FREE GROUP C^*-ALGEBRAS ASSOCIATED WITH ℓ_p

RUI OKAYASU

Abstract. For every $p \geq 2$, we give a characterization of positive definite functions on a free group with finitely many generators, which can be extended to the positive linear functionals on the free group C^*-algebra associated with the ideal ℓ_p. This is a generalization of Haagerup’s characterization for the case of the reduced free group C^*-algebra. As a consequence, the associated C^*-algebras are mutually non-isomorphic, and they have a unique tracial state.

1. Introduction

N. P. Brown and E. Guentner introduce new C^*-completion of the group ring of a countable discrete group Γ in [2]. More precisely, for a given algebraic two-sided ideal in $\ell_\infty(\Gamma)$, they define the associated group C^*-algebra. These recover the full group C^*-algebra for $\ell_\infty(\Gamma)$ itself, and the reduced group C^*-algebra for $c_0(\Gamma)$, respectively. Hence if we take $c_0(\Gamma)$ or $\ell_p(\Gamma)$ with $p \in [1, \infty)$ for example, we may obtain new group C^*-algebra. We remark that a standard characterization of amenability implies that the associated C^*-algebras of an amenable group are all isomorphic for any ideals. In [2], they also give a characterization of the Haagerup property and Property (T) in terms of ideal completions.

In this paper, we study their C^*-algebra of a free group associated with ℓ_p. By [2], for any $p \in [1, 2]$, the group C^*-algebra of Γ associated with ℓ_p is isomorphic to the reduced group C^*-algebra. Therefore the case where $p \in (2, \infty)$ is essential. Our main result is a characterization of positive definite functions on a free group, which can be extended to the positive linear functionals on the free group C^*-algebra associated with ℓ_p. In [3], U. Haagerup gives its characterization for the case of the reduced free group C^*-algebra. Thus our theorem is a generalization of his result. As a consequence, the free group C^*-algebras associated with ℓ_p are mutually non-isomorphic for every $p \in [2, \infty]$. We also obtain that for each $p \in [2, \infty)$, the free group C^*-algebra associated with ℓ_p has a unique tracial state. Moreover, we consider algebraic ideals

$$D_-^p(\Gamma) = \bigcup_{\varepsilon > 0} \ell_{p-\varepsilon}(\Gamma)$$

for $1 < p \leq \infty$, and

$$D_+^p(\Gamma) = \bigcap_{\varepsilon > 0} \ell_{p+\varepsilon}(\Gamma)$$

for $1 \leq p < \infty$. Then, by using our characterization, it is also shown that the free group C^*-algebra associated with D_-^p coincides with the free group C^*-algebra associated with ℓ_p.

2000 Mathematics Subject Classification. Primary 46L05; Secondary 22D25.

Key words and phrases. C^*-algebras, free groups, positive definite functions.

The author was supported in part by JSPS.
2. Preliminaries

In this section, we fix the notations for the convenience of the reader and recall some results in [2].

Let Γ be a countable discrete group and π be a unitary representation of Γ on a Hilbert space \mathcal{H}. For $\xi, \eta \in \mathcal{H}$, we denote the matrix coefficient of π by

$$\pi_{\xi, \eta}(s) = \langle \pi(s)\xi, \eta \rangle.$$

Note that $\pi_{\xi, \eta} \in \ell_\infty(\Gamma)$, where $\ell_\infty(\Gamma)$ is the abelian C^*-algebra of all bounded functions on Γ.

Let D be an algebraic two-sided ideal of $\ell_\infty(\Gamma)$. If there exists a dense subspace \mathcal{H}_0 of \mathcal{H} such that $\pi_{\xi, \eta} \in D$ for all $\xi, \eta \in \mathcal{H}_0$, then π is called D-representation. If D is invariant under the left and right translation of Γ on $\ell_\infty(\Gamma)$, then it is said to be translation invariant.

Throughout this paper, we assume that D is a non-zero translation invariant ideal of $\ell_\infty(\Gamma)$. For each $p \in [1, \infty)$, we denote the norm on $\ell_p(\Gamma)$ by

$$|f|_p = \left(\sum_{s \in \Gamma} |f(s)|^p \right)^{\frac{1}{p}} \text{ for } f \in \ell_p(\Gamma).$$

Note that $\ell_p(\Gamma)$ is a translation invariant ideal of $\ell_\infty(\Gamma)$. We denote by $c_0(\Gamma)$ the of functions on Γ, vanishing at infinity. It is the non-trivial closed translation invariant ideal of $\ell_\infty(\Gamma)$.

Under our assumption, D contains $c_0(\Gamma)$, which is the ideal of all finitely supported functions on Γ. Moreover, if π has a cyclic vector ξ such that $\pi_{\xi, \xi} \in D$, then π is a D-representation with respect to a dense subspace

$$\mathcal{H}_0 = \text{span}\{\pi(s)\xi : s \in \Gamma\}.$$

We denote by λ the left regular representation of Γ. It is easy to see that λ is a c_0-representation, or a D-representation for any D.

The C^*-algebra $C_D^*(\Gamma)$ is the C^*-completion of the group ring $\mathbb{C}\Gamma$ by $\| \cdot \|_D$, where

$$\|f\|_D = \sup\{\|\pi(f)\| : \pi \text{ is a } D\text{-representation}\} \text{ for } f \in \mathbb{C}\Gamma.$$

Note that if D_1 and D_2 are ideals of $\ell_\infty(\Gamma)$ with $D_1 \supseteq D_2$, then there exists the canonical quotient map from $C_{D_1}^*(\Gamma)$ onto $C_{D_2}^*(\Gamma)$. We denote by $C^*(\Gamma)$ the full group C^*-algebra, and by $C^*_\lambda(\Gamma)$ the reduced group C^*-algebra, respectively. In [2], the following results are obtained:

- $C^*(\Gamma) = C^*_{\ell_\infty}(\Gamma)$ and $C^*_\lambda(\Gamma) = C^*_{c_0}(\Gamma)$.
- $C^*_{\ell_p}(\Gamma) = C^*_\lambda(\Gamma)$ for every $p \in [1, 2]$.
- $C^*(\Gamma) = C^*_D(\Gamma)$ if and only if there exists a sequence (h_n) of positive definite functions in D such that $h_n \to 1$.
- If $C^*(\Gamma) = C^*_{\ell_p}(\Gamma)$ for some $p \in [1, \infty)$, then Γ is amenable.
- Γ has the Haagerup property if and only if $C^*(\Gamma) = C^*_{c_0}(\Gamma)$.

3. Positive definite functions on a free group

Let F_d be the free group on finitely many generators a_1, \ldots, a_d with $d \geq 2$. We denote by $|s|$ the word length of $s \in F_d$ with respect to the canonical generating set $\{a_1, a_1^{-1}, \ldots, a_d, a_d^{-1}\}$. For $k \geq 0$, we put

$$W_k = \{s \in F_d : |s| = k\}.$$

We denote by χ_k the characteristic function for W_k.

In the following lemma, the case where $q = 2$ is given by Haagerup in [5, Lemma 1.3]. His proof also works for $q \in [1, 2]$ by using Hölder’s inequality, instead of Cauchy-Schwarz inequality. We remark that this is also appeared in [1].

Lemma 3.1. Let $q \in [1, 2]$. Let k, ℓ and m be non negative integers. Let f and g be functions on F_d such that $\text{supp}(f) \subset W_k$ and $\text{supp}(g) \subset W_\ell$, respectively. If $|k - \ell| \leq m \leq k + \ell$ and $k + \ell - m$ is even, then

$$|(f \ast g)\chi_m|_q \leq |f|_q|g|_q,$$

and if m is any other value, then

$$|(f \ast g)\chi_m|_q = 0.$$

Proof. It is shown by an argument similar as in [5, Lemma 1.3]. However for convenience, we give the complete proof.

Note that

$$(f \ast g)(s) = \sum_{t,u \in F_d \atop |tu| = s} f(t)g(u) = \sum_{|t| = k \atop |u| = \ell} f(t)g(u).$$

Since the possible values of $|tu|$ are $|k - \ell|, |k - \ell| + 2, \ldots, k + \ell$, we have

$$|(f \ast g)\chi_m|_q = 0$$

for any other values of m.

The case where $q = 1$ is trivial. So we consider the case where $q \neq 1$.

First we assume that $m = k + \ell$. In this case, if $|s| = m$, then s can be uniquely written as a product tu with $|t| = k$ and $|u| = \ell$. Hence

$$(f \ast g)(s) = f(t)g(u).$$

Therefore

$$|(f \ast g)\chi_m|_q^q \sum_{|t| = k \atop |u| = \ell} |f(t)|^q|g(u)|^q \leq \sum_{|t| = k \atop |u| = \ell} |f(t)|^q|g(u)|^q = |f|_q^q|g|_q^q.$$

Next we assume that $m = |k - \ell|, |k - \ell| + 2, \ldots, k + \ell - 2$. In these cases, we have $m = k + \ell - 2j$ for $1 \leq j \leq \min\{k, \ell\}$. Let $s = tu$ with $|s| = m$, $|t| = k$ and $|u| = \ell$. Then s can be uniquely written as a product $t'u'$ such that $t = tv, u = v^{-1}u'$ with $|t'| = k - j, |u'| = \ell - j$ and $|v| = |v^{-1}| = j$. We define

$$f'(t) = \left(\sum_{|v| = j} |f(tv)|^q \right)^{\frac{1}{q}} \text{ if } |t| = k - j, \text{ and } f'(t) = 0 \text{ otherwise}.$$
We also define
\[g'(u) = \left(\sum_{|v|=j} |g(v^{-1}u)|^q \right)^{\frac{1}{q}} \] if \(|u| = \ell - j\), and \(g'(u) = 0\) otherwise.

Note that \(\text{supp}(f') \subset W_{k-j}\) and \(\text{supp}(g') \subset W_{\ell-j}\). Moreover
\[|f'|_q^q = \sum_{|t|=k-j} \left(\sum_{|v|=j} |f(tv)|^q \right) = |f|_q^q, \]
and similarly \(|g'|_q = |g|_q\). Take a real number \(p\) with \(1/p + 1/q = 1\). Since \(1 < q \leq 2\), we have \(2 \leq p < \infty\). In particular, \(q \leq p\). Thanks to Hölder’s inequality,
\[|(f \ast g)(s)| = \left| \sum_{|t|=k \atop |u| = \ell \atop s = tu} f(t)g(u) \right| \]
\[\leq \left(\sum_{|v|=j} |f(t'v)|^q \right)^{\frac{1}{q}} \left(\sum_{|v|=j} |g(v^{-1}u')|^p \right)^{\frac{1}{p}} \]
\[\leq \left(\sum_{|v|=j} |f(t'v)|^q \right)^{\frac{1}{q}} \left(\sum_{|v|=j} |g(v^{-1}u')|^q \right)^{\frac{1}{q}} \]
\[= (f'g')(u'). \]
Hence \(|(f \ast g)\chi_m| \leq (f' \ast g')\chi_m\). Since \((k-j) + (\ell-j) = m\), it follows from the first part of the proof that
\[|(f \ast g)\chi_m|_q \leq |(f' \ast g')\chi_m|_q \leq |f'|_q |g'|_q = |f|_q |g|_q. \]

□

In the following lemma, the case where \(p = q = 2\) is given in the proof of [4, Theorem 1].

Lemma 3.2. Let \(1 \leq q \leq p \leq \infty\) with \(1/p + 1/q = 1\). Let \(\pi\) be a unitary representation of \(\Gamma\) on a Hilbert space \(\mathcal{H}\) with a cyclic vector \(\iota\) such that \(\pi_\xi \in \ell_p(\Gamma)\). Then
\[\|\pi(f)\| \leq \liminf_{n \to \infty} \left| \left|(f \ast f^{(2n)})^{(2n)} \right|_q \right|^{\frac{1}{2n}} \]
for \(f \in c_c(\Gamma)\).
Therefore it follows that
\[\|\pi(f)\| = \sup_{g \in c_c(\Gamma)} \lim_{n \to \infty} \left(\sum_{s \in \Gamma} (f^* \ast f)^{(s+2n)}(s)(\pi(s)\pi(g)\xi, \pi(g)\xi) \right)^{\frac{1}{p}}. \]

Fix \(g \in c_c(\Gamma) \) and we put \(\varphi(s) = \langle \pi(s)\pi(g)\xi, \pi(g)\xi \rangle \). Note that
\[\varphi(s) = \langle \pi(s)\pi(g)\xi, \pi(g)\xi \rangle = \sum_{t,u \in \mathcal{F}_d} \overline{g(u)}\pi_{\xi,\xi}(u^{-1}st)g(t) = (\overline{g} \ast \pi_{\xi,\xi} \ast g^\vee)(s), \]
where \(g^\vee(s) = g(s^{-1}) \). Consequently, \(\pi_{\xi,\xi} \in \ell_p(\Gamma) \) implies \(\varphi \in \ell_p(\Gamma) \). Then by Hölder’s inequality,
\[\left| \sum_{s \in \Gamma} (f^* \ast f)^{(2n)}(s)\varphi(s) \right| \leq (f^* \ast f)^{(2n)}_q \|\varphi\|_p. \]
Therefore it follows that
\[\|\pi(f)\| \leq \liminf_{n \to \infty} \left((f^* \ast f)^{(s+2n)} \right)^{\frac{1}{p}}. \]
□

By combining Lemma 3.1 and Lemma 3.2, we can prove the following.

Lemma 3.3. Let \(k \) be a non-negative integer. Let \(1 \leq q \leq p \leq \infty \) with \(1/p + 1/q = 1 \). If a unitary representation \(\pi \) of \(\mathcal{F}_d \) on a Hilbert space \(\mathcal{H} \) has a cyclic vector \(\xi \) such that \(\pi_{\xi,\xi} \in \ell_p(\mathcal{F}_d) \), then
\[\|\pi(f)\| \leq (k + 1)\|f\|_q. \]
for \(f \in c_c(\mathcal{F}_d) \) with \(\text{supp}(f) \subset W_k \).

Proof. The case where \(q = 1 \) and \(p = \infty \) is trivial. So we may assume that \(1 < q \leq 2 \) and \(2 \leq p < \infty \) with \(1/p + 1/q = 1 \). It is also shown by an argument similar as in [5, Lemma 1.4].

We consider the norm \(\|(f^* \ast f)^{(s+2n)}\|_q \). Write \(f_{2j-1} = f^* \) and \(f_{2j} = f \) for \(j = 1, 2, \ldots, 2n \). Then
\[(f^* \ast f)^{(2n)} = f_1 \ast f_2 \ast \cdots \ast f_{4n}. \]
We also denote \(g = f_2 \ast \cdots \ast f_{4n} \). So we have
\[(f^* \ast f)^{(s+2n)} = f_1 \ast g. \]
Note that \(\text{supp}(f_j) \subset W_k \) for \(j = 1, 2, \ldots, 4n \) and \(g \in c_c(\mathcal{F}_d) \). Put \(g_{\ell} = g\chi_{\ell} \). Then \(\text{supp}(g_{\ell}) \subset W_{\ell} \) and
\[\|g\|_q = \sum_{\ell=0}^{\infty} \|g_{\ell}\|_{q}. \]
Here, remark that \(\|g_{\ell}\|_q = 0 \) for all but finitely many \(\ell \). Moreover set
\[h = f_1 \ast g = \sum_{\ell=0}^{\infty} f_1 \ast g_{\ell} \]
and \(h_m = h\chi_m \). Then \(h \in c_c(\mathcal{F}_d) \) and
\[\|h\|_q = \sum_{m=0}^{\infty} \|h_m\|_{q}. \]
Here, notice that $|h_m|_q = 0$ for all but finitely many m. By Lemma 3.1,

$$|(f_1 * g)_m|_q \leq |f_1|_q|g|_q$$

in the case where $|k - \ell| \leq m \leq k + \ell$ and $k + \ell - m$ is even. We also have

$$|(f_1 * g)_m|_q = 0$$

for any other values of m. Hence

$$|h_m|_q = \left| \sum_{\ell=0}^{\infty} (f_1 * g)_\ell \right|_q$$

in the case where $k - \ell \leq m \leq k + \ell$ and $k + \ell - m$ is even. We also have

$$|h_m|_q = \left| \sum_{\ell=0}^{\infty} (f_1 * g)_\ell \right|_q$$

for any other values of m. Hence

$$|h_m|_q = \left| \sum_{\ell=0}^{\infty} (f_1 * g)_\ell \right|_q$$

By writing $\ell = m + k - 2j$,

$$|h_m|_q \leq |f_1|_q \left| \sum_{j=0}^{\min\{m,k\}} |g_{m+k-2j}|_q \right|$$

By writing $\ell = m + k - 2j$,

$$|h_m|_q = \left| \sum_{\ell=0}^{\min\{m,k\}} |g_{m+k-2j}|_q \right|$$

Then

$$|h|_q^2 = \sum_{m=0}^{\infty} |h_m|_q^2$$

$$\leq (k + 1)^{\frac{2}{p}} |f_1|_q^2 \left(\sum_{m=0}^{\infty} \left| \sum_{j=0}^{\min\{m,k\}} |g_{m+k-2j}|_q \right| \right)$$

$$= (k + 1)^{\frac{2}{p}} |f_1|_q^2 \left(\sum_{j=0}^{\infty} |g_{j+k}|_q \right)$$

Hence $|f_1 * g|_q \leq (k + 1)|f_1|_q|g|_q$, i.e.,

$$|f_1 * (f_2 * \cdots * f_{4n})|_q \leq (k + 1)|f_1|_q|f_2|_q \cdots |f_{4n}|_q.$$
Moreover, we inductively get
\[|(f^* f)^{(2n)}|_q \leq (k + 1)^{2n-1} |f|_q^{2n}. \]
Therefore it follows from Lemma 3.2 that
\[\|\pi(f)\| \leq \liminf_{n \to \infty} \left| (f^* f)^{(2n)} \right|_q^{1/n} \leq (k + 1) |f|_q. \]
\[\square \]

For a function \(\varphi \) on \(\Gamma \), we denote the corresponding linear functional on \(c_c(\Gamma) \) by
\[\omega_{\varphi}(f) = \sum_{s \in \Gamma} f(s) \varphi(s) \quad \text{for } f \in c_c(\Gamma). \]
Note that \(\varphi \) is positive definite if and only if the functional \(\omega_{\varphi} \) extends to a positive linear functional on \(C^*(\Gamma) \) (see, e.g., [3] Theorem 2.5.11).

Now we can give a characterization of positive definite functions on \(\mathbb{F}_d \), which can be extended to the positive linear functionals on \(C^*_d(\mathbb{F}_d) \) for any \(p \in [2, \infty) \). The case of \(C^*_d(\mathbb{F}_d) \) is given in [5] Theorem 3.1. We remind the reader that \(C^*_d(\mathbb{F}_d) = C^*_{\ell_p}(\mathbb{F}_d) \). Hence the following theorem is a generalization to the case of \(C^*_d(\mathbb{F}_d) \) for any \(p \in [2, \infty) \).

For \(0 < \alpha < 1 \), we set \(\varphi_{\alpha}(s) = \alpha^{|s|} \), and it is positive definite on \(\mathbb{F}_d \) by [5] Lemma 1.2.

Theorem 3.4. Let \(2 \leq p < \infty \). Let \(\varphi \) be a positive definite function on \(\mathbb{F}_d \). Then the following conditions are equivalent:

1. \(\varphi \) can be extended to the positive linear functional on \(C^*_d(\mathbb{F}_d) \).
2. \(\sup_k |\varphi \chi_k|_p (k + 1)^{-1} < \infty \).
3. The function \(s \mapsto \varphi(s)(1 + |s|)^{-1 - \frac{1}{p}} \) belongs to \(\ell_p(\mathbb{F}_d) \).
4. For any \(\alpha \in (0, 1) \), the function \(s \mapsto \varphi(s)\alpha^{|s|} \) belongs to \(\ell_p(\mathbb{F}_d) \).

Proof. Without loss of generality, we may assume that \(\varphi(e) = 1 \). The proof is based on the one in [5] Theorem 3.1.

(1)\(\Rightarrow \) (2): It follows from (1) that \(\omega_{\varphi} \) extends to the state on \(C^*_d(\mathbb{F}_d) \). Hence for \(f \in c_c(\mathbb{F}_d) \), we have
\[|\omega_{\varphi}(f)| \leq \|f\|_{\ell_p}. \]
Put
\[f = |\varphi|^{p-2} \varphi \chi_k. \]
Then
\[|\omega_{\varphi}(f)| = |\varphi \chi_k|_{\ell_p}^p. \]
Notice that
\[\|f\|_{\ell_p} = \sup\{\|\pi(f)\| : \pi \text{ is an } \ell_p\text{-representation}\}. \]
Let \(\pi \) be an \(\ell_p\)-representation of \(\mathbb{F}_d \) on a Hilbert space \(\mathcal{H} \) with a dense subspace \(\mathcal{H}_0 \). Then
\[\|\pi(f)\|^2 = \sup_{\xi \in \mathcal{H}_0 \atop \|\xi\| = 1} \langle \pi(f^* f)\xi, \xi \rangle_{\mathcal{H}}. \]
Fix \(\xi \in \mathcal{H}_0 \) with \(\|\xi\| = 1 \). We denote by \(\sigma \) the restriction of \(\pi \) onto the subspace \(\mathcal{H}_\sigma = \overline{\text{span}}\{\pi(s)\xi : s \in \mathbb{F}_d\} \subset \mathcal{H} \).
Then
\[\langle \pi(f^*f)\xi,\xi \rangle_H = \langle \sigma(f^*f)\xi,\xi \rangle_{\mathcal{H}}. \]
Note that \(\xi \) is cyclic for \(\sigma \) such that \(\sigma_\xi \in \ell_p(F_d) \). Take a real number \(q \) with \(1/p + 1/q = 1 \). Since \(2 \leq p < \infty \), we have \(1 < q \leq 2 \). By Lemma 3.3,
\[\|\sigma(f)\| \leq (k+1)|f|_q. \]
Hence
\[\|\sigma(f^*f)\| = \|\sigma(f)\|^2 \leq (k+1)^2|f|_q^2. \]
Therefore we obtain
\[\|f\|_{\ell^p} \leq (k+1)|\varphi\chi_k|_p^{-1}. \]
Consequently,
\[|\varphi\chi_\alpha|_p \leq k+1. \]
(2) \(\Rightarrow \) (3):
\[
\sum_{s \in F_d} |\varphi(s)|^p(1+|s|)^{-p-2} = \sum_{k=0}^{\infty} \sum_{|s|=k} |\varphi(s)|^p(1+k)^{-p-2} = \sum_{k=0}^{\infty} |\varphi\chi_k|_p^p(1+k)^{-p}(1+k)^{-2} \leq \left\{ \sup_k |\varphi\chi_k|_p(k+1)^{-1} \right\}^p \sum_{k=0}^{\infty} \frac{1}{(k+1)^2} < \infty.
\]
(3) \(\Rightarrow \) (4): Easy.
(4) \(\Rightarrow \) (1): Note that \(\psi_\alpha(s) = \varphi(s)\alpha^{|s|} \) is also positive definite. By the GNS construction, we obtain the unitary representation \(\sigma_\alpha \) of \(F_d \) with the cyclic vector \(\xi_\alpha \) such that \(\psi_\alpha(s) = \langle \sigma_\alpha(s)\xi_\alpha,\xi_\alpha \rangle \).
Since \(\sigma_\alpha \) is an \(\ell_p \)-representation, \(\psi_\alpha \) can be seen as a state on \(C_{\ell_p}^*(F_d) \). By taking the weak-* limit of \(\psi_\alpha \) as \(\alpha \nearrow 1 \), we conclude that \(\varphi \) can be extended to the state on \(C_{\ell_p}^*(F_d) \).

Corollary 3.5. Let \(p \in [2,\infty) \) and \(\alpha \in (0,1) \). The positive definite function \(\varphi_\alpha \) can be extended to the state on \(C_{\ell_p}^*(F_d) \) if and only if
\[\alpha \leq (2d-1)^{-\frac{1}{p}}. \]

Proof. Note that
\[\varphi_\alpha \in \ell_p(F_d) \iff \sum_{k=1}^{\infty} (2d-1)^{k-1}\alpha^{pk} < \infty \iff (2d-1)^{\alpha^p} < 1 \iff \alpha < (2d-1)^{-\frac{1}{p}}. \]
Hence the corollary follows from Theorem 3.4.
Remark 3.6. Let π_α be the GNS representation of φ_α. Then π_α is weakly contained in λ if and only if $\alpha \leq (2d-1)^{-\frac{1}{p}}$. For $\alpha > (2d-1)^{-\frac{1}{p}}$, we refer the reader to [7] and [8].

As a consequence, we can obtain the following result. See also [2 Proposition 4.4].

Corollary 3.7. For $2 \leq q < p \leq \infty$, the canonical quotient map from $C^*_\ell_p(\mathbb{F}_d)$ onto $C^*_\ell_q(\mathbb{F}_d)$ is not injective.

Proof. It suffices to consider the case where $p \neq \infty$, because \mathbb{F}_d is not amenable.

Suppose that the canonical quotient map from $C^*_\ell_p(\mathbb{F}_d)$ onto $C^*_\ell_q(\mathbb{F}_d)$ is injective for some $q < p$. Take a real number α with

$$(2d-1)^{-\frac{1}{p}} < \alpha \leq (2d-1)^{-\frac{1}{q}}.$$

By using Corollary [3.5]

$$|\omega_{\varphi_\alpha}(f)| \leq \|f\|_{\ell_p} = \|f\|_{\ell_q} \quad \text{for } f \in c_c(\mathbb{F}_d).$$

Therefore it follows that φ_α can be also extended to the state on $C^*_\ell_q(\mathbb{F}_d)$, but it contradicts to the choice of α. \Box

Remark 3.8. The previous result has also shown by N. Higson and N. Ozawa, independently. See also [2 Remark 4.5].

In [6], Powers proves that $C^*_\ell(\mathbb{F}_2)$ has a unique tracial state. In [5], Haagerup gives another proof of the uniqueness. Thanks to Theorem 3.4, Haagerup’s argument also works for the case of $C^*_\ell_p(\mathbb{F}_d)$.

Corollary 3.9. For each $p \in [2, \infty)$, the C^*-algebra $C^*_\ell_p(\mathbb{F}_d)$ has a unique tracial state $\tau \circ \lambda_p$, where λ_p is the canonical quotient map $C^*_\ell_p(\mathbb{F}_d)$ onto $C^*_\ell(\mathbb{F}_d)$ and τ is the unique tracial state on $C^*_\ell(\mathbb{F}_d)$.

Proof. Any tracial state on $C^*_\ell_p(\mathbb{F}_d)$ corresponds to a positive definite function on \mathbb{F}_d. Take such a positive definite function φ. Then $\varphi|_K$ is constant for any conjugacy class K. Take a conjugacy class K in \mathbb{F}_d such that $K \neq \{e\}$. Put $k = \min\{|s| : s \in K\}$. Then $|W_{k+2n} \cap K| \geq (2d-1)^{n-1}$ for $n \geq 1$. Hence if $\varphi|_K = C$ for some non-zero constant C, then

$$\sum_{s \in K} |\varphi(s)|^p \alpha^{|s|} = \sum_{n=0}^{\infty} \sum_{s \in W_{k+2n} \cap K} C^n \alpha^{2n} \geq C^n \sum_{n=0}^{\infty} (2d-1)^{n-1} \alpha^{2n} = \infty$$

for $\alpha \geq (2d-1)^{-\frac{1}{p}}$. This contradicts (4) in Theorem 3.4. \Box

We define two algebraic ideals by

$$D^-_p(\Gamma) = \bigcup_{\varepsilon > 0} \ell_{p^-}(\Gamma)$$

for $1 < p \leq \infty$, and

$$D^+_p(\Gamma) = \bigcap_{\varepsilon > 0} \ell_{p^+}(\Gamma)$$

for $1 \leq p < \infty$. Note that $\ell_q(\Gamma) \subseteq D^-_p(\Gamma) \subseteq \ell_p(\Gamma)$ for $1 \leq q < p \leq \infty$, and $\ell_p(\Gamma) \subseteq D^+_p(\Gamma) \subseteq \ell_q(\Gamma)$ for $1 \leq p < q \leq \infty$. Then we also obtain the following.
Corollary 3.10. (1) For $2 \leq p < \infty$, the C^*-algebra $C^*_f(F_d)$ is canonically isomorphic to $C^*_D(F_d)$. In particular, $C^*_f(F_d) = C^*_D(F_d)$.

(2) For $2 < p \leq \infty$, the C^*-algebra $C^*_f(F_d)$ is canonically isomorphic to $C^*_D(F_d)$. In particular, $C^*_f(F_d) = C^*_D(F_d)$.

Proof. (1) It suffices to show that if φ is a positive definite function on F_d, which can be extended the positive linear functional on $C^*_D(F_d)$, then φ can be also extended to the one on $C^*_f(F_d)$.

Now assume that φ is a positive definite function on F_d, which can be extend to the positive linear functional on $C^*_D(F_d)$. Then for any $q \in (p, \infty)$, φ can be also extended to the positive linear functional on $C^*_q(F_d)$. By Theorem 3.4, $\varphi \varphi_\alpha \in \ell_q(F_d)$ for any $\alpha \in (0, 1)$. We set

$$r = \frac{pq}{q-p}.$$

Then $1/p = 1/q + 1/r$. If we take $(2d-1) - 2/r < \beta < (2d-1) - 1/r$, then $\varphi \beta \in \ell_r(F_d)$. Since

$$|\varphi \varphi_\alpha \varphi_\beta|_p \leq |\varphi \varphi_\alpha|_q |\varphi_\beta|_r,$$

we have $\varphi \varphi_\alpha \varphi_\beta \in \ell_p(F_d)$. Namely, $(\varphi \varphi_\beta) \varphi_\alpha \in \ell_p(F_d)$ for any $\alpha \in (0, 1)$. Thus $\varphi \varphi_\beta$ can be extended to the positive linear functional on $C^*_D(F_d)$. If $q \land p$, then $r \not\sim \infty$ and $\beta \not\sim 1$. Hence $\varphi \varphi_\beta \to \varphi$ in the weak-* topology. Therefore φ can be also extended to the positive linear functional on $C^*_f(F_d)$.

(2) The proof is quite similar as in (1). Assume that φ is a positive definite function on F_d which can be extended to the positive linear functional on $C^*_D(F_d)$. By Theorem 3.4 we have $\varphi \varphi_\alpha \in \ell_p(F_d)$ for any $\alpha \in (0, 1)$. For any $q \in [2, p)$, we set

$$r = \frac{pq}{p-q}.$$

Then $1/q = 1/p + 1/r$. If we take $(2d-1) - 2/r < \beta < (2d-1) - 1/r$, then $\varphi \beta \in \ell_r(F_d)$. Since

$$|\varphi \varphi_\alpha \varphi_\beta|_q \leq |\varphi \varphi_\alpha|_p |\varphi_\beta|_r,$$

we have $\varphi \varphi_\alpha \varphi_\beta \in \ell_q(F_d)$. Namely, $(\varphi \varphi_\beta) \varphi_\alpha \in \ell_q(F_d)$ for any $\alpha \in (0, 1)$. Thus $\varphi \varphi_\beta$ can be extended to the positive linear functional on $C^*_D(F_d)$, and so $\varphi \varphi_\beta$ can be extended to the one on $C^*_D(F_d)$. If $q \land p$, then $r \not\sim \infty$ and $\beta \not\sim 1$. Hence $\varphi \varphi_\beta \to \varphi$ in the weak-* topology. Therefore φ can be also extended to the positive linear functional on $C^*_f(F_d)$. \square

Remark 3.11. The isomorphism $C^*_\lambda(\Gamma) = C^*_{D^\infty}(\Gamma)$ has been already obtained in [2] for any Γ.

References

1. M. Bożejko; Remark on Herz-Schur multipliers on free groups. Math. Ann. 258 (1981/82), no. 1, 11–15.
2. N. P. Brown and E. Guentner; New C^*-completions of discrete groups and related spaces. Preprint. http://arxiv.org/abs/1205.4649.
3. N. P. Brown and N. Ozawa; C^*-algebras and finite-dimensional approximations. Graduate Studies in Mathematics, 88. American Mathematical Society, Providence, RI, 2008. xvi+509.
4. M. Cowling, U. Haagerup and R. Howe; Almost L^2 matrix coefficients. J. Reine Angew. Math. 387 (1988), 97–110.
5. U. Haagerup; An example of a nonnuclear C^*-algebra, which has the metric approximation property. Invent. Math. 50 (1978/79), no. 3, 279–293.
6. R. T. Powers; Simplicity of the C^*-algebra associated with the free group on two generators. Duke Math. J. 42 (1975), 151–156.
7. T. Pytlik and R. Szwarc; An analytic family of uniformly bounded representations of free groups. Acta Math. 157 (1986), no. 3-4, 287–309.
8. R. Szwarc; An analytic series of irreducible representations of the free group. Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 87–110.

DEPARTMENT OF MATHEMATICS EDUCATION, OSAKA KYOIKU UNIVERSITY, KASHIWARA, OSAKA 582-8582, JAPAN

E-mail address: rui@cc.osaka-kyoiku.ac.jp