Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
DRPADC: A novel drug repositioning algorithm predicting adaptive drugs for COVID-19

Guobo Xie a, Haojie Xu a, Jianming Li a, Guosheng Gu a,*, Yuping Sun a, Zhiyi Lin a, Yinting Zhu a, Weiming Wang a, Youfu Wang b, Jiang Shao c

a School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
b Huaneng Qinghai Power Generation Co., Ltd. New Energy Branch, Xining 810000, China
c School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China

ARTICLE INFO
Keywords: Weight K nearest known neighbors
Central kernel alignment multiple kernel learning
Compressed sensing
Drug repositioning
COVID-19

ABSTRACT
Given that the usual process of developing a new vaccine or drug for COVID-19 demands significant time and funds, drug repositioning has emerged as a promising therapeutic strategy. We propose a method named DRPADC to predict novel drug-disease associations effectively from the original sparse drug-disease association adjacency matrix. Specifically, DRPADC processes the original association matrix with the WKNKN algorithm to reduce its sparsity. Furthermore, multiple types of similarity information are fused by a CKA-MKL algorithm. Finally, a compressed sensing algorithm is used to predict the potential drug-disease (virus) association scores. Experimental results show that DRPADC has superior performance than several competitive methods in terms of AUC values and case studies. DRPADC achieved the AUC value of 0.941, 0.955 and 0.876 in Fdataset, Cdataset and HDVD dataset, respectively. In addition, the conducted case studies of COVID-19 show that DRPADC can predict drug candidates accurately.

1. Introduction

COVID-19, a type of pneumonia discovered in 2019, is caused by a novel coronavirus. As shown in Fig. 1, the pathogenic virus causing COVID-19 was named 'novel coronavirus SARS-CoV-2' because of its resemblance to previously identified coronaviruses (Abd El-Aziz Tarek and Stockand James, 2020; Catrin et al., 2020; Elisabetta et al., 2004). This is the seventh coronavirus to be discovered and studied in humans; the previous six were HCoV-OC43, 229E (HCoV-229E), HCoV-HKU1, HCoVNL63, Middle East respiratory syndrome-associated coronavirus (MERS-Cov), and severe acute respiratory syndrome-associated coronavirus (SARS-Cov) (Cha et al., 2018). There is a dearth of commercially available drugs for the treatment of COVID-19 (Wei-jie et al., 2020), and more therapeutic drugs are still in clinical trials stage. More seriously, the genetic material of the SARS-CoV-2 is single-stranded RNA (Imran and Gwanggil, 2021), which is susceptible to mutation during the transcriptional replication phase. Such mutation may alter the in vitro characteristics of SARS-CoV-2, potentially threatening the effectiveness of existing COVID-19 vaccines. Researchers have now identified various mutated strains of SARS-CoV-2 (including the Delta strain), so developing effective drugs to treat COVID-19 is an urgent task.

Drug discovery and development present several challenges, including high attrition rates, long development times, and substantial costs (Yosef et al., 2020; Han et al., 2019; Sudeep et al., 2019; Huimin et al., 2020; Muhammad et al., 2014). Now there is an increasing interest in drug-repositioning techniques using computer algorithmic models (Hurle et al., 2013). Compared with traditional drug clinical trials, drug-repositioning techniques can effectively reduce the financial and time costs of the drug development process. In recent years, various drug-repositioning methods using computer algorithm models have been proposed as auxiliary tools (Qi et al., 2019) and validated by biological data. Because most diseases are caused by corresponding pathogens, drugs that inhibit or kill that pathogen in the organism are generally the effective ones for that disease. Therefore, it is feasible to use drug repositioning techniques to screen for therapeutic agents adapted to SARS-CoV-2.

Current drug-repositioning methods can be divided into three categories: machine learning methods, network propagation-based methods and matrix completion or factorization-based methods (Xing et al., 2016; Jawad et al., 2021). These methods are based on assumption that

* Corresponding author.
E-mail address: gsgu@gdut.edu.cn (G. Gu).

https://doi.org/10.1016/j.compchemeng.2022.107947
Received 27 September 2021; Received in revised form 13 April 2022; Accepted 27 July 2022
Available online 4 August 2022
0098-1354/© 2022 Elsevier Ltd. All rights reserved.
similar drugs are associated with similar diseases and vice versa. Machine learning methods include a method proposed by Yongcui et al. (2013) to determine the similarity between drug-disease pairs using a kernel function and train the classification kernel of a support vector machine to discover new drug-disease interactions. Machine learning methods rely heavily on known sample labels in the dataset. However, stable negative sample data are difficult to obtain in practice, which limits the generalizability of these prediction methods. Xing et al. (2016) developed a network-based plastic regularized least squares collaborative drug combination prediction method, which can overcome the problem of lack of stable negative samples data. However, their performance is not stable because of the lack of negative samples in training, which limits their applications.

Many network-based drug-repositioning methods use an association matrix of drugs and indications to build a network, and use wandering or diffusion to propagate the association resources from the drug side to the indication side to infer the missing edges within the network. Wenhui et al. (2013) proposed a heterogeneous graph-based inference (HGBI) technique for drug-target association prediction by combining known drug-target interactions and drug-target similarity information; this model was successfully applied to predict drug-disease associations (Wenhui et al., 2014; Mengyun et al., 2020). Victor et al. (2015) established a three-layer heterogeneous network containing different types of elements and interactions, called DrugNet. Their study showed that DrugNet was effective for discovering new drug candidates. Huimin et al. (2016) developed a comprehensive similarity measures and Bi-Random walk (MBIRW) algorithm, which used available drug-disease associations information to enhance drug similarity and disease similarity. However, in the process of network propagation, information resources are biased to select the edges with larger weights, meaning that nodes lacking associated information are not allocated resources for propagation for a long time (i.e., the cold start problem); this can affect the accuracy of the prediction results.

When a matrix contains partially known information, matrix completion is required. A number of methodological models for matrix factorization and complementation have been proposed in recent years. For instance, Huimin et al. (2018) constructed a drug-disease heterogeneous network based on the similarity information of drugs and diseases and designed a Drug Repositioning Recommendation System (DRRS), which achieved the prediction of unknown drug-disease effects. Mengyun et al. (2019) proposed a scheme for preprocessing the drug-disease association matrix using a bounded kernel norm regularization (BNNR) model. Under the assumption of low rank, the model eliminated the effect of noisy data on the accuracy of model prediction by introducing a regularization term. Mengyun et al. (2020) proposed a method based on matrix-completion heterogeneous graphical inference (HGIMC) that could predict the potential adaptation of a drug to a disease. Yajie et al. (2021) proposed a similarity-constrained probability matrix factorization (SCPMF) model based on the similarity information of drugs and diseases to identify unknown association targets of drugs. Poleksic (2021) augmented the set of relationships between different biomedical entities based on the concept of meta-paths to enrich the associated information of paths, and predicted the association between different biomedical entities using a compressed sensing matrix completion algorithm.

Compressed sensing, a class of matrix-completion methods, has an inherent advantage over supervised methods of machine learning for drug repositioning because it uses a ‘submatrix simulation’ technique to predict potential drug-disease interactions without treating all missing data as negative data. However, networks or graphs based methods rely on association data as a resource propagation path for bipartite graphs and tend to suffer from cold-start problems that affect the prediction performance because of sparse association information. By contrast, compressed sensing starts with the existing matrix information, uses submatrices to capture the original matrix information, and generates a low-rank simulation matrix to complete the missing parts of the original association matrix. This reduces the redundancy of the model to a certain extent compared with that of network- or graph-based methods.

Inspired by the compressed-sensing-based matrix completion model proposed by Poleksic (2021), we use a compressed-sensing-based method in this work to find potential adaptive drugs for COVID-19. We introduce the Weight K nearest known neighbors (WKNKN) algorithm (Ali et al., 2016) to preprocess the original matrix and increase its rank, which can complete more information. In addition, compressed sensing allows us to affiliate drug and disease similarity features to aid in the correction of the decomposed submatrices. To better integrate different types of similarity information, we fuse multiple drug and disease similarity matrices using a central kernel alignment multiple kernel learning model (CKA-MKL) based on the study of Yijie et al. (2019). After the processing of CKA-MKL, we obtain the weights of each similarity matrix (the kernel) and choose the best matrix combination, thereby improving the complementarity of various types of similarity information. In summary, we propose a compressed-sensing-based prediction method combining a multiple kernel learning model with central kernel alignment to predict the probability of potential drug-disease associations, and we validate the feasibility of this method as a drug-discovery aid for finding drugs that can interact with SARS-CoV-2.

2. Materials and methods

2.1. Materials

2.1.1. Drug-disease datasets

In this work, we used Fdataset and Cdataset as gold-standard datasets to test the performance of our proposed model. Fdataset is a collection of 593 drugs, 313 diseases, and 1933 validated drug-disease associations from different data sources compiled by Assaf et al. (2011). Cdataset was compiled by Huimin et al. (2016) and includes 409 diseases, 663 drugs and 2532 disease and drug associations. Each dataset contains three information matrices, as follows:

Drug-disease association adjacency matrix $Y \in \mathbb{R}^{n_{D} \times n_{M}}$ (n_{D} denotes the number of drugs and n_{M} denotes the number of diseases). The value of element $Y(d_{i}, d_{j})$ is 1 if the drug $D_{d_{i}}$ is associated with the disease $D_{d_{j}}$; otherwise, it is 0;

- Fig. 1. Viral structure of SARS-CoV and SARS-CoV-2. (a) Electron microscopy image of a thin section of SARS-CoV-2 found in the cytoplasm of an infected cell by Catrin et al. (2020), showing the spherical particles and cross-sections of the nucleocapsid of the virus. (b) Schematic diagram of SARS-CoV-2 virus particles. (c) Electron microscopy image of SARS-CoV virus cultured in Vero cells by Elisabetta et al. (2004). (d) Model diagram of SARS-CoV virus particles.
Drug chemical structure similarity matrix $D_{chem} \in R^{n_d \times n_d}$. The matrix consists of the chemical structure information of the corresponding drug derived from a chemical development kit (Christoph et al., 2003), where the drug-drug pair $D_{chem}(i,j)$ is represented by the two-dimensional chemical fingerprint scores of drugs D_i and D_j;

Diseases semantic similarity matrix $D_{sem} \in R^{n_e \times n_e}$. We obtain the similarity information for corresponding disease pairs using MinMiner (Van Driel et al., 2006). The semantic similarity matrix D_{sem} of diseases is obtained by computing the semantic similarity between diseases through text mining (Fleurel Wilco and Wynand, 2015).

2.1.2. Drug-virus dataset

Yajie et al. (2021) used text mining techniques to collect a large number of experimentally validated drug-virus interaction terms to construct an experimentally supported human drug-virus association database, HDVD. We used the HDVD as a dataset for finding therapeutic drugs for COVID-19. The HDVD contains 219 drugs, 34 viruses, and 455 confirmed human drug-virus interactions. Analogous to the gold-standard datasets described above, HDVD contains the following three information matrices:

- Drug-virus association adjacency matrix $A \in R^{n_d \times n_v}$, $(m_d$ denotes the number of drugs and m_v the number of viruses). The value of element $a_{i,j}$ is 1 if drug D_i is associated with the virus V_j; otherwise, it is 0;
- Drug chemical structure similarity matrix $D_{chem} \in R^{n_d \times n_d}$. SMILES (simplified molecular input line entry system) is an information format that describes molecular structures as a one-dimensional representation (Hakime et al., 2016). We used the SMILES format to download the chemical structure information of the corresponding drugs from the DrugBank database, calculating the Molecular Access System (MACCS) fingerprint of each drug with Open Babel v2.3.1 (O’Boyle et al., 2011), and use the Tanimoto coefficient to measure the absolute similarity (Bajusz et al., 2015) to construct a drug chemical structure similarity matrix D_{chem};
- Viral gene sequence similarity matrix $V_{gen} \in R^{n_v \times n_v}$. MAFFT is a similarity-based multiple sequence comparison method (Katoh and Standley, 2013). We downloaded the genomic nucleotide sequences of viruses in Homo sapiens from the National Center for Biotechnology Information, and use MAFFT version 7 to calculate sequence similarity between viruses to construct a viral gene sequence similarity matrix V_{gen}.

2.2. Method

Suppose the number of drugs and diseases are n_d and n_e, respectively, and $Y_{n_e \times n_d}$ denotes the association matrix. $Y_{ij} = 1$ if the association between drug i and disease j is known, otherwise $Y_{ij} = 0$. An algorithm predicting Drug-disease associations requires Y and corresponding feature matrix X as input, then outputs a score for each pair of drug and disease. p^{n+1} denotes the score matrix, $p_{ij}^{n+1} \in [0,1]$, i.e. the prediction result.

2.2.1. Calculating Jaccard similarity of drugs and diseases

Jaccard similarity is a normalized form of the common neighborhood measure between vectors (Pang-Ning et al., 2016). For drugs D_i and D_j, Jaccard similarity gives the probability that a random node pair from the set of disease associations between the D_i and D_j is one of the co-acting diseases of D_i and D_j. If the number of mutual diseases of D_i and D_j is higher, this metric is larger, which means that D_i and D_j are more similar. The formula is as follows:

$$D_{Jacc}(D_i, D_j) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}$$ (1)

where, $\Gamma(x)$ is the set of diseases associated with the drug D_x.

We can calculate the Jaccard similarity matrix D_{Jacc} of diseases in a similar manner.

2.2.2. Calculating Gaussian kernel similarity matrix of drugs and diseases

Gaussian kernel similarity is a method commonly used to calculate the similarity between different types of nodes. By projecting the data in a high dimension through a radial basis, the distance between different node vectors can be calculated to obtain the similarity weights between nodes; therefore, Gaussian kernel similarity is also called radial basis function kernel similarity. In the adjacency matrix Y_{ef}, row i indicates whether drug D_i is associated with each disease, and column j indicates whether disease D_j is associated with each drug. The vectors $Q(D_i)$ and $Q(D_j)$ represent the ith row vector and the jth column vector as the eigenvectors of the Gaussian kernel, respectively. Therefore, we denote the Gaussian kernel similarity between diseases D_i and D_j as D_{Gaus}, calculated as follows:

$$D_{Gaus}(D_i, D_j) = \exp\left(-\frac{\|Q(D_i) - Q(D_j)\|^2}{\alpha_d^2}\right)$$ (2)

$$D_{Gaus}(D_i, D_j) = \exp\left(-\frac{\|Q(D_i) - Q(D_j)\|^2}{\alpha_d^2}\right)$$ (3)

where, the kernel bandwidths α_d and α_d' are defined as:

$$\alpha_d = \frac{1}{n_d} \sum_{i=1}^{n_d} \|Q(D_i)\|^2$$

$$\alpha_d' = \frac{1}{n_d} \sum_{j=1}^{n_d} \|Q(D_j)\|^2$$

(4)

(5)

where, the initial kernel bandwidth coefficients α_d and α_d' are both set to 1 (Xiujuan and Cheng, 2020).

2.2.3. DRPADC

In this study, we propose a compressed sensing prediction method incorporating a multicore learning model with central kernel symmetry. First, the WKNKN algorithm (Ali et al., 2016) is introduced to reduce the sparsity of the drug-disease association adjacency matrix. According to the work of Yijie et al. (2019), processing multiple similarity matrices using CKA-MKL allows us to obtain the weights of each similarity matrix (kernel) and thus select the best matrix combination. We use the CKA-MKL to fuse the different similarity information matrices to obtain the integrated similarity matrix. Finally, the drug-disease association prediction scores are calculated using the compressed sensing algorithm. A general flow chart for the algorithm is shown in Fig. 2. The details of the principle and flow of each module in the algorithm are described below.

2.2.3.1. Reducing sparseness by WKNKN. The compressed sensing algorithm uses the decomposed submatrix to sample the information of the original association matrix and generate a simulated approximation matrix. The sparsity of the target matrix affects the descriptiveness of the elements in the submatrices, which in turn affects the recovery accuracy of the approximation matrix. Previous studies (Huimin et al., 2018) have shown that the drug-disease association matrix Y in both Cdataset and Fdataset is sparse (the same is true for HDVD); this is because there are still many drug-disease associations that have not been confirmed. Therefore, we reduce the sparsity of Y by using WKNKN (Ali et al., 2016) to mine the likelihood scores of potential interactions. That is, the WKNKN algorithm is used to estimate the likelihood value of the interactions between drug-disease pairs in the adjacency matrix Y. This is performed using the following three steps:

Step1. The interaction likelihood score for each drug D_i is estimated using the chemical similarity matrix D_{chem} of the K known drugs closest to it and their corresponding association effects. The derived equation is
as follows:

$$Y_0(D, :) = \frac{1}{Q_0} \sum_{k=1}^{K} \omega_k Y_0(D_{0k}, :)$$ \hspace{1cm} (6)$$

where, D_i to D_{0k} denote the K-nearest drugs of D_i in descending order; $Q_0 = \sum_{k=1}^{K} DS_{chem}(D_i, D_{0k})$ is the regularization term; $\omega_k = T^{k-1} DS_{chem}(D_i, D_{0k})$ is the weighting factor, where T is the decay term and satisfies $T \leq 1$.

Step2. Similarly, for each disease d_j, the semantic similarity of its closest K known diseases and their corresponding interactions are used to estimate the interaction likelihood score of d_j. The derived formula is as follows:

$$Y_d(:, d_j) = \frac{1}{Q_d} \sum_{i=1}^{K} \omega_k Y_d(:, d_{0i})$$ \hspace{1cm} (7)$$

where, d_j to d_{0k} denote the K-nearest neighbor diseases of disease d_j in descending order; $Q_d = \sum_{k=1}^{K} DS_{sem}(d_j, d_{0k})$ is the regularization term; $\omega_k = T^{k-1} DS_{sem}(d_j, d_{0k})$ is the weighting factor, where T is the decay term and satisfies $T \leq 1$.

Step3. Finally, if $Y_{ij} = 0$, we replace it by taking the average of Y_0 and Y_d, as follows:

$$Y_{f}(i,j) = \max\left(\frac{Y_0 + Y_d}{2}, Y_{ij}\right).$$ \hspace{1cm} (8)$$

According to the introduction of the above model, the procedure of WKNKN is summarized in Algorithm 1. There are 99%, 99.1% and 93.9% of 0 elements in the association matrix of Fdataset, Cdataset and HDVD respectively, which indicates that the elements in the original matrix are too sparse. Therefore, we use WKNKN algorithm to preprocess the original matrix, so that the 0 elements in the matrix can be replaced by likelihood scores between 0 and 1 to mine more potential interactions between drugs and diseases or viruses. The proportion of element 0 in the association matrix before and after performing WKNKN algorithm are shown in Table 1.

![Flowchart of DRPADC. The red box shows the iterative process of the compressed sensing model](image)

Table 1

Datasets	Before WKNKN	After WKNKN
Fdataset	99.0%	89.2%
Cdataset	99.1%	91.2%
HDVD	93.9%	64.1%

Algorithm 1. WKNKN

Input: Adjacent matrix $Y \in R^{n \times d}$, chemical similarity matrix $DS_{chem} \in R^{n \times K}$, and disease semantic similarity matrix $DS_{sem} \in R^{n \times K}$, neighborhood sizes K, decay term T.

Output: Association probability matrix Y_f.

Algorithm

Compute association probability matrix Y_{f} by WKNKN:

for $i = 1 \rightarrow n$ do

 calculate Y_{0} by Eq. (6);

end for

for $j = 1 \rightarrow n$ do

 calculate Y_{d} by Eq. (7);

end for

$$Y_{f} = \max\left(\frac{Y_{0} + Y_{d}}{2}, Y_{ij}\right).$$

2.2.3.2. Central kernel alignment algorithm multiple kernel learning alignment. A number of methods have been proposed to mine the similarity of drugs and diseases (Esra and Buket, 2017) and excavate their similar characteristics from different perspectives. In drug-repositioning methods, the use of different similarity information has different effects on model prediction performance; therefore, most current methods use a combination of multiple similarity information. However, they generally lack a systematic method of combining this information and generally only consider the mean or complementarity, etc. In order to integrate multiple types of similarity information, based on previous work by Yijie et al. (2019), we process multiple similarity matrices and obtain the weights of each similarity matrix (kernel) by CKA-MKL, so as to select the best combination of similarity matrices and improve the complementarity of similarity information. Specifically, we obtain three similar kernel matrices for each of the similar kernel sets of drugs and
diseases \((DS_{chem}, DS_{jac}, DS_{Gauss}) \in R^{n_a \times n_b}\); \((DS_{chem}, DS_{jac}, DS_{Gauss}) \in R^{n_a \times n_b}\)). Then, we combine the three kernel matrices in two spaces separately using CKA-MKL. The optimal kernel is calculated as follows:

\[
K_I^* = \sum a_i K_i, K_i \in R^{n_a \times n_b}, \sum a_i = 1
\]

(9)

where, \(k\) is the number of kernels, \(K_i\) is the value in the drug similar kernel set \((DS_{chem}, DS_{jac}, DS_{Gauss})\) and disease similar kernel set \((DS_{chem}, DS_{jac}, DS_{Gauss})\), and \(a_i\) is the weight of kernel \(K_i\); \(N\) is the number of nodes.

According to Yijie et al. (2019), the kernel alignment score can be described by calculating the cosine correlation between two kernels. The larger the correlation between the kernels, the higher the alignment between the kernels. Therefore, the value of kernel alignment is defined as follows:

\[
\text{A}(P, Q) = \frac{\langle P, Q \rangle_f}{\|P\|_2 \|Q\|_2} \quad \text{subject to } K_I^* = \sum a_i K_i, a_i \geq 0, \sum a_i = 1
\]

(10)

where, \(P, Q \in R^{N \times N}\), \(N \in \{n_d, n_g\}\), \(\langle P, Q \rangle_f = \text{Trace}(P^TQ)\) is the Frobenius inner product, and \(\|P\|_2 = \sqrt{\langle P, P \rangle_f}\) is the Frobenius parametrization. In fact, the kernel alignment score can be viewed as a correlation between two kernels (the characteristic kernel \(K^*\) and the ideal kernel matrix \(Y_i^T Y_j^T\)). To obtain the optimal weights of the kernels, we should maximize the alignment score between \(K^*\) and \(Y_i^T Y_j^T\). Therefore, the objective function after central kernel alignment is as follow:

\[
\text{max} \text{CA}(K^*, Y_i^T Y_j^T) = \max_{\omega \in \mathbb{R}^{n_a}} \frac{\langle U_k^* K_u^* U_j^T Y_i^T Y_j^T \rangle}{\|U_k^* K_u^* U_j^T \|_2 \|Y_i^T Y_j^T \|_F} \quad \text{subject to } K_I^* = \sum a_i K_i, a_i \geq 0, \sum a_i = 1
\]

(11)

where, \(U_k = I_n - \frac{1}{N} I_n^T I_n (I_n \in R^{N \times N})\) denotes a central kernel matrix. \(I_n \in R^{N \times N}\) is a unitary matrix. \(I_k\) is a unit vector. Eq. (11) can also be transformed into:

\[
\text{max}_{\omega \in \mathbb{R}} \frac{a^T a}{\sqrt{a^T M a}} \quad \text{subject to } K_I^* = \sum a_i K_i, a_i \geq 0, \sum a_i = 1
\]

(12)

where, \(a \in R^{n_a \times n_a}\) and \(M \in R^{n_a \times n_a}\) are calculated from Eqs. (13) and (14), respectively:

\[
a = \langle (U_k K_i U_j, Y_i^T Y_j), \ldots, (U_k K_i U_j, Y_i^T Y_j) \rangle \in R^{n_a \times n_a}
\]

(13)

\[
M = \begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1k} \\
M_{21} & M_{22} & \cdots & M_{2k} \\
\vdots & \vdots & \vdots & \vdots \\
M_{k1} & M_{k2} & \cdots & M_{kk}
\end{bmatrix}_{k \times k}
\]

(14)

The final objective function can also be expressed as:

\[
\text{max}_{\omega \in \mathbb{R}} \frac{a^T M a}{\sqrt{a^T M a}} - 2a^T a
\]

subject to

\[
K_I^* = \sum a_i K_i, a_i \geq 0, \sum a_i = 1
\]

(15)

To obtain the reconfiguration weights for each similar kernel, we use standard quadratic programming to solve Eq. (15). Therefore, we obtain the weights of drugs and diseases \((a_1, a_2, \ldots, a_{n_a}) \in R^{n_a \times 1}\) and combine them with the drug \((DS_{chem}, DS_{jac}, DS_{Gauss}) \in R^{n_a \times n_b}\) and disease \((DS_{chem}, DS_{jac}, DS_{Gauss}) \in R^{n_a \times n_b}\) similarity kernels, respectively, according to the following equations:

\[
K^*_J = \sum_{i=1}^k a_i K_i \in R^{n_a \times n_b}
\]

(16)

\[
K^*_D = \sum_{i=1}^k a_i K_i \in R^{n_a \times n_b}
\]

(17)

where, \(a^*_D = \{a^*_1, a^*_2, \ldots, a^*_n\}\) and \(a^*_D = \{a^*_1, a^*_2, \ldots, a^*_n\}\) are the optimal weights of the disease kernel and the drug kernel, respectively.

According to the above algorithm model, the procedure of CKA-MKL is summarized in Algorithm 2. CKA-MKL combines three similar kernel matrices of drugs and diseases in two spaces respectively, and obtains optimal combination similarity matrices of drugs and diseases, thereby improving the complementarity of various types of similarity information.

Algorithm 2. CKA-MKL

Inputs:

Association probability matrix \(Y_r\), chemical similarity matrix \(DS_{chem} \in R^{n_a \times n_a}\), disease semantic similarity matrix \(DS_{sem} \in R^{n_a \times n_a}\), Jaccard similarity matrices \(DS_{jac}\), and Gaussian-based similarity matrix \(DS_{Gauss}\) of drugs and diseases.

Output:

Optimal combination similarity matrices \(K^*_I\) and \(K^*_D\) of drugs and diseases.

Algorithm

1. Define the objective function Eqs. (11) and (12) of CKD-MKL according to Eqs. (9) and (10);
2. Change the objective function Eq. (12) to Eq. (15) according to Eqs. (13) and (14);
3. Calculate the optimal combination similarity matrix weights \(a_1, a_2, \ldots, a_{n_a}\) for drugs and diseases by minimizing Eq. (15);
4. Calculate the optimal combination similarity matrices of drugs and diseases according to Eqs. (16) and (17), respectively.

2.2.3. Compressed sensing model

Compressed sensing is a matrix completion class method based on the principle that the simulation matrix obtained by the inner product of sub-matrices can approximate the target matrix. The elements in the simulation matrix are used as estimates of the elements of the unobservable part of the target matrix. In other words, given a matrix \(Y \in R^{n_a \times n_b}\) with missing interaction information, where \(n_p\) represents the number of drugs and \(n_q\) represents the number of diseases. \(Y_s\) is obtained based on the WKNKN algorithm by simulating the inner product of two low-dimensional sub-matrices \(F \in R^{n_a \times n_b}\) and \(G \in R^{n_q \times n_q}\) \(\langle F, G \sim N(0, \frac{1}{\sqrt{pq}})\rangle\), which correspond to the potential features of drugs and diseases, respectively. The probabilities of drug-disease interactions are approximated by mapping the association information of drugs and diseases to a low-dimensional common potential space. Optimization of the sub-matrices is achieved by reducing the gap between the simulation matrix and the target matrix during the completion process. To avoid over-optimization of the model, the complexity of the sub-matrix is calculated as a penalty term for sub-matrix optimization when calculating the difference between the simulation matrix and the target matrix. In addition, during optimization, the compressed sensing model allows the introduction of drug and disease similarity information in order to continuously adjust the sub-matrix model.

Therefore, given a drug \(D_i\) and disease \(D_j\), the probability of their interaction events can be calculated by the following equation:

\[
p_{ij} = p(Y_{ij} = 1 | f_i, g_j) = 1 \left(1 + \exp\left(-f_i g_j^T\right)\right)^{-1}
\]

(18)

or in matrix form:

\[
p(Y_{ij} | F, G) = \prod_{ij} \left(1 + \exp\left(-f_i^T g_j^T\right)\right)^{-1}
\]

(19)

where, \(p_{ij}\) is the interaction probability of drug \(D_i\) and disease \(D_j\), \(f_i\) is the \(i\)th row of the drug sub-matrix \(F\), \(g_j\) is the \(j\)th row of the disease sub-matrix \(G\), and \(w_{ij}\) is the initial weight of drug \(D_i\) and disease \(D_j\).
(Hansain et al., 2016). By Bayesian inference, we can derive the probability of \(p(Y_F | F, G) \) as follow:

\[
p(F, G | Y_F) \propto p(Y_F | F, G) p(F) p(G).
\]

As described by Steck (2010), we obtain the loss function of the model:

\[
\text{LOSS} = \sum_{i,j} w_{ij} \left\{ \ln \left(1 + \exp \left(f_y g_i \right) \right) - y_i f_y g_i \right\} + \lambda_y \| F \|_2^2 + \lambda_c \| G \|_2^2.
\]

To improve the accuracy of the method’s predictions, we further extend the loss function based on the assumption that similar drugs may interact with similar diseases. Specifically, let \(DS \in R^{n \times n} \) be the drug similarity matrix, where each entry \(DS_{ij} \) denotes the similarity between drugs \(D_i \) and \(D_j \), and let \(dS \in R^{q \times q} \) be the disease similarity matrix. The combination of similar diseases with similar drugs is explained by minimizing the distance between the properties of the drugs:

\[
tr(F^T(D_{ds} - DS)F) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} DS(i,j) \| F(i,:) - F(j,:) \|_2^2.
\]

Similarly, similarities between diseases are minimized:

\[
tr(G^T(dS - dS)G) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} dS(i,j) \| G(i,:) - G(j,:) \|_2^2.
\]

Combining the regularization terms (22) and (23) into (21) and introducing two additional adjustable parameters \(\lambda_M \) and \(\lambda_g \), our loss function can be transformed into:

\[
\text{LOSS} = \sum_{i,j} w_{ij} \left\{ \ln \left(1 + \exp \left(f_y g_i \right) \right) - y_i f_y g_i \right\} + \lambda_y \| F \|_2^2 + \lambda_c \| G \|_2^2 + \lambda_M tr(F^T(D_{ds} - DS)F) + \lambda_g tr(G^T(dS - dS)G).
\]

According to Liu et al. (2016), compressed sensing can be used to optimize the model using an iterative gradient descent method (AdaGrad) (John et al., 2011). During the iterative process, the partial derivative of the loss function can be written as:

\[
BF = \frac{\partial \text{LOSS}}{\partial F} = \{ W_s[P - Y_F] \} G + 2\lambda_f F + 2\lambda_M (D_{ds} - DS)F
\]

\[
BG = \frac{\partial \text{LOSS}}{\partial G} = \{ W^T_s[P - Y_F]^T \} F + 2\lambda_g G + 2\lambda_M (dS - dS)G
\]

where, * represents the Hadamard product. The submatrices \(F \) and \(G \) are updated according to the following equations:

\[
F^{n+1} = F^n - k \left(\frac{BF^n}{\| BF^n \|_F} \right)
\]

\[
G^{n+1} = G^n - k \left(\frac{BG^n}{\| BG^n \|_F} \right)
\]

\[
\Delta F = \| F^{n+1} \|_F - \| F^n \|_F
\]

\[
\Delta G = \| G^{n+1} \|_F - \| G^n \|_F
\]

where, \(k \) is the learning rate of the iterative process; the superscript \(n \) is the current number of iterations; the end condition for the update of submatrices \(F \) and \(G \) is \(\max(\Delta F, \Delta G) < 10^{-5} \); \(\| BF \|_F \) is the Frobenius paradigm of \(BF \), and \(\| BG \|_F \) is defined similarly as:

\[
\| BF \|_F = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |BF_{ij}|^2 \right)^{\frac{1}{2}}
\]

3. Result

Under the running environment of win10 Professional Edition and i5-9300H CPU, we used MATLAB 2018b software to run the code which can be downloaded from https://github.com/kk-2010000/drpadc1. The purpose of this study was to construct a drug-repositioning computational method with excellent performance and reliable results for drug development against COVID-19. Therefore, we used Fdataset and Cdataset, which are used in drug-repositioning research and available from DrugBank, OMIM and Mesh public database, as gold-standard datasets and compared DRPADC with those proposed by other researchers in recent years to validate the performance of DRPADC. Then, we compared DRPADC with methods of the same type on the HDVD dataset to further validate its performance.

3.1. Performance comparison of methods on the gold standard datasets

To test the performance of DRPADC, we perform 10 times 10-fold cross-validation (CV) on two gold-standard datasets, Fdataset and Cdataset, for comparison with other classical drug-repositioning methods. Here, we randomly divide all the known drug-disease associations into 10 equal parts. We take turns to select one part to form the test sample set and the rest the training sample set. The 10-fold cross-validation is repeated 10 times for each method, and the average of all the 10 results is regarded as the final score. After testing all interactions, we calculate the true positive rate (TPR, the proportion of positive samples that are correctly identified among positive samples) and the false positive rate (FPR, the proportion of incorrectly identified negative samples to all negative samples) using the following equations:

\[
\text{TPR (or Recall)} = \frac{TP}{TP + FN}
\]

where, \(TP \) indicates the number of correctly identified positive samples and \(FN \) indicates the number of incorrectly identified negative samples; and

\[
\text{FPR} = \frac{FP}{TN + FP}
\]

where, \(FN \) is the number of correctly identified positive samples and \(TN \) is the number of correctly identified negative samples. The purpose of this study was to construct a drug-repositioning computational method with excellent performance and reliable results for drug development against COVID-19. Therefore, we used Fdataset and Cdataset, which are used in drug-repositioning research and available from DrugBank, OMIM and Mesh public database, as gold-standard datasets and compared DRPADC with those proposed by other researchers in recent years to validate the performance of DRPADC. Then, we compared DRPADC with methods of the same type on the HDVD dataset to further validate its performance.
is the number of correctly identified negative samples.

Since the precision measure is the percentage of correctly identified positive samples out of all retrieved samples, the higher the precision value, the better the prediction of the model. Therefore, we calculate the precision of each method on the various datasets. Precision is calculated as follows:

\[
\text{Precision} = \frac{TP}{TP + FN}
\]

We constructed receiver operating characteristic (ROC) curves and calculated the area under the curve (AUC), which is widely used to describe overall predictive performance (Zou et al., 2015). An AUC value closer to 1 indicates better performance, while an AUC value closer to 0.5 indicates performance closer to random (Peng et al., 2020).

Since the area under the Precision-recall curve (AUPR) is more suitable than AUC for evaluating highly unbalanced or skewed datasets, we also added AUPR to assess the performance of various methods. We calculated the TPR, FPR and Precision by changing the preset ranking thresholds for plotting the respective ROC and PR (Precision-recall) curves. As shown in Fig. 3 and Table 2, we obtained better results with DRPADC compared with the other methods. DRPADC achieved an AUC value of 0.955 in Cdataset, which is 0.5% higher than that of the second highest-achieving method, BNNR (AUC = 0.950). DRPADC had the highest AUC value of 0.941 in Fdataset, 0.8% higher than that obtained with BNNR (AUC = 0.933). DrugNet achieved the lowest AUC values in both datasets, 16.3% (Fdataset) and 15.1% (Cdataset) lower than those of DRPADC, respectively. In addition, as the AUPR row shown in Table 2, DRPADC achieves the highest AUPR value in different datasets. In summary, DRPADC outperformed the other methods shown in Fig. 3 on the gold-standard datasets.

3.2. Performance comparison of methods in HDVD dataset

To further verify the performance of DRPADC, we validated the proposed method and other recent prediction methods of the same type (Mengyun et al., 2020, 2019; Yajie et al., 2021; Feng et al., 2020; Chengqian et al., 2019, 2018) on HDVD with 10 times 10-fold-CV, constructed ROC plots for each comparison method, and calculated the corresponding AUC values. As shown in Fig. 4a and the AUC column of Table 3, DRPADC achieved AUC = 0.876 in the 10 times 10-fold-CV. The other methods tested were BNNR (AUC = 0.876), SCMF (AUC = 0.860), CMFMFTL (AUC = 0.850), HIGM (AUC = 0.785), GMCLDA (AUC = 0.735) and SIMCLDA (AUC = 0.705). The AUC value of DRPADC was the same as that of BNNR and better than those of the other methods.

To further evaluate the performance of DRPADC compared with other matrix completion methods on the HDVD dataset, we computed precision metrics using the same validation framework, plotted PR curves, and calculated the corresponding AUPR values. As shown in Fig. 4b and the AUPR column of Table 3, DRPADC had the highest AUPR value of 0.507, which is higher than the other methods, namely BNNR (AUPR = 0.489), SCMF (AUPR = 0.486), CMFMFTL (AUPR = 0.440), HIGM (AUPR = 0.417), GMCLDA (AUPR = 0.177) and SIMCLDA (AUPR = 0.152). In summary, DRPADC outperforms the other methods in Fig. 4 on the HDVD dataset.

4. Discussion

4.1. Ablation experiments

To verify the validity of each part of the method proposed in this paper, ablation experiments were conducted in two gold-standard datasets, Fdataset and Cdataset. The comparisons made are shown in Table 4, where DRPADC is the one proposed in this paper (i.e., WKNKN + CKA-MKL + compressed sensing); model 1 is a combination of the WKNKN algorithm, similarity mean fusion, and compressed sensing; model 2 is a combination of CKA-MKL and compressed sensing; model 3 is a combination of similarity mean fusion and compressed sensing; model 4 is a combination of WKNKN, single similarity (with no introduction of Jaccard similarity or Gaussian kernel similarity for drugs and diseases), and compressed sensing; and model 5 uses single similarity (with no introduction of Jaccard similarity or Gaussian kernel similarity for drugs and diseases) and compressed sensing. As shown in Fig. 5, DRPADC showed a slight improvement in performance compared with model 1; this was because processing multiple similarity matrices using CKA-MKL enables the weights of each similarity matrix (kernel) to be obtained and the best matrix combination to be selected to improve the complementarity of the similarity information. All three sets of comparison models, DRPADC and model 2, model 1 and model 3, and model 4 and model 5, illustrate that introducing WKNKN to preprocess the drug-disease association matrix can improve the representativeness of the sampled features of the sub-matrices with respect to the original matrix data and improve the accuracy of association prediction. The comparison between model 2 and model 5 illustrates that the effectiveness of drug repositioning can be improved to some extent by enrichment with multiple similarity information.
4.2. Parameter analysis

To verify the sensitivity of the performance of DRPADC to its parameters, we perform a parameter analysis on the Fdataset, Cdataset, and HDVD datasets, respectively. The parameters not involved in the conditioning experiments were set to fixed values for this analysis. When evaluating parameters K and T, the other parameters were fixed, i.e., λ_r, λ_M, and λ_N were fixed as 0.1, 1 and 0.1, respectively. In the subsequent parameter evaluation experiments, the optimal values of the corresponding parameters were replaced in turn. As shown in Fig. 6, the values of the neighborhood parameter K and the attenuation parameter T in the WKNKN algorithm ranged from 1 to 10 and from 0.1 to 1, respectively. For Fdataset, the best performance was achieved with $K = 7$ and $T = 0.6$ (Fig. 6a). For Cdataset, the best performance was achieved with $K = 6$ and $T = 0.7$ (Fig. 6b). For HDVD, the best performance was located at $K = 5$ and $T = 0.3$ (Fig. 6c).

Next, we parametrically analyzed the parameters λ_r, λ_M and λ_N in the loss function of the compressed sensing algorithm in different datasets. All three parameters were set in the range of $[0.1, 1]$, incremented by 0.1 each time. As shown in Fig. 7a, the performance of DRPADC in all three datasets tended to decrease as the value of λ_r increased, and DRPADC performed best when λ_r was 0.1. As shown in Fig. 7b, the value of λ_M tended to level off after 0.4 and the performance reached stability, so we took the optimal value of λ_M in each of the three datasets: HDVD ($\lambda_M = 1$), Fdataset ($\lambda_M = 0.7$) and Cdataset ($\lambda_M = 0.5$). As shown in Fig. 7c, the performance of DRPADC in the Fdataset and HDVD datasets showed a decreasing trend with increasing λ_N values, whereas in Cdataset it showed a decreasing trend from a λ_N value of 0.2. Therefore, we took the optimal values of λ_N in each of the three datasets: HDVD ($\lambda_N = 0.1$), Fdataset ($\lambda_N = 0.2$), and Cdataset ($\lambda_N = 0.5$).

Table 2
AUC values for 10 times 10-fold-CV of various methods on Fdataset and Cdataset.

test	Metrics	DRPADC	BNNR	DRRS	HGIMC	MBiRW	SCPMF	HGBI	CMFMTL	DrugNet
10-fold-CV of Fdataset	AUC (0.001)	0.941	0.933	0.930	0.919	0.917	0.895	0.829	0.819	0.778
10-fold-CV of Cdataset	AUC (0.001)	0.955	0.950	0.947	0.942	0.933	0.915	0.858	0.840	0.804
	AUPR (0.001)	0.521	0.402	0.341	0.394	0.264	0.357	0.102	0.195	0.155
	AUPR (0.001)	0.607	0.441	0.378	0.428	0.310	0.423	0.129	0.305	0.201

Table 3
AUC values and AUPR values for various matrix completion methods on HDVD.

Methods	AUC (0.001)	AUPR (0.001)
DRPADC	0.876	0.507
BNNR	0.876 (0.005)	0.489 (0.013)
SCPMF	0.860 (0.001)	0.486 (0.001)
CMFMTL	0.850 (0.001)	0.440 (0.001)
HGIMC	0.785 (0.005)	0.417 (0.009)
GMLCLDA	0.735 (0.005)	0.177 (0.003)
SIMCLDA	0.705 (0.007)	0.152 (0.008)

4.2. Parameter analysis

To verify the sensitivity of the performance of DRPADC to its parameters, we perform a parameter analysis on the Fdataset, Cdataset, and HDVD datasets, respectively. The parameters not involved in the conditioning experiments were set to fixed values for this analysis. When evaluating parameters K and T, the other parameters were fixed, i.e., λ_r, λ_M, and λ_N were fixed as 0.1, 1 and 0.1, respectively. In the subsequent parameter evaluation experiments, the optimal values of the corre-
Cdataset (λ_N = 0.2), Fdataset (λ_N = 0.1).

4.3. Case study

To validate the performance of DRPADC in practical applications, we performed a case study of COVID-19. The top 15 predicted drug candidates for COVID-19, as determined by their final scores of predicted association, are listed in Table 5. For each drug, the rank (predicted scores ranked in descending order), the registration number in the Drugbank library, the canonical name, and any relevant evidence reported in the literature are shown. Of these top 15 drug candidates, 12 drugs (80% success rate) have been validated by a variety of evidence. Chloroquine is an inexpensive, safe, and widely used anti-malarial drug which has been in use for over 70 years; it is highly effective in vitro control of SARS-CoV-2 infection and therefore may be clinically indicated for COVID-19 (Choy et al., 2020). Touret and Xavier de (2020) suggest that combined treatment with Remdesivir and Emetine may provide better clinical benefits. Wang et al. (2020) found that Chloroquine and Remdesivir were very effective in controlling SARS-CoV-2 infection in vitro. Ribavirin was originally suggested in clinical practice for use in the COVID-19 Pneumonia Diagnostic and Treatment Program (Revised 5th Edition) (Khalili et al., 2020). Therefore, Ribavirin is the first drug candidate predicted for possible use in the treatment of COVID-19. Camostat mesylate, one of the components of Camostat, blocks SARS-CoV-2 interaction in pulmonary cells and may be regarded for extra-label therapy of COVID-19 infection (Hoffmann et al.,
A combination of Nitazoxanide and Camostat may be proposed as early clinical treatment and evaluation of COVID-19 based on its pathophysiological and pharmacological potential (Khatri and Mago, 2020). Nitazoxanide is an anthelmintic approved by the Food and Drug Administration that modulates a variety of functional signaling pathways and bioprocesses, and has been certified as a multi-purpose drug (Li et al., 2014, 2017). For instance, Niclosamide is effective against a diversity of viral infections, including ZIKV virus, MERS-CoV, SARS-CoV, hepatitis C virus, and human adenovirus (Andrews et al., 1982; Organization, 2019). Xu et al. (2020) envisaged that Niclosamide may offer therapeutic potential against SARS-CoV-2. In addition, the E protein channel activity of SARS-CoV-2 was shown to be inhibited by memantine (Singh and Arkin., 2020). Remdesivir is a nucleotide analogue precursor drug with a broadly based spectrum of anti-viral activity, including activity against paramyxoviruses, pulmonary viruses, filoviruses and coronaviruses (Lo et al., 2017; Sheahan et al., 2017). Remdesivir inhibits viral RNA polymerase and shows anti-SARS-CoV-2 activity in vitro (Al-Tawfiq et al., 2020; De Wit et al., 2020; Grein et al., 2020). Gercitabine is an effective broad-spectrum antiviral agent against a variety of RNA viruses, including MERS-CoV and SARS-CoV (Dyall et al., 2014), and a recent bioassay study demonstrated that it inhibited the multiplication of SARS-CoV-2 (Ya-Nan et al., 2020). The 18-kDa cytoplasmic cyclophilin A is an important cellular molecule required for the replication of RNA viruses, including HIV (Jeremy et al., 1993), HCV (Koiichi et al., 2005) and coronaviruses (Almasi and Mohammadi, 2020). Recent studies have demonstrated that non-immunosuppressive analogs such as Alisporivir inhibit the activity of procyclins (Almasi and Mohammadi, 2020). Yajie et al. (2021) analyzed the effect of N4-Hydroxycytidine and Mycophenolic Acid on the functional receptor of SARS-CoV-2, ACE2 (cellular receptor for angiotensin-converting enzyme 2), using a molecular docking approach. Both drugs were shown to have several important binding sites for ACE2, suggesting a therapeutic effect of these drugs on COVID-19. A clinical trial of umifenovir alone was recently initiated in China (McKee et al., 2020); most of the 15 drug candidates for the treatment of COVID-19 predicted by our approach can be found in McKee et al. (2020).
Acknowledgment
We thank anonymous reviewers for valuable suggestions.

Findings
This work was supported by the National Natural Science Foundation of China (72001202, 62002070, 61802072); the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (2021103); the Science and Technology Plan Project of Guangzhou City (20210201236, 20190200012, 20190200006).

Availability of data and material
The available code and dataset of DRPADC can be downloaded from here https://github.com/kk-2010000/drpadc1.

Ethics approval
This paper does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate
All listed authors have read the submitted manuscript and agree to its submission.

Consent for publication
All listed authors consent for this publication.

References
Abd El-Aziz Tarek, M., Stockand James, D., 2020. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) an update on the status. Infect. Genet. Evol. 83, 104327 https://doi.org/10.1016/j.meegid.2020.104327.
Al-Tawfique, J.A., Al-Homoud, A.H., Memish, Z.A., 2020. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis. 34, 101615 https://doi.org/10.1016/j.tmaid.2020.101615.
Ali, E., et al., 2016. Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Trans. Comput. Biol. Bioinform. 14 (3), 646–656. https://doi.org/10.1109/TCBB.2016.2530062.
Almasi, F., Mohammadipanah, F., 2020. Potential targets and plausible drugs of coronavirus infection caused by 2019-nCoV. Authora Preprints 10.22541/au.158766083.33108969.
Andrews, P., Thyssen, J., Lorke, D., 1982. The biology and toxicology of molluscicides, bromacil and bromoxynil. Br. J. Pharmacol. 74, 97–106. https://doi.org/10.1016/j.yphar.2011.10.007.
Bajusz, D., Racz, A., Hruszka, R., 2012. Prediction of drug-target interactions from disease-disease bipartite network. In: Proceedings of the 2012 International Artificial Intelligence and Data Processing Symposium (IADAP). IEEE, pp. 1–4. https://doi.org/10.1109/IADAP.2018.0890219.
Baid, R., et al., 2020. Predicting drug-disease associations via multi-task learning based on collective matrix factorization. Front. Bioeng. Biotechnol. 8218 https://doi.org/10.3389/fbioe.2020.00218.
Bakker, B., et al., 2010. Predicting drug–disease interactions and drug repositioning from chemogenomic data. Nat. Rev. Drug Discov. 9 (10), 782–793. https://doi.org/10.1038/nrd3155.
Bajusz, D., Racz, A., Hruszka, R., 2012. Prediction of drug-target interactions from disease-disease bipartite network. In: Proceedings of the 2012 International Artificial Intelligence and Data Processing Symposium (IADAP). IEEE, pp. 1–4. https://doi.org/10.1109/IADAP.2018.0890219.
Baid, R., et al., 2020. Predicting drug-disease associations via multi-task learning based on collective matrix factorization. Front. Bioeng. Biotechnol. 8218 https://doi.org/10.3389/fbioe.2020.00218.
Bakker, B., et al., 2010. Predicting drug–disease interactions and drug repositioning from chemogenomic data. Nat. Rev. Drug Discov. 9 (10), 782–793. https://doi.org/10.1038/nrd3155.
Bajusz, D., Racz, A., Hruszka, R., 2012. Prediction of drug-target interactions from disease-disease bipartite network. In: Proceedings of the 2012 International Artificial Intelligence and Data Processing Symposium (IADAP). IEEE, pp. 1–4. https://doi.org/10.1109/IADAP.2018.0890219.
Baid, R., et al., 2020. Predicting drug-disease associations via multi-task learning based on collective matrix factorization. Front. Bioeng. Biotechnol. 8218 https://doi.org/10.3389/fbioe.2020.00218.
Bakker, B., et al., 2010. Predicting drug–disease interactions and drug repositioning from chemogenomic data. Nat. Rev. Drug Discov. 9 (10), 782–793. https://doi.org/10.1038/nrd3155.
Bajusz, D., Racz, A., Hruszka, R., 2012. Prediction of drug-target interactions from disease-disease bipartite network. In: Proceedings of the 2012 International Artificial Intelligence and Data Processing Symposium (IADAP). IEEE, pp. 1–4. https://doi.org/10.1109/IADAP.2018.0890219.
Baid, R., et al., 2020. Predicting drug-disease associations via multi-task learning based on collective matrix factorization. Front. Bioeng. Biotechnol. 8218 https://doi.org/10.3389/fbioe.2020.00218.
Bakker, B., et al., 2010. Predicting drug–disease interactions and drug repositioning from chemogenomic data. Nat. Rev. Drug Discov. 9 (10), 782–793. https://doi.org/10.1038/nrd3155.
Bajusz, D., Racz, A., Hruszka, R., 2012. Prediction of drug-target interactions from disease-disease bipartite network. In: Proceedings of the 2012 International Artificial Intelligence and Data Processing Symposium (IADAP). IEEE, pp. 1–4. https://doi.org/10.1109/IADAP.2018.0890219.
Baid, R., et al., 2020. Predicting drug-disease associations via multi-task learning based on collective matrix factorization. Front. Bioeng. Biotechnol. 8218 https://doi.org/10.3389/fbioe.2020.00218.
Bakker, B., et al., 2010. Predicting drug–disease interactions and drug repositioning from chemogenomic data. Nat. Rev. Drug Discov. 9 (10), 782–793. https://doi.org/10.1038/nrd3155.
Bajusz, D., Racz, A., Hruszka, R., 2012. Prediction of drug-target interactions from disease-disease bipartite network. In: Proceedings of the 2012 International Artificial Intelligence and Data Processing Symposium (IADAP). IEEE, pp. 1–4. https://doi.org/10.1109/IADAP.2018.0890219.
Baid, R., et al., 2020. Predicting drug-disease associations via multi-task learning based on collective matrix factorization. Front. Bioeng. Biotechnol. 8218 https://doi.org/10.3389/fbioe.2020.00218.
Bakker, B., et al., 2010. Predicting drug–disease interactions and drug repositioning from chemogenomic data. Nat. Rev. Drug Discov. 9 (10), 782–793. https://doi.org/10.1038/nrd3155.
Bajusz, D., Racz, A., Hruszka, R., 2012. Prediction of drug-target interactions from disease-disease bipartite network. In: Proceedings of the 2012 International Artificial Intelligence and Data Processing Symposium (IADAP). IEEE, pp. 1–4. https://doi.org/10.1109/IADAP.2018.0890219.
Baid, R., et al., 2020. Predicting drug-disease associations via multi-task learning based on collective matrix factorization. Front. Bioeng. Biotechnol. 8218 https://doi.org/10.3389/fbioe.2020.00218.
G. Xie et al.

Computers and Chemical Engineering 166 (2022) 107947

Yongcui, W., et al., 2013. Drug repositioning by kernel-based integration of molecular
information and disease gene enrichment network. Bioinformatics 36, 22–23. https://doi.org/10.1093/bioinformatics/btt231.

Xie, G., et al., 2014. Prioritizing drug targets in clostridium botulinum with a
computational systems biology approach. Genomics 104 (1), 24–35. https://doi.org/10.1016/j.ygeno.2014.05.002.

O’Boyle, N.M., et al., 2011. Open babel: an open chemical toolbox. J. Cheminform. 333 https://doi.org/10.1016/j.chemomb.2010.08.002.

Organization W.H., 2019. World Health Organization model list of essential medicines:
21st List 2019. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-2019-06-eng.pdf.

Pang-Ning T., Michael S., and Vipin K., 2016. Introduction to data mining. Pearson
Education India. https://paulallen.ca/documents/2015/01/kumar-v-introduction-to-data-mining-instructors-solution-manual.pdf/.

Wang, M., et al., 2020. Remdesivir and chloroquine effectively inhibit the recently
emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271. https://doi.org/10.1038/s41422-020-0262-z.

Wei-jie, G., et al., 2020. Clinical characteristics of coronavirus disease 2019 in China.
N. Engl. J. Med. 382 (18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032.

Wen hui, W., Yang, S., Li, J., 2013. Drug target predictions based on heterogeneous graph
inference. Biocomputing 2013, 53–64. https://doi.org/10.1016/j.bbrc.2014.447973.0006.

Wen hui, W., et al., 2014. Drug repositioning by integrating target information through a
heterogeneous network model. Bioinformatics 30 (20), 2923–2930. https://doi.org/10.1093/bioinformatics/btu403.

Xing, C., et al., 2016. Drug-target interaction prediction: databases, web servers and
computational models. Brief. Bioinform. 17 (4), 696–712. https://doi.org/10.1093/bib/btv066.

Xing, C., et al., 2016. Nils: predicting synergistic drug combinations based on semi-
supervised learning. PLoS Comput. Biol. 12 (7), e1004975 https://doi.org/10.1371/
journal.pcbi.1004975.

Xiujuan, L., Chong, Z., 2020. Predicting metabolite disease associations based on linear
neighborhood similarity with improved bipartite network projection algorithm.
Complexity. https://doi.org/10.1155/2020/9342640.

Xu, J., et al., 2020. Broad spectrum antiviral agent niclosamide and its therapeutic
potential. ACS Infect. Dis. 6, 909–915. https://doi.org/10.1021/acsinfectdis.0c00052.

Ya-Nan, Z., et al., 2020. Gemcitabine, lycorine and oxysophoridine inhibit novel
 coronavirus (SARS-CoV-2) in cell culture. Emerg. Microbes Infect. 9 (1), 1170–1173. https://doi.org/10.1080/22221751.2020.1772676.

Yajie, M., et al., 2021. Drug repositioning based on similarity constrained probabilistic
matrix factorization: COVID-19 as a case study. Appl. Soft Comput. 103, 107135 https://doi.org/10.1016/j.asoc.2021.107135.

Yijie, D., Jijun, T., Fei, G., 2019. Identification of drug-side effect association
 inference based on ensemble learning and kernel ridge regression. Front. Bioeng.
Biotechnol. 8, 40. https://doi.org/10.3389/fbioe.2020.00040.

12