The article comprises numerical data of distinct semiconductor materials applied in the sketch of a CdTe absorber based ultrathin film solar cell. Additionally, the contact layer parametric values of the cell have been described also. Therefore, the simulation has been conducted with data related to the hetero-structured (n-ZnO/n-CdS/p-CdTe/p-ZnTe) semiconductor device and a J–V characteristics curve was obtained. The operating conditions have also been recorded. Afterward, the solar cell performance parameters such as open circuit voltage (V_{oc}), short circuit current density (J_{sc}), fill factor (FF), and efficiency (\eta) have been investigated and compared with reference cell.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Physics
More specific subject area	Solar energy
Type of data	Figures and tables
How data was acquired	Physical data were acquired from Refs. [1–9] and the performance parameter dataset has been simulated by ADEPT 2.1 [10].
Data format	Filtered and analyzed
Experimental features	A CdTe solar cell has been organized as n-ZnO/n-CdS/p-CdTe/p-ZnTe heterojunction. Therefore, based on the effects of layer thickness, band gap, doping concentration, refractive index, and others electrical and mechanical properties of the materials, the quantities of the performance parameters have been examined.
Data accessibility	Data are available inside the article

Value of the data

- The physical dataset provides basic standard data for simulating a CdTe ultrathin film photovoltaic cell.
- Researchers can go forward the theoretical analysis of a solar cell utilizing the same dataset
- Included dataset assists to compare and authorize the theoretical results of other models and approaches.
- Dataset contributes to an elaboration of knowledge and finds new concept for CdTe cell analysis.
- The performance parameter dataset can be used to equate the future simulation in CdTe solar cell technology.

1. Data

This paper presents the numerical data for sketching a highly efficient CdTe solar cell. The baseline data of different layers used for simulation have been presented in Table 1. The contact parameters

Parameters	n-ZnO: Al	n-CdS	p-CdTe	p-ZnTe
Thickness, \(t_m\) (\(\mu m\))	0.01	0.05	1.00	0.30
Band gap, \(E_g\) (eV)	3.30	2.42	1.50	2.26
Dielectric constant, \(K_s\)	9.00	10.00	9.40	9.67
Electron affinity, \(\chi_e\) (eV)	4.35	4.30	4.60	4.60
Refractive index, \(N_{dx}\)	2.00	3.15	3.67	4.00
Electron mobility, \(\mu_e\) (cm\(^2\) V\(^{-1}\) s\(^{-1}\))	100	100	320	330
Hole mobility, \(\mu_h\) (cm\(^2\) V\(^{-1}\) s\(^{-1}\))	25	25	40	80
Effective mass for electrons, \(m^*_e/m_0\)	0.27	0.17	0.25	0.13
Effective mass for holes, \(m^*_p/m_0\)	0.59	0.70	0.70	0.60
Conduction band effective density of states, \(N_C\) (cm\(^{-3}\))	\(2.2 \times 10^{18}\)	\(2.2 \times 10^{17}\)	\(8 \times 10^{17}\)	\(7 \times 10^{16}\)
Valence band effective density of states, \(N_V\) (cm\(^{-3}\))	\(1.8 \times 10^{19}\)	\(1.8 \times 10^{18}\)	\(1.8 \times 10^{19}\)	\(2 \times 10^{19}\)
Donor concentration, \(N_D\) (cm\(^{-3}\))	\(1 \times 10^{18}\)	\(1 \times 10^{17}\)	–	–
Acceptor concentration, \(N_A\) (cm\(^{-3}\))	–	–	\(2 \times 10^{16}\)	\(1 \times 10^{18}\)
Electron capture cross section, \(\sigma_e\) (cm\(^2\))	\(1 \times 10^{-12}\)	\(1 \times 10^{-17}\)	\(1 \times 10^{-11}\)	\(1 \times 10^{-11}\)
Hole capture cross section, \(\sigma_h\) (cm\(^2\))	\(1 \times 10^{-15}\)	\(1 \times 10^{-12}\)	\(1 \times 10^{-14}\)	\(1 \times 10^{-16}\)
Electron lifetime, \(\tau_n\) (s)	\(5 \times 10^{-8}\)	\(2 \times 10^{-8}\)	\(1 \times 10^{-8}\)	\(1 \times 10^{-5}\)
Hole lifetime, \(\tau_p\) (s)	\(5 \times 10^{-9}\)	\(6 \times 10^{-8}\)	\(5 \times 10^{-8}\)	\(1 \times 10^{-4}\)
Standard deviation, \(\sigma_d\) (eV)	0.1	0.1	0.1	0.1
Table 2
Contact layer data used for modeling CdTe solar cell.

Parameters	Front contact	Back contact
Barrier height, ϕ_b (eV)	$\phi_{bn} = 0.03$	$\phi_{bp} = 1.90$
Reflectance, R_f (l)	0.2	0.8
Recombination velocity for holes, S_h (cm s$^{-1}$)	1×10^7	1×10^7
Recombination velocity for electrons, S_e (cm s$^{-1}$)	1×10^7	1×10^7

Table 3
Operating conditions based on which the simulation was carried out.

Operating conditions	Description
Terrestrial illumination	AM1.5G
Solar irradiance on earth, E (W cm$^{-2}$)	0.1
Temperature, T_e (k)	300
Shadowing factor	0.02

Fig. 1. Schematic design of CdTe solar cell.

have also been listed in Table 2. Fig. 1 represents the schematic diagram for CdS/CdTe/ZnTe photovoltaic cell. The simulation was conducted under some conditions that have been evidenced on Table 3. ADEPT simulator supplies illumination estimating natural sunlight. All the dataset has been acquired from the issued research articles [1–10]. Fig. 2 shows the J–V characteristics curve. Table 4 describes the comparison between performance measurement parameters of the optimized and reference CdTe photovoltaic cell.
Fig. 2. (a) Energy band diagram using Anderson’s electron affinity rule (Vacuum level as reference level); (b) Energy band diagram (Fermi level as reference level).

Table 4
Comparison between optimized performance parameters of simulated and reference CdTe cell [12].

Cells	Open circuit voltage, V_{oc} (mV)	Short circuit current density, J_{sc} (mA/cm²)	Fill factor, FF (%)	Efficiency, η (%)
Reference cell [11]	887.20	31.69	78.50	22.10
CdTe cell without BSF layer	940.79	28.26	76.92	20.44
CdTe cell with BSF layer	946.51	34.40	75.72	24.66

Fig. 3. (a) J–V characteristic curve for CdTe solar cell (without BSF layer); (b) J–V characteristic curve for CdTe solar cell (with BSF layer).
2. Experimental design, materials and methods

2.1. Cell structure of CdTe solar cell

The schematic design for CdTe solar cell has been visualized in Fig. 1. It consists of n-ZnO buffer/n-CdS window/p-CdTe absorber/p-ZnTe back surface field (BSF) layer with glass at the front contact and metal back contact. The simulation was conducted under AM1.5G illumination to explain the incident sunlight. Fig. 2(a) describes the energy band diagram using Anderson’s electron affinity rule where the vacuum level has been used as the reference level. In Fig. 2(b), the Fermi level has been used as the reference level of the energy band diagram.

2.2. Performance measurement of CdTe solar cell

A one-dimensional simulation software, ADEPT/F 2.1 is employed to simulate the electrical characteristics of hetero-structured semiconductor device [11]. The optimized values of open circuit voltage (V_{oc}) and short circuit current (J_{sc}) for CdTe solar cell without BSF layer and with BSF layer have been measured from the J–V characteristic curve as depicted in Fig. 3(a) and (b) respectively. Accordingly, the optimum FF and η have been found out from the simulation result of the CdTe cell. All the data values reporting the performance of the optimized CdTe cell with respect to the reference cell are demonstrated in Table 4.

Acknowledgements

The authors would like to acknowledge the use of ADEPT 2.1, an online based one-dimensional simulation tool developed by Purdue University, USA.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.04.015.

References

[1] M. Gloeckler, I. Sankin, Z. Zhao, CdTe solar cells at the threshold to 20% efficiency, IEEE J. Photovolt. 3 (2013) 1389–1393. http://dx.doi.org/10.1109/JPHOTOV.2013.2278661.
[2] O.J. Olusola, M.L. Madugu, I.M. Dharmadasa, Investigating the electronic properties of multi-junction ZnS/CdS/CdTe graded bandgap solar cells, Mater. Chem. Phys. 191 (2017) 145–150. http://dx.doi.org/10.1016/j.matchemphys.2017.01.027.
[3] M.S. Hossain, N. Amin, M.A. Matin, M.M.M. Aliyu, T. Razykov, K. Sopian, A numerical study on the prospects of high efficiency ultrathin Zn_{x}Cd_{1−x}S/CdTe solar cell, Chalcogenide Lett. 8 (2011) 263–272.
[4] M. Asaduzzaman, M. Hasan, A.N. Bahar, An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se_{2} solar cell efficiency, SpringerPlus 5 (2016) 578. http://dx.doi.org/10.1186/s40064-016-2256-8.
[5] N. Amin, A. Yamada, M. Konagai, Effect of ZnTe and CdZnTe alloys at the back contact of 1-μm-thick CdTe thin film solar cells, Jpn. J. Appl. Phys. 41 (2002) 2834. http://dx.doi.org/10.1143/JJAP.41.2834.
[6] M. Asaduzzaman, A.N. Bahar, M.M.R. Bhuiyan, Dataset demonstrating the modeling of a high performance Cu(In,Ga)Se_{2} absorber based thin film photovoltaic cell, Data Brief. In press, 2017. (http://dx.doi.org/10.1016/j.dib.2017.02.020).
[7] T.A. Gessert, P. Sheldon, X. Li, D. Dunlavy, D. Niles, R. Sasala, S. Albright, B. Zadler, Studies of ZnTe back contacts to CdS/CdTe solar cells, in: Conference Record Proceedings of the Twenty Sixth IEEE Photovoltaic Specialists Conference – 1997, pp. 419–422. (http://dx.doi.org/10.1109/PVSC.1997.654117), 1997.
[8] M. Asaduzzaman, A.N. Bahar, M.M. Masum, M.M. Hasan, Cadmium free high efficiency Cu_{x}ZnSn(S,Se)_{4} solar cell with Zn_{1−x}Sn_{x}O_{y} buffer layer, Alexandria Eng. J. In press, 2017. (http://dx.doi.org/10.1016/j.aej.2016.12.017).
[9] M.T. Ferdaous, M.F. Islam, K.A.S.M.E. Haque, N. Amin, Numerical analysis of ultra thin high efficiency Cu_{1−x}Zn_{x}S/Cd_{1−x}Zn_{x}Te solar cell, Electr. Electron. Eng. 5 (2015) 14–18.
[10] M. Asaduzzaman, M.B. Hosen, M.K. Ali, A.N. Bahar, Non-toxic buffer layers in flexible Cu(In,Ga)Se_{2} photovoltaic cell applications with optimized absorber thickness, Int. J. Photoenergy 2017 (2017) e4561208. http://dx.doi.org/10.1155/2017/4561208.
[11] J. Gray, X. Wang, R.V.K. Chavali, X. Sun, A. Kanti, J.R. Wilcox, ADEPT 2.1, 2015. (http://dx.doi.org/10.4231/D39S1KM35).
[12] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 49), Prog. Photovolt.: Res. Appl. 25 (2017) 3–13. http://dx.doi.org/10.1002/pip.2855.