Research Article

Computing Topological Descriptors and Polynomials of Certain 2D Chemical Structures

Muhammad Mubashir Izhar 1, Zahida Perveen 2, Dalal Alrowaili 3, Mehran Azeem 4, Imran Siddique 5, Shahid Imran 1 and Muhammad Shoaib Sardar 1

1 School of Mathematics, Minhaj University Lahore, Lahore, Pakistan
2 Department of Mathematics, Lahore Garrison University, Lahore, Pakistan
3 Mathematics Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
4 University of Engineering and Technology (RCET), Lahore, Pakistan
5 Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan

Correspondence should be addressed to Imran Siddique; imransmsrazi@gmail.com

Received 29 October 2021; Revised 4 December 2021; Accepted 10 December 2021; Published 28 December 2021

1. Introduction

In mathematics, the graph is an abstract structure formed by a set of end points called nodes or vertices $V(G)$ which are joined by a set of lines called edges $E(G)$. The order and size of a graph are the total number of vertices and total number of edges of the graph G, respectively. Every graph includes compounds of covalent bonds or molecules. Usually in graph theory, we combine graphs with chemistry to solve different chemical graphs. The branch of mathematical chemistry in which apparatus of the graph hypothesis are applied to display the substance numerically is called chemical graph theory. Topological index is the representation of a chemical graph that must be a structural invariant which collects the information about the number of elements and their connectivity which is used to model the chemical graph. Topological index and polynomials are the presentation of changeless chemical graphs in which we assemble complete statistics of these chemical graphs. Through this methodology, the number of elements, edges, vertices, and their bonding are determined easily. For the past 40 years, topological indices are being used to study the features of drug molecules. According to the drug examination, there is a strong relation between the properties of drug molecules pharmacodynamics.

Weiner [1] was in search of the phenomenon of the effects of structural differences of chemical compounds on boiling points of these chemical compounds. In 1947, he wrote the first paper “structural determination of paraffin points,” where he satisfactory got results by this approach. In the last decade, the graph theory has found the maximum use in area of research of chemical graphs. Chemists have
provided a variety of useful tools such as topological indices and polynomials. Cheminformatics is a new subject which is recently introduced that is the combination of mathematics, chemistry, and information technology which deals with structural properties of chemical graphs and their relationships which helps to predict bioactivity of the chemical compounds. In the QSAR/QSPR study, physiochemical properties and topological indices such as the 1st multiple Zagreb index, 2nd multiple Zagreb index, hyper Zagreb index, and Zagreb polynomials are used to predict the bioactivity of chemical compounds. Siddiqui et al. [2] put light on Zagreb indices and Zagreb polynomials of some nanostar dendrimers.

The graph nylon 6,6 is a grid graph which is actually a chemical graph expanded horizontally to p cycles and vertically to q cycles. C5 connected with a set of q − 1 cycles called polythiophene, and the third graph is the backbone structure of DNA. In this research, we will find the 1st and 2nd Zagreb indices, first multiple Zagreb index, second multiple Zagreb index, hyper Zagreb index, and Zagreb polynomials of chemical graphs nylon 6,6, polythiophene, and the backbone structure of DNA.

Gutman and Trinajstic [3] stated in their study that the first and second Zagreb indices are based on the following:

\[
M_1(G) = \sum_{\beta \gamma \in E(G)} \left[\partial_\beta + \partial_\gamma \right],
M_2(G) = \sum_{\beta \gamma \in E(G)} \left[\partial_\beta \times \partial_\gamma \right].
\]

In 2013, According to Shirdel et al. [4], “hyper Zagreb indices” were defined as

\[
HM(G) = \sum_{\beta \gamma \in E(G)} \left[\partial_\beta + \partial_\gamma \right]^2.
\]

The most popular connectivity topological index is the “atom-bond connectivity (ABC)” index which is presented by Estrada et al. [5]. Let G be the graph, and the ABC index is illustrated as

\[
ABC(G) = \sum_{\beta \gamma \in E(G)} \sqrt{\partial_\beta + \partial_\gamma - 2 \partial_\beta \partial_\gamma}.
\]

Another most popular topological descriptor of connectivity is the “geometrically arithmetic (GA) index” that was presented by Vukićević et al. [6]. We consider the graph G; then, the GA index is defined as

\[
GA(G) = \sum_{\beta \gamma \in E(G)} \frac{\sqrt{\partial_\beta \times \partial_\gamma}}{\partial_\beta + \partial_\gamma}.
\]

Multiple Zagreb indices introduced by Ghorbani and Azimi [7] are defined as

\[
PM_1(G) = \prod_{\beta \gamma \in E(G)} \left[\partial_\beta + \partial_\gamma \right],
PM_2(G) = \prod_{\beta \gamma \in E(G)} \left[\partial_\beta \times \partial_\gamma \right].
\]

Eliasi et al. [8] defined the first Zagreb polynomial \(M_1(G, x) \) and second Zagreb polynomial \(M_2(G, x) \) as

\[
M_1(G, x) = \sum_{\beta \gamma \in E(G)} x^{\partial_\beta + \partial_\gamma},
M_2(G, x) = \sum_{\beta \gamma \in E(G)} x^{\partial_\beta \times \partial_\gamma}.
\]

For details on the extensive research activity on HM(G), PM1(G), and PM2(G) indices and \(M_1(G, x) \) and \(M_2(G, x) \) polynomials, see [9–11]. Now, we compute all the abovementioned topological indices and polynomials of chemical graphs nylon 6,6, polythiophene, and the backbone structure of DNA.

2. Main Results

In this section, we will compute the main results of two-dimensional structures of nylon 6,6, polythiophene, and the backbone structure of DNA. This section is divided into three parts. In the first part, we compute the topological indices and polynomials of nylon 6,6, in the second part, we compute the topological indices and polynomials of polythiophene, and in the third part, we compute the topological indices and polynomials of the backbone structure of DNA.

2.1. Topological Indices and Polynomials of Nylon6,6

Theorem 1. Let \(R_1 \) be the graph nylon 6,6, as shown in Figure 1. Then,

\[
M_1(R_1) = 46pq + 28p + 12q - 6,
M_2(R_1) = 53pq + 27p + 11q - 11,
HM(R_1) = 216pq + 110p + 46q - 52,
PM_1(R_1) = 4^{(5pq+6p+2q+7)} \times 5^{(4pq+2p+2q-8)} \times 6^{(pq-p-q+1)},
PM_2(R_1) = 4^{(5pq+6p+2q+7)} \times 6^{(4pq+2p+2q-8)} \times 9^{(pq-p-q+1)},
M_1(R_1, x) = (5pq + 6p + 2q + 7)x^4 + (4pq + 2p + 2q - 8)x^5 + (pq - p - q + 1)x^6,
M_2(R_1, x) = (5pq + 6p + 2q + 7)x^4 + (4pq + 2p + 2q - 8)x^6 + (pq - p - q + 1)x^7.
\]
2.1. First Zagreb Index.

\[M_1(R_1) = \sum_{\beta \gamma \in E(R_1)} \left[\partial_\beta \times \partial_\gamma \right], \]

\[= \sum_{\beta \gamma \in E_{22}(R_1)} \left[\partial_\beta + \partial_\gamma \right] + \sum_{\beta \gamma \in E_{23}(R_1)} \left[\partial_\beta + \partial_\gamma \right] + \sum_{\beta \gamma \in E_{33}(R_1)} \left[\partial_\beta + \partial_\gamma \right], \]

\[= 4|E_{22}(R_1)| + 5|E_{23}(R_1)| + 6|E_{33}(R_1)|, \]

\[M_1(R_1) = 46pq + 28p + 12q - 6. \]

2.1.2. Second Zagreb Index.

\[M_2(R_1) = \sum_{\beta \gamma \in E(R_1)} \left[\partial_\beta \times \partial_\gamma \right], \]

\[= \sum_{\beta \gamma \in E_{22}(R_1)} \left[\partial_\beta \times \partial_\gamma \right] + \sum_{\beta \gamma \in E_{23}(R_1)} \left[\partial_\beta \times \partial_\gamma \right] + \sum_{\beta \gamma \in E_{33}(R_1)} \left[\partial_\beta \times \partial_\gamma \right], \]

\[= 4|E_{22}(R_1)| + 6|E_{23}(R_1)| + 9|E_{33}(R_1)|, \]

\[M_2(R_1) = 53pq + 27p + 11q - 11. \]

2.1.3. Hyper Zagreb Index.
In Table 2, the relation of the 1st Zagreb index, 2nd Zagreb index, and hyper Zagreb index with one another is described.

Graphical explanation of Table 1 is given in Figure 2.

2.1.4. ABC Index.

\[
\text{ABC}(R_1) = \sum_{\beta \in E(R_1)} \sqrt{\frac{\partial_\beta + \partial_\gamma - 2}{\partial_\beta \partial_\gamma}},
\]

(12)

\[
= |E_{22}(R_1)| \frac{\sqrt{2}}{2} + |E_{23}(R_1)| \frac{\sqrt{2}}{3} + |E_{33}(R_1)| \frac{2}{3},
\]

\[
= \left(9 \frac{\sqrt{2}}{2}\right) pq + \left(4 \sqrt{2} - \frac{2}{3}\right) p + \left(2 \sqrt{2} - \frac{2}{3}\right) q + \frac{2}{3} - \frac{\sqrt{2}}{2}.
\]

2.1.5. GA Index.

\[
\text{GA}(R_1) = \sum_{\beta \in E(R_1)} 2 \frac{\sqrt{\partial_\beta \times \partial_\gamma}}{\partial_\beta + \partial_\gamma},
\]

(13)

\[
= |E_{22}(R_1)| 1 + |E_{23}(R_1)| 2 \frac{\sqrt{6}}{5} + |E_{33}(R_1)| 1,
\]

\[
= \left(8 \frac{\sqrt{6}}{5} + 6\right) pq + \left(5 \frac{\sqrt{6}}{5} + 5\right) p + \left(4 \frac{\sqrt{6}}{5} + 1\right) q + 8 - 16 \frac{\sqrt{6}}{5}.
\]
Graphical explanation of Table 3 is given in Figure 3.

2.1.6. Multiplicative First Zagreb Index.

\[PM_{1}(R_1) = \prod_{\beta \in E(R_1)} [\partial_\beta + \partial_\gamma], \]

\[= \prod_{\beta \in E_{22}(R_1)} [\partial_\beta + \partial_\gamma] \times \prod_{\beta \in E_{33}(R_1)} [\partial_\beta + \partial_\gamma] \times \prod_{\beta \in E_{44}(R_1)} [\partial_\beta + \partial_\gamma], \]

\[= 4|E_{22}(R_1)| \times 5|E_{33}(R_1)| \times 6|E_{44}(R_1)|, \]

\[= 4(5pq+6p+2q+7) \times 5(4pq^2+p^2+2q+8) \times 6(pq^2+p^2+q+8). \]

(14)

2.1.7. Multiplicative Second Zagreb Index.

\[PM_{2}(R_1) = \prod_{\beta \in E(R_1)} [\partial_\beta \times \partial_\gamma], \]

\[= \prod_{\beta \in E_{22}(R_1)} [\partial_\beta \times \partial_\gamma] \times \prod_{\beta \in E_{33}(R_1)} [\partial_\beta \times \partial_\gamma] \times \prod_{\beta \in E_{44}(R_1)} [\partial_\beta \times \partial_\gamma], \]

\[= 4|E_{22}(R_1)| \times 6|E_{23}(R_1)| \times 9|E_{33}(R_1)|, \]

\[= 4(5pq^2+p^2+2q+7) \times 6(4pq^2+p^2+2q+8) \times 9(pq^2+p^2+q+8). \]

(15)
2.1.8. First Zagreb Polynomial.

\[M_1(R_1, x) = \sum_{\beta \in E(R_1)} x^{|\delta_\beta + \lambda_\beta|} \]

\[= \sum_{\beta \in \delta_{E_2}(R_1)} x^{|\delta_\beta + \lambda_\beta|} + \sum_{\beta \in \delta_{E_3}(R_1)} x^{|\delta_\beta + \lambda_\beta|} + \sum_{\beta \in \delta_{E_4}(R_1)} x^{|\delta_\beta + \lambda_\beta|}, \]

\[= |E_{22}(R_1)|x^4 + |E_{23}(R_1)|x^5 + |E_{33}(R_1)|x^6, \]

\[= (5pq + 6p + 2q + 7)x^4 + (4pq + 2p + 2q - 8)x^5 + (pq - p - q + 1)x^6. \]

2.1.9. Second Zagreb Polynomial.
Theorem 2. Let R_2 be the graph of polythiophene, as shown in Figure 5. Then,

\[M_1(R_2) = 30p - 5, \]
\[M_2(R_2) = 37p - 17, \]
\[HM(R_2) = 152p - 72, \]
\[PM_1(R_2) = 4^{(p+4)} \times 5^{(4p-4)} \times 6^{(p-1)}, \]
\[PM_2(R_2) = 4^{(p+4)} \times 6^{(4p-4)} \times 9^{(p-1)}, \]
\[M_1(R_2, x) = (p - 1)x^6 + (4p - 4)x^5 + (p + 4)x^4, \]
\[M_2(R_2, x) = (p - 1)x^9 + (4p - 4)x^6 + (p + 4)x^4. \]

Proof. Let R_2 be isomorphic to the chemical graph polythiophene. Edge partition is described in Table 5 for the chemical graph polythiophene having p cycles with one connecting edge based on the degree sum of end vertices of each edge. The graph has total edges $6p - 1$, and edge partition is given by

\[E_{2,2}(R_2) = \{\beta, \gamma \in E(R_2)|\partial_\beta = 2, \partial_\gamma = 2\}, \]
\[E_{2,3}(R_2) = \{\beta, \gamma \in E(R_2)|\partial_\beta = 2, \partial_\gamma = 3\}, \]
\[E_{3,3}(R_2) = \{\beta, \gamma \in E(R_2)|\partial_\beta = 3, \partial_\gamma = 3\}. \]

\[M_1(R_2) = \sum_{\beta \gamma \in E(R_2)} \partial_\beta \partial_\gamma, \]
\[= 4|E_{2,2}(R_2)| + 5|E_{2,3}(R_2)| + 6|E_{3,3}(R_2)|, \]
\[= 30p - 5. \]

2.2.2. Second Zagreb Index.

\[M_2(R_2) = \sum_{\beta \gamma \in E(R_2)} [\partial_\beta \times \partial_\gamma], \]
\[= 4|E_{2,2}(R_2)| + 6|E_{2,3}(R_2)| + 9|E_{3,3}(R_2)|, \]
\[= 37p - 17. \]

2.2.3. Hyper Zagreb Index.

\[HM(R_2) = \sum_{\beta \gamma \in E(R_2)} [\partial_\beta + \partial_\gamma]^2, \]
\[= 4^2|E_{2,2}(R_2)| + 5^2|E_{2,3}(R_2)| + 6^2|E_{3,3}(R_2)|, \]
\[= 152p - 72. \]

In Table 6, the relation of the 1st Zagreb index, 2nd Zagreb index, and hyper Zagreb index with one another for polythiophene is described.

2.2.4. ABC Index.

\[ABC(R_2) = \sum_{\beta \gamma \in E(R_2)} \sqrt{\partial_\beta + \partial_\gamma}, \]
\[= |E_{2,2}(R_2)| \sqrt{\frac{2}{3}} + |E_{2,3}(R_2)| \sqrt{\frac{2}{3}} + |E_{3,3}(R_2)| \frac{2}{3}, \]
\[= \left(\frac{5}{2} + 2 \right) p + 2 \frac{5}{3}. \]

2.2.5. GA Index.

\[GA(R_2) = \sum_{\beta \gamma \in E(R_2)} \sqrt{\partial_\beta \times \partial_\gamma}, \]
\[= |E_{2,2}(R_2)| + |E_{2,3}(R_2)| \frac{2\sqrt{6}}{5} + |E_{3,3}(R_2)| \frac{2}{5}, \]
\[= \left(8 \sqrt{6} + 2 \right) p + 5 - 8 \sqrt{6} \frac{5}{5}. \]
Table 4: Comparison of $M_1(R_1, x)$ and $M_2(R_1, x)$ for N 6,6.

(p,q,x)	$M_1(R_1, x)$	$M_2(R_1, x)$
(1,1,1)	20	20
(2,2,1)	60	60
(3,3,1)	120	120
(4,4,1)	200	200
(5,5,1)	300	300
(6,6,1)	420	420
(7,7,1)	560	560
(8,8,1)	720	720
(9,9,1)	900	900
(10,10,1)	1100	1100

Figure 4: Comparison between $M_1(R_1, x)$ and $M_2(R_1, x)$ of N 6,6.

Figure 5: Polythiophene.
Table 5: Partition of the edges of polythiophene with respect to degrees of end nodes.

| $(\vartheta_2, \vartheta_3)$ | $|E[\vartheta_2, \vartheta_3]|$ |
|-----------------------------|-------------------------------|
| (2,2) | $p + 4$ |
| (2,3) | $4p - 4$ |
| (3,3) | $p - 1$ |

Table 6: Comparison of M_1, M_2, and HM for polythiophene.

p	$M_1 (R_2)$	$M_2 (R_2)$	HM (R_2)
1	25	20	80
2	55	57	272
3	85	94	384
4	115	131	536
5	145	168	688
6	175	205	840
7	205	242	992
8	235	279	1144
9	265	316	1296
10	295	353	1448

Figure 6: Comparison of M_1, M_2, and HM of polythiophene.

Table 7: Comparison of ABC and GA for polythiophene.

p	ABC (R_2)	GA (R_2)
1	$5(\sqrt{2/2}) + 4/3$	7
2	$5\sqrt{2} + 2$	$8(\sqrt{6/5}) + 9$
3	$15(\sqrt{2/2}) + 8/3 + 2/3$	$16(\sqrt{6/5}) + 11$
4	$10\sqrt{2} + 10/3$	$24(\sqrt{6/5}) + 13$
5	$25(\sqrt{2/2}) + 4$	$32(\sqrt{6/5}) + 15$
6	$15\sqrt{2} + 14/3$	$8\sqrt{6} + 17$
7	$35(\sqrt{2/2}) + 16/3$	$48(\sqrt{6/5}) + 19$
8	$20\sqrt{2} + 6$	$56(\sqrt{6/5}) + 21$
9	$45(\sqrt{2/2}) + 20/3$	$64(\sqrt{6/5}) + 23$
10	$25\sqrt{2} + 22/3$	$72(\sqrt{6/5}) + 25$
In Table 7, the relation of the ABC index and GA index with each other for polythiophene is described. Graphical explanation of ABC and GA of polythiophene is given in Figure 7.

2.2.6. Multiplicative First Zagreb Index.

\[
\text{PM}_1 (R_2) = \prod_{\beta \in E(R_2)} \left[\partial_\beta + \partial_\gamma \right],
\]

\[
= 4|E_{22}(R_2)| \times 6|E_{32}(R_2)|, \quad \text{(25)}
\]

\[
= 4^{(p+4)} \times 5^{(4p-4)} \times 6^{(p-1)}. \quad \text{(25)}
\]

2.2.7. Multiplicative Second Zagreb Index.

\[
\text{PM}_2 (R_2) = \prod_{\beta \in E(R_2)} \left[\partial_\beta \times \partial_\gamma \right],
\]

\[
= 4|E_{22}(R_2)| \times 6|E_{32}(R_2)|, \quad \text{(26)}
\]

\[
= 4^{(p+4)} \times 5^{(4p-4)} \times 6^{(p-1)}. \quad \text{(26)}
\]

2.2.8. First Zagreb Polynomial.

\[
M_1 (R_2, x) = \sum_{\beta \in E(R_2)} x^{[\partial_\beta + \partial_\gamma]},
\]

\[
= |E_{22}(R_2)| x^4 + |E_{32}(R_2)| x^6, \quad \text{(27)}
\]

\[
= (p + 4)x^4 + (4p - 4)x^5 + (p - 1)x^6. \quad \text{(27)}
\]

2.2.9. Second Zagreb Polynomial.

\[
M_2 (R_2, x) = \sum_{\beta \in E(R_2)} x^{[\partial_\beta \times \partial_\gamma]},
\]

\[
= |E_{22}(R_2)| x^4 + |E_{32}(R_2)| x^6 + |E_{33}(R_2)| x^9, \quad \text{(28)}
\]

\[
= (p + 4)x^4 + (4p - 4)x^6 + (p - 1)x^9. \quad \text{(28)}
\]

In Table 8, the relation of the 1st Zagreb polynomial and 2nd Zagreb polynomial index with each other for polythiophene is described. Graphical explanation of Table 8 is given in Figure 8.

2.3. Topological Indices and Polynomials of the Backbone Structure of DNA

Theorem 3. Let \(R_3 \) be the graph of the backbone structure of DNA. Then,

\[
M_1 (R_3) = 38p - 18,
\]

\[
M_2 (R_3) = 45p - 26,
\]

\[
HM (R_3) = 184p - 106,
\]

\[
PM_1 (R_3) = 4^{(p+4)} \times 5^{(4p-4)} \times 6^{(p-1)}, \quad \text{(29)}
\]

\[
PM_2 (R_3) = 4^{(p+4)} \times 6^{(p-1)} \times 9^{(p-1)} , \quad \text{(29)}
\]

\[
M_1 (R_3, x) = (p - 1)x^6 + (4p - 4)x^5 + (p + 4)x^4,
\]

\[
M_2 (R_3, x) = (p - 1)x^9 + (4p - 4)x^6 + (p + 4)x^4. \quad \text{(29)}
\]

Proof. The graph is isomorphic to the backbone structure of DNA as shown in Figure 9. There are \(p \) pentagon cycles connected with the \(p - 1 \) family of three edges in line, and edge partition is described in Table 9 for the graph based on the degree sum of end vertices of each edge. There are totally \(8p - 3 \) edges, and edge partition is given by

\[
E_{22} (R_3) = \{ \beta, \gamma \in E(R_3) | \partial_\beta = 2, \partial_\gamma = 2 \},
\]

\[
E_{32} (R_3) = \{ \beta, \gamma \in E(R_3) | \partial_\beta = 2, \partial_\gamma = 3 \},
\]

\[
E_{33} (R_3) = \{ \beta, \gamma \in E(R_3) | \partial_\beta = 3, \partial_\gamma = 3 \}. \quad \text{(30)}
\]

\[
\square
\]

2.3.1. First Zagreb Index.

\[
M_1 (R_3) = \sum_{\beta \in E(R_3)} \left[\partial_\beta + \partial_\gamma \right],
\]

\[
= 4|E_{22}(R_3)| + 5|E_{23}(R_3)| + 6|E_{33}(R_3)|, \quad \text{(31)}
\]

\[
= 38p - 18. \quad \text{(31)}
\]

2.3.2. Second Zagreb Index.

\[
M_2 (R_3) = \sum_{\beta \in E(R_3)} \left[\partial_\beta \times \partial_\gamma \right],
\]

\[
= 4|E_{22}(R_3)| + 6|E_{23}(R_3)| + 9|E_{33}(R_3)|, \quad \text{(32)}
\]

\[
= 45p - 26. \quad \text{(32)}
\]

2.3.3. Hyper Zagreb Index.

\[
HM (R_3) = \sum_{\beta \in E(R_3)} \left[\partial_\beta + \partial_\gamma \right]^2,
\]

\[
= 4^3|E_{22}(R_3)| + 5^3|E_{23}(R_3)| + 6^3|E_{33}(R_3)|, \quad \text{(33)}
\]

\[
= 184p - 106. \quad \text{(33)}
\]
In Table 10, the relation of the 1st Zagreb index, 2nd Zagreb index, and hyper Zagreb index with one another for the backbone structure of DNA is described.

Graphical explanation of Table 10 is given in Figure 10.

2.3.4. ABC Index.

$$ \text{ABC}(R_3) = \sum_{\beta \gamma \in E(R_3)} \sqrt{\frac{\partial_{\beta} + \partial_{\gamma} - 2}{\partial_{\beta} \partial_{\gamma}}} $$

$$ = |E_{22}(R_3)| \frac{\sqrt{2}}{2} + |E_{23}(R_3)| \frac{\sqrt{2}}{2} + |E_{33}(R_3)| \frac{2}{3} $$

$$ = \left(7 \frac{\sqrt{2}}{2} + 3 \right) p - 3 \frac{\sqrt{2}}{2} - 4 \frac{3}{3} $$

(34)

In Table 11, the relation of the ABC index and GA index for the backbone structure of DNA is described.

Graphical explanation of Table 11 is given in Figure 11.

2.3.5. GA Index.

$$ \text{GA}(R_3) = \sum_{\beta \gamma \in E(R_3)} 2 \sqrt{\frac{\partial_{\beta} \times \partial_{\gamma}}{\partial_{\beta} + \partial_{\gamma}}} $$

$$ = |E_{22}(R_3)| \frac{\sqrt{6}}{5} + |E_{23}(R_3)| \frac{\sqrt{6}}{5} + |E_{33}(R_3)| \frac{2}{3}, $$

(35)

$$ = \left(8 \frac{\sqrt{6}}{5} + 4 \right) p - 4 \frac{\sqrt{6}}{5} - 1. $$

Figure 7: Comparison between ABC and GA of polythiophene.
2.3.6. Multiplicative First Zagreb Index.

\[\text{PM}_1(R_2) = \prod_{\beta \in E(R_2)} |E| |\overline{d}_\beta + \overline{d}_\gamma| \]

\[= 4|E_{22}(R_3)| \times 5|E_{23}(R_3)| \times 6|E_{33}(R_3)|, \]

\[= 4^{(3p+1)} \times 5^{(4p-2)} \times 6^{(p-2)}. \]
Table 10: Comparison of M_1, M_2, and HM for DNA.

p	$M_1 (R_3)$	$M_2 (R_3)$	HM $ (R_3)$
1	20	19	30
2	58	64	178
3	96	109	326
4	134	154	474
5	172	199	622
6	210	244	770
7	248	289	918
8	286	334	1066
9	324	379	1214
10	362	424	1362

Figure 10: Comparison of $M_1 (R_3)$, $M_2 (R_3)$, and HM $ (R_3)$ of the given structure of DNA.

Table 11: Comparison of ABC and GA for DNA.

p	ABC $ (R_3)$	GA $ (R_3)$
1	$3\sqrt{2} - (2/3)$	$4(\sqrt{6}/5) + 3$
2	$13(\sqrt{2}/2)$	$12(\sqrt{6}/5) + 7$
3	$10\sqrt{2} + 2/3$	$4\sqrt{6} + 11$
4	$27(\sqrt{2}/2) + 4/3$	$28(\sqrt{6}/5) + 15$
5	$17\sqrt{2} + 2$	$36(\sqrt{6}/5) + 19$
6	$41(\sqrt{2}/2) + 8/3$	$44(\sqrt{6}/5) + 23$
7	$24\sqrt{2} + 10/3$	$52(\sqrt{6}/5) + 27$
8	$55(\sqrt{2}/2) + 4$	$12(\sqrt{6}/5) + 31$
9	$31\sqrt{2} + 14/3$	$68(\sqrt{6}/5) + 35$
10	$69(\sqrt{2}/2) + 16/3$	$76(\sqrt{6}/5) + 39$
2.3.7. Multiplicative Second Zagreb Index.

\[
\text{PM}_2(R_2) = \prod_{\beta \in E(R_2)} \left[\partial_\beta \times \partial_\gamma \right],
\]

\[
= 4|E_{22}(R_3)| \times 6|E_{23}(R_3)| \times 9|E_{33}(R_3)|,
\]

\[
= 4^{(3p+1)} \times 6^{(4p-2)} \times 9^{(p-2)}.
\]

2.3.8. First Zagreb Polynomial.

\[
M_1(R_3, x) = \sum_{\beta \in E(R_3)} x^{[\beta]_{p+1}},
\]

\[
= |E_{22}(R_3)|x^4 + |E_{23}(R_3)|x^5 + |E_{33}(R_3)|x^6,
\]

\[
= (3p+1)x^4 + (4p-2)x^5 + (p-2)x^6.
\]

Figure 11: Comparison between ABC and GA for DNA.

Table 12: Comparison of $M_1(R_3, x)$ and $M_2(R_3, x)$ for DNA.

(p,x)	$M_1(R_3, x)$	$M_2(R_3, x)$
(1,1)	3	3
(2,1)	13	13
(3,1)	21	21
(4,1)	29	29
(5,1)	37	37
(6,1)	45	45
(7,1)	53	53
(8,1)	61	61
(9,1)	69	69
(10,1)	77	77
2.3.9. Second Zagreb Polynomial.

\[M_2(R_3, x) = \sum_{\beta \in E(R_3)} x^{[\beta, x_3]}, \]

\[= |E_{22}(R_3)|x^4 + |E_{23}(R_3)|x^6 + |E_{33}(R_3)|x^9, \]

\[= (3p + 1)x^4 + (4p - 2)x^6 + (p - 2)x^9. \]

In Table 12, the relation of the 1st Zagreb polynomial and 2nd Zagreb polynomial index with each other for DNA is described.

Comparison of \(M_1(R_3, x) \) and \(M_2(R_3, x) \) of Table 12 is given in Figure 12.

3. Conclusions

In this article, we computed the first Zagreb index, second Zagreb index, hyper Zagreb index, atom bond connectivity index, geometric-arithmetic index, and backbone structure of DNA. We expanded nylon 6,6 up to \(p \) and \(q \) cycles and polythiophene and backbone DNA structure up to \(p \) cycles. By using these results, the correlation of biological activities and physicochemical properties with chemical structure is very easy. Also, we gave a comparison for the different versions of the computed TIs by numerical values in the tables. Finding indices and polynomials of polythiophene and DNA structure up to \(p \) and \(q \) cycles is an open question for researchers.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Wiener, “Structural determination of paraffin boiling points,” *Journal of the American Chemical Society*, vol. 69, no. 1, pp. 17–20, 1947.

[2] M. K. Siddiqui, M. Imran, and A. Ahmad, “On Zagreb indices, Zagreb polynomials of some nanostar dendrimers,” *Applied Mathematics and Computation*, vol. 280, pp. 132–139, 2016.

[3] I. Gutman and N. Trinajstic, “Graph theory and molecular orbitals. Total electron energy of alternant hydrocarbons,” *Chemical Physics Letters*, vol. 17, no. 4, pp. 535–538, 1972.

[4] G. H. Shirdel, H. Reza Pour, and A. M. Sayadi, “The hyper zagreb index of graph operations,” *Iranian Journal of Mathematical Chemistry*, vol. 42, pp. 213–220, 2013.

[5] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, “An atom–bond connectivity index: modelling the enthalpy of formation of alkanes,” *Indian Journal of Chemistry*, vol. 37A, p. 849, 1998.

[6] D. Vukicevic and B. Furtula, “Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges,” *Journal of Mathematical Chemistry*, vol. 46, p. 1369, 2009.

[7] M. Ghorbani and N. Azimi, “Note on multiple Zagreb indices,” *Iranian Journal of Mathematical Chemistry*, vol. 3, no. 2, pp. 137–143, 2012.

[8] M. Eliasi, A. Iranmanesh, and I. Gutman, “Multiplicative version of first Zagreb index,” *MATCH Communications in Mathematical and in Computer Chemistry*, vol. 68, pp. 217–230, 2012.

[9] J. B. Liu, M. K. Siddiqui, M. A. Zahid, M. Naeem, and A. Q. Baig, “Topological properties of crystallographic structure of molecules,” *Symmetry*, vol. 10, no. 7, p. 265, 2018.
[10] Z. Shao, M. K. Siddiqui, and M. H. Muhammad, “Computing Zagreb indices and Zagreb polynomials for symmetrical nanotubes,” Symmetry, vol. 10, no. 7, p. 244, 2018.

[11] N. Soleimani, E. Mohseni, F. Rezaei, and F. Khati, “Some formulas for the polynomials and topological indices of nanostructures,” Acta Chemica Iasi, vol. 24, no. 2, pp. 122–138, 2016.