Application of GIS real-time monitoring system in the ecological impact of marine tourism industry development and marine resource protection

Xinqi Ding¹ · Fei Li²,³,⁴

Received: 11 March 2021 / Accepted: 29 April 2021 / Published online: 15 May 2021
© Saudi Society for Geosciences 2021

Abstract
With the development of society and the continuous improvement of people’s living standards, people are more eager to explore the mysterious ocean zone, which also makes the focus of tourism development in the world gradually shift to marine tourism. This phenomenon undoubtedly promotes people’s economic development, but at the same time, because of human’s too frequent activities and neglect of the protection of the marine environment, marine pollution has become more and more serious, especially the pollution caused by oil spill from ships. This situation not only destroys the ecological environment in the ocean, leads to the reduction of marine biological species, and affects the ornamental value of the marine environment but also has a great impact on the future development prospects of marine tourism. During the research of GIS marine geological survey information model, we should start from the overview of information model, unified modeling language and information modeling, research of marine geological survey information model, and analysis of system overall design to better complete the development of resources. If marine tourism wants to get a long-term development, it cannot be separated from marine tourism resources. Therefore, only by mobilizing them to strengthen the implementation of policies on marine resources, countries should increase support for the prevention and control technology organizations of marine pollution, so as to maintain the marine ecological environment and so as to realize the long-term development of marine tourism.

Keywords GIS · Marine tourism · Marine resources · Industrial development

Introduction
According to the current scientific statistics, the ocean covers 71% of the total area of the earth. It can be seen that the ocean has an irreplaceable role in people’s current and future survival and development (Mohamed et al. 2020). According to research by scientists, early animals lived in the ocean, including human ancestors. Later, after a step-by-step process, elimination, and mutation, some organisms can survive on land, and terrestrial animals can survive evolution and natural adaptation. The principle of survival has evolved into today’s human beings and advanced animals. Both human society and nature continue under the tremendous influence of the ocean. In the early stage of tourism development, marine tourism occupied an important place in the tourism industry. With the continuous advancement of people’s technology, people’s society is also undergoing rapid development (Ljungqvist
Tourism, a new type of tourism industry, is gradually becoming popular. However, people neglected to protect the environment in the process of economic development, which led to the pollution and destruction of marine resources. The pollution of marine tourist species also led to the extinction of some species, especially the problem of marine oil spill pollution. This directly leads to the overall aesthetics of the marine tourism industry and hinders the further development of the marine tourism industry. At present, with regard to the damage to marine life and marine resources caused by the development of the marine tourism industry by humans, in accordance with the principle of “who develops, protects, benefits and compensates,” it is required that marine tourism construction projects cause damage to marine biological resources (An 2000). The impact of the current situation is investigated and evaluated. The data basis of the evaluation is the measurement of the density of marine biological resources. Based on the survey data, the damage to the marine environment in the process of people’s social and economic value creation is evaluated, and the relevant aspects of compensation are implemented. Finally, the later protection and restoration of the sea areas that have caused damage to the ecological balance and the environment due to human activities are carried out (Maryam and Ali 2018). Although people have implemented a series of protection methods and measures in the protection of sea areas, there are still some unsatisfactory places in reality. In the process of data survey, because the relevant data survey methods used by different units, the location of the survey, and the start time of the survey are all different, the combined effect of these objective differences leads to the summary of these results. The value will have a large deviation from the real result. Because the difference between the data obtained by the survey and the actual results is huge, the valuation and economic compensation related to the destruction of resources will be greatly affected, making the calculated values lose their representativeness. At the same time, this situation has also greatly hindered the implementation of the estimation and compensation policies, for the relevant value of natural ecological resources after the destruction of natural ecological resources (Luan et al. 2004). In order to solve this problem, this paper will use this as the research basis, taking the natural ocean area of a certain province of our country as the experimental object, and the researchers will use the spatial interpolation analysis and spatial analysis functions of GIS as the basic theoretical direction of the research. We should consider the relevant review standards proposed by experts regarding marine biological resource damage assessment data. It is hoped that this technical method can provide corresponding data references for the protection of the marine environment and compensation for marine ecological damage (Chen et al. 2020).

Definition of geographic information system

Geographic information system refers to a system technology based on computer hardware (Lv et al. 2017). Through this technology, people can collect, store, manage, calculate, and research the geographical distribution data that people expect from the earth’s surface space. Because this system can modify the structure of the data obtained, the composition of related systems, the functions of software applications, etc., these related application functions are obviously more suitable for marine GIS than the previous calculation statistics. Therefore, people will use this system technology, Chen Wei Marine Geographic Information System.

Overview of the application of marine geographic information system

Marine functional zoning

Marine functional zoning: The implementation of this work is for people to better protect the relative stability of the marine ecosystem, so as to provide relevant scientific guidance and comprehensive management of the ocean and the bottom of the ocean supported by some road areas (Baldocchi 2003). The basic meaning of marine functional zoning is divided according to the respective natural attributes of the sea area in which it belongs, and it mainly includes the following parts: the geographic location of the marine area, the geographic conditions of the location, and the nature of the marine area under investigation, the amount of resources and the relevant environment around the sea.

Development and management of marine resources

The task of marine geographic information system for the management and development of marine resources is mainly used for the establishment of corresponding resource databases in the ocean. Relevant aspects include relevant information about marine nature reserves, positive maintenance information for marine life, relevant information about fisheries in the ocean, information on mineral resources contained in the ocean, information on energy hiding and development in the ocean, related aspects of ocean tidal flats, information about the sea area, the resource information of the islands surrounding the sea area, and the relevant resource information about the sea area’s nature and geographic location (Lv et al. 2012). At present, the marine resource information database in the marine geographic information system is mainly used by people in the ocean fishery and related fields such as gasoline exploration in the ocean and has received a relatively good response in the use of these fields.
Macro-management of marine economic development

Since the “Twelfth Five-Year Plan,” my country has attached great importance to the development of the marine economy, so my country must strengthen its capabilities in marine development, control, and comprehensive management (Biskop et al. 2016). With the development of GIS, it has gradually demonstrated its advantages in the macro-management of marine economic development. As early as 2011, the construction of the provincial marine economic operation monitoring and evaluation system was listed as a key support project by the Ministry of Finance and the State Oceanic Administration for the first time (Lv et al. 2019). The marine economy GIS display system is one of its construction contents.

Marine supervision and law enforcement management

In order to enable marine surveillance law enforcement officers to carry out law enforcement work in a timely and accurate manner, marine geographic information systems have played a very important role in advanced law enforcement information systems, especially in developed countries (Mimi and Assi 2009). The application of marine geographic information systems has achieved obvious results. Effect. For example, in the field of satellite remote sensing, the setting of buoys on the sea, the cruise mode of aircraft, and the dynamic monitoring of the implementation of ships and other technical means, real-time monitoring of marine environmental pollution issues such as marine oil spills can be carried out. The marine geographic information system will capture the trajectory of each ship passing by on the sea; it will also check and adjust the oil spill thickness and range on the seashore in real time.

Monitoring, evaluation, and forecast of marine environment

With the gradual development of my country’s marine industry, marine tourism has become an important part of maintaining economic construction and development. Therefore, the task of protecting the marine environment has become more urgent. At present, people mainly carry out detailed comprehensive management methods in the management of marine ecological environment and biodiversity. However, people’s understanding of the ocean is really limited, and the geographical environment of the ocean is still relatively special. Therefore, the defects of people’s past protection and detection methods for marine resources are gradually revealed. Because of the trivial content of the work related to marine resources supervision, the variety of work, and the inability to promptly indicate the stations that can be continuously monitored, a large amount of data is not fully analyzed and utilized, which leads to data waste (Bonan 2008). The use of advanced GIS technology can establish a marine environment information database and a marine disaster information database, monitor catastrophic sea conditions, evaluate the quality of the marine environment, and track and forecast relevant changes in sea conditions. Marine geographic information system can provide descriptions of relevant operating methods and data required by researchers for marine environmental monitoring. Marine geographic information systems can also perform scientific model calculations to detect and correlate the quality of the marine environment. Provide more scientific and effective methods for forecasting marine disasters (Mu et al. 2006). With the improvement of technical level, people can also make more specific, detailed, timely, and accurate analysis and grasp of the impact of various technical means on people on the marine environment according to the various technical means that they have currently mastered, so that people can analyze and grasp the marine resources and environment. The various scientific speculations have more practical significance.

Related research on pollution damage control of marine tourism resources

The coastal areas of my country in the world have the characteristics of dense population and more developed cities than inland cities, and so. At present, the most developed tourist cities and related industries in the world are mainly concentrated in the coastal areas. Coastal cities compete against the sea. Dying on their own unique marine tourism resources, coastal cities need less investment when developing tourism, and the benefits of later economic benefits can be great, which can create huge benefits and promote social and economic development. Looking back at China’s coastal areas, China’s coastline is long and the related resources of marine tourism are also very rich. Therefore, marine tourism can be an important target for the development of new projects in China’s tourism industry in the future. Through the unique conditions of China’s marine resources, various tourism projects are provided to domestic and foreign tourists, such as coastal seaside sightseeing and the promotion of some beach sports (such as beach volleyball) (Obojes et al. 2015), which attract tourists’ attention and create economic value. However, China’s marine resources are currently facing great challenges in environmental protection. Frequent human activities and human inattention to the protection of natural resources have led to the destruction of marine resources and various natural disasters that have occurred in recent years. It has also caused great pollution to the environment of the sea area. These phenomena have caused a large area of pollution in the sea and the shrinking of beaches. This also directly affects the viewability of marine resources and hinders the development of marine tourism. Therefore, facing the serious problem of marine pollution in the current environment, experts and scholars...
have put forward policies and solutions to control and prevent pollution of marine resources from different perspectives (Burba and Verma 2005). Among the many ideas put forward by experts, we can summarize them mainly. It is divided into the following categories: a systematic evaluation of marine protection from the perspective of marine environment and a systematic evaluation of marine protection from the perspective of building marine engineering.

Materials and methods

Data sources

The data comes from a large-scale survey of organisms in a bay area in 2017 and 2018 and the spring and autumn of 2019.

Sub-sea area division method

The first thing we need to do is to use the current system data collected on the management system of a certain province’s marine functional zoning, as well as the future focus of the development of marine ecological resources in a certain province’s coastal city (Peng et al. 2015). On-site investigations were conducted on the marine resources and environment in the coastal areas of the province and the gulf, which summarized the detailed information provided by relevant materials and gained a clearer understanding of the current state of the marine ecological environment. Finally, through the summary of the data, we can comprehensively consider the relevant attributes of the marine resources and environment as follows:

(1) The marine area is divided functionally and divided according to its different functional areas until it is divided into the smallest division unit.

(2) Compare the divided areas with each other, and compare those areas with similar ecological functions in the same sub-sea area as the island.

(3) Count the areas that a bay area will focus on development in the future into the index of sea area division. When sub-sea areas are divided, each key development area is not divided, so that the sub-sea area division is forward-looking. On the basis of the above principles, the most preliminary division of marine resources, environment, and sea areas in a certain province should be carried out (Cao et al. 2020). The results of the division should be combined with the opinions of experts, and then the results obtained should be combined with the opinions of experts. Related adjustments. After two rounds of expert consultation, the final sub-sea area division can be determined.

Research methods

Before carrying out the specific method research, the data obtained should be standardized. The standardization of data can be divided into the following steps: First, refer to the standards given by experts after assessment, and then combine relevant data to functionally divide the marine resources and environment of a province; second, using the data obtained under these two survey methods as the standard, scientifically calculated and summarized, the relative density level of the biological resources in the marine resources of each sub-sea area can be obtained.

Model and calculation method of marine tourism ecological footprint

Model and calculation method of ecological footprint

Scientists have proposed and perfected the concept of ecological footprint. This method is also called by experts and scholars, “It can provide any known population currently existing on the earth with related resources that they need to survive, as well as the related resources they produce. The area of land required for biological production of related wastes (including land area on land and water area on ocean)” (Dinpashoh and Babamiri 2020). Scientific researchers also use this foundation as a prerequisite to further upgrade it to an ecological footprint model.” Scientific researchers will analyze and explain the future development prospects and developability of the ecological footprint model from two different perspectives, ecology and economy. The ecological footprint model is based on the existing area of the land and is a measure of data quantification of the observation process and other information. Because it has the advantages of simpler and more convenient calculation methods, clearer and clearer statistical data, and more comparability of marine resources for observation and comparison, once it has been implemented, the ecological footprint model has been quickly received from society and even is recognized by relevant international organizations, which also makes the ecological footprint model the latest international measurement method for the sustainable development of marine resources in the future environment. To put it more simply, the ecological footprint model is mainly based on people’s demand level and supply level and is a computational study of the relationship between the amount of marine ecological environment that people require in the future and the self-regulation ability of the ecosystem in the natural environment (Shi et al. 2018).

In recent years, because the ecological footprint model has a more comprehensive scientific theoretical foundation, knowledge concepts, and organizational framework than other models, this method has been widely used in people’s daily lives. Compared with the heuristic analysis method, the
ecological footprint analysis method pays more attention to the ecological value of various ecosystems on the earth’s surface and combines the importance of this ecological value theory with the use of land area in society and the various aspects of social economic construction. Various forms of metabolic mechanisms have been combined to further analyze the impact of the marine resources and environment on the sustainable development of society. When researchers calculate the ecological footprint indicators, the various computing resources needed to participate in the calculation process are estimated in the marine resource environment of the cultivated fields, pastures, grassland vegetation, construction land, and fossil energy currently being developed by people (Falge et al. 2001). Bioquantity is the type of area that can be produced by organisms, and in further development research in the future, it will automatically and continuously adjust to form a relatively stable equilibrium factor.

The various ecological productive land factors used in this paper are shown in Table 1.

The specific calculation formula is as follows:

\[
EF = N \times ef = N \times ri \times \sum_{j=1}^{n} (a_{j}/Y_{j})
\]

\[
= N \times ri \times \sum_{j=1}^{n} (P_{j} + I_{j} - E_{j}) / (Y_{j} \times N)
\]

The basic horizontal type and calculation method of ecological footprint

In consideration of caution, the area of biodiversity protection should be deducted (Table 2). The formula is:

\[
Ec = N \times (ec) = N \times \sum_{j=1}^{n} (a_{j} \times ri \times f_{j})
\]

Tourism ecological footprint model and method

Tourism consumption mainly includes six links of “food, housing, transportation, travel, shopping, and entertainment.” Although they are not related to each other, these six links have a high degree of time concentration and spatiality when they occur (Shi et al. 2020). The phenomenon of mutual dispersion. If we take consumer tourism as our basic research point of view (Tsai 2016), for those tourism consumption that is not very necessary, in addition to the material consumption, other related consumption is mainly based on the consumer’s related spiritual needs. This demand form is difficult to measure in the form of numbers. After comprehensively sorting out the methods mentioned above, the tourist ecological footprint model can be formulated as:

\[
TEF = \sum_{i} Ni \times Ci \times Pr_{i}
\]

(3)

Based on some characteristics of island tourism, this paper has made necessary improvements to the existing tourism ecological footprint model.

Results

Calculation and analysis of marine tourism ecological footprint

The calculation model of the ecological footprint of marine tourism transportation:

\[
TEF_{transport} = \sum_{i} (S_{i} \times R_{i}) + \sum_{j} (N_{j} \times C_{j} \times D_{j} \times f_{j} / r)
\]

(4)

Table 3 shows the calculation of the ecological footprint of the area where marine tourism transportation facilities are built.

Calculation model of ecological footprint of tourist accommodation:

\[
TEF_{accomo} = \sum_{i} (S_{i} \times Ni) + \sum (365 \times Ni \times K_{i} \times C_{i} / r)
\]

(5)

Calculation model of ecological footprint of tourist catering:

\[
TEF_{food} = \sum S + \sum (N_{i} \times D_{i} \times C_{i} / P_{i}) + \sum (N_{i} \times D_{i} \times E_{j} / n)
\]

(6)

The vast majority of marine dining facilities are attached to accommodation facilities, and other types of social restaurant facilities account for only a small part. The results are obtained according to Fig. 1, Tables 4, 5, and related data (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10).
Tourism shopping ecological footprint model:

$$TEF_{shopping} = \sum S_j + \sum \left(R_j / p_j / g_j \right)$$

(7)

Accordingly, Table 6 can be obtained.

Tourism and entertainment ecological footprint:

$$TEF_{visiting} = \sum P_i \cdot \sum H_i + \sum V_i$$

(8)

Marine residents only consider biological resource consumption and energy consumption according to the formula:

$$EF = N \times ef = N \times ri \times \sum_{i=1}^{n} aai = N \times ri \times \sum_{i=1}^{n} Ci / Yi$$

$$= N \times ri \times \sum_{i=1}^{n} (Pi + Hi-Ei) / (Yi / N)$$

(9)

Calculation of marine ecological carrying capacity:

$$Ec = N \times (ec) = N \times \sum_{i=1}^{c} (a_{pi} \times r_{ji} \times y_j)$$

(10)

It must be explained that the sea area will have a polluting effect on marine waste (sewage), and it has a great effect (Table 7).

Sub-sea area division, spatial interpolation, and spatial analysis

After consulting experts’ opinions, a certain bay area was divided into 9 sub-sea areas.

Characteristic analysis of GIS-based data standardization results

The change trends of the average density of 5 marine biological resources in the 9 sub-areas under the two scales are generally the same. From the spatial interpolation analysis, it can be seen that the distribution of marine biological resources is uneven; that is, the density values displayed in different spatial ranges have obvious differences.

Discussion

Definition and classification of pollution damage to marine tourism resources

The current academic research on marine resource-related pollution damage is mainly focused on the animals and plants in the ocean, the geological environment for exploration in the ocean, and related aquaculture. However, the preventive measures for pollution damage to marine tourism resources are in the initial stage of construction, and a complete knowledge
concept system has not yet been obtained (Ganjurjav et al. 2016). Therefore, at present, scientific researchers have not been able to have a clear and accurate stipulation on the scope of pollution damage to marine tourism resources. On this basis, the author will stipulate the relevant knowledge and concepts of marine tourism resource pollution damage from the perspective of microeconomics. From the perspective of tourism industry participants, marine tourism pollution is mainly caused by enterprises and tourists engaged in the development of marine tourism resources. Some operations that violate science have caused damage to the ornamental nature of marine resources and the environment, making them lose their original attraction to tourists that has directly affected the development of marine tourism resources (Wu et al. 2019). From the perspective of tourism resources, the destruction of marine resources and the environment caused by marine tourism refers to the damage to marine resources. In the process of related development and utilization, because the enterprise has adopted some unreasonable operating methods, the marine tourism resources have lost their original economic functions.

Control measures for pollution damage of marine tourism resources

The rise of marine tourism has brought huge development opportunities and important ways for the marine industry to grow, but at the same time, due to problems in the planning and operation of marine tourism, marine tourism resources and the environment are destroyed, which affects the sustainability of marine tourism. Development. Although

Table 4 Annual per capita food consumption, energy consumption, and catering ecological footprint in the ocean

Food farming	Annual per capita consumption (consumption kg)	Ecological footprint of tourism and catering per capita (10^{-4}hm²/person)	Land type
Food	186.75	1.8646	Arable land
Practical vegetable oil	6.73	0.0993	Arable land
Fresh vegetables	105.46	0.1605	Arable land
Liquor	4.08	2.0324	Arable land
Fruit	12.31	0.0964	Woodland
Meat	30.36	11.2403	Grass
Poultry	12.95	0.7764	Grass
Eggs	3.28	0.2247	Grass
Aquatic products	15.74	14.8701	Waters
Subtotal	31.3646	31.3646	
Standard coal	351.88	16694	Fossil energy land
Subtotal	3.6694	3.6694	
Total	35.0340		
biotechnology, marine engineering, and marine chemistry have made great research results in the prevention and control of marine resource pollution damage, the huge harm caused by marine tourism resource pollution damage has not been recognized in marine tourism research. No effective control measures and suggestions have been put forward (Gu et al. 2008). The author puts forward the following suggestions from the perspectives of tourism enterprises, tourists, government and planning departments, communities, etc., for the protection of marine tourism resources as a reference.

Regarding tourism companies

At present, the enterprises involved in the development of marine tourism are no longer just the old-fashioned enterprises that are similar to the traditional travel clubs, scenic tours, and the provision of accommodation and hotels. At present, the newly developed marine tourism projects have added some unique customized yachts, speedboats, and sightseeing cruises on the basis of previous projects, as well as recreational tourism projects such as sea fishing that are beloved by fishing enthusiasts (Xiao et al. 2020). While these tourism companies are operating and developing these new marine tourism projects, many tourists will also be attracted by the slogans created by tourism companies and the beautiful environment provided, and a large number of tourists enter the scenic spot.

While these tourists create economic benefits for enterprises, they will also generate a lot of garbage and sewage, causing environmental pollution of marine resources. If relevant tourism companies do not take any measures to discharge the garbage and sewage generated by these tourists directly into the ocean, it will cause a large area of seawater pollution, which will lead to the destruction of the material balance in the seawater and cause a large number of deaths of marine life. This phenomenon will destroy the ornamental nature of the ocean, thereby affecting the development of marine tourism and creating a vicious cycle. Moreover, for some newly built enterprises, it is also possible that their construction facilities do not meet the relevant regulations for use, causing the destruction of marine tourism resources (Gu et al. 2005). Therefore, marine tourism enterprises should publicize the awareness of protecting marine resources and the environment to their employees from the beginning of the construction of the enterprise. At the same time, they should also protect marine resources as the company’s corporate culture for development and strengthen the researcher’s achievements in the protection of marine resources. Protection of interests should not be blindly pursued. From a more long-term perspective, scientific restrictions on the number of tourists entering the scenic area should be implemented. The equipment and facilities in the scenic area should be reasonably arranged, and the management of tourists should fundamentally reduce the

![Fig. 2 Summary of marine tourism catering ecological footprint](image)

Project	Built site	Arable land	Woodland	Grass	Waters	Fossil energy land	Total
Ecological footprint	5	339.61	7.87	1000.11	1214.89	299.79	2862.27
Percentage	0.17	11.84	0.27	34.88	42.37	10.46	

RETRACTED ARTICLE
ocean. The generation of garbage. Finally, some garbage and sewage generated by tourists are discharged for sewage disposal. These garbage and sewage must be treated to meet the sewage discharge standards stipulated by relevant laws and regulations for discharge, so as to minimize and prevent the pollution of marine resources and the environment.

Regarding tourists

Although with the continuous development of the economy, the average quality of people has been generally improved. However, it must be admitted that there are still many tourists in scenic spots all over the world who have uncivilized behaviors in the process of traveling. People throw away rubbish at will and discard the generated sewage at will. In recent years, marine tourism becomes an important reason for the destruction of marine resources by industry (Jarvis and McNaughton 1986). Therefore, the government and enterprises that carry out tourism projects must preach to tourists who come to travel about the importance of marine resources to people’s lives and how to protect them. From this social perspective, people’s awareness of protecting marine resources and related legal concepts are enhanced. We should intensify our efforts to advocate ecotourism in terms of marine resources, advocate a healthier and more civilized tourism method, maintain a beautiful marine resource tourism environment, and replace a variety of marine resource organisms. This is a great opportunity for marine tourism resources. The specific expression of related cultural values and a beautiful marine tourism environment are also a major guarantee for the continued development of marine tourism resources in the future.

Regarding government departments

Government departments should increase their efforts to promote the importance of marine resources and the environment and related protection measures for marine resources. It should be said that the protection of marine resources should be implemented for everyone. Establish awareness of the importance of protecting marine ecosystems in society as a whole. Formulate corresponding policies and laws. Each corresponding department should manage the pollution of marine resources and the environment and take corresponding preventive measures, remediate the marine pollution that has occurred, and quantify the pollution degree of the marine pollution that has occurred. Carry out compensation for related amounts (Knowles et al. 2012). Law enforcement agencies must strictly enforce laws on related violations of marine pollution phenomena and should not let anyone have a fluke. If it is discovered that there is a new destructive behavior related to...
marine resource pollution, this illegal phenomenon must be
dealt with in a timely manner, there can be no delay in the
slightest, and the personnel involved shall be severely
punished in strict accordance with the corresponding laws
and regulations (Zhang et al. 2018). The establishment
of relevant management agencies specifically responsi-
ble for marine pollution is about the time that marine
pollution can be effectively resolved. Formulate corre-
sponding policies that focus solely on development and
social progress to ensure the stable development of ma-
rine resources and the environment and create more
economic value for people.

Regarding the planning department

In the future tourism planning of relevant marine tourism
areas, the tourism planning department should focus on the
description of the importance of marine ecosystems and ma-
rine resource protection in the planning content prepared by it

Fig. 5 Spatial interpolation
analysis of swimming animals
in 2019

Yang et al. (2020), the protection of marine ecological envi-
ronment and the reasonable and appropriate development and application of marine resources. Set up special personnel to
regularly check whether the marine resource protection mea-
sures in some scenic spots and the configuration of related
tourism facilities are reasonable. Special random checks
should be conducted on the basis of the overall survey of this
situation. According to the data and results obtained from the
survey, for the future development of marine tourism, the
formulation of relevant laws and regulations, the ratio-
nal development and use of land, and the rational divi-
sion of the functions of marine resources, a reasonable
scientific plan is made.

Regarding social aspects

The development of marine resources tourism enterprises
should focus on the development of scientific and technol-
ical unemployment for the development of marine resources,
and through government organizations, local residents can participate in public welfare classes and receive relevant education on environmental protection so as to improve the overall quality of residents (Liu et al. 2013). At the same time, it is necessary to carry out relevant knowledge publicity and education for tourists who come to love tourism. It is the concept of environmental protection that is deeply rooted in the hearts of the people, and it is this kind of public welfare activity that is implemented in the specific behavior of everyone.

Local enterprises that develop the marine resource tourism industry should encourage and assist residents to carry out a series of related activities to beautify the marine environment. It is necessary to protect and cherish the marine resources and environment and to protect the creatures in the ocean without harming them at will.

Some suggestions and opinions on the development of my country’s marine geographic information system

Problems with data sources

The marine geographic information system is not derived from a piece of data in the regional analysis. Its data sources mainly include the so-called raster image of the relevant sea area obtained through remote sensing, the water depth data measured by the sounding instrument in the sea area, and the data on the map. Its data sources mainly include the so-called raster image of the relevant sea area obtained through remote sensing, the water depth data measured by the sounding instrument in the sea area, and the thematic information of the map, as well as the transmission of related data on the Internet, etc. Because the sources of these analysis data are different, each of them has to process information from different channels (Zhao et al. 2009). After a certain amount of data processing, the obtained information is transformed into a pattern that can be recognized by the marine geographic information system, so that the latest valid data can be processed, analyzed, and systematically processed in time. The marine environment is not a relatively stable static environment, but a dynamic environment that changes all the time. Therefore, people also expect to be able to simulate and process dynamic information for marine geographic information systems (Zhou
et al. 2019). This dynamic information can be displayed to people more quickly, accurately, and directly. This is also what people must solve in the future development of marine geographic information systems (Wang et al. 2018). One of the key tasks of the

Realize the sharing of resource and environmental data

In order to better realize the sharing, development, and reuse of data in marine resources, people combine marine geographic information systems with cloud computing (Liu et al. 2012). Such a new system can focus on solving the problems of data transmission, the problems encountered in data processing related to data analysis and decision, and how to obtain information from other places in the fastest time. Every user who uses the marine geographic information system can enjoy the services of the marine geographic information system more quickly and conveniently.

Development towards intelligence

With the continuous development of Internet technology, more and more emerging technologies will be combined with it. In this development environment, GIS and artificial intelligence and neural networks have been combined. This combination allows the marine geographic information system to self-process past knowledge and at the same time to perform heuristic reasoning. After this technological upgrade and change, the marine geographic information system can be used to deal with more complex working environments; through the combination of marine geographic information system and virtual technologies, it can perform scientific virtual and scientific research on the unknown marine environment. It is assumed that such new development is obviously beneficial to people’s spatial analysis in the marine environment, the exploitation of marine resources, and offshore engineering construction.

Increase attention

In order to strengthen the publicity and education on the use of marine geographic information system, it is necessary to carry out knowledge dissemination to relevant staff headed by the leadership to let them understand the importance of GIS in marine protection; in addition, relevant technical training is also very important. Organizations should train staff on GIS technology according to their actual needs, so that staff can master and operate GIS technology more proficiently.

Conclusion

In the entire surface of the earth, the land where we humans live only accounts for 29% of the total surface area, while the ocean occupies 97% of its proportion. The water in the ocean accounts for the vast majority of the total amount of water on the earth—97%. Therefore, people also hailed the ocean as the “cradle of life.” The ocean not only has a great influence on the development of mankind in nature but also from the perspective of social economic resources, and the impact of the ocean on people’s lives cannot be ignored. Since the rise of
tourism in the service industry as a tertiary industry, marine tourism has occupied an extremely important position among them. During the GIS marine geological survey information model research period, we should start with the overview of the information model, unified modeling language and information modeling, the research of marine geological survey information model, and the overall system design analysis to better complete the resource development, thereby promoting the sustainable and healthy development of marine tourism. Through theoretical analysis, it can be concluded that islands with the same obvious advantages and constraints are calling for a sustainable tourism model. The promotion of ecotourism

Table 6

Project	Per capita consumption (kg)	Average local production (kg/hm²)	Total tourist consumption (kg)	Tourist shopping ecological footprint (hm²)	Per capita tourist shopping ecological footprint (10⁻⁴hm²/person)	Land type
Seaweed	0.225	599.7	183825	306.53	3.75	Waters
Sweet potato	2.7	5397	2205900	408.73	5.00	Arable land
Total			305417	715.26	8.75	

Fig. 10 Arctic Ocean resource distribution map
Table 7 The area and ecological carrying capacity of various ecological productive land in the ocean year

Project	Arable land	Construction land	Woodland	Waters	Total
Area (hm²)	451	2030	7013	14401.2	23895.2
Ecological carrying capacity (hm²)	1924	8662	10604	14919.6	36109.6
Carrying capacity after deducting 12% of biodiversity protection area (hm²)	1693	7623	9331	13129.3	31776.5
Ecosystem capacity per capita	279.72	1259.32	1541.66	2169.09	5249.8

Cao S, Cao G, Han G, Wu F, Lan Y (2020) Comparison of evapotranspiration between two alpine type wetland systems in Qinghai lake basin of Qinghai Tibetan Plateau. Ecol Hydrobiol 20: 215–229. https://doi.org.proxy2.cl.msu.edu/10.1016/j.ecohyd.2020.01.001

Chen Y, Zheng W, Li W, Huang Y (2022) The robustness and sustainability of port logistics systems for emergency supplies from overseas. J Adv Transp. https://doi.org.proxy2.cl.msu.edu/10.1155/2020/8868533

Dinpashoh Y, Babamiri O (2020) Trends in reference crop evapotranspiration in Urmia Lake basin. J Climatol 34(5):27–38. https://doi.org.proxy2.cl.msu.edu/10.1002/joc.6181

Falge EDD, Baldocchi RD, Olson P, Anthoni M, Aubinet C, Bernhofer G (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69

Ganjurjav H, Gao Q, Gornish ES, Schwartz MW, Liang Y, Cao X, Zhang W, Zhang Y, W, Wan Y, Li Y, Danju L, Gao H, Lin E (2016) Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai–Tibetan Plateau. Agric For Meteorol 223:233–240

Gu S, Tang Y, Cui X, Kato T, Du M, Li Y, Zhao X (2005) Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai–Tibetan Plateau. Agric For Meteorol 129(3-4):175–185

Liu ZC, He LS, Dong J et al (2012) Risk assessment of groundwater pollution for simple waste landfill. Res Environ Sci 25(8):833–839 (In Chinese). https://doi.org.proxydgb.buap.mx/10.1007/s11439-012-0186-4

Liu SM, Xu ZW, Zhu ZL, Jia ZZ, Zhu MJ (2013) Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J Hydrol 487:24–38

Ljungqvist FC, Krusic PJ, Sundqvist HS, Zorita E, Brattström G, Frank D (2016) Northern hemisphere hydroclimate variability over the past twelve centuries. Nature 532(7597):94–98

Lv JJ, Xu DP, Li FS (2012) Effects of different environmental factors on the transportation of black soil colloid in saturated porous media. Res Environ Sci 25(8):875–881 (In Chinese). https://doi.org.proxydgb.buap.mx/10.13198/j.res.2012.07.106.liuzh.017

Springer
Lv Z, Li X, Li W (2017) Virtual reality geographical interactive scene semantics research for immersive geography learning. Neurocomputing 254:71–78
Lv Z, Hu B, Lv H (2019) Infrastructure monitoring and operation for smart cities based on IoT system. IEEE Trans Ind Inform 16(3):1957–1962. https://doi.org/10.1109/TII.2019.2913535
Maryam H, Ali S (2018) Assessment and estimating groundwater vulnerability to pollution using a modified DRASTIC and GODS models (case study: Malayer Plain of Iran). Civ Eng J I(2):433–442. https://doi.org/10.28991/cej-0309103
Mimi ZA, Assi A (2009) Intrinsic vulnerability, hazard and risk mapping for karst aquifers: a case study. J Hydrol 364(3):298–310. https://doi.org/10.1016/j.jhydrol.2008.11.008
Mohamed A-B, Mohamed R, Elhoseny M, Chakrabortty RK, Ryan M (2020) A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy. IEEE Access 8(1):79521–79540. https://doi.org/10.1109/ACCESS.2020.2990893
Mu S, Xu DP, Chen H et al (2006) Contamination of petroleum hydrocarbons in soils and groundwater around Tiebutie pool in Daqing. Res Environ Sci 19(2):16–19. https://doi.org/10.1016/S1872-2040(06)60041-8
Obojes N, Bahn M, Tasser E, Walde J, Inauen N, Hiltbrunner E, Saccone P, Lochet J, Clement JC, Lavorel S, Tappeiner U, Körner C (2015) Vegetation effects on the water balance of mountain grasslands depend on climatic conditions. Ecohydrology 8(4):552–569
Peng F, You QG, Xue X, Guo J, Wang T (2015) Evapotranspiration and its source components change under experimental warming in alpine meadow ecosystem on the Qinghai-Tibet plateau. Ecol Eng 84:653–659
Shi F, Wu X, Li X, Chais P, Liu H, Piao S, Bastos A (2020) Seasonal compensation implied no weakening of the land carbon sink in the Northern Hemisphere under the 2015/2016 El Niño. Geophys Res Lett 47(9):305–311
Tsai S-B (2016) Using grey models for forecasting china’s growth trends in renewable energy consumption. Clean Techn Environ Policy 18:563–571
Wang B, Cheng J, Zhong SM (2018) Bounded input bounded output stability for lurie system with time-varying delay. Adv Differ Equ 2018(1):57
Wu X, Li X, Chen Y, Bai Y, Tong Y, Wang P, Liu H, Wang M, Shi F, Zhang C, Huang Y, Ma Y, Hu X, Shi C (2019) Atmospheric water demand dominates daily variations in water use efficiency in alpine meadows, northeastern Tibetan Plateau. J Geophys Res Biogeosci 124:2174–2185
Xiao Z, Zhang F, Li X, Wang G, Zeng C, Shi X (2019) Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone J 19:20022. https://doi.org/10.1002/vzj2.20022
Yang F, Zhang GL, Sauer D, Yang JL, Yang J, Liu F, Song XD, Zhao YG, Li DC, Yang JL (2020) The geomorphology-sediment distribution – soil formation focus on the northeastern Qinghai-Tibetan Plateau: Implications for landscape evolution. Geomorphology 354:107040
Zhang X, Cao SL, Liu Y et al (2018) Water quality evaluation of drinking water functions in mountain with improved Nemerow index method. Sci Technol Environ 18(19):335–340 (In Chinese). https://doi-org.proxy2.cl.msu.edu/10.1002/vzj2.20022
Zhao QA, Luo YM, Teng Y (2009) Strategic thinking on soil protection in China. Acta Pedol Sin 46(6):1140–1145 (In Chinese). https://doi-org.proxygdb.bua.mp/10.11766/trxb200907180315
Zhao M, Jiang ZC, Xu GL (2019) Water quality analysis and health risk assessment for groundwater at Xiangshui, Chongzuo. Environ Sci 40(06):2675–2685. https://doi-org.proxygdb.bua.mp/10.13227/j.hjhx.201810234