Photothermal spectro-microscopy as benchmark for optoplasmonic bio-detection assays
Baaske, M.D.; Asgari, N.; Späth, P.R.; Adhikari, S.; Punj, D.; Orrit, M.A.G.J.

Citation
Baaske, M. D., Asgari, N., Späth, P. R., Adhikari, S., Punj, D., & Orrit, M. A. G. J. (2021). Photothermal spectro-microscopy as benchmark for optoplasmonic bio-detection assays. *The Journal Of Physical Chemistry C, 125*(45), 25087–25093. doi:10.1021/acs.jpcc.1c07592

Version: Publisher's Version
License: [Creative Commons CC BY-NC-ND 4.0 license](https://creativecommons.org/licenses/by-nc-nd/4.0/)
Downloaded from: https://hdl.handle.net/1887/3256792

Note: To cite this publication please use the final published version (if applicable).
Photothermal Spectro-Microscopy as Benchmark for Optoplasmonic Bio-Detection Assays

Published as part of The Journal of Physical Chemistry virtual special issue “W. E. Moerner Festschrift”.

Martin. D. Baaske, Nasrin Asgari, Patrick Spaeth, Subhasis Adhikari, Deep Punj, and Michel Orrit*

Cite This: J. Phys. Chem. C 2021, 125, 25087–25093

ABSTRACT: Optoplasmonic bio-detection assays commonly probe the response of plasmonic nanostructures to changes in their dielectric environment. The accurate detection of nanoscale entities such as virus particles, micelles and proteins requires optimization of multiple experimental parameters. Performing such optimization directly via analyte recognition is often not desirable or feasible, especially if the nanostructures exhibit limited numbers of analyte binding sites and if binding is irreversible. Here we introduce photothermal spectro-microscopy as a benchmarking tool for the characterization and optimization of optoplasmonic detection assays.

INTRODUCTION

Individual (bio)molecules can be detected optically through their fluorescence, absorption, or mere refraction. Optoplasmonic methods, which harness strong near fields around plasmonic metal nanostructures to enhance the sensitivity and selectivity of optical detection, have evolved over the past decade into powerful tools for biomolecular recognition. Dedicated versions of these methods now enable the detection of a wide range of molecules and nanoparticles, on a single-object basis. Sensitive refractometric sensors such as optical microresonators also provide powerful platforms for molecular recognition, especially in combination with plasmonic particles. At the same time novel microscopic methods make use of plasmonic particles as photostable labels and combine them with optical, electromagnetic, or electric devices for trapping and manipulation of sensor particles or even of the molecules themselves. In the following we will exclusively focus on optoplasmonic assays that facilitate analyte recognition via observation of a plasmonic nanostructure’s response to (single) analytes perturbing its dielectric environment. The volume in which such perturbations are recognizable is defined by the extent of the structures’ enhanced near-field and is limited to distances on the order of 10 nm away from the structures’ surface. Optoplasmonic assays commonly employ specific receptor molecules to bind analytes and to facilitate their detection. These receptors fulfill a dual purpose: (i) They immobilize the analytes inside the detection volume and, thus, provide for long enough integration times required for the detection of the target. (ii) They provide target specificity, as they ideally form sufficiently strong binding exclusively with the targeted molecules. As a consequence, the sensitivity of refractometric optoplasmonic assays depends on two separate factors: (i) The properties of the chemical interface, that is, receptor density, accessibility, and quality; (ii) The properties of the plasmonic structure and the optical interface, that is, spectral quality, spectral position of plasmonic features, structure quality, polarization states, wavelength range, desired bandwidth, type of illumination (widefield or confocal), and the detection electronics. To allow for the consecutive optimization of aspects (i) and (ii), it is desirable to characterize these aspects separately and independently. Here, we show in the example of gold nanorods that photothermal spectro-microscopy provides such a characterization method for plasmonic structures, that is, for aspect (ii).

METHODS

Slide Preparation. Nanorods (NRs) were purchased from Nanopartz. NRs were sonicated for 20 min and then spin-coated onto microscope slides. Next the glass slides were
Results and Discussion

Photothermal (PT) microscopy detects a change of optical properties following the absorption of light by an analyte.2,19,30−36 The dissipation of the absorbed power into the surrounding medium induces a temperature gradient, which modifies the optical properties both of the absorbing objects and of the medium. The associated change of the medium’s refractive index notably leads to the formation of a thermal lens.37,38 Heating-induced changes in the optical properties lead to changes in the scattered light, which are detected as intensity changes of a probe beam illuminating the sample. As these changes are very small, their detection is facilitated if the heating beam’s intensity is modulated at a fixed frequency, enabling subsequent phase-sensitive demodulation via a lock-in amplifier which rejects most white and 1/f noise. Commonly, the probe beam is used off-resonance so that high probe powers can be used.2,5,35,37 Here, we deviate from this scheme by probing gold nanorods at wavelengths close to their localized surface plasmon resonance (LSPR), as we are interested in probing their response to heat-induced refractive index changes. We do this with the confocal microscopy setup shown in Figure 1. Specifically, we detect changes in the power P_{det} of the detected probe light, which results from the interference between scattered E_s and refracted E_r electric fields: $P_{\text{det}} \propto (E_i + E_r)(E_i^* + E_r^*) \propto R + 2p\sqrt{SR} \cos \phi + S$, where $*$ denotes the complex conjugate, and R and S are the effective reflection coefficient and scattering cross section, respectively. Further, $\phi = \theta - \gamma$ denotes the phase difference between the reflected and the scattered field, where γ is the Gouy phase and θ is the phase difference between incident and scattered field. Both S and θ depend on the frequency detuning of the probe laser’s frequency ν with respect to the resonance frequency of the NR’s LSPR-frequency, ν_{LSPR}. The factor η denotes the mode-matching efficiency between scattered and reflected fields. Changes in the NR’s dielectric environment give rise to a change ΔS of the NR’s scattering cross section at the probe wavelength as well as a change in the phase difference between scattered and reflected light $\Delta(\cos \phi)$ due to the shift of the LSPR.
frequency. In consequence, the change of detected intensity can be described as
\[\Delta P_{\text{det}} \propto \Delta S + \Delta I, \]
where \(\Delta I = \eta_i \sqrt{R/S} \cos \phi \Delta S + 2 \sqrt{SR} \Delta \cos \phi \) denotes the change of the interference term. Our setup allows for the adjustment of linear incident (angle: \(\alpha_i \)) and analyzed (angle: \(\alpha_c \)) polarization as well as of the probe wavelength and, to some extent, of the Gouy phase by adjustment of the NR’s position along the focal axis. We can thus tune cos \(\phi \) as well as the ratio of \(S/\Delta R \) via the projection of the scattered field (polarized along the NR’s long axis) and of the reflected field (incident polarization) on the analyzer axis. We can perform 2D-confocal scans measuring \(\Delta P_{\text{PT}} \) and \(P_{\text{det}} \), that is, scattering and PT signal, simultaneously. Figure 1b presents images of such scans performed for a set of polarization mismatch angles \(\alpha_c = (\alpha_i - \alpha_c)/2 \) for crossed (\(\alpha_i = \alpha_c + \pi/2 \)) and parallel (\(\alpha_i = \alpha_c \)) configurations of incident versus analyzed polarizations. An example for how \(\Delta P_{\text{PT}} \) and \(P_{\text{det}} \) scale with \(\alpha_c \) (\(S \gg \Delta R \), 40 nm diameter NR) is shown in Figure 1c. In both cases, we find excellent agreement with the theoretical expected values (fits). Before discussing the influence of the experimental parameters in detail, we want to demonstrate that the PT signal-to-noise ratio (SNR) indeed correlates with the SNR for analyte detection. To this aim, we compare the PT SNR with the intensity autocorrelation contrast \(C = G(\tau = 10 \text{ ns}) \). From the latter quantity, we then determine the average perturbation SNR \(\text{SNR}_{\text{per}} \) via the following relation:

\[\text{SNR}_{\text{per}} = \sqrt{C} \sqrt{1-C} \]

(compare Figure 2b). We find that both the autocorrelation contrast (see Figure 2a) and the PT-SNR decrease with an increasing difference between \(\alpha_i \) and \(\alpha_c \). We further find a linear relationship between PT-SNR and \(\text{SNR}_{\text{per}} \). This proportionality confirms that PT-spectroscopy can indeed be used as a means to probe the response of plasmonic structures for biodetection assays. Here we have made use of the fact that the effective extent of the modulated temperature profile around the nanoparticle depends on the modulation frequency. It scales \(\propto 1/r \exp[-(r_{\text{np}})/\delta] \), where \(\delta = D \sqrt{\nu/\tau} \) is the thermal attenuation length \(\delta \) and \(D \) is the surrounding medium’s thermal diffusivity. This means that at low frequencies, \(<100 \text{ kHz} \), the thermal profile extends beyond the 100 nm range, whereas at \(\gtrsim 100 \text{ MHz} \), it is confined to a few tens of nanometers around the NR (compare Figure 2d). In turn, the choice of modulation frequency allows us to select how strongly thermal-lens effects, temperature changes in the near field, and the heating of the particle itself contribute to the PT signal. At low frequencies, \(<100 \text{ kHz} \), thermal-lens effects and near-field effects, as well as thermal changes of the NR’s properties, are probed altogether, whereas for higher frequencies of \(\gtrsim 100 \text{ MHz} \), only thermal changes occurring in the near field and the particle will be recognized. At still higher frequencies, the response of the particle itself will dominate as the extent and amplitude of the temperature profile diminish further. Microemulsion nanodroplets are only detected in the NR’s near field, thus, we have chosen to perform our correlative measurements at a high modulation frequency of 80 MHz. At this frequency, \(\delta = 24 \text{ nm} \) is close to the extent of the near field. The fast modulation therefore allows us to directly reject contributions to the PT signal from outside the NR’s near-field. In order to facilitate this high-frequency modulation, we utilized a fiber-based electro-optic modulator (EOM, compare Figure 1a) that offers a \(\gtrsim 200 \text{ ps} \) rise time.

We now want to better understand the influence of experimental parameters on the PT-SNR. To this aim, we perform PT measurements on NRs with similar aspect ratios but different diameters. We first want to discuss the polarization dependence of the PT-signal. While this seems trivial at first, nonetheless we will provide us with insights into the relative strengths of the contributions from \(\Delta S \), \(\Delta I \) and \(\Delta \cos \phi \) to \(\Delta P_{\text{det}} \). Specifically, we will focus on the case of parallel incident and analyzed polarizations (\(\alpha_i = \alpha_c \)). Then, only the scattered field \(E_s \) is angle-dependent and scales like \(E_s(\alpha) = E_s(\alpha = 0) \cos^2 \alpha \), where \(\alpha \) is the angle between the NR’s long axis and the polarization’s orientation. The PT amplitude then scales as
\[\Delta P_{\text{PT}}(\alpha) \propto |\Delta \cos^2 \alpha + \Delta S \cos^2 \alpha|, \]
where \(\Delta I \) and \(\Delta S \)
are the values at $\alpha = 0$, and we can determine the relative contribution ρ of the interference term ΔI versus the pure scattering term ΔS at $\alpha = 0$ via fitting to the function: $\Delta P_{\text{PT}}(\alpha) = k(\rho \cos^2 \alpha + (1 - |\rho|)\cos^4 \alpha)$, where k is a constant scaling factor. If we further assume that $\eta \approx 1$ we can also determine the ratio of intensity changes due to phase shifts over changes of the scattering cross section:

$$\xi = \frac{\rho}{1 - |\rho|} - \sqrt{\frac{R}{S}} \cos \phi = 2 \sqrt{SR} \Delta \cos \phi \Delta S$$

Note that S/R and $\cos \phi$ are obtained via the simultaneous measurement of the detected power and the subsequent fit to $P_{\text{det}}(\alpha)/P_{\text{ref}} \propto 1 + 2\sqrt{SR} \eta \cos \Delta \phi \cos^2 \alpha + (S/R) \cos^4 \alpha$

where $P_{\text{ref}} \propto R$ is measured on the glass slide next to the NR. The results of our angle-dependent PT measurements are shown in Figure 3 alongside the respective values found for S/R, $\cos \phi$, ρ, and ξ. We find that ρ is negative, which means the interference term counteracts the pure changes in scattered intensity for our confocal configuration. This is especially apparent in Figure 3b, which shows the transition from interference- to scattering-dominated PT as α approaches 0 and results in two minima of PT amplitude. We further find that, as expected for NRs with $S/R < 1$, the interference term significantly contributes to the PT signal ($|\rho| \geq 0.5$, compare Figure 3c,d). Nonetheless, the interference term is still dominated by changes in the scattering cross section ($\xi < 1$, Figure 3c) as we find that only for NRs with $S/R \ll 1$ the phase-shift-induced changes dominate ($\xi > 1$, Figure 3d). In all cases, we recognize significant PT amplitudes only for polarizations centered around the NR’s long axis. From this we can conclude that we are predominantly probing the NR’s response to temperature changes, and contributions to ΔP_{PT} due to scattering of light by the thermal lens itself are negligibly small in comparison.

We also want to test the wavelength-dependence of the PT signal. To this aim, we first take white-light scattering spectra and determine the NR’s orientation by rotating both polarizers in parallel configuration. We then measure the PT response as we change the wavelength of our laser while keeping the NR positioned in the center of the field and both polarizers aligned with the NR’s long axis. Examples of such measurements performed on three NRs with different sizes are displayed in Figure 4. We find that the highest relative intensity changes ($\Delta P_{\text{PT}}/P_{\text{det}}$) for NR’s with $S/R > 1$ (Figure 4a) coincide with the highest slopes found in the corresponding white-light scattering spectrum. This is consistent with our previous finding that, in the case of $S/R > 1$, the PT signal is dominated by changes in the scattered intensity (compare also Figure 4e). Due to the limited scanning range of our laser, we unfortunately could not directly compare values on both sides of the LSPR of individual NRs. For NRs with $S/R < 1$ (Figure 4b,c) we find the highest $\Delta P_{\text{PT}}/P_{\text{det}}$ values close the LSPR frequency. This is consistent with our previous finding that, for NR’s with $S/R < 1$, changes in the phase difference φ strongly contribute to the PT signal (compare Figure 4f).

To obtain an overview of how the PT SNR depends on the NR size, we plot the maximum $\Delta P_{\text{PT}}/P_{\text{det}}$ versus the S/R values found for multiple NR samples and normalize these values to the absorbed power (Figure 5a). The corresponding average refractive index change is computed from the temperature profile in the medium surrounding the rod at distances of up to 15 nm (Figure 5b) using the thermo-refractive index of water: $\frac{dn}{dT} = -8.36 \times 10^{-5} \text{K}^{-1}$. These values reflect the absorbed power and refractive index sensitivity of the respective NRs, and we find the highest values $\Delta P_{\text{PT}}/P_{\text{det}} = 11.8 \pm 1.6 \text{RIU}^{-1}$ (refractive index unit) for NRs with $S/R \approx 3$ to S, that is, diameters of approximately 25 nm. This means an effective refractive index change on the order of 10^{-3} gives rise to intensity changes on the order of 1%.
polarizers with the NR (yellow) after optimizing the laser wavelength and aligning the polarizers with the NR’s axis. (a) measured $\Delta P_{\text{PT}}/P_{\text{det}}$ values normalized to the absorbed power and (b) $\Delta P_{\text{PT}}/P_{\text{det}}$ normalized to the average change of refractive index units (RIU) calculated for the medium (water) inside the NR’s near field (extent 15 nm).

Figure 5. Comparison of maximum relative PT amplitudes $\Delta P_{\text{PT}}/P_{\text{det}}$ found for NRs with different S/R ratios (diameters indicated in yellow) after optimizing the laser wavelength and aligning the polarizers with the NR’s axis. (a) Measured $\Delta P_{\text{PT}}/P_{\text{det}}$ values normalized to the absorbed power and (b) $\Delta P_{\text{PT}}/P_{\text{det}}$ normalized to the average change of refractive index units (RIU) calculated for the medium (water) inside the NR’s near field (extent 15 nm).

binding of a single ≈ 150 kDa protein, we anticipate relative intensity changes on the same order, that is, 1 to 3%, as found by previous studies.5,7 Single step-like changes in relative detected power on the order of 1% are detected by our system limited and we anticipate an approximately 2-fold improvement for 0.1 mW of incident power. Our detector is not shot-noise limited. In this case setting the polarizers such that $S = R$ is undesirable as the electronic detector noise already exceeds small signal amplitudes. However, in assays meant to probe slower processes, like analyte binding, single-photon-counting detectors may be more advantageous. In such a case, the high relative signal amplitudes found at $S = R$ become desirable as long as the background noise (due to undesired scattering by impurities along the optical path) is still overcome. Independently of an assay’s precise nature, PT-assisted alignment may be used to find the most desirable parameters, taking into account the assay’s specific restrictions and limitations by available instrumentation.

CONCLUSION

In conclusion, we have demonstrated that PT-spectromicroscopy can be used as a method for the direct optimization of nanostructure-based optoplasmonic detection assays. Specifically, we have demonstrated this optimization for the case of gold nanorods. We utilized high-frequency modulation to selectively match the thermal modulation profile to the extent of plasmonic near fields. This enabled us to show that the PT SNR scales directly with the SNR found for average perturbations caused by small nanodroplets entering and exiting a NR’s near field. We have further demonstrated that PT-micro/spectroscopy helps to probe and understand the influence of various experimental parameters on the SNR. Here, we have specifically identified the best size of NRs for fast nanoplasmonic assays in a simple confocal bright-field configuration. PT-based calibration uses the refractive index change induced by photothermal heating of the sensor nanostructures themselves and is therefore, in principle, applicable to any type of optoplasmonic assay that probes changes in the dielectric environment of nanostructures.

AUTHOR INFORMATION

Corresponding Author
Michel Orrit – Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands; orcid.org/0000-0002-3607-3426; Email: orrit@physics.leidenuniv.nl

Authors
Martin. D. Baaske – Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands; orcid.org/0000-0003-2384-7557
Nasrin Asgari – Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands; orcid.org/0000-0002-9770-7605
Patrick Spaeth – Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands; orcid.org/0000-0001-8520-6216
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by The Netherlands Organisation for Scientific Research (NWO) and has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 792595 (M.D.B.).

REFERENCES

(1) Moerner, W. E.; Orrit, M. Illuminating Single Molecules in Condensed Matter. Science 1999, 283 (5408), 1670–1676.
(2) Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P. V.; Orrit, M. Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast. Science 2010, 330 (6002), 353–356.
(3) Kukura, P.; Celizano, M.; Renn, A.; Sandoghdar, V. Imaging a Single Quantum Dot When It Is Dark. Nano Lett. 2009, 9 (3), 926–929.
(4) Amert, I.; Prasad, J.; Henkel, A.; Schmatched, S.; Sönnichsen, C. Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles. Nano Lett. 2012, 12 (2), 1092–1095.
(5) Zijlstra, P.; Paulo, M. P. R.; Orrit, M. Optical Detection of Single Non-Absorbing Molecules Using the Surface Plasmon Resonance of a Gold Nanorod. Nat. Nanotechnol. 2012, 7 (6), 379–382.
(6) Rosman, C.; Prasad, J.; Neiser, A.; Henkel, A.; Edgar, J.; Sönnichsen, C. Multiplexed Plasmon Sensor for Rapid Label-Free Analyte Detection. Nano Lett. 2013, 13 (7), 3243–3247.
(7) Beuwer, M. A.; Prins, M. W. J.; Zijlstra, P.; Stochastic Protein Interactions Monitored by Hundreds of Single-Molecule Plasmonic Biosensors. Nano Lett. 2015, 15 (5), 3507–3511.
(8) Wulf, V.; Knoch, F.; Speck, T.; Sönnichsen, C. Gold Nanorods as Plasmonic Sensors for Particle Diffusion. J. Phys. Chem. Lett. 2016, 7 (23), 4951–4955.
(9) Taylor, A. B.; Zijlstra, P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sensors 2017, 2 (8), 1103–1122.
(10) Verschueren, D. V.; Bud, S.; Shi, X.; De Angelis, L.; Kuipers, L.; Dekker, C. Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores. ACS Nano 2019, 13 (1), 61–70.
(11) Zhang, P.; Ma, G.; Dong, W.; Wan, Z.; Wang, S.; Tao, N. Plasmonic Scattering Imaging of Single Proteins and Binding Kinetics. Nat. Methods 2020, 17 (10), 1010–1017.
(12) Baaske, M. D.; Neu, P. S.; Orrit, M. Label-Free Plasmonic Detection of Untethered Nanometer-Sized Brownian Particles. ACS Nano 2020, 14 (10), 14212–14218.
(13) Foreman, M. R.; Swaim, J. D.; Vollmer, F. Whispering Gallery Mode Biosensors. Adv. Opt. Photonics 2015, 7 (2), 168–219.
(14) Kim, E.; Baaske, M. D.; Vollmer, F. Towards Next-Generation Label-Free Biosensors: Recent Advances in Whispering Gallery Mode Sensors. Lab Chip 2017, 17 (7), 1190–1205.
(15) Dantham, V. R.; Holler, S.; Babre, C.; Keng, D.; Kolchenko, V.; Arnold, S. Label-Free Detection of Single Protein Using a Nanoplasmonic-Photonic Hybrid Microwave. Nano Lett. 2013, 13 (7), 3347–3351.
(16) Baaske, M. D.; Foreman, M. R.; Vollmer, F. Single-Molecule Nucleic Acid Interactions Monitored on a Label-Free Microwave Biosensor Platform. Nat. Nanotechnol. 2014, 9 (11), 933–939.
(17) Baaske, M. D.; Vollmer, F. Optical Observation of Single Atomic Ions Interacting with Plasmonic Nanorods in Aqueous Solution. Nat. Photonics 2016, 10 (11), 733–739.
(18) Kim, E.; Baaske, M. D.; Vollmer, F. In Situ Observation of Single-Molecule Surface Reactions from Low to High Affinities. Adv. Mater. 2016, 28 (45), 9941–9948.
(19) Heylman, K. D.; Thakkar, N.; Horak, E. H.; Quillon, S. C.; Cherqui, C.; Knapper, K. A.; Masiello, D. J.; Goldsmith, R. H. Optical Microresonators as Single-Particle Absorption Spectrometers. Nat. Photonics 2016, 10 (12), 788–795.
(20) Kim, E.; Baaske, M. D.; Schuldes, I.; Wilsch, P. S.; Vollmer, F. Label-Free Optical Detection of Single Enzyme-Reactive Reactions and Associated Conformational Changes. Sci. Adv. 2017, 3 (3), e1603044.
(21) Hogan, L. T.; Horak, E. H.; Ward, J. M.; Knapper, K. A.; Nic Chormaic, S.; Goldsmith, R. H. Toward Real-Time Monitoring and Control of Single Nanoparticle Properties with a Microbubble Resonator Spectrometer. ACSNano 2019, 13 (11), 12743–12757.
(22) Taylor, R. W.; Mahmodabdadi, R. G.; Rauschenberger, V.; Giesl, A.; Schambony, A.; Sandoghdar, V. Interferometric Scattering Microscopy Reveals Microsecond Nanoscopic Protein Motion on a Live Cell Membrane. Nat. Photonics 2019, 13 (7), 480–487.
(23) Bujak, Ł.; Holanová, K.; García Marín, A.; Henrichs, V.; Barvík, I.; Braun, M.; Lánský, Z.; Pillarik, M. Fast Peaks between Millisecond Confinements Govern Axil Diffusion along Microtubules. Small Methods 2021, 5, 2100370.
(24) Cohen, A. E.; Moerner, W. E. Suppressing Brownian Motion of Individual Biomolecules in Solution. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (12), 4362–4365.
(25) Tong, L.; Miljkovic, V. D.; Käll, M. Alignment, Rotation, and Spinning of Single Plasmonic Nanoparticles and Nanowires Using Polarization Dependent Optical Forces. Nano Lett. 2010, 10 (1), 268–273.
(26) Krishnan, M.; Mojarrad, N.; Kukura, P.; Sandoghdar, V. Geometry-Induced Electrostatic Trapping of Nanometric Objects in a Fluid. Nature 2010, 467 (7316), 692–695.
(27) Ruigrok, P. V.; Verhart, N. R.; Zijlstra, P.; Tchebotareva, A. L.; Orrit, M. Brownian Fluctuations and Heating of an Optically Aligned Gold Nanorod. Phys. Rev. Lett. 2011, 107 (3), 037401.
(28) Braun, M.; Würger, A.; Cichos, F. Trapping of Single Nano-Objects in Dynamic Temperature Fields. Phys. Chem. Chem. Phys. 2016, 14 (29), 15207–15213.
(29) Squires, A. H.; Lavania, A. A.; Dahlberg, P. D.; Moerner, W. E. Interferometric Scattering Enables Fluorescence-Free Electrokinetic Trapping of Single Nanoparticles in Free Solution. Nano Lett. 2019, 19 (6), 4112–4117.
(30) Harada, M.; Ishamoto, K.; Kitamori, T.; Sawada, T. Photothermal Microscopy with Excitation and Probe Beams Coaxial under the Microscope and Its Application to Microparticle Analysis. Anal. Chem. 1993, 65 (20), 2938–2940.
(31) Mamawati, K.; Kitamori, T.; Sawada, T. Individual Detection of Single-Nanometer-Sized Particles in Liquid by Photothermal Microscope. Anal. Chem. 1998, 70 (23), 5037–5041.
(32) Boyer, D.; Tamatar, P.; Maal, A.; Lounis, B.; Orrit, M. Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatters. Science (Washington, DC, U. S. A.) 2002, 297 (5584), 1160–1163.
(33) Berciaud, S.; Cognet, L.; Poulin, P.; Weisman, R. B.; Lounis, B. Absorption Spectroscopy of Individual Single-Walled Carbon Nanotubes. Nano Lett. 2007, 7 (5), 1203–1207.
(34) Gaiduk, A.; Ruigrok, P. V.; Yorulmaz, M.; Orrit, M. Detection Limits in Photothermal Microscopy. Chem. Sci. 2010, 1 (3), 433.
(35) Spath, P.; Adhikari, S.; Le, L.; Jollans, T.; Bud, S.; Albrecht, W.; Bauer, T.; Caldara, M.; Kuipers, L.; Orrit, M. Circular Dichroism Measurement of Single Metal Nanoparticles Using Photothermal Imaging. Nano Lett. 2019, 19 (12), 8934–8940.
(36) Adhikari, S.; Spaeth, P.; Kar, A.; Baaske, M. D.; Khatua, S.; Orrit, M. Photothermal Microscopy: Imaging the Optical Absorption of Single Nanoparticles and Single Molecules. ACS Nano 2020, 14 (12), 16414−16445.

(37) Selmke, M.; Braun, M.; Cichos, F. Photothermal Single-Party Microscopy: Detection of a Nanolens. ACS Nano 2012, 6 (3), 2741−2749.

(38) Chen, C.; Shimizu, H.; Kitamori, T. Review of Ultrasensitive Readout for Micro-/Nanofluidic Devices by Thermal Lens Microscopy. J. Opt. Microsystems 2021, 1 (02), 035001−035007.

(39) Baou, G. Thermoplasmonics; Cambridge University Press, 2017, DOI: 10.1017/9781108289801.