Atomic Collision Processes for Astrophysical and Laboratory Plasmas

M S Pindzola\(^1\), S D Loch\(^1\), C P Ballance\(^1\), Sh A Abdel-Naby\(^1,2\), T G Lee\(^1\), J Colgan\(^3\), C J Fontes\(^3\), N R Badnell\(^4\) and M G O’Mullane\(^4\)

\(^1\) Department of Physics, Auburn University, Auburn, AL 36849, USA
\(^2\) Department of Physics, Beni Suef University, Beni Suef, Egypt
\(^3\) Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
\(^4\) University of Strathclyde, Glasgow, UK

E-mail: pindzola@physics.auburn.edu

Abstract. An accurate knowledge of atomic collision processes is important for a better understanding of many astrophysical and laboratory plasmas. Collision databases which contain electron-impact excitation, ionization, and recombination cross sections and temperature dependent rate coefficients have been constructed using perturbative distorted-wave methods and non-perturbative R-matrix pseudo-states and time-dependent close-coupling methods. We present recent atomic collision results.

1. Introduction

Accurate atomic and molecular databases underpin current research efforts in a variety of scientific and engineering areas: including controlled fusion energy, astrophysics, radiation biophysics, fluorescent lamps, and atmospheric pollutant removal. For example, all light elements (H-O) are of interest for fusion experiments; in particular Li and B as wall coating materials and Be and C as primary wall materials.

Over the years both theory and experiment have provided increasingly more accurate cross sections for the electron-impact excitation, ionization, and recombination of atoms and their ions. In this paper we review perturbative distorted-wave methods and non-perturbative R-matrix with pseudo-states and time-dependent close-coupling methods in both their non-relativistic and fully-relativistic versions.

The rest of the review paper is structured as follows: in Section II we describe distorted-wave, R-matrix, and time-dependent close-coupling methods and give an electron-impact ionization cross section example, and in Section III we give a brief review of current projects.

2. Basic Collision Theory

2.1. Configuration-Average Distorted-Wave (CADW) Method

For ionization a general transition between configurations has the form:

\[
(n_0l_0)^{w_0}k_ii_i \rightarrow (n_0l_0)^{w_0-1}k_e l_e k_f l_f ,
\]

where \(w_0\) is a subshell occupation number, \(n_0l_0\) are quantum numbers of the bound electron, and \(k_ii_i, k_e l_e, \) and \(k_f l_f\) are quantum numbers of the initial, ejected, and final continuum electrons.
The configuration-average ionization cross section is given by[1]:
\[
\sigma_{\text{ion}} = \frac{32\pi}{k^3} \int_0^{E/2} \frac{de_c}{k_e k_f} \sum_{l_i, l_f} (2l_i + 1)(2l_f + 1) S(n_0 \ell_0 k_i l_i \rightarrow k_e l_e k_f l_f),
\]
where \(k = \sqrt{2\varepsilon} \) and the continuum normalization is one times a sine function.

For excitation a general transition between configurations has the form:
\[
(n_1 l_1)^{w_1+1}(n_2 l_2)^{w_2-1} k_i l_i \rightarrow (n_1 l_1)^{w_1}(n_2 l_2)^{w_2} k_f l_f,
\]
where \(w_1 \) and \(w_2 \) are subshell occupation numbers, \(n_1 l_1 \) and \(n_2 l_2 \) are quantum numbers of the bound electrons, and \(k_i l_i \) and \(k_f l_f \) are quantum numbers of the initial and final continuum electrons. The configuration-average average excitation cross section is given by:
\[
\sigma_{\text{exc}} = \frac{8\pi}{k^3} (w_1+1)(4l_2 + 3 - w_2) \sum_{l_i, l_f} (2l_i + 1)(2l_f + 1) S(n_1 l_1 k_i l_i \rightarrow n_2 l_2 k_f l_f).
\]

For dense plasmas the initial and final distorted-waves and the Coulomb matrix elements found in \(S(n_0 \ell_0 k_i l_i \rightarrow k_e l_e k_f l_f) \) of Eq.(2) and \(S(n_1 l_1 k_i l_i \rightarrow n_2 l_2 k_f l_f) \) of Eq.(4) are modified to include an exponential screening factor:
\[
SF(r) = e^{-r/\Lambda},
\]
where the Debye-Huckel screening radius \(\Lambda = \sqrt{T_e/4\pi N_e} \), \(T_e \) is the electron temperature, and \(N_e \) is the electron density. Fully-relativistic subconfiguration-average distorted-wave ionization and excitation cross sections may also be calculated[2].

2.2. R-Matrix Pseudo-States (RMPS) Method

The R-Matrix method[3] splits the scattering process into two regions. The total wavefunction in the inner region is given by:
\[
\Psi_k^{N+1} = A \sum_{i,j} a_{ijk} \psi_i^{N+1} \frac{u_{ij}(r_{N+1})}{r_{N+1}} + \sum_i b_{ik} \chi_i^{N+1},
\]
where \(A \) is an antisymmetrization operator, \(\psi_i^{N+1} \) are channel functions obtained by coupling \(N \) electron target states with the angular and spin functions of the scattered electron, \(u_{ij}(r) \) are radial continuum basis functions, and \(\chi_i^{N+1} \) are bound functions which ensure the completeness of the total wavefunction. The coefficients \(a_{ijk} \) and \(b_{ik} \) are determined by diagonalization of the total \((N+1) \) electron Hamiltonian. The total wavefunction in the outer region is given by:
\[
\Psi_k^{N+1} = \sum_i \psi_i^{N+1} \frac{v_i(r_{N+1})}{r_{N+1}},
\]
where the radial wavefunctions \(v_i(r) \) are obtained by solving the coupled differential equations given by:
\[
[T_i(r) + V_{ij}(r)]v_i(r) = 0
\]
where \(T_i(r) \) is a kinetic and nuclear energy operator and \(V_{ij}(r) \) is an asymptotic coupling operator. The inner and outer region solutions are matched at the boundary and the K-matrix is extracted. Excitation cross sections are obtained by relating the K-matrix to the S-matrix.

Over the years, a non-relativistic RMLS suite of codes has been developed for low Z atoms and ions, a semi-relativistic RMMLSJ suite of codes has been developed for medium Z atoms and ions, and a fully-relativistic RMjjJ suite of codes has been developed for high Z atoms and ions. With the addition of pseudo-states, the R-matrix method becomes more accurate for excitation to high-lying excited states. The RMPS method can also be used to calculate electron-impact ionization cross sections, including both direct ionization and excitation-autoionization.
2.3. Time-Dependent Close-Coupling (TDCC) Method

The time-dependent Schrödinger equation for two-active electron atomic systems is given by:

$$i \frac{\partial \Psi(\vec{r}_1, \vec{r}_2, t)}{\partial t} = H(\vec{r}_1, \vec{r}_2) \Psi(\vec{r}_1, \vec{r}_2, t),$$ \hspace{1cm} (9)

where

$$H(\vec{r}_1, \vec{r}_2) = -\frac{1}{2} \nabla_1^2 + V(r_1) - \frac{1}{2} \nabla_2^2 + V(r_2) + \frac{1}{|\vec{r}_1 - \vec{r}_2|}.$$ \hspace{1cm} (10)

Expanding in coupled spherical harmonics:

$$\Psi(\vec{r}_1, \vec{r}_2, t) = \sum_{l_1, l_2} \frac{P_{l_1 l_2}^{LS}(r_1, r_2, t)}{r_1 r_2} \sum_{m_1, m_2} C_{m_1 m_2 M}^{l_1 l_2 L} Y_{l_1 m_1} (\vec{r}_1) Y_{l_2 m_2} (\vec{r}_2)$$ \hspace{1cm} (11)

yields the time-dependent close-coupled equations[4]:

$$i \frac{\partial P_{l_1 l_2}^{LS}(r_1, r_2, t)}{\partial t} = [T_{l_1}(r_1) + T_{l_2}(r_2)] P_{l_1 l_2}^{LS}(r_1, r_2, t) + \sum_{\ell_1', \ell_2'} V_{l_1 l_2, \ell_1' \ell_2'}^{L} (r_1, r_2) P_{l_1' l_2'}^{LS}(r_1, r_2, t),$$ \hspace{1cm} (12)

where

$$T_l(r) = -\frac{1}{2} \frac{\partial^2}{\partial r^2} \frac{l(l + 1)}{2r^2} + V(r)$$ \hspace{1cm} (13)

and $V_{l_1 l_2, \ell_1' \ell_2'}^{L} (r_1, r_2)$ is a two-body coupling operator.

Fully-relativistic time-dependent close-coupling equations[5] may also be derived based on the time-dependent Dirac equation. After time propagation of the non-relativistic or fully-relativistic TDCC equations, scattering probabilities and cross sections are obtained by projecting the radial wavefunctions onto antisymmetrized products of bound and continuum radial orbitals.

2.4. Comparison of the CADW, RMPS, and TDCC Methods

As an example, we calculated[6] the electron-impact ionization of Al and compared with experiment[7] in Figures 1-2. CADW direct ionization cross sections were included using Eq.(2) for the 3p and 3s subshells in Figure 1. CADW excitation-autoionization cross sections were included using Eq.(4) for the 3s → 3p, 3d and 3s → 4l(l = 0 – 3) excitations in Figure 1. The CADW total ionization cross section is about a factor of 2 above experiment. TDCC direct ionization cross sections were included for the 3p and 3s subshells in Figure 2. RMPS total ionization cross sections are also shown in Figure 2. Good agreement is found between the RMPS total ionization calculations and experiment.

2.5. Isonuclear Sequence Databases

Over the last decade light atom isonuclear sequence databases have been assembled based on the most accurate basic collision cross section calculations. Accurate databases are now available for H[8], He[8], Li[9], Be[10], and B[11], while work is in progress for C, N, O, and Ne. Electronic data is available at IAEA/ALADDIN[12]. We also note that previous CADW calculations for the electron-impact ionization of the Fe[13], Ni[14], Kr[15], Sn[16], Xe[16], and W[17] isonuclear sequences are being updated with RMPS and TDCC calculations for the atoms and low-charged ions.
Figure 1. Electron-impact ionization of Aluminum. Solid line (red): CADW total ionization, dashed line (red): CADW direct ionization, circles (blue) with error bars: experiment [7] (1.0 Mb = 1.0 × 10^{-18} cm^2).

Figure 2. Electron-impact ionization of Aluminum. Solid line (red): RMPS total ionization, dashed line (red): TDCC direct ionization, circles (blue) with error bars: experiment [7] (1.0 Mb = 1.0 × 10^{-18} cm^2).
3. Summary
We are currently generating accurate electron-impact excitation, ionization, and recombination cross sections for the N isonuclear sequence. In the future we plan to calculate accurate electron-impact excitation and ionization cross sections for atoms and low-charged ions in the Mn, Fe, Co, and Ni isonuclear sequences, as well as in the heavier Mo, Xe, La, W, Au, and U isonuclear sequences.

Acknowledgments
This work was supported in part by grants from the US Department of Energy and the US National Science Foundation. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, California and the National Center for Computational Sciences in Oak Ridge, Tennessee.

References
[1] Pindzola M S, Griffin D C and Bottcher C 1986 NATO Advanced Study Institute, Series B: Physics 145 75
[2] Pindzola M S and Buie M J 1988 Phys. Rev. A 37 3232
[3] Burke P G 2011 R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical, and Plasma Physics (Heidelberg : New York : Springer-Heidelberg) 61
[4] Pindzola M S et al 2007 J. Phys. B 40 R39
[5] Pindzola M S, Ludlow J A, Robicheaux F, Colgan J and Fontes C J 2009 Phys. Rev. A 80 052706
[6] Loch S D, Ballance C P, Wu D, Abdel-Naby Sh A and Pindzola M S 2012 J. Phys. B 46 065201
[7] Freund R S, Wetzel R C, Randy J S and Hayes T R 1990 Phys. Rev. A 41 3575
[8] Loch S D, Ballance C P, Pindzola M S and D. P. Stotler D P 2009 Plasma Phys. Control. Fusion 51 105006
[9] Loch S D, Colgan J, Witthoeft M C, Pindzola M S, Ballance C P, Mitnik D M, Griffin D C, O’Mullane M G and Summers H P 2006 ADNDT 92 813
[10] Loch S D, Pindzola M S, Ballance C P, Griffin D C, Colgan J, Badnell N R, O’Mullane M G and Summers H P 2008 ADNDT 94 257
[11] Loch S D, Ballance C P, Pindzola M S, Griffin D C, Colgan J, Badnell N R and O’Mullane M G 2013 J. Phys. Conf. Ser.
[12] IAEA/ALADDIN www-amdis.iaea.org/ALADDIN.
[13] Pindzola M S, Griffin D C, Bottcher C, Younger S M and Hunter H T 1987 Nucl. Fusion Suppl. Issue 1 21
[14] Pindzola M S, Griffin D C, Bottcher C, Buie M J and Gregory D C 1991 Physica Scripta T 37 35 (1991).
[15] Loch S D, Pindzola M S, Ballance C P, Griffin D C, Mitnik D M, Badnell N R, O’Mullane M G, Summers H P and Whiteford A D 2002 Phys. Rev. A 66 052708
[16] S. D. Loch, M. S. Pindzola and D. C. Griffin, Int. J. Mass. Spec. 271, 68 (2008).
[17] Loch S D, Ludlow A J, Pindzola M S, Whiteford A D and Griffin D C 2005 Phys. Rev. A 72 052716