Prevalence of Imipenem-Resistant *Acinetobacter baumannii* isolates in Iran: A Meta-Analysis

ABSTRACT

Background: *Acinetobacter baumannii* is a gram-negative pathogen that is highly resistant to antibiotics. This bacterium can cause severe systemic infections, especially in hospitalized patients. Recently, antimicrobial-resistant *Acinetobacter baumannii* has become a life-threatening pathogen in Iran and around the world.

Materials & Methods: In this study, several Iranian and English databases were systematically searched to find all original and review articles investigating the prevalence of imipenem resistance in their sample size, while mentioning the source of clinical isolates, as well as the prevalence of antimicrobial resistance genes.

Findings: Among genes, *bla* carbAp2 with a prevalence of 31% to 100% was responsible for global outbreaks of imipenem-resistant *Acinetobacter baumannii* and was presented in most of the hospital isolates. Our meta-analysis also revealed that 74.2% of *Acinetobacter baumannii* were resistant to imipenem in 122 clinical studies.

Conclusion: Our study highlighted a rapid increase in the rate of imipenem resistance in clinical isolates of *Acinetobacter baumannii* in Iran. The need for periodic antibiotic care system programs to monitor the administration and use of antibiotics is strongly recommended.

Keywords: Imipenem, Resistance, *Acinetobacter baumannii*, Iran.

CITATION LINKS

[1] Johnson ... [2] Poirel L ... [3] Peleg AY ... [4] Migliavacca ... [5] Farsiani H ... [6] Ranjbar R ... [7] Gitahi N ... [8] Moulaei Z ... [9] Shoja S ... [10] Sadeghifard N ... [11] Arabshahi A ... [12] Davoodi S ... [13] Dehghani M ... [14] Erfani Y ... [15] Akbari Dehbalaei M ... [16] Mirnejad R ... [17] Karmoostaj A ... [18] Pajand O ... [19] Azimi L ... [20] Alavi MM ... [21] Sader H ... [22] Sharif M ... [23] Fallah F ... [24] Bahador A ... [25] Haeili M ... [26] Goudarzi H ... [27] Goudarzi H ... [28] Maspi H ... [29] Asadollahi-Malayeri H ... [30] Azad Khaledei ... [31] Zanganesh Z ... [32] Azimi L ... [33] Khalizadeh S ... [34] Azimi L ... [35] Azimi L ... [36] Owlia P ... [37] Asadollahi P ... [38] Aminzadeh Z ... [39] Vafei S ... [40] MT ... [41] Mirnejad R ... [42] Asadollahi K ... [43] Shahcheragh ... [44] Mohammad M ... [45] Mohammad M ... [46] Babapour E ... [47] Tarashi S ... [48] Jazani N ... [49] Asadollahi K ... [50] Vahdani P ... [51] Mohammadzadeh Z ... [52] Akbari M ... [53] Moradi H ... [54] Rahbar M ... [55] Rahbar M ... [56] Mirsamadi ES ... [57] Soroush S ... [58] Alirezaei A ... [59] TaheriKhanlari M ... [60] Owram M ... [61] Peerayeh S ... [62] Noori M ... [63] Mandana Z ... [64] Navidinia M ... [65] Shahcheragh ... [66] Mirshekar M ... [67] Tavakol M ... [68] Montaz H ... [69] Boroumand M ... [70] Aghamiri S ... [71] Beigverdi R ... [72] Jazani NH ... [73] Pouranajaf A ... [74] Feizabadi M ... [75] Farshadzadeh Z ... [76] Gholami M ... [77] Rahbar M ... [78] Mahdian S ... [79] Tafreshi N ... [80] Savari M ... [81] Nasrolahie M ... [82] Hojabri Z ... [83] Rahimi M ... [84] Peymani A ... [85] Peymani A ... [86] Sohrabi N ... [87] Ranjbar R ... [88] Ezzadi F ... [89] Shirinmohammad N ... [90] Janbakhsh A ... [91] Farsihi H ... [92] Salimizad H ... [93] Sarhaddi N ... [94] Alaee N ... [95] Alaee N ... [96] Japoni S ... [97] Pourrabbas B ... [98] Moghadam M ... [99] Jafari S ... [100] Kooti S ... [101] Sarikhan Z ... [102] Shoja S ... [103] Shoja S ... [104] Moosavian M ... [105] Mansour A ... [106] Salimizad H ... [107] Safarif ... [108] Azizi O ... [109] Mohajer P ... [110] Mohajer P ... [111] Mohajer P ... [112] Noroozi B ... [113] Karbasizadeh V ... [114] Rezaei A ... [115] Ghaelbi M ... [116] Ghaavand H ... [117] J Vazirzadeh ... [118] Shamsizadeh Z ... [119] Shokri D ... [120] Safari M ... [121] Bardbari A ... [122] Safari M ... [123] Farahani Kheltabadi R ... [124] Jashooghani S ... [125] Madadi-Goli N ... [126] Bagheri Jashooghani S ... [127] Japoni-Nejad A ... [128] JaponiNejad AR ... [129] Bahadori azimabadi F ... [130] Moosavian M ... [131] Mitchwa Akmalviti HES ... [132] Ozapo-Capurro A ... [133] Shams S ... [134] Schafer E ... [135] Low Y-M ... [136] Tang SS ... [137] Nasiri MJ ... [138] Nasrollah Sohrabi SF ... [139] Jabalameli ... [140] Esfandiar A ... [141] Sar A ... [142] Azimi L

How to cite this article

Derakhshan Sefidi M, Heidary L, Shams S. Meta-Analysis of the Prevalence of Carbapenem-Resistant *Acinetobacter baumannii* Isolates in Iran. Infection Epidemiology and Microbiology. 2020;7(1):77-99

Correspondence

Address: Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran

sshamsmed@gmail.com

Copyright © 2020, TMU Press. This open-access article is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material) under the Attribution-NonCommercial terms.
Introduction

Acinetobacter baumannii is an opportunistic, nosocomial Gram-negative pathogen that causes severe infections especially in intensive care units (ICUs) [1]. Recently, prevalence of multidrug-resistant (MDR) or extensively-drug resistant (XDR) A. baumannii becomes a life-threatening problem [2]. Since 1985 the broad-spectrum β-lactam antibiotics e.g. carbapenems such as imipenem, meropenem, ertapenem, and doripenem have been the effective agent against multidrug-resistant A. baumannii infections [2, 3]. According to worldwide reports on the prevalence of carbapenem-resistant A. baumannii, it can have a negative impact on the treatment of patients [4]. Producing different β-lactamases that harbor insertion sequences (ISs) encoded through mobile elements on integrons, transposons or plasmids genes plays a critical role in carbapenem-resistant A. baumannii. Moreover, A. baumannii uses different mechanism such as modified penicillin-binding proteins (PBPs) and efflux pumps which decreased cell membranes permeability as well as biofilm formation or mutation in some drug targets to resist and survive in harsh environments (Figure 1) [5]. So, the rapid prevalence of A. baumannii strains producing carbapenemases, cephalosporinases (AmpCs), extended-spectrum β-Lactamases (ESBLs), and metallo-β-lactamases (MBLs) is becoming a global concern [6]. During recent years different studies published on the carbapenem-resistant A. baumannii in Iran. However, more studies on the mechanism of resistance and prevalence of the resistance bacteria should be done to reach the best treatment strategies for controlling outbreaks of carbapenem-resistant A. baumannii [7]. Detection of carbapenem resistance needs phenotypic methods such as disc diffusion and different inhibition tests recommended by CLSI as well as genotypic methods such as PCR to identify carbapenem resistance genes in clinical isolates [8].

This study described the frequency of imipenem-resistant A. baumannii in different cities of Iran. So, our aim was to evaluate the distribution and prevalence of resistance genes during the last two decades in Iran.

Materials and Methods

Search Strategies: Our research was performed on several related keywords such as “A. baumannii”, “carbapenemase”, “carbapenem-resistant A. baumannii”, “prevalence of carbapenem-resistant A. baumannii strains in Iran”, imipenem”, “imipenem resistance”, “imipenem resistance in Iran”, “multidrug resistance A. baumannii in Iran”, which were as inclusion criteria. Keywords were monitored both original and review articles in Persian and English in all research centers e.g. PubMed, MEDLINE, Google Scholar, Iranian data base, Web of sciences, and Scopus during 2006-2020. Out of 483 articles obtained, 143 articles were finally reviewed. For all studies, published date, sample size, and genes related to imipenem were also considered (Table 1).

![Fig. 1] The most prevalent mechanism of carbapenem resistance in A. baumannii [9]
Table 1) Studies included on resistance of *A. baumannii* to imipenem in Iran.

Author	Year	City	Sample size	No. of Imipenem resistant isolates	%	Isolated from	Ref
Sadeghifard et al.,	2006	Tehran	66	66	100	NR	[10]
Ardebili et al.,	2012		65	60	92.38	Burned or hospitalized patients in ICU	[11]
Davoodi et al.,	2015		104	70	67.30	Clinical isolates	[12]
Dehghani et al.,	2012		50	39	78	Blood, respiratory secretions, urine, skin ulcer, and oral mucosa	[13]
Erfani et al.,	2017		107	NR*	NR	Clinical isolates	[14]
Dehbalaei et al.,	2017		48	37	77.08	Wound, trachea, urine, catheter, sputum, and burn	[15]
Mirnejad et al.,	2012		50	39	78	Blood, tracheal, wound swab samples, urine and five samples with unknown origin	[16]
Karmostaji et al.,	2013		123	103	83.74	Aspirated sputum, trachea, burn, wound and urinary tract infections	[17]
Pajand et al.,	2013		75	64	85.33	Aspirates, urine, wound, blood and sputum, burn wound	[18]
Azimi et al.,	2015		65	65	100	Burn wound	[19]
Alavi-Moghadam et al.	2014		61	61	100	Ventilator associated pneumonia, Sputum, wounds, urine, central venous line, blood	[20]
Saderi et al.,	2015		106	102	96.22	Clinical isolates	[21]
Sharif et al.,	2014		200	171	85.5	Endotracheal biopsy, sputum, blood, catheter, urine, wound	[22]
Fallah et al.,	2014		108	99	91.66	Urinary specimens	[23]
Bahador et al.,	2015		62	38	61.29	ICU patients	[24]
Haeili et al.,	2013		136	102	75	Broncho alveolar lavage (BAL), mini BAL, tracheal aspirates, and sputum	[25]
Goudarzi et al.,	2013		221	214	96.83	Specimens, environmental isolates which were obtained from patients' surroundings, medical equipment and hands of staff	[26]
Continue Table 1) Studies included on resistance of *A. baumannii* to imipenem in Iran.

Author	Year	City	Sample size	No. of Imipenem resistant isolates	%	Isolated from	Ref
Goudarzi et al.	2016	NR	108	NR	NR	Blood, wound, urine, sputum and respiratory tract	[27]
Maspi et al.	2016	78	86	90.69	NR		[28]
Malayeri et al.	2016	51	60	85	Clinical samples	[29]	
Khaledi et al.	2016	NR	100	NR	ICU patients	[30]	
Zanganeh et al.	2015	58	58	100	Burn and non-burn isolates of hospitalize patients	[31]	
Azimi et al.	2013	80	93	86.02	Burn wounds	[32]	
Khalilzadegan et al.	2016	131	131	100	ICU patients	[33]	
Azimi et al.	2012	6	7	85.72	Burn wounds, environmental isolates which were obtained from patients' surroundings, medical equipment	[34]	
Azimi et al.	2016	NR	50	NR	Burn patients	[35]	
Owlia et al.	2012	107	126	84.92	Burn wounds	[36]	
Asadollahi et al.	2012	11	23	47.82	Burn wounds	[37]	
Aminzadeh et al.	2012	16	39	41.02	CSF	[38]	
Vafaei et al.	2013	76	100	76	Burn wounds	[39]	
Talebi-Taher et al.	2012	34	34	100	Endobronchial aspirates	[40]	
Mirnejad et al.	2013	39	50	78	Sputum, trachea, wounds, urine, blood	[41]	
Asadollahi et al.	2011	49	100	49	Clinical isolates	[42]	
Shahcheraghii et al.	2011	100	203	43.47	Blood, wound, urine, sputum, and respiratory tract	[43]	
Mohammadi et al.	2017	96	103	93.20	Ventilated patients	[44]	
Mohammadi et al.	2016	98	100	98	Burn wounds	[45]	
Babapour et al.	2017	142	156	91.02	Blood, burn wound, urine, sputum, and respiratory tract, CSF	[46]	
Table 1
Studies included on resistance of *A. baumannii* to imipenem in Iran.

Author	Year	City	Sample size	No. of Imipenem resistant isolates	%	Isolated from	Ref
Tarashi et al.,	2016	189	187	98.94	Burn wounds	[47]	
Jazani et al.,	2011	48	7	14.58	Burn wounds	[48]	
Asadollahi et al.,	2011	100	39	39	Clinical isolates	[49]	
Vahdani et al.,	2011	101	19	18.81	Respiratory tube, urine, wound, and blood	[50]	
Mohammad taheri et al.,	2010	136	126	92.64	Respiratory tube, urine, blood, wound	[51]	
Akbari et al.,	2010	100	53	53	Wound, trachea, pleural fluid, blood, sputum, urine, catheter, CSF	[52]	
Moradi–Tabriz et al.,	2010	166	45	27.10	Blood	[53]	
Rahbar et al.,	2010	88	1	1.13	Respiratory tube, urine, blood, wound	[54]	
Rahbar et al.,	2011	88	4	4.54	Respiratory tract, urine, blood, wound and other clinical specimens	[55]	
Goudarzit et al.,	2015	128	127	99.21	ICU patients	[56]	
Soroush et al.,	2009	145	73	50.34	NR	[57]	
Aliamezani et al.,	2016	8	5	62.50	Environmental surfaces and equipment	[58]	
Taherikalani et al.,	2009	80	42	52.50	Clinical isolates	[59]	
Owrang et al.,	2017	105	103	98.09	Clinical isolates	[60]	
Peerayeh et al.,	2015	123	123	100	Sputum, urine, CSF and pleural effusion	[61]	
Noori et al.,	2014	84	67	79.76	NR	[62]	
Zafari et al.,	2017	536	429	80.03	Hospitalized patients	[63]	
Navidinia et al.,	2017	37	32	86.48	Trachea, urine, wound, discharges, ascites fluid, pleural fluid, blood, synovial fluid, and catheter	[64]	
Shahcheraghi et al.,	2009	95	65	68.42	ICU patients	[65]	
Mirshekar et al.,	2017	72	61	84.72	NR	[66]	
Studies included on resistance of *A. baumannii* to imipenem in Iran.

Author	Year	City	Sample size	No. of Imipenem resistant isolates	%	Isolated from	Ref
Tavakol et al.,	2014	NR	121	NR	NR	Clinical isolates	[67]
Momtaz et al.,	2017	NR	121	NR	NR	Blood, phlegms, urine, CSF, pus	[68]
Boroumand et al.	2009	191	47	24.60		Clinical isolates	[69]
Aghamiri et al.,	2015	176	169	96.02		Hospitalized patients	[70]
Beigverdi et al.,	2019	6281	4899	77.99	NR	Burn ward	[71]
Hosseini-Jazani et al.,	2009	48	7	14.58		Burn ward	[72]
Pournajafi et al.	2019	73	22			Burn wounds	[73]
Feizabadi et al.,	2008	108	55	50.92		Wounds, trachea, blood, CSF, urine, other tissues	[74]
Farshadzadeh et al.,	2015	92	NR			Burn wounds	[75]
Gholami et al.,	2020	60	60	100		Burn wounds	[76]
Rahbaar et al.,	2007	65	18	27.69		Hospitalized patients	[77]
Mahdian et al.,	2015	37	NR	NR		Burn wounds	[78]
Tafreshi et al.,	2019	84	31	36.90		Wound infections	[79]
Savari et al.,	2017	120	NR	NR		Tracheal aspiration, blood, CSF, burn wound, urine infections	[80]
Nasrolahei et al.,	2014	Tehran/ Sari	100	67	67	ICU patients	[81]
Hojabri et al.,	2014	Tehran/ Tabriz	71	60	84.50	Clinical isolates	[82]
Rahmani et al.,	2015	Tehran/ Shiraz	140	129	92.14	Hospitalized patients	[83]
Peymani et al.,	2012	Tabriz	134	74	55.22	Hospitalized patients	[84]
Continue Table 1) Studies included on resistance of A. baumannii to imipenem in Iran.

Author	Year	City	Sample size	No. of Imipenem resistant isolates	%	Isolated from	Ref
Peymani et al.,	2011	100	54	54		Tracheal aspirate, urine, blood, bronchial washing, wound, sputum, abscess drainage, CSF, catheter, pleural effusion, and ascites	[85]
Sohrabi et al.,	2012	100	62	62		Blood, tracheal aspirates, wound, sputum, abscess drainage, wound, bronchial washing, urine	[86]
Ranjbar et al.,	2019	Markazi, Khozestan, Kermanshah	163	154	94.47	Wound infections	[87]
Ezadia et al.,	2019	Gorgan	71	44	61.97	Urine, respiratory tract secretions, blood, and wound swab	[88]
Shirmohammadlou et al,	2018	Zanjan	100	100	100	Blood, sputum, wound swabs, chest tube secretions and urine	[89]
Khosroshahi et al.,	2020	Qazvin	15	4	26.66	ICU patients	[90]
Farsianii et al.,	2015	Mashhad	36	32	88.88	Different wards of a teaching hospital	[91]
Salimizand et al.,	2016	30	NR	NR		patients and environmental specimens	[92]
Sarhaddi et al.,	2017	54	54	100		Burn wounds	[93]
Alaei et al.,	2013	Shiraz	85	43	50.58	ICU patients	[94]
Alaei et al.,	2016	85	79	92.94		Isolates from patients in a tertiary care hospital	[95]
Japoni et al.,	2011	79	18	22.78		Blood, urine wound and sputum	[96]
Pourabbas et al.,	2016	61	NR	NR		patients with blood infections	[97]
Moghadam et al.,	2016	96	95	98.95		Clinical specimens	[98]
Jafari et al.,	2013	63	26	41.27		Clinical specimens	[99]
Kooti et al.,	2015	200	199	99.50		Urine, wound, blood, sputum, ETT, body fluid, nose, throat and eye	[100]
Sarikhani et al.,	2017	Qom	108	97	89.81	Tracheal aspirate, urine, blood, wounds and CSF	[101]
Shoja et al.,	2013	Ahvaz	206	198	96.11	Clinical specimen	[102]
Studies included on resistance of *A. baumannii* to imipenem in Iran.

Author	Year	City	Sample size	No. of Imipenem resistant isolates	%	Isolated from	Ref
Shoja et al.,	2016		124	97	78.22	Clinical specimen	[103]
Shoja et al.,	2017		40	36	90.00	Wound, skin biopsy, blood	[9]
Moosavian et al.,	2017		151	142	94.04	Clinical specimens	[104]
Amin et al.,	2019		85	69		Burn wounds; tracheal secretion, blood, bronchial lavage, urine	[105]
Salimizand et al.,	2014	Kerman	40	13	32.50	Tracheal, urine, wound, Blood, CSF	[106]
Saffari et al.,	2017		64	NR	NR	Clinical Isolates	[107]
Azizi et al.,	2015		65	NR	NR	Blood, lung of the patient with ventilator and URI	[108]
Mohajeri et al.,	2014	Kermanshah	104	83	79.80	Sputum, blood, urine clinical specimens	[109]
Mohajeri et al.,	2017		75	62	82.66	Blood, sputum, wounds, urine, abdominal abscesses, synovia	[110]
Mohajeri et al.,	2015		42	38	90.47	Clinical specimens	[111]
Noroozi et al.,	2014	Kurdistan	84	67	79.76	Sputum, blood and urine	[112]
Salimizande et al.,	2014	Kurdistan	54	28	51.85	Environmental specimens	[106]
Karbasizade et al.	2012	Isfahan	50	26	52	ICU patients	[113]
Rezaei et al.,	2018		153	153	100	Various clinical sources	[114]
Ghaelebi et al.,	2017		40	40	100	ICU patients	[115]
Ghajavand et al.,	2014		43	40	93.02	ICU specimens	[116]
Vazirzadeh et al.,	2015		100	96	96.00	Clinical samples	[117]
Shamsizadeh et al.,	2017		40	34	85.00	ICU, surgery wards (SW), and internal medicine wards (IM)	[118]
Shokri et al.,	2017		31	28	90.33	Different clinical specimens	[119]
Safari et al.,	2013	Hamedan	100	85	85.00	Trachea, blood, urine, sputum and wound samples of patients bedridden in ICU	[120]

Infection Epidemiology and Microbiology
Winter 2021, Volume 7, Issue 1
Data Extraction, Synthesis and Analysis:
We reported our data in the following way: first author, city, sample size, the status and prevalence of resistance to imipenem. Statistical analysis was performed by Comprehensive Meta-Analysis Software Version 2.0 (Biostat, Englewood, NJ). The prevalence was reported with 95% confidence intervals (CIs). Random effects models were used. To assess the potential risk of publication bias, Begg rank correlation regression methods were used (P<0.05) and were considered indicative of a statistically significant publication bias.

Findings
The result of the search strategies yielded 122 articles that reported the prevalence of imipenem-resistant *A. baumannii* in Iran (Table 1). Most of the studies were performed in central Iran (e.g. Tehran, n=71). Figure 2 shows the forest plot from the meta-analysis of antimicrobial resistance of *A. baumannii* to imipenem, resulting in prevalence of 74.2% (95% CI, 69.7–78.2). As shown in Figure 3, based on the funnel plot of meta-analysis, some evidence for the publication bias was observed. The estimated ranks of correlation coefficients of Begg were 0.742. Figure 4 also shows genes responsible for imipenem-resistant *A. baumannii* associated with their prevalence. Figure 5 also displays the prevalence of imipenem-resistant clinical isolates of in different cities of Iran.
Fig. 2) Forest plot of the meta-analysis of imipenem resistance in A. baumannii. CI: confidence interval.
Discussion

A. baumannii is a multidrug-resistant nosocomial pathogen that causes severe infections among patients especially in ICU and can hydrolyze various β-lactam antibiotics by different enzymes such as carbapenemases [131, 132]. Among bacteria, resistance to carbapenems, especially imipenem, has been reported from various countries as well as in Iran [133-135]. Recently due to resistance of A. baumannii to a wide range of antimicrobial agents, raise a concern on controlling life-threatening infections worldwide [136]. Our meta-analysis declared a pooled frequency resistance rate to imipenem (74.2%), which is lower when compared with some studies in Iran [137]. One strategy for preventing the spread of carbapenem resistance from our neighboring countries e.g. Pakistan and Iraq, which has a high prevalence of multidrug resistance A. baumannii, is implementation of typing methods [138]. In recent years carbapenem resistance in A. baumannii isolates are increasing in the world. Various factors have been mentioned to contribute to this outbreak, for example, inadequate implementation of treatment instructions and protocols, excessive use of antimicrobial agents in health care systems or the community [139, 140]. It is suggested that controlling policy including standard administration guidelines together with the suitable drug, dosage as well as the duration of treatment should meticulously be monitored in order to prevent the emergence of resistance among bacteria. Our current study has evaluated the prevalence of imipenem-resistant in A. baumannii strains in different cities of Iran. The results showed that this resistance has increased in recent decades and there is a need for more prevention and monitoring to overcome infections caused by the bacterium. Our findings also declared that imipenem-resistant A. baumannii isolates harboring bla\(_{OXA-23}\) are the most among the strains. Similar to other studies, our study indicated a sporadic distribution of MBL genes of A. baumannii in Iran. However, bla\(_{OXA-23}\) has the highest prevalence distribution gene in Iran that is responsible for carbapenem-resistant A. baumannii as well as several others.
Asian countries [9, 141]. Other reports have indicated the prevalence of MBL gene among carbapenem-resistant isolates, which were significant at the second level. Sometimes phenotypic tests in the evaluation of antibiotic resistance may be reported as false negative or low-level resistance.

To date, several mechanisms have been implicated in carbapenem-resistant isolates, including modification of PBPs, reduction of outer membrane purines, low permeability, and degradation of AmpC β-lactamase. However, the reason for this requires further studies to more accurately assess the mechanisms of resistance among bacteria, especially imipenem-resistant *A. baumannii* [9, 142]. In this study, we focused on *bla* _OXA-23_ , *bla* _OXA-24_ , *bla* _OXA-58_ , and MBL genes and the distribution of them among nosocomial isolates of *A. baumannii*. Treatment of imipenem-resistant *A. baumannii* gets complicated due to location of carbapenemase on mobile elements and high level of abuse clinically prescribing carbapenem antibiotic and this lead to the high activity of OXA genes as well as high carbapenem-resistant isolates [141].

It should be said the main gene involved in this resistance was *OXA23*, which was present in all reviewed articles, while *OXA24* and *OXA58* were reported sporadically. Statistics also showed the highest prevalence of imipenem resistance was in Zanjan and Bandar-Abbas provinces was in the second level. Kerman showed the least prevalence among cities. It seems that sufficient study or the size of non-uniform samples can be effective in statistical analysis. As the statistics confirmed the distribution of OXA genes especially *OXA23* among isolates, it seems that the gene plays a critical role in imipenem resistance of *A. baumannii*. MBL genes are also important in resistance characteristics of *A. baumannii* to imipenem but at a lower level in comparison to OXA genes. However, this issue needs more studies. The distribution and transmission of OXA and MBL genes by plasmids, integrons, or other mobile elements should be also investigated. As a result, resistance to imipenem, VIM, and NDM has been increasing in recent years, and this could be a warning sign for the overuse of antibiotics to treat *A. baumannii* infections.

Conclusion

All in all, it can be said *A. baumannii* is an important global pathogen with the ability to resistant to different antibiotics and this can be an alarm for health care causing high mortality and morbidity and is a problematic microorganism during recent decades. Our study demonstrated the rapid spread of β-lactamase genes of OXA and MBL in hospitals of Iran between “2006 to 2020” and declares the significant role of them in resistance to carbapenems especially imipenem. Overall, prescription antibiotics in Iran should be frequently monitored and evaluated, resulting in a limited transfer of antibiotic resistance genes among multidrug-resistant *A. baumannii*.

Acknowledgements: We wish to thank the Research Council of Tarbiat Modares University and Qom University of Medical Sciences.

Ethical Permissions: No ethical permissions have been reported.

Conflicts of Interests: There is no conflict of interests.

Authors’ Contributions: Conceptualization: MDS; Data curation and formal analysis: LH; Investigation: MDS, LH; Methodology and project administration: MDS, LH, SS; Supervision: SS; Validation: SS; Writing of original draft: MDS, Writing, reviewing, and editing: MDS, LH, SS.

Fundings: Not applicable.

Consent to participate: Not applicable.

References

1. Johnson JK, Robinson GL, Zhao L, Harris
AD, Stine OC, Thom KA. Comparison of molecular typing methods for the analyses of Acinetobacter baumannii from ICU patients. Diagn Microbiol Infect Dis. 2016;86(4):345-50.

2. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clinical Microbiology and Infection. 2006;12(9):826-36.

3. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538-82.

4. Migliavacca R, Espinal P, Principe L, Drago M, Fugazza G, Roca I, et al. Characterization of resistance mechanisms and genetic relatedness of carbapenem-resistant Acinetobacter baumannii isolated from blood, Italy. Diagn Microbiol Infect Dis. 2013;75(2):180-6.

5. Farsiani H, Mosavat A, Soleimanpour S, Nasab MN, Salimizand H, Jamehdar SA, et al. Limited genetic diversity and extensive antimicrobial resistance in clinical isolates of Acinetobacter baumannii in north-east Iran. Journal of medical microbiology. 2015;64(7):767-73.

6. Ranjbar R, Farahani A. Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrobial Resistance & Infection Control. 2019;8(1):172.

7. Gitahi N, Gathura P, Gicheru M, Wandia B, Nordin A. Multidrug-resistant Campylobacter jejuni, Campylobacter coli and Campylobacter lari isolated from asymptomatic school-going children in Kibera slum, Kenya [version 2; peer review: 1 approved, 1 approved with reservations]. F1000Research. 2020;9(92).

8. Moula A, Babazadeh A, Eslamdost Z, Shokri M, Ebrahimpour S. Phenotypic and genotypic detection of metallo-beta-lactamases in Carbapenem resistant Acinetobacter baumannii. Caspian J Intern Med. 2020;11(2):171-6.

9. Shoja S, Moosavian M, Rostami S, Farahani A, Peymani A, Ahmadi K, et al. Dissemination of carbapenem-resistant Acinetobacter baumannii in patients with burn injuries. Journal of the Chinese Medical Association. 2017;80(4):245-52.

10. Sadeghifard NK, Ranjbar R, Ghasemi A, Pakzad I, Zaeimi Yazdi J, Zaheri A, et al. A study of antimicrobial resistance of Acinetobacter baumannii and non-Acinetobacter baumannii strains isolated from three hospitals in Tehran Journal of Ilam University of medical science. 2006;14(3).

11. Ardebili A, Azimi L, Mohammadi-Barzelighi H, Owlia p, Beheshti M, Talebi M, et al. Determination of Resistance Pattern of Isolated Acinetobacter baumannii from Hospitalized Burned Patients in Motahari Hospital, Tehran. Journal of Advances in Medical and Biomedical Research. 2012;20(83):112-9.

12. Davoodi S, Boroumand M, Sepehriseresht S, Pourgholi L. Detection of VIM- and IMP-type Metallo-Beta-Lactamase Genes in Acinetobacter baumannii Isolates from Patients in Two Hospitals in Tehran. Iranian Journal of Biotechnology. 2015;13:63-7.

13. Dehghani M, Masjedian F, Mirnejad R, Imani Fooladi AA, Haghighat S. Antimicrobial Susceptibility Patterns and Distribution of bla(kpc) Genes among Acinetobacter baumannii Isolated from Patients at Tehran - Iran
14. Erfani Y. Detection of bla NDM -1, bla VIM, and bla IMP genes in multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa from clinical isolates in Tehran hospitals. International Journal of Advanced Biotechnology and Research. 2017;8:500-6.

15. Akbari Dehbalaei M, Najar-Pearyeh S, Taherikalani M, Behmanesh M. Clinical Isolates of Acinetobacter baumannii From Tehran Hospitals: Pulsed-field Gel Electrophoresis Characterization, Clonal Lineages, Antibiotic Susceptibility, and Biofilm-forming Ability. Jundishapur J Microbiol. 2017;10(7):e13790.

16. Mirnejad R, Mostofi S, Masjedian F. Role of Class 2 Integron in Antibiotic Susceptibility Pattern of Acinetobacter baumannii Strains Isolated from Hospitals in Tehran. Avicenna Journal of Clinical Medicine. 2012;18(4):22-8.

17. Karmostaji A, Najar Peerayeh S, Hatif Salmanian A. Distribution of OXA-Type Class D β-Lactamase Genes Among Nosocomial Multi Drug Resistant Acinetobacter baumannii Isolated in Tehran Hospitals. Jundishapur J Microbiol. 2013;6(5):e8219.

18. Pajand O, Rezaee MA, Nahaei MR, Mahdian R, Aghazadeh M, Soroush MH, et al. Study of the carbapenem resistance mechanisms in clinical isolates of Acinetobacter baumannii: Comparison of burn and non-burn strains. Burns. 2013;39(7):1414-9.

19. Azimi L, Talebi M, Pourshafie M, Owlia P. Characterization of Carbapenemases in Extensively Drug Resistance Acinetobacter baumannii in a Burn Care Center in Iran. International journal of molecular and cellular medicine. 2015;4:46-53.

20. Alavil MM, miri MM, Majid, Kouchek M, Goharani R, Sistanizad M, Safari S, et al. Incident of imipenem-resistant Acinetobacter baumannii in general intensive care unit (ICU). 2014.

21. Saderi H, Owlia P. Pattern of resistance to different antibiotic groups among clinical isolates of Acinetobacter baumannii in two hospitals in Tehran. Daneshvar medicine. 2015;22(118).

22. Sharif M, Mirnejad R, Amirmozafari N. Molecular identification of TEM and SHV extended spectrum β-lactamase in clinical isolates of Acinetobacter baumannii from Tehran hospitals. J Gen Microb Immun. 2014;2:1-9.

23. Fallah F, Noori M, Hashemi A, Goudarzi H, Karimi A, Erfanimanesh S, et al. Prevalence of blaNDM, blaPER, blaVEB, blaIMP, and blaVIM genes among Acinetobacter baumannii isolated from two hospitals of Tehran, Iran. Scientifica. 2014;2014:245162.

24. Bahador A, Raoofian R, Pourakbari B, Taheri M, Hashemizadeh Z, Hashemi FB. Genotypic and Antimicrobial Susceptibility of Carbapenem-resistant Acinetobacter baumannii: Analysis of is Aba Elements and bla_oXA-23-like Genes Including a New Variant. Frontiers in Microbiology. 2015;6.

25. Haeili M, Ghodousi A, Nomanpour B, Omrani M, Feizabadi MM. Drug resistance patterns of bacteria isolated from patients with nosocomial pneumonia at Tehran hospitals during 2009-2011. The Journal of Infection in Developing Countries. 2013;7(04):312-7.

26. Goudarzi H, Douraghi M, Ghalavand Z, Goudarzi M. Assessment of antibiotic resistance pattern in Acinetobacter baumannii carrying bla oXA type genes isolated from hospitalized patients. Novelty in Biomedicine. 2013;1(2):54-61.

27. Goudarzi H, Azad M, Seyedjavadi
SS, Azimi H, Salimi Chirani A, Fallah Omrani V, et al. Characterization of integrons and associated gene cassettes in Acinetobacter baumannii strains isolated from intensive care unit in Tehran, Iran. Journal of Acute Disease. 2016;5(5):386-92.

28. Maspi H, Mahmoodzadeh Hosseini H, Amin M, Imani Fooladi AA. High prevalence of extensively drug-resistant and metallo beta-lactamase-producing clinical Acinetobacter baumannii in Iran. Microbial Pathogenesis. 2016;98:155-9.

29. Ostad Asadolah-Malayeri H, Hakemi-Vala M, Davari K. Role of Aders and OXA23 Genes among Imipenem Resistant Acinetobacter baumannii Isolates from Two Hospitals of Tehran, Iran. Iranian Journal of Pathology. 2016;11(4):345-53.

30. Azad Khaledi DE, Saeid Amel Jamehedar, Seyed-Alireza Esmaeili, Alireza Neshani and Abbas Bahador. Expression of MFS efflux pumps among multidrug resistant Acinetobacter baumannii clinical isolates. Scholars Research Library. 2016.

31. Zanganeh Z, Eftekhar F. Correlation of Oxacillinase Gene Carriage With the Genetic Fingerprints of Imipenem-Resistant Clinical Isolates of Acinetobacter baumannii. Jundishapur J Microbiol. 2015;8(9):e26545.

32. Azimi L, Lari A, Talebi M, Namvar AE, Jabbari M. Comparison between phenotypic and PCR for detection of OXA-23 type and metallo-beta-lactamases producer Acinetobacter spp. GMS Hygiene and Infection Control. 2013;8.

33. Khalilzadegan S, Sade M, Godarzi H, Eslami G, Hallajzade M, Fallah F, et al. Beta-Lactamase Encoded Genes blaTEM and blaCTX Among Acinetobacter baumannii Species Isolated From Medical Devices of Intensive Care Units in Tehran Hospitals. Jundishapur Journal of Microbiology. 2016;Inpress.

34. Azimi L, Rastegar Lar, Alaghehbandan R, Alinejad F, Mohammadpoor M, Rahbar M. KPC-Producer Gram-Negative Bacteria Among Burned Infants in Motahhari Hospital, Tehran: First Report From Iran. Annals of burns and fire disasters. 2012;25.

35. Azimi L, Talebi M, Khodaei F, Najafi M, Rastegar Lar A. Comparison of multiple-locus variable-number tandem-repeat analysis with pulsed-field gel electrophoresis typing of carbapenemases producing Acinetobacter baumannii isolated from burn patients. Burns. 2016;42.

36. Parviz Owlia LA, Abdolaziz Rastegar Lar. ESBL- and MBL-mediated resistance in Acinetobacter baumannii: a global threat to burn patients. Le Infezioni in Medicina.

37. Asadollahi P, Akbari M, Soroush S, Asadollahi K, Sayehmiri K, Makeki A, et al. Antimicrobial resistance patterns and their encoding genes among Acinetobacter baumannii strains isolated from burned patients. Burns: journal of the International Society for Burn Injuries. 2012;38.

38. Zohreh Aminzadeh aTY. Drug-resistant post-neurosurgical nosocomial Acinetobacter baumannii meningitis in two Iranian hospitals. African Journal of Biotechnology. 2012;11(17).

39. Vafaei S, Mirnejad R, Amirmozafari N. Determining the Patterns of Antimicrobial Susceptibility and the Distribution of blaCTX-M Genes in Strains of Acinetobacter Baumannii Isolated from Clinical Samples. Journal of Isfahan Medical School. 2013;31(252).

40. MTT, ML, SAJ-M, MA, ARL, MFA, et al. Risk factors and antimicrobial susceptibility in ventilator associated pneumonia: a brief report. Tehran University Medical Journal. 2012;70(9):577-82.
41. Mirnejad R, Mostofi S, Masjedian F. Antibiotic resistance and carriage class 1 and 2 integrons in clinical isolates of Acinetobacter baumannii from Tehran, Iran. Asian Pacific Journal of Tropical Biomedicine. 2013;3(2):140-5.
42. Asadollahi K, Alizadeh E, Akbari M, Niakan M, Makeki A, Asadollahi P, et al. The role of bla(OXA-like carbapenemase) and their insertion sequences (ISS) in the induction of resistance against carbapenem antibiotics among Acinetobacter baumannii isolates in Tehran hospitals. Roumanian archives of microbiology and immunology. 2010;70:153-8.
43. Shahcheraghi F, Abbasalipour M, Feizabadi M, Ebrahimipour G, Akbari N. Isolation and Genetic Characterization of Metallo-β-Lactamase and Carbapenamase Producing Strains of Acinetobacter Baumannii from Patients at Tehran Hospitals. Iranian journal of microbiology. 2011;3:68-74.
44. Mohammadi M. Distribution of Class D Carbapenemase and Extended-Spectrum β-Lactamase Genes among Acinetobacter Baumannii Isolated from Burn Wound and Ventilator Associated Pneumonia Infections. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. 2017;11.
45. Mohammadi F, Goudarzi H, Hashemi A, Yosefi N, Khoshoood S, Sabzehali F. Detection of ISAba1 in Acinetobacter baumannii Strains Carrying OXA Genes Isolated From Iranian Burns Patients. Archives of Pediatric Infectious Diseases. 2016;inpress.
46. Babapour E, Haddadi A, Mirnejad R, Angaji S, Amirmozafari N. Study of drug resistance and ompA gene existence in clinical Acinetobacter baumannii isolates. Iranian journal of medical microbiology. 2017;11:30-8.
47. Tarashi S, Goudarzi H, Erfanimanesh S, Pormohammad A, Hashemi A, Phenotypic and Molecular Detection of Metallo-Beta-Lactamase Genes Among Imipenem Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Strains Isolated From Patients with Burn Injuries. Archives of Clinical Infectious Diseases. 2016;inpress.
48. Jazani N, et al. Antibacterial effects of Artemisia dracunculus essential oil on multidrug resistant isolates of Acinetobacter baumannii. J Bacteriol. 2011;1:6.
49. Asadollahi K, Makeki A, Alizadeh E, Valadbaigi H, Soroush S, Maleki H, et al. Diversity of aminoglycoside modifying enzyme genes among multidrug resistant Acinetobacter baumannii genotypes isolated from nosocomial infections in Tehran hospitals and their association with class 1 integrons. Acta microbiologica et immunologica Hungarica. 2011;58:359-70.
50. Vahdani P, Yaghoubi T, Aminzadeh Z. Hospital Acquired Antibiotic-Resistant Acinetobacter Baumannii Infections in a 400-Bed Hospital in Tehran, Iran. International journal of preventive medicine. 2011;2:127-30.
51. Mohammadtaheri Z, Pourpaki M, Mohammadi F, Namdar R, Masjedi MR. Surveillance of Antimicrobial Susceptibility among Bacterial Isolates from Intensive Care Unit Patients of a Tertiary-Care University Hospital in Iran: 2006–2009. Chemotherapy. 2010;56(6):478-84.
52. Akbari M, Mahdi A, Niakan M, Mohammad N, Taherikalani M, Mehdi F, et al. Rapid identification of Iranian Acinetobacter Baumannii strains by single PCR assay using BLA oxa-51 -like carbapenemase and evaluation of the antimicrobial resistance profiles of the isolates. Acta microbiologica et immunologica Hungarica. 2010;57:87-94.
53. Moradi Tabriz H, Abd Elahi AR, Mehdipour...
B, Mahfouzi S. A.baumannii, infection rate and antimicrobial susceptibility in an Iranian tertiary care hospital Iranian Journal of pathology(IJP). 2010;5(4):.-.

54. Rahbar M, Mehrgan H, Aliakbari N. Prevalence of antibiotic-resistant Acinetobacter baumannii in a 1000-bed tertiary care hospital in Tehran, Iran. Indian journal of pathology & microbiology. 2010;53:290-3.

55. Rahbar M, Mehrgan H, Haji Ali Akbari N. Prevalence of Drug Resistance in Nonfermenter Gram-Negative Bacilli. Iranian Journal of Pathology. 2010;5(2):90-6.

56. Mirsamadi ES, Goudarzi H, Ghalavand Z, Vala MH, Mirjalali H, Hashemi A, et al. Molecular Detection of Metallo-Beta-Lactamase genes in Clinical Isolates of Acinetobacter baumannii. Journal of Pure and Applied Microbiology. 2015;9:145-51.

57. Soroush S, Haghi-Ashtiani M, Emaneini M, Aligholi M, Sadeghifard N, Pakzad I, et al. Antimicrobial Resistance of Nosocomial Strain of Acinetobacter baumannii in Children's Medical Center of Tehran: A 6-Year Prospective Study. Acta medica Iranica. 2009;48:178-84.

58. Aliramezani A, Douraghi M, Hajihasani A, Mohammadzadeh M, Rahbar M. Clonal relatedness and biofilm formation of OXA-23-producing carbapenem resistant Acinetobacter baumannii isolates from hospital environment. Microbial Pathogenesis. 2016;99:204-8.

59. Taherikalani M, Fatolahzadeh B, Bahram F, Emaneini M, Soroush S, Setareh S, et al. Distribution of different carbapenem resistant clones of Acinetobacter baumannii in Tehran Hospitals. The new microbiologica. 2009;32:265-71.

60. Owrang M, Fallah F, Irani S, Rahbar M, Eslami G. Identification and Isolation of Insertion Sequences, ISAba1 and ISAb2, in Carbapenem Resistant Clinical Isolates of Acinetobacter baumannii from Hospitals in Tehran, Iran. Jundishapur Journal of Microbiology. 2017;In Press.

61. Peerayeh S, Karmostaji A. Molecular Identification of Resistance Determinants, Integrons and Genetic Relatedness of Extensively Drug Resistant Acinetobacter baumannii Isolated From Hospitals in Tehran, Iran. Jundishapur Journal of Microbiology. 2015;8.

62. Noori M, Karimi A, Fallah F, Hashemi A, Alimehr S, Goudarzi H, et al. High Prevalence of Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated From Two Hospitals of Tehran, Iran. Archives of Pediatric Infectious Diseases. 2014;2.

63. Mandana Z, Mohamad Mehdi F, Sirous J, Alireza A, Azar S. High prevalence of OXA-type carbapenemases among Acinetobacter baumannii strains in a teaching hospital of Tehran. Acta Microbiologica et Immunologica Hungarica AMicr. 2017;64(4):385-94.

64. Navidinia M, Goudarzi M, Molaei Ramshe S, Farajollahi Z, Asl P, Zaka Khosravi S, et al. Molecular characterization of resistance genes in MDR-ESKAPE pathogens. Journal of Pure and Applied Microbiology. 2017;11:779-92.

65. Shahcheraghi F, Abbasalipour M, Feizabadi M, Ebrahimipour G, Akbari N. Isolation and genetic characterization of metallo-β-lactamase and carbapenamase producing strains of Acinetobacter baumannii from patients at Tehran hospitals. Iranian journal of microbiology. 2011;3(2):68-74.

66. Mirshekar M, Shahcheraghi F, Azizi O, Badmasti F. Diversity of Class 1 Integrons, and Disruption of carO and dacD by Insertion Sequences Among Acinetobacter baumannii Isolates in
Tehran, Iran. Microbial Drug Resistance. 2017;24.

67. Tavakol M, Momtaz H. Detection of the most prevalent antibiotic resistance genes in Acinetobacter baumannii strains isolated from hospitals infections and determination of their antibiotic resistance pattern. Biological journal of Microorganism. 2015;4(14).

68. Momtaz H, Khamesipour F, Tavakol M, Awosile B. Determination of Antimicrobial Resistance and Resistant Genes in Acinetobacter Baumannii from Human Clinical Samples. West Indian Medical Journal. 2015;66.

69. Boroumand M, Akhyani H, Sheikhvatan M, Yazdi S, Saboorian R, Hashemi S, et al. Evaluation of Antimicrobial Resistance of Acinetobacter baumannii to Imipenem, Ciporofloxacin and Ceftazidime using E Test. Iranian J Publ Health. 2012;38:130-3.

70. Aghamiri S, Amirmozafari N, Fallah J, Fouladtn B, Abdar M. Antibiotic Resistance Patterns and a Survey of Metallo-β-Lactamase Genes Including bla-IMP and bla-VIM Types in Acinetobacter baumannii Isolated from Hospital Patients in Tehran. Chemotherapy. 2016;61:275-80.

71. Beigverdi R, Sattari-Maraji A, Emaneini M, Jabalameli F. Status of carbapenem-resistant Acinetobacter baumannii harboring carbapenemase: First systematic review and meta-analysis from Iran. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2019;73:433-43.

72. Jazani NH, Zartoshti M, Babazadeh H, Ali-daiee N, Zarrin S, Hosseini S. Antibacterial Effects of Iranian Fennel Essential Oil on Isolates of Acinetobacter baumannii. Pakistan journal of biological sciences: PJBS. 2009;12:738-41.

73. Pournajaf A, Rajabnia R, Razavi S, Solgi S, Ardebili A, Yaghoubi S, et al. Molecular characterization of carbapenem-resistant Acinetobacter baumannii isolated from pediatric burns patients in an Iranian hospital. Tropical Journal of Pharmaceutical Research. 2018;17:135.

74. Feizabadi M, Fathollahzadeh B, Rasoolinejad M, Sadeghifard N, Aligholi M, Soroush S, et al. Antimicrobial susceptibility patterns and distribution of BlaAXA genes among Acinetobacter spp. isolated from patients at Tehran hospitals. Japanese journal of infectious diseases. 2008;61:274-8.

75. Farshadzadeh Z, Hashemi F, Rahimi S, Pourakbari B, Esmaeili D, Haghhighy Ma, et al. Wide Distribution of Carbapenem Resistant Acinetobacter baumannii in Burns Patients in Iran. Frontiers in Microbiology. 2015;6.

76. Gholami M, Hashemi A, Hakemi-Vala M, Goudarzi H, Hallajzadeh M. Efflux Pump Inhibitor Phenylalanine-Arginine B-Naphthylamide Effect on the Minimum Inhibitory Concentration of Imipenem in Acinetobacter baumannii Strains Isolated From Hospitalized Patients in Shahid Motahari Burn Hospital, Tehran, Iran. Jundishapur journal of microbiology. 2015;8(10):e19048-e.

77. Rahbar M, Kabeh-Monnavar M, Vatan K, Fadai-HaqiA, ShakerianF. Carbapenem resistance in gram-negative bacilli isolates in an Iranian 1000-bed tertiary hospital. Pak J Med Sci. 2007;24.

78. Mahdian S, Sadeghifard N, Pakzad I, Ghanbari F, Soroush S, Azimi L, et al. Acinetobacter baumannii clonal lineages I and II harboring different carbapenem-hydrolyzing-β-lactamase genes are widespread among hospitalized burn patients in Tehran. Journal of Infection and Public Health.
2015;8(6):533-42.
79. Tafreshi N, Bababeekhou L, Ghane M. Antibiotic resistance pattern of Acinetobacter baumannii from burns patients: increase in prevalence of bla OXA-24-like and bla OXA-58-like genes. Iranian Journal of Microbiology. 2020;11:502-9.
80. Savari M, Ekrami A, Shoja S, Bahador A. Plasmid borne Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) and AdeABC efflux pump conferring carbapenem-tigecycline resistance among Acinetobacter baumannii isolates harboring TnAbaRs. Microbial Pathogenesis. 2017;104.
81. Nasrolahei M, Zahedi B, Bahador A, Saghi H, Kholdi S, Jalalvand N, et al. Distribution of bla OXA-23, IS Aba, Aminoglycosides resistant genes among burned & ICU patients in Tehran and Sari, Iran. Annals of clinical microbiology and antimicrobials. 2014;13:38.
82. Hojabri Z, Pajand O, Bonura C, Aleo A, Giammanco A, Mammina C. Molecular epidemiology of Acinetobacter baumannii in Iran: Endemic and epidemic spread of multiresistant isolates. The Journal of antimicrobial chemotherapy. 2014;69.
83. Rahmani M, Amirmozafari N, Oshagi M. An Investigation of the Presence of Oxacillinase genes (bla_{OXA-51}, bla_{OXA-23}, bla_{OXA-58}, bla_{OXA-24}) in Acinetobacter baumannii strains isolated from Patients in Tehran Imam Khomeini Hospital and Shiraz Namazi Hospital, Iran. Qom Univ Med Sci J. 2015;9(10):55-63.
84. Peymani A, Higgins P, Nahaei M, Farajnia S, Seifert H. Characterisation and clonal dissemination of OXA-23-producing Acinetobacter baumannii in Tabriz, Northwest Iran. International journal of antimicrobial agents. 2012;39:526-8.
85. Peymani A, Nahaei M, Farajnia S, Hasani A, Mirsalehian A, Sohrabi N, et al. High prevalence of metallo-β-lactamase-producing Acinetobacter baumannii in a teaching hospital in Tabriz, Iran. Japanese journal of infectious diseases. 2011;64:69-71.
86. Sohrabi N, Farajnia S, Akhi M, Nahaei M, Naghili B, Peymani A, et al. Prevalence of OXA-Type β-Lactamases Among Acinetobacter baumannii Isolates from Northwest of Iran. Microbial drug resistance (Larchmont, NY). 2012;18:385-9.
87. Ranjbar R, Farahani A. Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrobial Resistance & Infection Control. 2019;8.
88. Ezadi F, Jamali A, Heidari A, Javid N, Ardebili A. Heteroresistance to colistin in oxacillinase-producing carbapenem-resistant Acinetobacter baumannii clinical isolates from Gorgan, Northern Iran. Journal of Global Antimicrobial Resistance. 2019;21.
89. Shirmohamadlou N, Zeighami H, Haghi F, Kashefieh M. Resistance pattern and distribution of carbapenemase and antiseptic resistance genes among multidrug-resistant Acinetobacter baumannii isolated from intensive care unit patients. Journal of Medical Microbiology. 2018;67.
90. Janbakhsh A, Khazaei S, Soroush A, Mirzaei S, Tarlan M, Tarlan S, et al. Antibiotic Resistance in Acinetobacter Strains Isolated from Patients, Staff and Equipment of ICU Wards of the Hospital in Kermanshah, Iran. Journal of Kermanshah University of Medical Sciences. 2020;In Press.
91. Farsiani H, Mosavat A, Soleimanpour S,
Meta-Analysis of the Prevalence of Carbapenem ...

Nasab M, Salimizand H, Amel Jamehdar S, et al. Limited genetic diversity and extensive antimicrobial resistance in clinical isolates of Acinetobacter baumannii in northeast-Iran. Journal of medical microbiology. 2015;64.

92. Salimizand H, Menbari S, Ramazanzadeh R, Khonsha M, Vahedi M. DNA fingerprinting and antimicrobial susceptibility pattern of clinical and environmental Acinetobacter baumannii isolates: a multicentre study. Journal of Chemotherapy. 2016;28:277-83.

93. Sarhaddi N, Soleimanpour S, Farsiani H, Mosavat A, Dolatabadi S, Salimizand H, et al. Elevated prevalence of multidrug-resistant Acinetobacter baumannii with extensive genetic diversity in the largest burn centre of northeast Iran. Journal of Global Antimicrobial Resistance. 2016;8.

94. Alaee N, Bahador A, Harzandi N. Molecular epidemiology and antimicrobial resistance of Acinetobacter baumannii isolated from Namazi hospital, in Shiraz by modified AFLP analysis. Journal of Microbial world. 2013;6(2 (15)).

95. Alaei N, Aziemzadeh M, Bahador A. Antimicrobial resistance profiles and genetic elements involved in carbapenem resistance in Acinetobacter baumannii isolates from a referral hospital in Southern Iran. Journal of Global Antimicrobial Resistance. 2016;5.

96. Japoni S, Farshad S, abdi-ali A, Japoni A. Antibacterial Susceptibility Patterns and Cross-Resistance of Acinetobacter; Isolated from Hospitalized Patients, Southern Iran. Iranian Red Crescent medical journal. 2011;13:832-6.

97. Pourabbas B, Firouzi R, Pouladfar G. Characterization of carbapenem-resistant Acinetobacter calcoaceticus-baumannii complex isolates from nosocomial bloodstream infections in southern Iran. Journal of Medical Microbiology. 2016;65.

98. Moghadam M, Motamedifar M, Sarvari J, Sedigh H, Mousavi S, Moghadam F. Emergence of Multidrug Resistance and Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated from Patients in Shiraz, Iran. Annals of Medical and Health Sciences Research. 2016;6:162.

99. Jafari S, Najafipour S, Kargar M, Abdollahi A, Mardaneh J, Fasihy Ramandy M, et al. Phenotypical Evaluation of Multi-Drug Resistant Acinetobacter Baumannii. Journal of Fasa University of Medical Sciences. 2013;2(4):254-8.

100. Kooti S, Motamedifar M, Sarvari J. Antibiotic resistance profile and distribution of Oxacilinase among clinical isolates of Acinetobacter baumannii in Shiraz teaching hospitals, 2012 - 2013. Jundishapur Journal of Microbiology(JJM). 2015;8(8).

101. Sarikhani Z, Nazari R, Nateghi Rostami M. First report of OXA-143-lactamase producing Acinetobacter baumannii in Qom, Iran. Iranian Journal of Basic Medical Sciences. 2017;20:1282-6.

102. Shoja S, Moosavian M, Peymani A, Tabatabaiefar ma, Rostami S, Ebrahim N. Genotyping of carbapenem resistant Acinetobacter baumannii isolated from tracheal tube discharge of hospitalized patients in intensive care units, Ahvaz, Iran. Iranian Journal of Microbiology. 2013;5:315-22.

103. Shoja S, Moosavian M, Rostami S, Abbasi F, Tabatabaiefar ma, Peymani A. Characterization of Oxacillinase and Metallo-β-Lactamas Genes and Molecular Typing of Clinical Isolates of Acinetobacter baumannii in Ahvaz, South-West of Iran. Jundishapur Journal of Microbiology. 2016;inpress.

104. Moosavian M, Sirous M, Shams N. Phenotypic and Genotypic Detection of Extended Spectrum B-lactamase and
Carbapenemases Production Including bla TEM, bla PER and bla NDM-1 Genes Among Acinetobacter baumannii Clinical Isolates. Jundishapur Journal of Microbiology. 2017; In Press.

105. Mansour A, Navidifar T, Shooshtari F, Goodarzi H. Association of the genes encoding Metallo-β-Lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infection and Drug Resistance. 2019; 12:1171-80.

106. Salimizand H, Modarresi F, Azizi O, Mansouri S, Rahmati M, Barkhordari K. Antimicrobial Profile and Phenotypic Metallo-β-Lactamase Detection of Acinetobacter baumannii Isolated From Clinical and Environmental Specimens. Zahedan J Res Med Sci. 2015;17(6).

107. Saffari F, Monsen T, Karmostaji A, Azimabad F, Widerström M. Significant spread of extensively drug-resistant Acinetobacter baumannii genotypes of clonal complex 92 among intensive care unit patients in a university hospital in southern Iran. Journal of Medical Microbiology. 2017;66.

108. Azizi O, shakibaie mr, Modaresi F, shahcherghi f. Molecular Detection of Class-D OXA Carbapenemase Genes in Biofilm and Non-Biofilm Forming Clinical Isolates of Acinetobacter baumannii. Jundishapur Journal of Microbiology. 2015;8:e21042.

109. Mohajeri P, Farahani A, Feizabadi M, Davoodabadi A, Noroozi B. The Prevalence of ESBL Isolates of Acinetobacter baumannii Using Pulsed-Field Gel Electrophoresis. Zahedan J Res Med Sci. 2013;15.

110. Mohajeri P, Farahani A, Sheini Mehrabzadeh R. Molecular Characterization of Multidrug Resistant Strains of Acinetobacter baumannii Isolated from Intensive Care Units in West of Iran. Journal of Clinical and Diagnostic Research. 2017;11:DC20-Dc2.

111. Mohajeri P, Farahani A, Mehdi F, Noroozi B. Clonal evolution multi-drug resistant Acinetobacter baumannii by pulsed-field gel electrophoresis. Indian journal of medical microbiology. 2015;33:87-91.

112. Noroozi B, Farahani A, Mohajeri P, Davoodabadi A. Molecular epidemiology of hospital acquired OXA-carbapenemase-producing Acinetobacter baumannii in Western Iran. Asian Pacific Journal of Tropical Disease. 2014;4:S803-S7.

113. Karbasizade V. Antimicrobial resistance of acinetobacter baumannii isolated from intensive care units of Isfahan hospitals, Iran. Journal of Isfahan Medical School. 2012;30.

114. Rezaei A, Fazeli H, Moghadampour M, Halaji M, Faghri J. Determination of antibiotic resistance pattern and prevalence of OXA-type carbapenemases among Acinetobacter baumannii clinical isolates from patients in Isfahan, central Iran. Le infezioni in medicina: rivista periodica di eziologia, epidemiologia, diagnostica, clinica e terapia delle patologie infettive. 2018;26:61-6.

115. Ghalebi M, Eslami G, Zandi H, Farhang A, Vakili M, Mohammadi N, et al. Survey of Antibiotic Resistance and Frequency of blaOXA-23 and blaOXA-24 Oxacillinase in Acinetobacter baumannii Isolated from Tracheal Tube Specimens of Patients Hospitalized in Intensive Care Units in Isfahan city. The Journal of Shahid Sadoughi University of Medical Sciences. 2017;25(1):1-10.

116. Ghajavand H, Havaei S, Nasr Esfahani B, Fazeli H, Moghim S. Frequency of multi-drug resistance acinetobacter baumannii isolates in intensive care units (ICU) of Isfahan Hospitals, Iran, via molecular method and their antimicrobial resistance patterns. Journal of Isfahan Medical School. 2014;32:1175-85.

117. J Vazirzadeh, H Ghajavand, L Heidari,
P Behshood. Prevalence of Extended Spectrum Beta Lactamases (ESBLs) and Antibiotic Resistance Pattern Acinetobacter Baumannii Strains Isolated from Clinical Specimens in Isfahan City, Iran. Medical Laboratory Journal. 2015;9(3):32-9.

118. Shamsizadeh Z, Nikaeeen M, Nasr Esfahani B, Mirhoseini SH, Hatamzadeh M, Hassanzadeh A. Detection of antibiotic resistant Acinetobacter baumannii in various hospital environments: potential sources for transmission of Acinetobacter infections. Environmental Health and Preventive Medicine. 2017;22.

119. Shokri D, Khorsangani M, Fatemi S, Soleimani Delfan A. Resistotyping, phenotyping and genotyping of New Delhi metallo-β-lactamase (NDM) among Gram-negative bacilli from Iranian patients. Journal of medical microbiology. 2017;66.

120. Safari M, Saidijam M, Bahador A, Jafari R, Alikhani M. High Prevalence of Multidrug Resistance and Metallo-beta-lactamase (MBL) producing Acinetobacter Baumannii Isolated from Patients in ICU Wards, Hamadan, Iran. Journal of research in health sciences. 2013;13:162-7.

121. Bardbari A, Arabestani MR, Karami M, Keramat F, Alikhani M, Pooshang Bagheri K. Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microbial Pathogenesis. 2017;108:122-8.

122. Safari M, Mozaffari Nejad AS, Bahador A, Jafari R, Alikhani M. Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU). Saudi Journal of Biological Sciences. 2015;32.

123. Farahani Kheltabadi R, Moniri R, Shajari GR, Nazem Shirazi MH, Musavi SGA, Ghasemi A, et al. Antimicrobial Susceptibility patterns and the distribution of resistance genes among Acinetobacter species isolated from patients in shahid Beheshti hospital, Keshan. Feyz Journal of Kashan University of Medical Sciences. 2009;12(4):61-7.

124. Josheghani S, Moniri R, Firoozeh F, Sehat M, Dastehgoli K, Koosha H, et al. Emergence of blaOXA-Carrying Carbapenem Resistance in Multidrug-Resistant Acinetobacter baumannii in the Intensive Care Unit. Iranian Red Crescent Medical Journal. 2016;Inpress.

125. Madadi-Goli N, Moniri R, Bagheri-Josheghani S. Antibiotic resistance pattern and distribution of Vietnamese extended-spectrum-β lactamase (VSB-1) gene in Acinetobacter baumannii isolated from hospitalized patients in Kashan Shahid Beheshti hospital during 2013-2014. Feyz Journal of Kashan University of Medical Sciences. 2017;21(4):383-9.

126. Bagheri-Sosheghani S, Moniri R, Firoozeh F, Sehat M, Dasteh Goli Y. Susceptibility Pattern and Distribution of Oxacillinases and blaPER-1 Genes among Multidrug Resistant Acinetobacter baumannii in a Teaching Hospital in Iran. Journal of Pathogens. 2015;2015.

127. Japoni-Nejad A, Sofian M, van Belkum A, Ghaznavi-Rad E. Nosocomial Outbreak of Extensively and Pan Drug-Resistant Acinetobacter baumannii in Tertiary Hospital in Central Part of Iran. Jundishapur Journal of Microbiology. 2013;6.

128. Japoni-Nejad AR, Sofian M, Ghaznavi-Rad E. Molecular detection of AdeABC efflux pump genes in Acinetobacter baumannii and their contribution in carbapenem resistance. Iranian South Medical Journal. 2014;17(5):815-23.

129. Bahadori azimabadi F, Karmostaji A. Evaluation of Oxacillinase Genes among Carbapenem Resistant Acinetobacter baumannii in Shahid Mohammadi Hospital of Bandar grains, Iran in 2014-2015. Journal
of Advances in Medical and Biomedical Research. 2015;23(101):45-54.

130. Moosavian M, Ahmadi K, Shoja S, Mardaneh J, Shahi F, Azfali M. Antimicrobial resistance patterns and their encoding genes among clinical isolates of Acinetobacter baumannii in Ahvaz, Southwest Iran. MethodsX. 2020;7.

131. Witchuda Kamolvit HES, and David L. Paterson. Molecular Epidemiology and Mechanisms of Carbapenem Resistance of Acinetobacter spp. in Asia and Oceania. Microbial Drug Resistance. 2015;21(4):424-34.

132. Opazo-Capurro A, Domínguez M, Bello H, Amyes S, González-Rocha G. OXA-type carbapenemases in Acinetobacter baumannii in South America. Journal of infection in developing countries. 2012;6:311-6.

133. Shams S, Hashemi A, Esmkhani M, Kermani S, Shams E, Piccirillo A. Imipenem resistance in clinical Escherichia coli from Qom, Iran. BMC Research Notes. 2018;11.

134. Schafer E, Malecki M, Téllez-Castillo C, Pfennigwerth N, Marlinghaus L, Higgins P, et al. Molecular surveillance of carbapenemase-producing Pseudomonas aeruginosa at three medical centres in Cologne, Germany. Antimicrobial Resistance & Infection Control. 2019;8.

135. Low Y-M, Yap P, Abdul Jabar K, Ponnampalavanar S, Karunakaran R, Velayuthan R, et al. The emergence of carbapenem resistant Klebsiella pneumoniae in Malaysia: Correlation between microbiological trends with host characteristics and clinical factors. Antimicrobial resistance and infection control. 2017;6:5.

136. Tang SS, Apisarnthanarak A, Hsu LY. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Advanced Drug Delivery Reviews. 2014;78:3-13.

137. Nasrollah Sohrabi SF, Mohammad Taghi Akhi, Mohammad Reza Nahaei, Behroz Naghili, Amir Peymani, Zohreh Amiri, Mohammad Ahangarzadeh Rezaei, and Nazli Saeedi. Prevalence of OXA-Type β-Lactamases Among Acinetobacter baumannii Isolates from Northwest of Iran. Microbial Drug Resistance. 2012;18(4):385-9.

138. Jabalameli F, Taki E, Emameini M, Beigverdi R. Prevalence of metallo-²-lactamase-encoding genes among carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Iran. Revista da Sociedade Brasileira de Medicina Tropical. 2018;51:270-6.

140. Esfandiari A, Rashidian A, Masoumi Asl H, Rahimi Foroushani A, Salari H, Akbari Sari A. Prevention and control of health care-associated infections in Iran: A qualitative study to explore challenges and barriers. Am J Infect Control. 2016;44(10):1149-53.

141. Sarı A, Biçmen M, Gülay Z. The First Report on the Outbreak of OXA-24/40-Like Carbapenemase-Producing Acinetobacter baumannii in Turkey. Japanese journal of infectious diseases. 2013;66:439-42.

142. Azimi L, Talebi M, Pourshafie M-R, Owlia P, Rastegar Lari A. Characterization of Carbapenemases in Extensively Drug Resistance Acinetobacter baumannii in a Burn Care Center in Iran. International Journal of Molecular and Cellular Medicine. 2015;4(1):46-53.