Prophylactic heparin and risk of orotracheal intubation or death in patients with mild or moderate COVID-19 pneumonia

Alessandra Vergori1, Patrizia Lorenzini2, Alessandro Cozzi-Leprì3, Davide Roberto Donno3, Gia Gualano4, Emanuele Nicastrì3, Fabio Iacomì3, Luisa Marchioni3, Paolo Campioni3, Vincenzo Schinini4, Stefania Cicalini2, Chiara Agrati4, Maria Rosaria Capobianchi5, Enrico Girardi11, Giuseppe Ippolito12, Francesco Vaia13, Nicola Petrosillo3, Andrea Antinori1,15, Fabrizio Taglietti2,3,15 & The ReCOVeRI Study Group*

Prophylactic low molecular weight heparin (pLMWH) is currently recommended in COVID-19 to reduce the risk of coagulopathy. The aim of this study was to evaluate whether the antinflammatory effects of pLMWH could translate in lower rate of clinical progression in patients with COVID-19 pneumonia. Patients admitted to a COVID-hospital in Rome with SARS-CoV-2 infection and mild/moderate pneumonia were retrospectively evaluated. The primary endpoint was the time from hospital admission to orotracheal intubation/death (OTI/death). A total of 449 patients were included: 39% female, median age 63 (IQR, 50–77) years. The estimated probability of OTI/death for patients receiving pLMWH was: 9.5% (95% CI 3.2–26.4) by day 20 in those not receiving pLMWH vs. 10.4% (6.7–15.9) in those exposed to pLMWH; p-value = 0.144. This risk associated with the use of pLMWH appeared to vary by PaO2/FiO2 ratio: aHR 1.40 (95% CI 0.51–3.79) for patients with an admission PaO2/FiO2 ≤ 300 mmHg and 0.27 (0.03–2.18) for those with PaO2/FiO2 > 300 mmHg; p-value at interaction test 0.16. pLMWH does not seem to reduce the risk of OTI/death mild/moderate COVID-19 pneumonia, especially when respiratory function had already significantly deteriorated. Data from clinical trials comparing the effect of prophylactic vs. therapeutic dosage of LMWH at various stages of COVID-19 disease are needed.

On January 9 2020, the "World Health Organization" (WHO) declared the identification, by Chinese Health authorities, of a novel coronavirus, further classified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. The outbreak of SARS-CoV-2 was considered to have originally started via a zoonotic transmission associated with the seafood market in Wuhan, China leading to a sharply spreading outbreak of human respiratory disease (COVID-19) in several other countries worldwide. On March 11 2020, WHO declared COVID-19

OPEN

1HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense, 292, 00149 Rome, Italy. 2Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, UCL, London, UK. 3Severe and Immune-Depression Associated Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 4Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 5Emerging Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 6Radiology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 7Intensive Care Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 8Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 9Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 10Clinical Epidemiology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 11Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 12Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. 13These authors contributed equally: Andrea Antinori and Fabrizio Taglietti. *A list of authors and their affiliations appears at the end of the paper. Email: alessandra.vergori@inmi.it
a pandemic. To date, over 50.7 million COVID-19 cases and 1.2 million deaths have been reported to WHO. Currently, there are more than 3.6 million new cases and over 54 000 new deaths reported.

COVID-19 might be commonly complicated with some hemostatic changes including mild thrombocytopenia and increased D-dimer levels, indicating some forms of coagulopathy that may predispose to thrombotic events, associated with a higher risk of requiring mechanical ventilation, intensive care unit (ICU) admission, or death. These hemostatic changes are a specific effect of SARS-CoV-2 and a consequence of a cytokine storm that alters the onset of the systemic inflammatory response syndrome as observed in other viral diseases. Generally, a correlation between inflammation and coagulation exists: several inflammatory cytokines lead to an impairment of the coagulation pattern, with a consequent imbalance between the procoagulant and anticoagulant states. In the severe acute respiratory syndrome induced by coronavirus, vascular endothelial damage in small and medium sized pulmonary vessels, disseminated intravascular coagulation (DIC), deep venous thrombosis, and pulmonary thromboembolism have been described. Hospitalized patients with acute medical illness, including infections such as pneumonia, are at increased risk of thrombotic events and it is well known that prophylactic anticoagulation reduces that risk.

Interestingly, heparin and its related derivatives have shown antiviral and anti-inflammatory activities and seem to be beneficial for patients with other diseases. As inflammation, atherogenesis, thrombogenesis, and cell proliferation are joint with each other viral disease. Generally, a correlation between inflammation and coagulation exists: several inflammatory cytokines lead to an impairment of the coagulation pattern, with a consequent imbalance between the procoagulant and anticoagulant states. In the severe acute respiratory syndrome induced by coronavirus, vascular endothelial damage in small and medium sized pulmonary vessels, disseminated intravascular coagulation (DIC), deep venous thrombosis, and pulmonary thromboembolism have been described. Hospitalized patients with acute medical illness, including infections such as pneumonia, are at increased risk of thrombotic events and it is well known that prophylactic anticoagulation reduces that risk.

The aim of this analysis was to assess the effectiveness of prophylactic dose of LMWH vs. no heparin in reducing the risk of oorotracheal intubation and death in a real-life setting of patients hospitalized for COVID-19.

Results

Patients’ characteristics. A total of 449 patients with COVID-19 mild/moderate pneumonia was included in this analysis. Over 48 h from the date of admission, 210 (46.8%) patients started pLMWH and 239 (53.2%) did not. Overall, 39% were female, with a median (Inter-Quartile Range, IQR) age of 63 (50–77) years and a median of 8 days from onset of symptoms to hospital admission (IQR 4–12).

The main characteristics of the study population at admission, overall and according to pLMWH treatment, are shown in Table 1.

The two groups were considerably different. Patients receiving pLMWH at admission were older, more frequently female and had a higher number of co-morbidities than those who did not receive pLMWH. In the overall study population, we observed 303 (67.5%) patients with more than one comorbidity, a significantly higher proportion of patients with diabetes (23.8% vs 10.5%; p < 0.001), cardiovascular diseases (37.1% vs 18.8%; p < 0.001), hypertension (51.9% vs 29.3%; p < 0.001), COPD/Asthma (25.7% vs 14.2%; p = 0.002), kidney diseases (8.6% vs 2.1%; p = 0.002) and liver disease (8.6% vs 3.4%; p = 0.020) was found among those who received pLMWH at admission versus those who did not. Patients receiving pLMWH had a median PaO2/FiO2 ratio at admission significantly lower than those not receiving pLMWH [333 mmHg (IQR, 248–400) vs 352 (295–410) respectively; p = 0.05], more frequently met the definition of hyperinflammation condition (64% vs 53%; p = 0.018) and, as expected, showed a higher median d-dimer level [841 ng/mL vs 568, p < 0.001]. The Padua score at admission was higher in the pLMWH group vs. no pLMWH and the volume of normal ventilated lung appeared lower in patients receiving pLMWH than in those who did not [3.0 L (2.2–4.2) vs 4.0 (2.9–5.1); p = 0.008].

Weak positive correlation was observed for d-dimer level at admission with Padua score (Spearman correlation coefficient = +0.28, p < 0.001) and with PaO2/FiO2 level at admission (Spearman correlation coefficient = +0.25, p < 0.001) as showed in Fig. 1.

53% of patients did not receive pLMWH and they were more frequently hospitalized in the first pandemic period (196/239 in March, 33/239 in April and 10 between June and July 2020; p < 0.001).

Overall, only 16 (3.5%) pulmonary thrombosis occurred, of whom 12 were in participants who started pLMWH close to admission and 4 in those who did not. We observed 5 major bleeding events which occurred 4 in people who were treated with heparin and 1 in untreated (p at Fisher exact test 0.076), more in detail: two intramuscular hematomas, 1 cerebral haemorrhage, 1 cerebellar bleeding and a vascular bleeding from the ascending aorta.

As to other treatments, patients on pLMWH received immunomodulant therapy, steroids and remdesivir over follow-up more frequently than patients not treated with pLMWH.

Primary endpoint OTI/death. Over 214 person-months of follow-up, 36 patients experienced OTI or death (6 OTIs and 30 death). As expected, the estimated probability of OTI/death was very different according to level of PaO2/FiO2 at admission (21.3% (95% CI 14.8–30.2) by day 15 in those with PaO2/FiO2 ratio < 300 mmHg vs. 2.9% (95% CI 1.3–6.3) in those with PaO2/FiO2 ratio > 300 mmHg; log-rank p-value < 0.001) Fig. 2a. In patients who were hospitalized with PaO2/FiO2 ≤ 300 mmHg, the probability of OTI/death seemed not different between treatment groups (Fig. 2c), while in patients with PaO2/FiO2 > 300 at admission, those who did not receive pLMWH showed higher probability of the outcome respect to those who received pLMWH (Fig. 2b).

At multivariable analysis, a first model was adjusted only for time-fixed confounders (model 1) and a second one which included also time-varying confounders concerning concomitant treatment (model 2).
Overall, crude and adjusted marginal hazard ratio for OTI/death showed a reduced risk for patient who received pLMWH but data were highly compatible with the null hypothesis of no difference (model 1: aHR = 0.89, 95% CI 0.34–2.29, p = 0.806; model 2: aHR = 0.66, 95% CI 0.28–1.57, p = 0.352).

After stratifying by baseline PaO2/FiO2 (> or ≤ 300 mmHg) there was some evidence for a difference in risk by treatment group according to strata. In particular, pLMWH use appeared to be associated with a higher risk of OTI/death among patients admitted with PaO2/FiO2 ≤ 300 mmHg [model 1 aHR 1.67 (95% CI 0.60–4.67), model 2 aHR 1.40 (95% CI 0.51–3.79)]. In contrast, in the stratum with PaO2/FiO2 > 300 mmHg, patients receiving pLMWH was consistent with a markedly reduced risk of OTI/death, although with wide confidence intervals [model 1 aHR 0.17 (95% CI 0.01–3.18); model 2 aHR 0.27 (95% CI 0.03–2.18)]. This is indicative of a qualitative interaction although the p-value at interaction test was 0.16 (Table 2).

The ITT analysis showed similar risk for treated and not treated in the group with PaO2/FiO2 > 300 and higher risk for treated if the baseline PaO2/FiO2 was ≤ 300 mmHg (supplementary table 1).

Similar results were obtained after the exclusion of 16 patients with pulmonary thromboembolic events from the study population patients treated with pLMWH showed higher risk of OTI/death versus those not treated if their PaO2/FiO2 at admission was ≤ 300 mmHg (HR 1.26; 95% CI 0.45–3.53), and they showed a lower risk if they were admitted at hospital with PaO2/FiO2 > 300 mmHg (HR 0.29; 95% CI 0.04–2.17) (Supplementary table 2).

Table 1. General characteristics of study population. pLMWH prophylactic dose of low molecular weight heparin, IQR inter quartile range, COPD chronic obstructive pulmonary diseases, LPV/r lopinavir/ritonavir, HCQ hydroxychloroquine. aDefined by the presence of at least two of the following criteria: (a) blood lymphocytes < 1000/mmc; (b) ferritin > 500 ng/mL; (c) LDH > 300 U/L; (d) D-dimers > 1000 ng/mL; (e) C-reactive protein > 3 mg/dL. bAvailable for 130 patients.
Secondary endpoint: death. Over 216 person-months of follow-up, 31 deaths were observed. At the multivariable analysis on the overall population, we found a signal for a reduced risk of death according to LMWH use [model 1: aHR 0.75 (0.28 to 1.97); p = 0.558; model 2: 0.53 (0.21–1.31); p = 0.168]. Prophylactic LMWH use was associated with a higher, even though not significant, risk of death among patients admitted with a PaO2/FiO2 ≤ 300 mmHg [model 1: aHR 1.18 (95% CI 0.37–3.79); p = 0.782; model 2: 1.14 (0.37–3.48); p = 0.823], whereas there was some evidence that was a protective factor in the stratum of admission PaO2/FiO2 > 300 mmHg [model 1: aHR 0.25 (95% CI 0.02–3.59); p = 0.31; model 2: 0.28 (0.03–2.19); p = 0.223] (Table 3).

Discussion
This cohort of patients hospitalized for COVID-19 pneumonia at the National Institute for Infectious Diseases L. Spallanzani in Rome, Italy, was mainly enrolled during the first pandemic time-window of the hospitalizations for COVID-19 in Rome. The fact that the evidence was insufficient to determine the risks and benefits of

Figure 1. Scatterplot and regression line representing the correlation between (a) D-dimer and Padua score and between (b) D-dimer and PaO2/FiO2.

Figure 2. (a) Estimated probability of mechanical invasive oro-tracheal intubation/death (OTI/death) according to pLMWH exposure in the study population and stratified by PaO2/FiO2 ratio at admission (b) > 300 mmHg and (c) ≤ 300 mmHg. pLMWH prophylactic low molecular weight heparin, OTI/death oro-tracheal intubation/death.
prophylactic anticoagulants for people hospitalized with COVID-19 because of the lack of randomized comparisons on LMWH versus no treatment and of the availability of few observational studies with no converging results were the main triggers to perform this analysis.

Patients receiving LMWH prophylaxis (39%) appeared to be older than those who did not receive LMWH prophylaxis, with at least 1 comorbidity; specifically, cardiovascular diseases, hypertension, COPD/Asthma, diabetes were the more prevalent.

In our study population, there was a non-negligible proportion of patients, mainly those hospitalized in March/April 2020 (53%) in whom prophylactic LMWH was not prescribed. This finding reflects the fact that in the early stages of the epidemic the risk of thromboembolic events in people with COVID-19 disease had not been clearly recognized. As soon as recommendations were made on prophylactic anticoagulation in COVID-19, since May 2020, all hospitalized patients with pneumonia at our COVID-hospital were administered prophylactic dose of LMWH in order to prevent SARS-CoV-2-related thrombotic events. Therefore, this type of analysis will be no longer possible for people enrolled during the second wave of the pandemic.

This analysis reveals that a significant higher proportion of patients receiving LMWH prophylaxis had an impaired respiratory function and a hyperinflammation pattern, which have a known potential prognostic value. These findings highlight that clinicians might have been more prone to use anticoagulant prophylaxis in order to prevent SARS-CoV-2-related thrombotic events.

Table 2. Hazard Ratio of oro-tracheal intubation/death (OTI/death) in all population and according to PaO2/FiO2 at admission. *pLMWH prophylactic dose of low molecular weight heparin. **Adjusted for time-fixed factors: age, gender, time from symptoms onset, comorbidities (cardiovascular diseases, hypertension, COPD/Asthma, diabetes), PaO2/FiO2 at admission. **Adjusted for time-fixed and time varying factors: age, gender, time from symptoms onset, comorbidities (cardiovascular diseases, hypertension, COPD/Asthma, diabetes), PaO2/FiO2 at admission, time-varying use of immune-therapy, antiviral and steroids and censoring using IPW. aInitiation of invasive mechanical ventilation or death.

Unadjusted and adjusted marginal relative hazards of IOT/death*	Unadjusted HR (95% CI)	p-value	Adjusted* HR (95% CI)	p-value	Adjusted** HR (95% CI)	p-value		
All patients								
No pLMWH	1.00	1.00	0.85 (0.35, 2.07)	0.727	0.89 (0.34, 2.29)	0.806	0.66 (0.28, 1.57)	0.352
pLMWH								
Baseline PaO2/FiO2 ≤ 300 mmHg								
No pLMWH	1.00	1.00	1.00	1.00	1.00	1.00		
pLMWH	1.68 (0.65, 4.39)	0.287	1.49 (0.52, 4.23)	0.458	1.40 (0.51, 3.79)			
Baseline PaO2/FiO2 > 300 mmHg								
No pLMWH	1.00	1.00	1.00	1.00	1.00	1.00		
pLMWH	0.33 (0.07, 1.48)	0.146	0.25 (0.02, 3.61)	0.310	0.27 (0.03, 2.18)			

Table 3. Hazard Ratio of death in all population and according to PaO2/FiO2 at admission. *Adjusted for time-fixed factors: age, gender, time from symptoms onset, comorbidities (cardiovascular diseases, hypertension, COPD/Asthma, diabetes), PaO2/FiO2 at admission. **Adjusted for time-fixed and time varying factors: age, gender, time from symptoms onset, comorbidities (cardiovascular diseases, hypertension, COPD/Asthma, diabetes), PaO2/FiO2 at admission, time-varying use of immune-therapy, antiviral and steroids and censoring using IPW. pLMWH prophylactic dose of low molecular weight heparin.

Unadjusted and adjusted marginal relative hazards of death	Unadjusted HR (95% CI)	p-value	Adjusted* HR (95% CI)	p-value	Adjusted** HR (95% CI)	p-value		
All patients								
No pLMWH	1.00	1.00	0.71 (0.28, 1.80)	0.471	0.75 (0.28, 1.97)	0.558	0.53 (0.21, 1.31)	0.168
pLMWH								
Baseline PaO2/FiO2 ≤ 300 mmHg								
No pLMWH	1.00	1.00	1.00	1.00	1.00	1.00		
pLMWH	1.41 (0.49, 4.01)	0.525	1.18 (0.37, 3.79)	0.782	1.14 (0.37, 3.48)			
Baseline PaO2/FiO2 > 300 mmHg								
No pLMWH	1.00	1.00	1.00	1.00	1.00	1.00		
pLMWH	0.31 (0.07, 1.38)	0.123	0.25 (0.02, 3.59)	0.310	0.28 (0.03, 2.19)			

Unadjusted and adjusted marginal relative hazards of death aInitiation of invasive mechanical ventilation or death.

Table 2

Unadjusted and adjusted marginal relative hazards of IOT/death*	Unadjusted HR (95% CI)	p-value	Adjusted* HR (95% CI)	p-value	Adjusted** HR (95% CI)	p-value		
All patients								
No pLMWH	1.00	1.00	0.71 (0.28, 1.80)	0.471	0.75 (0.28, 1.97)	0.558	0.53 (0.21, 1.31)	0.168
pLMWH								
Baseline PaO2/FiO2 ≤ 300 mmHg								
No pLMWH	1.00	1.00	1.00	1.00	1.00	1.00		
pLMWH	1.41 (0.49, 4.01)	0.525	1.18 (0.37, 3.79)	0.782	1.14 (0.37, 3.48)			
Baseline PaO2/FiO2 > 300 mmHg								
No pLMWH	1.00	1.00	1.00	1.00	1.00	1.00		
pLMWH	0.31 (0.07, 1.38)	0.123	0.25 (0.02, 3.59)	0.310	0.28 (0.03, 2.19)			
patients admitted in severe clinical conditions and that respiratory function was the main driver in prescribing LMWH prophylaxis. Our findings are only partially consistent with those of a meta-analysis showing that adjunctive LMWH use appeared to reduce 7-day and 28-day mortality [RR 0.52 (0.31–0.87 and 0.63 (0.41–0.96), respectively)] as well as improved the PaO₂/FiO₂ ratio [by weighted mean difference 74.8 mmHg (52.18–96.78)] in individuals with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) not caused by SARS-CoV-2. The results of this meta-analysis were similar after excluding two studies including more severe patients. Furthermore, our results are also in conflict with those of another observational study in which a better in-hospital survival was shown even in a population with saturation of oxygen < 90% and fever.

More recently, other studies have emerged regarding the risk of mortality in patients treated with heparin such as the experience of the Multicenter Italian CORIST observational study which showed a 40% lower risk of death in patients receiving LMWH or unfractionated heparin [UFH] vs. no heparin (hazard ratio = 0.60; 95% confidence interval: 0.49–0.74; E-value = 2.04) association particularly evident in patients with a higher severity of disease or strong coagulation activation.

The results of a randomized trials, also only recently published, add evidence against dose-escalated thromboprophylaxis in critically ill patients with COVID-19. A large observational cohort study of 2,809 critically ill patients with COVID-19 from 67 centers in the US found no benefit of therapeutic dose anticoagulation initiated within 2 days of intensive care unit (ICU) admission compared with standard-dose thromboprophylaxis. Similarly, another Italian study found that the use of a prophylactic dosage of enoxaparin appears to be associated with similar in-hospital overall mortality compared to higher doses in patients hospitalized for COVID-19.

Unfortunately our data do not provide elements to contribute to this debate as we only compared prophylactic dosage with no heparin at all. Interestingly, in our study the risk of a clinical worsening in patients receiving prophylactic LMWH seemed to vary by the PaO₂/FiO₂ ratio at admission. In particular, there appeared to be a qualitative interaction with some evidence that treatment with pLMWH was beneficial in reducing the risk of OTI/death in participants who started the drug with a PaO₂/FiO₂ > 300 mmHg but even potentially harmful in those who started with PaO₂/FiO₂ ≤ 300 mmHg.

The results for the outcome death alone, were similar to those of the main analysis although with a reduced power to detect the potential interaction with levels of PaO₂/FiO₂ and again only partially consistent with those of other observational studies

Regarding the risk of bleeding events, although it was expected, the frequency was very low and there was no difference between pLMWH and no LMWH.

Our study has some limitations. Firstly, the analysis is retrospective and conducted in the observational setting, therefore residual confounding bias is likely to be an issue. Secondly, this observation includes mainly patients hospitalized in the early stages of the epidemic only in one COVID-hospital in central Italy and may have disproportionately included more patients with better outcomes. Thirdly, only the prophylactic dose of LMWH was evaluated so our data do not contribute to the current debate regarding the identification of the optimal dosage. Last, although an interesting signal was detected regarding a possible role of PaO₂/FiO₂ as an effect modifier, the analysis was not powered to detect this interaction.

In conclusion, our results carry little evidence that prophylactic doses of pLMWH can lead to a reduction in risk of OTI/death in patients with mild/moderate COVID-19 pneumonia. Therefore, overall it seems that prophylactic doses are not sufficient to contrast the hypercoagulable state established in many severe COVID-19 patient, as an obvious consequence of the hyperinflammation and the cytokine storm syndrome and that higher dosage might be needed in people showing generally hyper-inflamed status, impaired respiratory function or suspected high risk of a thrombotic event.

Nevertheless, we have also shown a signal for some clinical benefit of using pLMWH in participants who initiated the drug with a PaO₂/FiO₂ > 300 and these data are important to guide future research and the design of randomized studies evaluating the impact of prophylactic heparin vs. higher doses in COVID-19 disease. Our data are compatible with the null hypothesis of no interaction although the effect sizes in the strata are so different that lack of power is a likely explanation for the large p-value. Indeed, the role of prophylactic vs. therapeutic doses LMWH for reducing the risk of thrombosis in hospitalized patients with COVID-19 is currently under evaluation in randomized studies.

Methods
Study population. This retrospective analysis included data on patients, ≥ 18 years old, admitted to the National Institute for Infectious Diseases L. Sallanzani in Rome, Italy, with SARS-CoV-2 infection diagnosed by means of RT-PCR positive on naso-pharyngeal swabs (at least once) and/or serology and with a radiologically confirmed mild/moderate pneumonia from 1st March up to 31st July 2020. Data have been collected for the ReCOVeRI Study, a registry on COVID-19 for clinical Research of the National Institute for Infectious Diseases L. Sallanzani, approved by the Ethical Committee of the National Institute for Infectious Diseases L. Sallanzani IRCCS (number 164, 26 June 2020).

Demographic, epidemiological, clinical data, comorbidities, blood exams, therapeutic data including antibiotic, antiviral and immunomodulating agents (dose, duration and administration mode), oxygen supplementation, were collected and recorded using an electronic database. The management of the registry is adapted according the standards of EUnetHTA reported in the Registry Evaluation and Quality Standards Tool (EUnetHTA, 2019). All methods were performed in accordance with the relevant guidelines and regulations.

All patients gave informed consent for collecting personal data for research purposes.
CT scans were performed on a multi-detector CT scanner (Bright Speed, GE Medical Systems, Milwaukee, WI). The non-contrast scans were reconstructed with sub-millimetric thicknesses and spacing, high-contrast-resolution algorithm and evaluated to assess the residual pulmonary volume with automatic segmentation of lung areas on dedicated workstation (expressed in Liters).

Patients were included if they were followed-up for at least 2 days after admission. Patients who started a standard prophylactic dose of heparin within 48 h from admission, non-randomly, according to local protocol (intermediate dosage of 100 UI/Kg/day) were included in the intervention group and compared to the remaining patients who did not receive the drugs.

Patients who started a prophylactic dose of heparin more than 48 h after admission or started a therapeutic dose were excluded from the analysis dataset.

Definitions. Hyperinflammation condition was defined by the presence of at least two of the following criteria at any time from admission: (a) blood lymphocytes < 1000/mmc; (b) ferritin > 500 ng/mL; (c) LDH > 300 U/L; (d) D-dimers > 1000 ng/mL; (e) C-reactive protein > 3 mg/dL. The Padua score is a tool used to stratify patients and to guide management of the risk of pulmonary embolism.

Endpoints. The primary endpoint of this analysis was the time to the first event between orotracheal intubation and death (OTI/death). Time to death was analyzed as secondary endpoint.

Statistical analysis. Patients’ characteristics were described at baseline, non-parametric Mann–Whitney test was used to compare continuous variables and Chi-Square test to compare categorical variables between treatment groups (pLMWH vs. not). Shapiro–Wilk test was used to check for the normality of distribution and the Spearman correlation coefficient was calculated and tested for the correlation analysis. Baseline for the survival analysis was the admission for patients not treated and heparin initiation for treated group. Standard survival analysis by means of weighted Kaplan–Meier (KM) curves were performed to estimate the cumulative proportion of people experiencing the primary endpoint from baseline.

The main analysis was performed using a Cox marginal structural model. The causal HR and corresponding 95% CI of the primary outcome for heparin treated vs not treated participants were estimated by Cox regression model weighted by (i) inverse probability of treatment weights and (ii) censoring weights.

Participants’ follow-up accrued from baseline until the occurrence of the outcome or last in-hospital observation. The follow-up was censored if participants changed the heparin dose from prophylactic to therapeutic. Confounders included for the construction of the weights were: gender, age, duration of symptoms, type of comorbidities, PaO2/FiO2 measured at admission as time-fixed factors, and the initiation of any antiviral therapy, any immunomodulating agents, any steroids as time-varying factors.

To test the hypothesis of a beneficial effect pLMWH solely via reduction of inflammation, a sensitivity analysis was performed after exclusion of participants who experienced pulmonary thromboembolic events.

The analysis was stratified according to the severity of disease at admission defined as a) PaO2/FiO2 ratio ≤ or > 300 mmHg. The interaction between PaO2/FiO2 ratio level and heparin use was formally tested.

The analysis was conducted following both OT and ITT principle, the latter ignored any change in dosage of heparin during observation.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Received: 24 November 2020; Accepted: 17 May 2021
Published online: 31 May 2021

References
1. WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China. https://www.who.int.. Archived from the original on 14 January 2020. Accessed 9 Jan 2020.
2. WHO Coronavirus Diseases 2019 (COVID-19) Situation Report 51, 11 March 2020. https://www.who.int/docs/default-source/coronavirus/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10 (Lippi, G., Plebani, M., Michael Henry, B. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin. Chim. Acta 2020).
3. Coronavirus Disease (COVID-19): Global Epidemiological Situation. Data as Received by WHO from National Authorities, as of 10 November 2020. https://www.who.int/publications/m/item/weekly-epidemiological-update---10-november-2020.
4. Lippi, G. & Favaloro, E. D-dimer is associated with severity of coronavirus disease 2019: A pooled analysis. Thromb. Haemost. 120(5), 876–878 (2020).
5. Zhou, P. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 395, 1054–1062 (2020).
6. Thachil, J. The versatile heparin in COVID-19. J. Thromb. Haemost. 18(5), 1020–1022 (2020).
7. Bikkeli, B. et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up [published online ahead of print, 2020 Apr 15]. J. Am. Coll. Cardiol. S0735–1097(20), 35008–7 (2020).
8. Tang, N., Li, D., Wang, X., Sun, Z. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 18, 844–847 (2020).
9. Fan, R.E. et al. Hematologic parameters in patients with COVID-19 infection. Am. J. Hematol. https://doi.org/10.1002/ajh.25774
10. Rogers, M. A. et al. Triggers of hospitalization for venous thromboembolism. Circulation 125, 2092–2099 (2012).
11. Goeijenbier, M. et al. Viral infections and mechanisms of thrombosis and bleeding. J. Med. Virol. 84, 1680–1696 (2012).
12. Lee, N. et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1986–1994 (2004).
13. Hwang, D. M. et al. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod. Pathol. 18, 1–10 (2005).
14. Samama, M.M. et al. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. Prophylaxis in medical patients with enoxaparin study group. N. Engl. J. Med. 341, 793–800 (1999).

15. Leizorovicz, A. et al. Randomized, placebo-controlled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients. Circulation 110, 874–879 (2004).

16. Mousavi, S., Moradi, M., Khorsheiditahm, T., Motamedi, M. Anti-inflammatory effects of heparin and its derivatives: A systematic review. Adv. Pharmacol. Sci. 2015, 507151 (2015).

17. Hippiensted, J.A. et al. Heparin as a therapy for COVID-19: Current evidence and future possibilities. Am. J. Physiol. Lung Cell. Mol. Physiol. 319(2), L211–L217. https://doi.org/10.1152/ajplung.00199.2020 (2020).

18. Costanzo, L., et al. Italian Society for Vascular Investigation and the Italian Society of Vascular Medicine. Coagulopathy, thromboembolic complications, and the use of heparin in COVID-19 pneumonia. J. Vasc. Surg. Venous Lymphat. Disord. 8(5), 711–716 (2020).

19. World Health Organization. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection is Suspected. Interim Guidance 28 January 2020. https://www.who.int/docs/defaultsource/coronaviruse/clinical-management-of-novel-cov.pdf.

20. National Institute of Health. COVID-19 Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov.

21. Thachil, J. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. https://doi.org/10.1111/jth.14810.

22. Spyropoulos, A.C. et al.; Subcommittee on Perioperative, Critical Care Thrombosis, Haemostasis of the Scientific, Standardization Committee of the International Society on Thrombosis and Haemostasis. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 18(8), 1859–1865 (2020).

23. Baumann Kreuziger, L. et al. COVID-19 and VTE/Anticoagulation: Frequently Asked Questions. www.hematology.org/covid-19-covid-19-and-vte-anticoagulation.

24. Marietta, M. et al. COVID-19 and haemostasis: A position paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus. 18(3), 167–169 (2020).

25. Flumignan, R.L. et al. Prophylactic anticoagulants for people hospitalised with COVID-19. Cochrane Database Syst. Rev. 10, CD013739 (2020).

26. Raccomandazioni per la gestione clinica e terapeutica della COVID-19. https://www.smit.org/images/documenti/Linea%20guida%20SMT%20LAZIO%20SARS%20CoV%20%20maggio%202020.pdf.

27. Li, J., Li, Y., Yang, B., Wang, H. & Li, L. Low-molecular-weight heparin treatment for acute lung injury/acute respiratory distress syndrome: A meta-analysis of randomized controlled trials. Int. J. Clin. Exp. Med. 11(2), 414–422 (2018).

28. Ayerbe, L., Risco, C. & Ayis, S. The association between treatment with heparin and survival in patients with Covid-19. J. Thromb. Haemost 50(2), 298–301 (2020).

29. Di Castelnuovo, A. et al. Heparin in COVID-19 patients is associated with reduced in-hospital mortality: The Multicenter Italian CORIST Study. Thromb. Haemost. https://doi.org/10.1055/s-0038-1637377 (2021) (online ahead of print).

30. INSPIRATION Investigators, Sadeghipour, P. et al. Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with COVID-19 admitted to the intensive care unit: The INSPIRATION Randomized Clinical Trial. JAMA 325 (3), 1620–1630 (2021).

31. The REMAP-CAP ACTIV-4a, ATTACC Investigators, Zaryanchaki, R. Therapeutic anticoagulation in critically ill patients with COVID-19—Preliminary report. medRxiv 2021.03.10.21252749. https://doi.org/10.1101/2021.03.10.21252749.

32. Al-Samkari, H.; et al. STOP-COVID Investigators, Thrombosis, bleeding, and the observational effect of early therapeutic anticoagulation on survival in critically ill patients with COVID-19. Ann. Intern. Med. 26, M20-6739. https://doi.org/10.7326/M20-6739 (2021) (epub ahead of print).

33. Mennuni, M.G., Renda, G., Grisafi, L., et al. COVID-UPO Clinical Team. Clinical outcome with different doses of low-molecular-weight heparin in patients hospitalized for COVID-19. J. Thromb. Thrombolysis 50(2), 122–124 (2020).

34. Thachil, J. et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J. Am. Coll. Cardiol. 75(1), 122–124 (2020).

35. Kandagatla, P. et al. PADUA score 526 as a predictor for pulmonary embolism: A potential strategy for reducing unnecessary imaging. J. Thromb. Thrombolysis 47(4), 566–571 (2019).

Acknowledgements
The authors gratefully acknowledge nurse staff, all the patients and all the members of the ReCOVeRI Study Group.

Author contributions
A.V., F.T. and A.A. conceived and designed the study, wrote the first draft of the manuscript and referred to appropriate literature. A.A., F.T. and N.P. conceived, supervised the study and contributed to data interpretation. P.L. and A.C.I. were the main responsible persons for data analysis and also contributed to the article drafting. P.C. was the main responsible person in estimating the normal ventilated lung volume. G.G. revised the intellectual concept of the study and reviewed the manuscript. E.N., D.R.D., S.C., F.I., C.A., M.R.C. revised the manuscript content. V.S., L.M., E.G., G.I., F.V. reviewed the final version of the manuscript. All authors agreed with and approved the final version of the manuscript.

Funding
This work was supported by Line one—Ricerca Corrente ‘Ifezioni Emergenti e Riemergenti’ and by Progetto COVID-2020-12371675 both funded by Italian Ministry of Health.

Competing interests
The corresponding author is responsible for submitting a competing interests statement on behalf of all authors of the paper. Alessandra Vergori, Patrizia Lorenzini, Alessandro Cozi lepri, Davide Roberto Donno, Emanuele Nicastri, Gina Gualano, Fabio Iacomi, Luisa Marchioni, Paolo Campioni, Vincenzo Schinina, Stefania Cicalini, Chiara Agrati, Maria Rosaria Capobianchi, Enrico Girardi, Giuseppe Ippolito, Francesco Vaia, Nicola Petrosillo, Andrea Antinori and Fabrizio Taglietti have no competing interests that might be perceived to influence the
results and/or discussion reported in this paper. Outside of this submitted work: Alessandra Vergori received institutional grant from Gilead Sciences, personal fees and travel grant from Janssen, personal fee from MSD; Andrea Antinori has served as a paid consultant to Gilead Sciences, Janssen–Cilag, Merck and Viiv Healthcare and received research institutional grants from Gilead Sciences, Janssen–Cilag and Viiv Healthcare; Enrico Girardi received institutional grants for Gilead Sciences and Mylan, personal fees from Gilead Sciences and Viiv; Nicola Petrosillo received personal fees from Shionogi Ltd, MSD, Becton & Dickinson, Pfizer and Cepheid. The other co-authors declare no conflicts of interests outside the submitted work.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-90713-6.

Correspondence and requests for materials should be addressed to A.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

The ReCOVeRI Study Group

Maria Alessandra Abbonizio14, Amina Abbeddaim14, Elisabetta Agostini14, Fabrizio Albarello14, Gioia Amadei14, Alessandra Amendola14, Maria Assunta Antonica14, Mario Antonini14, Tommaso Ascoli Bartoli14, Francesco Baldini14, Raffaella Barbaro14, Barbara Bartolini14, Rita Bellagamba14, Martina Benigni14, Nazario Bevilacqua14, Gianluigi Biava14, Michele Bibas14, Licia Bordi14, Veronica Bordoni14, Evangelo Boumis14, Marta Branca14, Rosanna Buonomo14, Donatella Busso14, Marta Camici14, Flaminia Canichella14, Maria Rosaria Capobianchi14, Alessandro Capone14, Cinzia Caporale14, Emanuela Caraffa14, Ilaria Caravella14, Fabrizio Carletti14, Concetta Castilletti14, Adriana Cataldo14, Stefano Cerilli14, Carlotta Cerva14, Roberta Chiappini14, Pierangelo Chinello14, Maria Assunta Cianfarani14, Carmine Ciarello14, Claudia Cimaglia14, Nicola Cinicola14, Veronica Ciotti14, Francesca Colavita14, Angela Corpolongo14, Massimo Cristofaro14, Salvatore Curiale14, Alessandra D'Abramo14, Cristina Dantini14, Alessia De Angelis14, Giada De Angelis14, Maria Grazia De Palo14, Federico De Zottis14, Virginia Di Bari14, Rachele Di Lorenzo14, Federica Di Stefano14, Gianpiero D'Offizi14, Francesca Evangelista14, Francesca Faraglia14, Anna Farina14, Federica Ferraro14, Lorena Fiorentini14, Andrea Frustaci14, Matteo Fusetti14, Marisa Fusto14, Vincenzo Galati14, Roberta Gagliardi14, Paola Galli14, Gabriele Garotto14, Ilaria Gaviano14, Saba Gebremeskel Tekle14, Maria Letizia Giancola14, Filippo Giannante14, Emanuela Giombini14, Giuido Granata14, Maria Cristina Greca14, Elisabetta Grilli14, Susanna Grisetti14, Marta Iaconi14, Giuseppina Iannicelli14, Carlo Inversi14, Eleonora Lalle14, Maria Elena Lamanna14, Simona Lanini14, Daniele Lapà14, Luciana Lepore14, Raffaella Libertone14, Raffaella Lionetti14, Giuseppina Liuzzi14, Laura Loiacono14, Andrea Lucia14, Franco Lufrani14, Manuela Macchione14, Gaetano Maffongelli14, Alessandra Marani14, Andrea Mariano14, Maria Cristina Marin14, Micaela Mariti14, Annelisa Mastrobatista14, Ilaria Mastrorosa14, Giulia Matusali14, Valentina Mazzotta14, Paola Mencarini14, Silvia Meschi14, Francesco Messina14, Sibiana Micarel14, Giulia Mogavero14, Annalisa Mond14, Marzia Montalbano14, Chiara Montaldo14, Silvia Mosti14, Silvia Murachelli14, Maria Musso14, Michela Nardi14, Assunta Navarra14, Martina Nocioni14, Pasquale Noto14, Roberto Noto14, Alessandra Oliva14, Ilaria Onnis14, Sandrine Ottou14, Claudia Palazzolo14, Emanuele Pallini14, Fabrizio Palmieri14, Giulio Palombi14, Carlo Pareo14, Virgilio Passeri14, Federico Pelliccioni14, Giovanna Penna14, Antonella Petrecchia14, Ada Petrone14, Elisa Pianura14, Carmela Pinetti14, Maria Pisciotto14.
Pierluca Piselli14, Silvia Pittalis14, Agostina Pontarelli14, Costanza Proietti14, Vincenzo Puro14, Paolo Migliorisi Ramazzini14, Alessia Ria14, Gabriele Rinonapol14, Silvia Rosati14, Dorotea Rubino14, Martina Rueca14, Alberto Ruggeri14, Alessandra Sacchi14, Alessandro Sampaolesi14, Francesco Sanasi14, Carmen Santagata1, Alessandra Scarabello14, Silvana Scarcia14, Paola Scognamiglio14, Laura Scorzolini14, Giulia Stazi14, Giacomo Strano14, Chiara Taibi14, Giorgia Taloni14, Tetaj Nardi14, Roberto Tonmarini14, Simone Topino14, Martina Tozzi14, Francesco Vairo14, Maria Beatrice Valla1, Laura Vincenzi14, Ubaldo Visco-Comandini14, Serena Vital14, Pietro Vittozzi14, Mauro Zaccarelli14, Antonella Zanetti14 & Sara Zito14

14National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy.