Abstract

Let G be a finite group of odd order, F a finite field of odd characteristic p and B a finite–dimensional symplectic FG-module. We show that B is FG-hyperbolic, i.e., it contains a self–perpendicular FG-submodule, if it is FN-hyperbolic for every cyclic subgroup N of G.

1 Introduction

Let F be a finite field of odd characteristic p, G a finite group and B a finite–dimensional FG-module. If B carries a non-singular alternating bilinear form $<\cdot, \cdot>$ (i.e., a symplectic form) that is invariant by G, then we call B a symplectic FG-module. Following the notation in [3], for any FG-submodule S of B, we write S^\perp for the perpendicular subspace of S, i.e., $S^\perp := \{ t \in B | <S,t> = 0 \}$. We say that S is isotropic if $S \leq S^\perp$, and B is anisotropic if it contains no non–trivial isotropic FG-submodules. Furthermore, we say that B is hyperbolic if it contains some self–perpendicular FG-submodule S, i.e., S is an FG-submodule satisfying $S = S^\perp$.

Symplectic modules play an essential role in studying monomial characters. (An irreducible character χ of a finite group G is monomial if it is induced from a linear character of a subgroup of G.) One of the most representative links between symplectic modules and monomial characters can be found in [3]. (For other examples one could look at [2, 7, 8, 9, 10, 11, 12, and 13].) There E. C. Dade proved the following theorem (Theorem 3.2 in [3]):

Theorem 1.1 (Dade). Suppose that F is a finite field of odd characteristic p, that G is a finite p-solvable group, that H is a subgroup of p-power index in G, and that B is a symplectic FG-module whose restriction B_H to a symplectic FH-module is hyperbolic. Then B is hyperbolic.

Using the above theorem, E. C. Dade was able to prove (Theorem 0 in [3]) that, given a p-solvable odd group G, an irreducible monomial character χ of G, and a subnormal subgroup N of G, every irreducible constituent of the restricted character χ_N is monomial, provided that $\chi(1)$ is a power of p.

In this paper we prove

Theorem A. Suppose that F is a finite field of odd characteristic p, that G is a finite group of odd order, and that B is a symplectic FG-module whose restriction B_N to a symplectic FN-module is hyperbolic for every cyclic subgroup N of G. Then B is hyperbolic.

All groups considered here are of finite order, and all modules have finite dimension over F.

Acknowledgments I am indebted to Professor E. C. Dade for many helpful ideas and suggestions. Also, I would like to thank Professor M. Isaacs for useful conversations that helped me improve this paper.
2 Symplectic modules

We first give some elementary results about symplectic modules.

Assume that \(B \) is a symplectic \(FG \)-module, while \(S \) is an isotropic \(FG \)-submodule of \(B \). Then the factor \(FG \)-module \(\overline{S} = S^\perp/S \) is again a symplectic \(FG \)-module with the symplectic form defined as (see 1.4 in [3]),

\[
< s_1 + S, s_2 + S > = < s_1, s_2 >, \text{ for all } s_1, s_2 \in S^\perp.
\]

Furthermore, if \(S \) is an isotropic \(FG \)-submodule of \(B \), then its \(F \)-dimension \(\dim_F S \) is at most \((1/2) \dim_F B\) (see 19.3 in [1]).

We say that an isotropic \(FG \)-submodule \(S \) of \(B \) is maximal isotropic if it is not properly contained in any larger isotropic \(FG \)-submodule of \(B \). Clearly any self–perpendicular \(FG \)-submodule \(S \) of \(B \) is maximal isotropic. The converse is also correct under the extra assumption that \(B \) is \(G \)-hyperbolic (see Lemma 3.1 in [3]). Another way to get a self–perpendicular module from a maximal isotropic one is to control its dimension, as the following lemma shows.

Lemma 2.1. Assume that \(B \) is a symplectic \(FG \)-module, and that \(S \) is a maximal isotropic \(FG \)-submodule of \(B \). If \(\dim_F S = (1/2) \dim_F B \) then \(S \) is self–perpendicular and \(B \) is \(G \)-hyperbolic.

Proof. Let \(\hat{S} \) denote the dual of \(S \). Then \(B/S^\perp \cong \hat{S} \). But \(\dim_F \hat{S} = \dim_F S = (1/2) \dim_F B \). Hence \(\dim_F S^\perp = (1/2) \dim_F B \). Since \(S \leq S^\perp \) we conclude that \(S = S^\perp \). Thus the lemma holds. \(\square \)

The following is Proposition 2.1 in [3].

Proposition 2.2. Let \(G \) be a finite group and \(B \) be an anisotropic symplectic \(FG \)-module. Then \(B \) is an orthogonal direct sum:

\[
B = U_1 \perp U_2 \perp \ldots \perp U_k,
\]

where \(k \geq 0 \) and each \(U_i \) is a simple \(FG \)-submodule of \(B \) that is also symplectic.

Remark 1. If \(G \) has odd order then according to Proposition (1.10) and Corollary 2.10 in [3] all the \(U_i \) that appear in (2) are distinct.

Lemma 2.3. Let \(\mathcal{U} \) be an \(FG \)-module that affords a symplectic \(G \)-invariant form \(< \cdot, \cdot > \). Then \(\mathcal{U} \) is self–dual.

Proof. We write \(\hat{\mathcal{U}} \) for the dual \(FG \)-module of \(\mathcal{U} \). For every \(x \in \mathcal{U} \) the map \(\alpha_x : \mathcal{U} \to \mathcal{F} \) defined as:

\[
\alpha_x(u) = < u, x > \text{ for all } u \in \mathcal{U}
\]

is an element of \(\text{Hom}_F(\mathcal{U}, \mathcal{F}) \cong \hat{\mathcal{U}} \). Since \(< \cdot, \cdot > \) is \(G \)-invariant the map \(\alpha : x \to \alpha_x \) is an \(FG \)-homomorphism from \(\mathcal{U} \) to \(\hat{\mathcal{U}} \). Furthermore the kernel of \(\alpha \) is trivial, as \(\mathcal{U} \) is symplectic. Hence \(\mathcal{U} \cong \hat{\mathcal{U}} \). \(\square \)

Corollary 2.4. Let \(B \) be an anisotropic symplectic \(FG \)-module. Then each of the simple \(FG \)-modules \(U_i \) that appears in (2) is self–dual.

Proof. It follows easily from Proposition 2.2 and Lemma 2.3. \(\square \)

Proposition 2.5. Assume that \(\mathcal{U} \) is a simple symplectic \(FG \)-module. Let \(N \) be a normal subgroup of \(G \) such that \(|G : N| \) is odd. Then any simple \(FN \)-submodule of \(\mathcal{U} \) is self–dual. Hence any \(FN \)-submodule of \(\mathcal{U} \) is self–dual.
Proof. As N is a normal subgroup of G, Clifford’s theorem implies that

$$U_N \cong e(V_1 \oplus \ldots \oplus V_n)$$

where $V = V_1$ is a simple F^N-submodule of U and V_1, \ldots, V_n are the distinct G-conjugates of V. So $n|G:N|$ and therefore n is odd.

According to Lemma 2.3 the module U is self-dual. Hence the dual, \hat{V}_i of any V_i should appear in (3). Therefore we can form pairs among the V_i, consisting of a simple F^N-module V_k and its dual for $k \in \{1, \ldots, n\}$, where we take as the second part of the pair the module itself if it is self-dual. Since G acts transitively on the V_i for $i = 1, \ldots, n$, either all the V_i are self-dual or none of them is. In the latter case we get that any of the above pairs consists of two distinct modules. This implies that $2|n$. As n is odd, this case can never occur. Hence any one of the V_i is self-dual and the proposition is proved.

Proposition 2.6. Assume that the symplectic FG-module B is hyperbolic. Assume further that B is a semi-simple FG-module. Then every self-dual simple FG-submodule of B appears with even multiplicity in any decomposition of B as a direct sum of simple FG-submodules.

Proof. Because B is hyperbolic it contains a self-perpendicular FG-submodule S. For every FG-submodule V of B we have $B/V \cong \hat{V}$. So

$$B/S \cong \hat{S}$$

Now the proposition follows from (4) and the fact that B is semi-simple.

Corollary 2.7. Let B be an anisotropic symplectic FG-module. Let N be a normal subgroup of G such that $|G:N|$ is odd. Assume further that B_N is a hyperbolic FN-module. Then any simple FN-submodule of B_N appears with even multiplicity in any decomposition of B_N as a direct sum of simple FN-submodules.

Proof. This is a straightforward application of Propositions 2.2, 2.5 and 2.6.

We close this section with a well known fact that we prove here for completeness.

Lemma 2.8. Assume that U is a self-dual absolutely irreducible FG-module, where G has odd order and F is a finite field whose characteristic does not divide $|G|$. Then U is trivial.

Proof. Let χ denote the F-absolutely irreducible character that U affords, while ϕ denotes a Brauer character that U affords. Then ϕ is defined for every element of G, since the characteristic of F is coprime to $|G|$. Because U is self-dual, the character ϕ is real valued. Let $\nu_2(\phi) = |G|^{-1} \sum_{g \in G} \phi(g^2)$ be the Frobenius–Schur indicator (see Chapter 4 in [4]) of ϕ. Then Theorem 4.5 in [4] implies that $\nu_2(\phi) \neq 0$, since ϕ is real valued. But

$$\nu_2(\phi) = |G|^{-1} \sum_{g \in G} \phi(g^2) = |G|^{-1} \sum_{g \in G} \phi(g),$$

because G has odd order. Hence $\nu_2(\phi)$ is the inner product $\nu_2(\phi) = [\phi, 1_G]$, where 1_G is the trivial character of G. We conclude that $[\phi, 1_G] \neq 0$. Hence $\phi = 1_G$. Therefore $\chi = 1_G$, and the lemma follows.

3
3 Proof of Theorem A

We can now prove our main result. The proof will follow from a series of lemmas, based on the hypothesis that F, B, G form a minimal counter-example. All the groups considered in this section have odd order. We also fix the odd prime p that is the characteristic of F, and we assume that

Inductive Hypothesis. F, B, G have been chosen among all triplets satisfying the hypothesis but not the conclusion of Theorem A so as to minimize first the order $|G|$ of G and then the F–dimension $\dim_F B$ of B.

Remark 2. For any proper subgroup H of G the minimality of $|G|$ easily implies that the restriction B_H is a hyperbolic FH-module.

Lemma 3.1. B is non–zero and anisotropic.

Proof. If B were zero it would be hyperbolic contradicting the Inductive Hypothesis. So B is non–zero. If B is not anisotropic then it contains a non–zero isotropic FG–module U. Let N be an arbitrary cyclic subgroup of G. Then the isotropic FN-submodule U_N of BN is contained in some maximal isotropic FN–submodule V of BN. Since BN is hyperbolic this maximal isotropic submodule is self–perpendicular, i.e., $V = V^\perp$. Hence

$$U \subseteq V = V^\perp \subseteq U^\perp.$$

Therefore the factor module $\bar{V} = V/U$ is a self–perpendicular FN–submodule of the symplectic FG–module $\bar{U} = U^\perp/U$. Hence F, G, \bar{U} satisfy the hypothesis of the Main Theorem. As $\dim(\bar{U}) < \dim(B)$, the minimality of $\dim(B)$ implies that \bar{U} is a hyperbolic FG–module. So there is a self–perpendicular FG–submodule \bar{J} in \bar{U}. From the definition of the symplectic form on \bar{U} (see (1)) it follows that the inverse image \bar{J} of \bar{J} in U^\perp is a self–perpendicular FG–submodule of B containing U. Therefore B is hyperbolic, contradicting the Inductive Hypothesis. So the lemma holds. \square

Lemma 3.2. p doesn’t divide the order $|G|$ of G.

Proof. Suppose that p divides $|G|$. Because G is solvable, it contains a Hall p'-subgroup H. If G is a p-group we take $H = 1$. Since p divides $|G|$, the subgroup H is strictly smaller than G. Then according to Remark 2 the FH-module B_H is hyperbolic. It follows (see Theorem 3.2 of [3]) that B is a hyperbolic FG-module, contradicting the Inductive Hypothesis. Hence $(p,|G|) = 1$. \square

Lemma 3.3. B is an orthogonal direct sum

$$B = U_1 \perp \ldots \perp U_k$$

where $k \geq 1$ and $\{U_i\}_{i=1, \ldots, k}$ are distinct, simple FG–submodules of B, that are also symplectic. Furthermore each U_i is quasi–primitive (i.e., its restriction to every normal subgroup of G is homogeneous).

Proof. The first statement follows from Lemma 3.1 Proposition 2.2 and Remark 1. For the rest of the proof we fix $U = U_i$ for some $i = 1, \ldots, k$. We also fix a normal subgroup K of G. If the restriction of U to K is not homogeneous then Clifford’s Theorem implies that

$$U_K \cong e(V^{\sigma_1} \oplus \ldots \oplus V^{\sigma_r})$$

where e is the number of inequivalent irreducible representations of K. But this contradicts the minimality of $|G|$.
where \(e \) is some positive integer, \(\mathcal{V} = \mathcal{V}^{\sigma_1} \) is a simple \(\mathcal{F}K \)-submodule of \(\mathcal{U} \) and \(\mathcal{V}^{\sigma_1}, \ldots, \mathcal{V}^{\sigma_r} \) are the distinct conjugates of \(\mathcal{V} \) in \(G \), with \(\sigma_1, \ldots, \sigma_r \) coset representatives of the stabilizer, \(G_V \), of \(\mathcal{V} \) in \(G \).

Let \(\mathcal{W} = \mathcal{U}(\mathcal{V}) \) be the \(\mathcal{V} \)-primary component of \(\mathcal{U}_K \). Then Clifford’s Theorem implies that \(\mathcal{W} \) is the unique simple \(\mathcal{FG}_V \)-submodule of \(\mathcal{U} \) that lies above \(\mathcal{V} \) and induces \(\mathcal{U} \), i.e., that satisfies \(\mathcal{W}^G \cong \mathcal{U} \) and \(\mathcal{W}_K \cong e\mathcal{V} \). Furthermore the dual \(\hat{\mathcal{W}} \) of \(\mathcal{W} \) induces in \(G \) the dual \(\hat{\mathcal{U}} \) of \(\mathcal{U} \) since \(\hat{\mathcal{W}}^G \cong \hat{\mathcal{W}}^G \) and \(\hat{\mathcal{W}}_K \cong e\mathcal{V} \). Hence \(\hat{\mathcal{W}}^G \cong \hat{\mathcal{U}}^G \), because \(\hat{\mathcal{U}}^G \) is self–dual (see Lemma 2.3). On the other hand, the restriction of \(\hat{\mathcal{W}} \) to \(K \) is isomorphic to \(e\mathcal{V} \) since \(\mathcal{V} \) is self–dual by Proposition 2.4. Hence the unicity of \(\mathcal{W} \) implies that \(\hat{\mathcal{W}} \) is self–dual.

According to Proposition 2.3 the self–dual \(\mathcal{FG}_V \)-module \(\mathcal{W} \) appears with even multiplicity as a direct summand of \(\mathcal{B}_{\mathcal{G}_V} \), because \(\mathcal{B}_{\mathcal{G}_V} \) is hyperbolic (\(\mathcal{G}_V < G \)). This, along with the fact that \(\mathcal{W} \) appears with multiplicity one in \(\mathcal{U}_{\mathcal{G}_V} \), implies that there is some \(j \in \{1, \ldots, k\} \) with \(j \neq i \) such that the \(\mathcal{V} \)-primary component \(\mathcal{U}_j(\mathcal{V}) \) of \(\mathcal{U}_j \) is isomorphic to \(\mathcal{W} \). So

\[
\mathcal{W} = \mathcal{U}(\mathcal{V}) \cong \mathcal{U}_j(\mathcal{V}).
\]

We conclude that

\[
\mathcal{U}_i = \mathcal{U} \cong \mathcal{W}^G \cong \mathcal{U}_j(\mathcal{V})^G \cong \mathcal{U}_j,
\]

as \(\mathcal{FG} \)-modules. This contradicts the fact that \(\{\mathcal{U}_i\}_{i=1}^k \) are all distinct, by the first statement of the lemma. Hence the lemma is proved.

From now on and until the end of the paper, we write \(\mathcal{E} \) for a finite algebraic field extension of \(\mathcal{F} \), that is a splitting field of \(G \) and all its subgroups.

Lemma 3.4. Assume that \(\mathcal{U}_i \), for \(i = 1, \ldots, k \), is a direct summand of \(\mathcal{B} \) appearing in \(\mathcal{E} \). Let \(N \leq G \). Then \(\mathcal{U}_i|_N \cong e_i\mathcal{V}_i \), where \(\mathcal{V}_i \) is an irreducible \(\mathcal{FN} \)-submodule of \(\mathcal{U}_i \) and \(e_i \) is an integer. If \(\mathcal{V}_i \) is non-trivial then \(e_i \) is odd.

Proof. We fix \(\mathcal{U} = \mathcal{U}_i \), for some \(i = 1, \ldots, k \). We also fix a normal subgroup \(N \) of \(G \). According to Lemma 2.3 the \(\mathcal{FG} \)-module \(\mathcal{U} \) is quasi–primitive. Hence there exists an irreducible \(\mathcal{FN} \)-submodule \(\mathcal{V} \) of \(\mathcal{U} \), and an integer \(e \) such that \(\mathcal{U}_N \cong e\mathcal{V} \). Thus, it remains to show that \(e \) is odd in the case that \(\mathcal{V} \) is non-trivial. So we assume that \(\mathcal{V} \), and thus \(\mathcal{U} \), is non-trivial.

We observe that if \(\mathcal{U} \) and \(\mathcal{V} \) were absolutely irreducible modules then it would be immediate that \(e \) is odd (even if \(\mathcal{V} \) was trivial), because for absolutely irreducible modules the integer \(e \) divides the order of \(G \) (see Corollary 11.29 in [6]). So we assume that \(\mathcal{F} \) is not a splitting field of \(G \), and we work with the algebraic field extension \(\mathcal{E} \) of \(\mathcal{F} \). We define \(\mathcal{U}^\mathcal{E} \) to be the extended \(\mathcal{EG} \)-module

\[
\mathcal{U}^\mathcal{E} = \mathcal{U} \otimes_{\mathcal{F}} \mathcal{E}.
\]

According to Theorem 9.21 in [6], there exist absolutely irreducible \(\mathcal{EG} \)-modules \(\mathcal{U}_i^\mathcal{E} \), for \(i = 1, \ldots, n \), such that

\[
\mathcal{U}^\mathcal{E} \cong \bigoplus_{i=1}^n \mathcal{U}_i^\mathcal{E}.
\]

Furthermore the \(\mathcal{U}_i^\mathcal{E} \), for all \(i = 1, \ldots, n \), constitute a Galois conjugacy class over \(\mathcal{F} \), and thus they are all distinct. In particular, if \(\xi_{\mathcal{U}} \) is the subfield of \(\mathcal{E} \) that is generated by all the values of the irreducible \(\mathcal{E} \)-character afforded by \(\mathcal{U}_i^\mathcal{E} \) (the same field for all \(i = 1, \ldots, n \)), then \(n = [\mathcal{E}_{\mathcal{U}} : \mathcal{F}] = \dim_{\mathcal{F}}(\xi_{\mathcal{U}}) \). (Note that \(\xi_{\mathcal{U}} \) is the unique subfield of \(\mathcal{E} \) isomorphic to the center of the endomorphism algebra \(\text{End}_{\mathcal{FG}}(\mathcal{U}_i) \)). Clearly \(n \cdot \dim_{\mathcal{E}} \mathcal{U}_i^\mathcal{E} = \dim_{\mathcal{F}} \mathcal{U}_i \). Hence \(n \) is even, because \(\dim_{\mathcal{F}} \mathcal{U}_i \) is even (as \(\mathcal{U} \) is symplectic) and \(\dim_{\mathcal{E}} \mathcal{U}_i^\mathcal{E} \) is odd (as \(G \) is odd and \(\mathcal{U}_i^\mathcal{E} \) is an absolutely irreducible \(\mathcal{EG} \)-module). In addition, each \(\mathcal{EG} \)-module \(\mathcal{U}_i^\mathcal{E} \), for \(i = 1, \ldots, n \), when consider as an
\[\mathcal{F}_G \text{-module}, \text{is isomorphic to a direct sum of } [E : \mathcal{E}_U] \text{ copies of } \mathcal{U} \text{ (see Theorem 1.16 in Chapter 1 of [5]). Hence if we denote by } \mathcal{U}_\mathcal{F} \text{ the } \mathcal{E}_G \text{-module } \mathcal{U} \text{ regarded as an } \mathcal{F}_G \text{-module, we get} \]

\[\mathcal{U}_\mathcal{F} \cong [E : \mathcal{E}_U] \mathcal{U}, \tag{6} \]

for all \(i = 1, \ldots, n. \)

We also write \(\mathcal{V}^\mathcal{E} \) for the extended \(\mathcal{E}_N \text{-module } \mathcal{V}^\mathcal{E} = \mathcal{V} \otimes_{\mathcal{F}} \mathcal{E}. \) Then according to Theorem 9.21 in [6] there exist absolutely irreducible \(\mathcal{E}_N \text{-modules } \mathcal{V}^j \text{ for } j = 1, \ldots, d, \text{ such that} \]

\[\mathcal{V}^\mathcal{E} \cong \bigoplus_{j=1}^{d} \mathcal{V}^j. \tag{7} \]

In addition, the absolutely irreducible modules \(\mathcal{V}^j \), for all \(j = 1, \ldots, d \), form a Galois conjugacy class, and thus they are all distinct. Furthermore, \(d = [E : \mathcal{F}] = \dim_{\mathcal{F}} \mathcal{E}_V, \) where \(\mathcal{E}_V \) is the subfield of \(\mathcal{E} \) generated by all the values of the irreducible \(\mathcal{E} \text{-character afforded by } \mathcal{V} \) (the same field for all \(j = 1, \ldots, d \)). The field \(\mathcal{E}_V \) is the unique subfield of \(\mathcal{E} \) isomorphic to the center of the endomorphism algebra \(\text{End}_{\mathcal{F}N}(\mathcal{V}) \). Note that, according to Proposition 2.5, the \(\mathcal{F}_N \text{-submodule } \mathcal{V} \text{ of } \mathcal{U} \text{ is self–dual}. \) Hence \(\mathcal{V}^\mathcal{E} \) is also a self–dual \(\mathcal{E}_N \text{-module}. \) Because \(\mathcal{V} \text{ is non-trivial, } \mathcal{V}^j \text{ is also non-trivial, for all } j = 1, \ldots, d. \) Therefore the absolutely irreducible \(\mathcal{E}_N \text{-module } \mathcal{V}^j \text{ can’t be self–dual, because } N \text{ has odd order and } \mathcal{V}^j \text{ is non–trivial (see Lemma 2.8), for all such } j. \)

The fact that none of the \(\mathcal{V}^j \) is self–dual, for all \(j = 1, \ldots, d \), while they all appear in (7) in dual pairs, implies that \(d \) is even. Even more, if \(\mathcal{V}^j \) denotes the module \(\mathcal{V}^j \) regarded as an \(\mathcal{F}_N \text{-module}, \) then Theorem 1.16 of Chapter 1 in [5] implies that

\[\mathcal{V}^j \cong [E : \mathcal{E}_V] \mathcal{V}^j, \tag{8} \]

for all \(j = 1, \ldots, d. \)

Without loss we may assume that \(\mathcal{V}^1, \ldots, \mathcal{V}^c \) are exactly those among the \(\mathcal{V}^j \), for \(j = 1, \ldots, d, \) that lie under \(\mathcal{U}^1 \), for some \(c = 1, \ldots, d. \) Thus Clifford’s theorem implies that

\[\mathcal{U}^1 = e' (\mathcal{V}^1 \oplus \cdots \oplus \mathcal{V}^c), \tag{9} \]

where \(\mathcal{V}^1, \ldots, \mathcal{V}^c \) are the distinct \(G \text{-conjugates of } \mathcal{V}^1, \) and \(e', c \) are integers that divide \(|G| \) and thus are odd. (Note that here we are dealing with absolutely irreducible modules so \(e' \) does divide \(|G| \).) If we regard the modules of (8) as modules over the field \(\mathcal{F} \) then we can clearly have

\[\mathcal{U}^1|_{\mathcal{F}N} \cong e' (\mathcal{V}^1|_{\mathcal{F}N} \oplus \cdots \oplus \mathcal{V}^c|_{\mathcal{F}N}). \]

This, along with (8) and (6), implies

\[[E : \mathcal{E}_U]|_{\mathcal{F}N} \cong e' [E : \mathcal{E}_V] \mathcal{V}. \]

Since \(\mathcal{U}N \cong e \mathcal{V}, \) we have

\[[E : \mathcal{E}_U]e = e' [E : \mathcal{E}_V]. \tag{10} \]

If \(\mathcal{D} \) is the subfield of \(\mathcal{E} \) generated by \(\mathcal{E}_V \) and \(\mathcal{E}_U \), then dividing both sides of (10) by \([E : \mathcal{D}] \) we obtain

\[e [D : \mathcal{E}_U] = e' [D : \mathcal{E}_V]. \tag{11} \]

Assume that \(e \) is even. Then (11) implies that \([D : \mathcal{E}_V] \) is even, as \(e' \) and \(c \) are known to be odd. Let \(\Gamma \) be the Galois group \(\Gamma = \text{Gal}(\mathcal{D}/\mathcal{F}) \) of \(\mathcal{D} \) over \(\mathcal{F}. \) Because \(\Gamma \) is cyclic, it contains a unique involution \(\iota. \) Let \(\mathcal{E}_V^\mathcal{U} \) and \(\mathcal{E}_V^\mathcal{U} \) be the subgroups of \(\Gamma \) consisting of those elements of \(\Gamma \) that fix pointwise \(\mathcal{E}_V \) and \(\mathcal{E}_U, \) respectively. Then Galois theory implies that \(\mathcal{E}_V^\mathcal{U} = [\mathcal{E}_V^\mathcal{U} : 1] = [\mathcal{D} : \mathcal{E}_V] \) is even. We conclude that the unique involution \(\iota \) of \(\Gamma \) is an element of \(\mathcal{E}_V^\mathcal{U}. \) Therefore, \(\iota \) fixes the field \(\mathcal{E}_V \) pointwise. So \(\iota \) fixes, to within isomorphisms, each of the \(\mathcal{E}_N \text{-modules } \mathcal{V}^j. \) Because
Lemma 3.5. The group \mathcal{G} is not abelian.

Proof. Assume that \mathcal{G} is abelian. Then any cyclic subgroup $N = \langle \sigma \rangle$ of \mathcal{G} is normal, for every $\sigma \in \mathcal{G}$. Because B_N is hyperbolic, Lemmas 3.1 and 3.4 along with Corollary 2.7 imply that
\[B_N \cong 2 \cdot \Delta(N), \]
where $\Delta(N)$ is a semi–simple $\mathcal{F}N$-submodule of B. Using the splitting field \mathcal{E} of \mathcal{G}, we write $\mathcal{B}^\mathcal{E}$ for the extended $\mathcal{E}G$-module $\mathcal{B}^\mathcal{E} = B \otimes_\mathcal{F} \mathcal{E}$. Then
\[\mathcal{B}^\mathcal{E}_N \cong 2 \cdot \Delta^\mathcal{E}(N), \tag{12} \]
where $\Delta^\mathcal{E}(N)$ is the extended $\mathcal{E}N$-module $\Delta(N) \otimes_\mathcal{F} \mathcal{E}$. Let ϕ be a Brauer character that the $\mathcal{E}G$-module $\mathcal{B}^\mathcal{E}$ affords. Because $(p, |\mathcal{G}|) = 1$, ϕ is defined for every element of \mathcal{G}. So ϕ coincides with a complex character of \mathcal{G}. In view of (12), for every cyclic subgroup $N = \langle \sigma \rangle$ of \mathcal{G}, the restriction ϕ_N of ϕ to N equals $2 \cdot \delta(N)$, where $\delta(N)$ is a complex character of N. Hence, for every element $\sigma \in \mathcal{G}$, the integer 2 divides $\phi(\sigma)$ in the ring $\mathbb{Z}[\omega]$, where ω is a $|\mathcal{G}|$-primitive root of unity. We conclude that 2 also divides $\sum_{\sigma \in \mathcal{G}} \phi(\sigma) \cdot \lambda(\sigma^{-1})$, for any irreducible (linear) complex character λ of \mathcal{G}. That is, 2 divides $|\mathcal{G}| \langle \phi, \lambda \rangle$, for any $\lambda \in \text{Irr}(\mathcal{G})$. The fact that \mathcal{G} has odd order, implies that 2 divides $\langle \phi, \lambda \rangle$ in $\mathbb{Z}[\omega]$, for any $\lambda \in \text{Irr}(\mathcal{G})$. Because $\phi = \sum_{\lambda \in \text{Irr}(\mathcal{G})} \langle \phi, \lambda \rangle \cdot \lambda$, we get
\[\phi = 2 \cdot \chi, \tag{13} \]
where χ is a complex character of \mathcal{G}.

On the other hand, Lemma 3.3 implies that $\mathcal{B} = \mathcal{U}_1 \oplus \cdots \oplus \mathcal{U}_k$, where the \mathcal{U}_i are distinct simple $\mathcal{F}G$-modules, for $i = 1, \ldots, k$. Hence the extended $\mathcal{E}G$-module $\mathcal{B}^\mathcal{E}$ will also equal the direct sum of the distinct $\mathcal{E}G$-modules $\mathcal{U}_i^\mathcal{E}$, $\mathcal{U}_k^\mathcal{E}$. By Theorem 9.21 in [B], for each $i = 1, \ldots, k$, there exist absolutely irreducible $\mathcal{E}G$–modules $\mathcal{U}_i^\mathcal{E}$, for $j = 1, \ldots, n_i$ such that
\[\mathcal{U}_i^\mathcal{E} \cong \bigoplus_{j=1}^{n_i} \mathcal{U}_i^3. \]
Furthermore, the \mathcal{U}_i^3, for $j = 1, \ldots, n_i$, constitute a Galois conjugacy class over \mathcal{F}, and thus they are all distinct. In addition, the above absolutely irreducible $\mathcal{E}G$-modules \mathcal{U}_i^3, for all $i = 1, \ldots, k$ and all $j = 1, \ldots, n_i$, are distinct. Indeed, for all $i = 1, \ldots, k$, the corresponding simple $\mathcal{F}G$-modules \mathcal{U}_i are distinct. We conclude that
\[\mathcal{B}^\mathcal{E} \cong \bigoplus_{i=1}^{k} \bigoplus_{j=1}^{n_i} \mathcal{U}_i^3. \]
where \mathcal{U}_i^j are all distinct absolutely irreducible $\mathcal{E}G$-modules. So the character ϕ that $\mathcal{B}^\mathcal{E}$ affords equals

$$\phi = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \chi_i^j,$$

where, for all $i = 1, \ldots, k$ and all $j = 1, \ldots, n_i$, the character χ_i^j is a Brauer character that \mathcal{U}_i^j affords. So all these characters are distinct. This contradicts \([13]\). Hence the group G is not abelian, and the lemma is proved. □

Lemma 3.6. G acts faithfully on \mathcal{B}.

Proof. Suppose not. Let K denote the kernel of the action of G on \mathcal{B} and $\bar{G} = G/K$. Thus $\vert \bar{G} \vert \leq \vert G \vert$ (as $K \neq 1$).

If \bar{G} is not itself cyclic, then any cyclic subgroup \bar{N} of \bar{G} is the image $\bar{N} = N/G$ of some proper subgroup N of G. Since \mathcal{B} is $\mathcal{F}N$-hyperbolic, it is clearly $\mathcal{F}\bar{N}$-hyperbolic. Hence the triplet $\mathcal{F}, \mathcal{B}, G$ satisfies the hypothesis of the Main Theorem. The minimality of $\vert G \vert$ implies that \mathcal{B} is a hyperbolic $\mathcal{F}G$-module, and therefore a hyperbolic $\mathcal{F}G$-module, because any $\mathcal{F}G$-submodule of \mathcal{B} is also an $\mathcal{F}G$-submodule of \mathcal{B}. This contradicts the Inductive Hypothesis.

If G is cyclic, then $\bar{G} = < \bar{\sigma} >$, where $\bar{\sigma}$ is the image in \bar{G} of some $\sigma \in G$. Let $M = < \sigma >$. Then M is a proper subgroup of G, because G is not cyclic. In addition, the image of M in \bar{G} is \bar{G}. So $G = MK$ with $M \leq G$. Then Remark 2 implies that \mathcal{B} is $\mathcal{F}M$–hyperbolic and thus $\mathcal{F}G$–hyperbolic. This last contradiction implies the lemma. □

Lemma 3.7. Suppose M is a minimal normal subgroup of G. Then M is cyclic and central.

Proof. According to Lemmas 3.3 and 3.4 for each $i = 1, \ldots, k$ there is a simple $\mathcal{F}M$–submodule \mathcal{V}_i of \mathcal{U}_i and an odd integer e_i, such that $\mathcal{U}_i \mid M \cong e_i \mathcal{V}_i$. As G acts faithfully on \mathcal{B}, there is some $i \in \{1, \ldots, k\}$ such that $\mathcal{V}_i \neq 1$ is non-trivial. Let $K_M(\mathcal{V}_i)$ be the kernel of the action of M on \mathcal{V}_i. The fact that \mathcal{V}_i is G-invariant implies that $K_M(\mathcal{V}_i)$ is a normal subgroup of G contained in M. Hence $K_M(\mathcal{V}_i) = 1$. Therefore M admits a faithful simple representation. In addition, M is a q-elementary abelian group, for some prime q that divides $\vert G \vert$, because G is solvable. We conclude that $M \cong \mathbb{Z}_q$ is a cyclic group of order q.

It remains to show that M is central. If \mathcal{F} is a splitting field of M (that is, it contains a primitive q-root of 1), then the fact that there exists a faithful, simple and thus one-dimensional, G-invariant $\mathcal{F}M$-module \mathcal{V}_i implies that M is central in G. If \mathcal{F} is not a splitting field of M, we work with the extension field \mathcal{E} of \mathcal{F}. The extended module $\mathcal{B}^\mathcal{E} = \mathcal{B} \otimes_\mathcal{F} \mathcal{E}$ equals the direct sum of the extended $\mathcal{E}G$-modules $\mathcal{U}_i^\mathcal{E}$, $\mathcal{U}_j^\mathcal{E}$, because \mathcal{B} is the direct sum of $\mathcal{U}_1, \ldots, \mathcal{U}_k$. As we have already seen, for each $i = 1, \ldots, k$, there exist absolutely irreducible $\mathcal{E}G$-modules \mathcal{U}_i^j, for $j = 1, \ldots, n_i$, that constitute a Galois conjugacy class over \mathcal{F} and satisfy

$$\mathcal{U}_i^j \cong \bigoplus_{j=1}^{n_i} \mathcal{U}_i^j.$$

(14)

Since $\mathcal{U}_i \mid M \cong e_i \mathcal{V}_i$ we have $\mathcal{U}_i^\mathcal{E} \mid M \cong e_i \mathcal{V}_i^\mathcal{E}$. In addition,

$$\mathcal{V}_i^\mathcal{E} \cong \bigoplus_{r=1}^{s_i} \mathcal{V}_r^\mathcal{E},$$

8
where the V_r, for $r = 1, \ldots, s_1$, are absolutely irreducible EM-modules, and thus of dimension one, that form a Galois conjugacy class over F. Therefore,
\[
U_i^E|_M \cong m_i^{n_i} \bigoplus_{j=1}^{n_i} U_j^E|_M \cong m_i^{s_i} \bigoplus_{r=1}^{s_i} V_r^E,
\]
for all $i = 1, \ldots, k$.

As we have already seen, there exists $i \in \{1, \ldots, k\}$ such that V_i is a faithful FM-module. Without loss, we may assume that $i = 1$. Then it is clear that the V_r^1 are faithful EM-modules, for all $r \in \{1, \ldots, s_1\}$. If V_r^1 is G-invariant, for some $r \in \{1, \ldots, s_1\}$ (and thus for all such r) we are done.

Thus we may assume that the stabilizer G_V of $V = V_1^1$ in G is strictly smaller than G. Then $G_V = C_G(M)$, because V is EM-faithful. Let $C := G_V = C_G(M)$. Note that C is a normal subgroup of G, since $M \lhd G$. Furthermore, C is also the stabilizer of V_r^1, for all $r = 1, \ldots, s_1$. According to Lemma 3.4, for all $i = 1, \ldots, k$, we have $U_i|_C = m_i \cdot Y_i$, where Y_i is a simple FC-module, and m_i some positive integer. For the extended EC-modules Y_i^E we have
\[
U_i^E|_C \cong m_iY_i^E \cong m_i \bigoplus_{l=1}^{t_i} Y_i^l,
\]
where the Y_i^l, for $l = 1, 2, \ldots, t_i$, are absolutely irreducible EC-modules that constitute a Galois conjugacy class over F. Hence
\[
U_i^E|_C \cong m_i \bigoplus_{l=1}^{t_i} Y_i^l,
\]
for all $i = 1, \ldots, k$. We remark here that, because U_i is quasi–primitive, all the group conjugates of Y_i^1 are among its Galois conjugates, for every $i = 1, \ldots, k$.

In the case $i = 1$, equations (15) and (16) imply
\[
U_1^E|_M \cong m_1 \bigoplus_{l=1}^{t_1} Y_1^l|_M \cong e_1 \bigoplus_{r=1}^{s_1} V_r^E.
\]

Without loss we may assume that U_1^E lies above Y_1^1, and that Y_1^1 lies above $V_1^1 = V$. Clearly Y_1^1 is non–trivial as it restricts to a multiple of the non–trivial FM-module V_1. Hence Lemma 3.3 implies that m_1 is an odd integer. Because C is the stabilizer of V in G, Clifford’s theory implies that Y_1^1 is the unique simple EC-module that lies above V_1^1 and induces irreducibly to U_1^1 in G. Note that Y_1^1 appears with odd multiplicity m_1 as a summand of $U_1^E|_C$, because the EC-modules Y_i^l are distinct for distinct values of l, as they form a Galois conjugacy class over F. Furthermore, if Y_1^1 lies under some U_i^l, for $i \neq 1$, then it induces U_i^l. So $U_i^l \cong U_1^l$. Hence the sum of the Galois conjugates of U_1^1 is isomorphic to the sum of the Galois conjugates of U_1. Therefore
\[
U_1^E \cong \bigoplus_{j=1}^{n_1} U_j^1 \cong \bigoplus_{j=1}^{n_1} U_j^1 \cong U_1^E.
\]
The above contradicts the fact that U_1 and U_i are non-isomorphic simple FG-modules (see Lemma 3.3). We conclude that Y_1^1 appears with odd multiplicity m_1 in the decomposition of
\[
B^E|_C \cong \bigoplus_{i=1}^{k} U_i^E|_C \cong \bigoplus_{i=1}^{k} m_i \bigoplus_{l=1}^{t_i} Y_i^l.
\]
On the other hand, in view of Corollary 2.4 every simple $\mathcal{F}C$-submodule of \mathcal{B} appears with even multiplicity in any decomposition of $\mathcal{B}C$, as C is a normal subgroup of G and $\mathcal{B}C$ is hyperbolic as an $\mathcal{F}C$-module, by Remark 2. Hence every absolutely irreducible $\mathcal{E}C$-submodule of \mathcal{B}^C should also appear with even multiplicity in any decomposition of $\mathcal{B}^C|C$. This contradicts the conclusion of the preceding paragraph. So we must have $G_V = C = G$. Hence the lemma is proved. \hfill \square

Clearly Lemma 3.7 implies

Corollary 3.8. Suppose that M is a minimal normal subgroup of G and \mathcal{E} a splitting field of G and all its subgroups. Then every $\mathcal{E}M$-module is G-invariant.

We can now show

Lemma 3.9. Suppose that M is a minimal normal subgroup of G. Then the restriction \mathcal{B}_M is homogeneous. Furthermore $\mathcal{B}_M \cong e\mathcal{V}$, where \mathcal{V} is a simple faithful G-invariant $\mathcal{F}M$-submodule of \mathcal{B}_M and e is a positive integer.

Proof. As in the previous lemma we write $U_i|_M = e_iV_i$, where $i = 1, \ldots, k$, and V_i is a simple G-invariant $\mathcal{F}M$-submodule of U_i. If $\mathcal{F}M$ is not homogeneous, then there are at least two non-isomorphic simple $\mathcal{F}M$-submodules of \mathcal{B}_M, say \mathcal{V} and \mathcal{W}. We may suppose that \mathcal{V} is non-trivial. Assume that $V_i \cong \mathcal{V}$ as $\mathcal{F}M$–modules, for all $i = 1, \ldots, l$ and some l such that $1 \leq l \leq k$, while $V_i \not\cong \mathcal{V}$ for $i = l + 1, \ldots, k$. Let \mathcal{U} be the orthogonal direct sum

$$\mathcal{U} = U_1 \perp \ldots \perp U_l,$$

of the corresponding \mathcal{FG}–submodules of \mathcal{B}. We also write

$$\mathcal{R} = U_{l+1} \perp \ldots \perp U_k,$$

for the orthogonal direct sum of the remaining simple \mathcal{FG}-submodules of \mathcal{B}. Clearly

$$\mathcal{B} = \mathcal{U} \perp \mathcal{R},$$

while \mathcal{U}_M and \mathcal{R}_M have no simple $\mathcal{F}M$-submodules in common.

We will show

Claim 1. \mathcal{U} is \mathcal{FN}-hyperbolic for every cyclic subgroup N of G.

We first prove Claim 1 in the case that the product NM is a proper subgroup of G. In this case Remark 2 implies that \mathcal{B}_{NM} is hyperbolic. Hence there exists a self-orthogonal \mathcal{FNM}-submodule $\mathcal{S} > 0$ of \mathcal{B}. Then \mathcal{S} is a maximal isotropic \mathcal{FNM}-submodule of \mathcal{B}_{NM}. Furthermore, $\mathcal{B}_{NM} = \mathcal{U}_{NM} \perp \mathcal{R}_{NM}$, where \mathcal{U}_{NM} and \mathcal{R}_{NM} have no simple \mathcal{FNM}-submodule in common (otherwise \mathcal{U}_M and \mathcal{R}_M would have some common simple $\mathcal{F}M$-submodule). Hence

$$\mathcal{S} = (\mathcal{S} \cap \mathcal{U}_{NM}) \perp (\mathcal{S} \cap \mathcal{R}_{NM}).$$

Because \mathcal{S} is isotropic, both $\mathcal{S} \cap \mathcal{U}_{NM}$ and $\mathcal{S} \cap \mathcal{R}_{NM}$ are also isotropic. Hence their \mathcal{F}-dimensions are at most $1/2$ the dimensions of \mathcal{U}_{NM} and \mathcal{R}_{NM}, respectively. But \mathcal{S} is self-orthogonal and thus its \mathcal{F}-dimension is exactly $(1/2)\dim(\mathcal{B}_{NM})$. We conclude that the \mathcal{F}-dimensions of $\mathcal{S} \cap \mathcal{U}_{NM}$ and $\mathcal{S} \cap \mathcal{R}_{NM}$ are exactly $1/2$ the dimensions of \mathcal{U}_{NM} and \mathcal{R}_{NM}, respectively. Therefore $\mathcal{S} \cap \mathcal{U}_{NM}$ is a maximal isotropic \mathcal{FNM}-submodule of \mathcal{U}_{NM} of dimension $1/2$ the dimension of \mathcal{U}_{NM}. So $\mathcal{S} \cap \mathcal{U}_{NM}$ is self-orthogonal, by Lemma 2.4. Thus \mathcal{U}_{NM} is hyperbolic as an \mathcal{FNM}-module. Hence it is also hyperbolic as an \mathcal{FN}-module. So Claim 1 holds when $NM < G$.

10
Assume now that N is a cyclic subgroup of G such that $NM = G$. Because M is minimal, Lemma 3.7 implies that $M \cong \mathbb{Z}_q$ is central. Hence $G = MN$ is an abelian group. This contradicts Lemma 3.5. Therefore $NM < G$, for every cyclic subgroup N of G. Thus Claim 11 holds.

Since $\mathcal{U} < \mathcal{B}$, the Inductive Hypothesis, along with Claim 11 implies that \mathcal{U} is FG-hyperbolic. Hence \mathcal{U} contains a self–perpendicular FG-submodule \mathcal{T}. Let \mathcal{T}^\perp be the submodule of \mathcal{B} that is perpendicular to \mathcal{T}. Then \mathcal{R} as well as \mathcal{T} are subsets of \mathcal{T}^\perp. We conclude that \mathcal{T} is an isotropic FG-submodule of \mathcal{B}. Hence \mathcal{B} is not anisotropic. This last contradiction implies that $\mathcal{U} = \mathcal{B}$, and completes the proof of Lemma 3.10. \hfill \square

Lemma 3.10. Every abelian normal subgroup of G is cyclic.

Proof. Let A be an abelian normal subgroup of G. By Lemma 3.11 there is a simple FA–submodule \mathcal{R}_1 of \mathcal{U}_1 and an integer e_1 such that

$$\mathcal{U}_1|_A \cong e_1 \mathcal{R}_1.$$

It follows from Lemma 3.9 that \mathcal{R}_1 is non-trivial, since its restriction to any minimal normal subgroup of G is non-trivial. Let K_1 denote the corresponding centralizer of \mathcal{R}_1 in A. Then K_1 equals the centralizer $C_A(\mathcal{U}_1)$ of \mathcal{U}_1 in A, and therefore is a normal subgroup of G. If K_1 is not trivial then it contains a minimal normal subgroup M of G. In view of Lemma 3.9 the restriction $\mathcal{U}_1|_M$, cannot be trivial, contradicting the definition of K_1. Hence K_1 is trivial. Thus A is cyclic and the lemma is proved. \hfill \square

Let $F = F(G)$ be the Fitting subgroup of G. Assume further that $\{q_i\}_{i=1}^r$ are the distinct primes dividing $|F|$, and that T_i is the q_i-Sylow subgroup of F, for each $i = 1, \ldots, r$. Then $F = T_1 \times T_2 \times \cdots \times T_r$. Every characteristic abelian subgroup of F is cyclic, according to Lemma 3.10. Hence (see Theorem 4.9 in [4]) either T_i is cyclic or T_i is the central product $T_i = E_i \odot Z(T_i)$ of the extra special q_i-group $E_i = \Omega(T_i)$ of exponent q_i and the cyclic group $Z(T_i)$. We complete the proof of Theorem A exploring the two possible types of T_i.

Assume first that T_i is a cyclic group, for all $i = 1, \ldots, r$. In this case $F = T_1 \times \cdots \times T_r$ is also a cyclic group. Let C/F be a chief factor of G. So $\bar{C} = C/F$ is an elementary abelian q-group, for some prime q, because G is solvable. Then \bar{C} acts coprimely on T_i for all i such that q does not divide $|T_i|$. But T_i is cyclic, and the minimal subgroup of T_i is central in G. Hence $C_{T_i}(\bar{C}) \neq 1$. We conclude that $T_i = [T_i, \bar{C}] \times C_{T_i}(\bar{C}) = C_{T_i}(\bar{C})$. So any q-Sylow subgroup C_q of C centralizes the q'-Hall subgroup R of F that is also a q'-Hall subgroup of C. We conclude that $C = C_q \times R$. But R is nilpotent as a subgroup of F. So C is a nilpotent normal subgroup of G bigger than the Fitting subgroup F of G. Therefore $G = F$ is a cyclic group, contradicting the Inductive Hypothesis. Hence there exists a T_i of $F = F(G)$ that is not cyclic.

Let $T = T_i$ be a non-cyclic q-Sylow subgroup of F, where $q = q_i$ for some $i = 1, \ldots, r$. Then $T = E \odot Z(T)$, where $E = \Omega(T)$ is an extra special q-group of exponent q and $Z(T)$ is the center of T. Of course E is a normal subgroup of G, since it is a characteristic subgroup of F. Furthermore, $Z(E)$ is a central subgroup of G because it is a minimal (it has order q) normal subgroup of G. According to Lemma 3.9 there exists a faithful G-invariant $FZ(E)$-module \mathcal{V} so that the restriction $\mathcal{B}_{Z(E)}$ of \mathcal{B} to $Z(E)$ is a multiple of \mathcal{V}.

Using the extension field E of F, we write \mathcal{V}^E for the extended $EZ(E)$-module $\mathcal{V} \otimes_{F} E$. Then

$$\mathcal{V}^E \cong \bigoplus_{j=1}^s \mathcal{V}^j.$$
where \(\mathcal{V}^j \) is an absolutely irreducible \(E \mathcal{Z}(E) \)-module, for all \(j \) with \(j = 1, \ldots, s \). Furthermore, the \(\mathcal{V}^j \) constitute a Galois conjugacy class over \(\mathcal{F} \), and thus they are all distinct. As we have already seen (see Corollary 3.8 and Lemma 3.9), the module \(\mathcal{V}^j \) is a non-trivial \(G \)-invariant \(E \mathcal{Z}(E) \)-module. Because \(E \) is extra special, there exists a unique, up to isomorphism, absolutely irreducible \(E \mathcal{E}(E) \)-module \(\mathcal{W}^j \) lying above \(\mathcal{V}^j \), for every \(j = 1, \ldots, s \). Note that for all such \(j \) the \(E \mathcal{E}(E) \)-module \(\mathcal{W}^j \) is \(G \)-invariant because \(\mathcal{V}^j \) is \(G \)-invariant. According to Theorem 9.1 in \cite{6} (used for modules) there exists a canonical conjugacy class of subgroups \(H \leq G \) such that \(H \mathcal{E} = G \) and \(H \cap E = Z(E) \). Furthermore, for this conjugacy class there exists a one–to–one correspondence between the isomorphism classes of absolutely irreducible \(E \mathcal{G} \)-modules lying above \(\mathcal{W}^j \) and those classes of absolutely irreducible \(E \mathcal{H} \)-modules lying above \(\mathcal{V}^j \). In addition, the fact that \(G \) has odd order implies that if \(\Xi \) and \(\Psi \) are representatives of the above two isomorphism classes, then they correspond if \(\Xi_H \cong \Psi \oplus 2 \cdot H \Delta \), where \(\Delta \) is a completely reducible \(H \mathcal{E}_H \)-submodule of \(\Xi_H \).

Let \(\mathcal{U} = \mathcal{U}_i \) be one of the simple \(F \mathcal{G} \)-submodules of \(\mathcal{B} \) appearing in \(\mathcal{F} \). Then \(\mathcal{U}^i \cong \bigoplus_{j=1}^{n_i} \mathcal{U}^j \), where the \(\mathcal{U}^j \) are absolutely irreducible \(E \mathcal{G} \)-modules that form a Galois conjugacy class. As earlier, we write \(\mathcal{E}_H \) for the extension field of \(\mathcal{F} \) generated by all the values of the absolutely irreducible character that \(\mathcal{U}^j \) affords. Let \(\Gamma = \text{Gal}(\mathcal{E}_H/\mathcal{F}) \) be the Galois group of that extension. Then (see Theorem 9.21 in \cite{6}),

\[
\mathcal{U}^i \cong \bigoplus_{j=1}^{n_i} \mathcal{U}^j \cong \bigoplus_{\tau \in \Gamma} (\mathcal{U}^1)^{\tau},
\]

Clearly \(\mathcal{U}^{1} \) lies above \(\mathcal{W}^{j} \), for some \(j = 1, \ldots, s \), since \(\mathcal{U} = \mathcal{U}_i \) lies above \(\mathcal{V} \). Let \(\Psi \) be a representative of the isomorphism class of absolutely irreducible \(E \mathcal{H} \)-modules that corresponds to \(\mathcal{U}^{1} \) and lies above \(\mathcal{V}^{j} \). Then

\[
\mathcal{U}^{1}_H \cong \Psi \oplus 2 \cdot \Delta,
\]

for some completely reducible \(E \mathcal{H} \)-module \(\Delta \). Let \(\mathcal{E}_\Psi \) be the subfield of \(\mathcal{E} \) generated by \(\mathcal{F} \) and all the values of the absolutely irreducible character that \(\Psi \) affords. Then \(\mathcal{E}_\Psi \) is a Galois extension of \(\mathcal{F} \). Furthermore,

\[
\mathcal{E}_\Psi = \mathcal{E}_\mathcal{U}.
\]

Indeed, for any element \(\sigma \) in the Galois group \(\text{Gal}(\mathcal{E}/\mathcal{F}) \) of \(\mathcal{E} \) above \(\mathcal{F} \) we get

\[
(\mathcal{U}^{1})^{\sigma} \cong \Psi^{\sigma} \oplus 2 \cdot \Delta^{\sigma}.
\]

Hence \((\mathcal{U}^{1})^{\sigma} \) corresponds to \(\Psi^{\sigma} \), as \(\Psi^{\sigma} \) is the only absolutely irreducible \(E \mathcal{H} \)-module that appears with odd multiplicity in \((\mathcal{U}^{1})^{\sigma} \). Therefore, \((\mathcal{U}^{1})^{\sigma} \neq \mathcal{U}^{1} \) iff \(\Psi^{\sigma} \neq \Psi \). This is enough to guarantee that \((\mathcal{U}^{1})^{\sigma} \neq \mathcal{U}^{1} \) holds. We conclude that the sum \(\bigoplus_{\tau \in \Gamma} \Psi^{\tau} \) is the extension to \(\mathcal{E} \) of an irreducible \(\mathcal{F} \mathcal{H} \)-module, i.e., there exists an irreducible \(\mathcal{F} \mathcal{H} \)-module \(\mathcal{P} \) such that

\[
\mathcal{P}^{\mathcal{E}} \cong \bigoplus_{\tau \in \Gamma} \Psi^{\tau},
\]

where \(\mathcal{P}^{\mathcal{E}} \) is the extended \(E \mathcal{H} \)-module \(\mathcal{P} \otimes_{\mathcal{F}} \mathcal{E} \). Furthermore, \(\{8\} \) and \(\{10\} \) imply that \(\mathcal{P} \) appears with odd multiplicity as a summand of \(\mathcal{U}^{1}_H = \mathcal{U}^{1} \).

Next we observe that if \(\mathcal{P} \) appears as a summand of \(\mathcal{U}^{1}_i \), for some \(i = 2, \ldots, k \), then it appears with even multiplicity. The reason is that \(\mathcal{U}^{1}_i \neq \mathcal{U}^{1}_i \) for all such \(i \). As in \(\{11\} \) we choose a Galois conjugacy class \(\{\mathcal{U}^{1}_i\}_{i=1}^{n_i} \) of absolutely irreducible \(E \mathcal{G} \)-modules such that \(\mathcal{U}^{1}_i \cong \bigoplus_{j=1}^{n_i} \mathcal{U}^{1}_j \). Then \(\mathcal{U}^{1}_i \neq \mathcal{U} = \mathcal{U}^{1}_1 \) implies that \(\mathcal{U}^{1}_i \neq \mathcal{U}^{1} \), for all \(i = 2, \ldots, k \) and all \(j = 1, \ldots, n_i \). So the \(E \mathcal{H} \)-module \(\Psi \) can’t correspond to \(\mathcal{U}^{1}_i \), for any such \(i, j \). Therefore if \(\Psi \) appears as a summand of the restriction \(\mathcal{U}^{1}_i \mid H \) of \(\mathcal{U}^{1}_i \) to \(H \), then it appears only with even multiplicity. Hence the same holds.
for Π, i.e., Π appears only with even multiplicity as a summand of \(U_i \mid_H \), whenever \(i = 2, \ldots, k \). We conclude that Π appears with odd multiplicity as a summand of \(B_H = U_1 \mid_H \oplus \cdots \oplus U_k \mid_H \).

We complete the proof of Theorem A with one more contradiction, that follows the fact that Π is a self–dual \(F H \)-module. That we get a contradiction if Π is self–dual is easy to see, because according to Proposition 2.4 Π should appear with even multiplicity as a summand of the hyperbolic \(F H \)-module \(B_H \). Thus it suffices to show that Π is self–dual.

The fact that \(U = U_1 \) is self–dual implies that \(U^\tau \) is also self–dual. Hence the dual \(\hat{U}^1 \) of \(U^1 \) is a Galois conjugate \((U^1)^\tau \) to \(U^1 \), for some \(\tau \in \Gamma \). Furthermore, (19) implies that

\[
\hat{U}^1 \mid_H \cong \mathfrak{P} \oplus 2 \cdot \Delta.
\]

Thus the dual \(\hat{U}^1 \) corresponds to the dual \(\mathfrak{P} \) of \(\mathfrak{P} \). Therefore the dual \(\mathfrak{P} \) of \(\mathfrak{P} \) is a Galois conjugate of \(\mathfrak{P} \). Hence \(\Pi^\times \cong \oplus_{\tau \in \Gamma} \mathfrak{P}^\tau \) is a self–dual \(EH \)-module. So Π is also self–dual.

This completes the proof of Theorem A.

References

[1] M. Aschbacher, “Finite Group Theory,” Cambridge Studies in Advanced Mathematics, 10.
[2] T. R. Berger, Representation Theory and Solvable Groups: Length Type Problems, The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math. 37 (1980), 431–441.
[3] E. C. Dade, Monomial Characters and Normal Subgroups, Math.Z. 178, 401–420 (1981).
[4] D. Gorenstein, “Finite Groups,” New York: Harper and Row 1968.
[5] B. Huppert, N. Blackburn, “Finite Groups II,” Berlin–Heidelberg–New York : Springer 1982.
[6] I. M. Isaacs, “Character Theory of Finite Groups,” Academic Press, New York, 1976.
[7] I. M. Isaacs, Characters of Solvable and Symplectic Groups, Amer. J. Math. 95 (1973), 594–635.
[8] I. M. Isaacs, Abelian Normal Subgroups of \(M \)-Groups, Math. Z. 182 (1983), 205–221.
[9] I. M. Isaacs, Primitive Characters, Normal Subgroups and \(M \)-Groups, Math. Z. 177 (1981), 267–284.
[10] M. L. Lewis, Characters of Maximal Subgroups of \(M \)-Groups, J. Algebra 183 (1996) 864–897.
[11] A. E. Parks, Nilpotent by Supersolvable \(M \)-Groups, Canad. J. Math. 37 (1985), 934–962.
[12] R. W. van der Waall, On Clifford’s Theorem and Ramification Indices for Symplectic Modules over a Finite Field, Proc. Edinburgh Math. Soc. 30 (1987), 153–167.
[13] R. W. van der Waall and N.S. Hekster, Irreducible Constituents of Induced Monomial Characters, J. Algebra 105 (1987), 255-267.