Вібрації в техніці та технологіях

Kupchuk I.
PhD of Engineering, Associate Professor

Tokarchuk O.
PhD of Engineering, Associate Professor

Hontar V.
postgraduate

Zamrii M.
master's student

Vinnytsia National Agrarian University

УДК 621.926/.927: 51-74
DOI: 10.37128/2306-8744-2021-1-4

THE KINEMATIC ANALYSIS OF A VIBRATION CRUSHER FOR FEED GRAIN

The high level of energy use by domestic producers does not allow for the competitiveness of livestock products in the domestic and foreign markets. Therefore, the effective functioning of farming enterprises requires the development and implementation of technologies that meet world standards for energy efficiency and reduce energy losses.

A very important and energy-consuming operation is the grinding of feed grains (wheat, barley, peas, corn, etc.). In the technological process of feed production, the share of energy consumption for grinding can reach up to 70%. Feed material usually has a high moisture content. In most cases, the grinding is performed by hammer mills. However, when grinding grain with high moisture content this crushing method (by hammer mills) is ineffective.

This article is devoted to solving the actual problem: minimizing energy consumption for grinding of feed grains when making feed for farm animals namely the theoretical study of the motion laws of the proposed technological equipment. Presented schematic diagram vibration disk-type crusher for feed material realizes the idea of a combined interaction of vibration and rotational motion of equipment, a combination of shock and cutting impact of work items on the material.

This will allow to process raw material with high moisture content without significantly reducing the performance of the machine and facilitates timely withdrawal of the product from the grinding zone.

Also, in order to establish the values of velocity of mass centers constituents vibration equipment kinematic analysis of the given machine graphic-analytical methods of theoretical mechanics and the theory of mechanisms and machines was performed, including established patterns of change of linear velocity of the centers of mass and structural elements in the future will help determine the total kinetic energy of this oscillatory system.

Keywords: vibration disk-type crusher, kinetic energy, absolute velocity, relative velocity, frame velocity, angular velocity, principle of superposition.

Introduction. Profitability and competitiveness of the industry largely dependents on direct production costs, particularly for machining material – its crushing [1, 2]. As experience shows [3], upgrade of existing and new designs of machines completes by using fundamental theoretical assumptions, including mechanics and mathematical methods for formalization and solving problems of analysis and synthesis of technology and design parameters of development [4]. Therefore, the effective implementation of constructive machines to perform the designated operations and studies, including theoretical, its parameters determines the relevance and practical value of these studies.

The analysis of recent research and publications. One of the most important energy performance of any mechanical system celebrated its total kinetic energy [4, 5, 6].

It is well known that the kinetic energy of a plane mechanism for any of its provisions is the
sum of the kinetic energies of all its moving parts can generally be represented as [7]:

\[
T = \sum_{i}^{n} T_i = \sum_{i}^{n} \left(\frac{I_{i}}{2} \omega_i^2 + m_i \nu_i^2 \right),
\]

where: \(I_{i} \) – the moment of inertia and \(\omega_i \) - second level axis passing through the center of mass \(c.m. \) perpendicular to the plane of movement;
\(\omega_i \) – angular velocity and \(\eta \) - second level;
\(m_i \) – weight and \(\eta \) - second level;
\(\nu_i \) – center of mass and velocity \(\eta \) - second level.

Therefore, based on the complexity of the law of motion elements vibration equipment and to establish centers of mass velocity values of its components, you must perform kinematic analysis of machine.

The aim of this research is to determine the linear velocity of the centers of mass of structural elements vibration disk-type crusher by its kinematic analysis.

Materials and Methods. Scientific articles position based on classical theory of mechanical oscillations of the laws of theoretical mechanics and physics, kinematics analysis done analytical method, principle of superposition.

Object of study – vibration disk-type crusher (Fig. 1, a) [8].

In vibration disk-type crusher the electric motor 5 transmits to the eccentric shaft 7 (through the coupling 6) a rotary movement. The counterweights 8 is set to the eccentric shaft 7. The eccentric shaft 7 is equipped with a rotor 9 with disks 10.

The rotational movement of the eccentric shaft and counterweights leads to imbalance of the rotor 9 and the disks 10. The material is continuously fed through the feeding throat 2 and is crushed as a result of the rotating and oscillating motion of the disks 10. With reduced particle size, the crushed material under the action of centrifugal forces and oscillatory movement of the screen is sieved [8, 9].

The particles equal to or smaller than the diameter of the sieve holes 4 are discharged through the neck 3, the residue should be re-grounded. This combination of methods of action (impact and cutting) makes it possible to grinding raw materials with a high moisture content and reducing energy costs for this technological operation [10].

The machine is represented mathematical model with 6 degrees of freedom, namely the shifting of the center of mass of the container along the axis OX (Fig. 1, b), shifting the center of mass of the rotor along the axis OX, shifting the center of mass of the container along the axis OZ, shifting the center of mass of the rotor along the axis OZ, angular shifting of the rotor relative to the axis O1Y1, angular shifting of the disc relative to axis O2Y2 [10, 11].

Results. To determine the linear velocity of the centers of mass of structural elements of oscillatory system, study the mechanism is divided into elementary components are links (Fig. 2, Fig. 3, Fig. 4, Fig. 5), and realize their kinematic analysis.
Velocity for the centers mass [m/s] on the container (Fig. 2):

\[V_i = \sqrt{\dot{x}_i^2 + \dot{z}_i^2} \]

(2)

where \(\dot{x}_i, \dot{z}_i \) – the velocity c. m. container along the axis \(OX \) and \(OZ \).

![Fig. 2. Determining of container velocity](image)

Velocity for the centers mass on the rotor, m∙s\(^{-1}\) (Fig. 3):

\[V_2 = \sqrt{v_{r2}^2 + v_{e2}^2 + 2v_{r2}v_{e2} \cos \psi} \]

(3)

where \(v_{r2} \) – the relative velocity of c. m. rotor (the moving coordinate system – \(x_1y_1z_1 \)), m∙s\(^{-1}\);
\(v_{e2} \) – the frame velocity of c. m. rotor and coordinate system – \(x_1y_1z_1 \) (the fixed coordinate system – \(XYZ \)), m∙s\(^{-1}\); \(\psi \) – the angle between the vectors \(\vec{v}_{r2} \) and \(\vec{v}_{e2} \), rad.

![Fig. 3. Determining of rotor velocity](image)

Velocity of crusher disc (Fig. 4):

\[V_3 = \sqrt{v_{r3}^2 + v_{e3}^2 + 2v_{r3}v_{e3} \cos \psi} \]

(4)

where \(v_{r3} \), \(v_{e3} \) – the relative velocity of c. m. crusher disc (the moving coordinate system – \(x_2y_2z_2 \)), m∙s\(^{-1}\);
\(v_{r3} \) – the frame velocity of c. m. crusher disc and coordinate system – \(x_2y_2z_2 \) (the fixed coordinate system – \(XYZ \)), m∙s\(^{-1}\); \(\psi \) – the angle between the vectors \(\vec{v}_{r3} \) and \(\vec{v}_{e3} \).

![Fig. 4. Determining of crusher disk velocity](image)

Given the design features developed equipment we will formulate the assumption that the pattern of movement of the container and rotor are the same:

\[v_{c2} = \sqrt{\dot{x}_2^2 + \dot{z}_2^2} \cdot \dot{\phi}_2 \rightarrow \sqrt{\dot{x}_2^2 + \dot{z}_2^2} \cdot \dot{\phi}_2 \]

(5)

where: \(x_2, z_2 \) – displacement of the c. m. rotor (\(S_2 \) – point) relative to fixed axes \(OX \) and \(OZ \), m.

Due to (6) dependence (3) takes the form:

\[V_2 = \sqrt{(e \cdot \dot{\phi}_2)^2 + (x_1^2 + z_1^2)\dot{\phi}_2 + 2 \cdot e \cdot \dot{\phi}_2 \cdot x_1} \]

(7)

Velocity of crusher disc (Fig. 4):

\[V_3 = r_{disk} \cdot \dot{\phi}_3 \cdot ku \]

(8)

where: \(r_{disk} \) – the radius crusher disc, m; \(\dot{\phi}_3 \) – the angular velocity crusher disc, rad∙s\(^{-1}\); \(ku \) – the transfer coefficient of torque; \(ku = 0...1 \).
When rotating the working rotor equipment between the edge crusher disc and material, the friction forces F_{jm}, the rotation is working disk is only possible where $F_{jm} > F_{fa}$. F_{fa} is the friction forces in conjunction friction «crusher disk – disk axis». If there is $ku\to1$, an increase F_{jm}, whereas at $ku = 0 F_{jm} = 0$, and as a result $\phi_h = 0$.

If $ku > 0$, when:

$$\phi_h = \frac{\dot{\phi}_h \cdot r_{rd}}{r_{dis} \cdot ku}, \quad (10)$$

where: r_{rd} – the radius of the reference disk, m.

$$v_{e3} = \sqrt{v_{ry1}^2 + v_{eXZ}^2 + 2v_{ry1}v_{eXZ} \cos\psi_2}, \quad (11)$$

where: v_{ry1} – the relative velocity of cutting edge (the moving coordinate system – $x_1y_1z_1$), m·s$^{-1}$; v_{eXZ} – the frame velocity of the cutting edge and coordinate system – $x_2y_2z_2$ (the fixed coordinate system – $x_1y_1z_1$), m·s$^{-1}$; ψ_2 – the angle between the vectors \vec{v}_{eXZ} and \vec{v}_{eXZ}, rad.

$$v_{ry1} = r \cdot \dot{\phi}_2, \quad (12)$$

where: r – the distance from the edge of the crusher disc to the axis 0_1y_1, m.

$$v_{eXZ} = \sqrt{x_1^2 + x_2^2 + \dot{\phi}_2^2 \cdot \dot{\phi}_2} \rightarrow \sqrt{x_1^2 + z_1^2 + \dot{\phi}_2^2}, \quad (13)$$

where: x_1, z_1 – displacement of the c. m. crusher disk (S3 – point) relative to fixed axes OX and OZ, m.

Fig. 4 it follows that:

$$\cos\psi_2 = \frac{x_1}{v_{eXZ}}. \quad (14)$$

Given (14) of (11) becomes:

$$v_{e3} = \sqrt{(r \cdot \dot{\phi}_2)^2 + (x_1^2 + z_1^2) \cdot \dot{\phi}_2 + 2(r \cdot \dot{\phi}_2) x_1}. \quad (15)$$

$$\cos\psi_1 = -\cos(180° - \psi_1) = -\frac{2x_1 + r \cdot \dot{\phi}_2}{v_{e3}}. \quad (16)$$

$$V_3 = \sqrt{\left(\frac{r_{dis} \cdot \dot{\phi}_h \cdot ku}{v_{e3}}\right)^2 + \left(r \cdot \dot{\phi}_2 \right)^2 + \left(x_1^2 + z_1^2\right) \cdot \dot{\phi}_2} + \left(2r \cdot \dot{\phi}_2 x_1 - 2(r_{dis} \cdot \dot{\phi}_h \cdot ku) / 2x_1 + r \cdot \dot{\phi}_2 \right). \quad (17)$$

Velocity of c. m. counterweight (Fig. 5):

$$V_4 = \sqrt{V_{rd}^2 + V_{e4}^2 + 2V_{rd}V_{e4} \cos\psi_4}, \quad (18)$$

where: V_{rd} – the relative velocity of c. m. counterweight (the moving coordinate system – $x_1y_1z_1$), m·s$^{-1}$; V_{e4} – the frame velocity of c. m. counterweight and coordinate system – $x_1y_1z_1$ (the fixed coordinate system – XYZ), m·s$^{-1}$; ψ_4 – the angle between the velocity vector \vec{v}_{r4} and \vec{V}_e, rad.

Fig. 5. Determining of counterweights velocity

$$v_{r4} = l \cdot \dot{\phi}_{z_4}, \quad (19)$$

where: l – distance from c. m. counterweight (S4 – point) to the axis 0_1y_1, m.

Carrying velocity:

$$v_{e4} = \sqrt{x_1^2 + z_1^2 \cdot \dot{\phi}_2} \rightarrow \sqrt{x_1^2 + z_1^2 \cdot \dot{\phi}_2}, \quad (20)$$

where: x_1, z_4 – displacement of the c. m. counterweight (S4 – point) relative to fixed axes OX and OZ, m.

Fig. 5 it follows that:

$$\cos\psi_4 = \frac{x_1}{v_{e4}}, \quad (21)$$

Velocity of c. m. counterweight:

$$V_4 = \sqrt{(l \cdot \dot{\phi}_{z_4})^2 + (x_1^2 + z_1^2) \cdot \dot{\phi}_2 + 2l \cdot \dot{\phi}_2 \cdot x_1}. \quad (22)$$

Conclusions. During the execution of kinematics analysis vibration disk-type crusher graphic-analytical method were obtained velocity equations for container cenot of mass (V_2), the rotor (V_3), crusher disc (V_3) and the counterweight...
(V₄). This equations will help determine the total kinetic energy of the vibrational system.

In future research, the authors will continue work to design of equipment for grinding feed for livestock.

References

1. Kaletnik, H. M., Kulyk, M. F. & Hlushko, Ya. T. (2006). Enerhooschadni tekhnolohii kormiv – osnova konkurentozdatnosti tvarynyntstva [Energy-saving feed technologies – the basis of animal competitiveness]. Vinnytsia : Teza. 340 p. [In Ukrainian].

2. Nanka, O. V. (2015). Napriamky pidvyshchennia efektyvnosti protsesu podribnennia zernovykh kormiv. Konstruuiuvannia, vyrobnytstvo, ekspluiatatsia silskohospodarskykh mashyn [Directions for improving the efficiency of the process of grinding grain feed]. Konstruuiuvannia, vyrobnytstvo, ekspluiatatsia silskohospodarskykh mashyn – Design, manufacture, operation of agricultural machinery, 2, 152-157 [In Ukrainian].

3. Yanovych, V. P. & Kaletnik, H. M. (2017). Obgruntuvannya rezhymnykh ta konstruktivnykh parametriv hiratsiinoi mlyna dlia vyrobnytstva vysokoaktyvnykh premiksiv [Substantiation of regime and design parameters of gyration mill for production of highly active premixes]. Vibratsii v tekhnitsi ta tehnolohiiakh – Vibrations in engineering and technology, 1 (84), 15-21 [in Ukrainian].

4. Yanovych. V., Honcharuk, T., Honcharuk, I., & Kovalova, K. (2018). Engineering management of vibrating machines for targeted mechanical activation of premix components. Inmateh – Agricultural Engineering, 54, nr. 1, 25-32 [In English].

5. Bulgakov, V., Pascuzzi, S., Ivanovs, S., Kaletnik, G. & Yanovich, V. (2018). Angular oscillation model to predict the performance of a vibratory ball mill for the fine grinding of grain. Biosystems Engineering, 171, 155-164 [In English].

6. Kupchuk, I.M. (2017). Obgruntuvannya tekhnolohichnoi skhemy ta konstruktivnoi realizatsii vibratsiinoi podribnennia syrovyny spytovoho vyrobnytstva [Substantiation of the technological scheme and constructive realization of vibration crushing of raw materials of alcohol production]. Candidate’s thesis. Vinnytsia : VNAU 227 p. [In Ukrainian].

7. Solona, O. & Kupchuk, I. (2020). Dynamic synchronization of vibration exciters of the three-mass vibration mill. Przegląd Elektrotechniczny, 1, nr. 3, 163–167. doi: https://doi.org/10.15199/48.2020.03.35 [In English].

8. Palamarchuk, I.P., Yanovych, V.P. & Kupchuk, I.M. (2013). Vibrorotorna drobarka [Grinder rotor vibration]. Patent, 85270, UA [in Ukrainian].

9. Kupchuk, I. M. (2019). Eksperimentalni doslidzhennia protsesu podribnennia furazhchnogo zerna vibratsiinoi dyskovoio drobarkoi [Experimental studies of the process of grinding fodder grain with a vibrating disk crusher]. Vibratsii v tekhnitsi ta tehnolohiiakh – Vibrations in engineering and technology, 3 (94), 68-75 [In Ukrainian].

10. Kupchuk, I.M., Solona, O.V., Derevenko, I.A. & Tverdokhlib, I.V. (2018). Verification of the mathematical model of the energy consumption drive for vibrating disc crusher. Inmateh – Agricultural Engineering, 55, 111-118 [In English].

11. Yanovych, V., Tsurkan, O. & Polevoda, Yu. (2019). Development of the vibrocentric machine for the production of a basic mixture of homeopathic preparations. UPB Scientific Bulletin, Series D: Mechanical Engineering, 81, nr. 2, 13-26 [In English].

КИНЕМАТИЧЕСКИЙ АНАЛИЗ ВИБРАЦИОННОЙ ДРОБИЛКИ ДЛЯ ФУРАЖНОГО ЗЕРНА

Высокий уровень энергопотребления отечественных производителей не обеспечивает конкурентоспособности животноводческой продукции на внутреннем и внешнем рынках. Поэтому для эффективного функционирования фермерских хозяйств требуется разработка и внедрение технологий, соответствующих мировым стандартам энергоэффективности и снижения потерь энергии.

Очень важная и энергоемкая операция – измельчение кормового зерна (пшеница, ячмень, горох, кукуруза и т. д.). В технологическом процессе производства кормов доля затрат энергии на измельчение может составлять до 70%. Кормовой материал обычно имеет высокое содержание влаги. В большинстве случаев измельчение производится молотковыми мельницами. Однако при помоле зерна с повышенным содержанием влаги такой способ измельчения (молотковыми мельницами) неэффективен.

Данная статья посвящена решению актуальной проблемы — минимизации энергозатрат на измельчение фуражного зерна при приготовлении кормов для сельскохозяйственных животных, а именно теоретическому исследованию закономерностей движения предлагаемого технологического оборудования. Представленная принципиальная схема
Вібраційні дискові дробарки для фуражного зерна виробляють ідею комбінованого взаємодії вібраційного і відбивального руху робочих частин обладнання, а також забезпечують зміну вагомості робочих елементів на матеріал.

Це дозволить обробляти сировину з підвищеним вологовмістом без значного зниження продуктивності машини, а також сприятиме своєчасній евакуації готового продукту із зони подрібнення.

Також для установлення значень швидкості руху центрів мас складових частин дробарки виконано кінематичний аналіз графоаналітичними методами теоретичної механіки і теорії механізмів і машин. Таким чином визначено закономірності зміни лінійної швидкості центрів мас основних вузлів дробарки, що в майбутньому дозволять визначити повну кінетичну енергію цієї коливальної системи.

Ключові слова: вібросовкові дробарки, кінетична енергія, абсолютна швидкість, відносна швидкість, переносна швидкість, кутова швидкість, принцип суперпозиції.

Кінематичний аналіз вібраційної дробарки для фуражного зерна

Високий рівень енергоспоживання вітчизняних виробників не забезпечує конкурентоспроможності тваринницької продукції на внутрішньому і зовнішньому ринках. Тому для ефективного функціонування фермерських господарств потрібна розробка і впровадження технологій, що відповідатимуть світовим стандартам енергоефективності і зниження втрат енергії.

Дуже важлива і енергоемна операція – подрібнення кормового зерна (пшениця, ячмінь, горох, кукурудза і т. д.). У технологічному процесі виробництва кормів частка витрат енергії на подрібнення може становити до 70%.

Відомості про авторів

Купчук Ігор Миколайович – кандидат технічних наук, доцент кафедри загальнотехнічних дисциплін та охорони праці Вінницького національного аграрного університету (вл. Сонячна, 3, м. Вінниця, 21008, Україна, +380978173992, kupchuk.igor@i.ua, http://orcid.org/0000-0002-2973-6914).

Токарчук Олексій Анатолійович – кандидат технічних наук, доцент кафедри технологічних процесів та обладнання переробних і харчових виробництв Вінницького національного аграрного університету (вл. Сонячна, 3, м. Вінниця, 21008, Україна, e-mail: tokarchyk@vsau.vin.ua).

Гонтар Володимир Григорович – аспірант за спеціальністю 133 «Галузеве машинобудування» Вінницького національного аграрного університету (вл. Сонячна, 3, м. Вінниця, 21008, Україна, +380683260329, bulbashka31@gmail.com).
Замрій Михайло Анатолійович – магістрант 1 року навчання спеціалість « 208 Агроінженерія», Інженерно-технологічного факультету Вінницького національного аграрного університету (вул. Сонячна, 3, м. Вінниця, 21008, Україна, e-mail: zamrij99@gmail.com).

Купчук Ігорь Николаєвич – кандидат технических наук, доцент кафедри общеетнічних дисциплін і охорони труда Винницького національного аграрного університета (ул. Сонячна, 3, г. Вінниця, 21008, Україна, +380978173992, kuchuk.igor@i.ua, http://orcid.org/0000-0002-2973-6914).

Токарчук Алексей Анатольевич – кандидат технических наук, доцент кафедры технологических процессов и оборудования перерабатывающих и пищевых производств Винницкого национального аграрного университета (ул. Сонячна, 3, г. Вінниця, Україна, 21008, e-mail: tokarchyk@vsau.vin.ua).

Гонтар Владимир Григорьевич – аспирант по специальности 133 «Отраслевое машиностроение» Винницкого национального аграрного университета (ул. Сонячна, 3, г. Вінниця, 21008, Україна, +380683260329, bulbashka31@gmail.com).

Замрій Михайло Анатолійович – магістрант 1 року навчання спеціалість « 208 Агроінженерія», Інженерно-технологічного факультету Вінницького національного аграрного університету (вул. Сонячна, 3, м. Вінниця, 21008, Україна, e-mail: zamrij99@gmail.com).

Kupchuk Ihor – Candidate of Technical Sciences (Ph. D in Engeneering), Associate Professor of the Department of General Technical Disciplines and Labor Protection, Vinnytsia National Agrarian University (3, Sonychna St., Vinnytsia, 21008, Ukraine, +380978173992, kuchuk.igor@i.ua, http://orcid.org/0000-0002-2973-6914).

Tokarchuk Oleksii – PhD, Associate Professor of the Department of «Technological Processes and Equipment for Processing and Food Productions» of the Vinnytsia National Agrarian University (St. Solnyshchnaya, 3, Vinnytsia, Ukraine, 21008, e-mail: tokarchyk@vsau.vin.ua).

Hontar Volodymyr – postgraduate in specialty 133 «Sectoral Mechanical Engineering» of Vinnytsia National Agrarian University (3, Sonychna St., Vinnytsia, 21008, Ukraine, +380683260329, bulbashka31@gmail.com).

Zamrii Mykhailo - 1st year master's student majoring in 208 Agroengineering, Faculty of Engineering and Technology, Vinnytsia National Agrarian University (3 Sonyachna Street, Vinnytsia, 21008, Ukraine, e-mail: zamrij99@gmail.com).