CONCENTRATION OF POINTS ON MODULAR QUADRATIC FORMS

ANA ZUMALACÁRREGUI

Abstract. Let $Q(x, y)$ be a quadratic form with discriminant $D \neq 0$. We obtain non trivial upper bound estimates for the number of solutions of the congruence $Q(x, y) \equiv \lambda \pmod{p}$, where p is a prime and x, y lie in certain intervals of length M, under the assumption that $Q(x, y) - \lambda$ is an absolutely irreducible polynomial modulo p. In particular we prove that the number of solutions to this congruence is $M^{o(1)}$ when $M \ll p^{1/4}$. These estimates generalize a previous result by Cilleruelo and Garaev on the particular congruence $xy \equiv \lambda \pmod{p}$.

1. Introduction

Let $Q(x, y)$ be a quadratic form with discriminant $D \neq 0$. For any odd prime p and $\lambda \in \mathbb{Z}$, we consider the congruence

$$Q(x, y) \equiv \lambda \pmod{p} \quad \{ \begin{aligned} &K + 1 \leq x \leq K + M, \\
&L + 1 \leq y \leq L + M, \end{aligned}$$

for arbitrary values of K, L and M. We denote by $I_Q(M; K, L)$ the number of solutions to (1).

It follows from [6, 7] that if the quadratic form $Q(x, y) - \lambda$ is absolutely irreducible modulo p, one can derive from the Bombieri bound [1] that

$$I_Q(M; K, L) = \frac{M^2}{p} + O(p^{1/2} \log^2 p).$$

Whenever M is small, say $M \ll p^{1/2} \log^2 p$, this estimate provides an upper bound which is worse than the trivial estimate $I_Q(M; K, L) \leq 2M$ (for every x in the range we have a second degree polynomial in y with no more than two solutions).

In the special case $Q(x, y) = xy$ and $(\lambda, p) = 1$, Chan and Shparlinsky [2] used sum product estimates to obtain a non trivial estimate

$$I(M; K, L) \ll M^{2/p} + M^{1-\eta},$$

for some $\eta > 0$. Cilleruelo and Garaev [3], using a different method, improved this estimate:

$$I(M; K, L) \ll (M^{4/3} p^{-1/3} + 1) M^{o(1)}.$$

The aim of this work is to generalize Cilleruelo and Garaev’s estimate to any non-degenerate quadratic form.

Theorem 1. Let $Q(x, y)$ be a quadratic form defined over \mathbb{Z}, with discriminant $D \neq 0$. For any prime p and $\lambda \in \mathbb{Z}$ such that $Q(x, y) - \lambda$ is absolutely irreducible modulo p, we have

$$I_Q(M; K, L) \ll \left(M^{4/3} p^{-1/3} + 1 \right) M^{o(1)}.$$

This estimate is non trivial when $M = o(p)$ and better than [2] whenever $M \ll p^{5/8}$. Furthermore, when $M \ll p^{1/4}$ Theorem 1 gives $I_Q(M; K, L) = M^{o(1)}$, which is sharp. Probably the last estimate also holds for $M \ll p^{1/2}$, but it seems to be a difficult problem.

Date: January 31, 2011.

2000 Mathematics Subject Classification. 11A07, 11B75.

Key words and phrases. modular equation; quadratic form; concentration of points.

The author was supported by Departamento de Matemáticas, Universidad Autónoma de Madrid, Spain.
Note that if
\[Q(x, y) - \lambda \equiv q_1(x, y)q_2(x, y) \pmod{p}, \]
for some linear polynomials \(q_1(x, y), q_2(x, y) \in \mathbb{Z}[x, y] \), we have that solutions in \(\mathbb{Z} \) correspond to solutions of the linear equations \(q_1(x, y) = 0 \pmod{p} \) and we could have \(\gg M \) different solutions. The condition of irreducibility is required to avoid this situation.

Observe that the condition \(D \neq 0 \) restricts ourselves to the study of ellipses and hyperbolas. The given upper bound cannot be applied to quadratic forms with discriminant \(D = 0 \). For example the number of solutions to \((1) \) when \(Q(x, y) = y - x^2 \) is \(\asymp M^{1/2} \).

2. Proof of Theorem \(\mathbb{H} \)

The following lemmas will be required during our proof. These results will give us useful upper bounds over the number of lattice points in arcs of certain length on conics.

Lemma 1. Let \(D \neq 0, 1 \) be a fixed square-free integer. On the conic \(x^2 - Dy^2 = n \) an arc of length \(n^{1/6} \) contains, at most, two lattice points.

This lemma is a particular case of Theorem 1.2 in [4].

Lemma 2. Let \(D \neq 0, 1 \) be a fixed square-free integer. If \(n = M^{O(1)} \), on the conic \(x^2 - Dy^2 = n \) an arc of length \(M^{O(1)} \) contains, at most, \(M^{O(1)} \) lattice points.

Proof. This result is a variant of Lemma 4 in [3], where the conclusion was proved when \(1 \leq x, y \leq M^{O(1)} \), (see Lemma 3.5 [3] for a more general result).

If \(D \) is negative, the result is contained in Lemma 4 in [3] since it is clear that \(1 \leq x, y \ll \sqrt{n} = M^{O(1)} \). We must study though the case where \(D \) is positive.

By symmetry we can consider only those arcs in the first quadrant, since any non-negative lattice point \((x, y)\) will lead us to no more than four lattice points \((\pm x, \pm y)\). Let \((u_0, v_0)\) be the minimal non-negative solution to the Pell’s equation \(x^2 - Dy^2 = 1 \), and \(\xi = u_0 - \sqrt{D}v_0 \) its related fundamental unit in the ring of integers of \(\mathbb{Q}(\sqrt{D}) \). Suppose that \((x_0, y_0)\) is a positive solution to \(x^2 - Dy_0^2 = n \) that lies in our initial arc and let \(t \in \mathbb{R} \) be the solution to
\[(x_0 + \sqrt{D}y_0)\xi^{t} = (x_0 - \sqrt{D}y_0)\xi^{-t}. \]

Then for \(m = \lfloor t \rfloor \), we have \((x_0 + \sqrt{D}y_0)\xi^m = x_1 + \sqrt{D}y_1 \approx \sqrt{n} \). This means that each solution in our initial arc corresponds to a ‘primitive’ solution lying in an arc of length \(\ll \sqrt{n} \). Conversely, solutions in an arc of length \(\ll \sqrt{n} \) can be taken to larger arcs by multiplying by powers of \(\xi^{-1} \).

Since our initial interval has length \(M^{O(1)} \) there will be no more than \(O(\log M) \) powers connected to each primitive solution. The term \(O(\log M) \) is absorbed by \(M^{O(1)} \).

On the other hand, we know by Lemma 4 in [3] that the number of lattice points in an arc of length \(O(\sqrt{n}) \) is \(M^{O(1)} \). It follows that the number of solutions in the original arc will be bounded by \(M^{O(1)} \).

We are now in conditions to start the proof of Theorem \(\mathbb{H} \).

Proof. Let \(Q(x, y) = ax^2 + bxy + cy^2 + dx + ey + f \) be a quadratic form with integer coefficients and discriminant \(D = b^2 - 4ac \neq 0 \). Whenever \(a = c = 0 \), the congruence in \(\mathbb{H} \) can be written in the form \(XY \equiv \mu \pmod{p} \), where \(X = bx + e, Y = by + d \) and \(\mu = b\lambda - (ed + bf) \). This case was already studied in [3], but one extra condition was required: \(\mu \) must be coprime with \(p \) or, equivalently, \(XY - \mu \) must be absolutely irreducible modulo \(p \).

If \(a \neq 0 \) the congruence in \(\mathbb{H} \) can be written as
\[X^2 - DY^2 \equiv \mu \pmod{p}, \]
where \(X = Dy + 2(ae - db), Y = 2ax + by + d \) and \(\mu = 4aD\lambda - D(4af - d^2) + 4a(ace - db) \). The case \(a = 0 \) and \(c \neq 0 \) follows by exchanging \(x \) for \(y \) in the previous argument (and so \(c, e \) will be
the coefficients of x^2 and x instead of $a, d)$. Our new variables X, Y lie in intervals of length $\ll M$. Specifically X lies in an interval of length DM and Y in an interval of length $(2|a| + |b|)M$.

We also can assume that $p > D$. Since $D \neq 0$, different original solutions will lead us to a different solution.

These observations allow us to bound the number of solutions to (1) by the number of solutions of the congruence

$$x^2 - Dy^2 \equiv \mu \pmod{p},$$

where x, y lie in two intervals of length $\ll M$.

Without loss of generality we can assume that D is square-free. Otherwise $D = D_1k^2$, for some square-free integer D_1, and solutions (x, y) of our equation would lead us to solutions (x, ky) of $x^2 - D_1(ky)^2 \equiv \mu \pmod{p}$, where ky would lie in some interval of length $\ll M$. The case $D = 1$ corresponds to the problem $x^2 - y^2 = UV \equiv \mu \pmod{p}$, where $U = (x + y)$ and $V = (x - y)$ still lie in some intervals of length $\ll M$ and $(\mu, p) = 1$, otherwise $UV - \mu$ will be reducible modulo p. Once more this case was already studied in [4].

By the previous arguments it is enough to prove the result for

$$x^2 - Dy^2 \equiv \lambda \pmod{p}, \quad \begin{cases} K + 1 \leq x \leq K + M, \\ L + 1 \leq y \leq L + M, \end{cases}$$

where D is some square-free integer $\neq 0, 1$ and $\lambda \in \mathbb{Z}$.

This equation is equivalent to

$$(x^2 + 2Kx) - D(y^2 + 2Ly) \equiv \mu \pmod{p}, \quad 1 \leq x, y \leq M,$$

where $\mu = \lambda - (K^2 - DL^2)$. By the pigeon hole principle we have that for every positive integer $T < p$, there exists a positive integer $t < T^2$ such that $tK \equiv k_0 \pmod{p}$ and $tL \equiv \ell_0 \pmod{p}$ with $|k_0|, |\ell_0| < p/T$. Thus we can always rewrite the equation (3) as

$$(tx^2 + 2k_0x) - D(ty^2 + 2\ell_0y) \equiv \mu_0 \pmod{p}, \quad 1 \leq x, y \leq M,$$

where $|\mu_0| < p/2$. This modular equation lead us to the following Diophantine equation

$$(tx^2 + 2k_0x) - D(ty^2 + 2\ell_0y) = \mu_0 + pz, \quad 1 \leq x, y \leq M, \quad z \in \mathbb{Z},$$

where z must satisfy

$$|z| = \left| \frac{(tx^2 + 2k_0x) - D(ty^2 + 2\ell_0y) - \mu_0}{p} \right| < \frac{(1 + |D|T^2M^2)}{p} + 2\frac{(1 + |D|M)}{T} + \frac{1}{2}.$$

For each integer z on the previous range the equation defined in (4) is equivalent to:

$$(tx + k_0)^2 - D(ty + \ell_0)^2 = n_z, \quad 1 \leq x, y \leq M,$$

where $n_z = t(\mu_0 + pz) + (k_0^2 - DL_0^2)$. We will now study the number of solutions in terms of n_z.

If $n_z = 0$, since D is not a square, we have that $tx + k_0 = ty + \ell_0 = 0$ and there is at most one solution (x, y).

Let now focus on the case $n_z \neq 0$. We will split the problem in two different cases, depending on how big M is compared to p.

- Case $M < \frac{p^{5/4}}{4\sqrt{(1 + |D|)^3}}$. In this case we take $T = 8(1 + |D|)M$ in order to get $|z| < 1$.

Therefore it suffices to study solutions of

$$(tx + k_0)^2 - D(ty + \ell_0)^2 = n_0, \quad 1 \leq x, y \leq M.$$

If $n_0 > 2^{18}(1 + |D|)^{12}M^{18}$, the integers $|tx + k_0|$ and $|ty + \ell_0|$ will lie in two intervals of length $T^2M = 2^6(1 + |D|)^2M^3$ and solutions to (3) will come from lattice points in an arc of length smaller than $2^6(1 + |D|)^2M^3 < n_0^{1/6}$ (by hypothesis). From Lemma [4] it follows that there will be no more than two lattice points in such an arc.

If $n_0 \leq 2^{18}(1 + |D|)^{12}M^{18}$, Lemma [2] assures that the number of solutions will be $M^{o(1)}$.
• Case $M \geq \frac{k^{3/4}}{4 \sqrt{1 + |D|^{3/2}}}$. In this case we take $T = (p/M)^{1/3}$ and hence $|z| \ll \frac{M^{1/3}}{p^{1/3}}$.

Since $n_z = t(\mu_0 + pz) + (k_0^2 - D\ell_0^2) \ll p^2 \ll M^8$ we can apply Lemma 2 to conclude that for every z in the range above there will be $M^{\alpha(1)}$ solutions to its related Diophantine equation.

We have proved that in all cases, the number of solutions to (5) is $M^{\alpha(1)}$ for each n_z. On the other hand, the number of possible values of z is $O(M^{4/3}p^{-1/3} + 1)$. It follows that

$I_Q(M; K, L) \ll \left(M^{4/3}p^{-1/3} + 1 \right) M^{\alpha(1)}$.

\[\square \]

Acknowledgments

I would like to thank J. Cilleruelo and M. Garaev for their advice and helpful suggestions in the preparation of this paper and the referee for his valuable comments.

References

[1] E. Bombieri, On exponential sums in finite fields, Amer. J. Math. 88 (1966), 71–105.
[2] T. H. Chan and I. Shparlinski, On the concentration of points on modular hyperbolas and exponential curves, Acta Arithmetica 142 (2010), 59–66.
[3] J. Cilleruelo and M. Garaev, Concentration of points on two and three dimensional modular hyperbolas and applications, preprint: arXiv:1007.1120v2 (12 pages), 2010.
[4] J. Cilleruelo and J. Jiménez-Urroz, Divisors in a Dedekind domain, Acta Arithmetica 85 (1998), 229–233.
[5] R. C. Vaughan and T. D. Wooley, Further improvement in Waring's problem, Acta Math. 174 (1995), 147–240.
[6] I. E. Shparlinski and J. F. Voloch, Visible points on curves over finite fields, Bull. Polish Acad. Sci. Math. 55 (2007), 193–199.
[7] Z. Zheng, The distribution of zeros of an irreducible curve over a finite field, J. Number Theory 59 (1996), 106–118.