Increasing the Setting Time of Local Gypsum (Joss) by the Use of TGP additive

Ahmed S. D. AL-Ridha¹; Ali A. Abbood¹; Essam H. Elaiwi¹; Hussein H. Hussein²; Layth Sahib Dheyab³

1Department of Civil Engineering, Engineering College, Mustansiriyah University, Baghdad, Iraq.
2 Department of Petroleum Engineering, Engineering College, Baghdad-University, Baghdad, Iraq.
3Civil Engineer, Iraqi Engineers Union, Baghdad, Iraq

Email: ahmedsahibdiab@yahoo.com

Abstract: This research presents a study of using an additive for the objective of increasing the setting time of a material used in several aspects in the constructional field, this material is “Local-Gypsum” which is locally called “Joss”, and the additive used in this study is “Trees Glue Powder” denoted by “TGP”. Nine mixtures of Local-gypsum (joss) had been experimented in the current study to find their setting time, these mixes were divided into three groups according to their water-joss ratios (W/J) (0.3, 0.4 and 0.5), and each group was sub-divided into three sub-groups according to their TGP contents (0.0%, 0.3% and 0.6%). It was found that, when TGP is added with the two contents (0.3% and 0.6%), the setting time of local gypsum (joss) is increased, and the percentage of this increase at (TGP content = 0.6%) is doubly multiplied as compared to the percentage at (TGP content = 0.3%). Moreover, when TGP content is increased from (0.0% to 0.6%), the percentage of increase in the setting times of joss is reduced with the increase of (W/J) ratio from (0.3 to 0.5). It was also found that, when (W/J) ratio is increased, the setting time of joss is increased, and this behavior is applicable for all TGP contents (0.0%, 0.3% and 0.6%). While, when (W/J) is increased from (0.3 to 0.5), the percentage of increase in the setting times of joss is reduced with the increase in TGP contents from (0.0% to 0.6%).

1. Introduction

In the latest years, gypsum products had been extremely utilized as interior finishing. Homes in the United States and Europe, are either constructed from or mostly contain gypsum-based products which are preferred by architectural engineers for their outstanding characteristics, such as reachable obtainability of inexpensive raw materials, volumetric stability, acoustic and thermal insulation, fire resistance, very low toxicity and the comparatively low energy and temperatures required in its manufacture [1]. Gypsum is also utilized in numerous implementations beyond the constructional field.
In the current study, ordinary potable water was utilized for mixing all local-gypsum (joss) mixtures.
Nine mixtures of Local-gypsum (joss) had been experimented in the current study to find their setting time, these mixes were divided into three groups according to their W/J ratios (0.3, 0.4 and 0.5), and each group was sub-divided into three sub-groups according to their TGP contents (0.0%, 0.3% and 0.6%). The constituent materials: (Joss, TGP and water) of all mixes were weighted quantities. The mixes details are illustrated in table (1). The experimental work plan and the specimens groups are shown in the flow chart of figure (1).

Figure (1) : Experimental Work Plan
Table (1) : Details of mixes .

Mix No.	TGP contents by weight(%)	(W/J) ratios	Components for (100g) of Local Gypsum (Joss)
Mix 1	0.0	0.3	(100g) Joss + (0.0g) TGP + (30g) water
Mix 2	0.3	0.3	(100g) Joss + (0.3g) TGP + (30g) water
Mix 3	0.6	0.3	(100g) Joss + (0.6g) TGP + (30g) water
Mix 4	0.0	0.4	(100g) Joss + (0.0g) TGP + (40g) water
Mix 5	0.3	0.4	(100g) Joss + (0.3g) TGP + (40g) water
Mix 6	0.6	0.4	(100g) Joss + (0.6g) TGP + (40g) water
Mix 7	0.0	0.5	(100g) Joss + (0.0g) TGP + (50g) water
Mix 8	0.3	0.5	(100g) Joss + (0.3g) TGP + (50g) water
Mix 9	0.6	0.5	(100g) Joss + (0.6g) TGP + (50g) water

3.3. Testing program

The experimental work of the current study was carried out in the laboratory of constructional materials in the College of Engineering at Mustansiriyah University, the aforementioned laboratory is an integrated laboratory that contains many testing machines, and the several tests of many researches such as [17-24] was carried out in that laboratory.
3.3.1. Setting Time

One of the most shortcomings of all gypsum composites, specifically in preparing the paste is that its setting time is small (i.e. in comparison with cementitious or concrete pastes) and this shortcoming doesn't provide enough comfort for the craftsmen to do their work freely, this encourages us to assess the effectiveness of our additive (TGP) in increasing the setting time of local-gypsum (joss) [10].

Setting time is often measured by a device called (Vicat apparatus), which consist of a 300gm movable rod ended with a (50mm) long and (1mm) in diameter needle, fixed by a holder with a graduated plate and a cylindrical pan of (70×40)mm dimensions, the apparatus is shown in figure (1), and the test is performed according to ASTM : C472-99 [25].

4. Results & Discussions

4.1. Effect of (TGP) content on Setting Time of Joss with various (W/J) ratios.

Table (2) and figure (3) present a study of the effect of adding TGP with two contents (0.3% and 0.6%) on the setting time of joss for the three (W/J) ratios (0.3, 0.4 and 0.5). It is noticed that the setting time is increased with increasing TGP content, and this behavior is applicable for all (W/J) ratios (0.3, 0.4 and 0.5) as compared with the reference mixes that are free of TGP (Mix1, Mix4 and Mix7) respectively. This behavior might be attributed to the emulsifying nature of (TGP + water) solution coating some of gypsum particles with a thin film of it and hence isolating them from their contribution in the hydration process, and this outcome is in line with that stated by Hatim et al.[26].

It can also be noticed from the above mentioned table (2) and figure (3), that when TGP is added with (0.6%) content, the percentage of increasing in the setting time (as compared with the reference mix) is doubly multiplied in comparison with the percentage of increasing in setting time when TGP is added with (0.3%) content (as compared with the same reference mix), and this matter is applicable for the three (W/J) ratios.

Moreover, one can realize that when TGP is added with content (0.3% and 0.6%), the percentage of increasing in the setting time of joss is reduced with the increase in (W/G) ratio from (0.3) to (0.5).

Mix No.	(W/J) ratios	TGP contents (by weight) (%)	Setting Times (min.)	Percentages of Increasing (%)
Mix 1	0.0	1.9	0.0	-----
Mix 2	0.3	5.5	0.3	184.5
Mix 3	0.6	14.8	0.6	667.4
Mix 4	0.0	4.3	0.0	-----
Mix 5	0.2	12.3	0.2	190.2
Mix 6	0.4	28.0	0.4	558.8
Mix 7	0.0	6.1	0.0	-----
Mix 8	0.3	13.8	0.3	127.4
Mix 9	0.6	35.3	0.6	480.8

Table (2) : Effect of TGP content on Setting Time of Joss with various (W/J) ratios
4.2. Effect of (W/J) ratios on Setting Time of Joss with various TGP contents.

Table (3) and figure (4) studies the influence of increasing (W/J) ratios (from 0.3 to 0.5) on the setting time of joss for the three contents of TGP (0.0%, 0.2% and 0.4%). They reveal that the setting time is increased when (W/J) ratio is increased as compared with the reference mixes (Mix1, Mix2 and Mix3), and this behavior is applicable for the three contents of TGP.

Table (3) and figure (4) also show that the percentage of increasing in the setting time is enlarged with the increase in (W/J) ratios (from 0.3 to 0.5) in comparison with the reference mixes which have (W/J = 0.3 : i.e. Mix1, Mix2 and Mix3), and this behavior is applicable for all contents of TGP.

In addition, it can be noticed that when (W/J) ratio is increased from (0.3 to 0.5), the percentage of increase in the setting time of joss is reduced when TGP contents are increased from (0.0% to 0.6%).

Table (3): Effect of (W/J) ratios on Setting time of Joss with various TGP contents.

Mix No.	TGP contents weight (%)	(W/J) ratios	Setting Times (min.)	Percentages of increasing (%)
Mix 1	0.0	0.3	1.9	-----
Mix 4	0.0	0.4	4.3	119.9
Mix 7	0.0	0.5	6.1	214.7
Mix 2	0.3	0.3	5.5	-----
Mix 5	0.3	0.4	12.3	124.2
Mix 8	0.3	0.5	13.8	151.5
Mix 3	0.6	0.3	14.8	-----
Mix 6	0.6	0.4	28.0	88.8
Mix 9	0.6	0.5	35.3	138.2
5. Conclusions

1. When TGP is added with the two contents (0.3% and 0.6%), the setting time of local gypsum (joss) is increased, and the percentage of this increase at (TGP content = 0.6%) is doubly multiplied as compared to the percentage at (TGP content = 0.3%).

2. When TGP content is increased from (0.0% to 0.6%), the percentage of increase in the setting times of joss is reduced with the increase of (W/J) ratio from (0.3 to 0.5).

3. When (W/J) ratio is increased, the setting time of joss and the percentage of its increase are both increased, and this behavior is applicable for all TGP contents (0.0%, 0.3% and 0.6%).

4. When (W/J) is increased from (0.3 to 0.5), the percentage of increase in the setting times of joss is reduced with the increase in TGP contents from (0.0% to 0.6%).

6. References

[1] Khalil, A.A.; Gad, G.M. “Mineral and chemical constitutions of the UAR gypsum raw materials”. Indian Ceramics, 16 (1972) 173 - 177. Cited by reference [9].

[2] Combe, E. C.; Smith, D. C. “Some Properties of Gypsum Plaster” . J. Brit. Dent., 17 (1964) 237-245. Cited by reference [9].

[3] Peters, C. P.; Hines, J. L.; Bachus, K. N.; Craig M. A.; Bloebaum, R. D. “Biological Effect of Calcium Sulfate as Bone Graft Substitute in Ovine Metaphyseal Defects” J. Biomed. Mater. Res. A., 76, No3 (2005) 456-462. Cited by reference [9].

[4] Craig, R. G. “Restorative Dental Materials” 7th Edition, St. Louis, Toronto, and Princeton. The C.V. Mospy comp., (1989) 303-330. Cited by reference [9].

[5] Papageorgiou, A.; Tzouvalas, G.; Tsimas, S. “Use of Inorganic Setting Retarders in Cement Industry” Cem. Concr. Res., 27 (2005) 183-189. Cited by reference [9].
[6] El-Maghraby, H.F.; Gedeon, O.; Khalil, A.A. “Formation and Characterization of Poly(vinyl alcohol – co – vinyl Acetate – co-itaconic Acid/Plaster Composites: part II: Composite Formation and Characteristics” Ceramic Silikaty 51, n° 3 (2007) 168-172. Cited by reference [9].
[7] Bas pinar, S. M.; Kahraman, E. “Modifications in the properties of gypsum construction element via addition of expanded macroporous silica granules”. Construction and Building Materials 25 (2011) 3327–3333. http://dx.doi.org/10.1016/j.conbuildmat.2011.03.022 Cited by reference [9].
[8] Khalil, A.A.; Abdel kader, A. H. “Preparation and physicomechanical Properties of Gypsum Plaster-Agro Fiber Wastes Composites” Interceram Int. J. Refractories Manual (Special Technologies) 21(2010), 62-67.Cited by reference [9].
[9] A. A. Khalil, A. Tawfik, A. A. Hegazy, M. F. El-Shahat "Effect of different forms of silica on the physical and mechanical properties of gypsum plaster composites" Materiales de Construcción Vol. 63, 312, 529-537, octubre-diciembre 2013
[10] AL-Ridha, Ahmed SD, Ali A. Abbood, Ali F. Atshan, Hussein H. Hussein, Layth Sahib Dheyab, Mohammed Sabah Mohialdeen, and Hameed Zaier Ali. "A Comparative Study Between the Individual, Dual and Triple Addition of (SF), (TGP) and (PVA) for Improving Local Gypsum (Juss) Properties.” In International Congress and Exhibition" Sustainable Civil Infrastructures”, pp. 65-79. Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-34249-4_7
[11] AL-Ridha, S. D., Ali A. Abbood, and Hussein H. Hussein. "Improvement of gypsum properties using SF additive." International Journal of Science and Research 6.8 (2015): 504-509.
[12] Abbood, Ali, Atshan Ali, and AL-Ridha Ahmed. "Improvement of Local Gypsum Plaster Setting Time by the Combined Usage of (TGP) and (PVA) Additives." ICEAT 2019, 2019.
[13] Abbood A. A. "Improvement of Gypsum Characteristics using (T.G.P.) and (P.V.A.) Additives", International Journal of Science and Research (IJSR), Volume 7, Issue 2, February 2018.
[14] Ahmed S. D. AL-Ridha , Ali A. Abbood , Hussein H. Hussein , Hameed Zaier Ali , Mohammed Sabah Mohialdeen,” Evaluation of the Combined Effect of (T.G.P.) and (S.F.) Additives on the Properties of Local Juss” 13th International Conference on Recent Trends in Engineering Science and Management, P183 – 202.
[15] F. Wirsching, “Drying and Agglomeration of Flue Gas Gypsum, (ed. Kuntze, R., A.)," The Chemistry and Technology of Gypsum Philadelphia: American Society for Testing and Materials, 1984, pp 161-174. Cited by reference. Padevêt, P. Tesárek, T. Plachý "Evolution of mechanical properties of gypsum in time", international journal of mechanics , Issue 1, Volume 5, 2011
[16] Zeki A. Aljubouri Auday M. Al-Rawas "Physical Properties and Compressive Strength of the Technical Plaster and Local Juss" Iraqi Journal of Earth Sciences, Vol. 9, No. 2, pp 49-58, 2009
[17] Al-Ridha, A. S., Atshan, A. F., Mahmoud, K. S., & Hameed, Q. K. (2019). Effect of Strengthening of Steel Beams with Variable Length by Using Carbon Fiber. Journal of Engineering, 2019. https://doi.org/10.1155/2019/1631692
[18] Al-Ridha, A. S., Hameed, Q. K., Atshan, A. F., Abbood, A. A., & Dheyab, L. S. (2020). Evaluation of strengthening steel beams using the technique of carbon fiber confinement by a steel plate (CFCSP). Advances in Civil Engineering Materials, 9(1), 53-66. https://doi.org/10.1502/ACEM20190164
[19] Yousif, Mustafa Ahmead, Kamal Shahada Mahmoud, and Ali Farhan Atshan. "The Effect of Prestressing Strands on the Shear Behaviours of Steel Beams." IOP Conference Series: Materials Science and Engineering. Vol. 671. No. 1. IOP Publishing, 2020. https://doi.org/10.1088/1757-899X/671/1/012152
[20] Ali Atshan, Abbood Ali, and AL-Ridha Ahmed. " Evaluating the Efficiency of Strengthening Hot-Rolled I-Sectioned Steel Beams by using Additional Plates and Inclined Stiffeners with Various Widths." ICEAT 2019, 2019.
[21] AL-Ridha, Ahmed SD, Ali F. Atshan, Hussein H. Hussein, Ali A. Abbood, Layth Sahib Dheyab, and Ayoob Murtadha Alshaikha Faqri. "Evaluation of Tensile Strength and Durability of Microbial Cement Mortar." In International Congress and Exhibition" Sustainable Civil Infrastructures”, pp. 80-89. Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-34249-4_8
[22] AL-Ridha, Ahmed SD, Ali Kadhim Ibrahim, Hayder Mohammed AL-Taweel, and Layth Sahib Dheyab. "Effect of Steel Fiber on Ultrasonic Pulse Velocity and Mechanical Properties of Self-Compact Light Weight Concrete." In IOP Conference Series: Materials Science and Engineering, vol. 518, no. 2, p. 022017. IOP Publishing, 2019. https://doi.org/10.1088/1757-899X/518/2/022017

[23] AL-Ridha, Ahmed SD, Ali A. Abbood, Saeb F. Al-Chalabi, Abaa M. Aziz and Layth Sahib Dheyab. "A Comparative Study between the Effect of Steel Fiber on Ultrasonic Pulse Velocity (UPV) in Light and Normal Weight Self-Compacting Concretes" In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020

[24] AL-Ridha, Ahmed SD, Ali A. Abbood, and Ali F. Atshan. "Assessment of the Effect of Replacing Normal Aggregate by Porcelinite on the Behaviour of Layered Steel Fibrous Self-Compacting Reinforced Concrete Slabs under Uniform Load." Journal of Engineering 2020 (2020). https://doi.org/10.1155/2020/3650363

[25] ASTM C472 – 99 (Reapproved 2009) : " Standard Test Methods for Physical Testing of Gypsum Plaster and Gypsum Concrete ", Annual Book of ASTM Standard, September , 1 , 2009 .

[26] Hatim, Nadira A. "Modification of gypsum products (Part I): Physical and mechanical properties of adding some additives on different types of gypsum products." Al-Rafidain Dental Journal 6 (2007): 206-212 .

Acknowledgments

Authors desire to acknowledging: Mustansiriyah-University / Baghdad / Iraq. (www.uomustansiriyah.edu.iq).