Controlling resistive switching behavior in the solution processed SiO$_{2-x}$ device by the insertion of TiO$_2$ nanoparticles

Sera Kwon1, Min-Jung Kim1, Dong-Hyeok Lim2, Kwangsik Jeong$^{1+}$ & Kwun-Bum Chung$^{1+}$

The resistive switching behavior of the solution processed SiO$_x$ device was investigated by inserting TiO$_2$ nanoparticles (NPs). Compared to the pristine SiO$_x$ device, the TiO$_2$ NPs inserted SiO$_x$ (SiO$_x$@TiO$_2$ NPs) device achieves outstanding switching characteristics, namely a higher ratio of SET/RESET, lower operating voltages, improved cycle-to-cycle variability, faster switching speed, and multiple-RESET states. Density functional theory calculation (DFT) and circuit breaker simulation (CB) were used to detail the origin of the outstanding switching characteristic of the SiO$_x$@TiO$_2$ NPs. The improvement in resistive switching is mainly based on the difference in formation/rupture of the conductive path in the SiO$_2$ and SiO$_x$@TiO$_2$ NPs devices. In particular, the reduction of resistance and lower switching voltage of TiO$_2$ NPs control the formation and rupture of the conductive path to achieve more abrupt switching between SET/RESET with higher on/off ratio. This method of combined DFT calculation and CB offers a promising approach for high-performance non-volatile memory applications.

Ongoing research on the resistive random-access memory (ReRAM) has allowed outstanding performance that includes non-volatility, fast switching speed, and low power consumption$^{1-7}$. Recently, ReRAM has attracted much interest as a promising candidate for next-generation non-volatile memory, and displays suitability for applications such as neuromorphic electronics$^{8-11}$. The binary-metal oxide resistance switching characteristics have been extensively studied for an active layer, including TiO$_2$, Ta$_2$O$_5$, ZnO, SiO$_2$, and HfO$_2$, due to their simple compositions with adjustable stoichiometry$^{2,12-15}$. Among them, the device with amorphous form of SiO$_x$ that is constructed as an active layer sandwiched between electrodes shows remarkable resistive switching behavior and transparency$^{16-19}$. SiO$_x$ is known to have relatively low variability and outstanding stability, which properties lead to a high resistance window for sufficient read margin between high resistance state (HRS) and low resistance state (LRS)11,20,21. Meanwhile, the SiO$_x$-based resistive switching devices have achieved superior switching characteristics and reliability by using several device architectures that include the nanopillar-structured SiO$_x$ fabricated with nanosphere lithography, exposed sidewall etched into the SiO$_2$ layer, and nanoporous SiO$_x$-based memory structures14,22,23. In addition, the modulation of resistive switching properties is obtained by combination with an additional layer or insertion of structures into the SiO$_x$-based matrix11,20,21. As known, most research efforts are mainly based on firms that fabricate using atomic layer deposition (ALD), plasma-enhanced chemical vapor deposition (PECVD), electron-beam evaporation, and magnetron sputtering, which need vacuum techniques that are complicated and expensive$^{11,27-29}$. Among various preparation methods as substitute for vacuum techniques, the solution process has shown superiority in its facile process, cost-effectiveness, applicability to various substrates, and adaptability to combination with several compositions or structures30,31. In addition, it is easy to insert the nanostructures into oxide matrix during the synthetic process, and this simple method is expected to control the characteristics of the switching performance.

Herein, we demonstrate a simple method using the insertion of TiO$_2$ nanoparticles (NPs) to improve the resistive switching characteristics in terms of multi-level resistive switching performance of solution processed SiO$_x$-based ReRAM. TiO$_2$ NPs inserted SiO$_x$ (denoted as SiO$_x$@TiO$_2$ NPs) shows superior resistive switching characteristics that include the higher ratio of SET/RESET states, lower SET/RESET voltages, and variable-controllable RESET state by applying external voltage, compared to the pristine SiO$_x$. Furthermore, the resistive switching behavior is discussed by analyzing the electronic structure, as well as circuit-breaker simulation and

1Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea. 2Department of Materials Science and Engineering, UNIST, Ulsan 44919, Republic of Korea. 3email: cks0701@dongguk.edu; kbc Chung@dongguk.edu
theoretical calculation. These challenges are expected to make great contributions to the development of next-generation electronic devices.

Results and discussion
Structure of SiOx based devices. Figure 1a schematically illustrates the cross-bar array architectures of the SiOx and SiOx@TiO2 NPs resistive switching devices. And, to observe the cross-sectional information of both devices, TEM is measured as shown in Fig. 1b. The TEM image of the SiOx device shows that the ITO/SiOx/ITO structure is sequentially stacked, and the interface of TE/SiOx is clearly formed. In contrast, the SiOx@TiO2 NPs device shows the slightly rough interface of TE/SiOx@TiO2 NPs, which is related to the insertion of TiO2 NPs profoundly affecting the roughness of SiOx@TiO2 NPs. To examine the composition of the SiOx and SiOx@TiO2 NPs device structures, ToF–SIMS was measured from top to bottom electrode during O ion sputtering with 2 keV. Figure 1c shows that the spectra of ToF–SIMS can be divided into three regions; the first region is only ITO (top electrode), the second region is the SiOx or SiOx@TiO2 NPs layer, and the last region is ITO (bottom electrode). For the SiOx switching device, Si+ is increased in the second region, while In+ and Sn+ are drastically decreased. O+ is continuously detected in all regions, because oxygen is included in all layers. Ti+ is not detected in the first and second regions. In the third region, Ti+ is found due to the glass substrate, thus it can be negligible. In the case of the SiOx@TiO2 NPs device, the behaviors of Si+, In+, Sn+, and O+ are almost similar to those of the SiOx device. However, a considerable quantity of Ti+ is detected in the second region, and we can recognize that the TiO2 NPs is well inserted into the SiOx matrix.
Analysis of the chemical bonding states. Figure 2 shows the compositions and chemical bonding states of the SiOx and SiOx@TiO2 NPs films by using XPS measurement. Both films are composed with O, Si, and a small amount of C, and Ti is included to ~1.5% in the SiOx@TiO2 NPs layer, as shown in Fig. 2a. To elucidate the chemical bonding states, the core-level spectra of O 1 s and Si 2p were normalized, and deconvoluted into Gaussian peaks. In the case of O 1 s, it is composed with three Gaussian peaks according to Si–O bonds (O1s), oxygen deficient states (O2), and hydroxyl groups (O3), as shown in Fig. 2b and 2c. The prepared SiOx and SiOx@TiO2 NPs films have a lot more O2 and O3 states than does the conventional SiO2 film. Generally, this is related to the solution process SiOx obtaining a large amount of defect states, such as oxygen vacancies or OH groups, which affects the stoichiometry of the SiOx (x<2). In the Si 2p spectra, the regular SiO2 (Si4+) and oxygen deficient SiO2-x (Si3+) are indicated, as shown in Fig. 2b and 2c. The prepared SiOx films synthesized by solution process show higher composition of oxygen vacancies than the SiO2 synthesized by vacuum process (thermal oxidation or chemical vapor deposition). In general, the amount of oxygen vacancies is expected to change due to the difference in bond dissociation energy in the TiO2 NPs inserted SiOx system. However, in our system, the chemical bonding states are almost similar, due to the small amount of TiO2 NPs in SiOx matrix. Therefore, the change of the chemical bonding states of SiOx is imperceptible.

Resistive switching characteristics. Figure 3 shows the resistive switching performance of the SiOx and SiOx@TiO2 NPs devices. First, the voltage is swept to transit from the pristine state to LRS with the compliance current of 0.1 mA. Both devices show bipolar resistive switching behavior with SET process, which is obtained by sweeping the negative voltage, while the RESET process is obtained by sweeping the positive voltage. These
processes can be reversibly changed by controlling the voltage. In detail, the SiO$_x$ device switches from HRS to LRS (SET process) at −1.7 V, while the device switches continuously from LRS to HRS (RESET process) by applying voltage to 2.0 V. For the SiO$_x$@TiO$_2$ NPs device, the SET process occurs at −1.1 V, which is smaller than the SET voltage of the SiO$_x$ device. In addition, different from the SiO$_x$ device, the RESET process is obtained twice over; the first RESET process appears at 0.7 V, then the second RESET process with slight resistance change is obtained while increasing the voltage to 2.0 V. The switching speed is obtained that the RSs change under

Figure 3. I–V characteristics, switching speed, retention (dotted lines indicate the expectation of lifetimes for the devices), endurance, and cycle-to-cycle variability of the (a) SiO$_x$ and (b) SiO$_x$@TiO$_2$ NPs resistive switching devices.
the pulse width of 3 μs in SiOx device. In case of SiOx@TiO2 NPs device, the RSs transit with the pulse width of 200 ns, as shown in Fig. 3a and b. To evaluate the reliability of devices, the retention and endurance were conducted for SiOx and SiOx@TiO2 NPs. The retention test was performed by probing each LRS and HRS for 10^3 s at room temperature, and reading the current at 0.1 V. The SiOx device maintains the LRS/HRS ratio of approximately 20 for 10^3 s. For the SiOx@TiO2 NPs device, three well-defined RSs (LRS, HRS1, and HRS2) are maintained for 10^3. Also, the dotted lines indicate the expectation of the lifetime of two devices. The SiOx device shows the expectation of the lifetime almost 10^4 s, otherwise the SiOx@TiO2 NPs device is expected to the lifetime above 10^4 s. To examine the endurance performance, the SET/RESET cycling test was conducted for 10^2 times, and the current level was recorded at 0.1 V. Both devices show a stable LRS/HRS ratio for 10^2 cycles. In particular, the SiOx@TiO2 NPs exhibits the multiple RSs for 10^2 cycles. Moreover, the endurance of SiOx@TiO2 NPs is evaluated for 10^4 cycles under the pulse width of 200 ns. The device shows the stable operation during 10^4 cycles. Long retention time and stable endurance indicate the high reliability of the solution processed SiOx-based resistive switching devices. The distribution of SET and RESET voltages are measured for 10^2 times, and the current level was recorded at 0.1 V for examining the cycle-to-cycle variability of devices. Both devices show a stable LRS/HRS ratio for 10^2 cycles. Especially, the SiOx@TiO2 NPs exhibits the multiple RSs for 10^2 cycles, and the stable resistive switching occurs in the SiOx@TiO2 NPs device, compared to SiOx device. The stable endurance, retention, cycle-to-cycle variability performance indicate the high reliability of the solution processed SiOx-based resistive switching devices. From the resistive switching characteristics, it is concluded that the SiOx@TiO2 NPs device can be expected to high performance and low-power non-volatile memory due to a lower operation voltage, higher on/off ratio, and fast switching speed. Moreover, due to multi-level switching, the SiOx@TiO2 NPs device is also applicable to multi-level memory.

Resistive switching mechanism. To discover the origin of the enhancement of performance in the SiOx@TiO2 NPs device, we clarified the resistive switching mechanism of the SiOx and SiOx@TiO2 NPs devices. The I–V curves are re-plotted as log I–log V, as shown in Fig. 4a and b. In the SET process of the SiOx resistive switching device, the I–V curve of the HRS shows trap-controlled space charge limited current (SCLC) conduction, which is composed of three parts: the Ohmic region ($I \propto V$), the Child’s law region ($I \propto V^2$), and the steeply increasing region ($I \propto V^n$, $n > 2$). The oxygen vacancies in the SiOx matrix serve as an electron trap, and form the conductive filament. Thus, the migration of oxygen vacancies is an important role in the deviation of slopes. In the high-voltage region, all traps are filled with electrons, and excessive electrons flow through the conduction band of SiOx (achievement of the SET process). The I–V curve of the LRS shows a linear Ohmic behavior with a slope of 1.07. Likewise, the RESET process is also in good agreement with the trap-controlled SCLC mechanism in HRS. In the SiOx@TiO2 NPs, the resistive switching mechanism is similar to that of the SiOx.

Figure 4. Log I–log V plot of the I–V curves of the (a) SiOx, and (b) SiOx@TiO2 NPs in the SET and RESET processes.
device, as shown in Fig. 4b. The electrons are transported according to traps, such as oxygen vacancies, into the SiO\textsubscript{x} matrix, as well as TiO\textsubscript{2} NPs, and with the application of high voltage, then flow into the conduction band of SiO\textsubscript{x} and TiO\textsubscript{2}. This behavior is associated with the bulk-controlled mechanism, such as the conductive filament model based on oxygen vacancy. As a result, the resistive switching mechanism of the SiO\textsubscript{x} and SiO\textsubscript{x}@TiO\textsubscript{2} NPs devices based on the conductive path can be dominated by valence change memory. The traps are a key factor to form the conductive paths into oxide matrix.

DFT calculations. Furthermore, to predict the difference in conduction mechanism based on the oxygen vacancies (VO) defects of the SiO\textsubscript{x} and SiO\textsubscript{x}@TiO\textsubscript{2} NPs devices, DFT calculations for the defects in each oxide were conducted, as shown in Fig. 5. By considering stable crystal structure, \(\alpha\) phase of SiO\textsubscript{2} and the anatase phase of TiO\textsubscript{2}, were chosen for the calculations. Figure 5a and b show the Fermi level-dependent formation energies of the VO defects (VOn, where \(n = (−2, −1, 0, +1, \text{and} +2)\)) and the band structures containing the energy levels
for each charging state of oxygen vacancies in SiO₂ and TiO₂, respectively. In addition, in the case of the VO in SiO₂, the + 2 is the stable charging state for the energy range (0.0–3.2) eV, 0 is stable for the range (3.2–6.6) eV, and – 2 becomes stable above 6.6 eV. For the TiO₂, the + 2 charging state is found to be the most stable state over the entire range of bandgap. Considering the Fermi level of SiO₂ and TiO₂, which is measured in the valence band spectrum of XPS, the most stable charging states of VO are 0 and + 2 for SiO₂ and TiO₂, respectively. Since the formation energy of VO in TiO₂ is smaller than that of the VO in SiO₂, VO is more easily generated in TiO₂ than in SiO₂. Moreover, since the e-field induced migration of VO can occur for charged states, VO in TiO₂ that has + 2 charging states can migrate with smaller e-field.

Figure 5c and d show the schematic energy band diagrams of the SiOₓ and SiOₓ@TiO₂ NPs devices from the results of energy levels for stable charging states. Band alignments are estimated based on the valence band spectrum in XPS. For both the SiO₂ and TiO₂ systems, VO generates defect states in the bandgap, thus the resistance change of the RERAM device can occur through the generation (SET) and curing (RESET) of VO in oxide. However, considering the band alignment, the activation energy from the Fermi level to defect states is smaller in TiO₂ than in SiO₂. In addition, the barrier for carrier injection from ITO electrode is lower in TiO₂ with VO than in SiO₂ with VO. Therefore, the resistance of LRS in TiO₂ is lower than the resistance of LRS in SiO₂.

CB simulations. To understand the formation/rupture of the conductive path based on the oxygen vacancies for the SiO₂ and SiOₓ@TiO₂ NPs devices, Fig. 6 shows the stochastic circuit breaker (CB) simulation that was conducted. The simulation method was benchmarked to previous research, as reported by Brivio et al. In the SiO₂ resistive switching device, both the experimental and simulated results show good agreement, which is also exhibited by the bipolar resistive switching behavior. The relative relations between parameters for SiO₂ and TiO₂ in CBs were determined based on DFT calculation. Table 1 tabulates the parameters. Figure 6b shows that the resistances of CBs are initialized with two values of R_{high,S} and R_{low,S} to simulate the insulating oxide and conducting oxide layer, such as SiO₂ and oxygen-deficient SiO₂-x, respectively. To emulate the oxygen-deficient SiO₂ matrix, most of the CBs are initialized with R_{high,S}, while the rest of the CBs are initialized with R_{low,S} in the initial state. In this case, the ratio of R_{high,S}/R_{low,S} is set to approximately 6:4, and the switching probabilities of R_{high,S} and R_{low,S} depend on the electric field and temperature by Joule heating. On applying the negative voltage, a few of the CBs are changed from R_{high,S} to R_{low,S} in sequence from #1 to #2 in Fig. 6b. Then, the voltage is applied above the

![Image](https://example.com/image.png)
SET voltage (>−1.7 V), almost all CBs abruptly transform to Rlow,S, and the device achieves the SET process, as shown in #3 of Fig. 6b. In contrast, when the positive voltage is swept to the RESET voltage, Rhigh,S is continuously increased, then the CB network finally reaches the RESET process (according to the blue arrows in sequence from #3 to #5 in Fig. 6b). This cycle of SET/RESET is reversibly obtained on sweeping the voltage. Likewise, the experimental I–V curve of the SiOx@TiO2 NPs device agrees well with the simulated result, as shown in Fig. 6c. In Fig. 6d, the maps of CB network are composed with four values of CBs of Rlow,S, Rhigh,S, Rlow,T, and Rhigh,T, which indicate SiOx, SiO2, TiO2-x, and TiO2, respectively. Initially, almost all CBs with Rhigh,s and Rlow,s are randomly allocated in places. Based on the XPS analysis, the ratio of oxygen deficient Rlow,s is equalized to that of the SiOx device. The Rhigh,T and Rlow,T of TiO2 NPs are also randomly distributed with the proportion of about 5%, to mimic the TiO2 NPs inserted SiOx matrix. Similarly, the initial ratio of Rhigh,s:Rlow,s and Rhigh,T:Rlow,T is established to be about 6:4, respectively, as shown in Fig. 6d. On increasing the negative voltage, the CBs related to TiO2 NPs are more rapidly transited from Rhigh,T to Rlow,T than those of SiOx under the applied voltage. And, when further voltage is applied to the SiOx@TiO2 NPs device, the CBs related to SiOx are also changed from Rhigh,s to Rlow,s, and the SET process is achieved according to the red arrows (in sequence from #1 to #3) in Fig. 6d. This is related to the TiO2 NPs assisting the construction of the conductive path in SiOx@TiO2 NPs, and causes lower SET voltages than that of the pristine SiOx device. Under the positive voltage sweeps, the CBs of TiO2 NPs are rapidly changed from Rlow,T to Rhigh,T, while the CBs of SiOx are slightly transited. Also, the first-RESET process can be achieved in sequence from #3 to #4, as shown in Fig. 6d. On further increasing the positive voltage, the Rhigh,s is increased, then the RS gradually reaches second-HRS (in sequence from #4 to #6 in Fig. 6d). The 2-step RESET processes can be obtained by controlling the RESET voltages.

In this study, the simulation method, which is simply expressed by the formation/rupture of conductive path with the stochastic CB model in the case of oxygen-deficient oxide matrix and nanoparticle-inserted oxide resistive memory devices, enables lower computational load for each CB network simulation than the conventional simulation methods. From the CB simulation, the conductive path based on the oxygen vacancies is stochastically examined under sweeping the external voltage. The difference in the switching of the SiOx and SiOx@TiO2 NPs devices, such as the multiple-RESET, lowering switching voltage, and increase of on/off ratio, can be obtained by inserting the TiO2 NPs.

In our case, the SET process is abrupt by applying the negative voltages, which is related to the electric field inducing the defect migration, and then causing an increase of the current. In contrast, the gradual RESET process is due to the conductive filament being gradually ruptured when the positive voltage is applied to the devices. Also, the improvement of the LRS/HRS ratio is noteworthy, as shown in Fig. 3a and b. This can be correlated to the environment for conductive filament growth inside the RS layer being changed due to the insertion of TiO2 NPs. By applying the positive voltage, the conductive filament can easily rupture due to the existence of TiO2 NPs inside the SiOx matrix, and carriers have difficulty in flowing inside the RS layer. Therefore, the current level of HRS for the SiOx@TiO2 NPs is lower than that of the SiOx device.

Conclusion

We demonstrate the improvement of the resistive switching behavior in the solution processed SiOx device by the insertion of TiO2 NPs, which is structured with ITO/SiOx@TiO2 NPs/ITO on glass substrate. The SiOx@TiO2 NPs resistive switching device exhibits stable bipolar resistive switching behavior. Also, outstanding switching characteristics, such as the higher ratio of SET/RESET, lower SET/RESET voltages, improved cycle-to-cycle variability, faster switching speed, and controllable multiple-RSS (LRS, HRS1, and HRS2) by applying voltages, can be obtained, in comparison to the pristine SiOx device. Based on stochastic circuit breaker simulation, we can conclude that the enhancement in switching performance in the SiOx@TiO2 NPs originates from the difference in the formation and rupture of conductive filament by the inserted TiO2 NPs.

Parameters	SiOx device	SiOx@TiO2 NPs device
M	30	30
N	90	90
Rlow,s [kohm]	20	20
Rhigh,s [kohm]	9800	9800
Rlow,t [kohm]	N/A	6
Rhigh,t [kohm]	N/A	8000
Initial ratio of Rlowl,s:Rhigh,s	35:65	35:65
Initial ratio of Rlowl,t:Rhigh,t	N/A	36:64
Ic,c [mA]	0.1	0.1
Simulated VSET [V]	−1.7	−1.1
Simulated VRESET [V]	2.0	First-RESET: 0.7, Second-RESET: 2.0

Table 1. The parameters for CB simulations.
Methods
Synthesis of solutions. SiO\textsubscript{x} solution was prepared by the sol–gel polymerization of silicon alkoxides. First, ethanol (C\textsubscript{2}H\textsubscript{5}OH, Aldrich, 99.9%) and deionized (DI) water were thoroughly stirred. A few minutes later, tetraethyl orthosilicate (TEOS, Si(OCH\textsubscript{3})\textsubscript{4}; Aldrich) was added as starting material. After that, hydrochloric acid (HCl, Merck, 37%) was added dropwise to the solution for 4 h, and then 0.1 M of sodium hydroxide (NaOH, Merck) was added for 16 h41,42. During the synthetic process, the solution was vigorously stirred at 500 rpm. After synthesis, the colorless and transparent SiO\textsubscript{x} solution finally resulted.

Fabrication of the SiO\textsubscript{x} based devices. To fabricate the SiO\textsubscript{x}–based resistive switching memory device with cross-bar array architecture, the lift-off process was conducted on glass substrate48. The SiO\textsubscript{x} solution diluted with ethanol was dropped on the patterned bottom electrode (BE), and spin-coated for deposition of 50 nm thick SiO\textsubscript{x} at 5000 rpm for 60 s. In the case of SiO\textsubscript{x}@TiO\textsubscript{2} NPs film, SiO\textsubscript{x} solution and TiO\textsubscript{2} NPs dispersed solution were mixed in the ratio of 1:7, and then spin-coated at the same condition. After that, the SiO\textsubscript{x} and SiO\textsubscript{x}@TiO\textsubscript{2} NPs films were dried at 80 °C for 20 min in oven, and then annealed using furnace at 450 °C for 1 h. The top electrode (TE) was also formed by using the lift-off process, and the cross-bar array ReRAM architecture was finally obtained with active device of 20 µm × 20 µm. During XPS measurement, Ar ion sputtering was conducted at 500 V for 10 s to eliminate carbon contamination on the surface.

Analysis. The cross-sectional specimens were prepared with a focused ion beam (FIB, FEI Helios 650) system, and field effect transmission electron microscopy (TEM, JEOL Ltd. JEM-F200) was obtained. The composition was examined by time-of-flight secondary-ion mass spectrometry (ToF–SIMS, IONTOF, TOFSIMSS) with 30 keV of Bi ion with spot size of 35 µm × 35 µm, and the depth profile was obtained with 2 keV of O ion sputtering.

To investigate the composition and chemical bonding state of the SiO\textsubscript{x} and SiO\textsubscript{x}@TiO\textsubscript{2} NPs, X-ray photoelectron spectroscopy (XPS, ESCA Versaprobe II) was conducted by monochromatic X-ray radiation at energy hv = 1486.7 eV (Al Kα source) with pass energy of 29.5 eV. The resistive switching behavior was observed using current–voltage (I–V), which was measured by semiconductor analyzer (Keithley-4200). To contact the bottom electrode, the upper SiO\textsubscript{x} layer was lightly scraped off using a thin tip because the bottom electrode was completely covered with SiO\textsubscript{x} layer. During I–V measurement, the voltage was applied to TE, and BE was grounded. The electronic structure of the SiO\textsubscript{x} and TiO\textsubscript{2} NPs inserted SiO\textsubscript{x} system, and density functional theory (DFT) calculations, were conducted with the Vienna Ab Initio Simulation Package (VASP) with MedeA GUI43,44. Electronic structures for the α-phase of SiO\textsubscript{2} and the anatase phase of TiO\textsubscript{2} were considered to predict the ReRAM switching in the SiO\textsubscript{x} and TiO\textsubscript{2} NPs inserted SiO\textsubscript{x} system. For all calculations, we used the PBEsol functional with 500 eV cut-off energy45–47. During unit cell calculation, to have the k-spacing of less than 0.2/Å, we chose a 9 × 9 × 7 and 9 × 9 × 5 grid of k-points for SiO\textsubscript{x} and TiO\textsubscript{2}, respectively. Geometric optimization was performed using an RMM-DIIS algorithm, iterated until the 0.01 eV/Å condition was satisfied with a 5 × 5 × 3 grid of k-points and 5 × 5 × 3 grid of k-points for SiO\textsubscript{x} and TiO\textsubscript{2}, respectively. Calculation with hybrid function (HSE06) was performed to evaluate the accurate position of defect states for optimized structures that contained defects48. The formation energy of the charged defect was computed using Eq.49:

\[E_f = E(q) - E(n) + q(\mu_e + \Delta V) \]

where E(q) is the total energy of the supercell with charge q, E(n) is the total energy of a neutral supercell, \(\mu_e \) is the chemical potential of electron (Fermi level), and \(\Delta V \) is the shift of energy level of the valance band maximum. To explain the resistive switching mechanism based on formation/rupture of oxygen vacancies circuit breaker (CB) modeling was conducted using Matlab program. The CB network was connected by horizontal and vertical CB resistors (90 × 30), which were composed with two resistances of R\textsubscript{low} and R\textsubscript{high}. During the CB modeling, the voltage was applied to all nodes in the top lines, while all nodes in the bottom lines were grounded.

Data availability
All data generated or analyzed during this study are included in this published article.

Received: 23 February 2022; Accepted: 4 May 2022
Published online: 19 May 2022

References
1. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007).
2. Yang, Y. C., Pan, F., Liu, Q., Liu, M. & Zheng, F. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9(4), 1636–1643 (2009).
3. Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G. & Williams, R. S. Sub-nanosecond switching of a tantalum oxide memristor. Nano Lett. 9(4), 1636–1643 (2009).
4. Sun, B., Zhou, G., Xu, K., Yu, Q. & Duan, S. Self-powered memory systems. Nano Lett. 12(3), 1636–1643 (2012).
5. Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 3(7), 429–433 (2008).
6. Sun, B., Zhou, G., Xu, K., Yu, Q. & Duan, S. Self-powered memory systems. ACS Mater. Lett. 2, 1669–1690 (2020).
7. Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–193 (2020).
8. Maikap, S. & Banerjee, W. In quest of nonfilamentary switching: A synergistic approach of dual nanostucture engineering to improve the variability and reliability of resistive random-access-memory devices. Adv. Electron. Mater. 6(6), 2000209 (2020).
8. Sun, B. et al. A battery-like self-selecting biomemristor from earth-abundant natural biomaterials. ACS Appl. Bio Mater. 4, 1976–1985 (2021).
9. Gong, N. et al. Signal and noise extraction from analog memory elements for neuromorphic computing. Nat. Commun. 9, 17 (2018).
10. Ginnaram, S., Qiu, J. T. & Maikap, S. Role of the Hf/Si interfacial layer on the high performance of MoS2-Based conductive bridge RAM for artificial synapse application. IEEE Electron Dev. Lett. 41(5), 709–712 (2020).
11. Dutta, M. Senapat, A., Ginnaram, S. & Maikap, S. Resistive switching memory and artificial synapse by using Ti/MoS2 based conductive bridging cross-points. Vactum 176, 109326 (2020).
12. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
13. Huang, Y. et al. Amorphous ZnO based resistive random access memory. RSC Adv. 6, 17867–17872 (2016).
14. Ambrogi, S., Balatti, S., McCaffrey, V. & Ielmini, D. Impact of oxide and electrode materials on the switching characteristics of ReRAM devices. Faraday Discuss. 213, 87–98 (2019).
15. Wedig, A. et al. Nanoscale cation motion in TaOx, HfO2, and TiOx memristive systems. Nat. Nanotechnol. 11, 67–74 (2016).
16. Furuta, S. et al. Dependence of electric properties of a nanogap junction on electrode material. Jpn. J. Appl. Phys. 47, 1806–1812 (2008).
17. L. et al. Integrated one diode-one resistor architecture in nanopillar SiOx resistive switching memory by nanoscale lithography. Nano Lett. 14(813–818), 18 (2014).
18. Chang, Y.-F. et al. Intrinsic SiOx-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing. J. Appl. Phys. 116, 043709 (2014).
19. Roy, S. et al. Comparison of Resistive switching characteristics by using e-gun/sputter deposited SiOx film in WSiOx/TiN structure and pH/creatinine sensing through iridium electrode. J. Alloy. Compd. 726(5), 30–40 (2017).
20. Ambrogi, S., Balatti, S., McCaffrey, V., Wang, D. C. & Ielmini, D. Resistive switching device technology based on silicon oxide for improved ON-OFF ratio: Part I: Memory devices. IEEE Trans. Electron Devices 62(11), 3812–3819 (2015).
21. Wang, J. et al. Multilevel and long retentive resistive switching in low temperature nanostructured Cu/SiOx-W/SiOx/Pt. Appl. Phys. Lett. 103, 212903 (2013).
22. Wang, Y. et al. Effects of sidewall etching on electrical properties of SiOx resistive random access memory. Appl. Phys. Lett. 103, 213505 (2013).
23. Wang, G. et al. Nanoporous silicon oxide memory. Nano Lett. 14(8), 4694–4699 (2014).
24. Yao, J., Sun, Z., Zhong, L., Natelson, D. & Tour, J. M. Resistive switches and memories from silicon oxide. Nano Lett. 10, 4105–4110 (2010).
25. Liu, C.-Y., Chiang, K.-C. & Lai, C.-H. Resistive memory properties of an electrochemical SiO2-based device without an active electrode. J. Vac. Sci. Technol. A 34, 02D102 (2016).
26. Hu, Q. et al. Modulation of resistive switching in Pt/LaCoO2/SiO2/Si stacks. J. Mater. Sci. 30, 4753–4759 (2019).
27. Carlos, E., Branquinho, R., Martins, R., Kiazadeh, A. & Fortunato, E. Recent progress in solution-based metal oxide resistive switching devices. Adv. Mater. 33(7), 2004328 (2020).
28. Kim, S. et al. Dual functions of V/SiOx/AlOx/y/p+-Si device as selector and memory. Nanoscale Res. Lett. 13, 252 (2018).
29. Yang, X. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).
30. Li, F. et al. Room-temperature, solution-processed SiOx via photochemistry approach for highly flexible resistive switching memory. ACS Appl. Interfaces 12(50), 56186–56194 (2020).
31. Kwon, S., Kim, M.-J. & Chung, K.-B. Multi-level characteristics of TiOx transparent non-volatile resistive switching device by embedding SiO2 nanoparticles. Sci. Rep. 11, 9883 (2021).
32. Gonzalez-Garcia, L., Gonzalez-Valls, I., Lira-Cantu, M., Barranco, A. & Gonzalez-Elipe, A. R. Alignes TiO2 nanocomlnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells. Energy Environ. Sci. 4, 3426–3435 (2011).
33. Brer, O., Sayan, S., Suzer, S. & Aydinli, A. XPS investigation of thin SiOx and SiOxNy overlayers. J. Mol. Struct. 480–481, 611–614 (1999).
34. Allonssetti, R., Lozzi, L., Passacantando, M., Picozzi, P. & Santucci, S. XPS studies on SiOx thin films. Appl. Surf. Sci. 70–71(222–225), 20 (1993).
35. Jiang, H. et al. Bias-polarity-dependent resistance switching in W/SiO2/Pt and W/SiO2/Si/Pt structures. Sci. Rep. 6, 22216 (2016).
36. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, Florida, 2007).
37. Mikhaylov, A. N. et al. Bipolar resistive switching and charge transport in silicon oxide memristor. Mater. Sci. Eng. B 194, 48–54 (2015).
38. Brivio, S. & Spiga, S. Stochastic circuit breaker network model for bipolar resistance switching memories. J. Comput. Electron. 16, 1154–1166 (2017).
39. Kim, D., Park, J. H., Jeon, D. S., Dongale, T. D. & Kim, T. G. Ta2O5-y based ReRAM device with annealing-free Ag/GeNx-based bilayer selector device. J. Alloy. Compd. 854, 157261 (2021).
40. Li, Y., Long, S., Liu, Q., Lv, H. & Liu, M. Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small 13, 1604306 (2017).
41. Buckley, A. M. & Greenblatt, M. The sol–gel preparation of silica gels. J. Chem. Educ. 71, 599–602 (1994).
42. Reiser, J. T., Ryan, J. V. & Wall, N. A. Sol–gel synthesis and characterization of gels with compositions relevant to hydrated glass alteration layers. ACS Omega 4, 16257–16269 (2019).
43. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented–wave 21 method. Phys. Rev. B 59(3, 1758–1775 (1999).
44. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plan-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996).
45. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
46. Perdew, J. P. et al. Perdew et al. Reply. Phys. Rev. Lett. 101, 239702 (2008).
47. Mattsson, T. R. & Mattsson, T. R. Comment on “Restoring the density-gradient expansion for exchange in solids and surfaces”. Phys. Rev. Lett. 101, 239701 (2008).
48. Heyd, J. & Scuseria, G. E. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207 (2003).
49. Zhang, S. B. & Northrup, J. E. Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991).

Acknowledgements
This work was supported by the Industry technology RandD program (20016319) and by the Technology Innovation Program (2001496) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea). This work was also supported by Samsung Display Co., Ltd.
Author contributions
S.K. wrote the original draft with help of D.H.L., K.J., and K.B.C. S.K. conducted the experiment and evaluated the data with help of M.J.K., and K.J. K.J. performed the DFT calculation, and D.H.L. performed the CB simulation. All authors approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.J. or K.-B.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022