Abstract

Objectives: In this study, Radio Coloring is used to color the graphs. The objective of this article is to analyze the bounds of Line, Middle, Total and Central graphs of Sunlet graph. Methods/Analysis: Combinatorics is an important part of discrete mathematics that solves counting problems without actually enumerating all possible cases. Combinatorics has wide applications in Computer Science, especially in coding theory, analysis of algorithms and others. An equation that expresses \(a_n \), the general term of the sequence \(\{a_n\} \) is called a recurrence relation. Using the generating function of a sequence and few coloring techniques we prove the results. Findings: The Problem of finding radio coloring with small or optimal \(k \) arises in the concept of radio frequency assignment. The radio chromatic score \(rs(G) \) of a radio coloring is the number of used colors. The number of colors used in a radio coloring with the minimum score is the radio chromatic \(rn(G) \) of \(G \).

The radio chromatic number of Sunlet graph \(S_n \) is 10

4 if \(n = 3i \), \(i = 1, 2, \ldots \)
5 if \(n = 3i+1 \), \(i = 1, 2, \ldots \)
6 if \(n = 3i+2 \), \(i = 1, 2, \ldots \)

and is improved to the radio chromatic number of Sunlet graph \(S_n \) is

5 if \(n \) is congruent to 1 mod 3
4 if otherwise

In this paper we improve the radio chromatic number of Sunlet graph \(S_n \) and obtain the radio number of Line, Middle, Total and Central graphs of Sunlet graph. Radio Coloring has wide range of significance because radio coloring has its applications in communication theory. The paper contributes the researches in the field of computer science and combinatorics.

Applications: Radio coloring is of great significance because the frequency assignment problem is modeled as a graph coloring problem assuming transmitters as vertices and interference as adjacencies between two vertices.

Keywords: Sunlet Graph, Line Graph, Middle Graph, Radio Number, Total Graph and Central Graph

1. Introduction

Radio frequency assignment is a broad area of research. The task is to assign radio frequencies to transmitters at different locations without causing interference. The problem is closely related to graph coloring where the vertices of a graph represent the transmitters and adjacencies indicate possible interferences. In 1 Griggs and Yeh introduced a problem proposed by Roberts which they call the Radio Coloring problem. It is the problem of assigning radio frequencies (integers) to transmitters such that transmitters that are close (distance 2 apart) to each other receive different frequencies and transmitters that are very close together (distance 1 apart) receive frequencies that are at least two apart. To keep the frequency bandwidth small, frequencies that have been assigned to
the radio network. The minimum frequencies assigned is radio number (rn).

Subsequently, different bounds of rn were obtained for various graphs. A common parameter used is Δ, the maximum degree of a graph. The obvious lower bound for rn is $\Delta + 1$, achieved for the tree $K_{1,n}$. In 1 it was shown that for every graph G, $rn(G) \leq \Delta^2 + 2\Delta$. This upper bound was later improved to $rn(G) \leq \Delta + \Delta^2$ in 2.

For some classes of graphs, tight bounds are known and can be computed efficiently. These include paths, cycles, wheels and complete k-partite graphs, trees, cographs, interval graphs, unicycles and bicycles, outerplanar planar graphs, hexagons-meshes, hexagons and unit interval graphs, hypercubes, bipartite graphs, k-almost trees, cacti, and grids, and Sunlet graphs.

In this paper, we extend the upper bounds of rn to sunlet families of graphs. Other types of graphs have also been studied, and their bounds are given in this paper. All graphs considered in this paper are finite, nontrivial, simple, undirected and connected.

2. Preliminaries

Definition 2.1
A k-vertex coloring of G is an assignment of k-colors 1,2,…,k to the vertices of G. The coloring is proper if no two distinct adjacent vertices have the same color. G is k-vertex colorable if G has a proper k-vertex coloring. The chromatic number $\chi(G)$ of G is the minimum k for which G is k-colorable.

Definition 2.2.
A k-radio coloring of a graph is a function f from the vertex set $V(G)$ to the set of all nonnegative integers 1,2,…,k such that

(i) $|f(x) - f(y)| \geq 1$ if $d(x,y)=2$
(ii) $|f(x) - f(y)| \geq 2$ if $d(x,y)=1$

The radio number of G is the smallest k for which G has radio coloring and is denoted by $rn(G)$.

Definition 2.3.
The n-sunlet graph is a graph on 2n vertices obtained by attaching a n-pendant edges to the vertices of cycle C_n and is denoted by S_n.

Definition 2.4.
The Line graph of a graph G, denoted by $L(G)$, is a graph whose vertices are the edges of G, and if $u,v \in E(G)$ then $u,v \in E(L(G))$ if u and v share a vertex in G.

Definition 2.5.
Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The Middle graph of G, denoted by $M(G)$, is defined as follows. The vertex set of $M(G)$ is $V(G) \cup E(G)$. Two vertices x,y in the vertex set of $M(G)$ are adjacent in $M(G)$ in case one of the following holds:

(i) x,y are in $E(G)$ and x,y are adjacent in G.
(ii) x is in $V(G)$, y is in $E(G)$, and x,y are incident in G.

Definition 2.6.
Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The Total graph of G, denoted by $T(G)$, is defined as follows. The vertex set of $T(G)$ is $V(G) \cup E(G)$ and two vertices x,y in the vertex set of $T(G)$ are adjacent in $T(G)$ in case one of the following holds:

(i) x,y are in $E(G)$ and x,y are adjacent in G.
(ii) x,y is in $V(G)$, and x,y are adjacent in G.
(iii) x is in $V(G)$, y is in $E(G)$, and x,y are incident in G.

Definition 2.7.
The central graph of a graph G, $C(G)$ is obtained by subdividing each edge of G exactly once and joining all the non adjacent vertices of G.

Analysis:
By the analysis of various graph families to obtain radio number, it is found that on radio coloring of a graph using positive integers, the radio number is obtained by using either only odd integers or even integers. The usage of both odd and even integers alternatively for coloring the graphs gives maximum rn compared to the above method.

3. Results

Result: 1
The radio chromatic number of path P_n is $\Delta + 1$ for $n \geq 3$.

Result: 2
The radio chromatic number of comb graph G is $\Delta + 1$ for $n \geq 3$.

Theorem: 3
The radio chromatic number of star graph $K_{1,n}$ is $\Delta + 1$.

Theorem: 4
The radio chromatic number of cycle is:

$$rn(C_n) = \begin{cases}
\Delta + 1 & n \equiv 0 \mod 3 \\
\Delta + 2 & n \equiv 1 \mod 3 \\
\Delta + 3 & n \equiv 2 \mod 3.
\end{cases}$$
\textbf{Theorem: 5}

The radio chromatic number of Sunlet graph S_n is

$$\chi_r(S_n) = \begin{cases} \Delta + 2, & n \equiv 1 \mod 3 \\ \Delta + 1, & \text{Otherwise} \end{cases}$$

3.1 Structural properties of Sunlet graph

- Number of Vertices in S_n is $P = 2n$
- Number of Edges in S_n is $q = 2n$
- Maximum degree in S_n is $\Delta = 3$
- Minimum degree in S_n is $\delta = 1$

3.2 Structural properties of Line graph of Sunlet graph

- Number of Vertices in $L(S_n)$ is $P = 2n$
- Number of Edges in $L(S_n)$ is $q = 3n$
- Maximum degree in $L(S_n)$ is $\Delta = 4$
- Minimum degree in $L(S_n)$ is $\delta = 2$

3.3 Structural properties of Middle graph of Sunlet graph

- Number of Vertices in $M(S_n)$ is $P = 4n$
- Number of Edges in $M(S_n)$ is $q = 7n$
- Maximum degree in $M(S_n)$ is $\Delta = 6$
- Minimum degree in $M(S_n)$ is $\delta = 2$

3.4 Structural properties of Total graph of Sunlet graph

- Number of Vertices in $T(S_n)$ is $P = 4n$
- Number of Edges in $T(S_n)$ is $q = 9n$
- Maximum degree in $T(S_n)$ is $\Delta = 6$
- Minimum degree in $T(S_n)$ is $\delta = 2$

3.5 Structural properties of Central graph of Sunlet graph

- Number of Vertices in $C(S_n)$ is $P = 4n$
- Number of Edges in $C(S_n)$ is $q = 2n + \binom{2n}{2}$
- Maximum degree in $C(S_n)$ is $\Delta = 6$
- Minimum degree in $C(S_n)$ is $\delta = 2$

4. Radio Number of Line, Middle, Total and Central Graphs of Sunlet Graph.

\textbf{Lemma: 6}

The radio chromatic number of Middle graph of Sunlet graph S_n is $\Delta + 3$ for $n = 3$.

\textbf{Proof:}

Let us define the vertex set V and the edge set E of S_n as $V(S_n) = \{v_1, \ldots, v_n\} \cup \{u_1, \ldots, u_n\}$ where v_i are the vertices of cycles taken in cyclic order and u_i are the pendant vertices such that $v_i u_i$ is a pendant edge and $E(S_n) = \{e'_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n-1\}$, where e_i is the edge $v_i v_{i+1}$ ($1 \leq i \leq n-1$), e_n is the edge v_nv_1 and e'_i is the edge v_iv_i ($1 \leq i \leq n$).

By the definition of middle graph $V(M(S_n)) = V(S_n) \cup E(S_n) = \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\} \cup \{v'_i : 1 \leq i \leq n\}$ where v'_i and u'_i represents the edge e_i and e'_i ($1 \leq i \leq n$) respectively.

Consider the following 9-coloring of $(1, 3, 5, 7, 9, 11, 13, 15, 17)$ of $M(S_n)$.

Assign the color 1 to v_1, 3 to v'_1, 5 to v_2, 7 to v'_2, 9 to v_3, 11 to v'_3, 13 to u_1, 15 to u'_1, 17 to u'_2.

\textbf{Note:}

Every vertex in the cycle (ie) $v_1, v_2, \ldots, v_n, v'_1, \ldots, v'_n$ can be reached from the remaining vertices in the cycle by distance two. So, they are colored using different colors.

The above mentioned coloring is radio coloring.

\textbf{Theorem: 8}

For $n \geq 3$, the radio chromatic number of line graph of sunlet graph $L(S_n)$ is
The vertex set and edge set of S_n are as described in lemma 6.

By the definition of line graph $V(L(S_n)) = E(S_n) = \{u_i, u_j \mid 1 \leq i < j \leq n\}$ and $\Delta + 1 \equiv n \equiv 0 (mod 6)$, $n \equiv 0 (mod 10)$

Case(i): $rn(L(S_n)) = \Delta + 1$; $n \equiv 2 mod 3$

Consider the following 5-coloring of $(1, 3, 5, 7, 9)$ of $L(S_n)$.

Assign the color
1 to v_1, v_3, v_5, v_7, v_9 and u_{n-1}^{-1}
3 to v_2, v_4, v_6, v_8, v_{n-3} and u'
5 to v_1, v_3, v_5, v_7, v_{n-2} and u''
7 to u_1, u_3, u_5, u_7, u_{n-3} and v''
9 to u_1', u_3', u_5', u_7', u_{n-3}' and v''

Case(ii): $rn(L(S_n)) = \Delta + 1$; $n \equiv 0 mod 6$, $n \equiv 0 mod 10$

Consider the following 5-coloring of $(1, 3, 5, 7, 9)$ of $L(S_n)$.

Sub case(i): $rn(L(S_n)) = \Delta + 1$; $n \equiv 0 mod 6$

Assign the color
1 to v_1, v_3, v_5, v_7, v_{n-3} and u_1^{-1}
3 to v_2, v_4, v_6, v_8, v_{n-4} and u_{n-1}
5 to v_1, v_3, v_5, v_7, v_{n-2} and u'
7 to u_1, u_3, u_5, u_7, u_{n-3} and v''
9 to u_1', u_3', u_5', u_7', u_{n-3}' and v''

Sub case(ii): $rn(L(S_n)) = \Delta + 1$; $n \equiv 0 mod 10$

Assign the color
1 to v_1, v_3, v_5, v_7, v_{n-4} and u_1^{-1}
3 to v_2, v_4, v_6, v_8, v_{n-2} and u_{n-1}
5 to v_1, v_3, v_5, v_7, v_{n-3} and u'
7 to u_1, u_3, u_5, u_7, u_{n-2} and v'
9 to u_1', u_3', u_5', u_7', u_{n-2}' and v'

For Sub cases (ii) and (iii) the colors are assigned in a suitable way as in sub case (i)

Case(iv): $rn(L(S_n)) = \Delta + 2$; $n \equiv 0 mod 2$ expect $n = 5i$ and $n = 6i$

Consider the following 6-coloring of $(1, 3, 5, 7, 9, 11)$ of $L(S_n)$.

Sub case(i): $n = 3k+1$, $k = 8+10i$, $i = 0, 1, ...$

Assign the color
1 to v_1, v_3, v_5, v_7, v_{n-3} and u_1^{-1}
3 to v_2, v_4, v_6, v_8, v_{n-4} and u_n^{-1}
5 to v_1, v_3, v_5, v_7, v_{n-2} and u'
7 to u_1, u_3, u_5, u_7, u_{n-3} and v''
9 to u_1', u_3', u_5', u_7', u_{n-3}' and v''

Sub case(ii): $n = 3k+2$, $k = 11+10i$, $i = 0, 1, ...$

Sub case(iii): $n = 3k$, $k = 15+10i$, $i = 0, 1, ...$

As well as the case (iv) the colors are assigned in a suitable way as in sub case (i)

Case(v): $rn(L(S_n)) = \Delta + 2$; $n \equiv 0 mod 3$, $n \equiv 1 mod 3$

Consider the following 6-coloring of $(1, 3, 5, 7, 9, 11)$ of $L(S_n)$.

(Note: 1, 3, 5, 7, 9 are consecutively assigned to vertices v' and u (ie) if c_1 is assigned to v' and 3 to u' and so on)

Figure 1. Line graph of Sunlet graph $L(S_n)$.

Indian Journal of Science and Technology
A.Vimala Rani and N. Parvathi

Indian Journal of Science and Technology
Vol 9 (46) | December 2016 | www.indjst.org

(c) The vertices \(\{u_i : 1 \leq i \leq n\} \) are colored by 1, 3, and 5

Here \(u_1 \) is assigned 1, and \(u_n \) as 5.

An easy check shows that this coloring is radio coloring.

Theorem: 10

Let \(n \geq 5 \), then the radio chromatic number of Total graph of sunlet graph \(S_n \) is

\[
\begin{align*}
\Delta + 1 & : n \equiv 0 \mod 10 \\
\Delta + 2 & : n \equiv 0 \mod 5 \\
\Delta + 2 & : n \equiv 0 \mod (k+5i), i=0,1,2,... & k=8,9 \\
\Delta + 3 & : n \equiv 0 \mod (k+5i), i=0,1,2,... & k=6,7
\end{align*}
\]

Proof:

The vertex set and edge set of \(S_n \) are as described in lemma 6.

By the definition of total graph

\[
V(T(S_n)) = V(S_n) \cup E(S_n) = \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\} \\
such that \(v_i \) and \(u_i \) represent the edge \(e_i \) and \(e'_i \) (1 \leq i \leq n) respectively.
\]

Consider the following 8-coloring of \(1,3,5,7,9,11,13,15 \) of \(M(S_n) \).

Assign the color in the following manner

(a) The vertices \(\{v_i : 1 \leq i \leq n\} \) and \(\{v'_i : 1 \leq i \leq n\} \) are colored using the following patterns

1, 3, 5, 7
1, 9, 3, 5
1, 7, 3, 9
1, 5, 3, 7

Here \(v'_n \) is assigned 11, \(v'_1 \) as 3 and \(v_1 \), as 1

(b) The vertices \(\{u'_i : 1 \leq i \leq n\} \) are colored by 11, 13, and 15

\(\text{Figure 2. Middle graph of Sunlet graph } M(S_n). \)
Case(iii)

$\text{rn}(T(S_n)) = 8$, for $n \equiv 0 \mod (k+5i)$, $i = 0, 1, 2$, and $K = 8, 9$

The coloring (a) to (e) of above case follows here.

Subcase(i) For $k = 8$

when n is even assign
11 to v'_n
13 to u'_i, when i is odd
15 to u'_i, when i is even

The remaining vertices v'_i with degree 2 are assigned with some colors in an easy manner.

when n is odd assign
11 to v'_n and u'_i, i is odd except v_1
13 to u'_i when i is odd except u'_1
15 to v'_n

The remaining vertices with degree 2 are assigned with some colors in an easy manner.

Subcase(ii) For $k = 9$

when n is odd assign
11 to v'_n
13 to u'_i, when i is even
15 to u'_i, when i is odd
9 to u'_i, 1 to u'_{n-1}, 5 to u'_n
11 to u'_i, when i is even
13 to u'_i, when i is odd

The remaining vertices with degree 2 are assigned with some colors in an easy manner.

when n is even assign
11 to v'_n
13 to v'_{n+1}, 5 to v'_n
9 to u'_i, 1 to u'_{n+1}, 1 to u'_n
11 to u'_i, when i is odd
13 to u'_i, when i is even
15 to u'_{n-2}

The remaining vertices with degree 2 are assigned with some colors in an easy manner.

Subcase(i) For $k = 7$

when n is even assign
9 to u'_n, 1 to u'_{n-1}, 1 to u'_n
11 to v'_{n-1}, 13 to v'_{n}
15 to u'_{n}, 17 to v'_{n}
11 to u'_{n}, when i is even except u'_{n-2}
13 to u'_{n}, when i is odd except u'_{n-3}
17 to u'_{n}

The remaining vertices with degree 2 are assigned with some colors in an easy manner.

when n is odd assign
9 to u'_n
13 to v'_{n}
15 to u'_{n}, 17 to v'_{n}
11 to u'_{n}, when i is even except u'_{n-2}
13 to u'_{n}, when i is odd except u'_{n-3}
17 to u'_{n}

The remaining vertices with degree 2 are assigned with some colors in an easy manner.

Subcase(ii) For $k = 7$

when n is odd assign
9 to u'_n, 1 to u'_{n-1}, 1 to u'_n
11 to v'_{n-1}, 13 to v'_{n}
15 to u'_{n}, 17 to v'_{n}
11 to u'_{n}, when i is even except u'_{n-2}
13 to u'_{n}, when i is odd except u'_{n-3}
17 to u'_{n}

The remaining vertices with degree 2 are assigned with some colors in an easy manner.

Theorem 11. For $n \geq 4$ the radio chromatic number of Central graph of Sunlet graph 15

$$\text{rn}(C(S_n)) = \begin{cases}
\Delta + 4 & \text{n is even} \\
\Delta + 5 & \text{n is odd}
\end{cases}$$
Proof.

The vertex set and edge set of S_n are as described in lemma 6.

By the definition of Central graph

$V(C(S_n)) = V(S_n) \cup v'_i \cup u'_i = \{v_i; 1 \leq i \leq n\} \cup \{v'_i; 1 \leq i \leq n\} \cup \{u_i; 1 \leq i \leq n\} \cup \{u'_i; 1 \leq i \leq n\}$

where v'_i represent the vertices subdividing v_i, v_{i+1} ($1 \leq i \leq n-1$), and u'_i represent the vertices subdividing u_i, v_i ($1 \leq i \leq n$) respectively.

Case 1: $rn(C(S_n)) = \Delta + 4$ for n is even

The following $\Delta+4$ coloring for $C(S_n)$ admits radio coloring. For ($1 \leq i \leq n$) assign the color i to v_i, and for ($1 \leq i \leq n$) assign the color $n+i$ to u_i.

Assign the color $2n+1$ to u'_i ($1 \leq i \leq n$), for ($1 \leq i \leq n-1$) $2n+2$ to v'_i if i is odd, and $2n+3$ to v'_i if i is even.

Case 2: $rn(C(S_n)) = \Delta + 5$ for n is odd

The following $\Delta+5$ coloring for $C(S_n)$ admits radio coloring. For ($1 \leq i \leq n$) assign the color i to v_i, and for ($1 \leq i \leq n$) assign the color $n+i$ to u_i.

Assign the color $2n+1$ to u'_i ($1 \leq i \leq n$), for ($1 \leq i \leq n-1$) $2n+2$ to v'_i if i is odd, $2n+3$ to v'_i if i is even, and $2n+4$ to v'_n.

5. Conclusion

In this paper we obtain the radio chromatic number for Line, Middle, Total and Central graphs of Sunlet graph and improved bounds of radio chromatic number of Sunlet graph. Despite of the few results in radio coloring we still experiment on radio number of various families of graphs and thus radio coloring is useful in channel assignment problem which has wide range of applications.

6. References

1. Griggs, Yeh RK. Labeling graphs with a condition at distance 2, SIAM Journal of Discrete Mathematics. 5.1992. p.586–95.
2. Chang GJ, Kuo D. The L(2,1)-Labeling problem on graphs, SIAM J. Disc. Math. 9 1996. p.309–16.
3. Jonas K. Graph Colorings analogues with a condition at distance two; L(2,1,1)-labelings and list λ-labelings, Ph.D. thesis, University of South Carolina.1993.
4. Bertossi AA, Pinotti C, Tan R.B. L(2,1,1)-Labeling problem on graphs, In preparation (1999).
5. Sakai D. Labeling chordal graphs: distance two condition, SIAM J. Disc. Math. 7(1194). p. 133–140.
6. Georges JP, Mauro DW. On the size of graphs labeled with a condition at distance two. Journal of Graph Theory 22 1996. p. 47–57.
7. Georges JP, Mauro DW, Whittlesey MA. Relating path coverings to vertex labeling with a condition at distance two, Discrete Mathematics 135. 1994. p.103–11.
8. Yeh RK, Labelling graphs with a condition at distance two. Ph.D Thesis, University of South Cardino(1990).
9. Fiia, J, Kloks T, Kratochvil J. Fixed-parameter complexity of λ-labelings, In: Graph-Theoretic Concept of Computer Science, Proceedings 25th WG’99, Lecture Notes in Computer Science Vol.1665, Springer Verlag (1999). p. 350–63.
10. Vimala Rani A, Parvathi N. Radio number of Star graph and Sunlet graph, Global Journal of Pure and Applied Mathematics (GJPAM) ISSN 0973-1768 . 2016; 12(1):151–56.
11. Bondy JA, Murty USR. Graph Theory with Applications.
12. Chang J, David Kuo, SIAM J . Discrete Math., The L(2,1)-Labeling Problem on Graphs, Gerard 9(2), 309–316.
13. Vernold Vivin J, Vekatachalam M. On b-chromatic number of Sun let graph and wheel graph families, Journal of the Egyptian Mathematical Society 2015; 23, p. 215–18.
14. Thilagavathi K, Shanas Babu P. A Note on Acyclic Coloring of Central Graphs. International Journal of Computer Applications. 0975-8887. 2010; September, 7(2).
15. Ramachandran M, Parvathi N. The Medium Domination Number of Jahangir Graph $J_{m,n}$, Indian Journal of Science and Technology. 2015; March, 8(5): 400–6.
16. Pounambal M. Survey on Channel Allocation Techniques for Wireless Mesh Network to Reduce Contention with Energy Requirement, Indian Journal of Science and Technology. 2016; August, 9(32).
17. Kalfakakou R, Nikolakopoulou G, Savvidou E, Tsouro M. Graph Radiocoloring Concepts , Aristotle University of Thessaloniki, Faculty of Engineering Thessaloniki, Greece.