Search for a new short-range spin-dependent force with polarized Helium 3

Mathieu Guigue¹, David Jullien², Alexander K. Petukhov², Guillaume Pignol¹

¹LPSC, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
²Institut Laue Langevin, 6 Rue Jules Horowitz, 38000 Grenoble, France

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-03/guigue_mathieu

Measuring the depolarization rate of a ³He hyperpolarized gas is a sensitive method to probe hypothetical short-range spin-dependent forces. A dedicated experiment is being set up at the Institute Laue Langevin in Grenoble to improve the sensitivity. We present the status of the experiment.

1 Probing short-range spin-dependent interaction

Numerous theories beyond the Standard Model of particle physics predict the existence of new light scalar bosons such as the Axions theory [1] developed to solve the strong CP problem. The exchange of a new scalar boson of mass m_ϕ between a polarized probe particle and an unpolarized source particle, separated by r, would mediate a short-range monopole-dipole interaction defined by the potential:

$$V = g_N^s g_N^p \frac{\hbar \hat{\sigma}}{8\pi M c} \left(\frac{m_\phi}{r} + \frac{1}{r^2} \right) \exp(-m_\phi r)$$ (1)

where $\hbar \hat{\sigma}/2$ is the spin of the probe particle, M the mass of the polarized particle, g_N^s and g_N^p the coupling constant at the vertices of polarized and unpolarized particles corresponding to a scalar and a pseudoscalar interactions. Finding a new boson or a new short-range interaction would be an important discovery in fundamental physics, since it could solve problems such as the nature of the Dark Matter (as a WISP candidate [2]). This new force is thus actively searched for around the world through different kind of experiments (using torsion-balance, studying the Newton’s inverse square law or looking at bouncing ultracold neutrons [3]).

Consider a spherical cell filled with polarized ³He atoms with a gyromagnetic ratio γ immersed in a static magnetic field B_0. In the case of a light boson with $m_\phi \lesssim 1$ eV, the axion-like interaction given by Eq. (1) acts like a macroscopic pseudomagnetic field of typical size $\lambda = \frac{\hbar}{m_\phi \gamma m_n} \gtrsim 1 \mu$m, which is generated by the glass walls of the cell:

$$b_{\text{NF}}(x) = \frac{\hbar \lambda}{2\gamma m_n} N g_s g_p \left(1 - e^{-d/\lambda} \right) e^{-x/\lambda},$$ (2)

where N is the nucleon density, m_n the nucleon mass, x the distance to the cell wall and d the thickness of the wall. This new pseudomagnetic field acting close and perpendicular to the
surface of the cell would provoke the depolarization of the gas, whose rate is, for a pressure of several bars and typical cell sizes L much larger than λ:

$$\Gamma_{1,\text{NF}} \approx \sqrt{\frac{2\gamma^2 b_0^2}{\gamma B_0 L}},$$

(3)

where b_0 is the prefactor of the exponential in Eq. (2). This new relaxation channel adds to the the natural depolarization Γ_1 of the gas, which results from the three main contributions: the relaxation rate induced by collisions of polarized atoms on the cell walls Γ_w, the relaxation rate due to interparticles collisions Γ_{dd} and the depolarization rate due to the motion of polarized particles in an inhomogeneous magnetic field Γ_m. While Γ_1 behaves as $a + \frac{b}{B_0} + \frac{c}{B_0^2}$, the relaxation rate $\Gamma_{1,\text{NF}}$ is proportional to $1/\sqrt{B_0}$ which is a non-standard dependence on the holding magnetic field B_0. The existence of a new short-range spin-dependent interaction can then be extracted from measurements of the relaxation rate at different values of the holding magnetic field.

A first test experiment [3, 4] measuring the spin longitudinal depolarization rate Γ_1 as a function of the applied field B_0 was performed in 2010 to demonstrate the sensitivity of the method. A new dedicated experiment is set up at the Institute Laue-Langevin, improving both (i) the magnetic environment of the experiment and (ii) the measurement of the decay of polarization.

\section{An improvement of the magnetic field environment}

In order to suppress the magnetic field inhomogeneity depolarization channel Γ_m, the holding magnetic field should be as homogeneous as possible. The apparatus, represented on Fig. 1, is composed of a 5 m long and 80 cm diameter solenoid which provides a very homogeneous magnetic field. In order to shield its center from external magnetic fields, this solenoid is inserted into a μ-metal magnetic shield of 96 cm diameter and 4 m long from "n-nbar" experiment [5] which measured at the Institut Laue Langevin the neutron-antineutron oscillation.

In addition, we mapped the inner magnetic field using a three-axis fluxgate magnetometer, in order to extract the transverse gradients g_\perp for different B_0 settings. Typically, g_\perp is about 1.5 nT/cm to 2 nT/cm for magnetic field from 2 μT to 80 μT. The magnetic relaxation time $T_m = 1/\Gamma_m$ is then expected to be longer than 90 h. At low field ($B_0 = 3 \mu$T), this is a factor 100 better than the previous experiment. This improvement will directly affect the duration of the experiment and so the precision of the relaxation rate measurement.
3 The polarization measurement technique

Among all the ways to measure the polarization and the relaxation rate of a hyperpolarized gas, the nuclear magnetic resonance (NMR) is the most widely used technique. One can measure at the percent level the amplitude of the NMR response signal or can also measure the frequency shift, both proportional to the polarization.

A better precision for the longitudinal relaxation rate measurement can be achieved with a direct polarimetry technique [6]: it consists in measuring, with two fluxgate magnetometers, the magnetic field generated by the gas itself which can be of order of tenths of nT at pressures of several bars. The magnetometers sensors are at a place where the dipolar field induced by the polarized gas is transverse relative to the B_0 field.

Applying spin-flips with a transverse oscillating magnetic field (Fig. 2) to reverse the polarization, one can remove magnetic offsets induced by long-term drift of the holding magnetic field or the misalignment of the magnetometers axis with B_0. Fig. 2 shows typical sequences of “up-down-down-up” measurements of the magnetic field induced by a spherical cell at 1 bar with the two magnetometers.
Fig. 3 shows the Allan Standard Deviation (ASD) of the holding field measurements with each magnetometers and of differential measurements. Since the magnetometers measure the same signal with an opposite sign, a differential acquisition between the two fluxgate magnetometers improves the precision of the measurement by suppressing the long-time correlated fluctuations of the holding magnetic field. Since the Allan Standard Deviation of the fluxgate magnetometers is 50 pT at 1 s when they are exposed to no magnetic field, the uncertainty on the polarization measurement mainly comes from the holding magnetic field instability. This deviation is about 0.4 nT at 1 s; then, for a 1 bar cell of 70% polarized helium, the typical magnetic field generated by the cell is 30 nT.

Since several measurements of magnetic field are performed for a single relative polarization determination, the relative uncertainties on the polarization is about 0.3% which leads to relative uncertainties on relaxation rates lower than 1%.

4 Expected constraints

The high quality of the magnetic environment decreases the dominant depolarization contribution at low magnetic field and the direct polarization measurement technique increases our sensitivity to any deviation from the classical behaviour of the longitudinal relaxation rate with the holding magnetic field \(B_0\). From the expected \(\Gamma_1\) curve as a function of \(B_0\), one can extract the expected sensitivity (shown on Fig. 4) of the coupling constants product \(g_s^N g_p^N\) from a new depolarization channel (3).

References

[1] J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984).
[2] P. Arias et al., arXiv:1201.5902.
[3] I. Antoniadis et al., Comptes Rendus Physique 12, 755 (2011).
[4] A. K. Petukhov et al., Phys. Rev. Lett. 105, 170401 (2010).
[5] T. Bitter et al., Nucl. Instrum. Methods Phys. Res. A 309, 521 (1991).
[6] E. Wilms et al., Nucl. Instrum. Methods Phys. Res. A 401, 491 (1997).
[7] M. Bulatowicz et al., arXiv:1301.5224.
[8] T. Jenke et al., Phys. Rev. Lett. 112, 151105 (2014).
[9] A. P. Serebrov, Phys. Lett. B 680, 423 (2009).
[10] A. P. Serebrov et al., Pis’ma Zh. Eksp. Tero. Fiz. 91, 8 (2010).