HYBRID ADAPTIVE NEURO FUZZY INFERENCE SYSTEM FOR DIAGNOSING THE LIVER DISORDERS

A PREPRINT

Mina Rajabi
Department of Computer Science
Yazd University
rajabi.mina@yazd.edu.ir

Hajar Sadeghizadeh
Department of Computer Science
Islamic Azad University of Yazd
Sadeghizadeh@iau.yazd.edu.ir

Zahra Mola-Amini
Department of Information Science
Islamic Azad University of Meybod
MolaAmini@iau.meybod.edu.ir

Niloofar Ahmadyrad
Department of Electrical Engineering
Islamic Azad University of Meybod
Ahmadyrad@iau.meybod.edu.ir

October 30, 2019

ABSTRACT

In this study, a hybrid method based on an Adaptive Neuro-Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) for diagnosing Liver disorders (ANFIS-PSO) is introduced. This smart diagnosis method deals with a combination of making an inference system and optimization process which tries to tune the hyper-parameters of ANFIS based on the data-set. The Liver diseases characteristics are taken from the UCI Repository of Machine Learning Databases. The number of these characteristic attributes are 7, and the sample number is 354. The right diagnosis performance of the ANFIS-PSO intelligent medical system for liver disease is evaluated by using classification accuracy, sensitivity and specificity analysis, respectively. According to the experimental results, the performance of ANFIS-PSO can be more considerable than traditional FIS and ANFIS without optimization phase.

Keywords fuzzy expert systems · fuzzy inference systems · Adaptive Neuro fuzzy Inference systems · Liver Disorders · Bupa dataset · Particle Swarm Optimization
1 Introduction

Expert systems are a branch of Artificial Intelligence (AI) which encourages unrestricted use of techno-scientific human expertise to solve semi or ill-structured issues wherever there is not a particular promise for determining the algorithm. The expert systems have been portrayed as an intelligent application that utilises knowledge and inference levels to manage severe problems to necessitate significant human expertise for their clarifications [1].

A fuzzy expert system can be a specific knowledge-based system, which is formed of fuzzification, knowledge database, inference rules, and defuzzification parts, and applies fuzzy logic instead of the Boolean logic to consider about data in the deduction mechanism. This system is adopted to describe decision-making problems, where there is no scientific algorithm exists, although alternatively, the problem solution can be considered heuristically, which is based on specialists in the form of If-Then rules. A fuzzy expert system can be sufficiently supplied to the problem, which gives uncertainty emitting from fuzziness, ambiguity or subjectivity. In the 21st century, the applications of fuzzy expert systems have been tremendously expanding throughout scientific research topics such as diagnosing and predicting the various risk of the diseases [2, 3, 4, 5, 6], civil engineering applications as an assistant [7, 8, 9, 10], evaluating the educational service qualities [11, 12, 13, 14, 15] and for modelling different aspect of indeterministic business situations [16, 17, 18, 19].

The liver is one of the most significant body organs that detoxification of medications, elimination of reckless things emerging from the demolition and reconstruction of RBCs in the form of bile, composition of blood clotting parts, storage of sugar as glycogen. Moreover, the ordinance of sugar and fat metabolism are some of the essential functions of this body organ. We should not neglect its function in fat digestion and defence before microbus and toxins coming from foodstuff [20]. In the recent decade, the death damage following various liver disorders has been dramatically expanding. On-time examination of this disease can be effective in the inhibition of its effects, its control and treatment. Browse considers expert’s mentality as one of the most important issues in diagnosing disease because human-being is subject to error, and there is a possible error in disease diagnosis. One of the notable informatics medical procedures is to use expert systems to diagnose the disease with regard to a group of symptoms. These schemes can be based on artificial intelligence (AI) and assist experts to diagnose the diseases and more adequately satisfy them by acknowledging laboratory examinations. They also decrease cost, save the time of experts and their incorrect judgment. Therefore, we have tried to diagnose liver disorders by using a hybrid adaptive neuro-fuzzy inference technique in this research. Our intentions are 1. choosing the ANFIS due to its advantages such as simple sense, high flexibility, the ability to endure fallacious data properly, modelling complex non-linear functions, to act on the basis of expert knowledge, the capability to conform with conventional controlling systems. 2. applying one of the most popular swarm intelligence technique called particle swarm optimization (PSO). PSO play a substantial impact to improve the performance of diagnosis by tuning the hyper-parameters of ANFIS like the number, type of fuzzy membership functions and enhancing the fuzzy rules.
The main goal of this article is to address the important benefits and shortcomings of the current approaches and theories for improving and modelling fuzzy expert systems compared with the proposed hybrid adaptive neural fuzzy inference system performance for diagnosing the liver disorders based on the Bupa dataset. Concerning accomplishing like plans, a comprehensive study of the relevant fuzzy inference system technique is utilized.

The rest of this article is arranged as views. The details of the dataset used can be seen in Section 2. Section 3 illustrates the fuzzy expert systems in details. In Section 4, the structure of adaptive neural fuzzy inference systems is reviewed. Besides, the technical specifications of the particle swarm optimization method and its diversity are studied in Section 5, and also section 6 shows the experimental implications. Conclusively, conclusions are sketched in Section 6.

2 Bupa Liver Disorders Data-Set

The dataset employed in this paper, which is used for enhancing the ability of liver disorders investigation according to their qualities, gathered by Richard s.forsyth and introduced to the UCI in 1995. The number of samples in this collection are 345, and each sample consists of 7 attributes. In this dataset the initial five fields are related to variable substances of a male blood test, the 6th field is the quantity of alcohol drinking, and lastly, the 7th field is using for restricting the healthy or ill individual. Attribute information can be seen in the following:

1. Mcv: means corpuscular volume Alkphos
2. Alkaline phosphates
3. Sgpt: alanine aminotransferase
4. Sgot: aspartate aminotransferase
5. Gammagt: gamma-glut amyl Tranpeptidase
6. Drinks: number of half-pint equivalents of alcoholic beverages Drunk per day
7. Selector: field used to split data into two sets.

The dataset is continuous, and there is no missing or destroyed data.
3 Fuzzy Expert Systems (FES)

Initially, Zadeh \[21\] introduced the main theory of fuzzy logic as an approach for interpreting human knowledge that is not precise and well-defined. Figure 1 shows the fundamental form of a fuzzy logic system. The process of fuzzification interface converts the crisp information into fuzzy linguistic values by various kinds of membership functions. The fuzzification can be regularly required in a fuzzy expert system considering the input values from surviving detectors are always deterministic numerical values. The inference generator demands fuzzy input and rules, and then it will produce fuzzy productions. Considerably, the fuzzy rule base should be in the figure of “IF-THEN” rules, including linguistic variables. The last part of a fuzzy expert system can be defuzzification which has the responsibility of performing crisp yield operations. The landscape of the fuzzy expert system can be represented in Figure 1.

In the last three decades, Fuzzy rule-based systems is a subsidiary of Artificial intelligence fitted of interpreting complicated medical data. Their potential to employ significant relationship within a data set has been used in the diagnosis, treatment and predicting consequence in various clinical outlines. A survey of different artificial intelligence methods is exhibited in this part, along with the study of critical clinical applications of expert systems. The ability of artificial intelligence systems and has been explored in almost every field of medicine. Artificial neural network and knowledge based systems were the most regularly accepted analytical tool while additional AI systems such as evolutionary algorithms, swarm intelligence and hybrid systems have been handled in various clinical environments. It can be concluded that AI and expert systems have a high potential to be employed in almost all fields of medicine. Table 1 shows the application of practical AI techniques such as fuzzy sets, neural networks, evolutionary algorithms, swarm intelligence for diagnosing a wide set of diseases. Table 1 shows a short review of different kinds methods for diagnosing the Liver disorders in the last two decades.

![Figure 2: The scheme of the Liver disorders diagnostic Fuzzy Inference System](image)

4 Adaptive Neural Fuzzy Inference System (ANFIS)

An adaptive neuro-fuzzy inference system (ANFIS) can be a class of artificial neural network (ANN) that is worked in regard to Takagi–Sugeno fuzzy inference system. The system was developed at the beginning of the 1990s \[44\].

Table 1: A briefly survey of the AI method applications for diagnosing the Liver disorders.

Authors	Methods	Disease	Year
Neshat et al. [22]	Bayesian parametric method and Parzen window nonparametric method, Fuzzy Expert System, Hopfield Neural Network	Liver Disease	2008, 2009, 2010, 2013, 2014
Selvaraj et al. [27]	particle swarm optimization	Liver Disease	2013
Satarkar et al. [28]	Fuzzy expert system	Liver Disease	2015
Hashemi et al. [29]	fuzzy logic	Liver Disease	2015
Singh et al. [30]	Principal Component Analysis and K-Nearest Neighbor (PCA-KNN)	Liver Disease	2018
Mirmozaffari et al. [31]	expert system	Liver Disease	2019
Kim et al. [32]	neural network and fuzzy neural network	Liver Cancer	2014
Das et al. [33]	Adaptive fuzzy clustering-based texture analysis	Liver Cancer	2018
Xian et al. [34]	GLCM texture features and fuzzy SVM	Liver Tumors	2010
Polat et al. [35]	adaptive neuro-fuzzy inference system	Diabetes Disease	2007
Polat et al. [36]	artificial immune recognition system with fuzzy resource allocation	Diabetes Disease	2006
Chen et al. [37]	local fisher discriminant analysis and support vector machines	Hepatitis Disease	2011
Neshat et al. [38]	Adaptive Neural Network Fuzzy System, Hybrid Case Based Reasoning and PSO, Fuzzy expert system	Hepatitis B	2009, 2012
Adeli et al. [41]	Genetic algorithm and adaptive network fuzzy inference system	Hepatitis	2013
Ahmad et al. [42]	adaptive neuro-fuzzy inference system, Multilayer Mamdani Fuzzy Inference System	Hepatitis Disease	2018, 2019

Since it combines both ANN and fuzzy logic principles, it holds the potential to catch the advantages of both in a unique framework. Its fuzzy inference system (FIS) corresponds to a collection of fuzzy rules (IF–THEN) which have learning inclination to approximate nonlinear functions. Consequently, ANFIS is supposed to be a general estimator. For practicing the ANFIS more efficiently and optimally, one can handle the most useful parameters taken by genetic algorithm\[45\]. It is conceivable to distinguish two parts in the network structure, namely basis and consequence parts. In more details, the architecture is comprised of five layers. The first layer receives the input values and determines the membership functions referring to them. It is generally called fuzzification layer. The membership degrees of each function are calculated by applying the premise parameter set, namely a,b,c. The second layer is responsible for making the firing strengths for the rules. Due to its responsibility, the second layer is expressed as "rule layer". The role of the third layer is to normalize the measured firing strengths by diving each value for the total firing strength. The fourth layer practices as input the normalized values and the result parameter set p,q,r. The values yielded by this layer are the defuzzificated ones, and also those values are transferred to the last layer to replace the final output \[46\]. Figure 3 shows a deep landscape of ANFIS architecture.
Particle Swarm Optimization and its novelties

Particle swarm optimisation (PSO) was introduced in 1995 by Kennedy and Eberhart [48], motivated by the operation of social animals in crowds, such as bird and fish schooling or ant colonies. This meta-heuristic follows the intercommunication among members to distribute knowledge. PSO has been implemented in diverse areas in optimisation and compound with other existing algorithms. This technique achieves the exploration of the optimal solution through particles, whose trajectories are modified by a stochastic and a deterministic element. Each particle is affected by its ‘best’ reached situation and the group ‘best’ situation, but leads to walking randomly. A particle i is characterised by its status vector, x_i, and its velocity vector, v_i. Every repetition, each particle adjusts its situation according to the new velocity as:

$$v_i^{t+1} = \omega v_i^t + c_1 r_1 (x_{\text{Best}}^t - x_i^t) + c_2 r_2 (g_{\text{Best}}^t - x_i^t)$$

$$x_i^{t+1} = x_i^t + v_i^t \cdot t$$

where x_{Best} and g_{Best} indicate the best particle location and best group situation and the parameters ω, c_1, c_2, r_1 and r_2 are respectively inertia weight, two positive constants and two random parameters within $[0, 1]$. In the baseline PSO, ω is chosen as a unit, but an enhancement of the PSO is observed in its inertial implementation using $\omega \in [0.50.9]$. Regularly, maximum and minimum velocity values are also described, and originally, the particles are assigned randomly to boost the search in all tolerable locations. Despite all the advantages of PSO like fast convergence and powerful in global search, its control parameters need to be tuned during the global search. There are plenty of proposed ideas to adjust the control parameters which have been called adaptive PSO [49][50][51][52][53][54]. Moreover, various
meta-heuristic methods are combined with PSO to create a successful hybrid search technique [55, 56, 57]. One of the benefits of PSO over other derivative-free approaches is the diminished number of parameters to adjust and restrictions acceptance.

6 Hybrid Adaptive Neural Fuzzy Inference System (ANFIS-PSO)

Development of the fancied fuzzy rule base can be a crucial step in producing the fuzzy system. In prevailing, the rules and membership function are made by specialists in a particular field, because the meaning of these is commonly influenced by individual decisions. While fuzzy rules denote comparatively straightforward to acquire by them, the MFs signify challenging to achieve. Tuning of MFs can be a time-consuming process. From the preceding analysis, it can be recognized that its membership function characterizes the fuzzy system and the type and parameters of determining the performance of the system MFs. Notwithstanding their attention, there are no observational techniques accessible for managing them. The fuzzy systems are formed as a search space, where each object in the space corresponds to a rule set and MFs. This performs evolutionary algorithms such as Genetic Algorithms (GAs), particle swarm optimization (PSO), better choices for searching these spaces [58]. Though PSO is similar to GAs, the principal difference between them is that PSO is not equipped by genetic operators such as crossover and mutation. Particles in PSO possess a memory which can be critical to the algorithm. When corresponded to GAs, the benefits of PSO are purity in implementation and fewer parameters to adjust.

The steps of implementation of optimized FIS are in the following:
1. determining the test and train dataset
2. designing an initial FIS
3. Fine-tuning parameters of a model which must be adjusted very precisely in order to fit with the error function of the model by PSO.
4. Choosing the best FIS with the minimum RMSE as the best solution.

7 Experimental outcomes

The proposed ANFIS and ANFIS-PSO performances are evaluated by the dataset of Liver disorders (Bupa). The assumed evaluation criteria can be the mean square error (MSE) of the targets and predicted outputs. Figure 4 shows the MSE of both trained and tested data of ANFIS performance for one run. The distribution of error is regard to a normal distribution with an approximately wide variance which reveals that the used ANFIS requires some modifications. The average RMSE of ANFIS train and test are assigned at 0.292 and 0.384. On the other hand, we can see the improvement of the diagnosis accuracy by ANFIS-PSO in Figure 8. The average RMSE of ANFIS-PSO training and testing are at 0.271 and 0.343. These results show an acceptable development for the new proposed method. Both Figure 5 and 7 present the fuzzy relationships among the 5 features with drinks level in ANFIS and ANFIS-PSO. It can be seen that
Figure 4: The training and testing results and error of an Adaptive Neuro-Fuzzy Inference System performance for diagnosing Liver disorders.

the used ANFIS-PSO is able to enhance the achieved model. In the meantime, Figure 6 shows how PSO is able to tune the different parameters of used FIS.

Figure 5: The fuzzy relationship among the effective variables of Liver disorders with different level of drink values BY ANFIS
Figure 6: The performance of applied PSO to tune the FIS parameters and reduce the RMSE.

Figure 7: The fuzzy relationship among the effective variables of Liver disorders with different level of drink values BY ANFIS-PSO.

8 Conclusions

In this study, a hybrid adaptive neural fuzzy expert system based on particle swarm optimization (PSO) was revealed in Matlab’s Simulink in order to distinguish Liver disease and health condition. With this recommended strategy, the accuracy of classification is increased by 10% compared with the ANFIS based on the dataset can be accomplished. The development of the meaningful attributes and fuzzy rules were obtained using the statistical analysis. The importance of identifying significant and relevant fuzzy rules without the assistance of the specialists exposes the potentiality
of knowledge discovery. The principal benefits of the FIS as a knowledge acquisition mechanism are the following: (1) adaptive number of rules are concerned (2) the acquired rules can be efficiently explained. These results propose encouraging research areas employing PSO and fuzzy expert system in several classification problems. According to the achieved results, the hybrid proposed system is able to beat previous studied approaches in terms of both accuracy and reliability.

References

[1] Edward A Feigenbaum. Expert systems in the 1980s. *State of the art report on machine intelligence. Maidenhead: Pergamon-Infotech*, 1981.

[2] Kemal Polat, Salih Güneş, and Sülayman Tosun. Diagnosis of heart disease using artificial immune recognition system and fuzzy weighted pre-processing. *Pattern Recognition*, 39(11):2186–2193, 2006.

[3] Seral Şahan, Kemal Polat, Halife Kodaz, and Salih Güneş. A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. *Computers in Biology and Medicine*, 37(3):415–423, 2007.

[4] Ali Adeli and Mehdi Neshat. A fuzzy expert system for heart disease diagnosis. In *Proceedings of International Multi Conference of Engineers and Computer Scientists, Hong Kong*, volume 1, pages 28–30, 2010.

[5] Mehdi Neshat, Ghodrat Sepidname, Amin Eizi, and Amanollah Amani. A new skin color detection approach based on fuzzy expert system. *Indian Journal of Science and Technology*, 8:1–11, 2015.

[6] Alejandro Moya, Elena Navarro, Javier Jaén, and Pascual González. Fuzzy-description logic for supporting the rehabilitation of the elderly. *Expert Systems*, page e12464, 2019.

[7] Mehdi Neshat and Ali Adeli. Designing a fuzzy expert system to predict the concrete mix design. In *2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings*, pages 1–6. IEEE, 2011.
[8] Mehdi Neshat, Ali Adeli, Ghodrat Sepidnam, and Mehdi Sargolzaei. Predication of concrete mix design using adaptive neural fuzzy inference systems and fuzzy inference systems. *The International Journal of Advanced Manufacturing Technology*, 63(1-4):373–390, 2012.

[9] Zhe Yuan, Lin-Na Wang, and Xu Ji. Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and anfis. *Advances in Engineering Software*, 67:156–163, 2014.

[10] Fei Ha Chiew, Chee Khoon Ng, Kok Chin Chai, and Kai Meng Tay. A fuzzy adaptive resonance theory-based model for mix proportion estimation of high-performance concrete. *Computer-Aided Civil and Infrastructure Engineering*, 32(9):772–786, 2017.

[11] Ali Akbar Pourahmad, Mehdi Neshat, and Ahmad Baghi. Service quality assessment in the academic library: Use of hybrid fuzzy expert system. *African Journal of Business Management*, 6(46):11511–11529, 2012.

[12] Ali Akbar Pourahmad, Mehdi Neshat, and Mohammad Reza Hasani. Using libqual model for improving the level of students’ satisfaction from quality of services in academic libraries: A case study in north khorasan province, iran. *Journal of Information & Knowledge Management*, 15(01):1650011, 2016.

[13] Saeed Raeesi. Quality assessment of ilam university of medical sciences website from the users’ viewpoints according to webqual model. *scientific journal of ilam university of medical sciences*, 26(4):53–63, 2018.

[14] Engelina Du Plessis, Juan Carlos Martin, Concepcion Roman, and Elmarie Slabbert. Fuzzy logic to assess service quality at arts festivals. *Event Management*, 22(4):501–516, 2018.

[15] Milad Shafii, Sima Rafiei, Fatemeh Abooe, Mohammad Amin Bahrami, Mojtaba Nouhi, Farhad Lotfi, and Khatere Khanjankhani. Assessment of service quality in teaching hospitals of yazd university of medical sciences: Using multi-criteria decision making techniques. *Osong public health and research perspectives*, 7(4):239–247, 2016.

[16] Mehdi Neshat, Ahmad Baghi, Ali Akbar Pourahmad, Ghodrat Sepidnam, Mehdi Sargolzaei, and Azra Masoumi. Fhesmm: Fuzzy hybrid expert system for marketing mix model. *International Journal of Computer Science Issues(IJCSI)*, 8(6), 2011.

[17] Mehdi Neshat, Ali Akbar Pourahmad, and Mohammad Reza Hasani. Designing an adaptive neuro fuzzy inference system for prediction of customers satisfaction. *Journal of Information & Knowledge Management*, 15(04):1650037, 2016.

[18] Adam Rudzewicz. Quality of banking services from the perspective of the polish customers. *Zeszyty Naukowe Wyższej Szkoły Ekonomiczno-Społecznej w Ostrółęce*, 1(19):65–73, 2015.

[19] Muhammet Deveci, Ender Özcan, Robert John, and Sultan Ceren Öner. Interval type-2 hesitant fuzzy set method for improving the service quality of domestic airlines in turkey. *Journal of Air Transport Management*, 69:83–98, 2018.

[20] Maryam Rezaei Farokhzad and Laya Ebrahimi. A novel adaptive neuro fuzzy inference system for the diagnosis of liver disease. *International Journal of Academic Research in Computer Engineering*, 1(1):61–66, 2016.
[21] Lotfi A Zadeh. Soft computing and fuzzy logic. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi a Zadeh, pages 796–804. World Scientific, 1996.

[22] Mehdi Neshat, Mehdi Yaghobi, and Mohammad Naghibi. Designing an expert system of liver disorders by using neural network and comparing it with parametric and nonparametric system. In 2008 5th International Multi-Conference on Systems, Signals and Devices, pages 1–6. IEEE, 2008.

[23] M Neshat, M Yaghobi, MB Naghibi, and A Esmaelzadeh. Fuzzy expert system design for diagnosis of liver disorders. In 2008 International Symposium on Knowledge Acquisition and Modeling, pages 252–256. IEEE, 2008.

[24] Mehdi Neshat and Abas E Zadeh. Hopfield neural network and fuzzy hopfield neural network for diagnosis of liver disorders. In 2010 5th IEEE International Conference Intelligent Systems, pages 162–167. IEEE, 2010.

[25] Mehdi Neshat, Azra Masoumi, Mina Rajabi, and Hassan Jafari. Diagnosing hepatitis disease by using fuzzy hopfield neural network. Annual Research & Review in Biology, pages 2709–2721, 2014.

[26] Mehdi Neshat, Ali Adeli, and Azra Masoumi. A survey on artificial intelligence and expert system for liver disorders. ARPN Journal of Systems and Software, 3(2), 2013.

[27] Gunasundari Selvaraj and S Janakiraman. Improved feature selection based on particle swarm optimization for liver disease diagnosis. In International Conference on Swarm, Evolutionary, and Memetic Computing, pages 214–225. Springer, 2013.

[28] SL Satarkar and MS Ali. Fuzzy expert system for the diagnosis of common liver disease. International Engineering Journal For Research & Development, 1(1):2–7, 2015.

[29] Asma Hashmi and Muhammad Saleem Khan. Diagnosis blood test for liver disease using fuzzy logic. International Journal of Sciences: Basic and Applied Research (IJSBAR), 20(1):151–183, 2015.

[30] Aman Singh and Babita Pandey. An efficient diagnosis system for detection of liver disease using a novel integrated method based on principal component analysis and k-nearest neighbor (pca-knn). In Intelligent Systems: Concepts, Methodologies, Tools, and Applications, pages 1015–1030. IGI Global, 2018.

[31] Mirpouya Mirmozaffari. Developing an expert system for diagnosing liver diseases. European Journal of Engineering Research and Science, 4(3):1–5, 2019.

[32] Sangman Kim, Seungpyo Jung, Youngju Park, Jihoon Lee, and Jusung Park. Effective liver cancer diagnosis method based on machine learning algorithm. In 2014 7th International Conference on Biomedical Engineering and Informatics, pages 714–718. IEEE, 2014.

[33] Amita Das, Priti Das, Soumya S Panda, and Sukanta Sabut. Adaptive fuzzy clustering-based texture analysis for classifying liver cancer in abdominal ct images. International Journal of Computational Biology and Drug Design, 11(3):192–208, 2018.
[34] Guang-ming Xian. An identification method of malignant and benign liver tumors from ultrasonography based on glem texture features and fuzzy svm. *Expert Systems with Applications*, 37(10):6737–6741, 2010.

[35] Kemal Polat and Salih Güneş. An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. *Digital Signal Processing*, 17(4):702–710, 2007.

[36] Kemal Polat and Salih Güneş. Hepatitis disease diagnosis using a new hybrid system based on feature selection (fs) and artificial immune recognition system with fuzzy resource allocation. *Digital Signal Processing*, 16(6):889–901, 2006.

[37] Hui-Ling Chen, Da-You Liu, Bo Yang, Jie Liu, and Gang Wang. A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis. *Expert Systems with Applications*, 38(9):11796–11803, 2011.

[38] Mehdi Neshat and Mehdi Yaghobi. Designing a fuzzy expert system of diagnosing the hepatitis b intensity rate and comparing it with adaptive neural network fuzzy system. In *Proceedings of the World Congress on Engineering and Computer Science*, volume 2, pages 797–802, 2009.

[39] Mehdi Neshat, Mehdi Sargolzaei, Adel Nadjaran Toosi, and Azra Masoumi. Hepatitis disease diagnosis using hybrid case based reasoning and particle swarm optimization. *ISRN Artificial Intelligence*, 2012, 2012.

[40] Mehdi Neshat and Mehdi Yaghobi. Feshdd: fuzzy expert system for hepatitis b diseases diagnosis. In *2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control*, 2009.

[41] Mahdieh Adeli, Nooshin Bigdeli, and Karim Afshar. New hybrid hepatitis diagnosis system based on genetic algorithm and adaptive network fuzzy inference system. In *2013 21st Iranian conference on electrical engineering (ICEE)*, pages 1–6. IEEE, 2013.

[42] Waheed Ahmad, Ayaz Ahmad, Amjad Iqbal, Muhammad Hamayun, Anwar Hussain, Gauhar Rehman, Salman Khan, Ubaid Ullah Khan, Dawar Khan, and Lican Huang. Intelligent hepatitis diagnosis using adaptive neuro-fuzzy inference system and information gain method. *Soft Computing*, pages 1–8, 2018.

[43] Gulzar Ahmad, Muhammad Adnan Khan, Sagheer Abbas, Atifa Athar, Bilal Shoaib Khan, and Muhammad Shoukat Aslam. Automated diagnosis of hepatitis b using multilayer mamdani fuzzy inference system. *Journal of healthcare engineering*, 2019, 2019.

[44] Jyh-Shing Roger Jang et al. Fuzzy modeling using generalized neural networks and kalman filter algorithm. In *AAAI*, volume 91, pages 762–767, 1991.

[45] Pejman Tahmasebi and Ardeshr Hezarkhani. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. *Computers & geosciences*, 42:18–27, 2012.

[46] Dervis Karaboga and Ebu Bekir Kaya. Adaptive network based fuzzy inference system (anfis) training approaches: a comprehensive survey. *Artificial Intelligence Review*, pages 1–31, 2018.
[47] Mehrbakhsh Nilashi, Hossein Ahmadi, Leila Shahmoradi, Othman Ibrahim, and Elnaz Akbari. A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique. *Journal of infection and public health*, 12(1):13–20, 2019.

[48] Ioan Cristian Trelea. The particle swarm optimization algorithm: convergence analysis and parameter selection. *Information processing letters*, 85(6):317–325, 2003.

[49] Zhi-Hui Zhan, Jun Zhang, Yun Li, and Henry Shu-Hung Chung. Adaptive particle swarm optimization. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 39(6):1362–1381, 2009.

[50] Mehdi Neshat and Masoud Rezaei. Aipso: adaptive informed particle swarm optimization. In *2010 5th IEEE International Conference Intelligent Systems*, pages 438–443. IEEE, 2010.

[51] Mehdi Neshat, Mehdi Sargolzaei, Azra Masoumi, and Adel Najarian. A new kind of pso: Predator particle swarm optimization. *International Journal on Smart Sensing & Intelligent Systems*, 5(2), 2012.

[52] Mengqi Hu, Teresa Wu, and Jeffery D Weir. An adaptive particle swarm optimization with multiple adaptive methods. *IEEE Transactions on Evolutionary Computation*, 17(5):705–720, 2012.

[53] Mehdi Neshat. Faipso: fuzzy adaptive informed particle swarm optimization. *Neural Computing and Applications*, 23(1):95–116, 2013.

[54] Anping Lin, Wei Sun, Hongshan Yu, Guohua Wu, and Hongwei Tang. Adaptive comprehensive learning particle swarm optimization with cooperative archive. *Applied Soft Computing*, 77:533–546, 2019.

[55] Shigenori Naka, Takamu Genji, Toshiki Yura, and Yoshikazu Fukuyama. A hybrid particle swarm optimization for distribution state estimation. *IEEE Transactions on Power systems*, 18(1):60–68, 2003.

[56] Erwie Zahara and Yi-Tung Kao. Hybrid nelder–mead simplex search and particle swarm optimization for constrained engineering design problems. *Expert Systems with Applications*, 36(2):3880–3886, 2009.

[57] Feng Wang, Heng Zhang, Kangshun Li, Zhiyi Lin, Jun Yang, and Xiao-Liang Shen. A hybrid particle swarm optimization algorithm using adaptive learning strategy. *Information Sciences*, 436:162–177, 2018.

[58] S Muthukaruppan and Meng Joo Er. A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease. *Expert Systems with Applications*, 39(14):11657–11665, 2012.