E$_8$ BUNDLES AND RIGIDITY

FEI HAN, KEFENG LIU, AND WEIPING ZHANG

Abstract. In this paper, we establish rigidity and vanishing theorems for Dirac operators twisted by E$_8$ bundles.

INTRODUCTION

Let X be a closed smooth connected manifold which admits a nontrivial S^1 action. Let P be an elliptic differential operator on X commuting with the S^1 action. Then the kernel and cokernel of P are finite dimensional representations of S^1. The equivariant index of P is the virtual character of S^1 defined by

$$
\text{Ind}(g, P) = \text{tr}|_g \ker P - \text{tr}|_g \text{coker} P,
$$

for $g \in S^1$. We call that P is rigid with respect to this circle action if $\text{Ind}(g, P)$ is independent of g.

It is well known that classical operators: the signature operator for oriented manifolds, the Dolbeault operator for almost complex manifolds and the Dirac operator for spin manifolds are rigid [2]. In [30], Witten considered the indices of Dirac-like operators on the free loop space LX. The Landweber-Stong-Ochanine elliptic genus ([20], [28]) is just the index of one of these operators. Witten conjectured that these elliptic operators should be rigid. See [19] for a brief early history of the subject. Witten’s conjecture were first proved by Taubes [29] and Bott-Taubes [4]. Hirzebruch [13] and Krichever [15] proved Witten’s conjecture for almost complex manifold case. Various aspects of mathematics are involved in these proofs. Taubes used analysis of Fredholm operators, Krichever used cobordism, Bott-Taubes and Hirzebruch used Lefschetz fixed point formula. In [22, 23], using modularity, Liu gives simple and unified proof as well as various generalizations of the Witten conjecture. Several new vanishing theorems are also found in [22, 23]. Liu-Ma [24, 25] and Liu-Ma-Zhang [26, 27] established family versions of rigidity and vanishing theorems.

In this paper, we study rigidity and vanishing properties for Dirac operators twisted by E$_8$ bundles. Let X be an even dimensional closed spin manifold and D the Dirac operator on X. Let P be an (compact-)E$_8$ principal bundle over X. Let W be the vector bundle over X associated to the complex adjoint representation ρ of E$_8$. The twisted Dirac operator D^W plays a prominent role in string theory and M theory. In [31], the index of such twisted operator is discovered as part of the phase of the M-theory
action. In [8], the partition function in M-theory, involving the index theory of an E_8 bundle, is compared with the partition function in type IIA string theory described by K-theory to test M-theory/Type IIA duality. In this paper, we are interested in the equivariant index of the operator D^W and establish rigidity and vanishing theorems for this operator.

More precisely, let X be a $2k$-dimensional closed spin manifold, which admits a nontrivial S^1 action. Let P be an (compact-) E_8 principal bundle over X such that the S^1 action on X can be lifted to P as a left action which commutes with the free action of E_8 on P. Let W be the complex vector bundle associated to the complex adjoint representation of E_8 mentioned above. Then the S^1 action on P naturally induces an action on W by $g \cdot [s, v] = [g \cdot s, v]$, where $[s, v]$ with $s \in P, v \in \mathbb{C}^{248}$, is the equivalent classes defining the elements in W by the equivalent relations $(s, v) \sim (s \cdot h, \rho(h^{-1}) \cdot v)$ for $h \in E_8$. Let X^{S^1} be the fixed point manifold and π be the projection from X^{S^1} to a point pt. Let u be a fixed generator of $H^2(BS^1, \mathbb{Z})$. We have the following theorem:

Theorem 0.1. Assume the action only has isolated fixed points and the restriction of the equivariant characteristic class $\frac{1}{36}c_2(W)_{S^1} - p_1(TX)_{S^1}$ to X^{S^1} is equal to $n \cdot \pi^* u^2$ for some integer n.

(i) If $n < 0$, then $\text{Ind}(g, D^W)$ is independent of g and equal to $-\text{Ind}(D^{T_{C^X}})$, minus the index of the Rarita-Schwinger operator. In particular, one has $\text{Ind}D^W = -\text{Ind}D^{T_{C^X}}$ and when k is odd, i.e. $\dim X \equiv 2 \pmod{4}$, one has $\text{Ind}(g, D^W) \equiv 0$.

(ii) If $n = 0$, then $\text{Ind}(g, D^W)$ is independent of g. Moreover, when k is odd, one has $\text{Ind}(g, D^W) \equiv 0$.

(iii) If $n = 2$ and k is odd, then $\text{Ind}(g, D^W) \equiv 0$.

Actually we have established rigidity and vanishing results in more general settings concerning the twisted spinc Dirac operators. See Theorem 2.1 and Theorem 2.2 for details. The above theorem is a corollary of Theorem 2.1. We prove our theorems by studying the modularity of Lefschetz numbers of certain elliptic operators involving the basic representation of the affine Kac-Moody algebra of E_8. In the rest of the paper, we will first briefly review the Jacobi theta functions and the basic representation for the affine E_8 by following [16] (see also [17]) as the preliminary knowledge in Section 1 and then state our theorems as well as give their proofs in Section 2.

1. Preliminaries

1.1. Jacobi theta functions.

The four Jacobi theta-functions are defined as follows (cf. [5]),

\[
\theta(z, \tau) = 2q^{1/8} \sin(\pi z) \prod_{j=1}^{\infty} [(1 - q^j)(1 - e^{2\pi^2 \sqrt{-1} j} q^j)(1 - e^{-2\pi^2 \sqrt{-1} j} q^j)],
\]
\((1.2) \quad \theta_1(z, \tau) = 2q^{1/8} \cos(\pi z) \prod_{j=1}^{\infty} [(1 - q^j)(1 + e^{2\pi \sqrt{-1}z} q^j)(1 + e^{-2\pi \sqrt{-1}z} q^j)], \)

\((1.3) \quad \theta_2(z, \tau) = \prod_{j=1}^{\infty} [(1 - q^j)(1 - e^{2\pi \sqrt{-1}z} q^{j-1/2})(1 - e^{-2\pi \sqrt{-1}z} q^{j-1/2})], \)

\((1.4) \quad \theta_3(z, \tau) = \prod_{j=1}^{\infty} [(1 - q^j)(1 + e^{2\pi \sqrt{-1}z} q^{j-1/2})(1 + e^{-2\pi \sqrt{-1}z} q^{j-1/2})], \)

where \(q = e^{2\pi \sqrt{-1} \tau}, \ \tau \in \mathbb{H}, \) the upper half plane.

They are all holomorphic functions for \((z, \tau) \in \mathbb{C} \times \mathbb{H},\) where \(\mathbb{C} \) is the complex plane.

Let \(\theta'(0, \tau) = \frac{\partial }{\partial z} \theta(z, \tau)|_{z=0}. \) One has the following Jacobi identity (c.f. [5]),

\((1.5) \quad \theta'(0, \tau) = \pi \theta_1(0, \tau) \theta_2(0, \tau) \theta_3(0, \tau). \)

Let

\[SL(2, \mathbb{Z}) := \left\{ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \bigg| a_1, a_2, a_3, a_4 \in \mathbb{Z}, \ a_1a_4 - a_2a_3 = 1 \right\} \]

be the modular group. Let \(S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) be the two generators of \(SL(2, \mathbb{Z}). \) Their actions on \(\mathbb{H} \) are given by

\[S : \tau \mapsto -\frac{1}{\tau}, \ \ T : \tau \mapsto \tau + 1. \]

The actions on theta-functions by \(S \) and \(T \) are given by the following transformation formulas (c.f. [5]),

\((1.6) \quad \theta(z+1, \tau) = e^{\frac{\pi i \tau}{4}} \theta(z, \tau), \ \ \theta(z, -1/\tau) = \frac{1}{\sqrt{-1}} \left(\frac{\tau}{\sqrt{-1}} \right)^{1/2} e^{\pi \sqrt{-1} \tau z^2} \theta(\tau z, \tau); \)

\((1.7) \quad \theta_1(z+1, \tau) = e^{\frac{\pi i \tau}{4}} \theta_1(z, \tau), \ \ \theta_1(z, -1/\tau) = \left(\frac{\tau}{\sqrt{-1}} \right)^{1/2} e^{\pi \sqrt{-1} \tau z^2} \theta_2(\tau z, \tau); \)

\((1.8) \quad \theta_2(z+1) = \theta_3(z, \tau), \ \ \theta_2(z, -1/\tau) = \left(\frac{\tau}{\sqrt{-1}} \right)^{1/2} e^{\pi \sqrt{-1} \tau z^2} \theta_1(\tau z, \tau); \)

\((1.9) \quad \theta_3(z+1) = \theta_2(z, \tau), \ \ \theta_3(z, -1/\tau) = \left(\frac{\tau}{\sqrt{-1}} \right)^{1/2} e^{\pi \sqrt{-1} \tau z^2} \theta_3(\tau z, \tau). \)

One also has the following formulas about how the theta functions vary along the lattice \(\Gamma = \{ a + b\tau | a,b \in \mathbb{Z} \} \) (c.f. [5]),

\((1.10) \quad \theta(z + a, \tau) = (-1)^a \theta(z, \tau), \ \ \theta(z + b\tau, \tau) = (-1)^b e^{2\pi \sqrt{-1}\tau z - \pi \sqrt{-1}b^2 \tau} \theta(z, \tau); \)
The basic representation for the affine E_8. In this subsection we briefly review the basic representation for the affine E_8 following [16] (see also [17]).

Let \mathfrak{g} be the (complex) Lie algebra of E_8. Let \langle , \rangle be the Killing form on \mathfrak{g}. Let $\tilde{\mathfrak{g}}$ be the affine Lie algebra corresponding to \mathfrak{g} defined by

$$\tilde{\mathfrak{g}} = \mathbb{C}[t, t^{-1}] \otimes \mathfrak{g} \oplus \mathbb{C}c,$$

with bracket

$$[P(t) \otimes x + \lambda c, Q(t) \otimes y + \mu c] = P(t)Q(t) \otimes [x, y] + \langle x, y \rangle \text{ Res}_{t=0} \left(\frac{dP(t)}{dt}Q(t) \right) c.$$

Let \mathfrak{g} be the affine Kac-Moody algebra obtained from $\tilde{\mathfrak{g}}$ by adding a derivation $t \frac{d}{dt}$ which operates on $\mathbb{C}[t, t^{-1}] \otimes \mathfrak{g}$ in an obvious way and sends c to 0.

The basic representation $V(\Lambda_0)$ is the \mathfrak{g}-module defined by the property that there is a nonzero vector v_0 (highest weight vector) in $V(\Lambda_0)$ such that $cv_0 = v_0$, $(\mathbb{C}[t] \otimes \mathfrak{g} \oplus \mathbb{C}t \frac{d}{dt}) v_0 = 0$. Setting $V_i := \{ v \in V(\Lambda_0) | t \frac{d}{dt} v = -iv \}$ gives a \mathbb{Z}_4-gradation by finite dimensional subspaces. Since $[\mathfrak{g}, t \frac{d}{dt}] = 0$, each V_i is a representation of \mathfrak{g}. Moreover, V_1 is the adjoint representation of E_8.

Fix a basis $\{Z_i\}_{i=1}^8$ for the Cartan subalgebra. The character of the basic representation is given by

$$\text{ch}(z_1, z_2, \cdots, z_8, \tau) := \sum_{i=0}^{\infty} (\text{ch}V_i)(z_1, z_2, \cdots, z_8)q^i = \varphi(\tau)^{-8} \Theta_{\mathfrak{g}}(z_1, z_2, \cdots, z_8, \tau),$$

where $\varphi(\tau) = \prod_{n=1}^{\infty} (1 - q^n)$ so that $\eta(\tau) = q^{1/24} \varphi(\tau)$ is the Dedekind η function; $\Theta_{\mathfrak{g}}(z_1, z_2, \cdots, z_8, \tau)$ is the theta function defined on the root lattice Q by

$$\Theta_{\mathfrak{g}}(z_1, z_2, \cdots, z_8, \tau) = \sum_{\gamma \in Q} q^{||\gamma||^2/2e^{2\pi \sqrt{-1}\tau}(\sum_{i=1}^{8} z_i \gamma_i)}.$$

It is proved in [10] (cf. [11]) that there is a basis for the E_8 root lattice such that

$$\Theta_{\mathfrak{g}}(z_1, \cdots, z_8, \tau) = \frac{1}{2} \left(\prod_{l=1}^{8} \theta_8(z_l, \tau) + \prod_{l=1}^{8} \theta_1(z_l, \tau) + \prod_{l=1}^{8} \theta_2(z_l, \tau) + \prod_{l=1}^{8} \theta_3(z_l, \tau) \right).$$
2. E_8 Bundles and Rigidity

In this section we prove two rigidity and vanishing theorems for spinc manifolds with E_8 principal bundles. Theorem 0.1 is deduced from the first one (Theorem 2.1).

Let X be a $2k$ dimensional closed spinc manifold, which admits a non-trivial S^1 action that preserves the spinc structure. Let L be the complex line bundle associated with the spinc structure of X. It’s the associated line bundle of the $U(1)$-bundle $Q/spin(2k) \to Q/spin^c(2k) \cong X$, where Q is the spin$^c(2k)$ principal bundle over X determined by the spinc structure. We denote the first equivariant Chern class of L by $c_1(X)_{S^1}$. Then P be an E_8 principal bundle over X such that the S^1 action on X can be lifted to P as a left action which commutes with the free action of E_8 on P. Let W be the vector bundle associated to the complex adjoint representation of E_8 mentioned above. Then the S^1 action on P naturally induces an action on W as described in the introduction.

Let g^{TX} be a Riemannian metric on X. Let ∇^{TX} be the Levi-Civita connection associated to g^{TX}. Denote the complexification of TX by T_CX. Let g^{TX} and ∇^{TX} be the induced Hermitian metric and Hermitian connection on T_CX. Let h^L be a Hermitian metric on L and ∇^L be a Hermitian connection. Let \overline{L} be the complex conjugate of L with the induced Hermitian metric and connection. Assume that the S^1 action on X preserves the metrics and connections involved. Let $S_c(TX) = S_{c,+}(TX) \oplus S_{c,-}(TX)$ denote the bundle of spinors associated to the spinc structure, (TX, g^{TX}) and (L, h^L). Then $S_c(TX)$ carries induced Hermitian metric and connection preserving the above \mathbb{Z}_2-grading. Let $D_{c,\pm} : \Gamma(S_{c,\pm}(TX)) \to \Gamma(S_{c,\mp}(TX))$ denote the induced spinc Dirac operators (cf. [21]). If V is an equivariant complex vector bundle over X with equivariant Hermitian metric h^V and Hermitian connection ∇^V, let $D_{c,\pm}^V : \Gamma(S_{c,\pm}(TX) \otimes V) \to \Gamma(S_{c,\mp}(TX) \otimes V)$ denote the induced twisted spinc Dirac operators.

Theorem 2.1. Assume the action only has isolated fixed points and the restriction of the equivariant characteristic class

$$\frac{1}{30} c_2(W)_{S^1} + 3 c_1(X)_{S^1}^2 - p_1(TX)_{S^1}$$

to X_{S^1} is equal to $n \cdot \pi^* u^2$ for some integer n.

(i) If $n < 0$, then

$$\text{Ind}(g, D_{c,+}^{(1+T)} \otimes W) + \text{Ind}(g, D_{c,+}^{(1+\overline{T})} \otimes (T_CX - (L^2 + \overline{L}^2) + (L + \overline{L}))) \equiv 0.$$

In particular,

$$\text{Ind}D_{c,+}^{(1+T)} \otimes W + \text{Ind}D_{c,+}^{(1+\overline{T})} \otimes (T_CX - (L^2 + \overline{L}^2) + (L + \overline{L})) = 0.$$

(ii) If $n = 0$, then

$$\text{Ind}(g, D_{c,+}^{(1+\overline{T})} \otimes W) + \text{Ind}(g, D_{c,+}^{(1+T)} \otimes (T_CX - (L^2 + \overline{L}^2) + (L + \overline{L}))) = 0.$$
is independent of \(g\). Moreover, when \(k\) is odd, one has
\[
\text{Ind}(g, D_{c,+}^{(1+\overline{T})\otimes W}) + \text{Ind}(g, D_{c,+}^{(1+\overline{T})\otimes (\nabla \text{c}X-(L^2+\overline{T}^2)+(L+\overline{T}))}) \equiv 0.
\]

(iii) If \(n = 2\) and \(k\) is odd, then
\[
\text{Ind}(g, D_{c,+}^{(1+\overline{T})\otimes W}) + \text{Ind}(g, D_{c,+}^{(1+\overline{T})\otimes (\nabla \text{c}X-(L^2+\overline{T}^2)+(L+\overline{T}))}) \equiv 0.
\]

Proof. Let \(g = e^{2\pi \sqrt{-1}t} \in S^1\) be the generator of the action group. Let \(X_{S^1} = \{p\}\) be the set of fixed points. Let \(TX|p = E_1 \oplus \cdots \oplus E_k\) be the decomposition of the tangent bundle into the \(S^1\)-invariant 2-planes. Assume that \(g\) acts on \(E_j\) by \(e^{2\pi \sqrt{-1}t_{\alpha_j}}\), \(\alpha_j \in \mathbb{Z}\). Assume \(g\) acts on \(L|p\) by \(e^{2\pi \sqrt{-1}ct}\), \(c \in \mathbb{Z}\). Clearly,
\[
p_1(TM| p)_{S^1} = (2\pi \sqrt{-1})^2 \sum_{j=1}^{k} \alpha_j^2 t^2, \quad c_1(L| p)_{S^1} = 2\pi \sqrt{-1}ct.
\]

Denote \(L \oplus \overline{L}\) by \(L_C\). If \(E\) is a complex vector bundle over \(X\), set \(\tilde{E} = E - \text{c rk}(E) \in K(X)\).

Let \(\Theta(X, L, \tau)\) be the virtual complex vector bundle over \(X\) defined by
\[
\Theta(X, L, \tau) := \left(\bigotimes_{m=1}^{\infty} S_{q^m}(\tilde{\text{c}}X) \right) \otimes \left(\bigotimes_{u=1}^{\infty} \Lambda_{q^u}(\overline{L_C}) \right)
\]
\[
\otimes \left(\bigotimes_{v=1}^{\infty} \Lambda_{-q^{v-1/2}}(\overline{L_C}) \right) \otimes \left(\bigotimes_{w=1}^{\infty} \Lambda_{q^{w-1/2}}(\overline{L_C}) \right),
\]

Let \(W_i (i = 0, 1, \cdots)\) be the associated bundles \(P \times_{\rho_i} V_i\), where \(V_i\)'s are the representations of \(E_8\) as in §1.2. Then \(W = W_1\).

Consider the twisted operator
\[
D_{c,+}^{(1+\overline{T})\otimes \Theta(X, L, \tau) \otimes (\varphi^8(\tau) \sum_{i=0}^{\infty} W_i q^i)}.
\]

Expanding \(q\)-series, we have
\[
\Theta(X, L, \tau) \otimes (\varphi^8(\tau) \sum_{i=0}^{\infty} W_i q^i)
\]
\[
=(1 + (T_{\text{c}}X - 2k)q + O(q^2)) \otimes (1 + \tilde{L}_{\text{c}}q + O(q^2))
\]
\[
\otimes (1 - \tilde{L}_{\text{c}}q^{1/2} - 2\tilde{L}_{\text{c}}q + O(q^{3/2})) \otimes (1 + \tilde{L}_{\text{c}}q^{1/2} - 2\tilde{L}_{\text{c}}q + O(q^{3/2}))
\]
\[
\otimes (1 - 8q + O(q^2)) \otimes (1 + Wq + O(q^2))
\]
\[
=1 + (W - 8 + T_{\text{c}}X - 2k - 3\tilde{L}_{\text{c}} - \tilde{L}_{\text{c}} \otimes \tilde{L}_{\text{c}})q + O(q^2).
\]

It’s not hard to see that \(\tilde{L}_{\text{c}} \otimes \tilde{L}_{\text{c}} = L^2 + \overline{L}^2 - 4(L + \overline{L}) + 6\). So
\[
D_{c,+}^{(1+\overline{T})\otimes \Theta(M, L, \tau) \otimes (\varphi^8(\tau) \sum_{i=0}^{\infty} W_i q^i)}
\]
\[
=D_{c,+}^{(1+\overline{T})} + D_{c,+}^{(1+\overline{T})\otimes (W + T_{\text{c}}X - (L^2+\overline{L}^2)+(L+\overline{L})-8-2k)}q + O(q^2).
\]
By the Atiyah-Bott-Segal-Singer Letchselz fixed point formula, for the twisted operator $D^{(1+L)\otimes\Theta(X,L,\tau)\otimes(e^8(\tau)\sum_{i=0}^{\infty} W_i q^i)_c}$, the equivariant index

$$I(t, \tau) = \sum_{p} \left\{ \frac{1}{2(2\pi - 1)^k} \prod_{j=1}^{k} \frac{\theta'(0, \tau) \theta_1(\alpha_j t, \tau) \theta_3(0, \tau)}{\theta(\alpha_j t, \tau) \theta_1(0, \tau) \theta_3(0, \tau)} \right\}

(2.5)

\cdot \varphi^8(\tau) \cdot \left(\sum_{i=0}^{\infty} \text{ch}(W_i|_p) S^1 q^i \right).$$

On the fixed point p, fixing an element $s \in P|_p$, one can define a map $f_s : S^1 \to E_8$ by $g \cdot s = s \cdot f_s(g)$. It’s not hard to check that f_s is a group homomorphism. Moreover, for $h \in E_8$, we have

$$g \cdot (s \cdot h) = (g \cdot s) \cdot h = s \cdot f_s(g) \cdot h = (s \cdot h) \cdot (h^{-1} f_s(g) h).$$

As all the maximal tori in E_8 are conjugate, then one may choose $s \in P|_p$ such that f_s maps S^1 into the maximal torus t that corresponds to the Cartan subalgebra such that the theta function $\Theta_3(z_1, \cdots, z_8, \tau)$ appears as in (1.16). For any unitary representation $\rho : E_8 \to U(N)$, let \mathfrak{F} be a maximal torus of $U(N)$ that contains $\rho(t)$. Let

$$\hat{\mathfrak{F}} \overset{\hat{\rho}}{\longrightarrow} \overset{\hat{f}_s}{\longrightarrow} \overset{\hat{\mathfrak{S}}}{\longrightarrow} S^1$$

be the induced maps on the character groups. Assume $\hat{f}_s(z_i) = \beta_i t$. Let $\{x_i\}$ are basis for $\hat{\mathfrak{F}}$. By definition,

$$(\text{ch}\rho)(z_1, z_2, \cdots, z_8) = \sum_{i=1}^{N} e^{\hat{\rho}(x_i)},$$

and therefore

$$(\text{ch}\rho)(\beta_1 t, \beta_2 t, \cdots, \beta_8 t)$$

$= \hat{f}_s((\text{ch}\rho)(z_1, z_2, \cdots, z_8))$

$= \sum_{i=1}^{N} e^{(\hat{f}_s \circ \hat{\rho})(x_i)}$

$= \text{ch}((P \times_\rho \mathbb{C}^N)|_p)_{S^1}.$

So for each i, we have $\text{ch}(W_i|_p)_{S^1} = (\text{ch}V_i)(\beta_1 t, \beta_2 t, \cdots, \beta_8 t)$. Then by (1.14) and (1.16), we have

$$\varphi^8(\tau) \cdot \left(\sum_{i=0}^{\infty} \text{ch}(W_i|_p)_{S^1} q^i \right)$$

(2.6)

$$= \frac{1}{2} \left(\prod_{l_1=1}^{8} \theta(\beta_1 t, \tau) + \prod_{l_1=1}^{8} \theta_1(\beta_1 t, \tau) + \prod_{l_1=1}^{8} \theta_2(\beta_1 t, \tau) + \prod_{l_1=1}^{8} \theta_3(\beta_1 t, \tau) \right).$$
Comparing both sides of (2.6), we can see by direct computation that
\begin{equation}
30 \cdot (2\pi \sqrt{-1})^2 \sum_{l=1}^{8} \beta_l^2 t^2 = c_2(W|_p)_{S^1}.
\end{equation}

By (2.5) and (2.6), we have
\begin{equation}
I(t, \tau) = \sum_p \left\{ \frac{1}{(2\pi \sqrt{-1})^k} \prod_{j=1}^{k} \theta(0, \tau) \theta(\alpha_j t, \tau) \frac{\theta_1(c t, \tau)}{\theta_1(0, \tau)} \frac{\theta_2(c t, \tau)}{\theta_2(0, \tau)} \frac{\theta_3(c t, \tau)}{\theta_3(0, \tau)} \right\}.
\end{equation}

From the transformation laws of theta functions (1.10)-(1.13), for $a, b \in 2\mathbb{Z}$, it’s not hard to see that
\[I(t + a \tau + b, \tau) = e^{-\pi \sqrt{-1} n (b^2 \tau + 2br)} I(t, \tau). \]

Since when restricted to fixed points, \(\frac{1}{30} c_2(W)_{S^1} + 3c_1(L)_{S^1} - p_1(TX)_{S^1} \) is equal to $n \cdot \pi^* u^2$, then for each fixed point, from (2.1) and (2.7) we have
\[\sum_{l=1}^{8} \beta_l^2 + 3c^2 - \sum_{j=1}^{k} \alpha_j^2 = n \]
and therefore
\begin{equation}
I(t + a \tau + b, \tau) = e^{-\pi \sqrt{-1} n (b^2 \tau + 2br)} I(t, \tau).
\end{equation}

It’s easy to deduce from (1.6) that
\[\theta'(0, \tau + 1) = e^{\pi \sqrt{-1} \tau} \theta'(0, \tau), \quad \theta'(0, -1/\tau) = \frac{1}{\sqrt{-1}} \left(\frac{\tau}{\sqrt{-1}} \right)^{1/2} \tau \theta'(0, \tau). \]

Using the above two formulas and the transformation laws of theta functions (1.6)-(1.9), we have
\begin{equation}
I(t, \tau + 1) = I(t, \tau)
\end{equation}
and
\begin{equation}
I\left(\frac{t}{\tau}, -\frac{1}{\tau} \right) = \tau^{k+4} e^{\pi \sqrt{-1} \frac{(\sum_{j=1}^{k} \beta_j^2 + 3c^2 - \sum_{j=1}^{k} \alpha_j^2)}{a^2}} I(t, \tau) = \tau^{k+4} e^{\pi \sqrt{-1} \frac{a^2}{n}} I(t, \tau).
\end{equation}

(2.9)-(2.11) tell us that $I(t, \tau)$ obeys the transformation laws that a Jacobi form (see [9]) should satisfy.

Next we shall prove that $I(t, \tau)$ is holomorphic for $(t, \tau) \in \mathbb{C} \times \mathbb{H}$. First, we have the following lemma:

Lemma 2.1. $I(t, \tau)$ is holomorphic for $(t, \tau) \in \mathbb{R} \times \mathbb{H}$.

The proof of this lemma is almost verbatimly same as the proof of Lemma 1.3 in [22]. We shall prove that \(I(t, \tau)\) is actually holomorphic on \(\mathbb{C} \times \mathbb{H}\). The possible polar divisor of \(I(t, \tau)\) can be written in the form \(t = \frac{m(c\tau+d)}{l}\) for integers \(m, l, c, d\) with \((c, d) = 1\). Assume \(\frac{m(c\tau+d)}{l}\) is a pole for \(I(t, \tau)\). Find integers \(a, b\) such that \(ad - bc = 1\). Consider the function \(I\left(\frac{t}{c\tau+a}, \frac{d\tau-b}{c\tau+a}\right)\).

By (2.10) and (2.11), it’s easy to see that

\[
I\left(\frac{t}{c\tau+a}, \frac{d\tau-b}{c\tau+a}\right) = f(t, \tau) \cdot I(t, \tau),
\]

where \(f(t, \tau)\) is an entire function of \(t\) for every \(\tau \in \mathbb{H}\). If \(\tau' = \frac{a\tau+b}{c\tau+d}\), then \(\tau = \frac{d\tau'-b}{c\tau'+a}\) and \(\frac{m(c\tau'+a)+d}{l}\) is a pole for the function \(I\left(t, \frac{d\tau'-b}{c\tau'+a}\right)\).

However by (2.12), we have

\[
I\left(\frac{m(c\tau'+a)+d}{l}, \frac{d\tau'-b}{c\tau'+a}\right) = I\left(\frac{m}{l}, \tau'\right) \cdot I\left(\frac{m}{l}, \tau'\right).
\]

As \(\frac{m}{l}\) is real, by Lemma 2.1, we get a contradiction. Therefore \(I(t, \tau)\) is holomorphic for \((t, \tau) \in \mathbb{C} \times \mathbb{H}\).

Combining the transformation formulas (2.9)-(2.11) and the holomorphicity of \(I(t, \tau)\) on \(\mathbb{C} \times \mathbb{H}\), we see that \(I(t, \tau)\) is a weak Jacobi form of index \(\frac{n}{2}\) and weight \(k + 4\) over \((2\mathbb{Z})^2 \times SL(2, \mathbb{Z})\). Here by weak Jacobi form, we don’t require the regularity condition at the cusp but only require that at the cusp \(g\) appears with nonnegative powers only. We refer to [9] for the precise definition of the Jacobi forms.

If \(n = 0\), by (2.9), we see that \(I(t, \tau)\) is holomorphic on the torus \(\mathbb{C}/2\mathbb{Z} + 2\mathbb{Z}\tau\) and therefore must be independent of \(t\). So, by (2.4), we see that

\[
\text{Ind}(g, D_{c,+}^{(1+L)}) + \text{Ind}(g, D_{c,+}^{(1+L)\otimes(W+TcX-(L^2+L^2)+(L+L)-8-2k)})
\]

are both independent of \(g\). So

\[
\text{Ind}(g, D_{c,+}^{(1+L)\otimes W}) + \text{Ind}(g, D_{c,+}^{(1+L)\otimes(TcX-(L^2+L^2)+(L+L))})
\]

must be independent of \(g\). The index density of the operator

\[
D_{c,+}^{(1+L)\otimes W} + D_{c,+}^{(1+L)\otimes(TcX-(L^2+L^2)+(L+L))}
\]
involves the characteristic forms

\[\hat{A}(TM), e^{c_1(L)/2}(1 + e^{-c_1(L)}), \text{ch}(W), \text{ch}(T_C M), \text{ch}(L + L'), \text{ch}(L^2 + L'^2), \]

which are all of degree 4 (noting that \(W \) is the complexification of the real adjoint representation of compact \(E_8 \)). Therefore by the Atiyah-Singer index theorem, \(\text{Ind} D(g, D(1+L)c, + \text{Ind} D(g, D(1+L)c, + (T_C X - (L^2 + L'^2) + (L + L'))) \equiv 0 \).

This finishes the proof of part (ii).

If \(n \neq 0 \), i.e in the case of nonzero anomaly, we need the following two lemmas.

Lemma 2.2 (Theorem 1.2 in [9]). Let \(I \) be a weak Jacobi form of index \(m \) and weight \(h \). Then for fixed \(\tau \), if not identically 0, \(I \) has exactly \(2m \) zeros in any fundamental domain for the action of the lattice on \(\mathbb{C} \).

Lemma 2.3 (Theorem 2.2 in [9]). Let \(I \) be a weak Jacobi form of index \(m \) and weight \(h \). If \(m = 1 \) and \(h \) is odd, then \(I \) is identically 0.

We would like to point that Lemma 2.2 and Lemma 2.3 are stated in [9] for Jacobi forms. However, as in the proofs of them no regularity condition at the cusp are used, we state them here for weak Jacobi forms. See [9] for details.

If \(n < 0 \), then by Lemma 2.2, \(I(t, \tau) \equiv 0 \), therefore

\[\text{Ind}(g, D_{c,+}^{(1+L)c, + (T_C X - (L^2 + L'^2) + (L + L'))}) \equiv 0. \]

So part (i) follows.

If \(n = 2 \), as the the weight of \(I(t, \tau) \) is \(k + 4 \), so part (iii) similarly follows clearly from Lemma 2.3.

\[\square \]

Theorem 0.1 can be easily deduced from Theorem 2.1 as follows.

Proof of Theorem 0.1: When \(X \) is a spin manifold, \(L \) is trivial and \(D_{c,+} = D \).

By the Atiyah-Hirzebruch vanishing theorem ([2]), we have \(\text{Ind}(g, D) \equiv 0 \). Moreover by the Witten rigidity theorem ([29, 4, 22], the operator \(D_{T_C X} \) is rigid. i.e. \(\text{Ind}(g, D_{T_C X}) \equiv \text{Ind} D_{T_C X} \). Also note that \(\text{Ind} D_{T_C X} \) equals to 0 when \(k \) is odd. Then the three parts in Theorem 0.1 easily follow from the corresponding three parts in Theorem 2.1. \[\square \]

For Spin\(^c\) manifolds, we have rigidity and vanishing theorem for another type of twisted operators.
Theorem 2.2. Assume the action only has isolated fixed points and the restriction of the equivariant characteristic class

\[\frac{1}{30} c_2(W)_{S^1} + c_1(X)_{S^1}^2 - p_1(TX)_{S^1} \]

to \(X_{S^1}\) is equal to \(n \cdot \pi^* u^2\) for some integer \(n\).

(i) If \(n < 0\), then

\[\text{Ind}(g, D_{c,+}^{(1-L) \otimes W}) + \text{Ind}(g, D_{c,+}^{(1-L) \otimes (T_C X - (L + \bar{L}))}) \equiv 0. \]

In particular,

\[\text{Ind}D_{c,+}^{(1-L) \otimes W} + \text{Ind}D_{c,+}^{(1-L) \otimes (T_C X - (L + \bar{L}))} = 0. \]

(ii) If \(n = 0\), then

\[\text{Ind}(g, D_{c,+}^{(1-L) \otimes W}) + \text{Ind}(g, D_{c,+}^{(1-L) \otimes (T_C X - (L + \bar{L}))}) \]

is independent of \(g\). Moreover, when \(k\) is even, one has

\[\text{Ind}(g, D_{c,+}^{(1-L) \otimes W}) + \text{Ind}(g, D_{c,+}^{(1-L) \otimes (T_C X - (L + \bar{L}))}) \equiv 0. \]

(iii) If \(n = 2\) and \(k\) is even, then

\[\text{Ind}(g, D_{c,+}^{(1-L) \otimes W}) + \text{Ind}(g, D_{c,+}^{(1-L) \otimes (T_C X - (L + \bar{L}))}) \equiv 0. \]

Proof. We will use same notations as in the proof of Theorem 2.1.

Let \(\Theta^*(X, L, \tau)\) be the virtual complex vector bundles over \(X\) defined by

\[\Theta^*(X, L, \tau) := \left(\bigotimes_{m=1}^{\infty} S_{q^m}(T_C X) \right) \otimes \left(\bigotimes_{u=1}^{\infty} \Lambda_{-q^u} (\wedge_C) \right). \]

Consider the twisted operator

\[D_{c,+}^{(1-L) \otimes \Theta^*(X, L, \tau) \otimes (\varphi^8(\tau) \sum_{i=0}^\infty W_i q^i)}. \]

Expanding \(q\)-series, we have

\[\Theta^*(X, L, \tau) \otimes (\varphi^8(\tau) \sum_{i=0}^\infty W_i q^i) \]

\[= (1 + (T_C X - 2k)q) \otimes (1 - L_C q + O(q^2)) \]

\[\otimes (1 - 8q + O(q^2)) \otimes (1 + Wq + O(q^2)) \]

\[= 1 + (W + T_C X - (L + \bar{L}) - 2k - 6)q + O(q^2). \]

So

\[D_{c,+}^{(1-L) \otimes \Theta^*(X, L, \tau) \otimes (\varphi^8(\tau) \sum_{i=0}^\infty W_i q^i)} \]

\[= D_{c,+}^{(1-L)} + D_{c,+}^{(1-L) \otimes (W + T_C X - (L + \bar{L}) - 2k - 6)q + O(q^2)}. \]
By the Atiyah-Bott-Segal-Singer Letschetz fixed point formula, for this twisted operator $D_{c,+}(1-L)\otimes\Theta^*(X,L,\tau)\otimes(\phi^8(\tau)\sum_{i=0}^{\infty}W_iq^i)$, the equivariant index (2.16)
\[
\begin{align*}
J(t,\tau) &= 2\sum_p \frac{1}{(2\pi\sqrt{-1})^k} \prod_{j=1}^{k} \frac{\theta'(0,\tau)}{\theta(\alpha_j t,\tau)} \frac{\theta(ct,\tau)}{\theta_1(0,\tau)\theta_2(0,\tau)\theta_3(0,\tau)} \\
&\quad \cdot \phi^8(\tau) \cdot \left(\sum_{i=0}^{\infty} \text{ch}(W_i|p)q^i \right) \\
&= \sum_p \frac{1}{(2\pi\sqrt{-1})^k} \prod_{j=1}^{k} \frac{\theta'(0,\tau)}{\theta(\alpha_j t,\tau)} \frac{\theta(ct,\tau)}{\theta_1(0,\tau)\theta_2(0,\tau)\theta_3(0,\tau)} \\
&\quad \cdot \left(\prod_{l=1}^{8} \theta(\beta_l t,\tau) + \prod_{l=1}^{8} \theta_1(\beta_l t,\tau) + \prod_{l=1}^{8} \theta_2(\beta_l t,\tau) + \prod_{l=1}^{8} \theta_3(\beta_l t,\tau) \right).
\end{align*}
\]

As when restricted to fixed points, $\frac{1}{8}c_2(W)_{S^1} + c_1(L)_{S^1}^2 - p_1(TX)_{S^1}$ is equal to $n \cdot \pi^*u^2$, then for each fixed point, we have
\[
\sum_{l=1}^{8} \beta_l^2 + c^2 - \sum_{j=1}^{k} \alpha_j^2 = n.
\]

Therefore, similar to (2.9), one can show that for $a, b \in 2\mathbb{Z}$ (2.17)
\[
J(t + a\tau + b, \tau) = e^{-\pi\sqrt{-1}n(b^2\tau + 2br)}J(t, \tau).
\]

One can also show that (2.18)
\[
J(t, \tau + 1) = J(t, \tau)
\]
and
\[
J \left(\frac{t}{\tau}, -\frac{1}{\tau} \right) = \tau^{k+3} e^{\frac{\pi\sqrt{-1}nt^2}{\tau}} J(t, \tau).
\]

So similar to $I(t, \tau)$ in the proof of Theorem 2.1, combing Lemma 2.1 and the above transformation laws, we can prove that $J(t, \tau)$ is a weak Jacobi form of index $\frac{n}{2}$ and weight $k + 3$ over $(2\mathbb{Z})^2 \ltimes SL(2, \mathbb{Z})$.

Then one can prove the three parts of Theorem 2.2 almost the same as those in Theorem 2.1. The only difference one needs to notice is that by the Atiyah-Singer index theorem, $\text{Ind}D_{c,+}(1-L)\otimes\Theta^*(X,L,\tau)\otimes(\phi^8(\tau)\sum_{i=0}^{\infty}W_iq^i)$ must be 0 when the dimension of the manifold is divisible by 4 as the index density of the operator $D_{c,+}(1-L)\otimes\Theta^*(X,L,\tau)\otimes(\phi^8(\tau)\sum_{i=0}^{\infty}W_iq^i)$ is a differential form of degree $4l + 2$. \qed
Acknowledgements. The first author is partially supported by the Academic Research Fund R-146-000-163-112 from National University of Singapore. The second author is partially supported by NSF. The third author is partially supported by MOEC and NNSFC.

REFERENCES

[1] M. F. Atiyah, K–theory, Benjamin, New York, 1967.
[2] M. F. Atiyah and F. Hirzebruch, Spin manifolds and group actions. Essays on Topology and Related Topics. Memoires dédiés à Georges de Rham, Springer (1970), 18-28.
[3] N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators. Springer, 2002.
[4] R. Bott and C. Taubes, On the rigidity theorem of Witten, J. AMS, 2 (1989), 137-186.
[5] K. Chandrasekharan, Elliptic Functions. Springer-Verlag, 1985.
[6] Q. Chen, F. Han and W. Zhang, Generalized Witten genus and vanishing theorems, J. Diff. Geom. 88 (2011), 1-39.
[7] A. Dessal, Rigidity for spinc manifolds, Topology Vol. 39 (2000), 239-258.
[8] E. Diaconescu, G. Moore and E. Witten, E_8 gauge theory and a derivation of K-Theory from M-Theory, Adv. Theor. Math. Phys. 6 (2003) 1031.
[9] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhäuser Boston, Inc., Boston, Mass, 1985.
[10] T. Gannon and C. S. Lam, Lattices and θ-function identities. II. Theta series. J. Math. Phys. 33 (1992), 871-887.
[11] C. Harris, The index bundle for a family of Dirac-Ramond operators, Ph.D thesis, University of Miami, 2012.
[12] A. Hattori, Spinc-structures and S^1-actions, Invent. Math. 48 (1978) 7-31.
[13] F. Hirzebruch, Elliptic genera of level N from complex manifolds, in Differential Geometric Methods in Theoretic Physics, Kluwer, Dordrecht, 1988, 37-63.
[14] P. Hořava and E. Witten, Heterotic and Type I string dynamics from eleven dimensions, Nucl. Phys. B460 (1996) 506.
[15] P. Hořava and E. Witten, Eleven dimensional supergravity on a manifold with boundary, Nucl. Phys. B475 (1996) 94.
[16] V. G. Kac, An elucidation of: “Infinite-dimensional algebras, Dedekind’s η-function, classical Moebius function and the very strange formula”. $E_8(1)$ and the cube root of the modular function j, Adv. in Math., 35(3): 264-273, 1980.
[17] V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge, 3rd edition, 1990.
[18] I. Krizchever, Generalized elliptic genera and Baker-Akhiezer functions, Math. Notes, 47 (1990), 132-142.
[19] P. S. Landweber, Elliptic cohomology and modular forms, in Elliptic Curves and Modular Forms in Algebraic Topology, p. 55-68. Ed. P. S. Landweber. Lecture Notes in Mathematics Vol. 1326, Springer-Verlag (1988).
[20] P. S. Landweber and R.E. Stong, Circle actions on spin manifolds and characteristic numbers, Topology, 27 (1988), 145-161.
[21] H. B. Lawson and M.-L. Michelsohn, Spin Geometry. Princeton Univ. Press, 1989, MR 1031992. Zbl 0688.57001.
[22] K. Liu, On elliptic genera and theta functions, Topology, 35, (1996), 617-640.
[23] K. Liu, On modularity and rigidity theorems, J. Diff. Geom., 41 (1995), 343-396.
[24] K. Liu and X. Ma, On family rigidity theorems I, Duke Math. J., 102 (2000), 451-474.
[25] K. Liu and X. Ma, On family rigidity theorems for spin\(^c\) manifolds, *Mirror Symmetry* 4, AMS/IP Studies in Advanced Mathematics, Vol. 28 (2002).

[26] K. Liu, X. Ma and W. Zhang, Rigidity and vanishing theorems in K-theory, *Comm. Anal. Geom.*, 11(1), (2003), 121-180.

[27] K. Liu, X. Ma and W. Zhang, Spin\(^c\) manifolds and rigidity theorems in K-theory, *Asian J. Math.*, 4, (2000), 933-960.

[28] S. Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, *Topology*, 26 (1987), 143-151.

[29] C. Taubes, S\(^1\) actions and elliptic genera, *Comm. Math. Phys.*, 122 (1989), 455-526.

[30] E. Witten, The index of the Dirac operator in loop space, in [19].

[31] E. Witten, On flux quantization in M-Theory and the effective action, *J. Geom. Phys.*, 22 (1997) 1-13.

[32] W. Zhang, *Lectures on Chern-Weil Theory and Witten Deformations*. Nankai Tracts in Mathematics Vol. 4, World Scientific, Singapore, 2001.