Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr$_2$CuO$_3$ and SrCuO$_2$

N Hlubek1, X Zotos2,3, S Singh1,4,5, R Saint-Martin4, A Revcolevschi4, B Büchner1 and C Hess1

1 IFW-Dresden, Institute for Solid State Research, PO Box 270116, D-01171 Dresden, Germany
2 Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, Greece
3 Foundation for Research and Technology—Hellas, PO Box 2208, 71003 Heraklion, Greece
4 Laboratoire de Physico-Chimie de L’Etat Solide, ICMMO, UMR8182, Université Paris-Sud, 91405 Orsay, France
5 Indian Institute of Science Education and Research, 900 NCL Innovation Park, Pashan, Pune 411008, India
E-mail: n.hlubek@ifw-dresden.de, zotos@physics.uoc.gr, surjising@gmail.com, romuald.saint-martin@u-psud.fr, alexandre.revcolevschi@u-psud.fr, b.buechner@ifw-dresden.de and c.hess@ifw-dresden.de

Received 19 December 2011
Accepted 15 February 2012
Published 12 March 2012

Online at stacks.iop.org/JSTAT/2012/P03006
doi:10.1088/1742-5468/2012/03/P03006

Abstract. We have investigated the thermal conductivity κ_{mag} of high-purity single crystals of the spin chain compound Sr$_2$CuO$_3$, which is considered an excellent realization of the one-dimensional spin-1/2 antiferromagnetic Heisenberg model. We find that the spinon heat conductivity κ_{mag} is strongly enhanced as compared to previous results obtained on samples with lower chemical purity. The analysis of κ_{mag} allows the computation of the spinon mean free path l_{mag} as a function of temperature. At low temperature we find $l_{\text{mag}} \sim 0.5$ μm, corresponding to more than 1200 chain unit cells. Upon increasing the temperature, the mean free path decreases strongly and approaches an exponential decay $\sim (1/T) \exp(T_u^*/T)$, which is characteristic for Umklapp processes with the energy scale $k_B T_u^*$. Based on Matthiessen’s rule we decompose l_{mag} into a temperature-independent spinon–defect scattering length l_0 and a temperature-dependent spinon–phonon scattering length $l_{\text{sp}}(T)$. By comparing...
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr$_2$CuO$_3$ and SrCuO$_2$

$l_{\text{mag}}(T)$ of Sr$_2$CuO$_3$ with that of SrCuO$_2$, we show that the spin–phonon interaction, as expressed by l_{sp}, is practically the same in both systems. The comparison of the empirically derived l_{sp} with model calculations for the spin–phonon interaction of the one-dimensional spin-1/2 XY model yields reasonable agreement with the experimental data.

Keywords: spin chains, ladders and planes (theory), spin chains, ladders and planes (experiment), transport properties (theory), transport properties (experiment)

ArXiv ePrint: 1112.4333

1. Introduction

The physics of low-dimensional quantum magnets has recently attracted considerable attention from experimental and theoretical scientists because intriguing properties are found. Such systems exhibit a variety of unusual ground states and exotic elementary excitations which, in some cases, are readily accessible by theoretical treatments. An important class of materials that host such quantum magnets is formed by copper-oxides (cuprates), which feature Cu$^{2+}$-ions that, through their 3d9 configuration, generate $S = 1/2$ sites. The type and strength of the interaction between these spins depends crucially on the structure of the material. For example, amongst the cuprates there are model systems which realize $S = 1/2$ arrangements with strong antiferromagnetic (AFM) Heisenberg-type interactions ($J/k_B \sim 2000$ K) in the form of square lattices, two-leg spin ladders and chains [1]–[5]. About 10 years ago it was discovered that in all these different systems their magnetic excitations give rise to a highly anisotropic thermal

doi:10.1088/1742-5468/2012/03/P03006
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr$_2$CuO$_3$ and SrCuO$_2$

conductivity tensor of the respective materials, with an unexpectedly large magnetic contribution along the directions of large AFM exchange. This finding has opened up a new route to investigating the generation, scattering and dissipation of magnetic quasiparticles (complementary to neutron scattering and magnetic resonance experiments) through analyzing the magnetic thermal conductivity κ_{mag}\[6\]–\[16\]. Among these findings, the results for compounds which realize the one-dimensional $S = 1/2$ AFM Heisenberg model (1D-AFM-HM) are particularly interesting because fundamental conservation laws predict ballistic heat transport in these systems \[17,18\]. This means that in the 1D-AFM-HM model, an infinite magnetic heat conductivity is expected. Despite this rigorous prediction, in any real system, the transport is dissipative, due to extrinsic scattering mechanisms. Nevertheless, an unprecedentedly large κ_{mag} has been observed in ultra-pure samples of the zig-zag chain compound SrCuO$_2$ \[15,19\]. More specifically, upon enhancing the chemical purity of the compound, κ_{mag} becomes (i) increasingly larger, and (ii) even for the highest purity level it can be fully described (in the framework of a simple kinetic model) by considering spinons scattering off impurities and phonons only, where the impurity scattering fully accounts for the purity dependence of κ_{mag} and the phonon scattering prevails at elevated temperatures. This is indeed consistent with the predicted ballistic transport since no further scattering (i.e. spinon–spinon scattering) mechanism needs to be invoked \[15\]. Furthermore, the analysis of the data yields very clean data for the spinon–phonon scattering, for which a full theoretical description is still lacking.

In the zig-zag chain compound SrCuO$_2$, two $S = 1/2$ chains with large AFM exchange are tied together by a significant but frustrated intrachain exchange. In this paper we extend the previous findings for SrCuO$_2$ to the single-chain material Sr$_2$CuO$_3$, where such complications are absent. We find that in high-purity samples of this compound κ_{mag} is strongly enhanced as compared to previous results \[8,20\] for lower purity. Upon comparing the dependence of κ_{mag} on the nominal purity level we observe that κ_{mag} of Sr$_2$CuO$_3$ depends in a similar fashion on the purity of the material as for SrCuO$_2$. More specifically, within a simple kinetic model \[8\] the spinon mean free path l_{mag} can be decomposed into terms which describe spinon–defect and spinon–phonon scattering, as is the case for the zig-zag chain compound. We show that, using an empirical formula \[8\] for describing the spinon–phonon scattering, the strength of this mechanism is practically indistinguishable for both materials. Going beyond this empirical approach we model the spinon–phonon scattering by employing results for the spin–phonon interaction of the XY model, which further underpins these findings.

2. Materials details

The main building blocks of Sr$_2$CuO$_3$ are corner-sharing chains formed by CuO$_3$ plaquettes \[21\]. The chains are parallel to the crystallographic b-axis in Sr$_2$CuO$_3$. The intrachain exchange interaction between neighboring Cu$^{2+}$ sites is mediated by 180$^\circ$ superexchange through the oxygen, and with $J/k_B \approx 2150 – 3000$ K \[5,22,23\] is among the largest of the known Heisenberg spin chain materials. The Cu–O–Cu chains are separated by Sr atoms, leading to an extremely small interchain interaction of $J_{\text{perp}}/k_B \approx 0.02$ K. Furthermore, muon spin rotation and neutron scattering measurements \[24,25\] show that this material orders three-dimensionally only below the Néel temperature of $T_N \approx 5.4$ K. These properties make Sr$_2$CuO$_3$ an excellent realization of a $S = 1/2$ Heisenberg chain.

doi:10.1088/1742-5468/2012/03/P03006

3
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates \(\text{Sr}_2\text{CuO}_3 \) and \(\text{SrCuO}_2 \) for temperatures \(T > 5.4 \) K. While \(\text{Sr}_2\text{CuO}_3 \) consists of isolated chains, the main structural element in \(\text{SrCuO}_2 \) is formed by \(\text{CuO}_2 \) zig-zag ribbons, which run along the crystallographic \(c \)-axis. Each ribbon can be viewed as made of two parallel chains of corner-sharing \(\text{CuO}_2 \) plaquettes, where the straight \(\text{Cu–O–Cu} \) bonds between corner-sharing plaquettes of each double chain structure result in a very large antiferromagnetic intrachain exchange coupling \(J/k_B \approx 2100–2600 \) K of the \(S = 1/2 \) spins at the \(\text{Cu}^{2+} \) sites [5,26]. The interchain coupling \(J' \) between \(\text{Cu}^{2+} \)-sites of two edge-sharing plaquettes is much weaker \((|J'|/J \approx 0.1–0.2)\) [5,27]. Frustration of this exchange interaction and presumably quantum fluctuations prevent three-dimensional long range magnetic order of the system at \(T > T_N \approx 1.5–2 \) K \(\approx 10^{-3}J/k_B \) K [28,29]. Hence, at significantly higher \(T \) the two chains within one double chain structure are usually regarded as magnetically independent. In fact, low-\(T \) (12 K) inelastic neutron scattering spectra of the magnetic excitations can be very well described within the \(S = 1/2 \) Heisenberg antiferromagnetic chain model [26].

3. Experimental details

Large single crystals of pure \(\text{Sr}_2\text{CuO}_3 \) were grown by the traveling solvent floating zone method [30]. The feed rods were prepared using the primary chemicals \(\text{CuO} \) and \(\text{SrCO}_3 \) with 4N (99.99\%) purity. The crystals react rather rapidly with water. A hydroxide layer is formed at the surface of the crystals, after a short exposure to air [31,32]. Therefore the crystals were annealed at 900\(^\circ\)C in an oxygen atmosphere for three days before further treatment. This reverts the hydroxide layer back to \(\text{Sr}_2\text{CuO}_3 \), although in a polycrystalline form.

The crystallinity and stoichiometry of all crystals were checked under polarized light and by energy-dispersive x-ray spectroscopy, respectively. For the transport measurements rectangular samples with typical dimensions of \((2 \times 0.5 \times 0.5) \text{mm}^3\) were cut from the crystals for each doping level with an abrasive slurry wire saw. Four-probe measurements of the thermal conductivity \(\kappa \) were performed [33] in the 7–300 K range with the thermal current along the \(b \)- and \(c \)-axes (\(\kappa_b \) and \(\kappa_c \) respectively).

4. Experimental results

Figure 1 presents our findings for the heat conductivity of \(\text{Sr}_2\text{CuO}_3 \), measured with the heat current parallel to the \(b \) - and \(c \)-axes, i.e. parallel and perpendicular to the chains in the material. We focus first on the temperature dependence of the thermal conductivity perpendicular to the spin chain, \(\kappa_c \), which is shown in the inset of the figure. Along this direction, the heat conductivity of this electrically insulating material is purely phononic: As a function of temperature, it shows a characteristic peak at \(T = 22 \) K, and then strongly decreases upon further raising the temperature. The height of the peak sensitively depends on the density of impurities in the system, which generate phonon–defect scattering. This can be clearly inferred by comparing our data for a 4N purity material with that of 2N (i.e., 99\%) purity, taken from [8]. For this lower-purity sample the overall magnitude of \(\kappa_c \) is strongly reduced, as is expected for typical phonon heat conductors [34]. In fact, the data for both purities can be described well in the framework of a model by Callaway [35],

doi:10.1088/1742-5468/2012/03/P03006
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr$_2$CuO$_3$ and SrCuO$_2$

Figure 1. Thermal conductivity of Sr$_2$CuO$_3$ parallel to the spin chains along κ_b for various purities. The dashed lines represent results from Sologubenko et al with 2N purity, reproduced from [7]. The dash–dotted line has been obtained by Kawamata et al for 3N purity and is reproduced from [20]. Inset: thermal conductivity of Sr$_2$CuO$_3$ perpendicular to the spin chains along κ_c for 2N (also reproduced from [7]) and 4N purity. The solid lines are fits to the Callaway model.

where the difference between both curves is largely captured by different point defect scattering strength (see appendix).

The thermal conductivity parallel to the chain, κ_b, is shown in the main panel of figure 1. κ_b exhibits a peak at the same position as observed for κ_c. However, the peak is much broader and the overall magnitude of κ_b is significantly larger than that of the purely phononic κ_c, which is the signature of a substantial magnetic contribution in this material, i.e., the heat current parallel to the spin chain is carried not only by phonons but also by spinons [8]. For our 4N purity sample, the anisotropy between κ_b and κ_c is roughly constant above 100 K at approximately $\kappa_b/\kappa_c \approx 3.5$. This is significantly larger than the previously reported [8] anisotropy for 2N purity Sr$_2$CuO$_3$ and provides clear evidence that the enhanced purity leads to a relative enhancement of the spinon contribution to the overall heat conductivity. The purity dependence of κ_b can be directly read off from the figure, where we compare our findings with experimental data for 3N (99.9% purity) and 2N purity samples of Sr$_2$CuO$_3$, reproduced from [20] and [8], respectively. From low to intermediate temperatures [7–150 K], the heat conductivity is strongly enhanced upon increasing the sample purity. At higher temperatures this purity dependence becomes weaker since the curves approach each other. Apparently, it is possible to
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr$_2$CuO$_3$ and SrCuO$_2$

5. Data analysis and discussion

5.1. The spinon heat conductivity of Sr$_2$CuO$_3$

The thermal conductivity parallel to the chain is composed of a magnetic and phononic contribution $\kappa_b = \kappa_{\text{mag}} + \kappa_{b,\text{ph}}$. In order to extract the heat conductivity of the spin chain the phononic background is approximated as $\kappa_{b,\text{ph}} \approx \kappa_c$. This simple assumption is reasonable, since the purely phononic anisotropy between κ_a and κ_c is small [7,8]. Therefore $\kappa_{b,\text{ph}}$ is not expected to be much different. The, thus obtained, spinon heat conductivity $\kappa_{\text{mag}} = \kappa_b - \kappa_c$ for the 4N sample, as well as the results from literature for 3N and 2N, for which κ_{mag} was extracted in a similar way [7,8,20], are shown in figure 2. Below $T \lesssim 40$ K, i.e., in the vicinity of the peak of $\kappa_{\text{ph,b}}$, errors become large and the data separate the thermal conductivity into two distinct regimes, where different scattering processes dominate. At low-T, the extreme sensitivity to impurities suggests that spinon scattering off defects is dominant. At high-T, a further extrinsic scattering mechanism, i.e. spinon–phonon scattering [8], becomes dominant as a consequence of increasing phonon population, which leads to the very similar $\kappa_{b,2N}$ and $\kappa_{b,4N}$ for $T \gtrsim 200$ K.
in this range are neglected for further analysis. For higher T, the possible uncertainty of κ_{mag} is around $\pm 15\%$, which accounts for the individual errors of κ_b and κ_c.

Starting from low-T, κ_{mag} of the 4N sample increases almost linearly towards a peak. The uncertainty is quite large in this temperature regime ($T < 40$ K) and hence an increase with a higher power [36,37] of T cannot be excluded. However, in the simplest case of a temperature-independent spinon–defect scattering rate, one expects κ_{mag} to be directly proportional to the thermal Drude weight D_{th}, which also increases linearly with temperature at low-T up to $T \sim 0.15 J/k_B \sim 300$ K [14], [38]–[41]. The peak is quite pronounced, and found at ~ 48 K, with a maximum value of about 180 W m$^{-1}$ K$^{-1}$. The peak is followed by a strong decrease for higher T. Such a temperature dependence cannot be accounted for from the T-dependence of the thermal Drude weight, since it is expected to decrease only at very high $T \gtrsim 0.6 J/k_B \sim 1200$ K [38]–[41]. Instead, the decrease is consistent with our earlier notion of dominant spinon–phonon scattering at high-T. κ_{mag} of the 3N and 2N samples is qualitatively very similar to that of the 4N sample, but is increasingly suppressed with growing impurity level, accompanied with a shift of the peak-position of κ_{mag} towards higher temperatures. Furthermore, the curves approach each other with increasing temperature, as for the κ_b data.

Chernyshev and Rozhkov have proposed a model which describes κ_{mag} of Sr$_2$CuO$_3$ at the 2N purity level very well [36,37]. However, a similarly convincing description of our data for the 4N sample is not possible. The same holds for the double chain material SrCuO$_2$. Spin–phonon drag has been suggested as a possible explanation for the failure of the model [42]. Recently, there has been substantial progress in the formal theoretical treatment of this phenomenon [43]. However, specific model calculations have not yet been performed for the materials under scrutiny here. It thus remains unclear whether spin–phonon drag plays a significant role in our experimental data, and we analyze κ_{mag} without taking into account a possible contribution due to this effect.

The temperature dependence of κ_{mag} at high temperature $T \gtrsim 80$ K up to room temperature can equally well be described by either $\kappa_{\text{mag}} \propto 1/T^2 + \text{const.}$ or $\kappa_{\text{mag}} \propto \exp(T_u^*/T)$, with T_u^* a characteristic energy scale. Figure 2 shows the corresponding fits. While the physical meaning of the former functional form remains elusive, one expects the exponential one for spinons scattering off phonons, from general considerations for Umklapp processes [44].

5.2. The spinon mean free path

We proceed by calculating the mean free path of the spinons, l_{mag}, from the experimental κ_{mag} by [7, 8, 14, 15, 45]

$$l_{\text{mag}} = \frac{3h}{\pi N_s k_B^2 T \kappa_{\text{mag}}},$$

(1)

where N_s is the number of spin chains per unit area. The, thus extracted, mean free paths are shown in figure 3. $l_{\text{mag}}(T)$ is very large at low temperature (~ 0.5 μm) and decreases strongly with increasing temperature, consistent with the above already inferred increasing importance of spinon–phonon scattering. While the high-temperature data ($T \gtrsim 100$ K) reflect well the exponential suppression of κ_{mag}, i.e. $l_{\text{mag}} \sim (1/T) \exp(T_u^*/T)$ (shown as a dotted line in figure 3), the low-temperature data clearly deviate from this functional form, which indicates that spinon–defect scattering becomes important. In order to test this
Spinon heat transport and spin–phonon interaction in the spin-$1/2$ Heisenberg chain cuprates Sr_2CuO_3 and SrCuO_2

Figure 3. Derived mean free paths of the spinon excitations in Sr_2CuO_3 for 4N (circles, squares) purity. The solid black line is a fit to the data, as explained in the text. The squares in the 4N data have a large uncertainty and are disregarded for the fit. A comparison is made with the fits for 2N (dashed line) [8] and 3N (dash–dotted line) [20] purities. The dotted line is a fit to the 4N results by l_{sp} (equation (2)) only. The shaded area illustrates the uncertainty from the estimation of the phononic background. The inset shows the same results on a double logarithmic scale.

In order to capture this behavior in our further analysis, we apply Matthiessen’s rule for the scattering processes of the spinons $l_{\text{mag}}^{-1}(T) = l_0^{-1} + l_{\text{sp}}^{-1}(T)$, where l_0 denotes the T-independent spinon–defect scattering, while $l_{\text{sp}}(T)$ takes the T-dependent spinon–phonon scattering into account. According to our empirical finding of an exponential decay of $\kappa_{\text{mag}}(T)$ at high temperature, and consistent with previous findings [8,15], we estimate $l_{\text{sp}}(T)$ as

$$l_{\text{sp}}^{-1} = \left(\frac{\exp \left(T_0^*/T \right)}{A_s T} \right)^{-1},$$

with fit parameters T_0^* and A_s. As can be seen in figure 3, such an empirically derived functional form for the spinon–phonon scattering allows an excellent fit of the
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr$_2$CuO$_3$ and SrCuO$_2$

Figure 4. Magnetic mean free paths of SrCuO$_2$ (pentagon shape) and Sr$_2$CuO$_3$ (circles) for 4N purity. The shaded area illustrates the uncertainty from the estimation of the phononic background. The lines are fits to the mean free paths.

data with $l_0 = 0.54 \pm 0.05$ μm (corresponding to approximately 1367 lattice spacings), $T_u^* = 210 \pm 11$ K, and $A_s = (6.1 \pm 5) \times 10^5$ m$^{-1}$ K$^{-1}$.

5.3. Comparison of SrCuO$_2$ and Sr$_2$CuO$_3$

The drastic enhancement of κ_{mag} and l_{mag} upon increasing the purity level of Sr$_2$CuO$_3$ provides strong evidence that the spinon heat transport in the $S = 1/2$ AFM Heisenberg model, as realized in this material, is only limited by the external scattering off defects and phonons. Our findings here thus further corroborate previous experimental evidence [15] for the ballistic nature of heat transport in the $S = 1/2$ AFM Heisenberg model, obtained for the zig-zag chain compound SrCuO$_2$. Since the individual chains in SrCuO$_2$ and in Sr$_2$CuO$_3$ consist of the same structural elements (CuO$_2$ plaquettes), it is instructive to directly compare the findings for spinon–phonon scattering obtained for both compounds. For this purpose, we show in figure 4 the spinon mean free path $l_{mag}(T)$ of high-purity (4N) SrCuO$_2$ and Sr$_2$CuO$_3$ in units of the chain unit cells. In this representation, the mean free path is free of any geometrical particularities and can be directly related to the distances of spin sites within a single chain. As can be seen in the figure, the mean free paths for both compounds are virtually identical for temperatures $T > 150$ K (the relative difference is less than 5%). In the whole temperature range, both curves can be fitted well with expression (2) for the spinon–phonon scattering, with the same T_u^* and A_s as determined before and with $l_0 = 1.56 \pm 0.16$ μm (corresponding to approximately 3984
lattice spacings) for SrCuO$_2$. In fact, the same parameters for $l_{sp}(T)$ could be used for both compounds. This demonstrates that the spinon–phonon interaction is the same in both compounds, despite the difference of their CuO$_2$ chain structures. Since the chains in SrCuO$_2$ and Sr$_2$CuO$_3$ are composed of the same copper–oxygen plaquettes, one has to conclude that only phonon modes which modulate the Cu–O–Cu bonds along two corner-sharing plaquettes lead to a significant scattering of spinons.

At low temperature, the mean free path of SrCuO$_2$ is by a factor of three larger than that of Sr$_2$CuO$_3$, in spite of the same nominal purity. The higher defect density of Sr$_2$CuO$_3$ may be caused by the relatively lower chemical stability. It reacts quite rapidly with water, and decays if exposed to air for a few hours. Additionally, with regard to unavoidable intrinsic crystal defects, the double chain is a much more stable structure, due to its layout of the CuO$_2$-plaquettes.

Apart from these minor and plausible differences with regard to the spinon heat conduction, we would like to point out a surprising dissimilarity which concerns the phonon heat conductivity κ_{ph}. As we have seen in figure 1, κ_{ph} of Sr$_2$CuO$_3$ increases strongly with increasing purity, as expected. However, in SrCuO$_2$ the increase is very weak, which suggests an additional scattering mechanism for phonons in this material [15].

5.4. Theoretical treatment of the spinon–phonon scattering

Expression (2), which describes the spinon–phonon scattering in our data, has been empirically derived and is consistent with general considerations for Umklapp scattering. In the following we go beyond this empirical treatment and derive $l_{sp}(T)$ from a spinon–phonon scattering theory presented in [46] (labeled $\tilde{l}_{sp}(T)$). In this memory function approach it is possible to semi-analytically evaluate the temperature dependence of the mean free path within the XY limit of the Heisenberg model, assuming weak coupling.

Applying a Jordan–Wigner transformation, the XY Hamiltonian becomes,

$$H = \sum_l h_{l,l+1}^s = -t \sum_l (1 - \lambda(x_{l+1} - x_l))(c_l^\dagger c_l + h.c.),$$

where $-t = J/2$ and λ is the spin–phonon coupling constant in the spin-Peierls XY model. In this tight binding model the dispersion of fermions is given by $\epsilon_k = -2t \cos(ka)$ and the velocity at the Fermi wavevector $k = \pi/2a$ is equal to $v = 2ta/\hbar$ (a is the lattice constant). In the isotropic Heisenberg model the elementary magnetic excitations—the spinons—have a velocity equal to $v_{sp} = (\pi/2)(aJ/\hbar)$. To take into account the difference in velocities of the excitations between the XY and isotropic Heisenberg model we evaluate the mean free path using an effective hopping matrix element $-t_{eff} = (\pi/2)(J/2)$.

The mean free path is given by $\tilde{l}_{sp}(T) \sim v_{sp} \tau(T)$, where τ is the characteristic scattering time. The phase space of the spinon–phonon scattering matrix elements determining τ is restricted by the energy–momentum conservation laws [46] as

$$1/\tau \sim f_k(1 - f_{k+q})(1 + n_{-q}) \delta(\hbar \omega + \epsilon_k - \epsilon_{k+q} - \hbar \omega_{-q})$$
$$+ n_q \delta(\hbar \omega + \epsilon_k - \epsilon_{k+q} + \hbar \omega_q)\big|_{\omega \rightarrow 0},$$

with the first term representing a phonon emission and the second, phonon absorption. $f_k = 1/(1 + e^{\beta \epsilon_k})$, $n_q = 1/(e^{\beta \hbar \omega_q} - 1)$ are the fermion and boson occupation factors respectively ($\beta = 1/k_B T$).
It is clear from this formulation that low-energy acoustic phonons $\omega_q \sim cq$ (c the sound velocity) cannot contribute to the scattering because the energy–momentum conservation laws cannot be simultaneously satisfied. We thus consider scattering by optical phonons of frequency ω_0, as the effect of scattering by zone boundary acoustic phonons (Umklapp scattering) is similar; we take a typical $J \sim 2400$ K. In the fits shown in figures 5 and 6 in the temperature range $30 \text{ K} < T < 300 \text{ K}$ we assume $l_{\text{mag}}^{-1}(T) + \tilde{l}_{\text{sp}}^{-1}(T)$ and optimize with respect to l_0 (the impurity scattering length) and ω_0. As we do not know λ, we normalize the theoretical curve with respect to the experimental one at $T = 300 \text{ K}$. For Sr$_2$CuO$_3$ (SrCuO$_2$) a good fit for the whole temperature range is found with $l_0 = 1266$ (3831) chain unit cells and $\omega_0 = 540 \text{ K}$ for both compounds. A slightly better agreement at high temperatures can be achieved with a larger ω_0, although this leads to a strong deviation at low temperatures. The discrepancy at around 100 K is due to the fact that the model does not accurately reproduce the slope of the experimentally determined l_{sp} values below this temperature. This is illustrated in figure 7. There, an l_{sp} approximated from the measured data is compared to the \tilde{l}_{sp} as obtained from the memory function approach. The approximation of l_{sp} is done by $l_{sp}^{-1}(T) = l_{\text{mag}}^{-1}(T) - l_0^{-1}$, where an l_{mag} from equation (1) and the estimated $l_0 = 1.56 \pm 0.16 \mu\text{m}$ by the phenomenological model is used. While the agreement between l_{sp} and \tilde{l}_{sp} is good at high temperatures, it gets poorer towards low temperatures. Especially in the double logarithmic plot, it can be seen that below 100 K the model does not reproduce the slope of the experimental estimate. It is interesting to note that the fitted ω_0 is somewhat lower but still of the same
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr$_2$CuO$_3$ and SrCuO$_2$

Figure 6. Fits to the mean free path according to the memory function approach explained in the text. The pentagonal shaped symbols represent the derived mean free paths of the spinon excitations in SrCuO$_2$ for 4N purity. The line represents a fit using an l_{sp} as defined by equation (4). The parameters of the fit are $\omega_0 = 540$ K and $l_0 = 3831$ lattice spacings ($l_0 = 15000$ Å).

order of magnitude as typical frequencies of the optical Cu–O stretching mode [47]–[50]. In contrast, the phenomenological l_{sp} according to equation (2) hints at a scattering by acoustical phonons, as can be seen by the $T^*_u = 210$ K.

We mention that the exponential decay of the heat conductivity parallel to the spin chains $\kappa_b \approx \kappa_{mag} \propto \exp(\frac{T^*_u}{T})$ is consistent with a theoretical treatment by Shimshoni et al [51,52]. However, we do not observe $\kappa_c = \kappa_{ph} \propto \exp(2\frac{T^*_u}{T})$ as is expected in the same model.

6. Summary

We have investigated the spinon thermal conductivity κ_{mag} of high-purity single crystals of the single chain $S = 1/2$ AFM Heisenberg chain compound Sr$_2$CuO$_3$. We find that κ_{mag} is strongly enhanced as compared to previous results obtained on lower-purity crystals. The analysis of the data yields a very large low-temperature mean free path of ~ 0.5 μm, corresponding to 1266 chain unit cells. Upon increasing the temperature towards room temperature, the mean free path decreases strongly and approaches that observed in lower-purity samples. By using a kinetic model we can decompose the mean free path into a temperature-independent spinon–defect scattering length l_0 and a temperature-dependent spinon–phonon scattering length $l_{sp} \sim \frac{1}{T} \exp(\frac{T^*_u}{T})$ with a characteristic energy scale $k_B T^*_u$ for Umklapp processes.

doi:10.1088/1742-5468/2012/03/P03006
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates \(\text{Sr}_2\text{CuO}_3 \) and \(\text{SrCuO}_2 \)

Figure 7. Comparison of the expressions for \(I_{sp} \) only. The hexagonal shaped symbols represent an estimate for \(I_{sp} \) derived from the magnetic mean free path \(I_{mag} \) according to \(I_{sp}^{-1}(T) = I_{mag}^{-1}(T) - I_0^{-1} \). An \(I_0 = 1.56 \pm 0.16 \mu m \) as approximated by the phenomenological model has been used. The line represents calculations of \(I_{sp} \) with the memory function approach using a phonon frequency \(\omega_0 = 540 \text{ K} \).

By comparing the temperature dependence of the mean free path of \(\text{Sr}_2\text{CuO}_3 \) with that of \(\text{SrCuO}_2 \), we could show that the spin–phonon interaction, as expressed by \(I_{sp} \), is practically the same in both systems. The comparison of the empirically derived \(I_{sp} \) with model calculations for the spin–phonon interaction of the \(S = 1/2 \) AFM XY chain model yields a reasonable agreement. This agreement is very encouraging for further studies, as an analysis of the full Heisenberg model might improve this agreement even more.

Acknowledgments

We thank W Brenig, A L Chernyshev, F Heidrich-Meisner and P Prelovšek for fruitful discussions. Additionally, we thank W Brenig for an important comment on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft through grant HE3439/7, through the Forschergruppe FOR912 (grant HE3439/8) and by the European Commission through the projects NOVMAG (FP6-032980) and LOTHERM (PITN-GA-2009-238475).

Appendix

In order to model the phononic thermal conductivity perpendicular to the chain, a phenomenological model, devised by Callaway [35], can be used. Although this model
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr$_2$CuO$_3$ and SrCuO$_2$

Table A.1. Fit parameters of a Callaway fit to κ_c of Sr$_2$CuO$_3$, shown in the left panel of figure 1.

	B in 10^{-31} K$^{-1}$ s2	A in 10^{-44} s3	L in 10^{-4} m	b
2N	2.25	4.50	7.50	3.60
4N	3.45	1.53	2.33	3.49

has undergone several revisions and extensions [53]–[58], the main approach is to model κ_{ph} within the Debye approximation as [34]

$$\kappa_{ph} = \frac{k_B}{2\pi^2 v_{ph}} \left(\frac{k_B T}{\hbar} \right)^3 \int_0^{\Theta_D/T} x^4 e^x \left(e^x - 1 \right)^2 \cdot \tau_c \, dx. \quad (A.1)$$

Here $x = \hbar \omega/k_B T$, ω is the phonon angular frequency, Θ_D is the Debye temperature and v_{ph} is the phonon velocity. In the Debye approximation, the sound velocity is given as

$$v_s = \frac{\Theta_D k_B}{6\pi^2 N \hbar}, \quad (A.2)$$

with N representing the number of elementary cells per unit volume. τ_c is a combined scattering rate, which is assumed to be the sum of all individual scattering rates

$$\tau_c^{-1} = \tau_B^{-1} + \tau_D^{-1} + \tau_U^{-1}, \quad (A.3)$$

where τ_B denotes boundary scattering, τ_D point defect scattering and τ_U Umklapp scattering. This separation is possible, as long as these scattering processes are independent of each other, which is the gist of Matthiessen’s rule. In the context of the model, this is considered to be fulfilled since in different temperature regions different scattering mechanisms are dominant. A τ_c containing expressions for all scattering processes can then be written as

$$\tau_c^{-1} = \frac{v_{ph}}{L} + A \omega^4 + B \omega^3 T \exp \left(-\frac{\Theta_D}{b T} \right), \quad (A.4)$$

with fit parameters L, A, B, b. The values of these parameters are given in table A.1 for the fit in the inset of figure 1. The largest changes, when comparing the two purities, are for parameter A, which describes the concentration of point defects, and for parameter L, which describes the boundary scattering. The difference in boundary scattering only indicates a difference in the sample geometries between the 2N and 4N samples. The decrease of scattering by point defects upon an increase of purity however underpins the overall reduction of defects. It should be noted that in [8], two additional scattering processes had to be used to describe the data. In our analysis, which is focused on temperatures above the maximum of κ, these are not necessary.

References

[1] Hayden S M, Aeppli G, Osborn R, Taylor A D, Perring T G, Cheong S-W and Fisk Z, 1991 Phys. Rev. Lett. 67 3622
[2] Thio T, Thurston T R, Preyer N W, Picone P J, Kastner M A, Jenssen H P, Gabbe D R, Chen C Y, Birgeneau R J and Aharony A, 1988 Phys. Rev. B 38 905

doi:10.1088/1742-5468/2012/03/P03006 14
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates \(\text{Sr}_2\text{CuO}_3 \) and \(\text{SrCuO}_2 \)

[3] Dagotto E and Rice T M, 1996 Science \textbf{271} 618
[4] Dagotto E, 1999 Rep. Prog. Phys. \textbf{62} 1525
[5] Motoyama N, Eisaki H and Uchida S, 1996 Phys. Rev. Lett. \textbf{76} 3212
[6] Sologubenko A V, Giannoni K, Ott H R, Ammerahl U and Revcolevschi A, 2000 Phys. Rev. Lett. \textbf{84} 2714
[7] Sologubenko A V, Felder E, Giannoni K, Ott H R, Vietkine A and Revcolevschi A, 2000 Phys. Rev. B \textbf{62} R6108
[8] Sologubenko A V, Giannoni K, Ott H R, Vietkine A and Revcolevschi A, 2001 Phys. Rev. B \textbf{64} 054412
[9] Hess C, Baumann C, Ammerahl U, Büchner B, Heidrich-Meisner F, Brenig W and Revcolevschi A, 2001 Phys. Rev. B \textbf{64} 184405
[10] Hess C, ElHaes H, Büchner B, Ammerahl U, Hücke M and Revcolevschi A, 2004 Phys. Rev. Lett. \textbf{93} 027005
[11] Hess C, Baumann C and Büchner B, 2005 J. Magn. Magn. Mater. \textbf{290/291} 322
[12] Hess C, Ribeiro P, Büchner B, ElHaes H, Roth G, Ammerahl U and Revcolevschi A, 2006 Phys. Rev. B \textbf{73} 104407
[13] Hess C, Büchner B, Ammerahl U, Colonescu L, Heidrich-Meisner F, Brenig W and Revcolevschi A, 2003 Phys. Rev. Lett. \textbf{90} 197002
[14] Hess C, ElHaes H, Waske A, Büchner B, Sekar C, Krabbes G, Heidrich-Meisner F and Brenig W, 2007 Phys. Rev. Lett. \textbf{98} 027201
[15] Hlubek N, Ribeiro P, Saint-Martin R, Revcolevschi A, Roth G, Behr G, Büchner B and Hess C, 2010 Phys. Rev. B \textbf{81} 020405(R)
[16] Hlubek N et al, 2011 Phys. Rev. B \textbf{84} 214419
[17] Zotos X, Naef F and Prelovsek P, 1997 Phys. Rev. B \textbf{55} 11029
[18] Zotos X, 1999 Phys. Rev. Lett. \textbf{82} 1764
[19] Kawamata T, Kaneko N, Usaka M, Sato M and Koike Y, 2010 J. Phys.: Conf. Ser. \textbf{200} 022023
[20] Kawamata T, Takahashi N, Adachi T, Noji T, Kudo K, Kobayashi N and Koike Y, 2008 J. Phys. Soc. Japan \textbf{77} 034607
[21] Teske C L and Müller-Buschbaum H, 1969 Z. Anorg. Allg. Chem. \textbf{371} 325
[22] Ami T, Crawford M K, Harlow R L, Wang Z R, Johnston D C, Huang Q and Erwin R W, 1995 Phys. Rev. B \textbf{51} 5994
[23] Suzuura H, Yasuhara H, Furusaki A, Nagaosa N and Tokura Y, 1996 Phys. Rev. Lett. \textbf{76} 2579
[24] Keren A, Le L P, Luke G M, Sternlieb B J, Wu W D, Uemura Y J, Tajima S and Uchida S, 1993 Phys. Rev. B \textbf{48} 12926
[25] Kojima K M et al, 1997 Phys. Rev. Lett. \textbf{78} 1787
[26] Zaliznyak I A, Woo H, Perring T G, Broholm C L, Frost C D and Takagi H, 2004 Phys. Rev. Lett. \textbf{93} 087202
[27] Rice T M, Gopalan S and Sigrist M, 1993 Europhys. Lett. \textbf{23} 445
[28] Matsuda M et al, 1997 Phys. Rev. B \textbf{55} R11953
[29] Zaliznyak I A, Broholm C, Kibune M, Nohara M and Takagi H, 1999 Phys. Rev. Lett. \textbf{83} 5370
[30] Revcolevschi A, Ammerahl U and Dhaene K, 1999 J. Cryst. Growth \textbf{198} 593
[31] Scholder R, Felsenstein R and Apel A, 1933 Z. Anorg. Allg. Chem. \textbf{216} 138
[32] Hill J M, Johnston D C and Miller L L, 2002 Phys. Rev. B \textbf{65} 134428
[33] Hess C, Büchner B, Ammerahl U and Revcolevschi A, 2003 Phys. Rev. B \textbf{68} 184517
[34] Berman R, 1976 Thermal Conduction in Solids (Oxford: Clarendon)
[35] Callaway J, 1959 Phys. Rev. \textbf{113} 1046
[36] Rozhkov A V and Chernyshev A L, 2005 Phys. Rev. Lett. \textbf{94} 087201
[37] Chernyshev A L and Rozhkov A V, 2005 Phys. Rev. B \textbf{72} 104423
[38] Klimper A and Sakai K, 2002 J. Phys. A: Math. Gen. \textbf{35} 2173
[39] Heidrich-Meisner F, Honecker A, Cabria D C and Brenig W, 2002 Phys. Rev. B \textbf{66} R140406
[40] Heidrich-Meisner F, Honecker A, Cabria D C and Brenig W, 2003 Phys. Rev. B \textbf{68} 134436
[41] Heidrich-Meisner F, Honecker A and Brenig W, 2005 Phys. Rev. B \textbf{71} 184415
[42] Chernyshev A, 2007 J. Magn. Magn. Mater. \textbf{310} 1263
[43] Gangadharaiah S, Chernyshev A L and Brenig W, 2010 Phys. Rev. B \textbf{82} 134421
[44] Ashcroft N W and Mermin N D, 1976 Solid State Physics (Philadelphia: Saunders College Publishing)
[45] Hess C, 2007 Eur. Phys. J. Spec. Top. \textbf{151} 73
[46] Louis K, Prelovšek P and Zotos X, 2006 Phys. Rev. B \textbf{74} 235118
[47] Lee Y S, Noh T W, Choi H S, Choi E J, Eisaki H and Uchida S, 2000 Phys. Rev. B \textbf{62} 5285
[48] Popovic Z, Konstantinovic M, Gajic R, Thomsen C, Kuhlmann U and Vietkine A, 2001 Physica C \textbf{351} 386
[49] Grünninger M, van der Marel D, Damascelli A, Erb A, Nunner T and Kopp T, 2000 Phys. Rev. B \textbf{62} 12422

doi:10.1088/1742-5468/2012/03/P03006
Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr_2CuO_3 and SrCuO_2

[50] Windt M et al, 2001 Phys. Rev. Lett. 87 127002
[51] Shimshoni E, Andrei N and Rosch A, 2003 Phys. Rev. B 68 104401
[52] Shimshoni E, Andrei N and Rosch A, 2005 Phys. Rev. B 72 059903
[53] Callaway J and von Baeyer H C, 1960 Phys. Rev. 120 1149
[54] Callaway J, 1961 Phys. Rev. 122 787
[55] Simons S, 1972 Phys. Status Solidi b 53 K41
[56] Callaway J, 1991 Quantum Theory of the Solid State (New York: Academic)
[57] Sood K C and Roy M K, 1993 J. Phys.: Condens. Matter 5 L245
[58] Chung J D, McGaughey A J H and Kaviany M, 2004 J. Heat Transf. 126 376