Diversity and spoilage potential of microbial communities associated with grape sour rot in eastern coastal areas of China

Huanhuan Gao Corresp., Equal first author, 1, 2, Xiangtian Yin Equal first author, 1, Xilong Jiang 1, Hongmei Shi 1, Yang Yang 1, Chaoping Wang 1, Xiaoyan Dai 1, 2, Yingchun Chen 1, Xinying Wu Corresp. 1

1 Shandong Academy of Grape, Jinan, China
2 Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China

Corresponding Authors: Huanhuan Gao, Xinying Wu
Email address: gaohuanhuan368@126.com, echomoon0622@163.com

As a polymicrobial disease, sour rot decreases grape berry yield and wine quality. The diversity of microbial communities in sour rot-affected grapes depends on the cultivation site, but the microbes responsible for this disease in eastern coastal China, has not been reported. To identify the microbes that cause sour grape rot in this important grape-producing region, the diversity and abundance of bacteria and fungi were assessed by metagenomic analysis and cultivation-dependent techniques. A total of 15 bacteria and 10 fungi were isolated from sour rot-affected grapes. High-throughput sequencing of PCR-amplicons generated from diseased grapes revealed 1343 OTUs of bacteria and 1038 OTUs of fungi. Proteobacteria and Firmicutes were dominant phyla among the 19 bacterial phyla identified. Ascomycota was the dominant fungal phylum and the fungi Issatchenkia terricola, Colletotrichum viniferum, Hanseniaspora vineae, Saprochaete gigas, and Candida diversa represented the vast majority of microbial species associated with sour rot-affected grapes. An in vitro spoilage assay confirmed that four of the isolated bacteria strains (two Cronobacter species, Serratia marcescens and Lysinibacillus fusiformis) and five of the isolated fungi strains (three Aspergillus species, Alternaria tenuissima, and Fusarium proliferatum) spoiled grapes. These microorganisms, which appear responsible for spoiling grapes in eastern China, appear closely related to microbes that cause this plant disease around the world.
Diversity and spoilage potential of microbial communities associated with grape sour rot in eastern coastal areas of China

Huanhuan Gao1,2*, Xiangtian Yin1, Xilong Jiang1, Hongmei Shi1, Yang Yang1, Chaoping Wang1, Xiaoyan Dai1,2, Yingchun Chen1, XinYing Wu1*

Huanhuan Gao and Xiangtian Yin contributed equally to this work

1Shandong Academy of Grape, Jinan, 250100, China
2Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China

Corresponding author:
Huanhuan Gao
Shandong Academy of Grape, 3666 East Second Ring Road, Jinan, 250100
E-mail: gaohuanhuan368@126.com

XinYing Wu
Shandong Academy of Grape, 3666 East Second Ring Road, Jinan, 250100
E-mail: echomoon0622@163.com
Abstract

As a polymicrobial disease, sour rot decreases grape berry yield and wine quality. The diversity of microbial communities in sour rot-affected grapes depends on the cultivation site, but the microbes responsible for this disease in eastern coastal China, has not been reported. To identify the microbes that cause sour grape rot in this important grape-producing region, the diversity and abundance of bacteria and fungi were assessed by metagenomic analysis and cultivation-dependent techniques. A total of 15 bacteria and 10 fungi were isolated from sour rot-affected grapes. High-throughput sequencing of PCR-amplicons generated from diseased grapes revealed 1343 OTUs of bacteria and 1038 OTUs of fungi. Proteobacteria and Firmicutes were dominant phyla among the 19 bacterial phyla identified. Ascomycota was the dominant fungal phylum and the fungi Issatchenkia terricola, Colletotrichum viniferum, Hanseniaspora vineae, Saprochaete gigas, and Candida diversa represented the vast majority of microbial species associated with sour rot-affected grapes. An in vitro spoilage assay confirmed that four of the isolated bacteria strains (two Cronobacter species, Serratia marcescens and Lysinibacillus fusiformis) and five of the isolated fungi strains (three Aspergillus species, Alternaria tenuissima, and Fusarium proliferatum) spoiled grapes. These microorganisms, which appear responsible for spoiling grapes in eastern China, appear closely related to microbes that cause this plant disease around the world.

Introduction

Grape sour rot is a polymicrobial disease characterized by the disaggregation of the internal tissues of berries, detachment of the rotten berry from the pedicel, and a strong ethyl acetate smell. This disease causes millions of dollars in revenue loss each year due to decreases in the
quality of berries (Barata et al., 2011; Steel, Blackman & Schmidtke, 2013). A number of microorganisms, such as Ascomycota, acetic acid bacteria (AAB), and filamentous fungi, can infect ripe and thin-skinned grape berries (Nally et al., 2013). Acetic acid released by AAB attracts the fruit fly Drosophila, which contributes to sour rot (Hall et al., 2018). The composition of microorganisms in sour rot-affected grapes depends on the cultivation site and grape variety. The frequency and density of yeast species associated with sour rot differ between grape cultivars. The most frequently recovered ascomycetous species from rotten wine grapes are Candida krusei, Kloeckera apiculata, and Metschnikowia pulcherrima and a less frequent species is Issatchenkia occidentalis (Guerzoni & Marchetti, 1987). Barata et al. (2008) reported that Candida vanderwaltii, Hanseniaspora uvarum, and Zygoascus hellenicus are the most frequent species in rotten Trincadeira Preta red grape. The relative abundance of these microorganisms depends on the ripening stage and the availability of nutrients. Basidiomycetes and the yeast-like fungus Aureobasidium pullulans dominate intact grape berries. Ascomycetes with higher fermentative activity, like Pichia spp., Zygoascus hellenicus, wine spoilage yeasts, and AAB, are more frequent in rotten grape samples than in healthy grapes (Barata, Malfeito-Ferreira & Loureiro, 2012a; Barata, Malfeito-Ferreira & Loureiro, 2012b). Other than the widespread Hanseniaspora uvarum in sour rot wine grapes and table grapes, non-saccharomyces yeast (NSY) and AAB species occur in sour rot table grape. Pinto et al. (2017) proved that among all NSY-AAB associations, the yeast–bacterium association composed of Candida zemplinina CBS 9494 and Acetobacter syzygii LMG 21419 shows the highest prevalence. This
microbial consortium produces spoilage metabolites such as acetic acid and gluconic acid (Pinto et al., 2019).

Advances in molecular biology techniques and metagenomics have facilitated microbial community analyses (Andreote, Azevedo & Araújo, 2009) and characterization of microbes associated with plant diseases (Huang et al., 2017; Shen et al., 2018; Brady et al., 2017). Hall et al. (2019) characterized the microbiome of sour rot-affected grapes in New York by high-throughput sequencing and found that Acetobacter species were significantly more abundant in symptomatic samples than in asymptomatic ones. Studies of the microbial diversity of bacteria and fungi in rotten grapes in the eastern coast of China, a very important grape growing region, are limited.

In this study, metagenomic analysis was used to determine the diversity and abundance of bacteria and fungi in sour rot-affected table grapes collected from Yantai city. In parallel, we isolated several microbes and determined their potential to spoil grapes in an in vitro assay.

Materials & Methods

Samples of sour rot-affected grapes

Sour rot-affected grapes infested with fruit flies were collected from vineyards in Yantai (N36°27’, E117°10’), Shandong Province, China. Approximately 1.0 g of rotten tissue was sliced from each sour rot-affected grape (Muscat), and the tissues from 100 sour rot-affected grapes were collected together into one 50-mL sterile centrifuge tube. Three replicates from a total of 300 sour rot-affected grapes were stored at -80°C for 16S rDNA and ITS high-throughput
sequencing. Another three replicates were used for the separation and identification of culturable microorganisms in sour rot-affected grapes.

16S rDNA and ITS high-throughput sequencing analysis

(1) DNA extraction and Illumina MiSeq sequencing of 16S rDNA and ITS genes

DNA was extracted from three rotten group samples using the Insect DNA Kit (OMEGA) and further purified using the MoBio PowerSoil Kit. The bacterial universal primers 341 F (5'-CCTACACGACGCTCTTCCGATCTN (barcode) CCTACGG-GNGGCWGCAG-3') and 805 R (5'-GACTGGAGTTTTCTTGGCACCACCCGAGA-
-TTCCA (barcode) GACTACHVGGGTATCTAATCC-3') were used for amplification of the V3–V4 region of 16S rDNA. The fungal universal primers ITS4 F (5'-CCCTACACGACGCTCTTCCGATCTN (barcode) TCCTCGCTTATTGATATG-3') and ITS3 R (5'-GTGACTGGAGTTTTCTTGGCACCAGAATTCCAGCATCGAT-
-GAAGAAC--CAGC-3') were used for amplification of the ITS gene. Each reaction comprised 15 μL of Phurs Mix (2er), 1.5 μL of each primer, 10 ng of template DNA, and ddH₂O. The cycling conditions were as follows: initial denaturation at 95°C for 1 min, followed by 35 cycles at 95°C for 10 sec, 54°C for 30 sec, and 72°C for 30 sec, and a final extension at 72°C for 5 min. ITS was amplified under similar cycling conditions, except for the annealing temperature (52°C).

The sequencing libraries for 16S rDNA and ITS were constructed using the TruSeq DNA PCR-Free Preparation Kit (Illumina, San Diego, CA, USA) and quantified using Qubit 3.0 (Life Technologies, Grand Island, NY, USA). Then, the library was sequenced on an Illumina MiSeq platform (HiSeq 2000; PE250). After the removal of low-quality reads and primer/adaptor sequences using SeqClean, high-quality reads (clean data) were generated and used for further
analysis. These sequencing procedures were performed by Sangon Biotech (Shanghai, China) Co., Ltd.

(2) **Alpha diversity analysis**

Sequences were clustered into operational taxonomic units (OTUs) using the 97% identity threshold (3% dissimilarity level) (Mothur, https://mothur.org/) (Schloss et al., 2009). The reads of 16S rDNA and ITS sequences had been submitted in the Short Read Archive (BioProject ID: PRJNA61015). According to the number of OTUs, the rarefaction curve for 16S rDNA and ITS sequences was made to measure the adequacy and rationality of data. Shannon and Simpson diversity indexes were calculated as indicators of microbial diversity, and Chao1 and ACE indices were calculated as indicators of microbial richness using Mothur (Schloss et al., 2009).

All OTUs were analyzed using BLASTN and the 16S rDNA and ITS databases (http://ncbi.nlm.nih.gov/). The best results (similarity >90% and coverage>90%) were used for subsequent classification. The sequences that did not satisfy these criteria were defined as “unclassified.” Species richness and relative abundances were estimated.

Diversity of culturable microorganisms in sour rot-affected grapes

The above samples with three replicates were suspended in phosphate-buffered saline (PBS, 0.2 M, pH 7.2) at ratios of 1:10³, 1:10⁴ and 1:10⁵. The suspension (200 μL; different concentrations) was spread on nutrient agar medium and potato dextrose agar medium with three replicates each. After culturing at 25 °C for 48 h on nutrient agar and 7 d on potato dextrose agar a total of 80 colonies were picked and restreaked for purity using the primary media.

(1) **Identification of cultivated bacteria**

Physiological and biochemical characteristics of each bacterium were analyzed according to the methods described by Dong & Cai (2010). The following tests were performed: Gram staining,
spore staining, bacterial motility test, catalase reaction, methyl red test, starch hydrolysis,
benzopyrrole test, VP test, malonic acid test, gelatin test, H₂S test, citrate test, ammonia
production test, litmus milk test, and urease test.

DNA was extracted from a single colony of each bacterium using the Bacterial DNA Kit
(OMEGA, Norcross, GA, USA) and purified using the DNA Clean-Up Kit (OMEGA). 16S
rDNA was amplified for each DNA template using the Bio-Rad 1000-Series Thermal Cycler
PCR (Hercules, CA, USA). The thermal cycling profile was as follows: initial denaturation at
95°C for 3 min, followed by 35 cycles of 95°C for 15 sec, 54°C for 30 sec, and 72°C for 1 min,
and a final extension at 72°C for 5 min. Primer sequences were as follows: 16S rDNA-27F: 5′-
AGAGTTTGATCCTGGCTCAG-3′; 16S rDNA-1492R: 5′-
TACGGYTACCTTGTTACGACTT-3′.

Identification of cultivated fungi

The morphological features of each fungus were analyzed using a light microscope (CX41RF;
Olympus, Tokyo, Japan) according to the methods described by Dai (1988). The mycelium of
each purified fungus was collected in PDA medium. DNA was extracted using the Fungal DNA
Kit (OMEGA) and purified using the DNA Clean-Up Kit (OMEGA). The ITS gene was
amplified according to the following thermal cycling profile: initial denaturation at 95°C for 3
min, quantification for 35 cycles (95°C for 15 sec followed by 52°C for 30 sec and 72°C for 1
min), and a final extension at 72°C for 5 min. Sequences of the universal primers were as
follows: ITS1: 5′-TCCGTAAGGTGAACCTGGG-3′; ITS4: 5′-TCCTCCGCTTATTGATATGC-
3′.

Sequencing
PCR products were purified using the TaKaRa Mini BEST Agarose Gel DNA Extraction Kit (Takara, Japan) and sequenced on an ABI-3730 DNA analyzer (Applied Biosystems, Foster City, CA, USA). The sequences were analyzed using BLAST (http://ncbi.nlm.nih.gov/).

Phylogenetic trees of bacteria and fungi were separately constructed using the neighbor-joining method (NJ; Saitou and Nei, 1987) implemented in MEGA 6.0 (LynnonBiosoft, San Ramon, CA, USA). The sequences of bacteria and fungi were submitted to GenBank using SEQUIN (see phylogenetic trees for accession numbers).

Spoilage potential assay of cultivated bacteria and fungi

Isolated bacteria and fungi were tested for spoilage potential on grape berries. Healthy grape berries of Midnight Beauty, a susceptible variety, were collected and surface sterilized with 1% sodium hypochlorite (NaClO) solution for one minute. Excess NaClO was removed by washing the berries twice in sterile distilled water. The experimental berries were pricked 2–3 mm deep using a dissecting needle to simulate the wounds made by fruit flies during egg laying or other mechanical damage. The bacterial suspension and fungal spore suspension were prepared with a concentration of approximately 1×10^6 cfu/ml or conidia/ml in the suspension. This suspension (5 µl per berry) was used to inoculate the wounds of healthy grape berries. Sterile water was used instead of the suspension as a negative control. Two methods were used to observe the spoilage potential of bacteria and fungi. In the merged placement method, 10 grape berries were placed in a single Petri dish (10 cm in diameter and 3 cm in height) to simulate grape clusters in the field. In the separate placement method, each of 10 grape berries was placed in a single
culture bottle (2.5 cm in diameter and 3 cm in height). Three replicates were established for both methods and each bacterium and fungus treatment. Subsequently, the inoculated grape berries were kept in a moisture chamber at 27°C/25°C (day/night) and 80% humidity, and symptoms were recorded on the 5th day. The bacterial and fungal species were reisolated from these artificially inoculated grape berries using NA medium and PDA medium, respectively. The resulting culture was compared with the original culture (Hyun et al., 2001).

Based on the ratio of the infected area to the total area, grading was performed as follows (Rouxel et al., 2013; Zhou et al., 2014): 0, no disease spot; 1, less than 5% of the total area infected; 3, 5% to 25% of the total area infected; 5, 25% to 50% of the total area infected; 7, 50% to 75% of the total area infected; 9, 75% to 100% of the total area infected. The incidence (%) and the McKinney index of bacteria and fungi were calculated according to the following formulas:

\[
\text{The percentage of incidence (\%) = } 100 \times \frac{\text{the number of diseased berries}}{\text{the number of all berries}} \quad (1)
\]

\[
\text{The McKinney index} = 100 \times \sum_{k=0}^{n} \frac{kx}{9N} \quad (2)
\]

where, \(x\) is the value for each grade; \(n\) is the number of diseased berries at each level; and \(N\) is the total number of fruits investigated.

Results

Sequencing and alpha diversity analyses
The mean lengths of 16S rDNA of bacteria and ITS gene of fungi generated from metagenomic DNA extracted from rotting grapes were 413 ± 3 bp and 279 ± 5 bp, respectively. The OTU numbers for bacteria and fungi were 1343 ± 283 and 1039 ± 387 respectively (Table 1). Rarefaction curves of three samples for 16S rDNA and ITS sequences reached asymptotes (Fig. S1), which suggests coverage was sufficient. The number of sequences for each OTU decreased rapidly by the OTU rank of 18 (Fig. S1). The flat curve indicated a high degree of sequencing uniformity.

In a phylogenetic tree of the top 50 bacterial OTUs, 15 OTUs were classified as phylum *Firmicutes*, class *Bacilli*. Among the other 35 *Proteobacteria*, 21 OTUs belonged to the class *Alphaproteobacteria*, three to *Betaproteobacteria*, and 11 to *Gammaproteobacteria* (Fig. S2). In a phylogenetic tree of the top 50 fungal OTUs, one belonged to Basidiomycota and eight were not identified based on searches against the ITS database. Among the other 41 *Ascomycota* OTUs, 29 belonged to the class *Saccharomycetes*, nine to *Sordariomycetes*, and two to *Dothideomycetes* (Fig. S3).

The microbial diversity, as determined by the Shannon index and Simpson index, was higher for bacteria than fungi, and richness, as determined by the Chao1 index and ACE index, was higher for fungi than bacteria (Table 2).

Microbial taxonomic analysis

Proteobacteria (72%) and *Firmicutes* (27%) were dominant among the 19 bacteria phyla identified (Fig. 1A). The proportion of other bacteria was less than 1%. The dominant genera in sour rot-affected grapes were *Acetobacter* (38%), *Gluconobacter* (24%), *Bacillus* (12%), and *Lactococcus* (Fig. 1B).
Ascomycota (94%) was the dominant phylum in the identified fungal community (Fig. 2A). The dominant species identified in sour rot-affected grapes were Issatchenka terricola (18%), Colletotrichum viniferum (13%), Hanseniaspora vineae (13%), Saprochaete gigas (4%), and Candida diversa (4%), and 32% of isolates were not taxonomically identified (Incertae sedis sp.) (Fig. 2B).

Diversity of culturable microorganisms in sour rot-affected grapes

We cultured 15 bacterial strains from sour rot-affected grapes infested by fruit flies (Table 3). We identified Firmicutes as the dominant phylum (60%), with nine Gram-positive bacteria species (i.e., Staphylococcus saprophyticus, Lactococcus garvieae, Lactobacillus plantarum, two Lysinibacillus species, and four Bacillus species). We also isolated six Gram-negative bacteria species assigned to the phylum Proteobacteria. All bacterial taxa presented positive results in catalase reaction, gelatin, H₂S, and ammonia production assays whereas they presented negative results for fermentation with the methyl red. Strains classified as Cronobacter malonaticus, Cronobacter sakazakii, and Klebsiella pneumoniae presented negative results for these biochemical tests (Table 4).

We cultured ten fungi from sour rot-affected grapes. Five were classified as Deuteromycotina, including Cladosporium oxysporum, Alternaria tenuissima, Geotrichum gigas, Fusarium proliferatum, and Nigrospora sp. (Table 3). C. oxysporum, with bottle-green colonies, developed into conidia by asexual reproduction. A. tenuissima colonies, with a white front side and brown reverse side, developed into conidia in the form of a chain lattice. The hyphae of Saprochaete gigas or Geotrichum gigas, with white colonies, developed into arthrospores by asexual reproduction. F. proliferatum, with red colonies, had branched conidiophores and sickle or long column-shaped conidia. Nigrospora sp. had irregular colonies, branched conidiophores, and ball-
shaped conidia. Five species (i.e., *Penicillium citrinum*, *P. georgiense*, *Aspergillus niger*, *A. aculeatus*, and *A. oryzae*) belonged to Ascomycotina. The sporophores of *P. citrinum* and *P. georgiense* grew from hyphae and developed into brush-like structures. These two *Penicillium* species differed in colony color. The conidia of *A. niger*, *A. aculeatus*, and *A. oryzae* were black, green, and yellow, respectively (Fig. 3).

Spoilage potential of culturable bacteria and fungi for grape sour rot

All 15 bacterial species and 10 fungal species demonstrated the potential to spoil grapes. In the merged placement method, all of the microorganisms except for *B. amyloliquefaciens*, caused cracking and infection in grapes (Fig. 4A). In the separate placement method, all of fungi except for *Saprochaete gigas*, could cause infection in grapes. Obvious symptoms were not detected in the grapes treated by bacterium (Fig. 4B). The bacterial species and the fungal species reisolated from these spoiled grapes using NA medium and PDA medium were confirmed as the original microorganisms summarized in Table 3.

The incidence and McKinney index of 15 bacterial species and 10 fungal species were significantly different from those of the control (sterile water and LB medium) using the merged placement method (incidence: $F = 10.44$, $P < 0.01$; McKinney index: $F = 43.28$, $P < 0.01$; Fig. 5A and Fig. 5B). Fungal isolates demonstrated stronger spoilage potential in the grape berries with an incidence of more than 75%. Except for *C. oxysporum* and *P. citrinum*, the McKinney index of all other fungi exceeded 50%, which was greater than that of bacteria. Three *Aspergillus* species and *P. georgiense* showed 100% spoilage on the McKinney index. Healthy grapes were also highly sensitive to *A. tenuissima* and *F. proliferatum*, which high McKinney index values of 52 ± 1 and 50 ± 2, respectively. Among the bacteria, the incidence and McKinney index of two *Cronobacter* species, *Serratia marcescens* and *Lysinibacillus fusiformis*, were higher than those
of the other bacteria. B. amyloliquefaciens and B. cereus led to less serious spoilage than other bacteria (Fig. 4, then Fig. 5). The percentages of incidence and McKinney index of microorganism were lower using separated infection method than merged method, while those of fungi were also higher than bacteria (Percentage of incidence: $F = 90.52, P < 0.01$; McKinney index: $F = 50.49, P < 0.01$; Fig. 5C and Fig. 5D). The C. oxysporum had the highest spoilage potential among microbial taxa, which was different from the results obtained under merged infection.

Discussion

Metagenomic analysis and culturing indicated that the microorganisms caused spoilage were similar around the world. AAB were the dominant bacteria in rot-affected grapes in eastern coastal areas of China, which is consistent with reports from Australia (Mateo et al., 2014), Portugal (Baratta, Malfeito-Ferreira & Loureiro, 2012b) and New York (Hall et al., 2019). Aspergillus were the dominant mold, which agrees with reports from Greece (Tjamos et al., 2004) and California (Rooney-Latham et al., 2008). Issatchenkia occidentalis, Hanseniaspora uvarum, and Candida vanderwaltii, Colletotrichum viniferum, and Saprochaete gigas, were also commonly observed, which are the same genera, but different species, than reports from other regions (Guerzoni & Marchetti, 1987; Barata et al., 2008; Barata, Malfeito-Ferreira & Loureiro, 2012b; Lleixà et al., 2018). Pisani, Nguyen & Gubler (2015) reported that grape sour rot is a disease complex involving many filamentous fungi and bacteria but is usually initiated by A. niger or A. carbonarius in California. We observed similar communities and reported the presence of pathogens, that could infect humans and animals, associated with rotting grapes, such as C. sakazakii SRG2, K. pneumoniae SRG3, and S. gigas SRG18. C. sakazakii is an
emerging opportunistic foodborne pathogen with the potential to cause meningitis, bacteremia, and necrotizing enterocolitis, particularly in infants (Drudy et al., 2006; Aly et al., 2019). *K. pneumoniae* is an important conditional pathogenic and iatrogenic infectious bacterium. *Saprochaete* yeasts have emerged as fungal pathogens and causal agents of life-threatening infections in patients with severe neutropenia and hematological malignancies (Pavone et al., 2019). Therefore, sour rotten berries could be a reservoir for human pathogens.

Fungal isolates demonstrated greater spoilage potential than bacterial isolates in the grape berries. Except for three *Aspergillus* species with high McKinney index values, healthy grapes were also sensitive to spoilage fungi (*A. tenuissima* and *F. proliferatum*) associated with common grape diseases, which was different from studies in other places. As the most common species in the cosmopolitan genus *Alternaria*, *A. tenuissima* is found on a broad range of fruit products and causes various diseases, like post-harvest black rot of fruit (Logrieco, Moretti & Solfrizzo, 2009). Bakshi, Sztejnberg & Yarden (2001) reported that *F. proliferatum* could also cause the rot of corn, rice, and lily. Therefore, *Aspergillus* species, *A. tenuissima*, and *F. proliferatum* were the main cultivated spoilage fungi causing sour rot in grapes. Among the bacterial isolates, *B. amyloliquefaciens* and *B. cereus* led to less serious sour rot in this study. This can possibly be explained by the antibacterial substances generated by *B. amyloliquefaciens* and *B. cereus*, which have been used as biological control agents (Risoe'n, Ronning & Hegna, 2004, Wang et al., 2014). Although *L. fusiformis* restricts the biofilm formation of some pathogenic bacteria, it caused serious rot in grape berries (Fig. 3). Healthy grapes were sensitive to *Cronobacter* sp. and *S. marcescens*, which are spoilage microorganisms (Healy et al., 2010). The spoilage potential assay confirmed that *Cronobacter* species, *S. marcescens*, and *L. fusiformis* can cause sour rot in grapes. In this study, the incidence and McKinney index of
microorganisms were lower using the separate infection method than using the merged method, further suggesting that diseases related to sour rotten grapes could spread quickly through grape clusters.

Sour rot is the culmination of coinfection by various yeasts that convert grape sugars to ethanol and bacteria that oxidize the ethanol to acetic acid (Pinto et al., 2019), and Drosophila spp. mediate these processes (Hall et al., 2018). Sour rot increases attractiveness to ovipositing D. melanogaster females and oviposition by D. suzukii facilitates sour rot development (Rombaut et al., 2017; Ioriatti et al., 2018). Furthermore, musts and the beginning of fermentation using rotten Macabeo grapes is consistently characterized by an elevated frequency of Zygosaccharomyces, and AAB increase in the late stages of fermentation (Lleixà et al. 2018). It is difficult to control sour rot in grapes due to the multiple species associated with this disease. Therefore, relationships among insects, microorganisms, and grapes as well as comprehensive analyses of nosogenesis will be the key question in the researches of sour rot in grapes.

Conclusions

This study identified more spoilage species in sour rot-affected grapes of China using culture-dependent methods combined with high-throughput sequencing analysis, which would provide comprehensive information on targets for the control of the disease. Majority of these microbes could infect grapes with wounds. The microbes associated with sour grape rot in eastern coastal China appear similar to those associated with this disease in vineyards around the world. We reported here that A. tenuissima, and F. proliferatum spoil grapes. Human and animal pathogens
were also present among the bacteria in sour rot-affected grapes, such as *Cronobacter sakazakii*, *Klebsiella pneumoniae* and *S. gigas*.

Acknowledgments

We would like to thank Chao Li for assistance with loading sequences of fungi, Dongyun Qin and Ling Su for assistance with grape collection, and Sha Liu and Dongyun Qin for assistance with the treatment of grape samples.

References

Aly MA, Domig KJ, Kneifel W, Reimhult E. 2019. Whole genome sequencing based comparison of food isolates of *Cronobacter sakazakii*. *Frontiers in Microbiology* 10:1464 DOI: 10.3389/fmicb.2019.01464.

Andreote FD, Azevedo JL, Araújo WL. 2009. Assessing the diversity of bacterial communities associated with plants. *Brazilian Journal of Microbiology* 40: 417-432 DOI: 10.1590/S1517-83822009000300001.

Bakshi S, Sztejnberg A, Yarden O. 2001. Isolation and characterization of a cold-tolerant strain of *Fusarium proliferatum*, a biocontrol agent of grape downy mildew. *Phytopathology* 91:1062-1068 DOI: 10.1094/PHYTO.2001.91.11.1062.

Barata A, Campo E, Malfeito-Ferreira M, Loureiro V, Cacho J, Ferreira V. 2011. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC- O and GC-MS: identification of key aroma compounds. *Journal of Agricultural and Food*
Barata A, Malfeito-Ferreira M, Loureiro V. 2012a. The microbial ecology of wine grape berries.

International Journal of Food Microbiology 153: 243-259 DOI: 10.1016/j.ijfoodmicro.2011.11.025.

Barata A, Malfeito-Ferreira M, Loureiro V. 2012b. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. *International Journal of Food Microbiology* 154: 152-161 DOI: 10.1016/j.ijfoodmicro.2011.12.029.

Barata A, Seborro F, Belloch C, Malfeito-Ferreira M, Loureiro V. 2008. Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot. *Journal of Applied Microbiology* 104: 1182-1191 DOI: 10.1111/j.1365-2672.2007.03631.x.

Brady C. Arnold D, McDonald J, Denman S. 2017. Taxonomy and identification of bacteria associated with acute oak decline. *World Journal of Microbiology & Biotechnology* 33: 143-154 DOI: 10.1007/s11274-017-2296-4.

Dai FL. 1978. Fungal morphology and identification. Beijing: Science Press.

Dong XZ, Cai MY. 2001. Common Bacteria Identification Manual. Beijing: Science Press.

Drudy D, Mullane NR, Quinn T, Wall PG, Fanning S. 2006. *Enterobacter sakazakii*: an emerging pathogen in powdered infant formula. *Clinical Infectious Disease* 42: 996-1002 DOI: 10.1086/501019.

Guerzoni E, Marchetti R. 1987. Analysis of yeast flora associated with grape sour rot and of the chemical disease markers. *Applied and Environmental Microbiology* 53: 571-576 DOI: 10.1016/0167-7799(87)90030-8.
Hall ME, Loeb GM, Cadle-Davidson L, Evans KJ, Wilcox WF. 2018. Grape sour rot: A four-way interaction involving the host, yeast, acetic acid bacteria, and insects. Phytopathology 108: 1429-1442 DOI: 10.1094/PHYTO-03-18-0098-R.

Hall ME, O’Bryon I, Osier MV. 2019. The epiphytic microbiota of sour rot-affected grapes differs minimally from that of healthy grapes, indicating causal organisms are already present on healthy berries. PLoS One 14: e0211378 DOI: 10.1371/journal.pone.0211378.

Healy B, Cooney S, O’Brien S, Iversen C, Whyte P, Nally J, Callanan JJ, Fanning S. 2010. Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathogens and Disease 7: 339-351 DOI: 10.1089/fpd.2009.0379.

Huang N, Wang WW, Yao YL, Zhu FX, Wang WP, Chang XJ. 2017. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations. PLoS ONE 12: e0171490 DOI: 10.1371/journal.pone.0171490.

Hyun JW, Timmer LW, Lee SH, Yun SH, Ko SW, Kim KS. 2001. Pathological characterization and molecular analysis of Elsinoe isolates causing scab diseases of citrus in Jeju Island in Korea. Plant disease 85: 1013-1017 DOI: 10.1094/PDIS.2001.85.9.1013.

Ioriatti C, Guzzon R, Anfora G, Ghidoni F, Mazzoni V, Villegas TR, Dalton DT, Walton VM. 2018. Drosophila suzukii (Diptera: Drosophilidae) contributes to the development of sour rot in grape. Journal of Economic Entomology 111: 283-292 DOI: 10.1093/jee/tox292.

Lleixà J, Kioroglou D, Mas A, Portillo MDC. 2018. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes. International Journal of Food Microbiology 281: 36-46. DOI: 10.1016/j.ijfoodmicro.

Logrieco A, Moretti A, Solfrizzo M. 2009. Alternaria toxins and plant diseases: an overview of
Mateo E, Torija MJ, Mas A, Bartowsky EJ. 2014. Acetic acid bacteria isolated from grapes of South Australian vineyards. *International Journal of Food Microbiology* 178: 98-106 DOI: 10.1016/j.ijfoodmicro.2014.03.010.

Nally MC, Pesce VM, Maturano YP, Toro ME, Combina M, Castellanos de Figueroa LI, Vazquez F. 2013. Biocontrol of fungi isolated from sour rot infected table grapes by *Saccharomyces* and other yeast species. *Postharvest Biology and Technology* 86: 456-462 DOI: 10.1016/j.postharvbio.2013.07.022.

Pavone P, Oliva A, Raponi G, Pugliese F, Martelli S, Celli P, Sacco F, Vullo V, Mastroianni CM, Russo G. 2019. Disseminated fungal infection due to *Saprochaete clavata* in a kidney transplant recipient. *Journal De Mycologie Medicale* 19: S1156-5233 DOI: 10.1016/j.mycmed.2019.06.002.

Pinto L, Caputo L, Quintieri L, de Candia S, Baruzzi F. 2017. Efficacy of gaseous ozone to counteract postharvest table grape sour rot. *Food Microbiology* 66: 190-198 DOI: 10.1016/j.fm.2017.05.001.

Pinto L, Malfeito-Ferreira M, Quintieri L, Silva A C, Baruzzi F. 2019. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources. *International journal of food microbiology* 296: 65-74 DOI: 10.1016/j.ijfoodmicro.2019.02.022.
Pisani C, Nguyen TT, Gubler WD. 2015. A novel fungal fruiting structure formed by *Aspergillus niger* and *Aspergillus carbonarius* in grape berries. *Fungal Biology* 119: 784-790 DOI: 10.1016/j.funbio.2015.05.002.

Risoen PA, Ronning P, Hegna IK. 2004. Characterization of a broad range antimicrobial substance from *Bacillus cereus*. *Journal of Applied Microbiology* 96: 648-655 DOI: 10.1046/j.1365-2672.2003.02139.x.

Rombaut A, Guilhot R, Xuéreb A, Benoit L, Chapuis MP, Gibert P, Fellous S. 2017. Invasive *Drosophila suzukii* facilitates *Drosophila melanogaster* infestation and sour rot outbreaks in the vineyards. *Royal Society Open Science* 4 DOI: 10.1098/rsos.170117.

Rooney-Latham S, Janousek CN, Eskalen A, Gubler WD. 2008. First Report of *Aspergillus carbonarius* causing sour rot of table grapes (Vitis vinifera) in California. *The American Phytopathological Society* 92: 651-661 DOI: 10.1094/PDIS-92-4-0651A.

Rouxe M, Mestre P, Comont G, Lehman BL, Schilder A, Delmotte F. 2013. Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete. *New Phytologist* 197: 251-263 DOI: 10.1111/nph.12016.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Applied and Environmental Microbiology* 75: 7537-7541 DOI: 10.1128/AEM.01541-09.
Shen ZZ, Penton CR, Lv N, Xue C, Yuan XF, Ruan YZ, Shen LR, Li R, Shen QR. 2018. Banana *Fusarium* wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. *Microbial Ecology* 75: 739-750 DOI: 10.1007/s00248-017-1052-5.

Steel CC, Blackman JW, Schmidtke LM. 2013. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. *Journal of Agricultural and Food Chemistry* 61: 5189-5206 DOI: 10.1021/jf400641r.

Tjamos SE, Antoniou PP, Kazantzidou A, Antonopoulos DF, Papageorgiou I, Tjamos EC. 2004. *Aspergillus niger* and *Aspergillus carbonarius* in Corinth Raisin and wine-producing vineyards in Greece: population composition, ochratoxin a production and chemical control. *Journal of Phytopathology* 152: 250-255 DOI: 10.1111/j.1439-0434.2004.00838.x.

Wang JJ, Zhao DY, Liu YG, Ao X, Fan R, Duan ZQ, Liu Y. 2014. Antagonism against *Beauveria bassiana* by lipopeptide metabolites produced by entophyte *Bacillus amyloliquefaciens* strain SWB16. *Acta Microbiologica Sinica* 54: 778-785.

Zhou TT, Jin GX, Yue YL, Zhang L, Li GY. 2014. Resistance identification of wine grape germplasm to downy mildew. *Xinjiang Agricultural Sciences* 51: 1845-1850.
Table 1 (on next page)

Sequence information of bacterium and fungi in sour rot-affected grapes
Table 1 Sequence information of bacterium and fungi in sour rot-affected grapes

Group	Sample	Number of raw reads	Mean length of raw reads	Number of clean reads	Mean length of clean reads	Number of filtered reads
1	56220	447	54080	410	38313	
2	63599	458	61916	418	39939	
3	52692	449	51690	410	24500	
Mean ± SE	57504 ± 3213	451 ± 3	55895 ± 3088	413 ± 3	79658	

16S rDNA

Group	Sample	Number of raw reads	Mean length of raw reads	Number of clean reads	Mean length of clean reads	Number of filtered reads
1	80740	317.03	80628	2746	79658	
2	71362	332	71281	2886	71160	
3	76531	318	76432	276	76154	
Mean ± SE	76211 ± 2712	322 ± 5	76114 ± 2704	2794 ± 5	79612	

ITS
Table 2 (on next page)

Diversity indices of bacterium and fungi in sour rot-affected grapes
Table 2 Diversity indices of bacterium and fungi in sour rot-affected grapes

Diversity indices	Parameters	Bacterium (Mean ± SE)	Fungi (Mean ± SE)
	Shannon	3 ± 1.3 E-01	220 E-2 ± 1.7 E-01
	ACE	22034 ± 2927	32667 ± 1385
	Chao1	9745 ± 1430	10779 ± 1476
	Simpson	1 E-01 ± 2 E-02	21 E-2 ± 4 E-02
OTUs number		1343 ± 283	1039 ± 386
Table 3 (on next page)

Phylogeny of microbes isolated from sour rot-affected grapes
Table 3 Phylogeny of microbes isolated from sour rot-affected grapes

Microorganism	Phylum	Species	Strain IDs	Accession numbers
Cronobacter malonaticus	Proteobacteria	SRG1	MK743990	
Cronobacter sakazakii		SRG2	MK743989	
Klebsiella pneumoniae		SRG3	MK743987	
Acetobacter sp.		SRG4	MK743980	
Serratia marcescens		SRG5	MK743984	
Enterobacter hormaechei		SRG6	MK743988	
Staphylococcus saprophyticus	Bacterium	SRG7	MK743982	
Lactococcus garvieae		SRG8	MK743983	
Lactobacillus plantarum		SRG9	MK743986	
Lysinibacillus fusiformis		SRG10	MK753026	
Lysinibacillus sp.	Firmicutes	SRG11	MK743985	
Bacillus amyloliquifaciens		SRG12	MK743994	
Bacillus cereus		SRG13	MK743993	
Bacillus sp.-1		SRG14	MK743992	
Bacillus sp.-2		SRG15	MK743991	
Cladosporium oxysporum	Deuteromycotina	SRG16	MK748311	
Alternaria tenuissima		SRG17	MK748314	
Saprochaete gigas or Geotrichum gigas	SRG18	MN567950		
Fusarium proliferatum		SRG19	MK748309	
Nigrospora sp.		SRG20	MK748317	
Penicillium citrinum	Fungus	SRG21	MK748316	
Penicillium georgiense	Ascomycotina	SRG22	MK748315	
Aspergillus niger		SRG23	MK748313	
Aspergillus oryzae		SRG24	MK748312	
Aspergillus aculeatus		SRG25	MK748310	
Table 4 (on next page)

The physiological and biochemical characteristic of bacterium in sour rot-affected grape
Table 4 The physiological and biochemical characteristic of bacterium in sour rot-affected grape

Bacterium	Strain IDs	Gram staining	Spore staining	Bacterial motility	Catalase reaction	Methyl red test	Starch hydrolysis test	Benzpyrole test
Cronobacter malonaticus	SRG1	-	-	+	-	-	-	-
Cronobacter sakazakii	SRG2	-	-	+	-	-	-	-
Klebsiella pneumoniae	SRG3	-	-	+	-	-	-	-
Acetobacter sp.	SRG4	-	+	+	-	-	-	-
Serratia marcescens	SRG5	-	+	+	-	-	+	-
Enterobacter hormaechei	SRG6	-	+	+	-	+	-	-
Staphylococcus saprophyticus	SRG7	+	+	+	-	+	-	-
Lactococcus garvieae	SRG8	+	-	+	-	-	-	-
Lactobacillus plantarum	SRG9	+	-	+	-	+	-	-
Lysinibacillus fusiformis	SRG10	+ purple	+	+	-	-	+	-
Lysinibacillus sp.	SRG11	+ purple	+	+	-	-	-	-
Bacillus amyloboliquefaciens	SRG12	+ pink	+	+	-	-	-	-
Bacillus cereus	SRG13	+ purple	+	+	-	+	-	-
Bacillus sp.-1	SRG14	purple	+	+	-	+	-	-
Bacillus sp.-2	SRG15	+ purple	+	+	-	+	-	-

Bacterium	Malonic acid test	Gelatin test	H₂S test	Citrate test	Ammonia production test	Litmus milk test	Urease test
Cronobacter malonaticus	SRG1	-	+	+	+	+	-
Cronobacter sakazakii	SRG2	+	+	-	+	+	-
Klebsiella pneumoniae	SRG3	+	+	-	+	-	+
Acetobacter sp.	SRG4	+	+	+	-	+	-
Serratia marcescens	SRG5	+	+	+	-	+	-
Enterobacter hormaechei	SRG6	+	+	+	+	+	-
Staphylococcus saprophyticus	SRG7	-	+	+	+	-	-
Lactococcus garvieae	SRG8	-	+	-	+	+	-
Lactobacillus plantarum	SRG9	+	+	+	+	+	-
Species	Strain	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
----------------------------	--------	----------	----------	----------	----------	----------	----------
Lysinibacillus fusiformis	SRG10	+	+	+	-	+	-
Lysinibacillus sp.	SRG11	+	+	+	+	+	-
Bacillus amyloliquefaciens	SRG12	-	+	+	+	+	+
Bacillus cereus	SRG13	-	+	+	+	+	-
Bacillus sp.-1	SRG14	+	+	+	+	+	+
Bacillus sp.-2	SRG15	-	+	+	+	+	+
Figure 1

(A) The bacterial community structure based on genus; (B) The bacterial community structure based on phylum
Figure 2

(A) The fungal community structure based on genus; (B) The fungal community structure based on phylum
Figure 3

The labels of A-E represent the reverse side of colony morphology of *Cladosporium oxysporum*, *Penicillium citrinum*, *Alternaria tenuissima*, *Saprochaete gigas*, *Fusarium proliferatum*; The lables of F-J represent the front side of colony morphology of *Cladosporium oxysporum*, *Penicillium citrinum*, *Alternaria tenuissima*, *Saprochaete gigas*, *Fusarium proliferatum*; The labels of K-O represent the reverse side of colony morphology of *P. georgiense*, *Aspergillus niger*, *Nigrospora* sp., *A. oryzae*, *A. aculeatus*; The labels of P-T represent the font side of colony morphology of *P. georgiense*, *Aspergillus niger*, *Nigrospora* sp., *A. oryzae*, *A. aculeatus*. The labels of U-DD represent the light morphology of *Cladosporium oxysporum*, *Alternaria tenuissima*, *Saprochaete gigas*, *Fusarium proliferatum*, *Nigrospora* sp., *Penicillium citrinum*, *P. georgiense*, *Aspergillus niger*, *A. oryzae*, *A. aculeatus*.
Figure 4

The labels of A-AA represent pathogenicity of sterile water, LB medium, *Cladosporium oxysporum*, *Alternaria tenuissima*, *Saprochaete gigas*, *Fusarium proliferatum*, *Nigrospora* sp., *Penicillium citrinum*, *P. georgiense*, *Aspergillus niger*, *A. oryzae*, *A. aculeatus*, *Cronobacter malonaticus*, *C. sakazakii*, *Klebsiella pneumoniae*, *Acetobacter* sp., *Serratia marcescens*, *Enterobacter hormaechei*, *Staphylococcus saprophyticus*, *Lactococcus garvieae*, *Lactobacillus plantarum*, *Lysinibacillus fusiformis*, *Lysinibacillus* sp., *Bacillus amyloliquefaciens*, *B. cereus*, *Bacillus* sp.-1, *Bacillus* sp.-2 using the merged method; The labels of BB-BBB represent pathogenicity of sterile water, LB medium, *Cladosporium oxysporum*, *Alternaria tenuissima*, *Saprochaete gigas*, *Fusarium proliferatum*, *Nigrospora* sp., *Penicillium citrinum*, *P. georgiense*, *Aspergillus niger*, *A. oryzae*, *A. aculeatus*, *Cronobacter malonaticus*, *C. sakazakii*, *Klebsiella pneumoniae*, *Acetobacter* sp., *Serratia marcescens*, *Enterobacter hormaechei*, *Staphylococcus saprophyticus*, *Lactococcus garvieae*, *Lactobacillus plantarum*, *Lysinibacillus fusiformis*, *Lysinibacillus* sp., *Bacillus amyloliquefaciens*, *B. cereus*, *Bacillus* sp.-1, *Bacillus* sp.-2 using the separated method.
Different letters in each figure indicate significant difference between microorganisms (One-way ANOVA; $\alpha = 0.05$)