Research Paper

Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP⁺-induced oxidative stress

Vicky Lahaie-Collins, Julie Bournival, Marilyn Plouffe, Julie Carange and Maria-Grazia Martinoli

1Department of Biochemistry and the Neuroscience Research Group; Université du Québec; Trois-Rivières, Québec Canada; 2Neuroscience Research Unit; Université Laval; Québec Canada

Abbreviations: CAT, catalase; Cₓ, mean cycle threshold values; DA, dopamine; DAergic, dopaminergic; DAPI, 4',6-diamidino-2-phenylindole; DAT, dopamine transporter; DHR, dihydrorhodamine 123; DMEM-F12, Dulbecco’s modified Eagle’s medium-F12 ham; DMSO, dimethylsulfoxide; ERα, estrogen receptor-alpha; ERβ, estrogen receptor-beta; FBS, fetal bovine serum; HS, horse serum; IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; MPP⁺, 1-methyl-4-phenyl-pyridine ion; MPTP, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine; NGF, nerve growth factor; NO, nitric oxide; PD, Parkinson’s disease; ROS, reactive oxygen species; RT, room temperature; RT-qPCR, Real time-quantitative polymerase chain reaction; SOD, superoxide dismutase; TH, tyrosine hydroxylase; TNFβ, tumor necrosis factor-beta

Key words: neuroprotection, oxidative stress, sesamin, lignans, MPP⁺, neurodegeneration, Parkinson’s disease, neuroinflammation, dopamine, protein expression

Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson’s disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP⁺) ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP⁺-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP⁺-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP⁺ stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP⁺-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

Introduction

A large body of experimental evidence supports a role for oxidative stress as mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson disease (PD). The degeneration of dopaminergic (DAergic) neurons located in the substantia nigra characterizes PD and leads to a decline of dopamine (DA) as well as its biosynthetic enzyme, tyrosine hydroxylase (TH), and its high-affinity cellular transporter (DAT). As reported recently, apoptotic death of DA neurons may be initiated by oxidative stress and neuroinflammation.1-3 Besides, elevated iron levels, decreased glutathione levels, impaired mitochondrial complex 1 activity and increased superoxide dismutase (SOD) activity have been observed in PD brains.4-6

1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is a neurotoxin that causes Parkinson-like symptoms in humans, monkeys and mice.7-9 This toxin is largely employed as an experimental model to study therapeutic strategies against PD. 1-Methyl-4-phenylpyridine ion (MPP⁺), the active metabolite of MPTP, is selectively taken up in DAergic neurons by DAT and actively transported into the mitochondria where it interferes with the respiratory chain and inhibits complex 1, inducing energy depletion and producing reactive oxygen species (ROS), such as superoxide anions.10,11 Superoxide anions can react with nitric oxide (NO) to produce the potent oxidant peroxynitrite, which has been implicated in the development of many neurological diseases.12-13 To date, however, the precise mechanism of MPP⁺-induced ROS generation is still under discussion.13
Neuroprotective effects of sesamin

On the other side, sesamin, a phytonutrient of the class of lignans, is a lipophilic compound found in sesame seeds and sesame seed oil and is known for its antioxidant role.14-16 Sesamin as well as sesamol and sesaminol, the other 2 primary compounds in sesame, are likely responsible for the increased stability of sesame oil against auto-oxidation and the development of rancidity caused by free radicals.17 Indeed, sesamin is recognized to have several positive physiological effects, such as hypcholesterolemic,18 antihypertensive actions,19-21 and regulates lipid and alcohol metabolism in the liver.22 It is also known to protect against rotenone-induced loss of DA cells in mice23 and to inhibit lipopolysaccharide (LPS)-mediated activation of microglial cells in vitro.24

In this study, we investigated the neuroprotective, antioxidative and anti-inflammatory actions of sesamin in a model of DA neurons, neuronal PC12 cells.25,26 MPP+ was used to induce oxidative damage in these cells and stimulate pro-inflammatory cytokine production in the microglial cells line N9.27,28 Our results show that picomolar doses of sesamin protect neuronal PC12 cells from oxidative stress by reducing MPP+-evoked cellular death and by decreasing ROS production. Moreover, sesamin restores TH protein expression after MPP+-induced reduction without modulating DAT protein levels. Our data also reveal that sesamin increases SOD activity and SOD protein production as well as diminishes catalase (CAT) activity, indicating a rescue role for sesamin in the oxidative metabolism of DA neurons. Finally, our study demonstrates that sesamin decreases inducible NO synthase (iNOS) protein expression in neuronal cells and lowers mRNA levels of the potent pro-inflammatory cytokine interleukin-6 (IL-6) in microglial cells. In this comprehensive study, we outline the importance of the lignan sesamin as a neuroprotective molecule and its possible potential in complementary and/or preventive therapies of neurodegenerative diseases.

Results

Sesamin reduces MPP+-induced cytotoxicity and MPP+ production of ROS. We measured the protective effect of pretreatment with 1 pM sesamin on MPP+-induced neuronal death. Figure 1 shows significant cell death after 24-h exposure to MPP+. Pretreatment with 10-12 M sesamin prior to the production of oxidative stress greatly attenuated MPP+ toxicity in neuronal PC12 cells. Specifically, sesamin protected neuronal PC12 cells against MPP+ by reducing MPP+-evoked cellular death by 60%. Figure 2 illustrates the rhodamine detection of ROS in neuronal PC12 cells. The non-fluorescent dye DHR was converted to rhodamine in the presence of ROS.31,34,35 Figure 2A shows low levels of rhodamine fluorescence in control neuronal PC12 cells as well as in cells treated with sesamin alone, after 24 h (Fig. 2A, CTRL and sesamin, respectively), whereas...
Neuroprotective effects of sesamin

Sesamin rescues TH protein expression without modulating DAT protein level. TH is the rate-limiting enzyme for DA production. TH protein expression was decreased after treatment with MPP+, whereas sesamin alone did not modulate it (Fig. 5A). Interestingly, when the cells were co-treated with MPP+ and sesamin, a slight but constant increase in TH protein expression was manifested, suggesting a neuroprotective role for sesamin in DA neurons. Figure 5B depicts that DAT protein levels were downregulated by MPP+, as already reported, 25,26 and they were not impacted by sesamin alone. Pretreatment with sesamin before MPP+ caused a slight decline in DAT protein levels which was not statistically significant in comparison to MPP+ values.

Sesamin does not modulate ERα or ERβ protein expression. MPP+ administration did not influence ERα or ERβ protein expression in neuronal PC12 cells, as already demonstrated. 25,26 Sesamin, alone or in combination with MPP+, also did not alter ERα or ERβ protein expression (Fig. 6A and B, and Fig. 6C and D, respectively), indicating that the intracellular actions of sesamin do not involve the nuclear ERs. Interestingly, immunofluorescence also revealed the cytoplasmic and nuclear localization of ERα, whereas ERβ appeared to be localized exclusively in the cytoplasm (Fig. 6B and D, respectively).

Sesamin modulates iNOS protein expression. Western blotting quantified the protein expression of iNOS, the enzyme mainly responsible for NO synthesis. Molecules that can inhibit iNOS may have anti-inflammatory activity. Figure 7 shows that when neuronal PC12 cells were exposed to MPP+, iNOS production was augmented as expected and already demonstrated. 37 When sesamin was administered prior to MPP+, we still detected an increment of SOD activity compared to the control condition (Fig. 3A). However, we did not observe any statistically-significant difference in SOD activity compared to MPP+ levels. Figure 4A reveals that sesamin alone decreased CAT activity and Fig 4B shows no apparent modulation of CAT protein expression. More importantly, sesamin reduced the MPP+-induced increase in CAT activity (Fig. 4A) when administered prior to MPP+, supporting an anti-oxidant role for sesamin in MPP+-treated cellular systems.
Sesamin diminishes MPP+-induced IL-6 mRNA in microglial cells. By RT-qPCR, we measured the expression of the potent pro-inflammatory cytokine IL-6. Figure 8 shows that MPP+ induced the activation of N9 microglial cells by dramatically increasing IL-6 mRNA levels. When sesamin was administered alone, no IL-6 was detectable, whereas the pretreatment of neuronal PC12 cells with sesamin 3 h before MPP+ elicited a reduced pattern of IL-6 gene expression, suggesting sesamin’s significant anti-inflammatory role.

Discussion

A growing body of literature is reporting a positive association between the consumption of foods and beverages containing high levels of natural antioxidants and the prevention of several age-dependent diseases, such as cancer, stroke, osteoporosis and coronary heart disorders38 as well as Alzheimer’s disease,39,40 opposite to the effects of high-calorie diets.41 In this study, we tested neuronal PC12 cells, a known, reliable and efficient paradigm for the investigation of oxidative stress and neuroprotection of DA neurons.25,42 After NGF administration, PC12 cells differentiate into the neuronal-like phenotype that secretes high DA levels and expresses TH, DAT, neurofilaments as well as ERα and ERβ.25,43-46 It has already been demonstrated that various natural molecules exert anti-oxidative actions on mammalian cells, but these effects often require micromolar concentrations which would likely be impossible to sustain in vivo in humans due, in part, to the rapid metabolism of these phytonutrients.47-49 In this study, we examined the neuroprotective, antioxidant and anti-inflammatory consequences of low doses of sesamin (10^{-12} M), the major component of sesame oil. The positive outcomes we reported in neuronal culture, using picomolar doses of sesamin on parameters of neuroprotection, oxidative metabolism and neuroinflammation, are supported by the fact that sesamin is likely to accumulate in serum and in the brain, being less susceptible to conjugation in the liver.50 In particular, we demonstrated that picomolar doses of sesamin can protect DA neuronal cells from MPP+-induced cellular death by reducing intracellular ROS production. Indeed, non-fluorescent DHR has the capacity to enter cells and, once in, it is oxidized by oxygen species (superoxide anion, peroxynitrite) in fluorescent rhodamine.35 Accordingly, our results show increased rhodamine fluorescence after MPP+ treatment and reduced fluorescence when sesamin is administered to neuronal PC12 cells prior to MPP+.

Currently, many clues point to the involvement of oxidative stress in the pathogenesis of PD (reviewed in refs. 51 and 52). On the one hand, it is now also recognized that estrogen replacement therapy in postmenopausal women reduces the risk of neurodegenerative diseases, particularly PD,53 possibly because the antioxidant properties of estrogens contribute to their neuroprotective actions. Nevertheless, clinical trials have raised growing concern about the secondary hormonal outcomes of hormone replacement therapy.54 Yet, phytoestrogens are naturally-occurring molecules that may exert neuroprotective effects similar to those of estrogens25,55,56 and have lesser hormonal actions. In our study, sesamin did not modulate ERα or ERβ, making it unlikely that these nuclear receptors are involved in its neuroprotective outcomes.

MPTP has been widely used as a DA neurotoxin because it causes a severe Parkinson-like syndrome in humans, monkeys and mice.7-9 MPTP can produce oxidative stress in neurons by various mechanisms. ROS are generated during MPTP metabolism to MPDP and then to MPP+, by monoamino oxidase B in astrocytes. Moreover, massive DA release after MPP+/MPTP administration evokes excessive amounts of H_2O_2 resulting in oxidative stress. MPP+ can also elicit ROS release through the inhibition of mitochondrial respiration by impairing Na+/K^+-ATPase function and leading to neuronal depolarization.11,57 Then, the levels of TH protein, the DA key chain metabolic enzyme, are reduced in vivo after MPTP administration.58 Our present findings demonstrated prevention of the MPP+-induced decline in TH expression when sesamin was administered prior to MPP+, indicating a neuroprotective action of sesamin in DA neurons. Besides, we did not detect any modulation of DAT protein levels by sesamin, yet a specific effect of sesamin on TH expression was sustained. This is significant since DAT exerts its critical function by transporting DA into presynaptic cells; thus, molecules or pathologies that disrupt DAT could have a profound impact on the behaviors and physiological conditions it mediates.59,60 DAT is also...
Neuroprotective effects of sesamin

Figure 6. ERα (A and B) and ERβ (C and D) protein expression, as revealed by immunofluorescence in neuronal PC12 cells. No statistically-significant difference of ERα or ERβ protein expression was observed after each treatment. Microfluorescence panels (A and C): ERα and ERβ proteins as revealed by monoclonal antibodies (red staining with Cy3); nuclei were coloured blue with DAPI, as described in Materials and methods. Histograms (B and D): semi-quantitative analysis of the fluorescent signal shown above. CTRL, sesamin alone, MPP+, MPP+ + sesamin in both panels. Magnification x 400.

Figure 7. iNOS protein expression as revealed in neuronal PC12 cells after sesamin and MPP+ administration. 10–12 M sesamin slightly decreased iNOS protein expression and MPP+ markedly increased iNOS protein levels in our cellular paradigm. When sesamin was administered prior to MPP+, a significant decline of iNOS was detected. **p < 0.01 vs CTRL; ooop < 0.001 vs MPP+.

Figure 8. IL-6 mRNA levels shown by RT-qPCR. N9 microglia cells were first treated or not with sesamin for 3 h, then MPP+ was added or not. MPP+ clearly induced a significant increase of IL-6 mRNA levels, but when microglial cells were treated with sesamin prior to MPP+, we detected a significant decline of IL-6 mRNA. n = 3. ***p < 0.001 vs CTRL; oop < 0.01 vs MPP+.
known to be sensitive to inhibition by ROS and possibly by NOS.13 Our results showing reduced DAT protein levels after MPP+ administration confirm previous data.26 However, in our experiments, we could not demonstrate the recovery of DAT protein expression when sesamin was given prior to MPP+, indicating no acting defense of sesamin against MPP+-induced damage. Alternatively, the picomolar doses of sesamin we tested were not sufficient to specifically modulate DAT expression against the relatively high doses of MPP+ we used. These relatively high doses of MPP+ were required in our cellular paradigm as well as in other61,62 to reach significant cellular death over a short time period.

We also analyzed the effects of sesamin on parameters of cell distress as well as markers of neuroinflammation. Indeed, increased iron levels, decreased glutathione levels, impaired mitochondrial complex 1 activity and heightened SOD activity have been observed in PD brains.4,6 Moreover, the apoptotic death of DA neurons may be initiated by oxidative stress and neuroinflammation.2,3 In vivo studies suggest that sesamin protects the liver against Fe-induced oxidative damage by decreasing liver enzyme activities involved in lipogenesis and by increasing those implicated in fatty acid oxidation.63,64 Other recent data report that dietary sesame seed increase synthetic molecules are reported to heighten SOD activity in various species in MPTP/MPP+-induced toxicity.13,69 Certainly, cellular studies on natural compounds that could restore damaged mitochondrial functions and interfere with the production of ROS and NOS could benefit complementary alternative medicine and preventive therapies of neurodegenerative diseases.

Materials and Methods

Materials. All reagents were purchased from Sigma (St. Louis, MO) unless noted otherwise.

Cell culture and treatments. PC12 cells (ATCC, Rockville, MD) were obtained from glycerol stocks or maintained in a controlled environment at 37°C and in 5% CO\textsubscript{2} atmosphere. They were grown in RPMI-1640 medium, without phenol red, supplemented with 5% fetal bovine serum (FBS), 10% horse serum (HS, Invitrogen, Toronto, ON, Canada) and gentamicin (50 µg/ml). The culture medium was changed every 3 days. For each experiment, cellular density was 30,000 cells/cm2. Neuronal differentiation was induced for 8 days by 50 ng/ml nerve growth factor (NGF) in RPMI-1640 medium supplemented with 1% FBS, as already described.25 To examine the effect of sesamin on MPP+-evoked oxidative stress, the cells were pretreated with sesamin (1 µM) for 3 h and then exposed to MPP+ (5 mM) for 24 h.25 This concentration of sesamin was chosen as the lowest dose able to rescue cells from MPP+-induced cellular death, after kinetic and dose-response studies (data not shown). The microglial cell line N9 (a generous gift from Dr. L. Vallières, Centre de recherche, CHUL, Quebec, QC, Canada) was grown in 10% HS in Dulbecco’s modified Eagle’s medium-F12-ham (DMEM-F12).
and charcoal-stripped serum to remove steroids from the medium.

Cytotoxicity measurements. Cytotoxicity was evaluated by colorimetric assay (Roche Diagnostics, Laval, QC, Canada) based on the measurement of lactate dehydrogenase (LDH) activity released from damaged cells into the supernatant, as already described in reference 25. LDH is a stable cytoplasmic enzyme present in all cells. It is rapidly released into the cell culture supernatant upon damage of the plasma membrane. The amount of enzyme activity detected in the culture supernatant correlates with the portion of lysed cells.\(^{29,30}\)

Briefly, 100 μl of cell-free supernatant were taken to quantify LDH activity by measuring absorbance at a wavelength of 490 nm on a microplate reader (Thermolab System, Franklin, MA). Total cellular LDH was determined by lysing the cells with 1% Triton X-100 (high control); the assay medium served as a low control and was subtracted from all absorbance measurements:

\[
\text{Cytotoxicity} \% = \left(\frac{\text{Experimental value} - \text{Low control}}{\text{High control} - \text{Low control}} \right) \times 100\%
\]

Dihydrorhodamine 123 (DHR) detection. The scavenging effect of sesamin against MPP\(^+\)-induced oxidative stress was evaluated by DHR assay, as described previously.\(^{31,32}\) In brief, a stock solution of DHR (Molecular Probes, Eugene, OR) was prepared in dimethylsulfoxide (DMSO) to a concentration of 10 mM, deoxygenated with nitrogen and stored at -80°C. Neuronal PC12 cells were treated with DMSO (Ctrl), sesamin and/or MPP\(^+\). Then, they were quickly washed with PBS 0.1 M and exposed to 250 μl of DHR at 37°C for 20 min. The slides were immediately examined under an Orthoplan fluorescence microscope (Leica, Wetzlar, Germany), photographed with a Qimaging camera (Nikon, Mississauga, ON, Canada) and analyzed by NIS-Element 2.2 software (Nikon).

Detection of SOD and CAT activity. Neuronal cells were mechanically harvested and then collected by centrifugation at 2,000g for 10 min at 4°C. The pellets were homogenized in 1 ml of cold 20 mM HEPES buffer, pH 7.2 (1 mM EGTA, 210 mM mannitol and 70 mM sucrose) and sonicated (3 times, 5 s). The samples were then centrifuged at 1,500g for 5 min at 4°C, and the supernatant was assayed according to the manufacturer's protocol (Superoxide Dismutase Assay Kit or Catalase Assay Kit, Cayman Chemical, Ann Arbor, MI). One unit of SOD activity is defined as the amount of enzyme needed to exhibit 50% dismutation of superoxide radicals. The reaction was monitored at 450 nm with a microplate reader (Thermolab System).

Electrophoresis and immunoblot analysis. NGF-differentiated PC12 cells were grown and treated in collagen-coated 6-well plates. Total cellular proteins were extracted with Nuclear Extraction Kit (Active Motif, Carlsbad, CA), diluted in 50 μl of lysis solution, and their concentration determined with a BCA Protein Assay Kit (Pierce, Rockford, IL). Equal amounts of protein (1 μg) were loaded onto 10% polyacrylamide gel-sodium dodecyl sulfate. After electrophoretic separation (180 volts, 45 min), the polyacrylamide gels were transferred onto nylon PVDF membranes (0.22-μm pore size, BioRad, Hercules, CA) at 60 V for 2 h. The membranes were blocked with 5% non-fat powder milk for 1 h at room temperature (RT). Immunoblotting was performed overnight at 4°C with anti-TH antibody (1:2,000) (Sigma), anti-DAT antibody (1:50) (Santa Cruz Biotechnology, Santa Cruz, CA), anti-Cu/Zn SOD antibody (1:1000) (StressMarq, Victoria, BC, Canada), anti-CAT antibody (1: 50) (Santa Cruz Biotechnology), and anti-iNOS antibody (1:50) (StressGene, Biotech, Ann Arbor, MI). The following day, the membranes were washed, and anti-mouse POD-conjugated secondary antibody diluted 1:10,000 was added for 1 h at RT. Immunopositive signals were visualized by enhanced chemiluminescence with the AlphaEase FC imaging system (Alpha Innotech, San Leandro, CA) and analyzed with AlphaEase FC software (Alpha Innotech).

Immunofluorescence. Neuronal PC12 cells were plated on collagen-coated coverslips in 24-well plates and neuronal differentiation was induced for 8 days with NGF, as described above. After treatment, the cells were fixed in 4% paraformaldehyde for 1 h at 4°C, then permeabilized with fish skin gelatin buffer + Triton (TBS, 1% BSA, 0.18% fish skin gelatin, 0.1% Triton-X, 0.02% sodium azide) for 30 min at RT. The fixed cells were incubated with monoclonal anti-estrogen receptor-alpha (ERα) antibody (StressGene) diluted 1:500, for 2 h at RT or with polyclonal anti-ERβ antibody (Santa Cruz Biotechnology) diluted 1:50, for 2 h at RT. Then, the slides were washed with PBS and stained with Cy3-conjugated secondary antibody (Medicorp, Montreal, QC, Canada) diluted 1:500, for 2 h at RT. Finally, 4',6-diamidino-2-phenylindole (DAPI, 5 μg/ml) was added for 10 min at 37°C to counterstain all nuclei. Coverslips were mounted with a Molecular Probes Prolong Antifade Kit (Invitrogen). Images were acquired with an Orthoplan fluorescence microscope (Leica) with a high-pressure mercury burner and necessary filter cubes, then analyzed with NIS-Element 2.2 software (Nikon).

Real time-quantitative polymerase chain reaction (RT-qPCR). Total RNA was extracted with Sigma's GenElute Mammalian Total RNA extraction kit. RNA was spectrophotometrically measured for each condition, and 1 μg of total RNA was reverse-transcribed with 25 U of M-MULV reverse transcriptase, 1.5 μM dNTP, and 10 μM of random hexamers. RT-qPCR was then performed in a MiniOpticon Real-time PCR system (BioRad) in 20 μl-sized reactions containing 4 μl of the cDNA mixture, 0.3 μM of each forward and reverse primer and 10 μl of iQ SYBR Green Supermix (BioRad). Incubation at 95°C for 3 min was followed by 40 cycles of 15 s at 95°C and 30 s at 61°C. Primers for tumor necrosis factor-beta (TNFβ) (5'-CAC GAG GTC CAG CTC TTT TC-3' and 5'-AGT GCA AAG GCT CCA AAG AA-3'), IL-6 (5'-TTC CAT CCA GTT GCC TTC TT-3' and 5'-ATT TCC AGG ATT TCC CAG AG-3'), Ubiquitin C (5'-AGC CCA GTG TTA CCA CCA AG-3' and 5'-TCA CAC CCA AGA ACA AC-3'), -microglobulin (5'-ATG GGA AGC CGA ACA TAC TG-3' and 5'-CAG TCT CAG TGG GGG TGA AT-3') were synthesized at Sigma Genosys (Oakville, ON, Canada). Reactions were performed in duplicate, and 3 independent preparations of cDNA were studied. A 10-fold dilution series was obtained from a random pool of cDNA ranging from x10 to x100,000 dilution. Mean cycle threshold values (Ct) for each dilution were plotted against log10 of cDNA input to generate efficiency plots. The reaction efficiency for each gene assay was calculated according to the following equation:

\[
E = 10^{-1/slope}
\]
where E was the reaction efficiency, and ‘slope’ was the slope of the line generated in efficiency plots. All PCR efficiencies were above 90%. In all PCR experiments, post-PCR DNA-melting curve analysis was undertaken to assess amplification specificity. DNA-melting was carried out at a temperature ramping rate of 1°C per step with 1-s rest at each step. Relative gene transcription was calculated by the comparative Ct method, using the real-time efficiency values of each gene. cDNA levels among the samples were normalized by the expression level of 2 internal control genes: ubiquitin and β-microglobulin. These housekeeping genes were chosen with the GeNORM algorithm.33 A normalization factor was calculated with the geometric mean of the 2 reference genes. The normalized expression of each gene of interest was calculated by dividing the raw counts for each sample by the appropriate normalization factor.33

Statistical analysis. Significant differences between treatment effects were determined by 1-way ANOVA, followed by Tukey’s post-hoc test and Student-Newman-Keuls analysis with the GraphPad Instat program, version 3.06, for Windows.65 (San Diego, CA, www.graphpad.com). Data are expressed as the means ± S.E.M. from 3–15 independent experiments. Asterisks (*) indicate statistical differences between the treatment and respective control conditions, and circles (o) show statistical differences between the treatment and MPP⁺ conditions.

Acknowledgements

This work was funded by a Natural Sciences and Engineering Research Council (Canada) grant to M.G.M. and Fonds de Recherche en Santé du Québec (Québec) studentships to V.L.C. and J.B.

References

1. Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 2000; 7:240-50.
2. Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53 Suppl 3:S26-36; discussion S-8.
3. Marchetti B, Abbracchio MP. To be or not to be (inflamed)—Is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 2005; 26:S17-25.
4. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004; 10 Suppl:S18-25.
5. Alam MZ, Jenner P, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 1997; 69:1196-203.
6. Maier CM, Chan PH. Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist 2002; 8:S32-34.
7. Langston JW, Irwin I. MPTP: current concepts and controversies. Clin Neuropharmacol 1986; 9:485-507.
8. Heikkila RE, Sieber BA, Manzino L, Sonsalla PK. Some features of the nigrostriatal system generated in efficiency plots. All PCR efficiencies were above 90%. In all PCR experiments, post-PCR DNA-melting curve analysis was undertaken to assess amplification specificity. DNA-melting was carried out at a temperature ramping rate of 1°C per step with 1-s rest at each step. Relative gene transcription was calculated by the comparative Ct method, using the real-time efficiency values of each gene. cDNA levels among the samples were normalized by the expression level of 2 internal control genes: ubiquitin and β-microglobulin. These housekeeping genes were chosen with the GeNORM algorithm. A normalization factor was calculated with the geometric mean of the 2 reference genes. The normalized expression of each gene of interest was calculated by dividing the raw counts for each sample by the appropriate normalization factor.

Neuroprotective effects of sesamin

17. Shahidi F, Wasanudara PK. Phenolic antioxidants. Crit Rev Food Sci Nutr 1992; 32:67-103.
18. Arora F, Fujita K, Ishikura Y, Hosoda K, Ishikawa T, Nakamura H. Hypcholesterolemic effect of sesamin in humans. Atherosclerosis 1996; 122:135-36.
19. Lee CC, Chen PR, Lin S, Tsai SC, Wang BW, Chen WW, Tsai CE, Shyu KG. Sesamin induces nitric oxide and decreases endothelin-1 production in HUVEC: possible implications for its antihypertensive effect. J Hypertens 2004; 22:2329-38.
20. Naguchi T, Ikeda K, Sasaki Y, Yamamoto J, Seki Y, Yamagata K, Nara Y, Haru H, Kaku H, Yamada Y. Effects of vitamin E and sesamin on hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats. Hypertens Res 2001; 24:735-42.
21. Nakano D, Kwak CJ, Fujii K, Ikemura K, Satake A, Okbita M, Takaoa M, Ono Y, Nakai M, Tomimori N, Kiso Y, Matsuzuma Y. Sesamin metabolites induce an endothelial nitric oxide-dependent vasorelaxation through their antioxidative property-independent mechanisms: possible involvement of the metabolites in the antihypertensive effect of sesamin. J Pharmacol Exp Ther 2006; 318:328-35.
22. Kiso Y. Antioxidative roles of sesamin, a functional lignin in sesame seed, and its effect on lipid- and alcohol-metabolism in the liver: a DNA microarray study. BioFactors (Oxford, England) 2004; 21:191-6.
23. Fujikawa T, Kanada N, Shimada A, Ogata M, Suzuki I, Hayashi I, Nakashima K. Effect of sesamin in Acanthopanax senticosus HARMs on behavioral dysfunction in rotenone-induced parkinsonian rats. Biol Pharm Bull 2005; 28:169-72.
24. Jeng KC, Hou RC, Wang JC, Ping LI. Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol Lett 2005; 97:101-6.
25. Gelin S, Martinoli MG. Neuroprotective effect of estradiol and phytosterogens on MPP⁺-induced cytotoxicity in neuronal PC12 cells. J Neurosci Res 2002; 70:90-94.
26. Gagné B, Gelin S, Bureau G, Ladage B, Ramasamy C, Chiaison K, Valastro B, Martinoli MG. Effects of estradiol, phytoestrogens, and Ginkgo biloba extracts against 1-methyl-4-phenylpyridine-induced oxidative stress. Endocrine 2003; 21:89-95.
27. Miwa H, Kudo T, Morita S, Nakashima I, Kondo T. Oxidative stress and microglial activation in substantia nigra following striatal MPP⁺. Neuroreport 2004; 15:1039-44.
28. Henze C, Hartmann A, Lessct T, Hirsch EG, Michel PP. Proliferation of neuronal cells induced by 1-methyl-4-phenylpyridine in mesencephalic cultures results from an astrocyte-dependent mechanism: role of glialturocyte macrophage colony-stimulating factor. J Neurochem 2005; 95:1069-77.
29. Martin A, Clunes M. Acid phosphatase: endpoint for in vitro toxicity tests. In Vito Cell Dev Biol 1991; 27A:183-4.
30. Decker T, Lohmann-Mathies ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Meth 1988; 115:61-9.
31. Gelin S, Bureau G, Valastro B, Massicotte G, Cicchetti E, Chiaison K, Gagné B, Blanchet J, Martinoli MG. Alpha and beta estradiol protect neuronal but not native PC12 cells from paraquat-induced oxidative stress. Neurotox Res 2004; 6:14-8.
32. Franueva MV, Carlen PL, Perez Velaquez JL. Dynamics of intracellular calcium and free radical production during ischemia in pyramidal neurons. Free Radic Biol Med 2001; 31:1216-27.
33. Vandesompele J, De Preter K, Paryyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal controls. Genome Biol 2002; 3:RESEARCH0034.
34. Henderson LM, Chappell JB. Dihydropyridinide 123: A fluorescent probe for superoxide generation? Eur J Biochem 1993; 217:973-80.
35. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. Peroxynitrite-mediated oxidation of dihydropyridinide 123. Free Radic Biol Med 1994; 16:149-56.
36. Shahidi F, Wanasundara KS, Mohanakumar KP. In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole. Neurochem Int 2008; 52:990-1001.
37. Cheng YH, Ding ST, Chang MH. Effect of fumonisins on macrophage immune functions and gene expression of cytokines in broilers. Arch Anim Nutr 2006; 60:267-76.
38. Gasalgi G, Sabzevari O, Wilson JX, O’Brien PJ. Prooxidant activity and cellular effects of the phenolic radicals of dietary flavonoids and other polyphenolics. Toxicology 2002; 177:91-104.
39. Anekonda TS. Resveratrol—A boon for treating Alzheimer's disease? Brain Res Rev 2006; 52:316-26.
40. Hartman RE, Shah A, Fagan AM, Schwetye KE, Pasadanian M, Schulman RN, Finn MB, Holtzman DM. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 2006; 24:506-15.
41. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Ingram DK, Puigserver P, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444:337-42.
Itano Y, Kitamura Y, Nomura Y. 1-Methyl-4-phenylpyridinium (MPP+)-induced cell death.

Salahpour A, Ramsey AJ, Medvedev IO, Kile B, Sotnikova TD, Holmstrand E, Ghisi V, Mytilineou. Mechanism of MPTP neurotoxicity. Mechanisms of Degeneration and Survival.

Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary flavonoids: bioavailability, metabolic effects, and safety. Annual Rev Nutrition 2002; 22:19-34.

Umeda-Sawada R, Ogawa M, Igarashi O. The metabolism and distribution of sesame lignans (sesamin and episesamin) in rats. Lipids 1999; 34:653-7.

Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 2002; 288:321-33.

Nunomura A, Moreira PI, Lee HG, Zhu X, Castellani RJ, Smith MA, Perry G. Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol Drug Discord Targets 2007; 6:411-23.

Curie LJ, Harrison MB, Tiuang JM, Bennett JP, Woeten GE. Postmenopausal estrogen use affects risk for Parkinson disease. Arch Neurol 2004; 61:886-8.

Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kronmal RA, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Eckert J, and the Women's Health Initiative randomized controlled trial study group. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 2002; 288:321-33.

Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 2002; 23:719-35.

Di Matteo V, Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Curr Drug Targets 2003; 2:95-107.

Mytilineou. Mechanism of MPTP neurotoxicity. Mechanisms of Degeneration and Protection of the Dopaminergic System. Johnson City, TN: FP Graham Publ, 2001.

Blancher J, Longpre F, Bureau G, Morissette M, D'Arcy T, Bronchti G, Martinolli MG. Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Fong Neuropsychopharmacol Biol Psychiatry 2003; 32:1234-30.

Mehler WX, Riederer P, Gerlach M. Dopaminergic dysfunction in distinct basal ganglia neurocircuits: implications for the pathophysiology of Parkinson's disease, schizophrenia and attention deficit hyperactivity disorder. Neurotox Res 2006; 10:167-79.

Sahalpour A, Ramsey AJ, Medvedev IO, Kile B, Sotnikova TD, Holmstrand E, Ghisi V, Nicholls PJ, Wong I, Murphy K, Wightman RM, Gainedinov RR, Caron MG. Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter. Proc Nat Acad Sci USA 2008; 105:4405-10.

Izato Y, Kitamura Y, Nomura Y. 1-Methyl-4-phenylpyridinium (MPP+)-induced cell death in PC12 cells: inhibitory effects of several drugs. Neurochem Int 1994; 25:419-24.

Fall CP, Bennett JP, Jr. Characterization and time course of MPP+-induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res 1999; 55:620-8.

Sirato-Yasumoto S, Katsuta M, Okuyama Y, Takahashi Y, Ide T. Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. J Agric Food Chem 2001; 49:2647-51.

Kushiro M, Takahashi Y, Ide T. Species differences in the physiological activity of dietary lignan (sesamin and episesamin) in affecting hepatic fatty acid metabolism. Br J Nutr 2004; 91:377-86.

Izada S, Abe C, Uchida T, Ichikawa T, Hisio F, Yamaishi K. Dietary sesame seed and its lignan increase both ascorbic acid concentration and urinary excretion by stimulating biosynthesis in rats. J Nutr Sci Vitaminol 2007; 53:383-92.

An LJ, Gnan S, Shi GF, Bao YM, Diau YL, Jiang B. Protocatechuic acid from Alpinia oxysaphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem Toxicol 2006; 44:636-43.

Hou RC, Wu CC, Yang CH, Jeng KC. Protective effects of sesamin and sesamolin on murine BV-2 microglia cell line under hypoxia. Neurosci Lett 2004; 367:10-3.

Jung TW, Lee JY, Shim WS, Kang ES, Kim SK, Ahn CW, Lee HC, Cha BS. Resigilazine protects human neuroblastoma SH-SY5Y cells against acetaldeldehyde-induced cytotoxicity. Biochem Biophys Res Commun 2006; 340:221-7.

Gonzalez-Polo RA, Soler G, Rodriguezmartin A, Moran JM, Fuentes JM. Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants. Cell Biol Int 2004; 28:373-80.

Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN, Feng QJ, Chen PX. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2 mitochondria-ROS-inOS pathway. Apoptosis 2006; 11:943-53.

Bureau G, Longpre F, Martinolli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 2008; 86:403-10.

Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF. Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol 2005; 5:185-93.

Li R, Huang YG, Fang D, Le WD. (±)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 2004; 78:723-31.