MRI of the brain showed a 4.5×3.5×5.0 cm rim-enhancing mass with central necrosis and associated edema located in the right occipital lobe (Fig. 1A).

Operation

The patient underwent a craniotomy for diagnosis and symptom relief. Histological features and immunohistochemistry of the tumor were consistent with a metastatic NET. The tumor cells were positive for CD56, synaptophysin (Fig. 2) and negative for glial fibrillary acidic protein (GFAP). There was necrosis with 50% of Ki-67 labeling index, so it was considered a poorly differentiated neuroendocrine carcinoma (G3 by 2010 WHO classification). Positron emission tomography-computed tomography (PET-CT) and liver MRI confirmed the presence of a 9×10×8.5 cm mass in the right hepatic lobe (Fig. 1B, C). The specimen of the sono-guided liver biopsy demonstrated the same histological findings as the brain lesion. We could not find another primary focus, so we concluded that the patient had primary hepatic NET originating from the liver. If the metastatic NET of brain is suspicious, investigation for primary lesion should be considered including liver.

Key Words: Liver · Neuroendocrine tumor · Treatment · Chemotherapy.
Adjuvant treatment

Then the patient was followed on a regular basis in outpatient clinic. About 4 months after craniotomy, the patient complained of progressive left-sided weakness. Restaging was performed. Brain-enhanced MRI revealed a suspicious recurrence in the right occipital lobe and right inferior aspect of the cerebellum (Fig. 3A). Enhanced CT of the abdomen revealed a suspicious recurrence in segment 8 of the liver (Fig. 3B). We resected the recurrent tumor mass in the right occipital lobe to relieve the progressive neurologic symptoms. The patient then received postoperative cranial radiation. After radiation therapy, he complained of bilateral leg weakness. PET-CT scan and spine-enhanced MRI showed multifocal FDG uptake in the thoracic and lumbar spinal cord (Fig. 4). We decided to recommend palliative chemo-

Fig. 1. A: Axial, T1-weighted, post-gadolinium image of the brain. B: Positron emission tomography-computed tomography (PET-CT). C: Axial, T1-weighted, post-gadolinium image of the liver. Note a rim-enhancing mass with central necrosis and associated edema in the right occipital lobe of brain and right hepatic lobe.

Fig. 3. A: Axial, T1-weighted, post-gadolinium image of the brain. B: Abdomen enhanced CT at 4 months after first craniotomy and hepatectomy. Note suspicious recurrence in the occipital lobe, inferior right cerebellum, and segment 8 of the liver.

Fig. 2. Histopathologic findings of brain and liver mass show a round to oval stippled and scant, pink granular cytoplasm with H&E (A and B) and brain mass are strongly stained with CD56 (C). This finding reveals that brain mass is a neuroendocrine tumor which is the same pathology with liver tissue.
therapy with etoposide and cisplatin. The chemotherapy was delivered every 28 days with the following regimen: on day 1, etoposide 100 mg/m² over 1 hour i.v. infusion; on days 2 and 3, etoposide 100 mg/m² over 1 hour i.v. infusion and cisplatin 45 mg/m² over 24 hour i.v. infusion. About two months after the third cycle of etoposide and cisplatin chemotherapy, PET-CT, brain-enhanced MRI, spine-enhanced MRI and abdomen-enhanced CT showed complete remission of the previously enhancing tumor (Fig. 5). Unfortunately, paralysis of the lower extremities was not improved. About 3 weeks after discharge, the patient was readmitted for fever and purulent sputum. Despite intensive treatment including ventilator care, the patient died after 1 month from pneumonia.

**DISCUSSION**

Among NETs, primary hepatic NETs are extremely rare. As the liver is the most frequent metastatic site for NETs, the differential diagnosis between NET and metastatic hepatic neuroendocrine carcinoma is often difficult and debatable. In previous studies, NETs occur most often in middle-aged and female patients. The most common presenting symptom is abdominal pain, and about 5% of patients present with typical carcinoid syndrome.

Usually, the prognosis of a poorly differentiated NET is very poor, with a median survival of approximately 6 months without therapy. In 1991, Moertel et al. reported an overall response rate of 67% (17% complete remission, 50% partial remission), with a median progression-free survival of 8 months and a median overall survival of 19 months in 18 patients diagnosed with undifferentiated NETs.

Until now, the treatment of choice for localized, primary hepatic NET is hepatectomy. Surgical resection of a primary liver tumor is necessary for symptom relief by cytoreduction and possible cure. As in this case, one could consider metastectomy of the brain for both diagnosis and treatment if the brain lesion is resectable. For patients with NETs and multiple masses or distant metastases, chemotherapy is an option. According to the one study of primary NETs arising from the hepatobiliary and pancreatic regions, a response rate of 14% and median survival of 5.8 months were obtained in response to combined etoposide plus cisplatin therapy.

**CONCLUSION**

In conclusion, if the brain imaging of the patient has the possibility of metastasis, systemic evaluation is warranted. This case is first report for the primary liver NET with brain metastasis. We should remember that brain NET should be confirmed by pathology, and rarely liver NET could be primary.

**References**

1. Akahoshi T, Higashi H, Tsuruta S, Tahara K, Matsumoto T, Takeuchi H, et al. : Primary neuroendocrine carcinoma coexisting with hemangioma in the liver : report of a case. Surg Today 40 : 185-189, 2010
2. Burger PC, Green SB : Patient age, histologic features, and length of sur-
vival in patients with glioblastoma multiforme. Cancer 59: 1617-1625, 1987
3. Donadon M, Torzilli G, Palmisano A, Del Fabbro D, Panizzo V, Maggio-
ni M, et al.: Liver resection for primary hepatic neuroendocrine tumours: report of three cases and review of the literature. Eur J Surg Oncol 32: 325-328, 2006
4. Hlatky R, Suki D, Sawaya R.: Carcinoid metastasis to the brain. Cancer 101: 2605-2613, 2004
5. Huang YQ, Xu F, Yang JM, Huang B.: Primary hepatic neuroendocrine carcinoma: clinical analysis of 11 cases. Hepatobiliary Pancreat Dis Int 9: 44-48, 2010
6. Iwao M, Nakamura M, Enjoji M, Kudo H, Fukatomi T, Tanabe Y, et al.: Primary hepatic carcinoid tumor: case report and review of 53 cases. Med Sci Monit 7: 746-750, 2001
7. Iwasa S, Morizane C, Okusaka T, Ueno H, Ikeda M, Kondo S, et al.: Cis-
platin and etoposide as first-line chemotherapy for poorly differentiated neuroendocrine carcinoma of the hepatobiliary tract and pancreas. Jpn J Clin Oncol 40: 313-318, 2010
8. Johnson LA, Lavin P, Moertel CG, Weiland L, Dayal Y, Door WG, et al.: Carcinoids: the association of histologic growth pattern and survival. Cancer 51: 882-889, 1983
9. Knox CD, Anderson CD, Lamps LW, Adkins RB, Pinson CW.: Long-
term survival after resection for primary hepatic carcinoid tumor. Ann Surg Oncol 10: 1171-1175, 2003
10. Lin CW, Lai CH, Hsu CC, Hsu CT, Hsieh PM, Hung KC, et al.: Primary hepatic carcinoid tumor: a case report and review of the literature. Cases J 2: 90, 2009
11. Modlin IM, Lys KD, Kidd M.: A 5-decade analysis of 13,715 carcinoid tumors. Cancer 97: 934-959, 2003
12. Moertel CG, Kroes JK, O'Connell MJ, Rubin J.: Treatment of neuroen-
docrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer 68: 227-232, 1991
13. Rindi G, Borsi C, Rappel S, La Rosa S, Stolte M, Solcia E.: Gastric carci-
noids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. World J Surg 20: 168-172, 1996
14. Rückert RJ, Rückert JC, Dörfler Y, Rudolph B, Müller JM.: Primary hepatic neuroendocrine tumor: successful hepatectomy in two cases and review of the literature. Digestion 60: 110-116, 1999
15. Staren ED, Gould VE, Warren WH, Wool NL, Bines S, Baker J, et al.: Neuroendocrine carcinomas of the colon and rectum: a clinicopathologic evaluation. Surgery 104: 1080-1089, 1988
16. Tait MJ, Petrik V, Loosemore A, Bell BA, Papadopoulos MC.: Survival of patients with glioblastoma multiforme has not improved between 1993 and 2004: analysis of 625 cases. Br J Neurosurg 21: 496-500, 2007
17. Zhang A, Xiang J, Zhang M, Zheng S: Primary hepatic carcinoid tu-
mours: clinical features with an emphasis on carcinoid syndrome and recurrence. J Int Med Res 36: 848-859, 2008