2-CATEGORIES OF SYMMETRIC BIMODULES AND THEIR 2-REPRESENTATIONS

VOLODYMYR MAZORCHUK, VANESSA MIEMIETZ AND XIAOTING ZHANG

Abstract. In this article we analyze the structure of 2-categories of symmetric projective bimodules over a finite dimensional algebra with respect to the action of a finite abelian group. We determine under which condition the resulting 2-category is fiat (in the sense of [MM1]) and classify simple transitive 2-representations of this 2-category (under some mild technical assumption). We also study several classes of examples in detail.

1. Introduction and description of the results

In the last 20 years, many exciting breakthroughs in representation theory, see e.g. [Kh] [CR] [BS] [EW] [Wi], have originated from the idea of categorification. This has inspired the subject of 2-representation theory which studies 2-categories with suitable finiteness conditions. An appropriate 2-analogue of a finite dimensional algebra was defined in [MM1] and called finitary 2-category. Various aspects of the structure and 2-representation theory of finitary and, more specifically, fiat 2-categories have been studied in [MM1] [MM2] [MM3] [MM4] [MM5] [MM6] [MMMT] [MMMZ] [ChMa] [ChMi], see also references therein. In particular, [MM5] introduces the notion of simple transitive 2-representation which is an appropriate categorification of the concept of an irreducible representation. A natural and interesting problem is the classification of simple transitive 2-representations for various classes of 2-categories, see [Ma].

One interesting example of a fiat 2-category is the 2-category of Soergel bimodules associated to the coinvariant algebra of a finite Coxeter system, see [So1] [So2] [EW]. For these 2-categories, simple transitive 2-representations have been classified in several special cases including type A, the dihedral types and some small classical types, see [MM5] [KMMZ] [MT] [MMMZ]. The article [MMMZ] develops a reduction technique that reduces the classification problem to smaller 2-categories which, in practice, are often given by “symmetric bimodules” as defined in a special case in [KMMZ].

Inspired by this, in the present article we formalize the concept of symmetric bimodules and study the resulting 2-categories of projective symmetric bimodules and their 2-representations. We show that these 2-categories are weakly fiat provided that the underlying algebra is self-injective and fiat if the underlying algebra is weakly symmetric, mirroring the situation for the 2-category of all projective bimodules from [MM1] Subsection 7.3 and [MM6] Subsection 2.8. Using [MMMZ], we reduce the classification of simple transitive 2-representations in the weakly symmetric case to the classification of module categories over the 2-category $\text{Rep}(G)$ from [OS].

One of the main results of [MM3] classifies a class of “simple” 2-categories with a particularly nice combinatorial structure. Here we study one of the smallest families of 2-categories which do not fit into the setup of [MM3]. We show that these can always be realized inside a 2-category of symmetric bimodules.
The paper is organized as follows. In Section 2 we collect the necessary preliminaries. In Section 3 we introduce symmetric bimodules and study their structure and simple transitive 2-representations. The latter are classified in Theorem 17. In Section 4 we study 2-categories with one object which, apart from the identity 1-morphism, have precisely two indecomposable 1-morphisms up to isomorphism and these two form a biadjoint pair and their own left/right/two-sided cell. In Theorem 25 we realize such 2-categories as 2-subcategories of certain symmetric bimodules.

Acknowledgements. The first author is supported by the Swedish Research Council, Göran Gustafsson Foundation and Vergstiftelsen. The second author is supported by EPSRC grant EP/S017216/1. The third author is supported by Göran Gustafsson Foundation.

2. Preliminaries

2.1. Setup. We work over an algebraically closed field \(k \).

2.2. Finitary 2-categories. A \(k \)-linear category is called finitary if it is small and equivalent to the category of finitely generated projective modules over some finite dimensional associative \(k \)-algebra.

We call a 2-category \(\mathcal{C} \) finitary (over \(k \)) if it has finitely many objects, each morphism category \(\mathcal{C}(i, j) \) is a finitary \(k \)-linear category, all compositions are (bi)additive and \(k \)-linear and all identity 1-morphisms are indecomposable (cf. [MM1, Subsection 2.2]).

We say that \(\mathcal{C} \) is weakly fiat if it is finitary and has a weak antiautomorphism \((\)^{+} \) of finite order and adjunction morphisms, see [MM6, Subsection 2.5]. If \((\)^{+} \) is involutive, we say that \(\mathcal{C} \) is fiat, see [MM1, Subsection 2.4].

2.3. 2-representations. Let \(\mathcal{C} \) be a finitary 2-category. A finitary 2-representation of \(\mathcal{C} \) is a 2-functor from \(\mathcal{C} \) to the 2-category \(\mathfrak{A}^{l}_{k} \) whose

- objects are finitary \(k \)-linear categories;
- 1-morphisms are additive \(k \)-linear functors;
- 2-morphisms are natural transformations of functors.

Such 2-representations form a 2-category denoted \(\mathcal{C} \text{-afmod} \), see [MM3, Subsection 2.3].

Similarly we define an abelian 2-representation of \(\mathcal{C} \) as a 2-functor from \(\mathcal{C} \) to the 2-category whose

- objects are categories equivalent to categories of finitely generated modules over finite dimensional \(k \)-algebras;
- 1-morphisms are right exact \(k \)-linear functors;
- 2-morphisms are natural transformations of functors.

Such 2-representations form a 2-category denoted \(\mathcal{C} \text{-mod} \), see [MM3, Subsection 2.3]. Following [MM2, Subsection 4.2], we denote by \(\longrightarrow \) the abelianization 2-functor from \(\mathcal{C} \text{-afmod} \) to \(\mathcal{C} \text{-mod} \).
A finitary 2-representation \(\mathcal{M} \) is called \textit{simple transitive} provided that \(\prod_{i \in \mathcal{C}} \mathcal{M}(i) \) has no non-trivial \(\mathcal{C} \)-invariant ideals, see [MM5 Subsection 3.5].

2.4. \textbf{Cells and cell 2-representations.} Given two indecomposable 1-morphisms \(F \) and \(G \) in \(\mathcal{C} \), we define \(F \geq_{L} G \) if \(F \) is isomorphic to a direct summand of \(H \circ G \), for some 1-morphism \(H \). This produces the \textit{left} preorder \(\geq_{L} \), of which the equivalence classes are called \textit{left cells}. Similarly one obtains the \textit{right} preorder \(\geq_{R} \) and the corresponding \textit{right cells}, and the \textit{two-sided} preorder \(\geq \) and the corresponding \textit{two-sided cells}.

For each simple transitive 2-representation \(\mathcal{M} \), there is a unique two-sided cell which is maximal, with respect to \(\geq \), among those two-sided cells whose 1-morphisms are not annihilated by \(\mathcal{M} \). This two-sided cell is called the \textit{apex} of \(\mathcal{M} \), see [ChMa Subsection 3.2].

If \(\mathcal{J} \) is a two-sided cell of \(\mathcal{C} \), we say that \(\mathcal{C} \) is \(\mathcal{J} \text{-simple} \) if any non-zero 2-ideal of \(\mathcal{C} \) contains the identity 2-morphisms of all 1-morphisms in \(\mathcal{J} \).

Each left cell of a fiat 2-category contains a so-called \textit{Duflot involution}, see [MM3 Subsection 4.5].

For a left cell \(\mathcal{L} \) in \(\mathcal{C} \), there exists \(1 \in \mathcal{C} \) such that all 1-morphisms in \(\mathcal{L} \) starts at \(1 \). Denote by \(\mathcal{N}_{\mathcal{L}} \) the 2-subrepresentation of \(\mathcal{P}_{i} \) which is defined as for each \(j \in \mathcal{C} \) the category \(\mathcal{N}_{\mathcal{L}}(j) \) is the additive closure of \(\mathcal{P}_{i}(j) \) consisting of all 1-morphisms \(F \) with \(F \geq_{L} \mathcal{L} \). From [MM5 Lemma 3], we know that the 2-representation \(\mathcal{N}_{\mathcal{L}} \) contains a unique maximal ideal which does not contain any \(\text{id}_{F} \) for \(F \in \mathcal{L} \), denoted \(\mathcal{I}_{\mathcal{L}} \). The quotient \(\mathcal{C}_{\mathcal{L}} := \mathcal{N}_{\mathcal{L}}/\mathcal{I}_{\mathcal{L}} \) is called the \textit{cell 2-representation} associated to \(\mathcal{L} \).

3. \textbf{Symmetric bimodules and their simple transitive 2-representations}

3.1. \textbf{Symmetric bimodules.} Let \(A \) be a finite dimensional, unital, associative \(k \)-algebra. We assume that \(A \) is basic and that \(\{e_{1}, e_{2}, \ldots, e_{k}\} \) is a complete set of pairwise orthogonal primitive idempotents in \(A \).

Let \(G \) be a finite abelian subgroup of the group of automorphisms of \(A \). Assume that \(\text{char}(k) \) does not divide \(|G| \). The action of \(G \) on \(A \) induces an action of \(G \) on the category of \(A-A \)-bimodules via \(M \mapsto \varphi M \varphi \), where the action of \(\varphi \) on \(\varphi M \varphi \) is given by
\[
a \cdot m \cdot b := \varphi(a)m\varphi(b), \quad \text{for all } a, b \in A \text{ and } m \in M.
\]

We will write \(\varphi f \varphi \) for the translate of a morphism \(f \) under the action of \(\varphi \in G \).

Let \(\mathcal{X} \) denote the category whose objects are \(A-A \)-bimodules and morphisms between \(A-A \)-bimodules \(M \) and \(N \) are defined by
\[
\text{Hom}_{\mathcal{X}}(M, N) := \bigoplus_{\varphi \in G} \text{Hom}_{A-A}(M, \varphi N \varphi).
\]

An element \(f \in \text{Hom}_{\mathcal{X}}(M, N) \) is thus represented by a tuple \((f_{\varphi})_{\varphi \in G} \), where the component \(f_{\varphi} \) is in \(\text{Hom}_{A-A}(M, \varphi N \varphi) \). For any \(f \in \text{Hom}_{\mathcal{X}}(M, N) \) and \(g \in \text{Hom}_{\mathcal{X}}(N, K) \), considering
\[
\text{Hom}_{A-A}(N, \varphi K \varphi) \otimes \text{Hom}_{A-A}(M, \varphi N \varphi) \to \text{Hom}_{A-A}(M, \varphi \varphi K \varphi \varphi) \\
g_{\varphi} \otimes f_{\varphi} \to \varphi(g_{\varphi}) \varphi \circ f_{\varphi},
\]
where we use $\varphi\psi = \psi\varphi$ on the right hand side, the composition $g \circ f$ is given by

$$\text{Hom}_X(N, K) \otimes \text{Hom}_X(M, N) \rightarrow \text{Hom}_X(M, K)$$

$$(g \varphi) \circ (f \varphi) \otimes (g \varphi) \circ (f \varphi) \varphi, \sigma \in G.$$

This composition can be depicted by the diagram

$$M \xrightarrow{(f \varphi) \varphi, \sigma \in G} \bigoplus_{\varphi \in G} \varphi N^\varphi \xrightarrow{(\varphi (g \sigma \varphi^{-1}) g \sigma \varphi^{-1}) \varphi, \sigma \in G} \bigoplus_{\sigma \in G} \sigma K^\sigma.$$

We refer to [CiMa] for details.

We denote by \hat{X} the Pontryagin dual of X, i.e. an object of \hat{X} is given by a pair (M, e) where M is an A-A-bimodule and e is an idempotent in $\text{End}_X(M)$. For an A-A-bimodule M, set

$$G_M := \{ \varphi \in G \mid M \cong \varphi M \}$$

which is a subgroup of G.

Remark 1. As we will often encounter and use in this article, computation of homomorphism in \hat{X} using homomorphisms in X requires care. Given M and M' in X and idempotents e and e', $\text{End}_X(M, e)$ and $\text{End}_X(M', e')$, respectively, in the computation of $\text{Hom}_X((M, e), (M', e'))$ using $\text{Hom}_X(M, M')$ it is very important to make sure that the elements from $\text{End}_X(M, M')$ one works with do belong to $e' \circ \text{Hom}_X(M, M') \circ e$. This is usually achieved by pre- and postcomposing the elements one works with e and e', respectively. Moreover, for any element f in $\text{Hom}_X((M, e), (M', e'))$, we have

$$f \circ \text{id}_{(M, e)} = f = \text{id}_{(M', e')} \circ f,$$

where, in fact, $\text{id}_{(M, e)} = e$ and $\text{id}_{(M', e')} = e'$.

As usual, we denote by \hat{G} the Pontryagin dual of G whose elements are all group homomorphisms from G to k^* with respect to point-wise multiplication. As G is finite and abelian, the group \hat{G} is (non-canonically) isomorphic to G and \hat{G} is canonically isomorphic to the group of isomorphism classes of simple G-modules with respect to taking tensor products.

The group algebra $k[G]$ is commutative and semi-simple and admits a unique decomposition into a product of $[G]$ copies of k. Let $\{\pi_X, \chi \in \hat{G}\}$ be the corresponding primitive idempotents. Each π_X has the form $\frac{1}{|G|} \sum_{\alpha \in G} \chi(\alpha) \alpha$ and hence defines an idempotent π_X in $\text{End}_X(A)$ given by the tuple $\left(\frac{\chi(\alpha) \alpha}{|G|}\right)_{\alpha \in G}$.

For an arbitrary subgroup H of G, we have a natural surjection $\hat{G} \rightarrow \hat{H}$ given by restriction. For $\zeta \in \hat{G}$ and $\chi \in \hat{H}$, we define $\chi \zeta \in \hat{H}$ via $\chi \zeta(\alpha) := \chi(\alpha) \zeta(\alpha)$, for $\alpha \in H$.

Lemma 2.

(i) Let M be an indecomposable A-A-bimodule. Then there is an isomorphism of algebras

$$\text{End}_X(M)/\text{Rad} (\text{End}_X(M)) \cong k[G_M]/\text{Rad}(k[|G_M|]) \cong k[G_M].$$

(ii) Indecomposable objects of \hat{X} are of the form $M_{\epsilon_X} := (M, \epsilon_X)$, where M is an indecomposable A-A-bimodule and $\chi \in \hat{G}_M$. Here, for $\alpha \in G$, the α-component of ϵ_X is $\frac{\chi(\alpha)}{|G_M|} \alpha$, if $\alpha \in G_M$, and zero otherwise.
Lemma 3. shows. The asymmetry of the above definition is only notational as the following lemma.

Proof. We first note that the map ϕf being $\text{Hom}(f, \gamma N)$ follows from (1). Claim (ii) follows from (1) and the definitions.

The category of all A-A-bimodules has a natural monoidal structure given by the tensor product over A. We define a tensor product on A by

- $M \otimes_A N := \bigoplus_{\varphi \in G} (M \otimes_A \varphi N \varphi)$, for any A-A-bimodules M and N,
- $f \otimes_A g := (f_{\alpha} \otimes \gamma(g_{\beta \gamma^{-1}}))_{\alpha, \beta, \gamma \in G}$, where

$$f_{\alpha} \otimes \gamma(g_{\beta \gamma^{-1}}): M \otimes_A \gamma N \gamma \rightarrow \alpha(M)^{\alpha} \otimes_A \beta(N)^{\beta},$$

for any A-A-bimodules M, M', N and N' and morphisms $f = (f_{\alpha})_{\alpha \in G} \in \text{Hom}_X(M, M')$, $g = (g_{\beta})_{\beta \in G} \in \text{Hom}_X(N, N')$.

The asymmetry of the above definition is only notational as the following lemma shows.

Lemma 3. In the category X, there is an isomorphism

$$\bigoplus_{\varphi \in G} (M \otimes_A \varphi N \varphi) \cong \bigoplus_{\varphi \in G} (\varphi^{-1} M \varphi^{-1} \otimes_A N).$$

Proof. We first note that the map $m \otimes n \mapsto m \otimes n$ gives rise to an isomorphism of A-A-bimodules from $M \otimes_A \varphi N$ to $M \varphi^{-1} \otimes_A N$. Thus we have an isomorphism

$$\varphi^{-1} M \varphi^{-1} \otimes_A N \cong \varphi^{-1} (M \otimes_A \varphi N \varphi)^{\varphi^{-1}}$$

of A-A-bimodules. We hence have an isomorphism

$$\varphi^{-1} M \varphi^{-1} \otimes_A N \underoverset{(f_{\varphi})_{\varphi \in G}}{\varphi^{-1} M \varphi^{-1} \otimes_A N} \rightarrow M \otimes_A \varphi N \varphi$$

where f_{φ} is given by (3) and the remaining components are zero.

Remark 4. Under the isomorphism provided by Lemma 3 the morphism $f \otimes_X g$ in $\text{Hom}_X(M \otimes_X N, M' \otimes_X N')$ has components of the form

$$\gamma(f_{\alpha \gamma^{-1}}) \otimes g_{\beta}: \gamma M \otimes_A N \rightarrow \alpha(M)^{\alpha} \otimes_A \beta(N)^{\beta}.$$

Lemma 5.

(i) The operation \otimes_X is bifunctorial.

(ii) If e and f are idempotents in X, then so is $e \otimes_X f$. Hence \otimes_X extends to a bifunctor $\otimes_X : \hat{X} \times \hat{X} \rightarrow \hat{X}$ given by $(M, e) \otimes_X (N, f) = (M \otimes_X N, e \otimes_X f)$.

Proof. Let M, N, K, L, X and Y be objects in X. Let $f : M \rightarrow K$, $g : N \rightarrow L$, $h : K \rightarrow X$ and $l : L \rightarrow Y$ be morphisms in X with their only non-zero components being f_{α}, $g_{\beta \gamma^{-1}}$, $h_{\beta \alpha^{-1}}$ and $l_{\delta \gamma^{-1}}$, respectively. Consider the diagram

$$
\begin{array}{ccc}
M & \otimes_A & \varphi N \varphi \\
\downarrow f_{\alpha} & & \downarrow \varphi(g_{\beta \gamma^{-1}}) \varphi \\
K & \otimes_A & \gamma L \gamma \\
\downarrow \gamma(h_{\beta \alpha^{-1}})^{\alpha} & & \downarrow \gamma(l_{\delta \gamma^{-1}})^{\delta} \\
\beta X \beta & \otimes_A & \delta Y \delta.
\end{array}
$$
Bifunctoriality of \otimes_A yields
\[
\left((h_{\alpha \gamma}^{-1})^\ast \circ f_A\right) \otimes \left((l_{\gamma \varphi}^{-1})^\ast \circ \varphi(g_{\gamma \varphi}^{-1})^\ast\right) = \left((h_{\alpha \gamma}^{-1})^\ast \circ (l_{\gamma \varphi}^{-1})^\ast\right) \circ (f_A \circ \varphi(g_{\gamma \varphi}^{-1})^\ast).
\]
The left hand side and the right hand side of (4) coincide with
\[
(h \circ f)_\beta \otimes \varphi(l \circ g)_{\alpha \gamma} \quad \text{and} \quad \circ (h \otimes l)_{\alpha \gamma} \circ (f \otimes g)_\alpha,
\]
respectively. As these are the only non-zero components in $(h \circ f) \otimes_X (l \circ g)$ and $(h \otimes_X l) \circ (f \otimes_X g)$, respectively, and have the same source and target, we obtain
\[
(h \circ f) \otimes_X (l \circ g) = (h \otimes_X l) \circ (f \otimes_X g)
\]
in this case. The general case of equality (5) follows by linearity, implying Claim (i).

Claim (ii) follows from equality (5). \hfill \square

Proposition 6. For any $\chi, \zeta \in \hat{G}$, we have
\[
(A, \pi\chi) \otimes_{\hat{G}} (A, \pi\zeta) \cong (A, \pi\chi) \otimes_{\hat{G}} (A, \pi\zeta).
\]

Proof. We start by constructing a morphism f from the right hand side of (6) to the left hand side, which is defined as follows:
\[
f := (f_{\sigma, \tau})_{\sigma, \tau \in G} : A \to \bigoplus_{\sigma, \tau \in G} \sigma A^\sigma \otimes A^\tau
\]
where $f_{\sigma, \tau}$ is given by
\[
1 \mapsto \frac{1}{|G|^2} \chi(\sigma)\zeta(\tau)(1 \otimes 1) \in \sigma A^\sigma \otimes A^\tau.
\]

Consider the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{(f_{\sigma, \tau})_{\sigma, \tau \in G}} & \bigoplus_{\sigma, \tau \in G} \sigma A^\sigma \otimes A^\tau \\
\downarrow^{(\otimes (\pi\chi, \pi\zeta))_{\sigma, \tau \in G}} & & \downarrow_{(\otimes (\pi\chi, \pi\zeta))_{\sigma, \tau \in G}} \\
\bigoplus_{\sigma, \tau \in G} \sigma A^\sigma \otimes A^\tau & \xrightarrow{(f_{\sigma, \tau})_{\sigma, \tau \in G}} & \bigoplus_{\sigma, \tau \in G} \sigma A^\sigma \otimes A^\tau \\
\end{array}
\]

By definition, the $\sigma^{-1}, \alpha \sigma^{-1}, \delta \sigma^{-1}$-component of $\pi_X \otimes_X \pi_X$ is multiplication by the scalar
\[
(8) \quad \frac{1}{|G|^2} \chi(\alpha \sigma^{-1})\zeta(\delta) = \frac{1}{|G|^2} \chi(\alpha)\chi(\sigma^{-1})\zeta(\delta)\zeta(\tau^{-1}).
\]

Now we compute the components of the two compositions $(\pi_X \otimes_X \pi_X) \circ f$ (corresponding to the path going down and then right) and $f \circ (\pi_X \otimes_X \pi_X)$ (corresponding to the path going right and then down) in our diagram which end up in a specific $\sigma A^\sigma \otimes A^\sigma$. One way around, using (7) and (8), we obtain that 1 is sent to
\[
\frac{1}{|G|} \sum_{\sigma, \tau \in G} \chi(\sigma)\chi(\alpha)\chi(\sigma^{-1})\zeta(\delta)\zeta(\tau^{-1})(1 \otimes 1) = \frac{|G|^2}{|G|} \chi(\alpha)\chi(\delta)(1 \otimes 1) = \frac{1}{|G|^2} \chi(\alpha)\chi(\delta)(1 \otimes 1).
\]

The other way around, using (7) we obtain that 1 is sent to
\[
\frac{1}{|G|^2} \sum_{\beta \in G} \chi(\beta)\chi(\alpha \beta^{-1})\zeta(\delta)\beta^{-1}(1 \otimes 1) = \frac{1}{|G|^2} \chi(\alpha)\chi(\delta)(1 \otimes 1).
\]

Hence the diagram commutes and, moreover, (2) is satisfied. Thus f represents a morphism from the right hand side of (6) to the left hand side.
We proceed by constructing a morphism g from the left hand side of (9) to the right hand side. Consider the diagram

\[
\bigoplus_{\alpha \in G} (A \otimes_A \alpha A^\alpha) \xrightarrow{\hat{\pi}_\chi, \hat{\pi}_\zeta} \bigoplus_{\gamma, \delta \in G} \gamma A^\gamma \otimes_A \delta A^\delta
\]

whose vertical part defines g. For fixed $\alpha, \sigma, \tau \in G$, going one way around, using (8) we obtain

\[
\sum_{\gamma, \delta \in G} \frac{1}{|G|^2} \chi(\gamma) \zeta(\delta \alpha^{-1}) \chi(\sigma^{-1}) \zeta(\sigma \delta^{-1}) = \frac{1}{|G|} \chi(\sigma) \zeta(\sigma \alpha^{-1}).
\]

The other way around yields

\[
\frac{1}{|G|^2} \sum_{\beta \in G} \chi(\beta) \zeta(\beta \alpha^{-1}) \chi(\sigma \beta^{-1}) = \frac{1}{|G|} \chi(\sigma) \zeta(\sigma \alpha^{-1})
\]

which implies that the diagram commutes and, moreover, $g \circ (\hat{\pi}_\chi \otimes \hat{\pi}_\zeta) = \hat{\pi}_\chi \circ g = g$.

Now we claim that both compositions $f \circ g$ and $g \circ f$ are the identities, i.e. the respective idempotents. The φ-component of the composition $g \circ f$ sends 1 to

\[
\frac{1}{|G|^3} \sum_{\sigma, \tau \in G} \chi(\sigma \tau^{-1}) \chi(\varphi \sigma^{-1}) \zeta(\varphi \tau^{-1}) = \frac{1}{|G|} \chi(\varphi)
\]

The α, σ, τ-component of the composition $f \circ g$ sends 1 to 1 to

\[
\frac{1}{|G|^3} \sum_{\beta \in G} \chi(\beta) \zeta(\beta \alpha^{-1}) \chi(\sigma \beta^{-1}) \zeta(\tau \beta^{-1})(1 \otimes 1) = \frac{1}{|G|^2} \chi(\sigma)(\tau \alpha^{-1})(1 \otimes 1).
\]

The claim follows. \qed

Proposition 7. Let $i, j \in \{1, 2, \ldots, k\}$ and $M = A e_i \otimes e_j A$. Let further $\chi \in \hat{G}_M$ and $\zeta \in \hat{G}$. Then

\[
(M, \varepsilon_\chi) \otimes_{\hat{\pi}_\chi} (A, \hat{\pi}_\zeta) \cong (M, \varepsilon_{\chi \zeta}).
\]

Proof. We follow the proof of Proposition 6. We start by constructing a morphism f from the right hand side of (9) to the left hand side. Consider the morphism

\[
f := (f_{\sigma, \tau})_{\sigma, \tau \in G} : M \to \bigoplus_{\sigma, \tau \in G} \sigma M^\sigma \otimes_A \tau A^\tau
\]

where $f_{\sigma, \tau}$ is given by

\[
\varepsilon_{\chi \zeta} e_i \otimes e_j \mapsto \frac{1}{|G_M||G|} \chi(\sigma) \zeta(\tau) (\sigma(e_i) \otimes \sigma(e_j) \otimes 1) \in \sigma M^\sigma \otimes_A \tau A^\tau.
\]

if $\sigma \in G_M$ and zero otherwise. Consider the diagram

\[
\bigoplus_{\sigma, \tau \in G} \sigma M^\sigma \otimes_A \tau A^\tau \xrightarrow{(\varepsilon_{\chi \zeta} \otimes \chi, \hat{\pi}_\zeta)^\sigma_{\sigma, \tau \in G}} \bigoplus_{\alpha \in G} \bigoplus_{\beta \in G} \beta M^\beta
\]

\[
\bigoplus_{\sigma, \tau \in G} \sigma M^\sigma \otimes_A \tau A^\tau \xrightarrow{(\varepsilon_{\chi \zeta} \otimes \chi, \hat{\pi}_\zeta)^\sigma_{\sigma, \tau \in G}} \bigoplus_{\alpha \in G} \bigoplus_{\beta \in G} \beta M^\beta
\]
By definition, the $\tau \sigma^{-1},\alpha \sigma^{-1},\delta \sigma^{-1}$-component of $\varepsilon_X \otimes_X \tilde{\pi} \zeta$ sends $e_i \otimes e_j \otimes 1$ to
\[
\frac{1}{|G_M||G|} \chi(\alpha) \chi(\sigma^{-1}) \chi(\zeta) \chi(\tau^{-1})(\alpha \sigma^{-1}(e_i) \otimes \alpha \sigma^{-1}(e_j) \otimes 1)
\]
if $\alpha \sigma^{-1} \in G_M$ and zero otherwise. Now, going to the right and then down, the α,σ-component of the composition $\tilde{f} \circ \varepsilon_X \zeta$ sends $e_i \otimes e_j$ to
\[
\frac{1}{|G_M||G|} \chi(\alpha) \chi(\sigma) (\alpha(e_i) \otimes \alpha(e_j) \otimes 1),
\]
if α is in G_M, and zero otherwise. Going down and then to the right, the α,σ-component of $(\varepsilon_X \otimes_X \tilde{\pi} \zeta) \circ f$ gives the same result, which also equals $f_{\alpha,\sigma}$.

To construct a morphism g from the left hand side of (9) to the right hand side, consider the diagram
\[
\begin{array}{ccc}
M \otimes_A \alpha A^\alpha & \overset{\varepsilon_X \otimes_X \tilde{\pi} \zeta}{\longrightarrow} & \gamma M \otimes_A \delta A^\delta \\
\downarrow \scriptstyle{(g_{\beta,\alpha})_{\alpha,\beta \in G}} & & \downarrow \scriptstyle{(\beta \gamma,\delta)_{\beta \in G}} \\
\beta M^\beta & \overset{(\beta \gamma,\delta)_{\beta \in G}}{\longrightarrow} & \sigma M^\sigma,
\end{array}
\]
where $g_{\beta,\alpha}$ sends $e_i \otimes e_j \otimes 1 \in M \otimes A^\alpha A^\alpha$ to $\frac{1}{|G_M|} \chi(\beta) \chi(\beta \alpha^{-1})(\beta(e_i) \otimes \beta(e_j)) \in \beta M^\beta$, if $\beta \in G_M$, and to zero otherwise.

For fixed $\alpha,\sigma \in G$, going one way around we obtain the map which sends $e_i \otimes e_j \otimes 1$ to
\[
\frac{1}{|G_M|} \chi(\sigma) \chi(\sigma \alpha^{-1})(\sigma(e_i) \otimes \sigma(e_j)),
\]
if $\sigma \in G_M$, and to zero otherwise, which coincides with $g_{\sigma,\alpha}$. The other way around gives the same result.

Checking that both compositions $f \circ g$ and $g \circ f$ are the respective idempotents is similar to the proof of Proposition [9]. \[\square\]

3.2. Tensoring symmetric bimodules with A-modules.

Proposition 8.

(i) There is a bifunctor $\otimes^{(r)} : \text{mod}-A \times \mathcal{X} \rightarrow \text{mod}-A$ defined by
\[
\begin{align*}
(V,M) & \mapsto V \otimes^{(r)} M := \bigoplus_{\varphi \in G} V \otimes_A \varphi M^\varphi \\
(f,g) & \mapsto f \otimes^{(r)} g := (f \otimes^{(r)} (g_{\alpha \varphi^{-1}}))_{\varphi,\alpha \in G}.
\end{align*}
\]

(ii) There is a bifunctor $\otimes^{(l)} : \mathcal{X} \times A\text{-mod} \rightarrow A\text{-mod}$ defined by
\[
\begin{align*}
(M,V) & \mapsto M \otimes^{(l)} V := \bigoplus_{\varphi \in G} \varphi M^\varphi \otimes_A V \\
(g,f) & \mapsto g \otimes^{(l)} f := (\varphi (g_{\alpha \varphi^{-1}}) \otimes f)_{\alpha,\varphi \in G}.
\end{align*}
\]

Proof. We note that we use Lemma [9] for the formulation of Claim [9]. The proof of both claims is similar to the proof of Lemma [5]. \[\square\]

Proposition 9.

(i) The bifunctor $\otimes^{(r)}$ induces a bifunctor $\text{mod}-A \times \tilde{\mathcal{X}} \rightarrow \text{mod}-A$ (which we will denote by the same symbol abusing notation).
(ii) The bifunctor \(\otimes^{(l)} \) induces a bifunctor \(\tilde{X} \times A\text{-mod} \to A\text{-mod} \) (which we will denote by the same symbol abusing notation).

Proof. Let \((M, e) \in \tilde{X} \). Then, for any \(V \in \text{mod-}A \), the endomorphism \(\text{id}_V \otimes^{(l)} e \) is an idempotent endomorphism of \(V \otimes^{(l)} M \), so we can define \(V \otimes^{(l)} (M, e) \) as the image of this idempotent. It is easy to check that this does the job for Claim (i). Claim (ii) is similar. \(\square \)

3.3. The \(2\)-category \(\mathcal{G}_A \) of projective symmetric bimodules

Assume that we are in the setup of Subsection 3.1. Let

\[A = A_1 \times A_2 \times \cdots \times A_n \]

be the (unique up to permutation of factors) decomposition of \(A \) into a direct product of indecomposable algebras. Assume that the action of each \(\varphi \in G \) preserves each \(A_i \). Also assume that none of \(A_i \) is simple. We also consider the algebra \(B := A \times k \).

For each \(i \in \{1, 2, \ldots, n\} \), fix a small category \(C_i \) equivalent to \(A_i\text{-proj} \). Define the 2-category \(\mathcal{G}_A \) to have

- objects \(1, 2, \ldots, n \), where we identify \(i \) with \(C_i \);
- 1-morphisms are endofunctors of \(\mathcal{C} := \coprod_i C_i \) isomorphic to functors \(X \otimes^{(l)} - \), where \(X \) is in the additive closure of \((A \oplus (A \otimes_k A), \text{id}_{A \oplus (A \otimes_k A)}) \) inside \(\tilde{X} \);
- 2-morphisms are given by morphisms between \(X \) and \(X' \) in \(\tilde{X} \);
- horizontal composition is just composition of functors;
- vertical composition is inherited from \(\tilde{X} \);
- the identity 1-morphism in \(\mathcal{G}_{A}(1, 1) \) is isomorphic to \((A_i, \tilde{1}_G) \otimes^{(l)} - \).

Note that the restriction on \(\text{char}(k) \) as not dividing the order of \(G \) is necessary to have identity 1-morphisms. Observe further that \(A \oplus (A \otimes_k A) \) is invariant, up to isomorphism, under the functor \(M \mapsto \tilde{M} \varphi \), for any \(\varphi \in G \). The fact that this defines a 2-category is justified by Proposition 7 showing that \((A_i, \tilde{1}_G) \otimes^{(l)} - \) is indeed an identity, and the following lemma.

Lemma 10. Let \(X \) and \(Y \) be in the additive closure of \((A \oplus (A \otimes_k A), \text{id}_{A \oplus (A \otimes_k A)}) \) inside \(\tilde{X} \). Then there is an isomorphism

\[(X \otimes^{(l)} -) \circ (Y \otimes^{(l)} -) \cong (X \otimes_{\tilde{X}} Y) \otimes^{(l)} - \]

of endofunctors of \(\mathcal{C} \).

Proof. First we assume that \(X \) and \(Y \) are in \(\mathcal{X} \). Then, for any \(P \in \mathcal{C} \), we have

\[(X \otimes_X Y) \otimes^{(l)} P = \left(\bigoplus_{\varphi \in G} X \otimes_A \varphi Y^\varphi \right) \otimes^{(l)} P = \bigoplus_{\varphi, \psi \in G} \varphi (X \otimes_A \varphi Y^\psi \otimes_A P) \]

and

\[X \otimes^{(l)} (Y \otimes^{(l)} P) = X \otimes^{(l)} \left(\bigoplus_{\varphi \in G} \varphi Y^\psi \otimes_A P \right) = \bigoplus_{\varphi, \psi \in G} \varphi X^\psi \otimes_A \varphi Y^\varphi \otimes_A P. \]

Choosing an isomorphism

\[\bigoplus_{\varphi, \psi \in G} X^\psi \otimes_A \varphi Y^\varphi \cong \bigoplus_{\varphi, \psi \in G} \varphi X^\psi \otimes_A \varphi Y^\varphi \]
of A-A-bimodules yields the desired isomorphism of functors.

Now, let e and f be idempotents in $\text{End}_X(X)$ and $\text{End}_Y(Y)$, respectively. Consider

\[
(e \otimes_X f) \otimes^{(l)} \text{id}_P = \left(\delta^\gamma (e_{\alpha \gamma^{-1}}) \otimes f_\delta \right)_{\alpha,\beta,\gamma,\delta \in G} \otimes^{(l)} \text{id}_P
\]

\[
= \left(\delta^\gamma (e_{\alpha \gamma^{-1}}) \otimes f_\delta \right)_{\alpha,\beta,\gamma,\delta \in G}
\]

\[
= \left(\delta^\gamma (e_{\alpha \gamma^{-1}}) \gamma^\delta \otimes (f_{\beta \delta^{-1}}) \delta^\delta \otimes \text{id}_P \right)_{\alpha,\beta,\gamma,\delta \in G}
\]

and

\[
e \otimes^{(l)} (f \otimes^{(l)} \text{id}_P) = e \otimes^{(l)} \left(\phi^\gamma (f_{\varphi \psi^{-1}}) \psi \otimes \text{id}_P \right)_{\varphi,\psi \in G}
\]

\[
= \phi^\gamma (f_{\varphi \psi^{-1}}) \psi \otimes \text{id}_P)_{\varphi,\psi \in G}
\]

we see that

\[
(e \otimes_X f) \otimes^{(l)} \text{id}_P = e \otimes^{(l)} (f \otimes^{(l)} \text{id}_P)
\]

and hence the isomorphism in the previous paragraph descends to the summands (X, e) and (Y, f).

The 2-category \mathcal{G}_B is defined similarly. To distinguish the underlying categories of bimodules, we use the notation \mathcal{J}^γ and $\tilde{\mathcal{J}}^\gamma$ for the corresponding categories of symmetric B-B-bimodules.

3.4. Two-sided cells in \mathcal{G}_A

We recall the notation introduced just before Lemma 2.

Proposition 11. The 2-category \mathcal{G}_A has $n + 1$ two-sided cells, namely

(a) for $i = 1, 2, \ldots, n$, the two-sided cell \mathcal{J}_i consisting of $|G|$ elements $(\mathbb{1}_i, \pi_\phi)$, where $\phi \in G$,

(b) the two-sided cell \mathcal{J}_0 consisting of all isomorphism classes of indecomposable 1-morphisms in the additive closure of $(A \otimes_k A, \text{id}_{A \otimes_k A})$ inside X.

Proof. Since tensor products in which one of the factors is a projective bimodule never contain a copy of the regular bimodule as a direct summand, the existence of two-sided cells as claimed in Part (a) follows from Proposition 6. To complete the proof of the proposition, it remains to show that all isomorphism classes of indecomposable 1-morphisms in the additive closure of $(A \otimes_k A, \text{id}_{A \otimes_k A})$ inside X belong to the same two-sided cell. Ignoring idempotents in X, the claim follows directly from [MM5 Subsection 5.1]. In full generality, the statement is then proved using Proposition 7.

3.5. Adjunctions

In this subsection, we study adjunctions in the 2-category \mathcal{G}_A under the assumption that A is self-injective. We assume that A is basic and that there is a fixed complete G-invariant set E of primitive idempotents. We denote by ν the bijection on E which is induced by the Nakayama automorphism of A given by

\[
\text{Hom}_k(eA, k) \cong \text{Av}(e), \quad \text{for } e \in E.
\]

For a primitive idempotent $e \in A$, we denote by e_ν the idempotent in $\text{End}_Y(eA)$ or $\text{End}_Y(eA)$ corresponding to the trivial character of $G_{\text{Av}(e)} = G_{\mathbb{1}_e} = G_e = : e$. We denote by \mathbf{m} the multiplication map in B.

Proposition 12. We have adjunctions

(a) $((\mathbb{1}_e, e_\nu), (eA, e_\nu))$ in $\tilde{\mathcal{J}}^\gamma$;

(b) $((eA, e_\nu), (\text{Av}(e), e_\nu(e)))$ in $\tilde{\mathcal{J}}^\gamma$.

Proof. We first define the counit
\[\epsilon : (Ae \otimes y eA, e e \otimes y e) \to (A, \tilde{\pi}_1). \]
This is defined by the vertical part of the diagram

\[\bigoplus_{\varphi} Ae \otimes k^\varphi eA^\varphi \xrightarrow{\otimes \pi_0} \bigoplus_{\alpha, \beta} A e^\alpha \otimes_k e A^\beta \]

where here and in the rest of the proof all elements indexing direct sums run through \(G, \) and the notation \((\alpha \otimes \beta\varphi^{-1})_{\alpha, \beta, \varphi, \gamma} \) should be read as the \((\alpha, \beta, \varphi)\)-component of the map being defined as zero if the conditions \(\alpha, \beta, \varphi^{-1} \in G_e \) are not satisfied.

To check that the vertical arrows define a morphism \((Ae \otimes y eA, e e \otimes y e) \to (A, \tilde{\pi}_1)\), we need to verify that the diagram commutes and the result coincides with the original map, namely, satisfying (2). We consider the \((\delta, \varphi)\)-component of both compositions. First going to the right and then down, \(\epsilon \otimes \varphi(e) \) is mapped to

\[\frac{1}{|G|^3} \sum_{\alpha, \beta, \varphi} \delta(e \alpha^{-1} \beta(e)) \begin{cases} \frac{1}{|G|} \delta(e), & \text{if } \varphi \in G_e, \\ 0, & \text{otherwise}. \end{cases} \]

The other way around, \(e \otimes \varphi(e) \) is sent to

\[\frac{1}{|G|^3} \sum_{\gamma \in G} \delta(e \varphi(e)) \begin{cases} \frac{1}{|G|} \delta(e), & \text{if } \varphi \in G_e, \\ 0, & \text{otherwise}, \end{cases} \]

which coincides with the image of \(\frac{1}{|G|} (\delta \circ m)_{\beta, \varphi, \gamma} \) on \(e \otimes \varphi(e) \). So our counit \(\epsilon \) is, indeed, well-defined.

We now define the unit
\[\eta : (k, \tilde{\pi}_1) \to (eA \otimes y eA, e e \otimes y e) \]
by the vertical part of the diagram

\[\bigoplus_{\delta, \alpha} \delta e A^\delta \otimes_A A e^\alpha \xrightarrow{\otimes \eta_\gamma} \bigoplus_{\beta, \gamma} \beta e A^\beta \otimes_A \gamma e A^\gamma \]

where

\[\eta_\beta^\gamma(\varphi(1)) = \begin{cases} \frac{1}{|G|} \beta(e) \otimes \gamma(e), & \text{if } \beta \gamma^{-1} \in G_e, \\ 0, & \text{otherwise}. \end{cases} \]

We again check that this defines a morphism \((k, \tilde{\pi}_1) \to (eA \otimes y eA, e e \otimes y e)\) by verifying (2). Computing the \((\beta, \gamma)\)-component of the path first going to the right and then down, we see that

\[1 \mapsto \begin{cases} \frac{1}{|G|} \beta(e) \otimes \gamma(e), & \text{if } \beta \gamma^{-1} \in G_e, \\ 0, & \text{otherwise}. \end{cases} \]
that is, \((\eta_{\beta,\gamma})_{\beta \gamma^{-1} \in G_e}\). The other way around,

\[
1 \mapsto \sum_{\delta \in \beta G_e, \alpha \in \gamma G_e} \frac{1}{|G_e|} \beta(e) \otimes \gamma(e) = \begin{cases} \frac{1}{|G_e|} \beta(e) \otimes \gamma(e), & \text{if } \beta^{-1} \gamma \in G_e, \\ 0, & \text{otherwise.} \end{cases}
\]

Note that the condition \(\delta \beta^{-1} \in G_e\) is automatically satisfied for \(\beta \gamma^{-1} \in G_e\) and \(\delta \in \beta G_e, \alpha \in \gamma G_e\). Thus our unit \(\eta\) is well-defined as well.

Now we need to check the adjunction axioms. Denoting \((Ae, \varepsilon_e)\) by \(F\) and \((eA, \varepsilon_e)\) by \(G\), we first verify

\[
F \rightarrow F \Pi j \rightarrow FGF \rightarrow F \Pi 1 F \rightarrow F
\]

is the identity, for appropriate \(i\) and \(j\). To this end, consider the commutative diagram

\[
\begin{array}{ccc}
Ae & \xrightarrow{\sum_{\eta \in G_e} (\varepsilon_e)_{\eta \in G_e, \varepsilon \in eG_e, 0}} & \bigoplus_{i \in I} Ae_i \\
\downarrow \cong \bigoplus_{\eta \in G_e} (\varepsilon_e)_{\eta \in G_e, \varepsilon \in eG_e, 0} & \downarrow \cong \bigoplus_{i \in I} (\varepsilon_e)_{i \in I, \varepsilon \in eG_e} & \downarrow \cong \bigoplus_{i \in I} \omega^i Ae^i
\end{array}
\]

where in the third horizontal arrow the conditions are \(\lambda \beta^{-1}, \mu \gamma^{-1}, \nu \delta^{-1} \in G_e\).

We want the \(\rho\)-component of the composition on the left hand side of the diagram to be given by \(\omega (\varepsilon_e)_{\rho \in \eta G_e, \varepsilon \in eG_e}\), if \(\rho \in G_e\), and by zero otherwise. To see this, first notice that multiplication \(m\) in the third map will give something non-zero only if \(\beta \gamma^{-1} \in G_e\). Taking into account all conditions specified in the diagram, this forces \(\kappa, \beta, \gamma, \delta, \theta, \rho \in G_e\) in order for the \(\rho\)-component to be non-zero. Each choice of \(\kappa, \beta, \gamma, \delta, \theta \in G_e\) and \(\varphi, \xi \in G\) yields a summand \(1/|G_e|\rho\) in the composition (recall the factor \(1/|G_e|\) in (10)). Summing over all these possibilities hence produces the desired result.

The fact that the composition

\[
G \rightarrow \Pi 1 G \rightarrow GGF \rightarrow G \Pi 1 G \rightarrow G
\]

is the identity follows as above by flipping all tensor factors and replacing \(Ae\) by \(eA\) in appropriate places. This proves part (ii).

Assume that \(E = \{e_1, e_2, \ldots, e_k\}\). For any \(1 \leq i \leq k\), we choose a Jordan-Hölder series of each \(Ae_i\) by

\[
Ae_i = X_{i,0} \supseteq X_{i,1} \supseteq X_{i,2} \supseteq \cdots \supseteq X_{i,m_i} \supseteq X_{i,m_i+1} = 0.
\]

As our algebra \(A\) is basic, each \(k\)-space \(X_{i,j}/X_{i,j+1}\), where \(0 \leq j \leq m_i\), is of dimension one. For each \(i\), we fix some basis \(E_i := \{e_{i,j} : 1 \leq j \leq m_i\}\) of \(Ae_i\) such that
we have $x_{i,j} \in X_{i,j} \setminus X_{i,j+1}$, for every j. Then $A := \bigcup_{i=1}^{k} E_i \supset E$ is a basis of A. Let $t : A \to k$ be the unique linear map such that, for all $a \in A$, we have

$$t(a) = \begin{cases} 1, & a = x_{i,m_i}, \text{ for some } i; \\ 0, & \text{otherwise}. \end{cases}$$

For $a \in A$, we denote by a^* the unique element in A which satisfies

$$t(ba^*) = \begin{cases} 1, & b = a; \\ 0, & b \in A \setminus \{a\}. \end{cases}$$

We now define the unit

$$\tilde{\eta} : (A, \tilde{\pi}_1) \to (Av(e) \otimes_A eA, v(e) \otimes e)$$

by the vertical part of the diagram

$$\begin{array}{ccc}
A \\
\downarrow \tilde{\eta}_e \otimes e \\
\oplus_{\alpha,\beta} \alpha A^\alpha \otimes_\mathbb{B} \beta eA \\
\downarrow t(e) \\
\oplus_{\gamma,\delta} \gamma A^\gamma \otimes_\mathbb{B} \delta eA \\
\downarrow \gamma \delta \tilde{\eta}_e \otimes e \\
\end{array}$$

where

$$\tilde{\eta}_e^{\gamma,\delta}(\varphi(1)) = \begin{cases} \\
\sum_{a \in k} \gamma(a^* \nu(e)) \otimes \delta(ea), & \text{if } \gamma^{-1} \delta^{-1} \in G_e; \\
0, & \text{otherwise}. \\
\end{cases}$$

Going right and then down, summing over $\varphi \in G$ cancels the scalar $\frac{1}{|G_e|}$ and hence the image of 1 in the (γ, δ)-component is given by the right hand side of (11) and equals the (γ, δ)-component of $(\tilde{\eta}_e^{\gamma,\delta}(1))_{\gamma^{-1} \delta^{-1} \in G_e}$, which implies the first equality of (2). Going down and then right, to obtain a non-zero contribution, we need $\alpha \beta^{-1}, \gamma \alpha^{-1}, \delta \beta^{-1} \in G_e$, which yields $\delta^{-1} \gamma^{-1} \in G_e$. Summing over all such choices of α and β, the image of 1 in the (γ, δ)-component is again given by the right hand side of (11), implying the second equality of (2). Hence $\tilde{\eta}$ is well-defined.

Now we define the counit

$$\tilde{\epsilon} : (eA \otimes_A Av(e), e \otimes \varphi \nu(e)) \to (k, \tilde{\pi}_1)$$

by the vertical part of the diagram

$$\begin{array}{ccc}
\oplus_{\varphi} eA \otimes_A \varphi Av(e) \otimes_\mathbb{B} Av(e) \\
\downarrow \tilde{\epsilon}_{\varphi} \\
\oplus_{\rho,\psi} \rho eA^\rho \otimes_\mathbb{B} \psi Av(e) \psi \\
\downarrow \tilde{\epsilon}_{\varphi,\psi} \\
\oplus_{\alpha} \rho_k^\alpha \\
\downarrow \tilde{\epsilon}_{\alpha} \\
\oplus_{\beta} \rho_k^\beta \\
\end{array}$$

Consider the (β, φ)-component of both compositions. First going down and then to the right, the first map is zero, for $\varphi \notin G_e$, as $t(eA \otimes A) = 0$ unless $f = \nu(e)$. If $\varphi \in G_e$, then each α contributes $\frac{1}{|G_e| \beta \otimes e}$ to m. Hence the resulting map is $\frac{1}{|G_e|} \beta \otimes e$ and the second equality of (2) is satisfied. The right vertical map is zero unless $\psi \rho^{-1} \in G_e$.\]
which, together with the conditions on the upper horizontal map, forces $\varphi, \rho, \psi \in G_e$. Summing over the choices for ρ and ψ, we obtain the same resulting map and thus the diagram commutes, in which case the first equality of (2) holds. Hence $\tilde{\epsilon}$ is well-defined.

We now verify the adjunction axioms. Denoting (eA, ε_e) by \tilde{F} and $(A\nu(e), \varepsilon_{\nu(e)})$ by \tilde{G}, we need to show that

$$\tilde{F} \to \tilde{F} \mathbb{1}_1 \to \tilde{F} \tilde{G} \tilde{F} \to \mathbb{1}_j \tilde{F} \to \tilde{F}$$

is the identity. To this end, we assemble our maps in a large commutative diagram as in part (a) and compute the left hand side. This is given by the composition

$$\sum_{\delta, \varphi} \delta eA^\delta \otimes_A \varphi A^\varphi \xrightarrow{\alpha \beta \gamma} \sum_{\omega} \omega eA^\omega$$

where in the third map the conditions are $\theta\gamma^{-1} \in G_e$ and $\alpha, \beta, \xi \in G$. However, the third map is zero unless $\alpha\beta^{-1} \in G_e$ (for the same reason involving t as used above), which, together with the other conditions in the diagram, shows that we have a non-zero contribution to the ω-component only if $\delta, \varphi, \alpha, \beta, \gamma, \xi, \theta \in G_e$. For $\omega \in G_e$, the contribution of a fixed choice of $\delta, \varphi, \alpha, \beta, \gamma, \xi, \theta$ to the image of e is

$$\frac{1}{|G|^2|G_e|} \omega \mathbb{1} \left(\sum_{a \in A} t(e \beta \alpha^{-1}(a^* \nu(e))) e_a \right).$$

Observing that, by our choice of A, we have

$$t(e \beta \alpha^{-1}(a^* \nu(e))) = \begin{cases} 1, & \text{if } a = e; \\ 0, & \text{otherwise,} \end{cases}$$

and summing over all choices of $\delta, \varphi, \alpha, \beta, \gamma, \xi, \theta$, we obtain that the image of e is

$$\frac{1}{|G_e|} \omega(e),$$

as desired.

Now we verify the other axiom. The composition

$$\tilde{G} \to \mathbb{1}_1 \tilde{G} \to \tilde{G} \tilde{F} \tilde{G} \to \tilde{G} \mathbb{1}_j \to \tilde{G}$$
is given by the diagram, which consists of the left hand side of a large commutative diagram as in part (a),

\[
\begin{align*}
A\nu(e) & \xrightarrow{\sum_{\alpha \in G, \varphi \in Ge} \alpha} \bigoplus_{\alpha, \varphi} A^\alpha \otimes_A \varphi A\nu(e)^\varphi \\
\bigoplus_{\xi, \theta}^\theta A\nu(e)^\theta & \otimes_k \xi & \bigoplus_{\delta, \beta, \gamma}^\delta A\nu(e)^\delta & \otimes_k \beta & \bigoplus_{\omega}^\omega A\nu(e)^\omega
\end{align*}
\]

where in the third map the conditions are \(\theta, \delta, \beta, \gamma, \xi, \omega \in G\). Note that the third map is zero unless \(\delta, \beta, \gamma, \xi, \omega \in G\). Taking into account all conditions in the diagram, this shows that we have a non-zero contribution to the \(\omega\)-component only if \(\varphi, \gamma, \beta, \delta, \theta, \xi \in G\). For \(\omega \in G\), the contribution of a fixed choice of \(\alpha, \varphi, \gamma, \beta, \delta, \theta, \xi\) to the image of \(\nu(e)\) is

\[
\frac{1}{|G|^{\frac{1}{2}}|Ge|} \left(\sum_{\omega \in k} a^* \nu(e) t(ea\beta^{-1}\gamma(\nu(e))) \right).
\]

By our choice of \(A\), we have

\[
t(ea\beta^{-1}\gamma(\nu(e))) = \begin{cases} 1, & \text{if } a^* = \nu(e); \\ 0, & \text{otherwise.} \end{cases}
\]

Summing over all choices of \(\alpha, \varphi, \gamma, \beta, \delta, \theta, \xi\), we obtain that the image of \(\nu(e)\) is \(e_{G_e}^\omega(\nu(e))\), as desired. This completes the proof. \(\square\)

We now consider tensor products of indecomposable projective symmetric \(B\)-\(B\)-bimodules with simple quotients of projective \(A\)-\(k\)-bimodules. To this end, we extend our notation to \(\widehat{G}_{fe} := G\widehat{A} \otimes_k B\widehat{A} (\subset G_e \cap G_f)\), for \(e, f \in E\), and denote the simple quotient of \((Ae, \varepsilon_e)\) by \((Le, \varepsilon_e)\). As each \(\varphi \in G\) is an automorphism of \(A\), we have the induced action of \(\varphi\) on \(\{(Le, \varepsilon_e) : e \in E\}\) which maps each vector space \(Le\) to the vector space \(L_{\varphi(e)}\).

Lemma 13. In \(\widehat{Y}\), there is an isomorphism

\[
(Af \otimes_k eA, \varepsilon_{fe}) \otimes_{\widehat{Y}} (Le, \varepsilon_e) \cong (Af, \frac{1}{|G_{fe}|}(\gamma)_{\gamma \in G_{fe}}) \cong \bigoplus_{\xi} (Af, \varepsilon_\xi)
\]

where \(\xi\) runs over all characters appearing in the induction of the trivial \(G_{fe}\)-module to \(G_f\).
Proof. We first construct an isomorphism between \((Af \otimes k e_A, e_{fe}) \otimes_{\gamma} (L_e, e_e)\) and
\((Af, \frac{1}{|G_{fe}|} (\gamma)_{\gamma \in G_{fe}})\). In one direction, the morphism \(g\) is given by the diagram
\[
\begin{array}{c}
\bigoplus_{\varphi, \psi} Af \otimes k e_A \otimes_{\alpha, \beta} (L_e)^{\varphi}
\end{array}
\to
\begin{array}{c}
\bigoplus_{\gamma} Af^{\gamma}
\end{array}
\]
where the lower horizontal map is indexed by \(\alpha^{-1} \in G_{fe}, \beta \varphi^{-1} \in G_e\), and \(l\) denotes
the canonical generator of the one-dimensional module \(L_e\) (the image of \(e\) in \(L_e\)). To see that the diagram commutes, first notice that the \((\alpha, \beta)\)-component of the object in the lower right-hand corner is nonzero if and only if \(\alpha \beta^{-1} \in G_e\). If this is the case, then the \((\alpha, \beta)\)-component of the map going first to the right and then down is given by
\[
f \mapsto \begin{cases}
\frac{1}{|G_{fe}|} |G_{fe}| \alpha(f) \otimes \alpha(e) \otimes \beta(l), & \text{if } \alpha \in G_{fe}, \\
0, & \text{otherwise.}
\end{cases}
\]
First going down and then to the right, we notice that \(\varphi \in G_e, \psi \in G_{fe}\) forces \(\beta \in G_e, \alpha \in G_{fe}\), so we obtain the same result, which verifies \((2)\).

A morphism \(h\) in the other direction is given by
\[
\begin{array}{c}
\bigoplus_{\varphi, \psi} Af \otimes k e_A \otimes_{\alpha, \beta} (L_e)^{\varphi}
\end{array}
\to
\begin{array}{c}
\bigoplus_{\gamma} Af^{\gamma}
\end{array}
\]
where the lower horizontal map is indexed by \(\alpha \psi^{-1} \in G_{fe}, \psi \beta^{-1} \in G_e\), and \(l\) denotes
the canonical generator of the one-dimensional module \(L_e\) (the image of \(e\) in \(L_e\)). To see that the diagram commutes, first notice that the \((\alpha, \beta)\)-component of the object in the lower right-hand corner is nonzero if and only if \(\alpha \beta^{-1} \in G_e\). If this is the case, then the \((\alpha, \beta)\)-component of the map going first to the right and then down is given by
\[
f \mapsto \begin{cases}
\frac{1}{|G_{fe}|} |G_{fe}| \alpha(f) \otimes \alpha(e) \otimes \beta(l), & \text{if } \alpha \in G_{fe}, \\
0, & \text{otherwise.}
\end{cases}
\]
First going down and then to the right, we notice that \(\varphi \in G_e, \psi \in G_{fe}\) forces \(\beta \in G_e, \alpha \in G_{fe}\), so we obtain the same result, which verifies \((2)\).

To check that both compositions of \(g\) and \(h\) are the respective identities (that is, the correct idempotents), it suffices to consider the compositions of the left hand side of the diagrams.

Starting with \(g \circ h\) and considering
\[
\begin{array}{c}
\bigoplus_{\varphi, \psi} Af \otimes k e_A \otimes_{\alpha, \beta} (L_e)^{\varphi}
\end{array}
\to
\begin{array}{c}
\bigoplus_{\delta} Af^{\delta}
\end{array}
\to
\begin{array}{c}
\bigoplus_{\gamma} Af^{\gamma}
\end{array}
\]
the \((\alpha, \beta, \varphi)\)-component of the composition is zero unless \(\varphi, \beta \in G_e, \alpha \in G_{fe}\), in which case the generator \(f \otimes e \otimes \varphi(l)\) is mapped to \(\frac{1}{|G_{fe}|} |G_{fe}| \alpha(f) \otimes \alpha(e) \otimes \beta(l)\), as desired.

For \(h \circ g\), we consider
\[
\begin{array}{c}
Af \to
\begin{array}{c}
\bigoplus_{\varphi, \psi} Af \otimes k e_A \otimes_{\alpha, \beta} (L_e)^{\varphi}
\end{array}
\to
\begin{array}{c}
\bigoplus_{\gamma} Af^{\gamma}
\end{array}
\]

and verify that, in the γ-component, f is indeed sent to $\frac{1}{|G_{fe}|} \gamma(f)$, if $\gamma \in G_{fe}$, and zero otherwise, as claimed.

Hence we have an isomorphism $\Hom_{\mathcal{B}}(Af \otimes_k eA, \varepsilon_{fe}) \otimes_{\mathcal{F}} (L_\varepsilon, \varepsilon_e) \cong (Af, \frac{1}{|G_{fe}|} \gamma)_{\gamma \in G_{fe}}$, as stated.

Now notice that $1_{G_{fe}}$ is a trivial idempotent on G_{fe}. When viewed as an idempotent of the larger group G_f, it decomposes into precisely the (multiplicity-free) sum of those idempotents affording characters χ of G_f which appear in the induction of the trivial character from G_{fe} to G_f. This proves the proposition. \(\square\)

Proposition 14. We have adjunctions $((Af \otimes_k eA, \varepsilon_{fe}), (Av(e) \otimes_k fA, \varepsilon_{\nu(e)f}))$, for idempotents $e, f \in A$.

Proof. From the defining action of \mathcal{B} on B-mod we have that $(Af \otimes_k eA, \varepsilon_{fe})$ is left adjoint to $(Av(e) \otimes_k fA, \varepsilon_{\nu(e)f})$, for some $\chi \in \hat{G}_{\nu(e)f}$. We thus have an isomorphism of nonzero spaces of homomorphisms,

$$
\Hom_{\mathcal{B}}((Af, \frac{1}{|G_{fe}|} (\beta)_{\beta \in G_{fe}}), (L_f, \varepsilon_f)) \cong \Hom_{\mathcal{B}}((Av(e) \otimes_k fA, \varepsilon_{\nu(e)f}) \otimes_{\mathcal{F}} (L_f, \varepsilon_f)) \cong \Hom_{\mathcal{B}}((L_\varepsilon, \varepsilon_e), (Av(e), \frac{1}{|G_{fe}|} (\gamma)_{\gamma \in G_{fe}}))
$$

where the first isomorphism follows from Lemma 13.

By (the opposite of) Proposition 7, noting that $G_{fe} = G_{\nu(e)f}$ and $G_{\nu(e)} = G_e$, there are isomorphisms

$$(Av(e) \otimes_k fA, \varepsilon_{\nu(e)f}) \otimes_{\mathcal{F}} (L_f, \varepsilon_f) \cong (A, \pi_\nu) \otimes_{\mathcal{F}} (Av(e) \otimes_k fA, \varepsilon_{\nu(e)f}) \otimes_{\mathcal{F}} (L_f, \varepsilon_f) \cong (A, \pi_\nu) \otimes_{\mathcal{F}} (Av(e), \frac{1}{|G_{fe}|} (\gamma)_{\gamma \in G_{fe}}) \cong (Av(e), \frac{1}{|G_{fe}|} (\chi(\gamma)\gamma)_{\gamma \in G_{fe}}),$$

yielding the isomorphism

$$\Hom_{\mathcal{B}}((Af, \frac{1}{|G_{fe}|} (\beta)_{\beta \in G_{fe}}), (L_f, \varepsilon_f)) \cong \Hom_{\mathcal{B}}((L_\varepsilon, \varepsilon_e), (Av(e), \frac{1}{|G_{fe}|} (\chi(\gamma)\gamma)_{\gamma \in G_{fe}})).$$

Denote the left hand side by U and the right hand side by V.

Now we claim that $\dim_k U = 1$. By (2), for any morphism $g \in U$, we have

$$\text{id}_{(L_f, \varepsilon_f)} \circ g = g = g \circ \text{id}_{(A, \pi_\nu)}.$$
Assume that $g = (k_{\alpha} \alpha)_{\alpha \in G_f}$, where $k_{\alpha} \in k$, and consider the diagram

$$
\begin{array}{ccc}
Af & \xrightarrow{\frac{1}{|G_{fe}|} (\beta)_{\beta \in G_{fe}}} & \bigoplus_{\beta} Af^\beta \\
(k_{\alpha} \alpha)_{\alpha \in G_f} \downarrow & & \downarrow (k_{\gamma \beta} \gamma)_{\gamma, \beta \in G_f} \\
\bigoplus_{\alpha} (L_f)^\alpha & \xrightarrow{(\alpha_{\gamma}^{-1})_{\gamma \alpha \in G_f}} & \bigoplus_{\gamma} (L_f)^\gamma.
\end{array}
$$

The morphism $\text{id}_{(L_f, \varepsilon_f)} \circ g$ is exactly the path going down and then right, taking into account the fact that $\alpha \in G_f$ forces $\gamma \in G_f$, and the γ-component of this morphism
is given by
\[f \mapsto \begin{cases} \frac{1}{|G_f|} \left(\sum_{\alpha \in G_f} k_\alpha \right) \gamma(f), & \text{if } \gamma \in G_f; \\ 0, & \text{otherwise}. \end{cases} \]

The first equality of (13) shows that \(\frac{1}{|G_f|} \sum_{\alpha \in G_f} k_\alpha = k_\gamma \) for all \(\gamma, \gamma' \in G_f \). Then we obtain \(g = (k_\alpha)_{\alpha \in G_f} \), where \(k \in k \), and the first equality is automatically satisfied. Going right and then down and using the fact that \(\beta \in G_{fe}, \gamma \beta^{-1} \in G_f \) implies \(\gamma \in G_f \), the second equality of (13) is easily verified. The claim follows.

As \(U \cong V \), we have \(\dim_k V = 1 \). Using (2), for any morphism \(h \in V \), we have
\[(13) \quad \id_{(A \nu, \mu_{\gamma\gamma})_{\gamma \in G_{fe}}} \circ h = h = h \circ \id_{(A, \epsilon_\alpha)} .\]

Assume that \(h = (l_\alpha)_{\alpha \in G_e} \), where \(l_\alpha \in k \), and consider the diagram
\[
\begin{array}{ccc}
(L_e, 1) & \xrightarrow{\sum_{\beta \in G_e} (\delta \beta^{-1})_{\beta \in G_e}} & \bigoplus_{\beta} \delta (L_e) \delta \\
\bigoplus_{\alpha} \alpha A \nu (e)_{\alpha} & \xrightarrow{\sum_{\beta \in G_{fe}} (\chi (\delta \alpha^{-1})_{\delta \alpha^{-1} \in G_{fe}})} & \bigoplus_{\delta} \delta A \nu (e) \delta. \\
\end{array}
\]

The morphism \(h \circ \id_{(A, \epsilon_\alpha)} \) coincides with the path going to the right and then down. Note that \(\beta \in G_e, \delta \beta^{-1} \in G_e \) forces \(\delta \in G_e \). Then the \(\delta \)-component of this composition is given by
\[e \mapsto \left(\frac{1}{|G_e|} \left(\sum_{\beta \in G_e} l_{\delta \beta} \right) \delta(e), \quad \text{if } \delta \in G_e; \right. \]
\[e \mapsto \left. 0, \quad \text{otherwise}. \right. \]

By re-indexing, the second equality of (13) shows that, for all \(\delta \in G_e \), we have \(\frac{1}{|G_e|} \sum_{\sigma \in G_e} l_\sigma = l_\delta \), and thus \(l_\delta = l_{\delta'} \), for all \(\delta, \delta' \in G_e \). Therefore we have \(h = (l_\delta)_{\delta \in G_e} \), where \(l \in k \), and the second equality holds. Due to \(\dim_k V = 1 \), the first equality of (13) should also hold for any \(l \in k^* \). Going down and then to the right, the \(\delta \)-component of \(\id_{(A \nu, \mu_{\gamma\gamma})_{\gamma \in G_{fe}}} \circ h \) is zero unless \(\delta \in G_{fe} \), in which case \(e \) is sent to
\[\frac{1}{|G_{fe}|} \left(\sum_{\alpha \in G_{fe}} \chi (\delta \alpha^{-1}) \right) \delta(e) = \frac{1}{|G_{fe}|} \left(\sum_{\varphi \in G_{fe}} \chi (\varphi) \right) l \delta(e). \]

The first equality implies that \(\frac{1}{|G_{fe}|} \left(\sum_{\varphi \in G_{fe}} \chi (\varphi) \right) = 1 \). By multiplying any \(\chi (\gamma) \), where \(\gamma \in G_{fe} \), to both side of the latter, we obtain
\[\chi (\gamma) = \frac{1}{|G_{fe}|} \left(\sum_{\varphi \in G_{fe}} \chi (\gamma \varphi) \right) = \frac{1}{|G_{fe}|} \left(\sum_{\psi \in G_{fe}} \chi (\psi) \right) = 1. \]

Therefore \(\chi = \epsilon_{\nu(e) f} \) and the proof is complete. \(\square \)

Proposition 15. In \(\mathcal{G}_B \), we have adjunctions \((A_i, \tilde{\pi}_\chi), (A_i, \tilde{\pi}_{\chi^{-1}})\), for each \(\chi \in \tilde{G} \) and \(i = 1, \ldots, n \). Similarly, we have adjunction \((k, \tilde{\pi}_\chi), (k, \tilde{\pi}_{\chi^{-1}})\), for each \(\chi \in \tilde{G} \).
Proof. By Proposition 6, we have
\[(A_i; \tilde{\pi}_\chi) \otimes (A_i; \tilde{\pi}_{\chi^{-1}}) \cong (A_i; \tilde{\pi}_{1^{\chi}}) \cong (A_i; \tilde{\pi}_\chi)\]
and similarly for \(k\). Both unit and counit are then just identities and the claim is immediate. \(\square\)

Proposition 16. If \(A\) is self-injective, then the \(2\)-categories \(G_A\) and \(G_B\) are weakly fiat. If \(A\) is weakly symmetric, then both \(G_A\) and \(G_B\) are fiat.

Proof. Assume \(A\) is self-injective. Proposition 6 shows that any indecomposable 1-morphism can be written as a product of those treated in Propositions 12, 14 and 15. This implies that \(G_A\) and \(G_B\) are weakly fiat. If \(A\) is weakly symmetric, then \(\nu\) is the identity, and all adjunctions given in Propositions 12, 14 and 15 become (weakly) involutive, proving fiatness. \(\square\)

3.6. Simple transitive 2-representations of \(G_A\)

Now we can formulate our first main result. We assume that \(A\) is weakly symmetric, basic and there is a fixed complete \(G\)-invariant set \(E\) of primitive idempotents, so that \(G_A\) and \(G_B\) are fiat.

Theorem 17. Under the above assumptions, for every two-sided cell \(J\) in \(G_A\), there is a natural bijection between equivalence classes of simple transitive 2-representations of \(G_A\) with apex \(J\) and pairs \((K, \omega)\), where \(K\) is a subgroup of \(G\) and \(\omega \in H^2(K, \kappa^*)\).

Proof. For \(J = J_i\), where \(i = 1, 2, \ldots, n\), Proposition 6 shows that the \(J\)-simple quotient of \(G_A\) is biequivalent to the 2-category \(\text{Rep}(G)\) from [Os]. Therefore the statement follows from [Os, Theorem 2].

For \(J = J_0\), consider \(B = A \times \kappa\). Then we can realize \(G_A\) as a both 1- and 2-full subcategory of \(G_B\) in the obvious way. Let \(j\) denote the object corresponding to the additional factor \(\kappa\). Let \(H_j\) be the \(H\)-class in \(G_B\) containing the identity 1-morphism on \(\kappa\). By Proposition 6, \(H_j\) contains \([G]\) many 1-morphisms, moreover, \(H_j\) is contained in \(J_0^{(B)}\), the two-sided cell of projective bimodules in \(G_B\). Note that the 1- and 2-full 2-subcategory \(G_{H_j}\) of \(G_B\) with object \(j\) is biequivalent to the 2-category \(\text{Rep}(G)\) as above. Hence, by [Os, Theorem 2], there is a natural bijection between equivalence classes of simple transitive 2-representations of \(G_{H_j}\) with apex \(H_j\) and pairs \((K, \omega)\) as in the theorem. By [MMMZ, Theorem 15], there is a bijection between equivalence classes of simple transitive 2-representations of \(G_{H_j}\) and equivalence classes of simple transitive 2-representations of \(G_B\) with apex \(J_0^{(B)}\).

Let \(H_2\) be any self-dual \(H\)-class in \(G_A\) contained in \(J_0\). Notice that this is also a self-dual \(H\)-class in \(G_B\) contained in \(J_0^{(B)}\). Let \(G_{H_2}\) be the corresponding 1- and 2-full 2-subcategory of \(G_A\) and of \(G_B\), cf. [MMMZ, Subsection 4.2]. By [MMMZ, Theorem 15], there is a bijection between equivalence classes of simple transitive 2-representations of \(G_{H_2}\) and equivalence classes of simple transitive 2-representations of \(G_B\) with apex \(J_0^{(B)}\), and also of \(G_A\) with apex \(J_0\). The claim follows. \(\square\)

To prove Theorem 17 one could alternatively use [MMM1, Corollary 12].

Remark 18. An analogue of Theorem 17 is also true in the weakly fiat case, that is when \(A\) is just self-injective but not necessarily weakly symmetric. However, the proof requires an adjustment of the results of [MMMZ] Theorem 15 to the case when instead of one diagonal \(H\)-cell one considers a diagonal block which is stable under \(*\). One could carefully go through the proof [MMMZ, Theorem 15] and check that everything works.
3.7. A class of examples. Fix a positive integer $n > 1$ and let A be the quotient of the path algebra of the cyclic quiver

![Diagram of the cyclic quiver](image)

modulo the ideal generated by all paths of length n. Now we let G be the cyclic group of order n whose generator φ acts on A by sending e_i to e_{i+1} and α_i to α_{i+1} (where we compute indices modulo n).

For $i = 1, 2, \ldots, n$, we denote by F_i, the indecomposable 1-morphism in \mathcal{G} corresponding to tensoring with $\mathbb{A}e_i \otimes_k e_i A$ (we omit the idempotents since the action of G is free). Then (F_i, F_{n+1-i}) is an adjoint pair (and, indeed, biadjoint), for each i. Hence \mathcal{G} is fiat.

Note that every subgroup of G is cyclic and $H^2(\mathbb{Z}/k\mathbb{Z}, k^*) \cong k^*/(k^*)^k \cong \{e\}$ since k is algebraically closed. Therefore, simple transitive 2-representations of \mathcal{G} are in bijection with divisors of n. For $d|n$, the algebra underlying the simple transitive 2-representations of \mathcal{G} corresponding to d is the algebra $A(\varphi^{\mathbb{Z}/d\mathbb{Z}})$ with the obvious action of \mathcal{G}.

4. Two-element \mathcal{H}-cells with no self-adjoint elements

4.1. Basic combinatorics.

Proposition 19. Let \mathcal{C} be a fiat 2-category such that

- \mathcal{C} has one object 1;
- \mathcal{C} has two two-sided cells, each of which is also a right cell and a left cell, one being $\{1_1\}$ and the other one given by $\{F, G\}$ with $F \not\cong G$;
- $F^* \cong G$.

Then there exists $n \in \mathbb{Z}_{>0}$ such that

$$
(14) \quad FF \cong FG \cong GF \cong GG \cong (F \oplus G)^{\otimes n}.
$$

Proof. We have

$$
FF \cong F^{\otimes a_1} \oplus G^{\otimes a_2}, \quad FG \cong F^{\otimes b_1} \oplus G^{\otimes b_2},
$$

$$
GF \cong F^{\otimes c_1} \oplus G^{\otimes c_2}, \quad GG \cong F^{\otimes d_1} \oplus G^{\otimes d_2},
$$

for some $a_1, a_2, b_1, b_2, c_1, c_2, d_1, d_2 \in \mathbb{Z}_{\geq 0}$.

From $F^* \cong G$, we see that $(FG)^* \cong FG$ and $(GF)^* \cong GF$. This implies $b_1 = b_2 =: b$ and $c_1 = c_2 =: c$. Furthermore, $(FF)^* \cong GG$, which implies $a_1 = d_2 =: x$ and $a_2 = d_1 =: y$.

As G is in the same left cell as F, we obtain $y + c > 0$ and $y + b > 0$.

Case 1: $y = 0$. In this case we have $c, b > 0$ by the above, and

$$
FF \cong F^{\otimes c}, \quad FG \cong F^{\otimes b_2} \oplus G^{\otimes b_1}, \quad GF \cong F^{\otimes c_2} \oplus G^{\otimes c_1}, \quad GG \cong G^{\otimes c}.
$$

We use this to compute both sides of the isomorphism $(FG)G \cong F(GG)$. This yields $b^2 = xb$ (by comparing the coefficients as F) and $b^2 + xb = xb$ (by comparing the coefficients as G). Hence $b = 0$, a contradiction. Therefore this case cannot occur.
Case 2: $y > 0$. In this case we have

$$FF \cong F^{\oplus x} \oplus G^{\oplus y}, \quad FG \cong F^{\oplus b} \oplus G^{\oplus b}, \quad GF \cong F^{\oplus c} \oplus G^{\oplus c}, \quad GG \cong F^{\oplus y} \oplus G^{\oplus x}.$$

We use this to compute both sides of the isomorphism $(FG)F \cong F(GF)$, and obtain $xc = xb$ (by comparing the coefficients as F) and $yc = yb$ (by comparing the coefficients as G). As $y > 0$, we have $c = b$.

Finally, we compute both sides of the isomorphism $(FG)G \cong F(GG)$. This implies $b^2 + by = xy + bx$ (by comparing the coefficients as F) and $b^2 + bx = y^2 + bx$ (by comparing the coefficients as G). As $y > 0$ and $b \geq 0$, from the second equation we deduce $b = y$. Using $y > 0$ and $b = y$, the first equation yields $b = x$. The claim follows.

4.2. The algebra of the cell 2-representation. Let C be a fiat 2-category as in Proposition [13]. Consider the cell 2-representation $C_{\mathcal{H}}$ of C, where $\mathcal{H} = \{F, G\}$. Denote by A its underlying basic algebra with a fixed decomposition $1_A = e_F + e_G$ of the identity into primitive orthogonal idempotents. Let P_F and P_G denote the corresponding indecomposable projective A-modules and L_F and L_G their respective simple tops. Note that flatness of C implies self-injectivity of A (cf. [KMMZ, Theorem 2]).

From (14) we obtain that the matrix describing the action of both F and G in the cell 2-representation (in the basis of indecomposable projective modules) is

$$\begin{pmatrix} n & n \\ n & n \end{pmatrix}.$$

By [MM5, Lemma 10], the same matrix describes the action of both F and G in the abelianization of the cell 2-representation in the basis of simple modules. Without loss of generality, assume that G is the Duflo involution of the left cell \mathcal{H}. In the cell 2-representation, we then have $GL_G \cong P_G$ and $FL_G \cong P_F$. This, together with the description of the matrix of the action in (13), shows that

$$[P_G : L_F] = [P_F : L_F] = [P_G : L_G] = [P_F : L_G] = n.$$

Therefore, the Cartan matrix of A is given by (15).

As the bimodules X and Y, representing F and G, respectively, are projective, see [KMMZ, Theorem 2] and [MM5, Lemma 13] for details, we deduce that $Ae_F \otimes_k e_G A$ appears as a direct summand of X and $Ae_G \otimes_k e_G A$ appears as a direct summand of Y. Due to $G^* \cong F$, and

$$0 \neq \text{Hom}_{C_{\mathcal{H}}}(GL_G, L_G) \cong \text{Hom}_{C_{\mathcal{H}}}(L_G, FL_G) \cong \text{Hom}_{C_{\mathcal{H}}}(L_G, P_F),$$

the algebra A is not weakly symmetric. Furthermore, we have

$$0 = \text{Hom}_A(P_G, L_F) \cong \text{Hom}_A(GL_G, L_F) \cong \text{Hom}_A(L_G, FL_G),$$

so FL_G is a direct sum of copies of P_G. Comparing the Cartan matrix of A with the matrix of the action of F in the basis of simples (both given by (15)), we see that $FL_G \cong P_G$. Similarly we deduce $GL_G \cong P_F$. Hence, we have

$$X \cong Ae_F \otimes_k e_G A \oplus Ae_G \otimes_k e_F A \quad \text{and} \quad Y \cong Ae_F \otimes_k e_F A \oplus Ae_G \otimes_k e_G A.$$

4.3. Functors isomorphic to the identity endomorphism of 2-representations. In this subsection, we will formulate a general result for arbitrary finitary 2-category \mathcal{V}.

This result will be needed for Subsection 4.5. For simplicity, we assume that \mathcal{V} has only one object i. Let M be a finitary 2-representation of \mathcal{V}. Let $(\text{Id}_M, \eta) : M \to M$ be the identity endomorphism M. Here η is given by the family $\{\eta_F, F \in \mathcal{V}(i, i)\}$ of natural transformations where each η_F is the identity natural transformation of $M(F)$.
Lemma 20. Let $\Phi : M(1) \to M(1)$ be a functor isomorphic to the identity functor $\text{Id}_{M(1)}$. Then there exists a family of natural isomorphisms $\{\zeta_F, F \in \mathcal{E}(1, 1)\} =: \zeta$ such that (Φ, ζ) is an endomorphism of the 2-representation M.

Proof. Note that $\Phi \cong \text{Id}_{M(1)}$ as a functor. Let $\theta : \text{Id}_{M(1)} \to \Phi$ be a fixed natural isomorphism and set $\nu := \theta^{-1}$. For any 1-morphisms F, G and 2-morphism $\alpha : F \to G$, consider the diagram

\[
\begin{array}{ccc}
\Phi \circ M(F) & \xrightarrow{\nu \circ \text{Id}_{M(F)}} & M(F) \\
\text{id}_{\alpha} \circ M(\alpha) & & \text{id}_{\alpha} \\
\Phi \circ M(G) & \xrightarrow{\nu \circ \text{Id}_{M(G)}} & M(G) \\
\end{array}
\]

Here in the middle column we use the fact that, for any ν-morphism H, we have $\text{Id}_{M(1)} \circ h M(H) = M(H) = M(H) \circ h \text{Id}_{M(1)}$.

Diagram (18) commutes thanks to the interchange law, indeed, both paths in the left square are equal to $\nu \circ h M(\alpha)$ and both paths in the right square are equal to $M(\alpha) \circ h \theta$.

For each 1-morphism F, define

\[
\zeta_F := (\text{id}_{M(F)} \circ h \theta) \circ \nu \circ h \text{Id}_{M(F)} : \Phi \circ M(F) \to M(F) \circ \Phi.
\]

Now we claim that (Φ, ζ) is an endomorphism of the 2-representation M. Commutativity of (18) gives $(M(\alpha) \circ h \text{id}_F) \circ \nu \circ h M(\alpha) = \zeta_G \circ \nu (\text{id}_F \circ h M(\alpha))$. We are hence left to check the equality

\[
\zeta_{F \circ G} = (\text{id}_{M(F)} \circ h \zeta_G) \circ \nu (\zeta_F \circ h \text{id}_{M(G)}).
\]

Here, by definition, we have

\[
\text{id}_{M(F)} \circ h \zeta_G = (\text{id}_{M(F)} \circ h \text{id}_{M(G)} \circ h \theta) \circ \nu (\text{id}_{M(F)} \circ h \nu \circ h \text{id}_{M(G)})
\]

and

\[
\zeta_{F \circ G} = (\text{id}_{M(F)} \circ h \text{id}_{M(G)} \circ h \theta) \circ \nu (\nu \circ h \text{id}_{M(F)} \circ h \text{id}_{M(G)})
\]

Now (20) follows from the fact that $\nu \theta = \text{Id}_{M(1)}$. The proof is complete. \hfill \Box

Remark 21.

(i) The natural isomorphism $\theta : \text{Id}_{M(1)} \to \Phi$ defines a modification from (Id_M, η) to (Φ, ζ) whose inverse is given by $\nu : \Phi \to \text{Id}_{M(1)}$. Indeed, for any 1-morphisms F, G and any 2-morphism $\alpha : F \to G$, we have

\[
(M(\alpha) \circ h \theta) \circ h \eta_F = M(\alpha) \circ h \theta
\]

\[
= (\text{id}_{M(G)} \circ h \theta) \circ \nu M(\alpha) \circ h \text{Id}_{M(1)}
\]

\[
= \text{id}_{M(G)} \circ h \theta \circ \nu \text{Id}_{M(1)}(\alpha)
\]

\[
= \text{id}_{M(G)} \circ h \theta \circ \nu \text{id}_{M(1)}(\alpha)
\]

\[
= \nu \circ h \text{id}_{M(G)} \circ h \theta \circ \nu \text{id}_{M(1)}(\alpha)
\]

\[
= \zeta_G \circ \nu (\theta \circ h M(\alpha))
\]

(ii) Any invertible modification θ from (Id_M, η) to some $(\Phi, \zeta) \in \text{End}_{\text{afmod}}(M)$ defines a natural isomorphism from $\text{Id}_{M(1)}$ to Φ. Moreover, from the fact that $(M(\text{id}_F) \circ h \theta) \circ h \eta_F = \zeta_F \circ \nu (\theta \circ h M(\text{id}_F))$, it follows that each ζ_F is uniquely defined by (19) with $\nu := \theta^{-1}$.

4.4. **Inductive limit construction for 2-representations.** Assume that we are in the same setup as in Subsection 4.3. For any finitary 2-representation M of \mathscr{C}, we denote by M^{pr} the 2-subrepresentation of M with the action of \mathcal{C} restricted to the category $M^{pr}(1)$ consisting of projective objects in $M(1)$. There exists a strict 2-natural transformation $\mathcal{Y}: M \to M^{pr}$ given by sending an object X to the diagram $0 \to X$ with the obvious assignment on morphisms. Similarly to [MaMa, Subsection 5.8], we have a direct system

$$M \to M^{pr} \to (M^{pr})^{pr} \to \cdots,$$

where each arrow is given by \mathcal{Y} with M replaced by the starting point corresponding to this arrow. We denote by \mathcal{M} the inductive limit of (21). This is a natural embedding of \mathcal{C} and the natural embedding of \mathcal{M}. Let L be a left cell of \mathcal{C} and $C_L := N_L/I_L$ the corresponding cell 2-representation. By Yoneda Lemma, see [MM2, Lemma 9], for any object X in $M(1)$ there exists a strict 2-natural transformation $\Lambda_X: P_1 \to M$ which sends \mathbb{I}_1 to X and, moreover, any morphism $f: X \to Y$ in $M(1)$ extends to a modification $\theta_f: \Lambda_X \to \Lambda_Y$. If I_L annihilates X, then Λ_X induces a strict 2-natural transformation Λ'_X from C_L to M. Indeed, we have the following commutative diagram

$$
\begin{array}{ccc}
N_L & \xrightarrow{\Xi} & P_1 \\
\Pi \downarrow & & \Lambda_X \\
C_L & \xrightarrow{\Lambda'_X} & M.
\end{array}
$$

If I_L also annihilates Y, then Λ_Y gives rise to a strict 2-natural transformation Λ'_Y from C_L to M such that $\Lambda_Y \Xi = \Lambda'_Y \Pi$. Due to surjectivity of Π, the modification $\theta_f \circ_\Pi \text{id}_\Xi$ from $\Lambda_X \Xi = \Lambda'_X \Pi$ to $\Lambda_Y \Xi = \Lambda'_Y \Pi$ induces a modification θ'_f from Λ'_X to Λ'_Y in $\text{Hom}_{\mathcal{C}^{afmod}(C_L,M)}$. By functoriality of the abelianization, via the limiting construction (21) we thus obtain two 2-natural transformations $\Lambda'_X, \Lambda'_Y \in \text{Hom}_{\mathcal{C}^{afmod}(C_L,M)}$ and the modification $\theta'_f: \Lambda'_X \to \Lambda'_Y$.

4.5. **Symmetries of the cell 2-representation.**

Lemma 22. The annihilators in \mathcal{C} of L_F and L_G coincide.

Proof. Since G is the Duflo involution in \mathcal{H}, it follows from [MM2, Subsection 6.5] that the annihilator of L_F is contained in the annihilator of L_G (as the latter is a certain unique maximal left ideal by [MM2, Proposition 21]). Furthermore, the evaluation at L_G, inside the abelianized cell 2-representation, of $\text{Hom}_{\mathcal{C}^{afmod}(C_H,M)}$ is full for all $H_1, H_2 \in \{F, G\}$ by [MM2, Subsection 6.5].

Hence, if the annihilator of L_F were strictly contained in the annihilator of L_G, the dimension of the endomorphism space (in the cell 2-representation) of $(F \oplus G)L_F$ would be strictly bigger than the dimension of the endomorphism space of $(F \oplus G)L_G$. However, from Subsection 4.2 we know that $(F \oplus G)L_F \cong (F \oplus G)L_G$. The claim follows. □

On the one hand, by [MM2, Lemma 9], sending \mathbb{I}_1 to L_F extends to a strict 2-natural transformation $\Phi: P_1 \to \mathcal{C}_H$. By Lemma 22 we know that $\Phi \Xi$ factors through C_H and obtain a strict 2-natural transformation Φ' from C_H to \mathcal{C}_H. Note that Φ sends both F and G to projective objects in $\mathcal{C}_H(1)$. Therefore Φ' is also a strict
2-natural transformation from \mathbb{C}_H to $\overline{\mathbb{C}_H}^{pr}$ and we have the following commutative diagram:

\[\begin{array}{ccc}
N_e & \xrightarrow{\Xi} & P_1 \\
\downarrow{\phi} & & \downarrow{\phi'} \\
\mathbb{C}_H^{pr} & \xrightarrow{\Phi} & \mathbb{C}_H \\
\downarrow{\phi'} & & \downarrow{\Phi} \\
\overline{\mathbb{C}_H}^{pr} & \xrightarrow{\overline{\Phi}} & \overline{\mathbb{C}_H}^{pr}
\end{array}\]

Applying the procedure in Subsection 4.4 to Φ', $\mathbb{C}_H \to \overline{\mathbb{C}_H}^{pr}$, we obtain a strict 2-natural transformation Φ' in $\text{End}_{\mathcal{E}_{afmod}(\mathbb{C}_H)}$ which swaps the isomorphism classes of indecomposable projectives.

On the other hand, sending $\mathbb{1}_2 \to L_{G'}$ extends to a strict 2-natural transformation Ψ: $P_2 \to \overline{\mathbb{C}_H}^{pr}$, and the latter induces a strict 2-natural transformation Ψ' from \mathbb{C}_H to $\overline{\mathbb{C}_H}^{pr}$ (which factors through $\overline{\mathbb{C}_H}^{pr}$). For Ψ, we have similar diagram as (22). Note that $\Psi_{\Psi}(\mathbb{1}_2) = L_{G'}$ and $\overline{\mathbb{1}}_{L_{G'}} \cong L_{G'}$. For a fixed isomorphism $\alpha: L_{G'} \cong \overline{\mathbb{1}}_{L_{G'}}$, by Subsection 4.4 there exists an invertible modification η from $\Psi = \overline{\Psi}' \to \Phi = \overline{\Phi}'$ (here both equalities are in $\text{Hom}_{\mathcal{E}_{afmod}(\mathbb{C}_H), (\overline{\mathbb{C}_H}^{pr})^{pr}}$). Note that the limiting construction (21) applied to $\overline{\Psi}$ gives a functor isomorphic to $\text{Id}_{\mathcal{C}_N}$. Using Subsections 4.3 and 4.4 we thus get an invertible modification $\underline{\eta}$ from $\text{Id}_{\mathcal{C}_N}$ to $(\Phi')^2$. Following [MaMa] Lemma 18 and the proof of [MaMa] Proposition 19, we obtain that

(a) for any $u \in \text{Hom}_{\mathcal{E}_{afmod}(\mathbb{C}_N)}((\Phi')^2)$, we have $\text{id}_{(\Phi')^2} \circ u = u \circ \text{id}_{(\Phi')^2}$;

(b) there exists an invertible modification $v \in \text{Hom}_{\mathcal{E}_{afmod}(\text{Id}_{\mathcal{C}_N}, (\Phi')^2)}$ such that we have either $\text{id}_{(\Phi')^2} \circ v = v \circ \text{id}_{(\Phi')^2}$ or $\text{id}_{(\Phi')^2} \circ v = -v \circ \text{id}_{(\Phi')^2}$.

Note that $(\Phi')^2$ preserves the isomorphism classes of projectives and hence defines an auto-equivalence of \mathbb{C}_N which is isomorphic to the identity. Therefore Φ' induces an automorphism φ of A and such that φ^2, corresponding to $(\Phi')^2$, is an inner automorphism of A, cf. [Zi] Lemma 1.10.9. Assume that the inner automorphism φ^2 is of the form $x \mapsto axa^{-1}$, where $x \in A$, for some fixed invertible element $a \in A$. Similarly to the paragraph before [KMMZ] Proposition 39, there exists an element $b \in A$ which is a polynomial in a^{-1} and such that $b^2 = a^{-1}$. Let σ be the inner automorphism of A given by $x \mapsto bxb^{-1}$, for $x \in A$.

Lemma 23. We have $(\sigma \varphi)^2 = \text{id}_A$.

Proof. The obvious fact that φ and φ^2 commute is equivalent to the requirement that $t := \varphi(a^{-1})a$ belongs to the center of A. We have

$$\varphi(t) = \varphi^2(a^{-1})\varphi(a) = a^{-1}a^2 \varphi(a) = a^{-1} \varphi(a) = t^{-1}.\$$

Therefore $\varphi^2(t) = t = a(\varphi(a^{-1})a)a^2 = \varphi(a^{-1})a$, which implies that $\varphi(a^{-1})$ and a commute. Consequently, $\varphi(a^{-1})$ and a^2 commute. This implies that any polynomial in $\varphi(a^{-1})$ commutes with any polynomial in a^{-1}. Therefore $\varphi(b)$ and b commute and thus $\varphi(b^{-1})$ and b commute as well. Hence the elements a, a^{-1}, b, b^{-1}, $\varphi(a)$, $\varphi(a^{-1})$, $\varphi(b)$, $\varphi(b^{-1})$ all commute.
A direct computation shows that the action of $(σφ)^4$ on A is given by conjugation with
\[b φ(b) aba^{-1} φ(a) φ(b) φ(a^{-1}) a^2. \]
Using commutativity of the factors, this reduces to $a φ(a^{-1})$ which is central. The claim follows.

The functor of twisting A-modules by $σ$ is isomorphic to the identity functor as $σ$ is inner. By Lemma 20, the functor of twisting by $σ$ gives rise to an endomorphism $Σ$ of C_H which preserves the isomorphism classes of projectives. Then the 2-natural transformation $Ω := Σφ' ∈ End_{H, afmod}(C_H)$ induces an automorphism on A given by $σφ$. We denote this automorphism by i.

Example 24. Let A be the quotient of the path algebra of the quiver

1 \[\alpha \]
\[β \]
2
modulo the relations $αβ = βα = 0$. Let $φ$ be the automorphism of A defined by $φ(e_1) = e_2$, $φ(e_2) = e_1$, $φ(α) = −β$ and $φ(β) = α$. Then $φ^2 = id_A$ but $φ^2 ≠ id_A$. In fact, $φ^2$ is conjugation by $a = e_1 − e_2$. Note that the element $φ(a^{-1})a = −e_1 − e_2$ is central. This example shows $Φ^2$ does not necessarily correspond to an automorphism of order 2.

4.6. Connection to H_A. Set G to be the cyclic group generated by i (note that $|G| = 2$ or $|G| = 4$) and consider the fiat 2-category H_A, where A is the underlying algebra of C_H. Let H_A be the full and faithful 2-subcategory of H generated by $(A, π_{i,j})$ and 1-morphisms in the two-sided cell $J_{i,j}$, referring to Subsection 3.3 and Subsection 4.6 for notation.

Theorem 25. If C is H-simple, then C is biequivalent to a 2-subcategory of H_A.

Proof. As mentioned above, C_H is equivalent to the cell 2-representation C_H. As C is H-simple, the 2-representation C_H gives a faithful 2-functor from C to H_A. Note that the 1-morphisms F and G are represented, respectively, by X, Y in (16) under the 2-functor C_H. Assume that the family of natural isomorphisms

\[η := \{η_H : C_H(H) → C_H(H) o H, H ∈ C(1, 1)\} \]

is the data associated to the 2-natural transformation $Ω ∈ End_{C_H, afmod}(C_H)$ constructed above. Thus, for any 2-morphism $α : H → K$ in C, we have

\[(C_H(α) o h) o v = η_K o v (Ω o h C_H(α)). \]

Due to the fact that $Ω$ swaps the isomorphism classes of projectives in $C_H(1)$, all A-A-bimodule homomorphisms corresponding to non-zero 2-morphisms in C are symmetric in the way which makes sense.

References

[BS] J. Brundan, C. Stroppel. Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup. J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 373–419.
[ChMa] A. Chan, V. Mazorchuk. Diagrams and discrete extensions for finitary 2-representations. Math. Proc. Cambridge Philos. Soc. 166 (2019), no. 2, 325–352.
[ChMi] A. Chan, V. Miemietz. Coidempotent subcoalgebras and short exact sequences of finitary 2-representations. Preprint arXiv:1901.04685
[CR] J. Chuang, R. Rouquier. Derived equivalences for symmetric groups and \(\mathfrak{sl}_2 \)-categorification. Ann. of Math. (2) 167 (2008), no. 1, 245–298.

[CMa] C. Cibils, E. Marcos. Skew category, Galois covering and smash product of a \(\mathcal{C} \)-category. Proc. Amer. Math. Soc. 134 (2006), no. 1, 39–50.

[EW] B. Elias, G. Williamson. The Hodge theory of Soergel bimodules. Ann. of Math. (2) 180 (2014), no. 3, 1089–1136.

[Kh] M. Khovanov. A categorification of the Jones polynomial. Duke Math. J. 101 (2000), no. 3, 359–426.

[KMMZ] T. Kildetoft, M. Mackaay, V. Mazorchuk, J. Zimmerman. Simple transitive 2-representations of small quotients of Soergel bimodules. Trans. Amer. Math. Soc. 371 (2019), No. 8, 5551–5590.

[MaMa] M. Mackaay, V. Mazorchuk. Simple transitive 2-representations for some 2-subcategories of Soergel bimodules. J. Pure Appl. Algebra 221 (2017), no. 3, 565–587.

[MT] M. Mackaay, D. Tubbenhauer. Two-color Soergel calculus and simple transitive 2-representations. Preprint [arXiv:1609.00962]. To appear in Canad. J. Math.

[MMMT] M. Mackaay, V. Mazorchuk, V. Miemietz and D. Tubbenhauer. Simple transitive 2-representations via (co)algebra 1-morphism. Preprint [arXiv:1612.06325] Ind. Univ. Math. J. 68 (2019), No. 1, 1–33.

[MMMMZ] M. Mackaay, V. Mazorchuk, V. Miemietz and X. Zhang. Analogues of centralizer subalgebras for fiat 2-categories and their 2-representations. Preprint [arXiv:1802.02078]. To appear in J. Inst. Math. Jussieu.

[Ma] V. Mazorchuk. Classification problems in 2-representation theory. São Paulo J. Math. Sci. 11 (2017), no. 1, 1–22.

[MM1] V. Mazorchuk, V. Miemietz. Cell 2-representations of finitary 2-categories. Compositio Math 147 (2011), 1519–1545.

[MM2] V. Mazorchuk, V. Miemietz. Additive versus abelian 2-representations of fiat 2-categories. Moscow Math. J. 14 (2014), No.3, 595–615.

[MM3] V. Mazorchuk, V. Miemietz. Endmorphisms of cell 2-representations. Int. Math. Res. Notes, Vol. 2016, No. 24, 7471–7498.

[MM4] V. Mazorchuk, V. Miemietz. Morita theory for finitary 2-categories. Quantum Topol. 7 (2016), no. 1, 1–28.

[MM5] V. Mazorchuk, V. Miemietz. Transitive 2-representations of finitary 2-categories. Trans. Amer. Math. Soc. 368 (2016), no. 11, 7623–7644.

[MM6] V. Mazorchuk, V. Miemietz. Isotypic faithful 2-representations of \(J \)-simple fiat 2-categories. Math. Z. 282 (2016), no. 1-2, 411–434.

[Os] V. Ostrik. Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8 (2003), no. 2, 177–206.

[So1] W. Soergel. The combinatorics of Harish-Chandra bimodules. J. Reine Angew. Math. 429 (1992), 49–74.

[So2] W. Soergel. Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen. J. Inst. Math. Jussieu 6 (2007), no. 3, 501–525.

[Wi] G. Williamson. Schubert calculus and torsion explosion. With a joint appendix with Alex Kontorovich and Peter J. McNamara. J. Amer. Math. Soc. 30 (2017), no. 4, 1023–1046.

[Zi] A. Zimmermann. Representation theory. A homological algebra point of view. Springer, Cham, 2014. xx+707 pp.