Tenofovir disoproxil fumarate may not cause renal and bone toxicity in chronic hepatitis B patients: a retrospective cross-sectional study

HATİCE RAHMET GÜNER
ZELİHA KOÇAK TUFAN
GÜLRUHSAR YILMAZ
MEHMET AKIN TAŞYARAN

Follow this and additional works at: https://journals.tubitak.gov.tr/medical
Part of the Medical Sciences Commons

Recommended Citation
GÜNER, HATİCE RAHMET; TUFAN, ZELİHA KOÇAK; YILMAZ, GÜLRUHSAR; and TAŞYARAN, MEHMET AKIN (2019) "Tenofovir disoproxil fumarate may not cause renal and bone toxicity in chronic hepatitis B patients: a retrospective cross-sectional study," Turkish Journal of Medical Sciences: Vol. 49: No. 1, Article 65. https://doi.org/10.3906/sag-1805-233
Available at: https://journals.tubitak.gov.tr/medical/vol49/iss1/65

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Tenofovir disoproxil fumarate may not cause renal and bone toxicity in chronic hepatitis B patients: a retrospective cross-sectional study

Rahmet GÜNER1*, Zeliha KOÇAK TUFAN1, Gül Ruhsar YILMAZ2, Mehmet A. TAŞY ARAN1

1Department of Infectious Diseases and Clinical Microbiology, Ankara Atatürk Training and Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
2Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey

To the Editor,
Tenofovir (TDF) is a nucleotide reverse transcriptase inhibitor used for treatment of chronic hepatitis B (CHB). TDF-associated hypophosphatemia has been reported in the literature [1,2]. However, randomized double-blind placebo-controlled trials have documented a favorable renal safety profile of TDF in patients with normal baseline renal function and a comparable incidence of hypophosphatemia [3].

In this retrospective cross-sectional study, we aimed to investigate if there was a significant change in PO₄, Ca levels, glomerular filtration rate (GFR), and bone mineral densitometry (BMD) of CHB patients who were under TDF therapy. Fifty-seven adult CHB patients treated with TDF between 2008 and 2013 were included. Local Ethical Committee approval of the hospital was obtained. Analyses were performed by using SPSS for Windows version 12 (SPSS Inc, Chicago, IL).

Median TDF therapy duration was 35 (6–68) months. Although only 3 had hypophosphatemia (<2.5 mg/dL), 15 patients had relatively low phosphate levels (<3 mg/dL) at baseline (a normal adult is expected to have a PO₄ level of 3–4.5 mg/dL). Seventeen (29.8%) of all patients had experienced PO₄ levels below 2.5 mg/dL during the therapy period once or several times. Apart from three patients, all (82%) of them had mild hypophosphatemia (2–2.5 mg/dL). The critical values for PO₄ and Ca were not detected in any of the patients. Hypocalcemia and hypophosphatemia were present in 2 (3.8%) patients at 45 and 68 months of therapy. No correlation was found between the Ca and PO₄ levels and age, sex, or duration of the therapy. The mean urea, creatinine levels, and GFRs at baseline and last visit are given in Table.

None of the patients had a sharp decrease in GFR (<30 mL/min/1.73 m²). Three patients (5.3%) had a GFR level of 30–59 mL/min/1.73 m² both at baseline and at the end of treatment. BMD results of 31 patients (75.6%) were normal while 8 (19.5%) had osteopenia and 2 (4.8%) had osteoporosis. Renal and bone toxicity and PO₄ and Ca levels of CHB patients under TDF therapy were evaluated in this study. None of the patients experienced severe hypophosphatemia.

Values are presented as mean ± standard deviation unless otherwise indicated. NS; not significant.
Baseline: At the beginning of the therapy.
Last visit: The last visit for each patient who are under treatment.

Table. The mean urea, creatinine levels, and GFRs at baseline and at last visit.

	Baseline	Last visit	P
Urea (mg/dL)	29.5 ± 8.3	29.6 ± 9.4	NS
Creatinine (mg/dL)	0.9 ± 0.3	0.9 ± 0.2	NS
Median GFR (min–max)	92 (39–169)	104 (47–181)	NS
PO₄	3.2 ± 0.7	3.1 ± 0.5	NS
Ca	9.3 ± 0.4	9.5 ± 0.4	NS

Received: 30.05.2018 ● Accepted/Published Online: 24.11.2018 ● Final Version: 11.02.2019

* Correspondence: rahmetguner@yahoo.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
and no significant change was observed in mean urea, creatinine, and GFR levels.

Although hypophosphatemia was defined as below 2.5 mg/dL, a normal adult is expected to have a PO₄ level of 3–4.5 mg/dL and interestingly 40% of our patients already had a PO₄ level below 3 mg/dL at baseline in our study. Preexisting risk factors for renal disease, such as diabetes, hypertension, coinfection with HIV or HCV, and baseline renal impairment, coadministration of nephrotoxic medications, and increasing age, can be reasons for hypophosphatemia [4]. Though not persisted, 30% of our study group showed a mild hypophosphatemia during the study period. Interestingly, there was no correlation between the minimum PO₄ levels and duration of the therapy. If we consider the duration of the treatment, half of our patients were under long term therapy of more than 36 months and only two patients had hypophosphatemia which was mild in intensity. In a large phase-3 study, hypophosphatemia was reported as 1.5% and increase in creatinine by 0.5 mg/dL was 1.7% in the 7th year of TDF treatment of CHB patients [5]. Renal functions of our patients did not differ at a significant level compared with baseline. None of the patients had renal failure nor showed a third stage decrease in GFR. In another study evaluating TDF versus emtricitabine + TDF, no significant difference regarding renal functions and no increased risk for hypophosphatemia was reported [6].

In conclusion, TDF did not seem to alter PO₄ and Ca levels, GFR, and BMD at a significant level in a real-life setting, and close monitoring is recommended to minimize the risk.

References

1. Gómez Martinez MV, Gallardo FG, Pirogova T, García-Samaniego J. Bone scintigraphy and secondary osteomalacia due to nephrotoxicity in a chronic hepatitis B patient treated with tenofovir. Rev Esp Med Nucl Imagen Mol 2014; 33: 103-105.
2. Mateo L, Holgado S, Marinoso ML, Andres RP, Bonjoch A, Romeu J, Olive A. Hypophosphatemic osteomalacia induced by tenofovir in HIV-infected patients. Clin Rheumatol 2016; 35: 1271-1279.
3. Buchacz K, Brooks JT, Tong T, Moorman AC, Baker RK, Holmberg SD, Greenberg A, Wood KC, Armon C, Richardson JT et al. Evaluation of hypophosphatemia in tenofovir disoproxil fumarate (TDF)-exposed and TDF-unexposed HIV-infected out-patients receiving highly active antiretroviral therapy. HIV Medicine 2006; 7: 451-456.
4. Wainwright E, Sherrard J, Duncan S, Shine B, Dorrell L. Hypophosphataemia with non-tenofovir-containing antiretroviral therapy. Int J STD AIDS 2013; 24: 579-581.
5. Buti M, Tsai N, Petersen J, Flisiak R, Gurel S, Krastev Z, Aguilar Schall R, Flaherty JF, Martins EB, Charuworn Pet al. Dig Dis Sci 2015; 60: 1457-1464.
6. Fung S, Kwan P, Fabri M, Horban A, Pelemis M, Hann HW et al. Randomized comparison of tenofovir disoproxil fumarate vs emtricitabine and tenofovir disoproxil fumarate in patients with lamivudine-resistant chronic hepatitis B. Gastroenterology 2014; 146: 980-988.