Neurosurgical enhanced recovery after surgery ERAS for geriatric patients undergoing elective craniotomy
A review

Bolin Liu, MD, PhD, a Shujuan Liu, MD, PhD, a Tao Zheng, MD, a Dan Lu, MD, a Lei Chen, MD, a Tao Ma, MD, b Yuan Wang, MD, PhD, b Guodong Gao, MD, PhD, b Shiming He, MD, PhD, a,b,*

Abstract
Population aging is an unprecedented, multifactorial, and global process that poses significant challenges to healthcare systems. Enhanced recovery after surgery (ERAS) protocols aim to optimize perioperative care. The first neurosurgical ERAS protocol for elective craniotomy has contributed to a shortened postoperative hospital stay, accelerated functional recovery, improved patient satisfaction, and reduced medical care cost in adult patients aged 18 to 65 years compared with conventional perioperative care. However, ERAS protocols for geriatric patients over 65 years of age undergoing cranial surgery are lacking. In this paper, we propose a novel ERAS protocol for such patients by reviewing and summarizing the key elements of successful ERAS protocols/guidelines and optimal perioperative care for geriatric patients described in the literature, as well as our experience in applying the first neurosurgical ERAS protocol for a quality improvement initiative. This proposal aimed to establish an applicable protocol for geriatric patients undergoing elective craniotomy, with evidence addressing its feasibility, safety, and potential efficacy. This multimodal, multidisciplinary, and evidence-based ERAS protocol includes preoperative, intraoperative, and postoperative assessment and management as well as outcome measures. The implementation of the current protocol may hold promise in reducing perioperative morbidity, enhancing functional recovery, improving postoperative outcomes in geriatric patients scheduled for elective craniotomy, and serving as a stepping stone to promote further research into the advancement of geriatric patient care.

Abbreviations: ERAS = enhanced recovery after surgery, IV = intravenous, LOS = length of stay, PCA = patient-controlled analgesia, POD = postoperative day, PONV = postoperative nausea and vomiting, TIVA = total intravenous anesthetic, VAS = visual analog scale.

Keywords: cranial surgery, elderly patients, enhanced recovery after surgery, fast-track surgery, morbidity, neurosurgery

1. Introduction
The world has witnessed unprecedented challenges due to an aging population and an increasing burden of healthcare. According to census data, in western countries, 1 in 5 people will be over 65 years old by 2030, and the 85-and-older will make up approximately 2% to 3% of the population. Moreover, in 2030, there will be over 200 million people over 65 years and 66 million over 80 years in China.\(^1\) Owing to the age-associated demographic trends and associated healthcare costs, there is a need to preoptimize the perioperative care of geriatric patients undergoing cranial neurosurgical procedures. Enhanced recovery after surgery (ERAS) or fast-track surgery protocols, first conceptualized by Kehlet in 1997, have been developed rapidly and applied widely in clinical practice of multiple surgical specialties.\(^2–6\) With the optimization of perioperative care, ERAS protocols have been shown to benefit patients with shorter hospital length of stay (LOS), better postoperative functional status, lower perioperative complications, higher patient satisfaction, and cheaper healthcare costs.\(^2–6\) Not until recently, did our group propose the first neurosurgical ERAS protocol for adult patients undergoing elective craniotomy and conduct the first randomized controlled trial to validate its efficacy and safety.\(^7\) Compared with conventional perioperative care, the neurosurgical ERAS protocol is associated with shortened LOS and accelerated functional recovery.\(^7\) In the secondary analysis, decreased postoperative nausea and vomiting (PONV), absorbable skin suture, and shortened LOS (LOS), were all proved to be significant in our study with a p-value of less than 0.05.

Received: 10 February 2022 / Received in final form: 17 February 2022 / Accepted: 17 May 2022
http://dx.doi.org/10.1097/MD.0000000000030043
are independent predictors for a higher patient satisfaction; while aspects including information transfer, professional support, shared responsibility and active participation, readiness for discharge, and follow-up are patient experience themes to be addressed to improve the quality of care.\[11] Furthermore, in the subgroup of glioma patients, implementation of the ERAS protocol is associated with improved health-related quality of life (i.e., higher functioning and lower symptom burden) during the follow-up of up to 6 months after surgery.\[12]

However, these encouraging results were confined to adult craniotomy patients aged 18 to 65 years, whereas elderly patients aged >65 years were excluded. Indeed, evidence supporting the applicability and efficacy of ERAS protocols for the elderly group is mostly limited to colorectal surgery.\[10]

Due to the lack of a neurosurgical ERAS protocol developed for geriatric patients undergoing elective craniotomy, we herein propose a novel ERAS protocol for such patients based on a review of successful ERAS protocols and optimal perioperative care of geriatric patients in the current up-to-date medical literature, in addition to our experience in implementing the ERAS protocol as a constant quality improvement program.

2. Methods

Similar to our previously published ERAS protocols for elective cranial and intraspinal tumor surgery;\[7,11\] a literature review of published ERAS protocols for all surgical specialties was first performed to retrieve the key elements. Additional perioperative risk factors for complications and morbidities in geriatric patients, as well as corresponding prophylaxis and interventions, have also been identified in the literature. Panel discussions were held by the Neurosurgical ERAS Working Group, which consists of medical and ancillary staff from neurosurgery, anesthesiology, inpatient and operative nursing, and other services, including nutrition, psychiatry, physiotherapy, and rehabilitation. Key elements of the workflow were organized into 3 chronological time periods: preoperative, intraoperative, and postoperative.

3. ERAS protocol

3.1. Preoperative evaluation and management

The purpose of preoperative evaluation and management is to preoptimize geriatric patients physically, mentally, and functionally prior to the scheduled craniotomy, which includes patient and family counseling; comprehensive geriatric assessment incorporating functional, nutritional, and mental statuses; comorbidity; respiratory preparation; smoking and alcohol abstinence; antithrombotic prophylaxis; preoperative oral carbohydrate loading; antimicrobial prophylaxis; and discharge planning (Table 1). The timeline of these measures varies from weeks to 1 day prior to surgery, depending on the time required for risk assessment and intervention, as well as each individual’s medical condition. Moreover, some interventions may continue after surgery or even after discharge to maximize benefits.

3.1.1. Patient and family counseling. The importance of educating the patient and family about surgical expectations is well acknowledged, as it improves patient preparedness, satisfaction, and outcome.\[12,13\] Detailed instruction on the ERAS protocol is necessary to offer a roadmap for the patient and family to motivate active participation. An ERAS handbook is provided at least 1 week before the scheduled surgery to allow the patient to read and ask questions.\[14\] Additional demonstrations are provided in multiple ways (verbal, video, printed, and iPad-mediated) during hospitalization.

3.1.2. Functional status. Preoperative physical conditioning contributes to enhanced functional capacity, improved quality of life, shortened LOS, and reduced perioperative complications in patients undergoing elective orthopedic, spine, cardiac, and abdominal surgery, including the geriatric surgical population.\[14–16\] The level of preoperative functional status could be augmented with prehabilitation, which compromises a progressive exercise program guided by physiotherapists for 2 to 4 weeks before surgery.

3.1.3. Nutrition. The patient’s preoperative nutritional status is related to perioperative morbidity and LOS, and is a modifiable risk factor to improve clinical outcomes.\[17,18\] Although the majority of adult craniotomy patients (18–65 years) had a good nutritional status and required no nutritional intervention preoperatively,\[7\] this may not apply to the geriatric population. Age is a well-documented risk factor for malnutrition due to physiological and anatomical changes, chronic diseases, medication use, and dietary and psychosocial habits.\[19\] Preoperative nutritional status assessment is crucial for geriatric neurosurgical patients. Patients with a body mass index <18.5, >24, or with a low albumin level are recommended to receive nutritional consultation and intervention.\[19,19\]

3.1.4. Mental status. The patient’s mental status is also a predictor of functional outcomes after surgery.\[20\] Therefore, preoperative evaluation of hospital anxiety and depression may help screen patients for potentially beneficial psychiatric intervention.

3.1.5. Management of comorbidities. Comorbidities such as diabetes, congestive heart failure, coronary artery disease, and chronic steroid use have been shown to increase the risk of perioperative complications in elective craniotomy patients.\[21,22\] No single comorbidity precludes elective craniotomy, however, geriatric patients with known comorbidities should undergo appropriate preoperative assessment and specialty consultation to obtain optimal control prior to surgery.

3.1.6. Respiratory preparations. Airway risk assessment is performed with respect to age, smoking history, pulmonary function, body mass index, past and concomitant cardiopulmonary diseases, and comorbidity.\[23\] All geriatric patients are encouraged to undergo breathing and exercise training,\[24\] while high-risk patients should receive inhalation treatment with mucolytics and expectorants.\[23\]

3.1.7. Smoking and alcohol abuse. Both smoking and alcohol are well-recognized risk factors for postoperative complications, including difficulty in wound healing, surgical site infection, pulmonary complications, and general infections, which result in intensive care unit admission, prolonged LOS, higher reoperation rates, and greater costs.\[21,24\] Short-term preoperative smoking cessation for 3 to 4 weeks could significantly reduce the risk of postoperative complications.\[21,27\] Similarly, intensive preoperative alcohol abstinence for 4 to 8 weeks, which may involve pharmacological interventions for relapse prophylaxis and withdrawal symptoms, could decrease postoperative comorbidity.\[26,29\] Therefore, all geriatric neurosurgical patients are required to abstain from smoking and alcohol for at least 4 weeks prior to surgery.

3.1.8. Antithrombotic prophylaxis. Current evidence supports the use of mechanical prophylaxis of venous thromboembolism with intermittent pneumatic compression and graduated compression stockings.\[30\] Timing and duration of mechanical prophylaxis is critical, which should be started as early as possible preoperatively and continued until discharge to ensure maximal benefits. On the other hand, the benefits of chemoprophylaxis in reducing venous thromboembolism rates should be cautiously weighed against the increased risk of major bleeding.\[30\] The most recent systematic review concluded that chemoprophylaxis is effective and safe in patients undergoing elective cranial or
Phase	Item	ERAS protocol
Preoperative	Patient and family counseling	Routine consultation for elective craniotomy + d
		etailed instruction on ERAS workflow with a
		handbook given ≥1 wk prior to surgery
	Functional status	Assessment of functional status and physical
		activity + progressive exercise prehabilitation
		2 to 4 wk prior to surgery
	Nutrition	Nutritional assessment and consultation for
		BMI <18.5 or >24, serum albumin <3.5 g/dL
	Mental status	Hospital anxiety and depression assessment +
		psychiatric consultation as needed
	Management of comorbidity	Appropriate preoperative assessment and specialty
		consultation when necessary
	Respiratory preparation	Oral and nasal cavity care: mouthwash and nasal
		drops
		Physical exercise: chest movement, balloon
		blowing, abdominal breathing exercises, cough
		training, respiratory muscle training
	Smoking and alcohol abstinence	Active/passive limb exercise, GCS, IPC starting
		from admission till discharge
	Antithrombotic prophylaxis	Glycerine enema for chronic constipation or no
		defecation ≥2 d
	Intestinal preparation	Fasting period of 6 h for solids and 2 h for clear
		fluids
	Preoperative fasting and oral carbohydrate loading	400 mL of oral carbohydrate loading 2 h prior to
	Antimicrobial skin preparation	surgery
		Washing hair with chlorhexidine
		Minimal shaving a 1- to 2-cm-wide strip along the
		planned incision immediately before surgery
	Discharge planning	Initiate discharge planning at the time of patient
		education to establish expectations and ensure
		smooth transition home + timely and responsive
		follow-up strategy
Intraoperative	Microinvasive surgery	Minimally invasive approaches (e.g., keyhole
		surgery, endoscopic endonasal surgery), neuronavi
	Anesthetic protocol	gnation, electrophysiologic monitoring, hybrid
		operating room, awake craniotomy techniques, etc.
	Hypothermia avoidance	TIVA or combined intravenous-inhalation anesthesia
		with short-acting agents, avoiding isoflurane
	Goal-directed fluid balance	Intraoperative use of a depth of anesthesia monitor
		and sedation as light as possible
	Scalp block and local incision anesthesia	Forced-air or electric heating pad + warmed fluid
	Absorbable suture	irrigation and infusion
	Restrictive surgical site drains	Subcutaneous anesthesia with ropivacaine prior to
	ICU and extubation	incision and wound suturing
		Absorbable interrupted suture for dura, muscle and
		subcutaneous tissue, intradural suture for skin
		incision, wound covered with sterile adhesive strips
		Restrict placement of surgical site drains unless
		deemed necessary
		If placed, remove as early as possible within 24 to
		48 h
		Avoid admission to ICU whenever possible
		Exubation at the end of surgery

(Continued)
Phase	Item	ERAS protocol
Postoperative	Nonopioid analgesia	Preemptive analgesia: acetaminophen the night before surgery and on the morning of surgery. Intraoperative scalp block and local incision anesthesia + dexmedetomidine. Postoperative repeated assessments of pain VAS scores. Pain VAS score <4: no analgesia or oral minimal dose of nonopioid (acetaminophen, NSAIDs, and gabapentin). Pain VAS score 4 to 6: oral or IV nonopioid. Pain VAS score ≥7: opioid ± PCA.
	PONV management	PONV prophylaxis: PONV risk score ≥3 (assessed by PONV Simple Risk Assessment Scale), dexamethasone, 5-HT receptor antagonist (tropisetron). Treatment: PONV VAS ≥5, repeat 5-HT receptor antagonist (tropisetron). Severe or refractory cases: tropisetron + droperidol, promethazine.
	Diet	Oral free fluids: 4 h after surgery. Light diet/polymeric nutritional supplement drink: 8 h after surgery as tolerated by the patient. Semiliquid/solid diet: 12 to 24 h after surgery. Ordinary diet: 24 to 48 h after surgery. Chewing gum: 3 times/d after surgery. Immunonutrition (arginine, omega-3 fatty acids, and ribonucleotides) for malnourished patients with cancer.
	Restrictive IV fluids	Rapid de-escalation of IV fluids. Not routinely given after POD 1 unless the patient could not maintain urine output or blood pressure by oral intake. Completely discontinued by POD 3 whenever possible.
	Urinary catheter removal	Attempts to remove urinary catheter within POD 1 whenever possible. Regular assessment of the need for maintaining the catheter. Encouraging voiding regimens + bladder scanning + early and aggressive mobilization to prevent urinary retention.
	Early mobilization and ambulation	Active management of postoperative fear of movement. In-bed limb exercises: 6 h after surgery. Early ambulation: POD 1.
	Delirium prevention	Intraoperative use of a depth of anesthesia monitor. Avoiding anticholinergics, antipsychotics, and benzodiazepines. Regular assessment and nursing care.
Discharge	Glycemic control	Regular monitoring with insulin treatment as needed to maintain glycemic levels 180 to 200 mg/dL. Functional status, nutrition, mental status, anxiety and depression, pain VAS score. Adequate pain control with oral nonopioid. Oral nutrition without IV fluids. No fever or signs of infection. Satisfactory healing of surgical incision.
	Patient evaluation	Independent mobility or mobility with minimal assistance.
	Pain management	Safe discharge home or to rehabilitation center.
	Nutrition	Timely and responsive follow-up with social media, cell phone/website app, outpatient clinic visit.
	Vital status and healing of surgical incision	Functional status, pain medication use, late-onset complications, quality of life.
	Mobility	Data and safety monitoring to document process/outcome data, assess impact and encourage compliance.
	Destination	Standardized audit and feedback.
	Follow-up	BMI = body mass index, GCS = graduated compression stockings, GDRR = goal-directed fluid restriction, ICU = intensive care unit, IPC = intermittent pneumatic compression, IV = intravenous, NSAIDs = nonsteroidal anti-inflammatory drugs, PCA = patient-controlled analgesia, POD = postoperative day, PONV = postoperative nausea and vomiting, TMA = total intravenous anesthesia, VAS = visual analog scale.
spinal surgery without increasing major or minor bleeding events.[31] Yet, the robustness of the conclusion for the elderly subpopulation and the optimal time of chemoprophylaxis remain unvalidated and warrant further investigation. Owing to safety concerns, patients in China are instructed and monitored to receive mechanical prophylaxis starting from admission until discharge.

3.1.9. Preoperative oral carbohydrate loading. Instead of traditional prolonged fasting, modern guidelines advocate a shortened period of preoperative fasting, with the allowance of clear liquids up to 2 hours and solids up to 6 hours prior to surgery.[32] Ample evidence has proved the role of preoperative carbohydrate loading in attenuating metabolic stress response (e.g., insulin resistance and protein breakdown) and improving clinical outcomes (e.g., pulmonary function, handgrip strength, and LOS) without increasing complication rates.[33,34] Additionally, no difference in complication rates, peak glycemic levels, or insulin requirements is found between diabetic patients who receive and those who do not receive preoperative carbohydrates.[35] For geriatric patients without gastrointestinal mobility disorder, preoperative oral carbohydrate is integrated into the routine procedure.

3.1.10. Discharge planning. A predefined discharge criterion is used for patients undergoing elective neurosurgery, which includes adequate pain control, adequate oral nutrition, no fever, independent mobility, and a safe discharge destination.[36,37] Besides following the robust criteria, an appropriate timing for discharge planning is of vital importance to secure early discharge upon discharge from the inpatient stay. A timely and responsive follow-up strategy could enhance patient experience through improved communication and access.[38] Furthermore, discharge planning and home follow-up in hospitalized elders could contribute to fewer readmissions and lower costs.[39]

3.2. Intraoperative management

Intraoperative management primarily focuses on the day of surgery, the goal of which is to optimize surgical and anesthetic procedures and minimize stress response. The associated measures included microinvasive surgery, anesthetic protocol, hypothermia avoidance, goal-directed fluid balance, scalp incision anesthesia, absorbable sutures, and restrictive drains (Table 1).

3.2.1. Microinvasive surgery. The concept of microinvasive surgery involves not only less invasive approaches (e.g., keyhole surgery and endoscopic endonasal surgery),[39] but also maximal neuroprotection and functional preservation with the aid of multimodal neuronavigation, electrophysiologic monitoring, awake craniotomy, and intraoperative MRI. Surgery duration and estimated blood loss are established risk factors for postcraniotomy complications in the elderly.[35,40] Neurosurgeons and anesthesiologists should make efforts to minimize the length of the procedure and blood loss.

3.2.2. Anesthetic protocol. For neurosurgical patients, though no significant difference is found between total intravenous anesthetic (TIVA) and inhalational anesthetic of sevoflurane regarding time to emergence from anesthesia and brain relaxation, TIVA seems to be moderately preferable in terms of a lower risk of PONV,[41–43] Use of isoflurane in craniotomy patients is not recommended due to delayed emergence from anesthesia and decreased brain relaxation.[41] TIVA or combined intravenous (IV)-inhalation anesthesia with short-acting agents could be applied according to institutional practice patterns and anesthetist preference.

3.2.3. Hypothermia avoidance. Inadvertent perioperative hypothermia is a common and detrimental phenomenon that is associated with prolonged postanesthetic recovery.
3.2.4. Goal-directed fluid balance. During cranial surgery, anesthesiologists face the dilemma of restricting IV fluids to prevent brain swelling and maintain hemodynamic stability. To meet the dual goals of satisfactory exposure and hemodynamic stability, strategies for cardiac output-guided hemodynamic management and fluid balance with intraoperative goal-directed fluid restriction have been explored, which are associated with decreased intensive care unit stay, costs, and postoperative complications.\[46,47\] This strategy has become standard practice with consistent implementation of neurosurgical ERAS protocols,\[7,11\] and is applicable to geriatric patients.

3.2.5. Local incision anesthesia. Placement of the pin head holder and scalp incision are the most painful stages of craniotomy. Scalp block or local incision anesthesia can reduce the hemodynamic response to painful stimuli, as well as of craniotomy. Scalp block or local incision anesthesia can reduce the hemodynamic response to painful stimuli, as well as postoperative pain, analgesic consumption, and PONV.\[7,11,48,49\] These are already routine procedures in several centers and are mandatory for all geriatric neurosurgical patients.

3.2.6. Absorbable suture. In addition to achieving satisfactory wound healing, absorbable sutures offer cosmetic advantages and reduce discomfort of suture removal.\[10,51\] Absorbable sutures are a key component of our ERAS protocols and are associated with a decreased postoperative LOS.\[7,11,44\] Dura, muscle, and subcutaneous tissue are closed with interrupted absorbable sutures, and the skin incision is closed with an intradermal running suture.

3.2.7. Restrictive surgical site drainage. Avoiding surgical site drainage is another distinguishing component of the ERAS protocol. If drain placement is deemed necessary by the chief surgeon, it is removed as early as possible after surgery, mostly within 24 to 48 hours. This measure is safe and effective in reducing postoperative discomfort associated with drains, promoting early ambulation, and shortening the LOS without increasing the rate of surgical complications.\[7,11\]

3.3. Postoperative management

Postoperative management aims to reduce postoperative morbidity and maximize patients’ physical conditioning to promote functional recovery after surgery. This consists of nonopioid analgesia, PONV management, postoperative diet, restrictive IV fluids, urinary catheter removal, early ambulation, delirium prevention, and glycemic control (Table 1).

3.3.1. Nonopioid analgesia. The incidence, magnitude, and duration of postoperative pain experienced by craniotomy patients have been underestimated for decades, and undertreated pain remains a problem.\[52\] What is worse, acute postoperative pain becomes chronic pain in approximately 20% to 60% of patients after craniotomy.\[52\] Patient-controlled analgesia (PCA) with morphine is an effective method in craniotomy patients, however, there are risks of PONV, sedation, respiratory depression, ileus, urinary retention, and cardiovascular events, especially in geriatric patients.\[12-24\] In our previous neurological ERAS protocols, the traditional regimen of postoperative morphine PCA is abandoned, instead, we have applied a standardized and nonopioid analgesia strategy based on repeated assessments of pain visual analog scale (VAS) scores.\[7,41\] No analgesia or minimal oral nonopioid is prescribed for patients reporting mild pain (VAS score 1–3); regular oral or IV nonopioid is given in cases of moderate pain (VAS score 4–6); opioid is reserved for patients with severe pain (VAS score 7–10) while morphine PCA is only used in refractory cases.\[7,11\] This strategy has achieved satisfactory pain control with significantly decreased opioid consumption and PCA use. The shift from morphine PCA to nonopioid analgesia can not only mitigate the potential side effects of opioids, such as nausea, sedation, and dizziness, but also enhance postoperative mobility.\[15\] Additionally, local incision anesthesia and active management of PONV also contribute to improved pain control.\[7,51\] As an adjunct to general anesthesia, intraoperative dexmedetomidine, ketamine, and lidocaine have been used for acute postcraniotomy pain control.\[12\] Of note, Dexmedetomidine is associated with reduced PONV in addition to reduced postoperative pain and analgesic consumption.\[16\] Lastly, preemptive analgesia with medications such as nonsteroidal anti-inflammatory drugs, acetaminophen, and gabapentinoids is another strategy to prevent postoperative pain by inhibiting autonomic hyperactivity, which also reduces PONV.\[13,27,48\] Taken together, a multimodal nonopioid analgesia strategy as a continuum pre-, intra-, and postoperatively is proposed for geriatric neurosurgical patients.

3.3.2. PONV management. The high prevalence of PONV in craniotomy patients (ranged 20%-70%) and the increased risks of intracranial bleeding, brain edema, and aspiration associated with PONV signify the importance of appropriate PONV management, which consists of perioperative risk assessment, management of surgical and anesthesia-related risk factors, and multimodal pharmacological interventions targeting different chemoreceptors in the vomiting center.\[13,19\] The most effective and commonly used medications are 5-HT3 antagonists, glucocorticoids, NK1 receptor antagonists, or their combination.\[42\] According to our previous successful ERAS protocols,\[7,11\] active PONV prophylaxis with dexmethasone and tropisetron is given to patients with a PONV risk score ≥3 according to the PONV Simplified Risk Assessment Scale.\[60\] Postoperative treatment with repeated tropisetron is given to patients reporting a PONV VAS score ≥5, and a combination of tropisetron and droperidol, or promethazine is given to refractory cases.\[7,11\]

3.3.3. Postoperative diet. Early restoration of oral nutrition is a foundation of all ERAS protocols.\[61\] Given the nature of cranial surgery where the operative site is independent of the gastrointestinal tract, as well as the use of nonopioid analgesia and active PONV management, early diet advancement is encouraged for all craniotomy patients except for those remaining comatose for a prolonged period.\[7,12\] Oral free fluids are permitted as early as 4 hours after surgery; light diet or a polymeric nutritional supplement drink is given 8 hours after surgery, semiliquid/solid diet is allowed 12 to 24 hours after surgery, and restoration of oral nutrition is achieved within 24 to 48 hours after surgery.\[7,11\] This strategy is well tolerated by the neurosurgical patients and is associated with improved functional status compared with the conventional perioperative care which roughly doubles time to diet advancement.\[7,14\] In addition, chewing gum is an convenient, economical and harmless way for amelioration of postoperative ileus and recovery of gastrointestinal function.\[53\] In keeping with the evidence, an early diet advancement regimen combined with chewing gum is provided for geriatric neurosurgical patients. Supplementary immunonutrition should be considered for malnourished patients with cancer.\[12,13\]

3.3.4. Urinary catheter removal. Prolonged use of urinary catheters is associated with an increased risk of urinary tract
infection in surgical patients.63 Considering the preventable nature of hospital-acquired urinary tract infection, evidence-based preventive intervention is to remove the urinary catheter on postoperative day (POD1) or as early as possible according to daily assessment of the need for maintaining the catheter.10,63 Early removal of the urinary catheter within 6 hours is feasible in neurosurgical patients, which promotes mobility and shortens postoperative LOS without increasing the rates of urinary retention.7,11 Moreover, implementing a 2- to 3-hour voiding schedule immediately after catheter removal, using bladder scanning, and encouraging early and aggressive mobilization may help to decrease the risk of urinary retention. Attempts to remove the urinary catheter within POD1 are recommended for geriatric neurosurgical patients, and regular assessment is required to maintain the catheter to ensure removal as early as possible.

3.3.5. Early mobilization and ambulation. Early mobilization and ambulation is an integral and proven strategy to prevent muscle loss, improve cardiopulmonary function, and reduce deep vein thrombosis risk and insulin resistance.15,64,65 Adherence to early mobilization and reduction in associated complications are keys for successful ERAS protocols.63 With adequate pain control and PONV management, off-bed ambulation is achievable for neurosurgical patients on POD1.7,11 Postoperative fear of movement is addressed and actively management by the doctors, nurses, physiotherapists and psychiatrists. Patients were instructed and monitored by physiotherapists to start in-bed limb exercises 6 hours after surgery and ambulation within 24 hours after surgery.

3.3.6. Delirium prevention. Given the high prevalence of postoperative delirium in the elderly and the lack of first-choice treatment, prevention is the best strategy. Intraoperative use of a depth of anesthesia monitor and sedation as light as possible are recommended.66 Additionally, avoiding medications such as anticholinergics, antipsychotics, and benzodiazepines whenever possible is vital in elderly patients, considering the risk of causing/ worsening dementia, delirium, and falls.64 Furthermore, ERAS components of prehabilitation, early oral feeding, early mobilization, restrictive use of drains and invasive tubes, as well as regular assessment and nursing care all contribute to a lower risk of delirium.67,68

3.4. Outcome measures

Outcome measures included objective and subjective patient-reported outcomes (Table 2). Hospital LOS is the most commonly used outcome measure in ERAS protocols as a proxy for functional status and a key criterion for evaluating a successful ERAS protocol.65,69 Other objective outcomes include postoperative morbidity and mortality, surgical and nonsurgical complications, reoperation and readmission rates, functional recovery status (such as pulmonary function, muscle strength, nutritional parameters, diet advancement, and mobility), analgesic consumption, and healthcare costs.

Patient-reported outcomes have been suggested as the gold standard for assessing the clinical efficacy of surgical interventions and patient-perceived quality of care, and thus are preferable outcome measures for ERAS protocols.6,18,65,69 The most frequently used and important outcomes are patient-reported symptom status outcomes, such as pain, PONV, fatigue, anxiety and depression, general health perceptions and quality of life, and patient satisfaction and comfort.

4. Discussion

With the successful development and implementation of the neurosurgical ERAS protocol for elective neurosurgical patients in clinical trials,7,8,11 the proven benefits of reducing LOS, accelerating postoperative functional recovery, and improving patient satisfaction have called into attention the constant and universal application of the ERAS protocol in everyday practice. Compared with other surgical specialties, neurosurgery, especially cranial surgery, lags behind in the era of ERAS, and perioperative care continues to resemble conventional methods in many centers.15,60 As the most populous country in the world, China has the largest aging population, which is confronting healthcare providers with greater challenges in managing multiple comorbidities associated with advanced age and improving the quality of perioperative care. This multimodal, multidisciplinary, and evidence-based ERAS protocol for geriatric patients undergoing elective craniotomy aimed to establish a feasible, applicable, reasonable, and standard pattern of practice that involves and engages healthcare providers from multiple services. Under the coordination and cooperation of the Neurosurgical ERAS Working Group, cumulative benefits contributed by individual components of the ERAS protocol may translate into significant improvements in patient recovery after cranial surgery. Moreover, given the multistep nature of an ERAS protocol, both patient and provider compliance are decisive factors for success or failure. A systemic audit of process adherence and outcomes is a useful tool for assessing impact and enhancing compliance.17,12

5. Conclusion

The current proposal for a multimodal, multidisciplinary, and evidence-based ERAS protocol for geriatric patients undergoing elective craniotomy is feasible and crucial for optimizing perioperative care in this patient population. This approach is generalizable from the previous accomplishment of a neurosurgical ERAS protocol for adult patients ages 18 to 65 years and tailored to the geriatric population. Implementation of the current protocol may hold promise in reducing perioperative morbidity, enhancing functional recovery, shortening LOS, and serving as a stepping stone to guide future efforts to improve geriatric patient care.

Author contributions

Conceptualization: Bolin Liu, Shiming He, Shujuan Liu.
Data curation: Bolin Liu, Dan Lu, Lei Chen, Shiming He, Shujuan Liu, Tao Ma, Tao Zheng, Yuan Wang.
Formal analysis: Bolin Liu, Shuming He, Shujuan Liu, Tao Zheng.
Funding acquisition: Bolin Liu.
Supervision: Guodong Gao, Shiming He.
Writing – original draft: Bolin Liu, Shujuan Liu.
Writing – review & editing: Bolin Liu, Dan Lu, Guodong Gao, Lei Chen, Shiming He, Shujuan Liu, Tao Ma, Tao Zheng, Yuan Wang.

References

\begin{enumerate}
\item Cincotta R. Population aging: a demographic and geographic overview. Available at: http://gt2030.com/2012/07/population-aging-a-demo-
graphic-and-geographic-overview/ [access date April 20, 2020].
\item Greer NL, Gunnar WP, Dahm P, et al. Enhanced recovery protocols for adults undergoing colorectal surgery: a systematic review and meta-analysis. Dis Colon Rectum. 2018;61:1108–18.
\item Jones EL, Wainwright TW, Foster JD, et al. A systematic review of patient reported outcomes and patient experience in enhanced recovery after orthopaedic surgery. Ann R Coll Surg Engl. 2014;96:89–94.
\item Kehlet H, Wilmore DW. Evidence-based surgical care and the evolution of fast-track surgery. Ann Surg. 2008;248:189–98.
\item Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg. 2017;152:292–8.
\item Dietz N, Sharma M, Adams S, et al. Enhanced recovery after surgery (ERAS) for spine surgery: a systematic review. World Neurosurg. 2019;130:415–26.
\end{enumerate}
Li Y, Liu C, Wang Y, et al. Impact of neurosurgical enhanced recovery after surgery (ERAS) program on health-related quality of life in glioma patients: a secondary analysis of a randomized controlled trial. J Neurooncol. 2020;148:555–67.

Fagard R, Wolthuis A, D’Hoore A, et al. A systematic review of the intervention components, adherence and outcomes of enhanced recovery programmes in older patients undergoing elective colorectal surgery. BMC Geriatr. 2019;19:157.

Liu B, Liu S, Wang Y, et al. Enhanced recovery after intraspinal tumor surgery: a single-institutional randomized controlled study. World Neurosurg. 2020;136:e542–52.

Hagan KB, Bhavsar S, Raza SM, et al. Enhanced recovery after surgery for oncological craniotomies. J Clin Oncol. 2016;24:10–7.

Gustafsson UO, Scott MJ, Hubner M, et al. Guidelines for perioperative care in elective colorectal surgery: enhanced recovery after surgery (ERAS(R)-society recommendations: 2018. World J Surg. 2019;43:659–95.

Santa Mina D, Clarke H, Ritvo P, et al. Effect of total-body prehabilitation on postoperative outcomes: a systematic review and meta-analysis. Physiotherapy. 2014;100:196–207.

Valken K, van der Port IG, Dronkers JJ, et al. The effects of preoperative exercise therapy on postoperative outcome: a systematic review. Clin Rehabil. 2011;25:99–111.

Carli F, Zavrasky GS. Optimizing functional exercise capacity in the elderly surgical population. Curr Opin Clin Nutr Metab Care. 2005;8:23–32.

Bozetti F, Gianotti L, Braga M, et al. Postoperative complications in gastrointestinal cancer patients: the joint role of the nutritional status and the nutritional support. Clin Nutr. 2007;26:698–709.

Ali ZS, Ma TS, Ozturk AK, et al. Pre-optimization of spinal surgery patients: development of a neurosurgical enhanced recovery after surgery (ERAS(R)) protocol. Clin Neurosurg. 2018;164:142–53.

dos Santos Junqueira JC, Contrm Soares E, Rodrigues Correa Filho H, et al. Nutritional risk factors for postoperative complications in Brazilian elderly patients undergoing major elective surgery. Nutrition. 2003;19:321–6.

den Boer JJ, Oostendorp RA, Beems T, et al. A systematic review of bio-psychosocial risk factors for an unfavourable outcome after lumbar disc surgery. Eur Spine J. 2006;15:277–36.

Johans SJ, Gasik PR, Burkett DJ, et al. Identification of preoperative and intraoperative risk factors for complications in the elderly undergoing elective craniotomy. World Neurosurg. 2017;107:216–25.

Rolston JD, Han SJ, Lau CY, et al. Frequency and predictors of complications in neurological surgery: national trends from 2006 to 2011. J Neurosurg. 2014;120:736–45.

Chinese thoracic and cardiac surgery related expert group (collectively). Chinese expert consensus on multidisciplinary perioperative airway management. Chin J Clin Thorac Cardiovasc Surg. 2018;25:545–9.

Li Y, Yan C, Li J, et al. A nurse-driven enhanced recovery after surgery (ERAS) nursing program for geriatric patients following lung surgery. Thoracic Cancer. 2020;11:1105–13.

Sorensen LT. Wound healing and infection in surgery. The clinical impact of smoking and smoking cessation: a systematic review and meta-analysis. Arch Surg. 2012;147:373–83.

Elasen M, Gronkjaer M, Skov-Estrup LS, et al. Preoperative alcohol consumption and postoperative complications: a systematic review and meta-analysis. Ann Surg. 2013;258:930–42.

Wong J, Lam DF, Abrahimi A, et al. Short-term preoperative smoking cessation and postoperative complications: a systematic review and meta-analysis. Can J Anaesth. 2012;59:268–79.

Egholm JW, Pedersen B, Møller AM, et al. Perioperative alcohol cessation intervention for postoperative complications. Cochrane Database Syst Rev. 2018;11:CD008343.

Oppedal K, Møller AM, Pedersen B, et al. Perioperative alcohol cessation prior to elective surgery. Cochrane Database Syst Rev. 2012;7:CD008343.

Salmaggi A, Simonetti G, Trevisan E, et al. Perioperative thromboprophylaxis in patients with craniotomy for brain tumours: a systematic review. J Neurooncol. 2013;113:293–303.

Khan NR, Patel PG, Sharpe JP, et al. Chemical venous thromboembolism prophylaxis in neurosurgical patients: an updated systematic review and meta-analysis. J Neurosurg. 2018;129:906–15.

Practice Guidelines for Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration. Application to healthy patients undergoing elective procedures: an update report by the American Society of Anesthesiologists Task Force on preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration. Anesthesiology. 2017;126:376–93.

Asadizadeh Varadhan K, Ljungqvist O, et al. A meta-analysis of randomised controlled trials on perioperative oral carbohydrate treatment in elective surgery. Clin Nutr. 2013;32:34–44.

Smith MD, McCaill J, Plank L, et al. Preoperative carbohydrate treatment for enhancing recovery after elective surgery. Cochrane Database Syst Rev. 2014;8:CD009161.

Liu B, Wang Y, Liu S, et al. A randomized controlled study of perioperative oral carbohydrate loading versus fasting in patients undergoing elective craniotomy. Clin Nutr. 2018;38:2106–12.

Lee QY, Liu HM, Lim YL, et al. Preoperative carbohydrate loading in diabetic patients within an enhanced recovery after surgery programme for colorectal surgery—are there any ill effects? Abstract. Clin Nutr. 2018;25:167.

Asakura H, Hovback M, Bertero CM. The importance of preoperative patient participation in colorectal surgery care. J Clin Nurs. 2013;22:1604–12.

Naylor MD, Brooten D, Campbell R, et al. Comprehensive discharge planning and home follow-up of hospitalized elders: a randomized clinical trial. JAMA. 1999;281:613–20.

Gupta M, Consigliere G, Nakaji P. Transcranial minimal invasive neurosurgery for tumors. Neurosurg Clin N Am. 2010;21:595–605.

Asano K, Nakano T, Takeda T, et al. Risk factors for postoperative systemic complications in elderly patients with brain tumors. Clinical article. J Neurosurg. 2009;111:258–64.

Prabhakar H, Singh GP, Mahajan C, et al. Intravenous versus inhalational techniques for rapid emergence from anaesthesia in patients undergoing brain tumour surgery. Cochrane Database Syst Rev. 2016;9:CD010467.

Uribe AA, Stoica N, Echeverria-Villalobos M, et al. Postoperative nausea and vomiting after craniotomy: an evidence-based review of general considerations, risk factors, and management. J Neurosurg Anesthesiol. 2019;33:212–20.

Chui J, Mariappan R, Mehta J, et al. Comparison of propofol and volatile agents for maintenance of anesthesia during elective craniotomy procedures: systematic review and meta-analysis. Can J Anaesth. 2014;61:347–56.

Madrid E, Urrutia G, Roque i Figuls M, et al. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults. Cochrane Database Syst Rev. 2016;4:CD009016.

Scott EM, Buckland R. A systematic review of intraoperative warming to prevent postoperative complications. AORN J. 2006;83:1090–104, 1107–13.

Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.

Luo J, Xue J, Liu J, et al. Goal-directed fluid restriction during brain surgery: a prospective randomized controlled trial. Ann Intensive Care. 2017;7:16.

Akdemir E, Dilmén OK, Vehid H, et al. Which one is more effective for analgesia in infratentorial craniotomy? The scalp block or local anesthesia? Clin Neurophysiol. 2017;138:94–103.

Hwang JY, Bang JS, Oh CW, et al. Effect of scalp blocks with levobupivacaine on recovery profiles after craniotomy for aneurysm clipping: a randomized, double-blind, and controlled study. World Neurosurg. 2015;83:108–13.

Paolini S, Morace R, Lanzino G, et al. Absorbable intradural closure of elective craniotomy wounds. Neurosurgery. 2008;62(5 Suppl 2):ONS490–20.

Pereira JL, Vieira G Jr, de Albuquerque LA, et al. Skin closure in vascular neurosurgery—are there any ill effects? Abstract. Clin Nutr. 2013;22:320–6.
[54] By the American Geriatrics Society Beers Criteria Update Expert Panel. American Geriatrics Society 2015 updated beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015;63:2227–46.

[55] Mathiesen O, Dahl B, Thomsen BA, et al. A comprehensive multimodal pain treatment reduces opioid consumption after multilevel spine surgery. Eur Spine J. 2013;22:2089–96.

[56] Peng K, Jin XH, Liu SL, et al. Effect of intraoperative dexmedetomidine on post-craniotomy pain. Clin Ther. 2015;37:1114–1121.e1.

[57] Kien NT, Geiger P, Van Chuong H, et al. Preemptive analgesia after lumbar spine surgery by pregabalin and celecoxib: a prospective study. Drug Des Dev Ther. 2019;13:2145–52.

[58] Simon E, Bank J, Gal J, et al. Administration of preemptive analgesia by diclofenac to prevent acute postcraniotomy headache. Ideggyogyaszati szemle. 2012;65:302–6.

[59] Latz B, Mordhorst C, Kerz T, et al. Postoperative nausea and vomiting in patients after craniotomy: incidence and risk factors. J Neurosurg. 2011;114:491–6.

[60] Apfel CC, Laara E, Koivuranta M, et al. A simplified risk score for predicting postoperative nausea and vomiting: conclusions from cross-validations between two centers. Anesthesiology. 1999;91:693–700.

[61] Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative complications. Cochrane Database Syst Rev. 2006;4:CD004080.

[62] Short V, Herbert G, Perry R, et al. Chewing gum for postoperative recovery of gastrointestinal function. Cochrane Database Syst Rev. 2015;2:CD006506.

[63] Trickey AW, Crosby ME, Vasaly F, et al. Using NSQIP to investigate SCIP deficiencies in surgical patients with a high risk of developing hospital-associated urinary tract infections. Am J Med Qual. 2014;29:381–7.

[64] Ingemann-Hansen T, Halkjær-Kristensen J. Computerized tomographic determination of human thigh components. The effects of immobilization in plaster and subsequent physical training. Scand J Rehabil Med. 1980;12:27–31.

[65] Yip VS, Dunne DF, Samuels S, et al. Adherence to early mobilisation: key for successful enhanced recovery after liver resection. Eur J Surg Oncol. 2016;42:1561–7.

[66] Orena EF, King AB, Hughes CG. The role of anesthesia in the prevention of postoperative delirium: a systematic review. Minerva Anestesiol. 2016;82:669–83.

[67] Kotekar N, Shenkar A, Nagaraj R. Postoperative cognitive dysfunction—current preventive strategies. Clin Interv Aging. 2018;13:2267–73.

[68] Benhamou D, Brouquet A. Postoperative cerebral dysfunction in the elderly: diagnosis and prophylaxis. J Visc Surg. 2016;153:527–32.

[69] Neville A, Lee L, Antonescu I, et al. Systematic review of outcomes used to evaluate enhanced recovery after surgery. Br J Surg. 2014;101:159–70.