ON THE IMPORTANCE OF SOCIO-CULTURAL ORIENTATION ON QUALITY MANAGEMENT IN THE PRODUCTION OF IMPORT-SUBSTITUTING PRODUCTS AT ENTERPRISES OF SMALL CITIES IN THE SOUTHERN FEDERAL DISTRICT AND NORTH KAZAKHSTAN REGION

Abstract: The article considers the achievement of a radical change in the attitude to the quality of production of import-substituting products at small enterprises of the southern Federal district and the North Caucasus Federal district. The authors have identified three areas of priority for their development, namely; leveling, and geo-economic incentive that ensures success in the sociocultural orientation of the population of small cities in the regions of SFD and NCFD.

Key words: quality, management, production, history, methodology, sustainability, need, consumer, priority, leveling, stimulating, geo-economic, socio-culture.

Language: English

Citation: Bordukh, D. O., Blagorodov, A. A., Prokhorov, V., Volkova, G., & Tikhonova, N. V. (2020). On the importance of socio-cultural orientation on quality management in the production of import-substituting products at enterprises of small cities in the Southern Federal district and North Kazakhstan region. ISJ Theoretical & Applied Science, 10 (90), 142-151.

SOI: http://s-o-i.org/1.1/TAS-10-90-27 DOI: https://dx.doi.org/10.15863/TAS.2020.10.90.27
Scopus ASCC: 2000.
nature" - things transformed from the natural state by human labor. The "primary" qualities of a product or its raw materials are determined by natural reality and are completely independent of man. "Secondary" features, on the other hand, are dependent on human labor. It is labor that reveals them, or creates them, therefore, the quality of objects transformed by labor should be determined with a human assessment. The inclusion of a person as a factor in the production of the quality of goods enhances the influence of the subject of labor on the quality of production and the quality of the goods produced. In this connection, the load on the control process increases.

Management is subordinate to the solution of the problem of sustainable production of a quality product. As in any task, it is necessary here:

- clearly define what is "quality"?
- understand what is specific to the quality of the product?
- to understand how the “quality” of commodity production and its mass production are related, to trace the mechanism of interaction of qualitative changes with quantitative ones.
- to reveal the systemic position of the problem of quality of mass production in the context of a developing economy.

Only after receiving answers to the listed questions, we will be able to productively investigate the problem: "How realistic is our desire to give a mass producer the need for a high-quality product result", in other words, "is it possible to sufficiently motivate the receipt of a quality product from within mass production?"

Main part

The allocation of quality as a goal created the essence requires epistemological and methodological analysis, which is dominated by philosophy. And here any attempt to replace it with a scientific approach will look like a surrogate and lead to undesirable results for scientific research. The noted costs, as a rule, do not appear immediately, which is accompanied by loss of time and unjustified financial costs. The problem of quality, both in theoretical and practical aspects, is key for management within the social movement. Let us allow ourselves a risky passage due to the complexity of the argumentation: social progress lags behind real social opportunities and, above all, the development of natural science and technical sciences based on natural science. The explanation for this discrepancy must be sought in the sphere of political and economic actions, simply put, in the miscalculations of management. Defects of management can be reduced to the influence of social contradictions, however, such a link will deprive us of prospects, since social contradictions are an essential and therefore irreparable feature of modern society. In addition, the specificity of the reality of socio-economic contradictions is different from the ideal reality of thinking. It is not given to them to find themselves in consciousness directly, it is necessary to undergo transformation into the facts of thinking - images, concepts, ideas. In scientific knowledge, this process is methodically regulated and controlled. It is in this that the interests of science meet the potential of philosophy. Scientific knowledge has three options for increment: trying to replace philosophy, which is unprofessional; use a simplified and therefore convenient experience of philosophical reflection; rely on those philosophical ideas that have been tested for millennia. Their value is not always obvious, and they themselves look unusual from the standpoint of traditional logic that fixes the relationship of the products of movement. The choice of ways of thinking in science has little to do with solving educational problems, teaching a scientist how to promote science, making discoveries is absurd. Scientific knowledge can be managed as long as it is carried out at the stage of rational thinking, and a breakthrough through the horizon of available scientific knowledge is being prepared. Then the irrational abilities of consciousness work, cognition goes to the level of inconsistency of thinking, its illogicality [2, p. 52]. The ability to manage in the classical interpretation is lost, but there remains a real perspective to direct the creative process. Moreover, there is a situation of intersection of scientific knowledge and philosophical recommendations, scientific knowledge matures to the need for philosophical support. One should not only get carried away with generalization in the understanding of science. Science is differentiated in detail, which is reflected in the methodological maturity of scientific knowledge and the position of sciences in scientific progress [3, p. 92-93]. In
scientific history, there have been and will be their own leaders who create authority for scientific knowledge. New time and the Industrial Revolution brought the science of nature and its transformation in the interests of mankind into the leading group. Summing up the results of the development of natural science, F. Engels wrote in 1894: “Natural science has advanced so much that it can no longer avoid dialectical generalization. But it will facilitate this process for itself, if we do not forget that the results in which the data of his experience are generalized are the essence of concepts and that the art of operating with concepts is not something innate and is not given together with ordinary, everyday consciousness, but requires real thinking, which also has a long empirical history, as long as the history of the empirical study of nature. When natural science learns to assimilate the results achieved by the development of philosophy over two and a half millennia, it is precisely because of this that it will get rid, on the one hand, of any special philosophy of nature standing outside of it and above it, and on the other, of its own, inherited from English empiricism. limited method of thinking [4, p. fourteen]. One of the founders of dialectical materialism was right. Natural science in the XX century. even more developed in the direction of the dialectical understanding of the world and its knowledge. It not only retained its leading position in scientific progress, but also publicly demonstrated its advantage. Statistics show that physicists and economists are almost equal in number among Nobel laureates. Success is strikingly different. Physicists were the first to "see" the dialectics of nature and to understand the need for dialectical thinking. It is no coincidence that the philosophy of science in the 20th century focused on physical discoveries. Economists, however, are more often bogged down in empirical research, content with the level of mathematical generalization and the specifics of economic mathematics, which mainly describe the products of movement and its statistically expressed tendencies. F. Engels' recommendations are interesting not only for the analytical generalization of the history of scientific thought, but also for the indication of the "technical" division of the process of the formation of scientific theory. The latter makes it possible to give it a universal scale with some correction in connection with the new conditions for the development of scientific knowledge that appeared later, when the "classical" stage of development was replaced by the "non-classical" or "post-classical" one. Formation of a scientific theory can be conditionally divided into several interrelated stages: 1. Obtaining initial knowledge that meets the requirements of scientific character. We are talking about scientific facts described according to certain rules, basically such facts are combined in the concept of "experience". 2. From experience, more precisely, from the facts that make up experience, building up the corresponding initial thoughts regarding their content. K. Popper calls them "basic statements" or "basic judgments." They are substantially limited by the singularity of the fact. A. Neurath calls the initial thoughts "protocol sentences". 3. Formation of individual concepts: from singular (basic) statements of individual origin to universal concepts. 4. Systematization of concepts, the establishment of their relations on the basis of a unifying (backbone) factor. 5. Determination of trends and patterns of change in the system in the process of its functioning in interaction with other phenomena of the general series. Differentiation of the subject process is one of the most important conditions for the effectiveness of influencing it in order to obtain a certain result. Management, including quality management, belongs to such actions. The quality you want is the end product. You have to go through a number of steps, each of which determines a specific attitude towards oneself. Quality management is not a linear, but a progressive process, which is a sum of quality states. To get the product you are looking for, you need to understand how to act in each specific case, at each stage of the movement towards the result. In epistemology, there is no common unambiguous understanding of the process of formation and growth of scientific knowledge, which in itself is not a negative result. On the contrary, discussions about the epistemological value of certain products of mental activity, the relationship between empirical and theoretical knowledge, the criteria of true knowledge, the possibility of absolute knowledge open up broad prospects for the cognitive process in science [5]. One cannot but agree with K. Popper, who argued: "The role of thinking is to carry out revolutions through critical disputes, and not through violence and wars, that the battle of words, not swords, is the greatest tradition of rationalism" [2]. Cognitive activity becomes more complicated as scientific research is immersed in the essential depth of movement of objective reality and its transformation in consciousness. In postclassical science, ideas about the place in scientific knowledge of facts, the significance of the empirical stage, understanding of the limits of truth of a scientific theory have changed. The listed changes indicate that scientific and philosophical knowledge tend to shift towards interest in the quality of technology of the cognition process, especially to that part of it, which determines the systemic value of the product obtained in cognition. If earlier the need for scientific knowledge in philosophical comprehension was mainly limited to the limits of solving problems of the ontological and methodological class, then in recent times the relations between science and philosophy of science are increasingly concentrated in the epistemological series, which makes it even more difficult to solve emerging problems, the number of which does not decrease as the same progress. One cannot but reckon with this - the urgency of the tasks at hand obliges. At
the same time, there is a danger of overestimating the post-non-classical originality of scientific progress. You cannot get carried away with the specifics of the private. This creates the danger of absolutizing the individual and opposing it to the general process. Scientific knowledge remains within the boundaries of its qualitative definiteness, the ways and means of its implementation are being improved, including the understanding of the technique for assessing the truth of scientific knowledge. Development follows the well-known path of dialectical negation in the form of "withdrawal", which does not break the continuity in the movement. The reason is banal - there is nothing in our thinking except analysis and synthesis, induction and deduction, comparison, abstraction, idealization, thought experiment and modeling, just as nothing is given beyond the logical rationality and irrationality of intuition to our consciousness. The forms of knowledge and thinking are also fixed in the final set: "fact-image", "fact-statement", "concept", "hypothesis", "theory" of various scales and traditional thinking tools involved in the construction of knowledge - judgments and inferences. The new, says the wisdom of common sense, "is the forgotten old." I would like to add the words of I. Goethe to the aphorism: "Everything clever has already been changed; you just have to try to change your mind again." What has changed with the transition of scientific progress to the stage of post-classical development? 1. The interpretation of the meaning of facts has changed in the light of their influence on the truth of the theoretical generalization. The contradiction of separately taken facts to the current scientific explanation is incorrect to consider as an argument for its inconsistency. Only if an alternative explanation is developed on the basis of such facts, the question of the falsity or limitations of the existing theory will arise. The position is important, but it is irrational to qualify it as a breakthrough methodological achievement. The actors are the same - facts and theory, the circumstances of their interaction are specified. 2. The idea of the criterion of truly scientific knowledge, which served as the support of classical science and was supported by neo-positivism at the beginning of a new stage, was subjected to critical analysis. The principle of "verification" was supplemented with "falsification" [3, p. 112]. The aspiration of K. Popper and his associates to radically turn scientific knowledge towards a new criterion gave a partial result. K. Popper's innovation is undoubtedly interesting, his idea of defining knowledge through their falsifiability seems even more fruitful, but "falsification" did not replace "verification", as well as "falsifiability" - "verifiability". In scientific knowledge, we did not go through unification, but preferred the previous movement through action, depending on the specificity of the situation. 3. The debate, which began in the works of F. Bacon and R. Descartes, about the relationship between the empirical and the theoretical in scientific methodology, did not reveal the winner either. Modern adherents of inductionism and rationalism limited themselves to successes in the development of particular problems, to the logical purification of the technology of scientific knowledge. It is interesting not so much what distinguishes the opponents, but what they get in the form of a general conclusion - the principle of the increasing cognitive value of a scientific theory. Differentiation of science also led to diversification within sciences, which creates the conditions for the devaluation of scientific theory in the context of recognizing the equality of alternative judgments and strengthening the position of the hypothesis in the development of scientific knowledge. On the whole, the post-classical stage confirmed the importance of the main provisions of the dialectical method - the ideas of contradictory development, continuity in development and the concreteness of truth in connection with development. F. Engels's idea that the quality of scientific knowledge is characterized by the demand for a dialectical understanding of the subject of thinking has successfully passed the test. At the same time, one always has to remember about the autonomy of science in relation to philosophy. The presence of a common dialectical foundation in the world outlook should not create illusions of a common attitude towards dialectics. There is no such unity in philosophy itself. A scientist tries on philosophical thinking in connection with his professional reflection, and as a philosopher he usually remains a scientist, a scientist. His scientific analysis always has a priority. The paths of the scientist and the philosopher cross, but they do not coincide. To each his own. The logical in scientific knowledge appears in the historical movement of scientific thought, the obvious for a philosopher is not at all so for a scientist. Features of scientific knowledge are advancing in relation to the logic of thinking. K. Popper suggested to scientists: "Theories are networks designed to capture what we call the "world," for understanding, explaining and mastering it. We strive to make the cells of the networks smaller and smaller" [2, p. 82]. The overwhelming majority of researchers of the economic, social, and political movement still go from the facts, most often remaining at the level of empirical processing of the obtained material, creating the impression of a scientific approach. Psychologically stability in the science of empiricism is not difficult to understand. Cognition of n-essences of phenomena, without which theoretical conclusions are impossible, has become very difficult and problematic. Empirical research is much more accessible, it opens up a real opportunity through the improvement of methods of description and verification, the active use of mathematical measurement of results to obtain a basis for thought. As for the level of generalized assessment, its...

Philadelphia, USA

Clarivate Analytics indexed
epistemological value, then all this already refers to the next stage. The main thing has been done: the subject has been described and turned into a scientific phenomenon, has become a “protocol provision”. The name of the researcher is inscribed in the history, if not of science itself, then of scientific knowledge. Such scientists also have ideological support. There will always be politicians and financiers satisfied with the “strict objectivity” of scientific analysis that does not touch the essence of the social movement. Let us recall how the philosophers of the late 18th and early 19th centuries, actively developed the socio-economic characteristics of the bourgeois mode of production, convincing society of a bright future based on the development of capitalism. But as soon as the contradictions that were unsolvable in the depths of capitalism were discovered, the idea of development was pushed into the background so that it would not spoil the picture of progress and provoke the question: what should replace capitalism? The very term “capitalism” has kind of evaporated, at the same time the term “socialism” continues to exist in one form or another, in particular in the names of political parties, despite the verdict to be a utopia. The public consciousness makes a special demand for the quality of economic research. The interest is quite natural, because the quality of production management and, to a large extent, the quality of people’s life itself depends on the development of economic science [5, 6]. The object of economic science is the production of material goods and the establishment of production relations as a process of regular development and transformation of qualitatively defined states - modes of production. Each mode of production can be considered as a subject of economic knowledge and be reflected in the corresponding economic theory, which is a part of economic science. Economic science should not be replaced by either economic theory or macro or microeconomics. None of the physicists, chemists and biologists have shown any desire to replace science with a part of it. Natural science is based on universal laws that determine the general order of existence and coexistence of the sciences that form it, each of which has its own structure. The signs of science are objectively determined requirements. Under the conditions of the complexity and contradictory nature of cognition, science admits the existence of a different explanation of factual material within the framework of the formation of a generally significant result. Consideration of the bourgeois mode of production as an industrialized economy is specific if the ultimate goal is not to “dissolve” capitalism in such an economy. The industrially developed economy still coincides with bourgeois production, however, “industrialized economy” and “capitalism” have different qualitative status. “Capitalism” is a qualitatively different “mode of production” regulated by specific production relations, and “industrialized economy” is a definition of a characteristic form of development of production, which may well find, over time, non-capitalist embodiment. Whatever the future of economics, it will remain a political economy, which is not to the liking of the apologists of capitalism. In order to prevent a historical approach to capitalism, they are ready to neglect the conditions of scientific knowledge. For the objectivity of economic analysis, it is necessary to postulate the following: history will not stop at capitalism; capitalism is the mode of production without which it is impossible to obtain mass production on an industrialized basis; the future of economic theory is associated precisely with the further progress of industrial production, the improvement of its level, which is already happening now in the forms of integration and globalization. From which follows the conclusion on the directions and principles of developing a methodology for managing the quality of economic activity. First, we will try to identify the specifics of quality in relation to activities. It is customary to call quality a generalized characteristic of the properties of a phenomenon that reveal its essence. To be more specific, let us clarify: quality is a state of a phenomenon that ensures its functioning in a given nominal volume. Secondly, the quality of the phenomenon produced by the activity differs from the quality of a natural phenomenon by the presence of properties that objectify human needs. If such a phenomenon belongs to the economic series, then its qualitative characteristics also include the needs of the market, reflecting the public demand for the quality of this product. Thirdly, quality presupposes its own “qualitative” certainty; the degrees or levels of quality - “qualitative states” - differ. They are steps in the quality management movement and serve as the basis for assessing the quality of activities aimed at quality management. The history of quality management shows the ascent through the stages of quality states of productive activity. Fourthly, production and management of all its aspects, including quality management, should be perceived systematically, that is, understood as production in combination with marketing research and the need for development in order to ensure the real competitiveness of the product and the enterprise itself. Fifth, quality management will be effective only when a high level of production organization is achieved. Whether it is included in the quality management process or evaluated as a necessary condition is the problem of economics. Sixth, the quality of production is determined by the level of labor productivity, mobility in reorientation, assortment, manufacturability; therefore, quality management should aim to increase labor productivity and improve the technological characteristics of production. What matters is not so much what we produce, but how we do it and what are our reserves to do it with less cost, faster and better. It is impossible to develop an ideal theory of quality management,
quality management is a concrete historical activity, conditioned objectively and in the form of a concrete truth. Its universality is represented only by the correspondence to a number of general guiding methodological provisions, abstract enough to form from them the form of a working theory, but necessary for its effective construction. Universal recommendations do not give the impression of being a tool for a specific practical action, for the reason that they have a different function. They serve as vectors and constraints for design activities. Anyone who seeks to minimize the costs of design must master the art of combining freedom and obligation in creativity. No matter how impressive the achievements of "human capital" are, the economy is doomed to be a measure of material production and the dominance of objective relations between the factors of production. Economic reality sets the conditions for economic creativity. No matter how a society is called - "consumer", "informational", "postindustrial", it remains a structure built on the basis of material reproduction and the objectivity of the laws governing this process. Improving the theory of quality management in economic activity is based on the real foundation of the history of management and the methodological premises summarized above in the text. The history of quality management confirms the scientific and dialectical nature of this activity, once again emphasizing the importance of methodological equipment for the movement of economic knowledge towards theoretical generalization through mastering the dialectical way of thinking. In the area of scientific interests, quality management was found in Antiquity at the "axial time". Otherwise, one cannot explain such a fact as the desire of Archimedes to develop a theory of the simplest tools - a wedge, a lever, a block, a screw. Archimedes set himself the goal of increasing labor productivity by scientific development of their optimal design and methods of use. But in the era of Archimedes there was no science and mass production, so his contribution to social development was limited to the sphere of theoretical description. Archimedes laid his "stone" in the construction of science, it is quite possible to admit the use of Archimedes’ conclusions in the history of handicrafts. Shepherd and agriculture were determined by the natural order, the demand for scientific knowledge of peasants and shepherds hardly existed. Craftsmen created a "second nature" in the interests of man, they had to do what could not be obtained naturally. The expression of social need in the quality of work appears to have arisen in the history of handicraft. At this level of division of labor, human art began to compete with the "art" of the natural order. However, the scale of handicraft labor, the autonomy of the guild organization of production, and limited consumer demand did not stimulate scientific progress. The pre-scientific history of quality management ended with the Industrial Revolution. All the socio-economic conditions have taken shape for a qualitative transition to scientific regulation of production and production quality management: manual labor has been replaced by mechanized labor, the shop organization has been replaced by a factory, common sense and work ingenuity have supplanted the advantages of scientific theory. But it took time for the scientific approach to production to mature and prove its versatility. Everything became clear in the second half of the 19th century. The modern stage of quality management should be counted from the public awareness of the idea of the value of standard quality (1870s, S. Colt factories). Scientific development of the theory of quality management has activated the inclusion of philosophical reflection in the process. BS Aleshin et al. Distinguish four "overlapping and continuing phases" in the formation of the philosophy of quality, emphasizing their dialectical nature, development "in full accordance with the law of dialectics" [6, p. 22]. At the beginning, there was a "rejection phase" rooted in artisan history. In recent times, it has been modernized by the efforts of G. Leland, G. Ford, F. Taylor, A. Fayol and M. Weber [7, 8]. The Ford-Taylor Manufacturing Quality Management System was in use until the middle of the 20th century. This system was built on the emphasis on control functions. Already in the 1920s, in high-tech production, the share of inspectors reached a third of the staff. A further increase, inevitable due to the complication of technology, would lead the system to self-destruction. Improvements in quality have been accompanied by a disproportionate increase in quality assurance costs. With the concept of Ford Taylor, it was not possible to achieve at the same time an increase in production efficiency and product quality. What is natural for quantum mechanics, turned out to be fatal for political economy (economic policy). The inconsistency of the "rejection phase" initiated the search for other directions of quality management organization. In the depths of the first phase, the second arises - the "phase of quality management" associated with the activities of V. Shukhart. The central object is the production process itself - its sustainability and the continuous decrease in variability. Statistical analysis is of particular importance for Shewhart. According to Shewhart's plan, it is not necessary to look for the guilty, but to try in every way to activate the professional potential. Do not oppose and separate employees, but unite them into a team. In Shewhart's work, the worker from Taylor's "screw of the machine" turns into a partner, his status rises, and his motivation increases. Quality control departments and centers gave way to the audit service, which focused on quality control of samples. The introduction of V. Shukhart's system led to increased efficiency and improved quality, created a real basis for market globalization. At the same time, the "fatal disease" remained. The understanding was preserved that the production process itself, by its objective parameters.
limits the yield of suitable products. Reaching a certain limit activates the tension between the increase in production efficiency and the cost of product quality. Let us remember that quantity does not go directly into quality; it affects the quality state. An increase in the number of products leads to a decrease in quality. Even the leaders of the automotive industry regularly recall tens and even hundreds of thousands of cars due to the poor quality of components and systems. The third phase - “continuous improvement of quality” - was born in the depths of the scientific and technological revolution of the 1950s – 1960s. V. Deming was deservedly called the initiator. We do not know what kind of philosopher Deming was, but, no doubt, at least at the level of scientific intuition, he was aware of the growing importance of the subjective factor in the development of production, its transformation into “human capital” and tried to reflect this side of social progress in quality management. Deming proceeded from the fundamental idea of the human origin of production and therefore the humane essence of labor. Labor not only helped homo rise to the level of sapiens, to become homo sapiens, labor remains the main way of expressing rationality. Reasonableness of a person is called upon to introduce a humanistic principle into the organization of production. In V. Deming's understanding of the direction of improving quality management, there was a restoration of the need for economic science in the tools and judgments of philosophy, characteristic of classical political economy. The teaching of W. Deming, more than past concepts, corresponds to the understanding of systems thinking. At the same time, in his reflection, one can clearly feel the influence of contemporary European philosophical thought - phenomenalist, existentialism and pragmatism. Deming formulated the theoretical basis of the quality management program in the form of three pragmatic axioms:

1) any activity is a process and involves improvement;
2) the production system has two possible states - stable and unstable, therefore, first of all, it is necessary to solve fundamental problems of strategic importance;
3) the responsibility for all violations lies with the top management - top managers.

Deming presented the implementation of the program step by step in "Fourteen Points", defined "difficulties and false starts", tried to spread the physical concept of a chain reaction in the section "Chain reaction according to Deming", defined a total systemic "principle of continuous improvement", "Deming cycle" and warned "Seven deadly diseases" for business. The implementation of V. Deming's program in Japan was especially successful. In the early 1950s, the American specialist was invited to give lectures in Japan, where he found a significant number of like-minded people. Deming's humanistic credo perfectly fit into the Japanese national mentality. K. Ishikawa, one of those associated with the flourishing of the Japanese economy, actively promoted Deming's ideas. The Japanese were also impressed by the fact that the development of the Deming program did not require large expenses. Deming's theory was developed in the works of J. Juran, F. Crosby, A. Feigenbaum [9, 10]. By minimizing the cost of organizing quality production, Deming did not theoretically solve the problem of reducing economic efficiency as quality improved, but he did find a practical solution. The problem remained, but it ceased to be relevant in a practical aspect. Production has reached a practically acceptable level of the ratio of these parameters, which are key for the development of economic policy. Second half of 1960s - 1970s turned out to be the time of mastering the scientific and technological revolution. Science has become an immediate productive force. The understanding of production has also expanded. The time has come for the special status of the stage of the birth of ideas and their design development. A new chapter was added to the doctrine of quality management - "design quality". It took shape in the "quality planning" phase (G. Taguti, A. Feigenbaum). By the 1980s, the formation of the concept of Total Quality Control (TQC - Total Quality Control) was completed, international standards ISO 8402, then ISO 9000 appeared. Achievements of scientific and philosophical understanding of quality and its management realized themselves and moved on to the stage of their improvement in the context of socio-economic, political and scientific -technical changes. Summing up the analysis of the history and logic of the development of economic doctrine on the theoretical foundations of quality management, the following conclusions can be drawn: 1. The construction of economic theory was carried out depending on the development of the philosophical concept of quality, more precisely, on how the philosophical doctrine of quality was perceived by the consciousness of economic management specialists. Before the crisis of 2008, economic research did not reach the level of open demand for the ideas of Karl Marx, but the excitement regarding Capital, which Europe saw in the late 2000s and early 2010s, matured and was inevitable. The only pity is that in Capital, the majority were looking for something that was not quite what they needed to look for in the first place - a dialectical way of thinking. Interest in the research of K. Marx was frankly pragmatic. 2. Understanding of quality and the development of the concept of its practical application in quality management of production activities went up in the direction of the requirements of dialectical thinking, perhaps spontaneously, by "rejecting" the rest due to failure. The dialectical view of quality management among managers-economists was formed not from the developed philosophical theory and demonstration of

Impact Factor:

Journal (Country)	Impact Factor
ISRA (India)	4.971
ISI (Dubai, UAE)	0.829
GIP (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIIH (Russia)	0.126
ESJI (KZ)	8.997
SJIF (Morocco)	5.667
ICB (India)	1.940
IBI (India)	4.260
OAJI (USA)	0.350

Philadelphia, USA

Clarivate Analytics indexed
its advantages in "Capital", but from reflection on the local practical results of production development. The dialectical approach was discovered by economists themselves, like the shoemaker I. Dietzgen or the naturalist G. Darwin, but the success was undoubtedly, however, at the expense of significant costs. After the ascent, economic science descended and discovered its humanitarian foundations. It turned out that quality management should be built not on the basis of technical standards, but on the disclosure of the dominant “human capital”. The history of teaching about the fundamentals of quality management, having traveled a century and a half, has reached modern perfection. History has practically projected the methodological figure of quality in its present sense. In dialectics, this corresponds to a spiral of development. The next step is the ascent of economic science to the next stage, and, as Bulgakov’s professor Preobrazhensky said, the revolution is valid only that which first occurs in the head, and then in practice. It is necessary to revise or look in a new way at the concepts of "quality" and "quantity", "production efficiency", to introduce new concepts into the characteristics. The directions of the movement of thought have already been partially determined: the allocation of "internal" and "external" qualities, insurmountability within the framework of the existing concept of the effectiveness of production quality management, the contradiction between efficiency and costs for quality, the need for "reasonably rigid" regulation of relations in the market, etc. 4. The ability to manage quality has grown into a global problem, the realization comes that only well-organized production is capable of solving other global problems - poverty, water supply, increasing environmental stress. In theory, successes in managing the quality of production in international cooperation can be the beginning of the transition from confrontation in politics to mutual understanding. There are more and more arguments in favor of the emergence of a new civilization - "quality civilization", in which the principle of “totality of quality management” will be completed by the principle of universal availability of quality. Understanding that economic management, which does not take into account the priorities of the humanitarian and socio-cultural components of social progress, is not capable of being consistently effective, strengthens the position both among systemically reflective specialists and among managers of production structures [11]. The economy, with all its basic significance, was, is and remains under the systemic, subordinate to the laws of social movement, designed to help overcome the alienation that has developed in commodity production through the optimization of the living conditions of people, revealed the advantages of the economic and geographical approach in strategic management and identified three vectors of priority development of the regions: “Equalizing (redistribution of resources to equalize living standards), stimulating (creating conditions in the region with specific advantages), geoeconomic (ensuring security through costly development of border and strategically important territories)” [13, p. 7]. The vector of modernization of the approach to management is set. Time has passed, and it remains to recall that "time is our living space", therefore, lost time, untimely actions inevitably lead to the loss of the advantage of an advantageous position in a competing world.

Conclusion

The theory of quality management has its own historical prerequisites, the main one of which is the discovery by the Englishman T. Mann and the Neapolitan A. Serra of the importance of the division of labor for the development of production. It is the division of labor within the enterprise and between enterprises that determines the program for organizing production, opens up the prospect of active inclusion of the subjective factor in the regulation of the production process. At the same time, the requirements for it are being developed. Why did this discovery have to wait until the 17th century? The division of labor began much earlier, but it was restrained by a guild, essentially a closed form of organization, when within production the main canon was the preservation of existing equipment and technology. The production of many consumer goods is still advertised as pointing to the advantages of centuries-old unchanging conditions and manufacturing technology. The lack of change in production is seen as a merit of product quality management. The dialectical view of development as a process of bifurcation of the one and the struggle of opposites is clearly expressed in the polarity of goals in the theory of quality management. The advantage of dialectics lies precisely in the fact that it helps to avoid one-sidedness in cognition and creativity. We have two seemingly mutually exclusive views on quality. One assumes the development of the division of labor to improve the organization of production, the other, on the contrary, requires a conservative attitude to the achieved organization of production. In fact, both approaches are expressions of their common essence. If the conservative attitude to the quality of production is presented on a national scale, then we will receive the sum of various industries, formally united by a common product. This is the history of quality management in the production of beer, wine, coffee, cocoa, spices, spices, decorative items, and more. The division of labor is carried out in various forms. Such diversification provides him with the stability of functioning as a factor in the development of production and the basis for obtaining a quality product. It is also obvious that the theory of quality management is based on the organization of work.
With the transition to the scientific organization of labor, production quality management became more effective, the relevance of the latter production acquired social significance, became a socially demanded problem, which determined the increase in scientific interest in it.

References:

1. Aleshin, B.S. (2004). Philosophical and social aspects of quality: textbook. Manual. (p.438). Moscow: Logos.
2. (1992). Management is science and art: sat. A. Fayol, G. Emerson, F. Taylor, G. Ford. (p.349). Moscow: Republic.
3. Schonberger, R. (1988). Japanese methods of production management. Nine simple lessons: a short translation from English. (p.251). Moscow: Economics.
4. Avdokushin, E.F. (2017). Turn to the East - the Eurasian vector of economic development of Russia. Issues of the new economy, No. 2 (42), pp. 4-14.
5. (2008). Quality management of competitive and popular materials and products: Monograph / Yu. D. Mishin et al. ; under the General editorship of doctor of technical Sciences, prof. VT Prokhorov. (p.654). Shakhty: publishing house of GOU VPO "yurgues".
6. (2012). Production management of competitive and popular products: / VT Prokhorov et al.; under the General editorship of doctor of technical Sciences, Professor VT Prokhorov; VPO yurgues. (p.280). Novocherkassk: yurgues (NPI).
7. (2012). Enterprise Restructuring as one of the most effective forms of increasing the competitiveness of enterprises in markets with unstable demand: monograph / NM Balandyuk et al.; under the General editorship of doctor of technical Sciences, Professor VT Prokhorov. South-Russian state University UN-t of Economics and service". (p.347). Mines: Yurgues.
8. (2014). The revolution of quality: through advertising quality or through real quality: monograph by VT Prokhorov et al.; under the General ed. of doctor of technical Sciences, prof. VT Prokhorov: Isoip (branch) DSTU. (p.384). Novocherkassk: URGU (NPI).
9. (2015). Advertising as a tool for promoting the quality philosophy of production of competitive products / Kompanchenko EV [and others]; under the General editorship of doctor of technical Sciences, prof. VT Prokhorov; Institute of service and entrepreneurship (branch) Don state technical University of Shakhty: ISO IP (branch) DSTU. (p.623).
10. (2015). Assortment and assortment policy: monograph / TV Prokhorov, TM Osina, EV Kononenko [and others]; under the General editorship of Dr. sci. Sciences, Professor VT Prokhorov, Institute of the service sector and entrepreneurship (Phil.) Federal government please. education. institutions of higher education. education "don state technical University. UN-t" in Shakhty Rostov region (Isoip (branch) DSTU). (p.503). Novocherkassk: YURSPU (NPI).
11. (2017). The concept of import substitution of products of light industry: background, challenges, and innovations: monograph / V. Prokhorov, T. [and others]; under the General editorship of Dr. sci. Professor VT Prokhorov; Institute of service and entrepreneurship (branch) Don state technical University. (p.334). Novocherkassk: Lik.
12. (2018). Enterprise competitiveness and product competitiveness - the key to successful import substitution of goods in demand by consumers of the southern Federal district and the North Caucasus Federal district: a collective monograph / Prokhorov VT et al.; under the General editorship of Dr. sci. Professor VT Prokhorov; Institute of service and entrepreneurship (branch) Don state technical University. (p.337). Novocherkassk: Lik.
13. (2018). Management of real product quality and not advertising through the motivation of the behavior of the leader of the team of light industry enterprises: monograph / OA Surovtseva et al.; under the General editorship of Dr. sci. Professor VT Prokhorov; Institute of service and entrepreneurship (branch) Don state technical University. (p.384). Novocherkassk: URGU (NPI).
14. (2019). The quality management system is the basis for technical regulation for the production of import-substituting products: monograph / VA Golovko [and others]; under the General editorship of Dr. sci. Professor VT Prokhorov; Institute of service and entrepreneurship (branch) Don state technical University. (p.326). Novocherkassk: URGU (NPI).
| Journal | Impact Factor |
|------------------|---------------|
| ISRA (India) | 4.971 |
| ISI (Dubai, UAE) | 0.829 |
| GIF (Australia) | 0.564 |
| JIF | 1.500 |
| SIS (USA) | 0.912 |
| PIIH (Russia) | 0.126 |
| ESJI (KZ) | 8.997 |
| SJIF (Morocco) | 5.667 |
| ICV (Poland) | 6.630 |
| PIF (India) | 1.940 |
| IBI (India) | 4.260 |
| OAJI (USA) | 0.350 |

15. (2020). *Features of manufacturing quality management of import-substituted products at enterprises of the southern Federal district and North Caucasus Federal district regions using innovative technologies based on digital production*. Monograph / OA Golubeva [et al.]; under the General editorship of Dr. sci. Professor VT Prokhorov; Institute of service and entrepreneurship (branch) Don state technical University. (reviewers doctor of technical Sciences prof. Burkin, AM, G. the way .. vitebesk). (p.362). Novocherkassk: the Face.