Expression of transforming growth factor β (TGFβ) receptors and expression of TGFβ1, TGFβ2, and TGFβ3 in human small cell lung cancer cell lines

L. Damstrup1,2, K. Rygaard1, M. Spang-Thomsen1 & H. Skovgaard Poulsen1,2

1Institute of Pathological Anatomy, University of Copenhagen, Frederik V's Vej 11, Post Box 2713, DK-2100 Copenhagen; 2Department of Oncology, Rigshospitalet, DK-2100 Copenhagen, Denmark.

Summary A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor β receptors (TGFβ-r) and the expression of TGFβ mRNA. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. Scatchard analysis of the binding data demonstrated that the cells bound between 4.5 and 27.5 fmol mg⁻¹ protein with a Kd ranging from 16 to 40 pM. TGFβ1 binding to the receptors was confirmed by cross-linking TGFβ1 to the TGFβ-r. Three classes of TGFβ-r were demonstrated, type I and type II receptors with Mw = 65,000 and 90,000 and the betaglycan (type III) with Mw = 280,000. Northern blotting showed expression of TGFβ1 mRNA in ten, TGFβ2 mRNA in two and TGFβ3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell lines express TGFβ-receptors and also produce TGFβ mRNAs.

The TGFβ family consists of several members of structurally related proteins. The first member of this family to be cloned was TGFβ1 (Derynck et al., 1985). To date three other members have been cloned and described TGFβ2 (Miller et al., 1989b; Madisen et al., 1988; de Martin et al., 1987) from murine and human source. TGFβ3 (Miller et al., 1989a) from murine source and TGFβ1 from chicken embryonic tissue (Jakowlew et al., 1988). These members form a complex network of interacting ligands. The role for each of these has not been clearly elucidated but the expression pattern in the mouse embryo suggest a role in differentiated role in embryogenesis (Pelton et al., 1991). The TGFβ family of peptides exerts both stimulatory and inhibitory effects depending on cell type examined (Barnard et al., 1990).

Receptors for TGFβ have been demonstrated in a variety of normal cells of both epithelial and mesenchymal origin as well as in several malignancies (Frolik et al., 1984; Tucker et al., 1984; Massagué & Liker, 1985; Wakefield, 1987). At present five distinct TGFβ-r have been identified, type I (Mw = 60-70,000), type II (85-110,000), type III (200-400,000), type IV (60,000) and type V (40,000). The type II and III receptors have recently been cloned (Lin et al., 1992, Wang et al., 1992). In addition a TGFβ binding protein (150,000 and 180,000) has been described, which binds TGFβ1, but not TGFβ2 (MacKay & Danielpour, 1991). The type I and II receptors are the most probable candidates as the mediator of the signal induced by TGFβ (Boyd & Massagué, 1989; Laiho et al., 1990). The type III receptor is believed to be a surface associated proteoglycan, which binds TGFβ and ultimately releases it (Andres et al., 1989) or is internalised with TGFβ (Massagué, 1990). The type IV receptor has been identified in pituitary cells, but its function has not been established (Cheifetz et al., 1988). The function of the type V receptor, which has been purified from bovine liver, is unclear at present (O'Grady et al., 1991). Several malignancies have been screened for the presence of TGFβ-r, but in human lung cancer the data is very sparse. A few studies have demonstrated that TGFβ mRNA was expressed in only non-SCLC (NSCLC) cell lines (Söderdahl et al., 1988; Derynck et al., 1987; Bergh, 1988). In another study all of ten SCLC cell lines examined were found to be TGFβ mRNA negative (Lagadec et al., 1991). In these studies the TGFβ isoform investigated was not specified, but most probably it was TGFβ3 mRNA.

These data are the basis for the concept that only NSCLC cell lines can produce TGFβ (for review, see Pelton & Moses, 1990).

In the present study we have examined the presence of TGFβ-r and the production of TGFβ mRNA in a panel of 21 SCLC cell lines established in five different laboratories. The results showed that a relatively high proportion of SCLC cell lines carried high affinity TGFβ-r and expressed TGFβ mRNA. Coexpression of TGFβ-r and TGFβ was found in six SCLC cell lines.

Materials and methods

Cell lines

SCLC cell lines were cultured in 150 cm² flasks at 37°C under standard conditions in medium containing 10% foetal calf serum (Flow Laboratories, Irvine, Scotland) without antibiotics. We have previously reported in detail the growth morphology and tissue culture media for these cell lines (Damstrup et al., 1992). Twenty-one SCLC cell lines established from 17 patients in five different laboratories were examined. Eight cell lines were established at Dartmouth Medical School, Hanover, NH, USA (DMS), seven cell lines were established at Groningen Lung Cancer Center, Groningen, the Netherlands (GLC), two cell lines were established at the National Cancer Institute, Bethesda, MD, USA (NCI), two cell lines were established in Marburg, Germany (24H and 86M1), and two cell lines were established in our own laboratory Copenhagen, Denmark (CPH). The origin and establishment of the cell lines has been described elsewhere (Pettengill et al., 1980; Carney et al., 1985; de Leij et al., 1985; Bepler et al., 1987; Berendsen et al., 1988; Engelholm et al., 1986). AKR-2B, a mouse fibroblast cell line, which previously has been reported TGFβ-r positive (Tucker et al., 1984) was cultured in Eagle's minimal essential medium (Flow laboratory) supplemented with 10% foetal calf serum, and used as a positive control for TGFβ binding. This cell line was kindly provided by Professor H.L. Moses, Vanderbilt, University, Tennessee. All cell lines were routinely checked for, and found free of, mycoplasma infection.

Cells growing as monolayer cultures were assayed in 35 mm 6-well tissue dishes for radioreceptor assays. Cells were subcultured and used within 24 h of plating. Cells growing as floating aggregates were subcultured and assayed in microfuge tubes within 24 h of subculturing.
Growth factors

Porcine TGFβ was purchased from British Biotechnology Ltd, Oxford, England and/or was a gift from Bristol-Meyers-Squibb, Pharmaceutical Research Institute, Seattle, USA. Human recombinant EGF and TGFα was purchased from Bissendroff Biochemicals, Hannover, Germany. 125I-labelled TGFβ with a specific activity of 100–180 µCi mg−1 (2.5–4.5 Ci mol−1) was purchased from New England Nuclear, Boston, USA. The binding activity of 125I-labelled TGFβ was checked at regular intervals using the positive control cell line AKR-2B. The 125I-labelled TGFβ was used within 4 weeks of fresh lot date.

Radioreceptor assay

The procedure has been described previously (Massagué & Lake, 1985; Massagué, 1987). Cells growing as monolayer cultures were plated in 35 mm 6-well dishes, usually at 2–5 × 10⁵ cells per well, the day before experiments were performed. The cells were washed for 60 min with binding buffer (128 mM NaCl, 5 mM KCl, 5 mM MgSO₄, 1.2 mM CaCl₂, 50 mM HEPES, pH 7.5 and 2% BSA). After washing, the cells were incubated with 5–10 pM 125I-labelled TGFβ₁, and increasing levels of native unlabelled TGFβ₁ ranging from 0 to 200 pM, the volume of incubation being adjusted to 1 ml. After 2 h incubation at 20°C the reaction was stopped by washing the plates three times with ice cold binding buffer without albumin. After the final wash, the cells were solubilised in solubilisation buffer (128 mM NaCl, 0.25 mM EDTA, 0.5 mM Tris, pH 7.5 and 1% v/v Triton X-100). An aliquot of the supernatant was counted in a Beckmann II gamma counter (70% efficiency). Protein concentration was determined with the BCA protein kit (Pierce Europe, B.V., Oud Beijerland, The Netherlands) (Smith et al., 1985). Cells growing as floating aggregates or cells easily detectable were assayed, as single cell suspensions, in 1.5 ml sigmacote (Pierce) treated microcentrifuge tubes. Viability after obtaining a single cell suspension, as assessed by trypan blue exclusion test, was 90–95%. After incubation the reaction was stopped by centrifuging at 5,500 g for 3 min and the cell pellet was resuspended three times in ice cold binding buffer without albumin. After the final wash, the cell pellet was solubilised as above. Maximal binding (Bₘₐₓ) was calculated as femtomol mg⁻¹ protein by Scatchard analysis of the binding data (Scatchard, 1949). Specificity of the binding was determined in specificity experiments with TGFβ₁, EGF and TGFα as the displacing agents. The displacing agents were added at the same time as the 125I-labelled TGFβ₁.

Cross-linking

Washed single cell (2–5 × 10⁵) suspensions were incubated with 40 pM 125I-labelled TGFβ₁ in the presence or absence of a 100-fold excess of unlabelled TGFβ₁. The incubation proceeded for 4 h at 4°C. After the final wash, the cell pellet was resuspended in 950 µl binding buffer without BSA before 50 µl of 5 mM cross-linking agent disuccinimidyl (DSS) (Pierce, France), freshly dissolved in DMSO, was added. The cross-linking reaction proceeded for 15 min at 4°C and was stopped by centrifuging and washing the pellet in a Tris-containing buffer. Finally the cell pellet was resuspending in 80 µl solubilisation buffer, 10 µl cocktail 1 and 10 µl cocktail 2 as described earlier (Massagué, 1987). The resulting supernatant was boiled for 5 min in sample buffer with 50 mM dithiobisreitol (Piez). One hundred µg protein/lane was run on a 5, 7 or 10%, 8 × 16 cm SDS-PAGE gel. After staining with Coomasie brilliant blue and destaining, the dried gel was exposed to an X-ray film (Amersham) with an intensifying screen at –80°C.

Northern blotting

RNA was extracted by the single-step acid guanidinium thiocyanate-phenol-chloroform method (Chomczynski & Sacchi, 1987). Ten µg total RNA samples were electrophoresed through denaturing agarose gels containing 2.2 M formaldehyde, and transferred to nylon membranes (GeneScreen Plus, NEN DuPont) as recommended by the supplier. Radio-labelled probes were prepared by the random priming method (Feinberg & Vogelstein, 1983) using [α-32P]dCTP and a commerical kit (both from Amersham). The blots were sequentially hybridised with human probes for TGFβ₁ and for β-actin. The probes for TGFβ₁ were 2.0 kb full length cDNA (Kasid et al., 1988) obtained from the American Type Culture Collection (No. 59954) and a 267 bp fragment spanning nucleotides 1773–2040. The probe for TGFβ₂ mRNA was a 442 bp murine fragment of the plasmid pmTGFβ₂-9a (Miller et al., 1989b). The TGFβ₁ probe was a 609 bp murine fragment of the plasmid pmTGFβ₁-IIb (Miller et al., 1989a). The TGFβ₁ and TGFβ₂ probes were obtained from Professor H.L. Moses, Vanderbilt University. RNA extracted from murine heart and lung was used as positive controls. The β-actin probe was a 2.1 kb BamHI fragment of the plasmid pHFβA-1 (Gunning et al., 1983). The membranes were pre-hybridised, hybridised and washed as recommended by the supplier, and exposed to an X-ray film at ~80°C with an intensifying screen.

Results

Receptor binding studies

Saturation of the receptors was reached with a TGFβ₁ concentration in the range of 50 to 100 pM (exemplified in Figure 1). Non-specific binding, defined as the cell associated radioactivity in the presence of a large excess of unlabelled TGFβ₁, was relatively high but was an inverse function of binding capacity – 23% in AKR-2B with a Bₘₐₓ of 70 femtomol mg⁻¹ protein and 70% in GLC 19, assayed as single cell suspension, with a Bₘₐₓ of 4.5 femtomol mg⁻¹ protein. This relationship has also been described in other cell types (Massagué, 1987). As about half the cell lines grew as floating aggregates and half as monolayer cultures, we chose to relate all binding data to protein concentration. Scatchard analysis of the binding data showed that cells bound between 5 and 27 fmol mg⁻¹ protein with a K₀ of 16–40 pM (Table 1).

The specificity of the TGFβ₁/ligand binding was determined using different displacing agents. The specificity of 125I-labelled TGFβ₁ binding to GLC 3 is shown in Figure 2. It was found that EGF and TGFα, which both binds to the EGF-receptor (Carpenter et al., 1983) did not displace 125I-labelled TGFβ₁. For all cells tested and found positive in the radioreceptor assay, binding was in all cases specific and saturable.

Cross-linking studies

TGFβ₁ binding to the receptors was further visualised by cross-linking the ligand-receptor complex with DSS. Figure 3 illustrates the affinity labelling results of eight SCLC-cell lines. Following electrophoresis on a SDS-PAGE gel, specific TGFβ₁ binding was seen as bands with calculated Mr, of 65,000, 90,000 and 280,000; these bands correspond to the type I, II and III TGFβ₁ receptors. The presence of excess unlabelled TGFβ₁ resulted in the disappearance of these bands, demonstrating that the binding was specific. Seven SCLC-cell lines were TGFβ₁ positive in the affinity labelling experiments (Table 1).

Northern blotting studies

The cell lines were examined for the production of TGFβ mRNA. Figure 4a illustrates a Northern blot analysis of 20 cell lines using the full length TGFβ₁ cDNA probe. The TGFβ₁ mRNA is seen as a band of approximately 2.5 kb. Results using the 267 bp TGFβ₁ fragment was similar (data not shown). Nineteen cell lines were hybridised with probes
for TGFB1 and TGFB2. In two cell lines (Figure 4b) TGFB1 mRNA was detected as a faint band of 3.9 kb. TGFB2 mRNA, size approximately 3.5 kb, was found in seven cell lines (Figure 4c). Blots were rehybridised with the β-actin probe to demonstrate equal loading in all lanes. The intensity of staining with the TGFB probe therefore semiquantifies the TGFB mRNA content.

The results for all binding data, affinity labelling and Northern blot analysis are summarised in Table I. Six of the TGFB1 positive cell lines also expressed TGFB2 (Table I).

Discussion

This is to our knowledge the first study in which a broad panel of SCLC cell lines has been studied for the presence of TGFB-receptors and the expression of TGFB mRNA. The panel of SCLC cell lines, established in five different laboratories and cultured in different media, is probably a representative cross-section of SCLC cell lines. In order to standardise our radioreceptor assay, we carried out the normal time- and temperature course experiments as described.

![Graphs](image)

Figure 1 TGFB binding to a SCLC cell line. CPH 54A was incubated with 5 pM 125I-labelled TGFB and increasing concentrations of unlabelled TGFB, as described in Materials and methods. Insert: Scatchard plot of the receptor specific binding per 100 µg protein (B) and the free ligand concentration (F). Kd is given by the slope of the curve. Bmax is given by the x-axis intercept. □ Total binding; O Receptor specific binding; △ Non specific binding.

Figure 2 Specificity of TGFB binding. GLC 3 was incubated with 5 pM 125I-labelled TGFB and displaced with increasing levels of: ■ EGF; ▼ TGFB2; Binding is expressed in % of maximal specific binding. 100% being 7.300 CPM mg⁻¹ protein.

| Table 1 Summary of the TGFB receptor and TGFB expression in SCLC cell lines |
|--------------------------|--------------------------|--------------------------|
| Cell line | Bound TGFB f mol mg⁻¹ | Receptor | TGFB mRNA |
| | | I | II | III | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| DMS 53 | – | – | – | – | + | (+) | – |
| DMS 79 | – | – | – | – | – | – | + |
| DMS 92 | – | – | – | – | – | – | + |
| DMS 114 | 26.6 ± 2.1* | 40.3 ± 4.5 | – | + | + | (+) | + |
| DMS 153 | – | – | – | – | – | + | + |
| DMS 273 | 5.2 ± 0.5 | 20.6 ± 2.3 | – | (+) | + | + | + |
| DMS 406 | – | – | – | – | – | – | + |
| DMS 456 | – | – | – | – | – | – | + |
| GLC 2 | – | – | – | – | – | – | + |
| GLC 3 | 10.7 ± 1.1 | 22.7 ± 1.4 | – | + | + | – | + |
| GLC 14 | – | – | – | – | – | – | + |
| GLC 16 | – | – | – | – | – | – | + |
| GLC 19 | 4.5 ± 1.1 | 16.1 ± 4.4 | + | + | – | – | + |
| GLC 26 | – | – | – | – | – | – | + |
| GLC 28 | – | – | – | – | – | – | + |
| 24H | – | – | – | – | – | – | + |
| 86M1 | – | – | – | – | NT| NT | |
| NCI H69 | – | – | – | – | – | – | + |
| NCI N417 | – | – | – | – | NT| NT | |
| CPH 54A | 27.6 ± 2.6 | 25.2 ± 6.2 | + | + | + | – | + |
| CPH 54B | 21.3 ± 3.9 | 23.0 ± 6.2 | + | + | + | + | + |

Bmax and Kd were determined as described in the text. TGFB1 was detected by cross-linking studies. TGFB1, TGFB2 and TGFB3 mRNA was detected by Northern blotting. –: Negative. +: TGFB receptor or mRNA detected. (+): Faint band. a: Mean of 3–4 values ± s.d. NT: not tested.
Figure 3 Affinity labelling of the TGFβ receptor. Cells were incubated with 125I-labelled TGFβ, as described in Materials and methods, the receptor complex was cross-linked with DSS and size fractionated on either a, 5% SDS-PAGE gel to demonstrate the high molecular weight betaglycan (type III receptor) or b, 10% gel to demonstrate the receptor type I and II. c, 7% gel for 3 GLC cell lines. For each cell line two lanes were run: − 40 pM 125I-labelled TGFβ; + 100-fold excess of unlabelled TGFβ. Molecular weight standards from Bio-Rad were co-electroforesed. Roman numerals indicates the type I and II TGFβ-r. Arrow indicate the TGFβ type III receptor.

elsewhere (Frolik et al., 1984; Tucker et al., 1984), and found that the binding was stable for a prolonged period of time at 20°C. Furthermore we found that the receptors could not be demonstrated if the protein concentration was lower than 150 μl ml$^{-1}$. We have previously demonstrated, in the same cell lines, studying the EGF-receptor that this critical protein level was also required to detect the EGF-receptor (Damstrup et al., 1992). Studies on other receptor systems such as the estrogen receptor has also demonstrated this critical protein limit (Skovgaard Poulsen, 1981). Therefore, to avoid underestimating binding capacity or falsely classify a SCLC cell line as TGFβ-r negative, we only drew conclusions on the TGFβ-receptor state in a cell line if the protein concentration was in the range of 200–600 μg ml$^{-1}$.

Analysis of the binding data demonstrated that Scatchard plots in some cell lines were curved near saturation of the receptors. However, it was not possible, with the ligand program developed by Munson and Rodbard (Munson & Rodbard, 1980), to resolve the Scatchard plots into two or more compartments. Other investigators have, in normal rat
kidney cell (NRK), also only demonstrated one class of TGFβ receptors, despite the fact that cross-linking studies with NRK cells have demonstrated that these cells express type I, II and III receptors (Wakefield, 1987; Massagué & Like, 1985; Segarini et al., 1987). Resolving the data with a single class receptor from the linear part of the Scatchard plot demonstrated high affinity receptors in six SCLC cell lines (Figure 1, Table I). The dissociation constant was in all cases characteristic for TGFβ binding (Massagué, 1987; Wakefield, 1987). Maximal binding varied from 4.5 to 27.5 fmol mg⁻¹ protein. Binding of ¹²⁵I-labelled TGFβ₁ to the positive cells was specific as only TGFβ could displace the labelled TGFβ₁. EGF and TGFα did not influence TGFβ₁ binding (Figure 2).

The results obtained from the radioreceptor assay and the displacement studies demonstrated that a large proportion of the SCLC cell lines examined carried specific high affinity TGFβ₁ receptors. Our results are in part corroborated as one of these cell lines, GLC 19, has previously been reported to be growth inhibited by TGFβ₁ (Lagadec et al., 1991). However, in the cited study the cells were not examined for the presence of TGFβ₁.

To verify that the binding of TGFβ₁ was in fact to the TGFβ₁ receptors, the cell lines were tested by cross-linking. After size fractionation on SDS-PAGE gels, all cell lines found to be TGFβ₁-positive in the radioreceptor assay also displayed one or more specific bands with calculated Mr = 65,000, 90,000 and 280,000 (Figure 3). These sizes included reduced TGFβ₁ with a Mr of approximately 12,000. The Mr of the corresponding receptors is therefore 53,000, 78,000 and 270,000. The TGFβ receptors have previously been reported as having these calculated molecular weight (Massagué, 1987; Massagué, 1990). This provides further evidence that TGFβ₁ binding was to the TGFβ₁ receptor. One cell line, GLC 16, expressed the type I and II TGFβ₁ receptors in this assay. We could, however, not demonstrate the receptor in the radioreceptor assay, even using a very high protein concentration (> 800 μg ml⁻¹). The binding capacity in this cell line could be so low that it was below the detection limit in the radioreceptor assay. In the same cell line, we have found that the receptor was functional in that exogenously added TGFβ₁ acted as a growth inhibitor (Nørgaard, P., unpublished observation).

We also examined the expression of TGFβ mRNAs in the panel. In 10/20 SCLC cell lines TGFβ₁ mRNA could be detected (Table I, Figure 4a). In GLC 3 and faintly in DMS 153 an additional band of 1.7 kb was found, the nature of this band is unclear. A mRNA with this approximate size has also been found in male mice germ cells (Watrin et al., 1991).

We examined 19 of the SCLC cell lines with a probe for TGFβ₂ mRNA (Figure 4b), and in two cell lines (DMS 53 and DMS 114) a single transcript of 3.9 kb was demonstrated. This is in accordance with one of the TGFβ₁ transcripts reported in other human cell lines (Mori et al., 1990), whereas none of the additional TGFβ₁ mRNAs reported (Jakovlew et al., 1991; Mori et al., 1990; Miller et al., 1990b) were detected in the investigated cell lines.

We have previously examined 15 of the cell lines in our panel for expression of phosphorlyated retinoblastoma gene product (pRb) (Rygaard et al., 1990). Only the two cell lines (DMS 53 and DMS 114) in which TGFβ₁ mRNA was
detected, were found to express pRB, and immunocytochemistry demonstrated nuclear localisation of pRB (Rygaard, K., unpublished observation). Other studies (Templeton et al., 1991) have suggested that pRB is functional only when phosphorylated and located in the nucleus. It has recently been reported that the pRB activates the expression of TGFβ, (Kim et al., 1992). Provided that the characteristics of pRB in DMS 53 and DMS 114 indicates that the protein is functional, our finding that TGFβ was detected exclusively in the two cell lines also expressing a 'functional' pRB, agrees with the concept that expression of TGFβ is activated by pRB.

Seven cell lines expressed the 3.5 kb TGFβ mRNA (Figure 4c), corresponding to the reported size in other human malignant tissue (Dijke et al., 1988). Two of these cell lines (GLC 2 and 24H) also expressed a transcript with a size of approximately 2.5 kb, which is the transcript size of TGFβ mRNA, however these two cell lines did not express TGFβ mRNA.

The probing for TGFβ1 and TGFβ2 was performed with a murine probe, and there may not be perfect homology to the human mRNA. This implies that additional cell lines could be positive following probing with a human probe. Taken together a total of 12 of the 20 examined SCLC cell lines expressed TGFβ mRNA. This finding is in contrast to earlier studies, where a few cell lines have been examined and found to be TGFβ mRNA negative (Söderdahl et al., 1988; Derynick et al., 1987; Lagadec et al., 1991). In one of these studies (Lagadec et al., 1991) the examined cell lines included GLC 14, 16 and 19, NCI H69 and N417, all these were TGFβ mRNA negative. These cell lines were also included in our panel, but we found expression of TGFβ1 mRNA in GLC 19 and NCI N417. This transcript was detected as a 2.5 kb band using both the full length CDNA and the 267 bp TGFβ fragment. The difference between our results and the previous reported study (Lagadec et al., 1991), is not apparent, but could be due to a difference in sensitivity.

Our results based on a panel of 21 SCLC cell lines have demonstrated that TGFβ receptors were present in seven of 21 SCLC cell lines and more than half of the cells examined expressed TGFβ mRNA. About half of the examined cell lines grew as monolayer cultures and half as floating aggregates, but we could not detect any statistical difference between the growth morphology and the expression of TGFβ- or TGFβ mRNAs (Chi-square test with Yates correction and Fisher’s exact test, P < 0.2). Coexpression of TGF-β and the ligand was found in six cell lines. These cell lines therefore might exhibit autocrine growth regulation. The question whether the SCLC cell lines produce TGFβ protein and if this is biologically active is currently being investigated.

This work was supported by the Danish Cancer Society, the Danish Research Academy, the Haenck’s foundation, the Madsen foundation and the Vissing’s foundation. The authors thank Mrs C. Jespersen and J. Rørsmann for technical assistance.

References

ANDRES, J.L., STANLEY, K., CHEIFETZ, S. & MASSAGUÉ, J. (1989). Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-β. J. Cell Biol., 109, 3137–3145.

BERNARD, J.A., LYONS, R.M. & MOSAES, H.L. (1990). The cell biology of transforming growth factor β. Biochim. Biophys. Acta, 1032, 79–87.

BEPLER, G., JAQUES, G., NEUMANN, K., AUMÜLLER, G., GROPP, C. & HAVEMANN, K. (1987). Establishment, growth properties, and morphological characteristics of permanent human small cell lung cancer cell lines. J. Cancer Res. Clin. Oncol., 113, 31–40.

BERENDSEN, H.H., DE LEIJ, L., DE VRIES, E.G.E., MESANDER, G., MULDER, N.H., DE JONG, B., BUYS, C.H.C.M., POSTMUS, P.E., POPPEMA, S., SLUITER, H.J. & THE, H.T. (1988). Characterization of three small cell lung cancer cell lines established from one patient during longitudinal follow-up. Cancer Res., 48, 6891–6899.

BERGH, J. (1988). The expression of the platelet-derived and transforming growth factor genes in human non-small lung cancer cell lines is related to tumor stroma formation in nude mice tumors. Am. J. Pathol., 133, 434–439.

BOYD, F.T. & MASSAGUÉ, J. (1989). Transforming growth factor-β inhibition of epithelial cell proliferation linked to the expression of a 52-kDa membrane receptor. J. Biol. Chem., 264, 2272–2278.

CARNEY, D.N., GAZDAR, A.F., BEPLER, G., GUCCION, J.G., MARANGOS, P.J., WOODDY, T.W., ZIEG, J. & MINNA, J.D. (1985). Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res., 45, 2913–2923.

CARPENTER, G., STOSCHECK, C.M., PRESTON, Y.A. & DE LARCO, J.E. (1983). Antibodies to the epidermal growth factor receptor blocks the biological activities of sarcoma growth factor. Proc. Natl Acad. Sci. USA, 80, 5627–5630.

CHEIFETZ, S., LING, N., GUILLÉMIN, R. & MASSAGUÉ, J. (1988). A surface component on GH, pituitary thyrophan–phenol–chloroform extraction. Anal. Biochem., 162, 156–159.

DAMSTRUP, L., RYGAARD, K., SPANG-THOMSEN, M. & SKOVGAARD POULSEN, H. (1992). Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines. Cancer Res., 52, 3089–3093.

DE LEIJ, L., POSTMUS, P.E., BUYS, C.H.C.M., ELEMA, J.D., RAMEAUKERS, F., POPPEMA, S., BROUWER, M., VAN DER VEEN, A.Y., MESANDER, G. & THE, T.H. (1985). Characterization of three variant type cell lines derived from small cell carcinoma of the lung. Cancer Res., 45, 6024–6033.

DE MARTIN, R., HAErENGER, H., HOER-WARBINEK, R., GAUGITSCH, H., WRANN, M., SCHLUSENER, H., SEILERT, J.M., BODMER, S., FONTANA, A. & HOER, E. (1987). Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-β gene family. EMBO J, 6, 3673–3677.

DERYNCK, R., JARRETT, J.A., CHEN, E.Y., EATON, D.H., BELL, J.R., ASSOCIAN, R.K., ROBERTS, A.B., SPORN, M.B. & GOEDEL, D.V. (1985). Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature, 316, 701–705.

DERYNCK, R., GOEDEL, D.V., ULLRICH, A., GUTTERMANN, J., WILLIAMS, R.D., BRINGMAN, T.S. & BERGER, W.H. (1987). Synthesis of messenger RNAs for transforming growth factor α and β and the epidermal growth factor receptor by human tumors. Cancer Res., 47, 707–712.

DUKE, P.T., HANSEN, P., IWATA, K.K., PIELER, C. & FOULKES, J.G. (1988). Identification of another member of the transforming growth factor type β gene family. Proc. Natl Acad. Sci. USA, 85, 4715–4719.

ENGELHOLM, S.A.A., SPANG-THOMSEN, M., VINDELOV, L.L., BRÜNNER, N., NIELSEN, M.H., HIRSCH, F., NIelsen, A. & HANSEN, H.H. (1986). Comparison of characteristics of human small cell carcinoma of the lung in patients, in vitro and transplanted into nude mice. Acta Path. Microbiol. Immunol. Scand., 94, 325–336.

FEINBERG, A.P. & VOGELSTEIN, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem., 132, 6–13.

FRIJL, C.A., WAKEFIELD, L.M., SMITH, D.M. & SPORN, M.B. (1984). Characterization of a membrane receptor for transforming growth factor-β in normal rat kidney fibroblasts. J. Biol. Chem., 259, 10993–11000.

GUNNING, P., PONTE, P., OKAYAMA, H., ENGEL, J., BLAU, H. & KEDES, L. (1983). Isolation and characterization of full-length cDNA clones for human α-, β- and (gamma-)actin mRNA: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Mol. Cell. Biol., 3, 787–795.
JAKOWLEW, S.B., DILLARD, P.J., SPORN, M.B. & ROBERTS, A.B. (1988). Complementary deoxyribonucleic acid cloning of an mRNA encoding transforming growth factor-beta 4 from chicken embryo chondrocytes. Mol. Endocrinol., 2, 1186–1195.

JAKOWLEW, S.J., DILLARD, P.J., WINKUR, T.S., FLANDERS, K.C., SPORN, M.B. & ROBERTS, A.B. (1991). Expression of transforming growth factor-beta 1-4 in chicken embryo chondrocytes and myocytes. Develop. Biol., 143, 135–148.

KASID, A., BELL, G.I. & DIRECTOR, E.P. (1988). Effects of transforming growth factor-beta on human lymphokine-activated killer cell precursors. Autocrine inhibition of cellular proliferation and differentiation to immature killer cells. J. Immunol., 141, 690–698.

KIM, S.J., WAGNER, S., LIU, F., OREILLY, M.A., ROBBINS, P.D. & GREEN, M.R. (1992). Retinoblastoma gene product activates expression of the human TGF-beta gene through transcription factor ATF-2. Nature, 358, 331–334.

LAGADEC, P.F., SARAYA, K.A. & BALKWILL, F.R. (1991). Human small-cell lung cancer cells are cytokine-resistant but NK/LAK-sensitive. Int. J. Cancer, 48, 311–317.

LAIHO, M., DECAPRIO, J.A., LUDLOW, J.W., LIVINGSTON, D.M. & MASSAGUE, J. (1990). Growth inhibition by TGF-(beta) linked to suppression of retinoblastoma protein phosphorylation. Cell, 62, 175–185.

LIN, H.Y., WANG, X.-F., NG-EATON, E., WEINBERG, R.A. & LODISH, H.F. (1992). Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell, 68, 775–785.

MACKAY, K. & DANIELPOUR, D. (1991). Novel 150- and 180-kDa glycoproteins that bind transforming growth factor (TGF)-beta but not TGF-beta2 are present in several cell lines. J. Biol. Chem., 266, 10997–11001.

MADISEN, L., WEBB, N.R., ROSE, T.M., MARQUARDT, H., IKEDA, T., TWARDZIK, D.R., SEYEDIN, S.M. & PURCHIO, A.F. (1988). Transforming growth factor-beta: cDNA cloning and sequence analysis. DNA, 7, 1–8.

MASSAGUE, J. Identification of receptors for type beta transforming growth factor. In: Methods in Enzymology, Colowick, S.P. & Kaplan, N.O. (eds). Academic Press, 1987, p. 174–195.

MASSAGUE, J. (1990). The transforming growth factor-beta family. Annu. Rev. Cell Biol., 6, 597–641.

MASSAGUE, J. & LIKE, B. (1985). Cellular receptors for type beta transforming growth factor. J. Biol. Chem., 260, 2636–2645.

MILLER, D.A., LEE, A., MATSUI, Y., CHEN, E.Y., MOSES, H.L. & DERYNCK, R. (1989a). Complementary DNA cloning of the murine transforming growth factor-beta (TGF-beta) precursor and the comparative expression of TGF-beta and TGF-beta1 messenger RNA in murine embryos and adult tissues. Mol. Endocrinol., 3, 1926–1934.

MILLER, D.A., LEE, A., PELTON, R.W., CHEN, E.Y., MOSES, H.L. & DERYNCK, R. (1989b). Murine transforming growth factor-beta1 cDNA sequence and expression in adult tissues and embryos. Mol. Endocrinol., 3, 1108–1114.

MORI, H., MAKII, M., OISHI, K., JAYE, M., IGARASHI, K., YOSHIDA, O. & HATANAKA, M. (1990). Increased expression for basic fibroblast growth factor and transforming growth factor beta type II in human benign prostatic hyperplasia. Prostate, 16, 71–80.

MUNSON, P.J. & RODBARD, D. (1980). Ligand: a versatile computerized approach for characterization of ligand-binding systems. Analytical Biochem., 107, 220–239.

O'GRADY, P., KUO, M.-D., BALDASSARE, J.J., HUANG, S.S. & HUANG, J.S. (1991). Purification of a new type high molecular weight receptor (type V receptor) of transforming growth factor beta (TGFbeta) from bovine liver. J. Biol. Chem., 266, 8853–8859.

PELTON, R.W., SAXENA, B., JONES, M., MOSES, H.L. & GOLD, L.I. (1991). Immunohistochemical localization of TGFbeta1, TGFbeta2, and TGFbeta3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J. Cell Biol., 115, 1091–1105.

PELTON, R.W., MOSES, H.L. (1990). The beta-type transforming growth factor. Mediators of cell regulation in the lung. Am. Rev. Respir. Dis., 142, S1–S35.

PETTENGILL, O.S., SORENSON, M.G.D., WURSTER-HILL, D., CUR-PHEY, T.J., NOLL, W.W., CATE, C.C. & MAURER, L.H. (1980). Isolation and growth characteristics of continuous cell lines from small-cell carcinoma of the lung. Cancer, 45, 906–918.

RYGAARD, K., SORENSEN, G.D., PETTENGILL, O.S., CATE, C.C. & SPANG-THOMSEN, M. (1990). Abnormalities in structure and expression of the retinoblastoma gene in small cell lung cancer cell lines and xenografts in nude mice. Cancer Res., 50, 5312–5317.

SATCHARD, G. (1949). The attractions of proteins for small molecules and ions. Annals NY Acad. Science, 51, 660–672.

SEGRINI, P.R., ROBERTS, A.B., ROSEN, D.M. & SEYEDIN, S.M. (1987). Membrane binding characteristics of two forms of transforming growth factor-beta. J. Biol. Chem., 262, 14655–14662.

SKOVGAARD POULSEN, H. (1981). Oestrogen receptor assay – limitations of the method. Eur. J. Cancer, 17, 495–501.

SMITH, P.K., KROHIN, R.L. & HERMANSON, G.T. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochem., 146, 76–85.

SÖDERDHAL, G., BETSCHOLTZ, C., JOHANSSON, A., NILSSON, K. & BERGH, J. (1988). Differential expression of platelet-derived growth factor and transforming growth factor genes in small- and non-small-cell human lung carcinoma lines. Int. J. Cancer, 41, 38–45.

TEMPLETON, D.J., PARK, S.H., LANIER, L. & WEINBERG, R.A. (1991). Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc. Natl Acad. Sci. USA, 88, 3033–3037.

TUCKER, R.F., BRANUM, E.L., SHIPLEY, G.D., RYAN, R.J. & MOSES, H.L. (1984). Specific binding to cultured cells of 125I-labelled type beta transforming growth factor from human platelets. Proc. Natl Acad. Sci. USA, 81, 6757–6761.

WAKEFIELD, L.M. An assay for type beta transforming growth factor receptor. In: Methods in Enzymology, Colowick, S.P. & Kaplan, N.O. (eds). Academic Press, 1987, p. 167–173.

WANG, X.-F., LKIN, H.Y., NG-EATON, E., DOWNWARD, J., LODISH, H.F. & WEINBERG, R.A. (1992). Expression cloning and characterization of the TGF-beta type III receptor. Cell, 67, 797–805.

WATRIN, F., SCOTTO, L., ASSOIAN, R.K. & WOLGEMUTH, D.J. (1991). Cell lineage specificity of expression of the murine transforming growth factor beta, and transforming growth factor beta1 gene. Cell Growth Differ., 2, 77–83.