Tillage Study for Corn and Soybeans: Comparing Vertical, Deep, and No-Tillage

E. A. Adee

Kansas State University, eadee@ksu.edu

Recommended Citation
Adee, E. A. (2020) "Tillage Study for Corn and Soybeans: Comparing Vertical, Deep, and No-Tillage," Kansas Agricultural Experiment Station Research Reports: Vol. 6: Iss. 5. https://doi.org/10.4148/2378-5977.7922
Tillage Study for Corn and Soybeans: Comparing Vertical, Deep, and No-Tillage

E.A. Adee

Summary
Trends from a tillage study conducted since 2011 have shown no clear differences between tillage systems for either corn or soybeans in lighter soils under irrigation. One year out of seven years has shown a yield advantage for either corn or soybeans for any tillage system, which appears to be related to environmental conditions experienced during the season. Averaged across all years of the study, the treatments with deep tillage either every or every-other year had about 3% higher corn yields, and soybeans had up to a 3% yield increase with some form of tillage.

Introduction
The need for tillage in corn and soybean production in the Kansas River Valley continues to be debated. The soils of the Kansas River Valley are highly variable, with much of the soil sandy to silty loam in texture. These soils tend to be relatively low in organic matter (< 2%) and susceptible to wind erosion. Although typically well drained, these soils can develop compaction layers under certain conditions. A tillage study was initiated in the fall of 2011 at the Kansas State University Kansas River Valley Experiment Field near Topeka to compare deep vs. shallow vs. no-tillage vs. deep tillage in alternate years. Corn and soybean crops are rotated annually. This is intended to be a long-term study to determine if soil characteristics and yields change in response to a history of each tillage system.

Procedures
A tillage study was laid out in the fall of 2011 in a field that had been planted with soybean. The tillage treatments were (1) no-tillage, (2) deep tillage in the fall and shallow tillage in the spring every year, (3) shallow tillage in the fall following both crops, and (4) deep tillage followed by a shallow tillage in the spring only after soybean, and shallow tillage in the fall after corn. In the fall of 2010, prior to the soybean crop, the entire field was subsoiled with a John Deere V-ripper. After soybean harvest, 30- × 100-ft individual plots were tilled with a Great Plains TurboMax vertical tillage tool at 3 in. deep or a John Deere V-ripper at 14 in. deep. Spring tillage was conducted with a field cultivator. Starting in the fall of 2012 through fall of 2017, the treatments were conducted with the TurboMax or a Great Plains Sub-soiler Inline Ripper SS0300. Spring tillage in 2013–2016 was conducted with the TurboMax and a field cultivator in 2017 on the required treatments. Starting in the fall of 2017, the vertical tillage treatments were made using a Kuhn Krause Excelerator 8005. Each tillage treatment had 4 replications.
Dry fertilizer (11-52-60 nitrogen (N), phosphorus (P), and potassium (K)) was applied to the entire field prior to fall tillage in 2012 and to the soybean stubble in 2013 and 2014. In fall of 2015 and 2016, 14-52-40-10 (N, P, K, and sulfur (S)) fertilizer was applied to the soybean stubble prior to fall tillage. Nitrogen (150 lb in 2012 and 2013; 180 lb in 2014, 2015, 2016, 2017, and 2018; 160 lb in 2019) was applied in March prior to corn planting. Soybeans were planted after soybeans in the setup year. Planting, harvest, and irrigation information for the study is included in Table 1. Irrigation was calibrated to meet evapotranspiration (ET) rates. All corn was planted in 30-inch rows, as well as soybeans through 2016. Soybeans were planted in 15-inch rows in 2017, 2018, and 2019.

Results

Yields of corn or soybeans did not differ due to tillage in the setup year (2012) of the study (Table 2). The yields were respectable considering the extreme heat and drought experienced this growing season. The growing conditions were better in 2013, resulting in higher yields in both corn and soybeans, but with no significant differences between tillage treatments (Tables 3 and 4). In 2014, the corn yields were very good and Sudden Death Syndrome lowered soybean yields, but there were no differences between tillage treatments (Tables 3 and 4). The cool and rainy start to the season in 2015 slowed corn growth and lowered yields, while the soybeans had very good yields (Tables 3 and 4). In 2016, which had extremes in soil moisture from dry to saturated, the deep tillage treatments produced higher yields than did shallow tillage in corn, but soybean yields were similar for both tillage treatments. There were soil moisture extremes again in 2017, but a cooler August was very favorable for yields of both crops, with no differences between yields with the different tillage systems. The 2018 growing season started off very cool, but quickly had above normal temperatures. The corn yields were very good, with no difference between tillage systems. The soybean yields were very good, with the highest with the more conventional annual tillage and the vertical tillage systems. The 2019 season started off cool for most of May, then had near average temperatures for June and July, followed by a cooler August. The growing season was very wet except for July. The corn yields in 2019 were very good and the soybean yield was the highest observed in the study to date. Combining data from 2013–2019 for analysis showed corn yields are favored by deep tillage, and soybean yields are a few bushels better with any kind of tillage in the system (Tables 3 and 4). Averages of stand counts taken at the V5 stage in the corn for 2014–2019 did not show any differences (Table 3). We anticipated that it would take several years for any characteristics of a given tillage system to build up to the point of influencing yields. However, with these soils and environments we haven’t seen a consistent yield advantage for any tillage system.

Conclusions

The influence of tillage system on corn or soybean yield appears to be dependent on the year. A given set of environmental conditions may favor a system, but in Kansas the conditions can vary considerably each year. Numerous other factors need to be considered when comparing tillage systems, such as soil erosion, water conservation, weed control options (becoming more challenging with herbicide-resistant weeds), labor, equipment costs, and time available to conduct field work. The yield-limiting condi-
tions may vary between fields based on soil type and environmental conditions during a season and over the long term.

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. Persons using such products assume responsibility for their use in accordance with current label directions of the manufacturer.
Table 1. Cropping details for tillage study at Kansas River Valley Experiment Field

Year	2012	2013	2014	2015	2016	2017	2018	2019
Corn								
Planting date	12-Apr	30-Apr	21-Apr	14-Apr	11-Apr	24-Apr	23-Apr	22-Apr
Hybrid/variety	Pioneer P1395	Pioneer P1498 HR AQ	Pioneer P1105AM	Pioneer P1105AM	AgriGold 6538	Midland 534	Golden Harvest 11B63	Pioneer 1197
Seeding rate	30.6K	30K	32K	31.7K	31.7K	32K	32K	32.4K
Row spacing (in.)	30	30	30	30	30	30	30	30
Harvest date	31-Aug	27-Sep	11-Sep	10-Sep	19-Sep	20-Sep	31-Aug	17-Sep
Irrigation (in.)								
May	0.77	0	0	0	0	0	0	0
June	4.25	1.58	0	1.58	2.24	2.88	4.71	1.03
July	4.63	3.51	4.74	2.29	4.40	3.63	6.55	2.36
August	0.73	0.77	2.19	2.87	0.70	1.81	0.84	0
September	0	0	0	0	0	0	0	0
Soybean								
Planting date	14-May	15-May	21-May	1-Jun	31-May	26-May	7-May	June 6
Hybrid/variety	Pioneer P93Y92	Pioneer P94Y01	Asgrow 3833	Midland 3884NR2	Stine 42RE02	Pioneer P39T67	Midland 4373 RR2	Asgrow 36x6 + ILeVO
Seeding rate	155K	144K	140K	144K	140K	140K	140K	140K
Row spacing (in.)	30	30	30	30	30	30	15	15
Harvest date	5-Oct	8-Oct	9-Oct	13-Oct	17-Oct	17-Oct	17-Oct	17-Oct
Irrigation (in.)								
May	0.77	0	0	0	0	0	0	0
June	0.73	1.58	0	0.74	0.74	0	0	0
July	4.19	3.51	1.55	0.74	4.40	1.82	3.90	1.51
August	4.66	2.27	2.19	2.87	1.54	1.81	0.84	0
September	0	2.18	0	0	0	0	0	0

Table 2. Effects of tillage treatments on corn and soybean yields in 2012 at Kansas River Valley experiment fields

Tillage treatment	Corn yield	Soybean yield
No-tillage	196	59.9
Fall subsoil/spring field cultivate	202	55.5
Fall vertical tillage	198	57.9
Pr>F *	0.64	0.14

The lower the Pr>F value, the greater probability that there is a significant difference between yields.
Table 3. Effects of tillage treatments on corn yields and plant stands in 2013–2019 at Kansas River Valley experiment fields

Tillage treatment	Corn yield	Average corn yield	Average stand						
	2013	2014	2015	2016	2017	2018	2019	2013–2019	2014–2019
No-tillage	221	243	205	183 b*	226	206	218	215 b	32,344
Fall subsoil/spring field cultivate	217	259	213	202 a	233	214	231	223 a	32,156
Fall vertical tillage	196	259	207	189 b	226	210	219	215 b	31,958
Fall subsoil after sb/vertical tillage after corn	219	256	214	195 a	234	209	224	222 a	31,906
Pr>F#	0.48	0.27	0.1	0.005	0.59	0.7	0.11	0.005	0.63

*Values followed by the same letter are not significantly different at P = 0.05.
*The lower the Pr>F value, the greater probability that there is a significant difference between yields.

Table 4. Effects of tillage treatments on soybean yields in 2013–2019 at Kansas River Valley experiment fields

Tillage treatment	Soybean yield	Average soybean yield						
	2013	2014	2015	2016	2017	2018	2019	2013–2019
No-tillage	62.4	52.8	69.7	80.2	67.4	69.3 ab*	78.1	68.5 b
Fall subsoil/spring field cultivate	64.3	54.6	73.1	76.1	72.8	74.9 a	79.2	70.7 a
Fall vertical tillage	64.4	55.5	72.8	78.6	68.1	75.0 a	80.5	70.7 a
Fall subsoil after sb/vertical tillage after corn	66.3	53.4	70.9	75.7	70.1	66.6 b	80.1	69.0 ab
Pr>F#	0.52	0.59	0.23	0.11	0.098	0.03	0.87	0.044

*Values followed by the same letter are not significantly different at P = 0.05.
*The lower the Pr>F value, the greater probability that there is a significant difference between yields.