CLUES TO THE STAR FORMATION IN NGC 346 ACROSS TIME AND SPACE

GUIDO DE MARCHI1, NINO PANAGIA2,3,4, and ELENA SABBI2

1 European Space Agency, Space Science Department, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands; gdemarchi@rssd.esa.int
2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; panagia@stsci.edu, sabbi@stsci.edu
3 INAF–CT, Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
4 Supernova Limited, OYV #131, Northsound Rd., Virgin Gorda, British Virgin Islands

Received 2010 August 17; accepted 2011 June 27; published 2011 September 19

ABSTRACT

We have studied the properties of the stellar populations in the field of the NGC 346 cluster in the Small Magellanic Cloud, using the results of a novel self-consistent method that provides a reliable identification of pre-main sequence (PMS) objects actively undergoing mass accretion, regardless of their age. The 680 identified bona fide PMS stars show a bimodal age distribution, with two roughly equally numerous populations peaked, respectively, at ~1 Myr and ~20 Myr. We use the age and other physical properties of these PMS stars to study how star formation has proceeded across time and space in NGC 346. We find no correlation between the locations of young and old PMS stars, nor do we find a correspondence between the positions of young PMS stars and those of massive OB stars of similar age. Furthermore, the mass distribution of stars with similar age shows large variations throughout the region. We conclude that, while on a global scale it makes sense to talk about an initial mass function, this concept is not meaningful for individual star-forming regions. An interesting implication of the separation between regions where massive stars and low-mass objects appear to form is that high-mass stars might not be “perfect” indicators of star formation and hence a large number of low-mass stars formed elsewhere might have so far remained unnoticed. For certain low surface density galaxies this way of preferential low-mass star formation may be the predominant mechanism, with the consequence that their total mass as derived from the luminosity may be severely underestimated and that their evolution is not correctly understood.

Key words: galaxies: star clusters; individual (NGC 346) – galaxies: stellar content – Magellanic Clouds – stars: formation – stars: luminosity function, mass function – stars: pre-main sequence

Online-only material: color figures

1. INTRODUCTION

With over 30 O-type stars among its denizens (Massey et al. 1989; Evans et al. 2006), the NGC 346 cluster is the site of most intense star formation in the Small Magellanic Cloud (SMC) as well as one of the most active in the Local Group. The massive young stars in NGC 346 are responsible for the ionization of the surrounding N66 nebula, the largest H ii region in the SMC (Henize 1956). The location of NGC 346 and N66 in the SMC, their geometry, and the limited amount of foreground extinction have made these regions an ideal place to study the effects of massive objects on the surrounding medium, including whether they can effectively trigger the formation of new generations of stars, as some theories of sequential star formation suggest (e.g., Elmegreen & Lada 1977).

Over the past 20 years, many authors have attempted to give an answer to these questions. Massey et al. (1989) conducted a photometric and spectroscopic study of NGC 346, revealing not only 33 O-type stars (1/3 of which are earlier than O6.5), but also several lower-mass stars (~15 M⊙) forming a distinct subgroup ~2.6 to the SW of the center and with an estimated age of order 15 Myr. The age difference with respect to the O-type stars led these authors to suggest that sequential star formation might have occurred in the region.

Using near- and mid-infrared as well as CO submillimeter observations, Contursi et al. (2000) and Rubio et al. (2000) were able to identify several embedded sources in the bar making up the body of NGC 346, corresponding to strong emission peaks whose presence may reveal recent and/or ongoing star formation. However, while the peak corresponding with the central NGC 346 cluster contains unreddened stars, all other peaks are affected by higher reddening, suggesting that the interstellar material has not been completely ejected and that they could be in a younger stage of evolution. Since the more reddened peaks appear to be located farther away from the central cluster, these authors have suggested that star formation might have taken place in a sequential way along the bar.

More recent observations with the Hubble Space Telescope (HST) and Spitzer Space Telescope, revealing that they are compact clusters made up of a multitude of pre-main sequence (PMS) stars (Nota et al. 2006; Sabbi et al. 2007; Hennekemper et al. 2008) and young stellar objects (YSOs; Bolatto et al. 2007; Simon et al. 2007). Hennekemper et al. (2008) performed a detailed analysis of the locations of these PMS stars in the color–magnitude diagram (CMD), which they compare with the PMS isochrones of Siess et al. (2000) taking into account the effects of differential reddening, binarity, and variability on the age determination. They conclude that, depending on the amount of reddening present in the field, the observed broadening of the positions of these PMS objects in the CMD can be compatible with both a single star formation episode some ~10 Myr ago or with two episodes about 5 and 10 Myr ago. Nevertheless, even in this latter case, the lack of a correlation between the estimated ages and the positions of the objects in the field led Hennekemper et al. (2008) to conclude that there is no obvious signature of sequential star formation in this region.

* Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.
In a subsequent study by the same team, Gouliermis et al. (2008) suggest that signs of sequential star formation might actually be present. They propose a scenario in which the birth of the three young star clusters on the arc-like structure was triggered by the winds of the massive progenitor of SNR B0057−724 located at the center of the arc, ~20 pc away. Gouliermis et al. (2008) also suggest that, in a similar manner, the powerful winds of the OB stars at the center of NGC 346 are shaping a dusty arc feature to the south and southwest of the association. On the other hand, as we will show in Section 3, the dusty arc feature appears to be ~20 Myr old and little or not at all affected by the presence of the OB stars in the center (Smith 2008), suggesting that there is no causal connection between the arc and the massive stars at the center of NGC 346.

The weak side of all these studies is that they are mostly qualitative. They are primarily based on the analysis of the spatial distribution of the objects and on the morphology and geometry of the features present in the field. However, they do not take into account the actual ages of the low-mass stars that are needed to establish whether there are dependencies and correlations among the stellar generations that have formed in the recent past in these regions.

An improvement in this sense is offered by the recent work of Cignoni et al. (2011). Using a classical synthetic CMD procedure, they concluded that NGC 346 has experienced different regimes of star formation, including a dominant and focused “high-density mode,” which according to these authors led to the formation of rich and massive sub-clusters hosting both PMS and massive main-sequence (MS) stars, and a subsequent diffuse “low-density mode,” characterized by the presence of sub-clusters hosting PMS stars only. These different modes of star formation can have an impact on the shape of the mass function (MF), as we discuss further in Sections 3 and 4. Cignoni et al. (2011) suggest that the richest sub-clusters formed ~6 Myr ago, with an apparent remarkable synchronization, while star formation in the sub-clusters mainly composed of PMS stars appears to have started ~3 Myr ago, following a multi-seeded spatial pattern.

Even in works of this type, however, the available age range for low-mass stars is limited to the youngest PMS objects (~5 Myr). This is because ages are based on the comparison of the observations with theoretical evolutionary tracks in the Hertzsprung–Russell (H–R) diagram, and at older ages the isochrones become too close to the very populous MS of field stars to provide reliable results.

Actually, the presence of distinctive emission features in the spectra of PMS stars with ages up to ~30 Myr, due to the accretion process to which they undergo, allows us to efficiently and accurately detect and identify all objects of this type in a stellar field, regardless of their age and of their position in the H–R diagram. Building on the work of Romaniello (1998) and of Panagia et al. (2000), De Marchi et al. (2011a, hereafter Paper I) showed that through a suitable combination of broadband and narrowband photometry it is also possible to derive the mass accretion rate of these objects, with an accuracy comparable to that allowed by spectroscopy. In a companion paper (De Marchi et al. 2011a, hereafter Paper II), we applied the method developed in Paper I to the high-quality HST photometry of NGC 346 (Sabbi et al. 2007) and were able to identify two distinct generations of bona fide PMS stars (about 700 objects) with a clearly bimodal age distribution in the range from ≤1 Myr to ~30 Myr. In this work, we use the accurate physical parameters that we have measured in Paper II and correlate them with the spatial distribution of these objects. The availability of accurate ages for such a large number of stars across the field is the key element that was missing in previous studies of NGC 346 and allows us for the first time to study how star formation has proceeded in this area over the past ~30 Myr.

The paper is organized as follows: in Section 2 we briefly summarize the results of Paper II and present the relevant observational material. Section 3 compares the spatial distribution of the two generations of PMS stars to one another and to that of young massive stars present in the field. In Section 4, we look at how the shape of the stellar MF changes across the field. In Section 5, we discuss the possible consequences of different processes operating for high-mass and low-mass star formation on the study of galaxies and the determination of their star formation rates. A summary of the most important conclusions of the paper is offered in Section 6.

2. PRE-MAIN SEQUENCE STARS IN NGC 346

In Paper II, we have studied the properties of the stellar populations in a field 200′′ × 200′′ around the center of NGC 346, making use of observations collected with the Advanced Camera for Surveys on board the HST (details on the observations and on the photometric analysis of the data can be found in Nota et al. 2006 and Sabbi et al. 2007). We refer the reader to Paper II for a detailed description of the analysis of the stellar populations in this field and of the determination of their properties. However, for convenience, we offer hereafter a brief summary of the main results that are most relevant to this paper.

Thanks to a novel, self-consistent method developed in Paper I, it is possible to reliably identify PMS stars undergoing active mass accretion, regardless of their age. The method, fully described in Papers I and II, does not require spectroscopy and combines broadband V and I photometry with narrowband Hα imaging to detect all stars with excess Hα emission while simultaneously providing an accurate measure of their accretion luminosities L_{acc} and mass accretion rates \dot{M}_{acc}.

The application of this method to the NGC 346 observations allowed us to reveal 791 PMS candidates, namely, objects with Hα excess above the 4σ level with respect to the reference provided by normal cluster stars observed in the same bands. The average Hα luminosity of these PMS candidates is 2.7×10^{31} erg s$^{-1}$ or $\sim 10^{-2} L_{\odot}$. In order to avoid possible contamination due to objects with significant chromospheric activity, we retained as bona fide PMS stars only those with a large equivalent width of the Hα emission line, $W_{\text{eq}} < -20 \, \text{Å}$ for stars with $T_{\text{eff}} < 10,000$ K or $W_{\text{eq}} < -50$ Å for hotter stars (note that, as customary, a negative equivalent width is used for emission lines). A total of 694 objects satisfy these conditions.

A CMD showing the positions of these objects in the observational plane (V versus V−I) is provided in Paper II. In Figure 1, we show the locations of these objects in the H–R diagram (thick dots, red in the online version), compared with the PMS evolutionary models of the Pisa group (Degl’Innocenti et al. 2008; Tognelli et al. 2011) for metallicity $Z = 0.002$. As noted in Paper II, although this metallicity is at the lower end of the currently accepted values for the SMC, ranging from ~1/5 to ~1/8 Z$_{\odot}$ (see Russell & Dopita 1992; Rolleston et al. 1999; Lee et al. 2005; Pérez-Montero & Díaz 2005), it appears better suited to describe the properties of young PMS stars in this field. As Figure 1 immediately shows, there are two separate groups of objects, occupying two distinct regions in the diagram, one

References:

- Gouliermis et al. (2008)
- Cignoni et al. (2011)
- Smith (2008)
- Sabbi et al. (2007)
- Panagia et al. (2000)
- De Marchi et al. (2010a, hereafter Paper II)
- De Marchi et al. (2011a, hereafter Paper I)
- Nota et al. 2006
- Sabbi et al. 2007
- Romaniello (1998)
- Panagia et al. (2000)
- De Marchi et al. 2010a
- De Marchi et al. 2011a
As mentioned above, the distribution of our bona fide PMS stars in the H-R diagram reveals a shortage of objects with ages around \(~\sim 4\)–8 Myr, suggesting a likely gap or lull in star formation at that time. The presence of two very clearly distinct groups of stars with [\text{H}\alpha] excess can only be interpreted as the result of distinct star formation episodes. Hillenbrand et al. (2008) and Hillenbrand (2009) have argued that random luminosity spreads apparent in the H-R diagram of star-forming regions and young clusters are often erroneously interpreted as true luminosity spreads and taken as indicative of true age spreads. This is clearly not the case here, since no random spread

Figure 1. Hertzsprung–Russell diagram of the PMS candidate stars. All objects shown here have excess emission in H\alpha at the 4\sigma level or higher. Those indicated with filled circles also have \text{W}_{\alpha}(H\alpha) < -20 \AA or < -50 \AA for stars hotter than 10,000 K. Squares correspond to objects with \text{W}_{\alpha}(H\alpha) > -50 \AA and, as such, are potential Be stars. Thick solid lines show the evolutionary tracks from Degl’Innocenti et al. (2008) for metallicity \(Z = 0.002\) and masses from 0.5 to 4 \(M_\odot\), as indicated. The corresponding isochrones are shown as thin lines, for ages of 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, and 32 Myr from right to left. Note that the constant logarithmic age step has been selected in such a way that the photometric uncertainties are smaller than the distance between the isochrones in the H-R diagram. (A color version of this figure is available in the online journal.)
in the luminosity of a single age population could produce such a distinctive bimodal distribution in the H-R diagram.

On the other hand, some of the objects that we label older PMS stars could actually be very young stars with a circumstellar disk seen at high inclination (\(>80^\circ\)). Objects of this type would appear bluer than their photospheric color due to light scattering on the circumstellar disk. However, they would also be several magnitudes fainter than their photospheric brightness due to extinction caused by an almost edge-on disk. According to the models of Robitaille et al. (2006) for the spectral energy distribution of young stars seen at various viewing angles, objects of this type can only account for a few percent of the total young population. Furthermore, as we will show in Section 3.2, the spatial distribution of the stars with H\(_\alpha\) excess close to the MS is remarkably different from that of the younger PMS stars, and this should not be the case if these were all objects of the same type simply viewed at different inclinations. Therefore, the vast majority of stars with H\(_\alpha\) excess near the MS must be intrinsically older.

In a forthcoming paper (G. De Marchi et al. 2011, in preparation) we will address in detail the role played by circumstellar disks seen at high inclination, which can undoubtedly account for a small fraction (<5%) of our sample. That work will discuss in detail the theoretical implications that such a geometry can have on the extinction and scattering of the light of the central object and will address the specific case of NGC 6611 in the Eagle Nebula, where like in NGC 346 a population of older (~10 Myr) PMS stars is also present.

As regards the age distribution of PMS stars in NGC 346, a histogram is shown in Figure 2, where PMS ages are binned using a constant logarithmic step (a factor of two) that better reflects the relative age uncertainties stemming from the comparison of model isochrones with the actual data. The solid line in Figure 2 gives the number of stars inside each age bin as a function of time, whereas the dot-dashed line provides an apparent value of the star formation rate, in units of stars per Myr, derived by dividing the number of objects in each bin by the width of the bin. Note that at the extremes of the distribution it becomes more difficult to assign an age to the stars, thus the first and last bins are drawn with a dotted line to indicate a larger uncertainty. In particular, as mentioned above, for stars that in the H-R diagram are closer to the MS than their photometric error, the age that we provide is in practice a lower limit to the true age. This is due to the fact that the distribution function is characterized by such an extended tail toward older ages that all ages older than the value that we provide are virtually equally likely.

Also the dot-dashed line necessarily represents a lower limit to the star formation rate. In this case, the reason is not the age uncertainty but the fact that the we consider exclusively the number of detected PMS stars in the range 0.4–4.0 \(M_\odot\) that at the time of the observations had H\(_\alpha\) excess emission at the 4\(\sigma\) level or above. One limitation is caused by photometric incompleteness at low masses, which makes it more difficult to detect faint PMS stars in crowded environments. Another effect is the uncertainty on the fraction of PMS stars that at any given time show excess H\(_\alpha\) emission. For younger PMS stars (<8 Myr), whose position in the H-R diagram is well separated from that of field MS stars, this fraction can be estimated from the ratio of stars with and without H\(_\alpha\) excess in the same region of the diagram. The data show that at the time of the observations this ratio was 0.28 ± 0.04 (see also Paper II). The thin solid line in Figure 2 (green in the online version) shows the age distribution of all stars in the H-R diagram younger than 8 Myr, shifted vertically by ~0.56 dex and appears to be in excellent agreement with the thick solid histogram. (A color version of this figure is available in the online journal.)

Figure 2. Histograms showing the number of stars per age bin (thick solid line) and the apparent star formation rate (dot-dashed line) as a function of age. Only bona fide PMS stars (i.e., objects with H\(_\alpha\) excess emission at the 4\(\sigma\) level or above at the time of the observations) in the range 0.4–4\(M_\odot\) are considered in this figure, so the dot-dashed line provides a lower limit to the true star formation rate. The thin solid line shows the age distribution of all stars (i.e., also those without H\(_\alpha\) excess emission), but only up to ages of 8 Myr, since older objects cannot be distinguished from field MS stars. The thin solid histogram is shifted vertically by ~0.56 dex and appears to be in excellent agreement with the thick solid histogram.

The results of our quantitative age analysis on the star formation efficiency in this field are still necessarily tentative, but it will be possible to lift at least some of the uncertainties plaguing...
this physical picture through a systematic comparison of different star-forming clusters in similar states of evolution that we plan to conduct in the future. On the other hand, having established that there are at least two star formation episodes in NGC 346, separated by 10 Myr or more, we still can study whether they are independent of one another or appear to be causally connected.

3.2. Looking for Spatial Correlations: Contour Plots

We compare in Figure 3 the spatial density distributions of the younger and older PMS populations by means of contour lines with logarithmic scaling, overlaid on an Hα image of NGC 346. As mentioned above, the two groups include, respectively, 350 and 330 objects. The contour plots have been obtained after smoothing the distribution with a Gaussian beam with size σ = 4′′ or 1.2 pc, as indicated by the circle in the upper right corner of the figure. The lowest contour level corresponds to a local density of PMS stars twice as high as the average PMS stars density over the entire field. The step between contour levels is constant and corresponds to a factor of 1.5. We also show with small circles the positions of 55 young massive stars brighter than 2 × 10^4 L☉ and with an implied mass > 15 M☉ (e.g., Iben 1967).

A striking feature in this figure is the difference in the spatial distribution of the three types of stars. Many older PMS stars are distributed along the rim of the gas shell to the S and W of the cluster’s center (hereafter named “southern arc”) and, except for the center itself, they appear to avoid regions where younger PMS stars are located. As for massive stars, albeit more abundant near the center of NGC 346, they also appear at various other locations in the field that are not occupied by PMS objects.

It is interesting to compare these contour lines with the maps of mid-IR emission obtained with ISOCAM on board the Infrared Space Observatory by Contursi et al. (2000) and Rubio et al. (2000). The strong emission peaks discovered by these authors (see also the Introduction) coincide with regions of recent star formation in our analysis as well, and in particular with the intensity peaks due to younger PMS stars in Figure 3 (darker contour plots, shown in red in the online version). As regards older PMS stars, including those in the southern arc, they appear projected against a background of lower IR emission. From the analysis of observations with the Spitzer Space Telescope, Simon et al. (2007) discovered in the arc a few YSOs of relatively high mass (>4.5 M☉). As we will show later (see Figure 4), there are indeed also some younger PMS stars along this gas rim, but the arc appears to be mostly dominated by older PMS objects.

The careful reader could be worried that several old PMS stars seem to lie along the southern arc, since nebular emission might in principle contaminate their photometry and give us an inaccurate measurement of their Hα excess emission. However, as already mentioned in Paper II, we have carefully inspected the images and removed from the list of bona fide PMS stars all objects whose Hα photometry might be contaminated by gas filaments. While it is possible that some of the Hα emission that we detect is due to diffuse nebular emission in the H region not powered by the accretion process (see Paper I), if the emission is extended and uniform over an area comparable to that of the point-spread function, its contribution cancels out with the rest of the background when we perform the photometry (see Sabbi et al. 2007 and Paper II for details on the photometry).

Obviously, the subtraction would not work if the emission were not uniform, as, for example, in the case of a filament that projects over the star but that does not cover completely the background annulus. For this reason, after applying an unsharp-masking algorithm to highlight and sharpen the details of the Hα frames, we have carefully inspected all sources with excess Hα emission and have marked as suspicious and excluded from our bona fide sample all those with filaments contamination within 0.3 of the star, for a total of 62 objects. Although some of them might have intrinsic Hα excess emission, we prefer to adopt a conservative approach and remove all dubious cases. A detailed example of how well this powerful technique works can be found in Beccari et al. (2010). Therefore, we are confident that the tight distribution of older PMS stars along the rim of the gas shell is not an artifact and suggests instead that these objects have very low velocities or at least a very small velocity spread.

Observed values of the velocity dispersions of stars in young clusters and associations typically fall in the range 1–10 km s⁻¹ (e.g., van Altena et al. 1988; Jones & Walker 1988; Mengel & Tacconi-Garman 2009; Bosch et al. 2009; Rochau et al. 2010). The thickness of the projected distribution of the older PMS stars in NGC 346 is of order 20″ or 6 pc. With a median estimated age of 20 Myr, this implies a small value of the projected velocity spread, namely, ≤ 0.5 km s⁻¹, corresponding to a three-dimensional velocity dispersion of ≤ 1 km s⁻¹ along the gaseous rim. This picture is consistent with the very low velocity dispersion (≤ 3 km s⁻¹) of the ionized gas measured by Smith (2008) in this field from high-resolution echelle spectroscopy. If there is a higher velocity component, it must be linked to the systematic motion of the gas shell.

The match between the location of many old PMS objects (about 1/3 of them) and the rim of the gas shell also suggests that the shell itself reflects the distribution of the gas out of which these stars formed and that it has not (yet) been significantly affected by the stellar winds and by the ionizing radiation of the much younger massive stars at the center of the field. Furthermore, the fact that the distribution of these massive objects and of the younger PMS stars does not appear to trace in any way the geometry of the gas shell indicates quite convincingly that we are seeing two rather different and unrelated generations of stars.

From the apparent shape of the rim of the gas shell, Gouliermis et al. (2008) recently argued that there is a relationship between the central NGC 346 cluster and the southern arc. They suggested that the latter outlines the ionization front of the cloud that is caused by the powerful stellar winds of the young massive stars at its center. In their scenario, the photoionization process of the central OB stars would provide the primary source of mechanical energy that triggers star formation in this region. Our analysis does not support this interpretation: not only is the rim of the gas shell unaffected by the central OB stars, but it is also much older (and it may be much farther away from the OB stars than what the projected distance might seem to suggest). This discrepancy outlines the risks of drawing conclusions on triggered star formation based primarily on the morphology of structures projected on the sky. As Watson et al. (2010) have recently shown, only 20% of the sample of H II regions that they studied appear to have a significant number of YSOs associated with their photodissociation fronts, implying that triggered star formation mechanisms acting on the boundary of the expanding H II region are not common.

3.3. Looking for Correlations: Number Ratios

A more quantitative characterization of the relative distribution of younger and older PMS objects and massive stars is offered by the maps shown in Figure 4. The (0,0) position in...
Figure 3. Contour lines show the spatial density distribution of young (<7 Myr; red) and old (>7 Myr; yellow) PMS stars in NGC 346, overlaid on a negative Hα image of the region. The (0,0) position in this figure corresponds to R.A. = $0^h59^m0^s$, decl. = $-72^\circ10'32''$ (J2000), while north is up and east to the left. The contour plots have been obtained after Gaussian smoothing with a beam size of $\sigma = 4''$, as indicated by the circle in the upper right corner. Blue circles correspond to young (<7 Myr) massive stars brighter than $\sim 2 \times 10^4 L_\odot$. The contour levels have a logarithmic spacing of ~ 0.17 dex (or a factor of 1.5). The lowest level corresponds to a density of 0.033 stars per arcsec2, equivalent to twice the average density of PMS stars in this field. The highest contour level for old PMS stars corresponds to 0.11 stars per arcsec2 and that for young PMS stars to 0.25 stars per arcsec2.

Figure 4. Panel (a): relative locations of young PMS stars (darker circles, red in the online version), old PMS stars (lighter circles, yellow in the online version), and massive MS stars (pentagrams, blue in the online version). Panel (b): after placing a uniformly spaced grid in panel (a), we have counted the number of stars of each type falling into cells 25'' on a side. The corresponding counts are listed in each cell, with the number of massive stars on top, the number of young PMS stars in the middle, and that of older PMS objects at the bottom of each cell. See the text for the meaning of the background colors of the cells.

The difference in the distribution of younger and older PMS stars already seen in Figure 3 continues to be present in Figure 4, revealing that older PMS objects are less concentrated and more widely distributed than younger stars. The other notable feature in Figure 4 (and already visible in Figure 3) is the mismatch between the positions of young massive stars and those of young PMS objects of similar age (both types of objects are younger than 7 Myr and most are not older than 3 Myr). The majority of young massive stars are clustered near the adopted center of NGC 346, where a high concentration of young PMS stars is also seen. However, there is also a number of massive objects that are not surrounded by an overdensity of PMS stars. Similarly, many PMS objects are clustered in populous groups with no massive stars in their vicinity, although the total mass of the groups can reach $\sim 100 M_\odot$ even when only considering PMS objects in the range 0.4–4 M_\odot, once photometric completeness is taken into account. A similar situation is seen in the Cygnus X North complex (Beerer et al. 2010), where the positions of many early B-type stars (the most massive objects in the region) do not coincide with those of young star clusters of similar age.

These differences can be easily quantified by using the star numbers shown in the cells of Figure 4(b). The numbers provide the count of massive stars on top, of young PMS stars in the middle, and of older PMS object at the bottom of each cell. Since in this field there are a total of 55 massive stars ($>15 M_\odot$) and 350 young PMS stars, on average one would normally expect in each cell about six times more young PMS objects than massive stars of similar age, but as the figure shows this is not always the case. On this basis, assuming Poisson statistics, we note at least two regions with many PMS stars where the observed absence of massive stars has a probability of less than 5% to occur by chance. They are centered around $(+60'', +25'')$ and $(-40'', +70'')$. This condition is true for the individual cells for which the number of young PMS stars is significantly higher than expected for a Poisson distribution.
with a darker shade (darker pink in the online version), while for the light-shaded cells in their vicinities (lighter pink in the online version) the condition still applies if they are combined with neighboring cells of the same or darker color.

This simple statistical test proves that the observed paucity of massive young stars in these two rather wide areas is significant at a 2σ level, at least. In fact, since our photometric completeness is worse in the most central regions (see Sabbi et al. 2007), the paucity of massive young stars is even more pronounced there. A very similar result has been recently found by Cignoni et al. (2011), who analyzed the ratio of massive MS stars and low-mass PMS objects within the individual sub-clusters detected by Sabbi et al. (2007) in this region. Although the identification of PMS objects in the work of Cignoni et al. (2011) is purely based on their broadband colors and magnitudes, and as such can in principle be affected by interlopers and field objects, these authors conclude that the PMS stars in the regions corresponding to our pink cells in Figure 4(b) are overrepresented with respect to massive stars, for a typical IMF.

Similarly, one can find in Figure 4(b) several cells (shaded in darker green in the online version) where the number of young PMS objects falls below the 5% Poisson probability expected from the number of massive stars. Some of these cells are located at the center of NGC 346, where crowding and photometric incompleteness make it more difficult to detect fainter PMS stars, so the statistical significance of our non-detection of low-mass stars is lower. However, most of the isolated massive stars are located in the outer regions of the cluster, where photometric completeness and crowding are not a concern. It is possible that these objects are not cluster members, but the fact that they are not surrounded by PMS stars of similar age remains puzzling and might imply that they have been displaced from their formation region due to dynamical interactions, such as in the case of star 30 Dor 016 (Evans et al. 2010).

A possibility would be that these massive objects were the lower-mass companions of disrupted binary systems in which the primaries have already ended their evolution. The radial velocity study of NGC 346 by Evans et al. (2006) suggests that at least 1/4 of the massive stars are in binary systems. The typical projected separation of the isolated massive stars from the center of NGC 346 is of order 2′ or ∼35 pc. Given the young ages prevalent in NGC 346 (less than 3 Myr), none of the youngest generation stars could have produced runaways. Very few isolated massive stars may indeed be runaways from binary systems if they were part of a ∼15 Myr old population, such as the one associated with the sub-cluster SC–16 (Sabbi et al. 2007) and corresponding to the three massive objects in the upper left corner of Figure 3 at (−100′′, +80′′). In this case, runaway stars could cross the entire field of, say, 2′ or ∼35 pc moving at a velocity of about 3 km s−1 for about 10 Myr.

This however seems hardly to be the case for the objects marked by circles in that figure. First, none of them has an age in excess of 7 Myr, according to our photometry and to the spectroscopy of Evans et al. (2006) for the objects in common with their catalogue. Second, the fact that there are only three massive stars in the direct vicinity of the ∼15 Myr cluster would require that most massive stars were in binary systems and that almost all secondaries have moved away from it: this explanation appears rather contrived and seems to require a very unlikely occurrence. Therefore, we have to accept that the lack of massive stars associated with a number of PMS star clusters simply reflects a genuine property of star formation in those parts of the NGC 346 complex.

In summary, from the analysis of Figure 4 we can conclude in a more quantitative way that there is little or no spatial correlation between the position of young massive objects and that of PMS stars of similar age, except for the center of NGC 346, and that the two populations of older and younger PMS objects have rather different distributions (except again possibly for the regions near the cluster’s center). This implies that the stellar IMF varies considerably across the field, as Cignoni et al. (2011) have recently suggested. Therefore, if the IMF is sampled over a limited region, its shape will not be statistically representative of the entire cluster. As we discuss in the next section, this has profound implications for the concept of IMF.

4. UNIFORMITY OF THE MASS FUNCTION

Before proceeding to study the MF of PMS stars, we must consider the possible selection effects inherent in our measurements and how they could affect our analysis of the MF. For this purpose, we summarize most of the relevant information in Figure 5, to which we will refer throughout this section. Shown in the figure are the spatial distributions and positions in the H–R diagram of all our bona fide PMS stars, as a function of their ages, masses, and L(Hα) luminosities as measured in Paper II. As before, we split objects into two age groups, younger or older than 7 Myr, while for the mass we use three bins, namely, 0.4–0.8 M⊙, 0.8–1.1 M⊙, and 1.1–4 M⊙. We also use symbols of different colors (most easily discernible in the online version of the paper) to identify stars with different Hα luminosities, as indicated by the legends. In all panels the small open circles refer to the positions of the same 55 young massive stars already shown in Figures 3 and 4(a). As for the H–R diagrams, the solid lines correspond to PMS isochrones from the Pisa group (Degl’Innocenti et al. 2008; Tognelli et al. 2011) for metallicity Z = 0.002 and ages as indicated in panel (i) with a constant logarithmic step (0.3 dex corresponding to a factor of two in age). Since the photometric uncertainty is typically smaller than the separation between neighboring isochrones, with the interpolation procedure explained in Section 2 we are able to assign relative ages with an accuracy of better than a factor of two, typically of order √2.

A first obvious selection effect, which will however not affect our determination of the MF of young PMS stars, is revealed by the paucity of PMS objects in the range 0.4–0.8 M⊙ and age >7 Myr. This is due to the detection limit of our photometry at ∼0.5 L⊙.

Another interesting characteristic apparent from this figure, and already partly seen in Figures 3 and 4(b), is the compact distribution of older PMS stars of all masses along the gaseous rim of the southern arc. The fact that the majority of these objects are rather luminous (L(Hα) > 7.5 × 1031 erg s−1) confirms that they are not artifacts due to the gas rim itself, as already discussed in Section 3.

To illustrate the extent of the MF variations present in this field, we start from panel (a), where the two conspicuous groups of young low-mass (0.4–0.8 M⊙) PMS objects already seen in Figure 4 are visible around (+60′′, +25′′) and (−40′′, +40′′), as indicated by the large circles with a radius of ∼25′′ or ∼7.3 pc. Interestingly, very few objects are found in the same regions in panels (d) and (g), where equally young stars with masses of, respectively, 0.8–1.1 M⊙ and 1.1–4 M⊙ are shown.
Figure 5. Spatial distribution and position in the H-R diagram of all our bona fide PMS stars, as a function of their age, mass, and \(L(\text{H}\alpha) \) luminosity. Objects are sorted according to their age (< 7 Myr or > 7 Myr), to their mass (0.4–0.8 \(M_\odot \), 0.8–1.1 \(M_\odot \), and 1.1–4 \(M_\odot \)), and to their \(\text{H}\alpha \) luminosity (< 3.5 \(\times \) 10^{31} erg s\(^{-1}\), < 7.5 \(\times \) 10^{31} erg s\(^{-1}\), and > 7.5 \(\times \) 10^{31} erg s\(^{-1}\), respectively, gray asterisks, green dots, and red dots in the online version) as per the legends shown in each panel. The small circles (blue in the online version) indicate the positions of the 55 young massive stars already shown in Figures 3 and 4(a). The two large circles in panels (a), (d), and (g) refer to the regions described in the text. As for the H-R diagrams, the solid lines correspond to PMS isochrones from the Pisa group for metallicity \(Z = 0.002 \) and ages in Myr as indicated in panel (i) with a constant logarithmic step (factor of two). The small dots correspond to stars with masses outside of the range indicated in each panel.

(A color version of this figure is available in the online journal.)

In particular, in panel (a) there are 36 and 41 PMS stars in these regions, whereas 4 and 8 are found in panel (d) and 4 and 9 in panel (g), respectively. Based on the number of stars inside the circles in panel (a) and assuming a power-law MF of the type \(dN/dm \propto m^\alpha \) with \(\alpha = -2.0 \pm 0.2 \), as typically observed in Galactic star-forming regions (De Marchi et al. 2010b), one would expect, respectively, 11 and 13 objects inside the circles in panel (d) and 12 and 14 in panel (g). These values are considerably larger than the numbers observed, particularly for the region at (+60\(^{\prime}\), +25\(^{\prime}\)). If we were to derive the slope of the MF in the mass range 0.4–4 \(M_\odot \) from the ratio of the number of stars occupying the same region in the three panels, we would obtain a rather steep MF with \(\alpha = -3.1 \pm 0.3 \) (respectively, \(-2.8 \pm 0.3 \) in the first region and \(-3.6 \pm 0.4 \) in the second). Note that the true MF slope is most likely even steeper, owing to the fact that our smaller mass bin is subject to some incompleteness, as mentioned above, even though the completeness of our photometry is well above 50\% for all but a handful of PMS stars (see Paper II).

Although instructive, the comparison between panels (a), (d), and (g) carried out in this way is subject to some bias. We are using the relative number of stars in different mass bins to characterize the shape of the MF, but the objects that we consider are only those undergoing active mass accretion as witnessed by excess \text{H}\alpha emission. This necessarily introduces some selection effects because more massive stars reach the MS more quickly than lower-mass objects (e.g., Palla & Stahler 1993; see also Paper II) and it becomes increasingly more difficult to derive
an accurate age for them. If these objects are associated with older ages, they could be systematically underrepresented in our sample, thereby causing a spurious steepening of the MF.

A possible way to avoid these effects would be to limit the mass range for the analysis, i.e., to consider only panels (a) and (d) since none of the objects in the mass range 0.4–1.1 M_\odot is expected to have reached the MS at an age of <7 Myr. Alternatively, one could limit the age range and only consider very young stars, e.g., those with <1 Myr, which are all in the PMS phase over the entire mass range considered here (0.4–4 M_\odot). This second approach has the advantage of providing more specific information on the IMF and we will therefore follow it.

Interestingly, however, even when restricting our analysis to stars younger than 1 Myr we still find a very steep MF: there are in total 35 objects with this age in the two reference areas of panel (a), but only two objects are found in each of the corresponding regions in panels (d) and (g). The implied MF slope in the range 0.4–4 M_\odot remains very steep, namely, $\alpha = -4.3 \pm 0.5$. One could argue that, if the areas that we are studying are too small, the steep MF slopes that we obtain might be an artifact of small number statistics. However, with a projected radius of 25” or ~ 7.3 pc, the circles in panels (a), (d), and (g) are twice as large as the typical size of star-forming clusters in the Magellanic Clouds (e.g., Hodge 1988). Therefore, these regions sample a sufficiently large area to be representative of the local conditions of star formation, which in this case appear to be characterized by the paucity of massive stars and correspondingly a rather steep MF slope. A similarly steep MF ($\alpha = -4 \pm 0.5$) was found by Massey (2002) in his study of the field of the Magellanic Clouds, i.e., in regions similarly devoid of massive stars.

A more “typical” value of the MF slope for stars younger than 1 Myr could be derived if we extended our analysis to the entire area covered by these observations, corresponding to ~ 60 pc on a side. In their study of the NGC 346 region, Sabbi et al. (2008) determined the present-day MF in NGC 346 from the same observations that we use in this paper. When considering all stars in the field in the range 0.8–60 M_\odot, they derived an MF slope $\alpha = -2.43 \pm 0.18$, very close to the Salpeter (1955) value. When we consider all PMS stars younger than 1 Myr in this field, we find a good match with the results of Sabbi et al. (2008) over the common mass range, namely, 0.4–4 M_\odot. This is shown in Figure 6, where the long-dashed line corresponds to $\alpha = -2.43$ and provides a good fit to the mass distribution of PMS stars younger than 1 Myr. However, we still find a somewhat steeper slope ($\alpha = -2.8 \pm 0.2$, short-dashed line) in the mass range 0.4–2 M_\odot, where the statistics is more robust thanks to the larger number of objects.

In reality, the true MF slope must be slightly shallower than the α values that we have obtained since we only consider bona fide PMS stars those showing Hα excess emission at the 4σ level or above. As discussed in Papers I and II, the accretion process and with it the Hα luminosity is subject to large variations (a factor of two to three in a few days; e.g., Fernandez et al. 1995; Smith et al. 1999; Alencar et al. 2001), with the implication that, statistically, not all PMS stars in a given region will show at the same time Hα excess emission above our conservative acceptance threshold. If the fraction of PMS stars with Hα excess emission were constant, considering only these objects would not affect the determination of the MF slope. However, as we will show in a forthcoming paper (G. De Marchi et al. 2011, in preparation), that fraction appears to become smaller when mass and age increase. While age is not an issue in the present case, since we are only considering stars younger than 1 Myr, our objects span about a decade in mass (0.4–4 M_\odot) and in this range variations as large as a factor of three are seen in the fraction of PMS stars with Hα excess emission. If this effect were taken into account, the slope of the MF over the entire field in the range 0.4–2 M_\odot would drop slightly, to $\alpha = -2.0 \pm 0.3$, a value in line with the typical MF slopes and corresponding uncertainties that are observed in nearby Galactic star-forming regions (e.g., De Marchi et al. 2010b; Bastian et al. 2010).

Nevertheless, even applying this correction to the MFs measured in the two regions discussed above (see the large circles in Figure 5) would still give considerably steeper indices ($\alpha \simeq -3$) than those commonly measured in star clusters. Therefore, the general conclusion that we can draw from this analysis is that there are considerable variations in the shape of the MF of young PMS stars across the field of NGC 346, as witnessed by largely different values of the power-law index α. These variations remain even when we only consider the MF of stars younger than 1 Myr, which would normally be taken as representative of the IMF.

Since these variations are seen when comparing groups of objects comprising several low-mass stars distributed over the typical size of a stellar cluster (7.5 pc radius), they cannot be ascribed to simple statistical fluctuations. Coupled with the remarkable anti-correlation between massive and low-mass stars of similar age (see Section 3 and Figure 4), this indicates quite convincingly that the formation of high- and low-mass stars requires at least different initial conditions, and might also be governed by different mechanisms. This is also the conclusion recently reached by Cignoni et al. (2011). From the observation that the apparently youngest sub-clusters, i.e., those composed only by stars in the PMS phase, show a deficiency of massive stars, these authors speculate that the IMF may be a function of time, with the youngest sub-clusters not having had sufficient time yet to form more massive objects. As already pointed out

![Figure 6. Mass function of PMS stars with age <1 Myr. The short-dashed line is the best power-law fit in the mass range 0.4–2 M_\odot and corresponds to $\alpha = -2.8 \pm 0.2$. The long-dashed line is the fit over the entire mass range, with $\alpha = -2.4 \pm 0.4$ M_\odot.](image-url)
5 See http://archive.stsci.edu/prepds/appp for details.

by Panagia et al. (2000), while the concept of IMF might be meaningful over large areas where it represents the average result of different star formation processes, its predictive power over smaller scales, characteristic of a specific stellar cluster or association, will have to be seriously reconsidered.

5. DISCUSSION

An interesting corollary of the apparent separation between massive star formation sites and regions where moderate/low-mass stars form is that, in general, massive stars may turn out not to be “perfect” indicators of active star formation in galaxies. While it is true that regions where massive stars have formed are actively forming stars, it is not necessarily true that those regions identify the places where most of the stars are formed. In fact, integrating over a Salpeter IMF ($\alpha = -2.35$) defined over the range 0.1–150 $M_\text{☉}$ it is easy to calculate that objects above 4 $M_\text{☉}$ represent only about 20% of the total mass that goes into stars. The fraction is even lower in the field of the Magellanic clouds, where Massey (2002) found $\alpha = -4 \pm 0.5$.

Our analysis of the NGC 346 observations, as well other fields in the Large Magellanic Cloud (LMC) and SMC (e.g., Panagia et al. 2000; Romaniello et al. 2004; Paper I; Paper II; G. De Marchi et al. 2011, in preparation) indicates that low-mass star formation appears to run independently of the formation of massive stars. This may be due to the fact that even in a big cloud that is subdivided into smaller sub-units, massive stars can only form inside the larger cells whereas low-mass stars may form readily in smaller cells. If the bulk of the mass in the interstellar medium is not in the form of massive clouds, it is possible that the formation of low-mass stars be quite active in regions which are not marked by the presence of massive stars. It is also possible that under suitable conditions this separate channel of low-mass star formation is the dominant process to form stars.

Within this scenario, it is clear that measuring the star formation rates of external galaxies, especially in low surface density galaxies, on the basis of massive star diagnostics (be it direct detection of OB stars, optical and radio emission from H II regions, or their secondary far-infrared radiation for highly opaque clouds), may indeed lead to gross underestimates and to misleading results on the nature and the evolution of galaxies.

In order to clarify these issues one should intensively and systematically study regions of local galaxies, selected in an unbiased way, where low-mass stars can be individually detected and characterized, so as to determine their physical parameters including mass, luminosity, age, and evolutionary status. This can be done not only in our galaxy and, even better, in the Magellanic Clouds in which all stars are approximately at the same distance from us, but also in many other galaxies of the Local Group.

For this purpose, in addition to a number of regions with obvious signs of active star formation, such as the Orion Nebula Cluster (Da Rio et al. 2010b; N. Da Rio et al. 2011, in preparation) and NGC 3603 in our Galaxy (Beccari et al. 2010), 30 Dor (De Marchi et al. 2011b), and other selected fields in the LMC, and NGC 346 and NGC 602 in the SMC, we are also analyzing a sample of fields selected from the Archival Pure Parallel Project5 that were imaged with the HST-WFPC2 in four broadband filters (F300W, F450W, F606W, and F814W) and a narrow Hβ filter (F656N) with a total exposure time of at least three orbits, i.e., about 160 minutes (Spezzi et al. 2011). Although these fields are still not completely “random” and “unbiased,” since they were imaged in parallel with long UV spectroscopic observations of OB stars taken with another HST instrument about 5′ to 12′ away, they still represent a relatively rich sample (about 20 fields in each LMC and SMC) of regions with generally marginal massive star formation. In the future it would be helpful to obtain complementary Hα observations of HST archival fields with deep exposures in the V and I bands, at least, as well as to target suitably selected new fields in the Milky Way and in the Magellanic Clouds.

Finally, considerable improvements in this field will become possible once PMS evolutionary models are properly calibrated. Even though the models currently available are state of the art, they are not as refined and extensively tested as those for MS stars or post-MS evolution. In particular, absolute PMS ages are difficult to determine due to the lack of independent calibrators. Improvements in these models would make PMS stars even more powerful indicators of how star formation proceeds over time and space.

6. SUMMARY AND CONCLUSIONS

We have studied the properties of the stellar populations in the field of the NGC 346 cluster in the SMC, using the results of a novel self-consistent method that provides a reliable identification of PMS objects actively undergoing mass accretion, regardless of their age. We have used the age and other physical parameters measured for these PMS stars to study how star formation has proceeded across time and space in NGC 346 over the past \sim30 Myr. The main results of this work can be summarized as follows.

1. The 680 identified bona fide PMS stars show a bimodal age distribution, with two roughly equally numerous populations with median ages of, respectively, \sim1 Myr and \sim20 Myr, although the latter is most likely a lower limit to the true age. The age separation of the two groups is considerably wider than the uncertainties on the relative ages and the scarcity of objects with ages around \sim8 Myr suggests a lull in star formation at that time.

2. Although, taken at face value, the colors and magnitudes of the older PMS stars are compatible with those of young PMS objects whose light is absorbed and scattered by a high-inclination circumstellar disk, this hypothesis is only viable for a few percent (<5%) of the stars. This is confirmed by the remarkably different spatial distributions of the two age groups.

3. We set a lower limit to the star formation rate of the ongoing burst of \sim200 M_\odot Myr$^{-1}$, while at \sim25 Myr the rate drops by an order of magnitude to \sim20 M_\odot Myr$^{-1}$. Both values are lower limits since they are based on the number of PMS stars in the range 0.4–4 M_\odot that were undergoing active mass accretion at the time of the observations.

4. At face value, the strength of the current star formation episode appears to be much higher than that of the one ended \sim8 Myr ago, while the total integrated output of the two episodes is rather similar. However, since photometric uncertainty does not allow an age resolution of better than a factor of $\sqrt{2}$, we can establish neither how many bursts took place between 8 and 30 Myr ago nor their duration. If there was just one short burst, the star formation strength might have been comparable to or even higher than that of the current episode.
5. Except for the regions near the center of NGC 346, the stars belonging to the two generations have markedly different spatial distributions. A good fraction (~1/3) of the older generation occupies an arc-like gas structure to the south and west of NGC 346 that had been previously interpreted as the ionization front caused by the OB stars at its center. Although the morphology of the arc could have suggested a case of triggered star formation, this is clearly not a viable option since the central massive stars are at least 10–20 Myr younger than the objects on the arc and cannot have triggered their formation.

6. The compact distribution of older PMS stars along the arc-like structure suggests that they were formed there from the gas that is still visible and have not (yet) been affected by the massive OB stars at the center of NGC 346. This picture is consistent with the very low velocity dispersion (<3 km s⁻¹) of the ionized gas measured in this field from high-resolution echelle spectroscopy.

7. Except for the most central regions of NGC 346, we find no correspondence between the positions of young PMS stars and massive O-type stars of similar age, suggesting that the conditions (and possibly also the mechanisms) for their formation must be rather different. Furthermore, the mass distribution of similarly aged stars shows large variations across the region. We conclude that, while on a global scale it makes sense to talk about an IMF, this concept is not meaningful for individual star-forming clumps.

8. It is possible that a large number of low-mass stars are forming in regions where massive stars are not present and, therefore, they remain unnoticed. For certain low surface density galaxies this might be the predominant way of star formation, which would imply that their total mass based on the luminosity can be severely underestimated and that their evolution is not correctly understood.

We are grateful to an anonymous referee for extensive comments that have helped us to improve the presentation of this work. N.P. acknowledges partial support by HST-NASA grants GO-11547.06A and GO-11653.12A, and STScI-DDRF grant D0001.82435.

REFERENCES

Alencar, S., Johns-Krull, C., & Basri, G. 2001, AJ, 122, 3335
Bastian, N., Covey, K., & Meyer, M. 2010, ARA&A, 48, 339
Beccari, G., Spezzi, L., De Marchi, G., et al. 2010, ApJ, 720, 1108
Beerer, I., Koenig, X. P., Hora, J. L., et al. 2010, ApJ, 720, 679
Bolatto, A. D., Simon, J. D., Stanimirović, S., et al. 2007, ApJ, 655, 212
Bosch, G., Terlevich, E., & Terlevich, R. 2009, AJ, 137, 3437
Cignoni, M., Tosi, M., Sabbi, E., Nota, A., & Gallagher, J. 2011, AJ, 141, 31
Contursi, A., Lequeux, J., Cesarsky, D., et al. 2000, A&A, 362, 310
Da Rio, N., Gouliermis, D. A., & Gennaro, M. 2010a, ApJ, 723, 166
Da Rio, N., Robberto, M., Soderblom, D., et al. 2010b, ApJ, 722, 1092
Degl'Innocenti, S., Prada Moroni, P. G., Marconi, M., & Ruoppo, A. 2008, Ap&SS, 316, 25
De Marchi, G., Panagia, N., & Romaniello, M. 2010a, ApJa, 715, 1 (Paper I)
De Marchi, G., Panagia, N., Romaniello, M., et al. 2011a, ApJ, 740, 11
De Marchi, G., Paresce, F., Panagia, N., et al. 2011b, ApJ, 739, 27
De Marchi, G., Paresce, F., & Portegies Zwart, S. 2010b, ApJ, 718, 105
Elmegreen, B., & Lada, C. 1977, ApJ, 214, 725
Evans, C., Lennon, D., Smartt, S., & Trundle, C. 2006, A&A, 456, 623
Evans, C., Walborn, N. R., Crowther, P. A., et al. 2010, ApJ, 715, L74
Fernandez, M., Ortiz, E., Eiroa, C., & Miranda, L. 1995, A&AS, 114, 439
Gouliermis, D., Chu, Y., Henning, T., et al. 2008, ApJ, 688, 1050
Gouliermis, D., Henning, T., Brandner, W., et al. 2007, ApJ, 665, L27
Henize, K. 1956, ApJS, 1, 315
Hennekepmer, E., Gouliermis, D., Henning, T., Brandner, W., & Dolphin, A. 2008, ApJ, 672, 914
Hillenbrand, L., 2009, in IAU Conf. Ser. 258, The Ages of Stars, ed. E. Mamajek, D. Soderblom, & R. Wyse (Cambridge: Cambridge Univ. Press), 81
Hillenbrand, L., Bauermeister, A., & White, R. 2008, in ASP Conf. Ser. 384, 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. G. van Belle (San Francisco, CA: ASP), 200
Hodge, P. 1988, PASP, 100, 1051
Iben, I., Jr. 1967, ARA&A, 5, 571
Jones, B., & Walker, M. 1988, AJ, 95, 1755
Lee, J.-K., Rolleston, W. R. J., Dutson, P. L., et al. 2005, A&A, 429, 1025
Massey, P. 2002, ApJS, 141, 81
Massey, P., Parker, J. W., & Garmany, C. D. 1989, AJ, 98, 1305
Mengel, S., & Tacconi-Garman, L. 2009, Ap&SS, 324, 321
Nota, A., Siriani, M., Sabbi, E., et al. 2009, ApJ, 640, L29
Palla, F., & Stahler, S. 1993, ApJ, 418, 414
Panagia, N., Romaniello, M., Scuderi, S., & Kirkbriner, R. 2000, ApJ, 539, 197
Pérez-Montero, E., & Díaz, A. 2005, MNRAS, 361, 1063
Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K., & Densmore, P. 2006, ApJS, 167, 256
Rochau, B., Brandner, W., Stolte, A., et al. 2010, ApJ, 716, L90
Rolleston, W., Dutson, P. L., McErlean, N. D., et al. 1999, A&A, 348, 728
Romaniello, M. 1998, PhD thesis, Scuola Normale Superiore, Pisa, Italy
Romaniello, M., Robberto, M., & Panagia, N. 2004, ApJ, 608, 220
Rubio, M., Contursi, A., Lequeux, J., et al. 2000, A&A, 359, 1139
Russell, S., & Dopita, M. 1992, ApJ, 384, 508
Sabbi, E., Siriani, M., Nota, A., et al. 2010, AJ, 139, 44
Sabbi, E., Siriani, M., Nota, A., et al. 2008, AJ, 135, 173
Salpeter, E. 1955, ApJ, 121, 161
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593
Simon, J., Bolatto, A. D., Whitney, B. A., et al. 2007, ApJ, 669, 327
Smith, K., Lewis, G., Bonnell, I., Buncrall, P., & Emerson, J. 1999, MNRAS, 304, 367
Smith, L. 2008, in IAU Symp. 246, Dynamical Evolution of Dense Stellar Systems, ed. E. Vesperini (Cambridge: Cambridge Univ. Press), 55
Spezzi, L., De Marchi, G., Panagia, N., Sicilia-Aguilar, A., & Ercolano, B. 2011, MNRAS, submitted
Tognelli, E., Prada Moroni, P., & Degl’Innocenti, S. 2011, A&A, in press (arXiv:1107.2318)
van Altena, W., Lee, J., Lee, J.-F., Lu, P., & Uppgren, A. 1988, AJ, 95, 1744
Watson, C., Hanspal, U., & Mengistu, A. 2010, ApJ, 716, 1478

11