Generalized k-Center: Distinguishing Doubling and Highway Dimension

Andreas Emil Feldmann, Tung Anh Vu
Capacitated k-Center

Input

- graph $G = (V, E)$ with edge lengths $\ell: E \rightarrow \mathbb{R}^+$,
- integer k,
- capacities $c: V \rightarrow \mathbb{N}$.

Figure: CkC input with $k = 2$.
Capacitated k-Center: Goal

Find $S \subseteq V$ and an assignment $\varphi : (V \setminus S) \rightarrow S$ such that

- $|S| \leq k$,
- for every $u \in S$, $|\varphi^{-1}(u)| \leq c(u)$, and
- $\max_{v \in V \setminus S} \text{dist}(v, \varphi(v))$ is minimal.

Figure: CKC solution for $k = 2$.
Capacitated k-Center: Goal

Find $S \subseteq V$ and an assignment $\varphi: (V \setminus S) \to S$ such that

- $|S| \leq k$,
- for every $u \in S$, $|\varphi^{-1}(u)| \leq c(u)$, and
- $\max_{v \in V \setminus S} \text{dist}(v, \varphi(v))$ is minimal.

Figure: C_{kC} solution for $k = 2$.

When $c(u) = |V|$ for every $u \in V \Rightarrow k$-CENTER.
Capacitated k-Center: Solution Prospects

Capacitated k-Center is NP-hard.

\Rightarrow cannot solve exactly in polynomial time assuming $P \neq NP$.

Capacitated k-Center: Solution Prospects

Capacitated k-Center is NP-hard.

⇒ cannot solve exactly in polynomial time assuming $P \neq NP$.

c-approximation algorithm

Input I → c-approximation algorithm → solution at most c times worse than the optimum in time $O(poly(|I|))$
Capacitated \(k \)-Center: Solution Prospects

Capacitated \(k \)-Center is NP-hard.
⇒ cannot solve exactly in polynomial time assuming \(P \neq NP \).

Polynomial-time approximation scheme

\[I \xrightarrow{\varepsilon > 0} \text{PTAS} \xrightarrow{\text{solution at most } (1 + \varepsilon) \text{ times worse than the optimum}} \in \mathcal{O}(\varepsilon (\text{poly}(|I|))) \]
Capacitated k-Center: Solution Prospects

c-approximation algorithm

An, Bhaskara, Chekuri, Gupta, Madan, Svensson. 2015
There is a 9-approximation algorithm for C_{kn}.

Cygan, Hajiaghayi, Khuller. 2012
There is no $(3 - \varepsilon)$-approximation algorithm for C_{kn} unless $P = NP$.
Capacitated k-Center: Solution Prospects

c-approximation algorithm

Input I \rightarrow c-approximation algorithm \rightarrow solution at most c times worse than the optimum \rightarrow in time $O(poly(|I|))$

Cygan, Hajiaghayi, Khuller. 2012

There is no $(3 - \varepsilon)$-approximation algorithm for CkC unless $P = NP$.

Question

Are there settings where we can overcome this lower bound? Planar graphs, Euclidean spaces, real world, . . .
Special Settings?
Doubling Dimension (Δ)
CAPACITATED k-CENTER
k-CENTER
Feldmann, Marx. 2020
k-MEDIAN, k-MEANS, FACILITY LOCATION
Cohen-Addad, Feldmann, Saulpic. 2021
TSP, STEINER TREE
Talwar. 2004
Special Settings?

Capacitated k-Center	Doubling Dimension (Δ)	Highway dimension (h)
k-Center	$k^k/\varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$	$f(k, h, \varepsilon) \cdot \text{poly}(n)^\dagger$
k-Median, k-Means, Facility Location		
	$2^{(1/\varepsilon)O(\Delta^2)} \cdot \text{poly}(n)$	$n^{(2h/\varepsilon)^O(1)}$
TSP, Steiner Tree	$\exp\{2^{O(\Delta)} \cdot (4\Delta \log n/\varepsilon)^\Delta\}$	$\exp\left\{ \text{polylog}(n)^O(\log^2(h/\varepsilon)) \right\}$

\dagger: f: computable function

- **Doubling Dimension (Δ)**: captures properties of transportation networks

- **Highway dimension (h)**: captures properties of transportation networks

- **Doubling Dimension (Δ)**: $k^k/\varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$
- **Highway dimension (h)**: $f(k, h, \varepsilon) \cdot \text{poly}(n)^\dagger$
Special Settings?

Efficient Parameterized Approximation Scheme

Capacitated k-Center, k-Median, k-Means, Facility Location
k-Center
$k^k / \varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$
$f(k, h, \varepsilon) \circ \text{poly}(n)\dagger$
Feldmann, Marx. 2020
Becker, Klein, Saulpic. 2018

| Parameter $p \in \mathbb{N} \times \cdots \times \mathbb{N}$ of the input |

TSP, Steiner Tree
$\exp\{2^{O(\Delta)} \cdot (4\Delta \log n / \varepsilon)^{\Delta}\}$
$\exp \left\{ \text{polylog}(n)^{O(\log^2(h/\varepsilon))} \right\}$
Talwar. 2004
Feldmann, Fung, Königemann, Post. 2018

\dagger: f: computable function

Input I

$\varepsilon > 0$

EPAS

Solution at most $(1 + \varepsilon)$ times worse than the optimum

In time $O(f(p, \varepsilon) \cdot |I|^{\mathcal{O}(1)})$

where f is a computable function.
Special Settings?

Setting	Doubling Dimension (Δ)	Highway Dimension (h)
Capacitated k-Center	$k^k / \varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$	$f(k, h, \varepsilon) \cdot \text{poly}(n)^{\dagger}$
	Theorem 2	
k-Center	$k^k / \varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$	$f(k, h, \varepsilon) \cdot \text{poly}(n)^{\dagger}$
	[Feldmann, Marx, 2020](#FeldmannMarx2020)	[Becker, Klein, Saulpic, 2018](#BeckerKleinSaulpic2018)
k-Median, k-Means, Facility Location	$2^{(1/\varepsilon)^{O(\Delta^2)}} \cdot \text{poly}(n)$	$n^{2(h/\varepsilon)^{O(1)}}$
	[Cohen-Addad, Feldmann, Saulpic, 2021](#CohenAddadFeldmannSaulpic2021)	[Feldmann, Saulpic, 2021](#FeldmannSaulpic2021)
TSP, Steiner Tree	$\exp\{2^{O(\Delta)} \cdot (4\Delta \log n/\varepsilon)^{\Delta}\}$	$\exp\{\text{polylog}(n)^{O(\log^2(n/h/\varepsilon))}\}$
	[Talwar, 2004](#Talwar2004)	[Feldmann, Fung, Könemann, Post, 2018](#FeldmannFungKönenmannPost2018)

\dagger: f: computable function
Problem	Doubling Dimension (Δ)	Highway dimension (h)
CAPACITATED k-CENTER	$k^k / \varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$	$\exists c > 1$: no c-approximation in $O(\varepsilon (f(k, h) \cdot \text{poly}(n)))^{\dagger, \S}$
k-CENTER	$k^k / \varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$	$f(k, h, \varepsilon) \cdot \text{poly}(n)^\dagger$
k-MEDIAN, k-MEANS, FACILITY LOCATION	$2^{(1/\varepsilon)^{O(\Delta^2)}} \cdot \text{poly}(n)$	$n^{(2h/\varepsilon)^{O(1)}}$
TSP, STEINER TREE	$\exp\{2^{O(\Delta)} \cdot (4\Delta \log n/\varepsilon)^\Delta\}$	$\exp\{\text{polylog}(n)^{O(\log^2(h/\varepsilon))}\}$

\dagger: f: computable function
\S: unless FPT = W[1]
Let $M = (X, \text{dist})$ be a metric space.

Figure: $B_r(u)$: Ball of radius r.

Doubling Dimension
Doubling Dimension

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

$$\text{the ball } B_r(u) \text{ for every } u \in X \text{ and every } r \in \mathbb{R}^+ \text{ is contained in } \bigcup_{v \in V} B_{r/2}(v) \text{ for some } V \subseteq X \text{ with } |V| \leq 2^\Delta.$$
Doubling Dimension

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

- the ball $B_r(u)$ for every $u \in X$ and every $r \in \mathbb{R}^+$
Doubling Dimension

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

- the ball $B_r(u)$ for every $u \in X$ and every $r \in \mathbb{R}^+$
- is contained in $\bigcup_{v \in V} B_{r/2}(v)$ for some $V \subseteq X$ with $|V| \leq 2^\Delta$.

![Diagram of balls and points illustrating the concept of doubling dimension]
Doubling Dimension

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

- the ball $B_r(u)$ for every $u \in X$ and every $r \in \mathbb{R}^+$
- is contained in $\bigcup_{v \in V} B_{r/2}(v)$ for some $V \subseteq X$ with $|V| \leq 2^\Delta$.

$\Rightarrow d$-dimensional ℓ_q metrics have doubling dimension $\mathcal{O}(d)$.
Highway Dimension: Shortest Path Cover

- Let G be an edge-weighted graph and fix a scale $r \in \mathbb{R}^+$.
- Let P_r be the set of paths of G such that
 - they are a shortest path between their endpoints,
 - their length is more than r and at most $2r$.

(a) Metro and tram network in Prague city center.

(b) Czech railway network.
Highway Dimension: Shortest Path Cover

Let G be an edge-weighted graph and fix a scale $r \in \mathbb{R}^+$. Let \mathcal{P}_r be the set of paths of G such that they are a shortest path between their endpoints, their length is more than r and at most $2r$.

The shortest path cover $\text{SPC}_r(G)$ is a hitting set\(^1\) for \mathcal{P}_r.

\(^1\)For every $P \in \mathcal{P}_r$ we have $P \cap \text{SPC}_r(G) \neq \emptyset$.
Highway Dimension

highway dimension of an edge-weighted graph G:

- smallest integer h such that,
- for any scale $r \in \mathbb{R}^+$,
- there exists $H := \text{SPC}_r(G)$ so that,
- $|H \cap B_{2r}(u)| \leq h$ for every $u \in V(G)$.
k-CENTER algorithm

$M = (X, d)$

Optimum solution of cost OPT.
k-Center algorithm

\[M = (X, d) \]

\[\forall x \in X \exists y \in Y : d(x, y) \leq \varepsilon \text{OPT}, \text{ and} \]

\[\forall y_1 \neq y_2 \in Y : d(y_1, y_2) > \varepsilon \text{OPT}. \]

Net: \(Y \subseteq X \) such that

- \(\forall x \in X \exists y \in Y : d(x, y) \leq \varepsilon \text{OPT}, \) and
- \(\forall y_1 \neq y_2 \in Y : d(y_1, y_2) > \varepsilon \text{OPT}. \)

Optimum solution of cost \(\text{OPT}. \)
k-CENTER algorithm

\[M = (X, d) \]

- We get a \((1 + \varepsilon)\)-approximate solution.

\[\forall x \in X \exists y \in Y : d(x, y) \leq \varepsilon \text{OPT}, \text{ and} \]
\[\forall y_1 \neq y_2 \in Y : d(y_1, y_2) > \varepsilon \text{OPT}. \]

Net: \(Y \subseteq X \) such that

- Replace every optimum center by its nearest net point.

\[\Rightarrow \text{We get a } (1 + \varepsilon)\text{-approximate solution.} \]
k-Center algorithm

\[M = (X, d) \]

We get a \((1 + \varepsilon)\)-approximate solution.

Guess the \(k\)-tuple near the optimum centers to get an EPAS with parameters \(k\), \(\varepsilon\), and \(\Delta\).

\[\forall x \in X \exists y \in Y : d(x, y) \leq \varepsilon \text{OPT}, \text{ and} \]
\[\forall y_1 \neq y_2 \in Y : d(y_1, y_2) > \varepsilon \text{OPT}. \]

Replace every optimum center by its nearest net point.

\[\Rightarrow \text{We get a } (1 + \varepsilon)\text{-approximate solution}. \]
\[\Rightarrow \text{It can be shown that } |Y| \leq k(1/\varepsilon)^O(\Delta). \]
\[\Rightarrow \text{Guess the } k\text{-tuple near the optimum centers to get an EPAS with parameters } k, \varepsilon, \text{ and } \Delta. \]
CkC algorithm obstacles

\[M = (X, d) \]

\[\Rightarrow \text{We get a } (1 + \varepsilon)\text{-approximate solution.} \]

\[\Rightarrow \text{Guess the } k\text{-tuple near the optimum centers to get an EPAS with parameters } k, \varepsilon, \text{ and } \Delta. \]

\[\forall x \in X \exists y \in Y : d(x, y) \leq \varepsilon \text{OPT}, \text{ and } \]
\[\forall y_1 \neq y_2 \in Y : d(y_1, y_2) > \varepsilon \text{OPT}. \]

\[\Rightarrow \text{Replace every optimum center by its nearest net point.} \]
\[\Rightarrow \text{We get a } (1 + \varepsilon)\text{-approximate solution.} \]

\[\Rightarrow \text{It can be shown that } |Y| \leq k(1/\varepsilon)^O(\Delta). \]

\[\Rightarrow \text{Guess the } k\text{-tuple near the optimum centers to get an EPAS with parameters } k, \varepsilon, \text{ and } \Delta. \]
CkC algorithm obstacles

\[M = (X, d) \]

⇒ We get a \((1 + \varepsilon)\)-approximate solution.

⇒ Guess the \(k\)-tuple near the optimum centers to get an EPAS with parameters \(k, \varepsilon, \Delta\).

∀\(x \in X\) ∃\(y \in Y\): \(d(x, y) \leq \varepsilon\) OPT, and

∀\(y_1 \neq y_2 \in Y\): \(d(y_1, y_2) > \varepsilon\) OPT.

Net: \(Y \subseteq X\) such that
- \(\forall x \in X \exists y \in Y: d(x, y) \leq \varepsilon\) OPT, and
- \(\forall y_1 \neq y_2 \in Y: d(y_1, y_2) > \varepsilon\) OPT.

⇒ Replace every optimum center by its nearest net point.

⇒ We get a \((1 + \varepsilon)\)-approximate solution.

⇒ It can be shown that \(|Y| \leq k(1/\varepsilon)^{O(\Delta)}\).

⇒ Guess the \(k\)-tuple near the optimum centers to get an EPAS with parameters \(k, \varepsilon, \Delta\).
\textbf{CkC algorithm obstacles}

- \textit{Net}: \(Y \subseteq X \) such that
 - \(\forall x \in X \exists y \in Y: d(x, y) \leq \varepsilon \text{OPT} \), and
 - \(\forall y_1 \neq y_2 \in Y: d(y_1, y_2) > \varepsilon \text{OPT} \).

\(M = (X, d) \Rightarrow \text{We get a } (1 + \varepsilon)\text{-approximate solution.} \)

\(\Rightarrow \) Guess the \(k \)-tuple near the optimum centers to get an EPAS with parameters \(k, \varepsilon, \) and \(\Delta \).

\(\Rightarrow \) Replace every optimum center by its nearest net point.

\(\Rightarrow \) We get a \((1 + \varepsilon)\)-approximate solution.

\(\Rightarrow \) It can be shown that \(|Y| \leq k(1/\varepsilon)^{O(\Delta)} \).

\(\Rightarrow \) Guess the \(k \)-tuple near the optimum centers to get an EPAS with parameters \(k, \varepsilon, \) and \(\Delta \).
Conclusion

Problem	Doubling Dimension (Δ)	Highway dimension (h)
Capacitated k-Center	$k^k / \varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$	$\exists c > 1$: no c-approximation in $\mathcal{O}_\varepsilon (f(k, h) \cdot \text{poly}(n))^{\dagger, \S}$
k-Center	$k^k / \varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$	$f(k, h, \varepsilon) \cdot \text{poly}(n)^{\dagger}$
k-Median, k-Means, Facility Location	$2^{(1/\varepsilon)^{O(\Delta^2)}} \cdot \text{poly}(n)$	$n^{(2h/\varepsilon)^{O(1)}}$
TSP, Steiner Tree	$\exp\{2^{O(\Delta)} \cdot (4\Delta \log n / \varepsilon)^{\Delta}\}$	$\exp\left\{\text{polylog}(n)^{O(\log^2(h/\varepsilon))}\right\}$

\dagger: f: computable function

\S: unless FPT = W[1]
Conclusion

Capacitated k-Center	Doubling Dimension (Δ)	Highway dimension (h)
Capacitated k-Center	$k^k/\varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$	$\exists c > 1$: no c-approximation in $O_{\varepsilon}(f(k, h) \cdot \text{poly}(n))^{\dagger,\S}$
k-Center	$k^k/\varepsilon^{O(k\Delta)} \cdot \text{poly}(n)$	$f(k, h, \varepsilon) \cdot \text{poly}(n)^{\dagger}$
k-Median, k-Means, Facility Location	$2^{(1/\varepsilon)^{O(\Delta^2)}} \cdot \text{poly}(n)$	$n^{2h/\varepsilon^{O(1)}}$
TSP, Steiner Tree	$\exp\{2^{O(\Delta)} \cdot (4\Delta \log n/\varepsilon)^{\Delta}\}$	$\exp\left\{\text{polylog}(n)^{O(\log^2(h/\varepsilon))}\right\}$

\dagger: f: computable function
\S: unless FPT = W[1]

Thank you for your attention!

Questions, comments, ...?