicitly. Define

\[
H^\theta_\nu(K) = \exp \left[- \int_\tau^\theta f'(K(\xi)) d\xi \right], \quad D H^\theta_\nu = \frac{dH^\theta_\nu(K)}{d\tau} = f'(K(\tau)) \exp \left[- \int_\tau^\theta f'(K(\xi)) d\xi \right]. \tag{3.11}
\]

First, we present the “diagonal” terms.

\[
\frac{1}{N} \sum_{i=1}^N T_1^i(t) T_1^i(s) = \frac{1}{N} \sum_{i=1}^N (Y_0^i)^2 \exp(\sigma^i(t + s)) H^\theta_0(K^N) H^\theta_0(K^N),
\]

\[
\frac{1}{N} \sum_{i=1}^N T_2^i(t) T_2^i(s) = \int_0^t \int_0^s \frac{1}{N} \sum_{i=1}^N (u_i)^2 \exp(\sigma^i(t + s - s_1 - s_2)) H^\theta_{s_1}(K^N) H^\theta_{s_2}(K^N) R^N(s_1) R^N(s_2) ds_1 ds_2,
\]

\[15\]
\[
\frac{1}{N} \sum_{i=1}^{N} T_{3i}(t)T_{3i}(s) = \frac{1}{N} \sum_{i=1}^{N} B_{s1}^i B_{s2}^i,
\]

\[
\frac{1}{N} \sum_{i=1}^{N} T_{4i}(t)T_{4i}(s) = \frac{1}{N} \sum_{i=1}^{N} \int_0^t \int_0^s B_{s1}^i B_{s2}^i \int_0^t \int_0^s (K^N)DH_{s1}^i(K^N) \exp(\sigma^i(t+s-s_1-s_2))ds_1 ds_2,
\]

\[
\frac{1}{N} \sum_{i=1}^{N} T_{5i}(t)T_{5i}(s) = \frac{1}{N} \sum_{i=1}^{N} (\sigma^i)^2 \int_0^t \int_0^s B_{s1}^i B_{s2}^i \exp(\sigma^i(t+s-s_1-s_2))ds_1 ds_2.
\]

Next, we present the “off-diagonal” terms.

\[
\frac{1}{N} \sum_{i=1}^{N} [T_{1i}(t)T_{2i}(s) + T_{1i}(s)T_{2i}(t)] = H_0^i(K^N) \int_0^t \frac{1}{N} \sum_{i=1}^{N} u^i Y_0^i \exp(\sigma^i(t+s-s_1))H_{s1}^i(K^N)R^N(s_1)ds_1
\]

\[
+ H_0^i(K^N) \int_0^t \frac{1}{N} \sum_{i=1}^{N} u^i Y_0^i \exp(\sigma^i(t+s-s_1))H_{s1}^i(K^N)R^N(s_1)ds_1,
\]

\[
\frac{1}{N} \sum_{i=1}^{N} [T_{1i}(t)T_{3i}(s) + T_{1i}(s)T_{3i}(t)] = H_0^i(K^N) \frac{1}{N} \sum_{i=1}^{N} \sigma^i Y_0^i \exp(\sigma^i(t+s-s_1))H_{s1}^i(K^N)ds_1
\]

\[
+ H_0^i(K^N) \frac{1}{N} \sum_{i=1}^{N} \sigma^i Y_0^i \exp(\sigma^i(t+s-s_1))H_{s1}^i(K^N)ds_1,
\]

\[
\frac{1}{N} \sum_{i=1}^{N} [T_{1i}(t)T_{4i}(s) + T_{1i}(s)T_{4i}(t)] = H_0^i(K^N) \frac{1}{N} \sum_{i=1}^{N} \int_0^t \frac{1}{N} \sum_{i=1}^{N} u^i B_{s1}^i \exp(\sigma^i(t+s-s_1))H_{s1}^i(K^N)R^N(s_1)ds_1
\]

\[
+ H_0^i(K^N) \frac{1}{N} \sum_{i=1}^{N} \int_0^t \frac{1}{N} \sum_{i=1}^{N} u^i B_{s1}^i \exp(\sigma^i(t+s-s_1))H_{s1}^i(K^N)R^N(s_1)ds_1,
\]

\[
\frac{1}{N} \sum_{i=1}^{N} [T_{2i}(t)T_{3i}(s) + T_{2i}(s)T_{3i}(t)] = H_0^i(K^N) \frac{1}{N} \sum_{i=1}^{N} \sigma^i B_{s1}^i \exp(\sigma^i(t-s_1))H_{s1}^i(K^N)R^N(s_1)ds_1
\]

\[
+ H_0^i(K^N) \frac{1}{N} \sum_{i=1}^{N} \sigma^i B_{s1}^i \exp(\sigma^i(t-s_1))H_{s1}^i(K^N)R^N(s_1)ds_1,
\]

\[
\frac{1}{N} \sum_{i=1}^{N} [T_{2i}(t)T_{4i}(s) + T_{2i}(s)T_{4i}(t)] = H_0^i(K^N) \frac{1}{N} \sum_{i=1}^{N} \int_0^s \frac{1}{N} \sum_{i=1}^{N} u^i B_{s1}^i \exp(\sigma^i(t+s-s_1-s_2))H_{s1}^i(K^N)R^N(s_1)ds_1 ds_2
\]

\[
+ H_0^i(K^N) \frac{1}{N} \sum_{i=1}^{N} \int_0^s \frac{1}{N} \sum_{i=1}^{N} u^i B_{s1}^i \exp(\sigma^i(t+s-s_1-s_2))H_{s1}^i(K^N)R^N(s_1)ds_1 ds_2.
\]
\[
\frac{1}{N} \sum_{i=1}^{N} [T^i_2(t)T^i_3(t) + T^i_2(s)T^i_5(t)] = \beta^{-1/2} \int_0^t \int_0^s \frac{1}{N} \sum_{i=1}^{N} u^i \sigma^i B^i_{s_2} \exp(\sigma^i(t + s - s_1 - s_2))H^i_{s_1}(K^N)R^N(s_1)ds_1 \, ds_2 \\
+ \beta^{-1/2} \int_0^t \int_0^s \frac{1}{N} \sum_{i=1}^{N} u^i \sigma^i B^i_{s_1} \exp(\sigma^i(t + s_1 - s - s_2))H^i_{s_1}(K^N)R^N(s_2)ds_1 \, ds_2 ,
\]

\[
\frac{1}{N} \sum_{i=1}^{N} [T^i_2(t)T^i_4(s) + T^i_3(s)T^i_5(t)] = -\beta^{-1} \frac{1}{N} \sum_{i=1}^{N} B^i_{s_1} B^i_{s_1} \exp(\sigma^i(s - s_1))DH^i_{s_1}(K^N)ds_1 \\
- \beta^{-1} \frac{1}{N} \sum_{i=1}^{N} B^i_{s_1} B^i_{s_1} \exp(\sigma^i(t - s_1))DH^i_{s_1}(K^N)ds_1 \\
\]

\[
\frac{1}{N} \sum_{i=1}^{N} [T^i_4(t)T^i_5(s) + T^i_4(s)T^i_5(t)] = \beta^{-1} \int_0^t \frac{1}{N} \sum_{i=1}^{N} \sigma^i B^i_{s_1} B^i_{s_2} \exp(\sigma^i(s - s_1))ds_1 + \beta^{-1} \int_0^t \frac{1}{N} \sum_{i=1}^{N} \sigma^i B^i_{s_1} B^i_{s_1} \exp(\sigma^i(t - s_1))ds_1 ,
\]

\[
\frac{1}{N} \sum_{i=1}^{N} [T^i_4(t)T^i_6(s) + T^i_5(s)T^i_5(t)] = -\beta^{-1} \frac{1}{N} \sum_{i=1}^{N} \sigma^i B^i_{s_1} B^i_{s_2} \exp(\sigma^i(t + s - s_1 - s_2))DH^i_{s_1}(K^N)ds_1 \, ds_2 \\
- \beta^{-1} \frac{1}{N} \sum_{i=1}^{N} \sigma^i B^i_{s_1} B^i_{s_2} \exp(\sigma^i(t + s_1 - s_1 - s_2))DH^i_{s_1}(K^N)ds_1 \, ds_2 .
\]

This specifies the function \(\Phi^{(2)} \) implicitly.

Given Lemma 3.3, we next establish that \(R^N, K^N \) are, in fact, functions of the low-dimensional statistics \(\mathcal{C}_N \).

Lemma 3.4. There exist functions

\[
\Psi^{(1)} : C[0,T]^{|\mathcal{F}_1|} \times C([0,T]^2)^{|\mathcal{F}_2|} \times C([0,T]^3)^{|\mathcal{F}_3|} \to C[0,T] ,
\]

\[
\Psi^{(2)} : C[0,T]^{|\mathcal{F}_1|} \times C([0,T]^2)^{|\mathcal{F}_2|} \times C([0,T]^3)^{|\mathcal{F}_3|} \to C([0,T]^2)
\]

such that

\[
R^N = \Psi^{(1)}(\mathcal{C}_N) , \quad K^N = \Psi^{(2)}(\mathcal{C}_N).
\]

To this end, our main strategy is to apply a Picard iteration scheme on the fixed point equations (3.8). We start with some initial guess \(R^N_0, K^N_0 \), and carry out the iterative updates

\[
R^N_{m+1} = \Phi^{(1)}(R^N_m, K^N_m, \mathcal{C}_N) , \quad K^N_{m+1} = \Phi^{(2)}(R^N_m, K^N_m, \mathcal{C}_N).
\]

(3.12)

We will show that this iteration system is contractive, and thus identify \(R^N, K^N \) as the unique fixed points of this system. In this endeavor, we will utilize the precise form of the functions \(\Phi^{(1)}, \Phi^{(2)} \) as described in the proof of Lemma 3.3. First, we need some preliminary estimates.

Lemma 3.5. Recall that \(f' \), defined in (1.2), is non-negative and Lipschitz. Then we have that

(i) for any \(m, N \geq 1, 0 \leq H^m_0(K^N_m) \leq 1. \)

(ii) For any \(0 \leq t \leq T, N, m \geq 1, \int_0^t |DH^m_t(K^N_m)|dt \leq 1. \)
Proof of Lemma 3.5. The parts (i)-(iv) are directly adapted from [BADG01], and are just collected here for the convenience of the reader. We prove (v). Note that

\[|m| \leq \sup_{t \leq \theta} |H^\theta_t(K_{m+1}^N) - H^\theta_t(K_m^N)| \leq \| f' \|_L \int_0^\theta |K_{m+1}^N(s, s) - K_m^N(s, s)| \, ds \quad (3.13) \]

(iv) For any \(N, m \geq 1, 0 \leq \tau \leq \theta \leq T \),

\[|DH^\theta_t(K_{m+1}^N) - DH^\theta_t(K_m^N)| \leq \| f' \|_L \left[|K_{m+1}^N(\tau, \tau) - K_m^N(\tau, \tau)| + (DH^\theta_t(K_{m+1}^N) + DH^\theta_t(K_m^N)) \right] \int_0^\theta |K_{m+1}^N(s, s) - K_m^N(s, s)| \, ds \]

(v) With probability 1, there exist \(C_0, C_1 \) (possibly random), depending on \(T \) such that

\[\sup_{m \geq 1} \| R_m^N \|_{\infty} \leq C_0 \exp(C_1 T) \quad (3.14) \]

Proof of Lemma 3.5. The parts (i)-(iv) are directly adapted from [BADG01], and are just collected here for the convenience of the reader. We prove (v). Note that

\[
R_{m+1}^N(t) = H_0^t(K_m^N) + \frac{1}{N} \sum_{i=1}^N u^i Y_0^i \exp(\sigma^i t) + \frac{1}{N} \sum_{i=1}^N (u^i)^2 \int_0^t \exp(\sigma^i(t-s)) R_m^N(s) H_0^t(K_m^N) \, ds \\
+ \frac{\beta^{-1/2}}{N} \sum_{i=1}^N u^i B^i - \frac{1}{N} \sum_{i=1}^N u^i \int_0^t B^i \exp(\sigma^i(t-s)) DH^t_s(K_m^N) \, ds + \frac{1}{N} \sum_{i=1}^N u^i \sigma^i \int_0^t B^i \exp(\sigma^i(t-s)) H^t_s(K_m^N) \, ds .
\]

This implies

\[
|R_{m+1}^N(t)| \leq |H_0^t(K_m^N)| \cdot \left[\frac{1}{N} \sum_{i=1}^N u^i Y_0^i \exp(\sigma^i t) \right] + \int_0^t \left[\frac{1}{N} \sum_{i=1}^N (u^i)^2 \exp(\sigma^i(t-s)) \right] \cdot |H_0^t(K_m^N)| \cdot |R_m^N(s)| \, ds + \frac{\beta^{-1/2}}{N} \sum_{i=1}^N u^i B^i \\
+ \int_0^t \left[\frac{1}{N} \sum_{i=1}^N u^i B^i \exp(\sigma^i(t-s)) \right] \cdot |DH^t_s(K_m^N)| \, ds + \int_0^t \left[\frac{1}{N} \sum_{i=1}^N u^i \sigma^i B^i \exp(\sigma^i(t-s)) \right] \cdot |H^t_s(K_m^N)| \, ds .
\]

Thus there exists \(C_0, C_1 > 0 \) (possibly random), independent of \(m \), such that

\[
\sup_{0 \leq t \leq T} |R_{m+1}^N(t)| \leq C_0 + C_1 \int_0^T |R_m^N(s)| \, ds .
\]

Iterating this bound in \(m \), we obtain

\[
\sup_{0 \leq t \leq T} |R_{m+1}^N(t)| \leq C_0 \exp(C_1 T) .
\]

This completes the proof. \(\blacksquare \)

Armed with Lemma 3.5, we turn to a proof of Lemma 3.4.
Proof of Lemma 3.4. First observe that for any $m \geq 1$, (3.9) implies
\[
R^N_{m+1}(t) - R^N_m(t) = \frac{1}{N} \sum_{i=1}^N u^i Y^i_0 \exp(\sigma^i t)(H^i_0(K^N_m) - H^i_0(K^N_{m-1}))
\]
\[+ \int_0^t \frac{1}{N} \sum_{i=1}^N (u^i)^2 \exp(\sigma^i (t-s))(R^N_m(s)H^i_s(K^N_m) - R^N_{m-1}(s)H^i_s(K^N_{m-1}))ds
\]
\[- \int_0^t \frac{1}{N} \sum_{i=1}^N u^i B^i_s \exp(\sigma^i (t-s))(DH^i_s(K^N_m) - DH^i_s(K^N_{m-1}))ds
\]
\[+ \int_0^t \frac{1}{N} \sum_{i=1}^N u^i \sigma^i B^i_s \exp(\sigma^i (t-s))(H^i_s(K^N_m) - H^i_s(K^N_{m-1}))ds.
\]
This implies, using Lemma 3.5, there exists a constant $C > 0$ such that
\[
\sup_{0 \leq t \leq T} |R^N_{m+1}(t) - R^N_m(t)|
\leq C \left[\int_0^T |K^N_m(\tau, \tau) - K^N_{m-1}(\tau, \tau)|d\tau + \sup_{[0, T]} \int_0^t |R^N_m(s)H^i_s(K^N_m) - R^N_{m-1}(s)H^i_s(K^N_{m-1})|ds \right]. \tag{3.15}
\]
To control the second term, we observe,
\[
|R^N_m(s)H^i_s(K^N_m) - R^N_{m-1}(s)H^i_s(K^N_{m-1})|
\leq |R^N_m(s)| \cdot |H^i_s(K^N_m) - H^i_s(K^N_{m-1})| + |H^i_s(K^N_{m-1})| \cdot |R^N_m(s) - R^N_{m-1}(s)|,
\]
which directly implies
\[
\sup_{[0, T]} \int_0^t |R^N_m(s)H^i_s(K^N_m) - R^N_{m-1}(s)H^i_s(K^N_{m-1})|ds
\leq \int_0^T |K^N_m(s, s) - K^N_{m-1}(s, s)|ds + \int_0^T |R^N_m(s) - R^N_{m-1}(s)|ds.
\]
Plugging this back into (3.15), there exists $C > 0$ (independent of m) such that
\[
\|R^N_{m+1} - R^N_m\|_\infty := \sup_{t \in [0, T]} |R^N_{m+1}(t) - R^N_m(t)|
\leq C \left[\int_0^T |K^N_m(s, s) - K^N_{m-1}(s, s)|ds + \int_0^T |R^N_m(s) - R^N_{m-1}(s)|ds \right].
\]
Analyzing the iterative update equation for K^N_m, one can derive a similar bound.
\[
\|K^N_{m+1} - K^N_m\|_\infty := \sup_{s, \in [0, T]^2} |K^N_{m+1}(s, t) - K^N_m(s, t)|
\leq C \left[\int_0^T |K^N_m(s, s) - K^N_{m-1}(s, s)|ds + \int_0^T |R^N_m(s) - R^N_{m-1}(s)|ds \right]. \tag{3.16}
\]
Iterating these bounds, it follows that there exists $C_1 > 0$ such that
\[
\max\{\|R^N_{m+1} - R^N_m\|_\infty, \|K^N_{m+1} - K^N_m\|_\infty\} \leq 2^m C^m C_1 \frac{T^m}{m!}.
\]
Thus the iteration is contractive, and the fixed point system (3.8) has a unique fixed point for each $N \geq 1$. This completes the proof.
Finally, we will establish that \(\Psi^{(1)}, \Psi^{(2)}\) derived in Lemma 3.4 are continuous functions. To this end, recall that

\[
\Psi^{(1)} : C[0, T]|^{F_3} \times C([0, T]^2|^{F_2} | C([0, T]^3|^{F_1} \to C[0, T],
\Psi^{(2)} : C[0, T]|^{F_3} \times C([0, T]^2|^{F_2} | C([0, T]^3|^{F_1} \to C([0, T]^2)
\]

We equip \(C([0, T]^j), j = 1, 2, 3\) with the sup-norm topology. Further, we equip \(C[0, T]|^{F_3} \times C([0, T]^2|^{F_2} \times C([0, T]^3|^{F_1}\) with the product topology. With this notion of convergence, we can establish the following continuity properties of \(\Psi^{(1)}\) and \(\Psi^{(2)}\).

Lemma 3.6. The maps \(\mathcal{C} \mapsto \Psi^{(1)}(\mathcal{C})\) and \(\mathcal{C} \mapsto \Psi^{(2)}(\mathcal{C})\) are continuous.

Proof. We measure the discrepancy between \(\mathcal{C}\) and \(\tilde{\mathcal{C}}\) using the uniform topology on this space, and denote \(d(\mathcal{C}, \tilde{\mathcal{C}}) = \|\mathcal{C} - \tilde{\mathcal{C}}\|_{\infty}\). Define \(R, K, \tilde{R}, \tilde{K}\) via the fixed point equations

\[
R = \Phi^{(1)}(R, K, \mathcal{C}), \quad K = \Phi^{(2)}(R, K, \mathcal{C}), \quad \tilde{R} = \Phi^{(1)}(\tilde{R}, \tilde{K}, \tilde{\mathcal{C}}), \quad \tilde{K} = \Phi^{(2)}(\tilde{R}, \tilde{K}, \tilde{\mathcal{C}}).
\]

Observe that

\[
\|R - \tilde{R}\|_{\infty} = \|\Phi^{(1)}(R, K, \mathcal{C}) - \Phi^{(1)}(\tilde{R}, \tilde{K}, \tilde{\mathcal{C}})\|_{\infty}
\leq \|\Phi^{(1)}(R, K, \mathcal{C}) - \Phi^{(1)}(\tilde{R}, \tilde{K}, \tilde{\mathcal{C}})\|_{\infty} + \|\Phi^{(1)}(\tilde{R}, \tilde{K}, \tilde{\mathcal{C}}) - \Phi^{(1)}(\tilde{R}, \tilde{K}, \tilde{\mathcal{C}})\|_{\infty}.
\]

Controlling the second term, we note from (3.9) that

\[
\|\Phi^{(1)}(\tilde{R}, \tilde{K}, \tilde{\mathcal{C}}) - \Phi^{(1)}(\tilde{R}, \tilde{K}, \tilde{\mathcal{C}})\|_{\infty} \leq \|\mathcal{C} - \tilde{\mathcal{C}}\|_{\infty}.
\]

On the other hand, using the same argument as in the proof of Lemma 3.4, we have that

\[
\|\Phi^{(1)}(R, K, \mathcal{C}) - \Phi^{(1)}(\tilde{R}, \tilde{K}, \tilde{\mathcal{C}})\|_{\infty} \leq C \left[\int_0^T |K(s, s) - \tilde{K}(s, s)| ds + \int_0^T |R(s) - \tilde{R}(s)| ds \right].
\]

Combining, we obtain,

\[
\|R - \tilde{R}\|_{\infty} \leq \|\mathcal{C} - \tilde{\mathcal{C}}\|_{\infty} + C \left[\int_0^T |K(s, s) - \tilde{K}(s, s)| ds + \int_0^T |R(s) - \tilde{R}(s)| ds \right].
\]

Thus there exists \(C' > 0\) such that

\[
\|R - \tilde{R}\|_{\infty} \leq \|\mathcal{C} - \tilde{\mathcal{C}}\|_{\infty} \exp(C'T).
\]

Thus \(\mathcal{C} \mapsto \Psi^{(1)}(\mathcal{C})\) is Lipschitz. The argument for \(\Psi^{(2)}\) is analogous, and thus omitted. This completes the proof.

Our next lemma establishes that under the two initial conditions introduced in Section 1, the low-dimensional statistics \(\mathcal{C}_N\) converge almost surely to deterministic limits. We defer the proof of this lemma to Section 3.1.

Lemma 3.7. Under the i.i.d. and i.i.d. under rotated basis initial conditions, each element in \(\mathcal{C}_N\) converges to deterministic limits almost surely.

Finally, we complete the proof of Theorem 1.1, assuming Lemma 3.4, 3.6 and Lemma 3.7.
Proof of Theorem 1.1. Fix $T > 0$. Lemma 3.4, 3.6 and 3.7 together imply that R^N, K^N converge to deterministic functions R and K respectively. It remains to characterize these limits. Note that from (3.3),

$$Y_t^j = \exp \left\{ \int_0^t \left[\sigma^i - f'(K^N(s)) \right] ds \right\} \left\{ Y_0^j + u^i \int_0^t \exp \left\{ - \int_0^s \left[\sigma^i - f'(K^N(r)) \right] dr \right\} R^N(s) ds \right\}$$

$$+ \beta^{-1/2} \int_0^t \exp \left\{ \int_0^t \left[\sigma^i - f'(K^N(r)) \right] dr \right\} dB^i_s. \quad (3.17)$$

We recall that $R^N(t) = \frac{1}{N} \sum_{i=1}^N u^i Y_t^j$ and $K^N(t, s) = \frac{1}{N} \sum_{i=1}^N Y_t^i Y_s^j$, and that $R^N \to R$, $K^N \to K$ uniformly. Thus calculating R^N, K^N and setting $N \to \infty$, we obtain the desired fixed point equations in the limit. Note that the final limit operation requires that $\nu = \frac{1}{N} \sum_{i=1}^N \delta_{Y_t^i, u^i, \sigma^i, B^i_t}$ converges to the claimed limits under the i.i.d. and rotated i.i.d. initial conditions. ■

3.1 Proof of Lemma 3.7

We prove Lemma 3.7 in this section. Note that for $f \in \mathcal{F}_j$, $j = 1, 2, 3$, $\int f d\nu \in \mathcal{C}(0, T]^j)$. Thus in the lemma above, we mean specifically that $\int f d\nu$ converges almost surely as a $\mathcal{C}(0, T]^j$-valued random variable. Throughout, we equip $\mathcal{C}(0, T]^j)$ with a sup-norm.

Proof. Before embarking on a formal proof, we summarize our general proof strategy. The proof follows in two stages—first, we establish that for any fixed $x, y \in [0, T]^j$ and sufficiently large n, the following holds for each element of \mathcal{F}_j, that almost surely, for any $x, y \in [0, 1]^j$,

$$| \int f d\nu(x) - \int f d\nu(y) | \leq C \| x - y \|^\alpha. \quad (3.19)$$

Before we delve into the proof, we argue that (3.19) suffices to establish convergence of $\int f d\nu$ to $\mathbb{E} \int f d\nu$ in sup-norm.

To see this, first observe that for every $f \in \mathcal{F}_j$, $j = 1, 2, 3$, $\mathbb{E}[\int f d\nu] \in \mathcal{C}(0, T]^j)$, by the explicit form of these functions. Thus $\mathbb{E}[\int f d\nu](\cdot)$ is uniformly continuous on $[0, T]^j$. This implies that if we fix $\epsilon > 0$, there exists $\delta_f > 0$ such that whenever $|t_1 - t_2| \leq \delta_f$, we have that

$$| \mathbb{E} \left[\int f d\nu \right] (t_1) - \mathbb{E} \left[\int f d\nu \right] (t_2) | \leq \epsilon.$$

Define $\delta = \min \{ \delta_f : f \in \mathcal{F} \}$ and fix any $0 < \delta' < \delta$. Let $\{x_1, \ldots, x_\ell\}$ denote a δ'-net of $[0, 1]^j$. For any $y \in [0, T]^j$, if we denote x_i to be the nearest point in the net, we know that for sufficiently large $n,

$$\left| \left[\int f d\nu \right](y) - \mathbb{E}\left[\int f d\nu \right] (y) \right| \leq \left| \left[\int f d\nu \right](y) - \left[\int f d\nu \right](x_i) \right|$$

$$+ \left| \left[\int f d\nu \right](x_i) - \mathbb{E}\left[\int f d\nu \right] (x_i) \right| + \mathbb{E}\left[\int f d\nu \right] (x_i) - \mathbb{E}\left[\int f d\nu \right] (y) \leq C(\delta')^\alpha + 2\epsilon. \quad (3.20)$$

Since the RHS does not depend on y, and $\epsilon, \delta' > 0$ can be arbitrary as long as $\delta' < \delta$, we have the required sup-norm convergence of $\int f d\nu$ as a function on $\mathcal{C}(0, T]^j)$. We shall next establish Holder continuity of $\int f d\nu$ (uniformly in n), that is, property (3.19) for each $f \in \mathcal{F}$. 21
To begin, let us consider f_1. Observe that

$$\left| \frac{1}{N} \sum_{i=1}^{N} u^i Y^i_0 \exp(w_1 \sigma^i) - \frac{1}{N} \sum_{i=1}^{N} u^i Y^i_0 \exp(w_2 \sigma^i) \right| \leq \frac{\exp(\|\sigma\|_\infty T)}{N} \left(\frac{1}{N} \sum_{i=1}^{N} |u^i| \|Y^i_0\| \right) |w_1 - w_2|$$

(3.21)

$$\leq C|w_1 - w_2|,$$

where the last inequality is true a.s. with C independent of N only for sufficiently large n on using the SLLN. Thus f_1 is Lipschitz almost surely for sufficiently large n. For the above upper bound, recall that we always have $\|\sigma\|_\infty \leq 2 \max\{d_+, |d_-|\}$ for n sufficiently large. Similar arguments work for f_2, f_4, f_5, so we skip presenting those details here.

We next turn to f_3. Recall that

$$\frac{1}{N} \sum_{i=1}^{N} u^i B^i_t = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} U^i B^i_t = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} V^i W^i_t,$$

where the last equality follows from the orthogonality of the matrix G. Recall that $V^i \sim \mathcal{N}(0, \frac{1}{N})$. This implies

$$\mathbb{P}\left[\sup_{0 \leq t \leq T} \sum_{i=1}^{N} V^i W^i_t > \sqrt{N} \varepsilon \right] \leq \mathbb{P}\left[\sup_{0 \leq t \leq T} \left| \sum_{i=1}^{N} V^i W^i_t \right| > \sqrt{N} \varepsilon, \sum_{i=1}^{N} (V^i)^2 \leq C \right] + \mathbb{P}\left[\sum_{i=1}^{N} (V^i)^2 \geq C \right]$$

$$\leq 10 \exp(-CN)$$

(3.22)

using standard deviation bounds for the supremum of a Brownian motion and a Chernoff bound on $\sum_{i=1}^{N} (V^i)^2$. This completes the proof for f_3.

Next, we move to functions in F_2. First note that for f_6, we have that $\int f_6 d\nu \to \mathbb{E} \int f_6 d\nu$ on $C([0, T]^2)$, by the Uniform Law of Large Numbers and properties of Brownian Motion. Next, we present the proof for f_6—the proofs for f_7 and f_9 are similar. To show Holder continuity of f_6, set $D_w = \text{diag}(\exp(w \sigma^1), \ldots, \exp(w \sigma^N))$. Then we have,

$$\frac{1}{N} \sum_{i=1}^{N} u^i B^i_t \exp(w \sigma^i) = \frac{1}{\sqrt{N}} V^T G^T D_w G W_t.$$

Thus for any $(t_1, w_1), (t_2, w_2) \in [0, T]^2$,

$$\left| \frac{1}{\sqrt{N}} V^T G^T D_{w_1} G W_{t_1} - \frac{1}{\sqrt{N}} V^T G^T D_{w_2} G W_{t_2} \right|$$

$$\leq \frac{1}{\sqrt{N}} \left| V^T G^T D_{w_1} G (W_{t_1} - W_{t_2}) \right| + \frac{1}{\sqrt{N}} \left| V^T G^T (D_{w_1} - D_{w_2}) G W_{t_2} \right|$$

$$\leq \|G V\|_2 \|D_{w_1}\|_2 \frac{1}{\sqrt{N}} \|W_{t_1} - W_{t_2}\|_2 + \|G V\|_2 \|D_{w_1} - D_{w_2}\|_2 \frac{1}{\sqrt{N}} \|W_{t_2}\|_2.$$

There exists $C > 0$ such that almost surely, $\|G V\|_2 = \|V\|_2 < C$, $\sup_{t \in [0, T]} \|D_{w_1}\|_2 \leq \exp(\|\sigma\|_{\infty} T)$. Further, $\|D_{w_1} - D_{w_2}\|_2 \leq C|w_1 - w_2|$, and

$$\sup_{t_1, t_2 \in [0, T]} \left| \frac{1}{N} \sum_{i=1}^{N} (W^i_{t_1} - W^i_{t_2})^2 \right| \to 0.$$

Thus there exists constants $C, C' > 0$ such that almost surely,

$$\left| \frac{1}{\sqrt{N}} V^T G^T D_{w_1} G W_{t_1} - \frac{1}{\sqrt{N}} V^T G^T D_{w_2} G W_{t_2} \right|$$

$$\leq C(\sqrt{|t_1 - t_2| + |w_1 - w_2|}) \leq C' (\sqrt{|t_1 - t_2| + \sqrt{|w_1 - w_2|}}),$$

22
where the last inequality follows from the fact that $w_1, w_2 \in [0, T]$, so that we always have $\sqrt{|w_1 - w_2|} \leq \sqrt{2T}$. The other functions in \mathcal{F}_2 may be controlled using analogous arguments.

Finally, we move onto the functions in \mathcal{F}_3. We sketch the proof for f_{12}; the same proof works for f_{10}, f_{11}. Set $\tilde{D}_w = \text{diag}((\sigma^i)^2 \exp(w\sigma_i))$. Thus we have, for $(w, s_1, s_2), (w', s_1', s_2') \in [0, T]^3$,

$$
\frac{1}{N} \sum_{i=1}^N (\sigma^i)^2 \exp(w\sigma_i) B_{s_1}^i B_{s_2}^i - \frac{1}{N} \sum_{i=1}^N (\sigma'^i)^2 \exp(w'^\sigma_i) B_{s_1'}^i B_{s_2'}^i \\
= \frac{1}{N} \left| B_{s_1}^i \tilde{D}_w B_{s_2}^i - B_{s_1'}^i \tilde{D}_w B_{s_2'}^i \right| \leq C \left(\sqrt{|s_1 - s_1'|} + |w - w'| + \sqrt{|s_2 - s_2'|} \right) \quad (3.23)
$$

almost surely for some universal constants $C, C' > 0$. This completes the proof for initial condition (ii).

Next, we turn to the initial condition (i). The main difference now lies in the fact that the pointwise almost sure convergence no longer follows directly from SLLN for all choices of \mathcal{F}. First, we observe that the difference in initial conditions only affects f_1, f_4, f_5 and f_9—thus we can restrict to these specific functions. We will use the same strategy to establish functional almost sure convergence, starting from the pointwise a.s. convergence, thus we omit those details. We present the proof for f_1—the proofs for f_4, f_5, f_9 are similar.

Fix $w \in [0, T]$. We have,

$$
\frac{1}{N} \sum_{i=1}^N u^i Y_0^i \exp(w\sigma^i) = \frac{1}{\sqrt{N}} V^T G^T D_w GX_0, \quad (3.24)
$$

where we use $D_w = \text{diag}((\exp(w\sigma^i))$. We observe that

$$
\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^N u^i Y_0^i \exp(w\sigma^i) \right] = \mathbb{E} \left[\mathbb{E} \left[\frac{1}{\sqrt{N}} V^T G^T D_w GX_0 | G, X_0 \right] \right] = 0.
$$

since entries of V are i.i.d. with mean 0. Now, there exists $M_0 > 0$ such that $\mathcal{E}_n = \{ \sum_{i=1}^N (X_0^i)^2 < N \cdot M_0 \}$ occurs eventually almost surely. Given G and X_0, $V^T G^T D_w GX_0 \sim \mathcal{N}(0, \lambda(X_0^i G^i D_w G X_0)/N)$. Moreover,

$$
\frac{X_0^T G^T D_w G X_0}{N} \leq \frac{\|D_w\|_2 \sum_{i=1}^N (X_0^i)^2}{N}.
$$

Thus on the event \mathcal{E}_n, for any $\varepsilon > 0$,

$$
\mathbb{P} \left[\left| \frac{1}{\sqrt{N}} V^T G^T D_w GX_0 \right| > \varepsilon | G, X_0 \right] \leq 2 \exp(-\frac{N\varepsilon^2}{2M'})
$$

for some universal constant $M' > 0$. The proof is complete on using the Borel Cantelli lemma.

References

[ABUZ18] Elisabeth Agoritsas, Giulio Biroli, Pierfrancesco Urbani, and Francesco Zamponi. Out-of-equilibrium dynamical mean-field equations for the perceptron model. Journal of Physics A: Mathematical and Theoretical, 51(8):085002, 2018.

[ACHL19] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix factorization. Advances in Neural Information Processing Systems, 32, 2019.
Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. In International Conference on Machine Learning, pages 322–332. PMLR, 2019.

Ahur Ali, Edgar Dobriban, and Ryan Tibshirani. The implicit regularization of stochastic gradient flow for least squares. In International conference on machine learning, pages 233–244. PMLR, 2020.

G Ben Arous and Alice Guionnet. Symmetric langevin spin glass dynamics. The Annals of Probability, 25(3):1367–1422, 1997.

Gerard Ben Arous and Alice Guionnet. Langevin dynamics for sherrington-kirkpatrick spin glasses. In Mathematical aspects of spin glasses and neural networks, pages 323–353. Springer, 1998.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Algorithmic thresholds for tensor pca. The Annals of Probability, 48(4):2052–2087, 2020.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on non-convex losses from high-dimensional inference. Journal of Machine Learning Research, 22(106):1–51, 2021.

Ahur Ali, J Zico Kolter, and Ryan J Tibshirani. A continuous-time view of early stopping for least squares regression. In The 22nd international conference on artificial intelligence and statistics, pages 1370–1378. PMLR, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized neural networks, going beyond two layers. Advances in neural information processing systems, 32, 2019.

Gérard Ben-Arous, A. Dembo, and A. Guionnet. Aging of spherical spin glasses. Probability Theory and Related Fields, 120(1):1–67, May 2001.

Gérard Ben-Arous, Amir Dembo, and Alice Guionnet. Cugliandolo-Kurchan equations for dynamics of Spin-Glasses. arXiv:math/0409273, September 2004.

Gérard Ben-Arous, Reza Gheissari, and Aukosh Jagannath. Bounding Flows for Spherical Spin Glass Dynamics. Communications in Mathematical Physics, 373(3):1011–1048, February 2020.

Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. The Annals of Probability, 33(5):1643–1697, 2005.

Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Advances in Mathematics, 227(1):494–521, 2011.

Antoine Bodin and Nicolas Macris. Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model. Advances in Neural Information Processing Systems, 34, 2021.

Antoine Bodin and Nicolas Macris. Rank-one matrix estimation: analytic time evolution of gradient descent dynamics. In Conference on Learning Theory, pages 635–678. PMLR, 2021.
[BRT19] Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contradict statistical optimality? In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1611–1619. PMLR, 2019.

[CB20] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks trained with the logistic loss. In Conference on Learning Theory, pages 1305–1338. PMLR, 2020.

[CBS+20] Chiara Cammarota, Giulio Biroli, Stefano Sarao, Lenka Zdeborova, and Florent Krzakala. Who is afraid of big bad minima? analysis of gradient-flow in a spiked matrix-tensor model. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, volume 33, 2020.

[CCM21] Michael Celentano, Chen Cheng, and Andrea Montanari. The high-dimensional asymptotics of first order methods with random data. arXiv preprint arXiv:2112.07572, 2021.

[CHM+15] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben-Arous, and Yann LeCun. The Loss Surfaces of Multilayer Networks. arXiv:1412.0233 [cs], January 2015.

[CK93] Leticia F Cugliandolo and Jorge Kurchan. Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. Physical Review Letters, 71(1):173, 1993.

[CL21] Niladri S Chatterji and Philip M Long. Finite-sample analysis of interpolating linear classifiers in the overparameterized regime. Journal of Machine Learning Research, 22(129):1–30, 2021.

[CLB21] Niladri S Chatterji, Philip M Long, and Peter L Bartlett. When does gradient descent with logistic loss find interpolating two-layer networks? Journal of Machine Learning Research, 22(159):1–48, 2021.

[CS92] Andrea Crisanti and H-J Sommers. The spherical-p-spin interaction spin glass model: the statics. Zeitschrift für Physik B Condensed Matter, 87(3):341–354, 1992.

[DG21] Amir Dembo and Reza Gheissari. Diffusions interacting through a random matrix: universality via stochastic taylor expansion. Probability Theory and Related Fields, 180(3):1057–1097, 2021.

[DGM07] Amir Dembo, Alice Guionnet, and Christian Mazza. Limiting dynamics for spherical models of spin glasses at high temperature. Journal of Statistical Physics, 126(4):781–815, 2007.

[DKT19] Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A model of double descent for high-dimensional binary linear classification. arXiv preprint arXiv:1911.05822, 2019.

[DLZ21] Amir Dembo, Eyal Lubetzky, and Ofer Zeitouni. Universality for langevin-like spin glass dynamics. The Annals of Applied Probability, 31(6):2864–2880, 2021.

[DS20] Amir Dembo and Eliran Subag. Dynamics for spherical spin glasses: disorder dependent initial conditions. Journal of Statistical Physics, 181(2):465–514, 2020.

[GLSS18a] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of optimization geometry. In International Conference on Machine Learning, pages 1832–1841. PMLR, 2018.

[GLSS18b] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on linear convolutional networks. Advances in Neural Information Processing Systems, 31, 2018.
[Gru96] Malte Grunwald. Sanov results for glauber spin-glass dynamics. *Probability theory and related fields*, 106(2):187–232, 1996.

[Gru98] Malte Grunwald. Sherrington-kirkpatrick spin-glass dynamics. In *Mathematical Aspects of Spin Glasses and Neural Networks*, pages 355–382. Springer, 1998.

[JM20] Hui Jin and Guido Montúfar. Implicit bias of gradient descent for mean squared error regression with wide neural networks. *arXiv preprint arXiv:2006.07356*, 2020.

[JT18] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. *arXiv preprint arXiv:1810.02032*, 2018.

[JT19] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In *Conference on Learning Theory*, pages 1772–1798. PMLR, 2019.

[LL18] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient descent on structured data. *Advances in Neural Information Processing Systems*, 31, 2018.

[LL19] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. *arXiv preprint arXiv:1906.05890*, 2019.

[LRZ20] Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of minimum-norm interpolants and restricted lower isometry of kernels. In *Conference on Learning Theory*, pages 2683–2711. PMLR, 2020.

[LS20] Tengyuan Liang and Pragya Sur. A precise high-dimensional asymptotic theory for boosting and minimum-ℓ_1-norm interpolated classifiers. *arXiv preprint arXiv:2002.01586*, 2020.

[LWM19] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large learning rate in training neural networks. *Advances in Neural Information Processing Systems*, 32, 2019.

[MBB18] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the effectiveness of sgd in modern over-parametrized learning. In *International Conference on Machine Learning*, pages 3325–3334. PMLR, 2018.

[MBC+20] Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Marvels and pitfalls of the langevin algorithm in noisy high-dimensional inference. *Physical Review X*, 10(1):011057, 2020.

[MKUZ19] Stefano Sarao Mannelli, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Passed & spurious: Descent algorithms and local minima in spiked matrix-tensor models. In *international conference on machine learning*, pages 4333–4342. PMLR, 2019.

[MKUZ20] Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Dynamical mean-field theory for stochastic gradient descent in gaussian mixture classification. *Advances in Neural Information Processing Systems*, 33:9540–9550, 2020.

[MRSY19] Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of max-margin linear classifiers: High-dimensional asymptotics in the overparametrized regime. *arXiv preprint arXiv:1911.01544*, 2019.

[MWCC18] Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit regularization in nonconvex statistical estimation: Gradient descent converges linearly for phase retrieval and matrix completion. In *International Conference on Machine Learning*, pages 3345–3354. PMLR, 2018.
[MZ20] Stefano Sarao Mannelli and Lenka Zdeborová. Thresholds of descending algorithms in inference problems. *Journal of Statistical Mechanics: Theory and Experiment*, 2020(3):034004, 2020.

[NLG+19] Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 3420–3428. PMLR, 2019.

[SHN+18] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of gradient descent on separable data. *The Journal of Machine Learning Research*, 19(1):2822–2878, 2018.

[SMU21] Stefano Sarao Mannelli and Pierfrancesco Urbani. Analytical study of momentum-based acceleration methods in paradigmatic high-dimensional non-convex problems. *Advances in Neural Information Processing Systems*, 34, 2021.

[SZ81] Haim Sompolinsky and Annette Zippelius. Dynamic theory of the spin-glass phase. *Physical Review Letters*, 47(5):359, 1981.

[SZ82] Haim Sompolinsky and Annette Zippelius. Relaxational dynamics of the edwards-anderson model and the mean-field theory of spin-glasses. *Physical Review B*, 25(11):6860, 1982.

[WLLM19] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and optimization of neural nets vs their induced kernel. * Advances in Neural Information Processing Systems*, 32, 2019.

[ZBH+21] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–115, 2021.