Electric Drive Simulation for Drilling Machine Spinner

V I Malarev, A V Kopteva, R A Nogtev

Electromechanical Faculty
Department of Electric Power Engineering and Electromechanics
Saint-Petersburg Mining University, 21-st line, Saint-Petersburg, 199106, Russian Federation

E-mail: malarev@yandex.ru, alexandrakopteva@gmail.com

Abstract. The present work discloses the scheme of the automated control system that allows automated leaving the vibration mode by the drilling machine with the indirect vibration measuring method. In addition, the system allows entering the constant power method by the engine. This paper presents a system simulation and reveals that the machine spinner electric drive engine facilitates operating the working branch of mechanical characteristics in the mode of maintaining the set speed to the maximum torque (power specified), followed by moving into the constant power mode that facilitates moving the machine off the vibration zone by means of a small decrease of the drilling string rotation frequency. The article proves that the most radical automation approach suggests using the asynchronous engine drive vector control system in a manner that provides the best regulation accuracy possible.

1. Introduction
If a random process is made more complicated by vibrations that emerge in a system, it is the drilling process automation that may become quite a challenge. Automated electric drive systems would be necessary to allow controlling the drilling mode parameters in the most efficient way. Only then it will be possible to maintain the optimal drilling mode in full accordance with the performance criterion approved [1,2].

The main direction for improving the electric drive systems of the drilling machine main mechanisms is to use the automated semiconductor alternate current electric drives with a wide range of rotation frequencies, high dynamic characteristics [3,4]. Usage of such drives facilitates performance improvement and reduces bore works cost, also reducing power spending, and improving the working conditions for the service personnel [1].

The present work aims to obtain the mode of the drilling machine leaving automatically the vibration mode.

2. Equipment and devices used in studies
The most applicable machines in the Russian Federation are drilling ones of SBSH type with the main parameters:
- drilling diameter: 243 - 269 mm;
- depth of drilling: 32000 mm;
- weight: 70 000 kg;
angle of inclination of the well to the vertical: 0; 15; 30 deg.;
travel speed: 0.8 km / h;
dimensions:
 - with a raised mast: 9200 x 5450 x 15450 mm;
 - with the lowered mast: 15000 x 5450 x 6500 mm.
Machine drive: Electric or Diesel Cummins QSK19;
the upper limit of the rotational speed of the drilling rig, rpm: 120-150;
capacity at rock strength f=16 to 18, m/hr: 13.5;
feed force upper limit, kN: 350 – 400;
drill bit rated torque, Nm: 6000 – 6500;
maximum torque of the rotator, Nm: 7000 - 21000.

SBSH-250 self-propelled crawler mounted drilling machines are designed for roller bit drilling of vertical and inclined blast holes and are used in mining mineral resources as well as in building canals and hydro technical facilities.

This drill rig ranks as the best among those available commercially. The specifications and performance indices of the drill rig are comparable with those equipment manufactured by leading companies outside the CIS. From the moment of production of the first machine to today engineering specifications for the prototype system for the automatic control of auxiliary operations for the SBSH had been improved and adjusted, thus allowing considerable time savings.

The existing drilling units are capable of drilling in major operating modes, and the spinner mechanisms in the machines like SBSH-250MNA-32 (SBSH-250MN), produced by national manufacturers, are equipped with direct current electric drives with the system that comprises a thyristor rectifier and an engine (TP-D) [5,6].

To maintain the necessary characteristics sustainable, the negative feedback by anchor speed and the inner current loop are engaged. Automated frequency drives of the TPH-AD systems with non-contact asynchronous drives (AD) and the systems of scalar and vector control look more promising [7].

Let us consider the alternating current electric drive of the EKT-2 (AT04) type with scalar control system for the feedback by speed, the inner loop, the 4A280S6 drive (Fig.1), 75 kW of power and with the additional loop introduced.

Figure 1 shows the AD structure comprising an aperiodic link $K/(T_p+1)$, the multiplier M_2 of the magnetic flux on current $\{\Psi_0|j\}$, coefficient $C_m\{C_{in}\Psi_0|j = M\}$, the integrating link $(1/J_p)$; PC and PT are the regulators of the speed and the current; the element with the coefficient K_n, which pre-enables the system to create initial magnetic flux (under $\omega = 0$) to prevent noticeable dynamic torques in the drilling string on inputting the speed ω; K_n and K_d are the feedback links by speed and current.

The situation, when a drilling machine begins operating in vibration mode, is undesirable, imposing limitations on performance of works. The time needed to leave the vibration mode depends on the operator’s experience, and in a number of cases the drilling process has to be interrupted [8,9].

Disclosing the vibration mode and leaving the vibration zone automatically without using a direct vibration measurement sensor (the indirect method) required an additional loop (DK) to be introduced into the scheme. The additional loop links are F – the filter; NE – nonlinear element; M – multiplier; P_{zad} – the power specified. Exceeding the specified power P_{zad} at the output of the nonlinear element results in a signal to reduce the speed [10-12].

For the purpose of simulation, the DK is composed by means of typical software visual library blocks, and so is the electric drive, too. As for the hardware, the DK may be implemented on a circuit board with two chips of the 525th and 553rd series.

Simulation of electric drive dynamics with the Simulink system of the MatLab software package allowed comparing the reaction to abrupt load change and the linear change of the speed specified at launch, with the limitation imposed on the maximum power and voltage values of the TPH. 4A280S6
asynchronous engine model was implemented in accordance with Gorev-Park equation, with the machine’s magnetic system saturation in transition modes taken into account [13-15].

Figure 2 shows the process of the drive acceleration with an additional loop during launch within 0.5 second entering the constant power mode.

The acceleration increases power consumed by the engine, including the extra consumption resulting from the machine vibration [16]. In this case, there is a signal at the comparison device US output, the signal passes through the nonlinear element NE and the filter to cause the voltage task signal decrease, and so does the AM speed in accordance with the power P_{zad} set [17-19].

![Electric drive automated control system structure diagram](image)

Figure 1. Electric drive automated control system structure diagram

This causes the machine to leave the fluctuation zone, lowering the vibrations amplitude and providing better performance, and better strength of drilling heads.

Figure 2 (downwards):
By Ordinate Axis – engine rotation speed, ω, rad/sec.;
1 – asynchronous engine current ($I_{\text{max}} = 300$ A);
2 – setting the speed and the actual electric engine speed (1:1 scale);
3 – frequency convertor voltage ($U_{\text{max}} = 230$ V);
4 – flux level (main magnetic flux engagement) (1.2 Wb);
5 – engine torque value (peak value of 1400 Nm).

![Transition process on AD 4A280S6 entering the constant power operation mode](image)

Figure 2. Transition process on AD 4A280S6 entering the constant power operation mode
Figure 3 represents the electric drive model scheme implemented by means of Simulink software library blocks.

Figure 3 depicts:
- ZI – intensity setter;
- SAP – automated regulation system, implemented in accordance with the figure 1 with an additional loop DK within the SAP subsystem;
- PH – amplifying and converting device;
- AM – asynchronous engine, load with the idle run torque \(M_o \) specified.

3. Results and discussion
System simulation revealed that the machine spinner electric drive engine facilitates operating the working branch of mechanical characteristics in the mode of maintaining the set speed to the maximum torque (power specified), followed by moving into the constant power mode that facilitates moving the machine off the vibration zone by means of small decrease of the drilling string rotation frequency.

4. Conclusion
The performed research allows one to conclude the following:
1. The spinner asynchronous electric engine with scalar control structure, feedback by the speed \(\omega \) and additional loop provides necessary drilling machine operating modes including the operation approaching the vibration zone.
2. The most radical automation approach suggests using the asynchronous engine drive vector control system in a manner that provides the best regulation accuracy possible [20].

5. Acknowledgment
The presented results were obtained as a part of scientific researches according to contract № 13.3746.2017/8.9 within the scope of the State task “The designing on the base of systematic and logic probability evaluations of the rational and economically proved structure of centralized, autonomous and combined power supply systems with a high reliability and stability level with usage of alternative and renewable power sources for uninterrupted power supply of enterprises with continuous technological cycle”.
References
[1] Alekseev V V and Soloviev A S 1997 Automated electric drive of spinner drill machines (Saint-Petersburg: Mining University Published)
[2] Koptev V Yu and Kopteva A V 2017 Developing an Ecological Passport for an Open-Pit Dump Truck to Reduce Negative Effect on Environment IOP Conference Series: Earth and Environmental Science 66 doi:10.1088/1755-1315/66/1/012009
[3] Kosmodamianskii A S and Vorob’ev V I 2016 Russ. Electr. Engin. 87 doi.org/10.3103/S1068371216090078
[4] Hughes A 2005 Electric motors and drives: fundamentals, types, and applications (Newnes) pp 286–289
[5] Zhukovsky A A, Nankin Yu A and Sushinsky V A 1990 Drive and control systems for drilling machines for pits (Moscow: Nedra Publication)
[6] Belsky A A and Sychev Yu A 2016 Active compensation of voltage dips, deviations and distortions in electrical networks with highly variable loads and long lines Conf. Electric Power Quality and Supply Reliability (PQ) (Tallinn, Estonia IEEE Xplore) doi: 10.1109/PQ.2016.7724087
[7] Belsky A A and Dobush V S 2016 Oil well electrical heating facility utilizing heating cable powered by autonomous wind-driven power unit Dynamics of Systems, Mechanisms and Machines (Dynamics-2016) (Omsk, Russia, IEEE Xplore) doi: 10.1109/Dynamics.2016.7818979
[8] Proskuryakov R M and Kopteva A V 2016 Nondestructive techniques to control the quality and quantity of oil flows Journal of Mining Institute 564-568 doi: http://dx.doi.org/10.18454/pmi.2016.4.564
[9] Abramovich, B N, Ustinov D A, Sychev Yu A and Shkljarskiy A Y 2014 The methods of voltage dips and distortion compensation in electrical networks of oil production enterprises Oil Industry 8 pp 110-112
[10] Cheremushkina M S and Poddubnyi D A 2017 Reducing the Risk of Fires in Conveyor Transport IOP Conference Series: Earth and Environmental Science 50 doi:10.1088/1755-1315/50/1/012043
[11] Koptev V Yu and Kopteva A V 2017 Developing an Ecological Passport for an Open-Pit Dump Truck to Reduce Negative Effect on Environment IOP Conference Series: Earth and Environmental Science 87 doi:10.1088/1755-1315/87/2/022010
[12] Zwyssig C, Kolar J W and Round S D 2009 Megaspeed Drive Systems: Pushing Beyond 1 Million rpm IEEE/ASME Trans. Mechatron 14 (5) 564-574
[13] Ottestad M, Nilsen N and Hansen M 2012 Reducing the static friction in hydraulic cylinders by maintaining relative velocity between piston and cylinder International Conference on Control, Automation and Systems pp 764–769
[14] Pawlus W, Hansen M R, Choux M and Hovland G 2016 Mitigation of fatigue damage and vibration severity of electric drivetrains by systematic selection of motion profiles IEEE/ASME Transactions on Mechatronics 21(6) 2870–2880 doi:10.1109/TMECH. 2016.2573587
[15] Koptev V Yu 2017 Improving machine operation management efficiency via improving the vehicle park structure and using the production operation information IOP Conference Series: Materials Science and Engineering 177 doi.org/10.1088/1757-899X/177/1/012005
[16] Shklyarskiy Ya E and Shklyarskiy A Ya 2017 Registration of reactive power for case of distortions in electric grid IOP Conference Series: Earth and Environmental Science 87 doi.org/10.1088/1755-1315/87/3/032041
[17] Zagrivniy E A and Poddubnyi D A 2018 A Vibrating Jaw Crusher with Auteresonant Electric Motor Drive of Swinging Movement IOP Conference, Series: Earth and Environmental Science 115 doi.org/10.1088/1755-1315/115/1/012044
[18] Abramovich B N and Sychev Yu A 2016 Problems of ensuring energy security for enterprises from the mineral resources sector Journal of Mining Institute 217 132-139
[19] Lykov Yu V, Gorelikov V G and Baatarkhuu Gantulga 2017 Analytical research and classification of mechanism of diamond drilling-bits contact with rocks during well sinking *IOP Conference Series: Earth and Environmental Science* **115** doi.org/10.1088/1755-1315/115/87/2/022012

[20] Bolshunova O M, Kamyslian A and Bolshunov A V 2017 Diagnostics of career dump truck traction induction motors technical condition using wavelet analysis *Conference Series: Dynamics of Systems, Mechanisms and Machines, Dynamics* (Omsk, Russia, IEEE Explore) doi: 10.1109/Dynamics.2016.7818988