MINIREVIEWS

Does steroid-free immunosuppression improve the outcome in kidney transplant recipients compared to conventional protocols?

Ahmed Aref, Ajay Sharma, Ahmed Halawa

ORCID number: Ahmed Aref 0000-0003-4184-3883; Ajay Sharma 0000-0003-4050-6586; Ahmed Halawa 0000-0002-7305-446X.

Author contributions: Halawa A selected the topics for the work, providing expert advice on our work and the final editing of the manuscript; Sharma A contributed the supervision of the scientific presentation of the data collection together with the quality evaluation of the data presented; Aref A designed the work, collected the data and wrote the manuscript.

Conflict-of-interest statement: There is no conflict of interest to be declared by any of the authors.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Ahmed Aref, Department of Nephrology, Sur hospital, Sur 411, Oman

Ajay Sharma, Department of Transplantation, Royal Liverpool University Hospitals, Liverpool 111, United Kingdom

Ahmed Halawa, Department of Transplantation, Sheffield Teaching Hospitals, Sheffield S5 7AU, United Kingdom

Corresponding author: Ahmed Halawa, FRCS (Gen Surg), MSc, Surgeon, Department of Transplantation, Sheffield Teaching Hospitals, Herries Road, Sheffield S5 7AU, United Kingdom. ahmed.halawa@sth.nhs.uk

Abstract

Steroids continue to be the cornerstone of immune suppression since the early days of organ transplantation. Steroids are key component of induction protocols, maintenance therapy and in the treatment of various forms of rejection. Prolonged steroid use resulted in significant side effects on almost all the body organs owing to the presence of steroid receptors in most of the mammalian cells. Kidney allograft recipients had to accept the short and long term complications of steroids because of lack of effective alternatives. This situation changed with the introduction of newer and more effective immune suppression agents with a relatively more acceptable side effect profile. As a result, the clinicians have been contemplating if it is the time to abandon the unquestionable reliance on maintenance steroids in modern transplantation practice. This review aims to evaluate the safety and efficacy of various steroid-minimization approaches (steroid avoidance, early steroid withdrawal, and late steroid withdrawal) in kidney transplant recipients. A meticulous electronic search was conducted through the available data resources like SCOPUS, MEDLINE, and Liverpool University library e-resources. Relevant articles obtained through our search were included. A total number of 90 articles were eligible to be included in this review [34 randomised controlled trials (RCT) and 56 articles of other research modalities]. All articles were evaluating the safety and efficacy of various steroid-free approaches in comparison to maintenance steroids. We will cover only the RCT articles in this review. If used in right clinical context, steroid-free protocols proved to be comparable to steroid-based maintenance therapy. The appropriate approach should be tailored individually according to each recipient immunological challenges and clinical condition.
INTRODUCTION

Kidney transplantation continues to prove itself as the best treatment modality for patients with end stage renal disease (ESRD). Kidney transplantation not only improves patient survival, but enhances the quality of life and psychological well-being for those patients\(^1\). The introduction of potent induction protocols utilizing antibodies targeting T-cell receptors together with the availability of effective maintenance immune-suppressive agents has dramatically improved the first-year allograft outcome. On the other hand, the long-term outcome did not show similar improvement, mostly secondary to long term side effects of prolonged immune suppressive medications\(^4\). Steroids have been used since the early days of organ transplantation to prevent the loss of transplanted organs by the recipient immune system\(^1\). The usage of steroids came with a high cost of complications that includes cosmetic changes, metabolic disturbances, skeletal complications, growth affection in pediatric patients and increase risk of cardiovascular morbidity and mortality\(^1\). Variable approaches were adopted by different transplant centers to decrease the burden of steroid side effects either by steroids withdrawal or total steroid avoidance\(^5\). Discontinuation of steroids after few days of transplantation is called early steroid withdrawal (ESW), while late steroid withdrawal (LSW) implies holding steroids after weeks or months after the transplantation. On the other hand, if steroids were not administered at all, this is called steroid avoidance\(^1\). Several studies were performed to evaluate the efficacy of various steroid minimization approaches which showed favorable short-term outcome. However, long term outcome is still not validated\(^6\). In the following sections we shall explore the safety and efficacy of various steroid-minimization approaches namely, steroid avoidance, ESW, and LSW in kidney transplant recipients.

EPIDEMIOLOGY

There has been a continuous rise in the number of patients suffering from ESRD, which was translated into a growing number of kidney transplant recipients. In the United States, the number of kidney transplant recipients increased by 106.6% during the period from 2000 to 2017. Furthermore, Kidney transplant recipients in the United States reached more than 222000 by the end of 2017, representing about 30% of all cases treated by renal replacement therapy\(^7\).
A meta-analysis of randomized controlled studies proved the efficacy of induction protocols in lowering the risk of acute rejection (AR) among kidney allograft recipients in the first year allowing utilization of less aggressive maintenance immunosuppression[3,10]. Data from the United States published in Organ Procurement Transplant Network/Scientific Registry of Transplant Recipients (OPTN/SRTR) annual report showed that more than 70% of the kidney transplant recipients received induction via a T-cell depleting agent (namely rATG or alemtuzumab), and less commonly the non-depleting agent basiliximab (chimeric anti-CD25) was used as the induction agent, while transplantation without induction became relatively uncommon for both adult[8] and pediatric recipients[9].

Early results from randomized controlled studies (RCS) showed a significant improvement in cardiovascular risk profiles in transplant recipients with steroid-free protocols[8,11,12]. On the other hand, there was an increased risk of AR, which did not significantly affect the first and five-years patient and graft outcome[13]. Nevertheless, long term benefits and consequences of steroid avoidance were not confirmed[14,15].

STEROID-FREE PROTOCOLS IN SPECIAL POPULATIONS

There is currently a generalized consensus that steroid-free protocols should be considered in kidney transplant candidates after careful evaluation of possible benefits and expected risks of each patient individually[15-20]. In 2009 Kidney Disease: Improving Global Outcomes Transplant Work Group have suggested using induction protocols utilising one of the lymphocytes depleting agents in case of high-risk of AR[11]. High-risk transplantation is considered in the presence of one or more of the following risk factors[16]: (1) Afro-American ethnicity; (2) Old aged donor; (3) Increased number of human leukocyte antigens (HLA) mismatch; (4) High panel reactive antibody (PRA); (5) Presence of donor-specific antibody (DSA); (6) Prolonged cold ischemia time; and (7) Blood group (ABO) incompatible transplantation.

Steroid-free protocols have long been used for low immunological risk situations. However, the safety and efficacy of steroid minimization in high immunological risk transplantation was not adequately addressed in clinical trials[11].

Steroid withdrawal in African American transplant recipients

Kidney transplantation in African American population was traditionally considered a procedure with high immunological risk due to the associated higher incidence of AR and chronic allograft nephropathy as well as the inferior graft outcome compared to other ethnic groups[17]. Several studies have shown that African American recipients have immune hyper-responsiveness, more HLA polymorphisms, in addition to several important cytokine polymorphisms[18].

The short and intermediate-term outcome after ESW were evaluated in a few studies that showed acceptable results in the term of patient and graft survival[11,13]. However, these studies were retrospective in nature and included a small number of patients and control.

Data from the United States published in Organ Procurement Transplant Network/Scientific Registry of Transplant Recipients (OPTN/SRTR) annual report showed that more than 70% of the kidney transplant recipients who had their steroids withdrawn by the time of hospital discharge after the transplantation versus a matched 5565 black recipients who continued on steroid maintenance therapy[11]. Ten years patient and allograft outcomes were comparable in both groups[8,11].

Steroid withdrawal in kidney re-transplantation

There is a growing number of patients who are being relisted and re-transplanted after the failure of their kidney allograft[19]. Candidates for kidney re-transplantation are more likely to suffer from significant co-morbid conditions (secondary to prolonged immune suppression, pre-transplant comorbidities, the original renal disease, and ageing itself)[19].

Many of the existing co-morbidities are likely to benefit from ESW. On the other hand, re-transplantation candidates are likely to have antibodies to HLA that are expressed on the donor’s kidney, and they will be progressively sensitised with each failed allograft experience. Therefore, they are more prone to poor graft outcome secondary to immunological causes unless potent immune suppression was implemented[19,20]. Few studies focused on the outcome of ESW in the setting of kidney retransplantation[19,20]. The available studies showed an acceptable short and intermediate-term patient and graft outcome provided that the recipient received...
induction therapy with a T-cell depleting agent.\(^{[20,29]}\)

Steroid withdrawal in sensitised kidney transplant recipients

Kidney transplant candidates are called sensitised if they have anti-HLA antibodies which increase the risk of rejection. Therefore, such patients used to be considered at high immunological risk and steroids were a cornerstone in their maintenance immune suppression.\(^{[22]}\) Sensitised patients may have antibodies to HLA antigens secondary to previous blood transfusion, pregnancy, or prior failed transplants.\(^{[22]}\) The analysis of data obtained from OPTN/UNOS showed that maintenance steroid therapy was associated with increased risk of death with functioning graft in kidney allograft recipients with peak PRA less than 30%. However, maintenance steroid usage was associated with improved death censored graft survival and without negative impact on patient survival for recipients with peak PRA more than 60%.\(^{[22]}\)

Steroid withdrawal in ABO incompatible kidney transplantation:

ABO incompatibility was once a contraindication for kidney transplantation as it was associated with hyperacute rejection and graft loss.\(^{[21]}\) The introduction of desensitisation protocols has changed this concept over the past few decades making ABO incompatible (ABOi) kidney transplantation relatively a realistic option.\(^{[23]}\) Nevertheless, potent maintenance immune suppression utilising triple agents was commonly used to achieve excellent patient and graft survival.\(^{[24]}\) Several centres investigated the challenge of early withdrawal\(^{[25,26]}\) and the late withdrawal of steroids.\(^{[27,28]}\) All these studies showed an acceptable patient and graft outcome in addition to the avoidance of long-term complications of steroids. However, all these studies involved a small number of cases. Well organised studies still required to investigate the outcome of a large number of cases over prolonged time of follow up to consolidate the cost-effectiveness of steroid sparing in the setting of ABOi kidney transplantation.\(^{[25-29]}\)

Steroid withdrawal in transplantation after glomerulonephritis

Treatment of most of the primary glomerulonephritis includes the use of steroids to achieve and maintain remission.\(^{[27]}\) Recurrence of glomerulonephritis post-transplantation is a feared situation as it indicates a worse allograft survival.\(^{[27]}\) Large data registry showed that maintenance steroid therapy has no statistical significance on patient and allograft outcome in recipients with recurrent glomerulonephritis.\(^{[18,20]}\)

Steroid withdrawal in older patients

Kidney transplant recipients older than 60 years are commonly defined as elderly patients.\(^{[20,23]}\) The prevalence of ESRD in older people is substantial.\(^{[24]}\) There is growing evidence that kidney transplantation in elderly suffering from renal failure has a better outcome than other modalities of renal replacement therapy. However, the ideal immune suppression protocol in elderly recipients remains undefined.\(^{[24]}\) The innate and adaptive immune responses are blunted in the elderly. Furthermore, elderly recipients are more vulnerable to infection, malignancy and metabolic diseases which makes the reduction of maintenance immune suppression a sensible option.\(^{[20,23]}\) There are no RCT evaluating ESW in the elderly. Nevertheless, retrospective data from a small number of patients showed a similar outcome in elderly recipients when compared to younger recipients in the setting of ESW.\(^{[21]}\)

Steroid withdrawal in paediatrics

Despite that pediatric recipients are liable to the same adverse effects of immune-suppressive medications expressed in adults; they are also vulnerable to unique complications like the affection of growth.\(^{[22,23]}\) Factors associated with catch up growth includes recipients less than six years old, well-functioning allograft and steroid-free immune suppression.\(^{[22,23]}\) Several reports concluded that steroid-free protocols in pediatric patients would eliminate the long-term complications of steroids without a negative impact on patient or graft survival.\(^{[24,29]}\)

DATABASES

Aiming to explore the data evaluating the impact of steroid-free protocols on the outcome in the field of kidney transplantation, we performed an extensive search of the online database using MEDLINE, SCOPUS, as well as Liverpool University library.
e-resources. Relevant articles obtained through our search were included.

Supplementary search approaches
After completing the initial electronic database search, grey literature and hand search of the table of contents of the relevant scientific journals were started, aiming to identify additional relevant data. Any related citations were checked against the previously collected data obtained from the electronic search to avoid articles duplication.

Selection of the articles included
The final collection of articles obtained from the search of the electronic database, grey literature, as well as a hand search of the related journals were screened initially via the title of the article. The next step was evaluating the abstracts of the selected papers accepted by the initial search. Finally, the complete manuscripts of the approved articles were reviewed to decide the final studies included in this review.

Assessment of articles quality
While preparing this literature review, a wide range of variability in methodology and study design was encountered. Therefore, we decided to include only randomized controlled trials (RCT). RCT are one of the most reliable tools for evaluating the safety and effectiveness of medical intervention. However, not all RCT present a reliable result[36]. Low-quality RCT with poor methodology may carry a significant bias which will result in misleading conclusions[36]. Therefore, RCT articles included in our study will be subjected to a further evaluation process utilizing the modified Jadad scale[37].

The Jadad scale (which sometimes called the Oxford quality scoring system) is a scoring tool created in 1996 to estimate the methodological quality of RCT[38]. The original scale was composed of 5 questions which evaluate the randomisation, blinding and accountability of all cases, including the dropouts. The modified Jadad scale is composed of 8 questions which assess the points covered by the original scale in addition to inclusion and exclusion criteria evaluation, assessment of adverse effects, and statistical analysis evaluation as illustrated in Table 1[37].

The RCT are scored between 0 (which is the lowermost quality) and 8 (the uppermost quality). Scores between 4 and 8 mean the articles considered of good to excellent quality, while articles with score 0 to 3 are of poor quality[37]. A data extraction sheet was prepared for summarizing the essence of the included studies as well as the quality assessment of the study as presented in Table 2.

DISCUSSION
Despite being one of the oldest available immune suppressants, steroids continue to play a central role in the modern immune suppression protocols. Steroids can be used as an induction agent, in maintenance immune suppression as well as in the treatment of rejection episodes[1-2]. Most mammalian cells have cytoplasmic receptors for steroids that explains the potent and diffuse anti-inflammatory and immunosuppressive actions on both innate and adaptive immune systems[1]. Common steroid-induced complications include osteoporosis, impaired glucose metabolism, hypertension, dyslipidemia, growth retardation in children, weight gain, cataract, poor wound healing, cosmetic changes, mood disturbance, and insomnia[1,3].

Steroid-free protocols
The use of steroids in the field of transplantation was considered indispensable for many decades. However, the better understanding of immune response, improved techniques of tissue typing and cross-matching, together with the introduction of potent and relatively safe immune suppressants have potentiated the trend of steroid-free immune suppression[1,2]. Various approaches for steroid-free do have comparable AR in the first-year post-transplantation in comparison to conventional protocols. However, the long-term patient and graft outcome remains controversial[4-5].

RCT on steroid-free protocols
The published RCT papers were involving adult and pediatric recipients, as mentioned in Table 2. Steroid-free protocols were associated with a better metabolic profile, an improved cardiovascular risk profile and lower total costs of medical care (owing to fewer expenses on the management of steroid-induced complications).
Table 1 The modified Jadad scale[^2]

Item evaluated	Finding	Score
Was the study described as randomized?	Yes	+1
	No	0
Was the method of randomization appropriate?	Yes	+1
	No	-1
	Not described	0
Was the study described as blinded? (double-blind with score 1; single-blind with score 0.5)	Yes	+1
	No	0
Was the method of blinding appropriate?	Yes	+1
	No	-1
	Not described	0
Was there a description of withdrawals and dropouts?	Yes	+1
	No	0
Was there a clear description of the inclusion/exclusion criteria?	Yes	+1
	No	0
Was the method used to assess adverse effects described?	Yes	+1
	No	0
Were the methods of statistical analysis described?	Yes	+1
	No	0

The randomised controlled trials are scored between 0 (which is the lowermost quality) and 8 (the uppermost quality). Scores between 4 and 8 mean the articles considered of good to excellent quality, while articles with score 0 to 3 are of poor quality[^37]. A data extraction sheet was prepared for summarizing the essence of the included studies as well as the quality assessment of the study as presented in Table 2.

Pediatric recipients have an additional advantage which is the improvement of growth parameters with a remarkable catch-up growth, especially in pre-pubertal recipients. On the other hand, some studies showed a mild but real risk of increased incidence of early AR which did not affect the patient and graft survival for up to 5 years of follow up[^11].

In middle east, the patients carry the burden of significant co-morbidities (e.g. diabetes mellitus, hypertension, and ischaemic heart disease) the assumed risk of steroids outweigh the mildly increased risk of AR (which was documented by most of the listed RCT to be mild and responding to treatment with no long term effects on patient and graft survival).

Other study modalities on steroid-free protocols

Many studies of different modalities were evaluating the effect of steroid-free approaches not only in adults and pediatrics but also in other special population recipients like African American, elderly, ABOi recipients and after kidney re-transplantation. Retrospective analysis of long term follow up (up to 15 years post-transplant) showed significantly lower rates of steroid associated complications. Furthermore, there was a significant improvement in patient and allograft survival[^39,40].

Recipients with special medical considerations like elderly, patients with high immunological risk and those with a history of glomerulonephritis in native kidneys were traditionally kept on oral steroids indefinitely assuming that steroid-free protocols carry a detrimental effect on the patient and allograft outcome. Surprisingly, most of the studies focused on these special population groups showed a favorable outcome with steroid-free protocols. Nevertheless, a well-designed RCT still awaited to confirm these observations.

Essential considerations with steroid-free approaches

Adopting any of the available steroid-free protocols should be carefully designed
Table 2 Summary of randomised controlled trials articles

Ref.	Cases included	Aim of the study	Results and conclusions	Modified Jadad score
van Sandwijk et al\(^{(3)}\), 2018	186 patients with follow up for about 2 yr	To compare ESW (day 3 post-transplant), triple therapy with low dose tacrolimus and standard tacrolimus dose triple therapy	All groups showed no statistically significant differences in patient survival, allograft survival, incidence of acute rejection and eGFR. Steroid withdrawal group has better cardiovascular risk profile and lower rates of infection.	6
Andrade-Sierra et al\(^{(4)}\), 2016	71 patients with follow up for 12 mo	To compare the impact of ESW (day 5 post-operative) with maintenance steroid use.	One-year graft survival was comparable (87% versus 94% in controls). Steroid free group has higher eGFR and better blood pressure control with fewer anti-hypertensive drugs (8% versus 50%; P < 0.001).	4
Nagib et al\(^{(4)}\), 2015	428 patients with follow up for 66 ± 41 mo	To investigate long term outcome of ESW (steroids used for three days only) in living donor kidney allograft recipients	Steroid avoidance in low immunological risk recipients was both safe and effective using basiliximab induction. Long term follow-up showed decreased total cost with steroid-free protocol despite comparable immune suppressant cost, mostly secondary to lowering the burden of chronic comorbidities related to steroid use.	4
Thierry et al\(^{(4)}\), 2014	131 patients were followed for 30 mo	To evaluate the impact of SA in comparison to LSW	At the end of the study period, 32.4% of steroid avoidance patients and 51.7% of steroid withdrawal group were receiving oral steroids. There were no significant differences in kidney functions, proteinuria, or documented rejection between both groups.	6
Ponticelli et al\(^{(4)}\), 2014	139 patients with follow up for 12 mo	Evaluating the short-term impact of LSW (3 mo post-transplantation)	Treatment failure was noted in 14.7% of steroid withdrawal group compared to 2.8% in the control group. NODAT was reported in 13.2% of steroid withdrawal group compared to 1.9% in the control group.	6
Krämer et al\(^{(4)}\), 2012	421 patients with follow up for three years	The outcome of two different steroid-free regimens in comparison to the conventional triple immunosuppressive therapy	Despite the increased risk of early acute rejection with steroid-free protocols, the long-term patient and graft survival were comparable. Steroid free regimens were associated with a better cardiovascular risk profile.	6
Thierry et al\(^{(4)}\), 2012	222 low risk, de novo kidney transplant recipients with follow up for 6 mo	Evaluation of the short-term outcome of SA after 500 mg methylprednisolone + IL-2 receptor antibody induction in comparison to conventional maintenance steroids	The short-term outcome in the form of patient survival, graft survival, the incidence of BPAR and GFR were similar in both groups. However, SA was associated with a lower incidence of CMV infection (12.5% versus 22.7%, P < 0.045).	6
Gheith et al\(^{(4)}\), 2011	100 patients with a median follow up of twelve months	Assessing the cost-benefit of ESW (3 d post-transplant) in living donor kidney allograft recipients	Despite the comparable immunosuppressant costs, steroid avoidance was associated with significantly lower total costs by the end of the first year after transplantation. The higher costs associated with steroid use was attributed to the cost of management of steroid-related comorbidities.	4
Sandrini et al\(^{(4)}\), 2010	96 patients were followed for up to 4 yr	To compare the efficacy of ESW (day 5 versus later withdrawal after 6 mo of transplantation)	Both strategies had comparable patient survival, graft survival, allograft function and percentage of successful withdrawal. ESW was associated with less wound healing complications (4% vs 21%, P = 0.02). On the other hand, LSW was associated with a lower incidence of acute rejection at 12 mo (30% vs 48%, P < 0.04), and at 48 mo (33% vs 53%, P = 0.03)	5
Delgado et al\(^{(4)}\), 2009	37 patients with follow up for five years	Evaluating ESW (7 d post-transplant) effect on the development of de novo donor-specific anti HLA antibodies (DSA)	ESW was not associated with increased risk of development of de novo DSA compared with conventional steroid maintenance protocol.	5
Authors and Year	Study Design and Population	Intervention	Main Findings	
------------------	----------------------------	--------------	---------------	
Sandrini et al. [1], 2009	148 patients were followed for the first 15 d	To measure the impact of ESW on wound healing in comparison to maintenance steroids in patients receiving sirolimus therapy	ESW was associated with a significantly lower rate of wound healing complications (18.8% vs 45.6%, P < 0.0004)	
Woodle et al. [1], 2008	386 patients with follow up for five years	To compare the outcome of ESW (7 d post-transplant) with low dose chronic corticosteroid therapy	ESW was associated with increased risk of BPAR mostly corticosteroid-sensitive Banff class 1A rejections. However, the five-year allograft survival and function were similar in both groups	
Vincenti et al. [1], 2008	337 patients with follow up for 12 mo	Comparing the safety and efficacy of total SA (n = 112), ESW (n = 115) and standard maintenance steroid regimen (n = 109) in first kidney allograft recipients	The median eGFR by the end of the first year was comparable between all groups	
Pellestier et al. [1], 2006	120 recipients with follow up of minimum 1 yr after randomisation	To assess the impact of LSW compared to maintenance steroids	Patient and allograft survival, acute rejection rates and allograft function were similar in both groups	
Rostaing et al. [1], 2005	538 patients with follow up for six months	Short term outcome with a steroid-free protocol using Dac, Tac and MMF versus Tac, MMF, and corticosteroids regimen	Steroid free protocol was associated with a significant improvement in bone density and total cholesterol levels	
Laftavi et al. [1], 2005	60 patients were followed up by protocol biopsies at 1, 6, and 12 mo	Short term outcome of ESW (7 d after transplantation)	ESW was associated with significant and accelerated allograft fibrosis as proved by protocol biopsy findings. However, this did not affect the renal functions measured by eGFR	
Vitko et al. [1], 2005	451 low-risk recipients of first kidney allograft were followed up for 6 mo	Short term outcome of a steroid-free protocol using tacrolimus monotherapy after basiliximab induction (Bas/Tac) (n = 153), tacrolimus + MMF (Tac/MMF) (n = 151) or triple therapy of tacrolimus + MMF + steroids (n = 147)	Steroid free protocol was associated with a significant reduction in the incidence of NODAT (5.4% vs 0.4%, P = 0.003) in addition to improvement of serum total cholesterol levels	
Kumar et al. [1], 2005	77 patients with follow up for 2 yr	Evaluating the impact of ESW (days 2-7) in comparison to low dose maintenance steroids	Short term patient and graft survival at 6 mo post-transplantation were similar in all groups. However, the incidence of BPAR was higher in steroid-free groups (26.1% in (Bas/Tac) group, 30.5% in (Tac/MMF) group, and 8.2% in triple therapy group (P < 0.001))	
Vanrenterghem et al. [1], 2005	833 recipients with follow up for 6 mo	Estimating the short-term outcome of either steroid or MMF withdrawal after 3 mo of transplantation in comparison to standard triple therapy	The average creatinine clearance was higher in triple therapy group (65.3 ml/min), compared to Bas/Tac group (55.1 ml/min) and Tac/MMF group (59.4 ml/min) (P = 0.007)	
Vincenti et al. [1], 2003	83 recipients with follow up for 12 mo	Evaluating the impact of ESW (day 4 post-transplantation) in comparison to standard steroid therapy	The next 3 mo after randomisation showed a similar incidence of BPAR	
Boots et al. [1], 2002	62 patients with a median follow up for 2.7 yr	To compare the outcome of ESW (7 d post-transplant) versus LSW (3-6 mo post-transplant)	MMF withdrawal group had lower frequency of serious CMV infection (P = 0.004) and leukopenia (P = 0.0082)	

Steroid withdrawal was associated with better metabolic and cardiovascular risk profiles.
Authors	Year	Study Population	Study Design	Key Findings
Sola et al.	2002	92 patients with follow up for 2 yr	Comparing the effect of LSW and maintenance steroids	There were no statistically significant differences between both groups in all aspects (patient and allograft survival, acute rejection, and metabolic profiles)
Boletis et al.	2001	66 patients with follow up for 12 mo	Short term outcome of LSW (6 mo post-transplant)	Serum creatinine levels were comparable in both groups, and none of them has rejection episode during the follow-up period
Vanrenterghem et al.	2000	248 patients with follow up for 12 mo	Evaluating the short-term outcome of steroid withdrawal (3 mo post-transplant) in comparison to maintenance steroids	Despite the increased incidence of BPAR in steroid withdrawal group (23% versus 14%, \(P = 0.008 \)), yet the mean serum creatinine levels were comparable in both groups by the end of 12 mo follow up
Matl et al.	2000	88 patients with follow up for 12 months	To estimate the safety of LSW compared to continuation on triple therapy	Steroid withdrawal was associated with a better lipid profile, blood pressure measurements and bone densitometry measurements at 12 mo
Ahsan et al.	2000	266 patients were followed up for one year	The effect of LSW vs continuation on low dose steroid (all patients were receiving cyclosporine and MMF)	LSW was associated with better control of hypertension and lower serum cholesterol level
Hocquet et al.	2019	42 paediatric patients (aged 11.2 ± 3.8 yr) were followed for 15 mo	The effect of steroid withdrawal on the recipient’s blood pressure measured via ABPM	After 15 mo of follow up, there were no significant differences between both study groups in terms of allograft functions
Tonshoff et al.	2019	106 paediatric recipients with follow up for 12 mo	To estimate the short-term outcome of initiating everolimus with steroid elimination 5 mo post-transplantation in comparison to conventional triple therapy	Steroid withdrawal was associated with better blood pressure readings as well as restoration of circadian blood pressure rhythm in 71.4% of cases versus 14.3% at baseline (\(P = 0.002 \))
Webb et al.	2015	196 subjects with follow up for up to 2 yr	Evaluating the impact of ESW (at day 4 post-transplant) on the longitudinal growth	Patient and graft survival were 100% in both groups
Mermig et al.	2013	30 paediatric recipients were followed for 12 mo post-transplantation	Evaluating the effect of ESW on the longitudinal growth, body composition, and insulin sensitivity	No statistically significant differences in the incidence of BPAR, proteinuria, and longitudinal growth
Sarwal et al.	2012	130 paediatric cases with follow up for 3 yr	Evaluating the safety and efficacy of total SA in comparison to low dose maintenance steroids	There was a significant and sustained growth improvement with ESW documented through the two years of follow up, especially in prepubertal children
Aref A et al.	2019	Steroid free immune suppression in paediatrics		
Non-significant lower incidence of NODAT was recorded in steroid free group (1.7% versus 5.7%; \(P = 0.373\))

Incident of BPAR, patient survival and graft outcome were comparable between both groups

LSW resulted in a significant improvement of the Cushingoid facies compared to the control group

The standardised height velocity was higher in the withdrawal group \((P = 0.033)\)

The allograft survival rate at 3 yr was higher in the withdrawal group (98.6% vs 84.5%; \(P = 0.002\))

Lipid profile, systolic and diastolic blood pressures showed no statistical differences between both groups

The study was terminated prematurely due to high incidence of PTLD

ESW significantly improved the growth, especially in prepubertal recipients

Parameters of lipid and glucose metabolism were significantly better in the withdrawal group. However, they suffered a higher incidence of infection and anaemia \((P < 0.05\) for all mentioned comparisons)

Incident of BPAR, allograft function, patient and graft survival were similar for both groups

LSW was associated with superior longitudinal growth \((P < 0.001)\)

Steroid withdrawal was associated with a significant decrease in the prevalence of metabolic syndrome, better control of blood pressure, and improved lipid and carbohydrate metabolism

Patient survival, graft function and graft survival were not affected by steroid withdrawal

IL-2: Interleukin-2; **Dac**: Daclizumab; **Tac**: Tacrolimus; **MMF**: Mycophenolate mofetil; **ABPM**: Ambulatory blood pressure monitoring; **PTLD**: Post-transplant lymphoproliferative disorder; **ESW**: Early steroid withdrawal; **eGFR**: Epidermal growth factor receptor; **LSW**: Late steroid withdrawal; **NODAT**: New-onset diabetes after transplantation; **CMV**: Cytomegalovirus; **DSA**: Donor-specific antibody; **HLA**: Human leukocyte antigens; **BPAR**: Biopsy-proven acute rejection.

Continuing steroid-free regimen versus initiating maintenance steroids after recovery from AR

One of the critical decisions after managing an AR episode is whether to start a low dose of maintenance steroid or to keep the recipient on his previous steroid-free protocol. The aim is to prevent a second attack of AR as it is undeniably associated with a poor allograft outcome\(^4\)\(^1\)\(^2\). The initiation of maintenance steroids seems to be associated with lower rates of AR and a slight improvement in allograft survival over the next three years of follow up, yet, it did not reach a statistical significance\(^4\)\(^1\). The most significant risk factor for developing a second AR episode was the histological pattern and severity of the first AR episode (RR = 5.6, \(P = 0.001\))\(^4\).

Based on the available data, we recommend individualizing the decision of prescribing maintenance steroids based on the histological description of AR, the based on meticulous evaluation of the patient medical history, associated co-morbidities, clinical assessment, and immunological challenges. The recommendations obtained from all the listed studies include: (1) The patients should receive induction with a lymphocytic depleting agent; (2) Ensure adequate dosing of potent immune suppressants (e.g., tacrolimus and mycophenolate mofetil) to compensate for the absence of steroids; (3) Regular evaluation of DSA, especially in highly sensitized recipients; (4) Repeated and timely protocol biopsy may provide a tool of early detection of AR before a clinically evident sequel; and (5) Keep a high index of suspicion for early symptoms and signs of AR.
Aref A et al. Steroid free immune suppression

The use of lymphocyte depleting induction agents is recommended whenever steroid-free maintenance therapy is planned. There are accumulating clinical studies which showed steroid-free protocols to be valuable in reducing drug-induced complications while keeping patient and allograft survival comparable to maintenance steroids.

Steroid-free protocols are the preferred therapy in pre-pubertal recipients to allow adequate catch-up growth. Steroid-free protocols may also be a valid option for patients with special medical considerations (e.g., elderly, African American and borderline diabetics). A reasonable approach is to weigh the risk-benefit for each transplant candidate individually. Strict monitoring of recipients on steroid-free protocols is a must for early detection and management of AR. If the patient developed AR, then consider initiating lifelong maintenance steroids based on its severity.

Our article attempted to summarize the enormous scientific material covering this debatable topic, keeping in mind that no agreed recommendations or guidelines are available to date regarding any of the steroid withdrawal approaches. We concluded that an ideal steroid-free regimen remains elusive. Nevertheless, after reviewing all the presented RCT articles, we developed a strong belief that steroid-free protocols should have different shapes and forms taking into account patient variables (age, ethnicity, medical background, HLA mismatches, immunological risk stratification, etc.). It can offer a comparable outcome with a lower burden of associated co-morbidities.

ACKNOWLEDGEMENTS

We acknowledge the effort and the valuable advice of Professor Richard Fuller, Consultant Geriatrician/Stroke Physician and Vice-Dean of the School of Medicine at the University of Liverpool during the preparation of this work.

REFERENCES

1 Danovitch GM. Handbook of Kidney Transplantation. Sixth Edition, Wolters Kluwer.
2 Steddon S. Oxford Handbook of Nephrology and Hypertension. Second edition, Oxford University Press. 2014 [DOI: 10.1093/med/9780199651610.001.0001]
3 Srinivas TR, Shoskes DA. Kidney and Pancreas Transplantation: A Practical Guide. Springer. 2011 [DOI: 10.1007/978-1-60761-642-9]
4 Jaber JJ, Feustel PJ, Elbahloul O, Conti AD, Gallicchio MH, Conti DJ. Early steroid withdrawal therapy in renal transplant recipients: a steroid-free sirolimus and CellCept-based calcineurin inhibitor-minimization protocol. Clin Transplant 2007; 21: 101-109 [PMID: 17302598 DOI: 10.1111/j.1399-0012.2006.00613.x]
5 Abramowicz D, Oberbauer R, Heemann U, Viklicky O, Peruzzi L, Mariat C, Crespo M, Budde K, Oniscu GC. Recent advances in kidney transplantation: a viewpoint from the Descartes advisory board. Nephrol Dial Transplant 2018; 33: 1699-1707 [PMID: 29342289 DOI: 10.1093/ndt/gfx365]
6 Saran R, Robinson B, Abbott KC, Bragg-Gresham J, Chen X, Gipson D, Gu H, Hirth RA, Hutton D, Jin Y, Kapke A, Kurtz V, Li Y, McCullough K, Modi Z, Morgenstern H, Mukhopadhyay P, Pearson J, Pisoni R, Repeck K, Schauble DE, Shamraj R, Steffick D, Turf M, Woodside KJ, Xiang J, Yin M, Zhang X, Shahinian V. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 2020; 75: A6-A7 [PMID: 31704083 DOI: 10.1053/j.ajkd.2019.09.001]
7 Lim MA, Kohli J, Bloom RD. Immunosuppression for kidney transplantation: Where are we now and where are we going? Transplant Rev (Orlando) 2017; 31: 10-17 [PMID: 28340885 DOI: 10.1016/j.trre.2016.10.006]
8 Hart A, Smith JM, Skeans MA, Gustafson SK, Wilk AR, Robinson A, Wainright JL, Haynes CR, Snyder JJ, Kasinke BL, Israni AK. OPTN/SRTR 2018 Annual Data Report: Kidney. Am J Transplant 2018; 18 Suppl 1: 18-113 [PMID: 29292608 DOI: 10.1111/ajt.14557]
9 Hart A, Smith JM, Skeans MA, Gustafson SK, Wilk AR, Castro S, Robinson A, Wainright JL, Snyder JJ, Kasinke BL, Israni AK. OPTN/SRTR 2017 Annual Data Report: Kidney. Am J Transplant 2019; 19 Suppl 2: 19-123 [PMID: 30811893 DOI: 10.1111/ajt.15274]
Knight SR, Morris PJ. Steroid avoidance or withdrawal after renal transplantation increases the risk of acute rejection but decreases cardiovascular risk. A meta-analysis. *Transplantation* 2010; **89**: 1-14 [PMID: 20061913 DOI: 10.1097/TP.0b013e3181e518bc]

Woodle ES, First MR, Pirsch J, Shihab F, Gaber AO, Van Veldhuisen P; Astellas Corticosteroid Withdrawal Study Group. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. *Ann Surg* 2008; **248**: 564-577 [PMID: 18936569 DOI: 10.1097/SLA.0b013e3181875da]

12 Disease Prevention: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. *Am J Transplant 2009;**9** Suppl 3: S1-S155 [PMID: 19845597 DOI: 10.1111/j.1600-6143.2009.02834.x]

Taber DJ, Hunt KJ, Gebregziabher M, Sinivas T, Chavin KD, Baliga PK, Egede LE. A Comparative Effectiveness Analysis of Early Steroid Withdrawal in Black Kidney Transplant Recipients. *Clin J Am Soc Nephrol* 2017; **12**: 131-139 [PMID: 27979979 DOI: 10.2215/CJN.04880516]

Haririan A, Sillix DH, Morawski K, El-Amm JM, Garnick J, Doshi MD, West MS, Gruber SA. Short-term experience with early steroid withdrawal in African-American renal transplant recipients. *Am J Transplant* 2006; **6**: 2396-2402 [PMID: 16869806 DOI: 10.1111/j.1600-6143.2006.01477.x]

Zeng X, El-Amm JM, Doshi MD, Singh A, Morawski K, Cincotta E, Losanoff JE, West MS, Gruber SA. Intermediate-term outcomes with early steroid withdrawal in African-American renal transplant recipients undergoing surveillance biopsy. *Surgery* 2007; **142**: 538-44; discussion 544 [PMID: 17950346 DOI: 10.1016/j.surg.2007.07.006]

Redfield RR, Gupta M, Rodriguez E, Wood A, Abt PL, Levine MH. Graft and patient survival outcomes of a third kidney transplant. Transplantation 2015; **99**: 416-423 [PMID: 25121473 DOI: 10.1097/TP.0000000000000332]

Halawa A. The third and fourth renal transplant; technically challenging, but still a valid option. *Ann Transplant 2012;**17**: 125-132 [PMID: 23274333 DOI: 10.12659/ot.185703]

Mujtaba MA, Taber TE, Goggins WC, Yaqub MS, Mishler DP, Milgrom ML, Fridell JA, Lobashovsky A, Powelson IA, Sharffuddin AA. Early steroid withdrawal in repeat kidney transplantation. *Clin J Am Soc Nephrol* 2011; **6**: 404-411 [PMID: 21051751 DOI: 10.2215/CJN.05110610]

Alway RR, Hanaway MJ, Trofe J, Boardman R, Rogers CC, Buell JF, Munda R, Alexander JW, Thomas MJ, Roy-Chaudhury P, Cardi M, Woodle ES. A prospective, pilot study of early corticosteroid cessation in high-immunologic-risk patients: the Cincinnati experience. *Transplant Proc* 2005; **37**: 802-803 [PMID: 15848537 DOI: 10.1002/tp.20372]

Sureshkumar KK, Marcus RJ, Chopra B. Role of steroid maintenance in sensitized kidney transplant recipients. *World J Transplant 2015;**5**: 102-109 [PMID: 26241263 DOI: 10.5500/wjt.v5.s.102]

Takahashi K, Saito K, Takahara S, Okuyama A, Tanabe K, Toma H, Uchida K, Hasegawa A, Yoshimura N, Kamiyori Y; Japanese ABO-Incompatible Kidney Transplantation Committee. Excellent long-term outcome of ABO-incompatible living donor kidney transplantation in Japan. *Am J Transplant 2004;**4**: 1089-1096 [PMID: 15196066 DOI: 10.1111/j.1600-6143.2004.00464.x]

Okumi M, Kakuta Y, Unagami K, Takagi T, Izuaka J, Imi M, Ishida H, Tanabe K. Current protocols and outcomes of ABO-incompatible kidney transplantation based on a single-center experience. *Transplantation* 2016; **91**: 126-133 [PMID: 27302314 DOI: 10.1097/0.010865.12608]

Ando T, Tojimbara T, Sato S, Nakamura M, Kawase T, Kai K, Nakajima I, Fuchinoue S, Teraoka S. Efficacy of basiliximab induction therapy in ABO-incompatible kidney transplantation: a rapid steroid withdrawal protocol. *Transplant Proc* 2004; **36**: 2182-2183 [PMID: 15518793 DOI: 10.1016/transpro.2004.07.051]

Galliford J, Charif R, Chan KK, Loucaidou M, Cairns T, Cook HT, Dorling A, Hakim N, McLean A, Papalois V, Malde R, Regan F, Redman M, Warrens AN, Taube D. ABO incompatible living renal transplantation with a steroid sparing protocol. *Transplantation* 2008; **86**: 901-906 [PMID: 18852653 DOI: 10.1097/TP.0b013e3181880c0f]

Novosel MK, Bistrop C. Discontinuation of steroids in ABO-incompatible renal transplantation. *Transpl Int* 2016; **29**: 464-470 [PMID: 26706618 DOI: 10.1016/tr.12735]

Nannoku K, Shinzato T, Kubo T, Shimizu T, Kimura T, Yagishita A. Steroid Withdrawal Using Everolimus in ABO-Incompatible Kidney Transplant Recipients With Post-Transplant Diabetes Mellitus. *Transplant Proc* 2018; **50**: 1050-1055 [PMID: 29631750 DOI: 10.1016/transpro.2018.01.028]

Allen PJ, Chadbain SJ, Craig IC, Lim WH, Allen RDM, Clayton PA, Teixeira-Pinto A, Wong G. Recurrent glomerulonephritis after allograft outcomes. *Kidney Int* 2017; **92**: 461-469 [PMID: 28601198 DOI: 10.1016/j.kint.2017.03.015]

Mulay AV, van Walraven C, Knoll GA. Impact of immunosuppressive medication on the risk of renal allograft failure due to recurrent glomerulonephritis. *Am J Transplant 2009;**9**: 804-811 [PMID: 19353766 DOI: 10.1111/j.1600-6143.2009.02554.x]

Vock DM, Matas AJ. Rapid discontinuation of prednisone in kidney transplant recipients from at-risk subgroups: an OPTN/SRTR analysis. *Transplant Int* 2020; **33**: 181-201 [PMID: 31557340 DOI: 10.1111/tr.13530]

Iwamoto H, Nakamura Y, Konno O, Tomita K, Ueno T, Yokoyama T, Kihara Y, Kawachi S. Immunosuppressive Therapy for Elderly Kidney Transplant Recipients. *Transplant Proc* 2016; **48**: 799-801 [PMID: 27234739 DOI: 10.1016/j.transproceed.2016.02.039]

Alsheikh R, Gabradi S. Post-Renal Transplantation Outcomes in Elderly Patients Compared to
Steroid free immune suppression

Aref A et al. Steroid free immune suppression

based, steroid-free regimens in renal transplantation: 3-year follow-up of the ATLAS trial. *Transplantation* 2012; 94: 492-498 [PMID: 22858806 DOI: 10.1097/TP.0b013e31825c1d6c]

Thierry A, Mourad G, Büchler M, Kamar N, Villenmain F, Heng AE, Le Meur Y, Choukroun G, Toupane O, Legendre C, Lepogamp P, Kessler M, Merville P, Moulin B, Quérié S, Terpereau A, Chaouche-Teyara K, Touchard G. Steroid avoidance with early intensified dosing of enteric-coated mycophenolate sodium: a randomized multicentre trial in kidney transplant recipients. *Nephrol Dial Transplant* 2012; 27: 3651-3659 [PMID: 22645323 DOI: 10.1093/ndt/gfs038]

Gheith OA, Nemattalla AH, Bakr MA, Refae A, Shokeir AA, Ghoneim MA. Steroid avoidance reduce the cost of morbidities after live-donor renal allotransplants: a prospective, randomized, controlled study. *Exp Clin Transplant* 2011; 9: 121-127 [PMID: 21453230]

Sandrini S, Setti G, Bossini N, Chiappini R, Valerio F, Mazzola G, Maffeis R, Noradi F, Cancarini G. Early (fifth day) vs. late (sixth month) steroid withdrawal in renal transplant recipients treated with Neoral® plus Rapamune®: four-year results of a randomized monocenter study. *Clin Transplant* 2010; 24: 669-677 [PMID: 20036084 DOI: 10.1111/j.1399-0012.2009.01171.x]

Delgado JC, Fuller A, Ozaiza M, Smith L, Terasaki PI, Shihas FS, Eckels DD. No occurrence of de novo HLA antibodies in patients with early corticosteroid withdrawal in a 5-year prospective randomized study. *Transplantation* 2009; 87: 546-548 [PMID: 19307792 DOI: 10.1097/TP.0b013e3181949d2c]

Sandrini S, Setti G, Bossini N, Maffeis C, Iovinella L, Tognazzi N, Maffeis R, Noradi F, Portolani N, Cancarini G. Steroid withdrawal five days after renal transplantation allows for the prevention of wound-healing complications associated with sirolimus therapy. *Clin Transplant* 2009; 23: 16-22 [PMID: 18727661 DOI: 10.1111/j.1399-0012.2008.00890.x]

Vincenti F, Schena FP, Paraskevas S, Hauser IA, Walker RG, Grinyo J; FREEDOM Study Group. A randomized, multicenter study of steroid avoidance, early steroid withdrawal or standard steroid therapy in kidney transplant recipients. *Am J Transplant 2008; 8*: 307-316 [PMID: 18221506 DOI: 10.1111/j.1600-6143.2007.02057.x]

Pelletier RP, Akin B, Ferguson RM. Prospective, randomized trial of steroid withdrawal in kidney recipients treated with mycophenolate mofetil and cyclosporine. *Clin Transplant* 2006; 20: 10-18 [PMID: 16556147 DOI: 10.1111/j.1399-0012.2005.00430.x]

Rostaing L, Cantarovich D, Mourad G, Budde K, Rigotti P, Mariat C, Margreiter R, Capdevila L, Lang P, Viatlet P, Ortuño-Mirete J, Charpentier B, Legendre C, Sanchez-Plumed J, Oppenheimer F, Kessler M; CARMEN Study Group. Corticosteroid-free immunosuppression with tacrolimus, mycophenolate mofetil, and daclizumab induction in renal transplantation. *Transplantation* 2005; 79: 807-814 [PMID: 15818323 DOI: 10.1097/00007890-200504000-00009]

Laftavi MR, Stephan R, Stefanick B, Kohli R, Dagher F, Applegate M, O'Keefe J, Pierce D, Rubino A, Guzowski H, Lea C, Dayton M, Pankewycz O. Randomized prospective trial of early steroid withdrawal compared with low-dose steroids in renal transplant recipients using serial protocol biopsies to assess efficacy and safety. *Surgery* 2005; 137: 364-371 [PMID: 15746793 DOI: 10.1016/j.surg.2004.10.013]

Vitko S, Klínger M, Salmela K, Włodarczyk Z, Tydén G, Senatorski G, Ostrowski M, Fauchald P, Koko F, Stefani S, Perner F, Claesson K, Castagneto M, Squifflet JP, Weber M, Segoloni G, Bäckman L, Sperschneider H, Krämer BK. Two corticosteroid-free regimens-tacrolimus monotherapy after basiliximab administration and tacrolimus/mycophenolate mofetil-in recipients treated with mycophenolate mofetil and cyclosporine. *Clin Transplant* 2005; 19: 87-95 [PMID: 15636615 DOI: 10.1111/j.1399-0012.2004.00638.x]

Vincenti F, Monaco A, Grinyo J, Kinkhabwala M, Roza A. Multicenter randomized prospective trial of steroid withdrawal in renal transplant recipients receiving basiliximab, cyclosporine microemulsion and mycophenolate mofetil. *Clin Transplant* 2005; 19: 61-69 [PMID: 15659136 DOI: 10.1111/j.1399-0012.2004.00296.x]

Vanrenterghem Y, van Hoof JP, Squifflet JP, Salmela K, Rigotti P, Jindal RM, Pascual J, Ekberg H, Sicilia LS, Boletis JN, Grinyo JM, Rodriguez MA; European Tacrolimus/MMF Renal Transplantation Study Group. Minimization of immunosuppressive therapy after renal transplantation: results of a randomized controlled trial. *Am J Transplant 2005; 5*: 87-95 [PMID: 15366615 DOI: 10.1111/j.1600-6143.2004.00638.x]

Vincenti F, Monaco A, Grinyo J, Kinkhabwala M, Roza A. Multicenter randomized prospective trial of steroid withdrawal in renal transplant recipients receiving basiliximab, cyclosporine microemulsion and mycophenolate mofetil. *Am J Transplant 2003; 3*: 306-311 [PMID: 12614286 DOI: 10.1034/j.1600-6143.2003.00005.x]

Boots JM, Christiansen MH, Van Duijnhoven EM, Van Suylen RJ, Van Hoof JP. Early steroid withdrawal in renal transplantation with tacrolimus dual therapy: a pilot study. *Transplantation* 2002; 74: 1703-1709 [PMID: 12498885 DOI: 10.1097/00007890-200212270-00011]

Sola E, Alférez MJ, Cabello M, Burgos D, González Molina M. Low-dose and rapid steroid withdrawal in renal transplant patients treated with tacrolimus and mycophenolate mofetil. *Transplant Proc 2002; 34*: 1689-1690 [PMID: 12176537 DOI: 10.1016/s0041-1345(02)02983-4]

Boletis JN, Konstadinioudi I, Chelioti H, Theodoropoulou H, Avidikou K, Kostakis A, Stathakis CP. Successful withdrawal of steroid after renal transplantation. *Transplant Proc 2001; 33*: 1231-1233 [PMID: 11267272 DOI: 10.1016/s0041-1345(00)02400-3]

Vanrenterghem Y, Lebranciu Y, Hené R, Oppenheimer F, Ekberg H. Double-blind comparison of two corticosteroid regimens plus mycophenolate mofetil and cyclosporine for prevention of acute
renal allograft rejection. Transplantation 2000; 70: 1352-1359 [PMID: 11087152 DOI: 10.1097/00007890-200011150-00015]

Mattl I, Lacha J, Lodererová A, Simová M, Teplan V, Lánská V, Vitko S. Withdrawal of steroids from triple-drug therapy in kidney transplant patients. Nephrol Dial Transplant 2000; 15: 1041-1045 [PMID: 10862645 DOI: 10.1093/ndt/15.7.1041]

Ahsan N, Hricik D, Matas A, Rose S, Tomlanovich S, Wilkinson A, Ewell M, Melton M, Stablein D, Hodge E. Pre dmise withdrawal in kidney transplant recipients on cyclosporine and mycophenolate mofetil—a prospective randomized study. Steroid Withdrawal Study Group. Transplantation 1999; 68: 1865-1874 [PMID: 10628766 DOI: 10.1097/00007890-199912270-00015]

Höcker B, Weber LT, John U, Drube J, Fehrenbach H, Klaus G, Pohl M, Seemann T, Fichtner A, Wühl E, Tönshoff B. Steroid withdrawal improves blood pressure control and nocturnal dipping in pediatric renal transplant recipients: analysis of a prospective, randomized, controlled trial. Pediatr Nephrol 2019; 34: 341-348 [PMID: 30178240 DOI: 10.1007/s00467-018-4069-1]

Matl I, Lácha J, Lodererová A, Símová M, Teplan V, Lánská V, Vitko S, Tomlanovich S, Wilkinson A, Ewell M, Melton M, Stablein D, Hodge E. Prednisone withdrawal in kidney transplant recipients on cyclosporine and mycophenolate mofetil—a prospective randomized study. Steroid Withdrawal Study Group. Transplantation 1999; 68: 1865-1874 [PMID: 10628766 DOI: 10.1097/00007890-199912270-00015]

Höcker B, Weber LT, John U, Drube J, Fehrenbach H, Klaus G, Pohl M, Seemann T, Fichtner A, Wühl E, Tönshoff B. Steroid withdrawal improves blood pressure control and nocturnal dipping in pediatric renal transplant recipients: analysis of a prospective, randomized, controlled trial. Pediatr Nephrol 2019; 34: 341-348 [PMID: 30178240 DOI: 10.1007/s00467-018-4069-1]

Tönshoff B, Ettenge r R, Dello Strologo L, Marks SD, Pape L, Tedesco-Silva H Jr, Bj erre A, Christian M, Meier M, Martzloff ED, Rauer B, Ng J, Lopez P. Conversion of pediatric kidney transplant patients to everolimus with reduced tacrolimus and steroid elimination: Results of a randomized trial. Am J Transplant 2019; 19: 811-822 [PMID: 30125462 DOI: 10.1111/ajt.15081]

Webb NJ, Douglas SE, Rajai A, Roberts SA, G renda R, Marks SD, Watson AR, Fitzpatrick M, Vondrak K, Maxwell H, Jaray J, Van Damme-Lombaerts R, Milford DV, Godefroid N, Cochat P, Ognjanovic M, Murer L, McCulloch M, Tönshoff B. Corticosteroid-free Kidney Transplantation Improves Growth: 2-Year Follow-up of the TWIST Randomized Controlled Trial. Transplantation 2015; 99: 1178-1185 [PMID: 25593467 DOI: 10.1097/TP.0000000000000458]

Mericq V, Salas P, Pinto V, Cano F, Reyes L, Brown K, Gonzalez M, Michea L, Delgado J, Delucchi A. Steroid withdrawal in pediatric kidney transplant allows better growth, lipids and body composition: a randomized controlled trial. Horm Res Paediatr 2013; 79: 88-96 [PMID: 23429258 DOI: 10.1159/000347024]

Sarwal MM, Ettenge r R, Dhar弭rdharka V, Benfield M, Mathias R, Portale A, McDonald R, Harm o n W, Kershaw D, Vehaskari VM, Kam il E, Bula r t e HJ, Warad y B, T ang L, Li J, Li L, Na ens M, Sigdel T, Waskerwitz J, Salvat ierra O. Complete steroid avoidance is effective and safe in children with renal transplants: a multicenter randomized trial with three-year follow-up. Am J Transplant 2012; 12: 2719-2729 [PMID: 22694755 DOI: 10.1111/j.1600-6143.2012.04145.x]

Benfield MR, Bartosh S, Ilke D, Warshaw B, Bridges N, Morrison Y, Harmon W. A randomized double-blind, placebo controlled trial of steroid withdrawal after pediatric renal transplantation. Am J Transplant 2010; 10: 81-88 [PMID: 19663893 DOI: 10.1111/j.1600-6143.2009.02767.x]

Grenda R, Watson A, Trompeter R, Tönshoff B, Jaray J, Fitzpatrick M, Murer L, Vondrak K, Maxwell H, van Damme-Lombaerts R, Loirat C, Mor E, Cochat P, Milford DV, Brown M, Webb NJ. A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant 2010; 10: 828-836 [PMID: 20420639 DOI: 10.1111/j.1600-6143.2010.03047.x]

Höcker B, Weber LT, Feneberg R, Drube J, John U, Fehrenbach H, Pohl M, Zimmering M, Fründ S, Klaus G, Wühl E, Tönshoff B. Improved growth and cardiovascular risk after late steroid withdrawal: 2-year results of a prospective, randomised trial in paediatric renal transplantation. Nephrol Dial Transplant 2010; 25: 617-624 [PMID: 19793929 DOI: 10.1093/ndt/gfp506]
