Characteristic time of crossing a long free energy barrier

Alexei V. Finkelstein

Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia;
E-mail: afinkel@vega.protres.ru

This short paper presents a simple approximate analytical estimate of the characteristic time of crossing a high, long and arbitrary bumpy free energy barrier in a course of chemical, biochemical or physical reaction.

Many important reactions, such as polymerization or aggregation, include crossing of a long free energy barrier [1-4] (Fig. 1).

FIG. 1: Scheme of a polymerization reaction. Circles are free monomers in solution. Rhombs are monomers in a form appropriate for polymerization. This form is unstable for free monomers; very short polymers are also unstable; long polymers are stable. \(k_{i\rightarrow i+1} \) is the transition rate constant for passing from state \(i \) to the next state \(i+1 \) at the reaction pathway; \(k_{i+1 \rightarrow i} \) is the rate constant for the reverse transition from \(i+1 \) to \(i \) state.

Despite the abundance of such reactions (see, e.g., Fig. 2 as one more example), I, to my surprise, failed to find in literature a general formula to estimate their characteristic times.

FIG. 2: Scheme of a free energy change along a pathway of \(\beta \)-sheet formation [5]. Each turn of the chain increases the chain’s free energy, as well as the first extended chain region (separate \(\beta \)-strand), while each subsequent \(\beta \)-strand of the sheet decreases the free energy, so that a large \(\beta \)-sheet is stable.

It was not difficult to obtain an estimate of the characteristic time of crossing of a long, arbitrary bumpy but high free energy barrier (see equation (5) below), and this formula was included as equation (8.19) in [5] without a proof or analysis.
Consider the kinetics of a reversible process

\[
\begin{array}{ccccccc}
0 & \xrightarrow{k_{1-2,0}} & 1 & \xrightarrow{k_{2-1,1}} & \cdots & \xrightarrow{k_{M-M+1, M}} & M+1 \xrightarrow{k_{M+1-M, M}} & \text{finish}
\end{array}
\]

where \(k_{i-\alpha i+1} \) is the transition rate constant of passing from state \(i \) to \(i+1 \), and \(k_{i+1-\alpha i} \) of the reverse transition from \(i+1 \) to \(i \) (we will assume that \(F_0 \), the free energy of the “start” state, is higher than that \(F_{M+1} \), the free energy of the “finish” state).

The Moscow scientist Rakowski gave a general solution of the system of kinetic differential equations corresponding this process in 1907 [6]; but now we are interested in a simple estimate of the rate of such a specific process, in which the free energy of the intermediate states (1, ..., \(M \)) is much higher than the free energy of the initial state 0 and the final state \(M+1 \). This estimate can be based on the "quasi-stationary approximation", widely used in chemical kinetics [7 - 11].

Due to a high free energy \(F_i \) of all intermediate states \(1 \leq i \leq M \), the number of molecules \(n_i \) in each intermediate state is very small as compared to their number \(n_0 + n_{M+1} \) in the initial and final states. Therefore, the rate of change of \(n_i \) is very small as compared to the rate of change of \(n_0 \) or \(n_{M+1} \). Thus, in the "zero" approximation, one can assume that \(\frac{dn_i}{dt} = 0 \) for intermediate states 1,...,\(M \), and therefore the flow rate is constant along the reaction pathway:

\[
-\frac{dn_i}{dt} = k_{0-\alpha i}n_0 - k_{i-\gamma i}n_i = k_{i-\gamma i}n_i - k_{2-\gamma 1}n_2 = \cdots = k_{M-M+1}n_M - k_{M+1-\alpha M+1}n_{M+1} = \frac{dn_{M+1}}{dt}.
\]

Denoting the flow rate \(-\frac{dn_i}{dt} \) as \(I \), one has a system of equations

\[
\begin{align*}
\begin{cases}
 k_{0-\gamma 0}n_0 - k_{1-\gamma 1}n_1 = I \\
 \cdots \\
 k_{i-\gamma i}n_{i-1} - k_{i+1-\gamma i}n_i = I \\
 \cdots \\
 k_{M-M+1}n_M - k_{M+1-\gamma M+1}n_{M+1} = I,
\end{cases}
\end{align*}
\]

or

\[
\begin{align*}
\begin{cases}
 n_0 - (k_{i-\gamma i}/k_{0-\gamma 0})n_1 = I \tau_i \\
 \cdots \\
 n_{i-1} - (k_{i-\gamma i}/k_{i-1-\gamma i})n_i = I \tau_i \\
 \cdots \\
 n_{M+1} - (k_{M+1-\gamma M+1}/k_{M-M+1})n_{M+1} = I \tau_{M+1},
\end{cases}
\end{align*}
\]

where \(\tau_i = 1/k_{i-\gamma i} \) is the passage ("state \(i-1 \)"-to-"state \(i \)"") time.

Multiplying equation for each \(\tau_i \) (with \(i > 1 \)) by \((k_{i-\gamma i}/k_{0-\gamma 0})\) \(\cdots (k_{i-\gamma i}/k_{i-1-\gamma i}) \) and summing all these equations, one obtains:

\[
n_0 - (k_{i-\gamma i}/k_{0-\gamma 0}) \cdots (k_{M+1-\gamma M+1}/k_{M-M+1})n_{M+1} = [\tau_i + \cdots + \tau_{M+1}](k_{i-\gamma i}/k_{0-\gamma 0}) \cdots (k_{M+1-\gamma M+1}/k_{M-M+1}) \cdot I.
\]

Using the well-known [10] ratio \(k_{i-\gamma i}/k_{j-\gamma j} = \exp\left[\frac{F_j - F_i}{k_B T}\right] \), which follows from that that the equilibrium populations \(n_i^0 \) and \(n_j^0 \) of states \(i \) and \(j \) must satisfy both to the kinetic equation \(n_i^0 k_{i-\gamma i} = n_j^0 k_{j-\gamma j} \) and the thermodynamic relation \(n_i^0/F_i = \exp\left[-\frac{F_j - F_i}{k_B T}\right] \) (where \(T \) is temperature and \(k_B \) the Boltzmann constant), one obtains

\[
n_0 - \exp\left[\frac{F_M+1 - F_0}{k_B T}\right] n_{M+1} = [\tau_i + \cdots + \tau_{M+1}] \exp\left[\frac{F_M - F_0}{k_B T}\right] \cdot I.
\]

Thus,
\[I = \frac{n_0 \exp \left[\frac{F_{M+1} - F_0}{k_BT} \right] n_{M+1}}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]} \] (3)

If \(n_{M+1} \ll n_0 \) and \(F_{M+1} < F_0 \), then \(n_0 >> \exp \left[\frac{F_{M+1} - F_0}{k_BT} \right] n_{M+1} \), so that

\[I \approx \frac{n_0}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]} \] (4)

Thus, our task, in fact, is reduced to the calculation of the flux in an irreversible reaction

\[\begin{array}{cccccc}
0 & \xrightarrow{k_{i-1 \to i}} & 1 & \xrightarrow{k_{i \to i+1}} & \cdots & \xrightarrow{k_{M \to M+1}} & M+1 \xrightarrow{\text{finish}} M \to M+1
\end{array} \]

The characteristic time of passage of all \(n_0 \) particles from the initial state 0 to \(M+1 \) is

\[t_{0 \to \cdots \to M+1} = n_0 / I \approx \sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]. \] (5)

Here \(F_{j-1} - F_0 \) is the free energy state \(j-1 \) counted off the free energy of the initial state 0. Note that the intermediates of a high free energy make a major contribution to the passage time, and that intermediates of a very low free energy (see the right parts of Figs. 1, 2) make a such a low contribution to the passage time that it can be neglected.

One can also obtain populations \(n_i \) of intermediate states in the course of reaction, using the recurrence relations following from the system (2) and equation (4):

\[n_i = (k_{i-1 \to i} / k_{i \to i+1}) n_{i-1} - (k_{i \to i+1} / k_{i \to i-1}) \tau_i I = \exp \left[\frac{F_{i-1} - F_i}{k_BT} \right] \{ n_{i-1} - \tau_i I \} \]

\[= \exp \left[\frac{F_0 - F_i}{k_BT} \right] n_0 - I \sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_i}{k_BT} \right] \]

\[= \exp \left[\frac{F_0 - F_i}{k_BT} \right] \left\{ n_0 - \frac{n_0}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]} \sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_i}{k_BT} \right] \right\} \]

\[= \exp \left[\frac{F_0 - F_i}{k_BT} \right] n_0 - \frac{n_0}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]} \sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_i}{k_BT} \right] \]

\[= \exp \left[\frac{F_0 - F_i}{k_BT} \right] \left\{ n_0 - \frac{n_0}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]} \right\} \]

\[= \exp \left[\frac{F_0 - F_i}{k_BT} \right] \frac{n_0}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]} \]

\[\text{for all } i = 0, 1, \ldots, M+1. \]

Note that any \(n_i \) may be represented as

\[n_i = n_i^0 \frac{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]} \]

\[n_i^0 = \exp \left[\frac{F_0 - F_i}{k_BT} \right] n_0 \]

where \(n_i^0 \) is population of state \(i \), corresponding to its thermodynamic equilibrium with population \(n_0 \) of the initial state 0.

One can see that all \(n_i < n_i^0 \) at \(i > 0 \).

However, the solution obtained above seems to be not quite correct, since the system (2) is obtained under the assumption that \(\frac{dn_i}{dt} = 0 \) for all intermediates \(i = 1, \ldots, M \), and that only \(\frac{dn_0}{dt} = - \frac{dn_{M+1}}{dt} = -I \neq 0 \). On the other hand, equation (6) leads to non-zero derivatives \(\frac{dn_i}{dt} \) for all intermediate states \(i = 1, \ldots, M \):

\[\frac{dn_i}{dt} = \exp \left[\frac{F_0 - F_i}{k_BT} \right] \frac{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]} = -I \exp \left[\frac{F_0 - F_i}{k_BT} \right] \frac{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_0}{k_BT} \right]} = -I \frac{n_i}{n_0}. \] (8)
It is therefore necessary to consider the next, higher approximation taking into account the possible change of population of the intermediate states \(i \) (and, consequently, the possible change in the magnitude of the flux \(I_i \)) at different steps of the above shown irreversible reaction:

![Reaction diagram](attachment:image.png)

Thus, for all \(i = 1, \ldots, M+1 \) one obtains equations analogous to those presented in system (1),

\[
k_{i-1 \rightarrow i} n_{i-1} - k_{i \rightarrow i-1} n_i = \lambda_i I_i \quad \text{(where } I_i \equiv \frac{-d n_i}{d t} \text{ and the multiplier } \lambda_1 \equiv 1)\]

(1a)

and the recursive relations similar to those presented in system (2) and equation (6):

\[
n_i = \exp \left[\frac{F_{i-1} - F_i}{k_B T} \right] \left[n_{i-1} - (\tau_i \lambda_i) I_i \right].
\]

(2a)

After calculations similar to those done to derive equations (4), (6), one obtains:

\[
I \approx \frac{n_0}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_j}{k_B T} \right]}
\]

(4a)

and

\[
n_i = \exp \left[\frac{F_0 - F_i}{k_B T} \right] n_0 \frac{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_j}{k_B T} \right]}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_j}{k_B T} \right]}
\]

(6a)

or

\[
n_i = n_i^0 \frac{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_j}{k_B T} \right]}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_j}{k_B T} \right]}
\]

(7a)

(cf. (6), (7)). Up to now, we did not do any approximations. Now we introduce a stationary approximation, i.e., we assume that each \(\frac{d n_i}{d t} = 0 \) (without this approximation, we would have to solve the complete system of linear differential equations considered in [6]). As a result (cf. (8)),

\[
\frac{dn_i}{dt} = \exp \left[\frac{F_0 - F_i}{k_B T} \right] \frac{dn_0}{dt} \frac{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_j}{k_B T} \right]}{\sum_{j=1}^{M+1} \tau_j \exp \left[\frac{F_{j-1} - F_j}{k_B T} \right]} = -I \frac{n_i}{n_0}
\]

(8a)

where \(I \equiv \frac{-d n_i}{d t} \) is now described by equation (4a).

Equation (1a) and the above given scheme show that the flux

\[
\lambda_i I = -\frac{d}{dt} \left(\sum_{j=0}^{i-1} n_j \right).
\]

(9)

This means that \(\lambda_i I = I \sum_{j=0}^{i-1} \frac{n_j}{n_0} \), or

\[
\lambda_i = 1 + \sum_{j=1}^{i-1} \frac{n_j}{n_0}
\]

(10)

i.e., \(\lambda_i \) increases with \(i \).

However, since the population of each state, \(n_i \), in the course of reaction does not exceed \(n_j^0 \), the thermodynamically equilibrium population of the same state (see equation (7a)),

\[
\lambda_i \leq 1 + \sum_{j=1}^{i-1} \frac{n_j^0}{n_0} \equiv 1 + \sum_{j=1}^{i-1} \exp \left[\frac{F_0 - F_j}{k_B T} \right],
\]

(11)

which means that all the values \(\lambda_i \) remain close to 1 if \(\sum_{j=1}^{i-1} \exp \left[\frac{F_0 - F_j}{k_B T} \right] << 1 \), i.e., if the free
energies of the intermediate states $j = 1, \ldots, i-1$ are much, by many k_BT higher than F_0.

This means that the estimate of characteristic reaction time obtained in equation (5) (and in (8.19) of [5]) is fairly accurate, provided that the free energy barrier at the reaction pathway is high.

In conclusion, I have to repeat that I was surprised when failed to find in literature a general formula (5) to estimate the characteristic time of crossing of arbitrarily bumpy but high free energy barrier, and I will be obliged to any reader who will send me the corresponding reference(s).

Acknowledgements
I am grateful to Adela Croce and Gert Van der Zwan who kindly helped me to find some important references. The work has been supported in part by RFBR (13-04-00253a), MCB RAS (01201358029) and MES RK grants.

References
[1] F. Oosawa, S. Asakura, K. Hotta, N. Imai and T. Ooi. G-F transformation of actin as a fibrous condensation. J. Polym. Sci. 37, 323–336 (1959).
[2] F. A. Ferrone, J. Hofrichter, H. R. Sunshine and W. A. Eaton. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys. J. 32, 361–380 (1980).
[3] F. Ferrone. Analysis of protein aggregation kinetics. Methods Enzymol. 309, 256–274 (1999).
[4] N. V. Dovidchenko, A. V. Finkelstein and O. V. Galzitskaya. How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid photofibril formation. J. Phys. Chem. B 118, 1189-1197 (2014).
[5] A. V. Finkelstein and O. B. Ptitsyn, Protein Physics (chapters 8, 9). Academic Press, An Imprint of Elsevier Science, Amsterdam – Boston – London – New York – Oxford – Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo (2002).
[6] A. Rakowski. Kinetik der Folgereaktionen erster Ordnung. Z. Phys. Chem., 57, 321-340 (1907).
[7] H. Pelzer and E. Wigner. Über die Geschwindigkeitskonstante von Austauschreaktionen. Z. Phys. Chem., B15, 445–471 (1932).
[8] M. G. Evans and M. Polanyi. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31: 875–894 (1935).
[9] H. Eyring. The activated complex in chemical reactions. J. Chem. Phys., 3: 107–115 (1935).
[10] N. M. Emanuel and D. G. Knorre. A Course in Chemical Kinetics, 4th Russian edition (chapters II, III, V- §§ 2, 3). Vysshaja Shkola, Moscow (1984).
[11] V. Alexiades and A. D. Solomon. Mathematical Modeling of Melting and Freezing Processes (chapter 3.1). Taylor & Fransis, Washington DC – London (1993).