Seroprevalence of *Neospora caninum* in Local Breed chickens in Al-Fallujah District, Iraq.

Ayoub Ibrahim Ali Al-Jumaily1* and Haider Mohammed -Ali Al-Rubaie2

1Department of Parasitology, College of Veterinary Medicine, University of Fallujah, Iraq.
2Department of Parasitology, College of Veterinary Medicine, University of Baghdad, Iraq.

*Corresponding author; E-mail: Ayoub119688@gail.com. Mobile: 07802610330

Abstract

This study was conducted to study the prevalence of *Neospora caninum* in the local breed chickens in Al-Fallujah district, Iraq. One hundred and eighty (91 males and 89 females) were purchased from four regions (Al-Fallujah Center, Al-Shehabi, Al-Saglawia and Al-Karma) for study the effects of sex, and months in the infection rate. Blood samples collected and sera were isolated for (c-ELISA) during the period from December 2018 to September 2019. The total infection rate was 9.4% and there was highly significant (P≤0.01) difference between the females 11.2% (10/89) and males 7.6% (7/91) infections. Regions of Al-Fallujah district showed highly significant (P≤0.01) difference in the infection rates that were ranged between 4.5% (2/44) in Al-Fallujah Center to 14.5% (7/48) in Al-Saglawia. The highest infection rate was demonstrated in May 25% (6/24) compared with December, July and August that were recorded 5% (1/20) with significant (P≤0.01) differences, and no infection rate was recorded in the January and February months. In conclusion, it is the first study that described the infection rate of *N. caninum* in the local breed chickens.

Keywords: *Neospora caninum*, Seroprevalence, Domestic chickens, Gullas, ELISA.
Introduction

Neospora caninum is a cyst-forming parasite belong to apicomplexan with a wide range of animals species such as cattle, water buffalo, sheep and birds served as intermediate hosts (1, 2 and 3). Dogs (*Canis familiaris*) is the definitive host of the parasite, sexual phase occurs in their intestine, and discharged oocysts with its feces (4). Also the Australian dingo (*Canis lupus dingo*) (5), coyote (*Canis latrans*) (4) and gray wolf (*Canis lupus*) (6) are served as definitive hosts and can release oocysts in their feces. The presence of dogs and poultry together increases the risk factors for neosporosis (7). They get the food from the soil and become more acquired for infection therefore these birds could serve as good indicator for environmental pollution with oocysts (8). *Neospora caninum* can infect several birds like, chickens (8), magpies (*Pica pica*) sparrows (*Passer domesticus*) (9), buzzard (*Buteo buteo*) (10) and Psittaciformes (11) without showed signs of the disease. Experimentally, chickens and embryonated eggs infected by parasite and transmission of this infection to dogs was confirmed. (12).

Serological testing such as indirect fluorescent antibody test (IFAT), agglutination test and (ELISA) is important techniques for disclose *N. caninum* infection (1, 13, 14 and 15).

In Iraq, there are few reports conducted with this parasite in the livestock animals such as cattle (16), water bufaloes (*Bubalus bubalis*) (17), goats (18) and sheep (19).

However, there is a few data about prevalence of *N. caninum* infection in bird worldwide. There are not any researches before about neosporosis in chickens in Iraq, for that this study was aimed to determine the prevalence of *N. caninum* infection in local domesticated breed chickens (*Gallus gullas domesticus*) in AL - Fallujah District, Iraq.

Sample collection and area of study

One hundred and eighty wing venous blood samples were collected randomly from the different ages and both sexes of the local breed chickens during the period from December 2018 to September 2019 from different areas (Al-Fallujah Center, Al-Shehabi, Al-Saglawia and Al-Karma) in Al- Fallujah District, Iraq.

The blood samples (about 5 ml each) were collected after cleaning and disinfectant the area by using ethyl alcohol (70%) from the brachial wing vein in plane tube without anticoagulant additive. The samples were transported on cold box to the parasitology laboratory, College of Veterinary Medicine, Baghdad University. placed at room temperature for 1 h, and centrifuged of the clotted blood at 3000 rpm for 10 min. in order to obtain the sera that were stored at -20°C until used for ELISA (20).

“ELISA: Sera were examined by c-ELISA according to (*Neospora caninum* competition, ID.VET –France) kit procedure as follows:

1. All the reagents were allowed to come to room temperature (21 ±5°C) at least 30 minutes before use. And homogenized by inversion.
2. prepare wash solution(1x) by diluting the wash concentrate (20x) to 1/20 in distilled water.
3. 50 µl of dilution buffer14 was added to each micro well.
4. 50 µl of the positive control was added to wells A1 and B1.
5.50 µl of the negative control was added to wells C1 and D1.
6.50 µl of each sample to be tested was added to the remaining wells.
7. The plate was mixed gently and covered with a cover and incubated for 45 minute (± 4) at 37°C (± 3°C).
8. The cover was removed and empty the wells.
Wash each well 3 times at least 300 µl of the wash solution (1x) and avoid drying the wells between washes.

9. Prepare the conjugate 1x by diluting the concentrated conjugate 10x to 1/10 in dilution buffer 12.

10. 100 µl of the conjugate 1x was added to each well.

11. cover the plate and incubate for 30 minute ± 3 at 21°C ± 5°C.

12. The cover was removed and empty the wells. Wash each well 3 times at least 300 µl of the wash solution (1x) and avoid drying the wells between washes.

13. 100 µl of substrate solution was added to each well, then mixed gently.

14. Cover The plate and incubate 15±2 minutes at 21 ±5 °C in the dark.

15. 100 µl of stop solution was added into each well in order to stop the reaction.

16. Finally, the plate was read and record the optical densities at 450 nm

Calculations:
For each sample calculate the competition percentage (S/N%) by:

\[
S/N\% = \left(\frac{OD_{sample}}{OD_{negative\ control}} \right) \times 100
\]

This formula was applied to obtain the interpretation of the results. Sample presenting a S/N %: Less than or equal to 50% are considered as positive.

- Greater than 50% and less than or equal to 60% are considered as doubtful.

- Greater than 60% are considered negative.

Calculation of results:

Results	Status
S/N ≤ 50%	Positive
50% < S/N ≤ 60%	Doubtful
S/N > 60%	Negative

Statistical analysis
The Statistical Analysis System- SAS (2012) program was used to detect the effect of difference factors in study percentage. Chi-square test was used to significant compare between percentage (0.05 and 0.01 probability) in this study (21)

Results and Discussion

Total infection rate
The overall seropositivity for *Neospora caninum* by ELISA was 9.4% (Table, 1, Figure, 1).

Table (1) : Total infection rate of *N. caninum* in local breed chickens by ELISA

No. of Samples Examined	Positive	Doubtful	Negative
180	17 (9.4 %)	28 (15.5 %)	135 (75 %)

Figure (1): The positive results of sera byELISA.

Red arrow refers to positive control. yellow arrow refer to positive result Blue arrow refer to negativecontrol.

Several immunological examinations can be used to assess the effectiveness of the immune system in epidemiological studies (22). ELISA test is one of the most used tests to measure the percentage of immunoglobulin in the serum of
birds (23) and has become commonly used for the serological study of *N. caninum* (24).

Numerous serological study of *N. caninum* prevalence in different livestock have been carried out by using various techniques in numerous areas of the world and very few studies have conducted to estimate the infections by *N. caninum* parasite in Iraq. (16) recorded 17.5% in cattle serum samples in Al-Muthana and Al-Nasseria provinces. Overall infection rate of 20% analyzed by ELISA recorded in water buffaloes (*Bubalus bubalis*) in Baghdad city by (17). In goats (18) reported overall prevalence as 5.6% (6/106) in four different areas of Wasit Province, while in sheep the infection rate was 3.91%, (19).

In the results of our study the total infection rate was 9.4 %, it is higher than that recorded in USA 7.2% (25) but lower than that in the Egypt 21.43% (20), in Iran 17.33 % (26). In Brazil 23.5% (8), in Mexico 18.5% , in Venezuela 21.7% ,while the infection rate was 58.1% , 62.3% in Argentina and Chile respectively (25). These variations may be due to difference in the activity of the serological tests used, breeds of chickens and the weather factors of each area (27). Also (28) was recorded the presence of more than one dog in the herd as an effect factor for disease. (29) found an association between feeding on moldy maize-silage and the presence of dogs and poultry in the farm result in neosporosis abortion outbreaks in the Netherlands. In Italy (7) showed that the presence of high number of dogs and poultry on farms result in a higher seropositivity in cattle. For that specific *N. caninum* antibodies were 21.43% in free-range chickens but were 11.11% in caged chickens this means that free range chickens have more vulnerable to infected by parasite due to contamination the soil with oocysts because off the free range chickens get food from the ground (20). In Iran (30) has been recorded highly prevalence of infection in pigeons (30.39%) may be related to the pigeons feed directly from the ground and have more chance to exposed to the parasite oocysts from the soil. On the same hand, wild birds contributed in the prevalence of parasite particularly in field conditions, high seroprevalence levels of antibodies (35.8%) was recorded in common raven (*Corvus corax*) captured from farms (31) and the effect of wild birds as intermediate hosts confirmed by existence of antibodies and DNA in the house sparrow (9). Birds that get the food directly from the soil and water, such as the water birds are capable to eating oocysts discarding from final hosts, and play important role in the transmission of parasite in sylvatic cycle, and the antibody was recorded in (34.3%) in sera of waterfowl (32).

Infection rate according to areas of study.

Results were showed that a significant (P ≤ 0.05), difference between areas of the study in the infection rate of *N. caninum*. The high infection rate was recorded in Al-Shehabi (14.5%) and the low infection rate was found in the AL-Fallujah Center 4.5% (Table.2).

Areas	No. of samples examined	Positive	Percentage (%)
AL-Fallujah center	44	2	4.5
Al-Karmah	46	3	6.5
AL-Saglawia	42	5	11.9
AL- Shehabi	48	7	14.5
Total	180	17	9.4
Chi-Square (χ^2)	---	---	4.372 *

* (P≤0.05).
prevalence *N. caninum* among different areas in AL-Fallujah district, that was agreed with the previous studies in chickens from Delta region of Egypt Provinces, the prevalence was high (34%) in Qalyoubiya, in Minufiya (17.39%), in Kafr EL-Shaykh (14.75%), and on the other hand, the seroprevalence was very low in Beheira 2% (20) and high in Brazil 36.5% (33). Also the infection rate that recorded by (34) in the sera of eared doves (*Zenaida auriculata*) by ELISA test was 31.7%, with variation in the infection rates due to the presence of definitive hosts in the different areas. (35) mention that the variation in the infection rates in different areas may be due to variation in the areas of the studies and different climatic and geographical conditions or characteristics (Sensitivity and Specificity) of the tests that used. Climatological differences between geographical areas maybe affects the oocysts survival and subsequently the prevalence of disease (36, 37). The variation in the infection rates in different areas in the present study may be due to the methods of chicken rearing and management (free range or closely) and the number of dogs that contamination the water, food or soil by oocysts; also, insect may be contributed in the mechanical spread of these oocysts.

Infection rate according to sex:

Sex was showed non-significant differences between male and female chickens. A high infection rate (11.2%) was found in females, than males 7.6% (Table, 3).

Sex	No. of samples examined	Positive	Percentage (%)
Male	91	7	7.6
Female	89	10	11.2
Total	180	17	9.4

Chi-Square (χ^2) --- --- 1.744 NS

NS: Non-Significant.

According to sex, the study showed non-significant difference between females and males in the infection rate. The females showed numerically higher than males which recorded 10 (11.2 %) and 7 (7.6 %) respectively, that is agreed with (20) who showed that an increase in the infection rate in females 284 (16.55 %) than males 77 (11.69 %) in Delta of Egypt. and they disagree with (34) which recorded increase prevalence of parasite in males 33.3% (38/114) than females 30.3% (41/135) in eared Doves in Brazil, the reason for these differences is due to the chickens behavior for males and females or differences in the management.

Our study was showed that both sexes infected with *N. caninum* with variation in the infection rates this may be due to the females has a higher chance for get the infection because of its reared for a longer period, which need more nutrient supplements for eggs producing than males, as well as due to their physiological and immunological status compared to males.

Infection rate according to months:

The infection rate according to months was showed the highest rate in May (25%) followed by April (20%), March (11.1%), June (9.2%) and in December, July and August had the same infection rate (5%), but there is no infection rate was recorded in January and February with
significant (P ≤ 0.01) difference (Table,4).

Table (4): Infection rate of N. caninum in local breed chickens by ELISA according to months of the study.

Months	N0. of samples examined	Positiv e	Percentag e (%)
Decembe r	20	1	5
January	20	0	0
February	17	0	0
March	18	2	11.1
April	20	4	20
May	24	6	25
June	21	2	9.2
July	20	1	5
August	20	1	5
Total	180	17	9.4

Chi-Square (\(\chi^2\)) --- --- 9.026 **

** (P≤0.01).

Months of the study showed a significant difference in the infection rates of N. caninum, the highest rate was recorded in May (25%) followed by April (20%) and March(11.1%), lower infection rate recorded during the December, July and August which had the same infection rate (5%) ,but in January and February there is no infection rate was recorded, these results disagree with (20) who recorded in chicken from Egypt by ELISA test high infection rate in the Spring (22.62%), followed by Autumn (21.28%), Summer (17.54%), and 9.83% in Winter. Similar results were obtained by (38) who demonstrated that the prevalence of parasite in dairy buffaloes (Bubalus bubalis) in Pakistan, was closely associated with the seasons as reflected by the highest infection rate in Summer and the lowest in Winter.

The differences in the infection rates in the present study may be related to effects of some environmental conditions (humidity and temperatures), which are considered an important factor for increase resistant of oocysts in the soil or may be due to the increase the spread of insects, that play an important role as mechanical transmitter vectors for oocysts. Also, it was found that the infection influence by the differences between day and night temperature (39).

Conclusion

In conclusion: Our study recorded for the first time antibodies against Neospora caninum in local breed chickens at Al-Fallujah district, with a moderate infection rate that significantly affected by sex, months, and areas.

References

1. Dubey JP. Review of Neospora caninum and neosporosis in animals. Kor. J. Parasitol., 2003; 41: 1-16.
2. Gondim LF. Neospora caninum in wildlife. Trends in Parasitol., 2006; 22: 247–252.
3. Dubey JP, Vianna MC, Kwok OC. Neosporosis in beagle dogs: clinical signs, diagnosis, treatment, isolation and genetic characterization of Neospora caninum. Vet. Parasitol., (2007); 149(3):158–166.
4. Gondim LF, Mcallister MM, Pitt WC, Zemlicka DE. Coyotes (Canis latrans) are definitive hosts of Neospora caninum. Int. J. Parasitol., 2004; 34:159–161.
5. King JS, Slapeta J, Jenkins DJ, Al-Qassab SE, Ellis JT, Windsor PA..Australian dingoes are definitive hosts of Neospora caninum. Int. J. Parasitol., 2010; 40: 945–950.
6. Dubey JP, Jenkins MC, Rajendran C, Miska K, Ferreira LR, Martins J, Kwok OC, Choudhary S. Gray wolf (Canis lupus) is a natural definitive host for Neospora caninum. Vet. Parasitol., 2011 ;181: 382–387.
7. Otranto D, Llazari A, Testini G, Traversa D, diregalborno AF, Badan M, Capelli G. Seroprevalence and associated risk factors of neosporosis in beef and dairy cattle in Italy. Vet. Parasitol., 2003; 118: 7–18.
8. Costa KS, Santos SL, Uzed RS, Pinheiro AM,
Almeida MA, Araujo FR, McAllister MM, Gondim LF. Chickens (Gallus domesticus) are natural intermediate hosts of Neospora caninum. Int. J. Parasitol., 2008; 38:157–159.

9. Gondim LS, Abesandes K, Uzeda RS, Silva MS, Santos S.L, Mota RA, Vilela SM, Gondim LF. Toxoplasma gondii and Neospora caninum in sparrows (Passer domesticus) in the Northeast of Brazil. Vet. Parasitol., 2010; 168:121–124.

10. Darwich L, Cabezón O, Echeverria I, Pabon M, Marco I, Molina lopez R, Alarcialejos O, Lopezgatius F, Lavin S, Almeria S. Presence of Toxoplasma gondii and Neospora caninum DNA in the brain of wild birds. Vet. Parasitol., 2012; 183:377–381.

11. Mineo TW, Carrasco AO, Raso TF, Werther K, Pinto AA, Machado RZ. Survey for natural Neospora caninum infection in wild and captive birds. Vet. Parasitol., 2011; 182:352–355.

12. Khodakaramtafti A, Mansourian M, Namavari M, Hosseini A. Immunohistochemical and polymerase chain reaction studies in Neospora caninum experimentally infected broiler chicken embryonated eggs. Vet. Parasitol., 2012; 188:10–13.

13. Bjorkman C, Uggla A. Serological diagnosis of Neospora caninum infection. Int. J. Parasitol., 1999; 29:1497–1507.

14. Jenkins M, Baszler T, Bjorkman C, Schaeres G, Williams D. Diagnosis and seroepidemiology of Neospora caninum-associated bovine abortion. Int. J. Parasitol., 2002; 32: 631-636.

15. Vonblumroder D, Schaeres G, Norton R, Williams D J, EstebanRedondo I, Wright S, Bjorkman C, Frossling J, Riscocastillo V, Fernandezgarcia A, OrtegaMora LM, Sager H, Hemphill A, vanmaanen C, Wouda W, Conraths FJ. Comparison and standardization of serological methods for the diagnosis of Neospora caninum infection in bovines. Vet. Parasitol., 2004; 120 (1–2):11–22.

16. Mallah M O, Dawood K A, Alrodhan M A. Seroepidemiological study for the prevalence of Neospora caninum in Dairy and Beef cattle in some Iraqi provinces. AL-Qadisiya J. Vet. Med. Sci., 2012, 11 (1):103-110.

17. Al-Amery AM, Faraj AA, Faleh IB. Seroprevalence and histopathological study of neosporosis in water buffaloes (Bubalus bubalis) in Baghdad city, Iraq. Journal Animal Health; 2016; 4 (3): 101-104.

18. Ghattotf HH, Faraj A A. Seroprevalence of Neospora caninum in goats in Wasit Province Iraq. Int. J. Curr. Microbiol. App. Sci., 2015; 4 (7): 182-191.

19. Al-Jumaily AIA, Al-Rubaie HMA. Study the prevalence of Neospora caninum in serum and milk in sheep in ALFallujah city. Al-Anbar J. Vet. Sci.; 2013; 6: 114-120.

20. Ibrahim HM. Seroprevalence of Neospora caninum antibodies in chicken samples from Delta Egypt using a recombinant NcSAG1 protein-based ELISA. Egypt J. Immunol; 2013; 20: 29-37.

21. SAS. Statistical Analysis System, User's Guide. Statistical. Version 9.1th ed. SAS. Inst. Cary. N.C. USA. 2012.

22. Norris K, Evans MR. Ecological immunology: life history trade-offs and immune defense in birds. Behav. Ecolo., 2000; 11:19–26.

23. Fair JM, Myers O. The ecological and physiological costs of lead shot and immunological challenge to developing Western bluebirds. Ecotoxic., 2002; 11: 199–208.

24. Atkinson R, Harper PA, Reichel MP, Ellis JT. Progress in serodiagnosis of Neospora caninum infections of cattle. Parasitol. Tod., 2000; 16:110–114.

25. Martins J, Kwok OC, Dubey JP. Seroprevalence of Neospora caninum in free-range chickens (Gallus domesticus) from the Americas. Vet. Parasitol., 2011; 182: 349-351.

26. Sayari M, Namavari M, Mojaver S. Seroprevalence of Neospora caninum infection in free ranging chickens (Gallus domesticus). J. Parasit. Dis., 2016; 40(3):845–847.

27. Dubey JP, Schaeres G, Ortega M. Epidemiology and control of neosporosis and Neospora caninum. Clin. Microbiol.Rev., 2007; 20:323-367.
28. Al-Majali A, Jawasreh K, Talafha H, Talafha Q. Neosporosis in sheep and different breeds of goats from Southern Jordan. Prevalence and risk factors analysis. Am. J. Vet. Sc., (2008); 3(2):47-52
29. Bartels C J, Wouda W, Schukken Y H. Risk factors for Neospora caninum-associated abortion storms in dairy herds in the Netherlands (1995 to 1997). Theriogenol., (1999); 52: 247–257.
30. Bahrami S, Zahra B, Ali AA, Mehdi N, Seyyede BM. A molecular and serological study of Neospora caninum infection in pigeons from southwest Iran. Vet. Archiv., 2016;86 (6):815-823.
31. Molina-Lopez R, Cabezón O, Pabon M, Darwich L, Onen E, Lopez-Gatius F, Dubey JP, Almería S. High seroprevalence of Toxoplasma gondii and Neospora caninum in the common raven (Corvus corax) in the Northeast of Spain. Vet. Sci., 2012; 93: 300-302.
32. Rocchigiani G, Poli A, Nardoni S, Papini R, Mancianti F. Neospora caninum in wild waterfowl: Occurrence of parasite DNA and low antibody titers. J. Parasitol., 2017; 103 (1):142-145.
33. Camillo G, Cadore GC, Ferreira MS, Braunig P, Maciel JF, Pivoto FL, Sangioni LA, Vogel FS. Toxoplasma gondii and Neospora caninum antibodies in Backyard chickens in Rio Grande do Sul, Brazil. Brazilian J. Poul. Sci., 2015;17 (2): 263-265.
34. Barros LD, Taroda A, Martins TA, Miura AC, de Seixas M, Sammi AS, Sasse JP, Minutti AF, dacunha IA, Vidotto O, Garcia JL. Survey of Neospora caninum in eared doves (Zenaida auriculata) in Southern Brazil. Acta Trop., 2017; 174 : 132-135.
35. Moore DP, Campero C M, Odeon A C, Posso M A, Cano Leunda M R, Basso W, Venturini MC, Spath E. Seroepidemiology of beef and dairy herds and fetal study of Neospora caninum in Argentina. Vet. Parasitol., 2002; 107: 303-316.
36. Sanderson MW, Gay JM, Baszler TV. Neospora caninum seroprevalence and associated risk factors in beef cattle in the Northwestern United States. Vet. Parasitol., 2000; 90:15–24.
37. Shoo NA, Al Zubaidy IA. Seroprevalence study of Toxoplasma gondii in horses and camels animal in Wasit province. Iraqi J. of Vet. Medic; (2016); 40 (1):147-150.
38. Nasir A, Ashraf M, Khan MS, Yaqub T, Javeed A, Avais M, Akhtar F. Seroprevalence of Neospora caninum in dairy buffaloes in Lahore District, Pak. J. Parasitol., 2011; 97 (3): 541-543.
39. Lan-Bi Nie W C, Yang Zou DZ, Qin-Li WZ, Jian-Gang M R, Xing-Quan Z. First report of seroprevalence and risk factors of Neospora caninum infection in Tibetan sheep in China. Bio. Med. Res. Int., 2018; 1: 1-4.