TWO-LAYERED NUMBERS

H. BEHZADIPOUR

Abstract. In this paper, first, I introduce two-layered numbers. Two-layered numbers are positive integers that their positive divisors except 1 can be partitioned into two disjoint subsets. Similarly, I defined a half-layered number as a positive integer n that its proper positive divisors excluding 1 can be partitioned into two disjoint subsets. I also investigate the properties of two-layered and half-layered numbers and their relation with practical numbers and Zumkeller numbers.

0. Introduction

A perfect number is a positive integer n that equals the sum of its proper positive divisors. Generalizing the concept of perfect numbers, Zumkeller in [1] published a sequence of integers that their divisors can be partitioned into two disjoint subsets with equal sum. Clark et al. in [2] called such integers Zumkeller numbers and investigated some of their properties, and also suggested some conjectures about them. Peng and Bhaskara Rao in [3] introduced half-Zumkeller numbers and provided interesting results about Zumkeller numbers.

In the present paper, I define two-layered numbers based on the concept of perfect numbers and Zumkeller numbers. A two-layered number is a positive integer n that its positive divisors excluding 1 can be partitioned into two disjoint subsets of an equal sum. A partition $\{A, B\}$ of the set of positive divisors of n except 1 is a two-layered partition if each of A and B has the same sum.

In the first section, I investigate the properties of two-layered numbers. For a two-layered number n, that sum of its divisors is $\sigma(n)$, the following statements hold (See Proposition 1.4):

Let $\sigma(n)$ be the sum of all positive divisors of n. If n is a two-layered number, then

1. $\sigma(n)$ is odd.
2. Powers of all odd prime factors of n should be even.
3. $\sigma(n) \geq 2n + 1$, so n is abundant.

After that, In theorem 1.5 I prove that The integer n is a two-layered number if and only if $\frac{\sigma(n) - 1}{2} - n$ is a sum of distinct proper positive divisors of n excluding 1. I also introduce two methods of generating new two-layered numbers from known two-layered numbers. Suppose that n is a two-layered number and p is a prime number with $(n, p) = 1$, then np^α is a two-layered number for any even positive integer α (See Theorem 1.7). We can also generate two-layered numbers in another way.

2010 Mathematics Subject Classification. 11R04.

Key words and phrases. two-layered numbers, weak two-layered numbers, perfect numbers, Zumkeller numbers.
way. Let n be a two-layered number and $p_1^{k_1} p_2^{k_2} \ldots p_m^{k_m}$ be the prime factorization of n. Then for any nonnegative integers $\alpha_1, \ldots, \alpha_m$, the integer

$$p_1^{k_1 + \alpha_1 (k_1 + 1)} p_2^{k_2 + \alpha_2 (k_2 + 1)} \ldots p_m^{k_m + \alpha_m (k_m + 1)}$$

is a two-layered number (See Theorem 1.8).

In the second section of the present paper, I generalize the concept of practical numbers and define semi-practical numbers. A practical number is a positive integer n that every positive integer less than n can be represented as a sum of distinct positive divisors of n [5]. A positive integer n is a semi-practical number if every positive integer x where $1 < x < \sigma(n)$, is a sum of distinct positive divisors of n excluding 1 (See Proposition 2.3). A positive integer n is half-layered if and only if $\sigma(n)$ is odd (See Proposition 2.5).

In section 3, I define a half-layered number. A positive integer n is said to be a half-layered number if the proper positive divisors of n excluding 1 can be partitioned into two disjoint non-empty subsets of an equal sum (See Definition 3.2). A half-layered partition for a half-layered number n is a partition $\{A, B\}$ of the set of proper positive divisors of n excluding 1 so that each of A and B sums to the same value (See Definition 3.2).

After these definitions, I investigate the properties of half-layered numbers. For example, a positive integer n is half-layered if and only if \(\frac{\sigma(n) - n - 1}{2} \) is the sum of some distinct positive proper positive divisors of n (See Proposition 3.3). A positive even integer n is half-layered if and only if \(\frac{\sigma(n) - 2n - 1}{2} \) is the sum (possibly empty sum) of some distinct positive proper divisors of n excluding n, \(\frac{n}{2} \), and 1 (See Theorem 3.5). If n is an odd half-layered number, then at least one of the powers of prime factors of n should be even (See Proposition 3.7).

Using the definition of half-Zumkeller numbers, we can derive some of the interesting properties of half-layered numbers. A positive integer n is said to be a half-Zumkeller number if the proper positive divisors of n can be partitioned into two disjoint non-empty subsets of an equal sum. A half-Zumkeller partition for a half-Zumkeller number n is a partition $\{A, B\}$ of the set of proper positive divisors of n so that each of A and B sums to the same value (Definition 3 in [3]). Based on these definition, I prove that if m and n are half-layered numbers with $(m, n) = 1$, then mn is half-layered (See Proposition 3.9).

After that, I investigate some relations between half-layered and two-layered numbers. For example, let n be even. Then n is half-layered if and only if n admits a two-layered partition such that n and $\frac{n}{2}$ are in distinct subsets. Therefore, if n is an even half-layered number then n is two-layered (See Proposition 3.10). It is also proved that if n is an even two-layered number and if $\sigma(n) < 3n$, then n is half-layered (See Theorem 3.11). Let n be even. Then, n is two-layered if and only if either n is half-layered or $\frac{\sigma(n) - 3n - 1}{2}$ is a sum (possibly an empty sum) of some positive divisors of n excluding n, \(\frac{n}{2} \), and 1 (See Proposition 3.12).
Theorem 1.5. The integer σ can conclude
Proof. (1) : If n positive divisors of n product $(k_1 \cdot n)$ of n prime factorization of two-layered number, then ℓn of n be an even half-layered number and the prime factorization of A positive integer $Definition 1.1. $A two-layered partition for a two-layered number $Definition 1.2. A is half-layered (See Proposition 3.18). Let n be the sum of all positive divisors of n excluding 1 so that each of A and B sums to the same value.
Example 1.3. The number 36 is a two-layered number and its two-layered partition is $\{A, B\}$, where $A = \{2, 3, 4, 36\}$ and $B = \{6, 9, 12, 18\}$. You can check that each of A and B has the sum of 45. The numbers 72, 144, and 200 are also two-layered. You can find the sequence of two-layered numbers in [4].
Proposition 1.4. Let $\sigma(n)$ be the sum of all positive divisors of n. If n is a two-layered number, then
1. $\sigma(n)$ is odd.
2. Powers of all odd prime factors of n should be even.
3. $\sigma(n) \geq 2n + 1$, so n is abundant.
Proof. (1) : If $\sigma(n)$ is even, then $\sigma(n) - 1$ is odd, so it is impossible to partition the positive divisors of n into two disjoint subsets of equal sum.
(2) : using (1), the number of odd positive divisors of n is odd. Suppose that the prime factorization of n is $2^k p_1^{k_1} p_2^{k_2} \ldots p_m^{k_m}$. The number of odd positive divisors of n is $(k_1 + 1)(k_2 + 1) \ldots (k_m + 1)$. All of k_i should be even in order to make the product $(k_1 + 1)(k_2 + 1) \ldots (k_m + 1)$ odd.
(3) : Let n be a two-layered number with two-layered partition $\{A, B\}$. Without loss of generality we may assume that $n \in A$, so the sum in A is at least n and we can conclude $\sigma(n) - 1 \geq 2n$. □
Theorem 1.5. The integer n is a two-layered number if and only if $\frac{\sigma(n) - 1}{2} - n$ is a sum of distinct proper positive divisors of n excluding 1.
Proof. Let n be a two-layered number and its two-layered partition is $\{A, B\}$. Without loss of generality we assume that $n \in A$, so the sum of the remaining elements of A is $\frac{\sigma(n) - 1}{2} - n$. Conversely, if we have a set of proper divisors of n excluding 1 that its sum is $\frac{\sigma(n) - 1}{2} - n$, we can augment this set with n to construct a set of positive divisors of n summing to $\frac{\sigma(n) - 1}{2}$. The complementary set of positive divisors of n sums to the same value, and so these two sets form a two-layered partition for n. □
With the help of the next two theorems, we can generate some new two-layered numbers by knowing a two-layered number.
Definition 1.6 (Definition 1 in [3]). A positive integer \(n \) is said to be a Zumkeller number if the positive divisors of \(n \) can be partitioned into two disjoint subsets of equal sum. A Zumkeller partition for a Zumkeller number \(n \) is a partition \(\{A, B\} \) of the set of positive divisors of \(n \) so that each of \(A \) and \(B \) sums to the same value.

Theorem 1.7. Let \(n \) be a two-layered number and \(p \) be a prime number with \((n, p) = 1\), then \(np^a \) is a two-layered number for any even positive integer \(a \).

Proof. Suppose that \(\{A, B\} \) is a Zumkeller partition of \(n \). Then \(\{(A \setminus \{1\}) \cup (pA) \cup (p^2A) \cup \ldots \cup (p^aA), (B \setminus \{1\}) \cup (pB) \cup (p^2B) \cup \ldots \cup (p^aB)\} \) is a two-layered partition of \(np^a \).

Theorem 1.8. Suppose that \(n \) is a two-layered number and \(p_1^{k_1} p_2^{k_2} \ldots p_m^{k_m} \) is the prime factorization of \(n \). Then for any nonnegative even integers \(\alpha_1, \ldots, \alpha_m \), the integer
\[
P = p_1^{k_1 + \alpha_1(k_1+1)} p_2^{k_2 + \alpha_2(k_2+1)} \ldots p_m^{k_m + \alpha_m(k_m+1)}
\]
is a two-layered number.

Proof. If we show that \(p_1^{k_1 + \alpha_1(k_1+1)} p_2^{k_2} \ldots p_m^{k_m} \) the proof will be completed. Suppose that \(\{A, B\} \) is a Zumkeller partition of \(n \). If \(D \) is the set of positive divisors of \(n \), then \((D \setminus \{1\}) \cup (p_1^{k_1+1}D) \cup (p_1^{2(k_1+1)}D) \cup \ldots \cup (p_1^{\alpha_1(k_1+1)}D) \) is the set of positive divisors of \(p_1^{k_1+\alpha_1(k_1+1)} p_2^{k_2} \ldots p_m^{k_m} \) excluding 1. Therefore a two-layered partition for \(p_1^{k_1+\alpha_1(k_1+1)} p_2^{k_2} \ldots p_m^{k_m} \) is \(\{A \setminus \{1\} \cup (p_1^{k_1+1}A) \cup (p_1^{2(k_1+1)}A) \cup \ldots \cup (p_1^{\alpha_1(k_1+1)}A), B \setminus \{1\} \cup (p_1^{k_1+1}B) \cup (p_1^{2(k_1+1)}B) \cup \ldots \cup (p_1^{\alpha_1(k_1+1)}B)\} \) and the proof is complete.

2. SEMI-PRACTICAL NUMBERS AND TWO-LAYERED NUMBERS

Practical numbers have been introduced by Srinivasan in 1948 as what follows:

Definition 2.1. A positive integer \(n \) is a practical number if every positive integer less than \(n \) can be represented as a sum of distinct positive divisors of \(n \).[5]

Because of the structure of two-layered number, if we change the definition of practical numbers and call them semi-practical numbers, we can drive some useful relation between them and two-layered numbers, so I define semi-practical numbers as what follows:

Definition 2.2. A positive integer \(n \) is practical if every positive integer \(x \) where \(1 < x < n \) can be represented as a sum of distinct positive divisors of \(n \) excluding 1.

Proposition 2.3. Every semi-practical number is divisible by 12.

Proof. Since we can not write 2, 3, and 4 as sums of more than one positive integer greater than 1, they should be divisors of our semi-practical number.

Theorem 2.4. A positive integer \(n \) is is a semi-practical number if and only if every positive integer \(x \) where \(1 < x < \sigma(n) \), is a sum of distinct positive divisors of \(n \) excluding 1.

Proof. Suppose that \(n \) is a semi-practical number. I introduce an algorithm for writing all positive integer \(x \) between \(n \) and \(\sigma(n) \) as sum of distinct positive divisors of \(n \) excluding 1.
Proposition 2.5. A semi-practical number n is two-layered if and only if $\sigma(n)$ is odd.

Proof. If n is two-layered number, then $\sigma(n)$ is odd by Proposition 2.3. Conversely, if $\sigma(n)$ is odd, then $\frac{\sigma(n) - 1}{2}$ is a positive integer smaller than $\sigma(n)$. Since n is a semi-practical number, using Proposition 2.4. □

Theorem 2.6. Let n be a positive integer and p be a prime with $(n, p) = 1$. Let D be the set of all positive divisors of n including 1. The following conditions are equivalent:

(1) np is two-layered.

(2) There exist two partitions $\{D_1, D_2\}$ and $\{D_3, D_4\}$ of $D \setminus \{1\}$ such that

$$p\left(\sum_{d \in D_1} d - \sum_{d \in D_2} d\right) = \left(\sum_{d \in D_3} d - \sum_{d \in D_4} d\right).$$

(3) There exists a partition $\{D_1, D_2\}$ of $D \setminus \{1\}$ and subsets $A_1 \subseteq D_1$ and $A_2 \subseteq D_2$ such that

$$\frac{p + 1}{2}\left(\sum_{d \in D_1} d - \sum_{d \in D_2} d\right) = \left(\sum_{d \in A_1} d - \sum_{d \in A_2} d\right).$$

Proof. It is clear that $(pD) \cup (D \setminus \{1\})$ is the set of all positive divisors of np excluding 1.

(1) \Rightarrow (2). Suppose that np is two-layered. Hence, there is a two-layered partition $\{A, B\}$ of $(pD) \cup (D \setminus \{1\})$. Let $D_1 = \frac{1}{p}(A \cap (pD))$, $D_2 = \frac{1}{p}(B \cap (pD))$, $D_3 = B \cap (D \setminus \{1\})$, $A \cap (D \setminus \{1\})$, then

$$p \sum_{d \in D_1} d + \sum_{d \in D_4} d = p \sum_{d \in D_2} d + \sum_{d \in D_3} d.$$

and the proof is complete.

(2) \Rightarrow (3). Let $A_1 = D_1 \cap D_3$ and $A_2 = D_2 \cap D_4$. We have
\[
\frac{p+1}{2} \left(\sum_{d \in D_1} d - \sum_{d \in D_2} d \right) = \frac{1}{2} \left[\sum_{d \in D_1} d - \sum_{d \in D_2} d \right] + \frac{1}{2} \left(\sum_{d \in D_1} d - \sum_{d \in D_2} d \right)
\]

\[
= \frac{1}{2} \left[\sum_{d \in D_3} d - \sum_{d \in D_4} d + \sum_{d \in D_1} d - \sum_{d \in D_2} d \right]
\]

\[
= \frac{1}{2} \left[\sum_{d \in D_1 \cap D_3} d - \sum_{d \in D_2 \cap D_4} d \right]
\]

\[
= \frac{1}{2} \left[2 \left(\sum_{d \in D_1} d \right) - 2 \left(\sum_{d \in D_2} d \right) \right]
\]

\[
= \sum_{d \in A_1} d - \sum_{d \in A_2} d.
\]

(3) ⇒ (1). We can rewrite the equation in (3) as follows:

\[
\frac{p}{2} \sum_{d \in D_1} d + \frac{1}{2} \sum_{d \in A_1} d + \frac{1}{2} \sum_{A_1 \setminus A_1} d = \frac{p}{2} \sum_{d \in D_2} d + \frac{1}{2} \sum_{d \in A_1} d + \frac{1}{2} \sum_{d \in A_2} d.
\]

By multiplying this by 2, we obtain the two-layered partition \{(pD_1) \cup A_2 \cup (D_1 - A_1), (pD_2) \cup A_1 \cup (D_2 - A_2)\} for np, so np is a two-layered number. □

Proposition 2.7. Let the positive divisors of \(n\) excluding 1 be written in increasing order as follows: \(a_1 < a_2 < \cdots < a_k = n\). If \(a_{i+1} < 2a_i\) for all \(1 \leq i < k\) and \(\sigma(n)\) is odd, then \(n\) is two-layered.

Proof. Let \(b_i = a_i\) or \(a_i\) for each \(i\). I will explain how to choose the sign of \(b_i\) precisely. Then I show that \(\sum_{i=1}^{k} b_i = 0\). Hence, it will imply that \(\sigma(n) - 1\) can be partitioned into two equal-summed subsets.

Let \(b_k = a_k = n\) and let \(b_{k-1} = a_{k-1}\). Note that \(0 < b_k + b_{k-1} < a_{k-1}\) since \(a_{k} < 2a_{k-1}\). Since the current sum \(b_k + b_{k-1}\) is positive, we assign the negative sign to \(b_{k-1}\). Then \(b_{k-1} < b_k + b_{k-1} + b_{k-2} < a_{k-1}a_{k-2}\) since \(a_{k-2} < 2a_{k-2}\). If \(b_k + b_{k-1} + b_{k-2} \geq 0\), we assign the negative sign to \(b_{k-2}\); otherwise, we assign the positive sign to \(b_{k-2}\). Let \(s_i\) be \(\sum_{j=1}^{i} b_j\). In general, the sign assigned to \(b_{i+1}\) is the opposite of the sign of \(s_i\). Let us show inductively that \(|s_i| < a_i\) for \(1 \leq i \leq k\). It is true for \(i = k\). Assume that \(|s_{i+1}| < a_{i+1}\). Since the sign of \(b_i\) is opposite of the sign of \(s_{i+1}\), \(s_i = |s_{i+1}|a_i\). Note that \(a_i < |s_{i+1}|a_i < a_{i+1}a_i < a_i\) since \(a_{i+1} < 2a_i\). Therefore \(|s_i| < a_i\). So \(|s_1| < a_1 = 1\). Since \(\sigma(n) - 1\) is even, \(s_1\), which is obtained by assigning a positive or negative sign to each of the terms in \(\sigma(n) - 1\) is even as well. So \(s_1 = 0\). This implies that \(\sigma(n) - 1\) can be partitioned into two equal-summed subsets. Hence it is two-layered. □

Proposition 2.8 (Proposition 1 in [3]). Let the prime factorization of \(n\) be \(\prod_{i=1}^{m} p_i^{k_i}\). Then

\[
\sigma(n) = \prod_{i=1}^{m} \frac{p_i^{k_i+1} - 1}{p_i - 1}
\]

and

\[
\frac{\sigma(n)}{n} = \prod_{i=1}^{m} \frac{p_i^{k_i+1} - 1}{p_i^{k_i}(p_i - 1)} < \prod_{i=1}^{m} \frac{p_i}{p_i - 1}
\]
Proposition 2.9. Let the prime factorization of an odd number \(n \) be \(p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m} \), where \(3 \leq p_1 < p_2 < \cdots < p_m \). If \(n \) is two-layered, then
\[
\prod_{i=1}^{m} \frac{p_i}{p_i - 1} > 2,
\]
and \(m \) is at least 3. In particular:

1. If \(m \leq 6 \), then \(p_1 = 3 \), \(p_2 = 5 \), \(7 \) or \(11 \).
2. If \(m \leq 4 \), then \(p_1 = 3 \), \(p_2 = 5 \) or \(7 \).
3. If \(m = 3 \), then \(p_1 = 3 \), \(p_2 = 5 \), and \(p_3 = 7 \) or \(11 \) or \(13 \).

Proof. If \(n \) is two-layered, then by Propositions 1.4 and 2.8,
\[
2^{p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}} = 2n < \sigma(n) = m \prod_{i=1}^{m} (p_i^{j_i} - 1).
\]
Dividing both sides by \(p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m} \), we get
\[
2 < \prod_{i=1}^{m} (\sum_{j=0}^{k_i} p_i^{-j_i}) < \prod_{i=1}^{m} \frac{p_i}{p_i - 1}.
\]
If \(m \leq 2 \), then
\[
\prod_{i=1}^{m} \frac{p_i}{p_i - 1} \leq \frac{3}{2} < 2.
\]
Therefore \(m \geq 3 \). The parts of 1–3 follows by verifying the condition \(\prod_{i=1}^{m} \frac{p_i}{p_i - 1} > 2 \) directly as given below.

1. Let \(m \leq 6 \). If \(p_1 \neq 3 \), then \(p_1 \geq 5 \) and
\[
\prod_{i=1}^{m} \frac{p_i}{p_i - 1} \leq \frac{5}{4} \times \frac{7}{6} \times \frac{11}{10} \times \frac{13}{12} \times \frac{17}{16} \times \frac{19}{18} < 2.
\]
Therefore, \(p_1 = 3 \). If \(p_2 > 11 \), then \(p_2 \geq 13 \) and
\[
\prod_{i=1}^{m} \frac{p_i}{p_i - 1} \leq \frac{3}{2} \times \frac{13}{12} \times \frac{17}{16} \times \frac{19}{18} \times \frac{23}{22} \times \frac{29}{28} < 2.
\]
Hence, \(p_2 \leq 11 \). This implies that \(p_2 = 5 \), \(7 \) or \(11 \).

2. Let \(m \leq 4 \). By 1, \(p_1 = 3 \). If \(p_2 > 7 \), then \(p_2 \geq 11 \), so
\[
\prod_{i=1}^{m} \frac{p_i}{p_i - 1} \leq \frac{3}{2} \times \frac{11}{10} \times \frac{13}{12} \times \frac{17}{16} < 2.
\]
Therefore, \(p_2 \leq 7 \). This implies that \(p_2 = 5 \) or \(7 \).

3. Let \(m = 3 \). By 1, \(p_1 = 3 \). If \(p_2 \neq 5 \), then \(p_2 \geq 7 \) and \(p_3 \geq 11 \). So
\[
\prod_{i=1}^{m} \frac{p_i}{p_i - 1} \leq \frac{3}{2} \times \frac{7}{6} \times \frac{11}{10} < 2.
\]
Hence \(p_2 = 5 \).

If \(p_3 \geq 17 \), then
\[
\prod_{i=1}^{m} \frac{p_i}{p_i - 1} \leq \frac{3}{2} \times \frac{5}{4} \times \frac{17}{16} < 2.
\]
Hence, \(p_3 < 17 \) and consequently \(p_3 = 7 \), \(11 \) or \(13 \).
3. HALF-LAYERED NUMBERS

Definition 3.1. A positive integer \(n \) is said to be a half-layered number if the proper positive divisors of \(n \) excluding 1 can be partitioned into two disjoint non-empty subsets of equal sum.

Definition 3.2. A half-layered partition for a half-layered number \(n \) is a partition \(\{ A, B \} \) of the set of proper positive divisors of \(n \) excluding 1 so that each of \(A \) and \(B \) sums to the same value.

Proposition 3.3. A positive integer \(n \) is half-layered if and only if \(\frac{\sigma(n) - n - 1}{2} \) is the sum of some distinct positive proper positive divisors of \(n \).

Example 3.4. In Example 1.3, we saw that 36 was a two-layered number. It is also a half-layered number and its half-layered partition is \(\{ A, B \} \), where \(A = \{ 2, 3, 4, 18 \} \) and \(B = \{ 6, 9, 12 \} \). You can check that each of \(A \) and \(B \) has the sum of 27. The numbers 72, 105, and 144 are also half-layered. You can find the sequence of half-layered numbers in [6].

Theorem 3.5. A positive even integer \(n \) is half-layered if and only if \(\frac{\sigma(n) - 2n - 1}{2} \) is the sum (possibly empty sum) of some distinct positive divisors of \(n \) excluding \(n, \frac{n}{2}, \) and 1.

Proof. An even number \(n \) is half-layered if and only if there exists a which is the sum (possibly empty sum) of some positive divisors of \(n \) excluding \(n, \frac{n}{2}, \) and 1 such that
\[
\frac{n}{2} + a = \frac{\sigma(n) - n - 1}{2}.
\]
Therefore, \(a = \frac{\sigma(n) - 2n - 1}{2} \).□

Example 3.6. The number \(3^4 \times 2^4 \) is a half-layered number, since
\[
\frac{\sigma(3^4 \times 2^4) - 2(3^4 \times 2^4) - 1}{2} = 579 = 432 + 108 + 36 + 3
\]
is a sum of positive divisors of \(3^4 \times 2^4 \) excluding \(3^4 \times 2^4, 3^4 \times 2^3 \), and 1. Hence, by Theorem 3.5 it is a half-layered number.

Proposition 3.7. If \(n \) is an odd half-layered number, then at least one of the powers of prime factors of \(n \) should be even.

Proof. If \(n \) is odd and half-layered, then \(\sigma(n)n - 1 \) must be even and \(\sigma(n) \) must be even. Let the prime factorization of \(n \) be \(\prod_{i=1}^{m} P_i^{k_i} \). Then \(\sigma(n) = \prod_{i=1}^{m} (\sum_{j=0}^{k_i} P_i^j) \). If \(\sigma(n) \) is odd, then there exists one \(k - i \) which is odd.□

Definition 3.8 (Definition 3 in [3]). A positive integer \(n \) is said to be a half-Zumkeller number if the proper positive divisors of \(n \) can be partitioned into two disjoint non-empty subsets of an equal sum. A half-Zumkeller partition for a half-Zumkeller number \(n \) is a partition \(\{ A, B \} \) of the set of proper positive divisors of \(n \) so that each of \(A \) and \(B \) sums to the same value.

Proposition 3.9. If \(m \) and \(n \) are half-layered numbers with \((m, n) = 1\), then \(mn \) is half-layered.
Proof. Let \(M \) be the set of proper positive divisors of \(m \) and let \(\{M_1, M_2\} \) be a half-Zumkeller partition for \(m \). Let \(N \) be the set of proper positive divisors of \(n \) and let \(\{N_1, N_2\} \) be a half-Zumkeller partition for \(n \). Since \((m, n) = 1\), then the set of proper positive divisors of \(mn \) is \((MN) \cup (nM) \cup (mN)\). Observe that \(\{(M_1, N \setminus \{1\}) \cup (mN_1) \cup (nM_1), (M_2N \setminus \{1\}) \cup (mN_2) \cup (nM_2)\} \) is a half-layered partition for \(mn \). Therefore \(mn \) is half-layered.

Proposition 3.10. Let \(n \) be even. Then \(n \) is half-layered if and only if \(n \) admits a two-layered partition such that \(n \) and \(\frac{n}{2} \) are in distinct subsets. Therefore, if \(n \) is an even half-layered number then \(n \) is two-layered.

Proof. Let \(n \) be even. Let \(D \) be the set of all positive divisors of \(n \) excluding 1. The number \(n \) is half-layered if and only if there exists \(A \subseteq D \setminus \{n, \frac{n}{2}\} \) such that \[
\frac{n}{2} + \sum_{a \in A} a = \sum_{b \in D, b \notin \{n, \frac{n}{2}\}} b.
\]
That is,
\[
n + \sum_{a \in A} a = \frac{n}{2} + \sum_{b \in D, b \notin \{n, \frac{n}{2}\}} b.
\]
This is equivalent to saying that \(n \) admits a two-layered partition such that \(n \) and \(\frac{n}{2} \) are in distinct subsets.

Theorem 3.11. Let \(n \) be an even two-layered number. If \(\sigma(n) < 3n \), then \(n \) is half-layered.

Proof. Since \(n \) and \(\frac{n}{2} \) together sum to more than \(\frac{\sigma(n)}{2} \), they must be in different subsets in any two-layered partition for \(n \). Therefore, by Proposition 3.10, \(n \) is half-layered.

Proposition 3.12. Let \(n \) be even. Then, \(n \) is two-layered if and only if either \(n \) is half-layered or \(\frac{\sigma(n) - 3n - 1}{2} \) is a sum (possibly an empty sum) of some positive divisors of \(n \) excluding \(n, \frac{n}{2}, \) and 1.

Proof. Let \(n \) be even. If \(n \) is two-layered but not half-layered, then by Proposition 3.10 any two-layered partition of the positive divisors of \(n \) must have \(n \) and \(\frac{n}{2} \) in the same subsets. In other words, there exists \(a \) which is a sum (possibly an empty sum) of some positive divisors of \(n \) excluding \(n, \frac{n}{2}, \) and 1 such that
\[
2(n + \frac{n}{2} + a) = \sigma(n) - 1
\]
So, \(a = \frac{\sigma(n) - 3n - 1}{2} \). Therefore, the number \(\frac{\sigma(n) - 3n - 1}{2} \) is a sum (possibly an empty sum) of some positive divisors of \(n \) excluding \(n, \frac{n}{2}, \) and 1.

If \(n \) is half-layered, then \(n \) is two-layered by Proposition 3.10. If \(\frac{\sigma(n) - 3n - 1}{2} \) is a sum (possibly an empty sum) of some positive divisors of \(n \) excluding \(n, \frac{n}{2}, \) and 1, then
\[
\frac{\sigma(n) - 2n - 1}{2} = \frac{\sigma(n) - 3n - 1}{2} + \frac{n}{2}
\]
is a sum of some positive divisors of \(n \) excluding \(n \), and 1. By Theorem 1.5, the number \(n \) is two-layered.
Proposition 3.13. If 6 divides \(n \) and \(\sigma(n) < \frac{10n}{3} \), then \(n \) is half-layered.

Proof. If \(n \) is not half-layered, by Proposition 3.12, \(\frac{\sigma(n) - 3n - 1}{2} \) is a sum (might be an empty sum) of some positive divisors of \(n \) excluding \(n, \frac{n}{2}, \) and 1. Then,

\[
\frac{\sigma(n) - 2n - 1}{2} = \frac{\sigma(n) - 3n - 1}{2} + \frac{n + n}{6}.
\]

Since \(\sigma(n)/n < \frac{10}{3} \) we have that \(\frac{\sigma(n) - 3n - 1}{2} < \frac{n}{3} \). Hence \(\frac{\sigma(n) - 2n - 1}{2} \) is a sum of some positive divisors of \(n \) excluding \(n, \frac{n}{2}, \) and 1. By Proposition 3.3, \(n \) is half layered. This is a contradiction.

Proposition 3.14. If \(n \) is two-layered, then \(2n \) is half-layered.

Proof. Let \(n = 2^kL \) with \(k \) a nonnegative integer and \(L \) an odd number, be a two-layered number. Then all positive divisors of \(n \) excluding 1 can be partitioned into two disjoint equal-summed subsets \(D_1 \) and \(D_2 \). Observe that every positive divisor of \(2n \) which is not a positive divisor of \(n \) can be written as \(2^{k+1}\ell \) where \(\ell \) is a positive divisor of \(L \). Therefore all positive divisors of \(2n \) which are not positive divisors of \(n \) except 2n itself. This procedure will yield an equal-summed partition of all positive divisors of \(2n \) except \(2n \) itself. This shows that \(2n \) is half-Zumkeller.

Corollary 3.15. Let \(n \) be even and the prime factorization of \(n \) be \(2^k p_1^{k_1} \cdots p_m^{k_m} \). If \(n \) is two-layered but not half-layered, then \(2^k p_1^{k_1} \cdots p_m^{k_m} \) is not two-layered for any \(i \leq k - 1 \), and \(2^k p_1^{k_1} \cdots p_m^{k_m} \) is half-layered for any \(i \geq k + 1 \).

Proposition 3.16. Let \(n \) be an even half-layered number and \(p \) be a prime with \((n, p) = 1 \). Then \(np^\ell \) is half-layered for any positive integer \(\ell \).

Proof. Since \(n \) is an even half-layered number, the set of all positive divisors of \(n \), excluding 1, denoted by \(D_0 \) can be partitioned into two disjoint subsets \(A_0 \) and \(B_0 \) so that the sums of the two subsets are equal and \(\frac{n}{2} \) are in distinct subsets (by Proposition 3.10).

Group the positive divisors of \(np^\ell \) except 1 into \(\ell + 1 \) groups \(D_0, D_1, \ldots, D_\ell \) according to how many positive divisors of \(p \) they admit, i.e., \(D_i \) consists of all positive divisors of \(np^\ell \) admitting \(i \) positive divisors of \(p \). Then each \(D_i \) can be partitioned into two disjoint subsets so that the sums of the two subsets are equal and \(\frac{np^\ell}{2} \) are in distinct subsets according to the two-layered partition of the set \(D_0 \). Therefore all positive divisors of \(np^\ell \) excluding 1 can be partitioned into two disjoint subsets so that the sum of these two subsets equal and \(np^\ell \) and \(\frac{np^\ell}{2} \) are in distinct subsets. By Proposition 3.10, \(np^\ell \) is half-layered.

Corollary 3.17. If \(n \) is an even half-layered number and \(m \) is a positive integer with \((n, m) = 1 \), then \(nm \) is half-layered.

Theorem 3.18. Let \(n \) be an even half-layered number and the prime factorization of \(n \) be \(p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m} \). Then for nonnegative integers \(\ell_1, \ldots, \ell_m \), the integer

\[
p_1^{k_1 + \ell_1(k_1 + 1)} p_2^{k_2 + \ell_2(k_2 + 1)} \cdots p_m^{k_m + \ell_m(k_m + 1)}
\]

is half-layered.
Proof. It is sufficient to show that \(p_1^{k_1} p_2^{k_2} \ldots p_m^{k_m} \) is half-layered if \(p_1^{k_1} p_2^{k_2} \ldots p_m^{k_m} \) is an even half-layered number. Assume that \(p_1^{k_1} p_2^{k_2} \ldots p_m^{k_m} \) is even and half-layered, then the set of all positive divisors of \(n \) excluding 1, denoted by \(D_0 \), can be partitioned into two disjoint subsets \(A_0 \) and \(B_0 \) so that the sums of the two subsets are equal and \(\frac{n}{2} \) are in distinct subsets (by Proposition 3.10). Note that the positive divisors of \(p_1^{k_1+\ell_1(k_1+1)} p_2^{k_2} \ldots p_m^{k_m} \) excluding 1 can be partitioned into \(\ell_1 + 1 \) disjoint groups \(D_i, 0 \leq i \leq \ell_1 \), where elements in \(D_i \) are obtained by multiplying \(p_i^{\ell_1(k_i+1)} \) with elements in \(D_0 \). Using the partition \(A_0, B_0 \) of \(D_0 \) we can partition every \(D_i \) into two disjoint subsets \(A_i \) and \(B_i \) so that the sums of the corresponding subsets are equal and \(np_1^{\ell_1(k_1+1)} \) and \(\frac{np_1^{\ell_1(k_1+1)}}{2} \) are in distinct subsets. Therefore, the set of all positive divisors of \(p_1^{k_1+\ell_1(k_1+1)} p_2^{k_2} \ldots p_m^{k_m} \) excluding 1 can be partitioned into two disjoint equal-summed subsets and \(p_1^{k_1+\ell_1(k_1+1)} p_2^{k_2} \ldots p_m^{k_m} \) and \(\frac{np_1^{\ell_1(k_1+1)}}{2} p_2^{k_2} \ldots p_m^{k_m} \) are in distinct subsets. By Proposition 3.10, \(p_1^{k_1+\ell_1(k_1+1)} p_2^{k_2} \ldots p_m^{k_m} \) is half-layered.

Theorem 3.19. Let \(n \) be an even integer and \(p \) be a prime with \((n, p) = 1 \). Let \(D \) be the set of all positive divisors of \(n \) excluding 1. Then the following conditions are equivalent:

1. \(np \) is half-layered.
2. There exist two partitions \(\{D_1, D_2\} \) and \(\{D_3, D_4\} \) of \(D \) such that \(n \) is in \(D_1 \), \(\frac{n}{2} \) is in \(D_2 \), and

\[
p(\sum_{d \in D_1} d - \sum_{d \in D_2} d) = \sum_{d \in D_3} d - \sum_{d \in D_4} d.
\]

3. There exists a partition \(\{D_1, D_2\} \) of \(D \) and subsets \(A_1 \subseteq D_1 \) and \(A_2 \subseteq D_2 \) such that \(n \) is in \(D_1 \), \(\frac{n}{2} \) is in \(D_2 \), and

\[
p + 1 \left(\sum_{d \in D_1} d - \sum_{d \in D_2} d \right) = \sum_{d \in A_1} d - \sum_{d \in A_2} d.
\]

Proof. By Proposition 3.10, \(np \) is half-layered if and only if there is a two-layered partition \(\{A, B\} \) of \((pD) \cup D \) such that \(n \in A \) and \(\frac{n}{2} \in B \). The rest of the proof follows along the lines of the proof of Theorem 2.7. □

Proposition 3.20. If \(a_1 < a_2 < \cdots < a_k = n \) are all positive divisors of an even number \(n \) excluding 1 with \(a_{i+1} < 2a_i \) for all \(i \) and \(\sigma(n) \) is odd, then \(n \) is half-layered.

Proof. Note that in the proof of Proposition 2.7, \(b_k = n \) and \(b_{k1} = -\frac{n}{2} \) have different signs. So we get a two-layered partition of \(n \) such that \(n \) and \(\frac{n}{2} \) are in distinct subsets. By Proposition 3.10, \(n \) is half-layered. □

References

[1] The online Encyclopedia of Integer Sequences, https://oeis.org/A083207/.
[2] S. Clark, J. Dalzell, J. Holliday, D. Leach, M. Liatti, M. Walsh, Zumkeller numbers, presented in the Mathematical Abundance Conference at Illinois State University on April 18th, 2008.
[3] K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller numbers, Journal of Number Theory 133, No. 4 (2013) 1135-1155
[4] The online Encyclopedia of Integer Sequences, https://oeis.org/A322657/.
[5] A.K. Srinivasan, Practical numbers, Current Sci. 17 (1948) 179180, MR0027799.
[6] The online Encyclopedia of Integer Sequences, https://oeis.org/A322658/.

School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran

E-mail address: hussein.behzadipour@gmail.com, h.behzadi@ut.ac.ir