Simulation of crop growth, time to maturity and yield by an improved sigmoidal model

Jun-He Liu1, Yan Yan2, Abid Ali3, Ming-Fu Yu1, Qi-Jie Xu4, Pei-Jian Shi5 & Lei Chen6

Models that accurately estimate maximum crop biomass to obtain a reliable forecast of yield are useful in crop improvement programs and aiding establishment of government policies, including those addressing issues of food security. Here, we present a new sigmoidal growth model (NSG) and compare its performance with the beta sigmoidal growth model (BSG) for capturing the growth trajectories of eight crop species. Results indicated that both the NSG and the BSG fitted all the growth datasets well ($R^2 > 0.98$). However, the NSG performed better than the BSG based on the calculated value of Akaike’s information criterion (AIC). The NSG provided a consistent estimate for when maximum biomass occurred; this suggests that the parameters of the BSG may have less biological importance as compared to those in the NSG. In summary, the new sigmoidal growth model is superior to the beta sigmoidal growth model, which can be applied to capture the growth trajectory of various plant species regardless of the initial biomass values at the beginning of a growth period. Findings of this study will be helpful to understand the growth trajectory of different plant species regardless of their initial biomass values at the beginning of a growth period.

The growth of plants is driven by numerous functions and involves numerous physiological and ecological processes12. The complete growth trajectory of a plant often resembles a sigmoidal curve34 that begins with a slow rate of increase, transitions to a log increase in growth rate and ends with a decrease in the rate of increase ending in zero growth when maximum biomass is reached. Although many growth models have been proposed for plants, such as the logistic, Richards and Gompertz growth models15, these models do not accurately predict the amount of maximum biomass present when the asymptotic line of the model trajectory, w_{max}, is reached.

To address this deficiency, the beta distribution function to describe the trajectory of plant growth rate was introduced67:

$$\frac{dw}{dt} = c_m \left(\frac{t_e - t}{t_e - t_m} \right) \left(\frac{t - t_b}{t_m - t_b} \right)^{t_m - t_b \delta}$$

(1)

where w is the biomass at time t, δ is a constant, c_m is the maximum growth rate, reached at time t_m, t_b and t_e represent times of starting and ending growth, respectively. When t_b and δ are set as 0 and 1, respectively, the beta function can be simplified as follows:

$$\frac{dw}{dt} = c_m \left(\frac{t_e - t}{t_e - t_m} \right) \left(\frac{t}{t_m \delta} \right)^{t_m - t_e \delta}$$

(2)

1College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan, 463000, P.R. China. 2Landscape Research Institutes of Zhumadian, Zhumadian, Henan, 463000, P.R. China. 3Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan. 4College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, 463000, P.R. China. 5Collaborative Innovation Centre of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, 159 Longpan Road, Xuanwu, District Nanjing, 210037, P.R. China. 6Graduate School of Environmental Science, Hokkaido University, N19W8, Sapporo, 060-0819, Japan. Jun-He Liu and Lei Chen contributed equally to this work. Correspondence and requests for materials should be addressed to J.-H.L. (email: liujunhe@huanghuai.edu.cn) or L.C. (email: lei.chen1029@gmail.com)
For example, the estimates of t_e respectively). These results suggest that the estimates of days of age (Fig. 2), the observed values of (Wild.) (Table 3).

Datasets of eight crop species to estimate the timing and the maximum biomass when growth ceases. Comparing it with the beta sigmoidal growth (BSG) model. We evaluated both the models using observed growth

Curves to those obtained by the leaf-growth model8. In addition, the performance of the BSG is superior to other traditional growth models (e.g., Gompertz and von Bertanffy growth models) for its flexibility, outcompeting the exponential and logistic 8. In this study, we developed and tested a new sigmoidal growth (NSG) model by

Although the BSG is slightly different from the leaf-growth model9, the BSG can produce similar growth curves to those obtained by the leaf-growth model. In addition, the performance of the BSG is superior to other traditional growth models (e.g., Gompertz and von Bertanffy growth models) for its flexibility, outcompeting the exponential and logistic. In this study, we developed and tested a new sigmoidal growth (NSG) model by comparing it with the beta sigmoidal growth (BSG) model. We evaluated both the models using observed growth datasets of eight crop species to estimate the timing and the maximum biomass when growth ceases.

Results

Results showed the new sigmoidal growth (NSG) and the beta sigmoidal growth (BSG) provided good fits for all eight crop species well ($R^2 > 0.98$) (see Table 1). The fitted curves of the NSG and BSG were generally close to each other before reaching the maximum biomass (Figs 1 and 2). The NSG performed better than the BSG based on the calculated values of Akaike’s information criterion (AIC) for the growth datasets (Table 1). The negative estimate of t_b from the NSG was observed only for peanut *Arachis hypogaea* L., whereas the estimates of t_b from the BSG were negative for six species. The estimated values of t_b from the BSG were higher than the NSG for all eight-crop species (Table 2). Similarly, the calculated values of maximum biomass (w_{max}) of the BSG were all higher than those of the NSG except for the growth of Adzuki bean *Vigna angularis* (Wild.) Ohwi et Ohashi (Table 3).

For example, the estimates of t_b from the BSG for Mung bean reached 311 days, which was more than four times of that from the NSG. Because the observed value of biomass remained steady when the Mung bean reached 80 days of age (Fig. 2), the observed values of t_b and w_{max} were around 80 days and 40 g that compare well with the NSG model but not the BSG model that seriously overestimated the time/yield end points (311 days and 202 g, respectively). These results suggest that the estimates of t_b and calculated value of w_{max} from the BSG for is not reliable for some cases.

Discussion

Results indicated that both the NSG and the BSG can fit the growth datasets of crop species well, and NSG performed better than the BSG based on the calculated values of AIC (Table 1). The parameter t_b in the NSG is equivalent to the parameter T_{min} in Eq. (5), the lower threshold of temperature for the growth rate of bacteria. Ratkowsky et al.10 have pointed out that the parameter T_{min} in degrees Kelvin is a conceptual temperature representing an intrinsic feature of the organism. In the study of Ratkowsky et al.10, a total of 13 estimates of T_{min} from the Eq. (5) are negative with lower than 273 K among all 16 bacterial cultures. Accordingly, the estimates of t_b from the NSG can also assume negative values. As a result, estimates of t_b from the NSG were negative for the growth of peanut.

Although it observed that t_b could represent the beginning of the growth period at which the growth rate is set to zero. However, our results showed that the estimates of t_b from the BSG were negative except for the Adzuki bean and Mung bean. Furthermore, the estimates of t_b from the BSG are not reliable for some cases (Table 2). For the BSG, the parameters of t_b and t_e represent the replacement of the lower and upper bounds, respectively, in the beta distribution function with four parameters. Consequently, the biological functions used for the parameters

Number of Species	Latin name	English name	NSG	BSG
1	*Helianthus annuus*	Sunflower	0.998	0.998
	L.		50.09	53.4
2	*Arachis hypogaea*	Peanut	0.997	0.997
	L.		−1.61	−1.14
3	*Glycine max* (L.)	Black soybean	0.996	0.995
Merr.			15.05	15.74
4	*Psium sativum*	Garden pea	0.996	0.998
	L.		17.21	18.35
5	*Vigna angularis*	Adzuki bean	0.997	0.982
(Willd.)			−9.13	16.66
6	*Vigna radiata* (L.)	Mungbeans	0.999	0.985
R. Wilczek			−17.81	26.07
7	*Gossypium* spp.	Cotton	0.994	0.996
			38.2	34.08
8	*Sorghum bicolor* (L.)	Moench	0.996	0.996
	Moench	Sweet sorghum	58.16	56.62

Table 1. Akaike’s information criterion (AIC) and R square values of the two growth models for the datasets of crop species. NSG and BSG represent the new sigmoidal growth model and the beta sigmoidal growth model in Eq. (4), respectively.

$$w = w_{max} \left(1 + \frac{t_e - t}{t_e - t_m}\right)\left(\frac{t}{t_m}\right)^{\frac{t_e - t}{t_e - t_m}} (0 \leq t < t_e)$$

where t_e is the time when biomass reaches the value of w_{max}. In particular, the biomass w equals zero when $t = 0$ in Eq. (3). This assumption matches the growth trajectory of many plants; however, exceptions do occur. To address this issue, only assumed $\delta = 1$ in Eq. (1) and then derived a more flexible beta sigmoidal growth model (BSG) in Eq. (4) to capture the growth trajectory of various plant species regardless of the initial biomass values.

$$w = c_m \cdot (t - t_b) \cdot \frac{2t_e - t_m - t}{2t_e - t_m - t_b} \left(\frac{t - t_b}{t_m - t_b}\right)^{\frac{t_e - t_b}{t_e - t_m}}$$

Although the BSG is slightly different from the leaf-growth model8, the BSG can produce similar growth curves to those obtained by the leaf-growth model. In addition, the performance of the BSG is superior to other traditional growth models (e.g., Gompertz and von Bertanffy growth models) for its flexibility, outcompeting the exponential and logistic8. In this study, we developed and tested a new sigmoidal growth (NSG) model by comparing it with the beta sigmoidal growth (BSG) model. We evaluated both the models using observed growth datasets of eight crop species to estimate the timing and the maximum biomass when growth ceases.
of \(t_b \) and \(t_e \) are artificially provided in the BSG model. The BSG fits the growth datasets of the eight crop species well \((R^2 > 0.98) \) (Table 1) through the flexibility of the beta distribution function, however, the parameters used to derive the BSG are not biologically accurate. Consequently, the estimates of \(t_b \) and \(t_e \) from the BSG are not biologically relevant in some cases, which is confirmed by the overestimated \(w_{\text{max}} \) compared to the observed values. On the contrary, the observed values of \(t_e \) and \(w_{\text{max}} \) compared well with the estimates of NSG model. Therefore, we concluded the NSG is better than the BSG and other traditional sigmoidal growth models, which can be applied to capture the growth trajectory of various plant species regardless of the initial biomass values at the beginning of the growth period.

Methods
Model derivation. Ambient temperature is the principal variable that determines the developmental growth rate of poikilotherms, including plants, which occurs in a range between the lower and upper developmental temperature threshold determined for each species. A nonlinear model was proposed to describe the effect of temperature on the growth rate of bacteria:

\[
\dot{r} = c(T - T_1)(1 - e^{k(T - T_2)})
\]

where \(r \) is the growth rate, \(c \) and \(K \) are constants, \(T_1 \) and \(T_2 \) is the minimum and maximum temperature for growth, respectively. After replacing the temperature with time, we derived a new sigmoidal growth model (NSG) by integrating Eq. (5) as follows:

\[
w = \frac{1}{3} \xi(t) + \frac{c^2(\varphi(t) + \theta(t)\eta(t) - 16\eta(t))}{4k^2}
\]
With \(\eta(t) = e^{k(T-t)} \), \(g(t) = c^2t^3 - 3c^2t^2t_0 + 3c^2t_0^2t \), \(\varphi(t) = -8k^2t^2 + 16k^2t_0 - 8k^2t_0^2 + 16kt - 16kt_0 \) and \(\theta(t) = (2k^2t^2 - 4k^2t_0 + 2k^2t_0^2 - 2kt + 2kt_0 + 1)e^{k(T-t)} \) where \(w \) is the biomass at time \(t \); \(c \) and \(k \) are constants; \(t_0 \) and \(t_f \) represent the starting and ending time of growth.

Parameter estimation. The parameters of the BSG and the NSG were estimated using the Differential Evolution by optimizing the problem and the Nelder-Mead algorithms by non-linear optimization problems.
Table 3. Estimated value of maximum biomass of the new and beta sigmoidal growth models for the growth datasets of crop species. NSG and BSG represent the new sigmoidal growth model and the beta sigmoidal growth model in Eq. (4), respectively.

Species	NSG Maximum biomass (g)	BSG Maximum biomass (g)
Sunflower	310.69	924.76
Peanut	41.90	177.78
Black soybean	47.97	54.09
Garden pea	86.07	93.56
Adzuki bean	23.36	22.92
Mung bean	33.92	202.84
Cotton	88.49	90.26
Sweet sorghum	186.24	186.40

References

1. Zeide, B. Analysis of growth equations. *For. Sci.* **39**, 594–616 (1993).
2. Lhotka, J. M. & Loewenstein, E. F. An individual-tree diameter growth model for managed uneven-aged oak-shortleaf pine stands in the Ozark Highlands of Missouri, USA. *For. Ecol. Manage.* **261**, 770–778 (2011).
3. Sebens, K. P. The ecology of indeterminate growth in animals. *Annu. Rev. Ecol. Evol. Syst.* **18**, 371–407 (1987).
4. Mullen, K., Ardia, D., Gil, D. L., Windover, D. & Cline, J. DEoptim: An R package for global optimization by differential evolution. *J. Stat. Softw.* **40**, 1–26 (2011).
5. Paine, C. et al. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. *Methods Ecol. Evol.* **3**, 245–256 (2012).
6. Yin, X., Kropff, M. J., McLaren, G. & Visperas, R. M. A nonlinear model for crop development as a function of temperature. *Agric. For. Meteorol.* **77**, 1–16 (1995).
7. Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J. & Spieritz, H. J. A flexible sigmoid function of determinate growth. *Ann. Bot.* **91**, 361–371 (2003).
8. Shi, P. J., Chen, L., Hui, C. & Grissino-Mayer, H. D. Capture the time when plants reach their maximum body size by using the beta sigmoid growth equation. *Ecol. Model.* **320**, 177–181 (2016).
9. Vooren, W., Lootens, P., Nelissen, H., Roldan-Ruiz, I. & Inze, D. Muylle, HLEAF-E: a tool to analyze grass leaf growth using function fitting. *Plant methods* **10**, 37 (2014).
10. Ratkowski, D., Lowry, R., McMeekin, T., Stokes, A. & Chandler, R. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. *J. Bacteriol.* **154**, 1222–1226 (1983).
11. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2015).
12. Akaike, H. [Information theory as an extension of the maximum likelihood principle]. *Second International Symposium on Information Theory* [Petrov, B. N. & Csaki, F. (eds)] [267–281] (Akademiai Kiado, Budapest, 1973).
13. Shi, P. J. et al. The “general” ontogenetic growth model is inapplicable to crop growth. *Ecol. Model.* **266**, 1–9 (2013).
14. Kêh, S., et al. de Ruiter. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. *Nature.* **449**, 213–217 (2007).
15. Von Hardenberg, J., Meron, E., Shachak, M. & Zarmi, Y. Diversity of vegetation patterns and desertification. *Phys. Rev. Lett.* **87**, 198101 (2001).

Acknowledgements

We thank to the China Scholarship Council (CSC) for supporting Lei Chen studies in Japan. The paper was supported by Henan Province Science and Technology projects (No. 132102110021, 142300410007 and 142102110028).

Author Contributions

Lei Chen, Ming-Fu Yu and Jun-He Liu conceived and designed the experiment, Qi-Jie Xu and Pei-Jian Shi wrote the article. Yan Yan, Lei Chen, Pei-Jian Shi and Abid Ali performed the data analysis. Jun-He Liu, Abid Ali and Pei-Jian Shi modified the paper. All authors reviewed the manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
