A PARAMETER STUDY FOR BAROCLINIC VORTEX AMPLIFICATION

NATALIE RAETTIG 1,2, VLADIMIR LYRA 2,3,4, AND HUBERT KLAHR 1

1 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany; raettig@mpia.de, klahr@mpia.de
2 Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
3 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; Wladimir.Lyra@jpl.nasa.gov

ABSTRACT

Recent studies have shown that baroclinic vortex amplification is strongly dependent on certain factors, namely, the global entropy gradient, the efficiency of thermal diffusion and/or relaxation as well as numerical resolution. We conduct a comprehensive study of a broad range and combination of various entropy gradients, thermal diffusion and thermal relaxation timescales via local shearing sheet simulations covering the parameter space relevant for protoplanetary disks. We measure the Reynolds stresses as a function of our control parameters and see that there is angular momentum transport even for entropy gradients as low as $\beta = -d \ln \Sigma / d \ln r = 1/2$. Values we expect in protoplanetary disks are between $\beta = 0.5$–2.0. The amplification-rate of the perturbations, Γ, appears to be proportional to β^2 and thus proportional to the square of the Brunt-Väisälä frequency ($\Gamma \propto \beta^2 \propto N^2$). The saturation level of Reynolds stresses, on the other hand, seems to be proportional to $\beta^{1/2}$. This highlights the importance of baroclinic effects even for the low entropy gradients expected in protoplanetary disks.

Key words: accretion, accretion disks – circumstellar matter – hydrodynamics – instabilities – methods: numerical – planetary systems – turbulence

Online-only material: color figures

1. INTRODUCTION

Angular-momentum transport and turbulence are important issues concerning protoplanetary disks. Magnetohydrodynamic turbulence brought about by the magnetorotational instability (MRI; Balbus & Hawley 1991) is a reliable way to achieve a sufficient angular-momentum transport and with this also an accretion rate fitting observations (Andrews et al. 2009) and playing an important role in planet formation (Johansen et al. 2007; Lyra et al. 2008; Dzyurkevich et al. 2010; Flock et al. 2011; Uribe et al. 2011; Johansen et al. 2011). However, for MRI to be active the gas has to be sufficiently ionized. This is only the case in the outer regions, upper layers of the disk, and in regions close to the star. The other parts of the disk are too cold and dust-rich for sufficient ionization and thus the magnetic fields cannot couple to the gas. Because of this, the MRI cannot operate in this region, which is therefore called the “dead zone” (Gammie 1996; Turner & Drake 2009).

Since the precise ionization structure is still under debate (Turner & Drake 2009), as is the interplay between active and dead-zones (Lyra & Mac Low 2012), we want to assess the precise hydrodynamic behavior of dead zones because accretion has to proceed through it somehow and it is where planets form. Therefore it is of interest to study purely hydrodynamic turbulence in circumstellar disks. Klahr & Bodenheimer (2003) found such a hydrodynamic instability creating vortices in three-dimensional radiation hydrodynamical simulations of baroclinic disks, e.g., with a radial entropy gradient and thus vertical shear, which they assumed to be a kind of baroclinic instability (BI) modified by the Keplerian shear profile. Observed protoplanetary disks have a non-zero radial entropy gradient $\beta = -d \ln s / d \ln r$, where s is the entropy and r the radial distance to the star. With $\beta = q - (\gamma_{2D} - 1) p_{\Sigma}$, where $q = -d \ln T / d \ln r$ and $p_{\Sigma} = -d \ln \Sigma / d \ln r$ are the temperature surface density gradient respectively and γ_{2D} is the two-dimensional (2D) adiabatic index, we see that disks that fulfill $p_{\Sigma} < q / (\gamma_{2D} - 1)$ indeed have a negative entropy gradient with values from Andrews et al. (2009) of $q \approx 0.3$–0.5 and $p_{\Sigma} = 0.9$. Therefore protoplanetary disks are not barotropic but rather baroclinic, which means that planes of constant pressure and constant density are misaligned, creating a thermal wind, e.g., vertical shear. In a linear stability analysis that followed (Klahr 2004) it was shown that this instability can only be of non-linear nature (see also Cabot 1984; Knobloch & Spruit 1986).

Thermal relaxation turned out to be crucial when Petersen et al. (2007a, 2007b) studied baroclinic vortex amplification (BVA) using an incompressible approximation. In fact, thermal relaxation or diffusion, besides the entropy gradient, are key ingredients to establish baroclinic feedback that keeps the instability, e.g., vortices in baroclinic disks growing.

While both effects, e.g., the BI and BVA are a result of the superadiabatic radial stratification of a disk they are not to be confused. An operating linear BI (compare Cabot 1984; Knobloch & Spruit 1986) would be able to create vortices in disks from infinitesimal perturbations, whereas the BVA deals with the growth of existing vortical perturbations, for which Lesur & Papaloizou (2010) used the term “subcritical baroclinic instability” (SBI).

The occurrence of a classical BI in the disk in its geophysical definition is still under debate and shall be discussed elsewhere. There are three possibilities: (1) there is a classical BI working in protoplanetary disks creating the initial vortices, (2) there is another instability operating (see the discussion in Klahr 2004), for instance, creating vortices via Kelvin–Helmholz instability from vorticity maxima in sheared waves of baroclinic disks, or (3) small vortical perturbations are triggered from other effects, e.g., waves from the MHD active region of the disks or maybe from the waves emitted by vortices at other radii. In any case, the vortices are then growing as described by

4 NASA Carl Sagan Fellow.
the BVA until they reach a sufficient size to influence the evolution of the disk, and this physics is the subject of the present paper.

Recently, Lyra & Klahr (2011) have examined the interplay of BVA and MHD. They found that as soon as magnetic fields are coupled to the gas, the MRI takes over and thus supersedes vortices that were previously amplified by vortex amplification. This is evidence that the vortex amplification is a phenomenon restricted to the dead-zone.

All the above-mentioned (lower resolution) studies had to apply entropy gradients 2–4 times stronger than to be expected in protoplanetary disks (Andrews et al. 2009) to drive BVA. We show in the current paper, through high resolution runs, that realistic entropy gradients in protoplanetary disks are sufficient for BVA.

Recently, Paardekooper et al. (2010) have investigated the effect of radial vortex migration. They discovered that vortices migrate quickly radially inward once grown to their full size. While this effect will be of major importance to understand the life cycle of a vortex, it plays a weaker role for the small vortices that were previously amplified by vortex amplification. The effect of radial vortex migration. They discovered that vortices that were previously amplified by vortex amplification.

The Astrophysical Journal, 765:115 (12pp), 2013 March 10

2. PHYSICAL BACKGROUND

Vorticity is conserved in quasi-incompressible barotropic simulations, but in flows with density and pressure as independent quantities vorticity is produced via the so called baroclinic term

\[\frac{\partial \omega}{\partial t} = \nabla \times \left(-\frac{1}{\rho} \nabla p \right) = \frac{1}{\rho^2} \nabla \rho \times \nabla p \propto \beta \frac{\partial}{\partial r} \rho. \quad (1) \]

Here \(\rho \) is the gas density, \(p \) the gas pressure, and \(\beta \) is the global radial entropy gradient. The ground state of a disk is geostrophic, e.g., all centrifugal forces and gravity are in balance with the strictly radial pressure gradient. If an entropy perturbation is introduced without perturbing the pressure, then this entropy perturbation will efficiently create vorticity in the presence of the global entropy and pressure gradients. This effect is basically radial buoyancy because of superadiabatic radial stratification. Indeed, the radial Brunt-Väisälä frequency (Tassoul 2000)

\[N^2 = -\frac{\gamma}{\gamma - 1} \frac{\partial p}{\partial \rho} \frac{\partial}{\partial \rho} \ln \left(\frac{p}{\rho^\gamma} \right) \]

is imaginary, which would lead to radial convection. However, shear stabilizes non-axisymmetric modes and for the dynamic stability of the axisymmetric system the Solberg-Høiland criterion (Tassoul 2000; Rüdiger et al. 2002)

\[
\frac{1}{R^2} \frac{\partial^2 \nu}{\partial R^2} - \frac{1}{C_p \rho} \nabla p \nabla S > 0 \quad (3)
\]

\[
\frac{\partial \rho}{\partial z} \left(\frac{\partial \rho}{\partial R} \frac{\partial \rho}{\partial z} - \frac{\partial \rho}{\partial R} \right) < 0
\]

has to be considered. If one re-writes Equation (3) for local approximation (see, e.g., Balbus & Hawley 1998), the stabilizing action of the specific angular momentum shows up as the value of Oort’s constant in the Coriolis term. If the vertical stratification in velocity is also taken under consideration, as it will occur in real three-dimensional accretion disks (Fromang et al. 2011), then the combined action of radial buoyancy and Coriolis forces lead to a thermal wind, e.g., a vertical shear in rotational velocity. This is precisely the initial state as BI in rotating stars and planetary atmospheres. Yet, instability in these systems is not obstructed by radial shear, whereas in a Keplerian disk radial scales would have to be on the order of the vertical pressure scale-height (\(H \)) (Knobloch & Spruit 1986) to be linearly unstable with respect to BI.

Before we explain the motion of a gas parcel in a vortex we want to explain the cooling and heating processes in a disk as they proved to be crucial to maintain the baroclinic feedback (Petersen et al. 2007a, 2007b). Dust particles absorb photons which heats them up. To cool they radiate photons in the infrared. This radiation can be absorbed by other particles. This happens on a typical length-scale. A convenient parameterization for the diffusion time in our vortex system is \(\tau_{\text{diff}} = a^2 / K \). Here \(\rho \) is the radius of the vortex and \(K \) the diffusion constant. The diffusion constant can be approached using a flux limited diffusion approach as in Kley et al. (2009). There \(K = \lambda \rho q a T_{\text{eq}}^3 \). Where \(\lambda \) is the flux limiter, \(c \) the speed of light, \(a \) the radiation constant, \(T \) and \(\rho \) the gas temperature and density, respectively and \(\kappa \) the opacity. Since \(K \) is constant and the vortex grows \(\tau_{\text{diff}} \) will change over time. Thermal relaxation is the other process by which dust can deposit heat into the gas. When a dust particle has a certain temperature other than the equilibrium temperature it will exchange heat with the ambient medium until it reaches the background temperature again. \(\tau_{\text{cool}} \) is the time needed to achieve this. This timescale affects vortices of all sizes equally.

The baroclinic feedback itself was explained in detail by Petersen et al. (2007b). A nice description of the mechanism can also be found in Lesur & Papaloizou (2010). In a baroclinic flow, entropy is a function of pressure and density, \(s(p, \rho) \). Pressure, on the other hand, is only a function of radius. The vortex interior transports high entropy material from small radii to large radii. After thermalization, low entropy material is transported to small radii. Since the pressure variations, especially from

Note that similar situations can be found in subadiabatic configurations. In fact, in any non barotropic disk, an entropy perturbation will lead to a vorticity fluctuation. But without the global pressure and entropy gradient pointing in the same direction, these perturbations will quickly decay (shear away) as they are lacking the mechanism of vortex amplification.
weak vortices, are negligible in comparison to the global radial pressure gradient and much smaller than the azimuthal entropy gradient, pressure can be seen as approximately azimuthally constant (Klahr & Bodenheimer 2003; Klahr 2004; Petersen et al. 2007a). To keep the pressure constant an azimuthal density gradient is established, e.g., outflowing material has a lower density as inflowing material. Thus the vortex feels the effect of differential buoyancy which established the positive baroclinic feedback (Equation (1)).

If cooling is too fast (short timescales) then the fluid parcel adapts the background temperature slope too quickly. The vortex becomes locally isothermal and no entropy transport is possible. Conversely, if cooling is too slow (long timescales) then gas will not be thermalized fast enough. The vortex gas becomes adiabatic with constant entropy across the vortex. In both extreme cases, isothermal or adiabatic, the azimuthal entropy gradient across the vortex vanishes. As shown in Equation (1), the vorticity source ceases to amplify the vortex, or at least stabilizes it against losses from numerical viscosity from radiating vorticity perturbations, e.g., Rossby waves. Therefore it is important that thermal cooling and diffusion times are in the right regime.

We model both thermal relaxation and thermal diffusion separately because, dependent on the vortex size, either one or the other dominates thermalization. Always the process with the shorter timescale sets the heat exchange between vortex and ambient gas.

3. NUMERICAL SETUP

Our simulations were conducted with the Pencil Code. We use a two-dimensional, local shearing sheet approach. We consider a sheet in the mid-plane that co-rotates with the corotational radius R_0. This is a 2D version of the model used in Lyra & Klahr (2011). To include the baroclinic term they define a global entropy gradient β. Note that in our approximation the gradients for entropy (s) and pressure (p) are the same. Therefore we do not distinguish between them in our notation and call both β. However, in real disks both may easily differ.

The total pressure $p_{\text{tot}} = \tilde{p} + p$ consist of a local fluctuation p and a time-independent part that follows a large scale radial pressure gradient β

$$\tilde{p} = p_0(r/R_0)^{-\beta},$$

where r is the cylindrical radius. The full set of linearized equations used in our simulations is

$$\frac{\partial \rho}{\partial t} + (u \cdot \nabla) \rho = -\rho \nabla \cdot u + f_D(\rho)$$

$$\frac{\partial u}{\partial t} + (u \cdot \nabla) u = -\frac{1}{\rho} \nabla p - 2\Omega_0(\hat{z} \times u) + \frac{3}{2} \Omega_0 u_x \hat{y} + \frac{\beta p_0}{R_0} \left(\frac{1}{\rho} - \frac{1}{\rho_0} \right) \hat{x} + f_s(u, \rho)$$

$$\frac{\partial s}{\partial t} + (u \cdot \nabla) s = \frac{1}{\rho T} \left(\nabla \cdot (K \nabla T) - \rho c_v (T - T_0) \right) + \frac{\beta p_0}{R_0} \left(\frac{1}{\gamma} - 1 \right) + f_K(s).$$

Here ρ is the gas density, u is the deviation of the gas velocity from the Keplerian value, T the temperature, c_v the specific heat at constant volume and, K the heat conductivity. Thermal diffusion timescale is denoted by τ_{cool}. The symbol

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + u_y \frac{\partial}{\partial y}$$

represents the Keplerian derivative where $u_y^{(0)} = -3/2\Omega_0 x$.

For a more thorough derivation of these equations and the linearization of the global pressure gradient, we refer to Lyra & Klahr (2011) and the appendix therein.

In order to keep the numerical scheme stable, we add sixth-order hyperdiffusion $f_D(\rho)$, hyperviscosity $f_s(u, \rho)$, and hyperconductivity $f_K(s)$ (Lyra et al. 2008, 2009; Oishi & Mac Low 2009).

The radiation processes in the disk are implemented through the first (thermal diffusion as an approximation for flux limited diffusion of radiation energy density) and second (thermal relaxation to mimic heat exchange with the surface of the disk and thermal equilibration with the irradiation from the central object) terms on the right hand side of the entropy equation. As mentioned in the last chapter we keep the diffusion coefficient K, which is defined as in Kley et al. (2009), constant and define its value via $\tau_{\text{diff}} = H^2/K$. So if the vortex has a radius of H, the pressure scale-height of the disk, the diffusion time τ_{diff} has the value we quote in, e.g., Table 1. If the vortex is smaller than H relaxation will be much faster.

To clarify that it is indeed the global entropy gradient that produces the vorticity, we take the curl of the Navier–Stokes equation (6) and assume an equilibrium state, $u_x = 0$, and $\nabla P = \theta$ so that

$$\frac{D \omega}{Dt} = \frac{\beta p_0}{\rho^2 R_0} \partial_x \rho.$$ (9)

Here we see that the negative azimuthal density gradient across the vortex is the source for vorticity production proportional to the global entropy gradient.

Shearing sheet simulations with Zeus like finite volume codes without explicit viscosity, e.g., the TRAMP code, have shown a weak amplification of kinetic energy for the pure adiabatic case, i.e., infinite cooling time (Klahr 2013, private communication). This numerical artifact does not occur with simulations performed by the Pencil Code. See the Appendix for a one-dimensional (1D) radial test/comparison simulation.

Initially we apply a finite perturbation in the density so that

$$\rho(x, y) = \rho_0 + \rho'$$

with ρ_0 the constant background density and ρ' the actual perturbation of the form

$$\rho' = \rho_0 C e^{-(x^2+y^2)/2\sigma^2} \times \sum_{i=-k}^{k} \sum_{j=0}^{k} \sin \left\{ 2\pi \left(\frac{i}{L_x} + \frac{j}{L_y} + \phi_{ij} \right) \right\},$$

where C describes the strength of the perturbation. We perturb the density in a way that $\rho_{\text{rms}} = 5\%$ for $\beta = 1.0, 2.0$ (runs A–I) and $\rho_{\text{rms}} = 10\%$ for $\beta = 0.5$ (runs J–P). To achieve a random perturbation we apply an arbitrary phase ϕ_{ij} between 0 and 1. The initial state is non-vortical. Again, this is the identical initial condition as used in Lyra & Klahr (2011) as well as the same amplitude, C, for simulations with $\beta = 2.0$, as was used in their simulations.

6 See http://www.nordita.org/software/pencil-code/

7 http://www.astro.princeton.edu/~jstone/zeus.html
Note that with this initial perturbation we do not perturb the pressure but the entropy. Thus it is really only the term in Equation (9) that creates the development of non laminar flow structure.

All our simulations are done in dimensionless code-units. So that $R_0 = \Omega_0 = 1$, $\gamma = 1.4$, and $c_s = 0.1$, which means that $H = 0.1$. All time-quantities are given in $2\pi\Omega_0^{-1}$ which is one local orbit at the co-rotational radius R_0.

The individual setups are given in Table 1. The thermal cooling times and thermal diffusion times are derived from standard disk models like in Bell et al. (1997).

We explored different resolutions in our simulations, namely 288^2, 576^2 and 1152^2. The unusual non-power of 2 resolution comes from our computational platform with 6 core processors. Typically we used up to 24 CPUs totaling 144 cores for our largest grids. Still we needed about 1200 hr per run. The grid covers $\pm 2H$ around R_0 in the radial and $[0H, 16H]$ in azimuthal direction. This leads to an effective resolution of 72 (288^2), 144 (576^2) and 288 (1152^2) grid-points per scale height in radial direction and 18 (288^2), 36 (576^2) and 72 (1152^2) grid-points per H in azimuthal direction. It is always necessary to compromise between resolution and computational time. Lower resolution simulations are computationally less expensive but might not resolve the necessary scales.

Run	β	τ_{cool}	τ_{diff}	ω_0^2	α	σ_{RMS}	ρ_{RMS}	x-res	x-domain
A	2.0	10	10	0.056	1.05 $\times 10^{-2}$	0.33	0.22	144	4
A2	10	10	10	2.15 $\times 10^{-2}$	3.09 $\times 10^{-3}$	0.19	0.19	144	8
B	1.0	10	10	0.060	1.21 $\times 10^{-2}$	0.33	0.22	288	4
C2	1.0	10	10	0.051	8.67 $\times 10^{-3}$	0.31	0.22	144	4
D	10	10	10	4.52 $\times 10^{-3}$	9.63 $\times 10^{-3}$	0.31	0.21	288	4
E	30	10	10	0.022	4.33 $\times 10^{-3}$	0.23	0.15	144	4
F	30	30	30	0.022	3.72 $\times 10^{-3}$	0.23	0.15	144	4
G	100	10	10	0.017	2.61 $\times 10^{-3}$	0.14	0.08	144	4
H	100	30	30	0.013	2.22 $\times 10^{-3}$	0.15	0.08	144	4
I	100	100	100	0.010	1.36 $\times 10^{-3}$	0.14	0.08	144	4
J	0.5	10	10	5.25 $\times 10^{-3}$	6.38 $\times 10^{-4}$	0.35	0.04	144	4
J2	10	10	10	1.77 $\times 10^{-3}$	8.91 $\times 10^{-5}$	0.03	0.03	144	8
K	10	10	10	4.30 $\times 10^{-3}$	4.30 $\times 10^{-4}$	0.57	0.05	288	4
L	30	10	10	0.021	3.89 $\times 10^{-3}$	0.23	0.15	144	4
M	30	30	30	0.021	3.51 $\times 10^{-3}$	0.23	0.15	144	4
N	100	10	10	6.06 $\times 10^{-3}$	1.38 $\times 10^{-3}$	0.14	0.10	144	4
O	100	30	30	6.06 $\times 10^{-3}$	1.38 $\times 10^{-3}$	0.14	0.10	144	4
P	100	100	100	8.63 $\times 10^{-3}$	1.18 $\times 10^{-3}$	0.15	0.10	144	4

4. RESULTS

4.1. Saturation Values and Convergence

We show the time-development of α-stresses in Figure 1. The green line shows the resolution of 288^2, black of 576^2 and red 1152^2 for $\beta = 2.0$ (top), $\beta = 1.0$ (middle) and $\beta = 0.5$ (lower panel). In all simulations $\tau_{diff} = \tau_{cool} = 10$ local orbits.

We see that for $\beta = 1.0$ and 0.5 and a resolution of 288^2 the perturbation decays right away. Higher resolution is required to increase the Reynolds-number of the system and have less dissipation on the smaller scales and thus excite the instability again.

We take a stronger initial perturbation for $\beta = 0.5$ than for the higher β. The perturbation in entropy results in a perturbation in vorticity. This perturbation is proportional to β. For small β we have to apply a stronger perturbation to get the same effect on the vorticity. However, we expect that if we go to even higher resolution it is possible to keep the initial density perturbation at $\rho_{RMS} \approx 5\%$ (Petersen et al. 2007a).

If we compare the saturation values of runs with different resolution, we see that they differ by only 10% from one another (see Table 1).

It is important to note that the instability is excited and we measure α-values in the converged runs up to 4×10^{-3} for entropy gradients as low as $\beta = 0.5$. In fact, in Section 4.5 we show that there is only a weak dependence of α on β as $\alpha \propto \beta^{0.5}$, Figure 1 shows that the saturation values of α do not depend strongly on β, but as we will see in the next section the amplification rates do.

4.2. Amplification and Decay Rates

We analyze the amplification timescales of the vortices, meaning how fast a vortex grows due to the baroclinic feedback. Thus it is independent of the precise shape of the initial condition as long as the amplitude is large enough for the given Reynolds number to have vortex growth. In fact, the initial strong kick needed to get the vortex going decays rather quickly, as can be seen in, e.g., Figure 1. Here, the α-values start out in the order of 10^{-5} then drop to around 10^{-8} as the initial perturbation decays. As soon as the baroclinic feedback sets in, the values rise again. The timespan that follows is the one where we measure the amplification time.

In analyzing the amplification-rates of the instability, we find that the initial amplification-rate of the α-stress ($\Gamma(\alpha)$), as can be seen in Figure 2 for run C, can be fitted as exponential amplification $\alpha = \alpha_0 \exp(t/\tau)$ with $\tau \approx 70\beta^{-2}$. The proportionality to β^{-2} is not what one would naively expect from a linear convective or buoyancy driven turbulence.

For a linear buoyancy driven turbulence one would expect an amplification rate proportional to the Brunt-Väisälä
frequency, N

$$N^2 = -\frac{1}{\gamma \rho} \frac{\partial p}{\partial r} \frac{\partial}{\partial r} \ln \left(\frac{p}{p'} \right)$$ \hspace{1cm} (11)$$

which in our parameters looks like

$$N^2 = -\beta_p \beta_s \frac{1}{\gamma} \left(\frac{H}{R} \right)^2 \Omega^2 \propto -\beta^2.$$ \hspace{1cm} (12)$$

Here we explicitly wrote β_p and β_s to make clear that the Brunt-Väisälä frequency depends on the product of entropy and pressure gradient which can be different in global simulations.

All quantities in Equation (12) are positive. Thus the Brunt-Väisälä frequency is imaginary and therefore a linear buoyancy driven turbulence would have a amplification-time $t = \tau_\text{cool} = 10^{-2}\Omega / \Omega_0$. For all resolutions vortex amplification and therefore angular momentum transport can be seen for strong entropy gradients ($\beta = 2.0$). For lower entropy gradients higher resolution is needed to see the development of vortices. The dashed lines show the saturations values ($\beta = 2.0$ and $\beta = 1.0$) and value at the end of the simulation ($\beta = 0.5$), respectively.

(A color version of this figure is available in the online journal.)

Figure 2. Time evolution of the α-values and enstrophy for $\beta = 1.0$ and a resolution of 5762 (run C). The red slope marks exponential amplification with a amplification-time $\tau = 70(2\pi / \Omega_0)$. For larger entropy gradients (smaller entropy gradients) we get faster (slower) amplification-times.

(A color version of this figure is available in the online journal.)

We have established that even shallow entropy gradients lead to vortices but we still have to show that sufficient angular momentum transport can be reached with these shallow gradients. The saturation values of enstrophy, ω_{rms}^2, or α-stresses decay with exponential behavior. Godon & Livio (1999) saw the same exponential decay of vorticity when they analyzed longevity of anti-cyclonic vortices in protoplanetary disks. Their dissipation was proportional to the vorticity when they analyzed longevity of anti-cyclonic vortices (1997).

4.3. Saturation Values

We have established that even shallow entropy gradients lead to vortices but we still have to show that sufficient angular momentum transport can be reached with these shallow gradients. The saturation values of enstrophy, ω_{rms}^2, or u_{rms} are of interest as well. Note that we talk about saturation values of our 2D local simulations, where certain restrictions apply, see a more detailed discussion in the conclusions. In the following sections we discuss the measured saturation values and analyze how the different controlling parameters influence amplification-phase and final values.

4.3.1. Influence of Entropy Gradient

In Figure 4 we compare runs A, C and J (at a resolution of 5762 and $\tau_\text{diff} = \tau_\text{cool} = 10$) which differ only regarding the value of

$$\beta = 2.0,$$ \hspace{1cm} (13)$$

$$\beta = 1.0,$$ \hspace{1cm} (14)$$

$$\beta = 0.5.$$ \hspace{1cm} (15)$$

Figure 3. Time evolution of ω for all resolutions and resolutions 576^2, 1152^2 and 288^2 with an entropy gradient of $\beta = 2.0$ (green line) and $\beta = 1.0$ (black line) and $\beta = 0.5$ (red line). For all these models $t = \tau_\text{cool} = 10^{-2}\Omega / \Omega_0$. For lower entropy gradients (smaller entropy gradients) we get faster (slower) amplification-times.

(A color version of this figure is available in the online journal.)
\[\omega_z, \quad \alpha, \quad E_{\text{kin}}, \quad \beta \]

Figure 3. In this run with \(\beta = 1.0 \) a resolution of 576\(^2\) (run C, upper panel) and 1152\(^2\) (run D, lower panel)and we turn off the entropy gradient after 800 local orbits (indicated by the black dashed line) and see how the instability decays. Enstrophy is shown with the black line and \(\alpha \)-stresses with the blue line. Our fit is given through the red and green dashed lines, respectively. We fit a decay time of \(\tau_{\text{diff}} = 1000 \) for the enstrophy and \(\tau_{\omega} = 400 \) for \(\alpha \).

\(\beta \). There is an initial exponential amplification-phase of \(\alpha, \) \(E_{\text{kin}} \) and \(\omega_z^2 \) that is shorter for high \(\beta \), followed by a saturated state. We also see that for lower \(\beta \) the saturation values are lower. We stress that we did not reach saturation for simulations J and K (at a resolution of 576\(^2\) and 1152\(^2\) and \(\tau_{\text{diff}} = \tau_{\text{cool}} = 10 \)). Even after 3000 local orbits vortex amplification was still ongoing. Here, \(\tau_{\text{diff}} = 10 \) is much shorter than the amplification-rate we estimated in the previous section (\(\tau \approx 300 \)). As we will see in the next section, the amplification-phase is shortest if those timescales are comparable because \(\tau_{\text{diff}} \) also defines how fast pressure perturbations are damped. Although we expect the saturation values of simulation J and K to be higher than what they are right now, it is possible that they will still stay below the saturation values obtained in simulations with higher \(\beta \).

The vorticity can be seen as a measure of the strength of the vortex. The higher the absolute value of the vorticity the stronger the vortex. The only stable vortices in disks are anticyclonic\(^8\) and therefore the vorticity has negative values. So the minimum value of vorticity \((\omega_{z, \text{min}}) \) shows how strong a vortex is. To explain the behavior of \(\omega_{z, \text{min}} \) (3rd panel in Figure 4), cooling processes have to be taken into account. During the early phases thermalization is dominated by thermal diffusion (Petersen et al. 2007b). As mentioned before, this timescale is shorter for smaller vortices. Therefore heat exchange between the vortex gas and the ambient gas is more efficient than in later stages. Once the vortex has grown to its final size, thermal relaxation takes over. However, heat exchange in the center of the vortex is less efficient than in the earlier stages.

\(\omega_z^2 \) rises again, creating a flat yet extended vortex.

4.3.2. Influence of Thermal Diffusion and Cooling Times

We take a closer look at simulations with \(\beta = 1 \) and different combinations of \(K \) and \(\tau_{\text{cool}} \) to see how thermal diffusion and relaxation influence the saturation values and the amplification-phases. As long as \(\tau_{\text{diff}} = \tau_{\text{cool}} \) will dominate the heat exchange from the inside of the vortex to the ambient disk. As the vortex grows \(\tau_{\text{diff}} \) will increase and with that only contribute to the heat exchange at the outskirts of the vortex. \(\tau_{\text{cool}} \) will then dominate the interior of the vortex.

For the simulations where we set \(\tau_{\text{diff}} = \tau_{\text{cool}} \), \(\tau_{\text{cool}} \) will take over when the vortex has reached a size of \(H \). In radial extend this happens once the vortex has grown to its final size.

This is consistent with what we see in Figure 5. During the early amplification-phase simulations with equal \(\tau_{\text{diff}} \) behave exactly the same. Eventually \(\tau_{\text{cool}} \) takes over so that the saturation values are determined by \(\tau_{\text{cool}} \). For longer \(\tau_{\text{cool}} \) saturation values are lower than for shorter \(\tau_{\text{cool}} \).

\(^8\) Cyclonic vortices are also possible, but are quickly destroyed by shear (Godon & Livio 1999).
Another unphysical process that can occur in local periodic simulations is that when the vortex approaches the integral scale it interacts with itself, the outer edges of the one side of the vortex almost touches the other side of the same vortex. We do not see this for the runs with the larger physical domain. Since the vortices in the larger domain do not interact with themselves, the saturation values are lower. However, they are still in the same order of magnitude (see Table 1).

In Figure 6 we show snapshots of the vorticity for $\beta = 0.5$ (simulations J and J2). Initially there are several vortices. The larger ones sweep up the smaller vortices and thus grow further. At 1500 local orbits there is only one vortex left for the small physical domain, whereas in the larger physical domain there are still three vortices.

If we look at the α-value and entropy for these two simulations (see Figure 7) we see that the value seems to decay in the larger box at the end of the run. However, this does not mean that the vortices die out. It more so reflects fluctuations in the vortex interaction, modulating α, as also can be seen in the small domain case at high frequency. We calculate the values as a mean over the entire box but the angular momentum transport especially is a very localized process, as can be seen in Figure 8 (this time for $\beta = 1.0$ after 1000 orbits). Here we show the product $u_x u_y$ at each location in the box. Most areas of the box have an $u_x u_y$-value close to zero. However, one can clearly see bands excited by the vortex with positive $u_x u_y$-values. These bands are inertia-acoustic waves which are responsible for the angular momentum transport (Klahr & Bodenheimer 2003; Mamatsashvili & Chagelishvili 2007; Heinemann & Papaloizou 2009; Tevzadze et al. 2010). If we had an ideal vortex with a smooth surface we would expect that $u_x u_y$ sums up to zero within the vortex. However, the vortex has a more complex structure, as can be seen in the lower right plot of Figure 8. This leads to a negative net α-value across the vortex.

To properly compare the values of α for both physical domains, the box average has to be taken. If the average over an equal physical size centered around a vortex, as indicated by the white dashed lines in Figure 6, is taken, then the α-values agree again. The α-values are generated only in the vicinity of vortices.

4.4. Correlations

It is a feature of BI that the saturation values of u_{rms}, ω^2, ρ_{rms} seem to correlate with each other. In Figure 9 we plot the different quantities as a function of α. Figure 9 shows the dependencies on α for all our simulations. The colors represent the different entropy gradients: $\beta = 2.0$ (black), $\beta = 1.0$ (red) and $\beta = 0.5$ (green). The different combinations of diffusion and cooling times are represented through the different symbols. We find that the following relations are good fits to our simulation results

$$u_{\text{rms}} = 3\sqrt{\alpha} c_s$$ \hspace{1cm} (13)

$$\rho_{\text{rms}} = 2\sqrt{\alpha} \rho_0$$ \hspace{1cm} (14)

$$\omega^2 = 5\alpha \Omega_0^2$$ \hspace{1cm} (15)

We can derive the typical length-scale of angular momentum transport L, of the system if Equation (13) is inserted into the general α formalisms (Shakura & Sunyaev 1973) $v = \alpha c_s H = u_{\text{rms}} L$ so that

$$L = \frac{\sqrt{\alpha} H}{3}, \hspace{1cm} (16)$$
Figure 6. Snapshots of the z-component of the vorticity, ω_z, after 100, 500, 1000, 1500 local orbits for the two different physical domains with $\beta = 0.5$. Initially both runs have vortices of equal size. Since there is less space between vortices, they can merge sooner in runs with the small physical domain. The vortices in the large physical domain take longer to grow. The dashed white box in the last plot indicates the area of the small physical domain.

(A color version of this figure is available in the online journal.)
indicating smaller structures than the vortices in our simulations and also smaller than the vorticity in standard \(\alpha \)-models where \(\omega \propto \sqrt{\alpha} \) with a different coefficient (Cuzzi et al. 1994).

We do not perform a more exact analysis of these dependencies (varying initial conditions) before we do three-dimensional simulations.

4.5. Dependence on \(\beta \)

In Section 4.2 we showed that amplification of vortices for low entropy gradients is computationally demanding in terms of evolution time. Thus it is difficult to extract saturation values for entropy gradients even shallower than \(\beta = 0.5 \) with the computational resources at hand.

In Figure 10 we plot the \(\alpha \)-stresses as a function of the entropy gradient. Note that we choose a different color-coding than in Figure 9. Here symbols represent the thermal cooling times whereas colors represent thermal diffusion times. The dashed black line illustrates a slope \(\propto \beta^{0.5} \) which is a reasonable fit for the set of points with \(\tau_{\text{cool}} = 30, \tau_{\text{diff}} = 10 \) (black triangles) and \(\tau_{\text{cool}} = 100, \tau_{\text{diff}} = 30 \) (orange \(\times \)). We cannot predict \(\alpha \)-values for specific entropy gradients and thermal cooling and relaxation times.

The key issue is less a strong correlation between \(\alpha \) and \(\beta \) but rather the lack thereof. The strength of the \(\alpha \)-stresses reflects the size and the amplitude of the largest vortex. Its size is defined by \(H \) only and not by any of the other \(\tau \) and \(\beta \) parameters. As long as \(\tau \) and \(\beta \) are sufficient to replenish vorticity at the loss-rate, the \(\alpha \)-stresses should be independent of \(\tau \) and \(\beta \). The loss timescale via generation of waves and Reynolds stresses is rather long; see Section 4.2 and Figure 3. Thus, as long as the amplification-rates are faster than decay-rates, one should always obtain roughly the same \(\alpha \)-values.

5. SUMMARY AND CONCLUSION

In this paper we have conducted an extensive parameter analysis for the BVA. In particular we analyzed the influence of the global entropy gradient, thermal relaxation and cooling as well as numerical parameters such as resolution, box size, and amplification-rates for vortices and saturation values of \(\alpha \).

The most important result of our study is that we find vortex growth even for entropy gradients as low as \(\beta = 0.5 \). However, the amplification rate is of the order of several 100 local orbits which makes it difficult to extract reliable saturation values for the efficiency of angular momentum transport.

Recently, Paardekooper et al. (2010) studied the migration behavior of vortices in global accretion disks. They found significant radial drift for fully grown vortices with drift times shorter than the vortex amplification times we measure in this paper. Nevertheless, this is not a contradiction because, as also shown in Paardekooper et al. (2010), drift rates strongly depend on vortex size. Thus the typical life cycle of a growing vortex might be starting as a growing small vortex without relevant radial drift, which starts drifting as soon as it reaches its saturated state. Therefore radial drift does not affect the study of vortex amplification discussed here. However, it will affect the time a single vortex can partake in angular momentum transport. Future work will have to investigate radial drift of growing vortices in global simulations. Note here that Paardekooper et al. (2010) studied the migration in barotropic disks, in which no vortex amplification occurs.

The amplification-phase of the vortices can be measured in the strength of the overall velocity fluctuation which seem to be growing exponentially on a certain timescale \(\tau \propto \beta^{-2} \). Therefore amplification for steeper entropy gradients is faster, i.e., \(\tau = 16 \) for \(\beta = 2.0 \) and \(\tau = 70 \) for \(\beta = 1.0 \). With these short amplification-times we do reach saturation. Whereas the \(\beta = 0.5 \) was still growing after 3000 orbital periods, when we stopped the simulation.

Other parameters that influence the evolution of \(\alpha \)-stresses are the thermal cooling and relaxation times. The diffusion times define the amplification phase of the vortices because diffusion dominates small scales, e.g., small vortices. We see faster amplification for longer diffusion times. Cooling time, on the other hand, determines the saturation values. Here, longer timescales produce lower saturation values.

For the angular momentum transport we get \(\alpha \)-values up to \(10^{-2} \) for \(\beta = 2.0 \) and \(10^{-3} \) for \(\beta = 1.0 \) and \(\beta = 0.5 \). These values are not so different to the ones found with MRI in active layers (Flock et al. 2011) and stronger than the \(10^{-4} \) found in dead zones (Dzyurkevich et al. 2010), which shows that entropy gradients can be an important mechanism to transport angular momentum in a dead-zone. Realistic entropy gradients in protoplanetary disks are around \(\beta \approx 0.5 \) and \(\beta \approx 1.0 \) which can be derived out of the data obtained by Andrews et al. (2009). Although we could not reach saturation in all our simulations, for these entropy gradients we do see reasonable \(\alpha \)-stresses of the order of \(10^{-3} \) to \(10^{-2} \). We expect the final values to be in this range which still provides sufficient angular momentum transport in a disk. Yet, we have to consider certain cavities: (1) our simulations are 2D simulations and lack the three-dimensional structure of the vortices. This might very well affect the strength of the \(\alpha \)-values. (2) We do not consider migration of vortices, but rather have periodic boundary conditions. It is not clear for how long vortices can play a role in angular momentum transport before they migrate into the central star. Thus we cannot say how many vortices are in a disk at any given time. The higher the number of vortices, the higher the \(\alpha \)-values will be. The interplay between migration and Reynolds stresses
Figure 8. Vorticity profile (left) and α-stress (middle) for $\beta = 1.0$ and the large physical domain (run C2). The yellow and red areas denote positive α-values whereas blue areas show negative α-stresses. In green areas $\alpha = 0$. One can see the waves excited by the vortex. Those waves are responsible for the angular momentum transport. It is a localized process. Since the vortex and the vorticity-waves fill out a smaller area of the box in the large box (large green areas where there is no angular momentum transport) and our calculation of the saturation values averages over the entire area of the box, the saturation values seem to be lower. The plot in the right upper panel shows an azimuthal average over the $u_x u_y$. Inside an ideal vortex α-stresses would sum up to zero. However, as indicated in the lower right plot, the vortex has a complex structure which leads to deviations from the idealized shape.

(A color version of this figure is available in the online journal.)

definitely has to be analyzed in future models. (3) The formation process for vortices is still not clear. It is unknown how long the initial formation of a vortex takes, by which process they are formed and if there are processes which can destroy them before the reach full growth. Therefore, our saturation values have to be viewed with caution and cannot be seen as face values for protoplanetary accretion disks. As relation between entropy gradient and strength of angular momentum transport we only find a weak dependence of $\alpha \propto \beta^{1/2}$.

Since local simulations are always limited by the box size we also conduct simulations in larger boxes. We do not see a difference in the initial amplification-phase. At later stages the amplification lasts longer for larger boxes and also is slower. Since part of the vortex evolution happens through merging of smaller vortices, growth takes longer in larger boxes simply because there the radial distance between vortices is bigger and thus mergers are less likely.

The saturation values of velocity fluctuations reached for the larger box sizes are slightly lower than for the smaller box sizes. This is due to two reasons. One is that we see some artificial enhancement in vortex strength in the smaller box. Once the vortex has reached box-size it can no longer grow. It is forced to interact with itself thus emitting more waves. This does not happen in larger boxes.

The other reason is that the number of vortices per radial distance is independent of box size because their typical maximum size is in the order of a pressure scale-height. In the azimuthal direction the number of vortices is limited to 1 per radius, because otherwise merging will occur on short timescales. Therefore the overall density of vortices per simulation volume (area) is lower in simulations with the larger azimuthal extend. Here we note that our larger boxes with $H/r = 0.1$ and $L_y = 32$ are only a factor of about two shy of the equivalent 2π global simulation.

Overall, we conclude that the BVA works reasonably well for entropy gradients as low as $\beta = 0.5$. This β corresponds to a Richardson-number of $Ri = -1.5 \times 10^{-3}$. This makes BVA a relevant mechanism for angular momentum transport in the dead-zone.

An exploration of lower entropy values will have to be postponed due to the long evolution time required. In the future we will study stratified 3D boxes and the interaction of dust with the vortices.
The symbols show the different combinations of dependency that we fit.

α simulations. Therefore we do not take them into account when we fit the β. Runs with parentheses around them were not saturated at the end of the simulation for τ = 0, α = 1. Nevertheless, a cooling time of τcool = 0.01 will suppress these radially propagating sound waves could ruin our models. Nevertheless, a cooling time of τcool = 0.01 will suppress these sound wave instability completely.

On the other hand, the adiabatic simulations using the TRAMP code were showing a weak amplification of kinetic energy over very long timescales which is the accumulation of numerical error in the quasi dissipation free TRAMP scheme. This behavior is independent of the chosen entropy gradient and results from the conservative treatment of Coriolis forces. Again the Pencil Code with its explicit dissipation does not allow for this accumulation of this numerical error, even in the presence of a radial entropy gradient (see the solid and dashed-dotted lines in Figure 11).

Figure 9. Saturation values of α2, ρrms and u rms as a function of saturated (value at the end of the simulation for β = 0.5) α-value and all our runs with the small physical domain (runs A–P). The symbols show the different combinations of τcool (left numbers) and τdiff (right numbers). Where red are runs with black β = 2.0, β = 1.0 and green β = 0.5. The black dashed line shows the dependency that we fit.

(A color version of this figure is available in the online journal.)

Figure 10. Saturation values of α for all our runs with the smaller box depending on β. Runs with parentheses around them were not saturated at the end of the simulations. Therefore we do not take them into account when we fit the α–β relation. The symbols show the different combinations of τcool (symbols) and τdiff (colors).

(A color version of this figure is available in the online journal.)

Our simulations were conducted partly on the MPIA cluster THEO in Garching, and on the JUGENE machine of the JSC using the grand HHID19. This work was partially supported by the National Institute for Computational Sciences (NICS) under TG-MCA99S024 and utilized the NICS Kraken system. This collaboration was made possible through the support of the Annette Kade Graduate Student Fellowship Program at the American Museum of Natural History. N.R. also thanks IMPRS-HD.

APPENDIX

NUMERICAL ARTEFACTS

Shearing sheet simulations with the TRAMP code have displayed unreliable behavior for the extreme cases of cooling times, either isothermal (τcool = 0) or adiabatic (τcool = ∞). In the first case, a global pressure gradient in a locally isothermal disk leads to the amplification of radially propagating sound waves, which is a physically realistic case (Klahr 2013, private communication), but only shows up in local radially periodic simulations because the sound wave can propagate through the box for an unlimited amount of time, which of course is not possible in a global disk. This physical instability can thus be found both in 1D radial TRAMP as well as in Pencil Code simulations with remarkably identical growth behavior. This means that having a too short cooling time artifacts from these radially propagating sound waves could ruin our models.

Figure 11. Comparison of the kinetic energy for isothermal and adiabatic setup with the TRAMP code and the Pencil Code. Both codes show the identical behavior for the isothermal case (dashed and dotted lines), yet in the adiabatic case the TRAMP code shows an artificial amplification of kinetic energy (dashed-dotted line). The Pencil Code does not show this behavior.
REFERENCES

Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2009,
ApJ, 700, 1502
Balbus, S. A., & Hawley, J. F. 1991,
ApJ, 376, 214
Balbus, S. A., & Hawley, J. F. 1998,
RvMP, 70, 1
Bell, K. R., Cassen, P. M., Klahr, H. H., & Henning, T. 1997,
ApJ, 486, 372
Cabot, W. 1984,
ApJ, 277, 806
Cerretelli, C., & Williamson, C. H. K. 2003,
JFM, 475, 41
Cuzzi, J. N., Dobrovolskis, A. R., & Hogan, R. C. 1994,
LPICo, 844, 6
Dzyurkevich, N., Flock, M., Turner, N. J., Klahr, H., & Henning, T. 2010,
A&A, 515, A70
Flock, M., Dzyurkevich, N., Klahr, H., Turner, N. J., & Henning, T. 2011,
ApJ, 735, 122
Fromang, S., Lyra, W., & Masset, F. 2011,
A&A, 534, A107
Gammie, C. F. 1996,
ApJ, 457, 355
Godon, P., & Livio, M. 1999,
ApJ, 523, 350
Heinemann, T., & Papaloizou, J. C. B. 2009,
MNRAS, 397, 64
Johansen, A., Klahr, H., & Henning, T. 2011,
A&A, 529, A62
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007,
Natur, 448, 1022
Klahr, H. 2004,
ApJ, 606, 1070
Klahr, H. H., & Bodenheimer, P. 2003,
ApJ, 582, 869
Kley, W., Bitsch, B., & Klahr, H. 2009,
A&A, 506, 971
Knoebel, E., & Spruit, H. C. 1986,
A&A, 166, 359
Korotaev, G. K. 1997,
SGeo, 18, 567
Lesur, G., & Papaloizou, J. C. B. 2010,
A&A, 513, A60
Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2008,
A&A, 479, 883
Lyra, W., Johansen, A., Zsom, A., Klahr, H., & Piskunov, N. 2009,
A&A, 497, 869
Lyra, W., & Klahr, H. 2011,
A&A, 527, A138
Lyra, W., & Mac Low, M.-M. 2012,
ApJ, 756, 62
Mamatsashvili, G. R., & Chagelishvili, G. D. 2007,
MNRAS, 381, 809
Oishi, J. S., & Mac Low, M.-M. 2009,
ApJ, 704, 1239
Paardekooper, S.-J., Lesur, G., & Papaloizou, J. C. B. 2010,
ApJ, 725, 146
Petersen, M. R., Julien, K., & Stewart, G. R. 2007a,
ApJ, 658, 1236
Petersen, M. R., Stewart, G. R., & Julien, K. 2007b,
ApJ, 658, 1252
R"udiger, G., Arlt, R., & Shalybkov, D. 2002,
A&A, 391, 781
Shakura, N. I., & Sunyaev, R. A. 1973,
A&A, 24, 337
Tassoul, J.-L. 2000, Stelllar Rotation (Cambridge: Cambridge Univ. Press)
Tevzadze, A. G., Chagelishvili, G. D., Bodo, G., & Rossi, P. 2010,
MNRAS, 401, 901
Turner, N. J., & Drake, J. F. 2009,
ApJ, 703, 2152
Uribe, A. L., Klahr, H., Flock, M., & Henning, T. 2011,
ApJ, 736, 85