Constructing Public-Key Cryptographic Schemes based on Class Group Action on Set of Isogenous Elliptic Curves

Anton Stolbunov

CHiLE, 16. March 2009
Plan

— intro
— cryptographic schemes based on group action
— class group action on set of elliptic curves
— implementation details
— security of the schemes
Norwegian University of Science and Technology (NTNU)

— largest technological university in Norway
— located in Trondheim
— 7 faculties, 53 departments, 20,000 students
— information security research group with academics from departments of Telematics, Mathematics, Q2S, Electronics and Telecommunications
Motivation for the Research

— the security of current asymmetric cryptographic schemes is decreasing [RSA challenge], [Shor 95]
— cryptographic schemes based on new hard computational problems are needed
— elliptic curves and ideal class groups are well studied and good algorithms are available
CRYPTOGRAPHIC SCHEMES BASED ON GROUP ACTION
Semigroup Action on Set

X is a set, G is a finite commutative semigroup. Left action of G on X is a map

$$G \times X \rightarrow X$$

$$(g, x) \mapsto g \ast x,$$

which satisfies the associativity property.

Example:

$X = \{3, 9, 5, 4\} \subset \mathbb{Z}/11\mathbb{Z}^*$, $G = \mathbb{Z}/5\mathbb{Z}^*$, \ast is exponentiation.

Elements of G	Permutations on X
1	(3)(9)(5)(4)
2	(3 9 4 5)
3	(3 5 4 9)
4	(3 4)(5 9)
Key Agreement Protocol based on Semigroup Action

Fix \(x \in X \).

Alice

\[
\begin{align*}
& a \overset{R}{\leftarrow} G \\
& m_A \leftarrow a \ast x \\
& k \leftarrow a \ast m_B
\end{align*}
\]

Bob

\[
\begin{align*}
& b \overset{R}{\leftarrow} G \\
& m_B \leftarrow b \ast x \\
& k \leftarrow b \ast m_A
\end{align*}
\]

\[
a \ast m_B = a \ast (b \ast x) = (ab) \ast x = (ba) \ast x = b \ast (a \ast x) = b \ast m_A
\]
Public-Key Encryption based on Semigroup Action

\(m \in \{0, 1\}^w \) is a message, \(\mathcal{H} = \{H_i : i \in I\} \) is a family of hash functions, where each \(H_i \) is a function \(X \to \{0, 1\}^w \).

\(\mathcal{K} \): Key generation	\(\mathcal{E} \): Encryption	\(\mathcal{D} \): Decryption
Input: -	**Input:** \(\text{pk}, m \)	**Input:** \(\text{sk}, \text{pk}, \text{ct} \)
Output: \(\text{sk}, \text{pk} \)	**Output:** \(\text{ct} \)	**Output:** \(m \)
\(\text{sk} \xleftarrow{\text{R}} G \)	\(a \xleftarrow{\text{R}} G \)	\(z \xleftarrow{\text{sk} \ast \text{y}} \)
\(r \xleftarrow{\text{sk} \ast \text{x}} \)	\(z \xleftarrow{a \ast \text{r}} \)	\(h \xleftarrow{H_i(z)} \)
\(i \xleftarrow{\text{R}} I \)	\(h \xleftarrow{H_i(z)} \)	\(m \xleftarrow{h \oplus c} \)
\(\text{pk} \xleftarrow{(r, i)} \)	\(y \xleftarrow{a \ast \text{x}} \)	
	\(c \xleftarrow{h \oplus m} \)	
	\(\text{ct} \xleftarrow{(c, y)} \)	
CANDIDATE STRUCTURE: CLASS GROUP ACTION ON SET OF ELLIPTIC CURVES
Elliptic Curves over \mathbb{C}

For an elliptic curve E/\mathbb{C}, when $\mathbb{Z} \not\subseteq \text{End}(E)$, E is said to have \textit{complex multiplication}. In this case $\text{End}(E) \simeq \mathcal{O}$, where \mathcal{O} is an imaginary quadratic order.

For a maximal \mathcal{O}_K define

$$\mathcal{E}LL(\mathcal{O}_K) = \left\{ E/\mathbb{C} \text{ with } \text{End}(E) \simeq \mathcal{O}_K \right\} \text{ isomorphism over } \mathbb{C}.$$

$\mathcal{E}LL(\mathcal{O}_K)$ is a finite set.
Action of \mathcal{CL} on \mathcal{ELL}

Let $\text{End}(E_\Lambda) \simeq \mathcal{O}_K$. For an integral ideal $a \subset \mathcal{O}_K$ we have that $\Lambda \subset a^{-1}\Lambda$, and there is a natural homomorphism

$$\mathbb{C}/\Lambda \to \mathbb{C}/a^{-1}\Lambda$$

$$z \mapsto z,$$

which in turn induces a natural isogeny

$$\psi : E_\Lambda \to [a] \ast E_\Lambda = E_{a^{-1}\Lambda}$$

$\ker \psi$ is isomorphic to $a^{-1}\Lambda/\Lambda \simeq \mathcal{O}_K/a$.

$\text{deg} \psi$ equals the norm $N(a)$.

This $\mathcal{CL}(\mathcal{O}_K)$ action on $\mathcal{ELL}(\mathcal{O}_K)$ is free and transitive.
Elliptic Curves over \mathbb{F}_p

Reduction from \mathbb{C} to \mathbb{F}_p: let $p \in \mathbb{Z}$ be a prime which splits in the Hilbert class field H of K, and fix a prime ideal $\mathfrak{P} \subset \mathcal{O}_H$ lying above p.

The reduction of elliptic curves in $\mathcal{E}_\mathcal{LL}(\mathcal{O}_K)$ modulo \mathfrak{P} preserves the endomorphism rings: $\text{End}_{\overline{\mathbb{F}}_p}(\tilde{E}) \cong \mathcal{O}_K$. So we can define

$$\mathcal{E}_{\mathcal{LL}}_{p,n}(\mathcal{O}_K) = \left\{ \frac{E}{\mathbb{F}_p} \text{ with } \#E(\mathbb{F}_p) = n \text{ and } \text{End}(E) \cong \mathcal{O}_K \right\} \text{ isomorphism over } \overline{\mathbb{F}}_p.$$

The reduction modulo \mathfrak{P} preserves the $\mathcal{CL}(\mathcal{O}_K)$ action on $\mathcal{E}_{\mathcal{LL}}_{p,n}(\mathcal{O}_K)$.

www.ntnu.no
Anton Stolbunov, Public-Key Cryptography based on Class Group Action on Set of Isogenous Elliptic Curves
Example of \mathcal{CL} Action on $\mathcal{ELL}_{p,n}$

$E : y^2 = x^3 + x + 5$ has 42 points over \mathbb{F}_{47}, $\Delta = -152$ is fundamental and $j_E = 27$.

$\mathcal{CL}(-152)$	Permutations on $\mathcal{ELL}_{47,42}(-152)$
$g = [(3, 2, \cdot)]$	$(27\ 19\ 41\ 24\ 15\ 12)$
$g^2 = [(6, 4, \cdot)]$	$(27\ 41\ 15)(19\ 24\ 12)$
$g^3 = [(2, 0, \cdot)]$	$(27\ 24)(19\ 15)(41\ 12)$
$g^4 = [(6, -4, \cdot)]$	$(27\ 15\ 41)(19\ 12\ 24)$
$g^5 = [(3, -2, \cdot)]$	$(27\ 12\ 15\ 24\ 41\ 19)$
$g^6 = [(1, 0, \cdot)]$	$(27)(19)(41)(24)(15)(12)$

Since $(17, -16, \cdot) \in [(6, 4, \cdot)]$, there are isogenies of degree 17 defined over \mathbb{F}_{47}.
IMPLEMENTATION DETAILS
Elements of $\mathcal{ELC}_{p,n}$

— represented by j-invariants of elliptic curves
— the equation of an elliptic curve belonging to the isomorphism class can also be stored
Elements of \mathcal{CL}

— fix a set of small primes

$$L = \left\{ \text{primes } l_i : \left(\frac{\Delta}{l_i} \right) = 1 \text{ and } l_i \leq l_{\text{max}} \right\},$$

where $l_{\text{max}} = c_0 (\log |\Delta|)^2$

— prime ideals $l_i = l_i \mathbb{Z} + \frac{b_i + \sqrt{\Delta}}{2} \mathbb{Z}$ of norms $N(l_i) = l_i$

— the ideals l_i generate $\mathcal{CL}(\Delta)$ (under GRH)

— store elements of $\mathcal{CL}(\Delta)$ as vectors in \mathbb{Z}^d, $d = \#L$:

$$\mathbb{Z}^d \rightarrow \mathcal{CL}(\Delta)$$

$$(v_1, \ldots, v_d) \mapsto \prod_{i=1}^{d} [l_i]^{v_i}$$
Random Sampling from \mathcal{CL}

— suppose the class group structure is known:

$$\mathcal{CL}(\Delta) \simeq \bigotimes \langle [l_i] \rangle, \quad m_i = \text{ord}[l_i]$$

— choose a random vector $V = (v_1, \ldots, v_d)$, where $0 \leq v_i \leq m_i$. This gives the random element $\prod l_i^{v_i} \in \mathcal{CL}(\Delta)$

— reduce the vector V modulo the lattice of relations among the ideal classes $[l_i]$ to get a shorter equivalent

— further speed optimisation of V
Non-Random Sampling from Large \mathcal{CL}

— the group structure can be computed with subexponential complexity $O(\exp \sqrt{2 \log \Delta \log \log \Delta})$ [Jacobson 99]. We were able to use up to 208-bit discriminants on a PC with 2Gb of RAM.

— when the class group structure is unknown, one can implement a non-random sampling under the assumption that it is computationally indistinguishable from the random sampling.
Implementing CL Action on $ELL_{p,n}$

— compute $\prod_{i=1}^{d} l_i^{v_i} \cdot E$ step-by-step by each factor
— on each step corresponding to a factor l_i, solve the modular equation $\Phi_{l_i}(x, j(E)) = 0$ in order to find the j-invariant of the next elliptic curve
— there are exactly two solutions, they correspond to the directions in isogeny cycles. It is possible to choose the necessary direction
Numerical Experiments

Intel x86-64 2GHz CPU (one core), Linux, PARI/GP.
Average timing per one group action:

$\log_2(#\mathcal{CL})$	l_{max}	\mathcal{CL} structure	Time
96	241	yes	1 m 24 s
128	271	no	1 m 49 s
160	277	no	3 m 23 s
256	499	no	1 h 20 m

Here l_{max} is the maximal isogeny degree used.
SECURITY OF THE SCHEMES
Computational Problems

For a commutative semigroup G acting on a set X.

Computational Diffie-Hellman Semigroup Problem (CDHSP):
given x, $y = a \ast x$ and $z = b \ast x$, find $(ab) \ast x$.

Decisional Diffie-Hellman Semigroup Problem (DDHSP):
given x, $y = a \ast x$, $z = b \ast x$ and r, decide if $r = (ab) \ast x$.

Semigroup Action Problem (SAP):
given x and $y = a \ast x$, find a.

Reducibility:

can solve SAP \implies can solve CDHSP \implies can solve DDHSP
Complexity of Problem Instances with \mathcal{CL} action on $\mathcal{ELL}_{p,n}$

SAP:
- Most classic DLOG solvers cannot be adopted because for arbitrary $a, b \in \mathcal{ELL}_{p,n}(\Delta)$ there is no efficient $a \cdot b$ operation.
- Using meet-in-the-middle technique: exponential time $O(\sqrt{h}((\ln h)^6 + (\ln h)^2))$, where $h = \#\mathcal{CL}(\Delta)$ [Galbraith 99]
- Class group structure is known: may use baby-step giant-step in a cyclic subgroup of $\mathcal{CL}(\Delta)$. Still exponential time.

DDHSP and **CDHSP** have not been considered in the literature.
Related Work

— our preliminary report [Stolbunov, Rostovtsev. IACR ePrint report 2006/145]

— independent research [Couveignes. IACR ePrint report 2006/291]

— computing the number of points on an elliptic curve [Schoof 85], [Elkies 98], [Atkin], [Morain 96]

— isogeny graphs [Kohel 96], [Galbraith 99], [Jao, Miller, Venkatesan 04]

— class group structure computation [Jacobson 99], [Hafner, McCurley 89]
Alternative Candidate Structure: Simple Semirings

Proposed in [Maze, Monico, Rosenthal 07].

Fix a simple semiring R. Example: $\{0, 1\}$ with max as addition and min as multiplication. Let C be the center of R, and $n \in \mathbb{N}$.

For fixed $M_1, M_2 \in Mat_{n \times n}(R)$ define the action

$$(C[t] \times C[t]) \times Mat_{n \times n}(R) \rightarrow Mat_{n \times n}(R)$$

$$((p(t), q(t)), M) \mapsto p(M_1) \cdot M \cdot q(M_2).$$
Thank you!