Analysis of waxy maize germplasm resources in Southwest China based on SNP markers

Caibo Zhang · Shuya Zhang · Lei Chen · Tingyue Yu · Wei Zhang · Shouyun Wen

Received: 10 January 2022 / Accepted: 1 August 2022 / Published online: 13 August 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract Waxy maize (Zea mays L. var. ceratina Kulesh) is an important economic crop in China, most of which are distributed in Southwestern China. In this study, 30 main waxy maize inbred lines in Southwest China were used as materials, and genetic analysis of the tested waxy corn materials was carried out using high-quality single nucleotide polymorphism (SNP) marker technology. A total of 15,111 SNPs were obtained from 30 test materials, and the genetic similarity coefficient varied from 0.4568 to 0.9974. The results of population genetic structure and principal component analysis showed that the tested waxy maize materials and the commonly used common maize classification representative inbred lines (B73, ZI330, Mo17, Huangzao 4, etc.) could not be effectively clustered. The 30 waxy corn materials can be divided into five groups separately. The application of the genetic relationship between materials identified by SNP analysis will enable breeders to select different parents to develop high-yield varieties with improved quality traits.

Keywords Waxy maize · SNP · Genetic diversity · Heterotic group

Introduction

Waxy corn (Zea mays L. var. ceratina Kulesh) is a special type of corn formed by a recessive genetic mutation in common corn (Zeng 1987). Southwest China is the origin center of waxy corn (Collins 1909). The starch in waxy corn endosperm is mainly amylopectin (small molecular weight, high edible digestibility), which is a special corn with high nutritional value and economic value (Guohua et al. 2015). Single nucleotide polymorphism (SNP) genotyping has the advantages of wide distribution, dimorphism, high-throughput, strong genetic stability and easy automated analysis (Corrado et al. 2013), it has been applied to analyze the genetic diversity of crop germplasm resources (Shi et al. 2015), and research germplasm kinship (Jin-Feng et al. 2014), and provide a new idea for new crop varieties selection and genetic germplasm diversity utilization (Lu et al. 2011).

This study used SNP markers to analyze the genotypes of the main waxy maize resources in Southwestern China, and analyze the population genetic structure and genetic diversity, in order to understand the genetic relationships, population genetic structure
and evolutionary groups of waxy maize materials. It aims to provide theoretical reference for the utilization of the genetic diversity of waxy maize germplasm resources, new varieties breeding and new materials creation.

Materials and methods

Plant materials

The test materials were 30 waxy corn inbred lines, which were planted in the experimental field of the Dianjiang Scientific Research Base of Chongqing Academy of Agricultural Sciences. Each material was planted for 03 rows, 10 hills per row, two plants per hill, and self-pollination was strictly controlled. The test materials were numbered from C1 to C30, and the strain name, pedigree source and grain character were shown in Table 1.

SNP genotyping

The young leaves of the test materials were taken from the jointing stage of the plants, and the DNA of the test material was extracted by the CTAB method (Murray and Thompson 1980). The above-mentioned genetic materials were scanned for the whole genome using the Maize SNP 56K Chip (developed by Affymetrix) on the Axiom® Maize56K SNP Array platform (developed by Zhongyujin Mark (Beijing) Biotechnology Co., Ltd.) to obtain the original markers.

Table 1 Material number table of tested waxy corn inbred lines

Sample number	Material name	Material source	Grain type	Sample number	Material name	Material source	Grain type
C01	03-4-1-2	$424 \times yw2$	White	C16	Y1	landrace	White
C02	1107-12A	$yw2 \times$Tropical material78599	White	C17	Y2	landrace	White
C03	189-2	JingA×(1107-12A×715–12)	White	C18	Y8	$yw2 \times$Tropical material78599	White
C04	218-2-1	(S285×67B)×yw2	White	C19	wxA8	Selection of Landraces	White
C05	39A	w522×678	White	C20	yw9	self bred inbred lines	White
C06	41A	Yunnan introduced varieties	White	C21	YB4A	self bred inbred lines	White
C07	42A	Yunnan introduced varieties	White	C22	yw2	waxy maize Landraces×8701	White
C08	43B	Yunnan local materials	White	C23	yw8	Chongqing landrace×8701	White
C09	44A	Guizhou local materials	White	C24	Guang1	Guangxi waxy maize introduced varieties	White
C10	46A	Chongqing local materials	White	C25	Guang2D	Guangxi waxy maize introduced varieties	White
C11	710-8	9058×A47	Purple	C26	JingA	introduced varieties	White
C12	715-10	9A×A81	White	C27	JingB	introduced varieties	White
C13	8288-17	Selection of Suyunuo 2	White	C28	Mei18	Hainan landrace	Black
C14	8300-22	YA9×S41	White	C29	Mei8	introduced varieties	Purple
C15	S39-6-1	Hengbai522×698-3	White	C30	Zi1	Local purple waxy corn	Purple
redundant data of SNPs with minor allele frequency (MAF) < 5% and deletion rate > 20% were filtered out (Liu and Muse 2005; Zhang et al. 2016), and finally 15,111 high-quality SNP loci were obtained for subsequent analysis.

Statistical analysis

The genetic similarity coefficient was calculated by NTSYS-pc 2.11 software (Rohlf et al. 2000). Structure 2.2 was used to analyze the population genetic structure of the tested materials (Beaumont and Nichols 1996; Evanno et al. 2005). The genetic distance among strains was calculated by Nei’s algorithm (Nei et al. 1983). Based on Nei’s genetic distance, NTSYS-pc 2.11 software was used for principal component analysis (PCA), and two-dimensional space and three-dimensional space cluster graph were drawn. The NJ cluster diagram is constructed according to the neighbor joining method for cluster analysis (Tamura et al. 2013).

Results and analysis

Genetic similarity

The results of genetic similarity coefficient analysis of the tested materials were listed in Table 2, which varied from 0.4568 to 0.9974. The materials with the lowest similarity were C30 and C19, and the materials with the highest similarity were C16 and C18. The combinations with genetic similarity coefficients between 0.45 and 0.6 accounted for 68.81%, and the combinations between 0.60 and 0.75 accounted for 23.65%. Genetic similarity of materials from similar sources is relatively high, and genetic similarity analysis provided a direct basis for material classification (Fernie et al. 2006).

Population genetic structure

Population genetic structure refers to a non-random distribution of genetic variation in a species or population (Wang et al. 2008). The analysis of population structure helps to understand the evolution process, and the subgroup to which an individual belongs can be determined by the correlation study of genotype and phenotype (Inghelandt et al. 2010). The results of genetic structure analysis of the tested material population are shown in Fig. 1. The test material C10 belongs to the REID group represented by pink color; The ZI330 (ZI330 and Luda Honggu blood relationship) group represented by green color had no test materials; Material C17 belongs to LAN (Lancaster) group represented by light blue color; There was no classified representative inbred line in the blue group, which is classified into unknown group, and includes 25 test materials.

Principal component analysis

In order to reflect the genetic relationship between different groups, PCA analysis was performed on the groups of the tested materials based on SNP markers. The analysis results are shown in Figs. 2 and 3. Figure 2 is a plan view of PCA analysis, and Fig. 3 is a three-dimensional diagram made by PCA analysis. The straight-line distance between materials in the PCA diagram is proportional to the genetic distance. The genetic materials of different subgroups in the PCA analysis are marked with different colors. According to the concentration degree of each material, C09 and C10 were classified into LAN group and REID group respectively, and C17, C26 and C30 were classified into SPT group. The other materials could not cluster effectively with the existing common corn group materials, so waxy corn materials should be classified separately.

Cluster analysis

Based on the results of genetic similarity test and the test data of representative materials for common maize group classification, 30 materials were jointly mapped with specific representative materials from PB, SPT, REID, ZI330, 335FM (335 male parent blood relationship) and LAN populations, and the results were shown in Fig. 4. Among the 30 materials, 8 materials could be effectively integrated into the classification of common maize group, and 22 materials were clustered together independently, which was consistent with the results of principal component analysis.

In order to clarify the genetic relationship between waxy corn inbred lines and improve their utilization efficiency, a separate cluster analysis was performed on the tested waxy corn materials (Fig. 5). The 30
Table 2 The results of genetic similarity coefficient analysis of the tested materials

	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10
C01	1.0000									
C02	0.6166	1.0000								
C03	0.5333	0.5421	1.0000							
C04	0.6003	0.6774	0.5360	1.0000						
C05	0.5473	0.5610	0.4831	0.5540	1.0000					
C06	0.5595	0.5434	0.5245	0.5416	0.5641	1.0000				
C07	0.6207	0.5946	0.5133	0.5818	0.5964	0.6082	1.0000			
C08	0.5760	0.5923	0.5140	0.5877	0.5913	0.5743	0.6164	1.0000		
C09	0.5456	0.5483	0.4789	0.5552	0.5709	0.5324	0.5815	0.5773	1.0000	
C10	0.5263	0.5327	0.4801	0.5473	0.5902	0.5542	0.5698	0.5643	0.5791	1.0000
C11	0.5391	0.5479	0.5153	0.5440	0.5778	0.5815	0.5788	0.5652	0.5638	0.5901
C12	0.6258	0.7408	0.5663	0.7195	0.6073	0.5751	0.6303	0.6431	0.5943	0.5800
C13	0.6094	0.5515	0.5299	0.5515	0.5655	0.6189	0.6849	0.5838	0.5626	0.5558
C14	0.5695	0.5745	0.4978	0.5589	0.6057	0.5767	0.6356	0.5929	0.5618	0.5716
C15	0.5508	0.5575	0.5265	0.5239	0.5417	0.5454	0.5615	0.5494	0.5407	0.5297
C16	0.5922	0.5660	0.5149	0.5653	0.5948	0.6313	0.6966	0.6061	0.5893	0.5894
C17	0.5404	0.5574	0.4787	0.5476	0.5792	0.5820	0.6004	0.5848	0.5765	0.5653
C18	0.5919	0.5655	0.5155	0.5650	0.5943	0.6293	0.6955	0.6053	0.5889	0.5889
C19	0.5191	0.6074	0.5067	0.5202	0.5115	0.5110	0.5290	0.5135	0.4967	0.5018
C20	0.6057	0.6677	0.5712	0.6431	0.5722	0.5935	0.6205	0.6125	0.5602	0.5540
C21	0.5634	0.6004	0.5205	0.5759	0.5781	0.5853	0.5893	0.5824	0.5495	0.5462
C22	0.6644	0.8231	0.5858	0.7690	0.6024	0.5757	0.6428	0.6481	0.5910	0.5722
C23	0.5806	0.6082	0.5581	0.5746	0.5615	0.6105	0.5947	0.5856	0.5589	0.5427
C24	0.5679	0.5806	0.5186	0.5683	0.5878	0.5753	0.6260	0.6730	0.5766	0.5740
C25	0.5697	0.5740	0.5710	0.5738	0.5697	0.5734	0.6091	0.5890	0.5522	0.5548
C26	0.5359	0.5358	0.5379	0.5248	0.5575	0.5634	0.5794	0.5536	0.5374	0.5718
C27	0.5653	0.5616	0.5104	0.5572	0.5984	0.6861	0.6370	0.5922	0.5708	0.5851
C28	0.6208	0.5998	0.5166	0.5857	0.5972	0.6027	0.6027	0.6176	0.5893	0.5675
C29	0.5456	0.5506	0.5117	0.5431	0.5766	0.5900	0.6082	0.5648	0.5328	0.5634
C30	0.5088	0.5052	0.4693	0.4792	0.4847	0.5091	0.5529	0.5000	0.4920	0.4990

	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20
C11	1.0000									
C12	0.5935	1.0000								
C13	0.5929	0.5933	1.0000							
C14	0.5820	0.6087	0.5837	1.0000						
	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20
----	------	------	------	------	------	------	------	------	------	------
C15	0.5633	0.5743	0.5558	0.5415	1.0000					
C16	0.6012	0.6100	0.6280	0.6069	0.5653	1.0000				
C17	0.5748	0.5851	0.6064	0.5803	0.5368	0.5965	1.0000			
C18	0.5998	0.6094	0.6269	0.6061	0.5647	0.9974	0.5959	1.0000		
C19	0.5115	0.5614	0.5004	0.5130	0.5117	0.5215	0.4918	0.5210	1.0000	
C20	0.5841	0.7137	0.5926	0.5782	0.5620	0.6071	0.5740	0.6073	0.5407	1.0000
C21	0.5884	0.6430	0.5704	0.5692	0.5602	0.5900	0.5577	0.5892	0.5260	0.6242
C22	0.5914	0.8471	0.5940	0.6162	0.5677	0.6143	0.5927	0.6139	0.5917	0.7367
C23	0.5880	0.6289	0.6146	0.5631	0.5863	0.6189	0.5636	0.6187	0.5446	0.6409
C24	0.5664	0.6176	0.5911	0.5975	0.5575	0.6261	0.5720	0.6265	0.5164	0.6116
C25	0.5672	0.6101	0.5833	0.5765	0.5892	0.6102	0.5540	0.6105	0.5213	0.6120
C26	0.5681	0.5632	0.5610	0.5531	0.5200	0.5711	0.5740	0.5703	0.4865	0.5444
C27	0.5967	0.6019	0.6387	0.6046	0.5927	0.6684	0.6163	0.6681	0.5245	0.5988
C28	0.5817	0.6355	0.6782	0.6367	0.5626	0.6995	0.5999	0.6984	0.5305	0.6224
C29	0.5804	0.5847	0.5873	0.6487	0.5515	0.6159	0.5612	0.6156	0.5358	0.5751
C30	0.5147	0.4999	0.5347	0.4960	0.4762	0.5092	0.5255	0.5078	0.4568	0.5049

	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30
C01										
C02										
C03										
C04										
C05										
C06										
C07										
C08										
C09										
C10										
C11										
C12										
C13										
C14										
C15										
C16										
C17										
C18										
C19										
C20										
C21	1.0000									
C22	0.6518	1.0000								
C23	0.6233	0.6529	1.0000							
C24	0.5904	0.6319	0.6002	1.0000						
C25	0.5952	0.6265	0.6387	0.6201	1.0000					
C26	0.5364	0.5585	0.5315	0.5462	0.5321	1.0000				
C27	0.5837	0.6032	0.6080	0.5972	0.6025	0.5833	1.0000			
C28	0.5925	0.6499	0.5940	0.6242	0.6109	0.5764	0.6391	1.0000		

© Springer
waxy corn materials can be divided into five major groups, namely, Hengbai, YA, YB, YW and tropical material groups. The groups are named after the material sources or representative inbred lines. C11, C15, C21, C23 and C25 belong to Hengbai group; C01, C02, C04, C08, C12, C20, C22 and C24 belong to YW group; C03, C17, C26 and C30 belong to YA group; C05, C09 and C10 belong to YB group; C06, C17, C26 and C30 belong to tropical groups.

Table 2 (continued)

	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30
C29	0.5710	0.5988	0.6017	0.5845	0.5773	0.5430	0.6383	0.6072	1.0000	
C30	0.4896	0.5049	0.4843	0.5066	0.4994	0.5015	0.5022	0.5534	0.4856	1.0000

Fig. 1 The results of genetic structure analysis of the tested material population. Pink represents improved REID blood relationship; Green was ZI 330 and Luda Honggu blood relationship; Light green was the Lancaster (LAN) group; Light blue represents the blood relationship of Tang-Si-Ping-Tou (SPT)

Fig. 2 Two dimensional PCA analysis of Waxy Maize Inbred Lines. Yellow indicates the REID population and Improved REID blood related materials in the germplasm resource bank; Pink is ZI330 and Luda Honggu blood relationship group; Brown is the Tang-Si-Ping-Tou(SPT) group; Green is the Lancaster (LAN) group; Orange is PB group; Red is the backbone parent 335 male parent group; Blue is the 335 female parent group; Purple is the test sample in this project.
Fig. 3 Three dimensional PCA analysis of Waxy Maize Inbred Lines. Yellow indicates the REID population and Improved REID blood related materials in the germplasm resource bank; Pink is Zi330 and Luda Honggu blood relationship group; Brown is the Tang-Si-Ping-Tou (SPT) group; Green is the Lancaster (LAN) group; Orange is PB group; Red is the backbone parent 335’ male parent group; Blue is the 335’ female parent group; Purple is the test sample in this study.

Fig. 4 Phylogenetic tree of Waxy Maize Inbred Lines. The waxy maize inbred lines in this study were unmarked; Gray represents 335’ male parent blood relationship and 335’ female parent blood relationship; Blue represents Lancaster blood; Pink represents PB blood relationship; Red represents improved REID blood relationship; Green represents the blood relationship of Tang-Si-Ping-Tou (SPT); Yellow was ZI 330 and Luda Honggu blood relationship.
C07, C13, C14, C16, C18, C27, C28 and C29 belong to tropical material group, and C19 could not cluster in these five groups effectively.

Discussion

Southwest China is the origin center of waxy maize germplasm resources, which owns rich waxy maize germplasm resources. In this study, 30 waxy maize inbred lines commonly used in Southwest China were selected from Chongqing, Sichuan, Yunnan, Guizhou and other places, and the grain colors include white, purple and black, which were representative. SNP as the third-generation molecular marker has been applied in the fingerprint detection of common corn (Wu et al. 2014), but there are still few studies on waxy corn germplasm. Therefore, it is of great significance to use SNP molecular markers to analyze the genetic structure and diversity of waxy maize germplasm in Southwest China.

The results of this study showed that the genetic similarity coefficients between selected waxy corn germplasm resources ranged from 0.456 to 0.997, with an average value of 0.605. The materials with the lowest similarity were C30 and C19, and the materials with the highest similarity were C16 and C18. The genetic similarity coefficient of the 4.7% of the tested materials was between 0.65 and 0.89, and the genetic similarity coefficient > 0.89 accounted for 6.4% of the tested materials. In conclusion, the genetic similarity among waxy maize materials in Southwest China is low, the genetic relationships among the waxy maize materials are quite different, and the genetic basis is relatively rich, which is generally consistent with the previous results of group classification by SSR markers (Yu et al. 2012).

This study combined principal component analysis and population genetic structure analysis, and found that most of the tested materials and common maize genetic materials could not be effectively clustered together. There is a clear distinction between waxy maize genetic resources in Southwest China and representative inbred lines of commonly used maize in China. Waxy maize materials in Southwest China should be classified separately (Shi et al. 2015; Zheng et al. 2013).

There are few reports on the classification of waxy maize genetic materials, and the classification results are not the same due to different geographical and environmental conditions and test materials. Chen Jing et al. used SSR markers to divide 40 Northwest waxy maize inbred lines into 5 groups (Chen et al. 2009); Wu Yusheng et al. divided Yunnan local germplasm waxy maize materials into 3 groups and 5 subgroups (Wu et al. 2004); Chen Zhijian classified...
87 waxy maize inbred lines of Fujian into 4 groups, and the names of these groups were also different (Chen 2021). The research of Zhang Shengheng et al. showed that the main heterotic groups in Chongqing waxy maize breeding were S181 group and Hengbai group (Zhang et al. 2011).

In this study, the materials of S181 and its derivatives were unified into YW group, and most of the materials from Yunnan, Guangxi and Hainan were classified as tropical material group. Based on the results of the division of waxy maize germplasm resources, Chongqing Zhong Yi Seed Co., Ltd. using C12 (YW material 715-10) as the female parent and C14 (tropical material 8300-22) as the male parent successfully bred a new waxy corn variety ‘Q-nuo No.5’ (Lei 2020); Using C10(YB material 46A) as the female parent and C04 (YW material w218) as the male parent bred a new large ear waxy corn variety ‘Jinnuo 2’ (Zhang et al. 2021); using YW material yw2 as female parent and Hengbai material Qw101 as male parent bred a new waxy corn variety ‘Jinnuo 6’ with high quality and high yield. The main heterosis mode of these varieties was similar to S181 × Hengbai group and S181 × other groups proposed by Zhang Shengheng et al.

Conclusion

The genetic basis of waxy corn germplasm resources in southwestern China is rich, and it is clearly distinguished from the commonly used ordinary corn inbred lines. Their genetic relationship is relatively far, and could be used to create a new waxy corn hybrid dominant group classification system. In this study, 30 waxy maize inbred lines from Southwest China were divided into five groups, which provided a theoretical reference for waxy corn material utilization and new variety breeding. It not only effectively improved the waxy corn breeding, but also provided help for the utilization and innovation of germplasm resources.

Acknowledgements This work was supported by the Chongqing Scientific Research Institution Performance Incentive Guidance Project (cstc2020jxjl80012); Chongqing Basic Scientific Research Fund Project (2016cstc-jbky-00501). The author would like to thank Ms. Chen Xiangying, Chongqing Academy of Agricultural Sciences, for her help in writing this article.

Authors’ contributions This work was carried out in collaboration among all authors. Authors C.Z. and S.W. designed the experiments and provided resources for all experiments. Authors W.Z., L.C. and T.Y. collected the tested materials and performed field management. Author C.Z. conducted the DNA extraction. Authors C.Z., S.Z. and X.C. performed the experiments, managed the data analysis and wrote the manuscripts.

Funding This work was supported by the Chongqing Scientific Research Institution Performance Incentive Guidance Project (cstc2020jxjl80012); and Chongqing Basic Scientific Research Fund Project (2016cstc-jbky-00501).

Declarations

Conflict of interests The authors declare that they have no conflict of interests.

References

Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond 263(1377):1619–1626
Chen ZJ (2021) Genetic diversity analysis of 87 inbred lines of waxy maize. Seed 40(6):7
Chen J, Yang YF, Guo Q (2009) Study on genetic diversity about 40 waxy corn inbred lines by SSR markers. J Maize Sci 2009
Collins GN (1909) A new type of Indian corn from China
Corrado G, Piffanelli P, Caramante M, Coppola M, Rao R (2013) SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics 14(1):835
Evanno GS, Regnaut SJ, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620
Fernie AR, Tadmor Y, Zamir D (2006) Natural genetic variation for improving crop quality. Curr Opin Plant Biol 9(2):196–202
Guohua Z, Xiaowan Z, Jian M (2015) Effects of maturity on nutrients and color of chongqing sweet-waxy maize seed. J Chin Cereals Oils Assoc
Inghelandt DV, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120(7):1289–1299
Lei ZC-bYT-yWS-yZWC (2020) A new waxy corn F1 hybrid—‘Q-nuo No.5’. China Vegetables
Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 9:2128–2129
Lu Y, Shah T, Hao Z, Tabo S, Zhang S (2011) Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapid LD decay in tropical than temperate germplasm in maize. PLoS ONE 6(9):e24861
Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res
Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19(2):153–170
Rohlf F, Rohlf F, Rohlf F, Rohlf F, Rohlf FJ (2000) NTSYS-pc, Numerical Taxonomy and Multivariate Analysis System, version 2.1
Shi Y, Baishan LU, Song W, Li XU, Zhao J (2015) Genetic diversity analysis of waxy corn inbred lines by single nucleotide polymorphism (SNP) markers. Acta Agriculturae Boreali-Sinica
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729
Wang R, Yu Y, Zhao J, Shi Y, Song Y, Wang T, Yu L (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet 117(7):1141–1153
Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, Li Y (2014) Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet 127(3):621–631
Wu YS, Zheng YL, Sun R, Wu SY, Bi YH (2004) Genetic diversity of waxy corn and popcorn landraces in Yunnan by SSR markers. Acta Agronomica Sinica
Jin-Feng WU, Song W, Wang R, Tian HL, Xue LI, Wang FG, Zhao JR, Wei RH, Agronomy FO, University JA (2014) Heterotic grouping of 51 maize inbred lines by SNP markers. J Maize Sci 2014
Yu RH, Wang YL, Sun Y, Liu B (2012) Analysis of genetic distance by SSR in waxy maize. Genet Mol Res GMR 11(1):254–260
Zeng M (1987) Blood relationship of Chinese waxy maize
Zhang X, Zhang H, Li L, Lan H, Ren Z, Liu D, Wu L, Liu H, Jaqueth J, Li B (2016) Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genomics 17(1):697
Zhang SH, Yang H, Lei KR, Cai ZR, Xian H, Hong-Hua YL, Chen RL (2011) Analysis of Heterosis Groups and Heterosis models of waxy maize breeding in Chongqing. Southwest China J Agric Sci
Zheng H, Wang H, Hua Y, Wu J, Shi B, Cai R, Xu Y, Wu A, Luo L (2013) Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS ONE 8
Zhang Caibo YT, Wen S, Zhang W, Chen L (2021) A new waxy corn cultivar ‘Jinnuo 2’. Acta Horticulturae Sinica

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.