Circulating cell-free nucleic acids as prognostic and therapy predictive tools for metastatic castrate-resistant prostate cancer

Navid Sobhani, Marianna Sirico, Daniele Generali, Fabrizio Zanconati, Bruna Scaggiante

Abstract
Metastatic castrate-resistant prostate cancer remains a disease hard to cure, and for this reason predictive tools to monitor disease progression and therapy response are an urgent need. In this respect, liquid biopsy on circulating cell-free nucleic acids represents an interesting strategy based on robust data. The low invasiveness and the possibility to target circulating cell-free tumor deoxyribonucleic acid underline the high specificity, sensitivity and clinical usability of the technique. Moreover, it has been observed that the cell-free tumor deoxyribonucleic acid of metastatic castrate-resistant prostate cancer patients can be representative of the tumor heterogeneity. Cell-free tumor deoxyribonucleic acids express the same behaviors as mutations: Variation in gene copy number or the methylation rate of the tumor tissue. Recently, circulating cell-free ribonucleic acid molecules have emerged as interesting markers to stratify the disease. Due to high-throughput technologies, liquid biopsy on circulating cell-free nucleic acids will soon be utilized in the clinical management of metastatic castrate-resistant prostate cancer patients.

Key words: Metastatic castrate-resistant prostate cancer; Circulating free deoxyribonucleic acid; Cell-free tumor deoxyribonucleic acid; Circulating free ribonucleic acid; Liquid biopsy; Prostate cancer
Core tip: Among men in industrialized countries, prostate cancer is the most frequent occurring type of cancer and the leading cause of cancer-related deaths. To assure an optimal management of metastatic castrate-resistant prostate cancer patients, specific markers to monitor response to therapies and to predict the clinical outcomes are an urgent need. Liquid biopsy on circulating cell-free deoxyribonucleic acid is able to give useful information about the genetic status of the tumor and the prognosis. Liquid biopsy on circulating cell-free nucleic acids has the potential to integrate clinical data for a personalized management of patients.

INTRODUCTION

Prostate cancer is the most frequently occurring type of cancer among men in over one-half (105 of 185) of world’s countries, and it is the leading cause of cancer-related deaths among men in 46 countries[1]. Although inhibition of androgen receptor (AR) signaling with antiandrogens and conventional chemotherapeutic molecules in metastatic castrate-resistant prostate cancer (mCRPC) patients has increased the 5-year survival rate to 29%, it still remains difficult to cure[2]. In mCRPC, cancer cells adapt to live with very low levels of androgens. Such cells try to use different strategies to independently promote the AR pathway.

After developing the first antiandrogens (flutamide, nilutamide and bicalutamide), there was an urgent need for impeding any agonist activity against wild-type AR. There was a necessity to inhibit wild-type AR recruitment of co-activators and to block the consequent AR binding to deoxyribonucleic acid (DNA), which is a transcription factor for androgen-dependent genes that leads to tumor proliferation[3]. This brought the development of second-generation antiandrogens, which showed a significant improvement in clinical treatment. In fact, in 2012 the Food and Drug Administration approved enzalutamide and abiraterone acetate as second-generation antiandrogens for the treatment of mCRPC, while other second-generation antiandrogens are at different stages of pre-clinical and clinical development[4]. Although these two drugs act on different levels of the AR pathway, the cross-resistance is a common event; resistance to abiraterone and enzalutamide was found to be associated with splicing variants of AR without the ligand-binding domain. Such splice variants encode for a receptor incapable of binding to ligands. It is constitutively active as a transcription factor and capable of promoting the activation of target genes. Because enzalutamide exerts its antitumor activity by binding to the ligand-binding domain of the receptor, the splice variants cannot be targeted by the drug, which generates drug-resistance. Moreover, as the receptor is constitutively activated, it will not be influenced by abiraterone, which inhibits the synthesis of androgens. In this scenario, androgens are not required to activate the pathway, as it is already active[5]. Interestingly, 20%-40% of mCRPC patients not previously treated with chemotherapy are intrinsically resistant to abiraterone acetate or enzalutamide[6].

Thus mCRPC cells evolving into an AR-independent type escape targeted therapies against androgens. Sometimes they can acquire characteristics of neuroendocrine prostate cancer, which is a transformation that occurs in the clinical context of a moderate increment of blood prostate specific antigen (PSA) levels[6]. It is clear that mCRPC progression can have different therapeutic options, but the monitoring of mCRPC is an urgent task for patients’ surveillance to anticipate relapse of the disease or to evaluate the efficacy of the therapies. In this respect, we will discuss the emerging role of liquid biopsy for metastatic castrate-resistant prostate cancer patients with a focus on nucleic acids to predict disease progression or therapy efficacy.

Citation: Sobhani N, Sirico M, Generali D, Zanconati F, Scaggiante B. Circulating cell-free nucleic acids as prognostic and therapy predictive tools for metastatic castrate-resistant prostate cancer. World J Clin Oncol 2020; 11(7): 450-463
URL: https://www.wjgnet.com/2218-4333/full/v11/i7/450.htm
DOI: https://dx.doi.org/10.5306/wjco.v11.i7.450
LIQUID BIOPSY IN METASTATIC CASTRATE-RESISTANT PROSTATE CANCER

In contrast to traditional tissue biopsy, liquid biopsy involves the analysis of different biological fluids. As technologies advance, the amplification and detection methods have become more and more efficient and sensitive in the target identification, using minute quantities of nucleic acids. As a proof of principle, liquid biopsy can detect various tumor-specific macromolecules to profile and stratify the pathology. Longitudinal monitoring by liquid biopsy could give critical support to clinical management of patients because specific molecular changes are correlated with tumor progression and response to therapies.

Di NUNNO et al. summarized in six points the advantages of liquid biopsy as an innovative approach to prostate cancer: (1) Low invasiveness; (2) Early detection of most aggressive tumors; (3) Early diagnosis of residual tumors or micrometastasis after surgery; (4) Monitoring patient response and/or progression of the disease after therapy, particularly for mCRPC; (5) Prognostication of the response to therapy; and (6) possibility to delineate an accurate genetic profile of the disease directing the analysis towards key mutations correlated with tumor resistance.

Many molecular alterations (mutations, amplifications, deletions, alterations in the expression of specific genes or in non-coding RNAs transcription levels) have been correlated with resistance or sensibility against specific treatments. Targets in liquid biopsy can be circulating cell-free nucleic acids. Circulating cell-free tumor DNA (ctDNA) analysis includes detection of circulating free DNA (cfDNA) levels, circulating cell-free DNA integrity (cfDI), methylation rate, mutations and/or aberrations in the copy number of specific genes. For example, amplification of AR and/or the detection of certain driver mutations, e.g. deletion of PTEN, can be useful to anticipate an unfavorable clinical outcome. Of interest are the AR mutations, particularly of certain splicing variants (AR-V7), correlating with resistance against second-generation hormone treatments, such as abiraterone acetate and enzalutamide. Moreover, inherited gene mutations that have been found significantly correlated with the prognosis of the disease are eligible for liquid biopsy analysis.

Other valuable emerging tumor biomarkers in liquid biopsy are represented by different classes of RNAs, including microRNAs (miRNAs), long non-coding RNA and messenger RNA (mRNA).

cfDNA analysis in mCRPC patients

The total cfDNA concentration was increased in cancer patients and may be a useful tool. However, more information for patient management is derived from the analysis of cfDNA. Table 1 summarizes the main studies investigating cfDNA in mCRPC patients by liquid biopsy. A strategy is to calculate the circulating cfDI, which is the evaluation of the cfDNA fragmentations of repetitive elements such as ALU and LINE-1. It has been observed that in tumors the cfDI value can increase or decrease. The concentration and integrity of circulating cfDNA have been proposed as a clinical tool for the diagnosis of prostate cancer. Khani et al. proved in Iranian patients that the values of cfDI were significantly higher in patients with prostate cancer vs those with benign hyperplasia and healthy individuals. They measured a region of ALU repetitive elements with shorter fragments of 115 bp nested in longer 247 bp ones by quantitative polymerase chain reaction (qPCR); the ratio of 247 bp over the 115 bp gave the integrity DNA index. Additionally, both the DNA concentration and cfDI were found to be elevated in the metastatic conditions. These results were confirmed by Arko-Boham et al. Interestingly, cfDI of ALU247/115 had already been found to be higher in metastatic prostate cancer patients versus non metastatic ones.

In the amount of purified cfDNA, cfDNA can be analyzed by searching gene aberrations such as copy number variations or mutations in target genes. The analysis of genetic alterations of AR, identified through cfDNA in mCRPC patients, that circulating molecules have a significant potential to guide the use of therapies against this receptor. Furthermore, the monitoring of cfDNA levels could result in a powerful way to trace response of tumors and detect the uprising of resistant subclones. In addition to alterations of the AR pathway, other modifications in TP53, WNT, PI3K and cell cycle pathway (RB1 and CCND1) genes are important for prognosis and drug-development. It should be noted that the deletion of PTEN is found in 40% of patients with mCRPC and loss-of-function mutations in genes of the DNA repair pathway (homologous recombination and mismatch) are expressed in approximately 20% of metastatic prostate cancer. TP53 gene is very frequently mutated in mCRPC. In particular, TP53 gain-of-function mutations have been associated with cancer cell
Table 1 Diagnostic and prognostic methods and outcomes of studies investigating cell-free tumor deoxyribonucleic acid in metastatic castrate-resistant prostate cancer by liquid biopsy

Ref.	Methods and patients	Prognostic or predictive outcomes
Ritch et al\(^\text{[19]}\), 2019	Plasma, whole exome sequencing, Intron and exon sequencing and copy numbers of selected genes. Mismatched repair deficiency, MMRd mPCa (mostly mCRPC) patients (n = 433)	cfDNA analysis of hypermutations and MMR gene alterations in MSH2, MSH6, MLH1 marked ctDNA and can identify aggressive disease. Mutations in ctDNA were found in PTEN, RB1, TP53 (and, interestingly, no copy number loss) and in AKT1, PIK3CA, CTNNB1, AR-LBD. Compared with a control cohort, ctDNA hypermutation and MMRd correlated with a poor response to AR inhibition and to a shorter survival
Chapman et al\(^\text{[24]}\), 2019	Plasma, whole-genome sequencing, Somatic gain of function mutations of TP53. mCRPC patients (n = 143)	In cfDNA somatic GOF mutations of TP53 at codons R175, R248, R273, R282 and G245 were positively and significantly associated with abiraterone and/or enzalutamide progression
Gupta et al\(^\text{[14]}\), 2019	Plasma, low pass whole-genome sequencing ULP-WGS. Somatic copy number alteration, mCRPC patients (n = 93)	The SCNA in ctDNA and CTC were mostly concordant (gain in copy number of FOXA1, AR, and MYC, and loss in BRCA1, PTEN, and RB1). Interestingly, some discordant genomic alterations rarely detected in cfDNA (gain in MYC and BRCA2) were associated to a worse outcome, i.e. MYCN copy number gain correlated with a worse outcome in AR-V7 negative patients and BRCA2 copy number gain correlated with a worse outcome in AR-V7 negative patients treated with abiraterone/ enzalutamide
Patsch et al\(^\text{[13]}\), 2019	Plasma, qPCR of LINE-1 297 bp, mCRPC patients before and after docetaxel treatment (n = 15)	In cfDNA, LINE-1 quantity decreased after chemotherapy but without statistical significance
Hahn et al\(^\text{[20]}\), 2019	Serum, next generation sequencing, somatic copy number alteration of 69 targeted genes, Metastatic PCa patients (n = 101)	In cfDNA, SCNA significantly correlated with the number of new treatments demonstrating changes of tumor genomic profile after therapies. Interestingly, SCNA did not correlate with time of progression
Qiu et al\(^\text{[21]}\), 2019	Plasma, tissue tumor mutational burden by next generation sequencing, targeted gene panel, mCRPC (n = 20)	The ctDNA was identified by two TMB assays: guardian health and the foundation medicine. Between these two assays used to detect ctDNA the results of SNP, Indel, CNV and fusions were concordant. The study evinced a high correlation between ctDNA TMB and the whole exome sequencing of the corresponding tumor tissues. Additionally, there was a good correlation between ctDNA TMB and tissue TMB having high TMB samples; however, the same was not observed for low/medium TMB samples
Torquato et al\(^\text{[19]}\), 2019	Plasma, AR alterations, whole genome sequencing, Somatic copy number alteration, mCRPC patients (n = 62)	In cfDNA the SCNA significantly associated with worse survival outcomes of mCRPC patients. At multivariable analysis, missense mutations in AR ligand-binding domain correlated with shorter DFS and PP53 loss. PIK3CA copy number gain or pathogenic missense mutations correlated with shorter OS
De Laere et al\(^\text{[23]}\), 2019	Plasma, low pass whole-genome sequencing, and targeted gene-body sequencing. Somatic alterations in AR and TP53. mCRPC patients (n = 168)	The presence of AR and TP53 alterations in ctDNA was used to determine tumor burden. AR and TP53 alterations were associated with a worse DFS. TP53 inactivation was an independent prognostic factor outperforming AR alterations and ARV7 expressions was found be useful to stratify patients’ risk
Sonpavde et al\(^\text{[3]}\), 2019	Plasma, somatic mutations by NGS, mCRPC patients (n = 514)	One or more alterations in ctDNA were found in 94% of patients. Mutations were detected in TP53 (36%), AR (22%), APC (10%), NFI (9%), EGFR, CTNNB1 and ARID1A (6%), BRCA1, BRCA2, PIK3CA (5%). The increase in copy number was found for AR (50%), MYC (20%), BRAF (18%). At multivariate analysis, increase in MYC copy number was associated with worse OS
Vandekerkhove et al\(^\text{[2]}\), 2019	Plasma, targeted genome, sequencing, somatic copy number alteration, metastatic castrate-sensitive patients (n = 53)	The ctDNA and tissue biopsy showed 80% of concordance for somatic mutations. TP53 was mutated in 50% of patients and truncated mutations in DNA damage repair genes were found in 21%. The ctDNA SCNA was higher in untreated patients than in patients treated with abiraterone acetate, enzalutamide or apalutamide
Mayrhofer et al\(^\text{[7]}\), 2018	Plasma, low pass whole-genome sequencing and hybridization-capture targeted sequencing. Somatic copy number alteration, mPCa patients (n = 217)	The SCNA found in ctDNA was used to determine tumor burden and to compare lines of therapies. AR variants, microsatellite instability and PTEN, RB1 and TP53 inactivation were found in ctDNA demonstrating mirroring of the genetic alterations that mark metastatic cancer
Choudhury et al\(^\text{[2]}\), 2018	Plasma, ultra-low pass whole-genome sequencing. Tumor fractions, TFi, measured by computational tool ichorCNA, CRPC patients (n = 140)	TFx was determined in ctDNA. TFx positively correlated with PSA and alkaline phosphatase and significantly correlated with the presence and numbers of bone metastases
Annala et al\(^\text{[6]}\), 2018	Plasma, whole-exome sequencing and target capture and	The alterations in TP53 and AR gene truncations measured in ctDNA correlated to resistance to abiraterone and enzalutamide.
Study	Methodology	Findings
------------------------------	---	--
Kohli et al (2018)	Plasma, dPCR for copy number gain of AR, mCRPC patients (n = 92)	A poor clinical outcome was associated with alterations in ctDNA of BRCA2 and ATM genes
Mehrza et al (2018)	Plasma, cfDNA quantity quant-IT picogreen HS DNA kit and a BioTek microplate spectrophotometer (480ex/520em), mCRPC patients (n = 571)	In pre chemotherapy patients, the AR copy number gain found in ctDNA was associated with a worse outcome
Seyedolmohadessein et al (2018)	Plasma, cfDNA quantity NanoDrop. Localized PCa (n = 50), metastatic PCa (n = 26) and healthy controls (n = 10)	The cfDNA level was significantly higher in metastatic PCa patients (19.62 ng/μL) with respect to localized PCa (15.4 ng/μL) and BPH patients (9.5 ng/μL); healthy controls had the lowest value (8.7 ng/μL)
Belic et al (2018)	Plasma, deep AR sequencing, Illumina MiSeq; whole genome sequencing and targeted sequencing, Somatic copy number alteration, mCRPC patients (n = 65)	In ctDNA, AR mutations and copy number alteration were found in most cases. AR amplification and RB1 loss were associated with worse PFS. SCNA was therefore a biomarker for disease progression
Hendriks et al (2017)	Plasma, Methylation-specific qPCR and copy number of GSTP1 and APC genes, CRPC patients (n = 47), controls (n = 30)	In CRPC patients the cfDNA quantity was significantly higher than age-matched controls. At baseline, GSTP1 was hypermethylated in patients. Both the copy number of methylated GSTP1 and APC were higher in patients than healthy controls. The increase of cfDNA levels, either each one of the methylated gene copies individually or together (GSTP1 + APC) or together with PSA (GSTP1 + APV + PSA), all correlated with decreased OS
Wyatt et al (2017)	Plasma, targeted sequencing, Somatic copy number alteration, mCRPC (n = 45)	The study proved a correspondence between SCNA in ctDNA and matched tissues. Such SCNA genes included AR, BRCA2, ATM, PTEN, PIK3CA, PIK3CB, PIK3R1, TP53, and RB1
Rathkopf et al (2017)	Plasma, dPCR of 11 relevant AR-liquid binding domain mutations. Non-metastatic CRPC (n = 51), AAP-naïve mCRPC (n = 25), post-AAP (n = 21)	In ctDNA, the AR-LBD mutations were found to be low at baseline (7.5%) and progression (7.3%). The AR-LBD mutations did not correlate with the AR score resistance to apalutamide
Goodall et al (2017)	Plasma, Quant-IT, whole exome sequencing and targeted sequencing. Targeted genes, mCRPC patients (n = 40)	At multivariate analysis, the ctDNA concentration was an independent prognostic biomarker: ≥ 50% reduction in ctDNA levels related to longer rPFS and OS. The ctDNA germline and somatic alterations in BRCA2 and PALB2 repair genes were found in ctDNA. All mutations found in the tissue were also detectable in ctDNA
Conteduca et al (2017)	Plasma, dPCR. Somatic copy number gain of AR, mCRPC patients (n = 80)	In ctDNA, the AR copy number gain was associated with a worse outcome in patients treated with abiraterone and enzalutamide. Independently from the type of antiandrogen treatment, there was a meaningful correlation among AR gain and TLA/MTV compared to AR non-gained cases (P = 0.001 and P = 0.004, respectively). AR copy number and TLA were associated with a shorter PFS and OS
Annala et al (2017)	Plasma, somatic mutations of BRCA2 gene by qPCR, mCRPC germline-mutated patients (n = 11)	In 10 out of 11 germline mutated patients, biallelic gene loss of BRCA2 was found in ctDNA. This information help to guide clinicians to the best therapeutic choice
Conteduca et al (2017)	Plasma, dPCR. Copy number gain of AR, CRPC patients (n = 265)	In ctDNA, the AR copy number gain before starting enzalutamide or abiraterone was associated with a decrease in both PFS and OS
Goldstein et al (2017)	Plasma, NGS AR sequencing and validation by dPCR, somatic alterations in AR, mCRPC patients (n = 11)	In ctDNA, the AR r (TC > CTC) F877L hotspot was prone to false positive mutations during NGS. Low-abundance mutations need to be verified by highly sensitive PCR, such as dPCR, but amplification conditions must be carefully optimized
Adalsteinsson et al (2017)	Plasma WES, metastatic PCA PCa patients (n = 520)	There is a concordance between clonal somatic mutations (88%), copy number alterations (80%), mutational signatures and neantigens between tumor biopsies and ctDNA form 41 patients with ≥ 10% ctDNA
Wyatt et al (2016)	Plasma, AR copy number qPCR and AR deep targeted sequencing, mCRPC patients (n = 65)	In ctDNA, the AR mutation and copy number alterations were found in 48% of baseline patients and in 60% patients at disease progression. The AR copy number gain (two or more AR mutations) and RB1 loss were associated with worse PFS
Salvi et al (2016)	Plasma, qPCR. Copy number gain of AR, CRPC patients (n = 59)	In ctDNA, the AR copy number gain was found in 36% of patients. AR copy number gain significantly associated with alkaline
phosphatase and lactate dehydrogenase. At multivariate analysis, PSA decreasing ≥ 50% and AR copy number gain were significantly associated with worse OS and PFS

Fawzy et al[40], 2016

Plasma, qPCR of ALU 247bp and ALU115bp, cell-free DNA Integrity, cfDI metastatic PCa (n = 28), non-metastatic PCa (n = 22), BPH (n = 25), healthy controls (n = 30)

The cfDI levels, measured as ratio ALU247bp/ALU115bp, were significantly higher in metastatic PCa patients vs non-metastatic PCa patients, BPH patients and healthy controls

Azad et al[41], 2015

Plasma, AR qPCR copy number and deep sequencing of AR-LBD, mCRPC (n = 62)

In cfDNA, the AR copy number gain was associated with enzalutamide resistance; also abiraterone resistance was associated to AR mutations but to a lower extent

Deligezer et al[42], 2010

Plasma, qPCR for Sat-2 gene, PCa-localized (n = 22), locally advanced (n = 11), mCRPC (n = 28)

The average quantity of cfDNA measured as ratio ALU247bp/ALU115bp was significantly higher in metastatic PCa patients vs non-metastatic PCa patients, BPH patients and healthy controls

Schwarzenbach et al[43], 2009

Plasma, somatic LOH for D6S1631, D8S286 and D9S171 genes by qPCR, PCa patients (n = 69), metastatic PCa patients (n = 28)

In cfDNA, the somatic LOH significantly correlated with the diagnosis of subgroups made of localized and metastasized prostate cancers. cfDNA LOH significantly associated also with the tumor stage

Bastian et al[44], 2007

Serum, qPCR for GSTP1, MDRI and EBNRB genes, PCa patients (n = 192)

The levels of cfDNA was found to increase from PCa without recurrence to PCa with recurrence and then to metastatic PCa for all GSTP1, MDRI or EBNRB genes

MMRd: Mismatch repair deficiency; **AAP:** Acetate and prednisone treatment; **AR:** Androgen receptor; **ARV7:** Androgen receptor variant 7; **BPH:** Benign prostatic hyperplasia; **cfDI:** Cell-free DNA integrity; **cfDNA:** Cell-free circulating DNA; **CRPC:** Castrate-resistant prostate cancer; **CTC:** Circulating tumor cells; **ctDNA:** Circulating tumor DNA; **dPCR:** Digital PCR; **GOF:** Gain of function; **NGS:** Next generation sequencing; **PFS:** Progression-free survival; **LP-WGS:** Low pass whole-genome sequencing; **LOH:** Loss of heterogeneity; **OS:** Overall survival; **PCa:** Prostate cancer; **mCRPC:** Metastatic castrate-resistant prostate cancer; **mPCa:** Metastatic prostate cancer; **PSA:** Prostate specific antigen; **qPCR:** Quantitative PCR; **rPFS:** Radiographic progression-free survival; **SCNA:** Somatic copy number alteration; **scfDNA:** Seminal plasma cfDNA; **TGS:** Deep targeted sequencing; **TFx:** Tumor fractions; **TMB:** Tumor mutation burden; **ULP-WGS:** Ultra low pass whole-genome sequencing; **WES:** Whole exome sequencing; **LBD:** Ligand binding domain.

Survival and chemoresistance. Interestingly, TP53 mutations conferring gain of function were related to disease progression and drug resistance after abiraterone or enzalutamide treatments[13].

Different studies offer a comparison between ctDNA and the corresponding metastatic tissue. For example, Wyatt et al[30] sequenced 72 clinically relevant genes in 45 cfDNA samples and corresponding tissues obtained during biopsy. The comparison of data concerning alterations in ctDNA with those of the tissues has been demonstrated that for the majority of patients an assay of ctDNA could be enough to identify all the alterations in a metastatic tissue. The authors suggested that with appropriate validation methods, it could be possible to develop DNA-based biomarkers useful in identifying ctDNA for the management of patients with mCRPC. An important advantage of ctDNA is the ability to integrate somatic information from metastatic sites to discover mutation heterogeneity of the tumor, which should be taken into consideration to monitor the tumor stage and its progression. This information could add knowledge to the pathological analysis of the prostate tissue biopsy, which by itself may be not completely representative of the heterogeneous behavior of tumors[30].

ctRNA in prostate cancer patients

The necessity of a multi-parameter approach has been highlighted in different studies. Indeed, important additional knowledge could arise from a simultaneous approach.
investigation of molecules using liquid biopsy (i.e. cfDNA) and DNA extracted from circulating tumor cells and cfRNA, with the purpose of building a complete molecular profile to integrate with the clinical data.

RNA evaluation in liquid biopsy represents the next frontier in integrated molecular medicine. Table 2 summarizes the main clinical investigations on ctRNA. Most studies involved prostate cancer patients at diagnosis. Pioneer exploration of RNA molecules in liquid biopsy has involved the analysis of prostate specific membrane antigen mRNA, but only a limited number of newly diagnosed patients were positive, whereas the bone morphogenetic protein-6 mRNA, whose upregulation is strongly associated with bone metastasis, was found to be a biomarker for the metastatic disease.

Circulating mRNAs are generally degraded by RNases. However, circulating mRNAs are capable of forming complexes with transporters, which are proteins and/or lipids. When they form such complexes, they turn into a relatively stable structure in the blood circulation, thus becoming potentially useful biomarkers. Currently, androgen receptor variants are generally responsible for AR activity, survival and progression of prostate cancer. The AR-V7 is the only one of the androgen receptor variants observed as a protein, and it is therefore properly defined. Different studies in the literature have shown that AR-V7 is the main AR variant. The AR-V7 product is a truncated AR protein, which lacks the C-terminal ligand-binding domain but retains the transactivating N-terminal domain. Consequently, this protein is not capable of binding to ligands but remains a constitutively active transcription factor promoting the activation of target genes promoting cancer progression. Antonarakis et al. evinced that AR-V7 mRNA is expressed at high levels in circulating tumor cells and is associated with abiraterone and enzalutamide resistance in mCRPC patients. Indeed, Joncas et al. recently found blood levels of AR-V7 mRNA, which was shown to be correlated with response and resistance to abiraterone in mCRPC patients, demonstrating its potential as predictive biomarker. Particularly worthy of note, upregulation of the programmed death-ligand PD-L1 mRNA causes cancer cells to able to evade the host immune system.

In most patients, altered levels of miRNAs have been found, such as miR-21, miR-221, miR-1290 and miR-375. Such differential expression compared to healthy controls have been associated with different prognostic outcomes in mCRPC patients. For example, a potential diagnostic and prognostic role played by miR-141 has been suggested. miR-141 levels have been found to be progressively increased from hypertrophy of the prostate to prostate cancer and to the metastatic disease. Interestingly, the quantification of miR-141 in the liquid biopsy by droplet digital PCR has been described. However, a recent study showed that miR-18a has the highest potency to discriminate between healthy individuals and cancer patients, whereas miR-221 discriminated between patients with localized disease from those with metastasis. miR-141 did not show the same potency.

FUTURE PERSPECTIVES

Liquid biopsy represents an attractive field of research for many types of cancer, including prostate adenocarcinoma. In particular, liquid biopsy has been proven to provide support in therapeutic planning for patients with mCRPC, allowing detection of molecular changes in cell-free nucleic acids (i.e. DNA and RNA) that are associated with tumor progression and response or resistance to different drugs. The low invasiveness is particularly relevant because of the possibility of repeating the analyses frequently over time, allowing longitudinal monitoring of patients. In the near future, liquid biopsy will lead to a deeper understanding of the metastatic evolution of prostate cancer with the possibility of developing new targeted therapies in the perspective of an even more personalized oncology.

The analysis of ctDNA appears to be the most promising tool to monitor cancer diseases. In fact, ctDNA is the only target recommended by the Food and Drug Administration and the European Medicines Agency for cancer diagnosis and to monitor the efficacy of treatments. For prostate cancer, ctDNA is a very interesting biomarker for the anticipation of progression-free survival and overall survival in response to therapies and for improving the clinical management of patients avoiding overtreatments. The high concordance between ctDNA genomic alterations and those found in tumor tissue biopsies strongly supports the potential of liquid biopsy to integrate clinical data and improve patient management. The next generation
Table 2 Diagnostic and prognostic outcomes methods of studies investigating circulating tumor ribonucleic acid in prostate cancer by liquid biopsy

Ref.	Methods and patients	Prognostic or predictive outcomes
Joncas et al.\(^a\), 2019	Plasma dPCR, AR-7 mRNA, PCa patients (n = 35)	AR-V7 mRNA expression was associated with shorter time to progression (median, 16.0 vs 28.0 mo; P = 0.0499)
Mohammad et al.\(^a\), 2019	Serum qPCR, miR-20A, miR-26A, PCa patients (n = 40), healthy controls (n = 40)	In PCA samples miR-20A was significantly upregulated compared to healthy controls. On the other hand, there was no significant difference in the levels of pre- and post-operation miR-26A compared to controls
Ishiba et al.\(^b\), 2018	Plasma dPCR, FDL-1 mRNA, PCa patients (n = 88)	PO-L1 mRNA was detected and quantified in ctRNA of cancer patients. Interestingly, there was a comparison between expression of PD-L1 protein in tumor tissues and PD-L1 gene expression in plasma of cancer patients
Wang et al.\(^b\), 2018	Plasma qPCR, SAP30L-AS1 and SChLAP1 IncRNAs, PCa patients (n = 34), BPH patients (n = 46), Healthy controls (n = 30)	SAP30L-AS1 IncRNAs levels were upregulated in BPH and SChLAP1 IncRNAs levels were significantly higher in PCa than in BPH and healthy controls. The area under the ROC curve indicated that SAP30L-AS1 and SChLAP1 IncRNA had an adequate diagnostic value different from PCa and controls
Zedan et al.\(^c\), 2018	Plasma qPCR, miR-93, miR-221, miR-125b, miR-139, PCa patients (n = 149)	Significantly lower levels of miRNA-93 and miRNA-221 in the follow-up of patients vs baseline z = −2.738, P < 0.006, and z = −4.486, P < 0.001, respectively. Similarly, miRNA-125b was significantly lower in the observational cohort (z = −2.656, P = 0.008). There was a correlation between both miRNA-125b and miRNA-221 with risk assessment r = 0.23, P = 0.015 and r = 0.203, P = 0.016, respectively. However, miRNA-93 was significantly correlated with prostatectomy Gleason score (r = 0.276, P = 0.0576)
Farran et al.\(^d\), 2018	Plasma qPCR, miRNA signature, PCa patients (n = 114)	Aggressiveness of PCa could be segregated based on circulating miRNA signature consisting of an interaction between a combination of two miRNAs (miR-17/miR-192) and an independent miRNA (miR-181a)
Liu et al.\(^e\), 2018	Plasma qPCR, miR-223, miR-24, miR-375, PCa patients (n = 329)	Patients could be significantly reclassified using a 3-miR (miRNA-223, miRNA-24 and miRNA-375) score (training OR 2.72, 95%CI 1.50e 4.94 and validation OR 3.70, 95%CI 1.29e 10.6)
Adalsteinsson et al.\(^f\), 2017	Plasma WES, Metastatic PCa patients (n = 520)	There is a concordance between clonal somatic mutations (88%), copy number alterations (80%), mutational signatures and neoantigens between tumor biopsies and ctDNA form 41 patients with ≥10% ctDNA
Albitar et al.\(^g\), 2018	Urine and plasma qPCR, mRNAs panel, PCa patients (n = 306)	The urine/plasma biomarker test, evaluating the mRNA levels of PCa-specific gene such as PDLIM5, HSPD1, PSA, IMPDH2, PC3, TMAPSS2, ERG, UAP1, PTEN, AR, the housekeeping B2M and GAPDH genes, accurately predicted high-grade cancer with sensitivity at 92%-97%, while core-biopsy sensitivity was 78%
Endzelniš et al.\(^h\), 2017	Plasma qPCR, miR-375, miR-200-3p, miR-21-5p, mRNA Let-7a-5p, PCa patients (n = 50), BPH patients (n = 22)	miR-375 could be used to differentiate between PCa and BPH patients when analyzed in whole plasma, while miR-200-3p and miR-21-5p performed better in EVs. Let-7a-5p could be used to differentiate PCa patients, with Gleason score ≥ 8 vs ≤ 6
McDonald et al.\(^i\), 2017	Plasma qPCR, miRNA panel, PCa patients (n = 134)	miR-381, miR-34a, miR-523, miR-365, miR-122, miR-375, miR-125b, miR-34b, miR-450b-5p, and miR-639 were the most statistically significant miRNA after adjusting for age (P values ≤ 0.05)
Alhasan et al.\(^j\), 2016	Plasma Scano-miR, miRNA panel, very high risk, PCa patients (n = 9), Low risk, PCa patients (n = 9), and healthy controls (n = 10)	miR-200c, miR-605, miR-135a, miR-433, and miR-106a were identified as useful for differentiating indolent and aggressive forms of PCa
Yan et al.\(^k\), 2015	Urinary qPCR, TSPAN13 and S100A9 mRNAs, PCa patients (n = 129), BPH patients (n = 105)	qPCR was used to measure circulating urinary nucleic acid levels and tissue mRNA expression. The TSPAN13 and S100A9 mRNA ratio was selected to determine the diagnostic value of urinary nucleic acids in PCa (P = 0.037). It was significantly higher in PCA than in BPH in the mRNA and nucleic acid cohort analysis (P < 0.001 and P = 0.013, respectively). ROC analysis showed that the area under the ROC curve was 0.998 and 0.676 in tissue mRNA cohort and urinary nucleic acid cohort, respectively. This ratio could have a strong potential as a diagnostic PCa marker
Antonarakis et al.\(^l\), 2014	Serum qPCR, AR-V7 mRNA, PCa enzalutamide-treated patients (n = 31), AR-V7 mRNA detectable (positive) patients receiving enzalutamide had lower PSA response rates compared to AR-V7 mRNA not detectable (negative) patients (0% vs 53%, P = 0.004) and shorter PSA PFS (median, 1.4 mo vs 6.0 mo; P < 0.001), clinical or radiological PFS (median, 2.1 mo vs 6.1 mo; P < 0.001), and OS (median, 5.5 mo vs not reached;	
Sobhani N et al. Prognostic and therapy of mCRPC

Study	Method	Patients	Outcome
Korzeniewski et al. (2014)	Urine qPCR, miR-483-5p, PCa patients (n = 71), healthy controls (n = 18)	miR-483-5p was expressed at higher levels in PCa than in control	
Deligezer et al. (2010)	Plasma qPCR, cBMP6 mRNA, Local PCa patients (n = 22), local advanced PCa patients (n = 11) or mCRPC patients (n = 28)	The levels of cBMP6 mRNA in patients with metastatic disease were higher than those in patients with localized disease (P = 0.001) or in patients with local advanced disease (P = 0.05)	
Papadopoulou et al. (2006)	PBMC and plasma qPCR, PSMA mRNA, newly diagnosed PCa patients (n = 12), under therapy PCa patients (n = 4)	Among the newly diagnosed patients 4/12 (33.3%) had positive mRNA for PSMA in plasma, whereas only 2/12 (16.7%) had positive PSMA mRNA in PBMC. Among under therapy PCa patients, three (15.8%) were positive for PSMA mRNA in plasma, while only one (5.3%) was positive in PBMC. Furthermore, > 60% of PCa had elevated levels of cfDNA	

AR: Androgen receptor; AR-V7: Androgen-receptor splice variant 7; BPH: Benign prostatic hyperplasia; cfDNA: Cell free DNA; dPCR: Digital polymerase chain reaction; lncRNAs: Exosomal circulating long non-coding RNAs; mCRPC: Metastatic castrate-resistant prostate cancer; PSA: Prostate specific antigen; WES: Whole exome sequencing; PFS: Progression-free survival; OS: Overall survival; PBMC: Peripheral blood mononuclear cells; PCa: Prostate cancer; qPCR: Quantitative polymerase chain reaction; lncRNA: long non-coding RNA; PSMA: Prostate specific membrane antigen; BMP-6: Bone morphogenetic protein-6.

Liquid biopsy data offers robust evidence to consider cell-free nucleic acid analysis useful to improve the clinical management of mCRPC patients. In this new approach the use of PSA as a biomarker must be considered. PSA is the biomarker approved for men by the Food and Drug Administration in 1986. From then on, it has been widely used to predict incidence and recurrence of prostate cancer, despite its poor specificity. However, in mCRPC the PSA seems to be more specific as a biomarker than in the onset of prostate cancer; its increase is related to cancer progression[73]. The significance of PSA measurements in mCRPC is still interesting for the scientific community. For example, Aggarwal et al.[74] recently demonstrated that low PSA secretion levels can stratify mCRPC patients with treatment-emergent small-cell neuroendocrine prostate cancer. In fact, low PSA secretors showed high treatment-emergent small-cell neuroendocrine prostate cancer, RB1 and TP53 loss and low AR transcription. In sequencing of cfDNA has demonstrated the potential for the follow-up of the mutational changes of the tumor by being able to identify all its heterogeneity and to anticipate drug resistance. Moreover, many affordable high-throughput technologies, e.g. digital PCR, are now available to precisely detect the copy number variations of selected target genes (e.g. AR, TP53, BRCA2, PIK3CA) that are relevant for the progression of the disease and in response to therapies.
addition, overall survival and progression-free survival were shorter in the low PSA secretor group[34]. In a retrospective study, Buttigliero et al[35] showed that early PSA drop was related to a better overall survival and progression-free survival in mCRPC patients treated with abiraterone or enzalutamide (docetaxel-naïve or post-docetaxel setting). Finally, a mathematical model of PSA dynamics has been proposed to predict individual response to intermittent androgen deprivation therapy[36].

CONCLUSION

In our opinion, PSA can play an important role as a biomarker for the management of mCRPC patients. However, PSA measurements could maintain some limitations due to the high individual variability. Liquid biopsy on circulating cell-free nucleic acid offers the same low invasiveness but important molecular details on each specific tumor heterogeneity evolution. In conclusion, liquid biopsy on circulating cell-free nucleic acid along with PSA measurements and other clinical data can assure the best treatment decision-making for mCRPC patients.

ACKNOWLEDGEMENTS

The authors thank dr. Giorgia Ficco for the English language editing of the manuscript.

REFERENCES

1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/caac.21492]

2 Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, SimS RB, Xu Y, Frohlich MW, Schellhammer PF; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363: 411-422 [PMID: 20818862 DOI: 10.1056/NEJMoa1001794]

3 Wadowsky KM, Koochekpour S. Androgen receptor splice variants and prostate cancer: From bench to bedside. Oncotarget 2017; 8: 18550-18576 [PMID: 28077788 DOI: 10.18632/oncotarget.14537]

4 Rice MA, Malhotra SV, Stoyanova T. Second-Generation Antiandrogens: From Discovery to Standard of Care in Castration Resistant Prostate Cancer. Front Oncol 2019; 9: 801 [PMID: 31555580 DOI: 10.3389/fonc.2019.00801]

5 Bettogwda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Breen H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao Y, Juli HH, Kim JJ, Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SK, Netto GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt K, Shih IM, Oba-Shinjo SM, Siena S, Theodorescu D, Tie J, Harkins TT, Verones S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kizler KW, Vogelstein B, Papadoopoulos N, Diaz LA Jr. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6: 224ra24 [PMID: 24553385 DOI: 10.1126/scitranslmed.3007094]

6 Ritch E, Wyatt AW. Predicting therapy response and resistance in metastatic prostate cancer with circulating tumor DNA. Urol Oncol 2018; 36: 380-384 [PMID: 29248429 DOI: 10.1016/j.uroon.2017.11.017]

7 Friedlander TW, Pritchard CC, Beltran H. Personalizing Therapy for Metastatic Prostate Cancer: The Role of Solid and Liquid Tumor Biopsies. Am Soc Clin Oncol Educ Book 2017; 37: 358-369 [PMID: 28561699 DOI: 10.1200/EDBK_175150]

8 Di Nunno V, Gatto L, Santoni M, Cinamadore A, Lopez-Beltran A, Cheng L, Scarpelli M, Montironi R, Massari F. Recent Advances in Liquid Biopsy in Patients With Castration Resistant Prostate Cancer. Front Oncol 2018; 8: 397 [PMID: 30319966 DOI: 10.3389/fonc.2018.00397]

9 Lu YT, Delijani K, Mecum A, Goldkorn A. Current status of liquid biopsies for the detection and management of prostate cancer. Cancer Manag Res 2019; 11: 5271-5291 [PMID: 31239778 DOI: 10.2147/CMAR.S170380]

10 Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R, Elemento O, Rubin MA, Robinson D, Longiro R, Hussain M, Chinnaiyan A, Vinson J, Filipenko J, Garraway L, Taplin M; ALuHuayu H, Han GC, Beigthol M, Marroisey C, Nghiern B, Cheng HH, Montgomery B, Walsh T, Casadei S, Berger M, Zeh J, Vigu J, Schii HJ, Sauyer C, Shulte N, Kantoff PW, Solit D, Robson M, Van Allen EM, OfK, de Bono J, Nelson PS. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med 2016; 375: 443-453 [PMID: 27433846 DOI: 10.1056/NEJMoa1601444]

11 Sobhani N, Generali D, Zanconati F, Bortol M, Scaggaente B. Cell-free DNA integrity for the monitoring of breast cancer: Future perspectives? World J Clin Oncol 2018;
Potsch K, Matasci N, Soudarasanaraj A, Diaz P, Agus DB, Ruderman D, Gross ME. Monitoring dynamic cytotoxic chemotherapy response in castration-resistant prostate cancer using plasma cell-free DNA (cfDNA). BMC Res Notes 2019; 12: 275 [DOI: 10.1186/s13104-019-4512-2]

Hahn AW, Stenehjem D, Nussenzevig R, Carroll E, Bailey E, Barten J, Maughan BL, Agarwal N. Evolution of the genomic landscape of circulating tumor DNA (ctDNA) in metastatic prostate cancer over treatment and time. Cancer Treat Rev 2019; 70: 100120 [DOI: 10.1016/j.ctrv.2019.100120]

Qiu P, Poepl Hein CH, Marton MJ, Latzerza OF, Levitan D. Measuring Tumor Mutational Burden (TMB) in Plasma from mCRPC Patients Using Two Commercial NGS Assays. Sci Rep 2019; 9: 114 [PMID: 30634180] DOI: 10.1038/s41598-018-37128-y

Torquato S, Pallavajjala A, Goldstein A, Toro PV, Silberstein JL, Lee J, Nakazawa M, Waters I, Cha D, Shin D, Groginski T, Hughes RM, Simons BW, Khan H, Feng Z, Carducci MA, Paller CI, Demanes SR, Kressel B, Eisenberger MA, Antonarakis ES, Trotk J, Dittamore RV, George DJ, Rothwell C, Nanus DM, Heyman L, Van den Eynden GH, Wang L, Zhang P, Kilari D, Huang CC, Wang L. Prognostic association of plasma cell-free DNA-based androgen receptor amplification and circulating tumor cells in pre-chemotherapy metastatic castration-resistant prostate cancer. Genes Chromosomes Cancer 2020; 59: 225-239 [PMID: 31705765] DOI: 10.1002/gcc.22824

Bhedi J, Graf R, Bauernhofer T, Cherkes Y, Ular P, Waldispuehl-Geigl J, Perakis S, Gormley M, Patel J, Li
Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide treatment of metastatic castration-resistant prostate cancer. *Cancer Discov* 2017; 7: 1508-1516 [PMID: 28472366 DOI: 10.1002/ijc.31397]

Bazov J, Youngren J, Paris P, Thomas G, Small EJ, Wang Y, Gleave ME, Collins CC, Chi KN. Androgen receptor gene aberrations in circulating cell-free DNA: Biomarkers of therapeutic resistance in docetaxel-treated metastatic castration-resistant prostate cancer. *Clin Cancer Res* 2017; 23: 2315-2324 [PMID: 29330943 DOI: 10.1158/2159-8290.CD-17-0261]

Brahmbhatt S, Shukin R, Le Bihan S, Gleave ME, Nykter M, Collins CC, Chi KN. Genomic Alterations in circulating Cell-Free DNA reveals high concordance with metastatic tumors. *Nat Commun* 2017; 8: 1324 [PMID: 29109393 DOI: 10.1038/s41467-017-00965-y]

Criekinge W, Schalken JA. Epigenetic markers in circulating cell-free DNA as prognostic markers for survival of castration-resistant prostate cancer patients. *Prostate* 2018; 78: 336-342 [PMID: 29330943 DOI: 10.1002/pros.23477]

Deligezer U, Yaman F, Darendeliler E, Dizdar Y, Holdenrieder S, Kovancilar M, Dalay N. Post-treatment circulating plasma BMP6 mRNA and HEK27 methylation levels discriminate metastatic prostate cancer from localized disease. *Clin Chim Acta* 2010; 411: 1452-1456 [PMID: 20573596 DOI: 10.1016/j.cca.2010.05.040]

Rathkopf DE, Smith MR, Ryan CJ, Berry WR, Shore ND, Liu G, Higano CS, Alumkal JJ, Hauke R, Tutone RF, Saleh M, Chow Maneval E, Thomas S, Ricci DS, Yu MK, de Boer CJ, Trinh A, Kheoh T, Bandekar R, Scher HI, Antonarakis ES. Androgen receptor mutations in patients with castration-resistant prostate cancer treated with apalutamide. *Ann Oncol* 2017; 28: 2264-2271 [PMID: 28633425 DOI: 10.1093/annonc/mdx283]

Sobhani N et al. Prognostic and therapy of mCRPC. WJCO | https://www.wjgnet.com 461 July 24, 2020 | Volume 11 | Issue 7
tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res 2009; 15: 1032-1038 [PMID: 19188176 DOI: 10.1186/1078-0432.CCR-08-1910]

44 Bastian PJ, Palapattu GS, Yegnasubramanian S, Lin X, Rogers CG, Mangold LA, Trock B, Eisenberger M, Partin AW, Nelson WG. Prognostic value of preoperative serum cell-free circulating DNA in men with prostate cancer undergoing radical prostatectomy. Clin Cancer Res 2007; 13: 5361-5367 [PMID: 17875674 DOI: 10.1186/1078-0432.CCR-06-2781]

45 Brindley GS, Polkey CE, Rushton DN. Electrical splitting of the knee in paraplegia. Paraplegia 1979; 16: 428-437 [PMID: 3119190 DOI: 10.2147/CMAJ.S192646]

46 Khani M, Hosseini J, Mirfakhraie R, Habibi M, Azargazesh E, Pourseimaei F. The value of the plasma circulating cell-free DNA concentration and integration index as a clinical tool for prostate cancer diagnosis: a prospective case-control cohort study in an Iranian population. Cancer Manag Res 2019; 11: 4549-4556 [PMID: 3119016 DOI: 10.2147/CMAJ.S192646]

47 Hodara E, Morrison G, Cunha A, Zainfeld D, Xu T, Xu Y, Dempsey PW, Pagano PC, Bischoff F, Khurana A, Koo S, Ting M, Cotter PD, Moore MW, Gunn S, Usher J, Rabibazdeh S, Danenberg P, Danenberg K, Carpelten J, Doff T, Quinn D, Goldkorn A. Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight 2019; 4 [PMID: 30702443 DOI: 10.1172/jci.insight.125529]

48 Joncas FH, Lucien F, Rouleau M, Morin F, Leong HS, Pouliot F, Fradet Y, Gilbert C, Toren P. Plasma extracellular vesicles as phenotypic biomarkers in prostate cancer patients. Prostate 2019; 79: 1767-1776 [PMID: 31475741 DOI: 10.1002/pros.23939]

49 Mohammadi Torbati P, Asadi F, Fard-Esfahani P. Circulating miR-20a and miR-26a as Biomarkers in Prostate Cancer. Asian Pac J Cancer Prev 2019; 20: 1453-1456 [PMID: 31127907 DOI: 10.31557/APCP.2019.20.5.1453]

50 Ishiba T, Hoffmann AC, Usher J, Elshimaly I, Sturdavan T, Dang M, Jaimey I, Tyagi R, Gonzales R, Grino M, Pinski JK, Barzi E, Ruae L, Eberhardt WE, Theegarten D, Lenz HJ, Uetake H, Danenberg PV, Danenberg K. Frequencies and expression levels of programmed death ligand 1 (PD-L1) in circulating tumor RNA (ctRNA) in various cancer types. Biochem Biophys Res Commun 2018; 500: 621-625 [PMID: 29679560 DOI: 10.1016/j.bbrc.2018.04.120]

51 Wang YH, Ji J, Wang BC, Chen H, Yang ZH, Wang K, Luo CL, Zhang WW, Wang FB, Zhang XL. Tumor-Derived Exosomal Long Noncoding RNAs as Promising Diagnostic Biomarkers for Prostate Cancer. Cell Physiol Biochem 2018; 46: 532-545 [PMID: 29614511 DOI: 10.1159/000488620]

52 Zedan AH, Hansen TF, Assenholt J, Madsen JS, Osterh PJ. Circulating miRNAs in localized/locally advanced prostate cancer patients after radical prostatectomy and radiotherapy. Prostate. 2019; 79: 425-432 [PMID: 30537232 DOI: 10.1002/pros.23748]

53 Farran B, Dyson G, Craig D, Dombkowski A, Beebe-Dimmer JL, Powell JI, Podgerski I, Heilbrun L, Bolson S, Bock CH. A study of circulating microRNAs identifies a new potential biomarker panel to distinguish aggressive prostate cancer. Carcinogenesis 2018; 39: 556-561 [PMID: 29471417 DOI: 10.1093/carcin/bgy025]

54 Liu RSC, Olikhov-Mitsel E, Jeyapala R, Zhao F, Conklin D, Klotz L, Loblaw A, Liu SK, Vespri D, Flesner NE, Bapat B. Assessment of Serum microRNA Biomarkers to Predict Reclassification of Prostate Cancer in Patients on Active Surveillance. J Urol 2018; 199:1475-1481 [PMID: 29246734 DOI: 10.1016/j.juro.2017.12.008]

55 Albitar M, Ma W, Lund L, Shahbaba B, Uchio E, Feddersen S, Moylan D, Wojno K, Shore N. Prostatectomy-based validation of combined urine and plasma test for predicting high grade prostate cancer. Prostate 2018; 78: 294-299 [PMID: 29315679 DOI: 10.1002/pros.23473]

56 Endzelëis E, Berger A, Melne V, Bajo-Santos C, Sobolēvska K, Ābols A, Rodriguez M, Šantare D, Rudzickiha A, Lietuvietis V, Llorente A, Linē A. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 2017; 17: 730 [PMID: 29218558 DOI: 10.1186/s12885-017-3737-z]

57 McDonald AC, Vira M, Shen J, Sanda M, Raman JD, Liao J, Patil D, Taioli E. Circulating microRNAs in plasma as potential biomarkers for the early detection of prostate cancer. Prostate 2018; 78: 411-418 [PMID: 29383739 DOI: 10.1002/pros.23485]

58 Alhasan AH, Scott AW, Wu JJ, Feng G, Meeks JJ, Thaxton CS, Mirkin CA. Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proc Natl Acad Sci USA 2016; 113: 10655-10660 [PMID: 27601638 DOI: 10.1073/pnas.1611961113]

59 Yan C, Kim YH, Kang HW, Seo SP, Jeong P, Lee IS, Kim D, Kim JM, Choi YH, Moon SK, Yun SJ, Kim WJ. Urinary Nucleic Acid TSPAN13-11 to-S100A9 Ratio as a Diagnostic Marker in Prostate Cancer. J Korean Med Sci 2015; 30: 1784-1792 [PMID: 26713053 DOI: 10.3346/jkms.2015.30.12.1784]

60 Antonarakis ES, Lu C, Wang H, Lubet B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, Lottan TL, Zheng Q, De Marzo AM, Isaacs WB, Isaacs JT, Wheeler CL, Tsao H, Carducci MA, Eisenberger MA, Luo J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371: 2947-2958 [PMID: 25184636 DOI: 10.1056/NEJMoa1318155]

61 Korzeniewski N, Rosev G, Pahernik S, Hadaschik B, Hohenfellner M, Duensing S. Identification of cell-free microRNAs in the urine of patients with prostate cancer. Urol Oncol 2015; 33: e16.e17-e22 [PMID: 25443583 DOI: 10.1016/j.uroonc.2014.09.015]

62 Papadopoulou E, Davias E, Sotiriou V, Georgakopoulou E, Georgakopoulou S, Koliopanos A, Aggelakis F, Dardoufas K, Agnanti NJ, Karydas I, Nasioulas G. Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann N Y Acad Sci 2006; 1075: 225-243 [PMID: 17108247 DOI: 10.1196/annals.1368.032]

63 Di Meo A, Bartlet J, Cheng Y, Pasic MD, Yousef GM. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol Cancer 2017; 16: 80 [PMID: 28410618 DOI: 10.1186/s12943-017-0644-5]

64 Wadowsky KM. Koochekpour S. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget 2016; 7: 64447-64470 [PMID: 27487144 DOI: 10.18632/oncotarget.10901]
Sobhani N, Generali D, D’Angelo A, Aita M, Roviello G. Current status of androgen receptor-splice variant 7 inhibitor niclosamide in castrate-resistant prostate-cancer. *Invest New Drugs* 2018; 36: 1133-1137 [PMID: 30083960 DOI: 10.1007/s10637-018-0653-2]

Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. *Cancer Res* 2008; 68: 5469-5477 [PMID: 18593950 DOI: 10.1158/0008-5472.CAN-08-0594]

Hu R, Dunn TA, Wei S, Isharwal S, Veltli RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, Bova GS, Luo J. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. *Cancer Res* 2009; 69: 16-22 [PMID: 19117982 DOI: 10.1158/0008-5472.CAN-08-2764]

Steinestel J, Luedeke M, Arndt A, Schnoeller TJ, Lennerz JK, Wurm C, Maier C, Cronauer MV, Steinestel K, Schrader AJ. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. *OncoTarget* 2019; 10: 4213-4223 [PMID: 31289619 DOI: 10.18632/oncotarget.3925]

Scher HI, Graf RP, Schreiber NA, McLaughlin B, Lu D, Louw J, Danila DC, Dugan L, Johnson A, Heller G, Fleisher M, Dittamore R. Nuclear-specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-resistant Prostate Cancer. *Eur Urol* 2017; 71: 874-882 [PMID: 27979426 DOI: 10.1016/j.eururo.2016.11.024]

Richardsen E, Andersen S, Melbo-Jørgensen C, Rakae M, Ness N, Al-Saad S, Nordby Y, Pedersen MI, Dønnem T, Bremnes RM, Busund LT. MicroRNA 141 is associated to outcome and aggressive tumor characteristics in prostate cancer. *Sci Rep* 2019; 9: 386 [PMID: 30674952 DOI: 10.1038/s41598-018-36854-7]

Giraldez MD, Chevillet JR, Tewari M. Droplet Digital PCR for Absolute Quantification of Extracellular MicroRNAs in Plasma and Serum: Quantification of the Cancer Biomarker hsa-miR-141. *Methods Mol Biol* 2018; 1768: 459-474 [PMID: 2971459 DOI: 10.1007/978-1-4939-7778-9_26]

Ibrahim NH, Abdellateef MS, Kassem SH, Abd El Salam MA, El Gamal MM. Diagnostic significance of miR-21, miR-141, miR-18a and miR-221 as novel biomarkers in prostate cancer among Egyptian patients. *Andrologia* 2019; 51: e13384 [PMID: 31483058 DOI: 10.1111/and.13384]

Karzai FH, Madan RA, Figg WD. Beyond PSA: managing modern therapeutic options in metastatic castration-resistant prostate cancer. *South Med J* 2015; 108: 224-228 [PMID: 25871992 DOI: 10.14423/SMJ.0000000000000266]

Aggarwal R, Romero GR, Friedl V, Weinstein A, Foye A, Huang J, Feng F, Stuart JM, Small EJ. Clinical and genomic characterization of Low PSA Secretors: a unique subset of metastatic castration resistant prostate cancer. *Prostate Cancer Prostatic Dis* 2020 [PMID: 32286546 DOI: 10.1038/s41391-020-0228-0]

Battaglino C, Tucci M, Sonetto C, Vignani F, Di Stefano RF, Pisano C, Turco F, Lacidogna G, Guglielmini P, Nunico G, Scaglioni GV, Di Maio M. Prognostic role of early PSA drop in castration resistant prostate cancer patients treated with abiraterone acetate or enzalutamide. *Minerva Urol Nefrol* 2020 [PMID: 32284527 DOI: 10.23736/S0393-2249.20.03708-X]

Brady-Nicholls R, Nagy JD, Gerke TA, Zhang T, Wang AZ, Zhang J, Gatenby RA, Enderling H. Prostate-specific antigen dynamics predict individual responses to intermittent androgen deprivation. *Nat Commun* 2020; 11: 1750 [PMID: 32273504 DOI: 10.1038/s41467-020-15424-4]
