Improved Compact Visibility Representation of Planar Graph via Schnyder’s Realizer*

Ching-Chi Lin Hsueh-I Lu† I-Fan Sun

Institute of Information Science, Academia Sinica, Taiwan

February 1, 2008

Abstract

Let G be an n-node planar graph. In a visibility representation of G, each node of G is represented by a horizontal line segment such that the line segments representing any two adjacent nodes of G are vertically visible to each other. In the present paper we give the best known compact visibility representation of G. Given a canonical ordering of the triangulated G, our algorithm draws the graph incrementally in a greedy manner. We show that one of three canonical orderings obtained from Schnyder’s realizer for the triangulated G yields a visibility representation of G no wider than $\left\lfloor \frac{2n-4}{15} \right\rfloor$. Our easy-to-implement $O(n)$-time algorithm bypasses the complicated subroutines for four-connected components and four-block trees required by the best previously known algorithm of Kant. Our result provides a negative answer to Kant’s open question about whether $\left\lfloor \frac{3n-6}{2} \right\rfloor$ is a worst-case lower bound on the required width. Also, if G has no degree-three (respectively, degree-five) internal node, then our visibility representation for G is no wider than $\left\lfloor \frac{4n-9}{3} \right\rfloor$ (respectively, $\left\lfloor \frac{4n-7}{3} \right\rfloor$). Moreover, if G is four-connected, then our visibility representation for G is no wider than $n - 1$, matching the best known result of Kant and He. As a by-product, we give a much simpler proof for a corollary of Wagner’s Theorem on realizers, due to Bonichon, Saec, and Mosbah.

1 Introduction

In a visibility representation of a planar graph G, the nodes of G are represented by non-overlapping horizontal line segments, called node segments, such that the node segments representing any two adjacent nodes of G are vertically visible to each other. (See Figure 1.) Computing compact visibility representations of planar graphs is not only fundamental in algorithmic graph theory [9, 31] but also practically important in VLSI layout design [27].

Without loss of generality the input G can be assumed to be an n-node plane triangulation. Following the convention of placing the endpoints of node segments on the grid points, one can easily see that any visibility representation of G can be made no higher than $n - 1$. Otten and van Wijk [25] gave the first known algorithm for visibility representations of planar graphs, but no width bound was provided for the output. Rosenstiehl and Tarjan [26], Tamassia and Tollis [30], and Nummenmäa [24] independently proposed $O(n)$-time algorithms whose outputs are no wider

* A preliminary version is [21]. Research supported in part by NSC grant NSC-91-2213-E-001-028.
† Corresponding author. Address: 128 Academia Road, Section 2, Taipei 115, Taiwan. Email: hil@iis.sinica.edu.tw. URL: www.iis.sinica.edu.tw/~hil/.
than $2n - 5$. Kant [15, 17] improved the required width to at most $\left\lfloor \frac{3n - 6}{2} \right\rfloor$ by decomposing G into its four-connected components and then combining the visibility representations of the four-connected components into a visibility representation of G. Kant left open the question of whether the upper bound $\left\lfloor \frac{3n - 6}{2} \right\rfloor$ on the width is also a worst-case lower bound. In the present paper we provide a negative answer to Kant’s question by presenting an algorithm that always produces a visibility representation for G whose width is at most $\left\lfloor \frac{22n - 40}{15} \right\rfloor$.

Our algorithm, just like that of Nummenmaa [24], is based upon the concept of canonical ordering for plane triangulations. Specifically, our algorithm draws G incrementally in a greedy manner according to any given canonical ordering of G. An arbitrary canonical ordering of G may yield a visibility representation with width $2n - O(1)$. Rosenstiehl and Tarjan [26] even conjectured that selecting a node ordering to minimize the area of the corresponding visibility representation is NP-hard. We show that the required width can be bounded by $\left\lfloor \frac{22n - 40}{15} \right\rfloor$ using the best one out of the three canonical orderings obtained from Schnyder’s realizer [28, 29] for G. Our algorithm can easily be implemented to run in $O(n)$ time, bypassing the complicated subroutines of finding four-connected components and four-block trees [14] required by the best previously known algorithm of Kant [15, 17]. Also, for the case that G has no degree-three (respectively, degree-five) internal node, the output visibility representation of our algorithm is no wider than $\left\lfloor \frac{4n - 9}{3} \right\rfloor$ (respectively, $\left\lfloor \frac{4n - 7}{3} \right\rfloor$). Moreover, for the case that G is four-connected, the output visibility representation of our algorithm is no wider than $n - 1$, matching the best known result due to Kant and He [18, 19].

Schnyder’s realizer [28, 29] for plane triangulation was invented for compact straight-line drawing of plane graph. Researchers [5, 7, 8, 11–13, 16, 19] also obtained similar and other graph-drawing results using the concept of canonical ordering for tri-connected plane graph. Nakano [23] attempted to explain the hidden relation between these two concepts. Recently, Chiang, Lin, and Lu [4] presented a new algorithmic tool orderly spanning tree that extends the concept of st-ordering [10] (respectively, canonical ordering and realizer) for plane graphs unrequired to be biconnected (respectively, triconnected and triangulated). Orderly spanning tree has been successfully applied to obtain improved results in compact graph drawing [3, 4, 20], succinct graph encoding with query support [4, 6], and design of compact routing tables [22]. Very recently, Bonichon, Gavoille, and Hanusse [1] obtained the best known upper bounds on the numbers of distinct labeled and unlabeled planar graphs based on well orderly spanning tree, a special case of orderly spanning tree. As a matter of fact, we first successfully obtained the results of this paper using orderly spanning tree, and then found out that Schnyder’s realizer suffices.

Our analysis requires an equality (see Lemma 3) relating the number of internal nodes in the three trees of a realizer R of G and the number of faces of G intersecting with all three trees of R. The equality was proved very recently by Bonichon, Saëc, and Mosbah [2] as a corollary of the so-called Wagner’s Theorem [32] on Schnyder’s realizers. Their proof requires a careful case analysis for 32 different configurations. As a by-product, we give a much simpler proof for the equality without relying on Wagner’s Theorem on realizers.

The remainder of the paper is organized as follows. Section 2 gives the preliminaries. Section 3 describes and analyzes our algorithm. Section 4 discusses the tightness of our analysis. Section 5 concludes the paper with an open question.
Figure 1: A plane triangulation and one of its visibility representations.

2 Preliminaries

Let G be the input n-node plane triangulation, a planar graph equipped with a fixed planar embedding such that the boundary of each face is a triangle. Clearly, G has $2n - 5$ internal faces. Let I consist of the internal nodes of G. Let $R = (T_1, T_2, T_3)$ be a realizer of G, which is obtainable in $O(n)$ time [28, 29]. That is, the following properties hold for R.

- The internal edges of G are partitioned into three edge-disjoint trees T_1, T_2, and T_3, each rooted at a distinct external node of G.

- The neighbors of each node v in I form six blocks $U_1, D_3, U_2, D_1, U_3, $ and D_2 in counterclockwise order around v, where U_j (respectively, D_j) consists of the parent (respectively, children) of v in T_j for each $j \in \{1, 2, 3\}$.

For each index $i \in \{1, 2, 3\}$, let ℓ_i be the node labeling of G obtained from the counterclockwise preorder of the spanning tree \bar{T}_i of G consisting of T_i plus the two external edges of G that are incident to the root of T_i. (Each \bar{T}_i is as a matter of fact an orderly spanning tree [4] of G.) Let $\ell_i(v)$ be the label of v with respect to ℓ_i. For example, Figure 2 shows a realizer of the plane triangulation shown in Figure 1(a) with labeling ℓ_1. The counterclockwise preorder of \bar{T}_2 is $2, 12, 10, 11, 5, 9, 4, 3, 6, 8, 7, 1$; and that of \bar{T}_3 is $12, 1, 7, 8, 11, 10, 9, 6, 3, 5, 4, 2$.

Lemma 1 (see, e.g., [4, 6, 24]) The following properties hold for each index $i \in \{1, 2, 3\}$, where u_1 and u_2 are the nodes with $\ell_i(u_1) = 1$ and $\ell_i(u_2) = 2$.

1. The subgraph G_k of G induced by the nodes v with $1 \leq \ell_i(v) \leq k$ is biconnected. The boundary of G_k's external face is a cycle C_k containing u_1 and u_2.

2. If v is the node with $\ell_i(v) = k$, then v is on C_k; and the neighbors of v in G_{k-1} form an interval with at least two nodes on the path $C_{k-1} - \{(u_1, u_2)\}$.

3. The neighbors of v in G form the following four blocks in counterclockwise order around v: (1) the parent of v in T_i, (2) the node set consists of the neighbors u in $G - T_i$ with $\ell_i(u) < \ell_i(v)$, (3) the children of v in T_i, and (4) the node set consists of the neighbors u in $G - T_i$ with $\ell_i(u) > \ell_i(v)$.
A labeling ℓ of G that labels the external nodes by 1, 2, and n and satisfies Lemmas 1(1) and 1(2) is a canonical ordering of G (e.g., see [8, 16, 24]). Therefore, ℓ_1, ℓ_2, and ℓ_3 are all canonical orderings of G.

For each node v of G, let $\deg(v)$ denote the degree of v, i.e., the number of neighbors of v in G. For each index $i \in \{1, 2, 3\}$, let $\deg^-_i(v)$ (respectively, $\deg^+_i(v)$) be the number of neighbors u of v in G with $\ell_i(u) < \ell_i(v)$ (respectively, $\ell_i(u) > \ell_i(v)$). Clearly, we have $\deg(v) = \deg^-_i(v) + \deg^+_i(v)$.

For each node v in I, let

$$\text{score}_i(v) = \min\{\deg^+_i(v), \deg^-_i(v)\};$$
$$\text{score}(v) = \text{score}_1(v) + \text{score}_2(v) + \text{score}_3(v).$$

For example, if ℓ_1 is the labeling obtained from the tree T_1 consisting of the thick edges shown in Figure 2, then we have $\text{score}_1(v_8) = 2$, $\text{score}_1(v_9) = 1$, $\text{score}_1(v_{10}) = 2$, and $\text{score}_1(v_{11}) = 1$. Let

$$\text{score}_i = \sum_{v \in I} \text{score}_i(v).$$

Let $[\pi]$ be 1 (respectively, 0) if condition π is true (respectively, false). Let L_i consist of the leaves of T_i. For each node $v \in I$, let

$$\text{int}(v) = \sum_{i=1}^3 [v \notin L_i].$$

Let B consist of the internal nodes v of G with $\text{int}(v) = 2$ and $\deg(v) = 5$. We have the following lemma.

Lemma 2 For each node v in I, we have $\text{score}(v) \geq 3 + 2 \cdot \text{int}(v) - [v \in B]$.

Proof. By definition of realizer and Lemma 1(3), it is clear that

$$\text{score}_1(v) = \min\{|D_3| + 2, |D_1| + |D_2| + 1\};$$
$$\text{score}_2(v) = \min\{|D_1| + 2, |D_2| + |D_3| + 1\};$$
$$\text{score}_3(v) = \min\{|D_2| + 2, |D_1| + |D_3| + 1\}.$$
then we have $\text{score}(v)$ cases can be verified similarly. We know $\text{score}(v)$ by examining the inequality for all possible values $0, 1, \text{and } 2$ of $\text{int}(i)$. On the other hand, each acyclic face (u_1, u_2, u_3) and (u_1, u_2, u_4) is cyclic.

Figure 3: Three different kinds of nodes v in B. (a) u_1 (b) u_1 (c) u_1

Figure 4: If u_1 and u_2 are two nodes of B that are adjacent in G, then at least one of faces (u_1, u_2, u_3) and (u_1, u_2, u_4) is cyclic.

We may assume without loss of generality that $|D_1| \geq |D_2| \geq |D_3| \geq 0$. One can verify the lemma by examining the inequality for all possible values $0, 1, \text{and } 2$ of $\text{int}(v)$. For example, if $v \in B$, then we know $\text{score}(v) = 2 + 2 + 2 = 6$ by $|D_1| = |D_2| = 1$ and $|D_3| = 0$. Also, if $\text{int}(v) = 2$ and $v \notin B$, then we have $\text{score}(v) \geq 2 + 2 + 3 = 7$ by observing $|D_1| \geq 2$, $|D_2| \geq 1$ and $|D_3| = 0$. The other cases can be verified similarly.

An internal face of G is cyclic if its boundary intersects with all three trees T_1, T_2, and T_3. An internal face of G is acyclic if it is not cyclic. For example, in Figure 2, faces $(3, 5, 9)$ and $(6, 9, 8)$ are cyclic; all the other internal faces are acyclic. Let c be the number of cyclic faces of G. The following lemma was recently proved by Bonichon, Saëc, and Mosbah [2] in an equivalent form. Our alternative proof is much simpler.

Lemma 3 (see [2]) $\sum_{v \in I} \text{int}(v) = n + c - 4$.

Proof. For each index $i \in \{1, 2, 3\}$, let i_1 be the number of internal nodes in T_i. Clearly, $\sum_{v \in I} \text{int}(v) = \sum_{i=1}^{3} i_1 - 3$. For each node $v \in I$, let $p_i(v)$ denote the parent of v in T_i. For each $v \in L_i$, one can verify that $F_i(v) = (v, p_j(v), p_k(v))$ is an acyclic face of G, where $\{i, j, k\} = \{1, 2, 3\}$. On the other hand, each acyclic face (x, y, z) of G has to be an $F_i(v)$ for some $v \in \{x, y, z\}$ and $i \in \{1, 2, 3\}$. By the orientations of the three edges on $F_i(v)$, one can see that $F_i(v) \neq F_j(u)$ and $F_i(v) \neq F_k(u)$ hold for any node $u \in L_i$. By $|I| = n - 3$, we have $\sum_{i=1}^{3} |L_i| = 2n - c - 5$. Therefore, $\sum_{i=1}^{3} i_1 = 3(n - 2) - (2n - c - 5) = n + c - 1$.

Lemma 4

1. If G has no degree-three internal nodes, then $\sum_{i=1}^{3} i_1 \geq 5n - 15$.
2. If G has no degree-five internal nodes, then $\sum_{i=1}^{3} i_1 \geq 5n - 17$.
3. If G is unrestricted, then $\sum_{i=1}^{3} i_1 \geq \frac{23n}{5} - 16$.

Proof. By Lemma 2 we know that if node v in I has degree more than 3, then $\text{score}(v) \geq 5$. By $|I| = n - 3$, Statement 1 holds. It follows from Lemmas 2 and 3 that $\sum_{i=1}^{3} i_1 \geq \sum_{v \in I} \text{score}(v) \geq$
\[\sum_{i=1}^{3} + 2 \cdot \text{int}(v) - |v \in B| = 3(n-3) + 2(n+c-4) - |B|. \]

Therefore, \[\sum_{i=1}^{3} \text{score}_i \geq 5n + 2c - |B| - 17, \]

which implies that (a) Statement 2 holds (by observing that each node of \(B \) has degree five in \(G \)), and (b) Statement 3 can be proved by ensuring \(|B| - 2c \leq \frac{2n}{3} - 1 \) as follows.

Let \(k \) be the number of connected components in the subgraph \(G[B] \) of \(G \) induced by \(B \). Since each of those \(2n - 5 \) internal faces of \(G \) is incident to at most one connected component \(G[B] \) and each connected component in \(G[B] \) is incident to at least five faces of \(G \), we have \(5k \leq 2n - 5 \).

Let \(u_1 \) and \(u_2 \) be two adjacent nodes of \(B \) such that \((u_1, u_2)\) is an incoming edge of \(u_1 \). (That is, \(u_1 \) is the parent of \(u_2 \) in some tree \(T_i \) of \(R \).) Let \((u_3, u_1, u_2)\) and \((u_4, u_1, u_2)\) be the two faces of \(G \) that contain edge \((u_1, u_2)\). One can see that at least one of faces \((u_1, u_2, u_3)\) and \((u_1, u_2, u_4)\) is cyclic by verifying, with the assistance of Figure 3, that (a) both edges \((u_1, u_3)\) and \((u_1, u_4)\) have to be outgoing from \(u_1 \); and (b) at least one of edges \((u_3, u_2)\) and \((u_4, u_2)\) is incoming to \(u_2 \), as illustrated by Figure 4. Let \(F \) be an arbitrary spanning forest of \(G[B] \), which clearly has \(|B| - k \) edges. Each cyclic face contains at most two edges of \(F \) and each edge of \(F \) is incident to at least one cyclic face. Thus, we have \(|B| - k \leq 2c\). \(\Box \)

3 Our algorithm

Let \(\ell_i \) be a given canonical ordering of the input \(n \)-node plane triangulation \(G \). For each \(k = 1, 2, \ldots, n \), let \(v_k \) be the node with \(\ell_i(v_k) = k \) and let \(G_k \) be the subgraph of \(G \) induced by \(v_1, v_2, \ldots, v_k \). Clearly, \(G_3 \) is a triangle and \(v_1, v_2, \) and \(v_n \) are the external nodes of \(G \). Our algorithm initially produces a visibility representation of \(G_3 \) as shown in Figure 5, and then extends that into a visibility representation of \(G = G_n \) in \(n - 3 \) iterations: For each \(k = 4, 5, \ldots, n \), the \((k - 3)\)-rd iteration obtains a visibility representation of \(G_k \) from that of \(G_{k-1} \) by

1. extending the visibility representation of \(G_{k-1} \) in a greedy manner until the node segment of each neighbor of \(v_k \) is visible from above, and then

2. placing the shortest possible node segment representing \(v_k \) from above that yields a visibility representation of \(G_k \).

For example, if \(G \) is as shown in Figure 1(a) and \(\ell_i \) is as specified by the node labels, then the visibility representations for \(G_3, G_4, \ldots, G_{11} \) are as shown in Figure 5 and the resulting visibility representation of \(G = G_{12} \) is as shown in Figure 1(b). The correctness of our algorithm follows from the fact that \(\ell_i \) is a canonical ordering of \(G \), which therefore satisfies Lemma 1(1). A naive implementation of our algorithm takes \(O(n^2) \) time. However, it is not difficult to implement our algorithm to run in \(O(n) \) time using basic data structures like doubly linked lists to support \(O(1) \)-time operations such as determining whether a node segment is visible from above and inserting a new column of grid points.

Theorem 1 Any \(n \)-node plane triangulation \(G \) with \(n > 3 \) has an \(O(n) \)-time obtainable visibility representation whose width is at most

1. \(\left\lfloor \frac{4n-9}{3} \right\rfloor \), if \(G \) has no degree-three internal nodes;

2. \(\left\lfloor \frac{4n-7}{3} \right\rfloor \), if \(G \) has no degree-five internal nodes; or

3. \(\left\lfloor \frac{22n-40}{15} \right\rfloor \), if \(G \) is unrestricted.
Figure 5: The intermediate steps of our algorithm for obtaining the visibility representation for the plane triangulation shown in Figure 1(a) with respect to the canonical ordering specified by its node labels.
Figure 6: An example showing that our analysis on the required width is almost tight.

Proof. By Lemma 4 and the fact that a realizer is obtainable in linear time, it suffices to show that the width of the output visibility representation by our algorithm is at most $3n - 8 - \sum_{v \in I} \text{score}_i(v)$. For each $k = 4, 5, \ldots, n$, consider the iteration that produces the visibility representation of G_k. Let v_j be any neighbor of v_k in G_k. In the first half of the iteration, if the node segment of v_j does not contain any grid point that is visible from above, then a new column of grid points is inserted to ensure that the node segment for v_j is visible from above; otherwise, the number of grid points on the node segment of v_j that are visible from above stays the same. In the second half of the iteration, if v_k is the neighbor of v_j with the largest index, then the node segment of v_j can no longer be visible from above for the remaining iterations of our algorithm; otherwise, the number of grid points on the node segment of v_j that are visible from above decreases by exactly one. Moreover, the node segment of v_k contains at least $\deg^-_i(v_k)$ grid points that are visible from above in the resulting visibility representation of G_k. Therefore, in the first half of those $\deg^-_i(v_k)$ iterations, one for each neighbor v_ℓ of v_k with $\ell > k$, at most $\deg^-_i(v_k) - \text{score}_i(v_k)$ new columns of grid points are inserted. Note that $n > 3$ implies $\text{score}_i(v_3) \geq 1$. It follows that the resulting visibility representation for $G_n = G$ has width at most $2 + \left(-3 + \sum_{k=4}^{n-1} \deg^-_i(v_k)\right) - \left(2 + \sum_{k=4}^{n-1} \text{score}_i(v_k)\right) \geq 3n - 8 - \sum_{v \in I} \text{score}_i(v).

The following result was first obtained by Kant and He [18, 19] based upon their linear-time algorithm for obtaining a canonical ordering ℓ_i for any n-node four-connected plane triangulation such that $\deg^+_i(v) \geq 2$ and $\deg^-_i(v) \geq 2$ hold for $n - 4$ out of the $n - 3$ internal nodes v of G. We can alternatively prove the theorem in a much simpler way: According to the proof of Theorem 1, the width of the output visibility representation by our algorithm is at most $3n - 8 - \sum_{v \in I} \text{score}_i(v) \leq n - 1$.

Theorem 2 (see [18, 19]) If G is an n-node four-connected plane triangulation, then there is an $O(n)$-time obtainable visibility representation for G whose width is at most $n - 1$.

4 Near tightness of our analysis

The following lemma shows that our analysis on the required width is almost tight.
Lemma 5 For any \(n \geq 3 \), there exists an \(n \)-node plane triangulation \(H_n \) such that any visibility representations of \(H_n \) obtained by our algorithm with respect to any canonical ordering of \(H_n \) has width at least \(\left\lfloor \frac{4n-8}{3} \right\rfloor \).

Proof. We prove the lemma by induction on \(n \). Let \(H_3 \) (respectively, \(H_4 \) and \(H_5 \)) be a plane triangulation with 3 (respectively, 4 and 5) nodes. Clearly, any visibility representation of \(H_3 \) (respectively, \(H_4 \) and \(H_5 \)) has width at least 2 (respectively, 3 and 4), so the lemma holds for \(n = 3, 4, 5 \). For each index \(k \geq 3 \), let \(H_{k+3} \) be the \((k+3)\)-node plane triangulation obtained from \(H_k \) by adding three new external nodes and triangulating the faces as shown in Figure 6(a). By Lemma 1(1), if \(\ell \) is a canonical ordering of \(H_{k+3} \), then the ordering \(\ell' \) with \(\ell'(v) = \ell(v) - 2 \) for each node \(v \) of \(H_k \) remains a canonical ordering of \(H_k \). As illustrated in Figure 6(b), it is not difficult to see that the visibility representation for \(H_{k+3} \) produced by our algorithm with respect to any canonical ordering of \(H_{k+3} \) is at least 4 units wider than that of \(H_k \) produced by our algorithm with respect to any canonical ordering of \(H_k \). Therefore, the lemma is proved. \(\square \)

5 Concluding remarks

Whether our upper bound \(\frac{22n}{15} - \Theta(1) \) on the required width is worst-case optimal remains open.

References

[1] N. Bonichon, C. Gavoille, and N. Hanusse. An information-theoretic upper bound of planar graphs using triangulation. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, Berlin, Germany, 2003. To appear.

[2] N. Bonichon, B. L. Saëc, and M. Mosbah. Wagner’s theorem on realizers. In Proceedings of the 29th International Colloquium on Automata, Languages, and Programming, LNCS 2380, pages 1043–1053, Málaga, Spain, 2002.

[3] H.-L. Chen, C.-C. Liao, H.-I. Lu, and H.-C. Yen. Some applications of orderly spanning tree in graph drawing. In Proceedings of the 10th International Symposium on Graph Drawing, LNCS 2528, pages 332–343, Irvine, California, 2002.

[4] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with applications to graph encoding and graph drawing. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 506–515, Washington, D. C., USA, 7–9 Jan. 2001.

[5] M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs. International Journal of Computational Geometry & Applications, 7(3):211–223, 1997.

[6] R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I. Lu. Compact encodings of planar graphs via canonical ordering and multiple parentheses. In K. G. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the 25th International Colloquium on Automata, Languages, and Programming, LNCS 1443, pages 118–129, Aalborg, Denmark, 1998.

[7] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle contact graphs. Combinatorics, Probability and Computing, 3:233–246, 1994.

[8] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.
[9] G. Di Battista, R. Tamassia, and I. G. Tollis. Constrained visibility representations of graphs. Information Processing Letters, 41:1–7, 1992.

[10] S. Even and R. E. Tarjan. Computing an \(st\)-numbering. Theoretical Computer Science, 2:436–441, 1976.

[11] U. Fößmeier, G. Kant, and M. Kaufmann. 2-visibility drawings of planar graphs. In S. North, editor, Proceedings of the 4th International Symposium on Graph Drawing, LNCS 1190, pages 155–168, California, USA, 1996.

[12] X. He. On floor-plan of plane graphs. SIAM Journal on Computing, 28(6):2150–2167, 1999.

[13] X. He. A simple linear time algorithm for proper box rectangular drawings of plane graphs. Journal of Algorithms, 40(1):82–101, 2001.

[14] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line maintenance of the four-connected components of a graph. In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pages 793–801, San Juan, Puerto Rico, 1991. IEEE.

[15] G. Kant. A more compact visibility representation. In Proceedings of the 19th Workshop on Graph-Theoretic Concepts in Computer Science, LNCS 790, pages 411–424, Utrecht, Netherlands, 1994.

[16] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.

[17] G. Kant. A more compact visibility representation. International Journal of Computational Geometry & Applications, 7(3):197–210, 1997.

[18] G. Kant and X. He. Two algorithms for finding rectangular duals of planar graphs. In Proceedings of the 19th Workshop on Graph-Theoretic Concepts in Computer Science, LNCS 790, pages 396–410, Utrecht, Netherlands, 1994.

[19] G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science, 172(1-2):175–193, 1997.

[20] C.-C. Liao, H.-I. Lu, and H.-C. Yen. Floor-planning via orderly spanning trees. In Proceedings of the 9th International Symposium on Graph Drawing, LNCS 2265, pages 367–377, Vienna, Austria, 2001.

[21] C.-C. Lin, H.-I. Lu, and I.-F. Sun. Improved compact visibility representation of planar graph via schnyder’s realizer. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, Berlin, Germany, 2003. To appear.

[22] H.-I. Lu. Improved compact routing tables for planar networks via orderly spanning trees. In O. H. Ibarra and L. Zhang, editors, Proceedings of the 8th International Conference on Computing and Combinatorics, LNCS 2387, pages 57–66, Singapore, August 15–17 2002.

[23] C.-i. Nakano. Planar drawings of plane graphs. IEICE Transactions on Information and Systems, E83-D(3):384–391, Mar. 2000.

[24] J. Nummenmaa. Constructing compact rectilinear planar layouts using canonical representation of planar graphs. Theoretical Computer Science, 99(2):213–230, 1992.
[25] R. Otten and J. van Wijk. Graph representations in interactive layout design. In *Proceedings of the IEEE International Symposium on Circuits and Systems*, pages 914–918, 1978.

[26] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. *Discrete & Computational Geometry*, 1(4):343–353, 1986.

[27] M. Schlag, F. Luccio, P. Maestrini, D. T. Lee, and C. K. Wong. A visibility problem in VLSI layout compaction. In F. P. Preparata, editor, *Advances in Computing Research*, volume 2, pages 259–282. JAI Press Inc. Greenwich, CT, 1985.

[28] W. Schnyder. Planar graphs and poset dimension. *Order*, 5:323–343, 1989.

[29] W. Schnyder. Embedding planar graphs on the grid. In *Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 138–148, 1990.

[30] R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. *Discrete & Computational Geometry*, 1(4):321–341, 1986.

[31] R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. *IEEE Transactions in Circuits and Systems*, 36:1230–1234, 1989.

[32] K. Wagner. Bemerkungen zum vierfarbenproblem. *Jahresber Deutsche Math. -Verein*, 46:26–32, 1936.