Evaluation of endothelial dysfunction in patients with type 2 diabetes mellitus – Analysis of 100 cases

Venkateshwarlu Nandyala*, P Gandiah, J Harish Kumar, G Sandeep Kumar, Najma Farheen and Yashwant Reddy

Department of Internal Medicine, SVS Medical College, Mahabubnagar, Telangana State, India

*Correspondence Info:
Dr. Venkateshwarlu Nandyala,
Professor,
Department of Internal Medicine,
SVS Medical College, Mahabubnagar, Telangana State, India
E-mail: venkatatreya@gmail.com

Abstract

Background: Atherosclerosis which is a precursor for macro-vascular disease involves both functional as well as structural changes in the vasculature. Functional changes involve abnormalities in endothelium, vascular smooth muscle cells and platelet functions. Endothelial dysfunction was reported in type 2 DM cases. Ultrasound assessment of brachial artery FMD (Flow Mediated Dilatation) provides important information about vascular function in health and disease. Low FMD values predict independently an established atherosclerosis.

Materials and methods: A total of 150 individuals included in this study; 100 were diabetes mellitus patients and 50 were age matched persons without diabetes, hypertension or vascular disease. Of 100 diabetes patients 50 each were grouped in two groups with good (HbA1c <7.5%) and poor (HbA1C >7.5%) control of hyperglycemia. Brachial artery flow mediated vasodilatation (FMD) was studied in all patient after overnight fasting (8 hours) using 7.5 MHz phased array transducer. The medial epicondyle was used as anatomical landmark for brachial artery.

Observations: In this study it is observed that, the mean age for FMD <4.5% is 59.70±11.08 and FMD >4.5% is 56.53±8.37. Age is higher in diabetics with FMD % <4.5. Females who FMD <4.5% were 50.0% and 42.5% with FMD >4.5%. Smoking in diabetics with FMD <4.5% was 10.0% and FMD >4.5 % was 15%. Hypertension was equally found 40%. Family history of diabetes with FMD % <4.5 was 30% and FMD >4.5% were none.

Summary and conclusions: The data suggest that endothelial function is a useful prognostic marker in coronary artery disease patients. In these patients, it has been reported that endothelial dysfunction is an independent prognostic factor and may predict future events, irrespective of the angiographic severity of the disease. Moreover, blunted endothelial function may reflect early atherosclerosis, and should lead to a detailed evaluation.

Keywords: Type 2 Diabetes mellitus, ultrasound, flow mediated dilation.

1. Introduction

Diabetes mellitus has assumed important non-communicable disease all over especially developing countries like India. The American Diabetes Association recently designated type-2 diabetes mellitus as a major risk factor for cardiovascular diseases [1]. Atherosclerosis which is a precursor for macro-vascular disease involves both functional as well as structural changes in the vasculature. Functional changes involve abnormalities in endothelium, vascular smooth muscle cells and platelet functions [2,3]. Endothelial function is the earliest to be affected in this cascade of events leading to atherosclerotic plaque formation. Endothelial dysfunction was reported in type 2 DM cases [4-9].

Endothelial function has been largely assessed as impaired endothelium-dependent vasodilatation because endothelium-derived nitric oxide, is a major mediator of endothelium-dependent vasodilatation, involved in the regulation of other protective properties of endothelium [10,11]. Common conditions such as dyslipidemia, hypertension, diabetes and smoking are associated with endothelial dysfunction, being in the same time risk factors which promote the development, progression, and complications of atherosclerosis. Ultrasound assessment of brachial artery FMD (Flow Mediated Dilatation) provides important information about vascular function in health and disease [12,13]. International Task Force on Brachial Artery Reactivity has laid guidelines for performance of FMD in the year 2002[14], thus standardizing the test for wider application. Sorensen et al proved this procedure was simple and easily reproducible [15]. FMD is considered to represent endothelium-dependent vasodilation[16]. Low FMD values
predict cardiovascular events independently of established atherosclerosis [17].

2. Materials and Methods

This study was an open, randomized and comparative study done between 1-8-2012 till 31-7-2014 at SVS Hospital, Mahabubnagar, and Telangana State. A total of 150 individuals included in this study; 100 were diabetes mellitus patients and 50 were age matched persons without diabetes, hypertension or vascular disease. Of 100 diabetes patients 50 each were grouped in two groups with good (HbA1c ≤7.5%) and poor (HbA1C >7.5%) control of hyperglycemia. Patients with history of myocardial infarction or acute coronary syndrome during preceding four weeks were excluded from the study. Clinical evaluation, electrocardiogram, biochemical tests and assessment of brachial artery flow-mediated vasodilatation were done in all subjects after taking informed consent for the study. Clinical examination included blood pressure recording, assessment of cardiovascular status and height and body weight measurements. Biochemical assessment included fasting and post-prandial blood sugar and fasting lipid profile. Patients were evaluated for presence and duration of conventional cardiovascular risk factors viz. hypertension, family history of premature CAD, dyslipidemia, current smoking and diabetes mellitus. Hypertension was defined as systolic blood pressure more than 140 mm Hg or diastolic blood pressure 90 mm Hg or more or those on hypertensive medications. Dyslipidemia was defined as LDL level greater than 130 mg/dl, or HDL less than 40 mg/dl, or TG more than 200 mg/dl. Family history was coded as positive if a first degree relative had a coronary event before the age of 55 years in males and 65 years in female relatives. In extension to the same study there was a group IV consisting of 24 patients who got converted to good control after treatment modification after 3 months of follow up; while 26 cases did not get good glycemic control various reasons.

2.1 Equipment

Colour Doppler ultrasonography of the brachial artery, by PHILIPS HD 7 XE Image point machine using 7.5 and 10 MHz linear probe was performed to assess FMD, which provide information regarding endothelial function.

2.2 Image acquisition

The subject is positioned supine with the arm in a comfortable position for imaging the brachial artery. The brachial artery is imaged above the antecubital fossa in the longitudinal plane. A segment with clear anterior and posterior intimal interfaces between the lumen and vessel wall is selected for continuous 2D grayscale imaging.

2.3 Endothelium-dependent FMD

To create a flow stimulus in the brachial artery, a sphygmomanometric (blood pressure) cuff is first placed either above the antecubital fossa or on the forearm. A baseline rest image is acquired, and blood flow is estimated by time-averaging the pulsed Doppler velocity signal obtained from a mid artery sample volume. Typically, the cuff is inflated to at least 50 mm Hg above systolic pressure to occlude arterial inflow for a standardized length of time. This causes ischemia and consequent dilation of downstream resistance vessels via auto-regulatory mechanisms. Subsequent cuff deflation induces a brief high-flow state through the brachial artery (reactive hyperemia) to accommodate the dilated resistance vessels. The resulting increase in shear stress causes the brachial artery to dilate. The longitudinal image of the artery is recorded continuously from 30 s before to 2 min after cuff deflation. A mid-artery pulsed Doppler signal is obtained upon immediate cuff release and no later than 15 seconds after cuff deflation to assess hyperemic velocity. When the cuff is placed on the upper part of the arm, reactive hyperemia typically elicits a greater percent change in diameter compared with that produced by the placement of the cuff on the forearm [18-20].

Brachial artery flow mediated vasodilatation (FMD) was studied in all patient after overnight fasting (8 hours) using 7.5 MHz phased array transducer. The medial epicondyle was used as anatomical landmark for brachial artery. Flow mediated vasodilatation (FMD) was calculated as follows as per the guidelines laid by Corrette and others [16]:

\[
\text{FMD} \% = \frac{d_2 - d_1 \times 100}{d_1}
\]

Where \(d_1\) - Base line brachial artery diameter \(d_2\) - Brachial artery diameter at 1 min post deflation

The cases were followed for 6 months for the control of diabetic state and repeat FMD was done in patients with poor glycemic control. It had been observed improvement in the values of FMD after good control.

2.4 Statistical Analysis

In the present study the data collected is analyzed statistically by computing the standard quantities namely mean, Standard deviation, Standard error of mean and percentages. The difference between different parameters based on quantitative variables is compared using student’s t test for independent samples and the difference is considered statically significance groups whenever p value < 0.05. Paired “t” test was used for intra group comparison and unpaired “t” test was used for comparison between.

3. Results and observations

Basic and anthropological information of the patients is given in Table 1.
Table 1: Comparison of baseline characteristics and biochemical parameters in diabetics and controls

Parameter	DM Group I (HbA1C < 7.5%)	DM Group II (HbA1C > 7.5%)	Control Group III	‘p’ value
Number	50	50	50	
Mean Age	48.88 ± 6.18	49.24 ± 7.12	47.14 ± 5.98	0.79
Male	24	23	24	0.92
WHR	0.93 ± 0.17	0.98 ± 0.12	0.89 ± 0.07	0.08
BMI (KG/M²)	23 ± 2.6	23 ± 3.1	23 ± 2.9	0.95
HbA1C	7.33 ± 0.91%	8.7 ± 1.31%	5.78 ± 0.30%	
Mean FBS (mg%)	98.56 ± 6.54	117 ± 12.42	87.56 ± 11.32	
Mean brachial artery	4.68 ± 0.15	3.97 ± 0.24	10.63 ± 0.14	

Table 2: Grouping of patients according to glycemic control

Patient group	Number of patients	HbA1c level	Level of glycemic control
Group I	50 (24 Male)	<7.5%	Good
Group II	50 (23 Male)	>7.5%	Poor
Group III	50 (24 Male)	≤6.5%	Non-diabetic
Group IV	24 (12 Male)	≥7.5%	Good

*24 patients were re-examined after 3 months of treatment showed good glycemic control re-examined for FMD

Table 3: Comparison of FMD (%) with WHR in female diabetics

WHR (Female)	FMD % ± SD	‘p’ value
≤ 0.9	4.68 ± 0.092	0.62 NS
≥ 0.9	3.68 ± 0.84	

Table 4: Comparison of FMD (%) with WHR in male diabetics

WHR (Male)	FMD % ± SD	‘p’ value
≤ 1.0	5.32 ± 0.72	0.28 NS
≥ 1.0	4.12 ± 0.68	

Table 5: Comparison of FMD (%) in the study group with relation to BMI

BMI Kg/M²	FMD % ± SD	‘p’ value
< 25	5.68 ± 1.02	
25–30	4.24 ± 0.92	
30–35	3.16 ± 0.94	

Table 6: Analysis of FMD for lipid parameters

Lipid parameter	FMD % ± SD	‘p’ value
Serum cholesterol	5.84 ± 0.84	0.05
Serum cholesterol 200–250	5.28 ± 0.95	
Serum cholesterol > 250	4.03 ± 0.86	
HDL > 40 mg	3.88 ± 1.06	
HDL < 40 mg	4.46 ± 0.92	
LDL < 130 mg	4.82 ± 0.94	
LDL > 130 mg	3.84 ± 0.86	
Triglyceride < 150 mg	5.88 ± 1.02	
Triglyceride > 150 mg	3.78 ± 1.04	

Table 7: Showing the significant improvement with good control

Parameter	First visit	After 6 months	‘p’ value
HbA1c	9.86±1.02	7.12 ± 0.94	0.045 (significant)
FMD % ± SD	3.97±0.24	6.84 ± 0.14	0.36 (significant)

In this study it is observed that, the mean age for FMD <4.5% is 59.70±11.08 and FMD >4.5% is 56.53±8.37. Age is higher in diabetics with FMD % <4.5. Females who FMD <4.5% were 50.0% and 42.5% with FMD >4.5%. Smoking in diabetics with FMD <4.5% was 10.0% and FMD >4.5% was 15%. Hypertension was equally found 40%. Family history of diabetes with FMD % <4.5 was 30% and FMD >4.5% were none. Duration of diabetes with FMD >4.5% was 8.2±6.32 and FMD >4.5% was 6.92±4.88. Duration was longer in patients with FMD <4.5%. BMI with FMD >4.5% was 26.46±2.82 and FMD >4.5% was 24.72±3.89. BMI was more in diabetics with FMD <4.5%. Total cholesterol in diabetics with FMD % <4.5 was 168.80±45.15 and FMD 4.5% was 166.20±42.50. Mean LDL was 98.20±35.69 in diabetics with FMD < 4.5 % and 101.95±35.98 in diabetics with FMD >4.5%. HDL was 31.30±6.89 in diabetics with FMD < 4.5 % and 35.20±9.90 in diabetics with FMD >4.5%. TG was 220.50±173.44 in diabetics with FMD < 4.5 % and 161.72±65.80 in diabetics with FMD >4.5%. TG was high in diabetic with FMD <4.5%.

4. Discussion

Endothelial dysfunction occurs much before the atherogenesis and diabetes is a major cause of the reduced flow mediated dilatation (FMD) [1, 2, 21, 22]. Using FMD% as a measure of endothelial function, there was a significant difference between the diabetic cohort (3.97 ± 0.24) and the controls (10.63 ± 0.14); (p value of 0.001). This finding shows the presence of impairment of endothelial dependent function in diabetics. This stage is reversible with good control of diabetes as reported by earlier [23-29] and the present study. Reddy and Yousuf opined India will be burdened by highest coronary artery disease burden in the
world by the end of 2015 [30]. Obesity and dyslipidemia in the present study showed mixed results. People with obesity showed a significant difference in FMD %. Serum total cholesterol and triglycerides showed a significant change while serum HDL and LDL levels did not show any significant change with FMD %. This finding was similar to that by Dosi et al [28].

Some studies have shown an independent inverse association between brachial FMD and CVD events [31–35], but Fathi et al and Frick et al did not find any relation of FMD with ischemic heart disease [36,37]. A recent large meta-analysis suggested that the association between FMD and the estimated 10-year risk of coronary heart disease, assessed using the Framingham risk score, was strongest in the low risk populations compared with medium or high risk populations [24,38]. There is, however, a paucity of data on the predictive value of brachial FMD for incident cardiovascular events in low-risk populations or subjects free of CVD at baseline. The study by Shimbo et al [15,39] attempted to address this question, but their findings were inconclusive due to small sample size and less ethnically diverse cohort compared with the USA population. In contrast, in the current study an inverse association between FMD and clinical CVD events remained significant after adjustment for multiple cardiovascular disease risk factors or for the FRS (Framingham risk score).

The data suggest that endothelial function is a useful prognostic marker in coronary artery disease patients [40]. In these patients, it has been reported that endothelial dysfunction is an independent prognostic factor and may predict future events, irrespective of the angiographic severity of the disease [40,41]. Individuals with endothelial dysfunction require better control of their lipid profile, C reactive protein, serum glucose, blood pressure, and smoking, since it is well known that all these factors affect endothelial function significantly. Moreover, blunted endothelial function may reflect early atherosclerosis, and should lead to a detailed evaluation (and control) of all the conventional and newer risk factors, such as infection/inflammation, homocysteine. Persisting severe endothelial dysfunction in patients with advanced atherosclerosis may require a more aggressive control of risk factors and probably modification of current medication [42].

5. Limitations of the present study

The sample is relatively small in this study. Also, a comparison with other markers of atherogenicity including arterial stiffness and carotid intima thickness would be valuable. Moreover, long-term follow-up studies are needed to find out whether treatment modalities aimed at improving endothelial function can translate into a delayed progression of atherosclerosis.

References

[1] American Diabetes association. Standards of medical care for patients with diabetes mellitus (Position Statement). Diabetes Care 2003; 26 (Suppl. 1): S33–S50.

[2] Cohen RA. Dysfunction of vascular endothelium in diabetes mellitus. Circulation 1993; 87: 67–76.

[3] King GL, Kunisahi M, Nihio Y. Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes 1996; 45 Suppl 3: S105–8.

[4] Donald AE, Halcox JP, Charakida M, Storry C, Wallace SM, Cole TJ, Friberg P, Deanfield JE: Methodological approaches to optimize reproducibility and power in clinical studies of flow-mediated dilation. J Am Coll Cardiol 2008; 51(20):1959–1964.

[5] Henry RM, Ferreira I, Kostense PJ, Dekker JM, Nijpels G, Heine RJ, Kamp O, Bouter LM, Stehouwer CD: Type 2 diabetes is associated with impaired endothelium-dependent, flow-mediated dilation, but impaired glucose metabolism is not; the hoorn study. Atherosclerosis 2004; 174(1):49–56.

[6] Irace C, Tschakovsky ME, Carallo C, Cortese C, Gnasso A: Endothelial dysfunction or dysfunctions? Identification of three different FMD responses in males with type 2 diabetes. Atherosclerosis 2008; 200(2):439–445.

[7] Reyes-Soffer G, Holleran S, Di Tullio MR, Homma S, Boden-Albala B, Ramakrishnan R, Elkind MS, Sacco RL, Ginsberg HN: Endothelial function in individuals with coronary artery disease with and without type 2 diabetes mellitus. Metabolism 2010; 59(9):1365–1371.

[8] Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA: Impaired nitric oxide-mediated vasodilation in patients with non-insulin dependent diabetes mellitus. J Am Coll Cardiol 1996, 27(3):567–574.

[9] Naka KK, Papatahanassiou K, Bechlioulis A, Kazakos N, Pappas K, Tigos S, Makriyiannis D, Tsatsoulis A, Michalis LK: Determinants of vascular function in patients with type 2 diabetes. Cardiovasc Diabetol 2012, 11:127.
[10] Moncada S, Higgs A. The L-arginine–NO pathway. N Engl J Med 1993; 329: 2002-12.
[11] Widlansky ME, Gokce N, Keaney JF, et al. The clinical implications of endothelial dysfunction. J Am Coll Cardiol 2003; 42: 1149-60.
[12] Daniel Ligejhon: Noninvasive assessment of endothelial dysfunction, TMJ 2005; 5: 335 – 338.
[13] Celermajer DS, Sorensen K.E., Gooch V.M., Miller, I.D. Sullivan, J.K. Lloyd, J.E. Deanfield, D.J. Spiegelhalter Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340 (8828): 1111–1115.
[14] Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Drexler H Marie Gerhard-Herman, David Herrington, Patrick Vallance, Joseph VIta, Robert Vogel Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilatation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002; 39: 257-65.
[15] Sorensen KE, Celermajer DS, Spiegelhalter DJ, et al. Noninvasive measurement of endothelium-dependent arterial responses in man: accuracy and reproducibility. Br Heart J 1995; 74: 247-53.
[16] Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, et al: Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the international brachial artery reactivity task force. J Am Coll Cardiol 2002; 39(2):257–265.
[17] Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, Lima JA, Crouse JR, Herrington DM: Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation 2009; 120(6):502–509.
[18] Mannion TC, Vita JA, Keaney JF, Jr., Benjamin EJ, Hunter L, Polak JF. Non-invasive assessment of brachial artery endothelial vasomotor function: the effect of cuff position on level of discomfort and vasomotor responses. Vasc Med 1998; 3: 263–7.
[19] Uehata A, Lieberman EH, Gerhard MD, et al. Noninvasive assessment of endothelium-dependent flow-mediated dilation of the brachial artery. Vasc Med 1997; 2: 87–92.
[20] Vogel RA, Corretti MC, Plotnick GD. A comparison of the assessment of flow-mediated brachial artery vasodilation using upper versus lower arm arterial occlusion in subjects with and without coronary risk factors. Clin Cardiol 2000; 23: 571–5.
[21] Patel S, Celermajer DS. Assessment of vascular disease using arterial flow mediated dilatation. Pharmacological Reports. 2006; 58(suppl.):3-7.
[22] Reddy KG, Nair RN, Sheehan HM, Hodgson J. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol 1994; 23:833-43.
[23] Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilatation of brachial artery. J Am Coll Cardiol 1999; 34:146-54.
[24] Manzella D, Grela R, Abbatecola AM, Paolissio G. Repaglinide administration improves brachial reactivity in type 2 diabetic patients. Diabetes Care 2005; 28:366-71.
[25] Caballero AE, Saouaf R, Lim SC, Hamdy O, Abou EK OP"Connor C et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo controlled randomized clinical trial. Metabolism 2003; 52:173-80.
[26] K Bhargava, G Hansa, M Bansal, S Tandon, RR Kasliwal. Endothelium-Dependent Brachial Artery Flow Mediated Vasodilatation in Patients with Diabetes Mellitus With and Without Coronary Artery Disease. JAPI 2003; 51 (4): 355 – 58.
[27] Chugh SN, Dabla Surekha, Jain Vinish, Chugh Kiran, Sen Jyotsna. Evaluation of Endothelial Function and Effect of Glycemic Control (Excellent Vs Poor / Fair Control) on Endothelial Function in Uncontrolled Type 2 Diabetes Mellitus JAPI 2008; 58; 478 – 480.
[28] Dosi RV, Acharya, Patell RD. Endothelial dysfunction in a cohort of Indian patients with type-2 diabetes mellitus; JACC 2012; 13(3): DS 206-9.
[29] Kumari NR, Raju IB, Reddy GV, Rao PR, Chalam RV, Rao MV, Evaluation of endothelial function by brachial artery flow-mediated dilatation in patients with type II diabetes mellitus JICC 2012; 2 (2): 75-78.
[30] Reddy KS, Yusuf S. Emerging epidemic of CAD in developing countries. Circulation 1997; 97: 596 - 601.
[31] Joseph Yeboah, Aaron R. Folsom, Gregory L. Burke, Craig Johnson, Joseph F Polak, Wendy Post, Joao A Lima, John R. Crouse and David M Herrington, Predictive Value of Brachial Flow-Mediated Dilation for Incident Cardiovascular Events in a Population-Based Study: The Multi - Ethnic Study of Atherosclerosis Circulation. 2009; 120(6):502–509.
[32] Gokce N, Keaney JF Jr, Hunter LM, Watkins MT, Menzoian JO, Vita JA. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation 2002; 105:1567–72.
[33] Brevetti G, Silvestro A, Schiano V, Chiarelli M. Endothelial dysfunction and cardiovascular risk prediction in peripheral artery disease: additive value of
flow-mediated dilation to ankle-brachial pressure index.
Circulation 2003; 108:2093–8.

[34] Gokce N, Keaney JF Jr, Hunter LM. Predictive value of noninvasively determined endothelial dysfunction for long term cardiovascular events in patients with peripheral vascular disease. *J Am Coll Cardiol* 2003; 41:1769–75.

[35] Yeboah J, Crouse JR, Hsu F, Burke GL, Herrington DM. Brachial Flow-mediated dilation predicts incident cardiovascular events in older adults: The Cardiovascular Health Study. *Circulation* 2007 May 8; 115(18):2390–7.

[36] Fathi R, Haluska B, Isbel N, Short L, Marwick TH. The relative importance of vascular structure and function in predicting cardiovascular events. *J Am Coll Cardiol* 2004; 43:616–23.

[37] Frick M, Suessenbacher A, Alber HF, Dichtl W, Ulmer H, Pachinger O, Weidinger F. Prognostic value of brachial artery endothelial function and wall thickness. *J Am Coll Cardiol* 2005; 46:1006–10.

[38] Witte DR, Westerink J, de Koning E, Van der Graaf Y, Grobbee DE, Bots ML. Is the association between flow-mediated dilation and cardiovascular risk limited to low-risk populations? *J Am Col Cardiol* 2005; 45: 1987–1993.

[39] Shimbo D, Grahame-Clarke C, Miyake Y, Rodriguez C, Sciacca R, Di Tullio M, Boden-Albala B, Sacco R, Homma S. The association between endothelial dysfunction and cardiovascular outcomes in a population-based multi-ethnic cohort. *Atherosclerosis* 2007; 192:197–203.

[40] Tagawa T, Imaizumi T, Endo T, *et al.* Role of nitric oxide in reactive hyperemia in human forearm vessels. *Circulation* 1994; 90: 2285-90.

[41] Hashimoto M, Miyamoto Y, Matsuda Y *et al.* New methods to evaluate endothelial function: Non-invasive method of evaluating endothelial function in humans. *J Pharmacol Sci* 2003; 93: 405-8.

[42] Hashimoto M, Eto M, Akishita M, *et al.* Correlation between flow mediated vasodilatation of the brachial artery and intima-media thickness in the carotid artery in men. *Arterioscler Thromb Vasc Biol* 1999; 19: 2795-800.

[43] Bhargava K, Hansa G, Bansal M, Tandon S, Kasliwal RR. Endothelium-dependent brachial artery mediated vasodilation in patients with diabetes mellitus and without coronary artery disease. *JAPI* 2003; 51: 355-358.

[44] Clarkson P, Adams MER, Amanda J, Donald Ann E, Mc Credie R, Robinson J *et al.* Oral L-arginine improves endothelium-dependent dilation in hypercholesterolaemia young adults. *J Clin Invest* 1996; 97: 1989-94.

[45] Dipti Chand, Kamble BG, Chand AG, Fuse SM, Ambhore NN. Endothelial function in Type 2 diabetic subjects compared with healthy controls. *JAPI* 2001; 49: 74-5.

[46] Ravikumar R, Deepa R, Shanthirani C, Mohan V. Comparision of carotid intima-media thickness, arterial stiffness, and brachial artery flow mediated dilation in diabetic and Non-diabetic subjects (The Chennai Urban Population study CUPS-9). *Am J Cardiol* 2002; 90: 702 - 07.