Glauber versus Kawasaki for spectral gap
and logarithmic Sobolev inequalities
of some unbounded conservative spin systems

D. Chafaï
University of Toulouse
November 5, 2002
Compiled November 18, 2021

Abstract
Inspired by the recent results of C. Landim, G. Panizo and H.-T. Yau [LPY00]
on spectral gap and logarithmic Sobolev inequalities for unbounded conservative
spin systems, we study uniform bounds in these inequalities for Glauber dynamics
of Hamiltonian of the form

\[\sum_{i=1}^{n} V(x_i) + V(M - \sum_{i=1}^{n} x_i), \quad (x_1, \ldots, x_n) \in \mathbb{R}^n \]

Specifically, we examine the case \(V \) is strictly convex (or small perturbation of
strictly convex) and, following [LPY00], the case \(V \) is a bounded perturbation of a
quadratic potential. By a simple path counting argument for the standard random
walk, uniform bounds for the Glauber dynamics yields, in a transparent way, the
classical \(L^{-2} \) decay for the Kawasaki dynamics on \(d \)-dimensional cubes of length
L. The arguments of proofs however closely follow and make heavy use of the
conservative approach and estimates of [LPY00], relying in particular on the Lu-
Yau martingale decomposition and clever partitionings of the conditional measure.

Introduction

Let \(Q \) be a probability measure on \(\mathbb{R}^n \). In the sequel, we denote by \(\mathbf{E}_Q(f) \) the expectation
of \(f \) with respect to \(Q \), \(\mathbf{Var}_Q(f) := \mathbf{E}_Q(f^2) - \mathbf{E}_Q(f)^2 \) the variance of \(f \) for \(Q \), and \(\mathbf{Ent}_Q(f) \)
the entropy of a non negative measurable function \(f \) with respect to \(Q \), defined by

\[\mathbf{Ent}_Q(f) := \int f \log f dQ - \int f dQ \log \int f dQ. \]
We say that Q satisfies a Poincaré inequality if there exists a positive constant P such that for any smooth function $f : \mathbb{R}^n \to \mathbb{R}$,

$$\text{Var}_Q(f) \leq P \mathbb{E}_Q(|\nabla f|^2),$$ \hfill (1)

where $|\nabla f|^2 := \sum_{i=1}^n |\partial_i f|^2$. Similarly, we say that Q satisfies a logarithmic Sobolev inequality if there exists a positive constant L such that for any smooth function f,

$$\text{Ent}_Q(f^2) \leq L \mathbb{E}_Q(|\nabla f|^2).$$ \hfill (2)

This inequality strengthens the Poincaré inequality (1) since for ε small enough,

$$\text{Ent}_Q((1 + \varepsilon f)^2) = 2\varepsilon^2 \text{Var}_Q(f) + O(\varepsilon^3),$$

which gives $2P \leq L$. Let $H \in C^2(\mathbb{R}^n, \mathbb{R})$ such that

$$Z_H := \int_{\mathbb{R}^n} e^{-H(x)} \, dx < +\infty.$$

The probability measure Q defined by $dQ(x) = (Z_H)^{-1} \exp(-H(x)) \, dx$ is the symmetric invariant measure of the diffusion process $(X_t)_{t \geq 0}$ on \mathbb{R}^n driven by the S.D.E.

$$dX_t = \sqrt{2} \, dB_t - \nabla H(X_t) \, dt,$$

where $(B_t)_{t \geq 0}$ is a standard Brownian motion on \mathbb{R}^n. In this context, we say that the probability measure Q is associated with the “Hamiltonian” H. It is well known that Q satisfies the Poincaré inequality (1) if and only if the infinitesimal generator $L := \Delta - \nabla H \cdot \nabla$ possesses a spectral gap greater than P^{-1}. In the other hand, a famous Theorem of Gross states that Q satisfies the logarithmic Sobolev inequality (2) if and only if the diffusion semi-group generated by L is hyper-contractive. A celebrated result of Bakry and Émery ensures that when there exists a constant $\rho > 0$ such that for any $x \in \mathbb{R}^n$,

$$\text{Hess}(H)(x) \geq \rho I_n$$

as quadratic forms on \mathbb{R}^n, i.e. H is uniformly strictly convex or Q is log-concave, then Q satisfies to (1) and (2) with constants $P = \rho^{-1}$ and $L = 2 \rho^{-1}$ respectively. Moreover, Q satisfies to (1) with a constant P if and only if

$$P \mathbb{E}_Q((Lf)^2) \geq \mathbb{E}_Q(|\nabla f|^2)$$

for any smooth function f. The reader may find an introduction to logarithmic Sobolev inequalities and related fields in [ABC+00].

We are interested in the present work to particular “Hamiltonians” $H \in C^2(\mathbb{R}^{n+1}, \mathbb{R})$. Let $M \in \mathbb{R}$ and define $H_M \in C^2(\mathbb{R}^n, \mathbb{R})$ by

$$H_M(x_1, \ldots, x_n) := H\left(x_1, \ldots, x_n, M - \sum_{i=1}^n x_i\right).$$ \hfill (3)
Assume that $Z_{H_M} < \infty$. Our aim is to establish Poincaré and logarithmic Sobolev inequalities for probability measures on \mathbb{R}^n of the form

$$d\sigma_M(x_1, \ldots, x_n) := (Z_{H_M})^{-1} \exp (-H_M(x)) \, dx_1 \cdots dx_n,$$

with constants \mathcal{P} and \mathcal{L} which does not depend on n and M. This investigation is motivated by the study of certain conditional probability measures. Namely, if the probability measure μ on \mathbb{R}^{n+1} given by

$$d\mu(x) := (Z_H)^{-1} \exp (-H(x_1, \ldots, x_{n+1})) \, dx_1 \cdots dx_{n+1}$$

is well-defined, i.e. $Z_H < +\infty$, then for any $M \in \mathbb{R}$, one can define the conditional probability measure μ_M by

$$\mu_M := \mu \left(\cdot \mid \sum_{i=1}^{n+1} x_i = M \right),$$

and we get, for any $f \in C_b(\mathbb{R}^{n+1}, \mathbb{R})$,

$$E_{\mu_M}(f) = \int_{\mathbb{R}^n} f(x_1, \ldots, x_n, M - \sum_{i=1}^{n} x_i) \, d\sigma_M(x_1, \ldots, x_n).$$

Thus, σ_M can be viewed as the translation of the conditional probability measure μ_M under the affine hyper-plane of \mathbb{R}^{n+1} of equation $x_1 + \cdots + x_{n+1} = M$. Alternatively, and following Caputo in [Cap01], the conditional probability measure μ_M can be defined from the probability measure μ given in (5) by adding an infinite potential outside of the affine constraint $x_1 + \cdots + x_{n+1} = M$. Namely for any bounded continuous function $f : \mathbb{R}^{n+1} \to \mathbb{R}$

$$E_{\mu_M, \beta}(f) = \lim_{\beta \to +\infty} E_{\mu_{M, \beta}}(f).$$

where $\mu_{M, \beta}$ denotes the probability measure on \mathbb{R}^{n+1} defined by

$$d\mu_{M, \beta}(x) := Z_{\mu_{M, \beta}}^{-1} \exp (-\beta (M - x_1 - \cdots - x_{n+1})^2) \, d\mu(x).$$

A simple change of variable in $E_{\mu_{M, \beta}}(f)$ gives that

$$\lim_{\beta \to +\infty} E_{\mu_{M, \beta}}(f) = \int_{\mathbb{R}^n} f(x_1, \ldots, x_n, M - \sum_{i=1}^{n} x_i) \, d\sigma_M(x_1, \ldots, x_n),$$

This weak limit definition of μ_M was used by Caputo in [Cap01] in order to study the case of a convex Hamiltonian H. We do not use it in our approach. Notice that if $f \in C_b(\mathbb{R}^n, \mathbb{R})$, we get from (7) that

$$E_{\sigma_M}(f) = \int_{\mathbb{R}^{n+1}} f(x_1, \ldots, x_n) \, d\mu_M(x_1, \ldots, x_{n+1}).$$
Observe that \((7)\) gives \(E_{\mu_M}(x_1 + \cdots + x_{n+1}) = M\). Thus, when \(H\) is a symmetric function, \(\sigma_M\) and \(\mu_M\) are exchangeable measures, i.e. invariant by any permutation of the coordinates. This holds for example when \(H(x) = V(x_1) + \cdots + V(x_{n+1})\). Moreover, \(M - \sum_{i=1}^{n} x_i \) and \(x_j\) have then the same law under \(\sigma_M\) for any \(j\) in \(\{1, \ldots, n\}\) and we get

\[
E_{\mu_M}(x_1) = \cdots = E_{\mu_M}(x_{n+1}) = E_{\sigma_M}(x_1) = \cdots = E_{\sigma_M}(x_n) = \frac{M}{n+1}.
\]

Thus, the mean of \(\mu_M\) and \(\sigma_M\) does not depend on \(H\) in this case.

Let us see now how to translate \((1)\) and \((2)\) for \(\sigma_M\) in terms of \(\mu_M\). One can observe that for any \(i \in \{1, \ldots, n\}\)

\[
\partial_i \left(f \left(x_1, \ldots, x_n, M - \sum_{i=1}^{n} x_i \right) \right) = \left(\partial_i f \right) \left(x_1, \ldots, x_n, M - \sum_{i=1}^{n} x_i \right) - \left(\partial_{n+1} f \right) \left(x_1, \ldots, x_n, M - \sum_{i=1}^{n} x_i \right).
\]

By replacing the coordinate \(x_{n+1}\) by any of the \(x_1, \ldots, x_n\) in \((8)\), we obtain the following proposition

Proposition 0.1. Let \(H : \mathbb{R}^{n+1} \to \mathbb{R}\) and assume that for any permutation \(\pi\) of the coordinates, the probability measure \(\sigma_M^\pi\) on \(\mathbb{R}^n\) defined by \((4)\) and associated to \(H \circ \pi\) satisfies to Poincaré (resp. logarithmic Sobolev) inequality with a constant \(\mathcal{P}\) (resp. \(\mathcal{L}\)) which does not depend on \(n, M\) and \(\pi\). Then, if \(\mu_M\) is the associated conditional probability measure defined by \((3)\), we get for any smooth \(f : \mathbb{R}^{n+1} \to \mathbb{R}\)

\[
\text{Var}_{\mu_M}(f) \leq \frac{\mathcal{P}}{n+1} E_{\mu_M} \left(\sum_{1 \leq i,j \leq n+1} |\partial_i f - \partial_j f|^2 \right),
\]

and respectively

\[
\text{Ent}_{\mu_M}(f^2) \leq \frac{\mathcal{L}}{n+1} E_{\mu_M} \left(\sum_{1 \leq i,j \leq n+1} |\partial_i f - \partial_j f|^2 \right).
\]

These inequalities leads to constants in \(L^2\) for the “Kawasaki dynamics” associated to \(\mu_M\). Namely, consider a finite box \(\Lambda := \{1, \ldots, L\}^d \subset \mathbb{Z}^d\) on the lattice \(\mathbb{Z}^d\) and \(n\) such that \(\mathbb{R}^\Lambda \simeq \mathbb{R}^{n+1}\) (i.e. \(n+1 = |\Lambda| = L^d\)). There exists a constant \(C > 0\) depending only on \(d\) such that for any \(a \in \mathbb{R}^\Lambda\)

\[
\frac{1}{|\Lambda|} \sum_{i,j \in \Lambda} (a_i - a_j)^2 \leq C \, L^2 \sum_{i,j \in \Lambda, |i-j|=1} (a_i - a_j)^2.
\]

Therefore, it is straightforward to deduce from \((11)\) and \((12)\) that for a constant \(C > 0\) which does not depend on \(n\) and \(M\), one have

\[
\text{Var}_{\mu_M}(f) \leq C \, L^2 \sum_{k,l \in \Lambda, |k-l|=1} E_{\mu_M}(|\partial_k f - \partial_l f|^2),
\]
and
\[
\mathbf{Ent}_{\mu_M}(f^2) \leq C L^2 \sum_{k,l \in \Lambda \atop |k-l|=1} \mathbf{E}_{\mu_M}(|\partial_i f - \partial_j f|^2).
\]

Inequality (14) follows from a classical path counting argument (see for example section 4.2 of [SC97]). However, let us give a proof. For any \(i,j\) in \(\Lambda\), consider the path \(\Gamma_{ij}\) inside \(\Lambda\) joining \(i\) and \(j\) obtained by adjusting the \(d\) coordinates one after the other. We have \(|\Gamma_{ij}| \leq dL\) and for each \(k,l\) in \(\Lambda\) with \(|k-l| = 1\), the number of such paths containing the edge \((k,l)\) is bounded above by \(c_d L^{d+1}\) where \(c_d > 0\) is a constant depending only on \(d\). Now by Cauchy-Schwarz’s inequality

\[
(a_i - a_j)^2 = \left[\sum_{(k,l) \in \Gamma_{i,j}, |k-l|=1} (a_k - a_l) \right]^2 \leq dL \sum_{(k,l) \in \Gamma_{i,j}, |k-l|=1} (a_k - a_l)^2,
\]

and therefore
\[
\sum_{i,j \in \Lambda} (a_i - a_j)^2 \leq dL \sum_{i,j \in \Lambda} (a_k - a_l)^2 \sum_{i,j \in \Lambda \atop \Gamma_{i,j} \ni (k,l)} 1 \leq d \sum_{i,j \in \Lambda} \sum_{k,l \in \Lambda, |k-l|=1} (a_k - a_l)^2,
\]

which gives the desired result (14).

A simple example is given by uniformly strictly convex \(H\) in \(\mathbb{R}^{n+1}\). Namely, if there exists a constant \(\rho > 0\) such that for any \(x \in \mathbb{R}^{n+1}\), \(\text{Hess}(H)(x) \geq \rho I_{n+1}\) as quadratic forms on \(\mathbb{R}^{n+1}\), then, an easy calculus gives for any \(x \in \mathbb{R}^n\) and \(h \in \mathbb{R}^n\)

\[
((\text{Hess}(H_M))(x)h, h)_{\mathbb{R}^n} \geq \rho \sum_{i=1}^n h_i^2 + \rho \left(-\sum_{i=1}^n h_i \right)^2 \geq \rho \sum_{i=1}^n h_i^2.
\]

Thus, \(H_M\) is uniformly strictly convex with the same constant \(\rho\), and therefore, by the Bakry-Émery criterion, \(\sigma_M\) satisfies to Poincaré and logarithmic Sobolev inequalities with a constant \(\rho^{-1}\) and \(2 \rho^{-1}\) respectively, which does not depend on \(n\) and \(M\). The hypotheses of Proposition (1.1) are full-filled since by the same calculus, \((H \circ \pi)_M\) is also uniformly strictly convex with a constant \(\rho\). A more simple example is given by

\[
H(x) = V(x_1) + \cdots + V(x_{n+1})
\]

where \(V\) is in \(C^2(\mathbb{R}, \mathbb{R})\) with \(V'' > \rho > 0\). Let us consider now another convex Hamiltonian example on \(\mathbb{R}^{n+1}\) defined by

\[
H(x) := \frac{1}{2(n+1)} \sum_{i,j=1}^{n+1} V_{\{i,j\}}(x_i - x_j),
\]

where \(V_{\{i,j\}}\) are in \(C^2(\mathbb{R}, \mathbb{R})\) and even. This is a so called mean-field Hamiltonian when all the \(V_{\{i,j\}}\) are equal. We have for any \(i,j\) in \(\{1, \ldots, n+1\}\)

\[
(n+1) \partial^2_{ij} H(x) = \begin{cases}
\sum_{k \neq i}^{n+1} V''_{\{i,k\}}(x_i - x_k) & \text{if } i = j \\
-V''_{\{i,j\}}(x_i - x_j) & \text{if } i \neq j
\end{cases}
\]
Therefore, if $V''_{(i,j)}(u) \geq 0$ for any $u \in \mathbb{R}$ and any $i, j \in \{1, \ldots, n+1\}$, i.e. $V_{(i,j)}$ is convex, the Gershgorin-Hadamard theorem implies that for any $x \in \mathbb{R}^{n+1}$, $\text{Hess}(H)(x) \geq 0$ as a quadratic form, and thus H is convex on \mathbb{R}^{n+1}. Unfortunately, since $\sum_{j=1}^{n+1} \partial_{ij}^2 H(x) = 0$ for any $i \in \{1, \ldots, n+1\}$, the null space of $\text{Hess}(H)$ contains 1_{n+1} and therefore, the measure μ on \mathbb{R}^{n+1} defined by $d\mu(x) := \exp (-H(x)) \, dx$ cannot be normalised into a probability measure since $Z_\mu := \mu(\mathbb{R}^{n+1}) = +\infty$. Nevertheless, suppose that there exists a constant $\rho > 0$ such that $V''_{(i,j)}(u) \geq \rho$ for any $u \in \mathbb{R}$ and any $i, j \in \{1, \ldots, n\}$. Then, $u \in \mathbb{R} \mapsto V_{(i,j)}(u) - \rho u^2/2$ is convex and the latter implies that

$$\text{Hess}(H)(x) \geq \rho 1_{n+1} - (n+1)^{-1}\rho 1_{n+1},$$

as quadratic forms. Thus, by writing $\mathbb{R}^{n+1} = \mathbb{R}1_{n+1} \oplus \mathcal{H}_n$ where \mathcal{H}_n is the hyper-plane of equation $h_1 + \cdots + h_{n+1} = 0$, we get that the spectrum of $\text{Hess}(H)(x)$ is of the form

$$\{0 = \lambda_1(x) < \lambda_2(x) \leq \cdots \leq \lambda_{n+1}(x)\}$$

with $\lambda_2(x) \geq n(n+1)^{-1}\rho$. Hence, one can define the probability measure σ_M on \mathbb{R}^n as in [4] for any M in \mathbb{R}. Moreover σ_M is uniformly log-concave with a constant $n(n+1)^{-1}\rho$ and therefore the conditional measure μ_M can be defined from σ_M as a probability measure by equation (4), despite the fact that μ is not a probability measure on \mathbb{R}^{n+1}. The particular case $V_{(i,j)} = V$ with V even and uniformly convex is considered for example in [Mal01], in terms of the associated S.D.E., in order to study the granular media equation.

As we have seen, when H is uniformly strictly convex with a constant $\rho > 0$, the hypotheses of Proposition 0.1 are full-filled and hence, inequalities (13) and (14) hold. It is quite natural to ask if (13) and (14) remains true for symmetric but non convex Hamiltonians H. In this direction, the Bakry-Émery criterion allows the following perturbative statement due to Ivan Gentil. The proof, prototype of which can be found in [Led01], is taken from [BH99] and is postponed to section 1.

Proposition 0.2 (Perturbative result). Let $H(x) = V(x_1) + \cdots + V(x_{n+1})$ with

$$V(u) = \frac{u^2}{2} + F(u)$$

where $F : \mathbb{R} \to \mathbb{R}$, and let σ_M be the probability measure on \mathbb{R}^n defined by (4), namely

$$\sigma_M(dx_1, \ldots, dx_n) = (Z_{\sigma_M})^{-1} \int_{\mathbb{R}^n} \exp \left(- \sum_{i=1}^{n} V(x_i) - V\left(M - \sum_{i=1}^{n} x_i\right)\right) \, dx_1 \cdots dx_n.$$

Then, for $\|F\|_\infty$ small enough, there exists a positive constant \mathcal{P} depending only on $\|F\|_\infty$ such that for any n, any M and any smooth $f : \mathbb{R}^n \to \mathbb{R}$,

$$\text{Var}_{\sigma_M}(f) \leq \mathcal{P} \text{E}_{\sigma_M}(|\nabla f|^2).$$

(15)

Proposition 0.2 remains valid if we replace, in the definition of σ_M, the square function $u \mapsto u^2/2$ by a smooth convex function $u \mapsto \Phi(u)$, provided that there exists real constants
Moreover, if F of the Poincaré inequality (16) and section 4 to the derivation of the logarithmic Sobolev preliminaries to the proof of Theorem 0.3. Lemma 2.1 gives some covariance bounds simple application of the Bakry-Émery criterion. Section 3 is devoted to the derivation taken from [LPY00]. This Lemma allows us to derive the “one spin Lemma” 2.2 by a

Then, if F depending only on the Bakry-Émery criterion. In Section 2, we give some preliminaries to the proof of Theorem 0.3. Lemma 2.1 gives some covariance bounds taken from [LPY00]. This Lemma allows us to derive the “one spin Lemma” 2.2 by a simple application of the Bakry-Émery criterion. Section 8 is devoted to the derivation of the Poincaré inequality (14) and section 4 to the derivation of the logarithmic Sobolev

\[\alpha \text{ and } \beta \text{ such that } 0 < \alpha \leq \beta \leq 2\alpha \text{ and } \alpha \leq \Phi''(u) \leq \beta \text{ for every } u \in \mathbb{R}. \text{ The constant } P \text{ becomes in this case } e^{2 \text{osc}(F)/(2\alpha e^{-2 \text{osc}(F)} - \beta)} \text{ for } \text{osc}(F) < \log \sqrt{2\alpha/\beta}. \]

The exchangeability of the underlying measure μ_M indicates that the perturbative approach by mean of Helffer’s method (cf. [He98, He99, He99-2, BH99]) which sees σ_M as a quasi-product measure with small interactions is not relevant here: any reduction of F in the interaction term

\[V(M - \sum_{i=1}^{n} x_i) \]

affects the product term $\sum_{i=1}^{n} V(x_i)$. Helffer’s method was essentially developed for spins systems with boundary conditions for which the measure is not exchangeable. For our measure σ_M, one can expect in contrast that the symmetries of H_M induce a stronger result, as for many mean field models. In this direction, Landim, Panizo and Yau have recently established in [LPY00] that μ_M satisfies inequalities (13) and (14) when H is of the form $H(x) = V(x_1) + \cdots + V(x_{n+1})$ where $V(u) = u^2/2 + F(u)$ with F and F' bounded and Lipschitz. A simple example is given by $F(x) = \sin(Q(x))$ where P and Q are fixed polynomials in $\mathbb{R}[X]$. Their proof relies on Lu-Yau’s Markovian decomposition [LY93] and on Local Central Limit Theorem estimates [KL99].

Following closely [LPY00], we are actually able to show that measure σ_M itself satisfies to (1) and (2) with a constants which does not depend on n and M, as stated in our main result, which follows.

Theorem 0.3. Let $H(x) = V(x_1) + \cdots + V(x_{n+1})$ with $V(u) = u^2/2 + F(u)$ and let σ_M be the probability measure on \mathbb{R}^n defined by (1), namely

\[
\sigma_M(dx_1, \ldots, dx_n) = (Z_{\sigma_M})^{-1} \int_{\mathbb{R}^n} \exp \left(- \sum_{i=1}^{n} V(x_i) - V(M - \sum_{i=1}^{n} x_i) \right) dx_1 \cdots dx_n.
\]

Then, if F is bounded and Lipschitz, there exists a positive constant P depending only on $\|F\|_{\infty}$ and $\|F'\|_{\infty}$ such that for any n and M and any smooth $f : \mathbb{R}^n \to \mathbb{R}$,

\[
\text{Var}_{\sigma_M}(f) \leq P \mathbb{E}_{\sigma_M}(|\nabla f|^2). \tag{16}
\]

Moreover, if F'' is also bounded, there exists a positive constant L depending only on $\|F\|_{\infty}$, $\|F'\|_{\infty}$ and $\|F''\|_{\infty}$ such that for any n and M and any smooth $f : \mathbb{R}^n \to \mathbb{R}$,

\[
\text{Ent}_{\sigma_M}(f^2) \leq L \mathbb{E}_{\sigma_M}(|\nabla f|^2). \tag{17}
\]

As a Corollary, we recover from Proposition 0.1 and (12) the L^2 factor for the Kawasaki dynamics (cf. (13) and (14)) obtained by [LPY00].

The rest of the paper is divided as follows. The first section gives the proof of Proposition 0.2 which relies only on the Bakry-Émery criterion. In Section 2, we give some preliminaries to the proof of Theorem 0.3. Lemma 2.1 gives some covariance bounds taken from [LPY00]. This Lemma allows us to derive the “one spin Lemma” 2.2 by a simple application of the Bakry-Émery criterion. Section 8 is devoted to the derivation of the Poincaré inequality (14) and section 4 to the derivation of the logarithmic Sobolev
counterpart \([16]\). The proofs make heavy use of the LCLT based estimates of \([LPY00]\) throughout Lemmas \([3.1]\) and \([4.1]\), but our induction in \(n\) is quite different.

It is natural to ask if Theorem \([0.3]\) remains valid if the quadratic potential \(u^2/2\) is replaced by a uniformly strictly convex potential \(\Phi\). We believe that it is true. Recently, Caputo showed in \([Cap02]\) that it is the case for the Poincaré inequality in Theorem \([0.3]\). His nice method makes crucial use of exchangeability, but unfortunately, since it relies heavily on the spectral nature of Poincaré’s inequality, it does not give any clue to do the same for the Logarithmic Sobolev inequality, and the second part of Theorem \([0.3]\) remains thus inaccessible.

In a sense, the exchangeability property plays a role similar to the one played by mixing conditions in other models. Such exchangeable measures “resemble” to product ones, and this intuition is confirmed by a sort of Kac’s propagation of chaos since the finite dimensional marginals are close to a product measure in high dimension, as we will see in Lemma \([2.1]\). Notice that in our exchangeable model with mean field interaction, the covariance of any couple of spins decays linearly with the total number of spins, whereas for spins systems with nearest neighbours interaction and boundary conditions, the covariance decay holds exponentially.

The general study of Poincaré and Logarithmic Sobolev inequalities as in Theorem \([0.3]\) for bounded “diagonal” perturbations of non-exchangeable Hamiltonians is hard and remains an interesting open problem. In an other direction, one can ask if our method remains valid for discrete spins systems similar to those presented in \([Mar99]\). It is not clear at all for us. Finally, we believe that concentration of measure inequalities can help to simplify the derivation of large deviations like estimates in \([LPY00]\) necessary to derive the Logarithmic Sobolev inequality.

1 Proof of Proposition \([0.2]\)

We give here a proof of Proposition \([0.2]\) which relies only on the Bakry-Émery criterion. Let \(\sigma^*_M\) the probability measure on \(\mathbb{R}^n\) defined by

\[
(Z_{\sigma^*_M})^{-1} \exp \left(- \sum_{i=1}^{n} V(x) - \frac{1}{2} \left(M - \sum_{i=1}^{n} x_i \right)^2 \right) \, dx_1 \cdots dx_n.
\]

If \(\sigma^*_M\) satisfies a Poincaré inequality with a constant \(c > 0\), then \(\sigma_M\) satisfies a Poincaré inequality with a constant \(c \exp (2 \text{osc}(F))\). Now, for any smooth function \(f : \mathbb{R}^n \to \mathbb{R}\),

\[
\mathbb{E}_{\sigma^*_M} ((L f)^2) = \sum_{i,j=1}^{n} \mathbb{E}_{\sigma^*_M} (|\partial^2_{ij} f|^2) + \mathbb{E}_{\sigma^*_M} \left(\sum_{i=1}^{n} (1 + F''(x_i)) |\partial_i f|^2 \right) + \mathbb{E}_{\sigma^*_M} \left(\left(\sum_{i=1}^{n} \partial_i f \right)^2 \right).
\]

In the other hand, for any \(i \in \{1, \ldots, n\}\) and any \(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n\), the Bakry-Émery criterion gives that the one dimensional probability measure

\[
\rho_i(dx_i) := (Z_{\rho_i})^{-1} \exp \left(- V(x_i) - \frac{1}{2} \left(M - \sum_{i=1}^{n} x_i \right)^2 \right) \, dx_i
\]

Page 8
satisfies a Poincaré inequality with a constant \((1/2) \exp(2 \text{osc}(F))\), hence, by the Bakry-Émery criterion applied reversely, we get for any smooth function \(f : \mathbb{R}^n \to \mathbb{R}\), by summing over \(i\)

\[
\sum_{i=1}^{n} E_{\rho_i} \left(|\partial_i^2 f|^2 \right) + \sum_{i=1}^{n} E_{\rho_i} \left((2 + F''(x_i)) |\partial_i f|^2 \right) \geq 2 e^{-2 \text{osc}(F)} \sum_{i=1}^{n} E_{\rho_i} \left(|\partial_i f|^2 \right).
\]

Notice that \(\rho_i = \text{Law}_{\sigma^*_M}(x_i | x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)\). Therefore, by taking the expectation with respect to \(\sigma^*_M\), we get

\[
E_{\sigma^*_M} \left((L f)^2 \right) \geq (2 e^{-2 \text{osc}(F)} - 1) \sum_{i=1}^{n} E_{\sigma^*_M} \left(|\partial_i f|^2 \right)
\]

Thus, for \(\text{osc}(F)\) sufficiently small \((< \log \sqrt{2})\), one can take

\[
\mathcal{P} = \frac{e^{2 \text{osc}(F)}}{2 e^{-2 \text{osc}(F)} - 1},
\]

which is optimal when \(F \equiv 0\) (pure Gaussian case).

2 Preliminaries to the proof of Theorem 0.3

Let \(\gamma_{n,M}\) the Gaussian measure of mean \(M/(n+1)\) and covariance matrix \((I_n + 1_n)^{-1}\). If \(B(x) := \sum_{i=1}^{n} F(x_i) + F(M - x_1 - \cdots - x_n)\), one can write

\[
d\sigma_M(x_1, \ldots, x_n) = (Z_{n,M})^{-1} \exp(-B(x)) d\gamma_{n,M}(x_1, \ldots, x_n).
\]

Thus, \(\sigma_M\) is a bounded perturbation of \(\gamma_{n,M}\), which is log-concave with a constant \(\rho\) equal to 1, and therefore, \(\sigma_M\) satisfies Poincaré and logarithmic Sobolev inequalities with constants depending only on \(\|B\|_{\infty}\) (i.e. \(\|F\|_{\infty}\) and \(n\)). Our goal is to show that the dependence in \(n\) can be dropped by taking into account \(\|F'\|_{\infty}\) and \(\|F''\|_{\infty}\). The presence of the bounded part \(F\) in \(V\) and the non-product nature of \(\sigma_M\) does not allow any direct approach based on the Bakry-Émery criterion.

Observe that \(\text{Cov}_{\gamma_{n,M}}(x_1, x_2) = -(n+1)^{-1}\), and we can then expect the same decrease in \(n\) for \(\text{Cov}_{\sigma_M}(V'(x_1), V'(x_2))\). This is actually the case, as stated in the following Lemma. Notice that since \(\sigma_M\) is exchangeable and since \(M - \sum_{i=1}^{n} x_i\) and \(x_i\) have the same law under \(\sigma_M\), we have \(\text{Var}_{\sigma_M}(x_1) = -n \text{Cov}_{\sigma_M}(x_1, x_2)\), as for \(\gamma_{n,M}\).

Lemma 2.1. Let \(\sigma_M\) be the probability measure on \(\mathbb{R}^n\) \((n > 2)\) defined in Theorem 0.3 and \(\mu_M\) the associated conditional measure defined by (18). Assume that \(F\) and \(F'\) are bounded, then there exists a constant \(C > 0\) depending only on \(\|F\|_{\infty}\) and \(\|F'\|_{\infty}\) such that for any \(M \in \mathbb{R}\)

\[
|\text{Cov}_{\sigma_M}(V'(x_1), V'(x_2))| = |\text{Cov}_{\sigma_M}(V'(x_1), V'(x_2))| \leq \frac{C}{n}, \quad (18)
\]
and

$$\text{Var}_{\sigma_M} \left(\sum_{i=1}^{n} V'(x_i) + V'(M - \sum_{i=1}^{n} x_i) \right) = \text{Var}_{\sigma_M} \left(\sum_{i=1}^{n} F'(x_i) + F'(M - \sum_{i=1}^{n} x_i) \right)$$

$$= \text{Var}_{\mu_M} \left(\sum_{i=1}^{n+1} F'(x_i) \right) \leq nC. \quad (19)$$

Proof. Inequality (19) follows from (7) and [LPY00, Corollary 5.4]. For (18), just write

$$\text{Cov}_{\sigma_M}(V'(x_1), V'(x_2)) = \text{Cov}_{\sigma_M}(x_1, x_2) + 2 \text{Cov}_{\sigma_M}(x_1, F'(x_2)) + \text{Cov}_{\sigma_M}(F'(x_1), F'(x_2)),$$

and use (7) and [LPY00, Corollary 5.3] to estimate each term. Actually, one can derive the estimates of $\text{Cov}_{\sigma_M}(x_1, F'(x_2))$ and $\text{Cov}_{\sigma_M}(x_1, x_2)$ directly by using the symmetries of σ_M. \qed

Inequality (18) of Lemma 2.2 allows us to establish the following one spin result, which is the first step in our proof of Poincaré and logarithmic Sobolev inequalities for σ_M by induction on n by mean of the Lu-Yau Markovian decomposition. In the other hand, inequality (19) will be useful, as we will see in sections 3 and 4, for the induction itself.

Lemma 2.2 (One spin Lemma). Let σ_M be the probability measure on \mathbb{R}^n defined in Theorem 0.3. If F is bounded and Lipschitz, there exists a constant $A > 0$ depending only on $\|F\|_\infty$ and $\|F'\|_\infty$ and not on n and M such that for any n and M and any smooth $f : \mathbb{R} \to \mathbb{R}$,

$$\text{Ent}_{\sigma_M}(f(x_1)^2) \leq 2A \text{E}_{\sigma_M}(f'(x_1)^2),$$

and

$$\text{Var}_{\sigma_M}(f(x_1)) \leq A \text{E}_{\sigma_M}(f'(x_1)^2).$$

Proof of Lemma 2.2. As we already noticed, it is clear that the desired inequalities are true with a constant depending on n and $\|F\|_\infty$, so we just have to see what happens for large values of n. We have in mind the use of the Bakry-Émery criterion. The Hamiltonian of the probability measure in x_1 is given by

$$\varphi_{M,n}(x_1) := V(x_1) + \log Z_{M,n} - \log \int \exp \left(- \sum_{i=2}^{n} V(x_i) - V \left(M - \sum_{i=1}^{n} x_i \right) \right) dx_2 \cdots dx_n.$$

We first observe that we can forget the $F(x_1)$ part in $V(x_1)$, which is payed by a factor $\exp(2 \text{osc}(F))$ in A. Hence, we simply have, after an integration by parts

$$\varphi''_{M,n}(x_1) = 1 - \text{Cov}_{\sigma_{M-x_1}}(dx_2, \ldots, dx_n)(V'(x_2), V'(x_3)).$$

Now, (18) gives $\varphi''_{M,n}(x_1) \geq 1 - Cn^{-1}$, where C is a positive constant depending only on $\|F\|_\infty$ and $\|F'\|_\infty$ and not on n and M. Thus, we are able to apply the Bakry-Émery criterion for large values of n. Hence, the proof is completed, with a constant A depending only on $\|F\|_\infty$ and $\|F'\|_\infty$ and not on M and n. \qed

Obviously, one can replace x_1 in f and f' by $M - x_1 - \cdots - x_n$ or by any x_i for $i \in \{1, \ldots, n\}$. Moreover, according to (8), one can replace E_{σ_M} by E_{μ_M}.
3 Derivation of the Poincaré inequality

This section is devoted to the derivation of inequality (10) of Theorem 1.3. The proof relies on the one spin Lemma 2.2 and on the crucial Lemma 3.1 which allows us to use the Lu-Yau Markovian decomposition.

Proof of (10). As we already noticed, the result is true with a constant depending on \(n \), so that if we denote by \(P_n \) the maximum of best Poincaré constants in dimension less than or equal to \(n \), we just have to show that the non decreasing sequence of constants \((P_n)_{n \geq 1} \) is bounded.

Let us denote by \(\sigma \) the measure \(\sigma_M \) and by \(\sigma^{(k)} \) the measure \(\sigma_M \) given \(x_1, \ldots, x_k \) for \(k \in \{0, \ldots, n\} \) and by \(f_k \) the conditional expectation

\[
E_\sigma(f|x_1, \ldots, x_k) = E_{\sigma^{(k)}}(f).
\]

Notice that \(\sigma^{(k)} \) is nothing else but \(\sigma_{M-x_1-\cdots-x_k}(dx_{k+1}, \ldots, dx_n) \). Moreover, \(f_n = f \) and by convention \(\sigma^{(0)} := \sigma \) and thus \(f_0 = E_\mu(f) \). For a fixed function \(f \), we can always choose the order of the coordinates \(x_1, \ldots, x_n \) such that \(E_\sigma(|\partial_k f|^2) \) becomes a non increasing sequence in \(k \in \{1, \ldots, n\} \). This gives

\[
\sum_{i=k+1}^{n} \frac{1}{n-k} E_\sigma(|\partial_i f|^2) \leq E_\sigma(|\partial_{k+1} f|^2).
\]

Following Lu-Yau [LY93], we have the following Markovian decomposition of the variance

\[
\text{Var}_\sigma(f) := E_\sigma(f^2) - E_\sigma(f)^2 = \sum_{k=1}^{n} E_\sigma((f_k)^2 - (f_{k-1})^2) = \sum_{k=1}^{n} E_\sigma(\text{Var}_{\sigma^{(k-1)}}(f_k)).
\]

Since measure \(\sigma^{(k-1)} \) integrates coordinates \(x_k, \ldots, x_n \) and function \(f_k \) depends only on coordinates \(x_1, \ldots, x_k \), the quantity \(\text{Var}_{\sigma^{(k-1)}}(f_k) \) is actually a variance for a one spin function. Therefore, by the one spin Lemma 2.2, there exists a constant \(A > 0 \) depending on \(\|F\|_\infty \) and \(\|F'\|_\infty \) but not on \(n \) and \(M \) such that

\[
\text{Var}_{\sigma}(f) \leq A \sum_{k=1}^{n} E_\sigma(|\partial_k f_k|^2).
\]

Our aim is to express the right hand side of the previous inequality in terms of \(|\partial_k f|^2 \). Notice that the \(k = n \) term in the sum is trivial since \(f_n = f \). By definition of \(f_k \), we get for any \(k \in \{1, \ldots, n-1\} \)

\[
\partial_k f_k = E_{\sigma^{(k)}}(\partial_k f) - \text{Cov}_{\sigma^{(k)}}(f, V'(M - \sum_{i=1}^{n} x_i)).
\]

At this stage, we notice that by \(n-k \) integrations by parts, we have

\[
\text{Cov}_{\sigma^{(k)}}(f, V'(M - \sum_{i=1}^{n} x_i)) = \frac{1}{n-k} \sum_{i=k+1}^{n} \text{Cov}_{\sigma^{(k)}}(f, V'(x_i)) - \frac{1}{n-k} \sum_{i=k+1}^{n} E_{\sigma^{(k)}}(\partial_i f).
\]
Therefore, we can write by denoting $S_k := \sum_{i=k+1}^{n} V'(x_i) + V'(M - \sum_{i=1}^{n} x_i)$
\[
\partial_k f_k = E_{\sigma(k)}(\partial_k f) - \frac{1}{n-k+1} \text{Cov}_{\sigma(k)}(f, S_k) + \frac{1}{n-k+1} \sum_{i=k+1}^{n} E_{\sigma(k)}(\partial_i f).
\]

Now, by the Cauchy-Schwarz inequality
\[
|\partial_k f_k|^2 \leq 3 E_{\sigma(k)}(|\partial_k f|^2) + \frac{3}{(n-k)^2} \text{Cov}_{\sigma(k)}(f, S_k)^2 + \frac{3}{n-k} \sum_{i=k+1}^{n} E_{\sigma(k)}(|\partial_i f|^2).
\]

This gives by summing over all k in $\{1, \ldots, n-1\}$ (the case $k = n$ is trivial)
\[
\sum_{k=1}^{n-1} E_{\sigma}(|\partial_k f_k|^2) \leq 3 E_{\sigma}(|\nabla f|^2) + 3 \sum_{k=1}^{n-1} \frac{1}{(n-k)^2} E_{\sigma}(\text{Cov}_{\sigma(k)}(f, S_k)^2)
\]
\[
\quad\quad\quad\quad\quad+ 3 \sum_{k=1}^{n-1} \frac{1}{n-k} \sum_{i=k+1}^{n} E_{\sigma}(|\partial_i f|^2).
\]

The monotonicity of $E_{\sigma}(|\partial_i f|^2)$ yields
\[
\sum_{k=1}^{n-1} E_{\sigma}(|\partial_k f_k|^2) \leq 6 E_{\sigma}(|\nabla f|^2) + 3 \sum_{k=1}^{n-1} \frac{1}{(n-k)^2} E_{\sigma}(\text{Cov}_{\sigma(k)}(f, S_k)^2).
\]

By inequality (21) of Lemma 3.1 there exists a positive constant C depending only on $\|F\|_{\infty}$ and $\|F'|_{\infty}$ such that for any $\varepsilon > 0$, there exists a positive constant C_{ε} depending only on $\|F\|_{\infty}$, $\|F'|_{\infty}$ and ε such that for any $k \in \{1, \ldots, n-1\}$
\[
\text{Cov}_{\sigma(k)}(f, S_k)^2 \leq (C_{\varepsilon} + \varepsilon(n-k)C) \text{Var}_{\sigma(k)}(f) + (n-k)C_{\varepsilon} \sum_{i=k+1}^{n} E_{\sigma(k)}(|\partial_i f|^2).
\]

Therefore, by the monotonicity of $E_{\sigma}(|\partial_i f|^2)$ again
\[
\sum_{k=1}^{n-1} E_{\sigma}(|\partial_k f_k|^2) \leq C_{\varepsilon}' E_{\sigma}(|\nabla f|^2) + C_{\varepsilon}' \sum_{k=1}^{n-1} \frac{1}{(n-k)^2} E_{\sigma}(\text{Var}_{\sigma(k)}(f))
\]
\[
\quad\quad\quad\quad\quad+ \varepsilon C_{\varepsilon}' \sum_{k=1}^{n-1} \frac{1}{n-k} E_{\sigma}(\text{Var}_{\sigma(k)}(f)).
\]

(20)

Recall that \mathcal{P}_n is the maximum of best Poincaré constants in dimension less than or equal to n. The last sum of the right hand side (RHS) of (21) can be bounded above as follows
\[
\sum_{k=1}^{n-1} \frac{1}{n-k} E_{\sigma}(\text{Var}_{\sigma(k)}(f)) \leq \mathcal{P}_n E_{\sigma}(|\nabla f|^2).
\]
It remains to examine the first sum of the RHS of \((20)\). The Jensen inequality yields

\[
E_{\sigma}(\text{Var}_{\sigma}(f)) \leq \text{Var}_{\sigma}(f),
\]

and therefore, we get for any \(p \in \{1, \ldots, n-1\}\)

\[
\sum_{k=1}^{n-1} \frac{1}{(n-k)^2} E_{\sigma}(\text{Var}_{\sigma}\{f\}) = \text{Var}_{\sigma}(f) \sum_{k=1}^{n-p-1} \frac{1}{(n-k)^2} + \sum_{k=1}^{n-1} \frac{1}{(n-k)^2} E_{\sigma}(\text{Var}_{\sigma}\{f\})
\]

\[
\leq \text{Var}_{\sigma}(f) \sum_{k=1}^{n-1} \frac{1}{k^2} + \sum_{k=1}^{p} \frac{1}{k^2} E_{\sigma}(\text{Var}_{\sigma}(f)).
\]

At this stage, we observe that for every \(k \in \{1, \ldots, p\}\),

\[
E_{\sigma}(\text{Var}_{\sigma}(f)) \leq \mathcal{P}_p \sum_{i=n-k+1}^{n} E_{\sigma}(|\partial_i f|^2) \leq p \mathcal{P}_p E_{\sigma}(|\partial_{n-p+1} f|^2).
\]

We are now able to collect our estimates of the RHS of \((20)\). Putting all together, we have obtained that

\[
\sum_{k=1}^{n-1} E_{\sigma}(|\partial_k f|^2) \leq (C'_{\epsilon} + p \pi^2 \mathcal{P}_p C''_{\epsilon} + \epsilon C''_{\epsilon} \mathcal{P}_{n-1}) E_{\sigma}(|\nabla f|^2) + (C''_{\epsilon} R_p) \text{Var}_{\sigma}(f),
\]

where \(R_p := \sum_{k=p+1}^{n-1} k^{-2}\). Therefore, for some \(C''_{\epsilon, p, \epsilon} > 0\),

\[
(1 - AC'_{\epsilon} R_p) \text{Var}_{\sigma}(f) \leq (C''_{\epsilon, p, \epsilon} + \epsilon AC''_{\epsilon} \mathcal{P}_{n-1}) E_{\sigma}(|\nabla f|^2).
\]

Now, we may choose \(\epsilon < 1/(AC'')\) and then \(p\) large enough (always possible when \(n\) is sufficiently large) to ensure that

\[
R_p < \min \left(\frac{1}{AC'_{\epsilon}}, \frac{1 - \epsilon AC''_{\epsilon}}{AC''_{\epsilon}} \right).
\]

This gives two positive constants \(\alpha\) and \(\beta\) with \(\beta < 1\) depending only on \(\|F\|_{\infty}\) and \(\|F'\|_{\infty}\) such that for large values of \(n\), one has \(\mathcal{P}_n \leq \alpha + \beta \mathcal{P}_{n-1}\), and therefore \(\sup_n \mathcal{P}_n < +\infty\). \(\square\)

Let us give now the crucial Lemma which allows us to use the Markovian decomposition of Lu-Yau, by splitting the covariance term into a variance term and a gradient term. The proof makes heavy use of estimates taken from [LPY00].

Lemma 3.1. Let \(\sigma_M\) be the probability measure on \(\mathbb{R}^n\) defined in Theorem 0.3. Assume that \(F\) is bounded and Lipschitz, then there exists a positive constant \(C\) depending only on \(\|F\|_{\infty}\) and \(\|F'\|_{\infty}\) such that for any \(\epsilon > 0\), there exists a positive constant \(C_{\epsilon}\) depending only on \(\|F\|_{\infty}, \|F'\|_{\infty}\) and \(\epsilon\) such that for any \(n \in \mathbb{N}^*, \) any \(M \in \mathbb{R}\) and any smooth function \(f: \mathbb{R}^n \rightarrow \mathbb{R}\)

\[
\text{Cov}_{\sigma_M}(f, S)^2 \leq (C_{\epsilon} + \epsilon nC) \text{Var}_{\sigma_M}(f) + nC_{\epsilon} E_{\sigma_M}(|\nabla f|^2),
\]

where \(S := \sum_{i=1}^{n} V'(x_i) + V'(M - \sum_{i=1}^{n} x_i)\).
Proof of Lemma 3.1. Notice that we just have to study what happens for small values of \(\varepsilon \) and large values of \(n \), since for any \(\varepsilon > 0 \) and any \(n \leq n_\varepsilon \), we get by the Cauchy-Schwarz inequality and (11) that

\[
\text{Cov}_{\sigma_M}(f, S)^2 \leq n_\varepsilon C \text{Var}_{\sigma_M}(f) =: C_\varepsilon \text{Var}_{\sigma_M}(f).
\]

We have in mind the use of the partitioning result of [LPY00]. If \(\mu_M \) denotes the conditional measure on \(\mathbb{R}^{n+1} \) associated to \(\sigma_M \) as in (10), we have

\[
\text{Cov}_{\sigma_M}(f, S(x_1, \ldots, x_n))^2 = \text{Cov}_{\mu_M}\left(f, \sum_{i=1}^{n+1} F'(x_i)\right)^2.
\]

Now, according to [LPY00, ineq. (3.10)], the last variance in the RHS is bounded above by \(nC/K \) for \(n \) sufficiently large, which can be rewritten as \(\varepsilon nC \). We turn now to the control of the first term of the RHS of (22). Since \(\text{Var}_{\sigma_M}(f) \text{Var}_{\mu_M}\left(\sum_{i=1}^{\ell} |I_i|E_{\mu_{(i)}}(F')\right) \), the second term of the RHS of (22) can be bounded above by

\[
\text{Var}_{\sigma_M}(f) \text{Var}_{\mu_M}\left(\sum_{i=1}^{\ell} |I_i|E_{\mu_{(i)}}(F')\right).
\]

By the Cauchy-Schwarz inequality again and by (8), the second term of the RHS of (22) can be bounded above by

\[
\text{Cov}_{\mu_M}\left(f, \sum_{i=1}^{n+1} F'(x_i)\right)^2 \leq 2 \text{Cov}_{\mu_M}\left(f, \sum_{i=1}^{\ell} \sum_{k \in I_i} \left(F'(x_k) - E_{\mu_{(i)}}(F')\right)\right)^2
\]

\[
+ 2 \text{Cov}_{\mu_M}\left(f, \sum_{i=1}^{\ell} |I_i|E_{\mu_{(i)}}(F')\right)^2.
\]

Thus, the Cauchy-Schwarz inequality yields

\[
\text{Cov}_{\mu_M}\left(f, \sum_{i=1}^{\ell} \sum_{k \in I_i} \left(F'(x_k) - E_{\mu_{(i)}}(F')\right)\right)^2 \leq \ell \sum_{i=1}^{\ell} \text{Cov}_{\mu_M}\left(f, \sum_{k \in I_i} F'(x_k)\right)^2.
\]
Again by the Cauchy-Schwarz inequality, we get
\[
\text{Cov}_{\mu(i)} \left(f, \sum_{k \in I_i} F'(x_k) \right)^2 \leq \text{Var}_{\mu(i)}(f) \text{Var}_{\mu(i)} \left(\sum_{k \in I_i} F'(x_k) \right).
\]

By virtue of (19) applied to \(\mu(i) \), we obtain
\[
\text{Cov}_{\mu(i)} \left(f, \sum_{k \in I_i} F'(x_k) \right)^2 \leq C |I_i| \text{Var}_{\mu(i)}(f).
\]

Now, for any \(i \), let \(r_i = \max\{k, k \in I_i\} \) and \(J_i := I_i \setminus \{r_i\} \) and \(\sigma(i) \) the probability measure on \(\mathbb{R}^{J_i} \) associated with the Hamiltonian
\[
\sum_{k \in J_i} V(x_k) + V(M_i - \sum_{k \in J_i} x_k).
\]

Equation (8) simply gives
\[
\text{Var}_{\mu(i)}(f) = \text{Var}_{\sigma(i)}(f(\varphi_i(x))),
\]
where \(\varphi_i : \mathbb{R}^{n+1} \to \mathbb{R}^n \) is defined by
\[
(\varphi_i(x))_k := \begin{cases} x_k & \text{if } k \neq r_i \\ M_i - \sum_{l \in J_i} x_l & \text{if } k = r_i \end{cases}
\]

Recall that \(P_K \) is the maximum of the best Poincaré constants for \(\sigma_M \) in dimensions less than or equal to \(K \). We get by definition of \(P_K \) that
\[
\text{Var}_{\sigma(i)}(f) \leq P_K \sum_{k \in J_i} \mathbb{E}_{\sigma(i)} \left(|(\partial_k f)(\varphi_i) - (\partial_{r_i} f)(\varphi_i)|^2 \right)
= P_K \sum_{k \in J_i} \mathbb{E}_{\mu(i)} \left(|\partial_k f - \partial_{r_i} f|^2 \right).
\]

Hence, by the Cauchy-Schwarz inequality, we get
\[
\text{Var}_{\sigma(i)}(f) \leq 2P_K \mathbb{E}_{\mu(i)} \left(\sum_{k \in J_i} |\partial_k f|^2 \right) + 2(|I_i| - 1)P_K \mathbb{E}_{\mu(i)} \left(|\partial_{r_i} f|^2 \right).
\]

Summarising, since \(P_K \) depends only on \(K, \|F\|_\infty, \|F'\|_\infty \), we have obtained that the first term of the right hand side of (22) is bounded above by
\[
nC_K P_K \mathbb{E}_{\mu_M} \left(|\nabla f|^2 \right),
\]
which can be rewritten by virtue of (8) as \(n C'_K \mathbb{E}_{\sigma_M} \left(|\nabla f|^2 \right) \). This concludes the proof of (21) and Lemma 3.1. \(\square \)
4 Derivation of the Logarithmic Sobolev inequality

This section is devoted to the derivation of inequality (17) of Theorem 0.3. As for the Poincaré inequality (16), the proof relies on the one spin Lemma 2.2 and on a crucial Lemma 4.1 which allows us to use the Lu-Yau Markovian decomposition.

Proof of the logarithmic Sobolev inequality (17) of Theorem 0.3. We follow here the same scheme used for the Poincaré inequality. For any smooth non-negative function \(g : \mathbb{R}^n \to \mathbb{R}^+ \), we have the following decomposition of the entropy

\[
\text{Ent}_\sigma(g) := E_\sigma(g \log g) - E_\sigma(g) \log E_\sigma(g) = \sum_{k=1}^{n} E_\sigma(g_k \log g_k - g_{k-1} \log g_{k-1}) = \sum_{k=1}^{n} E_\sigma(\text{Ent}_{\sigma(k-1)}(g_k)).
\]

Alike for the variance, measure \(\sigma(k-1) \) integrates on \(x_k, \ldots, x_n \) and function \(f_k \) depends only on \(x_1, \ldots, x_k \), so that \(\text{Ent}_{\sigma(k-1)}(g_k) \) is actually an entropy for a one spin function. Therefore, by the one spin Lemma 2.2, there exists a positive constant \(A \) depending on \(\|F\|_\infty \) and \(\|F'\|_\infty \) but not on \(n \) and \(M \) such that

\[
\text{Ent}_\sigma(g) \leq 2A \sum_{k=1}^{n} E_\sigma\left(\frac{\partial_k g_k^2}{4g_k}\right).
\]

By taking \(g = f^2 \) for a smooth function \(f : \mathbb{R}^n \to \mathbb{R} \), we get

\[
\text{Ent}_\sigma(f^2) \leq 2A \sum_{k=1}^{n} E_\sigma\left(\frac{\partial_k (f^2)_k^2}{4(f^2)_k}\right).
\]

By imitating the method used for the Poincaré inequality, we get that

\[
\frac{\partial_k (f^2)_k^2}{4(f^2)_k} \leq 3 \frac{|E_{\sigma(k)}(f \partial_k f)|^2}{E_{\sigma(k)}(f^2)} + \frac{6}{(n-k)^2} \frac{\text{Cov}_{\sigma(k)}(f^2, S_k)^2}{E_{\sigma(k)}(f^2)} + \frac{3}{n-k} \sum_{i=k+1}^{n} \frac{|E_{\sigma(k)}(f \partial_i f)|^2}{E_{\sigma(k)}(f^2)}.
\]

The Cauchy-Schwarz inequality yields

\[
\frac{|E_{\sigma(k)}(f \partial_k f)|}{E_{\sigma(k)}(f^2)} \leq E_{\sigma(k)}(|\partial_k f|^2).
\]

Therefore, the Jensen inequality and the monotonicity of \(E_{\sigma(|\partial_i f|^2)} \) yield

\[
\sum_{k=1}^{n-1} E_{\sigma}\left(\frac{|\partial_k (f^2)_k|^2}{4(f^2)_k}\right) \leq 6 E_{\sigma}(|\nabla f|^2) + \sum_{k=1}^{n-1} \frac{1}{(n-k)^2} E_{\sigma}\left(\frac{\text{Cov}_{\sigma(k)}(f^2, S_k)^2}{E_{\sigma(k)}(f^2)}\right).
\]
By inequality (23) of Lemma 4.1, there exists a positive constant C depending only on $\|F\|_\infty$, $\|F'\|_\infty$ and $\|F''\|_\infty$ such that for any $\varepsilon > 0$, there exists a positive constant C_ε depending only on $\|F\|_\infty$, $\|F'\|_\infty$, $\|F''\|_\infty$ and ε such that for any n and M

$$\frac{\text{Cov}_{\sigma(k)}(f^2, S_k)}{E_{\sigma(k)}(f^2)} \leq (C_\varepsilon + \varepsilon(n - k)C) \text{Ent}_{\sigma(k)}(f^2) + (n - k)C_\varepsilon \sum_{i=k+1}^{n} E_{\sigma(k)}(|\partial_i f|^2).$$

Hence, we are now able to proceed as the same way as for the Poincaré inequality. □

As for the derivation of the Poincaré inequality, we give now the crucial Lemma which allows us to use the Markovian decomposition of Lu-Yau.

Lemma 4.1. Let σ_M be the probability measure on \mathbb{R}^n defined in Theorem 0.3. Assume that F, F' and F'' are bounded, then there exists a positive constant C depending only on $\|F\|_\infty$, $\|F'\|_\infty$ and $\|F''\|_\infty$ such that for any $\varepsilon > 0$, there exists a positive constant C_ε depending only on $\|F\|_\infty$, $\|F'\|_\infty$, $\|F''\|_\infty$ and ε such that for any $n \in \mathbb{N}^*$, any $M \in \mathbb{R}$ and any smooth function $f : \mathbb{R}^n \to \mathbb{R}$ such that $E_{\sigma_M}(f^2) = 1$

$$\text{Cov}_{\sigma_M}(f^2, S) \leq (C_\varepsilon + \varepsilon nC) \text{Ent}_{\sigma_M}(f^2) + nC_\varepsilon E_{\sigma_M}(\|\nabla f\|^2),$$

where $S(x) := \sum_{i=1}^{n} V'(x_i) + V'(M - \sum_{i=1}^{n} x_i)$.

Proof of Lemma 4.1. We follow the same scheme as for (21), by replacing the Cauchy-Schwarz inequality by the entropy inequality. Since f^2 is a density with respect to σ_M, we can write

$$\text{Cov}_{\sigma_M}(f^2, S) = E_{\sigma_M}((S - E_{\sigma_M}(S))^2),$$

and hence, we get by the entropy inequality that for any $\beta > 0$

$$\text{Cov}_{\sigma_M}(f^2, S) \leq \beta^{-1} \log E_{\sigma_M}(\exp(\beta(S - E_{\sigma_M}(S)))) + \beta^{-1} E_{\sigma_M}(f^2 \log f^2).$$

By (7) and [LPY00, Lemma 6.1], the first term of the right hand side is bounded above by $nC\beta$ where C depends only on $\|F\|_\infty$, and $\|F''\|_\infty$. This yields by considering the minimum in $\beta > 0$

$$\text{Cov}_{\sigma_M}(f^2, S)^2 \leq nC E_{\sigma_M}(f^2 \log f^2).$$

Thus, for any fixed $\varepsilon > 0$, we just have to study what happens for large values of n since $nC \leq n_\varepsilon C =: C_\varepsilon$ for $n \leq n_\varepsilon$. After rewriting (23) in terms of μ_M, we get by Cauchy-Schwarz’s inequality

$$\text{Cov}_{\mu_M} \left(f^2, \sum_{i=1}^{n+1} F'(x_i) \right)^2 \leq 2 \text{Cov}_{\mu_M} \left(f^2, \sum_{i=1}^{\ell} \sum_{k \in I_i} (F'(x_k) - E_{\mu(i)}(F')) \right)^2 + 2 \text{Cov}_{\mu_M} \left(f^2, \sum_{i=1}^{\ell} |I_i| E_{\mu(i)}(F') \right)^2.$$
Let us treat the first term of the right hand side of (24). It can be rewritten as

\[2 \sum_{i=1}^{\ell} E_{\mu M} \left(E_{\mu(i)} \left(f^2 \right) \right) Cov_{\mu(i)} \left(f_i^2, \sum_{k \in I_i} F'(x_k) \right), \]

where \(f_i^2 := f^2 / E_{\mu(i)}(f^2) \). Thus, by the Cauchy-Schwarz inequality, the first term of the RHS of (24) is bounded above by

\[2 \ell \sum_{i=1}^{\ell} E_{\mu M} \left(E_{\mu(i)} \left(f^2 \right) \right) Cov_{\mu(i)} \left(f_i^2, \sum_{k \in I_i} F'(x_k) \right)^2, \]

where we used the Jensen inequality with respect to the density \(E_{\mu(i)}(f^2) \). Now, by the entropy inequality and by [LPY00, Lemma 6.1]

\[E_{\mu(i)}(f^2) Cov_{\mu(i)} \left(f_i^2, \sum_{k \in I_i} F'(x_k) \right)^2 \leq C |I_i| Ent_{\mu(i)}(f^2). \]

At this stage, the argument used for the Poincaré inequality can be rewritten exactly in the same way, by replacing the variance by the entropy and \(P_K \) by \(L_K \). It gives finally that the first term of the RHS of (24) is bounded above by

\[nC_K L_K E_{\mu M} \left(|\nabla f|^2 \right). \]

The latter can be rewritten by virtue of (8) as \(n C'_K E_{\sigma M} \left(|\nabla f|^2 \right) \). It remains to bound the last term of the RHS of (24). Let \(\beta_0 \) as in [LPY00, Lemma 6.5] and \(\delta \in (0, 2) \). By a simple rewriting of [LPY00, Lemma 4.5], one gets that if \(Ent_{\mu M}(f^2) \leq \delta (n+1) \beta_0^2 \) with \(n \) and \(K \) large enough

\[Cov_{\mu M} \left(f^2, \sum_{i=1}^{\ell} |I_i| E_{\mu(i)}(F') \right)^2 \leq \delta n C_K Ent_{\mu M}(f^2). \]

In the other hand, if \(Ent_{\mu M}(f^2) \geq \delta (n+1) \beta_0^2 \), one gets

\[Cov_{\mu M} \left(f^2, \sum_{i=1}^{\ell} |I_i| E_{\mu(i)}(F') \right)^2 \leq \delta n C_K Ent_{\mu M}(f^2) + C_{K, \delta} n E_{\mu M} \left(|\nabla f|^2 \right). \]

This last estimate is based on a simple rewriting of [LPY00, Lemma 4.5] together with the following straightforward but essential version of [LPY00, Lemma 4.6] :

\[E_{\nu_{I_i \cup I_j, M}} \left((m_i - m_j)^2 f^2 \right) \leq C_1(K) E_{\nu_{I_i \cup I_j, M}}(f^2) + C_2(K) L_{2K} E_{\nu_{I_i \cup I_j, M}} \left(\sum_{k \in I_i \cup I_j} |\partial_k f|^2 \right), \]

where \(\nu_{I_i \cup I_j, M} \) is the conditional measure on \(I_i \cup I_j \), \(m_i = |I_i|^{-1} \sum_{k \in I_i} \), and \(C_1(K) \to 0 \) when \(K \to +\infty \).
Summarising, we get that for any $\delta \in (0,2)\text{ and for } n \text{ and } K \text{ large enough, the last term of the RHS of } (24)\text{ is bounded above as follows}

$$\text{Cov}_{\mu_M}\left(f^2, \sum_{i=1}^{\ell} |I_i| E_{\mu_i}(F')\right)^2 \leq n\delta C_K \text{Ent}_{\mu_M}(f^2) + nC_{K,K_\delta}L_2 K \text{Ent}_{\mu_M}(|\nabla f|^2),$$

which can be rewritten by virtue of (8) as $\varepsilon nC' \text{Ent}_{\sigma_M}(f^2) + nC'' \varepsilon \text{Ent}_{\sigma_M}(|\nabla f|^2)$. This achieves the proof of (23) and Lemma 4.1. □

Acknowledgements

The author would like to warmly acknowledge Prof. Michel Ledoux for helpful discussions and encouraging comments, and Doct. Ivan Gentil for some discussions at the beginning of this work.

References

[ABC+00] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer, Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses, vol. 10, Société Mathématique de France, Paris, 2000.

[BH99] T. Bodineau and B. Helffer, The log-Sobolev inequality for unbounded spin systems, J. Funct. Anal. 166 (1999), no. 1, 168–178.

[Cap01] P. Caputo, A remark on spectral gap and logarithmic sobolev inequalities for conservative spin systems, Preprint (2001) archived as mp_arc 01-71.

[Cap02] P. Caputo, Uniform Poincaré inequalities for unbounded conservative spin systems: The non-interacting case, Preprint (2002) archived as mp_arc 02-46.

[He98] B. Helffer, Remarks on decay of correlations and Witten Laplacians, Brascamp-Lieb inequalities and semiclassical limit, J. Funct. Anal., 155 (1998), no. 2, 571–586.

[He99] B. Helffer, Remarks on decay of correlations and Witten Laplacians. II. Analysis of the dependence on the interaction, Rev. Math. Phys., 11 (1999), no. 3, 321–336.

[He99-2] B. Helffer, Remarks on decay of correlations and Witten Laplacians. III. Application to logarithmic Sobolev inequalities, Ann. Inst. H. Poincar Probab. Statist., 35 (1999), no. 4, 483–508.

[KL99] C. Kipnis and C. Landim, Scaling limit of interacting particle systems, Grundlehren der Mathematischen Wissenschaften, vol. 320, Springer, Berlin, New-York, 1999.
M. Ledoux, *Logarithmic Sobolev inequalities for unbounded spin systems revisited*, Séminaire de Probabilités, XXXV, Springer, Berlin, 2001, pp. 167–194.

C. Landim, G. Panizo, and H. T. Yau, *Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems*. Ann. Inst. H. Poincaré PR 38 (2002), no. 5, pp. 739–777.

S. L. Lu and H.-T. Yau, *Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics*, Comm. Math. Phys. 156 (1993), no. 2, 399–433.

F. Malrieu, *Convergence to equilibrium for granular media equations and their Euler schemes*, preprint 2001, http://www.lsp.ups-tlse.fr/Fp/Malrieu/, to appear in Annals of Applied Probability.

F. Martinelli, *Lectures on Glauber dynamics for discrete spin models*, Lectures on probability theory and statistics. École d’été de probabilités de St-Flour 1997, Lecture Notes in Math., vol. 1717, Springer, Berlin, 1999, pp. 93–191.

L. Saloff-Coste, *Lectures on finite Markov chains*, Lectures on probability theory and statistics. École d’été de probabilités de St-Flour 1996, Lecture Notes in Math., vol. 1665, Springer, Berlin, 1997, pp. 301–413.

D. Stroock and B. Zegarliński, *The logarithmic Sobolev inequality for continuous spin systems on a lattice*, J. Funct. Anal. 104 (1992), no. 2, 299–326.

E-mail: mailto:chafai@math.ups-tlse.fr
URL: http://www.lsp.ups-tlse.fr/Chafai/
Postal Address: Laboratoire de Statistique et Probabilités, U.M.R. C.N.R.S. C5583, Département de Mathématiques, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France.

Keywords: Interacting particle systems, spectral gap, Poincaré inequality, Log-Sobolev inequality, Conservative spin systems, Continuous spin systems, Ginzburg-Landau process on a lattice, Glauber Dynamics, Kawasaki Dynamics, Mean-field models, Exchangeable measures.

Subj. Class. MSC-2000: 60K35 Interacting random processes, 82B44 Disordered systems, 82B20 Lattice systems, 46-99 Functional analysis, 60J60 Diffusion processes, 26D10 Inequalities involving derivatives, differential and integral operators.