Electric Dipole Moment and Neutrino Mixing due to Planck Scale Effects

Bipin Singh Koranga

March 9, 2010

Kirori Mal College (University of Delhi,) Delhi-110007, India

Abstract

In this paper, we consider the effect of Planck scale operators on electric dipole moment of the electron d_e. The electric dipole moment of the electron, d_e is known to vanish up to three loops in the standard model with massless neutrinos. We consider the planck scale operator on neutrino mixing. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between planck scale and the electroweak braking scale. We also assume, that just above the electroweak breaking scale neutrino mass are nearly degenerate and the mixing is bi-maximal. Quantum gravity (Planck scale) effects lead to an effective $SU(2)_L \times U(1)$ invariant dimension-5 Lagrangian symmetry involving Standard Model. On electroweak symmetry breaking, this operator gives rise to correction to the neutrino masses and mixings these additional terms can be considered as perturbation to the bi-bimaximal neutrino mass matrix. We assume that the gravitational interaction is flavour blind and we study the neutrino mixing and electric dipole moment due to the Planck scale effects.

1 Introduction

The electric dipole moment (e.d.m) of fermions can provide a unique window to probe into the nature of the force that are responsible for CP violation [1]. Experimental limit on the dipole moment of neutron have reached the level of 6×10^{-26} ecm [2] and have helped to constrain on theoretical model of CP violation. Electric dipole moment of the electron has severely been constrained by atomic measurements in Cs ($d_e \leq 10^{-26}$) and Tl ($d_e \leq 10^{-27}ecm$) [3]. The experimental values [4, 5] are given by

$$dn = (30 \pm 50) \times 10^{-27} cm$$ \hspace{1cm} (1)
\[de = (1.8 \pm 1.2 \pm 1.0) \times 10^{-27} \text{e.cm} \quad (2) \]

These values give important constrains on CP violating phase beyond the Standard Model (S.M). CP violation encoded in the complex element of the C.K.M Unitary Matrix, \(V \) in the quark sector and observable effects are proportional to the term \[J = \text{Im} \left(V_{ij} V_{kl}^* V_{kl} V_{ij}^* \right) \]

Obviously \(J \) is non vanishing only if not all the elements of \(V_{ij} \) can be made real and this implies the existence of at least three generation of non degenerate massive quarks, standard model \(de \) is estimate at the four loop level given by \[de \sim \frac{eG_F}{\pi^2} \left(\frac{\alpha}{2\pi} \right)^3 m e J \leq 4 \times 10^{-38}, \quad (3) \]

where \(J \leq 4 \times 10^{-38} \), for the C.K.M element is used eq(3), indicates the opportunity that \(de \) is a clean test of CP violation beyond the S.M. Now the leptonic sector will exhibit the C.K.M type of mixing as the analoguge of the C.K.M mmatrix in the quark sector. In this paper, we assume the matrix are massive Majorana particle. We consider deas induced by a leptonic C.K.M mechanism which results from such massive majorana neutrino mixing. The interaction lagragian involving the electric diploe moment is given by \[L = -\frac{1}{2} de F_{\mu\nu} \sigma^{\mu\nu} \gamma_5 e, \quad (4) \]

and the charge leptonic current interaction is \[\frac{1}{\sqrt{2}} W^\mu U_{ij} \bar{\nu}_i \gamma^\mu 1 - \gamma_5 \frac{e_j + hc}{2}, \quad (5) \]

where \(U_{ij} \) is the charged current mixing matrix analoge to the C.K.M matrix in the quark sector. The importance of mixing matrix U is unitary and the elements are in general complex. In the case of Majorona neutrino, after some satandrd manimulation. de can be mwrite in terms of Feynmen intergals is given by \[de = \pm \frac{e\alpha^2 me}{256\pi^2 s_w^4} m_i m_j J_{ij}^l F, \quad (6) \]

Intergal function \(F \) and the CP violating factor \(J \) is given by \[F = \frac{x(1-x)^2[(1-s)^2-(t+u)^2] + xy^2u(1-u) - x(1-x)y(1+3s+t+u-2tu-2u^2)}{m_e^2 x(10x)(1-s-t-u) + m_j^2 (1-x-y)u + m_j^2 (x(1-x)(s+t) + yu + m_e^2 xu)^2}, \quad (7) \]

\[J_{ij}^l = \text{Im} (U_{ij}^* U_{ij} U_{ij} U_{ij}), \quad (8) \]
where \(l = e, \mu, \tau \) for the S.M.

Goldstone boson exchange diagram are less important. We now give a semi
quintive estimate of \(de \) is given by [8]

\[
de \sim \alpha^2 \frac{\text{mem}_i m_j (m_i^2 - m_j^2)}{256 \pi^2 s_w m_w^6} J_{ij} F(m_i^2/m_w^2, m_i^2/m_w^2, m_j^2/m_w^2) (1.97 \times 10^{-16}) e - cm,
\]

where all masses are taken in unit of Gev. The G.I.M factor \((m_i^2 - m_j^2)/m_w^2\)
for neutrino are explicit the fact that \(de \) vanishes, where neutrino are massless.
We can see from eq(3), eq(6), expression of electric diploe moment (E.D.M)
proportional of factor J. Due to Planck scale effects, E.D.M proportional to the
Jarlskog determinant

\[
de \propto J_{ij}^l,
\]

where \(J_{ij}^l \) is related to mixing angle.

Electric dipole moment and Neutrino Mixing Angles due to Planck Scale
Effects are given in section 2. In section 3 gives the results on electric dipole
moment and neutrino mixing.

2 Electric Dipole Moment and Neutrino Mixing

Angles due to Planck Scale Effects

The calculation developed in an earlier paper [9]. A natural assumption is that
unperturbed (0\(^{th}\) order mass matrix) \(M \) is given by

\[
M = U^* \text{diag}(M_i) U^\dagger,
\]

where, \(U_{\alpha i} \) is the usual mixing matrix and \(M_i \), the neutrino masses is
generated by Grand unified theory. Most of the parameter related to neutrino
oscillation are known, the major expectation is given by the mixing elements
\(U_{e3} \). We adopt the usual parametrization.

\[
\frac{|U_{e2}|}{|U_{e1}|} = \tan \theta_{12},
\]

\[
\frac{|U_{\mu 3}|}{|U_{\tau 3}|} = \tan \theta_{23},
\]

\[
|U_{e3}| = \sin \theta_{13}.
\]

In term of the above mixing angles, the mixing matrix is

\[
U = \text{diag}(e^{i f_1}, e^{i f_2}, e^{i f_3}) R(\theta_{23}) \Delta R(\theta_{13}) \Delta^* R(\theta_{12}) \text{diag}(e^{i a_1}, e^{i a_2}, 1).
\]
The matrix \(\Delta = diag(e^{i \frac{\delta}{2}}, 1, e^{-i \frac{\delta}{2}}) \) contains the Dirac phase. This leads to CP violation in neutrino oscillation. \(a_1 \) and \(a_2 \) are the so called Majoring phase, which effects the neutrino less double beta decay. \(f_1, f_2 \) and \(f_3 \) are usually absorbed as a part of the definition of the charge lepton field. Planck scale effects will add other contribution to the mass matrix that gives the new mixing matrix can be written as [9]

\[
U' = U(1 + i \delta \theta),
\]

\[
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu_1} & U_{\mu_2} & U_{\mu_3} \\
U_{\tau_1} & U_{\tau_2} & U_{\tau_3}
\end{pmatrix}
+ i
\begin{pmatrix}
U_{e2} \delta \theta_{12}^* + U_{e3} \delta \theta_{23}^*,& U_{e1} \delta \theta_{12} + U_{e3} \delta \theta_{23}^*,& U_{e1} \delta \theta_{13} + U_{e3} \delta \theta_{23}^* \\
U_{\mu_2} \delta \theta_{12}^* + U_{\mu_3} \delta \theta_{23}^*,& U_{\mu_1} \delta \theta_{12} + U_{\mu_3} \delta \theta_{23}^*,& U_{\mu_1} \delta \theta_{13} + U_{\mu_3} \delta \theta_{23}^* \\
U_{\tau_2} \delta \theta_{12}^* + U_{\tau_3} \delta \theta_{23}^*,& U_{\tau_1} \delta \theta_{12} + U_{\tau_3} \delta \theta_{23}^*,& U_{\tau_1} \delta \theta_{13} + U_{\tau_3} \delta \theta_{23}^*
\end{pmatrix}.
\]

Where \(\delta \theta \) is a hermition matrix that is first order in \(\mu \). The first order mass square difference \(\Delta M_{ij}^2 = M_i^2 - M_j^2 \) get modified [9,10] as

\[
\Delta M_{ij}'' = \Delta M_{ij}^2 + 2(M_i Re(m_{ii}) - M_j Re(m_{jj})),
\]

where

\[
m = \mu U^t \lambda U,
\]

\[
\mu = \frac{v_2}{M_{pl}} = 2.5 \times 10^{-6} eV.
\]

The change in the elements of the mixing matrix, which we parametrized by \(\delta \theta \), is given by

\[
\delta \theta_{ij} = \frac{i Re(m_{jj})(M_i + M_j) - Im(m_{jj})(M_i - M_j)}{\Delta M_{ij}''},
\]

The above equation determine only the off diagonal elements of matrix \(\delta \theta_{ij} \). The diagonal element of \(\delta \theta_{ij} \) can be set to zero by phase invariance. Using Eq(8), we can calculate neutrino mixing angle due to Planck scale effects,

\[
\frac{|U'_{e2}|}{|U'_{e1}|} = \tan \theta'_{12},
\]

\[
\frac{|U'_{\mu_3}|}{|U'_{\tau_3}|} = \tan \theta'_{23},
\]

\[
|U'_{e3}| = \sin \theta'_{13}.
\]

For degenerate neutrinos, \(M_3 - M_1 \approx M_3 - M_2 \gg M_2 - M_1 \), because \(\Delta_{31} \approx \Delta_{32} \gg \Delta_{21} \). Thus, from the above set of equations, we see that \(U'_{e1} \) and \(U'_{e2} \) are much larger than \(U'_{e3} \), \(U'_{\mu_3} \) and \(U'_{\tau_3} \). Hence we can expect much larger
change in θ_{12} compared to θ_{13} and θ_{23}. As one can see from the above expression of mixing angle due to Planck scale effects, depends on new contribution of mixing $U' = U(1 + i\delta\theta)$. Due to Planck Scale Effects, new proportional factor of electric dipole moment (E.D.M) is given by

$$de' \propto J_{ij}^{\prime} \propto Im(U'_{je}^{\ast}U''_{jl}^{\ast}U''_{il}^{\ast}U_{le}^{\ast}),$$

where $U'_{je}, U'_{jl}, U'_{il}$ and U'_{ie} is the mixing angle parameter given by new mixing ($U' = U(1 + i\delta\theta)$) due to Planck scale Effects.

3 Results and Discussions

We assume that, just above the electroweak breaking scale, the neutrino masses are nearly degenerate and the mixing are bimaximal, with the value of the mixing angle as $\theta_{12} = 45^o$, $\theta_{23} = 45^o$ and $\theta_{13} = 0$. Taking the common degenerate neutrino mass to be 2 eV, which is the upper limit coming from tritium beta decay [11]. We compute the modified mixing angles using Eqs (11)-(13). We have taken $\Delta_{31} = 0.002eV^2$[12] and $\Delta_{21} = 0.00008eV^2[13]$. For simplicity we have set the charge lepton phases $f_1 = f_2 = f_3 = 0$. Since we have set the $\theta_{13} = 0$, the Dirac phase δ drops out of the zeroth order mixing angle. We consider the Planck scale effects on neutrino mixing and we get the given range of mixing parameter of MNS marix

$$U' = R(\theta_{23} + \epsilon_3)U_{phase}(\delta)R(\theta_{13} + \epsilon_2)R(\theta_{12} + \epsilon_1)$$

In Planck scale, only θ_{12} have resonable deviation [13] and θ_{13}, θ_{23} deviation is very small less than 0.3o[12]. In the new mixing due to Planck scale effects, we get the new multiplicity factor of electric dipole moment, which is proportonal to Jarlskog determinant and Planck scale mixing change the Jarlskog Determinant[14]. If there exist Majorana neutrino with masses $m_i^2 \leq m_j^2$ and $|U_{ei}|^2 \leq 10^{-2}$, obtained from the charged current universality constraints [15]. We get $de \leq 10^{-32}e - cm$ assuming that the intergal function F in eq(9) is of the order unity.

4 Conclusions

In conclusions, we find that in genral majorana neutrino can induce electric dipole moment at the two loop level. Numerical estimate for $de \leq 10^{-32}e - cm$ even for Majorana neutrino of masses in the 100 GeV range. The electric dipole moment factor in eq(6) can be effected by mixing parameter θ_{12}, θ_{23} and θ_{13}. We consider the main part of neutrino mixing arise from GUT scale operator. We further assume that GUT scale symmetery the neutrino mixing to be bimaximal. We compute the first first order correction to neutrino mass eigen value and mixing angles. In [10], it was shown that the change in θ_{13} due to
perturbation is small. We also show that the change in θ_{23} also is small (less than 3°) only change in θ_{12} can be substantial (about ±3°).

In this paper, we study electric dipole moment due to Planck scale effects. For majorana neutrino with three flavour, the expression is $de \sim J_{ij}F$. In this paper, finally we wish make an important comment due to Planck scale effects mixing angle θ_{12} change effectively the electric dipole moment (E.D.M) and magnetic moment [15]. Non zero value of electric dipole moment in eq(6) also indicate the existence of E.D.M, which is related to CP violation.

References

[1] W. Bernreuther and M. Suzuki, Rev. Mod. phys 63,313 (1991).
[2] P.G Harris et al., Phys.Rev.Lett 82,904 (1999).
[3] E. Commins et al., Phys.Rev. A 50,2960 (1994).
[4] L.S Altarev et al., Phys.Lett. B276,242 (1992).
[5] C. Jarlskog, Phys.Rev.Lett 53,1039 (1985).
[6] S. M Barr and W. J. Marciano, in CP Violation, edited by C. Jarlskog (World Scientific, Singapore, 1989).
[7] K.S Babu et al., Phys.Rev.Lett.85:5064-5067 (2000).
[8] Daniel Ng, John N. Ng, Mod.Phys.Lett.A11:211-216 (1996).
[9] F. Vissani et al., Phys.Lett. B571, 209, (2003).
[10] Bipin Singh Koranga, Mohan Narayan and S. Uma Sankar, Phys.Lett.B665, 63 (2008).
[11] C Kraus, et al., Eur.Phys. J 33 (2004).
[12] Super-Kamiokande Collaboration, J. Hosaka, et al., Phys. RevD 74,32002 (2006).
[13] KamLAND Collaboration, J. Hosaka et al., Phys.Rev.Lett. 94, 08180 (2005).
[14] Bipin Singh Koranga, S. Uma Sankar, arXiv:0704.1788.
[15] L.N. Chag et al., Phys.Rev D 50,4581 (1999).
[16] Bipin Singh Koranga, EJTP 5,19 (2008).