Effects of NO$_2$ and Ozone on Pollen Allergenicity

Ulrike Frank * and Dieter Ernst

Institute of Biochemical Plant Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany

This mini-review summarizes the available data of the air pollutants NO$_2$ and ozone on allergenic pollen from different plant species, focusing on potentially allergenic components of the pollen, such as allergen content, protein release, IgE-binding, or protein modification. Various *in vivo* and *in vitro* studies on allergenic pollen are shown and discussed.

Keywords: pollen, allergens, NO$_2$, ozone, air pollution

INTRODUCTION

Allergic diseases are increasing in Europe. The potential reasons discussed for this trend include climate change and anthropogenic air pollution (Kramer et al., 2000; Ring et al., 2001). It has been shown that ozone and NO$_2$, which are two important air pollutants, can have an adverse effect on human health, e.g., the lung function, such as the initiation of lung inflammation by ozone (Kagawa, 1985; Uysal and Schapira, 2003). These air pollutants not only affect human health but also impact plants and their pollen. Ground level ozone, which is a secondary pollutant, is the result of a photochemical reaction of volatile organic compounds and nitrogen oxides (NO$_x$), which are mainly produced by combustion processes during energy production, industrial processing or car traffic. Ozone again can also interact with NO$_x$. In rural areas, NO$_3$ concentrations of up to 20 ppb can be measured, whereas in urban traffic regions, values up to 90 ppb are detectable. In case of ozone, ozone levels along high traffic roads are often low, since ozone is depleted due to the high NO-concentration. At rural sites ozone concentrations often are higher, even so less precursors components are available, since polluted air is transported to the country sites and can react to ozone while the transport. The information threshold for ozone is 1-h average of 90 ppb, but on sunny days alert threshold level of 120 ppb 1-h average can be reached (www.eea.europa.eu).

Air pollution can impact pollen morphology, the pollen cell wall, the pollen protein content or protein release from the pollen as well as the pollen protein itself. In addition, the pollen coat, which is a complex mixture of pigments, waxes, lipids, aromatics and proteins (Edlund et al., 2004), might be impaired due to air pollution. Regarding pollen allergenicity, not only allergenic proteins do play a role, but pollen-derived lipids, which are also called pollen-derived lipid mediators (PALMs), also interact with the immune system and can modify the allergenic reaction (Traidl-Hoffmann et al., 2003; Bashir et al., 2013).

THE IMPACT OF OZONE ON POLLEN ALLERGENICITY

Concerning the effect of traffic-/industrial-related air pollution on allergenic pollen, most studies have been interested in the allergens, including the allergen content, the possibility of allergen/protein release from the pollen or possible modifications to the allergens. Interestingly,
approximate=
one-fourth of known plant allergens are pathogen-related proteins (PR-proteins), which are induced by different biotic and abiotic stresses, including ground-level ozone (Sandermann et al., 1998; Hoffmann-Sommergruber, 2002). One example is Bet v 1, the major allergen from birch (*Betula pendula*), which is a PR-10 protein. Beck et al. (2013) showed that the Bet v 1 allergen content is positively correlated with increasing ozone levels. This *in vivo* study also indicated significantly larger wheal and flare sizes in patients pricked with pollen extracts from high ozone stands, which was consistent with the higher Bet v 1 content in the pollen (Beck et al., 2013). Another PR protein known as an allergen is the thaumatin-like protein Cup a 3 from *Cupressus arizonica*, which was shown to increase under polluted air conditions (Cortegano et al., 2004; Suárez-Cervera et al., 2008). A further study on another tree species, *Pinus radita*, showed greater allergenicity in terms of prick test and specific IgE binding in connection with higher ozone levels in unpolluted areas (García-Gallardo et al., 2013). The sensitivity to specific IgE binding in connection with higher ozone levels resulted in an altered lipid composition of birch pollen, which led to a modulated immune response (Beck et al., 2013; Kanter et al., 2013). Concerning the specific IgE reactivity to *Q. robur* and *A. negundo* pollen extracts, the majority of the tested sera showed increased or unchanged IgE activity compared to the control, but for *Platanus* ssp., the untreated samples showed the highest IgE binding (Ribeiro et al., 2014). Increased allergen contents due to elevated ozone have also been shown for other plant species, such as *Lolium perenne* and *Secale cereale* (Masuch et al., 1997; Eckl-Dorna et al., 2010). A study on grass pollen (*Phleum pratense*) fumigated *in vitro* with 100 ppb ozone for 4 hours resulted in the acidification of several allergens (Phl p 1 b, 4, 5, and 6) as well as decreased IgE recognition of the allergens Phl p 1, 2, 6, and 13 in immunoblots, as explained by the mechanical loss of allergens from altered pollen grains (Rogerieux et al., 2007; Table 1). The exposure of *Phleum pratense* pollen to increasing ozone-concentrations from 100 ppb up to 5 ppm resulted in a significant increase in the naturally released pollen cytoplasmic granules (PCG), which are also known to contain allergens, and in more damage to the pollen grain. This mechanism of allergen release might explain the increase in thunderstorm asthma (Motta et al., 2006). Two other studies on *in vivo* and *in vitro* fumigated ragweed pollen did not find any differences in the allergen content of the major allergen Amb a 1 (Pasqualini et al., 2011; Kanter et al., 2013), but differences in the pollen cell wall and increased NADPH oxidase activity could be detected. NADPH oxidase activity was already shown to influence allergic reactions due to the release of reactive oxygen species (Bácsi et al., 2005). In addition, cell wall modifications might affect immune reaction: in ozone-fumigated ragweed pollen, reduced levels of wax compounds have been detected, and high ozone levels resulted in an altered lipid composition of birch pollen, which led to a modulated immune response (Beck et al., 2013; Kanter et al., 2013).

NO$_2$ IS IMPACTING THE POLLEN ALLERGENICITY

Several studies have been performed examining the influence of NO$_2$ on pollen allergenicity. Three *in vitro* studies exposing

Table 1: Studies of the effect of NO$_2$ and/or ozone on the allergenic potential of different pollen species.

Species	Pollutant	Concentration	Exposure time	Allergen	IgE binding	Reference
Acer negundo	O$_3$	30–235 ppb	6 h	Amb a 1=	↑	Ribeiro et al., 2014
	NO$_2$	150–300 ppb	6 h	Amb a 1=	↑	Sousa et al., 2012
Ambrosia artemisiifolia	O$_3$	80 ppb	Growing season	Amb a 1=	↑	Kanter et al., 2013
	NO$_2$	100 ppb	7 day	Amb a 1=	↑	Pasqualini et al., 2011
	NO$_2$	80 ppb	Growing season	Amb a 1↑	↑	Zhao et al., 2015
	NO$_2$	High traffic roads			↑	Ghiani et al., 2012
Betula ssp.	O$_3$	Outside stands		Bet v 1↑	↑	Beck et al., 2013
Betula pendula	NO$_2$	34/67 ppb	6/48 h	Phi p 5↑	↑	Cuinica et al., 2014
Carpinus betulus	NO$_2$	34/67 ppb	6/48 h	Phi p 5↑	↑	Cuinica et al., 2014
Lolium perenne	O$_3$	65 ppb	2 weeks	Phi p 5↑	↑	Masuch et al., 1997
	O$_3$	outside stands			↑	Masuch et al., 1997
	NO$_2$	100 ppb	4 h		↑	Rogerieux et al., 2007
	NO$_2$	2000 ppb			↑	Masuch et al., 1997
	O$_3$/NO$_2$	100 ppb/2000 ppb			↓	Masuch et al., 1997
Pinus radita	O$_3$	Outside stands		Phi p 1↑	↑	García-Gallardo et al., 2013
Secale cereale	O$_3$	80 ppb	107 days	Phi p 6↑	↑	Eckl-Dorna et al., 2010

↑ = increased; ↓ = reduced.
grass pollen (P. pratense) to artificially high NO\textsubscript{2}-concentrations from 500 ppb up to 5000 ppm resulted in a dose-dependent increase in PCGs and a dose-dependent increase in pollen grain damage (Motta et al., 2006) as well as a reduction of IgE binding to Phl p 2, 5b, and 6 (Rogerieux et al., 2007). In addition, a direct correlation of NO\textsubscript{2} uptake by the pollen with a higher T\textsubscript{4}H\textsubscript{2} response of human cells could be demonstrated (Chassard et al., 2015), which indicated that NO\textsubscript{2} can interact with the pollen grains and thus leads to degradation of pollen structure and changes in protein content. Other studies on ragweed (Ambrosia artemisiifolia) showed higher allergen levels and elevated IgE binding under elevated NO\textsubscript{2} concentrations, where the higher IgE recognition was mainly due to the major allergen Amb a 1 (Ghiani et al., 2012; Zhao et al., 2015). Zhao et al. (2015) also showed IgE binding to a new allergen in ragweed with homology to Hcv b 9 from the rubber tree, induced by elevated NO\textsubscript{2} (Zhao et al., 2015). However, contrary results were found for several tree pollen species fumigated with NO\textsubscript{2} concentrations between 34 and 300 ppb. Betula pendula and Carpinus betulus showed decreased pollen viability when exposed to NO\textsubscript{2} and had a lower TSP content. Ostrya carpinifolia also showed a lower TSP compared with the control. This study also demonstrated increased pollen allergenicity for C. betulus, O. carpinifolia, and B. pendula when exposed for a short time to relatively small NO\textsubscript{2} concentrations (Cuinica et al., 2014). A. negundo also showed similarly elevated IgE binding but slightly increased TSP, whereas lower TSP was detected for Ricinus communis (Bist et al., 2004; Sousa et al., 2012).

Air pollution due to NO\textsubscript{2} can result in post-translational modification such as S-nitrosylation or the nitration of pollen proteins. Zhao et al. (2015) showed that the fumigation of ragweed plants with elevated NO\textsubscript{2} concentrations throughout a growing season resulted in increased overall S-nitrosylation, and LC-MS/MS analysis of the S-nitrosylated proteins indicated the major ragweed allergen Amb a 1 as a possible candidate for S-nitrosylation (Zhao et al., 2015). Another important aspect is the nitration of allergens in pollen, which can be caused by the presence of ozone and NO\textsubscript{2}. Studies on aerosolized proteins showed an ozone dependent increase of nitration due to NO\textsubscript{2} (Shiraiwa et al., 2012). Franze et al. (2005) showed that the major allergen from birch Bet v 1 is effectively nitrated in the presence of NO\textsubscript{2} and ozone but that the nitration degree was substantially lower when the proteins were exposed to NO\textsubscript{2} alone, thus indicating that reactive species formed upon the interaction of ozone and NO\textsubscript{2} play a major role in the nitration. This nitration affects the allergic potential of the birch pollen. The nitration of Bet v1 results in stronger proliferation of Bet v 1-specific T cell lines, and IgE binding to nitrated Bet v 1 is higher than IgE binding to Bet v 1 (Gruijthuijsen et al., 2006; Karle et al., 2012). An oligomerization of Bet v 1 due to nitration was also observed, which resulted in lower sensitivity to endolysosomal degradation (Ackaert et al., 2014). This posttranslational modification of allergens provides a rationale for the increase in allergic diseases in air polluted regions.

Summarizing the different studies, little is yet known about the molecular mechanisms of the effects of ozone and NO\textsubscript{2} on pollen, and more research is needed on that point. However, the existing research already clearly indicates dose-dependent and species-specific impacts of these air pollutants, which in most cases result in heightened allergenicity.

AUTHOR CONTRIBUTIONS

UF and DE contributed equally to the manuscript concerning writing and conception.

REFERENCES

Ackaert, C., Kofler, S., Horejs-Hoeck, J., Zulehner, N., Asam, C., von Grafenstein, S., et al. (2014). The impact of nitration on the structure and immunogenicity of the major birch pollen allergen Bet v 1.0101. PLoS ONE 9:e104520. doi: 10.1371/journal.pone.0104520

Bacci, A., Dharajity, N., Choudhury, B. K., Sur, S., and Boldogh, I. (2005). Effect of pollen-mediated oxidative stress on immediate hypersensitivity reactions and late-phase inflammation in allergic conjunctivitis. J. Allergy Clin. Immunol. 116, 836–843. doi: 10.1016/j.jaci.2005.06.002

Bashir, M. E. H., Lui, J. H., Palnielu, R., Nacerio, R. M., and Preuss, D. (2013). Pollen lipidomics: lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response. PLoS ONE 8:e57566. doi: 10.1371/journal.pone.0057566

Beck, I., Jochner, S., Gilles, S., McIntyre, M., Buters, J. T. M., Schmidt-Weber, C., et al. (2013). High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLoS ONE 8:e58017. doi: 10.1371/journal.pone.0058017

Bist, A., Pandit, T., Bhatnagar, A. K., and Singh, A. B. (2004). Variability in protein content of pollen of Castor bean (Ricinus communis) before and after exposure to the air pollutants SO\textsubscript{2} and NO\textsubscript{2}, Grana 43, 94–100. doi: 10.1080/001731304100019316

Chassard, G., Choël, M., Gosselin, S., Vornig, H., Petitprez, D., Shahali, Y., et al. (2015). Kinetic of NO\textsubscript{2} uptake by Phleum pratense pollen: chemical and allergenic implications. Environmental Pollution 196, 107–113. doi: 10.1016/j.envpol.2014.10.004

Cortegano, I., Civantos, E., Aceituno, E., Del Moral, A., López, E., Lombardero, M., et al. (2004). Cloning and expression of a major allergen from Cupressus arizonica pollen, Cap a 3, a PR-5 protein expressed under polluted environment. Allergy 59, 485–490. doi: 10.1046/j.1398-9995.2003.00363.x

Cuinica, L. G., Abreu, I., and da Silva, J. (2014). Effect of air pollutant NO\textsubscript{2} on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity. Environ. Pollut. 186, 50–55. doi: 10.1016/j.envpol.2013.12.001

Eckl-Dorna, J., Klein, B., Reichenauer, T. G., Niederberger, V., and Valenta, R. (2010): Exposure of rye (Secale cereale) to elevated ozone levels increases the allergen content in pollen. J. Allergy Clin. Immunol. 126, 1315–1317. doi: 10.1016/j.jaci.2010.06.012

Edlund, A. F., Swanson, R., and Preuss, D. (2004). Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16, 584–597. doi: 10.1105/tpc.015800

Franze, T., Weller, M. G., Niessner, R., and Pöschl, U. (2005). Protein nitration by polluted air. Environ. Sci. Technol. 39, 1673–1678. doi: 10.1021/es0488737

García-Gallardo, M. V., Algorta, J., Longo, N., Espinel, S., Aragones, A., Lombardero, M., et al. (2013). Evaluation of the effect of pollution and fungal disease on Pinus radiata pollen allergenicity. Int. Arch. Allergy Immunol. 160, 241–250. doi:10.1159/000341368

Ghiani, A., Aina, R., Asero, R., Bellotto, E., and Citterio, S. (2012). Ragweed pollen collected along high-traffic roads shows a higher allergenicity than pollen sampled in vegetated areas. Allergy 67, 887–894. doi: 10.1111/j.1398-9995.2012.02846.x

Gruijthuijsen, Y. K., Grieshuber, I., Stockliger, A., Tischler, U., Fehrenbach, T., Weller, M. G., et al. (2006). Nitration enhances the allergenic potential of proteins. Int. Arch. Allergy Immunol. 141, 265–275. doi: 10.1159/000095296
Hoffmann-Sommergruber, K. (2002). Pathogenesis-related (PR)-proteins identified as allergens. Biochem. Soc. Trans. 30, 930–935. doi: 10.1042/bst 030930

Kagawa, J. (1985). Evaluation of biological significance of nitrogen oxides exposure. Tokai J. Exp. Clin. Med. 10:348.

Kanter, U., Heller, W., Durner, J., Winkler, J. B., Engel, M., Behrendt, H., et al. (2013). Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season. PLoS ONE 8:e61518. doi: 10.1371/journal.pone.0061518

Karle, A. C., Oostingh, G. J., Mutschlechner, S., Ferreira, F., Lackner, P., Bohle, B., et al. (2012). Nitrification of the pollen allergen Bet v 1.0101 enhances the presentation of Bet v 1-derived peptides by HLA-DR on human dendritic cells. PLoS ONE 7:e31483. doi: 10.1371/journal.pone.0031483

Kramer, U., Koch, T., Ranft, U., Ring, J., and Behrendt, H. (2000). Traffic-related air pollution is associated with atopy in children living in urban areas. Epidemiology 11, 64–70. doi: 10.1097/00001648-200001000-00014

Masuch, G., Franz, J. T., Schoene, K., Musik, H., and Bergmann, K. C. (1997). Ozone increases group 5 allergen content of Lolium perenne. Allergy 52, 874–875. doi: 10.1111/j.1398-9995.1997.tb02163.x

Motta, A. C., Marlière, M., Peltre, G., Sterenberg, P. A., and Lacroix, G. (2006). Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. Int. Arch. Allergy Immunol. 139, 294–298. doi: 10.1159/000091600

Pasqualini, S., Tedeschi, E., Frenquelli, G., Wopfner, N., Ferreira, F., D’Amato, G., et al. (2011). Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen. Environ. Pollut. 159, 2823–2830. doi: 10.1016/j.envpol.2011.05.003

Ribeiro, H., Duque, L., Sousa, R., and Abreu, I. (2013). Ozone effects on soluble protein content of Acer negundo, Quercus robur and Platanus spp. pollen. Aerobiologia 29, 443–447. doi: 10.1007/s10443-013-9291-5

Ribeiro, H., Duque, L., Sousa, R., Cruz, A., Gomes, C., da Silva, J., et al. (2014). Changes in the IgE-reacting protein profiles of Acer negundo, Platanus x acerifolia and Quercus robur pollen in response to ozone treatment. Int. J. Environ. Health Res. 24, 515–527. doi: 10.1080/09603123.2013.865716

Ring, J., Krämer, U., Schäfer, T., and Behrendt, H. (2001). Why are allergies increasing? Curr. Opin. Immunol. 13, 701–708. doi: 10.1016/S0952-7915(01)00282-5

Rogé, F., Godfrin, D., Sénéchal, H., Motta, A. C., Marlière, M., Peltre, G., et al. (2007). Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O3, NO2, SO2). Int. Arch. Allergy Immunol. 143, 127–134. doi: 10.1159/000099079

Sandermann, H. Jr., Ernst, D., Heller, W., and Langebartels, C. (1998). Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci. 3, 47–50. doi: 10.1016/S1360-1383(97)01162-x

Shiraiwa, M., Selze, K., Yang, H., Sozedova, Y., Ammann, M., and Pöschl, U. (2012). Multiphase chemical kinetics of the nitration of aerosolized protein by ozone and nitrogen dioxide. Environ. Sci. Technol. 46, 6672–6680. doi: 10.1021/es300871b

Sousa, R., Duque, L., Duarte, A. J., Gomes, C. R., Ribeiro, H., Cruz, A., et al. (2012). In vitro exposure of Acer negundo pollen to atmospheric levels of SO2 and NO2: effects on allergenicity and germination. Environ. Sci. Technol. 46, 2406–2412. doi: 10.1021/es203468s

Suárez-Cervera, M., Castells, T., Vega-Maray, A., Civantos, E., del Pozo, V., Fernández-González, D., et al. (2008). Effects of air pollution on Cup a 3 allergen in Cupressus arizonica pollen grains. Allergy Asthma Immunol. 101, 57–66. doi: 10.1016/S1081-1385(07)01162-x

Traidl-Hoffmann, C., Caschke, A., Menzel, A., Jakob, T., Thiel, M., Ring, J., et al. (2003). Impact of pollen on human health: more than allergen carriers? Int. Arch. Allergy Immunol. 131, 1–13. doi: 10.1159/000070428

Uysal, N., and Schapira, R. M. (2003). Effects of ozone on lung function and lung diseases. Curr. Opin. Palm. Med. 9, 144–150. doi: 10.1007/00065198-20030300-00009

Zhou, F., Elkelish, A., Durner, J., Lindermayr, C., Winkler, J. B., Rueff, F., et al. (2013). Common ragweed (Ambrosia artemisiifolia L.) allergenicity and molecular characterisation of pollen after plant exposure to elevated NO2. Plant Cell Environ. 39, 147–164. doi: 10.1111/pce.12601

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Frank and Ernst. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.