Parker, R. M. A., Leckie, G., Goldstein, H., Howe, L. D., Heron, J., Hughes, A. D., Phillippo, D. M., & Tilling, K. (2020). Joint modelling of individual trajectories, within-individual variability and a later outcome: systolic blood pressure through childhood and left ventricular mass in early adulthood. American Journal of Epidemiology, [kwaa224]. https://doi.org/10.1093/aje/kwaa224

Publisher's PDF, also known as Version of record
License (if available): CC BY
Link to published version (if available): 10.1093/aje/kwaa224

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Oxford University Press at https://doi.org/10.1093/aje/kwaa224. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Within-individual variability of repeatedly measured exposures might predict later outcomes (e.g., blood pressure (BP) variability (BPV) is an independent cardiovascular risk factor above and beyond mean BP). Because 2-stage methods, known to introduce bias, are typically used to investigate such associations, we introduce a joint modeling approach, examining associations of mean BP and BPV across childhood with left ventricular mass (indexed to height; LVMI) in early adulthood with data (collected 1990–2011) from the UK Avon Longitudinal Study of Parents and Children cohort. Using multilevel models, we allowed BPV to vary between individuals (a “random effect”) as well as to depend on covariates (allowing for heteroskedasticity). We further distinguished within-clinic variability (“measurement error”) from visit-to-visit BPV. BPV was predicted to be greater at older ages, at higher body weights, and in female participants and was positively correlated with mean BP. BPV had a weak positive association with LVMI (10% increase in within-individual BP variance was predicted to increase LVMI by 0.21%, 95% credible interval: −0.23, 0.69), but this association became negative (−0.78%, 95% credible interval: −2.54, 0.22) once the effect of mean BP on LVMI was adjusted for. This joint modeling approach offers a flexible method of relating repeatedly measured exposures to later outcomes.

ALSPAC; Bayesian analysis; blood pressure; children; joint model; left ventricular hypertrophy; longitudinal studies; young adult

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BP, blood pressure; BPV, blood pressure variability; CrI, credible interval; LVMI, left ventricular mass indexed to height; SBP, systolic blood pressure; SD, standard deviation.
disease over and above mean level (8). Detecting those at risk of cardiovascular disease early in life is important in order to design and administer preventive measures in a timely and targeted manner (9, 10). Mean systolic BP in childhood is positively associated with early signs of heart damage, such as left ventricular hypertrophy (11–13), and there is evidence from a US cohort of children that higher BPV—as estimated via the standard deviation (SD) of the measurements across all visits (conducted every 2–3 years) for each person—is associated with adult hypertension, independent of mean BP levels (14). However, there has been little investigation of the role of BPV on early target-organ damage, despite its potential utility as a predictive factor (15), and only limited analysis of the factors associated with childhood BPV (14, 16).

Our aim was to explore the factors associated with within-individual BPV in a UK cohort of children using multilevel analyses, and to extend these to joint models to investigate the association of both mean BP and BPV with LVMI in early adulthood. Note that, because the responses are both Gaussian, the model could also be referred to a multivariate normal response model, with heteroskedastic error.

METHODS

Participants

The participants were from the UK’s Avon Longitudinal Study of Parents and Children (ALSPAC), an ongoing, prospective longitudinal birth cohort study (17–19). Pregnant women resident in Avon, with expected dates of delivery of April 1, 1991, to December 31, 1992, were invited to take part in the study; 14,541 pregnancies, resulting in 13,988 children alive at 1 year of age, were initially enrolled, later bolstered by further eligible cases who had failed to join the study originally, increasing the number of enrolled pregnancies to 15,454, with 14,901 children alive at 1 year of age. The study website contains details of all available pregnancies to 15,454, with 14,901 children alive at 1 year, were initially enrolled, to take part in the study; 14,541 pregnancies, resulting in 13,988 children alive at 1 year of age, were included as exposures for LVMI, but height was not, because LVMI is indexed to height. All continuous covariates were centered around their grand mean prior to analysis. Weights, as measured across childhood, and LVMI were log-transformed prior to analysis.

We used a joint model to relate BPV to subsequent log(LVMI). We describe this modeling approach below, building up model complexity using an example that assumes that SBP increases linearly with age across childhood (we later relax this assumption in the ALSPAC model). Equation 1 assumes that each individual has 1 measure at each occasion, but this is relaxed in equation 2 (and in the ALSPAC model).

$y_{ij} = b_0 + b_1 t_{ij} + u_0 + u_{ij} + e_{ij}$

$e_{ij} \sim N(0, \sigma_{eij}^2), \log(\sigma_{eij}^2) = \alpha_0 + \alpha_1 t_{ij} + u_2 j$

$y_{2j} = \gamma_0 + \gamma_1 u_{0j} + \gamma_2 u_{1j} + \gamma_3 u_{2j} + u_3 j$

\[
\begin{pmatrix}
\hat{u}_{0j} \\
\hat{u}_{1j} \\
\hat{u}_{2j} \\
\hat{u}_{3j}
\end{pmatrix} \sim N\left(\begin{pmatrix}0 \\
0 \\
0 \\
0\end{pmatrix}, \begin{pmatrix}
\sigma_{u0}^2 & \sigma_{u01} & \sigma_{u02} & \sigma_{u03} \\
\sigma_{u01} & \sigma_{u1}^2 & \sigma_{u12} & \sigma_{u13} \\
\sigma_{u02} & \sigma_{u12} & \sigma_{u2}^2 & \sigma_{u23} \\
\sigma_{u03} & \sigma_{u13} & \sigma_{u23} & \sigma_{u3}^2
\end{pmatrix}\right)
\]

(1)

In equation 1, y_{ij} is the repeatedly measured exposure (SBP) measured at clinic i ($i = 1, \ldots, n_j$) for individual j ($j = 1, \ldots, J$), with the covariate t_{ij} indicating the individual’s age at that clinic. In the mean function for BP, there are individual-level random effects for the intercept (u_0j; mean BP at $t = 0$) and also for rate of change (u_1j; BP slope), with within-individual (between-clinic) error e_{ij}. In standard multilevel models, the variance of the within-individual error is assumed to be constant (homoskedastic) across all observations (as σ_e^2). Here it is allowed to depend on age (t_{ij}) and also on an individual-level random effect u_3j (with a log-link ensuring that the within-individual variance remains positive). Within-individual variability in blood pressure, log(BPV), is therefore allowed to change with age (as estimated here via α_1). The random effect u_3j allows each individual to have their own estimate of log(BPV). It is also possible to allow for coefficients of covariates within the within-individual variability function
to randomly vary across individual: for example, allowing the coefficient for age \((t_{ij})\) to randomly vary to investigate whether its association with BPV differs between people (23). The submodel for the longitudinal process is a mixed-effects location scale model (24, 25). The inclusion of the individual-level outcome \(y_{ij}\), denoting \(\log(\text{LVMI})\) measured at approximately 17.7 years for individual \(j = 1, \ldots, J\), results in a joint model, with shared random effects: here via the inclusion of mean BP, BP slope, and \(\log(\text{BPV})\) as exposures in the linear model for the mean of \(\log(\text{LVMI})\).

The model above has 2 levels, and assumes that there is just 1 within-clinic error in the repeatedly measured exposure, \(y_{ij}\), for individual \(i = 1, \ldots, I_j\), for clinic \(i = 1, \ldots, I\) (2), and assumes that BPV had a linear association with age. We assumed that BPV had a linear association with age.

In equation 2, \(y_{ijhj}\) denotes SBP as measured at (within-clinic) occasion \(h (h = 1, \ldots, n_{ij})\) for clinic \(i (i = 1, \ldots, I_j)\), for individual \(j (j = 1, \ldots, J)\). \(s_{hij}\) refers to the residual within-clinic error in the repeatedly measured exposure, assumed to have constant variance \(\sigma^2_s\). This within-clinic measurement error, which we assume is not related to \(\log(\text{LVMI}) (y_{ij})\), will incorporate both systematic (e.g., white coat effect/habituation) and random error.

Following previous work modeling SBP across these ALSPAC clinics, we allowed for a nonlinear relationship between age and mean SBP by fitting a linear spline with a knot point at 12 years (26, 27). The spline variables were derived as follows (where \(t_{ij} = \text{age in years}\)) (28):

\[
\begin{align*}
\gamma_{ij} &= \beta_0 + \beta_1 t_{ij} + u_{0j} + u_{1j} t_{ij} + e_{ij} + e_{hij} \\
e_{ij} &\sim N(0, \sigma^2_s), \quad \log(\sigma^2_s) = \alpha_0 + \alpha_1 t_{ij} + u_{2j} \\
e_{hij} &\sim N(0, \sigma^2_e) \\
y_{ij} &= \gamma_{0j} + \gamma_{1j} t_{ij} + \gamma_{2j} u_{1j} + \gamma_{3j} u_{2j} + u_{3j} \\
\begin{pmatrix}
u_{0j} \\
u_{1j} \\
u_{2j} \\
u_{3j}
\end{pmatrix} &\sim N\left(\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
\sigma^2_{u0} & \sigma^2_{ud1} & \sigma^2_{ud2} & \sigma^2_{ud3} \\
\sigma^2_{ud1} & \sigma^2_{u1} & \sigma^2_{u12} & \sigma^2_{u13} \\
\sigma^2_{ud2} & \sigma^2_{u12} & \sigma^2_{u2} & \sigma^2_{u23} \\
\sigma^2_{ud3} & \sigma^2_{u13} & \sigma^2_{u23} & \sigma^2_{u3}
\end{pmatrix}\right)
\end{align*}
\tag{2}
\]

In equation 2, \(y_{ijhj}\) denotes SBP as measured at (within-clinic) occasion \(h (h = 1, \ldots, n_{ij})\) for clinic \(i (i = 1, \ldots, I_j)\), for individual \(j (j = 1, \ldots, J)\). \(s_{hij}\) refers to the residual within-clinic error in the repeatedly measured exposure, assumed to have constant variance \(\sigma^2_s\). This within-clinic measurement error, which we assume is not related to \(\log(\text{LVMI}) (y_{ij})\), will incorporate both systematic (e.g., white coat effect/habituation) and random error.

Following previous work modeling SBP across these ALSPAC clinics, we allowed for a nonlinear relationship between age and mean SBP by fitting a linear spline with a knot point at 12 years (26, 27). The spline variables were derived as follows (where \(t_{ij} = \text{age in years}\)) (28):

\[
\begin{align*}
s_{1ij} &= \begin{cases}
t_{ij} & t_{ij} \leq 12 \\
12 & t_{ij} > 12
\end{cases} \\
s_{2ij} &= \begin{cases}
0 & t_{ij} \leq 12 \\
t_{ij} - 12 & t_{ij} > 12
\end{cases}
\end{align*}
\]

These spline terms were fitted as fixed effects in the mean function for SBP. Because allowing the coefficients of these terms to randomly vary across individuals led to convergence problems in some models, a linear term for age fitted across the whole age range was fitted as a random effect. We assumed that BPV had a linear association with age.

Web Appendix 1 (available at https://academic.oup.com/aje) includes estimates from sensitivity analyses designed to 1) investigate the influence of the submodel for \(\log(\text{LVMI})\) on the random effect estimates (Web Table 1); 2) compare a parameterization modeling clinic mean BP with current models (Web Table 2); 3) check whether restricting the analysis sample to those with LVMI measures had any effect on model for change in SBP, examining possible selection bias (Web Table 3); and 4) investigate sex as the only observed covariate (Web Table 4), for comparison with published findings elsewhere (14, 16).

We used Bayesian estimation via Markov chain Monte Carlo methods in Stan (2.19.1) (29, 30), called from R (R Foundation for Statistical Computing, Vienna, Austria) (31) using the rstan package (32). See Web Appendices 2–3 for examples and further details of estimation.

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Informed consent for the use of data collected via questionnaires and clinics was obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee at the time.

RESULTS

Cohort description

Two observations at the individual level, 8 at the clinic level, and 1 at the measurement level (36 measurement-level observations in total) were identified as outliers in quantile-quantile plots of residuals from preliminary models and were removed from the data set prior to further analyses. The resulting data set comprised 1,986 individuals attending 10,556 clinic sessions with 19,360 recorded BP measurements.

Table 1 compares the participants included in the analysis with those 12,318 ALSPAC children who were not included (but were recruited in an eligible ALSPAC phase, singletons, and otherwise recorded as alive at 1 year of age). There was evidence that those included were more likely to be female and had mothers who had fewer children, were more educated, and were healthier than those not included.

Figure 1 plots mean SBP against mean age for each clinic for those included in the model, indicating sample sizes for each clinic. The mean number of clinics attended was 5.3; the numbers of clinics attended by participants were 1 \((n = 46)\), 2 \((n = 47)\), 3 \((n = 68)\), 4 \((n = 142)\), 5 \((n = 454)\), and 6 \((n = 1,229)\).

Fixed effects: age and sex

Table 2 summarizes 3-level joint analyses in which both SBP trajectory and \(\log(\text{LVMI})\) are simultaneously modeled, with age centered around the sample mean of 11.3 years (with some estimates presented as percentage change (33), as indicated; see Web Table 5 for original coefficient estimates). With just age and sex as observed covariates (model A), mean SBP was predicted to increase with age. The rate of increase was similar for boys and girls up to the age of 12 years, with mean BP predicted to increase more steeply for male participants at older ages. With regard to within-individual variance, with each year of age, BPV was predicted to increase by 15.6% (95% credible interval

Am J Epidemiol. 2021;00(00):1–11
Table 1. Comparing Characteristics of Children Later Undergoing Echocardiography, and Included in the Model, With Those Not Included in the Model, From the Avon Longitudinal Study of Parents and Children, Southwest England, 1990–2011

Characteristic	Not Included in Model (n = 12,318)	Included in Model (n = 1,986)				
	No. in Sample	%	Mean (SD)	No. in Sample	%	Mean (SD)
Sex of child						
Female	5,887	47.8		1,090	54.9	
Male	6,431	52.2		896	45.1	
Mother’s educationa,b						
CSE/none	2,226	21.7		212	11.5	
Vocational	1,048	10.2		148	8.0	
O level	3,564	34.8		618	33.4	
A level	2,227	21.7		498	27.0	
Degree	1,181	11.5		372	20.1	
Mother’s BMIa,b	9,508	22.9	(3.9)	1,723	22.9	(3.6)
No. of cigarettes smoked per day by mothera,b	9,337	2.5	(5.5)	1,710	1.3	(4.3)
Mother’s age at delivery, yearsb	11,713	27.7	(5.0)	1,895	29.5	(4.6)
Parityb	10,745	0.9	(1.0)	1,848	0.7	(0.9)
Child’s birthweight, kgb	11,564	3.4	(0.5)	1,873	3.4	(0.5)

Abbreviations: A Level, Advanced Level; BMI, body mass index; CSE, Certificate of Secondary Education; O Level, Ordinary Level; SD, standard deviation.

a Mother’s education: highest educational attainment. Mother’s BMI (weight (kg)/height (m)²): at 12 weeks’ gestation. Cigarettes smoked per day by mother: at 32 weeks’ gestation. Parity: mother’s number of previous pregnancies resulting in either a livebirth or a stillbirth.

b Sample sizes for these variables do not sum to that for the total sample due to missing values.

This predicted a modest positive association of mean SBP with mother’s age at delivery, as well as an inverse association with higher parity and highest educational qualifications (Table 2).

Random effects

Model C estimated a small negative correlation ($r = -0.09$, 95% CrI: -0.21, 0.03) between mean BP and BP slope (i.e., those with higher mean BP at 11.3 years were predicted to have a smaller increase in their mean BP across age). A large positive correlation ($r = 0.50$, 95% CrI: 0.33, 0.71) was estimated between mean BP and log(BPV) (i.e., individuals with higher mean SBP at 11.3 years also tended to have more fluctuation in their SBP). The correlation between BP slope and log(BPV) was estimated as negative and small ($r = -0.05$, 95% CrI: -0.34, 0.23) (Table 2).

The SD of the BPV random effects on the log scale was estimated to have a mean of 0.42 mm Hg (95% CrI: 0.29, 0.53). Figure 2 plots examples from this model of 3 individuals randomly drawn from the 25 with the lowest, and 3 from the 25 with the highest, estimated random effect for log(BPV), with an added constant on both the x- and y-axis to preserve anonymity, illustrating instances of individual-level
patterns of SBP measurements at each end of the observed range of estimated BPV.

Table 3 contrasts the estimates of the random effects from model C with those in which the effect of each set of random effects on log(LVMI) is examined without adjustment for the other random effects on log(LVMI), but with the remaining structure of the model otherwise remaining the same; estimates presented as percentage change (33), as indicated (see Web Tables 6–7 for full estimates, including original coefficient estimates). When mean BP is the only random effect included as a predictor of LVMI, higher mean BP is associated with higher LVMI. The same is true when the random slope and the log(BPV) random effects are alternately added as predictors of LVMI. With regard to the log(BPV) predictor, a 10% increase in BPV is predicted to increase LVMI by 0.21% (95% CrI: −0.23, 0.69). When all 3 random effects are included as predictors of LVMI, the estimated association between log(BPV) and LVMI becomes negative and larger in magnitude; specifically, a 10% increase in BPV is estimated to be associated with a decrease in LVMI by −0.78% (95% CrI: −2.54, 0.22). This model also estimated a positive association of mean BP with LVMI (a 1-mm-Hg increase in BP at the sample mean age was predicted to increase LVMI by 0.59%, 95% CrI: 0.12, 1.37) and of change in mean BP with LVMI (a 1-mm-Hg increase in the slope was predicted to increase LVMI by mean = 3.58%, 95% CrI: 0.01, 7.92).

Sensitivity analyses

As Web Appendix 1 further discusses, a range of sensitivity analyses yielded substantively similar estimates to the models presented here.

DISCUSSION

Using data from a prospective longitudinal birth cohort study based in the United Kingdom, we used a joint modeling approach to examine the factors associated with visit-to-visit BPV across childhood and the association of both mean BP and BPV with an established biomarker of target organ damage, LVMI, in early adulthood. BPV was estimated to be larger (i.e., individuals’ SBP was estimated to fluctuate more greatly) at older ages, in girls, and at greater body weights. BPV also had a large, positive correlation with mean BP (at the sample mean age of 11.3 years) but only a very small correlation with the rate of change in BP (slope) across age. In a model that did not adjust for the effect of mean BP and its slope on LVMI, BPV was estimated to have a weak positive association with LVMI. When mean BP and its slope were also included as covariates, however, the direction of association between BPV and LVMI changed and the magnitude of the estimate increased. These models further estimated a positive association of mean BP with LVMI and of change in mean BP with LVMI.

While we are not aware of other studies of subjects in this age range that have reported on the effect of weight and height on BPV, the effect of age, sex, and race have been examined. Investigating BPV in 4- to 18-year-old children in Massachusetts, Rosner et al. (16) fitted variance components models to BP measurements taken within and across visits (up to a maximum of 16 visits over 4 years) and subsequently examined the effect of age, sex, and BP level on these 2 variance components in 3-way analyses of variance. They found “no meaningful effects” of these covariates on variability of SBP (children with higher BP level had significantly more within-individual variability than those with lower BP, but this difference was judged small; correlation coefficient not reported). More recently, in an analysis of the Bogalusa Heart Study in the United States, Chen et al. (14) measured visit-to-visit BPV in children aged 4–19 years by taking the SD of 4–8 measurements of clinic mean SBP from visits scheduled every 2–3 years. Boys were estimated to have significantly higher SD(SBP) than girls, and SD(SBP) was estimated to be significantly greater for Blacks than for Whites. Our supplementary analyses (Web Table 4) also indicated that girls were estimated to have lower BPV than boys but not once the effect of time-varying covariates were adjusted for. In addition, and in keeping with our findings, Chen et al. (14) found a positive correlation (r = 0.15) between mean childhood BP level and SD(SBP). Such a positive correlation has been characterized in studies of adults, too (8, 34).

While several studies have found a positive relationship between adult BPV, independent of mean BP, and later cardiovascular events such as stroke (8) and all-cause mortality (34), evidence for the relationship between BPV and target organ damage (as indicated by left ventricular hypertrophy, for example) is more equivocal (35, 36). A recent review described contrasting results with regard to the association of visit-to-visit BPV and cardiovascular outcomes, suggesting that differences between (adult) study populations, such as underlying cardiovascular risk, might be an important determinant of such heterogeneous findings (7).
Table 2. Estimates From Joint Models With Shared Random Effects, Analyzing Systolic Blood Pressure and Log(Left Ventricular Mass Indexed to Height) as Outcomes, Presenting the Posterior Parameter Estimates of the Regression Coefficients, Avon Longitudinal Study of Parents and Children, Southwest England, 1990–2011

Parameter	Model A		Model B		Model C	
Mean SBP: fixed effects						
Intercept	107.95	107.50, 108.40	107.93	107.52, 108.34	108.23	107.29, 109.16
≤12 years	1.71	1.58, 1.85	-0.55	-0.81, -0.30	-0.56	-0.83, -0.30
>12 years	6.00	5.80, 6.21	3.83	3.51, 4.16	3.83	3.49, 4.18
Female	-0.43	-1.02, 0.19	-0.40	-0.96, 0.16	-0.22	-0.81, 0.36
Female × ≤12 years	0.07	-0.11, 0.25	-0.15	-0.33, 0.03	-0.17	-0.36, 0.01
Female × >12 years	-1.99	-2.28, -1.71	-1.26	-1.57, -0.95	-1.25	-1.58, -0.92
Log(weight, kg)	17.01	15.39, 18.64	16.56	14.84, 18.26	16.56	14.84, 18.26
Height, cm	0.04	0.00, 0.09	0.06	0.00, 0.11	0.06	0.00, 0.11
Maternal characteristics						
Age at delivery, years			0.01	-0.06, 0.09	0.01	-0.06, 0.09
Parity			-0.17	-0.50, 0.17	-0.17	-0.50, 0.17
Vocational			-0.04	-1.36, 1.30	-0.04	-1.36, 1.30
O Level			0.05	-0.95, 1.03	0.05	-0.95, 1.03
A Level			-0.64	-1.70, 0.40	-0.64	-1.70, 0.40
Degree			-1.39	-2.50, -0.27	-1.39	-2.50, -0.27
Individual-level random effects for SBP						
SD(mean BP)	6.12	5.88, 6.37	5.37	5.14, 5.60	5.39	5.16, 5.63
SD(BP slope)	0.66	0.55, 0.75	0.64	0.54, 0.73	0.65	0.54, 0.74
SD(log(BPV))	0.41	0.29, 0.51	0.39	0.26, 0.50	0.42	0.29, 0.53
Correlation (mean BP, BP slope)	-0.09	-0.20, 0.02	-0.11	-0.23, 0.00	-0.09	-0.21, 0.03
Correlation (mean BP, log(BPV))	0.52	0.36, 0.71	0.49	0.31, 0.72	0.50	0.33, 0.71
Correlation (BP slope, log(BPV))	-0.06	-0.34, 0.22	-0.04	-0.33, 0.26	-0.05	-0.34, 0.23
BPV: fixed effects						
Intercept	3.22	3.12, 3.32	3.15	3.04, 3.25	3.13	3.02, 3.23
Age, years	15.61	12.87, 18.39	11.32	5.80, 16.98	10.80	5.05, 16.77
Female sex	16.84	4.53, 30.40	17.64	4.66, 31.59	20.06	5.99, 35.46
Log(weight, kg)	5.77	2.10, 9.55	5.24	1.42, 9.20	5.24	1.42, 9.20
Height, cm	-0.37	-1.40, 0.70	-0.24	-1.36, 0.89	-0.24	-1.36, 0.89
Residual within-clinic SD for SBP	5.62	5.54, 5.70	5.63	5.54, 5.71	5.61	5.53, 5.70

With regard to the relationship between childhood BPV and adult biomarkers, Chen et al. (14) found childhood visit-to-visit SD (SBP) to be significantly associated with adult hypertension. This remained the case after adjusting for mean childhood SBP, although elevated childhood SBP levels were found to be more predictive of adult hypertension than childhood BPV. We have previously demonstrated that, in 17-year-olds, higher body mass index is causally related to higher LVMI, suggesting that there is meaningful variation in cardiac structure measurements in early adulthood that is likely to track across life and relate to later life cardiovascular health (37). Nevertheless, in the current study only a weak positive association between childhood BPV and LVMI in early adulthood was found, and this did not persist once childhood mean BP had been adjusted for. In fact, within strata of mean childhood SBP, higher BPV was associated with smaller values of LVMI. Whether it is appropriate to adjust for mean BP when assessing the association of BPV with LVMI somewhat depends on whether one has a causal model in mind that conceptualizes mean BP as causing
both BPV and LVMI (in which case, adjustment for mean BP as a confounder might be appropriate) or whether no causal relationship is proposed between mean BP and BPV (i.e., other, unknown, factors cause mean BP and BPV, and each in turn has a causal relationship with later LVMI), in which case it might not be appropriate to adjust for mean BP. If the purpose is prediction, on the hand, then by simultaneously estimating the effect of mean BP, its slope, and BPV on the later outcome, we allow for a more complete appraisal of the association of repeatedly measured BP with LVMI. Note that whether mean BP is adjusted for or not, the association of BPV with LVMI was estimated to be small, with appreciable uncertainty as to whether it was nonzero, or indeed of the opposite sign.

Our results also indicated that mean BP (at the sample mean age) and change in mean BP were both positively associated with LVMI in early adulthood. Analyses of the Georgia Stress and Heart Study and the Bogalusa Heart Study have also found mean BP in childhood, and its slope from childhood to young adulthood and in adolescence, to be positively associated with left ventricular hypertrophy in adulthood (38–40).

If we assume that selection into our analysis sample depends only on measured variables such as sex of child and education and age of mother, then their inclusion as covariates will result in unbiased models. If, having conditioned on such covariates, inclusion in our analysis sample is related to the exposure (SBP) and outcome (LVMI), then there will be bias. A priori, this seems relatively unlikely, however (e.g., such biomarkers are not readily observable in a manner that would typically influence one’s participation in a study). While there were fewer observations for the maternal (compared with child-based) characteristics, the proportion of missing data was relatively modest (8%–9%), and estimates for parameters common to each model were substantively similar.

Selection bias could also arise from people missing values for specific measures. Again, this will only cause bias if the probability of the measure being missing depends on its (unobserved) value, having conditioned on the observed values of the exposure, outcome, and covariates included in the models. This again seems relatively unlikely, however, given that participants are not typically privy to such biomarkers in a manner that might influence attendance.

The general class of model we have used could be employed to examine within-person variability in any repeatedly measured exposure, relating it to later individual-level outcomes of interest within a joint model (e.g., the association between glycemic variability and mortality (41), variability in gait and risk of falling (42), and variation in prostate specific antigen and prostate volume (43)). We have focused on within-individual variability, but interest might

Table 2. Continued

Parameter	Model A^a	Model B^b	Model C^c			
	Mean	95% CrI	Mean	95% CrI	Mean	95% CrI
Mean for log(LVMI): fixed effects						
Intercept	3.36	3.35, 3.37	3.33	3.31, 3.34	3.32	3.31, 3.33
Age, years^d	–0.07	–2.85, 2.79	–1.65	–4.2, 0.94	–1.94	–4.61, 0.79
Female^e	–11.00	–12.61, –9.36	–5.42	–7.08, –3.73	–4.95	–6.72, –3.17
Weight, kg^f	0.69	0.62, 0.76	0.69	0.62, 0.76	0.70	0.63, 0.78
mean BP^{d,e}	0.85	0.44, 1.44	0.57	0.09, 1.49	0.59	0.12, 1.37
BP slope^{d,e}	4.38	0.88, 8.61	3.63	0.00, 8.35	3.58	0.01, 7.92
Log(BPV)^{d,f}	–0.61	–2.05, 0.40	–0.82	–3.08, 0.29	–0.78	–2.54, 0.22
Residual SD for log(LVMI)	0.20	0.19, 0.21	0.19	0.17, 0.19	0.19	0.18, 0.19

Abbreviations: A Level, Advanced Level; BP, blood pressure; BPV, (within-individual) blood pressure variability; CrI, credible interval; LVMI, left ventricular mass indexed to height; O Level, Ordinary Level; SBP, systolic blood pressure; SD, standard deviation.

^a Model A: adjusted for age and sex (1,986 individuals; 10,556 clinic visits; 19,360 BP measurements); model B, model A with the addition of weight and height (1,986 individuals; 10,556 clinic visits; 19,360 BP measurements); model C: model B with the addition of maternal characteristics (1,813 individuals; 9,693 clinic visits; 17,777 BP measurements).

^b Linear spline terms, corresponding to change per year for ages <12 years and for ages >12 years.

^c Mother’s highest education qualification (referent: Certificate of Secondary Education/none).

^d Mean BP denotes the individual-level, between-clinic, random effects for the intercept (at mean age 11.3 years) in the mean function for SBP; BP slope denotes the individual-level, between-clinic, random effects for age in the mean function for SBP; log(BPV) denotes the individual-level, between-clinic, random effects on the log-scale of the within-individual variance (i.e., these are the equivalent of u_0, u_1, and u_2 in equation 2, respectively).

^e Estimates presented as percentage change in BPV/LVMI (on natural scale) per 1-unit increase in covariate, calculated (using posterior samples) as $(\exp(\text{coefficient}) - 1) \times 100$; see Web Table 5 for original coefficient estimates.

^f Estimates presented as percentage change in BPV/LVMI (on natural scale) per 10% increase in covariate (on natural scale), calculated (using posterior samples) as $((1.10^{\text{coefficient}} - 1) \times 100$; see Web Table 5 for original coefficient estimates.
lie in characterizing within-clinic (interindividual) variability instead. Also, individual-level outcomes (i.e., y_{2j}, in equations 1 and 2) that are binary, or time-to-event data (3), etc., can be modeled (with appropriate changes to distributional assumptions). Furthermore, the repeatedly measured exposure might instead be intensively sampled, with many observations per person (24), adjusting for autocorrelation, if appropriate.

Table 3. Posterior Parameter Estimates From Joint Models in Which Mean Blood Pressure, Blood Pressure Slope, and Log(Blood Pressure Variability) Are Included as Exposures for Log(Left Ventricular Mass Indexed to Height)\(^a\), From the Avon Longitudinal Study of Parents and Children, Southwest England, 1990–2011

Parameter	Mean BP Only	BP Slope Only	Log(BPV) Only	Mean BP, BP Slope, Log(BPV) All Included		
	Mean, %	95% CrI	Mean, %	95% CrI	Mean, %	95% CrI
Mean BP\(^b,c\)	0.19	0.00, 0.39	0.59	0.12, 1.37	0.21	0.23, 0.69
BP slope\(^b,c\)	2.40	-0.51, 5.56	3.58	0.01, 7.92	-0.78	-2.54, 0.22
Log(BPV)\(^b,d\)	0.21	-0.23, 0.69	-0.78	-2.54, 0.22		

Abbreviations: BP, blood pressure; BPV, blood pressure variability; CrI, credible interval; LVMI, left ventricular mass indexed to height.

\(^a\) These are selected parameter estimates from these models; see Web Tables 6–7 for full models.

\(^b\) Mean BP denotes the individual-level, between-clinic, random effects for the intercept (at mean age 11.3 years) in the mean function for SBP; BP slope denotes the individual-level, between-clinic, random effects for age in the mean function for SBP; log(BPV) denotes the individual-level, between-clinic, random effects on the log-scale of the within-individual variance (i.e., these are the equivalent of u_0, u_1, and u_2 in equation 2, respectively).

\(^c\) Estimates presented as percentage change in LVMI (on natural scale) per 1-unit change in covariate, calculated (using posterior samples) as (exp(coefficient) $- 1$) \times 100; see Web Table 7 for original coefficient estimates.

\(^d\) Estimates presented as percentage change in LVMI (on natural scale) per 10% increase in covariate (on natural scale), calculated (using posterior samples) as ((1.10$^{\text{exponent}}$ $- 1$) \times 100; see Web Table 7 for original coefficient estimates.
While fitting joint models involves greater computational burden and complexity compared with a 2-stage approach, the latter is known to introduce bias (3). Note, though, that a recent methodological development of the 2-stage approach preserves uncertainty in estimates (44). A 2-stage approach might appear more logical in cases where it is not feasible for the later outcome to influence the earlier longitudinal process, due to fears over allowing the future to cause the past (44, 45). The joint modeling framework, however, uses future measurements to improve the model for the past measurements, rather than to cause the past measurements. This is the case in a wide range of model types and applications (5, 46, 47), such as a growth curve model, where adding later waves revises estimates of true values for earlier occasions.

We have supplied example code to demonstrate how these models can be fitted using a Bayesian framework, with endeavors to fit such models being actively extended to other software packages (48). Joint models have recently been employed to examine within-individual variability (3). We further extend these by investigating the association of time-varying covariates with within-individual variability, allowing us to examine residual BPV unexplained by known factors, and also by distinguishing between-clinic from-within-clinic variability. As such, the joint modeling approach we have introduced offers a very flexible method of exploring the factors associated with within-individual variability.

ACKNOWLEDGMENTS

Author affiliations: Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom (Richard M. A. Parker, Laura D. Howe, Jon Heron, Kate Tilling); Bristol Medical School (Population Health Sciences), University of Bristol, Bristol, United Kingdom (Richard M. A. Parker, Laura D. Howe, Jon Heron, David M. Phillips, Kate Tilling); Centre for Multilevel Modelling, School of Education, University of Bristol, Bristol, United Kingdom (George Leckie, Harvey Goldstein); and Medical Research Council Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom (Alun D. Hughes).

This work was supported by: the UK Medical Research Council (MRC) (grant MR/N027485/1, awarded to K.T. and funding R.M.A.P.); the MRC and the University of Bristol support the MRC Integrative Epidemiology Unit (grant MC_UU_00011/3); A.D.H. received support from the Wellcome Trust (grant 086676/7/08/Z) and the British Heart Foundation (grant PG/06/145 and CS/15/6/31468) and works in a unit that receives support from the MRC (Programme Code MC_UU_12019/1); D.M.P. was funded by the MRC (grant MR/P015298/1); the UK Medical Research Council and Wellcome (grant 102215/2/13/2) and the University of Bristol provide core support for Avon Longitudinal Study of Parents and Children. This publication is the work of the authors and they will serve as guarantors for the contents of this paper.

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole Avon Longitudinal Study of Parents and Children team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses.

Conflict of interest: none declared.

REFERENCES

1. Tielmans S, Geleijnse JM, Menotti A, et al. Ten-year blood pressure trajectories, cardiovascular mortality, and life years-lost in 2 extinction cohorts: the Minnesota Business and Professional Men Study and the Zutphen Study. J Am Heart Assoc. 2015;4(3):e001378.
2. Elliott MR, Sammel MD, Faul J. Associations between variability of risk factors and health outcomes in longitudinal studies. Stat Med. 2012;31(23):2745–2756.
3. Barrett JK, Huille R, Parker RMA, et al. Estimating the association between blood pressure variability and cardiovascular disease: an application using the ARIC study. Stat Med. 2019;38(10):1855–1868.
4. Tu YK, Tilling K, Sterne JAC, et al. A critical evaluation of statistical approaches to examining the role of growth trajectories in the developmental origins of health and disease. Int J Epidemiol. 2013;42(5):1327–1339.
5. Sayers A, Heron J, Smith A, et al. Joint modelling compared with two stage methods for analysing longitudinal data and prospective outcomes: a simulation study of childhood growth and BP. Stat Methods Med Res. 2017;26(1):437–452.
6. Sweeting MJ, Thompson SG. Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biom J. 2011;53(5):750–763.
7. Dolan E, O’Brien E. Is it daily, monthly, or yearly blood pressure variability that enhances cardiovascular risk? Curr Cardiol Rep. 2015;17(11):93.
8. Rothwell PM, Howard SC, Dolan E, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375(9718):895–905.
9. Berenson GS, Wattigney WA, Tracy RE, et al. Atherosclerosis of the aorta and coronary-arteries and cardiovascular risk-factors in persons aged 6 to 30 years and studied at necropsy (the Bogalusa Heart Study). Am J Cardiol. 1992;70(9):851–858.
10. Berenson GS. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease: the Bogalusa Heart Study. Am J Cardiol. 2002;90(10C):3L–7L.
11. Laird WP, Fixler DE. Left-ventricular hypertrophy in adolescents with elevated blood-pressure—assessment by chest roentgenography, electrocardiography, and echocardiography. Pediatrics. 1981;67(2):255–259.
12. Malcolm DD, Burns TL, Mahoney LT, et al. Factors affecting left-ventricular mass in childhood—the Muscatine study. Pediatrics. 1993;92(5):703–709.
24. Hedeker D, Mermelstein RJ, Demirtas H. An application of a mixed-effects location scale model for analysis of ecological momentary assessment (EMA) data. *Multivar Behav Res* 2011;46(1):77–82.

23. Rast P, Hofer SM, Sparks C. Modeling individual differences in carotid intima-media thickness between UK children of Black African-Caribbean and White European origin. *Stroke*. 2012;43(7):1747–1754.

22. Timpka S, Macdonald-Wallis C, Tilling K, et al. Cohort profile: The Avon Longitudinal Study of Parents and Children: ALSpac mothers cohort. *Int J Epidemiol*. 2013;42(1):97–110.

21. Timpka S, Hughes AD, Chaturvedi N, et al. Birth weight and trajectories of measures of cardiovascular health during childhood and adolescence: findings from ‘Children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children. *Int J Epidemiol*. 2013;42(1):111–127.

20. Avon Longitudinal Study of Parents and Children (ALSPAC). *Int J Epidemiol*. 1997;126(6):1115–1125.

19. Northstone K, Lewcock M, Groom A, et al. The Avon Longitudinal Study of Parents and Children (ALSPAC): an updated on the enrolled sample of index children in 2019. *Wellcome Open Res*. 2019;4:51.

18. Boyd A, Golding J, Macleod J, et al. Hypertensive disorders of pregnancy and offspring cardiac structure and function in adolescence. *J Am Heart Assoc*. 2016;5(11):e003906.

17. Rast P, Hofer SM, Sparks C. Modeling individual differences in within-person variation of negative and positive affect in a mixed effects location scale model using BUGS/JAGS. *Multivar Behav Res*. 2012;47(2):177–200.

16. Rosner B, Cook NR, Evans DA, et al. Reproducibility and predictive values of routine blood-pressure measurements in children—comparison with adult values and implications for screening-children for elevated blood-pressure. *Am J Epidemiol*. 1987;126(6):1115–1125.

15. Whincup PH, Nightingale CM, Owen CG, et al. Ethnic differences in carotid intima-media thickness between UK children of Black African-Caribbean and White European origin. *Circulation*. 1995;92(11):3249–3254.

14. Chen W, Srinivasan SR, Ruan LT, et al. Adult hypertension is associated with blood pressure variability in childhood in Blacks and Whites: the Bogalusa Heart Study. *Am J Hypertens*. 2011;24(1):77–82.

13. Daniels SR, Kimball TR, Morrison JA, et al. Effect of lean body-mass, fat mass, blood-pressure, and sexual-maturation on left-ventricular mass in children and adolescents—statistical, biological, and clinical-significance. *Circulation*. 1995;92(11):3249–3254.

12. Parker et al. *Int J Epidemiol*. 1995;92(11):3249–3254.

11. Avon Longitudinal Study of Parents and Children (ALSPAC). *Int J Epidemiol*. 2013;42(1):97–110.

10. Timpka S, Hughes AD, Chaturvedi N, et al. Birth weight and trajectories of measures of cardiovascular health during childhood and adolescence: a prospective cohort study. *Atherosclerosis*. 2018;278:190–196.

9. Howe LD, Tilling K, Maticjasevich A, et al. Linear spline multilevel models for summarising childhood growth trajectories: a guide to their application using examples from five birth cohorts. *Stat Methods Med Res*. 2016;25(5):1854–1874.

8. Stan Development Team. Stan statistical software, release 2.19.1. https://mc-stan.org/users/documentation/. Accessed January 8, 2020.

7. Carpenter B, Gelman A, Hoffman MD, et al. Stan: a probabilistic programming language. *J Stat Softw*. 2017;76(1):1–29.

6. R Core Team. *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing; 2018.

5. Stan Development Team. RStan: the R interface to Stan, release 2.18.2. https://mc-stan.org/rstan/. Accessed January 8, 2020.

4. UCLA: Statistical Consulting Group. FAQ: How do I interpret a regression model when some variables are log transformed? https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqhow-do-i-interpret-a-regression-model-when-some-variables-are-log-transformed/. Accessed February 6, 2020.

3. Muntner P, Shimbo D, Tonelli M, et al. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population findings from NHANES III, 1988 to 1994. *Hypertension*. 2011;57(2):160–166.

2. Veloudi P, Blizzard CL, Head GA, et al. Blood pressure variability predicts cardiovascular events independently of traditional cardiovascular risk factors and target organ damage: a LIFE substudy. *J Hypertens*. 2015;33(12):2422–2430.

1. Hao G, Wang XL, Treiber FA, et al. Blood pressure trajectories from childhood to young adulthood associated with cardiovascular risk factors from the 23-year longitudinal Georgia Stress and Heart Study. *Hypertension*. 2015;66(3):435–442.
44. Dzubur E, Ponnada A, Nordgren R, et al. MixWILD: a program for examining the effects of variance and slope of time-varying variables in intensive longitudinal data. *Behav Res Methods*. 2020;52(4):1403–1427.

45. Murawska M, Rizopoulos D, Lesaffre E. A two-stage joint model for nonlinear longitudinal response and a time-to-event with application in transplantation studies. *J Probab Stat*. 2012;2012:194194.

46. Steele F. Multilevel models for longitudinal data. *J R Stat Soc Ser A Stat Soc*. 2008;171:5–19.

47. Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. *Stat Sin*. 2004;14(3):809–834.

48. Crowther MJ. *merlin: Mixed Effects Regression for Linear and Non-linear Models (User-Written Stata Program), release 1.2.0*. Boston College, MA: Statistical Software Components; 2019.