Note On The Catalan Constant And Prime Triples

N. A Carella

Abstract

The existence of infinitely many consecutive prime triples \(p_n, p_{n+1}, \) and \(p_{n+2} \) as \(n \to \infty \), is sufficient to prove that the Catalan constant \(\beta(2) = 0.9159655941\ldots \) is an irrational number. This note provides the detailed analysis. Moreover, the numerical data suggests that the irrationality measure is \(\mu(\beta(2)) = 2 \), the same as almost every irrational real numbers.

1 Introduction and the Result

The Dirichlet beta function is defined by the series

\[
\beta(s) = \sum_{n \geq 1} \frac{\chi(n)}{n^s} = \prod_{p \geq 3} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1},
\]

where \(\chi(n) \) is the quadratic symbol, and \(s \in \mathbb{C} \) is a complex number. A beta constant \(\beta(s) \) at an odd integer argument \(s = 2n + 1 \) has an exact evaluation

\[
\beta(2n + 1) = \frac{n^{2n+1}E_n}{4^{n+1}(2n)!}
\]

in terms of the Euler numbers

\[
E_1 = 1, \quad E_2 = 5, \quad E_4 = 1385, \quad E_n, \ldots,
\]

for \(n \geq 1 \). This formula expresses each Dirichlet beta constant \(\beta(2n + 1) \) as a rational multiple of \(\pi^{2n+1} \), see [1] and related references. In contrast, the evaluation of a beta constant at an even integer argument can involves the zeta function and a power series, and other complicated formulas, [7], [8], et cetera. One of the simplest of these formulas is

\[
\beta(s) = \frac{3}{4} \zeta(s) - 2 \sum_{n \geq 1} \frac{1}{(4n + 3)^s},
\]

where \(\zeta(s) \) is the zeta function and \(s \geq 2 \). These expressions are summarized in a compact formula.

July 29, 2022

AMS MSC: Primary 11J72, 11M26; Secondary 11J82; 11Y60.

Keywords: Irrational number; Catalan constant; Irrationality measure; Prime triple.
Definition 1.1. Let $s \geq 2$ be an integer. The π-representation of the Dirichlet beta constant $\beta(s)$ is defined by the formula

$$
\beta(s) = \begin{cases}
 r_n \pi^s & \text{if } s = 2n + 1, \\
 r_n \pi^s - u_n & \text{if } s = 2n,
\end{cases}
$$

(5)

where $r_n \in \mathbb{Q}$ is a rational number and $u_n \in \mathbb{R}$ is a real number.

The arithmetic nature of the first even constant, called the Catalan constant, is unknown. A proof based on a result for the existence of infinitely many consecutive prime triples

$$
p_n = 8n_1 + 1, \quad p_{n+1} = 8n_2 + 5, \quad \text{and} \quad p_{n+2} = 8n_3 + 7
$$

(6)

as the integers variables $n_1, n_2, n_3, n \to \infty$, and other results is given here.

Theorem 1.1. The Catalan constant

$$
\beta(2) = \sum_{n \geq 0} \frac{(-1)^n}{(2n + 1)^2} = 0.9159655941 \ldots,
$$

is an irrational number.

The essential basic foundation and background are presented in Section 2, and the simple proof of Theorem 1.1 is presented in Section 3.

Conjecture 1.1. The irrationality measure of the Catalan constant is $\mu(\beta(2)) = 2$.

The experimental data compiled in Section 5 confirms the prediction very accurately.

Last, but not least, it should be observed that the same proof seamlessly generalizes to all the beta constants $\beta(s)$, where $s \geq 2$ is an integer. For example, the same argument given in Section 3 provides a new proof of the irrationality of the number $\beta(3) = \prod_{p \geq 3} (1 - \chi(p)p^{-3})^{-1} = \pi^3/32$.

Now, recall that an elementary argument based on the irrationality of the number $\pi^2/6 = \prod_{p \geq 2} (1 - p^{-2})^{-1}$ implies the existence of infinitely many primes. Similarly, if the converse of the Brun irrationality criterion holds, see Theorem 2.1, then the known irrationality of the number $\pi^3/32 = \prod_{p \geq 3} (1 - \chi(p)p^{-3})^{-1}$ implies the existence of infinitely many prime triples, see (6). Assuming the consecutive prime triples are on three dependent arithmetic progressions, for example $n_1 = n_2 = n_3$ in (6), this is a stronger result than the twin primes conjecture. However, this is open problem closely related to the Bateman-Horn conjecture, see [5] and [6] for more information.

2 Foundation

The conditional result for the Catalan constant, and more generally, the Dirichlet beta constants, is based on a proven irrationality criterion, and the conjectured distribution of prime triples.
2.1 Irrationality Criterion

Theorem 2.1. (Brun irrationality criterion) Let \(x_n \geq 1 \) and \(y_n \geq 1 \) be a pair of monotonic increasing increasing integers sequences. Suppose that the following properties are true.

(i) \(\frac{y_n}{x_n} \) converges to a real number \(\alpha \neq 0 \) as \(n \to \infty \).

(ii) \(\frac{y_n}{x_n} < \frac{y_{n+1}}{x_{n+1}} \) is monotonically increasing as \(n \to \infty \).

(iii) \(\frac{y_{n+1} - y_n}{x_{n+1} - x_n} > \frac{y_{n+2} - y_{n+1}}{x_{n+2} - x_{n+1}} \) is monotonically decreasing as \(n \to \infty \).

Then, the number \(\alpha \) is irrational.

The details of the proof are discussed in [3], and the most recent application of this result is given in [2].

2.2 Sequences of Consecutive Primes

Let \(p_1, p_2, p_3, \ldots, p_n, \ldots \) be the sequence of primes in increasing order. Let \(q \geq 1 \) be an integer, and let \(a = (a_1, a_2, \ldots, a_k) \) be an \(k \)-tuple of congruences \(p_n \equiv a_n \mod q \), with \(\gcd(a_n, q) = 1 \) for \(n \in \{1, 2, \ldots, k\} \). Define the primes counting function

\[
\pi(x, q, a) = \#\{p \leq x : p_n \equiv a_n \mod q\}.
\]

A few results have been proved for the constant case

\[
a = (a_1 = a, a_2 = a, \ldots, a_k = a),
\]

where \(\gcd(a, q) = 1 \), see [4], [6], et cetera, for the most recent literature. The nonconstant case of (8) for \(k \) dependent arithmetic progressions appears to be a difficult problem. But, for \(k \) independent arithmetic progression, this problem is manageable.

Theorem 2.2. Let \(x \geq 1 \) and \(q \leq \log x \) be an integer. If \(a = (a_1, a_2, \ldots, a_k) \) is a congruence vector such that \(\gcd(a_n, q) = 1 \) for \(n = 1, 2, \ldots, k \), then,

\[
\pi(x, q, a) = \frac{\text{li}(x)}{\varphi(q)^k} \left(1 + O\left(\frac{1}{\log x}\right)\right).
\]

Proof. Let \(x \geq 1 \) be a large number, and let \(c \geq 0 \) be a constant. Fix a modulo \(q \ll (\log x)^c \), and an admissible \(k \)-tuple \(a_1, a_2, \ldots, a_k \) such that \(\gcd(q, a_n) = 1 \) for \(n \leq k \), take the cross product of \(k \) independent arithmetic progressions

\[
qn_1 + a_1, \quad qn_2 + a_2, \quad \ldots, \quad qn_k + a_k.
\]

By Dirichlet theorem (or Siegel-Walfisz theorem), the corresponding prime \(k \)-tuples has the natural density

\[
\delta(a) = \lim_{x \to \infty} \frac{\#\{p \leq x : p_n \equiv a_n \mod q\}}{x} = \frac{1}{\varphi(q)^k}.
\]

Each prime in the consecutive prime \(k \)-tuple \(p_n, p_{n+1}, \ldots, p_{n+k} \) is independently generated, but satisfies the specified congruence \(p_{n+i} \equiv a_{n+i} \mod q \). ■
As a new application, the sequence of prime triples
\[(97, 101, 103), \ (193, 197, 199), \ (457, 459, 463), \ldots \] defined in (6), is used here to develop an argument for the irrationality of the beta constant \(\beta(s)\).

3 An Irrationality Result

The simple argument in support of Theorem 1.1 is the following.

Proof. Theorem 1.1 Suppose that
\[p_n \equiv 1 \mod 8, \ \ p_{n+1} \equiv 5 \mod 8, \ \text{and} \ \ p_{n+2} \equiv 7 \mod 8. \] This hypothesis immediately implies that
\[\chi(p_n) = 1, \ \chi(p_{n+1}) = 1, \ \text{and} \ \chi(p_{n+2}) = -1. \] (13)

By Theorem 2.2, there are infinitely many consecutive prime triples (12) that satisfy the triple character values (13) as \(n \to \infty\). The rest of the proof verifies the three steps specified in Theorem 2.1 to prove the irrationality of the number \(G = \beta(2)\).

Condition (i): Convergence Property. Define the sequence of rational approximations
\[\frac{y_n}{x_n} = \prod_{k \leq n} \left(1 - \frac{\chi(p_k)}{p_k^2}\right)^{-1} = \prod_{k \leq n} \frac{p_k^2}{p_k^2 - \chi(p_k)}. \] (14)

Since \(\chi(p_n) = 1\), the sequence \(\{y_n/x_n : n \geq 1\}\) is composed of the two sequences of monotonically increasing integers
\[x_n = \prod_{k \leq n} (p_k^2 - \chi(p_k)), \ \text{and} \ \ y_n = \prod_{k \leq n} p_k^2. \] (15)

This shows that the sequence of rational approximations \(y_n/x_n\) converges to \(\beta(2) = 0.9159655941 \ldots\) as \(n \to \infty\), see (1). This step verifies Theorem 2.1-i.

Condition (ii): Monotonically Increasing Ratios \(y_n/x_n\). Utilizing the hypothesis (13), a pair of consecutive ratios have the forms
\[\frac{y_n}{x_n} = \prod_{k \leq n} \frac{p_k^2}{p_k^2 - \chi(p_k)} = \left(\frac{p_n^2}{p_n^2 - 1}\right) \prod_{k \leq n-1} \frac{p_k^2}{p_k^2 - 1}, \] (16)

and
\[\frac{y_{n+1}}{x_{n+1}} = \prod_{k \leq n+1} \frac{p_k^2}{p_k^2 - \chi(p_k)} = \left(\frac{p_{n+1}^2}{p_{n+1}^2 - 1}\right) \left(\frac{p_n^2}{p_n^2 - 1}\right) \prod_{k \leq n-1} \frac{p_k^2}{p_k^2 - 1}. \] (17)

Clearly, this is a monotonically increasing sequence:
\[\frac{y_n}{x_n} = \left(\frac{p_n^2}{p_n^2 - 1}\right) \prod_{k \leq n-1} \frac{p_k^2}{p_k^2 - 1} < \frac{y_{n+1}}{x_{n+1}} = \left(\frac{p_{n+1}^2}{p_{n+1}^2 - 1}\right) \left(\frac{p_n^2}{p_n^2 - 1}\right) \prod_{k \leq n-1} \frac{p_k^2}{p_k^2 - 1}. \] (18)
This step verifies Theorem 2.1-ii.

Condition (iii): Monotonically Decreasing Slopes. A pair of consecutive slopes are computed using the hypothesis (13).

The first ratio of shifted differences (slope, see [3, Figure 1] for a graphical description of this sequence) is

\[
\frac{y_{n+1} - y_n}{x_{n+1} - x_n} = \frac{(p_{n+1}^2 - 1) y_n}{(p_{n+1}^2 - 1 - 1) x_n} = \frac{(p_{n+1}^2 - 1)}{(p_{n+1}^2 - 2)} x_n, \tag{19}
\]

where \(\chi(p_{n+1}) = 1\).

The next ratio of shifted differences is

\[
\frac{x_{n+2} - x_{n+1}}{y_{n+2} - y_{n+1}} = \frac{(p_{n+2}^2 p_{n+1}^2 - p_{n+1}^2)}{(p_{n+2}^2 + 1)(p_{n+1}^2 - 1) - (p_{n+1}^2 - 1)} \frac{y_n}{x_n} \tag{20}
\]

\[
= \frac{(p_{n+2}^2 - 1)p_{n+1}^2 y_n}{(p_{n+2}^2 + 1 - 1)(p_{n+1}^2 - 1)} x_n,
\]

where \(\chi(p_{n+2}) = -1\).

Comparing a pair of consecutive ratios yields

\[
\frac{x_{n+1} - x_n}{y_{n+1} - y_n} = \frac{(p_{n+1}^2 - 1)}{(p_{n+1}^2 - 2)} x_n \tag{21}
\]

\[
> \frac{x_{n+2} - x_{n+1}}{y_{n+2} - y_{n+1}} = \frac{(p_{n+2}^2 - 1)p_{n+1}^2}{p_{n+2}^2(p_{n+1}^2 - 1)} x_n.
\]

Equivalently,

\[
\frac{(p_{n+1}^2 - 1)}{(p_{n+1}^2 - 2)} > \frac{(p_{n+2}^2 - 1)p_{n+1}^2}{p_{n+2}^2(p_{n+1}^2 - 1)} \tag{22}
\]

Expanding and simplifying it return

\[
p_{n+1}^4 > p_{n+1}^2. \tag{23}
\]

Therefore, the slope (19) is a strictly monotonically decreasing sequence. This step verifies Theorem 2.1-iii.

Therefore, since all the conditions of Theorem 2.1 are satisfied, the number \(\beta(2)\) is irrational.

Remark 3.1. As stated in Section 2, there is a proof for the existence of infinitely many consecutive prime triples of constant congruences \(p_n \equiv p_{n+1} \equiv p_{n+2} \equiv 1 \mod 4\) and \(p_n \equiv p_{n+1} \equiv p_{n+2} \equiv -1 \mod 4\) on arithmetic progressions of a single variable. However, the same argument fails for any of these sequences of consecutive prime triples. For example, the same analysis as above using the sequence

\[
p_n \equiv 1 \mod 16, \quad p_{n+1} \equiv 5 \mod 16, \quad \text{and} \quad p_{n+2} \equiv 9 \mod 16 \tag{24}
\]
of constant quadratic symbol
\[\chi(p_n) = 1, \quad \chi(p_{n+1}) = 1, \quad \text{and} \quad \chi(p_{n+2}) = 1, \]
(25)
or using the sequence
\[p_n \equiv 3 \mod 16, \quad p_{n+1} \equiv 7 \mod 16, \quad \text{and} \quad p_{n+2} \equiv 11 \mod 16, \]
(26)
of constant quadratic symbol
\[\chi(p_n) = -1, \quad \chi(p_{n+1}) = -1, \quad \text{and} \quad \chi(p_{n+2}) = -1, \]
(27)
fails to prove that \(\beta(2) \) is irrational.

4 Basic Diophantine Approximations

The basic results recorded below are standard results in the literature, see [9], [10], et alii.

4.1 Basic Continued Fractions

Lemma 4.1. Let \(\alpha = [a_0, a_1, \ldots, a_n, \ldots] \) be the continue fraction of the real number \(\alpha \in \mathbb{R} \). Then, the following properties hold.

(i) \(p_n = a_np_{n-1} + p_{n-2}, \) \(p_{-2} = 0, \) \(p_{-1} = 1, \) \(\text{for all } n \geq 0. \)
(ii) \(q_n = a_nq_{n-1} + q_{n-2}, \) \(q_{-2} = 1, \) \(q_{-1} = 0, \) \(\text{for all } n \geq 0. \)
(iii) \(p_nq_{n-1} - p_{n-1}q_n = (-1)^{n-1}, \) \(\text{for all } n \geq 1. \)
(iv) \(\frac{p_n}{q_n} = a_0 + \sum_{0 \leq k < n} \frac{(-1)^k}{q_kq_{k+1}}, \) \(\text{for all } n \geq 1. \)

4.2 The Irrationality Measure

The irrationality measure measures the quality of the rational approximation of an irrational number. It is lower bound of all the rational approximations. Specifically,
\[\left| \alpha - \frac{p}{q} \right| \geq \frac{1}{q^\mu} \]
(28)
for all sufficiently large \(q \geq 1. \)
5 Numerical Data

The data to support the claim in Conjecture 1.1 is compiled in this section. The continued fraction of the Catalan constant

\[
\beta(2) = 0.91596559417721901505460351493238411077414937428167\ldots,
\]

is of the form, (first 100 partial quotients \(a_n\)),

\[
\beta(2) = [0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, 9, 3, 1, 1, 1, 1, 1, 1, 6, 1, 12, 1, 4, 7, 1, 1, 2, 5, 1, 5, 9, 1, 1, 1, 1, 33, 4, 1, 1, 3, 5, 3, 2, 1, 2, 1, 2, 1, 7, 6, 3, 1, 3, 3, 1, 1, 2, 1, 14, 1, 4, 4, 1, 2, 4, 1, 17, 4, 1, 14, 1, 1, 12, 1, 1, 1, 1, 3, 1, 2, 3, 1, 6, 2, 1, 2, 2, 322, 1, 1, 1, 2, 1, 108, 3, 1, 2, 82, 1, 5, 4, 1, 2, 2, 1, 1, 1, 5, 1, 12, 2, 11, 8, 2, 17, 1, 11, 1, 6, 1, 18, 1, 5, 2, 24, 4, 1, 1, 1, 8, 4, 3, 8, 3, \ldots].
\]

These are archived as sequence A006752 and sequence A014538, respectively, on the OEIS.

The sequence of convergents \(\{p_n/q_n : n \geq 1\}\), listed in Table 1, is computed via the recursive formula provided in the Lemma 4.1.

An approximation \(\mu_n(\alpha)\) of the irrationality measure satisfies the inequality

\[
\left| \alpha - \frac{p_n}{q_n} \right| \geq \frac{1}{q^{\mu_n(\alpha)}}
\]

for \(n \geq 2\). The values of the approximate irrationality measure \(\mu_n(\alpha) \geq 2\) of the irrational number \(\alpha \neq 0\) is defined by

\[
\mu_n(\alpha) = -\frac{\log |\alpha - p_n/q_n|}{\log q_n},
\]

where \(n \geq 2\).

Example 5.1. A large convergent is used here to illustrate the calculations, using 50 digits accuracy in the computer algebra system SAGE. The 100th convergent \(p_{100}/q_{100}\) is given by

(a) \(p_{100} = 24078868662746347429760476964387436156348637833\),

(b) \(q_{100} = 26287961923259336649196821919541159881600485419\).

The corresponding 100th approximation of the irrationality measure is

\[
\mu_{100}(\beta(2)) = -\frac{\log |\beta(2) - p_{100}/q_{100}|}{\log q_{100}}
\]

\[
= 2.009837567910985080940738967354842545238309309668.
\]

The range of values for \(n \leq 45\) is plotted in Figure 1.
Figure 1: Approximate Irrationality Measure $\mu_n(\beta(2))$ Of The Number $\beta(2)$.

References

[1] J. M. Borwein and P. B. Borwein. *Pi and the AGM*. Wiley, 1987.

[2] Butler, L. A. *A useful application of Brun’s irrationality criterion*. Expo. Math. 33 (2015) 121-134.

[3] Brun, V., Knudsen, F. F. *On the Possibility of Finding Certain Criteria for the Irrationality of a Number Defined as a Limit of a Sequence of Rational Numbers*. Mathematica Scandinavica 31 (1972) 231-236.

[4] Banks, W. D., Freiberg, T., Turnage-Butterbaugh, Caroline L. *Consecutive Primes In Tuplues*. http://arxiv.org/abs/1311.7003.

[5] Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, Stephan Ramon Garcia. *The Bateman-Horn Conjecture: Heuristics, History, and Applications*. http://arxiv.org/abs/1807.08899.

[6] Lemke Oliver, R. J., Soundararajan, K. *Unexpected Biases IN The Distribution Of Consecutive Primes*. http://arxiv.org/abs/1603.03720.

[7] Jameson, Graham; Lord, Nick. *Integrals evaluated in terms of Catalan’s constant*. Math. Gaz. 101 (2017), no. 550, 38-49.

[8] F. M. S. Lima. *A rapidly converging Ramanujan-type series for Catalan’s constant*. http://arxiv.org/abs/1207.3139.

[9] Redmond, Don. Number theory. *An introduction*. Monographs and Textbooks in Pure and Applied Mathematics, 201. Marcel Dekker, Inc., New York, 1996.

[10] Rose, H. E. *A course in number theory*. Second edition. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1994.
Table 1: Numerical Data For The Exponent $\mu(\beta(2))$ Of The Number $\beta(2)$

n	p_n	q_n	$\mu_n(\beta(2))$
1	1	1	2.07678354372
2	10	11	2.92280567895
3	11	12	2.02491750642
4	98	107	2.93949885584
5	109	119	2.16337045430
6	9690	10579	2.0707391493
7	38869	42435	2.06103252758
8	48559	53014	2.06103252758
9	87428	95449	2.1768724408
10	66055	72115	2.23191137105
11	1461963	1596090	2.02341311597
12	15280193	16682060	2.07153881185
13	45180024	49325023	2.06867467056
14	150820265	164657129	2.11498233047
15	3966506914	4330410377	2.00518561271
16	4117327179	4495067506	2.11498233047
17	49257105883	5376152943	2.00653757661
18	5374433062	58271220449	2.0444250285
19	583001436503	636488357433	2.0066821796
20	63675869565	694759577882	2.08514590463
21	6310384262588	6889324558371	2.0444250285
22	1956728567329	2136273252995	2.0217482851
23	2587912919917	2825205781366	2.0275664628
24	454454141577246	49614791064361	2.0249903825
25	7132354497163	7786884875727	2.0250051325
26	116768796074409	127481639940088	2.0257968126
27	188092150571572	20534888815815	2.0217482851
28	304860946465981	332830128755903	2.0324463682
29	797814043863534	871008746327621	2.0347350242
30	190048903437049	207484762141145	2.0116024732
31	2698303078236583	294585636738766	2.0705476506
32	3158182289475462	3447926766537571	2.01265439798
33	34280125973212045	3742512403276337	2.0263563878
34	65861948868187507	71904391700813908	2.0131249833
35	100142074841399552	109329515753590245	2.05164524679
36	666714397916584819	72788148611135378	2.0049959412
37	766856472757984371	837211001846445623	2.0633797686
38	9868992071012397271	10774413508268702854	2.00633061985
39	10635845843770381642	1161162451011514877	2.0369255654
40	52412386246093923839	57220911548729296762	2.0451224382
41	377522552266427848515	412158005351220225811	2.012651795
42	429934935812521772354	46937891689994522573	2.0178488368
43	807457490778949620869	88153692251169748384	2.0206299817
44	2044849920070421014092	2232452761402289019341	2.0372180851
45	11031707091131054691329	1204380072926261485089	2.00635311938