Early Initiation of Breastfeeding and Its Associated Factors Among Mothers Who Delivered Vaginally in South Gondar Zone Hospitals, Northwest Ethiopia, 2020

Bekalu Getnet Kassa
Department of Midwifery, College of Health Science, Debre Tabor University, Debre Tabor, Amhara, Ethiopia

Purpose: The early onset of skin-to-skin contact encourages the infant to breastfeed within one hour of birth. The aim of this study was to assess the prevalence of early onset breastfeeding and its associated factors among vaginal delivered mothers in hospitals in the South Gondar Zone of Northwest Ethiopia in 2020.

Methods: From January 12 to February 03, 2020, an institutional-based cross-sectional study was used in South Gondar Zone hospitals. A total of 356 mothers delivered by vaginal were included. Data was collected using a questionnaire administered by the interviewer and entered into version 3.1 of EpiData, and then exported to SPSS version 23.0.0. To classify factors correlated with the outcome variables, logistic regression statistical analyses were used.

Results: In the study area, the prevalence of early breastfeeding initiation among vaginally delivered mothers was 88.2%. Mothers who had intended pregnancy [adjusted OR=6.00, 95% CI=2.8, 12.5], had professional guidance [adjusted OR=2.75, 95% CI=1.2, 5.6] and experience with breastfeeding [adjusted OR=1.79 95% CI=1.19, 2.68] among vaginal delivered mothers were positively correlated with early breastfeeding initiation.

Conclusion: The type of pregnancy and professional guidance among vaginally delivered mothers were significantly associated with early initiation of breastfeeding. Community-based education and counseling on breastfeeding for pregnant mothers and encouraging all mothers to start early breastfeeding.

Keywords: proportion, early initiation of breastfeeding, Ethiopia

Background
Breastfeeding (BF) is the act of feeding the mother’s milk to the infant. It is the preferred food to any product provided to the baby for all children, and it is cost effective, new, and easily accessible.¹

In order to minimize baby, child and maternal morbidity and mortality, breastfeeding is both a primary public health policy and helps to manage a health-care costs. In addition to health benefits for the mother and economic benefits for the family and the society as a whole, it also offers the child nutritional, immunological, developmental and psychological benefits.² ³

Early breastfeeding initiation (EIBF) is described as bringing the newborn to the breast within one hour of birth. It is one of the ten effective steps of breastfeeding...
practice and one of the main measures of determining the effective practice of feeding infants and young children.\(^4\)

The EIBF is important for stimulating the production of breast milk by mothers, increasing maternal-infant bonding, improving cognitive development, promoting optimal growth and metabolic skills, improving infant responses to infection and reducing allergic diseases, etc.\(^5,6\)

Globally, in the first month of life, 2.5 million children died in 2017, most of which occurred in the first week, of around 1 million dying on the first day and about 1 million dying in the next six days. In sub-Saharan Africa and South Asia, neonatal mortality was also highest, with an estimated 27 deaths per 1000 live births each in 2017.\(^7\)

In developing countries alone, the EIBF could save as many as 1.45 million lives each year by reducing deaths mainly due to childhood diarrheal disorders and lower respiratory tract infections, but children are still death in the area because of diarrheal disorders and lower respiratory tract infections due to delayed initiation of breastfeeding.\(^8,9\)

Children in Ethiopia suffer from poor health; before their 5th birthday, approximately 472,000 children are dying every year, making Ethiopia 6th among the world’s countries in terms of absolute number of child deaths. In the first 30 days of life, the age distribution of deaths under Five was 55 per thousand live births, 29% from the first month to the 11th month of life, and 42% from the first year to the fourth decade. In Ethiopia, neonatal mortality is very high, making Ethiopia sixth in the world in neonatal mortality, and children in Ethiopia suffer and die in large numbers from preventable and treatable factors, particularly delayed initiation of breastfeeding.\(^10\)

Some factors influence the EIBF, including such socio-demographic, obstetric characteristics of mothers and health care support services exposure.\(^11,12\)

The Ethiopian Ministry of Health also targeted an increase in the proportion of newborn babies put to breast within the first hour of life to 92% by 2015 as one strategy to improve infant health by recognizing the undeniable role of the EIBF in reducing child mortality.\(^13\)

Fortunately, the 2016 Ethiopian Demographic and Health Survey (EDHS) showed that 73% of children who were breast-fed in the first hour of life and the Amhara region was the second lowest region in the EIBF, which was 66%.\(^14\)

While evidence exists on the proportion and associated factors of EIBF in different regions of the world, so far there has been an information gap on the proportion and associated factors of early onset of breastfeeding among vaginal mothers who have been delivered. The goal of this study was indeed to determine the proportion of EIBF among vaginal delivered mothers and to identify factors affecting the EIBF in the South Gondar Zone, Northwest Ethiopia, 2020.

**Methods**

**Study Setting**

The study was conducted in the South Gondar Zone, which is situated in the central part of the region of Amhara and in the northwestern part of Ethiopia. The area is located about 668 km from the capital city of Ethiopia, Addis Ababa, and 103 km from the regional state of Amhara, Bahir Dar. The administrative town of the South Gondar Zone is Debre Tabor. With a population of 2,609,823, the Zone has 18 districts (1,304,911 females and 1,304,912 males). There are eight government hospitals, 96 public health centers, 140 private clinics and 403 state health facilities in the Zone.\(^15\)

**Study Design and Period**

An institutional cross-sectional study was conducted in hospitals in the South Gondar Zone, Ethiopia, from 12 January 2020 to 03 February 2020.

**Source Population**

All mothers who delivered vaginally in South Gondar hospitals.

**Study Population**

All mothers who delivered vaginally during the study period in South Gondar Zone hospitals were considered as the study population.

**Eligibility Criteria**

The study included all mothers who gave birth and registered in the delivery registration book in hospitals in the South Gondar Zone. Mothers with postnatal complications (third degree tear, PPH, postpartum eclampsia, postpartum depression) and babies have some medical conditions that include separation from the mother; the study excluded neonates admitted to the NICU.

**Sample Size Determination**

The sample size was estimated using a single population proportion formula and the required sample size was determined using the following assumptions for this study; desired
precision (d) = 4%, confidence level = 95% (Z alpha/2 = ±1.96 value) and 81.9% of the prevalence of vaginally delivered mothers. Therefore, 356 was the final calculated sample size.

Sampling Procedures
In order to obtain appropriate samples, all hospitals that offer vaginal delivery service were taken. Then, using proportional allocation of size (PAS), a sample from each hospital was calculated. Finally, all mothers who delivered vaginally to get the appropriate sample size were selected using simple random sampling (see Figure 1).

Operational Definitions
Early initiation of breastfeeding: mothers who have begun breastfeeding within one hour of birth. Knowledge about early initiation of breastfeeding: eight knowledge-related EIBF questions were posted to mothers and each correct answer was given a value of 1 and an incorrect answer was given a value of 0. It was dichotomized into good knowledge, mean, bad knowledge, < mean, after measuring the sum for and respondent and mean.

Professional guidance to initiate BF: Professionals who instruct and assist the mother by explaining how to carry the infant, how to practice positioning and bonding within one hour to begin breastfeeding.

EIBF social/family support: any attendant who promotes, supports and shares the mother’s experience in order to start breastfeeding within an hour.

Data Collection Tools and Procedure
For data collection, a pre-tested and structured, self-administered questionnaire was used. After reviewing related work in scientific literature, the questionnaire was adopted. In order to ensure the accuracy of the instrument, the instrument was first prepared in English, then translated to Amharic and back to English by language experts. Using a standardized and pre-tested questionnaire, data was collected via face-to-face interviews. The face-to-face interviews were performed by six diploma holder nurses and two BSc degree midwives supervised the data collection process.

![Schematic presentation of sampling procedures in selecting VD mothers in South Gondar zone hospitals, 2020.](image-url)

**Figure 1** Schematic presentation of sampling procedures in selecting VD mothers in South Gondar zone hospitals, 2020.

**Abbreviations:** DGH, Debre Tabor General Hospital; NMH, Nifas Mewucha Hospital; MEH, Meleysus Hospital; AZH, A/Zemen Hospital; EBH, Ebenat Hospital; AGH, Arba Gebeya Hospital; SH, Simada Hospital and AH, Andabet Hospital.
Data Quality Assurance
A pre-test was performed in Addis Alem hospital on 36 mothers who gave birth vaginally; the instrument was then amended accordingly. Any mistake, uncertainty or incompleteness found was immediately corrected. The data collectors were trained on the contents of the questionnaire, data collection methods and the purpose of the study for one day. The method of data collection was supervised during the data collection period by the supervisor and the investigator.

Data Analysis
Using Epi data version 3.1, the data collected was entered and cleaned, then exported to SPSS version 23 for analysis. To summarize the data, descriptive analysis was performed and the final outcome of the study was interpreted in the form of text, figures and tables. Binary logistic regression analysis was carried out to see the association between independent and dependent variables. All explanatory variables with p<0.2 in bivariable logistic regression were entered into a multivariable logistic regression model and a significant correlation was established based on p<0.05 and an odds ratio with 95% CI in multivariable logistic regression.

Ethical Approval and Consent to Participants
This study was carried out according to the Helsinki Declaration. Ethical clearance was obtained from the Institutional Review Board (IRC) of Debre Tabor University College of Health Sciences University (IRB reference number: CHS/IRB 03–008). Further approval was also granted from the South Gondar Zone Administrative Health Office. The purpose of the study has been told for each study participant and the participants in the study have the right to refuse or discontinue participation in the research without restriction. Written informed consent was obtained from each participant before data collection and confidentiality was assured; and written informed consent was obtained from parent or guardians for those age<18 years.

Results
Socio-Demographic Characteristics of Mothers and Their Husbands
Of the 356 mothers, 348 mothers participated in a survey with a response rate of 97.8%. The highest proportion of VD mothers in the age group was 159 (45.7%) aged 25–29 years. The average age of the mother was 26.71 (SD ± 4.8) years. Nearly three-fourth 259 (74.5%) of VD mothers were urban residents. Almost all mothers, 342 (98.3%) were ethnic Amhara and 272 (78.2%) were Orthodox Christian followers. As far as mothers’ educational status is mentioned, at least 184 (52.7%) mothers have finished secondary school. As far as husbands ‘educational status is concerned, 233 (67%) mothers’ husbands attended at least secondary school (see Table 1).

Maternal Knowledge on EIBF and BF Experience
Two hundred and sixty-seven (76.7%) mothers knew about the EIBF. With regard to the EIBF information source, 236 (67.8%) mothers stated that the key source of information on EIBF was health professionals. Almost all mothers, 347 (99.7%) confirmed that breast milk had to be given to the baby first after birth. Two hundred and fifty-six (73.5%) mothers knew the recommended time to start BF. As far as maternal knowledge of the EIBF is concerned, two hundred and sixty (74.7%) mothers had good knowledge of the EIBF. Regarding BF experience, 205 (58.9%) of mothers were experienced in BF (see Table 2).

Obstetric and Health Service-Related Characteristics
As for the form of pregnancy, 295 (84.8%) of mothers indicated that their pregnancy was expected. Almost all 345 (99.1%) mothers had a history of ANC visits during pregnancy. Ninety-one (26.1%) mothers offered guidance from the EIBF during the ANC visit. As far as the EIBF’s professional advice was concerned, two hundred ninety-nine (85.9%) of mothers had professional guidance from the EIBF. Two hundred and nine (60.1%) of mothers were multi gravidas. In terms of duration of labor pain, 330 (94.8%) of mother’s labor pain was less than 12 hours (see Table 3).

Infant and Social-Related Characteristics
According to this result, 180 (51.7%) mothers gave birth to a female child. Three hundred and twenty (92%) of mothers received social assistance from the EIBF.

Proportion of EIBF Among Vaginal Delivered Mothers
In South Gondar Zone hospitals, the total proportion of EIBF among vaginal delivered mothers was 88.2% with (95% CI (85%, 92%) with p<0.001.
Reasons for Late Initiation of Breastfeeding

The main reasons for delayed (late) initiation of breastfeeding claimed by the study participants were 58.3% of pain and discomfort, 33.3% of delayed milk secretion, and 8.3% of no specific reason.

Factors Associated with EIBF Among Vaginal Delivered Mothers

In order to test EIBF practice, two models were fitted. The first model was designed to analyze EIBF-related factors among vaginal delivered mothers. Among vaginally delivered mothers, variables such as type of pregnancy and

Table 1 Socio-Demographic Characteristics of Mothers and Their Husbands in South Gondar Zone Hospitals, Northwest Ethiopia, 2020

| Variables                | EIBF (n=348) |   |   |   |   |
|--------------------------|--------------|---|---|---|---|
|                          | Yes          | Percent | No | Frequency | Percent |
| Maternal age             |              |         |   |           |         |
| 15–19                    | 23           | 6.6     | 6 | 1.7       |
| 20–24                    | 78           | 22.4    | 8 | 2.3       |
| 25–29                    | 144          | 41.4    | 15| 4.3       |
| 30–34                    | 50           | 14.5    | 7 | 2         |
| 35 and above             | 12           | 3.4     | 5 | 1.4       |
| Residence                |              |         |   |           |         |
| Urban                    | 229          | 65.8    | 30| 8.6       |
| Rural                    | 78           | 22.4    | 11| 3.2       |
| Marital status           |              |         |   |           |         |
| Married                  | 287          | 87.5    | 35| 10.1      |
| Unmarried#               | 20           | 5.7     | 6 | 1.7       |
| Religion                 |              |         |   |           |         |
| Orthodox                 | 245          | 70.4    | 27| 7.8       |
| Muslim                   | 53           | 15.3    | 11| 3.2       |
| Others*                  | 9            | 2.6     | 3 | 0.9       |
| Maternal education       |              |         |   |           |         |
| Not formal education     | 61           | 17.5    | 9 | 2.6       |
| Primary school           | 69           | 19.8    | 13| 3.7       |
| Secondary school and above| 177         | 50.9    | 19| 5.5       |
| Husband education        |              |         |   |           |         |
| Not formal education     | 53           | 15.2    | 6 | 1.7       |
| Primary school           | 50           | 14.4    | 6 | 1.7       |
| Secondary school and above| 204         | 58.6    | 29| 8.3       |
| Maternal occupation      |              |         |   |           |         |
| Government employed      | 37           | 10.6    | 4 | 1.1       |
| Self employed            | 68           | 19.5    | 8 | 2.3       |
| Daily laborer Housewife  | 19           | 5.5     | 9 | 2.6       |
| Farmer                   | 117          | 33.6    | 10| 2.9       |
| Others                   | 66           | 19      | 10| 2.9       |
| Husband occupation       |              |         |   |           |         |
| Government Employed      | 92           | 28      | 7 | 2.1       |
| Self employed            | 118          | 35.9    | 12| 3.6       |
| Daily laborer            | 21           | 6.4     | 5 | 1.5       |
| Farmer                   | 65           | 19.8    | 9 | 2.7       |

Notes: Other*, Protestant, catholic, Jehovah, no religion; #Single, divorced and widowed.
Table 2 Maternal Knowledge on EIBF and BF Experience in South Gondar Zone Hospitals, Northwest Ethiopia, 2020

| Variables                              | EIBF & BF (n=348) |
|----------------------------------------|-------------------|
|                                        | Yes | No  |
|                                        | Frequency Percent | Frequency Percent |
| Did you hear about BF?                 |      |     |
| Yes                                    | 197  | 56.6 | 70  | 20.1 |
| No                                     | 32   | 9.2  | 49  | 14.1 |
| Source of Information                  |      |     |
| Health professional's                 | 159  | 45.7 | 77  | 22.1 |
| Media                                  | 76   | 21.8 | 36  | 10.3 |
| Did you know recommended timing of initiating of BF? |      |     |
| Yes                                    | 218  | 62.6 | 38  | 10.9 |
| No                                     | 63   | 18.1 | 29  | 8.3  |
| Maternal knowledge on EIBF & BF        |      |     |
| Good                                   | 233  | 66.9 | 27  | 7.7  |
| Poor                                   | 74   | 21.3 | 14  | 4.0  |
| Breastfeeding experiences              |      |     |
| Yes                                    | 187  | 53.7 | 18  | 5.2  |
| No                                     | 120  | 34.5 | 23  | 6.6  |

professional advice for EIBF were significantly associated with EIBF. In contrast to mothers with unintended pregnancy, mothers with planned pregnancy were 6.00 times (AOR=6.00, 95% CI=2.86, 12.56) more likely to start BF within one hour. Mothers who obtained professional guidance from the EIBF were 2.75 times more likely to start BF early than those mothers who did not receive professional guidance from the EIBF (AOR=2.75, 95% CI=1.20, 6.34). Mothers with BF experience were 1.79 times (AOR=1.79, 95% CI=1.19, 2.68) more likely than their counterparts to start BF within one hour (see Table 4).

**Discussion**

The goal of this study was to determine the prevalence of EIBF and associated factors among mothers with vaginal delivery in the South Gondar Zone of Northwest Ethiopia.

The study found that the prevalence of early initiation of breastfeeding among vaginal delivery within one hour was 88.2%. The result was consistent with the study in Bahir Dar, Ethiopia (87%). This may be due to the similarity of the nature of the study, the social demographic variables and the population of the study.

On the other hand, this result was higher than the two studies in Bangladesh, which were 57% and 67% among vaginal delivered mothers. This disparity may be due to the difference in nature of the study, because the study performed in Bangladesh was an observational study, but this study was a cross-section study.

This result was also higher compared to the study conducted in India (65.2%), Nepal (55%) and Bangladesh (67%) among vaginal delivered mothers who began breastfeeding within one hour. This disparity may be due to variations in the time of the research, the nature of the study, maternal socio-demographic characteristics such as access to information, educational status, cross-cultural disparities in breastfeeding practice and the characteristics of health service use.
Table 4 Multivariable Analysis of EIBF Among VD Mothers in South Gondar Zone Hospitals, Northwest Ethiopia, 2020 (N= 348)

| Variables                        | EIBF | COR, 95% CI       | AOR, 95% CI       | P-value |
|----------------------------------|------|-------------------|-------------------|---------|
|                                  | Yes  | No                |                   |         |
| Receive professional guidance    | 269  | 38                | 2.59 (1.20, 5.60) | 2.75 (1.20, 6.34) | 0.017* |
|                                  | Yes  | No                | I                 | I       |         |
| Duration of labour               |      |                   |                   |         |
| ≤ 12 hrs                         | 295  | 35                | 4.21 (1.48, 11.93) | 3.02 (0.95, 9.52) | 0.059 |
| >12 hrs                          | 12   | 6                 | I                 | I       |         |
| Type of pregnancy                |      |                   |                   |         |
| Intended                         | 272  | 23                | 6.08 (6.99, 12.37) | 6.00 (2.86, 12.56) | <0.001** |
| Unintended                       | 35   | 18                | I                 | I       |         |
| Knowledge on EIBF                |      |                   |                   |         |
| Good                             | 233  | 27                | 1.63 (0.81, 3.27) | 1.43 (0.66, 3.10) | 0.36  |
| Poor                             | 74   | 14                | I                 | I       |         |
| BF experience                    |      |                   |                   |         |
| Yes                              | 187  | 18                | 1.99 (1.03, 3.84) | 1.79 (1.19, 2.68) | 0.005** |
| No                               | 120  | 23                | I                 | I       |         |
| Number of ANC visit              |      |                   |                   |         |
| Four and above                   | 168  | 15                | 2.09 (1.06, 4.11) | 1.18 (0.55, 2.54) | 0.65  |
| Less than four                   | 139  | 26                | I                 | I       |         |

Notes: *p-value <0.05, **p-value <0.01.

However, the EIBF rate in our study was 88.2% higher than the other studies performed in Ethiopia (48.8% in 2000 to 75.7% in 2016), Debre Tabor (76.8%), Tigray (61.9%) and Wolayita zone (81.1%). This discrepancy may be attributable to the study’s time gap; as the study develops their awareness, attitude and practice towards early initiation of breastfeeding close to this century.

The results of the multivariate analysis showed that the variables were statistically significant to the practice of the EIBF, including professional guidance received, unintended pregnancy and prior experience of breastfeeding.

This result showed that the professional guidance received was substantially correlated with early initiation of breastfeeding. This finding was supported by studies conducted in Brazil, Indonesia, Bangladesh, Romania and Uganda which showed that professional assistance or advice after delivery increased the EIBF by mothers.

This may be due to the fact that the support and inspiration of health professionals encourages mothers to take a stand in EIBF service. A professional and well-trained health-care provider can encourage mothers to encourage early breastfeeding and explain the benefits of early breastfeeding, counseling on the risks and long-term risks of pre-lacteal feeding, and the benefits of the EIBF and the continuation of breastfeeding.

The type of pregnancy has also been significantly associated with EIBF for mothers with vaginal delivery. According to this result, mothers with intended pregnancy were more likely to initiate BF early than mothers with unintended pregnancy, which was consistent with studies conducted in Turkey, Philippines and Eastern zone Tigray Ethiopia. This may be explained by the fact that the attitude of women towards their baby will affect their probability of child care and, ultimately, their decision to initiate breastfeeding timely.

Mothers who had prior breastfeeding experience were 1.79 times more likely to start breastfeeding within one hour compared to their counterparts. This finding was supported by studies in Tabriz [35], Nigeria, and Egypt. The reason for this may be due to the exposure of mothers who have breastfeeding experience to professional counseling, their experience of how to feed the baby breast and how to hold and attach the baby could assist mothers to start early breastfeeding.

One of the strengths of this study random selection of almost 356 women from a representative list should...
minimize the likelihood of selection bias. This study has some limitations. First; data of the study are cross-sectional nature of the study limits to set a causal-effect relationship between dependent and independent variables. Second; since it is based on mothers report the exact time that is the first one hour after birth might be difficult to measure. Third; selection bias might be also the limitation of the study. Forth; vaginal delivered mothers delivered in health centers in south Gondar zone were not included.

Conclusions
In the study area, the prevalence of early initiation of early breastfeeding was high. Professional advice on EIBF, type of pregnancy and prior experience of breastfeeding among vaginal delivered mothers was significantly associated with early initiation of breastfeeding. Community-based breastfeeding education and counseling is recommended for pregnant mothers and encourages all mothers to promote early breastfeeding.

Abbreviations
BF, Breastfeeding; EDHS, Ethiopian Demographic and Health Survey; EIBF, Early initiation of breastfeeding; NICU, Neonatal intensive care unit.

Acknowledgments
The author would like to acknowledge Debre Tabor University for ethical clearance and technical support as well as the study participants and data collectors and supervisors.

Funding
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Disclosure
The author declares that they have no conflict of interest regarding this work or the publication of this paper.

References
1. Ford R, Taylor BJ, Mitchell EA, et al. Breastfeeding and the risk of sudden infant death syndrome. Int J Epidemiol. 1993;22(5):885–890. doi:10.1093/ije/22.5.885
2. Zenebu BB, et al. Knowledge and practice of mothers towards exclusive breastfeeding and its associated factors in ambo woreda west shoa zone oromia region. Ethiopia Epidemiology. 2015;5:1.
3. Jain A, Tyagi P, Kaur P, et al. Association of birth of girls with postnatal depression and exclusive breastfeeding; an observational study. BMJ Open. 2014;4(6). doi:10.1136/bmjopen-2013-003545
4. Vicrta CG, Bahl R, Barros AJD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–490. doi:10.1016/S0140-6736(15)01024-7
5. Karkee R, Lee AH, Khanal V, et al. Initiation of breastfeeding and factors associated with prelacteal feeds in Central Nepal. J Human Lactation. 2014;30(3):353–357. doi:10.1177/0890334414529845
6. Edmond KM, et al. Delayed breastfeeding initiation increases risk of neonatal mortality. Pediatrics. 2012;117(3):e380–e386. doi:10.1542/peds.2005-1496
7. https://data.unicef.org.Child-survival/neonatal-mortality. 2017.
8. Woldemichael B. Timely initiation of breastfeeding and its associated factors among mothers in Tiyo Woreda, Arsi Zone, Ethiopia: A community-based cross sectional study. Clinics Mother Child Health. 2016;13(1):2. doi:10.4172/2090-7214.1000221
9. Baye K. Estimates of Dietary Quality in Infants and Young Children (6–23 Months): evidence from Demographic and Health Surveys of 48 Low-And Middle-Income Countries’. SSRN Electronic J. 2018. doi:10.2139/ssrn.3279184
10. IBFAN. Report on the Situation of Infant and Young Child Feeding in Ethiopia. April 2015.
11. Senarath U, Siriwardena I, Godakandage SS, Jayawickrama H, Fernando DN, Dibley MJ. Determinants of breastfeeding practices: an analysis of the Sri Lanka demographic and health survey 2006–2007. Matern Child Nutr. 2012;8(3):315–329. doi:10.1111/j.1740-8709.2011.00321.x
12. Adhihari M, Khanal V, Karkee R, Gavidia T. Factors associated with early initiation of breastfeeding among Nepalese mothers: further analysis of Nepal Demographic and Health Survey. 2011. Int Breastfeed J. 2014;9(1):21. doi:10.1186/s13006-014-0021-6
13. Ip S, et al. Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess (Full Rep). 2007;153:1–186.
14. Central Stastics Agency (CSA). Ethiopian Demographic Health Survey; 2016.
15. Survey of South Gondar Zonal Health Office Report. Health department office, 2019.
16. Butte NF, Lopez-Alarcon MG, Garza C. Nutrient Adequacy of Exclusive Breastfeeding for the Term Infant During the First Six Months of Life. World Health Organization; 2002.
17. Chekol DA, et al. Exclusive breastfeeding and mothers’ employment status in Gondar town, Northwest Ethiopia: a comparative cross-sectional study. Int Breastfeed J. 2017;12(1):27. doi:10.1186/s13006-017-0118-9
18. Munir Seid A. Vaginal delivery and maternal knowledge on correct breastfeeding initiation time as predictors of early breastfeeding initiation: lesson from a community-based cross-sectional study. ISRN Epidemiol. 2014;2014:904609. doi:10.1155/2014/904609
19. Samad N, Haque M, Sultana S. Pattern of delivery and early initiation of breastfeeding: an urban slum based cross cut study. J Nutr Food Enginering. 2017;7:00244.
20. Karim F, Billah SM, Chowdhury MAK, et al. Initiation of breastfeeding within one hour of birth and its determinants among normal vaginal deliveries at primary and secondary health facilities in Bangladesh: a case-observation study. PLoS One. 2018;13(8): e0202508. doi:10.1371/journal.pone.0202508
21. Badaya N, Jain S, Kumar N. Time of initiation of breastfeeding in various modes of delivery and to observe the effect of low birth weight and period of gestation on initiation of breastfeeding. Int J Contemporary Pediatrics. 2018;5(4):1509–1517. doi:10.18203/2349-3291.ijcp20182555
22. Ghimire U. The effect of maternal health service utilization in early initiation of breastfeeding among Nepalese mothers. Int Breastfeed J. 2019;14(1):33. doi:10.1186/s13006-019-0228-7
23. Ahmed KY, Page A, Arora A, et al. Trends and determinants of early initiation of breastfeeding and exclusive breastfeeding in Ethiopia from 2000 to 2016. Int Breastfeed J. 2019;14(1):40. doi:10.1186/s13006-019-0234-9

24. Abie BM, Goshu YA. Early initiation of breastfeeding and colostrum feeding among mothers of children aged less than 24 months in Debre Tabor, northwest Ethiopia: a cross-sectional study. BMC Res Notes. 2019;12(1):65. doi:10.1186/s13104-019-4094-6

25. Gebremeskel SG, Gebre T, Gebrehiwot BG, et al. Early initiation of breastfeeding and associated factors among mothers of aged less than 12 months children in rural eastern zone, Tigray, Ethiopia: cross-sectional study. BMC Res Notes. 2019;12(1):671. doi:10.1186/s13104-019-4718-x

26. Lake E, Gelaw K. Prevalence of timely initiation of breastfeeding practice among primiparous mothers at Bedessa Town, Wolaita Zone, Southern Ethiopia, 2018: A community based cross-sectional study. J Prenatal Child Health. 2019;6(408):2.

27. Vieira TO, Vieira GO, Giugliani ERJ, et al. Determinants of breastfeeding initiation within the first hour of life in a Brazilian population: cross-sectional study. BMC Public Health. 2010;10(1):760. doi:10.1186/1471-2458-10-760

28. Nisa J, Salimo H, Budihastuti UR. Factor of socio demography and obstetric that influence the timeliness of early breastfeeding in tegal regency. J Maternal Child Maternal. 2017;2(2):89–99. doi:10.26911/thejmch.2017.02.02.01

29. Cozma-Petruş A, Badiu-Tișa I, Stanciu O, et al. Determinants of early initiation of breastfeeding among mothers of children aged less than 24 months in Northwestern Romania. Nutrients. 2019;11(12):2988. doi:10.3390/nu11122988

30. Kalisa R, Malande O, Nankunda J, et al. Magnitude and factors associated with delayed initiation of breastfeeding among mothers who deliver in Mulago hospital, Uganda. Afr Health Sci. 2015;15(4):1130–1135. doi:10.4314/ahs.v15i4.11

31. Falle TY, et al. Potential role of traditional birth attendants in neonatal healthcare in rural southern Nepal. J Health Popul Nutr. 2009;27(1):53.

32. Yılmaz E, Doğa Öcal F, Vural Yılmaz Z, et al. Early initiation and exclusive breastfeeding: factors influencing the attitudes of mothers who gave birth in a baby-friendly hospital. Turkish J Obstetrics Gynecol. 2017;14(1):1. doi:10.4274/tjod.90018

33. Ulep VGT, Borja MP. Association between pregnancy intention and optimal breastfeeding practices in the Philippines: a cross-sectional study. BMC Pregnancy Childbirth. 2012;12(1):69. doi:10.1186/1471-2393-12-69

34. Berde A, Yağış S. Determinants of early initiation of breastfeeding in Nigeria: a population based study using the 2013 demographic and health survey data. BMC Pregnancy Childbirth. 2016;16:16. doi:10.1186/s12884-016-0818-y

35. Mohamed S, Zaki NA-E, Thabe A. Barriers of Initiation and exclusive breast feeding among infants. IOSR J Nursing Health Sci. 2016;5(2):01–10.