Double Electromagnetically Induced Transparency in a Tripod-type Atom System
Xiao Li, Yu Liu, Hong Guo*

Abstract—The electromagnetically induced transparency (EIT) phenomenon in a four level atomic system with tripod configuration is studied. The results show that this configuration is equivalent to the combination of two single three-level Λ configurations, which, under certain conditions, results in the so-called double-EIT (DEIT) phenomenon. The properties of the double transparency windows for DEIT are discussed in detail and the possible experimental scheme is proposed.

I. INTRODUCTION

ELECTROMAGNETICALLY induced transparency (EIT), as one of the quantum coherence and interference (QCI) phenomena, is an important effect induced by the interaction between laser beams and atom ensembles under two-photon resonance condition[1]-[2]. EIT in three-level systems, such as the typical Λ-type system, has been extensively studied both theoretically and experimentally[3]. Its direct results, such as subluminal [4] and superluminal [5] light propagations, have already been demonstrated experimentally. After that, with the model of dark state polariton[6]-[9], the EIT-based light storage is theoretically proposed and then experimentally realized[10]-[11].

For some types of four-level atomic configurations, similar analysis also shows some interesting phenomena, such as the interchange between subluminal and superluminal propagation [12] and double EIT phenomenon [13]. However, for most of the four-level systems, there is hardly ideal dark states and so brings serious limitations to their applications. Fortunately, as we will show in this paper, the four-level tripod-type atom system does yield an ideal dark state, which may greatly improve the coherence performances of current four-level atomic systems.

In Fig.1 we show the schematic setup of a four-level tripod-type atomic system. A linearly polarized (π) light is served as the coupling light while the probing light is composed of left and right polarized components σ± with the same frequency ωp and the same amplitude. In this configuration, the probing light is traveling in the direction perpendicular to both the polarization of the coupling light and the direction of the magnetic field, which is used to split the ground level into three Zeeman sub-levels (mp = −1, 0, +1). Thus, this system is equivalent to the combination of two simple Λ-type systems coupled by a common light.

II. ABSORPTION AND DISPERSION FOR A TRIPOD-TYPE FOUR-LEVEL ATOMIC SYSTEM

In the four-level atomic system shown in Fig.1, the Hamiltonian under the rotating wave frame can be written as

$$\hat{H} = \hbar (\omega_p - \omega_{12}) |2\rangle \langle 2| + \hbar (\omega_c - \omega_{13}) |3\rangle \langle 3| + \hbar (\omega_p - \omega_{14}) |4\rangle \langle 4| - \frac{\hbar}{2} (\Omega_p |1\rangle \langle 2| + \Omega_c |1\rangle \langle 3| + \Omega_p |1\rangle \langle 4| + H.c.) ,$$ (1)
where Ω_p and Ω_c are the Rabi frequencies and $\omega_{ij} = \omega_i - \omega_j$ is the central frequency between Zeeman sub-levels $|i\rangle$ and $|j\rangle$.

A general expression of the eigenstates of the Hamiltonian is very complicated. However, when the Zeeman splitting is equal to the frequency difference between the two lights, an ideal dark state, whose eigenvalue is zero, emerges, with the expression:

$$|\Psi^0\rangle = -|2\rangle + |4\rangle,$$

while the other three eigenstates are

$$|\Psi_i\rangle = -\frac{2\lambda_i}{h\Omega_p}|1\rangle + |2\rangle - \frac{\hbar^2\Omega_c^2 - 2\lambda_i^2}{h^2\Omega_c\Omega_p}|3\rangle + |4\rangle,$$

with eigenvalues λ_i ($i = 1, 2, 3$) satisfying

$$4\lambda_i^3 - 8h\delta_c\lambda_i^2 - h^2(\Omega_c^2 + 2\Omega_p^2)\lambda_i + 4h^3\delta_c\Omega_p^2 = 0.$$

Next we will take into account the decays of the atomic levels due to radiative and non-radiative dampings. We base our discussion on the steady state solution of the density matrix equation. For simplicity, we assume that Ω_p and Ω_c are real and the coupling light interacting with the states $|1\rangle$ and $|3\rangle$ is resonant ($\omega_c = \omega_{13}$). Suppose that all radiative damping rates are equal, i.e., $\Gamma_{12} = \Gamma_{13} = \Gamma_{14} = \beta\gamma$, where γ is atomic spontaneous emission rate, and so are the nonradiative damping rates, i.e., $\Gamma_{ij} = \alpha\gamma$, where $i, j = 2, 3, 4 (i \neq j)$. Also, we set $\omega_{23} = \omega_{24} = \Delta\gamma$, $\Omega_p = g_p\gamma$, $\Omega_c = g_c\gamma$, and $\delta = \omega_p - \omega_c = \delta_c\gamma$ for normalization. Here, Γ_{ij} represents the damping rate from state $|i\rangle$ to $|j\rangle$, $\omega_{ij} = \omega_i - \omega_j$, and δ is the frequency difference between the coupling and probing lights. Under the above assumptions, we can get the steady-state solution for these equations.

To see the absorption and dispersion characteristics of the probing light, we plot the steady state solution of $(\rho_{12} + \rho_{14})/g_p$ in Fig. 2 where $\Delta = 5.0$, $\alpha = 0.001$, and $\beta = 0.666$. From the figure, one finds that this four-level atomic system has double transparency windows, each of which is the typical result of a Λ-type system. The concrete discussion on this result will be given in the next section.

The following analytical results will show that the tripod scheme can, under some approximations, be viewed as a combination of two Λ-type schemes. Firstly, the expression for $(\rho_{12} + \rho_{14})/g_p$, which represents the absorption and dispersion characteristics of the tripod system, can further be simplified if we neglect the terms with higher orders of g_p, as shown below:

$$h = \frac{\rho_{12} + \rho_{14}}{g_p} = \frac{i\beta}{g_0(\alpha + \beta)g_c^2}(h_l + h_r),$$

where

$$h_l = \frac{3\alpha(2\alpha + i\Delta - i\delta_c) + g_p^2(\alpha + 2i\Delta - 2i\delta_c)}{g_0^2 - (1 - \Delta - \delta_c)(2\alpha - \Delta - \delta_c)},$$

$$h_r = \frac{3\alpha(2\alpha - i\Delta - i\delta_c) + g_p^2(\alpha - 2i\Delta - 2i\delta_c)}{g_0^2 - (1 + \Delta + \delta_c)(2\alpha + \Delta + \delta_c)}.$$
The standard three level Λ-type scheme is shown in Fig. 3. Following the same approach as mentioned above, we first give the steady-state solution of ρ|21, the real and imaginary part of which represent the dispersion and the absorption properties of the system, respectively:

\[h_1 = -A/B, \]

where

\[A = g_c^2 \left[g_p^2 + g_p^2 - (\Delta - \delta_c) \left(i + \Delta - \delta_c \right) \right] (\Delta - \delta_c), \]

\[B = g_c^2 \left[3g_p^4 + (\Delta - \delta_c)^2 \left(1 + \Delta^2 - 2\Delta \delta_c + \delta_c^2 + 4g_p^2 \right) \right] + g_b^4 \left[3g_p^2 - 2(\Delta - \delta_c)^2 \right] + g_c^2 \left[g_b^4 + (\Delta - \delta_c)^2 \right]. \]

Since the probing light is much weaker than the coupling light, the above expression can be simplified as:

\[h_1 = \frac{\delta_c - \Delta}{a^2 - (\delta_c - \Delta) (i + \delta_c - \Delta)}, \tag{7} \]

which is exactly the same as \(h_0(\delta_c - \Delta) \), the first term of the four-level result [see Eq. (4)]. Here, \(\Omega_c = g_c \gamma \) is the Rabi frequency of the coupling light, \(\Delta \gamma = \omega_{31} \) denotes the Zeeman splitting of the ground level, and \(\delta_c \gamma = \omega_p - \omega_c \) is the frequency difference between the coupling and the probing lights. Fig. 4 shows the dispersion and absorption properties of this three-level system, which further confirms our conclusion that the tripod-type atomic system can, under the weak probing light assumption, be viewed as the combination of two independent Λ-type systems.

Recalling the properties of \(h_0(x) \), we can conclude that \(h_0(\delta_c - \Delta) \) has its minimum at \(\delta_c - \Delta = 0 \), with the two peaks at \(\delta_c - \Delta = \pm g_c \), respectively. That is to say, the right transparency window will have a central frequency of \(\delta_c = \Delta \) and a width \(2g_c \). This conclusion is also valid for the left transparency window, i.e., it is centered at \(\delta_c = -\Delta \) with the width \(2g_c \). The above discussion gives us some hint on how to construct the two transparency windows. If we choose to fix the external magnetic field and scan the frequency of the probing light, the two transparency windows are expected to emerge when the frequency difference between the probing light and the pumping light satisfies \(\delta_c = \pm \Delta \), respectively.

![Fig. 4. (color online) Dispersion and absorption of the three-level Λ configuration. Likewise, the blue curve represents the dispersion, while the red curve represents the absorption. The related parameters are \(\Delta = 5.0 \), \(\alpha = 0.001 \), and \(\beta = 0.666 \). \(\Omega_c \) is used to modulate the system. From the figures, one recognizes that the tripod-type is equivalent to the combination of two Λ systems.](image)

III. The Impact of the Coupling Light and the Magnetic Field

In the previous section, we have reached the conclusion that the tripod-type atomic system is equivalent to the combination of two Λ-type ones. Here we want to figure out in what way the two Λ-type schemes constitute the two transparency windows.

The Rabi frequency of the coupling light \(\Omega_c = g_c \gamma \) is of interest here. We want to show that it should not be too large in order to obtain satisfied transparency windows. The first reason is very apparent, since a narrow transparency window is always desirable for obtaining slow light and thereby the light storage. The second reason is not so close at hand: We will show this point in Fig. 5 where the Zeeman splitting is kept constant \(\Delta = 5 \). One can see that with the increase of \(g_c \), the width of the two transparency windows becomes ever larger. When \(g_c \), however, the two windows begin to have overlap, which significantly alters the absorption properties of the system. In this case, the two windows will be centered at \(\pm g_c \), with the width of \(2\Delta \). Given the above two reasons, we conclude that when using the tripod-type scheme, the Rabi frequency of the coupling light is preferable to be less than the Zeeman splitting. There is another interesting result in Fig. 5. When \(g_c \) equals to \(\Delta \), we observe the so-called EIT phenomenon [16], in which the absorption of the system is degenerated.

![Fig. 5. (color online) The impact of the coupling light. Here we keep the Zeeman splitting \(\Delta = 5 \) while the Rabi frequency of the coupling light \(g_c \) is modulated. The color represents the magnitude of the absorption strength, as shown in the bar. The absorption and dispersion under four typical values of \(g_c \) have been shown in Fig. 2](image)
as a two-level configuration, and thus there exists only full absorption. After applying the magnetic field, the absorption peaks are split into two halves, and the transparency windows are established [Fig. 7(b)-(d)]. We want to further mention that similar phenomena, such as the EIA, and the overlap of two transparency windows will happen in the scan of the Zeeman splitting.

IV. Discussion and Conclusion

The experimental realization using this four-level system has the following concerns: the real atomic system, the damping rates for each level, the magnitude of the magnetic field and the influence of atomic collisions.

There have been many atomic systems that can satisfy our requirements, such as the $4f^66s^2 \ 7F_1 \leftrightarrow 4f^66s5p \ D_0$ transition of Sm[17]-[18], the $2p^33s \ 3P_1 \leftrightarrow 2p^33p \ 3P_0$ transition of Ne[19], and also the $5s^1 \ 2S_{1/2} \leftrightarrow 5p^1 \ 2P_{3/2}$ transition of ^{87}Rb (D2 line). Since the laser for the wavelength of $\lambda = 780$ nm is commercially very popular, this adoption may be more readily for applications.

Another important issue is the impact of damping rates. Since the dark state of this system [see Eq. (4)] does not contain the upper level $|1\rangle$, it is immune to radiative damping. Therefore, this four-level tripod-type system is much more rigid, in fighting with decoherence due to radiative dampings, than a four-level N-type atomic system[20]. Then, a question naturally arises: is the non-radiative damping, i.e., the dephasing from collisions, an urgent problem in the current configuration? This question is also crucial for the validity of the approximation used in Eq. (4). Fig. 8 shows the absorption of the tripod-type system under different non-radiative damping rates, where α is the ratio of non-radiative to radiative damping rate, as we defined before. Fortunately, We can see that the general properties, i.e., the central frequency and width of the transparency windows, have been kept. Only the maximal absorption is reduced, which is not a crucial problem, since it still yields a good contrast. Moreover, given that non-radiative damping is much smaller than the radiative damping, its limitations on operation time is significantly less. Therefore, we can conclude that the non-radiative damping rates, though slightly changes the absorption of this system, is not a crucial problem, and our previous approximation is valid.

Next, we briefly discuss the requirement of the magnetic field. Since the normal Zeeman splitting and the external magnetic field B has the relation: $\Delta = g\mu_B B/\hbar$, where g is the Landé factor and μ_b is the Bohr magneton, then, if we need to realize a frequency shift in ^{87}Rb of, say, 10 MHz, a magnetic field of about 7 Gauss is needed and can be easily fulfilled.

In this paper, we discuss in detail the properties of a four-level tripod-type EIT system. We first show that this system has two transparency windows, then analysis are made to demonstrate that this configuration is actually a combination of two three-level Λ-type EIT systems. Following that, we focus...
on the discussions of the properties of the transparency windows. We show that the profile of the transparency windows rely strongly on the relative magnitude of the Rabi frequency of the coupling light and the Zeeman splitting. In the end, issues related to the experimental realization of this scheme are discussed. As a whole, it is pointed that the four-level tripod-type configuration yields an ideal dark state, which is very rare in four-level systems and is very beneficial for obtaining EIT in four-level systems. Besides this, it should also be noted that the ideal double dark states and double EIT windows have potential applications in the light storage for, at least, two frequencies of light and thus, could be connected with all-optical communication, together with the usage of wave division multiplexing (WDM) techniques.

ACKNOWLEDGMENTS

The fruitful discussions with Bin Luo and Professor Anhong Dang are greatly appreciated. This work is supported by the National Natural Science Foundation of China (Grant No. 10474004), National Key Basic Research Program (Grant No. 2006CB921401) and DAAD exchange program: D/05/06972 Projektbezogener Personenaustausch mit China (Germany/China Joint Research Program).

REFERENCES

[1] S. E. Harris, Phys. Today 50, 36 (1997).
[2] M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[3] D. J. Fulton, et al., Phys. Rev. A 52, 2302 (1995).
[4] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, Nature (London) 397, 594 (1999).
[5] L. J. Wang, A. Kuzmich and A. Dogariu, Nature (London) 411, 974 (2001).
[6] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).
[7] M. Fleischhauer and M. D. Lukin, Phys. Rev. A 65, 022314 (2002).
[8] M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).
[9] M. D. Lukin, A. Imamoğlu, Nature (London) 413, 273 (2001).
[10] C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, Nature (London) 409, 490 (2001).
[11] D. Han, H. Guo, Y. Bai, H. Sun, Phys. Lett. A 334, 243 (2005).
[12] F. Carreno et al., Phys. Rev. A 71, 063805 (2005).
[13] E. Paspalakis and P. L. Knight, Phys. Rev. A 66, 015802 (2002).
[14] J. H. Eberly, Phil. Trans. R. Soc. Lond. A 355, 2387 (1997).
[15] Ying Gu, Qingqing Sun and Qihuang Gong, Phys. Rev. A 67, 063809 (2003).
[16] A. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59, 4732 (1999).
[17] L. M. Barkov et al., Opt. Commun. 70, 467 (1989).
[18] S. A. Diddams, J. C. Diels, and B. Atherton, Phys. Rev. A 58, 2252 (1998).
[19] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
[20] Bin Luo, Xiao Li, Hong Guo, e-print arXiv: quant-ph/0601153

Yu Liu Born on January 3rd, 1984, Tianjin, China. Yu Liu got Bachelor’s degree in 2006 at Peking University. He is now a PhD student at School of Electronics Engineering and Computer Science, Peking University. His main research areas are: quantum coherence and interference and light storage, quantum entanglement.

Xiao Li Born on March 26th, 1986, Fujian province, China. Xiao Li is now an undergraduate student and studies at School of Earth and Space Science, Peking University. His current research interests are: quantum coherence based on light-atom interactions, light storage and entanglement dynamics.

Hong Guo Born on March 28th, 1969, Sichuan province, China. Hong Guo got Ph D in 1995 at Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences. After that, he joined South China Normal University for postdoctoral research work and in 1997 he got the full professorship. He is now working as a full professor with School of Electronics Engineering and Computer Science, Peking University. His main research areas are: quantum coherence and interference and light storage, quantum entanglement, quantum cryptography and quantum key distribution, and laser propagation.