Channel Assignment via Fast Zeta Transform

Marek Cygan and Łukasz Kowalik
Institute of Informatics, University of Warsaw
{cygan,kowalik}@mimuw.edu.pl

Abstract

We show an $O^*((\ell+1)^n)$-time algorithm for the channel assignment problem, where ℓ is the maximum edge weight. This improves on the previous $O^*((\ell+2)^n)$-time algorithm by Kral [4], as well as algorithms for important special cases, like $L(2,1)$-labelling. For the latter problem, our algorithm works in $O^*(3^n)$ time. The progress is achieved by applying the fast zeta transform in combination with the inclusion-exclusion principle.

1 Introduction

In the channel assignment problem, we are given a symmetric weight function $w : V^2 \to \mathbb{N}$ (we assume that $0 \in \mathbb{N}$). The elements of V will be called vertices (as w induces a graph on the vertex set V with edges corresponding to positive values of w). We say that w is ℓ-bounded when for every $x, y \in V$ we have $w(x, y) \leq \ell$. An assignment $c : V \to \{1, \ldots, s\}$ is called proper when for each pair of vertices x, y we have $|c(x) - c(y)| \geq w(x, y)$. The number s is called the span of c. The goal is to find a proper assignment of minimum span. Note that the special case when w is 1-bounded corresponds to the classical graph coloring problem.

In this paper we deal with exact algorithms for the channel assignment problem. As a generalization of graph coloring, the decision version of channel assignment is NP-complete. It follows that the existence of a polynomial-time algorithm is unlikely. As a consequence, researchers began to study exponential-time algorithms for the channel assignment problem. The asymptotic efficiency of these algorithms is measured in terms of $n = |V|$ and ℓ, we assume that ℓ is a constant. The first non-trivial algorithm was proposed by McDiarmid [5] and had running time of $O(n^2(2\ell+1)^n)$. It was then improved by Kral [4] to $O(n(\ell+2)^n)$.

Here we improve the running time further to $O^*((\ell+1)^n)$. We also show that the number of all proper assignments can be found in the same time bound. Note that for $\ell = 1$ the running time of our algorithm matches

\footnote{By $O^*(\cdot)$ we suppress polynomially bounded terms.}
the time complexity of the currently fastest algorithm for graph coloring by Björklund, Husfeldt and Koivisto [1].

Our improvement is achieved by applying the fast zeta transform in combination with the inclusion-exclusion principle. The same ingredients were used also in a set partition problem in [1], however in our algorithm the fast zeta transform plays a different role. In particular, although channel assignment resembles a kind of set partition it does not seem to be possible to solve it by a direct application of the algorithm from [1].

Some special cases of the channel assignment problem received particular attention. An important example is the $L(p,q)$-labeling of graphs, where given an undirected graph $G = (V,E)$ one has to find an assignment $c : V \to \mathbb{N}$ such that if vertices u and v are adjacent then $|c(u) - c(v)| \geq p$ and if vertices u and v are at distance 2 then $|c(u) - c(v)| \geq q$. The goal is to minimize $\max_{v \in V} c(v)$. Clearly, the algorithmic problem of finding an $L(p,q)$-labeling reduces in polynomial time to the $\max\{p,q\}$-bounded channel assignment and we get an $O^*((\max\{p,q\} + 1)^n)$-time algorithm as an immediate corollary from our result. In particular, it gives an $O^*(3^n)$-time algorithm for the most researched subcase of $L(2,1)$-labeling. This improves over the algorithms by Havet et al. [2] running in time $O(3.873^n)$ and a recent improvement of Junosza-Szaniawski and Rzążewski [3] running in $O(3.562^n)$ time.

2 Deciding

In this section we consider the decision version of the problem, i.e. for a given ℓ-bounded weight function w and an integer $s \in \mathbb{N}$ we check whether there is a proper assignment of span at most s. Since the case $\ell = 1$ can be solved in $O^*((\ell + 1)^n) = O^*(2^n)$ time as described in [1], here we assume $\ell \geq 2$.

An assignment $c : V \to \mathbb{N}$ of span s can be seen as a tuple (I_1, I_2, \ldots, I_s), where $I_j = c^{-1}(j)$ for every $j = 1, \ldots, s$. We will relax the notion of assignment in that we will work with tuples of vertex sets (I_1, I_2, \ldots, I_k), where the I_j's are not necessarily disjoint. We say that a tuple (I_1, I_2, \ldots, I_k) is proper, when for every $i, j \in \{1, \ldots, k\}$ if $x \in I_i$ and $y \in I_j$ then $|i - j| \geq w(x,y)$.

In what follows, U denotes the set of all proper tuples (I_1, \ldots, I_s) such that for each $j = 1, \ldots, s - \ell + 1$, the sets $I_j, I_{j+1}, \ldots, I_{j+\ell-1}$ are pairwise disjoint. A tuple with the last elements being empty sets is denoted as $(I_1, \ldots, I_{s-r}, \emptyset^r)$. For a subset $X \subseteq V$, we say that a tuple (I_1, \ldots, I_j) lies in X when for every $i = 1, \ldots, j$, we have $I_i \subseteq X$.

For $v \in V$, define $U_v = \{(I_1, \ldots, I_s) \in U : v \in \bigcup_{j=1}^s I_j\}$. Observe, that

Proposition 1. $|\bigcap_{v \in V} U_v| > 0$ iff there is a proper assignment of span s.

By the inclusion-exclusion principle, if we denote $\overline{U}_v = U - U_v$ and
\[\bigcap_{v \in \emptyset} U_v = U, \text{ then} \]
\[| \bigcap_{v \in V} U_v | = \sum_{Y \subseteq V} (-1)^{|Y|} | \bigcap_{v \in Y} U_v|. \quad (1) \]

Our algorithm computes \(| \bigcap_{v \in Y} U_v |\) using the above formula. The rest of the section is devoted to computing \(| \bigcap_{v \in Y} U_v |\) for a given \(Y \subseteq V\). If we denote \(X = V - Y\), then \(\bigcap_{v \in Y} U_v\) is just the set of tuples of \(U\) that lie in \(X\):
\[\bigcap_{v \in Y} U_v = \{(I_1, \ldots , I_s) \in U : I_1, \ldots , I_s \subseteq X\}. \quad (2) \]

Our plan now is to compute the value of \(| \bigcap_{v \in Y} U_v |\) using dynamic programming accelerated by the fast zeta transform. More precisely, for every \(i = \ell - 1, \ldots , s\) and for every sequence \(J_1, \ldots , J_{\ell - 1}\) of pairwise disjoint subsets of \(X\) our algorithm computes the value of

\[T^X_i (J_1, \ldots , J_{\ell - 1}) = |\{(I_1, \ldots , I_{i-(\ell - 1)}, J_1, \ldots , J_{\ell - 1}, \emptyset^{s-i}) \in U : \bigcup_{j=1}^{i-(\ell - 1)} I_j \subseteq X\}|, \quad (3) \]

that is, the number of tuples in \(U\) that lie in \(X\) and end with \(J_1, \ldots , J_{\ell - 1}\) followed by \(s - i\) empty sets. Then, clearly,
\[\bigcap_{v \in Y} U_v = \sum_{J_1, \ldots , J_{\ell - 1} \subseteq X} T^X_{s-i} (J_1, \ldots , J_{\ell - 1}). \quad (4) \]

For every sequence of pairwise disjoint sets \(J_1, \ldots , J_{\ell - 1} \subseteq X\), we can initialize the value of \(T^X_{i-1} (J_1, \ldots , J_{\ell - 1})\) in polynomial time as follows:
\[T^X_{i-1} (J_1, \ldots , J_{\ell - 1}) = [(J_1, \ldots , J_{\ell - 1}) \text{ is proper}]. \quad (5) \]

Then the algorithm finds the values of \(T^X_{j}\) for subsequent \(j = \ell , \ldots , s\). This is realized using the following formula:
\[T^X_{j} (J_1, \ldots , J_{\ell - 1}) = [(J_1, \ldots , J_{\ell - 1}) \text{ is proper}]: \sum_{J_0 \subseteq X \cap \text{proper}(J_1, \ldots , J_{\ell - 1})} T^X_{j-1} (J_0, J_1, \ldots , J_{\ell - 2}), \quad (6) \]
where \(\text{proper}(J_1, \ldots , J_{\ell - 1})\) is the set of all vertices \(v \in V \setminus \bigcup_{j=1}^{\ell - 1} J_j\) such that for each \(j = 1, \ldots , \ell - 1\) and \(x \in J_j\) we have \(j \geq w(v, x)\).

Using the formula (6) explicitly, one can compute all the values of \(T^X_{j}\) from the values of \(T^X_{i-1}\) in \(O^*((\ell + 1)^{|X|})\) time, since there are \((\ell + 1)^{|X|}\) tuples \((J_0, \ldots , J_{\ell - 1})\) of disjoint subsets of \(X\). Now we describe how to speed it up to \(O^*(|X|)\).
Let \(S \) be a set and let \(f : 2^S \to \mathbb{Z} \) be a function on the lattice of all subsets of \(S \). The zeta transform is an operator which transforms \(f \) to another function \((\zeta f) : 2^S \to \mathbb{Z} \) and it is defined as follows:

\[
(\zeta f)(Q) = \sum_{R \subseteq Q} f(R).
\]

A nice feature of the zeta transform is that given \(f \) (i.e. when the value of \(f(R) \) can be accessed in \(O(1) \) time for any \(R \)) there is an algorithm (called fast zeta transform or Yates’ algorithm, see [1, 7]) which computes \(\zeta f \) (i.e. the values of \((\zeta f)(Q) \) for all subsets \(Q \subseteq S \)) using only \(O(2^{|S|}) \) arithmetic operations (additions).

Let us come back to our algorithm. In the faster version, for each \(i = \ell, \ldots, s \), we iterate over all sequences of disjoint subsets \(J_1, \ldots, J_{\ell-2} \subseteq X \). Then the values of \(T^X_{i-1}(J_1, \ldots, J_{\ell-1}) \) for all the \(2^{|X|}-\sum_{j=1}^{\ell-2} |J_j| \) sets \(J_{\ell-1} \) that are disjoint with \(J_1, \ldots, J_{\ell-2} \) are computed in \(O^*(2^{|X|}-\sum_{j=1}^{\ell-2} |J_j|) \) time (that is in polynomial time per set!). To this end, we use the function \(f : 2^X \setminus \bigcup_{j=1}^{\ell-2} J_j \to \mathbb{Z} \), where

\[
f(S) = T^X_{i-1}(S, J_1, \ldots, J_{\ell-2}).
\]

We compute the function \((\zeta f) \) with the fast zeta transform using \(O(2^{|X|}-\sum_{j=1}^{\ell-2} |J_j|) \) additions. Now, observe that by (1), for each \(J_{\ell-1} \subseteq X \) disjoint with \(J_1, \ldots, J_{\ell-2} \),

\[
T^X_{i-1}(J_1, \ldots, J_{\ell-1}) = [(J_1, \ldots, J_{\ell-1}) \text{ is proper}] \cdot (\zeta f)(X \cap \text{proper}(J_1, \ldots, J_{\ell-1})).
\]

It follows that for each \(i = \ell, \ldots, s \) the algorithm runs in time needed to perform the following number of additions:

\[
O\left(\sum_{J_1, \ldots, J_{\ell-2} \subseteq X \atop j \neq k \Rightarrow J_j \cap J_k = \emptyset} 2^{|X|}-\sum_{j=1}^{\ell-2} |J_j| \right) = O\left(\sum_{J_1, \ldots, J_{\ell-1} \subseteq X \atop j \neq k \Rightarrow J_j \cap J_k = \emptyset} 1 \right) = O(\ell^{|X|}). \tag{7}
\]

By (1) it follows that the whole decision algorithm runs in time needed to perform \(O(n(\ell + 1)^n) \) additions. The numbers being added are bounded by \(|\bigcap_{v \in Y} U_v| \leq 2^{ns} \leq 2^{ns\ell} \), where the last inequality follows from the fact that the minimum span is upper bounded by \((n-1)\ell + 1 \) (see e.g. [3]). Hence a single addition is performed in \(O(n^2\ell) \) time.

Corollary 2. There is an algorithm which verifies whether the minimum span of an \(\ell \)-bounded instance of the channel assignment problem is bounded by \(s \) which uses \(O^*((\ell + 1)^n) \) time and \(O^*(\ell^n) \) space.
3 Counting

In this section we briefly describe how to modify the decision algorithm from Section 2 in order to make it count the number of proper assignments of span at most s. We follow the approach of Björklund et al. [1]. The trick is to modify the definition of U. Namely, now every tuple (I_1, \ldots, I_s) from U_v additionally satisfies the following condition:

$$\sum_{j=1}^{s} |I_j| = n. \tag{8}$$

Observe, that then $|\bigcap_{v \in V} U_v|$ equals the number of proper assignments of span at most s. Now, we add another dimension to the arrays T^X: $T^X_{i,k}(J_1, \ldots, J_{\ell-1}) = |\{(I_1, \ldots, I_{i-(\ell-1)}, J_1, \ldots, J_{\ell-1}, \emptyset^{s-i}) \in U : \bigcup_{j=1}^{i-(\ell-1)} I_j \subseteq X \text{ and } \sum_{j=1}^{i-(\ell-1)} |I_j| + \sum_{j=1}^{\ell-1} |J_j| = k\}|.

The dynamic programming algorithm from Section 2 can be easily modified to compute the values of $T^X_{i,k}(J_1, \ldots, J_{\ell-1})$ for all $i = \ell-1, \ldots, s$, $k = 0, \ldots, n$ and all sequences of $\ell-1$ pairwise disjoint subsets of X. The details are left to the reader.

Corollary 3. For any ℓ-bounded instance of the channel assignment problem the number of the proper assignments of span at most s can be computed in $O^*((\ell + 1)n)$ time and $O^*(\ell^n)$ space.

4 Finding

In order to find the assignment itself we can solve the extended version of the channel assignment problem, where we are additionally given a set of vertices $Z \subseteq V$ together with a function $c' : Z \to \{1, \ldots, s\}$. Then we are to check whether there exists a proper assignment $c : V \to \{1, \ldots, s\}$ satisfying $c|_Z = c'$. It is not hard to modify the presented algorithm to solve the extended version of the problem in $O^*((\ell + 1)^{n-|Z|})$ time. The details are left to the reader.

Now using the extended version of the channel assignment problem we can take any $v \in V \setminus Z$ and try each of the $s \leq (n-1)\ell + 1$ possible values of $c(v)$ one by one, each time using the algorithm for the extended channel assignment problem as a black box. When the value for v is fixed in a similar manner we assign the value for the other vertices of $V \setminus Z$. Since $\sum_{i=1}^{n}(\ell + 1)^{n-i} < (\ell + 1)^n$, the algorithm for finding an assignment has a multiplicative overhead of $O(n\ell)$ over the running time of the decision version.
5 Open problems

In [6] Traxler has shown that for any constant c, the Constraint Satisfaction Problem (CSP) has no $O(c^n)$-time algorithm, assuming the Exponential Time Hypothesis (ETH). More precisely, he shows that ETH implies that CSP requires $d^{Ω(n)}$ time, where d is the domain size. On the other hand, graph coloring, which is a variant of CSP with unbounded domain, admits a $O^*(2^n)$-time algorithm. The channel assignment problem is a generalization of graph coloring and a special case of CSP. In that context, the central open problem in the complexity of the channel assignment problem is to find a $O^*(c^n)$-time algorithm for a constant c independent of ℓ or to show that such the algorithm does not exist, assuming ETH (or other well-established complexity conjecture).

References

[1] A. Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via Inclusion-Exclusion. *SIAM J. Comput.*, 39(2):546–563, 2009.

[2] F. Havet, M. Klazar, J. Kratochvíl, D. Kratsch, and M. Liedloff. Exact Algorithms for L(2, 1)-Labeling of Graphs. *Algorithmica*, 59(2):169–194, 2011.

[3] K. Junosza-Szaniawski and P. Rzążewski. On Improved Exact Algorithms for L(2,1)-Labeling of Graphs. In *Proc. IWOCA 2010*, LNCS 6460, pages 34–37, 2010.

[4] D. Král. An exact algorithm for the channel assignment problem. *Discrete Applied Mathematics*, 145(2):326–331, 2005.

[5] C. J. H. McDiarmid. On the span in channel assignment problems: bounds, computing and counting. *Discrete Mathematics*, 266(1-3):387–397, 2003.

[6] P. Traxler. The Time Complexity of Constraint Satisfaction. In *Proc. IWPEC 2008*, LNCS 5018, pages 190–201, 2008.

[7] F. Yates. The Design and Analysis of Factorial Experiments. *Imperial Bureau of Soil Sciences, Harpenden*, 1937.