The descriptive set theory of the Lebesgue density theorem

A. Andretta\(^1\) R. Camerlo\(^2\)

\(^1\)Dipartimento di Matematica
Università di Torino

\(^2\)Dipartimento di Matematica
Politecnico di Torino

June 2011
The category algebra.

Work in some perfect Polish space, e.g. ω^2. \mathcal{B} is the collection of all sets with the property of Baire, \mathcal{M}_{GR} is the ideal of meager sets,

$$\mathcal{B}/\mathcal{M}_{\text{GR}} \cong \mathcal{B}_{\text{OR}}/\mathcal{M}_{\text{GR}} = \mathcal{C}_{\text{AT}}$$

\mathcal{C}_{AT} is unique up-to isomorphism, i.e. it does not depend on the Polish space. The map

$$\rho : \mathcal{C}_{\text{AT}} \rightarrow \mathcal{RO}$$

is a selector, and \mathcal{C}_{AT} can be identified with the collection of all regular open sets. \mathcal{C}_{AT} is a Polish space.
The measure algebra.

\[\mu \] a continuous probability Borel measure on some perfect Polish space, e.g. the usual Lebesgue measure on \(\omega^2 \). \text{Meas} is the collection of all sets measurable sets, \text{Null} is the ideal of measure-zero sets,

\[\text{Meas}/\text{Null} \cong \text{Bor}/\text{Null} = \text{Malg} \]

\text{Malg} is unique up-to isomorphism, i.e. it does not depend on \(\mu \). \text{Malg} is a Polish space:

\[\delta([A], [B]) = \mu(A \Delta B) \]
The Lebesgue density theorem

Definition

x has density $r \in [0; 1]$ in $A \subseteq \omega^2$ if

$$D_A(x) \overset{\text{def}}{=} \lim_{n \to \infty} \frac{\mu(A \cap N_x \upharpoonright n)}{\mu(N_x \upharpoonright n)} = r.$$

Theorem (Lebesgue)

Let $A \subseteq \omega^2$ be Lebesgue measurable. Then

$$\Phi(A) = \{ x \in \omega^2 \mid x \text{ has density } 1 \text{ in } A \}$$

is Lebesgue measurable, and $\mu(A \triangle \Phi(A)) = 0$. In other words: D_A agrees with χ_A almost everywhere.
The Lebesgue density theorem

If $\mu(A \triangle B) = 0$ then $\Phi(A) = \Phi(B)$, so

$$\Phi : \text{MALG} \to \text{MEAS}$$

is a selector. This is the analogue of $\rho : \text{CAT} \to \text{RO}$.

Question

What is the complexity of $\Phi(A)$?
Localization

Definition

The localization of A at s is

$$A_{[s]} = \left\{ x \in \omega^2 \mid s^x \in A \right\}$$

Thus $s^x A_{[s]} = A \cap N_s$.

Trivial observation

$$\mu(A \Delta B) = 0 \iff \forall s \in \omega^2 \left(\mu(A_{[s]}) = \mu(B_{[s]}) \right)$$

Thus a measure class $[A]$ is completely determined by the map $s \mapsto \mu(A_{[s]})$.
Complexity of Φ

Since

$$x \in \Phi(A) \Leftrightarrow \forall k \exists n \forall m \geq n (\mu(A|\lfloor x|_m]) \geq 1 - 2^{-k-1})$$

then

Proposition (Folklore)

For all measurable A

$$\Phi(A) \in \Pi^0_3.$$

Question

Is Π^0_3 optimal?
The density topology

- $A \subseteq B \Rightarrow \Phi(A) \subseteq \Phi(B)$,
- $\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$,
- $\bigcup_{i \in I} \Phi(A_i) \subseteq \Phi\left(\bigcup_{i \in I} A_i\right)$,
- if A is open, then $A \subseteq \Phi(A)$.

Definition

$$\mathcal{T} = \{A \in \text{MEAS} \mid A \subseteq \Phi(A)\}$$

is the density topology. It is finer than the usual topology.
The density topology

Theorem (Scheinberg 1971, Oxtoby 1971)

\[A = \Phi(A) \text{ if and only if } A \text{ is open and regular in } \mathcal{T}. \]

\[\Phi: \text{MALG} \to \text{RO}_\mathcal{T} \]

- **NULL** = **MGR**\(\mathcal{T}\) (Oxtoby, 1971)
- \(\mathcal{T}\) is neither first countable, nor second countable, nor Lindelöf, nor separable.
- \(\mathcal{T}\) is Baire.
Recall that $\Phi(A)$ is always Π^0_3.

Theorem

There is an A such that $\Phi(A)$ is complete Π^0_3.

Clearly

$$\text{Int}(A) \subseteq \Phi(A) \subseteq \text{Cl}(A).$$

and $A = \Phi(A)$ if A is clopen.

Question

Can $\Phi(A)$ be something other than clopen or complete Π^0_3?

Yes!
Wadge degrees

Definition

A is Wadge reducible to B

$$A \leq_{W} B$$

just in case $A = f^{-1}(B)$ for some continuous $f: \mathbb{ω}^2 \rightarrow \mathbb{ω}^2$.

$A \equiv_{W} B$ iff $A \leq_{W} B \land B \leq_{W} A$.

The equivalence classes $[A]_{W}$ are called Wadge degrees.

For $d \subseteq \Pi^0_3$ a Wadge degree, let

$$\mathcal{W}_d = \{ [A] \mid \Phi(A) \in d \}$$
The sets \mathcal{W}_d are non-empty, in fact are dense in the topological space \mathcal{M}_{ALG}:

$$\forall \varepsilon \forall A \forall d \subseteq \Pi^0_3 \exists C \in \Pi^0_1 \exists U \in \Sigma^0_1 \\left(\Phi(C) = \Phi(U) \in d \land \mu(A \triangle C) < \varepsilon \right).$$
Density
A. Andretta, R. Camerlo

The motivation
Complete Boolean algebras
Lebesgue’s theorem
The density topology

Results
\[\Pi^0_3 \] -completeness
Wadge degrees
Dualistic sets
Comeagerness
Forcing
\[\hat{\Phi} \] is Borel

Would you like to see some proofs?
\[\Pi^0_1 \] -completeness
Inside \[\Delta^0_3 \]

Dualistic sets

Recall that \(D_A(x) = 0, 1 \) for \textit{almost} all \(x \).

Definition

A set \(A \) is dualistic (or Manichæan) if \(D_A(x) = 0, 1 \) for all \(x \).
\(M \) is the Boolean algebra of all dualistic sets.

Clearly being dualistic depends on the equivalence class of \(A \), so

\[
A \in M \iff \Phi(A) \in M.
\]

Fact

\(A = \Phi(A) \) is dualistic iff \(A \) is \(\mathcal{T} \)-clopen, i.e.,

\[
M \cap \text{ran}(\Phi) = \Delta^0_1-\mathcal{T}
\]
Density

A. Andretta, R. Camerlo

The motivation
Complete Boolean algebras
Lebesgue's theorem
The density topology

Results
Π^0_3-completeness
Wadge degrees
Dualistic sets
Comeagerness
Forcing
$\hat{\Phi}$ is Borel

Would you like to see some proofs?
Π^0_3-completeness
Inside Δ^0_n

Dualistic sets

Proposition

$$\forall A \in \text{Meas} \ (A \in \mathcal{M} \Rightarrow \Phi(A) \in \Delta^0_2).$$

We can refine the Metric Approximation Theorem for Δ^0_2
degrees:

$$\forall \varepsilon > 0 \forall A \forall d \subseteq \Delta^0_2 \exists C \in \Pi^0_1 \exists U \in \Sigma^0_1$$

$$(\Phi(C) = \Phi(U) \in \mathcal{W}_d \cap \mathcal{M} \land \mu(A \triangle C) < \varepsilon)$$
Theorem

Let $d = \Pi^0_3 \setminus \Delta^0_3$ be the degree of the complete Π^0_3 sets. Then \mathcal{W}_d is comeager in MALG.
Another comeager setC’m on, we all knew that...

Given any measurable A there are $F \subseteq A \subseteq G$ with $F \in \Sigma^0_2$ and $G \in \Pi^0_2$ such that $\mu(A) = \mu(F) = \mu(G)$.

Theorem

$$\{ [A] \mid [A] \cap \Delta^0_2 = \emptyset \} \text{ is comeager in } \text{MALG}.$$
Dense sets in boolean algebras

By the Metric Approximation Theorem, the \mathcal{W}_d are *topologically* dense in MALG. But MALG is a Boolean algebra (i.e. a forcing notion) so there is a competing notion of *density*.

Theorem

Let $d = \Pi^0_3 \setminus \Delta^0_3$ be the degree of the complete Π^0_3 sets. If $\emptyset \neq A = \Phi(A)$ has empty interior, then $A \in d$. Therefore \mathcal{W}_d contains a dense open set.
Recall that \(\Phi \) induces a map \(\hat{\Phi} : \text{MALG} \to \Pi_3^0 \),

\[\hat{\Phi}(\lbrack A \rbrack) = \Phi(A). \]

Fix some standard coding \(\pi : \omega^2 \to \Pi_3^0 \).

Proposition

\(\hat{\Phi} \) is Borel, i.e. there is a Borel \(\mathcal{F} : \text{MALG} \to \omega^2 \) such that

\[\hat{\Phi}(\lbrack A \rbrack) = \pi(\mathcal{F}(\lbrack A \rbrack)). \]
Sketch of the proof for Π^0_3 completeness

- T a pruned tree such that $[T]$ has positive measure and empty interior. Thus $- [T] = \bigcup_n N_{t_n}$.
- $n < m \Rightarrow \text{lh}(t_n) < \text{lh}(t_m)$ and $\exists \infty n (\text{lh}(t_n) + 1 < \text{lh}(t_{n+1}))$.
- For all $t \in T$ there is a shortest $s \supset t$ such that $s \notin T$. s is the target of t.
- Let $\tau(t) = \text{lh} (\text{target of } t) - \text{lh}(t), \tau : T \to \omega \setminus \{0\}$.
- For $x \in [T],$
 \[x \in \Phi([T]) \iff \lim_{n \to \infty} \tau(x \restriction n) = \infty. \]
Sketch of the proof for Π^0_3 completeness, ctd.

The set

$$P = \{ z \in \omega \times \omega 2 \mid \forall m \forall \infty n \ z(n, m) = 0 \}.$$

is complete Π^0_3.

Given $a : n \times n \rightarrow 2$ construct a node $\varphi(a) \in T$ so that

$$a \subset b \Rightarrow \varphi(a) \subset \varphi(b),$$

and

$$\omega \times \omega 2 \rightarrow [T], \quad z \mapsto \bigcup_n \varphi(z \upharpoonright n \times n)$$

witnesses $P \leq_w \Phi([T])$.

/
Sketch of the proof for Π^0_3 completeness, ctd.

Let $a: (n + 1) \times (n + 1) \to 2$. (Say $n = 4$)

Case 1:

	$a_{0,4}$	$a_{1,4}$	$a_{2,4}$	$a_{3,4}$	0
	$a_{0,3}$	$a_{1,3}$	$a_{2,3}$	$a_{3,3}$	0
	$a_{0,2}$	$a_{1,2}$	$a_{2,2}$	$a_{3,2}$	0
	$a_{0,1}$	$a_{1,1}$	$a_{2,1}$	$a_{3,1}$	0
	$a_{0,0}$	$a_{1,0}$	$a_{2,0}$	$a_{3,0}$	0

Then pick $t \supset \varphi(a \upharpoonright n \times n)$ such that

$$\tau(t) \geq \max \{n + 1, \tau(\varphi(a \upharpoonright n \times n))\}.$$
Sketch of the proof for Π^0_3 completeness, ctd.

Let $a: (n + 1) \times (n + 1) \rightarrow 2$. (Say $n = 4$)

Case 2:

	$a_{0,4}$	$a_{1,4}$	$a_{2,4}$	$a_{3,4}$	$a_{4,4}$
$a_{0,3}$	$a_{1,3}$	$a_{2,3}$	$a_{3,3}$	$a_{4,3}$	
$a_{0,2}$	$a_{1,2}$	$a_{2,2}$	$a_{3,2}$	$a_{4,2}$	
$a_{0,1}$	$a_{1,1}$	$a_{2,1}$	$a_{3,1}$	0	
$a_{0,0}$	$a_{1,0}$	$a_{2,0}$	$a_{3,0}$	0	

Then pick $t \supset \varphi(a \upharpoonright n \times n)$ such that

$$\tau(t) = 3.$$
A set A (or degree) is self dual if $A \equivW \neg A$. Otherwise it is non-self-dual.

- Self-dual and non-self-dual pairs alternate.
- At all limit levels there is a non-self-dual pair.
Given $f: \omega \to \omega \setminus \{0\}$ and sets A_0, A_1, \ldots consider the set

$$\text{Rake}^-(f; (A_n)_n)$$

$0(\infty)$

$0(3) 1(f(3))$

$0(4) 1(f(4))$

$01(f(1))$

$1(f(0))$

A_0

A_1

A_2

A_3

A_4
How to construct larger degrees.

If $\exists \infty n \left(f(n) \geq 2 \right)$ and the A_n's are \mathcal{T}-regular, i.e. $\Phi(A_n) = A_n$ then so is $\text{Rake}^-(f; (A_n)_n)$. Moreover

- if $A = A_0 = A_1 = \ldots$ are self-dual, then $\text{Rake}^-(f; (A_n)_n)$ is non-self-dual and immediately above A,
- if $A_0 <_W A_1 <_W A_2 <_W \ldots$ then $\text{Rake}^-(f; (A_n)_n)$ is non-self-dual and immediately above the A_n's.

Note that the rake $\text{Rake}^-(f; (A_n)_n)$ has no pole, i.e., $0^{(\infty)}$ does not belong to this set. In order to construct the dual degrees we need another kind of rake, a pole and densely packed tines.
How to construct larger degrees.

\[\text{Rake}^+ (f; (A_n)_n) \]
If \(\lim_{n} f(n) = \infty \) then and the \(A_n \)'s are \(\mathcal{T} \)-regular, i.e. \(\Phi(A_n) = A_n \) then so is \(\text{Rake}^+(f; (A_n)_n) \). Moreover

\[
\text{Rake}^+(f; (A_n)_n) \equiv^w \neg \text{Rake}^-(f; (A_n)_n).
\]

If \(A \) and \(B \) are \(\mathcal{T} \)-regular then so is

\[
A \oplus B = 0^\infty A \cup 1^\infty B.
\]

Arguing this way, we can climb up to \(\Delta_2^0 \).
Jumping ω_1 levels.

Wadge defined two operations A^\natural and A^\flat on subsets of the Baire space

$$A^\natural = \left\{ s_0^+ \circ 0 \circ s_1^+ \circ 0 \circ \ldots \circ s_n^+ \circ 0 \circ x^+ \mid n \in \omega, s_i \in <\omega, x \in A \right\}$$

$$A^\flat = A^\natural \cup \{ x \in \omega \mid \exists \infty n (x(n) = 0) \}$$

where s^+ and x^+ are the sequences obtained from s and x by adding a 1 to all entries.

The idea is that A^\natural is the union of ω many layers of the form

$$A^+ = \{ x^+ \mid x \in A \}$$
Jumping ω_1 levels.

Theorem (Wadge)

If A is self-dual, then A^\h^b and A^b form a non-self-dual pair and

$$\|A^\h^b\|_W = \|A^b\|_W = \|A\|_W \cdot \omega_1.$$

The operations A^\h^b and A^b together with the (analogs of) the Rake operations, are sufficient to construct sets of rank $< \omega_1^{\omega_1}$, i.e. the Δ^0_3 sets.
Jumping ω_1 levels.

An analogue of A^+.

- $s \upharpoonright i = \bar{s} \upharpoonright ii$, for $s \in <\omega 2$.
- $\bar{x} = \bigcup_n x \upharpoonright n$, for $x \in \omega 2$.
- Replace A with $\{ \bar{x} \mid x \in A \}$, but...
- Does not work, since $\{ \bar{x} \mid x \in \omega 2 \}$ is of measure 0!
- The cure: enlarge $\{ \bar{x} \mid x \in A \}$ like Rake^- was enlarged to Rake^+. The resulting set is called $\text{Plus}(A)$.
- In fact we construct $\text{Plus}(A; r)$ (with $r \in (0; 1)$) so that $\mu \left(\text{Plus}(A; r)_{[\bar{s}]} \right) \geq r$ for all s.
- If A is \mathcal{T}-regular (i.e., $A = \Phi(A)$), then so is $\text{Plus}(A; r)$.

Jumping ω_1 levels.

Construct $\text{Nat}(A)$ and $\text{Flat}(A)$: they are the analogs of A^\natural and A^\flat, and have rank $\|A\|_W \cdot \omega_1$.

Using the operations $\text{Nat}(A)$, $\text{Flat}(A)$, $\text{Rake}^- A$, $\text{Rake}^+ A$, and \oplus it is possible to construct a closed sets C such that $\Phi(C)$ is of any given Wadge degree in Δ^0_3.
Fix $0 < r < 1$. $\text{Nat}(A)$ is composed of ω-many layers:

- $\text{Plus}(A; r)$
- $\text{Plus}(A; r)$
- $\text{Plus}(A; r)$

If x settles inside a layer, then $x = s^{\uparrow}y$ and the density of x in $\text{Nat}(A)$ will be ‘similar’ to the density of y in A.

Every time we climb to a higher level, the density drops momentarily to $\leq 1/2$. So if x climbs infinitely many layers, then x will not have density 1 in $\text{Nat}(A)$.
Fix $0 < r_0 < r_1 < r_2 < \cdots \to 1$.

Flat(A) is the set is composed of ω-many layers

\[
\vdots
\]

\[
\text{Plus}(A; r_2)
\]

\[
\text{Plus}(A; r_1)
\]

\[
\text{Plus}(A; r_0)
\]

- If x settles inside a layer, then $x = s^\omega y$ and the density of x in Flat(A) will be ‘similar’ to the density of y in A.

- In the layer n, the density will always be $\geq r_n$. So if x climbs infinitely many layers, then x will have density 1 in Flat(A).
Density

A. Andretta, R. Camerlo

The motivation
Complete Boolean algebras
Lebesgue's theorem
The density topology

Results
Π^0_3-completeness
Wadge degrees
Dualistic sets

Comeagerness
Forcing
Φ is Borel

Would you like to see some proofs?
Π^0_3-completeness
Inside Δ^0_3