Fattening of mangrove crab (*Scylla serrata*) in wooden pen and plastic container

Y Lopulalan¹, J A Pattikawa¹,², I Ode¹, M Wawo¹, Y Natan¹, J M S Tetelepta¹,² and O T S Ongkers¹,²

¹Fisheries and Marine Science Faculty, Pattimura University, Ambon-Indonesia
²Maritime and Marine Science Center of Excellence, Pattimura University, Ambon-Indonesia

E-mail: jmstetelepta57@gmail.com

Abstract. Research to study fattening of mangrove crab (*Scylla serrata*) was conducted in the coastal waters of Wael Village, Western Seram Regency, Maluku Province Eastern Indonesia from September to October 2018. Two methods were used for fattening namely wooden pen and plastic container. Totally, there are 54 individuals of mangrove crab used in this study which consists of 30 individuals maintained in wooden pen and 24 individual kept in plastic container during five periods of research for two months. The results showed that at the end of the research, mangrove crabs kept in wooden pen had better growth than those maintained in plastic container. Even though they had same survival, the results of economic analysis showed that only mangrove crab in the wooden pen have a good price so that the investment gets a profit, while investing in mangrove crabs kept in plastic container becomes a loss.

1. Introduction

Mangrove crab (*Scylla* spp) is one of the most important economical fisheries resource in tropical and sub-tropical countries including Indonesia. This fishery has important contribution for small-scale fishers especially in developing countries [1, 2, 3, 4]. So far, most mangrove crab production come from capture fisheries and it depend on availability of the stock [5, 6, 7]. However, some research in Indonesia show that the production of mangrove crab tend to decrease such as North coast of Java [8], Subang West Java [9], Western Seram [10, 11, 12, 13] and in Evu, Southeast Maluku [14]. Due to high market demand, exploitation of mangrove crab increase remarkably. The main market for mangrove crab is East Asia countries such as China, Japan, Korea, Thailand, Taiwan, Hong Kong, and Singapore [10, 15, 16].

One of the main producer of mangrove crab in Eastern Indonesia is Western Seram, Maluku Province. Mangrove crab fisheries in the area has started in the early 1980’s [17] but mainly for local consumption. Fishers in the area are artisanal ones who caught mangrove crab using traditional fishing gear called *bubu* (bamboo trap) that is put in the mangrove forest [10, 11, 12, 13]. Mangrove crabs in Western Seram consist of three species namely *Scylla. serrata*, *S. olivacea* and *S. paramamosain* with *S. serrata* being the dominant species [13].

Currently, there is an increasing number of fishing gears (*bubu*) in Western Seram but it is not followed by the increasing of catch per unit effort [13]. Previous study showed that population of mangrove crab in Western Seram has decreased and the fishing ground has been expanded further away even to another island [10]. In addition, the size of mangrove crab captured also decrease [13]. The small size (< 400 g) crab is valued for only IDR 50,000 per kg (3 – 5 individuals) by traders operated in the area.

An effort for fattening small size mangrove crab has been done in Western Seram by using bamboo basket [18]. Even though mangrove crab kept in the basket had good growth but the bamboo...
basket used is easily broken, and thus it is not last long. Therefore, this study was conducted to fattening mangrove crab by using two different methods, firstly keep animal individually in plastic container and secondly mangrove crab are maintained in group in wooden pen which is placed in the mangrove forest. Plastic container and wooden pen are expected to be used longer than bamboo basket. Fattening mangrove crab is easy, so member of fishers' family, wife or their children can do it in their spare time.

2. Materials and Method

2.1. Field work
Research on fattening of mangrove crab (S. serrata) in wooden pen and plastic container was conducted at the coastal waters of Wael village, Kotania Bay (Teluk Kotania) Western Seram Regency, Maluku Province Eastern Indonesia (Figure 1) from September to October 2018.

![Figure 1. Map showing research site (red circle)](image)

2.2. Fattening procedure
Mangrove crabs (S. serrata) used in this study were bought from fishers who landed their catch in Wael village. Totally, there were 54 individuals of mangrove crab (S. serrata) bought from the fisher with the average weight about 225 g. Before the experiment, mangrove crabs (S. serrata) were maintained in wooden pen for two days to acclimate. As many as 30 individuals mangrove crab (S. serrata) were grouped and kept in wooden pen (5x5x1.5 m³), while 24 individuals were maintained separately in plastic container (0.5x0.5x0.3 m³). Mangrove crabs (S. serrata) were fed with mixed of chop trash fish and mollusc once a day in the afternoon about 5% of their weight.

Before maintained in their containers, carapace of mangrove crab (S. serrata) were measured by using vernier caliper to the nearest mm and weighted using digital balance to the nearest g. This procedure was repeated every two weeks during the research period.

2.3. Data analysis
Growth of mangrove crab was analyzed in term of weight increment, absolute growth rate and specific growth rate using following formula [19]:
Weight increment = \(W_{t+1} - W_t \)

\[
\text{Absolute growth rate} = \left[\frac{(w_{t+1}) - (w_t)}{\Delta t} \right]
\]

\[
\text{Specific growth rate} = \left[\frac{(\ln w_{t+1}) - (\ln w_t)}{\Delta t} \right] \times 100
\]

where:
- \(W_t \) = weight at time \(t \) (g)
- \(W_{t+1} \) = weight at time \(t+1 \) (g)
- \(\Delta t \) = time period (day)
- \(\ln \) = natural logarithm

Survival of mangrove crab during the research was analyzed based on [19]:

\[
SR = \frac{N_{t+1}}{N_t} \times 100\%
\]

where:
- \(N_t \) = number of individuals at time \(t \)
- \(N_{t+1} \) = number of individuals at time \(t+1 \)

Economic analysis of fattening mangrove crab was analyzed based on [20].

3. Result and Discussion

3.1. Size distribution

Total number of mangrove crab used in this study were 54 individuals that consist of 30 individuals kept in wooden pen and 24 individuals maintained in plastic container. Size distribution of mangrove crab is presented in Table 1.

Period	N	Carapace width (cm)	Weight (g)							
		Min	Max	Mean	SD	Min	Max	Mean	SD	
Wooden pen	I	30	10.9	14.9	13.70	1.07	174	322	266.37	46.46
	II	27	12.5	15.2	13.74	0.68	250	420	341.48	44.61
	III	26	12.6	15.8	14.30	0.87	330	590	468.46	70.30
	IV	24	13.8	16.4	15.11	0.76	410	700	548.33	77.16
	V	24	14.6	16.9	15.74	0.56	480	720	587.20	56.24
Plastic container	I	24	8.9	14.0	12.01	1.15	130	280	189.71	39.59
	II	23	9.2	14.9	12.25	0.20	140	290	196.17	7.48
	III	19	10.0	15.2	12.80	0.22	144	300	211.89	9.53
	IV	19	11.0	15.5	12.97	0.33	150	320	215.26	8.87
	V	18	11.9	15.6	13.45	0.34	155	337	234.33	14.73

The initial carapace width of mangrove crabs ranging from 10.9 – 14.9 cm (mean 13.7 cm) and 8.9 – 14.0 cm (mean 12.1 cm) with the weight ranging from 174 – 322 g (mean 266.37 g) and 130 – 280 g (mean 189.71 g) for those kept in wooden pen and in plastic container, respectively. At the end of the
study, average carapace width and weight with their standard deviation (SD) are 15.74 cm (SD=0.56 cm) and 587.20 g (SD=56.24 g) for mangrove crab maintained in wooden pen, while for those kept in plastic container their mean carapace width and weight are 12.97 cm (SD=0.33 cm) and 215.26 g (SD=8.87 g).

3.2. Growth

In this study, growth of mangrove crab kept in wooden pen and in plastic container was analyzed in term of weight increment, absolute growth rate and specific growth rate and its results is shown in Table 2.

Period	Weight (g)	Growth rate		
	Mean	Increment	Absolute	Specific
			(g/day)	(%/day)
Wooden pen				
I	266.37	75.11	5.37	1.77
II	341.48	126.98	9.07	2.66
III	468.46	79.87	5.71	1.12
IV	548.33	38.87	2.78	0.49
V	587.20			
Plastic container				
I	189.71	6.46	0.46	0.24
II	196.17	15.72	1.12	0.55
III	211.89	3.37	0.24	0.11
IV	215.26	19.07	1.36	0.61
V	234.33			

Weight increment of mangrove crab kept in wooden pen is significantly larger than it maintained in plastic container (p<0.05). Weight increment during 5 period of study is 320.83 g (mean 80.21 g) and 44.62 g (mean 11.16 g) for mangrove crab kept in wooden pen and in plastic container, respectively. The highest increment occurred between periods II and III for mangrove crabs in wooden pen, while the lowest found in periods III and IV for mangrove crabs in plastic container. Absolute and specific growth rate show the same pattern as growth increment.

Previous study showed that growth increment of mangrove crab kept individually in plastic basket at Cemara Labat, Central Kalimantan (120 g) [21] and in bamboo basket in Western Seram, Maluku (320 g) [18] is larger than growth increment in this study (44.62g). This difference could be due to the shape and size of cage used as well as duration of the study. In addition, quality and quantity of food also affect growth of cultured animals. On the contrary, absolute and specific growth rate of mangrove crabs kept communally in wooden pen is higher than mangrove crab (S. serrata) maintained in bamboo pen in Bangladesh [22] and in South Sulawesi, Indonesia (S. olivacea) [23]. It seems that water quality and condition of mangrove forest in Western Seram, Maluku significantly affect faster growth of animals cultured.

3.3. Survival

Survival is the number of individuals alive to the next period or until the end of the study. The number of mangrove crab survive for each period of study is presented in Table 1 and its percentage is shown in Figure 2. There is no significant difference of survival for the animal kept in wooden pen and in plastic container (p>0.05). At the end of the study, only 80% and 75% of mangrove crab survive in the wooden pen and in the plastic container, respectively. Survival of mangrove crab kept communally in wooden pen in this study is higher than survival of mangrove S. olivacea maintained in silvofishery system in Pangkep, South Sulawesi Indonesia [22] but lower than survival of S. serrata kept in bottom
confinement in Konawe, South Sulawesi [24]. Furthermore, survival of mangrove crab kept individually in plastic container is also lower than *S. serrata* kept in bamboo basket in Western Seram [18].

![Image](141x513 to 447x679)

Figure 2. Survival of mangrove crab

3.4. Economic analysis

Economic analysis of fattening mangrove crab *S. Serrata* kept together in wooden pen and individually in plastic container is presented in Table 3.

Total investment is the sum of money spent to rent land and to buy material for cages as well as variable cost, which is used to buy mangrove crab, food and to pay wages. Fattening of mangrove crab taking place in the coastal waters of Wael village, so land can be used by community at no cost.

Code	Item	Cost (IDR)
A	Investment (a + b)	2,008,000
	a. Land and materials	
	- Land	0
	- Wood/plastic container	1,000,000
	b. Variable cost	1,008,000
B	Fixed cost	50,000
	- Depreciation	50,000
C	Variable cost	1,008,000
	- Crab	408,000
	- Food	300,000
	- Wages	300,000
D	Total production cost (B + C)	1,058,000
E	Revenue	1,288,700
	- 100 - <500 g	0
	- 500 - <700 g	1,127,700
	- 700 - < 1000 g	161,000
F	Profit (E-D)	230,700
G	Cash flows (B + F)	280,700

Table 3. Summary of economic analysis for fattening mangrove crab

Total production costs are IDR 1,058,000 and IDR 897,000 for fattening mangrove crab in wooden pen and plastic container, respectively. These costs consist of variable cost that depend on production and fixed cost for depreciation, which is not depending on production. Depreciation is
determined by the differences between current price and old price of the material used for cages and their economic life. Estimated economic life for wooden pen is 3 years while for plastic container is 5 years with their old and current price differences are IDR 150,000 and IDR 125,000, respectively.

Total production value or revenue depends on quantity of production and the price of product. The price of mangrove crab in Western Seram depends on its weight category and it is determined by collecting merchant in the area. The lowest price weight less than 400 g locally called *kaecang-kaecang* while the highest price categorized as super weight > 1000 g [10].

Total production value or revenue of mangrove crab kept communally in wooden pen and plastic container is shown in Table 4. As mention before, only 24 individuals of mangrove crab in wooden pen and 18 individuals in plastic container survive until the end of the study.

Container	Range	n	Production	Price/kg	Production value
Wooden pen	100 - <400	0	0	50,000	0
	400 - <700	22	12.530	90,000	1,127,700
	700 - <1000	2	1.400	115,000	161,000
	Total				1,288,700
Plastic container	100 - <400	18	4.938	50,000	246,000
	Total				246,000

All mangrove crabs maintained in plastic container have weight < 400 g and they have low price with total revenue is IDR 246,000. On the contrary, mangrove crabs in wooden pen have weight ≥ 400 g in which 22 individuals weight 400 - < 700 g and 2 individuals weight 700 - < 1000g with total revenue is IDR 1,288,700. Based on revenue and total production cost, business on fattening mangrove crab in wooden pen get profit as much as IDR 230,700 while fattening mangrove crab in plastic container become a loss as much as IDR 651,000. Ratios between total production value or revenue and total production cost (R/C) are 1.22 for fattening mangrove crab in wooden pen and 0.22 for fattening mangrove crab in plastic container. Ratio of $R/C=1.22 > 1.00$ as well as positive cash flows indicated that business of fattening mangrove crab communally in wooden pen is feasible to be continued or developed [20].

Mangrove crab is the main and important marine resource for traditional fishers in Western Seram. However, some of mangrove crab caught consist of small size or *kaecang-kaecang* (weight <400 g) which is up to 20% of the total crabs caught [10]. Mostly crab of this size is consumed by fishers’ family or sold for local consumption at low price. Fattening of mangrove crab is one of the solution to increase the size and thus the price of this small size crab. In the long term, fattening mangrove crab is also possible to produce broodstock crab.

Procedure for fattening mangrove crab is simple and can be done by fisher or fisher family members in their spare time. However, it takes time to encourage fishers to do such job because their habits tend to sell instantly whatever their catch. In addition, fishers have some difficulty to get loan from bank for financial capital to run their new business in fattening mangrove crab. Empowering fishers in the area is necessary and urgently needed in order to improve their livelihood and to reduce poverty of coastal community.

4. Conclusion
Mangrove crabs maintained in wooden pen has better growth than those kept in plastic container. Fattening using these two methods has the same survival, however only crab kept in wooden pen is profitable so it is feasible to develop.
References

[1] Bonine K M, Bjorksted E P, Ewel K C and Palik M 2008 Population characteristic of the mangrove crab *Scylla serrata* (Decapoda: Portunidae) I Kosrae Federated States of Micronesia: effects of harvests and implications of management. *Pacific Science*. 62(1):1-19

[2] FAO 2012 Cultured aquatic species information programme. *Scylla serrata* (Forskal, 1755). Fisheries and Aquaculture Department p 12

[3] Paital B and G B N Chainy 2012 Biology and conservation of genus *Scylla* spp. in India subcontinent. *J. Environ. Biol.* 3: 871-9

[4] Albert-Hubatsch H, Lee S Y, Jan-Olaf M, Diele K, Nordhaus I and Wolff M 2016 Life history, movement, and habitat use of *Scylla serrata* (Decapoda, Portunidae): current knowledge and future challenges. *Hydrobiologia*. DOI 10.1007/s10750-015-2393-z. p 17

[5] Allan G And Fielder D 2003. Mud crab aquaculture in Australia and Southeast Asia. *Proc of a Scoping Study and Workshop*. ACIAR Working Paper No. 54 (Joondooburri Conference Centre, Bribie Island: ACIAR Australia) p 70

[6] Christensen S M, Macintosh D J and Phuong N T 2004 Pond production of the mud crabs *Scylla paramamosain* (Estampador) and *S. olivacea* (Herbst) in the Mekong Delta, Vietnam using two different supplementary diets. *Aquaculture Research* 35: 1013-24

[7] Paterson B D dan Mann D L 2011 Mud Crab Aquaculture *Recent Advances and New Species In Aquaculture* ed R K Fotedar and B F Philips (Oxford: Wiley-Blackwell) pp 115-35

[8] Purwanti F, Suradi and Rudyanti S 2003 *Evaluasi Potensi Kepegawaian Scylla serrata pada Ekosistem Mangrove di Daerah Morodemak, Kabupaten Demak*. Laporan Akhir Hasil Penelitian Dosen Muda (Semarang: Universitas Diponegoro)

[9] Syam A R, Suwarso, Purnamaningtyas S E 2011 Exploitation rate of mangrove crab (*Scylla serrata*) in Mayangan mangrove area, Subang-West Java. *J. Lit. Perikan Ind* 17(3):201-7 [in Indonesian]

[10] Siahainenia L, Natan Y, Khouw A S and Pattikawa J A 2016 Size distribution, growth pattern and condition factor of mangrove crab *Scylla serrata* in the coastal waters of Western Seram, Maluku, Indonesia. *International J. of Fisheries and Aquatic Studies* 4(2): 291-6

[11] Tetelepta J M S, Natan Y and Pentury R 2016 Status of Mangrove Forest Ecosystem and Sustainability of Mud Crab (*Scylla* sp.) Fishery at Pelita Jaya Bay and Kotania Bay, Western Seram District, Indonesia. Paper presented at 1st International Seminar on Agro-Forestry (ISA-1) “Agro-Forestry, Small Island and Climate Change”, 2-3 November. 2016. Ambon, Indonesia

[12] Tetelepta J M S, Natan Y, Ongkers O T S and Pattikawa J A 2018 Some population biology aspects of edible orange mud crab *Scylla olivacea* (Herbst, 1796) of Kotania Bay, western Seram District, Indonesia. *AACL Bioflux* 11(4):1203-12

[13] Teteleptal J M S, Natan Y, Pattikawa J A, Ongkers O T S and Pattiasina B J 2019 Fishery of mud crab *Scylla serrata* of Kotania Bay, Western Seram District: potency, stock status and sustainable management. *IOP Conf. Series: Earth and Environmental Science* 339 012002

[14] Fikri I A and Siahainenia L 2017 Harvest control rules of mud crab (*Scylla* spp.) at Ohoi Evu waters, Kei Kecil, Southeast Maluku District. Paper presented at National Symp. on Sustaiable Crustacean Fisheries. 15-16 May, 2017. Jakarta Indonesia p 15 [in Indonesian]

[15] Agbayani R F 2001 Production economics and marketing of mud crabs in the Philippines. *Asian Fish. Sci* 14:201-10

[16] Ferdoushi Z, Xiang-Guo Z and Hasan M R 2010 Mud crab (*Scylla* sp.) marketing system in Bangladesh. *As. J Food Ag-Ind* 3 (02):248-65

[17] Wouthuyzen S and Sapulete D A 1994 Review on the past and present conditions of coastal waters of Kotania bay, West Seram. *Perairan Maluku dan Sekitarnya* pp 1-18 [in Indonesian]
[18] Natan Y 2014 Fattening of small size mud crab *Scylla serrata* which is catch fishing in Wael District of Piru, Western Seram. *Jurnal Perikanan (J. Fish. Sci.)* 15(2): 79-87 [in Indonesian]

[19] Effendie MI 1997 *Fishery Biology* (Yogyakarta: Yayasan Pustaka Nusatama) p 163 [in Indonesian]

[20] Effendi I and Oktariza W 2006 *Manajemen Agribisnis Perikanan*. (Jakarta: Penebar Swadaya) p 120

[21] Saidah S and Sofia L A 2016 The business development of mud crab (*Scylla* spp) rearing by silvofishery system. *Jurnal Hutan Tropis* 4(3):265-72 [in Indonesian]

[22] Amin M A, Asadujjaman M, Hossain M B, Hasan M T, Hassan M F and Chowdhury M T H 2016 Mud crab (*Scylla serrata*) fattening in pen culture system: changes of proximate composition due to fattening. *The Arab Gulf Journal of Scientific Research* 34(3/4): 79-88

[23] Karim M Y, Azis H Y, and Bunga M 2018 Penggemukan kepiting bakau (*Scylla olivacea*) sistem silvofishery pada berbagai jenis vegetasi mangrove. Paper presented at Seminar Nasional Perikanan dan Kelautan Universitas Riau 12-13 September 2018 di Pekanbaru

[24] Sagala L S S, Idris M and Ibrahim M N 2013 Growth comparison of male and female *Scylla serrata* through bottom confinement method. *Jurnal Mina Laut Indonesia* 3(13): 46-54 [in Indonesian]