On Bound-State β^-–Decay Rate of the Free Neutron

M. Faber, A. N. Ivanov, V. A. Ivanova, J. Marton, M. Pitschmann, N. I. Troitskaya, M. Wellenzohn

aAtominstutit der Österreichischen Universität, Technische Universität, Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
bStefan Meyer Institut für subatomare Physik Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, A-1090, Wien, Austria
cState Polytechnic University of St. Petersburg, Polytechnicheskaya 29, 195251, Russian Federation

(Dated: February 10, 2009)

PACS: 12.15.Ff, 13.15.+g, 23.40.Bw, 26.65.+t

We calculate the bound-state β^-–decay rate of the free neutron. We show that hydrogen in the final state of the decay is produced with a probability of about 99% in the hyperfine state with zero orbital $\ell = 0$ and atomic angular momentum $F = 0$.

INTRODUCTION

The continuum-state β^-–decay of the free neutron $n \rightarrow p + e^- + \bar{\nu}_e$ is well measured experimentally \[^1\] and investigated theoretically \[^2, 3\]. Recently \[^4, 5\] Schott et al. have reported the experimental data on the bound-state β^-–decay of the free neutron $n \rightarrow H + \nu_e$. In this letter we apply the technique, which we used for the analysis of the weak decays of the H–like, bare heavy ions and mesic hydrogen \[^6-10\], to the calculation of the bound-state β^-–decay rate of the free neutron.

$V - A$ weak hadronic interactions

The weak interaction Hamilton density operator take in the form

$$\mathcal{H}_W(x) = \frac{G_F}{\sqrt{2}} V_{ud} [\bar{\psi}_p(x)\gamma_\mu (1 - g_A\gamma^5)\psi_n(x)]$$

$$\times [\bar{\psi}_e(x)\gamma^\mu (1 - \gamma^5)\psi_{\nu_e}(x)], \quad (1)$$

where $G_F = 1.166 \times 10^{-11}$ MeV$^{-2}$ is the Fermi weak constant, $V_{ud} = 0.97377$ is the CKM matrix element \[^1\], $g_A = 1.3$ is the axial–vector renormalisation constant and $\psi_p(x)$, $\psi_n(x)$, $\psi_e(x)$ and $\psi_{\nu_e}(x)$ are operators of interacting proton, neutron, electron and anti-neutrino, respectively. The T–matrix of weak interactions is equal to

$$T = - \int d^4x \mathcal{H}_W(x). \quad (2)$$

In the final state of the bound-state β^-–decay hydrogen can be produced only in the ns–states, where n is a principal quantum number $n = 1, 2, \ldots \ [3, 10]$. The contribution of the excited nl-state with $l > 0$ is negligible small. Due to hyperfine interactions \[^10\] hydrogen can be in two hyperfine states $(ns)_F$ with $F = 0$ and $F = 1$.

The wave function of hydrogen H in the $(ns)_F$–state we take in the form \[^12-14\]

$$|H^{(ns)}(\vec{q})\rangle = \frac{1}{(2\pi)^3} \sqrt{2E_H(\vec{q})}$$

$$\times \int \frac{d^3k_e}{\sqrt{2E_e(k_e)}} \frac{d^3k_p}{\sqrt{2E_p(k_p)}} \delta^{(3)}(\vec{q} - \vec{k}_e - \vec{k}_p)$$

$$\times \phi_{ns}(\frac{m_p\vec{k}_e - m_e\vec{k}_p}{m_p + m_e}) a_p^\dagger(\vec{k}_e, \sigma_e) a_p^\dagger(\vec{k}_p, \sigma_p)|0\rangle, \quad (3)$$

where $E_H(\vec{q}) = \sqrt{M_H^2 + \vec{q}^2}$ and \vec{q} are the total energy and the momentum of hydrogen, $M_H = m_p + m_e + \epsilon_{ns}$ and ϵ_{ns} are the mass and the binding energy of hydrogen H in the $(ns)_F$ hyperfine state; $\phi_{ns}(\vec{k})$ is the wave function of the ns–state in the momentum representation \[^13\] (see also \[^12-14\]). For the calculation of the bound state β^-–decay rate we can neglect the hyperfine splitting of the energy levels of the ns–states.

For the amplitude of the bound-state β^-–decay we obtain the following expression

$$M(n \rightarrow H^{(ns)} + \nu_e) = G_F V_{ud} \sqrt{2m_n2E_H2E_\nu}$$

$$\times \int \frac{d^3k}{(2\pi)^3} \phi_{ns}^\ast(\vec{k} - \frac{m_e}{m_p + m_e}\vec{q}) \left\{ [\varphi_p^\dagger \varphi_n] + [\varphi_e^\dagger \varphi_{\nu_e}] \right\}. \quad (4)$$

The integral over \vec{k} of the wave function $\phi_{ns}^\ast(\vec{k})$ defines the wave function $\psi_{ns}(0)$ in the coordinate representation, equal to $\psi_{ns}(0) = \sqrt{\alpha^3 m_n^n/\hbar}$, where m_n is the electron mass and $\alpha = 1/137.036$ is the fine–structure constant. This gives

$$M(n \rightarrow H^{(ns)} + \nu_e) = G_F V_{ud} \sqrt{2m_n2E_H2E_\nu}$$

$$\times \psi_{(ns)}^\ast(0) \left\{ [\varphi_p^\dagger \varphi_{\sigma_n}] [\varphi_{\sigma_n}^\dagger \chi_{\nu_e}] - g_A [\varphi_p^\dagger \varphi_{\nu_e}] [\varphi_e^\dagger \chi_{\nu_e}] \right\}. \quad (5)$$
The bound-state β^---decay rate of the free neutron is

$$
\lambda_{\beta^-} = \frac{1}{2m_n} \int \frac{1}{2} \sum_{n=1}^{\infty} \sum |M(n \rightarrow H(ns) + \bar{\nu}_e)|^2
\times (2\pi)^4 \delta^{(4)}(k_\nu + q - p) \frac{d^3q}{(2\pi)^32E_H} \frac{d^3k_\nu}{(2\pi)^32E_\nu}.
$$

(6)

Since the energy shifts of hyperfine interactions is rather small compared with the energy differences of hydrogen [10], we neglect the hyperfine splitting. Summing over all polarisations of the proton and the electron we take into account the contributions of the hyperfine states $(ns)_F$ of hydrogen with $F = 0$ and $F = 1$. Summing up over the principal quantum number and taking into account that the antineutrino is polarised parallel to its momentum we get

$$
\lambda_{\beta^-} = (1 + 3g_A^2) \zeta(3) G_F^2 |V_{ud}|^2 \alpha^3 m_e^2 \pi^2
\times \sqrt{(m_p + m_e)^2 + E^2} m_n
$$

(7)

where $\zeta(3) = 1.202$ is the Riemann function, coming from the summation over the principal quantum number n, and E_ν is equal to

$$
E_\nu = Q_{\beta^-} = \frac{m_n^2 - (m_p + m_e)^2}{2m_n} = 0.782 \text{ MeV},
$$

(8)

where Q_{β^-} is the Q--value of the continuum-state β^---decay of the free neutron $[1]$. The theoretical value of the continuum-state β^---decay rate of the free neutron is

$$
\lambda_{\beta^-} = (1 + 3g_A^2) G_F^2 |V_{ud}|^2 f(Q_{\beta^-}, Z = 1) =
1.131 \times 10^{-3} \text{s}^{-1},
$$

(9)

where the continuum-state β^---decay rate of the free neutron is calculated for the experimental masses of the interacting particles [1] and the Fermi integral $f(Q_{\beta^-}, Z = 1)$ equal to

$$
f(Q_{\beta^-}, Z = 1) =
\int_{m_e}^{Q_{\beta^-} + m_e} \frac{2\pi\alpha E^2(Q_{\beta^-} + m_e - E)^2}{1 - e^{-2\pi\alpha E/\sqrt{Q_{\beta^-}^2 - m_e^2}}}\,dE
= 0.059 \text{ MeV}^5,
$$

(10)

where we have taken into account the contribution of the Fermi function [2]

$$
F(Z = 1, E) =
\frac{2\pi\alpha E}{\sqrt{E^2 - m_e^2}} \frac{1}{1 - e^{-2\pi\alpha E/\sqrt{E^2 - m_e^2}}}.
$$

(11)

The theoretical value of the lifetime $\tau_{\beta^-} = 1/\lambda_{\beta^-} = 884.1 \text{s}$ agrees well with the experimental data $\tau_{\beta^-}^{\exp} = 885.7(8) \text{s}$ [1].

For the ratio $R_{\beta^-} = \lambda_{\beta^-}/\lambda_{\beta^-}$ of the bound and continuum state β^---decay rates of the free neutron we get the following expression

$$
R_{\beta^-} = \zeta(3) \frac{2\pi \alpha^3 m_e^2}{m_n} \sqrt{(m_p + m_e)^2 + E^2} f(Q_{\beta^-}, Z = 1) =
4.06 \times 10^{-6}.
$$

(12)

Our value for the ratio of the decay rates agrees well with the results obtained in [17] (see also [6, 5]): $R_{\beta^-} = 4.20 \times 10^{-6}$.

Concluding discussion

Since our calculations are carried out for pure $V - A$ theory of weak interactions, our results should make corrections to the experimental analysis of the contribution of scalar and pseudoscalar weak interactions of hadrons [5, 6, 7]. We would like to emphasize that the continuum-state β^---decay rate of the free neutron is sensitive to the value of the axial–vector constant g_A. The value $\tau_{\beta^-} = 884.2 \text{s}$ is obtained for $g_A = 1.3$. For the experimental value $g_A = 1.2695$ the lifetime is $\tau_{\beta^-} = 919.7 \text{s}$, agreeing with the experimental value with an accuracy better than 4%. However, the axial–vector constant g_A is cancelled for the ratio R_{β^-}/c, therefore our prediction for the ratio of the bound- and continuum-state β^---decay rates of the free neutron can be valid with an accuracy much better than 4%. Since the factor $(1 + 3g_A^2)$ cancels in the ratio R_{β^-}/c, this has no influence on the value $R_{\beta^-}/c = 4.06 \times 10^{-6}$. Apart from the radiative corrections to the continuum-state β^---decay rate of the free neutron, which are of the same order of magnitude [18], the discrepancy of about 4% can be attributed to the contributions of the scalar and tensor versions of hadronic weak interactions [4] (see also [19]), but it is hardly worth to discuss these contributions in connection with the bound-state β^---decay of the free neutron.

Using the amplitude Eq. (4) we can estimate the relative probabilities of the $n \rightarrow H + \bar{\nu}_e$ decays into the different hyperfine states of hydrogen. Let $(\lambda_{\beta^-})_F$ be the decay rate of the bound-state β^---decay into the hyperfine state $(ns)_F$. The ratios of the decay rates are equal to

$$
R_{F=1} = \frac{(\lambda_{\beta^-})_{F=1}}{\lambda_{\beta^-}} = \frac{3 (1 - g_A)^2}{4 (1 + 3g_A^2)} = 0.01,
$$

where g_A is the value of the axial–vector constant.
$\sigma_0 \quad \sigma_p \quad \sigma_e \quad \sigma_\nu \quad f$

$\frac{1}{2} \quad \frac{1}{2} \quad -\frac{1}{2} \quad \frac{1}{2} \quad 1 + g_A$

$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad 0$

$\frac{1}{2} \quad -\frac{1}{2} \quad -\frac{1}{2} \quad \frac{1}{2} \quad 0$

$\frac{1}{2} \quad -\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad -2g_A$

$\frac{1}{2} \quad \frac{1}{2} \quad -\frac{1}{2} \quad \frac{1}{2} \quad 0$

$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad 0$

$\frac{1}{2} \quad -\frac{1}{2} \quad -\frac{1}{2} \quad \frac{1}{2} \quad 1 - g_A$

$\frac{1}{2} \quad -\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad 0$

| TABLE I: The contributions of different spinorial states of the interacting particles to the amplitudes of the bound-state β^--decay of the free neutron: f is defined by $f = [\varphi_1^T \chi_\nu] [\varphi_\nu^T \varphi]\sigma - g_A [\varphi_1^T \sigma \chi_\nu] [\varphi_\nu^T \varphi_\nu]$. |

$R_{F=0} = \frac{(\lambda_{\beta^-})_{F=0}}{\lambda_{\beta^-}} = \frac{1}{4} \frac{(1 + 3g_A)^2}{1 + 3g_A^2} = 0.99,$ (13)

calculated for both the experimental value of the axial coupling constant $g_A = 1.2695$ and $g_A = 1.3$.

This means that in the final state of the $n \rightarrow H + \bar{\nu}_e$ decay hydrogen is produced in the hyperfine state with $F = 0$ with a probability 99%. The main part of this probability 83.36% is caused by the transition to the ground hyperfine state $(1s)F=0$.

We are grateful to Prof. T. Ericson for calling our attention to the problem of the bound-state β^--decay of the free neutron and the proposal to analyse this problem in our approach to the β^--decays of highly charged heavy ions and mesic hydrogen.

[1] W.–M. Yao et al., J. Phys. G 33, 1(2006).
[2] E. J. Konopinski, in *The theory of beta radioactivity*, Oxford, At the Clarendon Press, 1966.
[3] H. F. Schopper, in *Weak interactions and nuclear beta decay*, North–Holland Publishing Co., Amsterdam, 1966.
[4] R. E. Marshak, Riazuddin, C. P. Ryan, in *Theory of weak interactions in particles physics*, Wiley–Interscience, A Division of John Wiley & Sons, Inc, New York, 1969.
[5] N. Severijns and M. Beck, Rev. Mod. Phys. 78, 991 (2006).
[6] W. Schott et al., Eur. Phys. J. A 30, 603 (2006).
[7] T. Fästermann et al., *An experiment to measure the bound β^--decay of the free neutron. A talk at EXA08 Conference*, 15 - 18 September, SMI of Austrian Academy of Sciences, Vienna, 2008; Stefan Meyer Institute of subatomic physics, Vienna, Austria: http://www.oeaw.ac.at/smi
[8] A. N. Ivanov et al., Phys. Rev. C 78, 025503 (2008).
[9] M. Faber et al., Phys. Rev. C 78, 061603 (2008).
[10] M. Faber et al., *On Continuum- and Bound-State ℓ^-–Decay Rates of Pionic and Kaonic Hydrogen in the Ground State*, (unpublished), November 2008.
[11] A. N. Ivanov et al., Eur. Phys. J. A 21, 11 (2004).
[12] A. N. Ivanov et al., Eur. Phys. J. A 19, 413 (2004).
[13] A. N. Ivanov et al., Phys. Rev. A 71, 052508
[14] A. N. Ivanov et al., Phys. Rev. A 72, 022506 (2005).
[15] H. A. Bethe and E. E. Salpeter, in *Quantum mechanics of one- and two-electron atoms*, Springer–Verlag, Berlin, 1957.
[16] V. M. Shabaev, J. Phys. B: At. Mol. Opt. Phys. 27, 5825 (1994); V. M. Shabaev et al., Phys. Rev. A 56, 252 (1997); M. Tommaselli et al., Phys. Rev. A 65, 022502 (2002).
[17] J. N. Bahcall, Phys. Rev. 124, 495 (1961); P. K. Kabir, Phys. Lett. B 24, 601 (1967); L. L. Nemenov, Sov. J. Nucl. Phys. 31, 115 (1980).
[18] S. M. Berman, Phys. Rev. 112, 267 (1958); D. H. Wilkinson, Nucl. Phys. A 377, 474 (1982).
[19] L. Nemenov and A. A. Ovchinnikova, Sov. J. Nucl. Phys. 31, 1276 (1980).

* Electronic address: ivanov@kph.tuwien.ac.at