G-capacity under degenerate case and its application

Xiaojuan Li∗ Xinpeng Li†

August 16, 2022

Abstract. In this paper, we first find a type of viscosity solution of G-heat equation under degenerate case, and then obtain the related G-capacity $c(B_T \in A)$ for any Borel set A. Furthermore, we prove that $I_A(B_T)$ has no quasi-continuous version when it is not a constant function.

Key words. G-heat equation, G-expectation, G-capacity, Quasi-continuous, Viscosity solution

AMS subject classifications. 60H10

1 Introduction

Motivated by model uncertainty in finance, Peng [11, 14] introduced the notions of G-expectation $\hat{E}[\cdot]$ and G-Brownian motion $(B_t)_{t \geq 0}$ via the following G-heat equation:

$$\partial_t u - G(\partial_{xx}^2 u) = 0, \quad u(0, x) = \varphi(x),$$

(1.1)

where $G(a) = \frac{1}{2}(\sigma^2 a^+ - \sigma^2 a^-)$ for $a \in \mathbb{R}$, $\sigma > 0$ and $a \in [0, \sigma]$. For any bounded and continuous function φ, we have $\hat{E}[\varphi(x + B_t)] = u(t, x)$, where u is the viscosity solution of (1.1). Under the G-expectation framework, the corresponding stochastic calculus of Itô’s type was also established in Peng [11, 12].

The G-expectation can be also seen as a upper expectation. Indeed, Denis et al. [2] obtained a representation theorem of G-expectation $\hat{E}[\cdot]$ by stochastic control method:

$$\hat{E}[X] = \sup_{P \in \mathcal{P}} E_P[X] \text{ for each } X \in Lip(\Omega).$$

where \mathcal{P} is a family of weakly compact probability measures on $(\Omega, B(\Omega))$. Moreover, they gave the characterization of $L^p_G(\Omega)$ for $p \geq 1$. The representation theorem was also obtained in [4] by a simple probabilistic method.

Denis et al. [2] (see also [4]) introduced the notion of G-capacity $c(\cdot)$ in G-expectation space and showed that each random variable in $L^p_G(\Omega)$ has a quasi-continuous version with respect to $c(\cdot)$. Under the non-degenerate case, i.e. $\sigma > 0$, Hu et al. [6] proved that $c(B_T = a) = 0$ for each $(T, a) \in (0, \infty) \times \mathbb{R}$ by finding a kind of viscosity supersolution of G-heat equation (1.1), and further obtained that $I_{[a,b]}(B_T)$, $a \leq b$, is in

∗Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan 250100, China. Email: lixiaojuan@mail.sdu.edu.cn.
†Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China, lixinpeng@sdu.edu.cn.
$L_G^1(\Omega)$, which has important application in stochastic recursive optimal control problem under G-expectation space (see [3]). As far as we know, there is no result about the above two points under the degenerate case, i.e. $\underline{\sigma} = 0$.

In this paper, we first study $c(\{B_T \in A\})$ for $A \in \mathcal{B}(\mathbb{R})$ under degenerate case. The known method for calculating G-capacity is to find the “similarity solution” of G-heat equation (1.1) (see [5, 10, 15]). But this method is no longer suitable for some cases such as $A = (\infty, a] \cup [b, \infty)$ with $a < b$. To overcome this difficult, we use stochastic control method to find a type of viscosity solution of G-heat equation (1.1), and then obtain $c(\{B_T \in A\})$, which can provide some examples for checking the convergence rate of Peng’s central limit theorem (see [7, 9]) under degenerate case. As an application, we prove that $I_A(B_T)$ is not in $L_G^1(\Omega)$ for any $A \in \mathcal{B}(\mathbb{R})$ with $A \neq \emptyset$ and $A \neq \mathbb{R}$, which is completely different from the case $\underline{\sigma} > 0$.

This paper is organized as follows. In Section 2, we present some basic notions and results of G-expectation. In Section 3, we obtain the G-capacity $c(\{B_T \in A\})$ for any Borel set A under degenerate case. As an application, we prove that $I_A(B_T)$ is not in $L_G^1(\Omega)$ for any $A \in \mathcal{B}(\mathbb{R})$ with $A \neq \emptyset$ and $A \neq \mathbb{R}$ in Section 4.

2 Preliminaries

We recall some basic notions and results of G-expectation. The readers may refer to [11, 14] for more details.

Let $\Omega = C [0, \infty)$ be the space of real-valued continuous functions on $[0, \infty)$ with $\omega_0 = 0$. Let $B_t(\omega) := \omega_t$, for $\omega \in \Omega$ and $t \geq 0$ be the canonical process. Set

$$Lip (\Omega) := \{ \varphi(B_{t_1}, B_{t_2}, \cdots, B_{t_n}) : n \in \mathbb{N}, \ 0 < t_1 < \cdots < t_n, \ \varphi \in C_{b,Lip}(\mathbb{R}^n) \},$$

where $C_{b,Lip}(\mathbb{R}^n)$ denotes the space of bounded Lipschitz functions on \mathbb{R}^n. It is easy to verify that

$$Lip (\Omega) = \{ \varphi(B_{t_1}, B_{t_2} - B_{t_1}, \cdots, B_{t_n} - B_{t_{n-1}}) : n \in \mathbb{N}, \ 0 < t_1 < \cdots < t_n, \ \varphi \in C_{b,Lip}(\mathbb{R}^n) \}.$$

Let

$$G(a) := \frac{1}{2} (\bar{\sigma}^2 a^+ - \underline{\sigma}^2 a^-) \text{ for } a \in \mathbb{R},$$

where $\bar{\sigma} > 0$ and $\underline{\sigma} \in [0, \bar{\sigma}]$. The G-expectation $\mathbb{E} : Lip (\Omega) \rightarrow \mathbb{R}$ is defined by the following two steps.

Step 1. For each $X = \varphi(B_s - B_t)$ with $0 \leq s \leq t$ and $\varphi \in C_{b,Lip}(\mathbb{R})$, we define

$$\mathbb{E} [X] = u(t - s, 0),$$

where u is the viscosity solution of (1.1).

Step 2. For each $X = \varphi(B_{t_1}, B_{t_2} - B_{t_1}, \cdots, B_{t_n} - B_{t_{n-1}})$ with $0 < t_1 < \cdots < t_n$ and $\varphi \in C_{b,Lip}(\mathbb{R}^n)$, we define

$$\mathbb{E} [X] = \varphi_0,$$
where \(\phi_0 \) is obtained via the following procedure:

\[
\phi_{n-1}(x_1, \ldots, x_{n-1}) = \hat{E} \left[\phi \left(x_1, \ldots, x_{n-1}, B_{t_n} - B_{t_{n-1}} \right) \right],
\]

\[
\phi_{n-2}(x_1, \ldots, x_{n-2}) = \hat{E} \left[\phi_{n-1} \left(x_1, \ldots, x_{n-2}, B_{t_{n-1}} - B_{t_{n-2}} \right) \right],
\]

\[
\vdots
\]

\[
\phi_1(x_1) = \hat{E} \left[\phi_2 \left(x_1, B_{t_2} - B_{t_1} \right) \right],
\]

\[
\phi_0 = \hat{E} \left[\phi_1 \left(B_{t_1} \right) \right].
\]

The following is the definition of the viscosity solution of \((1.1)\) (see [1]).

Definition 2.1 A real-valued continuous function \(u \in C \left([0, \infty) \times \mathbb{R} \right) \) is called a viscosity subsolution (resp. supersolution) of \((1.1)\) on \([0, \infty) \times \mathbb{R}\) if \(u(0, \cdot) \leq \phi(\cdot) \) (resp. \(u(0, \cdot) \geq \phi(\cdot) \)), and for all \((t^*, x^*) \in (0, \infty) \times \mathbb{R} \), \(\phi \in C^2 \left((0, \infty) \times \mathbb{R} \right) \) such that \(u(t^*, x^*) = \phi(t^*, x^*) \) and \(u < \phi \) (resp. \(u > \phi \)) on \((0, \infty) \times \mathbb{R} \setminus (t^*, x^*)\), we have

\[
\partial_t \phi(t^*, x^*) - G \left(\partial^2_{xx} \phi(t^*, x^*) \right) \leq 0 \quad \text{(resp.} \geq 0).\]

A real-valued continuous function \(u \in C \left([0, \infty) \times \mathbb{R} \right) \) is called a viscosity subsolution (resp. supersolution) of \((1.1)\) if it is both a viscosity subsolution and a viscosity supersolution of \((1.1)\) on \([0, \infty) \times \mathbb{R}\).

The space \((\Omega, \text{Lip}(\Omega), \hat{E})\) is called a \(G\)-expectation space. The corresponding canonical process \((B_t)_{t \geq 0}\) is called a \(G\)-Brownian motion. The \(G\)-expectation \(\hat{E} : \text{Lip}(\Omega) \to \mathbb{R}\) satisfies the following properties: for each \(X, Y \in \text{Lip}(\Omega), \)

(i) Monotonicity: If \(X \geq Y \), then \(\hat{E}[X] \geq \hat{E}[Y] \).

(ii) Constant preservation: \(\hat{E}[c] = c \) for \(c \in \mathbb{R} \).

(iii) Subadditivity: \(\hat{E}[X + Y] \leq \hat{E}[X] + \hat{E}[Y] \).

(iv) Positive homogeneity: \(\hat{E}[\lambda X] = \lambda \hat{E}[X] \) for \(\lambda \geq 0 \).

For every \(p \geq 1 \), we denote by \(L^p_G(\Omega) \) the completion of \(\text{Lip}(\Omega) \) under the norm \(\| X \|_p := \left(\hat{E} \left[|X|^p \right] \right)^{1/p} \). The \(G\)-expectation \(\hat{E}[X] \) can be extended continuously to \(L^1_G(\Omega) \) under the norm \(\| \cdot \|_1 \), and \(\hat{E} : L^1_G(\Omega) \to \mathbb{R} \) still satisfies (i)-(iv).

Denis et al. [2] (see also [3]) proved the following representation theorem.

Theorem 2.2 There exists a weakly compact set of probability measures \(\mathcal{P} \) on \((\Omega, \mathcal{B}(\Omega))\) such that

\[
\hat{E}[X] = \sup_{P \in \mathcal{P}} E_P[X] \quad \text{for each} \quad X \in L^1_G(\Omega),
\]

where \(\mathcal{B}(\Omega) = \sigma(B_t : t \geq 0) \). \(\mathcal{P} \) is called a set that represents \(\hat{E} \).
Remark 2.3 Denis et al. [2] gave a concrete \mathcal{P} that represents $\hat{\mathbb{E}}$ as follows. Let $(W_t)_{t \geq 0}$ be a 1-dimensional classical Brownian motion defined on a Wiener probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, P^W)$, and let $(\tilde{\mathcal{F}}_t)_{t \geq 0}$ be the natural filtration generated by W. The set of probability measures \mathcal{P}_1 on $(\Omega, \mathcal{B}(\Omega))$ is defined by

$$\mathcal{P}_1 = \left\{ P = P^W \circ (X^v)^{-1} : X^v_t = \int_0^t v_s dW_s, (v_s)_{s \leq T} \in M^2(0, T; [\sigma, \sigma]) \text{ for any } T > 0 \right\},$$

where $M^2(0, T; [\sigma, \sigma])$ is the space of all $\tilde{\mathcal{F}}_t$-adapted processes $(v_s)_{s \leq T}$ with $v_s \in [\sigma, \sigma]$. Then $\mathcal{P} = \bar{\mathcal{P}}_1$ represents $\hat{\mathbb{E}}$, where \mathcal{P}_1 is the closure of \mathcal{P}_1 under the topology of weak convergence.

The G-capacity associated to \mathcal{P} is defined as

$$c(D) = \sup_{P \in \mathcal{P}} P(D) \text{ for } D \in \mathcal{B}(\Omega). \quad (2.1)$$

An important property of this capacity is that $c(F_n) \downarrow c(F)$ for any closed sets $F_n \downarrow F$.

A set $A \subset \mathcal{B}(\Omega)$ is polar if $c(A) = 0$. A property holds "quasi-surely" (q.s.) if it holds outside a polar set. In the following, we do not distinguish two random variables X and Y if $X = Y$ q.s. For this \mathcal{P}, set

$$L^p(\Omega) := \left\{ X \in \mathcal{B}(\Omega) : \sup_{P \in \mathcal{P}} E_P[|X|^p] < \infty \right\} \text{ for } p \geq 1.$$

It is easy to check that $L^p_G(\Omega) \subset L^p(\Omega)$. For each $X \in L^1(\Omega)$,

$$\hat{\mathbb{E}}[X] := \sup_{P \in \mathcal{P}} E_P[X]$$

is still called G-expectation and satisfies (i)-(iv).

Now we review the characterization of $L^p_G(\Omega)$ for $p \geq 1$.

Definition 2.4 A function $X : \Omega \to \mathbb{R}$ is said to be quasi-continuous if for each $\varepsilon > 0$, there exists an open set $O \subset \Omega$ with $c(O) < \varepsilon$ such that $X|_{\Omega \setminus O}$ is continuous.

Definition 2.5 We say that $X : \Omega \to \mathbb{R}$ has a quasi-continuous version if there exists a quasi-continuous function $Y : \Omega \to \mathbb{R}$ such that $X = Y$, q.s.

Theorem 2.6 ([2, 4]) For each $p \geq 1$, we have

$$L^p_G(\Omega) = \left\{ X \in \mathcal{B}(\Omega) : \lim_{N \to \infty} \hat{\mathbb{E}} \left[|X|^p I_{\{|X| \geq N\}} \right] = 0 \text{ and } X \text{ has a quasi-continuous version} \right\}.$$

The following Fatou’s property is important in G-expectation space.

Theorem 2.7 ([2, 4]) Let $\{X_n\}_{n=1}^\infty \subset L^1_G(\Omega)$ satisfy $X_n \downarrow X$ q.s. Then

$$\hat{\mathbb{E}}[X_n] \downarrow \hat{\mathbb{E}}[X]. \quad (2.2)$$

Moreover, if $X \in L^1_G(\Omega)$, then

$$\hat{\mathbb{E}}[X_n - X] \downarrow 0.$$
3 Main results

In this section, we consider the case $\sigma = 0$, then the G-heat equation is

$$\partial_t u - \frac{1}{2} \sigma^2 (\partial_{xx} u)^+ = 0, \quad u(0, x) = \varphi(x). \quad (3.1)$$

The following theorem is our main result.

Theorem 3.1 Let $\sigma = 0$ and $\sigma > 0$. For each given $T > 0$ and $A \in \mathcal{B}(\mathbb{R})$, we have

(i) If $\rho(A) := \inf \{|x| : x \in A\} = 0$, then $c\{B_T \in A\} = 1$;

(ii) If $A \subseteq [0, \infty)$ or $A \subseteq (-\infty, 0]$, then $c\{B_T \in A\} = \Phi \left(\frac{\rho(A)}{\sigma \sqrt{T}} \right)$, where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{t^2}{2} \right) dt$;

(iii) If $\rho(A) \neq 0$, $A \not\subseteq [0, \infty)$ and $A \not\subseteq (-\infty, 0]$, then

$$c\{B_T \in A\} = \sum_{i=-\infty}^{\infty} sgn(i) \left[\Phi \left(\frac{2i(\rho(A^+) + \rho(A^-)) + \rho(A^-)}{\sigma \sqrt{T}} \right) + \Phi \left(\frac{2i(\rho(A^+) + \rho(A^-)) + \rho(A^+)}{\sigma \sqrt{T}} \right) \right],$$

where $sgn(x) := I_{[0,\infty)}(x) - I_{(-\infty,0)}(x)$, $\rho(A^+) := \inf\{x : x \in A, x \geq 0\}$, $\rho(A^-) := \inf\{-x : x \in A, x \leq 0\}$.

In order to prove this theorem, we need the following lemma. By Remark 2.3, we know that

$$\sup_{\omega \in M^2(0, T ; [0, \infty])} P^W \left(\int_0^T v_s dW_s \in A \right) \leq c\{B_T \in A\} \text{ for } A \in \mathcal{B}(\mathbb{R}), \quad (3.2)$$

where $(W_t)_{t \geq 0}$ is a 1-dimensional classical Brownian motion defined on a Wiener probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, P^W)$. The proof of the following lemma is accomplished by the proper construction of u_n on the assumption that the equal sign in (3.2) holds and the optimal control in (3.2) is $(\pi I_{[0, \tau_n \wedge \tau]}(s))_{s \leq T}$ for $A = \{b, l\}$ with $b \leq 0 \leq l$, where

$$\tau_a := \inf\{t \geq 0 : \sigma W_t = a\} \text{ for } a \in \mathbb{R}.$$

In turn, the conclusion of the lemma also shows that the above assumption is true.

Lemma 3.2 Let $\sigma = 0$ and $\sigma > 0$. Then, for each given $T > 0$ and $b < 0 < l$, we have

$$c\{B_T \in \{b, l\}\} = \sum_{i=-\infty}^{\infty} sgn(i) \left[\Phi \left(\frac{2i(l-b) - b}{\sigma \sqrt{T}} \right) + \Phi \left(\frac{2i(l-b) + l}{\sigma \sqrt{T}} \right) \right].$$

Proof. For each fixed $n \geq 1$, we first prove that

$$u_n(t, x) := \sum_{i=-\infty}^{\infty} sgn(i) \left[\Phi \left(\frac{2i(l-b) + x - b}{\sigma \sqrt{\frac{1}{n} + t}} \right) + \Phi \left(\frac{2i(l-b) + l - x}{\sigma \sqrt{\frac{1}{n} + t}} \right) \right] I_{(b,l)}(x)$$

$$+ \Phi \left(\frac{|b - x| \wedge |l-x|}{\sigma \sqrt{\frac{1}{n} + t}} \right) I_{(-\infty, b] \cup [l, \infty)}(x)$$

is a viscosity solution of (3.1) on $(0, \infty) \times \mathbb{R}$.

On the one hand, we need to prove that u_n is a viscosity subsolution of (3.1). Indeed, it suffices to do three steps to show that $\partial_t \psi(t^*, x^*) - \frac{1}{2} \sigma^2 (\partial_{xx} \psi(t^*, x^*))^+ \leq 0$ for all $(t^*, x^*) \in (0, \infty) \times \mathbb{R}$, $\psi \in C^2((0, \infty) \times \mathbb{R})$ such that $\psi(t^*, x^*) = u_n(t^*, x^*)$ and $\psi \geq u_n$.

5
Step 1. If \(x^* \in (-\infty, b) \cup (l, \infty) \), it is easy to know from extreme value theory that

\[
\partial_{xx}^2 \psi(t^*, x^*) \geq \partial_{xx}^2 u_n(t^*, x^*), \quad \partial_t \psi(t^*, x^*) = \partial_t u_n(t^*, x^*)
\]

and it follows by simple calculation that

\[
\partial_t u_n(t^*, x^*) = -\frac{1}{2} \Phi'(\frac{|b - x^*| \land |l - x^*|}{\sigma \sqrt{\frac{1}{n} + t^*}}) \frac{|b - x^*| \land |l - x^*|}{\sigma \sqrt{\frac{1}{n} + t^*}}^3
\]

and

\[
\partial_{xx}^2 u_n(t^*, x^*) = \Phi''(\frac{|b - x^*| \land |l - x^*|}{\sigma \sqrt{\frac{1}{n} + t^*}}) \frac{1}{\sigma^2 \left(\frac{1}{n} + t^* \right)}.
\]

By the definition of \(\Phi(x) \), we know that \(\Phi''(x) > 0 \) holds if \(x > 0 \), and

\[
\Phi''(x) = -x \Phi'(x).
\]

Then we obtain

\[
\partial_{xx}^2 u_n(t^*, x^*) > 0 \quad \text{and} \quad \partial_t u_n(t^*, x^*) - \frac{1}{2} \sigma^2 \partial_{xx}^2 u_n(t^*, x^*) = 0,
\]

which implies \(\partial_t \psi(t^*, x^*) - \frac{1}{2} \sigma^2 \left(\partial_{xx}^2 \psi(t^*, x^*) \right)^\dagger \leq 0 \).

Step 2. If \(x^* \in (b, l) \), by simple calculation, we can still get

\[
\partial_t u_n(t^*, x^*) = -\frac{1}{2} \sum_{i=-\infty}^{\infty} \text{sgn}(i) \left[\Phi' \left(\frac{|2i(l-b) + x^* - b|}{\sigma \sqrt{\frac{1}{n} + t^*}} \right) \frac{|2i(l-b) + x^* - b|}{\sigma \sqrt{\frac{1}{n} + t^*}^3} + \Phi' \left(\frac{|2i(l-b) + l - x^*|}{\sigma \sqrt{\frac{1}{n} + t^*}} \right) \frac{|2i(l-b) + l - x^*|}{\sigma \sqrt{\frac{1}{n} + t^*}^3} \right]
\]

and

\[
\partial_{xx}^2 u_n(t^*, x^*) = \sum_{i=-\infty}^{\infty} \text{sgn}(i) \left[\Phi'' \left(\frac{|2i(l-b) + x^* - b|}{\sigma \sqrt{\frac{1}{n} + t^*}} \right) + \Phi'' \left(\frac{|2i(l-b) + l - x^*|}{\sigma \sqrt{\frac{1}{n} + t^*}} \right) \right] \frac{1}{\sigma^2 \left(\frac{1}{n} + t^* \right)^2}.
\]

It can be verified by the definition of \(\Phi(x) \) that \(\partial_t u_n(t^*, x^*) - \frac{1}{2} \sigma^2 \partial_{xx}^2 u_n(t^*, x^*) = 0 \). Since \(\partial_{xx}^2 \psi(t^*, x^*) \geq \partial_{xx}^2 u_n(t^*, x^*) \), and if we want to replicate the idea we had in step 1, we just have to prove \(\partial_t u_n(t^*, x^*) > 0 \).

It is well-known that the stopping time \(\tau_{b-x} \land \tau_{l-x} \) has the following density for \(x \in (b, l) \) (see \[8\])

\[
P^W \{ \tau_{b-x} \land \tau_{l-x} \in ds \} = \frac{1}{\sqrt{2\pi \sigma^2 s^3}} \sum_{i=-\infty}^{\infty} \left\{ (2i(l-b) - b + x) \exp \left(-\frac{(2i(l-b) - b + x)^2}{2\sigma^2 s} \right) + (2i(l-b) + l - x) \exp \left(-\frac{(2i(l-b) + l - x)^2}{2\sigma^2 s} \right) \right\} \, ds.
\]

By tedious calculation, we can get

\[
u_n(t, x) = \int_0^{t-l} P^W \{ \tau_{b-x} \land \tau_{l-x} \in ds \} \, dx.
\]
which implies $\partial_t u_n (t^*, x^*) > 0$, so we get $\partial_{xx}^2 u_n (t^*, x^*) > 0$. Moreover,

$$\partial_t \psi (t^*, x^*) - \frac{1}{2} \sigma^2 (\partial_{xx}^2 \psi (t^*, x^*))^+ \leq 0.$$

Step 3. If $x^* \in \{b, l\}$, we know by the definition of ψ that

$$\psi (t, x^*) \geq u_n (t, x^*) = 1 \text{ and } \psi (t^*, x^*) = u_n (t^*, x^*) = 1,$$

it then follows that $\partial_t \psi (t^*, x^*) = 0$. Hence, we obtain $\partial_t \psi (t^*, x^*) - \frac{1}{2} \sigma^2 (\partial_{xx}^2 \psi (t^*, x^*))^+ \leq 0$. Thus, from step 1 to step 3, we know that u_n is a viscosity subsolution of (3.1).

On the other hand, we need to prove that u_n is a viscosity supersolution of (3.1). So, let us show in two steps that $\partial_t \psi (t^*, x^*) - \frac{1}{2} \sigma^2 (\partial_{xx}^2 \psi (t^*, x^*))^+ \geq 0$ for all $(t^*, x^*) \in (0, \infty) \times \mathbb{R}$, $\psi \in C^2 ((0, \infty) \times \mathbb{R})$ such that $\psi (t^*, x^*) = u_n (t^*, x^*)$ and $\psi \leq u_n$.

Step 4. If $x^* \notin \{b, l\}$, similar to the proof idea of step 1 and step 2, we can also get the same results as follows:

$$\partial_{xx}^2 \psi (t^*, x^*) \leq \partial_{xx}^2 u_n (t^*, x^*), \quad \partial_{xx}^2 u_n (t^*, x^*) > 0, \quad \partial_t \psi (t^*, x^*) = \partial_t u_n (t^*, x^*).$$

and

$$\partial_t u_n (t^*, x^*) - \frac{1}{2} \sigma^2 \partial_{xx}^2 u_n (t^*, x^*) = 0$$

Thereby, we have $(\partial_{xx}^2 \psi (t^*, x^*))^+ \leq (\partial_{xx}^2 u_n (t^*, x^*))^+$. Moreover, we show that

$$\partial_t \psi (t^*, x^*) - \frac{1}{2} \sigma^2 (\partial_{xx}^2 \psi (t^*, x^*))^+$$

$$\geq \partial_t u_n (t^*, x^*) - \frac{1}{2} \sigma^2 (\partial_{xx}^2 u_n (t^*, x^*))^+$$

$$= \partial_t u_n (t^*, x^*) - \frac{1}{2} \sigma^2 \partial_{xx}^2 u_n (t^*, x^*)$$

$$= 0$$

Step 5. If $x^* \in \{b, l\}$, then we know that

$$\psi (t^*, x^*) = u_n (t^*, x^*) \text{ and } \psi (t^*, x) \leq u_n (t^*, x),$$

which implies that

$$\partial_{x^+} \psi (t^*, x^*) \leq \partial_{x^+} u_n (t^*, x^*) \text{ and } \partial_{x^-} \psi (t^*, x^*) \geq \partial_{x^-} u_n (t^*, x^*).$$

which is (3.3).

It is easy to check by the definition of $\Phi (x)$ that

$$\partial_{x^-} u_n (t^*, b) = \frac{2}{\sigma \sqrt{2 \pi (\frac{1}{t} + t^*)}} > 0,$$

$$\partial_{x^+} u_n (t^*, l) = -\frac{2}{\sigma \sqrt{2 \pi (\frac{1}{t} + t^*)}} < 0.$$

Now we claim that $\partial_{x^+} u_n (t^*, b) < 0$. Otherwise, $\partial_{x^+} u_n (t^*, b) \geq 0$. Noting that $\partial_{xx}^2 u_n (t^*, x) > 0$ for $x \in (b, l)$ and $u_n (t^*, b) = 1$, we obtain $u_n (t^*, x) > 1$ for $x \in (b, l)$, which contradicts to $u_n \leq 1$. Hence,
we have $\partial_x u_n(t^*, b) < 0$. Similarly, we can get $\partial_x u_n(t^*, l) > 0$. So we can not find $\psi \in C^2((0, \infty) \times \mathbb{R})$ satisfying (3.3). Thus, from (H4)-(H5), we know that u_n is also a viscosity supersolution of (3.1).

In conclusion, u_n is a viscosity solution of (3.1). Then we obtain
\[
\hat{E} [u_n (0, B_T)] = u_n(T, 0).
\]
Noting that $u_n(0, x) \downarrow I_{(b,l)}(x)$, we can deduce by Theorem 2.7 that
\[
c(\{B_T \in \{b,l\}\}) = \hat{E} [I_{(b,l)}(B_T)] = \lim_{n \to \infty} \hat{E} [u_n (0, B_T)] = \lim_{n \to \infty} u_n(T, 0),
\]
which implies the desired result. □

Remark 3.3 Under the condition of Lemma 3.2, by using the similar method, we can get
\[
c(\{B_T \in \{b,l\}\}) = c(\{B_T \in (-\infty, b] \cup [l, \infty)\}) \text{ for } b < 0 < l
\]
and
\[
c(\{B_T = a\}) = c(\{B_T \geq |a|\}) = c(\{B_T \leq -|a|\}) = \Phi \left(\frac{|a|}{\sigma \sqrt{T}} \right) \text{ for } a \in \mathbb{R}.
\]
The value $c(\{B_T \geq |a|\})$ was obtained in [10, 15] by using “similarity solution” method.

Proof of Theorem 3.1 If $\rho(A) = 0$, we can find a sequence $\{a_n : n \geq 1\} \subset A$ such that $a_n \to 0$. By Remark 3.3, we get
\[
c(\{B_T \in A\}) \geq \lim_{n \to \infty} c(\{B_T = a_n\}) = \lim_{n \to \infty} \Phi \left(\frac{|a_n|}{\sigma \sqrt{T}} \right) = 1,
\]
which implies (i).

If $A \subset [0, \infty)$, we can find a sequence $\{x_n : n \geq 1\} \subset A$ such that $x_n \to \rho(A)$. By Remark 3.3, we know that
\[
c(\{B_T \in A\}) \geq \lim_{n \to \infty} c(\{B_T = x_n\}) = \Phi \left(\frac{\rho(A)}{\sigma \sqrt{T}} \right).
\]
Noting that $A \subset [\rho(A), \infty)$, by Remark 3.3, we get
\[
c(\{B_T \in A\}) \leq c(\{B_T \geq \rho(A)\}) = \Phi \left(\frac{\rho(A)}{\sigma \sqrt{T}} \right).
\]
Thus we have $c(\{B_T \in A\}) = \Phi \left(\frac{\rho(A)}{\sigma \sqrt{T}} \right)$. By the similar method for $A \subset (-\infty, 0]$, then we obtain (ii).

If $\rho(A) \neq 0$, $A \subset [0, \infty)$ and $A \subset (-\infty, 0]$, then we can find two sequences $\{b_n : n \geq 1\}$ and $\{c_n : n \geq 1\}$ in A such that $b_n < 0 < c_n$, $-b_n \to \rho(A^-)$ and $c_n \to \rho(A^+)$. By Lemma 3.2, Remark 3.3 and $A \subset (-\infty, -\rho(A^-)] \cup [\rho(A^+), \infty)$, we get
\[
c(\{B_T \in A\}) \geq \lim_{n \to \infty} c(\{B_T \in \{b_n, c_n\}\}) = c(\{B_T \in (-\rho(A^-), \rho(A^+))\}),
\]
\[
c(\{B_T \in A\}) \leq c(\{B_T \in (-\infty, -\rho(A^-)] \cup [\rho(A^+), \infty)\}),
\]
which implies $c(\{B_T \in A\}) = c(\{B_T \in (-\rho(A^-), \rho(A^+))\})$. Thus we obtain (iii). □
4 Application to G-expectation

For each \(\phi_n \in C_b(\mathbb{R}) \) such that \(\phi_n \downarrow I_A \), we know by (2.2) that
\[
\hat{E}[\phi_n(B_T)] \downarrow c(\{B_T \in A\}).
\] (4.1)

The following theorem is the application of Theorem 3.1.

Theorem 4.1 Let \(\sigma = 0 \) and \(\sigma > 0 \). Then, for each given \(T > 0 \), \(A \in \mathcal{B}(\mathbb{R}) \) with \(A \neq \emptyset \) and \(A \neq \mathbb{R} \), we have \(I_A(B_T) \notin L^1_G(\Omega) \).

Proof. Due to \(A \neq \emptyset \) and \(A \neq \mathbb{R} \), then one of the following two results must hold.

(i) There exist a point \(x_0 \in A \) and a sequence \(\{x_k : k \geq 1\} \subset A \) such that \(x_k \rightarrow x_0 \).

(ii) There exist a point \(x_0 \in A^c \) and a sequence \(\{x_k : k \geq 1\} \subset A \) such that \(x_k \rightarrow x_0 \).

If (i) holds and \(I_A(B_T) \in L^1_G(\Omega) \), then
\[
h_n(B_T) \vee I_A(B_T) \in L^1_G(\Omega) \text{ and } h_n(B_T) \vee I_A(B_T) - I_A(B_T) \downarrow 0,
\]
where
\[
h_n(x) = [1 + n(x - x_0)]I_{[x_0 - \frac{1}{n},x_0]}(x) + [1 - n(x - x_0)]I_{[x_0,x_0 + \frac{1}{n}]}(x).
\]
By (2.2), we have
\[
\hat{E}[h_n(B_T) \vee I_A(B_T) - I_A(B_T)] \downarrow 0 \text{ as } n \rightarrow \infty.
\] (4.2)

Moreover, we also know that \(h_n(B_T) \vee I_A(B_T) - I_A(B_T) \geq h_n(x_k)I_{\{x_k\}}(B_T) \) for any \(k \geq 1 \). Then we deduce by Theorem 3.1 that
\[
\hat{E}[h_n(B_T) \vee I_A(B_T) - I_A(B_T)] \geq \lim_{k \rightarrow \infty} h_n(x_k)c(\{B_T = x_k\}) = c(\{B_T = x_0\}) > 0,
\]
which contradicts to (4.2). Thus \(I_A(B_T) \notin L^1_G(\Omega) \).

If (ii) holds, then \(A^c \) satisfies (i). Thus we obtain \(I_{A^c}(B_T) \notin L^1_G(\Omega) \), which implies \(I_A(B_T) = 1 - I_{A^c}(B_T) \notin L^1_G(\Omega) \). \(\square \)

Acknowledgements

The authors are supported by National Key R&D Program of China (No. 2018YFA0703900) and National Natural Science Foundation of China (No. 11671231 and 11601281).
References

[1] M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.

[2] L. Denis, M. Hu, S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths, Potential Anal., 34 (2011), 139-161.

[3] M. Hu, S. Ji, Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion, Stochastic Process. Appl., 127 (2017), 107-134.

[4] M. Hu, S. Peng, On representation theorem of G-expectations and paths of G-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539-546.

[5] M. Hu, Y. Sun, Explicit positive solutions to G-heat equations and the application to G-capacities, J. Differential Equations, 297 (2021), 246-276.

[6] M. Hu, F. Wang, G. Zheng, Quasi-continuous random variables and processes under the G-expectation framework, Stochastic Process. Appl., 126 (2016), 2367-2387.

[7] S. Huang, G. Liang, A monotone scheme for G-equations with application to the explicit convergence rate of robust central limit theorem, arXiv:1904.07184v3, 2019.

[8] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer (2005).

[9] N.V. Krylov, On Shige Peng’s central limit theorem, Stochastic Process. Appl., 130 (2020), 1426-1434.

[10] Z. Pei, X. Wang, Y. Xu, X. Yue, A worst-case risk measure by G-VaR, Acta Math. Appl. Sin. Engl. Ser., 37 (2021), 421-440.

[11] S. Peng, G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô type, Stochastic analysis and applications, Abel Symp., Vol. 2, Springer, Berlin, 2007, 541-567.

[12] S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl. 118(12)(2008) 2223-2253.

[13] S. Peng, A new central limit theorem under sublinear expectation, 2008. arXiv:0803.2656v1 [math.PR].

[14] S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer (2019).

[15] S. Peng, S. Yang, J. Yao, Improving value-at-risk prediction under model uncertainty, J. Financ. Econom., 2021, 1-32.