Could Amyloid-β 1–42 or α-Synuclein Interact Directly with Mitochondrial DNA? A Hypothesis

Duygu Gezen-Ak,* Zuhal Yurttas, Tugay Çamoğlu, and Erdinç Dursun*

ABSTRACT: The amyloid β (Aβ) and the α-synuclein (α-syn) are shown to be translocated into mitochondria. Even though their roles are widely investigated in pathological conditions, information on the presence and functions of Aβ and α-syn in mitochondria in endogenous levels is somewhat limited. We hypothesized that endogenous Aβ fragments or α-syn could interact with mitochondrial DNA (mtDNA) directly or influence RNAs or transcription factors in mitochondria and change the mtDNA transcription profile. In this review, we summarized clues of these possible interactions.

INTRODUCTION

Alzheimer’s disease (AD), which is the most frequently seen neurodegenerative disorder, is characterized by the accumulation of hyperphosphorylated microtubule-associated tau protein as intraneurial neurofibrillary tangles and by the accumulation of amyloid-β peptide as extracellular amyloid plaques in the brain. On the other hand, Parkinson’s disease (PD) is defined by Lewy bodies and Lewy neurites, which are dominantly composed of α-synuclein (α-syn) protein. In both diseases, defects in energy metabolism due to mitochondrial dysfunctions occur during the neurodegeneration process. Mitochondrial dysfunctions are suggested to be common processes in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. The most well-known feature of mitochondrial dysfunction is increased reactive oxygen species (ROS) due to impaired oxidative phosphorylation (OXPHOS).

Both amyloid-β and α-syn are classified as intrinsically disordered proteins and known to play critical roles in many cellular functions including DNA and RNA binding, and their aggregations are known to contribute to related diseases’ pathologies by increasing oxidative damage and disruption of cell membrane integrity. Because Aβ1–42 is produced from the cleavage of amyloid precursor protein (APP) located on the plasma membrane, it is considered an extracellular peptide. However, Aβ1–42 was demonstrated to be produced inside the cells or uptake into the cell from the extracellular space. Aβ1–42 is known to be involved in nonpathological conditions such as synaptic activity, neuronal survival, ion channel formation, and cholesterol transport regulation. Yet, these tasks have not been sufficiently understood. These findings support the importance of understanding the intracellular activities of the Aβ1–42 peptide.

On the other hand, although there is no detailed description of its function, it is thought that α-syn has roles mainly in the synaptic region and dopamine vesicle regulation. In addition to its functions in the synaptic field, it has been reported that α-syn interacts with many other cellular components such as mitochondrial proteins TOM40 and TOM20, RNA molecules, and histones. Besides, its role in endoplasmic reticulum-Golgi traffic and transport of microtubules is also reported.

Mitochondrial dysfunctions in energy metabolism are considered one of AD’s early hallmarks. It is pointed out that increasing Aβ1–42 causes accumulated damage in mitochondria, which induces cognitive decline by triggering neuronal dysfunction before the clinical onset of AD. It has been noted that Aβ fragments can be transported to mitochondria and localized there and form aggregates under...
pathological conditions. The finding that Aβ1–42 is localized in mitochondria has revealed new research areas about its goals and functions in mitochondria. Aβ1–42 plaque density was increased in the transgenic AD mouse model (APP/Ld) which carries mutation that inactivates the proofreading function of mitochondrial DNA polymerase γ (PolgA D257A). Recent studies indicated that Aβ1–42 is suggested to interact with Dnp1, cyclophilin D (CypD), cytochrome c oxidase, VDAC, and Aβ binding alcohol dehydrogenase (ABAD) proteins in mitochondria. Before the clinical diagnosis of AD, in the early stages, it has been reported that many of the nuclear genes encoding OXPHOS subunits had decreased expressions in the brains of those who suffer from mild cognitive impairment (MCI). Remarkably, in one of the studies with AD and MCI patients, it was reported that the expressions of some OXPHOS genes encoded by mtDNA varied according to the control group. Furthermore, Aβ1–42 can translocate into the nucleus, bind to nuclear DNA, and regulate the expression of some genes. Ohyagi et al. demonstrated that intracellular Aβ1–42 could induce p53 expression by binding to a known heat shock element located in the promoter region of the TP53 gene. Recently, a study indicated that Aβ1–42 could bind to DNA from its N-terminal region. Besides, critical research showed that Aβ1–42 could bind to promoter regions of specific genes that induce its production through an interacting domain. Our previous study also demonstrated the alterations in the expression of neurodegeneration-related genes due to Aβ1–42 presence. This evidence led us to think that one of the targets of amyloid-β in mitochondria could be mtDNA.

Similar to the AD research results, increasing evidence draws attention to a relationship between the PD process and mitochondrial defects, all of which cannot be a coincidence. The mitochondrial quality control genes PINK1, PARKIN, LRRK2, and DJ1, whose mutations lead to familial PD, are mitochondrial defects, all of which cannot be a coincidence. The intermediates formed by the abnormal folding of these peptides may prevent them from performing their normal physiological functions, leading to increased mitochondrial dysfunction. If Aβ or α-syn can bind to mtDNA as a normal physiological function, they may be involved in many steps from transcription to replication. In this case, the pathological forms of these peptides may also have a direct role in increasing mtDNA somatic mutations, especially in the brain regions associated with the disease. For example, high levels of mtDNA point mutations or deletions were reported in the substantia nigra of PD patients and in the frontal cortex and hippocampus of AD patients. Elevated levels of mtDNA control region point or other mutations in AD brain were reported. These studies suggested that the mutations resulted in disruption of mtDNA transcription and triggered the replication errors. Although some studies did not find any change in mtDNA copy number in brain regions of patients suffering from PD or AD, others reported decreased mtDNA copy number in substantia nigra and cerebrospinal fluid (CSF) of PD patients or in the frontal cortex, hippocampus, cerebellar cortex, and CSF of AD patients. mtDNA copy number attenuation results can be interpreted as a decrease resulting from neuronal death. It can also be interpreted as the inability of these peptides, which function in replication under normal physiological conditions, to perform their functions due to their aggregation in pathological conditions. Looking at the mitochondrial cascade hypothesis, which discusses AD as a result of mitochondrial dysfunction, from another angle, the genetic background that determines the baseline functions of mitochondria and inherited by mtDNA and nDNA may be functioning properly in the presence of peptides such as Aβ or α-syn. Loss of function of these peptides with abnormal folding may change the disease’s formation, course, and severity with the contribution of genetic background. If changes in the genetic background have such a determinant, alterations in mtDNA replication and transcription may contribute to the neurodegenerative disorders and can be monitored systemically. One of the best proof of this is cytoplasmic hybrids studies with mtDNAs obtained from platelets of AD patients.

Previous studies pointed out that α-syn, Aβ1–42, and prion proteins can bind to DNA, and this was suggested as a common feature of such peptides. As we mentioned above, both Aβ and α-syn localized in the mitochondrial matrix. These molecules also have nuclear DNA binding capacity. There has been no study focused on the possible binding of Aβ1–42 or its fragments and α-syn to mtDNA yet. Given these findings, we hypothesize that α-syn and Aβ1–42 may interact with mtDNA or mtDNA interacting proteins like TFAM under the physiological conditions and may change the mitochondrial gene expression pattern. We also consider the possibility of these peptides changing the expression pattern by binding mitochondrial RNA or transcription factors (TFs).
Could Aβ1–42 or α-Syn Bind to mtDNA?

Our group and other researchers reported that Aβ1–42 could be found in the nucleus, and nuclear membrane pores can allow direct transport of 4 kDa Aβ into the nucleus. Aβ can bind to the region "KGGRTGGGG", a common sequence in APP, BACE1, and APOE promoters, and change the expression of many genes. On the other hand, our group has shown for the first time in the literature that Aβ1–42 migrates from the cytoplasm to the nucleus in response to different antibiotic doses in primary cortical neurons. In the absence of antibiotics, we observed that Aβ1–42 was found in the nucleus but was more localized in the cytoplasm and translocated toward the nucleus as the antibiotic dose increased. These coincidental results may indicate that Aβ1–42 can bind DNA to a large extent and act like a gene regulatory protein or a TF. In particular, Barucker et al. showed that Aβ1–42 also plays a role in gene suppression by binding to LRP1 and KAI1 promoters.

But why are we questioning whether it can bind to mtDNA? The latest data we have obtained about α-syn and a few studies that have observed similar results in patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) lead us to this point. No such question occurred to us until we saw the clear pattern of genes encoded by mtDNA in Parkinson’s patients. In that study, we classified Parkinson’s patients primarily according to age, family history, and clinical characteristics. Then, we followed the expression levels of 13 transcription factors encoded in the inner mitochondrial matrix (IMM) and can disrupt mitochondrial function by interacting with complexes, another possibility is that Aβ1–42, whose function is impaired in AD, and α-syn, whose function is impaired in PD, can bind to mtDNA like a TF, causing the formation of different mtDNA expression profiles.

So, are there any findings that other proteins, other than the few known mitochondrial transcription factors, can bind to mtDNA? The mitochondrion has an evolutionarily conserved prokaryotic-like system that separates it from the rest of the cell, with its independent genome, polycistrionic transcripts, and mitochondrial transcriptional regulation. However, mtDNA transcription depends mostly on mitochondria-specific factors encoded in the nDNA. mtDNA transcription is driven by mitochondrial transcription factor A (TFAM), mitochondrial transcription factor B2 (TFB2M), mitochondrial RNA polymerase (POLRMT), mitochondrial transcription elongation factor (TEFM), and mitochondrial transcription termination factor (MTER).

Although mtDNA's transcription system preserves some ancient prokaryotic features like polycistrionic mtDNA transcripts, some mitochondrial factors and nuclear transcription factors were demonstrated to bind to mtDNA and directly regulate its transcription. Potentially, nuclear transcription factors (TFs) can take part in mitochondrial gene expression in two ways, directly or indirectly. The arrangement of nuclear TFs' expressions of mitochondrial genes encoded in the nuclear DNA is called indirect regulation. These gene products are proteins or mitochondrial TFs that participate in the structure of mitochondria and take part in bioenergetic functions. Nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) can be shown as examples of TFs that take part indirectly. On the way to direct regulation, nuclear TFs can migrate to mitochondria and directly regulate mitochondrial gene expression. The first evidence for such an arrangement emerged with the determination of thyroid hormone action. This hormone binds to the D-loop and the 12S rRNA
gene and alters mitochondrial gene expression when administered to nucleus-removed cells.\(^\text{81}\) Thus, it has been proven that nuclear TFs can directly take part in mitochondrial gene expression regulation, and this process can be performed independently of the nucleus. T3 receptor p43, CREB, p53, Stat3, estrogen receptor (ER), nuclear factor-κβ (NFκβ) TF family members, and glucocorticoid receptor (GR) can all be cited as examples of the best-defined nuclear TFs in mammals, involving mitochondrial gene expression.\(^\text{82}−\text{85}\) c-Jun, JunD, and CEBP β in human cells were shown to bind mtDNA.\(^\text{86}\) The members of the NFκβ TF family are localized to mitochondria. RELA, a member of this family, binds to the mtDNA D-loop region in human cells in the absence of p53, reducing the levels of CO3 and CytB mRNAs encoded by mtDNA.\(^\text{84}\) In most of these studies, it was assumed that the TFs bind to target sequences on the D-loop region containing only the most well-known mtDNA transcription regulatory elements. However, D-loop binding does not apply to c-Jun, JunD, and MEF2D and under some circumstances to CEBPB, which bind to sequences in genes encoded in mtDNA. In summary, it is suggested that just like the exons of some genes in the nuclear genome can act as transcriptional regulatory elements of other irrelevant genes, a similar logic may also apply to mtDNA.\(^\text{87}\) Extensive research conducted by Mercer et al. on the mitochondrial transcriptome has shown that 159 DNaseI footprints cover 8.4% of the mitochondrial genome. These results indicate that there may be DNA−protein interaction points in mtDNA other than known ones.\(^\text{88}−\text{89}\) Besides, it has been reported that variations in these regions may play a role in the emergence of some diseases such as cardiomyopathy and type 2 diabetes.\(^\text{88}−\text{89}\) This information has led us to think that Aβ1−42 or α-syn, which can bind to promoters in nDNA like a TF, can bind to mtDNA like the TFs exemplified above.

COULD Aβ1−42 OR α-SYN BIND TO MITCHONDRIAL RNAs?

Although the origin of mitochondrial RNAs is polycistronic, studies have reported that transcription of mature mRNAs can be managed by many different post-transcriptional mechanisms and show high variability.\(^\text{87}\) Studies show that α-syn easily binds to its own mRNA, prevents overexpression, and supports the optimal protein expression level.\(^\text{17}\) Investigating the role of RNA−protein interaction in the pathogenesis of human diseases has attracted considerable attention in recent years. This approach is thought to offer a new, up-to-date tool for the detection and control of neurodegenerative diseases.\(^\text{41,90}\) There is a growing view that the association of α-syn with RNA and other protein−RNA interactions plays a role in PD and other neurodegenerative diseases.\(^\text{91,92}\) One study identified 225 proteins that interact with α-syn in living α-syn treated neurons. This study showed the interaction of α-syn with proteins involved in synaptic transmission, endocytosis, and mRNA metabolism (RNA binding, processing, and translation factors). For example, polyadenylate-binding protein 1 (PABPC1) is an mRNA binding protein that facilitates the transport, destruction, translation, and stability of mRNA out of the nucleus and has been determined to interact with α-syn. Researchers suggested that α-syn can bind to the 3-poly(A) tail of mRNA, participate in polyA shortening, physically interact with translation factors, and play a role in the initiation of translation.\(^\text{93}\) This and other information link α-syn metabolism to mRNA metabolism, translation, and vesicle trafficking and thus Parkinsonism and neurodegenerative disease risk factors through molecular pathways to α-syn toxicity.\(^\text{41}\)

When we searched the literature for Aβ1−42, we could not find any data showing that this peptide directly interacts with any known RNA, except for a few hypotheses and simulations. However, as we explained in the section above, we know that it interacts with nDNA.

It has been known for many years that amyloids can interact with metal ions and that Aβ precipitates with iron, zinc, and copper ions. Simulation studies show that Aβ1−42 has an α-helix folding in monomer form, and β-sheet folding can start with zinc binding.\(^\text{94}\) Zinc binding is not only related to the aggregation process but also can stimulate nucleic acid binding. Khmeleva et al. showed that zinc ions significantly enhance the binding of RNA and DNA molecules to Aβ1−42 aggregates.\(^\text{95}\) It is speculated that the binding of the zinc ions to Aβ aggregates can cause it to acquire a trait like the zinc finger transcription factors. In a study conducted in 2016, it was shown that Aβ16 (the region of Aβ that interacts with metals) could interact with RNA by using synthetic, randomly generated DNA and RNA molecules.\(^\text{96}\) In 2017, a simulation study performed using prion proteins with amyloid properties and three different mRNA sequences as a model showed that specific regions of amyloid oligomers could interact with RNAs.\(^\text{90}\)

COULD Aβ1−42 OR α-SYN INTERACT WITH TRANSCRIPTION FACTORS FOUND IN MITCHONDRIA?

It is suggested that TFs, which regulate the expression of genes encoded from nDNA, can function by binding to mtDNA, as described earlier. We think that Aβ1−42 (and/or Aβ1−40) and α-syn have this capacity due to the information described above.

The strong but complex results we obtained while investigating the effects of vitamin D receptor (VDR) on the production of Aβ1−42 in our previous studies\(^\text{92}\) showed that we could not explain the relationship between these two just because VDR is a TF. We hypothesized that VDR could be localized in the neuron plasma membrane with proteins involved in the production of Aβ1−42 and could involve its processing. To validate this hypothesis, we first had to show the presence of VDR in the membranes of neurons, and we demonstrated its presence in neuron membranes for the first time in the literature with live-cell surface staining experiments.\(^\text{97}\) In this article, we also determined that VDR is at least in certain proximity with APP, ADAM10, and nicastrin by immunofluorescent labeling. However, to support the hypothesis that VDR could coexist with proteins involved in the production of Aβ1−42 in the membrane, we had to hypothetically demonstrate the possible existence of a scaffold that could hold these proteins together. For this reason, we used the FpClass protein−protein interaction (PPI) prediction program to scan 5244 protein partners and create a possible placement prediction in the membrane.\(^\text{97,98}\) During this process, we have seen that the APP, precursor protein of Aβ1−42, can interact with TFs according to FpClass data.\(^\text{97}\) Regardless of the VDR, we reanalyzed all TFs that the APP could have a relationship with, we found over a hundred TFs, and we determined that 7 of them scored above 0.5 and 23 of them scored above 0.7. Again, we used the FpClass PPI prediction program for α-syn, and we found that they could associate with a total of 562 proteins. 21 of them with a score
higher than 0.5 were TFs, and 8 of these TF’s scores were higher than 0.7. Putting aside the ability to bind to DNA and starting from the knowledge that TFs regulate gene transcription by interacting with other TFs or proteins, these data showed us that Aβ1–42 (and/or Aβ1–40 or other fragments) or α-syn could also interact with TFs and effect transcription indirectly. On the other hand, since FpClass has an accuracy rate of 40% for proteins with high (score of >0.7) and moderate (score of >0.5) confidence intervals,99 the probability of Aβ fragments and α-syn to be associated with TF was quite high. While there is no study in the literature regarding Aβ1–42 and TFs relation, studies indicated that Aβ could be associated with Elk1 and Elk2, which are among the TFs we have determined FpClass, over ERK-2.100 The most crucial problem here was that the databases that we used recognize the APP as the target protein, not Aβ since it is a peptide fragment. We could not determine the TFs that could directly interact with Aβ fragments. Because the main protein investigated with FpClass software was APP, PPI estimates including all of its regions could be obtained, and it was not known which of these could be associated with Aβ fragments. To solve this problem, we used the database of TRRUST v2 (an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Research Oct 26, 2017) with the help of the data we obtained from our previous studies. The TRRUST v2 database functions by bringing together studies of related genes from the PubMed database.101 Using the genes that we know that their mRNA levels change in response to Aβ1–42 application in our and other previous studies102–105 as targets in TRRUST v2 database, we determined TFs related to them. The TFs, which we previously determined to have a possible relationship with APP using FpClass PPI software,97 were compared with TFs that play a role in the transcription of genes reported by our group63,102–104 and the TFs given in TRRUST database. This comparison is used to determine common TFs. Considering the FpClass software PPI scores and the number of genes whose expression is regulated by Aβ, the possible TFs that Aβ1–42 can work together were determined. Potential TFs determined by combining FpClass and TRRUST data for Aβ1–42 are ETS2, JUN, JUND, SP1, STAT1, STAT3, TBP, SMAD3, SNAI1, NFkB1, RELA, ELK1, ATF4, TFCP2, APC, FOS, FOSL2. Confirming this information, in a recent study, it has been shown the changed expression of JUN and ATF4 TFs in single-soma transcriptions of tangle-bearing neurons in AD.106

The same was done for α-syn. In addition to the studies conducted by other groups showing that α-syn affects the expression of different genes,97–100 data belonging to 41 growth factors published by our group in 2020107 and 40 inflammation factors prepared for publication were used. Possible TFs determined by combining FpClass and TRRUST data for α-syn are ATF1, ATF2, NFkB1, RELA, MYC, CTNNB1, CEBPB, FOS, JUN, JUND, IRF3, APEX1, NR3C1, ELK1, HMGAI, HSF1, KLF4, STAT3, SMAD3, EP300, TP53.

PEPTIDES THAT ARE LOCALIZED TO MITOCHONDRIA AND HAVE THE ABILITY TO BIND TO mtDNA OR RNAs OR TFs MAY CARRY POST-TRANSLATIONAL MODIFICATIONS

We think that Aβ1–42 can be translocated into the mitochondria by phosphorylation, just as α-syn can be displaced within the cell as a result of phosphorylation.111–114 Aβ has derivatives such as 1–40 and 1–42 as well as post-translationally modified variants. These post-translationally modifications include splicing, racemization (optically inactivation), isomerization, pyroglutamination, metal-induced oxidation, and phosphorylations. Modified Aβ derivatives are generally highly toxic and induce aggregation formation as a type of seeding. These variants are present from the early stages of AD.115 Phosphorylation is a reversible post-translational modification that can alter the structural and functional properties of proteins. Phosphorylation appears to be an essential step, especially in mechanisms related to protein activity, cell cycle control, gene regulation, learning, and memory.116,117 In silico analysis has shown that Aβ can be phosphorylated at certain positions. It has been reported that these phosphorylations can be performed by protein kinase A and Cdc2 in vitro, in culture cells, or in human cerebrospinal fluid.118–120 Although recent studies indicate that these phosphorylations stabilize the oligomeric structure of the peptide and increase its toxicity,120 it has been shown that serine eight phosphorylation of Aβ 1–42 decreases its toxicity, whereas it increases binding to membrane lipids.121 However, no study on subcellular localization of phosphorylated amyloid-β peptides has been found in the literature.

CONCLUSION

We suggest that under physiological conditions, Aβ1–42 or other fragments and α-syn may have an essential function on the mitochondrial genome. A detailed review by Doig et al. shows, in particular, that we do not know the true functions of Aβ and its behavior in pathological conditions.121 One of these functions may be the direct regulation of mtDNA gene expression. We also suggest that revealing these peptides’ physiological roles in the mitochondria will enable us to understand better the effects of pathological protofibrils or fibril forms of peptides on accumulated mitochondrial damage in the progressive neurodegeneration process. But we need detailed studies to confirm our hypothesis. A recent study suggested that the mitochondrial function determines Aβ release of the cells, and Aβ fluid levels and ratios might serve as biomarkers of mitochondrial integrity.122 In our opinion, it seems unlikely that a protein or peptide would make such extreme changes in an organelle that did not function under physiological conditions.

Mitochondrial functions are a key point, especially for postmitotic cells with high energy needs. When we look in terms of neurodegeneration, it is known that mitochondrial dysfunctions occur before the disease symptoms appear. While recent studies put mitochondria at a critical point in terms of aging and neurodegeneration, it has begun to change the belief that the nucleus rules the mitochondria to “mitochondria also govern the nucleus and other organelles”.123 If any of these peptides could be shown to be involved in mitochondrial gene expression in some way, it would provide us with two significant pieces of information. First, it will turn out that they may be these peptides participating in the regulation of mtDNA transcription in a healthy cell, enabling the execution of mitochondrial functions. This will lead to a reconsideration of treatment strategies that directly target these two peptides. Second, before the symptoms appear in pathological conditions, the transcripts of mtDNA, which has far fewer genes, can be followed in the early stages of diseases. On the other hand, if the binding sites of these peptides to mtDNA
can be determined, there will be certain changes in the understanding of the pathological processes. For example, possible nucleotide changes in these regions may change the binding patterns of monomers under physiological conditions and can lead to mitochondrial dysfunction. Or the protofibrils or fibrils of peptides may lose their binding capacity to their binding sites in a disease state and may result in pathological condition. Both of the conditions may provide new parameters that can be followed in the emergence, progression, and severity of the disease. If these peptides also interact with mitochondrial TFs and alter mtDNA replication and transcription in this way, further work may be required on diagnostic and perhaps therapeutic approaches, especially for mitochondria. In case RNAs that cause imbalance are identified, it will provide a resource for developing RNA aptamers and directing them toward mitochondrial-specific treatment strategies. This hypothesis may be expanded for all amyloid forming peptides, but we need detailed studies and different perspectives to answer these questions.

■ AUTHOR INFORMATION

Corresponding Authors

Duygu Gezen-Ak – Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey; Email: duyugugezenak@iuc.edu.tr

Erdinç Dursun – Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey; orcid.org/0000-0003-3701-6674; Phone: +90 212 414 30 00/68025; Email: erdinc.dursun@iuc.edu.tr

Authors

Zuhal Yurttaş – Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey

Tugay Çalışgılı – Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey

Complete contact information is available at: https://pubs.acs.org/10.1021/acscchemneuro.2c00512

Author Contributions

Conceptualization: D.G.-A., E.D. Data curation: D.G.-A., Z.Y., T.C., E.D. Formal analysis: D.G.-A., E.D. Funding acquisition: D.G.-A., E.D. Investigation: D.G.-A., Z.Y., T.C., E.D. Methodology: D.G.-A., Z.Y., T.C., E.D. Project administration: D.G.-A. Resources: D.G.-A. Supervision: D.G.-A., E.D. Validation: D.G.-A., E.D. Original draft preparation: D.G.-A., Z.Y., T.C., E.D. Review and editing: D.G.-A., E.D. All authors have read and approved the final manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The study is supported by the Scientific and Technological Research Council of Turkey-TUBITAK (Project 219Z279) and by Research Fund of Istanbul University-Cerrahpasa (Projects 34211 and 33479). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The graphical abstract of the article is created with BioRender.com.

■ REFERENCES

(1) Hardy, J. A.; Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992, 256 (5054), 184–186.
(2) Oczkowski, A.; Kozubski, W.; Dorszew ska, J. [Alpha-synuclein in Parkinson’s disease]. Przegl. Lek. 2014, 71 (1), 26–32.
(3) Spillantini, M. G.; Schmidt, M. L.; Lee, V. M.-Y.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature 1997, 388 (6645), 839–840.
(4) Lezi, E.; Swerdlow, R. H. Mitochondria in neurodegeneration. Adv. Exp. Med. Biol. 2012, 942, 269–86.
(5) Reddy, P. H. Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectrums 2009, 14 (57), 8–13.
(6) Nguyen, P. H.; Ramamoorthy, A.; Sahoo, B. R.; Zheng, J.; Faller, P.; Straub, J. E.; Dominguez, L.; Shea, J. E.; Dokholyan, N. V.; De Simone, A.; Ma, B.; Nussinov, R.; Najafi, S.; Ngo, S. T.; Loquet, A.; Chiricotto, M.; Ganguly, P.; McCarty, J.; Li, M. S.; Hall, C.; Wang, Y.; Miller, Y.; Melchionna, S.; Habenstein, B.; Timr, S.; Chen, J.; Hnath, B.; Strodel, B.; Kayed, R.; Lesne, S.; Wei, G.; Sterpone, F.; Doig, A. J.; Derreumaux, P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer’s Disease, Parkinson’s Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem. Rev. 2021, 121 (4), 2545–2647.
(7) Reddy, P. H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol. 2009, 218 (2), 286–292.
(8) Goers, J.; Manning-Bog, A. B.; McCormack, A. L.; Millett, I. S.; Doniach, S.; Di Monte, D. A.; Uversky, V. N.; Fink, A. L. Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 2003, 42 (28), 8465–71.
(9) Gezen-Ak, D.; Atasoy, İ. Ł.; Candaz, E.; Alayhoğlu, M.; Dursun, E. The transcriptional regulatory properties of amyloid beta 1-42 may include regulation of genes related to neurodegeneration. Neuromol. Med. 2018, 20 (3), 363–375.
(10) Barucker, C.; Harmeier, A.; Weiske, J.; Fauler, B.; Albring, K. F.; Prokop, S.; Hildebrand, P.; Lurz, R.; Heppner, F. L.; Huber, O.; Multhaup, G. Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription. J. Biol. Chem. 2014, 290 (21), 20182–20191.
(11) Bailey, J. A.; Maloney, B.; Ge, Y. W.; Lahiri, D. K. Functional activity of the novel Alzheimer’s amyloid beta-peptide interacting domain (AbetaID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis. Gene 2011, 488 (1–2), 13–22.
(12) Manczak, M.; Anekonnda, T. S.; Henson, E.; Park, B. S.; Quinn, J.; Reddy, P. H. Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet. 2006, 15 (9), 1437–1449.
(13) Nemani, V. M.; Lu, W.; Berge, V.; Nakamura, K.; Onoa, B.; Lee, M. K.; Chaudhry, F. A.; Nicoll, R. A.; Edwards, R. H. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 2010, 65 (1), 66–79.
(14) Senior, S. L.; Ninkina, N.; Deacon, R.; Bannerman, D.; Buchman, V. L.; Cragg, S. J.; Wade-Martins, R. Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. Eur. J. Neurosci. 2008, 27 (4), 947–57.
(15) Di Maio, R.; Barrett, P. J.; Hoffman, E. K.; Barrett, C. W.; Zharikov, A.; Borah, A.; Hu, X.; McCoy, J.; Chu, C. T.; Burton, E. A.; Hastings, T. G.; Greenamyre, J. T. Alpha-synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Transl. Med. 2016, 8 (342), 342ra78.
(16) Bender, A.; Desplats, P.; Spencer, B.; Rockenstein, E.; Adame, A.; Elstner, M.; Laub, C.; Mueller, S.; Koob, A. O.; Mante, M.; Pham, E.; Klopcostock, T.; Masilah, E. TOM40 mediates mitochondrial dysfunction induced by alpha-synuclein accumulation in Parkinson’s disease. PLoS One 2013, 8 (4), No. e62277.
(17) Zanoni, A.; Marchese, D.; Agostini, F.; Bolognesi, B.; Cirillo, D.; Botta-Orelli, M.; Livì, C. M.; Rodríguez-Mulero, S.; Tartaglia, G. G. Principles of self-organization in biological pathways: a hypothesis on the autogenous association of alpha-synuclein. Nucleic Acids Res. 2013, 41 (22), 9987–98.

(18) Thayanidhi, N.; Helm, J. R.; Nycz, D. C.; Bentley, M.; Liang, Y.; Hay, J. C. Alpha-synuclein delays endolysosomal reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol. Biol. Cell 2010, 21 (11), 1850–63.

(19) Cooper, A. A.; Gitler, A. D.; Cashikar, A.; Haynes, C. M.; Hill, K. J.; Bhullar, B.; Liu, K.; Xu, K.; Strathearn, K. E.; Liu, F.; Cao, S.; Caldwell, K. A.; Caldwell, G. A.; Marischky, G.; Kolodner, R. D.; Labaer, J.; Rochet, J. C.; Bonini, N. M.; Lindquist, S. Increased mtDNA mutations with aging promotes amyloid plaques in vivo. Science 2003, 299 (5604), 256–9.

(20) Toba, S.; Jin, M.; Yamada, M.; Kumamoto, K.; Matsumoto, S.; Yasunaga, T.; Fukunaga, Y.; Miyazawa, A.; Fujita, S.; Itoh, K.; Fushiki, S.; Kojima, H.; Watanubhi, H.; Ari, Y.; Nagai, T.; Hirotsune, S. Alpha-synuclein facilitates to form short unconventional microtubules that have a unique function in the axonal transport. Sci. Rep. 2017, 7 (1), 16386.

(21) Jeong, S. Molecular and Cellular Basis of Neurodegeneration in Alzheimer’s Disease. Mol. Cells 2017, 39 (4), 613–620.

(22) Mao, P.; Reddy, P. H. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics. Biochim. Biophys. Acta 2011, 1812 (11), 1359–70.

(23) Kukreja, L.; Kajoth, G. C.; Prolla, T. A.; Van Leuven, F.; Vassar, R. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the App/ld transgenic mouse model of Alzheimer’s disease. Mol. Neurodegener. 2014, 9, 16.

(24) Pagani, L.; Eckert, A. Amyloid-beta interaction with mitochondria. Int. J. Alzheimer’s Dis. 2011, 2011, 925050.

(25) Manczak, M.; Park, B. S.; Jung, Y.; Reddy, P. H. Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease. Neuronmol. Med. 2004, 4 (2), 147–162.

(26) Lunnnon, K.; Keohane, A.; Pidsley, R.; Newhouse, S.; Riddoch-Contreras, J.; Thubron, E. B.; Devall, M.; Soininen, H.; Kloszew ska, I.; Mecocci, P.; et al. Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurourol. Aging 2017, 53, 36–47.

(27) Ohyagi, Y.; Ashara, H.; Chui, D. H.; Tsuruta, Y.; Sakae, N.; Miyoshi, K.; Yamada, T.; Kikuchi, H.; Tanii, T.; Murai, H.; Ikeda, K.; Furuya, H.; Kawai, H.; Kawai, H.; Shoji, M.; Checher, F.; Iwaki, T.; Makuhori, T.; Takeda, K.; Kira, J.; Tabra, I.; Trabragene, Alpha-synuclein activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB. J. 2005, 19 (2), 255–7.

(28) Khmeleva, S. A.; Radko, S. P.; Kozin, S. A.; Kiseleva, Y. Y.; Mezentsev, Y. V.; Mitkevich, V. A.; Kurbatov, L. K.; Ivanov, A. S.; Malarova, A. A. Zinc-Mediated Binding of Nucleic Acids to Amyloid-beta Aggregates: Role of Histidine Residues. J. Alzheimer’s Dis. 2016, 54 (2), 809–19.

(29) Maloney, B.; Lahiri, D. K. The Alzheimer’s amyloid beta-peptide (Abeta) binds a specific DNA Abeta-interacting domain (AbetaID) in the APP, BACE1, and APOE promoters in a sequence-specific manner: characterizing a new regulatory motif. Gene 2011, 488 (1–2), 1–12.

(30) Valente, E. M.; Abou-Sleiman, P. M.; Caputo, V.; Muqit, M. M.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A. R.; Labaer, J.; Rochet, J. C.; Bonini, N. M.; Lindquist, S. Increased mitochrondial dysfunction promotes amyloid plaques and degeneration in a Parkinson’s disease mouse model. Neuron 2011, 70 (4), 925–32.
transcriptome signaling is disrupted in Alzheimer’s disease hippo-
in pyramidal neurons are decreased and mitochondrial biogenesis
mutations and relative copy number in disease and control
Talbot, K.; Turner, M. R.; McKenzie, C. A.; Troakes, C.; Attems, J.;
2016
Haugarvoll, K.; Bindoff, L. A.; Tzoulis, C. Defective mitochondrial
transcription and replication.
Giorgetti, B.; Giuli, C.; Postacchini, D.; Fattoretti, P.; Conti, F.
somatic mtDNA control-region mutations that suppress
deletions in substantia nigra neurons in aging and Parkinson disease.
Taylor, R. W.; Turnbull, D. M. High levels of mitochondrial DNA
1363 disease and control
Smith, C.; Al Sarraj, S.; Morris, C. M.; Ansorge, O.; Pickering-Brown,
2010
79
−
6.
(58) Rice, A. C.; Keeny, P. M.; Algarzae, N. K.; Ladd, A. C.;
Thomas, R. B.; Bennett, J. P.; Jr. Mitochondrial DNA copy numbers
in pyramidal neurons are decreased and mitochondrial biogenesis
transcriptome signaling is disrupted in Alzheimer’s disease hippo-
campi. J. Alzheimer’s Dis. 2014, 40 (2), 319–329.
(59) Podlesnyi, P.; Figueiro-Silva, J.; Llado, A.; Antonell, A.;
Sanchez-Valle, R.; Alcolea, D.; Lleo, A.; Molinuevo, J. L.; Serra, N.;
Trullas, R. Low cerebrospinal fluid concentration of mitochondrial DNA
in preclinical Alzheimer disease. Ann. Neurol. 2013, 74 (5),
655–68.
(60) Swardlow, R. H.; Parks, J. K.; Cassarino, D. S.; Maguire, D. J.;
Maguire, R. S.; Bennett, J. P., Jr.; Davis, R. E.; Parker, W. D., Jr. Cybrids in Alzheimer’s disease: a cellular model of the disease?
Neurology 1997, 49 (4), 918–25.
(61) Hegde, M. L.; Rao, K. S. DNA induces folding in alpha-
synuclein: understanding the mechanism using chaperone property of
osmolytes. Arch. Biochem. Biophys. 2007, 464 (1), 57–69.
(62) Gezen-Ak, D.; Atasoy, I. L.; Candas, E.; Alyaligloiu, M.;
Yilmazer, S.; Dursun, E. Vitamin D Receptor Regulates Amyloid Beta
1–42 Production with Protein Disulfide Isomerase A3. ACS Chem. Neurosci. 2017, 8 (10), 2335–2346.
(63) Gezen-Ak, D.; Atasoy, I. L.; Candas, E.; Alyaligloiu, M.; Dursun, E. The Transcriptional Regulatory Properties of Amyloid Beta 1–42 may Include Regulation of Genes Related to Neurodegeneration. Neuronol. Med. 2018, 20 (3), 363–375.
(64) Barucker, C.; Harmeyer, A.; Weiske, J.; Faller, B.; Albring, K. F.;
Prokop, S.; Hildebrand, P.; Lurz, R.; Heppner, F. L.; Huber, O.;
Multhaup, G. Nuclear translocation uncovers the amyloid peptide
Abeta42 as a regulator of gene transcription. J. Biol. Chem. 2014, 289 (29), 20182–91.
(65) Pinto, M.; Moraes, C. T. Mitochondrial genome changes and neurodegenerative diseases. Biochim. Biophys. Acta 2014, 1842 (8), 1198–207.
(66) Yan, M. H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biol. Med. 2013, 62, 90–101.
(67) Noureddine, M. A.; Li, Y. J.; van der Walt, J. M.; Walters, R.;
Jewett, R. M.; Xu, H.; Wang, T.; Walter, J. W.; Scott, B. L.; Hulette, C.; Schmeichel, D.; Stenger, J. E.; Dietrich, F.; Vance, J. M.; Hauser, M. A. Genomic convergence to identify candidate genes for Parkinson disease: SAGE analysis of the substantia nigra. Mov. Disord. 2005, 20 (10), 1299–1309.
(68) Piquer-Palacios, J.; Lopez-Garcia, A.; Moreno-Reig, A.;
Gonzalez-Martinez, A.; Hernandez-Gonzalez, A.; Vaamonde-Gamo, J.; Jurado-Roman, A. Structural and functional alterations of the heart in Parkinson’s disease. Neuro. Res. 2018, 40 (1), 53–61.
(69) Norcliffe-Kaufmann, L.; Kaufmann, H.; Palma, J. A.; Shibao, C. A.;
Biaggioni, I.; Peltier, A. C.; Singer, W.; Low, P. A.; Goldstein, D. S.; Gibbons, C. H.; Freeman, R.; Robertson, D. Orthostatic heart rate changes in patients with autonomic failure caused by neurodegenerative synucleinopathies. Ann. Neurol. 2018, 83 (3), 522–531.
(70) Lopez-Gallardo, E.; Iceta, R.; Iglesias, E.; Montoya, J.; Ruiz-Pesini, E. OXPHOS toxicogenomics and Parkinson’s disease. Mutat. Res. 2011, 728 (3), 98–106.
(71) Foulds, P. G.; Diggle, P.; Mitchell, J. D.; Parker, A.; Hasegawa, M.;
Masuda-Suzukake, M.; Mann, D. M.; Allsop, D. A longitudinal study on alpha-synuclein in blood plasma as a biomarker for Parkinson’s disease. Sci. Rep. 2013, 3, 2540.
(72) Siddiqui, I. J.; Pervaiz, N.; Abbasi, A. A. The Parkinson Disease
gene SNCA: Evolutionary and structural insights with pathological implication. Sci. Rep. 2016, 6, 24475.
(73) Kamp, F.; Exner, N.; Lutz, A. K.; Wender, N.; Hegermann, J.;
Branner, B.; Nuscher, B.; Bartels, T.; Giese, A.; Beyer, K.; Eimer, S.;
Winklhofer, K. F.; Haass, C. Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 2010, 29 (20), 3571–89.
(74) Pozo Devoto, V. M.; Falzone, T. L. Mitochondrial dynamics in Parkinson’s disease: a role for alpha-synuclein? Dis. Models Mech. 2017, 10 (9), 1075–1087.
(75) Lunnon, K.; Keohan, A.; Pidsley, R.; Newhouse, S.; Riddoch-
Contreras, J.; Thubron, E. B.; Devall, M.; Soininen, H.; Kloszewiska, I.;
Mecocci, P.; Tsolaki, M.; Vellas, B.; Schlauchy, L.; Dobson, R.; Malik, A. N.; Powell, J.; Lovestone, S.; Hodges, A. Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol. Aging 2017, 53, 36–47.
(76) Barshad, G.; Marom, S.; Cohen, T.; Mishmar, D. Mitochondrial DNA Transcription and Its Regulation: An Evolutionary Perspective. Trends Genet. 2018, 34 (9), 682–692.
(77) Shokolenko, I. N.; Alexeyev, M. F. Mitochondrial transcription in mammalian cells. Front. Biosci. (Landmark Ed.) 2017, 22, 835–853.
(78) Macias, E.; Rao, D.; Carabajal, S.; Kiguchi, K.; DiGiovanni, J.;
Sta3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J. Invest. Dermatol. 2014, 134 (7), 1971–1980.
(79) Psarra, A. M.; Sekeris, C. E. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim. Biophys. Acta 2011, 1813 (10), 1814–21.
(80) Leigh-Brown, S.; Enriquez, J. A.; Odom, D. T. Nuclear transcription factors in mammalian mitochondria. Genome Biol. 2010, 11 (7), 215.
(81) Morrish, F.; Buroker, N. E.; Ge, M.; Ning, X. H.; Lopez-Guisa, J.; Hockenberry, D.; Portman, M. A. Thyroid hormone receptor isoforms localize to cardiac mitochondrial matrix with potential for binding to receptor elements on mtDNA. Mitochondrion 2006, 6 (3), 143–8.
(82) Avalle, L.; Poli, V. Nucleus, Mitochondrion, or Reticulum? STAT3 a La Carte. J. Invest. Dermatol. 2014, 134 (5), 1340–4.
(83) Chatterjee, A.; Seyfirdth, J.; Lucci, J.; Gilbach, R.; Preissl, S.; Bottinger, L.; Martensson, C. U.; Panhale, A.; Stehle, T.; Kretz, O.; Sahyoun, A. H.; Avilov, S.; Eimer, S.; Hein, L.; Pfanner, N.; Becker, T.; Akhtar, A. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria. Cell 2016, 167 (3), 722–738.

(84) Johnson, R. F.; Witzel, I. L.; Perkins, N. D. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB. Cancer Res. 2011, 71 (16), 5588–97.

(85) Lamberti, E.; Penolazzi, L.; Morganti, C.; Lisignoli, G.; Zini, N.; Angelozzi, M.; Bonora, M.; Ferroni, L.; Pinton, P.; Zavan, B.; Piva, R. Osteogenic differentiation of human MSCs: Specific occupancy of the mitochondrial DNA by NFATc1 transcription factor. Int. J. Biochem. Cell Biol. 2015, 64, 212–9.

(86) Blumberg, A.; Sri Sailaja, B.; Kandaje, A.; Levin, L.; Dadon, S.; Shmorah, S.; Shaal, E.; Mesheror, E.; Mishmar, D. Transcription factors bind negatively selected sites within human mtDNA genes. Genome Biol. Evol. 2014, 6 (10), 2634–46.

(87) Mercer, T. R.; Neph, S.; Dinger, M. E.; Crawford, J.; Smith, M. J.; Mercer, T. R.; Neph, S.; Dinger, M. E.; Crawford, J.; Smith, M. J.; Wiringa, R. M.; Chang, A.; Pertea, M.; pertea, M.; et al. The tranSMART knowledgebase: a high-throughput, high-content, and high-confidence database for deep druggable targets. Nucleic Acids Res. 2018, 46 (D1), D380–D386.

(88) Dursun, E.; Gezen-Ak, D.; Yilmazer, S. A novel perspective for Alzheimer’s disease: vitamin D receptor suppression by amyloid-beta and preventing the amyloid-beta induced alterations by vitamin D in cortical neurons. J. Alzheimer’s Dis. 2011, 23 (2), 207–19.

(89) Dursun, E.; Gezen-Ak, D.; Yilmazer, S. A new mechanism for amyloid-beta induction of iNOS: vitamin D-VDR pathway disruption. J. Alzheimer’s Dis. 2013, 36 (3), 549–74.

(90) Dursun, E.; Gezen-Ak, D.; Yilmazer, S. Beta amyloid suppresses the expression of the vitamin d receptor gene and induces the expression of the vitamin d catabolism enzyme gene in hippocampal neurons. Dement. Geriatr. Cogn. Disord. 2013, 36 (1–2), 76–86.

(91) Gezen-Ak, D.; Dursun, E.; Yilmazer, S. Vitamin D inquiry in hippocampal neurons: Consequences of vitamin D-VDR pathway disruption on calcium channel and the vitamin D requirement. Neuro. Sci. 2013, 34 (8), 1453–1458.

(92) Otero-Garcia, M.; Xue, Y. Q.; Shakkour, T.; Deng, Y.; Morabito, S.; Allison, T.; Lowry, W. E.; Kawaguchi, R.; Swarup, V.; Cobos, I. Single-soma transcriptomics of tangle-bearing neurons in Alzheimer’s disease reveals the signatures of tau-associated synaptic dysfunction. BioRxiv 2020, DOI: 10.1101/2020.05.11.088591.

(93) Grünblatt, E.; Mandel, S.; Jacob-Hirsch, J.; Zeligson, S.; Amargilo, N.; Rechavi, G.; Li, J.; Ravid, R.; Röggendorf, W.; Riederer, P.; Youdim, M. B. H. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J. Neural Transm. 2004, 111 (12), 1543–1573.

(94) Simunovic, F.; Yi, M.; Wang, Y.; Macey, L. B.; Krichevsky, A. M.; Andersen, S. L.; Stephens, R. H.; Mes, F. M.; et al. Sonntag, K. C. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 2009, 132 (7), 1795–1809.

(95) Bender, A.; Desplans, P.; Spencer, B.; Rockenstein, E.; Adame, A.; Elstner, M.; Laub, C.; Mueller, S.; Kooob, A. O.; Mante, M.; et al. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson’s disease. PLoS One 2013, 8 (4), e62277.

(96) Sengul, B.; Dursun, E.; Verkhratsky, A.; Gezen-Ak, D. Overexpression of alpha-Synuclein Reorganises Growth Factor Profile of Human Astrocytes. Mol. Neurobiol. 2021, 58 (1), 184–203.

(97) Freundt, E. C.; Maynard, N.; Clancy, E. K.; Roy, S.; Bousset, L.; Sourigues, Y.; Covert, M.; Melki, R.; Kirkegaard, K.; Brach, M. Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann. Neurol. 2012, 72 (4), 517–24.

(98) Brach, M.; Bousset, L.; Bieri, G.; Melki, R.; Gitler, A. D. Axonal transport and secretion of fibrillar forms of alpha-synuclein, Abeta42 peptide and HTT exon 1. Acta Neuropathol. 2016, 131 (4), 539–48.

(99) Aulic, S.; Le, T. T.; Moda, F.; Abounit, S.; Corvaglia, S.; Casalis, L.; Gustinich, S.; Zurzolo, C.; Tagliavini, F.; Legname, G. Defined alpha-synuclein prion-like molecular assemblies spreading in cell culture. BMC Neurosci. 2014, 15, 69.

(100) Volpincelli-Daley, L. A.; Luk, K. C.; Patel, T. P.; Tanik, S. A.; Riddle, D. M.; Stieber, A.; Meaney, D. F.; Trojanowski, J. Q.; Lee, V. M. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuro. Sci. 2011, 72 (1), 57–71.

(101) Kumar, S.; Walter, J. Phosphorylation of amyloid beta (Abeta) peptides - a trigger for formation of toxic aggregates in Alzheimer’s disease. Aging (Albany, NY) 2011, 3 (8), 803–12.

(102) Johnson, L.; Barford, D. The effects of phosphorylation on the structure and function of proteins. Annu. Rev. Biophys. Biomol. Struct. 1993, 22 (1), 199–232.
(117) Hunter, T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. *Cell* 1995, 80 (2), 225−236.

(118) Milton, N. G. Phosphorylation of amyloid-beta at the serine 26 residue by human cdc2 kinase. *NeuroReport* 2001, 12 (17), 3839−44.

(119) Kumar, S.; Wirths, O.; Stuber, K.; Wunderlich, P.; Koch, P.; Theil, S.; Rezaei-Ghaleh, N.; Zweckstetter, M.; Bayer, T. A.; Brustle, O.; Thal, D. R.; Walter, J. Phosphorylation of the amyloid beta-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. *Acta Neuropathol.* 2016, 131 (4), 525−37.

(120) Jamasbi, E.; Separovic, F.; Hossain, M. A.; Ciccotosto, G. D. Phosphorylation of a full length amyloid-beta peptide modulates its amyloid aggregation, cell binding and neurotoxic properties. *Mol. Biosyst.* 2017, 13 (8), 1545−1551.

(121) Doig, A. J.; Del Castillo-Frias, M. P.; Berthoumieu, O.; Tarus, B.; Nasica-Labouze, J.; Sterpone, F.; Nguyen, P. H.; Hooper, N. M.; Faller, P.; Derreumaux, P. Why Is Research on Amyloid-beta Failing to Give New Drugs for Alzheimer’s Disease? *ACS Chem. Neurosci.* 2017, 8 (7), 1435−1437.

(122) Wilkins, H. M.; Troutwine, B. R.; Menta, B. W.; Manley, S. J.; Strope, T. A.; Lysaker, C. R.; Swerdlow, R. H. Mitochondrial Membrane Potential Influences Amyloid-beta Protein Precursor Localization and Amyloid-beta Secretion. *J. Alzheimer's Dis.* 2022, 85 (1), 381−394.

(123) Son, J. M.; Lee, C. Mitochondria: multifaceted regulators of aging. *BMB Rep.* 2019, 52 (1), 13−23.