A Comparative Study of Outcome of Pyeloplasty in Stented and Non-Stented Children with Puj Obstruction

A. K. Laddha, E. Khare, B. K. Lahoti, R. Kumar Mathur

Department of Paediatric Surgery, Mahatma Gandhi Memorial Medical College, Indore, India

Department of Surgery, M.G.M Medical College and M.Y.H Hospital, Indore, India

Corresponding author: Brijesh Kumar Lahoti, Department of Surgery, M.G.M Medical College and M.Y.H Hospital, Indore, India, Tel: 9407365590; Fax: 9669104717; E-mail: eeshanshkhare29@gmail.com

Received Date: Mar 01, 2018; Accepted Date: Apr 02, 2018; Published Date: Apr 07, 2018

Abstract

Introduction: It is a matter of debate whether to use a stent (double J) or not during pyeloplasty in patients of puj obstruction. This study was conducted to assess which technique- stented or non-stented is better for paediatric patients with puj obstruction.

Materials and method: 45 paediatric patients aged 0-12 years were included in this prospective comparative simple randomized sample study during the period of June 2015 to August 2017 in paediatric surgery division of department of surgery in M.Y. Hospital, Indore.

The M:F ratio was 2:1. All patients except one underwent open A-H Dismembered Pyeloplasty.

The parameters used for comparison were:

- Renal parenchymal diameter
- Renal pelvis AP diameter
- GFR (by DTPA scan)
- Rate of complications.

Minimum follow up period was 3 months.

Result: Stented children had significant improvement in renal parenchymal diameter (i.e. increase) and GFR (of affected kidney) after pyeloplasty whereas non-stented children too had improvement in renal parenchymal diameter and GFR (affected kidney) but was not significant. The percentage of post-operative complications were more in non-stented group as compared to stented group.

Conclusion: In all paediatric cases with pujo undergoing A-H pyeloplasty, a double J stent should be placed.

Keywords: PUJO; A-H pyeloplasty; Double J stent; Renal parenchymal diameter; Renal pelvis AP diameter; GFR

Introduction

PUJ obstruction is a common urological anomaly in children leading to renal damage. A-H Dismembered pyeloplasty is the gold standard surgical procedure for PUJ obstruction, but there is a debate regarding use of double J stent during pyeloplasty in such patients. Based on the outcome parameters like renal parenchymal diameter, renal pelvis AP diameter, GFR (DTPA scan) and post-operative complications, our study aims to assess which type of pyeloplasty stented or non-stented is better on the basis of outcomes after pyeloplasty.

Materials and Methods

This study was approved by Ethical committee (With reference number EC/MGM/FEB-17/15) and it was a part of post graduate dissertation in M.Y. Hospital, Indore.

Sample size: 45 children with PUJ obstruction which were diagnosed on the OPD basis during June 2015-August 2017.

Inclusion criteria: All pediatric patient (age upto 12 y) with urogenital anomalies coming to paediatric surgery, all operated cases of pyeloplasty in paediatric surgery, patient with written consent.

Exclusion criteria: Patient with no or irregular follow up, patient without written consent, patient died during study due to other cause, age above 12 y.

Indications of surgery: Symptomatic patients of PUJ obstruction

Investigations: USG whole abdomen with KUB (renal parenchymal thickness, renal pelvis AP diameter)
DTPA scan

IVP (in non-affordable patients)

Complete blood count and Renal function test.

On the basis of clinical symptoms and investigations described above patients were diagnosed as case of PUJ obstruction.

A team of three surgeons operated all the patients.

Duration of study: 2015 to 2017

Type of study: Prospective randomized study.

45 patients were randomized into 2 groups: stented (35) and non-stented (10) (tables 1-5) after taking consent from guardians after explaining the advantages and disadvantages of both stenting as well as non-stenting and the results of both the methods in the previous studies. So there was difference in the sample for both the groups.

Chief Complaints	No. Of patients (n=45)	%
Lumbar pain	10	22
Flank mass	10	22
Incidental (on usg)	3	7
UTI	5	11
Others (stones, hematuria, etc)	2	5
Fever	5	11
Nausea and vomiting	10	22

Table 1: Chief complaints of patients

Statistical method: Chi-square test.

DTPA scan was done in 15 patients (12 in stented group and 3 in non-stented group).

The mean age, weight and height was calculated.

All patients were followed up after 3 months with USG and 15 patients had DTPA scan done. Patients in both the groups were then compared on the basis of renal parenchymal diameter and renal pelvis AP diameter and GFR (DTPA scan) after surgery.

Stent, foley's and perinephric drain

All patients were catheterized with foley's catheter of 8 Fr and 10 Fr depending on the age. Foley's catheter removed after 48 h of surgery. Double J stent was placed intraoperatively and removed 21 days postoperatively; and perinephric drain was removed when collection was minimal.

Observations and Results

After following parameters were compared in both stented and non-stented group:

- renal parenchymal diameter
- renal pelvis AP diameter
- GFR after DTPA scan (affected kidney)
- Rate of complications.

	Group 1 (n=40) stented	Group 2 (n=10) non-stented	P-value
Mean operative duration (mins)	50-60	40-50	insignificant
Mean Foley duration (days)	2	2	-
Mean LOS (days)	3.34	3.6	0.280 (insignificant)
Mean FU duration (months)	3 Month	3 Month	-

Table 2: The mean values of renal parenchymal diameter, APPD and GFR in both stented and non-stented group, before surgeries were comparable as the P-value was insignificant.

The mean values of renal parenchymal diameter, APPD and GFR in both stented and non-stented group, after surgery were also comparable (P-value insignificant).

	Stented group (n=35)	Non-stented group (n=10)	P-value
Mean Age at surgery	3.3 years	4.5 years	0.229 (insignificant)
Mean Height at surgery	81.4 cm	87.4 cm	0.303 (insignificant)
Mean Weight at surgery	10.95 kg	12.54 kg	0.300 (insignificant)
Gender (Male: Female)	3:1	4:1	-
Mean s-Creatinine at surgery (mg/dl)	0.62	0.64	0.044 (significant)
Mean APPD at surgery (mm)	12.89	14	0.084 (insignificant)
Mean (GFR) before surgery (ml/min)	35.6	35.3	0.449 (insignificant)
Mean Parenchymal Diameter (mm)	11.17	11.35	0.403 (insignificant)

Table 3: There was a significant improvement renal parenchymal diameter and GFR in stented group after Pyeloplasty (P-value Significant).
The also improvement in renal parenchymal diameter in non-stented group but P-value less significant, may be due to less no. of patients in this group. The % of complications was more in non-stented group (table 5)

Diagnosis
Numerous studies have investigated whether stents are needed during pediatric pyeloplasty, but the question remains unanswered and the decision remains controversial and largely surgeon dependent. Even among proponents of urinary diversion, the optimal method remains unclear [1-7]. However, the original report by Anderson and Hynes [7-12] described a stent less procedure; currently, one can find reports supporting no stents [13-16], externalized stents (percutaneous catheter) [4,17,18], and internalized (JJ) stents [19-21]. Hynes [7-12] described a stent less procedure; currently, one can find reports supporting no stents [13-16], externalized stents (percutaneous catheter) [4,17,18], and internalized (JJ) stents [19-21]. This plethora of studies proves all methods to be safe and effective, but conflicting summaries of the results have not proved any single method as superior [22]. Through our comparative study on pyeloplasty we tried to answer the optimal method whether to do a stented or non-stented pyeloplasty in puj obstruction in paediatric patients.

In comparison to study by Elbatarny et al. our study on 45 patients with puj obstruction, 35 patients in stented group and 10 patients in non-stented group with mean age of 3 years with 32 patients having left PUJO and 11 having right PUJO and 2 having b/l PUJO. The mean preoperative GFR and Renal pelvis AP diameter (hydronephrosis) and renal parenchymal thickness was nearly same in both groups (table 2). The mean operative duration in both groups was not significant. Postoperatively there was improvement in hydronephrosis and GFR in both stented and non-stented group but statistically not significant (tables 3 and 4). The complication rates were more in non-stented group than stented group (table 5). So according to our study the outcomes of pyeloplasty in terms of renal pelvis diameter, parenchymal thickness, length of stay are same in both groups but as per complication rate, a stent should be placed in case of puj obstruction.

The supposed advantages of stenting are maintaining alignment of the anastomosis, decreasing urinary extravasation, bypassing the transient obstruction due to edema at the anastomosis site, preventing subsequent stenosis [4-7,23]. However, stents may cause infection, stricture due to pressure of a stent over the anastomosis, injury to the anastomosis or renal tissue, bleeding, dislodgement, fragmentation or migration, calculus formation, and may prolong the hospital stay. In addition, internal stents need a second hospital admission and a general anaesthetic for removal [8-11,13,19,23-25]. Non-stenting allows early mobilization and freedom from draining tubes [16].

In contrary to study by Muhammad Siddique et al. according to which open Anderson Hyne's Pyeloplasty is the gold standard for puj obstruction, but stents are not necessary to be placed during pyeloplasty, our study (tables 3-6) on the basis of rate of complication in both stented and non-stented groups suggests a JJ stent to be placed in each case of puj obstruction Anderson Hyne's pyeloplasty remaining the gold standard.

Table 5: Comparison between pre-surgery and post-surgery parameters in stented group

S.no	Parameters	Pre-surgery	Post-surgery	P-value
1	Serum Creatinine	0.62	0.58	0.010 (significant)
2	Mean APPD	12.89	12.37	0.083 (insignificant)
3	Mean GFR	35.6	39	0.007 (significant)
4	Mean Renal Parenchymal Diameter	11.17	11.37	0.020 (significant)

Table 6: Comparison between pre-surgery and post-surgery parameters in non-stented group

S.no	Parameters	Pre-surgery	Post-surgery	P-value
1	Serum Creatinine	0.64	0.59	0.001 (significant)
2	Mean APPD	14	13.76	0.409 (insignificant)
3	Mean GFR	35.3	41	0.457 (insignificant)
4	Mean Renal Parenchymal Diameter	11.35	11.46	0.074 (less significant)
group on the basis of an increase in the incidence of UTI during the early postoperative period. However in our study the length of stay for both stented and non-stented patients were nearly the same (3 days) (table 2). Hence, the stented group needs parenteral antibiotics for longer periods. However, Sarin et al. [29] explained that, in their clinical practice, where they were dealing with not so literate section of the society, outpatient management of drainage tubes was virtually impossible. Liss et al. [23] discharged 81% of their non-stented patients on postoperative day 1, with an average hospital stay of 1.3 days and assured that PUL (urinoma) was not a cause for in patient stay. They thought that home care of drains was possible and accepted with some peridrain inflammation. Most of the patients in our study were from rural area and were poor economically, so we kept the patients in ward until perinephric drain was removed. So, in contrary to Liss et al. [3] we discharged the non-stented patients only after perinephric drain and Foley’s catheter was removed.

The incidence of postoperative complications in both groups was comparable, with no significant difference (table 5). We also had two cases in the non-stented group who suffered from a UTI despite antibiotic prophylaxis whether this was related to the stent or not cannot be judged from only four cases.

It was suggested that earlier removal of stents may reduce the risk for infection [19]. The rate of infections increased with stent use and in patients who have PUL (urinoma) [3,8,22,31,32]. Özdemir and Arikan [26] had no UTI in their stented patients where they used antibiotic prophylaxis until the stents were removed. In the literature, PUL is more common in the non-stented repairs [7,8,13,19,22]. In accordance with Arda et al. [14] in our study, there was no statistically significant difference regarding urine leakage through the Penrose drain/ perinephric drain in the stented and non-stented groups (tables 5 and 7). The rate of PUL was 14% in Liss et al. [3] study; The rate of urinoma formation in our study is 2.85% in stented group and 10% in non-stented group. Castagnetti et al. had 5% rate of stent dislodgement, which were all treated by stent removal with exceptional need for additional procedures. In our study there was no stent dislodgement. Smith et al. [22] found also that there is no significant difference between the complications of the stented and non-stented repairs our study too have similar results (table 5); In our study out of the 35 stented repairs, complications developed in five (14.28%). Of the 10 non-stented repairs, complications developed in 5 (50%) [22]. In similar view to study of Bayne et al. [28]. Our study found no significant difference (table 5) in the complication rate between the stented and non-stented patients. The results of our study on complications of pyeloplasty matches the analysis by Elmaliket al. [19] which concluded that complications related to surgical repair were significantly higher in the non-stented group, whereas stented patients suffered only stent-related complications, namely UTI and stent migration. The success rate of open A–H dismembered pyeloplasty varies from 94 to 100% in different series [3,7,13,16,19,22,26,33,34]. Our success rate in both groups was nearly 100%. Some studies reported an increased rate of secondary procedures, including redo pyeloplasty and insertion of nephrostomy or JJ tubes, in non-stented pyeloplasty [3,7,22,23]. Liss et al. [3] stated that they cannot be certain that failure was related to non-stenting and wondered whether stenting would have prevented this complication. The outcome of repair regarding improvement of hydronephrosis and GFR was comparable in both groups (tables 3 and 4). There was significant improvement in both parameters as detected by postoperative USG and DTPA, with no significant difference between both groups.

Complications	Stented % (out of total complications)	Non-stented % (out of total complications)
Fever (u/d)	2	2
Urinoma formation	1	1
Wound infection	2	1
Restenosis	0	1

P-Value=0.722 (Insignificant)

Table 7: Comparison of complications in stented and non-stented group

This is consistent with many other reports comparing the two techniques of pyeloplasty [13,19]. Some surgeons followed the patients only with USG and performed an isotope scan only if USG showed worsening hydronephrosis or if patients develop symptoms of obstruction [3,22,23]. In our study Isotope scan was performed if patient's guardian were affordable or USG findings were inconclusive. The improvement in hydronephrosis observed in USG was noted from 3 months post-operatively. Earlier improvement of hydronephrosis in stented than in nonstented patients was described [19,26,35]. Some authors denied early improvement in hydronephrosis after pyeloplasty and described improvement from 6 months to 1 year [33,36,37]. We followed up patients for a minimum of 3 months. However, some surgeons concluded that follow-up can be discontinued after 3 months. Psooy et al. [38] advised extending the follow-up period to 1 year to avoid repeat referrals. Despite the comparable results of both techniques in our study and in many other studies, the rate and nature of surgery-related complications in the non-stented group as well as the rate of redo procedures, make a stented technique preferable in all patients of puj obstruction.

References

1. Park JM, Bloom DA (1998) The pathophysiology of UPJ obstruction. Current concepts. Urol Clin North Am 25: 161-169
2. Platt JJ (1996) Urinary obstruction. Radiol Clin North Am 34: 1113-1129
3. Liss ZJ, Olsen TM, Roelof BA, Steinhardt GF (2013) Duration of urinary leakage after open non-stented dismembered pyeloplasty in pediatric patients. J Pediatr Urol 9: 613-616
4. Hendren WH, Radhakrishnan J, Middleton AW Jr. (1980) Pediatric pyeloplasty. J Pediatr Surg 15: 133-144
5. Homys Y, Simard J, Debs C, Laberge I, Perreault G. (1980) Pyeloplasty: to divert or not to divert? Urology 16: 577-583
6. Woo JH, Farnsworth RH (1996) Dismembered pyeloplasty in infants under the age of 12 months. Br J Urol 77: 449-451
7. Wollin M, Duffy PG, Diamond DA, Aguirre J, Ratta BS, et al. (1989) Priorities in urinary diversion following pyeloplasty. J Urol 142: 576-578
8. Guys JM, Borella F, Monfort G (1988) Ureteropelvic junction obstructions: prenatal diagnosis and neonatal surgery in 47 cases. J Pediatr Surg 23: 156-158
9. Baniel J, Livne PM, Savir A, Gillon G, Servadio C (1996) Dismembered pyeloplasty in children with and without stents. Eur Urol 30: 400-402
10. Ahmed S, Crankson S (1997) Non-intubated pyeloplasty for pelviureteric junction obstruction in children. Pediatr Surg Int 12: 389-392
11. Anderson JC, Hynes W (1949) Retrocaval ureter; a case diagnosed preoperatively and treated successfully by a plastic operation. Br J Urol 21: 209-214
12. Hussain S, Frank JD (1994) Complications and length of hospital stay following stented and unstented paediatric pyeloplasties. Br J Urol 73: 87-89
13. Arda IS, Oguzkurt P, Sevnis S (2002) Transanastomotic stents for dismembered pyeloplasty in children. Pediatr Surg Int 18: 115-118
14. Sutherland RW, Chung SK, Roth DR, Gonzales ET (1997) Pediatric pyeloplasty: outcome analysis based on patient age and surgical technique. Urology 50: 963-966
15. Persky L, Tynberg P (1973) Unsplinted, unstinted, pyeloplasty. Urology 1: 32-35
16. Braga LH, Lorenzo AJ, Farhat WA, Bägli DJ, Khoury AE, et al. (2008) Outcome analysis and cost comparison between externalized pyeloureteral and standard stents in 470 consecutive open pyeloplasties. J Urol 180: 1693-1698
17. Zaidi Z, Mouriquand PD (1997) The use of a multipurpose stent in children. Br J Urol 80: 802-805
18. Elmalik K, Choudhury MM, Capps SN (2008) Ureteric stents in pyeloplasty: a help or a hindrance? J Pediatr Urol 4: 275-279
19. McMullin N, Khor T, King P (1993) Internal ureteric stenting following pyeloplasty reduces length of hospital stay in children. Br J Urol 72: 370-372
20. Ninan GK, Sinha C, Patel R, Marri R (2009) Dismembered pyeloplasty using double J stent in infants and children. Pediart Surg Int 25: 191-194
21. Smith KE, Holmes N, Lieb JI, Mandell J, Baskin LS, et al. (2002) Stented versus nonstented pediatric pyeloplasty: a modern series and review of the literature. J Urol 168: 1127-1130
22. Le TS, Le CT, Le TH, Nguyen TD, Huynh CN, et al. (2011) Transpelvic Anastomotic stenting: a good option for diversion after pyeloplasty in children. J Pediatr Urol 7: 363-366
23. Sibley GN, Graham MD, Smith MI, Doyle PT (1987) Improving splintage techniques in pyeloplasty. Br J Urol 60: 489-491
24. Reed MJ, Williams MP (2003) Open pyeloplasty in children: experience with an improved stenting technique. Urol Int 71: 201-203
25. Özdemir T, Arikan A (2010) One day hospitalization after open, double-J stented pyeloplasty. World J Pediatr 6: 271-273
26. Nguyen DH, Alibadi H, Ercole CJ, Gonzalez R (1989) Nonintubated Anderson–Hynes repair of ureteropelvic junction obstruction in 60 patients. J Urol 140: 704-706
27. Bayne AP, Lee KA, Nelson ED, Cisek JJ, Gonzales ET Jr, et al. (2011) The impact of surgical approach and urinary diversion on patient outcomes in pediatric pyeloplasty. J Urol 186: 1693-1698
28. YK Sarin, R Gupta, N Nagdev (2006) Pediatric pyeloplasty: intubated vs nonintubated. Indian J Urol 22: 35-38
29. Meisheri IV, Kamat TA, Maheshwari M (2004) Pelvoureteric junction obstruction stented versus unstented pyeloplasty. J Indian Assoc Pediatr Surg 9: 184-188
30. Paick SH, Park HK, Oh SJ, Kim HH (2003) Characteristics of bacterial colonization and urinary tract infection after indwelling of double-J ureteral stent. Urology 62: 214-217
31. Ben-Meir D, Golan S, Ehrlich Y, Livne PM (2009) Characteristics and clinical significance of bacterial colonization of ureteral double-J stents in children. J Pediatr Urol 5: 355-358
32. Babu R, Sai V (2010) Pelvis/cortex ratio: an early marker of success following pyeloplasty in children. J Pediatr Urol 6: 473-476
33. Lee YS, Lee CN, Kim MU, Jang WS, Lee H, et al. (2014) The risk factors and clinical significance of acute postoperative complications after unstented pediatric pyeloplasty: a single surgeon’s experience. J Pediatr Surg 49: 1166-1170
34. Romao RL, Farhat WA, Pippi Salle JL, Braga LH, Figueroa V, et al. (2012) Early postoperative ultrasound after open pyeloplasty in children with prenatal hydronephrosis helps identify low risk of recurrent obstruction. J Urol 188: 2347-2353
35. Neste MG, du Cret RP, Finlay DE, Sane S, Gonzalez R, et al. (1993) Postoperative diuresis renography and ultrasound in patients undergoing pyeloplasty. Predictors of surgical outcome. Clin Nucl Med 18: 872-876
36. Amling CL, O’Hara SM, Wiener JS, Schaeffer CS, King LR (1996) Renal ultrasound changes after pyeloplasty in children with ureteropelvic junction obstruction: long-term outcome in 47 renal units. J Urol 156: 2020-2024
37. Pohl HG, Rushton HG, Park JS, Belman AB, Majd M (2001) Early diuresis renogram findings predict success following pyeloplasty. J Urol 165: 2311-2315
38. Psooy K, Pike JG, Leonard MP (2003) Long-term follow up of pediatric dismembered pyeloplasty: how long is long enough? J Urol 169: 1809-1812