Optimizing ROC Curves with a Sort-Based Surrogate Loss Function for Binary Classification and Changepoint Detection

Jonathan Hillman and
Toby Dylan Hocking — toby.hocking@nau.edu

July 6, 2021

Abstract

Receiver Operating Characteristic (ROC) curves are plots of true positive rate versus false positive rate which are useful for evaluating binary classification models, but difficult to use for learning since the Area Under the Curve (AUC) is non-convex. ROC curves can also be used in other problems that have false positive and true positive rates such as changepoint detection. We show that in this more general context, the ROC curve can have loops, points with highly sub-optimal error rates, and AUC greater than one. This observation motivates a new optimization objective: rather than maximizing the AUC, we would like a monotonic ROC curve with AUC=1 that avoids points with large values for Min(FP,FN). We propose a convex relaxation of this objective that results in a new surrogate loss function called the AUM, short for Area Under Min(FP, FN). Whereas previous loss functions are based on summing over all labeled examples or pairs, the AUM requires a sort and a sum over the sequence of points on the ROC curve. We show that AUM directional derivatives can be efficiently computed and used in a gradient descent learning algorithm. In our empirical study of supervised binary classification and changepoint detection problems, we show that our new AUM minimization learning algorithm results in improved AUC and comparable speed relative to previous baselines.

1 Introduction

In supervised machine learning problems such as binary classification and changepoint detection, the goal is to learn a function for accurately predicting presence or absence of a class label. In binary classification there is a prediction for each example; in changepoint detection there is a prediction (change or not) in between each data point in a sequence. There are numerous ways to analyze prediction performance, but the simplest way is to calculate accuracy, which is the number or proportion of correctly classified labels. However using accuracy as the evaluation metric can be problematic for data sets with imbalanced labels or for which the desired weighting of the labels is unknown [Cortes and Mohri, 2004, Menon et al., 2013].

A popular approach for comparing models in this context is by analyzing their Receiver Operating Characteristic (ROC) curves, which are plots of True Positive Rate (TPR) versus False Positive Rate (FPR) that have long been used in the signal processing literature [Egan and Egan, 1975]. For data with n labeled examples, most algorithms compute a predicted value \(\hat{y}_i \in \mathbb{R} \) for each labeled example \(i \in \{1, \ldots, n\} \). In binary classification the predicted value \(\hat{y}_i \) is then compared to the threshold of zero to classify the example as either positive or negative. True positives are examples \(i \) with positive labels and positive predictions, whereas false positives are examples \(i \) with negative labels and positive predictions. A vector of predicted values \(\hat{y} = [\hat{y}_1 \cdots \hat{y}_n]^{\top} \in \mathbb{R}^n \), one element for each labeled example \(i \), can be mapped to a single (FPR,TPR) point in ROC space. The different points on the ROC curve are obtained by adding a real-valued constant \(c \in \mathbb{R} \) to each prediction in that vector, \(\hat{y} + c \). Large constants \(c \) result in FPR=TPR=1 and small constants result in FPR=TPR=0. Therefore the Area Under the Curve (AUC) is an evaluation metric which accounts for all possible constants or possibilities for thresholding the prediction vector. In binary classification, a perfect model has an AUC of 1, a constant model has an AUC of 0.5, and the minimum AUC is 0.
When AUC is used as the evaluation metric in machine learning, the best algorithm is typically defined as the one that maximizes test AUC. In such experiments, we would also like to use the AUC as the objective function for training the model (under the assumption that if the train and test sets are similar, maximizing train AUC should result in maximizing test AUC). However, since the AUC is a piecewise constant function of the predicted values, its gradient is zero almost everywhere, and it is therefore impossible to directly optimize using gradient descent algorithms.

In addition to studying binary classification, we also study supervised changepoint detection, in which we can also compute FPR and TPR. For binary classification, we can compute a prediction vector which maximizes AUC in the same way as maximizing accuracy — predict a positive value for each positive label, and a negative value for each negative label. For changepoint detection, it is also trivial to compute a prediction vector that maximizes accuracy, but it can be non-trivial to compute a prediction vector that maximizes AUC. The previous observations motivate this paper, which explores a new loss function and corresponding learning algorithm which we empirically show results in AUC maximization.

1.1 Contributions and organization

Our main contribution is the AUM, which is a new surrogate loss function defined as the Area Under the Minimum of false positive and false negative counts as a function of the prediction threshold. Whereas previously proposed loss functions for binary classification can be interpreted as convex surrogates of the zero-one loss (summed over examples) or Mann-Whitney statistic (summed over pairs of examples), our proposed AUM loss is an L1 relaxation of the total Min(FP,FN) (summed over points on the ROC curve, or distinct intervals of prediction thresholds).

In Section 2 we give precise definitions of the AUC and our new AUM loss function. In Section 3 we give an efficient algorithm for computing directional derivatives of the AUM with respect to predicted values, which we propose using in gradient descent learning algorithms. In Section 4 we provide an empirical study of supervised binary classification and changepoint detection problems, showing that minimizing the
AUM corresponds to maximizing the AUC (with respect to train and test sets). Section 5 concludes with a discussion of the significance and novelty of our findings.

1.2 Related work

Evaluating learned binary classification models. ROC curve analysis is a classical evaluation technique with origins in the signal processing literature [Egan and Egan 1975]. Provost and Fawcett [1997] introduced a ROC convex hull method for evaluation. Ling et al. [2003] provide a proof of AUC consistency, whereas Hand [2009] showed that it is incoherent with respect to classification costs, and proposed the “H measure” as an alternative. Martinez-Camblo et al. [2017] proposed a generalization to predicted values which have a non-monotone relationship with the desired class label.

Margin losses for binary classification. Margin losses can be interpreted as weighted convex surrogates of the zero-one loss, summed over all examples. Perri et al. [2002], Cortes and Mohri [2004] proposed expressions for the expected value and the variance of the AUC for a fixed error rate, in an attempt to maximize the AUC with different nonlinear algorithms. Wang et al. [2015] incorporated unlabeled data to make an unsupervised AUC maximization algorithm. Other algorithms have been proposed to obtain approximations of the global AUC value [Rakotomamonjy 2004, Herschtal and Raskutti 2004, Herschtal et al. 2006, Calders and Jaroszewicz 2007]. Han and Zhao [2010] proposed an active learning algorithm for computing a linear model that maximizes the AUC. Zhao et al. [2011] implemented an online learning algorithm that maximizes the AUC. Menon et al. [2013] analyzed statistical consistency under class imbalance, using a mean of true positive and true negative rates. Scott [2012] studied calibration for margin-based losses for binary classification.

Pairwise losses for binary classification. Bamber [1975] is credited as the first to prove the equivalence of the ROC-AUC and the Mann-Whitney test statistic [Mann and Whitney 1947]. This equivalence has led many authors to propose algorithms based on loss functions that are convex surrogates of the Mann-Whitney statistic. Yan et al. [2003] proposed a global approximation of AUC which was then used in several other algorithms. For example, Castro and Braga [2008] used that approximation to propose the AUCtron algorithm which learns a linear model. Joachims [2005] proposed a quadratic time support vector machine algorithm for AUC maximization based on a pairwise loss function, and Freund et al. [2003] proposed a similar approach based on boosting. Narasimhan and Agarwal [2013] extended this approach to the partial AUC, which is defined as the area under the curve between two false positive rates (not necessarily 0 and 1). Kotlowski et al. [2011] analyze how much risk and regret is increased for balanced margin-based losses, compared with pairwise losses. Rudin et al. [2005] showed that in some cases margin-based losses yield the same solution as a pairwise loss. For stochastic optimization of the AUC, Ying et al. [2010] proposed solving a saddle point problem involving a pairwise square loss, and Yuan et al. [2020] proposed to extend this approach to the squared hinge loss.

Changepoint detection. There are many algorithms for unsupervised changepoint detection [Aminikhanghahi and Cook 2017, van den Burg and Williams 2020]. In supervised changepoint detection, learning is often limited to grid search [Hocking et al. 2013, 2016, Liehrmann et al. 2021]. More sophisticated learning algorithms use linear models and non-linear decision trees that minimize convex surrogates of the label error [Rigaill et al. 2013, Hocking et al. 2014, 2015, Drouin et al. 2017, Hocking and Bourque 2020]. ROC curves and AUC are used to evaluate prediction accuracy of learned penalty functions [Maidstone et al. 2016, Hocking et al. 2020].

2 Models and Definitions

We begin by reviewing supervised binary classification and changepoint detection, then give definitions for AUC and the new AUM loss function.
2.2 Review of supervised changepoint detection

Here we give a brief overview of supervised changepoint detection; for details see [Rigaill et al., 2013]. We assume for each labeled training example \(i \in \{1, \ldots, n\} \) there is a corresponding data sequence vector \(\mathbf{z}_i \) and label set \(L_i \). For example in Figure 1 we show a data sequence \(\mathbf{z}_i \) with a label set \(L_i \) that contains one positive label (grey region in which there should be exactly one predicted changepoint). Dynamic programming
algorithms can be used on the data sequence z_i to compute a path of optimal change point models \hat{m}_i^k for different model sizes $k \in \{1, 2, \ldots \}$ [Maidstone et al. 2016]. For example in Figure 1 (left) we show four models in the path (with $k = 2, 3, 4, 15$ segments). The label set L_i can be used to compute the number of false positive and false negative labels with respect to any predicted set of changepoints (false positives for too many changepoints, false negatives for not enough changepoints). Each example i also has a model selection function $k^*_i : \mathbb{R}_0^+ \rightarrow \{1, 2, \ldots \}$ which maps a non-negative penalty value λ_i to a selected model size $k^*_i(\lambda_i)$ (Figure 1, right bottom). We assume there is a fixed feature map ϕ which can be used to compute a feature vector $x_i = \phi(z_i) \in \mathbb{R}^p$ for each labeled example.

We want to learn a function $f : \mathbb{R}^p \rightarrow \mathbb{R}$ which inputs a feature vector and outputs a real-valued prediction that is used as a negative log penalty value, $f(x_i) = -\log \hat{\lambda}_i$. The goal is to predict model sizes $k^*_i(\hat{\lambda}_i)$ that result in minimal label errors. Since the label error function is non-convex like the zero-one loss in binary classification (Figure 1, right top), previous learning algorithms instead use the gradient with respect to a convex surrogate such as a hinge loss [Rigaill et al., 2013, Drouin et al., 2017] or a censored regression loss [Barnwal et al., 2020].

2.3 Definition of false positive and negative functions

In this paper, we assume the following general learning context in which supervised binary classification and change point detection are specific examples. For each labeled training example i, we have one or more labels such that there are at most $\text{FNP}_i \in \mathbb{Z}_+ = \{0, 1, \ldots \}$ false negatives possible and $\text{FPP}_i \in \mathbb{Z}_+$ false positives possible. Given a real-valued prediction $\hat{y}_i = f(x_i) \in \mathbb{R}$, we can use the labels to compute the number of predicted false positives $\text{FP}_i(\hat{y}_i) \in \{0, \ldots, \text{FPP}_i \}$ and false negatives $\text{FN}_i(\hat{y}_i) \in \{0, \ldots, \text{FNP}_i \}$. The FP_i, FN_i functions return the number of false positive and false negative labels for a given predicted value \hat{y}_i.

Exact representation using breakpoints. By convention we assume that the FP_i, FN_i functions are piecewise constant and right continuous; that the FP_i functions start at zero, $\lim_{x \rightarrow -\infty} \text{FP}_i(x) = 0$; and the FN_i functions end at zero, $\lim_{x \rightarrow +\infty} \text{FN}_i(x) = 0$. These assumptions ensure that (1) our proposed AUM loss function will always be finite, and (2) it can be computed efficiently by representing the error functions exactly using a finite set of breakpoints. For each breakpoint tuple $(v, \Delta \text{FP}, \Delta \text{FN})$, $v \in \mathbb{R}$ is a predicted value threshold where there are changes $\Delta \text{FP}, \Delta \text{FN}$ (discontinuity) in the error functions, $\text{FP}_i(v) - \lim_{x \rightarrow v^-} \text{FP}_i(x) = \Delta \text{FP}$ and similar for FN. For example, in Figure 1 the error functions can be exactly represented by a set of four such breakpoints. These breakpoints will be used when computing our proposed loss function and learning algorithm.

Case of binary classification. In the case of binary classification, for all positive examples $i : y_i = 1$ we have $\text{FPP}_i = 0$, $\text{FNP}_i = 1$, $\text{FP}_i(\hat{y}) = 0$, $\text{FN}_i(\hat{y}) = I(\hat{y} < 0)$, where I is the indicator function (outputs 1 if argument is true, 0 otherwise). For all negative examples $i : y_i = -1$, $\text{FPP}_i = 1$, $\text{FNP}_i = 0$, $\text{FP}_i(\hat{y}) = I(\hat{y} \geq 0)$, $\text{FN}_i(\hat{y}) = 0$. Note that FP_i is either constant/zero (for positive examples) or non-decreasing (for negative examples), and FN_i is either constant/zero (for negative examples) or non-increasing (for positive examples). Since the prediction threshold is always zero in binary classification, these functions can be exactly represented by the breakpoint $(v = 0, \Delta \text{FP} = 0, \Delta \text{FN} = -1)$ for all positive examples, and $(v = 0, \Delta \text{FP} = 1, \Delta \text{FN} = 0)$ for all negative examples.

Case of changepoint detection. In changepoint detection, we have more general FP_i and FN_i functions that can be non-monotonic, with arbitrary thresholds v that can be computed in advance of learning f. For example, in Figure 1 we show a data sequence with one positive label (in which there should be exactly one predicted changepoint). Predicting no changepoint in this label results in a false negative, and predicting two changepoints in this label results in a false positive. Therefore, we have $\text{FPP}_i = \text{FNP}_i = 1$ for this particular example i; the false positive function is non-decreasing, $\text{FP}_i(\hat{y}_i) \approx I(\hat{y}_i \geq 3.001)$, and the false negative function is not monotonic, $\text{FN}_i(\hat{y}_i) \approx I(\hat{y}_i \in (-\infty, -1.929) \cup (-1.388, -1.136])$. When the false negative function is non-monotonic, the true positive rate is also non-monotonic (the ROC curve can move down as
Figure 3: Real data example showing that it is possible to have AUC greater than one. **Left:** error functions for two labeled examples in a real changepoint detection data set. **Right:** AUC, AUM, and SM values as a function of the difference in predicted values between the two labeled examples. When the difference is around 5, we have AUC=2. The AUC and SM are piecewise constant functions of the predicted values, whereas the AUM is a continuous piecewise linear function. At differentiable points, AUM=0 implies AUC=1 (but the converse is false).

well as up when prediction constant is increased). Given a pre-computed path of changepoint models with loss/size values, the exact breakpoints \((v, \Delta \text{FP}, \Delta \text{FN})\) in such error functions can be efficiently computed using a linear time algorithm [Hocking and Vargovich, 2020].

2.4 Definition of ROC curve and AUC

In this section, we show how the previously defined functions can be used to define the ROC curve and the AUC. Given a vector of predictions \(\hat{y} \in \mathbb{R}^n\), and a constant \(c \in \mathbb{R}\) added to that vector, we define the False Positive Total (FPT) and False Negative Total (FNT) functions as

\[
\text{FPT}_{\hat{y}}(c) = \sum_{i=1}^{n} \text{FP}_i(\hat{y}_i + c),
\]

\[
\text{FNT}_{\hat{y}}(c) = \sum_{i=1}^{n} \text{FN}_i(\hat{y}_i + c).
\]

The corresponding False Positive Rate (FPR) and True Positive Rate (TPR) functions are

\[
\text{FPR}_{\hat{y}}(c) = \frac{1}{\sum_{i=1}^{n} \text{FP}_i} \text{FPT}_{\hat{y}}(c),
\]

\[
\text{TPR}_{\hat{y}}(c) = 1 - \frac{1}{\sum_{i=1}^{n} \text{FN}_i} \text{FNT}_{\hat{y}}(c).
\]

The ROC curve for a given prediction vector \(\hat{y}\) is the plot of TPR_{\hat{y}}(c) versus FPR_{\hat{y}}(c) as the constant \(c\) is varied from \(-\infty\) to \(\infty\). The AUC is the integral,

\[
\text{AUC}(\hat{y}) = \int \text{TPR}_{\hat{y}}(c) d\text{FPR}_{\hat{y}}(c).
\]

Assuming the FPT_{\hat{y}}(c) and FNT_{\hat{y}}(c) functions are piecewise constant (as in binary classification and changepoint detection) then the ROC curve can be described as a sequence of \(Q\) points \{(\text{fpr}(\hat{y})_q, \text{tpr}(\hat{y})_q)\}_{q=1}^{Q}\) in ROC space (note that this sequence of points depends on the predicted values \(\hat{y}\)). The first point \(q = 1\) corresponds to prediction threshold \(t = -\infty\) which results in TPR=0 and FPR=0; the last point \(q = Q\) is for
\(t = \infty \) which results in \(\text{TPR}=1 \) and \(\text{FPR}=1 \) (Figure 2). The AUC can be computed using this sequence,

\[
\text{AUC}(\hat{y}) = \sum_{q=2}^{Q} (\text{fpr}(\hat{y})_q - \text{fpr}(\hat{y})_{q-1})(\text{tpr}(\hat{y})_{q-1} + \text{tpr}(\hat{y})_q)/2.
\]

(8)

In binary classification we have \(\text{fpr}(\hat{y})_{q-1} \leq \text{fpr}(\hat{y})_q \) which means while tracing the ROC curve there are no moves to the left, and all the terms in the sum above are positive. In fact this is also true of changepoint detection problems for which all the \(\text{FP}_i \) functions are non-decreasing. In these cases the ROC curve is monotonic, with \(\text{AUC}(\hat{y}) \in [0,1] \) for any predicted values \(\hat{y} \).

2.5 Looping curves motivate optimizing ROC points instead of AUC

If some of the \(\text{FP}_i \) functions are not monotonic, then it is possible to have \(\text{fpr}(\hat{y})_{q-1} > \text{fpr}(\hat{y})_q \) which results in negative terms in the AUC equation (8). Furthermore if some of the \(\text{FN}_i \) functions are not monotonic, then the ROC curve can contain loops which double count some area in ROC space. For a simple synthetic example, consider the FP/FN functions and corresponding ROC curves in Figure 2. In this example, the ROC curve has area \(\approx 1.22 \) because it contains a loop which double-counts a large portion of ROC space. This looping implies existence of ROC points \(q \) which are highly sub-optimal in terms of TPR and/or FPR (for example, \(q \in \{2, 3, 4, 5\} \) in Figure 2). By “sub-optimal” we mean ROC points that occur more toward the bottom right of ROC space, where both FP and FN are large, as is \(\min\{\text{FP}, \text{FN}\} \). Thus we observe an association between looping ROC curves, large AUC, and existence of some thresholds with highly sub-optimal error rates.

Although this seems like a rare phenomenon, we have seen this occur in real data. For example, in Figure 1 it is clearly possible to have error functions which are non-monotonic. Furthermore, in Figure 3 (left) we show error curves for two labeled examples from another real changepoint detection data set. One example has a positive label that results in a non-monotonic false negative function, and the other example has a negative label that results in a non-monotonic false positive function. When the predicted value for the negative example is about 5 greater than the predicted value for the positive example, we observe \(\text{AUC}=2 \) (Figure 3, right). This is the result of a loop in ROC space, indicating that there is some prediction threshold that results in \(\text{FPR}=1, \text{TPR}=0 \) which corresponds to 100% error and 0% accuracy. Therefore, maximizing the AUC may not be a desirable optimization objective, because it can result in ROC curves with loops and points in the lower right, with large \(\min\{\text{FP}, \text{FN}\} \) values. Instead, we propose as an optimization objective to minimize the total \(\min\{\text{FP}, \text{FN}\} \) over all ROC points. This objective means that ideal ROC points would be moved away from the lower right, toward the upper left, with the best case being a monotonic ROC curve with \(\text{AUC}=1 \). We formalize this idea in the next section, and provide a new surrogate loss function for this objective.

2.6 Proposed surrogate loss function (AUM)

In this section we propose the AUM loss function, which is short for Area Under Min(FP,FN). The intuition behind the AUM is that we want to minimize the number of prediction thresholds that result in large error rates. To formally define the AUM we must first define the minimum of total false positives and false negatives,

\[
M_{\hat{y}}(c) = \min\{\text{FPT}_{\hat{y}}(c), \text{FNT}_{\hat{y}}(c)\}.
\]

(9)

Then we define the AUM as

\[
\text{AUM}(\hat{y}) = \int_{-\infty}^{\infty} M_{\hat{y}}(c) \, dc.
\]

(10)

In summary, we compute AUM by integrating the \(M \) function over all possible constants \(c \in \mathbb{R} \). Geometrically, this corresponds to the area under the minimum of total false positive and false negative functions (Figure 2, left).
2.7 Interpretation as L1 relaxation of total Min(FP,FN) over ROC points

Computing the AUM is similar to the AUC, in that we must compute error/accuracy rates for each possible prediction threshold. First let \{\{\text{fpt}(\hat{y})_q, \text{fnt}(\hat{y})_q, \tau(\hat{y})_q\}\}_{q=1}^Q be a sequence of \(Q\) tuples, each of which corresponds to a point on the ROC curve (Figure 2, right). The fpt/fnt are false positive/negative totals whereas \(\tau\) are values such there is a change/threshold at \(M_\tau(\tau)\). As shown in Figure 2 we assume these values are increasing, \(-\infty = \tau(\hat{y})_0 < \cdots < \tau(\hat{y})_Q = \infty\). For each \(q \in \{1, \ldots, Q\}\) there is a corresponding interval of values \(c\) between \(\tau(\hat{y})_{q-1}\) and \(\tau(\hat{y})_q\) such that \(\text{FPT}_q(c) = \text{fpt}(\hat{y})_q + t\) and \(\text{FNT}_q(c) = \text{fnt}(\hat{y})_q + t\) for all \(c \in (\tau(\hat{y})_{q-1}, \tau(\hat{y})_q)\) (Figure 2, left). Then we define \(m(\hat{y})_q = \min\{\text{fpt}(\hat{y})_q, \text{fnt}(\hat{y})_q\}\) and so since \(m(\hat{y})_1 = m(\hat{y})_Q = 0\) the area under those intervals is zero, and the AUM can be computed by summing over all of the other intervals,

\[
\text{AUM}(\hat{y}) = \sum_{q=2}^{Q-1} [\tau(\hat{y})_q - \tau(\hat{y})_{q-1}]m(\hat{y})_q. \tag{11}
\]

For example, in Figure 2 there are \(Q = 7\) tuples (points on the ROC curve), five of which result in a positive AUM value, resulting in a total AUM is 75.

The AUM can be interpreted as an L1 relaxation of the following non-convex sum of Min(FP,FN) function,

\[
\text{SM}(\hat{y}) = \sum_{q=2}^{Q-1} I[\tau(\hat{y})_q \neq \tau(\hat{y})_{q-1}]m(\hat{y})_q = \sum_{q: \tau(\hat{y})_q \neq \tau(\hat{y})_{q-1}} m(\hat{y})_q. \tag{12}
\]

The difference is that the L1 norm of \(\tau(\hat{y})_q - \tau(\hat{y})_{q-1}\) in [11] has been changed to the L0 pseudo-norm in [12]. The indicator function \(I\) takes values in zero and one, which means the SM is the sum of \(m(\hat{y})_q\) values over all distinct ROC points \(q\). Geometrically, the SM function measures total distance of distinct points on the ROC curve from the left (FPR=0) or top (TPR=1, FNR=0) of ROC space. A visualization of the piecewise constant SM loss as a function of the predicted values \(\hat{y}_i\) shows that the AUM is indeed a continuous relaxation that is differentiable almost everywhere (Figure 3, right).

2.8 Properties of AUM

A few interesting properties of the AUM should be immediately apparent.

Finite. Since \(\text{FP}_i(-\infty) = 0\) and \(\text{FN}_i(\infty) = 0\) for all \(i\) (by assumption), we have \(M(\hat{y} \pm \infty) = 0\), which means the AUM integral [10] is finite, \(\text{AUM}(\hat{y}) < \infty\).

Non-negative. Since the label error is never negative, the AUM integral is never negative, \(\text{AUM}(\hat{y}) \geq 0\).

Convexity. If all of the FP\(_i\) and FN\(_i\) functions are monotonic, then the AUM is convex.

Other properties. The AUM is continuous, piecewise linear, and differentiable almost everywhere.

It can be seen that non-differentiable points in the AUM coincide with discontinuities in AUC (Figure 3, right). Furthermore at differentiable points, if AUM(\(\hat{y}\)) = 0 then AUC(\(\hat{y}\)) = 1; the converse is clearly false, however (Figure 3, right). In this figure it can also be seen that for all predictions with maximal AUC=2, we have AUM > 0, which means there are some prediction thresholds which result in FP=FN=1. This observation suggests that instead of maximizing AUC, it may be preferable to minimize AUM as a surrogate loss, to obtain AUC=1. We therefore propose an AUM gradient descent learning algorithm in the next section.

3 Algorithms

In this section we propose algorithms for computing the AUM and its gradient, and for learning a linear model.

8
3.1 Details of AUM computation

In previous sections we have assumed that a sequence of Q points on the ROC curve (or equivalently intervals of FP/FN functions) can be computed, and in this section we explain how to do that. Recall from Section 2.3 that the FP, FN, functions have an exact representation in terms of breakpoints. Let there be a total of B breakpoints in the error functions over all n labeled training examples, where each breakpoint $b \in \{1, \ldots, B\}$ is represented by the tuple $(v_b, \Delta FP_b, \Delta FN_b, I_b)$. The $I_b \in \{1, \ldots, n\}$ is an example index, so there are changes $\Delta FP_b, \Delta FN_b$ at predicted value $v_b \in \mathbb{R}$ in the error functions FP_{I_b}, FN_{I_b} (Figure 3). For example in binary classification, there are $B = n$ breakpoints (same as the number of labeled training examples); for each breakpoint $b \in \{1, \ldots, B\}$ we have $v_b = 0$ and $I_b = b$. For breakpoints b with positive labels $y_b = 1$ we have $\Delta FP = 0, \Delta FN = -1$, and for negative labels $y_b = -1$ we have $\Delta FP = 1, \Delta FN = 0$. In changepoint detection we have more general error functions, which may have more than one breakpoint per example. For example the labeled data sequence shown in Figure 4 is a single labeled training example i with error functions that can be represented by four breakpoints b with the same $I_b = i$ value.

Given a prediction vector $\hat{y} = [\hat{y}_1 \cdots \hat{y}_n]^\top \in \mathbb{R}^n$ we can compute a prediction threshold $F_b = v_b - \hat{y}_{I_b}$ for each breakpoint $b \in \{1, \ldots, B\}$. The prediction thresholds $t \in \{t_1, \ldots, t_B\}$ are where there are changes in the total error functions $\text{FPT}_{\hat{y}}(t), \text{FNT}_{\hat{y}}(t)$ defined in equations (13-14). These functions can be exactly represented by the sequences of breakpoints $b \in \{1, \ldots, B\}$ error values

$$FP_b = \sum_{j: t_j < t_b} \Delta FP_j,$$

$$FP_b = \sum_{j: t_j \leq t_b} \Delta FP_j,$$

$$FN_b = \sum_{j: t_j \geq t_b} -\Delta FN_j,$$

$$FN_b = \sum_{j: t_j > t_b} -\Delta FN_j.$$

The FP_b, FN_b are the error values before the threshold t_b, whereas FP_b, FN_b are the error values after the threshold. We sort the breakpoints by threshold, yielding a permutation $\{s_1, \ldots, s_B\}$ of the indices $\{1, \ldots, B\}$ such that for every $q \in \{2, \ldots, B\}$ we have $t_{s_{q-1}} \leq t_{s_q}$. All of the error values FP_b, FP_b, FN_b, FN_b, for every $b \in \{1, \ldots, B\}$, can then be computed via a modified cumulative sum (starting with $FP_1 = 0$ and $FN_B = 0$).

In terms of the notation of Section 2.3, we have $Q = B + 1$ points (not necessarily unique) on the ROC curve such that $\tau(\hat{y})_q = t_{s_q}$ and $m(\hat{y})_q = \min\{FP_{s_q}, FN_{s_q}\} = \min\{FP_{s_{q-1}}, FN_{s_{q-1}}\}$. The AUM can then be computed via

$$\text{AUM}(\hat{y}) = \sum_{q=2}^{B} (t_{s_q} - t_{s_{q-1}}) \min\{FP_{s_{q-1}}, FN_{s_{q-1}}\},$$

$$\text{AUM}(\hat{y}) = \sum_{q=2}^{B} (t_{s_q} - t_{s_{q-1}}) \min\{FP_{s_q}, FN_{s_q}\}.$$

The equations above state that the AUM can be computed by multiplying each threshold difference $t_{s_q} - t_{s_{q-1}}$ by the minimum below breakpoint s_q (18) or above breakpoint s_{q-1} (17). Since the slowest operation is the sort, the overall time complexity for computing the AUM is $O(B \log B)$.

3.2 Gradient computation

First we note that the AUM function is not differentiable everywhere, so the gradient is not defined everywhere (e.g., orange dots in Figure 3 right). Second we note that the AUM function can be non-convex, in which case the sub-differential from convex analysis is not defined [Rockafellar 1970]. Instead, we propose an algorithm...
Algorithm 1 AUM and Directional Derivatives

1: **Input:** Predictions $\hat{y} \in \mathbb{R}^n$, breakpoints in error functions $v_b, \Delta FP_b, \Delta FN_b, I_b$ for all $b \in \{1, \ldots, B\}$.
2: Initialize to zero the AUM $\in \mathbb{R}$ and directional derivative matrix $D \in \mathbb{R}^{n \times 2}$.
3: $t_b \leftarrow v_b - \hat{y}_b$ for all b.
4: $s_1, \ldots, s_B \leftarrow \texttt{SortedIndices}(t_1, \ldots, t_B)$.
5: Compute $\{FP_b, FN_b\}$ for all b using s_1, \ldots, s_B and [13][16].
6: **for** $b \in \{2, \ldots, B\}$ **do**
7: $\text{AUM} + = (t_{s_b} - t_{s_{b-1}}) \min\{FP_b, FN_b\}$.
8: **for** $b \in \{1, \ldots, B\}$ **do**
9: $D_{I_b,1} + = \min\{FP_b, FN_b\} - \min\{FP_b - \Delta FP_b, FN_b - \Delta FN_b\}$
10: $D_{I_b,2} + = \min\{FP_b + \Delta FP_b, FN_b + \Delta FN_b\} - \min\{FP_b, FN_b\}$
11: **Output:** AUM and matrix D of directional derivatives.

for computing the AUM directional derivatives, which are defined everywhere. We recall the general definition of a directional derivative.

Definition 1. Given vectors $x, v \in \mathbb{R}^n$ and a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, the directional derivative of f at x in the direction of v is the function $\nabla_v f : \mathbb{R}^n \rightarrow \mathbb{R}$ given by

$$\nabla_v f(x) = \lim_{h \to 0} \frac{f(x + hv) - f(x)}{h}. \quad (19)$$

We would like to compute $\nabla_v \text{AUM}(\hat{y})$, for a set of directions v. We are interested in computing the directional derivative along a single dimension $i \in \{1, \ldots, n\}$, in either the negative or positive direction, which correspond to using direction vectors v with -1 or 1 at the i-th position, and zeros at each other position,

$$v(-1, i) = [0 \cdots -1 \cdots 0]^\top, \quad [20]$$
$$v(1, i) = [0 \cdots 1 \cdots 0]^\top. \quad [21]$$

The intuition of these direction vectors is that each will give us the rate of change of AUM, if a single prediction i is either increased or decreased. We propose an algorithm for efficiently computing the following $n \times 2$ matrix of directional derivatives,

$$D_f(x) = \begin{bmatrix} \nabla_v(-1,1)f(x) & \ldots & \nabla_v(-1,n)f(x) \\ \nabla_v(1,1)f(x) & \ldots & \nabla_v(1,n)f(x) \end{bmatrix}^\top. \quad \text{(22)}$$

We will compute $D_{\text{AUM}}(\hat{y})$, which is the matrix of directional derivatives for a given prediction vector. If we have equality of elements of all rows of this matrix, i.e., $\nabla_v(-1,i)\text{AUM}(\hat{y}) = \nabla_v(1,i)\text{AUM}(\hat{y})$ for all i, then the gradient does exist at \hat{y} and is equal to that value. The following theorem shows how to compute the elements of this matrix.

Theorem 1. The AUM directional derivatives for a particular example $i \in \{1, \ldots, n\}$ can be computed using the following equations.

$$\nabla_v(-1,i)\text{AUM}(\hat{y}) = \sum_{b:T_b=i} \min\{FP_b, FN_b\} - \min\{FP_b - \Delta FP_b, FN_b - \Delta FN_b\}, \quad (23)$$
$$\nabla_v(1,i)\text{AUM}(\hat{y}) = \sum_{b:T_b=i} \min\{FP_b + \Delta FP_b, FN_b + \Delta FN_b\} - \min\{FP_b, FN_b\}. \quad (24)$$
Figure 4: In a real changepoint detection problem with $n = 54$ labeled examples, minimizing the AUM tends to increase train AUC and label error rates. **Left:** we used AUM gradient descent on the n-vector of predicted values \hat{y} in the train set (initial predictions chosen by minimizing label errors for each example). Decreases in AUM happen during the same iterations as increases in AUC and label error rates. **Middle:** ROC curves before and after using AUM gradient descent on the n-vector of predicted values (dot shows a point on each ROC curve with minimum label errors). **Right:** optimizing the p-vector of weights in a linear model ($p = 27$ features, initial weights minimize an un-regularized squared hinge loss summed over labeled examples). Note that AUC=0.85 is unchanged by the optimization but AUM decreases and error rate increases.

Proof. We can compute AUM using either (17) or (18). To compute a directional derivative we need to evaluate $AUM(\hat{y} + hv(d, i))$. To do that we must use (17) if $d = -1$ and (18) if $d = 1$. First consider the case of $d = 1$, if $t_{s_{b-1}} = t_{s_b}$, and $I_{s_{b-1}} = i$. In that case the analogous term in $AUM(\hat{y} + hv(d, i))$ will have $v_{s_{b-1}} - \hat{y}_{s_{b-1}} - h < v_{s_b} - \hat{y}_{s_b}$. Then the min in the corresponding term must be $\min\{FP_{s_{b-1}} + \Delta FP_{s_{b-1}}, FN_{s_{b-1}} + \Delta FP_{s_{b-1}}\}$ and so

$$\nabla_{v(1,i)}AUM(\hat{y}) = \sum_{b=2}^{B} (I[I_{s_{b-1}} = i] - I[I_{s_b} = i]) \min\{FP_{s_{b-1}} + \Delta FP_{s_{b-1}}, FN_{s_{b-1}} + \Delta FP_{s_{b-1}}\},$$

(25)

$$= \sum_{b=2}^{B} I[I_{s_{b-1}} = i] \min\{FP_{s_{b-1}} + \Delta FP_{s_{b-1}}, FN_{s_{b-1}} + \Delta FP_{s_{b-1}}\}$$

$$- \sum_{b=2}^{B} I[I_{s_b} = i] \min\{FP_{s_{b-1}} + \Delta FP_{s_{b-1}}, FN_{s_{b-1}} + \Delta FP_{s_{b-1}}\},$$

(26)

$$= \sum_{b=1}^{B} I[I_{s_b} = i] \min\{FP_{s_b} + \Delta FP_{s_b}, FN_{s_b} + \Delta FP_{s_b}\}$$

$$- \sum_{b=1}^{B} I[I_{s_{b+1}} = i] \min\{FP_{s_{b+1}}, FN_{s_{b+1}}\},$$

(27)

The first equality comes from the definition of the directional derivative, the second distributes the min, and the third re-writes some of the $b-1$ indices as b. The sum can be extended to start at $b = 1$ since $FP_{s_1} = 0$ (the first min is zero). Finally, re-writing the sums and removing the indicator functions obtains the desired result. The proof for the case of $d = -1$ is analogous.
3.3 Pseudocode and complexity analysis

We propose to compute the matrix of directional derivatives using Algorithm 1 which inputs a prediction vector \(\hat{y} \in \mathbb{R}^n \) and an exact description of the error functions in terms of breakpoints \(v_b, \Delta FP_b, \Delta FN_b, I_b \). The first step is to compute thresholds \(I_b = v_b - \hat{y} I_b \) in the total error functions (line 3) which are then sorted (line 4). The sorted indices are then used to compute modified cumulative sums of false positives and false negatives, \(\hat{FP}_b, \hat{FP}_b, \hat{FN}_b, \hat{FN}_b \), for each breakpoint \(b \) (line 5). Note that for FP we start with \(\hat{FP}_1 = 0 \) and add in the forward direction, whereas for FN we start with \(\hat{FN}_B = 0 \) and subtract in the reverse direction. Each iteration of the for loop over intervals of threshold values (line 6) adds to the AUM (line 7). The time complexity of Algorithm 1 is log-linear \(O(B \log B) \) because of the sort (line 4). Since there is at least one breakpoint in each of the \(n \) example-specific error functions, the total number of breakpoints \(B \geq n \). Therefore, computing the AUM and its directional derivatives is \(O(n \log n) \), asymptotically slower than \(O(n) \) margin-based loss functions by a log factor.

3.4 Gradient descent algorithm for predicted values

We propose gradient descent optimization algorithms that use the AUM directional derivatives computed using Theorem 1 and Algorithm 1. First to study how minimizing the train AUM affects the train AUC, we propose to optimize the \(n \)-vector of predictions \(\hat{y} \). When the AUM is non-convex, the initialization of the algorithm is important. Therefore when optimizing the vector of predictions, we propose initializing each \(\hat{y}_i \) to a value with minimum label errors,

\[
\hat{y}_i^{(0)} = \arg \min_x \text{FP}_i(x) + \text{FN}_i(x).
\]

(28)

After initialization we need to compute a descent direction; typically the negative gradient is used. Recall that since the AUM has non-differentiable points, the gradient is not defined at these points. The “gradient” we propose to use is the mean of the two columns of the directional derivative matrix, \(\bar{D}_{\text{AUM}}(\hat{y}) \in \mathbb{R}^n \), with each element \(i \in \{1, \ldots, n\} \) of this vector defined as \([\nabla_{v(-1,i)} \text{AUM}(\hat{y}) + \nabla_{v(1,i)} \text{AUM}(\hat{y})]/2 \). When running our gradient descent algorithm, we have observed that it empirically almost always stays at differentiable points (i.e., columns of directional derivative matrix are equal). However, we have observed a few cases where the gradient descent algorithm visits non-differentiable points, for which there is at least one row in the directional derivative matrix with entries that are not equal. Examples of such directional derivative rows \([\nabla_{v(-1,i)} \text{AUM}(\hat{y}), \nabla_{v(1,i)} \text{AUM}(\hat{y})] \) that we have observed include \([[-0.0019, -0.0011]\) and \([-0.0006, 0]\), both of which indicate that the loss would increase if the predicted value is decreased. We also perform line search via grid search in order to obtain a step size \(\alpha^{(j)} \) which results in the largest decrease in AUM. Also let \(\beta^{(j)} \) be an intercept or threshold with minimal error after taking the line search step (it only affects the label error/accuracy and not the AUM). Note that this intercept can be efficiently computed at the same time as the AUM and its directional derivative matrix, by a simple linear scan over all thresholds. We then perform gradient descent updates for each iteration \(j \in \{0, 1, \ldots\} \) via

\[
\hat{y}^{(j+1)} = \hat{y}^{(j)} - \alpha^{(j)} \bar{D}_{\text{AUM}}(\hat{y}^{(j)}) + \beta^{(j)}.
\]

(29)

3.5 Gradient descent algorithm for linear model

In the context of making predictions on a held-out test set, we consider a linear model \(f(x) = w^T x + \beta \) parameterized by a weight vector \(w \in \mathbb{R}^p \) to optimize via gradient descent, and an intercept \(\beta \in \mathbb{R} \) optimized via a linear scan to find a threshold with minimum label error. Let \(X \in \mathbb{R}^{n \times p} \) be the feature/input matrix, so \(Xw + \beta \in \mathbb{R}^n \) is the vector of predicted values on the train set. We consider an initialization \(w^{(0)} \) based on minimizing a convex squared hinge loss with L1 regularization \[Rigaill et al., 2013\]. This convex loss function has a minimum for each example at predicted values that achieve minimum label errors, so we expect this
4 Empirical Results

We empirically study AUM minimization in the context of binary classification and changepoint detection problems. Our goal is to demonstrate that AUM minimization can result in AUC maximization with respect to train and test data.

4.1 AUM gradient descent optimizes train AUC

In this experiment our goal was to demonstrate that minimizing the AUM results in maximizing the AUC in the train set. We used the chipseq data (a benchmark for labeled changepoint detection) from the UCI repository \cite{Asuncion:2007}, treating each (set.name, fold) as a different train set, with preprocessing as previously described\footnote{github.com/tdhock/feature-learning-benchmark}. In brief, for each labeled example, changepoint models were computed for a range of penalty values, which resulted in models with a range of changepoints (some with few changepoints, others with many). Then the label error rate for each model was computed, along with a penalty $\hat{\lambda}_i$ which resulted in minimum label errors for each labeled example i. Finally these penalty values were used as the initial prediction vector $\hat{\mathbf{y}} = [-\log \hat{\lambda}_1 \cdots -\log \hat{\lambda}_n]$, which was used as the optimization variable in an AUM gradient descent algorithm. A line search was used for the step size so that the AUM was guaranteed to decrease at each iteration. Overall there were 68 different train sets with the number of labeled examples ranging from $n = 7$ to 1011, and the total number of breakpoints in error functions ranging from $B = 47$ to 3104.

We expected that by using the predicted values directly as the optimization variable in gradient descent, we should be able to obtain ROC curves that were significantly different from the initialization (hopefully with larger AUC, even though the initialization came from minimizing the label error independently for each example). In a small number of train sets we observed that the optimization resulted in little or no change to both AUM and AUC; this happened when the initialization was close to or at a stationary point of the AUM.
Figure 6: Test AUC in binary classification (images of 0/1 digits). Fixed test set with balanced classes (50% positive, 50% negative labels), and three train sets with different class imbalance (1%, 5%, 50% positive labels). **Left (a):** AUM count is more accurate than AUM rate. **Right (b):** AUM count is at least as accurate as baselines, and sometimes more accurate.

(for example, when AUM=0 and AUC=1). However in most of the train sets we observed that minimizing the AUM results in increased AUC (on the train set).

In one representative train set (H3K4me3_XJ_immune fold 4 which has \(n = 54 \) labeled examples with a total of \(B = 347 \) breakpoints in error functions), we observed that the AUC and label error rate increases during the same iterations that the AUM decreases (Figure 4, left). Before optimization the ROC curve was highly non-monotonic with a sharp point in the upper left corner; after AUM optimization the ROC curve became more regular with increased area (Figure 4, middle). This result suggests that AUM gradient descent can be used to maximize the AUC, although the label error rate also increases.

We performed a second experiment, this time optimizing \(p = 27 \) weights in a linear model parameter vector which was used to compute a prediction for each of the \(n = 54 \) labeled examples. The weights were initialized by using a gradient descent algorithm to minimize an un-regularized squared hinge loss that is a convex relaxation of the label error [Rigaill et al., 2013]. We expected the constraints of the linear model to reduce the accuracy with respect to the previous experiment (direct optimization of predicted values). We observed that after optimizing the weights using AUM gradient descent, the train AUC remained the same, but the train error rate increased (Figure 4, right). This experiment shows that the constraints of a linear model can prevent AUM minimization from resulting in AUC maximization (even in a data set for which it is possible to achieve larger AUC values).

4.2 Test AUM and AUC in changepoint problems

In these experiments, the goal was to demonstrate that test AUC correlates with test AUM using our proposed linear model based on AUM minimization. We considered supervised changepoint detection data sets from a public repository[^1]. It included pre-defined fold IDs that we used to define train/test splits over labeled examples of changepoint detection problems. In the five train sets that we analyzed (Figure 5), the number of labeled examples ranged from \(n = 216 \) to 3322, the number of features from \(p = 26 \) to 117, and the total number of error function breakpoints from \(B = 1275 \) to 7732. As explained in Section 3.5, our initialization and baseline was a linear model learned via gradient descent on a convex squared hinge loss with L1 regularization [Rigaill et al., 2013]. To determine the extent to which the result depends on random initialization, we used four different seeds to select four different initial models. Some of the random seeds resulted in the same initial weights, despite having different seeds.

For each train set and random seed we used AUM gradient descent and selected the number of iterations via 4-fold cross-validation (take mean validation AUC/AUM over folds, then select iterations by maximizing AUC or minimizing AUM). In general we observed that both methods for selecting the number of iterations resulted in increased test AUC and decreased test AUM (middle three panels of Figure 5). However for some

[^1]: github.com/tdhock/neuroblastoma-data
Figure 7: Speed comparison, time to compute gradient of various loss functions for data sets with variable number n of labeled examples. **Left:** for binary classification our timings suggest that AUM is $O(n \log n)$, faster than a $O(n^2)$ squared hinge loss summed over all pairs of positive/negative examples, and slower than $O(n)$ Logistic loss summed over all labeled examples. **Right:** for changepoint detection problems we observed that AUM is asymptotically similar to, but slower than, a squared hinge loss summed over labeled examples.

The AUM gradient descent did not improve over the initialization (left and right panels). This can be explained because some splits had very different train and test sets (left) or the selected number of gradient descent iterations was zero (right). Overall these real data experiments indicate that AUM minimization often results in AUC maximization on held-out test data.

4.3 Test AUC in binary classification

The goal in this section was to study the accuracy of our proposed AUM loss function in unbalanced binary classification problems. Our experiment used the zip.train and zip.test image classification data from [Hastie et al., 2009]. Each input is a 16 × 16 image which is represented by a vector $x \in [-1, 1]^{256}$. There are 10 classes (one for each digit), but we only used two classes (0/1) in order to study binary classification. For both the zip.train and zip.test files, we discarded some $y_i = 0$ labels in order to obtain sets with equal numbers of positive and negative labels (total 2010 in train, 528 in test). Then we generated 10 different train sets by randomly selecting 1000 examples with a class balance in $\{1\%, 5\%, 50\%\}$. The goal is to learn from the unbalanced train set data and then provide accurate predictions (as measured by AUC) on the balanced test set. The learning algorithms that we considered in our comparison were all based on gradient descent with constant step size and early stopping regularization. The step size and number of iterations hyper-parameters were chosen using grid search on a held-out validation set. Since AUM is a full gradient method (not stochastic), we compared with several other loss functions using the full gradient method.

In our first comparison we wanted to understand if it is beneficial to normalize the AUM (use relative error rates rather than absolute error counts). In equations (10–11) we defined the AUM as the area under the minimum of false positive and false negative counts, but we could instead use rates. To compute AUM using rates, we need only change FPT/FNT functions in the minimum function to FPR/FNR. In Figure 6 we refer to this variant as AUM.rate, and the original version as AUM.count. It is clear from Figure 6(a) that the AUM.count loss function variant has consistently larger test AUC than AUM.rate. The advantage

[https://web.stanford.edu/~hastie/ElemStatLearn/]
of \(AUM.count \) becomes greater as the class imbalance is increased. For example, with no class imbalance median test AUC for \(AUM.count \) is 0.9993 and for \(AUM.rate \) is 0.9979 \((p = 0.03\) in one-sided \(t_p \)-test\); for large class imbalance with 1% positive labels median test AUC for \(AUM.count \) is 0.9979 and for \(AUM.rate \) is 0.9928 \((p = 0.004\)\). These results suggest that it is not beneficial to normalize the AUM, and it is more accurate to simply minimize the absolute \(\min(\text{FP, FN}) \) counts.

In our second comparison we wanted to compare AUM optimization to standard baseline loss functions for binary classification. As a baseline for margin loss functions (summed over labeled examples), we used a weighted version of the logistic loss \(w_i \log[1 + \exp(y_if(x_i))] \). The weights \(w_i \in \mathbb{R} \) are defined in order to ensure that the sum of weights over all negative/positive examples is the same \cite{Menon et al., 2013}. The total number of positive examples is \(N_1 = \lvert \{i : y_i = 1\} \rvert \) and negative examples is \(N_{-1} = \lvert \{i : y_i = -1\} \rvert \); the weights are therefore \(w_i = 1/N_{y_i} \). For example when the class balance is 10%, there are \(N_1 = 100 \) positive examples and \(N_{-1} = 900 \) negative examples. Each positive example \(i \) has a weight of \(w_i = 1/100 \), and each negative example \(i \) has a weight of \(w_i = 1/900 \). The total weight over each class \(y \in \{1, -1\} \) is \(\sum_{i:y_i = y} w_i = 1 \), which makes both classes equally important in the loss function. As a baseline for pairwise loss functions (summed over all pairs of positive \(y_j = 1 \) and negative \(y_i = -1 \) examples), we used a squared hinge loss, \([1 - f(x_j) + f(x_i)]_+^2 \). Both baselines were chosen because they are supposed to maximize AUC (rather than the accuracy rate). We observed in Figure 6(b) that the learning algorithm using the AUM loss had test AUC values consistently better than or competitive with the baselines. The AUM loss had median test AUC that was consistently larger than the weighted logistic loss, with the largest difference for 1% positive labels (AUM=0.9979, logistic=0.9950, \(p < 0.06 \)). There were smaller differences in median test AUC between the AUM loss and the squared hinge all pairs loss, with the largest difference for balanced labels (AUM=0.9993, pairs=0.9991, \(p < 0.19 \)). Overall these experiments demonstrate that the AUM loss is highly competitive with the baseline loss functions, even when the train data set has large class imbalance.

4.4 Speed comparison

The goal of this section is to show that AUM gradient computation has comparable speed to existing loss functions. Since the AUM is a full gradient algorithm (computes gradient with respect to full training set), we compared to other full gradient methods (no stochastic / minibatch methods). In the case of binary classification, we compared the gradients of three loss functions, as shown in (Figure 7, left): squared hinge all pairs \(O(n^2) \), AUM \(O(n \log n) \), and logistic \(O(n) \). For a fixed budget of computation time (1 second), the gradient of the AUM loss can be computed for much larger problems \((n = \text{millions})\) than the naïve square hinge all pairs approach \((n = \text{thousands})\). Although the gradient for the AUM has a slower asymptotic runtime than logistic loss, an AUM-based model creates substantially better test data AUC, especially with imbalanced datasets.

We also did a speed test in the context of real changepoint detection problems, by comparing the AUM to a squared hinge loss summed over each of the \(n \) labeled examples \cite{Rigaill et al., 2013}. We observed that the AUM gradient is slower than the squared hinge loss in terms of asymptotic complexity (Figure 7 right). For example we observed about 10ms for AUM versus 1ms for the squared hinge for about \(n \approx 5000 \) examples with approximately 5 breakpoints in each example-specific error function. Overall these data show that the AUM has comparable speed to previously proposed loss functions for AUC optimization in binary classification, and changepoint detection.

5 Discussion and conclusions

In this paper we proposed the new AUM loss function which can be used in the context of prediction problems with false positive/negative rates such as in supervised binary classification and changepoint detection. We showed that the AUM can be interpreted as an L1 relaxation of a loss function that sums the \(\min(\text{FP, FN}) \) rate over all distinct points on the ROC curve. Minimizing the AUM therefore encourages the points on the ROC curve to be in the upper left of the (FPR, TPR) space. We proposed a new algorithm for efficiently computing the AUM and its directional derivatives. For \(n \) labeled training examples and \(B \) total breakpoints
in all error functions, our algorithm for computing the $n \times 2$ directional derivative matrix is $O(B \log B)$ time, which is much faster than previous $O(n^2)$ full gradient approaches that naively sum over all pairs of positive and negative examples.

In our empirical comparisons with several baseline full gradient algorithms, we observed comparable or better test AUC using our proposed method. We have shown that in binary classification, the AUM loss often out-performs baseline margin and pairwise losses (especially with un-balanced labels in the training data). We observed that in changepoint detection problems with non-monotonic FP/FN functions, there is a tradeoff between AUC and accuracy that does not exist in binary classification problems. If maximizing accuracy with respect to the labels is important, we can use existing convex loss functions which are surrogates to minimizing label error rates [Rigaill et al., 2013]. If maximizing AUC is important, then we can minimize our new AUM loss function which we have shown empirically results in AUC maximization (but lower accuracy). This tradeoff between AUC and accuracy means that the max accuracy model results in a highly non-monotonic ROC curve with many sub-optimal points, whereas the max AUC model has a more regular ROC curve (Figure 4). Overall our empirical results indicate that the AUM is a useful surrogate loss function for optimizing ROC curves.

For future work, we have already started exploring the connection between AUM and other AUC relaxations, in order to create new AUC optimization algorithms. In fact, using an L1 relaxation pairwise loss (hinge with margin of zero) is quite similar to our approach (AUM integrates the min of FP and FN over all thresholds, whereas pairwise loss integrates the product). This suggests that it should be possible to compute the full gradient for a pairwise loss in log-linear time, so we are currently exploring a new algorithm based on that idea. Additionally, we would like to consider several variants of our new AUM loss function. In this work we proposed a full gradient algorithm (takes a step defined by all training examples), and we would additionally like to explore a batch variant (takes a step defined by a subset of training examples). Although that would be non-trivial since the AUM is not separable over training examples, it would be interesting to compare a batch variant with recent work on stochastic gradient methods for AUC optimization [Ying et al., 2016]. Finally our current algorithm used either constant step size or a grid search, but a faster learning algorithm could potentially be obtained by exploiting the piecewise linear nature of the AUM during the step size computation.

Author statement. The authors declare that they have no conflict of interest. TDH contributed to the conception of ideas, proving theorems, implementing the algorithms, making figures, writing and revising the text. JH contributed to analysis of data, creation of figures, writing and revising the text.

Reproducible Research Statement. All of the software and data required to make the figures in this paper can be downloaded from https://github.com/tdhock/max-generalized-auc. An R package with C/C++ code that implements Algorithm 1 is available at https://github.com/tdhock/aum.

References

S. Aminikhanghahi and D. J. Cook. A survey of methods for time series change point detection. Knowledge and information systems, 51(2):339–367, 2017.

A. Asuncion and D. Newman. UCI machine learning repository, 2007.

D. Bamber. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of mathematical psychology, 12(4):387–415, 1975.

A. Barnwal, H. Cho, and T. Hocking. Survival regression with accelerated failure time model in xgboost. Preprint arXiv:2006.04920, 2020.

T. Calders and S. Jaroszewicz. Efficient AUC optimization for classification. In European Conference on Principles of Data Mining and Knowledge Discovery, pages 42–53. Springer, 2007.
C. L. Castro and A. P. Braga. Optimization of the area under the ROC curve. In 2008 10th Brazilian Symposium on Neural Networks, pages 141–146. IEEE, 2008.

C. Cortes and M. Mohri. AUC optimization vs. error rate minimization. Advances in neural information processing systems, 16(16):313–320, 2004.

A. Drouin, T. Hocking, and F. Laviolette. Maximum margin interval trees. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 4947–4956. Curran Associates, Inc., 2017.

J. P. Egan and J. P. Egan. Signal detection theory and ROC-analysis. Academic press, 1975.

C. Ferri, P. Flach, and J. Hernández-Orallo. Learning decision trees using the area under the ROC curve. In ICML, volume 2, pages 139–146, 2002.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. Journal of machine learning research, 4(Nov):933–969, 2003.

G. Han and C. Zhao. AUC maximization linear classifier based on active learning and its application. Neurocomputing, 73(7):1272 – 1280, 2010. ISSN 0925-2312. Advances in Computational Intelligence and Learning.

D. J. Hand. Measuring classifier performance: a coherent alternative to the area under the roc curve. Machine learning, 77(1):103–123, 2009.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer Series in Statistics. Springer, Springer Science+Business Media, LLC, 233 Spring Street, New York NY 10013, USA, second edition, 2009.

A. Herschtal and B. Raskutti. Optimising area under the ROC curve using gradient descent. In Proceedings of the twenty-first international conference on Machine learning, page 49, 2004.

A. Herschtal, B. Raskutti, and P. K. Campbell. Area under ROC optimisation using a ramp approximation. In Proceedings of the 2006 SIAM International Conference on Data Mining, pages 1–11. SIAM, 2006.

T. Hocking and J. Vargovich. Linear time dynamic programming for the exact path of optimal models selected from a finite set. arXiv:2003.02808, 2020.

T. Hocking, V. Boeva, G. Rigail, G. Schleiermacher, I. Janoueix-Lerosey, O. Delattre, W. Richer, F. Bourdeaut, M. Suguro, M. Seto, F. Bach, and J. Vert. Seganndb: interactive web-based genomic segmentation. Bioinformatics, 30(11):1539–46, 2014.

T. D. Hocking and G. Bourque. Machine Learning Algorithms for Simultaneous Supervised Detection of Peaks in Multiple Samples and Cell Types. In Proc. Pacific Symposium on Biocomputing, volume 25, pages 367–378, 2020.

T. D. Hocking, G. Schleiermacher, I. Janoueix-Lerosey, V. Boeva, J. Cappo, O. Delattre, F. Bach, and J.-P. Vert. Learning smoothing models of copy number profiles using breakpoint annotations. BMC Bioinformatics, 14(164), May 2013.

T. D. Hocking, G. Rigail, and G. Bourque. PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data. In Proc. 32nd ICML, pages 324–332, 2015.

T. D. Hocking, P. Goerner-Potvin, A. Morin, X. Shao, T. Pastinen, and G. Bourque. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning. Bioinformatics, 33(4):491–499, 11 2016. ISSN 1367-4803.
T. D. Hocking, G. Rigaill, P. Fearnhead, and G. Bourque. Constrained Dynamic Programming and Supervised Penalty Learning Algorithms for Peak Detection in Genomic Data. *Journal of Machine Learning Research*, 21(87):1–40, 2020.

T. Joachims. A support vector method for multivariate performance measures. In *Proceedings of the 22nd international conference on Machine learning*, pages 377–384, 2005.

W. Kotlowski, K. Dembczynski, and E. Huellermeier. Bipartite ranking through minimization of univariate loss. In *ICML*, 2011.

A. Liehrmann, G. Rigaill, and T. D. Hocking. Increased peak detection accuracy in over-dispersed ChIP-seq data with supervised segmentation models. *BMC Bioinformatics*, 22(323), 2021.

C. X. Ling, J. Huang, H. Zhang, et al. Auc: a statistically consistent and more discriminating measure than accuracy. In *Ijcai*, volume 3, pages 519–524, 2003.

R. Maidstone, T. Hocking, G. Rigaill, and P. Fearnhead. On optimal multiple changepoint algorithms for large data. *Statistics and Computing*, pages 1–15, 2016. ISSN 1573-1375.

H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically larger than the other. *The annals of mathematical statistics*, pages 50–60, 1947.

P. Martínez-Camblor, N. Corral, C. Rey, J. Pascual, and E. Cernuda-Morollón. Receiver operating characteristic curve generalization for non-monotone relationships. *Statistical methods in medical research*, 26(1): 113–123, 2017.

A. Menon, H. Narasimhan, S. Agarwal, and S. Chawla. On the statistical consistency of algorithms for binary classification under class imbalance. In S. Dasgupta and D. McAllester, editors, *Proceedings of the 30th International Conference on Machine Learning*, volume 28 of *Proceedings of Machine Learning Research*, pages 603–611, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL http://proceedings.mlr.press/v28/menon13a.html.

H. Narasimhan and S. Agarwal. A structural svm based approach for optimizing partial auc. In *International Conference on Machine Learning*, pages 516–524. PMLR, 2013.

F. Provost and T. Fawcett. Analysis and visualization of classifier performance with nonuniform class and cost distributions. In *Proceedings of AAAI-97 Workshop on AI Approaches to Fraud Detection & Risk Management*, pages 57–63, 1997.

A. Rakotomamonjy. Optimizing area under ROC curve with SVMs. In *ROCAI*, pages 71–80, 2004.

G. Rigaill, T. Hocking, J.-P. Vert, and F. Bach. Learning sparse penalties for change-point detection using max margin interval regression. In *Proc. 30th ICML*, pages 172–180, 2013.

R. T. Rockafellar. *Convex analysis*. Princeton Mathematical Series. Princeton University Press, Princeton, N. J., 1970.

C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire. Margin-based ranking meets boosting in the middle. In *International Conference on Computational Learning Theory*, pages 63–78. Springer, 2005.

C. Scott. Calibrated asymmetric surrogate losses. *Electronic Journal of Statistics*, 6(none):958 – 992, 2012. doi: 10.1214/12-EJS699. URL https://doi.org/10.1214/12-EJS699

G. J. van den Burg and C. K. Williams. An evaluation of change point detection algorithms. *arXiv preprint arXiv:2003.06222*, 2020.

S. Wang, D. Li, N. Petrick, B. Sahiner, M. G. Linguraru, and R. M. Summers. Optimizing area under the roc curve using semi-supervised learning. *Pattern recognition*, 48(1):276–287, 2015.
L. Yan, R. H. Dodier, M. Mozer, and R. H. Wolniewicz. Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic. In *Proceedings of the 20th international conference on machine learning (icml-03)*, pages 848–855, 2003.

Y. Ying, L. Wen, and S. Lyu. Stochastic online auc maximization. In *Proceedings of the 30th International Conference on Neural Information Processing Systems*, pages 451–459, 2016.

Z. Yuan, Y. Yan, M. Sonka, and T. Yang. Robust deep auc maximization: A new surrogate loss and empirical studies on medical image classification. Preprint arXiv:2012.03173, 2020.

P. Zhao, S. C. Hoi, R. Jin, and T. Yang. Online AUC maximization. In *28th international conference on machine learning*, 2011.