Extended Abstract

1. Introduction

Type 2 diabetes is a rising problem and a significant risk factor for small and large vessel disease [1]. Currently, inflammatory processes play a key role in all complications of diabetes. It has now been shown that inflammation is not limited to the host’s pathogen control but occurs in the absence of viral or bacterial pathogens and is associated with hyperglycemia complications [2]. One study has shown that diabetes is a significant risk factor for atherosclerosis, with an incidence of 2-4 times higher than that in the non-diabetic population [3]. Adhesion and plaque formation in the arteries causes endothelial dysfunction. There are several reports on the role of systemic inflammation in the development of atherosclerosis. In these patients, the expression and plasma concentration of inflammatory factors and their mediators increase [4]. Data from analysis of rodent and human atherosclerotic plaques have shown that
interleukin (IL)-1β and IL-18, both are NLRP3 inflamma-
some activation products, play a vital role in the initiation
and progression of atherosclerosis. Deficiency of IL-1β or
IL-18 and delivery of the antagonist to the IL-1β receptor reduces the amount of atherosclerotic lesion [5].

Pyroptosis is a pre-inflammatory form of regulated cell
death. It is dependent on the enzymatic activity of inflam-
matory proteases belonging to the family of cysteine-de-
pendent aspartate-directed proteases (caspases). Pyroptosis
is morphologically, mechanically, and pathophysiologically distinct from other cell death forms, apoptosis, and necro-
sis. It is characterized by rapid rupture of the plasma mem-
brane, resulting in the release of intracellular contents and proinflammatory mediators, including IL-1β, IL-18, and
HMGB1. Recent studies have shown that pyroptosis may be
involved in atherosclerosis and play an essential role in the
instability of atherosclerotic lesions [6]. HMGB1, one of
the higher members of the HMG protein family, was
initially considered an essential mediator for maintaining
chromosome structure and stability in various cells, includ-
ing eukaryotic cells [7]. As a proinflammatory cytokine, the
extracellular transmission of HMGB1 during inflammatory
responses significantly increases serum levels in patients
with inflammatory disorders [8]. Diabetes mellitus is also
associated with inflammatory dysfunction, and HMGB1 has
been reported to be associated with diabetes mellitus or
high glucose conditions [9, 10]. HMGB1 levels increase in
vitreous fluid and extraretinal membranes of diabetic reti-
nopathy [7].

Studies have shown that exercise positively affects meta-
abolic parameters such as insulin sensitivity, lipid profile,
and endothelial function [11, 12]. These metabolic param-
eters and endothelial dysfunction are useful in developing
coronary artery disease and stroke [13]. Exercise plays an
essential role in controlling inflammatory diseases such
as diabetes by reducing the secretion of inflammatory cyto-
kines and increasing the secretion of anti-inflammatory cyto-
kines [14]. Aerobic exercise reduces HMGB1 levels in
the blood and tissue of diabetic rats [15] and blocks the
middle cerebral artery in an experimental model of rats
[16]. However, finding the exact mechanisms of aerobic
exercise effects on HMGB1 gene expression and related
mechanisms requires further studies in diabetic patients.
Therefore, this study aimed to investigate the impact of 6
weeks of aerobic exercise on the expression of the HMGB1
gene in the aortic tissue of healthy and diabetic rats.

2. Materials and Methods

Study samples

This experimental study was performed on 40 male Wistar
rats aged 8 weeks with a Mean ± SD of weight of 200±20 g.
They were prepared from the Physiology Research Cen-
ter in Ahvaz, Iran. They were randomly divided into four
groups: healthy-control, diabetic-control, healthy-exercise,
and diabetic-exercise. They were kept in the Animal Labo-
atory of the Physiology Department of Ahvaz University
of Medical Sciences under controlled conditions: 12:12
light-dark cycle (light on at 6 AM, light off at 6 PM), a
temperature of 22°C±3°C, and humidity of about 45%. Three
to five rats were kept in Plexiglas cages with mesh doors
and a dimension of 25×27×43 cm such that they had free
access to water and food. All experiments on rats were per-
formed according to the guidelines of the Animal Ethics
Committee of Ahvaz Jundishapur University of Medical
Sciences. Throughout the study, the rats were moved and
manipulated only by one person.

Induction of diabetes

To induce type 2 diabetes, the rats were first injected in-
traperitoneally with nicotinamide 120 (mg/kg). Fifteen
minutes later, 60 mg/kg streptozotocin (STZ) dissolved in
normal 0.1 M citrate buffer was injected intraperitoneally.
Then, to ensure that the animal had become diabetic, the
amount of blood glucose was assessed 72 h after STZ in-
jection using a glucometer. Rats with a fasting blood sugar
greater than 250 mg/dl were considered diabetic [17]. Due
to the risk of STZ-induced hypoglycemia, the rats received
10% glucose solution 6 h after STZ administration until 24
h later [18].

Exercise protocol

One week after the induction of diabetes, the rats in the
exercise groups performed exercise on a treadmill for 6
weeks, 5 days a week. Before starting the main exercise and
for familiarization, the rats started running on the treadmill
for 10-15 min at a speed of 5-7 m/min and zero inclines
for two consecutive days. Two days after familiarization,
the main exercise began, and the rats run on the treadmill
for 6 weeks. The exercise in the first week was performed
at a speed of 10 m/min for 10 minutes. In the next few
weeks, the speed and duration of running on the treadmill
increased: 10 m/min for 20 minutes in the second week, 14-
15 m/min for 20 minutes in the third week, 14-15 m/min for
30 minutes in the fourth week, and 18 m/min for 30 minutes
in the fifth and sixth weeks (Table 1) [19].
Polymerase chain reaction

The quantitative real-time polymerase chain reaction (q-RT PCR) was performed using the cDNA synthesis kit (Fermentas, USA) according to the manufacturer’s instructions. First, all designed primers related to all genes were synthesized. cDNA was used for reverse transcription reaction. Then, the measurement of gene expression was analyzed using q-RT PCR. Each q-RT PCR cycle, and the temperature of each cycle was performed using a cDNA synthesis kit (Fermentas, USA) and SYBR Green (ABI, USA). 10 pmol (0.5 mL) forward primer, 10 pmol (0.5 mL) reverse primer, 1 μL cDNA, and 8 μL DEPC-treated water. The samples were kept on ice until transfer to the device.

Molecular measurement of gene expression

As mentioned above, the q-RT PCR method (ABI StepOne, Applied Biosystems) was used for measuring gene expression. For this purpose, using QIAzol solution, the RNA of all cells was extracted according to the CinnaGen protocol and exposed to DNase 1 (Fermentas, USA) to ensure infection with genomic DNA. Then the quality of extracted RNAs was evaluated by a spectrophotometer (DPI-1, QIAGEN, Germany). To prepare cDNA, a single-strand Oligo (dT) primer (MWG-Biotech, Germany) and reverse transcription enzyme (Fermentas, USA) were used according to the related protocol. Each PCR was performed using PCR Master Mix (Applied Biosystems), SYBR Green (ABI StepOne, Applied Biosystems), and Sequences Detection Systems (Foster City, CA, USA) according to the manufacturers’ protocol. Forty cycles were considered for each q-RT PCR cycle, and the temperature of each cycle was set as 94°C for 20 seconds, 58°C -60°C for 30 seconds, and 72°C for 30 seconds. The melting diagram was plotted to evaluate the accuracy of PCRs and was evaluated specifically with a negative control diagram for each gene to check for contamination in each reaction.

Data analysis

Descriptive statistics (frequency, mean, and standard deviation) were used for describing data. The Kolmogorov-Smirnov (KS) test was used to determine the normality of data distribution, and Levene’s test measured the equality of variances. The one-way ANOVA and Tukey post hoc test was used to determine the significant differences between variables and their interaction. Findings were evaluated at a 95% confidence level (P<0.05). All statistical analyses were performed in SPSS V. 21.

3. Results

The mean and standard deviation of HMGB1 levels in different study groups are presented in Table 3. The results showed that the highest levels of HMGB1 belonged to the diabetic-control group and the lowest levels to the healthy-exercise group. Since the KS results (Table 3) and Lev...
ene’s test (P=0.106) indicated normal data distribution and equality of variances, respectively, so the test conditions were established. The results of 1-way ANOVA (Table 4) indicated a significant difference in HMGB1 levels between different study groups (F=22.053, P=0.000). Overall, induction of diabetes caused a significant increase in aortic tissue’s HMGB1 gene level, and then aerobic exercise significantly reduced its level. However, it was still far from the gene expression level of healthy rats. Aerobic exercise also reduced the expression of the HMGB1 gene in healthy rats.

The mean and standard deviation of blood glucose levels in the study groups are shown in Table 5. Tukey post hoc test was used to examine which groups differed from each other (Table 6). There was a significant difference between the mean blood glucose level between diabetic-control, healthy-exercise, and diabetic-exercise, such that the mean

Source	Sum of Squares	df	Mean Square	F	Sig.
Between-group	0.216	3	0.072	22.053	0.000
Within-group	0.026	8	0.003		
Total	0.242	11			

Table 1. Aerobic exercise protocol

Week	Duration (min)	Speed (m/min)
1	10	10
2	20	
3	20	14-15
4	30	18
5	30	
6	30	

Table 2. List of primers sequences

Gene	Sequence
r-Hmgb1-f	TGAAATGTAGGGCTGTGTAAGA
r-Hmgb1-r	TGACTAGGCAAGGTTAGTG

Table 3. The mean and standard deviation of HMGB1 levels in different study groups

Group	Diabetic-control	P*	Diabetic-exercise	P*	Healthy-exercise	P*	Healthy-control	P*
Mean	0.401	0.802	0.147	0.386	0.049	0.139	0.114	0.551
Standard deviation	0.103	0.037	0.013	0.013	0.029			

* The Shapiro-Wilk test.

Table 4. Results of 1-way ANOVA for comparison of study groups in terms of HMGB1 level

Group	Sum of Squares	df	Mean Square	F	Sig.
Between-group	0.216	3	0.072	22.053	0.000
Within-group	0.026	8	0.003		
Total	0.242	11			
blood glucose of the healthy-control group was higher than that of the healthy-exercise group and lower than that of diabetic-control and diabetic-exercise groups. There was also a significant difference in mean blood glucose level between the healthy-exercise and the diabetic-exercise groups, where it was lower in the healthy-exercise group. Furthermore, there was also a significant difference in the mean blood glucose level between the diabetic-control and diabetic-exercise groups, where it was higher in the diabetic-control group.

4. Discussion

In this study, induction of diabetes led to a significant increase in the expression level of the HMGB1 gene in the aortic tissue of rats. Then aerobic exercise significantly reduced its level. Aerobic exercise also reduced the gene expression in healthy rats. HMGB1 is involved in many physiological and pathological processes, such as DNA repair, transcription, and extracellular signal transduction [15]. In normal tissues, most cells express none or only low levels of HMGB1 [20]. Transfer of HMGB1 from the nucleus to the cytoplasm and further out of the cell occurs only in pathological conditions (ischemia, trauma, hyperglycemia, etc.) [21]. High blood sugar causes oxidative stress, which leads to the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and thus increases the level of proinflammatory cytokines. A study has shown an increase in serum levels of TNF-α (tumor necrosis factor-alpha) and C-reactive protein due to diabetes induction [22]. Studies have shown a significant rise in HMGB1 by glucose, which is associated with the upregulation of proinflammatory cytokines by activating the NF-κB signaling pathways, and HMGB1 inhibition strategy reduces proinflammatory cytokines in response to high glucose by inhibiting the NF-κB signaling pathways. This issue indicates the regulatory role of HMGB1 in inflammatory responses in diabetic patients [9]. Increased blood glucose leads to increased expression of HMGB1 and TNF-α genes [23]. Studies have shown that proinflammatory cytokines such as TNF-α impair insulin signaling in insulin-sensitive tissues. Elevated systemic levels of the anti-inflammatory cytokine IL-10 have been reported to protect skeletal muscle from the secretion of diabetes-associated macrophages, increased inflammatory cytokine TNF-α, and the adverse effects of these cytokines on insulin signaling and glucose metabolism, and therefore associated with increased insulin sensitivity [24]. Exercise stimulates the production of anti-inflammatory cytokines such as IL-10 and reduces the production of proinflammatory cytokines such as TNF-α.
thus playing an essential role in controlling diabetes. Studies have suggested that exercise may indirectly increase IL-10 affecting the secretion of other inflammatory and anti-inflammatory cytokines, such as IL-16 [25].

Yu et al. indicated the role of HMGB1 protein in the development of diabetic retinopathy [23]. HMGB1 is a highly conserved protein. It has been reported that multiple pathological stimuli, in addition to necrosis, may cause HMGB1 to leave the cell. Related studies have shown that HMGB1 can not only enhance the inflammatory response but can also stimulate the formation of new blood vessels [26]. In the study by Yu et al. [23], the expression of the HMGB1 gene was significantly higher in diabetic rats than in controls. They showed that HMGB1 was 6.1 times more expressed in the retinal cells of diabetic rats. This suggests that long-term hyperglycemia may stimulate HMGB1 gene expression and that HMGB1 may contribute to diabetic retinopathy in rats. Some studies have shown that HMGB1 and ROS are more expressed in the retina under acute ischemia-reperfusion injury [27, 28]. Volz found that, although HMGB1 in rats with diabetic retinopathy changed later compared to other inflammatory factors such as VEGF, it had a longer half-life [29]. This suggests that the HMGB1 protein may be involved in the later stages of diabetic retinopathy. It was recommended that HMGB1 might be involved in inflammation and new vascular formation in diabetic retinopathy through binding to advanced glycation end products (RAGE) and TLR2 receptors [28, 30]. HMGB1 may be involved in diabetes through receptor binding, and HMGB1 content is directly related to retinal cell apoptosis. Diagnosis of HMGB1 levels and its treatment in clinics can help predict and treat the complications of diabetes. In the present study, the induction of diabetes significantly increased the expression of the HMGB1 gene in aortic tissue, which may lead to endothelial dysfunction in rats.

On the other hand, regular aerobic exercise led to a significant reduction in the HMGB1 gene. In line with our study, Pan et al. showed that exercise on a treadmill reduced the transfer of HMGB1 to the cytoplasm. HMGB1 showed a positive feedback loop, causing autophagy [15]. OGD activates autophagy in PC12 cells and recombinant HMGB1 (rHMGB1) increases the binding of HMGB1 to Beclin1, thereby increasing LC3 expression and increasing the autophagy flux. Studies have shown that exercise reduces gene expression Cytokine IL-1β [31]. Previous studies have also shown that treadmill exercise affects serum HMGB1 level [16]. This finding indicates another mechanism that treadmill exercise regulates HMGB1 expression. Recently, HMGB1, as an essential proinflammatory factor in pathological conditions, has been studied in animal models and clinical settings [32]. Extracellular HMGB1 recognizes receptors such as RAGE and TLR2/4, and further activates the NF-κB signaling pathway, and promotes inflammatory responses [33]. Studies have shown that exercise reduces gene expression Cytokine IL-1β. Hence, it is possible that exercise decreases the inflammatory response through HMGB1 and exerts its protective effect [16, 34]. Pan et al. reported that aerobic exercise reduces cardiac tissue HMGB1 protein in diabetic patients [15], and Gialoria et al. reported a decrease in this gene in patients with myocardial infarction [35]. Heat shock proteins (HSPs) increase after exercise. On the other hand, they are effective in reducing the expression of HMGB1 and the cytoplasmic transmission and secretion of HMGB1 [36]. Therefore, one of the possible mechanisms of HMGB1 reduction in the aortic tissue of
diabetic rats following aerobic exercise can be an increase in the HSP level. Despite reduced HMGB1 gene expression in the aortic tissue of diabetic rats by aerobic exercise, the gene level was still far from the level in healthy rats. Therefore, it is suggested that in future studies, while increasing the study period, the use of other effective non-pharmacological interventions, including the use of herbal supplements, be useful in further reducing this gene level in the healthy rats.

5. Conclusion

Six weeks of aerobic exercise reduced HMGB1 gene expression in the aortic tissue of diabetic rats. Therefore, aerobic exercise can be an effective non-pharmacological method to improve inflammation caused by diabetes and prevent vascular disorders. A definite statement requires further studies in this field.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of Islamic Azad University of Marvdasht branch (Code: IR.IAU.M.REC.1399.007).

Funding

This article was extracted from the PhD. dissertation of Samira Hassanpour Soleimani at Amol Azad University, Faculty of Sports Sciences, majoring in Exercise Physiology (Cardiovascular and Respiratory Arteries) without funding.

Authors’ contributions

Conceptualization: Asieh Abbassi-Daloei; Writing – original draft, and Writing – review & editing: Asieh Abbassi-Daloei, Samira Hassanpour, and Shireen Zilaei; Data collection and data analysis: Samira Hassanpour Soleimani; Writing, editing, and review: All authors.

Conflicts of interest

The authors declared no conflict of interest.
مقدمه

یک بیماری در حال رشد و یک خطر مهم برای پیشروندی در بیماری عروق کوچک و بزرگ است. هدف از پژوهش حاضر ازبین همکارانمان و محققان را بررسی تأثیر شش هفته تمرین هوازی بر بیان ژن HMGB1 شرکت نمود.

مواد و روش‌ها

در این مطالعه تجربی چهل سر موش صحرایی نر (هشت هفته‌ای) به صورت تصادفی انتخاب و پس از آشنایی با پروتکل تمرین، به چهار گروه تقسیم شدند (ده سر در هر گروه). انقلا شد سپس در گروه تمرینی پنج روز دویدن روی تریدمیل به مدت شش هفته اجرا شد. پس از دوازده تا چهارده ساعت ناشتایی و انجماد شد.

PCR Real Time با تکنیک انجام شد. در صورت مشاهده تفاوت معنی‌دار از آزمون تعقیبی توکی (P<0/05) جهت تعیین محل اختلاف بین گروهی استفاده شد که انجام تمرین P=0/001 در بافت آئورت موش‌های دیابت سبب کاهش معنی‌دار این ژن شد (بافت آئورت را کاهش داد). همچنین انجام تمرین هوازی در موش‌های سالم نیز مقادیر بیان ژن P=0/003 (بافت آئورت را کاهش داد).

نتایج

بحث

HMGB1 روشی برای پیشگیری از بیماری‌های قلبی و عروقی می‌باشد. هوازی ممکن است با کاهش بیان ژن HMGB1 در بافت آئورت موش‌های صحرایی دیابتی اثر مثبتی داشته باشد. در نتیجه گیری و می‌تواند به عنوان یک روش غیردارویی مؤثر بر بهبود التهاب ناشی از دیابت و جلوگیری از اختلالات عروقی مورد استفاده قرار گیرد.

کلید واژه‌ها: دیابت، تمرین منظم هوازی، پیروپتوزیس، HMGB1 بیان ژن
سرموئل خرد شد و کمی پیپتاژ شد. سپس به نمونه حدود صد ساعت پلاک موجود در کرایوتیوب در حالت نیمه انجماد توسط هانیا کیازول اضافه شد و به از بافت ها در همه گروه های مورد بررسی، طبق پروتکل جهت بررسی های مولکولی در سطح بیان ژن، ابتدا استخراج دقیقه روی تردمیل، دقیقه و هفته پنجم و دقیقه، در هفته چهارم دقیقه، در هفته سوم با روی تردمیل افزایش یافت؛ به طوری که حیوانات در هفته دوم با شیب اصلی آغاز شدند و موش های صحرایی به مدت شش هفته به شیب صفر درجه برای دو روز متوالی روی تردمیل کشتار شدند. با اجرای شش هفته تمرینات، موش ها در گروه مداخله ورزشی برای هر دو روز مبنای انجمادی در شرایط کنترل شده نور (دوازده ساعت روشنایی و دوازده ساعت تاریکی، شروع روشنایی شش صبح) به تخته اولاً تمرینات ورزشی با دو روز درمانی محتوی به تخته انجام شدند و در سه روز پس از آن، استخراج در هفته سی و دو ماه برای استخراج سه هفته در هفته دوم انجام شدند. به عنوان دیابتی در نظر گرفت. موش های صحرایی که قند ناشتای آن ها با استفاده از گلوکومتر یکی از اعضای بالایی خانواده پروتئین HMGB1، یکی از اعضای بالایی خانواده پروتئین HMGB1، و ممکن است در شرایط گلوکس بالا همراه می شود. سطوح معنی داری در سطوح سرمی در بیماران مبتلا به اختلالات شرکت می یابد. این پارامترهای متابولیک مانند حساسیت انسولین، نیمرخ لیپیدی و اندازه گیری اندوز بیماران در مورد اثر ورزش بر بیماران دیابتی ملیتوس یا شرایط گلوکس بالا مورد بررسی قرار گرفته است.

مواد و روش‌ها

متغییرهای محیطی که ممکن است تأثیر نقشی کایا اثر بزودین به این پارامترهای متابولیک تأثیرگذار می‌شوند، آن‌ها به عنوان متغیرهای محیطی در مطالعه با توجه به این‌که با توجه به این‌که به‌طور کلی این پارامتر‌ها در مرحله تمرین‌های ورزشی تحت تأثیر قرار می‌گیرند.

1. Streptozocin
سلام، کلروفیل اضافه شده تا سالولهای زیست شوند. این محلول جنوب یک دقیقه بر روی سطح پذیرفته شد

پس از زمان انتقال به سطح روی خانه شد. اورژانس شورت السی (شرکت سازنده) ترکیب شد و یک دقیقه برای هر واکنش انجام شد. واکنش کنترل منفی جهت بررسی مورد ارزیابی قرار گرفت. چهل سیکل ساخت کشور های استخراج شده با دستگاه آمریکا) جهت تأیید بیان ژن مورد مطالعه به صورت کمی استفاده گردید. نتایج نشان می‌دهد که سطوح این مدل در هر واکنش مورد ارزیابی قرار گرفت. کلیه محاسبات آماری با استفاده از آزمون لون و آزمون پراکندگی انحراف معیار به رسم نمودار استفاده شد. در بخش آمار توصیفی از شاخص‌های مرکزی میانگین و انحراف معیار سطوح آن متعلق به گروه سالم تمرین و ورزش. از آنجایی که نتایج مفید آنها بود، مورد بررسی قرار گرفت. هر واکنش مورد کنترل می‌باشد و از آزمون لیون، و آزمون پراکندگی انحراف معیار استفاده گردید. برای این منظور، داده‌ها به شکل مشخصی توزیع شدند. گروه‌های مختلف برای هر ژن جهت بررسی صحت) طبق پروتکل شرکت سازنده انجام شد. چهل سیکل ساخت کشور مورد ارزیابی قرار گرفت. هر واکنش مورد کنترل می‌باشد و از آزمون لیون، و آزمون پراکندگی انحراف معیار استفاده گردید.

میانگین و احراز میزان سطح همب-1 (tab. 1)

میکروپاژ (50 میکروپاژ) Primer Forward 10

میکروپاژ DEPC Water 8

میکروپاژ DEPC Primer Revers 10

میکروپاژ DEPC Primer Revers 10
به ترتیب دلالت بر توزیع نرمال داده‌ها و تجانس واریانس داشتند و شرایط آزمون برقرار است. نتایج تحلیل واریانس یک‌طرفه در گروه‌های مختلف پژوهش نشان دهنده آن است که ارزش

\[F \approx 0.000 \]

محاسبه شده که ارزش

\[HMGB1 \]

حاکی از وجود تفاوت معنی‌داری بین سطوح

\[P = 0.000 \]

در گروه‌های مختلف پژوهش است. اما میانگین

\[HMGB1 \]

گروه کنترل دیابت باعث افزایش معنی‌دار ژن و انجام تمرین هوازی سبب کاهش معنی‌دار این ژن شد، ولی هنوز با سطح اطمینان

\[0.05 \]

بافت آئورت شد.

بین میانگین ژن موش‌های سالم فاصله داشت. همچنین

\[HMGB1 \]

انجام تمرین هوازی در موش‌های سالم نیز بیان ژن

\[0.114 \]

بافت آئورت را کاهش داد.

در گروه‌های مختلف پژوهش

\[P = 0.000 \]

از آزمون هاژیپکث استفاده شده است و آزمون هاژیپکث با استفاده از

\[P < 0.05 \]

نتایج تحلیل واریانس یک‌طرفه (جدول شماره 2) در سطح

\[0.05 \]

بین میانگین میزان گلوکز خون گروه کنترل با میانگین گروه‌های تمرین اختلاف معنی‌داری وجود داشت؛ به طوری که میانگین گلوکز خون گروه تمرین بالاتر بود. علاوه بر این بین

\[0.05 \]

میانگین گلوکز خون گروه دیابت با گروه دیابت تمرین اختلاف معنی‌داری وجود داشت.

سرعت حرکت	تمرین مدت	تعداد گروه
10 متری بالا/دقیقه	10 دقیقه	
10 متری بالا/دقیقه	10 دقیقه	
10 متری بالا/دقیقه	10 دقیقه	
10 متری بالا/دقیقه	10 دقیقه	

گروه 1	گروه 2	گروه 3	گروه 4	گروه 5
P ارزش				
0.000	0.000	0.000	0.000	0.000

جدول توالی پرایمر

پرایمر	توالی
r-Hmgb1-f	TGAAATGTCGCTGTAAGAr-Hmgb1-f
r-Hmgb1-r	TGACTAGCGAAGGTTAGTGr-Hmgb1-r

جدول شماره 1

گروه	میانگین	انحراف میانگین
کنترل دیابت	0.000	0.000
دیابت تمرین هوازی	0.000	0.000
سالم تمرین هوازی	0.000	0.000
کنترل سالم	0.000	0.000

مربوط به آزمون شاپیروویلک

گروه 1	گروه 2	گروه 3	گروه 4	گروه 5
P ارزش				
0.000	0.000	0.000	0.000	0.000

میزان اثرات تمرین هوازی در برخی ژن‌ها مربوط به اینکه تفاوت بین کدام گروه‌ها وجود دارد. برای آگاهی از اینکه تفاوت بین کدام گروه‌ها وجود دارد، از آزمون پیگیری توکی استفاده شده است. همچنین در جدول شماره 3 مربوط به پروتکل تمرین هوازی

سرعت تمرین	مدت تمرین	هفته
10 متری بالا/دقیقه	10 دقیقه	10 هفته
10 متری بالا/دقیقه	10 دقیقه	10 هفته
10 متری بالا/دقیقه	10 دقیقه	10 هفته
10 متری بالا/دقیقه	10 دقیقه	10 هفته

همچنین بین میانگین گلوکز خون گروه تمرین با میانگین گروه دیابت تمرین اختلاف معنی‌داری وجود داشت. به طوری که در جدول شماره 3 مربوط به پروتکل تمرین هوازی

سرعت تمرین	مدت تمرین	هفته
10 متری بالا/دقیقه	10 دقیقه	10 هفته
10 متری بالا/دقیقه	10 دقیقه	10 هفته
10 متری بالا/دقیقه	10 دقیقه	10 هفته
10 متری بالا/دقیقه	10 دقیقه	10 هفته
بحث درHMGB1 الکار دیابت منجر به افزایش معنی دار بیان ژن بافت آئورت موش ها شد و انجام تمرین هوازی سبب کاهش معنی دار این ژن شد. همچنین انجام تمرین هوازی در موش های HMGB1 سالم نیز مقادیر بیان ژن بافت آئورت را کاهش داد در بسیاری از فرآیندهای فیزیولوژیک و پاتولوژیک، مانند ترمیم، رونویسی و انتقال سیگنال خارج سلولی دخیل است DNA. در بافت های طبیعی و نرمال، اکثر سلول ها هیچ یا فقط \[\text{ـ} \] 15\[\text{ـ} \] 20\[\text{ـ} \] را بیان می کنند HMGB1 سطح پایینی از سطوح از هسته به سیتوپلاسم و بیشتر به خارج از سلول HMGB1 تنها در شرایط پاتولوژیک (ایسکمی، تروما، هایپرگلیسمی و غیره). افزایش قند خون موجب استرس اکسایشی می شود که به دنبال آن نوبه خود افزایش سطح TNF-\(\alpha \) پیامدها می‌شود. در گروه دیابت و دیابت‌تمرین افزایش سطح TNF-\(\alpha \) باعث افزایش سطح سایتوکین‌های پیش التهابی می‌شود. در مطالعات آزمون تحلیل واریانس یک طرفه سطوح میانگین مربعات و ارزش \(P \) اعلام شده است. تحقیقات نشان داده که با تنظیم افزایشی سیتوکین‌های پیش التهابی از طریق فعال سازی مسیر سیگنالینگ، سیتوکین‌های پیش التهابی را HMGB1 دارد و می‌تواند در حالت‌های خاصی دخیل است. در گروه‌های دیابت و دیابت‌تمرین، افزایش سطح TNF-\(\alpha \) در سایتوکین‌های پیش التهابی و افزایش سطح TNF-\(\alpha \) در حالت دیابت و دیابت‌تمرین دیده شده است. این نشان دهنده نقش تنظیمی پاسخ‌های التهابی در آزمودنی‌های دیابتی است. افزایش گلوکز خون منجر به افزایش بیان ژن های HMGB1 و در گروه‌های دیابت و دیابت‌تمرین، افزایش سطح TNF-\(\alpha \) در سایتوکین‌های پیش التهابی و افزایش سطح TNF-\(\alpha \) در حالت دیابت و دیابت‌تمرین دیده شده است. این نشان دهنده نقش تنظیمی پاسخ‌های التهابی در آزمودنی‌های دیابتی است. افزایش گلوکز خون منجر به افزایش بیان ژن های HMGB1 و در گروه‌های دیابت و دیابت‌تمرین، افزایش سطح TNF-\(\alpha \) در سایتوکین‌های پیش التهابی و افزایش سطح TNF-\(\alpha \) در حالت دیابت و دیابت‌تمرین دیده شده است. این نشان دهنده نقش تنظیمی پاسخ‌های التهابی در آزمودنی‌های دیابتی است. افزایش گلوکز خون منجر به افزایش بیان ژن های HMGB1 و در گروه‌های دیابت و دیابت‌تمرین، افزایش سطح TNF-\(\alpha \) در سایتوکین‌های پیش التهابی و افزایش سطح TNF-\(\alpha \) در حالت دیابت و دیابت‌تمرین دیده شده است. این نشان دهنده نقش تنظیمی پاسخ‌های التهابی در آزمودنی‌های دیابتی است. افزایش گلوکز خون منجر به افزایش بیان ژن های HMGB1 و در گروه‌های دیابت و دیابت‌تمرین، افزایش سطح TNF-\(\alpha \) در سایتوکین‌های پیش التهابی و افزایش سطح TNF-\(\alpha \) در حالت دیابت و دیابت‌تمرین دیده شده است. این نشان دهنده نقش تنظیمی پاسخ‌های التهابی در آزمودنی‌های دیابتی است. افزایش گلوکز خون منجر به افزایش بیان ژن های HMGB1 و در گروه‌های دیابت و دیابت‌تمرین، افزایش سطح TNF-\(\alpha \) در سایتوکین‌های پیش التهابی و افزایش سطح TNF-\(\alpha \) در حالت دیابت و دیابت‌تمرین دیده شده است. این نشان دهنده نقش تنظیمی پاسخ‌های التهابی در آزمودنی‌های دیابتی است.
مشکلها مواردی که مشاهده شده‌اند، به شکل زیری از مطالعات توانسته‌اند موجب کاهش در سطح TNF-α، حساسیت به انسولین، فعالیت ورزشی و تولید سایتوکین‌های ضدالتهابی مثل IL-10 بروز کند.

این مطالعات نشان می‌دهد که پروتئین HMGB1 می‌تواند با افزایش حساسیت به انسولین همراه باشد و تولید سایتوکین‌های ضدالتهابی مانند IL-10 را تحریک کند و در کنترل دیابت نقش مهمی ایفا می‌کند.

یافته‌های قبلی نشان داده‌اند که تمرینات تردمیل برای افزایش حساسیت به انسولین و تولید سایتوکین‌های ضدالتهابی مانند IL-10 تأثیر جلوگیری از عوارض دیابت و افزایش حساسیت به انسولین را دارند.

نیز مشاهده شده که تردمیل برای افزایش حساسیت به انسولین و تولید سایتوکین‌های ضدالتهابی مانند IL-10 تأثیر جلوگیری از عوارض دیابت و افزایش حساسیت به انسولین را دارند.

برخی از مطالعات نشان می‌دهند که در مورد افزایش حساسیت به انسولین و تولید سایتوکین‌های ضدالتهابی مانند IL-10، تردمیل نقش مهمی ایفا می‌کند.

همچنین مشاهده شده که تردمیل به عنوان یک فعالیت مثبت، می‌تواند بهبودی در بدن را تقویت کند و تولید سایتوکین‌های ضدالتهابی را شرایط مناسب نماید.

بنابراین، در مطالعات قبلی نشان داده شد که تردمیل می‌تواند اثرات مثبتی بر بهبود حساسیت به انسولین و تولید سایتوکین‌های ضدالتهابی داشته باشد.

در کل، نتایج این مطالعه نشان می‌دهند که تردمیل به عنوان یک فعالیت مثبت، می‌تواند بهبودی در بدن را تقویت کند و تولید سایتوکین‌های ضدالتهابی را شرایط مناسب نماید.

شرکت حاضر نیز نشان دادند که تمرینات تردمیل می‌تواند بهبودی در بدن را تقویت کند و تولید سایتوکین‌های ضدالتهابی را شرایط مناسب نماید.
پیشین و روش

به عنوان یک روش غیردارویی مؤثر برای بهبود التهاب ناشی از دیابت و جلوگیری از اختلالات عروقی مورد استفاده قرار گیرد. باتوجه به مطالعات اندک در این زمینه اظهارنظر قطعی نیازمند مطالعات بیشتر و اجرایی است.

نتیجه‌گیری

در مطالعه حاضر ژن HMGB1 در بالین دیابتی و دیابتی بیشتر بین انتقال سلول‌های حساسی مورد اطمینان قرار گرفته است. این نشان از وجود مکانیسم دیگری است که می‌تواند استحکام اثر می‌گذارد. همچنین سایتوکین هایی مانند NFκB می‌توانند م穆کان مسیر، سایتوکین هایی مثل IL-1β که تمرینات ورزشی بیان سایتوکین را کاهش می‌دهند و از این طریق اثر محافظتی خود را بهبود یافته‌ها در بافت قلبی در بیماران دیابتی HMGB1 کاهش پروتئین، همچنین جیالوریا و همکاران کاهش این ژن را در بیماران مبتلا به سکته قلبی گزارش کرده‌اند، با تمرینات ورزشی HSP، که پروتئین های شوک حرارتی مؤثر هستند. این تحقیقات نشان داده که تمرینات ورزشی همکاران تکنیک‌های شوک حرارتی را تنظیم کرده‌اند و در بافت آئورت موش های دیابتی HMGB1 با تمرین هوازی علی‌رغم کاهش بیان ژن، همچنان این بیان با سطح این ژن در موش‌های سالمی فاصله داشت. بنابراین پیشنهاد می‌شود در مطالعات آینده ضمن افزایش مدت مطالعه، استفاده از سایر متوقف‌های غیردارویی مانند سایتوکین‌های زیر مطالعه، ممکن است که تمرینات ورزشی باعث انتقال و پاسخ‌های التهابی را تقویت کنند.
References

[1] Scherrenberg M, Dendale P. Exercise training in diabetes. European Journal of Preventive Cardiology. 2019; 26(7):698-700. [DOI:10.1177/2047487319829674] [PMID]

[2] Wilding JPH. Medication use for the treatment of diabetes in obese individuals. Diabetologia. 2018; 61:265-72. [DOI:10.1007/s00125-017-4288-3] [PMCID]

[3] Khaleeli E, Peters SR, Bobrowsky K, Oudiz RJ, Ko JY, Budoff MJ. Diabetes and the associated incidence of subclinical atherosclerosis and coronary artery disease: Implications for management. American Heart Journal. 2001; 141(4):637-44. [DOI:10.1067/mhj.2001.113224] [PMID]

[4] Asgary S, Hashemi M, Goli-Malekabadi N, Keshvari M. The effects of acute consumption of pomegranate juice (Punica granatum L.) on decrease of blood pressure, inflammation, and improvement of vascular function in patients with hypertension: A clinical trial (Persian). Journal of Shahrekord University of Medical Sciences. 2015; 16(6):84-91. http://journal.shums.ac.ir/article-1-1761-en.html

[5] Rader DJ. HD-1 and atherosclerosis: A murine twist to an evolving human story. The Journal of Clinical Investigation. 2012; 122(1):27-30. [DOI:10.1172/JCI61613] [PMCID]

[6] Xu Y, Zheng L, Hu YW, Wang Q. Pyroptosis and its relationship to atherosclerosis. Clinica Chimica Acta. 2018; 476:28-37. [DOI:10.1016/j.cca.2017.11.005] [PMID]

[7] Hui Y, Yin Y, Tian DH. Combination of serum HMGB1 and serum miR-126 achieve high predictive power to detect proliferative diabetic retinopathy: A Chinese population-based study. International Journal of Clinical and Experimental Medicine. 2019; 12(5):5909-14. http://www.ijicem.com/files/ijicem0078585.pdf

[8] Caura CJ, Tracey KJ. Targeting high mobility group box 1 as a late-acting mediator of inflammation. Critical Care Medicine. 2003; 31(1):546-50. [DOI:10.1097/00003246-200301001-00007] [PMID]

[9] Wang H, Qu H, Deng H. Plasma HMGB1 levels in subjects with obesity and type 2 diabetes: A cross-sectional study in China. PloS One. 2015; 10(8):e0136564. [DOI:10.1371/journal.pone.0136564] [PMID]

[10] Beckman JA, Paneri F, Cosentino F, Creager MA. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part II. European Heart Journal. 2013; 34(31):2444-52. [DOI:10.1093/eurheartj/eht142] [PMID]

[11] Kränkel N, Bahls M, Van Craenenbroeck E, Adams V, Lupo G, Anfuso CD, Ragusa N, Strozsjälder RP, Walski M, Alberghi MA. t-Butyl hydroperoxide and oxidized low density lipoprotein enhance phospholipid hydrolysis in lipopolysaccharide-stimulated retinal pericytes. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2001; 1531(1-2):143-55. [DOI:10.1016/S0925-4437(01)00464-5] [PMID]

[12] Yanai H, Adachi H, Masui Y, Katsuyama H, Kawaguchi A, et al. Exercise therapy for patients with type 2 diabetes: A narrative review. Journal of Clinical Medicine Research. 2018; 10(5):365-9. [DOI:10.14740/jocmr3382w] [PMID] [PMCID]

[13] Gleeson M, Bishop NC, S trendy DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nature Reviews Immunology. 2011; 11(9):607-15. [DOI:10.1038/nri3041] [PMID]

[14] Taghibeigi Hoseinabadi H, Esfarjani F, Marandi SM, Karami H. Effects of eight weeks of aerobic training on expression levels of the HMGB1-RAGE/TLR4-NF-kB proinflammatory pathway in cardiac tissue of male rats with hyperglycemia (Persian). Iranian Journal of Endocrinology and Metabolism. 2019; 20(5):246-52. http://ijem.sbmu.ac.ir/article-1-2477-en.html

[15] Pan G, Jin L, Shen W, Zhang J, Pan J, Cheng J, et al. Treadmill exercise improves neurological function by inhibiting autophagy and the binding of HMGB1 to Beclin1 in MCAO juvenile rats. Life Sciences. 2020; 243:117279. [DOI:10.1016/j.lfs.2020.117279] [PMID]

[16] Shirwakar A, Rajendran K, Punitha ISR. Antidiabetic activity of alcoholic stem extract of Cocinum fenestratum in streptozotocin-nicotinamide induced type 2 diabetic rats. Journal of Ethnopharmacology. 2005; 97(2):369-74. [DOI:10.1016/j.jep.2004.11.034] [PMID]

[17] Palsamy P, Subramanian S. Reavenatrol, a natural phytoalexin normalizes hyperglycemia in streptozotocin - nicotinamide induced experimental diabetic rats. Biomedicin & Phalmootherapy. 2008; 62(9):598-605. [DOI:10.1016/j.biopharma.2008.06.037] [PMID]

[18] Chae CH, Jung SL, An SH, Jung CK, Nam SN, Kim HT. Treadmill exercise suppresses muscle cell apoptosis by increasing nerve growth factor levels and stimulating p-phosphatidylinositol 3-kinase activation in the soleus of diabetic rats. Journal of Physiology and Biochemistry. 2011; 67(2):235-41. [DOI:10.1016/s1310-010x(09)00009-9] [PMID]

[19] Tak D, Kang R, Livesey KM, Cheh CW, Forkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. The Journal of Cell Biology. 2010; 190(5):881-92. [DOI:10.1083/jcb.200911078] [PMID] [PMCID]

[20] Wu Y, Xu J, Xu J, Zheng W, Chen Q, Jiao D. Study on the mechanism of JAK2/STAT3 signaling pathway-mediated inflammatory reaction after cerebral ischemia. Molecular Medicine Reviews. 2018; 17(4):5007-12. [DOI:10.3892/mmr.2018.8477]

[21] Kajitani N, Shikata K, Nakamura A, Nakatou T, Hiramatsu M, Makino H. Microinflammation is a common risk factor for progression of nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Research and Clinical Practice. 2010; 88(2):171-6. [DOI:10.1016/j.diabres.2010.01.012] [PMID]

[22] Chen Y, Qiao F, Zhao Y, Wang Y, Liu G. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose. International Journal of Clinical and Experimental Pathology. 2015; 8(6):6883-91. [PMID] [PMCID]

[23] Yu Y, Yang L, Lu J, Huang X, Yi J, Pei C, et al. The role of High Mobility Group Box 1 in the diabetic retinopathy inflammation and apoptosis. International Journal of Clinical and Experimental Pathology. 2015; 8(6):6807-13. [PMID] [PMCID]

[24] Hirose L, Nosaka K, Newton M, Laveder A, Kano J, Peake J, et al. Changes in inflammatory mediators following eccentric exercise of the elbow flexors. Exercise Immunology Review. 2004; 10:75-90. [PMID]

[25] Ouchi N, Parker JL, Lugus JJ, Walski K. Adipokines in inflammation and metabolic disease. Nature Reviews Immunology. 2011; 11(2):85-97. [DOI:10.1038/nri2921] [PMID] [PMCID]

[26] Lupo G, Anfuso CD, Ragusa N, Strosznajder RP, Walski M, Alberghi MA. t-Butyl hydroperoxide and oxidized low density lipoprotein enhance phospholipid hydrolysis in lipopolysaccharide-stimulated retinal pericytes. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2001; 1531(1-2):143-55. [DOI:10.1016/S1388-419X(01)00102-0] [PMID] [PMCID]

[27] El-Asrar AM, Missotten L, Geboes K. Expression of high-mobility groups box 1-receptor for advanced glycation end products/osteopontin/early growth response-1 pathway in proliferative vitreoretinal epiretinal membranes. Molecular Vision. 2011; 17:508-18. [PMID] [PMCID]

[28] Chen Y, Sun W, Gao R, Su Y, Umezura H, Dong L, et al. The role of high mobility group box chromosomal protein 1 in rheumatoid arthritis. Rheumatology. 2013; 52(10):1739-47. [DOI:10.1093/rheumatology/ket134] [PMID]
[29] Bucolo C, Leggio GM, Drago F, Salomone S. Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Biochemical Pharmacology. 2012; 84(1):88-92. [DOI:10.1016/j.bcp.2012.03.019] [PMID]

[30] Naglova H, Bucova M. HMGB1 and its physiological and pathological roles. Bratislava Medical Journal. 2012; 113(3):163-71. [DOI:10.4149/BLL_2012_039] [PMID]

[31] Wang J, Han D, Sun M, Feng J. Cerebral ischemic post-conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model. Molecular Medicine Reports. 2016; 14(5):4162-72. [DOI:10.3892/mmr.2016.5747] [PMID] [PMCID]

[32] Ye Y, Zeng Z, Jin T, Zhang H, Xiong X, Gu L. The role of high mobility group box 1 in ischemic stroke. Frontiers in Cellular Neuroscience. 2019; 13:127. [DOI:10.3389/fncel.2019.00127] [PMID] [PMCID]

[33] Lok KZ, Basta M, Manzanero S, Arumugam TV. Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia. Journal of Neuroinflammation. 2015; 12:73. [DOI:10.1186/s12974-015-0294-8] [PMID] [PMCID]

[34] Zhang Y, Cao RY, Jia X, Li Q, Qiao L, Yan G, et al. Treadmill exercise promotes neuroprotection against cerebral ischemia-reperfusion injury via downregulation of pro-inflammatory mediators. Neuropsychiatric Disease and Treatment. 2016; 12:3161-73. [DOI:10.2147/NDT.S121779] [PMID] [PMCID]

[35] Giallauria F, Cirillo P, D’agostino M, Petrillo G, Vitelli A, Pacileo M, et al. Effects of exercise training on high-mobility group box-1 levels after acute myocardial infarction. Journal of Cardiac Failure. 2011; 17(2):108-14. [DOI:10.1016/j.cardfail.2010.09.001] [PMID]

[36] Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J, et al. Exercise training modulates heat shock protein response in diabetic rats. Journal of Applied Physiology. 2004; 97(4):605-11. [DOI:10.1152/japplphysiol.01183.2003] [PMID]

Hassanpour Soleimani S, et al. Effect of a 6-week Aerobic Exercise Program on High-mobility Group Box 1 Gene Expression in Aortic Tissue of Diabetic Rat. The Horizon of Medical Sciences. 2021; 26(4):82-97.