Harnessing cytotoxic CD8+ T cells against neoplastic lesions has been a major goal of anticancer immunotherapy. The clonal expansion and activation of these cells are triggered by antigen-specific interactions between their T-cell receptors (TCRs) and the cognate tumor-associated antigen (TAA) displayed in complex with MHC molecules on the surface of malignant or antigen-presenting cells. Surprisingly, a recent report has shown that cytokine-based systemic immunotherapy can trigger the antitumor functions of memory CD8+ T cells in the absence of specific antigenic stimulation. Following the co-administration of interleukin (IL)-2 and a CD40-targeting agonist antibody to mice, memory CD8+ T cells underwent a rapid expansion, upregulated killer cell lectin-like receptor subfamily K, member 1 (KLRK1, best known as NKG2D) and granzyme B, and acquired broad lytic functions. These cells failed to upregulate programmed cell death 1 (PD1), best known PD-1) and CD25, suggesting that their activation was independent of TCR signaling. Furthermore, the authors demonstrated that antigen specificity is not mandatory for the expansion and antitumor activity of memory CD8+ T cells as elicited by systemic immunotherapy in TCR-transgenic mice. Immunotherapy-activated ovalbumin (OVA)-specific memory CD8+ T cells were indeed capable of lysing OVA+ as well as OVA− tumors in vitro and also mediated significant antineoplastic effects in vivo. Taken together, these findings indicate that memory CD8+ T cells activated by IL-2 and CD40 signaling can acquire an unusual innate-like phenotype and become capable of mounting antigen-independent cytotoxic responses against tumor cells. Human T cells with a similar phenotype were observed in melanoma patients upon localized imiquimod-based immunotherapy, suggesting that such immune responses may be conserved across species. Recent studies have demonstrated that bacterial, viral and parasitic infections can also trigger memory CD8+ T cells to proliferate and become potent effector cells in the absence of specific antigenic stimulation via a process of natural inflammation known as “bystander” activation. In a Listeria monocytogenes (Lm) immunization mouse model, Soudja et al. showed that Lm-specific memory CD8+ T cells can acquire strong effector functions and expression of activation markers without the requirement for antigen recognition. Such activation and differentiation of memory CD8+ T cells into potent effector cells, which contribute to anti-bacterial immunity, was shown to be orchestrated by IL-15 and IL-18, which are secreted by inflammatory monocytes upon exposure to various classes of microbial pathogens. Along similar lines, Chu et al. subsequently showed that bystander-activated memory CD8+ T cells can control the early pathogen load by killing target cells through an NKG2D-dependent mechanism, importantly mediating anti-influenza responses prior to the initiation of

*Correspondence to: Hing C Wong; Email: hingwong@altorbioscience.com
Submitted: 09/06/2013; Accepted: 09/10/2013
Citation: Wong HC, Jeng EK, Rhode PR. The IL-15-based superagonist ALT-803 promotes the antigen-independent conversion of memory CD8+ T cells into innate-like effector cells with antitumor activity. OncoImmunology 2013; 2:e26442; http://dx.doi.org/10.4161/onci.26442
adaptive immunity. In a mouse influenza model, Tietze et al. found that adoptively transferred OVA-specific memory CD8+ T cells proliferated in the lungs and displayed increased levels of NKG2D, but not CD25, in response to influenza infection. In this setting, the intranasal blockade of NKG2D resulted in a significant increase in viral replication in the early phase of infection. These studies demonstrate that microbial pathogens induce a rapid, antigen-independent expansion of memory CD8+ T cells at the site of inflammation, resulting in the elicitation of NKG2D-dependent innate immune responses against infectious agents.

In studies described above, either multiple immunostimulatory proteins or inflammatory mediators were required to expand and activate memory CD8+ T cells in the absence of specific antigenic stimulation. Conversely, we have recently shown that the systemic administration of an IL-15 superagonist complex, ALT-803 (Fig. 1), is sufficient to trigger memory CD8+ T-cell responses that mediate robust antitumor effects in several mouse models of myeloma. ALT-803 contains a mutant form of interleukin-15 (IL-15N72D) associated with a dimeric IL-15 receptor α chain sushi domain (IL-15RαSu)-IgG1 Fc fusion. The N72D substitution confers to IL-15 increased affinity for the IL-2 receptor β chain (IL-2Rβ) and enhanced biological activity. In addition, association of IL-15N72D with IL-15RαSu further improves the biological activity of IL-15 in vivo, resulting in the potent activation of IL-2Rβ/γ-bearing natural killer (NK) cells and T lymphocytes. In myeloma-bearing mice, ALT-803 promoted the rapid expansion of memory CD8+ T cells but not naïve CD8+ T lymphocytes. Such memory CD8+ T cells secreted high levels of interferon γ (IFNγ) and unregulated killer cell lectin-like receptor subfamily K, member 1 (KLRK1, best known as NKG2D) but not of programmed cell death 1 (PD1) and CD25, on their surfaces. ALT-803-activated cells also mediated nonspecific cytotoxicity against myeloma cells and other tumor cells, via a mechanism that was partially dependent on IFNγ. By activating such a response, ALT-803 was capable of eliminating well-established myelomas from the bone marrow and significantly prolonging the survival of tumor-bearing mice. Short-term ALT-803 treatment also provided tumor-bearing mice with protective immunity against a subsequent inoculation of myeloma cells. This protective response appeared to rely on CD8+ T lymphocytes. Presumably, ALT-803 treatment stimulated naïve and/or memory CD8+ T cells specific for tumor-associated antigens (TAs) to acquire effector functions against a subsequent tumor challenge.

The treatment of mice bearing 5T33 or MOPC-315 myelomas with ALT-803...
but not IL-15, rapidly eliminated malignant cells from the bone marrow and prolonged survival, often curing mice, in a CD8+ T-cell dependent manner.\(^7\) NK cells were not required for such anti-myeloma activity. Conversely, the ALT-803-mediated elevation of CD8+ T cells in the bone marrow correlated with therapeutic responses, supporting the hypothesis that ALT-803 induces innate-like memory CD8+ T cells that efficiently kill myeloma cells. Furthermore, as it also activates NK cells in vitro and in vivo,\(^3\) ALT-803 might have the potential to elicit broad innate immune responses against neoplastic and infected cells.

Finally, we observed that the curative, short-term administration of ALT-803 to tumor-bearing mice provided them with a CD8+ T cell-dependent protection against a subsequent rechallenge with myeloma performed months later.\(^7\) These findings suggest that ALT-803 also elicits its efficient adaptive immune responses, resulting in the generation of long-term T cell-based antitumor immunity. Thus, ALT-803 stands out as a potent immunostimulant that is capable of simultaneously activating the innate and adaptive arms of the immune system to elicit both rapid and long-lasting protective responses against infectious or neoplastic challenges to the host.

Disclosure of Potential Conflicts of Interest

The authors are employees and shareholders of Altar BioScience Corp. Financial support: National Institutes of Health (CA156740) (H. C. Wong).

References

1. Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 2011; 11:805-12; PMID:22020206; http://dx.doi.org/10.1038/nrc3153
2. Hivroz C, Chemin K, Tourret M, Bohinenst A. Crosstalk between T lymphocytes and dendritic cells. Crit Rev Immunol 2012; 32:139-55; PMID:23216612; http://dx.doi.org/10.1615/CritRevImmunol.v32.i2.30
3. Tietze JK, Wilkins DE, Sckisel GD, Bouchlaka MN, Alderson KL, Weiss JM, Ames E, Bruhus KW, Craft N, Wiltrout RH, et al. Delineation of antigen-specific and antigen-nonspecific CD8+ memory T-cell responses after cytokine-based cancer immunotherapy. Blood 2012; 119:3073-83; PMID:2251483; http://dx.doi.org/10.1182/blood-2011-07-369736
4. Soudja SM, Ruiz AL, Marie JC, Laussav G. Inflammatory monocytes activate memory CD8+ T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 2012; 37:549-62; PMID:22940097; http://dx.doi.org/10.1016/j.immuni.2012.05.029
5. Chu T, Tyznik AJ, Ropcke S, Berkley AM, Woodward-Davis A, Pattacini L, Bevan MJ, Zehn D, Prlic M. Bystander-activated memory CD8+ T cells control early pathogen load in an innate-like, NKG2D-dependent manner. Cell Rep 2013; 3:701-8; PMID:23523350; http://dx.doi.org/10.1016/j.celrep.2013.02.020
6. Tietze JK, Sckisel GD, Zamora AE, Hsiao HH, Priest SO, Wilkins DE, Latier LL, Blazar BR, Baumgarth N, Murphy WJ. Influenza infection results in local expansion of memory CD8+ T cells with antigen-nonspecific phenotype and function. Clin Exp Immunol 2013; Forthcoming; PMID:23937663; http://dx.doi.org/10.1111/cen.12186
7. Xu W, Jones M, Liu B, Zhu X, Johnson CB, Edwards AC, Kong L, Jeng EK, Han K, Marcus WD, et al. Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor αx/αFc fusion complex in syngeneic marine models of multiple myeloma. Cancer Res 2013; 73:3075-86; PMID:23644531; http://dx.doi.org/10.1158/0008-5472.CAN-12-2357
8. Zhu X, Marcus WD, Xu W, Lee H, Han K, Egan JO, Yovandich JL, Rhode PR, Wong HC. Novel human interleukin-15 agonists. J Immunol 2009; 183:3598-607; PMID:19710453; http://dx.doi.org/10.4049/jimmunol.0901244
9. Han KP, Zhu X, Liu B, Jeng E, Kong L, Yovandich JL, Vyas VV, Marcus WD, Chavaillaz PA, Romero CA, et al. IL-15:IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine 2011; 56:804-10; PMID:22019703; http://dx.doi.org/10.1016/j.cyto.2011.09.028
10. Murphy WJ, Welniak L, Back T, Hixon J, Subleski J, Seki N, Wigginton JM, Wilson SE, Blazar BR, Malygina AM, et al. Synergistic anti-tumor responses after administration of agonistic antibodies to CD40 and IL-2: coordination of dendritic and CD8+ cell responses. J Immunol 2003; 170:2727-35; PMID:12594303