Supporting Information

Olefin metathesis catalyzed by a Hoveyda-Grubbs-like complex chelated to bis(2-mercaptoimidazolyl) methane: a predictive DFT study

J. Pablo Martínez§*

orcid.org/0000-0002-6589-790X; email: p.martinez@cent.uw.edu.pl

Bartosz Trzaskowski§*

orcid.org/0000-0003-2385-1476; email: b.trzaskowski@cent.uw.edu.pl

§ Centre of New Technologies, University of Warsaw, 02-097 Warszawa, Poland
Fig. S1 Alternative C=C coordination to the metal.

Fig. S2 Relative Gibbs free energies profiles (kcal/mol) of the initiation phase for precatalyst 1d. Energy differences are relative to complex 1a. Both paths via d, converged to the same MCB 6d.
The dissociative path reported in Figure 5 in the main manuscript corresponds to $\phi < 0$, which may be counterintuitive because the isopropoxy group hinders the styrene rotation in this direction. However, the energy barrier associated with this step is only 11.8 kcal/mol, which is calculated via $2d^\ddagger$ ($\phi = -69.6^\circ$, $d_{Ru-O} = 3.75 \text{ Å}$). A continued styrene rotation leads to the structure $3d'$ localized at 9.9 kcal/mol ($\phi = -113.5^\circ$, $d_{Ru-O} = 4.21 \text{ Å}$), followed by $3d$ ($\phi = 176.8^\circ$, $d_{Ru-O} = 4.66 \text{ Å}$). In the case of incomplete rotation of the styrene (these are not shown in Figure 5 and are denoted as xd', $x = 3$ to 6), the isopropoxy group is located below the ruthenium atom (in standard orientation with NHC located above the ruthenium atom) in $4d$ and, based on linear transit calculations, we observed that the side- and bottom-bound mechanisms depend on the ethylene carbon that reacts first. In the case of $5d'^\ddagger_{cis}$, the isopropoxy group was spontaneously linked to ruthenium again ($\phi = 15.9^\circ$, $d_{Ru-O} = 2.48 \text{ Å}$). On the other hand, the analogous transition state $5d'^\ddagger_{trans}$ prevents the styrene back-rotation ($\phi = 167.9^\circ$, $d_{Ru-O} = 4.70 \text{ Å}$). The structural descriptors d_1, d_2, and d_3 are similar for both transition states, but the energy barrier from $4d$ to $5d'^\ddagger_{cis}$ is slightly lower (12.5 compared to 14.8 kcal/mol with $5d'^\ddagger_{trans}$, see Figure S2). On the other hand, $6d'^\ddagger_{cis}$ is highly stabilized by 14.1 kcal/mol compared to $1d$. Attempts to localize $7d'^\ddagger$ from $6d'^\ddagger_{cis}$ were unsuccessful, since the Ru-O bond dissociates during the linear-transit calculations. The high stabilization of $6d'^\ddagger_{cis}$ represents an important drawback from a practical point of view, since the course of the reaction may fall into a potential well: reversion via side $5d'^\ddagger_{cis}$ requires 24.9 kcal/mol, and progression to active catalyst $9d$ would require at least 31 kcal/mol. In contrast, even though MCB $6d_{trans}$ is moderately stabilized by 6.8 kcal/mol compared to $1d$, the 2,2'-cycloreversion is blocked by a large energy barrier of 41.7 kcal/mol, according to $7d^\ddagger$. Furthermore, we investigated an alternative pathway starting from the species $3d_r$, where the subscript “r” stands for rotated styrene at $\phi = -140.8^\circ$ and $d_{Ru-O} = 4.38 \text{ Å}$. Although $5d_r'^\ddagger_{trans}$ is 4.7 kcal/mol lower than the analogous $5d'^\ddagger_{cis}$ (details in Figure S2), the resulting MCB $6d_r$ is even more stabilized by 18.6 kcal/mol as compared to $1d$. Therefore, these results suggest that productive olefin metathesis is hindered by path d.

S3
Table S1 Evolution of structural parameters as defined in Scheme 3 through the initiation phase for complex 1b-f. Torsional angle, ϕ, in degrees and bond distances, d_n, in Å.

	ξ	ϕ	d_{Ru-O}	d_1	d_2	d_3
1b		10.9	2.375			
2b‡		94.9	3.841			
3b		120.6	4.114			
3c		-124.9	4.216			
4bcis		126.1	4.227	2.213	2.924	1.399
4ctrans		-119.9	4.231	2.197	3.150	1.394
5bcis		-148.1	4.595	2.335	2.110	1.442
5ctrans		161.9	4.642	2.361	2.183	1.443
6cis		-109.9	4.016	2.710	1.534	1.537
6trans		101.4	4.272	2.586	1.553	1.535
7cis		-119.6	4.307	2.320	1.460	2.229
7trans		116.0	4.525	2.309	1.461	2.203
8cis		-101.6	4.103	2.205	1.424	2.795
8trans		152.4	4.879	2.212	1.429	2.785
9c		-	6.164	4.908	1.340	5.555
	ξ	φ	d_{Ru-O}	d_1	d_2	d_3
---	----	-----	-----------	------	------	------
1d	12.7	2.425				
2d‡	-69.6	3.748				
3d'	-113.5	4.213				
3d	176.8	4.659				
4d	-99.2	4.083	2.170	3.002	1.426	
5dtrans	167.9	4.703	2.319	2.141	1.466	
5dcis	15.9	2.484	2.354	2.151	1.435	
6dtrans	80.9	3.932	2.704	1.524	1.534	
6dcis	32.7	2.422	2.661	1.565	1.532	
7d‡	102.0	4.209	2.976	1.407	2.515	
8d	103.6	4.104	2.131	1.443	2.840	
9d	-	2.500	6.038	1.340	5.059	

	3d\textsubscript{r}	-140.8	4.378		
4d\textsubscript{r}	-147.5	4.459	2.226	3.620	1.419
5dtrans \textsubscript{cis}	-136.1	4.414	2.319	2.122	1.443
5dtrans \textsubscript{cis}	-138.5	4.440	2.308	2.142	1.456
6d\textsubscript{r}	-114.2	4.125	2.723	1.536	1.540

Subscript \(r \) stands for an alternative rotation of the styrene fragment.
Table S1 *Continued*…

ξ	φ	d_{Ru-O}	d_1	d_2	d_3
1e	2.7	2.302			
2e	69.7	3.688			
3e'	126.7	4.485			
3e	-125.4	4.367			
4e$_{cis}$	-131.4	4.460	2.228	3.329	1.404
5e$_{cis}$	-148.6	4.569	2.301	2.138	1.443
6e$_{cis}$	-98.5	4.223	2.702	1.549	1.532
7e$_{cis}$	-136.9	4.598	2.298	1.453	2.211
8e					
9e					

ξ	φ	d_{Ru-O}	d_1	d_2	d_3
1f	-14.1	2.341			
2f	-67.4	3.116			
3f'	-118.0	4.130			
3f	121.8	4.142			
4f$_{cis}$	144.2	4.494	3.360	3.785	1.337
4f$_{cis}$	-159.3	4.573	2.147	2.973	1.438
5f$_{cis}$	177.9	4.742	2.260	1.930	1.491
6f$_{cis}$	112.9	4.258	2.683	1.548	1.530
7f$_{cis}$	87.7	4.032	2.276	1.476	1.994
8f	102.0	4.173	2.142	1.442	2.820
9f					
Pathways via 1e and 1f

In the case of complex 1e, styrene rotation occurs via 2e (φ = 69.7°, d_{Ru-O} = 3.69 Å), which is characterized as a local minimum at an energy cost of 10.3 kcal/mol (see Fig. S3). During styrene rotation towards 3e, both thiones were bonded to Ru and both Ru-S bonds were kept until the MCB. Ethylene coordination releases 1.3 kcal/mol via 4e_{cis}, and the energy barrier calculated with 5e_{cis} to form the MCB is 17.2 kcal/mol. Even though 6e_{cis} is less stabilized than side-bound 6a-c, the product release is hampered by 31.7 kcal/mol at the 2,2-cycloreversion step, despite 7e is only 16.1 kcal/mol above the precatalyst 1e. Geometry optimizations of 7e resulted in the rupture of one Ru-S bond. We assumed the reaction from 6e_{cis} may proceed with only one Ru-S bond; but it would be probably reverted through the dissociative step before MCB formation. Additionally, considering the reaction mechanisms formulated by Houk et al. (J. Am. Chem. Soc. 2012, 134, 1464) for the Grubbs-carboxylate catalyst shown in Scheme 2c (analogous to nitrate), some intermediate species resulted in only one Ru-O bond, which suggests the chelating agent links the metal centre depending on the electronic environment.

![Figure S3](image.png)

Fig. S3 Gibbs free energies profiles (kcal/mol) of the initiation phase for complexes 1e and 1f. Energy differences are relative to 1a.

In the case of 1f, the higher energy structure though the dissociative path is 3f' (φ = -118.0°, d_{Ru-O} = 4.13 Å) instead of 2f (φ = -67.4°, d_{Ru-O} = 3.12 Å), both are local minima, and the resulting energy barrier is therefore only 5.6 kcal/mol. Continued rotation is an exergonic process leading to intermediate 3f (φ = 121.8°, d_{Ru-O} = 4.14 Å), and releasing 4.9 kcal/mol. We additionally localized a transition state related to the η²-coordination of ethylene to form 4f_{cis}, which adds a second barrier of 8.2 kcal/mol via 4f as compared to 3f. The formation of 4f_{cis} releases 12.0 kcal/mol and the energy cost associated to the formation of a MCB is 21.5 by means of 5f_{cis}, yet the MCB 6f_{cis} is highly stabilized by 20.2 kcal/mol. Nonetheless, we observed that reversion of the reaction from the olefin coordination step towards 1f occurs at a lower energy cost. We conclude therefore that olefin metathesis across complex 1f is not viable since the reaction will be probably reverted before reaching the respective MCB.
Table S2 Strain (ΔE_{strain}), interaction (ΔE_{int}), and binding energies (BE) in kcal/mol for the active catalysts (fragment f_i) under study coordinated to ethylene (f_2). Electronic energies calculated at (PB-SC-PCM:toluene)M06-D3/LACV3P++//B3LYP-D3/LACVP**.

| Species | $\Delta E_{\text{str/i}}$ | $\Delta E_{\text{str/2}}$ | ΔE_{strain} | ΔE_{int} | $|BE|$ |
|---------|---------------------|---------------------|---------------------|---------------------|-------|
| 4a$_{\text{trans}}$ | 21.02 | 7.69 | 28.71 | -47.87 | 19.16 |
| 4a$_{\text{cis}}$ | 22.53 | 12.84 | 35.37 | -52.69 | 17.32 |
| 4b$_{\text{cis}}$ | 24.68 | 13.13 | 37.81 | -55.44 | 17.63 |
| 4c$_{\text{trans}}$ | 25.95 | 7.62 | 33.57 | -47.06 | 13.49 |
| 4c$_{\text{cis}}$ | 24.99 | 8.31 | 33.30 | -44.86 | 11.56 |
| 4d | 27.16 | 15.30 | 42.46 | -58.94 | 16.48 |
| 4d$_{\text{r}}$ | 20.38 | 12.20 | 32.58 | -55.61 | 23.03 |
| 4e$_{\text{cis}}$ | 14.41 | 9.68 | 24.08 | -42.75 | 18.67 |
| 4f$_{\text{cis}}$ | 20.73 | 19.55 | 40.28 | -63.29 | 23.01 |

* Strain is evaluated considering distortion of precatalyst 1.

Fig. S4 Coordination of the thione C=S bond to Ru followed by catalyst decomposition.
Fig. S5 3D representation of DFT-optimized geometries of a) active catalyst 9, and b) olefin coordination corresponding to the propagation phase. Gibbs energy comparisons are given in kcal/mol for each case. Structures to the left are the ones discussed in the main manuscript. Hydrogen atoms are hidden for the sake of clarity.
Table S3 Total energy values (E) and Gibbs free energy values (G; as defined in the manuscript) for structures reported in Table S1 in the same order, along with Cartesian coordinates and its corresponding 3D view of optimized geometries. Species used for the analysis of stereoselectivity are also included consecutively.

Species	gas-phase B3LYP-D3/LACVP**	solvated M06-D3/LACV3P++**	M06/B3LYP			
	ZPE (kcal/mol)	S (cal/mol)	H (kcal/mol)	E_{gas} (a.u.)	E_{solv} (kcal/mol)	G_{solv} (kcal/mol)
1a	487.695	282.000	31.097	-768.860014	-1.7939	-1737054.427
2a‡	487.414	287.006	31.334	-768.834193	-2.1463	-1737040.113
3a'	486.715	287.199	31.122	-768.827696	-2.3037	-1737037.163
3a	487.812	284.998	31.264	-768.840739	-2.2677	-1737043.416
4a_{trans}	522.232	297.407	33.437	-847.425648	-2.4487	-1786323.645
5a_{trans}	521.323	296.682	32.686	-847.394068	-2.0104	-1786304.709
6a_{trans}	523.543	287.474	32.021	-847.421393	-2.2068	-1786317.752
7a‡	521.325	294.878	32.624	-847.392770	-2.3032	-1786303.709
8a	521.412	297.471	33.085	-847.417505	-2.1249	-1786319.278
9a	520.867	302.795	33.740	-847.397570	-2.2028	-1786308.323
9a'	520.139	306.563	34.154	-847.382516	-1.9649	-1786300.077
4a_{cis}	522.167	302.577	33.581	-847.422651	-2.6113	-1786323.265
5a_{cis}	522.550	295.490	33.042	-847.376893	-2.1328	-1786292.115
6a_{cis}	524.358	290.171	32.745	-847.456383	-2.2213	-1786338.988
7a‡	521.425	299.061	33.203	-847.394757	-1.7459	-1786304.967
8a	521.936	302.549	33.546	-847.409937	-2.6022	-1786315.535
1b	488.155	282.289	31.219	-768.856583	-2.9845	-1737052.969
2b‡	487.753	287.711	31.426	-768.831133	-2.9158	-1737038.742
3b'	487.647	294.834	32.047	-768.833584	-2.1687	-1737041.142
3b	488.175	289.539	31.816	-768.842569	-1.3112	-1737044.047
4b_{cis}	522.267	290.479	32.900	-847.421610	-2.6124	-1786318.585
5b_{cis}	522.475	282.350	32.082	-847.397051	-1.8021	-1786301.551
6b_{cis}	524.728	281.122	31.883	-847.445660	-2.1124	-1786329.944
7b‡	522.373	291.782	32.617	-847.393338	-1.6721	-1786301.470
8b	522.206	298.568	33.375	-847.415400	-2.7399	-1786317.814
9b	520.627	304.415	33.688	-847.390989	-1.8064	-1786304.572
Species	gas-phase B3LYP-D3/LACVP**	solvated M06-D3/LACV3P+++	M06/B3LYP			
---------	-----------------------------	-----------------------------	-----------			
	ZPE (kcal/mol)	S (cal/mol)	H (kcal/mol)	E_{gas} (a.u.)	E_{solv} (kcal/mol)	G_{solv} (kcal/mol)
1c	488.028	286.896	31.575	-2768.856717	-1.4085	-1737052.622
2c	486.760	293.093	31.627	-2768.829413	-1.7545	-1737038.898
3c	487.319	297.853	32.031	-2768.834388	-2.1130	-1737042.835
3c	487.743	293.362	31.883	-2768.836708	-2.1088	-1737043.236
4c_{cis}	521.739	299.701	33.296	-2847.409932	-2.3820	-1786314.909
4c_{trans}	521.517	299.322	33.228	-2847.413130	-2.3031	-1786317.014
5c_{cis}	521.423	295.576	32.811	-2847.391214	-1.6913	-1786302.044
5c_{trans}	521.150	298.190	32.836	-2847.388470	-1.4064	-1786301.064
6c_{cis}	524.068	295.040	32.929	-2847.456129	-1.7160	-1786339.881
6c_{trans}	523.624	293.043	32.554	-2847.425150	-2.0559	-1786321.004
7c_{cis}	521.856	297.136	33.102	-2847.395533	-2.0368	-1786304.841
7c_{trans}	521.394	294.436	32.725	-2847.387992	-1.9542	-1786300.060
8c	520.797	305.347	33.801	-2847.390454	-2.1005	-1786304.526
1d	488.680	281.213	31.303	-2768.854235	-3.3944	-1737050.976
2d^f	487.822	284.083	31.328	-2768.832857	-3.2290	-1737039.085
3d^f	487.989	287.611	31.700	-2768.840018	-3.6653	-1737044.527
3d^a	488.447	289.990	31.805	-2768.840223	-3.1271	-1737044.264
4d	522.656	286.287	32.611	-2847.416357	-3.7022	-1786316.030
5d_{trans}	522.755	290.966	32.649	-2847.391720	-3.0751	-1786301.201
5d_{cis}	522.641	292.248	32.891	-2847.394983	-3.0954	-1786303.523
6d_{trans}	524.123	291.023	33.423	-2847.413783	-1.8253	-1786316.290
6d_{cis}	524.103	296.376	32.996	-2847.434807	-3.2793	-1786328.361
7d^f	520.723	296.644	33.292	-2847.352882	-2.5899	-1786279.426
8d	522.619	297.369	33.218	-2847.418198	-2.8699	-1786319.087
9d	521.707	301.325	33.778	-2847.379815	-3.0672	-1786296.730
Species	gas-phase B3LYP-D3/LACVP**	solvated M06-D3/LACV3P++**	M06//B3LYP			
-----------	----------------------------	------------------------------	------------			
	ZPE (kcal/mol)	S (cal/mol)	H (kcal/mol)	\(\text{E}_{\text{gas}}\) (a.u.)	\(\text{E}_{\text{solv}}\) (kcal/mol)	\(G_{\text{solv}}\) (kcal/mol)
3d\(_r\)	487.958	285.942	31.376	-2768.849732	-2.3530	-1737049.168
4d\(_r\)	522.458	291.773	33.023	-2847.427024	-3.5521	-1786323.995
5d\(_r\)	522.155	288.380	32.595	-2847.382408	-2.8461	-1786295.011
5d\(_r\)	522.632	289.486	32.686	-2847.391190	-2.3054	-1786299.743
6d\(_r\)	524.587	294.807	32.833	-2847.444241	-2.7323	-1786332.945
1e	487.641	285.935	31.728	-2768.846434	-2.4436	-1737047.152
2e	487.314	282.630	31.422	-2768.829605	-3.0231	-1737036.819
3e	487.023	285.324	31.605	-2768.835006	-4.1103	-1737047.540
4e	487.776	273.300	30.739	-2768.837643	-2.9506	-1737039.229
5e\(_r\)	523.360	287.135	32.754	-2847.410849	-3.4955	-1786311.772
5e\(_r\)	522.400	285.173	32.652	-2847.384191	-2.5603	-1786294.586
6e\(_r\)	524.707	285.353	32.572	-2847.387299	-2.9052	-1786326.083
7e\(_r\)	521.293	300.371	33.411	-2847.374702	-3.4864	-1786294.437
8e	522.664	292.837	33.248	-2847.406811	-4.503	-1786312.166
9e	520.921	294.807	32.833	-2847.444241	-2.7323	-1786332.945
1f	487.899	274.076	30.636	-2768.849583	-1.8400	-1737045.822
2f	486.362	280.737	31.157	-2768.836631	-2.0110	-1737040.868
3f\(_r\)	487.135	292.714	31.977	-2768.832700	-1.8193	-1737040.188
4f\(_r\)	487.678	289.331	31.909	-2768.849084	-3.5391	-1737050.705
5f\(_r\)	521.079	308.440	34.197	-2847.391269	-2.7072	-1786305.888
6f\(_r\)	522.421	299.102	33.510	-2847.422623	-1.8267	-1786321.243
7f\(_r\)	521.798	290.501	32.593	-2847.390721	-1.2874	-1786299.661
8f	524.850	289.066	32.647	-2847.442797	-1.8712	-1786329.389
9f	520.529	303.017	33.767	-2847.388166	-1.1778	-1786301.775
1g	487.305	279.773	31.451	-2768.830174	-3.4267	-1737036.707
1h	487.657	281.702	31.475	-2768.827055	-2.8689	-1737034.392
Stereoselectivity

Species	E_{gas} (a.u.)	E_{solv} (kcal/mol)	G_{solv} (kcal/mol)
9a	-2384.112912	-2.1888	-1495708.639
9a'	-2384.106657	-3.0125	-1495703.660
10a$_{trans}$	-2501.989940	-1.8389	-1569626.063
10a'$_{trans}$	-2501.980252	-1.8217	-1569618.806
10a$_{cis}$	-2501.981431	-2.0743	-1569620.375
10a'$_{cis}$	-2501.969593	-2.0500	-1569614.318
11a'$_{path\,E}$	-2501.950972	-1.7915	-1569599.755
12a$_{path\,E}$	-2501.989299	-1.7844	-1569623.601
13a$_{path\,E}$	-2501.948865	-1.4108	-1569600.229
14a$_{path\,E}$	-2501.979440	-2.3655	-1569620.833
11a'$_{path\,E'}$	-2501.948027	-1.4327	-1569598.963
12a$_{path\,E'}$	-2501.994751	-2.0553	-1569626.261
13a'$_{path\,E'}$	-2501.938013	-1.6394	-1569590.958
14a$_{path\,E'}$	-2501.972613	-2.1832	-1569614.885
11a$_{path\,Z}$	-2501.953562	-1.5015	-1569602.568
12a$_{path\,Z}$	-2501.986201	-2.1992	-1569618.096
13a$_{path\,Z}$	-2501.950525	-1.4084	-1569597.420
14a$_{path\,Z}$	-2501.973315	-1.9582	-1569612.552
11a$_{path\,S}$	-2501.972196	-1.6555	-1569600.203
12a$_{path\,S}$	-2501.986320	-1.8746	-1569620.004
13a$_{path\,S}$	-2501.948775	-1.7070	-1569596.996
14a$_{path\,S}$	-2501.965091	-3.1459	-1569610.497

15a This structure corresponds to 9a generated with ethylene in the initiation phase, already reported above.
Species	ZPE (kcal/mol)	S (cal/mol)	H (kcal/mol)	E_{gas} (a.u.)	E_{solv} (kcal/mol)	G_{solv} (kcal/mol)
9e	397.292	246.258	26.452	-2384.101623	-4.3780	-1495701.665
9e'	396.961	243.902	26.033	-2384.095200	-4.8549	-1495698.159
10e	450.261	261.593	29.023	-2501.959780	-4.5137	-1569608.005
11e‡	449.794	263.665	28.890	-2501.949723	-3.9996	-1569602.398
12e	452.466	261.522	28.537	-2501.997317	-3.1968	-1569628.503
13e‡	450.476	262.486	28.699	-2501.943445	-1.3160	-1569594.932
14e	450.195	266.293	29.201	-2501.975318	-2.2508	-1569616.782

Species						

ethene	32.065	52.323	2.501	-78.539005	1.6695	-49263.376
styrene	140.059	104.702	7.933	-502.556887	1.6512	-315241.046
propene	50.103	63.151	3.145	-117.835434	2.0143	-73906.479
E 2-butene	67.867	71.054	4.011	-157.131053	2.3523	-98548.261
Z 2-butene	67.970	71.837	4.017	-157.129541	2.4379	-98547.351
\[5a^+_{\text{cis}} (419.84i \text{ cm}^{-1}) \]

For the sake of clarity, the chemical structures and coordinates are not visible in this text format. However, they are present in the image. The coordinates and structures are essential for understanding the chemical compounds and their electronic states. If you need further assistance with interpreting the data, please let me know! 😊
RuC₃₈N₆H₄₆S₂O₉₄

§2b (5.05 cm⁻²)
Atom	X	Y	Z
H	4.92	5.60	1.36
H	3.59	2.36	
N	4.00	1.42	1.37
H	2.60	5.22	0.63
H	1.18	4.36	1.24
H	1.09	6.09	0.91
H	2.54	3.86	
C	1.64	4.64	
N	0.24	4.48	
H	0.24	4.48	
C	0.24	4.48	
C	0.24	4.48	
C	0.24	4.48	
H	0.71	1.03	
H	1.09	1.21	
H	1.50	1.51	
H	1.53	1.24	
C	2.97	0.51	
H	0.54	1.75	
H	0.53	1.54	
H	0.93	0.93	
Ru	0.72	4.73	2.46
H	3.49	3.16	1.84
H	1.49	3.28	4.40
H	0.23	3.74	5.31
C	0.59	3.36	0.31
H	3.96	4.50	1.55
C	2.98	5.49	1.63
H	1.43	4.10	0.02
C	5.33	4.41	3.65
H	2.49	3.66	2.91
H	2.92	0.08	
C	1.16	4.09	0.69

Image:
- **1c:** A diagram showing a molecular structure with labeled atoms and bonds.
- **2c:** Another diagram showing a different molecular structure with labeled atoms and bonds.
| 8c from 6C\text{car} | 8c from 6C\text{trans} |
|---------------------|---------------------|
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{N} \) | \(\text{N} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{N} \) | \(\text{N} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{O} \) | \(\text{O} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{O} \) | \(\text{O} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{O} \) | \(\text{O} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{O} \) | \(\text{O} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{C} \) | \(\text{C} \) |
| \(\text{H} \) | \(\text{H} \) |
| \(\text{C} \) | \(\text{C} \) |
null
Stereoselectivity
RuC₃₃N₆H₄₄S₂
11a (230.64i cm⁻³)

path E

12a path E
