A mycorrhiza-associated receptor-like kinase with an ancient origin in the green lineage

Héctor Montero1,2, Tak Lee1,2, Boas Pucker1, Gabriel Ferreras-Garruco1, Giles Oldroyd1,2,3, Samuel F. Brockington1,2, Akio Miyao4,5, and Uta Paszkowski1,a

1Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, United Kingdom; 2Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom; 3Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom; and 4Institute of Crop Science, National Agriculture and Food Research Organization, Ibaraki 305-8518 Tsukuba, Japan

Edited by Gloria M. Coruzzi, New York University, New York, NY, and approved May 11, 2021 (received for review March 18, 2021)

Receptor-like kinases (RLKs) are key cell signaling components. The rice ARBUCULAR RECEPTOR-LIKE KINASE 1 (OsARK1) regulates the arbuscular mycorrhizal (AM) association postarbuscule development and belongs to an undefined subfamily of RLKs. Our phylogenetic analysis revealed that OsARK1 has an ancient paralogue in streptophytes, ARK2. Single ark2 and ark1ark2 double mutants in rice showed a nonredundant AM symbiotic function for OsARK2. Global transcriptomics identified a set of genes coregulated by the two RLKs, suggesting that OsARK1 and OsARK2 orchestrate symbiosis in a common pathway. ARK lineage proteins harbor a newly identified SPARK domain in their extracellular regions, which underwent parallel losses in ARK1 and ARK2 in monocots. This protein domain has ancient origins in streptophyte algae and defines additional overlooked groups of putative cell surface receptors.

ark1 and ARK2 in monocots (Fig. 1A). This suggests that ARK1 and ARK2 follow a common evolutionary trajectory in monocots despite occurring in paralogous gene lineages that diverged early in the evolution of tracheophytes. This prompted us to functionally characterize OsARK2.

OsARK2 transcripts have been reported to accumulate during AM symbiosis (1, 5, 6). We performed a time course gene expression assay confirming OsARK2 to be induced in AM conditions but, in contrast to OsARK1, low transcript levels of OsARK2 were also detected in noninoculated plants (Fig. 1B). We obtained an ark2 mutant allele containing a Tos17 retrotransposon element insertion in the kinase domain catalytic loop–coding region. Disruption of the OsARK2 transcript was confirmed through RT-PCR (Fig. 1C). This ark2 mutant was crossed with the previously characterized ark1-2 mutant allele (hereafter referred as ark1) (1) to generate an ark1/ark2 double knockout (dKO) line. A time course experiment revealed that the ark2 mutant had a significantly reduced AM colonization phenotype; however, arbuscules and vesicles were more abundant than in ark1 (Fig. 1D). The phenotypes of both ark1 and ark2 are plastic, as applying higher amounts of spore inoculum resulted in wild-type (WT) levels of arbuscule abundance and an even reduction of vesicles across mutant genotypes (Fig. 1E). Arbuscules were able to fully branch in ark2 akin to ark1 (Fig. 1F). The dKO largely reproduced the ark1 phenotype (Fig. 1 D–F). These observations suggest a nonredundant and nonsynergistic regulation of AM symbiosis by OsARK1 and OsARK2.

We determined the transcriptional consequences of the different mutations via RNA-sequencing (RNA-seq). To identify genotype effects, we employed 10 biological replicates per genotype and measured the correlation of arbuscule abundance to expression levels of each gene across replicates. This resulted in a filtered dataset where transcriptional responses associated solely with differential colonization levels were removed (Dataset S2). We focused on the most stringent differentially expressed genes (DEGs) whose expression levels in all 10 dKO replicates were higher or lower than all 10 wild-type replicates. This strict nonoverlapping expression was observed in a total of 31 up- and 6 down-regulated DEGs, most of which were also differentially expressed in the single mutants (Fig. 1 G and H). This convergent

Author contributions: H.M. and U.P. designed research; H.M., G.F.-G., and A.M. performed research; H.M., T.L., B.P., G.O., and S.F.B. analyzed data; H.M. and U.P. wrote the paper; H.M. and U.P. wrote the paper; and A.M. generated the NG0028 mutant line.

The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

To whom correspondence may be addressed. Email: hm530@cam.ac.uk or up220@cam.ac.uk.

This article contains supporting information online at https://www.pnas.orglookup/suppl/doi:10.1073/pnas.2105281118/-/DCSupplemental.

Published June 14, 2021.

PNAS 2021 Vol. 118 No. 25 e2105281118

https://doi.org/10.1073/pnas.2105281118

L

and plants and arbuscular mycorrhizal (AM) fungi form an ancient and widespread nutritional mutualism. Plant–fungal reciprocal recognition in the rhizosphere is commonly followed by hyphal entry into plant roots and subsequent bidirectional nutrient exchange fostered at intracellular arbuscules. A plant-derived peribasal membrane (PAM) surrounds arbuscule branches as they develop, creating a potential hub for plant–fungal communication.

The receptor-like kinase (RLK) ARBUCULAR RECEPTOR-LIKE KINASE 1 (ARK1) is required for sustenance of AM symbiosis in rice and Medicago truncatula (1, 2) and is evolutionarily conserved in genomes of AM-competent plant species (2, 3). The rice OsARK1 (LOC_Os11g26140) is a PAM RLK that regulates fungal fitness at the postarbuscule development stage (1). As RLKs tend to operate in complex signaling circuits, we aimed to identify additional components of the OsARK1 pathway.

OsARK1 belongs to an uncharacterized group of land plant–specific RLKs, the Unknown Receptor Kinase 2-URK2) subfamily (4). In order to trace the evolutionary history of the URK-2 subfamily, we conducted a phylogenetic analysis using publicly available genomic and transcriptomic data (Fig. 1A and Dataset S1). We found that the URK-2 subfamily is composed of two members in nonseed land plants: ARK1 and SIMILAR PROTEIN TO ARK1 (SPARK1). An ancient duplication in the ARK1 lineage gave rise to the paralogues ARK1 and ARK2 in streptophyte algae. The latter experienced a further duplication early in the evolution of eudicots creating ARK2a and ARK2b, which in some cases was followed by loss of one of the paralogues. Contrary to ARK lineage genes, SPARK1 can be found in several non-AM land plants and was lost in eudicots. As in other monocots, the URK-2 subfamily in rice is composed of three members. The two paralogues OsARK1 and OsARK2 (LOC_Os04g39180) code for predicted functional RLKs that lack extracellular domains (EDs) and OsARK2 also lacks a predicted signal peptide. OsSPARK1 (LOC_Os07g12480), however, is predicted to harbor a 250-amino-acid-long ED. Occurrence of this ED was surveyed across URK-2 subfamily members, revealing that it was lost independently in
response suggests that OsARK1 and OsARK2 operate in a common, yet undescribed symbiotic genetic program.

ARK1 and ARK2 in monocots are characterized by the loss of OsARK1 in AM–AM treatments (Kruskal-Wallis test, FDR adjusted FDR adjusted FDR adjusted P < 0.05). Gray squares represent no expression changes in the respective genotypes. Asterisks mark genes selected for validation. (h) qRT-PCR assays confirming the pattern of expression of a subset of DEGs in an independent experiment. Expression levels are normalized to OsCYCLOPHILIN2 as a reference gene.

The SPARK domain was also defined and has no homology to known domains. An alignment of the EDs of all URK-2 orthologs identified in this study showed them to have a highly conserved signature arrangement of 12 cysteine residues (Fig. 2b). The occurrence of the ED could not be established. A detailed tree is available in Dataset S1. (i) Comparative gene expression assay in a time course of wild-type rice. Expression levels of Rhizophagus irregularis ELONGATION FACTOR (RiEF) are included to account for increases of AM fungal biomass over time. Expression levels in inoculated (+AM) and noninoculated (−AM) roots are normalized to OsCYCLOPHILIN2. Bars represent means. Asterisks denote statistically significant differences between +AM and −AM treatments (Kruskal-Wallis and post hoc Dunn’s test FDR adjusted P < 0.05).

GPI-anchored receptor-like proteins (RLPs), including the previously characterized rice gene OsARK1 and OsARK2 in monocots are characterized by the loss of OsARK1 in AM–AM treatments (Kruskal-Wallis test, FDR adjusted P < 0.05). Gray squares represent no expression changes in the respective genotypes. Asterisks mark genes selected for validation. (h) qRT-PCR assays confirming the pattern of expression of a subset of DEGs in an independent experiment. Expression levels are normalized to OsCYCLOPHILIN2 as a reference gene.

In summary, we characterized OsARK2 as a RLK functioning in more than 10% of the small repertoire of Klebsormidium nitens, a member of a lineage of streptophyte algae sister to land plants. Surprisingly, the SPARK domain was present in more than 10% of the small repertoire of K. nitens RLKs. These RLKs form a monophyletic group and their domain architecture mostly consists in two tandemly arranged SPARK domains (Fig. 2b). In land plants, we also found the SPARK domain in predicted GPI-anchored receptor-like proteins (RLPs), including the previously characterized rice gene SEMI-ROLLED LEAF1 (OsSRL1), involved in cell wall formation (7, 8). We identified a total of 11 SPARK domain–containing proteins in rice (Fig. 2c).

In summary, we characterized OsARK2 as a RLK functioning in AM symbiosis. While previous large-scale phylogenomics studies suggested a strict association between the two RLKs and AM
symbiosis (2, 3), we detected ARK2 but not ARKI in the three orchid genomes available (Dataset S1) and ARK2 is induced during orchid mycorrhizal symbiosis (9). This may reflect a putative broader role of ARK2 compared to ARKI in plant-fungal symbioses. Functionally characterizing the gene suite regulated by the two RLKs identified here by transcriptomics represents an avenue to resolve differential roles. In addition, the discovery of the SPARK-I RLK subfamily of orchid genomes available (Dataset S1) and 17 SPARK domain-harboring RLKs from K. nitens. Branches corresponding to rice proteins are named. Number of K. nitens RLKs having one or two SPARK domains are written below schematics. A detailed tree is available in Dataset S4. (C) Predicted protein domain architecture of rice SPARK-I subfamily members along with all rice proteins identified in this study predicted to have a SPARK domain.

Materials and Methods

Molecular characterization of mutants, plant growth conditions, AM inoculation and colonization assays were performed following previously described protocols and guidelines (1, 10). Phylogenetic analyses, gene expression assays, RNA-seq assays, and data analyses were performed as in ref. 11. Procedures are detailed in SI Appendix, Extended Methods.

Data Availability

See Dataset S1 for a detailed phylogenetic tree of Fig. 1A, Dataset S2 for RNA-seq data, Dataset S3 for a list of datasets, and Dataset S4 for a detailed phylogenetic tree of Fig. 2. RNA-seq raw data were deposited in the National Center for Biotechnology Information gene expression omnibus (GEO). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168162 (12). All other study data are included in the supporting information.

ACKNOWLEDGMENTS

We thank Rob Finn (European Bioinformatics Institute) for curating the SPARK domain into the Pfam database and James Gattwood for technical assistance. H.M. was supported by the Chilean National Agency for Research and Development and Cambridge TRUST. Research in H.M.’s laboratory was supported by the Biotechnology and Biological Sciences Research Council Grant BB/P003419/1, the Engineering the Nitrogen Symbiosis for Africa project, which is funded by a grant to the University of Cambridge by the Bill & Melinda Gates Foundation, and a St. John’s College Teaching and Research grant.

Fig. 2. The SPARK domain. (A) Amino acid sequence alignment of the SPARK domain from selected representative sequences for each member of the SPARK-I RLK subfamily. Residues colored purple are conserved in at least 80% of all sequences identified in this study. Residues in pink are conserved in at least 50% of the sequences. (B) Phylogenetic tree of SPARK domain–harboring RLK subfamilies. All sequences form the SPARK-I, URK-1, and KF3 subfamilies from selected plant species (Physcomitrium patens, Selaginella moellendorffii, Amborella trichopoda, Arabidopsis thaliana, and rice) are included along with all 17 SPARK domain–harboring RLKs from K. nitens. Branches corresponding to rice proteins are named. Number of K. nitens RLKs having one or two SPARK domains are written below schematics. A detailed tree is available in Dataset S4. (C) Predicted protein domain architecture of rice SPARK-I subfamily members along with all rice proteins identified in this study predicted to have a SPARK domain.

1. R. Roth et al., A rice Serine/Threonine receptor-like kinase regulates arbuscular mycorrhizal symbiosis at the peri-arbuscular membrane. Nat. Commun. 9, 4677 (2018).
2. A. Bravo, T. York, N. Pumplin, L. A. Mueller, M. J. Harrison, Genes conserved for interaction with arbuscular mycorrhizal fungi. Proc. Natl. Acad. Sci. U.S.A. 109, 1182–1186 (2012).
3. G. V. Radhakrishnan et al., An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat. Plants 6, 280–289 (2020).
4. M. D. Lehti-Shiu, H. S. Shiu, Diversity, classification and function of the plant protein kinase superfamily. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2619–2639 (2012).
5. S. Güimil et al., Comparative transcriptomics of arabidopsis reveals a conserved transcriptional pattern of response to microbial colonization. Proc. Natl. Acad. Sci. U.S.A. 102, 8066–8070 (2005).
6. C. Gutjahr et al., Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proc. Natl. Acad. Sci. U.S.A. 112, 6754–6759 (2015).