Histone Deacetylase 3 Suppression Increases PH Domain and Leucine-rich Repeat Phosphatase (Phlpp1) Expression in Chondrocytes to Suppress Akt Signaling and Matrix Secretion*

Received for publication, September 28, 2012, and in revised form, January 22, 2013 Published, JBC Papers in Press, February 13, 2013, DOI 10.1074/jbc.M112.423723

Elizabeth W. Bradley‡,1, Lomeli R. Carpio‡,1, and Jennifer J. Westendorf‡,1

From the ‡‡Department of Orthopedic Surgery, §‡ Mayo Graduate School, and ‡¶1 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905

Background: Hdac3 depletion in osteo/chondroprogenitor cells causes severe osteopenia and decreases long bone length.

Results: Akt and mTOR activities were reduced and Phlpp1 levels were increased in Hdac3 deficient chondrocytes.

Conclusion: Hdac3 deletion suppresses the Akt/mTOR pathway by increasing expression of the protein phosphatase Phlpp1.

Significance: Hdac3 and Phlpp1 have crucial roles in regulating chondrocyte hypertrophy and cartilage regeneration.

HDACs epigenetically regulate cellular processes by modifying chromatin and influencing gene expression. We previously reported that conditional deletion of Hdac3 in osteo-chondroprogenitor cells with Osx1-Cre caused severe osteopenia due to abnormal maturation of osteoblasts. The mice were also smaller. To address the abnormal longitudinal growth in these animals, the role of Hdac3 in chondrocyte differentiation was evaluated. We found that Hdac3 is highly expressed in resting and prehypertrophic growth plate chondrocytes, as well as in articular chondrocytes. Hdac3-deficient chondrocytes entered hypertrophy sooner and were smaller than normal chondrocytes. Extracellular matrix production was suppressed as glycosaminoglycan secretion and production of aggrecan, osteopontin, and matrix extracellular phosphoglycoprotein were reduced in Hdac3-deficient chondrocytes. These phenotypes led to the hypothesis that the Akt/mTOR pathway was repressed in these Hdac3-deficient chondrocytes because Akt promotes hypertrophy and matrix production in many tissues. The phosphorylation and activation of Akt, its substrate mTOR, and the mTOR substrate, p70 S6 kinase, were indeed reduced in Hdac3-deficient primary chondrocytes as well as in chondrocytes exposed to HDAC inhibitors. Expression of constitutively active Akt restored phosphorylation of mTOR and p70 S6K and matrix gene expression levels. Reduced phosphorylation of Akt and its substrates in Hdac3-deficient or HDAC inhibitors treated chondrocytes correlated with increased expression of the phosphatase Phlpp1. Hdac3 associated with a Phlpp1 promoter region containing Smad binding elements and was released after TGFβ was added to the culture. These data demonstrate that Hdac3 controls chondrocyte hypertrophy and matrix content by repressing Phlpp1 expression and facilitating Akt activity.

Endochondral ossification is a complex developmental process by which long bones form and many fractures heal. This process begins with the condensation of mesenchymal progenitor cells, which differentiate into chondrocytes, and progresses to the production of a type II collagen- and proteoglycan-rich matrix. With further differentiation, chondrocytes undergo hypertrophy and suppress type II collagen in favor of type X collagen. Ultimately, chondrocytes undergo apoptosis, the tissue becomes vascularized and osteoblasts and osteoclasts replace the cartilaginous matrix with a type I collagen-rich mineralized matrix. Akt is an influential intracellular serine kinase that orchestrates chondrogenesis (1, 2), increases chondrocyte proliferation (3, 4), either promotes or inhibits hypertrophy depending on cell context (3, 5, 6), and inhibits chondrocyte apoptosis (3, 6, 7). Triggered by activation of receptor tyrosine kinases, Akt phosphorylates several substrates, including mTOR, to regulate cell size, protein translation, and matrix synthesis.

Akt activation is crucial for tissue development and regeneration; however, sustained activation of Akt signaling is oncogenic, and thus, this pathway is tightly regulated. Akt signaling is terminated by PH domain and leucine-rich repeat protein phosphatase (Phlpp1/2;2 pronounced “Flip”), which dephosphorylates Ser-473 (8–10). Phlpp1 depletion maintains the phosphorylation of Akt, p70 S6K, protein kinase C (PKC), and FoxO (forkhead box protein Q) and increases cell size, protein content, and the rate of cap-dependent translation (9, 11). Phlpp1 KO mice develop normally but display circadian rhythm deficits and are slightly shorter in length (12). The molecular roles of Phlpp1 in skeletal development are not known.

Histone deacetylase 3 (Hdac3) is a broadly expressed nuclear enzyme that regulates many cellular processes, including cellular hypertrophy, by post-translationally modifying proteins such as histones and transcription factors, and regulating gene expression (13, 14). Although germ line Hdac3 deletion causes embryonic lethality (15), conditional Hdac3 ablation within

* This work was supported by research and training grants from the National Institutes of Health (AR48147, AR61873, AR56950, and GM055252), Mayo Clinic, and the Mayo Graduate School.

† To whom correspondence should be addressed: Mayo Clinic, 200 First St. SW, Rochester, MN 55905. Tel.: 507-538-5651; Fax: 507-284-5075; E-mail: westendorf.jennifer@mayo.edu.

2 The abbreviations used are: Phlpp1/2, PH domain and leucine-rich repeat protein phosphatase; IMAC, immature mouse articular chondrocyte; SAHA, suberoylanilide hydroxamic acid; BS, binding site; P1, postnatal day 1; MEPE, matrix extracellular phosphoglycoprotein; DMSO, dimethyl sulfoxide.
cardiac muscle or the liver increased hypertrophy and altered energy metabolism (16–18). Within the growth plate, Hdac3 (a binding partner of Hdac3) controls chondrocyte hypertrophy through its interaction with Runx2, Zfp521, and Mef2c (19–23); however, the role of Hdac3 in hypertrophy has not been established. We recently demonstrated that conditional knockout of Hdac3 with osterix (Osx1)-Cre (Hdac3-CKO-Osx) causes severe osteopenia and growth deficiencies. The long bone shortening was associated with an expansion of the growth plate hypertrophic chondrocyte zone (19). Here, we describe a molecular mechanism by which Hdac3 controls chondrocyte hypertrophy.

MATERIALS AND METHODS

Hdac3 Deficient Mice—Mice harboring two copies of the Hdac3 allele with loxP sites in introns surrounding exon 7 (Hdac3fl/fl) and/or Osx1-Cre were generated and genotyped as described previously (15, 19, 24). These animals are referred to as Hdac3-CKO-Osx mice in this report and are on the C57Bl/6 background. To establish. We recently demonstrated that conditional knock-out of Hdac3 with osterix (Osx1)-Cre (Hdac3-CKO-Osx) causes severe osteopenia and growth deficiencies. The long bone shortening was associated with an expansion of the growth plate hypertrophic chondrocyte zone (19). Here, we describe a molecular mechanism by which Hdac3 controls chondrocyte hypertrophy.

Alcian Blue and Alizarin Red Staining—IMAC cultures were fixed with 10% neutral buffered formalin for 10 min and stained with Alcian blue (1% Alcian blue, 3% acetic acid) for 2 h or 1% Alizarin Red-S (pH 4.2) solution for 10 min. Tibias were fixed in 10% neutral buffered formalin, decalcified in 15% EDTA for 5 days, paraffin-embedded, sectioned, and stained with Alcian blue or Goldner’s trichrome solution.

RNA Extraction and Quantitative PCR—Total RNA was isolated from IMAC cultures, ATDC5 cells, and postnatal day 1 (P1) tibias with TRIzol reagent (Invitrogen) and phenol/chloroform.

DNA Extraction and Quantitative PCR—DNA was extracted from IMAC cultures, ATDC5 cells, and postnatal day 1 (P1) tibias with TRIzol reagent (Invitrogen) and phenol/chloroform. RNA (2 µg) was reverse transcribed using the Superscript cDNA kit (Bio-Rad). The resulting cDNAs were placed in real-time PCR reactions containing gene-specific primers (Table 1) as outlined in Razidlo et al. (19). Fold changes in gene expression for each sample were calculated relative to expression levels at the beginning of the experiment. Each experiment was performed in triplicate.

Western Blotting—Cells were lysed in SDS sample buffer (0.1% glycerol, 0.01% SDS, 0.1 M Tris, pH 6.8) on ice. Total protein concentrations were determined with the Bio-Rad DC protein assay (Bio-Rad). Proteins (40 µg) were resolved by SDS-PAGE and transferred to nitrocellulose. Western blotting was accomplished utilizing antibodies (1:2000 dilution) for phospho- and total Akt, p70 S6 kinase, and mTOR, total mTOR, p-Ser-371 p70 S6 kinase, p-Ser-473 Akt, and p-Thr-202/Tyr-204 Erk.

Immunohistochemical Staining—Tibias from 2-week-old mice were fixed in 10% neutral buffered formalin and decalcified in 15% EDTA for 5 days and paraffin-embedded. Immunohistochemical staining was performed with antibodies directed to H3Ac (Millipore), Phlp1 (Abcam), or IgG isotype control. Chromogens were developed using a diaminobenzidine (DAB) (Sigma Aldrich).

ATDC5 Cell Culture and Transfection—ATDC5 cells were cultured in DMEM, 5% FBS, 1% antimycotic/antibiotic, and 1× ITS. Cells were transfected with pcDNA3, pcDNA-Phlp1ΔC

TABLE 1

cDNA	Forward primer	Reverse primer
Aggrecan	5'-CC-CTGGTGCAAGGGGATGTTG-3	5'-GATGTGACCCACCCAGGTAT-3
Type 2α Collagen	5'-ACGTGTAAGGCGGCGAGAC-3	5'-CGCTGCTGAGAGAGAAGGTGTG-3
Type X Collagen	5'-CTGGCGTGATAGCGGGCGAG-3	5'-AGCGGGTTGCTGCTGCTGCTG-3
GAPDH	5'-GGAGACCGCCCCTCCTCATCAG-3	5'-GCTTCACCCAATGTGTTT-3
Il1b	5'-CCGCTTGCCCAGGGGGAGTTG-3	5'-ACACCCACCATGCGGAGAC-3
Mepe	5'-CTGGGTTGAGTTCCCTCACAATTA-3	5'-CTGGGCTGCCAGAGAATGAT-3
Osteopontin (Spp1)	5'-CCGCTTGCCCAGGGGGAGTTG-3	5'-ACACCCACCATGCGGAGAC-3
PTEN	5'-GATTAGATTCAGCACTATACGCCG-3	5'-AGGAGTCGGTGGGCGAGCC-3
Phlp1	5'-CCGGCTGTAAGGCGGCGAGAC-3	5'-ACACCCACCATGCGGAGAC-3
Phlp2	5'-GGCTGCTGAGGCGGCGAGAC-3	5'-ACACCCACCATGCGGAGAC-3
Runx2	5'-GGCTGCTGAGGCGGCGAGAC-3	5'-ACACCCACCATGCGGAGAC-3
Sox9	5'-AGGAGTCGGTGGGCGAGCC-3	5'-ACACCCACCATGCGGAGAC-3
Vegf	5'-AGAAGCTTGGGCGAGCC-3	5'-ACACCCACCATGCGGAGAC-3

**Chromogens were developed using a polyvalent secondary antibody (Millipore), Phlp1 (Abcam), or IgG isotype control.
(Addgene no. 22931 (28)) or pcDNA3-caAkt (29) with Lipofectamine (Invitrogen) using a 1:3 (Lipofectamine:DNA) ratio 24 h after ITS was added to the culture medium (28). Cells were then treated with the indicated concentrations of HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA, Vorinostat), or trichostatin A (TSA) for 24 h.

Chromatin Immunoprecipitation—ATDC5 cells were cultured for 3 days and then treated with 2 ng/ml TGFβ for 4 h. Chromatin immunoprecipitation was performed according to Lambert and Nordeen (30). Briefly, cells were washed and DNA–protein complexes were cross-linked with 0.03% formaldehyde followed by cell lysis (1% SDS, 10 mM EDTA, 50 mM Tris, pH 8.0). Lysates were sonicated, precleared with 30 μg Dynabeads (Invitrogen) and incubated with indicated antibodies (2 μg) overnight at 4 °C. Dynabeads (60 μg) were incubated with each pull down and washed and eluted with 1% SDS, 0.1 M NaHCO₃. Protein was digested, and the resulting DNA was extracted with phenol–chloroform. Amplification of the Phlpp1 promoter at an identified Smad binding site (BS) or a nonspecific binding site was performed with the following primers: (Smad BS, 5′-AGACGGGGCCAGCGATCCTGTGAA-3′ (forward) and Smad BS, 5′-GTCGAGGATACCCAGAAGA-3′ (reverse); nonspecific BS, 5′-CAGAGGGCACAATACCCAC-3′ (forward) and nonspecific BS, 5′-ACTAGTTGAGGCGGGGT-3′ (reverse)).

Image Quantitation—Images were digitally scanned or collected using phase contrast microscopy and converted to threshold values using ImageJ software. Immunohistochemistry (IHC) staining was quantitated by determining the average mean gray value of cells within each growth plate zone. Angles between centers of three columnar chondrocytes within the growth plate of 5-week-old mice were also determined using ImageJ software.

Statistical Analysis—Data obtained are the means ± S.E. of the mean (n = 3). p values were determined with the Student’s t test.

RESULTS

Hdac3 Regulates Chondrocyte Hypertrophy and Matrix Gene Expression—We previously showed that conditional deletion of Hdac3 within Osx1-Cre-expressing, osteo-chondroprogenitor cells stunts long bone growth and reduces trabecular and cortical bone mass (19). These animals also exhibit an expanded hypertrophic zone (19). To further understand the role of Hdac3 in chondrocyte differentiation, its expression pattern in the proximal tibia of wild-type (WT) 4-week-old mice was examined by IHC (Fig. 1). Hdac3 was detected in meniscal cells, articular, and epiphysial chondrocytes surrounding the secondary ossification center (Fig. 1, E and F) and within defined regions of the growth plate (Fig. 1, A and B). Specifically, resting chondrocytes and prehypertrophic chondrocytes showed robust expression of Hdac3, whereas proliferating and hypertrophic chondrocytes expressed lower levels. Hdac3 levels were reduced in prehypertrophic chondrocytes, articular chondrocytes, and trabecular bone of Hdac3-CKOosx mice (Fig. 1). These results demonstrate that Hdac3 is spatially and temporally restricted in the developing skeleton and implicate Hdac3 as a crucial regulator of endochondral ossification.

To determine whether Hdac3 deficiency alters chondrocyte proliferation and hypertrophy, the distance from the proximal tibia epiphysis to the onset of each respective growth plate zone in postnatal day 1 (P1) WT and Hdac3-CKOosx mice was measured as described previously (31). No overall change in the
length of the periarticular chondrocyte zone or in the start of the proliferative zone was observed (Fig. 2A). However, the distance from the epiphyseal surface to the boundary between prehypertrophic and hypertrophic chondrocytes was shorter in the Hdac3-CKOox animals, and the normal columnar array was disorganized (Fig. 2A and B). Alcian blue staining, which measures glycosaminoglycan content, was also reduced in the Hdac3-CKOox P1 tibias (Fig. 2A). Accordingly, transcripts of chondrocyte matrix genes (aggrecan, matrix extracellular phosphoglycoprotein (MEPE), and osteopontin) were significantly decreased in P1 tibias from Hdac3-CKOox mice (Fig. 2C–E). These results indicate that chondrocyte hypertrophy is altered, and matrix secretion is suppressed as a result of Hdac3 deficiency.

To validate the in vivo observations and demonstrate that Hdac3 deficiency alters chondrocyte differentiation in a cell autonomous manner, IMACs from Hdac3-CKOox or WT mice were cultured ex vivo in micromass for up to 21 days in the presence of ITS medium from days 3 to 21 (Fig. 3). Hdac3 mRNA levels were reduced by ~50% in IMAC cultures from Hdac3-CKOox mice (Fig. 3D). This is the expected level of Hdac3 suppression, because Osx (Sp7) is not expressed in all chondrocytes. Both WT and Hdac3-CKOox IMACs formed dense and stable micromasses that bound Alcian blue as early as day 3 (Fig. 3). In response to ITS, WT chondrocytes produced glycosaminoglycans that bound Alcian blue with increasing intensity through day 10. At day 21, hypertrophic chondrocytes dominated the micromasses (Fig. 3C). WT micromasses were encapsulated with a calcified matrix at day 21 (Fig. 3A). In contrast, micromasses from Hdac3-CKOox mice stained poorly with Alcian blue beginning at day 7 and relative expression levels of aggrecan, MEPE, and osteopontin mRNAs were decreased in Hdac3-deficient IMACs (Fig. 3, J–L), similar to that observed in vivo (Fig. 2). The diffuse Alcian blue staining persisted throughout the ex vivo differentiation. Matrix calcification was also reduced in the Hdac3-CKOox cultures. These data indicate that Hdac3-CKOox chondrocytes have defects in chondrocyte matrix production.

Further molecular analysis of mRNA expression confirmed that chondrocyte differentiation was disturbed in IMACs from Hdac3-CKOox mice (Fig. 3, E–I). Collagen 2a1 and Indian hedgehog, markers of immature and prehypertrophic chondrocytes, as well as VEGF were increased in Hdac3-CKOox cultures at day 7 but were down-regulated relative to WT levels by day 14. Runx2 levels increased at equal rates in both WT and Hdac3-CKOox cultures. In contrast, collagen X, a late marker of chondrocyte differentiation, increased >50-fold in Hdac3-CKOox IMAC cells as compared with 8-fold increases in control cells. The elevated expression of collagen 2a1, Indian hedgehog, and VEGF in Hdac3-CKOox mice at early time points suggests accelerated hypertrophy. Whereas rapid down-regulation of collagen 2a1 and Indian hedgehog and reduced levels of matrix genes indicates that Hdac3 is crucial for matrix production and chondrocyte hypertrophy. Reduced VEGF in differentiated chondrocytes may decrease coupling to ossification, thus leading to the expanded hypertrophic zone, more collagen X expression, and decreased bone mass observed in the Hdac3-CKOox mice (19).

Hdac3 Regulates Akt Signaling in Hypertrophic Chondrocytes—Associated with changes in matrix deposition, the columnar structure of growth plate chondrocytes was disrupted in P1 Hdac3-CKOox mice (Fig. 2A). Proliferative and hypertrophic chondrocytes remained disorganized in 5-week-old Hdac3-CKOox long bones (Fig. 4, A–C). This was measured by calci-
lating the average angle between the centers of three adjacent columnar chondrocytes. Thus, the chondrocytes of WT mice were highly organized, with the average angle between cells being 165°. In contrast, adjacent Hdac3-CK0sx chondrocytes were more difficult to identify, and the average angle between 50 trios of cells was reduced to 155° (Fig. 4B). In addition to being more disorganized, the average perimeter of the hypertrophic chondrocytes within the growth plate of Hdac3-CK0sx mice was significantly smaller as compared with WT and Osx1-Cre mice (Fig. 4D).

The combined observations of smaller chondrocytes and reduced matrix deposition both in vivo and ex vivo suggested that Hdac3 deficiency suppresses growth factor signaling pathways as well as general protein translation. Akt was identified as a candidate effector of these chondrogenic phenotypes because it is activated by insulin and stimulates mTOR, which phosphor-

lating the average angle between the centers of three adjacent columnar chondrocytes. Thus, the chondrocytes of WT mice were highly organized, with the average angle between cells being 165°. In contrast, adjacent Hdac3-CK0sx chondrocytes were more difficult to identify, and the average angle between 50 trios of cells was reduced to 155° (Fig. 4B). In addition to being more disorganized, the average perimeter of the hypertrophic chondrocytes within the growth plate of Hdac3-CK0sx mice was significantly smaller as compared with WT and Osx1-Cre mice (Fig. 4D).

The combined observations of smaller chondrocytes and reduced matrix deposition both in vivo and ex vivo suggested that Hdac3 deficiency suppresses growth factor signaling pathways as well as general protein translation. Akt was identified as a candidate effector of these chondrogenic phenotypes because it is activated by insulin and stimulates mTOR, which phosphorylates ribosomal subunits and stimulates CAP-dependent translation to control cell size and matrix synthesis (32–36). Hdac3-CK0sx IMAC cultures had reduced levels of p-Ser-473 Akt, as well as p-Ser-2448 mTOR, an Akt substrate (Fig. 5, A and B). Furthermore, phosphorylation of the mTOR substrate p70 S6K, the kinase required for the S6 ribosomal subunit, was decreased. In contrast, Erk phosphorylation was not altered in Hdac3-CK0sx cells. These data demonstrate that Akt signaling cascades are suppressed in Hdac3-CK0sx chondrocytes.

Hdac3 Represses Phlpp1 Expression—We hypothesized that reductions in Hdac3, a nuclear co-repressor, were indirectly repressing the cytosolic Akt signaling pathway by increasing the transcription of a protein phosphatase. In a candidate screening approach, the Akt phosphatase, Phlpp1, was found to be highly elevated in Hdac3-CK0sx IMACs (Fig. 5, A and C). The inverse relationship between Phlpp1 and Hdac3 expression was confirmed in vivo. Thus, Phlpp1 levels were increased in the prehypertrophic zone of Hdac3-CK0sx tibial growth plates (Fig. 5D). This temporal and spatial expression pattern of Phlpp1 was inversely correlated with Hdac3 expression in the prehypertrophic zone of WT mice (Fig. 1D). Together, these data suggest that Hdac3 represses Phlpp1 to facilitate Akt signaling in chondrocytes and growth plate development.

To determine whether Hdac3 associates with the Phlpp1 promoter, chromatin immunoprecipitation assays were performed in ATDC5 cells (Fig. 6A). Hdac3 bound to a previously characterized region of the Phlpp1 promoter that contains a Smad binding element, but not to distal regions lacking Smad binding sites (37). TGFβ, a potent inducer of chondrogenesis and Smad2/3 nuclear localization and DNA binding, released Hdac3 from the Phlpp1 promoter within 4 h (Fig. 6A). TGFβ also increased Phlpp1 but not Phlpp2 transcripts in ATDC5 cells (Fig. 6B). These data demonstrate that Hdac3 associates with the Phlpp1 gene.

HDAC Inhibitors Increase Phlpp1 Transcription and Suppress Akt Activity—To further test the molecular regulation of Phlpp1 by HDACs, the chondrogenic cell line, ATDC5, was treated with broad-acting HDAC inhibitors, SAHA or TSA,
which inhibit all class I HDACs, including Hdac3. As in the Hdac3-CKO mice, Phlp1 but not Phlp2 or protein phosphatase (Pp)1 mRNA expression was elevated after exposure to the HDAC inhibitors (Fig. 6, C and D). Phlp1 protein levels were also elevated in HDAC inhibitor-treated cells (Fig. 6E).

To determine whether Phlp1 directly regulates Akt activity in chondrocytes, we overexpressed a HA-tagged mutant Phlp1 construct (Phlp1ΔC, Fig. 7A) that inhibits the interaction between Phlp1 and Akt (28) in ATDC5 cells and treated the cells with SAHA. Increased acetylation of histone 3 (H3) on K9/K14 (Fig. 7B) confirmed that HDACs were inhibited in SAHA-exposed cells. Similar to what was observed after Hdac3 deletion, SAHA decreased the phosphorylation of Akt and increased Phlp1 levels. Phlp1ΔC prevented the HDAC inhibitor-mediated decrease in Ser473 Akt phosphorylation (Fig. 7B). Together, these data demonstrate that HDACs, particularly Hdac3, control Akt activity by regulating Phlp1 levels in prehypertrophic chondrocytes.

Constitutive activation of Akt restores defects in chondrocyte differentiation caused by HDAC suppression—To confirm that defects in Akt phosphorylation and activity were responsible for phenotypes of HDAC-suppressed cells, we overexpressed a HA-tagged, constitutively active Akt (caAkt) in chondrogenic ATDC5 cells and treated the cells with SAHA, which increased H3 K9/K14 acetylation (Fig. 7C). SAHA decreased the phosphorylation of the Akt substrate, mTOR, and its substrate, p70 S6K. Expression of HA-caAkt rescued their phosphorylation levels. Furthermore, HA-caAkt rescued the loss of Alcian blue staining in SAHA-treated micromass cultures (Fig. 7D) and restored the expression of matrix genes, including aggrecan, osteopontin, and MEPE in SAHA-treated and control cells (Fig. 7, E–G). These data demonstrate that Akt signaling cascades are repressed in HDAC-suppressed chondrocytes.

DISCUSSION

HDACs are essential for tissue development and regeneration because they control gene expression and signaling events involved in cell cycle control, hypertrophy, and survival. Small molecule HDAC inhibitors are effective cancer therapies because of their ability to slow cell cycle progression, induce DNA damage and apoptosis, and stimulate re-expression of silenced tumor suppressor genes (38). In preclinical studies, HDAC inhibitors slowed progression of experimental arthritis and associated inflammation (39–41). Thus, HDAC-mediated regulation of chondrocyte differentiation during normal tissue homeostasis and disease progression is of interest. Many HDACs contribute to cartilage biology (42). Unfortunately, most existing HDAC inhibitors suppress multiple enzymes and can have nonspecific effects. Therefore, there is a great need to understand the roles of individual HDACs in chondrogenesis, chondrocyte proliferation, and hypertrophy so that HDAC inhibitors can be appropriately applied. We previously established a role for Hdac3 in governing bone formation (19). In this study, the function of Hdac3 during chondrocyte differentiation was further explored in this Hdac3-CKO Sox model. The data demonstrate that Hdac3 plays a crucial role in promoting Akt-dependent signaling and chondrocyte hypertrophy.

Hdac3 is highly expressed in developing articular cartilage, the meniscus, mineralized bone, and resting cells of the growth plate and epiphysis. Surprisingly, Hdac3 was spatially restricted within the active growth plate, with high expression in prehy-
Hdac3 Regulates Chondrocyte Hypertrophy

pertrophic chondrocytes and lower levels in the surrounding proliferating and hypertrophic chondrocytes. This expression pattern partially overlaps with that of Hdac3, which is also required for proper endochondral ossification and was shown to bind Hdac3 (20). Unlike Hdac3, Hdac4 expression is maintained in hypertrophic chondrocytes (20). In many tissues, Hdac3 is required for the enzymatic activity of the Hdac4-containing multi-protein complexes (43). One of the important findings of this study is that Hdac3 deletion suppresses Akt signaling by increasing Phlpp1 expression only in prehypertro-
Figure 7. Restoring Akt activity rescues the effects of HDAC inhibition. A, the Phlpp1 wild type and ΔC forms. The pleckstrin homology domain (PH), leucine rich repeats (LRR), phosphatase inhibitor insensitive enzymatic domain (PP2C), and the PDZ binding motif required for Akt interaction (PDZ; the ΔC form lacks this domain) are noted. B, ATDC5 cells were transfected with the Phlpp1ΔC construct or vector control and Western bloting for the indicated proteins was performed. C–G, ATDC5 cells were transfected with caAkt or vector control and then treated with DMSO or 1 μM SAHA for 24 h. C, Western blotting for the indicated proteins was performed. D, transfected cells were placed into micromass culture to simulate chondrocyte differentiation and incubated with SAHA or DMSO. Cultures were fixed and stained with Alcian blue or harvested for total RNA at day 7. Relative expression of matrix genes, including aggrecan (E), osteopontin (F), and MEPE (G), was determined by real-time PCR. *, p < 0.05 compared with DMSO-treated, vector transfected cells.

The profound suppression of Akt, a kinase predominantly associated with the plasma membrane, in chondrocytes deficient in a nuclear co-repressor Hdac3, suggested an indirect mechanism of regulation. One possibility was that Hdac3 increases the levels or activities of a protein phosphatase to restrict Akt activity. There are several reports of other HDACs increasing the levels or activities of a protein phosphatase to restrict Akt activity. For example, Hdac2 suppresses expression of the PI3K protein phosphatase, Inpp5f, in cardiomyocytes and prevents Akt activation by PI3K (48). In other studies, Hdac1 and Hdac6 bound PP1 and prevented its association with Akt in human glioblastoma U87MG cells (49). Hdac3 did not bind PP1 in that cell line (49) but did in diffuse large B-cell lymphoma cells to suppress Akt phosphorylation (50, 51). We did not detect a change in PP1 levels or nuclear localization in the Hdac3–CKO ox chondrocytes. Protein and mRNA levels of Phlpp1, but not Phlpp2 were increased in Hdac3–CKO ox chondrocytes and IMA cultures derived from these mice. Furthermore, Hdac3 localized to the Phlpp1 promoter in TGFB-regulated manner. In preliminary studies with HDAC-inhibited osteoblasts, we also observed reduced phosphorylation of Akt but did not detect increased Phlpp1/2 levels, suggesting a different molecular mechanism is active in osteoblasts than in chondrocytes. We hypothesize that Hdac3 directly represses Phlpp1 expression in chondrocytes by binding to transcription factors (e.g. Smad2/3 and/or co-repressors (e.g. Hdac4 or Ski/ Sno). The Phlpp1 promoter has not yet been cloned or studied.
In summary, Hdac3 is expressed in developing bone and cartilage. Hdac3 deficiency accelerates the hypertrophy gene expression program but also reduces matrix production and decreases chondrocyte cell size. Hdac3-CKO_{osx} chondrocytes also express higher Phlpp1 levels and lower Akt activity. Moreover, downstream regulation of the Akt targets such as mTOR facilitates the specific effects on chondrocyte hypertrophy. These data demonstrate in importance of Hdac3 in promoting Akt signaling during chondrocyte differentiation.

Acknowledgments—We thank Xiaodong Li, David Razidlo and Bridget Stensgard for technical assistance and Meghan McGee-Lawrence for helpful discussions.

REFERENCES

1. Akiyama, H., Furukawa, S., Wakiyaka, S., and Maeda, T. (2006) Cartducin stimulates mesenchymal chondroprogenitor cell proliferation through both extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways. FEBS J. 273, 2257–2263
2. Jin, E. J., Park, K. S., Bang, O. S., and Kang, S. S. (2007) Akt signaling regulates actin organization via modulation of MMP-2 activity during chondrogenesis of chick wing limb bud mesenchymal cells. J. Cell. Biochem. 102, 252–261
3. Rokutanda, S., Fujita, T., Kanatani, N., Yoshida, C. A., Komori, H., Liu, W., Mizuno, A., and Komori, T. (2009) Akt regulates skeletal development through GSK3, mTOR, and FoxOs. Dev. Biol. 328, 78–93
4. Priore, R., Dailey, L., and Basilico, C. (2006) Downregulation of Akt activity contributes to the growth arrest induced by FGF in chondrocytes. J. Cell. Physiol. 207, 800–808
5. Fukai, A., Kawanuma, N., Saito, T., Oshima, Y., Ikeda, T., Kugimiya, F., Higashikawa, A., Yano, F., Ogata, N., Nakamura, K., Chung, U. I., and Kawaguchi, H. (2010) Akt1 in murine chondrocytes controls cartilage calcification during endochondral ossification under physiologic and pathologic conditions. Arthritis Rheum. 62, 826–836
6. Ikegami, D., Akiyama, H., Suzuki, A., Nakamura, T., Nakano, T., Yoshikawa, H., and Tsumaki, N. (2011) Sox9 sustains chondrocyte survival and hypertrophy in part through Phik3ca-Akt pathways. Development 138, 1507–1519
7. Price, I., Zaidi, A. K., Bohensky, I., Srinivas, V., Shapiro, I. M., and Ali, H. (2010) Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress. J. Cell. Physiol. 222, 502–508
8. Carver, B. S., Chapinski, C., Wongvipat, J., Hieronymus, H., Chen, Y., Chandraarlapaty, S., Arora, V. K., Le, C., Koutcher, J., Scher, H., Scardino, P. T., Rosen, N., and Sawyer, C. L. (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19, 575–586
9. Liu, J., Weiss, H. L., Rychahou, P., Jackson, L. N., Evers, B. M., and Gao, T. (2009) Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 28, 994–1004
10. Mulholland, D. J., Tran, L. M., Li, Y., Cai, H., Morim, A., Wang, S., Plaisier, S., Garraway, I. P., Huang, J., Graeber, T. G., and Wu, H. (2011) Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19, 792–804
11. Brognard, J., Sierecki, E., Gao, T., and Newton, A. C. (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol. Cell 25, 917–931
12. Masubuchi, S., Gao, T., O’Neill, A., Eckel-Mahan, K., Newton, A. C., and Sassone-Corsi, P. (2010) Protein phosphatase PHLPPII controls the light-induced resetting of the circadian clock. Proc. Natl. Acad. Sci. U.S.A. 107, 1642–1647
13. McGee-Lawrence, M. E., and Westendorf, J. J. (2011) Histone deacetylases in skeletal development and bone mass maintenance. Gene 474, 1–11
14. Westendorf, J. J. (2007) Histone deacetylases in control of skeletogenesis. J. Cell. Biochem. 102, 332–340
15. Bhaskara, S., Chyla, B. J., Amann, J. M., Knutson, S. K., Cortez, D., Sun,
Z. W., and Hiebert, S. W. (2008) Deletion of histone deacetylase 3 reveals critical roles in 5 phase progression and DNA damage control. Mol. Cell 30, 61–72

16. Montgomery, R. L., Potthoff, M. J., Haberland, M., Qi, X., Matsuzaki, S., Humphries, K. M., Richardson, J. A., Bassel-Duby, R., and Olson, E. N. (2008) Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Investig. 118, 3588–3597

17. Sun, Z., Singh, N., Mullican, S. E., Everett, L. J., Li, L., Yuan, L., Liu, X., Epstein, J. A., and Lazar, M. A. (2011) Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J. Biol. Chem. 286, 33301–33309

18. Knutson, S. K., Chyla, B. A., Amann, J. M., Bhaskara, S., Huppert, S. S., and Hiebert, S. W. (2008) Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J. 27, 1017–1028

19. Razidlo, D. F., Whitney, T. J., Casper, M. E., McGee-Lawrence, M. E., Stengard, B. A., Li, X., Secreto, F. J., Knutson, S. K., Hiebert, S. W., and Westendorf, J. J. (2010) Histone deacetylase 3 depletion in osteo/chondrogenitor cells decreases bone density and increases marrow fat. PloS One 5, e11492

20. Vega, R. B., Matsuda, K., Oh, J., Barbosa, A. C., Yang, X., Meadows, E., McAnally, J., Pomajzl, C., Shelton, J. M., Richardson, J. A., Karsenty, G., and Olson, E. N. (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555–566

21. Correa, D., Hesse, E., Seriwatanachai, D., Kiviranta, R., Saito, H., Yamana, K., Neff, L., Atli, A., Coillard, L., Sitara, D., Maeda, Y., Warming, S., Jenkins, N. A., Copeland, N. G., Horne, W. C., Lanske, B., and Baron, R. (2010) Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev. Cell 19, 533–546

22. Zeng, L., Kempf, H., Murtaugh, L. C., Sato, M. E., and Lassar, A. B. (2002) Ssh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev. 16, 1990–2005

23. Lemon, D. D., Horn, T. R., Cavasin, M. A., Jeong, M. Y., Haubold, K. W., Westendorf, J. J. (2010) Histone deacetylase 6 catalytic activity is induced in response to chronic hypertension. J. Mol. Cell Cardiol. 51, 41–50

24. Rodda, S. J., and McMahon, A. P. (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244

25. Gosset, M., Berenbaum, F., Thiron, S., and Jacques, C. (2008) Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3, 1253–1260

26. Soung do, Y., Dong, Y., Wang, Y., Zuscik, M. J., Schwarz, E. M., O’Keefe, R. J., and Drissi, H. (2010) WNT5A regulates chondrocyte hypertrophy. J. Biol. Chem. 285, 815–822

27. Brown, E. J., Albers, M. W., Shin, T. B., Ichikawa, K., Keith, C. T., Lane, W. S., and Schreiber, S. L. (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758

28. Navé, B. T., Ouwens, M., Withers, D. J., Assi, K., Gao, T., O’Neill, A., Newton, A. C., and Leving, M. K. (2011) Cutting edge: PHLP2 regulates the development, function, and molecular signaling pathways of regulatory T cells. J. Immunol. 186, 5533–5537

29. Haberland, M., Montgomery, R. L., and Olson, E. N. (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42

30. Chen, W. P., Bao, J. P., Hu, P. F., Feng, J., and Wu, L. D. (2010) Alleviation of osteoarthritis by Trichostatin A, a histone deacetylase inhibitor, in experimental osteoarthritis. Mol. Biol. Rep. 37, 2967–2972

31. Joosten, L. A., Leoni, F., Meghilli, S., and Mascagni, P. (2011) Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthrits. Mol. Med. 17, 391–396

32. Nasu, Y., Nishida, K., Miyazawa, S., Komiyama, T., Kadota, Y., Abe, N., Yoshida, A., Hirohata, S., Ohtsuka, A., and Ozaki, T. (2008) Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthritis Cartilage 16, 723–732

33. Chen, E. W., McGee-Lawrence, M. E., and Westendorf, J. J. (2011) Hdac-mediated control of endochondral and intramembranous ossification. Crit. Rev. Eukaryot. Gene Expr. 21, 101–113

34. Fischle, W., Dequiedt, F., Hendzel, M. J., Guenther, M. G., Lazar, M. A., Voelter, W., and Verdin, E. (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57

35. Alvarez-Garcia, O., Carbajo-Pérez, E., Garcia, E., Gil, H., Molinos, I., Rodríguez, J., Ordóñez, F. A., and Santos, F. (2007) Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr. Nephrol. 22, 954–961

36. Oh, C. D., Kim, S. J., Ju, J. W., Song, W. K., Kim, J. H., Yoo, Y. J., and Chun, J. S. (2001) Immunosuppressant rapamycin inhibits protein kinase C α and p38 mitogen-activated protein kinase leading to the inhibition of chondrogenesis. Eur. J. Pharmacol. 427, 175–185

37. Phornphutkul, C., Wu, K. Y., Auyeung, V., Chen, Q., and Gruppuso, P. A. (2008) mTOR signaling contributes to chondrocyte differentiation. Dev. Dyn. 237, 702–712

38. Dunkan, B. G., Cravero, J. D., Delmarco, M., and Loeser, R. F. (2005) IGf-1 stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem. J. 389, 723–729

39. Trivedi, C. M., Luo, Y., Yin, Z., Zhang, M., Zhu, W., Wang, T., Floss, T., Goettlicher, M., Noppinger, P. R., Wurst, W., Ferrari, V. A., Abrams, C. S., Gruber, P. J., and Epstein, J. A. (2007) Hdac2 regulates the cardiac hypertrophic response by modulating GSk3β activity. Nat. Med. 13, 324–331

40. Chen, C. S., Weng, S. C., Tseng, P. H., and Lin, H. P. (2005) Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J. Biol. Chem. 280, 38879–38887

41. Gupta, M., Ansell, S. M., Novak, A. J., Kumar, S., Kaufmann, S. H., and Witzig, T. E. (2009) Inhibition of histone deacetylase overcomes rapamycin-mediated resistance in diffuse large B-cell lymphoma by inhibiting Akt signaling through mTORC2. Blood 114, 2926–2935

42. Martin, M., Potente, M., Janssens, V., Verromden, D., Twijzer, J. C., Rider, M. H., Goris, J., Dimmer, S., Kettmann, R., and Dequiedt, F. (2008) Protein phosphatase 2A controls the activity of histone deacetylase 7 during T cell apoptosis and angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 105, 4727–4732

43. Kaback, L. A., Soung do, Y., Naik, A., Smith, N., Schwarz, E. M., O’Keefe, R. J., and Drissi, H. (2008) Osterix/Sip7 regulates mesenchymal stem cell
mediated endochondral ossification. J. Cell. Physiol. 214, 173–182
53. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J. M., Behringer, R. R., and de Crombrugghe, B. (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29
54. Xiong, J., Onal, M., Jilka, R. L., Weinstein, R. S., Manolagas, S. C., and O’Brien, C. A. (2011) Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241
55. McGee-Lawrence, M. E., Bradley, E. W., Dudakov, A., Carlson, S. W., Ryan, Z. C., Kumar, R., Dadsetan, M., Yaszemski, M. J., Chen, Q., An, K. N., and Westendorf, J. J. (2013) Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone 52, 296–307