Cinética Hipotensiva durante 50 Sessões de Treinamento de Força e Aeróbio em Hipertensos: Ensaio Clínico Randomizado

Resumo

Fundamento: Os treinamentos de força e aeróbio são indicados para o tratamento adjuvante da hipertensão. Entretanto, o número de sessões necessárias até estabilização do efeito hipotensor com o exercício ainda não está claramente estabelecido.

Objetivo: Estabelecer a cinética adaptativa das respostas tensionais em função do tempo e do tipo de treinamento em hipertensos.

Métodos: Foram recrutados 69 hipertensos com idade média de 63,4 ± 2,1 anos, randomizados em um grupo de treinamento de força (n = 32) e outro de treinamento aeróbio (n = 32). Foram realizadas medidas antropométricas e testes de uma repetição máxima (1RM). A pressão arterial (PA) foi medida antes de cada sessão de treinamento com um aparelho de pressão digital de braço. As 50 sessões de treinamento foram categorizadas em quintis. Para comparar o efeito da redução da PA entre os métodos de treinamentos, utilizamos análise de covariância (ANCOVA) bifatorial ajustada para os valores de PA pré-intervenção. As diferenças entre os momentos foram estabelecidas por análise de variância (ANOVA) unifatorial.

Resultados: As reduções na PA sistólica (PAS) e diastólica (PAD) foram de 6,9 mmHg e 5,3 mmHg, respectivamente, com o treinamento de força e 16,5 mmHg e 11,6 mmHg, respectivamente, com o treinamento aeróbio. A cinética hipotensiva da PAS apresentou reduções significativas até a 20ª sessão em ambos os grupos. Observou-se estabilização da PAD na 20ª sessão com o treinamento de força e na 10ª sessão com o aeróbio.

Conclusão: São necessárias 20 sessões de treinamento de força ou aeróbio para alcançar os benefícios máximos de redução da PA. Os métodos investigados proporcionaram padrões cinéticos adaptativos distintos ao longo das 50 sessões. (Arq Bras Cardiol. 2017; 108(4):323-330)

Palavras-chave: Hipertensão; Cinética; Exercício; Técnicas de Exercício e de Movimento; Ensaio Clínico.

Abstract

Background: Resistance and aerobic training are recommended as an adjunctive treatment for hypertension. However, the number of sessions required until the hypotensive effect of the exercise has stabilized has not been clearly established.

Objective: To establish the adaptive kinetics of the blood pressure (BP) responses as a function of time and type of training in hypertensive patients.

Methods: We recruited 69 patients with a mean age of 63.4 ± 2.1 years, randomized into one group of resistance training (n = 32) and another of aerobic training (n = 32). Anthropometric measurements were obtained, and one repetition maximum (1RM) testing was performed. BP was measured before each training session with a digital BP arm monitor. The 50 training sessions were categorized into quintiles. To compare the effect of BP reduction with both training methods, we used two-way analysis of covariance (ANCOVA) adjusted for the BP values obtained before the interventions. The differences between the moments were established by one-way analysis of variance (ANOVA).

Results: The reductions in systolic (SBP) and diastolic BP (DBP) were 6.9 mmHg and 5.3 mmHg, respectively, with resistance training and 16.5 mmHg and 11.6 mmHg, respectively, with aerobic training. The kinetics of the hypotensive response of the SBP showed significant reductions until the 20th session in both groups. Stabilization of the DBP occurred in the 20th session of resistance training and in the 10th session of aerobic training.

Conclusion: A total of 20 sessions of resistance or aerobic training are required to achieve the maximum benefits of BP reduction. The methods investigated yielded distinct adaptive kinetic patterns along the 50 sessions. (Arq Bras Cardiol. 2017; 108(4):323-330)

Keywords: Hypertension; Kinetics; Exercise; Exercise Movement Techniques; Clinical Trial.
Introdução

A prática de exercícios físicos é a estratégia mais utilizada para o tratamento não medicamentoso da hipertensão arterial sistêmica.1,2 São recomendados estímulos aeróbios entre 40–60% do consumo máximo de oxigênio (VO$_{2max}$) duas a três vezes por semana, durante 30 a 60 minutos, realizados em associação a um treinamento de força utilizando exercícios multarticulares com pelo menos uma série de 8–12 repetições durante 30 a 60 minutos.3

Reduções em repouso de 6,9 mmHg na pressão arterial (PA) sistólica (PAS) e 4,9 mmHg na PA diastólica (PAD) já foram reportadas em decorrência de adaptações proporcionadas pelo treinamento aeróbio.4 Apesar do treinamento aeróbio ser a estratégia mais consagrada entre os métodos de treinamento físico para indivíduos hipertensos, outros métodos têm mostrado eficácia na redução da PA, como o treinamento de força dinâmico,5 isométrico,6 combinado (aeróbio e força)7 e intervalado de alta intensidade.8

Estudos utilizando apenas o treinamento de força como estratégia não medicamentosa para o tratamento da hipertensão demonstraram reduções na PA entre 2 a 12 mmHg.9,10 Mesmo após a interrupção do treinamento, seus efeitos perduram por até 4 semanas.11

Entretanto, até onde pudemos identificar, os estudos disponíveis realizando comparações diretas entre diferentes métodos de treinamento, como por exemplo, o treinamento aeróbio versus de força,12,13 não identificaram o número de sessões necessárias até estabilização do efeito hipotensor com o exercício em pacientes hipertensos. Mais precisamente, é importante esclarecer quantas sessões são necessárias para que os programas de treinamento proporcionem ao máximo os benefícios possíveis. Este desfecho não tem sido prioritariamente investigado, e os resultados a respeito do número de sessões ainda são inconclusivos na literatura (entre 12 a 48 sessões),14 dificultando a interpretação das adaptações proporcionadas por diferentes métodos de treinamento e a consequente decisão pela melhor estratégia para o tratamento.15

Assim, o objetivo do presente estudo foi estabelecer a cinética adaptativa das respostas tensionais em função do tempo e do tipo de treinamento (força ou aeróbio) em indivíduos classificados como hipertensos estágio 1.

Método

Delineamento experimental

Ensaios clínicos com dois grupos paralelos, conduzido de acordo com as normas do CONSORT, porém sem registro realizado. Os sujeitos elegíveis foram randomizados em dois grupos independentes de treinamento: força e aeróbio. Na primeira visita, os sujeitos foram instruídos quanto aos procedimentos que seriam realizados no estudo, tiveram suas dúvidas esclarecidas e assinaram um termo de consentimento livre e esclarecido (TCLE). Na segunda visita, foram realizadas as medidas antropométricas e de PA. Na terceira visita foram realizados os testes de uma repetição máxima (1RM) para o grupo força e realizadas recomendações quanto à prescrição de treinamento para o grupo aeróbio. Na quarta visita foram realizadas as adaptações dos participantes aos seus respectivos métodos de treinamento. A partir da quinta visita, foram realizados os protocolos de treinamento para ambos os grupos.

Sujeitos

Foram recrutados para participar do estudo 20 homens e 49 mulheres, cujas características estão descritas na Tabela 1. Todos participaram voluntariamente após terem sido contatados por meio de convites e informações sobre a prática de atividade física para hipertensos, distribuídos no campus da Universidade Federal de Pernambuco. Todos fazem uso de medicamentos para controle da PA (Tabela 2). A pesquisa foi aprovada pelo Comitê de Ética do Centro de Ciências da Saúde, da Universidade Federal de Pernambuco (processo 321/11).

Como critérios de inclusão, os sujeitos deveriam ter hipertensão arterial estágio 1, fazer uso de medicamento anti-hipertensivo controlado e possuir idade superior a 60 anos. Na primeira visita, foi obtida a medida da PA em repouso, que foi considerada como referência inicial (momento zero) e de classificação dos sujeitos quanto ao nível de hipertensão.16

Foram excluídos os sujeitos que faziam uso de betabloqueadores, pois esse tipo de medicamento altera as respostas cardiovasculares, dificultando a interpretação dos dados e o uso da frequência cardíaca para a prescrição do treinamento.17 Também foram excluídos os participantes que possuíssem qualquer outra enfermidade que comprometesse as respostas cardiovasculares ao exercício físico, ou com limitações articulares com consequentes limitações funcionais. A Figura 1 mostra o fluxograma dos sujeitos ao longo do estudo.

Para a randomização, foi utilizada uma ferramenta digital disponível no endereço www.randomizer.org. Os sujeitos elegíveis foram listados numericamente por ordem de chegada por um dos pesquisadores sem acesso a qualquer avaliação. De modo cego, um segundo pesquisador foi responsável pela alocação dos participantes em cada grupo.

Variáveis	Grupo Força	Grupo Aeróbio
Idade (anos)	62,8 ± 1,22	63,9 ± 2,3
Peso (kg)	69,2 ± 13,7	70,6 ± 11,5
PAS	147,0 ± 9,4	151,8 ± 11,5
PAD	95,8 ± 7,9	93,9 ± 10,8
IMC (kg.m$^{-2}$)	30,3 ± 30,1	29,2 ± 4,7
RCQ	0,95 ± 0,21	0,90 ± 0,70
IC	1,55 ± 0,11	1,56 ± 0,23
CC (cm)	98,2 ± 6,0	97,9 ± 13,1
CA (cm)	102,0 ± 9,4	99,2 ± 12,3

PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; IMC: índice de massa corporal; RCQ: relação cintura quadril; IC: índice de conicidade; CC: circunferência da cintura; CA: circunferência do abdômen.
Tabela 2 – Frequência e porcentagem das medicações utilizadas pelos participantes

Drogas Anti-hipertensivas	Grupo Força (n = 28)	Grupo Aeróbio (n = 27)	Frequência Total (n = 55)
Inibidores da enzima conversora da angiotensina	5 (55%)	4 (45%)	9 (16%)
Diuréticos	5 (45%)	6 (55%)	11 (20%)
Antagonistas do receptor de angiotensina II	15 (50%)	15 (50%)	30 (55%)
Antagonistas dos canais de cálcio	3 (60%)	2 (40%)	5 (9%)

Figura 1 – Fluxograma de randomização dos sujeitos.
Procedimentos

Avaliações antropométricas e índices ponderais
Foram mensuradas a massa corporal (kg), a estatura (m) e as circunferências (cm) de cintura e quadril. A massa corporal foi mensurada em balança portátil com precisão de 0,1 kg (PL 200, Filzola S.A., São Paulo, Brasil). A estatura foi medida com um estadiômetro com precisão de 0,1 mm (Estadiômetro Profissional Sanny, São Paulo, Brasil). A circunferência de cintura foi medida no nível mais estreito entre a margem costal e a crista ilíaca com uso de fita antropométrica não flexível com precisão de 0,1 mm (SN-4010, Sanny, São Paulo, Brasil), e a circunferência de quadril foi obtida ao nível da sínfise púbica com uso da mesma fita. Em seguida, foram calculados o índice de massa corporal (IMC = massa corporal / estatura²), a relação cintura/quadril (RCQ = circunferência da cintura / circunferência do quadril) e o índice de concídio (IC = (circunferência do abdômen / 0,169) x √(peso corporal / estatura)).

Medida da pressão arterial
A PA em repouso foi aferida no membro superior esquerdo segundo recomendação da American Heart Association, com um aparelho de pressão digital de braço (Omron Digital BP Monitor, Modelo 11 EM403c, Tóquio, Japão). Considerada o desfecho primário no presente estudo, a PA foi monitorada antes de cada sessão de treinamento, e sua última medida foi realizada 48 h após a 50ª sessão. Os sujeitos foram orientados a não ingerir bebidas alcoólicas e/ou cafeína nas 24 h precedentes às aferições. Para a medição, os sujeitos estavam deitados em decúbito supino e mantiveram o braço na altura do coração.

Teste de uma repetição máxima
O teste de 1RM foi realizado seguindo o protocolo do American College of Sports Medicine. Para tal, foi realizado um aquecimento com 10 repetições com carga leve. Após 5 min, foram realizadas as testagens da carga de 1RM, na qual cada sujeito realizou no máximo cinco tentativas para cada exercício com intervalo de 5 min entre cada uma, tendo sido considerada a maior carga levantada.

Protocolo de treinamento de força
As sessões de treinamento de força foram realizadas em aparelhos (Technogym, Cesena, Itália). Os sujeitos realizaram um programa de treinamento de força alternado por segmento, com dois tipos de série (A e B), com alternância por sessão (48 h). A ordem dos exercícios foi: série A - supino vertical, cadeira flexora, tráqueia, flexão plantar, flexão plantar e abdominais infra; série B - puxada frontal, leg press, abdução de ombros, cadeira extensora, rosca biceps, cadeira adutora e abdominais infra. O programa de treinamento foi realizado três vezes por semana, com três séries de 12 repetições a 50–70% da carga máxima e ajustadas ao longo do programa para o alcance de uma percepção de esforço (Borg) classificada como moderada. Foi administrada recuperação de 1 min entre cada série e exercício.

Protocolo de treinamento aeróbio
As sessões de treinamento aeróbio consistiram em caminhadas em pista realizadas três vezes por semana por 30 min, mantendo a frequência cardíaca entre 40–60% da frequência máxima prevista para idade. A intensidade foi ajustada ao longo das sessões com base na percepção subjetiva de esforço pelo participante, objetivando o alcance de uma intensidade moderada. Todas as sessões de treinamento foram supervisionadas.

Análise estatística
As variáveis quantitativas estão representadas por média ± desvio padrão. As variáveis categóricas estão representadas por suas frequências absolutas e relativas. As 50 sessões de treino foram subdivididas em quintis, estabelecendo cinco momentos comparativos (sessões 1–10, 11–20, 21–30, 31–40, 41–50). O resultado da PA de cada quintil representa a média das 10 sessões agrupadas de cada variável investigada (PAS e PAD) medida antes de cada sessão de treinamento. A medida pré-tratamento das variáveis dependentes foi utilizada como covariable para controlar as diferenças iniciais entre os grupos. As análises realizadas não se basearam na “intenção de tratar”. Após a verificação dos pressupostos conceituais, para comparar o efeito dos métodos de treinamento de força e aeróbio, foi utilizada análise de variancia (ANOVA) unifatorial (método de treino x momento) com medidas repetidas para o segundo fator.

A identificação das diferenças entre os momentos investigados para cada método de treinamento foi estabelecida por análise de variância (ANOVA) unifatorial com medidas repetidas. Para ambas as análises, foi utilizado quando necessário o teste post hoc de Bonferroni. As análises foram realizadas no GraphPad Prism, v. 5.0 (GraphPad Software, San Diego, USA), com nível de significância estabelecido em p < 0,05.

Resultados
Foram realizadas verificações preliminares para garantir que não houve violação dos pressupostos de normalidade, linearidade, homogeneidade de variâncias, homogeneidade de inclinação da regressão e medição contínuas da covariável. A Figura 2 mostra uma comparação da PA ao longo das 50 sessões dos treinamentos de força e aeróbio, e a Tabela 3 destaca as diferenças (Δ) observadas e os seus respectivos intervalos de confiança. A ANCOVA indicou haver uma interação significativa entre os métodos de treinamento em relação à PAS (F [4, 29] = 3,431, p = 0,021), com um tamanho de efeito entre 0,1 e 0,2. Para PAM, o efeito foi de pequeno porte (p = 0,091), com um tamanho de efeito entre 0,1 e 0,2. Na análise sobre os efeitos principais na PAD, não se identificou efeito significativo entre os métodos de treinamento em relação à PAD.
A identificação dos momentos de estabilização da PA em decorrência das estratégias de treinamento está apresentada na Tabela 4 para a PAS e na Tabela 5 para a PAD. A estabilização das reduções da PAS foi observada na 20ª sessão para ambos os métodos. Para a PAD, as reduções foram significativas até a 20ª sessão para o treinamento de força e até a 10ª sessão para o treinamento aeróbio.

Discussão

O presente estudo demonstrou que o treinamento de força foi capaz de reduzir a PAS em 6,9 ± 2,8 mmHg e a PAD em 5,3 ± 1,9 mmHg, enquanto o treinamento aeróbio mostrou reduções de 16,5 ± 3,4 mmHg para a PAS e 11,6 ± 3,6 mmHg para a PAD. A interação entre os métodos investigados indica efeitos hipotensores aparentemente superiores com o treinamento aeróbico comparativamente ao treinamento de força. Entretanto, a comparação das reduções médias padronizadas entre os métodos pela análise do η² demonstrou magnitude pequena para ambas as estratégias. Na análise temporal dos métodos de treinamento, observou-se que a cinética hipotensiva da PAS apresentou reduções significativas até a 20ª sessão para ambos os grupos. A partir deste período, observou-se um platô das adaptações proporcionadas pelo treinamento de força. Este dado apresenta caráter inédito e deve ser considerado nas decisões terapêuticas que utilizem o exercício de modo coadjuvante no tratamento da PA.

Embora não tenha ocorrido uma diferença estatisticamente significativa após a 40ª sessão, parece ter existido uma regressão da PAS para os valores médios próximos da 10ª sessão. Os mecanismos que determinaram tal adaptação não puderam ser identificados. Futuros estudos deverão investigar a hipótese do aumento da rigidez arterial gerado pelo treinamento de força, como sugerido por Okamoto et al.20 Complementarmente, o treinamento aeróbico manteve reduções não significativas até a 50ª sessão, o que clinicamente pode representar algum benefício ao tratamento, em especial para os pacientes no limite de classificação de uma dada categoria (*borderline*), já que uma redução de 10 mmHg na PAS reduz em 13% o risco de mortalidade.21
Tabela 3 – Diferença (Δ) média, desvio padrão e intervalos de confiança das respostas hipotensivas da pressão arterial sistólica (PAS) e diastólica (PAD) em cinco momentos diferentes nos grupos força e aeróbio

Pressão Arterial	Grupo Força	Grupo Aeróbio		
	Média ± DP	IC95%	Média ± DP	IC95%
Sistólica				
Δ 10-0	-7 ± 0,4	-7,2; -6,8	-4,4 ± 0,34	-4,6; -4,2
Δ 20-0	-9,7 ± 8,7	-14,0; -5,4	-9,5 ± 6,1	-13,0; -6,4
Δ 30-0	-9,7 ± 6,1	-13,0; -6,7	-8,0 ± 9,2	-13,0; -3,3
Δ 40-0	-6,7 ± 7,2	-10,0; -3,1	-13,0 ± 9,2	-17,0; -7,8
Δ 50-0	-8,2 ± 8,4	-12,0; -4,0	-16,0 ± 9,2	-20,0; -11,0
Diastólica				
Δ 10-0	-2,8 ± 0,2	-2,9; -2,7	-2,7 ± 0,3	-2,9; -2,6
Δ 20-0	-7,1 ± 5,6	-9,9; -4,3	-5,1 ± 7,0	-8,7; -1,5
Δ 30-0	-7,4 ± 6,1	-10,0; -4,4	-6,0 ± 9,2	-11,0; -1,3
Δ 40-0	-5,9 ± 8,4	-10,0; -1,7	-8,3 ± 7,7	-12,0; -4,4
Δ 50-0	-6,0 ± 8,0	-10,0; -2,0	-9,2 ± 8,6	-14,0; -4,7

Δ - Diferença entre os momentos 10, 20, 30, 40 e 50 em relação ao momento 0. DP: Desvio Padrão; IC: Intervalo de Confiança.

De maneira semelhante, observou-se que o treinamento de força proporcionou redução significativa da PAD até a 20ª sessão, enquanto no treinamento aeróbio houve estabilização a partir da 10ª sessão. Em conjunto, estes resultados proporcionam um melhor entendimento do comportamento adaptativo da PAS e da PAD em decorrência dos métodos de treinamento investigados, visto que os mesmos proporcionaram respostas cinéticas diferentes.
Os mecanismos fisiológicos que explicam as reduções evidenciadas na PA após o exercício físico são causados, por um lado, pela redução do débito cardíaco, em decorrência da diminuição do volume sistólico, da frequência cardíaca e da diminuição do tônus simpático e, por outro, pelo aumento da sensibilidade e do controle barorreflexo, associado a uma ação periférica local, mediada principalmente pelo óxido nítrico, liberado no endotélio em decorrência do estresse gerado pelo exercício físico (shear stress). Em conjunto, esses mecanismos provocam adaptações como a vasodilatação arterial, gerando redução da resistência periférica e, consequentemente, da PA após a prática do exercício físico. Por exemplo, Santana et al. submeteram idosas hipertensas a exercício aeróbico com uma sessão em intensidade moderada por 20 min e outra em intensidade alta por 20 min. Os níveis de óxido nítrico após cada atividade aumentaram 30% e 33%, respectivamente, e houve uma redução significativa da PA com ambas as intervenções.

Em uma metanálise recente que investigou o efeito de diferentes métodos de exercício sobre a magnitude dos efeitos na redução da PA, Cornelissen e Smart não encontraram diferenças no tamanho do efeito entre treinamento aeróbico e o treinamento de força, concluindo que ambos os métodos de treinamento proporcionam reduções da PA em magnitudes semelhantes. Além disso, os resultados reportados pelos autores apresentavam maiores reduções para o treinamento aeróbico. Ambos os aspectos foram semelhantes aos encontrados em nossos estudos. Complementarmente, os resultados do presente estudo acrescentam informações a esses achados, definindo o padrão cinético das respostas pressóricas proporcionadas pelos dois métodos de treinamento investigados. Futuros estudos deverão investigar outras estratégias de treinamento.

Acerca da cinética de estabilização da PA, nós identificamos um único estudo utilizando o treinamento de força, no qual a PAS se estabilizou na 6ª sessão de treinamento, enquanto em nosso estudo foram observadas reduções significativas até a 20ª sessão de treinamento. Para a PAD, o mesmo estudo encontrou que o momento de estabilização ocorreu na 30ª sessão, enquanto em nosso estudo tal fato ocorreu na 20ª sessão. É possível que as diferenças encontradas tenham resultado da diferença da amostragem de dados utilizada, uma vez que o presente estudo considerou as sessões de treinamento agrupadas em quintis. Destaca-se que os protocolos do treinamento de força de ambos os estudos foram similares, realizados com cargas moderadas (entre 50-70% da carga de 1RM), com três séries de 12 repetições.

Em relação ao treinamento aeróbico, Kokkinos et al. compararam as respostas da PA após 48 e 96 sessões de treinamento aos valores iniciais da PA, observando uma queda não significante de 1,0 ± 4,0 mmHg (p = 0,150), porém com substancial redução no uso de medicamentos. Em contrapartida, Seals e Reiling encontraram reduções da PA em idosos após 72 sessões de treinamento aeróbico. Posteriormente, quando realizada 72 sessões adicionais de treinamento aeróbico, houve uma redução adicional de 4,0 ± 4,0 mmHg (p < 0,05) na PAS, porém sem reduções na PAD. Jennings et al. encontraram queda da PA na 30ª sessão de treinamento aeróbico, que correspondeu a 75% do efeito hipotensor da 60ª sessão. Esta mesma proporção foi encontrada no presente estudo. Em conjunto, estas evidências mostram que os resultados do exercício físico no tratamento da PA a longo prazo parecem trazer benefícios apenas na manutenção das reduções iniciais e não resultam em ganhos adicionais.

Apesar do treinamento de força gerar reduções menores quando comparado ao aeróbico, sua recomendação é suportada pela redução das respostas pressóricas nas atividades da vida diária, uma vez que a melhoria da PA promove redução relativa de intensidade na realização das tarefas cotidianas, com consequente amenização das respostas tensionais. Diante disso, o treinamento de força parece mostrar uma estratégia relevante para o controle da PA e manutenção dos aspectos funcionais. Deve-se considerar ainda que, à luz do conhecimento disponível, os efeitos clínicos da redução da PA pelo treinamento de força são semelhantes aos observados pelo treinamento aeróbico.

Algumas limitações do presente estudo precisam ser destacadas. A princípio, o estudo não considerou a dosagem dos medicamentos utilizada por cada sujeito, o que pode ter influenciado as respostas observadas. Entretanto, tal abordagem apresenta maior validade externa considerando que os indivíduos que se exercitam em centros de atividades físicas e clínicas de exercício não interrompem o uso de suas medicações para a realização de suas práticas de atividades físicas. Além disso, o exercício físico é considerado uma medida coadjuvante de tratamento, devendo ser realizado em conjunto com o uso da medicação, que deve ser frequentemente avaliada para possíveis ajustes. Outra limitação foi a falta de utilização da monitorização ambulatorial da PA, que possibilita um registro mais confiável da medida uma vez que avalia os níveis pressóricos por um período maior de tempo. Por fim, a ausência de um grupo controle limita a conclusão de que apenas o exercício foi determinante na queda da PA. Entretanto, evidências prévias estabelecem como certos os benefícios do grupo de exercício (aeróbico e força) em relação a um grupo controle, o que caracteriza como eticamente questionável a decisão de privar um grupo de indivíduos do tratamento com exercício.

Conclusões

Observamos que 20 sessões de treinamento de força ou aeróbico são necessárias para alcançar as reduções tensionais decorrentes do exercício físico e que as reduções tensionais respondem de forma diferente ao longo de 50 sessões. Pode-se esperar até a 20ª sessão de treinamento uma redução média de 0,5 mmHg por sessão na PAS para ambos os métodos de treinamento e de 0,2 e 0,3 mmHg por sessão na PAD para os treinamentos força e aeróbico, respectivamente. A adição de mais sessões de treinamento parece proporcionar menores reduções na PA, mas sem significância estatística. Nossos resultados suportam a recomendação do uso do treinamento de força com benefícios próximos aos obtidos com treinamento aeróbico na redução da PA.

Contribuição dos autores

Concepção e desenho da pesquisa e Obtenção de dados: Damorim IR, Barros GWP, Carvalho PRC; Análise e interpretação dos dados e Análise estatística: Damorim IR, Santos TM; Obtenção de financiamento: Damorim IR, Carvalho PRC; Redação do manuscrito: Damorim IR, Santos.
Artigo Original

Treinamento de força e aeróbio em hipertensos

Fontes de financiamento
O presente estudo foi parcialmente financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Vinculação acadêmica
Não há vinculação deste estudo a programas de pós-graduação.

Referências
1. Mediano MF, Paravidino V, Simão R, Pontes FL, Polito MD. Comportamento subagudo da pressão arterial após o treinamento de força em hipertensos controlados. Rev Bras Med Esporte. 2005;11(6):337-40.
2. Camato PM, Nagueira ID, Cunha ES, Ferreira GM, Mendonça KM, Costa FA, et al. Influência do treinamento resistido realizado em intensidades diferentes e mesmo volume de trabalho sobre a pressão arterial de idosas hipertensas. Rev Bras Med Esporte. 2011;17(4):246-9.
3. ACSM. Guidelines for exercise testing and prescription. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2014.
4. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136(7):493-503.
5. Queiroz AC, Kanegasu K, Forjaz CL. Efeitos de resistência de treinamento em pressão arterial. em idosas. Arq Bras Cardiol. 2010;95(1):135-40.
6. Owen A, Wiles J, Swaine I. Effect of isometric exercise on resting blood pressure: a meta-analysis. J Hum Hypertens. 2010;24(12):796-800.
7. Carvalho PR, Barros GW, Melo TT, Santos PG, Oliveira GT, D’Amorim IR. Efeito dos treinamentos aeróbico, resistido e concorrente na pressão arterial e morfologia de idosos normotensos e hipertensos. Rev Bras Ativ Fis e Saúde. 2013;18(3):363-70.
8. Lamina S. Effects of continuous and interval training programs in the management of hypertension: a randomized controlled trial. J Clin Hypertens (Greenwich). 2010;12(11):841-9.
9. Cardoso CG, Jr., Comides RS, Queiroz AC, Pinto LG, da Silveira Lobo F, Tinucci T, et al. Acute and chronic effects of aerobic and resistance exercise on ambulatory blood pressure. Clinics (Sao Paulo). 2010;65(3):317-25.
10. Stensvold D, Tjonna AE, Skau EA, Aspenes S, Stolen T, Woldvold U, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol (1985). 2010;108(4):804-10.
11. Nascimento Dda C, Tibana RA, Benik FM, Fontana KE, Ribeiro Neto F, Santana FS, et al. Sustained effect of resistance training on blood pressure response and handgrip strength following a detraining period in elderly hypertensive women: a pilot study. Clin Interv Aging. 2014;9:219-25.
12. Blumenthal JA, Siegel WC, Appelbaum M. Failure of exercise to reduce blood pressure in patients with mild hypertension. Results of a randomized controlled trial. JAMA. 1991;266(15):2098-104.
13. Cononie CC, Graves JE, Pollock ML, Phillips MJ, Summers C, Hagberg JM. Effect of exercise training on blood pressure in 70- to 79-yr-old men and women. Med Sci Sports Exerc. 1991;23(4):505-11.
14. Alves LL, Forjaz CL. Influence of aerobic training intensity and volume on blood pressure reduction in hypertensives. Rev Bras Ciênc Mov. 2007;15(3):115-22.
15. Laterza MC, de Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49(6):1298-306.
16. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206-52.
17. Wonisch M, Hofmann P, Fruhwald FM, Kranzer W, Hohl R, Pukan R, et al. Influence of beta-blocker use on percentage of target heart rate exercise prescription. Eur J Cardiovasc Prev Rehabil. 2003;10(4):296-301.
18. Norten K, Olds T, Australian Sports Commission; 1996. Anthropometria: a textbook of body measurement for sports and health courses. Sydney (Australia): UNSW Press; 1996.
19. Cellist RL, Golin LN, Olson RE, McDonald A, Russi GD, Moudgil V. Long-term modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc. 2007;39(5):822-9.
20. Okamoto T, Masuhara M, Ikuta K. Effects of eccentric and concentric resistance training on arterial stiffness. J Hum Hypertens. 2006;20(5):348-54.
21. Ettedad H, Emdin CA, Kian A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957-67.
22. Forjaz CL, Rondon MUPB, Negráio CE. Efeitos hipotensores e simpáticos do exercício aeróbio na hipertensão arterial. Rev Bras Hipertens. 2005;12(4):245-50.
23. Kingwell BA. Nitric oxide as a metabolic regulator during exercise: effects of training in health and disease. FASEB J. 2000;14(12):685-96.
24. Polito MD, Farinati PT. The effects of muscle mass and number of sets during resistance exercise on postexercise hypotension. J Strength Cond Res. 2009;23(8):2351-7.
25. Santana HA, Moreira SR, Assano RM, Cordova C, Campbell CS, et al. Exercise intensity modulates nitric oxide and blood pressure responses in hypertensive older women. Aging Clin Exp Res. 2013;25(1):43-8.
26. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2(1):e004473.
27. Moraes IR, Bacurau RF, Casarin DE, Jara ZP, Ronchi FA, Almeida SS, et al. Chronic conventional resistance exercise reduces blood pressure in stage 1 hypertensive men. Journal of strength and conditioning research / National Strength & Conditioning Association. 2012;26(4):1122-9.
28. Kokkinos PF, Narayan P, Colleran JA, Piattaras A, Notargiacomo A, Reda D, et al. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N Engl J Med. 1995;333(22):1462-7.
29. Seals DR, Reiling ML. Effect of regular exercise on 24-hour arterial pressure in older hypertensive humans. Hypertension. 1991;18(5):583-92.
30. Jennings G, Deakin G, Komer P, Kingwell B, Nelson L. What is the dose-response relationship between exercise training and blood pressure. Ann Med. 1991;23(3):313-8.