Assessment of the use of FEM for computation of Electromagnetic Forces, Losses and Design of Transformers

Vibhuti¹, Genius Walia² and Deepika Bhalla³

Department of Electrical Engineering, Guru Kashi University, Talwandi Sabo, India
Department of Physics, Guru Kashi University, Talwandi Sabo, India
Department of Electrical Engineering, IKG Punjab Technical University, Jalandhar, India

E-mail: vibhutirehalia@gmail.com

Abstract. This paper reviews the published work on power transformers for assessment of the electrical, magnetic losses, and electromagnetic forces produced during normal and short circuit conditions. The different methods used are analytical method, integral equation method, boundary element method, and finite element method (FEM). The copper losses and eddy currents within the copper conductors/windings need to be assessed to estimate the heat generate and compute the efficiency. The knowledge of the eddy current losses in the core and stray losses in each component of the transformer can help in the design improvement. Earlier 2D FEM and now 3D FEM has been used to evaluate the electromagnetic flux under normal conditions, the effect of the in-rush phenomenon, assessment of mechanical strength of windings, insulation, computation of short circuit forces and need of the mechanical support components during fault conditions. This paper gives an overview of the work done on the computation of electromagnetic forces, losses, and design of transformers using FEM to assess the scope for further work.

Keywords: Electromagnetic forces, Finite element method, Losses, Short circuit current, Transformers

1. Introduction

In a power system for transmission and also for distribution, transformers are used for stepping up and stepping down the voltage. Transformers are important components that make large power systems possible. These are electrical devices that transform need-based voltage level and current value between two electrical circuits linked with a common magnetic circuit. They transform the power from one circuit to another by electromagnetic induction without a change in frequency and have no internal moving parts. The types of transformer are classified according to their purpose, rating, use, and construction. Proper design of the transformer is essential for the reliability of the power system where it is installed. It has three main parts: namely, the primary winding which produces magnetic flux, secondary winding that gives output power at a required voltage level and a magnetic core and alternating voltage is applied to the primary winding. In this process, the power transferred between the circuits remains constant and comparatively small losses occur. The transformer losses are the iron or core loss which comprise of hysteresis loss and eddy current loss, the copper loss or ohmic loss in the windings, along with these there are also present the stray loss and dielectric loss. Since the transformer works on the principle of electromagnetic induction, electromagnetic forces are present. These forces are of very small magnitude during normal operation but have tremendous magnitude during faults due to the magnitude of the current in the windings.

This paper assesses the different technical publications on transformers based on the parts and types of construction and losses. This review aims to recognize the use of 2D and 3D FEM for assessing the different types of transformers with different ratings, different types of windings, the losses in
component, within windings, transposition of winding conductors, electromagnetic forces and design of the transformer. Also, it is intended to assess the use of the FEM results for improvement of design by reduction of stray losses and thermal analysis for the effect of overheating: its analysis to decrease hot spot, core losses, the safety factor for of axial and radial forces. This paper intends to assess the scope of future work on transformer electromagnetic forces, losses, and design improvement using FEM.

2. Method of Transformer Performance Analysis

The methods that are used for transformer analysis transformer performance are FEM, the integral equation method (IEM) and the boundary element method (BEM). FEM has been used for the analysis of different types, various parts, analysis of electromagnetic forces, and thermal analysis of transformers [1-16]. The integral equations have been used to analyze stray losses and leak magnetic flux [4, 17], and the boundary element method has been used for the design of insulation [18]. The reactance model of the transformer can be developed using FEM [19].

The finite element method is a way of solving complex problems like structure analysis, heat-transfer, and electromagnetic field. Any physical problem can be expressed by the governing equation and boundary conditions in the same partial differential equation. The partial differential equation is difficult to solve, FEM converts the partial equations into the algebraic equation by raking approximation that is easy to solve. FEM convert the domain into number of finite element and then convert the partial differential equation into the algebraic equation and give result by taking into consideration of the algebraic equation. FEM subdivides the structure on which analysis is to be carried out into subdomains or small elements. The small elements are represented by a mesh. The mesh created for a section of a three-phase transformer for 3D and 2D analysis is shown in figure 1 (a) and (b) respectively.

Both 2D and 3D FEM simulation methods have been extensively used for the study of electromagnetic forces, losses, circulating currents, and design of transformers [1,2,4,6-10,17-26]. 2D FEM analysis [12-14,27,28] and 3D FEM analysis of transformers has been done [5,15,6,29-44]. Comparison of the 2D and 3D results has also been done [38,41,45] and both are found to give results that are close to those obtained by the conventional analytical method [44] and those found by experiments [59].

![2D Mesh](image1.png) ![3D Mesh](image2.png)

Figure 1. Mesh created by finite element method

3. Transformer Type and Rating

FEM has been used for the study of both single-phase transformer transformers [8, 34, 36, 44, 46] and three-phase transformers [40,48]. Power transformers [4, 30-32, 35, 48-50] and distribution transformer [51-53] have been analyzed using FEM. The ratings of power transformers considered in different publications are 10 MVA [27], 28.333 MVA [44], 38 MVA [46], 40 MVA [47], 50 MVA [55], 200 MVA [30], 240 MVA [48], 315 MVA [34] 360 MVA [56] and 420 MVA [32] and rating of distribution transformers are 630 kVA [54], 1000 kVA [16], 2000 kVA [57]. Most of the work on power and distribution transformer is for low frequency 50 Hz or 60 Hz [41, 54, 58], work has also been done on medium frequency transformer [42] and high frequency [1]. Analysis of the shell type [15] and core type [59] has also been carried out. Performance of dry type transformer [51], current transformer [24], isolating transformer [60] has been assessed using FEM. The FEM results give a good performance for both distribution and power transformers along with special purpose transformers.

4. Transformer Losses
4.1 Copper Loss

Ohmic resistance of the winding of the transformer produces copper losses. For the primary and secondary losses, the copper losses are I₁²R₁, I₂²R₂, where I₁ and I₂ are the currents in the primary and secondary winding and R₁ and R₂ are the resistance of the primary winding. Copper losses vary with the load of the transformer. Total copper losses in the transformer are the sum of the losses in the primary and secondary. Calculation and simulation of copper losses [41, 59] have been done as well.

4.2 Stray Loss

Analysis of stray losses [4, 6, 16, 22, 32, 33, 35, 37, 41, 42, 48, 57, 63, 64, 65]. Three-phase transformer [29], and single-phase transformer [44] losses have been assessed. Stray losses have been analyzed for power transformers [4, 33, 64] and distribution transformers [16, 44, 52, 57]. The stray loss occurred in metal structures and their values have been computed oil tank [18, 19, 31, 32, 34, 35, 64, 66] upper/bottom frame [6], tie-plate [6, 64], bushings [66], flanges [64]. For minimization of losses and accurate calculations relating to absolute values, the most effective position of clamps and crossbars are detected. [31] Transformer tank walls and fitting may be modeled accurately for the justification of skin effect [67]. The computation of stray losses using FEM can be used to improve the transformer efficiency by making changes in the design.

4.3 Eddy Current Loss

Eddy current losses caused by varying magnetic field inducing eddy currents in the lamination and thus generating heat. Eddy current generates resistive losses that transform energy into heat. The eddy current losses (Pₑ) are equal to KₑBₘ²t²fν. Where K is co-efficient of eddy current, Bₘ is a maximum value of density (wb/m²), t is the thickness of lamination (m), f is the supply frequency (hertz) and ν is the volume of magnetic material (m³). Eddy currents also occur within winding conductors as well as in other metallic parts where they create losses.

Different techniques like non-linear surface impedance methods [40], FEM [3, 13, 26, 38, 39] are used for computation of circulating currents. Circulating current is calculated by the inductance matrix [25]. Calculation of circulating current losses using the analytical formulation has constraints, there has been calculated using 2D FEM [13] and 3D FEM [39]. In transformer eddy current in clamping [39, 68] clamping frame [39] clamp plates [40] have been computed. Circulating current in a stranded conductor depends upon the relative location of strands throughout the winding [69]. Circulating current losses create proximity losses in the stator winding [43, 70]. Eddy currents in the coaxial winding have been calculated using FEM [58]. Core losses at different excitation frequencies have been found [68]. Eddy current losses have been investigated in power transformer [56], three-phase transformer [72]. These have been found for round conductors [26] and stranded winding [69]. FEM can compute these losses in the metallic parts and the windings as well. Eddy currents are also referred to as circulating currents in literature. Transformer losses are assessed as no-load and load loss [71]. A comprehensive analysis of the transformer losses is not available.

5. Transformer Windings

The transformer’s windings are generally of three types; namely layer type, disc type or spiral or helical type. Transformer helical winding single layer/I-type [73-75] and double-layer/U-type [5, 12, 75-77] U-type for low voltage winding [9, 79], high voltage [27, 42] and both low voltage and high voltage winding [11, 24, 73] have been analysed FEM. Analysis of asymmetric winding [78] stranded winding [69] has been carried out using FEM. To reduce proximity losses effectively transposition is done. Study of the effect of transposition [43] and transposition optimized design is done [13, 79]. Ideal transposition has been proposed [80], also transposition design has been done using a genetic algorithm [73, 79]. Analysis of disc type transformer windings is not available.

6. Analysis of Electromagnetic Forces, Field Distribution, and Design

6.1 Electromagnetic Forces
Leakage flux density (B) and current interact to produce electromagnetic forces of a very large magnitude. The leakage flux density is resolved by radial direction (Br) and axial direction (Ba). With the current density, the action of radial leakage flux results in axial forces (Fa) and the axial leakage flux density results in radial force (Fr). The forces and flux density in the HV winding of a transformer are shown in figure 2. To study the deformation action on transformer winding the values of axial forces and radial forces are used. In a power transformer, the analysis of electromagnetic field distribution is based on electromagnetic theory [81], the eddy current losses are obtained [23, 82], electromagnetic forces were investigated over the windings and inside the operating transformer using FEM [8, 42]. By the method of finite element analysis, the electromagnetic forces have been evaluated. The effect of tappings on transformer symmetry has been analyzed [82, 83]. The FEM successfully computes the electromagnetic forces in low-frequency devices.

6.2 Short Circuit Forces and Design

In the power lines, the different phase comes in contact with each other, then a large current flow in the circuit. The effect of impedance in the circuit may reduce the short circuit current as of the current rises in the circuit. Because of the short circuit current, equipment will overheat and the production of forces of the electrodynamic interaction may destroy the equipment. During the short circuit current, the transient phenomenon observed because of current undergoes a continuous change.

![Figure 2: Direction of radial and axial forces and flux density in HV winding of a Transformer](image)

In the transformer windings during the short circuit, a large magnitude of current flows. When a transformer is submitted to a short circuit condition the electromagnetic forces that arise in the transformer are exerted on the windings. Figure 3 shows the short circuit current and forces in the transformer winding. The short circuit current has a steady-state alternating component at fundamental the frequency and an exponentially decaying current. The force experienced by a winding is proportional to the square of the short circuit current. The force has four components, there are two alternating components and two unidirectional currents. One of alternating component is at the fundamental frequency, and the other at double the fundamental frequency, the double frequency component of current is of a constant but smaller value. The other two components of force are unidirectional; one is constant and the other is decreasing with time. With a fully offset current, the fundamental frequency component of force is dominant during the initial cycles.

FEM has been used to analyze electromagnetic forces [5, 8, 11, 27, 53, 54, 76, 80, 82-84]. 3D FEM analysis of electromagnetic forces in the transformer winding is compared with that done by numerical analysis. The calculated values of the axial and radial force of the transformer by 3D FEM are comparable with the numerical values [5].

![Figure 3: Short circuit current and forces](image)
50MVA one-phase transformer subjected to inflow (inrush) current was analyzed by FEM to investigate electromagnetic forces at the time of faults [8]. FEM has been used to analyze the short-circuit current in transformers [83-90]. Force calculated in power transformer along the HV and LV winding defined with the help of FEM and this approach helped in the designing process [11]. The asymmetrical form of excitation and the effect of some of the factors were calculated in 10MVA power transformer 2D model developed and short circuit forces over distinct transformer parts were computed [27]. In a distribution transformer effect of harmonics caused by non-linear load was analyzed. It was used to separate the no-load hysteresis loss and no-load eddy current loss. The two-frequency method was applied and it was observed that the core loss increases with an increase in applied voltage [53]. In a 360 MVA power transformer, the computation of 3D FEM was used for the evaluation of eddy current fields. In this case the tank wall with a magnetic shunt, aluminum screen was analyzed [75]. By using FEM, the design of the window of transformer and magnetically built vector potential was evaluated. The axial and radial FEM’s were evaluated on the coil of the transformer and the asymmetrical form of windings effect was analyzed [80]. To calculate the value of radial and axial force the FEM method is used [85]. FEA method used to calculate resolving the forces exerted on the coil of the single-phase shell-type distribution transformer [83]. During short circuit condition, Short circuit forces have been computed for a different type of transformers dry type transformer [9], 3-phase transformer [84] and transformer under load [86]. Calculation and comparison of Short circuit forces in power transformer has been undertaken and the forces are calculated by 3D FEM [2, 38]. The effect of inrash current on electromagnetic forces has also been assessed [55]. Voltage harmonics have been analyzed [53]. Performance analysis has been carried out for the dry type transformer [9]. The deformation of windings due to electromagnetic forces has been analyzed [9] winding asymmetries have also been analyses using FEM [5, 87]. Winding height has been optimized for the least stresses [53]. Transposing of the winding for design improvement has been undertaken [13, 40, 79, 80]. 3D FEM has been used to study shielding [6,33], and insulation design [40]. The short circuit forces produced during inter-turn faults have been evaluated [88]. Based on the forces the mechanical characters of the transformer have been analyzed [89]. Extensive work has been done regarding electromagnetic forces, winding design, evaluation of losses, however, the complete comprehensive analysis of a designed transformer is not available.

Assessment of use of FEM for computation of losses, and electromagnetic forces during short-circuit conditions in the publications referred to in this work are given in table 1.

Parameter assessed	Total number of Publications	Last publication Year	Number
Copper Loss	16	2017	4
Eddy Current loss	15	2016	1
Stray Loss	17	2017	2
Short circuit Forces	25	2019	4

The finite element method has gained popularity for the assessment of short circuit forces in transformers in the current year.

7. Conclusion

A review of published work for the analysis of the different loss and electromagnetic forces in transformers found that 2D and 3D FEM, integral equation method (IEM) and boundary element method (BEM) have been used. The results of 2D and 3D FEM have been found to match with analytical values. The 3D FEM for transformer performance under normal and fault conditions, for different types of transformers, ratings, and design has found extensive popularity in the recent past. FEM is a reliable method for analysis of losses, transposition, control, and elimination of hot-spot in the transformer. Much work has been done on power transformer short-circuit withstand capacity and losses that occur in different parts of transformers. Analysis of transposing of windings has been done. Helical windings have been analyzed. It is found that there is scope for analyzing forces, and losses in transformers having disc-type windings using FEM. There is no work available on the disc type
windings. The analysis of short circuit forces and losses due to the field created by disc type windings that find much use in power transformers.

References

[1] Ma Yu, Meng Peipei, Zhang Junming and Qian Z 2007 Detailed Losses Analysis of High-Frequency Planar Power Transformer. 7th International Conference on Power Electronics and Drive System IEEE. DOI: 10.1109/PEDS.2007.4487734

[2] Mousavi S, Shane M, Sidatan A, Nabizadeh F and Mirrimani S H 2018 Calculation of Power transformer Losses by Finite Element Method IEEE Electrical Power and Energy Conference. DOI: 10.1109/EPECH.2018.8598292.

[3] Sinha A and Kaur S 2016 Analysis of Short Circuit Electromagnetic Forces in Transformer with Asymmetrically Placed Winding Using Finite Element Method Conference on Energy and Controls with their Impact on Humanity. Ghaziabad, India. DOI: 10.1109/CIPECH.2016.7918746

[4] Ostrenko M V, Tarchtkin O L and Andriienko B Y 2010 Power Transformers and Reactors Stray Losses and Temperatures Calculation Using Coupled IEM and FEM Technique IEEE Region 8 SIBIRCON-2010, Irkutsk Listvyanka, Russia. DOI: 10.1109/SIBIRCON.2010.5555155.

[5] Lee J Y, Ahn H M, Oh J K and Hahn S C Hahn 2009 Finite Element Analysis of Short Circuit Electromagnetic Force in Power Transformer 2009 International Conference on Electrical Machines and Systems DOI: 10.1109/ICEMS.2009.5382899.

[6] Yan X, Yu X, Shen M, Bai B and Wang Y 2015 Calculation of Stray Losses in Power Transformer Structural Parts Using Finite Element Method Combined with Analytical Method. 18th International Conference on Electrical Machines and System (ICEMS), Oct 25-28, IEEE. DOI: 10.1109/ICEMS.2015.7385051.

[7] Dave Kishan V and Kanani S M 2016 Use of FEM for Reduction of Transformer Stray Loss International Journal of Science, Engineering and Technology Research (IJSETR) Vol.5 Issue 2 February 2016.

[8] Fonseca W, Lima D, Lima A, and Soeiro N S 2016 Analysis of Electromagnetic-Mechanical Stresses on the Winding of a Transformer Under Inrush Currents Conditions International Journal of Applied Electromagnetic and Mechanics, 50(4), 511-524.

[9] Ahn H M, Oh Y H, Kim J K, Song J S, and Hahn S C 2012 Experimental Verification and Finite Element Analysis of Short-Circuit Electromagnetic Force for Dry-Type Transformer IEEE Transactions on Magnetics, 48(2), 819-822,2012.

[10] Azevedo A C DE, Rezende I, Delaiba A C, De Oliveira, J C, Carvalho B C, and De S B H 2006 Investigation of Transformer Electromagnetic Forces Caused by External Faults Using FEM In 2006 IEEE/PES Transmission & Distribution Conference and Exposition:Latin America (pp.1-6).

[11] Allahbakhshi M, Abbaszadeh K and Akbari, A 2005 Effect of Asymmetrical Dimensions in Short Circuit Forces of Power Transformers In 2005 International Conference on Electrical Machines and Systems Vol. 3 pp.1746-1749.

[12] Yun-Qiu T, Jing-Qiu Q, and Zi-Hong X 1990 Numerical Calculation of Short Circuit Electromagnetic Forces on the Transformer Winding IEEE Transactions on Magnetics, 26(2),1039-1041, Vol.26,Issue: 2, March 1990.

[13] D A Koppikar, S V Kulkarni, G Ghosh and S M Ainapure 1998 Circulating-Current Losses in Transformer Winding IEE Proceedings - Science, Measurement and Technology Vol. 145, Issue 4, PP 136 –140.

[14] Ouyang Ziwei 2009 The Analysis and Comparison of Leakage Inductance in Different Winding Arrangements for Planar Transformer IEEE Xplore, PEDS2009.

[15] Park Byoung-Gun 2010 Magnetic-Field Analysis on WindingDisposition of Transformer for Distributed High-Speed Train Applications IEEE Transactions on Magnetics, Vol. 46 Issue. 6 June 2010.

[16] Atabak Najafi, Burak Dokmetas and Ires Iskender 2015 Estimation of Stray Loss and Leakage Flux in The Structural Component of 3 - Phase Distribution Transformer Under Unbalanced Voltage Based on Numerical Analysis IEEE International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO) 2015pp.1-5.

[17] Zhizhen Liu, XuguoW and Li Qigfu 2002 Modularized Program to Calculate Magnetic Leakage
Field and Stray Losses in a Power Transformer IEEE Aug 2002. ICEMS'2001, Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501)DOI:10.1109/ICEMS.2001.970656.

[18] Capuder K and Sith Z 2013 Analyzing Method Efficiency for Power Transformers Insulation Design IEEE, Eurocon 2013 DOI: 10.1109/EUROCOn.2013.6625183.

[19] Quan Y S, Shan J and Wei Li 2011 Research on the Deformation of Transformer Winding Based on the Analysis of Short Circuit Reactance 2011 IEEE Power Engineering and Automation DOI:10.1109/PEAM.2011.6134947.

[20] Kral M, Vik R and Grosiar Jan 2005 Eddy Current Losses of Winding of Transformer IEEE EUROCON November 22-224, 2005 DOI: 10.1109/EURCon.2005.1630232.

[21] Sinha A and Kaur S 2016 Analysis of Short Circuit Electromagnetic Forces in Transformer with Asymmetrically Placed Windings Using Finite Element Method Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity(CIPECH), DOI: 10.1109/CIPECH.2016.7918746.

[22] Yuan L, Jing-gang Y, Shan G and Hong-tao L 2016 Simulation Analysis on FDS of Power Transformer by FEM Approach IEEE International Conference on High Voltage Engineering and Application (ICHVE) DOI:10.1109/ICHVE.2016.7800805.

[23] Yan X, Yu X, Shen M and XieD 2015 Research on Calculating Eddy Current Losses in Power Transformer Tank Walls Using Finite Element Method Combined with Analytical Method IEEE Transactions on Magnetics, Vol.52Issue: 3 March 2016, DOI:10.1109/TMAG.2015.2494375.

[24] Kumbhar G B and Mahajan S 2017 The Effect of Distribution of a Primary Winding on the Short-Circuit Forces of a Current Transformer International Conference on Green Energy and Applications (ICGEA) PP.153-157.

[25] Xiaoosong Li, Huazhong, Qiaofu Chen, Jianbo Sun and Yu Zhang 2005 Analysis of Magnetic Field and Circulating Current for HTS Transformer IEEE Transactions on Applied Superconductivity Vol. 15 no: 3, pp.3808-3813.

[26] V Den Bossche, V C Valchev and S T Barudov 2006 Practical Wide Frequency Approach for Calculating Eddy Current Losses in Transformer Windings IEEE International Symposium on Industrial Electronics Vol.2 pp.1070-1074.

[27] Feyzi M R and Sabahi, M 2008 Finite Element Analyses of Short Circuit Forces in Power Transformers with Asymmetric Conditions IEEE International Symposium on Industrial Electronics, pp.576-581.

[28] Nan Xi and Sullivan Charles R 2003 An Improved Calculation of Proximity-Effect Loss in High-Frequency Winding of Round Conductors Power Electronics Specialist Conference, IEEE 34th Annualvol. 2 pp.853-860.

[29] Song Z, Wang Y, Mou S and Wu Z 2011 Tank Losses and Magnetic Shunts in a Three-Phase Power Transformer IEEE, Electrical Machines and Systems(ICEMS) International Conference on Electrical Machines and SystemsDOI:10.1109/ICEMS.2011.6074005.

[30] Moghaddami M, Sarwat A I and Leon F de 2016 Reduction of Stray Losses in Power Transformers Using Horizontal Magnetic Wall Shunts IEEE Transactions on Magnetics, Vol.53Issue: 2 DOI:10.1109/TMAG.2016.2611479.

[31] Krali L and Miljavec D 2010 Stray Losses in Power Transformer Tank Walls and Construction Parts XIX International Conference on Electrical Machines ICEM DOI:10.1109/ICELMACH.2010.5607891.

[32] Galavan J C O, Adame S Magdaleno, Escarela -Perez R, Ocan- Valdez R., Georgilakis P.S. and Loizos G. 2014 Reduction of Strap Losses in Flange –Bolt Regions of Large Power Transformer Tanks IEEE Transactions on Industrial Electronics Vol. 61 No. 8.

[33] Kelemen F, Strac L and Berberovic S 2008 Estimation of Stray Losses Outside of Winding in Power Transformers Using Three-Dimensional Static Magnetic Field Solution and Statistics IEEE International Conference on Electrical Machines Paper ID 860DOI: 10.1109/ICELMACH.2008.4800066.

[34] Dasara S, Mishra V P 2017 Shielding Measure of Power Transformer to Mitigate Stray Loss and Hot Spot Through Coupled 3D FEA IET High Volt. Vol.2Iss. 4 pp267-273.

[35] Song Z, Wang Y, Mou S, Wu Z, Zhu Y, Xiang B and C Zhou 2011 The edge Effects of Magnetic Shunts for a Transformer Tank International Conference on Electrical Machines and Systems DOI:
10.1109/ICEMDC.2011.6074006.

[36] Schmidt E, Hamberger P and Setilinger W 2003 Finite Element Calculation of Eddy Current Losses in the Tank Wall of Power Transformers IEEE IEMDC2003 DOI: 10.1109/IEMDC.2003.1210388.

[37] M-Adame S, Kefalas T D, Martinez S G and Rojas S P 2017 Electromagnetic Finite Element Analysis of Electrical Steels Combinations in Lamination Core Steps of Single-Phase Distribution Transformers IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2017) DOI: 10.1109/ROPEC.2017.8261585

[38] Den A V, Valchev V C and B S T 2006 Practical Wide Frequency Approach for Calculating Eddy Current Losses in Transformer Winding IEEE 2006, ISIE , Montreal, Quebec, Canada, DOI: 10.1109/ISIE.2006.295785

[39] Milagre M, Luz M V Ferreira da, Cangane G M, Komar A and Avelino P A 2012 3D Calculation and Modeling of Eddy Current Losses in a Large Power Transformer IEEE International Conference on Electrical Machines. DOI:10.1109/ICEIE.2012.6350200.

[40] Susnjic L, Haznadar Z and Valkovic Z 2006 Stray Losses Computation in Power Transformer 12th Biennial IEEE Conference on Electromagnetic Field Computation DOI: 10.1109/CEFC-06.2006.1633280.

[41] Vasilija Sarac 2017 FEM 2D AND 3D Design of Transformer for Core Losses Computation 2017 International Scientific Journal Industry 4.0 WEB ISSN 2534-997X; Print ISSN2543-8582.

[42] Huang P, Mao C, and Wang 2017 Analysis of Electromagnetic Force for Medium Frequency Transformer with Interleaved Windings IET Generation, Transmission & Distribution, 11(8), 2023-2030, 2017.

[43] Reddy Patel B, Jahns Thomas M and Bohn Theodore P 2009 Transposition Effects on Bundle Proximity Losses in High-Speed PM Machines IEEE Energy Conversion Congress and Exposition (ECCE) 2009 pp.1919-1926.

[44] Yan Xiuke, Yu Xiangdong, Shen Min, XieDexin, Bai Baodong, and Wang Yu 2015 Calculation of Stray Losses in Power Transformer Structural Parts Using Finite Element Method Combined with Analytical Method IEEE International Conference on Electrical Machines and Systems pp.320-324.

[45] Bhatt Neha S, Kaur Sarpreet and Tayal Nisha 2916 Causes and Effects of Over Fluxing in Transformers and Comparison of Various Techniques for its Detection International Conference on Advances in Emerging Technology (ICAET2016).

[46] Zhu Z, Xie D, Wang G, Zhang Y and Yan X 2012 Computation of 3 -D Magnetic Leakage Field and Stray Losses in Large Power Transformer IEEE Transaction on Magnetic vol. 48 DOI:10.1109/TMAG.2011.2177493.

[47] Wojtkun J and Brodka B 2018 The Influence of Core Geometry On-Load Losses of Medium Power Transformer2018 International Interdisciplinary Ph.D. Workshop (IIPhDW) DOI: 10.1109/IIPHDW.2018.8388339.

[48] Rizzo M, Savini A and Turowski J 2001 Dependence of Forces, Eddy Current and Stray Losses on Screening in Power Transformers Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501) DOI: 10.1109/ICEMS.2001.970639.

[49] Fan Junquand Han Song 2017 A study on Stray Loss Analysis Involving Fuel Tank and Clip Part in Power Transformer Using FLUX 3D IEEE 1st International Conference on Electrical Materials and Power Equipment DOI:10.1109/ICEMPE.2017.7982130.

[50] Wang H, Li Y, Zhang B, and Jing Y 2017 Research on Short-Circuit Force of Power Transformer Windings Considering Residual 20th International Conference on Electrical Machines and Systems (ICEMS-2017) pp.1-4.

[51] Gutten M, Janura R, and Brandt M 2016 Analysis of Short-Circuit Effects on Transformer State by Frequency Method Conference on Diagnostics in Electrical Engineering (Dagnostika) pp.1-4.

[52] Upadhyay G, Singh A, Seth S K, Jarial R K 2016 FEM Based No Load Loss Calculation of Triangular Wound Core Transformer IEEE Conference on power electronics DOI:10.1109/ICPEICES.2016.7853594

[53] Dao T., Phung B.T. and Blackburn T. 2015 Effects of Voltage Harmonics on Distribution Transformer IEEE conference on Power and Energy Engineering (APPEEC) pp.1-5.

[54] Bhalla Deepika, Kumar Raj Bansal and Gupta Hari Om 2019 Optimizing Relative Height of
Transformer Windings for Least Electromagnetic Forces *International Journal of Scientific Research*, 8(2) pp 1217-26 ISSN:23197064.

[55] Faiz J., Ebrahimi B. M., and Noori T. 2008 Three-and Two-Dimensional Finite-Element Computation of Inrush Current and Short-Circuit Electromagnetic Forces on Windings of a Three-Phase Core-Type Power Transformer *IEEE Transactions on Magnetics*, Vol.44, Issue: 5May 2008.

[56] Yongbin C., JunyouY. and HainianY., Renyuan T. 1994 Study on Eddy Current Losses and Shielding Measures in Large Power Transformer *IEEE Transactions on Magnetic* vol. 30 No. 5 September 1994.

[57] Galvan J. C. Olives, Littlewood Eduardo Campero, Avila J. L.H.,Perez R.E. and Adame S. M. 2012 Evaluation of Stray Losses in Throats of Distribution Transformers Using Finite Element Simulation *Andean international conference* DOI: 10.1109/Andescon.2012.12.

[58] Perez R.E. and Adame S. M. 2012 Evaluation of Stray Losses in Throats of Distribution Transformers Using Finite Element Simulation *Andean international conference* 2012 DOI: 10.1109/Andescon.2012.12.

[59] Hasan S, Taib S, Hardi S, R A Rahim A and Shukri A. 2013 Core Loss Characteristics Analysis of Power Transformer Under Different Frequencies Excitation *IEEE 7th International Power Engineering and Optimization Conference* DOI:10.1109/PEOCO.2013.6564622.

[60] Freitag Christian and Leibfried Thomas 2017 Mixed Core Design for Power Transformers to Reduce Core Losses DOI:10.1109/OPTIM.2017.7974963 IEEE.

[61] Ashbahani N, Daut I and Halim N.H. 2011 Measurement of Overall Power Loss for Different Three Phase 100KVA Transformer Core Material *IEEE International Power Engineering Optimization Conference* (PEOCO 2011) DOI:10.1109/PEOCO.2011.5970437.

[62] Valentic V, Grzinic S and Dobrec Dean 2017 Testing the Electrical Insulation System of Power Transformer Based on Measuring Factor of Dielectric Losses *IEEE EUROCON 2017* DOI: 10.1109/EUROCON.2017.8011146.

[63] Adame S Magdaleno, Galvan J C Olives and Maximov S 2014 Reduction of Stray Losses in Tertiary Voltage Bushings in Power Transformer tanks *IEEE 2014 Autumn Meeting on Power Electronics and Computing*, DOI:10.1109/ROPEC.2014.7036312.

[64] Kim Y jo, Lee Jong-Deok, Ahn H-Mo and Hahn S-chin 2013 Numerical Investigation for Stray Loss Analysis of Power Transformer *International Conference on Electrical Machines and System* Oct 26-29 DOI:10.1109/ICEEMS.2013.6754563.

[65] Constantin, Nicolae P M and Nitu C M 2013 3D Finite Element Analysis of a Three Phase Power Transformer *IEEE Eurocon 2013* DOI: 10.1109/EUROCON.2013.6625184.

[66] Ropoteanu, Svasta P and Lonescu C 2017 A Study of Losses in Planar Transformer with Different Layer Structure IEEE 23rd *International Symposium for Design and Technology in Electronic Packaging*(SITIME) DOI: 10.1109/SITIME.2017.8259904.

[67] Holland S A and Haydock L 1992 Calculating Stray Losses in Power Transformers Using Surface Impedance with Finite Elements *IEEE Transactions on Magnetic* vol.28 No.2 DOI: 10.1109/20.123943.

[68] Girgis R S and Tenijenhuis Ed G.1998 Experimental Investigation on Effect of Core Production Attributes on Transformer Core Loss Performance *IEEE Transaction on Power Delivery* Vol.13 No.2 DOI: 10.1109/PEOCO.2013.6564622.

[69] Kaul H J 1957 Stray-Current Losses in Stranded Windings of Transformers *Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems*, Vol. 76, no. 3pp. 137-146 1957.

[70] Robkopf Andreas, Bar Eberhard, and Joffe Christopher 2014 Influence of Inner Skin- and Proximity Effects on Conduction in Litz Wires *IEEE Transactions on Power Electronics* vol. 29 no. 10pp. 5454-5461.

[71] Merritt S Y and Chatkin S D 2002 Making Transformer Losses Part of the Purchasing Decision Conference Record of the 2002 *Annual Pulp and Paper Industry Technical* (Cat. No.02CH37352), DOI:10.1109/PAPCON.2002.1015149.

[72] Shishan W, JI Shengchang L and I Yamming 2013 The Study of Eddy Current Losses in Coaxially Insulated Windings of Power Transformer *IEEE 7th International Conference on Power Engineering and optimization (PEOCO).*
[73] Bakshi A and Kulkarni S V 2014 Analysis of Buckling Strength of Inner Windings in Transformers Under Radial Short-Circuit Forces IEEE Transactions on Power Delivery 29(1) 241-245 2014.
[74] Bhalla Deepika, Bansal Raj Kumar and Gupta Hari Om 2015 Analyzing Short Circuit Forces in Transformer with Single Layer Helical LV Winding using FEM IEEE International Conference on Recent Advances in Engineering and Computational Science 21th-22th December 2015.
[75] Strac L, Kelemen F, and Zarko D 2008 Analysis of Short Circuit Forces at the Top of Low Voltage U Type and I Type Winding in A Power Transformer Proceedings of 13th Conference on Power Electronics and Motion Control pp.855-858.
[76] Kojima H, Miyata H, Shida S and Okuyama K I 1980 Buckling Strength Analysis of Large Power Transformer Windings Subjected to Electromagnetic Force Under Short Circuit IEEE Transactions on Power Apparatus and Systems (3) 1288-1297 1980.
[77] Bhalla Deepika, Bansal Raj Kumar and Gupta Hari Om 2018 Analyzing Short Circuit Forces in Transformer for Double Layer Helical LV Winding using FEM International Journal of Performability Engineering March 2018 Vol. 14 No.3 pp.425-433.
[78] Jamali S, Ardebili M and Abbaszadeh K 2005, September Calculation of Short Circuit Reactance and Electromagnetic Forces in Three Phase Transformer by Finite Element Method 2005 International Conference on Electrical Machines and Systems Vol. 3 pp.1725-1730.
[79] Dexin Xie 2000 Circulating Current Computation and Transposition Design for Large Current Winding of Transformer with Multi-Section Strategy and Hybrid Optimal Method IEEE Transactions on Magnetics Vol. 36 Issue 4.
[80] Baodong B and Dexin X 1995 Optimal Transposition Design of Transformer Windings by Genetic Algorithms IEEE Transactions on Magnetics Vol. 31 Issue.3 pp. 352–357,1995.
[81] S Wiak, P Drzymala, H Welfle 3D Computer Field Model of Power Transformer Magnetic Field and Power Losses Computation IEEE International Conference on Electrical Machines, ICEM 2010, DOI:10.1109/ICEMACH 2010.5607939.
[82] Bakshe, A and Kulkarni S V 2014 Coupled Electromagnetic-Structural Analysis of the Spiraling Phenomenon in a Helical Winding of a Power Transformer IEEE Transactions on Power Delivery 29(1) 235-2402014.
[83] Salon S, La Mattian B and Sivasubramaniam K 2000 Comparison of Assumptions in Computation of Short Circuit Forces in Transformers IEEE Transaction on Magnetics vol. 36 no. 5 pp. 3521-3523.
[84] Li H, Li Y, Sun X, Li D and Jing Y 2009, September Analysis of Three-Phase Power Transformer Windings Forces Caused by Magnetic Inrush and Short-Circuit Currents International Conference on Applied Superconductivity and Electromagnetic Devices (pp. 233-236) IEEE.
[85] Bhalla D, Bansal R K and Gupta H O 2012 Analyzing FEM results of Electromagnetic Forces on Short Circuit in Power Distribution Transformer IEEE International Conference on Advances in Power Conversion and Energy Technologies04th.-06th.August2012.
[86] Hiraishi K, Hori Y and Shida S 1971 Mechanical Strength of Transformer Windings under Short-Circuits Conditions IEEE Transactions on Power Apparatus and System 5 2381-2390.
[87] Li Longnv, Liu Xiaoming, Zhu Gaojia, Chen Hai, and Gao Shengwei 2019 Research of Short-Circuit Performance of a Split-Winding Transformer with Stabilizing Windings IEEE Transactions on Applied Superconductivity, Vol.19, Issue 2.
[88] Qi Yuan, Bostanci Emine, Gurusamy Vigneshwaran and Akin Bilal 2018 A Comprehensive Analysis of Short Circuit Current Behavior in PMSM Inter Turn Short Circuit Faults IEEE Transaction on Power Electronics, Vol.33, Issue 12.
[89] W Shuang, W Shuhong, Z Naming, Y Dongsheng, and Qiu Hao 2019 Calculation and Analysis of Mechanical Characteristics of Transformer Windings under Short-Circuit Condition IEEE Transactions on Magnetics. Vol.55, Issue 7.
[90] Shi Y, Ji S, Zhang F, Ren F, Zhu Lingyu, and Lv Liang 2019 Multi-Frequency Acoustic Signal Under Short-Circuit Transient and Its Application on the Condition Monitoring of Transformer Winding, IEEE Tractions on Power Delivery, Vol.34, Issue 4.