REPRESENTATIONS OF ω-LIE ALGEBRAS AND TAILED DERIVATIONS

RUNXUAN ZHANG

Abstract. We study the representation theory of finite-dimensional ω-Lie algebras over the complex field. We derive an ω-Lie version of the classical Lie’s theorem, i.e., any finite-dimensional irreducible module of a soluble ω-Lie algebra is one-dimensional. We also prove that indecomposable modules of some three-dimensional ω-Lie algebras could be parametrized by the complex field and nilpotent matrices. We introduce the notion of a tailed derivation of a nonassociative algebra g and prove that if g is a Lie algebra, then there exists a one-to-one correspondence between tailed derivations of g and one-dimensional ω-extensions of g.

1. Introduction

In 2007, Nurowski introduced the notion of ω-Lie algebras for which the original motivation stems from some geometry considerations, see [8], [2] and [9]. More specifically, a vector space L over a field F equipped with a skew-symmetric bracket $[−, −]: L \times L \rightarrow L$ and a bilinear form $\omega: L \times L \rightarrow F$ is called an ω-Lie algebra provided that

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = \omega(x, y)z + \omega(y, z)x + \omega(z, x)y$$

(ω-Jacobi identity)

for all $x, y, z \in L$. Clearly, ω-Lie algebras with $\omega = 0$ are nothing but ordinary Lie algebras, which means that the notion of ω-Lie algebras extends that of Lie algebras.

The present article is devoted to a study of the representation theory of finite-dimensional ω-algebras over the complex field. Let’s recall some development on this subject. In 2010, Zusmanovich in [10]. Section 9, Theorem 1] proved an important result on the structure of ω-Lie algebras, which says that all finite-dimensional non-Lie ω-Lie algebras are either low-dimensional or have a quite degenerate structure. By the ω-Jacobi identity one sees that there are no non-Lie ω-Lie algebras of dimensions one and two. In our previous works [4] and [5], we derived a rough classification of three- and four-dimensional complex ω-Lie algebras. With the classification, we recently calculated the automorphism groups and the derivation algebras of low-dimensional ω-Lie algebras over the complex field, reformulated elementary facts about the representation theory of ω-Lie algebras, and we also proved that all finite-dimensional irreducible representations of the family C_{α} of ω-Lie algebras are one-dimensional; see [6]. Sections 6 and 7].

2010 Mathematics Subject Classification. 17B10; 17B30; 17B40.

Key words and phrases. ω-Lie algebra; irreducible module; indecomposable module; tailed derivation.
The first purpose of this article is to generalize the classical Lie’s theorem of complex soluble Lie algebras to the case of ω-Lie algebras. We introduce the following notion of degree of ω-Lie algebras.

Definition 1.1. Suppose that L is a finite-dimensional ω-Lie algebra. The positive integer
\[\text{deg}(L) := \min \{ \dim(L) - \dim(I) \mid I \subset L \text{ is a proper ideal} \} \]
is called the **degree** of L.

We will show that soluble ω-Lie algebras are of degree 1; see Proposition 2.2 below. Our first main result can be formulated as follows.

Theorem 1.2. Let L be a non-simple complex ω-Lie algebra of degree 1 with a soluble ideal \mathfrak{g} of maximal dimension $\dim(L) - 1$ and V be a finite-dimensional irreducible L-module. Then $\dim(V) = 1$.

Proposition 2.2 and Theorem 1.2 combine to a direct consequence which could be regarded as an ω-Lie version of the classical Lie’s theorem.

Corollary 1.3 (The ω-Lie version of Lie’s theorem). Let L be a finite-dimensional soluble ω-Lie algebra over the complex field and V be a finite-dimensional irreducible L-module. Then $\dim(V) = 1$.

We also give some applications of Theorem 1.2 and fundamental properties of ω-Lie algebra modules in Section 2.

The second goal of this paper is to study indecomposable representations of some three-dimensional non-Lie ω-Lie algebras. Note that we have already classified these ω-Lie algebras in [5, Theorem 2] into $\mathcal{L} := \{ L_1, L_2, A_\alpha, B, C_\alpha \}$, see Section 3 for details. Let $L \in \{ L_1, A_\alpha \}$ and $\mathcal{R}_n(\mathbb{C})$ be the set of all indecomposable L-modules on \mathbb{C}^n. Section 3 is devoted to a proof of the following second main result.

Theorem 1.4. The equivalence classes in $\mathcal{R}_n(\mathbb{C})$ could be parametrized by the complex field \mathbb{C}, the conjugacy classes of $n \times n$ nilpotent matrices and an affine variety.

Our third purpose is to study one-dimensional ω-extensions of Lie algebras. Note that one-dimensional extensions of a Lie algebra \mathfrak{g} can be parameterized by the set of all twisted derivations of \mathfrak{g}; see [1, Proposition 5.4]. Let \mathfrak{g} be a Lie algebra and $L = \mathfrak{g} \oplus \mathbb{C}x$ be the vector space of dimension $\dim(\mathfrak{g}) + 1$. Then L is called a one-dimensional ω-extension of \mathfrak{g} through $\mathbb{C}x$ if there exists an ω-Lie algebra structure on L containing \mathfrak{g} as an ideal and $\omega(\mathfrak{g}, \mathfrak{g}) = 0$. To describe the set $\text{Ext}^1_\omega(\mathfrak{g})$ of all one-dimensional ω-extensions of \mathfrak{g}, we introduce the notion of tailed derivations of nonassociative algebras.
Definition 1.5. Let A be a nonassociative algebra. A linear map $D : A \to A$ is called a tailed derivation of A if there exists a linear form $d : A \to \mathbb{F}$ ($y \mapsto d_y$) such that

$$D([y, z]) = [D(y), z] + [y, D(z)] + d_z y - d_y z$$

for all $y, z \in A$.

We observe that for a tailed derivation D, such linear form d is unique; and moreover, in [10], Section 6, Definition], tailed derivations of an anti-commutative algebra have appeared as a special kind of (α, λ)-derivations with $\lambda = 0$. Clearly, all derivations of A are tailed derivations with trivial tails, i.e., $d_y = d_z = 0$ for all $y, z \in A$. We denote by $\text{TDer}(A)$ the set of all tailed derivations of A. We will show that $\text{TDer}(A)$ is a Lie subalgebra of the general linear Lie algebra $\mathfrak{gl}(A)$; see Proposition 4.1. Thus $\text{Der}(A) \subseteq \text{TDer}(A) \subseteq \mathfrak{gl}(A)$ as Lie subalgebras, with the containment might be strict; see Example 4.2. Now the third main result can be stated as follows.

Theorem 1.6. Let \mathfrak{g} be a Lie algebra and ω be a skew-symmetric bilinear form on $\mathfrak{g} \oplus \mathbb{C}x$. Then there exists a one-to-one correspondence between $\text{Ext}^1_\omega(\mathfrak{g})$ and $\text{TDer}(\mathfrak{g})$.

We also provide an example that demonstrate that ω-Lie algebras could be constructed by Lie algebras and their tailed derivations; see Example 4.6.

Conventions. The Lie algebra notions that do not involve the form ω in their definitions are extended verbatim to ω-Lie algebras: for example, subalgebras, ideals, simple, soluble and abelian algebras.

Throughout this article we assume that the ground field is the complex field \mathbb{C}. All representations (modules), vector spaces and algebras are finite-dimensional over \mathbb{C}. We use z_V to denote the linear transformation of an abstract element z acting on a vector space V. We use \mathbb{Z}^+ and $\mathbb{Z}_{\geq 0}$ to denote the sets of positive and non-negative integers, respectively.

2. The ω-Lie version of Lie’s theorem

In this section, we show Theorem 1.2 and provide some applications. To begin with, we present two examples of non-simple ω-Lie algebras.

Example 2.1. The following three-dimensional ω-Lie algebras are of degree 1:

1. $L_1 : [x, z] = 0, [y, z] = z, [x, y] = y$ and $\omega(y, z) = \omega(x, z) = 0, \omega(x, y) = 1$;
2. $L_2 : [x, y] = 0, [x, z] = y, [y, z] = z$ and $\omega(x, y) = 0, \omega(x, z) = 1, \omega(y, z) = 0$.

Here $\{x, y, z\}$ denotes a basis of the underlying vector space. We observe that the subspace spanned by y and z is a proper ideal, so L_1 and L_2 are non-simple and of degree 1.
Note that L_1 and L_2 in Example 2.1 are both soluble ω-Lie algebras. Moreover, we have the following more general result.

Proposition 2.2. Soluble ω-Lie algebras are of degree 1.

Proof. Let L be an n-dimensional soluble ω-Lie algebra. Then $[L, L] \neq L$ and so it is not simple. To show that L has degree 1, we may find an $(n-1)$-dimensional subspace I of L such that $[L, L] \subseteq I \subseteq L$. As $[I, L] \subseteq [L, L] \subseteq I$, we see that I is an ideal of L. Clearly, I is a proper ideal with the maximal dimension $n-1$. Hence, L has degree 1. □

We also present some examples of three-dimensional simple ω-Lie algebras.

Example 2.3. Let $\{x, y, z\}$ be a basis of \mathbb{C}^3. The following ω-Lie algebras are simple:

1. $A_\alpha : [y, z] = z, [x, z] = y - z, [x, y] = x + \alpha z, \omega(y, z) = \omega(x, z) = 0, \omega(x, y) = -1$;
2. $B : [y, z] = z, [x, y] = z - x, [x, z] = y, \omega(y, z) = \omega(x, y) = 0, \omega(x, z) = 2$;
3. $C_\alpha : [y, z] = z, [y, x] = \alpha x, [z, x] = y, \omega(y, z) = \omega(x, y) = 0, \omega(z, x) = 1 + \alpha$,

where $\alpha \in \mathbb{C}$. See [3, Proposition 7.1] for the details. Comparing with [5, Theorem 2] or [6, Theorem 1.4], we see that in this example the generating relations actually have been reformulated by choosing a suitable basis.

Remark 2.4. In fact, [5, Theorem 2] indicates that every three-dimensional non-Lie ω-Lie algebra over \mathbb{C} must be isomorphic to one of $L = \{L_1, L_2, A_\alpha, B, C_\alpha\}$.

Here we provide an example of a four-dimensional non-simple ω-Lie algebra of degree > 1.

Example 2.5. Let $\{x, y, z, e\}$ be a basis of \mathbb{C}^4. In the following ω-Lie algebra

$$\tilde{B} : \quad [x, y] = y, [x, z] = y + z, [y, z] = x, [e, x] = -2e, [e, y] = 0, [e, z] = 0,$$

and $\omega(x, y) = \omega(x, z) = 0, \omega(y, z) = 2, \omega(e, x) = \omega(e, y) = \omega(e, z) = 0$,

the subspace spanned by $\{e\}$ is a proper ideal of \tilde{B} with the maximal dimension 1, i.e., there are no proper ideals in \tilde{B} with dimension > 1. Hence \tilde{B} is a non-simple ω-Lie algebra of degree 3.

Let L be an ω-Lie algebra and V be a finite-dimensional vector space. Recall that V is called an L-module if there exists a bilinear map $L \times V \rightarrow V, (x, v) \mapsto x \cdot v$ such that

$$[x, y] \cdot v = x \cdot (y \cdot v) - y \cdot (x \cdot v) + \omega(x, y)v$$

for all $x, y \in L$ and $v \in V$.

To derive an ω-Lie version of the classical Lie’s theorem, we concentrate on the class of non-simple ω-Lie algebras of degree 1, and we give a proof of Theorem 1.2.
Proof of Theorem \[\text{[3]}\]. If \(\dim(L) \leq 2\), then \(L\) is a soluble Lie algebra. It follows from the classical Lie’s theorem that \(\dim(V) = 1\). Thus we may suppose \(\dim(L) \geq 3\) and regard \(V\) as a \(g\)-module. By \([11]\), Corollary 3.2, we see that a proper soluble ideal \(g\) of \(L\) is a soluble Lie algebra. If \(V\) is an irreducible \(g\)-module, then classical Lie’s theorem implies \(\dim(V) = 1\), and we are done.

Now we assume that \(V\) is a reducible \(g\)-module and there exists an irreducible \(g\)-submodule \(W \subset V\). Applying the classical Lie’s theorem again we see that \(\dim(W) = 1\). Fix a nonzero vector \(w_0 \in W\), there exists a one-dimensional representation \(\lambda\) of \(g\) given by \(W\) such that \(g \cdot w_0 = \lambda(g)w_0\) for all \(g \in g\). Define

\[
U := \{v \in V \mid g \cdot v = \lambda(g)v \text{ for all } g \in g\}.
\]

Then \(W \subseteq U \subseteq V\). We claim that \(U\) is also an \(L\)-module. If this claim holds, the irreducibility of \(V\) as an \(L\)-module, implies that \(V = U\); thus \(g \cdot v = \lambda(g)v\) for all \(g \in g\) and \(v \in V\). Moreover, for any vector \(\ell \in L\) but not in \(g\), let \(J\) denote the one-dimensional subspace spanned by \(\ell\). Then \(L\) can be decomposed into the direct sum \(g \oplus J\) as vector spaces. Let \(v_0\) be an eigenvector of \(\ell_V\) and let \(V_0\) denote the one-dimensional subspace spanned by \(v_0\). Then \(\ell \cdot v_0 \in V_0 \subseteq V\), which together with the fact that \(g \cdot v = \lambda(g)v\) for all \(g \in g\) and \(v \in V\), implies that \(V_0\) is an \(L\)-submodule of \(V\). As \(V\) is irreducible, we have \(V = V_0\). Hence, \(\dim(V) = \dim(V_0) = 1\).

Therefore, to accomplish the proof, it is sufficient to prove the claim that \(U\) is an \(L\)-module. For all \(g, g' \in g\) and \(v \in U\), we see that \(g \cdot (g' \cdot v) = g \cdot (\lambda(g')v) = (g') \cdot v = \lambda(g')\lambda(g) v = \lambda(g)\lambda(g')v = \lambda(g)(g' \cdot v)\), i.e., \(g' \cdot U \subseteq U\) for all \(g' \in g\). Thus it suffices to show that \(\ell \cdot U \subseteq U\); in other words, we have to prove that \(g \cdot (\ell \cdot v) = \lambda(g)(\ell \cdot v)\) for all \(g \in g\) and \(v \in U\). As \([g, J] \subseteq g\), we see that

\[
\lambda([g, \ell])v = [g, \ell] \cdot v = g \cdot (\ell \cdot v) - \ell \cdot (g \cdot v) + \omega(g, \ell)v = g \cdot (\ell \cdot v) - \lambda(g)(\ell \cdot v) + \omega(g, \ell)v.
\]

Thus it suffices to show that

\[
\lambda([g, \ell]) = \omega(g, \ell).
\]

To do this, we let \(0 \neq u \in U\) and define \(u_i := \ell \cdot u_{i-1}\) for \(i \in \mathbb{Z}^+\), starting with \(u_0 := u\) and \(u_1 := \ell \cdot u\). Let \(V'\) be the subspace spanned by \(\{u_i \mid i \in \mathbb{Z}_{\geq 0}\}\). Since \(V' \subseteq V\) and \(\dim(V')\) is finite, there exists some \(k \in \mathbb{Z}_{\geq 0}\) such that \(\dim(V') = 1\), which together with the fact that \(\dim(V) = 1\) implies \(\dim(V'') = 1\). Clearly, \(\ell \cdot V' \subseteq V'\). Let \(V_j'\) denote the subspace spanned by \(u_0, u_1, \ldots, u_j\) for \(j = 0, 1, \ldots, k\). Induction on \(j\) shows that \(g \cdot u_j - \lambda(g)u_j \in V_{j-1}'\) for all \(g \in g\). This means that \(V'\) is an \(L\)-submodule of \(V\). As \(V\) is irreducible, we have \(V = V'\), and the resulting matrix \(g_V\) can be written as an upper triangular matrix with the diagonals \(\lambda(g)\). Thus \(\text{Tr}(g_V) = (k + 1)\lambda(g)\) for all \(g \in g\); in particular, \(\text{Tr}([g, \ell]V) = (k + 1)\lambda([g, \ell])\). Since \([g, \ell]V = g_V \circ \ell_V - \ell_V \circ g_V + \omega(g, \ell)\), it
follows that \(\text{Tr}([g, \ell]_V) = \text{Tr}(\omega(g, \ell)1) = (k + 1)\omega(g, \ell) \). This implies that \(\lambda([g, \ell]) = \omega(g, \ell) \) and the proof is completed. \(\square \)

We provide two applications of Theorem 1.2.

Proof of Corollary 1.3. As any ideal of a soluble \(\omega \)-Lie algebra is soluble, this corollary could be obtained directly from Theorem 1.2 and Proposition 2.2. \(\square \)

Recall that an \(\omega \)-Lie algebra \(L \) is said to be **multiplicative** if there exists a linear form \(\lambda : L \to \mathbb{C} \) such that \(\omega(x, y) = \lambda([x, y]) \) for all \(x, y \in L \); see [9, Section 2] and [7, Section 6] for more results on multiplicative \(\omega \)-Lie algebras.

Lemma 2.6. Let \(L \) be an \(\omega \)-Lie algebra. Then \(\ker(\omega) = \{ x \in L \mid \omega(x, y) = 0 \text{ for all } y \in L \} \) is an \(L \)-module via the adjoint action.

Proof. Indeed, for all \(x \in \ker(\omega) \) and \(y, z \in L \), the \(\omega \)-Jacobi identity gives

\[
[[y, z], x] + [[z, x], y] + [[x, y], z] = \omega(y, z)x + \omega(z, x)y + \omega(x, y)z = \omega(y, z)x.
\]

Then \([[y, z], x] = [y, [z, x]] - [z, [y, x]] + \omega(y, z)x \) and hence \(\ker(\omega) \) is an \(L \)-module. \(\square \)

Proposition 2.7. Let \(L \) be a non-simple \(\omega \)-Lie algebra of degree 1 with a soluble ideal \(g \) of maximal dimension \(\dim(L) - 1 \). If \(\dim(L) > 2 \), then \(L \) is multiplicative.

Proof. As \(\dim(L) > 2 \), it follows from [10, Lemma 8.1] that \(\omega \) is degenerate. Then \(\ker(\omega) \) is a nonzero \(L \)-module. Let \(W \) be an irreducible \(L \)-submodule of \(\ker(\omega) \). By Theorem 1.2 we see that \(\dim(W) = 1 \). It follows from [10, Lemma 2.1] that \(L \) is multiplicative. \(\square \)

We give some remarks on modules and cohomology of \(\omega \)-Lie algebras. We refer to [11, Section 6] for some fundamental properties of modules for \(\omega \)-Lie algebras. The following example shows that the cohomology groups \(\mathfrak{H}^n(L, V) \) of an \(\omega \)-Lie algebra \(L \) with coefficients in an \(L \)-module \(V \) cannot be defined by the same formula for the differential as for ordinary Lie algebras via the way of Chevalley–Eilenberg complex; compared with [4].

Example 2.8. Suppose \(L \) is an \(\omega \)-Lie algebra and \(V \) is an \(L \)-module. As in the Chevalley–Eilenberg complex, we define the \(\mathbb{C} \)-vector space of \(k \)-cochains of \(L \) with coefficients in \(V \) to be \(C^0(L, V) := V \) and \(C^k(L, V) := \text{Hom}_\mathbb{C}(\Lambda^k L, V) \) for \(k \geq 1 \). The differential \(d_k : C^k(L, V) \to C^{k+1}(L, V) \) is defined as

\[
d_k(f)(x_1, \ldots, x_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} x_i \cdot f(x_1, \ldots, \hat{x}_i, \ldots, x_{k+1}) + \sum_{1 \leq i < j \leq k+1} (-1)^{i+j} f([x_i, x_j], x_1, \ldots, \hat{x}_i, \ldots, \hat{x}_j, \ldots, x_{k+1}).
\]
In particular, if \(v \in C^0(L, V) = V \), then \(d_0(v) : L \rightarrow V \) is given by \(d_0(v)(x) = x \cdot v \) for all \(x \in L \). For \(f \in C^1(L, V) \), \(d_1(f) \in C^2(L, V) \) is given by

\[
d_1(f)(x, y) = x \cdot f(y) - y \cdot f(x) - f([x, y])
\]

for all \(x, y \in L \). We observe that the map \(d_1 \circ d_0 \) is not zero, unless \(L \) is a Lie algebra. In fact, for \(v \in V \) and \(x, y \in L \),

\[
(d_1 \circ d_0)(v)(x, y) = d_1(d_0(v))(x, y) \\
= x \cdot d_0(v)(y) - y \cdot d_0(v)(x) - d_0(v)([x, y]) \\
= x \cdot (y \cdot v) - y \cdot (x \cdot v) - [x, y] \cdot v \\
= -\omega(x, y)v.
\]

The last equality follows from Eq. (3).

Moreover, let \(L \) be an \(\omega \)-Lie algebra and \(V, W \) be two \(L \)-modules. We also note that unlike the situation of ordinary Lie algebras, the map defined by

\[
(x, v \otimes w) \mapsto x \cdot v \otimes w + v \otimes x \cdot w
\]

would not give an \(L \)-module structure on the tensor product \(V \otimes W \), where \(x \in L, v \in V \) and \(w \in W \). However, for multiplicative \(\omega \)-Lie algebras we have the following proposition.

Proposition 2.9. Let \(L \) be a multiplicative \(\omega \)-Lie algebra with the linear form \(\lambda \) and \(V, W \) be \(L \)-modules. Then \(V \otimes W \) is an \(L \)-module defined by

\[
x \cdot (v \otimes w) := x \cdot v \otimes w + v \otimes x \cdot w - \lambda(x)v \otimes w,
\]

where \(x \in L, v \in V, \) and \(w \in W \).

Proof. For an arbitrary element \(y \in L \), we have \([y, x] \cdot (v \otimes w) = [y, x] \cdot v \otimes w + v \otimes [y, x] \cdot w - \lambda([y, x])v \otimes w \).

\[
y \cdot (x \cdot (v \otimes w)) = y \cdot (x \cdot v \otimes w + v \otimes x \cdot w - \lambda(x)v \otimes w)
\]

\[
= y \cdot x \cdot v \otimes w + x \cdot v \otimes y \cdot w - \lambda(y)x \cdot v \otimes w \\
+ y \cdot v \otimes x \cdot w + v \otimes y \cdot (x \cdot w) - \lambda(y)v \otimes x \cdot w \\
- \lambda(x)y \cdot v \otimes w - \lambda(x)v \otimes y \cdot w + \lambda(x)\lambda(y)v \otimes w,
\]

\[
x \cdot (y \cdot (v \otimes w)) = x \cdot (y \cdot v \otimes w + v \otimes (y \cdot w) - \lambda(y)v \otimes w)
\]

\[
= x \cdot (y \cdot v) \otimes w + y \cdot v \otimes x \cdot w - \lambda(x)y \cdot v \otimes w \\
+ x \cdot v \otimes y \cdot w + v \otimes x \cdot (y \cdot w) - \lambda(x)v \otimes y \cdot w.
\]
\[-\lambda(y)x \cdot v \otimes w - \lambda(y)v \otimes x \cdot w + \lambda(y)\lambda(x)v \otimes w.\]

Then \(y \cdot (x \cdot (v \otimes w)) - x \cdot (y \cdot (v \otimes w)) + \omega(y, x)v \otimes w = [y, x] \cdot (v \otimes w),\) which implies that \(V \otimes W\) is an \(L\)-module. \[
\]

Note that the adjoint map does not give an \(L\)-module structure on \(L,\) unless \(L\) is a Lie algebra. The following example demonstrates that for \(k \in \mathbb{Z}^+,\) the space of \(k\)-cochains \(C^k(L, V)\) might not be an \(L\)-module via the formula

\[
(x \cdot f)(z_1, \cdots, z_k) := x \cdot (f(z_1, \cdots, z_k)) - \sum_{i=1}^{k} f(z_1, \cdots, z_{i-1}, [x, z_i], \cdots, z_k), \tag{6}
\]

where \(x, z_1, \ldots, z_k \in L\) and \(f \in C^k(L, V).\)

Example 2.10. Consider \(k = 1\) and \(C^1(L, V) = \text{Hom}_C(L, V).\) For \(x, y, z \in L,\) the formula (6) reads to \((x \cdot f)(z) = x \cdot f(z) - f([x, z]).\) Thus \(([x, y] \cdot f)(z) = [x, y] \cdot f(z) - f([x, y], z]) = x \cdot (y \cdot f(z)) - y \cdot (x \cdot f(z)) + \omega(x, y)f(z) - f([x, y], z)).\) On the other hand, we note that

\[
\begin{align*}
x \cdot (y \cdot f)(z) &= x \cdot ((y \cdot f)(z)) - (y \cdot f)([x, z]) \\
&= x \cdot (y \cdot f(z)) - x \cdot f([y, z]) - y \cdot f([x, z]) + f([y, [x, z]])
\end{align*}
\]

and

\[
y \cdot (x \cdot f)(z) = y \cdot (x \cdot f(z)) - y \cdot f([x, z]) - x \cdot f([y, z]) + f([x, [y, z]]).
\]

Thus

\[
([x, y] \cdot f)(z) - x \cdot (y \cdot f)(z) + y \cdot (x \cdot f)(z) - \omega(x, y)f(z)
= f([x, [y, z]]) - f([x, y], z]) - f([y, [x, z]])
= -f(\omega(y, z)x + \omega(x, y)z + \omega(z, x)y),
\]

which does not vanish in general, unless \(L\) is a Lie algebra.

3. Indecomposable modules

In this section we study indecomposable modules of some three-dimensional \(\omega\)-Lie algebras and give a proof of Theorem 2.4.

Let \(L \in \mathcal{L}\) be a three-dimensional non-Lie \(\omega\)-Lie algebra over \(\mathbb{C}\) with a basis \(\{x, y, z\}.\)

It follows from [4, Theorem 2] that there always exists a two-dimensional Lie subalgebra \(g \subset L,\) spanned by \(y\) and \(z\) such that \([y, z] = z.\) Define \(\mathfrak{h}\) to be the subspace spanned by \(z.\) Clearly, \(g\) is isomorphic to the unique two-dimensional nonabelian Lie algebra over \(\mathbb{C}\) and \(\mathfrak{h}\) can be viewed as an abelian Lie algebra. Throughout this section we assume that the element \(z\) belongs to \(\ker(\omega);\) namely, \(L \in \{L_1, A_3\}.\)
Suppose V is a finite-dimensional indecomposable L-module. Since V is also an \mathfrak{h}-module, there exists a finite set $\{\lambda_1, \ldots, \lambda_k\}$ of weights of \mathfrak{h} such that

$$V = \bigoplus_{i=1}^{k} V_{\lambda_i},$$

where $V_{\lambda_i} := \{v \in V \mid \text{for each } h \in \mathfrak{h}, \text{ there exists } n_h \text{ such that } (h_V - \lambda_i(h)1)^{n_h}(v) = 0\} \neq \{0\}$. Further, these V_{λ_i} are \mathfrak{h}-modules; see [3, Theorem 2.9].

Note that $\mathfrak{h} \subset \mathfrak{g} \subset L$ and V is also a \mathfrak{g}-module. With above notations and conventions, we obtain several helpful lemmas.

Lemma 3.1. For $1 \leq i \leq k$, V_{λ_i} is a \mathfrak{g}-module.

Proof. It suffices to show that $y \cdot v \in V_{\lambda_i}$ for all $y \in \mathfrak{g}$ and $v \in V_{\lambda_i}$. Consider the Lie algebra \mathfrak{g} and the \mathfrak{g}-module V. Since $\omega(y, z) = 0$ in L, an analogous argument with [3, Proposition 2.7] implies that for $h \in \mathfrak{h}$, $\lambda_i(h) \in \mathbb{C}$ and $v \in V_{\lambda_i}$, we have

$$\begin{align*}
(h_V - \lambda_i(h)1)^{n}(y \cdot v) = \sum_{j=0}^{n} \binom{n}{j} ((\text{ad}_{h})^j(y))(h_V - \lambda_i(h)1)^{n-j}(v)
\end{align*}$$

for $n \in \mathbb{Z}^+$. Note that $h = az$ for some $a \in \mathbb{C}$ and $[y, z] = z$. Setting $n = n_h + 1$ in Eq. (3), we see that $(h_V - \lambda_i(h)1)^{n_h+1}(y \cdot v) = 0$. This means $y \cdot v \in V_{\lambda_i}$ and thus V_{λ_i} is a \mathfrak{g}-module. □

Let $\mathcal{D} := (L \oplus V, \Omega)$ be the semi-direct product of an ω-Lie algebra (L, ω) and an L-module V, where Ω extends ω trivially; see [4, Proposition 6.3] for the definition of the semi-direct product of an ω-Lie algebra and its module.

Lemma 3.2. There is an abelian Lie subalgebra H of \mathcal{D} such that $H \subseteq \ker(\Omega)$ and $\dim(H) > 1$.

Proof. If V is a trivial \mathfrak{h}-module, i.e., $z \cdot v = 0$ for all $v \in V$, then $H = \mathfrak{h} \oplus V$ is what we want. Now assume that V is a nontrivial \mathfrak{h}-module and consider the Lie subalgebra $\mathfrak{g} \oplus V$ of \mathcal{D}. We observe that $\mathfrak{g} \oplus V$ is a soluble Lie algebra, thus $[\mathfrak{g} \oplus V, \mathfrak{g} \oplus V]$ is nilpotent. Since $[y, z] = z$, we have $\mathfrak{h} \oplus \{0\} \subseteq [\mathfrak{g} \oplus V, \mathfrak{g} \oplus V] \subseteq \mathfrak{h} \oplus V$. As V is not a trivial \mathfrak{h}-module, we can find a vector $v_0 \in V$ such that $z \cdot v_0 \neq 0$. Thus $(0, z \cdot v_0) = [(z, 0), (z, v_0)] \in [\mathfrak{g} \oplus V, \mathfrak{g} \oplus V]$ but not in $\mathfrak{h} \oplus \{0\}$. This implies that $\dim([\mathfrak{g} \oplus V, \mathfrak{g} \oplus V]) > \dim(\mathfrak{h}) = 1$. Let $V' \subseteq V$ be the subspace such that $[\mathfrak{g} \oplus V, \mathfrak{g} \oplus V] = \mathfrak{h} \oplus V'$. Then $\dim(V') \geq 1$. By Engel’s theorem, $\text{ad}_{(z, 0)} : \mathfrak{h} \oplus V' \to \mathfrak{h} \oplus V'$ is nilpotent, and it also restricts to a nilpotent linear map on V'. We use V_1 to denote the kernel of $\text{ad}_{(z, 0)}$ in V'. Then $V_1 \neq \{0\}$ and so $\dim(V_1) \geq 1$. Note that for any $v \in V_1$, the fact that $0 = \text{ad}_{(z, 0)}(0, v) = [(z, 0), (0, v)] = (0, z \cdot v)$ implies $z \cdot v = 0$, thus the action of \mathfrak{h} on V_1 is trivial. Let $H = \mathfrak{h} \oplus V_1$. Observe that H is an abelian Lie subalgebra of \mathcal{D} such that $H \subseteq \ker(\Omega)$ and $\dim(H) > 1$. The proof is completed. □
Lemma 3.3. Let \(\text{ad} : \mathcal{D} \rightarrow \mathcal{D} \) be the adjoint map. Then

\[
\sum_{j=0}^{n} \binom{n}{j} \left[(\text{ad}_h + \alpha 1)^{n-j}(u), (\text{ad}_h + \beta 1)^j(v) \right] = (\text{ad}_h + (\alpha + \beta)1)^n([u, v]) - n(\alpha + \beta)^{n-1}\Omega(u, v)h
\]

for all \(n \in \mathbb{Z}^+, u, v \in \mathcal{D}, h \in H \) and \(\alpha, \beta \in \mathbb{C} \).

Proof. We apply [10, Lemma 4.4] for \(\mathcal{D} = (L \oplus V, \Omega) \) with \(H \) defined in Lemma 3.2. \(\square \)

We identify \(L \) with \(L \oplus \{0\} \) and identify \(V \) with \(\{0\} \oplus V \) in \(\mathcal{D} \). With this two identifications, we are working on \(\mathcal{D} \). In Eq. (3), setting \(\alpha = 0, h \in \mathfrak{h} = \mathfrak{h} \oplus \{0\}, u = x \in L \) and \(v \in V \), we obtain the following lemma.

Lemma 3.4. For any \(n \in \mathbb{Z}^+ \) and \(\beta \in \mathbb{C} \),

\[
(\text{ad}_h + \beta 1)^n([x, v]) = \sum_{j=0}^{n} \binom{n}{j} \left[(\text{ad}_h)^{n-j}(x), (\text{ad}_h + \beta 1)^j(v) \right]. \tag{10}
\]

Finally, we prove the following key lemma.

Lemma 3.5. \(V_{\lambda_i} \) is an \(L \)-module for \(1 \leq i \leq k \).

Proof. By Lemma 3.3 it suffices to show that \(x \cdot v \in V_{\lambda_i} \) for all \(v \in V_{\lambda_i} \). We observe that \([x, v] = [(x, 0), (0, v)] = (0, x \cdot v) = x \cdot v \) and for \(w \in V \), \((\text{ad}_h + \beta 1)(w) = \text{ad}_h(w) + \beta 1(w) = [h, w] + \beta 1(w) = [(h, 0), (0, w)] + \beta 1(0, w) = (0, h \cdot w) + (0, \beta 1(w)) = (h_V + \beta 1)_w \). Thus \((\text{ad}_h + \beta 1)^n(w) = (h_V + \beta 1)^n(w) \) for all \(w \in V \) and \(n \in \mathbb{Z}^+ \). These observations, together with setting \(\beta = -\lambda_i(h) \) in Eq. (10), imply that

\[
(h_V - \lambda_i(h)1)^n(x \cdot v) = \sum_{j=0}^{n} \binom{n}{j} \left[(\text{ad}_h)^{n-j}(x), (h_V - \lambda_i(h)1)^j(v) \right]. \tag{11}
\]

Recall that \(h = az \) for some \(a \in \mathbb{C} \) and \([z, [z, [z, x]]] = 0 \) in \(L \). Thus \(\text{ad}_h^j(x) = 0 \) for \(j \geq 3 \). Taking \(n = n_h + 2 \) in Eq. (11), we obtain \((h_V - \lambda_i(h)1)^{n_h}(x \cdot v) = 0 \). Hence, \(V_{\lambda_i} \) is an \(L \)-module. \(\square \)

An important consequence has been derived.

Corollary 3.6. \(k = 1 \) in Eq. (4).

Proof. As \(V \) is indecomposable, Lemma 3.3 implies \(k = 1 \). \(\square \)

Suppose \(n \in \mathbb{Z}^+ \) and \(M_n(\mathbb{C}) \) denotes the \(n^2 \)-dimensional vector space of all \(n \times n \) matrices over \(\mathbb{C} \). Let \(N_n(\mathbb{C}) \) be the set of all nilpotent matrices in \(M_n(\mathbb{C}) \) and \(D_n(\mathbb{C}) = \{ \lambda I_n \mid \lambda \in \mathbb{C} \} \).
be the subspace spanned by the identity matrix I_n in $M_n(\mathbb{C})$. Clearly, $N_n(\mathbb{C}) \cap D_n(\mathbb{C}) = \{0\}$.

Define

$$P_n(\mathbb{C}) := D_n(\mathbb{C}) \times N_n(\mathbb{C}).$$

There exists a natural conjugacy action of the general linear group $GL(n, \mathbb{C})$ on $P_n(\mathbb{C})$ given by

$$\sigma(\lambda I_n, A) := (\sigma(\lambda I_n)\sigma^{-1}, \sigma A\sigma^{-1}) = (\lambda I_n, \sigma A\sigma^{-1}),$$

where $\sigma \in GL(n, \mathbb{C})$, $\lambda \in \mathbb{C}$ and $A \in N_n(\mathbb{C})$.

We use $\mathcal{R}_n^0(\mathbb{C})$ to denote the set of all indecomposable L-modules on \mathbb{C}^n such that the actions of x and y on \mathbb{C}^n are determined by the action of z. Let $\mathcal{B}_n(\mathbb{C})$ be the set of all \mathfrak{h}-modules on \mathbb{C}^n and $\mathcal{A}_n(\mathbb{C})$ be the subset of $\mathcal{B}_n(\mathbb{C})$ consisting of all \mathfrak{h}-modules for which the resulting matrix of z on \mathbb{C}^n can be written as the sum of two matrices from the components of $P_n(\mathbb{C})$.

Proposition 3.7. There exists an injective map ϕ from $\mathcal{R}_n^0(\mathbb{C})$ to $\mathcal{A}_n(\mathbb{C})$.

Proof. For each $V \in \mathcal{R}_n^0(\mathbb{C})$, it is also a \mathfrak{h}-module. Corollary 3.6 shows that V is isomorphic to some V_λ for $\lambda \in \text{Hom}(\mathfrak{h}, \mathbb{C})$. Note that $\dim(\mathfrak{h}) = 1$ and \mathfrak{h} is spanned by z, so λ is determined by the complex number $\lambda(z)$. Since $z_{V_\lambda} - \lambda(z)I_n \in N_n(\mathbb{C})$, we have $z_{V_\lambda} = \lambda(z)I_n + (z_{V_\lambda} - \lambda(z)I_n)$, where $(\lambda(z)I_n, z_{V_\lambda} - \lambda(z)I_n) \in P_n(\mathbb{C})$. Now we define

$$\phi : \mathcal{R}_n^0(\mathbb{C}) \rightarrow \mathcal{A}_n(\mathbb{C})$$

by $V \mapsto \phi(V)$, where $\phi(V)$ is determined uniquely by $z_{\phi(V)} = \lambda(z)I_n + (z_{V_\lambda} - \lambda(z)I_n)$. For any $V_1, V_2 \in \mathcal{R}_n^0(\mathbb{C})$, there exist $\lambda_1, \lambda_2 \in \text{Hom}(\mathfrak{h}, \mathbb{C})$ such that $V_i = V_{\lambda_i}$ for $i = 1, 2$. As $\lambda(z)I_n$ and $z_{V_\lambda} - \lambda(z)I_n$ are the semisimple and nilpotent parts respectively in the Jordan-Chevalley decomposition in $z_{\phi(V)}$, the uniqueness of the decomposition implies that if $z_{\phi(V_1)} = z_{\phi(V_2)}$, then $\lambda_1 = \lambda_2$. Thus $V_1 = V_{\lambda_1} = V_{\lambda_2} = V_2$. This means that ϕ is injective. \hfill \Box

Proposition 3.8. There exists a bijection between $\mathcal{A}_n(\mathbb{C})$ and $P_n(\mathbb{C})$. Moreover, the equivalence classes in $\mathcal{A}_n(\mathbb{C})$ are in one-to-one correspondence with the conjugacy classes in $P_n(\mathbb{C})$.

Proof. Since \mathfrak{h} is one-dimensional and spanned by z, any \mathfrak{h}-module V in $\mathcal{A}_n(\mathbb{C})$ is determined by the matrix $z_V = \lambda(z)I_n + (z_{V_\lambda} - \lambda(z)I_n)$, where $(\lambda(z)I_n, z_{V_\lambda} - \lambda(z)I_n) \in P_n(\mathbb{C})$. If $V \in \mathcal{A}_n(\mathbb{C})$, then $\varphi(V) := (\lambda(z)I_n, z_{V_\lambda} - \lambda(z)I_n)$ gives rise to a map from $\mathcal{A}_n(\mathbb{C})$ to $P_n(\mathbb{C})$. Conversely, as \mathfrak{h} is one-dimensional, any matrix $B \in M_n(\mathbb{C})$ could define an \mathfrak{h}-module V_B by $z_{V_B} = B$. If $(\lambda(z)I_n, B - \lambda(z)I_n) \in P_n(\mathbb{C})$, then $V_B \in \mathcal{A}_n(\mathbb{C})$. Let $\varphi' : P_n(\mathbb{C}) \rightarrow \mathcal{A}_n(\mathbb{C})$ be the map given by $\varphi'(B) = V_B$. Clearly, $\varphi \circ \varphi' = 1_{P_n(\mathbb{C})}$ and $\varphi' \circ \varphi = 1_{\mathcal{A}_n(\mathbb{C})}$. Hence, φ is a bijection between $\mathcal{A}_n(\mathbb{C})$ and $P_n(\mathbb{C})$. Note that V_1 is equivalent to V_2 in $\mathcal{A}_n(\mathbb{C})$ if and only
if \(z_{V_1}\) and \(z_{V_2}\) are similar, if and only if \(z_{V_1}\) is conjugate with \(z_{V_2}\) in \(P_n(\mathbb{C})\). This proves the second statement. \(\square\)

\textbf{Proof of Theorem 1.4.} Combining Propositions 3.7 and 3.8 together with the fact that if \(V_1\) is equivalent to \(V_2\) in \(R_n(\mathbb{C})\) then \(\phi(V_1)\) and \(\phi(V_2)\) are also equivalent in \(A_n(\mathbb{C})\), we see that the actions of \(z \in L\) in two equivalent representations can be parameterized by the complex field and conjugacy classes of nilpotent \(n \times n\)-matrices. By the nonzero generating relations in \(L\), we see that the actions of \(x\) and \(y\) on \(\mathbb{C}^n\) can be determined by finitely many polynomial equations. Thus an arbitrary action of \(L\) on \(\mathbb{C}^n\) can be determined by a complex number, a nilpotent matrix and two elements of an affine variety. This completes the proof. \(\square\)

As an application, we conclude with the following example.

\textbf{Example 3.9.} We can completely determine all 2-dimensional indecomposable \(L_1\)-modules. Suppose \(V\) is such a module. Recall that any \(2 \times 2\) nilpotent matrix is similar to \((0\ 0)\) or \((0\ 1)\).

For the first case, we may assume

\[
z_V = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix},
y_V = \begin{pmatrix} b_1 & b_3 \\ b_2 & b_4 \end{pmatrix}
\text{ and } x_V = \begin{pmatrix} c_1 & c_3 \\ c_2 & c_4 \end{pmatrix}
\]

with respect to a basis \(\{e_1, e_2\}\) of \(V\), where \(a, b, c, \in \mathbb{C}, 1 \leq i \leq 4\). By Eq. (3), we obtain two subcases:

1. \(z_V = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},
y_V = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\) and \(x_V = \begin{pmatrix} c + 1 & b \\ 0 & c \end{pmatrix}\);
2. \(z_V = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},
y_V = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) and \(x_V = \begin{pmatrix} c & 1 \\ 0 & c \end{pmatrix}\),

where \(b, c \in \mathbb{C}\).

For the second case, we assume

\[
z_V = \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix},
y_V = \begin{pmatrix} b_1 & b_3 \\ b_2 & b_4 \end{pmatrix}\) and \(x_V = \begin{pmatrix} c_1 & c_3 \\ c_2 & c_4 \end{pmatrix}\)

with respect to a basis \(\{e_1, e_2\}\) of \(V\), where \(a, b, c, \in \mathbb{C}, 1 \leq i \leq 4\). A direct calculation leads to \(3/2 = b_1 = 1\), which is a contradiction. It also shows that the map \(\phi\) in Proposition 3.7 is not surjective.

4. Tailed derivations of Lie algebras

The last section is mainly to study relations between one-dimensional \(\omega\)-extensions of a Lie algebra \(g\) and tailed derivations of \(g\), focusing on fundamental properties and examples on tailed derivations of Lie algebras and giving a proof of Theorem 1.6.
Proposition 4.1. Let \(A \) be a nonassociative algebra. Then \(\text{TDer}(A) \) is a Lie subalgebra of \(\mathfrak{gl}(A) \).

Proof. Suppose \(D, T \in \text{TDer}(A) \) are arbitrary tailed derivations. For \(y, z \in A \), we have

\[
(D + T)([y, z]) = D([y, z]) + T([y, z]) = [D(y), z] + [y, D(z)] + d_y y - d_y z + [T(y), z] + [y, T(z)] + t_y y - t_y z
\]

where \(d_y, t_y, d_z, t_z \in \mathbb{C} \). For \(a \in \mathbb{C} \), we see that \((aD)([y, z]) = a(D[y, z]) = a([D(y), z] + [y, D(z)] + d_y y - d_y z) \). This means that \(\text{TDer}(A) \) is a subspace of \(\mathfrak{gl}(A) \). To show \(\text{TDer}(A) \) is a Lie subalgebra of \(\mathfrak{gl}(A) \), it suffices to show that \([D, T] = DT - TD \) is also a tailed derivation. Indeed, since

\[
DT([y, z]) = D([T(y), z] + [y, T(z)] + t_y y - t_y z) = [DT(y), z] + [T(y), D(z)] + d_z T(y) - d_T(y) z + [D(y), T(z)] + [y, DT(z)] + d_T(z) y - d_y T(z) + t_z D(y) - t_y D(z),
\]

\[
TD([y, z]) = T([D(y), z] + [y, D(z)] + d_y y - d_y z) = [TD(y), z] + [D(y), T(z)] + t_z D(y) - t_D(y) z + [T(y), D(z)] + [y, TD(z)] + d_T(z) y - t_y D(z) + d_y T(y) - d_y T(z),
\]

we have

\[
[D, T]([y, z]) = [[D, T][y, z] + [y, [D, T](z)] + (d_T(z) - t_D(z)) y - (d_T(y) - t_D(y)) z. \quad (13)
\]

Note that \(d_{T(-)} - t_{D(-)} = (d \circ T - t \circ D)(-) \) is a linear form of \(A \). Thus \([D, T] \) is a tailed derivation of \(A \). This shows that \(\text{TDer}(A) \) is a Lie algebra. \(\square \)

Example 4.2. Let \(\mathfrak{g} \) be the two-dimensional nonabelian Lie algebra defined by \([y, z] = z \) and \(D = \begin{pmatrix} 0 & c \\ b & 0 \end{pmatrix} \) be a linear map on \(\mathfrak{g} \) with respect to the basis \(\{y, z\} \), where \(a, b, c, e \in \mathbb{C} \). A direct calculation shows that if \(D \in \text{Der}(\mathfrak{g}) \), then \(a = c = 0 \). Thus \(\dim \text{Der}(\mathfrak{g}) = 2 \).

Moreover, consider the linear form \(d \) which sends \(y \) to \(a \) and \(z \) to \(c \). Then together with the linear form \(d \), every \(D = \begin{pmatrix} 0 & c \\ b & 0 \end{pmatrix} \) is a tailed derivation of \(\mathfrak{g} \). This means that \(\text{TDer}(\mathfrak{g}) = \mathfrak{gl}_2(\mathbb{C}) \), strictly containing \(\text{Der}(\mathfrak{g}) \).

Proposition 4.3. Let \(L \) be an \(\omega \)-Lie algebra with a nonzero proper ideal \(\mathfrak{g} \). Suppose \(L = \mathfrak{g} \oplus \mathfrak{h} \) denotes a decomposition of vector spaces. Then \(\text{ad}_x \) restricted to \(\mathfrak{g} \) is a tailed derivation of \(\mathfrak{g} \) for all \(x \in \mathfrak{h} \).
indicates that the problem of finding all one-dimensional simple Lie algebra could be transformed to calculate tailed derivations of \(g \).

Lemma 4.4. Let \(g \) be a nonzero Lie subalgebra of an \(\omega \)-Lie algebra \(L \) of dimension \(\dim(L) - 1 \). Let \(x \in L \setminus g \) be an arbitrary nonzero vector. Then \(\text{ad}_x \) restricted to \(g \) is a tailed derivation of \(g \).

Proof. Let \(y, z \in g \). As \(\omega(y, z) = 0 \), it follows from the \(\omega \)-Jacobi identity that \(\text{ad}_x([y, z]) = [\text{ad}_x(y), z] + [y, \text{ad}_x(z)] + \omega(x, z)y - \omega(x, y)z \). Thus \(\text{ad}_x \) restricted to \(g \) is a tailed derivation of \(g \).

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Let \(L_x \in \text{Ext}_1^{\omega}(g) \) be a one-dimensional \(\omega \)-extension of \(g \) through \(\mathbb{C}x \). Lemma 4.4 shows that the adjoint map \(\text{ad}_x : L_x \to L_x \) restricted to \(g \) is an element of \(\text{TDer}(g) \). We can define a map \(\varphi : \text{Ext}_1^{\omega}(g) \to \text{TDer}(g) \) by carrying \(L_x \) to \(\text{ad}_x|_g \). Conversely, if \(D \) is a tailed derivation of \(g \), then there exists a linear form \(d \) of \(g \) such that \(D([y, z]) = [D(y), z] + [y, D(z)] + dz - dy \) for all \(y, z \in g \). We define an \(\omega \)-Lie algebra \(L_x = g \oplus \mathbb{C}x \) by

\[
L_x : [x, y] = D(y), [x, x] = 0 \text{ and } \omega(x, y) = dy, \omega(x, x) = 0
\]

for all \(y \in g \); the remaining bracket product \([y, z]\) in \(L_x \) matches with that in \(g \) and \(\omega(y, z) = 0 \) for all \(y, z \in g \). Note that \(dy \) only depends upon \(y \) so \(\omega(x, y) = dy \) does make sense. Thus \(L_x \) is a well-defined \(\omega \)-Lie algebra. We also define a map \(\phi : \text{TDer}(g) \to \text{Ext}_1^{\omega}(g) \) by \(\phi(D) = L_x \). Furthermore, note that \(g \) is an ideal of \(L_x \) and by the previous construction we see that \(\phi \circ \varphi = 1_{\text{Ext}_1^{\omega}(g)} \) and \(\varphi \circ \phi = 1_{\text{TDer}(g)} \). This completes the proof.

Theorem 4.4 indicates that the problem of finding all one-dimensional \(\omega \)-extensions of a Lie algebra \(g \) could be transformed to calculate tailed derivations of \(g \). As a direct application, the following example illustrates how to determine all one-dimensional \(\omega \)-extensions of three-dimensional simple Lie algebra \(\mathfrak{sl}_2(\mathbb{C}) \).

Example 4.5. Suppose that \(\mathfrak{sl}_2(\mathbb{C}) \) has a basis \(\{e_1, e_2, e_3\} \) with \([e_1, e_2] = -e_1, [e_1, e_3] = 2e_2 \) and \([e_2, e_3] = -e_3 \). A tedious but direct calculation shows that \(\text{Der}(\mathfrak{sl}_2(\mathbb{C})) = \text{TDer}(\mathfrak{sl}_2(\mathbb{C})) \) has dimension 3 and the element \(D \in \text{Der}(\mathfrak{sl}_2(\mathbb{C})) \) is of the form:

\[
D = \begin{pmatrix} a & b & 0 \\ -2c & 0 & -2b \\ 0 & c & -a \end{pmatrix},
\]
where \(a, b, c \in \mathbb{C}\). Hence, any one-dimensional \(\omega\)-extension of \(\mathfrak{sl}_2(\mathbb{C})\) can be determined by at most three parameters.

We present an example of a non-Lie \(\omega\)-Lie algebra that can be obtained by a Lie algebra \(\mathfrak{g}\) and a tailed derivation \(D\) of \(\mathfrak{g}\).

Example 4.6. Let \(\mathfrak{g}\) be the two-dimensional nonabelian Lie algebra defined by \([y, z] = z\) and \(D = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\) be a linear map on \(\mathfrak{g}\) with respect to the basis \(\{y, z\}\). Let \(\{y^*, z^*\}\) be the dual basis. Then \(y^*: \mathfrak{g} \rightarrow \mathbb{C}\) is a linear form such that \(D\) becomes a tailed derivation of \(\mathfrak{g}\). By the construction in the proof of Theorem 1.6 we eventually derive a three-dimensional non-Lie \(\omega\)-Lie algebra which is actually the \(\omega\)-Lie algebra \(L_1\) in Example 2.1. The \(\omega\)-Lie algebra \(L_2\) in Example 2.1 can also be obtained in a similar way.

Acknowledgments

This research was partially supported by NNSF of China (No. 11301061). The author thanks the anonymous referee for his/her careful reading and suggestions for the first draft of this article.

References

[1] A. L. Agore and G. Militaru, Extending structures for Lie algebras, *Monatsh. Math.* **174** (2014) 169-193.

[2] M. Bobieński and P. Nurowski, Irreducible SO(3) geometry in dimension five, *J. Reine Angew. Math.* **605** (2007) 51-93.

[3] R. W. Carter, *Lie algebras of finite and affine type* (Cambridge University Press, 2005).

[4] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, *Trans. Amer. Math. Soc.* **63** (1948) 85-124.

[5] Y. Chen, C. Liu and R. Zhang, Classification of three-dimensional complex \(\omega\)-Lie algebras, *Port. Math.* **71** (2014) 97-108.

[6] Y. Chen and R. Zhang, Simple \(\omega\)-Lie algebras and 4-dimensional \(\omega\)-Lie algebras over \(\mathbb{C}\), *Bull. Malays. Math. Sci. Soc.* **40** (2017) 1377-1390.

[7] Y. Chen, Z. Zhang, R. Zhang and R. Zhuang, Derivations, automorphisms and representations of complex \(\omega\)-Lie algebras, *Comm. Algebra* **46** (2018) 708-726.

[8] P. Nurowski, Deforming a Lie algebra by means of a 2-form, *J. Geom. Phys.* **57** (2007) 1325-1329.

[9] P. Nurowski, Distinguished dimensions for special Riemannian geometries, *J. Geom. Phys.* **58** (2008) 1148-1170.

[10] P. Zusmanovich, \(\omega\)-Lie algebras, *J. Geom. Phys.* **60** (2010) 1028-1044.

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R. China

Email address: zhangrx728@nenu.edu.cn