Asphalt mixtures with high rates of recycled aggregates and modified bitumen with rubber at reduced temperature

Pedro Lastra-González a *, Miguel A. Calzada-Pérez b, Daniel Castro-Fresno a and Irune Indacoechea-Vega a

aGITECO Research Group, Universidad de Cantabria, Santander, Spain; bGCS Research Group, Universidad de Cantabria, Santander, Spain

(Received 28 June 2016; accepted 7 March 2017)

An asphalt concrete and a very thin asphalt concrete have been designed with more than 80% of alternative aggregates (primary slag of electric arc furnace and reclaimed asphalt pavement). A modified bitumen with rubber from end-of-life tyres, and a fatty acid amide wax to decrease the manufacturing temperature were used. The process of manufacturing has been carried out in the easiest way. Both mixtures were manufactured at conventional temperature without wax (170°C), and at reduced temperature when the wax was incorporated (150°C). Their mechanical and dynamic performance was compared. The resistance against plastic deformation and the effort that has to be made for the compaction of the mixtures modified with the wax at reduced temperature did not change, but the indirect tensile strength ratio decreased. The stiffness in the mixtures with wax was slightly higher, and there were no significant differences in the resistance to fatigue, although it seemed to decrease when the wax was added.

Keywords: asphalt concrete; rubber; slag; RAP; wax; modified mixture

1. Introduction

Bituminous mixtures are nowadays a useful tool to reuse by-products as slags, waste materials as reclaimed asphalt pavement (RAP), and waste polymers as rubber from end-of-life tyres (ELT). This paper includes the implementation of some of the most popular advances in the same mixture. These advances have been carried out in an easy way trying to demonstrate that their application, currently, does not depend on technical factors. Besides, as the rubber used to modify bitumen increases in viscosity (Rodríguez-Alloza, Gallego, & Pérez, 2013), two waxes have been selected with the aim to decrease the manufacturing temperature (D’Angelo et al., 2008).

An asphalt concrete (AC 16S) and a very thin asphalt concrete (BBTM 11B) have been designed replacing at least 80% of their natural aggregate by RAP and electric arc furnace (EAF) slag, and using a rubber-modified bitumen.

Although the use of RAP in surface layers is forbidden in some countries, the research about its use is currently aimed towards the use of 100% of RAP (Lo Presti, Jiménez Del Barco Carrión, Airey, & Hajj, 2016; Rowe, Barry, & Crawford, 2016). Besides, Warm Mix Asphalts with high percentages of RAP (Ahmed, Lee, & Baek, 2015; El Sharkawy, Wahdan, & Galal, 2016) have been developed in some studies, although its use is usually linked with foaming and the
application of emulsions. EAF slag is an alternative to replace natural aggregate, especially the coarse fraction (Behnood & Ameri, 2012; Centro de estudios y experimentación de obras públicas [CEDEX], 2011; Pasetto & Baldo, 2010), and it can work together with RAP (Pasetto & Baldo, 2012; Pasetto & Nicola, 2014). The bitumen modified with rubber from ELT can reach similar properties as those modified with polymers (Centro de estudios y experimentación de obras públicas [CEDEX], 2007).

To decrease the manufacturing temperature of the mixture two waxes have been studied. These waxes are usually employed with conventional bitumen to develop warm mixtures, although a study carried out with synthetic wax and a bitumen with 10% of rubber concluded that over the melting point of the wax (110°C), the viscosity of the bitumen was decreased to put it on the same value as conventional bitumen 40/50, while under the melting temperature the viscosity was significantly increased (Gil Redondo & Herrero, 2009).

In order to improve their applicability, two mixtures have been designed in the easiest way with all the materials working together.

2. Materials and methodology

The design process was divided in four stages: characterisation of materials, analysis of the viscosity of the modified bitumen with and without waxes, dosage of the experimental mixture with the recycled materials but at conventional temperature, and finally characterisation of the experimental mixture at reduced temperature with the selected wax.

2.1. Material characterisation

EAF slag was provided by an authorised waste manager. The origin of RAP is unknown. It is made up of limestone in fine fraction and ophitic aggregate in coarse. The main characteristics of both are gathered in Table 1.

EAF Slag is a hard aggregate useful to work in the surface layer due to its high polished stone value (PSV), its high density being the main difference from conventional aggregates. It has not had problems of expansiveness or leaching. Regarding the RAP, the Sand Equivalent test was used as a method to analyse if it had been contaminated. The results showed the usual high softening temperature and low penetration.

The manufacturing temperature of the selected rubber-modified bitumen ranged from 165°C to 175°C according to the supplier. Table 2 shows its main characteristics.

Regarding the additives, different waxes were analysed with respect to economic criteria. A Fischer-Tropsch wax with a melting temperature between 90°C and 115°C, and a fatty acid amide wax with a melting point around 140°C, were finally selected.

Table 1. Characteristics of alternative aggregates.

Material	Specific weight (g/cm³)	Flakiness index	Los Angeles coefficient	Water absorption 24 (%)	Polished stone value (PSV)	Expansiveness	Leaching test	Specific weight (g/cm³)	Flakiness index	Los Angeles coefficient	Water absorption 24 (%)	Polished stone value (PSV)	Expansiveness	Leaching test
Table 2. Characteristics of rubber-modified bitumen.

Property	Result
Penetration (0.1 mm)	54
Softening point (°C)	63
Elastic recuperation (%)	58
Relative density (g/cm³)	1.047

The particle size distribution of the mixture was completed with limestone. It was always used in the fine fraction to complete the percentage of RAP until the desired grading size. The density of the limestone was 2708 g/cm³ and the sand equivalent coefficient was 78.

2.2. Analysis of viscosity

The test was carried out with a Brookfield viscometer and the container was a 600 ml Low Beaker Griffin. 3% of each wax by mass of bitumen was incorporated. The mix between wax and bitumen was carried out at 150°C with an IKA homogeniser. This process took 5 min at 15,000 rpm.

The viscosity obtained for the reference bitumen at the manufacturing temperature recommended by the supplier was considered as reference. When the waxes were incorporated the viscosity was measured at different temperatures. The temperature that resulted in the reference viscosity, indicated the decrease of temperature allowed by the waxes. These viscosities are relative to the rubber-modified bitumen.

2.3. Dosage of mixture at conventional temperature

The mixtures were dosed at conventional temperature to ensure that they worked properly without any influence of the wax. The RAP was sieved for the maximum size of the mixture (16 mm) as the only condition, which means that it was heated as the other aggregates. Its grading size without residual bitumen was considered for the design of the mixtures. The coarse fraction was completed with EAF slag, while limestone completed the fine fraction. The design was done by volume due to the high specific weight of the slag.

2.4. Characterisation of the mixture at reduced temperature

The same tests used for the design of the mixtures were repeated, but in this case the selected wax was added, and the reduced temperature was used for the manufacturing of the mixes. Thus, the performance and the viability of manufacturing at reduced temperature were studied.

3. Statistical analysis

The statistical software Minitab was used to compare the results. The confidence interval considered was 95% (p-value of .05). When the results fulfilled a normal distribution and there was homogeneity of variances the Student t-test was carried out. Otherwise, the U of Mann–Whitney test was used.

4. Results and discussion

The final dosage for each type of mixture is gathered in Table 3. The bitumen percentages were lower than usual due to the high specific weight of the Slag. Initially RAP was going to be used
Material	AC 16 S	BBTM 11 B
Steel slag	68.80	83.00
Limestone	16.50	12.80
RAP	13.70	—
Filler	1.00	4.20
Bitumen total/Mix	4.30	3.75
New bitumen/Mix	3.80	3.75

Table 3. Percentage by weight of each material.

in both mixtures, but its addition to the BBTM11 B discontinuous mixture did not produce a decrease in the final percentage of bitumen, and due to the low percentage of fine aggregates of this type of mixture it was finally not considered.

4.1. Assessment of equi-viscous temperature and workability

The viscosity analysis showed that the waxes decrease the bitumen viscosity with rubber when the temperature of the mixture is above the wax melting point (Figure 1).

The Fischer-Tropsch wax decreases more the viscosity of the rubber-modified bitumen than the Fatty acid amide wax, supporting the analysis performed by other studies (Rodríguez-Alloza, Gallego, Pérez, Bonati, & Giuliani, 2014). However, the Fatty acid wax was selected since around 130°C it began to recover the viscosity of the reference mixture, so the resistance against plastic deformation is not compromised. Finally, the reduced temperature was selected considering the reference viscosity at the temperature recommended by the supplier. The new reduced manufacturing temperature was 150°C. Therefore, a decrease of 20°C was achieved by the Fatty acid amide wax.

The energy of compaction was calculated to know if the decrease of temperature resulted in any difference in the compaction process of the mixtures. The workability test (EN 12697-31) was performed with a Controls ICT 76-B0251 machine and three samples of each type of mixture were tested. The model developed by Del Rio Part (2011) was used to calculate the accumulated energy per mass unit:

\[
rac{W}{m} = \sum_1^N \frac{W_i}{m} = \frac{2 \cdot \pi \cdot \alpha \cdot A}{m} \sum_1^N h_i \cdot S_i,
\]

Figure 1. Viscosity test.
where W (KJ) is the accumulated energy of compaction, m (kg) is the mass, N is the total of cycles applied, α (rad) is the inclination angle of the cylindrical sample, A (m2) is the sample area, h_i (m) is the height of the sample in each cycle i, and S_i (kN/m2) the shear stress measured in each cycle i.

The required energy in relation to the compaction for both mixtures is shown in Figure 2. According to the results, the BBTM mixtures require more compaction energy than the AC. This is due to the discontinuity of their particle size distribution, which gives them greater internal friction. Although there is a trend for which the required compaction effort decreases when the wax is incorporated, especially in the case of the BBTM mixtures, the Student t-test showed that there were no significant differences between the mixtures (p-value of .141 for AC and .690 for BBTM), so the compaction process would not change while the temperature is above the melting point of the fatty acid amide wax.

4.2. Volumetric and mechanical properties

The volumetric and mechanical properties were measured through different tests depending on the type of mixture. Four Marshall samples were used for the voids test (EN 12697-8) and the Cantabro particle loss test (EN 12697-17), 8 samples for the water sensitivity test (EN 12697-12), and 11 samples in the stiffness test (EN 12697-26), which was carried out at 20°C. The Spanish standard for the highest traffic level and warmest area has been considered as the reference for the mechanical performance.

4.2.1. Asphalt concrete (AC 16 S)

Table 4 presents the results of voids and water sensitivity tests for the mixtures manufactured at conventional and reduced temperatures.

Temperature	Conventional	Reduced	Spanish standard	
Voids test EN 12697-8	Density (g/cm3)	2.892	2.891	–
	Voids in mixture (%)	5.3	5.3	4–6
	Voids in aggregates (%)	17.2	17.2	> 15
Water sensitivity test EN 12697-12	I.T.S. (Kp) Dry	1790.9	1555.5	–
	Wet	1757.7	1411.6	–
	I.T.S.R. (%)	98	91	≥ 85
Table 5. Significances of the mechanical tests of AC mixture.

	Voids test	Water sensitivity test
\(p \)-value	.883	.000

Table 6. Stiffness tests of AC mixtures at conventional and reduced manufacturing temperatures.

Frequency (Hz)	Conventional temperature	Reduced temperature		
	Dynamic modulus ± Deviation (MPa)	Phase angle ± Deviation (°)	Dynamic modulus ± Deviation (MPa)	Phase angle ± Deviation (°)
0.1	1827 367	24.7 2.0	2690 291	25.3 0.9
0.2	2128 404	24.4 1.8	3152 333	24.7 0.8
0.5	2633 464	24.4 1.7	3930 401	23.8 0.7
1	3073 511	23.3 1.6	4612 459	23.1 0.7
2	3597 563	22.6 1.5	5383 526	21.8 0.6
5	4411 638	21.5 1.4	6555 604	20.2 0.6
8	4877 674	20.7 1.3	7221 673	19.3 0.6
10	5094 670	20.4 1.4	7528 699	18.9 0.6
20	5930 821	20.8 3.1	8597 900	18.4 2.9
30	6587 852	19.8 1.6	10,021 888	– 1.9

The results followed a normal distribution and there was homogeneity of variances, so a Student \(t \)-test was performed to analyse the results. Table 5 collects the significances obtained. As far the voids test, no differences were found between the mixtures at conventional and reduced temperatures. On the other hand, the indirect tensile strength ratio (ITSR) in the water sensitivity test (\(p \)-values under .05) decreased significantly, so it seems that the addition of the wax modifies the adherence between aggregate and bitumen, and the temperature of compaction might affect the indirect tensile strength of the mixtures, even if the viscosity does not change (Moreno Rubio, 2006). All in all, both mixtures fulfilled the requirements.

The results of the stiffness are gathered in Table 6. The Spanish standard (according Valencia regulations) considers 3500 MPa as the minimum value at 10 Hz.

The \(U \)-test of Mann–Whitney concluded that the differences between the mixtures were significant (with a \(p \)-value of .00). Therefore, it might be said that the incorporation of the fatty acid amide wax produces a significant increase of the stiffness, which can be linked with the recovery of viscosity suffered by the Fatty acid amide wax when it is below its melting point (Figure 1).

4.2.2. Very thin asphalt concrete (BBTM 11 B)

The properties of the discontinuous mixture are shown in Table 7, in which the results of the voids test, the water sensitivity test, and the Cantabro particle loss test for both temperatures are included.

The analysis showed that the mixture manufactured at reduced temperature had significantly more voids, although this increase is small. In fact, the mixtures should have an equivalent percentage of voids according to the viscosity and workability test. The ITSR of the water sensitivity test decreased, which is in line with the result of the AC, although in this case it can be due to the slightly higher percentage of voids. There were no significant differences in the Cantabro particle loss test. The performance of both mixtures was good and similar to a conventional BBTM. The
Table 7. Mechanical properties of BBTM 11 B at both temperatures.

Temperature test EN	Density (g/cm³)	Voids in mixture (%)	Water sensitivity test EN	I.T.S. (Kp)	ITS (%)
Conventional	2.743	16.8	Dry	1169.6	93
Reduced	2.689	18.1	Wet	1012.8	90
Spanish standard					≥90

Water sensitivity test EN 12697-12

Temperature	Dry	Wet
Conventional	1076	1370
Reduced	1012.8	913.4
Spanish standard	90	90

Cantabro particle loss test EN 12697-17

Temperature	Mass (%)
Conventional	9.8
Reduced	11.8

≥ Required until 2008.

Table 8. Significances of the mechanical tests of BBTM mixture.

Test	Voids test	Water sensitivity test	Particle loss test
P-value	.000	.009	.254

Table 9. Stiffness tests of BBTM mixtures at conventional and reduced manufacturing temperatures.

Frequency (Hz)	Dynamic modulus (MPa)	Phase angle (°)	Dynamic modulus (MPa)	Phase angle (°)
	± Deviation	± Deviation	± Deviation	± Deviation
0.1	570	35.4	1	618
0.2	714	34.8	1	777
0.5	969	34.3	1	1076
1	1216	33.5	1	1370
2	1525	32.4	1	1748
5	2048	30.6	1	2395
8	2368	29.5	1	2794
10	2540	29.0	1	2993
20	3115	28.1	2	3716
30	3455	26.8	1	4273

The stiffness of both mixtures is presented in Table 9. The minimum value according to the Valencia standard for this type of mixture at 10 Hz is 2500 MPa.

The results of the mixture at reduced temperature showed a slight increase of the dynamic modulus and the phase angle, although in this case the U test of Mann–Whitney resulted in no significant differences (the p-value obtained in the test was .094). Therefore, the increase of the stiffness showed in the AC cannot be definitively confirmed, even if the stiffness always tends to increase.

4.3. Performance-related tests

The wheel tracking test (EN 12697-22) and the fatigue resistance test (EN 12697-24) were carried out to analyse the behaviour of the mixtures. The former was performed with 3 slabs, while the latest was done with 11 samples at 20°C at 30 Hz. The fatigue resistance laws were calculated with the following equation:

\[
\varepsilon \frac{(m/m)}{N} = a \times 10^{-3} N |(\text{Cycles})|^b.
\]
The failure criterion was the cycle \((N)\) for which the sample presented a stress of \(S_0/2\), \(S_0\) being the initial stress for the imposed strain \((\varepsilon)\) after 100 initial cycles. This is equivalent to decreasing the initial stiffness of the material until it is half.

4.3.1. Asphalt concrete (AC 16 S)
The resistance against plastic deformation is gathered in Table 10. The thickness of the slabs was 50 mm.

The resistance against plastic deformation of the mixture manufactured at reduced temperature increased, but the \(p\)-value of Student \(t\)-test was .090. Therefore, this result cannot be statically confirmed.

The results of the fatigue resistance test are presented in the following table (Table 11). There is no requirement for this test in the Spanish standard for conventional mixtures, although the minimum strain-characteristic (the strain at \(10^6\) cycles) for the high modulus mixtures is 100 \(\mu\)m/m.

According to the results obtained, the resistance to fatigue with the fatty acid amide wax is lower than the resistance of the mixture at conventional temperature, although it showed good performance. Besides, its initial modulus is higher, which is coherent with the stiffening previously mentioned. Nevertheless, the analysis showed that the decrease is not statistically significant (a \(p\)-value of .733 was obtained through the \(U\) test of Mann–Whitney), so it cannot be concluded that the addition of the wax reduces the fatigue resistance. This is important because the increase of the fatigue resistance is one of the greatest advantages of rubber-modified bitumen as compared to a conventional binder (Xiao, Amirkhanian, Shen, & Putman, 2009).

4.3.2. Very thin asphalt concrete (BBTM 11 B)
The resistance against plastic deformation of the non-continuous mixture is presented in Table 12. The thickness of the slabs was 40 mm.

Table 10. Wheel tracking test result of AC 16 S at both temperatures.

Temperature	Conventional	Reduced	Spanish standard
Slope (mm/1000 cycles)	0.04	0.03	\(\leq 0.07\)
Tracking depth (mm)	2.1	2.1	–

Table 11. Results of resistance to fatigue of AC mixtures.

Temperature	\(S_0\) (MPa)	Strain-characteristic (\(\mu\)m/m)	Fatigue line	\(R^2\)
Conventional	5290	184.9	\(\varepsilon = 1.395 \times 10^{-3} \cdot N^{-0.1463}\)	0.93
Reduced	8530	168.4	\(\varepsilon = 1.899 \times 10^{-3} \cdot N^{-0.1754}\)	0.88

Table 12. Wheel tracking test results of BBTM 11 B at both temperatures.

Temperature	Conventional	Reduced	Spanish standard
mm/1000 cycles	0.06	0.06	\(\leq 0.07\)
Tracking depth (mm)	2.4	2.3	–
Table 13. Results of fatigue test of BBTM mixtures.

Temperature	S_0 (MPa)	Strain-characteristic (μm/m)	Fatigue line	R^2
Conventional	3120	168.3	$\varepsilon = 3.325 \times 10^{-3} \cdot N^{-0.2159}$	0.93
Reduced	3530	147.6	$\varepsilon = 3.603 \times 10^{-3} \cdot N^{-0.2313}$	0.96

There were no differences in the wheel tracking test. The addition of the wax had no significant influence in the resistance against plastic deformations (a p-value of .565 was obtained), so this property is not modified by the addition of wax and the manufacturing at reduced temperature.

The results of the fatigue resistance test are shown in Table 13.

It can be seen how the mixture showed less resistance against fatigue, as in the case of the AC mixture, the characteristic strain is lower and S_0 is higher for the mixture manufactured at reduced temperature with the fatty acid amide wax. Thus, although there were no significant differences between the mixtures (U test of Mann–Whitney resulted in a significance of .678), in both cases, AC and BBTM, the fatigue resistance was slightly decreased, which might be related to the possible stiffening of the mixtures due to the wax addition.

5. Conclusions

All mixtures, at conventional and reduced temperatures, fulfilled the requirements at laboratory level to be used in surface layers, in any climatic area and under the highest traffic level of the Spanish standards with more than 80% of recycled aggregates. Therefore, it might be said that the limits to the manufacturing of bituminous mixtures with high rates of recycled material nowadays are not technical.

The manufacturing temperature was decreased by 20°C through the incorporation of the fatty acid amide wax. Consequently, the manufacturing conditions of the bitumen modified with rubber are similar to a conventional mixture with a bitumen 50/70.

Analysis of the compaction energy has shown that there are no significant differences among the mixtures, so it seems that manufacturing at reduced temperature does not imply modifying the compaction process while the mixture temperature is above the melting temperature of the wax.

The addition of the fatty acid amide wax has shown a slight increase of the resistance against plastic deformation (although it has not been statistically meaningful), and a significant decrease of the ITSR in the water sensitivity test. Besides, the stiffness of the mixtures modified with the fatty acid amide wax slightly increased, and the results have not shown significant differences in the fatigue resistant test, although it seems that it tends to decrease. Therefore, the mixtures modified with waxes would be more appropriate for warm areas, where rutting is one of the greatest problems and it is less likely that problems of cracking arise.

Acknowledgements

The authors wish to acknowledge and especially thank Laboratory of Science and Engineering of Materials of the University of Cantabria (LADICIM), CODEFER S.L., Global Steel Wire S.A. (GSW), and Unión Derivan S.A. (UNDESA) for their collaboration. This project was carried out by a consortium coordinated by COPSESA (Constructora Obras Publicas San Emeterio S.A.) and integrated by GITECO (Construction Technology Applied Research Group, University of Cantabria) and the Department of Road Construction from the Santander City Council.

Disclosure statement

No potential conflict of interest was reported by the author.
Funding
GREENROAD is a project financed by the “LIFE+” program of the European Union, with reference number LIFE 11 ENV/ES/623.

ORCID
Pedro Lastra-González http://orcid.org/0000-0002-4573-6973

References
Ahmed, T. A., Lee, H., & Baek, C. M. (2015). Evaluation of laboratory and field warm mix asphalt mixtures with high contents of reclaimed asphalt pavement. 6th International Conference on Bituminous Mixtures and Pavements, ICONFBMP 2015, Thessaloniki, Greece, pp. 623–628.
Behnood, A., & Ameri, M. (2012). Experimental investigation of stone matrix asphalt mixtures containing steel slag. Scientia Iranica, 19(5), 1214–1219.
Centro de estudios y experimentación de obras públicas. (2007). Manual de empleo de caucho de NFU en mezclas bituminosas. Madrid, Spain.: Ministerio de Fomento; Ministerio de medioambiente.
Centro de estudios y experimentación de obras públicas. (2011). Ficha técnica. Escorias de acero de horno de arco eléctrico. Madrid, Spain: Ministerio de Fomento. Ministerio de medio ambiente y medio rural y marino.
D’Angelo, J., Harm, E., Bartoszek, J., Baumgardner, G., Corrigan, M., Cowart, J., . . . Yeaton, B. (2008). Warm-mix asphalt: European practice. Washington, DC: Federal Highway Administration, U.S. Department of Transportation.
del Rio Prat, M. (2011). Estudio de los procesos de compactación y post-compactación de mezclas bituminosas empleando nuevos índices energéticos: Aplicación a mezclas de alto módulo que contienen cantos rodados (pp. 1–318). Santander, Spain: Universidad de Cantabria.
El Sharkawy, S. A., Wahdan, A. H., & Galal, S. A. (2016). Utilisation of warm-mix asphalt technology to improve bituminous mixtures containing reclaimed asphalt pavement. Road Materials and Pavement Design, 1–30. doi:10.1080/14680629.2016.1162731
Gil Redondo, S., & Herrero, O. (2009). Betún modificado con polvo de neumático y ceras, en mezcla M-10 con fibras. IV Jornada Nacional ASEFMA 2009, Madrid, Spain, pp. 225–235.
Lo Presti, D., Jiménez Del Barco Carrión, A., Airey, G., & Hajj, E. (2016). Towards 100% recycling of reclaimed asphalt in road surface courses: Binder design methodology and case studies. Journal of Cleaner Production, 131, 43–51. doi:10.1016/j.jclepro.2016.05.093
Moreno Rubio, J. (2006). Efecto de equipo y procedimiento de medida en la determinación del módulo resiliente y resistencia a tracción indirecta de las mezclas bituminosas. Barcelona, Spain: Universitat Politècnica de Catalunya.
Pasetto, M., & Baldo, N. (2010). Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags. Journal of Hazardous Materials, 181(1–3), 938–948.
Pasetto, M., & Baldo, N. (2012). Fatigue behavior characterization of bituminous mixtures made with reclaimed asphalt pavement and steel slag. Procedia – Social and Behavioral Sciences, 33, 297–306. doi:10.1016/j.sbspro.2012.09.882
Pasetto, M., & Nicola, B. (2014). Resistance to permanent deformation of base courses asphalt concretes made with RAP aggregate and steel slag. In R. Y. Kim (Ed.), Asphalt pavements (Vol. 1, pp. 1199–1208). London: Taylor & Francis Group.
Rodríguez-Alloza, A. M., Gallego, J., & Pérez, I. (2013). Study of the effect of four warm mix asphalt additives on bitumen modified with 15% crumb rubber. Construction and Building Materials, 43, 300–308. doi:10.1016/j.conbuildmat.2013.02.025
Rodríguez-Alloza, A. M., Gallego, J., Pérez, I., Bonati, A., & Giuliani, F. (2014). High and low temperature properties of crumb rubber modified binders containing warm mix asphalt additives. Construction and Building Materials, 53, 460–466.
Rowe, G. M., Barry, J., & Crawford, K. (2016). Evaluation of a 100% rap recycling project in Fort Wayne. Indiana Kluwer Academic Publishers. doi:10.1007/978-94-017-7342-3_75
Xiao, F., Amirkhanian, S. N., Shen, J., & Putman, B. (2009). Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures. Construction and Building Materials, 23(2), 1028–1034. doi:10.1016/j.conbuildmat.2008.05.002