A Generalized result of Output Stabilizability

Faouzi Haddouchi

Department of Physics, University of Sciences and Technology
El M’naouar, BP 1505, Oran, 31000, Algeria
fhaddouchi@gmail.com

Abstract

Output stabilizability of a class of infinite dimensional linear systems is studied in this paper. A criterion for the system to be output stabilizable by a linear bounded feedback $u = Fx$, $F \in L(Z, \mathbb{R}^p)$ will be given.

Mathematics Subject Classification: 93D15, 93C25

Keywords: Infinite dimensional systems, controllability, state stabilizability, output stabilizability

1 Introduction

In this note, inspired by the result in [2] for output stabilizability of the diffusion equation, we proposed a new output stabilizability criterion for a class of infinite dimensional linear systems with multi-actuators and multi-sensors. The system we consider is described by the abstract differential equation

$$\begin{cases}
\dot{x} = Ax + Bu \\
x(0) = x_0
\end{cases} \tag{1}$$

where A generates a strongly continuous semigroup $(S(t))_{t \geq 0}$ on Z (state space); U is the control space and the control function $u(.) \in L^2(0, T; U)$; $B \in L(U, Z)$; U and Z are supposed to be a separable Hilbert spaces. The system (1) is augmented by the output equation

$$y = Cx \tag{2}$$

where $C \in L(Z, Y)$, Y is the observation (output) space, a separable Hilbert space, $y(.) \in L^2(0, T; Y)$.

The system we shall characterize its output stabilizability is assumed to be controlled via p actuators $(\Omega_i, g_i)_{1 \leq i \leq p}$ and takes the form

$$\frac{\partial z}{\partial t}(\xi, t) = \Delta z + kz + \sum_{i=1}^{p} g_i(\xi)u_i(t) \quad \text{in} \: \Omega \times (0, T),$$

with boundary conditions

$$z(\xi, t) = 0 \quad \text{in} \: \partial \Omega \times (0, T),$$

and the initial condition

$$z(\xi, 0) = z_0(\xi) \quad \text{in} \: \Omega,$$

with the output function given by

$$y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_q(t) \end{bmatrix},$$

where

$$y_i(t) = \int_{D_i} f_i(\xi)z(\xi, t)d\xi,$$

and Δ is the Laplacian operator, Ω is bounded and open in \mathbb{R}^n with smooth boundary $\partial \Omega$, $g_i \in L^2(\Omega_i)$, $\Omega_i \subset \Omega$, $\Omega_i \cap \Omega_j = \emptyset$, $k > 0$ and $(D_i, f_i)_{1 \leq i \leq q}$ is a suite of sensors with $D_i \subset \Omega$ and $f_i \in L^2(D_i)$. The above system (3)-(7) is a special form of (1)-(2) where $Z = L^2(\Omega)$, $A = \Delta + kI$, $D(A) = H^1_0(\Omega) \cap H^2(\Omega)$ and

$$B \begin{bmatrix} u_1 \\ \vdots \\ u_p \end{bmatrix} = \sum_{i=1}^{p} g_i u_i.$$

Clearly the output function (6) may be written in the form

$$y(t) = Cx(t).$$

If the associated eigenfunctions are φ_{nj} then

$$S(t)x = \sum_{n=1}^{\infty} \exp(\mu_n t) \sum_{j=1}^{r_n} \langle x, \varphi_{nj} \rangle \varphi_{nj}$$

where r_n is the multiplicity of the eigenvalue μ_n.
In this work the case when the eigenvalue are \(\mu_n \) with multiplicity \(r_n \) is treated. Our results extend and complete those established in [2].

This paper is organized as follows: We recall in section 2, the notions of approximate controllability, state and output stabilizability for infinite dimensional systems defined in Hilbert spaces.

In section 3, we give a generalization of the results presented in [2].

2 Preliminaries

We consider the system \((S)\) augmented by the output equation \((E)\) defined respectively by (1) and (2).

Definition 2.1 We say that the system \((S)\) (or the pair \((A,B)\)) is approximately controllable if \(\mathcal{N} = \{0\} \).

Where \(\mathcal{N} = \bigcap_{t \geq 0} \ker B^*S^*(t) \).

\(\mathcal{L} = \mathcal{N}^\perp \) and \(\mathcal{N} \) are called, the controllable and uncontrollable subspaces of the system \((S)\), respectively.

According to [4], we can decompose the state space \(Z \) as \(\mathcal{L} \oplus \mathcal{N} \) and then the system (1)-(2) can be written as:

\[
\begin{align*}
&\dot{x}_1 = A_{11}x_1 + B_1u \\
&\dot{x}_2 = A_{22}x_2 \\
y &= y_1 + y_2
\end{align*}
\]

where \(y_i = C_ix_i \), for \(i = 1,2 \).

Definition 2.2 The system \((S)\) is said to be exponentially stabilizable if there is an \(F \in L(Z,U) \) such that the semigroup \(S_{A+BF}(t) \) is exponentially asymptotically stable.

Where \(S_{A+BF}(t) \) is the semigroup generated by \(A + BF \).

Definition 2.3 The system \((S)\) augmented by the output equation \((E)\) is output stabilizable by a bounded feedback if there is an \(F \in L(Z,U) \) such that the output \(y(t) \) of the closed system

\[
\dot{x}(t) = (A+BF)x(t), \ x(0) = x_0
\]

is exponentially stable, i.e., \(y(t) \) converges to zero when \(t \to \infty \), for every \(x_0 \in Z \). See e.g.,[1],[3], [4].
3 Main Results

We need the following lemmas in the proof of our proposition.

Lemma 3.1 The uncontrollable subspace \mathcal{N} of the system (3)-(7) is of the following form

$$\mathcal{N} = \text{span}\left\{\sum_{j=1}^{r_n} \alpha_j \varphi_{nj} / B_n^* v = 0, \quad v = (\alpha_1, \ldots, \alpha_{rn})^T\right\}$$

(13)

where $B_n = (\langle g_i, \varphi_{nj} \rangle_{L^2(\Omega_i)}), \ 1 \leq i \leq p, \ 1 \leq j \leq r_n$ and $\text{span}\{e_m, m \in I\}$ denotes the closed subspace generated by the vectors $e_m, m \in I$. T means transpose.

Proof: As in the proof of Lemma 3.2 in [2], we have $B^*S^* (t) x = 0$ if and only if

$$\langle E(\mu_n) x, g_i \rangle = 0, \text{ for all } n \geq 1, \ i = 1, \ldots, p$$

(14)

where

$$E(\mu_n) = \sum_{j=1}^{r_n} \langle \cdot, \varphi_{nj} \rangle \varphi_{nj}$$

(15)

Noting that it is easy to see that

$$J = \{n / \text{rank} B_n < r_n\} = \{n / \ker B_n^* \neq \{0\}\}.$$ \hfill (16)

Let $x \in E(\mu_{n_0}) \mathcal{N}, x \neq 0$, for a certain $n_0 \in J$. Then

$$B_{n_0}^* v_{n_0} = 0,$$

(17)

with $v_{n_0} = \left(\langle x, \varphi_{n_01}\rangle, \ldots, \langle x, \varphi_{n_0r_n}\rangle\right)^T \neq 0$.

This shows that

$$\mathcal{N} \subset \text{span} \left\{\sum_{j=1}^{r_n} \alpha_j \varphi_{nj} / B_n^* v = 0, \quad v = (\alpha_1, \ldots, \alpha_{rn})^T\right\}$$

The remaining part of the proof is easy to establish and will be omitted here.

From the previous Lemma we deduce the following consequence

Lemma 3.2 The controllable subspace \mathcal{L} of the system (3)-(7) is given by

$$\mathcal{L} = \text{span} \left\{\sum_{j=1}^{r_n} \alpha_j \varphi_{nj} / (\alpha_1, \ldots, \alpha_{rn})^T \in \text{Im} B_n\right\}$$

(18)

where $B_n = (\langle g_i, \varphi_{nj} \rangle_{L^2(\Omega_i)}), \ 1 \leq i \leq p, \ 1 \leq j \leq r_n$.

We are now in position to prove the main result of this section.

Proposition 3.3 Suppose there are \(p \) actuators \((\Omega_i, g_i)_{1 \leq i \leq p}\) and \(q \) sensors \((D_i, f_i)_{1 \leq i \leq q}\), then the system (3)-(7) is output stabilizable if and only if

\[
\mu_n < 0, \text{ for all } n \text{ in } K
\]

where

\[
K = \{ n/ \text{Im}T_n \neq \{0\} \text{ and ker } B_n^* \neq \{0\} \}
\]

and \(B_n = (\langle g_i, \varphi_{nj} \rangle_{L^2(\Omega_i)}), T_n = (\langle f_k, \varphi_{nj} \rangle_{L^2(D_k)}), 1 \leq i \leq p, 1 \leq j \leq r_n, 1 \leq k \leq q \).

Proof: Similar to the proof of Proposition 3.4 in [2], it suffices to study the stability of the output \(y_2 \) on the observable subspace \(\mathcal{W} \) of the subsystem

\[
\begin{align*}
x_2^1 &= A_{22}^1 x_2^1 \\
x_2^2 &= A_{22}^2 x_2^2 \\
y_2 &= C_2^2 x_2^2
\end{align*}
\]

where

\[
A_{22} = \begin{pmatrix} A_{22}^1 & 0 \\ 0 & A_{22}^2 \end{pmatrix}, \quad C_2 = \begin{bmatrix} 0 & C_2^2 \end{bmatrix},
\]

\[
x_{02} = \begin{bmatrix} x_{01}^2 \\ x_{02}^2 \end{bmatrix} \in \mathcal{M} \oplus \mathcal{W}, \quad \mathcal{W} = \mathcal{M}^\perp, \quad x_2(0) = x_{02}, \quad x_0 = \begin{bmatrix} x_{01} \\ x_{02} \end{bmatrix} \in \mathcal{L} \oplus \mathcal{N}
\]

and

\[
\mathcal{W} = \text{span}\left\{ \sum_{j=1}^{r_n} \alpha_j \varphi_{nj} \mid v = (\alpha_1, ..., \alpha_{r_n})^T \in \tilde{\mathcal{V}} \right\}
\]

with \(\tilde{\mathcal{V}} = \text{Im}T_n \cap \ker B_n^* \).

The output \(y_2 \) of the subsystem (21) is given by

\[
y_2(t) = \begin{bmatrix} \sum_{n \in K} \exp(\mu_n t) \sum_{j=1}^{r_n} \langle x_0^2, \varphi_{nj} \rangle \langle f_1, \varphi_{nj} \rangle \\ \vdots \\ \sum_{n \in K} \exp(\mu_n t) \sum_{j=1}^{r_n} \langle x_0^2, \varphi_{nj} \rangle \langle f_q, \varphi_{nj} \rangle \end{bmatrix}
\]

where

\[
K = \{ n/ \text{Im}T_n \neq \{0\} \text{ and ker } B_n^* \neq \{0\} \},
\]
The sufficient condition is straightforward. Now we shall prove the converse. Suppose that the output $y_2(t)$ is exponentially stable but for a certain $n_0 \in K$, $\mu_{n_0} \geq 0$, then there are positive M and ω such that

$$\| y_2(t) \|_{\mathbb{R}^q} \leq M \exp(-\omega t) \| x_0 \| \quad \text{for every } x_0 \in Z$$

(26)

Set $x_0 = \varphi_{n_0}$, in equation (26) where $j \in \{1, ..., r_{n_0}\}$ (j fixed arbitrary)

Then we obtain

$$|\left\langle f_k, \varphi_{n_0} \right\rangle| \leq M \exp\left\{-(\omega + \mu_{n_0})t\right\} \quad \text{for all } t \geq 0, \ k = 1, ..., q.$$

(27)

Thus $\text{Im} T_{n_0} = \{0\}$ and this contradicts the assumption that $n_0 \in K$.

Remark 3.4 It is noteworthy that if $p \geq \sup_n r_n$ and $\text{rank } B_n = r_n$, for all n, then the approximate controllability is achieved and by virtue of Theorem 7.2 in [3], the system (3)-(7) is output stabilizable.

References

[1] A.V. Balakrishnan, *Applied Functional Analysis*, Springer-Verlag, Second Edition, Berlin, 1981.

[2] F. Haddouchi, On the Output Stabilizability of the Diffusion Equation, Applied Mathematical Sciences, Vol. 4, no. 31, (2010), 1527 - 1534.

[3] R. Triggiani, On the Stabilizability Problem in Banach Space, J. Math. Anal. Appl., **52** (1975), 383-403.

[4] R. Rabah, D. Ionescu, Stabilization Problem in Hilbert Spaces, Int. J. Control., Vol. 46, no. 6, (1987), 2035-2042.