Asymptotic Theory of Eigenvectors for Large Random Matrices

Jianqing Fan1, Yingying Fan2, Xiao Han2 and Jinchi Lv2

Princeton University1 and University of Southern California2

February 17, 2019

Abstract

Characterizing the exact asymptotic distributions of high-dimensional eigenvectors for large structured random matrices poses important challenges yet can provide useful insights into a range of applications. To this end, in this paper we introduce a general framework of asymptotic theory of eigenvectors (ATE) for large structured symmetric random matrices with heterogeneous variances, and establish the asymptotic properties of the spiked eigenvectors and eigenvalues for the scenario of the generalized Wigner matrix noise, where the mean matrix is assumed to have the low-rank structure. Under some mild regularity conditions, we provide the asymptotic expansions for the spiked eigenvalues and show that they are asymptotically normal after some normalization. For the spiked eigenvectors, we establish novel asymptotic expansions for the general linear combination and further show that it is asymptotically normal after some normalization, where the weight vector can be arbitrary. We also provide a more general asymptotic theory for the spiked eigenvectors using the bilinear form. Simulation studies verify the validity of our new theoretical results. Our family of models encompasses many popularly used ones such as the stochastic block models with or without overlapping communities for network analysis and the topic models for text analysis, and our general theory can be exploited for statistical inference in these large-scale applications.

*Jianqing Fan is Frederick L. Moore ’18 Professor of Finance, Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, USA (E-mail: jqfan@princeton.edu). Yingying Fan is Dean’s Associate Professor in Business Administration, Data Sciences and Operations Department, Marshall School of Business, University of Southern California, Los Angeles, CA 90089 (E-mail: fanyingy@marshall.usc.edu). Xiao Han is Postdoctoral Scholar, Data Sciences and Operations Department, Marshall School of Business, University of Southern California, Los Angeles, CA 90089 (E-mail: xhan011@e.ntu.edu.sg). Jinchi Lv is Professor and McAlister Associate Professor in Business Administration, Data Sciences and Operations Department, Marshall School of Business, University of Southern California, Los Angeles, CA 90089 (E-mail: jinchilv@marshall.usc.edu). This work was supported by NIH grants R01-GM072611-12 and 1R01GM131407-01, NSF grants DMS-1662139 and DMS-1712591, NSF CAREER Award DMS-1150318, a grant from the Simons Foundation, and Adobe Data Science Research Award.
1 Introduction

The big data era has brought us a tremendous amount of both structured and unstructured data including networks and texts in many modern applications. For network and text data, we are often interested in learning the cluster and other structural information for the underlying network communities and text topics. In these large-scale applications, we are given a network data matrix or can create such a matrix by calculating some similarity measure between text documents, where each entry of the data matrix is binary indicating the absence or presence of a link, or continuous indicating the strength of similarity between each pair of nodes or documents. Such applications naturally give rise to random matrices that can be used to reveal interesting latent structures of networks and texts for effective predictions and recommendations.

Random matrix has been widely exploited to model the interactions among the nodes of a network for applications ranging from physics and social sciences to genomics and neuroscience. Random matrix theory (RMT) has a long history and was originated by Wigner (1955) for modeling the nucleon-nucleus interactions to understand the behavior of atomic nuclei and link the spacings of the levels of atomic nuclei to those of the eigenvalues of a random matrix. In particular, Wigner (1955) and Wigner (1958) identified the limiting spectral distribution, known as Wigner’s semicircle law, for the eigenvalues of high-dimensional Wigner matrix as the dimensionality diverges. The Wigner matrix generally refers to a symmetric random matrix whose upper diagonal entries are independent with zero mean and identical variance, and whose diagonal entries are independent and identically distributed (i.i.d.) with zero mean. See, for example, Bai (1999) for a review of some classical technical tools such as the moment method and Stieltjes transform as well as some more recent developments on the RMT, and Mehta (2004); Tao (2004); Bai and Silverstein (2006) for detailed book-length accounts of the topic of random matrices.

Most of existing work on the RMT has focused mainly on the spectral theory for the limiting distributions of the eigenvalues of random matrices. For instance, the limiting spectral distribution of the Wigner matrix was generalized by Arnold (1967) and Arnold (1971). Marchenko and Pastur (1967) established the well-known Marchenko–Pastur law for the limiting spectral distribution of the sample covariance matrix including the Wishart matrix which plays an important role in statistical applications. The spectral distribution refers to the empirical distribution of all the eigenvalues of a random matrix. In contrast, the asymptotic distribution of the largest nonspiked eigenvalue of Wigner matrix with Gaussian
ensemble was revealed to be the Tracy–Widom law in Tracy and Widom (1994) and Tracy and Widom (1996). More recent developments on the asymptotic distribution of the largest nonspiked eigenvalue include Johnstone (2001), El Karoui (2007), Johnstone (2008), Erdős et al. (2011), and Knowles and Yin (2017). See also Füredi and Komlós (1981), Baik et al. (2005), Bai and Yao (2008), Knowles and Yin (2013), Pizzo et al. (2013), Renfrew and Soshnikov (2013), Knowles and Yin (2014), and Wang and Fan (2017) for the asymptotic distributions of the spiked eigenvalues of various random matrices and sample covariance matrices. To ensure consistency, Johnstone and Lu (2009) proposed the sparse principal component analysis to reduce the noise accumulation in high-dimensional random matrices. There is also a growing literature on the specific scenario and applications of large network matrices. See, for example, McSherry (2001), Spielman and Teng (2007), Bickel and Chen (2009), Decelle et al. (2011), Rohe et al. (2011), Lei (2016), Abbe (2017), Jin et al. (2017), Chen and Lei (2018), and Vu (2018).

Matrix perturbation theory has been commonly used to characterize the deviations of empirical eigenvectors from the population ones, often under the average errors (Horn and Johnson, 2012). In contrast, recently Abbe et al. (2017) investigated random matrices with low expected rank and provided a tight bound for the difference between the empirical eigenvector and some linear transformation of the population eigenvector through a delicate entrywise eigenvector analysis for the first-order approximation under the maximum norm. See also Paul (2007), Koltchinskii and Lounici (2016), Koltchinskii and Xia (2016), and Wang and Fan (2017) for the asymptotics of empirical eigenstructure for large random matrices. Yet despite these endeavors, the precise asymptotic distributions of the eigenvectors for high-dimensional random matrices still remain largely unknown even for the case of Wigner matrix noise. Indeed characterizing the exact asymptotic distributions of high-dimensional eigenvectors for large structured random matrices can provide useful insights into a range of applications that involve the eigenspaces. To this end, in this paper we attempt to provide some general theoretical underpinning on such a perspective for large random matrices.

The major contribution of this paper is introducing a general framework of asymptotic theory of eigenvectors (ATE) for large structured random matrices with the mean matrix of the low-rank structure and the noise matrix being the generalized Wigner matrix. The generalized Wigner matrix refers to a symmetric random matrix whose diagonal and upper diagonal entries are independent with zero mean, allowing for heterogeneous variances. Our family of models includes a variety of popularly used ones such as the stochastic block models with or without overlapping communities for network analysis and the topic models for text analysis. Our technical tool is general and distinct from existing techniques in the RMT literature; see Section 3.5 for detailed discussions. Specifically, under some mild regularity conditions we establish the asymptotic expansions for the spiked eigenvalues and prove that they are asymptotically normal after some normalization. For the spiked eigenvectors, we
provide novel asymptotic expansions for the general linear combination and further establish that it is asymptotically normal after some normalization for arbitrary weight vector. We also present a more general asymptotic theory for the spiked eigenvectors based on the bilinear form. To the best of our knowledge, these theoretical results are new to the literature. Our general theory can be exploited for statistical inference in a range of large-scale applications including network analysis and text analysis. For detailed comparisons with the literature, see Section 3.6.

The rest of the paper is organized as follows. Section 2 presents the model setting and theoretical setup for ATE. We establish the asymptotic expansions and asymptotic distributions for the spiked eigenvectors as well as the asymptotic distributions for the spiked eigenvalues in Section 3. Section 4 presents some numerical examples to demonstrate our theoretical results. We further provide a more general asymptotic theory extending the results from Section 3 using the bilinear form in Section 5. Section 6 discusses some implications and extensions of our work. The proofs of main results are relegated to the Appendix. Additional technical details are provided in the Supplementary Material.

2 Model setting and theoretical setup

2.1 Model setting

As mentioned in the introduction, we focus on the class of large structured symmetric random matrices with low-rank mean matrices and generalized Wigner matrices of noises. It is worth mentioning that our definition of the generalized Wigner matrix specified in Section 1 is broader than the conventional one in the classical RMT literature; see, for example, Yau (2012) for the formal mathematical definition with additional assumptions. To simplify the technical presentation, consider an \(n \times n \) symmetric random matrix with the following structure

\[
X = H + W, \tag{1}
\]

where \(H = V D V^T \) is a deterministic latent mean matrix of low rank structure, \(V = (v_1, \ldots, v_K) \) is an \(n \times K \) orthonormal matrix of population eigenvectors \(v_k \)'s with \(V^T V = I_K \) and \(K \geq 1 \), \(D = \text{diag}(d_1, \ldots, d_K) \) is a diagonal matrix of population eigenvalues \(d_k \)'s with \(|d_1| \geq \cdots \geq |d_K| > 0 \), and \(W = (w_{ij})_{1 \leq i, j \leq n} \) is a symmetric random matrix of independent noises on and above the diagonal with zero mean \(\mathbb{E} w_{ij} = 0 \), variances \(\sigma^2_{ij} = \mathbb{E} w^2_{ij} \), and \(\max_{1 \leq i, j \leq n} |w_{ij}| \leq 1 \). The rank \(K \) of the mean part is assumed typically to be a smaller order of the random matrix size \(n \), which is referred to as matrix dimensionality hereafter for convenience. The bounded assumption on the entries of the generalized Wigner matrix in the noise part is made frequently for technical simplification and satisfied in many real applications such as network analysis and text analysis. See, for instance, the stochastic block...
models with or without overlapping communities and the topic models that are popularly used in those applications.

In practice, it is either matrix X or matrix $X - \text{diag}(X)$ that is readily available to us, where $\text{diag}(\cdot)$ denotes the diagonal part of a matrix. In the context of graphs, random matrix X characterizes the connectivity structure of a graph with self loops, while random matrix $X - \text{diag}(X)$ corresponds to a graph without self loops. In the latter case, the observed data matrix can be decomposed as

$$X - \text{diag}(X) = H + |W - \text{diag}(X)|. \tag{2}$$

Observe that $W - \text{diag}(X)$ has the similar structure as W in the sense of being symmetric and having bounded independent entries on and above the diagonal, by assuming that $\text{diag}(X)$ has bounded entries for such a case. Thus models (1) and (2) share the same decomposition of a deterministic low rank matrix plus some symmetric noise matrix of bounded entries, which is roughly all we need for the theoretical framework and technical analysis. For these reasons, to simplify the technical presentation we abuse slightly the notation by using X and W to represent the observed data matrix and the latent noise matrix, respectively, in either model (1) or model (2). Therefore, throughout the paper the data matrix X may have diagonal entries all equal to zero and correspondingly the noise matrix W may have a nonzero diagonal mean matrix, and our theory covers both cases.

In either of the two scenarios discussed above, we are interested in inferring the structural information in models (1) and (2), which often boils down to the latent eigenstructure (D, V). Since both the eigenvector matrix V and eigenvalue matrix D are unavailable to us, we resort to the observable random data matrix X for extracting the structural information. To this end, we conduct a spectral decomposition of X, and denote by $\lambda_1, \cdots, \lambda_n$ its eigenvalues and $\hat{v}_1, \cdots, \hat{v}_n$ the corresponding eigenvectors. Without loss of generality, assume that $|\lambda_1| \geq \cdots \geq |\lambda_n|$ and denote by $\hat{V} = (\hat{v}_1, \cdots, \hat{v}_K)$ an $n \times K$ matrix of spiked eigenvectors. As mentioned before, we aim at investigating the precise asymptotic behavior of the spiked empirical eigenvalues $\lambda_1, \cdots, \lambda_K$ and spiked empirical eigenvectors $\hat{v}_1, \cdots, \hat{v}_K$ of data matrix X. It is worth mentioning that our definition of spikedness differs from the conventional one in that the underlying rank order depends on the magnitude of eigenvalues instead of the nonnegative eigenvalues that are usually assumed.

One concrete example is the stochastic block model (SBM), where the latent mean matrix H takes the form $H = \Pi \Pi^T$ with $\Pi = (\pi_1, \cdots, \pi_n)^T \in \mathbb{R}^{n \times K}$ a matrix of community membership vectors and $P = (p_{kl}) \in \mathbb{R}^{K \times K}$ a nonsingular matrix with $p_{kl} \in [0, 1]$ for $1 \leq k, l \leq K$. Here, for each $1 \leq i \leq n$, $\pi_i \in \{e_1, \cdots, e_K\}$ with $e_k \in \mathbb{R}^K$, $1 \leq k \leq K$, a unit vector with the jth component being one and all other components being zero. It indicates which membership the ith subject belongs to. It is well known that the community information of the SBM is encoded completely in the eigenstructure of the mean matrix H.

5
which serves as one of our motivations for investigating the precise asymptotic distributions of the empirical eigenvectors and eigenvalues.

2.2 Theoretical setup

We first introduce some notation that will be used throughout the paper. We use $a/b \rightarrow 0$ to represent $a \ll b$ to represent $a/b \rightarrow 0$ as matrix size n increases. We say that an event \mathcal{E}_n holds with significant probability if $P(\mathcal{E}_n) = 1 - O(n^{-l})$ for some positive constant l and sufficiently large n. For a matrix A, we use $\lambda_j(A)$ to denote the jth largest eigenvalue in magnitude, and $\|A\|_F$, $\|A\|_\infty$ to denote the Frobenius norm, the spectral norm, and the matrix entrywise maximum norm, respectively. Denote by A_{-k} the submatrix of A formed by removing the kth column. For any n-dimensional unit vector $x = (x_1, \cdots, x_n)^T$, let $d_k = \|x\|_\infty$ represent the maximum norm of the vector.

We next introduce a definition that plays a key role in proving all asymptotic normality results in this paper.

Definition 1. A pair of unit vectors (x, y) of appropriate dimensions is said to satisfy the W^l-CLT condition for some positive integer l if $x^T(W^l - EW^l)y$ is asymptotically standard normal after some normalization, where CLT refers to the central limit theorem.

Lemmas 1 and 2 below provide some sufficient conditions under which (x, y) can satisfy the W^l-CLT condition defined in Definition 1 for $l = 1$ and 2, which is all we need for our technical analysis of asymptotic distributions.

Lemma 1. Assume that n-dimensional unit vectors x and y satisfy

$$\|x\|_\infty \|y\|_\infty \ll \left[\text{var}(x^T Wy)\right]^{1/2} = s_n.$$ \hspace{1cm} (3)

Then $x^T Wy$ satisfies the Lyapunov condition for CLT and we have $(x^T Wy - EW^l Wy)/s_n \xrightarrow{d} N(0, 1)$ as $n \rightarrow \infty$, which entails that (x, y) satisfies the W^l-CLT condition with $l = 1$.

For any given unit vectors $x = (x_1, \cdots, x_n)^T$ and $y = (y_1, \cdots, y_n)^T$, denote by $s^2_{x,y}$ and $\kappa_{x,y}$ the mean and variance of the random variable

\[
\sum_{1 \leq k,i \leq n, k \leq i} \sigma^2_{ki} \left[\sum_{1 \leq l < k \leq n} w_{il}(x_ky_l + y_kx_l) + \sum_{1 \leq l < i \leq n} w_{il}(x_iy_l + y_ix_l) \right] \hspace{0.5cm} \hspace{0.5cm} + (1 - \delta_{ki}) \mathbb{E}w_{ii}(x_iy_k + y_kx_i) \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} + 2 \sum_{1 \leq k,i \leq n, k \leq i} \gamma_{ki}(x_ky_k + x_iy_i) \\
\times \left[\sum_{1 \leq k \leq n} w_{il}(x_ky_l + y_kx_l) + \sum_{1 \leq l \leq n} w_{il}(x_iy_l + y_ix_l) \right] \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} + (1 - \delta_{ki}) \mathbb{E}w_{ii}(x_iy_k + y_kx_i) \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} + \sum_{1 \leq k,i \leq n, k \leq i} \kappa_{ki}(x_ky_k + x_iy_i)^2, \hspace{1cm} (4)
\]
respectively, where $\gamma_{ki} = \mathbb{E}w_{ki}^2$ and $\kappa_{ki} = \mathbb{E}(w_{ki}^2 - \sigma_{ki}^2)$ for $k \neq i$, $\gamma_{kk} = 2(\mathbb{E}w_{kk}^2 - \sigma_{kk}^2\mathbb{E}w_{kk})$, $\kappa_{kk} = 4\mathbb{E}(\omega_{kk}^2 - \sigma_{kk}^2)^2$ with $\omega_{kk} = 2^{-1}w_{kk}$, $\sigma_{kk}^2 = \mathbb{E}\omega_{kk}^2$, and $\delta_{ki} = 1$ when $k = i$ and 0 otherwise. It is worth mentioning that the random variable given in (4) coincides with the one defined in (A.7) in Section B.2 of Supplementary Material, which is simply the conditional variance of random variable $x^T(\mathbf{W}^2 - \mathbb{E}\mathbf{W}^2)y$ given in (A.5) when expressed as a sum of martingale differences with respect to a suitably defined σ-algebra; see Section B.2 for more technical details and the precise expressions for $s_{x,y}^2$ and $\kappa_{x,y}$ given in (A.8) and (A.9), respectively.

Lemma 2. Assume that n-dimensional unit vectors \mathbf{x} and \mathbf{y} satisfy $\|\mathbf{x}\|_\infty\|\mathbf{y}\|_\infty \to 0$, $\kappa_{x,y}^{1/4} \ll s_{x,y}$, and $s_{x,y} \to \infty$. Then we have $[x^T(\mathbf{W}^2 - \mathbb{E}\mathbf{W}^2)y]/s_{x,y} \xrightarrow{p} N(0,1)$ as $n \to \infty$, which entails that (\mathbf{x}, \mathbf{y}) satisfies the \mathbf{W}^l-CLT condition with $l = 2$.

We see from Lemmas 1 and 2 that the \mathbf{W}^l-CLT condition defined in Definition 1 can indeed be satisfied under some mild regularity conditions. In particular, Definition 1 is important to our technical analysis since to establish the asymptotic normality of the spiked eigenvectors and spiked eigenvalues, we first need to expand the target to the form of $x^T(\mathbf{W}^l - \mathbb{E}\mathbf{W}^l)y$ with l some positive integer plus some small order term, and then the asymptotic normality follows naturally if (\mathbf{x}, \mathbf{y}) satisfies the \mathbf{W}^l-CLT condition. To facilitate our technical presentation, let us introduce some further notation. For any $t \neq 0$ and given matrices \mathbf{M}_1 and \mathbf{M}_2 of appropriate dimensions, we define the function

$$ R(\mathbf{M}_1, \mathbf{M}_2, t) = -\sum_{l=0, l \neq 1}^L t^{-(l+1)} \mathbf{M}_1^T \mathbb{E}\mathbf{W}^l \mathbf{M}_2, $$

(5)

where L is some sufficiently large positive integer that will be specified later in our technical analysis. For each $1 \leq k \leq K$, any given matrices \mathbf{M}_1 and \mathbf{M}_2 of appropriate dimensions, and n-dimensional vector \mathbf{u}, we further define functions

$$ P(\mathbf{M}_1, \mathbf{M}_2, t) = tR(\mathbf{M}_1, \mathbf{M}_2, t), $$

$$ \tilde{P}_{k,t} = \left[t^2(Av_{k,k,t}/t)\right]^{-1}, $$

$$ b_{u,k,t} = \mathbf{u} - \mathbf{V}_{-k} \left[(\mathbf{D}_{-k})^{-1} + R(\mathbf{V}_{-k}, \mathbf{V}_{-k}, t) \right]^{-1} R(\mathbf{u}, \mathbf{V}_{-k}, t)^T, $$

(6) (7)

where \mathbf{D}_{-k} denotes the submatrix of the diagonal matrix \mathbf{D} by removing the kth row and kth column,

$$ A_{u,k,t} = P(\mathbf{u}, \mathbf{v}_k, t) - P(\mathbf{u}, \mathbf{V}_{-k}, t) \left[t(\mathbf{D}_{-k})^{-1} + P(\mathbf{V}_{-k}, \mathbf{V}_{-k}, t) \right]^{-1} P(\mathbf{V}_{-k}, \mathbf{v}_k, t), $$

(8)

$(\cdot)'$ denotes the derivative with respect to scalar t or complex variable z throughout the paper, and the rest of notation is the same as introduced before.
3 Asymptotic distributions of spiked eigenvectors

3.1 Technical conditions

To facilitate our technical analysis, we need some basic regularity conditions.

Condition 1. Assume that \(\alpha_n = \|E(W - EW)^2\|^{1/2} \to \infty \) as \(n \to \infty \).

Condition 2. There exist some positive constant \(c_0 < 1 \) and small positive constant \(\epsilon \) such that \(\min\{|d_i|/|d_j| : 1 \leq i < j \leq K + 1, d_i \neq -d_j\} \geq 1 + c_0 \) and \(|d_K|/(n^\epsilon \alpha_n) \to \infty \).

Condition 3. It holds that \(|d_1| = O(|d_K|), |d_K|\sigma_{\min}/\alpha_n \to \infty, \|v_k\|_\infty^2/\sigma_{\min} \to 0, \alpha_n^4\|v_k\|_\infty^4/(\sqrt{n}\sigma_{\min}) \to 0, \) and \(\sigma_{\min}^2 n \to \infty, \) where \(\sigma_{\min} = \min\{1 \leq i, j \leq n, i \neq j\}Ew_{ij}^2\}^{1/2} \).

Conditions 1–2 are needed in all our Theorems 1–5 and imposed for our general model (1), including the specific case of sparse models. In contrast, condition 3 is required only for Theorem 3 under some specific models with dense structures such as the stochastic block models with or without overlapping communities.

Condition 1 restricts essentially the sparsity level of the random matrix (e.g., given by a network). Note that it follows easily from \(\max_{1 \leq i, j \leq n}|w_{ij}| \leq 1 \) that \(\alpha_n \leq n^{1/2} \). It is a rather mild condition that can be satisfied by very sparse networks. For example, if \(Ew_{12}^2 = \cdots = Ew_{1,\lfloor \log n \rfloor}^2 = 1/2 \) and the other \(w_{1j} \)'s are equal to zero, then we have \(\alpha_n^2 \geq 2^{-1}\log n \to \infty \). Many network models in the literature satisfy this condition; see, for example, Jin et al. (2017), Lei (2016), and Zhang et al. (2015).

Condition 2 requires that the spiked population eigenvalues of the mean matrix \(\mathbf{H} \) (in the diagonal matrix \(\mathbf{D} \)) are simple and there is enough gap between the eigenvalues. The constant \(c_0 \) can be replaced by some \(o(1) \) term and our theoretical results can still be proved with more delicate derivations. This requirement ensures that we can obtain higher order expansions of the general linear combination for each empirical eigenvector precisely. Otherwise if there exist some eigenvalues such that \(d_i = d_{i+1} \), then \(\hat{v}_i \) and \(\hat{v}_{i+1} \) are generally no longer identifiable so we cannot derive clear asymptotic expansions for them; see also Abbe et al. (2017) for related discussions. Condition 2 also requires a gap between \(\alpha_n \) and \(|d_K| \).

Since parameter \(\alpha_n \) reflects the strength of the noise matrix \(\mathbf{W} \), it requires essentially the signal part \(\mathbf{H} \) to dominate the noise part \(\mathbf{W} \) with some asymptotic rate. Similar condition is used commonly in the network literature; see, for instance, Abbe et al. (2017) and Jin et al. (2017).

Condition 3 restricts our attention to some specific dense network models. In particular, \(|d_1| = O(|d_K|) \) assumes that the eigenvalues in \(\mathbf{D} \) share the same order. The other assumptions in Condition 3 require essentially that the minimum variance of the off-diagonal entries of \(\mathbf{W} \) cannot tend to zero too fast, which is used only to establish a more simplified theory under the more restrictive model; see Theorem 3.
3.2 Asymptotic distributions of spiked eigenvalues

We first present the asymptotic expansions and CLT for the spiked empirical eigenvalues \(\lambda_1, \cdots, \lambda_K\). For each \(1 \leq k \leq K\), denote by \(t_k\) the solution to equation

\[
\begin{align*}
 f_k(z) &= 1 + d_k \left\{ R(v_k, v_k, z) - R(v_k, v_{-k}, z) \left[(D_{-k})^{-1} + R(v_{-k}, v_{-k}, z) \right]^{-1} \right\} = 0
\end{align*}
\]

when restricted to the interval \(z \in [a_k, b_k]\), where

\[
 a_k = \begin{cases}
 d_k/(1 + 2^{-1}c_0), & \text{if } d_k > 0 \\
 (1 + 2^{-1}c_0)d_k, & \text{if } d_k < 0
 \end{cases} \quad \text{and} \quad
 b_k = \begin{cases}
 (1 + 2^{-1}c_0)d_k, & \text{if } d_k > 0 \\
 d_k/(1 + 2^{-1}c_0), & \text{if } d_k < 0
 \end{cases}
\]

The following lemma characterizes the properties of the population quantities \(t_k\)’s defined in (9).

Lemma 3. Equation (9) has a unique solution in the interval \(z \in [a_k, b_k]\) and thus \(t_k\)’s are well defined. Moreover, for each \(1 \leq k \leq K\) we have \(t_k/d_k \to 1\) as \(n \to \infty\).

It is seen from Lemma 3 that when the matrix size \(n\) is large enough, the values of \(t_k\) and \(d_k\) are very close to each other. The following theorem establishes the asymptotic expansions and CLT for \(\lambda_k\) and reveals that \(t_k\) is in fact its asymptotic mean.

Theorem 1. Under Conditions 1–2, for each \(1 \leq k \leq K\) we have

\[
\lambda_k - t_k = v_k^T W v_k + O_p(\alpha_n d_k^{-1}).
\]

Moreover, if \(\text{var}(v_k^T W v_k) \gg \alpha_n^2 d_k^{-2}\) and the pair of vectors \((v_k, v_k)\) satisfies the \(W^1\)-CLT condition, then we have

\[
\frac{\lambda_k - t_k - \mathbb{E}v_k^T W v_k}{\sqrt{\text{var}(v_k^T W v_k)}} \overset{D}{\to} N(0, 1).
\]

Capitaine et al. (2012) and Knowles and Yin (2014) established the joint distribution of the spiked eigenvalues for the deformed Wigner matrix. In particular, Capitaine et al. (2012) assumed that \(\mathbb{E}w_{ii}^2 = 1/2\) and \(\mathbb{E}w_{ij}^2 = 1\) for \(i \neq j\), while Knowles and Yin (2014) assumed that \(\mathbb{E}w_{ij}^2 = 1\) for all \((i, j)\). Both of these two papers require the existence of self loops and focus on the scenario of \(|d_1| \sim |d_K| \sim n^{1/2}\). In contrast, our Theorem 1 is applicable to both cases of with or without self loops and allows for more general heterogeneity in the variances of entries of the noise matrix \(W\). Therefore, our results in Theorem 1 are more general than those in Capitaine et al. (2012) and Knowles and Yin (2014). Furthermore, when we restrict ourselves to the model settings in Capitaine et al. (2012) and Knowles and Yin (2014), our
Theorem 1 requires that $|d_K| \gg n^{1/2}$, which is still different from the settings investigated in Capitaine et al. (2012) and Knowles and Yin (2014).

Theorem 1 requires that (v_k, v_k) satisfies the W^1-CLT condition and $\text{var}(v_k^T W v_k) \gg \alpha_n^2 d_k^{-2}$. To gain some insights into these two conditions, we will provide some sufficient conditions for such assumptions. Let us consider the specific case of $\sigma_{\min} > 0$, that is, the generalized Wigner matrix W is nonsparse. We will show that as long as

$$\|v_k\|_\infty^2 \sigma_{\min}^{-1} \to 0 \quad \text{and} \quad \sigma_{\min} \gg \alpha_n |d_k|^{-1},$$

(12)

the aforementioned two conditions in Theorem 1 hold. We first verify the W^1-CLT condition. By Lemma 1, a sufficient condition for (v_k, v_k) to satisfy the W^1-CLT condition is that

$$\|v_k\|_\infty^2 \ll \left[\text{var}(v_k^T W v_k)\right]^{1/2} = \left[\mathbb{E}(v_k^T W v_k - \mathbb{E}v_k^T W v_k)^2\right]^{1/2}.$$

(13)

Observe that it follows from $\sum_{1 \leq i \leq n} (v_k)_i^2 = v_k^T v_k = 1$ and $\sum_{1 \leq i \leq n} (v_k)_i^4 \leq \|v_k\|_\infty^2 \leq 1$ that

$$\left[\mathbb{E}(v_k^T W v_k - \mathbb{E}v_k^T W v_k)^2\right]^{1/2} \geq \sigma_{\min} \left[\sum_{1 \leq i, j \leq n, i \neq j} \frac{\sigma_0^2 (v_k)_i^2 (v_k)_j^2}{\sigma_0^2 (v_k)_i^2 (v_k)_j^2}\right]^{1/2}$$

$$\geq \sigma_{\min} \left[\sum_{1 \leq i, j \leq n, i \neq j} (v_k)_i^2 (v_k)_j^2\right]^{1/2} = \sigma_{\min} \left[2 - 2 \sum_{1 \leq i \leq n} (v_k)_i^4\right]^{1/2}$$

(14)

where $(v_k)_i$ stands for the ith component of vector v_k. The assumption $\|v_k\|_\infty^2 \sigma_{\min}^{-1} \to 0$ in (12) together with (14) ensures (13), which consequently entails that (v_k, v_k) satisfies the W^1-CLT condition.

We next check the condition $\text{var}(v_k^T W v_k) = \mathbb{E}(v_k^T W v_k - \mathbb{E}v_k^T W v_k)^2 \gg \alpha_n^2 d_k^{-2}$. It follows directly from (14) that this condition holds under (12). In fact, since Condition 2 guarantees that $\alpha_n/|d_k| \leq \alpha_n/|d_K| \ll n^{-\varepsilon}$, the assumption $\sigma_{\min} \gg \alpha_n |d_k|^{-1}$ can be very mild. In particular, for the Wigner matrix W with $\sigma_{ij} \equiv 1$ for all $1 \leq i, j \leq n$, it holds that

$$\mathbb{E}(v_k^T W v_k - \mathbb{E}v_k^T W v_k)^2 = 2.$$

(15)

Thus the condition of $\mathbb{E}(v_k^T W v_k - \mathbb{E}v_k^T W v_k)^2 \gg \alpha_n^2 d_k^{-2}$ reduces to that of $\alpha_n^2 d_k^{-2} \ll 1$, which is guaranteed to hold under Condition 2.

We also would like to point out that one potential application of the new results in Theorem 1 is determining the number of spiked eigenvalues, which in the network models reduce to determining the number of non-overlapping (or possibly overlapping) communities or clusters.
3.3 Asymptotic distributions of spiked eigenvectors

We now present the asymptotic distributions of the spiked empirical eigenvectors \hat{v}_k for $1 \leq k \leq K$. To this end, we will first establish the asymptotic expansions and CLT for the bilinear form

$$x^T \hat{v}_k \hat{v}_k^T y$$

with $1 \leq k \leq K$, where $x, y \in \mathbb{R}^n$ are two arbitrary non-random unit vectors. Then by setting $y = v_k$, we can establish the asymptotic expansions and CLT for the general linear combination $x^T \hat{v}_k$. Although the limiting distribution of the bilinear form $x^T \hat{v}_k \hat{v}_k^T y$ is the theoretical foundation for establishing the limiting distribution of the general linear combination $x^T \hat{v}_k$, due to the technical complexities we will defer the theorems summarizing the limiting distribution of $x^T \hat{v}_k \hat{v}_k^T y$ to a later technical section (i.e., Section 5), and present only the results for $x^T \hat{v}_k$ in this section. This should not harm the flow of the paper. For readers who are also interested in our proofs, they can refer to Section 5 for more technical details; otherwise it is safe to skip that technical section. For each $1 \leq k \leq K$, let us choose the direction of \hat{v}_k such that $v_k^T \hat{v}_k \geq 0$ for the theoretical derivations, which is always possible after a sign change.

Theorem 2. Under Conditions 1–2, for each $1 \leq k \leq K$ we have the following properties:

1) If the unit vector u satisfies that $|u^T v_k| \in [0, 1)$ and $\alpha_n^{-2}d_k^2 \text{var}(b_{u,k,t}^T - u^T v_k v_k^T)Wv_k \to \infty$, then it holds that

\[
t_k \left(u^T \hat{v}_k + A_{u,k,t} \tilde{P}_{k,t}^{1/2} \right) = (b_{u,k,t}^T - u^T v_k v_k^T)Wv_k + o_p \left(\text{var}(b_{u,k,t}^T - u^T v_k v_k^T)Wv_k \right)^{1/2},
\]

where the asymptotic mean has the expansion $A_{u,k,t} \tilde{P}_{k,t}^{1/2} = -u^T v_k + O(\alpha_n^2 d_k^{-2})$. Furthermore, if $(b_{u,k,t} - v_k v_k^T u, v_k)$ satisfies the W^1-CLT condition, then it holds that

\[
\frac{t_k \left(u^T \hat{v}_k + A_{u,k,t} \tilde{P}_{k,t}^{1/2} \right) - E \left((b_{u,k,t}^T - u^T v_k v_k^T)Wv_k \right)}{\sqrt{\text{var}(b_{u,k,t}^T - u^T v_k v_k^T)Wv_k}} \overset{D}{\to} N(0, 1).
\]

2) If $(\alpha_n^{-4}d_k^2 + 1) \text{var}(v_k^T W^2 v_k) \to \infty$, then it holds that

\[
2t_k^2 \left(v_k^T \hat{v}_k + A_{v_k,k,t} \tilde{P}_{k,t}^{1/2} \right) = -v_k^T (W^2 - E W^2) v_k + o_p \left(\text{var}(v_k^T W^2 v_k) \right)^{1/2},
\]

where the asymptotic mean has the expansion $A_{v_k,k,t} \tilde{P}_{k,t}^{1/2} = -1 + 2t_k^{-2} v_k^T E W^2 v_k +$
$O(\alpha_n^2 d_k^{-3})$. Furthermore, if (v_k, v_k) satisfies the W^2-CLT condition, then it holds that
\[
\frac{2\alpha^2}{\alpha_n^2 \Delta_k \beta_{k,t_2}^{1/2}} \frac{v_k^T \hat{v}_k + A_{v_k,k,t_2} \hat{P}_{k,t_2}^{1/2}}{\text{var} (v_k^T W^2 v_k)^{1/2}} \xrightarrow{d} N(0, 1).
\]

The two parts of Theorem 2 correspond to two different cases when $\text{var}(u^T \hat{v}_k)$ can be of different magnitude. To understand this, note that for large enough matrix size n, we have $|t_k| \gg \alpha_n$ by Condition 2 and Lemma 3. In view of (17), the asymptotic variance of $v_k^T \hat{v}_k$ is equal to $\text{var}(2^{-1} t_k^{-2} v_k^T W^2 v_k)$. In contrast, in light of (16), the asymptotic variance of $u^T \hat{v}_k$ with $|u^T v_k| \in [0, 1]$ is equal to $\text{var}(t_k^{-1}(b_u^T v_k - u^T v_k v_k^T)Wv_k)$. Let us consider a specific case when $\text{var}(b_u^T v_k - u^T v_k v_k^T)Wv_k \sim 1$. By Lemma 4 in Section 5, we have
\[
\text{var}(2^{-1} t_k^{-2} v_k^T W^2 v_k) = O(\alpha_n^2 t_k^{-4}) \ll \text{var}(t_k^{-1}(b_u^T v_k - u^T v_k v_k^T)Wv_k) = O(t_k^{-2}).
\]

This shows that the above two cases can be very different in the magnitude for the asymptotic variance of $u^T \hat{v}_k$ and thus should be analyzed separately.

To gain some insights into why $v_k^T \hat{v}_k$ has smaller variance, let us consider the simple case of $K = 1$. Then in view of our technical arguments, it holds that
\[
v_k^T \hat{v}_k \hat{v}_k^T v_1 = -\frac{1}{2\pi i} \oint_{\Omega} \frac{v_1^T(W - zI)^{-1}v_1}{1 + d_1v_1^T(W - zI)^{-1}v_1} dz
\]
\[
= -\frac{1}{2\pi i} \oint_{\Omega} \frac{1}{[v_1^T(W - zI)^{-1}v_1]^{-1} + d_1} dz, \tag{18}
\]
where i associated with the complex integrals represents the imaginary unit $(-1)^{1/2}$ and the line integrals are taken over the contour Ω that is centered at $(a_1 + b_1)/2$ with radius $c_0|d_1|/2$. Then we can see that the population eigenvalue d_1 is enclosed by the contour Ω_1. By the Taylor expansion, we can show that with significant probability,
\[
[v_1^T(W - zI)^{-1}v_1]^{-1} = -z - v_1^T Wv_1 + O(|z|^{-1} \alpha_n^2 \log n).
\]

Substituting the above expansion into (18) results in
\[
-\frac{1}{2\pi i} \oint_{\Omega} \frac{1}{[v_1^T(W - zI)^{-1}v_1]^{-1} + d_1} dz = -\frac{1}{2\pi i} \oint_{\Omega} \frac{1}{d_1 - z - v_1^T Wv_1 + O(|z|^{-1} \alpha_n^2 \log n)} dz
\]
\[
= -\frac{1}{2\pi i} \oint_{\Omega} \frac{1}{d_1 - z} - \frac{1}{2\pi i} \oint_{\Omega} \frac{v_1^T Wv_1}{(d_1 - z)^2} dz + O(d_1^{-2} \alpha_n^2 \log n)
\]
\[
= -\frac{1}{2\pi i} \oint_{\Omega} \frac{1}{d_1 - z} + O(d_1^{-2} \alpha_n^2 \log n) \tag{19}
\]
with significant probability. Thus the asymptotic distribution of $v_k^T \hat{v}_k \hat{v}_k^T v_1$ is determined by $O_p(d_1^{-2} \alpha_n^2 \log n)$, which has no contribution from $v_1^T Wv_1$. On the other hand, our technical
analysis for $u^T \hat{v}_1 \hat{v}_1$ (which is much more complicated and can be found in the technical proofs section) reveals that the dominating term is $u^T W v_1$ when $u \neq v_1$ or $-v_1$. This explains why we need to treat differently the two cases of u close to or far away from v_1.

3.4 A more specific structure

Theorem 2 in Section 3.3 provides some general sufficient conditions to ensure the asymptotic normality for the spiked empirical eigenvectors. Under some simplified but stronger assumptions in Condition 3, the same results on the empirical eigenvectors and eigenvalues continue to hold. Note that the stochastic block models with non-overlapping or overlapping communities can both be included as specific cases of our theoretical analysis. As mentioned before, we choose the direction of \hat{v}_k such that $v_k^T \hat{v}_k \geq 0$ for each $1 \leq k \leq K$.

Theorem 3. Under Conditions 1–3, for each $1 \leq k \leq K$ we have the following properties:

1) (Eigenvalues) It holds that

\[
\frac{\lambda_k - t_k - \mathbb{E}v_k^T W v_k}{\mathbb{E}(v_k^T W v_k - \mathbb{E}v_k^T W v_k)^2}^{1/2} \overset{\mathcal{D}}{\rightarrow} N(0,1).
\]

2) (Eigenvectors) If the unit vector u satisfies that $\sigma_{\min}^{-1} \|v_k(b_{u,k,t_k}^T - u^T v_k v_k^T)\|_{\infty} \rightarrow 0$ and $|u^T v_k| \in [0, 1 - \epsilon]$ for some positive constant ϵ, then it holds that

\[
\frac{t_k (u^T \hat{v}_k + A_{u,k,t_k} \hat{\beta}_{k,t_k}^{1/2}) - \mathbb{E}[(b_{u,k,t_k}^T - u^T v_k v_k^T)Wv_k]}{\{\text{var}[(b_{u,k,t_k}^T - u^T v_k v_k^T)Wv_k]\}^{1/2}} \overset{\mathcal{D}}{\rightarrow} N(0,1).
\]

Moreover, it also holds that

\[
\frac{2t_k^2 (v_k^T \hat{v}_k + A_{\hat{v}_k,k,t_k} \hat{\beta}_{k,t_k}^{1/2})}{\{\text{var}(v_k^T W^2 v_k)\}^{1/2}} \overset{\mathcal{D}}{\rightarrow} N(0,1).
\]

Theorem 2 also gives the asymptotic expansions for the asymptotic mean term $A_{u,k,t_k} \hat{\beta}_{k,t_k}^{1/2}$. It is seen that if $|d_k|$ diverges to infinity much faster than α_n^2, then the $O(\cdot)$ terms in the asymptotic expansions of the mean become smaller order terms and thus the following corollary follows immediately from Theorem 3.

Corollary 1. Assume that Conditions 1–3 hold. For each $1 \leq k \leq K$, if the unit vector u satisfies that $|u^T v_k| \in [0, 1 - \epsilon]$ for some positive constant ϵ and $\alpha_n^{-4} d_k^2 \text{var}[(b_{u,k,t_k}^T - u^T v_k v_k^T)Wv_k] \rightarrow \infty$, then we have

\[
\frac{t_k (u^T \hat{v}_k - u^T v_k) - \mathbb{E}[(b_{u,k,t_k}^T - u^T v_k v_k^T)Wv_k]}{\{\text{var}[(b_{u,k,t_k}^T - u^T v_k v_k^T)Wv_k]\}^{1/2}} \overset{\mathcal{D}}{\rightarrow} N(0,1).
\]
Moreover, if $\alpha n^{-6}d_k^2 \text{var}(v_k^T W^2 v_k) \to \infty$ then we have
\[
\frac{2d_k^2 (v_k^T \hat{v}_k - 1) + v_k^T \mathbb{E}W^2 v_k}{\left[\text{var}(v_k^T W^2 v_k) \right]^{1/2}} \xrightarrow{\mathcal{D}} N(0, 1).
\]

Theorem 3 includes the stochastic block model as a specific case. If X is the affinity matrix from a stochastic block model with K non-overlapping communities and the size of each community is of the same order $O(n)$, then it holds that $\|v_k\|_\infty = O(n^{-1/2})$, $d_K = O(n)$, $\alpha_n \leq n^{1/2}$, and $\alpha_n \|v_k\|_\infty \leq O(1)$. Thus Condition 3 can be satisfied as long as $\sigma_{\min} \gg n^{-1/4}$, leading to the asymptotic normalities in Theorem 3.

Our Theorem 3 also covers the stochastic block models with overlapping communities. For example, the following network model was considered in Zhang et al. (2015)
\[
\mathbb{E}X = \Theta \Pi \Pi^T \Theta^T,
\]
where Θ is an $n \times n$ diagonal degree heterogeneity matrix, Π is an $n \times K$ community membership matrix, and P is a $K \times K$ nonsingular irreducible matrix with unit diagonal entries. Observe that the above model has low-rank mean matrix and thus can be connected to our general form of eigendecomposition $\mathbb{E}X = H = VDV^T$. If the spiked eigenvalues and spiked eigenvectors satisfy that $|d_k| = O(n)$ and $\|v_k\|_\infty = O(n^{-1/2})$ for all $1 \leq k \leq K$, then Condition 3 can be satisfied when $\sigma_{\min} \gg n^{-1/4}$. Consequently, the asymptotic normalities in Theorem 3 can hold.

3.5 Technical innovations and proofs architecture

The key mathematical tools of our paper are from complex analysis and random matrix theory. The major innovations of our paper are the novel technical arguments for deriving the precise asymptotic distributions of spiked eigenvectors and as a byproduct, the precise asymptotic distributions of spiked eigenvalues for large structured random matrices. At a high level, our technical proofs consist of four steps. First, we apply Cauchy’s residue theorem to represent the desired bilinear form $x^T \hat{v}_k \hat{v}_k^T y$ with $1 \leq k \leq K$ as a complex integral over a contour for a functional of the Green function associated with the original random matrix $X = H + W$. It is worth mentioning that such an approach was used before to study the asymptotic distributions for linear combinations of eigenvectors in the setting of covariance matrix estimation for the case of i.i.d. Gaussian random matrix coupled with linear dependency. Second, we reduce the problem to one that involves a functional of the new Green function associated with only the noise part W by extracting the spiked part. Such a step enables us to conduct precise high order asymptotic expansions. Third, we conduct delicate high order Taylor expansions for the noise part using the new Green function corresponding to the noise part. In this step, we apply the asymptotic expansion
directly to the evaluated complex integral over the contour instead of an expansion of the integrand. Such a new way of asymptotic expansion is crucial to our study. Fourth, we bound the variance of \(x^T(W - EW)x \) using delicate random matrix techniques. In contrast to just counting the number of certain paths in a graph used in classical random matrix theory literature, we need to carefully bound the individual contributions toward the quantity \(\alpha_n = \|E(W - EW)\|^{1/2} \); otherwise simple counting leads to rather loose upper bounds.

3.6 Comparisons with the literature

In a related work, Tang and Priebe (2018) established the CLT for the entries of eigenvectors of a random adjacency matrix. Our work differs significantly from theirs in at least four important aspects. First, Tang and Priebe (2018) assumed a prior distribution on the mean adjacency matrix, while we assume a deterministic mean matrix. As a result, the asymptotic variance in Tang and Priebe (2018) is determined by the prior distribution and is the same for each entry of an eigenvector, while in our paper the CLT for different entries of an eigenvector can be different and the asymptotic variance depends on all entries of the eigenvector. While Tang and Priebe (2018) also provided the conditional CLT under the setting of the stochastic block model, their result conditions on just one node. Second, our model is much more general than that in Tang and Priebe (2018) in that the spiked eigenvalues can have different orders and different signs. Third, we establish the CLT for the general linear combinations of the components of normalized eigenvectors and the CLT for eigenvalues, while Tang and Priebe (2018) proved the CLT for the rows of \(\Lambda^{1/2}\hat{V}^T \), where \(\Lambda \in \mathbb{R}^{K \times K} \) is the diagonal matrix formed by \(K \) spiked eigenvalues of the adjacency matrix and \(\hat{V} = (\hat{v}_1, \cdots, \hat{v}_K) \) is the matrix collecting the corresponding eigenvectors of the adjacency matrix. Fourth, through a dedicated analysis of the higher order expansion for the general linear combination \(u^T\hat{v}_k \), we uncover an interesting phase transition phenomenon that the limiting distribution of \(u^T\hat{v}_k \) is different when the deterministic weight vector \(u \) is close to or far away from \(v_k \) (modulo the sign), which is new to the literature.

Wang and Fan (2017) proved the asymptotic distribution of the linear form \(v_i^T\hat{v}_k \) with \(1 \leq i, k \leq K \), where \(v_i \)'s and \(\hat{v}_k \)'s are the spiked population and empirical eigenvectors of some covariance matrix, respectively. Their asymptotic normality results cover the case of \(v_i^T\hat{v}_i \) when \(K = 1 \), and \(v_i^T\hat{v}_k \) for \(1 \leq i, k \leq K \) with \(i \neq k \) when \(K \geq 2 \). Similarly, Koltchinskii and Lounici (2016) considered the sample covariance matrix under the Gaussian distribution assumption, and derived the asymptotic expansion of the bilinear form \(x^T\hat{v}_k\hat{v}_k^Ty \), where \(x, y \) are two deterministic unit vectors. They also obtained the asymptotic distribution of \(x^T\hat{v}_k \). Different from Wang and Fan (2017) and Koltchinskii and Lounici (2016), in this paper we establish the asymptotic distribution for the general linear combination \(u^T\hat{v}_k \) for the large structured symmetric random matrix from model (1) under fairly weak regularity conditions. Our proof techniques differ from those in Wang and Fan (2017) and Koltchinskii and Lounici
and are also distinct from most of existing ones in the literature.

4 Simulation studies

In this section, we use simulation studies to verify the validity of our theoretical results. We consider the stochastic block model with $K = 2$ communities. Assume that the number of nodes is n, the first $n/2$ nodes belong to the first community, and the rest belong to the second one. Then the adjacency matrix X has the mean structure $\mathbb{E}X = H = AR^T$, where R is a 2×2 matrix of the connectivity probabilities, and $A = (a_1, a_2) \in \mathbb{R}^{n \times 2}$ with $a_1 = n^{-1/2}(1^T, 0^T)^T$ and $a_2 = n^{-1/2}(0^T, 1^T)^T$, where $0, 1 \in \mathbb{R}^{n/2}$ are vectors of zeros and ones, respectively. It is worth mentioning that AR^T is not the eigendecomposition of the mean matrix H, which is why we use different notation than that in model (1).

For the connectivity probability matrix R, we consider the structure

$$R = r \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix},$$

where parameter r takes 6 different values $0.02, 0.05, 0.1, 0.2, 0.3,$ and 0.4. A similar model was considered in Abbe et al. (2017) and Lei (2016). For the connectivity matrix X, we simulate its entries on and above the diagonal as independent Bernoulli random variables with means (probabilities) given by the corresponding entries in the mean matrix H, and set the entries below the diagonal to be the same as the corresponding ones above the diagonal. We choose the number of nodes as $n = 3000$ and repeat the simulations for 10,000 times.

To verify our theoretical results, for each simulated connectivity matrix X we calculate its eigenvalues and corresponding eigenvectors. For the eigenvalues, we compare the empirical distribution of

$$\frac{\lambda_k - t_k}{\text{var}(v_k^T W v_k)^{1/2}}$$

with the standard normal distribution, where t_k is the solution to equation (9). The exact expression of $\mathcal{R}(v_k, V_{-k}, z) [(D_{-k})^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z)]^{-1} \mathcal{R}(V_{-k}, v_k, z)$ in (9) is complicated. Since this term is much smaller than $\mathcal{R}(v_k, v_k, z)$, we can calculate an approximation of t_k by solving the equation

$$1 + d_k \mathcal{R}(v_k, v_k, z) = 0$$

using the Newton–Raphson method. Guided by the theoretical derivations, we use $L = 4$ in the asymptotic expansion of $\mathcal{R}(x, y, t)$ in (5) for all of our simulation examples. Tables 1–2 summarize the means and standard deviations of (25) with $k = 1$ and 2 calculated from the 10,000 repetitions as well as the p-values from the Anderson–Darling (AD) test for the
normality. Figure 1 presents the histograms of the normalized first and second eigenvalues (i.e., (25) when \(k = 1\) and \(2\)) from the 10,000 repetitions.

For the eigenvectors, we evaluate the asymptotic normality of the linear combination \(u^T \hat{v}_k\) with \(k = 1\) and \(2\). We experiment with three different values for \(u\): \(a_1\), \((1, 0, \cdots, 0)^T\), and \(v_k\). When \(u = a_1\) or \((1, 0, \cdots, 0)^T\), we calculate the normalized statistic

\[
t_k \left(u^T \hat{v}_k + A_{u,k,t_k} \hat{v}_k^{1/2} \right)
\frac{\left\{ \text{var} \left((u^T \hat{v}_k - u^T v_k)^T W v_k \right) \right\}^{1/2}}
\]

using the 10,000 simulated data sets, while when \(u = v_k\) we calculate the normalized statistic

\[
2t_k^2 \left(v_k^T \hat{v}_k + A_{v_k,k,t_k} \hat{v}_k^{1/2} \right)
\frac{1}{\left\{ \text{var} (v_k W^2 v_k) \right\}^{1/2}}
\]

instead. In either of the two cases above, the variance in the denominator is calculated as the sample variance from 2,000 simulated independent copies of the noise matrix \(W\). We compare the empirical distributions of the above two normalized statistics with the standard normal distribution. The simulation results are summarized in Tables 3–8 and Figures 2–3.

Table 1: Simulation results for \((\lambda_1 - t_1)/[\text{var}(v_1^T W v_1)]^{1/2}\)

\(r\)	0.02	0.05	0.1	0.2	0.3	0.4
Mean	0.0719	0.0149	-0.0068	-0.0080	-0.0024	0.0124
Standard deviation	1.0107	1.0085	0.9927	1.0115	1.0023	1.0125
AD.p-value	0.0725	0.5387	0.6263	0.2342	0.9243	0.2010

Our simulation results in Figure 1 and Tables 1–2 suggest that the normalized spiked
eigenvalues have distributions very close to standard Gaussian which supports our results in Theorem 1. Indeed, such a large p-value is extremely impressive given the large “sample size” (which is the number of simulations 10,000). In general, the simulation results for the eigenvectors support our theoretical findings in Section 3. However, the results corresponding to the first spiked eigenvector \hat{v}_1 (Tables 3–5) are better than those for the second spiked eigenvector \hat{v}_2 (Tables 4–8). This is reasonable since for the larger spiked eigenvalue, the negligible terms that we dropped in the proofs of the asymptotic normality become relatively smaller and thus have smaller finite-sample effects on the asymptotic distributions. For the linear form $u^T \hat{v}_k$, when $u = v_k$ the convergence to standard normal is slower when compared to the case of $u \neq v_k$. This again supports our theoretical findings in Section 3 and explains why we need to separate the cases of $u = v_k$ and $u \neq v_k$. Such effect is especially prominent for $v_2^T \hat{v}_2$, whose sample mean is -11.8020 when $r = 0.02$ as shown in Table 7. However, it is seen from the same table (and other tables) that as the spiked eigenvalue increases with r, the distribution gets closer and closer to standard Gaussian.

Table 2: Simulation results for $(\lambda_2 - t_2)/[\text{var}(v_2^T W v_2)]^{1/2}$

r	0.02	0.05	0.1	0.2	0.3	0.4
Mean	1.0761	0.2552	0.0681	0.0272	0.0093	0.0052
Standard deviation	0.9630	0.9820	0.9872	1.0100	1.0057	1.0005
AD p-value	0.5349	0.6722	0.8406	0.1806	0.0535	0.8341

Table 3: Simulation results for $u^T \hat{v}_1$ with $u = a_1$

r	0.02	0.05	0.1	0.2	0.3	0.4
Mean	-0.0573	-0.0140	-0.0023	-0.0045	-0.0071	-0.0069
Standard deviation	1.0335	1.0244	1.0011	1.0001	1.0214	1.0016
AD p-value	0.7879	0.4012	0.2417	0.5300	0.9482	0.9935

Table 4: Simulation results for $v_1^T \hat{v}_1$

r	0.02	0.05	0.1	0.2	0.3	0.4
Mean	-1.3288	-0.4817	-0.1900	-0.0742	-0.0499	-0.0186
Standard deviation	1.0940	1.0545	1.0338	0.9749	1.0030	1.0005
AD p-value	0.0582	0.4251	0.0251	0.0225	0.3312	0.2912
Table 5: Simulation results for $\mathbf{u}^T\hat{\mathbf{v}}_1$ with $\mathbf{u} = (1, 0, \cdots, 0)^T$

r	0.02	0.05	0.1	0.2	0.3	0.4
Mean	0.0025	0.0021	0.0003	0.0105	0.0061	-0.0122
Standard deviation	1.0432	1.0354	0.9871	1.0016	1.0205	0.9898
AD, p-value	0.0044	0.4877	0.3752	0.1514	0.1304	0.3400

Table 6: Simulation results for $\mathbf{u}^T\hat{\mathbf{v}}_2$ with $\mathbf{u} = \mathbf{a}_1$

r	0.02	0.05	0.1	0.2	0.3	0.4
Mean	4.2611	1.0129	0.3067	0.0745	0.0219	0.0037
Standard deviation	1.2384	1.0952	1.0294	1.0098	1.0280	1.0044
AD, p-value	0.3829	0.7535	0.3759	0.4105	0.9129	0.9873

Table 7: Simulation results for $\mathbf{v}_2^T\hat{\mathbf{v}}_2$

r	0.02	0.05	0.1	0.2	0.3	0.4
Mean	-11.8020	-4.3274	-2.0057	-0.7447	-0.3526	-0.1650
Standard deviation	1.3775	1.1192	1.0980	1.0343	1.0104	1.0089
AD, p-value	0.0000	0.0011	0.0422	0.3964	0.4980	0.1186

Table 8: Simulation results for $\mathbf{u}^T\hat{\mathbf{v}}_2$ with $\mathbf{u} = (1, 0, \cdots, 0)^T$

r	0.02	0.05	0.1	0.2	0.3	0.4
Mean	0.0622	0.0204	0.0018	-0.0074	-0.0119	-0.0049
Standard deviation	1.1221	1.0537	1.0272	1.0022	1.0088	0.9933
AD, p-value	0.0003	0.5853	0.0930	0.6011	0.2423	0.4385
Figure 2: Histograms corresponding to the first eigenvector $\mathbf{\hat{v}}_1$ when $r = 0.4$, with the blue curves representing the standard normal density. Left panel: $\mathbf{u}_1^T \mathbf{\hat{v}}_1$; middle panel: $\mathbf{v}_1^T \mathbf{\hat{v}}_1$; right panel: $\mathbf{u}_3^T \mathbf{\hat{v}}_1$, where $\mathbf{u}_1 = \mathbf{a}_1$ and $\mathbf{u}_3 = (1, 0, \cdots, 0)^T$.

Figure 3: Histograms corresponding to the second eigenvector $\mathbf{\hat{v}}_2$ when $r = 0.4$, with the blue curves representing the standard normal density. Left panel: $\mathbf{u}_1^T \mathbf{\hat{v}}_2$; middle panel: $\mathbf{v}_2^T \mathbf{\hat{v}}_2$; right panel: $\mathbf{u}_3^T \mathbf{\hat{v}}_1$, where $\mathbf{u}_1 = \mathbf{a}_1$ and $\mathbf{u}_3 = (1, 0, \cdots, 0)^T$.
5 A more general asymptotic theory

As mentioned before, the asymptotic theory on the spiked eigenvectors in terms of the general linear combinations and on the spiked eigenvalues presented in Section 3 is in fact a consequence of a more general asymptotic theory on the spiked eigenvectors in terms of the bilinear form. In this section, we focus our attention on such a more general asymptotic theory for the bilinear form $x^T \hat{v}_k \hat{v}_k^T y$ with $1 \leq k \leq K$, where x and y are two arbitrary n-dimensional unit vectors. See Sections 3.5 and 3.6 for detailed discussions on the technical innovations of our novel ATE theoretical framework and comparisons with the existing literature on the asymptotic distributions of eigenvectors.

For technical reasons, we will break our main results on the asymptotic distributions of the bilinear form $x^T \hat{v}_k \hat{v}_k^T y$ down to two theorems, where we consider in Theorem 4 the case when either vector x or vector y is sufficiently far away from the population eigenvector v_k, and then we study in Theorem 5 the case when both vectors x and y are very close to v_k. The technical treatments for these two cases are different since in the latter scenario, the first order term which determines the asymptotic distribution in Theorem 4 vanishes, and thus we need to consider higher order expansions to obtain the asymptotic distribution in Theorem 5. Let J_{x,y,k,t_k}, L_{x,y,k,t_k}, and Q_{x,y,k,t_k} be the three rank one matrices given in (108)–(110), respectively, in the proof of Theorem 5 in Section A.6. Denote by $\tilde{\sigma}_k^2 = \text{var}[\text{tr}(WJ_{x,y,k,t_k})]$ and

$$\tilde{\sigma}_k^2 = \text{var} \left\{ \text{tr} \left[WJ_{x,y,k,t_k} - (W^2 - EW^2) L_{x,y,k,t_k} \right] + \text{tr} (Wv_k v_k^T) \text{tr} (WQ_{x,y,k,t_k}) \right\}. \quad (27)$$

Both of the quantities above play an important role in our more general asymptotic theory.

Theorem 4. Assume that Conditions 1–2 hold and x and y are two n-dimensional unit vectors. Then for each $1 \leq k \leq K$, if $\sigma_k^2 \gg t_k^{-4} \alpha_n^2 |A_{x,k,t_k}| + |A_{y,k,t_k}|^2 + t_k^{-4}$ we have the asymptotic expansion

$$x^T \hat{v}_k \hat{v}_k^T y = a_k + \text{tr}(WJ_{x,y,k,t_k}) + O_p \left\{ t_k^{-2} \alpha_n (|A_{x,k,t_k}| + |A_{y,k,t_k}|) + t_k^{-2} \right\}, \quad (28)$$

where the quantity $a_k = A_{x,k,t_k} A_{y,k,t_k} \tilde{P}_{k,t_k}$.

The assumption of $\sigma_k^2 \gg t_k^{-4} \alpha_n^2 (|A_{x,k,t_k}| + |A_{y,k,t_k}|)^2 + t_k^{-4}$ in Theorem 4 requires the variance of random variable $\text{tr}(WJ_{x,y,k,t_k})$ to be not too small, which at high level, requires that either vector x or y is sufficiently far away from the population eigenvector v_k. If $\sigma_{ij} \sim 1$ for each (i, j) pair, then such an assumption restricts essentially that $\|J_{x,y,k,t_k}\|$ should not be too close to zero. This in turn ensures that the first order expansion is sufficient for deriving the asymptotic normality of $x^T \hat{v}_k \hat{v}_k^T y$. Theorem 4 also entails that a simple upper bound for $\tilde{\sigma}_k$ as defined in (27) can be shown to be $O(t_k^{-2} \alpha_n)$.

21
Theorem 5. Assume that Conditions 1–2 hold and \mathbf{x} and \mathbf{y} are two n-dimensional unit vectors. Then for each $1 \leq k \leq K$, if $\sigma_k^2 = \mathcal{O}(\tilde{\sigma}_k^2)$ and $\tilde{\sigma}_k^2 \gg t_k^{-6} \alpha_n^4 (|A_{x,k,t_k}| + |A_{y,k,t_k}|)^2 + t_k^{-6}$ we have the asymptotic expansion

$$
x^T \tilde{v}_k \tilde{v}_k^T y = a_k + \mathbf{tr} \left[WJ_{x,y,k,t_k} - (W^2 - \mathbb{E}W^2) L_{x,y,k,t_k} \right] + \mathbf{tr} (Wv_k v_k^T) \mathbf{tr} (WQ_{x,y,k,t_k})$$

$$+ \mathcal{O}_p \left\{ t_k^{-3} \alpha_n^2 (|A_{x,k,t_k}| + |A_{y,k,t_k}|) + |t_k|^{-3} \right\},$$

where the quantity a_k is given in (28). The ATE theoretical framework for the more general asymptotic theory established in Theorems 4 and 5 is empowered by the following two technical lemmas.

Lemma 4. For any n-dimensional unit vectors \mathbf{x} and \mathbf{y}, we have

$$x^T (W^l - \mathbb{E}W^l)y = \mathcal{O}_p \left(\min \{ \alpha_n^{l-1}, d_x \alpha_n^l, d_y \alpha_n^l \} \right)$$

with $l \geq 1$ some bounded positive integer and $d_x = \| \mathbf{x} \|_{\infty}$.

Lemma 5. For any n-dimensional unit vectors \mathbf{x} and \mathbf{y}, we have $\mathbb{E}x^T W^l y = \mathcal{O}(1)$ and

$$\mathbb{E}x^T W^l y = \mathcal{O}(\alpha_n^l)$$

with $l \geq 2$ some bounded positive integer.

The detailed proofs of Lemmas 4 and 5 are provided in Sections B.5 and B.6 of Supplementary Material. Our delicate technical arguments therein establish useful refinements to the classical idea of counting the number of nonzero terms from the random matrix theory. In particular, Lemma 4 is the key building block for high order Taylor expansions that involve polynomials of quantities in the lemma with different choices of $(\mathbf{x}, \mathbf{y}, l)$.

6 Discussions

In sharp contrast to the immense literature on the asymptotic distributions for eigenvalues of large random matrices, the counterpart asymptotic theory for eigenvectors has remained largely underdeveloped for years. Yet such a theory is much desired for understanding the precise asymptotic properties of various statistical and machine learning algorithms that build upon the spectral information of the eigenspace constructed from observed data matrix. Our work in this paper provides a first attempt with a general ATE theoretical framework for underpinning the precise asymptotic expansions and asymptotic distributions for spiked eigenvectors and spiked eigenvalues of large structured random matrices. Our technical tool complements existing techniques in the RMT literature as well as the networks literature.
The family of models in our ATE framework includes many popularly used ones for large-scale applications including network analysis and text analysis such as the stochastic block models with or without overlapping communities and the topic models. Our general asymptotic theory for eigenvectors can be exploited to develop new useful tools for precise statistical inference in these applications. It would be interesting to investigate the problem of reproducible large-scale inference as in Barber and Candès (2015); Candès et al. (2018); Lu et al. (2018); Fan et al. (2018); Fan et al. (2019); Fan et al. (2018) in these model settings. It would also be interesting to develop a general method to determine and provide robust rank inference in such high-dimensional low-rank models. These extensions are beyond the scope of the current paper and will be interesting topics for future research.

A Proofs of main results

We provide the proofs of Theorems 1–5 and Corollary 1 in this appendix. Additional technical details including the proofs of all the lemmas and further discussions on when the asymptotic normality can hold for the asymptotic expansion in Theorem 5 are contained in the Supplementary Material.

A.1 Proof of Theorem 1

The results on the asymptotic distributions of spiked eigenvalues in Theorem 1 are in fact a consequence of those on the asymptotic expansions and asymptotic distributions for the spiked eigenvectors, where a more general asymptotic theory of the eigenvectors is presented in Theorems 4–5 in Section 5. Let us define a matrix-valued function that is referred to as the Green function associated with only the noise part

\[G(z) = (W - zI)^{-1} \]

for \(z \) in the complex plane \(\mathbb{C} \), where \(I \) stands for the identity matrix of size \(n \). Recall that \(\lambda_1, \cdots, \lambda_n \) are the eigenvalues of matrix \(X \) and \(\hat{v}_1, \cdots, \hat{v}_n \) are the corresponding eigenvectors. By Weyl’s inequality, it holds that \(\max \{|\lambda_i - d_i| \leq \|W\| \). Thus, in view of Condition 2 and Lemma 6 in Supplementary Material, all the spiked eigenvalues \(\lambda_k \) with \(1 \leq k \leq K \) of the observed random matrix \(X \) have magnitudes of larger order than the eigenvalues of the noise matrix \(W \) with significant probability as the matrix size \(n \) increases. This entails that with significant probability, matrices \(G(\lambda_k) \) with \(1 \leq k \leq K \) are well defined and nonsingular.

For the rest of this proof, we restrict all the derivations on such an event that holds with asymptotic probability one.

It follows from the definition of the eigenvalue, the representation \(X = H + W = VDV^T + \)
By (73) and Lemma 4, we have
\[d \] one are of order at least
\[O \] when the lower right block matrix
\[A \] ·
\[d \] \(\delta \) invertible with significant probability, where
\[d \] \(j \) \(d \) that all off diagonal entries of matrix
\[(33) \] \(\hat{v} \) light of (35) and the solution
\[k \] \(\lambda \) \(A \) \(G \) \(W \) Using the identity \(\det(I + AB) = \det(I + BA) \) for matrices \(A \) and \(B \), we obtain for each
\[1 \leq k \leq K, \]
\[0 = \det[I + G(\lambda_k)VDV^T] = \det[I + DV^T G(\lambda_k) V], \] (33)
where the second \(I \) represents an identity matrix of size \(K \) and we slightly abuse the notation for simplicity. Since the diagonal matrix \(D \) is nonsingular by assumption, it follows from (33) that
\[\det[d_kV^T G(\lambda_k) V + d_kD^{-1}] = d_k \det(D^{-1}) \det[I + DV^T G(\lambda_k) V] = 0 \] (34)
for each \(1 \leq k \leq K \).

By the asymptotic expansions in (74), Lemmas 4 and 5, and Weyl’s inequality \(\max|\lambda_k - d_k| \leq \|W\| \), we have for \(j \neq \ell \),
\[d_k v_j^T G(\lambda_k) v_\ell = -d_k O_p(\lambda_k^{-2}) = O_p(1/|d_k|). \]
Thus, we can see that all off diagonal entries of matrix \(d_kV^T G(\lambda_k) V + d_kD^{-1} \) in (34) are of order \(O_p(1/|d_k|) \).
For \(j \neq k \), the \(j \)th diagonal entry of \(d_kV^T G(\lambda_k) V + d_kD^{-1} \) equals \(d_k v_j^T G(\lambda_k) v_j + d_k/d_j \).
By (73) and Lemma 4, we have \(d_k v_j^T G(\lambda_k) v_j + 1 = O_p(1) \). Moreover, by Condition 2 \(|d_k/d_j - 1| \geq c \) for some positive constant \(c \). Hence, all these diagonal entries but the \(k \)th one are of order at least \(O_p(1) \). Thus the matrix
\[(d_k v_j^T G(\lambda_k) v_j + \delta_{ij} d_k/d_i)_{1 \leq i,j \leq K, i,j \neq k} \]
is invertible with significant probability, where \(\delta_{ij} = 1 \) when \(i = j \) \(\) and \(0 \) otherwise. Recall the determinant identity for block matrices from linear algebra
\[
\det\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} = \det(A_{22}) \det(A_{11} - A_{12} A_{22}^{-1} A_{21})
\]
when the lower right block matrix \(A_{22} \) is nonsingular. Treating the \(k \)th diagonal entry of
\[d_k V^T G(\lambda_k) V + d_k D^{-1} \]
as the first block, we have with significant probability
\[\det[d_kV^T G(\lambda_k) V + d_kD^{-1}] = 0 \] (35)
entailing \(d_k v_k^T G(\lambda_k) v_k + 1 = d_k v_k^T F_k(\lambda_k) v_k \), where
\[F_k(z) = G(z) V_{-k} [D_{-k}^{-1} + V_{-k}^T G(z) V_{-k}]^{-1} \] · \(V_{-k}^T G(z) \) and \(A_{-k} \) denotes the submatrix of matrix \(A \) by removing the \(k \)th column. In light of (35) and the solution \(\hat{t}_k \) to equation (89) in the proof of Theorem 4 in Section A.5,
it holds from the uniqueness of \hat{t}_k that
\[
\lambda_k = \hat{t}_k. \quad (36)
\]

Therefore, combining equality (36) with asymptotic expansion $\hat{t}_k - t_k = v_k^T W v_k + O_p(\alpha_n/t_k)$ obtained in (94) completes the proof of Theorem 1.

A.2 Proof of Theorem 2

The results on the asymptotic distributions of spiked eigenvectors in Theorem 2 are also an implication of a more general asymptotic theory of the eigenvectors presented in Theorems 4–5 in Section 5 on the delicate asymptotic expansions and asymptotic distributions for the spiked eigenvectors. Recall that $\hat{V} = (\hat{v}_1, \cdots, \hat{v}_K)$ with \hat{v}_k for $1 \leq k \leq K$ the empirical spiked eigenvectors of the observed random matrix X. Without loss of generality, let us choose the direction of eigenvector \hat{v}_k such that $\hat{v}_k^T v_k \geq 0$. Clearly, fixing the direction of \hat{v}_k does not affect the distribution of $x^T \hat{v}_k \hat{v}_k^T y$; that is, its distribution stays the same when $-\hat{v}_k$ is chosen as the eigenvector. We will separately consider the two cases of $v_k^T \hat{v}_k$ and $u^T \hat{v}_k$ with $u \neq v_k$, where the former relies on the second order expansion given in (106) in the proof of Theorem 5 in Section A.6, and the latter utilizes the first order expansion given in (102) in the proof of Theorem 4 in Section A.5.

We first consider $v_k^T \hat{v}_k$. Choosing $x = y = v_k$ in Theorem 4 gives $a_k = A_{v_k,k,t_k}^2 \tilde{P}_{k,t_k}$. By Lemma 5, it holds that
\[
\mathcal{P}(v_k, v_k, t_k) = -\sum_{l=0,l \neq 2}^L \frac{v_k^T E W^l v_k}{t_k^l} = -1 + O(\alpha_n^2/t_k^2) \quad (37)
\]
and
\[
\|\mathcal{P}(v_k, V_{-k}, t_k)\| = \| -\sum_{l=0,l \neq 2}^L \frac{v_k^T E W^l V_{-k}}{t_k^l} \| = O(\alpha_n^2/t_k^2). \quad (38)
\]

Moreover, recalling the definition of A_{u_k,t_k} in (8), A_{u_k,t_k} can be rewritten as
\[
A_{v_k,k,t_k} = \mathcal{P}(v_k, v_k, t) - t_k^{-1} \mathcal{P}(v_k, V_{-k}, t_k) \left(D_k^{-1} + \mathcal{R}(V_{-k}, V_{-k}, t_k) \right)^{-1} \mathcal{P}(V_{-k}, v_k, t_k).
\]

Therefore, by (37)–(38), (A.16), and (86), we have
\[
A_{v_k,k,t_k} = -1 + O(\alpha_n^2/t_k^2) \quad \text{and} \quad \tilde{P}_{k,t_k} = 1 + O(\alpha_n^2/t_k^2). \quad (39)
\]

Now recall the second order expansion of $x^T \hat{v}_k \hat{v}_k^T y$ given in (106) in the proof of Theorem 5. We next calculate the orders of each term in the expansion (106). First, we consider
\[b_{vk,k,t_k}^T. \] By (38), (A.16), and the definition (6), we have

\[\|b_{vk,k,t_k}^T - v_k^T\| = \left\| \mathcal{R}(v_k, V_{-k}, t_k) \left((D_{-k})^{-1} + \mathcal{R}(V_{-k}, V_{-k}, t_k) \right)^{-1} V_{-k}^T \right\| = O(\alpha_n^2/t_k^2). \] (40)

This together with (39) entails that

\[\|b_{vk,k,t_k}^T + Av_{vk,k,t_k} \tilde{P}_{k,t_k} v_k^T\| = O(\alpha_n^2/t_k). \] (41)

It follows from Lemma 4 and (39) that

\[A v_{vk,k,t_k} \tilde{P}_{k,t_k}(b_{vk,k,t_k}^T + Av_{vk,k,t_k} \tilde{P}_{k,t_k} v_k^T) W v_k/t_k = O_p(\alpha_n^2/|t_k|^3), \]
the noise matrix W. Recall that $v_k^T \hat{v}_k \geq 0$. By (39) and (42) we have
\[
v_k^T \hat{v}_k + A_{v_k, k, t_k} \hat{p}_{k, t_k}^{1/2} = -v_k^T (W^2 - \mathbb{E}W^2)v_k + O_p(\alpha_n^2 / t_k^2)
\]
\[
= -v_k^T (W^2 - \mathbb{E}W^2)v_k + O_p(|t_k|^{-2} + \alpha_n^2 / |t_k|^3).
\]

We now consider an arbitrary unit vector $u \in \mathbb{R}^n$ with $|u^T \hat{v}_k| \in [0, 1)$ for investigating the asymptotic distributions of the general linear combinations $u^T \hat{v}_k$. Recall the first order expansion given in (102) in the proof of Theorem 4 and (41) that
\[
u_k^T \hat{v}_k^T v_k - A_{u, k, t_k} A_{v_k, k, t_k} \hat{p}_{k, t_k} = -A_{v_k, k, t_k} \hat{p}_{k, t_k} (b_{u, k, t_k}^T + A_{u, k, t_k} \hat{p}_{k, t_k} v_k^T)Wv_k / t_k + O_p(\alpha_n / t_k^2).
\]
(44)

Then dividing (44) by $v_k^T \hat{v}_k$ and using (39) and (43), we can deduce that
\[
u_k^T \hat{v}_k + A_{u, k, t_k} \hat{p}_{k, t_k}^{1/2} = \hat{p}_{k, t_k} (b_{u, k, t_k}^T + A_{u, k, t_k} \hat{p}_{k, t_k} v_k^T)Wv_k / t_k + O_p(\alpha_n / t_k^2)
\]
\[
= (b_{u, k, t_k} - u^T v_k v_k^T)Wv_k / t_k + O_p(\alpha_n / t_k^2).
\]
(45)

In view of the asymptotic expansions in (45) and (43), we can see that the desired asymptotic normalities in the two parts of Theorem 2 follow from the conditions of Lemmas 1 or 2. More specifically, for (45) if $\alpha_n^{-2}d_k^2 \text{var}[(b_{u, k, t_k}^T - u^T v_k v_k^T)Wv_k] \to \infty$, then we have $\alpha_n / t_k^2 \ll \{\text{var}[(b_{u, k, t_k} - u^T v_k v_k^T)Wv_k]\}^{1/2}$ and thus the first part of Theorem 2 in (16) holds in view of (45). Furthermore, if $(b_{u, k, t_k} - u^T v_k v_k^T)Wv_k$ is W^1-CLT, then $(b_{u, k, t_k} - v_k v_k^T u, v_k)$ is also W^1-CLT and thus we have
\[
t_k \left((u^T \hat{v}_k + A_{u, k, t_k} \hat{p}_{k, t_k}^{1/2}) - \mathbb{E}[(b_{u, k, t_k} - u^T v_k v_k^T)Wv_k]\right) \overset{\varphi}{\to} N(0, 1).
\]

Similarly, the second part of Theorem 2 in (17) also holds under the condition $\alpha_n^{-2}d_k^2 + 1)\text{var}[v_k^T (W^2 - \mathbb{E}W^2)v_k] \to \infty$ and the CLT holds if (v_k, v_k) is W^2-CLT. This concludes the proof of Theorem 2.

A.3 Proof of Theorem 3

The results on the asymptotic distributions of spiked eigenvalues and spiked eigenvectors in Theorem 3 are an application of those in Theorems 1 and 2 for a more specific structure of the low rank model (1), including the stochastic block model with both non-overlapping and overlapping communities as special cases.

First, note that (14) implies that the condition of Lemma 1 holds for $v_k^T Wv_k$ under Condition 3. Consequently, (v_k, v_k) is W^1-CLT. In addition, (14) ensures that $\mathbb{E}(v_k^T Wv_k -$
\[\mathbb{E}v_k^T W v_k^2 \gg \frac{\alpha_n^2}{d_k^2} \] under Condition 3. Therefore, it follows from Theorem 1 that the first result of Theorem 3 holds. Recall that in (A.12), \(s_{x,y} \) is defined as the expected value of the conditional variance of \(v_k^T (W^2 - \mathbb{E}W^2) v_k \). By definition, we have \(\text{var}[v_k^T (W^2 - \mathbb{E}W^2) v_k] \geq s_{x,y} \geq \sigma_{\min}^2 n \). Thus the condition \((\alpha_n^{-4} d_k^2 + 1) \text{var}[v_k^T (W^2 - \mathbb{E}W^2) v_k] \to \infty \) in Theorem 2 is ensured by the assumptions

\[\sigma_{\min}^2 n \to \infty, \quad \frac{|d_k| \sigma_{\min}}{\alpha_n} \to \infty, \quad \alpha_n \leq n^{1/2} \]

in Condition 3. Moreover, by (A.13) we can see that the conditions of Lemma 2 are satisfied for \(v_k^T (W^2 - \mathbb{E}W^2) v_k \) under Condition 3. Thus \((v_k, v_k) \) is \(W^2\text{-CLT} \). Therefore, (21) holds by an application of (17) in Theorem 2.

It remains to show that the condition

\[\text{var}[(b_{u,k,t}\bar{v}_k - u^T v_k v_k^T)W v_k] \gg \frac{\alpha_n^2}{d_k^2} \] (46)

in Theorem 2 can be guaranteed by Condition 3. Then the expansion in (16) holds. Moreover, the condition \(\sigma_{\min}^{-1} \|v_k\|_{\|u_{k,t}\|_k - u^T v_k v_k^T\|_\infty} = 0 \) ensures that \((b_{u,k,t} - v_k v_k^T u, v_k) \) is \(W^1\text{-CLT} \). Combining these results entails that the asymptotic normality (20) holds. Now we proceed to verify (46). Consider an arbitrary unit vector \(u \in \mathbb{R}^n \) satisfying \(|u^T v_k| \in [0, 1 - \epsilon] \) for some positive constant \(\epsilon \). Recalling the definition of \(b_{u,k,t} \) in (7), we have \(b_{u,k,t}^T v_k = \{u^T - \mathcal{R}(u, V_{-k}, t)^{-1} \mathcal{R}(V_{-k}, V_{-k}, t)\} v_k = u^T v_k \). Thus it holds that \(b_{u,k,t}^T v_k = b_{u,k,t}^T v_k = b_{u,k,t}^T (I - v_k v_k^T) \). Moreover, similar to (14) we can show that

\[\left[\mathbb{E}(u^T W v_k - \mathbb{E}u^T W v_k)^2 \right]^{1/2} \geq \sigma_{\min}(2 - 2\|v_k\|_\infty^2)^{1/2}. \] (47)

This ensures that there exists some positive constant \(c_1 \) such that

\[\text{var}[(b_{u,k,t}^T - u^T v_k v_k^T)W v_k] \geq \sigma_{\min}^2 (2 - 2\|v_k\|_\infty^2) b_{u,k,t}^T - u^T v_k v_k^T \]

\[\geq \sigma_{\min}^2 (2 - 2\|v_k\|_\infty^2) b_{u,k,t}^T (I - v_k v_k^T) \]

\[\geq c_1 \sigma_{\min}^2 |(u^T v_k)^2 + b_{u,k,t}^T b_{u,k,t}|. \] (48)

where we have applied \(b_{u,k,t}^T v_k = u^T v_k \) again in the last step.

Let \(\bar{V} = (v_{K+1}, \cdots, v_n) \) be an \(n \times (n - K) \) matrix such that \((V, \bar{V}) \) is an orthogonal matrix of size \(n \). Then the \(n \)-dimensional unit vector \(u \) can be represented as \(u = \sum_{i=1}^n a_i v_i \) for some scalars \(a_i \)'s. For each \(1 \leq k \leq K \), by the definition of \(\mathcal{R} \) in (5) and Lemma 5 we can show that

\[\|\mathcal{R}(V_{-k}, V_{-k}, t) + t_k^{-1} I\| = O\left(\frac{\alpha_n^2}{|t_k|^2}\right) \] and \(\|\mathcal{R}(u, V_{-k}, t) + t_k^{-1} u^T v_{-k}\| = O\left(\frac{\alpha_n^2}{|t_k|^2}\right) \). (49)
Therefore it holds that
\[\left\| \mathcal{R}(u, V_{-k}, t_k)[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, t_k)]^{-1} V_{-k}^T + \sum_{1 \leq i \neq k \leq K} a_i(t_k d_i^{-1} - 1)^{-1} v_i^T \right\| = \mathcal{O}(\alpha_n^2 / t_k^2). \]

(50)

Then it follows from (50) and (7) that
\[b_{u,k,t_k}^T = \sum_{i=1}^n a_i v_i^T - \mathcal{R}(u, V_{-k}, t_k)[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, t_k)]^{-1} V_{-k}^T \]
and
\[\left\| b_{u,k,t_k} - a_k v_k - \sum_{1 \leq i \neq k \leq K} a_i [1 + (t_k d_i^{-1} - 1)^{-1}] v_i - \sum_{i=K+1}^n a_i v_i \right\| = \mathcal{O}(\alpha_n^2 / t_k^2). \]

(51)

We denote by \(c_k = a_k v_k + \sum_{1 \leq i \neq k \leq K} a_i [1 + (t_k d_i^{-1} - 1)^{-1}] v_i + \sum_{i=K+1}^n a_i v_i \). By (51), we can obtain
\[- (u^T v_k)^2 + b_{u,k,t_k}^T b_{u,k,t_k} = -a_k^2 + \| c_k \|^2 + \| b_{u,k,t_k} - c_k \|^2 + 2(b_{u,k,t_k} - c_k)^T c_k \]
\[= \sum_{1 \leq i \neq k \leq K} a_i^2 [1 + (t_k d_i^{-1} - 1)^{-1}]^2 + \sum_{i=K+1}^n a_i^2 + \mathcal{O}(\alpha_n^2 / t_k^2) \]
\[+ \text{some small order term}, \]

(52)

where the small order term takes a rather complicated form and thus we omit its expression for simplicity. Since by assumption \(|u^T v_k| \in [0, 1 - \epsilon]\), \(u = \sum_{i=1}^n a_i v_i \) is a unit vector, and \((v_1, \cdots, v_n) \) is an orthogonal matrix, it holds that
\[\sum_{1 \leq i \neq k \leq n} a_i^2 \geq 1 - (1 - \epsilon)^2. \]

(53)

Moreover, Condition 3 and Lemma 3 together entail that \(|t_k d_i^{-1}| \) is bounded away from 0 and 1. Thus there exists some positive constant \(c_2 < 1 \) such that
\[[1 + (t_k d_i^{-1} - 1)^{-1}]^2 \geq c_2 \]

(54)

for each \(1 \leq i \neq k \leq K \). Therefore, combining (48) and (52)-(54), and by the assumption \(\sigma_{\text{min}} \gg \alpha_n / t_k \), we can obtain the desired claim in (46), which completes the proof of Theorem 3.
A.4 Proof of Corollary 1

The conclusions of Corollary 1 follow directly from the results of Theorem 3.

A.5 Proof of Theorem 4

The more general asymptotic theory in Theorem 4 focuses on the first order asymptotic expansion for the bilinear form $x^T \hat{v}_k \hat{v}_k^T y$ with x and y two arbitrary n-dimensional unit vectors, while that in Theorem 5 further establishes the higher order (which is second order) asymptotic expansion for the same bilinear form. We begin with the analysis for the first order asymptotic expansion. The main ingredients of the proof are as follows. First, we represent $x^T \hat{v}_k \hat{v}_k^T y$ as an integral which is a functional of $X = H + W$. By doing so we can deal with the matrix $H + W$ instead of the eigenvectors. Second, for the functional of $H + W$ obtained in the previous step we extract the H part from $H + W$ and further obtain a functional of W. Roughly speaking, we can get an explicit function of form $f((W - tI)^{-1})$ with $|t| \gg \|W\|$. Third, by the matrix series expansion $(W - tI)^{-1} = -\sum_{l=0}^{\infty} t^{-(l+1)}W^l$, the function $f((W - tI)^{-1})$ can be approximated by $f(-\sum_{l=0}^{L} t^{-(l+1)}W^l)$ for some positive integer L. Fourth, we can then calculate the first (second or higher) order expansion of $f(-\sum_{l=0}^{L} t^{-(l+1)}W^l)$ since we have an explicit expression of function f.

To facilitate our technical derivations, let us recall some basic matrix identities from the Sherman–Morrison–Woodbury formula. For any matrices A, B, C, and F of appropriate dimensions and any vectors a and b of appropriate dimensions, it holds that

$$(A + BFC)^{-1} = A^{-1} - A^{-1}B(F^{-1} + CA^{-1}B)^{-1}CA^{-1}$$

and

$$(C + ab^T)^{-1}a = \frac{C^{-1}a}{1 + b^T C^{-1}a}$$

when the corresponding matrices for matrix inversion are nonsingular.

To illustrate the main ideas of our proof, we first consider the simple case of $K = 1$ and $x = y = v_1$. The general case of $K \geq 1$ and arbitrary unit vectors will be discussed later. Let Ω_1 be a contour centered at $(a_1 + b_1)/2$ with radius $|b_1 - a_1|/2$, where the quantities a_k and b_k with $1 \leq k \leq K$ are defined in Section 3.2. Then it is seen that d_1 is enclosed by Ω_1. In view of Condition 2, Lemma 6, and Weyl’s inequality, we have

$$|\lambda_1 - d_1| \leq \|W\| < \min\{|d_1 - a_1|, |d_1 - b_1|\}$$

and

$$|\lambda_j - d_1| \geq |d_1| - \|W\| > \max\{|d_1 - a_1|, |d_1 - b_1|\}, \ j \geq 2$$

30
with significant probability. We can see that the contour Ω_1 does not enclose any other eigenvalues λ_j with $j \neq 1$. Thus, by Cauchy’s residue theorem from complex analysis, we have with significant probability

$$-\frac{1}{2\pi i} \oint_{\Omega_1} \frac{1}{\lambda_1 - z} \, dz = 1 \quad \text{and} \quad -\frac{1}{2\pi i} \oint_{\Omega_1} \frac{1}{\lambda_j - z} \, dz = 0, \quad j \geq 2,$$

where i associated with the complex integrals represents the imaginary unit $(-1)^{1/2}$ and the line integrals are taken over the contour Ω_1. Noticing that $(X - zI)^{-1} = \sum_{i=1}^{n}(\lambda_j - z)^{-1}\hat{v}_j\hat{v}_j^T$, we can then obtain an integral representation of the desired bilinear form that with significant probability

$$v_1^T\hat{v}_1\hat{v}_1^Tv_1 = -\frac{1}{2\pi i} \oint_{\Omega_1} \frac{1}{\lambda_1 - z} \, dz = -\frac{1}{2\pi i} \oint_{\Omega_1} v_1^T\left(\sum_{j=1}^{n}(\lambda_j - z)^{-1}\hat{v}_j\hat{v}_j^T\right)v_1 \, dz$$

$$= -\frac{1}{2\pi i} \oint_{\Omega_1} v_1^T\tilde{G}(z)v_1 \, dz,$$

(57)

where the matrix-valued function $\tilde{G}(z) = (X - zI)^{-1}$ for z in the complex plane \mathbb{C} is referred to as the Green function associated with the original random matrix $X = H + W$.

Note that by (1) and $K = 1$ for the simple case, we have $X = H + W = d_1v_1v_1^T + W$. Thus the line integral in (57) can be rewritten as

$$v_1^T\hat{v}_1\hat{v}_1^Tv_1 = -\frac{1}{2\pi i} \oint_{\Omega_1} v_1^T(W - zI + d_1v_1v_1^T)^{-1}v_1 \, dz.$$

(58)

With the aid of (55) and (56), the line integral in (58) can be further represented as

$$v_1^T\hat{v}_1\hat{v}_1^Tv_1 = -\frac{1}{2\pi i} \oint_{\Omega_1} v_1^T(W - zI)^{-1}v_1 \, dz.$$

(59)

To analyze the integrand of the line integral on the right hand side of (59), we first consider the term $(W - zI)^{-1}$. Such a term admits the matrix series expansion

$$(W - zI)^{-1} = -\sum_{l=0}^{\infty} z^{-(l+1)}W^l.$$

(60)

Let L be the smallest positive integer such that

$$\frac{\alpha_n^{L+1}(\log n)^{(L+1)/2}}{|d_K|^{L-2}} \to 0.$$

(61)

Such an integer L always exists since $|d_K|/(n^\epsilon \alpha_n) \to \infty$ for small positive constant ϵ by Condition (2) and $\alpha_n \leq n^{1/2}$ by definition. Since we consider z on the contour Ω_1, it follows that $|z| \geq c|d_1|$ for some positive constant c. Thus, by (60), Condition 1, and Lemma 6 in Section B.7 of Supplementary Material, with the above choice of L in (61) we have with
probability tending to one that

$$\left\| \sum_{l=L+1}^{\infty} z^{-(l+1)} W^l \right\| \leq \sum_{l=L+1}^{\infty} \frac{C \alpha_n (\log n)^{l/2}}{|z|^{l+1}} = O\left(\frac{C^{L+1} \alpha_n^{L+1} (\log n)^{(L+1)/2}}{|z|^{L+2}}\right) = O\left(\frac{1}{|z|^4}\right)$$

(62)

where C is some positive constant. In light of (60) and (62), we can obtain the asymptotic expansion

$$v_1^T (W - z I)^{-1} v_1 = - \sum_{l=0}^{L} z^{-(l+1)} v_1^T W^l v_1 - \sum_{l=L+1}^{\infty} z^{-(l+1)} v_1^T W^l v_1$$

$$= - \sum_{l=0}^{L} z^{-(l+1)} v_1^T W^l v_1 + \frac{O_p(1)}{d_1^4}$$

(63)

for z on the contour Ω_1.

Directly working with the line integral in (57) or (59) is challenging in deriving the CLT for the bilinear form $v_1^T \tilde{v}_1 \tilde{v}_1^T v_1$. Next we introduce some simple facts about Cauchy’s residue theorem. Assume that a complex function $f(z)$ is a holomorphic function inside Ω_1 except at one point t. Then it holds that

$$\frac{1}{2\pi i} \oint_{\Omega_1} f(z)dz = \text{Res}(f, t),$$

where $\text{Res}(f, t)$ represents the residue of function f at point t. In addition, assume that the Laurent series expansion of f around point t is given by

$$f(z) = \sum_{j=-\infty}^{\infty} a_j (z - t)^j$$

with a_j some constants. Then we have $\text{Res}(f, t) = (2\pi i)^{-1} \oint_{\Omega_1} f(z)dz = a_{-1}$. Furthermore, if $\lim_{z \to t} (z - t)f(z)$ exists then the Laurent series expansion of f entails that

$$\lim_{z \to t} (z - t)f(z) = a_{-1}.$$

(64)

Now let us consider the line integral in (59). Observe that the only singular point of function $v_1^T (W - z I)^{-1} v_1/[1 + d_1 v_1^T (W - z I)^{-1} v_1]$ inside Ω_1 is the solution to equation

$$1 + d_1 v_1^T (W - z I)^{-1} v_1 = 0,$$

which we denote as \hat{t}_1. Let us use $[(W - \hat{t}_1 I)^{-1}]'$ as a shorthand notation for $h'(\hat{t}_1)$ with
\[h(t) = (W - tI)^{-1}. \] Then by Cauchy’s residue theorem and in view of (59), we have

\[
v^T \hat{v}_1 \hat{v}_1^T \nu_1 = -\frac{1}{2\pi i} \oint_{\Omega_l} \frac{v^T(W - zI)^{-1}v_1}{1 + d_1 v_1^T (W - zI)^{-1}v_1} \, dz = -\lim_{z \to \hat{t}_1} \frac{(z - \hat{t}_1)v_1^T(W - zI)^{-1}v_1}{1 + d_1 v_1^T(W - zI)^{-1}v_1}.
\]

Therefore, an application of the Taylor expansion to function \(v_1^T(W - \hat{t}_1 I)^{-1}v_1 / \{d_1 v_1^T[(W - \hat{t}_1 I)^{-1}]v_1 \} \) yields

\[
-\frac{v_1^T(W - \hat{t}_1 I)^{-1}v_1}{d_1 v_1^T[(W - \hat{t}_1 I)^{-1}]v_1} = \frac{\sum_{l=0}^L \hat{t}_1^{-(l+1)} v_1^T W^l v_1 + d_1^{-1} O_p(1)}{d_1 \sum_{l=0}^L \hat{t}_1^{-(l+2)} v_1^T W^l v_1 + d_1^{-1} O_p(1)}.
\] (65)

Note that \(\hat{t}_1 \) is a random variable that depends on random matrix \(X \). In fact, from (94) we can see that the asymptotic expansion of \(\hat{t}_1 \) is a polynomial of \(v_1^T W^l v_1 \). Thus the asymptotic expansion of (65) is also a polynomial function of \(v_1^T W^l v_1 \). Therefore, controlling the variance of \(v_1^T W^l v_1 \) can facilitate us in identifying the leading term of the asymptotic expansion. So far we have laid out the major steps in deriving the asymptotic expansion for \(v_1^T \hat{v}_1 \hat{v}_1^T v_1 \). This can shed light on the detailed proof for the general case of \(x^T \hat{v}_k \hat{v}_k^T y \) with \(K \geq 1 \).

We now move on to the general case of \(K \geq 1 \) and arbitrary \(n \)-dimensional unit vectors \(x \) and \(y \). The technical arguments for the general case are similar to those for the simple case of \(K = 1 \) and \(x = y = v_1 \) presented above, but with more delicate technical derivations. Similarly as in (57), it follows from Cauchy’s residue theorem, the definitions of the eigenvalue and eigenvector, and (1) that the bilinear form \(x^T \hat{v}_k \hat{v}_k^T y \) for each \(1 \leq k \leq K \) admits a natural integral representation; that is, with significant probability,
be derived from Condition 2, Lemma 6, and Weyl’s inequality, that for each $j = 1, \cdots, K$,

$$|\lambda_k - d_k| \leq \|W\| < \min\{|d_k - a_k|, |d_k - b_k|\},$$

$$|\lambda_j - d_k| \geq |d_j - d_k| - |\lambda_j - d_j| \geq |d_j - d_k| - \|W\| > \max\{|d_k - a_k|, |d_k - b_k|\}$$

for $j \neq k$ with significant probability; that is, the contour Ω_k encloses λ_k but not any other eigenvalues with high probability.

An application of (55) leads to

$$\left(W - z I + \sum_{1 \leq j \neq k \leq K} d_j v_j v_j^T\right)^{-1} = G(z) - G(z) V_{-k} \left[D_{-k}^{-1} + V_{-k}^T G(z) V_{-k}\right]^{-1} V_{-k}^T G(z),$$

where the Green function $G(z)$ associated with only the noise part W is defined in (32). To simplify the expression, let

$$F_k(z) = G(z) V_{-k} [D_{-k}^{-1} + V_{-k}^T G(z) V_{-k}]^{-1} V_{-k}^T G(z)$$

Then in view of (67), the last line integral in (66) can be further represented as

$$x^T \tilde{v}_k \tilde{v}_k^T y = \frac{1}{2\pi i} \oint_{\Omega_k} \frac{d_k x^T [G(z) - F_k(z)] v_k v_k^T [G(z) - F_k(z)] v_k}{1 + d_k v_k^T [G(z) - F_k(z)] v_k} dz.$$

It is challenging to analyze the terms in (69) since the expression of $F_k(z)$ is complicated and we need to study the asymptotic expansion of $F_k(z)$ carefully. In the proof below, we will see that Lemma 4 in Section 5 is a key ingredient of the technical arguments; see Section B.5 of Supplementary Material for the proof of this lemma.

We will conduct detailed calculations for the asymptotic expansion of $F_k(z)$. Let us choose L as the same positive integer as in (61). Then we have

$$\sum_{l=2}^{\infty} z^{-(l+1)} x^T (W^l - EW^l) y = O_p(|z|^{-4})$$

for z on the contour Ω_k. It follows from Lemma 4 and Condition 2 that

$$\sum_{l=2}^{L} z^{-(l+1)} x^T (W^l - EW^l) y = O_p\left\{ \alpha_n |z|^{-3} + \alpha_n^2 |z|^{-4} + \cdots + \alpha_n^{L-1} |z|^{-(L+1)} \right\} = O_p(\alpha_n |z|^{-3}).$$
Therefore, similar to (63) we can show that
\[
x^T G(z)y = -z^{-1}x^Ty - z^{-2}x^TWy - \sum_{l=2}^L z^{-(l+1)}x^T\mathbb{E}^lWy - \sum_{l=L+1}^\infty z^{-(l+1)}x^T\mathbb{W}^lWy
\]
\[
- \sum_{l=2}^L z^{-(l+1)}x^T(W^l - \mathbb{E}^l)Wy
\]
\[
= -z^{-1}x^Ty - z^{-2}x^TWy - \sum_{l=2}^L z^{-(l+1)}x^T\mathbb{E}^lWy + O_p(|z|^{-4} + \alpha_n|z|^{-3}).
\]

Moreover, since for \(z \in \Omega_k\) we have \(|z|^{-4} \leq \alpha_n|z|^{-3}\) by Condition 1, we can further obtain
\[
x^T G(z)y = -z^{-1}x^Ty - z^{-2}x^TWy - \sum_{l=2}^L z^{-(l+1)}x^T\mathbb{E}^lWy + O_p(\alpha_n|z|^{-3}).
\]

In fact, the probabilistic event associated with the small order term \(O_p(\alpha_n|z|^{-3})\) in (71) holds uniformly over \(z\) since the term \(O_p(\alpha_n|z|^{-3})\) is simply \(|z|^{-3}O_p(\alpha_n)\).

To simplify the technical presentation, hereafter we use the generic notation \(u\) to denote either \(x\) or \(y\) unless specified otherwise, which means that the corresponding derivations and results hold when \(u\) is replaced by \(x\) and \(y\). Since \(x\) and \(y\) can be chosen as any unit vectors, we can obtain from (71) the following asymptotic expansions by different choices of \(x\) and \(y\)

\[
u^T G(z)v_k = -z^{-1}u^Tv_k - z^{-2}u^TWv_k - \sum_{l=2}^L z^{-(l+1)}u^T\mathbb{E}^lWv_k + O_p(\alpha_n|z|^{-3}),
\]

\[
v_k^T G(z)v_k = -z^{-1} - z^{-2}v_k^TWv_k - \sum_{l=2}^L z^{-(l+1)}v_k^T\mathbb{E}^lWv_k + O_p(\alpha_n|z|^{-3}),
\]

\[
v_k^T G(z)V_{-k} = -z^{-2}v_k^TWV_{-k} - \sum_{l=2}^L z^{-(l+1)}v_k^T\mathbb{E}^lWV_{-k} + O_p(\alpha_n|z|^{-3}),
\]

\[
u^T G(z)V_{-k} = -z^{-1}u^TV_{-k} - z^{-2}u^TWV_{-k} - \sum_{l=2}^L z^{-(l+1)}u^T\mathbb{E}^lWV_{-k}
\]
\[
+ O_p(\alpha_n|z|^{-3}),
\]

\[
V_{-k}^T G(z)V_{-k} = -z^{-1}I - z^{-2}V_{-k}^TWV_{-k} - \sum_{l=2}^L z^{-(l+1)}V_{-k}^T\mathbb{E}^lWV_{-k} + O_p(\alpha_n|z|^{-3}).
\]
Thus it follows from (71)–(76) that

\[u^T F_k(z)v_k = \mathcal{R}(u, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \mathcal{R}(V_{-k}, v_k, z) \]

\[- z^{-2} \mathcal{R}(u, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} V_{-k}^T Wv_k \]

\[- z^{-2} u^T W V_{-k} \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \mathcal{R}(V_{-k}, v_k, z) \]

\[+ \frac{z^{-2} u^T W V_{-k}}{z^{-2} \mathcal{R}(u, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \mathcal{R}(V_{-k}, v_k, z) + O_p(\alpha_n |z|^{-3})}, \]

\[= \mathcal{R}(u, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \mathcal{R}(V_{-k}, v_k, z) + O_p(\alpha_n |z|^{-3}) \]

(77)

and

\[v_k^T F_k(z)v_k = v_k^T G(z)V_{-k} \left[D_{-k}^{-1} + V_{-k}^T G(z)V_{-k} \right]^{-1} V_{-k}^T G(z) v_k \]

\[= \mathcal{R}(v_k, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \mathcal{R}(V_{-k}, v_k, z) \]

\[- z^{-2} \mathcal{R}(v_k, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} V_{-k}^T Wv_k + O_p(\alpha_n |z|^{-3}) \]

\[= \mathcal{R}(v_k, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \mathcal{R}(V_{-k}, v_k, z) + O_p(\alpha_n |z|^{-3}), \]

(78)

where \(F_k(z) \) is defined in (68) and \(\mathcal{R} \) is defined in (5).

With all the technical preparations above, we are now ready to analyze the terms in representation (69). Specifically let us consider the ratio \(\{d_k x^T |G(z) - F_k(z)|v_kv_k^T |G(z) - F_k(z)|v_k \} \) that appears as the integrand on the left hand side of (69). Similar to (70), taking the derivative of \(G(z) \) we have

\[x^T G'(z)y = x^T (W - zI)^{-2}y = \sum_{l=0}^{\infty} (l+1)z^{-(l+2)} x^T W^l y \]

\[= \mathcal{R}'(x, y, z) + 2z^{-3} x^T W y + z^{-4} O_p(\alpha_n). \]

(79)

It follows from Lemmas 4–5 that

\[\mathcal{R}'(v_k, V_{-k}, z) = O(\alpha_n^2 / z^4), \quad \mathcal{R}'(v_k, v_k, z) - \frac{1}{z^2} = O(\alpha_n^2 / z^4), \]

\[\| \mathcal{R}'(V_{-k}, V_{-k}, z) - z^{-2} I \| = O(\alpha_n^2 / z^4). \]

(80)

By (74) and Lemmas 4–5, we can conclude that

\[v_k^T G(z)V_{-k} = z^{-2} O_p(1) + |z|^{-3} O_p(\alpha_n^2). \]

(81)
Moreover, by (75) and (A.16) we have

\[
\left\| \left[D_{-k}^{-1} + V_k^T G(z) V_{-k} \right]^{-1} - \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \right\|'
\]

\[
= \left\| \left[D_{-k}^{-1} + V_k^T G(z) V_{-k} \right]^{-1} V_k^T G'(z) V_{-k} \left[D_{-k}^{-1} + V_k^T G(z) V_{-k} \right]^{-1}
\]

\[- \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \mathcal{R}'(V_{-k}, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \right\|
\]

\[
= O \left\{ \left\| V_k^T G'(z) V_{-k} - \mathcal{R}'(V_{-k}, V_{-k}, z) \right\| \left\| D_{-k}^{-1} + V_k^T G(z) V_{-k} \right\|^{-2} \right\}
+ O \left\{ \left\| \left[D_{-k}^{-1} + V_k^T G(z) V_{-k} \right]^{-1} - \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \right\| \right\}
\times \left\| \left[D_{-k}^{-1} + V_k^T G(z) V_{-k} \right]^{-1} \mathcal{R}'(V_{-k}, V_{-k}, z) \right\|
\]

\[
= |z|^{-1} O_p(1) + z^{-2} O_p(\alpha_n) \quad (82)
\]

and

\[
\left\| \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \right\|'
\]

\[
= \left\| D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right\|^{-1} \mathcal{R}'(V_{-k}, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1}
\]

\[
= O(1). \quad (83)
\]

Note that in light of (79)–(82), we can obtain

\[
v_k^T F_k'(z) v_k = 2v_k^T G'(z) V_{-k} \left[D_{-k}^{-1} + V_k^T G(z) V_{-k} \right]^{-1} V_k^T G(z) v_k
\]

\[
+ v_k^T G(z) V_{-k} \left\{ \left[D_{-k}^{-1} + V_k^T G(z) V_{-k} \right]^{-1} \right\}' V_k^T G(z) v_k
\]

\[
= 2 \mathcal{R}'(v_k, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \mathcal{R}(V_{-k}, v_k, z)
\]

\[
+ \mathcal{R}(v_k, V_{-k}, z) \left\{ \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \right\}' \mathcal{R}(V_{-k}, v_k, z)
\]

\[
+ z^{-4} O_p(1) + z^{-6} O_p(\alpha_n^2). \quad (84)
\]

Combining the above result with (79) leads to

\[
d_k v_k^T \left[G'(z) - F_k'(z) \right] v_k = \frac{d_k}{z^2 \hat{p}_{k,z}} + 2z^{-3} d_k v_k^T W v_k + z^{-4} O_p(\left| d_k \right| \alpha_n) \quad (85)
\]

for \(z \in [a_k, b_k]\). Further, recalling the definition in (6) and by (83), it holds that

\[
\frac{1}{z^2 \hat{p}_{k,z}} = \left(\frac{A_{v_k,k,z}}{z} \right)' \mathcal{R}(v_k, v_k, z) - 2 \mathcal{R}'(v_k, V_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1}
\times \mathcal{R}(V_{-k}, v_k, z) - \mathcal{R}(v_k, V_{-k}, z) \left\{ \left[D_{-k}^{-1} + \mathcal{R}(V_{-k}, V_{-k}, z) \right]^{-1} \right\}' \mathcal{R}(V_{-k}, v_k, z)
\]

\[
= z^{-2} + O(\alpha_n^2 / z^4). \quad (86)
\]

37
Plugging this into (85) and by Lemmas 4–5, we have for all \(z \in [a_k, b_k] \),

\[
d_k v_k^T [G'(z) - F_k'(z)] v_k = d_k z^{-2} + 2z^{-3}d_k v_k^T W v_k + z^{-4}O_p(|d_k| \alpha_n^2)
\]

\[= d_k z^{-2} \left[1 + O_p(|z|^{-1} + |z|^{-2} \alpha_n^2) \right] = d_k z^{-2} \left[1 + o_p(1) \right]. \tag{87}\]

Thus \(1 + d_k v_k^T [G(z) - F_k(z)] v_k \) is a monotone function with probability tending to one. Further, in light of expressions (73) and (78) we can obtain the asymptotic expansion

\[
1 + d_k v_k^T [G(z) - F_k(z)] v_k = f_k(z) - d_k z^{-2} v_k^T W v_k + z^{-2}O_p(\alpha_n) \tag{88}\]

for all \(z \in [a_k, b_k] \), where \(f_k(z) \) is defined in (9). Note that \(f_k(a_k) = O(1) \), \(f_k(b_k) = O(1) \), and \(f_k(a_k)f_k(b_k) < 0 \) as shown in the proof of Lemma 3 in Section B.4 of Supplementary Material. These results together with (87), which gives the order for the derivative of \(1 + d_k v_k^T [G(z) - F_k(z)] v_k \), entail that there exists a unique solution \(\hat{t}_k \) to the equation

\[
1 + d_k v_k^T [G(z) - F_k(z)] v_k = 0 \tag{89}\]

for \(z \) in the interval \([a_k, b_k] \). Using Lemma 4, we can further show that (88) becomes

\[
1 + d_k v_k^T [G(z) - F_k(z)] v_k - f_k(z) = -\frac{d_k}{z^2} v_k^T W v_k + O_p(|z|^{-2} \alpha_n) = O_p(|z|^{-1}) \tag{90}\]

for \(z \in [a_k, b_k] \). Note that \(f_k(z) \) is a monotone function over \(z \in [a_k, b_k] \) as shown in the proof of Lemma 3 and (A.17). Thus it follows from (89) and (90) that

\[
\hat{t}_k - t_k = O_p(1). \tag{91}\]

In fact, we can obtain a more precise order of \(\hat{t}_k - t_k \) than the initial one in (91). In view of (88) and the definition of \(t_k \), we have

\[
1 + d_k v_k^T [G(t_k) - F_k(t_k)] v_k = -d_k t_k^{-2} v_k^T W v_k + O_p(\alpha_n t_k^{-2}). \tag{92}\]

By (87) and (92), an application of the mean value theorem yields

\[
0 = 1 + d_k v_k^T [G(\tilde{t}_k) - F_k(\tilde{t}_k)] v_k = 1 + d_k v_k^T [G(t_k) - F_k(t_k)] v_k
+ d_k \tilde{t}_k^{-2} \left[1 + O_p(|d_k|^{-1} + |d_k|^{-2} \alpha_n^2) \right] (\hat{t}_k - t_k), \tag{93}\]

where \(\tilde{t}_k \) is some number between \(t_k \) and \(\hat{t}_k \). The asymptotic expansions in (93) and (92) entail further that

\[
\hat{t}_k - t_k = \frac{t_k^2}{t_k^2} v_k^T W v_k + O_p(\alpha_n t_k^{-1}) = v_k^T W v_k + O_p(\alpha_n t_k^{-1}). \tag{94}\]
Now by the similar arguments as for obtaining (64), the integral (69) can be evaluated as

\[
x^T \tilde{v}_k \tilde{v}_k^T y = \frac{1}{2\pi i} \int_{\Omega_k} \frac{dk}{u_k} x^T [G(z) - F_k(z)] v_k v_k^T [G(z) - F_k(z)] y dz \\
= \frac{\tilde{t}_k^2 x^T [G(\tilde{t}_k) - F_k(\tilde{t}_k)] v_k v_k^T [G(\tilde{t}_k) - F_k(\tilde{t}_k)] y}{\tilde{t}_k^2 v_k^T [G'(\tilde{t}_k) - F'_k(\tilde{t}_k)] v_k}.
\]

(95)

By (85) we have

\[
\frac{1}{\tilde{t}_k^2 v_k^T [G'(\tilde{t}_k) - F'_k(\tilde{t}_k)] v_k} = \tilde{\mathcal{P}}_{k, \tilde{t}_k} - 2\tilde{t}_k^{-1} \tilde{\mathcal{P}}_{k, \tilde{t}_k}^2 v_k^T W v_k + \tilde{t}_k^{-2} O_p(\alpha_n)
\]

(96)

and (95) can be written as

\[
x^T \tilde{v}_k \tilde{v}_k^T y = \frac{\tilde{t}_k^2 x^T [G(\tilde{t}_k) - F_k(\tilde{t}_k)] v_k v_k^T [G(\tilde{t}_k) - F_k(\tilde{t}_k)] y}{\tilde{t}_k^2 v_k^T [G'(\tilde{t}_k) - F'_k(\tilde{t}_k)] v_k} \\
= [\tilde{\mathcal{P}}_{k, \tilde{t}_k} - 2\tilde{t}_k^{-1} v_k^T W v_k + \tilde{t}_k^{-2} O_p(\alpha_n)] \tilde{\mathcal{P}}_{k, \tilde{t}_k} \tilde{v}_k^T [G(\tilde{t}_k) - F_k(\tilde{t}_k)] v_k v_k^T \\
\times [G'(\tilde{t}_k) - F'_k(\tilde{t}_k)] y.
\]

(97)

Recall the definitions in (5) and (6). Then it follows from (72), (77), and (94) that

\[
\begin{align*}
\tilde{t}_k u^T [G(\tilde{t}_k) - F_k(\tilde{t}_k)] v_k &= \mathcal{P}(u, v_k, \tilde{t}_k) - \mathcal{P}(u, V_{-k}, \tilde{t}_k) [\tilde{t}_k D^{-1}_{-k} + \mathcal{P}(V_{-k}, V_{-k}, \tilde{t}_k)]^{-1} \\
&\times [\mathcal{P}(V_{-k}, v_k, \tilde{t}_k) - \tilde{t}_k^{-1} u^T W v_k + \tilde{t}_k^{-1} \mathcal{R}(u, V_{-k}, \tilde{t}_k) [D^{-1}_{-k} + \mathcal{R}(V_{-k}, V_{-k}, \tilde{t}_k)]^{-1} \\
&\times V^T_{-k} W v_k + O_p(\alpha_n \tilde{t}_k^{-2}) \\
&= \mathcal{P}(u, v_k, \tilde{t}_k) - \mathcal{P}(u, V_{-k}, \tilde{t}_k) [\tilde{t}_k D^{-1}_{-k} + \mathcal{P}(V_{-k}, V_{-k}, \tilde{t}_k)]^{-1} \\
&\times [\mathcal{P}(V_{-k}, v_k, \tilde{t}_k) - \tilde{t}_k^{-1} u^T W v_k + \tilde{t}_k^{-1} \mathcal{R}(u, V_{-k}, \tilde{t}_k) [D^{-1}_{-k} + \mathcal{R}(V_{-k}, V_{-k}, \tilde{t}_k)]^{-1} \\
&\times V^T_{-k} W v_k + O_p(\alpha_n \tilde{t}_k^{-2}) \\
&= A_{u,k,\tilde{t}_k} - \tilde{t}_k^{-1} b^T_{u,k,\tilde{t}_k} W v_k + O_p(\alpha_n \tilde{t}_k^{-2}),
\end{align*}
\]

(98)

where \(u\) stands for both \(x\) and \(y\) as mentioned before. Furthermore, by Lemma 5 and (94) we can conclude that

\[
\tilde{\mathcal{P}}_{k, \tilde{t}_k} = \tilde{\mathcal{P}}_{k, t_k} + O_p(\alpha_n^2 t_k^{-3}).
\]

(99)

Combining the representation (97) and asymptotic expansions (98)–(99), by Lemma 4 we
can deduce that (95) can be further written as

\[x^T \hat{v}_k \hat{v}_k^T y = \frac{\tilde{\sigma}_2}{\tilde{\sigma}_2} x^T \left[G(\hat{t}_k) - F_k(\hat{t}_k) \right] y_k^T \left[G(\hat{t}_k) - F_k(\hat{t}_k) \right] y_k \]

\[\approx \left[\tilde{p}_{k,t_k} - 2t_k^{-1} \tilde{p}_{k,t_k}^2 v_k^T W v_k + O_p(\alpha_t k^{-2}) \right] \left[x_{x,k,t_k} - t_k^{-1} b_{x,k,t_k}^T W v_k + O_p(\alpha_t k^{-2}) \right] \times \left[A_{x,k,t_k} - t_k^{-1} b_{y,k,t_k}^T W v_k + O_p(\alpha_t k^{-2}) \right] \]

\[= \left[\tilde{p}_{k,t_k} - 2t_k^{-1} \tilde{p}_{k,t_k}^2 v_k^T W v_k + O_p(\alpha_t k^{-2}) \right] \times \left[A_{x,k,t_k} - t_k^{-1} b_{y,k,t_k}^T W v_k + O_p(\alpha_t k^{-2}) \right] \]

\[= \left[\tilde{p}_{k,t_k} - 2t_k^{-1} \tilde{p}_{k,t_k}^2 v_k^T W v_k + O_p(\alpha_t k^{-2}) \right] \times \left[A_{x,k,t_k} - t_k^{-1} b_{y,k,t_k}^T W v_k + O_p(\alpha_t k^{-2}) \right] \]

\[+ t_k^{-2} b_{x,k,t_k}^T W v_k b_{y,k,t_k}^T W v_k + O_p(\alpha_t k^{-2}) \right] \]

where \(c_k = |A_{x,k,t_k}| + |A_{y,k,t_k}| + |t_k|^{-1} \).

We can expand (100), or equivalently (95), further as

\[x^T \tilde{v}_k \tilde{v}_k^T y = \left[\tilde{p}_{k,t_k} - 2t_k^{-1} \tilde{p}_{k,t_k}^2 v_k^T W v_k + O_p(\alpha_t k^{-2}) \right] \times \left[A_{x,k,t_k} - t_k^{-1} b_{y,k,t_k}^T W v_k + O_p(\alpha_t k^{-2}) \right] \]

\[- t_k^{-1} \left(A_{x,k,t_k} b_{x,k,t_k}^T + A_{y,k,t_k} b_{y,k,t_k}^T \right) W v_k + t_k^{-2} b_{x,k,t_k}^T W v_k b_{y,k,t_k}^T W v_k + O_p(\alpha_t k^{-2}) \]

\[+ t_k^{-2} \tilde{p}_{k,t_k} \left[2 \tilde{p}_{k,t_k} \left(A_{x,k,t_k} b_{x,k,t_k}^T + A_{y,k,t_k} b_{y,k,t_k}^T \right) W v_k^T + b_{x,k,t_k}^T W v_k b_{y,k,t_k}^T \right] W v_k \]

\[- 2t_k^{-3} \tilde{p}_{k,t_k}^2 b_{x,k,t_k}^T W v_k b_{y,k,t_k}^T W v_k + O_p(\alpha_t k^{-2}) \].

Therefore, we have characterized the terms involving \(t_k^{-1} \) for the desired first order asymptotic expansion. That is, by (101) we have

\[x^T \tilde{v}_k \tilde{v}_k^T y = \tilde{p}_{k,t_k} A_{x,k,t_k} A_{y,k,t_k} - t_k^{-1} A_{x,k,t_k} \tilde{p}_{k,t_k} \left(b_{y,k,t_k}^T + A_{y,k,t_k} \tilde{p}_{k,t_k} v_k^T \right) W v_k \]

\[- t_k^{-1} A_{y,k,t_k} \tilde{p}_{k,t_k} \left(b_{y,k,t_k}^T + A_{y,k,t_k} \tilde{p}_{k,t_k} v_k^T \right) W v_k + O_p \left((\alpha_t c_k + 1) t_k^{-2} \right) \].

Thus if \(\sigma_k^2 = t_k^{-2} \tilde{p}_{k,t_k}^2 E \left[(A_{x,k,t_k} b_{y,k,t_k}^T + A_{y,k,t_k} b_{y,k,t_k}^T + 2A_{x,k,t_k} A_{y,k,t_k} \tilde{p}_{k,t_k} v_k^T) W v_k \right]^2 \approx (\alpha_t c_k + 1)^2 t_k^{-4} \sim \sigma_n^2 \left(|A_{x,k,t_k}| + |A_{y,k,t_k}| \right)^2 t_k^{-4} + t_k^{-4} \) and \((A_{x,k,t_k} b_{y,k,t_k}^T + A_{y,k,t_k} b_{x,k,t_k}^T + 2A_{x,k,t_k} A_{y,k,t_k} \tilde{p}_{k,t_k} v_k^T, v_k) \) is \(W^1-\text{CLT} \), then (28) holds, where \(\sim \) means the asymptotic order. This concludes the proof of Theorem 4.

A.6 Proof of Theorem 5

We have characterized the first order asymptotic expansion for the bilinear form \(x^T \tilde{v}_k \tilde{v}_k^T y \) in the proof of Theorem 4 in Section A.5, where \(x \) and \(y \) are two arbitrary \(n \)-dimensional unit vectors. We now proceed with investigating the higher order (which is second order) asymptotic expansion for the same bilinear form. More specifically, the proof of Theorem 5
involves further expansion for the $O_p\{\alpha_n c_k t_k^{-2}\}$ term given in (101).

To gain some intuition, let us recall (70) and compare with (72)–(76). By Lemma 4, we see that the order $O_p(\alpha_n|z|^{-3})$ comes from the terms of form $x^T(W^2 - E W^2)y/z^3$. Therefore, to obtain a higher order expansion we need to identify all terms of form $x^T(W^2 - E W^2)y/z^3$. It follows from (70) and Lemmas 4 and 5 that

$$x^T G(z)y = -z^{-1}x^T y - z^{-2}x^TWy - \frac{x^T(W^2 - E W^2)y}{z^3}$$

$$- \sum_{l=2}^{L} z^{-(l+1)}x^T EW^l y + O_p\left(|z|^{-4} + \alpha_n^2|z|^{-4}\right).$$

Moreover, using similar arguments as for proving (96) and (98) but expanding to higher orders we can obtain

$$\{ \hat{t}_k^2v_k^T [G'(\hat{t}_k) - F'_k(\hat{t}_k)] v_k \}^{-1} = \hat{\mathcal{P}}_{k,t_k}\left\{ 1 - 2t_k^{-1}\hat{\mathcal{P}}_{k,t_k}v_k^T Wv_k - t_k^{-2}\hat{\mathcal{P}}_{k,t_k} \right\}$$

$$\times [3v_k^T(W^2 - E W^2)v_k - 2(v_k^T Wv_k)^2] + O_p(\alpha_n^2|t_k|^{-3})$$

(104)

and

$$\hat{t}_k u^T [G(\hat{t}_k) - F_k(\hat{t}_k)] v_k = A_{u,k,t_k} - t_k^{-1}u^T Wv_k$$

$$+ t_k^{-1}\mathcal{R}(u, V_{-k}, t_k) [D_k^{-1} + \mathcal{R}(V_{-k}, V_{-k}, t_k)]^{-1} V_k^T Wv_k + t_k^{-2}u^T Wv_k v_k^T Wv_k$$

$$- t_k^{-2}v_k^T Wv_k \mathcal{R}(u, V_{-k}, t_k) [D_k^{-1} + \mathcal{R}(V_{-k}, V_{-k}, t_k)]^{-1} V_k^T Wv_k$$

$$+ t_k^{-2}\mathcal{R}(u, V_{-k}, t_k) [D_k^{-1} + \mathcal{R}(V_{-k}, V_{-k}, t_k)]^{-1} V_k^T (W^2 - E W^2)v_k$$

$$- t_k^{-2}u^T(W^2 - E W^2)v_k + 2t_k^{-3}v_k^T Wv_k \mathcal{R}(u, V_{-k}, t_k) [D_k^{-1} + \mathcal{R}(V_{-k}, V_{-k}, t_k)]^{-2}$$

$$\times V_k^T Wv_k + O_p(\alpha_n^2|t_k|^{-3}),$$

(105)

where u represents both x and y as mentioned before.

Using the representations (95) and (97), and by the asymptotic expansions (104)–(105),
we can obtain the \(O_p(t_k^{-2})\) term for the desired second order asymptotic expansion as follows

\[
x^T \hat{v}_k v_k^T y = \begin{pmatrix} t_k^2 x^T \left[G(\hat{t}_k) - F_k(\hat{t}_k) \right] v_k v_k^T \left[G(\hat{t}_k) - F_k(\hat{t}_k) \right] y \\
+ \frac{1}{t_k^2} v_k^T \left[G(\hat{t}_k) - F_k(\hat{t}_k) \right] v_k^T \left[\lambda_k x^T \left[G(\hat{t}_k) - F_k(\hat{t}_k) \right] y \right] \\
+ O_p(\alpha_n^2 t_k^{-3}) \left[t_k x^T \left[G(\hat{t}_k) - F_k(\hat{t}_k) \right] v_k \right] \left[t_k v_k^T \left[G(\hat{t}_k) - F_k(\hat{t}_k) \right] y \right] \\
= -\lambda_k x^T \left[G(\hat{t}_k) - F_k(\hat{t}_k) \right] v_k v_k^T y \\
- \lambda_k x^T \left(A_x, t_k \right) + A_y, k, t_k, \tilde{p}_{k, t_k} v_k^T x \\
\times \left(b_y, k, t_k + A_y, k, t_k, \tilde{p}_{k, t_k} v_k^T \right) Wv_k \\
+ \lambda_k x^T \left(A_y, k, t_k \right) \left(b_y, k, t_k \right) + A_y, k, t_k, \tilde{p}_{k, t_k} v_k^T \right) Wv_k \\
+ 2A_x, k, t_k, \left(v_k^T Wv_k \right)^2 \\
+ A_y, k, t_k, \tilde{p}_{k, t_k} \{ t_k x^T Wv_k v_k^T Wv_k - \lambda_k^2 v_k^T Wv_k \} R(x, V_{-k}, t) \\
\times \left[\mathbf{D}^{-1}_{-k} + R(V_{-k}, V_{-k}, t) \right]^{-1} V_{-k}^T Wv_k \\
+ A_y, k, t_k, \tilde{p}_{k, t_k} \{ t_k^2 y^T Wv_k v_k^T Wv_k - \lambda_k^2 v_k^T Wv_k R(y, V_{-k}, t) \\
\times \left[\mathbf{D}^{-1}_{-k} + R(V_{-k}, V_{-k}, t) \right]^{-1} V_{-k}^T Wv_k \\
+ A_y, k, t_k, \tilde{p}_{k, t_k} \{ \lambda_k x^T Wv_k v_k^T Wv_k - \lambda_k^2 v_k^T Wv_k \} R(x, V_{-k}, t) \\
\times \left[\mathbf{D}^{-1}_{-k} + R(V_{-k}, V_{-k}, t) \right]^{-1} V_{-k}^T Wv_k \\
+ A_y, k, t_k, \tilde{p}_{k, t_k} \{ \lambda_k x^T Wv_k v_k^T Wv_k - \lambda_k^2 v_k^T Wv_k \} R(x, V_{-k}, t) \\
\times \left[\mathbf{D}^{-1}_{-k} + R(V_{-k}, V_{-k}, t) \right]^{-1} V_{-k}^T Wv_k \\
- \tilde{p}_{k, t_k} \{ \lambda_k x^T Wv_k v_k^T Wv_k - \lambda_k^2 v_k^T Wv_k \} R(x, V_{-k}, t) \\
\times \left[\mathbf{D}^{-1}_{-k} + R(V_{-k}, V_{-k}, t) \right]^{-1} V_{-k}^T Wv_k \\
- 3t_k^2 A_x, k, t_k, A_y, k, t_k, \tilde{p}_{k, t_k} v_k^T (W^2 - EW^2) v_k + O_p \{ (\alpha_n^2 c_k + 1) |t_k|^{-3} \}.
\]

In contrast to the small order term \(O_p(\alpha_n c_k t_k^{-2})\) in (101) from the first order asymptotic expansion, we now have the small order term \(O_p((\alpha_n^2 c_k + 1)|t_k|^{-3})\) from the second order asymptotic expansion.

Let us conduct some simplifications for the expressions given in the above asymptotic expansions in (106). A combination of (101) and (106) shows that the asymptotic distribution
is determined by

\[- A_{x,k,t_k} \tilde{P}_{k,t_k}^{-1} \left(b_{x,k,t_k}^T + A_{y,k,t_k} \tilde{P}_{k,t_k} v_k^T \right) Wv_k \]

\[- A_{y,k,t_k} \tilde{P}_{k,t_k}^{-1} \left(b_{y,k,t_k}^T + A_{x,k,t_k} \tilde{P}_{k,t_k} v_k^T \right) Wv_k \]

\[+ \tilde{P}_{k,t_k} t_k^2 \left[2 \tilde{P}_{k,t_k} A_{x,k,t_k} b_{x,k,t_k}^T + A_{y,k,t_k} b_{y,k,t_k}^T \right] Wv_k v_k^T + b_{x,k,t_k}^T Wv_k b_{y,k,t_k}^T \left] Wv_k \right. \]

\[+ 2A_{y,x,t_k} A_{y,k,t_k} \left(t_k^2 x^T Wv_k v_k^T Wv_k - t_k^2 v_k Wv_k R(x, V_{-k}, t) \right) \]

\[\times \left[D_{-k}^{-1} + R(V_{-k}, V_{-k}, t) \right]^{-1} V_{-k}^T Wv_k \]

\[+ A_{y,k,t_k} \tilde{P}_{k,t_k} t_k^2 \left(t_k^2 y^T Wv_k v_k^T Wv_k - t_k^2 v_k Wv_k R(y, V_{-k}, t) \right) \]

\[\times \left[D_{-k}^{-1} + R(V_{-k}, V_{-k}, t) \right]^{-1} V_{-k}^T Wv_k \]

\[+ A_{y,k,t_k} \tilde{P}_{k,t_k} t_k^2 \left(y^T A_{y,k,t_k} x^T + A_{x,k,t_k} y^T \right) (W^2 - Wv_k) v_k \]

\[- 3t_k^2 A_{x,k,t_k} A_{y,k,t_k} \tilde{P}_{k,t_k} v_k^T (W^2 - Wv_k) v_k \] (107)

To further simplify the notation, we define three terms

\[J_{x,y,k,t_k} = -\tilde{P}_{k,t_k} t_k^{-1} v_k \left(A_{y,k,t_k} b_{x,k,t_k}^T + A_{x,k,t_k} b_{y,k,t_k}^T + 2A_{x,k,t_k} A_{y,k,t_k} \tilde{P}_{k,t_k} v_k^T \right) , \] (108)

\[L_{x,y,k,t_k} = \tilde{P}_{k,t_k} t_k^{-2} v_k \left(A_{y,k,t_k} R(x, V_{-k}, t) + A_{x,k,t_k} R(y, V_{-k}, t) \right) \]

\[\times \left[D_{-k}^{-1} + R(V_{-k}, V_{-k}, t) \right]^{-1} V_{-k}^T + A_{y,k,t_k} x^T + A_{x,k,t_k} y^T \]

\[+ 3A_{x,k,t_k} A_{y,k,t_k} v_k v_k^T \] (109)

\[Q_{x,y,k,t_k} = L_{x,y,k,t_k} - \tilde{P}_{k,t_k} t_k^{-2} A_{x,k,t_k} A_{y,k,t_k} v_k v_k^T \]

\[+ 2\tilde{P}_{k,t_k} t_k^{-2} v_k \left(A_{x,k,t_k} b_{x,k,t_k}^T + A_{y,k,t_k} b_{y,k,t_k}^T \right) \] (110)

Note that all the three matrices defined in (108)–(110) are of rank one and the identity

\[x^T A y = \text{tr}(A y x^T) \]

holds for any matrix \(A\) and vectors \(x\) and \(y\). Thus in view of (108)–(110), the lengthy expression given in (107) can be rewritten in a compact form as

\[\text{tr} \left[W J_{x,y,k,t_k} - (W^2 - Wv_k) L_{x,y,k,t_k} \right] + \text{tr} \left(Wv_k v_k^T \right) \text{tr} \left(WQ_{x,y,k,t_k} \right) . \] (111)

So far we have shown that the second order expansion of \(x^T \tilde{v}_k \hat{v}_k^T y\) is given in (106). Note that \(\tilde{\sigma}_k^2\) defined in (27) is essentially the variance of (111). Thus if \(\tilde{\sigma}_k^2 \gg (\alpha_n^2 c_k + 1) t_k^{-6} \sim \sigma_n^2 (|A_{x,k,t_k}| + |A_{y,k,t_k}|) t_k^{-6} + t_k^{-6}\), then (111) is the leading term of (106). Furthermore, the assumption of \(\sigma^2_k = O(\tilde{\sigma}_k^2)\) entails that the first order expansion in Theorem 4 does not dominate the second order expansion. Therefore, we see that the asymptotic distribution in Theorem 5 is determined by the joint distribution of the three random variables specified in
expression (111). This completes the proof of Theorem 5.

References

Abbe, E. (2017). Community detection and stochastic block models: recent developments. https://arxiv.org/pdf/1703.10146.pdf.

Abbe, E., J. Fan, K. Wang, and Y. Zhong (2017). Entrywise eigenvector analysis of random matrices with low expected rank. https://arxiv.org/pdf/1709.09565.pdf.

Arnold, L. (1967). On the asymptotic distribution of the eigenvalues of random matrices. *J. Math. Anal. Appl.* 20, 262–268.

Arnold, L. (1971). On Wigner’s semicircle law for the eigenvalues of random matrices. *Probability Theory and Related Fields* 19, 191–198.

Bai, Z. D. (1999). Methodologies in spectral analysis of large dimensional random matrices, a review. *Statistica Sinica* 9, 611–677.

Bai, Z. D. and J. W. Silverstein (2006). *Spectral Analysis of Large Dimensional Random Matrices*. Springer.

Bai, Z. D. and J. F. Yao (2008). Central limit theorems for eigenvalues in a spiked population model. *Annales de l’Institut Henri Poincaré, Probabilités et Statistiques* 44, 447–474.

Baik, J., G. B. Arous, and S. Péché (2005). Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. *The Annals of Probability* 33, 682–693.

Barber, R. F. and E. J. Candès (2015). Controlling the false discovery rate via knockoffs. *The Annals of Statistics* 43, 2055–2085.

Bickel, P. J. and A. Chen (2009). A nonparametric view of network models and Newman–Girvan and other modularities. *Proceedings of the National Academy of Sciences* 106, 21068–21073.

Billingsley, P. (1995). *Probability and Measure*. Wiley.

Candès, E. J., Y. Fan, L. Janson, and J. Lv (2018). Panning for gold: ‘modelX’ knockoffs for high dimensional controlled variable selection. *Journal of the Royal Statistical Society Series B* 80, 551–577.

Capitaine, M., C. Donati-Martin, and D. Féral (2012). Central limit theorems for eigenvalues of deformations of Wigner matrices. *Ann. Inst. H. Poincaré Probab. Statist.* 48, 107–133.

Chen, K. and J. Lei (2018). Network cross-validation for determining the number of communities in network data. *Journal of the American Statistical Association* 113, 241–251.
Decelle, A., F. Krzakala, C. Moore, and L. Zdeborová (2011). Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. *Physical Review E* 84, 066106.

El Karoui, N. (2007). Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. *Ann. Probab.* 35, 663–714.

Erdös, L., H.-T. Yau, and J. Yin (2011). Rigidity of eigenvalues of generalized Wigner matrices. *Advances in Mathematics* 229, 1435–1515.

Fan, J., Y. Ke, Q. Sun, and W.-X. Zhou (2019). FarmTest: Factor-adjusted robust multiple testing with false discovery control. *Journal of American Statistical Association, to appear.*

Fan, Y., E. Demirkaya, G. Li, and J. Lv (2018). RANK: large-scale inference with graphical nonlinear knockoffs. *Journal of the American Statistical Association, to appear.*

Fan, Y., J. Lv, M. Sharifvaghefi, and Y. Uematsu (2018). IPAD: stable interpretable forecasting with knockoffs inference. *Manuscript.*

Füredi, Z. and J. Komlós (1981). The eigenvalues of random symmetric matrices. *Combinatorica* 1, 233–241.

Horn, R. A. and C. R. Johnson (2012). *Matrix Analysis (2nd edition).* Cambridge University Press.

Jin, J., Z. T. Ke, and S. Luo (2017). Estimating network memberships by simplex vertex hunting. https://arxiv.org/pdf/1708.07852.pdf.

Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. *Ann. Statist.* 29, 295–327.

Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence. *Ann. Statist.* 36, 2638–2716.

Johnstone, I. M. and A. Y. Lu (2009). On consistency and sparsity for principal components analysis in high dimensions. *Journal of the American Statistical Association* 104, 682–693.

Knowles, A. and J. Yin (2013). The isotropic semicircle law and deformation of Wigner matrices. *Comm. Pure Appl. Math.* 66, 1663–1749.

Knowles, A. and J. Yin (2014). The outliers of a deformed Wigner matrix. *The Annals of Probability* 42, 1980–2031.

Knowles, A. and J. Yin (2017). Anisotropic local laws for random matrices. *Probability Theory and Related Fields* 169, 257–352.
Koltchinskii, V. and K. Lounici (2016). Asymptotics and concentration bounds for bilinear forms of spectral projectors of sample covariance. *Ann. Inst. H. Poincaré Probab. Statist.* 52, 1976–2013.

Koltchinskii, V. and D. Xia (2016). Perturbation of linear forms of singular vectors under Gaussian noise. In: Houdré C., Mason D., Reynaud-Bouret P., Rosiński J. (eds) *High Dimensional Probability VII*, 397–423.

Lei, J. (2016). A goodness-of-fit test for stochastic block models. *The Annals of Statistics* 44, 401–424.

Lu, Y., Y. Fan, J. Lv, and W. S. Noble (2018). DeepPINK: reproducible feature selection in deep neural networks. *Advances in Neural Information Processing Systems (NeurIPS 2018)*.

Marchenko, V. A. and L. A. Pastur (1967). Distribution of eigenvalues for some sets of random matrices. *Mathematics of the USSR-Sbornik* 1, 457–483.

McSherry, F. (2001). Spectral partitioning of random graphs. *Proceedings of the Forty-Second IEEE Symposium on Foundations of Computer Science, FOCS*, 529–537.

Mehta, M. L. (2004). *Random Matrices (3rd edition).* Academic Press.

Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. *Statist. Sinica.* 17, 1617–1642.

Pizzo, A., D. Renfrew, and A. Soshnikov (2013). On finite rank deformations of Wigner matrices. *Ann. Inst. Henri Poincaré Probab. Stat.* 49, 64–94.

Renfrew, D. and A. Soshnikov (2013). On finite rank deformations of Wigner matrices ii: Delocalized perturbations. *Random Matrices: Theory Appl.* 2, 1250015.

Rohe, K., S. Chatterjee, and B. Yu (2011). Spectral clustering and the high-dimensional stochastic blockmodel. *The Annals of Statistics* 39, 1878–1915.

Spielman, D. A. and S.-H. Teng (2007). Spectral partitioning works: Planar graphs and finite element meshes. *Linear Algebra and Its Applications* 421, 284–305.

Tang, M. and C. E. Priebe (2018). Limit theorems for eigenvectors of the normalized Laplacian for random graphs. *The Annals of Statistics* 46, 2360–2415.

Tao, T. (2004). *Topics in Random Matrix Theory.* American Mathematical Society.

Tracy, C. A. and H. Widom (1994). Level-spacing distributions and the Airy kernel. *Comm. Math. Phys.* 159, 151–174.

46
Tracy, C. A. and H. Widom (1996). On orthogonal and symplectic matrix ensembles. *Comm. Math. Phys.* 177, 727–754.

Tropp, J. (2012). User-friendly tail bounds for sums of random matrices. *Found. Comput. Math.* 12, 389–434.

Vu, V. (2018). A simple SVD algorithm for finding hidden partitions. *Combinatorics, Probability and Computing* 27, 124–140.

Wang, W. and J. Fan (2017). Asymptotics of empirical eigenstructure for high dimensional spiked covariance. *The Annals of Statistics* 45, 1342–1374.

Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. *Ann. Math.* 62, 548–564.

Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. *Ann. Math.* 67, 325–327.

Yau, H.-T. (2012). Universality of generalized Wigner matrices. *Quantum Theory from Small to Large Scales: Lecture Notes of the Les Houches Summer School* 95, 675–692.

Zhang, Y., E. Levina, and J. Zhu (2015). Detecting overlapping communities in networks using spectral methods. *https://arxiv.org/pdf/1412.3432.pdf*.

47
Supplementary Material to “Asymptotic Theory of Eigenvectors for Large Random Matrices”

Jianqing Fan, Yingying Fan, Xiao Han and Jinchi Lv

This Supplementary Material contains additional technical details. In particular, we present in Section B the proofs of all the lemmas and provide in Section C some further technical details on under what regularity conditions the asymptotic normality can hold for the asymptotic expansion in Theorem 5.

B Proofs of technical lemmas

B.1 Proof of Lemma 1

Let \(x = (x_1, \cdots, x_n)^T \) and \(y = (y_1, \cdots, y_n)^T \) be two arbitrary \(n \)-dimensional unit vectors. Since \(W \) is a symmetric random matrix of independent entries above the diagonal, it is easy to show that

\[
x^T Wy - x^T E Wy = \sum_{1 \leq i, j \leq n, i < j} w_{ij} (x_i y_j + x_j y_i) + \sum_{1 \leq i \leq n} (w_{ii} - E w_{ii}) (x_i y_i)
\]

(A.1)

and

\[
s_n^2 \equiv E(x^T Wy - x^T E Wy)^2 = \sum_{1 \leq i, j \leq n, i < j} E w_{ij}^2 (x_i y_j + x_j y_i)^2 + \sum_{1 \leq i \leq n} E (w_{ii} - E w_{ii})^2 x_i^2 y_i^2.
\]

(A.2)

Since \(w_{ij} \) with \(1 \leq i < j \leq n \) and \(w_{ii} - E w_{ii} \) with \(1 \leq i \leq n \) are independent random variables with zero mean, by the Lyapunov condition (see, for example, Theorem 27.3 of Billingsley (1995)) we can see that if

\[
\frac{1}{s_n^2} \left[\sum_{1 \leq i, j \leq n, i < j} E |w_{ij}|^3 |x_i y_j + x_j y_i|^3 + \sum_{1 \leq i \leq n} E |w_{ii} - E w_{ii}|^3 |x_i y_i|^3 \right] \to 0,
\]

then it holds that

\[
\frac{x^T Wy - x^T E Wy}{s_n} \overset{p}{\to} N(0, 1).
\]
Since by assumption \(\max_{1 \leq i, j \leq n} |w_{ij}| \leq 1 \) and \(\|x\|_{\infty} \|y\|_{\infty} \ll s_n \), we have

\[
\frac{1}{s_n^2} \left[\sum_{1 \leq i, j \leq n, i < j} \mathbb{E}|w_{ij}|^3 |x_i y_j + x_j y_i|^3 + \sum_{1 \leq i \leq n} \mathbb{E}|w_{ii} - \mathbb{E}w_{ii}|^3 |x_i y_i|^3 \right] \\
\leq \frac{2}{s_n^2} \left[\sum_{1 \leq i, j \leq n, i < j} \mathbb{E}|w_{ij}|^2 |x_i y_j + x_j y_i|^3 + \sum_{1 \leq i \leq n} \mathbb{E}|w_{ii} - \mathbb{E}w_{ii}|^2 |x_i y_i|^3 \right] \\
\leq \frac{2s_n}{s_n^2} \left[\sum_{1 \leq i, j \leq n, i < j} \mathbb{E}|w_{ij}|^2 |x_i y_j + x_j y_i|^2 + \sum_{1 \leq i \leq n} \mathbb{E}|w_{ii} - \mathbb{E}w_{ii}|^2 |x_i y_i|^2 \right] \leq 2, \quad \text{(A.3)}
\]

which completes the proof of Lemma 1.

B.2 Proof of Lemma 2

The technical arguments for the proof of Lemma 2 are similar to those for the proof of Lemma 1 in Section B.1. For the case of \(x^T (W^2 - \mathbb{E} W^2) y \), let us first consider the term \(x^T W^2 y \). Such a term can be written as

\[
\sum_{1 \leq k, i, l \leq n} w_{ki} w_{il} x_k y_l = \sum_{1 \leq k, i, l \leq n, k > l} w_{ki} w_{il} (x_k y_l + x_l y_k) + \sum_{1 \leq k, i \leq n} w_{ki}^2 x_k y_k \\
= \sum_{1 \leq k, i, l \leq n, k > l, k < i} w_{ki} w_{il} (x_k y_l + x_l y_k) + \sum_{1 \leq k, i \leq n, k > l, k > i} w_{ki} w_{il} (x_k y_l + x_l y_k) \\
+ \sum_{1 \leq k, i \leq n} w_{kk} w_{ki} (x_k y_l + x_l y_k) + \sum_{1 \leq k, i \leq n} w_{ki}^2 x_k y_k \\
= \sum_{1 \leq k, i \leq n, k > l, k < i} w_{ki} (x_k + \sum_{1 \leq k < i \leq n} w_{kl} y_k) (x_l + \sum_{1 \leq l < i \leq n} w_{li} x_l) + \sum_{1 \leq k, i \leq n} w_{ki} y_i \sum_{1 \leq l < i \leq n} w_{lk} x_l \\
+ \sum_{1 \leq l < i \leq n} w_{kk} w_{kl} (x_k y_l + x_l y_k) + \sum_{1 \leq l < i \leq n} w_{ki}^2 (x_k y_l + x_l y_k). \quad \text{(A.4)}
\]

Then it follows from (A.4) and the independence of entries \(w_{ki} \) with \(1 \leq k \leq i \leq n \) that

\[
\mathbb{E} x^T W^2 y = \sum_{1 \leq k, i \leq n, k < i} \mathbb{E} w_{ki}^2 (x_k y_k + x_i y_i) + \sum_{1 \leq k \leq n} \mathbb{E} w_{kk}^2 x_k y_k.
\]

To ease the technical presentation, let us define some new notation \(\omega_{kk} = 2^{-1} w_{kk} \) and
\(\sigma_{kk}^2 = \mathbb{E} \omega_{kk}^2 \). We can further show that

\[
x^T(W^2 - \mathbb{E}W^2)y = \sum_{1 \leq k,i \leq n, k < i} w_{ki}[x_k \sum_{1 \leq l < k \leq n} w_{lk}yi + y_k \sum_{1 \leq l < k \leq n} w_{li}x_l + x_i \sum_{1 \leq l < i \leq n} w_{li}yi + y_i \sum_{1 \leq l < i \leq n} w_{li}x_l] + \sum_{1 \leq k,i \leq n, k < i} \left[(w_{ki}^2 - \sigma_{ki}^2)(xy_k + x_iy_i) + 2(\omega_{kk}^2 - \mathbb{E}\omega_{kk})x_k \sum_{1 \leq l < k \leq n} w_{li}yi + y_k \sum_{1 \leq l < k \leq n} w_{li}x_l \right] + \sum_{1 \leq i \leq n} w_{i1}x_i, \tag{A.5}
\]

where \(\sigma_{ki}^2 = \mathbb{E}w_{ki}^2 \) denotes the variance of entry \(w_{ki} \) as defined before.

We next define a \(\sigma \)-algebra \(F_t = \sigma\{w_1, \ldots, w_t\} \), where \(w_t = w_{kt} \) with \(t = k + 2^{-1}(l-1) \) and \(1 \leq k \leq l \leq n \). Clearly we have \(t \leq 2^{-1}n(n+1) \). In fact, there is a one to one correspondence between \(t \leq 2^{-1}n(n+1) \) and \((k,l) \) with \(k \leq l \). Suppose that such a statement is not true. Then there exist two different pairs \((k_1, l_1)\) and \((k_2, l_2)\) with \(1 \leq k_1 \leq l_1 \leq n \) and \(1 \leq k_2 \leq l_2 \leq n \) such that

\[
k_1 + \frac{l_1(l_1-1)}{2} = k_2 + \frac{l_2(l_2-1)}{2}. \tag{A.6}
\]

It is easy to see that we must have \(k_1 \neq k_2 \) and \(l_1 \neq l_2 \). Without loss of generality, let us assume that \(l_1 < l_2 \). Then by (A.6), it holds that

\[
\frac{l_2(l_2-1)}{2} - \frac{l_1(l_1-1)}{2} = k_1 - k_2 \leq k_1 - 1.
\]

On the other hand, since \(l_1 < l_2 \) we have

\[
\frac{l_2(l_2-1)}{2} - \frac{l_1(l_1-1)}{2} \geq \frac{l_1(l_1+1)}{2} - \frac{l_1(l_1-1)}{2} \geq l_1 \geq k_1,
\]

which contradicts the previous inequality. Thus we have shown that there is indeed a one to one correspondence between \(t \leq 2^{-1}n(n+1) \) and \((k,l) \) with \(k \leq l \).

Assume that \(t_1 \leq t_2 \) with \(t_1 = k_1 + 2^{-1}l_1(l_1-1) \) and \(t_2 = k_2 + 2^{-1}l_2(l_2-1) \). Then using the similar arguments we can show that \(l_1 \leq l_2 \) and further \(k_1 \leq k_2 \) when \(l_1 = l_2 \). This means that for \(t = k + 2^{-1}l(l-1) \) with \(1 \leq k \leq l \leq n \), we have \(F_t = \sigma\{w_1, \ldots, w_t\} = \sigma\{w_{ij} : 1 \leq i \leq j < l \text{ or } 1 \leq i \leq l \leq j = l\} \). With such a representation, we can see that the expression in (A.5) is in fact a sum of martingale differences with respect to the \(\sigma \)-algebra \(F_{k+2^{-1}(l-1)} \). This fact entails that for \(1 \leq k \leq \cdot \leq n \),

\[
\mathbb{E} \left[(w_{ki} - \mathbb{E}w_{ki})b_{ki} + (w_{ki}^2 - \mathbb{E}w_{ki}^2)c_{ki} | F_{k+2^{-1}(l-1)} \right] = 0,
\]

where \(b_{ki} = x_k \sum_{1 \leq l < k \leq n} w_{li}yi + y_k \sum_{1 \leq l < k \leq n} w_{li}x_l + x_i \sum_{1 \leq l < i \leq n} w_{li}yi + y_i \sum_{1 \leq l < i \leq n} w_{li}x_l + \cdots \).
(1 – δ_{ki}) Ew_{i}(x_{i}y_{k} + x_{i}y_{l}) with δ_{ki} = 1 when k = i and 0 otherwise, and c_{ki} = x_{k}y_{k} + x_{i}y_{i}.

The conditional variance is given by

\[
\sum_{1 \leq k, i \leq n, k < i} E \left\{ \left[w_{ki}b_{ki} + (w_{ki}^2 - \sigma_{ki}^2)c_{ki} \right]^2 \mid \mathcal{F}_{k+2-1(i-1)-1} \right\} + \sum_{1 \leq k \leq n} E \left\{ \left[(\omega_{kk} - E\omega_{kk})b_{kk} + 2(\omega_{kk}^2 - \sigma_{kk}^2)c_{kk} \right]^2 \mid \mathcal{F}_{2-1(k+1)-1} \right\} = \sum_{1 \leq k, i \leq n, k < i} \sigma_{ki}^2 b_{ki}^2 + 2 \sum_{1 \leq k, i \leq n, k \leq i} \gamma_{ki} b_{ki} c_{ki} + \sum_{1 \leq k, i \leq n, k < i} \kappa_{ki}^2 c_{ki},
\]

(A.7)

where γ_{ki} = Ew_{ki}^2 and κ_{ki} = E(w_{ki}^2 - σ_{ki}^2)^2 for k ≠ i, and γ_{kk} = 2(E\omega_{kk}^3 - σ_{kk}^2 E\omega_{kk}) and κ_{kk} = 4E(ω_{kk}^2 - σ_{kk}^2)^2.

The mean of the random variable in (A.7) can be calculated as

\[
x_{k,y}^2 = E(A.7) = \sum_{1 \leq k, i \leq n, k \leq i} \left[\kappa_{ki}(x_{k}y_{k} + x_{i}y_{i})^2 + \sigma_{ki}^2 \sum_{1 \leq l < k \leq n} \sigma_{ll}^2(x_{k}y_{l} + y_{k}x_{l})^2 \right] + \sigma_{ki}^2 \sum_{1 \leq l < i \leq n} \sigma_{iil}(x_{i}y_{i} + y_{i}x_{l})^2 + \sum_{1 \leq k, i \leq n, k < i} \sigma_{ki}^2(1 – \delta_{ki}) \left[E(w_{ki} + w_{kk})^2 \right]
\times (x_{k}y_{i} + x_{i}y_{k})^2.
\]

(A.8)

Moreover, the variance of the random variable in (A.7) is given by

\[
\kappa_{x,y} = \text{var}(A.7) = \sum_{1 \leq k_{1, i_{1}, k_{2}, i_{2}} \leq n, k_{1, i_{1}} \leq i_{1}, k_{2} \leq i_{2}} E \left\{ \sigma_{k_{1}i_{1}}^2(z_{k_{1}i_{1}}^2 - Ez_{k_{1}i_{1}}^2) \right\} + 2\gamma_{ki_{1}}(x_{k_{1}}y_{i_{1}} + x_{i_{1}}y_{k_{1}})z_{k_{1}i_{1}} \left[\sigma_{k_{2}i_{2}}^2(z_{k_{2}i_{2}}^2 - Ez_{k_{2}i_{2}}^2) \right] + 2\gamma_{k_{2}i_{2}}(x_{k_{2}}y_{i_{2}} + x_{i_{2}}y_{k_{2}})z_{k_{2}i_{2}} \right\},
\]

(A.9)

where \(z_{ki} = \sum_{1 \leq l < k \leq n} w_{il}(x_{k}y_{l} + y_{k}x_{l}) + \sum_{1 \leq l < i \leq n} w_{li}(x_{i}y_{l} + y_{i}x_{l}) + (1 – \delta_{ki})Ew_{ii}(x_{i}y_{k} + x_{k}y_{i}).\)

Let us recall the classical martingale CLT; see, for example, Lemma 9.12 of Bai and Silverstein (2006). If a martingale difference sequence \((Y_{t})\) with respect to a σ-algebra \(\mathcal{F}_{t}\) satisfies the following conditions:

a) \[
\frac{\sum_{t=1}^{T} E(Y_{t}^2 \mid \mathcal{F}_{t-1})}{\sum_{t=1}^{T} EY_{t}^2} \xrightarrow{P} 1,
\]
b) \[
\frac{\sum_{t=1}^{T} EY_{t}I(|Y_{t}^2| > \epsilon \sum_{t=1}^{T} EY_{t}^2)}{\sum_{t=1}^{T} EY_{t}^2} \leq \frac{\sum_{t=1}^{T} EY_{t}^4}{\epsilon^4 \sum_{t=1}^{T} EY_{t}^2} \xrightarrow{P} 0 \text{ for any } \epsilon > 0,
\]
then we have \[
\sqrt{\sum_{t=1}^{T} EY_{t}^2} \xrightarrow{\mathcal{D}} N(0, 1) \text{ as } T \to \infty, \text{ where } I(\cdot) \text{ denotes the indicator function.}
\]

It follows from the assumption of \(\kappa_{x,y}^{1/4} \ll s_{x,y}\) that

\[
\frac{(A.7)}{E(A.7)} \xrightarrow{P} 1,
\]

which shows that condition a) above is satisfied. Moreover, by the simple fact that for any
fixed i, $\mathbb{E}w_{ii}^2 y_i^2 \leq 1$, and the assumptions that $s_{x,y} \to \infty$ and $\|x\|_\infty \|y\|_\infty \to 0$, we have

\[
\sum_{1 \leq k,i \leq n, k < i} \mathbb{E}\left\{ w_{ki} \left[x_k \sum_{1 \leq l < k \leq n} w_{il}y_l + y_k \sum_{1 \leq l < k \leq n} w_{il}x_l + x_i \sum_{1 \leq l < i \leq n} w_{li}y_l \right.
ight.
\]
\[
+ y_i \sum_{1 \leq l < i \leq n} w_{li}x_l + \mathbb{E}w_{ii}(x_i y_k + x_k y_i) \right\}^4 + \sum_{1 \leq k \leq n} \mathbb{E}\left[2(\omega_{kk} - \mathbb{E}\omega_{kk}) \times \left(x_k \sum_{1 \leq l < k \leq n} w_{kl}y_l + y_k \sum_{1 \leq l < k \leq n} w_{kl}x_l \right) \right]^4
\]
\[
+ \sum_{1 \leq k,i \leq n, k < i} \left\{ \mathbb{E}\left[(w_{ki}^2 - \sigma_{ki}^2)(x_k y_k + x_i y_i) \right]^4 + \mathbb{E}\left[(\omega_{kk}^2 - \sigma_{kk}^2)(x_k y_k + x_i y_i) \right]^4 \right\} \ll s_{x,y}^4,
\]

which entails that condition b) above is also satisfied. Therefore, an application of the martingale CLT concludes the proof of Lemma 2.

B.3 Further technical details on conditions of Lemma 2

Let us gain some further insights into the technical conditions in Lemma 2. Define $a_{kl} = x_k y_l + y_k x_l$ and note that $\kappa_{ij} = \mathbb{E}(w_{ij}^2 - \sigma_{ij}^2)^2 = \mathbb{E}w_{ij}^4 - \sigma_{ij}^4$. By the assumption of $|w_{ij}| \leq 1$, it is easy to see that $0 \leq \kappa_{ij} \leq \mathbb{E}w_{ij}^4 \leq \mathbb{E}w_{ij}^2 = \sigma_{ij}^2$. Then we can show that the random variable in (A.7) subtracted by its mean $s_{x,y}^2$ can be represented as

\[
(A.7) - s_{x,y}^2 =
\sum_{1 \leq k,i \leq n, k \leq i} \sigma_{ki}^2 \left[\sum_{1 \leq l < k \leq n} (w_{il}^2 - \sigma_{il}^2) a_{kl}^2 + \sum_{1 \leq l < i \leq n} (w_{li}^2 - \sigma_{li}^2) a_{il}^2 \right]
\]
\[
+ \sum_{1 \leq l_1, l_2 < k \leq n, l_1 \neq l_2} w_{l_1 l_2} a_{kl_1} a_{kl_2} + \sum_{1 \leq l_1, l_2 < i \leq n, l_1 \neq l_2} w_{l_1 l_2} a_{il_1} a_{il_2} + 2 \sum_{1 \leq k,i \leq n, k \leq i, 1 \leq l_1 < k \leq n, 1 \leq l_2 < i \leq n} \sigma_{kl}^2 w_{l_1 l_2} a_{kl_1} a_{kl_2}
\]
\[
+ 2 \sum_{1 \leq k,i \leq n, k \leq i} \left[\gamma_{ki} a_{kk} + \sigma_{ki}^2 a_{ki}(1 - \delta_{ki}) \mathbb{E}w_{ii} \right] \left(\sum_{1 \leq l < k \leq n} w_{il} a_{kl} + \sum_{1 \leq l < i \leq n} w_{li} a_{li} \right). \quad (A.10)
\]
By (A.10) and (A.31), we have

\[
\kappa_{x,y} = \mathbb{E}\left[(A.7) - s_{x,y}^2 \right]^2 \leq C \left\{ \mathbb{E} \left[\sum_{1 \leq k,i \leq n, k \leq i} \sigma_{ki}^2 \sum_{1 \leq l < k \leq n} (w_{il}^2 - \sigma_{il}^2) a_{kl}^2 \right] + \mathbb{E} \left[\sum_{1 \leq k,i \leq n, k \leq i} \sigma_{ki}^2 \sum_{1 \leq l, l_2 < k \leq n, l_1 \neq l_2} w_{d_1} w_{d_2} a_{kl_1} a_{kl_2} \right]^2 + \mathbb{E} \left[\sum_{1 \leq k,i \leq n, k \leq i} \sigma_{ki}^2 \sum_{1 \leq l_1, l_2 < k \leq n, l_1 \neq l_2} w_{d_1} w_{d_2} a_{kl_1} a_{kl_2} \right]^2 \right. \\
\left. \times a_{kl_1} a_{kl_2} \right]^2 + \mathbb{E} \left(\sum_{1 \leq k,i \leq n, k \leq i} \sigma_{ki}^2 w_{d_1} w_{d_2} a_{kl_1} a_{kl_2} \right)^2 + \mathbb{E} \left(\sum_{1 \leq k,i \leq n, k \leq i} \sigma_{ki}^2 \right) \left(\sum_{1 \leq l < k \leq n} w_{d_1} a_{kl} + \sum_{1 \leq i < l \leq n} w_{d_2} a_{il} \right) \right\} \\
\leq C \left\{ \left(\sum_{1 \leq k,i \leq n, k \leq i} \sigma_{ki}^2 \right)^2 \left(\sum_{1 \leq l < k \leq n} \kappa_{il} a_{il}^4 + \sum_{1 \leq l < k \leq n} \kappa_{kl} a_{kl}^4 \right) \right. \\
\left. \sum_{1 \leq k_1, k_2, l_1, l_2 \leq n, l_1 \neq l_2, l_1 < k_1, l_2 < k_2} \sigma_{k_1 l_1}^2 \sigma_{k_2 l_2}^2 \sigma_{d_1 l_1}^2 \sigma_{d_2 l_2}^2 a_{k_1 l_1} a_{k_2 l_2} a_{k_1 l_2} a_{k_2 l_1} \right) \\
\sum_{1 \leq k, i_1, i_2, l_1, l_2 \leq n, l_1 \neq l_2, \min \{ i_1, i_2 \}} \sum_{1 \leq k, l_1, l_2 \leq n, k < i, l_1 < k, l_2 < k} \sigma_{k_1 l_1}^2 \sigma_{k_2 l_2}^2 \sigma_{d_1 l_1}^2 \sigma_{d_2 l_2}^2 a_{k_1 i_1} a_{k_1 i_2} a_{k_2 l_1} a_{k_2 l_2} \right) \\
\sum_{1 \leq k, i, l_1, l_2 \leq n, k < i, l_1 < k, l_2 < k} \{ \gamma_{k_1 l_1}^2 a_{k_1 l_1}^2 + \sigma_{k_1 l_1}^2 (1 - \delta_{k_1})[\mathbb{E}(w_{d_1} + w_{d_2})]^2 \} \left(\sum_{1 \leq l < k \leq n} \sigma_{d_1 l} a_{d_1 l}^2 + \sum_{1 \leq l < k \leq n} \sigma_{d_2 l} a_{d_2 l}^2 \right) \}
\right\} \\
= O \left\{ n \sigma_n^4 \| x \|_\infty^4 \| y \|_\infty^4 \right\}, \quad (A.11)
\]

where \(C \) is some positive constant.

It follows from (A.8) that

\[
s_{x,y}^2 = \sum_{1 \leq k,i \leq n, k < i} \left[\kappa_{ki} (x_k y_k + x_i y_i)^2 + \sum_{1 \leq l < k \leq n} \sigma_{il}^2 (x_k y_l + y_k x_l)^2 \right] \\
\geq \sigma_{\min}^2 \sum_{1 \leq k,i \leq n, k < i} \left[\sum_{1 \leq l < k \leq n} (x_k y_l + y_k x_l)^2 + \sum_{1 \leq l < i \leq n} (x_i y_l + y_i x_l)^2 \right] \\
\geq c \sigma_{\min}^2 n, \quad (A.12)
\]

where \(\sigma_{\min}^2 \) is defined in Condition 3. Then we can exploit the upper bound on \(\kappa_{x,y} \) in (A.11) and the lower bound on \(s_{x,y}^2 \) in (A.12) to simplify the conditions of Lemma 2, which can be reduced to

\[
\| x \|_\infty \| y \|_\infty \to 0, \quad \frac{\sigma_n^4 \| x \|_\infty^4 \| y \|_\infty^4 \to 0, \quad \sigma_{\min}^2 n \to \infty. \quad (A.13)
\]

Therefore, the conclusions of Lemma 2 hold as long as condition (A.13) is satisfied.
B.4 Proof of Lemma 3

In view of the definition of the function \(f_k(z) \) defined in (9), we have

\[
f_k'(z) = d_k \left\{ \mathcal{R}(v_k, v_k, z) - \mathcal{R}(v_k, v_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(v_{-k}, v_{-k}, z) \right]^{-1} \right. \times \mathcal{R}(v_{-k}, v_k, z) \left. \right\}'. \tag{A.14}
\]

For \(z \in [a_k, b_k] \), it follows from Lemma 5, Condition 2, and the definition of \(\mathcal{R} \) in (5) that

\[
\left\| \mathcal{R}(v_{-k}, v_{-k}, z) + z^{-1}I \right\| = \left\| - \sum_{l=2}^{L} z^{-(l+1)} V_k^T E W^l V_{-k} \right\| \\
\leq \sum_{l=2}^{L} z^{-(l+1)} \left\| V_k^T E W^l V_{-k} \right\|= O(\alpha^2_n |z|^{-3}). \tag{A.15}
\]

Without loss of generality, we assume that \(k \neq 1 \). For \(l \) such that \(|d_l| > |d_k|\), by (A.15) the diagonal entry of \(D_{-k}^{-1} + \mathcal{R}(v_{-k}, v_{-k}, z) \) corresponding to \(d_l \) is given by

\[
d_l^{-1} - z^{-1} + O(\alpha^2_n |z|^{-3}) = (z - d_l)/(zd_l) + O(\alpha^2_n |z|^{-3}).
\]

By Condition 2, there exists some positive constant \(c \) such that \(\max\{|a_k|, |b_k|\} \leq (1 - c) |d_l| \). It follows that \(|(z - d_l)/(zd_l)| \geq c/|z| \) and thus \(|(z - d_l)/(zd_l)| + O(\alpha^2_n |z|^{-3})|^{-1} = O(|z|) \). For the remaining diagonal entry with \(|d_i| < |d_k|\), there exists some positive constant \(c_1 \) such that \(\min\{|a_k|, |b_k|\} \geq (1 + c_1)|d_l| \) and similarly we have \(|(z - d_l)/(zd_l)| + O(\alpha^2_n |z|^{-3})|^{-1} = O(|z|) \). Thus it follows from (A.15) that the off-diagonal entries of \(D_{-k}^{-1} + \mathcal{R}(v_{-k}, v_{-k}, z) \) are dominated by the diagonal ones, leading to

\[
\left\| \left[D_{-k}^{-1} + \mathcal{R}(v_{-k}, v_{-k}, z) \right]^{-1} \right\| = O(|z|) \tag{A.16}
\]

for all \(z \in [a_k, b_k] \).

Next an application of Lemma 5 gives

\[
\mathcal{R}'(v_k, v_k, z) = \sum_{l=0, l \neq 1}^{L} \frac{l+1}{z^{l+2}} v_k^T E W^l v_k = \frac{1}{z^2} + O(\alpha^2_n |z|^{-4}).
\]

By (A.14) and Condition 2, we have

\[
\left\{ \mathcal{R}(v_k, v_{-k}, z) \left[D_{-k}^{-1} + \mathcal{R}(v_{-k}, v_{-k}, z) \right]^{-1} \mathcal{R}(v_{-k}, v_k, z) \right\}' = O(\alpha^4_n |z|^{-6}) = o(\alpha^2_n |z|^{-4}).
\]

Thus in view of (A.14), it holds that

\[
f_k'(z) = d_k z^{-2} \left[1 + o(1) \right] \tag{A.17}
\]
for $z \in [a_k, b_k]$. We can see from (A.17) that $f_k(z)$ is a monotone function over $z \in [a_k, b_k]$ when matrix size n is large enough.

Now recall that

$$f_k(d_k) = 1 + d_k \left\{ R(v_k, v_k, d_k) - R(v_k, V_{-k}, d_k) \left[D_{-k}^{-1} + R(V_{-k}, V_{-k}, d_k) \right]^{-1} R(V_{-k}, v_k, d_k) \right\}. $$

By Lemma 5, we have

$$1 + d_k R(v_k, v_k, d_k) = 1 - \sum_{l=0, l \neq 1}^L \frac{1}{d_k} v_k^T E W^l v_k = O(\alpha_n^2 d_k^{-2})$$

and

$$d_k R(v_k, V_{-k}, d_k) \left[D_{-k}^{-1} + R(V_{-k}, V_{-k}, d_k) \right]^{-1} R(V_{-k}, v_k, d_k) = O(\alpha_n^2 d_k^{-2}).$$

Thus it holds that $f_k(d_k) = O(\alpha_n^2 d_k^{-2}) = o(1)$. Noticing that the derivative $f_k'(z) = d_k z^{-2} [1 + o(1)] \sim d_k z^{-2} \sim |d_k|^{-1}$ and by the mean value theorem, we have $f_k(a_k) \sim o(1) + |d_k|^{-1} (a_k - d_k)$ and $f_k(b_k) \sim o(1) + |d_k|^{-1} (b_k - d_k)$, where \sim represents the asymptotic order. Therefore, we see that $f_k(a_k)f_k(b_k) < 0$ and consequently the equation $f_k(z) = 0$ has a unique solution for $z \in [a_k, b_k]$, which solution satisfies that $t_k = d_k + o(d_k)$. This completes the proof of Lemma 3.

B.5 Proof of Lemma 4

The asymptotic bounds characterized in Lemma 4 play a key role in establishing the more general asymptotic theory in Theorems 4 and 5. We first assume that all the diagonal entries of $W = (w_{ij})_{i,j \leq n}$ are zero, that is, $w_{ii} = 0$. The general case of possibly $w_{ii} \neq 0$ will be dealt with later. The main idea of the proof is to calculate the moments by counting the number of nonzero terms involved in $E(x^T W^l y - E x^T W^l y)^2$, which is a frequently used idea in random matrix theory; see, for example, Chapter 2 of Bai and Silverstein (2006). An important difference is that bounding the order of $E(x^T W^l y - E x^T W^l y)^2$ by simply counting the number of nonzero terms inside is too rough for our setting since the variances of the entries of W can be very different from each other. Observe that the nonzero terms of the variance involve the product of w_{ij}^m with $m \geq 2$. We thus collect all such terms with the same index i but different index j, which means that we will bound $\sum_{j=1}^n E|w_{ij}|^m \leq \alpha_n^2$ instead of using $E|w_{ij}|^m \leq 1$. Then we can obtain a more accurate order since α_n^2 can be much smaller than n in general. Our technical arguments here provide useful refinements to the classical idea of counting the number of nonzero terms from the random matrix theory.

Let $x = (x_1, \cdots, x_n)^T$ and $y = (y_1, \cdots, y_n)^T$ be two arbitrary n-dimensional unit vectors,
and $l \geq 1$ an integer. Expanding $\mathbb{E}(\mathbf{x}^T \mathbf{W}^l \mathbf{y} - \mathbb{E} \mathbf{x}^T \mathbf{W}^l \mathbf{y})^2$ yields

$$
\mathbb{E}(\mathbf{x}^T \mathbf{W}^l \mathbf{y} - \mathbb{E} \mathbf{x}^T \mathbf{W}^l \mathbf{y})^2 = \sum_{i \leq i_1, \ldots, i_l + 1, j_1, \ldots, j_{l+1} \leq n, i_s \neq j_1, \ldots, j_{l+1}, 1 \leq s \leq l} \mathbb{E}\left[(x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_l i_{l+1}} y_{i_{l+1}} - \mathbb{E} x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_l i_{l+1}} y_{i_{l+1}})
ight] \times (x_{j_1} w_{j_1 j_2} w_{j_2 j_3} \cdots w_{j_l j_{l+1}} y_{j_{l+1}} - \mathbb{E} x_{j_1} w_{j_1 j_2} w_{j_2 j_3} \cdots w_{j_l j_{l+1}} y_{j_{l+1}})] .
$$

(A.18)

Let $\mathbf{i} = (i_1, \ldots, i_{l+1})$ and $\mathbf{j} = (j_1, \ldots, j_{l+1})$ be two vectors taking values in $\{1, \ldots, n\}^{l+1}$. For any given vector \mathbf{i}, we define a graph $G_{\mathbf{i}}$ whose vertices represent distinct values of the components of \mathbf{i}. Vertices i_s and i_{s+1} of $G_{\mathbf{i}}$ are connected by undirected edges for $1 \leq s \leq l$. Similarly we can also define graph $G_{\mathbf{j}}$ corresponding to \mathbf{j}. It can be seen that $G_{\mathbf{i}}$ is a connected graph, which means that there exists some path from i_s to $i_{s'}$ for any $1 \leq s \neq s' \leq n$. Thus for each product

$$
\mathbb{E}\left[(x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_l i_{l+1}} y_{i_{l+1}} - \mathbb{E} x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_l i_{l+1}} y_{i_{l+1}})
ight] \times (x_{j_1} w_{j_1 j_2} w_{j_2 j_3} \cdots w_{j_l j_{l+1}} y_{j_{l+1}} - \mathbb{E} x_{j_1} w_{j_1 j_2} w_{j_2 j_3} \cdots w_{j_l j_{l+1}} y_{j_{l+1}})] .
$$

(A.19)

there exists a corresponding graph $G_{\mathbf{i}} \cup G_{\mathbf{j}}$. If $G_{\mathbf{i}} \cup G_{\mathbf{j}}$ is not a connected graph, then the corresponding expectation

$$
\mathbb{E}\left[(x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_l i_{l+1}} y_{i_{l+1}} - \mathbb{E} x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_l i_{l+1}} y_{i_{l+1}})
ight] \times (x_{j_1} w_{j_1 j_2} w_{j_2 j_3} \cdots w_{j_l j_{l+1}} y_{j_{l+1}} - \mathbb{E} x_{j_1} w_{j_1 j_2} w_{j_2 j_3} \cdots w_{j_l j_{l+1}} y_{j_{l+1}})] = 0 .
$$

This shows that in order to calculate the order of $\mathbb{E}(\mathbf{x}^T \mathbf{W}^l \mathbf{y} - \mathbb{E} \mathbf{x}^T \mathbf{W}^l \mathbf{y})^2$, it suffices to consider the scenario of connected graphs $G_{\mathbf{i}} \cup G_{\mathbf{j}}$.

To analyze the term in (A.19), let us calculate how many distinct vertices are contained in the connected graph $G_{\mathbf{i}} \cup G_{\mathbf{j}}$. Since there are $2l$ edges in $G_{\mathbf{i}} \cup G_{\mathbf{j}}$ and $\mathbb{E} w_{ss'} = 0$ for $s \neq s'$, in order to get a nonzero value of (A.19) each edge in $G_{\mathbf{i}} \cup G_{\mathbf{j}}$ has at least one copy. Thus for each nonzero (A.19), we have l distinct edges in $G_{\mathbf{i}} \cup G_{\mathbf{j}}$. Since graph $G_{\mathbf{i}} \cup G_{\mathbf{j}}$ is connected, there are at most $l + 1$ distinct vertices in $G_{\mathbf{i}} \cup G_{\mathbf{j}}$. Denote by S the set of all such pairs (\mathbf{i}, \mathbf{j}). Combining the above arguments, we can conclude that

$$
(A.18) = \sum_{(\mathbf{i}, \mathbf{j}) \in S} \mathbb{E}\left[(x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_l i_{l+1}} y_{i_{l+1}} - \mathbb{E} x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_l i_{l+1}} y_{i_{l+1}})
ight] \times (x_{j_1} w_{j_1 j_2} w_{j_2 j_3} \cdots w_{j_l j_{l+1}} y_{j_{l+1}} - \mathbb{E} x_{j_1} w_{j_1 j_2} w_{j_2 j_3} \cdots w_{j_l j_{l+1}} y_{j_{l+1}})] .
$$

(A.20)

For notational simplicity, we denote j_1, \ldots, j_{l+1} by $i_{l+2}, \ldots, i_{2l+2}$ and define $\mathbf{i} = (i_1, \ldots, i_{l+1}, j_1, \ldots, j_{l+1}) = (i_1, \ldots, i_{2l+2})$. We also denote $G_{\mathbf{i}} \cup G_{\mathbf{j}}$ by $F_{\mathbf{i}}$ which has at most $l + 1$ distinct
vertices and l distinct edges, with each edge having at least two copies. Then it holds that

\[
| (A.20) | = \left| \sum_{\mathcal{F}_i, \mathbf{i} \in S} \mathbb{E} \left[(x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_{l+1} i_{l+2}} y_{i_{l+1}} - \mathbb{E} x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_{l+1} i_{l+2}} y_{i_{l+1}}) \right] \right| \\
\times (x_{i_{l+2}} w_{i_{l+2} i_{l+3}} w_{i_{l+3} i_{l+4}} \cdots w_{i_{2l+1} i_{2l+2}} y_{i_{2l+2}} - \mathbb{E} x_{i_{l+2}} w_{i_{l+2} i_{l+3}} w_{i_{l+3} i_{l+4}} \cdots w_{i_{2l+1} i_{2l+2}} y_{i_{2l+2}}) \right| \\
\leq \sum_{\mathcal{F}_i, \mathbf{i} \in S} \mathbb{E} \left[x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_{l+1} i_{l+2}} y_{i_{l+1}} \right] \left(x_{i_{l+2}} w_{i_{l+2} i_{l+3}} w_{i_{l+3} i_{l+4}} \cdots w_{i_{2l+1} i_{2l+2}} y_{i_{2l+2}} \right) \\
+ \sum_{\mathcal{F}_i, \mathbf{i} \in S} \mathbb{E} \left[x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_{l+1} i_{l+2}} y_{i_{l+1}} \right] \mathbb{E} \left(x_{i_{l+2}} w_{i_{l+2} i_{l+3}} w_{i_{l+3} i_{l+4}} \cdots w_{i_{2l+1} i_{2l+2}} y_{i_{2l+2}} \right) . \tag{A.21}
\]

Observe that each expectation in (A.21) involves the product of some independent random variables, and $x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_{l+1} i_{l+2}} y_{i_{l+1}}$ and $x_{i_{l+2}} w_{i_{l+2} i_{l+3}} w_{i_{l+3} i_{l+4}} \cdots w_{i_{2l+1} i_{2l+2}} y_{i_{2l+2}}$ may share some dependency through factors $w_{a}^{m_1}$ and $w_{ab}^{m_2}$, respectively, for some w_{ab} and nonnegative integers m_1 and m_2. Thus in light of the inequality

\[
\mathbb{E} |w_{ab}|^{m_1} \mathbb{E} |w_{ab}|^{m_2} \leq \mathbb{E} |w_{ab}|^{m_1 + m_2},
\]

we can further bound (A.21) as

\[
(A.21) \leq 2 \sum_{\mathcal{F}_i, \mathbf{i} \in S} \mathbb{E} \left[x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_{l+1} i_{l+2}} y_{i_{l+1}} x_{i_{l+2}} w_{i_{l+2} i_{l+3}} w_{i_{l+3} i_{l+4}} \cdots w_{i_{2l+1} i_{2l+2}} y_{i_{2l+2}} \right] . \tag{A.22}
\]

To facilitate our technical presentation, let us introduce some additional notation. Denote by $\psi(2l+2)$ the set of partitions of the edges $\{ (i_1, i_2), (i_2, i_3), \ldots, (i_{2l+1}, i_{2l+2}) \}$ and $\psi_{\geq 2}(2l+2)$ the subset of $\psi(2l+2)$ whose blocks have size at least two. Let $P(\mathbf{i}) \in \psi_{\geq 2}(2l+2)$ be the partition of $\{ (i_1, i_2), (i_2, i_3), \ldots, (i_{2l+1}, i_{2l+2}) \}$ that is associated with the equivalence relation $(i_{s_1}, i_{s_1+1}) \sim (i_{s_2}, i_{s_2+1})$ which is defined as if and only if $(i_{s_1}, i_{s_1+1}) = (i_{s_2}, i_{s_2+1})$ or $(i_{s_1}, i_{s_1+1}) = (i_{s_2+1}, i_{s_2})$. Denote by $|P(\mathbf{i})| = m$ the number of groups in the partition $P(\mathbf{i})$ such that the edges are equivalent within each group. We further denote the distinct edges in the partition $P(\mathbf{i})$ as $(s_1, s_2), (s_3, s_4), \ldots, (s_{2m-1}, s_{2m})$ and the corresponding counts in each group as r_1, \ldots, r_m, and define $\mathbf{s} = (s_1, s_2, \ldots, s_{2m})$. For the vertices, let $\phi(2m)$ be the set of partitions of $\{ 1, 2, \ldots, 2m \}$ and $Q(\mathbf{s}) \in \phi(2m)$ the partition that is associated with the equivalence relation $a \sim b$ which is defined as if and only if $s_a = s_b$. Note that $s_{2j-1} \neq s_{2j}$.
since the diagonal entries of W are assumed to be zero for the moment. Then we have

$$
\sum_{\mathcal{F}_s} \mathbb{E} \left| x_1 w_{11} y_1 x_2 w_{12} y_2 \cdots w_{ij} x_{ij+1} y_{ij+1} x_{ij+2} w_{ij+2} y_{ij+2} \cdots w_{2l+1} y_{2l+2} \right|
\leq \sum_{1 \leq |P(\mathcal{I})| = m \leq l} \sum_{1 \leq s_1, \ldots, s_m \leq n} \sum_{1 \leq s_1, \ldots, s_m \leq n} |x_1 y_{i+1} x_{i+2} y_{2l+2}|
\times \prod_{j=1}^{m} \mathbb{E} \left| w_{s_2j-1} s_{2j} \right| r_j.
$$

We denote by \mathcal{F}_s the graph constructed by the edges of \tilde{s}. Since the edges in \tilde{s} are the same as those of the graph \tilde{F}_1, we see that \mathcal{F}_s is also a connected graph. In view of (A.23), putting term $|x_1 y_{i+1} x_{i+2} y_{2l+2}|$ aside we need to analyze the summation

$$
\sum_{1 \leq s_1, \ldots, s_m \leq n} \prod_{j=1}^{m} \mathbb{E} \left| w_{s_2j-1} s_{2j} \right| r_j.
$$

If index s_{2k-1} satisfies that $s_{2k-1} \neq s$ for all $s \in \{s_1, \ldots, s_{2m}\} \setminus \{s_{2k-1}\}$, that is, index s_{2k-1} appears only in one $w_{s_2j-1} s_{2j}$, we call s_{2k-1} a single index (or single vertex). If there exists some single index s_{2k-1}, then we have

$$
\sum_{\tilde{\mathcal{A}} \setminus \{s_{2k-1}\}} \prod_{j=1}^{m} \mathbb{E} \left| w_{s_2j-1} s_{2j} \right| r_j
\leq \sum_{\tilde{\mathcal{A}} \setminus \{s_{2k-1}\}} \prod_{j=1}^{m} \mathbb{E} \left| w_{s_2j-1} s_{2j} \right| r_j \sum_{s_{2k-1}=1}^{n} \mathbb{E} \left| w_{s_{2k-1}} s_{2k} \right| r_k.
$$

Note that since graph \mathcal{F}_s is connected and index s_{2k-1} is single, there exists some j such that $s_j = s_{2k}$, which means that in the summation $\sum_{s_{2k-1}=1}^{n} \mathbb{E} \left| w_{s_{2k-1}} s_{2k} \right| r_k$ index s_{2k} is fixed. It follows from the definition of α_n, $|w_{ij}| \leq 1,$ and $r_k \geq 2$ that

$$
\sum_{s_{2k-1}=1}^{n} \mathbb{E} \left| w_{s_{2k-1}} s_{2k} \right| r_k \leq \alpha_n^2.
$$

After taking the summation over index s_{2k-1}, we see that there is one less edge in $\mathcal{F}(\tilde{s})$. That is, by taking the summation above we will have one additional α_n^2 in the upper bound while removing one edge from graph $\mathcal{F}(\tilde{s})$. For the single index s_{2k}, we also have the same bound. If s_{2k-1} is not a single index, without loss of generality we assume that $s_{2k-1} = s_{2k-1}$. Then this vertex s_{2k-1} need to deal with carefully. By the assumption of
Then it holds that

\[|w_{ij}| \leq 1, \text{ we have} \]

\[\mathbb{E}|w_{2k-1,2k}|^r |w_{2k1-1,2k1}|^{r1} \leq \mathbb{E}|w_{2k-1,2k}|^r + \mathbb{E}|w_{2k1-1,2k1}|^{r1}. \]

Then it holds that

\[
\sum_{\mathbf{s} \text{ with partition } Q(\mathbf{s})} \prod_{1 \leq s_1, \ldots, s_{2m} \leq n} \mathbb{E}|w_{s_{2j-1}s_{2j}}|^{r_j} \\
\leq \sum_{\mathbf{s} \setminus \{s_{2k-1}, s_{2k1-1}\} \text{ with partition } Q(\mathbf{s} \setminus \{s_{2k-1}, s_{2k1-1}\})} \prod_{1 \leq s_1, \ldots, s_{2m} \leq n} \mathbb{E}|w_{s_{2j-1}s_{2j}}|^{r_j} \\
+ \sum_{\mathbf{s} \setminus \{s_{2k-1}, s_{2k1-1}\} \text{ with partition } Q(\mathbf{s} \setminus \{s_{2k-1}, s_{2k1-1}\})} \prod_{1 \leq s_1, \ldots, s_{2m} \leq n} \mathbb{E}|w_{s_{2j-1}s_{2j}}|^{r_j} \tag{A.25}
\]

Note that since \(F_{\tilde{s}} \) is a connected graph, if we delete either edge \((s_{2k-1}, s_{2k})\) or edge \((s_{2k1-1}, s_{2k1})\) from graph \(F_{\tilde{s}} \) the resulting graph is also connected. Then the two summations on the right hand side of (A.25) can be reduced to the case in (A.24) for the graph with edge \((s_{2k-1}, s_{2k})\) or \((s_{2k1-1}, s_{2k1})\) removed, since \(s_{2k-1}\) or \(s_{2k1-1}\) is a single index in the subgraph. Similar to (A.24), after taking the summation over index \(s_{2k-1} \) or \(s_{2k1-1} \) there are two less edges in graph \(F_{\tilde{s}} \) and thus we now obtain \(2\alpha_n^2 \) in the upper bound.

For the general case when there are \(m_1 \) vertices belonging to the same group, without loss of generality we denote them by \(w_{ab_1}, \ldots, w_{abm_1} \). If for any \(k \) graph \(F_{\tilde{s}} \) is still connected after deleting edges \((a, b_1), \ldots, (a, b_{k-1}), (a, b_{k+1}), \ldots, (a, b_{m_1})\), then we repeat the process in (A.25) to obtain a new connected graph by deleting \(k-1 \) edges in \(w_{ab_1}, \ldots, w_{abm_1} \) and thus obtain \(k\alpha_n^2 \) in the upper bound. Motivated by the key observations above, we carry out an iterative process in calculating the upper bound as follows.

(i) If there exists some single index in \(\tilde{s} \), using (A.24) we can calculate the summation over such an index and then delete the edge associated with this vertex in \(F_{\tilde{s}} \). The corresponding vertices associated with this edge are also deleted. For simplicity, we also denote the new graph as \(F_{\tilde{s}} \). In this step, we obtain \(\alpha_n^2 \) in the upper bound.

(ii) Repeat (i) until there is no single index in graph \(F_{\tilde{s}} \).

(iii) If there exists some index associated with \(k \) edges such that graph \(F_{\tilde{s}} \) is still connected after deleting any \(k-1 \) edges. Without loss of generality, let us consider the case of \(k = 2 \). Then we can apply (A.24) to obtain \(\alpha_n^2 \) in the upper bound. Moreover, we delete \(k \) edges associated with this vertex in \(F_{\tilde{s}} \).

(iv) Repeat (iii) until there is no such index.

(v) If there still exists some single index, turn back to (i). Otherwise stop the iteration.
Completing the graph modification process mentioned above, we can obtain a final graph Q that enjoys the following properties:

i) Each edge does not contain any single index;

ii) Deleting any vertex makes the graph disconnected.

Let S_Q be the spanning tree of graph Q, which is defined as the subgraph of Q with the minimum possible number of edges. Since S_Q is a subgraph of Q, it also satisfies property ii) above. Assume that S_Q contains p edges. Then the number of vertices in S_Q is $p + 1$. Denote by q_1, \cdots, q_{p+1} the vertices of S_Q and $\deg(q_i)$ the degree of vertex q_i. Then by the degree sum formula, we have $\sum_{i=1}^{p+1} \deg(q_i) = 2p$. As a result, the spanning tree has at least two vertices with degree one and thus there exists a subgraph of S_Q without either of the vertices that is connected. This will result in a contradiction with property ii) above unless the number of vertices in graph Q is exactly one. Since l is a bounded constant, the numbers of partitions $P(\tilde{i})$ and $Q(\tilde{s})$ are also bounded. It follows that

$$
(A.23) \leq Cd_x^2d_y^2 \sum_{\text{S with partition } Q(S)} \prod_{1 \leq s_1, \cdots, s_{2m} \leq n} E|w_{s_2j-1}s_2j|^{|j|},
$$

where $d_x = \|x\|_\infty$, $d_y = \|y\|_\infty$, and C is some positive constant determined by l. Combining these arguments above and noticing that there are at most l distinct edges in graph \mathcal{F}_S, we can obtain

$$
(A.26) \leq Cd_x^2d_y^2n^{2l-2} \sum_{1 \leq s_{2k_0-1}, s_{2k_0} \leq n, (s_{2k_0-1}, s_{2k_0}) = Q} E|w_{s_{2k_0-1}s_{2k_0}}|^{|s_{2k_0}} \\
\leq Cd_x^2d_y^2n^{2l-2}.
$$

Therefore, we have established a simple upper bound of $O\{d_xd_yn^{l+1/2}\}$.

In fact, we can improve the aforementioned upper bound to $O(\alpha_n^{-1})$. Note that the process mentioned above did not utilize the condition that both x and y are unit vectors, that is, $\|x\| = \|y\| = 1$. Since term $|x_{i_1}y_{i_1+1}x_{i_2}y_{i_2+2}|$ is involved in (A.23), we can analyze them together with random variables w_{ij}. There are four different cases to consider.

1) Two pairs of indices $i_1, i_{l+1}, i_{l+2}, i_{2l+2}$ in \mathcal{F}_i are equal. Without loss of generality, let us assume that $i_1 = i_{l+1} \neq i_{l+2} = i_{2l+2}$. Then it holds that $|x_{i_1}y_{i_1+1}x_{i_2}y_{i_2+2}| \leq 4^{-1}(x_{i_1}^2 + y_{i_1}^2)(x_{i_2}^2 + y_{i_2}^2)$. Let us consider the bound for

$$
\sum_{\text{S with partition } Q(S)} \prod_{1 \leq s_1, \cdots, s_{2m} \leq n} E|w_{s_2j-1}s_2j|^{|j|},
$$

We assume without loss of generality that $i_1 = s_1$ and $i_{l+2} = s_2$ for this partition. Then the
summation in (A.27) becomes

$$\sum_{S \text{ with partition } Q(S)} x_{s_1}^2 x_{s_2}^2 \prod_{j=1}^{m} E|w_{s_{2j-1} s_{2j}}|^r.$$

By repeating the iterative process (i)–(v) mentioned before, we can bound the summation for fixed s_2 and obtain an alternative upper bound

$$\sum_{s_1=1}^{n} \frac{n}{x_{s_1}^2} E|w_{s_1 s_2}|^r \leq \sum_{s_1=1}^{n} \frac{x_{s_1}^2}{x_{s_1}^2} = 1$$

since x is a unit vector. Thus for this step of the iteration, we obtain 1 instead of α_n^2 in the upper bound. Since the graph is always connected during the iteration process, there exists another vertex b such that $w_{s_2 b}$ is involved in (A.27). For index s_2, we do not delete the edges containing s_2 in the graph during the iterative process (i)–(v). Then after the iteration stops, the final graph Q satisfies properties i) and ii) defined earlier except for vertex s_2. Since there are at least two vertices with degree one in S_Q, we will also reach a contradiction unless the number of vertices in graph Q is exactly one. As a result, we can obtain the upper bound

$$(A.23) \leq C \alpha_n^{2l-4} \sum_{1 \leq s_2, b \leq n, (s_2, b) = Q} \mathbb{E}|w_{s_2 b}|^r \leq C \alpha_n^{2l-2} \quad (A.28)$$

with C some positive constant. Therefore, the improved bound of $O(\alpha_n^{l-1})$ is shown for this case.

2). Indices $i_1, i_{l+1}, i_{l+2}, i_{2l+2}$ in F_i are all distinct. Then by the triangle inequality, we have $|x_i y_{i_{l+1}} x_{i_{l+2}} y_{i_{2l+2}}| \leq 4^{-1}(x_i^2 + x_{i_{l+2}}^2)(y_{i_{l+2}}^2 + y_{i_{2l+2}}^2)$. Thus this case reduces to case 1 above.

3). Indices $i_1, i_{l+1}, i_{l+2}, i_{2l+2}$ in F_i are all equal. Then it holds that $|x_i y_{i_{l+1}} x_{i_{l+2}} y_{i_{2l+2}}| = x_i^2 y_i^2 \leq x_i^2$. We see that there are at most $[(2l+2-2)/2] = l$ distinct vertices in the chain $\prod_{s=1}^{l-1} w_{i_{s+1}}$ and for this case there are at most $l-1$ distinct edges in F_i, where $[\cdot]$ denotes the integer part of a number. Compared to case 1, the maximum number of edges in the graph becomes smaller. Therefore, for this case we have

$$(A.23) \leq C \alpha_n^{2l-4} \sum_{1 \leq s_1, b \leq n, (s_1, b) = Q} \mathbb{E}|w_{s_1 b}|^r \leq C \alpha_n^{2l-2}, \quad (A.29)$$

where C is some positive constant and we have assumed that $i_1 = s_1$ without loss of generality.

4). Three of the indices $i_1, i_{l+1}, i_{l+2}, i_{2l+2}$ in F_i are equal. For such a case, without loss of generality let us write $|x_i y_{i_{l+1}} x_{i_{l+2}} y_{i_{2l+2}}| = |x_i^2 y_i y_{i_{2l+2}}^2|$. Then there are at most
\[[(2l + 2 - 1)/2] = l \text{ distinct vertices in the chain } \prod_{i=1}^{2l-1} u_{i,i+1} \text{ and thus for this case there are at most } l - 1 \text{ distinct edges in } \mathcal{F}_l. \text{ Therefore, this case reduces to case 3 above.} \]

In addition, we can also improve the upper bound to \(O(\min\{d_x\alpha_n^l, d_y\alpha_n^l\}) \). The technical arguments for this refinement are similar to those for the improvement to order \(O(n^{-1}) \) above. As an example, we can bound the components of \(y \) by \(d_y = \|y\|_\infty \), which leads to
\[
|x_{i-1}y_{i+1}x_{i+1}y_{i+2}y_{i+2}| \leq d_y^2(x_{i-1}^2 + x_{i+1}^2)/2.
\]
Then the analysis becomes similar to that for case 3 above. The only difference is that the length of graph \(\mathcal{F}_l \) is at most \(l \) instead of \(l - 1 \). Thus similar to (A.29), for this case we have
\[
(A.23) \leq C d_y^2 \alpha_n^{2l-2} \sum_{1 \leq s_2, b \leq n, (s_2, b) = Q} \mathbb{E} x_{s_1}^2 |w_{s_1b}|^r \leq C d_y^2 \alpha_n^{2l}, \tag{A.30}
\]
where \(C \) is some positive constant and we have assumed that \(i_1 = s_1 \) or \(x_{i+1} = s_1 \) without loss of generality. The other one can then be used to remove a factor of \(\alpha_n \). Thus we can obtain the claimed upper bound \(O(\min\{d_x\alpha_n^l, d_y\alpha_n^l\}) \). Therefore, combining the two aforementioned improved bounds yields the desired upper bound of \(O_p(\min\{d_x\alpha_n^l, d_y\alpha_n^l\}) \).

We finally return to the general case of possibly \(w_{ii} \neq 0 \). Let us rewrite \(W \) as \(W = W_0 + W_1 \) with \(W_1 = \text{diag}(w_{11}, \ldots, w_{nn}) \). Then it holds that
\[
x^T W_1 y - \mathbb{E} x^T W_1 y = x^T (W_0 + W_1)^l y - \mathbb{E} x^T (W_0 + W_1)^l y.
\]
Recall the classical inequality
\[
\mathbb{E}(X_1 + \cdots + X_m)^2 \leq m(\mathbb{E}X_1^2 + \cdots + \mathbb{E}X_n^2), \tag{A.31}
\]
where \(X_1, \ldots, X_m \) are \(m \) random variables with finite second moments. Define a function
\[
f(h) = \prod_{i=1}^{l} W_{h_i}, \tag{A.32}
\]
where the vector \(h = (h_1, \ldots, h_l) \) with \(h_i = 0 \) or \(1 \). Then we have
\[
\mathbb{E} \left[x^T (W_0 + W_1)^l y - \mathbb{E} x^T (W_0 + W_1)^l y \right]^2 = \mathbb{E} \left\{ \sum_h x^T (f(h) - E f(h)) y \right\}^2 \leq 2^l \sum_h \mathbb{E} \left\{ x^T (f(h) - E f(h)) y \right\}^2. \tag{A.33}
\]
This shows that we need only to consider terms of form \(\mathbb{E} \{x^T (f(h) - E f(h)) y\}^2 \), each of which is a polynomial of \(W_0 \) and \(W_1 \).

As an example, let us analyze the term \(\mathbb{E}(x^T W_1 W_0^{l-1} y - \mathbb{E} x^T W_1 W_0^{l-1} y)^2 \). Similar to
(A.18), it can be shown that
\[
E(x^T W_1 W_0^{l-1} y - Ex^T W_1 W_0^{l-1} y)^2 = \\
= \sum_{1 \leq i_1, \ldots, i_l, j_1, \ldots, j_l \leq n, i_s \neq s+1, i_s \neq s+1, 1 \leq s \leq l} E \left[(x_{i_1} w_{i_1 i_2} \cdots w_{i_{l-1} i_l} y_{j_l} - Ex_{i_1} w_{i_1 i_2} \cdots w_{i_{l-1} i_l} y_{j_l}) \right. \\
\left. \times (x_{j_1} w_{j_1 j_2} \cdots w_{j_{l-1} j_l} y_{j_l} - Ex_{j_1} w_{j_1 j_2} \cdots w_{j_{l-1} j_l} y_{j_l}) \right]. \tag{A.34}
\]

Repeating the arguments from (A.18)–(A.22), we can obtain
\[
(A.34) \leq 2 \sum_{F_i} E \left| x_{i_1} w_{i_1 i_2} \cdots w_{i_{l-1} i_l} y_{i_l} x_{i_{l+1}} w_{i_{l+1} i_{l+2}} \cdots w_{i_{2l-1} i_{2l}} y_{i_{2l}} \right| \\
\leq 2 \sum_{F_i} E \left| x_{i_1} w_{i_1 i_2} \cdots w_{i_{l-1} i_l} y_{i_l} x_{i_{l+1}} w_{i_{l+1} i_{l+2}} \cdots w_{i_{2l-1} i_{2l}} y_{i_{2l}} \right|.
\]

Comparing to (A.22), we can see that by replacing the diagonal entries with 1 in the expectations, the number of edges in this graph is no more than the original one in (A.22). Thus repeating all the steps before (A.34), we can deduce the bound
\[
E(x^T W_1 W_0^{l-1} y - Ex^T W_1 W_0^{l-1} y)^2 = O(min\{\alpha_n^{2(l-1)}, d_x^2 \alpha_n^2, d_y^2 \alpha_n^2\}).
\]

For the other expectations \(E[x^T (f(h) - Ef(h)) y]^2 \), by the same reason that \(W_1 \) is a diagonal matrix we can obtain a similar expression as (A.34) with the number of edges no larger than the original one for \(E(x^T W_0^l y - Ex^T W_0^l y)^2 \). Thus all the technical arguments above can be applied to \(E[x^T (f(h) - Ef(h)) y]^2 \) so we can have the same order for the upper bound as before. This shows that all the previous arguments can indeed be extended to the general case of possibly \(w_{ii} \neq 0 \), which concludes the proof of Lemma 4.

B.6 Proof of Lemma 5

The main idea of the proof is similar to that for the proof of Lemma 4 in Section B.5. We first consider the case when all the diagonal entries of \(W = (w_{ij})_{1 \leq i, j \leq n} \) are zero, that is, \(w_{ii} = 0 \). Then we can derive a similar expression as (A.18)
\[
Ex^T W^l y = \sum_{1 \leq i, \ldots, i_{l+1} \leq n, i_s \neq s+1, 1 \leq s \leq l} E (x_{i_1} w_{i_1 i_2} \cdots w_{i_{l+1} i_{l+1}} y_{i_{l+1}}). \tag{A.35}
\]
By the definition of graph G_i in the proof of Lemma 4, we can obtain a similar expression as \((A.22)\)

$$| (A.35) | \leq \sum_{G_i} \mathbb{E} \left| x_{i_1} w_{i_1 i_2} w_{i_2 i_3} \cdots \right| \times w_{i_{l+1} i_{l+2}} y_{i_{l+1}}.$$

(A.36)

Using similar arguments for bounding the order of the summation through the iterative process as for case 3 in the proof of Lemma 4 and noticing that $|x_{i_1} y_{i_{l+1}}| \leq 2^{-1}(x_{i_1}^2 + y_{i_{l+1}}^2)$, we can deduce the desired bound

$$\mathbb{E} x^T W^l y = O(\alpha_n^{l-1}),$$

(A.37)

where the diagonal entries of W have been assumed to be zero.

For the general case of W with possibly nonzero diagonal entries, we can apply the similar expansion as in the proof of Lemma 4 to get

$$\mathbb{E} x^T (W_0 + W_1)^l y = \sum_h \mathbb{E} x^T f(h) y,$$

(A.38)

where $W = W_0 + W_1$ with $W_1 = \text{diag}(w_{ii}, \cdots, w_{nn})$, and vector h and function $f(h)$ are as defined in (A.32). Since by assumption W_1 is a diagonal matrix with bounded entries, an application of similar arguments as in the proof of Lemma 4 gives

$$\mathbb{E} x^T f(h) y = O(\alpha_n^{l-1}).$$

To see this, with similar arguments as below (A.33) let us analyze the term $\mathbb{E} x^T W_1 W_0^{l-1} y$ as an example. Similar to (A.35), it holds that

$$\mathbb{E} x^T W_1 W_0^{l-1} y = \sum_{1 \leq i_1, \cdots, i_{l-1} \leq n \atop i_s \neq i_{k+1}, 1 \leq s \leq l-1} \mathbb{E} \left(x_{i_1} w_{i_{i_1} i_{i_2}} w_{i_{i_2} i_{i_3}} \cdots w_{i_{l-1} i_{i_l}} y_{i_l} \right).$$

(A.39)

By the assumption of $\max_{1 \leq i \leq n} |w_{ii}| \leq 1$, we can derive a similar bound as (A.36)

$$| (A.39) | \leq \sum_{G_i} \mathbb{E} \left| x_{i_1} w_{i_{i_1} i_{i_2}} w_{i_{i_2} i_{i_3}} \cdots \right| \times w_{i_{l-1} i_{l}} y_{i_l}.$$

(A.40)

Since the number of edges is no more than that in (A.36), we can obtain the same bound

$$\mathbb{E} x^T W_1 W_0^{l-1} y = O(\alpha_n^{l-1}).$$

17
For the other terms in (A.38), by the same reason that W_1 is a diagonal matrix with bounded entries we can derive similar expression as (A.40) with the number of edges no more than that in (A.36). Therefore, since l is a bounded constant we can show that $\mathbb{E}x^TW_1y = O(\alpha_n^{-1})$ for the general case of W with possibly nonzero diagonal entries. This completes the proof of Lemma 5.

B.7 Lemma 6 and its proof

Lemma 6. The random matrix W given in (1) satisfies that for any positive constant L, there exist some positive constants C_L and σ such that

\[
\mathbb{P}\left\{ \|W\| \geq C_L (\log n)^{1/2} \alpha_n \right\} \leq n^{-L},
\]

where $\| \cdot \|$ denotes the matrix spectral norm and $\alpha_n = \|\mathbb{E}(W - \mathbb{E}W)^2\|^{1/2}$.

Proof. The conclusion of Lemma 6 follows directly from Theorem 6.2 of Tropp (2012).

C Further technical details on when asymptotic normality holds for Theorem 5

We now consider the joint distribution of the three random variables specified in expression (111) in the proof of Theorem 5 in Section A.6. To establish the joint asymptotic normality under some regularity conditions, it suffices to show that the random vector $(\text{tr}[(W - \mathbb{E}W)J_{x,y,k,t}] - (W^2 - \mathbb{E}W^2)L_{x,y,k,t}, \text{tr}((W - \mathbb{E}W)v_kv_k^T), \text{tr}((W - \mathbb{E}W)Q_{x,y,k,t}))$ tends to some multivariate normal distribution as matrix size n increases, where we consider the de-meaned version of this random vector for simplicity. Consequently, we need to show that for any constants c_1, c_2, and c_3 such that $c_1^2 + c_2^2 + c_3^2 = 1$, the linear combination

\[
c_1 \text{tr}[(W - \mathbb{E}W)J_{x,y,k,t}] - (W^2 - \mathbb{E}W^2)L_{x,y,k,t} + c_2 \text{tr}((W - \mathbb{E}W)v_kv_k^T) + c_3 \text{tr}((W - \mathbb{E}W)Q_{x,y,k,t}) \quad (A.42)
\]

converges to a normal distribution asymptotically. Define $S = v_kv_k^T$ and let J, L, and Q be the rescaled versions of $J_{x,y,k,t}$, $L_{x,y,k,t}$, and $Q_{x,y,k,t}$, respectively, such that the asymptotic variance of each of the above three terms is equal to one. Then it remains to analyze the asymptotic behavior of the random variable

\[
\sum_{1 \leq k,i \leq n, k \leq i} w_{ki} \left\{ c_1 \left[\sum_{1 \leq l<k \leq n} w_{kl}L_{kl} + \sum_{1 \leq l<i \leq n} w_{kl}L_{il} + J_{ki} + (1 - \delta_{ki})(L_{ki} + L_{ik})\mathbb{E}w_{ii} \right] \\
+ (1 - \delta_{ki})(c_2S_{ki} + c_3Q_{ki}) \right\} + c_1 \sum_{1 \leq k,i \leq n, k \leq i} (w_{ki}^2 - \sigma_{ki}^2)(L_{kk} + L_{ii}) \quad (A.43)
\]
where A_{ij} indicates the (i, j)th entry of a matrix A and $\delta_{ki} = 1$ when $k = i$ and 0 otherwise.

Using similar arguments as in (A.7), we can show that (A.43) is in fact a sum of martingale differences with respect to the σ-algebra $\mathcal{F}_{k+2-1(i-1)-1}$. The conditional variance of the random variable given in (A.43) can be calculated as

$$
\sum_{1 \leq k,i \leq n} \sigma_{ki}^2 \left\{ c_1 \left[\sum_{1 \leq l < k \leq n} w_{il}L_{kl} + \sum_{1 \leq l < i \leq n} w_{ki}L_{il} + J_{ki} + (1 - \delta_{ki})(L_{ki} + L_{ik})\mathbb{E}w_{ii} \right] + (1 - \delta_{ki})(c_2S_{ki} + c_3Q_{ki}) \right\}^2 + \sum_{1 \leq k,i \leq n} \kappa_{ki}(L_{kk} + L_{ii})^2
$$

$$
+ 2c_1 \sum_{1 \leq k,i \leq n, k < i} \gamma_{ki}(L_{kk} + L_{ii}) \left\{ c_1 \left[\sum_{1 \leq l < k \leq n} w_{il}L_{kl} + \sum_{1 \leq l < i \leq n} w_{ki}L_{il} + J_{ki} \right] + (1 - \delta_{ki})(c_2S_{ki} + c_3Q_{ki}) \right\}
$$

Moreover, the expectation of the random variable given in (A.44) can be shown to take the form

$$
c_1^2 \sum_{1 \leq k,i \leq n, k < i} \left\{ \sum_{1 \leq l < k \leq n} \sigma_{kl}^2 \sigma_{ll}^2 + \sum_{1 \leq l < i \leq n} \sigma_{ki}^2 \sigma_{ii}^2 + \sum_{1 \leq l < i \leq n} \sigma_{ki}^2 \sigma_{ii}^2 + \sum_{1 \leq l < i \leq n} \sigma_{kk}^2 \sigma_{ii}^2 \right\}
$$

$$
+ \kappa_{ki}(L_{kk} + L_{ii})^2 \} + c_2^2 \sum_{1 \leq k,i \leq n, k < i} \sigma_{ki}^2 \sigma_{ii}^2 + c_3^2 \sum_{1 \leq k,i \leq n, k < i} \sigma_{ki}^2 \sigma_{ii}^2
$$

$$
+ 2c_1c_2 \sum_{1 \leq k,i \leq n, k < i} \gamma_{ki}S_{ki}(L_{kk} + L_{ii}) + 2c_1c_3 \sum_{1 \leq k,i \leq n, k < i} \gamma_{ki}Q_{ki}(L_{kk} + L_{ii})
$$

$$
+ 2c_2c_3 \sum_{1 \leq k,i \leq n, k < i} \sigma_{ii}^2 S_{ki}Q_{ki} + 2c_1^2 \sum_{1 \leq k,i \leq n, k < i} \kappa_{ki}(L_{kk} + L_{ii}) (L_{ki} + L_{ik}) \mathbb{E}w_{ii} \right\}. \quad (A.45)
$$

Let us consider the following three regularity conditions.

i) Assume that the six individual summation terms in (A.45) tend to some constants asymptotically. Then (A.45) tends to some constant C asymptotically. Without loss of generality, we assume that $C \neq 0$; otherwise (A.43) tends to zero in probability.

ii) Assume that $SD(A.44) \ll (A.45)$, where SD stands for the standard deviation of a random variable.

iii) Assume that

$$
\sum_{1 \leq k,i \leq n, k < i} \kappa_{ki} \left\{ \mathbb{E} \left[\sum_{1 \leq l < k \leq n} w_{il}L_{kl} + \sum_{1 \leq l < i \leq n} w_{ki}L_{il} + J_{ki} + (1 - \delta_{ki})(L_{ki} + L_{ik})\mathbb{E}w_{ii} \right] \right\}^4
$$

$$
+ (1 - \delta_{ki})(S_{kk}^4 + Q_{kk}^4) + \sum_{1 \leq k,i \leq n, k < i} \mathbb{E}(w_{ki}^2 - \sigma_{ki}^2)^4(L_{kk} + L_{ii})^4 \ll 1. \quad (A.46)
$$

We can see that conditions i) and ii) entail condition a) in the proof of Lemma 2 in Section
B.2 below (A.9), while condition iii) entails condition b). Therefore, (A.43) converges to a normal distribution asymptotically.