Bandoniozyma gen. nov., a Genus of Fermentative and Non-Fermentative Tremellaceous Yeast Species

Patricia Valente¹,², Teun Boekhout³, Melissa Fontes Landell², Juliana Crestani², Fernando Carlos Pagnocca⁴, Lara Durães Sette⁴,⁵, Michel Rodrigo Zambrano Passarini⁶, Carlos Augusto Rosa⁶, Luciana R. Brandão⁶, Raphael S. Pimenta⁷, José Roberto Ribeiro⁷, Karina Marques Garcia⁸, Ching-Fu Lee⁹, Sung-Oui Suh¹⁰, Gábor Péter¹¹, Dénes Dlauchy¹¹, Jack W. Fell¹², Gloria Scorzetti¹², Bart Theelen³, Marilene H. Vainstein²

¹Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre - RS, Brazil, ²Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre – RS, Brazil, ³Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre, Utrecht, The Netherlands, ⁴Departamento de Bioquímica e Microbiologia, São Paulo State University, São Paulo - SP, Brazil, ⁵Colecção Brasileira de Micro-organismos de Ambiente e Indústria, Divisão de Recursos Microbianos-Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas – SP, Brazil, ⁶Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte – MG, Brazil, ⁷Laboratório de Microbiologia Ambiental e Biotecnologia, Campus Universitário de Palmas, Universidade Federal do Tocantins, Palmas - TO, Brazil, ⁸Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, Brazil, ⁹Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan, ¹⁰Mycolology and Botany Program, American Type Culture Collection, Manassas, Virginia, United States of America, ¹¹National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Sciences, Corvinus University of Budapest, Budapest, Hungary, ¹²Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, Florida, United States of America

Abstract

Background: Independent surveys across the globe led to the proposal of a new basidiomycetous yeast genus within the Bulleromyces clade of the Tremellales, Bandoniozyma gen. nov., with seven new species.

Methodology/Principal Findings: The species were characterized by multiple methods, including the analysis of D1/D2 and ITS nucleotide sequences, and morphological and physiological/biochemical traits. Most species can ferment glucose, which is an unusual trait among basidiomycetous yeasts.

Conclusions/Significance: In this study we propose the new yeast genus Bandoniozyma, with seven species Bandoniozyma noutii sp. nov. (type species of genus; CBS 8364T = DBVPG 4489T), Bandoniozyma aquatica sp. nov. (UFMG-DH.420T = CBS 12527T = ATCC MYA-4876T), Bandoniozyma complexa sp. nov. (CBS 11570T = ATCC MYA-4603T = MA28aT), Bandoniozyma fermentans sp. nov. (CBS 12399T = NU7M71T = BCRC 23267T), Bandoniozyma glucofermentans sp. nov. (CBS 10381T = NRRL Y-48076T = ATCC MYA-4760T = BG 02-7-13-015A-1-1T), Bandoniozyma tunnelae sp. nov. (CBS 8024T = DBVPG 7000T), and Bandoniozyma visegradensis sp. nov. (CBS 12505T = NRRL Y-48783T = NCAIM Y.01952T).

Citation: Valente P, Boekhout T, Landell MF, Crestani J, Pagnocca FC, et al. (2012) Bandoniozyma gen. nov., a Genus of Fermentative and Non-Fermentative Tremellaceous Yeast Species. PLoS ONE 7(10): e46060. doi:10.1371/journal.pone.0046060

Introduction

Phylogenetic approaches to yeast systematics have revealed the polyphyletic nature of many yeast genera, emphasizing the need for a natural classification. As a consequence, several new genera have been described in an increasing effort to classify yeasts according to monophyletic clades with high bootstrap support [1,2]. Following this approach, new genera were described in the Tremellales (Agaricomycotina, Basidiomycota), a large group of basidiomycetes that include basidiocarp-forming species, anamorphic yeast taxa and dimorphic fungi with complex life cycles bearing unicellular yeast phases [3,4]. Some of the yeast genera in Tremellales are teleomorphic (i.e. sexual), such as Auriculibuller, Bulleromyces, Camculetina, Papilibuller, Bulleribasidium and Koniella [5-9], but anamorphic (i.e. asexual) genera have also been described. The Lutelus clade of the Tremellales gave rise to the anamorphic genera Desmyces and Hannelula for distinct clades represented by Bullerera mukai and B. renieri, respectively [10], while Takashima et al. [11] emended Droszia and transferred Cryptococcus hungaricus to this genus, and Wang et al. [12] described...
Results and Discussion

Proposal of New Genus

Data analysis of partial rDNA sequences allowed the recognition of a new clade of basidiomycetous yeast species that originated from different geographic locations (Table 1, Fig. 1). Most of the species within this clade are capable of glucose fermentation, and some species can ferment other sugars as well (Table 2, Table S1). Phylogenetically, the clade is located in the *Bulleromyces* clade of the Tremellales. Various surveys by a number of independent researchers across the globe resulted in a collection of strains obtained from different countries and substrates. Most strains are capable of glucose fermentation, which is an uncommon biochemical trait among the basidiomycetous yeasts. Using molecular phylogenetic approaches we propose the new monophyletic genus *Bandoniozyma* gen. nov., and seven new species: *Bandoniozyma noutii* sp. nov. (type species of the genus), *Bandoniozyma aquatica* sp. nov., *Bandoniozyma complexa* sp. nov., *Bandoniozyma fermentans* sp. nov., *Bandoniozyma glucofermentans* sp. nov., *Bandoniozyma tunnelae* sp. nov., and *Bandoniozyma visgradensis* sp. nov.

Materials and Methods

Yeast Isolation and Maintenance

The localities, substrates of isolation, MycoBank numbers and GenBank accession numbers are summarized in Table 1 (see Information S1 for details).

Phenotypic Characterization

Morphological and biochemical/physiological characterization of the isolates was performed according to Kurtzman et al. [15] and Barnett et al. [16].

DNA Sequencing and MSP-PCR (Microsatellite-primed PCR) Fingerprinting

The D1/D2 domain of the large subunit (26S) rRNA gene was sequenced as described by Kurtzman and Robnett [17]. The ITS region (ITS1, 5.8S rRNA gene and ITS2) was amplified and sequenced as described by Péter et al. [18]. Alignments and phylogenetic trees were constructed with MEGA 5 [19], using the neighbor joining method with bootstrap analysis based on 10,000 random samplings. MSP-PCR fingerprinting followed the protocols described in Sampaio et al. [20], and used the primers (GTG)\textsubscript{5} and M13. MSP-PCR profiles with each primer were repeated twice for inference of reproducibility. Gel electrophoresis images were acquired with the GelDoc XR System software (Bio-Rad).

Nomenclature

The electronic version of this article in Portable Document Format (PDF) in a work with an ISSN or ISBN will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic publication of a PLOS ONE article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies.

In addition, new names contained in this work have been submitted to MycoBank from where they will be made available to the Global Names Index. The unique MycoBank number can be resolved and the associated information viewed through any standard web browser by appending the MycoBank number contained in this publication to the prefix http://www.mycobank.org/MB. The online version of this work is archived and available from the following digital repositories: PubMed Central; LOCKSS.
Species	MycoBank number (MB)	Strain *	Origin	GeneBank accession number
Bandoniozyma noutii	MB 563852	CBS 8364	Exudate of *Eriobotrya japonica* (Rosaceae), Tijuca Forest, RJ, Brazil	AF444700 AF444391
		CBS 8365	Exudate of *Eriobotrya japonica* (Rosaceae), Tijuca Forest, RJ, Brazil	AF444701 AF444392
		CBS 8368	Flower of *Pimenta dioica* (Myrtaceae), Pau da Fome, Pedra Branca, RJ, Brazil	AF444704 AF444395
B. aquatica	MB 563857	12527	Freshwater in a Lake (Dom Helvécio) from Parque Estadual do Rio Doce, MG, Brazil	JN979992 JN790616
B. complexa	MB 801195	11570	Air from timber factory Cachoeira do Sul, RS, Brazil	GU321090 GU321089
		MA68d	Air from timber factory Cachoeira do Sul, RS, Brazil	GU321092 GU321091
Group I	CBS 12531 (CBMAI 1003)		Aluminum screw with signs of corrosion from an energy transmission tower, Suzano, SP, Brazil	FJ986613 JQ070069
		BD 143	Aluminum screw with signs of corrosion from an energy transmission tower, Suzano, SP, Brazil	– –
		BD 149	Aluminum screw with signs of corrosion from an energy transmission tower, Suzano, SP, Brazil	– –
		IMUFJR 51948	Leaf of Neoregelia cruenta (Bromeliaceae), Restinga de Maricá, RJ, Brazil	FN424103 FN424103
Group III	CBS 12398 (BCRC 23285, PL04)		Pineapple, Hsinchu, Taiwan	FJ527161 HQ523538
	UFMG-LR3.11		Lago Rico Lake, Parque Estadual do Cantão, TO, Brazil	– –
	UFMG-LD2.09		Lago de Dentro Lake, Parque Estadual do Cantão, TO, Brazil	– –
	UFMG-LD3.02		Lago de Dentro Lake, Parque Estadual do Cantão, TO, Brazil	JN997534 JN997533
B. fermentans	MB 563855	23267	Unidentified mushroom, Beinan, Taitung, Taiwan	HM461720 HQ523541
B. glucofermentans	MB 563856	10381	Gut of *Amphix laevigatus* (Coleoptera: Endomychidae), Panama	AY520334 JN381033
		Y-48076	Gut of *Canthion sp.* (Coleoptera: Scarabaeidae), Panama	AY520385 JN381034
B. tunnelae	MB 563853	8024	Nail, Finland	AF444715 AF444453
		6123	Unknown substrate, Finland	AF444687 AF444333
		6024	Unknown substrate, Finland	AF444714 AF444452
B. visegradensis	MB 563854	12505	Exudate of *Quercus cerris*, Hungary	GU195658 HQ600084

Type strain, T.

ATCC = American Type Culture Collection, USA.
BCRC = Bioresources Collection and Research Center, Taiwan.
Table 1. Cont.

The genus is comprised of two clearly separated groups of species (Figure 1). The first group is composed of Bandoniozyma tunnelae, Bandoniozyma noutii and Bandoniozyma visegradensis. The latter two species are represented by strains obtained mainly from plant exudates. It is significant to note that B. noutii is able to ferment sucrose and raffinose, which are two of the most common sugar components of plant exudates [35,36]. While most species in the Bandoniozyma genus originated from tropical/subtropical areas and environmental samples, B. tunnelae and B. visegradensis are from Finland and Hungary, respectively, and B. tunnelae was obtained from a human-related substrate (Table 1).

Bandoniozyma glucofermentans was isolated from the gut of insects, while Bandoniozyma fermentans was isolated from an unidentified mushroom (Table 1). The type strain of B. glucofermentans was isolated from Amphiox laevisitus (Coleoptera: Endomychidae), a mycophagous beetle [37]. Although an additional strain of B. glucofermentans was found from Canthon sp. (Coleoptera: Scarabaeiidae), which is usually copro-necrophagous, some Canthon species have a generalist feeding behavior [38]. The hypothesis that B. glucofermentans and B. fermentans take part in the beetle/mushroom/yeast interaction model should be further investigated to evaluate if additional fermentative basidiomycetous yeasts occur in mushroom related sources. B. glucofermentans is closely related to Bandoniozyma aquatica, which differs from the former in the ITS sequence (3 substitutions), assimilation of D-arabinose, melibiose, raffinose, and growth in vitamin-free medium (Table 2). B. aquatica, like other Bandoniozyma strains discussed below, was isolated from lake water, suggesting that these yeasts can also be dispersed by water. The lake where this yeast was isolated is surrounded by Atlantic Rain Forest, and its occurrence in this aquatic environment could be considered the result of a run-off from plant or insects of this forest.

Bandoniozyma complexa is represented by 10 strains isolated from different substrates and geographical regions (Table 1). These strains group in three different MSP-PCR fingerprinting profiles with primers M13 (Figure S1) and GTG, (data not shown). MSP-PCR fingerprinting is a methodology that displays whole genome profiles, and isolates that belong to the same species usually present identical or similar fingerprints [39]. B. complexa group I differs from group II by 7 nucleotide substitutions in the ITS sequences, assimilation of starch, glycerol, erythritol, L-arabininitol, galactitol, citrate and growth in the presence of 0.01% cycloheximide, while group III differs from group I by 4 ITS nucleotide substitutions, glucose fermentation and nitrate assimilation, and from group II by 3 substitutions, glucose fermentation, assimilation of starch, glycerol, erythritol, citrate, nitrate and growth in the presence of 0.01% cycloheximide (data not shown). In particular, glucose fermentation is negative for strains in group III and strongly positive in less than three days for groups I and II. The biochemical tests were confirmed in two different laboratories. Group III strain CBS 12398 does not form pseudohyphae nor true hyphae on Dalmau plate culture on corn meal agar, while strains belonging to groups I and II do. The different MSP-PCR profiles with two independent primers and phenotypic traits suggest these groups are separate species, but D1/D2 and ITS sequencing could not clearly differentiate them. It is possible that the strains in this complex have recently diverged, and the ITS sequences may not be the best molecular marker for differentiation of these putative species. Attempts were made to sequence other genes (EF1-alpha and cytochrome B), but sequencing problems prevented conclusive results (Information S2).

Bandoniozyma complexa group I strains were isolated from air from a timber factory in South Brazil, which dealt mostly with wood of Pinus spp., but also processed Ficus and Eucalyptus trees (Table 1), suggesting that it may have been air-dispersed from a plant-related origin. B. complexa group III strain CBS 12398 was isolated from pineapple in Taiwan, while three other strains from this group were isolated from lake water within an Amazon Forest ecosystem in Northern Brazil (Table 1, Figure S1), thus suggesting dispersion from a primary plant-related substrate. The fact that B. complexa group III isolates were found in two geographically distant tropical countries indicates that this group may have a wide distribution in tropical environments.

Bandoniozyma complexa group II strains CBS 12531, BD143 and BD149 were isolated from a biofilm associated with a corroded aluminum screw from an energy transmission tower in Southeast Brazil (Table 1), which contained several other species of filamentous fungi and yeasts [40]. Strain CBS 12531 was shown to be conspecific with strain IMUFRJ 51948 by means of D1/D2 and ITS sequences, and both were isolated from geographically close locations in Brazil. Considering that strain IMUFRJ 51948 was obtained from a bromeliad, and that many Bandoniozyma strains were isolated from plant substrates and lake water, it could be suggested that association of B. complexa group II with the corrosion biofilm occurred after dispersion from a primary environmental source, although a role in biofilm formation cannot be excluded. Fungal influenced corrosion of a variety of materials, such as metals, minerals and concrete, is well known [41,42], and there are reports of isolation of yeasts from substrates damaged by corrosion [43,44]. Although a sexual stage could not be observed for any of the proposed Bandoniozyma species, B. visegradensis strain CBS 12505T formed septate hyphae and presented conjugating cells and tubes (Figure 2). Studies concerning the reproductive behaviour of B. visegradensis and isolation of more strains of this species will probably improve the current circumscription of this group of yeasts.

We hypothesize that the fermentation ability of the Bandoniozyma cluster was acquired after its separation from the non-fermentative C. laurentii/Cl. flavescens clade. Secondarily, B. complexa group III and B. visegradensis may have lost the fermentative capacity that is typical of the whole group. As glucose fermentation in yeasts is a two-step reaction mediated by the enzymes pyruvate decarboxylase and alcohol dehydrogenase [45], the alternative hypothesis of multiple independent origins for the fermentative ability of the species in this group is highly improbable. The fermentative
capabilities of some Bandoniozyma species (i.e. B. noutii, B. tunnelae, B. fermentans, B. glucofermentans, B. aquatica, B. complexa groups I and II) are unusual for basidiomycetous yeasts due to the strong glucose fermentation at 25–28°C, which is comparable to some ascomycetous species that vigorously ferment sugars.

We isolated several fermentative basidiomycetous strains from plant substrates (leaf surface, exudates and flowers) and mushroom, in addition to other possible secondary substrates, associated with the dispersion of these yeasts, such as insects, air, water, corroded aluminum screw, and human nail. These substrates were mostly sampled in tropical/subtropical areas (Brazil, Panama and Taiwan), but a temperate country (Finland) also yielded fermentative strains (B. tunnelae strains CBS 8024T, CBS 6024 and CBS 6129). As the sampling areas are globally distributed, it seems that...
the main premise for the presence of these yeasts is the availability of simple sugars as substrates for fermentation. We foresee that more fermentative basidiomycetous yeast strains will be reported as new simple sugar-containing substrates are sampled.

Bandoniozyma Boekhout, Valente, Pagnocca, Rosa, Lee, Suh, Blackwell, Péter, & Fell gen. nov.

Valente et al. 2012, gen.nov. [urn:lsid:imycobank.org:names:MB 563851.

Budding cells are globose, subglobose, ovoid or ellipsoidal. Asexual reproduction is by polar or multilateral budding. Colonies are white, cream-colored to yellowish, smooth but yelow smooth. Hyphae or pseudohyphae may be present. Clamp connections may be present. Sexual reproduction was not observed. Ballistoconidia are not produced. Fermentation of glucose is generally present. Diazonium blue B and urease reactions are positive. Growth on myo-inositol and D-glucuronate are positive, but growth on nitrate is negative. Starch-like compounds are generally formed. Type species: *Bandoniozyma noutii.

Etymology: The genus is named in honour of Robert (Bob) J. Bandoni, University of British Columbia, who dedicated his life to the study of the Tremellales.

The following species are accepted in the genus and can be differentiated by ITS sequencing and the biochemical/physiological tests included in Table 2.

1. **Bandoniozyma noutii** Boekhout, Fell, Scorzetti & Theelen sp. nov.

Valente et al. 2012, sp. nov. [urn:lsid:imycobank.org:names:MB 563852.

Etymology: The specific epithet *noutii* refers to Robert (Rob) Nout, investigator of traditionally fermented foods from South America, Africa and Asia.

After growth for 7 days in 2% glucose medium at 25°C, a sediment and film are formed. Cells are ovoid, subglobose to globose, 4–6 × 4–5 µm, usually with polar budding but also with multilateral budding, with buds that may adhere into short chains (Figure 3a). Pseudohyphae are present and fall apart in filaments that measure 28–50 × 2–4 µm, and eventually become somewhat thick-walled, irregularly broadened or somewhat broadened on one side. After 5 days on 5% malt extract agar at 25°C, colonies are 10 mm in diameter, convex, grayish cream-beige, shiny, strongly mucoid, smooth, and with an entire margin that may form sectors. Cells measure 3.3–7.8 × 3–7 µm. Under a cover glass filaments and hyphae occur with cells measuring 8–40 × 2–2.5 µm. Sexual reproduction is absent. Mixing the three available strains on potato dextrose agar, oat meal agar, corn meal agar, malt extract agar, glucose-yeast extract agar, and yeast extract malt extract agar did not show any

Table 2. Selected physiological/biochemical test responses for differentiation of the newly proposed Bandoniozyma species. The full data can be seen in Table S1.

Test responses*	*B. noutii*	*B. aquatica*	*B. complexa*	*B. fermentans*	*B. glucofermentans*	*B. tunnelae*	*B. visegradensis*
Fermentation							
D-Glucose	+	+	V	+	D	+,D	–
Carbon sources							
D-Galactose	+	+	+	+	+	+	–
L-Arabinose	+	+	+	+	+	+	–
D-Arabinose	+	–	+,D	W	+	+,D	–
Melibiose	+	–	+	–	+	–	–
Lactose	–	+	V	–	–,W	V	–
Raffinose	+	–	+	–	+	V	–
Starch	–	–	V	W	–	V	+,W
Glycerol	+	+	V	–	+,D	+,D	–
Erythritol	–	+	V	–	+	+,D	–
Xyitol	+	+	V	W	+	+,D	D,V
L-Arabinitol	+	+	V	+	+	+,D	–
Galactitol	V	+	V	+	W	–	–
DL-Lactate	–	+	+,D	W	–	+	+
Citrate	+	V	V	W	W	+	+
Nitrogen sources							
Nitrite	+,W	–	+	W	–	–	W
Ethylamine	+	+	+	+	+	V	–
Vitamin requirements							
Vitamin free	nd	+	+	–	–	–	–
Other tests							
0.01% cycloheximide	+	+	V	+	+	V	+
50% D-Glucose	+	–	V	–	–	V	–
Starch formation	+	W	–	+	+,W	–	–

*Test results: +, positive; D, delayed positive; W, weak; –, negative; V, variable; nd, not determined.

doi:10.1371/journal.pone.0046060.t002
Physiological/biochemical test responses can be seen in Table 2 and Table S1.

Strains investigated: CBS 8364T (= DBVPG 4489), CBS 8365 (= DBVPG 4490), from exudate of Eriobotrya japonica (Rosaceae), Tijuca Forest, RJ, Brazil; and CBS 8368 (= DBVPG 4499), from Flower of Pimenta dioica (Myrtaceae), Pau da Fome, Pedra Branca, RJ, Brazil, all isolated by G. Capriotti, DBVPG. The type strain has been deposited in Centraalbureau voor Schimmelcultures (CBS) and DBVPG Industrial Yeasts culture collections.

2. Bandoniozyma aquatica Brandão, Valente, Pimenta & Rosa sp. nov.

Valente et al. 2012, sp. nov. [urn:lsid:imycobank.org:names:MB 563857.

Etymology: The specific epithet aquatica refers to the habitat (freshwater) from which this species was isolated.

After growth in yeast extract-malt extract-peptone-glucose broth at 25°C for 3 days, the cells are globose to subglobose, 3.1–4.7×2.8–4.9 μm, and occur singly or in pairs (Figure 3e). Asexual reproduction is by multilateral budding. Sediment is present. After 7 days at 25°C on yeast extract-malt extract-peptone-glucose agar, streak cultures are cream, butyrous, rugose, and glistening. On Dalmau plate cultures on corn meal agar after 10 days at 25°C, pseudohyphae are formed. Sexual reproduction was not observed. Ballistoconidia are not produced. Physiological/biochemical test responses can be seen in Table 2 and Table S1.

Strain investigated: UFMG-DH-4.20 T (= CBS 12527, ATCC MYA-4876), from a freshwater sample, Ecological Reserve of Rio Doce, Brazil, isolated by L. Brandão. The type strain has been deposited in Universidade Federal de Minas Gerais (UFMG), American Type Culture Collection (ATCC) and Centraalbureau voor Schimmelcultures (CBS) culture collections.
Figure 3. Cell morphologies: a) *Bandoniozyma noutii* CBS 8364^T after 7 days in YM broth at 25°C. Bar = 10 μm, b) *Bandoniozyma tunnelae* CBS 8024^T after 7 days in YM broth at 25°C. Bar = 10 μm, c) *Bandoniozyma fermentans* CBS 12399^T grown in YMA for 3 day at 25°C. Bar = 10 μm, d) *Bandoniozyma glucofermentans* CBS 10381^T after 7 days in YM broth at 25°C. Bar = 10 μm, e) *Bandoniozyma*
3. *Bandoniozyma complexa* Landell, Pagnocca, Sette, Passarini, Garcia, Ribeiro, Lee, Brandão, Rosa & Valente sp. nov.

Valente et al. 2012, sp. nov. [urn:lsid:imycobank.org:names: MB 801195].

Etymology: The specific epithet *complexa* refers to the phenotypic and genotypic variation observed in the strains presently maintained in the species.

In glucose-peptone-yeast extract broth or yeast extract-malt extract-peptone-glucose after 3 to 4 days at 25°C, the asexual cells are globose to subglobose and ovoid, and occur singly or in pairs, 1.8–4.6×2.0–4.3 μm, and occur singly or in pairs (Figure 3f). After 1 week on glucose-peptone-yeast extract agar or yeast extract-malt extract-peptone-glucose agar at 25°C, the streak culture is white, creamy, smooth, butyrous and glistening. After 3 weeks in Dalmau plate culture on cornmeal agar, glistening and cream-colored formation are variable. Sediment is formed. Asexual reproduction is by multilateral budding. Sexual reproduction was not observed. Mixing the available strains on corn meal agar did not show any indication of a mating reaction after 6 days at 25°C. On yeast extract-malt extract-peptone-glucose agar after 3 days at 25°C, colonies are smooth, mucoid to butyrous, glistening and cream-colored, and have an entire margin. Ballistoconidia are not produced. Physiological/biochemical test responses can be seen in Table 2 and Table S1.

Strains investigated: CBS 11570^T (= ATCC MYA-4603^T, MA286^T) and MA68d, from air samples in Rio Grande do Sul, Brazil, isolated by J. Crestani; CBS 12531 (= CBMAI 1003), from a corroded screw from an energy transmission tower in Suzano, SP, Brazil, isolated by M. Passarini; IMUFRJ 51948, from the borough Medellín Neogela cruenta in Rio de Janeiro, Brazil, isolated by K. Garcia; CBS 12998 (= BCRG 23285, PL04), from pineapple, Hsinchu, Taiwan, isolated by C-F Lee; UFMG-LR3.11, from freshwater of Lago Rico Lake, Parque Estadual do Cantão,TO, Brazil; UFMG-LD2.09 and UFMG-LD3.02, from freshwater of Lago de Dento Lake, Parque Estadual do Cantão,TO, Brazil, all isolated by R. Pimenta & L.R. Brandão. The type strain has been deposited in American Type Culture Collection (ATCC) and Centraalbureau voor Schimmelcultures (CBS) culture collections.

4. *Bandoniozyma fermentans* Lee sp. nov.

Valente et al. 2012, sp. nov. [urn:lsid:imycobank.org:names: MB 563855].

Etymology: The specific epithet *fermentans* refers to the ability of the species to ferment glucose.

After growth in yeast extract-malt extract-peptone-glucose broth at 25°C for 3 days, the cells are globose, subglobose, or ovoid, 2.5–5.0×2.5–6.5 μm, and occur singly or in pairs (Figure 3c). Asexual reproduction is by multilateral budding. Sediment is present. After 7 days at 25°C on yeast extract-malt extract-peptone-glucose agar, streak cultures are creamy, butyrous, smooth, and glistening. On Dalmau plate cultures on corn meal agar after 10 days at 25°C, neither pseudohyphae nor true hyphae are formed under the cover glass. Sexual reproduction was not observed. Ballistoconidia are not produced. Physiological/biochemical test responses can be seen in Table 2 and Table S1.

Strain investigated: CBS 12399^T (= BCRG 23267^T, NU7M71^T), from fruiting body of an unidentified mushroom, Beinan, Taitung, Taiwan, isolated by C-F Lee. The type strain has been deposited in Bioresources Collection and Research Center (BCRC), Food Industry Research and Development Institute, Taiwan; and Centraalbureau voor Schimmelcultures (CBS) culture collections.

5. *Bandoniozyma glucofermentans* Suh & Blackwell sp. nov.

Valente et al. 2012, sp. nov. [urn:lsid:imycobank.org:names: MB 563856].

Etymology: The specific epithet *glucofermentans* refers to the character of the species to ferment glucose.

In yeast extract-malt extract-peptone-glucose broth after 7 days at 25°C, cells are globose, subglobose, or ovoid, 2.5–5.0×2.5–6.5 μm, and occur singly or in pairs (Figure 3d). Pseudohyphae are present. On yeast extract-malt extract-peptone-glucose agar after 7 days at 25°C, colonies are cream colored, smooth, mucoid with a slightly filamentous edge. After 10 days of growth on Dalmau plate culture on cornmeal agar at 25°C, pseudohyphae and true hyphae are present. Acrobic growth is white to cream colored with a slightly fuzzy margin. Sexual reproduction was not observed. Sediment is formed. Ballistoconidia are not produced. Physiological/biochemical test responses can be seen in Table 2 and Table S1.

Strains investigated: CBS 10381^T (= ATCC MYA-4755^T, NRRL Y-48076^T, BG 02-7-15-01A-1^T), from the gut of *Amphis leucogenus* (Coleoptera: Endomychidae), Barro Colorado Island, Panama; and ATCC MYA-4756 (= NRRL Y-48077, BG 02-7-16-01A-1^T), from the gut of *Cantithon* sp. (Coleoptera: Scarabaeidae), Barro Colorado Island, Panama, all isolated by S-O Suh and M. Blackwell. The type strain has been deposited in American Type Culture Collection (ATCC), Centraalbureau voor Schimmelcultures (CBS), and ARS culture collections (NRRL).

6. *Bandoniozyma tunnelae* Boekhout, Fell, Scorzetti & Theelen sp. nov.

Valente et al. 2012, sp. nov. [urn:lsid:imycobank.org:names: MB 563853].

Etymology: The specific epithet *tunnelae* refers to Dr. E. Tunnela, Finland, who isolated the strains.

After growth for 7 days in 2% glucose medium at 25°C, a sediment is formed, cells are ellipsoidal, ovoid, subglobose to globose, 5.9–9×2.5–7 μm (Figure 3b), usually with polar budding but also with multilateral budding, with clavate budding cells that may adhere into short chains; with pseudohyphae that fall apart in filaments that measure 28–50×70–2×4 μm, eventually becoming somewhat thick-walled, irregularly broadened or somewhat broadened on one side. After 5 days on 5% malt extract agar at 25°C colonies are 25–35 mm in diameter, flat to somewhat raised, cream-colored, shiny, mucoid, smooth, and with an entire to somewhat eroded margin. Cells are ovoid, subglobose to globose, 3.8–5.5×3.3–6 μm, with polar to multipolar budding. Under a cover glass filaments and hyphae occur with cells that measure 20–70×2–5 μm. On Dalmau plate on yeast morphology agar extensive hyphae and loosely branched pseudohyphae occur that laterally form ballistoconidia near the septa, with cells measuring 15–30×2–3×4–7 μm; usually broadened at one end and remain catenulate; the broadened part may give rise to globose to ellipsoidal thick-walled chlamydoospore-like cells that may release...
through endosporulation. Sexual reproduction is absent. Mixing the three available strains on potato dextrose agar, oat meal agar, corn meal agar, malt extract agar, glucose-yeast extract agar, and yeast extract malt extract agar did not show any indication of a mating reaction. The whole cell hydrolyzates of CBS 6024 contain glucose (main), galactose, mannose, xylose, arabinol, mannitol and glucuronic acid. Physiological/biochemical test responses can be seen in Table 2 and Table S1.

Strains investigated: CBS 8024T (=DBVPG 7000T), from human nail in Finland; CBS 6024 (= DBVPG 6992, PYCC 4857), from unknown source; and CBS 6123 (= DBVPG 6993), from human nail in Finland near Visegrad, Hungary, the place where the type strain was isolated.

The type strain has been deposited in Centralaerzubleu voor Schimmelcultures (CBS) and DBVPG Industrial Yeasts culture collections.

7. **Bandoniozyma visegradensis** Péter & Dlauchy sp. nov.

Valente et al. 2012, sp. nov. [urn:lsid:mycobank.org:names: MB 563854].

Etymology: The specific epithet visegradensis refers to Visegrad, Hungary, the place where the type strain was isolated.

After 3 days on 5% malt extract agar at 25°C, the streak culture is mucoid, cream-colored to yellowish, smooth, slightly raised and glistening. The margin is entire. Cells are formed by multilateral budding, subspheroid, ovoid or ellipsoidal, 3-9×4-13 μm, and occur singly and in pairs (Figure 2a). In 5% malt extract after 3 days at 25°C, a compact sediment is present, but a pellicle is absent. Following 1–3 weeks of incubation short pseudohyphal and septate hyphal fragments are present. The septate hyphae may bear clamps (or pseudoclamps) (Figure 2b) and the cells of the pseudohyphae may be connected by curved buds reminiscent of clamps of dikaryotic hyphae. After 3 weeks an incomplete climbing pseudohyphae may be connected by curved buds reminiscent of clamps of dikaryotic hyphae. After 3 days an incomplete climbing pseudohyphal and septate hyphal fragments are present. The septate hyphae are absent. Following 1–3 weeks of incubation short pseudohyphal and septate hyphal fragments are present. The septate hyphae may bear clamps (or pseudoclamps) (Figure 2b) and the cells of the pseudohyphae may be connected by curved buds reminiscent of clamps of dikaryotic hyphae. After 3 weeks an incomplete climbing pellicle is present. On Dalmau plate culture on corn meal agar and potato dextrose and yeast extract-malt extract-peptone-glucose agars, characteristic curved buds are interconnecting some cells. The connected cells may be independent (Figure 2c.1) or mother cell-bud pairs (Figure 2c.2). In addition, conjugating tubes and conjugations were also observed. The conjugation tubes may be simple (Figure 2d) or twisting and occasionally are ramified (Figure 2e). Formation of basidia and basidiospores was not observed even after 10 weeks incubation. The addition media acetate agar, glucose-peptone-yeast extract agar and vegetable juice agar (V8) were also applied to try to induce sexual state following incubation at 25°C for 10 weeks. The formation of conjugation tubes was abundant upon isolation of the strain, but has decreased during maintenance after subsequent subculturing. The formation of the conjugation tubes could be stimulated by incubating the cultures at lower temperatures (6°C or 15°C) and could be fully restored by freezing and thawing the strain in liquid nitrogen (i.e. freezing in 10% glycerol, direct immersion in nitrogen without stepwise cooling, thawing after 1 day in 37°C water bath). Ballistosporidia are not produced. Physiological/biochemical test responses can be seen in Table 2 and Table S1.

Strain investigated: CBS 12505T (= NRRL Y-40703T, NCIMB Y.01952T), from exudate of oak (*Quercus cerris*) in the Pilis Mountains near Visegrad, Hungary, isolated by G. Péter. The type strain has been deposited in the National Collection of Agricultural and Industrial Microorganisms in Budapest (Hungary), Centraalbureau voor Schimmecultures (CBS) and ARS culture collections (NRRL).

Supporting Information

Figure S1 MSP-PCR fingerprinting of **Bandoniozyma complexa** representative strains: DNA banding patterns obtained with primer M13. M – 1 kbp ladder, lane 1– group I CBS 11570T, lane 2– group I MA68d, lane 3– group II CBS 12531, lane 4– group III CBS 12398, lane 5– group III LD 2.09, lane 6– group III LD 3.02, lane 7– group III LR 3.11. (TIF)

Table S1 Physiological/biochemical test responses of the newly proposed **Bandoniozyma** species. (DOC)

Information S1 Details on the isolation methodology of **Bandoniozyma** strains. (DOC)

Information S2 Physiological/biochemical test responses and sequencing analysis of the ITS region, EF1-alpha and mitochondrial cytochrome b genes of strains belonging to **Bandoniozyma complexa**. (DOC)

Acknowledgments

The authors thank Dr. Leonardo Broetto for helping with the figures and Ife Dayo-Owoyemi for helping with the sequencing work.

Author Contributions

Conceived and designed the experiments: PV TB JF GS BT FCP CAR JRR C-FL S-OS GP DD. Performed the experiments: MFL JC TB JF GS BT MRZP LRB RSP JRR KMG C-FL S-OS GP DD. Contributed reagents/materials/analysis tools: MHV TB FCP LDS CAR C-FL S-OS GP DD. Analyzed the data: PV TB JF GS BT FCP CAR JRR C-FL S-OS GP DD. Wrote the paper: PV TB JF GS BT FCP CAR JRR C-FL S-OS GP DD. Contributed reagents/materials/analysis tools: MHV TB FCP LDS CAR C-FL S-OS GP DD. Analyzed the data: PV TB JF GS BT FCP CAR JRR C-FL S-OS GP DD. Wrote the paper: PV TB JF GS BT FCP CAR JRR C-FL S-OS GP DD.

References

1. Kurtzman CP, Robnett CJ (2010) Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of *Phomaglaea* gen.nov., a new member of the Saccharomycetales. *FEMS Yeast Res* 10: 353-361.

2. Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of *Pichia*, *Isosakucha* and *Williamia* determined from multigene sequence analysis, and the proposal of *Bannertyma* gen.nov., *Lindera* gen.nov. and *Wid他们都myces* gen.nov. *FEMS Yeast Res* 8: 939–954.

3. Bockhout T, Fonseca A, Sampaio JP, Bandoni RJ, Fell JW, et al. (2011) Discussion of teleomorphic and anamorphic basidiomycetous yeasts. In: Kurtzman CP, Fell JW, Bockhout T, editors. The Yeasts, a Taxonomic Study, Vol 3, 3rd edn. Elsevier, 1339-1372.

4. Millanes AM, Diedrich P, Ekanam S, Wedin M (2011) Phylogeny and character evolution in the jelly fungi (*Tremellomyces*, *Basidimycota*, Fungi). Mol Phylogenet Evol 61: 12–28.

5. Bockhout T, Fonseca A, Batenburg-van der Vege WH (1991) *Bullerienomyces* genus novum (Tremellales), a teleomorph for *Bullera alba*, and the occurrence of mating in *Bullera variabilis*. Antonie van Leeuwenhoek 59: 81–93.

6. Kirschner R, Sampaio JP, Gadinho M, Weiss M, Oberwinkler F (2001) *Caniculitella polymorpha* (Tremellales, gen. nov. and sp. nov.), a heterobasidio-mycete vectored by bark beetles, which is the teleomorph of *Stigmata patronorum polymorphus*. Antonie van Leeuwenhoek 80: 149–61.

7. Sampaio JP, Weiß M, Gadanho M, Bauer R (2002) New taxa in the Tremellales: *Bulleriasdium oberjochense* gen. et sp. nov., *Piptoderma banonii* gen. et sp. nov. and *Flabellisudium marhardtii* sp. nov. Mycologia 94: 873–887.

8. Sampaio JP, Inacio J, Fonseca A, Gadinho M, Spencer-Martins I, et al. (2004) *Aureobulbia fucusa* gen. nov., sp. nov. and *Bullera japonica* sp. nov., novel taxa in the Tremellales. Int J Syst Evol Microbiol 54: 987–993.

9. Statzell-Tallman A, Belloch C, Fell JW (2000) *Coelocaulis mangrovensis* gen. nov., sp. nov. (Tremellales, Basidimycota), a teleomorphic yeast from mangrove habitats in the Florida Everglades and Bahamas. *FEMS Yeast Res* 8: 103–113.
10. Wang Q-M, Bai F-Y (2008) Molecular phylogeny of basidiomycetous yeasts in the Cryptococcus luteolus (Tremellales) based on nuclear rRNA and mitochondrial cytochrome b sequence analyses: proposal of Dezymys nov. gen. nov. and Humullea nov. gen., and description of eight novel Dezymys species. FEMS Yeast Res 8: 799–814.

11. Takashima M, Deak T, Nakase T (2001) Emendation of Dioszegia with redescription of Dioszegia hungria and two new combinations, Dioszegia anatava and Dioszegia crenica. J Gen Appl Microbiol 47: 75–84.

12. Wang QM, Bai FY, Fungpin B, Boekhout T, Nakase T (2011) Proposal of Magnaphos nov. gen. for the anamorphic basidiomycetous yeast species in the Butulisbasidium clade (Tremellales) based on molecular phylogenetic analysis, with six new combinations and four novel species. Int J Syst Evol Microbiol 61: 210–219.

13. Fell JW, Boekhout T, Fonseca A, Scorzzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rRNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50: 1531–1537.

14. Scorzzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2: 495–517.

15. Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts, a Taxonomic Study, Vol 3, 5th edn. Elsevier, 67–110.

16. Barnett JA, Payne RW, Yarrow D (2000) Yeasts: Characteristics and maintenance of yeasts. In: Kurtzman CP, Fell JW, editors. The Yeasts, a Taxonomic Study, Vol 3, 5th edn. Elsevier, 1595–1599.

17. Fell JW, Kurtzman CP, editors. The Yeasts, a Taxonomic Study, Vol 3, 5th edn. Elsevier, 87–110.

18. Pe´ter G, Tornai-Lehoczki J, Dlauchy D (2009) Die Ystaz (Fungi). Taxon 38: 151–152.

19. Crenaz G (1968). In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts, a Taxonomic Study, Vol 3, 5th edn. Elsevier, 2731–2739.

20. Banerjee B, Reddy CA, Sarma MP, et al. (2006) Molecular phylogeny and classification of the Cryptococcus luteolus species complex: proposal of Cryptococcus luteolus gen. nov. and related anamorphic species. Int J Syst Evol Microbiol 51: 687–697.

21. Fungpin B, Boekhout T, Nakase T, Nakase K, Nakase K, et al. (2005) Molecular phylogeny and classification of the Cryptococcus luteolus species complex: proposal of Cryptococcus luteolus gen. nov. and related anamorphic species. Int J Syst Evol Microbiol 51: 687–697.

22. Fell JW (2011) Cryptococcus monster nov. gen., an anamorphic basidiomycetous yeast phylogenetically related to Cryptococcus flavescens. Int J Syst Evol Microbiol 59: 631–636.

23. Fell JW, Statzell-Tallman A, Scorzzetti G, Gutierrez MH (2011b) Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. Antonie van Leeuwenhoek 99: 533–549.

24. Middelhoven WJ (2003) Cryptococcus daedaleus nov. sp., an anamorphic basidiomycetous yeast (Tremellales) physiologically resembling other species of the Cryptococcus laurentii complex that degrade polysaccharides and C2 compounds. Antonie van Leeuwenhoek 87: 101–108.

25. van Bel AJF, Hess PH (2000) Xenospora as phloem transport sugars: the end of a dogma? J Exp Bot 59: 261–272.

26. Skoblev JW, Tomaszewska KW, McGuff J (2009) Review of the natural history of the bumble fungus beetles (Coleoptera: Cucujidae). Insecta Mundi 72: 1–24.

27. Fell JW, Kurtzman CP, Kwon-Chung KJ (1989) Proposal to conserve Cryptococcus (Fungi). Taxon 38: 151–152.

28. Crestani J, Landell MF, Faganello J, Vainstein MH, Vishniac HS, et al. (2009) Cryptococcus terrestris sp. nov., a tremellaceous, anamorphic yeast phylogenetically related to Cryptococcus flavescens. Int J Syst Evol Microbiol 59: 631–636.

29. Fell JW, Statzell-Tallman A, Scorzzetti G, Gutierrez MH (2011b) Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. Antonie van Leeuwenhoek 99: 533–549.

30. Middelhoven WJ (2003) Cryptococcus sp. nov., an anamorphic basidiomycetous yeast (Tremellales) physiologically resembling other species of the Cryptococcus laurentii complex that degrade polysaccharides and C2 compounds. Antonie van Leeuwenhoek 87: 101–108.

31. van Bel AJF, Hess PH (2000) Xenospora as phloem transport sugars: the end of a dogma? J Exp Bot 59: 261–272.

32. Skoblev JW, Tomaszewska KW, McGugh J (2009) Review of the natural history of the bumble fungus beetles (Coleoptera: Cucujidae). Insecta Mundi 72: 1–24.

33. Reyes-Novelo E, Delfin-González H, Morón MA (2007) Copro-necrophagous beetle (Coleoptera: Scarabaeidae) diversity in an agroecosystem in Yucatan, Mexico. Rev Biol Trop 55: 83–99.

34. Takashima M, Deak T, Nakase T, Shinoeda T (2000) Intraspecies diversity of Cryptococcus laurentii as revealed by sequences of internal transcribed spacer regions and 28S rRNA gene and taxonomic position of C. laurentii clinical isolates. J Clin Microbiol 38: 1460–1471.

35. Takashima M, Sugar T, Shinoeda T, Nakase T, Nakase K (2001) Three new combinations from the Cryptococcus laurentii complex: Cryptococcus daedalae, Cryptococcus carnescens and Cryptococcus peneaus. Int J Syst Evol Microbiol 53: 1187–1194.

36. van Bel AJF, Hess PH (2000) Xenospora as phloem transport sugars: the end of a dogma? J Exp Bot 59: 261–272.

37. Skoblev JW, Tomaszewska KW, McGugh J (2009) Review of the natural history of the bumble fungus beetles (Coleoptera: Cucujidae). Insecta Mundi 72: 1–24.

38. Reyes-Novelo E, Delfin-Gonzalez H, Moron MA (2007) Copro-necrophagous beetle (Coleoptera: Scarabaeidae) diversity in an agroecosystem in Yucatan, Mexico. Rev Biol Trop 55: 83–99.

39. Inacio J, Landell MF, Valente P, Wang P-H, Wang Y-T, et al. (2008) Fungal diversity associated with Brazilian energy transmission towers. Fung Div 44: 53–63.

40. Adeyemi AO, Gadd GM (2005) Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18: 269–281.

41. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, biowathering and bioremediation. Mycol Res 111: 3–49.

42. Hadar A, Gadd GM (2008) Microbiological investigation of corrosion damages in aircraft. Werkst Korros 45: 355–360.

43. Hagenauer A, Hilpert R, Hack T (1994) Microbiological investigation of corrosion damages in aircraft. Werkst Korros 45: 355–360.

44. Beech IB, Gaylarde CC (1999) Recent advances in the study of biocorrosion: an overview. Rev Microbiol 30: 177–190.

45. Zamora F (2009) Biochemistry of Alcoholic Fermentation. In: Moreno-Arribas MV, Polo MC (eds.) Wine Chemistry and Biochemistry, Springer Science+Business Media, p 3–26.