From Empirical to Pathogenesis-Based Treatments for Psoriasis

Peter C.M. van de Kerkhof

Since the foundation of the European Society for Dermatological Research, pathogenesis of psoriasis has been studied by many research groups, focusing on various compartments of the skin. Understanding of the pathogenesis of psoriasis has evolved into a branching model of innate and acquired immunity. Insights in the genetics of psoriasis proved to be compatible with this model.

Inspired by these insights, pathogenesis-based treatments have emerged with unprecedented efficacy and sustainability. In particular, the cytokine network harbors major treatment targets for biologics with TNF-α, the IL-17 family, IL-23 and, in the case of generalized pustular psoriasis, IL-36. Furthermore, the Jak TYK2, PDE-4, and AHR are targets for new small molecules in the treatment of psoriasis. Psoriasis research is a showcase par excellence of translational medicine, resulting in pathogenesis-based treatments.

Editor’s Note

This Review is part of a series of articles invited from lectures presented at the 2021 Meeting of the European Society for Dermatological Research, in celebration of its 50th Anniversary.

INTRODUCTION TO THE HISTORY OF DRUG DISCOVERY IN PSORIASIS

Psoriasis is an inflammatory disease involving the skin, joints, cardiovascular system, and CNS. Psoriasis of the skin is characterized by erythema, induration and scaling, reflecting inflammation, epidermal hyperproliferation, and abnormal epidermal differentiation. Genetic factors predispose for psoriasis, and triggering factors may aggravate the disease.

The European Society of Dermatological Research (ESDR) celebrated its 50th anniversary during the annual meeting on 23–25 September 2021. In this review, we will overview 50 years of research on the pathogenesis of psoriasis. During the first 25 years of the ESDR, research groups focused on various fields of interest: epidermal growth and differentiation, inflammation, and immune mechanisms. The evidence in favor of immunopathogenesis and a central role for the T cells have been accumulating during these years. Subsequently, during the next 25 years, immunopathogenesis has been the unifying principle in the research and treatment development of psoriasis.

The innovations in psoriasis are a showcase for translational medicine: the transition from empirical innovations to drug discovery on the basis of insights into the pathogenesis of the disease.

PSORIASIS, A T CELL DRIVEN DISEASE

Several observations have convinced researchers that T cells are crucial in the pathogenesis of psoriasis. The first observation is that T cells accumulate in early psoriatic lesions (Braun-Falco and Christophers, 1974). Furthermore, clusters of activated HLA-DR⁺ immunocompetent cells have been observed in the psoriatic lesion, suggesting an ongoing immune response (Baker et al., 1984; de Boer et al., 1994). HLA-DR molecules are present on keratinocytes (KCs), suggesting that KCs may activate T cells (Gottlieb et al., 1986).

Further support for the hypothesis that psoriasis is a T-cell driven disease is the increased numbers and activation of non-Langerhans antigen-presenting cells (APCs) in the psoriatic lesion (Baadsgaard et al., 1989) and the expression of ICAM-1 and interferon-gamma inducible protein-10 on KCs (Gottlieb, 1990). Finally, injection of CD4 cells into pre-pсорiatic skin engrafted onto severe combined immunodeficiency (SCID) mice induces psoriasis (Nickoloff and Wrona-Smith, 1999).

The potent efficacy of ciclosporin in psoriasis (Ellis et al., 1986; Griffiths et al., 1986) has lent important support for the actual relevance of targeting T cells as pathogenesis-based treatment of psoriasis. Ciclosporin binds to cyclophilin and inhibits calcineurin, resulting in inhibition of NFAT transcription factor for the IL2 gene in T cells. The efficacy of blockade of activated T cells by IL-2 conjugated to diphtheria toxin fragments in psoriasis shows that specific inhibition of this pathway improves psoriasis (Gottlieb et al., 1995), which is compelling evidence for the relevance of this pathway to the pathogenesis of psoriasis. Furthermore, the antipsoriatic efficacy of anti-CD4 and CTLA-4—Ig (Abrams et al., 2000; Nicolas et al., 1991) provide robust evidence for T-cell targeting as a pathogenesis-based treatment principle.
EPIDERMAL CHALLENGES STIMULATE DENDRITIC CELLS, RESULTING IN ACTIVATION OF T HELPER 1 AND 17 CELLS

An injury or friction of the skin may trigger a psoriatic lesion. Virus or autologous DNA binds to the cathelicidin-derived antimicrobial peptide LL-37 (Lande et al., 2007). LL-37 was shown to enhance DNA-induced IFN-α responses in a toll-like receptor (TLR) 7- and TLR8-dependent manner in plasmacytoid DCs (pDCs) (Ganguly et al., 2009; Lande et al., 2007). In clinical practice, IFN-α is a well-known trigger for psoriasis. The TLR7 agonist imiquimod proved to trigger psoriasis and represents an animal model for psoriasis (van der Fits et al., 2009). IFN-α stimulates myeloid DCs (mDCs), which release IL-12 and IL-23 upon stimulation (Lowes et al., 2014, 2007). IL-12, in the context of other cytokines, stimulates activation and proliferation of T helper (Th) 1 cells. This pathway will be explored later under activation and trafficking of Th1 cells.

Increased expression of IL-23 has been shown in the psoriatic lesion (Lee et al., 2004). IL-23 induces proliferation and activation of Th17 cells in a concerted action with other cytokines, including TNF-α. TNF-α activates mDCs, which synthesize IL-23. One can conclude from the suppression of IL-23 signaling by the TNF-α inhibitor etanercept that TNF-α signaling is relevant to the IL-23/IL-17 cascade (Zaba et al., 2009, 2007). IL-12, in the context of other cytokines, stimulates activation and proliferation of T helper (Th) 1 cells. This pathway will be explored later under activation and trafficking of Th1 cells.

Increased expression of IL-23 has been shown in the psoriatic lesion (Lee et al., 2004). IL-23 induces proliferation and activation of Th17 cells in a concerted action with other cytokines, including TNF-α. TNF-α activates mDCs, which synthesize IL-23. One can conclude from the suppression of IL-23 signaling by the TNF-α inhibitor etanercept that TNF-α signaling is relevant to the IL-23/IL-17 cascade (Zaba et al., 2009, 2007). Ustekinumab, targeted against the p40 chain, which IL-12 and IL-23 have in common, is a biologic with a well-appreciated efficacy in psoriasis. Biologics that selectively target the p19 chain of IL-23 have an even higher clinical efficacy.

After stimulation by IL-37–DNA complexes, DCs from psoriatic plaques are potent stimulators of T-cell proliferation. The important role of DCs in the pathogenesis of psoriasis and the efficacy of anti–IL-23 treatments converge to the conclusion that IL-23 is a master cytokine in psoriasis and a relevant therapeutic target.

IL-17—and IL-22—Producing Cells

Th17 cells differentiate from naive CD4 cells in a milieu of IL-6 and TGFβ with IL-23 as a critical stimulator (Morishima et al., 2009). Th17 cells release IL-17A, IL-17F, and IL-22 on stimulation (Liang et al., 2006). In addition to Th17 cells, IL-17—producing CD8 cells (Tc17) have been shown in the psoriatic epidermis (Ortega et al., 2005). After successful treatment, IL-17—producing αβ T-cell clones are still present in the apparently symptomless psoriatic skin, which suggests that these cells belong to the most persistent T cells of the psoriatic lesion (Matos et al., 2017). Th22 cells also differentiate from naive CD4 cells, and these cells are stimulated by IL-23, TNF-α, and IL-6 to release IL-22 (Fujita, 2013). Th22 cells release IL-22 on activation.

In addition to the Th/Tc17 lineage, several other cell types may produce IL-17:

1. Regulatory T cells (Tregs) may differentiate to IL-17—producing cells. In the psoriatic lesion, IL-17+ CD4+CD25hiFoxP3+ Tregs have been identified (Bovenschen et al., 2011).

2. Innate lymphocytes, NK cells, and NKT cells have been shown to produce IL-17 (Coquet et al., 2008; Polese et al., 2020; Villanova et al., 2014).

3. Neutrophils have been shown to contain IL-17, although transcription of IL17 by these cells has not been shown convincingly (Keijzers et al., 2014; Lin et al., 2011).

IL-17 is a crucial cytokine in psoriasis (Krueger et al., 2012; Lowes et al., 2008, 2007). IL-17 can be produced by several immunocytes in psoriasis. Both IL-17A and IL-17-F are considered to be relevant in psoriasis. The robust efficacy of anti–IL-17 treatments confirms the relevance of this pathway to psoriasis and psoriatic treatment. IL-22 is produced by Th17 and Th22 cells. In contrast to anti–IL-17 treatments, anti–IL-22 treatment was not successful in psoriasis but was effective in atopic dermatitis (Guttman-Yassky et al., 2018).

HOW KCs ARE AFFECTED BY T CELLS AND CYTOKINES

Activated T cells affect KCs in various ways. Lesion-derived T-cell clones can induce growth of KCs in culture; IFN-γ, although a growth inhibitor on its own, acts cooperatively with other T-cell GFs to cause KC growth induction (Bata-Csorgo et al., 1995). It is intriguing that IFN-γ is not a treatment target in psoriasis.

T-cell—derived cytokines, including IL-17 and IL-22, activate KCs to produce host defense proteins, cytokines, and chemokines. IL-17 and IFN-γ synergize in the enhancement of proinflammatory cytokine production by human KCs (Teunissen et al., 1998), in particular CXC, CXCL, and CCL20 chemokines, which enhances tracking of neutrophils, T cells, and DCs (Harper et al., 2009). IL-22 upregulates the expression of host defense proteins in KCs, downregulates the expression of at least seven genes associated with differentiation of KCs, and induces epidermal hyperproliferation (Boniface et al., 2005; Wolk et al., 2004).

IL-6 is expressed in high levels in the psoriatic lesion. It is a pleiotropic proinflammatory cytokine that is produced by a variety of cells such as fibroblasts, macrophages, endothelial cells, and KCs in response to a variety of stimuli, which include other cytokines such as IL-1, TNF-α, and PDGF (Grossman et al., 1989). IL-6 stimulates the proliferation of human KCs. Anti–IL-6 therapies, which are effective for rheumatoid arthritis, are either ineffective for psoriasis or can induce new-onset psoriasis-like disease (Fritz et al., 2017).

KCs in allergic contact dermatitis and in psoriasis have been shown to express both TNF-α and IL-17 receptors (Albanesi et al., 1999; Boniface et al., 2007). The synergism of TNF-α and IL-17 signaling has been studied by Chiricuzco et al. (2011). This synergism revealed a much larger set of significant disease-signature genes in the psoriatic transcriptome than that in TNF-α and IL-17 in isolation. In the psoriatic lesion, IL-17A, IL-17F, IL-22, TNF-α, IFN-γ, and IL-6 are integrated into a cytokine network. These cytokines induce epidermal proliferation, premature keratinization, expression of host defense proteins, and chemokines.

TRAFFICKING AND ACTIVATION OF TH1 CELLS

As explained earlier, activation and proliferation of Th1 cells result from IL-12—producing mDCs, which have been stimulated by an epidermal challenge. Injection of CD4 cells into
Prepsoriatic skin engrafted onto SCID mice induces psoriasis (Nickoloff and Wrone-Smith, 1999). Injection of these cells seems to be essential in the elicitation of early psoriasis. These accumulations of CD4 cells in the dermis are followed by CD8 cell activation and recruitment, accumulating in the epidermis. The Th1 cells are likely to participate in an earlier stage of psoriasis pathogenesis by inducing CCL20 and IL-23 production in mDCs, thus playing a role upstream of the proinflammatory cascade controlled by the IL-23/IL-17 axis (Diani et al., 2016).

The uncommitted T cell may differentiate into a Th1 cell in a milieu of IL-12 and IL-18 or into a Th2 cell in a milieu of IL-4. Th1 cells release Th1 cytokines such as TNF-α, IFN-γ, and IL-2. Th2 cells release Th2 cytokines such as IL-4, IL-5, IL-10, and IL-13. Psoriasis is a disease with Th1 cytokine dominance (Austin et al., 1999; Schlaak et al., 1994). In addition to the Th1 cell dominance, cytotoxic T-cell dominance has been observed as well by Austin et al. (1999). In contrast, atopic dermatitis is a disease with Th2 cytokine dominance. Studies on T-cell populations in biopsies taken from psoriatic lesions and atopic dermatitis lesions in the same patient revealed distinct cell infiltrates compatible with the Th1/Th2 paradigm (Eyerich et al., 2011). Th1 cytokines dominance implies a strong cell-mediated immunity, whereas Th2 cell dominance is associated with attenuated cell-mediated immunity. This explains why bacterial infections of the skin are seldom seen in patients with psoriasis and are frequent in patients with atopic dermatitis. Although psoriasis and atopic dermatitis were supposed to be mutually exclusive (Christophers and Henseler, 1987), atopic dermatitis and psoriasis may present in the same individual, both simultaneously and consecutively, and coexistence of disease may occur at a level equal to or lower than expected (Cunliffe et al., 2021).

The relevance of Th1 cells to the pathogenesis of psoriasis has been confirmed by the efficacy of anti–IL-2 blockade of activated T cells by IL-2 conjugated to diphtheria toxin fragments in the treatment of psoriasis (Gottlieb et al., 1995). However, later studies showed that IL-2 can be produced by CD8+ cells as well.

Anti–TNF-α molecules have revolutionized the treatment of psoriasis between 2000 and 2010, resulting in a long-term improvement of psoriasis in at least half of the patients. As a result, the number of hospital beds for psoriasis was substantially reduced in Europe. Although originally anti–TNF-α was considered to be a treatment targeted at Th1 cells, TNF-α signaling is involved in various components of the pathogenesis of psoriasis, and anti–TNF-α is by no means a treatment targeted specifically against Th1 cells (Gottlieb et al., 2005). Cytokine, GF, and chemokine production by lymphocytes, neutrophils, DCs, and KCs are all affected by TNF-α. TNF-α activates mDCs that synthesize IL-23 and other regulators of T-cell development (Zaba et al., 2009, 2007). The TNF-α inhibitor etanercept has been shown to suppress the IL-23/IL-17 axis (Zaba et al., 2009, 2007).

On the basis of the Th1/Th2 paradigm, IL-10 treatment has been investigated and a significant but modest clinical improvement has been shown in patients with psoriasis (Asadullah et al., 2000). It remains intriguing that IFN-γ, a Th1 cytokine, is not a target for antipsoriatic treatments.

Th1 cells and not Th2 cells contribute to the pathogenesis of psoriasis. Immune deviation from Th1 to Th2 dominance proved to be a therapeutic principle for psoriasis.

Activated T cells invading the epidermis of patients with psoriasis express heterodimeric integrin α1β1, the receptor for collagen I, which is a component of the basement membrane. Blocking α1β1, using a neutralizing mAb, prevented both the accumulation of epidermal T cells and the development of psoriatic lesions in a xenotransplantation mouse model (Conrad et al., 2007). These studies strongly suggest that interaction between T cells and KCs is required for the development of the disease. New strategies in psoriasis treatment focusing on T-cell–extracellular matrix interactions seem to be promising. T cells residing in the epidermis have a highly relevant role in the pathogenesis of psoriasis.

In particular, in the chronic psoriatic lesion and during the resolution of the psoriatic lesion, intraepidermal entry and activation of CD8 cells have been observed (Baker et al., 1984). When peripheral blood–derived mixtures of CD4/CD8 cells are injected into symptomless psoriatic skin engrafted onto SCID mice, psoriatic lesional skin is characterized by preferential migration of CD8 cells into the hyperplastic epidermis (Wrone-Smith and Nickoloff, 1996). In the epidermis of the psoriatic plaque, CD8 cells prevail, whereas CD4 cells are the predominant cells in the dermis. Psoriatic epidermis exhibits a pronounced CD8 cell epidermotropism with accompanying epidermal hyperproliferation and abnormal keratinization, and the changes are only minimally expressed in atopic dermatitis and lichen planus (Bovenschen et al., 2005).

Epidermal T cells are highly activated in psoriasis, and a high proportion of CD8 cells belong to the tissue-resident memory T (TRM) cells. CD8+ TRM cells have been ascribed a role in immunity after resolved viral skin infections, and these cells may express TRM markers, including CD69, CD103, and CD49a. CD8+CD49a+ TRM cells produce IFN-γ, and CD8+CD49a− TRM cells produce IL-17. Selective retention of CD8+ TRM cells in resolved psoriatic lesions explains why psoriatic lesions often recur at the same sites. TRM cells are a potential biomarker for residual disease activity versus deep remission (Cheuk et al., 2014; Benezeder and Wolf, 2019).

Intraepidermal accumulation of CD8 cells is mandatory for the development of the psoriatic lesion. In particular, the CD8+ TRM cells persist after clinical resolution of the lesion and may be a biomarker to differentiate between partial versus deep remission.

Autoantigen Presentation and Costimulatory Pathways

Not an epidermal challenge but the presentation of autoantigens may initiate and maintain the psoriatic lesions. In antigen presentation, the primary interaction is between the major histocompatibility complex (MHC) of DCs and TCRs.
DCs and T cells interact in an antigen-specific manner. In addition, other cells of the epidermis, including KC and melanocyte may interact with CD8 cells through MHC class I–TCR binding. The oligoclonal T-cell expansion in psoriasis, analyzing TCR usage on the infiltrated T cells, provides clear evidence in favor of an antigen-specific T-cell response in the psoriatic lesion (Chang et al., 1994; Menssen et al., 1995).

The following candidate epidermal autoantigens have been proposed:

1. KC proteins with similarity to streptococcal antigens (Besgen et al., 2010; Valdimarsson et al., 2009);
2. lipid antigens generated by PA24D: PA24D generated lipid antigen activates CD1a Langerhans cells, and these bind to CD1a-reactive T cells, which generate IL-17 and IL-22 (Cheung et al., 2016);
3. melanocyte autoantigen ADAMTSL5 (Prinz, 2017): through MHC class I, melanocytes bind to the TCR of CD8 cells, and On activation, these T cells release IL-17; and
4. host defense protein LL-37 (Fuentes-Duculan et al., 2017; Lande et al., 2014): LL-37–specific T cells belong to both CD4 and CD8 cells, resulting in Th1 and Th17 secretion ability.

The interaction between TCR and MHC may be a future target for drug development. CD4 and CD8 molecules bind to the MHC molecule, stabilizing the TCR–MHC interaction. It has been shown that anti-CD4 treatments have therapeutic efficacy in psoriasis (Nicolas et al., 1991). Because the majority of T cells in the epidermis are CD8 cells, therapeutic approaches to reduce CD8 cells seem promising.

Furthermore, so-called costimulatory pathways are critically required for the process of T-cell activation, comprising antigen-dependent and antigen-independent T-cell activation. Costimulatory pathways have been identified to be relevant to psoriasis because selective inhibitors proved to improve psoriasis clinically:

1. Alefacept inhibits the activation of memory effector T cells (CD45RO T cells) by blocking the costimulatory interaction between LFA-3 and CD2 (Krueger, 2002).

2. Efalizumab is an IgG1 antibody against the CD11a subunit of LFA-1 and blocks LFA-1/ICAM-1 interaction (Leonardi, 2004). Efalizumab reversibly blocks LFA-1/ICAM-1 interaction, resulting in reduced T-cell activation and impaired T-cell trafficking. Efalizumab was withdrawn from the market because of reported cases of progressive multifocal leukoencephalopathy in patients on efalizumab treatment.

Autoantigens may be initiators of psoriasis. The interaction between APCs and T cells represent treatment targets.

PSORIASIS, A DISEASE OF BRANCHING INNATE AND ACQUIRED IMMUNITY

The various components of the immunopathogenesis provide an integrated system of innate and acquired immunity. In Figure 1, the segments of research on the pathogenesis of psoriasis have been integrated. After an epidermal challenge, stimulation of DCs results in IL-12 and IL-23 release, which activate Th/Tc1 and Th/Tc17 cells. Autoantigens may be presented to T cells, also resulting in IL-17 release. IL-17, in concerted action with other cytokines, including TNF-α, IFN-γ, IL-22, IL-2, and IL-6, induces epidermal proliferation and parakeratosis and releases host defense proteins and chemokines, which induce accumulation of neutrophils, T cells, macrophages, and DCs. Persistence and disease memory of psoriasis is mediated by CD8+ T_Rm cells.

In individual patients, some segments of the pathogenesis may be more dominant than others, which may explain the heterogeneity of psoriasis when comparing individual patients.

PSORIASIS SUSCEPTIBILITY GENES ARE ASSOCIATED WITH IMMUNE MECHANISMS IN PSORIASIS

Psoriasis is a polygenic disease. More than 80 psoriasis risk loci have been reported (Zhu et al., 2021). Several of these genes are associated with the biological mechanisms as explained earlier. Some susceptibility genes are associated with antigen presentation, IL-23/IL-17 axis, type 1 IFN signaling, NF-κB signaling, and skin barrier (Dand et al., 2020). Outcomes of studies on the genetics of psoriasis are entirely compatible with a key role of the aforementioned signaling pathways. At present, research on the genetics of psoriasis has identified far more genes, which will be reported in future publications.

PATHOGENESIS-BASED BIOLOGICS AND SMALL MOLECULES

The biologics, which are available for the treatment of psoriasis, have been listed in Box 1.

Long-term effective and safe control of psoriasis can be achieved with the available biologics. Anti-TNF treatments are realizing a 75% improvement of PASI in the majority of patients and antibodies against the IL-17 family, and anti–IL-23 biologics are permitting a 100% improvement of disease severity in about half of the patients, illustrating the relevance of the IL-23/IL-17 signaling in psoriasis. The efficacy of biologics has been compared and contrasted in network meta-analyses (Armstrong et al., 2020).

In addition to the revolutionary development of new biologics in psoriasis, several small molecules are in various stages of development (Box 2):

1. The gene for the Jak TYK2 proved to be a susceptibility gene for psoriasis (Dand et al., 2017). This Jak is associated with IFN-α, IL-12, and IL-23 signaling. Deucravacitinib, a TYK2 inhibitor, proved to be effective in psoriasis; PASI 90 was reached by 44% of the patients (Papp et al., 2018).
2. PDE-4 inhibits the breakdown of the second messenger cAMP in immunocytes, resulting in protein kinase A activation, resulting in activation of NF-κB and inhibition of CRE-binding protein and ATF-1. This modulation of transcription factors results in a dominancy of IFN-γ, IL-12, IL-17, IL-22, and IL-23 in comparison to IL-6 and IL-10. PDE-4 inhibitors restore this distorted balance: apremilast is available as a systemic treatment (Forchhammer and Ghoreschi, 2015; Papp et al., 2015) and roflumilast is in development as a topical treatment (Lebwohl et al., 2020).

3. The AHR is activated by several exogenous ligands such as polycyclic aromatic hydrocarbons and digoxin-like...
compounds. There is evidence that crude coal tar therapy may show some efficacy by activation of the AHR. AHR is a transcription factor, which is translocated into the nucleus. Subsequently, gene transcription is modulated, comprising downmodulation of cytokines including those relevant to psoriasis and atopic dermatitis, an antioxidant response, and finally improved barrier formation by FLG upregulation (Bissonnette et al., 2021; Di Meglio et al., 2014). Tapinarof is an AHR agonist and as topical therapy proved to result in a 75% improvement of PASI in 36–47% of the patients (Robbins et al., 2019).

STRATIFICATION OF PSORIASIS
To predict the course of psoriasis in the individual patient and to guide the selection of adequate treatment, we need biomarkers. Research groups over the world attempt to provide disease stratifications on the basis of biomarkers and disease characteristics. For example, early-onset psoriasis proved to be associated with HLA-C*06:02 carriers. The HLA-C*06:02 allele proved to be a modest predictor for responding to ustekinumab treatment (Li et al., 2016).

Generalized pustular psoriasis (GPP) is a showcase for disease stratification with genetic biomarkers. Loss of function mutations of IL36RN proved to be associated with GPP. Pathogenesis-based drug development was successful based on this new knowledge (Hussain et al., 2015; Marrakchi et al., 2014). In a phase 1 study on GPP, inhibition of the IL-36 pathway with the inhibitor BI 655130 resulted in a marked improvement in majority of the patients (Bachelez et al., 2019).

Comorbidities of psoriasis are arthritis, enthesitis, dactylitis, hypertension, obesity, type 2 diabetes, dyslipidemia, cardiovascular disease, depression, suicide and suicidal ideation, sleep disorders, inflammatory bowel disease, chronic obstructive pulmonary disease, asthma, chronic kidney disease, and hepatobiliary cancer (Griffiths et al., 2021). Psoriasis is regarded as a systemic disease of inflammation. The pathomechanism behind the relationship between psoriasis of the skin and comorbidities is poorly understood, and studies on psoriasis of the skin and comorbidities are fragmented by the borders of medical specialties.

Psoriasis is a multifactorial disease, and treatment decisions involve a host of factors. Computational approaches reconciling a multitude of factors may provide unique opportunities in the future. One single factor in isolation is unlikely to be informative, but one factor in the context of the complexity of the disease matters. In the individual patient, a host of data from system medicine, biological systems, and consumer lifestyles have to be registered, and following big data analytics, personalized treatment decisions will become possible as a proactive approach, improving the course of the disease and preventing comorbidities from reactive to proactive medicine (Cesario et al., 2014).

CONCLUSION
During the previous 50 years, our insights in the immunopathogenesis of psoriasis have been evolved into a branching model of innate and acquired immunity. Insights into the genetics of psoriasis have revealed a constellation of susceptibility loci, entirely congruent to this model. Inspired by these insights, pathogenesis-based treatments have emerged with unprecedented efficacy and sustainability, reconfirming that these steps in pathogenesis are relevant to the disease. Psoriasis research and development are a showcase par excellence of translational medicine.

ORCID
Peter CM van de Kerkhof: http://orcid.org/0000-0003-0084-3131

Disclaimer
The contents of this review have been presented at the virtual meeting of the European Society for Dermatological Research 2021.

CONFLICT OF INTEREST
PCMvdK received fees for consultancy service or lectureships from Almirall, AbbVie, Eli Lilly, Novartis, Janssen Pharmaceuticals, Leo Pharma, Bristol Mayer Squibb, UCB, Boehringer Ingelheim, and Dermavant Sciences. PCMvdK is a chief medical officer at International Psoriasis Council.

ACKNOWLEDGMENTS
The author wishes to acknowledge Rogier Trompert Medical Arts for providing the license to publish Figure 1 in the Journal of Investigative Dermatology.

REFERENCES
Abrams JR, Kelley SL, Hayes E, Kikuchi T, Brown MJ, Kang S, et al. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J Exp Med 2000;192:681–94.
Albanese C, Cavani A, Girolomoni G. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonistic effects with IFN-gamma and TNF-alpha. J Immunol 1999;162:494–502.

Armstrong AW, Puig L, Joshi A, Skup M, Williams D, Li J, et al. Comparison of biologics and oral treatments for plaque psoriasis: a meta-analysis. JAMA Dermatol 2020;156:258–69.

Asadullah K, Döcke WD, Sabat RV, Volk HD, Sterry W. The treatment of psoriasis with IL-10: rationale and review of the first clinical trials. Expert Opin Investig Drugs 2000;9:95–102.

Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG. The majority of pathogenesis and treatment of psoriasis. PCM van de Kerkhof

Bata-Csorgo Z, Hammerberg C, Voorhees JJ, Cooper KD. Intralesional T-lymphocyte infiltration in human skin: correlation with disease activity in psoriasis vulgaris. J Invest Dermatol 1999;113:752–9.

Baedsgaard O, Gupta AK, Taylor RS, Ellis CN, Voorhees JJ, Cooper KD. Psoriatic epidermal cells demonstrate increased numbers and function of non-Langerhans antigen-presenting cells. J Invest Dermatol 1989;92:190–5.

Bachelez H, Choon SE, Marrakchi S, Burden AD, Tsai TF, Morita A, et al. AlphaBeta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med 2007;13:836–42.

Coquet JM, Chakravarti S, Kyariyoudi K, McNab FW, Pitt LA, McKenzie BS, et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1-NKT cell population. Proc Natl Acad Sci USA 2008;105:11287–92.

Cunliffe A, Gran S, Ali U, Grindlay D, Lax SJ, Williams HC, et al. Can atopic dermatitis and psoriasis coexist? A systematic review and meta-analysis. Skin Health Dis 2021;1:e29.

Dand N, Mahil SK, Capon F, Smith CH, Simpson MA, Barker JN. Psoriasis and genetics. Acta Derm Venereol 2020;100:adv00030.

Dand N, Mucha S, Tsoi LC, Mahil SK, Stuart PE, Arnold A, et al. Exome-wide association study reveals novel psoriasis susceptibility locus at TNFSF15 and rare protective alleles in genes contributing to type 1 IFN signalling. Hum Mol Genet 2017;26:4301–13.

de Boer OJ, van der Loos CM, Hamerlinck F, Bos JD, Das PK. Reappraisal of a site in human leucocyte antigen class I associated with susceptibility to psoriasis. Br J Dermatol 1987;117:3695–702.

Lentilai K, Grudzinska J, Leung DYM, Scherer S, et al. Identification of the human protein disulfide isomerase pathway as an attractive therapeutic target in psoriasis. J Clin Invest 2017;127:3696–705.

Fuentes-Duculan J, Bonifacio KM, Hawkes JE, Kunjivala N, Ceotto E, Li X, et al. Autoantigens ADAMTSL5 and LL-37 are significantly upregulated in active psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Exp Dermatol 2017;26:1075–82.

Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci 2013;72:3–8.

Gottlieb AB. Psoriatic arthritis - role of aminoplatin. Psoriasis (Auckl) 2015;5:117–24.

Fritz Y, Klemotic PA, Swindell WR, Yin QZ, Groft SG, Zhang L, et al. Induction of alternative proinflammatory cytokines accounts for sustained psoriasis skin inflammation in IL-17C-/-IL-6KO mice. J Invest Dermatol 2017;137:696–705.

Gottlieb AB. Immunologic mechanisms in psoriasis. J Invest Dermatol 1990;95(Suppl):ii:185–95.

Gottlieb AB, Chiamian F, Masud S, Cardinale I, Abello MV, Lowes MA, et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol 2005;175:2721–9.

Gottlieb AB, Liblitz B, Fu SM, Staiano-Coico L, Wang CY, Carter DM. Expression of HLA-DR molecules by keratinocytes, and presence of Langerhans cells in the dermal infiltrate of active psoriatic plaques. J Exp Med 1986;164:1013–28.

Gottlieb SL, Gilleaudeau P, Johnson R, Estes L, Woodworth TG, Gottlieb AB, et al. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat Med 1995;1:442–7.

Griffiths CE, Powles AV, Leonard JN, Fry L, Baker BS, Valdimarsson H. Clearance of psoriasis with low dose cyclosporin. Br Med J (Clin Res Ed) 1986;293:731–2.

Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker JNW. Psoriasis. Lancet 2021;397:1301–15.
Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT, et al. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci USA 1989;86:6367–71.

Guttman-Yassky E, Brunner PM, Neumann AU, Khattari S, Pavel AB, Malik K, et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J Am Acad Dermatol 2018;78:872–81.e6.

Harper EG, Guo C, Rizzo H, Lillis JV, Kurzt SE, Skorcheva I, et al. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J Invest Dermatol 2009;129: 2175–83.

Hussain S, Berki DM, Choon SE, Burden AD, Allen MH, Arestegui JJ, et al. IL-36RN mutations define a severe autoinflammatory phenotype of generalized pustular psoriasis. J Allergy Clin Immunol 2015;135:1067–70.e9.

Keijzers RR, Joosten I, van Erp PE, Koenen HJ, van de Kerkhof PC. Cellular sources of IL-17 in psoriasis: a paradigm shift? Exp Dermatol 2014;23: 799–803.

Krueger GG. Selective targeting of T cell subsets: focus on alefacept - a retimive therapy for psoriasis. Expert Opin Biol Ther 2002;4:4312–41.

Krueger JG, Fretzin S, Suarez-Farinhas M, Haslett PA, Phipps KM, Cameron GS, et al. Pathogenesis and therapy of psoriasis. J Dermatol Sci 2014;70:39–47.

Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, et al. The antimicrobial peptide LL37 is a T cell autoantigen in psoriasis [published correction appears in Nat Commun 2015;6:6595]. Nat Commun 2014;5:5621.

Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007;449:564–9.

Lebow MG, Papp KA, Stein Gold L, Gooderham MJ, Kircik LH, Draelos ZD, et al. Trial of rolufumast cream for chronic plaque psoriasis. N Engl J Med 2010;363:229–39.

Lee E, Trepicchio WL, Oestreich JL, Pittman D, Wang F, Chamin F, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 2004;199:125–30.

Leonardi CL. Efalizumab in the treatment of psoriasis. Dermatol Ther 2004;17:393–400.

Li K, Huang CC, Randazzo B, Li S, Szapary P, Curran M, et al. HLA-C*06:02 allele and response to IL-12/23 inhibition: results from the ustekinumab phase 3 psoriasis program. J Invest Dermatol 2016;136:2364–71.

Liang SC, Tan XY, Luxenberg DP, Karim R, Dunasi-Joannopoulos K, Collins M, et al. Interleukin IL-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006;203:2271–9.

Lin AM, Rubin CJ, Khandpur R, Wang JY, Ribblett M, Yalavarti S, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol 2011;187:490–500.

Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature 2007;445:866–73.

Lowes MA, Kikutchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 2008;128:1207–11.

Lowes MA, Cardinale I, Suárez-Farías M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014;32:227–55.

Marrakchi S, Guigue P, Renshaw BR, Pauel A, Pei XY, Fraïtig S, et al. Interleukin-36 receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med 2011;365:620–8.

Matos TR, O’Malley JT, Lowry EL, Hamm D, Kirsch IR, Robbins HS, et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing γδ T cell clones. J Clin Invest 2017;127:4031–41.

Menssen A, Trommler P, Vollmer S, Schendel D, Albert E, Gurtler L, et al. Evidence for an antigen-specific cellular immune response in skin lesions of patients with psoriasis vulgaris. J Immunol 1995;155:4078–83.

Morishima N, Mizoguchi I, Takeda K, Mizuguchi J, Yoshimoto T. TGF-beta is necessary for induction of IL-23R and Th17 differentiation by IL-6 and IL-23. Biochem Biophys Res Commun 2009;386:105–10.

Nickoloff BJ, Wroe-Smith T. Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 1999;155:145–58.

Nicolas JF, Chapmick N, Thivolet J, Wijdenes J, Morel P, Revillard JP. CD4 antibody treatment of severe psoriasis. Lancet 1991;338:321.

Ortega C, Fernández-A S, Carrillo JM, Ruzo P, Molina JI, Moreno JC, et al. IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol 2009;86:435–43.

Papp K, Gordon K, Thaçi D, Morita A, Gooderham M, Foley P, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med 2018;379:1313–21.

Papp K, Reich K, Leonardi CL, Kiricik L, Chimenti S, Langley RG, et al. Apremilast, an oral phosphodiesterase-4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM 1]). Am Acad Dermatol 2015;73:37–49.

Polase B, Zhang H, Thurairajah B, King IL. Intracellular lymphocytes in psoriasis. Front Immunol 2020;11:242.

Prinz JC. Melanocytes: target cells of an HLA-C*06:02-restricted autoimmune response in psoriasis. J Invest Dermatol 2017;137:2053–8.

Robbins K, Bissonnette R, Maeda-Chubachi T, Le S, Peppers J, Gallagher K, et al. Phase 2, randomized dose-finding study of tapinarof (GSK2894512) cream for the treatment of plaque psoriasis. J Am Acad Dermatol 2019;80: 714–21.

Schlaaf JK, Buslau M, Jochum W, Hermann E, Girmitt M, Gallati H, et al. T cells involved in psoriasis vulgaris belong to the Th1 subset. J Invest Dermatol 1994;102:145–9.

Teunissen MB, Kooiman CW, de Waal Malefyt R, Wierenga EA, Bos JD. Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 1998;111:645–9.

Valdimarsson H, Thorleifsdottir RH, Sigurardottir SL, Gudjonsson JE, Johnstone A. Psoriasis – as an autoimmune disease caused by molecular mimicry. Trends Immunol 2009;30:494–501.

van der Fits L, Mourits S, Voerman JSA, Kant M, Boon L, Laman JD, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-21/IL-17 axis. J Immunol 2009;182:5836–45.

Villanova F, Flutter B, Tosi I, Grys K, Soeneenbus H, Perera GK, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKP44+ ILC3 in psoriasis. J Invest Dermatol 2014;134: 984–91.

Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity 2004;21:241–54.

Wrone-Smith T, Nickoloff BJ. Dermal injection of immunocytes induces psoriasis. J Clin Invest 1996;98:1878–87.

Zaba LC, Cardinale I, Gildeaudeau P, Sullivan-Whalen M, Suárez-Farías M, Fuentes-Duculan J, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses [published correction appears in J Exp Med 2008;205:1941]. J Exp Med 2007;204:3183–94.

Zaba LC, Suarez-Farinas M, Fuentes-Duculan J, Nogales KE, Guttman-Yassky E, Cardinale I, et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signalling, not immediate response gene. J Allergy Clin Immunol 2009;124:1022–30.e395.

Zhu D, Yao S, Wu H, Ke X, Zhou X, Geng S, et al. A transcriptome-wide association study identifies novel susceptibility genes for psoriasis. Hum Mol Genet 2021;31:300–8.

Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/