Partitions of the complete hypergraph K_6^3 and a determinant-like function

Mihai D. Staic 1,2 · Steven R. Lippold 1

Received: 27 September 2021 / Accepted: 11 April 2022 / Published online: 11 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper, we introduce a determinant-like map \det^{S_3} and study some of its properties. For this, we define a graded vector space $\Lambda^{S_3} \mathcal{V}$ that has similar properties with the exterior algebra $\Lambda \mathcal{V}$ and the exterior GSC-operad $\Lambda^{S_2} \mathcal{V}$ from Staic. When $\dim(\mathcal{V}_2) = 2$, we show that $\dim_k(\Lambda^{S_3} \mathcal{V}_2[6]) = 1$, which gives the existence and uniqueness of the map \det^{S_3}. We also give an explicit formula for \det^{S_3} as a sum over certain 2-partitions of the complete hypergraph K_6^3.

Keywords
Exterior algebra · Partitions of hypergraphs

Mathematics Subject Classification Primary 15A15 · Secondary 05C65 · 05C70

1 Introduction

The exterior algebra $\Lambda \mathcal{V}$ is the quotient of the tensor algebra $\mathcal{T} \mathcal{V}$ by the ideal generated by all elements $u \otimes u$ where $u \in \mathcal{V}$. It is well known that if $\dim(\mathcal{V}_d) = d$, then $\dim_k(\Lambda \mathcal{V}_d[d]) = 1$, and that one gets the determinant of a linear transformation $T : \mathcal{V} \to \mathcal{V}$ as the unique constant $\det(T) = \Lambda(T) : \Lambda \mathcal{V}_d[d] \to \Lambda \mathcal{V}_d[d]$. Equivalently, the determinant map is the unique (up to a constant) nontrivial linear function $\det : \mathcal{V}_d \otimes^d \to k$ with the property $\det(\bigotimes_{1 \leq i \leq d}(v_i)) = 0$ if there exists $1 \leq x < y \leq d$ such that $v_x = v_y$.

Mihai D. Staic
mstaic@bgsu.edu
Steven R. Lippold
steverl@bgsu.edu

1 Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
2 Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 70700 Bucharest, Romania
One of the applications of the exterior algebra is in the Hochschild–Kostant–Rosenberg (HKR) theorem. This states that for a smooth algebra A there is an isomorphism between $\Lambda \Omega_{A,k}$ the exterior algebra of the module of Kähler differentials and $H_\bullet(A, A)$ the Hochschild homology of A (see [11]). In [6], Pirashvili defined a generalization of the Hochschild homology, known as higher-order Hochschild homology $HH^X_\bullet(A, A)$, where X is a simplicial set and A is a commutative k-algebra. When $X = S^1$, one recovers the classical Hochschild homology.

Inspired by the HKR theorem, Pirashvili’s higher-order Hochschild homology [6], and Voronov’s Swiss-Cheese operads [10], the first author introduced in [7] the exterior Graded-Swiss-Cheese (GSC) operad $\Lambda^S V$. More precisely, if we let $T^V = \bigoplus_{n \geq 0} V_{n} \otimes \Lambda_0^{n-1}$, the exterior GSC-operad $\Lambda^S V$ was defined as a quotient of the tensor GSC-operad T^V by the ideal $\mathcal{E}^S V$ generated by elements of the form

$$
\begin{pmatrix}
1 & u & u \\
1 & u & \\
\otimes & & 1
\end{pmatrix}
$$

where $u \in V$. We would direct the reader to Sect. 2 of this paper as well as [7] and [5] for the details of this construction.

The exterior GSC-operad $\Lambda^S V$ has many properties similar to the exterior algebra ΛV. For example, if we consider V_d to be a k-vector space of dimension d, it was proved in [7] that $\dim_k(\Lambda^S V_3[4]) = 1$, and in [5] that $\dim_k(\Lambda^S V_3[6]) = 1$. In particular, if $d = 2$ (or $d = 3$), we have a determinant-like function $\det^S : V_d^{\otimes (2d-1)} \to k$ that is nontrivial and unique (up to a constant) with the property that $\det^S(\otimes 1 \leq i < j \leq 2d(v_i, j)) = 0$ if there exists $1 \leq x < y < z \leq 2d$ such that $v_{x,y} = v_{x,z} = v_{y,z}$. It was conjectured in [7] that a similar nontrivial function $\det^S : V_d^{\otimes (2d-1)} \to k$ exists and is unique up to a constant for any d. The results from [5] were obtained by exploring a connection between $\Lambda^S V_3[2d]$ and the set of homogeneous cycle-free edge partitions of the complete graph K_{2d}.

Using ΛV and $\Lambda^S V$ as models, in this paper we consider a similar construction denoted $\Lambda^S S$. The main result is that when $\dim_k(V_2) = 2$, we have $\dim_k(\Lambda^S S_3[6]) = 1$. In particular, we get the existence and uniqueness of a nontrivial determinant-like function $\det^S : V_2^{\otimes 20} \to k$ with the property that $\det^S(\otimes 1 \leq i < j < k \leq 6(v_i, j, k)) = 0$ if there exists $1 \leq x < y < z < t \leq 6$ such that $v_{x,y,z} = v_{x,y,t} = v_{x,z,t} = v_{y,z,t}$. The map \det^S is invariant under the actions of the group $SL_2(k)$ and of the symmetric group S_6.

The paper is organized as follows: In Sect. 2, we recall a few results about ΛV and $\Lambda^S V$. We also give some definitions and examples of hypergraphs. In Sect. 3, we introduce $\Lambda^S S = \bigoplus_{n \geq 0} \Lambda^S S_3[n]$ as the quotient of $T^S \Lambda V$ by a certain subspace generated by elements similar to $\left(\begin{array}{ccc}
u & u & u \\
u & u \\
u & \end{array}\right)$ for all $u \in V$ (see 3.1 for an explanation of this notation). We exhibit a connection between $T^S \Lambda V_3[n]$ and the set of d-partitions of the 3-uniform hypergraph K_3^n and give a presentation with generators and relations for $\Lambda^S S$.

Sprin
Section 4 deals with the case \(\dim(V_2) = 2 \). We prove the main result of this paper, namely that \(\dim_k \left(\Lambda^3 V_2[6] \right) = 1 \), which gives the existence and uniqueness of the \(\det^3 \) map. We study properties of the map \(\det^3 \) and compute \(\dim_k(\Lambda_1^* S_3 V_2[6]) = 1 \), which gives the existence and uniqueness of the \(\det S_3 \) map. We study properties of the map \(\det S_3 \) and compute \(\dim_k(\Lambda_1^* S_3 V_2[n]) \) for all \(n \geq 0 \). In Sect. 5, we discuss a few related problems and generalizations.

Using the fact that \(\det^3 \) is invariant under the action of \(SL_2(k) \), in “Appendix” we give an explicit presentation for \(\det S_3 \) as a sum of products of determinants of \(2 \times 2 \) matrices. This gives an alternative proof for the existence of the map \(\det S_3 \).

We also present a classification of a certain class of homogeneous 2-partitions of complete hypergraph \(K^3_6 \) under the action of the group \(S_6 \times S_2 \). (This was obtained using MATLAB.)

2 Preliminary

2.1 Generalizations of the exterior algebra

In this paper, \(k \) is an infinite field such that \(\text{char}(k) \neq 2 \) and \(\text{char}(k) \neq 3 \). The tensor product \(\otimes \) is over the field \(k \). For a vector space \(V_d \) of dimension \(d \), we fix a basis \(B_d = \{e_1, \ldots, e_d\} \).

In order to provide some context and motivation for our construction and notations, in this subsection we recall a few results about the exterior algebra \(\Lambda^* V_d \), the determinant, the exterior GSC operad \(\Lambda^* S_2 V_d \), and the \(\det S_2 \) map. First, recall that the tensor algebra \(T V_d \) is the graded algebra defined as

\[
T V_d = \bigoplus_{n \geq 0} T V_d[n],
\]

where \(T V_d[n] = V_d^\otimes n \), with the product given by concatenation of tensors.

The exterior algebra of \(V_d \), denoted \(\Lambda^* V_d \), is the quotient of \(T V_d \) by the graded ideal \(J \) generated by simple tensors of the form \(e_i \otimes e_j + e_j \otimes e_i \), where \(1 \leq i \leq j \leq d \).

The determinant is the unique (up to a constant) nontrivial function \(\det: V_d^\otimes d \to k \) such that \(\det(\otimes_{1 \leq i \leq d}(v_i)) = 0 \) if there exists \(1 \leq x < y \leq d \) such that \(v_x = v_y \).

Focusing on the determinant, notice that the symmetric group \(S_d \) can be identified with \(\mathcal{P}_d^h(\{1, \ldots, d\}) \) the set of homogeneous, ordered \(d \)-partitions of the set \(\{1, \ldots, d\} \). More precisely to the permutation \(\sigma \in S_n \), we associate \(\pi(\sigma) = (\{\sigma(1)\}, \{\sigma(2)\}, \ldots, \{\sigma(d)\}) \in \mathcal{P}_d^h(\{1, \ldots, d\}) \). One can easily see that this map is
bijective. With this notation, if we let $v_i = (v_{i1}, \ldots, v_{id}) \in V_d$, then the usual formula for the determinant of a matrix $A = [v_1, \ldots, v_d] = [v_j^T]_{1 \leq i,j \leq d}$ can be rewritten as

$$\det(A) = \sum_{\sigma \in S_d} \varepsilon(\sigma)v_1^{\sigma(1)}v_2^{\sigma(2)}\ldots v_d^{\sigma(d)} = \sum_{\pi \in P_d(\{1,\ldots,d\})} \varepsilon(\pi)M_{\pi}(v_1, \ldots, v_d), \quad (2.1)$$

where $M_{\pi(\sigma)}(v_1, \ldots, v_d) = v_1^{\sigma(1)}v_2^{\sigma(2)}\ldots v_d^{\sigma(d)}$ is the corresponding monomial expression associated with A and the d-partition $\pi(\sigma)$. We will see later in the paper how this equivalent presentation of the determinant fits into more general settings.

Next, recall from [5] the construction of $\Lambda^{S_2}_1 V_d$. For every $n \geq 0$, we denote $T^{S_2}_V[n] := V \otimes^{n(n-1)/2}$. A simple tensor in $T^{S_2}_V[n]$ will be denoted by $\otimes_{1 \leq i < j \leq n}(v_i^j)$ where $v_i^j \in V$. Alternatively, we can present a simple tensor in $T^{S_2}_V[n]$ as an upper triangular tensor matrix

$$\left(\begin{array}{cccccc}
1 & v_{1,2} & v_{1,3} & \cdots & v_{1,n-2} & v_{1,n-1} & v_{1,n} \\
& 1 & v_{2,3} & \cdots & v_{2,n-2} & v_{2,n-1} & v_{2,n} \\
& & \ddots & \vdots & \vdots & \vdots & \vdots \\
& & & 1 & v_{n-2,n-1} & v_{n-2,n} & v_{n-1,n} \\
\otimes & & & & 1 & v_{n-1,n-1} & 1
\end{array}\right) \in V \otimes^{n(n-1)/2},$$

where $v_i^j \in V$ (for similar notations see [2, 3], or [7]). A general element in $T^{S_2}_V[n]$ is a sum of simple tensors.

Remark 2.1 The grading that we use in this paper is different from the one from [7]; more precisely, the relation between the two gradings is

$$T^{S_2}_V[n] = T^{S_2}_V(n+1) = V \otimes^{n(n-1)/2}.$$

This convention is more intuitive and is consistent with the usual grading on the exterior algebra Λ_V.

Next, we consider $E^{S_2}_V[n]$ the subspace of $V \otimes^{n(n-1)/2}$ that is linearly generated by all the simple tensor $\otimes_{1 \leq i < j \leq n}(v_i^j) \in T^{S_2}_V[n]$, with the property that there exist $1 \leq x < y < z \leq n$ such that $v_{x,y} = v_{x,z} = v_{y,z}$.

Definition 2.2 Let V be a k vector space. We define $\Lambda^{S_2}_V$ as the graded vector space with the component in degree n defined as the quotient vector space

$$\Lambda^{S_2}_V[n] := \frac{E^{S_2}_V[n]}{\Lambda^{S_2}_V(n+1)}.$$
\[\Lambda_{V}^{S^2}[n] = \frac{\mathcal{T}_{V}^{S^2}[n]}{\mathcal{E}_{V}^{S^2}[n]} \]

for every \(n \geq 0 \).

Remark 2.3 It was shown in [7] that \(\mathcal{T}_{V}^{S^2} \) has a Graded-Swiss-Cheese (GSC) operad structure. In that setting, \(\mathcal{E}_{V}^{S^2} \) is an (GSC-operad) ideal in \(\mathcal{T}_{V}^{S^2} \), and so we get a GSC-operad structure on \(\Lambda_{V}^{S^2} \). Our results in this paper do not rely on that structure, so a definition of \(\Lambda_{V}^{S^2} \) in terms of a graded vector space suffices.

We recall a few results about \(\Lambda_{V_d}^{S^2} \).

Proposition 2.2 ([5, 7]) Let \(V_d \) be a vector space of dimension \(d \) with a basis \(B_d = \{e_1, \ldots, e_d\} \).

1. \(\mathcal{E}_{V_d}^{S^2} \) is generated by \(\left\{ \begin{pmatrix} e_i & e_j \\ \otimes & 1 \end{pmatrix} + \begin{pmatrix} e_i & e_k \\ 1 & e_j \end{pmatrix} + \begin{pmatrix} e_i & e_j \\ 1 & e_k \end{pmatrix} + \begin{pmatrix} e_k & e_i \\ 1 & e_j \end{pmatrix} + \begin{pmatrix} e_k & e_j \\ 1 & e_i \end{pmatrix} \right\} \) for all \(1 \leq i \leq j \leq k \leq d \).

2. If \(n > 2d \), then \(\dim_k (\Lambda_{V_d}^{S^2}[n]) = 0 \).

3. If \(\dim_k(V_2) = 2 \) or \(\dim_k(V_3) = 3 \), then \(\dim_k (\Lambda_{V_d}^{S^2}[2d]) = 1 \).

4. If \(d = 2 \) or \(d = 3 \), the map \(\det^{S^2} \) is the unique nontrivial function, up to a constant, \(\det^{S^2} : V_d^{\otimes (2d-1)} \to k \) such that \(\det^{S^2}(\otimes_{1 \leq i < j \leq 2d}(v_i,j)) = 0 \) if there exists \(1 \leq x < y < z \leq 2d \) such that \(v_{x,y} = v_{x,z} = v_{y,z} \).

Notice the parallels between Propositions 2.1 and 2.2. Based on the results summarized in Proposition 2.2, it was conjectured in [7] that if \(\dim_k(V_d) = d \), then \(\dim_k (\Lambda_{V_d}^{S^2}[2d]) = 1 \).

In Proposition 2.2, a connection between a particular basis for \(\mathcal{T}_{V_d}^{S^2}[n] \) and the set of \(d \)-partitions of the complete graph \(K_n \) was used in [5]. We recall that setting since it will provide motivation for some of the notations and results in Sect. 3.

Let \(B_d = \{e_1, e_2, \ldots, e_d\} \) be a basis for \(V_d \). Take the basis of \(V_d^{\otimes \binom{n(n-1)}{2}} \) given by

\[\mathcal{G}_{B_d}^{S^2}[n] = \left\{ \begin{pmatrix} 1 & v_{1,2} & \cdots & v_{1,n-1} & v_{1,n} \\ & 1 & \cdots & v_{2,n-1} & v_{2,n} \\ & & \ddots & \vdots & \vdots \\ & & & 1 & v_{n-1,n} \\ & & & & 1 \end{pmatrix} \in V_d^{\otimes \binom{n(n-1)}{2}} | v_{i,j} \in B_d \right\} \]

Recall that a \(d \)-partition of the complete graph \(K_n \) is an ordered collection \(\Gamma = (\Gamma_1, \Gamma_2, \ldots, \Gamma_d) \) of subgraphs of \(K_n \) such that \(E(\Gamma_i) \cap E(\Gamma_j) = \emptyset \) for \(i \neq j \), and \(\bigcup_{i=1}^{n} E(\Gamma_i) = E(K_n) \).
Fig. 1 (Γ₁, Γ₂, Γ₃) the 3-partition of K₆ associated with E₃

It was shown in [5] that the basis $G_{B_d}^S[n]$ is in bijection with $P_d(K_n)$ the set of ordered d-partitions of the complete graph K_n. More precisely, to $\omega = \bigotimes_{1 \leq i < j \leq n} (v_i, j) \in G_{B_d}^S[n]$, we can associate the subgraphs $\Gamma_i(\omega)$ of K_n by taking $V(\Gamma_i(\omega)) = \{1, 2, \ldots, n\}$, and $E(\Gamma_i(\omega)) = \{(a, b) | v_{a, b} = e_i\}$. From the definition of $G_{B_d}^S[n]$, it follows that this map is a bijection. As an example, let E_3 be the element $E_3 = \begin{pmatrix} 1 & e_1 & e_2 & e_3 & e_1 \\ 1 & e_1 & e_2 & e_3 \\ 1 & e_2 & e_3 & e_2 \\ 1 & e_2 & e_3 \\ \bigotimes & 1 \end{pmatrix} \in G_{B_3}^S[6].$

Since we have the entry e_1 in the positions $(1, 2)$, $(1, 4)$, $(1, 6)$, $(2, 3)$ and $(2, 5)$, we get Γ_1 the leftmost graph in Fig. 1. We could likewise do this construction for e_2 and e_3 to obtain Γ_2 and Γ_3, respectively, given in Fig. 1.

Notice that if $\dim_k \left(\Lambda_{V_d}^2[2d] \right) = 1$, then we get the existence of a unique (up to a constant) nontrivial linear map

$\det^S : V_d^\otimes (2d-1) \rightarrow k,$

with the property that $\det^S(\otimes (v_i, j))_{1 \leq i < j \leq 2d} = 0$ if there exist $1 \leq x < y < z \leq 2d$ such that $v_{x, y} = v_{x, z} = v_{y, z}$. When $d = 2$ or $d = 3$, it was shown in [5] that such a map exists and it has the expression

$$\det^S(\otimes_{1 \leq i < j \leq 2d} (v_i, j)) = \sum_{(\Gamma_1, \ldots, \Gamma_d) \in P_d^{h,cf}(K_{2d})} \varepsilon^S_{d, \Gamma} ((\Gamma_1, \ldots, \Gamma_d)) M(\Gamma_1, \ldots, \Gamma_d) \times (\otimes_{1 \leq i < j \leq 2d} (v_i, j)).$$

(2.2)

Here, the sum is taken over $P_d^{h,cf}(K_{2d})$ the set of cycle-free, homogeneous d-partitions $(\Gamma_1, \ldots, \Gamma_d)$ of the complete graph K_{2d}, the map $\varepsilon^S_{d, \Gamma} : P_d^{h,cf}(K_{2d}) \rightarrow \{1, -1\}$ is a sign map on the set of homogeneous, cycle-free d-partitions of K_{2d}, and $M(\Gamma_1, \ldots, \Gamma_d)(\otimes_{1 \leq i < j \leq 2d} (v_i, j))$ is a certain monomial associated with the partition.
(Γ₁, . . . , Γₖ) and to the element ⊗₁≤i<j≤2d(vᵢ,j) ∈ Vₙ⊗d(2d−1). For example, if d = 3 and vᵢ,j = αᵢ,j e₁ + βᵢ,j e₂ + γᵢ,j e₃, then

\[M(Γ₁,Γ₂,Γ₃)(⊗₁≤i<j≤6(vᵢ,j)) = \prod_{(u₁,v₁)∈E(Γ₁)} α_{u₁,v₁} \prod_{(u₂,v₂)∈E(Γ₂)} β_{u₂,v₂} \prod_{(u₃,v₃)∈E(Γ₃)} γ_{u₃,v₃}. \]

Notice the similarities between formulas (2.1) and (2.2), as well as between \(M_π \) and \(M(Γ₁,...,Γₖ) \).

Remark 2.4 When \(d = 2 \) or \(d = 3 \), the condition of \(\det^S(⊗(vᵢ,j)₁≤i<j≤2d) = 0 \) has a geometrical interpretation that was discussed in [8]. It is interesting to notice that the case \(d = 2 \) is essentially equivalent with an old result of Pappus of Alexandria (see [4]).

In this paper, we will deal with a similar construction \(\Lambda^S_V \) and the associated determinant-like function \(\det^S \). This will give us results analogous to Propositions 2.1 and 2.2, as well as a formula for \(\det^S \) analogous to formulas (2.1) and (2.2).

2.2 Partition of hypergraphs

We recall from [1] a few definitions and examples of hypergraphs that will be used later in this paper.

Definition 2.5 A hypergraph \(\mathcal{H} = (V,E) \) consists of two finite sets \(V = \{v₁,v₂,\ldots,vₙ\} \) called the set of vertices, and \(E = \{E₁,E₂,\ldots,Eₘ\} \) a family of subsets of \(V \) called the hyperedges of \(\mathcal{H} \).

If every hyperedge of \(\mathcal{H} \) is of size \(r \), then \(\mathcal{H} \) is called an \(r \)-uniform hypergraph. For \(2 ≤ r ≤ n \), we define the complete \(r \)-uniform hypergraph to be the hypergraph \(K_n^r = (V,E) \) for which \(V = \{1,2,\ldots,n\} \), and \(E \) is the family of all subsets of \(V \) of size \(r \).

A 2-uniform hypergraph is nothing else but a graph, and \(K_n^2 \) is the complete graph \(K_n \). In this paper, we are interested in 3-uniform hypergraphs. A hyperedge of a 3-uniform hypergraph will be called a face.

Definition 2.6 Let \(\mathcal{H} \) be a hypergraph and \(k ≥ 2 \) be a natural number. A \(k \)-partition of \(\mathcal{H} \) is an ordered collection \(\mathcal{P} = (\mathcal{H}_₁,\mathcal{H}_₂,\ldots,\mathcal{H}_k) \) of sub-hypergraphs \(\mathcal{H}_i \) of \(\mathcal{H} \) such that:

(i) \(V(\mathcal{H}_i) = V(\mathcal{H}) \) for all \(1 ≤ i ≤ k \),
(ii) \(E(\mathcal{H}_i) \cap E(\mathcal{H}_j) = \emptyset \) for all \(i ≠ j \),
(iii) \(∪₁≤i≤kE(\mathcal{H}_i) = E(\mathcal{H}) \).

We say that the partition \(\mathcal{P} = (\mathcal{H}_₁,\mathcal{H}_₂,\ldots,\mathcal{H}_k) \) is homogeneous if \(|E(\mathcal{H}_i)| = |E(\mathcal{H}_j)| \) for all \(1 ≤ i < j ≤ k \).

We will denote by \(\mathcal{P}_d(\mathcal{H}) \) the set of \(d \)-partitions of the hypergraph \(\mathcal{H} \), and with \(\mathcal{P}_d^h(\mathcal{H}) \) the set of homogeneous \(d \)-partitions of the hypergraph \(\mathcal{H} \).
Since we are only interested in 3-uniform hypergraphs, we will draw each hyperedge as a triangle (face) that connects three vertices. In order to avoid drawing three-dimensional pictures, we will draw a projection in the plane, allowing the possibility to draw the same vertex several times in our picture. Finally, because in this paper we are interested mostly in 2-partitions of K^3_n, when we draw a partition $(\mathcal{H}_1, \mathcal{H}_2)$, we will shade the hyperedges in \mathcal{H}_1 and do not shade the hyperedges in \mathcal{H}_2.

Example 2.7

(i) Consider the complete hypergraph K^3_4. Take $E(\mathcal{H}_1) = \{\{1, 2, 4\}, \{1, 3, 4\}\}$, and $E(\mathcal{H}_2) = \{\{1, 2, 3\}, \{2, 3, 4\}\}$. Then, $(\mathcal{H}_1, \mathcal{H}_2)$ is a homogeneous, 2-partition for K^3_4 (see Fig. 2).

(ii) Consider the complete graph K^3_4. Take $E(\mathcal{L}_1) = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}\}$, and $E(\mathcal{L}_2) = \{\{2, 3, 4\}\}$. Then, $(\mathcal{L}_1, \mathcal{L}_2)$ is a 2-partition for K^3_4 that is not homogeneous (see Fig. 3).

Remark 2.8

Notice that if \mathcal{H} is a sub-hypergraph of K^3_n and $\sigma \in S_n$, then $\sigma \cdot \mathcal{H}$ is also a sub-hypergraph of K^3_n, where $V(\sigma \cdot \mathcal{H}) = \{\sigma(v) | v \in V(\mathcal{H})\}$ and $E(\sigma \cdot \mathcal{H}) = \{\{\sigma(a), \sigma(b), \sigma(c)\} | \{a, b, c\} \in E(\mathcal{H})\}$.

With this notation, one can see that on $\mathcal{P}^h_d(K^3_{3d})$ there is an action of the group $S_{3d} \times S_d$ given by

$$(\sigma, \tau) \cdot (\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_d) = (\sigma \cdot \mathcal{H}_{\tau^{-1}(1)}, \sigma \cdot \mathcal{H}_{\tau^{-1}(2)}, \ldots, \sigma \cdot \mathcal{H}_{\tau^{-1}(d)})$$

Later in the paper, we will use the case $d = 2$.
3 Generators and relations for Λ^S_V

In this section, we define Λ^S_V for a vector space V and discuss connections with partitions of hypergraphs.

Take

$$T^S_V = \bigoplus_{n \geq 0} T^S_V [n],$$

where

$$T^S_V [n] = V \otimes \frac{n(n-1)(n-2)}{6}.$$

A simple tensor in $T^S_V [n]$ is denoted by $\otimes_{1 \leq i < j < k \leq n} (v_{i,j,k})$ where $v_{i,j,k} \in V$. A general element in $T^S_V [n]$ is a sum of simple tensors. One should think about T^S_V as a generalization of the tensor algebra $T(V)$, or of the tensor GSC-operad T^S_V.

When convenient we will also use a tensor matrix notation similar to the ones from [2], or [7],

$$\omega = \otimes_{1 \leq i < j < k \leq n} (v_{i,j,k}) = \begin{pmatrix} v_{1,2,3} & v_{1,2,4} & v_{1,3,4} & \cdots \\ v_{1,2,5} & v_{1,3,5} & v_{1,4,5} & \cdots \\ v_{2,3,4} & v_{2,3,5} & v_{2,4,5} & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ v_{1,2,n} & \cdots & v_{1,n-2,n} & v_{1,n-1,n} \\ \cdots & \cdots & \cdots & \cdots \\ v_{n-2,n-1,n} & \cdots & v_{2,n-2,n} & v_{2,n-1,n} \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix} \in V \otimes \frac{n(n-1)(n-2)}{6}.$$

(3.1)

Definition 3.1 Take $E^S_V [n]$ to be the subspace of $T^S_V [n]$ generated by tensors $\otimes_{1 \leq i < j < k \leq n} (v_{i,j,k})$ with the property that there exists $1 \leq x < y < z < t \leq n$ such that $v_{x,y,z} = v_{x,y,t} = v_{x,z,t} = v_{y,z,t}$. We define

$$\Lambda^S_V [n] = \frac{T^S_V [n]}{E^S_V [n]},$$

and

$$\Lambda^S_V = \bigoplus_{n \geq 0} \Lambda^S_V [n].$$
Again, one can think of ΛV^3 as a generalization of the exterior algebra, or of the exterior GSC-operad ΛV^2.

The image of the element $\omega = \bigotimes_{1 \leq i < j < k \leq n} (v_{i,j,k}) \in T^3 V$ from 3.1 in $\Lambda V^3 [n]$ will be denoted as $\hat{\omega} = \wedge_{1 \leq i < j < k \leq n} (v_{i,j,k})$, or as

$$
\hat{\omega} = \begin{pmatrix}
v_{1,2,3} & \\
v_{1,2,4} & v_{1,3,4} & \\
v_{1,2,5} & v_{1,3,5} & v_{1,4,5} & \\
v_{2,3,5} & v_{2,4,5} & \\
\vdots & \vdots & \vdots & \\
v_{1,2,n} & \ldots & v_{1,n-2,n} & v_{1,n-1,n} & \\
\ldots & \ldots & v_{2,n-2,n} & v_{2,n-1,n} & \\
\ldots & & \ldots & \\
v_{n-2,n-1,n} & \\
\end{pmatrix} \in \Lambda V^3 [n].
$$

Let’s see a few examples of identities in $\Lambda V^3 [4]$.

Example 3.2 Take $v = \alpha e_1 + \beta e_2 \in V_2$, using linearity we have

$$
0 = \begin{pmatrix} v \wedge v \wedge v \\ v \end{pmatrix} = \begin{pmatrix} (\alpha e_1 + \beta e_2) \wedge (\alpha e_1 + \beta e_2) \\ \alpha e_1 + \beta e_2 \end{pmatrix} = \alpha^4 \begin{pmatrix} e_1 \wedge e_1 \\ e_1 \end{pmatrix} + \beta^4 \begin{pmatrix} e_2 \wedge e_2 \\ e_2 \end{pmatrix} + \alpha^3 \beta \left(\begin{pmatrix} e_1 \wedge e_1 \\ e_1 \end{pmatrix} + \begin{pmatrix} e_1 \wedge e_2 \\ e_2 \end{pmatrix} + \begin{pmatrix} e_2 \wedge e_1 \\ e_2 \end{pmatrix} + \begin{pmatrix} e_2 \wedge e_2 \\ e_2 \end{pmatrix} \right) + \alpha^2 \beta^2 \left(\begin{pmatrix} e_1 \wedge e_1 \\ e_2 \end{pmatrix} + \begin{pmatrix} e_1 \wedge e_2 \\ e_2 \end{pmatrix} + \begin{pmatrix} e_2 \wedge e_1 \\ e_2 \end{pmatrix} + \begin{pmatrix} e_2 \wedge e_2 \\ e_2 \end{pmatrix} \right) + \alpha \beta^3 \left(\begin{pmatrix} e_1 \wedge e_1 \\ e_2 \end{pmatrix} + \begin{pmatrix} e_1 \wedge e_2 \\ e_2 \end{pmatrix} + \begin{pmatrix} e_2 \wedge e_1 \\ e_2 \end{pmatrix} + \begin{pmatrix} e_2 \wedge e_2 \\ e_2 \end{pmatrix} \right).
$$

Since this is true for all α and β, and k is infinite, we get the following identities

$$
\begin{pmatrix} e_1 \wedge e_1 \\ e_1 \end{pmatrix} + \begin{pmatrix} e_1 \wedge e_2 \\ e_2 \end{pmatrix} + \begin{pmatrix} e_2 \wedge e_1 \\ e_1 \end{pmatrix} + \begin{pmatrix} e_2 \wedge e_2 \\ e_2 \end{pmatrix} = 0 \in \Lambda V^3 [4], \quad (3.2)
$$
and

\[
\left(e_1 \wedge e_1 \right) + \left(e_2 \wedge e_2 \right) + \left(e_1 \wedge e_2 \right) + \left(e_2 \wedge e_1 \right) = 0 \in \Lambda_{V_2}^3[4].
\]

(3.3)

More generally, we have the following result.

Proposition 3.1 Let \(V_d \) be a vector space of dimension \(d \), and \(B_d = \{e_1, \ldots, e_d\} \) a basis for \(V_d \). Then, \(E_{V_d}^{S_3}[4] \) is the subspace of \(T_{V_d}^{S_3}[4] \) linearly generated by the following elements:

\[
\begin{pmatrix}
 e_i \\
 e_i e_i
\end{pmatrix},
\]

(3.4)

for all \(1 \leq i \leq d \),

\[
\begin{pmatrix}
 e_i \\
 e_i e_j
\end{pmatrix} + \begin{pmatrix}
 e_i \\
 e_j e_i
\end{pmatrix} + \begin{pmatrix}
 e_i \\
 e_j e_j
\end{pmatrix},
\]

(3.5)

for all \(1 \leq i \neq j \leq d \),

\[
\sum_{\sigma \in S_2(j,k)} \begin{pmatrix}
 e_\sigma(j) \\
 e_\sigma(k)
\end{pmatrix} + \begin{pmatrix}
 e_\sigma(j) \\
 e_\sigma(k)
\end{pmatrix},
\]

(3.7)

for all \(1 \leq i \leq d \), \(1 \leq j < k \leq d \), \(i \neq j \), \(i \neq k \) with the sum taken over all permutations of the set \(\{j, k\} \),

\[
\sum_{\sigma \in S_4(i,j,k,l)} \begin{pmatrix}
 e_\sigma(i) \\
 e_\sigma(j) e_\sigma(k) e_\sigma(l)
\end{pmatrix},
\]

(3.8)

for all \(1 \leq i < j < k < l \leq d \), where \(\sigma \) runs over all permutations of the set \(\{i, j, k, l\} \).
Proof In the definition of $E^3/V_d[n]$, take $v = \alpha e_i + \beta e_j + \gamma e_k + \delta e_l$. Using linearity, we get several terms with coefficients homogeneous monomials of total degree 4 in α, β, γ and δ. The expressions corresponding to $\alpha^4, \alpha^3\beta, \alpha^2\beta^2, \alpha^2\beta\gamma$, and $\alpha\beta^2\gamma\delta$ are, respectively, relations 3.4, 3.5, 3.6, 3.7, and 3.8. \qed

Remark 3.3 One can notice that if $d = 2$, only relations 3.4, 3.5 and 3.6 make sense. If $d = 3$, we can add 3.7, while for $d \geq 4$ all five relations make sense.

Remark 3.4 Even if $n \geq 4$, the above relations still give a set of generators for $E^3/V_d[n]$ as a vector space. More precisely, for $n \geq 4$ and $1 \leq x < y < z < t \leq n$ we can obtain an element in $E^3/V_d[n]$ by considering a generic element $\otimes_{1 \leq i < j < k < n}^n(v_{i,j,k}) \in V_d^{\otimes \frac{n(n-1)(n-2)}{6} - 4}$ that has all the entries $v_{i,j,k} \in \{e_1, \ldots, e_d\}$, and empty spots in the positions $(x, y, z), (x, y, t), (x, z, t)$ and (y, z, t). In order to get an element in $E^3/V_d[n]$, one fills the empty positions with any of the five relations 3.4, 3.5, 3.6, 3.7, or 3.8.

For example, if we take $n = 6, (x, y, z, t) = (1, 3, 4, 6)$, we consider a generic element that is missing entries in the positions $(1, 3, 4), (1, 3, 6), (1, 4, 6)$, and $(3, 4, 6)$

$$
\begin{pmatrix}
 v_{1,2,3} & v_{1,2,4} & \square \\
 v_{1,2,5} & v_{1,3,5} & v_{1,4,5} \\
 v_{2,3,5} & v_{2,4,5} & v_{3,4,5} \\
 v_{1,2,6} & \square & \square \\
 v_{2,3,6} & v_{2,4,6} & v_{2,5,6} & \square \\
 v_{3,5,6} & v_{4,5,6}
\end{pmatrix} \otimes
\begin{pmatrix} \in V_d^{\otimes (20-4)} \end{pmatrix}
$$

and $v_{i,j,k} \in \{e_1, \ldots, e_d\}$. If we use relation 3.5, then we get the following equality
for all $1 \leq i \neq j \leq d$. One can easily see that in this way we get all the relations in $\Lambda_{V_d}[n]$.

Next we exhibit a system of generators for $\Lambda_{V_d}[n]$ that is indexed by d-partitions of the complete hypergraph K_n^3. This is similar to the result from [5] which gives a relation between a set of generators for $\Lambda_{V_d}[n]$ and the set of edge d-partitions of K_n (see also Sect. 2).

Let $B_d = \{e_1, \ldots, e_d\}$ be a basis for V_d, we define

$$G_{B_d}[n] = \{ \otimes_{1 \leq i < j < k \leq n}(v_{i,j,k}) \in T_{V_d}^3[n] \mid v_{i,j,k} \in B_d\}.$$

Because of linearity, it is obvious that $G_{B_d}[n]$ is a basis for $T_{V_d}^3[n]$, and so its image in $\Lambda_{V_d}[n]$ will be a system of generators.

Moreover, there exists a bijection between the elements in $G_{B_d}[n]$ and the set of d-partitions of the hypergraph K_n^3. Indeed to every element in $\omega = \otimes_{1 \leq i < j < k \leq n}(v_{i,j,k}) \in G_{B_d}[n]$, we associate the partition $\mathcal{P}_{\omega} = (\mathcal{H}_1, \ldots, \mathcal{H}_d)$ where the hyperedge $\{a, b, c\} \in \mathcal{H}_i$ if and only if $v_{a,b,c} = e_i$. It is easy to see that this map is a bijec-

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig4.png}
\caption{$\mathcal{P}^{(1)} = \mathcal{P}_\omega$ the 2-partition of K_6^3 associated with ω}
\end{figure}
tation between $G_{S^3_Bd}[n]$ and $P_d(K_n^3)$. For a d-partition $P \in P_d(K_n^3)$, the corresponding element in $G_{S^3_Bd}[n]$ will be denoted by ω_P.

Notice the similarities with the bijection between $G_{S^2_Bd}[n]$ and $P_d(K_n)$ described in Sect. 2.1.

Example 3.5 Consider the element:

$$\omega = \begin{pmatrix} e_1 & \otimes \\ e_1 e_1 & e_2 \\ e_1 e_2 & e_2 e_2 & e_1 \\ e_1 e_2 e_2 e_1 \\ e_2 e_1 e_1 e_2 \\ e_2 e_1 e_2 e_1 \\ e_1 e_2 e_2 \\ e_1 e_2 e_1 \\ e_1 e_2 \\ e_1 \end{pmatrix} \in G_{S^3_Bd}[6].$$

The corresponding partition P_ω is presented in Fig. 4.

Example 3.6 Using the above dictionary between 2-partitions of K_n^3 and elements from $G_{S^3_Bd}[n]$, one can translate relations 3.5 and 3.6 into relations among partitions as in Fig. 5, respectively, Fig. 6.

If $d \geq 3$, there are similar pictures for 3.7, and 3.8, but since in this paper we are mainly interested in the case $d = 2$, we only present these two pictures.

Remark 3.7 Notice that a more natural indexing set for the $\binom{n}{3}$ positions of a tensor in $\bigotimes_{i=1}^{n} (V_{\otimes i})$ (i.e., (i, j, k) with $1 \leq i < j < k \leq n$) is the set of set of hyperedges of K_n^3 (i.e., (i, j, k) where $1 \leq i, j, k \leq n$ with $i \neq j \neq k \neq i$). However, instead of using the notation $v_{[i,j,k]}$ we will use the convention $v_{i,j,k} = v_{i,k,j} = v_{j,i,k} = v_{k,i,j} = v_{j,k,i} = v_{k,j,i}$ for all $1 \leq i < j < k \leq n$.

4 Main result

In this section, we consider the case $\dim_k(V_2) = 2$ and compute the dimension of $\Lambda_{V_2}^{S^3}[n]$ for all $n \geq 0$. In particular, we show that $\dim_k(\Lambda_{V_2}^{S^3}[6]) = 1$, which implies
We will use induction. When

\[1 \leq n \leq 4 \]

Lemma 4.1 Let \(n \geq 4 \) and take \(\omega = \bigotimes_{1 \leq i < j < k \leq n} (v_{i,j,k}) \in G_{B_2}^{S^3} [n] \subseteq V_2^{(3)} \) (i.e., \(v_{i,j,k} \in \{e_1, e_2\} \)). Assume that there are at least \(\binom{n-1}{2} + 1 \) entries equal to \(e_1 \) among the vectors \(v_{i,j,k} \), then \(\hat{\omega} = 0 \in \Lambda_{V_2}^{S^3} [n] \).

Proof We will use induction. When \(n = 4 \), we have that \(\binom{4-1}{2} + 1 = 4 \) and so all entries in \(\omega \) are equal to \(e_1 \), which means that \(\omega \in \mathcal{E}_{V_2}^{S^3} [4] \), and so \(\hat{\omega} = 0 \in \Lambda_{V_2}^{S^3} [4] \).

The plan is to show that we can change \(\omega \) with a sum of elements \(\omega_p \in G_{B_2}^{S^3} [n] \), such that each \(\omega_p \) is either zero in \(\Lambda_{V_2}^{S^3} [n] \), or it has at most \(n - 2 \) entries equal to \(e_1 \) in the \(n^{th} \) slice (i.e., among the entries \(\{v_{i,j,n}\}_{1 \leq i < j < n-1} \)). And so, each of these elements \(\omega_p \) has at least \(\binom{n-1}{2} + 1 - (n-2) = \binom{n-2}{2} + 1 \) entries equal to \(e_1 \) among the entries \(\{v_{i,j,k}\}_{1 \leq i < j < k < n-1} \) of \(\omega_p \). By induction, we would get that \(\hat{\omega} = 0 \in \Lambda_{V_2}^{S^3} [n] \).

Consider the \(n^{th} \)-slice of \(\omega \), which consists of all the entries in the positions \((i, j, n) \) where \(1 \leq i < j \leq n - 1 \). First notice that if there are more than \(n - 2 \) entries equal to \(e_1 \) in the \(n^{th} \) slice, then there exists a cycle \((i_1, i_2, \ldots, i_q) \) where \(1 \leq q \leq n - 1 \), \(1 \leq i_s < n - 1 \), and \(i_s \neq i_t \) for \(s \neq t \) such that \(v_{i_1,i_2,n} = v_{i_2,i_3,n} = \cdots v_{i_{q-1},i_q,n} = v_{i_q,i_1,n} = e_1 \). In such a situation, we will say that the \(n^{th} \) slice has an \(e_1 \)-cycle of length \(q \). We will do a second induction over \(q \).

Assume that \(n > 4 \) and \(q = 3 \), then we have \(v_{i_1,i_2,n} = v_{i_2,i_3,n} = v_{i_3,i_1,n} = e_1 \) for some distinct integers \(1 \leq i_1, i_2, i_3 \leq n - 1 \) (i.e., we have an \(e_1 \)-cycle of length 3). If \(v_{i_1,i_2,i_3} = e_1 \) then \(\omega \in \mathcal{E}_{V_2}^{S^3} [n] \) and so \(\hat{\omega} = 0 \). If \(v_{i_1,i_2,i_3} = e_2 \), then using identity 3.5 on the positions \((i_1, i_2, i_3), (i_1, i_2, n), (i_1, i_3, n) \) and \((i_2, i_3, n) \) we can move one of the \(e_1 \)

\[\odot \text{ Springer} \]
entries from the n^{th} slice to a lower slice which decrease the numbers of entries equal to e_1 in the n^{th} slice. More precisely, looking only at the entries

\[
\begin{pmatrix}
v_{i_1,i_2,i_3} \\ v_{i_1,i_2,n} \\ v_{i_2,i_3,n}
\end{pmatrix},
\]

we have the identity

\[
\begin{pmatrix}
e_1 ∧ e_1 \\
e_1 ⊗ e_2 \\
e_2 \\
e_1 ⊗ e_1
\end{pmatrix}
\]

\[
\begin{pmatrix}
e_1 ∧ e_1 \\
e_1 ⊗ e_2 \\
e_2 \\
e_1 ⊗ e_1
\end{pmatrix} + \begin{pmatrix}
e_1 ∧ e_1 \\
e_1 ⊗ e_2 \\
e_2 \\
e_1 ⊗ e_1
\end{pmatrix} + \begin{pmatrix}
e_2 ∧ e_2 \\
e_2 ⊗ e_1 \\
e_1 \\
e_2 ⊗ e_1
\end{pmatrix} = 0,
\]

where the boxed tensor matrix corresponds to our initial element. Notice that all the other tensor matrix in the above expression has the entry in the position (i_1, i_2, i_3) equal to e_1, and so fewer entries equal to e_1 in the n^{th} slice.

Next suppose that $q = 4$, i.e., we have an e_1-cycle (i_1, i_2, i_3, i_4) of length 4, which means that $v_{i_1,i_2,n} = v_{i_2,i_3,n} = v_{i_3,i_4,n} = v_{i_4,i_1,n} = e_1$, and $v_{i_1,i_3,n} = v_{i_2,i_4,n} = e_2$. (If any of these two entries is e_1, then we have a shorter e_1-cycle in the n^{th} slice.) If $v_{i_1,i_2,i_3} = v_{i_2,i_3,i_4} = v_{i_3,i_4,i_1} = v_{i_4,i_1,i_2} = e_1$, then $\omega \in \mathcal{E}_{\mathcal{V}_2}^g$ and so ω is trivial.

So, we can assume that one of the entries $v_{i_1,i_2,i_3}, v_{i_2,i_3,i_4}, v_{i_3,i_4,i_1}, v_{i_4,i_1,i_2}$ is equal to e_2. Then, we will use identity 3.6 to either move one of the e_1 entries from the n^{th} slice to a lower slice or to get a e_1-cycle of length 3 inside the n^{th} slice. (And so we reduce our problem to the case $q = 3$.) Indeed, for example if $v_{i_1,i_2,i_3} = e_2$, then looking only at the entries

\[
\begin{pmatrix}
v_{i_1,i_2,i_3} \\ v_{i_1,i_2,n} \\ v_{i_1,i_3,n} \\ v_{i_2,i_3,n}
\end{pmatrix},
\]

from equation 3.6 we have the following identity

\[
\begin{pmatrix}
e_1 ∧ e_1 \\
e_1 ⊗ e_2 \\
e_2 \\
e_1 ⊗ e_1
\end{pmatrix} + \begin{pmatrix}
e_1 ∧ e_1 \\
e_1 ⊗ e_2 \\
e_2 \\
e_1 ⊗ e_1
\end{pmatrix} + \begin{pmatrix}
e_2 ∧ e_2 \\
e_2 ⊗ e_1 \\
e_1 \\
e_2 ⊗ e_1
\end{pmatrix} + \begin{pmatrix}
e_2 ∧ e_2 \\
e_2 ⊗ e_1 \\
e_1 \\
e_2 ⊗ e_1
\end{pmatrix} = 0,
\]

where the boxed tensor matrix corresponds to our initial element. Notice that all the other tensor matrix in the above expression has either the entry in the position (i_1, i_2, i_3) equal to e_1 (and so less entries equal to e_1 in the n^{th} slice) or the entry in the position (i_1, i_3, n) equal to e_1 (and so the e_1-cycle (i_1, i_3, i_4) of length 3 in the n^{th} slice). The other cases are similar.

Finally, suppose that we have an e_1-cycle (i_1, i_2, \ldots, i_q) in the n^{th} slice with $q \geq 5$, which means that $v_{i_1,i_2,n} = v_{i_2,i_3,n} = v_{i_3,i_4,n} = v_{i_4,i_5,n} = \cdots = v_{i_q,i_1,n} = e_1$ and $v_{i_1,i_3,n} = v_{i_2,i_4,n} = v_{i_4,i_1,n} = e_2$. (If any of these three are equal to e_1, then there is a shorter e_1-cycle in the n^{th} slice.)

If $v_{i_1,i_2,i_3} = e_2$ or $v_{i_2,i_3,i_4} = e_2$, then, just like above, we can use relation 3.6 to either move an e_1 to a lower slice or to get an e_1-cycle of length at most $q − 1$ in the n^{th} slice. So, we can assume that $v_{i_1,i_2,i_3} = v_{i_2,i_3,i_4} = e_1$.

If $v_{i_1,i_3,i_4} = e_2$, then we can use relation 3.5 to either move an e_1 to a lower slice or to get a shorter e_1-cycle in the n^{th} slice. Indeed, looking only at the entries
Let \(G \) be a group acting on \(S \), we have the following identity

\[
\left(v_{1,i_1,i_4} \otimes v_{1,i_3,n} v_{1,i_4,n} v_{1,i_3,n} \right),
\]

where the boxed tensor matrix corresponds to our initial element. Notice that all the other tensor matrix in the above expression has either the entry in the position \((i_1, i_3, i_4)\) equal to \(e_1\) (and so less entries equal to \(e_1\) in the \(n^{th}\) slice) or the entry in the position \((i_1, i_3, n)\) or \((i_1, i_4, n)\) equal to \(e_1\) (and so a shorter \(e_1\)-cycle inside the \(n^{th}\) slice). The case \(v_{1,i_2,i_4} = e_2\) is similar.

To summarize, we have that \(v_{1,i_2,i_3} = v_{1,i_2,i_4} = v_{1,i_3,i_4} = v_{1,i_3,i_4} = e_1\) and so \(\hat{\omega} = 0\). This means that we may assume that the \(n\)-th slice has at most \(n - 2\) entries equal to \(e_1\), and so by induction we get our claim. \(\square\)

The following is the \(S^3\)-version of second statement of Proposition 2.2.

Corollary 4.2 If \(\dim_k(V_2) = 2\), then \(\dim_k(\Lambda_{V_2}^{S^3}[n]) = 0\) for all \(n \geq 7\).

Proof Take \(n \geq 7\) and consider \(\omega = \otimes_{1 \leq i < j < k \leq n} (v_{i,j,k}) \in G_{B_2}^{S^3}[n] \subseteq V_2^{\otimes(\binom{n}{3})}\) (i.e., \(v_{i,j,k} \in \{e_1, e_2\}\)). Since \(n \geq 7\), we have that \(\binom{n}{3} > 2\binom{n-1}{2}\) and so, without loss of generality, we may assume that \(\omega\) has at least \(\binom{n-1}{2} + 1\) entries equal to \(e_1\). From Lemma 4.1, we know that \(\hat{\omega} = 0 \in \Lambda_{V_2}^{S^3}[n]\) is trivial. \(\square\)

Corollary 4.3 Let \(\omega = \otimes_{1 \leq i < j < k \leq 6} (v_{i,j,k}) \in G_{B_2}^{S^3}[6] \subseteq V_2^{\otimes 20}\), and assume that there are at least 11 entries equal to \(e_1\) among the \(v_{i,j,k}\), then \(\hat{\omega} = 0 \in \Lambda_{V_2}^{S^3}[6]\).

Proof It follows directly from Lemma 4.1 for \(n = 6\). \(\square\)

Remark 4.4 Notice that if \(\omega \in G_{B_2}^{S^3}[6]\) such that \(\hat{\omega} \neq 0 \in \Lambda_{V_2}^{S^3}[6]\), then by Corollary 4.3 the corresponding partition \(\mathcal{P}_\omega = (\mathcal{H}_1, \mathcal{H}_2)\) of \(K^{S^3}_d\) must be homogeneous (i.e., \(\omega\) has ten entries equal to \(e_1\) and one entry equal to \(e_2\)).

Lemma 4.5 (i) There is an action of the symmetric group \(S_n\) on \(\Lambda_{V_2}^{S^3}[n]\) given by

\[
\sigma \cdot \Lambda_{1 \leq i < j < k \leq n}^{S^3}(v_{i,j,k}) = \Lambda_{1 \leq i < j < k \leq n}^{S^3}(v_{\sigma^{-1}(i), \sigma^{-1}(j), \sigma^{-1}(k)}).
\]

(ii) There is an action of the group \(GL_d(k)\) on \(\Lambda_{V_2}^{S^3}[n]\) given by

\[
T \cdot \Lambda_{1 \leq i < j < k \leq n}^{S^3}(v_{i,j,k}) = \Lambda_{1 \leq i < j < k \leq n}^{S^3}(T(v_{i,j,k})).
\]
If P is a homogeneous 2-partition of K^3_6 and $T \in GL_2(k)$, then

$$T \cdot \hat{\varpi} P = \det(T)^{10} \hat{\varpi} P.$$

In particular, there exists an action of the group $S_6 \times S_2$ on $\Lambda^{S^3_6}_V[6]$, where the S_6 action is the one described in 1), and S_2 is the subgroup on $GL_2(k)$ generated by $\tau : V_2 \rightarrow V_2$, $\tau(e_1) = e_2$ and $\tau(e_2) = e_1$.

Proof The first two statements follow directly from the definition of $\Lambda^{S^3_6}_S V_d[6]$. For statement (iii), first notice that it is enough to check it for diagonal and elementary transformations. Take $T_1, T_2 : V_2 \rightarrow V_2$,

$$T_1(e_s) = \begin{cases} \lambda e_1 & s = 1 \\ e_2 & s = 2, \end{cases}$$

$$T_2(e_s) = \begin{cases} e_1 & s = 1 \\ e_2 + \lambda e_1 & s = 2, \end{cases}$$

and consider $P = (\mathcal{H}_1, \mathcal{H}_2)$ a homogeneous partition of K^3_6. Then,

$$T_1 \cdot \hat{\varpi}_P = \lambda^{10} \hat{\varpi}_P = \det(T_1)^{10} \hat{\varpi}_P$$

where the first equality is true because the tensor product is linear in each component, and because there are exactly ten entries equal to e_1 in ϖ_P.

Next we have

$$T_2 \cdot \hat{\varpi}_P = \sum_{j=1}^{2^{10}} \lambda^{j} \hat{\varpi}_{P^j},$$

where the sum is taken over all 2-partitions $P^j = (\mathcal{H}^j_1, \mathcal{H}^j_2)$ of K^3_6 with the property that $E(\mathcal{H}_1) \subseteq E(\mathcal{H}^j_1)$ and $k_j = |E(\mathcal{H}^j_1)| - 10$. Obviously, the only homogeneous partition among the P^j’s is our initial partition P, and so from Corollary 4.3 we get

$$T_2 \cdot \hat{\varpi}_P = \hat{\varpi}_P = \det(T_2)^{10} \hat{\varpi}_P,$$

which completes our proof. \qed

As mentioned above, if $\omega \in \mathcal{G}^{S^3_6}_{B_2}[6]$ whose image in $\Lambda^{S^3_6}_V[6]$ is nonzero, then its corresponding partition P_ω must be homogeneous. There are exactly $\binom{20}{10} = 184756$ homogeneous 2-partitions of K^3_6, but not all of them give nonzero elements in $\Lambda^{S^3_6}_V[6]$.

For example, any partition $P = (\mathcal{H}_1, \mathcal{H}_2)$ for which we can find $1 \leq x < y < z < t \leq 6$ such that \{x, y, z\}, \{x, y, t\}, \{x, z, t\}, and \{y, z, t\} $\in E(\mathcal{H}_1)$ have the property that $\hat{\varpi}_P = 0 \in \Lambda^{S^3_6}_V[6]$. More generally, we have the following.
Lemma 4.6 Let $\mathcal{P} = (\mathcal{H}_1, \mathcal{H}_2)$ be a homogeneous 2-partition of K_6^3. If \mathcal{P} satisfies one of the following conditions, then $\omega_{\mathcal{P}} = 0 \in \Lambda_{V_2}^{S_3}[6]$.

(i) There exist four distinct integers $1 \leq x, y, z, t \leq 6$ and $1 \leq i \leq 2$ such that $\{x, y, z\}, \{x, y, t\}, \{x, z, t\}$, and $\{y, z, t\} \in E(\mathcal{H}_i)$.

(ii) There exist five distinct integers $1 \leq x, y, z, u, v \leq 6$ and $1 \leq i \leq 2$ such that $\{x, y, z\}, \{x, y, t\}, \{x, z, t\}, \{y, z, u\}, \{y, t, u\}$, and $\{z, t, u\} \in E(\mathcal{H}_i)$.

(iii) There exist six distinct integers $1 \leq x, y, z, u, v, y \leq 6$ and $1 \leq i \leq 2$ such that $\{x, y, u\}, \{x, y, v\}, \{y, z, u\}, \{x, z, t\}, \{y, t, v\}, \{y, z, t\}$, and $\{x, z, t\} \in E(\mathcal{H}_i)$.

(iv) There exist six distinct integers $1 \leq x, y, z, t, u, v \leq 6$ and $1 \leq i \leq 2$ such that $\{x, y, z\}, \{x, y, t\}, \{x, z, t\}, \{x, y, u\}, \{y, t, u\}, \{x, y, v\}, \{y, z, v\}, \{z, t, v\}$, and $\{t, u, v\} \in E(\mathcal{H}_i)$.

Proof We only give details for (ii), and the other statements are similar. Using relation 3.4 for (x, y, z, t), we get that

$$\omega_{\mathcal{P}} = -\omega_{\mathcal{P}(1)} - \omega_{\mathcal{P}(2)} - \omega_{\mathcal{P}(3)},$$

where $\mathcal{P}(i) = (\mathcal{H}_1^{(i)}, \mathcal{H}_2^{(i)})$ are distinct homogeneous 2-partitions of K_6^3 such that $\{y, z, t\} \in E(\mathcal{H}_i^{(j)})$, and $\mathcal{P}(j)$ coincide with \mathcal{P} everywhere except maybe on the hyperedges $\{x, y, z\}, \{x, y, t\}, \{x, z, t\}$, and $\{y, z, t\}$.

Notice that $\{y, z, u\}, \{y, t, u\}, \{z, t, u\}$, and $\{y, z, t\} \in E(\mathcal{P}(i))$ for $1 \leq j \leq 3$, and so by (i) we get that $\omega_{\mathcal{P}(i)} = 0$ for $1 \leq j \leq 3$ which proves our statement. \qed

Remark 4.7 There are 184 756 homogeneous 2-partitions of K_6^3. One can use Lemma 4.6 and MATLAB to sort out the trivial partitions. After this process, we are still left with 13 644 nontrivial homogeneous 2-partitions of K_6^3, which we will denote by $\mathcal{P}_h^{h,nt}(K_6^3)$ (i.e., those partitions that are not listed in Lemma 4.6).

Recall that on $\mathcal{P}_h^h(K_6^3)$ there is a natural action of the group $S_6 \times S_2$. It is obvious that the action of $S_6 \times S_2$ restricts to $\mathcal{P}_h^{h,nt}(K_6^3)$. Using MATLAB, one can give a classification of the elements in $\mathcal{P}_h^{h,nt}(K_6^3)$ under this action and obtain 20 equivalence classes. The details are presented in “Appendix.”

Definition 4.8 Let $\mathcal{P} = (\mathcal{H}_1, \mathcal{H}_2) \in \mathcal{P}_h^h(K_6^3)$ and $1 \leq x < y < z < t \leq 6$. We denote by $\text{Pair}(\mathcal{P}, (x, y, z, t))$ the set of all homogeneous 2-partitions of K_6^3 that coincide with \mathcal{P} except maybe on the hyperedges $\{x, y, z\}, \{x, y, t\}, \{x, z, t\}$, and $\{y, z, t\}$.

Remark 4.9 We have one of the following three cases.

(i) $\text{Pair}(\mathcal{P}, (x, y, z, t))$ has one single element only if all the hyperedges $\{x, y, z\}, \{x, y, t\}, \{x, z, t\}$, and $\{y, z, t\}$ belong to \mathcal{H}_1, or all of them belong to \mathcal{H}_2.

(ii) If three of the hyperedges $\{x, y, z\}, \{x, y, t\}, \{x, z, t\}$, and $\{y, z, t\}$ belong to \mathcal{H}_1, and one to \mathcal{H}_2 (or the other way around), then $\text{Pair}(\mathcal{P}, (x, y, z, t))$ has four elements.

(iii) If two of the hyperedges $\{x, y, z\}, \{x, y, t\}, \{x, z, t\}$, and $\{y, z, t\}$ belong to \mathcal{H}_1 and two belong to \mathcal{H}_2, then $\text{Pair}(\mathcal{P}, (x, y, z, t))$ has six elements.
With these notations, we have the following result.

Lemma 4.10 There exists a unique map \(\varepsilon^{S_3}_2 : \mathcal{P}_2^h(K_6^3) \to \{-4, -1, 0, 1\} \) such that

(i) if \(\mathcal{P} \in \mathcal{P}_2^h(K_6^3) \) and \(1 \leq x < y < z < t \leq 6 \) then

\[
\sum_{\mathcal{K} \in \text{Pair}(\mathcal{P},(x,y,z,t))} \varepsilon^{S_3}_2(\mathcal{K}) = 0,
\]

(ii) \(\varepsilon^{S_3}_2 \) takes value 1 on the partition \(\mathcal{P}^{(1)} \) from Fig. 4.

Proof Using relations 3.4, 3.5, 3.6 and Remark 4.9, one can write a system of linear equation that gives all the solutions for condition (i). Using MATLAB, one can show that the corresponding matrix has co-rank equal to 1, and so because of condition (ii), we get a unique solution. \(\square \)

Remark 4.11 It is rather interesting to notice that \(\varepsilon^{S_3}_2(\mathcal{P}) \neq 0 \) if and only if \(\mathcal{P} \in \mathcal{P}_{2,nt}^h(K_3^3) \). This is somehow similar to the results from [5] where \(\varepsilon^{S^2}_d((\Gamma_1, \Gamma_2, \ldots, \Gamma_d)) \neq 0 \) if and only if \((\Gamma_1, \Gamma_2, \ldots, \Gamma_d) \) was cycle free. One can see that the partitions listed in Lemma 4.6 have a copy of \(S^2 \) (made of hyperedges/faces) either in \(\mathcal{H}_1 \) or in \(\mathcal{H}_2 \). However, unlike \(\varepsilon^{S^2}_d \), the map \(\varepsilon^{S_3}_2 \) takes also the value \(-4\) which is a rather unexpected fact. A table of values of \(\varepsilon^{S_3}_2 \) on all elements in \(\mathcal{P}_{2,nt}^h(K_6^3) \) is given in “Appendix.”

The map \(\varepsilon^{S_3}_2 \) plays a role similar to the signature of a permutation, and with the \(\varepsilon^{S^2}_d \) map from [5]. It allows us to define a determinant-like function \(\det^{S_3} : V_2^{\otimes 20} \to k \).

More precisely, take \(v_{i,j,k} = \alpha_{i,j,k}e_1 + \beta_{i,j,k}e_2 \in V_2 \) for \(1 \leq i < j < k \leq 6 \). For a 2-partition \((\mathcal{H}_1, \mathcal{H}_2) \in \mathcal{P}_{2,nt}^h(K_6^3) \), define

\[
M^{S_3}_{(\mathcal{H}_1, \mathcal{H}_2)}((v_{i,j,k})_{1 \leq i < j < k \leq 6}) = \prod_{\underline{u},v_1,w_1 \in E(\mathcal{H}_1)} \alpha_{u_1,v_1,w_1} \prod_{\underline{u}_2,v_2,w_2 \in E(\mathcal{H}_2)} \beta_{u_2,v_2,w_2}.
\]

Next, take

\[
\text{Det}^{S_3} : V_2^{20} \to k
\]

determined by

\[
\text{Det}^{S_3}((v_{i,j,k})_{1 \leq i < j < k \leq 6}) = \sum_{(\mathcal{H}_1, \mathcal{H}_2) \in \mathcal{P}_{2,nt}^h(K_6^3)} \varepsilon^{S_3}_2(\mathcal{H}_1, \mathcal{H}_2) M^{S_3}_{(\mathcal{H}_1, \mathcal{H}_2)} \times \mathcal{P}^{(1)}_{2,nt}(K_6^3) \quad (4.1)
\]

Notice that \(\text{Det}^{S_3} \) is multi-linear and so we get a linear map \(\det^{S_3} : V_2^{\otimes 20} \to k \). The following theorem is the main result of this paper.
Theorem 4.12 The map $\det^S : V_2^{\otimes 20} \to k$ is the unique (up to a constant) nontrivial linear map on $V_2^{\otimes 20}$ with the property that $\det^S(\otimes_{1 \leq i < j < k \leq 6}(v_i, j, k)) = 0$ if there exist $1 \leq x < y < z < t \leq 6$ such that $v_{x,y,z} = v_{x,y,t} = v_{x,z,t} = v_{y,z,t}$. In particular, we have a unique (up to a constant) nontrivial linear map $\det^S : \Lambda_{V_2}^S[6] \to k$.

Proof This follows directly from Proposition 3.1 and Lemma 4.10.

Remark 4.13 An alternative proof (which does not use MATLAB) for the existence of the \det^S map is given in “Appendix.” That approach is based on the fact that \det^S is invariant under the action of $SL_2(k)$. However, that approach does not prove the uniqueness.

Remark 4.14 It is worth noticing the similarities between formulas 2.1, 2.2, and 4.1. This suggests a generalization to S^r for any r, which will be discussed in the next section.

Corollary 4.15 If $\dim_k(V_2) = 2$, then $\dim_k(\Lambda_{V_2}^{S_3}[6]) = 1$.

Proof It follows from Theorem 4.12 and the definition of $\Lambda_{V_2}^{S_3}[6]$.

To conclude this section, we have the following complete list of $\dim_k(\Lambda_{V_2}^{S_3}[n])$.

Proposition 4.1 Let V_2 be a vector space of dimension two. Then, we have:

(i) $\dim_k(\Lambda_{V_2}^{S_3}[0]) = \dim_k(\Lambda_{V_2}^{S_3}[1]) = \dim_k(\Lambda_{V_2}^{S_3}[2]) = 1$,
(ii) $\dim_k(\Lambda_{V_2}^{S_3}[3]) = 2$,
(iii) $\dim_k(\Lambda_{V_2}^{S_3}[4]) = 11$,
(iv) $\dim_k(\Lambda_{V_2}^{S_3}[5]) = 62$,
(v) $\dim_k(\Lambda_{V_2}^{S_3}[6]) = 1$,
(vi) $\dim_k(\Lambda_{V_2}^{S_3}[n]) = 0$ if $n \geq 7$.

Proof Most of the results are either trivial or were already covered in this section. The only interesting cases are $n = 4$ and $n = 5$.

Recall that $\mathcal{G}_{D_2}^{S_3}[n]$ is in bijection with $\mathcal{P}_2(K_n^3)$. We denote by $\mathcal{P}_2(K_n^3)^{p,q}$ those 2-partitions $(\mathcal{H}_1, \mathcal{H}_2)$ of K_n^3 with the property that $|E(\mathcal{H}_1)| = p$ and $|E(\mathcal{H}_2)| = q$. (Obviously, we must have that $p+q = \binom{n}{3}$.) We denote by $\Lambda_{V_2}^{S_3}[n]^{p,q}$ the corresponding subspace in $\Lambda_{V_2}^{S_3}[n]$.

Since the relations in $\Lambda_{V_2}^{S_3}[n]$ are homogeneous in the number of e_1’s and e_2’s, it follows that if $\omega_{p,q} \in \Lambda_{V_2}^{S_3}[n]^{p,q}$, and $\sum \omega_{p,q} = 0 \in \Lambda_{V_2}^{S_3}[n]$, then we must have that $\omega_{p,q} = 0$ for all p, q.

Let’s first consider the case $n = 4$. If $\mathcal{P} \in \mathcal{P}_2(K_4^3)^{4,0}$, or $\mathcal{P} \in \mathcal{P}_2(K_4^3)^{0,4}$, then obviously $\hat{x}_\mathcal{P} = 0 \in \Lambda_{V_2}^{S_3}[4]$.

There are four elements $\mathcal{P} \in \mathcal{P}_2(K_4^3)^{3,1}$, and the only relation among them is listed in Fig. 5. This means that we get three linearly independent vectors that generate $\Lambda_{V_2}^{S_3}[4]^{3,1}$. The case $\Lambda_{V_2}^{S_3}[4]^{1,3}$ is similar.
There are six elements \(P \in \mathcal{P}_2(K^3_4) \), and the only relation among them is listed in Fig. 6. This means that we get five linearly independent vectors that generate \(\Lambda^3_{V_2}[4] \). To conclude, we have

\[
\dim_k(\Lambda^3_{V_2}[4]) = \dim_k(\Lambda^3_{V_2}[4]^{3,1}) + \dim_k(\Lambda^3_{V_2}[4]^{1,3}) + \dim_k(\Lambda^3_{V_2}[4]^{2,2}) = 3 + 3 + 5 = 11.
\]

The case \(n = 5 \) is similar but computationally heavier, so we had to use MATLAB. The interesting cases are \((p, q) \in \{(6, 4), (5, 5), (4, 6)\}\). One can show that \(\dim_k(\Lambda^3_{V_2}[5]^{6,4}) = 15 = \dim_k(\Lambda^3_{V_2}[5]^{4,6}) \) and \(\dim_k(\Lambda^3_{V_2}[5]^{5,5}) = 32 \). This gives that \(\dim_k(\Lambda^3_{V_2}[5]) = 15 + 15 + 32 = 62 \).

\[\square \]

5 Some remarks

In the previous section, we computed \(\dim_k\left(\Lambda^3_{V_2}[n] \right) \) for all \(n \geq 0 \). It would be interesting to understand how \(\Lambda^3_{V_d}[n] \) behaves for any \(d \). Based on the results from this paper, we have the following question.

Question 5.1 Suppose \(\dim_k(V_d) = d \). Is it true that \(\dim_k\left(\Lambda^3_{V_d}[n] \right) = 0 \) for \(n > 3d \)? Is it true that \(\dim_k\left(\Lambda^3_{V_d}[3d] \right) = 1 \)?

Note that this question is in the spirit of the results from [7]. The particular challenge here is that even for the simplest case \(d = 3 \), the computation is less feasible, as there are on the order of \(1.17 \times 10^{38} \) possible homogeneous 3-partitions for the hypergraph \(K^3_9 \), and our proof for Theorem 4.15 is computational. A different, more theoretical approach is necessary in order to solve this problem.

Remark 5.2 Recall from [5] that if \(\Gamma = (\Gamma_1, \ldots, \Gamma_d) \) is a homogeneous \(d \)-partitions of \(K_{2d} \) such that \(\text{f} \Gamma \neq 0 \in \Lambda^3_{V_d}[2d] \), then \(\Gamma \) must be cycle-free. It would be interesting to find a similar result for elements in \(\mathcal{O}^3_{B_d}[3d] \). More precisely, let \(\mathcal{P} = (\mathcal{H}_1, \ldots, \mathcal{H}_d) \) be a homogeneous \(d \)-partition of the hypergraph \(K^3_{3d} \), find a combinatorial property of \(\mathcal{P} \) such that \(\text{f} \mathcal{P} \neq 0 \).

Remark 5.3 Since \(\text{det}^3 \) is invariant under the action of \(SL_2(k) \), we know from general theory of invariant functions (see [9]) that condition \(\text{det}^3(\otimes_{1 \leq i < j < k \leq 6}(v_{i,j,k})) = 0 \) must have a geometrical interpretation. It would be interesting to find an explicit description similar to the results from [8] for the \(\text{det}^2 \) map.

One can try to generalize the construction from this paper to any sphere \(S' \) as follows. Take

\[
T^S_{S'}[n] = V^{\otimes(\cdot)}
\]
and define $E^S V [n]$ to be the subspace of $T^S V [n]$ generated by simple tensors

$$\otimes 1 \leq i_1 < i_2 < \cdots < i_r \leq n (v_{i_1}, i_2, \ldots, i_r)$$

with the property that there exists $1 \leq x_1 < x_2 < \cdots < x_r + 1 \leq n$ such that

$$v_{x_1, x_2, \ldots, x_r} = v_{x_1, x_2, \ldots, x_r-1, x_r+1} = \cdots = v_{x_1, x_3, \ldots, x_r+1} = v_{x_2, x_3, \ldots, x_r+1}.$$

Definition 5.4 With the above notations, we define

$$\Lambda^S V [n] = T^S V [n] / E^S V [n],$$

and

$$\Lambda^S V = \bigoplus_{n \geq 0} \Lambda^S V [n].$$

Question 5.5 Suppose $\dim(V_d) = d$. Is it true that $\dim_k \left(\Lambda^S V_d [n] \right) = 0$ for $n > rd$?

Is it true that $\dim_k \left(\Lambda^S V_d [rd] \right) = 1$?

Remark 5.6 As we recalled in introduction, Λ_V has algebra structure on it, and $\Lambda^S V$ is a GSC-operad. It is natural to ask whether there is more structure on $\Lambda^S V$. As far as we can tell there is no obvious algebra, or GSC-operad structure on it. We expect that some operad-like structure exists on $\Lambda^S V$, and we plan to investigate this problem in a follow-up paper.

Acknowledgements We thank Alin Stancu and Jacob Van Grinsven for some comments and discussions. We also thank the anonymous referee for feedback that helped us improve the presentation.

Data availability The datasets generated during the current study are available from the corresponding author on reasonable request.

Appendix A: An explicit formula for $\det^S 3$

It follows from Lemma 4.5 that the map $\det^S 3$ is invariant under the action of $SL_2(k)$ on V_2. From the general results of invariant theory (see [9]), it follows that $\det^S 3 (\otimes 1 \leq i < j < k \leq 6 (v_{i, j, k}))$ can be written as sum of product of determinants of two by two matrices with columns consisting of the vectors $v_{i, j, k}$. In this section, we give an explicit formula for $\det^S 3$. This is also an alternative proof for the existence of the map $\det^S 3$.
For two vectors \(u = ae_1 + be_2 \) and \(v = ce_1 + de_2 \), we denote by \([u, v]\) the determinant of the matrix that has the first column equal to \(u\) and the second column equal to \(v\), that is,

\[
[u, v] = ad - bc.
\]

Proposition 5.1 Let \(v_{i,j,k} \in V_2 \) for all \(1 \leq i < j < k \leq 6 \), then we have

\[
\text{det}^S \left(\bigotimes_{1 \leq i < j < k \leq 6} (v_{i,j,k}) \right) = [v_{1,2,3}, v_{2,3,4}][v_{1,2,4}, v_{2,4,5}][v_{1,2,5}, v_{2,5,3}][v_{1,2,6}, v_{2,6,5}][v_{1,3,4}, v_{3,4,6}]
\]

\[
+ [v_{1,3,5}, v_{3,5,4}][v_{1,3,6}, v_{3,6,2}][v_{1,4,5}, v_{4,5,6}][v_{1,4,6}, v_{4,6,2}][v_{1,5,6}, v_{5,6,3}]
\]

\[
+ [v_{1,2,3}, v_{2,3,5}][v_{1,2,4}, v_{2,4,3}][v_{1,2,5}, v_{2,5,4}][v_{1,2,6}, v_{2,6,5}][v_{1,3,4}, v_{3,4,6}]
\]

\[
+ [v_{1,3,5}, v_{3,5,6}][v_{1,3,6}, v_{3,6,2}][v_{1,4,5}, v_{4,5,3}][v_{1,4,6}, v_{4,6,2}][v_{1,5,6}, v_{5,6,4}]
\]

\[
+ [v_{1,2,3}, v_{2,3,5}][v_{1,2,4}, v_{2,4,3}][v_{1,2,5}, v_{2,5,4}][v_{1,2,6}, v_{2,6,4}][v_{1,3,4}, v_{3,4,5}]
\]

\[
+ [v_{1,3,5}, v_{3,5,6}][v_{1,3,6}, v_{3,6,2}][v_{1,4,5}, v_{4,5,3}][v_{1,4,6}, v_{4,6,5}][v_{1,5,6}, v_{5,6,2}]
\]

\[
+ [v_{1,2,3}, v_{2,3,4}][v_{1,2,4}, v_{2,4,5}][v_{1,2,5}, v_{2,5,3}][v_{1,2,6}, v_{2,6,4}][v_{1,3,4}, v_{3,4,6}]
\]

\[
+ [v_{1,3,5}, v_{3,5,6}][v_{1,3,6}, v_{3,6,2}][v_{1,4,5}, v_{4,5,3}][v_{1,4,6}, v_{4,6,5}][v_{1,5,6}, v_{5,6,2}]
\]

\[
+ [v_{1,2,3}, v_{2,3,4}][v_{1,2,4}, v_{2,4,5}][v_{1,2,5}, v_{2,5,3}][v_{1,2,6}, v_{2,6,3}][v_{1,3,4}, v_{3,4,5}]
\]

\[
+ [v_{1,3,5}, v_{3,5,6}][v_{1,3,6}, v_{3,6,2}][v_{1,4,5}, v_{4,5,3}][v_{1,4,6}, v_{4,6,5}][v_{1,5,6}, v_{5,6,2}]
\]

\[
+ [v_{1,2,3}, v_{2,3,4}][v_{1,2,4}, v_{2,4,6}][v_{1,2,5}, v_{2,5,6}][v_{1,2,6}, v_{2,6,3}][v_{1,3,4}, v_{3,4,5}]
\]

\[
+ [v_{1,3,5}, v_{3,5,6}][v_{1,3,6}, v_{3,6,2}][v_{1,4,5}, v_{4,5,3}][v_{1,4,6}, v_{4,6,5}][v_{1,5,6}, v_{5,6,3}]
\]

\[
+ [v_{1,2,3}, v_{2,3,6}][v_{1,2,4}, v_{2,4,3}][v_{1,2,5}, v_{2,5,6}][v_{1,2,6}, v_{2,6,4}][v_{1,3,4}, v_{3,4,5}]
\]

\[
+ [v_{1,3,5}, v_{3,5,2}][v_{1,3,6}, v_{3,6,5}][v_{1,4,5}, v_{4,5,3}][v_{1,4,6}, v_{4,6,5}][v_{1,5,6}, v_{5,6,3}]
\]

\[
+ [v_{1,2,3}, v_{2,3,6}][v_{1,2,4}, v_{2,4,3}][v_{1,2,5}, v_{2,5,4}][v_{1,2,6}, v_{2,6,4}][v_{1,3,4}, v_{3,4,6}]
\]

\[
+ [v_{1,3,5}, v_{3,5,2}][v_{1,3,6}, v_{3,6,5}][v_{1,4,5}, v_{4,5,3}][v_{1,4,6}, v_{4,6,5}][v_{1,5,6}, v_{5,6,2}]
\]

\[
+ [v_{1,2,3}, v_{2,3,4}][v_{1,2,4}, v_{2,4,6}][v_{1,2,5}, v_{2,5,4}][v_{1,2,6}, v_{2,6,3}][v_{1,3,4}, v_{3,4,5}]
\]

\[
+ [v_{1,3,5}, v_{3,5,2}][v_{1,3,6}, v_{3,6,5}][v_{1,4,5}, v_{4,5,3}][v_{1,4,6}, v_{4,6,3}][v_{1,5,6}, v_{5,6,2}]
\]

\[
+ [v_{1,2,3}, v_{2,3,4}][v_{1,2,4}, v_{2,4,6}][v_{1,2,5}, v_{2,5,3}][v_{1,2,6}, v_{2,6,3}][v_{1,3,4}, v_{3,4,6}]
\]

\[
+ [v_{1,3,5}, v_{3,5,4}][v_{1,3,6}, v_{3,6,5}][v_{1,4,5}, v_{4,5,2}][v_{1,4,6}, v_{4,6,5}][v_{1,5,6}, v_{5,6,2}]
\]

\[
+ [v_{1,2,3}, v_{2,3,6}][v_{1,2,4}, v_{2,4,3}][v_{1,2,5}, v_{2,5,4}][v_{1,2,6}, v_{2,6,4}][v_{1,3,4}, v_{3,4,5}]
\]

\[
+ [v_{1,3,5}, v_{3,5,4}][v_{1,3,6}, v_{3,6,4}][v_{1,4,5}, v_{4,5,2}][v_{1,4,6}, v_{4,6,5}][v_{1,5,6}, v_{5,6,3}]
\]
Theorem 3.1 implies that $\lambda(v) = 0$ because

$$\mathcal{H}(v) \subseteq \{0\}.$$

Proof We denote by $B(\otimes_{1 \leq i < j < k \leq 6}(v_i, j, k))$ the right-hand side of the above equality. In order to prove $B = \det^{S^3}$, one can use the universality property of the \det^{S^3} map. It is easy to check that $B(\omega_{P(1)}) = 1$.

Next, we want to show that if $\otimes_{1 \leq i < j < k \leq 6}(v_i, j, k) \in V_2^{\otimes 20}$ such that there exist $1 \leq x < y < z < t \leq 6$ with the property that $v_{x,y,z} = v_{x,y,t} = v_{x,z,t} = v_{y,z,t}$, then $B(\otimes_{1 \leq i < j < k \leq 6}(v_i, j, k)) = 0$.

First, notice that B is invariant under the action of the subgroup $G \subseteq S_6$ that is generated by $(2,3), (3,4), (4,5)$, and $(5,6)$. Because of this fact, it is enough to check the universality property for $(x, y, z, t) = (1, 2, 3, 4)$, and for $(x, y, z, t) = (2, 3, 4, 5)$.

Case I If $(x, y, z, t) = (1, 2, 3, 4)$, then $v_{1,2,3} = v_{1,2,4} = v_{1,3,4} = v_{2,3,4}$. It is easy to see that all the terms in $B(\otimes_{1 \leq i < j < k \leq 6}(v_i, j, k))$ are equal to 0; for example, the first term is equal to zero because $[v_{1,2,3}, v_{2,3,4}] = 0$.

Case II If $(x, y, z, t) = (2, 3, 4, 5)$, then $v_{2,3,4} = v_{2,3,5} = v_{2,4,5} = v_{3,4,5}$. In this situation, all the terms will cancel in pairs. For example, if we look to the first term and thirty-seventh term, we have the following expressions, respectively:

$$[v_{1,2,3}, v][v_{1,2,4}, v][v_{1,2,5}, v][v_{1,2,6}, v][v_{1,3,4}, v][v_{1,3,5}, v][v_{1,3,6}, v][v_{3,6,2}, v][v_{4,5,6}, v][v_{4,6,2}, v][v_{5,6,2}, v].$$
and

$$-[v_{1,2,3}, v][v_{1,2,4}, v][v_{1,2,5}, v][v_{1,3,4}, v][v_{1,3,5}, v][v_{1,3,6}, v][v_{1,4,5}, v][v_{1,4,6}, v][v_{1,5,6}, v][v_{1,6,7}, v].$$

So, we get these terms to sum up to zero. The rest of the matching pairs are given in the following table:

Term	Matching term
1	37
2	43
3	31
4	44
5	32
6	38
7	47
8	41
9	26
10	55
11	25
12	56
13	45
14	35
15	28

Term	Matching term
16	57
17	27
18	58
19	39
20	33
21	30
22	59
23	29
24	60
25	11
26	9
27	17
28	15
29	23
30	21

Term	Matching term
31	3
32	5
33	20
34	51
35	14
36	53
37	1
38	6
39	19
40	49
41	8
42	54
43	2
44	4
45	13

Term	Matching term
46	50
47	7
48	52
49	40
50	46
51	34
52	48
53	36
54	42
55	10
56	12
57	16
58	18
59	22
60	24

One can see that the pairs of terms have opposite signs. So, all the terms will cancel in pairs, which proves our statement. \(\square \)
Appendix B: Equivalence classes of 2-partitions under the $S_6 \times S_2$ Action

As discussed earlier in the paper, there are 184,756 homogeneous 2-partitions of the hypergraph K_6^3. Using MATLAB, one can show that 13,644 of them are nontrivial (see Lemma 4.6). We also know that there is an action of the group $S_6 \times S_2$ on $\mathcal{P}_2^{h,n} (K_6^3)$. In this section, we present the 20 equivalence classes of $\mathcal{P}_2^{h,n} (K_6^3)$ under the action of $S_6 \times S_2$ and the value of $\varepsilon_2^{S_3}$ on each element in $\mathcal{P}_2^{h,n} (K_6^3)$. All results in this section were obtained using MATLAB.

A summary of this information is presented in the following table, where $\mathcal{P}^{(i)}$ for $1 \leq i \leq 20$ are representatives of the 20 equivalence classes:

Partition $\mathcal{P}^{(i)}$	$\varepsilon_2^{S_3} (\mathcal{P}^{(i)})$	Orbit size
$\mathcal{P}^{(1)}$	1	1440
$\mathcal{P}^{(2)}$	-1	240
$\mathcal{P}^{(3)}$	-1	1440
$\mathcal{P}^{(4)}$	1	360
$\mathcal{P}^{(5)}$	-1	1440
$\mathcal{P}^{(6)}$	1	1440
$\mathcal{P}^{(7)}$	-1	720
$\mathcal{P}^{(8)}$	1	1440
$\mathcal{P}^{(9)}$	-1	1440
$\mathcal{P}^{(10)}$	1	360

In Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26, we present 20 partitions that are representatives for the equivalences classes under the action of $S_6 \times S_2$. To understand these pictures better, we consider Fig. 7 and give an explicit description of the hyperedges in $\mathcal{P}^{(1)}$. Here, we have

$$E(\mathcal{H}_1^{(1)}) = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 2, 5\}, \{3, 4, 5\}, \{1, 5, 6\}, \{2, 4, 6\}, \{2, 5, 6\}, \{3, 4, 6\}, \{4, 5, 6\}\}$$

and

$$E(\mathcal{H}_2^{(1)}) = \{\{1, 2, 6\}, \{1, 3, 5\}, \{1, 3, 6\}, \{1, 4, 5\}, \{1, 4, 6\}, \{2, 3, 4\}, \{2, 3, 5\}, \{2, 3, 6\}, \{2, 4, 5\}, \{3, 5, 6\}\}$$

given by which triangles in the picture are shaded and not shaded, respectively. The other representatives can be obtained from the corresponding pictures similarly.
Fig. 7 $\mathcal{P}^{(1)}$ of orbit size 1440 and sign $\varepsilon_2^{S^3}(\mathcal{P}^{(1)}) = 1$

Fig. 8 $\mathcal{P}^{(2)}$ of orbit size 240 and sign $\varepsilon_2^{S^3}(\mathcal{P}^{(2)}) = -1$

Fig. 9 $\mathcal{P}^{(3)}$ of orbit size 1440 and sign $\varepsilon_2^{S^3}(\mathcal{P}^{(3)}) = -1$

Fig. 10 $\mathcal{P}^{(4)}$ of orbit size 360 and sign $\varepsilon_2^{S^3}(\mathcal{P}^{(4)}) = 1$
Fig. 11 $\mathcal{P}^{(5)}$ of orbit size 1440
and sign $\varepsilon_2^{S^3}(\mathcal{P}^{(5)}) = -1$

Fig. 12 $\mathcal{P}^{(6)}$ of orbit size 1440
and sign $\varepsilon_2^{S^3}(\mathcal{P}^{(6)}) = 1$

Fig. 13 $\mathcal{P}^{(7)}$ of orbit size 720
and sign $\varepsilon_2^{S^3}(\mathcal{P}^{(7)}) = -1$

Fig. 14 $\mathcal{P}^{(8)}$ of orbit size 1440
and sign $\varepsilon_2^{S^3}(\mathcal{P}^{(8)}) = -1$
Fig. 15 $\mathcal{P}^{(9)}$ of orbit size 1440
and sign $\varepsilon_2^{S_3^2}(\mathcal{P}^{(9)}) = 1$

Fig. 16 $\mathcal{P}^{(10)}$ of orbit size 360
and sign $\varepsilon_2^{S_3^2}(\mathcal{P}^{(10)}) = 1$

Fig. 17 $\mathcal{P}^{(11)}$ of orbit size 720
and sign $\varepsilon_2^{S_3^2}(\mathcal{P}^{(11)}) = -1$

Fig. 18 $\mathcal{P}^{(12)}$ of orbit size 720
and sign $\varepsilon_2^{S_3^2}(\mathcal{P}^{(12)}) = 1$
Fig. 19 $\mathcal{P}^{(13)}$ of orbit size 360
and sign $\varepsilon_2^S (\mathcal{P}^{(13)}) = 1$

Fig. 20 $\mathcal{P}^{(14)}$ of orbit size 360
and sign $\varepsilon_2^S (\mathcal{P}^{(14)}) = -1$

Fig. 21 $\mathcal{P}^{(15)}$ of orbit size 72
and sign $\varepsilon_2^S (\mathcal{P}^{(15)}) = -1$

Fig. 22 $\mathcal{P}^{(16)}$ of orbit size 360
and sign $\varepsilon_2^S (\mathcal{P}^{(16)}) = 1$
Fig. 23 \(\mathcal{P}^{(17)} \) of orbit size 120 and sign \(\varepsilon_2^{S^3}(\mathcal{P}^{(17)}) = 1 \)

Fig. 24 \(\mathcal{P}^{(18)} \) of orbit size 360 and sign \(\varepsilon_2^{S^3}(\mathcal{P}^{(18)}) = -1 \)

Fig. 25 \(\mathcal{P}^{(19)} \) of orbit size 240 and sign \(\varepsilon_2^{S^3}(\mathcal{P}^{(19)}) = 1 \)

Fig. 26 \(\mathcal{P}^{(20)} \) of orbit size 12 and sign \(\varepsilon_2^{S^3}(\mathcal{P}^{(20)}) = -4 \)

References
1. Bretto, A.: Hypergraph Theory: An Introduction. Springer, New York (2013)
2. Carolus, S.: Properties of Higher Hochschild Cohomology, Ph.D thesis (2019)
3. Carolus, S., Staic, M.D.: G-algebra structure on the higher order Hochschild cohomology \(H^*_S(A, A) \). Algebra Colloq. 29(1), 113–124 (2022)
4. Cremona, L.: Elements of Projective Geometry, Translated by Charles Leudesdorf, 2nd edn. Oxford at the Clarendon Press (1893)
5. Lippold, S., Staic, M.D., Stancu, A.: Edge partitions of the complete graph and a determinant like function, \texttt{arXiv:2102.09422}, \textbf{to appear in} Monatshefte für Mathematik
6. Pirashvili, T.: Hodge decomposition for higher order Hochschild homology. Ann. Sci. Ecole Norm. Sup. (4) \textbf{33}, 151–179 (2000)
7. Staic, M.D.: The Exterior Graded Swiss-Cheese Operad $\Lambda S^2(V)$ (with an Appendix by Ana Lorena Gherman and Mihai D. Staic), \texttt{arXiv:2002.00520}
8. Staic, M.D., Van Grinsven, J.: A Geometric Application for the $\det S^2$ Map. Comm. Algebra \textbf{50} (3), 1106–1117 (2022). \url{https://doi.org/10.1080/00927872.2021.1977946}
9. Sturmfels, B.: Algorithms in Invariant Theory. Springer, New York (2008)
10. Voronov, A.A.: The Swiss-cheese operad. Contemp. Math. \textbf{239}, 365–373 (1999)
11. Weibel, C.A.: An Introduction to Homological Algebra, vol. 38. Cambridge University Press (1995)

\textbf{Publisher's Note} Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.