ON THE FUZZY NATURE OF CONSTRUCTED ALGEBRAIC STRUCTURE

GARBA, A. I., ZAKARI, Y. AND HASSAN, A.

1Department of Mathematics, Usman danfodiyo University, Sokoto.
2Department of Statistics, Ahmadu Bello University, Zaria

1.0 INTRODUCTION
The concept of fuzzy sets was introduced by Zadeh(1965), by defining them in terms of mappings from a set into a unit interval on the real line. Fuzzy sets were introduced to provide means to describe situations mathematically which gives rise to ill-defined classes, i.e. collection of objects for which there is no precise criteria for membership, collections of this type have a vague boundaries (Fuzzy), there are objects for which it is impossible to determine whether or not they belong to the collection. The classical mathematical theories, by which certain types of certainty can be expressed, are the classical set theory and probability theory, in terms of set theory, uncertainty is expressed by any given set of possible alternatives in situations where only one of the alternatives may actually happen. Uncertainty expressed in terms of sets of alternatives results from the non-specificity inherent in each set. Probability theory expresses uncertainty in terms of a classical measure of subsets of a given set of alternatives. The set theory introduced by Zadeh, presents the notion of membership in a given subset as a matter of degree rather than of totally in or totally out. With a fuzzy set theory, one obtains a logic in which statements may be true or false to different degrees rather than the bivalent situations (on or off) of being true or false.

Permutation pattern have been used in the past decades to study mathematical structures. Audu(1986), Ibrahim(2005)studied the concept of permutation pattern using some elaborate scheme to determine the order of precedence and the position of each of the elements in a finite set of prime size have also been established in Ibrahim (2007), Garba (2018) and also an idea of embedment as an algebraic structure has yielded some interesting results by Ibrahim (2005), Garba (2018). They studied the structure and developed a scheme for the range of such cycles and use it to investigate further number theoretic and algebraic properties of \(G_p \) and furthermore a group theoretic properties was also investigated by Garba (2018) and the concept of Fuzzy nature of \(G_p \) has also been studied by Aremu (2017) and investigated the alpha-level cut of \(G_p \). Ibrahim (2007)studied the concept of permutation pattern using some elaborate scheme to determine the order of precedence and the position for each of the elements in a finite set of prime size, and establish a scheme the scheme for generating each element in the permutation. Garba (2009) studied the \(G_p \)structure using number theoretic properties of Catalan numbers, and also developed a scheme for range of such cycles defined to be \(|\Delta| \) where \(I \) is the last element in the cycle and \(f \) is the first element in the cycle, and established that for all cycles in \(G_p \) the range exist, they also use it to investigate further number theoretic properties of \(G_p \). Usman (2011)investigated the group theoretic properties of \(G_p \) using composition of functions, by investigating the properties of a group and established that the structure is an Abelian group, using additive group of integers modulo \(n \), where \(n \) is necessarily a prime.
The support of a fuzzy set (denoted Supp) is the set of all elements that have membership functions in the universe a Boolean state of obedience.

2.3 The \(\alpha - \text{Cut Level Set} \)

The \(\alpha - \text{level} \) of a fuzzy set \(\tilde{A} \) is a crisp set that contains the elements that have membership functions in \(\tilde{A} \) greater than or equal to \(\alpha \). The support of a fuzzy set (denoted Supp) is the crisp set of all \(x \in X \) for which \(\mu_i(x) > 0 \) (Zadeh 1965).

2.4 The Support of a Fuzzy Set

The support of a fuzzy set is the set of ordered pairs, \(\tilde{A} = \{(x, \mu_i(x)) : x \in X\} \), where \(\mu_i(x) : X \rightarrow [0,1] \) is called degree of membership of \(x \) in \(\tilde{A} \) (Zadeh 1965).

2.5 Cycle and Successor

Let \(\Omega \) be a non-empty, totally ordered and finite subset of \(\mathbb{N} \). Let \(G_p = \{w_1, w_2, ..., w_p-1\} \) be a structure such that each \(w_i \) is generated from the arbitrary set \(\Omega \) for any prime \(p \geq 5 \), using the scheme

\[
\pi(w_i) = (1(1 + i)_{mod p}(1 + 2i)_{mod p} \ldots (1 + (p - 1)i)_{mod p})
\]

Where \(mp \) is modulop

Then each \(w_i \) is called a cycle and the elements in each \(w_i \) are distinct and called successors (Ibrahim 2004).

2.5.1 \(n \text{th successor} \)

Then \(n \text{th successor} \) of a cycle \(w_i \) is given by \(a_n = (1 + (n - 1)i)_{mod p} \) where \(1 \leq n \leq p \), and \(1 \leq i \leq p - 1 \). The number of distinct successors in a cycle is called the length of the cycle (Ibrahim 2004).

2.5.2 Range of Cycle

The range of a cycle \(w_i \) is defined as \(\Delta^i(w) := [\Delta^i(w)] \), where \(\Delta^i(w) \) is the difference between the first and last successor in a cycle \(w \) (Garba, 2009).

2.5.3 Definition of \(G_p' \)

Let \(G_p = \{w_1, w_2, ..., w_{p-1}\} \) be as defined above then \(G_p' := G_p \cup \{w_p\} \), where \(w_p := \{pp \ldots p\} \). This is \(G_p' = \{w_1, w_2, ..., w_{p-1}, w_p\} \).

Using the above setting, if \(p=5 \), then we have the following set of permutations \(w_1 = (12345), w_2 = (13524), w_3 = (14253), w_4 = (15432) \) and this shows that \(S = \{(12345), (13524), (14253), (15432)\} \).

Note that 0 and 5 are equivalent in modulo 5, thus instead of using 0 in modulo \(p \) we will be using \(p \) (Garba, 2009).

3.0 RESULT AND DISCUSSION

In this section, the discussion of the result is carried out by figures, tables and proofs.

3.1 Fuzzy Nature of \(G_p \)

Let \(G_p := G_p \cup \{w_p\} \) and \(G_p \subseteq G_p' \), then \(G_p \) is a fuzzy set defined by

\[
\tilde{G}_p = \{(\mu_{i_p}(w_i)) : w_i \in G_p\}
\]

Where \(\mu_{i_p}(w_i) = \left(i, \frac{\pi(w_i)}{p+2} \right) \), \(i < p \)

\[
\pi(w_i) = |\Delta^i_w(w)|
\]

\(\sigma \) is the last successor and \(f \) is the first successor.

Illustration: consider \(G_5' \) where \(p=5 \), \(G_5' = \{w_1, w_2, w_3, w_4, w_5\} \) let \(G_5 \subseteq G_5' \)

Then \(G_5 = \{w_1, w_2, w_3, w_4, w_5\} \), Defined \(\mu_{G_5}(w_1) = \left(i, \frac{\pi(w_i)}{5} \right) \), \(i < 5 \)

\[
\pi(w_i) = |\Delta^i_w(w)|
\]

\(\mu_{G_5}(w_1) = (1, 0.6) \)

\(\mu_{G_5}(w_2) = (2, 0.4) \)

\(\mu_{G_5}(w_3) = (3, 0.3) \)

\(\mu_{G_5}(w_4) = (4, 0.1) \)

\(\tilde{G}_5 = \{(\mu_{G_5}(w_i)) : w_i \in G_5'\} \)

\(\tilde{G}_5 = \{(1,0.6), (2,0.4), (3,0.3), (4,0.1)\} \), then \(\tilde{G}_5 \) is a fuzzy set.
3.2 Proposition: The α–cut level of any G_p is $G_p | w_{p-1}$

Proof

An α–cut level is a set that contains values from the membership functions greater than or equal to α. α is an arbitrary value with the range of fuzzy $[0,1]$. let G_p be a fuzzy set and $G_p \subseteq G_p$, then the α–cut level is a set $G_{p\alpha} = \{ w_i : \mu_{G_p}(w_i) \geq \alpha \}$ for $\alpha = \frac{1}{p}$, where $p \geq 5$.

Since $G_{p\alpha} = \{ \mu_{G_p}(w_i) : \mu_{G_p}(w_i) \geq \alpha, i < p \}$

Without loss of generality, $\mu_{G_p}(w_{p-1}) = \left(i, \frac{\pi(w_i)}{p+2} \right)$, $i < p$

Where $G_p = \{ w_1, w_2, \ldots w_{p-1} \}$

$\mu_{G_p} = \{ w_1, w_2, \ldots w_{p-2} \} \geq \frac{1}{p}$ but $\mu_{G_p} < \frac{1}{p}$

$=> G_p | w_{p-1}$ is the domain of the alpha-cut level of the set G_p.

Illustration consider when $p=5$,

$G_5 = \{ w_1, w_2, w_3, w_4 \}$

$\mu_{G_5}(w_1) = (1, 0.6)$

$\mu_{G_5}(w_2) = (2, 0.4)$

$\mu_{G_5}(w_3) = (3, 0.3)$

$\mu_{G_5}(w_4) = (4, 0.1)$

if $\alpha = \frac{1}{p}$, then $\alpha = \frac{1}{5} = 0.2$,

$=> w_{p-1} < \alpha$

From the illustration above it implies that, the α–cut level is the domain $G_p | w_{p-1}$. The table below gives a complete description of the alpha-cut-level of the constructed algebraic structure, the alpha level of each G_p exist, and is unique.

s/n	w_i	$\mu_{G_p}(w_i)$
1	w_1	0.6
2	w_2	0.4
3	w_3	0.3
4	w_4	0.1
5	α–cut level	0.2

Table 3.1: Membership Functions of w_i and α–Cut Level

Figure 3.1: Alpha Cut Level Set

Figure 3.1 illustrate the α–cut level of the G_p the vertical axis represents the membership functions while the horizontal axis represents the permutations w_i.

For G_5, the α–cut level is $G_5 | w_4$.

For G_7, the α–cut level is $G_7 | w_6$.

For G_9, the α–cut level is $G_9 | w_{10}$.

For G_{10}, the α–cut level is $G_{10} | w_{12}$.

This generalize the proof.
3.3 Proposition: The Support of the fuzzy set \hat{G}_{p} of any G_{p} is the entire domain.

Proof

The support of a fuzzy set (denoted by Supp) are those members of the set in which their membership degree is > 0,

$$\text{Supp}(\hat{G}_{p}) = \{ \mu_{G_{p}}(w_i) : \mu_{G_{p}}(w_i) > 0 \}$$

And $\pi(\omega_i)$ is never zero, then, the result follows.

Table 3.2: Membership Functions of w_i

s/n	w_i	$\mu_{G_{p}}(w_i)$
1	w_1	0.6
2	w_2	0.4
3	w_3	0.3
4	w_4	0.1

Figure 3.2: Support of a Fuzzy Set G_{p}

Figure 3.2 gives the description of the Supp(G_{p}), and it can be seen that all the values are > 0, the vertical axis represents the membership functions while the horizontal axis represents the permutations ω and is true for any G_{p}, then the support of any fuzzy set in G_{p} is the entire domain.

3.5 Conclusion

The construction of an algebraic structures and investigating their algebraic properties cannot be over emphasized as it has a lot of applications in different field of mathematics, in this paper we investigated some fuzzy nature of an algebraic structure G_{p} that was constructed earlier, where we discovered that if \hat{G}_{p} is a fuzzy set, then the α - cut level set of any G_{p} is a set $G_{p}|w_{p-1}$ and the support of \hat{G}_{p} is the entire domain, In the above constructed algebraic structure the first element of the permutation is always fixed.

References

Audu, M. S. (1986). Generating sets for Transitive Permutation Groups of Prime-power Order. The Journal of Mathematical Association of Nigeria Abacus, 17(2), 22-26.

Aremu, K. O., Ejima, O. and Abdullahi, M. S. (2017). On the Fuzzy Γ_1 - non Deranged Permutation Group G_{p}. Asian Journal of Mathematics and Computer Research, 18, 152-157.

Cayley, A. (1889). The Collected Mathematical Papers of the Arthur Carley, II (1851-1860), Cambridge University Press.

Garba, A. I., Yusuf, A. and Hassan, A. (2018). Some Topological Properties of a Constructed Algebraic Structure. Journal of the Nigerian Association of Mathematical Physics, 45:21-26.
Garba, A. I. and Ibrahim, A. A. (2009). A New Method of Constructing a Variety of Finite Group Based on Some Succession Scheme. *International Journal of Physical Science, 2*(3), 77-79.

Garba, A. I. and Ibrahim, A.A. (2010). A New Method of Constructing a Variety of Finite Group Based on some Succession Scheme. *International Journal of Physical Science, 2*(3), 23-26.

Garba, A. I. and Abubakar, J. (2015). Construction of an Algebraic Structure Using a Concatenation Map. *Nigerian Journal of Basic and Applied Science* (December, 2015), 23(2), 117-120.

Ibrahim, A. A. (2004). Group Theoretical Interpretation of Bara ‘at al-Dhimmah Models for Prayers that are not Strictly Consecutive. *Proceedings of Annual National Conference of the Mathematical Association of Nigeria*, 35-46.

Ibrahim, A. A. and Audu, M. S. (2005). Some Group Theoretic Properties of Certain Class of (123) and (132) Avoiding Patterns of Certain Numbers: An Enumeration Scheme. *African Journal of Natural Science, 8*, 79-84.

Ibrahim, A. A. (2006). Correspondence between the Length of some Class of Permutation Patterns and Primitive Elements of Automorphism Group Modulo n. *Abacus. The Journal of Mathematical Association of Nigeria, 33*, 143-154.

Ibrahim, A. A. (2007). A Counting Scheme and some Algebraic Properties of a Class of Special Permutation Patterns. *Journal of Discrete Mathematical Sciences and Cryptography, 10*(4), 537-546.

Usman, A. and Ibrahim, A. A. (2011). A New Generating Function for Aunu Patterns: Applications in Integer Group Modulo n. *Nigerian Journal of Basic and Applied Sciences, 19*(1), 1-4.

Zadeh, L. A. (1965), Calculus of Restrictions in “Fuzzy Sets and their Applications to Cognitive and Decision Processes” (4th., pp. 24-39). New York, Academic Press.