The Genus **Echinops**: Phytochemistry and Biological Activities: A Review

Helen Bitew* and Ariaya Hymete

1 Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia,
2 Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia

The genus *Echinops* belongs to the family of Asteraceae and comprises about 130 species. Many species belonging to the genus *Echinops* are traditionally used as medicinals mainly in Africa and Asia. The genus is reported to contain diverse secondary metabolites. The aim of this review is to critically evaluate the available research reports on the genus and systematically organize the findings. Information for this study was obtained using various search engines including PubMed and Google Scholar. This review revealed that the genus is used traditionally to treat pain, inflammation, respiratory diseases, diseases caused by different microorganisms, as an aphrodisiac, to fasten expulsion of placenta, and for removal of renal stones. More than 151 secondary metabolites have been reported from the genus in which thiophenic compounds held the biggest share. Various extracts, essential oils, and isolated compounds from members of this genus are shown to exhibit different biological effects mainly anti-microbial, anti-proliferative, and anti-inflammatory. However, there are a number of species in this genus that are claimed to have traditional medicinal uses but their biological effect not yet been evaluated.

Keywords: *Echinops*, thiophene, phytochemistry, Asteraceae, pharmacological activity, traditional use

INTRODUCTION

Echinops L., belongs to the family of Asteraceae, a family which is distributed all over the world except in Antarctica. Asteraceae is a monophyletic taxon distinguished by florets arranged on a receptacle in centripetal heads and bounded by bracts. It comprises 1,600–1,700 genera and 24,000–30,000 species (Funk et al., 2005). The genus *Echinops* belongs to the tribe Cardueae and is recognized by the presence of uniflowered capitula aggregated into second-order spherical or oval heads. This feature makes it unique within the tribe (Garnatje et al., 2005; Sánchez-Jiménez et al., 2010). It contains 120–130 species distributed across north and tropical Africa, the Mediterranean Basin, and central Asia. Members of this genus are mostly perennial with few annuals (Hedberg et al., 2004; Sánchez-Jiménez et al., 2010).

Many members of this genus are traditionally used to treat different diseases. Some are scientifically investigated for various biological activities and phytoconstituents. Previously, reviews that focus on single species, *Echinops spinosus* L. and *E. echinatus* Roxb. have been conducted (Bouzabata et al., 2018; Maurya et al., 2015). To the authors’ knowledge, there is no study that reviewed the traditional use, phytochemistry, and biological activities of the whole genus. This review is aimed to critically evaluate available research reports on the genus and systematically organize and present the findings. It is attempted to include all articles published from 1990–2018 while some articles published before 1990 were included considering their significance. This review excluded unpublished findings and
publications which were not available online and articles written in languages other than English. Chemical structures of only isolated and characterized compounds were provided while structures of compounds identified from essential oils and other chemical analysis were not. The main sources of the structures of isolated compounds were the research articles and these were confirmed using PubChem. Structures that were not available in the articles were obtained from theses, books, PubChem, and other reliable sources. Different search engines including PubMed and Google Scholar were employed to search literature using searching words such as Echinops, plant, phytochemical, phytochemistry, pharmacological activity, biological effect, and traditional use.

TRADITIONAL USES

Ethnomedicinal claims on the genus Echinops to treat a number of ailments are depicted in Table 1. The common traditional uses can fall into three general groups. The frequently described application is to treat symptoms like inflammation, pain, and fever (Regassa, 2013; Rathore et al., 2015). The other common traditional use was to treat ailments related to respiratory tract including cough and sore throat (Ghasemi Pirbalouti et al., 2013; Sajjad et al., 2017). Members of the genus have been used as an aphrodisiac (Hamayun et al., 2006), facilitation of expulsion of retained placenta and delivery (Okello and Ssegawa, 2007; Qureshi and Bhatti, 2008), as an abortifacient (Abouri et al., 2012), treatment of uterus tumor (Abderrahim et al., 2013), and leucorrhoea (Wagh and Jain, 2018). Three species (E. bannaticus Rochel ex Schrad, E. cornigerus D.C., and E. polyceras Boiss.) reported to have been employed in the management of kidney stones (Mustafa et al., 2012; Nawash et al., 2013; Kumar et al., 2018).

In addition to the traditional medicinal applications described in Table 1, the plants have nutritional value. In Iran, the bulb of E. viscidulus Moazzaf is consumed as a vegetable (Ghasemi Pirbalouti et al., 2013). The roots of E. giganteus A. Rich. and E. spinosus are used as a spice in Morocco and Cameroon, respectively (Pavela et al., 2016; Tbatou et al., 2016). The use of E. giganteus might be attributed to the presence of nutrients including iron, phenols, carotenoids, and vitamins E and C in the plant (Abdou Bouha et al., 2012).

PHYTOCHEMICALS

As presented in Table 2 and Figure 1, 151 compounds have been isolated and characterized using different spectroscopic/spectrometric techniques. Members of the genus Echinops contain primarily thiophenes and terpenes. Flavonoids and other phenolic compounds, alkaloids, lipids, and phenylpropanoids were also reported. The root of the plant is the main source of the thiophenes while most of the terpenes and flavonoids were isolated from the aerial part/whole plant. The genus is also known for essential oil content and all morphological parts of the plants are reported to contain some of the essential oils. Around 53 of the isolated and characterized compounds are reported to have different biological activities. The structural formulae of isolated and characterized compounds are given in Figure 1.

Thiophenes

Thiophenes, the main bioactive constituents of the genus Echinops, are biosynthetically derived from fatty acids and reduced sulphur (Arroo et al., 1997). Majority of the thiophenic compounds comprise an acetylenic functional group and most of the thiophenes comprised two thiophene rings in their structure. The most abundant thiophenes which were reported from nine species were 5-(but-3-en-1-ynyl)-2,2'-bithiophene (1) and α-terthiophene (2), 5-(4-hydroxybut-1-ynyl)-2-(pent-1,3-diynyl)-thiophene (5), 5-(penta-1,3-diynyl)-2-(3,4-dihydroxybut-1-ynyl)-thiophene (14), and 5-(4-hydroxy-1-butylnyl)-2,2'-bithiophene (31) were isolated from five species. Thiophenes were detected in essential oils obtained from the different plants of this genus. 5-(3-buten-1-ynyl)-2,2'-bithieryl was detected in essential oils obtained from the roots of E. grijsii Hance, E. bannaticus, and E. sphaerocephalus L.

The biological activities of thiophenes were evaluated mainly in vitro and they have an insecticidal, anti-proliferative, and anti-fungal potential effects.

Terpenoids

Sesqui- and triterpenoids were reported mainly from the whole plant and aerial parts of the genus Echinops. Most of the sesquiterpenoids contain lactones. Sesquiterpene lactones are also the most prevalent secondary metabolites in the family of Asteraceae (Chadwick et al., 2013). Most triterpenoids exist in various forms including lactones, esters, and sterols along with their glycosides. The common sesquiterpenoid reported was costunolide (61), which was isolated from three species whereas lupeol (86) and lupeol acetate (94) were the common triterpenoids. Many sesquiterpenoids were also detected from the essential oils of the genus.

Flavonoids and Other Phenolic Compounds

Flavonoids from the genus Echinops were mainly flavones and mostly isolated from the whole plant and aerial parts of the members. Apigenin (105) is the most common flavonoidal glycone and it was isolated from the flower and whole plant of E. niveus Wall., E. echinatus, E. integrifolius Kar. & Kir., and E. albicaulis Kar. & Kir. (Table 2). In addition to flavonoids, phenolic compounds including coumarins, phenylpropanoids, and lignans were reported (Tene et al., 2004; Dong et al., 2008a; Senejoux et al., 2013).

Alkaloids

The first alkaloids isolated from the genus Echinops were echinopside (139), echinozolinone (140), and echinopside (141) from the aerial parts of E. echinatus (Chaudhuri, 1987). Later on, another alkaloid, 7-hydroxyechinozolinone (142), was isolated from the flowers of the same plant (Chaudhuri, 1992). Additional four alkaloids of which two were in glycosidic form were reported (Table 2). The alkaloids were mainly isolated from the aerial parts of the plants. The predominant alkaloid, which was isolated from four different species, was 1-methyl-4-quinolone (139).
TABLE 1 | Traditional uses of members of the genus *Echinops*.

Species	Part used	Indication	Country	Ref.
E. amplexicaulis Oliv.	R	HIV/AIDS	Uganda	Lamorde et al., 2010
	R	Ulcerative lymphangitis (LS)	Ethiopia	Fenetahun and Eshetu, 2017
	R	Stomachache	Ethiopia	Regassa et al., 2017
	R	Typhoonsis, liver disease, pasteurellosis	Ethiopia	Kitata et al., 2017
	R	Hydrocele	Uganda	Kamatenesi et al., 2011
	R	Fasten expulsion of placenta, hernia	Uganda	Okeillo and Szegawa, 2007
	R	Ulcerative lymphangitis (LS)	Ethiopia	Teké, 2014
E. bannaticus Rochel ex Schrad.	R	Kidney stones	Kosovo	Mustafa et al., 2012
E. bovei (Boiss.) Maire.	AP	Eye complaints, trachoma, sores, inflammation, digestive diseases	Central Sahara	Hammiche and Maiza, 2006
E. cornigerus D.C.	R	Urinary problems mainly caused by kidney stones	India	Kumar et al., 2018
	WP	Insanity	India	Tiwari et al., 2010
	R	Removal of kidney stones	Pakistan	Jabeen et al., 2015
	WP	Cough, emergence of teeth in infants, fever, urinary trouble, colic	India	Sharma et al., 2012
	R	Urinary disorder, fever	Pakistan	Rathore et al., 2015
	WP	Diuretic, aphrodisiac, fever, pain, chronic fever	India	Hamayun et al., 2006
	R	Fever, emergence of teeth in infants	India	Maru et al., 2018
	WP	Cough, emergence of teeth, fever, urinary trouble, colic, pain	Pakistan	Wagh and Jain, 2018
E. echinatus Roxb.	R	To treat hernia	India	Maurya et al., 2015
	L	Earache	India	Maru et al., 2018
	R	Leucorrhoea	Pakistan	Malik et al., 2018
	R	Aphrodisiac, to facilitate the delivery process, abortifacient,	Pakistan	Malik et al., 2018
	L	Joint pain	Pakistan	Malik et al., 2018
	R	Leucorrhoea	Pakistan	Malik et al., 2018
E. giganteus A. Rich.	R	Anti-hemorrhoidal	Ethiopia	Desta, 1995
	R	Flatulence and bloody stool	Cameroon	Tacham et al., 2015
	R	Stomachache, asthma attacks, as carminative	Cameroon	Menut et al., 1997
E. hispidus Fresen.	R and S	Sunstroke	Ethiopia	Meragia et al., 2016
E. hoehnelii Schweinf.	R	Internal parasite, amoebae, common cold	Ethiopia	Teké, 2014
E. kebericho Mesfin	R	Black leg, respiratory manifestations, liver disease (LS)	Ethiopia	Yigezu et al., 2014
	S	Cough, headache	Ethiopia	Berhanu et al., 2014
E. kebericho Mesfin	R	Scabies	Ethiopia	Berhanu et al., 2014
	R	Toothache, stomachache, common cold, sunstroke, tonsillitis, acute	Ethiopia	Regassa, 2013
	S	Fever, headache	Ethiopia	Gari et al., 2015
	R	Malaria, common cold	Ethiopia	Mekuanent et al., 2015
	R	Dislocoted bone (LS)	Ethiopia	Teké, 2013
	R	Toothache, vomiting, headache	Ethiopia	Abeera, 2014
	R	Typhoonsis	Ethiopia	Shilema et al., 2013
	R	Gonorhea	Ethiopia	Bizuayehu and Garedew, 2018
E. longifolius A. Rich.	RB	Headache, rheumatism, dry cough	Ethiopia	Suleman and Alemu, 2012
E. macrochaetus Fresen.	R	Scorpion sting	Sudan	Issa et al., 2018
E. niveus Wall.	R	Diuretic, nerve tonic, cough, indigestion, ophthalmia.	India	Sharma et al., 2004
E. nitrodes Boiss.	R	Kidney stones	Jordan	Nawash et al., 2013
E. polyceras Boiss.	S	Chronic cough	Urmia	Asadbeigi et al., 2014
E. sphaerocephalus L.	WP	Skin diseases, prevention of cough	Iran	Farouji and Khodayari, 2016
E. spinicosissimus Turra.	R, S, L	Typhoid	Kenya	Nyang‘au et al., 2017
E. spinicosissimus subsp. fontqueri (Pau) Greuter	R	Rheumatism, colds, uterine pains, uterus tumor	Saudi Arabia	El-Ghazali et al., 2010
	S, R, L	Renal disorders	Egypt	Mahmoud and Gairoia, 2013
E. spinicosissimus subsp. macroplepis (Boiss.) Greuter	R	As hypoglycaemic, decocition is drunk.	Lebanon	Merzouki et al., 2000
E. spinosus L.	R	• Diuretic, nerve tonic, cough, indigestion, ophthalmia.	India	Sharma et al., 2004
		• Applied to wounds in cattle to destroy maggots	Jordan	Nawash et al., 2013
			Urmia	Asadbeigi et al., 2014
			Iran	Farouji and Khodayari, 2016
			Kenya	Nyang‘au et al., 2017
			Saudi Arabia	El-Ghazali et al., 2010
			Egypt	Mahmoud and Gairoia, 2013
			Morocco	Abderrahim et al., 2013
			Lebanon	Baydoun et al., 2015
			Morocco	Merzouki et al., 2000

(Continued)
TABLE 1 | Continued

Species	Part used	Indication	Country	Ref.
E. spinosus L. subsp Bovei (Boiss). Maire	R	Appetite stimulant, cold, diabetes, renal stones	Morocco	El Abbouyi et al., 2014
	L, S, R	Hepatoprotective, abortifacient	Morocco	Akdime et al., 2015
	R	Diabetes	Morocco	Katri et al., 2017
	FAP	Colds, kidney stones, diuretic, hypoglycemic	Morocco	Abouri et al., 2012
	Br, R	Abortifacient, labor pain	Morocco	Abouri et al., 2012
	F	Neuralgia, tiredness	Morocco	Abouri et al., 2012
	R-Fr	Labor pains, abortifacient, neuralgia	Algeria	Chermat and Gharzouli, 2015
E. viscidulus Mozaff.	Bl	Cough, cold, sore throat	Iran	Ghasemi Pirbalouti et al., 2013
E. viscous DC.	C	Boll	Turkey	Bulut et al., 2017

AR: Aerial part; B: Bark; Bl: Bulb; Br: Branch; C: Capitolium; F: Flower; FAP: Flowered aerial part; Fr: Fruit, L: Leaf; LS: Livestock; R: Root; RB: Root bark; S: Stem; Sd: Seed; VP: Vegetative part; WP: Whole plant.

Essential Oils and Lipids

The genus Echinops is rich in bioactive essential oil constituents, which were mainly found in the roots. Various reports indicated the presence of terpenoids and thiophenes.

The root of E. grijisii was found to contain cis-β-farnesene and 5-(3-buten-1-ynyl)-bithiophene as main components (Guo et al., 1994). Essential oils from root, stem, leaf, and flowers of E. ellenbeckii comprised mainly β-maaliene, dihydrocarveol, caryophyllene oxide, and β-selinene from the respective plant parts (Hymete et al., 2004). The fresh inflorescences of E. graecus and E. ritro yielded methyl chavicol and (E)-2-hexenal, 1,8-cineole, and p-cymene as major constituents, respectively (Papadopoulos et al., 2006).

Essential oils from the root of E. bannaticus and E. sphaerocephalus were reported to contain 5-(3-buten-1-ynyl)-2,2’-bithienyl and α-terthienyl as major constituents, and also triquinane sesquiterpenoids (Radulović and Denić, 2013). The most abundant compounds from E. giganteus have been reported to be tricyclic sesquiterpenoids such as silphiperfol-6-ene and presilphiperfol-8-ol followed by presilphiperfol-7-ene, cameroonan-7-α-ol, and (E)-caryophyllene (Pavela et al., 2016).

Ceramides, sulfonylacetone ester, and simple hydrocarbons were the nonpolar constituents from the genus (Figure 1). The ethyl acetate extract of E. integrifolius contained lupeolacetate, 1,3-butanediene-1-carboxylic acid, lupeol, (1R,3R,4R,5R)-(−)-quinic acid, palmitic acid, and D-threo-O-ethylthreonine as the main constituents (Karimov and Aisa, 2012). In a related study, GS-MS analysis of petroleum ether extract of the aerial part of E. integrifolius indicated the presence of methyl esters of fatty acids as well as saturated hydrocarbons such as octacosane, hentriacontane, hexacosane, tetratriacontane, eicosane, and nonadecane. Trace amount of 2-octanone and 4,8,12,16-tetramethyl heptadecan-4-olide were also detected in E. integrifolius (Karimov and Aisa, 2013).

BIOLOGICAL ACTIVITIES

Anti-Microbial Activity

The genus Echinops is traditionally used to treat different infectious diseases including trachoma, sepsis, typhoid, gonorrhea, and ulcerative lymphangitis. It is also used to treat different ailments that might be caused by bacterial/fungal infections including fever, respiratory diseases, toothache, leucorrhoea, and earache. Thus, they have been investigated for their anti-microbial activities. Anti-bacterial and anti-fungal activities of extracts from the genus with their respective minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum fungicidal concentration (MFC), and zone of inhibitions are presented in Table 3. These studies showed that both Gram-positive and Gram-negative bacteria were sensitive to the extracts/isolated compounds obtained from the genus.

Out of the tested strains, M. tuberculosis (H37Rv) showed higher sensitivity to the ether root extract of E. giganteus and methanolic extract of E. amplexicaulis Oliv. with MIC of 12 µg/mL and 32 µg/mL, respectively (Tekwu et al., 2012; Kevin et al., 2018). The methanolic root extract of E. amplexicaulis also showed a promising effect against a multidrug-resistant strain of M. tuberculosis with a MIC of 50 µg/mL (Kevin et al., 2018). The ethanolic root extract and essential oils obtained from E. kebericho Mesfin showed relatively strong effect against Staphylococcus aureus (Ameya et al., 2016) and Klebsiella pneumoniae (Belay et al., 2011). These results might justify the traditional application of E. kebericho in treating respiratory disease, toothache, and fever. The essential oil from E. ritro exhibited anti-bacterial effect and antibiofilm and disruption of the bacterial membrane were suggested as mechanisms of actions (Jiang et al., 2017).

Different extracts from members of the genus having anti-bacterial effect were analyzed for their chemical constituents. The unsaponifiable matter from the hexane extract of E. spinosissimus contained mainly taraxasterol, lupeol, pseudotaraxasterol, α-amyrin, β-amyrin, pseudotaraxasteryl acetate, lup-22(29)-en-3-yl acetate, β-sitosterol, and stigmasterol. The hexane extract showed anti-bacterial activity with MIC values of less than 125 µg/mL against different bacterial strains (Bacillus amyloliquefaciens, Micrococcus luteus, Bacillus subtilis, and Salmonella enterica) (Bouattour et al., 2016). Thioephens (31, 46, 54, and 59) isolated from the root of E. ritro possessed anti-bacterial effect against S. aureus with a MIC value of 8 µg/mL. This was similar to the effect observed for the positive control, levofloxacin. The anti-bacterial effects of thiophenes 31, 46, 55, 57, and 59 against Escherichia
Phytochemistry and Biological Activities of Echinops Bitew and Hymete

TABLE 2 | Secondary metabolites isolated from members of the genus *Echinops*.

No.	Name of secondary metabolites	Species	Plant part	Pharmacological activity	Ref.		
Thiophenes 1.	5-(but-3-en-1-ynyl)-2,2'-bithiophene	*E. macrochaetus*	R		Abegaz et al., 1991		
		E. pappii Chiov.	R		Abegaz et al., 1991; Abegaz, 1991		
		E. latifolius	R		Wang et al., 2006		
		E. grijisi	R		Zhang and Ma, 2010; Chang et al., 2015		
		E. grijisi	R	Cytotoxic	Fokialakis et al., 2006a		
		E. ritro Bunge	Rd	Antifungal	Abegaz, 1991		
		E. ritro AP	AP	Antifungal	Fokialakis et al., 2006a		
		E. nanus	R	Termicidal	Kiyekbayeva et al., 2017		
		E. albicaulis WP	WP	Termicidal	Fokialakis et al., 2006b		
	2.	α-terthiophene	*E. ellenbeckii*	R	Cytotoxic	Abegaz et al., 1991	
		E. pappii	R		Abegaz et al., 1991		
		E. macrochaetus	R		Jin et al., 2008		
		E. grijisi	R		Liu et al., 2002; Zhang and Ma, 2010; Chang et al., 2015		
		E. grijisi	R		Zhao et al., 2017		
		E. latifolius	R		Wang et al., 2006		
		E. ritro AP	AP	Antifungal	Fokialakis et al., 2006b		
		E. nanus	R	Termicidal	Nakano et al., 2012		
		E. albicaulis WP	WP	Termicidal	Kiyekbayeva et al., 2017		
		E. transiliensis	R	Insecticidal	Abegaz et al., 1991		
	3.	5-(penta-1,3-diynyl)-2-(3-chloro-4-hydroxy-but-1-ynyl)-thiophene	*E. ellenbeckii*	R		Hymete et al., 2005b	
		E. giganteus	R				
		E. hispidus Fresen.	R				
		E. longisetus	R				
		E. macrochaetus	R				
	4.	Cis or trans-2-(pent-3-en-1-ynyl)-5-(4-hydroxybut-1-ynyl)-thiophenes	*E. pappii*	R	Cytotoxic	Abegaz, 1991	
	5.	5-(4-hydroxybut-1-ynyl)-2-(pent-1,3-diynyl)-thiophene	*E. pappii*	R	Antifungal	Fokialakis et al., 2006a	
		E. ritro AP	AP	Termicidal	Fokialakis et al., 2006b		
		E. grijisi	R	Cytotoxic	Chang et al., 2015		
		E. grijisi	R	NQO1-inducing	Zhang et al., 2009; Zhang and Ma, 2010		
		E. grijisi	R		Sandjo et al., 2016		
		E. grijisi	R		Hymete et al., 2005b		
		E. grijisi	R		Hymete et al., 2005b		
		E. grijisi	R		Hymete et al., 2005b		
	6.	5-(pent-1,3-diynyl)-2-(but-3-en-1-ynyl)-thiophene	*E. ellenbeckii*	R		Hymete et al., 2005b	
	7.	5-(pent-1,3-diynyl)-2-(4-acetoxyl-buty-1-ynyl)-thiophene	*E. ellenbeckii*	R		Hymete et al., 2005b	
	8.	5-(pent-1,3-diynyl)-2-(3-hydroxy-4-acetoxyl-buty-1-ynyl)-thiophene	*E. ellenbeckii*	R		Hymete et al., 2005b	
	9.	5-(pent-1,3-diynyl)-2-(3,4-diacetoxyl-buty-1-ynyl)-thiophene	*E. ellenbeckii*	R			
		E. transiliensis	R				
		E. grijisi	R				
		E. grijisi	R				
		E. transiliensis	R				
		E. transiliensis	R				
	10.	5-(pent-1,3-diynyl)-2-(3-chloro-4-acetoxyl-buty-1-ynyl)-thiophene	*E. ellenbeckii*	R			
		E. transiliensis	R				
		E. albicaulis WP	WP	Termicidal	Fokialakis et al., 2006b		

(Continued)
No.	Name of secondary metabolites	Species	Plant part	Pharmacological activity	Ref.
11	5-(penta-1,3-diynyl)-2-(3,4-epoxy-but-1-ynyl)-thiophene	E. hoehnelii	R	Anti-malarial	Bitew et al., 2017
12	5-[(5-acetoxy)methyl-2-trienyl]-2-(but-3-ene-1-ynyl)-thiophene	E. ellenbeckii	R	Anti-malarial	Hymete et al., 2005b
13	5-(5,6-dihydroxy-hexa-1,3-diynyl)-2-(prop-1-ynyl)-thiophene (echnoinethiophene A)	E. grijsii	R	Cytotoxic	Liu et al., 2002; Dong et al., 2008a
		E. grijsii	R	Cytotoxic	Zhang et al., 2009
		E. grijsii	R	NQO1-inducing	Li et al., 2019
		E. grijsii	R	Cytotoxic	Shih et al., 2010; Zhang and Ma, 2010
		E. grijsii	R	Cytotoxic	Zhang et al., 2009
		E. giganteus	Rz	Cytotoxic	Sandjo et al., 2016
		E. translagensis	R	Insecticidal	Nakano et al., 2014
14	5-(penta-1,3-diynyl)-2-(3,4-dihydroxybut-1-ynyl)-thiophene	E. grijsii	R	Cytotoxic	Zhang et al., 2009
		E. ritro	WP	Anti-malarial	Li et al., 2019; Dong et al., 2008a; Zhang et al., 2009; Zhang and Ma, 2010; Chang et al., 2015
15	5-(3,4-dihydroxybut-1-ynyl)-2,2′-bithiophene	E. grijsii	R	Cytotoxic	Jin et al., 2008
		E. ritro	WP	Antifungal	Fokialakis et al., 2006b
		E. latifolius	R	Termicidal	Fokialakis et al., 2006b
		E. grijsii	R	Antifungal	Fokialakis et al., 2006b
		E. grijsii	R	Termicidal	Fokialakis et al., 2006b
16	2,2′-bithiophene-5-carboxylic acid	E. grijsii	R	Cytotoxic	Wang et al., 2007
		E. translagensis	R	Insecticidal	Nakano et al., 2014
17	5-(3-buten-1-ynyl)-2,2′-bithiophene	E. grijsii	R	Cytotoxic	Wang et al., 2006
18	5-(4-isovaleroyloxybut-1-ynyl)-2,2′-bithiophene	E. grijsii	R	Insecticidal	Jin et al., 2008
		E. grijsii	R	Antifungal	Zhao et al., 2017
		E. ritro	AP	Termicidal	Fokialakis et al., 2006b
		E. latifolius	R	Termicidal	Fokialakis et al., 2006b
19	5-chloro-α-terthiophene	E. grijsii	R	Cytotoxic	Wang et al., 2006
20	5-acetyl α-terthiophene	E. grijsii	R	Cytotoxic	Wang et al., 2006
21	5,5′-dichloro-α-terthiophene	E. grijsii	R	Cytotoxic	Wang et al., 2006
22	Cardopatine	E. grijsii	R	Cytotoxic	Wang et al., 2006
23	Isocardopatine	E. grijsii	R	Cytotoxic	Wang et al., 2006
		E. latifolius	R	Antifungal	Fokialakis et al., 2006a
		E. latifolius	R	Antifungal	Fokialakis et al., 2006a
		E. latifolius	R	Antifungal	Fokialakis et al., 2006a
		E. latifolius	R	Antifungal	Fokialakis et al., 2006a
		E. latifolius	R	Antifungal	Fokialakis et al., 2006a
24	Grijisyne A	E. grijsii	R	Cytotoxic	Zhang et al., 2008
25	Grijisone A	E. grijsii	R	Cytotoxic	Zhang et al., 2008
26	5-(4-hydroxy-3-methoxy-1-butynyl)-2,2′-bithiophene	E. grijsii	R	Cytotoxic	Chang et al., 2015
27	5-acetyl-2,2′-bithiophene	E. latifolius	R	Cytotoxic	Chang et al., 2015
28	5-formyl-2,2′-bithiophene	E. grijsii	R	Cytotoxic	Chang et al., 2015
29	Methyl 2,2′-bithiophene-5-carboxylate	E. grijsii	R	Cytotoxic	Chang et al., 2015
30	5-(3-hydroxy-3-methoxy-1-butynyl)-2,2′-bithiophene	E. latifolius	R	Cytotoxic	Chang et al., 2015
31	5-(4-hydroxy-1-butynyl)-2,2′-bithiophene	E. latifolius	R	Cytotoxic	Chang et al., 2015

(Continued)
No.	Name of secondary metabolites	Species	Plant part	Pharmacological activity	Ref.		
32.	5-(4-acetoxy-1-butynyl)-2,2'-bithiophene	E. grijsii	R	Antibacterial, Antifungal	Zhang et al., 2009; Chang et al., 2015		
33.	5-(3-hydroxy-4-isovaleroyloxybut-1-ynyl)-2,2'-bithiophene	E. latifolius	R	Termicidal	Wang et al., 2006		
34.	5-(3-acetoxy-4-isovaleroyloxybut-1-ynyl)-2,2'-bithiophene	E. latifolius	R	Termicidal	Wang et al., 2006		
35.	Echinopsacetylenes A	E. transiliensis	R	Cytotoxic	Jin et al., 2008		
36.	Echinopsacetylenes B	E. transiliensis	R	Insecticidal	Nakano et al., 2014		
37.	Echinothiophenegenol	E. grijsii	R	Cytotoxic	Jin et al., 2008		
38.	5-(4-acetoxy-3-chlorobut-1-ynyl)-2-(pent-1,3-diynyl)thiophene	E. ritro	Rd	Antifungal	Fokialakis et al., 2006a		
39.	5-(3,4-diacetoxybut-1-ynyl)-2,2'-bithiophene	E. latifolius	R	Antifungal	Wang et al., 2007		
40.	5-{4-[4-(5-pent-1,3-diynylthiophene-2-yl)-but-3-ynyl]-2,2'-bithiophene}	E. latifolius	R	Cytotoxic	Wang et al., 2007		
41.	5-(4-hydroxybut-1-one)-2,2'-bithiophene	E. latifolius	R	Cytotoxic	Wang et al., 2007		
42.	5-[(prop-1-ynyl]-2-(3,4-diacetoxybut-1-ynyl)-thiophene	E. latifolius	R	Cytotoxic	Wang et al., 2007		
43.	5-(1,2-dihydroxy-ethyl)-2-(2,3-diyndiythiophene)	E. latifolius	R	Anti-inflammatory	Jin et al., 2016		
44.	5-(1,2-dihydroxyethyl)-2-(E)-hept-5-ene-1,3-diyndiythiophene	E. latifolius	R	Anti-inflammatory	Jin et al., 2016		
45.	6-Methoxy-arctinol-b	E. latifolius	R	Anti-inflammatory	Jin et al., 2016		
46.	Arctinol-b	E. latifolius	R	Anti-inflammatory	Jin et al., 2016		
47.	Arctinol	E. latifolius	R	Anti-inflammatory	Jin et al., 2016		
48.	Methyl [5'-(1-propynyf)-2,2'-bithienyl-5-yl] carboxylate	E. latifolius	R	Anti-inflammatory	Jin et al., 2016		
49.	5-(pent-1,3-diyndiythiophene-2-yl)-but-3-ynyl-2,2'-bithiophene	E. hoehnelii	R	Anti-inflammatory	Bitew et al., 2017		
50.	5-(pent-1,3-diyndiythiophene-2-yl)-but-3-ynyl-2,2'-bithiophene	E. hoehnelii	R	Anti-inflammatory	Bitew et al., 2017		
51.	5-(3-hydroxy-4-acetoxybut-1-ynyl)-2,2'-bithiophene	E. transiliensis	R	Insecticidal	Nakano et al., 2014		
52.	5-(pent-1,3-diynyl)-2-(3-acetoxy-4-hydroxybut-1-ynyl)-thiophene	E. transiliensis	R	Insecticidal	Nakano et al., 2014		
53.	5'-(3,4-dihydroxybut-1-ynyl)-5-carboxaldehyde	E. nitro	WP	Antibacterial	Li et al., 2019		
54.	5'-(3,4-dihydroxybut-1-ynyl)-5-carboxaldehyde	E. nitro	WP	Antibacterial	Li et al., 2019		
55.	4-hydroxy-1-(5'-methyl-[2,2'-bithiophen]-5-yl)-butan-1-one	E. nitro	WP	Antibacterial, Antifungal	Li et al., 2019		
56.	Junipic acid	E. nitro	WP	Antibacterial	Li et al., 2019		
57.	Arctinol	E. nitro	WP	Antibacterial	Li et al., 2019		
58.	4-(5'-methyl-[2,2'-bithiophen]-5-yl)-but-3-yn-1-ol	E. nitro	WP	Antibacterial	Li et al., 2019		
59.	Arctinol A	E. nitro	WP	Antibacterial	Li et al., 2019		
60.	Dehydrocostus lactone	E. amplexicaul	R	Antibacterial	Abegaz et al., 1991		
61.	Costunolide	E. kebericho, E. amplexicaul,	R	Antibacterial	Abegaz et al., 1991	1991	Abegaz, 1991
62.	Dihydrocostunolide	E. amplexicaul	R	Antibacterial	Abegaz et al., 1991		
63.	Echinopines A	E. spinosus	R	Antibacterial	Dong et al., 2008b		
64.	Echinopines B	E. spinosus	R	Antibacterial	Dong et al., 2008b		

(Continued)
TABLE 2 | Continued

No.	Name of secondary metabolites	Species	Plant part	Pharmacological activity	Ref.
Terpenes					
65.	(3α,4α,6α)-3,13-dihydroxyguaia-7(11),10(14)-dieno-12,6-lactone	E. nitro	WP	Cytotoxic	Li et al., 2010
66.	(3α,4α,6α,11β)-3-hydroxyguaia-1(10)-en-12,6-lactone	E. nitro	WP	Cytotoxic	Li et al., 2010
67.	(1α,11,13-dihydroxy)-E. niveus	E. nitro	WP	Cytotoxic	Li et al., 2010
68.	Vulgarin	E. nitro	WP	Cytotoxic	Li et al., 2010
69.	(3β,5α,6α,9α,9β,9β)-octahydro-3,9-dimethyl-6-methyleneazulenol(4,5-b)furane2,3(9b)H-1one	E. nitro	WP	Cytotoxic	Li et al., 2010
70.	(3α,6α,8β,9α,9β,9β)-decahydro-8-hydroxy-9-methyl-3,6 dimethylenazulenol(4,5-b)furane2,9(9h)-1one	E. nitro	WP	Cytotoxic	Li et al., 2010
71.	(3α,6α,8β,9α,9β,9β)-decahydro-3,3,9-trimethyl-6-methyleneazulenol(4,5-b)furane-2,9(h)-1one	E. nitro	WP	Cytotoxic	Li et al., 2010
72.	(3α,5α,6α,8β,9α,9β)-decahydro-3,9-dimethyl-6-methyleneazulenol(4,5-b)furane-2,9(h)-1one	E. nitro	WP	Cytotoxic	Li et al., 2010
73.	Santamarin	E. pappi	WP	Anti-inflammatory	Abegaz, 1991
74.	Reynosin	E. pappi	R	Anti-inflammatory	Abegaz, 1991
75.	Caryophyllene epoxide	E. giganteus	R	Anti-inflammatory	Lebedeva et al., 1991
76.	Echusoside	E. hussoni Bois.	AP	Anti-inflammatory	Ka, 2001
77.	(3S3αS,5αR,6β,8β)-decahydro-6,8-dihydroxy-3,5a-dimethyl-9-methyleneazulenophthal(1,2-b)furane-2,9(h)-1one	E. nitro	WP	Anti-inflammatory	Li et al., 2010
78.	(3S3αS,5αR,6β,8β,9βS)-hexahydro-3,5,9-trimethylhexahydro-2,9(9b)-1one	E. ritro	WP	Anti-inflammatory	Li et al., 2010
79.	2,6,10-trimethylidodeca-2,6,10-triene	E. albaicus	AP	Antioxidant	Kiyekbayeva et al., 2017
80.	Macrochaetosides A	E. macrochaetus	AP	Antioxidant	Zamzami et al., 2019
81.	Macrochaetosides B	E. macrochaetus	AP	Antioxidant	Zamzami et al., 2019
82.	Latifolanone A	E. latifolius	R	Anti-inflammatory	Jin et al., 2016
83.	Atractylenolide-II	E. latifolius	R	Anti-inflammatory	Jin et al., 2016
84.	β-amyrin	E. niveus	WP	Anti-inflammatory	Singh et al., 1990
85.	Betulinic acid	E. niveus	WP	Anti-inflammatory	Singh et al., 1990
86.	Lupeol	E. niveus	WP	Anti-inflammatory	Tene et al., 2004
87.	Taraxasterol	E. niveus	WP	Anti-inflammatory	Patel et al., 2016
88.	Taraxasterol acetate	E. niveus	WP	Anti-inflammatory	Patel et al., 2016
89.	β-sitosterol	E. niveus	WP	Anti-inflammatory	Patel et al., 2016
90.	β-sitosterol glucoside	E. niveus	WP	Anti-inflammatory	Patel et al., 2016
91.	Reynosin	E. pappi	R	Anti-inflammatory	Abegaz, 1991
92.	Cnelminin A	E. gmelini	AP	Anti-inflammatory	He et al., 2000
93.	Stigmasterol	E. transiliensis	R	Anti-inflammatory	Nakano et al., 2012
94.	Lupeol acetate	E. integrifolius	WP	Anti-inflammatory	Senegueju et al., 2013
95.	Lupeol linoeleate	E. albaicus	AP	Anti-inflammatory	Kiyekbayeva et al., 2017
96.	Ajugasterone C	E. albaicus	AP	Anti-inflammatory	Kiyekbayeva et al., 2017
97.	Ursolic acid	E. giganteus	Rz	Anti-inflammatory	Dong et al., 2008a
98.	Echinopsolid A (3β-acetoxy-15α-bromoolean-13β,28-olide)	E. giganteus	Rz	Anti-inflammatory	Kiyekbayeva et al., 2017
99.	β-amyrin acetate	E. giganteus	Rz	Anti-inflammatory	Kiyekbayeva et al., 2017
100.	3β-acetoxy-12,20(30)-diene-11α-21α-diol	E. galalensis	AP	Anti-inflammatory	Senegueju et al., 2013
101.	α-amyrin	E. galalensis	Rz	Anti-inflammatory	Abdallah et al., 2013
102.	Erythrodial	E. galalensis	Rz	Anti-inflammatory	Abdallah et al., 2013
No.	Name of secondary metabolites	Species	Plant part	Pharmacological activity	Ref.
-----	-------------------------------	---------	------------	--------------------------	------
103.	Lup-20(29)-ene-1,3-diol	E. galalensis	Rz	Hepato-protective	Zaman et al., 2019
104.	Cycloartenol	E. macrochaetus	AP	Cytotoxic	Zamzami et al., 2019
105.	Apigenin	E. niveus	WP	Singh et al., 1990	
106.	Luteolin	E. niveus	R	Singh et al., 1990	
107.	Nivegin	E. niveus	WP	Singh et al., 1990	
109.	Apigenin 7-O-glucoside	E. echinatus	F	Singh et al., 1995	
110.	Echitin	E. echinatus	F	Ram et al., 1995	
111.	Chrysoeriol	E. integrifolius	WP	Senejoux et al., 2013	
112.	Myrecetin-3-O-α-L-rhamnoside	E. echinatus	WP	Singh et al., 2006	
114.	Kaempferol-4′-methylether	E. echinatus	WP	Singh et al., 2006	
115.	Kaempferol-7-methylether	E. echinatus	WP	Singh et al., 2006	
116.	Kaempferol-3-O-α-L-rhamnoside	E. echinatus	WP	Singh et al., 2006	
117.	Myricetin-3-O-α-L-rhamnoside	E. echinatus	WP	Singh et al., 2006	
118.	Chrysoeriol	E. integrifolius	WP	Senejoux et al., 2013	
119.	Hispidulin	E. integrifolius	WP	Senejoux et al., 2013	
120.	Jaceidin	E. integrifolius	WP	Singh et al., 2006	
121.	Centaureidin	E. integrifolius	WP	Singh et al., 2006	
122.	Axillarin	E. integrifolius	WP	Singh et al., 2006	
123.	Genkwanin	E. albicaulis	AP	Singh et al., 2006	
124.	5,7-dihydroxy-8,4′-dimethoxyflavanone-5-O-α-L-rhamno-pyranosyl-7-O-β-D-arabinopyranosyl (1→4)-O-β-D-glucopyranoside	E. echinatus	WP	Singh et al., 2006	
125.	(+)-4-(3-methylbutanoyl)-2,6-di(3,4-dimethoxy)phenyl-3,7-dioxabicyclo[3.3.0]octane	E. giganteus	R	Tene et al., 2004	
126.	Candidone	E. giganteus	Rz	Cytotoxic	Kuete et al., 2013
127.	Chlorogenic acid	E. grijisi	R	Dong et al., 2008a	
128.	Cyanarin	E. grijisi	R	Dong et al., 2008a	
129.	Rutin	E. heterophyllus	Rz	Mhamood and Khaideem, 2013	
130.	(+)-4-(3-methylbutanoyl)-2,6-di(3,4-dimethoxy)phenyl-3,7-dioxabicyclo[3.3.0]octane	E. echinatus	WP	Singh et al., 2006	
131.	(+)-4-hydroxy-2,6-di(3,4-dimethoxy)phenyl-3,7-dioxabicyclo[3.3.0]octane	E. echinatus	WP	Singh et al., 2006	
132.	Hexacosyl-(E)-ferulate	E. nanus	R	Kaideem and Mhamood, 2013	
133.	Umbelliferone	E. integrifolius	WP	Senejoux et al., 2013	
134.	Syringin	E. grijisi	R	Dong et al., 2008a	
135.	1,5-dicaffeoylquinic acid	E. galalensis	AP	Hepato-protective	Abdallah et al., 2013
136.	3,5-dicaffeoylquinic acid	E. orientalis	L	Antioxidant	Erener et al., 2014
137.	3,4-dicaffeoylquinic acid	E. integrifolius	WP	Senejoux et al., 2013	
138.	4,5-dicaffeoylquinic acid	E. echinatus	AP	Singh et al., 2006	
139.	Echinopsine (1-methyl-4-quinolone)	E. echinatus	AP	Chaudhuri, 1987	
140.	Echinozolinone	E. echinatus	AP	Chaudhuri, 1987	
coliforms with a MIC of 64, 32, 64, and 8 µg/mL, respectively, were also described (Li et al., 2019).

In addition to those described in Table 3, the root extract of *Echinops* spp from Ethiopia showed anti-bacterial activity through growth inhibition (Ashebir and Ashenafi, 1999). The study did not delineate the specific name of the plant, MIC/MBC, and zones of inhibitions which makes it challenging to compare with other study results. Methanolic extract of the whole plant of *E. polyceras* has been reported to have greater zone of inhibition than the standard drug, vancomycin (30 µg/disc) of *E. polyceras* (Aburjai et al., 2001). The effect of the plant without tetracycline however was not studied. The leaf and flower extracts of *E. echinatus* subsp. bithynicus were described to possess significant anti-fungal activity against *C. albicans* and *M. grisea* (Khadim et al., 2014) with the MIC = 3.12 µg/mL) against *C. albicans* and *M. grisea* (Khadim et al., 2014).

Most of the anti-fungal studies on the genus revealed that the extracts/isolated compounds were effective mainly against *Candida albicans* with the most potent effect observed for the root methanolic extract of *E. kebericho* (MIC = 3.12 µg/mL) (Ameya et al., 2016).

Thiophenes (1, 2, 5, 18, 22, 23, 31, 38, and 39) from *E. ritro* have been described to possess significant anti-fungal activity against different fungal isolates. The most active thiophenes were I (IC$_{50}$ = 4.2 µM) against *Colletotrichum gloeosporioides*, 2 (IC$_{50}$ = 1.9 µM), and 5 (IC$_{50}$ = 1.1 µM) against *C. fragariae* (Fokialakis et al., 2006a). A recent study also showed that thiophenes (31, 46, and 55) isolated from *E. ritro* exhibited anti-fungal activity against *C. albicans* with the MIC of 64, 32, and 64 µg/mL, respectively (Li et al., 2019). The anti-fungal activity of extracts obtained from *E. viscosus* subsp. bithynicus and *E. microcephalus* leaves and flowers were found to be active against *Saccharomyces cerevisiae, Rhodotorula rubra, Mucor pusillus*, and *Kluyveromyces fragilis* (Toroğlu et al., 2012).

Effect on Cancer Cell Lines

The traditional use of the genus *Echinops* in the treatment of cancer is not common nevertheless the species in this genus were explored for cytotoxic activity. The methanolic extract of *E. kotschyi* Boiss. against MOLT-4 and K562 cancer cell lines (Afshaki et al., 2012) and essential oils obtained from *E. kebericho*, which consist of 43 compounds predominantly dehydrocostus lactone, showed cytotoxic activity against human monocytic leukemia cell line (THP-1) with an IC$_{50}$ value of 0.4 µg/L (Tariku et al., 2011).

Four thiophens isolated from *E. latifolius* Tausch., 5-(3,4-dihydroxybut-1-ynyl)-2,2′-bithiophene (15), 5-(4-hydroxy-1-butyryl)-2,2′-bithiophene (31), 5-[4-(5-pent-1,3-diylnylthiophene-2-yl)-but-3-ynyl]-2,2′-bithiophene (40), and 5-(4-hydroxybut-1-one)-2,2′-bithiophene (41) were tested against human malignant melanoma (A375-S2) and human cervical carcinoma (HeLa) cell lines. The four compounds displayed cytotoxic activity and the effect was more when the mixture of cell lines and compounds were exposed to ultraviolet A (UVA) light for 30 min. The effects of the four compounds were higher against HeLa cell line with IC$_{50}$ values of 5.2, 10.2, 3.1, and 6.5 µmol/L, respectively (Wang et al., 2007).

Jin et al. (2008) illustrated the *in vitro* cytotoxic activity of the dichloromethane fraction of the crude ethanolic root extract of *E. grijisi* and thiophenes (1, 2, 9, 18, 23, 34, 39, and 42) isolated from this fraction. The fraction, as well as the isolated compounds showed different effects towards human hepatocarcinoma (HepG2 and MFC-7), human acute myeloid leukemia (HL-60), and human chronic myelogenous leukemia (K562) cell lines. The highest activities were observed for the dichloromethane fraction against HL-60 (IC$_{50}$ = 5 µg/mL), 5-(4-isovaleroyloxybut-1-ynyl)-2,2′-bithiophene (18) against HepG2 (IC$_{50}$ = 2 µg/mL), 5-(3-acetoxy-4-isovaleroyloxybut-1-ynyl)-2,2′-bithiophene (34) against HepG2 and K562 (IC$_{50}$ = 1.8 and 7 µg/mL), and 5-(prop-1-ynyl)-2-(3,4-diacetoxybut-1-ynyl)-bithiophene (42) against HL-60 (IC$_{50}$ = 8 µg/mL). The dichloromethane fraction was tested in mice and did not show anti-tumor effect.
Similarly, Zhang et al. (2009) evaluated the cytotoxic effect of thiophenes isolated from *E. grijissi* on human cancer cell lines, HL60 and K562. Significantly potent effect was achieved with 5 (IC\(_{50}\) = 0.23 and 0.47 µg/mL) and 14 (IC\(_{50}\) = 0.27 and 0.43 µg/mL) against HL60 and K562, respectively. The thiophenes showed better activity against HL-60. A compound isolated from the root of *E. grijissi*, 5-(5,6-dihydroxy-hexa-1,3-diynyl)-2-(prop-1-ynyl)thiophene (13), possessed anti-proliferative activity against human colon cancer cells, SW620, SW480, and HCT116 with IC\(_{50}\) values of 19.5 µM, 10.5 µM, and 27.7 µM, respectively, at 24 h. The proposed mechanism of action for the thiophene (13) was mitochondrial-mediated apoptosis (Zhang and Ma, 2010; Xu et al., 2015).

The methanolic extract from the underground part of *E. giganteus* also exhibited cytotoxic activity with an IC\(_{50}\) values of 9.84, 6.68, and 7.96 µg/mL against prostate cancer (Mia PaCa2) and two leukemia cells (CCRF-CEM and CEM/ADR5000), respectively (Kuete et al., 2011). In addition, the crude extract showed strong activity against breast cancer (MDA-MB-231-pcDNA3) with an IC\(_{50}\) value of 4.17 µg/mL. The secondary metabolites (5, 97, 126, and 131) from the methanolic extract of this plant were tested for their cytotoxic effect and showed lower effect than that of the crude extract (Kuete et al., 2013). In continuation of this study, 5-(3,4-dihydroxybut-1-ynyl)-2-(penta-1,3-diynyl)-thiophene (14), echinopsolide A (98), and tetrahydrofurano-ceramide (150) were isolated from *E. giganteus*. These three compounds tested against leukemia showed the highest activity on CCRF-CEM (IC\(_{50}\) values of 46.96, 36.78, and 9.83 µM, respectively) and CEM/ADR5000 (IC\(_{50}\) values of 21.09, 38.57, and 6.12 µM, respectively) cell lines (Sandjo et al., 2016).
Macrochaetosides A and B (80 and 81) and cyclostenol (104), isolated from aerial parts of *E. macrochaetus* Boiss., were tested for their cytotoxic activity. The activity was observed on cell lines of breast adenocarcinoma (MCF-7) (IC\(_{50}\) = 2.1 and 0.18 μM), human hepatocellular carcinoma (HepG2) (IC\(_{50}\) = 2.9 and 3.3 μM), and colorectal adenocarcinoma (HCT-116) (IC\(_{50}\) = 3.6 and 2.3 μM) for cyclostenol and macrochaetosides A, respectively. Macrochaetoside B only showed a cytotoxic activity against MCF-7 with an IC\(_{50}\) of 6.9 μM (Zamzami et al., 2019).

The vehicle used to dissolve the compounds for the cytotoxicity study is not mentioned in some of the reports (Sandjo et al., 2016; Zamzami et al., 2019). In one study, α-terthiophene (2) was used as a positive control against A375-S2 (IC\(_{50}\) = 10.6 μmol/L) and HeLa (IC\(_{50}\) = 6.3 μmol/L) cell lines (Wang et al., 2007). Similarly...
α-terthiophene showed cytotoxic effect towards K562 (IC\text{50} = 50 µg/mL) and HepG2 (IC\text{50} = 10µg/mL) (Jin et al., 2008).

The above-described effects on cancer cell lines could be mainly due to thiophenes. Terpenoids and ceramides were the other secondary metabolites having a cytotoxic effect. Among the cell lines tested, leukemia cell lines were comparatively more sensitive in which 5-(4-hydroxybut-1-ynyl)-2-(pent-1,3-diynyl)-thiophene (5) showed the most potent effect.

Even though the extracts and isolated compound from the genus showed promising effects against different cancer cell lines, the effects are ought to be further investigated using in vivo models.

Hepato-Protective and Anti-Oxidant Activities

Members of the genus *Echinops* were also shown to have hepatoprotective and anti-oxidant activities. Most of the studies were conducted in carbon tetrachloride (CCl\textsubscript{4})-induced liver damage, in which biomarkers of liver function like aspartate

FIGURE 1 | Continued

aminotransferase (AST) and alanine aminotransferase (ALT) were measured.

The methanolic root extract, as well as n-butanol and aqueous fractions of *E. grijsii*, showed hepatoprotective activity in CCl₄-induced liver damage in rats. The effect was prominent in the aqueous and butanol fractions, at a dose of 300 mg/kg, that markedly decreased AST and ALT levels (Lin et al., 1993). A study conducted by Eram et al. (2013) in CCl₄-intoxicated rabbits justified the traditional claim of *E. echinatus* to treat jaundice (Gupta et al., 2010). The ethanolic aerial parts extract of *E. echinatus* at 500 and 750 mg/kg resulted in a significant decrease of ALT and AST, of which the lower dose (500 mg/kg) showed a higher effect (Eram et al., 2003). As presented in Table 1, flavonoids were isolated from the root of *E. grijsii* and the whole plant of *E. echinatus*. These might be responsible for the hepatoprotective effects of the extracts (Wang et al., 2015; Zang et al., 2017) and further investigations are required on phytoconstituents of the plants.

The hepatoprotective effect of compounds isolated from members of the genus *Echinops* was also investigated along with crude extracts. The protective effects of *E. galalensis* Schweinf. as well as isolated compounds β-sitosterol (89), apigenin-7-O-β-D-glucoside (109), 3β-acetoxy-taraxast-12,20(30)-diene-11α-21α-diol (100), α-amyrin (101), erythrodiol (102),
Phytochemistry and Biological Activities of Echinops Bitew and Hymete

lup-20(29)-ene-1,3-diol (103), and dicafeoyl-quinic acid derivatives (135-138) on human hepatoma cell line (Huh7) have also been established. The highest protection was exhibited by 100, 102, and 103 and they significantly decreased the level of ALT. Except for the crude extract, all the tested samples decrease the level of AST and 89, 101, and 135 showed the highest effect (Abdallah et al., 2013). According to Abdallah et al. (2013), the protective effect of the extract and isolated compounds was suggested to be partly due to anti-oxidant effects of the samples.

Methotrexate-induced hepatotoxicity was also used to evaluate the hepatoprotective effect of some of the plants. Using this model, the protective effect of ethanolic aerial part extract and flavonoid fraction of E. heterophyllus P. H. Davis was established in rabbits. The crude ethanolic extract (250 mg/kg) significantly decreased the serum proteins, liver enzymes, and oxidative stress markers than the flavonoid fraction (Abdulmohsin et al., 2019).

In liver diseases, excessive oxidative stress undoubtedly contributes to the progression and pathological expression of the disease and serves as a prognostic indicator (Zhu et al., 2012). The methanolic root extract of E. giganteus showed in vitro free radical scavenging effect with 12.54 mg equivalent weight of trolox per 100 g (Bouba et al., 2010). The aqueous extracts of E. ritro, E. tournefortii Ledeb. possessed 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effect with inhibitions more than 80% and 70%, respectively, at 1 mg/mL (Aydın et al., 2016). A study that compared different types of extraction methods on antioxidant

FIGURE 1 | Continued
activity reported that hot extraction using methanolic-ethyl acetate of *E. persicus* showed higher *in vitro* free radical scavenging effect (89.14%) against DPPH (Mohseni et al., 2017). The free radical scavenging effect of crude seed and leaf extracts of *E. orientalis* Traut. as well as isolated compounds β-sitosterol (89) and 1-methylquinolin-4(1H)-one (139) from seeds and apigenin-7-O-β-D-glucoside (109) and apigenin-7-O-(6”-trans-p-coumaroyl-β-D-glucopyranoside (124) from leaf methanolic extract was demonstrated. The extracts showed a significant effect (> 60% at 40 µg/mL) while the effect of the isolated compounds was not significant against 2,2-diphenyl-1-picrylhydrazyl (DPPH). However, the two flavonoids (109 and 124) showed better scavenging effect towards 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical cation than the extracts and the other two compounds (89 and 139), with IC$_{50}$ of 3 and 5 µg/mL (Erenler et al., 2014).

Active cell cultures of human peripheral blood mononuclear cells were also used to evaluate the anti-oxidant effect of aqueous methanolic extract of *E. albicaulis* aerial parts. The study showed that the active oxygen species (ROS) generation in the cells was significantly reduced at concentrations of 1, 20, and 50 mg/mL of the extract; however, the extract induced overproduction ROSs at higher concentrations (Kiyekbayeva et al., 2017).

Regardless of the effects described, the anti-oxidant activity evaluations are not still sufficient. In most of the reports the IC$_{50}$ value for the *in vitro* anti-oxidant effect are not mentioned. No single *in vivo* anti-oxidant model was employed. In some of the hepatoprotective effect studies standard drugs were not utilized and comparison was made only with the negative control (Table 5). The hepatoprotective effect of traditionally used plant, *E. spinosus* L. (Akdime et al., 2015), has not been scientifically investigated yet.
Anti-Inflammatory, Analgesic, Anti-Pyretic, and Wound Healing Activities

Traditionally, members of the genus *Echinops* are documented to have been used to treat inflammation, pain, and fever. Accordingly, several species have been explored for anti-inflammatory, analgesic, and anti-pyretic activities.

The whole plant ethanolic extract of *E. echinatus* showed anti-inflammatory activity against carrageenan and formaldehyde...
induced edema in rats with inhibitions of 67.5% and 51.8% at a dose of 800 mg/kg administered intraperitoneally and orally, respectively (Singh et al., 1989). A triterpenoid isolated from this plant, taraxasterol acetate (88), showed anti-inflammatory activity on carrageenan-induced pedal edema in rats with the highest inhibition of 68.3% and 63.2% at 200 mg/kg administered by the intraperitoneal and oral route, respectively (Sing et al., 1991). Flavanone glycoside, 5,7-dihydroxy-8,4’-dimethoxyflavanone-5-O-α-L-rhamno-pyranosyl-7-O-β-D-arabinopyranosyl (1→4)-O-β-D-glucopyranoside (125) isolated from E. echinatus, showed anti-inflammatory activity (Yadava and Singh, 2006). The methanolic root and aerial part extract of the plant showed analgesic properties in both hotplate and tail immersion models. The aerial part exhibited the highest activity by increasing the reaction time in both models to 7.99 and 7.77 sec, respectively, at 500 mg/kg, and it was comparable with the standard drug, pentazocine (Patel et al., 2011b). The ethanolic leaf and stem extract of E. echinatus showed antipyretic effect at a dose of 750 mg/kg in rabbits (Alam et al., 2016).

The methanolic root extracts of E. spinosus, E. grijissi, and E. latifolius exhibited significant anti-inflammatory activity (Lin et al., 1992; Rimbau et al., 1999). The ethyl acetate, chloroform, and n-hexane fractions obtained from the crude extract of E. grijissi showed significant anti-inflammatory activities in carrageenan-induced edema in rats, of which the chloroform fraction, at a dose of 300 mg/kg, exhibited inhibitory effect (56.7%) higher than that of indomethacin (Lin et al., 1992). Flavonoids, extracted from E. latifolius, were tested on rheumatoid arthritis using rats and inhibited the synovium proliferation through fibroblast-like synoviocytes apoptosis at 150 mg/kg (Miao et al., 2015).
A study was conducted to evaluate the anti-inflammatory activity of compounds isolated from *E. latifolius*, 5-(1,2-dihydroxy-ethyl)-2-(Z)-hept-5-ene-1,3-diynylthiophene (43), 5-(1,2-dihydroxyethyl)-2-(E)-hept-5-ene-1,3-diynylthiophene (44), 6-methoxy-arctinol-b (45), arctinol-b(46), latifolanoneA(82), arctinol(47), methyl[5’-(1-propynyf)-2,2’-bithienyl-5-yl] carboxylate (48), and atractylenolide-II (83) on inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production. In the order of presented compound names, thiophenic compounds numbered 43-46 inhibited the NO production with IC$_{50}$ ranging from 12.8–42.7 µM, whereas the IC$_{50}$ of 47, 48, and 83 were reported to be more than 100 µM (Jin et al., 2016).

The whole plant extract of *E. heterophyllus* and the alkaloidal faction facilitated epithelialization and left no scars in rabbits (Abdulrasool et al., 2013). This is the only wound healing activity reported on members of this genus although the dose, vehicle, and the standard drug are not described.
The in vivo anti-inflammatory effects of the genus seemed to be not promising since the plants resulted in an inhibition of edema at higher doses. In spite of the studies stated above, scientific data justifying the traditional claim of *E. bovei* (Boiss.) Maire., *E. cornigerus*, *E. kebericho*, *E. longifolius* A. Rich., *E. macrochaetus*, and *E. spinosissimus* to treat rheumatism and pain are not provided yet.

TABLE 3 | In vitro antibacterial and antifungal activities of some *Echinops* species.

Echinops species	Extract(Plant part)	Strain (ID)	Type	MIC (µg/mL)	MBC (µg/mL)	Zone of inhibition (mm) (Conc.) (mg/mL)	Ref.
E. adenocaulos	Biosk. Zamzam water	*Streptococcus pneumonia* (MDR)	I	780	–	–	Saleh Fares et al., 2013
E. amplexicaulis	Ether (R)	*Streptococcus pneumonia* (MDR)	I	50	50	41.0 (50)	Kevin et al., 2018
E. echinatus	70% Ethanol (AP)	Bacillus subtilis	S	–	–	–	Ahmed, 2012
E. longisetus	80% Methanol (L)	*Aerococcus viridans* (ATCC 6538)	S	–	–	23.0 (10)	Hymete et al., 2005a
E. longifolius	80% Methanol (St)	Meloidogyne incognita	L	10	5	127 (40)	Rahman et al., 2011
E. pinosissimus	Methanol (AP)	C. albicans	I	12.5/12.5	18.75/18.75	11.66/14.10 (0.08)	Belay et al., 2011

AP, Aerial part; F, Fruit; L, Leaf; R, Root; St, Stem; WP, Whole plant; MDR, Multidrug resistant; I, Isolate; S, Standard. All studies resulting in MIC values over 1 mg were not included as such dosages cannot be applied in vivo.
TABLE 4 | In vitro cytotoxic effect of members of the genus Echinops.

Plant/fraction/compound name (Plant)	Cell line	Positive control	Negative control	IC$_{50}$	References	
Essential oils (**E. kebericho**)	Human monocyctic leukemia (THP-1)	Amphotericin B	DMSO	1% DMSO	0.4 µg/mL	Tariku et al., 2011
15 **(E. latifolius)**	Human cervical carcinoma (HeLa)	α-terthienyl	DMSO	5.2 µmol/L	Wang et al., 2007	
31 **(E. latifolius)**	HeLa	α-terthienyl	DMSO	10.2 µmol/L	Wang et al., 2007	
40 **(E. latifolius)**	HeLa	α-terthienyl	DMSO	3.1 µmol/L	Wang et al., 2007	
41 **(E. latifolius)**	HeLa	α-terthienyl	DMSO	6.5 µmol/L	Wang et al., 2007	
Dichloromethane fraction (**E. grijisi**)	Human acute myeloid leukemia (HL-60)	Platinol	DMSO	5 µg/mL	Jin et al., 2008	
18 **(E. grijisi)**	Human hepatocarcinoma (HepG2)	Adriamycin	DMSO	2 µg/mL	Jin et al., 2008	
34 **(E. grijisi)**	HepG2	Adriamycin	DMSO	1.8 µg/mL	Jin et al., 2008	
34 **(E. grijisi)**	Human chronic myelogenous leukemia (K562)	Adriamycin	DMSO	7 µg/mL	Jin et al., 2008	
42 **(E. grijisi)**	HL-60	Platinol	DMSO	8 µg/mL	Jin et al., 2008	
5 **(E. grijisi)**	K562	Platinol	DMSO	0.23 µg/mL	Zhang et al., 2009	
14 **(E. grijisi)**	HL-60	Platinol	DMSO	0.27 µg/mL	Zhang et al., 2009	
14 **(E. grijisi)**	K562	Platinol	DMSO	0.47 µg/mL	Zhang et al., 2009	
13 **(E. grijisi)**	Colon cancer (SW480)	4'-Bromoflavone	DMSO	19.5 µM	Zhang and Ma, 2010	
13 **(E. grijisi)**	Colon cancer (SW480)	4'-Bromoflavone	DMSO	10.5 µM	Zhang and Ma, 2010	
13 **(E. grijisi)**	Colon cancer (HCT116)	4'-Bromoflavone	DMSO	27.7 µM	Zhang and Ma, 2010	
E. giganteus Prostate cancer (Mia PaCa2)	Doxorubicin	DMSO	9.84 µg/mL	Kuete et al., 2011		
E. giganteus Leukemia (CCRF-CEM)	Doxorubicin	DMSO	6.68 µg/mL	Kuete et al., 2011		
E. giganteus Leukemia (CEM/ADR5000)	Doxorubicin	DMSO	7.96 µg/mL	Kuete et al., 2011		
14 **(E. giganteus)**	CCRF-CEM	Doxorubicin	DMSO	46.96 µM	Sandjo et al., 2016	
14 **(E. giganteus)**	CEM/ADR5000	Doxorubicin	DMSO	21.09 µM	Sandjo et al., 2016	
98 **(E. giganteus)**	CCRF-CEM	Doxorubicin	DMSO	36.78 µM	Sandjo et al., 2016	
98 **(E. giganteus)**	CEM/ADR5000	Doxorubicin	DMSO	38.57 µM	Sandjo et al., 2016	
150 **(E. giganteus)**	CCRF-CEM	Doxorubicin	DMSO	9.93 µM	Sandjo et al., 2016	
150 **(E. giganteus)**	CEM/ADR5000	Doxorubicin	DMSO	6.12 µM	Sandjo et al., 2016	
80 **(E. macrochaetus)**	Breast adenocarcinoma (MCF-7)	Doxorubicin	DMSO	0.18 µM	Zamzami et al., 2019	
80 **(E. macrochaetus)**	DMSO	Doxorubicin	DMSO	3.3 µM	Zamzami et al., 2019	
80 **(E. macrochaetus)**	DMSO	Doxorubicin	DMSO	2.1 µM	Zamzami et al., 2019	
104 **(E. macrochaetus)**	DMSO	Doxorubicin	DMSO	2.9 µM	Zamzami et al., 2019	
104 **(E. macrochaetus)**	DMSO	Doxorubicin	DMSO	6.9 µM	Zamzami et al., 2019	

DMSO, Dimethyl sulfoxide; NM, Not mentioned.

Anti-Protozoal and Anti-Helmentic Activities

As presented in Table 3, *E. hoehnelii* Schweinf. and *E. kebericho* have been used in traditional treatment of malaria. These plants along with other species showed anti-malarial activity.

Aqueous extract of the aerial parts of *E. polycears* exhibited strong (96%) in vitro growth inhibitory activity against *Plasmodium falciparum*. Nevertheless, the concentration of the extract used for the test and the standard drug used as positive control has not been reported (Sathiyamoorthy et al., 1999). A study on 70% ethanolic root extract *E. kebericho* resulted in an inhibition of parasitemia by 57.3% at a dose of 500 mg/kg in mice against *Plasmodium berghei* (Toma et al., 2015). A recent study conducted on the 70% methanolic extract from roots of *E. kebericho* exhibited 49.5% of inhibition at 1000 mg/kg in mice (Biruksew et al., 2018). Nevertheless, the concentration of the extract used for the test and the standard drug used as positive control has not been reported (Sathiyamoorthy et al., 1999). A study on 70% ethanolic root extract *E. kebericho* resulted in an inhibition of parasitemia by 57.3% at a dose of 500 mg/kg in mice against *Plasmodium berghei* (Toma et al., 2015). A recent study conducted on the 70% methanolic extract from roots of *E. kebericho* exhibited 49.5% of inhibition at 1000 mg/kg in mice (Biruksew et al., 2018). This might suggest that the potency of *E. kebericho* extract could be dependent on the extraction solvent.

Dichloromethane fraction of the 80% methanolic extract of *E. hoehnelii*, and thiophens (5-(penta-1,3-diylnyl)-2-(3-chloro-4-acetoxy-but-1-ynyl)-thiophene (10), and 5-(penta-1,3-diylnyl)-2-(3,4-dihydroxybut-1-ynyl)-thiophene (14)) possessed anti-malarial activity. The two compounds showed parasitemia inhibition of 32.7% and 50.2% at a dose of 100 mg/kg, respectively, against *P. berghei* in mice (Bitew et al., 2017).

Different studies showed that essential oils possess strong anti-protozoal effects. The essential oil isolated from *E. kebericho* displayed a strong activity against two *Leishmania* strains (*L. aethiopica* and *L. donovani*) with an EC$_{50}$ values of 0.24 and 0.5 µg/mL (Tariku et al., 2011). Essential oil obtained from *E. giganteus* had anti-protozoal effect against *Trypanosoma brucei* with an IC$_{50}$ of 10.5 µg/mL and GC-MS analysis of the oil revealed the presence of modheph-2,ene, presilipherpofuran-8-ol, presilipherpof-7-en, cameroon-7-α-ol, and (E)-caryophyllene as the main constituents of the oil (Kamte et al., 2017).

The anti-helmentic effects of members of the genus were also described. The root 80% methanolic extract of *E. kebericho* showed higher anti-helmentic effect (LD$_{50} = 57 µg/mL$) than niclosamide (LD$_{50} = 84.5 µg/mL$) against earthworms (Hymete and Kidane, 1991). The root 80% methanolic extracts of *E. ellenbeckii* as well as *E. longisetus* A. Rich. were active against earthworms with 100% mortality at 500 µg/mL (Hymete et al., 2005a). Essential oil from the root of *E. kebericho* showed lethal effect (81.8%) at a concentration of 1% (v/v) towards *Haemonchus contortus* (Hussien et al., 2011).

Effects on Insects and Termites

The leaves of *Echinops* spp, which are commonly known as “Kebericho” in Ethiopia, had a mosquito repellant effect against...
TABLE 5 | Other biological effects of members of the genus Echinops.

Hepatoprotective and antioxidant activities

Plant/compound name (Plant)	Effects Model	Positive control	Negative control	Dose/Concentration (Route of administration)	Activity	References
E. echinatus	Hepatoprotective 1	Silymarin	Normal saline	500 mg/kg (p.o.)	↓ ALT	Eram et al., 2013
E. giganteus	Anti-oxidant 1	Trolox	Distilled water	1% gumacacia	Inh = 68.3%	Singht et al., 1991
E. grijsii	Hepatoprotective 1	NM	Normal saline	300 mg/kg (p.o.)	↓ ALT	Lin et al., 1993
E. heterophyllus	Hepatoprotective 2	NM	Distilled water	250 mg/kg (p.o.)	↓ AST, ALT, and Asialine phosphatase(ALP)	Abdulmohsin et al., 2019
E. orientalis	Anti-oxidant 2	Trolox	NM	40 µg/mL	> 60%	Erenler et al., 2014
E. persicus	Anti-oxidant 2	NM	Methanol	89.1%	> 80%	Mohseni et al., 2017
E. nitro	Anti-oxidant 2	BHT (Dibutylhydroxytoluene)	Distilled water	1 mg/mL	> 70%	Aydin et al., 2016

Anti-inflammatory, analgesic, anti-pyretic and wound healing activities

Plant/compound name (Plant)	Anti-inflammatory 1	Inhibition of LPS-induced NO production 2	Positive control	Negative control	Dose/Concentration (Route of administration)	Activity	References
E. echinatus	Anti-inflammatory 1	Phenylbutazone	1% gumacacia	NM	200 mg/kg (p.o.)	Inh = 68.3%	Singht et al., 1991
E. latifolius	Inhibition of LPS-induced NO production 2	Aminoguanidine and Indomethacin	NM	12.8 µM	IC50 = 12.8 µM	Jin et al., 2016	
E. latifolius	Inhibition of LPS-induced NO production 2	Aminoguanidine and Indomethacin	NM	IC50 = 28.2 µM	Jin et al., 2016		
E. latifolius	Inhibition of LPS-induced NO production 2	Aminoguanidine and Indomethacin	NM	IC50 = 30.9 µM	Jin et al., 2016		
E. latifolius	Inhibition of LPS-induced NO production 2	Aminoguanidine and Indomethacin	NM	IC50 = 48.6 µM	Jin et al., 2016		
E. latifolius	Inhibition of LPS-induced NO production 2	Aminoguanidine and Indomethacin	NM	IC50 = > 100 µM	Jin et al., 2016		
Chloroform fraction (E. grijsii)	Anti-inflammatory 1	Indomethacin	Normal saline	300 mg/kg (p.o.)	Inh = 56%	Lin et al., 1992	

Anti-protozoal and anti-helmentic activities

Plant/compound name (Plant)	Anti-malarial 1	Inhibition of plasmodium falciparum 1	Positive control	Negative control	Dose/Concentration (Route of administration)	Activity	References
E. hoehnelii	Anti-malarial 1	Chloroquine	7% Tween 80/3%	NM	100 mg/kg	Inh = 32.7%	Bitew et al., 2017
E. hoehnelii	Anti-malarial 1	Chloroquine	7% Tween 80/3%	NM	100 mg/kg	Inh = 50.2%	Bitew et al., 2017
E. ellenbeckii	Anti-helmentic 2	Niclosamide	NM	500 µg/mL	Mortality rate = 100%	LD50 = 57 µg/mL	Toma et al., 2015

(Continued)
TABLE 5 | Continued

Plant/compound name (Plant)	Effects Mode	Positive control	Negative control	Dose/Concentration (Route of administration)	Activity	References
E. longisetus	Anti-helmentic ²	Nicosamide	Tap water	500 µg/mL	LC₅₀ ₀.12 µg/mL, Mortality rate = 100%	Hymete et al., 2005a
E. polyceras	Anti-malarial ²	NM	Distilled water	0.2% (w/v)	Inh 96%	Sathiyamoorthy et al., 1999
Essential oil (E. giganteus)	Anti-trypanosomal ²	Suramin	DMSO	IC₅₀ 10.5 µg/mL		Kim et al., 2017
Essential oil (E. kebericho)	Anti-keishmanial ²	Amphotericin B	1% DMSO	EC₂₀ 0.24 µg/mL		Tariku et al., 2011
Essential oil (E. kebericho)	Anti-helmentic ²	Thiabendazole	0.5% Tween 80 in PBS	1% (w/v)	Inh 81.8%	Hussien et al., 2011

Effects on insects and termites

Plant/compound name (Plant)	Effects Mode	Positive control	Negative control	Dose/Concentration (Route of administration)	Activity	References
1 *E. gnijisi*	Larvicidal ²	Rotenone	0.25% Tween 40	LC₅₀ ₀.12 µg/mL		Zhuo et al., 2017
1, 2 (E. nitro and E. spenosissimus)	Termicidal ²	NM	Distilled water	1% (w/v)		Fokialakis et al., 2006b
10 (E. transiliensis)	Larvicidal ²	Permethrin	DMSO	LC₅₀ 14.71 µg/mL		Nakano et al., 2014
14 (E. transiliensis)	Larvicidal ²	Permethrin	DMSO	LC₅₀ 12.45 µg/mL		Nakano et al., 2014
15 (E. transiliensis)	Larvicidal ²	Permethrin	DMSO	LC₅₀ 9.89 µg/mL		Nakano et al., 2014
18 (E. gnijisi)	Larvicidal ²	Rotenone	0.25% Tween 40	LC₅₀ 1.38 µg/mL		Zhao et al., 2017
2 (E. gnijisi)	Larvicidal ²	Rotenone	0.25% Tween 40	LC₅₀ 1.6 µg/mL		Nakano et al., 2014
39 (E. transiliensis)	Larvicidal ²	Permethrin	DMSO	LC₅₀ 4.22 µg/mL		Nakano et al., 2014
51 (E. transiliensis)	Larvicidal ²	Permethrin	DMSO	LC₅₀ 7.45 µg/mL		Nakano et al., 2014
52 (E. transiliensis)	Larvicidal ²	Permethrin	DMSO	LC₅₀ 19.97 µg/mL		Nakano et al., 2014
8 (E. transiliensis)	Larvicidal ²	Permethrin	DMSO	LC₅₀ 18.55 µg/mL		Nakano et al., 2014
9 (E. transiliensis)	Larvicidal ²	Permethrin	DMSO	LC₅₀ 17.95 µg/mL		Nakano et al., 2014
Butanol fraction (E. echinatus)	Anti-hyperplasia ¹	Finasteride	2% Tween 80	50, 100, and 200 mg/ kg (p.o.)		Agrawal et al., 2012
Butanol fraction (E. echinatus)	Anti-hyperplasia ¹	Finasteride	Ethanol	LC₅₀ 0.22 mg/L		Agrawal et al., 2012
E. echinatus	Anti-fertility ¹	NM	Distilled water	50, 100, and 200 mg/kg		Chaturvedi et al., 1995

Phytochemistry and Biological Activities of *Echinops*

Plant/compound name (Plant)	Effects Mode	Positive control	Negative control	Dose/Concentration (Route of administration)	Activity	References
Essential oil (E. giganteus)	Larvicidal ²	NM	DMSO	LC₅₀ 227.4 µL/L		Pavela et al., 2016

Effects on the reproductive system

Plant/compound name (Plant)	Effects Mode	Positive control	Negative control	Dose/Concentration (Route of administration)	Activity	References
Terpenoidal fraction (E. echinatus)	Effect on male reproductive parameters ¹	NM	1% Tween 80	60 mg/kg (p.o.)		Padashetty and Mishra, 2007

Other activities

Plant/compound name (Plant)	Effects Mode	Positive control	Negative control	Dose/Concentration (Route of administration)	Activity	References
14 (E. gnijisi)	NQO1 inducing activity ²	4′-Bromoflavone	NM	40 µM	Induction 3.1X of the control	Shi et al., 2010
14 (E. gnijisi)	NQO1 inducing activity ²	4′-Bromoflavone	NM	2.87 µg/mL	Induction 2X of the control	Zhang and Ma, 2010
5 (E. gnijisi)	NQO1 inducing activity ²	4′-Bromoflavone	NM	1.86 µg/mL	Induction 2X of the control	Zhang and Ma, 2010
9 (E. gnijisi)	NQO1 inducing activity ²	4′-Bromoflavone	NM	2.58 µg/mL	Induction 2X of the control	Zhang and Ma, 2010
E. echinatus	Anti-diabetic ¹	Sitaglipin	Normal saline	200 mg/kg (p.o.)	Blood glucose level	Fatima et al., 2017
E. echinatus	Anti-diabetic ¹	MetforminHCl	1% Tween 80 in saline	200 mg/kg (p.o.)	Blood glucose level	Sarvaya et al., 2017
E. echinatus	Diuretic	Furosemide	Normal saline	500 mg/kg (p.o.)	Blood glucose level	Fatima et al., 2017
E. ellenbeckii	Molluscidaic ²	NM	De-chlorinated tap water	20.25 µg/mL	Blood glucose level	Pat et al., 2011a
E. giganteus	Amylase inhibitory ²	NM	Distilled water	75%	Blood glucose level	Hymete et al., 2005a
E. lasiolepis	Immunomodulating activity	NM	DMSO	1 µg/mL	Inhibited PBMC proliferation	Etonuki et al., 2010
E. longisetus	Molluscidaic ²	NM	De-chlorinated tap water	45 µg/mL	Blood glucose level	Asadi et al., 2012
P. persicus	Anti-ulcer	NM	Distilled water	500 mg/kg (p.o. / i.p.)	Blood glucose level	Eto et al., 2012

DMSO, Dimethyl sulfoxide; NM, Not mentioned; p.o., Per os (Oral); i.p., intraperitoneal; ¹, In vivo; ², In vitro.
Anopheles arabiensis with the effectiveness of 92.47% as a smoke (Karunamooorthy et al., 2008).

The activity of thiophenes (2, 8, 9, 10, 14, 15, 39, 51, and 52) isolated from E. transiens Golsk. against Aedes aegypti was reported and the toxic effect increased with the number of thiophene moieties in the molecule. Strong activity was observed for 2′-terthiophene (2) with an LC$_{50}$ value of 0.16 µg/mL (Nakano et al., 2014). Similarly, the root extract of E. grijisi possessed significant larvicidal activity against Aedes albopictus, Anopheles sinensis, and Culex p. p. with LC$_{50}$ values of 2.65, 3.43, and 1.47 µg/mL, respectively.

Bioactivity-directed chromatographic separation of the essential oil obtained from E. grijisi led to the isolation of thiophenes. The larvicidal effects of the isolated compounds, 5-(3-buten-1-yn-1-yl)-2,2′-bithiophene (1) (LC$_{50}$ 0.34, 1.36, and 0.12 µg/mL), α-terthienyl (2) (LC$_{50}$ 1.41, 1.79, and 1.38 µg/mL), and 5-(4-isovaleryloxybut-1-ynyl)-2,2′-bithiophene (18) (LC$_{50}$ 0.45, 5.36, and 0.33 µg/mL) against the three organisms mentioned above was described (Zhao et al., 2017). On the contrary, the larvicidal activity of essential oils from E. giganteus against Culex quinqueducatus was relatively low (LC$_{50}$ = 227.4 µL) (Pavela et al., 2016).

Fokialakis et al. (2006b) evaluated the termicidal effect of eight thiophenes (1, 2, 5, 10, 18, 23, 31, and 39) isolated from E. ritro, E. spinozissimus, E. albicus, and E. transiens on Coptoptermes formosanus. The study revealed that all the thiophenes showed termicidal activity and 100% mortality was observed after application of 5-(3-buten-1-ynyl)-2,2′-bithiophene (1) and 2′-terthiophene (2) for 9 days at 2% and 1% (w/w), respectively. However, the exact concentrations of the compounds were not mentioned.

Effects on the Reproductive System

A number of species have been used for the management of various reproductive health problems (Table 1). In spite of the traditional claims, only E. echinatus has been evaluated for these biological activities.

Corresponding to its traditional use, the terpenoidal fraction from E. echinatus displayed anti-fertility properties at doses of 30 and 60 mg/kg in male rats (Padshetty and Mishra, 2007). Earlier studies also indicated that the root ethanol extract of E. echinatus has anti-fertility properties through decrement in sizes of testes, epididymis, vental prostate, vas deferens, and seminal vesicle at doses of 50, 100, and 200 mg/kg. In addition, the extract also decreased sperm motility and density with an inhibition of spermatogenesis in rats (Chaturvedi et al., 1995). The butanol fraction of the root extract demonstrated a protective effect on testosterone-induced prostatic hyperplasia at a dose of 100 mg/kg in rats. The butanol fraction also showed better 5a-reductase inhibitory effect (IC$_{50}$ = 0.22 mg/mL) than of the crude extract and other fractions followed by the water soluble fraction (IC$_{50}$ = 0.43 mg/mL) (Agrawal et al., 2012). Similarly, the root petroleum ether extract of E. echinatus inhibited 5α-reductase. The enzyme plays an important role in the pathogenesis of benign prostatic hyperplasia (BPH), prostatic cancer, acne, alopecia, baldness in men, and hirsutism in women (Nahata and Dixit, 2014).

Other Activities

A study showed that 5-(penta-1,3-diyln)-2-(3,4-dihydroxybut-1-ynyl)-thiophene (14), isolated from the root of E. grijisi, has an induction effect on nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase1 (NQO1), an enzyme that is involved in detoxification of toxic quinones. The induction effect was dose-dependent and the maximum effect was observed at a concentration of 40 µM and it was 3.1 folds of the control, 4′-bromoflavone (Shi et al., 2010). Similarly, compounds 5, 9, and 14, from the root of E. grijisi, had a strong NQO1-inducing effect and the concentrations that caused a twofold induction were 1.86, 2.58, and 2.87 µg/mL, respectively. Compounds 5 and 14 were found to have an alkylating effect on cysteine residues in NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) (Zhang and Ma, 2010).

The 70% hydro-alcoholic root extract of E. echinatus was reported to have significant anti-diabetic activity on alloxa-induced diabetic rats. The the extract treated animals (200 mg/kg) showed lower blood glucose level (164 mg/dL) compared to the negative control (277.6 mg/dL) after 21 days of treatment. In addition, the extract exhibited the ability to regenerate pancreatic islet cells and normal structure of glomeruli and proximal and distal convoluted tubules in kidneys (Fatima et al., 2017). Similarly, the methanolic root extract of E. echinatus exhibited a significant anti-diabetic effect at doses of 100 and 200 mg/kg on alloxan induced diabetic rats. The extract was also able to decrease serum cholesterol, serum triglyceride, serum low-density lipoprotein, serum very low-density lipoprotein, and serum alkaline phosphate significantly while it increased high-density lipoproteins (Sarvaiya et al., 2017).

The molluscicidal activities of 80% methanolic root extracts of E. ellenbeckii and E. longisetus with a 100% mortality rate at 20.25 and 45 µg/mL, respectively, was described (Hymete et al., 2005a). The pancreatic amylase inhibitory activity (> 75%) of aqueous root extract of E. giganteus was reported although the exact concentration of the extract was not mentioned (Etoundi et al., 2010). The latex of E. persicus at 500 mg/kg resulted in lower number and level of stomach ulcer compared to the negative control in rats (Rad et al., 2010). The methanolic extract of root and aerial parts of E. echinatus significantly increased urine volume and excretion at doses of 250 and 500 mg/kg (Patel et al., 2011a). The immunomodulating activity of aerial parts methanolic extract of E. lasiolepis Büngel has been reported. The extract at different concentrations (0.1, 1, 10, 100, and 200 µg/mL) inhibited peripheral blood mononuclear cells (PBMCs) proliferation of which 1 µg/mL showed optimum proliferation (30.66%) (Asadi et al., 2014).

Biological effects evaluated on genus Echinops and the doses with maximum effect are summarized in Tables 3–5.

CONCLUSION

The genus Echinops is well known for its use to treat pain and respiratory manifestations. The traditional claims were justified by different biological evaluations. Findings from in vitro studies indicated that members of the genus have a potential...
effect against different cancer lines, microbial strains, and insects. They also showed significant in vivo anti-inflammatory, analgesic, and hepatoprotective activities. Some of the extracts and isolated compounds showed promising effects. This includes the anticancer activity of compounds 5 and 14, antioxidant potential of 109, anti-leishmanial and anti-helmintic effects of E. kebericho, and the larvicidal effect of compound 1. The safety and efficacy of secondary metabolites responsible for the in vitro effects of extracts/fractions should further be investigated in in vivo models. The most abundant bioactive secondary metabolites in members of the genus are thiophenes and terpenoids which are also mentioned as responsible for the cytotoxic effect observed. In the current review, it has been observed that the potential uses of the species in the removal of kidney stones and use to solve nerve-related problems have not been scientifically addressed yet. Investigation of the anti-microbial activity of isolated compounds seems to be limited. We believe this review will provide summarized information to the scientific community working on the genus.

AUTHOR CONTRIBUTIONS

HB developed concept of the review, conducted the literature review, extracted relevant information to the study, and drafted the manuscript. AH guided the literature search and edited the manuscript. Both authors have read and approved the manuscript.

REFERENCES

Abdallah, H. M., Ezat, S. M., Dine, R. S., Abdel-Sattar, E., and Abdel-Naim, A. B. (2013). Protective effect of echinops galalenis against CCl4-induced injury on the human hepatoma cell line (Huh7). Phytochem. Lett. 6, 73–78. doi: 10.1016/j.phytol.2012.10.01

Abdel-Elafi, S., Abdel Rahman, S. M., and Deraz, S. F. (2011). Promising antifungal effect of some folkloric medicinal plants collected from El- Hammamnab habitat, Egypt against dangerous pathogenic and toxigenic fungi. J. Agric. Biol. Sci. 6, 25–32.

Abderrahim, O., Martin, G. J., and Abdelaziz, A. (2013). Botanical identification and ethno-medicinal uses of some underground part of medicinal plants collected and traded in Marrakech region. J. Med. Plants. Res. 7, 2165–2169. doi: 10.5897/JMPR11.1597

Abdulrasool, A. A., Fahmi, Z. M., and Khadeem, E. J. (2013). Relative assess on wound healing and anti scar activity of crude Echinops heterophyllus extract and some of its bioactive fractions. Int. J. Pharm. Pharm. Sci. 5, 468–475.

Abdou Boubâ, A., Njintang Yanou, N., Foyet, H., Scher, J., Montet, D., and Mboufong, C. M. (2012). Proximate composition, mineral and vitamin content of some wild plants used as spices in Cameroon. Food Nutr. Sci. 3, 423–432. doi: 10.4236/fns.2012.34061

Abdulmolhim, H., Rahghif, A. A., and Manna, M. I. (2019). The protective effects of echinops heterophyllus extract against methotrexate-induced hepatotoxicity in rabbits. Asian. J. Pharm. Clin. Res. 12, 384–390. doi:10.22159/ajpcr.2019.v12i1.3021

Abegaz, B. M. (1991). Polyacetylenic thiophenes and terpenoids from the roots of echinops papilli. Phytochemistry 30, 879–881. doi:10.1016/0031-9422(91)85271-Z

Abegaz, B. M., Tadesse, M., and Majinda, R. (1991). Distribution of sesquiterpene lactones and polyacetylenic thiophenes in Echinops. Biochem. Syst. Ecol. 19, 323–328. doi: 10.1016/0305-1978(91)90021-Q

Abera, B. (2014). Medicinal plants used in traditional medicine by oromo people, ghimi district, southwest ethiopia. J. Ethnobiol. Ethnomed. 10, 40. doi: 10.1186/1746-4269-10-40

Abouri, M., Mousadik, A. E., Msanda, F., Boubaker, H., Saadi, B., and Cherifi, K. (2012). Ethnobotanical study and traditional knowledge of medicinal plants in ain leuh region (Middle-Atlas of Morocco). Ann. J. Adv. Drug. Deliv. 3, 248–263.

Ahmed, M., Ghafoor, N., and Aamir, M. N. (2012). Antibacterial activity of mother tinctures of cholistan desert plants in Pakistan. Indian. J. Pharm. Sci. 74, 465–468. doi:10.4103/0250-474X.108429

Akdime, H., Boukhir, S., Mansouri, L. E. L., El, A. H., and Bousta, D. (2015). Ethnobotanical study and traditional knowledge of medicinal plants in ain leuh region (Middle-Atlas of Morocco). Ann. J. Adv. Drug. Deliv. 3, 248–263.

Alam, K. M., Ahmed, S., Anjum, S., Akram, M., Shah, S. M., Wariss, H. M., et al. (2016). Evaluation of antipyretic activity of some medicinal plants from Cholistan desert Pakistan. Pak. J. Pharm. Sci. 29, 529–333.

Ameya, G., Gure, A., and Dessalegn, E. (2016). Antimicrobial activity of echinops kebericho against human pathogenic bacteria and fungi. Afr. J. Tradit. Complement. Altern. Med. 13, 199–203.

Amsalu, N., Bezie, Y., Fentahun, M., Alemayehu, A., and Amsalu, G. (2018). Use and conservation of medicinal plants by indigenous people of gozamin wereda, east gojam zone of amhara region, ethiopia: an ethnobotanical approach. evidence-based. complement. alter. Med. 2018, 1–23. doi:10.1155/2018/2975513

Arroo, R. R., Jacobs, J. J., Van Gestel, J. A., Kenkel, H., Jannink, W., Croes, A. F., et al. (1997). Regulation of thiophene biosynthesis by sulphate in roots of marigolds. New. Pharm. 135, 175–181.

Asadbeigi, M., Mohammadi, T., Rafieian-Kopaei, M., Sakir, K., Rahmani, M., and Delfan, M. (2014). Traditional effects of medicinal plants in the treatment of respiratory diseases and disorders: an ethnobotanical study in the Urmia. Asian. Pac. J. Trop. Med. 7, S364–S368.

Asadi, M., Hadinedeoshun, H., Mignaniardizadeh, S. A., Karimollah, A., Dastiri, F., and Malek-hosseini, S. (2014). The effect of echinops lasidlepis extracts, native plant of yazd province, on peripheral blood mononuclear cellplication and IFN-γ secretion. Int. J. Med. Lab. 1, 7–14.

Asheebi, M., and Ashenafi, A. (1999). Evaluation of the antibacterial activity of crude preparation of zingerib officinal (zinzibl) echinops sp. (kebericho), coriandrum sativum (dimilah), and cymbopogon citratus (tej sar) on some foodborne pathogens. Ethiop. J. Hist. Sci. 9, 33–39.

Aydin, C., Ozcan, G. T., Turan, M., and Mammadov, R. (2016). Phenolic contents and antioxidant properties of echinops ritro L. and echinops ritro Jaup. Et Spach extract. Int. J. Sec. Metabolite. 3, 74–81.

Baydoun, S., Chalak, L., Dalleh, H., and Arnold, N. (2015). Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of mount hermon, Lebanon. J. Ethnopharmacol. 173, 139–156. doi: 10.1016/j. jep.2015.06.052

Belay, G., Tarku, Y., Kebede, T., Hymete, A., and Mekonnen, Y. (2011). Ethnopharmacological investigations of essential oils isolated from five ethiopian medicinal plants against eleven pathogenic bacterial strains. Phytopharmacology 1, 133–143.

Belayneh, A., and Bussa, N. F. (2014). Ethnomedicinal plants used to treat human ailments in the prehistoric place of harla and dengego valleys, eastern ethiopia. J. Ethnobiol. Ethnomed. 1, 18. doi: 10.1186/1746-4269-10-18

Biruksew, A., Zeynudin, A., Alemu, Y., Golassa, L., Yohannes, M., Debella, A., et al. (2018). Zingerib Officinale Roscoe and Echinops Kebericho Mesfin showed antipina-flodial antiges against Plasmadum berghei in a dose-dependent manner in Ethiopia. Ethiop. J. Health. Sci. 28, 655. doi:10.4314/ ejhs.v28i5.17

Bitew, H., Mammo, W., Hymete, A., and Yeshak, M. Y. (2017). Antimalarial activity of acetylenic thiophenes from echinops hoehnelii schwefin. Molecules 22, 1965. doi:10.3390/molecules22111965
Bizzuayehu, B., and Garedew, B. (2018). A review on the ethnomedicinal study of medicinal plants used for the treatment of gonorrhea disease in Ethiopia. Yau. Ke. Bio. Prod. Res. 9, 83–193.

Bouattour, E., Fakhfakh, I., Dammak, F., Jabou, K., and Damak, M. (2016). Hexane extract of echinops spinosissimus turra subsp. spinosus from tunisia: a potential source of acetylated sterols – investigation of its Biological Activities. Chem. Biodivers. 13, 1674–1684. doi: 10.1002/cbdv.2016001182016;1674–84

Boua, A., Njintang, Y. N., Scher, J., and Mbofung, C. M. F. (2010). Phenolic compounds and radical scavenging potential of twenty cameroonian spices. Agric. Biol. J. N. Am. 1, 213–224.

Boumaraf, M., Benyahia, S., Mekkriou, R., Benayache, S., and Benayache, F. (2016). Flavonoids from ethyl acetate extract of echinops spinosus (Asteraceae). Der Pharma. Chemica 8, 158–160.

Bouzabata, A., Mahomoodally, F. and Tuberoso, C. (2018). Ethnopharmacognosy of Echinops spinosus L. in North Africa: a mini review. J. Complement. Med. Res. 8, 40–52. doi: 10.5455/jcrm.20180318051853

Bulut, G., Haznedaro glu, M. Z., Do, gan, A., Koyu, H., and Tuzlaci, E. (2017). An ethnobotanical study of medicinal plants in acipayam (Denizli-Turkey). J. Herb. Med. 10, 64–81. doi: 10.1016/j.jhmed.2017.08.001

Chadwick, M., Trewin, H., Gawthrop, F., and Wagstaff, C. (2013). Sesquiterpenoids and therapeutic activity of local taenicidal medications. J. Med. Plants. Res. 7, 183–193.

Chang, P. F., Chen, C. C., Huang, H. C., Wang, S. Y., Chen, J. J., Yang, C. S., et al. (2015). A new bithiophene from the root of echinops gigijii. Nat. Prod. Commun. 12, 2147–2149.

Chaturvedi, M., Malii, P. C., and Dexit, V. P. (1995). Antifertility effects of the roots of echinops echinatus (Roxb.) in male rats. J. Phytol. Res. 8, 115–118.

Chaudhuri, P. K. (1987). Echinolizolone, an alkaloid from echinops echinatus. Phytochemistry 26, 587–589.

Chaudhuri, P. K. (1992). 7-hydroxyechinolizolone, a new alkaloid from the flowers of echinops echinatus. J. Nat. Prod. 55, 249–250. doi: 10.1021/np00080a019

Chermat, S., and Gharzouli, R. (2015). Ethnobotanical study of medicinal flora in the north east of algeria - an empirical knowledge in diebel xidmin (Setif). J. Mater. Sci. Eng. A 5, 50–59.

Dangwal, L. R., Rana, C. S., and Sharma, A. (2011). Ethnopharmacological and therapeutic activity of medicinal plants indigenous to Al-Rass province, Saudi Arabia. Adv. Nat. Med. Plants. Res. 1, 213–224.

Desta, B. (1995). Ethiopian traditional herbal drugs. Part I: studies on the toxicity and therapeutic activity of local taenicidal medications. J. Ethnopharmacol. 45, 27–33.

Dong, L. I., Ning, L. I., Wan, X. I., Peng, Z. Z., Zhong-jun, M. A., and Xian, L. I. (2008a). Chemical constituents of the root of echinops gigijii Hance. Shenyang. Yi. Ke. Da. Xue. Za. Zhi. 8, 807.

Dong, M., Cong, B., Yu, S. H., Sauriol, F., Hoo, C. H., Shi, Q. W., et al. (2008b). Echinoptines A and B: sesquiterpenoids possessing an unprecedented skeleton from Echinops spinosus L. in North Africa: a mini review. Altern. Med. 26, 587–589.

Eskandar, O. H. (2010). Traditional medicinal plants use by agro-pastoral communities in, Ethiopia. Indian. J. Res. Pharm. Biotechnol. 1, 213–224.

Gabriel, T., and Guji, T. (2014). Ethnopharmacological survey of medicinal plants in Agaro district, limma zone, South West Ethiopia. Int. J. Pharm. Sci. Res. 5, 3551. doi: 10.13040/IJPSR.0975-8232(4).3551-59

Gari, A., Laragalada, R., and Wolde-Mariam, M. (2015). Knowledge, attitude, practice, and management of traditional medicine among people of Burka Jato kebele, West Ethiopia. J. Pharm. Bioall. Sci. 7, 136–144. doi: 10.1007/9705-7408.14878.109

Garnier, T., Susanna, A., Garcia-Jacas, N., Vilatersana, R., and Valles, J. (2005). A first approach to the molecular phylogeny of the genus Echinops (Asteraceae): Sectional delimitation and relationships with the genus Acantholepis. Folia. Geol. 40, 407–419.

Ghasemi Pirbalouti, A., Momeni, M., and Bahmani, M. (2013). Ethnobotanical study of medicinal plants used by Kurd tribe in Dehloran and Abadan districts, Ilam province, Iran. Afr. J. Tradit. Complement. Altern. Med. 10, 368–385. doi: 10.4314/atcam.v10i2.24

Giday, M., Asfaw, Z., and Woldu, Z. (2010). Ethnomedicinal study of plants used by Sheko ethnic group of Ethiopia. J. Ethnopharmacol. 132, 75–85. doi: 10.1016/j.jep.2010.07.046

Guo, D. A., Lou, Z. C., and Liu, Z. A. (1994). Chemical components of volatile oil from Echinops gigijii Hance. Zhongguo. Zhong. Yao. Za. Zhi. 19, 100–101.

Gupta, R., Vairale, M. G., Deshmukh, R. R., Chaudhary, P. R., and Wate, S. R. (2010). Ethnopharmacological use of some plants used by gond tribe of Bhandara district, Maharashtra. Indian J. Tradit. Knowl. 9, 713–717.

Hamayun, M., Khan, M. A., Chaudhary, M. F., and Ahmad, H. (2006). Studies on traditional knowledge of medicinal herbs of swat kohistan, District Swat, Pakistan. J. Herbs. Spices. Med. Plants. 12, 11–28. doi: 10.1007/j00441-v1204_02

Hamniche, V., and Maizia, K. (2006). Traditional medicine in central sahara: pharmaceutical potential of tujma n'ajer. J. Ethnopharmacol. 105, 358–367. doi: 10.1016/j.jep.2005.11.028

He, L. O., Chao, Q. L., Lin, R. G., and Huang, H. (2000). A new pentacyclic triterpene, gmelinii A, from Echinops gmelinii Turcz. Chim. J. Chem. 18, 112–114.

Hedberg, I., Friis, I., and Edwards, S. (2004). "Vol. 4, part 2", in Flora of Ethiopia and Eritrea (Addis Ababa: Addis Ababa University), 15–23.

Heshmati, S., Madani, M., and Amjad, L. (2016). Study of inhibitory effect of echinops cephalotes on candida spp isolated from vulvovaginal candidiasis. Patients in Isfahan. J. Res. Med. Sci. 18, e7335. doi: 10.17795/jrms-7335

Hussien, J., Uргeska, K., Regassa, F., Jemal, A., Abajebel, S., and Hussien, N. (2011). Antihelmintic effects of the essential oil extracts of selected plants against Haemonchus contortus. Int. J. Agric. Res. 6, 290–298.

Hymete, A., and Kidane, A. (1991). Screening for anthelmintic activity in two Echinos spp. Ethiop. Pharm. J. 9, 67–71.

Hymete, A., Iversen, T. H., Rohloff, J., and Erko, B. (2005a). Screening of echinos elenbeckii and echinos longisetus for biological activities and chemical constituents. Phytomedicine 12, 675–679. doi: 10.1078/1438-7600-6005.12004.10359

Hymete, A., Iversen, T. H., and Iversen, T. H. (2004). Chemical constituents of volatile fractions from echinos elenbeckii O. Hoffm. J. Essent. Oils. Bear Pl. 7, 9–15. doi: 10.1080/0972-606X.2004.10643359

Hymete, A., Rohloff, J., Kjosen, H., and Iversen, T. H. (2003b). Acetylenic thiophenes from the roots of echinos elenbeckii from Ethiopia. Nat. Prod. Res. 19, 755–761. doi: 10.1080/147864102100031711

Issa, T. O., Mohamed, Y. S., Yagi, S., Ahmed, R. H., Najeeb, T. M., Makhawi, A. M., et al. (2018). Ethnobotanical investigation on medicinal plants in Algou area
Tekwu, E. M., Askun, T., Kuete, V., Nkengfack, A. F., Nyasse, B., Etoa, F. X., et al. (2012). Antibacterial activity of selected cameroonian dietary spices ethnomedically used against strains of Mycobacterium tuberculosis. J. ethnopharmacol. 142, 374–382. doi: 10.1016/j.eph.2012.05.003

Tene, M., Tane, P., Sondengam, B. L., and Connolly, J. D. (2004). Lignans from the roots of echinops giganteus. phytochemistry 65, 2101–2105. doi: 10.1016/j.phytochem.2004.05.014

Tiwari, J. K., Ballabha, R., and Tiwari, P. (2010). Ethnopaediatrics in garhwal Himalaya, Uttarakhand, India (Psychomedicine and Medicine). N. Y. Sci. J. 3, 123–126.

Toma, A., Deyno, S., Fikru, A., Eyado, A., and Beale, A. (2015). In vivo antiplasmodial and toxicological effect of crude ethanol extract of Echinops kebericho traditionally used in treatment of malaria in Ethiopia. Malar. J. 14, 196. doi: 10.1186/s12936-015-0716-1

Toroğlu, S., Keskin, D., Vural, C., Kertmen, M., and Cenet, M. (2012). Comparison of antimicrobial activity of echinops vicosas subsp. bithynicus and E. microcephalus leaves and flowers extracts from turkey. Int. J. Agric. Biol. 14, 637–640.

Wagh, V. V., and Jain, A. K. (2018). Status of ethnomontanical invasive plants in western Madhya Pradesh, India. S. Afr. J. Bot. 114, 171–180. doi: 10.1016/j.sajb.2017.11.008

Wang, Y., Li, X., Meng, D., Li, N., and Zhang, Y. (2008). Chemical constituents of thiophenes from Echinops latifolius Tausch. Shenyang. Yao. Ke. Da. Xue. Xue. Bao. 8.

Wang, Y., Li, X., Li, L., Meng, D., Li, Z., and Li, N. (2007). Two new thiophenes from Echinops latifolius and their phototoxic activities. Planta. Med. 73, 696–698. doi: 10.1055/s-2007-981541

Wang, Y., Li, X., Meng, D.-L., Li, Z.-L., Zhang, P., and Xu, J. (2006). Thiophenes from Echinops latifolius. Nat. Prod. Res. 8, 585–588. doi: 10.1080/10286020802240467

Wang, M., Sun, J., Jiang, Z., Xie, W., and Zhang, X. (2015). Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. Am. J. Chin. Med. 43, 241–254.

Xu, D. G., Lv, W., Dai, C. Y., Zhu, F. F., Xu, G. H., Ma, Z. J., et al. (2015). 2 2-(Pro-1-yynyl)-5-(5,6-dihydroxy-penta-1,3-diyln) thiophene induces apoptosis through reactive oxygen species-mediated JNK activation in human colon Cancer SW620 Cells. Anat. Rec. 298, 376–385. doi: 10.1002/ar.23045

Yadava, R. N., and Singh, S. K. (2006). New anti-inflammatory active flavanone glycoside from the Echinops echiantus Roxb. Indian. J. Chem. 45, 1004–1008.

Yigezu, Y., Haife, D. B., and Ayen, W. Y. (2014). Ethnoveterinary medicines in four districts of jimma zone, Ethiopia: cross sectional survey for plant species and mode of use. BMC. Vet. Res. 10, 1–12. doi: 10.1186/1746-6148-10-76

Zamzami, T. A., Abdallah, H. M., Shehata, I. A., Mohamed, G. A., Alfaifi, M. Y., Elbehairi, S. E. I., et al. (2019). Macrochaetosides A and B, new rare sesquiterpene glycosides from Echinops macrochaetus and their cytotoxic activity. Phytochem. Lett. 30, 88–92. doi: 10.1016/j.phytol.2019.01.025

Zhang, P., Jin, W. R., Shi, Q., He, H., Ma, Z. J., et al. (2008). Two novel thiophenes from Echinops grijsii Hance. J. Asian. Nat. Prod. Res. 10, 977–981. doi: 10.1080/10286020802240467

Zhang, P., Liang, D., Jin, Q., Hu, H., Cheng, Y., L. i X., et al. (2009). Cytotoxic thiophenes from the root of Echinops grijsii Hance. Zeitschrift für. Naturforschung C. 1, 193–196.

Zhang, X., and Ma, Z. (2010). Characterization of bioactive thiophenes from the dichloromethane extract of Echinops grijsii as Michael addition acceptors. Anal. Bioanal. Chem. 39, 1975–1984. doi: 10.1007/s00216-010-3729-1

Zhang, H., Tan, X., Yang, D., Lu, J., Liu, B., Baiyun, et al. (2017). Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/ NF-κB/P53 signaling pathway in rats. Oncotarget. 8, 40982. doi: 10.18632/oncotarget.17334

Zhao, M. P., Liu, Q. Z., Liu, Q., and Liu, Z. L. (2017). Identification of Larvicidal Constituents of the Essential Oil of Echinops grijsi Roots against the three species of mosquitoes. Molecules 22, 205. doi: 10.3390/molecules2202020

Zhu, R., Wang, Y., Zhang, L., and Guo, Q. (2012). Oxidative stress and liver disease. Hepatol. Res. 42, 741–749. doi: 10.1111/j.1872-034X.2012.00996.x

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Bitew and Hymete. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.