Spherical Fuzzy Soft Rough Average Aggregation Operators and Their Applications to Multi-criteria Decision Making

Zheng Leina¹, Tahir Mahmood², Jabbar Ahmmad², Ubaid ur Rehman² and Shouzhen Zeng³

¹School of Business, Zhejiang Wanli University, Ningbo 315100, China; leina.zheng@zwu.edu.cn
²Department of Mathematics and Statistics, International Islamic University Islamabad, Pakistan
³School of Business, Ningbo University, Ningbo 315211, China; zszzxl@163.com

*Corresponding author: jabbarahmad1992@gmail.com

ABSTRACT The objective of this article is to explore and generalize the notions of soft set and rough set along with spherical fuzzy set and to introduce the novel concept called spherical fuzzy soft rough set that is free from all those complications faced by many modern concepts like intuitionistic fuzzy soft rough set, Pythagorean fuzzy soft rough set, and q-rung orthopair fuzzy soft rough set. Since aggregation operators are the fundamental tools to translate the complete information into a distinct number, so some spherical fuzzy soft rough new average aggregation operators are introduced, such as spherical fuzzy soft rough weighted average, spherical fuzzy soft rough ordered weighted average, and spherical fuzzy soft rough hybrid average aggregation operators. Also, the basic characteristics of these introduced operators have been elaborated in detail. Furthermore, a multi-criteria decision-making (MCDM) technique has been developed and a descriptive example is given to support newly presented work. At the end of this article, a comparative study of the introduced technique has been established that shows how our work is more superior and efficient compared to the picture fuzzy soft set.

INDEX TERMS Spherical fuzzy soft rough set; Aggregation operators; Multi-criteria decision making

I. INTRODUCTION

Fuzzy set theory is the extension of the crisp set theory introduced by Zadeh [1] and the idea of the fuzzy set was presented that considers only positive grade. Atanassov [2] introduced the notion of an intuitionistic fuzzy set (IFS) as an extension of fuzzy set in which we consider the positive grade as well as negative grade with the condition that the sum (positive grade, negative grade) is less than or equal to 1. IFS has attained more importance since its appearance and it has been widely used in decision-making problems, such as some intuitionistic fuzzy frank power aggregation operators are conceived by Zhang et al. [3]. Also, Seikh and Mandal [4] introduced some intuitionistic fuzzy Dombi aggregation operators and applied them to MCDM problems. Moreover, Zeng et al. [5] conceived the MCDM based on intuitionistic fuzzy hybrid confident aggregation operator and social network analysis. Note that in IFS, the restriction $\sum (f, h) \in [0, 1]$ limits the possibility of positive grade "f" and negative grade "h". To avoid this condition, Yager [6] presented the design of Pythagorean fuzzy set (PyFS) as a generalization of IFS in which we use the necessary condition given as $0 \leq f^2 + h^2 \leq 1$.

PyFS is more strong apparatus and it provides more space for decision-makers (DMs) to tackle the data in fuzzy set theory. After the invention of PyFS, many researchers have tried to develop new aggregation operators (AOs) based on PyFS, therefore some Pythagorean Dombi fuzzy AOs are introduced by Akram et al. [7]. Moreover, some confidence level-based PyF aggregation operators and their application to DM problems have been discussed in [8]. Also, an algorithm for MADM using the interactive Archimedean norm operations under the notion of PyFS has been developed by Wang and Garg [9]. Moreover, Wu et al. [10] presented the MAGDM flexibility based on the information fusion technique and hesitant Pythagorean fuzzy sets. PyFS is a limited notion noticed by researchers because when DMs provide 0.8 as positive grade (PG) and 0.7 as negative grade (NG) then $\sum (0.8^2, 0.7^2) \notin [0, 1]$, so in this situation, PyFS is unsuccessful to solve this fact. To lower this difficulty, Yager [11] established the concept of q-rung orthopair fuzzy...
set (q-ROFS) as a generalization of IFS and PyFS. Later, Xing et al. [12] presented some point-weighted AOs for q-ROFSs and provide their application for MCDM problems. Furthermore, some AOs based on q-ROFSs and their application to MADM problems have been presented by Liu and Wang [13]. Notice that all the above theories discuss only PG and NG but the abstinence grade (AG) is ignored by all the above-given concepts while in many real-life situations we have to discuss the AG. This issue was pointed out by Cuong [14] and he developed a new idea known as picture fuzzy set (PFS) in literature. PFS is a stronger tool in handling the vagueness and hesitancy of MCDM problems. Note that PFS uses the condition that \(\sum (f, g, h) \in [0, 1] \) and this characteristic distinguishes PFS from all other theories to make it more general. Moreover, based on PFS, some PF Hamacher AOs are discussed by Wei [15]. Notice that PFS is a restricted formation because when DMs come up with 0.5 as PG, 0.4 as NG, and 0.2 as AG, then the main condition of PFS fails to hold because 0.5 + 0.2 + 0.4 \(\notin [0, 1] \). To control this issue, the notion of a spherical fuzzy set (SFS) has been presented by Mahmood et al. [16]. SFS attains more attention from the researchers since its appearance. Also, some theories for spherical fuzzy numbers and the MCDM approach have been developed by Deli and Cagman [17]. Furthermore, some cosine similarity measures based on SFS and their application to DM problems have been introduced by Rafiq et al. [18]. Also, some symmetric-based AOs for SF data are proposed by Ashraf et al. [19].

Soft set (\(S_{\text{f}}S \)) theory introduced by Molodtsov [20] is a common mathematical structure to handle the uncertain and vague data that other traditional trolls cannot handle. The notion of \(S_{\text{f}}S \) has been proved useful in different fields like DM [21] data analysis [22] and optimization [23]. Maji et al. [24] introduced the study of compound structure concerning both FS and \(S_{\text{f}}S \) and the idea of fuzzy \(S_{\text{f}}S(FS_{\text{f}}S) \) was initiated as a fuzzy generalization of classical \(S_{\text{f}}S \). After the invention of \(FS_{\text{f}}S \), many researchers have started working on the hybrid structure and many extended versions have been invented, such as IF soft set [25] (IFS_{\text{f}}S), PyF soft set [26] (PyFS_{\text{f}}S), and q-ROF soft set [27] (q-ROFS_{\text{f}}S). Moreover, some Bonferroni mean aggregation operators based on IFS_{\text{f}}S have been developed by Garg and Arora [28]. Also, Arora and Garg [29] established several robust AOs for IFS_{\text{f}}S and presented their application to MCDM problems. Naem et al. [30] developed TOPSIS and VIKOR methods based on PyFS_{\text{f}}S and provided its application to MCGDM problems. Furthermore, some q-ROFS_{\text{f}}S average and geometric AOs are discussed in [31] and [32], respectively.

A rough set (RS) initiated by Pawlak [35-36] is another apparatus to deal the vagueness and it seems to be a well-suited mathematical model for vagueness and uncertainty. RS is an extension of classical set theory (CST) in which the basic tool is relation that is representative of information systems. It is noticed that equivalence relation in Pawlak RS theory is restricted in many practical fields so many authors have extended the Pawlak RS theory by using non-equivalence relation and similarity relations are given in [37-38]. In recent literature, many new theories have been established by the combination of FS theories along with \(S_{\text{f}}S \) and RS to develop \(S_{\text{f}}SRS \) [39]. IF soft rough set (IFS_{\text{f}}SRS) [40], PyF soft rough set (PyFS_{\text{f}}SRS) [41], q-rung orthopair fuzzy soft rough set [42], Neutrosophic N-Soft Set [43].

No doubt intuitionistic fuzzy set, Pythagorean fuzzy set, and q-rung orthopair fuzzy have their importance in their structures, but these theories can consider only two types of aspects like yes or no, on the other hand human opinion can never be restricted to yes or no type of aspects, for example, consider the occurrence of voting where one can vote in favor of someone or vote against someone or refuse to vote or abstinence to vote. In this situation, all prevailing theories fail to handle this situation. Also, note that nevertheless picture fuzzy set can cope with these circumstances but it has limitations in its structure. But the spherical fuzzy set is a more dominant structure for coping with these types of situations.

Also, note that the prevailing theories have to face some sort of hurdles either in their structures or their necessary conditions, given as follows

1. When a decision-maker has to handle the data involving positive grade, abstinence grade, and negative grade then prevailing theories like IFS_{\text{f}}SRS [40], PyFS_{\text{f}}SRS [41] and q-ROFS_{\text{f}}SRS [42] can never handle such type of information and has deficiencies in their structure.

2. Although the idea of the picture fuzzy soft rough set (PF_{\text{f}}SRS) can consider the phenomenon of voting but it has limited conditions in the form of lower and upper approximation operators like \(0 \leq \bar{f}_{\text{f}}(\varepsilon_{\text{f}}) + \bar{g}_{\text{f}}(\varepsilon_{\text{f}}) + \bar{b}_{\text{f}}(\varepsilon_{\text{f}}) \leq 1 \) and \(0 \leq \bar{f}_{\text{f}}(\varepsilon_{\text{f}}) + \bar{g}_{\text{f}}(\varepsilon_{\text{f}}) + \bar{b}_{\text{f}}(\varepsilon_{\text{f}}) \leq 1 \) but when decision-makers take their information in the form of spherical fuzzy soft rough set (SFS_{\text{f}}RS) consisting of lower and upper approximations like \((0.5, 0.6, 0.3) \) then note that the sum of lower and upper approximation values exceeds [0, 1] that is \(0 \leq 0.5 + 0.6 + 0.3 \leq 1 \) and \(0 \leq 0.6 + 0.4 + 0.3 \leq 1 \) that can never be handled by PF_{\text{f}}SRS that restrict the notion of PFS_{\text{f}}RS.

So motivated by the dominant feature of spherical fuzzy set, in this article, we have combined soft set, rough set, and spherical fuzzy set to present spherical fuzzy soft rough set. Hence the main contribution of this study is to invent a beneficiary decision-making strategy under the environment of the spherical fuzzy soft rough set.
spherical fuzzy soft rough weighted average \((SFS_{f,RWA})\), spherical fuzzy soft rough ordered weighted average \((SFS_{f,ROWA})\), and spherical fuzzy soft rough hybrid average \((SFS_{f,RHA})\) aggregation operators have been proposed. Also, the basic characteristics of these invented operators are debated. Furthermore, a critical analysis of the established work has been given through MCDM and an illustrative example is given to support our work.

For more convenience, we have illustrated the presented work by frame diagram given in Figure 1.

In this phase of the article, we present some basic notions of fuzzy set, soft set, spherical fuzzy set, spherical fuzzy soft set, and rough set that will help us in further discussion.

Definition 1: \[1\] Fuzzy set on a general set \(Z\) is an expression of the form:

\[
F = \{z, f(z): z \in Z\}
\]

where \(f: Z \rightarrow [0, 1]\) denotes the PG.

Definition 2: \[20\] Let \(Z\) be a universal set and \(E\) be parameters set, the pair \((B, ^{0}C)\) is called soft set over \(Z\), if \(B: ^{0}C \rightarrow P(Z)\) is a set-valued mapping where \(P(Z)\) denote power set of \(Z\).

Definition 3: \[16\] Let \(Z\) be a universal set. Spherical fuzzy set over \(Z\) is of the shape

\[
SF = \{(z, f(z), g(z), b(z)): z \in Z\}
\]

where \(f: Z \rightarrow [0, 1]\) is the AG and \(g: Z \rightarrow [0, 1]\) is NG using condition \(0 \leq (f(z))^2 + (g(z))^2 \leq 1\).

Definition 4: \[33\] For a fixed set \(Z, ^{0}C\) a parameter set and \(Y \subseteq ^{0}C\), the pair \((M, Y)\) is called spherical fuzzy soft set over \(Z\), where \(M\) is the mapping form \(Y\) to \(SFS(Z)\), where \(SFS(Z)\) is the family of all SFS over \(Z\) given as

\[
M(\mathcal{S}_j) = \{(z_i, f_{ij}(z_i), g_{ij}(z_i), b_{ij}(z_i))\mid z_i \in Z\}
\]

with condition that \(0 \leq (f_{ij}(z_i))^2 + (g_{ij}(z_i))^2 + (b_{ij}(z_i))^2 \leq 1\) where \(\mathcal{S}_j\) is the notation for parameters.

Definition 5: \[34\] Let \(SF_{\mathcal{E}_i} = (f_{ij}, g_{ij}, b_{ij})\) be two \(SFS_{f,t}Ns\) where \(\mathcal{E}_i\) represent the parameters for \(i = 1, 2, \ldots, n\) and \(j = 1, 2, \ldots, m\) and \(L > 0\). Some fundamental laws for \(SFS_{f,t}Ns\) are defined by:

1. \(SF_{\mathcal{E}_i} \subseteq SF_{\mathcal{E}_j}\) iff \(f_{ij} \leq f_{ij}\), \(g_{ij} \leq g_{ij}\) and \(b_{ij} \geq b_{ij}\).
2. \(SF_{\mathcal{E}_i} = SF_{\mathcal{E}_j}\) iff \(SF_{\mathcal{E}_i} \subseteq SF_{\mathcal{E}_j}\) and \(SF_{\mathcal{E}_j} \subseteq SF_{\mathcal{E}_i}\).
3. \(SF_{\mathcal{E}_i} \cup SF_{\mathcal{E}_j} = \langle \max (f_{ij}, f_{ij}), \min (g_{ij}, g_{ij}), \min (b_{ij}, b_{ij}) \rangle\).
4. \(SF_{\mathcal{E}_i} \cap SF_{\mathcal{E}_j} = \langle \min (f_{ij}, f_{ij}), \min (g_{ij}, g_{ij}), \max (b_{ij}, b_{ij}) \rangle\).
5. \(SF_{\mathcal{E}_i} = (g_{ij}, f_{ij}, f_{ij})\).
6. \(SF_{\mathcal{E}_i} \oplus SF_{\mathcal{E}_j} = \langle (f_{ij})^2 + (f_{ij})^2 - (f_{ij})^2, g_{ij}g_{ij}, b_{ij}b_{ij} \rangle\).
7. \(SF_{\mathcal{E}_i} \otimes SF_{\mathcal{E}_j} = \langle f_{ij}f_{ij}, g_{ij}g_{ij}, (b_{ij})^2 + (b_{ij})^2 - (b_{ij})^2 \rangle\).
8. \(LSF_{\mathcal{E}_i} = \langle 1 - (1 - f_{ij})^2, g_{ij}, b_{ij} \rangle\).
9. \(SF_{\mathcal{E}_i}^L = (f_{ij}^L, g_{ij}, b_{ij} \rangle, \langle 1 - (1 - b_{ij})^2 \rangle\).

The remainder of the article is categorized as follows: In the second phase of this article we have over-viewed some basic definitions of FS, \(S_{f,t}S\), SFS, \(SFS_{f,t}S\) and RS. Section 3 presents the basic interpretation of \(SFS_{f,t}RS\) and some operational laws for \(SFS_{f,t}RN_s\). Section 4 carry out the principal structure of \(SFS_{f,t}RWA\), \(SFS_{f,t}ROWA\) and \(SFS_{f,t}RHA\) aggregation operators and their properties. In section 5, an algorithm along with an illustrative example is given to show how these operators work. In section 6, we have given a comparative analysis of established work. Finally, section 7 summarizes the conclusion remarks.

II. Preliminaries
Definition 6: [37] For a universal set Ž and Ře ⊆ Ž × Ž an arbitrary relation on Ž. Let Ře* be a set-valued map Ře* : Ž → P(Ž) defined as Ře* (Ž) = {y ∈ Ž : Ž, y ∈ Ře and Ž ∈ Ž}, then the pair (Ž, Ře) is crisp approximation space. Now let Ře, Ž, Ž the lower (LR) and upper (UR) approximations of Ž w.r.t. (Ž, Ře) are given by

\[\text{Ře}_e(Ž) = \{(Ž ∈ Ž : Ž, Ž ∈ Ře*) \text{ where } \text{Ře}_e(Ž) ≠ Ž \} \]

\[\text{Ře}^*(Ž) = \{(Ž ∈ Ž : Ž, Ž ∈ Ře*) \text{ and Ž } \} \]

The pair \((\text{Ře}_e(Ž), \text{Ře}^*(Ž))\) is a rough set (RS), where \(\text{Ře}_e(Ž) ≠ \text{Ře}^*(Ž)\). Also, \(\text{Ře}_e(Ž)\), \(\text{Ře}^*(Ž)\): \(P(Ž) \to P(Ž)\) is called lower and upper approximation operators according to (Ž, Ře).

III. Spherical fuzzy soft rough set

Notion of \(SFRS\) is the generalization of CST that is free from all issues faced by some contemporary theories. We note from the existing theories that \(SFRS\) and RS are influential mathematical apparatuses to deal with the vagueness and uncertain data. Motivated from the combined structure of the soft rough set, this section is devoted to presenting the hybrid structure of SFS, \(SFSR\) and RS to get a new idea called \(SFSR\). Moreover, some basic operational laws for this developed structure has been introduced. We use these fundamental operations to discuss some new AOs and their fundamental properties in detail.

Definition 7: Suppose \(\text{QF}, °\text{C}\) denote the \(SFSR\) over Ž. Any subset \(\text{Ře}\) of Ž × °C is called a \(SFSR\) relation from Ž to °C and defined by \(\text{Ře} = \{(e_1, \text{SEQ}), f(e_1, \text{SEQ}), g(\text{SEQ}, \text{SEQ}), h(\text{SEQ}, \text{SEQ})\} \times \text{SEQ}, \text{SEQ}) \in Ž × °C\), where \(f : Ž × °C \to [0, 1], g : Ž × °C \to [0, 1] and h: Ž × °C \to [0, 1]\) represent the PG, AG, and NG respectively with condition \(0 ≤ f(e_1, \text{SEQ})^2 + g(\text{SEQ}, \text{SEQ})^2 + h(\text{SEQ}, \text{SEQ})^2 ≤ 1\) for all \((\text{SEQ}, \text{SEQ}) \in Ž × °C\). If Ž = \{e_1, e_2, e_3, ..., e_m\} and °C = \{SEQ, SEQ, SEQ, ..., SEQ\}, then \(SFSR\) relation \(\text{Ře}\) from Ž to °C is given in Table 1.

Ře	SEQ	SEQ	SEQ	SEQ
\(e_1\)	\(f(e_1, \text{SEQ})\)	\(g(e_1, \text{SEQ})\)	\(h(e_1, \text{SEQ})\)	\(f(e_1, \text{SEQ})^2 + g(e_1, \text{SEQ})^2 + h(e_1, \text{SEQ})^2 ≤ 1\)
\(e_2\)	\(f(e_2, \text{SEQ})\)	\(g(e_2, \text{SEQ})\)	\(h(e_2, \text{SEQ})\)	\(f(e_2, \text{SEQ})^2 + g(e_2, \text{SEQ})^2 + h(e_2, \text{SEQ})^2 ≤ 1\)
...	\(f(e_m, \text{SEQ})\)	\(g(e_m, \text{SEQ})\)	\(h(e_m, \text{SEQ})\)	\(f(e_m, \text{SEQ})^2 + g(e_m, \text{SEQ})^2 + h(e_m, \text{SEQ})^2 ≤ 1\)

Now we can define the definition of \(SFSR\) as follows:

Definition 8: For a universal set Ž, °C being parameter set and \((\text{QF}, °\text{C})\) be a \(SFSR\). Suppose \(\text{Ře}\) be arbitrary \(SFSR\) relation from Ž to °C. Then the triplet \((Ž, °C, Ře)\) is called \(SFSR\) approximation space. Now for any element Ž in °C, then SR and UR approximation space of Ž w.r.t. approximation space \((Ž, °C, Ře)\) are presented and given as

\[\text{Ře}_e(Ž) = \{(e_1, f(e), g(e), h(e)) | e_1 ∈ Ž\} \]

\[\text{Ře}^*(Ž) = \{(e_1, f(e), g(e), h(e)) | e_1 ∈ Ž\} \]

where

\[f(e) = \Lambda e, e ∈ °C | f(e_1, e_2) | \Lambda e_6 | g(e) = \Lambda e, e ∈ °C | g(e_1, e_2) | \Lambda e_6 | h(e) = \Lambda e, e ∈ °C | h(e_1, e_2) | \Lambda e_6 | \]

\[f(e) = \Lambda e, e ∈ °C | f(e_1, e_2) | \Lambda e_6 | g(e) = \Lambda e, e ∈ °C | g(e_1, e_2) | \Lambda e_6 | h(e) = \Lambda e, e ∈ °C | h(e_1, e_2) | \Lambda e_6 | \]

\[f(e) = \Lambda e, e ∈ °C | f(e_1, e_2) | \Lambda e_6 | g(e) = \Lambda e, e ∈ °C | g(e_1, e_2) | \Lambda e_6 | h(e) = \Lambda e, e ∈ °C | h(e_1, e_2) | \Lambda e_6 | \]

Such that

\[0 ≤ \left(f(e) \right)^2 + \left(g(e) \right)^2 + \left(h(e) \right)^2 \leq 1 \]

\[0 ≤ \left(f(e) \right)^2 + \left(g(e) \right)^2 + \left(h(e) \right)^2 \leq 1 \]

It is clear that \(\text{Ře}_e(Ž)\) and \(\text{Ře}^*(Ž)\) are two \(SFSs\) in Ž and the operators \(\Lambda e_6(Ž), \Lambda e_6(Ž)\): \(SFSR \to SFSR\) are respectively called LR and UR \(SFSR\) approximation operators. Hence spherical fuzzy soft rough set \(SFSR\) is a pair \(\text{Ře}_e(Ž) = \left(\text{Ře}_e(Ž), \text{Ře}^*(Ž)\right)\) is a pair of lower and upper approximation operators that satisfy the necessary condition

\[0 ≤ \left(f(e) \right)^2 + \left(g(e) \right)^2 + \left(h(e) \right)^2 \leq 1 \]

\[0 ≤ \left(f(e) \right)^2 + \left(g(e) \right)^2 + \left(h(e) \right)^2 \leq 1 \]
relation

Now we use Eqs. (6) and (7) to get:

\[
\begin{align*}
\overline{f}_1(\xi_1) &= 0.6, \overline{f}_2(\xi_2) = 0.6, \overline{f}_3(\xi_3) = 0.5, \overline{f}_4(\xi_4) = 0.5, \overline{f}_5(\xi_5) = 0.6, \\
\overline{g}_1(\xi_1) &= 0.1, \overline{g}_2(\xi_2) = 0.1, \overline{g}_3(\xi_3) = 0.1, \overline{g}_4(\xi_4) = 0.2, \overline{g}_5(\xi_5) = 0.1
\end{align*}
\]

Now lower and upper \(SF_{SRN}\) approximation operators are given as

\[
\begin{align*}
\overline{R}_e(\xi) &= \left\{ (\xi_1, 0.1, 0.5, 0.6), (\xi_2, 0.2, 0.5, 0.6), (\xi_3, 0.1, 0.6, 0.6), (\xi_4, 0.3, 0.6, 0.6), (\xi_5, 0.6, 0.1, 0.2) \right\}, \\
\overline{R}_e(\xi) &= \left\{ (\xi_3, 0.1, 0.6, 0.5), (\xi_4, 0.1, 0.6, 0.6), (\xi_5, 0.3, 0.6, 0.5), (\xi_6, 0.6, 0.1, 0.1) \right\}
\end{align*}
\]

Hence

\[
\begin{align*}
\overline{R}_e(\xi_1) \cup \overline{R}_e(\xi_2) &= \left\{ (\xi_1, 0.1, 0.5, 0.6), (\xi_2, 0.2, 0.5, 0.6), (\xi_3, 0.1, 0.6, 0.6), (\xi_4, 0.3, 0.6, 0.6), (\xi_5, 0.6, 0.1, 0.2) \right\}, \\
\overline{R}_e(\xi_1) \cap \overline{R}_e(\xi_2) &= \left\{ (\xi_3, 0.1, 0.6, 0.5), (\xi_4, 0.1, 0.6, 0.6), (\xi_5, 0.3, 0.6, 0.5), (\xi_6, 0.6, 0.1, 0.1) \right\}
\end{align*}
\]

Example 1: Suppose Mr. X wants to buy the best mobile phone brands from a set of five alternatives \(\mathcal{A} = \{ \xi_1 = APPLE, \xi_2 = ACER, \xi_3 = VIVO, \xi_4 = HTC, \xi_5 = LG \}\) under consideration having the set of parameters as \(\mathbb{C} = \{ \xi_1 = Long - lasting \ battery, \xi_2 = Crystalline - clear \ display, \xi_3 = Reasonable \ price, \xi_4 = Plenty \ of \ storage \ space \} \). Let Mr. X presents the attractiveness of mobile phone brands in the form of \(SF_{SRN}\) relation \(R_e\) from \(\mathbb{Z} \to \mathbb{C}\) as presented in Table 2.

\(\xi_1\)	\(\xi_2\)	\(\xi_3\)	\(\xi_4\)	\(\xi_5\)
(0.1, 0.2, 0.4)	(0.5, 0.1, 0.6)	(0.6, 0.4, 0.6)	(0.3, 0.2, 0.4)	
(0.3, 0.5, 0.2)	(0.3, 0.5, 0.4)	(0.5, 0.2, 0.3)	(0.2, 0.1, 0.3)	
(0.4, 0.1, 0.5)	(0.2, 0.6, 0.5)	(0.4, 0.5, 0.5)	(0.1, 0.5, 0.1)	
(0.2, 0.4, 0.3)	(0.1, 0.3, 0.6)	(0.1, 0.2, 0.4)	(0.4, 0.6, 0.5)	
(0.5, 0.3, 0.1)	(0.6, 0.1, 0.5)	(0.3, 0.6, 0.2)	(0.5, 0.4, 0.2)	

Now suppose that Mr. X established the decision object in the form of spherical fuzzy subset over a parameter set \(\mathbb{C}\) as given below \(\mathcal{G} = \{ (\xi_1, 0.4, 0.5, 0.2), (\xi_2, 0.3, 0.4, 0.5), (\xi_3, 0.4, 0.2, 0.4) \} \). Now we use Eqs. (6) and (7) to get:

\[
\begin{align*}
\overline{f}_1(\xi_1) &= 0.1, \overline{f}_2(\xi_2) = 0.2, \overline{f}_3(\xi_3) = 0.1, \overline{f}_4(\xi_4) = 0.1, \overline{f}_5(\xi_5) = 0.3, \\
\overline{g}_1(\xi_1) &= 0.5, \overline{g}_2(\xi_2) = 0.5, \overline{g}_3(\xi_3) = 0.6, \overline{g}_4(\xi_4) = 0.6, \overline{g}_5(\xi_5) = 0.6 \\
\overline{b}_1(\xi_1) &= 0.6, \overline{b}_2(\xi_2) = 0.6, \overline{b}_3(\xi_3) = 0.5, \overline{b}_4(\xi_4) = 0.6, \overline{b}_5(\xi_5) = 0.5 \text{ and }
\end{align*}
\]
5. \(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \subseteq \mathcal{R}_{e_{\mathcal{G}_2}}(\mathcal{G}_1) = (\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \subseteq \mathcal{R}_{e_{\mathcal{G}_2}}(\mathcal{G}_1)) \) and \(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \subseteq \mathcal{R}_{e_{\mathcal{G}_2}}(\mathcal{G}_1) \);

6. \(\tau (\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1)) = \left(\tau \mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1), \tau \mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right) \) for \(\tau \geq 1 \);

7. \(\left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right)^{\tau} = \left(\left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right)^{\tau}, \left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right)^{\tau} \right) \) for \(\tau \geq 1 \);

8. \(\left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right)^{c} = \left(\left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right)^{c}, \left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right)^{c} \right) \)

where \(\left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right)^{c} \) and \(\left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right)^{c} \) are the complement of \(SFS_{fr}R \) approximation operators \(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \) and \(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \).

9. \(\mathcal{R}_{e}(\mathcal{G}_1) = \mathcal{R}_{e}(\mathcal{G}_2) \) iff \(\mathcal{R}_{e}(\mathcal{G}_1) = \mathcal{R}_{e}(\mathcal{G}_2) \) and \(\mathcal{R}_{e}(\mathcal{G}_2) = \mathcal{R}_{e}(\mathcal{G}_2) \).

Definition 10: For a \(SFS_{fr}RN \) \(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) = (\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1), \mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1)) = (f_{11}, g_{11}, b_{11}), (f_{11}, g_{11}, b_{11}) \), then the score function for \(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \) can be defined as

\[
Sc \left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right) = \frac{1}{3} \left(2 + \left(f_{11}^2 + g_{11}^2 \right) - \left(g_{11}^2 + b_{11}^2 \right) \right).
\]

Note that \(Sc \left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \right) \in [-1, 1] \).

IV. Spherical fuzzy soft rough average (\(SFS_{fr}RA \)) aggregation operators

This phase of the article deals with the notions of spherical fuzzy soft rough weighted average, spherical fuzzy soft rough ordered weighted average, and spherical fuzzy soft rough hybrid average aggregation operators. Moreover, the properties of these developed AOs are discussed in detail. The overall discussion is given below.

A. Spherical fuzzy soft rough weighted average (\(SFS_{fr}RA \)) operator

Definition 11: For a family of \(SFS_{fr}RNs \) \(\mathcal{R}_{e_{\mathcal{G}_j}}(\mathcal{G}_i) = (\mathcal{R}_{e_{\mathcal{G}_j}}(\mathcal{G}_i), \mathcal{R}_{e_{\mathcal{G}_j}}(\mathcal{G}_i)) \) for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \) and let \(\vec{w} = (\vec{w}_1, \vec{w}_2, \vec{w}_3, \ldots, \vec{w}_m)^2, \vec{h} = (\vec{h}_1, \vec{h}_2, \vec{h}_3, \ldots, \vec{h}_n)^2 \) be the weight vectors (WVs) of \(\xi_i \) experts and \(\mathcal{G}_j \) parameters using the condition that \(\sum_{i=1}^{m} \vec{w}_i = 1, \sum_{j=1}^{n} \vec{h}_j = 1 \) and \(0 \leq \vec{w}_i, \vec{h}_j \leq 1 \) respectively. Then \(SFS_{fr}RWA \) aggregation operator is defined as:

\[
SFS_{fr}RWA \left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1), \ldots, \mathcal{R}_{e_{\mathcal{G}_n}}(\mathcal{G}_m) \right) = \left(\bigoplus_{j=1}^{n} \vec{h}_j \left(\bigoplus_{i=1}^{m} \vec{w}_i \mathcal{R}_{e_{\mathcal{G}_j}}(\mathcal{G}_i) \right) \right),
\]

Theorem 1: Let \(\mathcal{R}_{e_{\mathcal{G}_j}}(\mathcal{G}_i) = (\mathcal{R}_{e_{\mathcal{G}_j}}(\mathcal{G}_i), \mathcal{R}_{e_{\mathcal{G}_j}}(\mathcal{G}_i)) \) be a family of \(SFS_{fr}RNs \). Also, suppose that \(\vec{w} = (\vec{w}_1, \vec{w}_2, \vec{w}_3, \ldots, \vec{w}_m)^2, \vec{h} = (\vec{h}_1, \vec{h}_2, \vec{h}_3, \ldots, \vec{h}_n)^2 \) are the WVs of \(\xi_i \) experts and \(\mathcal{G}_j \) parameters using the situation that \(\sum_{i=1}^{m} \vec{w}_i = 1, \sum_{j=1}^{n} \vec{h}_j = 1 \) and \(0 \leq \vec{w}_i, \vec{h}_j \leq 1 \) respectively. Then \(SFS_{fr}RWA \) aggregation operator is given as:

\[
SFS_{fr}RWA \left(\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1), \ldots, \mathcal{R}_{e_{\mathcal{G}_n}}(\mathcal{G}_m) \right) = \left(\bigoplus_{j=1}^{n} \vec{h}_j \left(\bigoplus_{i=1}^{m} \vec{w}_i \mathcal{R}_{e_{\mathcal{G}_j}}(\mathcal{G}_i) \right) \right).
\]

Proof: We use the mathematical induction method to prove the theorem as follows.

By using operational laws:

\[
\mathcal{R}_{e_{\mathcal{G}_1}}(\mathcal{G}_1) \oplus \mathcal{R}_{e_{\mathcal{G}_2}}(\mathcal{G}_2) = \left(\left(f_{11}, g_{11}, b_{11} \right) \oplus \left(f_{12}, g_{12}, b_{12} \right) \right),
\]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
Suppose that outcome is valid for $\tau \Re$ and $\tau \Re = \tau \Re \Theta (\Delta, \Lambda)$ for $SFS_e(\Theta, \Lambda)$.

Next, suppose that statement is valid for $n = K_1$ and $m = K_2$.

$$SFS_{f, RWA}(\Re_{e, \Theta_1}(\Theta_1), ..., \Re_{e, \Theta_{K_1}}(\Theta_{K_1})) = \left(\prod_{j=1}^{K_1} \left(1 - \prod_{i=1}^{K_1} (1 - f_{ij}^2)^{\nu_i}\right)\right)^{\approx \kappa_j},$$

and

$$\tau \Re_{e, \Theta_1}(\Theta_1) = \left(\prod_{j=1}^{K_1} \left(1 - \prod_{i=1}^{K_1} (1 - f_{ij}^2)^{\nu_i}\right)\right)^{\approx \kappa_j},$$

for $r \geq 1$.

Suppose that outcome is valid for $n = 2$ and $m = 2$,

$$SFS_{f, RWA}(\Re_{e, \Theta_1}(\Theta_1), \Re_{e, \Theta_2}(\Theta_2)) = \left(\prod_{j=1}^{K_1} \left(1 - \prod_{i=1}^{K_1} (1 - f_{ij}^2)^{\nu_i}\right)\right)^{\approx \kappa_j},$$

and

$$\tau \Re_{e, \Theta_1}(\Theta_1) = \left(\prod_{j=1}^{K_1} \left(1 - \prod_{i=1}^{K_1} (1 - f_{ij}^2)^{\nu_i}\right)\right)^{\approx \kappa_j}$$

Further, we have to prove that statement is valid for $n = K_1 + 1$ and $m = K_2 + 1$.

$$SFS_{f, RWA}(\Re_{e, \Theta_1}(\Theta_1), ..., \Re_{e, \Theta_{K_1}}(\Theta_{K_2})), \Re_{e, \Theta_{K_1+1}}(\Theta_{K_2+1})) = \left(\prod_{j=1}^{K_1} \left(1 - \prod_{i=1}^{K_1} (1 - f_{ij}^2)^{\nu_i}\right)\right)^{\approx \kappa_j},$$

and

$$\tau \Re_{e, \Theta_1}(\Theta_1) = \left(\prod_{j=1}^{K_1} \left(1 - \prod_{i=1}^{K_1} (1 - f_{ij}^2)^{\nu_i}\right)\right)^{\approx \kappa_j},$$

Hence the statement is valid for $n = 2$ and $m = 2$.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3150858, IEEE Access.
So, by using the definition 9, we have that

\[
VOLUME XX, 2017
9
\]

Hence the result is true for \(n = K + 1 \) and \(m = K + 1 \). Hence it is true for all \(m, n \geq 1 \).

As it is clear that \(R_{e_{\mathbb{S}_j}}(\mathbb{G}_1) \) and \(R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) \) are SFS\(_t\)WVs. So, by using the definition 9, we have that

\[
\oplus_{j=1}^{n} \tilde{\mathcal{H}}_j \left(\prod_{i=1}^{m} \mathfrak{w}_i \mathbb{R}_{e_{\mathbb{S}_j}}(\mathbb{G}_i) \right)
\]

and

\[
\oplus_{j=1}^{n} \tilde{\mathcal{H}}_j \left(\prod_{i=1}^{m} \mathfrak{w}_i \mathbb{R}_{e_{\mathbb{S}_j}}(\mathbb{G}_i) \right)
\]

are also SFS\(_t\)WVs. Hence, SFS\(_t\)RWA \((R_{e_{\mathbb{S}_j}}(\mathbb{G}_1), \ldots, R_{e_{\mathbb{S}_j}}(\mathbb{G}_m)) \) is also SFS\(_t\)RN in approximation space \((\mathbb{Z}, c, \mathbb{R}_e) \).

Example 2: Suppose \(\mathbb{Z} = \{\mathbb{E}_1, \mathbb{E}_2, \mathbb{E}_3\} \subseteq \mathbb{C} \) denote alternatives set and set of parameter respectively having WVs \(\mathfrak{w}_i = \{0.35, 0.26, 0.39\} \) for \(i = 1, 2, 3 \) and \(\tilde{\mathcal{H}} = (0.65, 0.35) \) for \(j = 1, 2 \). The data given in Table 3 consists of SFS\(_t\)RN's.

\(\mathbb{E}_1 \)	\(\mathbb{E}_2 \)	\(\mathbb{E}_3 \)
\(\{0.5,0.6,0.3\} \)	\(\{0.6,0.3,0.5\} \)	\(\{0.2,0.6,0.1\} \)
\(\{0.4,0.1,0.2\} \)	\(\{0.3,0.3,0.4\} \)	
\(\{0.3,0.3,0.1\} \)	\(\{0.1,0.1,0.5\} \)	
\(\{0.2,0.5,0.3\} \)	\(\{0.6,0.1,0.1\} \)	

Next we will elaborate that SFS\(_t\)RWA operator has the following properties.

Theorem 2: Suppose \(R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) = \left(R_{e_{\mathbb{S}_j}}(\mathbb{G}_i), \mathbb{R}_{e_{\mathbb{S}_j}}(\mathbb{G}_i) \right) \) for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \) is a set of SFS\(_t\)RN's. Also assume that \(\mathfrak{w}_i = (\mathfrak{w}_1, \mathfrak{w}_2, \mathfrak{w}_3, \ldots, \mathfrak{w}_m) \) \(\tilde{\mathcal{H}} = (\tilde{\mathcal{H}}_1, \tilde{\mathcal{H}}_2, \tilde{\mathcal{H}}_3, \ldots, \tilde{\mathcal{H}}_n) \) are WVs of \(e_i \) experts and \(\mathbb{S}_j \) parameters with the situation that \(\sum_{i=1}^{m} \mathfrak{w}_i = 1, \sum_{j=1}^{n} \tilde{\mathcal{H}}_j = 1 \) and \(0 \leq \mathfrak{w}_i, \tilde{\mathcal{H}}_j \leq 1 \), respectively. Then SFS\(_t\)RWA operator holds the following properties:

i. (Idempotency): Let \(R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) = \mathbb{R}_{e_{\mathbb{S}_j}}(\mathbb{G}_i) \) for all \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \), where \(R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) = \mathbb{R}_{e_{\mathbb{S}_j}}(\mathbb{G}_i) \) \(\mathbb{S}_j \subseteq \mathbb{G}_i \) and \(\mathbb{S}_j \in \mathbb{G}_i \), then SFS\(_t\)RWA \(\left(R_{e_{\mathbb{S}_j}}(\mathbb{G}_1), \ldots, R_{e_{\mathbb{S}_j}}(\mathbb{G}_m) \right) = \mathbb{R}_{e_{\mathbb{S}_j}}(\mathbb{G}_i) \).

Proof: If \(R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) = \mathbb{R}_{e_{\mathbb{S}_j}}(\mathbb{G}_i) \) for all \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \), then SFS\(_t\)RWA \(\left(R_{e_{\mathbb{S}_j}}(\mathbb{G}_1), \ldots, R_{e_{\mathbb{S}_j}}(\mathbb{G}_m) \right) = \mathbb{R}_{e_{\mathbb{S}_j}}(\mathbb{G}_i) \).
Hence
$$\{\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\}.$$

Proof: As
$$\left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right)^{-} = \left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right)^{+}$$

For all
$$\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i})) = \mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i})).$$

Therefore
$$\left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right)^{-} = \left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right)^{+}$$

Hence
$$SFS_{j1} \text{RWA} \left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j_{1}}} (\mathfrak{0}_{1})), \mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j_{2}}} (\mathfrak{0}_{2})), \ldots, \mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j_{n}}} (\mathfrak{0}_{n}))\right) \subseteq \left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right).$$

ii. (Boundedness): If
$$\left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right)^{-} = \min_{j} \min \mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i})), \max_{j} \max \mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i})).$$

And
$$\left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right)^{+} = \left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right)^{-} = \left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right)^{+}$$

Then
$$\left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right)^{-} \leq SFS_{j1} \text{RWA} \left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j_{1}}} (\mathfrak{0}_{1})), \mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j_{2}}} (\mathfrak{0}_{2})), \ldots, \mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j_{n}}} (\mathfrak{0}_{n}))\right) \leq \left(\mathfrak{R}(\mathfrak{e}_{\mathfrak{e}_{j}}(\mathfrak{0}_{i}))\right).$$
\[
1 - \max_j \max_i \left(f_{ij} \right)^2 \leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(1 - \left(f_{ij} \right)^2 \right) \right)^{\bar{\alpha}_{ij}}
\]
\[
\leq 1 - \min_j \min_i \left(f_{ij} \right)^2
\]
\[
\Rightarrow 1 - \left(1 - \min_j \min_i \left(f_{ij} \right)^2 \right)
\]
\[
\leq 1 - \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(1 - \left(f_{ij} \right)^2 \right) \right)^{\bar{\alpha}_{ij}} \leq \max_j \max_i \left(f_{ij} \right)^2.
\]
Now for each \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \), we have
\[
\min_j \min_i \left(g_{ij} \right) \leq \left(g_{ij} \right) \leq \max_j \max_i \left(g_{ij} \right)
\]
\[
\Rightarrow \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(\min_j \min_i \left(g_{ij} \right) \right)^{\bar{\alpha}_{ij}} \right)
\]
\[
\leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(g_{ij} \right)^{\bar{\alpha}_{ij}} \right)^{\bar{\alpha}_{ij}} \leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(\max_j \max_i \left(g_{ij} \right) \right)^{\bar{\alpha}_{ij}} \right)^{\bar{\alpha}_{ij}}
\]
\[
\Rightarrow \left(\text{min}_j \text{min}_i \left(g_{ij} \right) \right)^{\sum_{i=1}^{m} \bar{\alpha}_{ij}} \leq \left(\text{max}_j \text{max}_i \left(g_{ij} \right) \right)^{\sum_{i=1}^{m} \bar{\alpha}_{ij}}.
\]
Also for each \(i = 1, 2, \ldots, n \) and \(j = 1, 2, \ldots, m \), we get
\[
\min_j \min_i \left(\tilde{b}_{ij} \right) \leq \left(\tilde{b}_{ij} \right) \leq \max_j \max_i \left(\tilde{b}_{ij} \right)
\]
\[
\Rightarrow \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(\min_j \min_i \left(\tilde{b}_{ij} \right) \right)^{\bar{\alpha}_{ij}} \right)
\]
\[
\leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(\tilde{b}_{ij} \right)^{\bar{\alpha}_{ij}} \right)^{\bar{\alpha}_{ij}} \leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(\max_j \max_i \left(\tilde{b}_{ij} \right) \right)^{\bar{\alpha}_{ij}} \right)^{\bar{\alpha}_{ij}}
\]
\[
\Rightarrow \left(\min_j \min_i \left(\tilde{b}_{ij} \right) \right)^{\sum_{i=1}^{m} \bar{\alpha}_{ij}} \leq \left(\max_j \max_i \left(\tilde{b}_{ij} \right) \right)^{\sum_{i=1}^{m} \bar{\alpha}_{ij}}.
\]
Therefore from Eqs. (8), (9), (10), (11), (12), and (13), it is clear that
\[
\min_j \min_i \left(f_{ij} \right) \leq \left(f_{ij} \right) \leq \max_j \max_i \left(f_{ij} \right)
\]
\[
\Rightarrow \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(1 - \left(f_{ij} \right)^2 \right)^{\bar{\alpha}_{ij}} \right)^{\bar{\alpha}_{ij}} \leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(\tilde{b}_{ij} \right)^{\bar{\alpha}_{ij}} \right)^{\bar{\alpha}_{ij}} \leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} \left(\max_j \max_i \left(\tilde{b}_{ij} \right) \right)^{\bar{\alpha}_{ij}} \right)^{\bar{\alpha}_{ij}}
\]
\[
\Rightarrow \left(\text{min}_j \text{min}_i \left(\tilde{b}_{ij} \right) \right)^{\sum_{i=1}^{m} \bar{\alpha}_{ij}} \leq \left(\max_j \max_i \left(\tilde{b}_{ij} \right) \right)^{\sum_{i=1}^{m} \bar{\alpha}_{ij}}.
\]
\[
\min_j \min_i (g_{ij}) \leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (g_{ij}^{\omega_i}) \right) \leq \max_j \max_i (g_{ij})
\]

\[
\min_j \min_i (b_{ij}) \leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (b_{ij}^{\omega_i}) \right) \leq \max_j \max_i (b_{ij})
\]

And

\[
\min_j \min_i (f_{ij}) \leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right) \leq \max_j \max_i (f_{ij})
\]

\[
\min_j \min_i (\bar{b}_{ij}) \leq \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (\bar{b}_{ij}^{\omega_i}) \right) \leq \max_j \max_i (\bar{b}_{ij})
\]

That implies that \(SFS_{f_{ij}} \) is a collection of any other collection \(SFS_{f_{ij}} \) for all \(i = 1, 2, ..., m \) and \(j = 1, 2, ..., n \) such that \(SFS_{f_{ij}}(\mathcal{G}_i) \leq SFS_{f_{ij}}(\mathcal{G}_i) \), and \(SFS_{f_{ij}}(\mathcal{G}_i) \leq SFS_{f_{ij}}(\mathcal{G}_i) \).

Then

\[
SFS_{f_{ij}}(\mathcal{G}_i) = \left(\mathcal{R}_{e_{ij}}(\mathcal{G}_i), \mathcal{R}_{e_{ij}}(\mathcal{G}_i) \right)
\]

Proof. As \(SFS_{f_{ij}}(\mathcal{G}_i) = \left(\mathcal{R}_{e_{ij}}(\mathcal{G}_i), \mathcal{R}_{e_{ij}}(\mathcal{G}_i) \right) \)

\[
\begin{align*}
\prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right) & \leq 1 - \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (p_{ij}^{2})^{\omega_i}) \right) \\
\prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right) & \leq 1 - \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right)
\end{align*}
\]

(14)

And

\[
\begin{align*}
\prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right) & \leq 1 - \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right) \\
\prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right) & \leq 1 - \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right)
\end{align*}
\]

(15)

Similarly

\[
\begin{align*}
\prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right) & \leq 1 - \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right) \\
\prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right) & \leq 1 - \prod_{j=1}^{n} \left(\prod_{i=1}^{m} (1 - (f_{ij}^{2})^{\omega_i}) \right)
\end{align*}
\]

(16)

Therefore from Eq. (14), (15), (16), (17), (18) and (19), we get

\[
SFS_{f_{ij}}(\mathcal{G}_i) \leq SFS_{f_{ij}}(\mathcal{G}_i) \quad \text{and} \quad SFS_{f_{ij}}(\mathcal{G}_i) \geq SFS_{f_{ij}}(\mathcal{G}_i)
\]

Therefore

\[
SFS_{f_{ij}}(\mathcal{G}_i) \leq SFS_{f_{ij}}(\mathcal{G}_i) \quad \text{and} \quad SFS_{f_{ij}}(\mathcal{G}_i) \geq SFS_{f_{ij}}(\mathcal{G}_i)
\]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
iv. (Shift Invariance): If $\mathcal{R}_{e^e}(\mathcal{G}) = \{\mathcal{R}_{e^e}(\mathcal{G}), \mathcal{R}_{e^e}(\mathcal{G})\}$ is another family of SFS_tRNs, then

\[SFS_tRWA\left(\mathcal{R}_{e^e}(\mathcal{G}_1), \mathcal{R}_{e^e}(\mathcal{G}_2), \ldots, \mathcal{R}_{e^e}(\mathcal{G}_m)\right) = SFS_tRWA\left(\mathcal{R}_{e^e}(\mathcal{G}_1), \mathcal{R}_{e^e}(\mathcal{G}_2), \ldots, \mathcal{R}_{e^e}(\mathcal{G}_m)\right) \]

Proof: Let $\mathcal{R}_{e^e}(\mathcal{G}_1) = \left\{\left(\begin{array}{c} p_q \overline{r}_e \\ \overline{r}_e \overline{r}_e \end{array} \right), \left(\begin{array}{c} q_r \overline{r}_e \\ \overline{r}_e \overline{r}_e \end{array} \right)\right\}$ be any SFS_tRN and $\mathcal{R}_{e^e}(\mathcal{G}_1) = \left\{\left(\begin{array}{c} p_{11} \overline{r}_e \\ \overline{r}_e \overline{r}_e \end{array} \right), \left(\begin{array}{c} q_{11} \overline{r}_e \\ \overline{r}_e \overline{r}_e \end{array} \right)\right\}$ be family of SFS_tRNs, then

\[\mathcal{R}_{e^e}(\mathcal{G}_1) = \left\{\left(\begin{array}{c} \left(1 - (\mathcal{R}_{e^e}(\mathcal{G}_1)\right) \mathcal{R}_{e^e}(\mathcal{G}_1) \right) \mathcal{R}_{e^e}(\mathcal{G}_1) \right\} = \left\{\left(\begin{array}{c} \left(1 - (\mathcal{R}_{e^e}(\mathcal{G}_1)\right) \mathcal{R}_{e^e}(\mathcal{G}_1) \right) \mathcal{R}_{e^e}(\mathcal{G}_1) \right\} \]

Therefore,

\[SFS_tRWA\left(\mathcal{R}_{e^e}(\mathcal{G}_1), \mathcal{R}_{e^e}(\mathcal{G}_2), \ldots, \mathcal{R}_{e^e}(\mathcal{G}_m)\right) = \left\{\left\{\left(\begin{array}{c} \left(1 - (\mathcal{R}_{e^e}(\mathcal{G}_1)\right) \mathcal{R}_{e^e}(\mathcal{G}_1) \right) \mathcal{R}_{e^e}(\mathcal{G}_1) \right\} \mathcal{R}_{e^e}(\mathcal{G}_1) \right\} \]
Proof.

Hence the required result is proved.

(2) (Homogeneity): For any \(t \geq 0 \)

\[
\text{SFS}_{t}RW(A) = \mathcal{R}_{e}(\mathcal{G}) = \left\{ \left(\mathcal{R}_{e_{j}}(\mathcal{G}_{1}), \ldots, \mathcal{R}_{e_{n}}(\mathcal{G}_{m}) \right) \right\}
\]

be a collection of \(SFS_{t}RN \). As

\[
\mathcal{R}_{e_{j}}(\mathcal{G}_{k}) = \left(\sqrt{1 - (1 - f_{j_{1}}^{2})^{1}}, g_{j_{1}}, b_{j_{1}}^{1} \right).
\]

Now

\[
\text{SFS}_{t}RW(A) = \mathcal{R}_{e}(\mathcal{G}) = \left\{ \left(\mathcal{R}_{e_{j}}(\mathcal{G}_{1}), \ldots, \mathcal{R}_{e_{n}}(\mathcal{G}_{m}) \right) \right\}
\]

Thus prove is completed.

Remark 2:

a) If we ignore the AG, then the developed \(SFS_{t}RW \) operator will degenerate into
Pythagorean fuzzy soft rough weighted average ($P_{yFS_{f}RWA}$) operator.

b) If only one soft parameter \mathbb{S}_1 i.e. $(n = 1)$ is used, then the developed $SFS_{f}RWA$ will degenerate into a spherical fuzzy rough weighted average (SFRWA) operator.

B Spherical fuzzy soft rough ordered weighted average ($SFS_{f}ROWA$) operator

In this subsection, we will introduce a spherical fuzzy soft rough ordered weighted average aggregation operator and its fundamental characteristics.

Definition 12: Suppose $R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) = (R_{e_{\mathbb{S}_j}}(\mathbb{G}_i1), R_{e_{\mathbb{S}_j}}(\mathbb{G}_im))$ is a family of $SFS_{f}RNs$. Also, assume that $\omega = (\omega_1, \omega_2, \omega_3, ..., \omega_m)^2, \tilde{\mathbb{G}} = (\tilde{\mathbb{G}}_1, \tilde{\mathbb{G}}_2, \tilde{\mathbb{G}}_3, ..., \tilde{\mathbb{G}}_m)^2$ are the WVs of ϵ_i experts and \mathbb{S}_j parameters using the condition that $\sum_{i=1}^{m} \omega_i = 1, \sum_{j=1}^{n} \tilde{\mathbb{G}}_i = 1$ and $0 \leq \omega_i, \tilde{\mathbb{G}}_i \leq 1$ respectively. Then $SFS_{f}ROWA$ aggregation operator is given as:

$$SFS_{f}ROWA(R_{e_{\mathbb{S}_j}}(\mathbb{G}_i1), ..., R_{e_{\mathbb{S}_j}}(\mathbb{G}_im)) = \left(\bigoplus_{j=1}^{n} \tilde{\mathbb{G}}_j \left(\bigoplus_{i=1}^{m} \omega_i R_{e_{\mathbb{S}_j}}(\mathbb{G}_i)\right)\right),$$

$$= \left(\bigoplus_{j=1}^{n} \tilde{\mathbb{G}}_j \left(\bigoplus_{i=1}^{m} \omega_i R_{e_{\mathbb{S}_j}}(\mathbb{G}_i)\right)\right).$$

Theorem 3: Let $R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) = (R_{e_{\mathbb{S}_j}}(\mathbb{G}_i1), R_{e_{\mathbb{S}_j}}(\mathbb{G}_im))$ be a family of $SFS_{f}RNs$. Also, suppose that $\omega = (\omega_1, \omega_2, \omega_3, ..., \omega_m)^2, \tilde{\mathbb{G}} = (\tilde{\mathbb{G}}_1, \tilde{\mathbb{G}}_2, \tilde{\mathbb{G}}_3, ..., \tilde{\mathbb{G}}_m)^2$ are WVs of ϵ_i experts and \mathbb{S}_j parameters using the condition that $\sum_{i=1}^{m} \omega_i = 1, \sum_{j=1}^{n} \tilde{\mathbb{G}}_i = 1$ and $0 \leq \omega_i, \tilde{\mathbb{G}}_i \leq 1$ respectively. Then $SFS_{f}ROWA$ aggregation operator is given as:

$$SFS_{f}ROWA(R_{e_{\mathbb{S}_j}}(\mathbb{G}_i1), ..., R_{e_{\mathbb{S}_j}}(\mathbb{G}_im)) = \left(\bigoplus_{j=1}^{n} \tilde{\mathbb{G}}_j \left(\bigoplus_{i=1}^{m} \omega_i R_{e_{\mathbb{S}_j}}(\mathbb{G}_i)\right)\right),$$

$$= \left(\bigoplus_{j=1}^{n} \tilde{\mathbb{G}}_j \left(\bigoplus_{i=1}^{m} \omega_i R_{e_{\mathbb{S}_j}}(\mathbb{G}_i)\right)\right).$$

where $R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) = \left(\bigoplus_{j=1}^{n} \tilde{\mathbb{G}}_j \left(\bigoplus_{i=1}^{m} \omega_i R_{e_{\mathbb{S}_j}}(\mathbb{G}_i)\right)\right)$ represents the largest value of the permutation from ith row and jth column of the family $\epsilon \times j$.

Example 3: Consider the above Table 3 in Example (2) for the family $SFS_{f}RNs R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) = \left(\bigoplus_{j=1}^{n} \tilde{\mathbb{G}}_j \left(\bigoplus_{i=1}^{m} \omega_i R_{e_{\mathbb{S}_j}}(\mathbb{G}_i)\right)\right)$. Then new order of tabular presentation of $R_{e_{\mathbb{S}_j}}(\mathbb{G}_i) = \left(\bigoplus_{j=1}^{n} \tilde{\mathbb{G}}_j \left(\bigoplus_{i=1}^{m} \omega_i R_{e_{\mathbb{S}_j}}(\mathbb{G}_i)\right)\right)$ through score function is given in Table 4.

ϵ_1	\mathbb{S}_1	\mathbb{S}_2
(0.4, 0.3, 0.2)	(0.1, 0.1, 0.5)	(0.1, 0.1, 0.5)
(0.3, 0.2, 0.4)	(0.6, 0.4, 0.1)	(0.6, 0.4, 0.1)
(0.5, 0.6, 0.3)	(0.3, 0.1, 0.6)	(0.5, 0.3, 0.2)
(0.6, 0.2, 0.1)	(0.3, 0.1, 0.6)	(0.5, 0.3, 0.2)
(0.2, 0.6, 0.3)	(0.2, 0.6, 0.1)	(0.2, 0.6, 0.1)

On the basis of the definition 12, we have:

$$SFS_{f}ROWA(R_{e_{\mathbb{S}_j}}(\mathbb{G}_i1), ..., R_{e_{\mathbb{S}_j}}(\mathbb{G}_im)) = \{(0.4082, 0.2077, 0.2517), (0.4195, 0.3063, 0.1928)\}.$$

From the analysis of the above theorem, we observe that $SFS_{f}ROWA$ operator has the following properties:
i. (Idempotency): Let \(R_{e \in (\mathcal{G})} = R_{e \in (\mathcal{G})} \) for all \(i = 1, 2, ..., m \) and \(j = 1, 2, ..., n \) where \(R_{e \in (\mathcal{G})} = \left\{ R_{e \in (\mathcal{G})}, \overline{R}_{e \in (\mathcal{G})} \right\} = \left\{ \left(\mathbf{p}, \mathbf{q}, \mathbf{r} \right), \left(\overline{\mathbf{p}}, \overline{\mathbf{q}}, \overline{\mathbf{r}} \right) \right\} \), then \(SFS_{\text{f}} \text{ROWA} \left(R_{e \in (\mathcal{G})} \right) = R_{e \in (\mathcal{G})} \).

ii. (Boundedness): If \(\left(R_{e \in (\mathcal{G})} \right) = \left(\min_{i \in I} R_{e \in (\mathcal{G})}, \max_{i \in I} \overline{R}_{e \in (\mathcal{G})} \right) \) and \(\left(\overline{R}_{e \in (\mathcal{G})} \right) = \left(\max_{i \in I} R_{e \in (\mathcal{G})}, \min_{i \in I} \overline{R}_{e \in (\mathcal{G})} \right) \), then \(SFS_{\text{f}} \text{ROWA} \left(R_{e \in (\mathcal{G})} \right) \leq SFS_{\text{f}} \text{ROWA} \left(\overline{R}_{e \in (\mathcal{G})} \right) \).

iii. (Monotonicity): Let \(R_{e \in (\mathcal{G})} = \left(\overline{R}_{e \in (\mathcal{G})}, R_{e \in (\mathcal{G})} \right) \) be any other collection of SFS\(_{\text{f}}\)RNs for all \(i = 1, 2, ..., m \) and \(j = 1, 2, ..., n \) such that \(R_{e \in (\mathcal{G})} \leq R_{e \in (\mathcal{G})} \), and \(R_{e \in (\mathcal{G})} \leq R_{e \in (\mathcal{G})} \), then

\[
SFS_{\text{f}} \text{ROWA} \left(R_{e \in (\mathcal{G})} \right) \leq SFS_{\text{f}} \text{ROWA} \left(\overline{R}_{e \in (\mathcal{G})} \right).
\]

iv. (Shift Invariance): If \(R_{e \in (\mathcal{G})} = \left\{ R_{e \in (\mathcal{G})}, \overline{R}_{e \in (\mathcal{G})} \right\} = \left\{ \left(\mathbf{p}, \mathbf{q}, \mathbf{r} \right), \left(\overline{\mathbf{p}}, \overline{\mathbf{q}}, \overline{\mathbf{r}} \right) \right\} \) is another collection of SFS\(_{\text{f}}\)RNs, then

\[
SFS_{\text{f}} \text{ROWA} \left(R_{e \in (\mathcal{G})} \right) = SFS_{\text{f}} \text{ROWA} \left(\overline{R}_{e \in (\mathcal{G})} \right) \oplus R_{e \in (\mathcal{G})}.
\]

v. (Homogeneity): For any \(t \geq 0 \),

\[
SFS_{\text{f}} \text{ROWA} \left(t R_{e \in (\mathcal{G})} \right) = t SFS_{\text{f}} \text{ROWA} \left(R_{e \in (\mathcal{G})} \right).
\]

Remark 3:

a) If we ignore the AG, then the developed \(SFS_{\text{f}} \text{ROWA} \) operator will degenerate into Pythagorean fuzzy soft rough ordered weighted average (\(P_{\text{f}} SFS_{\text{f}} \text{ROWA} \)) operator.

b) If only one soft parameter \(\mathcal{G}_i \) i.e. \((n = 1) \) is used, then the developed \(SFS_{\text{f}} \text{ROWA} \) will degenerate into a spherical fuzzy rough ordered weighted average (SFR\(_{\text{ROWA}}\)) operator.

C Spherical fuzzy soft rough hybrid average (SFS\(_{\text{f}}\)RHA) aggregation operator

Definition 13: Suppose \(R_{e \in (\mathcal{G})} = \left(R_{e \in (\mathcal{G})}, \overline{R}_{e \in (\mathcal{G})} \right) \) is a family of SFS\(_{\text{f}}\)RNs. Let \(\mathbf{p} = (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, ..., \mathbf{p}_m)^2, \mathbf{f} = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3, ..., \mathbf{f}_n)^2 \) denote WVs of \(\mathbf{q}_i \) experts and \(\mathcal{G}_j \) parameters respectively using the condition that \(\sum_{i=1}^{m} \mathbf{p}_i = 1, \sum_{j=1}^{n} \mathbf{f}_j = 1 \) and \(0 \leq \mathbf{p}_i, \mathbf{f}_j \leq 1 \).

Also, assume that \(\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, ..., \mathbf{w}_m)^2, \mathbf{h} = (\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3, ..., \mathbf{h}_n)^2 \) are the associated WVs of \(\mathbf{q}_i \) experts and \(\mathcal{G}_j \) parameters using the condition that \(\sum_{i=1}^{m} \mathbf{w}_i = 1, \sum_{j=1}^{n} \mathbf{h}_j = 1 \) and \(0 \leq \mathbf{w}_i, \mathbf{h}_j \leq 1 \) respectively.

Then, \(SFS_{\text{f}} \text{RHA} \) aggregation operator is given as

\[
SFS_{\text{f}} \text{RHA} \left(R_{e \in (\mathcal{G})} \right) = \left(\oplus_{j=1}^{n} \mathbf{h}_j, \oplus_{i=1}^{m} \mathbf{w}_i, R_{e \in (\mathcal{G})} \right),
\]

Theorem 4: Suppose \(R_{e \in (\mathcal{G})} = \left(R_{e \in (\mathcal{G})}, \overline{R}_{e \in (\mathcal{G})} \right) \) is a family of SFS\(_{\text{f}}\)RNs. Let \(\mathbf{p} = (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, ..., \mathbf{p}_m)^2, \mathbf{f} = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3, ..., \mathbf{f}_n)^2 \) are the WVs of \(\mathbf{q}_i \) experts and \(\mathcal{G}_j \) parameters respectively using the condition that \(\sum_{i=1}^{m} \mathbf{p}_i = 1, \sum_{j=1}^{n} \mathbf{f}_j = 1 \) and \(0 \leq \mathbf{p}_i, \mathbf{f}_j \leq 1 \).

Also, assume that \(\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, ..., \mathbf{w}_m)^2, \mathbf{h} = (\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3, ..., \mathbf{h}_n)^2 \) are the associated WVs of \(\mathbf{q}_i \) experts and \(\mathcal{G}_j \) parameters using the condition that \(\sum_{i=1}^{m} \mathbf{w}_i = 1, \sum_{j=1}^{n} \mathbf{h}_j = 1 \) and \(0 \leq \mathbf{w}_i, \mathbf{h}_j \leq 1 \), respectively.

Then \(SFS_{\text{f}} \text{RHA} \) aggregation operator is given as:

\[
SFS_{\text{f}} \text{RHA} \left(R_{e \in (\mathcal{G})} \right) = \left(R_{e \in (\mathcal{G})}, \overline{R}_{e \in (\mathcal{G})} \right).
\]
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3150858, IEEE Access

Table 5. Tabular representation by using operational laws for of
\[
\mathbf{R}_{v}^{e \cup_{v_{j}}(\mathbf{b}_{i})} = \left(\mathbf{R}_{v}^{e \cup_{v_{j}}(\mathbf{b}_{i})}, \mathbf{R}_{v}^{\cup_{v_{j}}(\mathbf{b}_{i})}\right)
\]

\(\mathbf{R}_{v}^{e \cup_{v_{j}}(\mathbf{b}_{i})}\)	\(\mathbf{e}_{i}\)	\(\mathbf{v}_{j}\)
\((0.4986, 0.6216, 0.3261)\)	\((0.6115, 0.2862, 0.4831)\)	
\((0.4330, 0.4729, 0.3425)\)	\((0.1445, 0.7648, 0.2987)\)	
\((0.4027, 0.0965, 0.1951)\)	\((0.3199, 0.0716, 0.5572)\)	
\((0.2162, 0.5427, 0.6280)\)	\((0.3896, 0.5020, 0.3980)\)	
\((0.2813, 0.3490, 0.1335)\)	\((0.0996, 0.1033, 0.5049)\)	
\((0.1329, 0.7386, 0.5908)\)	\((0.4443, 0.3214, 0.3214)\)	

Table 6. Tabular representation by using score function for
\[
\mathbf{R}_{v}^{e \cup_{v_{j}}(\mathbf{b}_{i})} = \left(\mathbf{R}_{v}^{e \cup_{v_{j}}(\mathbf{b}_{i})}, \mathbf{R}_{v}^{\cup_{v_{j}}(\mathbf{b}_{i})}\right)
\]

\(\mathbf{R}_{v}^{e \cup_{v_{j}}(\mathbf{b}_{i})}\)	\(\mathbf{e}_{i}\)	\(\mathbf{v}_{j}\)
\((0.4986, 0.6216, 0.3261)\)	\((0.0996, 0.1033, 0.5049)\)	
\((0.4330, 0.4729, 0.3425)\)	\((0.4443, 0.3214, 0.3214)\)	
\((0.4027, 0.0965, 0.1951)\)	\((0.3199, 0.0716, 0.5572)\)	
\((0.2162, 0.5427, 0.6280)\)	\((0.3896, 0.5020, 0.3980)\)	
\((0.2813, 0.3490, 0.1335)\)	\((0.6115, 0.2826, 0.4831)\)	
\((0.1329, 0.7386, 0.5908)\)	\((0.1455, 0.7648, 0.2987)\)	

Based on the above information, we have:
\[
SFS_{FR}RA \left(\mathbf{R}_{v}^{e \cup_{v_{j}}(\mathbf{b}_{i})}, ..., \mathbf{R}_{v}^{e \cup_{v_{j}}(\mathbf{b}_{i})}\right)
\]
\[
= \left\{(0.3979, 0.1631, 0.3484)\right\}, \left\{(0.3343, 0.5213, 0.4048)\right\}
\]

Moreover, similarity to the \(SFS_{FR}ROWA\) operator, the \(SFS_{FR}RA\) operator has some important properties, such as idempotency, boundedness, monotonicity, shift invariance and homogeneity.

Remark 4:

a) If we ignore the AG, then the developed \(SFS_{FR}RA\) operator will degenerate into Pythagorean fuzzy soft rough hybrid average (\(P_{FSFR}RA\) operator).

b) If only one soft parameter \(\mathbf{v}_{j}\), i.e. \((n = 1)\) is used, then the developed \(SFS_{FR}RA\) will degenerate into a spherical fuzzy rough hybrid average (SFRHA) operator.

V. A multi-criteria decision-making method based on spherical fuzzy soft rough average aggregation operators

1. An algorithm for proposed work

In this section, we will study a new MCDM method by using \(SFS_{FR}ROWA, SFS_{FR}ROWA\) and \(SFS_{FR}RA\) aggregation operators to solve MCDM problems under the environment of \(SFS_{FR}\) information.

Let \(\mathbf{v} = \{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, ..., \mathbf{v}_{n}\}\) be the set of "\(v\)" alternative and \(\mathbf{v} = \{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, ..., \mathbf{v}_{n}\}\) be the corresponding set of "\(v\)" parameters. Let \(\mathbf{v} = \{\mathbf{v}_{1}, \mathbf{v}_{2}, ..., \mathbf{v}_{n}\}\) be the family of "\(m\" senior firewall software experts who provide their expertise for each alternative \(\mathbf{v} = \{\mathbf{v}_{1}, \mathbf{v}_{2}, ..., \mathbf{v}_{n}\}\) denote the WVs of
"q_{i}" experts and $\tilde{H} = \{\tilde{H}_1, \tilde{H}_2, ..., \tilde{H}_n\}$ represent the WVs of parameters "$\Xi_j" with a condition that $\omega_i, \tilde{H}_j \in [0,1]$ and $\sum_{i=1}^{m} \omega_i = 1, \sum_{j=1}^{n} \tilde{H}_j = 1$. Suppose the assessment data given by intellectual is in the form of $SF_{Rt}RN$s. The overall information is given in $SF_{Rt}R$ matrix $M = [\mathcal{R}_{\Xi_j}(\Xi_i)]_{n \times m}$. The main steps based on the developed operators for the MCDM method is gives as follows.

Step 1: All the assessment in the shape of $SF_{Rt}RN$s for each alternative Ξ_l corresponding to their respective parameters Ξ_j. Then, arrange the overall assessment information in $SF_{Rt}R$ decision matrix $M = [\mathcal{R}_{\Xi_j}(\Xi_i)]_{n \times m}$.

Step 2: Normalize the $SF_{Rt}R$ decision matrix given in step 1 according to the following formula:

$$\mathcal{R}_{\Xi_j}(\Xi_i) = \left\{ \begin{array}{ll}
\left(\mathcal{R}_{\Xi_j}(\Xi_i)\right)^{c} & \text{for cost type parameter} \\
\mathcal{R}_{\Xi_j}(\Xi_i) & \text{for benefit type parameter}
\end{array} \right.$$

where $\left(\mathcal{R}_{\Xi_j}(\Xi_i)\right)^{c} = \left(\mathcal{R}_{\Xi_j}(\Xi_i), \mathcal{R}_{\Xi_j}(\Xi_i)\right)$ denote the complement of $\mathcal{R}_{\Xi_j}(\Xi_i) = \left(\mathcal{R}_{\Xi_j}(\Xi_i), \mathcal{R}_{\Xi_j}(\Xi_i)\right)$.

Step 3: Apply the established operators of each decision matrix $M = [\mathcal{R}_{\Xi_j}(\Xi_i)]_{n \times m}$ for each alternative $\Xi_l(l = 1,2,3,...,r)$ corresponding to their respective parameters Ξ_j and calculate the aggregated result $\Omega_l = \left(\mathcal{R}_{\Xi}_j, \mathcal{R}_{\Xi}_j\right)$.

Step 4: Utilize Definition 10 to calculate the score values for each Ω_l.

Step 5: Rank the results and choose the best result.

2. APPLICATION OF THE PROPOSED METHOD

In this section, an explanatory example is given to view the strength of the presented work.

A firewall is a web safety system to handle incoming or outgoing network traffic by using a preset security rule. The selection of the best firewall software is a key point for a company to protect their data and secure their information. So the proposed MCDM can handle successfully the evaluation process and the ability to detect and choose the best firewall software among the given alternative.

Example 5: Suppose an organization X in America wants to select the best firewall software for the security and safety of their information. Let there are initially three firewall software that is to be considered and set of these firewall software is given as $\xi = \{\xi_1, \xi_2, \xi_3\}$

- $\xi_1 = \text{Check point next generation firewall}$
- $\xi_2 = \text{Glass wire firewall}$
- $\xi_3 = \text{Sophos XG firewall}$

based on the following parameters Ξ_j.

The family consisting of four highly qualified and professional software experts are invited by the organization for the selection of best firewall software. Let $\omega = \{0.28, 0.24, 0.23, 0.25\}$ denote the WVs of $\xi_i(i = 1,2,3,4) \text{ experts and } \tilde{H} = \{0.18, 0.29, 0.32, 0.21\}$ represent the WVs of parameters Ξ_j. The professional experts provide their assessment data for the alternatives Ξ_l corresponding to parameters Ξ_j in the form of $SF_{Rt}RN$s. Now apply the devised method to select the suitable alternative Ξ_l.

1. By using $SF_{Rt}RWA$ operator

- **Step 1:** All the experts provide their assessment in the form of $SF_{Rt}RN$s for each alternative Ξ_l corresponding to their respective parameters Ξ_j. Then, arrange the overall assessment information in $SF_{Rt}R$ decision matrix $M = [\mathcal{R}_{\Xi_j}(\Xi_i)]_{n \times m}$ given in Table 7-9.

- **Step 2:** Normalize the $SF_{Rt}R$ decision matrix if necessary.

- **Step 3:** Apply the devised $SF_{Rt}RWA$ aggregation operators of each decision matrix $M = [\mathcal{R}_{\Xi_j}(\Xi_i)]_{n \times m}$ for each alternative $\Xi_l(l = 1,2,3,...,r)$ corresponding to their respective parameters Ξ_j to get the aggregated result $\Omega_l = \left(\mathcal{R}_{\Xi}_j, \mathcal{R}_{\Xi}_j\right)$.

- **Step 4:** Use Definition 10 to calculate the score values for each Ω_l.

2. By using $SF_{Rt}ROWA$ operator

- **Step 1:** Same as above.

- **Step 5:** Rank the results for each alternative $\Omega_l(l = 1,2,3,...,r)$ i.e.,

$$Sc(\Omega_1) = 0.4477, Sc(\Omega_2) = 0.5337, Sc(\Omega_3) = 0.5188$$

Hence Ω_2 is the best firewall software.
Step 2: Same as above

Step 3: Apply the devised $SFS_{f,t}$ROWA aggregation operators of each decision matrix $M = \left[\mathbf{r}_{i,f} \right]_{n \times m}$ for each alternative $\xi_l (l = 1, 2, 3, \ldots, r)$ corresponding to their respective parameters \mathbf{z}_j to get the aggregated result $\Omega_l = \left(\left[f_1, g_1, b_1 \right], \left[f_2, g_2, b_2 \right] \right)$.

\[
\begin{align*}
\Omega_1 &= \left(\begin{pmatrix} 0.4164, 0.5621, 0.2999 \\ 0.3825, 0.3917, 0.4762 \end{pmatrix} \right), \\
\Omega_2 &= \left(\begin{pmatrix} 0.5022, 0.3169, 0.4031 \\ 0.5275, 0.4322, 0.4600 \end{pmatrix} \right), \\
\Omega_3 &= \left(\begin{pmatrix} 0.3925, 0.3638, 0.4359 \\ 0.4333, 0.39087, 0.3678 \end{pmatrix} \right).
\end{align*}
\]

Step 4: Use Definition 10 to calculate the score values for each Ω_l.

\[
\begin{align*}
Sc(\Omega_1) &= 0.4317, Sc(\Omega_2) = 0.5412, \\
Sc(\Omega_3) &= 0.4977.
\end{align*}
\]

Step 5: Rank the results for each alternative $\Omega_l (l = 1, 2, 3, \ldots, r)$ i.e.

\[
Sc(\Omega_2) > Sc(\Omega_3) > Sc(\Omega_1)
\]

Hence ξ_2 is the best firewall software.

(3) By using $SFS_{f,t}$RHA operator

Step 1: Same as above

Step 2: Same as above

Step 3: Apply the devised $SFS_{f,t}$RHA aggregation operators of each decision matrix $M = \left[\mathbf{r}_{i,f} \right]_{n \times m}$ for each alternative $\xi_l (l = 1, 2, 3, \ldots, r)$ corresponding to their respective parameters \mathbf{z}_j to get the aggregated result $\Omega_l = \left(\left[f_1, g_1, b_1 \right], \left[f_2, g_2, b_2 \right] \right)$ with $\rho = (0.28, 0.30, 0.17, 0.25)^2$, $f = (0.32, 0.26, 0.18, 0.24)^2$ be the WVVs of ξ_i experts and \mathbf{z}_j parameters. The results are given by

\[
\begin{align*}
\Omega_1 &= \left(\begin{pmatrix} 0.3770, 0.5379, 0.3577 \\ 0.4701, 0.4143, 0.4418 \end{pmatrix} \right), \\
\Omega_2 &= \left(\begin{pmatrix} 0.4479, 0.3871, 0.4758 \\ 0.5767, 0.4181, 0.4219 \end{pmatrix} \right), \\
\Omega_3 &= \left(\begin{pmatrix} 0.3632, 0.4459, 0.4764 \\ 0.4855, 0.3926, 0.3686 \end{pmatrix} \right).
\end{align*}
\]

Step 4: Calculate the score values for each Ω_l.

\[
\begin{align*}
Sc(\Omega_1) &= 0.4454, Sc(\Omega_2) = 0.5202, Sc(\Omega_3) = 0.4711.
\end{align*}
\]

Step 5: Rank the results for each alternative $\Omega_l (l = 1, 2, 3, \ldots, r)$ i.e.

\[
Sc(\Omega_2) > Sc(\Omega_3) > Sc(\Omega_1)
\]

Hence ξ_2 is the best firewall software.

Table 7. $SFS_{f,t}$ matrix for alternative ξ_1

\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3	\mathbf{e}_4	
ξ_1	$0.3, 0.8, 0.5, 0.1$	$0.3, 0.9, 0.4, 0.3$	$0.3, 0.9, 0.4, 0.3$	$0.3, 0.9, 0.4, 0.3$
ξ_2	$0.5, 0.4, 0.3, 0.2$	$0.2, 0.8, 0.5, 0.4$	$0.2, 0.8, 0.5, 0.4$	$0.2, 0.8, 0.5, 0.4$
ξ_3	$0.2, 0.4, 0.4, 0.2$	$0.6, 0.1, 0.4, 0.2$	$0.6, 0.1, 0.4, 0.2$	$0.6, 0.1, 0.4, 0.2$
ξ_4	$0.4, 0.4, 0.2, 0.5$	$0.2, 0.5, 0.4, 0.3$	$0.2, 0.5, 0.4, 0.3$	$0.2, 0.5, 0.4, 0.3$

Table 8. $SFS_{f,t}$ matrix for alternative ξ_2

ξ_1	ξ_2	ξ_3	ξ_4	
ξ_1	$0.2, 0.3, 0.5, 0.6$	$0.3, 0.3, 0.5, 0.6$	$0.5, 0.4, 0.5, 0.6$	$0.5, 0.4, 0.5, 0.6$
ξ_2	$0.6, 0.3, 0.5, 0.6$	$0.5, 0.4, 0.5, 0.6$	$0.3, 0.4, 0.5, 0.6$	$0.3, 0.4, 0.5, 0.6$
ξ_3	$0.5, 0.3, 0.5, 0.6$	$0.4, 0.5, 0.5, 0.6$	$0.5, 0.4, 0.5, 0.6$	$0.5, 0.4, 0.5, 0.6$
ξ_4	$0.5, 0.4, 0.5, 0.6$	$0.2, 0.3, 0.4, 0.5$	$0.2, 0.3, 0.4, 0.5$	$0.2, 0.3, 0.4, 0.5$

Table 9. $SFS_{f,t}$ matrix for the alternative ξ_3

ξ_1	ξ_2	ξ_3	ξ_4	
ξ_1	$0.3, 0.7, 0.5, 0.6$	$0.3, 0.7, 0.5, 0.6$	$0.3, 0.7, 0.5, 0.6$	$0.3, 0.7, 0.5, 0.6$
ξ_2	$0.2, 0.4, 0.3, 0.5$	$0.3, 0.4, 0.3, 0.5$	$0.3, 0.4, 0.3, 0.5$	$0.3, 0.4, 0.3, 0.5$
ξ_3	$0.1, 0.3, 0.2, 0.4$	$0.1, 0.3, 0.2, 0.4$	$0.1, 0.3, 0.2, 0.4$	$0.1, 0.3, 0.2, 0.4$
ξ_4	$0.6, 0.4, 0.3, 0.5$	$0.6, 0.4, 0.3, 0.5$	$0.6, 0.4, 0.3, 0.5$	$0.6, 0.4, 0.3, 0.5$

VI. Comparative Analysis

In this section, we have to present the cooperative analysis of the exposed work by comparing the presented work with some other existing literature to show the usefulness and superiority of the proposed work. We compare our work with picture fuzzy soft rough weighted average ($PFS_{f,t}RWA$), $PFS_{f,t}ROWA$, $PFS_{f,t}RHA$. Wang et al.[42] method, Hussain et al. [41] method, and Zhang et al. [40] method. The overall discussion is given below.

Example 6: In our daily life every person travels from one place to another place. Suppose a person X wants to travel through the best airline company to his desired destination. He has a set of alternatives of four best airlines given as $q = \{ \xi_1 = \text{Air Canada}, \xi_2 = \text{United Airline}, \xi_3 = \text{Air India} \}$. He wants to decide the best airline among these alternatives.
Emirates, $\mathbb{G}_3 = \text{American Airline}$ corresponding to parameter set $\mathbb{G} = \{\mathbb{G}_1 = \text{Customer service}, \mathbb{G}_2 = \text{Great price with great deal}, \mathbb{G}_3 = \text{Inflight Meal}, \mathbb{G}_4 = \text{Entertainment}\}$. Let $\omega = \{0.26, 0.21, 0.29, 0.24\}$ denote the WVs of $\xi_i (i = 1, 2, 3, 4)$ experts and $\hat{h} = \{0.30, 0.23, 0.21, 0.26\}$ represent the WVs of parameters ξ_j. Suppose these experts provide their assessment data for the alternatives $\mathbb{G}_j (j = 1, 2, 3, 4)$ corresponding to parameters $\xi_j (j = 1, 2, 3, 4)$ in the form of $PFS_{ft} RNs$ as given in Table 10. The overall results are also given in Table 11.

From all the above calculations, we note that Wang et al. [42] method, Hussain et al. [41] method and Zhang et al. [40] method consists of q-ROF soft rough numbers, PyF soft rough numbers and IF soft rough numbers respectively in which AG cannot be considered while the data given in Table 10. Consist of picture fuzzy soft rough numbers containing AG, so Wang et al. [42] method, Hussain et al. [40] method, and Zhang et al. [41] method cannot tackle this information. But the existing methods along with $PFS_{ft} RWA$, $PFS_{ft} ROWA$ and $PFS_{ft} RHA$ can consider this information, because:

If we replace power 2 by 1 in the basic definition of presented operators, then presented operators can be reduced to $PFS_{ft} RWA$, $PFS_{ft} ROWA$ and $PFS_{ft} RHA$. The overall results are given in Table 11.

When experts provide their information in the form of $PFS_{ft} RNs$, then this data can be handled by the presented operators because established operators are more general.

Also, note that the best alternative in all cases is the same, i.e., \mathbb{G}_3 is the best alternative that shows the authenticity of the introduced work. Moreover the pictorial presentation of the data given in Table 11 and in Figure 2.

Table 10. $PFS_{ft} R$ information

Ξ_1	Ξ_2	Ξ_3	Ξ_4
0.23	0.33	0.13	0.15
0.21	0.16	0.17	0.11
0.15	0.11	0.25	0.14
0.12	0.24	0.14	0.13
0.12	0.21	0.26	0.27

Table 11. Results for data given in Table X

Methods	Score results	Ranking results
$PFS_{ft} RWA$	$Sc(\Xi_1) = 0.0234$, $Sc(\Xi_2) = 0.1241$, $Sc(\Xi_3) = 0.1310$, $Sc(\Xi_4) = 0.0344$	$Sc(\Xi_1) > Sc(\Xi_2) > Sc(\Xi_3) > Sc(\Xi_4)$
$PFS_{ft} ROWA$	$Sc(\Xi_1) = 0.0520$, $Sc(\Xi_2) = 0.0672$, $Sc(\Xi_3) = 0.0895$, $Sc(\Xi_4) = 0.03327$	$Sc(\Xi_1) > Sc(\Xi_2) > Sc(\Xi_3) > Sc(\Xi_4)$
$PFS_{ft} RHA$	$Sc(\Xi_1) = 0.05946$, $Sc(\Xi_2) = 0.0704$, $Sc(\Xi_3) = 0.0933$, $Sc(\Xi_4) = 0.1125$	$Sc(\Xi_1) > Sc(\Xi_2) > Sc(\Xi_3) > Sc(\Xi_4)$

Wang et al. [42] method Cannot calculated Cannot calculated
Hussain et al. [41] method Cannot calculated Cannot calculated
Zhang et al. [40] method Cannot calculated Cannot calculated

$SFS_{ft} RWA$ (Proposed work) $Sc(\Xi_1) = 0.0372$, $Sc(\Xi_2) = 0.1319$, $Sc(\Xi_3) = 0.1392$, $Sc(\Xi_4) = 0.02064$

$SFS_{ft} ROWA$ (Proposed work) $Sc(\Xi_1) = 0.0589$, $Sc(\Xi_2) = 0.0736$, $Sc(\Xi_3) = 0.0906$, $Sc(\Xi_4) = 0.0361$

$SFS_{ft} RHA$ (Proposed work) $Sc(\Xi_1) = 0.0676$, $Sc(\Xi_2) = 0.0778$, $Sc(\Xi_3) = 0.0979$, $Sc(\Xi_4) = 0.1078$

Figure 2. Pictorial presentation of data given in Table 11.

Table 12. $SFS_{ft} R$ information

Ξ_1	Ξ_2	Ξ_3	Ξ_4
$\{0.5, 0.3\}$	$\{0.2, 0.5\}$	$\{0.3, 0.7\}$	$\{0.2, 0.4\}$
$\{0.2, 0.4\}$	$\{0.4, 0.2\}$	$\{0.2, 0.1\}$	$\{0.3, 0.3\}$
$\{0.3, 0.3\}$	$\{0.6\}$	$\{0.1\}$	$\{0.3\}$

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
We can note that if the experts provide their assessment information in the form of SFS_{tR}Ns as given in Table 12, then all the existing literature cannot handle this kind of information while initiated work can do so because existing literature can only deal with MG and NMG while the data given in Table 12 consists of MG, NMG, and AG as well. So the proposed work is more superior to all given literature. The overall results are given in Table 13. Also, note that when decision-makers provide $(0.5, 0.5, 0.3, 3)$, as given in Table 13, then this data is not a PFS_{tR} data. Due to this reason this data cannot be handled by PFS_{tR}WRA, PFS_{tR}ROWA and PFS_{tR}SHA aggregation operators and only the presented work can deal with this information. Moreover, note that the presented work fills up the flaws of the existing literature and provides more space to decision-makers to make their decisions in decision-making problems. Furthermore, a pictorial presentation of Table 13 results is given in Figure 3.

Figure 3. Pictorial presentation of data given in Table 13.

Table 13 Results for data given in Table 13.

Methods	Score results	Ranking results
PFS_{tR}WRA	Cannot calculated	be
PFS_{tR}ROWA	Cannot calculated	be
PFS_{tR}SHA	Cannot calculated	be
Wang et al. [42] method	Cannot calculated	be
Hussain et al. [41] method	Cannot calculated	be
Zhang et al. [40] method	Cannot calculated	be
SFS_{tR}WRA work	$Sc(Q_1) = 0.0027$, $Sc(Q_2) = -0.1260$, $Sc(Q_3) = -0.0317$, $Sc(Q_4) = -0.1057$	$Sc(Q_1)$

VII. Conclusion

In this paper, we have initiated a hybrid structure called spherical fuzzy soft rough set that is the combination of spherical fuzzy set, soft set, and rough set. Moreover, some new aggregation operators like spherical fuzzy soft rough weighted average, spherical fuzzy soft rough ordered weighted average, and spherical fuzzy soft rough hybrid average aggregation operators are developed and their properties are elaborated. An algorithm along with an illustrative example is given to prove the validity of the developed work. Also, a comparative study of the established work is given to show the advantages of defined operators.

Note that the presented work is also limited notion because when decision-makers present information in the form of T-spherical fuzzy soft rough set by lower and upper approximation operators like $(0.5, 0.6, 0.8), (0.6, 0.7, 0.8)$, then necessary condition $0 \leq \left(f_\circ(\bar{Q}_1) \right)^2 + \left(g_\circ(\bar{Q}_2) \right)^2$ and $\left(b_\circ(\bar{Q}_1) \right)^2 \leq 1$ fail to tackle such sort of information, because $(0.5)^2 + (0.6)^2 + (0.8)^2 \notin [0, 1]$ and $(0.6)^2 + (0.7)^2 + (0.8)^2 \notin [0, 1]$ while the necessary condition for T-spherical fuzzy soft rough set is more general that use the condition $0 \leq \left(f_\circ(\bar{Q}_1) \right)^q + \left(g_\circ(\bar{Q}_2) \right)^q + \left(b_\circ(\bar{Q}_1) \right)^q \leq 1$ and $0 \leq \left(f_\circ(\bar{Q}_1) \right)^q + \left(g_\circ(\bar{Q}_2) \right)^q + \left(b_\circ(\bar{Q}_1) \right)^q \leq 1$ for $q \geq 1$.

In the future directions, using the proposed definition and operational laws, some methods can be developed as given in [44]. Moreover, this work can be extended to T-spherical fuzzy set, and real-life problems can be resolved given in [45-47]. Furthermore, some new notions given in [48] can be developed based on established work. Also, some new methods like TDIEM and VIKOR methods can be defined for the proposed spherical fuzzy soft rough set as given in [49-50].

ACKNOWLEDGMENT

Zhejiang Provincial Public Welfare Project (LGF20G020002), Ningbo Public Welfare Project (2021S070), Ningbo Major...
Project (2020Z008), Zhejiang Social Science Planning Fund (22NDJC126YB), Zhejiang Public Welfare Project (LGF19G020001).

DATA AVAILABILITY
The data used in this manuscript is hypothetical and anyone can use it without prior permission of the authors by just citing this article.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

AUTHORSHIP CONTRIBUTION
All authors contributed equally in this manuscript.

REFERENCES
[1] L.A. Zadeh, "Fuzzy sets". Inf. Control, vol. 8, no.3, pp. 338-353, 1965.
[2] K. T. Atanassov, “Intuitionistic fuzzy sets”. Fuzzy sets Syst., vol. 20, pp. 87-96, Aug. 1986.
[3] X. Zhang, P. Liu, and Y. Wang, “Multiple attribute decision making methods based on intuitionistic fuzzy frank power aggregation operators" J. Intell. Fuzzy Syst., vol. 29, no. 5, pp. 2235-2246, 2015.
[4] M. R. Seikh and U. Mandal, “Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making”, Granul. Comput., vol. 6, no. 3, pp. 473-488, 2021.
[5] S.Z. Zeng, N. Zhang, C.H. Zhang, W.H. Su, and L.A. Carlos, “Social network multiple-criteria decision-making approach for evaluating unmanned ground delivery vehicles under the Pythagorean fuzzy environment”, Technol. Forecast. Soc. Change, vol. 175, 121414, 2022.
[6] R. R. Yager, “Pythagorean fuzzy subsets”. in proc. joint IFSIA world congr. NAFIPS Annu. Meeting, Edmonton, AB, Canada, Jan. 2013, pp. 56-61.
[7] M. Akram, W. A. Dudek, and J. M. Dar “Pythagorean Dombi fuzzy aggregation operators with application in multicriteria decision-making”, Int. J. Intell. Syst. vol. 34, no. 11, pp. 3000-3019, 2019.
[8] H. Garg, “Confidence levels based Pythagorean fuzzy aggregation operators and its application to decision-making process”. Comput. Math. Organ. Theory, vol. 23, no. 4, pp. 546-571, 2017.
[9] L. Wang and H. Garg, Algorithm for Multiple Attribute Decision-Making with Interactive Archimedean Norm Operations Under Pythagorean Fuzzy Uncertainty. Int. J. Comput. Intell. Syst., vol. 14, no. 1, pp. 503-527, 2021.
[10] Q. Wu, W. Lin, L. Zhou, Y. Chen and H. Chen, Enhancing multiple attribute group decision making flexibility based on information fusion technique and hesitant Pythagorean fuzzy sets. Comput. & Ind. Eng., vol. 127, no. 0, pp. 954-970, 2019.
[11] R. R. Yager, “Generalized orthopair fuzzy sets”, IEEE Trans Fuzzy Syst., vol. 25, no. 5, pp. 1222-1230, 2016.
[12] Y. Xing, R. Zhang, Z. Zhou and J. Wang, “Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making”, Soft Comput. vol. 23, no. 22, pp. 11627-11649, 2019.
[13] P. Liu, and P. Wang, “Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making”. Int. J. Intell. Syst., vol. 33, no. 2, pp. 259-280, 2018.
[14] B. C. Cuong and V. Kreininovich, “Picture Fuzzy Sets—a new concept for computational intelligence problems,” in Proc. 3rd world congr. Inf. Commun. Technol., 2013, December, pp. 1-3.
[15] G. Wei, “Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making,” Fundam. Inform. vol. 157, no. 3, pp. 271-320, 2018.
[16] T. Mahmood, K. Ullah, Q. Khan and N. Jan, “An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets,” Neural. Comput. Appl., vol. 31, no. 11, pp. 7041-7053, 2019.
[17] I. Deli and N. Çağman, Spherical Fuzzy Numbers and Multi-criteria Decision-Making. In Decision Making with Spherical Fuzzy Sets, Springer, Cham, pp. 53-84, 2021, DOIhttps://doi.org/10.1007/978-3-030-45461-6_3.
[18] M. Rafiq, S. Ashraf, S. Abdullah, T. Mahmood and S. Muhammad, “The cosine similarity measures of spherical fuzzy sets and their applications in decision making.” J. Intell. Fuzzy Syst., vol. 36, no. 6, pp. 6059-6073, 2019.
[19] S. Ashraf, S. Abdullah and M. Aslam, “Symmetric sum based aggregation operators for spherical fuzzy information: Application in multi-attribute group decision making problem,” J. Intell. Fuzzy Syst., vol. 38, no. 4, pp. 5241-5255, 2020.
and aggregation operators," *J. Intell. Fuzzy Syst.*, vol. 37, no. 5, 6937-6957, 2019.

[31] A. Hussain, M. I. Ali, T. Mahmood and M. Munir, “q-Rung orthopair fuzzy soft average aggregation operators and their application in multi-criteria decision-making,” *Int. J. Intell. Syst.*, vol. 35, no. 4, pp. 571-599, 2020.

[32] R. Chiram, A. Hussain, M. I. Ali and T. Mahmood, “Some geometric aggregation operators under q-rung orthopair fuzzy soft information with their applications in multi-criteria decision making,” *IEEE Access*, vol. 9, pp. 31975-31993, 2021.

[33] P.A. Perveen, Fathima, J. J. Sunil, K. V. Babitha and H. Garg, “Spherical fuzzy soft sets and its applications in decision-making problems,” *J. Intell. Fuzzy Syst.*, vol. 37, no. 3, pp. 1-14, 2019.

[34] J. Ahmad, T. Mahmood, R. Chiram and A. Iampan, “Some average aggregation operators based on spherical fuzzy soft sets and their applications in multi-criteria decision making,” *AIMS Math.*, vol. 6, no. 7, pp. 7798-7832, 2021.

[35] Z. Pawlak, “Rough sets” *Int. J. Comput. Inf. Sci.*, vol. 11, no. 5, pp. 341-356, 1982.

[36] Z. Pawlak, “Rough set theory and its applications to data analysis,” *Cybern. Syst.*, vol. 29, no. 7, pp. 661-688, 1998.

[37] Y. Y. Yao, Constructive and algebraic methods of the theory of rough sets. *Inf. sci.*, vol. 109, no. 1-4, pp. 21-47, 1998.

[38] J. Dai, S. Gao and G. Zheng, “Generalized rough set models determined by multiple neighborhoods generated from a similarity relation,” *Soft Comput.*, vol. 22, no. 7, pp. 2081-2094, 2018.

[39] D. Meng, X. Zhang and K. Qin, “Soft rough fuzzy sets and soft fuzzy rough sets,” *Comput. Math. with Appl.*, vol. 62, no. 12, pp. 4635-4645, 2011.

[40] H. Zhang, L. Shu and S. Liao, “Intuitionistic fuzzy soft rough set and its application in decision making,” *I. J. Appl. Anal.*, vol. 2014, no. 2, pp. 353-370, 2014.

[41] A. Hussain, M. I. Ali and T. Mahmood, “Pythagorean fuzzy soft rough sets and their applications in decision-making,” *Turabih Univ. Sci.*, vol. 14, no. 1, pp. 101-113, 2020.

[42] Y. Wang, A. Hussain, T. Mahmood, M. I. Ali, H. Wu, and Y. Jin, “Decisionmaking based on q-rung orthopair fuzzy soft rough sets,” *Math. Problems Eng.*, vol. 2020, Dec. 2020, Art. no. 6671001.

[43] S.Z. Zeng, S. Ali, M.K. Mahmood, F. Smarandache and D. Ahmad, “Decision-Making Problems under the Environment of m-Polar Diophantine Neutrosophic N-Soft Set”. *CMES-Computer Modeling in Engineering & Sciences*, vol 130, no. 1, pp.581-606, 2022.

[44] F. Kutlu Guıngıdıju and C. Kahraman, “Spherical fuzzy sets and spherical fuzzy TOPSIS method,” *J. Intell. Fuzzy Syst.*, vol. 36, no. 1, pp. 337-352, 2019.

[45] K. Ullah, T. Mahmood, N. Jan and Z. Ahmad, “Policy decision making based on some averaging aggregation operators of t-spherical fuzzy sets; a multi-attribute decision making approach,” *Ann. Optim. Theory Pract.*, vol. 3, no. 3, pp. 69-92, 2020.

[46] K. Ullah, T. Mahmood and H. Garg, “Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators,” *Int. J. Fuzzy Syst.*, vol. 22, no. 2, pp. 570-582, 2020.

[47] S.Z. Zeng, J.M. Zhou, C.H. Zhang, and J.M. Merigó, “Intuitionistic fuzzy social network hybrid MCDM model for an assessment of digital reforms of manufacturing industry in China”, *Technol. Forecast. Soc. Change.*, vol. 176, 121435, 2022.

[48] I. Deli, Interval-valued neutrosophic soft sets and its decision making, *Int. J. Mach. Learn. Cybern.*, vol. 8, no. 2, pp. 665-676, 2017.

[49] Q. Wu, X. Liu, J. Qin, W. Wang and L. Zhou, A linguistic distribution behavioral multi-criteria group decision making model integrating extended generalized TODIM and quantum decision theory. *Appl. Soft Comput.*, vol. 98, no. 0, 106757, 2021.

[50] Q. Wu, L. Zhou, Y. Chen and H. Chen, An integrated approach to green supplier selection based on the interval type-2 fuzzy best-worst and extended VIKOR methods. *Inf. Sci.*, vol. 502, no. 0, pp. 394-417, 2019.
SHOUZHEN ZENG was born in Ji’an, Jiangxi, China in 1981. He received the B.S. degree in mathematics from Jiangxi Normal University in 2002, the M.S. degree in applied mathematics from Tianjin University in 2007, and Ph.D. degree in statistics from Zhejiang Gongshang University in 2013. Since 2019, he has been a Professor with the Business Department, Ningbo University. He is the author of more than 70 articles. His research interests include in group decision making, intuitionistic fuzzy sets analysis.