Production of charged Higgs H^\pm through cb-fusion at LHC

J. Hernández-Sánchez
Fac. de Cs. de la Electrónica, Benemérita Universidad Autónoma de Puebla,
Apartado Postal 1152, 72570 Puebla, Puebla, México
Dual CP Institute of High Energy Physics, C.P. 28045, Colima, México

C. G. Honorato
Fac. de Cs. de la Electrónica, Benemérita Universidad Autónoma de Puebla,
Apartado Postal 1152, 72570 Puebla, Puebla, México

S. Moretti
School of Physics and Astronomy, University of Southampton,
Highfield, Southampton SO17 1BJ, United Kingdom,
and Particle Physics Department, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon OX11 0QX, United Kingdom and
Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

S. Rosado-Navarro
Fac. de Cs. Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla,
Apartado Postal 1364, C.P. 72570 Puebla, Puebla, México

We consider the framework of the 2-Higgs Doublet Model Type III (2HDM-III), wherein two doublets are coupled to both up and down fermions and Flavour Changing Neutral Currents (FCNCs) are controlled by a four-zero texture approach in the Yukawa matrices. We study the production of charged Higgs bosons (H^\pm) by means of cb-quark fusion followed by the decay channel $H^\pm \rightarrow \tau^\pm \nu$. Taking into account all experimental bounds as well as theoretical constraints, we show that, in a lepton-specific-like incarnation of the model, we obtain a significant sensitivity to such a process at the Large Hadron Collider (LHC). We come to this conclusion after a thorough Monte Carlo (MC) analysis comparing the aforementioned signal to both irreducible and reducible backgrounds from the SM.

* jaime.hernandez@correo.buap.mx
† carlosg.honorato@correo.buap.mx
‡ s.moretti@soton.ac.uk; stefano.moretti@physics.uu.se
§ sebastian.rosado@protonmail.com
I. INTRODUCTION

The Standard Model (SM) limit of Electro-Weak Symmetry Breaking (EWSB) dynamics induced by a Higgs potential exists in several Beyond the SM (BSM) extensions of the Higgs sector. The 2HDM [1] in its Types I, II, III (or Y) and IV (or X), wherein FCNCs mediated by (pseudo)scalar Higgs states can be eliminated under discrete symmetries [11], is one notable example. However, another, equally interesting 2HDM is the one where FCFNs can be controlled by a particular texture in the Yukawa matrices [2]. This model has a phenomenology that is very rich (see, e.g., Refs. [3–5]), like flavour-violating quarks decays. Furthermore, in this BSM scenario, the parameter space can avoid many of the current experimental constraints from flavour and Higgs physics, so that a light charged Higgs boson (i.e., with a mass below the top quark one) is allowed [10] and the decay $H^- \rightarrow b\bar{c}$ can have a dominant Branching Ratio (BR), much larger than those of the flavour diagonal $c\bar{c}$ and $t\bar{t}$ channels. (Notice that this channel has been studied in a variety of Multi-Higgs Doublet Models (MHDMS) [11,12], wherein the BR($H^- \rightarrow b\bar{c}$) \approx 0.7–0.8 and one could obtain a considerable gain in sensitivity to the H^\pm presence by tagging the b (anti)quark. An experimental framework to search for this kind of signal has been investigated in [13].

In this work, by exploiting such an enhancement of the $H^- \rightarrow c\bar{b}$ vertex and building upon the results previously presented in Ref. [14], we study the production of a light charged Higgs state at the LHC via heavy-quark fusion $b\bar{c} \rightarrow H^-$ followed by the decay $H^- \rightarrow \tau\bar{\nu}_\tau$ (hereafter, charge conjugated channels are always implied), with the τ decaying leptonically. We investigate this process in the framework of the aforementioned 2HDM-III with so-called lepton-specific couplings and assess the LHC sensitivity to this production and decay dynamics against the irreducible background $qq' \rightarrow W^- \rightarrow \tau\bar{\nu}_\tau$ as well as the reducible noise due to $gg' \rightarrow W^\pm q$ (with an additional jet) and $q\bar{q} \rightarrow W^+W^- \rightarrow l^+l^-\nu\nu$ (where one lepton escapes detection).

II. THE 2HDM-III

As explained in [14] (and references therein), owing to the presence of a four-zero Yukawa texture as the mechanism to control FCNCs, the Yukawa sector of the 2HDM-III does not need a discrete symmetry [3–9]. Therefore, the Higgs potential for both doublets is given in the most general form,

$$V(\Phi_1, \Phi_2) = \mu_1^2(\Phi^\dagger_1 \Phi_1) + \mu_2^2(\Phi^\dagger_2 \Phi_2) - \mu_{12}(\Phi^\dagger_1 \Phi_2) + h.c.$$ \hspace{1cm} (1)

where the doublets $\Phi_i = (\phi^-, \phi^0_i) \ (i = 1, 2)$ have hypercharge +1 and all parameters of the Higgs potential are real, including the Vacuum Expectation Values (VEVs). In such a scenario, the Yukawa sector is given by

$$\mathcal{L}_Y = \left(Y_{1u}^u \bar{Q}_L \Phi_1 u_R + Y_{2u}^u \bar{Q}_L \Phi_2 u_R + Y_{1d}^d \bar{Q}_L \Phi_1 d_R + Y_{2d}^d \bar{Q}_L \Phi_2 d_R + Y_{1l}^e \bar{l}_L \Phi_1 \ell_R + Y_{2l}^e \bar{l}_L \Phi_2 \ell_R \right),$$ \hspace{1cm} (2)

where $\bar{\Phi}_i = i\sigma_2 \Phi_i^* \ (i = 1, 2)$ and the two doublets are coupled with both up and down type fermions. After EWSB and the diagonalisation of the fermion matrices we can obtain, as a good approximation, the rotated matrices Y^f_α by means of

$$Y^f_\alpha = \sqrt{\frac{m^f_i m^f_j}{v}} \chi^f_{ij},$$ \hspace{1cm} (3)

being the χ's parameters constrained by flavour physics, discussed widely in [8]. So, the interactions of charged Higgs bosons with fermions are given by

$$\mathcal{L}^{\bar{f}_\alpha} = -\left(\frac{\sqrt{2}}{v} \bar{u}_i(m_d X_{ij} P_R + m_u Y_{ij} P_L) d_j H^+ + \sqrt{2} \frac{\sqrt{2}}{v} m_{\ell} Z_{ij} \bar{\nu}_i \ell_R H^+ + h.c. \right),$$ \hspace{1cm} (4)

where X_{ij}, Y_{ij} and Z_{ij} are defined in [14], all being functions of the parameters χ's, in such a way that we can recover the usual models with discrete symmetry when the latter are absent. In general, the fermion-fermion-Higgs couplings $(\phi f f)$ in our model can be written as $g^{off}_{2HDM - III} = g^{off}_{2HDM - with - discrete - symmetry} + \Delta g$, being Δg the contribution of the Yukawa texture.
III. NUMERICAL ANALYSIS

In this section, we present a brief report about some of the best Benchmark Points (BPs) available over the 2HDM-III parameter space in its lepton-specific incarnation. Full details about the numerical analysis can be found in [14]. In figure 1 we estimate the number of events $b\bar{c} \rightarrow H^+ \rightarrow \tau \nu$, with respect to the Z and Y parameters. The coloured regions represent parameter space that satisfies both theoretical and experimental constraints (for details, see [14]), specifically assuming $M_{H^\pm} = 120$ GeV. From these, we select one BP with $Y = 1.6$ and $Z = -20$ ($X = -1/Z = 0.04$), which produces around two million events at the LHC for current energy and luminosity. The main irreducible background comes from $q\bar{q} \rightarrow W^\pm \rightarrow \tau \nu$. However, the reducible backgrounds $gp \rightarrow W^\pm q$ and $q\bar{q} \rightarrow W^+W^-$ have to be considered too.

We then proceed to a full MC analysis, by using CalcHEP 3.7 [15] as an events generator, PYTHIA6 [16] for parton shower and PGS [17] as detector emulator (all details can be found [14]). Further, the final state particle kinematics was mapped with the help of MadAnalysis5 [18]. Because we look for leptonic τ decays, multiple neutrinos in the final state prevent us from reconstructing its invariant mass. Thus, we need to rely on the transverse mass to access the H^\pm mass, so that figure 2 presents its shape for both signal and (total) background. In this plot, is possible to
see a Jacobian peak associated with the charged Higgs boson mass, to which it can be fit. However, the background produced a much larger number of events. Therefore, it is necessary to impose a set of cuts to extract our signal.

For the purpose of optimising our Signal \((S)\) versus background \((B)\) ratio, the first important condition to exploit is a jet veto in the final state. This initial cut reduces the background by half, while more than 60\% of the signal is preserved. For the rest of the events, we demand the following: \(p_T(l) > 45\text{ GeV}\), \(40\text{ GeV} < E_T < 70\text{ GeV}\), \(|\eta(l)| < 1.2\) and \(E_T > 55\text{ GeV}\). After imposing this set of cuts, the behaviour of the transverse mass is shown in figure 3. The final selection is over such a transverse mass. For the targeted \(H^\pm\) mass, we demand \(85\text{ GeV} < M_{T}(l) < 125\text{ GeV}\).

The numerical results after imposing the described cuts are found in table 1.

| Cut 1: \(p_T(k)\) | Cut 2: \(E_T\) | Cut 3: \(|\eta(l)|\) | Cut 4: \(E_T\) | Cut 5: \(M_T(l)\) |
|------------------|-------------|----------------|-------------|----------------|
| Signal | 294136 | 237167 | 215684 | 85480 | 82147 |
| Background | 27527568 | 7919086 | 3832807 | 1060294 | 795470 |

TABLE I. Number of events after imposing the cuts described in the text. The significance is \(S = S/\sqrt{S+B} = 87.68\). (From [14].)

FIG. 3. Transverse mass for signal and background after impose the cuts. (From [14].)

The numerical results after imposing the described cuts are found in table 1.

IV. CONCLUSIONS

To conclude, we believe it possible to extract a charged Higgs boson signal at the LHC within the 2HDM-III scenario in its lepton-specific incarnation, by searching for \(b\bar{c} \rightarrow H^- \rightarrow \tau \bar{\nu}_\tau\), with the \(\tau\) identified via decays into electrons/muons and corresponding neutrinos. If not already with present data for light charged Higgs bosons (as exemplified here), this could well happen by the end of Run 3 over a \(H^\pm\) mass interval ranging from 100 GeV or so up to the TeV scale, as seen in Ref. [14]. However, in order to achieve this, a dedicated selection procedure is required to be optimised around a tentative charged Higgs boson mass value, in order to suppress backgrounds effectively, both reducible and irreducible ones. We have obtained such results through a sophisticated MC analysis down to the detector level, so that we believe these to be solid enough to deserve further investigations by ATLAS and CMS.

[1] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Phys. Rept. 516, 1 (2012) [arXiv:1106.0034 [hep-ph]].
[2] H. Fritzsch and Z. z. Xing, Phys. Lett. B 555, 63 (2003) [hep-ph/0212195].
[3] J. L. Díaz-Cruz, J. Hernández–Sánchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, Phys. Rev. D 79, 095025 (2009) [arXiv:0902.4490 [hep-ph]].
[4] J. Hernández-Sánchez, O. Flores-Sánchez, C. G. Honorato, S. Moretti and S. Rosado, PoS CHARGED 2016, 032 (2017) [arXiv:1612.06316 [hep-ph]].

[5] J. Hernández-Sánchez, S. P. Das, S. Moretti, A. Rosado and R. Xoxocotzi-Aguilar, PoS DIS 2015, 227 (2015) [arXiv:1509.05491 [hep-ph]].

[6] S. P. Das, J. Hernández-Sánchez, S. Moretti, A. Rosado and R. Xoxocotzi, Phys. Rev. D 94, no. 5, 055003 (2016) [arXiv:1503.01464 [hep-ph]].

[7] A. Cordero-Cid, J. Hernández-Sánchez, C. G. Honorato, S. Moretti, M. A. Pérez and A. Rosado, JHEP 1407, 057 (2014) [arXiv:1312.5614 [hep-ph]].

[8] O. Féliz-Beltrán, F. González-Canales, J. Hernández-Sánchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, Phys. Lett. B 742, 347 (2015) [arXiv:1311.5210 [hep-ph]].

[9] J. Hernández-Sánchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, PoS CHARGED 2012, 029 (2012) [arXiv:1302.0083 [hep-ph]].

[10] J. Hernández-Sánchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, JHEP 1307, 044 (2013) [arXiv:1212.6818 [hep-ph]].

[11] A. G. Akeroyd et al., Eur. Phys. J. C 77, no. 5, 276 (2017) [arXiv:1607.01320 [hep-ph]].

[12] A. G. Akeroyd, S. Moretti and J. Hernández-Sánchez, Phys. Rev. D 85, 115002 (2012) [arXiv:1203.5769 [hep-ph]].

[13] Slabospitsky, S. R., CMS-NOTE-2002-010 (2002) [arXiv:0203094[hep-ph]].

[14] J. Hernández-Sánchez, C. G. Honorato, S. Moretti and S. Rosado-Navarro, Phys. Rev. D 102, no.5, 055008 (2020) doi:10.1103/PhysRevD.102.055008 [arXiv:2003.06283 [hep-ph]].

[15] A. Belyaev, N. D. Christensen and A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013) [arXiv:1207.6082 [hep-ph]].

[16] T. Sjöstrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006) [hep-ph/0603175].

[17] J. Conway, R. Culbertson, R. Demina, B. Kilminster, M. Kruse, S. Mrenna, J. Nielsen, M. Roco, A. Pierce, J. Thaler and T. Wizansky, http://conway.physics.ucdavis.edu/research/software/pgs/pgs4-general.htm.

[18] E. Conte, B. Fuks and G. Serret, Comput. Phys. Commun. 184, 222 (2013) [arXiv:1206.1599 [hep-ph]].