Abstract

We study the Maker–Breaker domination game played by Dominator and Staller on the vertex set of a given graph. Dominator wins when the vertices he has claimed form a dominating set of the graph. Staller wins if she makes it impossible for Dominator to win, or equivalently, she is able to claim some vertex and all its neighbours. Maker–Breaker domination number $\gamma_{MB}(G)$ ($\gamma'_{MB}(G)$) of a graph G is defined to be the minimum number of moves for Dominator to guarantee his winning when he plays first (second). We investigate these two invariants for the Cartesian product of any two graphs. We obtain upper bounds for the Maker–Breaker domination number of the Cartesian product of two arbitrary graphs. Also, we give upper bounds for the Maker–Breaker domination number of the Cartesian product of the complete graph with two vertices and an arbitrary graph. Most importantly, we prove that $\gamma_{MB}(P_2 \Box P_n) = n - 2$ for $n \geq 13$ and $\gamma'_{MB}(P_2 \Box P_n) = n$ for $n \geq 1$. Also, for the disjoint unions of $P_2 \Box P_n$s, we show that $\gamma_{MB}(\bigcup_{i=1}^{k}(P_2 \Box P_n)_i) = k \cdot n$ ($n \geq 1$), and that $k \cdot n \geq \gamma_{MB}(\bigcup_{i=1}^{k}(P_2 \Box P_n)_i) \geq k \cdot n - 2$ ($n \geq 13$).

Keywords: Positional game, Maker–Breaker domination game, Maker–Breaker domination number, domination number, winning strategy on grids.

Mathematics Subject Classification: 91A24, 05C69, 05C57

*Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Serbia.
Email: dni.jovana.jankovic@student.pmf.uns.ac.rs
†Department of Mathematics, Informatics and Physics, Faculty of Philosophy, University of East Sarajevo, Bosnia and Herzegovina
‡Doctoral Program “Computational Mathematics” W1214, Johannes Kepler University, Linz, Austria.
Email: jiayue.qi@dk-compmath.jku.at
§Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria.
1 Introduction

1.1 Background

In this paper we study the Maker–Breaker domination game, first introduced in the literature by Duchêne, Gledel, Parreau and Renault in [5]. This game combines two following research directions. In the original domination game, introduced by Brešar, Klavžar, and Rall in [2], two players, Dominator and Staller, alternately take a turn in claiming a vertex from the finite graph G, which were not yet chosen in the course of the game. Dominator has a goal to dominate the graph in as few moves as possible while Staller tries to prolong the game as much as possible.

The Maker–Breaker games, introduced by Erdős and Selfridge in [6], are played on a finite hypergraph (X,F) with the vertex set X and a set $F \subseteq 2^X$ of hyper-edges. The set X is called the board of the game, and F the family of winning sets. Two players, Maker and Breaker take turns in claiming previously unclaimed elements of X. Maker wins the game if, by the end of the game, he has claimed all elements of some $F \in \mathcal{F}$. Otherwise, Breaker wins. For a deeper and more comprehensive analysis of Maker–Breaker games, see the book of Beck [1], and the recent monograph of Hefetz, Krivelevich, Stojaković and Szabó [9].

The Maker–Breaker domination game (MBD for short) is played on graph $G = (V,E)$ by two players Dominator and Staller. The aim of Dominator is to build a dominating set of the graph, which is a set T such that every vertex not in T has a neighbour in T. The aim of Staller is to claim a vertex from the graph G and all its neighbours, so that the Dominator cannot dominate all of the vertices. As concluded in [5], this game is equivalent to a Maker–Breaker game played on the vertex set of a given graph as the board, with winning sets being all closed neighbourhoods of vertices.

When it is not hard to determine the identity of the winner in some Maker–Breaker game, then a more interesting question to ask is how fast the player with the winning strategy can win. Fast winning strategies for Maker in the Maker–Breaker games have received a lot of attention in recent years (see e.g. [3, 4, 8]). Specifically, for the Maker–Breaker domination game the smallest number of moves for Dominator is studied in [7], where Gledel, Iršič, and Klavžar introduced the Maker–Breaker domination number $\gamma_{MB}(G)$ of a graph G, as the minimum number of moves for Dominator to win in the game on G where he is the first player. If Dominator is the second player, then the corresponding invariant is denoted by $\gamma'_{MB}(G)$ in their paper. In [4], the authors proved that $\gamma_{MB}(G) = \gamma(G) = 2$ if and only if G has a vertex which lies in at least two γ-sets of G, where $\gamma(G)$ is the domination number of G — the order of a smallest dominating set of G — and γ-set is a dominating set of size $\gamma(G)$.

1.2 Main results

In this paper, we give a structural characterization of graphs G with $\gamma_{MB}(G) = \gamma(G) = 2$, further answering the base case for the open problem posted in [7], which we hope can
inspire future results on more general cases. In [7], the authors proposed finding the minimum number of moves for Dominator in the MBD game on the Cartesian product of two graphs. Motivated by the given problem, we give the upper bounds for Maker–Breaker domination number for the Cartesian product of K_2 and a general graph, and that of two general graphs as well, in Section 3. The corresponding results is Theorem 1.2 Most importantly, we focus on determining how fast can Dominator win on the graphs $P_2 \square P_n$, for $n \geq 1$. From the results (Theorem 1.4 and Theorem 1.3) on the grids, we get two results on the disjoint union of $P_2 \square P_n$s as stated in Theorem 1.6 and Theorem 1.7. We denote by \cup the disjoint union; and by $\cup_{i=1}^k(G)$, we denote the disjoint union of k copies of the graph G.

The paper is organized as follows. In Section 2, we prove Theorem 1.1 — the concept of “spring graph” will be explained there in the context. In Section 3, we prove Theorem 1.2. We prove the following Theorem 1.4 and Theorem 1.3 in Section 4. The corresponding proofs of Theorem 1.6 and Theorem 1.7 are given in Section 4.4. We list the main results of this paper as the following.

Theorem 1.1. Let G be a graph with $\gamma(G) = 2$. Then $\gamma_{MB}(G) = \gamma(G)$ if and only if G is a spring graph with two groups.

Theorem 1.2. Let G and H be two arbitrary graphs on n and m vertices, respectively. Suppose that Dominator has a winning strategy in MBD game both as the first and as the second player on G, and on H. Then

$$\gamma_{MB}(G \square H) \leq \min\{\gamma_{MB}(G) + (m - 1) \cdot \gamma'_{MB}(G), \gamma_{MB}(H) + (n - 1) \cdot \gamma'_{MB}(H)\}.$$

If Dominator has a winning strategy as the second player both on G, and on H, then

$$\gamma'_{MB}(G \square H) \leq \min\{m \cdot \gamma'_{MB}(G), n \cdot \gamma'_{MB}(H)\}.$$

Theorem 1.3. $\gamma'_{MB}(P_2 \square P_n) = n$ for $n \geq 1$, and Dominator cannot skip any moves, otherwise he cannot win.

Theorem 1.4. Consider the MBD game on $P_2 \square P_n$ where Dominator is the first to play. Then

1. If $1 \leq n \leq 4$, then $\gamma_{MB}(P_2 \square P_n) = n$.

2. If $5 \leq n \leq 12$, then $\gamma_{MB}(P_2 \square P_n) = n - 1$.

3. If $n \geq 13$, then $\gamma_{MB}(P_2 \square P_n) = n - 2$.

Remark 1.5. The proof of the first two items of Theorem 1.4 will be skipped in this paper; the rough idea of which can be similar to the proof of item 3.

Theorem 1.6. $\gamma'_{MB}(\cup_{i=1}^k(P_2 \square P_n)) = k \cdot n$, $n \geq 1$.

Theorem 1.7. $k \cdot n - 2 \leq \gamma_{MB}(\cup_{i=1}^k(P_2 \square P_n)) \leq k \cdot n$, $n \geq 13$.

3
1.3 Preliminaries

Assume that the MBD game is in progress. We denote by D_1, D_2, \ldots the sequence of vertices chosen by Dominator and by S_1, S_2, \ldots the sequence of vertices chosen by Staller. As in [7], we say that a game is the D-game if Dominator is the first to play, i.e. one round consists of a move by Dominator followed by a move of Staller. In the S-game, one round consists of a move by Staller followed by a move of Dominator. We say that the vertex v is isolated by Staller if v and all its neighbours are claimed by Staller. For a given graph G, by $V(G)$ and $E(G)$ we denote its vertex set and edge set, respectively.

2 Graphs with $\gamma = \gamma_{MB}$

In this section, we introduce the concept of “spring graph”, showing the relation between such graphs with the graphs of equal domination number and Maker–Breaker domination number. Although our results only characterize the case when this number is two, there might be a generalized result for higher number, on which path this type of graphs may shed light on.

Let $Q_1 := \{a\}$, $Q_i := \{b_i, c_i\}$ for $2 \leq i \leq k$. Now we give the construction of graph $G = (V(G), E(G))$ as follows:

- Let $A := \bigcup_{1 \leq i \leq k} A_i$, where A_i is a set of vertices that are adjacent to all the vertex/vertices in Q_i, for $1 \leq i \leq k$, and $A_i \cap Q_j = \emptyset$, for any $1 \leq i, j \leq k$.
- Let $Q := \bigcup_{1 \leq i \leq k} Q_i$. We see that $Q \cap A = \emptyset$.
- Let $V(G) = Q \cup A$ and let $E(G)$ be the set of edges such that any vertex in A_i is adjacent to all vertices in Q_i, and the edges among vertices in Q fulfill the following condition:

 Either $\{b_i, c_i\} \in E(G)$ (inclusively) OR both b_i is adjacent to all vertices in Q_j ($j \neq i$) and c_i is adjacent to all vertices in Q_k for some $k \neq i$.

If some graph G can be obtained from the above construction, we call it a spring graph with k groups. We call a graph $G_1 = (V_1, E_1)$ the expansion of graph $G_2 = (V_2, E_2)$ if and only if $V_1 = V_2$ and $E_2 \subset E_1$. By the above construction we see that any expansion of a spring graph is also a spring graph. A spring graph is called minimal if it contains no more edges than those needed in the above-stated construction. So we can expand the minimal spring graph until we obtain a complete graph of $|Q \cup A|$ many vertices. The set of spring graphs contains all these graphs. See Figure 1 for the illustration of a minimal spring graph.

The following proposition is not so hard to see. But whether the other direction holds or not is not so clear yet.

Proposition 2.1. Let graph G with $\gamma(G) = k \geq 1$ be a spring graph with k groups, then $\gamma_{MB}(G) = \gamma(G) = k$.

Figure 1: This is the illustration of a minimal spring graph, where $Q_1 = \{a\}$ and $Q_i = \{b_i, c_i\}$.

Proof. First, obviously $\gamma_{MB}(G) \geq \gamma(G) = k$. In order to show $\gamma_{MB}(G) \leq \gamma(G)$. We propose the following strategy for Dominator:

1. Claim vertex a in the first round.

2. Whenever Staller chooses a vertex in Q_i ($i \geq 2$), let Dominator choose the other vertex in Q_i. For instance, if the Staller chooses c_i, Dominator should choose b_i for his next step.

3. If Staller chooses a vertex in A, Dominator will choose any vertex in some Q_i, where both vertices of Q_i are unclaimed yet.

In this way, after k rounds, Dominator will claim a domination set that is stated in item 2. Hence he has chosen a domination set of G. So we obtain that $\gamma_{MB}(G) \leq \gamma(G) = k$. \qed

We have the following equivalent description for spring graphs. Although it says nothing about Maker–Breaker domination number, it may be of help for future studies on such graphs or on the graph structures when $\gamma = \gamma_{MB} \geq 3$.

Theorem 2.2. Let G be a graph with $\gamma(G) = k \geq 2$. Then the following two statements are equivalent:

1. G has at least 2^{k-1} γ-sets and each of them has the form $\{a, Q_2, \ldots, Q_k\}$, where Q_i represents one element in set Q_i, where $Q_i := \{b_i, c_i\}$, $i \geq 2$.

2. G is a spring graph with k groups.

Proof. 2 \Rightarrow 1: Let G be a spring graph with k groups, and with $\gamma(G) = k$. It is not hard to see that there are 2^{k-1} many such sets, since each Q_i has two choices. We only need to show that such set is indeed a γ-set of G.

Let $S := \{a, b_2, \ldots, b_k\}$ and $Q_1 := \{a\}$. From the structure of G, we know that c_i is either adjacent to b_i, or to all the vertices in some Q_j ($j \neq i$), which says that c_i is adjacent
Consider, first, the MBD game on the Cartesian product of general graphs. It would be interesting to see if these results can be argued analogously.

1 ⇒ 2: Let G be a graph fulfilling the condition described in item 2 in the theorem statement. Let $v \in V(G) \setminus Q$. Suppose there exists $q_i \in Q_i$ such that v is not adjacent to q_i for $1 \leq i \leq k$. Then consider the dominating set $\{q_1 = a, \ldots, q_k\}$. Vertex v is not dominated by any vertex in this set, which leads to a contradiction. Hence, there exists Q_i such that v is adjacent to all vertices in Q_i. Then we put vertex $v \in V(G) \setminus Q$ into group A_i. In this way, we group all vertices in $V(G) \setminus Q$ into k groups.

As for the vertices in Q, suppose that b_i and c_i are not adjacent. By a similar argument as above, b_i and c_i must be adjacent to all vertices in Q_j, Q_k respectively, for some $j, k \neq i$. So far we have proved that G is an expansion of some minimal spring graph with k groups, hence is also a spring graph with k groups.

Proof of Theorem 1.2. Let $G = (V(G), E(G))$ be a spring graph with 2 groups, where $\gamma(G) = 2$. Denote by $N(v)$ the set of neighbouring vertices of vertex v. Actually it is not hard to see that both $\{a, b_2\}$ and $\{a, c_2\}$ are domination sets of G. Consider a D-game on it. Let $D_1 = a$ and no matter what Staller choose in her first step, there is at least one unclaimed vertex between b_2 and c_2, let Dominator choose that vertex as his second step. In this way he can win the game within two steps. Hence $\gamma_{MB}(G) \geq 2$. On the other hand, $\gamma_{MB}(G) \geq \gamma(G) = 2$. Therefore, $\gamma_{MB}(G) = 2$.

For the other direction, let G be a graph with $\gamma(G) = \gamma_{MB}(G) = 2$. Consider any D-game on it with steps of players D_1, S_1, D_2. Let $Q_1 := \{D_1\}, Q_2 := \{S_1, D_2\}, Q := Q_1 \cup Q_2$. Let $A_1 := N(D_1) \setminus Q, A_2 := N(S_1) \cap N(D_2) \setminus (Q \cup N(D_1)), A := A_1 \cup A_2$. We see that $A_1 \cup A_2, Q_1 \cup Q_2$, and that $A \cup Q$. Since $\{D_1, D_2\}$ and $\{D_1, S_1\}$ are two domination sets of the graph G — otherwise, it contradicts the fact that both players play optimally in the game — we have $N(D_1) \cup N(D_2) = N(D_1) \cup N(S_1) = V(G)$. Hence $V(G) \setminus N(D_1) \subset N(D_2) \cap N(S_1)$. So we see that $A \cup Q = N(D_1) \cup (N(S_1) \cap N(D_2)) = V(G)$. By $\{D_1, D_2\}$ and $\{D_1, S_1\}$ being two domination sets, we also conclude that either $\{S_1, D_2\} \in E(G)$ (inclusively) or $S_1, D_2 \in N(D_1)$. This says that G is a spring graph with 2 groups.

We gave the structural characterization for the graphs G with $\gamma(G) = \gamma_{MB}(G) = k$. We introduced spring graphs for the description and gave an equivalent description in the view of domination sets for such graphs. It would be interesting to see if these results can be of any help when $k > 2$.

3 MBD game on the Cartesian product of two graphs

In this section, we prove the result on the Cartesian of general graphs.

Proof of Theorem 1.3. Consider, first, the D-game on $G \square H$. By $G^{(1)}, G^{(2)}, \ldots, G^{(m)}$ denote copies of the graph G. By S_D and S_D' denote Dominator’s winning strategy on G in the
D-game and the S-game, respectively. Dominator will play his first move on one copy of G according to his winning strategy S_D. In every other round $i \geq 2$, he looks on the $(i - 1)^{th}$ move of Staller. If Staller in his $(i - 1)^{th}$ move claims a vertex from $V(G^{(j)})$, Dominator responds by claiming a vertex from the same set $V(G^{(j)})$ according to the corresponding winning strategy S_D or S'_D on graph $G^{(j)}$ — the choice of S_D or S'_D depends on whether Dominator or Staller started the first move on this copy. Since Staller can be the first player on at most $m - 1$ copies of the graph G, we know that Dominator can win within

$$\gamma_{MB}(G) + (m - 1) \cdot \gamma'_{MB}(G)$$

many moves.

Since Dominator also has a winning strategy on H both as the first and as the second player, we obtain analogously that he can win within

$$\gamma_{MB}(H) + (n - 1) \cdot \gamma'_{MB}(H)$$

many moves. Therefore we get

$$\gamma_{MB}(G \Box H) \leq \min\{\gamma_{MB}(G) + (m - 1) \cdot \gamma'_{MB}(G), \gamma_{MB}(H) + (n - 1) \cdot \gamma'_{MB}(H)\}.$$

Now, we consider the S-game on $G \Box H$. Staller starts the game, we let Dominator respond on each copy of G, using the winning strategy he has on G. Hence he can win with in $m \cdot \gamma'_{MB}(G)$ many steps. Also, we can focus on the n copies of H, in this Cartesian graph. With the analogous analysis, we know that Dominator can win within $n \cdot \gamma'_{MB}(H)$ many steps. Hence we get

$$\gamma'_{MB}(G \Box H) \leq \min\{m \cdot \gamma'_{MB}(G), n \cdot \gamma'_{MB}(H)\}.$$

We have the following corollary from Theorem 1.2.

Corollary 3.1. Let G be a graph on n vertices. Then Dominator can win the game on $G \Box K_2$ in at most n moves. If Dominator has a winning strategy both as the first and as the second player in the game on G, then $\gamma_{MB}(G \Box K_2) \leq \min\{\gamma_{MB}(G) + \gamma'_{MB}(G), n\}$ and $\gamma'_{MB}(G \Box K_2) \leq \min\{2 \cdot \gamma'_{MB}(G), n\}$.

Remark 3.2. We observe that the domination number of the $r \times l$ rook’s graph $K_r \Box K_l$ is $\min(r, l)$.

4 MBD game on $P_2 \Box P_n$

In order to prove our main results on MBD games on grids, namely Theorem 1.3 and Theorem 1.4, we need to introduce several “MBD graphs” and also two types of traps that Staller can make so as to win the game, as preparations.

4.1 MBD graphs

An **MBD graph** is a pair (G, I), where $G = (V, E)$ is a graph and function

$$I : V \rightarrow \{s, d, n\} \times \{0, 1\}$$

assigns to each vertex a pair from $\{s, d, n\} \times \{0, 1\}$, describing the current situation of the vertex.
To say it more intuitively, s means the vertex is already claimed by Staller, d means the vertex is already claimed by Dominator and n refers to “null”, which mean that the vertex is still free — not yet claimed by any player in the current game. And 1 means that the vertex is already dominated, i.e., it has a neighbouring vertex with the assigned value d; 0 means that the vertex is not yet dominated, i.e., none of its neighbours have been assigned d yet. In the sequel, we define several MBD subgraphs of the Cartesian graph $P_2 \Box P_m$. They will be helpful in our later proofs. Let $V_m = \{u_1, ..., u_m, v_1, ..., v_m\}$ and

$$E_m = \{\{u_i, u_{i+1}\} | i = 1, 2, ..., m-1\} \cup \{\{v_i, v_{i+1}\} : i = 1, 2, ..., m-1\} \cup \{\{u_i, v_i\} : i = 1, 2, ..., m\}.$$

It is easy to check that $P_2 \Box P_m = (V_m, E_m)$.

Suppose that Maker–Breaker domination game on $P_2 \Box P_m$ is in progress, where $m \geq 5$ is an integer.

1. By X_m ($m \geq 1$) denote the MBD graph (G, I) with $G = P_2 \Box P_m$, I assigns to vertex u_1 with $(n, 1)$ and to all other vertices $(n, 0)$. That is to say, vertex u_1 is already dominated in the ongoing game. Therefore, in the remaining game, Dominator does not need to consider dominating u_1. (see Figure 2(a))

2. By Y_m ($m \geq 3$) denote the MBD graph (G, I) with $G = P_2 \Box P_m$, I assigns to vertex u_1 value $(n, 1)$, to vertex v_2 value $(s, 0)$, to vertices u_m, v_m the value $(n, 1)$ and to all other vertices $(n, 0)$. When considering the D-game on Y_m, we set $S_0 = v_2$ — consider the MBD game played on this graph, but Staller has claimed the vertex v_2 and vertices u_m and v_m are already dominated (but not claimed by any players) before the game starts. (see Figure 2(b))

3. By Z_m ($m \geq 1$) denote the MBD graph (G, I) with $G = P_2 \Box P_m$, I assigns to vertices u_1 and v_1 the value $(n, 1)$, to all other vertices value $(n, 0)$. That is to say, vertices u_1 and v_1 are already dominated in the ongoing game. Therefore, in the remaining game, Dominator does not need to consider dominating u_1 or v_1. (see Figure 2(c))

4. By W_m ($m \geq 1$) denote the MBD graph (G, I), where $G = (V, E)$ and $V = V_m \cup \{v_0\}$, $E = E_m \cup \{\{v_0, v_1\}\}$; $I(v_0) = I(u_1) = (n, 1)$ and I assigns to all other vertices value $(n, 0)$. That is to say, v_0 and u_1 are already dominated in the current game. (see Figure 2(d))

5. By ρ_m ($m \geq 0$) denote the MBD graph (G, I) with $G = P_2 \Box P_m$ and $I(u_1) = (n, 1)$, $I(v_2) = (s, 0)$; I assigns to all other vertices value $(n, 0)$. When considering the D-game on ρ_m, we set $S_0 = v_2$ — consider the MBD game played on this graph, but Staller has claimed the vertex v_2 and u_1 is already dominated by Dominator before the game starts. Note that here we use S_0 to denote the “move” of Staller before the game starts. (Figure 2(e)).

We define the domination number of an MBD graph naturally as follows. Dominator intends to dominate all undominated vertices, namely those vertices with the second coordinate of $I(v)$ being 0; both players can only claim the unclaimed vertices, namely vertices
Figure 2: Subfigures: (a) X_m (b) Y_m (c) Z_m (d) W_m (e) ρ_m. Two incident edges being dotted indicates that the vertex is already dominated by Dominator but not claimed by any players; the cross indicates that the vertex is claimed by the Staller.

v with the first coordinate of $I(v)$ being n. We use the same notations γ_{MB} and γ'_{MB} for the minimum number of moves for Dominator to guarantee his winning in D-game and S-game on the MBD graph, respectively. Actually a normal graph can be viewed as a special case of an MBD graph, namely with all vertices assigned by $(n, 0)$ under the function I.

Now we define two types of traps that Staller can create in the MBD game on $P_2 \square P_n$ for $n \geq 3$, so as to prevent the winning of Dominator. These two strategies of Staller will be used a lot later in the proofs.

Trap 1 - triangle trap. We say that Staller created a *triangle trap* if after her move Dominator is forced to claim the vertex v_i (or u_i) — so as to dominate v_i (or u_i). This is because all neighbouring vertices of v_i (or u_i) are already claimed by Staller and she can isolate v_i (or u_i) by claiming it in her next move, if Dominator does not claim it. We say that Staller created a *sequence of triangle traps* $v_i - v_j$ (or $v_i - u_j$), $i < j$, if Dominator is consecutively forced to claim vertices $v_i, u_{i+1}, v_{i+2}, u_{i+3}, ..., v_j$ (or $v_i, u_{i+1}, v_{i+2}, u_{i+3}, ..., u_j$) because of the triangle traps one after another set up by Staller.

The sequence of triangle traps $v_3 - v_7$ is illustrated on Figure 3(a). The first trap shows up when Staller has claimed v_2, u_3 and v_4, which forces Dominator to claim v_3; immediately after, Staller claims u_5 to force Dominator to claim u_4, which creates the
second trap. Notice that after the Dominator claims \(v_8 \), Dominator has to claim \(v_7 \); but Staller can then claim \(u_8 \), which will isolate \(u_8 \) and further leads to the winning of the game. This strategy will be applied a lot later on in our proofs. The sequences of triangle traps \(u_i - v_j \) and \(u_i - u_j \) are defined analogously.

Trap 2 - line trap. We say that Staller created a line trap if after her move Dominator is forced to claim the vertex \(v_i \) (or \(u_i \)) — so as to dominate \(u_i \) (or \(v_i \)). This is because all other neighbours of \(u_i \) (or \(v_i \)) and \(u_i \) (or \(v_i \)) itself are already claimed by Staller. Staller can isolate \(u_i \) (or \(v_i \)) by claiming \(v_i \) (or \(u_i \)) in her next move. We say that Staller creates a sequence of line traps \(v_i - v_j \) (or \(u_i - u_j \)), \(i < j \), if Dominator is consecutively forced to claim the vertices \(v_i, v_{i+1}, v_{i+2}, v_{i+3}, \ldots, v_j \) (or \(u_i, u_{i+1}, u_{i+2}, u_{i+3}, \ldots, u_j \)) because of the line traps one after another set up by Staller.

The sequence of line traps \(u_3 - u_7 \) is illustrated on Figure 3(b). The first trap shows up when Staller has claimed \(v_2, v_3 \) and \(v_4 \), which forces Dominator to claim \(u_3 \) (in order to dominate \(v_3 \)); directly after, Staller claims \(v_5 \), which forces Dominator to claim \(u_4 \), which creates the second trap. Notice that after Dominator claims \(u_7 \), Staller can then claim \(u_8 \), which makes it impossible for Dominator to dominate \(v_8 \) anymore, then win the game. This strategy will be employed a lot later on in our proofs.

With this we finished introducing the basic definitions which we will need later on in the proofs of our main results.

4.2 Domination numbers of MBD graphs

In this section, we introduce some results on the domination numbers on MBD graphs, which then will lead to the completion of the proofs of Theorem 1.3 and Theorem 1.4.

Proposition 4.1. \(\gamma_{MB}(\rho_m) = m \) for \(m \geq 0 \); when \(m \geq 2 \), Dominator cannot skip any move, otherwise he would lose the game.

Proof. It is not hard to verify that \(\gamma_{MB}(\rho_0) = 0, \gamma_{MB}(\rho_1) = 1, \gamma_{MB}(\rho_2) = 2 \) and Dominator cannot skip any move in a D-game on graph \(\rho_2 \). On \(\rho_1 \), the Dominator cannot skip any move if the Staller starts first (on any vertex).

Assume that \(\gamma_{MB}(\rho_k) \leq k \) holds when \(2 \leq k \leq m - 1 \), then when \(k = m \), let Dominator adopt the strategy for \(\rho_{m-1} \) on the (left) subgraph \(\rho_{m-1} \), let him adopt the pairing strategy.
for the K_2 (complete graph with two vertices) on the right. We then obtain that $\gamma_{MB}(\rho_m) \leq \gamma_{MB}(\rho_{m-1}) + 1 \leq m$. Hence by induction we obtain that $\gamma_{MB}(\rho_m) \leq m$ for any $m \geq 0$. We only need to show that $\gamma_{MB}(\rho_m) \geq m$ and Dominator cannot skip any move in the game. Assume $\gamma_{MB}(\rho_k) \geq k$ and Dominator cannot skip any move in D-game on graph ρ_k for any $k < m$. Now we consider the situation when $k = m$; notice that here we can assume $m \geq 3$.

If Dominator skips the first move, denote it as $D_1 = \emptyset$. We propose the following strategy for Staller: Let $S_1 = v_1$, which forces D_2 to be u_1. Then the Staller starts to make line trap from v_3 to v_n, which forces Dominator to respond on u_2 until u_{m-1}. Then let Staller claim u_m, the Dominator cannot dominate v_m anymore. Hence Dominator cannot skip first move.

So now we consider all possibilities for D_1. And we will propose correspondingly the Staller strategy.

- **Case 1:** $D_1 = u_i$, $i \geq 2$. Let $S_1 = v_1$ which forces $D_1 = u_1$. Then if $i \neq 2$, let Staller make line trap from v_3 until v_i, which forces Dominator to claim from u_2 until u_{i-1}. Then let Staller claim v_{i+2}, on the right we obtain graph ρ_{m-i}. If $m-i = 1$, just let the Staller claim any remaining vertex on the rightmost of the graph; this trick for ρ_1 on the right we will apply more times later, we will not specifically mention. By induction hypothesis we know that Dominator cannot skip any move and he needs m moves to win.

- **Case 2:** $D_1 = v_i$, $i \geq 3$. Suppose $i > 5$. Let $S_1 = u_2$, which forces $D_2 = v_1$ or u_1. But no matter which choice D_1 take, Staller will claim v_3, u_3 in the next two rounds so that either Dominator cannot dominate v_4 or he cannot dominate u_4. Hence $i = 3$ or 4.

 Case 2.1: $i = 3$. Staller will then claim u_1 and u_3, which forces Dominator to respond on v_1 and u_2, then Staller will claim v_5, on the right we can use induction hypothesis.

 Case 2.2: $i = 4$. Let Staller claim u_2, then Dominator needs to claim u_1 or v_1. When $D_2 = u_1$, then let Staller claim v_3 which forces $D_3 = v_1$. then let $S_3 = u_4$, which forces $D_4 = u_3$. Then $S_4 = u_6$, we can use induction hypothesis for the graph on the right.

- **Case 3:** $D_1 = u_1$, let $S_1 = v_3$. In this case if $D_2 = \emptyset$, Staller can make a square trap with claiming u_2, v_2, u_3, v_3, then Dominator cannot win. So he cannot skip D_2. For the same reason, we know that $D_2 \in \{v_1, u_2, u_3, u_4, v_1\}$. However if $D_2 \in \{v_1, u_2\}$, then the Staller can make line traps by claiming v_4 until v_n, then at the last step claiming u_n, which makes Dominator lose the game. Hence $D_2 \in \{u_3, u_4, v_1\}$.

 Case 3.1: $D_2 = u_3$. Let $S_2 = u_2$, forcing $D_3 = v_1$. Then $S_3 = v_5$, we can use induction for the graph on the right.

 Case 3.2: $D_2 = u_4$. Let $S_2 = u_2$, forcing $D_3 = v_1$. Let $S_3 = v_4$, forcing $D_4 = u_3$. Then $S_4 = v_6$, we can use induction for the graph on the right.
Case 3.3: \(D_2 = v_4 \). Let \(S_2 = u_2 \), forcing \(D_3 = v_1 \). Let \(S_3 = u_4 \), forcing \(D_4 = u_3 \). Then \(S_4 = u_6 \), we can use induction for the graph on the right.

- Case 4: \(D_1 = v_1 \), let \(S_1 = u_3 \). In this case if \(D_2 = \emptyset \), Staller can make a claim \(u_2, v_2, u_3, v_3 \) in the next rounds, then Dominator cannot win. So he cannot skip \(D_2 \). For the same reason, we know that \(D_2 \in \{u_1, u_2, v_3, u_4, v_4\} \). However if \(D_2 \in \{u_1, u_2\} \), then the Staller can make triangle traps by claiming \(v_4 \) until \(v_n/u_n \) (depending on \(m \) is odd or even), then at the last step claiming \(u_m/v_m \), which makes Dominator lose the game. Hence \(D_2 \in \{v_3, u_4, v_4\} \).

Case 4.1: \(D_2 = v_3 \). Let \(S_2 = u_2 \), forcing \(D_3 = u_1 \). Then \(S_4 = u_5 \), we can use induction for the graph on the right.

Case 4.2: \(D_2 = u_4 \). Let \(S_2 = u_2 \), forcing \(D_3 = u_1 \). Let \(S_4 = v_4 \), forcing \(D_4 = v_3 \). Then \(S_4 = v_6 \), we can use induction for the graph on the right.

Case 4.3: \(D_2 = u_4 \). Let \(S_2 = u_2 \), forcing \(D_3 = u_1 \). Let \(S_3 = u_4 \), forcing \(D_4 = v_3 \). Then \(S_4 = u_6 \), we can use induction for the graph on the right.

Notice that in some case it may happen that the graph is not big enough for the strategy of Staller, but it is not hard to verify that in those cases we simply have a \(\rho_0 \) or \(\rho_1 \) on the right, still we can use induction hypothesis.

Hence notice that in all above cases Dominator in total needs \(m \) moves to win and cannot skip any move during the game. By induction, we conclude that for any \(m \geq 2 \), in the D-game on graph \(\rho_m \), Dominator needs at least \(m \) steps to win and he cannot skip any move in the game.

Remark 4.2. Note that the D-game on graph \(\rho_m \) can be considered as the S-game on \(X_m \) where \(S_1 = v_2 \).

Proposition 4.3. \(\gamma_{MB}(Y_m) = m - 1, m \geq 3 \).

Proof. Vertex \(v_2 \) is pre-claimed by Staller: we denote this by \(S_0 = v_2 \). The proof and case analysis can be done analogously with Proposition 4.1. \(\square \)

Proposition 4.4. \(\gamma'_{MB}(Z_m) = m - 1, m \geq 1 \).

Proof. It is not hard to check that \(\gamma'_{MB}(Z_m) = m - 1 \) holds for \(m = 1, 2, 3 \). Assume that \(\gamma'_{MB}(Z_k) \leq k - 1 \) for all \(3 \leq k < m \). When \(k = m \), we view graph \(Z_m \) as two parts — \(Z_{m-1} \) and \(u_m, v_m \) with the edge connecting them; of course the two parts are connected via two edges in \(Z_m \), namely \(\{u_{m-1}, u_m\} \) and \(\{v_{m-1}, v_m\} \) — but we do not consider them for now, since the extra edges will just make it easier for Dominator to win. We propose the following strategy for Dominator. If Staller play on the \(Z_{m-1} \) part of the graph, let Dominator respond on \(Z_{m-1} \) with his strategy on \(Z_{m-1} \); if Staller play on the other part, Dominator will use the pairing strategy, namely claim the other vertex in this part. In this way, by induction hypothesis, Dominator can win within \(\gamma'_{MB}(Z_{m-1}) + 1 \leq (m - 2) + 1 = m - 1 \) steps. Hence, \(\gamma'_{MB}(Z_m) \leq m - 1, m \geq 1 \).
For the other direction of the proof, we need to show that $\gamma'_{MB}(Z_m) \geq m - 1$, $m \geq 4$. We prove it by proposing a strategy for Staller. Let $S_1 = u_m$, then we have $D_1 \in \{u_{m-1}, v_{m-1}, v_m\}$; otherwise $S_2 = v_m$, then at least one of v_{m} and u_{m} can get isolated after S_3 (Staller’s third step) — after D_2 (Dominator’s second step) at least one of u_{m-1} and v_{m-1} will still be free, so Staller can choose this free vertex at her third step. Now we make case distinctions for this three choices of D_1.

1. $D_1 = v_{m-1}$. Let $S_2 = u_{m-1}$: this forces $D_2 = v_m$ (in order to dominate u_m). Let $S_3 = v_{m-3}$. The remaining MBD graph in this game is an “upside-down” Y_{m-2} with with vertex set $V(Y_{m-2}) = \{u_1, u_2, \ldots, u_{m-2}, v_1, v_2, \ldots, v_{m-2}\}$. It is Dominator’s turn now. Therefore he needs $\gamma_{MB}(Y_{m-2}) = m - 3$ (by Proposition 4.3) more moves to win. So he needs in total $m - 1$ steps to win in this case.

2. $D_1 = u_{m-1}$. Let $S_2 = v_{m-1}$: this forces $D_2 = v_m$ (in order to dominate v_m). Let $S_3 = v_{m-3}$. The remaining part of this case is the same as the last case. Dominator needs in total $m - 1$ steps to win.

3. $D_1 = v_m$. Let $S_2 = u_{m-2}$: the remaining MBD graph in this game is an “upside-down” Y_{m-1}. Dominator needs $\gamma_{MB}(Y_{m-1}) = m - 2$ many moves to win on this part and he needs in total $(m - 2) + 1 = m - 1$ many moves to win in this case.

Hence, Staller has a strategy such that Dominator needs at least $m - 1$ steps in order to win in an S-game on the MBD graph Z_m. We obtain that $\gamma'_{MB}(Z_m) \geq m - 1$, $m \geq 4$. □

Proposition 4.5. $\gamma'_{MB}(W_m) = m$ when $1 \leq m \leq 3$ and $\gamma'_{MB}(W_m) = m - 1$ when $m \geq 4$.

Proof. One can check that $\gamma'_{MB}(W_4) = m$, $1 \leq m \leq 3$. Let $m \geq 4$. Since W_m has one more undominated vertex than Z_m (namely v_1), Dominator needs to play at least as many moves on W_m as on Z_m. Therefore we have $\gamma'_{MB}(W_m) \geq \gamma'_{MB}(Z_m) = m - 1$, which shows the lower bound. For the upper bound, we start our consideration from $m = 4$. When $m = 4$, we propose strategies for Dominator accordingly to the steps of Staller.

- **Case 1:** $S_1 = v_2$. Let $D_1 = u_3$.
 - If $S_2 = v_1$, then let $D_2 = v_3$. Dominator only needs one step to dominate v_1 before his winning; so as to do this, he only needs to claim v_0 or u_1 in the next move. So he needs in total 3 moves to win.
 - If $S_2 \neq v_1$, then let $D_2 = v_1$. Then Dominator just needs one more step to dominate v_4. In total he needs 3 steps to win.

- **Case 2:** $S_1 \neq v_2$.
 - If $S_1 = u_4$ (or v_4). Let $D_1 = u_3$. If $S_2 = v_3$, then let $D_2 = v_4$ (or u_4) and let $D_3 \in \{v_1, v_2\}$. If $S_2 = v_4$ (or u_4), let $D_2 = v_3$ and $D_3 \in \{v_1, v_2\}$. So Dominator needs in total 3 steps to win.
 - If $S_1 \notin \{u_4, v_4\}$. Let $D_1 = v_2$. Dominator needs at most two more moves to dominate the remaining vertices.
There are three cases:

1. If $k = m$, consider the graph as two parts (plus edges connecting the two parts): one is the K_2 on the rightmost, the other is the MBD subgraph X_{m-1} on the left. Let Dominator adopt the strategy for X_{m-1} on the left subgraph whenever Staller plays on that subgraph and let him claim the remaining vertex among u_m and v_m. By induction hypothesis, Dominator needs no more than $(m - 2) + 1 = m - 1$ moves to win. Hence $\gamma'_{MB}(W_m) \leq m - 1$. \[\square \]

The following result is the essence for proving Theorem 1.4. The case analyses in the proof can be lengthy. We provide a strategy tree (see Figure 4) showing the idea of the case studies, which, although not covering all cases, but can at least express the idea behind. We leave it as an exercise for readers, to complete the whole strategy tree taking into consideration of all cases.

Theorem 4.6. $\gamma_{MB}(X_1) = 1$, $\gamma_{MB}(X_m) = m - 1$ when $2 \leq m \leq 5$ and $\gamma_{MB}(X_m) = m - 2$ for $m \geq 6$.

Proof. For $m \in \{1, 2, 3\}$ the situation is not hard to directly see. For $m = 4$ and $m = 5$ simple cases analysis gives the result. Let $m \geq 6$. First, we consider the D-game on X_6. Let $D_1 = v_2$, then we see an MBD subgraph W_4 on the rightmost which already contains all the undominated vertices. By Proposition 4.5 we know that $\gamma'_{MB}(W_4) = 3$. Hence, $\gamma_{MB}(X_6) = 4$.

Suppose that $\gamma_{MB}(X_k) \leq k - 2$ for $k < m$. When $k = m$, consider the graph as two parts (plus edges connecting the two parts): one is the K_2 on the rightmost, the other is the MBD subgraph X_{m-1} on the left. Let Dominator adopt the strategy for X_{m-1} on the left subgraph whenever Staller plays on that subgraph and let him claim the remaining vertex among u_m and v_m when Staller claims one of them. In this way, by induction hypothesis we know that Dominator needs at most $(m - 3) + 1 = m - 2$ steps to win. Hence $\gamma_{MB}(X_m) \leq m - 2$ for $m \geq 6$.

We prove the lower bound by induction and proposing strategies for Staller. Suppose that $\gamma_{MB}(X_k) \geq k - 2$ for $4 \leq k < m$, $m \geq 6$. Now consider the case when $k = m$, $m \geq 6$. We want to show that $\gamma_{MB}(X_m) \geq m - 2$, $m \geq 6$. According to the first step of Dominator, there are three cases: $D_1 \in \{u_1, v_1, u_2, v_2\}$, $D_1 = u_i \ (i \geq 3)$, or $D_1 = v_i \ (i \geq 3)$.

Case 1: $D_1 \in \{u_1, v_1, u_2, v_2\}$.

If $D_1 \in \{u_1, v_1\}$, then we see that the remaining game is the S-game on the MBD subgraph W_{m-1}. By Proposition 4.5, $\gamma'_{MB}(W_m) = m - 1$ when $m \geq 4$. Hence Dominator needs $m - 2$ more steps to win; he needs in total $m - 1$ steps to win.

If $D_1 = v_2$, then we see that on the right is an MBD subgraph W_{m-2}. By Proposition 4.5, Dominator needs in total $(m - 3) + 1 = m - 2$ moves to win.

If $D_1 = u_2$, then on the left is the MBD subgraph W_{m-2}, while on the right Dominator needs at most one more step, so as to dominate v_1. Hence Dominator needs at least $(m - 3) + 1 = m - 2$ steps to win.
Figure 4: This is a strategy tree showing the strategies for Staller under the situation when $D_1 = u_i (i \geq 3)$, $D_2 = u_j (j \geq 1)$. At the end of each branch, we explain at least how many steps Dominator would need in order to win the game. We see that in all these ten cases, Dominator needs at least $m - 2$ steps to win the game.
• **Case 2:** \(D_1 = u_i, i \geq 3 \). Let \(S_1 = v_2 \), then according to the second move of Dominator, we carry out case distinctions.

\[(2.1)\] \(D_2 = u_1 \). Then we further consider two subcases: \(i = 3 \) or \(i \geq 4 \).

\[(2.1.1)\] If \(D_1 = u_3 \), then we see that the remaining game is the S-game on the MBD subgraph \(W_{m-3} \) on the left of \(X_m \); where on the right Dominator needs at most one more step, so as to dominate \(v_2 \). Hence he needs in total at least \((m-4) + 2 = m-2 \) steps to win.

\[(2.1.2)\] If \(D_1 = u_i, i \geq 4 \), we let \(S_2 = v_3 \). We need to further distinct cases according to the choice of \(D_3 \).

\[(2.1.2.1)\] \(D_3 \in \{v_1, u_2\} \). Let Staller take the strategy of creating a sequence of line traps \(u_3 - u_{i-1} \) which ends with \(S_{i-1} = v_i \) and forces \(D_i = u_{i-1} \). Then, if \(m - i \geq 2 \), let \(S_i = v_{i+2} \). We see that the rightmost is the MBD graph \(\rho_{m-i} \). Dominator wins after the D-game on the rightmost \(\rho_{m-i} \). By Proposition 4.1, \(\gamma_{MB}(\rho_{m-i}) = m - i \). Hence Dominator needs in total \(m \) moves to win. If \(m-i = 1 \), then let \(S_i \in \{u_m, v_m\} \), Dominator needs only one more step to win. If \(m-i = 0 \), the game finished already. In either case, Dominator wins with \(m \) steps.

\[(2.1.2.2)\] \(D_3 = u_j, j \geq 3 \) or \(D_3 = v_j, j \geq 4 \). Suppose that \(\min\{i, j\} \notin \{3, 4\} \). Let \(S_3 = u_2 \), which forces \(D_4 = v_1 \). Then let \(S_4 = u_3 \), Dominator cannot dominate both \(u_4 \) and \(v_4 \), hence he cannot win. Therefore, \(\min\{i, j\} \in \{3, 4\} \).

\[(2.1.2.2.a)\] When \(D_3 = u_j \), where \(j \geq 3 \) and \(j < i \), we know that \(j \in \{3, 4\} \). When \(j = 3 \), we have \(D_3 = u_3 \). Recall that \(D_1 = u_i, i \geq 4, S_1 = v_2, D_2 = u_1, S_2 = v_3, D_3 = u_3 \). Now let \(S_3 = u_2 \), which forces \(D_4 = v_1 \). We see on the rightmost the MBD graph \(X_{m-3} \), but, with \(u_i \) being claimed by Dominator already. Now it is Staller’s turn. By induction hypothesis, we know that Dominator needs at least \(\gamma_{MB}(X_{m-3}) - 1 \geq m - 6 \) more steps to win the game. In total, he needs \((m - 6) + 4 = m - 2 \) steps.

\[(2.1.2.2.b)\] When \(j = 4 \), we have \(D_3 = u_4 \). Let \(S_3 = u_2 \), which forces \(D_4 = v_1 \). Then let \(S_4 = v_4 \), which forces \(D_5 = u_3 \). Similarly as in the last case, the remaining graph is the MBD graph \(X_{m-4} \) on the right, but with \(u_i \) being claimed by Dominator already. Now it is Staller’s turn. By induction hypothesis, we know that Dominator needs at least \(\gamma_{MB}(X_{m-4}) - 1 \geq m - 7 \) more steps to win the game. In total, he needs \((m - 7) + 5 = m - 2 \) steps.
(2.1.2.2.c) When $D_3 = u_j$, where $j > i$, we know that $i \in \{3, 4\}$. Since $i \geq 4$, we know that $D_1 = u_i = u_4$. Let Staller take the same strategy as in the last case, we get that Dominator needs at least $m - 2$ steps to win.

(2.1.2.2.d) When $D_3 = v_j$, where $j < i$, since $S_2 = v_3$, we know that $j = 4$, i.e., $D_3 = v_4$. Let $S_3 = u_2$, which forces $D_4 = v_1$. Then let $S_4 = u_4$, which forces $D_5 = u_3$. The remaining graph on the right is the MBD graph X_{m-4}, but with u_i claimed by Dominator already, and now it is Staller’s turn. By induction hypothesis, we know that Dominator needs at least $\gamma_{MB}(X_{m-4}) - 1 \geq m - 7$ more steps to win the game. In total, he needs $(m - 7) + 5 = m - 2$ steps.

(2.1.2.2.e) When $D_3 = v_j$, where $j = i$, since $S_2 = v_3$, we know that $j = i = 4$, that is, $D_1 = u_4$ and $D_3 = v_4$. Let $S_3 = v_2$, which forces $D_4 = v_1$. The remaining graph on the right is the MBD graph Z_{m-4}, and now it is Staller’s turn. By Proposition 4.4, Dominator needs in $\gamma_{MB}(Z_{m-4}) = m - 5$ more steps to win. In total, he needs $(m - 5) + 4 = m - 1$ steps to win.

(2.1.2.2.f) When $D_3 = v_j$, where $j > i$, then $i \in \{3, 4\}$, that is, $D_1 \in \{u_3, u_4\}$. The analyses are analogous to items (a) and (b). Dominator needs in total at least $m - 2$ steps to win.

(2.2) $D_2 = u_2$. Recall that we are currently under the case where $D_1 = u_i$, $i \geq 3$, $S_1 = v_2$. Let $S_2 = u_1$, which forces $D_3 = v_1$. The remaining graph is the MBD graph X_{m-2} on the right, but with u_i claimed already by Dominator, and now it is Staller’s turn. By induction hypothesis, Dominator needs at least $m - 5$ more steps to win. In total, he needs at least $(m - 5) + 3 = m - 2$ steps to win.

(2.3) $D_2 = u_j$, where $j \geq 3$. Recall that we are currently under the case where $D_1 = u_i$, $i \geq 3$, $S_1 = v_2$. Now let $S_2 = v_1$, which forces $D_3 = u_1$. Let $l := \min\{i, j\}$ and $h := \max\{i, j\}$. Let Staller create a sequence of line traps $u_2 - u_{l-1}$. The remaining graph is the MBD graph X_{m-l} on the right, but with u_h claimed already by Dominator, and now it is Staller’s turn. By induction, Dominator needs at least $m - l - 2$ more steps to win. In total, he needs at least $(m - l - 2) + l = m - 2$ steps to win.

(2.4) $D_2 = v_1$.

17
(2.4.1) \(D_1 = u_3 \). Recall that \(S_1 = v_2 \), \(D_2 = v_1 \). The remaining graph is the MBD graph \(W_{m-3} \) on the right, and now it is Staller’s turn. By Proposition 4.5, we know that Dominator needs \(\gamma'_{MB}(W_{m-3}) \geq m - 4 \) more steps to win. In total, he needs at least \((m - 4) + 2 = m - 2\) steps to win.

(2.4.2) \(D_1 = u_i \), where \(i \geq 4 \). Let \(S_2 = u_3 \). We need to further distinct cases according to the choice of \(D_3 \).

(2.4.2.1) \(D_3 \in \{u_1, u_2\} \).

(2.4.2.1.a) When \(i \) is even, let Staller create a sequence of triangle traps \(v_3 - v_{i-1} \), which ends with \(S_{i-1} = v_i \), \(D_i = v_{i-1} \). Then, let \(S_i = v_{i+2} \) if \(m - i \geq 2 \). The remaining graph is the MBD graph \(\rho_{m-i} \) and now it is Dominator’s turn. By Proposition 4.1, we know that Dominator needs \(\gamma_{MB}(\rho_{m-i}) = m - i \) more steps to win. In total, he needs \((m - i) + i = m\) steps to win.

(2.4.2.1.b) When \(i \) is odd, let Staller create a sequence of triangle traps \(v_3 - v_{i-2} \), which ends with \(S_{i-2} = v_{i-1} \), \(D_{i-1} = v_{i-2} \). The remaining graph is the MBD graph \(\rho_{m-i} \) on the right and now it is Staller’s turn. By Proposition 4.5, Dominator needs at least \(\gamma'_{MB}(\rho_{m-i}) \geq m - i - 1 \) more steps to win. In total, he needs at least \((m - i - 1) + i - 1 = m - 2\) steps to win.

(2.4.2.2) \(D_3 = u_j \), \(j \geq 4 \) or \(D_3 = v_j \), \(j \geq 3 \). A similar reasoning as in case (2.1.2.2) shows that \(\min\{i, j\} \in \{3, 4\} \) must hold.

(2.4.2.2.a) When \(D_3 = u_j \), where \(j < i \); since \(S_2 = u_3 \), we know that \(j = 4 \), that is, \(D_3 = u_4 \). Let \(S_3 = u_2 \), which forces \(D_4 = u_1 \); then let \(S_4 = v_4 \), which forces \(D_5 = v_3 \). The remaining graph is the MBD graph \(X_{m-4} \), but with \(u_j \) already claimed by Dominator, and now it is Staller’s turn. By induction hypothesis, Dominator needs at least \(m - 6 - 1 = m - 7 \) more steps to win. In total, he needs \((m - 7) + 5 = m - 2\) steps to win.

(2.4.2.2.b) When \(D_3 = u_j \), where \(j > i \); since \(S_2 = u_3 \), we know that \(i = 4 \), i.e., \(D_1 = u_4 \). With the same strategy as in item (a), we obtain that Dominator needs at least \(m - 2 \) steps to win.

(2.4.2.2.c) When \(D_3 = v_j \), where \(j > i \); since \(S_2 = u_3 \), we know that \(i = 4 \), i.e., \(D_1 = u_4 \). With the same strategy as in item (a), we obtain that Dominator needs at least \(m - 2 \) steps to win.
(2.4.2.2.d) When \(D_3 = v_j \), where \(j = i \); since \(S_2 = u_3 \), we know that \(i = j = 4 \), i.e., \(D_1 = u_4 \), \(D_3 = v_4 \). Let \(S_3 = u_2 \), which forces \(D_4 = u_1 \). The remaining graph is the MBD graph \(Z_{m-4} \) on the right and it is Staller’s turn. By Proposition \[4.4\] Dominator needs at least \(\gamma'_{MB}(Z_{m-4}) = m - 5 \) more steps to win.

(2.4.2.2.e) When \(D_3 = v_j \), where \(j < i \), then \(j \in \{3, 4\} \). When \(j = 3 \), \(D_3 = v_3 \). Let \(S_3 = u_2 \), which forces \(D_4 = u_1 \). Consider the remaining graph as the MBD graph \(X_{m-3} \), but with \(u_i \) already claimed by Dominator, and now it is Staller’s turn. By induction hypothesis, Dominator needs at least \(k - 6 \) more steps to win. In total, he needs at least \(k - 2 \) steps to win. When \(j = 4 \), \(D_3 = v_4 \). Let \(S_3 = u_2 \), which forces \(D_4 = u_1 \). Then let \(S_4 = u_4 \), which forces \(D_5 = v_3 \). We get the MBD graph \(X_{m-4} \) with \(u_i \) already claimed by Dominator on the right. By induction hypothesis, Dominator needs at least \(k - 7 \) steps to win. In total, he needs at least \(k - 2 \) steps to win.

(2.5) \(D_2 = v_j \), where \(j > i \).

Recall that we are currently under the case where \(D_1 = u_i \), \(i \geq 3 \), \(S_1 = v_2 \). Let \(S_2 = v_1 \), which forces \(D_3 = u_1 \). Then let Staller create a sequence of line traps \(u_2 - u_{i-1} \). Then the remaining graph is the MBD graph \(X_{m-i} \) on the right, but with \(v_j \) already claimed by Dominator, and now it is Staller’s turn. By induction hypothesis, Dominator needs at least \(m - i - 3 \) more steps to win. In total, he needs \((m - i - 3) + i + 1 = m - 2 \) steps to win.

(2.6) \(D_2 = v_j \), where \(j = i \geq 3 \).

Recall that \(D_1 = u_i \), \(i \geq 3 \), \(S_1 = v_2 \), \(D_2 = v_i \). Let \(S_2 = v_1 \), which forces \(D_3 = u_1 \). Then let Staller create a sequence of line traps \(u_2 - u_{i-2} \). If \(i = m \), then Dominator already won in \(m \) steps; otherwise, the remaining graph is the MBD graph \(Z_{m-i} \) on the right. By Proposition \[4.4\] Dominator needs \(\gamma'_{MB}(Z_{m-i}) = m - i - 1 \) more steps to win. In total, he needs \((m - i - 1) + i = m - 1 \) steps to win. In either case, he needs more than \(m - 2 \) steps to win.

(2.7) \(D_2 = v_j \), where \(i > j \geq 2 \) and \(j \) is even.

Recall that \(D_1 = u_i \), \(i \geq 3 \), \(S_1 = v_2 \), so actually \(j \geq 4 \). Let \(S_2 = u_2 \), then we claim that \(D_3 \in \{u_1, v_1\} \). Suppose not. After \(D_3 \) either \(v_3 \) or \(u_3 \) should be free. If \(v_3 \) is free after \(D_3 \), let \(S_3 = v_1 \) and \(S_4 \in \{u_1, v_3\} \). We see that Dominator cannot dominate both \(u_1 \) and \(v_2 \), hence he cannot win. If \(v_3 \) is free after \(D_3 \), let \(S_3 = u_1 \) and \(S_4 \in \{v_1, u_3\} \). We see that Dominator cannot dominate both \(v_1 \) and \(u_2 \), hence he cannot win.
\((2.7.\text{a})\) \(D_3 = u_1\). Recall that \(D_1 = u_i, i \geq 3, S_1 = v_2, D_2 = v_j, i > j \geq 4\) is even, \(S_2 = u_2\). Let \(S_3 = v_3\), which forces \(D_4 = v_1\). Then let Staller create a sequence of triangle traps \(u_3 - u_{j-1}\). The remaining graph is the MBD graph \(X_{m-j}\) on the right, but with \(u_i\) claimed already by Dominator, and now it is Staller’s turn. By induction hypothesis, Dominator needs at least \(m - j - 2\) more steps to win. In total, he needs \((m - j - 2) + j = m - 2\) steps to win.

\((2.7.\text{b})\) \(D_3 = v_1\). Recall that \(D_1 = u_i, i \geq 3, S_1 = v_2, D_2 = v_j, i > j \geq 4\) is even, \(S_2 = u_2\). Let \(S_3 = v_3\), which forces \(D_4 = u_1\). Actually \(j = 4\) must hold, otherwise in the next move Staller can either isolate \(u_4\) or \(v_4\). Let \(S_4 = u_4\), which forces \(D_5 = v_3\). The remaining graph is the MBD graph \(X_{m-4}\) on the right, but with \(u_i\) already claimed by Dominator, and now it is Staller’s turn. By induction hypothesis, Dominator needs at least \(m - 7\) more steps to win. In total, he needs at least \((m - 7) + 5 = m - 2\) steps to win.

\((2.8)\) \(D_2 = v_j\), where \(i > j \geq 2\) and \(j\) is odd. Let \(S_2 = u_1\), which forces \(D_3 = v_1\). Then let Staller create a sequence of triangle traps \(u_2 - u_{j-1}\). The remaining graph is the MBD graph \(X_{m-j}\) on the right, but with \(u_i\) already claimed by Dominator, and now it is Staller’s turn. By induction hypothesis, Dominator needs at least \(m - j - 3\) more steps to win. In total, he needs at least \((m - j - 3) + j + 1 = m - 2\) steps to win.

• **Case 3:** \(D_1 = v_i, i \geq 3\). Let \(S_1 = v_2\), then according to the second move of Dominator, we carry out case distinctions.

\((3.1)\) \(D_2 = u_1\).

\((3.1.1)\) If \(i = 3\), i.e., \(D_1 = v_3\), then the remaining graph is the MBD graph \(W_{m-3}\) on the right, and it is Staller’s turn now. By Proposition \([4,5]\) Dominator needs at least \((m - 3) - 1 = m - 4\) more steps to win. In total, he needs \((m - 4) + 2 = m - 2\) steps to win.

\((3.1.2)\) If \(i \geq 3\), let \(S_2 = v_3\). We carry out case distinctions according to the third move of Dominator in the sequel.

\((3.1.2.1)\) \(D_3 = v_1\). If \(i = 4\), i.e., \(D_1 = v_4\), on the right we see the MBD graph \(W_{m-4}\), and it is Staller’s turn now. Dominator needs at least \((m - 4) - 1 = m - 5\) more steps to dominate those undominated vertices in this graph \(W_{m-4}\). Hence he needs in total at least \((m - 5) + 3 = m - 2\) steps to win. Otherwise, if \(i > 4\), let \(S_3 = v_4\) starting a sequence of line traps \(u_3 - u_{i-2}\). The remaining graph is the
MBD graph W_{m-i} on the right, and it is Staller’s turn now. By Proposition 4.5, Dominator needs at least $(m - i) - 1$ more steps to win. In total, he needs at least $(m - i - 1) + (i - 1) = m - 2$ steps to win.

(3.1.2.2) $D_3 = v_j, \ j \geq 4$ or $D_3 = u_j, \ j \geq 3$. A similar reasoning as in case (2.1.2.2) shows that $\min\{i, j\} \in \{3, 4\}$ must hold.

(3.1.2.2.1) $D_3 = v_j, \ j \geq 4$. Denote by $l := \min\{i, j\}, \ h := \max\{i, j\}$, then we know that $l = 4$ since v_3 is claimed by the second move of Staller. Let $S_3 = u_2$, which forces $D_4 = v_1$. Then let $S_4 = u_4$, which forces $D_5 = u_3$ by making a triangle trap. The remaining graph is the MBD graph X_{m-4} on the right, but with u_h claimed by Dominator, and it is Staller’s turn now. By induction hypothesis, Dominator needs at least $(m - 4) - 2 = m - 6$ more steps to win. In total, he needs at least $(m - 6) + 4 = m - 2$ steps to win.

(3.1.2.2.2) $D_3 = u_j, \ j > i$. Since v_3 is already claimed, we know that $i = 4$, that is, $D_1 = v_4$. The reasoning for this case is analogous to the last case (case (3.1.2.2.1)).

(3.1.2.2.3) $D_3 = u_j, \ j = i$. Since v_3 is already claimed, we know that $i = j = 4$. The MBD graph on the right is Z_{m-4}, and it is Staller’s turn now. By Proposition 4.4 Dominator needs at least $(m - 4) - 1 = m - 5$ more steps to dominate those undominated vertices in Z_{m-4}, and he needs one more step to dominate v_2. Hence he needs at least $(m - 5) + 4 = m - 1$ steps to win.

(3.1.2.2.4) $D_3 = u_j, \ j < i$, hence $j \in \{3, 4\}$.

(3.1.2.2.4.a) If $j = 3$, i.e., $D_3 = u_3$. Let $S_3 = v_1$, which forces $D_4 = u_2$ by making a line trap. The remaining graph on the right is X_{m-3}, but with v_i claimed by Dominator already, and it is Staller’s turn now. By induction hypothesis, Dominator needs at least $(m - 3) - 2 = m - 5$ more steps to win. In total, he needs at least $(m - 5) + 3 = m - 2$ steps to win.

(3.1.2.2.4.b) If $j = 4$, i.e., $D_3 = u_4$. Let $S_3 = u_2$, which forces $D_4 = v_1$. Then let $S_4 = v_4$, which forces $D_5 = u_3$ by making a line trap. The remaining graph on the right is X_{m-4}, but with v_i claimed by Dominator already, and it is Staller’s turn now. By induction hypothesis, Dominator needs at least $(m - 4) - 2 = m - 6$ more steps to win. In total, he needs at least $(m - 6) + 4 = m - 2$ steps to win.
(3.2) $D_2 = v_1$. Let $S_2 = u_3$, we carry out case distinctions according to the third move of Dominator in the sequel.

(3.2.1) $D_3 \in \{u_1, u_2\}$.

(3.2.1.1) i is even. Let Staller create a sequence of triangle traps $v_3 - u_{i-2}$. The remaining graph is the MBD graph W_{m-i} on the right, and it is Staller’s turn now. By Proposition 4.5, Dominator needs at least $(m - i - 1)$ more steps to win. In total, he needs at least $(m - i - 1) + (i - 1) = m - 2$ steps to win.

(3.2.1.2) i is odd. Let Staller create a sequence of triangle traps $v_3 - u_{i-1}$, which ends with $S_{i-1} = u_i, D_i = u_{i-1}$. Let $S_i = u_{i+2}$, which creates the MBD graph ρ_{m-i} on the right, and it is Dominator’s turn now. By Proposition 4.1, $\gamma_{MB}(\rho_{m-i}) = m - i$, hence Dominator needs at least $m - i$ steps to win. In total, he needs at least $(m - i) + i = m$ moves to win.

(3.2.2) $D_3 = u_j, j \geq 4$. A similar reasoning as in case (2.1.2.2) shows that $\min\{i,j\} \in \{3,4\}$ must hold.

(3.2.2.a) $j < i$. Since u_3 is claimed, $j = 4$, i.e., $D_3 = u_4$. The analysis is analogous to case (2.4.2.2.a).

(3.2.2.b) $j = i$. Since u_3 is claimed, $i = j = 4$, that is, $D_1 = v_4$, $D_3 = u_4$. Let $S_3 = u_2$, which forces $D_4 = u_1$. Then the remaining graph is the MBD graph Z_{m-4} on the right, and it is Staller’s turn now. By Proposition 4.3, Dominator needs at least $(m - 4) - 1 = m - 5$ more steps to win. In total, he needs at least $(m - 5) + 4 = m - 1$ steps to win.

(3.2.2.c) $j > i$, hence $i \in \{3,4\}$. If $i = 3$, that is, $D_1 = v_3$, then let $S_3 = u_2$, which forces $D_4 = u_1$. We get the MBD graph X_{m-3} on the right, but with v_j claimed already, and it is Staller’s turn now. By induction hypothesis, Dominator needs at least $(m - 3) - 3 = m - 6$ more steps to win. In total, he needs at least $(m - 6) + 4 = m - 2$ steps to win. If $i = 4$, that is, $D_1 = v_4$. Let $S_3 = u_2$, which forces $D_4 = u_1$. Then let $S_4 = u_4$, which forces $D_5 = v_2$ by creating a line trap. Then consider the MBD graph X_{m-4} on the right. Again, Dominator needs in total at least $m - 2$ steps to win.

(3.2.3) $D_3 = v_j, j \geq 3$. A similar reasoning as in case (2.1.2.2) shows that $\min\{i,j\} \in \{3,4\}$ must hold.
(3.2.3.a) \(j < i \). The reasoning is analogous to cases (3.2.2.c).

(3.2.3.b) \(j > i \). The reasoning is analogous to cases (3.2.2.c).

(3.3) \(D_2 = u_j \), where \(j \geq 2, j > i \) and \(i \) is even. Let \(S_2 = u_2 \), the remaining reasoning is analogous to case (2.7).

(3.4) \(D_2 = u_j \), where \(j \geq 2, j > i \) and \(i \) is odd. Let \(S_2 = u_1 \), the remaining reasoning is analogous to case (2.8).

(3.5) \(D_2 = u_j \), where \(j = i \geq 2 \). Let \(S_2 = v_1 \), the remaining reasoning is analogous to case (2.6).

(3.6) \(D_2 = u_j \), where \(2 \leq j < i \). Let \(S_2 = v_1 \), the remaining reasoning is analogous to case (2.5).

(3.7) \(D_2 = v_j, j \geq 2 \), such that \(\min\{i, j\} \) is odd. Let \(S_2 = u_1 \), the remaining reasoning is analogous to case (2.8).

(3.8) \(D_2 = v_j, j \geq 2 \), such that \(\min\{i, j\} \) is even. Let \(S_2 = u_2 \), the remaining reasoning is analogous to case (2.7).

Since we have gone through all cases, it turns out that Dominator anyway needs at least \(m - 2 \) steps to win the game. By induction, \(\gamma_{MB}(X_m) \geq m - 2 \), when \(m \geq 6 \). So to sum up, \(\gamma_{MB}(X_m) = m - 2 \) for \(m \geq 6 \).

\[\square \]

4.3 Domination number of \(P_2 \boxtimes P_n \)

Proof of Theorem 4.3 To prove the upper bound \(\gamma'_{MB}(P_2 \boxtimes P_n) \leq n \), let Dominator adopt the pairing strategy: whenever Staller claims \(u_i \) (\(v_i \)), let Dominator claim \(v_i \) (\(u_i \)) in the next round. It is not hard to see that Dominator will win within \(n \) moves.

To prove the lower bound \(\gamma_{MB}(P_2 \boxtimes P_n) \geq n \), we propose the following strategy for Staller. Let Staller claim \(v_2 \) as her first move if \(n \geq 2 \), let Staller claim \(u_1 \) when \(n = 1 \). The remaining game is harder for Dominator than the D-game on \(\rho_n \), since \(\rho_n \) has one less undominated vertex than \(P_2 \boxtimes P_n \) with \(v_2 \) claimed by Staller. By Proposition 4.1, we know that Dominator needs at least \(n \) more steps to win, and he cannot skip any moves. When \(n = 1 \), it is easy to see that he also cannot skip any moves. Hence \(\gamma_{MB}(\rho_n) \geq n \), and Dominator cannot skip any moves, otherwise he cannot win.

\[\square \]
Next, we would like to address a concrete example of $P_2 \Box P_n$, namely when $n = 13$. Before which, we need two more auxiliary results.

Claim 4.7. Consider the S-game on the MBD graph W_4. Let Dominator skip his first move, namely $D_1 = \emptyset$. In addition, assume that $S_1 \notin \{v_3, v_4, v_5, v_6\}$. Then Dominator can win within 4 moves.

Proof. The proof can be done by case distinctions, we do not go into details here. \qed

Claim 4.8. Consider the S-game on the MBD graph W_6. Let Dominator skip his first move, namely $D_1 = \emptyset$. In addition, assume that $S_1 = v_2$. Then Dominator can win within 6 moves.

Proof. The proof can be done by case distinctions, we do not go into details here. \qed

Now we can prove the following result about $P_2 \Box P_{13}$.

Theorem 4.9. $\gamma_{MB}(P_2 \Box P_{13}) = 11$.

Proof. Since $P_2 \Box P_{13}$ has one more undominated vertex than X_{13}, $\gamma_{MB}(P_2 \Box P_{13}) \geq X_{13}$. By Theorem 4.6, $\gamma_{MB}(X_{13}) = 11$. Hence $\gamma_{MB}(P_2 \Box P_{13}) \geq 11$. Denote by $L = (V_L, E_L)$ the subgraph of $P_2 \Box P_{13}$ induced by vertex set $\{u_1, v_1, u_2, v_2, \ldots, u_6, v_6\}$, and by $R = (V_R, E_R)$ the subgraph of $P_2 \Box P_{13}$ induced by vertex set $\{u_7, v_7, u_8, v_8, \ldots, u_{13}, v_{13}\}$. For the upper bound, we propose strategy for Dominator.

Let $D_1 = v_7$. It suffices to consider Staller’s response on $V_L \cup \{u_7\}$, by the symmetric property of $P_2 \Box P_{13}$. We carry out case distinctions according to the choice of S_1 as follows:

- **Case 1:** $S_1 = u_7$. In this case, we see an MBD graph X_6 on both subgraphs L and R. Let Dominator carry out the next move on the right MBD graph X_6. Then, whenever Staller claims some vertex on R, let Dominator adopt his strategy on the right MBD graph X_6; whenever Staller claims some vertex on L, let Dominator respond on the left MBD graph X_6, using the pairing strategy. By Theorem 4.6, Dominator needs 4 steps to dominate all vertices on the right. He needs 6 steps to dominate all vertices on the left. In total, he can win within $6 + 1 + 4 = 11$ steps.

- **Case 2:** $S_1 = u_5$, then let $D_2 = u_9$. Then let Dominator respond on L if Staller claims any vertex of L, and let him respond on R if Staller claims any vertex of R. On the right is the MBD graph W_4, while on the left it is the situation described in Claim 4.8. By Proposition 4.5, Dominator needs $\gamma'_MB(W_4) = 3$ steps to dominate all vertices of R. Claim 4.8 tells us that Dominator needs within 6 steps to dominate all vertices of L. Hence, he needs in total within $6 + 3 + 2 = 11$ steps to win the game.

- **Case 3:** $S_1 \in \{u_3, v_3, u_4, v_4, u_5, v_5, u_6, v_6\}$, then let $D_2 = u_5$. Then we have the MBD graph W_6 on the right. Let Dominator respond on $V_R \cup \{u_7\}$ whenever Staller claims any vertex in $V_R \cup \{u_7\}$, and let him respond on V_L otherwise. If $S_1 \in \{u_6, v_6\}$, on the left would be W_4. In this case, Dominator needs at most $\gamma'_MB(W_4) + \gamma_{MB}(W_6) + 2 = 3 + 11 + 2 = 16$ steps.
3 + 5 + 2 = 10 steps to win. Otherwise, \(S_1 \in \{u_3, v_3, u_4, v_4, v_5\} \), then the graph on the left fulfills the description in Claim 4.7 where he needs within 4 steps to win. In total, he needs at most 4 + 5 + 2 = 11 steps to win.

- **Case 4:** \(S_1 \in \{u_2, v_2\} \), then let \(D_2 = u_3 \). Then let Dominator respond on \(V_R \cup \{u_7\} \) whenever Staller claims any vertex of this set. Let Dominator adopt the pairing strategy on the left, where the pairing sets of vertices are \(\{u_1, v_1\}, \{v_4, v_5\}, \{u_5, u_6\} \). In addition, he needs at most one more step to dominate \(v_2 \). By Proposition 4.5 \(\gamma_{MB}(W_6) = 5 \), hence Dominator needs in total at most 3 + 1 + 5 + 2 = 11 steps to win the game.

- **Case 5:** \(S_1 \in \{u_1, v_1\} \), then let \(D_2 = v_2 \). Let Dominator adopt strategy for the S-game on \(W_6 \) on the right, and the pairing strategy with pairing sets \(\{u_3, u_4\}, \{v_4, v_5\}, \{u_5, u_6\} \). In addition, he needs at most one more step to dominate \(u_1 \). In total he needs within 3 + 1 + 5 + 2 = 11 steps to win the game.

To sum up, \(\gamma_{MB}(P_2 \square P_{13}) \leq 11 \). Combine with the lower bound, we obtain that \(\gamma_{MB}(P_2 \square P_{13}) = 11 \).

Proof of item 3 of Theorem 1.2 By Theorem 4.9 \(\gamma_{MB}(P_2 \square P_{13}) = 11 \). When \(n > 13 \), consider the graph as the two subgraphs \(A := P_2 \square P_{13} \) and \(B \cong P_2 \square P_{n-13} \) connected by edges \(\{u_{13}, u_{14}\}, \{v_{13}, v_{14}\} \), up to isomorphism. Let Dominator respond on \(A \) whenever Staller claims a vertex of \(A \), and let Dominator respond on \(B \) with the pairing strategy whenever Staller claims a vertex of \(B \). In this way, we see that he needs within \(11 + (n - 13) = n - 2 \) steps in total, in order to win. Therefore, \(\gamma_{MB}(P_2 \square P_{13}) \leq n - 2, n \geq 13 \).

For the lower bound, \(\gamma_{MB}(P_2 \square P_{13}) \geq \gamma_{MB}(X_n) \) since \(P_2 \square P_{13} \) has one more undominated vertex than the MBD graph \(X_n \). By Theorem 4.6 \(\gamma_{MB}(X_n) \geq n - 2, n \geq 6 \). Hence \(\gamma_{MB}(P_2 \square P_{13}) \geq \gamma_{MB}(X_n) \geq n - 2, n \geq 13 \). To conclude, \(\gamma_{MB}(P_2 \square P_{13}) = n - 2, n \geq 13 \).

4.4 Union of grids

In this subsection, we prove the two results on the disjoint union of \(P_2 \square P_n \)s, using Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.6 By the pairing strategy where the pairing sets are \(\{u_i, v_i\} \)s in each copy, Dominator can win within \(k \cdot n \) steps. However, by Theorem 1.3 we know that no matter Staller claim a vertex in which copy, Dominator has to respond on the same copy, otherwise he would lose the game. Hence he needs at least \(k \cdot \gamma_{MB}(P_2 \square P_n) = k \cdot n \) steps to win. So we get \(\gamma'_{MB}(\bigcup_{i=1}^{k} (P_2 \square P_n)) = k \cdot n, n \geq 1 \).

Proof of Theorem 1.7 The upper bound can be argued by letting Dominator adopt the pairing strategy. The lower bound can be argued by letting Staller start her move on any copy where no vertex is not claimed by Dominator and continue on it until Dominator has won on this copy. By Theorem 1.3 we know that Dominator cannot skip any move during
this process and needs \(n \) steps to dominate all vertices of this copy. Then, let Staller repeat this strategy on all the remaining copies except for the one where the first vertex that is claimed by Dominator belongs to. After this process, let Staller continue by responding on that remaining copy, then it should be considered as a D-game on \(P_3 \square P_n \), where by Theorem 1.4 Dominator needs \(n - 2 \) steps to win, when \(n \geq 13 \).

\[\square \]

5 Concluding remarks

We proved that Dominator needs exactly \(n \) moves to win in the \(S \)-game on \(P_2 \square P_n \) for every \(n \geq 1 \), while in the \(D \)-game he needs exactly \(n - 2 \) moves for \(n \geq 13 \). We showed that for \(k \) copies of \(P_2 \square P_n \), Dominator needs exactly \(k \cdot n \) steps to win in the \(S \)-game, and we gave upper and lower bounds for the steps Dominator needs in order to win in \(D \)-games. The exact result for general Cartesian \(P_m \square P_n \) does not seem easy, so it would be interesting to consider the situation for \(P_3 \square P_n \), as a starting point.

6 Acknowledgments

The research of the second author was funded by the Austrian Science Fund (FWF): W1214-N15, project DK9.

The authors would like to thank Professor Mirjana Mikalački for the helpful comments which contributed to the improvement of the paper. The second author thanks Professor Josef Schicho for the general scientific research guidance during this work. The second author thanks Dongsheng Wu (Tsinghua University) for several times inspiring discussion, especially on the Maker-Breaker game on graph \(P_2 \square P_{13} \).
References

[1] J. Beck, Combinatorial Games: Tic-Tac-Toe Theory, Encyclopedia of Mathematics and Its Applications 114, Cambridge University Press, (2008).

[2] B. Brešar, S. Klavžar and D. F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math., 24 (2010), pp. 979–991.

[3] D. Clemens, A. Ferber, M. Krivelevich, A. Liebenau, Fast strategies in Maker–Breaker games played on random boards, Combin. Probab. Comput. 21 (2012) 897–915.

[4] D. Clemens, A. Ferber, R. Glebov, D. Hefetz and A. Liebenau, Building spanning trees quickly in Maker–Breaker games, SIAM Journal on Discrete Mathematics, 29(3) (2015), pp. 1683–1705.

[5] E. Duchêne, V. Gledel, A. Parreau and G. Renault, Maker–Breaker domination game, Discrete Mathematics, 342(9) (2020).

[6] P. Erdős and J. L. Selfridge, On a combinatorial game, J. Combinatorial Theory Ser. A 14 (1973) pp. 298–301.

[7] V. Gledel, V. Iršič and S. Klavžar, Maker–Breaker domination number, Bulletin of the Malaysian Mathematical Sciences Society, 42(4) (2019), pp. 1773–1789.

[8] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, Fast winning strategies in Maker–Breaker games, Journal of Combinatorial Theory Series B 19 (2009), 39–47.

[9] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, Positional Games, Oberwolfach Seminars 44, Birkhäuser/Springer Basel, 2014.