Directional amplifier in an optomechanical system with optical gain

Cheng Jiang1,2, L. N. Song1, and Yong Li1,3*

1Beijing Computational Science Research Center, Beijing 100193, China
2School of Physics and Electronic Electrical Engineering, Huainan Normal University, 111 West Chang Jiang Road, Huai’an 223300, China and
3Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China

(Dated: May 22, 2018)

Directional amplifiers are crucial nonreciprocal devices in both classical and quantum information processing. Here we propose a scheme for realizing a directional amplifier between optical and microwave fields based on an optomechanical system with optical gain, where an active optical cavity and two passive microwave cavities are, respectively, coupled to a common mechanical resonator via radiation pressure. The two passive cavities are coupled via hopping interaction to facilitate the directional amplification between the active and passive cavities. We obtain the condition of achieving optical directional amplification and find that the direction of amplification can be controlled by the phase differences between the effective optomechanical couplings. The effects of the gain rate of the active cavity and the effective coupling strengths on the maximum gain of the amplifier are discussed. We show that the noise added to this amplifier can be greatly suppressed in the large cooperativity limit.

I. INTRODUCTION

The field of cavity optomechanics studies the nonlinear interaction between the electromagnetic cavity and mechanical resonator via radiation pressure [1–3], where the effective optomechanical coupling strength can be greatly enhanced by driving the cavity with a strong pump field. By applying a pump field that is tuned to the lower motional sideband of the cavity field, optomechanics has witnessed great achievements such as ground-state cooling of the mechanical resonator [4, 5], optomechanically induced transparency [6–8], quantum state transfer [9–11], and so on. Moreover, for the pump field that is tuned to the upper motional sideband of the cavity field, quantum entanglement [12, 13] and microwave amplification [14–17] have been investigated.

On the other hand, nonreciprocal elements such as isolators, circulators, and directional amplifiers play a crucial role in communication and quantum information processing. To achieve nonreciprocity, one need to break the time-reversal symmetry inherent in the governing electromagnetic-wave equations in linear and nonmagnetic media [18]. The traditional method to break the time-reversal symmetry is based on the magneto-optical effects (e.g., Faraday rotation) [19–21], which have the disadvantage of being bulky, costly, and unsuitable for on-chip integration. Recently, several alternative effects have been used to implement nonreciprocal optical devices, including dynamic spatiotemporal modulation of the refractive-index [22, 23], angular momentum biasing in photonic or acoustic systems [24–26], and optical nonlinearity [27–29]. Furthermore, reconfigurable Josephson circulator and directional amplifier have been demonstrated in superconducting microwave circuit by a set of parametric pumps [30, 31].

More recently, radiation-pressure-induced parametric coupling between cavity and mechanical modes in optomechanics has been exploited to break the time-reversal symmetry, leading to an intensive research in nonreciprocity based on optomechanical coupling [32–38]. Nonreciprocal devices including optomechanical isolators, circulators, and directional amplifiers have been proposed theoretically [39, 40] and realized experimentally [41–45]. Many of these works rely on controlling the relative phases of the pumps applied to the cavity modes to achieve nonreciprocity. Metelmann and Clerk have proposed a reservoir engineering approach for nonreciprocal transmission and amplification by modulating the interaction between the system and the dissipative reservoir [34], and this approach has recently been applied to demonstrate the directional amplifier in an optomechanical crystal circuit [44]. Furthermore, it has been shown that directional amplification can be realized in a double-cavity optomechanical system with mechanical gain [46] or by introducing an additional mechanical drive [47].

In this paper, we propose a scheme for realizing the directional amplifier between light fields with different frequencies (e.g. optical field and microwave field) in a triple-cavity optomechanical system with optical gain, where one cavity is doped with optical gain medium (i.e., active cavity) and the other two passive cavities are coupled to each other via hopping interaction, and the three single-mode cavities are coupled to a common mechanical resonator, respectively. This model is similar to that proposed in Ref. [36], where nonreciprocal quantum-state conversion between microwave and optical photons was studied without including any gain medium. By introducing the optical gain, nonreciprocity has recently been observed in parity-time-symmetric (\textit{PT}-symmetric) microcavities with balanced gain and

* liyong@csrc.ac.cn
loss [28, 48, 49]. Subsequently, optomechanical systems with optical gain have witnessed rapid progress, including phonon laser [50, 51], optomechanically induced transparency [52] and all-optical photon transport switching [53], PPT-symmetry-breaking chaos [54], enhanced ground-state cooling of the mechanical resonator [55], and enhanced sensitivity of detecting the mechanical motion [56]. Here we show that the optomechanical system with optical gain can operate as a directional amplifier between the active and passive cavities, where the direction of amplification can be controlled by adjusting the phase differences between the effective optomechanical couplings. Different from previous works [40, 41, 45, 47], we find that the optical gain is the origin of amplification, instead of the blue-detuned optical pump fields [40, 41, 45] or additional mechanical drive [47]. Furthermore, the mechanical noise can be greatly suppressed by increasing the cooperativity associated with the active cavity. It is worth pointing out that no direct coupling is needed between the active and passive cavities in this optomechanical system. Therefore, directional amplification can be realized between two cavities with vastly different frequencies. For example, the active cavity is an optical cavity and the two passive cavities can be microwave cavities. Finally, we briefly discuss the group delay of the amplified field and find that it can be prolonged evidently compared to the case without optical gain.

The remainder of the paper is organized as follows. In Sec. II, we introduce the theoretical mode and derive the transmission matrix between the input and output operators. In Sec. III, we obtain the optimal condition for directional amplifier and study in detail the effects of phase difference, optical gain rate, and the effective coupling strength. Gain, gain-bandwidth product, and added noise are also discussed. In Sec. IV, we briefly investigate the group delay of the transmitted probe field. We finally summarize our work in Sec. V.

II. MODEL

The optomechanical system under consideration is schematically shown in Fig. 1. Three cavity modes a_1, a_2, a_3 are coupled to a common mechanical mode b via radiation pressure, respectively. Cavity a_1 can have vastly different frequency from that of cavities a_2 and a_3, e.g., a_1 can be an optical microcavity and a_2, a_3 are microwave cavities. Here we consider the cavity a_1 is an active cavity, which can be fabricated from Er$^{3+}$-doped silica and can emit photons in the 1550-nm band by optically pumping Er$^{3+}$ ions with a pump laser in the 1460-nm band [48] as an example. Furthermore, passive cavity a_2 is directly coupled to passive cavity a_3 via hopping interaction to facilitate the directional amplification between the active and passive cavities. We apply a strong driving field on each cavity mode to establish the parametric coupling. The Hamiltonian of this optomechanical system can be written as

$$H = \sum_{k=1}^{3} \omega_k a_k^\dagger a_k + \sum_{k=1}^{3} g_k a_k^\dagger a_k (b^\dagger + b) + \omega_m b^\dagger b + J (a_2^\dagger a_3 + a_3^\dagger a_2) + \sum_{k=1}^{3} \left(\varepsilon_k a_k e^{i \omega_{d,k} t} + \varepsilon_k^* a_k^\dagger e^{-i \omega_{d,k} t} \right),$$

(1)

where a_k (a_k^\dagger) is the annihilation (creation) operator of the cavity mode a_k ($k = 1, 2, 3$) with resonance frequency ω_k, b (b^\dagger) is the annihilation (creation) operator of the mechanical mode b with resonance frequency ω_m, and g_k is the single-photon optomechanical coupling strength between the cavity mode k and the mechanical mode b. The fourth term represents the interaction between the cavities a_2 and a_3 with J being the coupling strength. The last term describes the coupling between the cavity modes and the driving fields with amplitude ε_k and frequency $\omega_{d,k}$. We can write each operator for the cavity modes as the sum of its classical mean value and quantum fluctuation operator, i.e., $a_k \rightarrow a_k e^{-i \omega_{d,k} t} + a_k$, where the classical amplitude a_k is determined by solving the classical equation of motion [43]. Further moving to the rotating frame with respect to $H_0 = \sum_{k=1}^{3} \omega_k a_k^\dagger a_k + \omega_m b^\dagger b$, and neglecting the counter-rotating and higher-order terms with $|a_k| \gg 1$, we have

FIG. 1. Schematic diagram of the optomechanical system with optical gain. The active cavity a_1 with effective gain rate g_a and the two passive cavities a_2 (a_3) with decay rate κ_2 (κ_3), are, respectively, coupled to a common mechanical resonator b with damping rate γ_m. Cavities a_2 and a_3 are coupled via hopping interaction to facilitate the directional amplification. The solid arrows and T_{ij} ($i, j = 1, 2, 3$) represent the transmission from the cavity a_j to the cavity a_i.
we can obtain the following linearized Hamiltonian
\[H = G_1 (a_1^{+} b + a_1 b^{+}) + G_2 (a_2^{+} b + a_2 b^{+}) + G_3 (a_3^{+} e^{-i\phi} + a_3 e^{i\phi}) + J (a_2^{+} a_3 + a_3^{+} a_2), \]
where \(G_k = g_k |\alpha_k| \) \((k = 1, 2, 3)\) is the effective coupling strength between the mechanical mode and the cavity \(a_k \), and the phases of \(\alpha_k \) have been absorbed by redefining the operators \(a_k \) and \(b \), and only the phase difference \(\phi \) between them has physical effects. Here we have assumed that \(\omega_2 = \omega_3, \omega_{d,2} = \omega_{d,3}, \) and \(\Delta_k = \omega_k - \omega_{d,k} = \omega_m. \)

According to the Heisenberg equations of motion and adding the corresponding damping and noise terms, we can get the following quantum Langevin equations (QLEs) [17, 42, 43]
\[a_1 = -iG_1 b + \frac{g_1}{2} a_1 + \sqrt{\kappa_{ex,1}} a_{1, in} + \sqrt{\kappa_{0,1}} a_{1, in}, \]
\[a_2 = -iG_2 b - iJ a_3 - \frac{\kappa_2}{2} a_2 + \sqrt{\kappa_{ex,2}} a_{2, in}, \]
\[a_3 = -iG_3 e^{-i\phi} - iJ a_2 - \frac{\kappa_3}{2} a_3 + \sqrt{\kappa_{ex,3}} a_{3, in}, \]
\[b = -iG_1 a_1 - iG_2 a_2 - iG_3 a_3 e^{i\phi} - \gamma_m b + \sqrt{\gamma_m} b_{in}, \]
where \(g_1 = g - \kappa_1 \) is the effective gain rate of cavity \(a_1 \) and \(g \) is the gain which can be provided by pumping the Er\(^{3+}\) ions in cavity \(a_1 \) [28, 48]; the total decay rate of cavity \(a_k \) \((k = 1, 2, 3)\) is described by \(\kappa_k = \kappa_{ex,k} + \kappa_{0,k} \), where \(\kappa_{ex,k} \) and \(\kappa_{0,k} \) are the external coupling rate and the intrinsic dissipation rate, respectively; \(\gamma_m \) is the damping rate of the mechanical mode \(b \). By introducing the Fourier transform of the operators
\[a(\omega) = \int_{-\infty}^{+\infty} a(t) e^{i\omega t} dt, \]
\[a^{+}(\omega) = \int_{-\infty}^{+\infty} a^{+}(t) e^{i\omega t} dt, \]
the zero-mean noise operators \(a_{1, in}^{(g)} \) and \(a_{1, in}^{(+)} \) associated with the gain in cavity \(a_1 \) obey \[51, 55, 57, 58 \]
\[\langle a_{1, in}^{(g)}(\omega) a_{1, in}^{(+)}(\Omega) \rangle = 0, \]
\[\langle a_{1, in}^{(+)}(\Omega) a_{1, in}^{(g)}(\omega) \rangle = 2\pi \delta(\omega + \Omega). \]
Here we have assumed that the thermal photon occupation of cavity \(a_1 \) is zero because \(\hbar\omega_1 / k_B T_e \gg 1 \) at optical frequencies, where \(k_B \) is the Boltzmann constant and \(T_e \) is the temperature of the environment.

Furthermore, the input field \(a_{k, in} \) incident on the cavity \(a_k \) \((k = 1, 2, 3)\) via the external coupling satisfies the following correlation functions \[33, 39, 59 \]
\[\langle a_{k, in}(\omega) a_{k, in}^{(+)}(\Omega) \rangle = 2\pi s_k(\omega) + 1)\delta(\omega + \Omega), \]
\[\langle a_{k, in}^{(+)}(\Omega) a_{k, in}(\omega) \rangle = 2\pi s_k(\omega)\delta(\omega + \Omega), \]
where the term 1 results from the effect of vacuum noise and \(s_k(\omega) \) denotes the weak probe field incident on the cavity \(a_k \) via the external coupling. The noise operators \(a_{k, in}^{(0)} \) and \(b_{in} \) correspond to the intrinsic dissipation of cavity \(a_k \) and the damping of the mechanical resonator, respectively. Under the white noise assumption, the above zero-mean noise operators satisfy the nonzero correlation functions given by \[17, 42, 43 \]
\[\langle a_{k, in}^{+}(\omega) a_{k, in}^{(g)}(\Omega) \rangle = 2\pi \delta(\omega + \Omega), \]
\[\langle b_{in}(\omega) b_{in}^{+}(\Omega) \rangle = 2\pi (n_m + 1)\delta(\omega + \Omega), \]
\[\langle b_{in}^{+}(\Omega) b_{in}(\omega) \rangle = 2\pi n_m\delta(\omega + \Omega). \]

Here the thermal photon occupations of the cavities are assumed to be zero under the condition that the reservoirs of the cavities are at sufficiently low temperature \[1, 40, 42 \], and the thermal phonon occupation of the mechanical resonator \(n_m = 1/\exp(\hbar \omega_m / k_B T_e) - 1 \).

For convenience, the QLEs (4)-(6) can be written in the following matrix form
\[\dot{\mu} = M \mu + L \mu_{in}, \]
where the vector \(\mu = (a_1, a_2, a_3, b)^T \), \(\mu_{in} = (a_{1, in}, a_{2, in}, a_{3, in}, a_{1, in}^{(0)}, a_{2, in}^{(0)}, a_{3, in}^{(0)}, a_{1, in}^{(0)}, b_{in})^T \) with \(T \) representing the transpose, the coefficient matrix
\[M = \begin{pmatrix} \frac{g_1}{2} & 0 & 0 & -iG_1 \\ -\kappa_2 / 2 & -iJ & -iG_2 \\ -iJ & -\kappa_3 / 2 & -iG_3 e^{-i\phi} \\ -iG_1 & -iG_2 & -iG_3 e^{i\phi} & -\gamma_m / 2 \end{pmatrix}, \]
\[L^T = \begin{pmatrix} \sqrt{\kappa_{ex,1}} & 0 & 0 & 0 \\ 0 & \sqrt{\kappa_{ex,2}} & 0 & 0 \\ 0 & 0 & \sqrt{\kappa_{ex,3}} & 0 \\ \sqrt{g} & 0 & 0 & \sqrt{\gamma_m} \end{pmatrix}. \]

The system is stable only if the real parts of all the eigenvalues of matrix \(M \) are negative. The stability condition can be derived by applying the Routh-Hurwitz criterion \[60, 61 \], whose general form is too cumbersome to give here. However, we will check numerically the stability condition in the following and choose the parameters in the stable regime. The solution to Eq. (12) in the frequency domain is
\[\mu(\omega) = -(M + i\omega I)^{-1} L \mu_{in}(\omega), \]
where \(I \) represents the unitary matrix. Upon substituting Eq. (15) into the standard input-output relation \(\mu_{out}(\omega) = \mu_{in}(\omega) - L^T \mu(\omega) \), we can obtain
\[\mu_{out}(\omega) = T(\omega) \mu_{in}(\omega), \]
where the output field vector $\mu_{\text{out}}(\omega)$ is the Fourier transform of $\mu_{\text{out}} = (a_{1,\text{out}}, a_{2,\text{out}}, a_{3,\text{out}}, a_{1,\text{out}}^{(0)}, a_{2,\text{out}}^{(0)}, a_{3,\text{out}}^{(0)}, a_{1,\text{out}}^{(g)}, b_{\text{out}})^T$, and the transmission matrix is given by

$$T(\omega) = I + LT^T(M + i\omega I)^{-1}L.$$

(17)

Here the matrix element $T_{ij}(\omega) \ (i, j = 1, 2, 3)$ describes the transmission amplitude of the signal incident on the cavity a_j and output from the cavity a_i via the external coupling.

III. DIRECTIONAL AMPLIFIER

In this section, we consider how to realize the directional amplification between cavity modes a_1 and a_2 when an input probe field is resonant with the cavity frequency, i.e., $\omega = 0$. According to Eqs. (13) and (17), we can obtain the transmission matrix elements T_{12} and T_{12} as follows

$$T_{12}(\omega) = -\sqrt{\frac{\eta_1 \eta_2 \kappa_1 \kappa_2}{A(\omega)}} G_1(G_2 \Gamma_3 + iJ G_3 e^{i\phi}),$$

(18)

$$T_{21}(\omega) = -\sqrt{\frac{\eta_1 \eta_2 \kappa_1 \kappa_2}{A(\omega)}} G_1(G_2 \Gamma_3 + iJ G_3 e^{-i\phi}),$$

(19)

where $A(\omega) = \Gamma_1(\Gamma_2 \Gamma_3 \Gamma_m + \Gamma_3 G_2^2 + \Gamma_2 G_3^2 + \Gamma_m J^2 + 2G_2 G_3 \cos(\phi)) \Gamma_3 + J^2)$, $\Gamma_1 = \gamma_a / 2 + i\omega, \Gamma_3 = -\kappa_2 / 2 + i\omega, \Gamma_m = -\gamma_m / 2 + i\omega$, and $\eta_k = \kappa_{ex,k} / \kappa_k \ (k = 1, 2, 3)$ is the coupling efficiency for the cavity a_k [37, 38, 43].

In order to realize the directional amplifier, we require e.g. that the probe field input from cavity a_1 can be amplified when it is transmitted from cavity a_2, but the probe field input from cavity a_2 cannot be transmitted from cavity a_1, i.e., $|T_{21}|^2 > 1$ and $|T_{12}|^2 = 0$. We can get from Eqs. (18-19) that $|T_{21}(0)| = 0$ and $|T_{21}(0)| \neq 0$ if $\phi = -\pi/2$ and $G_3 = G_2 \kappa_3/(2J)$, and we will show later that $|T_{21}|^2$ can be larger than 1 due to the optical gain of cavity a_1. In addition, to prevent loss of the optical field to other modes such as a_3 and b, it is desirable that $|T_{11}/T_{21}| \ll 1$ ($i = 2$) when $|T_{21}|^2 = 0$. By choosing $J = \sqrt{\kappa_2 \kappa_3 / 2}$, we can obtain that $|T_{31}| = 0$ and $|T_{11}/T_{21}| = \sqrt{\gamma_m \kappa_{ex,2}/(2G_2)} \ll 1$. Therefore, the conditions of directional amplification from cavity a_1 to cavity a_2 for an incident probe field with $\omega = 0$ include

$$\phi = -\pi/2, \ G_3 = G_2 \kappa_3/(2J), \ J = \sqrt{\kappa_2 \kappa_3 / 2}.$$

(20)

Under the above conditions, the transmission amplitude T_{21} on resonance can be simplified as

$$T_{21}(0) = \frac{8 \sqrt{\eta_1 \eta_2 \kappa_1 \kappa_2 G_1 G_2}}{4 \kappa_2 G_1^2 - 4 \gamma_a G_2^2 - g_a \kappa_2 \gamma_m}$$

$$= \frac{2 \sqrt{\eta_1 \eta_2 \kappa_1 \kappa_2 \gamma_m / g_a}}{C_1 \kappa_1 / g_a - C_2 - 1}$$

(21)

with the optomechanical cooperativity $C_k = 4G_k^2/(\kappa_k \gamma_m)$ for $k = 1, 2$. The effective gain rate g_a can be controlled by tuning the gain rate g and we can assume $g_a = \kappa_1$ for simplicity. The gain of the amplifier is then given by [40]

$$G = |T_{21}(0)|^2 = \frac{4 \eta_1 \eta_2 C_1 C_2}{(C_1 - C_2 - 1)^2}.$$

(22)

To realize the directional amplifier based on this optomechanical system with optical gain, the system should work in the stable regime. In Fig. 2, we plot the stability diagram with respect to the coupling strength G_1 and G_2, where the parameters are given as $g_a/2\pi = 2$ MHz, $\kappa_1/2\pi = 2$ MHz, $\kappa_2/2\pi = 3$ MHz, $\gamma_m/2\pi = 100$, $\phi = -\pi/2$, $G_3 = G_2 \kappa_3/(2J)$, and $J = \sqrt{\kappa_2 \kappa_3 / 2}$.

![FIG. 2. Stability diagram with respect to G_1 and G_2. Other parameters are $g_a/2\pi = 2/\pi = 2$ MHz, $\kappa_1/2\pi = 2$ MHz, $\kappa_2/2\pi = 3$ MHz, $\gamma_m/2\pi = 100$, $\phi = -\pi/2$, $G_3 = G_2 \kappa_3/(2J)$, and $J = \sqrt{\kappa_2 \kappa_3 / 2}$.](https://example.com/fig2)

![FIG. 3. Transmission probabilities $|T_{ij}|^2 \ (i, j = 1, 2, 3)$ as functions of the probe detuning ω with $\phi = -\pi/2$ (red solid lines) or $\phi = \pi/2$ (blue dashed lines). Here $\eta_1, \eta_2, G_1/2\pi = 2$ MHz, $G_1/2\pi = 2$ MHz, and $G_2 = G_1 - 0.1 \sqrt{G_1}$, where G_1 (G_2) is the dimensionless value of G_1 (G_2) in units of 2π. For the other parameters, see Fig. 2.](https://example.com/fig3)
\[\kappa_2/2\pi = \kappa_2/2\pi = 2 \text{ MHz}, \kappa_3/2\pi = 3 \text{ MHz}, \gamma_m = \kappa_2/100, \]
\[\phi = -\pi/2, G_3 = G_2 \kappa_3/(2J), \text{ and } J = \sqrt{\kappa_2 \kappa_3}/2. \]

It can be seen that the system is stable only in a narrow regime due to the optical gain of cavity \(a_1 \). Furthermore, when the coupling strength \(G_1 \) is larger than a critical value \((G_1/2\pi \gtrsim 1.1 \text{ MHz})\), the system can be stable as long as the coupling strength \(G_2 \) is a little smaller than \(G_1 \) because we have chosen \(g_a = \kappa_2 \). Therefore, we can choose \(\tilde{G}_2 = \tilde{G}_1 - 0.1\sqrt{G_1} \) for a given \(G_1 \) to ensure the system is stable, where \(G_1 (\tilde{G}_2) \) is the dimensionless value of \(G_1 (G_2) \) in units of MHz.

According to the transmission matrix, we can study the frequency and phase dependence of the transmission probabilities. Figure 3 plots the transmission probabilities \(|T_{ij}|^2 \) (\(i, j = 1, 2, 3 \)) between the cavities as a function of the probe detuning \(\omega \) for phase difference \(\phi = -\pi/2 \) and \(\phi = \pi/2 \), respectively. When the phase difference is tuned to be \(\phi = -\pi/2 \), it can be seen that \(|T_{21}|^2 \) reaches the maximum value of about 30 dB (30 dB corresponds to \(10^3 \)) but \(|T_{12}|^2 \approx 0 \) when \(\omega = 0 \). Therefore, the signal incident on cavity \(a_1 \) can be greatly amplified when it is transmitted from cavity \(a_2 \), but the signal incident on cavity \(a_2 \) cannot be transmitted from cavity \(a_1 \). This directional amplification arises due to interference between two possible paths, where one path is along \(a_1 \rightarrow b \rightarrow a_2 \), and the other path is along \(a_1 \rightarrow b \rightarrow a_3 \rightarrow a_2 \). When the phase difference \(\phi = -\pi/2 \), constructive interference between the two paths and the optical gain of cavity \(a_1 \) lead to the amplification for the optical transmission from cavity \(a_1 \) to cavity \(a_2 \), but the opposite direction is forbidden due to destructive interference \((|T_{12}| = 0)\). In addition, the signal input from cavity \(a_3 \) can be directionally amplified when it is transmitted from cavity \(a_1 \) with \(|T_{13}|^2 \approx 30 \text{ dB} \) and \(|T_{31}|^2 \approx 0 \). Consequently, directional amplifier can be realized based on this optomechanical system, and the input signal can be amplified directionally along the route \(a_3 \rightarrow a_1 \rightarrow a_2 \). Furthermore, if we modulate the phase \(\phi \) from \(-\pi/2\) to \(\pi/2 \), the signal will be amplified along the opposite direction \(a_2 \rightarrow a_1 \rightarrow a_3 \), which can be illustrated by changing the labels from \(T_{ij} \) to \(T_{ji} \) and altering the directions of all the arrows in Fig. 1.

In what follows, we mainly consider the directional amplification between cavities \(a_1 \) and \(a_2 \). In Fig. 4, we plot the transmission probabilities \(|T_{12}|^2 \) and \(|T_{21}|^2 \) as a function of the probe detuning \(\omega \) for different values of effective gain rate \(g_a \), where \(g_a/2\pi = -2 \text{ MHz} \) means that cavity \(a_1 \) becomes the passive cavity. The other parameters are the same as those in Fig. 3 except \(\phi = -\pi/2, G_1/2\pi = 5 \text{ MHz} \) and \(\tilde{G}_2 = \tilde{G}_1 - 0.1\sqrt{G_1} \), where \(\tilde{G}_1 (\tilde{G}_2) \) is the dimensionless value of \(G_1 (G_2) \) in units of MHz.

FIG. 4. (a) Transmission probabilities \(|T_{12}|^2 \) and \(|T_{21}|^2 \) versus the phase difference \(\phi \) with \(\omega = 0 \). The other parameters are the same as those in Fig. 3.

FIG. 5. Transmission probability \(|T_{21}|^2 \) as a function of the probe detuning \(\omega \) for different values of effective gain rate \(g_a \). When \(g_a/2\pi = -2 \text{ MHz} \) means that cavity \(a_1 \) becomes the passive cavity. The other parameters are the same as those in Fig. 3 except \(\phi = -\pi/2, G_1/2\pi = 5 \text{ MHz} \) and \(\tilde{G}_2 = \tilde{G}_1 - 0.1\sqrt{G_1} \), where \(\tilde{G}_1 (\tilde{G}_2) \) is the dimensionless value of \(G_1 (G_2) \) in units of MHz.
case, nonreciprocal transmission can still exist in this optomechanical system [36], but the input probe field cannot be amplified. Therefore, the optical gain is the origin of amplification, and the phase difference is responsible for the nonreciprocal transmission in this optomechanical system.

A. Bandwidth and Gain-Bandwidth Product

For the phase-preserving linear amplifier, the bandwidth generally decreases with the increase of the gain, which can be seen from Fig. 5. The bandwidth of the amplifier can be approximately obtained according to the denominator of $T_{21}(\omega)$ in Eq. (19). If we assume $g_a = \kappa_2 = \kappa_3 = \kappa$, then $A(\omega) \approx \frac{1}{\pi} \kappa^2 \gamma_m (C_1 - C_2 - 1) + \frac{1}{2} \kappa_2 \kappa (\kappa/\gamma_m - C_1) i \omega$, where we only keep the terms to the first order of ω [40]. The bandwidth Γ is approximated by the smallest $|\omega|$ at which $2|A(0)|^2 = |A(\omega)|^2$, and it can be given by

$$\Gamma = \left| \frac{\kappa (C_1 - C_2 - 1)}{\kappa \gamma_m - C_1} \right|. \quad (23)$$

In this optomechanical system with optical gain, we can see from Fig. 2 that the system is unstable when the cooperativity is small. Therefore, we consider the large cooperativity limit, i.e. $C_1 > C_2 \gg \kappa/\gamma_m$, then the bandwidth approaches $\Gamma = \kappa (C_1 - C_2 - 1)/C_1$, resulting in the gain-bandwidth product $P = \Gamma \sqrt{G} \rightarrow 2\kappa$.

B. Added Noise

The added number of noise quanta of the amplifier can be obtained by calculating the output spectra of cavity a_2, which is given by [40, 62]

$$S_{2,\text{out}}(\omega) = \frac{1}{2} \int \frac{d\Omega}{2\pi} (a_{2,\text{out}}(\omega) a_{2,\text{out}}(\Omega))^2$$

$$+ a_{2,\text{out}}(\Omega) a_{2,\text{out}}(\omega)$$

$$= \sum_{i=1}^{3} |s_{i,\text{in}}(\omega) + \frac{1}{2} |T_{2i}(\omega)|^2 + \frac{1}{2} \sum_{i=4}^{7} |T_{2i}(\omega)|^2$$

$$+ (n_m + \frac{1}{2}) |T_{28}(\omega)|^2,$$ \quad (24)

where we have used the noise correlation function in the frequency domain and the relation $a^\dagger(\omega) = [a(-\omega)]^\dagger$. It can be seen from Eq. (24) that output spectra of cavity a_2 contains eight components. If we consider the directional amplification of the signal incident on the cavity a_1 and output from the cavity a_2 via the external coupling, i.e., $|T_{21}|^2$, then other transmission probabilities $|T_{2i}|^2$ ($i = 2, 3, 4, ..., 8$) associated with thermal occupation n_i can be treated as noise and we can assume $s_{2,\text{in}} = s_{3,\text{in}} = 0$. Therefore, the noise added to the amplifier is defined as $N_2(\omega) = G^{-1} \sum_{i=2}^{8} (n_i + 1/2) |T_{2i}(\omega)|^2$

where we have assumed that the thermal photon occupations $n_i = 0$ ($i = 1, 2, 3, ..., 7$) for the cavity modes and the thermal phonon occupation $n_m = n_m$ for the mechanical mode. The last term 1 on the right side of Eq. (25) results from the gain of cavity a_1. We can see from Eq. (25) that the thermal noise from the mechanical resonator can be suppressed by increasing the cooperativity C_1. For large C_1 and C_2 with C_1 a little larger than C_2, we find at zero frequency $N_2(0) \rightarrow 1.5$.

Figures 6(a) and 6(b) plot respectively the transmission probability $|T_{21}|^2$ and noise added to the cavity a_2 with respect to the probe detuning ω for different coupling strengths G_1. It can be seen from Fig. 6(a) that the peak value of $|T_{21}|^2$ becomes larger when $G_1/2\pi$ increases from 2 to 10 MHz. Furthermore, Fig. 6(b) shows that the added number of noise quanta $N_2(\omega)$ decreases with increasing the optomechanical coupling constants G_1 and G_2. In particular, when $G_1/2\pi$ and G_2 are large enough, thus $C_{1,2} \gg 1$ and $N_2(\omega)$ on resonance can approach to 1.5.

Furthermore, the influence of internal dissipation rate of the cavity on the gain and added noise of the amplifier is discussed in Fig. 7. We find that when the coupling efficiency η_k reduced from 1 to 0.5 (critical coupling),

![FIG. 6. (a) Transmission probability $|T_{21}|^2$ and (b) added noise N_2 as a function of probe detuning ω with $G_1/2\pi = 2, 5, 10$ MHz and $G_2 = G_1 - 0.1 \sqrt{G_1}$, where G_1 (G_2) is the dimensionless value of G_1 (G_2) in units of MHz. The other parameters are the same as those in Fig. 3 except $\phi = -\pi/2$ and $n_m = 100$. The general form of $N_2(\omega)$ is too cumbersome to give here. However, if $\eta_1,2,3 = 1$, $g_a = \kappa_1$, and $\omega = 0$, the noise added to the output of cavity a_2 can be given by

$$N_2(0) = \frac{1}{2} \frac{(C_1 + C_2 - 1)^2}{4C_1C_2} + \left(n_m + \frac{1}{2}\right) \frac{1}{C_1} + 1, \quad (25)$$

where η_k reduced from 1 to 0.5 (critical coupling),
the gain of the amplifier decreases, which can also be seen from Eq. (21). Meanwhile, Fig. 7(b) shows that the noise added to this amplifier becomes larger when the coupling efficiency reduces. Therefore, high coupling efficiency η_k of each cavity is beneficial for enhancing the gain of the amplifier and suppressing the added noise.

IV. SLOW LIGHT EFFECT

Finally, we study the slow light effect in the transmitted probe field. It is well known that the probe field within the electromagnetically induced transparency (EIT) window usually suffers a rapid phase dispersion, which can lead to the dramatic reduction in its group velocity. In optomechanical systems, this kind of slow light effects has been extensively investigated in the past decade [7, 8]. Here we focus on the slow light effect associated with directional amplification. The optical group delay of the transmitted light is defined as [7]

$$\tau = \frac{d\theta}{d\omega},$$

where $\theta = \arg[T_{21}(\omega)]$ is the phase of the output field from cavity a_2 at the frequency of the probe field incident on cavity a_1.

Figure 8 plots (a) phase and (b) group delay of the transmitted probe field from cavity a_2 for $G_1/2\pi = 2, 5, 10$ MHz, respectively. We can see from Fig. 8(a) that the amplified transmitted probe field is accompanied by rapid phase dispersion, and the slope of the phase dispersion around $\omega = 0$ becomes larger when the coupling strength G_1 increases. Therefore, the maximum group delay is getting larger with increasing G_1, as can be seen from Fig. 8(b). Furthermore, the inset of Fig. 8(b) shows the group delay τ with respect to the probe detuning ω when cavity a_1 is also the passive cavity. In this case, optomechanically induced transparency can occur in the probe field transmitted from cavity a_2, as shown in Fig. 5. When $G_1/2\pi = 5$ MHz, we can see that the maximum group delay on resonance for the active cavity ($g_a/2\pi = 2$ MHz) is about $4.3 \mu s$, while the maximum group delay for the passive cavity ($g_a/2\pi = -2$ MHz) is about $0.16 \mu s$. Therefore, the optomechanical system with optical gain allows for directional amplification with prolonged group delay.

V. CONCLUSION

In summary, we have investigated the directional amplifier in a hybrid optomechanical system with optical gain. The transmission between the active cavity and the passive cavity can be directionally amplified, and the direction of the amplification depends on the phase difference between the effective optomechanical couplings. The maximum amplifier gain can be enhanced by increasing the gain rate of the active cavity and the effective coupling strengths. In the large cooperativity limit, the effect of the mechanical noise can be significantly suppressed in the cavity outputs. Furthermore, the group delay of the transmitted probe field in this optomechani-
Optomechanical system with optical gain can be improved up to one or two orders of magnitude compared to the optomechanical system without optical gain.

ACKNOWLEDGMENTS

This work is supported by the Science Challenge Project (under Grant No. TZ2018003), the National Key R&D Program of China grant 2016YFA0301200, the National Basic Research Program of China (under Grant No. 2014CB921403), and the National Natural Science Foundation of China (under Grants No. 11774024, No. 11534002, No. U1530401). C.J. is supported by the Natural Science Foundation of China (NSFC) under Grant No. 11304110, the Postdoctoral Science Foundation of China under Grant No. 2017M620593, and Qing Lan Project of Universities in Jiangsu Province.

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
[2] F. Marquardt and S. M. Girvin, Optomechanics, Physics 2, 40 (2009).
[3] H. Xiong, L. G. Si, X. Y. Lü, X. X. Yang, and Ying Wu, Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions, Sci. China Phys. Mech. Astron. 58, 1–13 (2015).
[4] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature 478, 89 (2011).
[5] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Siroti, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475, 359–363 (2011).
[6] G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803 (2010).
[7] S. Weis, R. Rivière, S. Delégilise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically induced transparency, Science 330, 1520 (2010).
[8] A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature 472, 69 (2011).
[9] L. Tian, Adiabatic state conversion and pulse transmission in optomechanical systems, Phys. Rev. Lett. 108, 153604 (2012).
[10] Y.-D. Wang and A. A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108, 153603 (2012).
[11] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, Bidirectional and efficient conversion between microwave and optical light, Nat. Phys. 10, 321–326 (2014).
[12] L. Tian, Robust photon entanglement via quantum interference in optomechanical interfaces, Phys. Rev. Lett. 110, 233602 (2013).
[13] Y.-D. Wang and A. A. Clerk, Reservoir-engineered entanglement in optomechanical Systems, Phys. Rev. Lett. 110, 253601 (2013).
[14] F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, Microwave amplification with nanomechanical resonators, Nature (London) 480, 351–354 (2011).
[15] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, T. T. Heikkilä, F. Massel, and M. A. Sillanpää, Low-noise amplification and frequency conversion with a multiport microwave optomechanical device, Phys. Rev. X 6, 041024 (2016).
[16] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, T. T. Heikkilä, F. Massel, and M. A. Sillanpää, Noiseless quantum measurement and squeezing of microwave fields using mechanical vibrations, Phys. Rev. Lett. 118, 103601 (2017).
[17] L. D. Tóth, N. R. Bernier, A. Nunnenkamp, A. K. Fedotov, and T. J. Kippenberg, A dissipative quantum reservoir for microwave light using a mechanical oscillator, Nat. Phys. 13, 787–793 (2017).
[18] R. J. Potton, Reciprocity in optics, Rep. Prog. Phys. 67, 717 (2004).
[19] F. D. M. Haldane and S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett. 100, 013904 (2008).
[20] A. B. Khanikaev, S. H. Mousavi, G. Shvets, and S. Kivshar, One-way extraordinary optical transmission and nonreciprocal spoof plasmons, Phys. Rev. Lett. 105, 126804 (2010).
[21] L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nat. Photon. 5, 758-762 (2011).
[22] H. Lira, Z. Yu, S. Fan, and M. Lipson, Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip, Phys. Rev. Lett. 109, 033901 (2012).
[23] K. Fang, Z. Yu, and S. Fan, Photonic Aharonov-Bohm effect based on dynamic modulation, Phys. Rev. Lett. 108, 153901 (2012).
[24] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Sound isolation and giant linear nonreciprocity in a compact acoustic circulator, Science 343, 516 (2014).
[25] N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops, Nat. Phys. 10, 923-927 (2014).
[26] D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, Optical diode made from a moving photonic crystal, Phys. Rev. Lett. 110, 093901 (2013).
[27] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, An all-silicon passive optical diode, Science 335, 447-450 (2012).
[28] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and Min Xiao, Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators, Nat. Photon. 8, 524-529 (2014).
[29] X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes, Phys. Rev. Lett. 117, 123902 (2016).

[30] K. M. Sliwa, M. Hatridge, A. Narla, S. Shanlkar, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Reconfigurable Josephson circulator/directional amplifier, Phys. Rev. X 5, 041020 (2015).

[31] F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J.D. Teufel, and J. Aumentado, Non-reciprocal microwave signal processing with a field-programmable Josephson amplifier, Phys. Rev. Appl. 7, 024028 (2017).

[32] M. Hafezi and P. Rabl, Optomechanically induced non-reciprocity in microring resonators, Opt. Express 20, 7672-7684 (2012).

[33] X.-W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91, 053854 (2015).

[34] A. Metelmann and A. A. Clerk, Nonreciprocal photon transmission and amplification via reservoir engineering, Phys. Rev. X 5, 021025 (2015).

[35] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, Experimental realization of optomechanically induced non-reciprocity, Nat. Photonics 10, 657 (2016).

[36] L. Tian and Z. Li, Nonreciprocal quantum-state conversion between microwave and optical photons, Phys. Rev. A 96, 033808 (2017).

[37] M.-A. Miri, F. Ruesink, E. Verhagen, and A. Ali, Optical nonreciprocity based on optomechanical coupling, Phys. Rev. Appl. 7, 064014 (2017).

[38] G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7, 031001 (2017).

[39] X.-W. Xu, Y. Li, A.-X. Chen, and Y.-x. Liu, Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems, Phys. Rev. A 93, 032827 (2016).

[40] D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, A. Nunnenkamp, Quantum-limited directional amplifiers with optomechanics, Phys. Rev. Lett. 120, 023601 (2018).

[41] F. Ruesink, M.-A. Miri, A. Ali, and E. Verhagen, Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7, 13662 (2016).

[42] N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, Nonreciprocal reconfigurable microwave optical circuit, Nat. Commun. 8, 604 (2017).

[43] S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalae, P. B. Dieterle, O. Painter, and J. M. Fink, Mechanical on-chip microwave circulator, Nat. Commun. 8, 953 (2017).

[44] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13, 465-471 (2017).

[45] Z. Shen, Y.-L. Zhang, Y. Chen, F.-W. Sun, X.-B. Zou, G.-C. Guo, C.-L. Zou, C.-H. Dong, Reconfigurable optomechanical circulator and directional amplifier, arXiv: 1709.06236.
[65] A. Nunnenkamp, V. Sudhir, A.K. Feofanov, A. Roulet, and T.J. Kippenberg, Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics, Phys. Rev. Lett. 113, 023604 (2014).