Advanced nanostructured carbon materials for electrical double layer capacitors

A. Jänes, H. Kurig, T. Thomberg and E. Lust
Institute of Physical Chemistry, University of Tartu, 51014 Tartu, Estonia
alar.janes@ut.ee

Abstract. Thermodynamical and electrochemical characteristics for the non-aqueous electrolyte | nanostructured carbide-derived carbon (CDC), activated carbon cloth (ACC) or commercial activated nanoporous carbon RP-20 (from Kuraray Chemical Co.) interface have been established by XRD, Raman spectroscopy, BET, cyclic voltammetry and electrochemical impedance spectroscopy. The gas adsorption measurement data have been used for the obtaining the specific surface area, pore size distribution, nanopore volume and other characteristics, dependent on the nanostructured carbon used (nanopores are pores in the range of 2 nm and below — i.e. micropores according to IUPAC classification).

1. Introduction
Nanostructured carbons are attractive electrode materials with the unique nanoporous structure, narrow pore size distribution and possibility to fine-tune the pore size [1-4] for electrodes of electrical double layer capacitors (EDLC), commonly called supercapacitors [5-12]. EDLCs are the very important energy storage and conversation systems, which can be used in the various pulse energy generation instruments. The charge storage in EDLC is based mainly on the electrostatic interactions i.e. physical Gibbs adsorption of ions at/inside porous electrodes, determining the very good reversibility and cyclability of EDLC systems. However for the optimal energy density — power density regime the nanoporous carbide material characteristics have to be optimised [5-11]. This paper reports the results of the systematic studies of the interface non-aqueous electrolyte | activated nanoporous carbide-derived carbon (CDC), activated carbon cloth (ACC) AUVM and commercial nanoporous carbon RP-20 additionally activated by us at different temperatures from 950 to 1150°C [13].

2. Measurement methods and experimental data
XRD analysis was carried out on powder samples to investigate the structural changes at different chlorination or activation temperatures of carbon by using CuKα radiation with a step size of 0.05° glancing angle θ and with the holding time of 1s at fixed θ. The 1mm thick powder sample was placed on a plastic holder and the diffraction spectra were recorded at 25°C. Raman spectroscopic analysis was carried out using Nd:YAG laser excitation (λ = 532 nm). The first-order Raman spectra for graphite show one peak at 1582 cm⁻¹, whereas disordered amorphous carbon generally demonstrates two peaks [14,15]: the so-called graphite (G) peak at 1582 cm⁻¹ and the so-called disorder-induced (D) peak at 1350 cm⁻¹ and it was found that the nanostructured carbons studied in this work have mainly amorphous structure.
Porosity analysis was carried out at temperature of liquid nitrogen using the Quantachrome Nova 1200 System. Specific surface area (S_a) (Table 1), pore size distribution, micropore volume (V_m), micropore area (S_m) and other parameters were calculated according to the non-local density functional theory (NLDFT) [16] and Brunauer-Emmett-Teller (BET) [17,18] approximations.

Table 1. Pore characteristics of selected nanostructured carbon materials.

Nanostructured carbon	C(α-SiC)	C(TiC)	C(Mo₂C)	C(B₄C)	C(Al₄C₃)	AUVM	RP-20
S_a	1085	1505	1490	1525	1470	1495	1358
S_m	1030	1205	0	930	1130	1284	1056
V_m	0.46	0.60	0	0.43	0.57	0.56	0.48
V_{tot}	0.49	0.75	1.50	0.99	0.74	0.80	0.79
D_{NLDFT}	~0.7	~0.8	~4.0	~1.3	~0.8	~1.1	~1.1

S_a — BET specific surface area (m2g$^{-1}$), S_m — micropore surface area (m2g$^{-1}$), V_m — micropore volume (cm3g$^{-1}$), V_{tot} — total pore volume (cm3g$^{-1}$), D_{NLDFT} — peak pore diameter calculated according to NLDFT method (nm).

According to the data in Table 1 the BET specific surface area, micropore surface area, micropore and total pore volume, NLDFT median pore diameter (Fig. 1) and the nanopore size distribution depend noticeably on the nanoporous carbon material synthesised and investigated. For C(α-SiC) there are practically only nanopores at the surface of carbon electrode but for C(Mo₂C) there are no nanopores on the surface at all. Thus, the total pore volume V_{tot} and micropore volume V_m values depend noticeably on the raw material (crystallographic structure and electron configuration of the central element in binary carbide) used for the synthesis of the nanoporous carbon material. These results obtained are in a good agreement with the data of Refs [1-7]. The EDLC electrodes were constituted from an aluminium foil current collector and the active material layer, consisting of nanoporous carbon prepared from TiC, Mo₂C, α-SiC, Al₄C₃ and B₄C (noted as C(TiC), C(Mo₂C), C(α-SiC), C(Al₄C₃) and C(B₄C), respectively) by the chlorination method [2,3,6,8-11].

Figure 1. Pore size distribution for nanostructured carbon prepared from different precursor carbides [2,3].

The mixture of nanoporous carbon, binder (polytetra-fluoroethylene PTFE, 60 % solution in H$_2$O) and of the carbon black was laminated on the Ni foil and pressed together to form a very flexible layer of the active electrode material (thickness 60-250 μm). After drying and plating under vacuum, the pure Al layer ($3±1$ μm) has been vacuum-spray evaporated onto the one side of the carbon material.
using plasma activated physical vapour deposition [2,3,6,8-11]. After that the Al-covered nanoporous carbon layer was spot-welded in the Ar atmosphere to the Al foil current collector.

The three electrode standard glass cell with a large counter electrode (apparent area ~30 cm2), prepared from the carbon cloth (AUVM) was used for the investigation of various carbon material electrochemical fundamental characteristics. The reference electrode was an aqueous saturated calomel electrode (SCE) connected through the electrolytic salt bridge with the measurement system. Pure Ar (99.9999%) was used for saturating of the solutions.

The cyclic voltammetry ($j,E-$) curves for C(TiC), C(Al$_4$C$_3$), C(Mo$_2$C) and C(B$_4$C) electrodes in 1 M (C$_2$H$_5$)$_3$CH$_3$NBF$_4$ solution (Fig. 2), obtained at small scan rates of potential $v = dE/dt \leq 5$ mV s$^{-1}$, have nearly mirror image symmetry of the current responses about the zero current line (j – current density, obtained using the flat cross section (geometrical) surface area). The current density values at $E > 0.5$V (SCE) increase in the order of materials C(B$_4$C)< C(Mo$_2$C)< C(Al$_4$C$_3$)< C(TiC)< C(α-SiC). The current densities obtained for C(α-SiC) are very small at $E < -0.3$V (SCE) and there are very well expressed distortion effects caused by the very small micropore diameter D_{NLDFT} values for this electrode material (Table 1). Thus, it can be concluded that the micropores with medium diameter $D_{NLDFT} \leq 0.7$ nm are to small for the effective adsorption of big (C$_2$H$_5$)$_3$CH$_3$N$^+$ cations into the nanopores (Fig. 2) at negatively charged electrode surface. The cyclic voltammograms show that the so-called ideal capacitive behaviour for nanostructured carbons has been established at potential scan rates $v \leq 10$ mV s$^{-1}$ and $\Delta E \leq 3.2$ V. There is a very well detectable minimum in $j,E-$curves, corresponding to the total zero charge potential for the non-aqueous electrolyte | nanostructured carbon interface, depending on the carbon and electrolyte used. At higher scan rates the so-called distortion effects [6,10,11,19-23] were observed in the region of the potential switch-over.

![Figure 2](image_url). Current density vs. potential curves for nanostructured carbon materials: 1-C(α-SiC), 2-C(TiC), 3-C(Al$_4$C$_3$), 4-C(Mo$_2$C) and 5-C(B$_4$C)) in 1M (C$_2$H$_5$)$_3$CH$_3$NBF$_4$ + AN solution at potential scan rate 50 /mV s$^{-1}$.

The electrochemical characteristics of the electrical double layer capacitor (EDLC) single cell (two-electrode system) based on the nanoporous carbon electrode in 1M (C$_2$H$_5$)$_3$CH$_3$NBF$_4$ solution in various non-aqueous electrolytes [8,9] using the cyclic voltammetry (CV) and the electrochemical impedance spectroscopy (EIS) methods.

The values of total capacitance of the two-electrode cell, C, can be calculated from the cyclic voltammetry data ($j,E-$curves) according to Eq. (1)
if we assume that total capacitance of cell is constant and if the series resistance $R_s \rightarrow 0$ or if the current $I \rightarrow 0$. In a symmetrical two-electrode system, specific gravimetric capacitance C_g (farads per gram) for one activated carbon electrode, to a first approximation, can be obtained from the total capacitance of the cell by Eq. (2):

$$C_g = \frac{2C}{m}$$

where m is the weight in grams of activated carbon. It should be noted that Eq.(2) is correct only if the capacitance of positively and negatively charged electrodes is the same. Electrochemical characteristics of some selected nanoporous carbon materials in various non-aqueous electrolytes are presented in Table 2.

Table 2. Electrochemical characteristics for selected nanostructured carbon materials in various 1M non-aqueous electrolyte solutions [2,3,6,8,9,13].

Nanostructured carbon	d_{cl} (μm)	Solvent	Salt	C_s (F cm$^{-2}$)	C_s (F g$^{-1}$)
C(TiC)	60	AN	(C$_2$H$_5$)$_4$NBF$_4$	0.34	99.1
C(TiC)	100	AN	(C$_2$H$_5$)$_4$NBF$_4$	0.60	85.5
C(TiC)	150	AN	(C$_2$H$_5$)$_4$NBF$_4$	0.94	79.7
C(TiC)	200	AN	(C$_2$H$_5$)$_4$NBF$_4$	1.06	75.5
C(TiC)	250	AN	(C$_2$H$_5$)$_4$NBF$_4$	1.30	74.1
C(α-SiC)	100	AN	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	0.14	16.3
C(Mo$_2$C)	100	AN	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	0.63	120.0
C(Al$_4$C$_3$)	100	AN	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	0.60	82.3
C(B$_2$C)	100	AN	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	0.47	70.9
C(TiC)	100	AN	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	0.69	98.3
C(TiC)	100	AC	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	0.61	86.9
C(TiC)	100	GBL	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	0.65	92.6
C(TiC)	100	PC	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	0.61	86.9
ACC AUVM	250	AN	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	1.18	51.3
ACC AUVM	250	EC+DMC+EA (1:1:1)	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	1.26	54.8
ACC AUVM	250	PC+DMC+EA (1:1:1)	(C$_2$H$_3$)$_3$CH$_3$NBF$_4$	1.21	52.6

d_{cl} — thickness of the nanoporous carbon layer, C_s — series differential and specific capacitances at E= -1.4 V vs SCE and at f= 5 mHz.

It should be noted that the specific capacitance of the monocrystalline carbon plane depends highly on the crystallographic structure $(h:k:l:m)$ of the surface exposed at the carbon electrode surface [8-11,21,24]. However the specific surface double layer capacitance of the high surface area activated carbons for double layer capacitors is dominated by the space-charge surface layer capacitance [2,3,6,8,9], and the very thin pore walls may result in capacitance saturation [25]. However, this effect was not seen in our experiments and thus the carbon layer capacitance seems to remain constant during activation of RP-20, but the increasing pore volume leads to a decrease in the mean thickness of pore walls [26]. Assuming a slit-shaped pores model [27] for nanostructured carbon studied, we can
estimate the mean pore wall thickness (δ_w) by using the relation $\delta_w = 2/(\rho \beta_{BET})$, where $\rho = 2.2 \text{ g cm}^{-3}$ is the density of the carbon walls equaling to the density of pure graphite (Table 3). According to these data, the value of δ_w are maximal for C(α-SiC) carbon. Thus, the mean pore wall thickness δ_w depends on the median pore diameter calculated according to NLDFT method (Table 1).

Table 3. Average pore wall thickness δ_w for different nanostructured carbon materials studied.

Nanostructured carbon	δ_w (nm)
C(TiC)	0.60
C(α-SiC)	0.84
C(Mo$_2$C)	0.61
C(Al$_4$C$_3$)	0.62
C(B$_4$C)	0.60
ACC AUVM	0.61
RP-20	0.67

For the detailed analysis of adsorption processes (charge accumulation, mass transfer) of ions at nanoporous carbon electrodes the various model approximations have been tested including classical Frumkin—Melik-Gaikazyan [28], Randles [29], Paasch et al. [30] and Meyer et al. [31] models.

Results of non-linear regression analysis of the Nyqu ist (complex impedance) plots show that, to a first very rough approximation, these plots can be formally simulated using the modified Frumkin—Melik-Gaikazyan—Randles (or Ershler-like) equivalent circuit with the chi-square function $\chi^2 \geq 1.8 \times 10^{-3}$ and weighted sum of squares $\Delta^2 \geq 0.25$ for the 1.0 M (C$_2$H$_5$)$_4$NBF$_4$ solution (Fig. 3; scheme I), where the generalised finite length Warburg element (GFW) with the reflective boundary condition (finite length transmission line terminated with an open circuit) is expressed as

$$Z_{GFW} = \frac{R_D \coth[(iT\omega)^{\alpha_W}]}{(iT\omega)^{\alpha_W}}$$

(3)

where R_D is the so-called limiting diffusion resistance, the frequency parameter T is expressed as $T = L^2 / D$, where L is the effective diffusion layer thickness and D is the effective diffusion coefficient of a particle, α_W is a fractional exponent varying from 0 to 1. The values of α_W higher than 0.5 indicate to the deviation of nanoporous carbon electrode | AN + 1 M (C$_2$H$_5$)$_4$NBF$_4$ system from the classical semi-infinite diffusion model [28-30], increasing with dilution of the electrolyte and with the increase of the active nanoporous carbon layer thickness and negative polarization of nanoporous carbon electrode [6]. The parallel charge transfer (or adsorption) resistance R_{ad}, as well as diffusion resistance R_D increase with increasing the negative electrode potential, and with decreasing the electrolyte concentration and thickness of the nanoporous carbon electrode active layer [6]. The frequency parameter T has minimal values in the region of $E_{\sigma,0}$ and T increases with d_{el}.

![Diagram](image-url)
Figure 3. Equivalent circuits used for fitting the experimental Nyquist plots: I – combined Frumkin-Melik-Gaikazyan and Randles (so-called Ho [29] circuit, where R_1 is the high frequency series resistance ($R_1 = Z'(\omega \to \infty)$), CPE – constant phase element, R_{ad} – the charge transfer resistance, Z_W is the Warburg-like diffusion impedance and C_{ad} is adsorption capacitance; II – Paasch et al. circuit, where dY is the complex admittance of the hindered charge transfer reaction (involving the hindrance factor $y(\omega)$ of the charge transfer reaction with the charge transfer conductance g_{ct}), dC_{dl} is the double layer capacitance, dR_1 and dR_2 are the ohmic resistances of the porous electrode material and of the electrolyte in the pores, in the volume element A_dx [30], respectively.

Figure 4. Nyquist plots ($-Z', Z'$) for nanostructured carbon electrode material C(TiC) (thickness of nanoporous carbon layer $d_{el} = 100 \mu m$) | acetonitrile + 1 M (1) and 0.1 M (2) (C$_2$H$_5$)$_4$NBF$_4$ interfaces at -1.4V vs SCE, (symbols – experimental data; solid lines – simulation according to Paasch et al. model [30]. However, a better agreement between simulations and experimental data for nanoporous carbon electrode | 1 M (C$_2$H$_5$)$_4$NBF$_4$ + AN interface with the chi-squared function χ^2 ($\chi^2 \leq 6 \times 10^{-4}$) has been established if the Paasch et al. model I [30] (circuit II in Fig. 3 and Fig. 4) has been used. According to results of simulations, the values of characteristic frequencies $\omega_2; \omega_3 \ll \omega_0$, and thereby the relative magnitudes of ω_1, ω_2 and ω_0 determine the low-frequency behaviour of the Nyquist plots ($\omega_0, \omega_1, \omega_2$ and ω_0 are characteristics frequencies, discussed in more detail in Refs. [2,3,6]). For that reason at very low frequency $f \leq 5 \times 10^{-2}$ Hz, there is a transition to a pure capacitive behaviour, since both the field diffusion and the species diffusion are finite. In the region of frequencies $0.2 < f < 10$ Hz, the absolute value of the slope equal to $\pi/4$ at $E = E_{red}$ for Nyquist plot was observed around ω_2, where the diffusion of the species in the solution phase dominates. At higher frequency ($f \geq 40$ Hz), the shape of the the impedance spectra is determined mainly by the ratio of the ω_0 and ω_1 values, i.e. by high frequency processes without regard to the diffusion of ions inside the pores.

The dependence of the function $X_B = d_{el}[(\rho_1\rho_2)/(\rho_1+\rho_2)]$ on E as well as on d_{el} indicates that the value of the electrolyte resistance per unit length ρ_2 inside a porous material depends very noticeably on the electrolyte concentration, solvent viscosity as well as on the electrode potential. The obtained value of resistivity of the electrode material per unit length ρ_1 is independent of the electrolyte concentration studied [6]. It should be noted that the simplified Meyer et al. model [31] where the intercalation of ions into the nanoporous carbon material has not been taken into account can be used for the fitting of the impedance data for nanoporous carbon | non-aqueous electrolyte systems with very good fitting parameters.
3. Conclusions
The micro-, meso- and macropore characteristics have been obtained using gas adsorption, X-ray diffraction and Raman spectroscopy methods.

The nanoporous carbide-derived carbon (CDC), activated carbon cloth AUVM and commercial nanoporous carbon RP-20 additionally activated at $950^\circ C < T < 1150^\circ C$ were investigated in 1M (C$_2$H$_5$)$_3$CH$_3$NBF$_4$ acetonitrile, propylene carbonate, γ-butyrolactone and mixed solvent systems solutions, using two and three electrode test cells and different electrochemical (cyclic voltammetry, impedance) methods. The results of the cyclic voltammetry and impedance studies indicate that the measured capacitance depend noticeably on the nanostructured carbon used, on the thickness of active carbon layer and electrolyte composition as well as on the electrode potential applied. Some systematic trends of the influence of pore size distribution and pore volume on the electrochemical parameters have been established and discussed.

Acknowledgements
This work was supported in part by the Estonian Science Foundation under Project Nos. 6455, 6696 and the basis financing project 06903 of University of Tartu.

References
[1] Nikitin A and Gogotsi Y 2003 Nanostructured Carbide-Derived Carbon Encyclopedia of Nanoscience and Nanotechnology (vol 7) ed H S Nalwa (Valencia, CA: American Scientific Publishers) pp 553-574
[2] Jänes A and Lust E 2006 J. Electrochem. Soc. 153 A113
[3] Jänes A, Permann L, Arulepp M and E. Lust 2004 Electrochem. Commun. 6 313
[4] Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer J E, Yi B, Foley H C and Barsoum M W 2003 Nat. Mater. 2 59
[5] Burke A 2000 J. Power Sources 91 37
[6] Jänes A and Lust E 2005 Nanoporous Carbide-Derived Carbon as Electrode Material for Electrical Double Layer Capacitors Nanostructured Materials for Energy Storage and Conversion (The Electrochemical Society Proceedings Series vol 11) ed K Zabihb, C Julien, P McGinn, W West and J P Dodelet (Pennington, NJ: The Electrochemical Society) pp. 195-202
[7] Chmiola J, Yushin G, Dash R K, Hoffman E N, Fischer J E, Barsoum M W and Gogotsi Y 2005 Electrochem. Solid State Lett. 8 A357
[8] Jänes A and Lust E 2006 J. Electroanal. Chem. 588 285
[9] Jänes A and Lust E 2005 Electrochem. Commun. 7 510
[10] Lust E, Jänes A, Pärn T and Nigu P 2004 J. Solid State Electrochem. 8 224
[11] Arulepp M, Permann L, Leis J, Perkson A, Rumma K, Jänes A and Lust E 2004 J. Power Sources 133 320
[12] Taberna P L, Simon P and Fauvargue J F 2003 J. Electrochem. Soc. 150 A292
[13] Jänes A, Kurig H and Lust E 2007 Carbon doi:10.1016/j.carbon.2007.01.024
[14] Nemamich R J and Solin S A 1979 Phys. Rev. B 20 392
[15] Vidano R P, Fishbach D B, Willis L J and Loehr T M 1981 Solid State Commun. 39 341
[16] Seaton N A, Walton J P and Quirke N 1989 Carbon 27 853
[17] Brunauer S, Emmett P H and Teller E 1938 J. Am. Ceram. Soc. 60 309
[18] Gregg S J and Sing K S W 1982 Adsorption. Surface Area and Porosity (London: Academic Press)
[19] Smart M C, Ratnakumar B V and Surampudi S 2002 J. Electrochem. Soc. 149 A361
[20] Ding M S 2004 J. Electrochem. Soc. 151 A731
[21] Conway B E 1999 Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York: Kluwer Academic/Plenum Publishers)
[22] Pell W G, Conway B E and Marinic N 2000 J. Electroanal. Chem. 491 9
[23] Pell W G and Conway B E 2001 J. Electroanal. Chem. 500 121
[24] Eikerling M, Kornyshev A A and Lust E 2005 J. Electrochem. Soc. 152 E24
[25] Hahn M, Baertschi M, Barbieri O, Sauter J C, Kötz R and Gallay R 2004 Electrochem. Solid-State Lett. 7 A33
[26] Barbieri O, Hahn M, Herzog A and Kötz R 2005 Carbon 43 1303
[27] Ravikovitch P I and Neimark A V 2001 Colloid Surf. A 187-188 11
[28] Frumkin A N and Melik-Gaikazyan V I 1951 Dokl. akad. nauk. SSSR 77 855
[29] Ho C, Raistrick D and Huggins R 1980 J. Electrochem. Soc. 127 343
[30] Paasch G, Micka K and Gersdorf P 1993 Electrochim. Acta 38 2653
[31] Meyer J P, Doyle M, Darling R M and Newman J 2000 J. Electrochem. Soc 147 2930