Short title: NLR-Annotator

The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire

Burkhard Steuernagel¹, Kamil Witek², Simon G. Krattinger³, Ricardo H. Ramirez-Gonzalez¹, Henk-jan Schoonbeek¹, Guotai Yu¹, Erin Baggs⁵, Agnieszka I. Witek², Inderjit Yadav⁶, Ksenia V. Krasileva², Jonathan D. G. Jones², Cristobal Uauy¹, Beat Keller³, Christopher J. Ridout¹, Brande B. H. Wulff¹*

¹ John Innes Centre, Norwich Research Park, Norwich, UK
² The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
³ Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
⁴ King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Building 2, Office 3275, Thuwal, 23955-6900, Kingdom of Saudi Arabia
⁵ Earlham Institute, Norwich Research Park, Norwich, UK
⁶ School of Agricultural Biotechnology, Dr G.S. Khush Laboratories, Punjab Agricultural University, Ludhiana - 141 004, Punjab, India

*To whom correspondence should be addressed: brande.wulff@jic.ac.uk

One-sentence Summary
The wheat intracellular immune receptor repertoire can be explored with the NLR-Annotator tool.

Author contributions
General concept and design of studies: BS, KW, JJ, BK, SK, BW. Design and testing of NLR-Annotator: BS, KW. Resistance gene mapping to RefSeq: BS, SK. Analysis of integrated domains and NLR pairs: BS, EB, KK. BS, KW, GY, CU, BW. Experimental concept and design of PAMP-triggered NLR-Expression: BS, HS, CR, BW. Tissue collection and RNA extraction: HS and GY. cDNA RenSeq: KW, AW. Bioinformatics analysis and figures: BS, RR, IY. Manuscript draft: BS, BW. Manuscript review: All authors read and approved the final manuscript.
Abstract

Disease resistance genes encoding nucleotide-binding and leucine-rich repeat (NLR) intracellular immune receptor proteins detect pathogens by the presence of pathogen effectors. Plant genomes typically contain hundreds of NLR-encoding genes. The availability of the hexaploid wheat (*Triticum aestivum*) cultivar Chinese Spring reference genome allows a detailed study of its NLR complement. However, low NLR expression and high intra-family sequence homology hinders their accurate annotation. Here we developed NLR-Annotator, a software tool for *in silico* NLR identification independent of transcript support. Although developed for wheat, we demonstrate the universal applicability of NLR-Annotator across diverse plant taxa. We applied our tool to wheat and combined it with a transcript-validated subset of genes from the reference gene annotation to characterize the structure, phylogeny and expression profile of the NLR gene family. We detected 3,400 full-length NLR loci of which 1,560 were confirmed as expressed genes with intact open reading frames. NLRs with integrated domains mostly group in specific subclades. Members of another subclade predominantly locate in close physical proximity to NLRs carrying integrated domains, suggesting a paired helper-function. Most NLRs (88%) display low basal expression (in the lower 10 percentile of transcripts). In young leaves subjected to biotic stress we found upregulation of 266 of the NLRs. To illustrate the utility of our tool for the positional cloning of resistance genes, we estimated the number of NLR genes within the intervals of mapped rust resistance genes. Our study will support the identification of functional resistance genes in wheat to accelerate the breeding and engineering of disease-resistant varieties.
Background

The status of wheat as the world’s most widely grown and important food crop (FAO, 2014) is threatened by the emergence and spread of new and old diseases. For example, wheat stem rust, long considered a vanquished foe of the past, has in the last 20 years caused devastating epidemics in Africa (Pretorius et al., 2000; Olivera et al., 2015) and eastern Russia (Shamanin et al., 2016), while, in 2013 and 2016 large outbreaks occurred for the first time in >50 years in western Europe (Bhattacharya, 2017; Firpo et al., 2017). The spread of disease into new regions can be attributed to the very success of wheat as a globally traded commodity. In that context, wheat blast, a relatively new disease of wheat, which had until recently been confined to Brazil and other countries in South America, appeared in 2016 in Bangladesh, possibly as a result of importing contaminated grain (Islam et al., 2016; Abu Sadat and Choi, 2017). The warm, wet climates in the wheat belts of India and China, which supply ~30% of the world’s wheat (2014), favour the further proliferation of this devastating disease. In temperate regions, Septoria tritici blotch (caused by ?) has become a major foliar disease of wheat, which with the emergence of fungicide resistant strains (Fraaije et al., 2012; Hayes et al., 2016) and the forthcoming restrictions and bans on the remaining effective chemicals (Jess et al., 2014), threatens to cause almost complete collapse of wheat production in some regions (McCormack, 2018). The breeding of new wheat cultivars with improved genetic resistance to a diverse array of pathogens is therefore of great importance to ensure future wheat production.

In plants, heritable genetic variation for disease resistance is often controlled by dominant resistance (R) genes encoding intracellular immune receptors with
nucleotide-binding and leucine-rich repeat (NLR) domains (Kourelis and van der Hoorn, 2018). NLRs detect the presence of pathogen effector molecules which are delivered into the plant cell by the pathogen to promote virulence (Jones and Dangl, 2006). NLRs either detect effectors directly or more frequently, indirectly through the modification of a host target by the pathogen effector. In the latter case, the NLR is often said to be ‘guarding’ the pathogenicity target (Swiderski and Innes, 2001). Some NLRs contain an integrated domain, which has been proposed to act as a decoy to the intended effector pathogenicity target (Cesari et al., 2014; Sarris et al., 2016; Baggs et al., 2017).

NLRs belong to one of the largest multi-gene families in plants. A plant genome may contain several hundred NLRs (Sarris et al., 2016). Many NLRs are under extreme diversifying selection, to the extent that two accessions from the same species can display significant NLR copy number and sequence variation, the result of the selection of new variants based on duplication, deletion, unequal crossing over and mutation (Noel et al., 1999; Kuang et al., 2004; Chavan et al., 2015; Seo et al., 2016). In wheat, 19 cloned R genes against wheat rusts and powdery mildew encode NLRs (Supplemental Table S1).

A major impediment to studying NLRs in wheat and the cloning of functional R genes, has been the lack of a contiguous reference genome sequence. Although the genome of bread wheat (Triticum aestivum) is one of the most challenging crop genomes to study due to its large size (15.4-15.8 Gb) (Consortium, 2018), repetitiveness (~85%), and hexaploid nature, recent technological advances (Bevan et al., 2017) as well as a strong interest by governmental and industrial funding sources have allowed completion of the genome sequence. Starting in 2012 with a low coverage survey sequence (Brenchley et al., 2012), improved assemblies
underpinned by different strategies have been published (International Wheat Genome Sequencing, 2014; Chapman et al., 2015; Clavijo et al., 2017; Zimin et al., 2017). In 2017, the first version of a wheat genome sequence with chromosome-sized scaffolds (IWGSC RefSeq v1.0), was made publicly available. The major results of this project are summarized in the study by the International Wheat Genome Sequencing Consortium (Consortium, 2018), and have resulted in a large number of additional studies including the analysis of the transcriptional landscape of wheat (Ramírez-González et al., 2018). In addition, high quality reference genome sequences have been recently published for the wild diploid progenitor of the wheat D genome, *Aegilops tauschii* (Luo et al., 2017; Zhao et al., 2017), the AB tetraploid progenitor, wild emmer (*Triticum dicoccoides*) (Avni et al., 2017), and its domesticated brethren, pasta wheat (*Triticum durum*) (Maccaferri et al., 2019).

The new high quality wheat and wild wheat reference genomes will undoubtedly facilitate the study of wheat NLR structure, function and evolution. However, the study of NLRs, including those in wheat, is complicated by (i) the absence of a tool for accurate and high-throughput NLR annotation, and (ii) the extremely low basal level of expression for many NLR genes. Previous NLR annotation pipelines (Meyers et al., 2003; Li et al., 2010; Steuernagel et al., 2015; Pal et al., 2016; Yang and Wang, 2016) have mostly relied on a preceding gene annotation. We expected such an annotation method to be potentially not sensitive enough to detect NLR genes. In addition, orthologous NLR loci that are not functional genes in the reference accession would be left out. To overcome these challenges, we firstly performed NLR exome capture and sequencing on cDNA (Andolfo et al., 2014) isolated from different tissues and developmental stages. These libraries were supplied to the annotation team of the wheat reference and included in the general gene annotation.
Secondly, we developed NLR-Annotator, a tool for de novo genome annotation of loci associated with NLRs. By applying NLR-Annotator and our expression data to the genome of the wheat reference cultivar Chinese Spring, we found 3,400 loci that may be functional NLR genes or pseudo genes. We show here that wheat NLRs predominantly occur towards the telomeres and in close proximity to each other, display pronounced copy number and sequence variation between the A, B and D sub-genomes (yet maintain conservation of intron-exon structure), contain clade-specific integration of exogenous domains, and that NLR expression is modulated by development and biotic stress.

Results

Motif-based annotation of NLR loci in whole genome assemblies

We set out to develop a method for annotation of NLRs independent from gene calling. The recently published pipeline NLR-Parser (Steuernagel et al., 2015) uses combinations of short motifs of 15 to 50 amino acids to classify a sequence as NLR-related. These motifs had been defined based on manual curation of a training set of known NLR sequences by Jupe et al. (Jupe et al., 2012) and mainly resemble the sub-structures of NLR protein domains also described in other studies (Supplemental Figure S1; (Jupe et al., 2012)). Since these motifs may occur randomly in a genome, the NLR-Parser searches for combinations of doublets or triplets of motifs that often occur in the same order. The drawback of NLR-Parser, however, is that it can only classify a sequence, not distinguish the border between two NLRs within the same sequence. In the extreme case of a whole chromosome with multiple NLRs, this would be classified as a single complete NLR. NLR-Parser
thus needs pre-defined gene models, or another method to delimit the borders it
searches within.

Here, we present a new tool, NLR-Annotator, as an extension of NLR-Parser,
to annotate NLR loci in genomic sequence data. In this study, we define the term
‘NLR locus’ as a section of genomic sequence associated with a single NLR, i.e. one
NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4)
domain potentially followed by one or more leucine-rich repeats (LRRs). An NLR
locus may be a gene with an intact open reading frame but may also be the trace of
a sequence pseudogenized in the observed genome. Our pipeline disects genomic
sequences into overlapping fragments, and then uses NLR-Parser to pre-select
those fragments potentially harbouring NLR loci. In this step, the nucleotide
sequence of each fragment is translated in all six frames to search for motifs.
Subsequently, the positions of each motif are transferred to nucleotide positions. The
NLR-Annotator then integrates data from all fragments, evaluates motif positions and
combinations and suggests a list of loci likely to be associated with NLRs. For an
overview, see Figure 1. The general concept is to search for a series of consecutive
motifs that are associated with the NB-ARC domain (Supplemental Figure S1). This
is used as a seed, which is then elongated into the pre-NB region and the LRRs by
searching for additional motifs associated with those regions.

We tested the NLR-Annotator on the *Arabidopsis thaliana* genome sequence using
Arabidopsis gene models (TAIR10, http://www.arabidopsis.org) as a gold standard.
Because NLR-Annotator identifies NLR loci, which can be active genes or
pseudogenes, the Arabidopsis gold standard annotation is not perfect for
benchmarking, but it is nonetheless a good option. Independently of NLR-Annotator,
we classified the 27,416 protein sequences from TAIR10 using Hidden Markov Models from Pfam domains. We found 166 protein sequences with an NB-ARC domain. Using NLR-Annotator, we found 171 loci in the TAIR10 genome assembly. Of the 166 NLR annotated genes, only eight were not overlapping with one of our loci. We manually investigated those eight protein sequences and found that four were activated disease resistance (ADR) 1 or ADR1-like. We had already reported that NLR-Parser does not detect the ADR1 family genes (Steuernagel et al., 2015).

Similar to ADR1, the remaining four proteins were not detected because for at least one motif, the similarity to the consensus motif was below the default threshold. Of the 171 loci called by NLR-Annotator, 162 overlapped with our gold standard gene models. In four of these cases the protein contained two NB-ARC domains resulting in two separate loci annotated by NLR-Annotator. We aligned the remaining nine NLR loci, which had no overlap to an NB-ARC containing protein, to NCBI non-redundant proteins using BlastX (https://blast.ncbi.nlm.nih.gov). In all cases we found homology to NLR proteins from other species, which suggests that although those loci were not called as genes in the Arabidopsis reference the NLR-Annotator accurately identified sequences associated with NLRs. Finding 158 out of 166 NLR genes in TAIR10, we conclude a sensitivity (ratio of identified NLR genes to all NLR genes) of 95% for NLR-Annotator. Every one of the loci found with NLR-Annotator was validated to be associated with NLRs supporting a specificity (ratio of correctly identified NLRs to all identified NLRs) of 100%.

To further test the functionality of NLR-Annotator, we annotated the published genomes of eight additional plant species for NLR loci (Supplemental Table S2). We
found 932 loci in robusta coffee (*Coffea canephora* (Denoeud et al., 2014), http://coffee-genome.org), 154 loci in maize (*Zea mays* (Jiao et al., 2017), http://ensembl.gramene.org), 50 in papaya (*Carica papaya* (Ming et al., 2008), https://phytozone.jgi.doe.gov), 71 in cucumber (*Cucumis sativus*, https://phytozone.jgi.doe.gov), 527 in soybean (*Glycine max* (Schmutz et al., 2010), https://phytozone.jgi.doe.gov), 694 in potato (*Solanum tuberosum* (Xu et al., 2011), https://solgenomics.net, PGSC_DM_v3), 284 in tomato (*Solanum lycopersicum* (Sato et al., 2012), https://solgenomics.net, SL3.00) and 342 in purple false brome (*Brachypodium distachyon* (Vogel et al., 2010), https://phytozone.jgi.doe.gov). In a previously published study of tomato, 355 NLRs were identified (Andolfo et al., 2014). The lower number of NLRs identified by NLR-Annotator (284) is mostly due to the higher stringency of NLR-Annotator for minimal number and organisation of motifs and a requirement for the presence of an NB-ARC domain.

Using NLR-Annotator, we screened various assemblies of hexaploid bread wheat cultivar Chinese Spring. With the annotated loci we distinguished between partial and complete loci where a complete locus contains the P-loop/motif1 that marks the start of an NB-ARC domain as well as at least one LRR associated motif (Supplemental Figure S1). In the assemblies from 2014 (International Wheat Genome Sequencing, 2014) and 2015 (Chapman et al., 2015), we found 12,441 and 15,315 loci, respectively, but only 1,050 and 1,249 were complete. The assemblies made available in 2017 by Clavijo and colleagues (Clavijo et al., 2017), Zimin and colleagues (Zimin et al., 2017) and the IWGSC (Consortium, 2018) have a considerably smaller number of total NLR loci (3,251, 3,568 and 3,400, respectively) but concomitantly larger number of complete NLR loci (2,465, 2,731 and 2,580, respectively). Possible reasons for the differences in the number of detected NLR
loci include differences in the genome completeness and continuity, and assembly mistakes such as collapsed regions or falsely duplicated regions. For the analyses described in this study, we used the IWGSC reference sequence to take advantage of the pseudo-chromosomes and the gene annotation (Consortium, 2018).

Physical position of NLR loci

With the availability of pseudo-chromosomes, which represent 94% of the predicted wheat genome, most NLR loci can now be placed in the physical context of their location on the chromosome. The foremost practical implication of this is to take advantage of available mapping data and other resources to accelerate the identification of functional disease resistance genes. Annotated NLR loci were found to preferentially locate at the telomeres of each chromosome (Figure 2) and cluster together. More than 400 of the 3,400 observed NLR loci are in a proximity of less than 5 kb to another NLR locus. Half of all loci are in a distance of less than 50 kb to another locus (Figure 2). The NLR loci are distributed over all chromosomes and the number of NLR loci per chromosome ranges between 29 (chromosome 4D) and 280 (chromosome 4A). No clear preference of NLR numbers towards one homeologue within each group could be observed (Supplemental Table S3).

To demonstrate the potential practical advantage of our resource, i.e. annotated NLR loci with a physical position on pseudo-chromosomes, we searched the literature for leaf rust and stem rust resistance genes that have been genetically mapped in wheat but not yet cloned. Most genes have been mapped in accessions other than the reference accession Chinese Spring and most resistance genes may not have a functional allele in Chinese Spring. Nevertheless, we hypothesized that in many cases, a non-functional allele or close homologue may be present, the
sequence of which could then be used to speed up the cloning of the functional allele from the resistant accession.

To explore the suitability of this approach, we searched the Chinese Spring genome for homologues of exemplarily cloned \(R \) genes, namely the stem rust resistance genes \(Sr22, Sr33, Sr35, Sr45, \) and \(Sr50 \), the powdery mildew resistance genes \(Pm2, Pm3, Pm8 \), the leaf rust resistance genes \(Lr1, Lr10 \) and \(Lr22a \), and the yellow rust resistance genes \(Yr5, Yr7 \) and \(YrSP \) (Supplemental Table S1). In eight cases (\(Sr22, Sr33, Sr45, Pm2, Pm3, Lr1, Yr5, Yr7 \)), the best alignment of the protein sequence to Chinese Spring was on the same chromosome where the gene was cloned from. For \(Sr35 \) and \(YrSp \), the second best alignment was on the right chromosome and the best alignment was on a homeologous chromosome. For \(Pm8 \), which was introgressed from rye (\textit{Secale cereale}), and \(Lr22a \), the second best alignment was on the right chromosome whereas the best alignment was on a scaffold yet to be assigned to a chromosome. \(Sr50 \) was cloned from rye as well (Mago et al., 2015) but characterized to be an orthologue of \(Mla \), on group 1 chromosomes. As expected, the best three alignments for \(Sr50 \) were therefore with chromosomes 1A, 1D and 1B. For \(Lr10 \), we did not find an alignment on 1A, but on the homeologous chromosomes. However, this was expected since Chinese Spring was previously characterized to be a deletion haplotype of \(Lr10 \) (Isidore et al., 2005).

Next, we aligned sequences of flanking markers from 39 mapped, but not yet cloned \(Sr \) and \(Lr \) genes to Chinese Spring, defined the physical interval and counted the number of NLR-associated loci within the interval. The loci can be used for candidate gene approaches or further delimiting of map intervals in positional cloning projects. In 32 cases, we could determine a physical interval, either by using the exact flanking markers or by using chromosome ends or the centromere as surrogate, to
determine a number of candidate NLRs. We found between 0 and 61 NLRs as candidates (average: 10) (Supplemental Table S4). Interesting examples include Sr6 (physical interval 15.8 Mb, one candidate), Lr13 (physical interval 60 Mb, three candidates) and Lr49 (physical interval 33 Mb, three candidates). Notably, these are large intervals with only a few candidate NLR loci, providing the opportunity to explore candidates before embarking on the more laborious tasks to further delimit or sequence the interval in the donor accession.

Comparison of NLR loci identified by NLR-Annotator with automated gene annotation in IWGSC RefSeq v1.1

We expected a substantial number of our independently predicted NLR loci to be overlapping with genes from the automated gene annotation v1.1 of the Chinese Spring reference sequence (IWGSC RefSeq v1.0). Of the 3,400 loci we predicted by NLR-Annotator, 2,955 overlap with genes annotated in RefSeq v1.1. In total, 578 NLR loci defined by NLR-Annotator correspond to more than one gene in RefSeq v1.1. We looked at these 578 loci in more detail. In 70 cases, we found gaps (stretches of unassigned nucleotides, Ns) in the assembly potentially interfering with transcript mapping and thus hampering gene calling and giving rise to two falsely called genes. In 116 cases, we found one of the gene models resembling a complete NLR gene, i.e. the P-loop, at least three consecutive NB-ARC motifs and at least one LRR motif indicating a potential overextension of the NLR locus, usually brought about by a randomly occurring LRR motif shortly downstream of the gene (Supplemental Table S5). In 29 of 30 random examples (Supplemental Table S4) of the remaining 405 cases, we observed a stop-codon in the coding sequence interrupting the open reading frame in the transcript.
We believe that these cases with stop codons represent alleles of *NLR* genes that have recently been pseudogenized but which are still transcribed. An example supporting this theory is the *Pm2* gene conferring resistance to *Blumeria graminis*, the causal agent of powdery mildew. The *Pm2* gene was cloned from the wheat cultivar Ulka (Sanchez-Martin et al., 2016) where it encodes a full-length NLR. The allele in Chinese Spring has a stretch of 12 nucleotides replaced by five other nucleotides, thus causing a frame shift leading to an early stop codon, but is nonetheless still transcribed (Supplemental Figure S2).

A set of validated *NLR* gene models in Chinese Spring

For the subsequent analyses which involve gene models, we proceeded with gene models from the IWGSC gene annotation v1.1. To select appropriate transcripts that encode complete *NLRs*, we used NLR-Parser to classify sequences and selected those containing a P-loop (Meyers et al., 1999), at least three consecutive motifs associated with the NB-ARC domain (motifs 1, 6, 4, 5, 10, 3, 12, 2) and at least one LRR-associated motif (motifs 9, 11 or 19). Of 4,983 transcripts (Supplemental Table S5) that either overlapped with an NLR locus or were classified as “NLR-associated” by NLR-Parser, we identified 1,823 transcripts (corresponding to 1,560 genes) that encoded complete NLRs. In addition, we used ADR1 (AT1G33560) to search for homologues in the gene models. The four candidate ADR1 transcripts (TraesCS5D02G081800.1, TraesCS5B02G075900.1, TraesCS5A02G069600.1, TraesCS5A02G069600.2) were added. Our final list of confirmed 1,827 *NLR* transcripts (Supplemental Table S6) is most likely an underestimate of the total *NLR* gene content. Manual curation would likely be required to obtain a more precise estimate of the total true NLR complement.
Phylogenetic analysis of wheat NLR genes

NLRs constitute a large gene family and only for a very few individual genes has a function been assigned. A phylogenetic analysis provides a means to order this large number of genes with respect to their sequence relationship and arrange them into sub-families. We set out to establish this order and look for common features in various clades of the NLR gene family, which may hint at common functional attributes.

We extracted the NB-ARC domains from NLR protein sequences and calculated their phylogenetic relationships. For this analysis, we used the 1,827 NLR transcripts we identified in the IWGSC v1.1 gene annotation rather than loci annotated by NLR-Annotator. The reasons are firstly an often-occurring intron within the NB-ARC domain complicating identification of the correct, complete open reading frame and subsequent translation without the support of transcript data. Secondly, in our subsequent analysis below we intended to investigate integrated domains, which is not possible without gene models. Figure 3 shows the NLR phylogeny of Chinese Spring with clades highlighted that are discussed subsequently in this manuscript. We also added known resistance genes to the tree. An interactive version of Figure 3 and related supplementary figures can be found at https://itol.embl.de/shared/steuernb.

For reasons mentioned above we used gene models for our phylogenetic analysis. However, we also tested if we can use information from NLR-Annotator to construct phylogenetic trees as a function for genomes lacking a gene annotation. To this end we used only the concatenated amino acid motifs within the NB-ARC domain that were identified by NLR-Annotator. The resulting tree (Supplemental
Figure S3) is similar to the tree based on whole NB-ARC protein sequences (Figure 3). For example, clades with specific features that we identified (see sections below) were preserved in this tree based only on the concatenated NB-ARC motifs. To highlight the similarity between the two trees, we colour-coded NLR loci in the concatenated NB-ARC domain tree corresponding to genes from several clades with distinct features. Apart from six outliers, all loci which clustered in the full-length NB-ARC domain tree (Figure 3), also clustered in the concatenated NB-ARC motif tree (Figure S3). All six outliers originate from proteins with two complete NLRs, which are fused. With NLR-Annotator those were separated as two loci and the outliers show the phylogenetic position of the secondary NB-ARC domain in the protein.

Integrated domains

Some NLR proteins differ from the canonical NLR structure by having an additional integrated domain(s). This structure has been demonstrated in other plant species (Cesari et al., 2014; Baggs et al., 2017) and has also previously been reported in wheat (Bailey et al., 2018). It has been proposed that these domains act as a decoy or bait (Cesari et al., 2014; Baggs et al., 2017), in which the gene from which the integrated sequence originates encodes for a protein that is a target of a pathogen effector(s). A detailed study of additional domains integrated into NLRs can potentially provide information about effector targets in plant-pathogen interactions.

We screened the NLR protein sequences for integrated domains. In total, we found that 129 of the 1,560 protein sequences carry integrated domains. The most prevalent domains were protein kinase (41 cases), DDE acidic triad-transposase (DDE-Tnp4) (26 cases), zink finger (zf)-BED (named after the *Drosophila* proteins...
BEAF and DREF) (10 cases), Jacalin (8 cases) and Motile Sperm (7 cases) (Supplemental Table S7).

We then associated integrated domains with the phylogeny of the NB-ARC domains of all NLRs. The clades with accumulated integrated domains are shown in Figure 3 and individual domains are displayed within the structure of NLRs in Supplemental Figure S4. In concurrence with previous studies (Bailey et al., 2018; Stein et al., 2018), we found that some clades of the phylogenetic tree are enriched for specific integrated domains. These are DDE_Tnp_4 (Clade ID1, Figure 3), zf-BED (ID2, Figure 3), Jacalin (ID3, Figure 3) and Motile Sperm (Clade ID4, Figure 3).

A fifth clade (Clade ID5, Figure 3) with 66 members is heavily enriched (47 proteins) for various integrated domains, which tend not to be in the abovementioned specific clades (ID1 to ID4) including protein kinase-, Kelch-, Grass-, Exo70- and WRKY-domains. The major type of integrated domain that is not exclusively found in a specific clade are the protein kinases.

Tandem NLRs

NLRs occurring in tandem can function together. They can be arranged in a head-to-head formation in which the genes are on opposite strands and the distance between gene starts is shorter than the distance between gene ends (Narusaka et al., 2009). We searched for this type of tandem NLR genes in the reference wheat genome. We found 52 NLR pairs with a position as described above and a maximum distance of 20 kb (Supplemental Figure S5, Supplemental Table S8). Twenty-five pairs had one mate located in the red “Helper” clade. Fifteen of those pairs have the other mate located in Clade ID5, which accumulates various integrated domains.
Intron-Exon structure

We investigated introns in NLR genes and observed a large diversity in terms of length and number of introns. The average intron length is 1,197 bp but they can extend up to 24,586 bp, while the average intron number is 2 and ranges between 0 and 23 (Supplemental Figure S6). Another interesting feature is the position of introns. Several clades in the phylogeny (Figure 3, Supplemental Figure S6, orange clades) do not contain an intron in the coding region of the NB-ARC domain. Known R genes without an intron in the NB-ARC domain are Tsn1, Sr45, Pm2, Pm3, Pm8, Lr1, Lr21, Yr5, Yr7 and YrSP. A large number (608) of NLRs, however, have an intron right after the RNBS-A (motif 6) within the NB-ARC domain. All those genes are members of the green clade “Intron1” in Figure 3 (and Supplemental Figure S5).

Only three exceptions in that clade were observed to not have this feature. Several cloned R genes such as Sr22, Sr35, Lr10 and those in the Mla family (Sr33, Sr50 and SrTA1662), have this common feature. Another pattern of intron within the NB-ARC domain was observed in two distinct clades where an intron is within the coding sequence of the resistance nucleotide binding site C (RNBS-C) (motif 10). One of the clades (Figure 3, yellow clade “Intron2”), which includes those NLRs with an integrated DDE_TNP_4 domain, has 64 members. The other clade (Figure 3, light blue clade “NB-ARC”) with an intron within the RNBS-C (motif 10) has 121 members.

A clade with an extended NB-ARC domain

The 121 members of the clade “NB-ARC” (Figure 3) almost exclusively (with only five exceptions) share a characteristic feature, in which the NB-ARC domain is preceded by a truncated NB-ARC domain (Supplemental Figure S7). The truncation is after the motif RNBS-B (motif 5). A prominent member of this clade is resistance
gene analogue 2 (Rga2), which was found to be required for Lr10-mediated resistance (Loutre et al., 2009). Members of this clade have an intron separating the truncated and the complete NB-ARC domain. As already described in the previous section, members of this clade have an intron within RNBS-C (motif 10).

NLR Expression

In a previous study we observed that in wheat the NLRs encoded by the stem rust resistance genes Sr22 and Sr45 were expressed at low levels in leaves of seedlings (~30/~60 Gb sequencing resulted in <20x/<15x coverage of Sr22/Sr45, respectively) (Steuernagel et al., 2016). To test whether this observation of low expression could be extended broadly to NLRs in wheat, we sequenced the transcriptomes of young leaves generating more than 305 Gb of data in three samples. We also enriched the same samples for NLR genes (cDNA R gene enrichment sequencing, RenSeq) (Andolfo et al., 2014) to detect lowly expressed NLR genes. We considered expression of a gene detectable if more reads would map to it than necessary to cover the entire length 5-fold. In the combined data sets, we found 1,074 NLR genes being detectable as transcribed. In the un-enriched transcriptome data, 859 genes (80%) could be detected. Down-calculating those numbers (Figure 4), we estimate that generating 50 Gb of wheat transcriptome data would allow for 55% of NLRs expressed in young leaves to be detected.

Stress-induced expression of NLRs

There are more than a thousand NLRs in a wheat genome, representing 1-2% of the total gene coding capacity (Consortium, 2018). However, the immunity conferred by
NLRs comes at a metabolic cost and over-activation of immune responses may give rise to stunted growth (Yi and Richards, 2009; Choulet et al., 2014). Therefore, we assume that NLR expression would be tightly regulated.

As an example, we checked whether NLR expression changes after biotic stress. Plants respond to conserved pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) such as chitin, a constituent of fungal cell walls, or flagellin from the bacterial flagellum. Molecular events that occur during PAMP-triggered immunity are highly conserved between dicots and monocots and include rapid production of reactive oxygen species (ROS), mitogen-activated protein (MAP) kinase induction and defence gene induction (Dangl et al., 2013). We hypothesised that as a first layer of defence, the PAMP-triggered immune response might also include increased expression of NLRs to help prime the plant defence system for effector-triggered immunity. To test this hypothesis, we infiltrated young wheat plants (at the three-leaf stage) with two PAMPs, namely chitin (Kombrink et al., 2011) and flg22, a 22 amino acid peptide from flagellin (Takai et al., 2008), and then sequenced the transcriptomes of water-treated and PAMP-challenged plants at 30 minutes and 3 hours after challenge. Three (non-NLR) genes that had previously been reported to be PAMP responsive (Schoonbeek et al., 2015) showed differential expression by reverse transcription quantitative PCR (RT-qPCR) confirming a responsiveness to PAMP treatment (Supplemental Figure S8).

Within our set of 628 NLR genes for which we could obtain expression data (File S1), nearly half were differentially expressed. In total, 266 genes (257 in the case of chitin and 194 in the case of flg22) were found to be at least two-fold stronger expressed than before treatment. Moreover, the expression of 243 (234 in the case of chitin and 166 in the case of flg22) of those genes was reduced again to
resting state levels at 180 minutes after treatment. We visualized this general
tendency by plotting expression values of NLR genes in ternary plots where the dot
size and colour additionally depicts the maximum expression found at any time point
(Figure 5).

Most NLR genes that showed differential expression after chitin treatment
also showed differential expression after treatment with flagellin (Supplemental
Figure S9a). In particular, when we relaxed the threshold of “2-fold overexpression”,
we noted that treatment with either PAMP caused upregulation of the same genes
(observed in 255 cases out of 266 differentially expressed genes, Supplemental
Figure S9b).

The upregulated NLR genes were not associated with specific phylogenetic
clades.

Discussion

In this study we present the tool NLR-Annotator for de novo annotation of NLR loci.
Our tool is distinguished from standard gene annotation in that it does not require
transcript support to identify NLR-associated loci. NLR-Annotator is therefore a
powerful tool for the identification of potential R genes that could be used in breeding
for resistance to wheat pathogens. Very often, however, the functional copy of an R
gene is not present in the accession that was chosen for a reference genome. The
positive selection imposed on NLRs often results in extensive accessional sequence
and copy number variation at NLR loci (Noel et al., 1999; Kuang et al., 2004; Chavan
et al., 2015; Seo et al., 2016). Thus, the corresponding NLR homologue in the wheat
reference accession, Chinese Spring, would not be considered by a standard gene
annotation. NLR-Annotator, on the other hand, is not limited to functional genes. In
our analysis of Chinese Spring, we found 3,400 loci while only 1,560 complete NLRs could be confirmed through gene annotation in IWGSC RefSeq v1.1. Within the additional loci identified by NLR-Annotator there might be some NLRs with potential for function. However, we speculate that most of these are non-functional pseudogenes. Nevertheless, it is important to define these loci in the reference accession Chinese Spring because these genes may have functional alleles in other accessions. A case in hand concerns Pm2 (from the cultivar Ulka), which in Chinese Spring has an out-of-frame insertion/deletion leading to an early stop codon. The corresponding locus in Chinese Spring is still transcribed at a detectable level (Supplemental Figure S2). The frameshift interrupting the open reading frame led to two remaining open reading frames, still large enough to have been annotated as separate genes.

In some cases (e.g. transcript studies or inspection of integrated domains), an analysis of NLRs requires functional genes. Previous work on describing NLRs in earlier versions of the Chinese Spring genome have searched within the genome-wide gene annotation for NLRs. This led to fewer NLRs being identified, for example 16 full-length NLRs in the 2014 Chinese Spring Survey sequence (International Wheat Genome Sequencing, 2014; Clavijo et al., 2017) and 1,174 full-length NLRs in the 2017 Chinese Spring W2RAP assembly (Clavijo et al., 2017). The present study benefitted from an improved general annotation of wheat NLRs made possible by supplying the IWGSC RefSeq annotation pipeline with cDNA data enriched for NLR transcripts through NLR enrichment sequencing (Consortium, 2018), and secondly, we developed NLR-Annotator to identify NLRs independently of gene annotation.
To improve the annotation further would require manual annotation locus-by-locus, in each case, taking into account existing gene annotations, mapped transcript data from different sources, and our NLR-Annotator loci. All these data would have to be integrated and inspected to provide *bona fide* gene models. Given the diversity of NLR complements in different wheat accessions (Thind et al., 2017) the amount of work required for this effort is considerable. For practical applications such as *R* gene cloning, our automated NLR locus discovery will, in most cases, likely be sufficient to identify a candidate gene, which can be annotated *ad hoc* in the relevant accessions. For studies requiring annotated genes we have to settle for a subset of the actual NLR complement.

We set out to investigate the sequence diversity relationships within the NLR gene family in Chinese Spring. It has been well documented that in NLRs the NB-ARC domain is far more conserved than the LRRs. Therefore, phylogenetic studies compare the NB-ARC domains to explore and depict the sequence relationship among NLRs (Jupe et al., 2012; Andolfo et al., 2014; Bailey et al., 2018). Extracting NLR domains from NLR loci defined by NLR-Annotator is complicated by the presence of introns within domains, the boundaries of which can only be defined properly using transcript data. In addition, we were interested in cataloging the occurrence and distribution of integrated domains in the NLRs. This can only be done on annotated genes. Therefore, in our subsequent analysis, we used the 1,540 annotated NLRs to compute a phylogenetic tree.

With the reference sequence, we studied the phylogeny, integrated domains, and helper NLRs. This has been recently described in detail by Bailey and colleagues (Bailey et al., 2018) based on analysis of the W2RAP assembly of wheat. In brief, we found that the new assembly supports the observations made in the
study by Bailey and colleagues. One additional feature that we discovered is a clade of NLRs which contain elongated NB-ARC domains (Clade “NB-ARC”, Figure 3).

The elongated part of the NB-ARC domain precedes the canonical NB-ARC domain and consists predominantly of motifs 6, 4 and 5, often preceded by motif 1 (See Supplemental Figure S1 and Supplemental Figure S7). We do not know the function of this elongated NB-ARC domain. However, a member of this clade is RGA2 which has previously been described to be essential for Lr10 function (Loutre et al., 2009).

To expand the previous phylogenetic analysis to include the entire set of all 3,400 NLR loci, we developed a new feature in NLR-Annotator. By reducing the NB-ARC domains to only be represented by the even more conserved motifs (Supplemental Figure S1), we can ensure to exclude introns from the phylogenetic analyses, and can also exploit the *a priori* knowledge of the position of the motifs within the NB-ARC domain to avoid an external multiple alignment. This then permits using the alignment from NLR-Annotator directly as an input to compute a phylogenetic tree. The resulting phylogeny (Supplemental Figure S3) was validated by visualising leaves that correspond to genes from specific clades in the phylogeny derived from gene models (Figure 3). The phylogenetic relationship of genes was maintained for corresponding loci in the tree generated from NLR-Annotator. One example, however was found in the *Mla* region, where a locus was associated with a neighboring sub-clade rather than the other loci of the *Mla* region.

Finally, with the IWGSC RefSeq v1.0 gene annotation v1.1, we performed *NLR* expression profiling. We found that many *NLRs* are expressed at low levels, requiring either extremely deep sequencing or target enrichment to be detected. We also looked at *NLR* induction in response to PAMPs and found that a subset of *NLRs* are triggered following PAMP exposure. The transcriptional response was
measureable within 30 minutes and had returned to base level after 3 hours. This response shows the tight regulation of the NLR immune system and may reflect the fine tuning between the cost of defence and resource allocation for growth and reproduction.

Conclusions

In this study, we introduce NLR-Annotator to detect NLRs in a genome sequence. The power and novelty of this tool is that it is completely independent of a preceding gene annotation thus enabling rapid ab initio interrogation of the NLR complement of a genome without reliance on gene expression or other limitations of gene prediction pipelines. We then used NLR-Annotator to catalogue NLRs in the reference sequence of wheat cv. Chinese Spring, and extended our analysis to comprehensively characterise this complex multigene family. We predict this tool will also facilitate the cloning of functional R genes from plant genomes by positioning NLR loci within mapped intervals, as demonstrated here for leaf and stem rust, two major diseases of wheat.

Methods

NLR-Annotator

The NLR-Annotator pipeline is divided into three steps: (1) dissection of genomic input sequence into overlapping fragments; (2) NLR-Parser, which creates an xml-based interface file; (3) NLR-Annotator, which uses the xml file as input, annotates NLR loci and generates output files based on coordinates and orientation of the initial input genomic sequence. All three programs are implemented in Java 1.5. Source code, executable jar files and further documentation has been published on
GitHub (https://github.com/steuernb/NLR-Annotator). The version of NLR-Parser used here has been published previously along with the MutRenSeq (Steuernagel et al., 2016) pipeline and uses the MEME suite (Bailey and Gribskov, 1998). All genomes annotated in this publication were dissected into fragments of 20 kb length overlapping by 5 kb. Manual investigation of questionable *Arabidopsis thaliana* protein sequences was performed using SMART (Letunic et al., 2015).

Testing NLR-Annotator on TAIR10

We classified protein sequences from Arabidopsis (TAIR10) as NLR proteins using HMMER (Eddy, 2011), version HMMER-3.1b1 and models from Pfam-A (https://pfam.xfam.org/) version 31.0. Proteins having a NB-ARC domain with an e-value of less than 1E-5 were used for further processing.

To compare NLR loci from NLR-Annotator to NLR protein sequences, we extracted gene positions from TAIR10 gene annotation (ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff) and searched for overlapping intervals.

R gene intervals

Coding sequences of cloned *R* genes were aligned to pseudo chromosomes of Chinese Spring using BLASTn (Zhang et al., 2000) and default parameters. To align marker sequences extracted from the literature to the pseudo chromosomes we used BLASTn and the parameter –task blastn to amend for short input sequences. In uncertain cases, matching positions were validated using DOTTER (Sonnhammer and Durbin, 1995).
Comparison of NLR loci to gene annotation

Comparison of NLR loci (generated from NLR-Annotator) with gene models from IWGSC gene annotation v1.1, was done using the Java program CalculateNLRGenes.java (https://github.com/steuernb/wheat_nlr). Overlaps were calculated using the position of gene transcripts. An overlap was only considered if both the locus and the transcript were on the same strand.

Selection of NLR genes from gene annotation

To identify NLRs in the RefSeq v1.1 gene annotation, NLR-Parser was run on coding sequences of gene models. Tab-separated output from NLR-Parser was generated using output option -o. The last column in that table is a list of identified motifs (Jupe et al., 2012). Genes were selected by the presence of motif 1 (p-loop), the presence of either motif 9, 11 or 19 (LRR motifs) and at least one of the following consecutive motif combinations: 1, 6, 4; 6, 4, 5; 4, 5, 10; 5, 10, 3; 10, 3, 12; or 3, 12, 2. Motifs detected in reverse frames of sequences were discarded (One case; TraesCS3D01G521000LC). Examples from cases with discrepancies between NLR-Annotator and gene annotation were manually inspected using Web Apollo (Lee et al., 2013).

Phylogenetic analysis

Protein sequences from NLR genes as well as from known R genes were screened for the NB-ARC domain using HMMER v. 3.1b1 (Eddy, 2011) and PFAM-A v. 27.0 (http://pfam.xfam.org/). Command line call was “hmmscan --domtblout outputfile Pfam-A.hmm inputfile”. Intervals within each sequence were defined based on the
presence of motifs 1, 6, 4, 5, 10, 3, 12, 2. An interval has to start with motif 1, other
motifs may be absent but if present, the order is not allowed to be changed. For each
protein sequence the largest interval including 20 flanking amino acids was used as
the NB-ARC domain. A multiple alignment of NB-ARC domain sequences was
generated using clustal-omega (Sievers et al., 2011). A phylogenetic tree was
generated using FastTree (Price et al., 2010). The tree was visualized using iTOL
(Letunic and Bork, 2016).

Integrated domains analysis

Protein sequences of NLRs were screened for domains using HMMER v. 3.1b1
(Eddy, 2011) and PFAM-A v. 27.0 (http://pfam.xfam.org/). Domains with an e-value
less than 1E-5 were regarded and filtered for domains usually overlapping with the
NB-ARC domain (NACHT, AAA) as well as the LRR domain. Java source code was
deposited on GitHub (https://github.com/steuernb/wheat_nlr).

Tandem NLR analysis

General feature format (GFF) files of both high- and low-confidence genes from the
IWGSC RefSeq annotation v1.1 were screened for pairs of NLR genes that were on
reverse complementary strands, in a distance of less than 20 kb and in a head-to-
head relation, i.e. the distance between gene starts is shorter than the distance
between gene end. Java source code was deposited on GitHub
(https://github.com/steuernb/wheat_nlr)

Intron-exon structure
Intron-exon structure was derived from GFF files of both high- and low-confidence genes from the IWGSC RefSeq annotation v1.1. Script for generating the file adding information to iTOL is deposited on GitHub (https://github.com/steuernb/wheat_nlr)

Growing Chinese Spring and extracting RNA

Plants of wheat (*Triticum aestivum*) cultivar Chinese Spring (CS42, accession Dv418) were grown in the greenhouse. The tissues were taken from different parts of the plants at various growth stages. The total RNA was extracted with RNeasy Plant Mini Kit (QIAGEN Cat. No 74904) following the company’s protocol. The total RNA samples were then digested with DNAse I (11284932001 Roche) using the company’s protocol. After the DNA digestion, the total RNA samples were purified with Agencourt AMPure XP beads (Agencourt part number: A63881) at 0.5x rate.

Enrichment of cDNA

cDNA for targeted enrichment was prepared with KAPA Stranded mRNA-Seq Kit (F. Hoffmann-La Roche AG, Basel, Switzerland) following the manufacturer’s protocol with minor modifications. Briefly, 5 µg of total RNA was used to capture mRNA with magnetic oligo-dT beads, followed by fragmentation for 6 min at 85°C to generate 300-400 nt fragment sizes. First and second strands were synthesized according to the manufacturer’s protocol. No A-tailing step was performed and an adapter (100 nM final concentration) from NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolabs, Inc., Ipswich, MA, USA) was used for ligation. After ligation, 3 µl of USER enzyme (New England Biolabs) were added to the reaction and incubated at 37°C for 30 minutes. Post ligation purifications and amplification (8 cycles) were performed according to the manufacturer’s protocol only substituting KAPA Library
Amplification Primer Mix (10X) with NEBNext Universal PCR Primer for Illumina and NEBNext Index primers for Illumina (2 µM final concentrations each). Amplified libraries were purified using Agencourt AMPure XP beads (Beckman Coulter, CA, USA) with a 1:0.65 ratio of amplified cDNA to beads. Individual libraries were quantified with Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) and equimolar amounts were used for targeted enrichment with custom MYcroarray MYbaits kit (Arbor Biosciences, MI, USA) and the corresponding protocol. Enriched libraries were sequenced on an Illumina HiSeq 2500. Raw data was deposited in the Sequence Read Archive under study ID PRJEB23081. Sequences for the bait library (TV2) are available at https://github.com/steuernb/MutantHunter/blob/master/Triticea_RenSeq_Baits_V2.fasta.

Elicitation with PAMPs

The protocol was modified from Schoonbeek et al. (Schoonbeek et al., 2015). Chinese Spring wheat plants were grown for 3 weeks in a growth cabinet under a 16:8 hours day:night regime at 23:18°C. For each biological repetition three strips (2 cm) where cut from leaf 2 and 3, placed in a 2 ml tube with sterile water and vacuum-infiltrated for 3 times for 1 minute. The following day water was removed and replaced by fresh water or PAMPs dissolved in water at 1 g/l for chitin (Nacosy, Yaizu Suisankagaku Industry Co., Japan) or 500 nM for flg22 (www.peptron.com). Samples were drained and flash frozen in liquid nitrogen after 30 or 180 min prior to pulverisation with two stainless steel balls in a Geno/Grinder (SPEX). RNA was extracted using the RNAeasy plant kit (www.Qiagen.com), the concentration was...
determined on a NanoDrop 8000 Spectrophotometer (Thermo Fisher Scientific) and quality was assessed with a RNA 6000 Nano chip on a Bioanalyzer 2100 (Agilent Technologies). After removal of genomic DNA with TURBO DNA-free Kit (Thermo Fisher Scientific), 1 µg of RNA was converted to cDNA with SuperScript IV (Thermo Fisher Scientific) and expression of PAMP-inducible genes (Schoonbeek et al., 2015) was verified by quantitative PCR (Supplemental Figure S8) using 0.4 µl of cDNA per 16 µl reaction with PCR SYBR Green JumpStart Taq ReadyMix (Sigma) on a LightCycler 480 (Roche Life Science). Gene-expression of three biological replicates is expressed as log2 relative to the expression level at t=0, after infiltration and overnight incubation but before addition of fresh water or PAMP solutions. Expression was normalised to EF-1α (Elongation factor 1-alpha, M90077; with primers ATGATTCCCACCAAGCCCAT and ACACCAACAGCCACAGTTTGC). Genes tested were Ror2 (syntaxin-121 homologous to barley (Hordeum vulgare) required for mlo-specified resistance 2, AK454359.1; TCGTGCTCAAGAACACCAAC and AATCGAGTGGCTCAACGAAC), CMPG1-like (RING-type E3 ubiquitin transferase homologous to maize (Zea mays) Immediate-early fungal elicitor protein CMPG1, TraesCS4B02G2228700; GGACGCAACCAAGGAGAAGA and TTGAGCCCTCTGAAGTCCAT) and pub23 (E3 ubiquitin-protein ligase homologous to barley and Arabidopsis PUB23, Traes_3B_0B86BCF93; CGTTCATCAGAATGCTCAGCTG and TTCTCTTTTGTAGGCACGAACCA).

Expression data analysis

The transcript analysis pipeline (calculation of read counts and TPM (transcripts per million)), is based on Kallisto (Bray et al., 2016), and is common with the global
wheat study by Ramírez-González et al. (Ramírez-González et al., 2018). Complete transcript lists were filtered for NLR genes as defined above. To estimate the detectability of NLR transcripts, we combined Kallisto read counts from 3-leaf stage replicates. We considered a transcript to be expressed if in total RNA or in RenSeq cDNA the combined length of mapped reads (i.e. a read length of 150 multiplied by the sum of counts from all replicates) exceeded 5 times the length of the transcript itself. Testing the same criterion using only read counts based on 305 Gb of total RNA input data, we found 80% of NLRs. We then gradually reduced Kallisto read counts proportionally to a reduced input data to estimate the percentage of NLRs detected with less input data.

For the differential gene expression analysis, we pre-processed count values obtained with Kallisto using Degust (DOI: 10.5281/zenodo.3258932), loading only genes that had a read count of more than 10 in at least one sample. Data was normalized using the method Voom/Limma.

For ternary plots, data was pre-processed with the Java program (PAMP_RnaSeq.java) and plotted using the R library ggtern (http://www.ggtern.com/). The detailed R script can be found on GitHub (https://github.com/steuernb/wheat_nlr).

Accession Numbers

Please refer to Supplemental Tables S5, S6 and S8.

List of Supplemental Data

Figure S1. Consensus structure of an NLR with a CC domain and the amino acid motifs that can be used to identify structures within.
Figure S2 Example of problems with the NLR gene annotation in RefSeq v1.0.

Figure S3. Phylogenetic tree of NLR loci based on concatenated motif sequences of the NB-ARC domain.

Figure S4. Motifs and integrated domains with the phylogeny of NLRs in wheat.

Figure S5. Paired-NLR candidates.

Figure S6. Introns in NLRs.

Figure S7 Consensus structure of NLRs from the clade “NB-ARC”.

Figure S8. Expression of known PAMP inducible genes in RNA samples.

Figure S9. Overlap of differentially expressed genes after flagellin and after chitin treatment.

Table S1. Cloned Resistance Genes in Triticeae.

Table S2. Number of NLR loci found in exemplary plant genomes.

Table S3. Number of NLR loci per wheat chromosome.

Table S4. Candidate NLR loci in Sr and Lr disease resistance gene map intervals projected onto Chinese Spring.

Table S5. NLR loci and overlapping genes from RefSeq annotation v1.1.

Table S6. List of transcripts that were either classified as NLR associated by NLR-Paser, overlapping with an NLR locus or found by homology search with ADR1.

Table S7. Domains found in NLR genes.

Table S8. Paired NLR candidates.

File S1. Gene expression in response to PAMP treatment of all genes.

Declarations
Availability of data and materials

The datasets generated and/or analysed during the current study are available in the EBI short read archive (SRA) under study numbers PRJEB23081 and PRJEB23056.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was supported by the BBSRC (including BB/L011794/1, PRR-CROP BB/G024960/1, the Norwich Research Park Doctoral Training Grant BB/M011216/1, and the cross-institute strategic programmes Designing Future Wheat and Plant Health BB/P012574/1), the 2Blades Foundation, the Betty and Gordon Moore Foundation, and the Gatsby Foundation.

Acknowledgements

We thank the IWGSC for early access to the RefSeq v1.0 of Chinese Spring, our colleagues Yajuan Yue and JIC Horticultural Services for plant husbandry, and the NBI Computing Infrastructure for Science (CiS) group for HPC maintenance. We thank David Swarbreck and Gemy Kaithakottil for technical support with Web Apollo. We thank Tobin Florio (www.flozbox.com/Science.illustrated) for the artwork in Figure 1.

Figure Legends

Figure 1. NLR-Annotator step-by-step. A, A genomic sequence is dissected into 20 kb fragments overlapping by 5 kb. B, Each fragment is translated in all six reading frames. C, Amino acid sequences are screened for NLR-associated motifs (see insert). D, The positions of motifs are projected back onto their originating 20 kb genomic fragments. E, Motif-containing genomic fragments are merged and redundant motifs resulting from overlaps are removed. F, Motif combinations
associated with an NB-ARC domain (insert, right hand side) are identified in the genomic sequence (stipled boxes). Overlapping combinations are merged. G, The NB-ARC locus is used as a seed to search the DNA sequence upstream and downstream for additional NLR-associated motifs, e.g. those indicative of a coiled coil or LRR. H, The final NLR locus is reported.

Figure 2. Physical position of NLR-associated loci for stem rust (Sr) and leaf rust (Lr) within the wheat genome. Red bars on chromosomes mark the presence of an NLR-associated locus. Gray regions depict intervals between flanking markers of fine-mapped rust R genes.

Figure 3. Phylogenetic tree of NLR genes in wheat. Cloned R genes were added to the tree. Specific clades are marked according to certain characteristics discussed in the main text: Members of clades Intron1, Intron2, Intron3 share characteristic intron/exon structure. Clades ID1 to ID5 are enriched for members with integrated domains. Members of clade NB-ARC have a truncated NB-ARC domain preceding a complete NB-ARC domain. Clade Helper is enriched for NLRs being hypothesized to be “helpers”. An interactive version of this figure is available at https://itol.embl.de/shared/steuernb

Figure 4. Estimated detectability of NLR transcripts in transcriptome studies. The percentage of expressed NLR transcripts (Y-axis) in leaves from 3-leaf stage are shown in relation to the amount of sequencing data (X-axis) used as an input. A transcript is considered detectable if the combined length of mapped reads exceeds...
5 times the length of the transcript. The red line indicates the maximum percentage of NLR transcripts detected with 305 Gb of RNA-Seq data.

Figure 5. Expression of NLRs following PAMP treatment. Ternary diagrams show the relative gene expression between samples before treatment (000), after 30 minutes (030), and after 180 minutes (180), where a) is flg22 (F) treatment, b) is chitin (C) treatment and c) is mock (H) treatment. Ternary diagram d) shows the difference for mock, flg22 and chitin 30 minutes after treatment. Color (from yellow to red) and dot size are proportional to the maximum expression value for the respective gene.

Figure S1. Consensus structure of an NLR with a CC domain and the amino acid motifs that can be used to identify structures within. LRR motifs may appear in different order and copy number variation.

Figure S2 Example of problems with the NLR gene annotation in RefSeq v1.0. The blue histogram on top visualizes transcript support from NLR-enriched cDNA. The blue bar below is an NLR locus called with NLR-Annotator. Below are gene models from IWGSC RefSeq v1.0 annotation that overlap with the NLR locus. Red, green and blue color in the gene model indicate different reading frames. This region is the best hit for the Pm2 resistance gene (Sanchez-Martin et al., 2016). Twelve bases in the original (Ulka) coding sequence of Pm2 have been “replaced” by five bases in Chinese Spring causing a frame shift and early stop codon (boxed insert).

Figure S3. Phylogenetic tree of NLR loci based on concatenated motif sequences of the NB-ARC domain. Colored leaves correspond to loci overlapping with genes in
clades (Figure 3) highlighted for specific features.

Figure S4. Motifs and integrated domains with the phylogeny of NLRs in wheat. The phylogeny corresponds to Figure 3. Regions in the coding sequence of the genes that encode for NLR-associated motifs as well as integrated domains are displayed. Color coding of motifs is consistent to Figure S1.

Figure S5. Paired-NLR candidates. Connectors between NLRs in the phylogenetic tree indicate a head-to-head formation and a distance of less than 20 kb. Connectors in dark green mark distances of less than 5 kb. Color coding of clades is in accordance to Figure 3.

Figure S6. Introns in NLRs. The NLR phylogeny has been extended with an annotation of the intron-exon structure along with NLR-associated motifs of the genomic sequence between start- and stop-codon of the genes.

Figure S7 Consensus structure of NLRs from the clade “NB-ARC”. The common NB-ARC domain is preceded by a truncated NB-ARC domain.

Figure S8. Expression of known PAMP inducible genes in RNA samples. Expression was measured using quantitative RT-PCR.

Figure S9. Overlap of differentially expressed genes after flagellin and after chitin treatment. A) shows the overlap with a fixed threshold of 2-fold overexpression after
30 minutes of treatment, in b) any overexpression is counted in either flagellin or chitin as long as at least the other PAMP shows 2-fold over-expression.
Kalyanaraman A, Barbazuk B, Michael TP, Hazen SP, Bragg JN, Laudencia-Chingcuano D, Weng YQ, Haberer G, Spannagl M, Mayer K, Rattei T, Mitros T, Lee SJ, Rose JKC, Mueller LA, York TL, Wicker T, Buchmann JP, Tanskanen J, Schulman AH, Gundlach H, de Oliveira AC, Maia LD, Belknap W, Jiang N, Lai JS, Zhu LC, Ma JX, Sun C, Pritham E, Salse J, Murat F, Abrouk M, Bruggmann R, Messing J, Fahlgren N, Sullivan CM, Carrington JC, Chapman EJ, May GD, Zhai JX, Gansmann M, Gura zad SGR, German M, Meyers BC, Green PJ, Tyler L, Wu JJ, Thomson J, Chen S, Scheller HV, Harholt J, Ulvskov P, Kimbrel JA, Bartley LE, Cao PJ, Jung KH, Sharma MK, Vega-Sanchez M, Ronald P, Dardick CD, De Bodt S, Vereilst W, Inze D, Heese M, Schnittger A, Yang XH, Kalluri UC, Tuskan GA, Hua ZH, Vierstra RD, Cui Y, Liu ZY, Yilmaz A, Grotewold E, Sibout R, Hematy K, Mouille G, Hoffe H, Pelloux J, O'Connor D, Schnable J, Rowe S, Harmon F, Cass CL, Byrne ME, Walsh S, Higgins J, Li PH, Brutnell T, Unver T, Budak H, Belcram H, Charles M, Chalhoub B, Baxter I, Initiative IB (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763-768

Xu X, Pan SK, Cheng SF, Zhang B, Mu DS, Ni PX, Zhang GY, Yang S, Li RQ, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin NV, Kolganova TV, Beletsky AV, Mardanov AV, Di Genova A, Bolser DM, Martin DMA, Li GC, Yang Y, Kuang HH, Hu Q, Xiong XY, Bishop GJ, Sagredo B, Mejia N, Zagorski W, Gromadka R, Gavar J, Szczesny P, Huang SW, Zhang ZH, Liang CB, He J, Li Y, He Y, Xu JF, Zhang YJ, Xie BY, Du YC, Qu DY, Bonierbale M, Ghislain M, Herrera MD, Giuliano G, Pietrella M, Perrotta G, Facella P, O'Brien K, Feingold SE, Barreiro LE, Massa GA, Diamnra L, Witty RR, Vaillancourt B, Lin MN, Massa A, Geoffroy M, Lundback S, DellaPenna D, Buell CR, Sharma SK, Marshall DF, Waugh R, Bryan GJ, Dostefanis M, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JME, Nielsen KL, Sonkderka M, Iovene M, Torres GA, Jiang JM, Veilleux RE, Bachem CWB, de Boer J, Homb T, Kooloomsterman B, van Eck H, Datema E, Hekkert BTL, Goverse A, van Ham RCHJ, Visser RGF, Consortiu PGS (2011) Genome sequence and analysis of the tuber crop potato. Nature 475: 189-U194

Yang X, Wang J (2016) Genome-Wide Analysis of NBS-LRR Genes in Sorghum Genome Revealed Several Events Contributing to NBS-LRR Gene Evolution in Grass Species. Evol Bioinform Online 12: 9-21

Yi HK, Richards EJ (2009) Gene duplication and hypermutation of the pathogen resistance gene SNC1 in the Arabidopsis bial variant. Genetics 183: 1227-1234

Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7: 203-214

Zhao GY, Zou C, Li K, Wang K, Li TB, Gao LF, Zhang XH, Wang HJ, Yang ZJ, Liu X, Jiang WK, Mao L, Kong XY, Jiao YM, Jia JZ (2017) The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants 3: 946-955

Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6
Figure 1. NLR-Annator step-by-step.
A, A genomic sequence is dissected into 20 kb fragments overlapping by 5 kb. B, Each fragment is translated in all six reading frames. C, Amino acid sequences are screened for NLR-associated motifs (see insert). D, The positions of motifs are projected back onto their originating 20 kb genomic fragments. E, Motif-containing genomic fragments are merged and redundant motifs resulting from overlaps are removed. F, Motif combinations associated with an NB-ARC domain (insert, right hand side) are identified in the genomic sequence (stipled boxes). Overlapping combinations are merged. G, The NB-ARC locus is used as a seed to search the DNA sequence upstream and downstream for additional NLR-associated motifs, e.g. those indicative of a coiled coil or LRR. H, The final NLR locus is reported.
Figure 2. Physical position of NLR-associated loci for stem rust (Sr) and leaf rust (Lr) within the wheat genome. Red bars on chromosomes mark the presence of an NLR-associated locus. Gray regions depict intervals between flanking markers of fine-mapped rust R genes.
Figure 3. Phylogenetic tree of NLR genes in wheat.
Cloned R genes were added to the tree. Specific clades are marked according to certain characteristics discussed in the main text: Members of clades Intron1, Intron2, Intron3 share characteristic intron/exon structure. Clades ID1 to ID5 are enriched for members with integrated domains. Members of clade NB-ARC have a truncated NB-ARC domain preceding a complete NB-ARC domain. Clade Helper is enriched for NLRs being hypothesized to be “helpers”.
An interactive version of this figure is available at https://itol.embl.de/shared/steuernb
Figure 4. Estimated detectability of NLR transcripts in transcriptome studies. The percentage of expressed NLR transcripts (Y-axis) in leaves from 3-leaf stage are shown in relation to the amount of sequencing data (X-axis) used as an input. A transcript is considered detectable if the combined length of mapped reads exceeds 5 times the length of the transcript. The red line indicates the maximum percentage of NLR transcripts detected with 305 Gb of RNA-Seq data.
Figure 5. Expression of NLRs following PAMP treatment.
Ternary diagrams show the relative gene expression between samples before treatment (000), after 30 minutes (030), and after 180 minutes (180), where a) is flg22 (F) treatment, b) is chitin (C) treatment and c) is mock (H) treatment. Ternary diagram d) shows the difference for mock, flg22 and chitin 30 minutes after treatment. Color (from yellow to red) and dot size are proportional to the maximum expression value for the respective gene.
Parsed Citations

Abu Sadat M, Choi J (2017) Wheat Blast: A new fungal inhabitant to Bangladesh threatening world wheat production. Plant Pathology Journal 33: 103-108

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JDG (2014) Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. Bmc Plant Biology 14

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Sannagil M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccarferri M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Kashkush K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357: 93-96

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Baggs E, Dagdas G, Krasileva KV (2017) NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Current Opinion in Plant Biology 38: 59-67

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bailey PC, Schudoma C, Jackson W, Baggs E, Dagdas G, Haerty W, Moscou M, Krasileva KV (2018) Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol 19: 23

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14: 48-54

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bevan MW, Uauy C, Mullff BBH, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543: 346-354

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bhattacharya S (2017) Deadly new wheat disease threatens Europe’s crops. Nature 542: 145-146

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34: 525-527

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Brenchley R, Sannagil M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft L, Gu Y, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491: 705-710

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN (2014) A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Frontiers in Plant Science 5

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Chavan S, Gray J, Smith SM (2015) Diversity and evolution of Rp1 rust resistance genes in four maize lines. Theoretical and Applied Genetics 128: 985-998

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Choulet F, Alberti A, Theil S, Glover N, Barve V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Le Gouis J, Balfourier F, Alaix M, Jamiloux V, Poulain J, Durand C, Baille A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepeele K, Anna S (2020) A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology 18

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Copyright © 2020 American Society of Plant Biologists. All rights reserved.
Jiao YP, Peluso P, Shi JH, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei XH, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546: 524-

Jones JDG, Dangl JL (2006) The plant immune system. Nature 444: 323-329

Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDG, Hein I (2012) Identification and localisation of the NB-LRR gene family within the potato genome. Bmc Genomics 13

Kombrink A, Sanchez-Vallet A, Thonma B (2011) The role of chitin detection in plant-pathogen interactions. Microbes and Infection 13: 1168-1176

Kourelis J, van der Hoorn RAL (2018) Defended to the Nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell

Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16: 2870-2894

Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, Stein L, Holmes IH, Elsik CG, Lewis SE (2013) Web Apollo: a web-based genomic annotation editing platform. Genome Biology 14

Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research 44: W242-W245

Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Research 43: D257-D260

Li J, Ding J, Zhang W, Zhang Y, Tang P, Chen JQ, Tian D, Yang S (2010) Unique evolutionary pattern of numbers of gramineous NBS-LRR genes. Mol Genet Genomics 283: 427-438

Loure C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillet C, Keller B (2009) Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant Journal 60: 1043-1054

Luo MC, Gu YQ, Puu d, Wang H, Twardziok SO, Deal KR, Huo NX, Zhu TT, Wang L, Wang Y, Mcguire PE, Liu SY, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yuan LX, Wang ZZ, Xia QQ, Xiao LC, Anderson OD, Ouyang SH, Liang Y, Zimin AV, Pertega G, Qi P, Ennetzen JLB, Dai XT, Dawson MW, Muller HG, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KFX, Lu FH, Bevan MW, Leroy P, Li PC, You FM, Sun QX, Liu ZY, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvorak J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551: 498-502

Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, Himmelbach A, Mascher M, Bagnaresi P, Faccioli P, Cozzio P, Laura M, Lazzari B, Stella A, Manconi A, Gnocchi M, Moscatelli M, Avni R, Deek J, Biyiklioglu S, Frascaroli E, Corneti S, Salvi S, Sonnante G, Desiderio F, Mare C, Crosatti C, Mica E, Ozkan H, Kilian B, De Vita P, Marone D, Joukhadar R, Mazzucotelli E, Nigro D, Gadaleta A, Chao S, Faris JD, Melo ATO, Pumphrey M, Pecchioni N, Milanesi L, Webe K, Ens J, MacLachlan RP, Clarke JM, Sharpe AG, Koh CS, Liang KYH, Taylor GJ, Knox R, Budak H, Mistrangelo AW, Xu SS, Stein N, Hale I, Distelfeld A, Hayden MJ, Tuberosa R, Walkowiak S, Mayer KFX, Ceriotti A, Poznik C, Cattivelli L (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51: 885-895
Mago R, Zhang P, Vautrin S, Simkova H, Bansal U, Luo MC, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Dolezel J, Bernards C, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nature Plants 1

McCormack C (2018) Wheat will not be a viable crop in Ireland by 2022, warn tillage experts. In. https://www.independent.ie/business/farming/tillage/wheat-will-not-be-a-viable-crop-in-ireland-by-2022-warn-tillage-experts-35507410.html

Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant Journal 20: 317-332

Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-Wide Analysis of NBS-LRR-Encoding Genes in Arabidopsis. The Plant Cell 15: 809-834

Ming R, Hou SB, Feng Y, Yu QY, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen CX, Qian WB, Shen JG, Du P, Eustice M, Tong E, Tang HB, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhou YJ, Schatz M, Nagarajan N, Acob RA, Guan PZ, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang JM, Wang JP, Na JK, Shakerov EV, Haas B, Thimmmapuran J, Nelson D, Wang XY, Bowers JE, Genschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei HR, Irikura B, Paidi M, Jiang N, Zhang WL, Presting G, Wondos A, Navajas-Perez R, Torres MJ, Feltus FA, Porter B, Li YJ, Burroughs AM, Luo MC, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler DA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) Thedraft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452: 991-U997

Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y (2009) RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacteriopathogens. Plant Journal 60: 218-226

Noel L, Moores TL, van der Biezen EA, Parniske M, Daniels MJ, Parker JE, Jones JDG (1999) Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11: 2099-2111

Pal T, Jaiswal V, Chauhan RS (2016) DRPPP: A machine learning based tool for prediction of disease resistance proteins in plants. Comput Biol Med. 78: 42-48

Price MN, Dehal PS, Arkin AP (2010) FastTree 2 - approximately maximum-likelihood trees for large alignments. Plos One 5

Ramirez-González RH, Borill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson A, Cory A, Floreo T, Concila L, Jayer C, Schoonbeek HJ, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed L, Latrassine D, Bendahmane A, Consortium TiWGS, Wulff BBH, Appels R, Tiwari VK, Datia R, Choulet F, Pozniak C, Provar NT, Sharpe AG, Pau E, Spannagl M, Bräutigam A, Uaoy C (2018) The transcriptional landscape of polyploid wheat. Science 361

Sanchez-Martin J, Steuernagel B, Ghosh S, Herren H, Hurni S, Adamski N, Vrana J, Kubalakova M, Krattinger SG, Wicker T, Dolez J,
Steuerneagel B, Jupe F, Witek K, Jones J, Wulff BBH (2015) NLR-parser: rapid annotation of plant NLR complements. Bioinformatics 31: 1655-1667

Steuerneagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayiffe M, Bariana H, Jones J, Lagudah ES, Wulff BBH (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology 34: 652-655

Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant Journal 26: 101-112

Thind AK, Wicker T, Simkova H, Fossati D, Moulet O, Brabant C, Vrana J, Dolezel J, Krattinger SG (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nature Biotechnology 35: 793-796

Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smith M, Lail K, Tice H, Grimwood J, McKenzie N, Huo NX, Gu YQ, Lazo GR, Anderson OD, You FM, Luo MC, Dvorak J, Wright J, Febrer M, Idziak D, Hasterok R, Lindquist E, Wang M, Fox SE, Priest HD, Filichkin SA, Givan SA, Bryant DW, Chang JH, Wu HY, Wu H, Hsiia AP, Schnable PS, Kalyanaraman A, Barbazuk B, Michael TP, Hazen SP, Bragg JN, Laudencia-Chingcuano D, Weng YQ, Haberer G, Spannagl M, Page SR, Patenaude RR, Mangel AJ, Rapp D, Mellgren P, Schaal BC, Gromadka R, Gawor J, Szczesny P, Huang SW, Zhang ZH, Liang CB, He J, Li Y, He Y, Xu J, Zhang YJ, Xie BY, Du YC, Qu DY, A V, Givan SA, Bryant DW, Chang JH, Wu HY, Wu W, Hsiia AP, Schnable PS, Kalyanaraman A, Barbazuk B, Michael TP, Hazen SP, Bragg JN, Laudencia-Chingcuano D, Weng YQ, Haberer G, Spannagl M, Page SR, Patenaude RR, Mangel AJ, Rapp D, Mellgren P, Schaal BC, Gromadka R, Gawor J, Szczesny P, Huang SW, Zhang ZH, Liang CB, He J, Li Y, He Y, Xu J, Zhang YJ, Xie BY, Du YC, Qu DY, Bonierbale M, Ghislain M, Herrera MD, Giuliano G, Pietrella M, Perrotta G, Facella P, O'Brien K, Feingold SE, Barreiro LE, Massa GA, Diangam L, Whitty BR, Valiavantcar B, Lin LH, Massa A, Geoffrey M, Lundback S, DellaPenna D, Buell CR, Sharma SK, Marshall D, Walach R, Bryant G, Stedmanis F, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JME, Nielsen KL, Sonderkaer M, Iovene M, Torres GA, Jiang JM, Veilleux RE, Bachem CWB, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekker BTL, Gaverse A, van Ham CRHJ, Visser RGF, Consortios PGS (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763-768

Xu X, Pan SK, Cheng SF, Zhang B, Mu DS, Ni PX, Zhang GY, Yang S, Li RQ, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin NV, Kolganova TV, Beletsky AV, Mardanov AV, Di Genova A, Bolser DM, Martin DMA, Li GC, Yang Y, Kuang HH, Hu Q, Xiong XY, Bishop GJ, Sagredo B, Mejia N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang SW, Zhang ZH, Liang CB, He J, Li Y, He Y, Xu JF, Zhang YJ, Xie BY, Du YC, Qu DY, Bonierbale M, Ghislain M, Herrera MD, Giuliano G, Pietrella M, Perrotta G, Facella P, O'Brien K, Feingold SE, Barreiro LE, Massa GA, Diangam L, Whitty BR, Valiavantcar B, Lin LH, Massa A, Geoffrey M, Lundback S, DellaPenna D, Buell CR, Sharma SK, Marshall D, Walach R, Bryant G, Stedmanis F, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JME, Nielsen KL, Sonderkaer M, Iovene M, Torres GA, Jiang JM, Veilleux RE, Bachem CWB, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekker BTL, Gaverse A, van Ham CRHJ, Visser RGF, Consortios PGS (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763-768
Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7: 203-214
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Zhao GY, Zou C, Li K, Wang K, Li TB, Gao LF, Zhang XX, Wang HJ, Yang ZJ, Liu X, Jiang WK, Mao L, Kong XY, Jiao YN, Jia JZ (2017) The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants 3: 946-955
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title