Cosmology of Radiatively Generated Axion Scale

Kiwoon Choi

Department of Physics, Korea Advanced Institute of Science and Technology
Taejon 305-701, Korea

Abstract

We discuss some cosmological aspects of supersymmetric axion models in which the axion scale is radiatively generated in terms of the weak scale and the Planck scale. They include thermal inflation, axions produced by the decay of oscillating Peccei-Quinn flatons, late time baryogenesis, and finally the possibility to raise up the cosmological upper bound on the axion scale in thermal inflation scenario.
1 Introduction

The axion solution to the strong CP problem [1] involves an intermediate scale for the spontaneous breaking of $U(1)_{PQ}$ which is far above the electroweak scale but still far below the Planck scale M_P. It would be interesting that this intermediate axion scale appears as a dynamical consequence of the electroweak scale and the Planck scale. This indeed happens [2] in some class of spontaneously broken supergravity (SUGRA) models. In this scheme, the early universe experiences the so-called thermal inflation and subsequently a period dominated by coherently oscillating flaton fields [3] which break $U(1)_{PQ}$ spontaneously. Here we wish to discuss some cosmological implications of such flatons [4]. They include axions produced by oscillating flatons, late time baryogenesis, and finally the possibility of raising up the cosmological upper bound on the axion scale in thermal inflation scenario.

2 Radiatively Generated Axion Scale

As an example, let us consider a variant of the model of Ref. [2] with superpotential

$$W = k\frac{\phi_1^n + 2\phi_2}{M_P^2} + h_N N\phi_1 + \cdots$$ \hspace{1cm} (1)$$

where N is the right-handed neutrino superfield and the ellipsis denotes the part depending upon the fields in the supersymmetric standard model (SSM) sector. Here ϕ_1 and ϕ_2 correspond to flat directions when nonrenormalizable interactions and supersymmetry breaking effects are ignored. Including the radiative effects of the strong Yukawa coupling $h_N N\phi_1$, the soft mass-squared of ϕ_1 becomes negative at scales around $F_a \simeq \langle \phi_1 \rangle$, and thereby driving ϕ_1 to develop vacuum expectation value (VEV) at an intermediate scale. Neglecting the field ϕ_2, the renormalization group improved scalar potential for ϕ_1 is given by

$$V = V_0 - m_1^2|\phi_1|^2 + k^2|\phi_1|^{2n+4} M_P^{2n},$$ \hspace{1cm} (2)$$

where m_1^2 is positive and of order $m_{3/2}^2$, and V_0 is a constant of order $m_{3/2}^2 F_a^2$ which is introduced to make $V(\langle \phi_1 \rangle) = 0$. (Here we assume that SUSY is broken by hidden sector dynamics yielding the electroweak scale value of $m_{3/2} \simeq 10^2 \sim 10^3$ GeV.) Clearly the minimum of this scalar potential breaks $U(1)_{PQ}$ by

$$\langle \phi_1 \rangle \simeq F_a \simeq (m_{3/2} M_P^n)^{1/n+1},$$ \hspace{1cm} (3)$$
where we have ignored the coefficients of order unity. Note that the integer n which determines the size of F_a is determined by the Peccei-Quinn (PQ) charge assignment of the model.

3 Thermal Inflation

The above radiative mechanism generating the axion scale has substantial influence on the history of the universe [3]. At high temperature, ϕ_1 receives a thermal mass $\delta m_1^2 \simeq |h_N|^2 T^2 \gg m_1^2$ leading to $\langle \phi_1 \rangle = 0$. This thermal mass is generated by right-handed neutrinos in the thermal bath. During this period, $\langle \phi_2 \rangle = 0$ also. When the temperature falls below $T \simeq V_0^{1/4}$, which is about $\sqrt{m_3/2} F_a$, the universe is dominated by the vacuum energy density V_0 and thus there appears a short period of thermal inflation. Below $T < m_1 \simeq m_3/2$, the effective mass of ϕ_1 becomes negative and then ϕ_1 develops an intermediate scale VEV given by Eq. (3). With $\langle \phi_1 \rangle \simeq F_a$, the other flaton field ϕ_2 develops also a VEV of order F_a through the A-type soft SUSY breaking term, $k A \phi_1^{n+2} \phi_2/M_p^n$, in the scalar potential. This procedure makes the thermal inflation end and subsequently the early universe experiences a period dominated by coherently oscillating PQ flaton field which corresponds to a linear combination of ϕ_1 and ϕ_2 orthogonal to the axion field.

After the period of coherent oscillation, the universe would be reheated by the decay products of the oscillating PQ flaton φ. The reheat temperature T_{RH} is given by

$$T_{RH} \simeq g_{RH}^{-1/4} \sqrt{M_P \Gamma_\varphi} \simeq \left(\frac{N_{\text{eff}}}{10} \right)^{1/2} \left(\frac{10^{12}\text{GeV}}{F_a} \right) \left(\frac{300\text{GeV}}{M_\varphi} \right)^{3/2} \text{GeV},$$

where $g_{RH} \equiv g_*(T_{RH})$ counts the effective number of relativistic degree of freedom at T_{RH}, M_φ denotes the flaton mass, and we parameterize the width of the flaton decay into thermalizable particles as $\Gamma_\varphi = N_{\text{eff}} M_\varphi^3 / 64\pi F_a^2$ with N_{eff} presumed to be of order $10 \sim 10^2$.

4 Axion Energy Density at Nucleosynthesis

A feature peculiar to the PQ flaton is that its decay products include axions. Requiring that these axions do not spoil the big-bang nucleosynthesis (NS), we found [4]

$$\frac{B_a}{1 - B_a} \leq 0.24 \left(\frac{\delta N_\nu}{1.5} \right) \left(\frac{g_{RH}}{43/4} \right)^{1/3},$$

where B_a denotes the effective branching ratio measuring how large fraction of flatons are converted into axions during the reheating, and δN_ν is the number of allowed extra neutrino
species, which is presumed to be in the range \(0.1 \sim 1.5\). This indicates that we need to tune the effective branching ratio \(B_a\) to be less than \(0.02 \sim 1/3\).

As is well known, generic axion models can be classified by two classes: hadronic axion models and Dine-Fischler-Srednicki-Zhitnitskii (DFSZ) axion models [1]. In hadronic axion models, all fields in the supersymmetric standard model (SSM) sector carry vanishing PQ charge. As a result, flaton couplings to SSM fields do vanish at tree level but they appear to be nonzero by radiative effects. Since flaton couplings to SSM fields are loop-suppressed, in hadronic type models, most of the oscillating flatons decay first into either axion pairs, or lighter flaton pairs, or flatino pairs, as long as the decays are kinematically allowed. Lighter flatons would experience similar decay modes, while flatinos decay into axion plus a lighter flatino. Then in the first round of reheating, most of flatons are converted into either axions or the lightest flatinos. The lightest flatinos will eventually decay into SSM particles. Then more than half of the original flatons are expected to be converted into axions, i.e. the effective branching ratio \(B_a \geq 1/2\), unless the flaton coupling to the lightest flatino is unusually large. This is in conflict with the NS limit (5) even for the most conservative choice \(\delta N_\nu = 1.5\), implying that hadronic axion models with radiatively generated axion scale have a difficulty with the big-bang NS unless the models are tuned to have an unusually large flaton coupling to the lightest flatino.

In DFSZ type models, flatons have tree level couplings to SSM fields which are of order \(M_{\text{SSM}}/F_a\) or \(M_{\text{SSM}}^2/F_a\) where \(M_{\text{SSM}}\) collectively denotes the mass parameters in the SSM, e.g. \(M_t, M_W, \mu, A\), and so on. If \(M_\varphi \gg M_{\text{SSM}}\), the reheating procedure would be similar to that of hadronic axion models, which is problematic. However if \(M_\varphi\) is comparable to \(M_{\text{SSM}}\), the NS limit (5) does not provide any meaningful restriction on DFSZ type models.

5 Late Time Baryogenesis

Thermal inflation driven by PQ flatons is expected to dilute away any pre-existing baryon asymmetry. However, PQ flatons themselves can produce baryon asymmetry after thermal inflation. A careful examination of the flaton couplings in DFSZ type models suggests that, among the decays into SSM particles, the decay channels to the top \((t)\) and/or stop \((\tilde{t})\) pairs are most important. Stops produced by the oscillating flatons would be in out-of-equilibrium and subsequently experience a \(B\) and \(CP\) violating decay to generate a baryon asymmetry provided
that the B-violating operator, e.g., $\chi''_{332} U_3^c D_3^c \tilde{D}_3^c$ and the corresponding complex trilinear soft-term are present [5]. Note that the PQ symmetry can be arranged so that dangerous lepton-number violating operators LQD^c, LLE^c are forbidden for the proton stability.

In order for the baryon asymmetry (generated as above) not to be erased, the reheat temperature (4) has to be less than few GeVs [5]. This means that the above mechanism for baryogenesis can work only for $n = 2$ or 3 [see Eqs. (3) and (4)]. The produced baryon asymmetry is [4]

$$\frac{\eta}{3 \times 10^{-10}} \simeq |\chi''_{332}|^2 \left(\frac{\text{arg}(Am_{1/2}^s)^2}{10^{-2}} \right) \left(\frac{10^{14}\text{GeV}}{F_a} \right) \left(\frac{M_\varphi}{300\text{GeV}} \right)^{1/2},$$

(6)

where $\text{arg}(Am_{1/2}^s)$ denotes the CP violating relative phase which is constrained to be less than about 10^{-2} for superparticle masses of order 100 GeV.

6 Raising up the Upper Bound on F_a

For a successful nucleosynthesis, we need $T_{RH} > 6$ MeV [6], implying that only $n = 1, 2,$ and 3 are allowed. As is well known, the axion scale is constrained by the consideration of the coherent axion energy density produced by an initial misalignment [1]. If there is no entropy production after the axion start to oscillate at around $T \simeq 1$ GeV, this lead to the usual bound: $F_a \leq 10^{12}$ GeV. When $n = 2$ or 3, the corresponding axion scale $F_a \simeq (M_\varphi M_P^n)^{1/n+1}$ would exceed this bound. However in this case, the reheat temperature (4) goes below 1 GeV. Then the coherent axions may be significantly diluted by the entropy dumped from flaton decays, thereby allowing F_a much bigger than 10^{12} GeV [7]. Taking into account of this dilution, we find [4]

$$\Omega_ah_{50}^2 \simeq \left(\frac{N_{\text{eff}}}{10} \right) \left(\frac{10^{12}\text{GeV}}{F_a} \right)^{0.44} \left(\frac{M_\varphi}{300\text{GeV}} \right)^{2.9} \left(\frac{\Lambda_{QCD}}{200\text{MeV}} \right)^{-1.9},$$

(7)

where we have used $\Gamma_\varphi \simeq N_{\text{eff}} M_\varphi^3/64\pi F_a^2$. The above result is valid only for $n \geq 2$. As we have anticipated, it shows that the case of $n = 2$ or 3 with $F_a \simeq (M_\varphi M_P^n)^{1/n+1}$ yields a coherent axion energy density not exceeding the critical density although the corresponding F_a exceeds 10^{12} GeV. Furthermore, in this case of $n = 2$ or 3, axions can be a good dark matter candidate for an appropriate value of M_φ, which was not possible for $n = 1$.

References
[1] For a review see, J. E. Kim, Phys. Rep. 150 (1987) 1,

[2] H. Murayama, H. Suzuki and T. Yanagida, Phys. Lett. B 291 (1992) 418.

[3] D. H. Lyth and E. D. Stewart, Phys. Rev. Lett. 75 (1995) 201; D. H. Lyth and E. D. Stewart, Phys. Rev. D 53 (1996) 1784.

[4] K. Choi, E. J. Chun and J. E. Kim, KAIST-TH 12/96, hep-ph/9608222.

[5] S. Dimopoulos and L. J. Hall, Phys. Lett. B 196 (1987) 135.

[6] G. Lazarides, R. K. Schaefer, D. Seckel and Q. Shafi, Nucl. Phys. B346 (1990) 193.

[7] M. Dine and W. Fischler, Phys. Lett. B 120 (1983) 137; P. J. Steinhardt and M. S. Turner, Phys. Lett. B 129 (1983) 51.