Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

Marzia Bianchi a, Teresa Rizza a, Daniela Verrigni a, Diego Martinelli b, Giulia Tozzi a, Alessandra Torrado b, Fiorella Piemonte a, Carlo Dionisi-Vici b, Valerio Nobili c, Paola Francelanci d, Renata Boldrini d, Francesco Callea d, Filippo Maria Santorelli e, Enrico Bertini a, Rosalba Carrozzo a,⇑

a Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, “Bambino Gesù” Children’s Hospital, Rome, Italy
b Division of Metabolism, “Bambino Gesù” Children’s Hospital, Rome, Italy
c Gastroenterology and Liver Unit, “Bambino Gesù” Children’s Hospital, Rome, Italy
d Dept. Pathology, “Bambino Gesù” Children’s Hospital, Rome, Italy
e UOC Neurogenetica e Malattie Neuromuscolari, Fondazione Stella Maris, Pisa, Italy

Article info
Article history:
Received 4 October 2011
Available online 18 October 2011

Keywords:
Mitochondrial disorders
Hepatopathy
OXPHOS
Complex I
mtDNA deletion

Abstract
Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

© 2011 Elsevier Inc. Open access under CC BY-NC-ND license.

1. Introduction
The oxidative phosphorylation (OXPHOS) deficiencies represent one of the major causes of metabolic disorders with a prevalence estimated at 1/8500 birth [1]. These disorders represent a heterogeneous group of genetic diseases, mainly affecting brain, heart and muscle, and can be caused by genetic defects in mitochondrial (mt) or nuclear (n) DNA. OXPHOS catalyzes the oxidation of fuel molecules by oxygen and the concomitant energy transduction into ATP via five complexes, embedded in the inner mitochondrial membrane. The mitochondrial OXPHOS is made up of about 100 different proteins, 13 of which are encoded by mtDNA and the others by nDNA [2].

The high dependence of hepatocytes upon ATP production for the correct biosynthetic and detoxifying pathways explains in part why liver involvement is also a common feature in childhood OXPHOS-related diseases, particularly in the neonatal period, where it may present as neonatal acute liver failure, hepatic steatohepatitis or cirrhosis with chronic liver failure of insidious onset [3]. It is becoming obvious that conditions with markedly reduced levels of mtDNA (mtDNA depletion, MDS) frequently cause liver failure in early childhood [4], and syndromes associated with prominent hepatic disease and related to mtDNA deletions are rare [5]. Importantly, liver complications are often a late feature of a multi-system disorder, such as Leigh syndrome [6].

We herein report on the clinical, biochemical and molecular features in two children in which a multisystem disorder, resembling Pearson syndrome, was associated to a prominent hepatopathy and related to novel mtDNA large-scale rearrangements encompassing multiple genes of NADH-ubiquinone oxidoreductase (complex I).

2. Materials and methods
2.1. Case reports
Details of the clinical features of both patients are summarized in Case reports of Supplementary methods. Both patients manifested
prominent signs of progressive hepatic failure that stated within the first 2 years of life associated with some features resembling Pearson syndrome such as pancytopenia with non-hemolytic megaloblastic anaemia, signs of pancreatic failure and severe lactic acidosis.

2.2. Tissues

Muscle and skin biopsies were obtained pre-mortem, whereas all other tissues were sampled 1 h after death once obtained informed parental consent. All tissues were immediately frozen in liquid nitrogen and stored at −80 °C until assayed. Autopotic tissues, whereas available, were obtained from age-matched controls (kids who died for no metabolic causes) and frozen following similar procedures than patients. Human fibroblasts were grown in DMEM medium supplemented with 10% foetal bovine serum, 4.5 g/L glucose and 50 μg/mL uridine.

2.3. Histological and electron microscopy studies

Frozen sections of muscle biopsy were stained for haematoxylin and eosin (HE), Gomori trichrome, cytochrome c oxidase, and succinate dehydrogenase [7]. The liver specimens were processed for light and electron microscopy. Light microscopy studies included routine stains, HE and Masson trichrome. Ultrastructural studies were performed using a Zeiss 109 electron microscope [8].

2.4. Biochemical and molecular studies

Spectrophotometric determination of respiratory chain enzymes activities in biopotic and autopic muscle, and in autopic liver tissue, Southern blotting, SDS–PAGE/Western blotting, genomic DNA purification and PCR amplification (in fibroblasts and autopic tissues) were used previously reported methodologies [9–11]. To define precisely the breakpoints of the deletions, we used a “primer shifting” PCR-based strategy as reported elsewhere [12], and mtDNA (GenBank ID: NC_012920) oligonucleotide primer sets 16,470–8,330, 6,900–16,470 and 7,250–16,467 for patient 1, and sets 10,500–16,500, and 11,500–16,430 for patient 2. Fine mapping of the deletions was performed by direct sequencing using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) on an ABI3130xl automatic DNA Analyzer. Determination of the relative abundance of wild-type and deleted genomes used either an ad hoc designed “3-primer last hot-cycle” PCR method [13,14] or a quantitative real-time PCR (qPCR) assay [15,16], or both (see Supplementary methods). For SDS–PAGE, 50 μg of proteins from different tissues were loaded in a 12% denaturing gel. Immunoreactivity of the following proteins was ascertained using monoclonal antibodies purchased from Mitosciences (Eugene, OR, USA): complex I—15 kDa subunit (NDUF4), 20 kDa subunit (NDUF8), 30 kDa subunit (NDUF5), and 39 kDa subunit (NDUFA9); complex II—70 kDa subunit (SDH70); complex III—core 2 subunit (core2); complex IV—subunit II (CIV-II); and complex V—subunit alfa (CVz). Reactive bands were detected using the Immobilon Western Chemiluminescent HRP Substrate Detection Kit (Millipore Corporation, Billerica, MA, USA). Fluorescence was quantified using the Quantity One Software (BioRad, Hercules, CA, USA). Each sample was run in triplicate and normalized values were averaged and compared to normal control tissues.

3. Results

In patient 1, liver histology showed a micronodular cirrhosis (Fig. 1A top) with ductular reaction and marked cholestasis. Hepatocytes were ballooned, occasionally with multinuclei, microvesicular steatosis and haemosiderosis (Fig. 1B top). At the electron microscopy (Fig. 1C top) the liver showed an accumulation of mitochondria, which also appeared round and with few and dysregulated cristae. The liver histology in patient 2, showed preserved architecture with mild portal fibrosis (Fig. 1A bottom). Hepatocytes had an oncocytic appearance due to an increased number of mitochondria, sometimes with megamitochondria (Fig. 1B bottom). In addition, ballooning degeneration, micro and macrovesicular steatosis, cholestasis, and ductular proliferation were present. At the electron microscopy (Fig. 1C bottom) the liver showed an accumulation of mitochondria even more pronounced than in patient 1; in some mitochondria the cristae were almost absent. Moreover, an accumulation of lipids drops were observed.

Spectrophotometric determination of the activities of respiratory chain complexes in patient 1 showed 73% reduction of complex I in autopic muscle homogenates (the muscle biopsy specimen was inconsistent for spectrophotometric studies), and multiple defects in autopic liver with undetectable activity of complex 1, 12% of residual activity of complex III and 39% residual activity of complex IV, upon correction for the levels of citrate synthase. In patient 2, we detected an isolated defect of complex I (residual activity 40%) in biopotic and autopic muscle, as well as in autopic liver, with 17% residual activities compared to the lowest range of controls. In mitochondria isolated from cultured fibroblasts complex I activity was almost undetectable in patient 1, and 50% reduced in patient 2.

In fibroblasts Southern blot analysis identified, in addition to the wild type molecules, two smaller bands sized approximately 11.0 Kb in patient 1 (Fig. 2A) and 13.0 Kb in patient 2 (Fig. 2B). The bands corresponded to heteroplasmic mtDNA deletions. There was no evidence for reduced amount of mitochondrial genomes (data not shown). Fine mapping of the deletions disclosed that patient 1 harboured a 5312 base pairs (bp) long deletion, extending from nucleotide nt. 10,090 in NADH-dehydrogenase, subunit 3 (ND3) to nt. 15,402 in cytochrome b (CYTB), and patient 2 a 2837-bp, from nt. 12,366 in NADH-dehydrogenase, subunit 5 (ND5) to nt. 15,203 in CYTB. The novel deletion identified in patient 1 removed five tRNAs (R-H-S2-L2- and E), large part of complex I ND subunits (part of ND3, ND4L, ND4, ND5, and ND6), and a small region of cytochrome b; whereas, the new deletion in patient 2 removed the sequences of ND5, ND6, part of cytochrome b and the tRNAgiu gene. The deletions were not flanked by direct repeats.

Using radiolabelled 3’-PCR, the very high levels of deleted mtDNA was found in liver tissue of both patients (92% and 89%, respectively in patients 1 and 2); whereas the other tissues showed values ranging from 68% to 86% in patient 1, and from 33% to 94% for patient 2 (Supplementary Fig. 1) with very high levels particularly in kidney and pancreas. Similar data were observed using qRT-PCR method (Supplementary Fig. 2). Values obtained from both methods are compared in Table 1.

Western blot analysis showed a clear decreased amount of NDUF8 and NDUF8 complex I nuclear encoded subunits in tissues from patient 2 (Fig. 3A and B), while other nuclear encoded subunits such as NDUFA9, NDUF53 were normally present or only mildly reduced. In detail, NDUF84 and NDUF88 subunits were not detected in liver, markedly reduced in kidney and relatively reduced in skeletal muscle, but seemed to be preserved in heart. Complex II, III, IV and V subunits were normally expressed (Fig. 3C). No sufficient material was available for patient 1.

4. Discussion

Single deletions of mtDNA are usually associated with 3 major clinical conditions: Kearns–Sayre syndrome (KSS) (MIM 530000), Pearson syndrome (MIM 557000), and chronic progressive external ophthalmoplegia (CPEO) (MIM 157640). Typically, single mtDNA deletions are sporadic events occurring in isolated members of a
family, but, exceptionally, they can also be transmitted through the germline [17].

The patients herein described both present with a multisystem disorder mainly affecting the liver with signs of Pearson’s syndrome and associated to a single, large-scale mtDNA deletion. The deletions found in our patients have never been described before, and were ubiquitously distributed in all tissues. They removed at least one tRNA and several subunits of complex I, which is consistent with the profound biochemical defect identified in all examined tissues. The expected profound defect in protein content was demonstrated by Western blotting analyses with a prominent reduction of complex I subunits. Unexpectedly we found an uneven reduction of some complex I nuclear encoded subunits in some tissues compared to others. NDUFB4 and NDUFB8 subunits were markedly reduced only in liver, kidney and skeletal muscle while NDUFA9, NDUFS3 subunits appeared to be comparatively normal or only mildly reduced. While it is complex to explain the cause of uneven distribution of complex I subunits in different

Table 1

	Last cycle hot-PCR	qRT-PCR
Patient 1		
Fibroblasts	67.8 ± 3.1	54.6 ± 4.6
Liver	91.6 ± 9.6	89.3 ± 1.1
Spleen	86.2 ± 0.1	82.1 ± 6.3
Skeletal muscle	83.8 ± 2.7	80.8 ± 1.7
Pancreas	84.6 ± 3.1	82.1 ± 1.2
Kidney	83.2 ± 2.3	89.5 ± 0.4
Patient 2		
Fibroblasts	33.6 ± 3.5	33.9 ± 10.7
Heart	66.8 ± 2.2	62.2 ± 3.8
Liver	88.7 ± 3.0	93.5 ± 0.7
Skeletal Muscle	79.2 ± 3.7	80.5 ± 1.4
Pancreas	83.5 ± 3.3	92.3 ± 0.4
Lung	86.6 ± 2.8	83.6 ± 0.9
Kidney	89.0 ± 2.6	94.2 ± 0.3
Blood	83.3 ± 0.1	n.d.
Adrenal Gland	89.8 ± 2.4	86.1 ± 5.4

n.d.: not-determined.
In some infants, liver dysfunction may spontaneously reverse or remain stable, but in some there is rapid progression to cholestasis, coagulopathy, and ascites. Biochemical studies may be restricted to the liver and remain undetectable in skeletal muscle or skin fibroblasts [6]. Prominent liver involvement is rarely related to primary pathogenic point mutations [32], or single deletions of mtDNA [33], but is most often associated with conditions characterized by reduced amounts of mtDNA in affected tissues and grouped as MDS [34–36].

It is well established that single mtDNA deletions are generally associated to Pearson’s [37], KSS [38], CPEO syndromes [39] and that surviving patients with Pearson can later present with a KSS [40]. More rarely other syndromes have been reported to be associated to mtDNA rearrangements such as the Villous Atrophy syndrome [41], and the “common” mtDNA deletion once associated to early onset liver and renal failure [33]. Moreover, in addition to KSS and CPEO syndromes, the mtDNA deletions have been detected also in patients with chronic tubulointerstitial nephropathy [42,43].

When suspecting a mitochondrial disorder with prominent hepatic involvement the biochemical defects may not always be apparent in unaffected tissues, and a liver biopsy may be indicated [6]. However, our experience shows that mtDNA deletions can be easily detected in patients’ cultured fibroblasts as well as in blood cells. This confirms previous experience [28] suggesting less invasive techniques, particularly in neonates, such as cultured skin fibroblasts or blood sample that can be tested preliminarily for mtDNA deletions before analysing nuclear genes related to mtDNA depletion.

Regardless of the ultimate pathomechanisms, our data further expand the array of deletions in the mitochondrial genomes and its association with liver failure, and as such analysis of mtDNA should be considered in the diagnostic algorithm of childhood-onset hepatopathies.

Finally, we used two different methods to measure the amount of mtDNA-deleted molecules, the radiolabelled 3’-PCR and the qRT-PCR. The results obtained allow us to suggest the use of the faster and safer qRT-PCR instead of the radiolabelled 3’-PCR method.

Acknowledgments

This research was supported by Grants from Telethon-Mitocon Project (Telethon GUP09004), Ricerca Finalizzata and European Project (Telethon GUP09004), Ricerca Finalizzata and European Project FP7 LeukoTreat and Finalizzata Ministry of Health to E.B., and Ricerca Corrente to R.C.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bbrc.2011.10.049.
