Prediction of vibrational spectroscopic characteristics of bioactive natural product using density functional theory

Ashok Kumar Mishra1*, Vimlesh Gupta2 and Satya Prakash Tewari3
1,2,3 Department of Physics, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, India-226017
Email: akmishra2k5@gmail.com

Abstract. The present study discusses the applicability of density functional theory to investigate the vibrational spectroscopy of some bioactive natural products implementing variety of functional-basis set combination to find out suitable theoretical model. The DFT at B3LYP/6-31+G (d,p) and at higher level functional-basis set combination have been obtained to be feasible for this purpose. The IR & Raman active vibrations at the normal modes have been obtained by the theoretical computation in the selected natural product namely Isodihydroaminocadambine. The vibrations in the various domains have been ascertained due to C-H stretching, C-H in plane bending, C–H out of plane bending, C–C stretching and other low domain frequencies calculated through the said theoretical approach. The theoretical IR spectra exhibit at most intensity at 388 cm⁻¹. The strongest Raman activity has been observed at 3202 cm⁻¹ which is the characteristics of this molecule. The spectroscopic characteristics reported in the present study may be applicable for characterizing the title molecule for exploring its different applications.

1. Introduction
Bioactive natural products have been promising materials since the ancient time and been emerged as an area of research because of its multifunctional applications involve no toll and drudge for their synthesis and having exquisite biophysical properties. Isodihydroaminocadambine is also a naturally occurring compound detached from the fruits of Anthocephalus cadamba plant possessing activity against the lung Cancer Cell Line H1299 [1-2], however the physical principle of its bioactivity to be reported yet. The computational study on such bioactive natural product has already accomplished a new aspect in the field of drug development and the same is also needed in case of selected compound in order to elaborate the physical principle of its bioactivity and to explore its application as a drug agent. The selected molecule has been taken up for the computational study on spectroscopic characteristics like IR active vibrations & Raman activity. The computational study has been performed using density functional theory (DFT) with B3LYP functional and 6-31+G(d,p) basis set because of its substantiated popularity in the recent reports [3-9]. The specific short-range (Eₐ) and long range (Eₐ') part of the exchange interaction
Eₓ=−(1/2) Σₐ ∫ ρₐ ⁴/₃ Kₐ d³r, is integrated by modifying the common exchange functional form as expressed by equation 1 and 2 respectively [10-11].
\[E^{\text{fr}}_x = -\left(\frac{1}{2}\right) \sum_{\sigma} \rho^{4/3} K_\sigma \times \left(1 - \frac{8}{3} a_\sigma \sqrt{\pi} \text{erf} \left(\frac{1}{2a_\sigma}\right) + 2a_\sigma (b_\sigma - c_\sigma)\right) d^3r \]

Where \(a_\sigma, b_\sigma \) and \(c_\sigma \) are:
\[
a_\sigma = \frac{\mu k_\sigma^2}{6\sqrt{\pi \rho_0^3}},
\]
\[
b_\sigma = \exp \left(\frac{1}{4a_\sigma}\right) - 1,
\]
\[
c_\sigma = 2a_\sigma^2 b_\sigma + \frac{1}{2}
\]
\[E^{\text{fr}}_x = -\frac{1}{2} \sum_{\alpha \beta} \sum_{i \sigma} \sum_{j \sigma} \int \int \psi_i^\alpha(\mathbf{r}_1) \psi_j^\beta(\mathbf{r}_1) \times \text{erf} \left(\frac{\omega_{ij}}{r_{ij2}}\right) \psi_i^\alpha(\mathbf{r}_2) \psi_j^\beta(\mathbf{r}_2) d^4r_1 d^4r_2
\]

Where, \(\psi_i^\alpha \) represents the \(i \)th \(\sigma \)-spin molecular orbital and the used parameter \(\mu \) ascertains the balance of DFT to HF exchange at intermediate \(r_{ij2} \).

2. Computational Methods

2.1 Density Functional Theory Approach

In this work, the geometry optimization and frequency calculation were performed at DFT-B3LYP/6-31+G (d,p) level of theory as per reported method [12-13]. DFT provides a better settlement between computational cost and accuracy too for such type of molecules. The evaluation of IR and Raman activity were carried out using normal mode analysis of the calculated frequencies at the same theoretical level and its frequency calculation at the same level of theory were performed to ascertain the existence of true minimum at the potential surface implemented in GAUSSIAN 09 program package [14].

3. Results

3.1 Geometry Optimization

The optimized geometry of the selected molecule having molecular formula C_{26}H_{33}N_{3}O_{7} consisting of 69 atoms containing nonlinearity due to asymmetric atomic charge distribution obtained using said theoretical model has been depicted in figure 1.

Figure 1. Optimized Geometry of Isodihydroaminocadambine
Blue spheres indicate N-atoms, Red spheres to O-atoms, Black spheres to C-atoms and white spheres to H-atoms.

3.2 Vibrational Analysis

Vibrational spectroscopy furnishes important information related to the structure and properties of molecules. The normal mode analysis of IR active vibrations is specific feature of theoretical computation. The normal mode analysis of the vibrational frequency demonstrates 201 active fundamental modes of vibration which are aligned with the well-known formula of maximum (3N-6) numbers of such modes of vibrations in a nonlinear molecule having N atoms [15]. There is no imaginary frequency in these active modes showing the existence of true minimum at potential surface. The calculated vibrational frequencies of these fundamental modes are designated through gauss-view program [16]. The calculated frequency of each fundamental mode has been scaled with a factor of 0.9648 because the hybrid functional B3LYP in DFT approach tends to overestimate the fundamental modes as prescribed by Merrick et al [17]. The calculated and scaled frequencies of IR active mode of vibrations and its Raman activity have been shown in Table 1 and theoretical IR Spectra have been depicted in figure 2.

![Figure 2. IR spectra of Isodihydroaminocadambine](image_url)

Mode of Vibrations	Calculated freq. (cm⁻¹)	Scaled freq. (cm⁻¹)	Intensity (IR)	Raman Activity (Å²/AMU)	P-Depolar	U-Depolar	Vibration Descriptions
1	18	17	0.1832	1.6453	0.7103	0.8306	τ₁(C₃₂–H₆₁)
2	22	21	0.1113	3.1715	0.7482	0.8560	σ(H₆₀–C₃₂–H₆₁)
3	32	31	0.2106	2.8025	0.7454	0.8542	σ(H₆₀–C₃₂–H₆₁)
4	42	40	0.3097	2.1372	0.7478	0.8557	τ₀(C₃₂–H₆₁)
5	53	52	0.2188	1.5903	0.7469	0.8551	ρ(H₆–C₄–H₅₃)
Mode of Vibration	Calculated freq. (cm⁻¹)	Scaled freq. (cm⁻¹)	Intensity (IR)	Raman Activity (Å²/AMU)	P-Depolar	U-Depolar	Vibration Descriptions
-------------------	-------------------------	--------------------	---------------	-------------------------	-----------	-----------	-----------------------
6	65	62	0.7580	5.0331	0.7499	0.8571	R[τ₀(C10–H15)]
7	66	64	0.2353	0.6538	0.709	0.8297	R{τ₀(C9–H14)} + σ(H23–C22–H55)
8	82	79	3.7751	0.4041	0.598	0.7484	τ₀{(O45–H46)+(O47–H52)}
9	95	92	0.3288	0.9249	0.7487	0.8563	τ₀(C31–H59) + τ₀(C32–H61)
10	111	107	2.0556	0.2756	0.75	0.8571	ρ(C44–H63–H64)
11	126	121	9.8791	0.1180	0.6877	0.8150	ρ(C1–H5–H54) + τ₀(N66–H67–H68)
12	132	127	0.8724	1.8277	0.7331	0.8460	ρ(C32–H60) + τ₀(C9–H14)
13	145	140	0.5725	0.5691	0.4343	0.6056	σ(H23–C22–H55) + τ₀(N66–H67–H68)
14	149	143	2.0378	0.6790	0.6582	0.7939	ρ(H63–C44–H64) + τ₀(O45–H46)
15	154	149	0.4642	1.5398	0.2295	0.3733	ρ(H63–C44–H64) + τ₀(O45–H46)
16	164	159	0.4747	0.5624	0.5512	0.7107	σ(H60–C32–H61)
17	180	174	0.1541	0.4402	0.1207	0.2154	ρ(C32–H60) + τ₀(C32–H60)
18	189	182	0.8417	0.4639	0.7491	0.8566	ρ(H63–C44–H64) + τ₀(O45–H46)
19	206	199	0.4411	1.1428	0.1898	0.3190	ρ(H32–C22–H55) + τ₀(O45–H46)
20	212	204	1.9876	0.9900	0.5616	0.7193	ρ(H6–C4–H53) + τ₀(C32–H60)
21	225	217	34.5709	2.1777	0.5067	0.6726	τ₀(O47–H52) + τ₀(O49–H50)
22	246	237	8.5742	0.2027	0.5760	0.1089	ρ(C1–H5–H54)
23	248	239	2.6561	1.4712	0.3707	0.5409	ρ(N66–H67–H68)
24	261	252	4.7025	0.9473	0.4164	0.5880	ρ(N66–H67–H68) + τ₀(O49–H50)
25	267	257	6.6369	1.2363	0.4244	0.5959	ρ(N66–H67–H68)
26	273	263	35.1694	0.3306	0.5075	0.6733	τ₀(O47–H52) + τ₀(O48–H51)
27	280	270	11.2447	1.6298	0.2432	0.3913	ρ(N66–H67–H68) + τ₀(O49–H50)
28	296	285	1.5669	0.8864	0.2753	0.4318	τ₀(C24–H72) + τ₀(C32–H60)
29	302	292	2.3954	0.2705	0.6225	0.7673	ρ(H63–C44–H64) + τ₀(O49–H50)
30	311	300	2.4523	0.3367	0.1996	0.3328	ρ(C4–H6–H53)
Mode of Vibration	Calculated freq. (cm⁻¹)	Scaled freq. (cm⁻¹)	Intensity (IR)	Raman Activity (Å³/AMU)	P-Depolar	U-Depolar	Vibration Descriptions
------------------	-------------------------	--------------------	---------------	-------------------------	-----------	-----------	-----------------------
31	316	305	1.4093	5.2421	0.1146	0.2056	ρ(C1–H54–H5)+\(τ_i(C45–H46)\)
32	342	330	8.1085	1.3285	0.4848	0.6531	ρ(C32–H60–H61)+\(τ_0(C37–H62)\)
33	351	339	7.1446	3.0980	0.5306	0.6933	ρ(C4–H6–H53)
34	368	355	4.2685	0.4866	0.3967	0.5681	R[τ_0(C8–H13)+(C11–H16)]+ρ(C4–H6–H53)
35	388	374	98.6830	1.5197	0.3547	0.5237	τ_0(O47–H52)+τ_0(O48–H51)
36	396	382	38.0034	2.9700	0.5138	0.6788	ρ(H60–C32–H61)+τ_0(O47–H52)
37	418	403	12.3699	2.3421	0.7149	0.8338	ρ(H60–C32–H61)+τ_0(O48–H51)
38	421	407	8.9962	2.4262	0.3855	0.5565	τ_0(O48–H51)+τ_0(O45–H54)
39	429	414	15.4568	1.8239	0.4204	0.5919	ρ(H60–C32–H61)+τ_0(O45–H54)
40	442	427	9.0561	1.5008	0.5786	0.7330	R[τ_0(C8–H13)+(C11–H16)]+τ_0(O49–H50)
41	447	431	51.6593	1.1838	0.4441	0.6150	R[τ_0(C8–H13)+(C11–H16)]+τ_0(C44–H63–H64)
42	450	435	79.2946	2.4151	0.6859	0.8137	τ_0(O49–H50)+τ_0(O45–H54)
43	457	440	67.7489	0.7589	0.6019	0.7515	τ_0(O45–H54)+τ_0(C22–H23–H55)
44	486	469	40.7244	1.3372	0.6428	0.7826	ρ(C22–H23–H55)+τ_0(C22–H23–H55)
45	497	480	1.1699	2.1371	0.4226	0.5941	ρ(C22–H23–H55)+τ_0(C32–H60–H61)
46	504	486	3.9192	4.2256	0.2447	0.3931	ρ(C32–H60–H61)+τ_0(C44–H63–H64)
47	507	490	4.4214	0.9624	0.5663	0.7231	ρ(C44–H63–H64)+τ_0(O45–H54)
48	524	506	0.2301	1.6606	0.3657	0.5356	τ_0(C32–H60–H61)+τ_0(C25–H57)
49	542	523	6.6012	4.9660	0.2772	0.4341	ρ(C4–H6–H53)+τ_0(C22–H23–H55)
50	547	528	18.6677	3.2643	0.136	0.2395	ρ(H60–C32–H61)+τ_0(C44–H63)+τ_0{(C9–H14)+(C10–H15)}+τ_0(N17–H18)
51	588	568	22.9775	5.1603	0.6343	0.7762	τ_0{(C9–H14)+(C10–H15)}+τ_0(N17–H18)
52	572	552	6.3012	1.3600	0.6687	0.8015	ρ(C44–H63–H64)+τ_0(C35–H39)
53	582	561	0.3656	3.0712	0.6293	0.7725	R[τ_0(C10–H15)+τ_0(C9–H14)]
54	601	580	17.7454	2.7017	0.3846	0.5555	R[τ_0(C10–H15)]+τ_0(N17–H18)
Mode of Vibrations	Calculated freq. (cm\(^{-1}\))	Scaled freq. (cm\(^{-1}\))	Intensity (IR)	Raman Activity (Å/AMU)	P-Depolar	U-Depolar	Vibrations Descriptions
-------------------	-------------------------------	-----------------------------	----------------	------------------------	------------	------------	------------------------
55	609	587	12.6583	1.5897	0.6515	0.7890	\(\tau_0(\text{N17–H18})\)
56	618	596	2.4822	2.1963	0.1922	0.3224	\(R[\tau_0(\text{C9–H14})+\tau_0(\text{C8–H13})]\)
57	644	622	16.5512	4.8876	0.3228	0.4880	\(\tau_0(\text{C31–H59})+\rho(\text{C32–H60–H61})\)
58	651	628	1.9635	0.4059	0.7484	0.8561	\(\tau_0(\text{O47–H52})+\tau_i(\text{(O48–H51)}+\text{(O49–H50)})\)
59	653	630	20.7961	1.6630	0.5337	0.6960	\(\tau_0(\text{C31–H59})+\rho(\text{C32–H60–H61})\)
60	666	642	14.2758	2.7843	0.4563	0.6266	\(\tau_0(\text{C24–H27})+\tau_0(\text{C26–H58})\)
61	678	654	15.9305	0.5863	0.5568	0.7154	\(\tau_0(\text{N17–H18})+\tau_0(\text{C26–H58})\)
62	722	697	55.5437	1.2799	0.7498	0.8570	\(\rho(\text{C44–H63–H64})+\tau_0(\text{C36–H42})\)
63	730	705	0.4468	17.8080	0.1221	0.2176	\(\rho(\text{C44–H63–H64})+\tau_0(\text{C36–H42})\)
64	737	711	32.0579	1.6497	0.6485	0.7868	\(\rho(\text{N66–H67–H68})\)
65	751	725	57.5661	3.5915	0.7071	0.8284	\(\rho(\text{N66–H67–H68})\)
66	762	735	9.1013	0.4558	0.3977	0.5690	\(\rho(\text{N66–H67–H68})\)
67	774	747	12.5089	2.3803	0.3372	0.5044	\(\rho(\text{N66–H67–H68})\)
68	778	751	26.0988	1.5219	0.196	0.3278	\(\rho(\text{C4–H6–H53})\)
69	800	772	3.2994	20.7955	0.0592	0.1117	\(\rho(\text{C4–H6–H53})\)
70	824	795	134.2130	5.4971	0.1257	0.2234	\(\tau_0(\text{C35–H39})+\tau_0(\text{(O49–H50)}+\sigma(\text{H67–N66–H68})\)
71	838	809	43.4364	1.4993	0.2771	0.4340	\(\sigma(\text{H67–N66–H68})\)
72	857	826	1.1202	1.2719	0.7446	0.8536	\(\sigma(\text{H67–N66–H68})\)
73	868	838	64.4036	2.2751	0.0886	0.1628	\(\sigma(\text{H67–N66–H68})\)
74	876	845	17.3062	7.6076	0.124	0.2206	\(\sigma(\text{H67–N66–H68})\)
Mode of Vibrations	Calculated freq. (cm\(^{-1}\))	Scaled freq. (cm\(^{-1}\))	Intensity (IR)	Raman Activity (Å\(^5\)/AMU)	P-Depolar	U-Depolar	Vibration Descriptions
-------------------	-----------------------------	-----------------------------	----------------	-----------------------------	-----------	-----------	------------------------
75	878	847	10.3424	2.2184	0.3681	0.5381	\(\tau_i(C38–H41)+\tau_0(C35–H39)\)
76	887	856	2.8326	11.8273	0.0915	0.1676	\(R[\tau_i{(C11–H16)+(C9–H14)}]+\tau_0(N17–H18)\)
77	895	863	25.4855	13.9783	0.2866	0.4455	\(\tau_i(C24–H27)+\tau_0(C36–H42)\)
78	898	866	9.8310	8.5848	0.2006	0.3342	\(\rho(C4–H53–H6)+\tau_0(C37–H62)\)
79	901	869	7.2832	2.0596	0.4012	0.5726	\(\rho(H60–C32–H61)\)
80	925	893	3.6844	5.4710	0.2894	0.4489	\(R[\tau_i{(C8–H13)+(C11–H16)}]+\tau_0{(C9–H14)+(C10–H15)}\)
81	934	901	4.3966	2.8413	0.2954	0.4560	\(R[\tau_i{(C8–H13)+(C11–H16)}]+\tau_0{(C9–H14)+(C10–H15)}\)
82	934	901	7.9003	5.3655	0.2414	0.3889	\(R[\tau_i{(C8–H13)})+(C9–H14)\] \(\tau_0{(C1–H5)}\)
83	949	916	11.5471	4.7534	0.5723	0.7280	\(\sigma(H6–N66–H68)\)
84	962	928	163.5460	0.9636	0.2258	0.3685	\(\sigma(H60–C32–H61)\)
85	972	938	10.3995	2.7613	0.5957	0.7466	\(\sigma(H60–C32–H61)\)
86	972	938	0.1793	0.2238	0.4067	0.5782	\(\sigma(H60–C32–H61)\)
87	979	945	15.9564	2.9675	0.2376	0.3840	\(\tau_0{(C1–H5)}+\tau_0{(C9–H14)+(C10–H15)}\)
88	986	951	19.6876	2.6321	0.7195	0.8369	\(\rho(C44–H64–H63)\)
89	1002	967	22.4028	3.7243	0.5262	0.6896	\(\sigma(H60–C32–H61)\)
90	1006	971	27.5385	6.0052	0.3129	0.4767	\(\sigma(H60–C32–H61)\)
91	1023	987	19.9918	4.4273	0.5319	0.6944	\(\tau_0{(C1–H5)}+\tau_0{(C9–H14)+(C10–H15)}\)
92	1029	992	55.1423	21.0873	0.2969	0.4578	\(\sigma(H60–C32–H61)\)
93	1032	995	71.3517	17.3046	0.0309	0.0600	\(R[\tau_i{(C9–H14)+(C10–H15)}]+\tau_0{(C31–H59)}\)
94	1034	997	35.4431	17.7489	0.1672	0.2864	\(R[\tau_i{(C9–H14)+(C10–H15)}]+\tau_0{(C31–H59)}\)
95	1039	1002	8.4278	4.2873	0.1672	0.2866	\(R[\tau_i{(C9–H14)+(C10–H15)}]+\tau_0{(C31–H59)}\)
96	1046	1009	126.0290	1.9915	0.6073	0.7557	\(\tau_0{(C35–H39)}+\tau_0{(C44–H64)}\)
97	1059	1022	33.1226	2.1114	0.4155	0.5871	\(\rho{(H5–C1–H54)+(H6–C4–H53)}\)
Mode of Vibration	Calculated freq. (cm\(^{-1}\))	Scaled freq. (cm\(^{-1}\))	Intensity (IR)	Raman Activity (A\(^2\)/AMU)	P-Depolar	U-Depolar	Vibration Descriptions
-------------------	---------------------------------	-----------------------------	--------------	-----------------------------	-----------	-----------	-----------------------
98	1063	1025	18.4490	3.9559	0.5167	0.6813	\(\rho\{\text{H5–C1–H54}+\text{H6–C4–H53}\}\)
99	1073	1036	35.6843	5.0462	0.5332	0.6956	\(\rho\{\text{H60–C32–H61}\}+\tau\{\text{C25–H57}\}\)
100	1080	1042	89.7051	4.9769	0.3299	0.4961	\(\sigma\{\text{H63–C44–H64}\}+\tau\{\text{C31–H59}\}\)
101	1095	1056	136.1010	0.7854	0.4696	0.6391	\(\rho\{\text{H5–C1–H54}\}+\tau\{\text{C31–H59}\}\)
102	1098	1059	166.2400	11.3418	0.1308	0.2313	\(\rho\{\text{H23–C22–H55}\}+\tau\{\text{N66–H67}\}\)
103	1099	1060	20.1595	4.0721	0.6895	0.8023	\(\sigma\{\text{H60–C32–H61}\}\)
104	1110	1071	112.4260	3.4367	0.6435	0.7831	\(\tau\{\text{C25–H57}\}+\tau\{\text{C48–H51}\}\)
105	1134	1094	50.6433	1.4808	0.6699	0.8023	\(\rho\{\text{H23–C22–H55}\}\)
106	1137	1097	3.1928	11.8999	0.4336	0.6049	\(\tau\{\text{C25–H57}\}+\tau\{\text{C48–H51}\}\)
107	1149	1108	56.3226	2.2632	0.7221	0.8386	\(\tau\{\text{C38–H41}\}+\tau\{\text{C35–H39}\}\)
108	1155	1115	49.6164	5.1102	0.1736	0.2958	\(\tau\{\text{C38–H41}\}+\tau\{\text{C35–H39}\}\)
109	1166	1124	157.1440	2.4269	0.3111	0.4745	\(\tau\{\text{H23–C22–H55}\}\)
110	1173	1131	16.6593	8.2204	0.3965	0.5679	\(\tau\{\text{H23–C22–H55}\}\)
111	1175	1133	2.3943	6.4109	0.2135	0.3519	\(\tau\{\text{H23–C22–H55}\}\)
112	1184	1142	34.6672	3.0060	0.1732	0.2952	\(\tau\{\text{H23–C22–H55}\}\)
113	1188	1147	43.9884	7.7630	0.333	0.4997	\(\tau\{\text{H23–C22–H55}\}\)
114	1206	1164	11.9658	6.8856	0.2334	0.3785	\(\tau\{\text{H6–C4–H53}\}\)
115	1211	1168	25.3097	4.1027	0.7452	0.8540	\(\tau\{\text{C35–H39}\}+\tau\{\text{O47–H52}\}\)
116	1215	1172	25.1188	1.4384	0.5065	0.6724	\(\tau\{\text{C29–H56}\}+\tau\{\text{H69–C57}\}\)
117	1226	1182	75.4750	4.3360	0.3778	0.5484	\(\sigma\{\text{H6–C4–H53}\}\)
118	1231	1188	3.4134	5.1049	0.49	0.6577	\(\sigma\{\text{H6–C4–H53}\}\)
119	1238	1194	21.4173	3.4418	0.4371	0.6083	\(\tau\{\text{C21–H69}\}+\tau\{\text{C22–H57}\}\)
120	1249	1205	7.4251	3.5831	0.7498	0.8570	\(\tau\{\text{N17–H18}\}\)
Mode of Vibrations	Calculated freq. (cm$^{-1}$)	Scaled freq. (cm$^{-1}$)	Intensity (IR)	Raman Activity (A3/AMU)	P-Depolar	U-Depolar	Vibration Descriptions
-------------------	-----------------------------	--------------------------	---------------	---------------------------	-----------	-----------	-----------------------
121	1255	1211	4.0754	10.9347	0.4474	0.6182	R[ν$_r$((C8–H13)+(C11–H16))]+τ$_0$(C29–H56)
122	1257	1212	70.5904	1.9949	0.5824	0.7361	τ$_r$(C19–H65)+τ$_0$(C29–H56)
123	1267	1223	1.5661	1.9962	0.5696	0.7258	R[ν$_r$((C8–H13)+(C11–H16))]+τ$_0$(C38–H41)
124	1270	1225	18.3993	3.9010	0.1162	0.2081	R[ν$_r$((C8–H13)+(C11–H16))]+τ$_r$(N17–H18)
125	1277	1232	10.8100	6.1822	0.5225	0.6863	τ$_r$(C22–H55)+τ$_0$(C26–H58)
126	1285	1240	15.6778	34.5606	0.2229	0.3645	σ(H5–C1–H54)+τ$_r$(C19–H65)
127	1295	1249	3.3826	8.1360	0.6737	0.8050	τ$_r$(C34–H40)+τ$_0$(C36–H42)
128	1309	1263	2.2803	3.4565	0.7478	0.8557	τ$_r$(O48–H51)+τ$_0$(C49–H50)
129	1312	1266	13.5413	8.0947	0.4425	0.6135	τ$_r$(C25–H57)+τ$_0$(C19–H65)
130	1320	1274	17.1810	6.9844	0.4908	0.6584	τ$_r$(C26–H58)+τ$_0$(C25–H57)+σ(H5–C1–H54)
131	1327	1280	17.2994	88.2025	0.2209	0.3619	R[τ$_r$(C11–H16)]+σ(C4–H6–C53)
132	1335	1288	2.3981	0.8176	0.3727	0.5430	τ$_r$(C29–H56)+τ$_0$(C24–H27)
133	1345	1297	28.9747	0.5832	0.5589	0.7171	σ(H5–C1–H54)+τ$_r$(C21–H59)
134	1349	1302	4.8518	0.2134	0.6944	0.8196	τ$_r$(C35–H39)+τ$_0$(C37–H62)
135	1357	1309	9.8717	21.1475	0.4322	0.6036	τ$_r$(C29–H56)+τ$_0$(C31–H59)
136	1362	1314	7.8592	7.1674	0.5988	0.7491	τ$_r$(C35–H39)+τ$_0$(C44–H63)
137	1363	1315	42.9365	12.4310	0.6319	0.7744	τ$_r$(C1–H54)+τ$_0$(C19–H65)
138	1366	1318	18.9050	16.9853	0.3581	0.5274	τ$_r$(C29–H56)+τ$_0$(C26–H58)
139	1369	1321	7.1778	4.2650	0.0134	0.0264	τ$_r$(C37–H62)+τ$_0$(C29–H56)
140	1376	1328	12.4767	2.5680	0.7129	0.8324	τ$_r$(C29–H56)+τ$_0$(C25–H57)
141	1378	1330	12.3156	10.8487	0.618	0.7639	τ$_r$(C19–H65)+τ$_0$(C25–H57)
142	1388	1340	19.7655	13.4833	0.4421	0.6131	σ(H5–C1–H54)+τ(r(C21–H69)+τ$_0$(C24–H27)
Mode of Vibrations	Calculated freq. (cm\(^{-1}\))	Scaled freq. (cm\(^{-1}\))	Intensity (IR)	Raman Activity (Å\(^2\)/AMU)	P-Depolar	U-Depolar	Vibration Descriptions
-------------------	-------------------------------	--------------------------	----------------	-------------------------------	-----------	-----------	------------------------
143	1395	1346	4.0199	4.6797	0.5911	0.7430	\(\tau_i(O_{45}–H_{46})^+\) + \(\tau_0(C_{36}–H_{42})\)
144	1396	1347	9.0859	7.2537	0.6481	0.7865	\(\tau_i(O_{45}–H_{46})^+\) + \(\tau_i(C_{21}–H_{69})\) + \(\sigma(H_{63}–C_{44}–H_{64})\)
145	1406	1356	7.8833	8.0503	0.3728	0.5431	\(\tau_i(O_{45}–H_{46})^+\) + \(\tau_i(C_{44}–H_{63})\) + \(\tau_0(C_{36}–H_{42})\)
146	1409	1359	4.4669	3.6265	0.3185	0.4831	\(\tau_i(C_{25}–H_{57})^+\) + \(\tau_i(C_{36}–H_{42})\) + \(\tau_i(C_{21}–H_{69})\)
147	1413	1363	15.9054	11.0065	0.2466	0.3956	\(\tau_i(C_{37}–H_{62})^+\) + \(\tau_0(C_{21}–H_{69})\)
148	1415	1365	39.1527	5.8163	0.3634	0.5340	\(\sigma(H_{63}–C_{44}–H_{64})^+\) + \(\tau_0(C_{36}–H_{42})\)
149	1416	1366	19.4783	14.6588	0.2459	0.3948	\(\tau_i(C_{34}–H_{40})^+\) + \(\tau_0(C_{37}–H_{62})\)
150	1422	1372	47.4160	5.8163	0.6639	0.7980	\(\tau_0(C_{26}–H_{58})\) + \(\sigma(H_{63}–C_{44}–H_{64})^+\) + \(\tau_0(C_{36}–H_{42})\)
151	1424	1374	17.2198	4.0180	0.2907	0.4505	\(\sigma(H_{39}–C_{35}–H_{52})^+\) + \(\tau_0(C_{21}–H_{69})\)
152	1429	1379	23.3366	1.7898	0.4553	0.6258	\(\tau_i(C_{34}–H_{40})^+\) + \(\tau_0(C_{37}–H_{62})\)
153	1431	1381	5.6117	1.9203	0.7293	0.8434	\(\sigma(H_{63}–C_{44}–H_{64})^+\) + \(\tau_0(C_{36}–H_{42})\)
154	1447	1396	51.1543	4.1365	0.5039	0.6701	\(\tau_0(C_{38}–H_{41})^+\) + \(\tau_0(C_{49}–H_{50})\)
155	1459	1407	3.0744	18.2969	0.3165	0.4808	\(\sigma(H_{60}–C_{32}–H_{61})\)
156	1485	1432	9.0244	6.7360	0.5698	0.7259	\(\sigma(H_{60}–C_{32}–H_{61})\)
157	1486	1434	17.7741	22.8194	0.6586	0.7942	\(\sigma(H_{5}–C_{1}–H_{54})^+\) + \(\tau_0(N_{17}–H_{18})\)
158	1498	1445	31.6135	83.9059	0.4483	0.6191	\(\sigma(H_{5}–C_{1}–H_{54})^+\) + \(\tau_0(N_{17}–H_{18})\)
159	1499	1446	1.9825	8.4943	0.739	0.8499	\(\sigma(H_{23}–C_{22}–H_{55})^+\) + \(\tau_i(C_{10}–H_{15})^+\) + \(\tau_0(N_{17}–H_{18})\)
160	1505	1452	2.3109	7.5102	0.7445	0.8536	\(\sigma(H_{63}–C_{44}–H_{64})^+\) + \(\tau_i(C_{10}–H_{15})^+\) + \(\tau_0(N_{17}–H_{18})\)
161	1507	1454	2.0456	50.9273	0.6155	0.7620	\(\sigma(H_{23}–C_{22}–H_{55})^+\) + \(\tau_i(C_{10}–H_{15})^+\) + \(\tau_0(N_{17}–H_{18})\)
162	1531	1477	8.9991	4.3501	0.75	0.8571	\(\sigma(C_{7}–N_{17}–H_{18})^+\) + \(\tau_0(N_{17}–H_{18})\)
163	1611	1554	2.2164	119.3097	0.3907	0.5618	\(\sigma(C_{7}–N_{17}–H_{18})^+\) + \(\tau_0(N_{17}–H_{18})\)
164	1637	1579	2.6194	283.5082	0.2289	0.3725	\(\sigma(C_{7}–N_{17}–H_{18})^+\) + \(\tau_0(N_{17}–H_{18})\)
165	1652	1594	38.9286	4.9743	0.7313	0.8448	\(\sigma(C_{7}–N_{17}–H_{18})^+\) + \(\tau_0(N_{17}–H_{18})\)
166	1670	1612	8.0093	22.4639	0.3473	0.5155	\(\sigma(C_{7}–N_{17}–H_{18})^+\) + \(\tau_0(N_{17}–H_{18})\)
Mode of Vibrations	Calculated freq. (cm⁻¹)	Scaled freq. (cm⁻¹)	Intensity (IR)	Raman Activity (A²/AMU)	P- Depolar	U- Depolar	Vibration Descriptions
-------------------	-------------------------	--------------------	--------------	------------------------	------------	------------	-----------------------
167	1698	1638	10.2616	47.9569	0.0694	0.1298	σ(H60–C32–H61)
168	1735	1674	124.9900	77.8820	0.0838	0.1546	ρ(C24–H27–C28)
169	2962	2858	73.8483	46.1947	0.3802	0.5510	τi(C1–H54)
170	2968	2864	30.7878	257.1128	1697	0.2902	τ0(C19–H65)
171	2980	2875	12.9742	39.7241	0.2464	0.3954	τ0(C36–H42)
172	3002	2896	13.1860	29.3710	0.2112	0.3487	τ0(C37–H62)
173	3003	2897	63.2418	138.8816	0.2238	0.3658	τ0(C21–H69)
174	3004	2899	21.3855	91.4456	0.1863	0.3141	τ0(C29–H56)
175	3011	2905	33.8790	92.2179	0.2633	0.4169	τ0(C35–H39)
176	3012	2906	53.4165	175.3515	0.1299	0.2300	τ0(C34–H40)
177	3047	2940	34.5134	86.1906	0.1785	0.3029	
178	3050	2943	30.4769	112.3494	0.6007	0.7506	νas(H6–C4–H53)
179	3053	2946	30.9161	89.1537	0.0899	0.1649	σ(H23–C22–H55)
180	3061	2954	3.1561	114.7644	0.1041	0.1885	τ0(C26–H58)
181	3074	2966	23.9359	92.5846	0.0623	0.1173	ν0(H63–C44–H64)
182	3092	2983	28.8788	68.2005	0.3142	0.4782	ν0(H63–C44–H64)
183	3093	2985	32.7954	45.9705	0.4688	0.6384	ν0(H23–C22–H55)
184	3097	2988	16.1497	106.4138	0.1893	0.3183	τ0(C38–H41)
185	3107	2997	30.0290	137.7424	0.3044	0.4667	τ0(C1–H5)
186	3130	3020	12.7610	50.8469	0.6892	0.8160	νas(H63–C44–H64)
187	3141	3031	9.4776	32.4709	0.4884	0.6562	τ0(C31–H59)
188	3164	3053	13.9988	182.9783	0.1487	0.2590	τ0(C31–H59)+
189	3174	3062	1.2693	33.8895	0.7491	0.8566	R[τ0(C8–H13)+
							(C11–H16)]
190	3181	3069	3.4570	128.7092	0.7021	0.8250	R[τ0(C9–H14)+
							(C11–H16)]
191	3191	3079	33.4769	75.4914	0.7287	0.8430	R[τ0(C8–H13)+
							(C10–H15)]
192	3202	3090	29.9950	357.6723	0.1419	0.2485	R[τ0(C9–H14)+
							(C11–H16)]
193	3207	3094	10.4631	106.5830	0.2910	0.4508	τ0(C24–H27)
194	3257	3142	3.2147	56.4511	0.7223	0.8388	νas(H60–C32–H61)
195	3498	3375	1.7372	164.5797	0.1475	0.2570	τ0(N17–H18)
196	3560	3434	255.1180	219.8025	0.2155	0.3546	νas(H67–N66–H68)
197	3591	3465	0.7554	71.6149	0.5863	0.7392	τ0(C47–H52)
198	3727	3596	64.5414	72.1314	0.0551	0.1045	
199	3741	3610	55.4321	12.5077	0.2566	0.4084	τ0(O49–H50)
200	3785	3652	92.7042	34.7794	0.3617	0.7743	τ0(O45–H46)
201	3785	3652	44.0067	112.6047	0.0976	0.1778	τ0(O45–H46)+
Similar types of results were obtained by using higher basis set combination with the same functional.

4. Discussions
The vibrations in the domain of 3093-2997 cm\(^{-1}\) occurring at the active modes of vibrations 193-185 as obvious from the Table 1, are ascertained to be C-H stretching which in covenant with earlier reported characteristic domain of 3100–3000 cm\(^{-1}\) [18] seemed due to the availability of aromatic ring. The vibrational modes 134-95 shows the frequency domain of 1301-1002 cm\(^{-1}\) which correspond to C–H in plane bending frequencies appearing in line with the reported domain of 1300–1000 cm\(^{-1}\) [19]. The C–H out of plane bending vibrations have been reflected in the domain of 1000–750 cm\(^{-1}\) [20] which are well matched with the theoretical vibrations occurred at the active modes 94-68 in the domain of 997-750 cm\(^{-1}\). Thus, the theoretically evaluated regions for C–H vibrations are well corresponding with their experimental consequence. The C–C stretching vibrations in the selected compound are set up in the domain of 1593-1396 cm\(^{-1}\) corresponding to the vibrational mode 165-154. The low region frequencies of other vibrational modes which are hardly observed in experiments have also been calculated through the said theoretical approach. The strongest Raman activity has been observed at 3202 cm\(^{-1}\) which is the characteristics of this molecule.

5. Conclusions
The optimized geometry obtained by molecular modeling applying density functional theory at B3LYP/6-31+G(d,p) level exhibits the vibrational spectroscopic characteristics which are in good agreement with other reported results which reveals that the applied theoretical model and its higher basis set combination is a compatible quantum chemical analysis for the theoretical evaluation of vibrational spectroscopy of the said natural product. The strongest IR active & Raman activity has been observed to be occurred at the wave numbers 388 & 3202 cm\(^{-1}\) respectively which may be applicable as characteristic factor for the said molecule.

6. References
[1] Mishra D P, Khan M A, Yadav D K, Rawat A K, Singh R K, Ahamad T, Hussain M K, Saquib M and Khan M F 2018 Chemistry Select 3 8468
[2] Mishra D P and Maurya R 2014 Isolation and Characterization of Bioactive Natural Products from Indian Medicinal Plants; PhD Thesis (Central Drug Research Institute, Lucknow, India)
[3] Taşal E, Sudur I, Gulseven Y, Öğretir C and Onkol T 2009 Journal of Molecular Structure 923 141
[4] Mishra A K and Tewari S P 2019 Emerging Materials Research 8 651-662
[5] Mishra A K and Gupta V 2020 Applied Innovative Research 2 61-79
[6] Mishra A K and Gupta V 2020 Materials Today Proceedings 29 905-910
[7] Zhongqiang L, Zhao-XuChen and Bioaqing J 2019 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 217 8
[8] Mishra A K and Tewari S P 2020 SN Applied Science 2 1021
[9] Mishra A K, Tewari S P and Gupta V 2019 Materials Today Proceedings 2100 020067
[10] Gill P M W, Adamson R D and Pople J A 1996 Mol. Phys. 88 1005
[11] Yanai T, Tew D P and Handy N C 2004 Chemical Physics Letters 395(1-3) 51–57
[12] Becke A D 1993 J. Chem. Phys. 98 5648
[13] Lee C, Yang W and Parr RG 1988 Phys. Rev. B 37 785
[14] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, J and and Fox D J 2009 Gaussian 09 Revision B.01, Gaussian Inc. J. Comput. Chem. 30 2785
[15] (a) Silversten R M, Bassler G C and Morrill 1991 Spectrometric Identification of Organic Compound (John Wiley and sons) (b) Socrates G 2001 Infrared and Raman Characteristic group Frequencies (3rd edn.) (Wiley, New York)
[16] Dennington R, Keith T and Millam J 2009 Gauss View, Version 5 Semichem Inc. Shawnee Mission KS
[17] Merrick J P, Moran D and Randell L 2007 J. phys. chem. A 111 11683
[18] Arirazhagan M and Senthil J K 2011 Spectrochim. Acta Part A 82 228
[19] Arjunan V, Thillai Govindaraya S, Ravindran P and Mohan S 2014 Spectrochim. Acta Part A 120 473
[20] Sundaraganesan N, Ilakiamani S and Joshua B D 2007 Spectrochim. Acta Part A 67 287
7. Acknowledgments
First author is grateful to the UGC, New Delhi for the fiscal support through the minor research project. Authors are thankful to Prof. Neeraj Misra, Physics Department, University of Lucknow for permitting us to use GAUSSIAN09 program package for carrying out quantum chemical calculations. We extend thanks to Bioinformatics Resources & Applications Facility (BRAF), C-DAC Pune, India for allowing us to access the supercomputing facility for performing quantum chemistry calculations.