Edge exponent in the dynamic spin structure factor of the Yang-Gaudin model

M. B. Zvonarev, V. V. Cheianov, and T. Giamarchi

1DPMC-MaNEP, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland

Physics Department, Lancaster University, Lancaster, LA1 4YB, UK

(Dated: May 5, 2009)

The dynamic spin structure factor $\mathcal{S}(k, \omega)$ of a system of spin-1/2 bosons is investigated at arbitrary strength of interparticle repulsion. As a function of ω it is shown to exhibit a power-law singularity at the threshold frequency defined by the energy of a magnon at given k. The power-law exponent is found exactly using a combination of the Bethe Ansatz solution and an effective field theory approach.

The remarkable progress achieved by the theory of one-dimensional (1D) quantum fluids is rooted in the fact that dimensionality imposes severe constraints on the fluid’s low energy excitation spectrum. Due to these constraints the investigation of the low-energy dynamics of the fluid reduces to choosing the effective field theory from a limited number of universality classes. Perhaps the most ubiquitous (and most thoroughly investigated) is the universality class called the Luttinger Liquid [4]. Other non-trivial examples include states with non-abelian currents, spin-incoherent [2, 3, 4] and ferromagnetic liquids [5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. For all such cases there exist well developed analytical methods allowing one to calculate infrared asymptotics of dynamical correlation function, spectral properties, and scaling dimensions of local observables.

In a series of recent papers [5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] it has been found that at infinite point-like repulsion and for arbitrary strength of interparticle repulsion $\Delta(k)$ implied by symmetries of microscopic Hamiltonian were discussed in Refs. [8, 11]. Constraints on $\Delta(k)$ were established. It was shown that for infinite point-like repulsion $\Delta(k)$ is the universality class called the Luttinger Liquid [1]. Other non-trivial examples include states with

$$\Delta(k) \sim -1 + \frac{K}{2} \left(\frac{k}{k_F} \right)^2,$$

where K is the Luttinger parameter and $k_F = \pi \rho_0$ with ρ_0 being average particle density. Assuming the validity of Eq. (2) at a large but finite repulsion, a crossover between trapped and open regimes of spin propagation was characterized. A different approach to the study of the same system proposed in Ref. [4] confirmed Eq. (2). The approach of Ref. [4] was further developed in Ref. [6], demonstrating that for infinite point-like repulsion $\Delta(k)$ has the form (2) for arbitrary k. In Ref. [8] the small k expansion of $\Delta(k)$ was shown to have the form (2) for arbitrary interparticle repulsion. However, the case of arbitrary k and interparticle repulsion remains unexplored.

In this paper we investigate the behavior of $\Delta(k)$ and $\omega_-(k)$ for the dynamic spin structure factor of a strongly repulsive ferromagnetic Bose gas observable phenomena such as spin trapping and gaussian damping of spin waves were predicted and a link between these phenomena and the singular behavior, Eq. (1), of the dynamic spin structure factor was established. It was shown that at infinite point-like repulsion and for $k \to 0$,

$$\omega_-(k) \sim \frac{K_0}{2} \left(\frac{k}{k_F} \right)^2,$$

where K_0 is the Luttinger parameter and $k_F = \pi \rho_0$ with ρ_0 being average particle density. Assuming the validity of Eq. (3) at a large but finite repulsion, a crossover between trapped and open regimes of spin propagation was characterized. A different approach to the study of the same system proposed in Ref. [4] confirmed Eq. (3). The approach of Ref. [4] was further developed in Ref. [6], demonstrating that for infinite point-like repulsion $\Delta(k)$ has the form (2) for arbitrary k. In Ref. [8] the small k expansion of $\Delta(k)$ was shown to have the form (2) for arbitrary interparticle repulsion. However, the case of arbitrary k and interparticle repulsion remains unexplored.

The Hamiltonian of the Yang-Gaudin model is

$$H = \int_0^L dx \left[\partial_x \psi^{(1)}_\uparrow \partial_x \psi^{(1)}_\downarrow + \partial_x \psi^{(1)}_\downarrow \partial_x \psi^{(1)}_\uparrow + g \rho^2 \right],$$

where $\psi^{(1)}_\uparrow(x)$, $\psi^{(1)}_\downarrow(x)$ are canonical Bose fields satisfying periodic boundary conditions on a ring of circumference L, and $\rho(x)$ is the total particle density operator.
We consider the dynamic spin structure factor
\[S(k, \omega) = \int dx dt e^{i(\omega t - kx)} \langle \uparrow | s_+(x, t) s_-(0, 0) | \uparrow \rangle. \] (4)

Here \(s_+(x) = \psi^+_1(x) \psi_1(x) \) is the local spin raising operator, and \(s_-(x) = [s_+(x)]^\dagger \). The average in Eq. (4) is taken with respect to a fully polarized ground state \(| \uparrow \rangle \) of the Hamiltonian satisfying \(s_+(x) | \uparrow \rangle = 0 \) for all \(x \). In the spectral representation Eq. (4) takes the form
\[S(k, \omega) = \sum_f \delta(\omega - E_f(k)) |(f, k | s_-(k) | \uparrow \rangle|^2, \] (5)

where the sum is taken over the eigenstates \(|f, k\rangle \) of the Hamiltonian \(H \) carrying the momentum \(k \). The energies \(E_f(k) \) are defined by \(H |f, k\rangle = E_f(k) |f, k\rangle \). The frequency \(\omega_-(k) \) in Eq. (1) is given by \(\omega_-(k) = \min_f E_f(k) \). Thus the calculation of \(\omega_-(k) \) reduces to the analysis of the energy spectrum of excitations. The calculation of \(\Delta(k) \) directly from the formula (5) is a far more difficult task. It requires the knowledge of the matrix element and their resummation procedure. For most integrable models, including Yang-Gaudin, such calculation is beyond the reach of the existing theory. A way to bypass this problem is to combine the BA with an effective field theory. This is the route we take in our calculations.

We begin our analysis with a brief description of BA and a calculation of \(\omega_-(k) \). All the states \(|f, k\rangle \) in Eq. (5) lie in the sector with the \(z \) projection of the total spin given by \(S_z = N/2 - 1 \). In this sector Bethe’s wave functions are characterized by a set of quasimomenta \(\{\lambda_1, \ldots, \lambda_N, \xi\} \) which satisfy the BA equations
\[L\lambda_j + \sum_{k=1}^N \theta(\lambda_j - \lambda_k) = 2\pi I_j + 2(\lambda_j - 2\xi) + \pi. \] (6)

Here \(\theta(\lambda) = 2 \arctan(\lambda/g) \) is the two-particle phase shift, and \(I_j = n_j - (N + 1)/2 \), where \(n_j \) are a set of distinct integers. The branch of \(\theta(\lambda) \) is chosen so that \(\theta(\pm \infty) = \pm \pi \). The total energy \(E \) and momentum \(P \) of a system are given by \(E = \sum_{j=1}^N \lambda_j^2 \) and \(P = \sum_{j=1}^N \lambda_j \), respectively. The quasimomentum \(\xi \) enters in \(E \) and \(P \) indirectly, through the solution of Eqs. (6). In the limit \(\xi = \infty \) Bethe’s equations (6) are identical to Bethe’s equations of the fully polarized system \(S_z = N/2 \), which is equivalent to the Lieb-Liniger model \(\Xi \). The distribution of \(I_j \) in the ground state of the model is
\[I_j = j - \frac{N + 1}{2}, \quad j = 1, \ldots, N. \] (7)

Introducing the quasimomenta density \(\rho(\lambda_j) = 1/[L(\lambda_{j+1} - \lambda_j)] \) and taking the thermodynamic limit \(0 < \rho_0 < \infty \) as \(N, L \to \infty \) one gets the integral equation
\[\rho(\lambda) - \frac{1}{2\pi} \int_{-\Lambda}^\Lambda d\nu \rho(\nu) K(\lambda, \nu) = \frac{1}{2\pi} \] (8)

for the quasimomenta in the state (7) and \(\xi = \infty \). The kernel \(K(\lambda, \nu) \equiv K(\lambda - \nu) = \partial \rho(\lambda) / \partial \lambda = 2g/(g^2 + \lambda^2) \). Note that \(\rho(\lambda) \) should satisfy \(\int_{-\Lambda}^\Lambda d\lambda \rho(\lambda) = \rho_0 \). This formula together with Eq. (5) is used to get the value of the Fermi quasimomentum \(\Lambda \) as a function of the particle density \(\rho_0 \). The ground state energy in the thermodynamic limit is
\[E_0 = L \int_{-\Lambda}^\Lambda d\lambda \lambda^2 \rho(\lambda) \] (9)

and the momentum of the ground state is zero.

Consider now the state characterized by a finite value of \(\xi \) and \(I_j \) given by their ground state values, Eq. (7). This state is an excitation above the vacuum, which we shall call a magnon. Introducing the so-called shift function \(F(\lambda, \xi) \) by
\[F(\lambda_j | \xi) = (\lambda_j - \lambda_j)/(\lambda_{j+1} - \lambda_j), \] where \(\lambda_j \) are ground state quasimomenta, and \(\lambda_j \) are those of the excited state, we get the following integral equation for \(F \) in the thermodynamic limit:
\[F(\lambda | \xi) - \frac{1}{2\pi} \int_{-\Lambda}^\Lambda d\nu K(\lambda, \nu) F(\nu | \xi) = -\pi \rho(\lambda) \] (10)

The momentum of the excited state is
\[k = \int_{-\Lambda}^\Lambda d\lambda \rho(\lambda) |\pi + \theta(2\lambda - 2\xi)|, \] (11)

and its energy above the ground state is
\[\omega_-(k) = -\frac{1}{\pi} \int_{-\Lambda}^\Lambda d\lambda \epsilon(\lambda) K(2\lambda - 2\xi). \] (12)

Here \(\omega_-(k) \) is written as a function of the physical (observable) momentum \(k \), which is related to the quasimomentum \(\xi \) by the integral equation (11). The quasienergy \(\epsilon(\lambda) \) is given by the solution of the integral equation
\[\epsilon(\lambda) - \frac{1}{2\pi} \int_{-\Lambda}^\Lambda d\nu \epsilon(\nu) K(\lambda, \nu) = \lambda^2 - \mu \] (13)

satisfying a condition \(\epsilon(\pm \Lambda) = 0 \). The parameter \(\mu \) entering Eq. (13) is the chemical potential, defined by \(\mu = (\partial E_0 / \partial N)_L \), where \(E_0 \) is found from Eq. (9). One can show that at small \(k \) the dispersion law (12) is parabolic \(\omega_-(k) = k^2/2m_\ast \), with the effective mass satisfying \(m_\ast^{-1} = -(\pi g \rho_0)^{-1} \int_{-\Lambda}^\Lambda d\lambda \epsilon(\lambda) \).

Another way to excite the system is to create a particle-hole pair by moving one of the quantum numbers \(I_j \) outside of the ground state distribution (7). Such excitations are analyzed in detail in \(\Xi \) (see also Ref. [26]). In particular, at small momentum they are shown to be equivalent to sound waves propagating at velocity
\[v_s = \frac{1}{2\pi \rho(\Lambda)} \frac{\partial \epsilon(\lambda)}{\partial \lambda} \bigg|_{\lambda=\Lambda}. \] (14)
The energy of the magnon is proportional to \(k \).

We introduce an auxiliary function \(\tilde{S} \) we need to combine the BA solution with a continuum \(\tilde{H} \) with the following properties: (i) it conserves the total momentum, which will be denoted by \(q \). (ii) its excitation spectrum at \(q = k \) is gapless. (iii) its structure factor \(\tilde{S} \) satisfies

\[
\frac{\tilde{S}(q, \omega)}{\tilde{S}(q, \omega_-(k) + \omega)} \to 1, \quad q = k, \quad \omega \to 0. \tag{15}
\]

In integrable models \(\tilde{H} \) can be constructed as a linear combination of a finite number of mutually commuting local integrals of motion. The eigenstates \(|f, q\rangle \) of \(\tilde{H} \) are at the same time the eigenstates of \(\tilde{H} \), therefore \(\tilde{S}(q, \omega) = \sum f \delta(\omega - \tilde{E}_f(q))|\langle f, q|s_-(q)|t\rangle|^2 \), where \(\tilde{H}|f, q\rangle = \tilde{E}_f(q)|f, q\rangle \). Like for \(H \), the low energy spectrum of \(\tilde{H} \) consists of sound waves and a magnon. The energy of the magnon is proportional to \((k - q)^2 \) as \(q \to k \). The condition \(\Delta(k) \) requires that the velocities of the right- and left-moving sound waves be different and given by

\[
v_\pm = v_s \pm \partial \omega_-(k)/\partial k, \tag{16}
\]

where \(v_s \) is given by Eq. \(\text{[14]} \).

The dynamics of sound waves is governed by the Luttinger Hamiltonian

\[
H_0 = \sum_{r=\pm} H_r, \quad H_r = \frac{v_r}{4\pi} \int_0^L dx : [\partial_x \varphi_r(x)]^2 :, \tag{17}
\]

where the operators \(\varphi_r \) are chiral boson fields, \([\varphi_r(x), \varphi_r(x')] = i\pi r \delta_{x, r}\) related to the microscopic particle density by

\[
\rho(x) = \rho_0 + (2\pi)^{-1} \sqrt{K} [\partial_x \varphi_+(x) - \partial_x \varphi_-(x)] \tag{18}
\]

and the symbol \(: \) stands for the boson normal ordering.

In order to describe the low-energy magnon excitation we introduce the spin density field \(\tilde{s}(x) \), related to the microscopic spin density by \(s_\pm(x) = \tilde{s}_\pm(x) + \rho_0/2 \) and \(s_\pm(x) = e^{\pm i k x} \tilde{s}_\pm(x) \), where \(s_\pm = s_s \pm is_y \) are the local spin-ladder operators of Eq. \(\text{[3]} \).

Within the effective theory the operators \(\tilde{s}_\pm \) are smooth spin flip fields. Since a local spin flip may excite sound waves, an effective theory should contain a coupling between \(\tilde{s} \) and \(\varphi_\pm \).

The minimal local coupling respecting the \(SU(2) \) symmetry of the microscopic theory and vanishing in the absence of magnon excitations \(\text{[31]} \) is

\[
H_i = -\sum_{r=\pm} \frac{v_r \beta_r}{2\pi} \int_0^L dx \partial_x \varphi_r(x) \tilde{s}_\pm(x). \tag{19}
\]

Other possible couplings involve higher gradient terms, which do not contribute to the critical exponents. The kinetic energy density of the spin field is represented by a higher gradient term \(\partial_x s_+ \) \(\partial_x \tilde{s}_- \) that can also be neglected in the calculation of the critical exponents \(\text{[28]} \).

The total Hamiltonian of the effective theory describing the dynamics near the threshold is thus given by \(H_{\text{eff}} = H_0 + H_i \). This Hamiltonian is diagonalized by a unitary transformation \(e^{iS} H_{\text{eff}} e^{-iS} \) with

\[
S = (2\pi)^{-1} \int_0^L dx [\beta_+ \varphi_+(x) - \beta_- \varphi_-(x)] \tilde{s}_\pm(x). \tag{20}
\]

What remains is to determine the coupling constants \(\beta_\pm \) in terms of the parameters of the microscopic theory. This is done by the comparison of the low-energy spectrum of the microscopic Hamiltonian \(\tilde{H} \), found from the BA solution, and the spectrum of the effective Hamiltonian \(H_{\text{eff}} \). This procedure yields

\[
\beta_r = 2\pi r F(r \Lambda |\xi|), \quad r = \pm 1, \tag{21}
\]

where \(F \) is defined by the solution of the integral equation \(\text{[10]} \). We solve this equation and find \(\Delta(k) \) numerically for different values of the coupling constant.
γ = g/ρ₀. For easier comparison with Eq. (2) we represent our result in the form
\[
\Delta(k) = -1 + \frac{K}{2} \left(\frac{k}{k_F} \right)^2 + \frac{(K - 1)^2}{K} \alpha(k),
\]
(22)

where k_F = πρ₀ and K = k_F/v_s is the Luttinger parameter calculated using Eq. (14). The function α(k) for different values of the dimensionless coupling constant γ. The values of the Luttinger parameter K are indicated for each curve and correspond in increasing order to γ = ∞, 1.65, 0.56, 0.238 and 0.109 respectively.

The problem considered in the present work is directly related to the X-ray edge problem in the theory of the mobile impurity. In this context, the model (23) was investigated in Ref. [22]. The approach of Ref. [22] exploits a transformation to the co-moving reference frame and combines BA with an effective field theory similar to ours. The method of Ref. [22] has recently been successfully applied to the Heisenberg model and later was shown [19] to produce results equivalent to the method of Ref. [17] used here. A direct comparison of the present work with Ref. [22] is however not possible, because the latter used an incorrect BA solution of the model (23).

This work was supported in part by the Swiss National Science Foundation under MaNEP and division II and by ESF under the INSTANS program.

[1] T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004).
[2] V. V. Cheianov and M. B. Zvonarev, Phys. Rev. Lett. 92, 176401 (2004).
[3] G. A. Fiete and L. Balents, Phys. Rev. Lett. 93, 226401 (2004).
[4] G. A. Fiete, Rev. Mod. Phys. 79, 801 (2007).
[5] M. B. Zvonarev, V. V. Cheianov, and T. Giamarchi, Phys. Rev. Lett. 99, 240404 (2007).
[6] S. Akhanjee and Y. Tserkovnyak, Phys. Rev. B 76, 140408 (2007).
[7] K. A. Matveev and A. Furusaki, Phys. Rev. Lett. 101, 170403 (2008).
[8] A. Kamenev and L. Glazman, arXiv p. 0808.0479 (2008).
[9] M. B. Zvonarev, V. V. Cheianov, and T. Giamarchi, arXiv p. 0811.2676 (2008).
[10] A. Imambekov and L. I. Glazman, arXiv p. 0812.1046 (2008).
[11] M. Pustilnik, M. Khodas, A. Kamenev, and L. I. Glazman, Phys. Rev. Lett. 96, 196405 (2006).
[12] M. Khodas, M. Pustilnik, A. Kamenev, and L. I. Glazman, Phys. Rev. B 76, 155402 (2007).
[13] M. Khodas, M. Pustilnik, A. Kamenev, and L. I. Glazman, Phys. Rev. Lett. 99, 110405 (2007).
[14] A. Imambekov and L. I. Glazman, Science 323, 228 (2009).
[15] M. Pustilnik, Phys. Rev. Lett. 97, 036404 (2006).
[16] R. G. Pereira, S. R. White, and I. Affleck, Phys. Rev. Lett. 100, 027206 (2008).
[17] V. V. Cheianov and M. Pustilnik, Phys. Rev. Lett. 100, 126403 (2008).
[18] A. Imambekov and L. I. Glazman, Phys. Rev. Lett. 100, 206805 (2008).
[19] R. G. Pereira, S. R. White, and I. Affleck, arXiv p. 0902.0836 (2009).
[20] T. Ogawa, A. Furusaki, and N. Nagaosa, Phys. Rev. Lett. 68, 3638 (1992).
[21] R. Casella and X. Zotos, Phys. Rev. B 47, 16186 (1993).
[22] Y. Tsukamoto, T. Fuji, and N. Kawakami, Phys. Rev. B 58, 3633 (1998).
[23] M. Gaudin, La fonction d’onde de Bethe (Masson, Paris, 1983).
[24] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[25] E. H. Lieb, Phys. Rev. 130, 1616 (1963).
[26] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993).
[27] J. N. Fuchs, D. M. Gangardt, T. Keilmann, and G. V. Shlyapnikov, Phys. Rev. Lett. 95, 150402 (2005).
[28] L. Balents, Phys. Rev. B 61, 4429 (2000).
[29] This fact can be explained by symmetry considerations: The Hamiltonian (19) commutes with the total spin lowering operator S... By applying S... to the fully polarized eigenstates of H one gets the eigenstates of the same energy in the sector with S_z = N/2 - 1.
[30] This condition is analogous to Eq. (13) of Ref. [17].
[31] The vanishing of the Hamiltonian (19) in the absence of magnon excitations to the leading order in gradient expansion is ensured by the operator identity ρ(x) = 2s_z(x) valid in the fully polarized sector of the system’s Hilbert.
space and by Eq. (18).