SUPPORTING INFORMATION

Structure, biochemistry, and inhibition of essential 4′-phosphopantetheiny transferases from two species of *Mycobacteria*

Christopher R. Vickery†,§, Nicolas M. Kosa†, Ellen P. Casavant†, Shiteng Duan†, Joseph P. Noel†,§,* and Michael D. Burkart†,*

†Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358
§Howard Hughes Medical Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037
*Jack Skirball Center for Chemical Biology and Proteomics, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
Table of Contents

Supplementary Figures 1-11
Supplementary Tables 1-4
Supplementary Materials and Methods

p. 3-13
p. 14-17
p. 18-22
Supplementary figure 1: Phosphopantetheinyl transferases (PPTase) covalently modify conserved Ser residues on target CPs. The phosphopantetheine moiety is transferred from Coenzyme A (CoA) to the Ser residue of an apo-carrier protein in the presence of Mg\(^{2+}\), producing holo-carrier protein and 3',5'-phosphoadenyl phosphate (3',5'-PAP).
Supplementary figure 2: Mid-point melting temperatures (Tm) of PptT measured using various buffers and pH values. Melting points were determined as described in the methods section. Buffers used in subsequent stability screens are highlighted in red.
Supplementary figure 3: Tm calculations for PptT using 0.1 M MES (pH 5.8) with additives resulting in a Tm increase. The negative derivative of the original Fluorescence versus Temperature plot were used to assign the Tm as the negative peak on the plots above. Blue contains no additives, red contains 1 mM CaCl$_2$, and green contains 10% (v/v) glycerol.
Supplementary figure 4: Purification of C-terminal his-tagged PptT, analyzed by 12% SDS-PAGE gel electrophoresis and stained with coumassie blue.
Supplementary figure 5: (a) Overall structure of MuPPT (PDB id 4QJL). Overlay of PptT (orange) with (b) MuPPT (green) (c) Sfp (blue, 4MRT), and (d) HsPPT (red, 2C43) as ribbon diagrams. These overlays illustrate and contrast the overall pseudodimeric folds of these enzymes and the orientations of bound CoAs. CoAs are shown in all panels as color-coded bonds.
Supplementary figure 6: Alignment of PptT with both Sfp and HsPPT. Alignments were calculated using MUSCLE\(^1\) and visualized with ESPRRIPT\(^2\) (http://espript.ibcp.fr/ESPr ipt/ESPr ipt/).
Supplementary figure 7: Phylogenetic tree depicting the evolutionary proximity of Sfp, HsPPT, MuPPT, and PptT based upon sequence conservation. Tree was constructed using alignments of known PPTases described in Beld et. al.3 with Muscle1 and the tree was constructed with MEGA6.4 Finally, the resulting phylogenetic tree was visualized using Figtree.5
Supplementary figure 8: Comparison of the rotational positioning and coordination of Glu157 relative to the catalytic Mg\(^{2+}\) for PptT (orange), Glu157 of MuPPT (green), and Glu151 of Sfp (blue). CoA and Mg\(^{2+}\) from the Sfp structure (4MRT) is shown as a grey sphere and blue bonds, respectively.
Supplementary figure 9: (A) Qualitative assessment of mutant activity via the BpsA assay. Activity is measured as %WT. (B) Raw data of mutant activity assays. WT is depicted in red, the R48A mutant in green, the R56A mutant blue, and the E116Q mutant purple. Blank and inactive mutants are depicted as black curves. Activities were assessed by measuring the acceleration of production of indigoidine (blue dye) by BpsA and measured at A_{590}.6
Supplementary figure 10: Removal of CoA for ITC studies of Sfp and PptT. Four samples were run on both SDS-PAGE and Urea-PAGE gels to assess purity, stability, and level of CoA retention. Untreated PPTases are labeled “holo” and CIP-treated PPTases labeled “apo”.

Sfp	PptT		
Std	apo-ACP	apo-ACP	
A	H	A	H
+	-	+	-
+	-	+	-
(+) CoA	apo/holo Sfp	apo/holo PptT	
H	A	A	A
Supplementary figure 11: Raw ITC data. Sfp is depicted on the left, and PptT on the right. Curves were calculated using the single binding site equation in the Origin software package (Microcal/GE Healthcare). Values of n (ratio of ligand to protein), K (Thermodynamic constant), ΔH (enthalpy), and ΔS (entropy) are displayed in tables inset into the titration graphs. (a) Sfp and PptT titrated with CoA after CIP treatment. (b) Sfp and PptT titrated with Rhodamine-CoA. Thermodynamic parameters could not be calculated for PptT with Rhodamine-CoA.			
	PptT (SeMet)	MuPPT	
----------------------	-------------------------------	------------------------	
Resolution range, Å	41.22 - 1.59 (4.87 - 1.59)	37.24 - 1.65 (1.709 - 1.65)	
Space group	C 2 2 21	P 21 21 21	
a, b, c; Å	99.86, 121.51, 48.78	55.02, 59.75, 74.48	
α, β, γ; (°)	90, 90, 90	90, 90, 90	
Total reflections	723703 (49707)	403854 (35853)	
Unique reflections	44112 (4201)	25868 (2879)	
Multiplicity	9.1 (7.2)	5.6 (2.7)	
Completeness (%)	99.58 (97.6)	85.5 (66.7)	
Mean I/σ(I)	8.5 (1.1)	9.1 (2.3)	
R-merge	0.171 (2.134)	0.15 (0.388)	
R-meas	0.182 (2.318)	0.163 (0.470)	
R-work	0.1708	0.1599	
R-free	0.2026	0.2085	
Number of non-hydrogen atoms	2114	2039	
macromolecules	1779	1761	
ligands	58	49	
water	277	229	
Protein residues	228	228	
RMS(bonds)	0.011	0.031	
RMS(angles)	1.381	1.45	
Ramachandran favored (%)	99.57	99.12	
Ramachandran outliers (%)	0	0	
Clashscore	2.74	2.50	

Statistics for the highest-resolution shell are shown in parentheses.

Supplementary Table 1: crystallographic parameters of PptT and MuPPT structures.
PPTase	K_m CoA (µM)	k_{cat} (min$^{-1}$)	k_{cat}/K_m (µM$^{-1}$min$^{-1}$)
PptT	1.600±0.248	0.42 ± 0.012	0.26 ± 0.05
MuPPT	2.637±0.502	0.66 ± 0.026	0.25 ± 0.06
Sfp	11.69±2.56	0.18 ± 0.012	0.020 ± 0.004

Supplementary table 2: Relative kinetic parameters obtained from the BpsA assay for PptT, MuPPT, and Sfp at 50 nM PPTase. K_m is measured with respect to CoA as the variable substrate.
Primer name	Sequence
MBP_F1	AAAAATCTAGACTCCTTCTTTAAAGTTAAATGAAAATCGAAGAAGGTTAAA
	CTGGTAATC
MBP_R1	CGTGGAAACCAGTCCGCTGCTCCCGAGGTGTTG
	AAAAATCTAGATTATACTTTAAGAAGGAGTATAATGAAAATCGAAGAA
MBP_F2	GG
MBP_R2	AAAAACATATGGGATCCTCGTGGAACCAGTCCGCTGCTCCCGAGG
E157Q_F	TTGTGCAAACAAGGCAACTTACAAAGCATG
E157Q_R	TAAGTTGCTGTTTTTGCAACAAAAACAGGATA
E116Q_F	TATCGATGCTCAACCTCATGATGTCTGCC
E116Q_R	TCATGAGGTTGAGCATCGATACCTACGCGT
D114N_F	CGTAGGTATCAATGCTGAACCTCATGATGT
D114N_R	GGTTCAGCATTGATACCTACGATCATGAG
R48A_F	CGTTGCAAAAAGCCCGTAACGAATTATTAC
R48A_R	AATTCGTTACGGGCTTTTGCAACGCTACGA
R56A_F	GAATTCATTACCGTGCTGTCATTCGCG
R56A_R	CGCGCAATGAGCCAGGTTAAATATTCGTT

Supplementary table 3: primers used for cloning shown in the 5' to 3' direction.
Supplementary table 4: Structures of inhibitors tested for inhibitory activity measured by IC$_{50}$.

Compound	MAS	VibB	Compound	MAS	VibB
CoA	1.1 ± 0.1	4.7 ± 0.4	6-nitroso-benzopyrone	24 ± 2	17 ± 2
3',5'-phosphoadenylyl phosphate	1.6 ± 0.2	0.78 ± 0.20	PD 404,182	19 ± 1	7.1 ± 0.4
2'-deoxy-3',5'-phosphoadenylyl phosphate	7.4 ± 0.4	8.5 ± 1.0	Guanidinyl-naltrindole difluoracetate	12 ± 1	19 ± 1
Benserazide HCl	NC	NC	Sanguinarine Cl	4.9 ± 0.2	22 ± 2
Mitoxantrone 2HCl	Inactive	Inactive	Calmidazolium Cl	4.9 ± 0.4	2.0 ± 0.2
SCH-202676	0.5*	0.8*	(-)-ephrine hemisulfate	Inactive	Inactive
Bay 11-7085	30 ± 4	NC			
Methods

Cloning and purification MBP-PptT

PptT was codon optimized for *E. coli* and synthesized by DNA 2.0 in pJ201, and subcloned into pET24b (Novagen) using restriction sites NdeI and XhoI. The MBP sequence was duplicated from the pMAL-c2 (New England Biolabs) plasmid with primers MBP_F1 and MBP_R1 to begin addition of the thrombin cleavage site followed by PCR with MBP_F2 and MBP_R2 to finish creation of the thrombin cleavage site, as well as optimize the RBS from the first fragment and add the NdeI site on the 3’ end in preparation for vector insertion. Following double digestion with XbaI/NdeI and treatment with shrimp alkaline phosphatase (NEB), the desired MBP DNA was ligated into the parent pET24b/PptT vector.

This MBP construct was transformed into BL-21 DE3 chemically competent cells and grown at 37°C to an O.D. of 0.8 in LB media supplemented with 2g L⁻¹ glucose, induced with 1 mM IPTG, and grown overnight at 18°C. Cells were pelleted and lysed into 50 mM Tris pH 8.0 and 500 mM NaCl. Lysate was passed over amylose resin and washed with lysis buffer. MBP-PptT was eluted from the column with lysis buffer plus 1 mM DTT and 25 mM maltose. The elutant was concentrated and used without further purification.

Cloning, Expression, and Purification of PPTases and carrier protein targets

MuPPT was codon optimized for *E. coli* and synthesized by Genscript. Both PptT and MuPPT were subcloned into pET24b using the restriction sites NdeI and XhoI. BL-21 DE3 chemically competent cells were transformed with the pET24b plasmid containing PptT or MuPPT. Cells were grown to an O.D. of 0.8 in LB media at 37°C, induced with 1 mM IPTG, and grown overnight at 16°C. The cells were lysed into a lysis buffer consisting of 50 mM MES pH 6.2, 500 mM NaCl, 1 mM CaCl₂, 10% (v/v) glycerol, and 20 mM imidazole. PptT was purified over Ni-NTA (and eluted with Lysis Buffer containing 250 mM imidazole. The elutant was concentrated and the imidazole was removed using a PD-10 desalting column (GE healthcare) equilibrated with 50 mM MES pH 5.8, 500 mM NaCl, 1 mM
CaCl$_2$, and 10% (v/v) glycerol. MuPPT and all PptT mutants were purified as described for PptT. Se-Met PptT was grown in M9 minimal media supplemented by an amino acid cocktail that included L-Selenomethionine (Sigma). Purification was carried out in the same manner as described above.

Protein destined for crystallization was then further purified on a Sephadex S200 (GE Healthcare) size exclusion column equilibrated with crystallization buffer consisting of 20 mM MES pH 5.8, 100 mM NaCl, and 5 mM MgCl$_2$, and was concentrated to 8 mg mL$^{-1}$ measured by Bradford method. 5 mM DTT and 1 mM CoA were added prior to crystallization.

Sfp8, VibB9, AcpP10, and MAS10 were produced and purified as previously described.

Primers for MBP fusion construction and PptT mutants are listed in table S3.

Crystallization techniques

Using hanging drop vapor diffusion, medium sized plate-like crystals of PptT formed over a period 6 days in 100 mM Sodium acetate pH 4.5, 200 mM LiSO$_4$, and 30% (w/v) PEG 8000, which was discovered from Wizard Screen I (Emerald Biosystems). Diffraction quality crystals were obtained when drops consisting of 2 µL protein and 1 µL buffer solution were hung over an empty reservoir. Crystals were frozen in a cryo solution consisting of crystallization buffer plus 15% (v/v) Ethylene Glycol. Large rod-like crystals of MuPPT formed over a period of 1-2 months in drops consisting of 2 µL protein and 1 µL 2M LiCl, 32% (w/v) PEG 8000, pH 5.5. Crystals were frozen in a cryo solution consisting of mother liquor plus 15% (v/v) Ethylene Glycol.

Data Collection and processing

Data was collected on beamlines 8.2.1 and 8.2.2 at the Advanced Light Source (Berkeley, CA, USA). Raw data was indexed with mosflm11 and scaled with scala using the CCP4 suite.12 Initial models using phasing data from Se-Met PptT and all refinement was performed with Coot13 and Phenix.14 PptT was phased using single wavelength anomalous diffraction data from Se-Met labeled protein. MuPPT was
phased using the previously solved PptT structure. All figures depicting crystal structures were prepared using PyMol.

Gel based analysis of labeling of MAS, VibB, and *E. coli* ACP were performed as previously described.

Removal of pre-bound CoA from PPTases

10 mg of Sfp was treated with 100 U CIP (Worthington Biochemical) in 5 mL 50 mM TrisCl pH 8, 250 mM NaCl, 10% (v/v) glycerol, 10 mM MgCl₂, along with a sufficient quantity of nickel resin for binding. Incubation of the mixture proceeded with rocking at room temperature for 2 hours. Nickel resin was washed with 50 mM MES pH 6.2, 500 mM NaCl, 10% (v/v) glycerol, 1 mM CaCl₂ and then eluted with 300 mM imidazole in MES buffer. Eluted CIP-treated Sfp was buffer exchanged with a centrifugal filter prior to use. PptT was prepared in the same manner as Sfp, except for a pre-binding of PptT to Ni-NTA resin for 1 hour on ice, prior to buffer exchanging to the Tris CIP reaction buffer for CIP treatment. CIP-treated, desalted PPTase at 20 µM was combined with *apo* E. coli ACP at 100 µM with 50 mM HEPES pH 7.6 and 10 mM MgCl₂ at 37°C overnight without coenzyme A to qualitatively gauge the removal of pre-bound coenzyme A from PPTases. Additional controls including untreated PPTase demonstrate lower conversion from *apo-* to *holo-*CP upon CIP treatment, as well as demonstrate retention of activity with the re-addition of coenzyme A. Samples were run on 20% Urea-PAGE gels to determine relative *apo-* and *holo-*ACP amounts.

ITC experiments

ITC measurements were performed on a VP-ITC isothermal titration calorimeter (Microcal/GE Healthcare) at 16°C for both Sfp and PptT. CoA analogs and PPTases were diluted to 300 µM and 30 µM, respectively, in 50 mM MES pH 6.0, 250 mM NaCl, 10 mM MgCl₂, and 5% (v/v) glycerol. 30 10 µL injections of 300 µM CoA or rhodamine CoA were added at intervals of 360 seconds while stirring.
at 300 rev. min\(^{-1}\). An initial injection of 2 \(\mu\)L was performed and was not integrated into the data analysis. Data was fit to a titration curve using the built-in Origin software (Microcal).

BpsA assay of PPTase kinetics

The BpsA assay was performed in clear 96-well microplates at 25°C. Reaction conditions consisted of 75 mM phosphate pH 7.8, 5 mM MgCl\(_2\), 8 mM ATP, 8 mM L-Gln, 50 nM PPTase, and CoA varying from 500 nM to 250 \(\mu\)M. To this mixture was added BpsA to a final concentration of 1 \(\mu\)M to initiate the reaction. Total reaction volume was 150 uL. Reactions were monitored for change in absorbance at 590 nm for approximately 30 minutes, with intervals of 13-14 seconds per data point. Raw data was analyzed in GraphPad Prism as described previously to obtain kinetic parameters.\(^6\) The BpsA assay for qualitative comparison of mutant and W.T. PptT were carried out under the same conditions as above, except that the PPTase concentration was increased to 5 \(\mu\)M and CoA was held constant at 1 mM in order to visualize activity of weakly active mutants. Reactions were monitored at 590 nm for 45 minutes.

Fluorescence Polarization

Fluorescence polarization activity assay proceeded as previously described unless otherwise noted.\(^6\) PptT was implemented at concentrations of 250 nM for inhibitor screening. Substrate concentrations for VibB inhibitor screening was 10 \(\mu\)M carrier protein and 5 \(\mu\)M rhodamine-CoA. Substrate concentrations of 4 \(\mu\)M MAS and 2 \(\mu\)M rhodamine CoA were utilized for inhibitor screening with MAS.

(1) Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 32, 1792–1797.
(2) Gouet, P. (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. *Nucleic Acids Res.* 31, 3320–3323.
(3) Beld, J., Sonnenschein, E. C., Vickery, C. R., Noel, J. P., and Burkart, M. D. (2014) The phosphopantetheinylation transferases: catalysis of a post-translational modification crucial for life. *Nat. Prod. Rep.* 31, 61.
(4) Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. *Mol. Biol. Evol.* 30, 2725–2729.
(5) Morariu, V. I., Srinivasan, B. V., Raykar, V. C., Duraiswami, R., and Davis, L. S. (2008) Automatic online tuning for fast Gaussian summation, in *Advances in Neural Information Processing Systems 21*. Curran Associates, Inc.

(6) Owen, J. G., Copp, J. N., and Ackerley, D. F. (2011) Rapid and flexible biochemical assays for evaluating 4'-phosphopantetheinyl transferase activity. *Biochem. J.* 436, 709–717.

(7) Doublié, S. (1997) Preparation of selenomethionyl proteins for phase determination. *Methods Enzymol.* 276, 523–530.

(8) Mofid, M. R., Marahiel, M. A., Ficner, R., and Reuter, K. (1999) Crystallization and preliminary crystallographic studies of Sfp: a phosphopantetheinyl transferase of modular peptide synthetases. *Acta Crystallogr. D Biol. Crystallogr.* 55, 1098–1100.

(9) Worthington, A. S., and Burkart, M. D. (2006) One-pot chemo-enzymatic synthesis of reporter-modified proteins. *Org. Biomol. Chem.* 4, 44.

(10) Kosa, N. M., Pham, K. M., and Burkart, M. D. (2014) Chemoenzymatic exchange of phosphopantetheine on protein and peptide. *Chem. Sci.* 5, 1179.

(11) Leslie, A. G. W. (1992) Recent changes to the MOSFLM package for processing film and image plate data. *Jt. CCPS ESF-EAMCB Newsl Prot Crystallogr* 26, 27–33.

(12) Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S. (2011) Overview of the CCP 4 suite and current developments. *Acta Crystallogr. D Biol. Crystallogr.* 67, 235–242.

(13) Emsley, P., and Cowtan, K. (2004) *Coot*: model-building tools for molecular graphics. *Acta Crystallogr. D Biol. Crystallogr.* 60, 2126–2132.

(14) Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) *PHENIX*: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* 66, 213–221.

(15) (2010) The PyMOL Molecular Graphics System. Schrödinger, LLC.

(16) Kosa, N. M., Foley, T. L., and Burkart, M. D. (2013) Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors. *J. Antibiot. (Tokyo)*.