Constitutive and Agonist-dependent Homo-oligomerization of the Thyrotropin-releasing Hormone Receptor

DETECTION IN LIVING CELLS USING BIOLUMINESCENCE RESONANCE ENERGY TRANSFER*

Karen M. Kroeger, Aylin C. Hanyaloglu, Ruth M. Seeber, Lauren E. C. Miles, and Karin A. Eidne‡

From the Western Australian Institute for Medical Research, University of Western Australia and Keogh Institute of Medical Research, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia 6009, Australia

The ability of G-protein-coupled receptors (GPCRs) to interact to form new functional structures, either forming oligomers with themselves or forming associations with other intracellular proteins, has important implications for the regulation of cellular events; however, little is known about how this occurs. Here, we have employed a newly emerging technology, bioluminescence resonance energy transfer (BRET), used to study protein-protein interactions in living cells, to demonstrate that the thyrotropin-releasing hormone receptor (TRHR) forms constitutive homo-oligomers. This formation of TRHR homo-oligomers in the absence of ligand was shown by demonstration of an energy transfer between TRHR molecules fused to either donor, Renilla luciferase (Rluc) or acceptor, enhanced yellow fluorescent protein (EYFP) molecules. This interaction was shown to be specific, since energy transfer was not detected between co-expressed tagged TRHRs and either complementary tagged gonadotropin-releasing hormone (GnRH) or β₂-adrenergic receptors. Furthermore, generation of a BRET signal between the TRHRs could only be inhibited by co-expression of the wild-type TRHR and not by other GPCRs. Agonist stimulation led to a time- and dose-dependent increase in the amount of energy transfer. Inhibition of receptor internalization by co-expression of dynamin mutant K44A did not affect the interaction between TRHRs, suggesting that clustering of receptors within clathrin-coated pits is not sufficient for energy transfer to occur. BRET also provided evidence for the agonist-induced oligomerization of another GPCR, the GnRH receptor (GnRHR), and the presence of an agonist-induced interaction of the adaptor protein, β-arrestin, with TRHR and the absence of an interaction of β-arrestin with GnRHR. This study supports the usefulness of BRET as a powerful tool for studying GPCR aggregations and receptor/protein interactions in general and presents evidence that the functioning unit of TRHRs exists as homomeric complexes.

Thyrotropin-releasing hormone (TRH) is involved in controlling the production of thyroid-stimulating hormone and prolactin from the anterior pituitary gland. TRH functions via binding to its receptor subtype that belongs to the large family of G-protein-coupled receptors (GPCRs), the first of which identified (1–4) is now known as TRH receptor 1 (TRHR). As with many other GPCRs, there has been great interest in the mechanisms of regulation of TRHRs. Although the events underlying TRHR intracellular signaling and trafficking have been studied (5–11), the potential for TRHRs to undergo receptor-receptor interactions has not been previously addressed. Traditionally, GPCRs were thought to function as monomeric units, coupling to their cognate G-proteins in a 1:1 stoichiometry upon agonist activation. However, a growing body of biochemical and functional evidence supports the existence of homo- and heterodimers and oligomers and thus a critical role for GPCR–GPCR interactions in receptor function.

Early functional evidence for GPCR dimerization came from the observation that the co-expression of two defective receptors can restore receptor activity by trans-complementation between mutant or chimeric receptors (12, 13). Additional functional evidence has come from analyzing the effect of dominant receptor mutants on wild-type receptor function (14–18), and co-immunoprecipitation studies of epitope-tagged receptors have been used to demonstrate that many GPCRs can exist as homodimers or oligomers (14, 19–26). It has been suggested that hetero-oligomerization may represent a general phenomenon among GPCRs, resulting in a greater diversity of GPCR function (27–35).

In order to assess whether homo- and hetero-oligomerization exists among GPCRs in living cells, newly developed biophysical methods have been utilized to provide convincing evidence for the formation of receptor complexes. Fluorescence resonance energy transfer (FRET) has been used to show homodimerization/homo-oligomerization of somatostatin receptors (26) and GnRHRs (36) and heterodimerization between somatostatin receptor, somatostatin receptor 5, and the dopamine D2 receptor (29). Bioluminescence resonance energy transfer (BRET) represents a novel derivation of the FRET technique (37). This approach involves the transfer of energy resulting from the degradation of coelenterazine by Renilla luciferase (Rluc) to green fluorescent protein or a red-shifted variant, enhanced yellow fluorescent protein (EYFP), which in turn emits fluorescence. BRET is strictly dependent on the molecular proximity between the energy donor (Rluc) and acceptor (EYFP), making it ideal for studying protein-protein interactions of the Thyrotropin-releasing hormone (TRH) system in living cells.
interactions. Furthermore, it has advantages over FRET in that it avoids the need for fluorescence excitation and thus possible cell damage and photobleaching (37). BRET was initially used to detect interactions between the cyanobacteria clock protein KaiB in *Escherichia coli* (37). More recently, BRET has been used to demonstrate that the β2-adrenergic receptor exists as functional dimers in living cells and also the agonist-induced interaction between the receptor and adaptor protein β-arrestin 2 (38). Here we have taken advantage of this newly developed biophysical technique to investigate whether the TRHR could exist as oligomers in living mammalian cells. We have shown that in the unbound state, the TRHR exists as preformed homo-oligomeric complexes and that this interaction is modulated by agonist activation of the receptor. BRET was also used to examine the agonist-promoted interaction between TRHR and GnRHRs with the intracellular adaptor protein β-arrestin to demonstrate a direct real time interaction in intact cells.

EXPERIMENTAL PROCEDURES

Eukaryotic Expression Constructs—The TRHR/Rluc construct was generated by amplification of the rat TRHR coding sequence (39) without its stop codon using sense and antisense primers containing BamHI and NotI sites, respectively. The fragment was then cloned in frame into the pRluc vector constructed by insertion of the Rluc coding region into pcDNA3 (Invitrogen). Similarly, the TRHR/EYFP fusion construct was created by insertion of the BamHI/NotI fragment in frame into the EYFP vector constructed by insertion of the EYFP coding region into pcDNA3.

The GnRHR/Rluc and GnRHR/EYFP constructs were generated by amplification of the rat GnRHR +1 stop codon mutant coding region (40) without its stop codon using sense and antisense primers containing EcoRV and NotI sites, respectively. This generated a 10-amino acid C-terminal extension to the GnRHR onto which the Rluc or EYFP coding sequence could be added. This GnRHR EcoRV/NotI fragment was then cloned into the pcDNA3 vector containing either Rluc or EYFP as described above.

The Rluc/EYFP fusion vector was constructed by amplification of the Rluc coding region without its stop codon containing HindIII and EcoRV sites and insertion of this HindIII/EcoRV fragment in frame into the HindIII/EcoRV sites of the EYFP vector.

The rat GnRHR-(1-269)-EYFP carboxyl-terminal tail chimera (GnRHR/TRHR tail) have been previously described (40). The cDNA for human prostate-activated receptor 1 was provided by L. Brass (University of Pennsylvania, Philadelphia, PA). The dominant negative mutant (K44A) construct was provided by S. Schmid (University of California, San Francisco, CA). The β3-adrenergic/Rluc (β3-AR/Rluc) and β2-adrenergic/EYFP (β2-AR/EYFP) fusion constructs were provided by M. Bouvier (University of Montreal) and were previously described (38).

Cell Culture and Transfection—HEK 293 and COS 1 cells (ATCC) maintained in Dulbecco’s modified Eagle’s medium containing 10% fetal calf serum, 10% fetal bovine serum albumin (0.3 mg/ml), and penicillin/streptomycin (100 units/ml) (Life Technologies, Inc.) at 37 °C in 5% CO2, 1% FCS, and maintained in Dulbecco’s modified Eagle’s medium containing 10% FCS, 0.3 mg/ml, and penicillin/streptomycin (100 units/ml) (Life Technologies, Inc.) at 37 °C in 5% CO2 were used. Human embryonic kidney (HEK 293) and African green monkey kidney (COS 1) cells were used. Similar to the TRHR/EYFP, the GnRHR/EYFP was expressed on the plasma membrane, as demonstrated by confocal microscopy, although some cytoplasmic fluorescence was observed. Using 0.1% bovine serum albumin (BSA) without unlabeled agonist. The concentration of unlabeled agonist used ranged from 10−9 to 10−11 M. The cells were then washed and solubilized in 0.2 M NaOH, 1% SDS, and the radioactivity was counted, with receptor binding expressed as a percentage of maximum specific binding.

Receptor Internalization Assay—Receptor internalization assays were performed in HEK 293 cells as previously described (42). Briefly, transiently transfected cells in 24-well plates were incubated with [125I]-labeled [D-Trp6,Pro9,N-Et] GnRH or [3H][Me-His6]TRH (PerkinElmer Life Sciences) with or without unlabeled agonist. The concentration of unlabeled agonist used ranged from 10−9 to 10−11 M. The cells were then washed and solubilized in 0.2 M NaOH, 1% SDS, and the radioactivity was counted, with receptor binding expressed as a percentage of maximum specific binding.

RESULTS

Characterization of Receptor Rluc and EYFP Fusion Constructs—TRHR fusion proteins with either Rluc or EYFP added to the C terminus were validated to ensure they displayed functional characteristics similar to untagged, wild-type receptors. Confocal microscopy was used to demonstrate that the TRHR/EYFP fusion protein was expressed on the plasma membrane (Fig. 1A, I). Radioligand binding and internalization assays were used as an additional means to measure receptor expression at the cell surface as well as receptor function compared with wild type. Both TRHR/Rluc and TRHR/EYFP were shown to express at the cell surface, and dose displacement binding assays revealed similar IC50 values compared with wild-type (Table 1). Furthermore, the rate of TRHR/Rluc receptor internalization was not significantly altered in comparison with untagged receptor in response to TRH (Fig. 1B). Similarly, the TRHR/EYFP fusion receptor, however, showed 10% less ligand-induced internalization when compared with wild-type TRHRs.

In order to determine specificity of the interaction observed between TRHrs, EYFP and Rluc fusion constructs of another GPCR, the GnRHR, were generated and validated as described above. A step codon mutant encoding a GnRHR with a 10-amino acid C-terminal linker described elsewhere (40) was used. Similar to the TRHR/EYFP, the GnRHR/EYFP was expressed on the plasma membrane, as demonstrated by confocal microscopy, although some cytoplasmic fluorescence was observed, suggesting the presence of an intracellular pool of receptors (Fig. 1A, II). Receptor binding assays and internalization assays in cells expressing each of the GnRHR fusion constructs further illustrated the expression of both GnRHR/EYFP and GnRHR/Rluc at the cell surface. The GnRHR has
previously been shown to internalize at a slower rate compared with the TRHR in both HEK 293 and COS cells (42). Neither the binding (Table I) nor the internalization (Fig. 1B) characteristics of either of the Rluc- and EYFP-tagged forms of the GnRHR were affected compared with wild-type receptor.

Table I

IC$_{50}$ values for wild-type and BRET fusion receptors

Receptor	IC$_{50}$ (nM) ± S.D.
TRHR	1.38 ± 0.88
TRHR/Rluc	1.1 ± 0.57
TRHR/EYFP	5.75 ± 1.77
GnRHR	1.5 ± 0.71
GnRHR/Rluc	1.75 ± 1.06
GnRHR/EYFP	2.25 ± 1.06

Fig. 2. Constitutive and agonist-dependent oligomerization of the TRH receptor. BRET was measured in COS 1 cells transfected with either TRHR/Rluc alone or with both TRHR/Rluc and TRHR/EYFP. Cells were incubated with 5 μM coelenterazine, and BRET readings were taken immediately. TRH or GnRH at 10^{-6} M final concentration was incubated for 20 min before the addition of substrate. Data shown are represented as the normalized BRET ratio against readings obtained with TRHR/Rluc alone. Assays were carried out at least three times, and results shown are mean ± S.D.
Oligomerization of the TRH Receptor

Coelenterazine, and repeated measures were taken for up to 30 min. Rluc and TRHR/EYFP were measured immediately after the addition of tor oligomerization.

Concentrations of TRH (10^-2 M) were transfected into COS 1 cells expressing TRHR/Rluc with the β2-AR/EYFP fusion construct. No increase in the signal was detected between the TRHR/Rluc and TRHR/EYFP constructs. This is known to cause clustering and internalization of the TRHR receptor. Therefore, a specific interaction between at least two TRHR monomers is possible. The ligand-independent interaction of this receptor. This suggests that the ligand-independent interaction of this receptor.

GnRHR/Rluc, GnRHR/EYFP, and β2-AR/EYFP fusion constructs were co-expressed with the TRHR fusion proteins, in order to control for the specificity of the TRHR/Rluc and TRHR/EYFP interaction and to rule out the possibility that it is not due to receptor overexpression at the membrane. Co-expression of the TRHR/Rluc and GnRHR/EYFP did not lead to an energy transfer in either untreated cells or in cells treated with either TRH or GnRH agonist alone or both together (Fig. 5A). A similar finding was observed for cells co-expressing the combination of either the TRHR/EYFP with the GnRHR/Rluc or TRHR/Rluc with the β2-AR/EYFP (Fig. 5A).

The low level of BRET observed in COS 1 cells co-expressing both the GnRHR/Rluc and GnRHR/EYFP compared with either GnRHR/Rluc with TRHR/EYFP, GnRHR/EYFP with TRHR/Rluc, or GnRHR/Rluc alone (Fig. 5A) suggests that the GnRHR may not form oligomers in the absence of ligand. However, following the addition of GnRH agonist, an increase in the BRET ratio was observed (Fig. 5A), indicating that an interaction between GnRHR/Rluc and GnRHR/EYFP does occur. The addition of a GnRH antagonist (Antide; 10^-6 M), had no effect on BRET (results not shown).

Co-expression of Untagged Receptors—To further demonstrate the specificity of the TRHR interaction, untagged TRHR was transfected into COS 1 cells in addition to TRHR/Rluc and TRHR/EYFP. Expression of untagged TRHR was found to markedly reduce the BRET signal generated between the TRHR/Rluc and TRHR/EYFP fusions (Fig. 5B). In contrast, expression of other untagged GPCRs including the GnRHR, GnRHR/TRHR chimera and protease-activated receptor 1, did not significantly inhibit the BRET signal observed between the two tagged TRHR receptors (Fig. 5B). Untagged receptor expression was confirmed by ligand binding assays (data not shown).

Inhibition of Receptor Internalization—Agonist stimulation is known to cause clustering and internalization of the TRHR (10, 42–44). Thus, it is possible that the increase in BRET observed following TRH stimulation could result from an increase in the number of Rluc- and EYFP-tagged receptors in...
close proximity in coated pits. To establish that the BRET signal was not due to receptor clustering, we employed the dominant negative dynamin mutant (Dyn K44A) known to efficiently block TRHR internalization by inhibiting clathrin-mediated endocytosis (45, 46). Dyn K44A impaired internalization of tagged TRHRs regardless of whether they were expressed individually or together in the same cells (Fig. 6A). However, the presence of Dyn K44A had no effect on the agonist-dependent increase in BRET (Fig. 6B). This supports the hypothesis that the agonist-induced BRET signal is due to microaggregation or oligomerization of the TRHRs and not to clustering of receptors or macroaggregation as a result of receptor internalization.

Measurement of Receptor Interaction with \(\beta \)-Arrestin by BRET—To determine whether other protein-protein interactions involving the TRHR and GnRHR fusion proteins could be measured by BRET and to assess if other ligand-dependent receptor interactions could be detected, we investigated the known \(\beta \)-arrestin dependence of the TRHR (8, 42, 46) and the \(\beta \)-arrestin independence of the GnRHR (42, 46).

The \(\beta \)-arrestin fusion protein was validated by co-expression of \(\beta \)-arrestin/EYFP with either TRHR/Rluc or GnRHR/Rluc in HEK 293 cells in order to visualize an agonist-dependent redistribution of \(\beta \)-arrestin using confocal microscopy. The \(\beta \)-arrestin/EYFP- and TRHR/Rluc-expressing cells showed a visible redistribution from the cytoplasm to the cell surface after 90 s of agonist stimulation (Fig. 7A, II), as confirmed in previous studies using \(\beta \)-arrestin/green fluorescent protein (8, 42, 46). In contrast, in cells co-expressing GnRHR/Rluc, there was no redistribution of \(\beta \)-arrestin/EYFP after the addition of GnRH (Fig. 7A, IV), confirming that the addition of Rluc or EYFP to these proteins does not affect the \(\beta \)-arrestin independence of the tagged GnRHR. In order to measure the BRET ratio between TRHR and \(\beta \)-arrestin, COS 1 cells were co-transfected with TRHR/Rluc and either pcDNA3, TRHR/EYFP, or GnRHR/EYFP. There was a very small increase in the BRET ratio upon co-expression of \(\beta \)-arrestin/EYFP compared with TRHR/Rluc alone, although this increase is also seen when co-expressing TRHR/Rluc with EYFP only (data not shown) due to a small degree of nonspecific interaction as a result of overexpression. However, the addition of TRH caused a dramatic increase in the BRET ratio (Fig. 7B), confirming that \(\beta \)-arrestin only associates with the agonist-activated receptor (47). COS 1 cells co-expressing GnRHR/Rluc and \(\beta \)-arrestin showed no increase in the BRET ratio following the addition of GnRH agonist (Fig.
were taken in the absence or presence of the appropriate ligand (10 M Rluc and pcDNA3; TRHR/Rluc and β-arrestin 1/EYFP, 10 min). BRET interaction was assessed using confocal microscopy in HEK 293 cells co-transfected with TRHR and GnRHR using BRET.

I and II, untreated; III, TRH (10 M, 90 s); IV, GnRH agonist (10 M, 10 min). B. BRET ratio was measured in COS 1 cells expressing TRHR/Rluc and pcDNA3; TRHR/Rluc and β-arrestin 1/EYFP; GnRH/RIuc and pcDNA3; and GnRH/Rluc and β-arrestin 1/EYFP. Measurements were taken in the absence or presence of the appropriate ligand (10 M). Assays were carried out at least three times, and results shown are representative of a single experiment.

In order to assess whether monomeric TRHRs were able to interact, TRHR fusion proteins were generated with either the Rluc and EYFP moieties or between the tagged receptor and an untagged receptor, as has been previously reported for green fluorescent protein-tagged β1 and β2-adrenergic receptors (48).

Co-expression of TRHR/Rluc and TRHR/EYFP resulted in an increase in the ratio of light emitted in the 440–500- and 510–590-nm filter windows used to detect an energy transfer over that emitted by TRHR/Rluc alone and thus an increase in the defined BRET ratio. The detection of BRET between TRHR fusion proteins under basal conditions demonstrates a close proximity between the TRHR/Rluc and TRHR/EYFP, since the maximum distance allowing energy transfer between the Rluc and EYFP BRET pair is ~50 Å (37). Our observation can be best explained by the existence or formation of constitutive receptor dimers or oligomers. This supports our previous data obtained from immunoprecipitation studies of the hemagglutinin-tagged TRHR, where the formation of higher molecular weight protein species was observed, most likely reflecting dimer or oligomer formation (49).

The observation that constitutive receptor dimers exist has been reported for several GPCRs (21, 23, 38). It is still presently unclear whether the receptors form dimers or oligomers at the cell surface or intracellularly prior to trafficking to the cell surface. However, evidence from the GABAø receptor and other GPCRs indicates that constitutive dimers may preform intracellularly before trafficking to the cell surface (16–18, 32, 50). If the dimer or oligomer is the functional receptor unit, one could speculate that the constitutive signaling observed for the TRHR (9) may relate to the preexisting TRHR homomeric complexes.

The agonist promotion of the BRET ratio could be indicative of an increase in the number of oligomers formed and/or a change in the conformation of preexisting complexes that results in closer proximity or more favorable orientation of donor and acceptor molecules (38). A recent study has shown that for the metabotropic glutamate receptor, glutamate binding stabilizes the preexisting dimer (51), whereas other GPCRs including somatostatin receptor 5 (26) and GnRHR (36) undergo ligand-dependent dimerization.

The constitutive and agonist-dependent BRET observed between the TRHRs was shown to be a specific interaction in several ways. First, no interaction was detected between co-expressed Rluc and EYFP moieties or between the tagged TRHR and either of the complementary tagged GnRHR or β1-adrenergic receptors, indicating that BRET was not a result of a nonspecific EYFP and Rluc interaction. These results also suggest that heteromeric complexes do not form between the TRHR and GnRHR or between the TRHR and β2-adrenergic receptor. Overexpression of untagged receptors was employed...
to demonstrate that the constitutive BRET signal detected was specific for the TRHR interaction, since a reduction in the BRET observed following TRHR induction was due to agonist modulation of receptor oligomers and not just due to the close proximity of either Rluc- and EYFP-tagged receptors clustering within clathrin-coated pits. BRET did not occur in cells co-expressing TRHR and either β2-adrenergic or GnRHR receptors, all of which internalize via clathrin-coated pits (42, 53) following TRHR agonist stimulation. Furthermore, co-expression of the dynamin dominant negative mutant (K44A), known to efficiently block receptor internalization (54), including TRHR internalization (45, 46), did not affect the agonist-induced rise in the BRET signal. These findings demonstrated that clustering of receptors within the pits is not sufficient to allow energy transfer between noninteracting receptors.

Interestingly, the GnRHR was shown to interact following agonist stimulation, suggesting the formation of oligomers, analogous to findings reported recently (36) and strengthening the use of BRET to detect GPCR oligomerization. We were unable to detect any preexisting GnRHR complexes; however, an earlier study showed that co-expression of the wild-type receptor and a truncated splice variant impaired GnRHR cell surface expression and signaling (17), which may suggest the existence of GnRHR dimers. Growing evidence suggests that heterodimerization/oligomerization may be a general phenomenon among GPCRs (26, 29, 34, 35) and represent a means of increasing the diversity of cellular responses to a wide range of extracellular signals. However, the TRHR did not appear to form constitutive or agonist-stimulated hetero-oligomers with the GnRHR, at least not under the conditions used to demonstrate TRHR and GnRHR homo-oligomerization. This does not rule out the possibility that the co-expression of both receptors in the correct cell type in vivo may result in formation of a heteromeric complex.

The BRET technique and the TRHR and GnRHR fusion constructs were further validated by measurement of their interaction with β-arrestin 1. Our earlier studies have shown that while the TRHR undergoes β-arrestin-dependent internalization, the GnRHR does not (42, 46). BRET measurements revealed an agonist-dependent interaction between TRHR and β-arrestin, while there was no β-arrestin interaction observed for the GnRHR. The GnRHR is a unique GPCR in that it lacks the functionally important intracellular C-terminal domain, which may be responsible for its inability to interact with β-arrestin and its consequent slow internalization kinetics (42). The interaction between the β2-AR and β-arrestin has also been demonstrated using BRET (38).

The role for both receptor homo- and hetero-oligomerization is rapidly growing. Using the BRET technique, we were able to demonstrate that the TRHR and GnRHRs both form homomeric complexes and that, in the case of the TRHR, constitutive and agonist-promoted oligomerization is present. We were also able to confirm using BRET the differential ability of the TRHR and GnRHR to interact with β-arrestin. The development of biophysical techniques to study receptor-protein interactions in living cells provides an effective means to obtain direct evidence for the role of these events in GPCR function.

Acknowledgment—We thank Dr. G. Worth for assistance in inclusions.

REFERENCES
42. Vrecl, M., Anderson, L., Hanyaloglu, A., McGregor, A. M., Groarke, A. D., Milligan, G., Taylor, P. L., and Eidne, K. A. (1998) Mol. Endocrinol. 12, 1818–1829
43. Drmota, T., Gould, G. W., and Milligan, G. (1998) J. Biol. Chem. 273, 24000–24008
44. Ashworth, R., Yu, R., Nelson, E. J., Dermer, S., Gershengorn, M. C., and Hinkle, P. M. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 512–516
45. Yu, R., and Hinkle, P. M. (1998) Mol. Endocrinol. 12, 737–749
46. Heding, A., Vrecl, M., Hanyaloglu, A. C., Sellar, R., Taylor, P. L., and Eidne, K. A. (2000) Endocrinology 141, 299–306
47. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G., and Lefkowitz, R. J. (1990) Science 248, 1547–1550
48. McLean, A. J., and Milligan, G. (2000) Br. J. Pharmacol. 130, 1825–1832
49. Willars, G. B., Heding, A., Vrecl, M., Sellar, R., Blomenrohr, M., Nahorski, S. R., and Eidne, K. A. (1999) J. Biol. Chem. 274, 30146–30153
50. Lee, S. P., O'Dowd, B. F., Ng, G. Y., Varghese, G., Akil, H., Mansour, A., Nguyen, T., and George, S. R. (2000) Mol. Pharmacol. 58, 120–128
51. Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., Nakanishi, S., Jingami, H., and Morikawa, K. (2000) Nature 407, 971–977
52. Ray, K., Hauschild, B. C., Steinbach, P. J., Goldsmith, P. K., Hauache, O., and Spiegel, A. M. (1999) J. Biol. Chem. 274, 27642–27650
53. Moore, R. H., Sadovnikoff, N., Hoffenberg, S., Liu, S., Wooford, P., Angelides, K., Trial, J. A., Carsrud, N. D., Dickey, B. F., and Knoll, B. J. (1995) J. Cell Sci. 108, 2983–2991
54. van der Bliek, A. M., Redelmeier, T. E., Damke, H., Tisdale, E. J., Meyerowitz, E. M., and Schmid, S. L. (1993) J. Cell Biol. 122, 553–563
Constitutive and Agonist-dependent Homo-oligomerization of the Thyrotropin-releasing Hormone Receptor: DETECTION IN LIVING CELLS USING BIOLUMINESCENCE RESONANCE ENERGY TRANSFER
KAREN M. KROEGER, AYLIN C. HANYALOGLU, RUTH M. SEEBER, LAUREN E. C. MILES AND KARIN A. EIDNE

J. Biol. Chem. 2001, 276:12736-12743.
doi: 10.1074/jbc.M011311200 originally published online January 18, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M011311200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 54 references, 32 of which can be accessed free at http://www.jbc.org/content/276/16/12736.full.html#ref-list-1