Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy

Elena García-Martínez, Melody Smith, Aitziber Buqué, Fernando Aranda, Francisco Ayala de la Peña, Alejandro Ivars, Manuel Sanchez Cánovas, Ma Angeles Vicente Conesa, Jitka Fucikova, Radek Spisek, Laurence Zitvogel, Guido Kroemer, and Lorenzo Galluzzi

ABSTRACT

Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.

Introduction

Cytokines are a large group of relatively small and generally (but not always) soluble glycoproteins that regulate virtually all biological functions as they elicit autocrine, paracrine or endocrine signaling pathways. In particular, cytokines play a key role in (1) the development, maturation and localization of all cellular components of the immune system; and (2) the initiation, execution and extinction of innate and adaptive immunity against invading pathogens as well as against malignant cells. A detailed description of cytokines, their receptors and their biological activities goes largely beyond the scope of this Trial Watch, and can be found elsewhere. For the purpose of the present discussion, however, it should be noted that the cytokine system is characterized by an extreme pleiotropism, and this has major implications for the development of cytokine-based therapeutics.

However, only three different agents have been approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) so far for the treatment of malignant disorders in humans: recombinant interleukin (IL)-2 (aldesleukin, Proleukin®), and two variants of recombinant interferon alpha 2 (IFN-α2), namely, IFN-α2a (Roferon®-A) and IFN-α2b (Intron®-A). In particular: (1) recombinant IL-2 (generally given at high doses) is licensed for the treatment of some forms of metastatic melanoma and renal cell carcinoma (RCC); (2) recombinant IFN-α2a is approved for use in patients with hairy cell lymphoma and chronic phase, Philadelphia chromosome-positive chronic myelogenous leukemia (CML) upon minimal pretreatment (within 1 y from diagnosis); and (3) recombinant IFN-α2b is licensed for the treatment of AIDS-related Kaposis’s sarcoma, melanoma, follicular lymphoma, multiple myeloma, hairy cell leukemia, genital warts (Condyloma acuminata) and cervical intraepithelial neoplasms (sources www.fda.gov and http://www.ema.europa.eu/ema/). Moreover, the use of these agents in the clinics is steadily declining, for at least two reasons. First, the elevated pleiotropism of the system implies that the systemic administration of one cytokine mediates a large...
number of biological activities, multiple of which may be unwarranted (including moderate-to-severe side effects) or even detrimental to clinical activity.\textsuperscript{27-36} As a standalone example, it is now well know that high-dose IL-2 acts as a mitogen for CD8\textsuperscript{+} cytotoxic T lymphocytes (CTLs), which at least in part underlies its therapeutic activity in subjects with melanoma and RCC, but even more so for CD4\textsuperscript{+}CD25\textsuperscript{+}FOXP3\textsuperscript{+} regulatory T (T\textsubscript{REG}) cells, which \textit{de facto} antagonize anticancer immune responses.\textsuperscript{37-42} Second, multiple immunotherapeutics with comparatively more specific mechanisms of action and robust clinical activity have been developed, including (but not limited to) immune checkpoint blockers (ICBs),\textsuperscript{43-48}

Nonetheless, research on the use of recombinant cytokines as immunostimulants against cancer continues as attention has shifted (1) to molecules with restricted selectivity for one or a few cell types, such as IL12, IL-15 and IL-21\textsuperscript{9-52}; and (2) on regimens involving the concomitant or sequential administration of one or more recombinant cytokines with other agents that trigger or boost anticancer immunity,\textsuperscript{53} including (but not limited to): ICBs,\textsuperscript{54-56} immunostimulatory monoclonal antibodies (mAbs),\textsuperscript{57-60} DNA-, dendritic cell (DC)- or peptide-based vaccines,\textsuperscript{61-67} chemotherapeutics with immunogenic cell death inducers,\textsuperscript{68-72} radiation therapy delivered according to specific fractionation protocols,\textsuperscript{73-76} small molecules targeting the tumor microenvironment,\textsuperscript{77-81} adoptively transferred T cells,\textsuperscript{82-85} and oncolytic virotherapy.\textsuperscript{86-88}

Importantly, at least three other cytokines beyond IL-2, IFN-$\alpha_2$ and IFN-$\alpha_2b$ are currently licensed by the US FDA and EMA for use in humans, namely, recombinant tumor necrosis factor (TNF), recombinant granulocyte colony-stimulating factor (GM-CSF, also known as Molgramostim, Sargramostim, Leukomax\textsuperscript{c19}, Mielogen\textsuperscript{c20} or Leukine\textsuperscript{c21}), and recombinant granulocyte colony-stimulating factor (G-CSF, also known as Filgrastim, Lenograstim or Neupogen\textsuperscript{c22}). However, in the current clinical practice these molecules are employed as oncolytic agents (TNF),\textsuperscript{89-100} or immunoreconstituting drugs (GM-CSF, G-CSF).\textsuperscript{101-108}

Here, we discuss recent preclinical and clinical advances in the development of recombinant cytokines for use as immunostimulants (rather than onotoxic and immunoreconstituting agents) in cancer patients.

\textbf{Preclinical and translational advances}

Since the publication of the latest Trial Watch dealing with this topic (December 2015),\textsuperscript{102} a large amount of preclinical and translational work on the role of immunostimulatory cytokines in anticancer immune responses has been released (source https://www.ncbi.nlm.nih.gov/pubmed).

Of this abundant scientific literature, we retained the contribution of: (1) Benci and colleagues (from the University of Pennsylvania, Philadelphia, PA, USA), who demonstrated that chronic, low-intensity type I IFN signaling within the tumor microenvironment contributes to the establishment of a multifaceted program of resistance to immune checkpoint blockade\textsuperscript{109,110}; (2) Vanpouille-Box and collaborators (from Weill Cornell Medical College, New York, NY, USA), MacKenzie and colleagues (from The University of Edinburgh, Edinburgh, UK) and Harding et al. (from the Abramson Family Cancer Research Institute, Philadelphia, PA, USA), who independently demonstrated that acute, high-intensity type I IFN signaling driven by cyclic GMP-AMP synthase (CGAS)\textsuperscript{111-115} and transmembrane protein 173 (TMEM173; best known as STING)\textsuperscript{116-119} activation following DNA damage (generally in the context of cellular senescence)\textsuperscript{120-123} is paramount for the establishment of anticancer immune responses with systemic activity\textsuperscript{124-129}; (3) Gao and colleagues (from The University of Texas MD Anderson Cancer Center, Houston, TX, USA), Ayers and co-workers (from Merck & Co. Inc., Kenilworth, NJ, USA) and Overacre-Delgoffe \textit{et al.} (from St. Jude Children’s Research Hospital, Memphis, TN, USA), who provided robust data in support of the notion that an intact IFN-$\gamma$ signaling pathway is required for malignant lesions to respond to ICB-based immunotherapy,\textsuperscript{130-133} (4) Ghasemi and collaborators (from Washington University, St. Louis, MO, USA), who demonstrated that selectively targeting IL-2 to natural killer cells expressing killer cell lectin like receptor K1 (KLRK1; best known as NKG2D)\textsuperscript{134-137} results in superior tumor control upon as it does not engage T\textsubscript{REG} cells;\textsuperscript{138,139} (5) Zhang and colleagues (from Dana-Farber/Harvard Cancer Center, Boston, MA, USA), who showed that the biological activity of IL-12\textsuperscript{140-143} is positively modulated by physiological reactive oxygen species (ROS) levels upon cytotoxic-S-glutathionylation\textsuperscript{144}, and (6) Waghray and co-authors (from University of Michigan, Ann Arbor, MI, USA), who characterized a population of mesenchymal stem cells\textsuperscript{145-147} that supports pancreatic tumor progression by releasing GM-CSF.\textsuperscript{148}

Moreover, (1) Wagner \textit{et al.} (from Washington University School of Medicine, St. Louis, MO, USA) demonstrated that the potent IL-15 receptor agonist ALT-803\textsuperscript{149-154} can be used \textit{in vivo} to prime superior antitumor responses by NK cells;\textsuperscript{155} (2) Mishra and collaborators (from The Ohio State University, Columbus, OH, USA) proved a critical role for dysregulated IL-15 signaling in the pathogenesis of cutaneous T-cell lymphoma;\textsuperscript{156} (3) Hu and coauthors (from the University of Pennsylvania, Philadelphia, PA, USA) showed that CAR T cells engineered to secrete IL-18 mediate superior therapeutic responses in mice with B16F10 melanomas\textsuperscript{157-159} as compared to CAR T cells with a wild-type secretory capacity;\textsuperscript{160} (4) Seo and co-workers (from Seoul National University, Seoul, Republic of Korea) demonstrated that IL-21\textsuperscript{161} can be used to reverse NK cell exhaustion, at least mice, resulting in improved immunity against MHC Class I-deficient neoplasms;\textsuperscript{162} (5) Chapuis \textit{et al.} (from the Fred Hutchinson Cancer Research Center, Seattle, WA, USA) tested IL-21 primed CTLs transferred in combination with a CTLA4-targeting mAb to a single patient with metastatic melanoma refractory to either intervention alone, demonstrating robust tumor control,\textsuperscript{163} mimicking preclinical results from independent investigators;\textsuperscript{164} (6) Yin and collaborators (from Academia Sinica, Taipei, Taiwan) showed that the secretion of IL-25\textsuperscript{165-167} from cancer-associated fibroblasts\textsuperscript{168-172} has direct oncosuppressive effects in preclinical models of breast carcinoma;\textsuperscript{173} and (7) Molgwa \textit{et al.} (from the Humanitas Clinical and Research Center, Rozzano, Italy) reported that interleukin 1 receptor accessory protein like 1 (IL1RAPL1; best known as IL-1R8), a member of the IL-1$\beta$ receptor protein family,\textsuperscript{174-176} operates as an inhibitory checkpoint in the maturation of and acquisition of effector functions by NK cells.\textsuperscript{179}
These and other emerging aspects of the cytokine biology have considerable implications for the immunotherapeutic management of cancer and a plethora of other conditions, including infectious and autoimmune disorders.

**Completed clinical studies**

Since December 2015, when the latest Trial Watch dealing with the use of recombinant cytokines as immunostimulants for cancer therapy was published, the results of just a few clinical studies (directly or indirectly) testing this immunotherapeutic paradigm in cancer patients have been released (source: [http://www.ncbi.nlm.nih.gov/pubmed](http://www.ncbi.nlm.nih.gov/pubmed)).

NCT01989572 was a Phase III clinical study evaluating yeast-derived GM-CSF *versus* peptide vaccination *versus* GM-CSF plus peptide vaccination *versus* placebo in 815 patients with locally advanced or Stage IV melanoma and no evidence of disease after complete surgical resection. In this setting, HLA-A*02* patients were randomly allocated to each of the study arm, while HLA-A*02* individuals were randomized to receive GM-CSF as a stand-alone intervention or placebo. No statistically significant differences in overall survival (OS) or relapse-free survival (RFS) were observed across the groups. These findings are at odds with previous results from prospective Phase II and non-prospective Phase III studies suggesting that recombinant GM-CSF (alone or combined with other immunotherapeutics) provides a clinical benefit to patients with melanoma at high risk for recurrence. Of note, it has recently been demonstrated that >90% of melanoma patients receiving adjuvant therapy with GM-CSF develop GM-CSF-targeting antibodies, which in >40% of the cases are neutralizing. This may explain, at least in part, the limited therapeutic efficacy of GM-CSF in some clinical settings.

Schijns and colleagues (from the University of Wageningen, The Netherlands) assessed the safety and therapeutic activity of a personalized cell-based cancer vaccine (Gliovac™) administered intradermally in the presence of recombinant GM-CSF to patients with recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM). In this context, 9 GBM patients refractory to standard-of-care temozolomide-based chemotherapy, radiation therapy, surgery or targeted therapy with bevacizumab received Gliovac plus recombinant GM-CSF following a TREG-depleting course of cyclophosphamide, resulting in superior survival rates as compared to historical controls. As the treatment was associated with limited toxicity, a Phase II study has been initiated to evaluate this immunotherapeutic approach in a larger cohort of GBM patients including bevacizumab-naïve individuals (NCT01903330). Along similar lines, Ramling and colleagues (from the Beatson West of Scotland Cancer Centre, Glasgow, UK) evaluated a peptide-based vaccine (IMA950) plus recombinant GM-CSF along with standard chemoradiotherapy and adjuvant temozolomide for the treatment of patients with newly-diagnosed GBM. In the context of this Phase I clinical study, 45 HLA-A*02* patients who had undergone tumor resection received 11 intradermal injection of IMA950 plus GM-CSF over 24 weeks, beginning either 7-14 day prior to the initiation of chemotherapy or 7 days after. Of 40 evaluable patients, 90% were immunological responders to at least one of the vaccine components, irrespective of therapeutic schedule, and progression-free survival (PFS) rates at 6 mo. and 9 mo. were 74% and 31%, respectively. These findings are in line with previous results demonstrating that GM-CSF can be safely used as an immunostimulant in patients with GBM and other tumors who receive additional (immuno)therapeutic agents.

The safety and efficacy of IFN-α2a in combination with pembrolizumab, an FDA-approved, potent ICB targeting programmed cell death 1 (PD-1; best known as PD-1), was investigated in the context of the KEYNOTE-029 study (NCT02089685). Data from the dose-finding cohort of the study indicate that the maximum tolerated dose is 2 mg/kg pembrolizumab every 3 week plus 1 μg/kg pegylated-IFN weekly, a regimen that demonstrated limited antitumor activity. That said, previous findings demonstrated that recombinant IFN-α2a can be safely administered in combination with: (1) bevacizumab and optionally tyrosine kinase inhibitors, for the treatment of metastatic RCC; (2) the FDA approved CD20-targeting agent rituximab, for the treatment of lymphoma, as well as chemotherapy plus a mAb blocking the IL-6 receptor, for the therapy of epithelial ovarian carcinoma.

Interestingly, biomarkers of response amongst patients with advanced RCC have been retrospectively evaluated on data from 12 distinct clinical trials, including NCT00631371, a Phase III study comparing bevacizumab plus recombinant IFN-α2a with bevacizumab plus the mechanistic target of rapamycin (MTOR) inhibitor temsirolimus, which operates as an anti-proliferative and autophagy-activating agent. In this context, an early tumor shrinkage (eTS) above 10% was associated with improved PFS and OS, although the retrospective nature of the analysis constitutes a major limitation of the study.

At the occasion of the 2017 American Society for Clinical Oncology (ASCO) Annual Meeting, Diab and collaborators (from the University of Texas MD Anderson Cancer Center, Houston, TX, USA) reported preliminary findings from an ongoing Phase I-II study testing the safety and therapeutic profile of NKTR-214 (a CD122-biased agonist of the IL-2 system) combined with nivolumab (another FDA-approved ICB directed against PD-1) in patients with melanoma, non-small cell lung carcinoma (NSCLC), RCC, bladder carcinoma or triple-negative breast cancer (NCT02983045). Amongst 5 patients treated with this regimen, no dose-limiting toxicities and no drug-related or immune-related Grade 3-5 adverse events (AEs) were documented. Moreover, one patient (with melanoma) experienced a mixed radiographic response associated with markers of immune activation, while another patient (also with melanoma) had an unconfirmed complete response per RECIST v. 1.1.

At the same occasion, Tarhini and colleagues (from the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA) reported the results of a randomized Phase II trial testing the FDA-approved CTLA4-targeting mAb ipilimumab at two different doses, alone or in combination with high-dose recombinant IFN-α2b (NCT01708941). At a median follow-up of 26.4 mo., AEs were consistent with the toxicity profiles of ipilimumab and high-dose IFN-α2b, including 3 treatment-
related Grade 5 AEs: suicide, lung infection and hemorrhage, and adult respiratory distress syndrome. However, no significant differences in PFS or OS when evaluating ipilimumab-receiving patients versus individuals treated with the same dose of ipilimumab and high-dose IFN-α2b.260

The clinical studies discussed here above focused on recombinant cytokines that are already approved for use in humans for anticancer therapy (IL-2, IFN-α2a) or immune reconstitution (GM-CSF). At least in part, this reflect the well-characterized safety profile of IL-2, IFN-α2a and GM-CSF. It will be interesting to see the final results of hitherto ongoing clinical trials testing the therapeutic profile relatively poorly investigated cytokines such as IL-12, IL-15 and IL-21 (see below).

Recently initiated clinical trials
Since the latest Trial Watch dealing with this topic was published,24 no less than 44 clinical studies have been initiated to assess the therapeutic profile of recombinant cytokines employed as off-label immunostimulants (rather than oncotoxic and immunoreconstituting agents) in cancer patients (source http://www.clinicaltrials.gov). Of these studies, (1) nineteen involve recombinant GM-CSF (NCT02623595; NCT02636582; NCT02641782; NCT02663440; NCT02677155; NCT02707314; NCT02728102; NCT02777442; NCT0378319; NCT02946138; NCT02976740; NCT02978222; NCT03012100; NCT03014076; NCT03033303; NCT03189706; NCT03222089; NCT03328188; NCT03363373); (2) fourteen recombinant IFN-α (NCT02576964; NCT02627144; NCT02634294; NCT02737046; NCT02829775; NCT02838342; NCT02948426; NCT02982720; NCT03056599; NCT03066947; NCT0317816; NCT03121079; NCT03252350; NCT03328026); (3) four recombinant IL-2 (NCT02641782; NCT03040401; NCT03322089; NCT03322871); (4) four recombinant IL-12 (NCT02542124; NCT02544724; NCT02994953; NCT03030378); and (5) six additional cytokines including IL-15 (NCT02689453; NCT03388632), IFN-β (NCT02584829), IFN-γ (NCT02948426; NCT03112590), and fms related tyrosine kinase 3 ligand (FLT3LG)261,262 (NCT02839265) (Table 1).

In particular, the safety and immunostimulatory activity of recombinant GM-CSF is being investigated: (1) in subjects with neuroblastoma receiving a ganglioneurosarc GD2-targeting mAb,263-267 optionally in the context of multimodal chemotherapy (NCT02641782; NCT03033303; NCT03189706; NCT03363373); (2) in patients with breast cancer, who receive recombinant GM-CSF as an adjuvant to peptide-based vaccination (NCT02636582; NCT03012100; NCT03040401); and (3) in individuals with a panel of other tumors, including biliary cancer (NCT02703714), colorectal carcinoma (NCT03220809), ependymoma (NCT02774421), follicular lymphoma (NCT02677155), GBM (NCT02663440), head and neck cancer (NCT02873819), hepatocellular carcinoma (NCT02946138), lung cancer (NCT02976740; NCT02623595) melanoma (NCT03282188), multiple myeloma (NCT02728102) and ovarian carcinoma (NCT02978222) often in combination with standard-of-care therapy, radiation therapy, or experimental immunotherapy (Table 1).

The therapeutic profile of IFN-α2a is being assessed: (1) in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma following tumor resection (NCT03253320); (2) in subjects with RCC concomitantly receiving bevacizumab-based therapy (NCT02627144); (3) in individuals with neuroendocrine tumors in the context of chemotherapy with metronomic cyclophosphamide203,268-271 (NCT02838342); and (4) in patients with advanced tumors previously responding to IFN-α2a, in the context of maintenance therapy (NCT02829775). The safety and preliminary efficacy of IFN-α2b are being assessed: (1) in patients with human T-cell lymphotropic virus type I (HTLV-I)-derived adult T-cell leukemia/lymphoma concomitantly receiving belinostat (an FDA-approved histone deacetylase inhibitor)272,273 and zidovudine (an antiretroviral agent)274 (NCT02737046); (2) in women with breast cancer in the context of targeted immunotherapy plus metronomic cyclophosphamide (NCT03066947; NCT03328026); (3) in patients with hematological malignancies including CML, as a stand-alone immunotherapeutic intervention for maintenance purposes (NCT031117816; NCT02634294); (4) in individuals with cholangiocarcinoma receiving pembrolizumab (NCT02982720); (5) in subjects with hepatocellular carcinoma receiving capcitabine-based chemotherapy275,276 (NCT02576964); (6) in patients with soft tissue sarcoma receiving microdosed IFN-α2b together with multiple other therapeutic agents via a specific delivery device (NCT03056599); and (6) in women with gynecological tumors, as an intraperitoneal infusion combined with recombinant IFN-γ277,278 and autologous monocytes (NCT02948426). Recombinant IFN-γ is also being tested in combination with multimodal chemotherapy in women with breast carcinoma (NCT03112590), while recombinant IFN-β is being investigated in combination with radiotherapy, the CD274-targeting mAb avelumab279-283 and optionally adoptive cell transfer in patients with Merkel cell carcinoma (NCT02584829) (Table 1).

Recombinant IL-2 is being investigated: (1) in subjects with CML, as part of a maintenance protocol involving the co-administration of histamine dihydrochloride284 (NCT03040401); (2) in colorectal carcinoma patients receiving FOLFOXIRI-based chemotherapy (folinic acid plus 5-fluorouracil plus oxaliplatin plus irinotecan)285,286 and recombinant GM-CSF (NCT03220809); (3) in individuals with neuroblastoma receiving a ganglioneurosarcoma GD2-targeting mAb plus recombinant GM-CSF (NCT02641782); and (4) in subjects with NSCLC receiving radiation therapy plus ICB-based immunotherapy287-289 (NCT03224871). The safety and therapeutic profile of recombinant IL-12 are being assessed: (1) in lymphoma patients, either in the context of salvage chemotherapy290 (NCT02544724), or in combination with total skin electron beam therapy291,292 (NCT02542124); and (2) in subjects with advanced solid tumors, receiving ICB-based immunotherapy (NCT02994953; NCT03030378). Along similar lines, recombinant IL-15 is being investigated: (1) in combination with the CD52-targeting mAb alemtuzumab293,294 in adults with T-cell leukemia/lymphoma (NCT02689453); and (2) in combination with ipilimumab and/or nivolumab in patients with advanced solid neoplasms (NCT03388632). Finally, the therapeutic profile of recombinant FLT3LG combined with stereotactic body radiation therapy is being assessed in
Table 1. Recent clinical trials evaluating recombinant cytokines as immunostimulants in cancer patients.*

| Agent      | Indication                              | Phase | Status       | N   | Notes                                                                 | Ref.       |
|------------|-----------------------------------------|-------|--------------|-----|----------------------------------------------------------------------|------------|
| FLT3LG     | Non-small cell lung carcinoma           | II    | Recruiting   | 29  | Combined with SBRT                                                   | NCT02839265|
| GM-CSF     | Biliary cancer                          | II    | Recruiting   | 27  | Combined with pembrolizumab                                          | NCT02703714|
| GM-CSF     | Breast cancer                           | I     | Completed    | 30  | As adjuvant to peptide-based vaccination, in the context of trastuzumab-based chemotherapy | NCT03014076|
| GM-CSF     | Breast cancer                           | II    | Recruiting   | 108 | Alone or combined with peptide-based vaccination                      | NCT02636582|
| GM-CSF     | Breast cancer                           | II    | Recruiting   | 280 | As adjuvant to peptide-based vaccination                               | NCT03012100|
| GM-CSF     | Colorectal carcinoma                    | II    | Not yet recruiting | n.a.| Combined with FOLFOXIRI and IL-2                                     | NCT03222089|
| GM-CSF     | Epitheloid carcinoma                    | I     | Recruiting   | 33  | Combined with trastuzumab                                            | NCT02774421|
| GM-CSF     | Follicular lymphoma                     | II    | Recruiting   | 20  | Combined with pembrolizumab                                          | NCT02677155|
| GM-CSF     | Glioblastoma multiforme                 | II    | Unknown      | 41  | Combined with HIMRT and temozolomide                                  | NCT02663440|
| GM-CSF     | Head and neck carcinoma                 | II    | Recruiting   | n.a.| As adjuvant to peptide-based vaccination                               | NCT02873819|
| GM-CSF     | Hepatocellular carcinoma                | II    | Recruiting   | 44  | Combined with carbon ion RT                                          | NCT02946138|
| GM-CSF     | Lung cancer                             | II    | Recruiting   | 48  | Combined with SBRT and thymosin alpha 1                                | NCT02976740|
| GM-CSF     | Merkel cell carcinoma                   | I/II  | Not yet recruiting | 16 | Combined with oncolytic virotherapy                                   | NCT03282188|
| GM-CSF     | Multiple myeloma                        | II    | Recruiting   | 188 | Combined with cell-based immunotherapy                                | NCT02728102|
| GM-CSF     | Neuroblastoma                           | I     | Recruiting   | 10  | Combined with GD2-targeting mAb and multimodal chemotherapy           | NCT03189706|
| GM-CSF     | Neuroblastoma                           | II    | Recruiting   | 59  | Combined with GD2-targeting mAb                                       | NCT03033303|
| GM-CSF     | Neuroblastoma                           | II    | Terminated   | 3   | Combined with GD2-targeting mAb and IL-2                               | NCT02641782|
| GM-CSF     | Non-small cell lung carcinoma           | II    | Recruiting   | 37  | Combined with GD2-targeting mAb                                       | NCT03353573|
| GM-CSF     | Ovarian cancer                          | II    | Recruiting   | 120 | Combined with peptide-based vaccination                               | NCT02978222|
| IFN-α2a    | Neuroendocrine tumors                   | II    | Recruiting   | 29  | Combined with metronomic cyclophosphamide                             | NCT02838342|
| IFN-α2a    | Advanced tumors                         | II/III| Completed    | 9   | As standalone immunotherapeutic agent, potentially pegylated          | NCT02897775|
| IFN-α2a    | Hepatocellular carcinoma                | IV    | Recruiting   | 432 | Following resection                                                  | NCT03253250|
| IFN-α2a    | Renal cell carcinoma                    | n.a.  | Completed    | 365 | Combined with bevacizumab                                             | NCT02627144|
| IFN-α2b    | Acute myeloid leukemia                   | n.a.  | Recruiting   | 29  | As standalone intervention to prevent relapse upon ASCT               | NCT03121079|
| IFN-α2b    | Adult T-cell leukemia/lymphoma          | II    | Recruiting   | 20  | Combined with belinostat and zivudine                                 | NCT02737046|
| IFN-α2b    | Breast cancer                           | I/II  | Recruiting   | 40  | Combined with targeted immunotherapy and cyclophosphamide            | NCT03066947|
| IFN-α2b    | Breast cancer                           | I/II  | Recruiting   | 40  | Combined with targeted immunotherapy and ICBs                        | NCT03328026|
| IFN-α2b    | Cholangiocarcinoma                      | II    | Recruiting   | 44  | Combined with pembrolizumab                                          | NCT02982720|
| IFN-α2b    | Chronic myelogenous leukemia            | II    | Recruiting   | 214 | As standalone immunotherapeutic agent, in pegylated form              | NCT03117816|
| IFN-α2b    | Gynecological tumors                    | I     | Recruiting   | 40  | Combined with IFN-γ and adoptively transferred autologous monocytess | NCT02948426|
| IFN-α2b    | Hematological malignancies              | IV    | Recruiting   | 50  | As standalone intervention to prevent relapse upon ASCT               | NCT02634294|
| IFN-α2b    | Hepatocellular carcinoma                | II    | Recruiting   | 16  | Combined with capecitabine-based chemotherapy                         | NCT02576964|
| IFN-α2b    | Soft tissue sarcoma                     | I     | Recruiting   | 12  | As standalone therapeutic intervention, in microdoses                 | NCT03056599|
| IFN-β      | Merkel cell carcinoma                   | I/II  | Recruiting   | 20  | Combined with RT, avelumab and optionally ACT                         | NCT02584829|
| IFN-γ      | Breast cancer                           | I/II  | Recruiting   | 43  | Combined with multimodal chemotherapy                                 | NCT03112590|
| IFN-γ      | Gynecological tumors                    | I     | Recruiting   | 40  | Combined with IFN-α2b and adoptively transferred autologous monocytess| NCT02984846|
| IL-2       | Chronic myelogenous leukemia            | II    | Recruiting   | 15  | Combined with histamine dihydrochloride                               | NCT03040401|
| IL-2       | Colorectal carcinoma                    | II    | Not yet recruiting | n.a.| Combined with FOLFOXIRI and GM-CSF                                    | NCT03222089|
| IL-2       | Non-small cell lung carcinoma           | I     | Recruiting   | 30  | Combined with RT and ICB-based immunotherapy                          | NCT03224871|
| IL-2       | Neuroblastoma                           | I     | Recruiting   | 2   | Combined with GD2-targeting antibody and GM-CSF                       | NCT02641782|
| IL-12      | Advanced solid tumors                   | I     | Recruiting   | 36  | Combined with pembrolizumab                                          | NCT03030378|
| IL-12      | Advanced solid tumors                   | I     | Recruiting   | 170 | Combined with avelumab                                                | NCT02994953|
| IL-12      | Lymphoma                                | II    | Not yet recruiting | n.a.| In the context of salvage chemotherapy                               | NCT02544724|
| IL-12      | Lymphoma                                | II    | Recruiting   | n.a.| In the context of TSEBT                                              | NCT02542124|
| IL-15      | Adult T-cell leukemia/lymphoma          | I     | Recruiting   | 30  | Combined with alentuzumab                                             | NCT02689453|
| IL-15      | Advanced solid tumors                   | I     | Recruiting   | 50  | Combined with ipilimumab and/or nivolumab                             | NCT03386862|

Abbreviations: ACT: adoptive cell transfer; ASC: allogeneic stem cell transplantation; CAR: chimeric antigen receptor; ICB: immune checkpoint blocker; FOLFOXIRI: folinic acid plus 5-fluorouracil plus oxaliplatin plus irinotecan; HIMRT: hypofractionated intensity modulated radiation therapy; n.a.: not available; RT: radiation therapy; SBRT: stereotactic body radiation therapy; TSEBT: total skin electron beam therapy.

*Initiated between 2015, Dec 1st and 2018, Jan 1st.
subjects with advanced or metastatic NSCLC (NCT02839265) (Table 1).

Of note, a large majority of these studies are ongoing, with three notable exceptions: NCT02627144, NCT02829775 and NCT03014076 (Table 1). NCT02627144 was a non-interventional, multicenter trial to evaluate efficacy and safety of intravenous bevacizumab plus recombinant IFN-α2a for the first-line treatment of patients with advanced and/or metastatic RCC. The study enrolled a total of 365 individuals, of which 359 were allocated to treatment and 338 could be analyzed for clinical responses. Amongst these 338 subjects, 5.3% experienced a complete response, 21.9% a partial response, and 39.1% disease stabilization; median PFS and OS were 10.2 and 28.7 mo., respectively (source https://clinicaltrials.gov/ct2/show/results/NCT02829775). NCT02829775 was a Phase II/III study aimed at enabling patients with CML, melanoma or RCC who previously responded to recombinant IFN-α2a or pegylated IFN-α2a in the context of other clinical trials to continue therapy. Of nine patients enrolled in the study, only 5 completed the entire administration schedule (daily or weekly subcutaneous administration until disease progression, withdrawal, or death – up to approximately 3 y.), but all participants achieved a complete response, with a single case of severe AEs (lung infection in one patient) (source https://clinicaltrials.gov/ct2/show/results/NCT03014076). NCT03014076 was a Phase II/III study aimed at enabling patients with advanced or metastatic NSCLC who previously responded to recombinant IFN-α2a or pegylated IFN-α2a in the context of other clinical trials to continue therapy. Of nine patients enrolled in the study, only 5 completed the entire administration schedule (daily or weekly subcutaneous administration until disease progression, withdrawal, or death – up to approximately 3 y.), but all participants achieved a complete response, with a single case of severe AEs (lung infection in one patient).

Concluding remarks

The possibility to employ recombinant cytokines alone or in combination with other immunotherapeutics to elicit or boost, respectively, tumor-specific immune responses in cancer patients has been – and still is being – intensively investigated. As discussed above, one of the major limitations encountered so far relates to the extraordinary pleiotropism of the system. To circumvent (at least in part) this issue, increasing attention is being devoted to cytokines that naturally and still is being developed in both preclinical and clinical settings involve the use of recombinant IL-4 as a vector to specifically deliver a modified version of exotoxin A from *Pseudomonas aeruginosa* to glioblastoma cells (which express the IL-4 receptor). Considerable efforts are also being dedicated to the development of cytokine receptor agonists, such as ALT-803 (which operates as a superagonist of the IL-15 pathway). No less than twelve different clinical trials have been launched since December 2015 to investigate the safety and therapeutic profile of ALT-803 in multiple oncological indications (source http://www.clinicaltrials.gov).

Moreover, increasing attention is being received by the delivery of cytokine-coding genes, especially in the context of CAR T cell-based immunotherapy as well as DC-based and cancer cell-based vaccination. As a matter of fact, the only immunotherapeutic based on myeloid cells currently approved for use in cancer patients, namely, sipuleucel-T (Provenge®), relies on the expression of a chimeric protein that encompasses acid phosphatase, prostate (ACP); best known as PAP) and GM-CSF. However, the actual impact of Provenge® in the management of prostate cancer patients does not meet the expectations. As it stands, it is difficult to predict which of the aforementioned approaches (if any) will open a clear path to the use of recombinant cytokines as immunostimulants in cancer patients. Additional work on specificity and safety issues is urgently awaited in this sense.

Acknowledgments

FA is supported by the Sara Borrell fellowship program (CD15/00016) from Instituto de Salud Carlos III. GK is supported by the Ligue contre le cancer Comité de Charente-Maritime (équipe labelisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Chancellerie des universités de Paris (Legs Poix), Fondation pour la Recherche Médicale (FRM); a donation by Elior; the European Commission (ArForces); the European Research Council (ERC); Fondation Carrefour; Institut National du Cancer (INCa); Inserm (HT); Institut Universitaire de France; LeDucq Foundation; the LabEx Immuno-Oncology; the RHU Torino Lumière; the Seerave Foundation; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). LG is supported by an intramural startup from the Department of Radiation Oncology of Weill Cornell Medical College (New York, US), and by Sotio a.s. (Prague, Czech Republic).

References

1. Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunostimulatory cytokines. Oncoimmunology. 2013;2:e24850. doi:10.4161/oni.24850. PMID:24073369.
2. Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G. Trial watch: Immunostimulatory cytokines. Oncoimmunology. 2012;1:493–506. doi:10.4161/oni.20459. PMID:22754768.
3. Tato CM, Cua DJ. Snapshot: cytokines I. Cell. 2008;132:324, e1. doi:10.1016/j.cell.2008.01.001.
4. Tato CM, Cua DJ. Snapshot: cytokines II. Cell. 2008;132:500. PMID:18267079.
5. Tato CM, Cua DJ. Snapshot: cytokines III. Cell. 2008;132:900. PMID:18329374.
6. Tato CM, Cua DJ. Snapshot: cytokines IV. Cell. 2008;132:1062.e1–2. doi:10.1016/j.cell.2008.02.024.
7. Lavin Y, Mortha A, Rahman A, Merald R. Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol. 2015;15:731–44. doi:10.1038/nri3920.PMID:26603899.
8. Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol. 2016;12:154–68. doi:10.1038/nrrheum.2015.160. PMID:26607387.
9. Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2011;14:302–14. doi:10.1038/nri3660. PMID:21475195.

10. Clements WK, Traver D. Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol. 2013;13:336–48. doi:10.1038/nri3443. PMID:23618830.

11. Ceredad R, Rollink AG, Brown G. Models of haematopoiesis: seeing the wood for the trees. Nat. Rev. Immunol. 2009;9:293–300. doi:10.1038/nri2525. PMID:19282853.

12. Weiss CN, Ito K. A macro view of microRNAs: the discovery of microRNAs and their role in hematopoiesis and hematologic disease. Int Rev Cell Mol Biol. 2017;334:99–175. doi:10.1016/bs ircmb.2017.03.007. PMID:28838543.

13. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in antitumor immunity. Nat Rev Immunol. 2015;15:405–14. doi:10.1038/nri3845. PMID:26027717.

14. Crouse J, Kalinke U, Oexnixius A. Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol. 2015;15:231–42. doi:10.1038/nri3806. PMID:25790790.

15. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15:87–103. doi:10.1038/nri3787. PMID:25614319.

16. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev. Immunol. 2017;17:559–72. doi:10.1038/nri.2017.49. PMID:28555670.

17. Chen W, Ten Dijke P. Immunoregulation by members of the TGFbeta superfamily. Nat Rev. Immunol. 2016;16:723–40. doi:10.1038/nri.2016.112. PMID:27885276.

18. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev. Cancer. 2017;17:457–74. doi:10.1038/nrc.2017.51. PMID:28706266.

19. Parker BS, Rautela J, Hertzog HR. Antitumour actions of interferons: implications for cancer therapy. Nat Rev. Immunol. 2016;16:131–44. doi:10.1038/nri.2016.14. PMID:26911188.

20. West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev. Immunol. 2015;15:615–29. doi:10.1038/nri.2015.132. PMID:26358393.

21. Lacalle RA, Blanco R, Carmona-Rodriguez L, Martin-Leal A, Mira E, Manes S. Chemokine receptor signaling and the hallmarks of cancer. Int Rev Mol Cell Biol. 2017;331:181–244. doi:10.1016/bs ircmb.2016.09.011. PMID:28325212.

22. Borish LC, Steinker JW. 2. Cytokines and chemokines. J Allergy Clin Immunol. 2003;111:S460–75. doi:10.1067/mai.2003.108. PMID:12592293.

23. Steinker JW, Borish L. 3. Cytokines and chemokines. J Allergy Clin Immunol. 2006;117:S441–5. doi:10.1067/j.jaci.2005.07.001. PMID:1645343.

24. Vacchelli E, Aranda F, Bloy N, Buche A, Cremer I, Eggermont A, Schadendorf D, Steinhoff U. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron. 2013;6:147–68. doi:10.1007/s12307-012-0122-y. PMID:23104434.

25. Smyth MJ, Ngiow SF, Ribas A, Fraker DL, Alexander HR. The use of tumour necrosis factor (TNF) in isolated perfusion: results and side effects. The NCI results. Melanoma Res. 1994;4:Suppl 1:27–9.
56. Sharma P, Allison JP. The future of immune checkpoint therapy. Sci-Rev. 2017;38:1

55. Sharma P, Allison JP. Immune checkpoint targeting in cancer ther-

54. Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Fucikova J, Galon J, Spisek R, Tartour E, et al. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncology. 2017;6:e1398878. doi:10.4161/21624011.2014.957994. PMID:25941578.

53. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al. Clas-

52. Davis MR, Zhu Z, Hansen DM, Bai Q, Fang Y. The role of IL-21 in

51. Rautela J, Huntington ND. IL-15 signaling in NK cell cancer immu-

49. Lu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–

48. Jiang W, Yuan H, Chan CK, von Roemeling CA, Yan Z, Weissman IL, Kim BYS. Lessons from immuno-oncology: a new era for cancer nanomedicine? Nat Rev Drug Discov. 2017;16:369–70. doi:10.1038/ nrd.2017.34. PMID:28303024.

47. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

46. Robinson TO, Ko C, Wiestner A, Price KN, Liu H, Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and potential of IL-15 in immuno-therapeutic strategies. Immunol Lett. 2017;190:159–68. doi:10.1016/j.imlet.2017.08.010. PMID:28823521.

45. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al. Clas-

44. Current classification of anticancer immunotherapies. Oncotarget. 2014;5:1247–508. doi:10.18632/oncotarget.2998. PMID:25537519.

43. Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Fucikova J, Spisek R, Demaria S, Formenti SC, et al. Trial Watch: Immune checkpoint blockers for cancer therapy. Oncoimmunology. 2017;6:e1373327. doi:10.1080/2162402X.2017.1373327. PMID:29147629.

42. Sharma P, Allison JP. Immune checkpoint targeting in cancer ther-

41. Dave MR, Zhang Z, Zhu H, Chan DM, Bai Q, Fang Y. The role of IL-21 in

40. Davis MR, Zhu Z, Hansen DM, Bai Q, Fang Y. The role of IL-21 in

39. Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Fucikova J, Spisek R, Demaria S, Formenti SC, et al. Trial Watch: Immune checkpoint blockers for cancer therapy. Oncoimmunology. 2017;6:e1373327. doi:10.1080/2162402X.2017.1373327. PMID:29147629.

38. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi:10.1126/science.aaa8172. PMID:25838373.

37. Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial watch: immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology. 2017;6:e1371896. doi:10.1080/ 2162402X.2017.1371896. PMID:29209572.

36. Di Nicola M, Apetoh L, Bellone M, Colombo MP, Dotti G, Ferrone S, Muscolini M, Hiscott J, Anichini A, Pupa SM, et al. Innovative ther-

35. Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Anti-

34. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

33. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

32. Davis MR, Zhang Z, Zhu H, Chan DM, Bai Q, Fang Y. The role of IL-21 in

31. Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Anti-

30. Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Anti-

29. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

28. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

27. Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Anti-

26. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

25. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

24. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

23. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

22. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

21. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

20. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

19. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

18. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

17. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

16. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.

15. Liu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/156800961766617021072971. PMID:28406167.
116. E. García-Martínez et al.

118. Corrales L, McWhirter SM, Dubensky TW, Jr., Gajewski TF. The Pepin G, Gantier MP. cGAS-STING activation in the tumor microenvironment and its role in cancer immunity. Adv Exp Med Biol. 2017;102:175–94. doi:10.1007/978-981-30-9987-2_8. PMID:28921470.

119. Thorne SH. Adding STING to the tale of oncolytic virotherapy. Trends Cancer. 2016;2:67–8. doi:10.1016/j.trecan.2016.01.002. PMID:27004260.

121. Medkour Y, Svistkova V, Titorenko VI. Cell-nonautonomous mechanisms underlying cellular and organismal aging. Int Rev Cell Mol Biol. 2016;332:219–97. doi:10.1016/bs.ircmb.2017.03.008. PMID:28838541.

125. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:466–70. doi:10.1038/nature23470. PMID:28738408.

131. Wu J, Song Y, Bakker AB, Bauer S, Spiess T, Lanier LL, Phillips JH. An activating immunoreceptor complex formed by NKG2D and DAP10. Science. 1999;285:730–2. doi:10.1126/science.285.5428.730. PMID:10426994.

132. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al. IFN-gamma-related mRNA profiling predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–40. doi:10.1172/JCI91190. PMID:28650338.

134. Bauer S, Groh V, Wu J, Steine A, Phillips JH, Lanier LL, Spiess T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285:727–9. doi:10.1126/science.285.5428.727. PMID:10426993.

135. Diefenbach A, Jensen ER, Jameson AM, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1:119–26. doi:10.1038/77793. PMID:11248803.

136. Diefenbach A, Jensen ER, Jameson AM, Raulet DH. Rac1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature. 2001;413:165–71. doi:10.1038/3590310. PMID:11557981.

137. Ghasemi R, Lazzar E, Wang X, Arefanian S, Zheleznyak A, Carreno BM, Higashikubo R, Gelman AE, Kreisel D, Fremont DH, et al. Selective targeting of IL-2 to NKG2D-bearing cells improves immunotherapy. Nat Commun. 2016;7:12288. doi:10.1038/ncomms12878. PMID:27650575.

138. Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. Cancer Cell. 2017;32:135–54. doi:10.1016/j.ccell.2017.06.009. PMID:28810142.

139. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:197–111. doi:10.1038/nri.2016.107. PMID:27748397.

140. Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammammasomes in carcinogenesis and anticancer immune responses. Nat Immunol. 2012;13:343–51. doi:10.1038/nri3224. PMID:22430787.

141. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:197–111. doi:10.1038/nri.2016.107. PMID:27748397.
potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget. 2016;7:16130–45. PMID:26910920.

153. Bashor F, Jeng EK, Wong H, Wu J. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC. Oncotarget. 2016;7:814–30. doi:10.18632/oncotarget.6416. PMID:26623516.

154. Xu W, Jones M, Liu B, Zhou X, Johnson CB, Edwards AC, Kong L, Jeng EK, Han K, Marcus WD, et al. Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor alpha/su/fc complex in syngeneic murine models of multiple myeloma. Cancer Res. 2013;73:3075–86. doi:10.1158/0008-5472.CAN-12-2357. PMID:23644531.

155. Wagner JA, Rosario M, Romeo R, Berrien-Elliott MM, Schneider SE, Leong JW, Sullivan RP, Jewell BA, Becker-Hapak M, Schappe T, et al. CD56bright NK cells exhibit potent anti-tumor responses following IL-15 priming. J Clin Invest. 2012;127:4042–58. doi:10.1172/JCI90387. PMID:23872539.

156. Mishra A, La Perle K, Kwiatkowski S, Sullivan LA, Sams GH, Johns J, Curphy DP, Wen J, McConnell K, Qi J, et al. Mechanism, consequences, and therapeutic targeting of abnormal IL-15 signaling in cutaneous T-cell lymphoma. Cancer Discov. 2016;6:986–1005. doi:10.1158/2159-8290.CD-15-1297. PMID:22742033.

157. Maniglia CA, Santorelli AC. Retinoic acid-induced alterations of glycosaminoglycan synthesis and deposition in B16F10 melanoma cells. Ann N Y Acad Sci. 1981;359:322–30. doi:10.1111/j.1749-6632.1981.tb12757.x. PMID:6942678.

158. Maniglia CA, Tudor G, Gomez J, Santorelli AC. The effect of 2,6-bis(diethanolamino)-4-piperidinopyrimido [5,4-d]-pyrimidine (RA233) on growth, metastases and lung colony formation of B16 melanoma. Cancer Lett. 1982;16:253–60. doi:10.1016/0304-3835(82)90004-0. PMID:7150455.

159. Sloane BF, Honn KV, Sadler JG, Turner WA, Kimpton J, Taylor JD. Cathepsin B activity in B16 melanoma cells: a possible marker for metastatic potential. Cancer Res. 1982;42:980–6. PMID:7059993.

160. Hu B, Ren J, Luo Y, Keith B, Young BM, Scholler J, Zhao Y, June CH. Augmentation of antitumor immunity by human and mouse CAT T cells secreting IL-18. Cell Rep. 2019;20:3025–33. doi:10.1016/j.celrep.2019.09.002. PMID:31954421.

161. Barjon C, Michaud HA, Fages A, Dejou C, Zampieri A, They L, Genetier A, Sanchez F, Gros L, Eliaou JF, et al. IL-21 promotes the development of a CD73-positive Vgamma9Vdelta2 T cell regulatory population. Oncoimmunology. 2017;6:e1358840. doi:10.1080/2162402X.2017.1358840. PMID:29147622.

162. Vilia MG, Tocchetti M, Fonte E, Sana I, Muzio M. Characterization of a long isoform of IL-1R8 (TIR8/SIGIRR). Eur Cytokine Netw. 2020;31:90–7. doi:10.18632/oncotarget.17713. PMID:28533483.

163. Molgora M, Supino D, Mantovani A, Garlanda C. Tuning in innate tumour microenvironment. Eur J Clin Invest. 2018;48:431–42. doi:10.1111/ecij.12906. PMID:29470436.

164. Popovic B, Bernardi G, Magrini E, Gianni F, et al. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature. 2017;551:110–4. doi:10.1038/nature24293. PMID:29072292.

165. Butterfield LH, Zhao F, Lee S, Tarhini AA, Margolin KA, White RL, Atkins MB, Cohen GI, Whiteside TL, Kirkwood JM, et al. Local IL-1R8 expression in breast tumours predicts tumour growth and contributes to impaired antitumor immunity. Oncotarget. 2017;8:49470–83. doi:10.18632/oncotarget.17713. PMID:28533483.

166. Polakowska R, Piskunowicz M, Skorobogatskiy V, Skowronski M, Ignatowicz L, et al. Analysis of IL-1R8 expression in breast cancer tumour cells: a potential target for therapeutic intervention. Eur J Med Chem. 2015;91:1–9. doi:10.1016/j.ejmech.2015.04.008. PMID:25794891.

167. Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF, Jr., Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, et al. IL-25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010;464:1362–6. doi:10.1038/nature08901. PMID:20205250.

168. Wang YH, Angkasewkinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med. 2007;204:1837–47. doi:10.1084/jem.20070406. PMID:17635955.

169. Reynolds JM, Angkasewkinai P, Dong C. IL-17 family member cytokines: regulation and function in innate immunity. Cytokine Growth Factor Rev. 2010;21:2143–23. doi:10.1016/j.cytogfr.2010.10.002. PMID:21074482.

170. Yamazaki M, Barker TH, Gibbons DL, Kurie JM. The fibrotic tumor stroma. J Clin Invest. 2018;128:16–25. doi:10.1172/JCI93554. PMID:29293090.

171. Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodelling. Proteomics. 2017. doi:10.1002/pmic.201700167. PMID:29298056.

172. Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Pitx J, Shodai K, Nosaka K, Shimomura M, Hara J, Nitani C, Manabe A, Yoshihara H, et al. Phase I study of glypican-3-derived peptide vaccine therapy for patients with metastatic melanoma (E4697). Clin Cancer Res. 2017;23:5034–43. doi:10.1158/1078-0432.CCR-16-2673. PMID:28533483.

173. Slingluff CL, Jr., Lee S, Zhao F, Chianese-Bullock KA, Olson WC, Butterfield LH, Whiteside TL, Leming PD, Kirkwood JM. A randomized phase II trial of multiprotein vaccine vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clin Cancer Res. 2013;19:4228–38. doi:10.1158/1078-0432.CCR-13-0002. PMID:23653149.

174. Tsuchiya N, Yoshikawa T, Fujinami N, Saito K, Mizuno S, Sawada Y, Tsuchiya N, Hosono A, Yoshikawa T, Shoda K, Shimomura M, Hara J, Nitani C, Manabe A, Yoshihara H, et al. Phase 1 study of glypican-3-derived peptide vaccine therapy for patients with refractory pediatric solid tumors. Oncoimmunology. 2017;6:e1323617. doi:10.1080/2162402X.2017.1323617. PMID:28680763.
vaccine in patients with advanced hepatocellular carcinoma. Oncoimmunology. 2017;6:e1346764. doi:10.1080/2162402X.2017.1346764. PMID:29213959.

184. Lawson DH, Lee S, Zhao F, Tarhini AA, Margolin KA, Ernstoff MS, Atkins MB, Cohen GI, Whiteside TL, Butterfield LH, et al. Randomized, placebo-controlled, phase III trial of yeast-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) versus placebo vaccination during bevacizumab therapy: first published report. Perm J. 2015;19:41–6. PMID:25785641.

185. Schijns VE, P RETTO C, Devillers L, Pierre D, Hofman FM, Chen TC, Mespouille P, Hantos P, Glorieux P, Bota DA, et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33:2690–6. doi:10.1016/j.vaccine.2015.03.095. PMID:25865468.

186. Bota DA, Alexandru-Abrams D, Pretto C, Hofman FM, Chen TC, Fu B, Carrillo JA, Schijns VE, Stathopoulos A. Use of ERC-1671 vaccine in a patient with recurrent glioblastoma multiforme after progression during bevacizumab therapy: first published report. Perm J. 2015;19:41–6. PMID:25785641.

187. Slingluff CL, Jr., Petroni GR, Yamshchikov GV, Barnd DL, Eastham Hodi FS, Lee S, McDermott DF, Rao UN, Butter.

188. Kaufman HL, Ruby CE, Hughes T, Slingluff CL, Jr. Current status of vaccination versus GM-CSF plus peptide vaccination versus placebo in patients with no evidence of disease after complete surgical resection of locally advanced and/or stage IV melanoma: a trial of the eastern cooperative oncology group-american college of radiology imaging network cancer research group (E4697). J Clin Oncol. 2015;33:4066–76. doi:10.1200/JCO.2015.62.0500. PMID:26351350.

189. Meager A, Cludts I, Thorpe R, Wadhwa M. Are neutralizing anti-GD2-CAR T cells in a human neuroblastoma preclinical model. Oncoimmunology. 2017;6:e1338238. doi:10.1080/2162402X.2017.1378843. PMID:29296542.

190. Lapeyer-Prost A, Terme M, Pernot P, Voron T, Tartour E, Taieb J. Immunomodulatory activity of VEGF in cancer. Int Rev Cell Mol Biol. 2017;330:295–342. doi:10.1016/bem.2016.09.007. PMID:28215534.

191. Poissant J, Nunez R, Lapeyre-Prost A, Terme M, Pernot P, Pointet AL, Voron T, Tartour E, Taieb J. Immunomodulatory activity of VEGF in cancer. Int Rev Cell Mol Biol. 2017;330:295–342. doi:10.1016/bem.2016.09.007. PMID:28215534.

192. Arora R, Desai D, Thakur A, Holsinger KE, Mihm MC, Jr., Reiman HM, et al. Integration of anti-GD2–anti-ErbB1 epitope peptide therapeutic vaccine into a multi-drug combination regimen for metastatic melanoma. J Immunother. 2016;39:16–23. doi:10.1097/01.jit.0000460556.06598.a4. PMID:27072293.

193. Weber J, Jondal S, Philipsson P, Wang R, Fuehner F, Strobel TB, Groshen SG, Cec C, Jez J, et al. Granulocyte-macrophage colony-stimulating factor added to a multipletide vaccine for resected stage II melanoma. Cancer. 2003;97:186–200. doi:10.1002/cncr.11045. PMID:12491520.

194. Hodi FS, Lee S, McDermott DF, Rao UN, Butterfield LH, Tarhini AA, Leming P, Puzanov I, Shin D, Teates D, et al. Impact of low-dose interleukin-2 in advanced melanoma: a trial of the east-cooperative oncology group-american college of radiology imaging network cancer research group (E4697). J Clin Oncol. 2015;33:4066–76. doi:10.1200/JCO.2015.62.0500. PMID:26351350.

195. Schijns VE, Pretto C, Hofman FM, Chen TC, Mespouille P, Hantos P, Glorieux P, Bota DA, et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33:2690–6. doi:10.1016/j.vaccine.2015.03.095. PMID:25865468.

196. Bota DA, Alexandru-Abraham D, Pretto C, Hofman FM, Chen TC, Fu B, CArrillo JA, Schijns VE, Stathopoulos A. Use of ERC-1671 vaccine in a patient with recurrent glioblastoma multiforme after progression during bevacizumab therapy: first published report. Perm J. 2015;19:41–6. PMID:25785641.

197. Schijns VE, Pretto C, Devillers L, Pierre D, Hofman FM, Chen TC, Mespouille P, Hantos P, Glorieux P, Bota DA, et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33:2690–6. doi:10.1016/j.vaccine.2015.03.095. PMID:25865468.

198. Mercatali N, Galardi S, Ciafore SA. MicroRNAs as multifaceted players in glioblastoma multiforme. Int Rev Cell Mol Biol. 2017;333:269–323. doi:10.1016/bs.icrmb.2017.03.002. PMID:28279207.

199. Perry JR, Laperriere N, O’Callaghan CJ, Brandes AA, Menten J, Phillips C, Fay M, Nishikawa R, Cairncross JG, Roa W, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376:1027–37. doi:10.1056/NEJMoa1611977. PMID:28296618.
237. Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA, Plebanski M. Immunotherapeutic Interleukin-6 or Interleukin-6 receptor blockade in cancer: challenges and opportunities. Curr Med Chem. 2017. doi:10.2174/092986732466170712160621. PMID: 28705787.

238. Tsukamoto H, Fujieda K, Hirayama M, Ikeda T, Yuno A, Matsumura K, Fukushima D, Araki K, Mizuta H, Nakayama H, et al. Soluble IL6R expressed by myeloid cells reduces tumor-specific th1 differentiation and drives tumor progression. Cancer Res. 2017;77:2279–91. doi:10.1158/0008-5472.CAN-16-2446. PMID: 28235765.

239. Isobe A, Sawada K, Kinoso Y, Ohyagi-Hara C, Nakatsuka E, Makino H, Ogura T, Mizuno T, Suzuki N, Morii E, et al. Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer. PLoS One. 2015;10:e118080. doi:10.1371/journal.pone.0118080. PMID: 25658637.

240. Dijkgraaf EM, Santegoets SJ, Reynolds AK, Goedemans R, Wouters MC, Kenter GG, van der Erkel AM, Nijman HW, van der Hoeven JJ, et al. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer. Ann Oncol. 2015;26:2141–9. doi:10.1093/annonc/mdv309. PMID: 26216383.

241. Gruenwald V, Lin X, Kalanovic D, Simantov R. Early tumour shrinkage: a tool for the detection of early clinical activity in metastatic renal cell carcinoma. Eur Urol. 2016;70:1006–15. doi:10.1016/j.eururo.2015.05.010. PMID:27238653.

242. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Ceconi F, Choi AM, Chu CT, Codogno P, Colombo MI, et al. Molecular definitions of autophagy and related processes. Embo J. 2017;36:1811–16. doi:10.15252/embj.201796697. PMID:28596378.

243. Chen L, Zhou Y, Sun Q, Zhou J, Han P, Hui X. Regulation of apoptosis by MiRNAs and their emerging roles in tumorigenesis and cancer treatment. Int Rev Cell Mol Biol. 2017;334:1–26. doi:10.1016/bs.ircmb.2017.03.003. PMID:28838537.

244. Ghidini M, Petrelli F, Ghidini A, Tomassello G, Habhe J, Pacalasqua R, Barni S. Clinical development of mTor inhibitors for renal cancer. Expert Opin Investig Drugs. 2017;26:1229–37. doi:10.1080/13546878.2017.1384813. PMID:28952411.

245. Schulze M, Stock C, Zaccagnini M, Teber D, Rassweiler JJ. Temsirolimus in combination with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha in patients with metastatic melanoma. J Clin Oncol. 2017;35:e14040-e. doi:10.1200/JCO.2017.75.1862.
Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol. 2017;18:587–98. doi:10.1016/S1470-2045(17)30239-5. PMID:28373007.

282. Vanella V, Festicino L, Stradul M, Simeone E, Grimaldi AM, Ascierto PA. PD-L1 inhibitors in the pipeline: promise and progress. Oncolimmunology. 2017;7:e1365209. doi:10.1080/2162402X.2017.1365209. PMID:29286516.

283. Schadendorf D, Naghipi P, Bhatai S, Haushild A, Saiai P, Mahnke L, Hariharan S, Kaufman HL. Immune evasion mechanisms and immune checkpoint inhibition in advanced melanoma cell carcinoma. Oncolimmunology. 2017;6:e1338237. doi:10.1080/2162402X.2017.1338237. PMID:29123950.

284. Sander FE, Nilsson M, Rydström A, Aurelius J, Rüisse RE, Movitz C, Bernson E, Kiffin R, Ståhlberg A, Brune M, et al. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol Immunother. 2017;66:1473-84. doi:10.1007/s00432-017-2040-9. PMID:28721449.

285. Loupakis F, Cremolini C, Masi G, Lonardi S, Zagone V, Salvatore L, Cortesi E, Tomaselli G, Ronzoni M, Spadi R, et al. Initial therapy with POLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014;371:1609–19. doi:10.1056/NEJMoa140108. PMID:25337750.

286. Kepp O, Menger L, Vecchelli E, Locher C, Adjemian S, Yamazaki T, Menger L, Sennovilla I, et al. Crossover between BR stress and immunogenic cell death. Cytokine Growth Factor Rev. 2013;24:311–8. doi:10.1016/j.cytogfr.2013.05.001. PMID:23787159.

287. Iyer SP, Hunt CR, Pandita TK. Cross talk between radiation and immunotherapy: the twain shall meet. Radiat Res. 2017. doi:10.1667/RRI14941.1. PMID:29261410.

288. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et al. Durvalumab after chemoradiation therapy in stage III nonsmall-cell lung cancer. N Engl J Med. 2017;377:1919–29. doi:10.1056/NEJMoa1709937. PMID:28858881.

289. Owaida A, Lennox S, Calame D, Korpela S, Bhatai S, Sharma J, Graham C, Binder D, Serkova N, Raben D, et al. Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint blockade in orthotopic murine head and neck squamous cell carcinoma. Oncolimmunology. 2017;6:e1338237. doi:10.1080/2162402X.2017.1338237. PMID:29123950.

290. Davison K, Chen BE, Kukreti V, Couban S, Benger A, Berinstein NL, Sullivan-Coyne G, Madan RA, Cordes L, Rajan A, et al. Results of a phase Ib trial of Avelumab in patients receiving salvage chemotherapy and autologous stem cell transplantation for younger patients: a subgroup analysis from the phase III CCTG LY.12 trial. Ann Oncol. 2017;28:622–7. doi:10.1093/annonc/mdx161.

291. Elsayad K, Kriz J, Moustakis C, Scobioala S, Reinartz G, Haverkamp U, Willich N, Weishaupt C, Stadler R, Sunderkotter C, et al. Total skin electron beam therapy as part of multimodal treatment strategies for primary cutaneous T-cell lymphoma. Oncol Res Treat. 2017;40:244–52. doi:10.1159/000475634. PMID:28448895.

292. Elsayad K, Susen KH, Eich HT. Total skin electron beam therapy as part of multimodal treatment strategies for primary cutaneous T-cell lymphoma. J Radiation Res. 2015;9:209–15. doi:10.1093/jrr/rst056.
and trastuzumab in breast cancer patients. Ann Surg Oncol. 2017;24:2161–7. doi:10.1245/s10434-017-5844-0. PMID:28315060.
296. Mittendorf EA, Ardavanis A, Litton JK, Shumway NM, Hale DF, Murray JL, Perez SA, Ponnihas S, Baexavanis CN, Papamichail M, et al. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget. 2016;7:66192–201. doi:10.18632/oncotarget.11751. PMID:27589688.
297. Weng J, Moriarty KE, Baio FE, Chu F, Kim SD, He J, Jie Z, Xie X, Ma W, Qian J, et al. IL-15 enhances the antitumor effect of human anti-virally specific CD8 (+) T cells by cellular senescence delay. Oncoimmunology. 2016;5:e1237327. doi:10.1080/2162402X.2016.1237327. PMID:28123872.
298. Chen S, Huang Q, Liu J, Xing J, Zhang N, Liu Y, Wang Z, Li Q, A targeted IL-15 fusion protein with potent anti-tumor activity. Cancer Biol Ther. 2015;16:1415–21. doi:10.1080/15384047.2015.1071739. PMID:26176990.
299. Galluzzi L, Martin P. CARs on a highway with roadblocks. Oncoimmunology. 2017;6:e138846. doi:10.1080/2162402X.2017.1388486. PMID:29209574.
300. Yamazaki T, Galluzzi L. Blinatumomab bridges the gap between leukemia and immunity. Oncoimmunology. 2017;6:e1358335. doi:10.1080/2162402X.2017.1358335. PMID:29147620.
301. Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol. 2016;7. doi:10.3389/fimmu.2016.00771. PMID:27749617.
302. Liu E, Tong Y, Dotti G, Shaim H, Savolbo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2017. doi:10.1038/leu.2017.226.
303. Le DT, Croenzen TS, Urum JN, Lutz ER, Laheru DA, Sugar EA, Vonderheide RH, Fisher GA, Ko AH, Murphy A, et al. Randomized phase 2 study of the safety, efficacy, and immune response of GVAX pancreas (with cyclophosphamide) and CRS-207 with or without nivolumab in patients with previously treated metastatic pancreatic adenocarcinoma (STELLAR). J. Clin. Oncol. 2016;34:TPS4153–TPS. doi:10.1200/jco.2016.34.4_suppl.tps486.
304. Anderson PM, Ghisoli M, Barve MA, Gill JB, Wexler LH, DeAngulo G, Neville K, Manning L, Wallraven G, Senzer NN, et al. A bis-RNAfuirin and GMCSF engineered autologous tumor cell immunotherapy vs. gemcitabine + docetaxel for Ewing sarcoma and with cryoablation in Ewing family tumors. J. Clin. Oncol. 2017;35:TPS1107–TPS.
305. Rekoske BT, Olson BM, McNeel DG. Antitumor vaccination of prostate cancer patients elicits PD-1/PD-L1 regulated antigen-specific immune responses. Oncoimmunology. 2016;5:e1165377. doi:10.1080/2162402X.2016.1165377. PMID:27471641.
306. Handy CE, Antonarakis ES. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol. 2017. doi:10.2217/fon-2017-0531. PMID:29260582.
307. Bilsuc M, Madan RA, Gulley JL. Immunotherapy of prostate cancer: facts and hopes. Clin Cancer Res. 2017;23:6764–70. doi:10.1158/1078-0432.CCR-17-0019. PMID:28663235.