Pharmaceutical Standardization
Pharmacognostical and analytical study of Tulsi-Amla-Yasti Ghrita

Debdas Datta, Harimohan Chandola, S. K. Agarwal, Vinay J. Shukla, Preeti N. Pandya

Reader, Rajib Gandhi Memorial Ayurvedic College and Hospital, Kushadanga, West Bengal, 1Professor and Head, Department of Kaya Chikitsa, Institute for Postgraduate Teaching and Research in Ayurveda, 1Professor and Head, Department of Radiotherapy, MP Shah Medical College, 3Head, Pharmaceutical Chemistry Laboratory, 1Ph.D. Scholar, Pharmacognosy Laboratory, Institute for Postgraduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India

Abstract

Tulasi Amla Yashti Ghrita is an Ayurvedic formulation, which is beneficial in the management of the side effects of Head and Neck Malignancies induced by Radiotherapy and Chemotherapy. A pharmacognostical study involving both the macroscopic and powder microscopy of raw drugs of _Tulasi Amla Yashti Ghrita_ and a physicochemical analysis of the finished product were carried out, to evaluate the quality of the formulation. The specific gravity of the formulation was 0.9130 and pH was 3.5. Thin layer chromatography (TLC) and high performance thin layer chromatography (HPTLC) were carried out after organizing the appropriate solvent system, in which five spots were distinguished in TLC and nine spots in HPTLC. Most of the Rf values for the spots observed were identical. The observations could be considered to be the reference standards in future studies.

Key words: Chemotherapy, high performance thin layer chromatography, radiotherapy, _Tulasi Amla Yashti Ghrita_

Introduction

The vital responsibility of herbal medicine in serving the therapeutic requirements of the human populace worldwide has been identified from ancient times to the modern era. However, a key obstacle that has hindered the acceptance of alternative medicines in developed countries is the lack of documentation and rigorous quality control. A need is always felt for the proper documentation of research studies carried out on traditional systems of medicine. Keeping this in mind, it becomes extremely important to develop the standards of plant-based medicines.

For accurate identification, authentication, and standardization of herbal medicines, pharmacognosy is important and necessary. _Tulasi Amla Yashti Ghrita_ (TAYG) is one of the most potential formulations, with some modification in the previous _Anubhuta Yoga_, which is claimed to be effective in the management of complications induced by Radiotherapy and Chemotherapy.[1] Cancer is the most dreaded disease spreading with continuance and increasing in the twenty-first century. It is becoming the most common cause of death in the world.[2] In India, Head and Neck Cancers (HNCA) account for 30-40% of the cancers of all sites.[3] Tobacco- and smoking-related oral cancer accounts for about 33%. Ayurveda, the Indian traditional system of medicine, has many options in this regard, and thousands of combinations remain unexplored. TAYG is one among them. The formulation taken is an _Anubhuta Yoga_. The objective of the study is to develop possible quality control parameters of the drug.

Materials and Methods

The dried fruits of _Amalaki_ (_Emblica officinalis_ Gaertn.) were collected from the local market of Ahmedabad, Gujarat, and _Tulasi_ (_Ocimum sanctum_ Linn.), _Yastimadhu_ (_Glycyrrhiza glabra_ Linn.), and _Goghrita_ (Cow ghee) were procured from the local market of Jamnagar, Gujarat. The herbal material was identified for its genuinity in the Pharmacognosy Laboratory of the Institute. Physical impurities were removed from the herbal drugs, and they were dried below 45°C, and made into a coarse powder to use for the pharmacognostical study. _Tulasi Amla Yashti Ghrita_ [Table 1] was prepared as per the classical reference. A physicochemical analysis of the final product was carried out in the Pharmaceutical Chemistry Laboratory of the institute.

Macrosopy

The raw drugs and powders were separately studied by

Address for correspondence: Dr. Debdas Datta, Gangpur, P.O.- Joteram, Dist.- Burdwan, West Bengal, India. E-mail: debdas.ayurveda@gmail.com
organoleptic and morphological characters like Rupa (Color), Rasa (Taste), Gandha (Odor), Sparsha (Touch), and so on.

Microscopy

The powders of the drugs were studied microscopically and the characters were observed after proper mounting and staining with Phloroglucinol and HCl (used for identification of Lignified elements). Photographs of the microscopical powder characters were taken using a Canon digital camera attached to a Zeiss microscope, in the Pharmacognosy Laboratory.

Physicochemical parameters and phytochemical analysis

Tulasi Amla Yashti Ghrita was subjected to an examination of the physicochemical parameters, to evaluate the possible analytical profile.

Oraganoleptic characters

Oraganoleptic characters like Rupa (Color), Rasa (Taste), Gandha (Odor), and Sparsha (Touch) were observed.

Physicochemical parameters

Tulasi Amla Yashti Ghrita was subjected to an examination of the physicochemical parameters like refractive index, specific gravity, pH value, acid value, saponification value, and iodine value.

Thin layer Chromatography

Thin Layer Chromatography and High Performance Thin Layer Chromatography were performed for the phase separation of the components of unsaponifiable fraction of TAYG. The spots obtained from both the extracts were examined under ultraviolet light, of wavelengths 254 nm and 366 nm.

- Sample preparation:
 - Track 1: Methanolic extract of TAYG
 - Track 2: Unsaponifiable matter of TAYG
- Solvent system:
 - Toluene: Ethyl acetate: Formic acid: Glacial acetic acid (5:5:1:1)
- Stationary phase:
 - Silica gel G
- Visualization:
 - Under long UV (366 nm) and short UV (254 nm)

High performance thin layer Chromatography

The HPTLC study of the unsaponifiable fraction of TAYG was carried out by using the same solvent system of Toluene: Ethyl acetate: Formic acid: Glacial acetic acid (5:5:1:1). After completion of HPTLC; post chromatographic derivation was done with methanolic sulfuric acid.

Results

Rupa (color), Gandha (odor), Rasa (taste), and Sparsha (texture) of the composition of the formulation can be seen in Table 2.

All the ingredients of TAYG can be seen in Figures 1-3. Powder microscopy of Ocimum sanctum (Sweta Tulasi) revealed the presence of prismatic crystals of calcium oxalate [Figure 4a], oil globules [Figure 4b], annular vessels [Figure 4c], stomata [Figure 4d], spiral vessels [Figure 4e], group of lignified fibers [Figure 4f], a multicellular simple trichome [Figure 4g], and a unicellular simple trichome [Figure 4h]; whereas, microscopy of the coarse powder of the pericarp of Amalaki (Emblema officinalis Gaertn.) showed a prismatic crystal with parenchyma cells [Figure 5a], starch grains [Figure 5b], scleroid [Figure 5c], and a group of lignified fibers [Figure 5d]. The microscopical features seen in the powder of the rhizomes of Glycyrrhiza glabra Linn. (Yastimadhu) were cork cells [Figure 6a], simple and compound starch grains and prismatic crystals of calcium oxalate [Figure 6b], crystal fibres [Figure 6c] and bordered pitted vessels [Figure 6d]. The diagnostic features observed by powder microscopy were authenticated by comparing the features with the standard references.

The drug TAGY is semi-solid in form, brownish chocolate in color, nonspecific in taste, with an aromatic odor. The results observed through the physicochemical parameters can be found in Table 3. The results of TLC can be found in Table 4 and Figure 7; while the results of HPTLC can be found in Table 5 and Figure 8.

Discussion

The present formulation consisted of three plant ingredients, which were proved to be genuine, by assessing the organoleptic

Drug	Botanical name	Part used
Amalaki	Emblica officinalis Gaertn.	Pericarp
Yastimadhu	Glycyrrhiza glabra Linn.	Rhizome
Sweta Tulsi	Ocimum sanctum Linn.	Leaves
Go Ghrita – Cow milk ghee	-	-

Table 2: Macroscopic characters

Drug	Part used	Nature of powder	Color	Taste	Odor
Yastimadhu	Rhizomes	Coarse	Brownish-yellow	Sweet, bitter	Sweetish
Amalaki	Pericarp	Coarse	Grayish-green	Astringent, sour	Characteristic
Sweta Tulsi	Leaf	Coarse	Green	Pungent, slightly bitter, astringent	Characteristic aromatic

Table 3: Physicochemical parameters

Test	Result
Refractive index	1.4710
Specific gravity	0.9130
pH value	3.5 (by pH indicator paper)
Acid value	4.3968 w/v
Saponification value	209.82 w/v
Iodine value	23.04 w/v

| Table 1: Formulation composition of Tulasi Amla Yashti Ghrita |

Drug	Botanical name	Part used
Amalaki	Emblica officinalis Gaertn.	Pericarp
Yastimadhu	Glycyrrhiza glabra Linn.	Rhizome
Sweta Tulsi	Ocimum sanctum Linn.	Leaves
Go Ghrita – Cow milk ghee	-	-
characters and powder microscopy features. Physicochemical parameters were applied for assessing the prepared formulation. The refractive index was 1.4710. The specific gravity of the sample was 0.9130, which was closer to plain Ghrita, for which it was 0.9, showing that the sample was not too dense. The pH of TAGY was found to be 3.5, showing the acidic nature of the drug. The acid value was 4.3968 w/v, indicating the amount of free fatty acid present in the Ghrita. The saponification value was found to be 209.82 w/v. It gave an idea of the molecular weight of an oil/fat, and the oil contained a long chain of fatty acids.
acids. The observed iodine value for the sample was 23.04 w/v, which indicated the consumption of the iodine molecules by free fatty acids. TLC showed five spots, when the plate was scanned at 254 nm and 366 nm. The results were the same for both the detection wavelengths, which showed that the components were sensitive to both wavelengths.

Conclusion

The preliminary organoleptic features and the results of powder microscopy revealed the presence of important characters like oil globules, a multicellular glandular trichome, multicellular and unicellular simple trichomes in *Tulasi*, prismatic crystal with parenchyma cells, and tannin content in *Amalaki*, and simple and compound starch grains, crystal fibers, and bordered pitted vessels in *Yastimadhu*. Thin layer chromatography results showed five spots when the plate was scanned at 254 nm and 366 nm. The physicochemical analysis showed specific gravity (0.913), pH (3.5), acid value (4.3968), iodine value (23.04 w/v), and saponification value (209.82 w/v). All the parameters
discussed here could be used as identifying tools for the quality assessment of Tulsi Amla Yashti Ghrita.

References

1. Das D, Agarwal SK, Chandola HM. Protective effect of Yastimadhu (Glycerrhiza glabra) against side effects of radiation/chemotherapy in head and neck malignancies. Ayu 2011;32:196-9.

2. Haslett C, Chilvers ER, Hunter JA, Boon NA, editors. Davidson's Principles and Practice of Medicine. 18th ed. London: Churchill Livingstone; 1999. p. 1050.

3. Bhattacharjee A, Chakraborty P, Purkayastha P. Prevalence of head and neck cancers in the north east – an institutional study. Indian J Otolarngol Head Neck Surg 2006;58:15.

4. Khandelwal KR. Practical Pharmacognosy Techniques and Experiments. 19th ed. Pune: Nirali Prakashan; 2008. p. 24-7.

5. Anonymous. The Ayurvedic Pharmacopiea of India, Part-II. 1st ed., Vol. 1. New Delhi: The Controller of Publications, Ministry of H and FW, Government of India; 2007. p. 190-201.

6. Wagener H, Bladt S. Plant drug analysis-A thin layer chromatography atlas. 2nd ed. Berlin: Springer; 1996. p. 230-1.

7. Hefmann E. Chromatography-a laboratory handbook of chromatographic and electrophoretic methods. 3rd ed. Princeton NJ: Van Nostarand; 1975.

8. Jackson BP, Snowdon DW. Powdered vegetable Drugs. 1st ed. London: J and A Churchill Ltd. (American Elsevier Publishing Co. Inc. New York); 1968. p. 166-7.

9. Tandon N, Sharma M. Quality Standards of Indian Medicinal Plants. Vol. 8. New Delhi: Indian Council of Medical Research; 2010. p. 161-3.

10. Chauhan M, Pillai AP. Powered Drugs Used in Indian System of Medicine, Vol. 1 – Leaf Drugs. Jamnagar: Gujarat Ayurved University Press; 2005. p. 166-7.