G\textsubscript{i}- and G\textsubscript{s}-coupled GPCRs show different modes of G-protein binding

Ned Van Epsa, Christian Altenbachb,c, Lydia N. Caroa,1, Naomi R. Latorracad,e,f,g, Scott A. Hollingsworthd,e,f,g, Ron O. Drord,e,f,g, Oliver P. Ernsth,2, and Wayne L. Hubbellb,c,2

aDepartment of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; bStein Eye Institute, University of California, Los Angeles, CA 90095; cDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; dDepartment of Computer Science, Stanford University, Stanford, CA 94305; eDepartment of Structural Biology, Stanford University, Stanford, CA 94305; fDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305; gInstitute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305; and hDepartment of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada

Contributed by Wayne L. Hubbell, January 17, 2018 (sent for review December 20, 2017; reviewed by David S. Cafiso and Thomas P. Sakmar)

More than two decades ago, the activation mechanism for the membrane-bound photoreceptor and prototypical G protein-coupled receptor (GPCR) rhodopsin was uncovered. Upon light-induced changes in ligand-receptor interaction, movement of specific transmembrane helices within the receptor opens a crevice at the cytoplasmic surface, allowing for coupling of heterotrimeric guanine nucleotide-binding proteins (G proteins). The general features of this activation mechanism are conserved across the GPCR superfamily. Nevertheless, GPCRs have selectivity for distinct G-protein family members, but the mechanism of selectivity remains elusive. Structures of GPCRs in complex with the stimulatory G protein, G\textsubscript{s}, and an accessory nanobody to stabilize the complex have been reported, providing information on the intermolecular interactions. However, to reveal the structural selectivity filters, it will be necessary to determine GPCR–G protein structures involving other G-protein subtypes. In addition, it is important to obtain structures in the absence of a nanobody that may influence the structure. Here, we present a model for a rhodopsin–G protein complex derived from intermolecular distance constraints between the activated receptor and the inhibitory G protein, G\textsubscript{i}, using electron paramagnetic resonance spectroscopy and spin-labeling methodologies. Molecular dynamics simulations demonstrated the overall stability of the modeled complex. In the rhodopsin–G\textsubscript{i} complex, G\textsubscript{i} engages rhodopsin in a manner distinct from previous GPCR–G\textsubscript{s} structures, providing insight into specificity determinants.

rhodopsin | GPCR | G protein | pulsed dipolar spectroscopy

Low-light vision requires photon absorption by the G protein-coupled receptor (GPCR) rhodopsin and subsequent catalytic activation of heterotrimeric G proteins (G\textsubscript{a,b,g}) by GDP–GTP nucleotide exchange. As the photoreceptor of rod cells, rhodopsin was the first GPCR to be functionally and structurally characterized, and serves as a model for class A GPCRs. It was discovered by Franz Boll (1), subsequently studied in the late 19th century by Wilhelm Kühne (2), and has become since then a breakthrough in GPCR structural biology (10–12), cryoelectron microscopy (13, 14), and spectroscopic techniques (15, 16). However, despite this wealth of information, questions remain regarding the structural origin of GPCR specificity for cognate G proteins (e.g., G\textsubscript{s}, G\textsubscript{i}, G\textsubscript{12α}, G\textsubscript{q}). For example, are all complexes between G proteins and GPCRs homologous at the level of the backbone fold, differing only by specific side-chain interactions, or is there a specificity code in the receptor involving the allowed magnitude of displacement of particular helices? Of considerable interest are GPCRs which couple to multiple G-protein subtypes and can sample diverse conformational landscapes.

In the present study, SDSL and double electron–electron resonance (DEER) spectroscopy (17) are employed to map distances between pairs of nitroxide spin labels, one in activated rhodopsin and the other in the Ras-like domain of the inhibitory G protein, G\textsubscript{i}. The data provide structural constraints for modeling the nucleotide-free rhodopsin–G\textsubscript{i} complex in a native-like lipid environment, free from the confines of a rigid crystalline lattice and in the absence of accessory proteins used in crystallization. In the photoreceptor cell, rhodopsin couples to transducin, G\textsubscript{i}, which binds to the G\textsubscript{i} subfamily. We use the close homology between G\textsubscript{s} and G\textsubscript{i} to gain insight into coupling of G\textsubscript{s}-selective GPCRs.

Results

G\textsubscript{i} binding to rhodopsin in lipid nanodiscs was recently shown by SDSL DEER studies to select a TM6 conformation which is similar to active metasthodopsin II crystal structures but is apparently dynamic in nature (18, 19). Hence, G\textsubscript{i} does not induce a new conformation in rhodopsin with respect to these helices but selects a

Significance

Activation of G protein-coupled receptors (GPCRs) initiates conformational shifts that trigger interaction with a specific G-protein subtype from a structurally homologous set. A major unsolved problem is the mechanism by which this selectivity is achieved. Structures of GPCR–G protein complexes so far fail to reveal the origin of selectivity because they all involve one G-protein subtype (G\textsubscript{s}). In this work, we report a structural model of the activated GPCR rhodopsin in complex with another G-protein subtype (G\textsubscript{i}) derived from intermolecular distance mapping with DEER–EPR and refinement with modeling. Comparison of the model with structures of complexes involving G\textsubscript{s} reveals distinct GPCR–G protein-binding modes, the differences of which suggest key features of the structural selectivity filter.

Author contributions: N.V.E., O.P.E., and W.L.H. designed research; N.V.E., L.N.C., N.R.L., and S.A.H. performed research; N.V.E., C.A., N.R.L., S.A.H., R.O.D., O.P.E., and W.L.H. analyzed data; and N.V.E., C.A., N.R.L., R.O.D., O.P.E., and W.L.H. wrote the paper.

Reviews: D.S.C., University of Virginia; and T.P.S., Rockefeller University.

The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Published online February 20, 2018.

www.pnas.org/cgi/doi/10.1073/pnas.1721896115

PNAS | March 6, 2018 | vol. 115 | no. 10 | 2383–2388
preexisting conformational state of the receptor. For the purpose of modeling based on sparse distance data, it is assumed that rhodopsin is in the metarhodopsin II crystallographic conformation.

Selection of Sites for Distance Mapping. Fig. 1 shows sites on the Ras-like domain of the G protein and on rhodopsin that were mutated to single cysteines to introduce the nitroxide side chain designated R1 (20) for DEER distance measurements between the molecules in the complex. Dotted lines in the figure indicate intermolecular distances that were measured between spin pairs within the complex. Rhodopsin sites (residues 74, 308, 225, and 235) were selected based upon previous continuous-wave (CW) EPR studies (5, 21). The helical domain of the Gαi-subunit (residues 60 to 182), which acts as a lid covering the GDP-binding pocket, was omitted from Fig. 1 for clarity; no intermolecular distances involving the helical domain were collected in this study. However, previous EPR studies showed that there is disorder in the position of the helical domain with respect to the Ras-like domain in the complex (22, 23).

Sites for introduction of R1 in the Ras-like domain of Gαi were a subset of those from previous CW EPR studies (22–25), and include residue 21 in the Gα N-terminal helix that contacts the Gβ-subunit and residue 333 in the C-terminal α5-helix, a key interaction element with the receptor (24). Sites 248, 276, and 305 were selected to sample other helical segments in the Ras-like domain. In each case, most residues in rhodopsin and Gαi were located on the outer, solvent-exposed surfaces of the helices, where structural perturbation due to R1 is minimal. CW EPR spectra of all labeled mutants are shown in Fig. S1. The purity of the Gαi mutants used to form the complexes was typically >95% as judged by SDS/PAGE (Fig. S2).

For the DEER measurements, spin-labeled rhodopsin mutants incorporated into lipid nanodiscs [70% 1-palmitoyl-2-oleoylsn-glycerol-3-phosphocholine (POPC), 30% 1-palmitoyl-2-oleoylsn-glycerol-3-phospho-1-serine] were mixed with spin-labeled Gαi-subunits (1:1 molar ratio of rhodopsin:Gαi:Gβ) and light-activated to initiate complex formation. Fig. 24 shows the background-corrected dipolar evolution functions (DEFs) (26) from the four-pulse DEER experiment for the 16 spin-labeled rhodopsin-Gαi pairs measured. For a random distribution of spins, the background-corrected DEF is a featureless horizontal line (Fig. S3); only when discrete spin pairs are present is the oscillatory behavior of the DEF seen in Fig. 24 obtained. Thus, the appearance of the nonzero DEF signal confirms complex formation. The distance distributions directly derived from the DEFs are shown in Fig. 2B.

Modeling of the Rhodopsin–Gαi Complex. Fig. 2 reveals that the distance distributions are multimodal and the complete distribution can span more than 20 Å in width, outside the range for the known rotamers of R1 (27). In simple proteins whose function does not involve changes in global backbone topology (such as hemoglobin), the distance distributions between R1 pairs in stable helices are much narrower, on the order of 5 Å or less (28). Thus, the widths likely reflect structural heterogeneity of the complex, and hence flexibility under physiological conditions. The molecular origin of the heterogeneity and flexibility is of great interest and will be the subject of future studies, but for the purposes of modeling the most significant complex structure the most probable distances of the distributions were used as initial global constraints. The first step of modeling assumed that the activated G protein and activated rhodopsin could be approximated as rigid bodies (at the level of the Ras-like domain). When relative rotation and translation operations could be performed to minimize differences between the most probable measured and model distances.

For modeling, the Ras-like domain of Gαi in the βγ-adrenergic receptor–Gαi complex [βγ-AR–Gαi complex; Protein Data Bank (PDB) ID code 3SN6 (12)] was used as an initial template for the Gαi backbone fold. The backbone folds of the nucleotide domains of Gαi and Gαs are essentially identical in crystal structures, with the main difference being an extended loop in Gαs preceding the α4-helix. The Ras-like domain of Gαi in the Gβi-GDP complex (residues 5 to 93 and 183 to 326 (29)) was overlaid with that of Gαi in the complex with βγ-AR. The last six amino acids in the C-terminal α5-helix of Gαi are not resolved in the 1GP2 structure (29). Therefore, the α5-helix from a different Gαi structure [PDB ID code 1AGR (residues 330 to 354) (30)] was overlaid with the corresponding helix of Gαi in the βγ-AR–Gαi complex. This construct was used as the initial template for Gαi. Finally, Gβ-subunits were taken to have the same orientation relative to the Ras-like Gαi-domain as in the heterotrimeric G-protein crystal structures [i.e., PDB ID code 1GP2 (29)], although no experimental distances were measured to confirm this orientation. The metarhodopsin II crystal structure [PDB ID code 3PXO (19)] was used as a template for the activated receptor backbone fold. These templates with modeled nitroxide R1 side chains were then docked to minimize the differences between the measured (most probable) and modeled internitroxide distances. The modeling process at this point was entirely “data-driven,” with no manual alignment steps. Details of the modeling are provided in Materials and Methods. The interspin distances in the final model and the most probable experimental values are in excellent agreement, as shown in Fig. 2B as vertical dashed lines in the distance distributions.

The DEER model was further refined as described in Materials and Methods and SI Materials and Methods. In particular, missing residues were added and hydrogen atoms included to fully model the hydrogen-bonding network, and known post-translational modifications were added. The protein was placed in a bilayer using the OPM database [Orientations of Proteins in Membranes (31)]. In the complex, the N-terminal helix of the Ras-like domain lies along the surface of the polar head groups of the lipids, as expected, with the residue C3 palmitoylation acting as an anchor on the membrane surface (32). Energy minimization steps were carried out to reduce clashes at the α5-helix–rhodopsin interface. The refined DEER model is shown in Fig. 3A (see Materials and Methods and SI Materials and Methods for details). The interspin distances in the refined model were essentially unchanged from the DEER model (Fig. 3B, Left and Fig. 3A). In addition to the DEER distance constraints, earlier CW EPR
receptor binding clearly delineate contact surfaces with the receptor (23–25, 33) (Fig. S5).

Molecular dynamics (MD) simulations of the refined model were performed to verify its stability. Three simulations, each 600 ns in length, indicate the overall stability of the rhodopsin–

\(\beta \)-complex (simulations 22 to 24 in table S1 of ref. 34; Fig. 3) and shifting slightly within the volume of each distribution shows the background-corrected dipolar evolution functions (red traces) are offset for clarity, and fits to the data are shown (black traces). (Fig. S7) The simulations relax to an overall orientation of the G\(\gamma \)-subunit and its \(\alpha \)-helix that remains fairly constant in rhodopsin–G\(i \) complex simulations, lending support to the DEER model of the rhodopsin–G\(i \) complex. Moreover, the fluctuations observed in these simulations only slightly exceed those observed in earlier simulations of the crystal structure of the \(\beta \)/G\(i \) complex (simulations 22 to 24 in table S1 of ref. 34; Fig. 3, Right), with the N-terminal helix of the G\(\alpha \)-subunit moving laterally across the membrane and the \(\alpha \)-helix of G\(\alpha \) shifting slightly within the \(\beta \)-barrel region of the Ras-like domain (Fig. 3B, Left and Fig. S4). We note that further model refinements at the receptor-binding interface might reduce the dynamic nature of individual residue–residue contacts observed in simulation. Collectively, the simulations generally support the overall orientation and conformation of the rhodopsin–G\(i \) complex.

Discussion

Comparison with Other Ternary Complexes. Besides the crystal structures of the \(\beta \)AR–G\(i \) complex (12) and the adenosine A\(_2\)A receptor in complex with an engineered “mini-G\(\alpha \)” G protein (11), the cryoelectron microscopy structures of the calcitonin receptor as well as the GLP-1 receptor both in complex with G\(i \) have been solved (13, 14). These structures all show a nearly identical receptor–G\(\alpha \) interaction on the protein backbone level (Fig. S7). Fig. 4 shows a comparison of the rhodopsin–G\(i \) model with the crystal structure of the \(\beta \)AR–G\(i \) complex (12). Only the respective Ras-like domains and receptors are shown for clarity. A difference in binding mode of G\(i \) versus G\(\alpha \) is evident. The Ras-like domain sits more upright on the receptor in the rhodopsin–G\(i \) model, and the TM5–TM6 loop of rhodopsin makes contact with the \(\beta \)6-sheet of G\(i \). This contact is absent in the \(\beta \)AR–G\(i \) crystal structure. The inclination angle of the C-terminal \(\alpha \)-helix of the Ras-like domain is also different in the two models, whereas this inclination angle is similar in the present rhodopsin–G\(i \) model and the crystal structure of metarhodopsin II in complex with a C-terminal peptide derived from G\(\alpha \) (19).

Selectivity Determinants for G-Protein Coupling. To elucidate potential roles of particular G-protein residues in receptor selectivity, residues involved in a “selectivity barcode” (35) (www.gpcrdb.org) are highlighted on the rhodopsin–G\(i \) model in Fig. S4. Most of the residues lie in the extreme C terminus of the G protein (K349, D350, C351, G352, and F354), which has been predicted to modulate G-protein-subtype selectivity (36, 37). Remarkably, in the refined model of Fig. 3A, they pack efficiently against the inside of rhodopsin’s cytoplasmic TM6 surface near the C-terminal portion of TM7. Importantly, a different insertion angle of the G-protein C-terminal helix (such as seen in the \(\beta \)AR–G\(i \) crystal structure) would yield steric clashes with TM6 of rhodopsin. Therefore, the identity of the C-terminal residues as well as the magnitude of TM6 movement, which is different from one receptor to another, will have a strong influence on receptor–G-protein specificity. Indeed, like rhodopsin, the \(\mu \)-opioid receptor displays a smaller TM6 movement in the active state than \(\beta \)AR and couples to G\(i \) (10). Receptors which can couple to multiple G-protein subtypes show interesting behaviors where the inversion of residues within TM6 can alter specificity toward G\(i \) coupling (38, 39). This suggests that TM6 flexibility in the active state may also be important along with the C-terminal G-protein sequence. Additional residues predicted to be specificity determinants are L194 and D193 in the \(\beta \)-\(\beta \)-loop of the Ras-like domain (35).

![Fig. 2. DEER distance measurements. (A) Background-corrected dipolar evolution functions (red traces) are offset for clarity, and fits to the data are shown (black traces). (B) Distance distributions for each of the rhodopsin–G protein pairs. The vertical dotted lines represent internitroxide distances from the final DEER model. The gray bar on the x axis of each distribution shows the upper distance limit for reliable determination given the DEF collection times.

studies provide support for the model in Fig. S4 (23–25, 33). For example, CW EPR line shape changes of spin-labeled G\(\alpha \) upon
(Fig. 5A). Residues in this loop are in proximity to the TM3–TM4 loop of GPCRs. Local interactions in this region may yield additional contributions to selectivity. Indeed, V217 in the β2–β3 loop of Gαi (analogous to L194 in Gαi) makes contact with the TM3–TM4 loop of the receptor (residue F139) in the β2AR–Gαi structure (12). Mutation of F139 to alanine disrupted receptor–G protein coupling (40).

Conserved Residues Across G-Protein Subtypes. Fig. 5B shows a subset of residues in Gαi which are conserved across G-protein subtypes (35). Site F336 has been shown to increase basal nucleotide exchange rates upon mutation to alanine (41) by creating a cavity between the Ras-like domain body and the C-terminal helix of Gαi. This residue is displaced upon Gαi binding to rhodopsin with corresponding α5-helix movements. A translation and rotation of the α5-helix in the nucleotide-free model is compatible with a similar motion reported earlier (24). The F336 site comes into contact with another conserved phenylalanine (F196) of Gαi in the refined model. The F196 sequence region of Gαi, as evidenced by the data-driven model (12). Mutation of F139 to alanine disrupted receptor–G protein coupling (40).

In conclusion, the structural model presented reveals an alternative docking mode of heterotrimeric G proteins bound to GPCRs. We believe that the specificity of GPCR interactions is related to the binding orientation of the Ras-like domain on the cell-surface receptors and the corresponding differences in the C-terminal helix insertion angle. Comparing the rhodopsin–Gαi and β2AR–Gαi complexes shows that the bulkiness of the receptor-interacting part of the Gαi α5-helix also determines the degree of TM6 movement needed for coupling, which is in agreement with earlier MD simulations on β2AR with C-terminal peptides derived from Gαi and Gαs (42). In regard to the proposed specificity barcodes for heterotrimeric G proteins (35), it appears that residues within the β6-sheet of the Ras-like domain of Gαi contribute to the contact interface with the TM5–TM6 loop of rhodopsin [as evidenced by the data-driven model and earlier CW EPR studies (24)]. Hence, it is clear that this region of Gαi is also crucial for receptor engagement. This is consistent with peptide competition studies which showed transducin peptides covering this sequence region competed against the heterotrimeric G protein for rhodopsin engagement (43). MD simulations of the rhodopsin–Gαi complex together with DEER distance measurements are beginning to uncover dynamic elements of the nucleotide-free GPCR–G protein complex that are crucial for guanine nucleotide exchange.

Materials and Methods

Protein Expression and Spin Labeling of Rhodopsin Mutants. Expression, purification, and spin labeling of bovine rhodopsin mutants were performed as previously described (18, 44). For the present study, single rhodopsin cysteine mutants Y74C, Q225C, A235C, and M308C in a C1405/C3165 base mutant were produced in stable HEK293S GnTI– cell cultures.
The MSP1E3D1 scaffold protein was expressed in *E. coli* in a 1:1 molar ratio. DEER experiments were performed in 20 mM Mops, 100 mM NaCl, 2 mM MgCl₂, 20 μM GDP, and 20% deuterated glycerol. Samples were illuminated within quartz capillaries (1.5 mm i.d. and 1.8 mm o.d.) before freezing using a >515-nm long-pass filter and loaded into an EN 51072 (Buerke) Q-band measurements were performed at 80 K on a Bruker Elexys 580 spectrometer with a Super Q-FTu bridge. A 32-ns pump pulse was applied to the low-field peak of the nitroxide field-swept spectrum, and the observer π/2 (16 ns) and π (32 ns) -pulses were positioned 50 MHz (17.8 G) upfield, which corresponds to the nitroxide center line. Distance distributions were obtained from the raw dipolar evolution data using the program LongDistances (developed in-house using National Instruments LabVIEW). It can be downloaded from www.biochemistry.ucla.edu/Faculty/Hubbell/.

As a control, a few DEER experiments were collected in the dark versus light. Data collected in the dark showed only background signal and were consistent with no ternary complex formation. All samples in the light, however, showed clear dipolar oscillations consistent with rhodopsin–G-protein interactions.

Modeling of the Rhodopsin–G Protein Complex Using Sparse Distance Constraints. R1 rotamers for the starting positions in each molecule corresponded to one of the three most probable as determined from crystal structures (27). For rhodopsin, the rotamers were those determined in earlier DEER distance mapping of rhodopsin (6). In those experiments, the rotamers were chosen to best match the experimental distances in dark rhodopsin, assuming that the crystal structure of the inactive rhodopsin was used for the model selection [from the most probable set (27)] was based on lack of steric clash in the structure and best match to experimental intramolecular distances from earlier DEER distance mapping (22, 24, 25).

Starting with the initial coordinates, two sets of constraints were simultaneously imposed for the geometry optimization of the nitroxide spin positions: All measured intramolecular nitroxide spin distances (between rhodopsin and G) were assigned from the DEER results. All intramolecular distances between the investigated sites (within rhodopsin or within G) were assigned from the existing starting positions of the modeled R1 side chains. The intramolecular distances ensured approximate rigid-body movements of the two molecules, while still allowing some local flexibility when trying to accommodate the intramolecular distance constraints from DEER.

The DEER data only reflect pairwise distances and not absolute locations, so the molecular coordinates of the proteins need to be realigned with the optimized geometry. This was done in two steps. First, the optimized geometry (of all nitroxide spin positions) was realigned to best match the respective starting positions on rhodopsin in terms of least squares residual distances. Second, the entire G protein was realigned to best match the fit G, positions, and the PDB file was rewritten with the transformed new coordinates. These steps result in two aligned PDB files (rhodopsin and G) aligned to satisfy the distance data) that can be used as a starting point for further modeling. Note that the process was entirely data-driven to avoid any possible bias from manual alignment. The relative weighting of intra- vs. intermolecular distance constraints was varied over two orders of magnitude giving very similar results, indicating that the set of distances is consistent. There is some amount of uncertainty, because we do not exactly know the spin positions relative to the molecules, and each molecule can be moved or rotated within (narrow) limits without changing the constraints considerably. While this method is purely geometrical and does not account for molecular overlap, the resulting complex showed a near-perfect fit.

Model Refinement and Molecular Dynamics Simulation. Missing residues in the DEER-based model were added, including residues at the GαN terminus, Gβ C terminus, and rhodopsin C terminus. To add lipid modifications important for membrane anchoring, in total, the final system contained three palmitoylcysteines. All spin-labeled cysteines were reverted to their wild-type residues across G-protein subtypes that are involved in G-protein selectivity. Side chains are colored orange on the rhodopsin. GαN was immobilized on a 1D4 resin and spin-labeled with 100 μM S-(1-oxo-2,2,5,5-tetramethylpyrroline-3-methyl)-methanethiosulfonate (Toronto Research Chemicals) for 2.5 h at room temperature. The excess of spin label was removed by successive washes (18, 44). The spin-labeled mutants were eluted from a 1D4 antibody resin in a buffer containing 90 mM octylglucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a peptide with λ-glucoside at 4 °C (for incorporation into nanodiscs) using a polyester diver. As a control, a few DEER experiments were collected in the dark versus light. Data collected in the dark showed only background signal and were consistent with no ternary complex formation. All samples in the light, however, showed clear dipolar oscillations consistent with rhodopsin–G-protein interactions.
of rhodopsin were protonated (47), and the stabilizing disulfide between mutated residues N229D28C on the extracellular face of rhodopsin was introduced to stabilize the active binding pocket (48, 49). Finally, the Minimize tool in Maestro (Schrodinger) was used to optimize intermolecular contacts formed at the rhodopsin–G interface, followed by an additional minimization performed on the entire complex.

The refined and prepared rhodopsin–G complex was inserted into a hydrated POPC bilayer, creating a final system of 231,641 atoms. We performed three unbiased simulations of the prepared rhodopsin–G complex with the CHARMM36 force field (with CHARMM36m protein parameters) using the Amber 16 software suite on graphics processing units (GPUs) (50, 51). Each of the three simulations was ~600 ns in length. See SI Materials and Methods for a complete description of structure refinement and simulation protocols.

ACKNOWLEDGMENTS. We thank Lu Chen and Yang Shen for technical assistance. This work was supported by NIH Grant R01EY05216 (to W.L.H.), the Canada Excellence Research Chairs program (O.P.E.), Canadian Institute for Advanced Research (O.P.E.), Anne and Max Tanenbaum Chair in Nanobiophysics (O.P.E.), Jules Stein Professor Endowment (W.L.H.), an institutional Biomedical Informatics Training Grant postdoctoral fellowship to S.A.H. (T15-LM007033-33), and National Eye Institute Core Grant P30EY00331. N.R.L. is a recipient of a National Science Foundation Graduate Research Fellowship.

1. Baumann C (1977) Franz Boll.
22. Todd AP, Cong J, Levinthal F, Levinthal C, Hubbell WL (1989) Site-directed muta-
3. Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG (2016) Structure of the adenosine
4. Rasmussen SG, et al. (2011) Crystal structure of the A(2A) receptor bound to an engineered G protein.
5. Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL (2008) High-resolution
6. Altenbach C, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered ni-
7. Scheerer P, et al. (2008) Crystal structure of opsins in its G-protein-interacting con-
8. Fleissner MR, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered ni-
9. Wall MA, et al. (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83:1047–1058.
10. TeSmer JJ, Berman DM, Gilman AG, Sprang SR (1997) Structure of RGS4 bound to ADP
11. Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG (2016) Structure of the adenosine
12. Rasmussen SG, et al. (2011) Crystal structure of the A(2A) receptor bound to an engineered G protein.
13. Zhang Y, et al. (2017) Cryo-EM structure of the activated GLP-1 receptor in complex
14. Wedgegarter PB, Wilson PT, Bourne HR (1995) Lipid modifications of trimeric G proteins. J Biol Chem 270:753–56.
15. Van Eps N, Oldham WM, Hamm HE, Hubbell WL (2006) Structural and dynamical
16. Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL (2008) High-resolution
17. Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG (2016) Structure of the adenosine
18. Van Eps N, Oldham WM, Hamm HE, Hubbell WL (2006) Structural and dynamical
19. Altenbach C, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered ni-
20. Todd AP, Cong J, Levinthal F, Levinthal C, Hubbell WL (1989) Site-directed muta-
21. Altenbach C, Cai K, Khorana HG, Hubbell WL (1999) Structural features and light-de-
22. Todd AP, Cong J, Levinthal F, Levinthal C, Hubbell WL (1989) Site-directed muta-
23. Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG (2016) Structure of the adenosine
24. Altenbach C, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered ni-
25. Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG (2016) Structure of the adenosine
26. Altenbach C, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered ni-
27. Fleissner MR, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered ni-
28. Fleissner MR, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered ni-
29. Wall MA, et al. (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83:1047–1058.
30. TeSmer JJ, Berman DM, Gilman AG, Sprang SR (1997) Structure of RGS4 bound to ADP
31. Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG (2016) Structure of the adenosine
32. Wedgegarter PB, Wilson PT, Bourne HR (1995) Lipid modifications of trimeric G proteins. J Biol Chem 270:753–56.