Supporting Information

Four-month changes in air quality during and after the COVID-19 lockdown in six megacities in China

Yunjie Wang1,#, Yifan Wen1,#, Yue Wang1, Shaojun Zhang1,2,*, K. Max Zhang3, Haotian Zheng1, Jia Xing1,2, Ye Wu1,2, Jiming Hao1,2

1School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
2State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
3Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

These authors contributed equally.

Correspondence to: Shaojun Zhang (zhsjun@tsinghua.edu.cn)

This file contains four parts:

Part I. Model development and training (Page S2 to S6, with 4 Supplementary Tables).

Part II. Preparation of the traffic profiles for developing emission inventories (Page S7 to S12, with 1 Supplementary Table and 5 Supplementary Figures).

Part III. Supplementary Tables (Page S13, with 3 Supplementary Tables)

Part IV. Supplementary Figures (Pages S14 to S26, with 13 Supplementary Figures)
Part I. Model development and training

RF1
This random forest model (RF1) was trained on datasets from January 1 to April 26 of 2015-2019 and January 1 to January 19, 2020, which were used to predict the pollutant concentrations under the scenario without lockdown (w/o lockdown) from January 20 to April 26, 2020. Hourly concentrations of NO$_2$, O$_3$, PM$_{2.5}$ and CO were the dependent variables, and the meteorological parameters (wd, ws, temp, RH, and pressure) and time predictors (year, day_julian, day_lunar, weekday, hour) served as the independent predictors (see Table S1). The training set used a random selection of 70% of the data, and the remaining 30% were used as the testing set. The random forest models were developed using the rmweather R package$^1, 2$. The number of trees was 200, and the number of variables split in each node was 4. The comparison between actual observations and predictions under the w/o lockdown scenario basically represents the overall impact from the lockdown policies in China. We note that pressure observations were not available from the meteorological datasets of Chengdu, Xi’an and Shanghai. The random forest models for the other cities (Beijing, Shenzhen and Wuhan) indicated that pressure was of very low importance (see Table S2). Therefore, it was reasonable to exclude atmospheric pressure when modeling the cities without these data. The validation for RF1 is given in Table S3.

RF2
The RF2 model was trained from January 1 to March 22, 2020 due to the availability of traffic data, and training including the actual vehicle emissions estimated based on the real-world traffic monitoring data. In addition to the independent predictors (only the datasets in 2020 were used to build RF2 because of the availability of traffic data, so day_julian was excluded), we added estimated hourly vehicle emissions to train the model (see Table S1). The mode configuration was consistent with the first random forest, i.e., 70% of the data were used for training, and the remaining 30% were used for testing. The validation for RF2 is given in Table S4.
Table S1. Potential prediction variables for the two random forest models in this study.

(a) RF1

Codes	Prediction variables	Units
Meteorological parameters		
wd	Wind direction	deg
ws	Wind speed	m/s
temp	Air temperature	ºC
RH	Relative humidity	%
pressure	Atmospheric pressure	millibar
Time parameters		
year	Year	n/a
day_julian	Date of the year (1-366)	n/a
day_lunar	The number of days after the first day of Lunar New Year	n/a
	Holiday	
weekday	Day of the week (1-7)	n/a
hour	Hour of the day (0-23)	n/a

(b) RF2

Codes	Prediction variables	Units			
Meteorological parameters					
wd	Wind direction	deg			
ws	Wind speed	m/s			
temp	Air temperature	ºC			
RH	Relative humidity	%			
pressure	Atmospheric pressure	millibar			
Time parameters					
day_julian	Date of the year (1-366)	n/a			
weekday	Day of the week (1-7)	n/a			
hour	Hour of the day (0-23)	n/a			
Vehicle emission parameters					
NOX_emission	Vehicle emissions for NOX	t/h			
HC_emission	Vehicle emissions for HC	t/h			
CO_emission	Vehicle emissions for CO	t/h			
PM2.5_emission	Vehicle emissions for PM2.5	t/h			
Cities	Pollutants	Variable Importance	Cities	Pollutants	Variable Importance
------------	------------	---------------------	------------	------------	---------------------
Beijing	NO_2	175.3367	Chengdu	NO_2	140.9107
	O_3	61.84221		O_3	115.23
	PM_2.5	1346.885		PM_2.5	1322.096
	CO	0.349334		CO	0.144158
Shenzhen	NO_2	90.44109		NO_2	90.44109
	O_3	143.5465		O_3	143.5465
	PM_2.5	152.5357		PM_2.5	152.5357
	CO	0.042347		CO	0.042347
Xi'an	NO_2	306.0133		NO_2	306.0133
	O_3	111.4308		O_3	111.4308
	PM_2.5	2866.504		PM_2.5	2866.504
Shanghai	NO_2	70.34985		NO_2	70.34985
	O_3	78.21308		O_3	78.21308
	PM_2.5	792.2208		PM_2.5	792.2208
Wuhan	NO_2	121.9371		NO_2	121.9371
	O_3	65.95771		O_3	65.95771
	PM_2.5	1349.013		PM_2.5	1349.013
	CO	0.088244		CO	0.088244
Table S3. Model validation for RF1.

Cities	Pollutants	Validation parameters				
		R²	FAC2	MB	NMB	RMSE
Beijing	NO₂	0.8186	0.9468	0.1210	0.0026	12.5972
	O₃	0.8680	0.8975	0.3271	0.0070	11.9000
	PM₂₅	0.8372	0.8313	0.4906	0.0075	29.0782
	CO	0.8679	0.9600	0.0017	0.0016	0.3593
Chengdu	NO₂	0.7623	0.9871	-0.1158	-0.0023	10.8854
	O₃	0.9077	0.9691	-0.0439	-0.0009	10.9027
	PM₂₅	0.9198	0.9776	0.0746	0.0011	12.9654
	CO	0.8717	0.9995	-0.0025	-0.0023	0.1513
Shenzhen	NO₂	0.6875	0.9868	0.1642	0.0051	8.8645
	O₃	0.8129	0.9829	-0.0437	-0.0007	13.2779
	PM₂₅	0.8333	0.9878	-0.0057	-0.0002	6.8650
	CO	0.9065	1.0000	-0.0001	-0.0001	0.0675
Xi'an	NO₂	0.8067	0.9841	-0.3792	-0.0067	11.9245
	O₃	0.8938	0.9253	0.3168	0.0086	10.8321
	PM₂₅	0.9265	0.9680	0.1188	0.0013	19.3292
	CO	0.9343	0.9998	-0.0093	-0.0052	0.2214
Shanghai	NO₂	0.7748	0.9883	0.1107	0.0023	11.9725
	O₃	0.8537	0.9459	0.1555	0.0024	13.2539
	PM₂₅	0.8198	0.9418	0.0943	0.0018	16.8955
	CO	0.7869	0.9978	0.0041	0.0051	0.1572
Wuhan	NO₂	0.7632	0.9800	-0.3061	-0.0061	13.2176
	O₃	0.8511	0.8698	0.9280	0.0222	13.0690
	PM₂₅	0.8819	0.9812	-0.2967	-0.0041	16.2995
	CO	0.7594	0.9985	-0.0034	-0.0030	0.2108
Table S4. Model validation for RF2.

Cities	Pollutants	R²	FAC2	MB	NMB	RMSE
Beijing	NO₂	0.9062	0.9642	-0.3966	0.0132	5.7751
	O₃	0.8994	0.9642	-0.2922	-0.0066	8.0216
	PM₂.₅	0.9276	0.8857	0.8819	0.0170	14.1507
	CO	0.9175	0.9846	0.0155	0.0196	0.1648
Chengdu (urban area)	NO₂	0.9145	0.9896	0.3942	0.0116	6.5847
	O₃	0.9108	0.8893	-0.5114	-0.0124	9.2632
	PM₂.₅	0.9375	0.9965	0.7432	0.0137	6.9370
	CO	0.9072	1.0000	0.0080	0.0108	0.0799
Part II. Preparation of the traffic profiles for developing emission inventories

Case 1: Beijing

The original method of constructing link-level traffic profiles was reported by Yang et al.\(^3\), who basically used link-level traffic congestion index in the urban area (i.e., within the Fifth Ring Road) and traffic monitoring of intercity highways. The traffic congestion index could be applied to accurately estimate the actual speed and to further estimate the change in traffic volume compared with the baseline conditions. Following this framework, we collected network-level traffic congestion index (see Fig. S1[a]) for the duration of the study to adjust the traffic activity and speed for a passenger vehicle fleet (e.g., light-duty passenger vehicles and medium- and heavy-duty buses) in the urban area and the entire city. In addition, we obtained hourly, link-level speed profiles from March 13 to 31 using open-accessed map software (www.amap.com) to validate the method (see Fig. S1[b])\(^4\). We also used the intercity highway monitoring data to estimate the traffic activity of freight trucks and passenger vehicles traveling outside the Fifth Ring Road (see Fig. S1[c]). Compared with the pre-Spring Festival levels, the average speeds in Beijing increased overall by 43% from January 24 to February 9, and traffic volumes decreased by 58% (see Fig. S2).

![Fig. S1](a) Daily variation of traffic congestion index (TCI) in the urban area (i.e., within the Fifth Ring Road) and the whole city of Beijing; (b) Comparison of daily average speed predicted by the network-level TCI and the real-world speed obtained from Amap during Mar 13 to 31; (c) Relative volume comparing with the average level during Jan 1 to 14 for light duty vehicles (LDV), heavy duty vehicles (HDV), light duty trucks (LDT), medium duty trucks (MDT), and heavy duty trucks (HDT) traveling outside the Fifth Ring Road.

Notes:
The daily average speeds for urban area and the whole city were predicted based on network-level TCI data during Mar 13\(^{th}\)
to 31st in corresponding areas using the relationship between TCI and road speed proposed by Yang et al3. Quadratic functions were proposed to express the relationship between TCI and road speed according to the official guideline of Beijing Municipal Administration of Quality and Technology Supervision and BTI, 20115.

The hourly-based, link-level speed profiles of 1520 roads obtained from Amap navigation app during Mar 13th to 31st served as the validation set. The observed speeds in urban area and the whole city were averaged by day to validate the predicted daily average speed.

(a)

(b)

Fig. S2 Daily variations in (a) relative traffic speed and (b) relative total volume comparing with the basic level (the average level during 1.4-1.18) for observed road segments in the urban (within Fifth Ring Road) and non-urban (outside Fifth Ring Road) areas of Beijing.
Case 2: Chengdu

We selected the urban area within the Third Ring Road of Chengdu (~210 km²) as the research domain for RF2 because most of the available traffic observations were located within this region. Hourly traffic profiles including the volume and the fleet mix were obtained from 1454 traffic sensors operated from January 1 to March 22, 2020, which transmitted real-time traffic volumes including the vehicle category, fuel type and emission standards. Link-level speed data were synchronously collected from a floating car system supported by the Amap application covering 1541 road links. Fig. S3 shows the distribution of the traffic monitoring system. Compared with the pre-Spring Festival levels, the average speeds in urban area (within the Third Ring Road) of Chengdu increased by 14% from January 24 to February 9, and traffic volumes decreased by 62% (see Fig. S4).

(a) Coverage of on-road speed probes

(b) Coverage of traffic volume sensors

Fig. S3 Distribution of traffic monitoring system in Chengdu. The right panels majorly indicate the area within the Third Ring Road of Chengdu (i.e., the research domain of RF2)
Land-use random forest (LURF) models were developed to estimate the spatial distributions of link-level traffic speed and volume for the research domain. A total of 272 land use indicators that potentially affected traffic characteristics were selected to train the LURF models, including road features, population density, land cover, points of interest (POI), and distance to important sites (see Table S5 for a full list of predictors). To model traffic volumes, one additional indicator for vehicle category recognition (vehID) (vehID 1 to 3 represent light-duty vehicles [LDVs], medium-duty vehicles [MDVs], and heavy-duty vehicles [HDVs], respectively) was included according to the resolution of the traffic sensors. The split between passenger and freight vehicles for each vehicle category was developed based on previous camera records with a finer resolution, which was used to refine the fleet mix to match the EMBEV model. The speed and volume LURF models were trained separately for 24-h of each day in R using the ranger package6. The model performance was validated using a 10-fold cross-validation scheme (see Fig. S5). The link-level speed and volume for the three vehicle categories covering the entire road network of the research domain during the research period were then predicted based on the LURF models.
Table S5. Potential prediction variables considered in traffic modeling.

Codes	Prediction variables	Units
Road features		
mid_x / mid_y	Longitude/latitude of midpoint of roads	n/a
Rank	Road type	n/a
LaneNum	Lane number of the road segment	count
SpdLmt	Speed limit of the road segment	km/h
rd1_*m	Total expressway length in buffer	meters
rd2_*m	Total arterial road length in buffer	meters
rd3_*m	Total sub-arterial road length in buffer	meters
rd4_*m	Total minor road length in buffer	meters
rd1_CN*m	Total expressway lane number in buffer	count
rd1_CL*m	Highway length * lane number in buffer	meters
rd2_CN*m	Total arterial road lane number in buffer	count
rd2_CL*m	Arterial road length * lane number in buffer	meters
rd3_CN*m	Total sub-arterial road lane number in buffer	count
rd3_CL*m	Sub-arterial road length * lane number in buffer	meters
rd4_CN*m	Total minor road lane number in buffer	count
rd4_CL*m	Minor road length * lane number in buffer	meters
Population and land cover		
pop_*m	Population density	count/meters²
city_county*	Urban area	meters²
cropland*	Cropland area	meters²
bareland*	Undeveloped land area	meters²
grassland*	Grassland area	meters²
POI counts		
transit*	Traffic poi	count
restaurant*	Restaurant poi	count
office*	Business poi	count
mall*	Mall poi	count
hotel*	Hotel poi	count
education*	Educational poi	count
bank*	Bank poi	count
recreation*	Recreation poi	count
touristic*	Tourist spot poi	count
Distance to importance sites		
D_airport	Distance to the nearest airport	meters
D_port	Distance to the nearest port	meters
D_logistic	Distance to the nearest freight transfer station	meters
D_CBD	Distance to the nearest CBD	Meters
Temporal indicators		
hour	Hour in a day (0 - 23)	n/a
is_daytime	is_daytime = 1, during 7:00 to 18:00	n/a
is_holiday	is_holiday= 1 for weekends and national holidays	n/a

Note: * Buffer value variables (buffer radii 50 m, 100 m, 200 m, 300 m, 500 m, 1000 m, 2000 m, 3000 m, 4000 m, 5000 m)
Fig. S5 The spatial generalization performance of (a) speed and (b) volume random forest model validated by a 10-fold cross-validation scheme.
Part III. Supplementary Tables

Table S6. Implementation time of lockdown policies in the six megacities.

Cities	Beginning of the lockdown	End of the lockdown a
Beijing	Jan 24th	Apr 30th
Chengdu	Jan 24th	Feb 26th
Shenzhen	Jan 23rd	Feb 24th
Xi’an	Jan 25th	Feb 28th
Shanghai	Jan 24th	Mar 24th
Wuhan	Jan 23rd	May 2nd

Note: a The beginning and end of the lockdown indicates the implementation and lift of control actions required by the Level-1 public health emergency response.

Table S7. Information of air quality and airport meteorological stations among the six cities.

Cities	Number of national air quality stations	Meteorological stations	Longitude	Latitude
Beijing	12	PEK*	116.585	40.08
Chengdu	8	CTU	103.947	30.579
Shenzhen	11	SZX	113.811	22.639
Xi’an	13	XIY	108.752	34.447
Shanghai	10	SHA	121.336	31.198
Wuhan	11	WUH	114.208	30.784

Note: *The codes in parentheses indicate the International Air Transport Association (IATA) abbreviation of airports.

Table S8. Importance of each independent variables in the modified RF1 for PM$_{2.5}$ concentrations in Beijing.

year	n	r	weekday	hour	wd	ws	temp	RH	pressure	OX	
519.066	8	1455.396	1338.105	196.358	310.347	333.259	426.320	850.223	3048.239	182.555	5224.01

Note: The codes in parentheses indicate the International Air Transport Association (IATA) abbreviation of airports.
Part IV. Supplementary Figures

(a) Beijing

(b) Chengdu

(c) Shenzhen

(d) Xi’an

(e) Shanghai

(f) Wuhan

Fig. S6 Observations (actual) and predictions (w/o lockdown) for daily NO$_2$ concentrations in the six cities.
Fig. S7 Observations (actual) and predictions (w/o lockdown) for MDA8 O\textsubscript{3} concentrations in the six cities.
Fig. S8 Observations (actual) and predictions (w/o lockdown) for daily PM$_{2.5}$ concentrations in the six cities.
Fig. S9 Observations (actual) and predictions (w/o lockdown) for daily CO concentrations in the six cities.
Fig. S10 Difference between observed and predicted ambient NO₂ concentrations among different types of air quality stations in Beijing.

Note: There are 34 official air quality sites (12 national level (used in RF1) and 22 municipal level) in Beijing totally. These sites consist of 11 urban sites, 11 suburban sites, 1 background site and 5 traffic site, and 6 sites used to monitor cross-boundary pollution transport. The air quality observations from municipal-level sites were accessed from Beijing Municipal Environmental Monitoring Center (http://www.bjmemc.com.cn/).
Fig. S11 History_met_predictions (predictions when meteorological parameters in 2019 were employed as the input) and predictions (w/o lockdown) for NO$_2$ concentrations in the six cities.
Fig. S12 Difference between observed and predicted MDA8 O₃ concentrations in the six cities.
Fig. S13 Difference between observed and predicted ambient PM$_{2.5}$ concentrations in the six cities.
Fig. S14 Difference between observed and predicted ambient CO concentrations in the six cities.
Fig. S15 Observations (actual) and predictions (w/o lockdown) for daily OX (OX=NO$_2$+O$_3$) concentrations in Beijing.
Fig. S16 (a) Observations (actual), and predictions (w/o lockdown) from the modified RF1 model using OX observations and predictions (i.e., OX_observation_predicted and OX_prediction_predicted, respectively) for daily PM$_{2.5}$ concentrations in Beijing. (b) Predictions from the original RF1 model which excluded OX concentrations and from the modified RF1 using OX predictions. The differences between these two curves are not significant.
Fig. S17 Trends in traffic NO$_X$ emissions in (a) entire municipality of Beijing and (b) urban area of Chengdu in different periods. We averaged daily emissions every 10 days to indicate the overall trend.
Fig. S18 Weekly differences between observations (actual) and predictions (w/o traffic emission changes) for MDA8 O₃ and daily PM₂.₅ concentrations in entire Beijing and urban Chengdu.
References for Supporting Information

[1] Grange, S. K.; Carslaw, D. C. Using meteorological normalisation to detect interventions in air quality time series. Sci. Total Environ. 2019, 653, 578-588.
[2] Grange, S. K.; Carslaw, D. C.; Lewis, A. C.; Boleti, E.; Hueglin, C. Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys. 2018, 18, (9), 6223-6239.
[3] Yang, D.; Zhang, S.; Niu, T.; Wang, Y.; Xu, H.; Zhang, K. M.; Wu, Y. High-resolution mapping of vehicle emissions of atmospheric pollutants based on large-scale, real-world traffic datasets. Atmos. Chem. Phys. 2019, 19, (13), 8831-8843.
[4] Wen, Y.; Zhang, S.; Zhang, J.; Bao, S.; Wu, X.; Yang, D.; Wu, Y. Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data. Appl. Energy 2020, 260, 114357.
[5] Beijing Municipal Administration of Quality and Technology Supervision and Beijing Transport Institute (BTI), The evaluation system of the congestion of the urban roads (DB11/T 785-2011) (in Chinese), Beijing Transport Institute, Beijing, P. R. China, 2011.
[6] Wright, M. N.; Statistics, A. Z. J. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. 2015.