Novel myosin-based therapies for congenital cardiac and skeletal myopathies

Julien Ochala,1 Yin-Biao Sun2

ABSTRACT
The dysfunction in a number of inherited cardiac and skeletal myopathies is primarily due to an altered ability of myofilaments to generate force and motion. Despite this crucial knowledge, there are, currently, no effective therapeutic interventions for these diseases. In this short review, we discuss recent findings giving strong evidence that genetically or pharmacologically modulating one of the myofilament proteins, myosin, could alleviate the muscle pathology. This should constitute a research and clinical priority.

In cardiac and skeletal muscles, the contractile machinery consists of assemblies of interdigitating myofilaments integrated in highly ordered entities termed sarcomeres.1 Mutations in genes encoding proteins located in the sarcomeres have been associated with various functional effects at the myofilament level granting contributing to a wide range of clinical phenotypes such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), nemaline myopathy or Laing early onset distal myopathy.2–4 No treatment exists for these sarcomeric diseases. The current guidelines state that therapeutic interventions should simply target symptoms relief.4 The present short review article aims to briefly summarise the recent advances in our understanding of the molecular pathogenic mechanisms and the rationale for further testing myofilament-based therapeutic interventions involving the molecular motor, myosin.

SARCROMERIC MUTATIONS AND CLINICAL PHENOTYPES
Here, the focus is on congenital cardiomyopathies and skeletal myopathies caused by dominant inherited and de novo mutations in genes encoding sarcomeric proteins. Mutations in MYH7 and MYBPC3 encoding for β-myosin heavy chain and myosin-binding protein C, respectively, are responsible for more than 70% of identified cardiac cases.5 Other genes such as MYL2, MYL3, ACTC1, TNNT2, TNNI3, TPM1, TTN and DES are also affected but account for less than 5% each.6 These gene defects lead to HCM, which is associated with left ventricular hypertrophy, small cavity size and vigorous systolic function.6 They can also induce DCM, RCM and left ventricular non-compaction cardiomyopathy, which are also characterised by enlarged left ventricles but with various effects on systolic function.6–9 Skeletal muscle-related mutations have also been identified in many genes including NEB and ACTA1 encoding for nebulin and skeletal α-actin, respectively, as well as TPM2, TPM3, MYH7 and MYH2.10–11 These mutations often interfere with the normal limb, masticatory and respiratory muscle functioning resulting in atrophy and impairing mobility, feeding and breathing.10–11 The following is a non-exhaustive list of the most common diseases: nemaline myopathy,11 Laing early onset distal myopathy,12 actin myopathy,13 intranuclear rod myopathy,13 rod-core disease,13 congenital fibre-type disproportion,13 hyaline body myopathy,12 myosin storage myopathy,12 inclusion body myopathy12 and myofibrillar myopathy.14 Interestingly, a few of the above mutations, especially in the MYH7 gene, are associated with cardiac and skeletal symptoms as the encoded protein, β-slow-cardiac myosin is present in both cardiac and skeletal muscles.12

HYPERCONTRACTILE OR HYPOCONTRACTILE MYOFILAMENTS
All these proteins are essential for muscle contraction. Briefly, in the sarcomere, calcium ions activate the thin filaments by directly binding to troponin C, allowing the movement of tropomyosin molecules to uncover myosin-binding sites on actin monomers. Myosin then binds and pulls on the thin filaments, shortening the sarcomere. Myosin cycling is triggered by the hydrolysis of ATP into ADP and inorganic phosphate. The release of phosphate is crucial for the myosin head-bending and force generation. Subsequently, when calcium ions are removed from the cytoplasm, the sarcomere relaxes. Other sarcomeric proteins such as titin, the intermediate filaments and Z-disc proteins are also important for mechanosensing and maintaining the sarcomeric structure during contraction.15–16 When sarcomeric mutations occur, the genotype-phenotype relationships become complex. Muscle dysfunction usually depends on the mutation location within the gene, the consequence at the protein level and the secondary disease-related protein post-translational modifications.12–13 Mutant proteins or post-translational modifications of sarcomeric proteins in the presence of mutations alter troponin C activation, tropomyosin conformational changes, myosin enzymatic ATPase activity, ultimately altering the duty ratio, which is the fraction of myosin heads forming strong force-generating interactions with thin filaments at any moment. Increasing or decreasing the duty ratio modulates force production, shortening velocity, power output and energy cost. Since the power output is the product of force and velocity of muscle contraction, any modulation of force or/and velocity would lead to an alteration in power. These molecular alterations thus result in either myofilament hypercontractility or hypocontractility.13–17 In the case of HCM and DCM mutations, these phenomena overall affect the cardiac output and

To cite: Ochala J, Sun Y-B. J Med Genet 2016;53:651–654.

CrossMark
can induce various abnormalities and remodelling in myocardial function, ultimately provoking obstruction, heart failure and/or sudden death. For instance, M531R mutants in the motor domain of the human β/slow-cardiac myosin molecule have been shown to be stronger motors and have been suggested to interrupt myosin head putative interactions with other proteins (eg, myosin-binding protein C) resulting in hyperdynamic heart. In contrast to congenital cardiomyopathies where a vast number of mutations have hypercontractile consequences, most of skeletal myopathies-related mutations induce hypocontractility and overall weakness, with only a few exceptions contributing to muscle stiffness and/or hypertonia.

Rationale for myofilament-orientated therapies

The current cardiac therapeutic interventions using small molecules have mixed long-term improvements on muscle pathology/remodelling or clinical outcomes. One potential explanation is that these particular interventions do not directly target the molecular pathogenic causes of the muscle diseases, that is, myofilament dysfunction. Hence, developing new therapies that precisely correct for the contractile alteration may represent novel and efficacious approaches to preventing onset and progression or treating muscle pathology in the setting of inherited cardiac and skeletal myopathies.

As myofilament activation requires the calcium ions, a few positive inotropes have been developed and subdivided into two categories, that is, calcium-mobilising agents and calcium sensitisers. These drugs could potentially increase myofilament function. Calcium-mobilising compounds, such as amrinone, milrinone and veparinone, act as phosphodiesterase 3 (PDE3) inhibitors and favour an increase in the duty ratio. For HCM, negative inotropic agents are likely to have beneficial effects. Cardiac myosin booster (figure 1). Therefore, this drug exhibits the positive inotropic effects by increasing the duty ratio of myosin. In the heart, it prolongs the systolic ejection time without any increase in the rate of pressure development or myocardial oxygen demand. This shortens the diastolic filling time resulting in reduced coronary blood flow and risks of ischaemia. Clinical trials are encouraging and oral omecamtiv mexitel could potentially be beneficial in the context of DCM and RCM where sarcomeric mutations reduce the myosin duty ratio. For HCM, negative inotropic agents are likely to have positive effects. Research molecules including blebbistatin and 2,3-butanedione monoxide have been developed and found to inhibit myosin activity by stabilising the myosin converter domain in a relaxed conformation, inducing a slowing of phosphate release and a decreasing in the duty ratio. Unfortunately, the toxicity of these small compounds is quite high. Recently, a small molecule, MYK-461, which also interferes with the phosphate release step of the myosin ATPase cycle, has been shown to have potential therapeutic approach for HCM. MYK-461 inhibits cardiac myosin ATPase by slowing hypotension and mortality in a number of heart diseases such as HCM. A few other small molecules have specifically been developed for skeletal myopathies such as CK-2066206, CK-2127107 or tirasentis. They specifically bind to the fast isoform of troponin C that is only present in skeletal myofilaments. Their clinical efficacy remains uncertain as they drastically slow the rate of calcium ions dissociation from troponin C, impairing the relaxation process.24

Myosin as a preferential target

In addition to troponin modulators, another recent experimental therapeutic approach consists of fine-tuning myosin function (table 1). The research compounds CGP-48506 and EMD-57033 directly affect myosin activity and the duty ratio but have been observed to be toxic. Omecamtiv mexitel, on the other hand, has a potential for therapeutic application. This strong positive inotropic small molecule binds directly to cardiac myosin and acts as an allosteric effector to enhance myosin motor activity and cardiac performance without increasing the intracellular calcium concentration. Omecamtiv mexitel shifts the equilibrium of the myosin ATPase hydrolysis cycle towards products by accelerating phosphate release and leads to a faster transient from weak to strong actin-bound states (figure 1). Therefore, this drug exhibits the positive inotropic effects by increasing the duty ratio of myosin. In the heart, it prolongs the systolic ejection time without any increase in the rate of pressure development or myocardial oxygen demand. This shortens the diastolic filling time resulting in reduced coronary blood flow and risks of ischaemia. Clinical trials are encouraging and oral omecamtiv mexitel could potentially be beneficial in the context of DCM and RCM where sarcomeric mutations reduce the myosin duty ratio. For HCM, negative inotropic agents are likely to have positive effects. Research molecules including blebbistatin and 2,3-butanedione monoxide have been developed and found to inhibit myosin activity by stabilising the myosin converter domain in a relaxed conformation, inducing a slowing of phosphate release and a decreasing in the duty ratio. Unfortunately, the toxicity of these small compounds is quite high. Recently, a small molecule, MYK-461, which also interferes with the phosphate release step of the myosin ATPase cycle, has been shown to have potential therapeutic approach for HCM. MYK-461 inhibits cardiac myosin ATPase by slowing

Table 1 Experimental approaches targeting myosin (derived from Ref. 24)

Approach	Compound	Target	Function
Pharmacological	Blebbistatin (research tool only)	Myosin class II	Inhibitor
	N-benzyl-p-toluene sulphonamide (research tool only)	All heavy chain isoforms	
	2,3-butanedione monoxide (research tool only)	Myosin class II	Inhibitor
	MYK-461 (preclinical—MyoKardia)	All heavy chain isoforms	
	Omecamtiv Mecarbil (clinical trial—Cytokinetics)	Myosin class II	Inhibitor
	CGP48506 (preclinical—Novartis)	B/slow-cardiac heavy chain isoform	Activator
	EMD57033 (preclinical—Merck)	Myosin class II	Activator
Genetic	MYL4 incorporation (preclinical)	Atrial/fetal essential light chain isoform	Activator
Figure 1 Schematic illustration showing actomyosin chemomechanical cycle. The transition from the weakly bound AM-ADP state to the strongly bound AM-ADP state is a key and rate-limiting step in the entire cycle that involves the release of P_i from the active site. Many myosin-base therapeutic or experimental interventions are targeting this step, for example, myosin activator (omecamtiv mecarbil) and inhibitors (MYK-461, blebbistatin, 2,3-butanedione monoxime, [N]-benzyl-p-toluen sulphonamide) in table 1. A: actin; AM, actomyosin complex; M, myosin.

Modulating the activation of myosin molecules in the context of skeletal myopathies can be achieved using gene therapy. Each myosin molecule is composed of two regulatory and two essential/alkali light chains. These latter are regulating the duty ratio, with some of the isoforms being very efficient force generators. This is specifically the case of the isoform encoded by the MYL4 gene and only present in the heart and skeletal muscles from embryos. By implementing this isoform in the skeletal muscles of mice carrying one specific mutation in the ACTA1 gene encoding for skeletal α-actin (H40Y replacement), myosin activity is enhanced and myofibres recover their force production, avoiding the development of muscle atrophy.

CONCLUSION
By alleviating muscle pathology, myosin activators and inhibitors represent promising new drug targets. Indeed, at the molecular level, these modify the ATPase activity, phosphate release, myosin-binding state and duty ratio, which are essential for regulating the force generation.

Funding JO is supported by a grant from the Medical Research Council, UK (MR/M002768/1). Y-BS is supported by the British Heart Foundation.

Competing interests None declared.

Provenance and peer review Commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

REFERENCES
1 Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev 2011;91:1447–531.
2 Laing NG, Nowak KJ. When contractile proteins go bad: the sarcromere and skeletal muscle disease. Bioessays 2005;27:809–22.
3 van der Velden J, Ho CY, Tariff JC, Olivotto I, Knollmann BC, Carrier L. Research priorities in sarcomeric cardiomyopathies. Cardiovasc Res 2015;105:449–56.
4 Gersh BJ, Moriam BJ, Bonow RO, Dehban AJ, Filer MA, Link MS, Naidiu SS, Nishimura RA, Ommen SR, Rakowski H, Seideman CE, Toxen JA, Udelson EJ, Yancy CW. American College of Cardiology Foundation/American Heart Association Task Force on Practice G, American Association for Thoracic S, American Society of E, American Society of Nuclear C, Heart Failure Society of A, Heart Rhythm S, Society for Cardiovascular A, Interventions, Society of Thoracic S. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011;124:2761–96.
5 Ho CY, Charon P, Richard P, Girolami F, Van Spadeondock-Zwartz KY, Pinto Y. Genetic advances in sarcomeric cardiomyopathies: state of the art. Cardiovasc Res 2015;105:397–408.
6 Lopes LR, Rahman MS, Elliott PM. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcromeric protein mutations. Heart 2013;99:1800–11.
7 Chang AN, Potter JD. Sarcromeric protein mutations in dilated cardiomyopathy. Heart Fail Rev 2005;10:225–35.
8 Parvatiyar MS, Pinto JR, Dweck D, Potter JD. Cardiac tropinin mutations and restrictive cardiomyopathy. J Biomed Biotechnol 2010;2010:350706.
9 Uchida T, Yoshimura K, Kaneko K, Nemoz S, Ishida H, Hata Y, Nishida N. Surgical repair of left ventricular noncompaction in a patient with a novel mutation of the myosin heavy chain 7 gene. Tohoku J Exp Med 2012;228:301–4.
10 Romero NB, Clarke NF. Congenital myopathies. Handb Clin Neurol 2013;113:321–36.
11 Romero NB, Sandaradura SA, Clarke NF. Recent advances in nemaline myopathy. Curr Opin Neurol 2013;26:519–26.
12 Tajishagh H, Oldfors A. Myosinopathies: pathology and mechanisms. Acta Neuropathol 2013;125:3–18.
13 Nowak KJ, Raverson G, Laing NG. Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol 2013;125:19–32.
14 Claes KG, Fardeau M. Myofibrillar myopathies. Handb Clin Neurol 2013;113:337–40.
15 Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 2011;23:39–46.
16 Gautel M, Djönvick-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol 2016;219:135–45.
17 Ochala J. Thin filament proteins mutations associated with skeletal myopathies: defective regulation of muscle contraction. J Mol Med 2008;86:1197–204.
18 Spudich JA. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem Soc Trans 2015;43:64–72.
19 Ochala J, Gokhin DS, Pennison-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathies-causing tropinin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012;21:4473–85.
20 Ochala J, Lehtokari VL, Iwamoto H, Li M, Feng HZ, Jin JP, Yagi N, Wallgren-Pettersson C, Penisson-Besnier I, Larsson L. Disrupted myosin cross-bridge cycling kinetics triggers muscle weakness in nebulin-related myopathy. FASEB J 2011;25:1903–13.
21 Ottenheijm CA, Lawlor MW, Stienen GJ, Granier H, Begg AH. Changes in cross-bridge cycling underlie muscle weakness in patients with tropinin 3-based myopathy. Hum Mol Genet 2011;20:2019–35.
22 Jain RK, Jayawant S, Squier W, Muntoni F, Sewry CA, Manzur A, Quinlivan R, Lillis AS, Algotsson L, Wikström BG, Jörgensen K, Filippatos G, Parissis JT, González MJ, Parkhomenko A, Yilmaz MB, Kivikko M, Pollesello P, Follath F, Landoni G, Grossini E, Caimmi P, Morelli A, Guarracino F, Schwinger RH, Meyer S, Filippi M, Maggiorini M, Ho NS, Assy K, Forini F, Mian JS. Levosimendan: a safe and effective calcium sensitizer for patients with systolic heart failure? A, Heart Failure Society of A, Heart Rhythm S, Society for Cardiovascular A, Interventions, Society of Thoracic S. 2011 ACCF/AHA guideline for the diagnosis and treatment of heart failure. Circulation 2011;124:2799–96.
23 Lindqvist J, Pénisson-Besnier I, Iwamoto H, Li M, Yagi N, Wallgren-Pettersson C, Penisson-Besnier I, Larsson L. Disrupted myosin cross-bridge cycling kinetics triggers muscle weakness in nebulin-related myopathy. FASEB J 2011;25:1903–13.
24 Hwang PM, Sykes BD. Targeting the sarcomere to correct muscle function. Nat Rev Drug Discov 2015;14:313–28.
25 Tariff JC, Carlier L, Bers DM, Popesci C, Ferrantini C, Coppini R, Maier LS, Ashrathian H, Huke S, vande Velden J. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res 2015;105:457–70.
26 Ochala J. Ca2+ sensitizer: an emerging class of agents for counterbalancing weakness in skeletal muscle diseases? Neuromuscul Disord 2010;20:98–101.
27 Kitada Y, Kobayashi M, Narimatsu A, Ohizumi Y. Potent stimulation of myosin ATPase activity and adenosine triphosphatase activity of canine cardiac muscle through a direct enhancement of troponin C Ca++ binding by MCI-154, a novel cardiotonic agent. J Pharmacol Exp Ther 1989;250:272–7.
28 Papp Z, Édes I, Frühwald S, De Hert SG, Salmenpaë M, Legkisangkas H, Meebazaar A, Landoni G, Grossini E, Caimmi P, Morelli A, Guaracino F, Schwinger RH, Meyer S, Algotssohn L, Wikström BG, Jörgensen K, Filippatos G, Parissis JT, González MJ, Parkhomenka A, Yilmaz MB, Kivikko M, Pollesello P, Follath F, Levosimendan:
