Effect of ceramic waste as an adsorbent

S. A. Khaleefa Ali¹, B. M. Fahad² and H. T. Hamad³

¹Environmental Engineering Dpt. College of Engineering Mustansiriya, University Iraq - Baghdad
²Materials Eng. Dept. College of Engineering - Mustansirya University, Iraq – Baghdad
³Water Resource Engineering Dpt. College of Engineering Mustansiriya, University Iraq - Baghdad

Email: seroor909@yahoo.com

Abstract. The scope of this work is in using non-recyclable material to remove dye from industrial water as an adsorbent media which is an ideal method as compared with expensive options of treatment. In recent years, economical and safe methods are required for the treatment of dyehouse effluents. Ceramic powder waste was used to remove methylene blue from wastewater. Different initial dye concentration (10, 20 & 30) ppm, adsorbent doses (0.5, 1, 1.5, 2, 2.5 & 3) gm, pH (4-9) and contact time 0, 30, 60, 90 and 120) min. was studied. The best removal efficiency was at pH=5m contact time 90min, dose 2gm. FTIR was tested for the adsorbent media.

Keywords
Adsorption, ceramic materials, Methylen blue, Langmuire

1. Introduction
Large quantity of wastewater is produce during dye production and textile manufacturing processes by using dyes to colour textiles and products [1]. In industry, water soluble dyes are used for the colouring of different substrates, like leather, hair, textiles, paper, food and cosmetics. Colour removal from domestic and industry has gained importance in the last few years, for its visibility and toxicity [2]. Activated carbon is usually used as an adsorbent for its strong capacity of adsorption, good removal efficiency, but it is expensive [3,4,5]. With the development of industry of ceramic as industry waste is generated, it restricts the development of the industry of ceramic and causes impact on the environment. The waste ceramic components cannot be utilized, also appears in resources of waste. Ceramic is made in origin of clay, where it is used as an adsorbent in the treatment of water [6]. Cost is reduced information of the product and it is safe environmentally. The comprehensive treatment of waste ceramic in industry became important in industry of ceramic [7,8]. Recycled waste is a useful material in industry of ceramic for sustainable industry development [9, 10]. The major purpose of this work is to exploit the possibility of using a ceramic waste as adsorbent in water treatment.

2. Materials and methods
2.1 Methylene Blue dye (MB)
Figure 1 shows the chemical compound of heterocyclic aromatic which is called as – methylthionine-chloride or Methylene Blue with molecular formula as: C₁₆H₁₈ClN₃S, 3H₂O. Its physical and chemical properties are shown in table 1.
Figure 1. Methylene Blue dye chemical structure

Table 1. Physical and chemical properties and pharmacokinetics of MB used in this research [11]

chemical and Physical Properties	Values
Temperature of Melting	180º
Temperature of Boiling	No data
Water Solubility	35.5 g/l-1
value of pH	3 (10g/l H₂O)
Molecular weight	319 g/mol-1
Colour	Dark blue-green in oxidized form, colorless in reduced form (leukomethylene blue)
Formula	C₁₆H₁₈N₃ClS

2.2. Preparation of ceramic waste
Ceramic waste materials (brick waste) were grounded in to powder form. At first, it was crushed manually and then mechanically by ball mill and then it was dried in air. Sieve’s analysis was performed to achieve 300 µm particle size. Chemical characteristics of powder ceramic are shown in table 2

Table 2. Chemical analysis of ceramic waste [12]

Elements	Ratio by Wt. %
SiO₂	50.22
Al₂O₃	16.72
Fe₂O₃	6.14
CaO	14.9
MgO	4.22
Na₂O	0.90
K₂O	2.14
P₂O₅	0.15
LiO	3.12

2.3. Adsorption method
The dye removal efficiency of the prepared Ceramic powder was calculated using equation 1 as follows [13-14]:

\[
\% \text{Removal} = \left(\frac{c_i - c_f}{c_i} \right) \times 100 \quad \ldots (1)
\]

Where,
C_i = initial solute concentration
C_f = final solute concentration
At time = t, the adsorption capacity of the Ceramic powder, q_t (mg/g) was determined as follows:

\[
q_t = \frac{(C_i - C_t) \times V}{m} \quad \cdots (2)
\]

Where,
C_i = initial dye concentration
C_t = concentration of Methylene Blue dye (MB) at time t
q = Adsorbed dye amount at given adsorbent amount (mg/g).
V = solution’s volume
m = weight of the Ceramic powder (gm).
The adsorption rate at equilibrium (q_e) was determined using equation 3 as follows:

\[
q_e = \frac{(C_i - C_e) \times V}{m} \quad \cdots (3)
\]

Where,
C_e = concentration of Methylene Blue dye (MB) at equilibrium.

3. Results and Discussion
3.1 FTIR analysis of Ceramic Material
The FTIR spectrum of ceramic waste is shown in Figure 2, before and after adsorption, this showed that the spectrum of both calcite and clay peaks, didn’t show any degradation. Figure shows the wave length which is less than 1000 cm\(^{-1}\) represents the alkane group, and demonstrates broad absorption peaks at 1978.97-2438.02 cm\(^{-1}\) and 1978.97-2160.27 cm\(^{-1}\) respectively before and after adsorption process, this indicates that the dye was adsorbed and that water has not been eliminated from the structure which means the movement of minerals from plant roots.
Fig 2-a.: FTIR test for ceramic waste - Before adsorption
3.2 pH effect. pH is important during the process of adsorption. Figure 3 showed pH effect on capacity of Methylene Blue dye (MB) adsorption on the prepared Ceramic powder. Figure shows the capacity of Methylene Blue dye (MB), adsorption was found to be affected by pH changes in the solution. pH range was (4 – 9). The highest dye removal was when pH = 4.

Fig. 2-b. FTIR of ceramic waste- after adsorption

No.	Wavenumber (cm⁻¹)	Intensity	Chenal Intensity	Chenal Wavenumber (cm⁻¹)	Chenal Intensity
1	3428.27	1.809	1.545	3433.15	1.809
2	3426.84	1.809	1.545	3433.15	1.809
3	3424.23	1.809	1.545	3433.15	1.809
4	3421.62	1.809	1.545	3433.15	1.809
5	3419.01	1.809	1.545	3433.15	1.809
6	3416.41	1.809	1.545	3433.15	1.809
7	3413.81	1.809	1.545	3433.15	1.809
8	3411.21	1.809	1.545	3433.15	1.809
9	3408.61	1.809	1.545	3433.15	1.809
10	3406.01	1.809	1.545	3433.15	1.809
11	3403.41	1.809	1.545	3433.15	1.809

Comment:
- No. of Scans: 10
- Resolution: 0.1
- Apodization: None
- User: RAHMAN
3.3 Effect of Ceramic powder concentration. Ceramic powder doses were varied between (0.5 to 3.0 g) and the effects of doses were studied on the adsorption efficiency at initial dye concentration of 30 ppm, pH 5 and temperature of 25°C. As shown in Figure 4, the removal efficiency was increased as the Ceramic powder concentration increased. A higher adsorbent concentration gives larger surface area with high porosity. However, at a higher adsorbent concentration, there was no significant increase in the dye removal efficiency (slight increase) because there was no appreciable surface area increase due to solvent saturation and the consequent conglomeration of the exchanger particles with filling the porosity between the ceramic particles. Meanwhile, an adsorbent concentration of 3 g/100 mL was found to be the ideal concentration for maximum dye adsorption.

4. Adsorption isotherms
Models of Langmuir and Freundlich isotherms, adsorption isotherms were studied. The Langmuir model (Equation 4) has monolayer homogeneous area of coverage, identical and energetic site of adsorption equivalent on the surface of a molecule [12].

$$\frac{1}{q_e} = \frac{1}{q_m} + \frac{1}{K_L q_m C_e}$$ … (4)

Where
- q_e = amounts of dispersed Methylene Blue dye (MB) (mg/g) adsorbed at equilibrium
- C_e = concentration of the dye (mg/L) when the solution is at equilibrium.
- q_m = capacity of monolayer adsorption (mg/g)
- K_L = constant of Langmuir adsorption (L/mg) which relates to the free adsorption energy
The model of Freundlich (Equation 5) assumes a physicochemical adsorption on heterogeneous surfaces.

\[
\log q_e = \log K_F + \frac{1}{n} \log C_e \quad \ldots \ (5)
\]

Where,
\(K_F\) and \((1/n)\) = Freundlich adsorption isotherm constants, indicating the extent of adsorption and the adsorption intensity, respectively.

The best adsorption capacity of the prepared Ceramic powder was determined at a temperature of 25°C, pH 6, the initial dye concentration of 30 ppm, and different adsorbent concentrations (0.5 to 3 g) using the Langmuir isotherm equation. Table 3 provides the values of \(R^2\) and the isotherm constants while the linear plot of \(1/q_e\) vs. \(1/C_e\) is shown in Figure 5. The best correlation coefficient value indicates the suitability of the Freundlich isotherm, which gave best fit with the equilibrium data \(R^2 = 0.996\). However, the data was found to fit with both models of isotherm because the value of \(R^2\) was 0.99 (Figure 6). Table 3 also presented the isotherm parameters with slope of the plots derived from the intercept.

Isotherm constant	Langmuir	Freundlich				
correlation coefficient	\(R^2\)	q_m	\(K_L\)	\(R^2\)	\(K_F\)	\(N\)
Value	0.9906	8.06	0.154	0.9932	6.915	0.348

![Figure 5. Freundlich adsorption isotherm for blue methylene dye](image_url)
Figure 6. Langmuir adsorption isotherm for blue methylene dye

5. Conclusions
Cost is an important factor for adsorbents feasibility of dyehouse effluents. Cost analysis is not stated and the expense of adsorbents is different that depends on the processing and availability of source. Brick ceramic waste shows a good adsorption capacity which makes it an effective adsorbent for the low cost removal of dyes. The evidence that brick waste is a good adsorbent is; R^2 reached 99% when pH = 5, temperature is 25°C and contact time = 30 min, indifferent initial dye concentration 30 ppm and waste doses (2-3) mg. This indicated a high removal efficiency.

Acknowledgments
Authors wish to acknowledge the Mustansiriyah University / college of engineering – environmental engineering department, and sanitary laboratory for their assistance. Also special thanks to the laboratories’ technical staff.

References
[1] Ahmed F. Halbus, Zahraa H. Athaba and Falah H. Hussein 2013 Int. J. Chem. Sci. Adsorption of disperse blue dye on Iraqi date palm activated carbon: 11(3), 1219-1233 ISSN 0972-768X
[2] Ayad F Alkaim and Mohammed B ALqaraguly 2013 Adsorption of basic yellow dye from aqueous solutions by activated carbon derived from waste apricot stones (ASAC): equilibrium and thermodynamic aspects: Int. J. Chem. Sci. 11(2), 797-814 ISSN 0972-768X
[3] Yao Zheng, Qun Yuan, ZiYing Yan, Jiacheng Liu, Jingying Liang, Linjiang He, Jianjun He and Min Yan L He 2018 Effect of waste ceramic adsorbent on wastewater treatment MATEC Web of Conferences 175, 0101 https://doi.org/10.1051/matecconf/201817501010 IFCAE-IOT 2018
[4] Vikash R Agrawal, Vikrant S Vairagade, Amol P Kedar 2017 Activated Carbon as Adsorbent In Advance Treatment of Wastewater IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) Volume 14, Issue 4 Ver. II PP 36-40 e-ISSN: 2278-1684,p-ISSN: 2320-334X
[5] Ademiluyi F T, Amadi S A, Amakama and Nimisingha Jacob 2009 Adsorption and Treatment of Organic Contaminants using Activated Carbon from Waste Nigerian Bamboo J. Appl. Sci. Environ. Manage Vol. 13(3) pp 39 – 47 JASEM ISSN 1119-8362
[6] Lingfeng He, Yongli Zhang and Liang Shi 2018 Research on the Treatment of Wastewater by Waste Ceramic Adsorption IOP Conf. Series: Materials Science and Engineering 322 (2018) 042015 doi:10.1088/1757-899X/322/4/042015
[7] Mst. Shanjida Sultanaa, Aninda Nafis Ahmed, Mohammad Nazim Zamana and Md. Aminur Rahman 2016 Physical and micro structural properties of ceramic materials manufacturing from waste material 1st International Conference on Engineering Materials and
Metallurgical Engineering 22- 24 December, 2016 Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka, Bangladesh

[8] Siti Hanna Elias, Maketab Mohamed, Aznah Nor-Anuar, Khalida Muda, Mohd Arif Hakimi Mat Hassan, Mohd. Nor Othman, and Shreeshivadasan Chelliapan 2014 Ceramic industry waste water treatment by Rhizofiteration system— application of water hyacinth bioremediation Vol. 5: Issue 1: pp 6–14 ISSN: 0976-3104

[9] Prachi Dessai, Dr. Shwetha Prasanna 2016 Treatment of diary waste water using low cost adsorbents International Journal of Scientific Research Engineering & Technology (IJSRET) Volume 5, Issue 12 ISSN 2278 – 0882.

[10] Besma M Fahad, Nisreen S Ali, Tamarah T Hameed 2018 Using paper waste as adsorbent for methyl violet dye removal from waste water Journal of Engineering & Sustainable development Vol22 no.01 ISSN 2520 – 0917.

[11] M Deshusses, D D Dloysolou, S Allen, G B Marine and J Santamaria March 2010 Chemical engineering journal, Vol. 157

[12] M Z Usef, Iraqi Geological survey, Centre of Laboratories Department

[13] S A Khaleefa Ali 2017 Dye removal from wastewater International Journal of scientific research in science, engineering and technology, volume3 issue5/2719

[14] F H Hussein, A F Halbus, H A K Hassan and W A K Hussein 2010. Chem., 7, pp 540-544

[15] M J Ahmed and S K Dhedanb 2012 Fluid phase equilibria, 317, pp 9-14

[16] F H Hussein, A F Halbus, F H Abdalrazak and Z H Athab 2013 Applicable Chem. 2(3), pp 589-604.