Upgrading of shielding for rare decay search in CANDLES

Kyohei Nakajima a, Temuge Batpurevb, Wei M. Chanb, Fumiya Dokaku c, Kenichi Fushimib, Kazuki Kanagawab, Seiya Katagirid, Kohei Kawasakia, Bui T. Khai e, Hidetoshi Kino d, Enki Kinoshitab, Tadafumi Kishimotod, Ryuta Hazama b, Hirokazu Hiraokae, Daiki Hiyama b, Takashi Ida b, Masahiro Ishikawaro, Xiaolong Li f, Tsuyoshi Maeda b, Kenji Matsuokad, Michael Moser c, Masaharu Nomachi d, Izumi Ogawad, Takaki Ohatab, Hidetoshi Kinob, Enki Kinoshitab, Tadafumi Kishimotod, Ryuta Hazamae, Hirokazu Hiraokae, Daiki Hiyama, Takashi Ida, Masahiro Ishikawa, Xiaolong Li, Tsuyoshi Maeda, Kenji Matsuoka, Michael Moser, Masaharu Nomachi, Izumi Ogawa, Takaki Ohata, Hidetoshi Sato a, Kazuki Shimotob, Makiko Shimada, Masoumeh Shokati, Naruki Takahashi, Yasuhiro Takemoto, Yukichi Takihira, Yoichi Tamagawa, Masashi Tozawa, Kanau Teranishia, Konosuke Tetsunob, Van T.T. Trang b, Masahito Tsuzuki, Saori Umehara, Wei Wang, Sei Yoshida and Naoki Yotsunagab

aGraduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui, Fukui 910-8507, Japan; bGraduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka 560-0043, Japan; cFaculty of Integrated Arts and Science, Tokushima University, 2-24, Shinkaura-cho, Tokushima 770-8502, Japan; dResearch Center for Nuclear Physics, Osaka University, 10-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan; eFaculty of Human Environment, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka, 574-8530, Japan; fCenter for Integrated Research in Fundamental Science and Engineering (CIRSE), Faculty of Pure and Applied Sciences, University of Tsukuba, I-1-1, Tennozai, Tsukuba, Ibaraki 305-8571, Japan

In the CANDLES experiment aiming to search for the very rare neutrino-less double beta decays (0νββ) using 48Ca, we introduced a new shielding system for high energy γ-rays from neutron captures in massive materials near the detector, in addition to the background reduction for 232Th decays in the 0νββ target of CaF 2 crystals. The method of background reduction and the performance of newly installed shielding system are described.

Keywords: double beta decay; underground experiment; low background measurement; γ-rays from neutron captures

1. Introduction

The neutrino-less double beta decay (0νββ) is a process beyond the standard model and has not been observed yet. The existence of 0νββ leads to three important facts; (1) The lepton number violation, which is a key of our matter dominated universe. (2) The Majorana nature of neutrinos, which indicates that particle is its own anti-particle. (3) The absolute scale of neutrino mass. A mass hierarchy of neutrinos is determined by the 0νββ observation.

In 0νββ, two electrons are emitted and the 0νββ measurement tries to find the signals at sum energies of electrons corresponding to the Q value. The 0νββ is a quite rare phenomenon and low background techniques are required to observe such rare decays. Until now, only a lower limit of half-life was experimentally obtained to 10 26 year (90% Confidence Level (C.L.)) by the ELEGANT VI experiment [4]. It was found that reduction of γ-ray background due to neutron capture around the detector is indispensable to improve this limit (section 3). This paper describes establishing a new shield system for the purpose.

2. Detector

The CANDLES detector is located in the Kamioka underground laboratory (Gifu Pref., Japan) where the overburden is 2,700 m.w.e. (meter water equivalent). The muon flux is about 10^-5 of the ground level, and it leads to the lower muon-related environmental radiations such as neutrons.

A schematic view of the detector is shown in Figure 1. We use 96 CaF 2 crystals (10 3 cm 3) which contain 305 g of 48Ca, as the scintillator detector and the 0νββ target. The scintillation light from CaF 2 crystals are observed by 62 photomultiplier tubes (PMTs) with the light pipe system which has a 93% reflectivity. The CaF 2 crystals are immersed in the liquid scintillator (LS) which works as active veto, and an acrylic tank containing LS is set in a high energy region. The disadvantage of 48Ca is a low natural abundance of ~0.2%, and the enrichment technique is under development [3].

The best result thus far obtained for a lower limit of half-life using 48Ca is 5.8×10 22 year (90% Confidence Level (C.L.)) by the ELEGANT VI experiment [4]. It was found that reduction of γ-ray background due to neutron capture around the detector is indispensable to improve this limit (section 3). This paper describes establishing a new shield system for the purpose.
the water passive shield with an average thickness of ~1 m. The whole system is installed in a stainless steel tank with 3 m diameter and 4 m height.

A distinction of the experiment is a 4π active shield by LS. The time constant of the pulse shapes are ~1 μsec and ~10 nsec for CaF2 and LS, respectively. When external γ-rays react with LS, the observed pulse shapes are different from that of the signal (i.e. the pulse of β rays in CaF2). By using this pulse shape difference, events which contain the LS pulse are rejected event by event by analyzing the pulse-shape data which are recorded by a 500 MHz FADC (Flash ADC) (LS cut). This active system is also useful for rejection of internal β decays in CaF2 when emitted γ-rays deposit their energy in LS.

3. Background

3.1. Background candidates

The background sources are suppressed thanks to the high Q value of 48Ca. There are three background candidates around 4.3 MeV. As shown in Figure 2, two of them are decay chain of a radioactive impurity, 232Th in CaF2 crystals; (1) 208Tl (β decay, Qβ = 5.0 MeV), (2) Pile-up events of 212Bi and 212Po (Maximum energy is 5.3 MeV) due to short half-life of 212Po (~300 ns). Since the time window of the pulse shape is 4 μsec, the signals due to 212Bi and 212Po decays are observed as a single pulse. The third background is high energy γ-rays from neutron captures in massive materials near the detector, called as (n,γ) background. Despite of the measurement in low neutron flux and with the combination of the LS active shield and the water shield, the (n,γ) events proved the largest background as mentioned in section 3.3.

3.2. 208Tl and 212Bi-212Po backgrounds

We employed pure CaF2 crystals developed by choosing material powders which has a less radioactivity before growing the crystals [2,3]. The average 232Th activity of 96 crystals is ~29 μBq/kg and 27 of them have an activity below 10 μBq/kg.

The backgrounds related to 232Th-decay series can be removed through the off-line data analysis (analysis cut) [4]. Since the decay of 212Bi (β decay) and 212Po (α decay) are observed as a single event due to the short half-life of 212Po (300 ns), such events are rejected if time differences between 212Bi and 212Po are longer than 20 nsec, which is a limit to distinguish the double pulse. If time differences are shorter than 20 nsec, ~95% events can be rejected by using the pulse shape difference between α particles and β particles in CaF2 [5]. The total rejection efficiency of this “Bi-Po cut” for 212Bi-212Po background is about 99%.

3.3. (n,γ) background

Even above Q value, nonnegligible amounts of energy spectrum in the year-2013 data. Many events above Q value were observed even in the energy region from 7 to 8 MeV. The cause of these events was identified as high energy γ-rays from neutron captures in massive material around the detector such as rock and stainless steel. For example, the specific γ-ray energy from neutron captures on 56Fe is 7.6 MeV. These γ-rays sometimes deposit almost entire energy in CaF2 and then remain as a background.

In order to confirm the origin of this background, we set a 252Cf source outside the stainless steel tank to increase the neutron flux. The observed spectrum with a 252Cf source is consistent with the data of normal run in the high energy region. The energy spectra with a
neutron source and in normal run were simulated by the Monte Carlo (MC) simulation using the code Geant4 [6]. As a result, the observed spectrum was well reproduced by considering γ-rays from neutron captures in rock and stainless steel. The (n, γ) background was estimated to be 76 ± 9 (statistical) events/year/96 crystals, which is beyond acceptable level.

We installed Pb shields for γ-rays from neutron captures in rocks, and Si rubber sheets including 40 wt% of B$_4$C (6.2 wt% of 10B) inside and outside the detector to reduce thermal neutron captures in stainless steel tank. The typical Pb thickness is about 10 cm to reduce γ-rays with several MeV to ~1/100. Considering the weight limit on the top of the detector, Pb thickness in the top was suppressed to 7 cm, but Pb thickness was increased to 12 cm in the center of the detector side, where thickness of the passive water shield in the detector is thinnest. In the bottom, Pb shield was set inside the detector, so as to avoid significant modification of the system.

By installing the shield, the (n,γ) background rate was expected to be ~ 0.7(±50%) events/year/96 crystals from the MC simulation. The breakdown of (n,γ) background from rocks and tank is 0.34±0.14 and 0.4±0.2 events/year/96 crystals, respectively.

4. Shield for (n,γ) background

4.1. Shield design

Since the (n,γ) events proved to be the most serious background in CANDLES, we installed an additional shield in the detector. The goal of the (n,γ) background rate is about 1 events/year/96 crystals, which is ~1/80 of the event rate in Figure 3. A shield design was optimized by Geant4 simulation. A schematic view of the design is shown in Figure 4.

![Figure 3. The observed energy spectrum in the year-2013 data. The black line shows the spectrum without analysis cuts, and the red line shows the one with all analysis cuts (0νββ cut). We can see some events above Qββ (4.3 MeV). These events were identified as (n,γ) background.](image-url)

![Figure 4. A schematic view of the additional passive shield for the (n,γ) background reduction. The blue and red parts show Pb shield and B-containing rubber sheet, respectively.](image-url)
5. Results

5.1 Energy spectrum after shielding

The energy spectrum after (n,γ) shield setup is shown in Figure 6. In this case, the LS cut and the 208Tl cut are not applied to emphasize counting statistics in the high energy region. The red and green histograms show the spectrum before (n,γ) shield setup, and the blue histogram shows the spectrum after setup. All spectra are normalized to the event rate in 56.9 days.

The peaks at 1.46 MeV and at 2.6 MeV caused by environmental γ-rays from 40K and 208Tl, respectively, are reduced by about one order of magnitude by the additional shield. This would help to reduce the dead time when we apply the 208Tl veto. Events in 3 to 4 MeV region were reduced by replacing the O-ring and Al sleeve near the CaF₂ crystals with ones having less 232Th activity.

The events above 5 MeV ((n,γ) background) were clearly reduced by (n,γ) shield setup. The reduction rate is an order of 10⁻² on average, and consistent with the design value in the MC simulation.

![Figure 6. The observed energy spectrum without LS cut and 208Tl cut before and after the (n,γ) shield setup. The red and green histograms show the spectra before setup, and the blue histogram shows the spectrum after setup. All spectra were normalized to the event rate in 56.9 days.](image)

5.2 Sensitivity of CANDLES after (n,γ) shielding setup

Then, the analysis cuts for 0νββ selection were applied to simulate realistic situation. The analysis was performed for all crystals or pure crystals whose 232Th activity were below 10 μBq/kg. The energy spectrum for 27 pure crystals is shown in Figure 7. A summary of the analysis result is shown in Table 1.

As a conclusion, no events were observed in the region of interest (Qββ-1σ+2σ; 4170-4480 keV) during the measurement for 21.5 days. From the number of expected backgrounds and the signal efficiency, the sensitivity of the present CANDLES for 0νββ half-life is calculated to be 0.9×10²³ year and 0.5×10²³ year for all crystals and 27 crystals, respectively. Comparing with the best half-life limit using ⁴⁸Ca so far (0.6×10²² year), it will be possible to obtain the better result in a 1 year measurement.

![Figure 7. The energy spectrum after (n,γ) shield setup in the 21.5 days live-time measurement by applying various analysis cuts, i.e. the Bi-Po cut, the LS cut, the 208Tl veto, and the multi crystal veto that are described in section 3.2, 2, 3.3, 3.3, respectively. The green histogram shows the spectrum obtained with all analysis cuts. There are no events in the region of interest (Qββ-1σ+2σ; 4170-4480 keV).](image)

Crystal selection	All crystals	27 crystals
Number of events	0	0
Expected ⁴⁰K BG	1.4	0.14
Expected ²⁰⁸Tl BG	0.04	0.01
Signal efficiency	0.30	0.30
Sensitivity in 1 year	0.9×10²³ year	0.5×10²³ year

6. Conclusion

CANDLES is designed for the study of double beta decay with ⁴⁸Ca. The main background sources are ²⁰⁸Tl decay in CaF₂ crystal and high energy γ-rays from neutron captures in surrounding rocks and stainless steel. The latter (n,γ) events were found to be the largest background, and we installed an additional passive shield consisting of Pb and B₄C rubber sheets. We confirmed that the reduction rate of the (n,γ) background was about 10⁻². No events were observed in the region of interest in 21.5 days measurement. The expected sensitivity in 1 year is 0.9×10²³ year, which is the best result among the 0νββ measurements with ⁴⁸Ca.

References

[1] A. Gando et al., Phys. Rev. Lett. 117 (2016), 082503.
[2] T. Kishimoto et al., Proc. of 4th Workshop on Neutrino Oscillations and Their Origins, (2003), p.338.
[3] T. Kishimoto et al., Prog. of Theor. Phys. (2015), 033D03.
[4] S. Umehara et al., Phys. Rev. C 78 (2008), 058501.
[5] S. Umehara et al., Physics Procedia 61 (2015), pp.283-288.
[6] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506 (2006), pp.250-303.