Gold nanoparticle smartphone platform for diagnosing urinary tract infections

Supporting Information

Kyryl Zagorovsky1,2,8, Maria Teresa Fernández-Argüelles1,2,3,8, Diane Bona4, Ashraf Mohamed Elshawadfy2,5, Abdullah Muhammad Syed1,2,7, Pranav Kadhiresan1,2, Tony Mazzulli6, Karen L. Maxwell4, and Warren C.W. Chan1,2*

1Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.

2Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.

3Department of Physical and Analytical Chemistry, University of Oviedo, Julian Claveria 8, Oviedo, Asturias, 33006, Spain.

4Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada.

5Department of Botany and Microbiology, Zagazig University, Zagazig, 44519, Egypt.

6Department of Microbiology, Mount Sinai Hospital/University Health Network 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada.

7Gladstone Institute of Data Science and Biotechnology, 1650 Owens St., San Francisco, California, 94158, United States.

8Authors contributed equally to this work.

* Corresponding author: warren.chan@utoronto.ca
Table of Contents

Table S1	List of DNA sequences used in the study	3
Table S2	Iterative development of *E. coli* specific Mz	5
Table S3	Cost estimates for the Mz-GNP smartphone platform	6
Supplementary Discussion S1		7
Figure S1		9
Figure S2		10
Figure S3		11
Figure S4		12
Figure S5		13
Figure S6		13
Figure S7		14
Figure S8		16
Figure S9		17
Figure S10		18
Figure S11		19
Figure S12		20
Figure S13		21
Figure S14		22
References		23
Table S1: List of genetic sequences used in the study.

NAME	GENETIC SEQUENCE	DESCRIPTION
FIGURE 2A		
SRT.-E.coli-V1*	rGrGrArArGrGrArArGrUrArUr Ur Ur Ur Ur Ur Ur	

FIGURES 2B/C, S3 and S4

NAME	GENETIC SEQUENCE	DESCRIPTION
Mz.-E.coli-V2/R	GCCGCTGCTGCGACGAGTTAACAGACAGAGAACACCT	Right half of Mz. binds E. coli 16S rRNA region 2, can bind and cleave Linker-E.coli
Mz.-E.coli-V2/L	TGCCCCAGGGAGCTAGCTAAGCGGTGCTTTCTCTGGGG	Left half of Mz. binds E. coli 16S rRNA region 2, can bind and cleave Linker-E.coli
Linker	AGCATGTGTGATAGGGTGTTTCTCTCC(TG)(U)	Crosslinks DNA_L and DNA_R, can be cleaved by Mz.-E.coli-V2
DNA_L	HS--AAAAAATTGACTAGCATGCT	Adsorbs onto GNP through thiol, hybridized to Linker
DNA_R	GCCGTAGCTGTTTAAGAAAAAAA--SH	Adsorbs onto GNP through thiol, hybridized to Linker

FIGURES 3 and S8

NAME	GENETIC SEQUENCE	DESCRIPTION
E. coli		
Linker-E.coli	CAGATGCTAGCTAAGCGGTGCTTTCTCTGGGG	Crosslinks DNA_L, E.coli and DNA_R, E.coli, can be cleaved by Mz.-E.coli
DNA_L-E.coli	HS--AAAAAATTGACTAGCATGCT	Adsorbs onto GNP through thiol, hybridized to Linker-E.coli
DNA_R-E.coli	GCCGTAGCTGTTTAAGAAAAAAA--SH	Adsorbs onto GNP through thiol, hybridized to Linker-E.coli
S. saprophyticus		
Linker-Staph	GCCCTACTGCAACCCGTTATCCGACACACACACGCAGCTTGAAGATGGGGG	Crosslinks DNA_L, S. saprophyticus and DNA_R, S. saprophyticus, can be cleaved by Mz.-Staph
DNA_L-Staph	HS--AAAAAATTGACTAGCATGCT	Adsorbs onto GNP through thiol, hybridized to Linker-Staph
DNA_R-Staph	GCCGTAGCTGTTTAAGAAAAAAA--SH	Adsorbs onto GNP through thiol, hybridized to Linker-Staph
P. mirabilis		
Linker-Prot	GAAGATGCTGTTTAAGAAAAAAA--SH	Crosslinks DNA_L, P. mirabilis and DNA_R, P. mirabilis, can be cleaved by Mz.-Prot
DNA_L-Prot	HS--AAAAAATTGACTAGCATGCT	Adsorbs onto GNP through thiol, hybridized to Linker-Prot
DNA_R-Prot	GCCGTAGCTGTTTAAGAAAAAAA--SH	Adsorbs onto GNP through thiol, hybridized to Linker-Prot
E. faecalis

Target region

TCTTTCTCCGCCAGTGTGATCATTGCAAAGAGAGGAGT

Region of 16S rRNA gene highly conserved within *E. faecalis* species, targeted by Mz-Faec.

Mz-Faec/L

AATCTATACGCTGCAACGCTCGGAGGAAG

Left half of Mz, binds *P. mirabilis* target region, can bind and cleave Linker-Faec.

Mz-Faec/R

GAGTAACACCCAATAATGTGGGACAGAAGGAAAGAGGAGT

Right half of Mz, binds *P. mirabilis* target region, can bind and cleave Linker-Faec.

Linker-Faec

GAGTAACACCCAATAATGTGGGACAGAAGGAAAGAGGAGT

Crosslinks DNA_L-Faec and DNA_R-Faec, can be cleaved by Mz-Faec.

DNA, L-Faec

HS-AAAAAATATTATTGCTTACT

Adsorbs onto GNP through thiol, hybridizes to Linker-Faec.

DNA, R-Faec

TGTAAAGGAGTAGTAATAAAAAA-AG-AAAAAAA-SH

Adsorbs onto GNP through thiol, hybridizes to Linker-Faec.

K. pneumoniae

Target region

CATGCAAGTGGAGGAGGATGAGACAGAGGCTTGTCTC

Region of 16S rRNA gene highly conserved within *K. pneumoniae* and *E. aerogenes* species, targeted by Mz-Kleb.

Mz-Kleb/R

ACCCGAGCAAGCCTCTAGCAACAGTAGATTGGGTGAG

Right half of Mz, binds *K. pneumoniae* target region, can bind and cleave Linker-Kleb.

Mz-Kleb/L

CAGAGCTGTCTAGGCTACTGACTGCAGCTACITT

Left half of Mz, binds *K. pneumoniae* target region, can bind and cleave Linker-Kleb.

Linker-Kleb

ACATACATGCAGCATCTCGCCAAACATA(G)G

Left half of Mz, binds *UBP* Linker-Kleb, can bind and cleave Linker-Kleb.

DNA, L-Kleb

HS-AAAAAAATATTATTGCTTACT

Adsorbs onto GNP through thiol, hybridizes to Linker-Kleb.

DNA, R-Kleb

AGAGGAAATTAGTCATAAAAA-AG-AAAAAAA-SH

Adsorbs onto GNP through thiol, hybridizes to Linker-Kleb.

UBP

Target region

AACAGCAGTATTAGACGTTCTCTGACAGCGCGGT

Region of 16S rRNA gene highly conserved in all UTI bacteria, targeted by Mz-UBP.

Mz-UBP/L

ACCCGAGCAAGCCTCTAGCAACAGTAGATTGGGTGAG

Right half of Mz, binds *UBP* target region, can bind and cleave Linker-UBP.

Mz-UBP/R

CAGAGCTGTCTAGGCTACTGACTGCAGCTACITT

Left half of Mz, binds *UBP* target region, can bind and cleave Linker-UBP.

Linker-UBP

ACATACATGCAGCATCTCGCCAAACATA(G)G

Crosslinks DNA_L-UBP and DNA_R-UBP, can be cleaved by Mz-UBP.

DNA, L-UBP

HS-AAAAAAATATTATTGCTTACT

Adsorbs onto GNP through thiol, hybridizes to Linker-UBP.

DNA, R-UBP

AGAGGAAATTAGTCATAAAAA-AG-AAAAAAA-SH

Adsorbs onto GNP through thiol, hybridizes to Linker-UBP.

FIGURE S1

SDT-Ecoli-V1

GGAGGAGGAAGTAAAGGATTATACCTTGTGCTATGAGGTGAC

Synthetic DNA target equivalent to E. coli 16S rRNA region 1.

SDT-Ecoli-V2

CCCCGCGAGAAGAAGCAGCGCTACTCGCTGCAAGCGCC

Synthetic DNA target equivalent to E. coli 16S rRNA region 2.

SDT-Ecoli-V3

TTACGCGAGAAGAAGCAGCGCTACTCGCTGCAAGCGCC

Synthetic DNA target equivalent to E. coli 16S rRNA region 3.

Mz-Ecoli-V1/R

GGCCGTGCTGGACAGGATTACAAAGGAGGAGAAGGAGGAGT

Right half of Mz, binds E. coli 16S rRNA region 1, can bind and cleave Linker-Ecoli.

Mz-Ecoli-V1/L

TGGCCAGCGAGCTACTGCTCGGGGTGCTTTCTCTCTCTC

Left half of Mz, binds E. coli 16S rRNA region 1, can bind and cleave Linker-Ecoli.

Mz-Ecoli-V2/R

GGCCGTGCTGGACAGGATTACAAAGGAGGAGAAGGAGGAGT

Right half of Mz, binds E. coli 16S rRNA region 2, can bind and cleave Linker-Ecoli.

Mz-Ecoli-V2/L

TGGCCAGCGAGCTACTGCTCGGGGTGCTTTCTCTCTC

Left half of Mz, binds E. coli 16S rRNA region 2, can bind and cleave Linker-Ecoli.

Mz-Ecoli-V3/R

GGCCGTGCTGGACAGGATTACAAAGGAGGAGAAGGAGGAGT

Right half of Mz, binds E. coli 16S rRNA region 3, can bind and cleave Linker-Ecoli.

Mz-Ecoli-V3/L

TGGCCAGCGAGCTACTGCTCGGGGTGCTTTCTCTC

Left half of Mz, binds E. coli 16S rRNA region 3, can bind and cleave Linker-Ecoli.

Linker

AGCAATGGTCAAGCTGCAAGCTTCTGCATCTCGGCAG

Crosslinks DNA_L and DNA_R, can be cleaved by Mz-Ecoli-V2.

DNA, L

HS-AAAAAAATATTATTGCTTACT

Adsorbs onto GNP through thiol, hybridized to Linker.

DNA, R

GGAGGAGGAAGTAAAGGATTATACCTTGTGCTATGAGGTGAC

Adsorbs onto GNP through thiol, hybridizes to Linker.
Figure S2

NAME	GENETIC SEQUENCE	DESCRIPTION
Mz-E.coli-V2/R	GCGGCTGCTGGCAGGGAGTTCAACGAGAGGGAAACCTT	Right half of Mz, binds E. coli 16S rRNA region 2, can bind and cleave Linker
Mz-E.coli-V2/L	TGCCCAGGGAGCTAGCTAGCCGGTGCTTCTCTGCGGG	Left half of Mz, binds E. coli 16S rRNA region 2, can bind and cleave Linker
in1-Mz-E.coli-V2/L	TGCCCAGGGAAAGCTAGCTAGCCGGTGCTTCTTCTGCGGG	Mz-E.coli-V2/L inactivated by a single base mutation (G → A) in the catalytic core
in2-Mz-E.coli-V2/L	TGCCCAGGGAGCTAGCTAGCCGGTGCTTCTGCGGG	Mz-E.coli-V2/L inactivated by scrambling the catalytic core
ns-Mz-E.coli-V2/R	AGCTGCTGCCGTGGTAGACACGAGACAGAAACCTT	Right half of Mz, binds the same linker as Mz-E.coli-V2, but cannot be activated by E. coli RNA
ns-Mz-E.coli-V2/R	TGCCCAGGGAGCTAGCTCCATTGCCCCATGTAAGTCA	Left half of Mz, binds the same linker Mz-E.coli-V2, but cannot be activated by E. coli RNA
Linker	AGCTGCTGCCGTGGTAGACACGAGACAGAAACCTT	Crosslinks DNA_L and DNA_R, can be cleaved by Mz-E.coli-V2
DNA_L	HS–AAAAAAACCTCTAGACATGCT	Adsorbs onto GNP through thiol, hybridized to Linker
DNA_R	GCGCTAGCTGCTGTTAAAAAAAA–SH	Adsorbs onto GNP through thiol, hybridized to Linker

* RNA bases are preceded by ‘r’
** Each Mz half includes 3 regions: (i) region that binds the target, indicated in bold, (ii) region that binds the Linker DNA, indicated in italic script, and (iii) one half of the catalytic core, underlined.
*** Each Linker strand contains two regions that bind DNA-A and DNA-B (indicated in bold), and a region that is bound by the Mz (underlined), includes 2 RNA bases in the middle.
**** Each DNA_L and DNA_R contain a thiol group (indicated in bold) for attachment for GNP, poly-A spacer (italicized), and the region bound by the Linker (underlined).

Table S2: Iterative development of E. coli specific Mz

Iteration	Mz	Accepted	Reason for Rejection
1	Mz-E.coli-v1	NO	Low sensitivity due to poor GNP aggregation
2	Mz-E.coli-v2	NO	Cross-reactivity with other bacteria
3	Mz-E.coli-v3	NO	Cross-reactivity with other bacteria
4	Mz-E.coli-v4	NO	Low sensitivity due to poor Mz activation
5	Mz-E.coli-v5	NO	Low sensitivity due to poor Mz activation
6	Mz-E.coli-v6	NO	Cross-reactivity with other bacteria
7	Mz-E.coli-v7	YES	
Table S3: Cost estimates for the Mz-GNP smartphone platform.

REAGENT	UNITS	COST PER UNIT	NET COST
RNA Extraction (cost per sample)			
1. Commercial Kit (Biobasic)			
1 RNA Extraction (column + buffers)	1 extraction	$1.26/extraction	$1.26
TOTAL			$1.26
2. In-house Kit			
Silica Column	1 column	$0.16/column	$0.16
Buffers	3 mL	$20.00/liter	$0.06
TOTAL			$0.22
Mz-GNP Assay (cost per sample for all 6 parallel UTI panel Mz reactions)			
DNA-Functionalized Gold Nanoparticles	3.3x10^-13 moles	$4.57x10^9/mole	$0.01
Linker and Mz DNA Components	1.5x10^-11 moles	$5.69x10^9/mole	$0.09
TLC Plate	1/10th of a plate	$0.60/plate	$0.06
Buffers	0.01 mL	$5.00/liter	<<$0.01
TOTAL			$0.16
3D Printed Smartphone Readout System			
LED Lights	4 pieces	$1.80	$7.20
Plastic	217.39 grams	$0.07	$15.22
Mini Breadboard	1 piece	$3.15	$3.15
Resistors	5 pieces	$0.02	$0.10
Wire	5 pieces	$0.23	$1.15
Battery	1 piece	$4.25	$4.25
Switch	1 piece	$1.25	$1.25
TOTAL			$32.32
Supplementary Discussion S1

We previously demonstrated that the Mz-GNP assay could detect multiple oligonucleotide targets in parallel (1). The presence of non-specific sequences neither interfered with the detection nor gave false positives. However, all of the targets tested were from unrelated species and had minimal sequence similarity. In contrast, many UTI pathogens are closely related and have low sequence divergence in their 16S rRNA. Furthermore, our sequence analysis showed that some regions could be more divergent within the same species or genus than between different bacteria. Therefore, the careful selection process was followed to choose regions that were well conserved within the same species but divergent between the other species. 16S rRNA sequences were acquired from Greengenes (2) and StrainInfo (3) online databases, and online multiple sequence alignment with hierarchical clustering tool was used to locate the optimal target regions (4). For example, we found that the region targeted by the Mz Mz-E.coli-V2 could not be used for the panel since it was too strongly conserved and would lead to false-positive activation by Klebsiella, Proteus, and Enterobacter bacteria (Suppl. Figure S5). Another complexity arose because some regions of the 16S rRNA molecule have strong secondary structures, such as hairpins, which can inhibit the hybridization of the Mz target arms (5). Therefore, multiple regions had to be tested to identify the target that yielded the highest Mz catalytic activity. In general, the following scheme was followed to design each bacteria-specific Mz: (1) Align multiple 16S rRNA gene sequences for bacteria X. Locate several 41 bases long target regions that are highly conserved within bacteria X. (2) Align each of these target regions against multiple 16S rRNA sequences for bacteria Y. Discard the ones that have significant sequence similarity with bacteria Y. Repeat this for all other bacteria that might be present in the UTI samples, discarding the targets that show high sequence similarity with any bacteria except for X. (3) Design Mzs against the remaining target regions and test them against RNA extracted from bacteria X. Optimize the amount of the linker strand to determine the optimal concentration at which highest sensitivity can be achieved, but that causes visible GNP aggregation in the absence of the target (see ref. (1) for a full discussion on linker optimization). Discard the Mzs that yield sensitivity below 10^5 CFU/mL. (4) Confirm
the lack of cross-reactivity by verifying that RNA extracted from high concentrations of bacteria other than X does not activate the remaining Mzs. If none of the target regions satisfy the above criteria, restart with step (1) to find new target regions. The design of the UBP Mz that is activated by all of the bacteria was more straightforward since there are a number of 16S rRNA regions that are highly conserved among all bacterial species.

We followed the above recipe to generate Mzs targeting each bacteria in the UTI panel. For example, seven Mz variants had to be tested for *E. coli* before specific Mz that consistently yielded required detection sensitivity was identified (Suppl. Table S2). To carry out these iterations more efficiently, we simplified the protocol by reducing the number of RNA extraction steps. Instead of generating 10x dilution series of specific bacterial concentrations and then extracting RNA for each dilution, the total RNA was first extracted only for the highest dilution of 10^7 CFU/mL and then serially diluted to correspond to the lower bacterial concentrations. Both methods were found to yield equivalent results (Figure S6).
Figure S1: (A) Testing multiple *E. coli* 16S rRNA Mzs with the RNA extracted from cultured bacteria to optimize GNP aggregation. (B) Comparing the sensitivity of Mz-*E.coli*-V2 and Mz-*E.coli*-V3 using synthetic DNA targets SDT_*E.coli*_V2 and SDT_*E.coli*_V3. ‘0’ represents negative control where water was used in place of the target. Of note, different Mzs produce negative spots of different colour (compare Mz-*E.coli*-V1 and Mz-*E.coli*-V1). We typically look at the difference in colour signal/intensity between the sample and control (0 CFU/mL) within the same experiment to make a diagnosis.
Figure S2: Mz control experiments for Figure 2 in the paper. Mz’s were tested with RNA extracted from *E. coli* spiked into LB Broth (left) or healthy urine (right) at 10^7 bacteria/mL. Extractions using non-spiked LB culture medium and healthy urine were used for ‘0’ negative controls. MzV2 refers to Mz-*E.coli*-V2 in Table S1. ns-MzV2 – Mz can bind and cleave the same linker DNA as MzV2 but is activated by a different non-bacterial target. in1-MzV2 – MzV2 in which a key base required for catalysis was mutated. in2-MzV2 – MzV2 in which the catalytic core was scrambled.
Figure S3: Same as Figure 2B in the paper, but 5 mL instead of 1 mL of bacterial culture was used for RNA extraction. Higher volume results in an improvement in detection sensitivity to 10^4 CFU/mL. Extractions using a non-spiked LB culture medium were used for ‘0’ negative controls.
CFU / mL	0	10^3	10^4	10^5	10^6	10^7
Spin Column Kit	![Image]	![Image]	![Image]	![Image]	![Image]	![Image]
Magnetic Kit	![Image]	![Image]	![Image]	![Image]	![Image]	![Image]
Lysozyme + Proteinase K	![Image]	![Image]	![Image]	![Image]	![Image]	![Image]

Figure S4: Comparison of different RNA extraction methods. Spin Column Kit – the most common RNA extraction method that uses centrifugation-based RNA loading columns. Magnetic Kit – assay based on magnetic beads that adsorb RNA; centrifugation is replaced by magnetic extraction. Lysozyme + Proteinase K – these two enzymes lyse bacterial cell walls and proteins, and the mixture is used directly as the input sample for the Mz-GNP assay without any RNA purification steps. Extractions using non-spiked LB culture medium used for ‘0’ negative controls.
Figure S5: Alignment of the 16S rRNA of UTI panel bacteria around the region targeted by Mz_E.coli_V2. There is no sequence divergence between the *E. coli*, *K. pneumonia* and *P. mirabilis* bacteria. *Enterobacter* shows only a single base difference and will also activate the Mz_E.coli_V2.

Bacterium	Mz_E.coli_V2_Target
E. coli	Target
Klebsiella pneumonia	Target
Proteus mirabilis	Target
Enterobacter aerogenes	Target
Providencia stuartii	Target
Citrobacter freundii	Target
Escherichia coli	Target
Enterobacter cloacae	Target
Staphylococcus aureus	Target
Streptococcus agalactiae	Target

Figure S6: Comparing 2 methods of RNA extraction. (i) Cultured bacteria were first serial diluted from 10^7 CFU/mL bacterial culture to indicated concentrations, then RNA extracted separately from each dilution. Extractions using a non-spiked LB culture medium were used for ‘0’ negative controls. (ii) RNA was first extracted from 10^7 CFU/mL bacterial culture and then serially diluted in 10X increment to represent the different bacterial concentrations (e.g., 100X dilution would represent 10^5 CFU/mL). Water used in place of extracted RNA for ‘0’ negative control.
Figure S7: Same as Figure 3 in the paper but including wavelengths corresponding to the peaks of absorbance spectra. Water used in place of extracted RNA for '0' negative control.
Escherichia coli

E. coli	Proteus	Enterococcus	Staph	Klebsiella	UBP
106					
107					
108					
109					
110					
111					
113					
114					
115					
116					
117					
118					
119					
120					
121					
122					
123					
124					
125					
126					
127					
128					
129					
130					
131					
132					
133					
134					
135					
136					
137					
138					
139					
140					
141					
142					
143					
144					
145					
146					
147					
148					
149					
150					
151					
152					
153					
154					
155					
156					
157					
158					
159					
160					
161					
162					
163					
164					
165					
166					
167					
168					
169					
170					
171					
172					
173					
174					
175					
176					
177					
178					
179					
180					
181					
182					
183					
184					
185					
186					
187					
188					
189					
190					
191					
192					

PROBES

PROBES
Escherichia coli

Figure S8: GNP-Mz UTI panel clinical results for samples from patients with *E. coli* infection. Each row represents a particular patient (identified by the patient number); each column indicates which GNP probe was used.
Figure S9: GNP-Mz UTI panel clinical results for samples from patients with *Proteus* infection. Each row represents a patient (identified by the patient number); each column indicates which GNP probe was used.
Klebsiella pneumoniae

	128	129	130	131	140	141	142	143	157	158	159	160	161	162	163	164	165
E. coli																	
Proteus																	
Enterococcus																	
Staph																	
Klebsiella																	
UBP																	

Figure S10: GNP-Mz UTI panel clinical results for samples from patients with *Klebsiella* infection. Each row represents a patient (identified by the patient number); each column indicates which GNP probe was used.
Escherichia coli, \(\leq 10^4 \text{ CFU/mL} \)

	E. coli	Proteus	Enterococcus	Staph	Klebsiella	UBP
279	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
280	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
281	![Image](image13.png)	![Image](image14.png)	![Image](image15.png)	![Image](image16.png)	![Image](image17.png)	![Image](image18.png)
282	![Image](image19.png)	![Image](image20.png)	![Image](image21.png)	![Image](image22.png)	![Image](image23.png)	![Image](image24.png)
283	![Image](image25.png)	![Image](image26.png)	![Image](image27.png)	![Image](image28.png)	![Image](image29.png)	![Image](image30.png)

Figure S11: GNP-Mz UTI panel clinical results for samples from patients with *E. coli* bacteria present at \(10^4 \text{ CFU/mL} \) or below. Each row represents a patient (identified by the patient number); each column indicates which GNP probe was used.
Figure S12: GNP-Mz UTI panel clinical results for samples from *uninfected* patients. Each row represents a patient (identified by the patient number); each column indicates which GNP probe was used.
Figure S13: Comparing RNA extraction efficiency using a commercial kit or third-party silica columns. All extractions were performed in duplicate from the same 4-hour culture of *E. coli* using ThermoFisher GeneJET Kit protocol and buffers. In all cases, 5 min lysozyme treatment step (3 mg/mL in 100 μL TE buffer) was included. Samples were diluted 10X in TE buffer before absorbance measurement. Error bars are standard deviations. NOVEL and SHANG third-party columns performed better than the columns from GeneJET Kit. NOVEL columns produced the highest amount and best quality product with 260/280 and 260/230 ratios of 1.8 and 2.1, respectively. All third-party columns were obtained as free samples from the following companies: SHANG – Shanghai Changheng Industry & Trade CO., Ltd, Shanghai, China; NOVEL – NovelGene Biotech Corporation, Taipei, Taiwan; EPOCH – Epoch Life Science, Sugar Land, TX.
Figure S14: Comparing RNA extraction efficiency using a commercial kit or in-house buffers. All extractions were performed in duplicate from the same overnight culture of *E. coli* using columns from the Biobasic Total RNA Kit. Samples were diluted 10X in TE buffer before absorbance measurement. Error bars are standard deviations. All in-house buffers yielded a higher amount of product compared to commercial kits. LogSpin buffers produced the highest amount and best quality product with 260/280 and 260/230 ratios of 2 and 2.2, respectively. All in-house buffers were made, and extractions were performed following published protocols: LogSpin – Ref. (6); RNASwift – Ref. (7); EPOCH – Ref. (8). In all cases, 5 min lysozyme treatment step (3 mg/mL in 100 μL TE buffer) was included.
References

1. Zagorovsky K, Chan WCW. A Plasmonic DNAzyme Strategy for Point-of-Care Genetic Detection of Infectious Pathogens. *Angew Chem Int Ed* 2013;52(11):3168–3171.

2. DeSantis TZ et al. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. *Appl Environ Microbiol* 2006;72(7):5069–5072.

3. Dawyndt P, Vancanneyt M, De Meyer H, Swings J. Knowledge accumulation and resolution of data inconsistencies during the integration of microbial information sources. *IEEE Trans Knowl Data Eng* 2005;17(8):1111–1126.

4. Corpet F. Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res* 1988;16:10881–10890.

5. Fuchs BM et al. Flow Cytometric Analysis of the In Situ Accessibility of Escherichia coli 16S rRNA for Fluorescently Labeled Oligonucleotide Probes. *Appl Environ Microbiol* 1998;64(12):4973–4982.

6. Yaffe H et al. LogSpin: a simple, economical and fast method for RNA isolation from infected or healthy plants and other eukaryotic tissues. *BMC Res Notes* 2012;5(45):1–8.

7. Nwokeoji AO, Kilby PM, Portwood DE, Dickman MJ. RNASwift: A rapid, versatile RNA extraction method free from phenol and chloroform. *Anal Biochem* 2016;512(C):36–46.

8. Beggs S, James TC, Bond U. The PolyA tail length of yeast histone mRNAs varies during the cell cycle and is influenced by Sen1p and Rrp6p. *Nucleic Acids Res* 2012;40(6):2700–2711.