Woodland restoration on agricultural land: long-term impacts on soil quality

Frank Ashwood1,2, Kevin Watts1,3, Kirsty Park3, Elisa Fuentes-Montemayor3, Sue Benham1, Elena I. Vanguelova1

Woodland restoration is underway globally to counter the negative soil quality and ecological impacts of agricultural expansion and woodland fragmentation, and restore or enhance biodiversity, ecosystem functions and services. However, we lack information about the long-term effects of woodland restoration on agricultural soils, particularly at temporal scales meaningful to woodland and soil development. This study utilized soil and earthworm sampling across a chronosequence of sites transitioning from “agricultural land” to “secondary woodland” (50–110 years) and “ancient woodland” (>400 years), with the goal of quantifying the effects of woodland restoration on agricultural land, on key soil quality parameters (soil bulk density, pH, carbon and nitrogen stocks, and earthworm abundance, biomass, species richness and diversity). Broad-leaved woodland restoration led to significantly greater soil organic carbon (SOC) stocks compared to arable land, and young (50–60 years) secondary woodland increased earthworm species and functional diversity compared to both arable and pasture agricultural land. SOC stocks in secondary broad-leaved woodlands (50–110 years) were comparable to those found in long-term ancient woodlands (>400 years). Our findings show that broad-leaved woodland restoration of agricultural land can lead to meaningful soil ecological improvement and gains in SOC within 50–110 years, and provide intel on how restoration activities may be best targeted to maximize soil quality and functions.

Key words: agricultural land, earthworm, ecosystem restoration, soil organic carbon, soil quality, woodland restoration

Implications for Practice

- Restoring broad-leaved woodland onto agricultural land improves earthworm diversity and increases soil organic carbon (SOC) stocks, overcoming some negative aspects of agricultural intensification on soils.
- Targeting such woodland restoration onto arable land increases total SOC stocks, and restoring broad-leaved woodland onto either type of agricultural land increases earthworm functional diversity.
- Within the first 50–60 years following restoration, broad-leaved woodlands support greater earthworm species diversity than older (>110 years) woodlands or agricultural land.
- Within a short timeframe (50–110 years) restored broad-leaved woodland can increase SOC stocks to levels comparable with long-term (ancient) woodland.

Introduction

The restoration of degraded ecosystems and the services they provide is a global imperative for humanity in the face of increasing demand for resources (Foley et al. 2005). Globally, much environmental degradation is a result of agricultural expansion and intensification, particularly at the expense of woodland (FAO 2010; Foley et al. 2011; Rey Benayas & Bullock 2012). The restoration of lost woodland ecosystems represents an opportunity to counter the negative ecological impacts of agricultural expansion and woodland fragmentation, and restore or enhance biodiversity and ecosystem functions and services (Rey Benayas & Bullock 2012). Many countries have set targets for woodland expansion; e.g. in the United Kingdom, England alone could see the creation of 180,000 ha of new woodland over the next 25 years (HM Government 2018). However, this must be undertaken strategically (Lee et al. 2002; Quine & Watts 2009), taking into account conflicting demands for other land uses (such as agriculture) and ensuring sustainable management of soil and biological resources (Rey Benayas & Bullock 2012).

Soil is a crucial component of forests, delivering fundamental ecosystem functions, including carbon (C) sequestration,
Restoration Ecology November 2019

Woodland restoration impacts on agricultural soils

biomass production, water and nutrient regulation (Quine et al. 2011). Forest soils contain the majority of the total forest C stock, and the stability of this C is key to its sequestration and climate change mitigation (Vanguelova et al. 2013, 2016). The accumulation of stable soil C is affected by a wide range of biotic and abiotic factors (Benham et al. 2012; Vanguelova et al. 2016), and understanding how soils respond to woodland creation is crucial to ensure long-term sustainable woodland habitat restoration (Benham et al. 2012). Likewise, it is important to understand the effects that woodland restoration has on key groups of organisms on agricultural land, in particular earthworm communities, since these ecosystem engineers are inextricably linked to soil chemical, physical, and biological quality (Lavelle et al. 1997; Blouin et al. 2013; Vellend & Flinn 2015). Earthworms are typically classified into three ecological or functional groups based on their life strategies: epigeic (surface/litter dwelling), endogeic (shallow, mineral soil dwelling), or anecic (dwelling in deep, vertical soil burrows) (Lee 1959; Bouché 1977). Earthworms provide a range of ecosystem services depending on their ecological grouping, including improving soil structure, soil formation, nutrient cycling, and soil organic carbon (SOC) sequestration (Lavelle et al. 1997; Blouin et al. 2013). For example, within earthworm casts, SOC may be protected for long periods in the form of stable aggregates (McInerney et al. 2001; Shipitalo & Le Bayon 2004). However, not all species produce such casts, and the composition of earthworm communities (and associated services) is affected by a range of factors including soil properties, habitat constraints, and land use and management (Decaëns et al. 2008). Since earthworm functional groups influence soil ecosystem processes differently, understanding the impacts of land management practices on earthworm functional and taxonomic diversity can enable better management of soil resources, in both agricultural landscapes and woodland ecosystems (Muys et al. 1992; Blouin et al. 2013; Pelosi et al. 2014; Cardinael et al. 2019).

Despite growing international pressure to restore agricultural land to woodland, very few studies have investigated the long-term effects of woodland restoration on soil ecology and soil physical and chemical quality in comparison to former agricultural land (Muys et al. 1992; Poulton 2006). The outcome of reforesting agricultural land is heavily influenced by factors such as tree species, management, soil type, and the nature of the former land use, and can be highly situation-specific (Bouché 1972; Muys et al. 1992). For example, Muys (1990) reported that the establishment of monoculture beech forests on highly productive agricultural soils led to soil degradation, and subsequently benefited from the experimental introduction of additional tree species, soil management, and earthworm inoculation. In a comparison of meadow with old and young broad-leaved forest stands, Muys et al. (1992) found significantly lower earthworm biomass in old forest stands compared to either young plantations or meadows. Wider forest surveys indicate that lower total soil C stocks in the forest floors, but greater organic C in the mineral soil (stable C) could be accumulated in broad-leaved than under coniferous woodlands (Morison et al. 2012; Vanguelova et al. 2013).

In general, broad-leaved woodland establishment also results in greater earthworm abundance and diversity than coniferous woodland (Verstraeten et al. 2018). However, studies of soil and earthworm population dynamics on well-characterized sites over long timeframes meaningful to woodland and soil development are very rare (Muys et al. 2003; Curry 2004; Blouin et al. 2013; Sigurdsson & Gudleifsson 2013; Schwarz et al. 2015) and more research into long-term soil–woodland interactions is required to inform new woodland restoration activities across a range of former land uses and soil properties. In the United Kingdom, long-term, large-scale woodland creation has been well-documented in historic maps (Watts et al. 2016); this provides a unique opportunity to investigate soil changes associated with woodland restoration over large spatial and temporal scales. A better understanding of soil changes following conversion from agriculture to woodland will enable more sustainable and strategic future woodland establishment.

In this study, we utilized historical woodland creation to investigate changes in soil biological, physical, and chemical quality due to woodland restoration, and compared this with surrounding agricultural land. Specific research objectives were to identify and quantify the effects of woodland restoration on agricultural land, and woodland age, on: (1) important soil physical (bulk density and structure), chemical (acidity, carbon [C], and nitrogen [N]), and (2) biological parameters (earthworm abundance, biomass, species richness, and diversity).

Methods

Study Sites

This study utilized the research site network established by the Woodland Creation and Ecological Networks project (WrEN; www.wren-project.com), a natural experiment designed to study the effects of 160 years of woodland creation on biodiversity and inform landscape-scale conservation (Watts et al. 2016). The subset of sites used in this study centered around the National Forest area of the midlands of England (Fig. 1), an intensely farmed agricultural landscape with fragmented woodland cover which has seen significant increases in woodland creation over the past 25 years (Harmer et al. 2015; Watts et al. 2016). As the woodlands selected for this study were created on former agricultural land (between 50 and 120 years ago) they lack any remnant woodland biodiversity or soils, thereby providing a novel system to study biodiversity and soil development in restored woodlands over long time scales. By focusing on a relatively homogeneous lowland agricultural landscape, we minimized the influence of other covariates on the study, such as topography and climate (Watts et al. 2016). The greater midlands area receives approximately 1,460 h sunshine and 741 mm rainfall per annum, and has a mean daily maximum temperature of 14.1°C (Met Office 2018). In total, 21 sites were sampled to form a chronosequence, consisting of seven ancient semi-natural woodlands of more than 400 years age, seven planted secondary woodland sites split into two age groups:
young (50–60 years, four sites), and mature (110–116 years, three sites), and seven agricultural sites (three arable and four pasture) adjacent to the selected woodlands—representing the previous land use prior to woodland restoration (Fig. 1).

We used a systematic process to select comparable woodland and agricultural sites within the study landscape. Initial site screening utilized historical maps (EDINA 2013; Natural England 2013) to confirm agricultural land use prior to woodland planting and determine woodland age as detailed in Watts et al. (2016). Additionally, the selected woodland sites were spatially independent, at least 3 km distance apart (Watts et al. 2016). Soil variability can be high on a local scale, especially under woodland (Vanguelova et al. 2016). Therefore, to ensure comparability between sites, we selected woodland sites on directly comparable soil types. These were surface-water gleys of the Worcester, Denchworth, and Ragdale series (Cranfield University 2016), known to have very little spatial variability in soil C (Vanguelova et al. 2013, 2016). The size of the woodlands was also controlled as much as possible (between 2 and 5 ha) to account for patch size and edge effects (Vanguelova & Pitman 2019). All woodland sites were unmanaged broad-leaved woodlands, with a canopy dominated by the tree species Quercus robur, Fraxinus excelsior, Betula pendula, Prunus avium, Acer pseudoplatanus, Salix sp., and Populus sp. Pastural agricultural sites were managed by livestock grazing at the time of sampling, while arable agricultural sites were used for cereal production and routinely plowed. For more detailed information on the WRoEN woodland site selection, see Watts et al. (2016).

Sampling Methodology

Sampling was undertaken across all sites in October 2016, following established European soil protocols appropriate for the scale of sampling and spatial soil variability (Cools & De Vos 2010; Vanguelova et al. 2016). A sampling area (plot size of 20 × 20 m = 400 m²) was marked out in the center of each site, where possible allowing a buffer of at least 50 m to the woodland edge to account for likely edge effects (Vanguelova & Pitman 2019). A systematic grid sampling approach was applied in this central sampling area, providing 10 sampling points. The distance between the sampling points was at least 5 m and with 1 m distance from tree stems (Vanguelova et al. 2016). At each sampling point, both the organic layer and two mineral soil depths (0–20 and 20–40 cm) were collected. Soil sampling followed the ICP Forests Soil Manual methods (Cools & De Vos 2010) using Dutch augers to collect mineral soil. An additional three quadrats (25 × 25 cm) were sampled from the organic layer and three cylindrical core rings (100 cm³) were taken from the mineral soil horizons, to determine organic layer and soil bulk densities and allow estimation of organic layer and soil C and nutrient stocks.

Soil samples were prepared and analyzed for chemical and physical properties by Forest Research laboratory services at Alice Holt Lodge, Farnham, U.K. Soil samples had total C and N concentrations measured using a C:N Elemental Analyzer (Carlo Erba [THERMO], FLASH EA 1112 Series). Soil moisture content was analyzed by oven drying at 105°C for 24 hours, and soil pH was measured in water suspension (soil:water ratio 1:2.5). Extraction by 1 M KCL was used on fresh soil for determining levels of available soil nitrate (NO−3) and ammonium (NH4+), by colorimeter analysis (MAFF 1993). Organic soil samples (litter and fermentation layers) were analyzed for total major elements (P, K, Ca, and Mg) through inductively coupled plasma-optical emission spectrophotometry (ICP-OES) after sulfuric acid digestion.

Earthworm surveys were carried out at each site by digging eleven 0.1 m² soil pits per plot (5 within the central 20 × 20 m sampling area, and 6 outside this to account for edge effects), and hand sorting for earthworms (Butt & Grigoropoulou 2010). Collected earthworms were placed directly into prelabeled plastic bottles containing 80% ethanol solution, then transported to the laboratory and placed into fresh 80% ethanol for preservation. All adults were identified to species level following the keys of Sims and Gerard (1999) and Sherlock (2018), assigned an ecological group (epigeic, endogeic, or anecic, sensu Bouché 1972), and had their preserved biomass (wet weight) determined.

Statistical Analysis

We tested the effects of land use type (four groups: pasture and arable agriculture, and secondary or ancient woodland), woodland age (three groups: young secondary [50–60 years], mature secondary [110–116 years], or ancient [>400 years]), and soil depth (0–20, 20–40 cm) (all categorical variables) on soil chemical and physical parameters and on earthworm population density, biomass, community composition, species richness, and diversity. Where there was no difference in response variables within woodland age groups or agricultural types, these groups were pooled for analysis. Statistical analysis was carried out using Student’s t test or one-way analysis of variance (ANOVA) followed by Tukey–Kramer post hoc multiple comparison test. Where the normality and homogeneity of variance assumptions of ANOVA were not met, the non-parametric Kruskal–Wallis ANOVA test was applied. Additionally, mixed effects models were run to account for site-specific random effects. Goodness of fit of mixed effects models was compared to the linear regression models using Akaike’s information criterion (AIC); since model fit was not improved by including site as a random effect (AICcLM > AICcL with random site effects often explaining less than 1% of the variation), the linear regression approach was deemed an appropriate model for this study. Practical significance of results was interpreted using the effect size thresholds for eta-squared (η²) and Cohen’s d (as appropriate to the statistical test employed) described by Cohen (1988) and Sawilowsky (2009). Statistical analysis was performed using the statistical software JASP (Release 0.9.0.1) and R Studio version 1.1.447 using R version 3.5.0.
Woodland restoration impacts on agricultural soils

Results

Soil Physical and Chemical Properties

Mineral soil organic carbon (SOC) stock (t C ha$^{-1}$) and SOC concentration (%) at 0–20 cm depth was significantly greater under ancient woodland (>400 years old) than arable land ($F_{[4,16]} = 3.244, p = 0.040, \eta^2 = 0.45$, and $F_{[4,16]} = 3.244, p = 0.023, \eta^2 = 0.49$, respectively) (Table 1). Total SOC stock (t C ha$^{-1}$) down to depth of 40 cm (including organic horizon) was also significantly greater on ancient woodland ($N = 7, M = 204.40, SD = 75.59$) than arable land ($N = 4, M = 89.57, SD = 13.78$) ($F_{[4,16]} = 3.153, p = 0.043, \eta^2 = 0.44$) (Fig. 2). Woodland SOC stocks generally increased with woodland age but mean secondary woodland SOC stocks were not significantly different from those found in ancient woodlands. There was a significant effect of soil depth on SOC stocks under secondary woodland (young and mature pooled), with 0–20 cm depth mineral soil containing significantly greater SOC than 20–40 cm depth ($t_{[12]} = 2.316, p = 0.039, d = 1.24$; Table 1 and Fig. 2). Besides this, there were no woodland age effects on SOC stocks and concentrations at different soil depths or overall down to 40 cm depth. No woodland age effects were found on N concentrations or N stocks at each soil depth, however, the total soil N concentration in mature (110–116 years) secondary woodland at 0–20 cm mineral soil was significantly greater than at 20–40 cm depth ($t_{[4]} = 3.474, p = 0.025, d = 2.84$; Table 1).

Mineral soil C:N ratio at both 0–20 and 20–40 cm depths was significantly greater under both young and mature secondary woodland and ancient woodland than agricultural land (arable and pasture pooled) ($F_{[2,18]} = 10.83, p < 0.001, \eta^2 = 0.55$, and $F_{[2,18]} = 8.603, p = 0.002, \eta^2 = 0.49$, respectively; Table 1 and Fig. 3). There was no effect of woodland age on soil C:N; however, at 0–20 and 20–40 cm, the soil C:N ratio of mature secondary woodland (110–116 years) was significantly greater than that of both arable and pasture ($F_{[4,16]} = 6.589, p = 0.002, \eta^2 = 0.62$ and $F_{[4,16]} = 7.252, p = 0.002, \eta^2 = 0.65$, respectively; Table 1).

Soil bulk density (g/m2) at 0–20 cm depth was significantly greater on arable sites than young (50–60 years) secondary woodland ($F_{[4,16]} = 3.269, p = 0.039$). This relationship had a very large effect size ($\eta^2 = 0.45$), indicating that land use type accounted for almost half of the variance in soil bulk density. The lowest mean soil pH was recorded under young secondary and ancient woodland, and the highest was on arable land; however, there were no statistically significant effects of woodland land use, woodland age, or soil depth on soil pH (Table 1).

Earthworm Populations

In total, 3,541 earthworms were collected, belonging to 13 species and 6 genera (Table 2). Only two species were found exclusively on agricultural land (Dendrobaena pygmaea and...
Lumbricus festivus), and 3 species were found only in woodlands (Octolasion cyanenum, Eisenia fetida, and Dendrobaena octaedra). Total earthworm abundance was significantly greater on agricultural land (arable and pasture pooled) \((N = 7, M = 242.7/m^2, \text{SD} = 161.98) \) than both young and mature secondary woodlands \((N = 7, M = 120.52/m^2, \text{SD} = 47.83) \), and ancient woodlands \((N = 7, M = 120.73/m^2, \text{SD} = 161.98; F_{[2,18]} = 4.22, p = 0.031, \eta^2 = 0.32) \). There was however, no difference in abundance between the two main woodland types (secondary and ancient). The greater earthworm abundance on agricultural land is explained by the pasture sites, which was significantly greater than all other land uses \((F_{[4,16]} = 4.738, p = 0.010, \eta^2 = 0.54; \text{Table 2 and Fig. 4}) \). Earthworm total biomass (g/m2) was also significantly greater on pasture sites than all other sites \((F_{[4,16]} = 7.810, p = 0.001, \eta^2 = 0.66; \text{Table 2 and Fig. 4}) \).

Earthworm Species Richness and Diversity

Earthworm species diversity, expressed as Shannon’s H diversity index, was significantly greater in secondary woodland \((N = 7, M = 1.399, \text{SD} = 0.255) \) than agricultural land (both types) \((N = 7, M = 1.106, \text{SD} = 0.196) \) \((t_{[12]} = -2.411, p = 0.033, \text{Cohen’s } d = -1.29) \). Earthworm diversity was also greater in ancient woodland \((N = 7, M = 1.322, \text{SD} = 0.190) \) than agricultural land (both types) \((t_{[12]} = 2.085, p = 0.059) \), and while this was not statistically significant, the effect size was large \((d = 1.12) \). Earthworm species diversity was highest in young secondary woodland, and significantly higher than on arable land \((F_{[4,16]} = 3.569, p = 0.029, \eta^2 = 0.47) \) \(\text{(Table 2)} \). No significant effects of land use or woodland age were observed on earthworm species richness.

Earthworm Functional Group Dynamics

Compared with agricultural land (arable and pasture pooled), woodland (all age groups pooled) showed a 4% increase in epigeic (surface-living) species, an 18% decrease in endogeic (shallow-burrowing) species, and an 11% increase in anecic (deep-burrowing) species. The abundance (individuals per m2) of endogeic earthworms was similar across all woodland ages, but significantly greater on agricultural land (arable and pasture pooled) \((N = 7, M = 85.58, \text{SD} = 66.94) \) than in woodland soils (all woodland age groups pooled) \((N = 14, M = 34.48, \text{SD} = 18.85; H[1] = 4.699, p = 0.030, \text{d} = 1.23) \). Notably, the endogeic earthworm species Allolobophora chlorotica was significantly more abundant (individuals per m2) on pasture sites than on all other land uses \((H[4] = 13.26, p = 0.010; \text{Table 2}) \). In terms of total abundance, the proportion \((\%)\) of endogeic earthworms was significantly greater on agricultural sites (both types pooled) \((N = 7, M = 87.42, \text{SD} = 8.439) \) than secondary woodland \((N = 7, M = 63.14, \text{SD} = 18.071; F_{[2,18]} = 6.232, p = 0.009, \eta^2 = 0.41) \).

The anecic species Lumbricus terrestris was significantly less abundant on agricultural land (arable and pasture pooled) \((N = 7, M = 1.04, \text{SD} = 1.33) \) than woodland sites (all ages pooled) \((N = 14, M = 3.38, \text{SD} = 2.46; H[1] = 4.796, p = 0.029) \). However, another anecic species, Aporrectodea longa, was significantly more abundant on pasture sites than all other sites \((H[4] = 10.01, p = 0.040; \text{Table 2}) \). The proportion \((\%)\) of anecic species was lower on agricultural land (arable and pasture pooled; \(N = 7, M = 9.985, \text{SD} = 7.560 \)) than woodland (all ages pooled; \(N = 14, M = 22.588, \text{SD} = 14.935; F_{[1,19]} = 4.433, p = 0.051) \). While not statistically significant, this had a medium-large practical significance \((\eta^2 = 0.19) \).

Discussion

Woodland Restoration Effects on Soil Properties

Long-term woodland significantly increased the mineral soil carbon (SOC) stock compared with arable land, with 18% (SD = 0.18) of woodland sites having a relatively high average SOC stock.
Woodland restoration impacts on agricultural soils

Figure 2. Boxplot showing (A) the total SOC stock (t C ha$^{-1}$) (organic horizon plus 0–40 cm depth mineral soil), on arable and pasture agricultural land, young and mature secondary woodland, and ancient woodland (ASNW), and (B) soil organic carbon (SOC) stock (t C ha$^{-1}$) in the OH organic horizon “Organic” and at 0–20 and 20–40 cm depth individually. Different letters in a row indicate significant differences, n.s. = no significant differences, one-way ANOVA followed by Tukey–Kramer post hoc test, *$p < 0.05$.

of 180 t C ha$^{-1}$ to 40 cm depth compared with an average U.K. woodland soil C stock of 118 t C ha$^{-1}$ on Gleysols reported by Vanguelova et al. (2013). Importantly, mean SOC stocks (149 t C ha$^{-1}$) in our restored (i.e. planted) secondary woodlands were not significantly different to those found in our ancient woodlands (which represent the historical land use prior to agricultural expansion). This indicates that mineral soil SOC accumulation is initially rapid, but slows over time between secondary and ancient woodland. This trend was previously recorded by Benham et al. (2012), with most of the SOC accumulation at shallow soil depths under oak forest being achieved within the first 100 years of afforestation. A comparable study exists at Geescroft Wilderness in Rothamsted where arable land has reverted to acid woodland after being abandoned in 1886. Soil organic C (to 69 cm depth) increased from 29 t C ha$^{-1}$ in the 1880s to 62 t C ha$^{-1}$ in the 1980s (Poulton 1996). Where arable farmland was the previous land use for our secondary woodland sites, with an average starting topsoil C stock of 48 t C ha$^{-1}$ as recorded in our study, the topsoil of our secondary woodlands shows an average SOC accumulation rate of 0.49 t C ha$^{-1}$ y$^{-1}$ (across 75 years—the mean age of our secondary woodlands). This estimate falls between the 0.1–0.3 recorded by Benham et al. (2012) and the 0.38 t C ha$^{-1}$ y$^{-1}$ at Geesecroft Wilderness, and the 0.56 t C ha$^{-1}$ y$^{-1}$ at Broadbalk; and fits with a range of surveys of U.K. and European
Woodland restoration impacts on agricultural soils

Figure 3. Boxplot showing the soil C:N ratio at two depths (0–20 and 20–40 cm) on pooled agricultural land, secondary woodland, and ancient woodland (ASNW). Different letters in a row indicate significant differences, one-way ANOVA followed by Tukey-Kramer post hoc test, **p < 0.01, ***p < 0.001 (N = 7).

Table 2. Mean (SD) earthworm abundance, biomass, and diversity across all site types investigated. Ecological groups assigned sensu Bouché (1972). Species rarity assigned according to Sherlock (2018). Different letters indicate significant differences between soil depths. *p = < 0.05, **p = < 0.01, ***p = < 0.001.

Species	Rarity (UK)	Arable	Pasture	Young Woodland	Mature Woodland	Ancient Woodland
Epigeic species						
Dendrobaena octaedra	Uncommon					0.3 (0.7)
Eisenia fetida	Common					0.1 (0.3)
Lumbricus castaneus	Common	1.6 (3.2)	0.9 (1.6)	2.0 (4.1)	1.8 (2.4)	0.4 (1.0)
Lumbricus festivus	Rare	0.3 (0.5)				
Lumbricus rubellus	V. common	2.7 (3.3)	0.7 (1.4)	2.4 (2.8)	1.0 (1.1)	
Endogeic species						
Allolobophora chlorotica	V. common	22.3 (16.3)	51.8 (18.9)	10.5 (18.5)	0.9 (1.6) a	1.3 (1.7) a
Aporrectodea caliginosa	V. common	17.1 (16)	79.4 (55.1)	17.5 (13.5)	25.5 (3.6)	15.5 (7.5)
Aporrectodea rosea	Common	2.0 (3.0)	13.6 (5.6)	9.8 (10.9)	9.1 (8.1)	11.2 (8.6)
Dendrobaena pygmaea	V. rare	0.5 (0.9)				
Murchieona muldali	Rare	-	0.3 (0.5)	0.7 (1.4)	0.3 (0.5)	0.7 (1.4)
Octolasion lacteum	Common	-	2.7 (3.3)	1.6 (3.2)	2.1 (3.7)	0.3 (0.7)
Octolasion cyaneum	Common	-	-	1.8 (3.6)		
Anecic species						
Aporrectodea longa	Common	2.0 (1.6) a	28.5 (16.4) b*	9.8 (9.7) a	4.5 (5.7) a	2.7 (3.0) a
Lumbricus terrestris	Common	0.5 (0.5)	1.8 (1.8)	5.2 (2.0)	1.5 (1.4)	3.1 (2.5)
Juveniles (L. sp)	-	116.6 (93.4)	170.9 (101.4)	70.9 (32.3)	59.1 (1.8)	60.1 (32.4)
Abundance (Ind./m²)	-	162.5 (115.6)	349.7 (169.5) b***	121.1 (63.2) a	119.7 (29.6) a	96.6 (45.2) a
Total biomass (g/m²)	-	25.0 (12.4) a	111.7 (57.1) b***	30.7 (13.9) a	42.2 (24.5) a	22.1 (12.4) a
Shannon H diversity	-	0.97 (0.12) a	1.29 (0.05) ab	1.47 (0.31) b*	1.31 (0.18) ab	1.32 (0.19) ab

forest soils (Jenkinson 1990; Chamberlain et al. 2010). Overall, the rate of C accumulation depends strongly on previous land use, soil type, forest type, and management. Lack of accurate information regarding prior land use makes it difficult to reliably calculate soil carbon accumulation rates, since different agricultural practices are known to affect the soil C stock baseline and subsequent changes (Jenkinson 1990). Limitations on historical maps meant we were unable to tell in every case whether former agricultural sites were arable or pasture; nevertheless, we detect clear changes in SOC according to land use and forest restoration. Forest management practices are also known to affect SOC accumulation, with activities such
Woodland restoration impacts on agricultural soils

Figure 4. Boxplots showing earthworm abundance (individuals per m²) (A) and biomass (g/m²) (B) results from two agricultural classes and three woodland age classes (young secondary: 50–60 years old, mature secondary: 110–116 years old, ancient (ASNW): >400 years old) investigated in this study. Different letters in a row indicate significant differences, one-way ANOVA followed by Tukey–Kramer post hoc test, *p < 0.05, **p < 0.01.

Pasture land in this study held a topsoil total SOC stock comparable to ancient woodland—potentially making woodland restoration on pasture a less rewarding option for soil C sequestration than on the SOC-poor arable land. However, it should be noted that woodlands additionally store substantial C aboveground as tree biomass (Morison et al. 2012). As part of the national soil survey of England and Wales, surveys of afforested mineral soil sites over the past 30 years showed that permanent grassland conversion to forestry was the only land use change which significantly reduced the C and N stocks from the mineral soil and overall soil profile (Hannam et al. 2016). However, a deep soil investigation comparing grassland and greater than 200 years broad-leaved woodland chronosequence on clay soils suggested that woodland creation has contributed to higher C accumulation within soil depth of more than 20–40 cm and down to 1 m, likely due to C inputs from tree roots (Razauskaite 2018). This comparison between managed grassland and broad-leaved woodland development on clay soil types showed similar soil C stocks in the topsoil under both land uses; however, a higher proportion of the C in the grassland topsoil was in the labile C pool in comparison to greater stable C pool in the woodland soils (Razauskaite 2018).

For future restoration practices, establishing woodland on arable land is likely to be more directly beneficial to soil quality and biological value than on pasture land, which is already a biologically and organic C rich habitat. However, woodland restoration
on pasture land may still lead to the development of more stable SOC stocks and resilient soil ecosystem than the previous land use.

SOC dynamics are linked with soil N dynamics (Kirby et al. 2005; Benham et al. 2012). In our study, total soil N stocks followed a similar pattern to total SOC, with higher total N stocks under young and mature secondary and ancient woodland in comparison to agricultural land (both types) when the organic layer was taken into account. However, woodland mineral soil N stocks showed only a small increase in total N when compared with pasture land. This may still lead to the development of more stable SOC stocks and resilient soil ecosystem than the previous land use.

Woodland restoration impacts on agricultural soils

Woodland Restoration Effects on Earthworm Communities

Overall, there were clear differences in earthworm community structure under woodland (regardless of age) compared to both agricultural land types, with an increase in the proportion of anecic (deep-burrowing) and epigeic (surface-living) species, and a decrease in endogeic (shallow-burrowing) species. Forest soils are particularly suitable for epigeic species due to the development of a litter layer, but may support few endogeic species if the organo-mineral layer is small; while anecic species abundance in forests is influenced by the quality and quantity of litter, as well as soil physical and chemical status (Decaëns et al. 2008). The observed increase in proportion of anecic earthworms in woodland compared with agricultural land is likely a direct response to the availability of surface organic matter, and the increases in SOC under woodland may reflect the incorporation and accumulation of this organic matter into stable soil aggregates through earthworm activity (Six et al. 2004; Pulleman et al. 2005). A positive relationship has been observed between organic matter content and stability of earthworm casts, and in the absence of soil disturbance such organic matter can be protected within casts for long periods (McInerney et al. 2001; Shipitalo & Le Bayon 2004). Earthworm casts from soils with a high clay content such as those in our study may possess higher aggregate stability than in other soil types (Schrader & Zhang 1997). However, the stabilization of aggregates within earthworm casts is influenced by many other factors, including organic matter quality and quantity, environmental and climatic conditions, and earthworm species (Shipitalo & Le Bayon 2004).

Compared with arable agricultural land specifically, woodland restoration increased earthworm diversity and species richness, with young secondary woodland (50–60 years) having highest species richness and significantly higher diversity. Young woodland on former arable land removes habitat constraints and partitions trophic and spatial resources, leading to increases in earthworm diversity (Lavelle & Spain 2001; Decaëns et al. 2008; Palo et al. 2013). Similar findings have been made within rows of individual trees on silvoarable agroforestry sites in France (Cardinael et al. 2019). Arable land supports lower species richness due to decreased availability of organic matter, changes in soil water content and temperature, and physical disturbance from agricultural management activities (Edwards & Bohlen 1996; Pelosi et al. 2014; Cardinael et al. 2019). In our study, arable sites were used for cereal crops and are known to have received routine soil disturbance due to plowing activity. Such sites tend to be dominated by smaller endogeic species which can survive disturbance, or by anecic species with high dispersal and colonization behavior, as found in our study (Edwards 1983; Lee 1985; Decaëns et al. 2008). When compared with pasture land, however, woodland restoration resulted in a significant reduction in total earthworm abundance and biomass. Such differences in earthworm abundance between woodland and pasture/grassland have been previously documented, and are attributed to changes in the soil microclimate, organic matter inputs, and vegetation effects (Lee 1985; Decaëns et al. 2008). Pasture land may support large populations of anecic species due to high quality organic matter.
resources, and of endogeic species through the development of a rich organo-mineral horizon, but is generally unsuitable for most epigeic species which require surface litter habitat (Bouché 1972, 1977; Decaëns et al. 2008). This was indeed the case in our study, in which pasture soils contained significantly higher abundance of the endogeic species Allobophora chlorotica, and the anecic species Aporrectodea longa than all other land use types. A. longa has flexible feeding abilities for an anecic earthworm, being able to forage within the soil profile (Lowe & Butt 2002). Given the poor earthworm populations we found on arable land, restoration of woodland onto such land is a means of achieving significant soil ecological improvement. Despite the greater abundance of earthworms on pasture land, restoring broad-leaved woodland may lead to the development of a more diverse earthworm population, with the associated benefits to soil quality supported by the full range of earthworm ecological groups.

We found that earthworm population density and biomass under young and mature secondary woodland was generally higher than under ancient semi-natural woodlands. This reflects similar findings by Muys et al. (1992), who compared meadow, old, and young forest stands and found that young plantations had significantly higher earthworm biomasses than old forest stands, with levels comparable to the previous meadow land use. Such trends have been linked to lower pH values under ancient woodland; however, within our study, soil pH tended to remain within favorable levels for most earthworm species following long-term woodland restoration. As observed in our study, the surface water gley soils tend to fall within a pH range of between 5 and 6 due to a high clay content, nutrient content, and calcium carbonate secondary formations (Benham et al. 2012). Soil pH, as well as earthworm population responses to woodland restoration on agricultural land, are highly dependent on the tree species planted and the associated litter quality and quantity (Muys 1990; Muys et al. 1992; Curry 2004; Rajapaksha et al. 2013; Schelfhout et al. 2017). Tree species identity has been shown to be more important than tree diversity in driving earthworm communities in European forests (De Wandel et al. 2018). Muys et al. (1992) demonstrated that the relatively unpalatable and poor-quality litter of Quercus palustris led to reduction in earthworm biomass in old forest stands, leading to litter accumulation and the formation of moder humus. While relatively unpalatable, Quercus sp. litter is still capable of supporting populations of detritivorous earthworms in broad-leaved woodlands where oak leaf litter is typically mixed with that of trees with litter of a higher quality such as Corylus, Tilia, and Acer species (Perel & Sokolov 1964; Satchell 1983; Hendriksen 1990; Hobbie et al. 2006). Where tree litter is of poorer quality, such as that of Betula, Larix, and Picea, earthworm populations may in fact benefit from having oak as a co-occurring tree species (Schwarz et al. 2015; Schelfhout et al. 2017). In our study, all woodlands were broad-leaved with a canopy mostly dominated by Quercus robur, Fraxinus excelsior, Prunus avium, and Acer pseudoplatanus, species which support high earthworm biomass under secondary woodland (Neirynek et al. 2000; Curry 2004; Rajapaksha et al. 2013, 2014). Thus, a mixture of appropriate broad-leaved tree species planting during reforestation of agricultural land will be important for supporting a diverse earthworm community, and therefore resilient forest soil systems (Muys 1990).

Globally, the restoration of lost woodland ecosystems represents an opportunity to counter the negative impacts of agricultural expansion and woodland fragmentation on biodiversity and soil quality, and restore or enhance biodiversity, ecosystem functions, and services (Rey Benayas & Bullock 2012). However, to ensure the sustainable management of soil and biological resources, any new woodland planting must be undertaken strategically taking into account conflicting demands for other land uses (Lee et al. 2002; Quine & Watts 2009). Our research demonstrates that restoring broad-leaved woodland onto agricultural land increases earthworm species and functional diversity and the accumulation of soil C stocks, overcoming some negative soil aspects of agricultural intensification. Much of these gains are made within a short timeframe; within 50–110 years restored broad-leaved woodland can increase SOC stocks to levels comparable with ancient woodland. To further inform international future woodland restoration, we suggest that the chronosequence approach adopted in this study be expanded to investigate alternative forestry practices, tree species, soil types, and additional soil quality indicators.

Acknowledgments

The authors would like to thank Pittsford Water Wildlife Trust and all landowners for providing site access. Thanks to Aneta Dąbicka, Rita Razauskaite, Stephen Whall, and John Lakey for assistance with fieldwork, and to Samantha Broadmeadow for technical support. This research project was part-funded by Natural England and the Woodland Trust.

LITERATURE CITED

Benham SE, Vangelova EL, Pitman RM (2012) Short and long term changes in carbon, nitrogen and acidity in the forest soils under oak at the Alice Holt Environmental Change Network site. Science of the Total Environment 421–422:82–93

Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, et al. (2013) A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science 64:161–182

Bouché MB (1972) Lombriciens de France: écologie et systématique. Institut national de la recherche agronomique, Paris

Bouché MB (1977) Stratégies limbriciennes. Ecological Bulletins 25:122–132

Butt KR, Grigoropoulou N (2010) Basic research tools for earthworm ecology. Applied and Environmental Soil Science 2010:1–12

Capowiez Y, Pierret A, Moran CJ (2003) Characterisation of the three-dimensional structure of earthworm burrow systems using image analysis and mathematical morphology. Biology and Fertility of Soils 38:301–310

Cardinale R, Hoefnagel K, Chenu C, Chevallier T, Beral C, Dewisme A, Cluzeau D (2019) Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry. Biology and Fertility of Soils 55:171–183

Chamberlain PM, Emmett BA, Scott WA, Black HIJ, Hornung M, Frogbrook ZL (2010) No change in topsoil carbon levels of Great Britain, 1978–2007. Biogeosciences Discussions 7:2267–2311

Cohen J (1988) Statistical power analysis for the behavioral sciences. 2nd edition. Lawrence Erlbaum Associates, Hillsdale, New Jersey
Woodland restoration impacts on agricultural soils

Colloff MJ, Pullen KR, Cunningham SA (2010) Restoration of an ecosystem function to revegetation communities: the role of invertebrate macro pores in enhancing soil water infiltration. Restoration Ecology 18:65–72

Cools N, De Vos B (2010) Sampling and analysis of soil. Manual part X. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests, Hamburg, Germany

Cools N, Vesterdal L, De Vos B, Vanguelova E, Hansen K (2014) Tree species is the major factor explaining C:N ratios in European forest soils. Forest Ecology and Management 311:3–16

Cranfield University (2016) The soils guide. www.lands.org.uk (accessed 5 June 2018)

Curry JP (2004) Factors affecting the abundance of earthworms in soils. Pages 91–113. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, Florida

De Wandeler H, Bruelheide H, Dawud SM, Dânîlâ G, Domisch T, Finér L, Hermy M, Jaroszewicz B, Joly F-X, Müller S (2018) Tree identity rather than tree diversity drives earthworm communities in European forests. Pedobiologia 67:16–25

Decaëns T, Margerie P, Aubert M, Hedde M, Bureau F (2008) Assembly rules within earthworm communities in North-Western France—a regional analysis. Applied Soil Ecology 39:321–335

EDINA 2013 Ancient Roam Service. http://edina.ac.uk/digimap (accessed Jan 2013)

Edwards CA (1983) Earthworm ecology in cultivated soils. Pages 123–137. In: Earthworm ecology. Springer, Dordrecht, the Netherlands

Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. 3rd edition. Chapman & Hall, London, United Kingdom

FAO (2010) Global forest resources assessment. FAO, Rome, Italy

Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, de Janvry A, Kaiman A, Levy Y, de Janvry A, Kaiman A, Levy Y (2000) Global consequences of land use. Science 289:1241–1248

Hannam JA, Vanguelova E, Niziolomski J, Keay CE (2016) Assessment of soil carbon stocks after afforestation in England and Wales. The National Soil Resources Institute, Cranfield, United Kingdom

Harmer R, Watts K, Ray D (2015) A hundred years of woodland restoration in Great Britain: Changes in the drivers that influenced the increase in woodland cover. Pages 299–320. In: Stanturf JA (ed) Restoration of boreal and temperate forests. 2nd edition. CRC Press, Boca Raton, Florida

Hendriksen NB (1990) Leaf litter selection by detritivore and geophagous earthworms. Biology and Fertility of Soils 10:17–21

HM Government (2018) Pages 1–151. A green future: our 25 year plan to improve the environment. DEFRA, London, United Kingdom. https://www.gov.uk/government/publications/25-year-environment-plan (accessed 2 Jul 2018)

Hobbs SE, Reich PB, Oleksij N, Ogadl M, Zytowski R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2287–2287

Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philosophical Transactions: Biological Sciences 329:361–368

Kirby KJ, Smart SM, Black HJ, Bunce RGH, Comey PM, Smithers RJ (2005) Long term ecological change in British woodland (1971-2001). English Nature Research Reports Number 653

Lavelle P (2012) Soil as a habitat. In: Soil ecology and ecosystem services. Oxford University Press, Oxford, United Kingdom

Lavelle P, Spain AV (2001) Soil ecology. Springer, Dordrecht

Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Iseon P, Heal OW, Dhillon S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology 33:159–193

Lee KE (1959) The earthworm fauna of New Zealand. New Zealand Department of Scientific and Industrial Research, Wellington, New Zealand

Lee KE (1985) Earthworms: their ecology and relationships with soils and land use. Academic Press Inc, Sydney, Australia

Lee JT, Bailey N, Thompson S (2002) Using geographical information systems to identify and target sites for creation and restoration of native woodlands: a case study of the Chiltern Hills, UK. Journal of Environmental Management 64:25–34

Lowe CN, Butt KR (2002) Influence of organic matter on earthworm production and behaviour: a laboratory-based approach with applications for soil restoration. European Journal of Soil Biology 38:173–176

MAFF (1993) Code of good agricultural practice for the protection of soil. Ministry of Agriculture, Fisheries and Food, London, United Kingdom

McInerney M, Little DJ, Bolger T (2001) Effect of earthworm cast formation on the stabilization of organic matter in fine soil fractions. European Journal of Soil Biology 37:251–254

Met Office (2018) Midlands Climate Summary. https://www.metoffice.gov.uk/climate/uk/summaries/2017/annual/regional-values (accessed 05 June 2018)

Morison J, Matthews R, Miller G, Perks M, Randle T, Vanguelova E, White M, Yamulki S (2012) Understanding the carbon and greenhouse gas balance of forests in Britain. Forestry Commission, Edinburgh, United Kingdom

Muids B (1990) Evaluation of conversion of tree species and timing as measures to decrease soil compaction in a beech forest on loamy soil. Pages 3421–3550. In: Proceedings of the seminar on the impact of mechanization of forest operations on the soil. FAO/ILIO/CE Joint Committee on Forest Technology, Brussels, Belgium

Muids B, Last N, Granval P (1992) Effects of grassland afforestation with different tree species on earthworm communities, litter decomposition and nutrient status. Soil Biology and Biochemistry 24:1459–1466

Muids B, Beckers G, Nachtigdale L, Lust N, Merckx R, Granval P (2003) Medium-term evaluation of a forest soil restoration trial combining tree species change, fertilisation and earthworm introduction. Pedobiologia 47:772–783

Natural England (2013) Ancient Woodlands (England) Dataset. http://naturalengland-defra.opendata.arcgis.com/datasets/ancient-woodlands-england (accessed July 2016)

Neirynck J, Mitrcheva S, Sioen G, Lust N (2000) Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil. Forest Ecology and Management 133:275–286

Palo A, Ivask M, Liira J (2013) Biodiversity composition reflects the history of ancient semi-natural woodland and forest habitats - compilation of an indicator complex for restoration practice. Ecological Indicators 34:336–344

Pelosi C, Pey B, Hedde M, Caro G, Capowiez Y, Guernion M, Peigné J, Piron D, Bertrand M, Cluzeau D (2014) Reducing tillage in cultivated fields increases earthworm functional diversity. Applied Soil Ecology 83:79–87

Perel TS, Sokolov DF (1964) A quantitative assessment of the role of earthworms Lumbricus terrestris L. (Lumbricidae, Oligochaeta) in processing forest litter. Zoologicheskii Zhurnal 43:1618–1624

Pitman R, Benham S, Poole J (2014) A chronosequence study of soil nutrient status under oak and Corsican pine with Ellenberg assessed ground vegetation changes. Forestry 87:287–300

Poulton PR (1996) Geesecroft wilderness, 1883–1995. In: Powlson DS, Smith P, Pitman R, Benham S, Poole J (eds) A chronosequence study of soil nutrient status. Soil Biology and Biochemistry 24:1459–1466

Poulton PR (2006) Rothamsted research: guide to the classical and other experiments to decrease soil compaction in a beech forest on loamy soil. Pages 275–286

Quine CP, Cahalan C, Hester A, Humphrey J, Kirby K, Moffat A, Valatin G (2011) Woodlands. In: Watson R, Albon S (eds) National ecosystem assessment. UNEP & Defra, Cambridge, United Kingdom

Quine CP, Cahalan C, Hester A, Humphrey J, Kirby K, Moffat A, Valatin G (2011) Woodlands. In: Watson R, Albon S (eds) National ecosystem assessment. UNEP & Defra, Cambridge, United Kingdom
Rajapaksha NSS, Butt KR, Vangelova EI, Moffat AJ (2013) Earthworm selection of short rotation forestry leaf litter assessed through preference testing and direct observation. Applied Soil Ecology 76:52–59

Rajapaksha NSS, Butt KR, Vangelova EI, Moffat AJ (2014) Short rotation forestry-earthworm interactions: a field based mesocosm experiment. Applied Soil Ecology 67:12–19

Razauskaite R (2018) Soil carbon sequestration in long-term managed grassland and broadleaf forests. In: The 13th North American Forest soils conference. NAFSC and ISFS, Quebec, Canada

Rey Benayas JM, Bullock JM (2012) Restoration of biodiversity and ecosystem services on agricultural land. Ecosystems 15:883–899

Satchell JE (1983) Earthworm ecology in forest soils. Pages 161–170. In: Satchell JE (ed) Earthworm ecology. Chapman & Hall, London, United Kingdom

Sawilowsky SS (2009) New effect size rules of thumb. Journal of Modern Applied Statistical Methods 8:597–599

Schelfhout S, Mertens J, Verheyen K, Vesterdal L, Baeten L, Muys B, De Schrijver A (2017) Tree species identity shapes earthworm communities. Forests 8:85

Schrader S, Zhang HQ (1997) Earthworm casting: stabilisation or destabilisation of soil structure? Soil Biology and Biochemistry 29:469–475

Schwarz B, Dietrich C, Cesari S, Scherer-Lorenzen M, Auge H, Schulz E, Eisenhauer N (2015) Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. European Journal of Soil Biology 67:17–26

Sherlock E (2018) Key to the earthworms of the UK and Ireland. 2nd edition. Field Studies Council, Telford, United Kingdom

Shipitalo MJ, Le Bayon RC (2004) Quantifying the effects of earthworms on soil aggregation and porosity. Pages 183–200. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, Florida

Sigurdsson BD, Gudleifsson BE (2013) Impact of afforestation on earthworm populations in Iceland. Icelandic Agricultural Sciences 26:21–36

Sims RW, Gerard BM (1999) Earthworms: notes for the identification of British species. No. 31. Linnean Society of London and the Estuarine and Coastal Sciences Association, London, United Kingdom

Six I, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79:7–31

Vangelova EI, Benham S, Pitman R, Moffat AJ, Broadmeadow M, Nisbet T, Durrant D, Barsoum N, Wilkinson M, Bochereau F (2010) Chemical fluxes in time through forest ecosystems in the UK—soil response to pollution recovery. Environmental Pollution 158:1857–1869

Vangelova EI, Bonifacio E, De Vos B, Hoosbeek MR, Berger TW, Vesterdal L, Armolaits K, Celi L, Dinca L, Kjønaas OJ (2016) Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales—review and recommendations. Environmental Monitoring and Assessment 188:630

Vangelova EI, Nisbet TR, Moffat AJ, Broadmeadow S, Sanders TGM, Morison JIL (2013) A new evaluation of carbon stocks in British forest soils. Soil Use and Management 29:169–181

Vangelova EI, Pitman R (2019) Nutrient and carbon cycling along nitrogen deposition gradients in broadleaf and conifer forest stands in the east of England. Forest Ecology and Management 447:180–194

Vellend M, Flinn KM (2015) Recovery of Forest Plant communities in post-agricultural landscapes recovery of forest plant communities in post-agricultural landscapes. Frontiers in Ecology and the Environment 3:243–250

Verstraeten G, Vancampenhout K, Desie E, De Schrijver A, Hlav a J, Schelfhout S, Verheyen K, Muys B (2018) Tree species effects are amplified by clay content in acidic soils. Soil Biology and Biochemistry 121:43–49

Villada A, Vangelova EI, Shaw L, Verhoeof A (2013) Evaluation of tree species and soil type interactions for their potential for long term C sequestration. PhD Thesis. University of Reading, Reading, England

Villada A, Vangelova EI, Verhoeof A, Shaw LJ (2016) Effect of air-drying pre-treatment on the characterization of forest soil carbon pools. Geoderma 265:53–61

Watts K, Fuentes-Montemayor E, Macgregor NA, Peredo-Alvarez V, Ferryman M, Bellamy C, Brown N, Park KJ (2016) Using historical woodland creation to construct a long-term, large-scale natural experiment: the WrEN project. Ecology and Evolution 6:3012–3025