Genotypic identification of *Panicum* spp. in New South Wales, Australia using DNA barcoding

Yuchi Chen1,2,3, Xiaocheng Zhu2,4, Panayiotis Loukopoulos1,3, Leslie A. Weston1,2, David E. Albrecht5 & Jane C. Quinn1,2,*

Australia has over 30 *Panicum* spp. (panic grass) including several non-native species that cause crop and pasture loss and hepatogenous photosensitisation in livestock. It is critical to correctly identify them at the species level to facilitate the development of appropriate management strategies for efficacious control of *Panicum* grasses in crops, fallows and pastures. Currently, identification of *Panicum* spp. relies on morphological examination of the reproductive structures, but this approach is only useful for flowering specimens and requires significant taxonomic expertise. To overcome this limitation, we used multi-locus DNA barcoding for the identification of ten selected *Panicum* spp. found in Australia. With the exception of *P. buncei*, other native Australian *Panicum* were genetically separated at the species level and distinguished from non-native species. One nuclear (*ITS*) and two chloroplast regions (*matK* and *trnL* intron-*trnF*) were identified with varying facility for DNA barcode separation of the *Panicum* species. Concatenation of sequences from *ITS*, *matK* and *trnL* intron-*trnF* regions provided clear separation of eight regionally collected species, with a maximum intraspecific distance of 0.22% and minimum interspecific distance of 0.33%. Two of three non-native *Panicum* species exhibited a smaller genome size compared to native species evaluated, and we speculate that this may be associated with biological advantages impacting invasion of non-native *Panicum* species in novel locations. We conclude that multi-locus DNA barcoding, in combination with traditional taxonomic identification, provides an accurate and cost-effective adjunctive tool for further distinguishing *Panicum* spp. at the species level.

Panicum represents one of the largest genera of the Poaceae, and species are widely distributed globally from the subtropics to temperate regions1. Up to 500 species are recognised worldwide, depending on the taxonomic system adopted1,2. *Panicum* species inhabit temperate, semi-arid, arid and tropical environments in Australia, encompassing a range of shady or open habitats including forests, woodlands, grasslands, wetlands and variously disturbed sites including cultivated fields1,2. The greatest numbers of distribution records of *Panicum* species in Australia are from eastern and northern Australia3. To date, 24 indigenous and nine non-native species of *Panicum* were identified in Australia (Council of Heads of Australasian Herbaria 2005- onwards, Australian Plant Census).

Currently, *Panicum* grasses are identified as economically important weeds of summer fallow pastures in Australia4. Additionally, *Panicum* grasses are also widely recognised as a common causative agent of crystal-associated cholangihepatopathy in herbivores worldwide1,6, and are the most commonly identified species associated with hepatogenous photosensitisation in Australian livestock7. Hepatotoxicity related to the ingestion of *Panicum* grass species is clearly associated with the effects of saponins or sapogenins present within this genus8. Characterisation of steroidal saponins has not been undertaken for all *Panicum* species found in Australia or elsewhere9, however, previous reports have suggested that saponins or sapogenin profiles differ between species10. It was postulated that diverse chemical profiles may be associated with differential toxicity in livestock related to the ingestion of different *Panicum* species10. Therefore, accurate and reliable identification of the *Panicum* spp. is critical for effective management, pasture monitoring, livestock disease investigation, and chemical profiling.

1School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia. 2Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, Australia. 3Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia. 4Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW, Australia. 5Australian National Herbarium, Centre for Australian National Biodiversity Research (a Joint Venture Between Parks Australia and CSIRO), Canberra, Australian Capital Territory, Australia. *email: jquinn@csu.edu.au
Traditionally, morphological features were used to differentiate *Panicum* spp. (Fig. 1)\(^1\). However, species identification based on morphology is not a trivial task as morphological differences between species can be subtle, even when considering native and non-native species\(^12,15\). A microscope is frequently needed to observe critical features such as the shape of the abscission scar at the base of the fertile lemma. Morphological keys to species are also heavily biased towards reproductive characters thereby rendering identification of sterile specimens difficult, if not impossible, even for a grass specialist. Although precise identification is possible using morphological keys, especially if reproductive material is available\(^14\), successful usage of these keys requires a clear understanding of morphological structures and a proficiency in using keys. For example, the taxonomic key to differentiate *Panicum effusum* R.Br. (native to Australia) and *P. hillmanii* Chase (introduced to Australia from North America) is based on the shape of the abscission scar of the fertile lemma. The abscission scar of the fertile lemma of *P. effusum* is entirely basally located and less than 0.5 mm wide while *P. hillmanii* has a crescentic abscission scar of the fertile lemma, extending upwards from the base, and is more than 0.5 mm wide\(^15\). The level

Figure 1. Taxonomic key for differentiation of selected *Panicum* species. Species included in this study are highlighted in pink, and other species are highlighted in yellow. \(^1\) Modified from Walsh and Entwisle.
of expertise required to detect minute morphological differences presents a major challenge for the inexperienced and examination by a grass taxonomist may ultimately be required for consistency in identification.

Molecular technologies are increasingly used to develop reliable methods for plant and animal species identification. A PCR-based genotyping method, DNA barcoding, has been extensively applied for this purpose. DNA barcoding is a method that uses short but informative standardised DNA regions ("barcodes") to identify or differentiate between species. It was first proposed in 2003, and was utilised as an important complementary method to traditional morphological identification, for vegetation and floristic surveys, ecological forensics, regulatory enforcement, community phylogenies, comparative biology and phylogenetic diversity. Selection of the "barcode" is critical to establish a successful DNA barcoding platform to identify Panicum species. An ideal barcode should be a short DNA sequence that can be routinely amplified using a standard PCR method. The amplified product should also be easily sequenced with universal primers that are anchored in highly conserved DNA regions, and the sequences should be easily aligned without extensive manual editing. Most importantly, these regions should be able to differentiate between the target species. However, unlike animals where the sequence for cytochrome oxidase 1 (CO1) in mitochondrial DNA was proposed as the universal barcode for species identification, the identification of an universal barcode for many plant species, and Panicum in particular, remains challenging due to inter-species mutation and technical reliability. Unfortunately, CO1 is not suitable for use in plants as the nucleotide substitution rate within mitochondria is relatively low. Additionally, there has been difficulty in locating highly heterogeneous regions in plant DNA due to a lack of sequence polymorphism, slow mutation rates, frequent introgression or species hybridisation between related species, and incomplete lineage sorting.

To overcome these issues, a multi-locus approach for plants was demonstrated to improve identification capability and reliability. Many barcoding studies have further suggested that a combination of rbcL and matK sequences are suitable for DNA barcode GAP analysis in Panicum spp.. Moreover, the use of the chloroplast gene ndhF, alone or in combination with rbcL and matK, has been proposed. Additionally, the use of the ndhF region may also increase the resolution level when used to discern between grass species. Unfortunately, the use of trnH-psbA for differentiating Panicum species has not proven useful, as the existence of inversions or mononucleotide repeats at this locus can result in incorrect alignments or additional difficulties in sequencing.

To date, the nuclear ribosomal Internal Transcribed Spacer (ITS) locus has not been used as a species discriminating barcode in Panicum spp., but it has been proposed that ITS is a suitable marker for genetically similar species and could be used as a core or complementary barcode. Currently, the optimal suite of barcoding loci has not yet been fully established for identification of various Panicum species in Australia. Therefore, this study has focused on the use of the nuclear locus ITS as the core barcode for genotypic identification of ten native and non-native Panicum species found in southern New South Wales, together with two plastid loci, matK and trnL intron-trnF as complementary loci.

The establishment of a robust and objective method for identification using both genetic markers and morphological traits is required to address and overcome the challenge of differentiation of Panicum species in both field monitoring and laboratory studies and would enable unambiguous identification of field samples collected at any stage of the plant's growth cycle. To achieve this outcome, we developed and validated a DNA barcoding method for identification and differentiation in ten species of Panicum that are frequently found in south-eastern Australia. This study also tested the hypothesis that Panicum species with a smaller genome size have a greater potential to become invasive in a novel environment, by determination of the genome size of several indigenous and non-native Panicum species in southern New South Wales.

Results

Sampling. Panicum plants (106 individuals) were sampled from geographically dispersed locations within a 200 km radius of Wagga Wagga, New South Wales, Australia (Fig. 2). Morphological examination of these specimens at the Australian National Herbarium (CANB) revealed that five Panicum species were captured by field sampling. To bolster the number of species included in the DNA barcode GAP analysis, sampling of herbarium specimens held by CANB was undertaken. A total of 40 samples (17 field samples and 23 herbarium samples), representing ten indigenous and non-native Panicum species, were included in the analysis (Table 1).

DNA barcode gap analyses. PCR amplification and sequencing were undertaken for all samples for the three selected regions: ITS, matK and trnL intron-trnF. Sequenced loci of these three regions were submitted to GenBank and their accession numbers were listed after the specimen's name in the phylogenetic tree. Alignments of each region were truncated at 641, 730, and 750 bp for ITS, matK and trnL intron-trnF, respectively. Concatenated loci, one nuclear locus with either one or two plastid loci, were calculated for barcoding gaps. Further intraspecific and interspecific distance analyses were performed on eight Panicum species (Table 2). P. buncei (native) and P. coloratum (non-native) were not included in these analyses as they were not genetically separated by any of the three regions.

Phylogenetic tree inferred using Bayesian inference clustered most species into highly supported clades (Fig. 3). All native species (P. effusum, P. queenslandicum, P. decompositum, P. laevinode, P. buncei) were clustered into a large group, although the posterior probability was low (59%). The majority of the non-native species (P. hillmani, P. capitare, P. miliaceum and P. gilvum) was clustered into clades separated at the species level. Most species (both native and non-native) were classified into monophyletic groups. Exceptions included the non-native species P. coloratum, which clustered with the native P. buncei.

Determination of genome size in non-native and Australian native Panicum species. To investigate the genome size of each species, and the associated hypothesis that genome size is linked to success in
novel environments, total genome size of five Panicum species, *P. capillare*, *P. decompositum*, *P. effusum*, *P. gilvum* and *P. hillmanii*, was determined using flow cytometric analysis of cells collected from fresh leaf tissue. Determination of genome size was based on coefficient of variation (CV) values below 10% (Fig. 4). The calculated genome size (1C value) of *P. capillare*, *P. decompositum*, *P. effusum*, *P. gilvum* and *P. hillmanii* was 1.24 pg, 1.49 pg and 1.52 pg, 0.21 pg and 0.24 pg, respectively, (Table 3). No significant differences in genome size were observed for samples of the same species collected from geographically distant locations.

Table 1. Origin and number of Panicum species subjected to DNA barcoding analysis and derived from field site or herbarium collections. Each species was identified as native or non-native, with continent of origin indicated.

Species	Native or non-native	Country of origin	Number of field samples	Number of herbarium samples
P. buncei F. Muell	Native	Australia	0	2
P. coloratum L	Non-native	Africa	0	2
P. capillare L	Non-native	North America	1	2
P. decompositum R.Br	Native	Australia	3	5
P. effusum R.Br	Native	Australia	4	1
P. gilvum L	Non-native	Africa	5	0
P. hillmanii Chase	Non-native	North America	4	2
P. laevigata Lindl	Native	Australia	0	3
P. miliaceum L	Non-native	Asia	0	3
P. queenslandicum Dorn	Native	Australia	0	3
recently been described, suggesting that genetic variation could be inherent at the population level. This has implications for hybridisation with non-native counterparts. Diversity in location-dependent accessions of Panicum miliaceum separated clearly from the non-native species Panicum queenslandicum, Panicum buncei, Panicum decompositum, Panicum effusum, Panicum laevinode and Panicum coloratum were found that the native species should strongly differentiate the Panicum specimens.

Given the challenging environmental conditions frequently encountered across inland Australia, the smaller genome size of the majority of non-native species investigated could be considered as supporting evidence for this hypothesis. The genome sizes of Panicum species hybridisation in southern New South Wales. Sequence combinations from nuclear and chloroplast genomes could provide additional information for enhanced species identification. For example, trnL intron-trnF shows the greatest prevalence among all noncoding chloroplast DNA sequences in GenBank to date; and may assist in identification at the genus or species level in ambiguous specimens.

We compared the genotypic identification of indigenous and invasive Panicum species in Australia, and found that the native species Panicum buncei, Panicum decompositum, Panicum effusum, Panicum laevinode and Panicum queenslandicum were separated clearly from the non-native species Panicum capillare, Panicum gilvum, Panicum hillmanii, and Panicum miliaceum. These findings suggest that native Australian Panicum species have maintained a unique genetic fingerprint despite potential for hybridisation with non-native counterparts. Diversity in location-dependent accessions of Panicum miliaceum has recently been described, suggesting that genetic variation could be inherent at the population level. This has potentially important implications for chemical or bioactive properties associated with this species. Interestingly, we noted that one non-native species, Panicum coloratum, was genetically more closely aligned with the native Panicum buncei than with non-native counterparts. Further evolutionary analysis of these species, particularly with respect to correlating the molecular results with voucher specimens located in Australian herbaria, and those more globally, may be required to ensure correct identification.

The genome size of Panicum gilvum, Panicum hillmanii, Panicum decompositum and Panicum effusum has not previously been reported even though these species are frequently encountered across southern Australia. Genome sizes of Panicum capillare, Panicum decompositum and Panicum effusum were shown to be similar to ploidy size of other previously described Panicum species. The genome sizes of Panicum hillmanii and Panicum gilvum were surprisingly smaller than predicted, and therefore we suggest a role for genome size in Panicum species identification and possibly prediction of invasive potential. Certain naturalised plants exhibit smaller genome size in contrast to their non-invasive or indigenous counterparts, with the hypothesis that small genome size may confer biological advantage for adaptation in novel habitats, possibly due to enhanced tolerance of extreme environments or via altered regulatory gene divergence. Given the challenging environmental conditions frequently encountered across inland Australia, and the successful establishment of these particular invasive grasses across southern Australia, the smaller genome size of the majority of non-native Panicum species investigated could be considered as supporting evidence for this hypothesis.

Our results have shown that the use of the nuclear ITS region (and to a lesser extent the two cpDNA regions, namely matK and trnL intron-trnF) allowed clear identification and differentiation for eight of ten Panicum species evaluated, with only Panicum buncei and Panicum coloratum unable to be segregated using this method. We suggest that the native species should strongly differentiate the Panicum specimens. An ideal barcode is typically a short DNA sequence that can be routinely amplified using a standard PCR method. The amplified product should be easily sequenced with universal primers, which are anchored in highly conserved DNA, and the sequence result should also be aligned without extensive manual editing. Additionally, but most importantly, the barcode should strongly differentiate the Panicum species, and ideally, there should be no overlap between intraspecific and interspecific divergence. Furthermore, the efficacy of any DNA barcoding methodology depends on the extent of differences between intraspecific and interspecific divergence in a selected locus or combined loci.

Table 2. Intraspecific and interspecific K2P distances for the three gene loci ITS, matK, trnL intron-trnF in eight Panicum species. Panicum buncei and Panicum coloratum were not included in this table because of overlap in respective DNA barcodes. Minimum interspecific distance, MinID; Maximum intraspecific distance, MaxID. Non-native species are denoted with a.

Species max ID %	Loci	Min ID %	MatK %	trnL intron-trnF %	ITS + MatK %	ITS + matK + trnL intron-trnF %	
	ITS	matK	trnL	ITS + matK	ITS + matK + trnL	trnL	
Panicum capillare		0.71	0.07	0.61	0.33		
Panicum decompositum	0.33	0.09	0.33	0.33	0.22		
Panicum effusum	0.03	0.06	0.05	0.03			
Panicum gilvum	0.34	0	0.22	0.15			
Panicum hillmanii		0	0	0			
Panicum laevinode	0.07	0.09	0.09	0.06			
Panicum miliaceum		0	0	0			
Panicum queenslandicum	0.14	0.14	0.27	0.09	0.16		
Figure 3. Bayesian phylogenetic relationships among ten Panicum species inferred from the concatenation of three conserved genetic sequences. Species ID on the terminal node was shown as voucher number GenBank accession number (ITS-MatK-trnL intron trnF) and species name. Clade posterior probability is indicated at nodes. Accession identifiers are shown in grey.
that additional loci are likely required for further resolution at the species level, assuming the original taxonomic identification was correct. With the exception of *P. buncei*, discrimination between native and non-native species was achieved. Further studies to evaluate additional *Panicum* species from diverse habitats across Australia could confirm the utility of this approach. In addition to the techniques presented, other molecular tools, including whole or partial genome sequencing, high resolution melt curve analysis, short tandem repeats (STR), or some combination of the above, may prove useful for rapid and refined species differentiation through estimation of other genetic parameters.

In conclusion, this study reports the use of a DNA barcoding method for distinguishing field samples of *Panicum* species regardless of phenological growth stage, in isolation or in combination with traditional morphological identification. Rapid identification of *Panicum* grasses, including those commonly implicated in crop and pasture incursions or in hepatotoxicity outbreaks in livestock, could assist producers, industry advisors, agronomists and weed scientists to identify invasive grasses accurately and quickly for control or eradication. This knowledge may also provide further insight into changing patterns of species distribution, and facilitate the development of efficacious weed management practices to limit invasive incursions or toxic outbreaks in pastures and croplands in Australia and internationally.

Materials and methods

Sampling. *Panicum* samples were collected within a 200 km radius of Wagga Wagga, New South Wales, Australia, in February–March 2017 and February–March 2018 when plants reached physiological maturity. Collection sites included roadsides, fallow croplands and pastures, and nature reserves, with a minimum distance between collection sites of 25 km. Permission for collecting non-threatened plant specimens was not required according to Biodiversity Conservation Act 2016 No 63, and verbal permissions have been given from the landowner if they were collected from private properties. Entire plants including inflorescences that exhibited visible morphological features of *Panicum* species were collected and stored at -20 °C. Whole *Panicum* plants were also collected at the reproductive phase and pressed for morphological identification and proper storage by a grass specialist and a co-author of this paper, David E. Albrecht, at the Australian National Herbarium (CANB).

Figure 4. Flow cytometry histograms of *Panicum hillmanii* (A) and *P. gilvum* (B) using radish (*Raphanus sativus*, 1C = 0.55 pg), together with *P. capillare* (C), *P. decompositum* (D) and *P. effusum* (E) using tomato (*Solanum lycopersicum*, 1C = 1.06 pg), as an internal reference.

Table 3. Flow cytometric analysis of genome size of *Panicum capillare*, *P. decompositum*, *P. effusum*, *P. gilvum* and *P. hillmanii* as estimated by comparison to *Raphanus sativus*, 1C = 0.55 pg or *Solanum lycopersicum*, 1C = 1.06 pg.
small leaf section was collected from each plant and stored at -80 °C with silica gel to maintain tissue integrity before DNA extraction. In addition, fresh leaf tissue samples were also collected and stored at 4 °C for determining genome size using flow cytometry.

To supplement field-collected plant material, an additional 23 dried leaf samples representing nine previously identified Panicum species (Table 1), were sampled from voucher specimens held within the CANB collection (Acton, ACT, Australia). Dried leaf segments from archived plants of each of targeted species were provided by David E. Albrecht.

DNA extraction and barcoding. Genomic DNA extraction was performed as described previously52. One nuclear DNA locus (ITS) and two chloroplast DNA loci (matK and trnL intron-trnF), were amplified by using MyTaq Red Mix (Bioline, Eveleigh, New South Wales, Australia). The following primer sets were used: ITS4 (TCCTCGGCTTATGATGC) and ITS5a (CTTTATCCTTTAGGGAGG) for ITS53, 390F (CGA TCTATCTTTCAATATTTG) and 1326R (TCTAGCACGAAAAGTCGAAGT) for matK34, ucp-c (CGAAAT CGGTAGACGCTACG) and ucp-f (TTTGAACCTGGTACACGAG) for trnL intron-trnF55. Amplification conditions were 95 °C for 3 min, followed by 40 cycles of 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 1 min, and a final extension at 72 °C for 5 min. PCR products were run on a 1.5% TAE agarose gel and stained using SYBRsafe (Invitrogen, Mulgrave, Victoria, Australia)56.

Sanger sequencing and DNA barcode GAP analysis. PCR products were bidirectional Sanger sequenced using the same primers by the Australian Genome Research Facility, Brisbane. Sequences were read in Geneious version 11.0.557. Forty-three sequences from each locus were aligned with a cost matrix of 65% similarity (Geneious version 11.0.5). Sequence alignments were analysed using MEGA7.0.2658 to calculate intraspecific and interspecific genetic distances with the Kimura 2-parameter (K2P) model. Sequences of three loci for each Panicum specimen were further concatenated for DNA barcode GAP analysis. Concatenated sequences of the same regions from Setaria italica, a member the tribe Paniceae, was used as an outgroup to root the tree. Phylogenetic relationships between species were inferred by MrBayes 3.2.659 using default settings (four gamma categories, Markov chain Monte Carlo (MCMC) setting include chain length 1 million, subsampling every 1000th generation, burn-in length was first 250,000 iterations) with GTR substitution model for the nuclear DNA locus (ITS) and GTR + R substitution model for two concatenated chloroplast DNA loci (matK and trnL intron-trnF) as suggested by JModelTest 2.1.1060.

Flow cytometry. Fresh leaf tissue was stored at 4 °C in moist paper towelling with cytometric analysis performed within 48 h using a Gallios Flow Cytometer (Beckman Coulter, USA). Depending on the species analysed, Raphanus sativus L. (red globe radish, 1C=0.55 pg), or Solanum lycopersicum L. (tomato, 1C=1.06 pg) were used as internal reference species for assessment of genome size. R. sativus was also used to calibrate S. lycopersicum within each run to confirm the reliability of each run. A composite leaf tissue sample of each targeted Panicum species and the reference plant, similar in size, were chopped using a clean razor blade in a premixed buffer solution, consisting of 1 ml WPB nuclear isolation buffer (0.2 M Tris, HCl, 4 mM MgCl2, 6H2O, 2 mM EDTA Na2, 2H2O, 86 mM NaCl, 10 mM sodium metabisulfite, 1% PVP-10, 1% (v/v) Triton X-100, pH 7.5)61, 50 μg propidium iodide (PI) (Sigma-Aldrich, Castle Hill, New South Wales, Australia), and 10 μl RNase A solution. At least 10,000 nuclei were analysed each run. Each specimen was analysed in triplicate with three technical replicates within 7 days of leaf collection to ensure reproducibility62.

Received: 21 December 2020; Accepted: 16 July 2021

Published online: 06 August 2021

References

1. Byng, J. W. The Flowering Plants Handbook (Plant Gateway Ltd., Chennai, 2014).
2. Verloove, F. A Revision of the Genus Panicum (Poaceae, Paniceae) in Belgium. Syst. Geogr. Pl 71, 53 (2001).
3. Aliscioni, S. S., Guassani, L. M., Zuloaga, F. O. & Kellogg, E. A. A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. Am. J. Bot. 90, 796–821 (2003).
4. Llewellyn, R. et al. Impact of Weeds in Australian Grain Production (Grains Research and Development Corporation, Barton, 2016).
5. Smith, B. L. et al. Crystal-associated cholangiopathy associated with the ingestion of Panicum spp. and other plants. N. Z. Vet. J. 40, 35–35 (1992).
6. Lancaster, M. J., Vit, I. & Lyford, R. L. Analysis of bile crystals from sheep grazing Panicum schinzii (sweet grass). Aust. Vet. J. 68, 281 (1991).
7. Chen, Y., Quinn, J. C., Weston, L. A. & Loukopoulos, P. The aetiology, prevalence and morbidity of outbreaks of photosensitisation in livestock: A review. PLoS ONE 14, e0211625 (2019).
8. Bridges, C. H., Camp, B. J., Livingston, C. W. & Bailey, E. M. Kleingrass (Panicum coloratum L.) poisoning in sheep. Vet. Path. 24, 525–531 (1987).
9. Miles, C. O. et al. Identification of a sapogenin glucuronide in the bile of sheep affected by Panicum dichotomiflorum toxicosis. N. Z. Vet. J. 39, 150–152 (1991).
10. Hammond, D. S., Kessel, A. & Weston, L. A. Secondary plant products causing photosensitization in grazing herbivores: Their structure, activity and regulation. Int. J. Mol. Med. 15, 1441–1446 (2004).
11. Walsh, N. G. & Entwisle, T. G. In Flora of Victoria 2, (1994). Vol 2: 584–590
12. Two new genera. Zuloaga, F. O., Scataglini, M. A. & Morrone, O. A phylogenetic evaluation of Paniceae sensu stricto. Mol. Ecol. 30, 1535–1546 (2010).
13. Pyšek, P. et al. Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB Plants 5, pil042–pil042 (2013).
14. Côncas, E., Hollingsworth, P. M., Laverge, S. & Taberlet, P. From barcodes to genomes: extending the concept of DNA barcoding. Mol. Ecol. 25, 1423–1428 (2016).
60. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. *Nat. Methods* 9, 772–772 (2012).
61. Loureiro, J., Rodriguez, E., Dolezel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. *Ann. Bot.* 100, 875–888 (2007).
62. Zhu, X. et al. Ecology and genetics affect relative invasion success of two *Echium* species in southern Australia. *Sci. Rep.* 7, 42792 (2017).

Acknowledgements

The authors acknowledge financial support, including Ph.D. scholarship, from the Graham Centre for Agricultural Innovation, CSU School of Animal and Veterinary Science, and Meat and Livestock Australia Project B WEE 0146. The authors would also like to thank Graeme Heath, Rhys Powell, Dr. Saliya Gurusinghe and Dr. Joe Moore for sampling assistance, and Dr. Bernie Dominiak, Dr. David Gopurenko and Dr. Alexander N. Schmidt-Lebuhn for providing useful comments on this manuscript.

Author contributions

Conceived and designed the experiments: Y.C., X.Z., P.L., L.A.W., J.C.Q. Specimen collection: Y.C., X.Z., D.E.A. Taxonomic identification: DEA Specimen processing (DNA extraction, barcoding and flow cytometry): Y.C., X.Z. Data analysis: Y.C., X.Z. Writing of the original draft of the manuscript: Y.C. Review and editing of the manuscript: Y.C., X.Z., D.E.A., P.L., L.A.W., J.C.Q.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.C.Q.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021