ON THE CACHAZO-DOUGLAS-SEIBERG-WITTEN
CONJECTURE FOR SIMPLE LIE ALGEBRAS

PAVEL ETINGOF AND VICTOR KAC

ABSTRACT. Recently, motivated by supersymmetric gauge theory, Cachazo, Douglas, Seiberg, and Witten proposed a conjecture about finite dimensional simple Lie algebras, and checked it in the classical cases. We prove the conjecture for type G_2, and also verify a consequence of the conjecture in the general case.

1. THE CDSW CONJECTURE

Let g be a simple finite dimensional Lie algebra over \mathbb{C}. We fix an invariant form on g and do not distinguish g and g^*. Let g be the dual Coxeter number of g. Consider the associative algebra $R = \bigwedge (g \oplus g)$. This algebra is naturally \mathbb{Z}_+-bigraded (with the two copies of g sitting in degrees $(1,0)$ and $(0,1)$, respectively). The degree $(2,0), (1,1), \text{and } (0,2)$ components of R are $\bigwedge^2 g, g \otimes g, \bigwedge^2 g$, respectively, hence each of them canonically contains a copy of g. Let I be the ideal in R generated by these three copies of g, and $A = R/I$.

The associative algebra A may be interpreted as follows. Let Πg denote g regarded as an odd vector space. Then R may be thought of as the algebra of regular functions on $\Pi g \times \Pi g$. We have the supercommutator map $\{\cdot, \cdot\} : \Pi g \times \Pi g \to g$ given by the formula $\{X, Y\} = XY + YX$, where the products are taken in the universal enveloping algebra (this is a morphism of supermanifolds). The ideal I in R is then defined by the relations $\{X, X\} = 0, \{X, Y\} = 0, \{Y, Y\} = 0$, so A is the algebra of functions on the superscheme defined by these equations.

In [CDSW,W], the following conjecture is proposed, and proved for classical g:

Conjecture 1.1. (i) The algebra A^g of g-invariants in the algebra A is generated by the unique invariant element S of degree $(1,1)$ (namely, $S = Tr|_{V}(XY)$, where V is a non-trivial irreducible finite dimensional representation of g).

(ii) $S^g = 0$.

(iii) $S^{g-1} \neq 0$.

Here we prove the conjecture for g of type G_2. We believe that the method of the proof should be relevant in the general case.

We also prove in general the following result, which is a consequence of the conjecture.

Proposition 1.2. Any homogeneous element of A^g is of degree (d,d) for some d; therefore, the algebra A^g is purely even, and the natural action of $sl(2)$ on it (by linear transformations of X,Y) is trivial.

Remark. Conjecture 1.1 has the following cohomological interpretation. Let $g[x,y]$ denote the Lie algebra of polynomials of x,y with values in g. Consider the algebra of relative cohomology $H^*(g[x,y], g, \mathbb{C})$. It is graded by the cohomological
degree D and the x,y-degree d. It is clear that for any nonzero cochain, one has $D \leq d$. Thus the homogeneous elements of the algebra $H^\bullet(g[x,y], g, \mathbb{C})$ for which $D = d$ form a subalgebra E. Conjecture 1.1 then states that E is generated by an element S of degree 2 with the defining relation $S^g = 0$.

Note that in this formulation, one can obviously replace $g[x,y]$ with its quotient by any ideal spanned by homogeneous elements of x,y-degree $d \geq 3$.

\section{Proof}

The main idea of the proof is to consider first the algebra B of functions on the superscheme of $X \in \Pi g$ such that $\{X, X\} = 0$. This algebra was intensively studied by Kostant, Peterson, and others (see [K]) and is rather well understood. In particular, it is known that as a g-module, B is a direct sum of $2^{2k}(g)$ non-isomorphic simple g-modules V_a parametrized by abelian ideals a in a Borel subalgebra b of g. Namely, if d is such an ideal of dimension d then it defines (by taking its top exterior power) a nonzero vector v_d in $\wedge^d g$ (defined up to scaling). This vector generates an irreducible submodule in $\wedge^d g$ (with highest weight vector v_d), and the sum of these submodules is a complement to the kernel of the projection $\wedge g \to B$. In fact, this is the unique invariant complement, because in each degree d it is the eigenspace of the quadratic Casimir C with eigenvalue d (the largest possible eigenvalue on $\wedge^d g$; here the Casimir is normalized so that $C|\mathfrak{g} = 1$). Thus the (direct) sum of V_a is canonically identified with B as a g-module.

The algebra A is obtained from $B \otimes B$ by taking a quotient by the additional relation $\{X, Y\} = 0$ and then taking invariants. In other words, $A = (B \otimes B)^g/L$, where L is the space of invariants in the ideal L in $B \otimes B$ given by the relation $\{X, Y\} = 0$.

Therefore, let us look more carefully at the algebra $(B \otimes B)^g$. From the above we see that a basis of $(B \otimes B)^g$ is given by the elements z_a, the canonical elements in $V_a \otimes V_a^*$. The element z_a sits in bidegree (d, d), where d is the dimension of a. This implies Proposition 1.2 (the $sl(2)$ action on A^g is trivial because the $sl(2)$-weight of a vector in A of degree (d_1, d_2) is $d_1 - d_2$).

Now we proceed to prove the conjecture for G_2. Let ω_1 and $\omega_2 = \theta$ be the fundamental weights of G_2 (θ is the highest root), and α_1, α_2 the corresponding simple roots (so that $\theta = 3\alpha_1 + 2\alpha_2$). The abelian ideals in the corresponding Borel subalgebra are $a_0 = 0$, $a_1 = \mathbb{C}e_{\alpha_1}$, $a_2 = \mathbb{C}e_\theta \oplus \mathbb{C}e_{3\alpha_1 + \alpha_2}$, $a_3 = \mathbb{C}e_\theta \oplus \mathbb{C}e_{2\alpha_1 + \alpha_2} \oplus \mathbb{C}e_{2\alpha_1 + \alpha_2}$. Thus the g-module B has 4 irreducible components: $V_0 = \mathbb{C}$ in degree 0, $V_1 = g$ in degree 1, $V_2 = V(3\omega_1)$ in degree 2, and $V_3 = V(\omega_1 + 2\omega_2)$ in degree 3.

Let S be the invariant element of degree $(1,1)$ in $\wedge g \otimes \wedge g$. Clearly the projection of powers of S onto $B \otimes B$ is nonzero in degree $0,1,2,3$ (this follows from the fact that for each degree d one has a canonical decomposition $\wedge^d g = V_{a_d} \oplus \text{Ker}(\wedge^d g \to B[d])$, where $B[d]$ is the degree d component of B).

The dual Coxeter number of G_2 is 4. Thus, our job is just to show that the ideal generated by the relation $\{X, Y\} = 0$ in $B \otimes B$ contains no nonzero g-invariants.

A g-invariant of degree $(d+1, d+1)$ in this ideal is a linear combination of elements of the form $C_{w} := \sum f_{ijk}(x_i, x_j)w(x_k)$, where x_i is an orthonormal basis of g, f_{ijk} are the structure constants of g in this basis, and $w : g \to \text{End}(V_a) = V_a \otimes V_a^*$ is a homomorphism of representations (here for brevity $a := a_d$). It is easy to check
that the only homomorphisms w relevant to our situation (i.e., for $d = 1, 2$) are given by the action of g on V_a.

So the result follows from the following lemma:

Lemma 2.1. If w is the action map then C_w is zero in $B \otimes B$.

Proof. Let us regard C_w as an operator on $\wedge^{d+1}(g)$. Then it has the form

$$C_w = \sum_{i,j,k} f_{ijk} W_x, L_{x_i} I_{x_j},$$

where I, L, W are the operators of contraction, Lie derivative, and wedging, respectively. This can be more shortly written as

$$C_w = \sum W_x, L_{[x_i, x_j]} I_{x_j}.$$

We claim that if $v \in V_a$ then $C_w v$ is zero (this would imply that C_w is zero in $B \otimes B$). Set $y = p_1 \wedge ... \wedge p_{d+1}$. Then we get

$$C_w y = \sum_{i,j,r,s} (-1)^{r+s} x_i \wedge ([x_i, p_r], p_s) - ([x_i, p_s], p_r) \wedge p_1 \wedge ... \hat{p}_r ... \hat{p}_s ... \wedge p_{d+1} =$$

$$\sum_{i,j,r,s} (-1)^{r+s} x_i \wedge [p_s, p_r] x_i \wedge p_1 \wedge ... \hat{p}_r ... \hat{p}_s ... \wedge p_{d+1}.$$

This implies the result, since V_a coincides with the kernel of the map $\wedge^{d+1} g \to g \otimes \wedge^{d-1} g$, given by

$$y \mapsto \sum_{r,s} (-1)^{r+s} [p_s, p_r] \otimes p_1 \wedge ... \hat{p}_r ... \hat{p}_s ... \wedge p_{d+1}.$$

□

References

[CDSV] Freddy Cachazo, Michael R. Douglas, Nathan Seiberg, Edward Witten, Chiral Rings and Anomalies in Supersymmetric Gauge Theory, hep-th/0211170.

[K] Bertram Kostant, On $\wedge g$ for a semisimple Lie algebra g, as an equivariant module over the symmetric algebra $S(g)$. Analysis on homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997), 129–144, Adv. Stud. Pure Math., 26, Math. Soc. Japan, Tokyo, 2000.

[W] Edward Witten, Chiral Ring Of Sp(N) And SO(N) Supersymmetric Gauge Theory In Four Dimensions hep-th/0302194

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail address: etingof@math.mit.edu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail address: kac@math.mit.edu

1This has to do with the fact that the highest weight of V_2 does not involve ω_2. The situation is exactly the same for type B_2, except that it is not true there that all w come from the action of g; this results in $S^3 = 0$ for B_2, while $S^3 \neq 0$ for G_2.
