Traumatic tension pneumocephalus: Two cases and comprehensive review of literature

Promod Pillai, MD MCh, Rohit Sharma, MD, Larami MacKenzie, MD, Eugene F. Reilly, MD, Paul R. Beery II, MD, Thomas J. Papadimos, MD MPH, Stanislaw P. A. Stawicki, MD

Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, OH, USA
Department of Surgery, University of Buffalo/SUNY, Buffalo, NY, USA
Department of Neurology, Division of Neurocritical Care, University of Pennsylvania, Philadelphia, PA, USA
Department of Surgery, The Reading Hospital and Medical Center, Reading, PA, USA
Department of Surgery, Division of Critical Care, Trauma, and Burn, The Ohio State University Medical Center, Columbus, OH, USA
Department of Anesthesiology, The Ohio State University Medical Center, Columbus, OH, USA
Department of Neurology, Division of Neurocritical Care, University of Pennsylvania, Philadelphia, PA, USA
Department of Surgery, University of Buffalo/SUNY, Buffalo, NY, USA

ABSTRACT

Introduction. Although traumatic pneumocephalus is not uncommon, it rarely evolves into tension pneumocephalus (TP). Characterized by the presence of increasing amounts of intracranial air and concurrent appearance or worsening neurological symptoms, TP can be devastating if not recognized and treated promptly. We present two cases of traumatic TP and a concise review of literature on this topic.

Methods. Two cases of traumatic TP are presented. In addition, a literature search revealed 20 additional cases, of which 18 had sufficient information for inclusion. Literature cases were combined with the 2 reported cases and analyzed for demographics, mechanism of injury, symptoms, time to presentation (acute <72 hours; delayed ≥72 hours), diagnostic/treatment modalities, and outcomes.

Case reports and literature review. Twenty cases were analyzed (17 males, 3 females, median age 26, range 8-92 years). Presentation was acute in 13/20 and delayed in 7/20 patients. Injury mechanisms included motor vehicle collisions (6/20), assault/blunt trauma to the cranio-facial area (5), falls (4), and motorcycle/bicycle crashes (3). Common presentations included depressed mental status (10/20), CSF rhinorrhea (9), headache (8), and loss of consciousness (6). Computed tomography (CT) was utilized in 19/20 patients. Common underlying injuries were frontal bone/sinus fracture (9/20) and ethmoid fracture (5). Intracranial hemorrhage was seen in 5/20 patients and brain contusions in 4/20 patients. Nonoperative management was utilized in 6/20 patients. Procedural approaches included craniotomy (11/20), emergency burr hole (4), endoscopy (2), and ventriculostomy (2). Most patients responded to initial treatment (19/20). One early and one delayed death were reported.

Conclusions. Traumatic TP is rare, tends to be associated with severe cranio-facial injuries, and can occur following both blunt and penetrating injury. Early recognition and high index of clinical suspicion are important. Appropriate treatment results in improvement in vast majority of cases. CT scan is the diagnostic modality of choice for TP.

INTRODUCTION

Traumatic pneumocephalus – or abnormal presence of air in the cranial cavity following traumatic injury – occurs frequently. Its pathophysiology involves air entry into the cranial cavity following injury to the brain meninges.2 Tension pneumocephalus (TP) is a clinical entity characterized by continued build-up of air within the cranial cavity, leading to abnormal pressure exerted upon the brain and subsequent neurologic deterioration.3,4 The accumulation of intracranial air can be acute or delayed.5,6 Knowledge of risk factors, radiographic findings, and clinical signs/symptoms associated with TP is crucial to its prompt identification and treatment.4,5,7,8 Clinical diagnostic and treatment delays may result in poor neurologic outcome and mortality.1 Treatment may involve a combination of: (a) surgical removal of intracranial air; (b) supine or Trendelenburg positioning; (c) administration of 100% oxygen; (d) repair of the bone/dural defects; and (e) drain placement into the air-containing space. In this manuscript, the authors present two cases of traumatic TP and review additional 18 cases previously reported in the literature.

METHODS

Two cases of traumatic tension pneumocephalus are presented. In addition, a detailed literature search (PubMed, Google Scholar, ScientificCommons) revealed a total of 20 other traumatic pneumocephalus cases, of which 18 (Table 1) contained complete data that were sufficient for subsequent collection/analysis of the following variables: (a) patient age; (b) patient gender; (c) mechanism of injury; (d) primary injury associated with TP; (e) associated injuries; (f) signs and symptoms of TP; (g) therapeutic approach to TP; and (h) timing.

Cite as: Pillai P, Sharma R, MacKenzie L, Reilly EF, Beery II PR, Papadimos TJ, Stawicki SPA. Traumatic tension pneumocephalus: Two cases and comprehensive review of literature. OPUS 12 Scientist 2010;4(1):6-11.

Correspondence to: Stanislaw Peter Stawicki, M.D.; Department of Surgery, Division of Critical Care, Trauma, and Burn; Suite 634, 295 West 12 Avenue, Columbus, OH 43210. Email: stanislaw.stawicki@osumc.edu.

Keywords: Head injury, Pneumocephalus, CT scan, Glasgow coma scale, Tension pneumocephalus, CSF leak, Craniofacial trauma.

TJ, Stawicki SPA. Traumatic tension pneumocephalus: Two cases and comprehensive review of literature. OPUS 12 Scientist 2010;4(1):6-11.
of clinical onset of TP. Cases reported in the literature were then combined with the 2 cases reported by our group and analyzed for demographics, mechanism of injury, symptoms, time to presentation (acute or presenting within 72 hours of injury versus delayed or presenting after the initial 72 hours post-injury), diagnostic and treatment modalities used, and outcomes.

CASE REPORT #1

An 8-year-old male was admitted to the hospital after being struck by a motor vehicle. During the initial trauma evaluation, he was found to have slight facial deformities and abdominal tenderness. Computed tomography (CT) demonstrated the presence of multiple skull fractures, including right mastoid fracture (Figure 1A-D). His other injuries included a grade II splenic laceration with no evidence of intravenous contrast extravasation. He was admitted to the surgical intensive care unit (SICU) for observation. The following morning, the patient was found to have dilated and minimally responsive pupils bilaterally. He also experienced several episodes of bradycardia (lowest recorded heart rate of 28 beats/minute). He had no other focal neurologic findings (his Glasgow Coma Score [GCS] remained between 14 and 15), with the only major subjective complaint being significant headache. The patient underwent an urgent repeat CT of the brain, which demonstrated a marked increase in the volume of pneumocephalus, no intra- or extra-axial hemorrhage, and stable multiple skull fractures (Figure 1E-F). The patient, who was initially maintained with 30-degree head elevation, was now re-positioned in flat configuration and high-flow oxygen was administered via face mask. His bradycardic episodes resolved after this positional change and his pupillary dilation resolved over the period of approximately 18 hours. Therapy directed at TP was continued for three days, after which his activity was liberalized without any recurrent symptoms. The patient was doing well on three-month follow-up [Glasgow Outcome Score (GOS) of 5, GCS of 15, no focal neurological deficits].

CASE REPORT #2

A twenty-year-old man was brought to the trauma evaluation area following a high-speed motor vehicle collision. He sustained massive injuries to his midface after striking the steering wheel. His initial GCS was 14 (Motor 6, Verbal 5, Eyes 3) upon hospital arrival. The initial CT of the head and face demonstrated a small to moderate pneumocephalus, brain contusions, as well as multiple facial fractures (Figure 2B), with slight midline shift and the classic appearance of the “Mount Fuji” sign (Figure 2C). No other obvious causes for such rapid deterioration (i.e., opioid administration, rapidly expanding intracranial hematoma, or other traumatic injuries) were noted. The patient was taken to the operating room for repair of a dural tear as well as fixation of multiple facial fractures. Postoperative CT scan demonstrated resolution of the preoperative pathologic findings (Figure 2D). The patient gradually recovered over a period of 3 weeks and was discharged to a rehabilitation facility with a GCS of 13 and GOS of 3. On three-month follow up, the patient was ambulatory, with GCS of 15, GOS of 4, and continued neurologic improvement.

REVIEW OF LITERATURE

A total of 20 tension pneumocephalus reports were identified. Of those, 18 were suitable for inclusion and further comparisons. Cases outlined by the authors were then added to those identified from the literature search, for a total of 20 patients. There were 17 males and 3 females (median age 26, range 8-92 years). Presentation was acute in 13/20 and delayed in 7/20 patients. Injury mechanisms included motor vehicle collisions (6/20),
The principles of subsequent treatment

Copyright 2007-2011 OPUS 12 Foundation, Inc.
parallel those for a cerebrospinal fluid leak. It is important to identify the site where the communication between the air cavity and the external environment occurs. If the site can be identified, the passage should be sealed off, thereby decreasing the possibility of worsening or recurrent pneumocephalus. Effective therapy of TP via a controlled decompression using a closed water-seal drainage system has also been described.

Tension pneumocephalus is a neurosurgical emergency, and as such, its early identification is crucial. Diagnostically, Ishiwata al described the appearance of the "Mount Fuji" sign in a series of patients with tension pneumocephalus. The presence of such "Mount Fuji" sign (Figures 1F & 2B-C) on head CT in trauma patients should be considered a critical finding, and its presence should prompt immediate patient evaluation and appropriate re-appraisal of the therapeutic plan. To diagnose TP, the CT findings should correlate with clinical signs of neurologic deterioration. In the early 1980s, an attempt was made to explain the mass effect of pneumocephalus based on the volume of gas. It has been proposed that the volume of air as little as 65 mL is sufficient enough to produce tension pneumocephalus.

Subsequent to this finding, however, other authors found no substantial difference between the volume of air and the occurrence of tension pneumocephalus. After both clinical and imaging findings are appropriately recognized and correlated, definitive treatment is initiated. Reported treatment options for tension pneumocephalus include a combination of: (a) drilling of burr holes; (b) criocytomia; (c) needle aspiration; (d) ventriculostomy placement; (e) Administration of 100% oxygen; and (f) closure of dural defect(s). Careful monitoring for clinical deterioration, as well as serial CT scanning of the brain, is recommended.

CONCLUSIONS
Post-traumatic tension pneumocephalus is rare, tends to be associated with severe cranial and facial injuries, and can be present following both blunt and penetrating mechanisms of injury. Early recognition and high index of clinical suspicion are important and prompt treatment results in improvement in vast majority of cases. Computed tomography is the gold standard for diagnosis of this condition.

REFERENCES
[1] Mcintosh BC, Strugar J, Narayan D. Traumatic frontal bone fracture resulting in intracerebral pneumocephalus. J Craniofac Surg 2005;16: 461-463
[2] Bune G, Roskar Z, Vorsic M. Pneumocephalus secondary to a neck stab wound without neurologic injury in a 13-year-old girl. Pediatr Neurosurg 2001;34:239-241
[3] Clyne B, Osborn TM. A case of traumatic pneumocephalus. J Emerg Med 1999;17:1047-1048.
[4] Zasler ND. Posttraumatic tension pneumocephalus. J Head Trauma Rehabil 1999;14:81-84.
[5] Klinicouglu BF, Mukaddem AM, Lakdamnyli H, Altninos N. Posttraumatic tension pneumocephalus causing hemiation. Ulus Travma Acil Cerrahi Derg 2003;9:79-81.
[6] Chandran TH, Prepageran N, Philip R, Gopala K, Zhuhaidi AL, Jalaludin MA. Delayed spontaneous traumatic pneumocephalus. Med J Malaysia 2007;62:411-412.
[7] Shetha BB, Ismail NJ. Traumatic tension pneumocephalus presenting with blindness. Br J Neurosurg 2002;16:77.
[8] Mattick A, Goodwin P. Mount Fuji sign on CT following trauma. J Trauma 2005:59:234.
[9] Vitali AM, le Roux AA. Tension pneumocephalus as a complication of intracranial pressure monitoring: a case report. Indian Journal of Neurotrauma 2007;4:415-418.
[10] Keski S, Baykaner K, Cevikler N, Isik S, Cengel M, Orbay T. Clinical significance of acute traumatic intracranial pneumocephalus. Neurosurg Rev 1998;21:10-13.
[11] Oge K, Akpinar G, Berton V. Traumatic subdural pneumocephalus causing rise in intracranial pressure in the early phase of head trauma: report of two cases. Acta Neurochir (Wien) 1998;140:655-658.
[12] Markham JW. The clinical features of pneumocephalus based upon a survey of 284 cases with report of 11 additional cases. Acta Neurochir (Wien) 1967;16:1-7.
[13] Steudel WI, Hacker H. Acute intracranial pneumocephalus: prognosis and management—a retrospective analysis of 101 cases. Neurosurg Rev 1989;12 Suppl 1:125-136.
[14] Fresses DB, Siausi JC. Images in emergency medicine. Traumatic tension pneumocephalus. Ann Emerg Med 2009;53:344-373.
[15] Hong WJ, Yoo CJ, Park CW, Lee SG. Two cases of delayed tension pneumocephalus. J Korean Neurosurg Soc 2005;37:59-62.
[16] Lin MB, Cheah FK, Ng SE, Yeo TT. Tension pneumocephalus and pneumorrhachis secondary to subarachnoid pleural fistula. Br J Radiol 2000;73:325-327.
[17] Lunsford LD, Maroon JC, Sheptak PE, Albin MS. Subdural tension pneumocephalus. Report of two cases. J Neurosurg 1979;50:525-527.
[18] Horowitz M. Intracranial Pneumocele. An Unusual Complication Following Mastoid Surgery. J Laryngol Otol 1964;78:128-134.
[19] Chee NW, Niparko JK. Imaging quiz case 1. Otogenic pneumocephalus with temporal bone cerebrospinal fluid (CSF) leak. Arch Otolaryngol Head Neck Surg 2000;126:1490-1503.
[20] Campanelli J, Olland R. Management of tension pneumocephalus caused by endoscopic sinus surgery. Otolaryngol Head Neck Surg 1997;116:247-250.
[21] Nicholson B, Bhindra H. Traumatic Tension Pneumocephalus after Blunt Head Trauma and Positive Pressure Ventilation. Prehosp Emerg Care 2010:14:499-504.
[22] Andrews JC, Canalis RF. Otogenic pneumocephalus. Laryngoscope 1986;96:521-528.
[23] Yu VY, Liew SW, Robertson NR. Pneumothorax in the newborn. Changing pattern. Arch Dis Child 1975;50:449-453.
[24] Dexter F, Reasoner DK. Theoretical assessment of normobaric oxygen therapy to treat pneumocephalus. Anesthesiology 1996;84:442-447.
[25] Zierold D, Lee SL, Subramanian D, Doolis JJ. Supplemental oxygen improves resolution of injury-induced pneumothorax. J Pediatr Surg 2000;35:998-1001.
[26] Pop PM, Thompson JR, Zinke DE, Hasso AN, Hinshaw DB. Tension pneumocephalus. J Comput Assist Tomogr 1984;8:694-698.
[27] Vitali AM, le Roux AA. Tension pneumocephalus as a complication of intracranial pressure monitoring: a case report. Indian Journal of Neurotrauma 2007;4:415-418.
[28] Mattick A, Goodwin P. Mount Fuji sign on CT following trauma. J Trauma 2005:59:234.
[29] Vitali AM, le Roux AA. Tension pneumocephalus as a complication of intracranial pressure monitoring: a case report. Indian Journal of Neurotrauma 2007;4:415-418.
[30] Keski S, Baykaner K, Cevikler N, Isik S, Cengel M, Orbay T. Clinical significance of acute traumatic intracranial pneumocephalus. Neurosurg Rev 1998;21:10-13.
[31] Oge K, Akpinar G, Berton V. Traumatic subdural pneumocephalus causing rise in intracranial pressure in the early phase of head trauma: report of two cases. Acta Neurochir (Wien) 1998;140:655-658.
[32] Markham JW. The clinical features of pneumocephalus based upon a survey of 284 cases with report of 11 additional cases. Acta Neurochir (Wien) 1967;16:1-7.
[33] Steudel WI, Hacker H. Acute intracranial pneumocephalus: prognosis and management—a retrospective analysis of 101 cases. Neurosurg Rev 1989;12 Suppl 1:125-136.
[34] Fresses DB, Siausi JC. Images in emergency medicine. Traumatic tension pneumocephalus. Ann Emerg Med 2009;53:344-373.
[35] Hong WJ, Yoo CJ, Park CW, Lee SG. Two cases of delayed tension pneumocephalus. J Korean Neurosurg Soc 2005;37:59-62.
[36] Lin MB, Cheah FK, Ng SE, Yeo TT. Tension pneumocephalus and pneumorrhachis secondary to subarachnoid pleural fistula. Br J Radiol 2000;73:325-327.
[37] Lunsford LD, Maroon JC, Sheptak PE, Albin MS. Subdural tension pneumocephalus. Report of two cases. J Neurosurg 1979;50:525-527.
[38] Horowitz M. Intracranial Pneumocele. An Unusual Complication Following Mastoid Surgery. J Laryngol Otol 1964;78:128-134.
[39] Chee NW, Niparko JK. Imaging quiz case 1. Otogenic pneumocephalus with temporal bone cerebrospinal fluid (CSF) leak. Arch Otolaryngol Head Neck Surg 2000;126:1490-1503.
[40] Campanelli J, Olland R. Management of tension pneumocephalus caused by endoscopic sinus surgery. Otolaryngol Head Neck Surg 1997;116:247-250.
[41] Nicholson B, Bhindra H. Traumatic Tension Pneumocephalus after Blunt Head Trauma and Positive Pressure Ventilation. Prehosp Emerg Care 2010:14:499-504.
[42] Andrews JC, Canalis RF. Otogenic pneumocephalus. Laryngoscope 1986;96:521-528.
[29] Ishiwata Y, Fujitsu K, Sekino T, Fujino H, Kubokura T, Tsubone K, Kowabara T. Subdural tension pneumocephalus following surgery for chronic subdural hematoma. J Neurosurg 1988;68:58-61.

[30] Monajati A, Cotanch WW. Subdural tension pneumocephalus following surgery. J Comput Assist Tomogr. 1982;6: 902-906.

[31] Huang CF, Chou TY, Chang CK. Traumatic tension pneumocephalus—intracerebral pneumatocele: a case report. Gaoxiong Yi Xue Ke Xue Za Zhi 1992;8:113-116.

[32] Goull E, Baysefer A, Endlogan E, Gezen F, Seber N. Tension pneumocephalus after frontal sinus gunshot wound. Otolaryngol Head Neck Surg 1998;118:559-561.

[33] Wakamoto H, Miyazaki H, Hayashi T, Shimamoto Y, Ishiyama N. Traumatic intracerebral pneumocephalus communicating with two different paranasal sinuses: a case report. No Shinkei Geka 1998;26:177-181.

[34] Aferzon M, Aferzon J, Spektor Z. Endoscopic repair of tension pneumocephalus. Otolaryngol Head Neck Surg 2001;124:688-689.

[35] Kuncz A, Roos A, Lujber L, Haas D, Al Refai M. Traumatic prepontine tension pneumocephalus—case report. Ideggyogy Sz 2004;57:313-315.

[36] Abdalla U, Roy P. Diffuse cerebral pneumocephalus. Nepal Journal of Neuroscience 2005;2:80.

[37] Joshi SM, Demetriades A, Vasani SS, Ellamushi H, Yeh J. Tension pneumocephalus following head injury. Emerg Med J 2006;23:324.

[38] Dewaele F, Caemaert J, Baert E, Kalala JP, Van Roost D. Intradural endoscopic closure of dural breaches in a case of post-traumatic tension pneumocephalus. Minim Invasive Neurosurg 2007;50:178-181.

[39] Agrawal A, Singh BR. Mount Fuji sign with concavo-convex appearance of epidural haematoma in a patient with tension pneumocephalus. Journal of Radiology Case Reports 2009;3:10-12.
Date	Age	Gender	Mechanism of Injury	Nature of Brain Injury and Associated Injuries	Symptoms and Signs	Therapeutic Approach	Comments
1992/31	18 M	MCC	Right frontal intraepidural hematoma; Frontoethmoid sinus fractures	Headache, nausea, vomiting 48 hours post-injury	Emergency craniotomy; ICP监控	Patient died one year after initial injury; Post-operative complications developed	
1998/32	45 M	Medium head trauma to left frontal sinus	Bull; fragment in the left front sinus; Dural tear and necrotic brain tissue present	Presentation; GCS of 12; CSF rhinorhea	Emergent surgery; Dural repair and debridement of necrotic brain tissue; Removal of the mucous membrane of the left frontal sinus	Tension pneumocephalus presented 3 months after initial injury	
1998/33	17 M	MVC	Hemorrhagic brain contusions; Frontal and ethmoid sinus fractures leading to TP	Headache, rhinorhea, vomiting after anesthetizing	Operative repair	Presentation one month after acute traumatic injury; Dural involvement	
1999/3	39 M	Fall down stairs	Right orbital roof fracture communicating with the sinus; Right peri-orbital contusion	Loss of consciousness; Right eye pain; Headaches; Dizziness; CSF rhinorhea	Conservative (non-operative) therapy with antibiotics, analgesics, and serial neurologic exams	Tension pneumocephalus presented with conservative therapy only	
2001/34	34 M	MVC	Bifrontal brain contusions; Depressed open skull fracture; Comminuted frontal sinus fracture; Nasal-orbital-ethmoid fractures; Commmnited superior orbital roof and frontal bone fractures	Persistent rhinorhea; Progressive lethargy	Open reduction/intimal fixation of depressed skull fractures; Cranialization of frontal sinuses; Obliteration of nasoro-frontal ducts; Ventriculostomy	Three-year delay before clinical presentation: Fascia lata grafting to the sinus; Patient experienced immediate relief of headache; Recovery was uneventful	
2001/2	13 F	Stab wound to the neck	Cerebrospinal fluid leak	Headache	Surgical repair	Immediate onset of symptoms	
2002/7	27 M	MVC	Traumatic brain injury; Left supraorbital laceration	Loss of consciousness for 10 days; Visual loss; 6th cranial nerve palsy; CSF rhinorhea	Bifrontal craniotomy; Release of subdural TP	Presentation delayed by approximately 2 months; Patient fully regained vision	
2003/5	12 M	MCC	Frontal fracture with associated frontoethmoid pneumocephalus	Loss of consciousness; Convulsions; Amnesia	Right frontal burr hole placement	Eosin of symptoms and presentation delayed by 2 months; Air resolved after 18 days	
2004/35	8 F	Fall from bicycle	Closed head injury with temporal bone fracture; Large pre-pontine air displacing the brain stem posteriorly	Loss of consciousness; Initial GCS of 8; CSF rhinorhea and right hemotympanum	Conservative (non-operative) management with mechanical ventilation on general supportive measures	The patient developed meningitis which was treated with systemic antibiotics and lumbar CSF drain placement; Partial hearing loss was noted in the right ear	
2005/15	38 F	Remote history of blunt cranial trauma	History of cranial fracture following an accident 12 years prior to current presentation	History of nasal discharges and intermittent generalized seizures	Operative reconstruction of both frontotemporal sinuses; Cranialization of frontal sinuses; Ventriculostomy	Delayed presentation (12 years after initial traumatic injury); Patient improved and recovered uneventfully	
2005/36	40 M	MVC	Traumatic brain injury with diffuse intracranial air, including the right frontal brain parietal, lateral ventricles, and the subarachnoid spaces and sinuses	Initial GCS of 12; Hydrocephalus	Treatment with 100% FiO₂ and head elevation; Ventricul-o-parietal shunt placement	Clinical presentation was delayed until post-injury day 4; Patient discharged on hospital day 20 in stable condition	
2005/8	30 M	Assault	Multiple facial and skull base fractures	Agitation; Mental status changes; Initial GCS of 14	Repair of the dural defect; Repair of facial fractures	Immediate post-injury presentation	
2005/1	22 M	Stick with golf club	Frontal laceration; Frontoethmoid sinus fracture; Comminuted nasal fracture	Bloody rhinorhea; CSF leak	Bifrontal craniotomy with cranialization of frontal sinuses; Galeal flap and temporal flap	Immediate post-injury presentation; Delayed CSF rhinorhea noted	
2006/37	34 M	MVC	Basal skull fractures	Headache; Vomiting CSF rhinorhea; Mental status changes	Emergency burr hole placement with drainage; After failure of the initial therapy (the TP actually increased in size) the patient underwent endoscopic surgical repair of a dural tear	Clinical presentation at 48 hours after initial injury; Patient recovered fully	
2007/38	3 M	Traumatic fall	No evidence of cranial fracture	Mental status changes	Emergency burr hole placement with drainage; After failure of the initial therapy (the TP actually increased in size) the patient underwent endoscopic surgical repair of a dural tear	Immediate post-injury presentation; This report describes novel use of an endoscopic technique to repair dural defects; The patient died two weeks after surgery from multi-organ dysfunction	
2007/9	35 M	Blunt head injury	Right subdural hematoma; Diffuse subarachnoid hemorrhage	Declining mental status; Facial swelling	Placement of intracranial pressure (ICP) monitor with concurrent evacuation of small amount of subdural blood	Tension pneumocephalus was causally linked to ICP monitor placement; The patient died approximately one week after initial injury	
2009/39	32 M	MVC	Fractures of anterior cranial fossa; Concave convex right frontal acute epidural hematoma	Loss of consciousness; Epistaxis; Headaches	Conservative (non-operative) management	Immediate presentation; Patient recovered fully	