IRAS 19135+3937: An SRd variable as interacting binary surrounded by a circumbinary disc.

N. Gorlova,¹ H. Van Winckel,¹ N. P. Ikonnikova,² M. A. Burlak,² G. V. Komissarova,² A. Jorissen,³ C. Gielen,⁴ J. Debosscher,¹ P. Degroote¹

¹Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
²Lomonosov Moscow State University, Sternberg Astronomical Institute, 13 Universitetskij prospekt, 119234, Moscow, Russia
³Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, 1050, Bruxelles, Belgium
⁴Belgian Institute for Space Aeronomy, 1180, Brussels, Belgium

Accepted Received

ABSTRACT

Semi-regular (SR) variables are not a homogeneous class and their variability is often explained due to pulsations and/or binarity. This study focuses on IRAS 19135+3937, an SRd variable with an infra-red excess indicative of a dusty disc. A time-series of high-resolution spectra, UBV photometry as well as a very accurate light curve obtained by the Kepler satellite, allowed us to study the object in unprecedented detail. We discovered it to be a binary with a period of 127 days. The primary has a low surface gravity and an atmosphere depleted in refractory elements. This combination of properties unambiguously places IRAS 19135+3937 in the subclass of post-Asymptotic Giant Branch stars with dusty discs.

We show that the light variations in this object can not be due to pulsations, but are likely caused by the obscuration of the primary by the circumbinary disc during orbital motion. Furthermore, we argue that the double-peaked Fe emission lines provide evidence for the existence of a gaseous circumbinary Keplerian disc inside the dusty disc. A secondary set of absorption lines has been detected near light minimum, which we attribute to the reflected spectrum of the primary on the disc wall, which segregates due to the different Doppler shift. This corroborates the recent finding that reflection in the optical by this type of discs is very efficient. The system also shows a variable Hα profile indicating a collimated outflow originating around the companion. IRAS 19135+3937 thus encompasses all the major emergent trends about evolved disc systems, that will eventually help to place these objects in the evolutionary context.

Key words: circumstellar matter – stars: AGB and post-AGB – binaries: spectroscopic – stars: variables: general

1 INTRODUCTION

There are four types of semi-regular (SR) variables, each designated alphabetically from a to d. IRAS 19135+3937 belongs to the last category, "d". SRd variables represent a poorly understood group of warm (spectral types F–K) giants and supergiants. Their light curves exhibit variations on the time-scales 30–1100 days, that are only quasi-regular and lack characteristic features of the radial pulsators with similar periods, such as Cepheids and RV Tau stars. There is, however, one intriguing feature in the behaviour of some RV Tau stars that is reminiscent of the SR variability. Normally RV Tau stars pulsate with periods between 30–150 days, with two alternating minima per cycle, shallow and deep. An 'RV Tau b' subgroup, however, shows an additional variability in the mean magnitude, amplitude, or relative strengths of the minima. This additional 'secondary period' variability occurs on the time scale that overlaps with variability in the SRd-s with long periods. This phenomenon is referred to as 'long secondary periods' (LSP), and the origin of LSPs is still a matter of debate (e.g., Kiss et al. 2007; Wood & et al. 1999). The two major hypotheses discussed in the literature are variable obscuration (Lloyd Evans 1974; Fokin 1994; Pollard et al. 1995), and an interpaly between various pulsation modes (Buchler & Kovacs 1987).
Modelling of the better studied Galactic systems is hindered by the lack of direct distance measurements, hence luminosities. In terms of kinematics, chemical composition, and emission line strength there appears to be no systematic difference between SRd-s and RV Tau stars (Wahinger 1992). Chemical composition studies indicate that both groups are heterogeneous and include halo, as well as disc objects (Giridhar et al. 2000; Britavskiy et al. 2012). Based on the rarity, presence of the circumstellar matter, and the luminosities deduced for the Magellanic Clouds objects, most of these objects must represent late evolutionary stages of low mass stars, being either post-red giant or post-asymptotic giant branch (pAGB) stars (Wallerstein 2002; Van Winckel 2003; Kamath et al. 2014). Since there is no evidence that SRd-s and RV Tau stars would represent different stellar populations or different evolutionary stages, the reason for the semi-regular behaviour must be sought in the properties of individual systems.

Binarity could be such a property, but how exactly would it cause the observed light variations? Mutual eclipses of the companions can be ruled out, as the fraction of systems with an edge-on orientation or where both companions are evolved giants, must be negligible. Furthermore, the semi-regular character requires that the eclipsing body should be variable. It has long been known that many RV Tau stars have near-infrared excesses, indicating presence of hot dust up to the sublimation temperatures (Evans 1985). The modelling of the spectral energy distribution (SED) (Gielens et al. 2009), as well as interferometric measurements (Deroo et al. 2003; Hillen et al. 2013) have demonstrated that the dust resides in a disc. The discs have typical inner radii of only a few astronomical units (∼10 stellar radii, R*) and inner walls of substantial scale-height.

At the same time, there is a growing evidence from the radial velocity (RV) studies that evolved objects with discs are all binaries (Van Winckel et al. 1998; Van Winckel & et al. 2009). Based on the deduced orbits for the visible giant primaries, the discs must be circumbinary. The variability can then be naturally explained by the obscuration of the primary star by the inner rim of the disc, as the line of sight to the star probes different heights above the disc plane along its orbit (Waelkens & Waters 1993). The cycle-to-cycle irregularities could be caused by inhomogeneity or precession of the disc.

To test this theory, one has to find a correlation between the semi-regular behaviour, the shape of the SED, and binarity. In reality, it is not always possible to prove binarity based on RV variations alone, for example in case of small inclination angle or strong pulsations. In 2009 we started to monitor a number of RV Tau, SR, W Vir, and chemically peculiar pAGB stars with the echelle spectograph HERMES (Van Winckel et al. 2010; Gorlova et al. 2011). Besides detecting RV variations consistent with binarity and obtaining orbital solutions for some systems, in many of them we also discovered specific phase-dependent Hα profiles (Gorlova et al. 2012; Van Winckel et al. 2012; Gorlova et al. 2013). Normally these profiles are P Cyg-like or have a double-peak emission, but only during the superior conjunction of the pAGB primary they were found to develop strong blue-shifted absorption (Witt et al. 2009), based on the observations of a similar phenomenon in the central star of the Red Rectangle (RR) nebula, explained the Hα line-profile variability by a model in which a jet is powered by accretion from the giant primary to the invisible (likely a main-sequence, MS) companion. IRAS 19135+3937, originally included in our sample due to the disc-like infra-red (IR) excess, turned out to be one of such objects. Besides Hα, it caught our eye also because of the rather smooth light-curve with a large amplitude, which is not typical for long-period pulsators. IRAS 19135+3937 thus presented a good case for testing binary theory for semi-regular variables.

The variability of IRAS 19135+3937 has been first discovered by amateur astronomers (Sallman & Droeg 2004), who determined a period $P=125.4$ d and an amplitude $\Delta V = 0.9$ mag. Based on these observations the star was included in the General Catalogue of Variable Stars as an SRd variable V677 Lyr (Kazarovets et al. 2013). The star was also observed in the course of the All Sky Automated Survey (ASAS), where it was classified as a “QPER” type, which is a semi-regular variable with a stable period (128.8 d. Pigulski et al. 2009). The star is relatively faint ($V \sim 11$ mag) and had not been discussed in the literature when we started its observations. Recently, Rao & Giridhar (2014) performed an abundance analysis and found it to be a moderately metal-poor star ([Fe/H]=−1 dex) with some peculiarities.

In Gorlova et al. (2012) we presented the first RV curve of IRAS 19135+3937 that revealed its binarity. We also showed a number of peculiar spectral lines including Hα, and pointed to the similarity with BD+46°442, the first object discovered in our survey to display this type of Hα line profile variability (Gorlova et al. 2012). Since then we have tripled the number of observed spectra of IRAS 19135+3937 and followed up with multi-band photometry. Here, we provide a comprehensive analysis of these data in order to understand the cause of the semi-regular variability in this object. We deduce strong observational constraints on the geometry of the system and study the ongoing interaction processes.

2 NEW OBSERVATIONS AND DATA REDUCTION

2.1 Photometry

We observed IRAS 19135+3937 with a photoelectric UBV-photometer (Lyutyi 1971) attached to the 60-cm telescope Zeiss-1 (located in Crimea) of the Sternberg Astronomical Institute (SAI Russia). The diameter of the photometer diaphragm was set to 27 arcsec. Seventy four measurements have been made between 2012 – 2013, which overlaps with the epoch of our spectroscopic observations.

To obtain colour terms for the transformation of the instrumental ube system to the standard Johnson’s UBV one, we observed standard stars in NGC 6633 (Mermilliod 1984). By solving equations $\Delta V = \Delta v - k_1 \Delta (b - v)$, $\Delta (B - V) = k_2 \Delta (b - v)$, and $\Delta (U - B) = k_3 \Delta (u + b)$, we obtained the following colour terms: $k_1 = 0.082 \pm 0.010$, $k_2 = 0.980 \pm 0.010$, $k_3 = 1.081 \pm 0.015$. We used HD 179909 as a comparison star, with the following magnitudes adopted from Mermil-
A wavelength coverage between 3800 and 9000 Å, and resolution fibre configuration, that provides suitable for the R V determination (Section 5.1). All spectra in our survey have been collected using the high-

2.2 Spectroscopy

We collected 61 spectra of IRAS 19135+3937 with the HERMES fibre echelle spectrograph mounted on the 1.2 m telescope Mercator on La Palma (Raskin et al. 2011). The observations were carried out in the years 2009 – 2013, with an average cadence of one observation per two weeks. The exposure time varied with the brightness of the star and the weather conditions, being on average 1400 s. A typical signal-to-noise ratio (S/N) in the central orders (around Hα) was ~35, which was needed for obtaining a cross-correlation function suitable for the RV determination (Section 2.1).

All spectra in our survey have been collected using the high-resolution fibre configuration, that provides R ~ 80,000 and a wavelength coverage between 3800 and 9000 Å, and reduced with a dedicated Python-based pipeline HERMES-DRS.

The pipeline provides science graded output. A quick-look of the extracted spectrum is available during the actual observations, and the full reduction is automatically performed after sunrise. The pipeline first averages in 2D biases, arcs, and flat fields. The cross-order profile with the biases, arcs, and flat fields. The cross-order profile with the two slices is modelled on a daily basis and used at extraction, variations during the night (Raskin et al. 2011). More detail of HERMES operation we obtain a standard deviation of 3–4 electrons. Sky subtraction is not performed, because all spatial information is lost due to the scrambling properties of the optical fibre. The contamination by the interstellar emission, however, is not a concern for our evolved stars, that are located away from star-forming regions.

The stability of the zero-point of our arc-based wavelength calibration is monitored with the help of the International Astronomical Union RV standards. Over 5 years of HERMES operation we obtain a standard deviation of 0.080 km/s based on 2329 measurements of different radial-velocity standards, measured as a spread over the mean of every standard. The shifts are mainly cased by the pressure variations during the night (Raskin et al. 2011). More details on the data and reduction can be found at the HERMES webpage and in Gorlova et al. (2012).

3 BASIC PROPERTIES

3.1 Photospheric parameters and chemical composition

For the chemical abundance study we used an average of three well exposed consecutive spectra obtained on 29 June 2009, with maximum S/N~150 near 6000 Å in the combined spectrum. These observations were carried out near maximum light, and metallic lines were nearly symmetric and easy to measure. As will be shown in Sec. 5.1, this phase corresponds to the superior conjunction of the pAGB primary, when its obscuration by the circumstellar disc and the contribution from a putative companion should be minimal.

We followed the same procedure for the physical parameters and abundance determination as for another similar object BD+46°442, as described in Gorlova (2011) and Gorlova et al. (2012). Briefly, to get the initial estimate of the effective temperature (T eff) and surface gravity (log g), we matched the observed profiles of Hα, Hγ, and Hβ (wings only) with the precomputed state of the art model profiles of Coelho et al. (2005), and Paschen 14 with those of Munari & Castelli (2000). The two distinct sets of model spectra had to be employed in order to cover both Balmer and Paschen series. After visual inspection, we selected the following best combinations of T eff/log g: 6000/1.0±0.5, 6250/2.0, and 5750/0.5.

At the next stage of iteration, we examined the correlation of the Fe abundance obtained from the Fe i and Fe ii lines with their equivalent widths (EWs). The abundances (for Fe, as well as other elements) were computed from the EWs using MOOG10, which is the latest version of the LTE abundance determination code by C. Sneden (1973), and the ATLAS9 model atmospheres of R. Kurucz in the updated version of Castelli & Kurucz (2003). We started with models with the solar metallicity, but re-computed the final abundances with [M/H] = −1.0 to better match the deduced overall metal deficiency of IRAS 19135+3937. The EWs in the observed spectrum were measured using our PYTHON-based program, which includes a module to disentangle close line pairs. The latter is important for IRAS 19135+3937, because the lines are relatively broad (FWHM = 12.5 km s⁻¹ in the considered phase). To maximize the number of measured lines, we also augmented our previous atomic line list (which was an up-dated version from Koeckelh & Andrievsky (1999), with two others: a list previously used by the Leuven group (Van Winckel & Reyniers 2004), which is largely based on the solar list by F. Thévenin (1989, 1990), and a SpectroWeb list, as compiled and improved by A. Lobel (2008, 2011). Where the oscillator strengths (log g i) for the same line differed between the lists by more than 0.25 dex, the value was used that provided an abundance best matching the rest of the lines of the same ion.

To study the Fe i/Fe ii balance, the Fe abundance was computed with MOOG10 for three best values of T eff (5750, 6000, and 6250 K), a range of log g = 0.5–3.0 with a step of 0.5 dex, and a range of micro-turbulences V tur = 3–8 km s⁻¹ with a step of 1 km s⁻¹. Only Fe i lines with EW ≤ 110 mA and Fe ii lines with EW ≤ 200 mA were retained for further analysis, as they lie on the linear part of the curve of growth.

1 VizieR on-line catalogue II/168 “Homogeneous Means in the UBV System”.
2 http://www.mercator.iac.es/instruments/hermes/
3 The following units are used throughout the paper: K for the effective temperature T eff, dex[cm s⁻²] for the logarithm of surface gravity log g, km s⁻¹ for the micro-turbulent velocity V tur, and dex for the logarithm of the elemental abundance with respect to the hydrogen abundance (using designation (X/H)) for log ε(X) on the scale where log ε(H) = 12, and [X/H] when expressing difference with the Sun: [X/H]=log ε(X/(X/H)⊙).
4 http://spectra.freeshell.org/spectroweb.html
For each model, the derived abundances from the individual lines have been plotted against the EWs. We obtained different values for the micro-turbulence when trying to remove the abundance trends with EWs for the neutral and ionic transitions. As discussed in Gorlova et al. (2012), at these temperatures and gravities strong Fe lines are susceptible to deviations from local thermodynamic equilibrium (LTE), therefore, V_{tur} from the Fe II lines was adopted. The surface gravity is then established by requiring that the average Fe abundance from the Fe II lines matches the extrapolated to $EW=0$ abundance from the Fe I lines (Fig. 1). Following this procedure for each of the three values of T_{eff} obtained from the hydrogen line analysis, we obtained the following $T_{\text{eff}}/\log g/V_{\text{tur}}/[\text{Fe}]/[\text{H}]$ solutions: 6000/1.0/5.0/−0.97 (best model), 6250/1.5/6.0/−0.84, and 5750/0.5/5.0/−1.12, where the Fe abundance is expressed relative to the solar value of 7.47 in the scale $\log \epsilon(\text{H}) = 12$.

Similar rules were used for the rest of the elements to combine abundances from the individual lines: for ions the abundances of all lines with $EW \leq 200$ mÅ were averaged; for neutrals an extrapolation to $EW=0$ was performed for lines with $EW \leq 110$ mÅ when possible, otherwise, abundances of lines with $EW \leq 50$ mÅ were averaged, or, if such lines did not exist (Co I, Zn I), lines with EW up to 110 mÅ have been averaged. These final abundances for the best atmospheric model are given in Table 1 along with the difference with abundances obtained using two other closest models.

All elements in IRAS 19135+3937 show sub-solar abundance, ranging from −0.5 for the CNO group to −1.5 for some heavy elements. The under-abundance appears to correlate with the condensation temperature of the element, as shown in Fig. 2. This is a common phenomenon in pAGB disc systems. It is explained by contamination of the photosphere by the re-processed gas from the disc. The gas is poor in refractory elements because they condensed into grains.

Rao & Giridhar (2014) carried an independent analysis of the IRAS 19135+3937 composition, in the framework of their survey of objects occupying the RV Tau box on the IRAS colour-colour diagram. The spectrum that they investigated was obtained in the phase of line doubling, and so is less favourable for measuring EWs than ours. Nevertheless, they obtained very similar atmospheric parameters including metallicity: $T_{\text{eff}}/\log g/V_{\text{tur}}/[\text{Fe}]/[\text{H}] = 6000/0.5/4.1/-1.04$. The depletion pattern that we find for this star is relatively weak, so it is not surprising that Rao & Giridhar (2014) did not manage to detect it. They did point out the deficiency of the α-elements Ca and Ti, that have a higher condensation temperature than Fe, but were reluctant to ascribe it to the depletion effect due to a lack of a stronger Sc deficiency and of the Zn enrichment. Our values for these elements are more consistent with the depletion pattern, except for Zn, but the latter is only represented by 1 or 2 lines in both studies.

The range of temperatures and gravities obtained for IRAS 19135+3937 near maximum light allows us to estimate its spectral type (SpT). Kovtyukh (2007) adapted the traditional method of the spectral type determination, that rests on the relative strengths of certain lines, to the echelle spectra of FGK supergiants. The S/N of our spectrum is not sufficient to apply this method directly, but we can use a tabulated SpT–T_{eff} relationship from that study to estimate the range of SpTs for IRAS 19135+3937 based on its $T_{\text{eff}} : F6$ (6268 K) – F9 (5752 K). In addition, we searched the UVES Paranal Observatory Project (UVES POP) archiveootnote{http://www.eso.org/sci/observing/tools/uvespop.html} for bright field stars with spectral classification adopted from Buscombe & Foster (1993), that...
Table 1. Chemical composition of IRAS 19135+3937

Z	Ion	$\log \epsilon$	[X/H]	rms	Δ[X/H]	N	Flag	
			A	B				
6	C i	8.10	-0.42	0.11	-0.03	+0.03	8	2
7	N i	7.76	-0.17	0.11	+0.03	-0.05	4	2
8	O i	8.21	-0.68	0.21	-0.09	+0.09	2	3
11	Na i	5.72	-0.60	-	-0.08	+0.08	1	3
12	Mg i	6.88	-0.70	-	-0.05	+0.03	1	3
13	Al i	5.60	-0.87	0.10	-0.05	+0.04	2	3
14	Si i	7.06	-0.48	0.12	-0.07	+0.07	13	2
14	Si ii	7.26	-0.36	-	-0.01	-0.09	1	3
16	Si	6.57	-0.55	0.11	-0.09	+0.09	2	3
20	Ca i	5.20	-1.16	0.17	-0.11	+0.09	12	2
21	Sc i	1.93	-1.22	0.14	-0.26	+0.22	11	1
22	Ti i	3.77	-1.24	0.01	-0.21	+0.19	2	3
23	V i	3.81	-1.20	0.12	-0.24	+0.19	24	1
23	V ii	3.17	-0.80	-	-0.22	+0.19	1	3
24	Cr i	6.98	-0.93	0.12	-0.11	+0.11	8	2
24	Cr ii	4.63	-0.96	0.07	-0.16	+0.13	13	1
25	Mn i	4.38	-1.0	-	-0.14	+0.13	1	3
26	Fe i	6.46	-1.01	0.20	-0.13	+0.13	142	2
26	Fe ii	6.54	-0.94	0.12	-0.18	+0.14	43	1
27	Co i	3.77	-1.12	-	-0.12	+0.12	1	3
28	Ni i	5.35	-0.88	0.14	-0.13	+0.14	27	2
29	Cu i	2.83	-1.38	-	-0.2	+0.2	1	3
30	Zn i	3.55	-1.02	-	-0.15	+0.15	1	3
39	Y i	0.66	-1.56	0.11	-0.26	+0.25	6	1
40	Zr i	1.45	-1.13	-	-0.24	+0.25	1	3
56	Ba ii	0.92	-1.21	-	-0.3	+0.26	1	3
57	La ii	0.17	-1.02	-	-0.3	+0.3	1	3
58	Ce ii	0.33	-1.20	0.04	-0.29	+0.29	3	1
60	Nd ii	0.46	-1.10	0.11	-0.31	+0.32	4	1
62	Sm ii	-0.04	-1.03	0.07	-0.31	+0.32	2	3
63	Eu ii	-0.49	-0.99	0.06	-0.26	+0.27	2	3

Column [X/H] gives abundances for the best-fit model $T_{\text{eff}}/\log g/V_{\text{tur}}=6000/1.0/5.0$, while the Δ[X/H] column shows the response of the abundances to the change in the adopted T_{eff}, with cases A and B corresponding to the models 5750/0.5/5.0 and 6250/1.5/6.0. The flags in the last column have been introduced as follows: 1 – most reliable abundances, for ions where three and more lines with EW ≤ 200 mA were available for averaging; 2 – less reliable abundances, obtained by extrapolating to EW=0 the abundances from lines with EW ≤ 110 mA, or if not possible, by averaging lines with EW ≤ 50 mA; 3 – least reliable abundances, obtained by averaging less than three lines with EW ≤ 200 mA and EW ≤ 110 mA for ions and neutrals, respectively. The number of used lines is indicated in the last but one column. The rms column marks the mean deviation either from the average value or from the interpolated line.

would be similar to IRAS 19135+3937. Given the peculiar abundance pattern of IRAS 19135+3937 and a wide range of line widths exhibited by supergiants, we did not intend to find a precisely matching standard, but rather wanted to independently verify SpT of IRAS 19135+3937 implied by its T_{tur}. The spectrum of HD 108968 (F7/II) appeared to be the closest match to our spectrum of IRAS 19135+3937, hence we adopted SpT F7±2.1/II for the latter.

3.2 IR excess

The SED of IRAS 19135+3937 is shown in Fig. 3. Besides our measurements shown for the maximum and minimum light, we also plot photometry from the VizieR database. In particular, the measurements in the Johnson’s B and V pass-bands originate from the “All-sky compiled catalogue of 2.5 million stars” (Kharchenko & Roeser 2009). Another measurement in the Johnson’s V, and a measurement in the Cousin’s I pass-band originate from the “The Amateur Sky Survey (TASS) Mark IV patches photometric catalog, version 2” (Droege et al. 2006). The rest of the data points are derived from the annotated ground and space-based missions. The scatter in the optical is due to the variability of the source.

Using the photospheric parameters determined in Sec. 3.1, we can estimate the stellar contribution in the SED and identify any flux excess. The photospheric contribution in Fig. 3 is represented by a Kurucz model (Castelli & Kurucz 2004) with $T_{\text{eff}} = 6000$ K, $\log g = 1.0$, $[\text{M/H}] = -1.0$, and $V_{\text{tur}} = 2.0$. The model was reddened by $E(B - V) = 0.18$, which was deduced from the comparison of the observed $B - V$ colour in the maximum light with the expected colour for an F7 supergiant (Sec. 4). We used reddening law of Cardelli et al. (1989) with $A_V/E(B - V) = 3.1$ with modification of O’Donnell (1994) in the optical to NIR regime. It is clear that IRAS 19135+3937 has a strong IR excess. The SED is typical for pAGB stars with dusty discs, where the excess usually starts at 2 μm, peaks at around 10 μm and drops with a black-body slope towards the far-IR, indicating the presence of large grains (De Ruyter et al. 2003).

4 PHOTOMETRIC VARIABILITY

In Fig. 3 we show our light and colour curves of IRAS 19135+3937, that are clearly variable. The variations in all three bands are periodic and occur in phase. Using...
the Tycho measurements, however, are too large ($\sigma_{\text{Ty}} = 0.29$ mag and $\sigma_{\text{IR}} = 0.32$ mag) for a reliable period determination.

In 2003–2004 IRAS 19135+3937 was monitored by TASS. Forty-six measurements in Johnson-Cousins V and I_C pass-bands for the first time revealed variability of the star (Sallman & Droege 2003). We obtained the following values of the period for this data set: 127.11 ± 0.95 d (V-band) and 127.11 ± 0.71 d (I_C-band). According to these observations, the $V - I_C$ colour did not exhibit sinusoidal variations with amplitudes larger than the uncertainties of the photometric observations (± 0.07 mag), in contrast to the pronounced $U - B$ and $B - V$ colour variations observed by us in 2012–2013.

Between May 2006 and January 2008 IRAS 19135+3937 was observed by ASAS. The measurements are given in “The catalogue of variable stars in the Kepler field of view” (http://www.astro.uni.wroc.pl/ldb/asas/kepler.html). The source with a designation 191512+3942.8 has a period $P = 128.8$ d, mean magnitudes $< V > = 11.269$ mag, $< I > = 10.441$ mag, and the variability type QPER (a semi-regular variable with a stable period). The observations in both bands unfortunately are not simultaneous, and the behaviour of the $V - I$ colour with phase depends on the details of interpolation. Nevertheless, the $V - I$ variations did not exceed ± 0.04 mag, in agreement with the TASS observations. Using the latest data for the smallest aperture size of 30′′, which is similar to ours and avoids contamination from a nearby star, we obtained the period values of 122.06±0.65 d for the V-band and 127.15±1.06 d for the I-band. One should note that the quality of the V-band measurements in the ASAS catalogue is very poor − 91% of data points have the lowest grade ‘D’ and only 8% grade ‘A’. The I-band measurements are much better, with 67% having grade ‘A’. Hence, we adopt $P = 127.15$ d for this data set.

In Fig. 4 we show 4 years of Kepler photometry of IRAS 19135+3937 (= Kepler 4644922) carried out by the Kepler satellite. We plot 18 long-cadence data sets that were available in the STScI archive at the beginning of 2014. Due to the fact that the time-scale of variations exceeds the duration of a Kepler observing quarter, the de-trending procedure performed by the Kepler pipeline is invalid. Raw fluxes are therefore plotted, where small offsets between adjacent data sets result from the imperfect calibration. Applying Period04 to these data, we obtain $P = 127.497 \pm 0.014$ d. The Kepler light curve is the most precise of all observations. It is extremely smooth and shows that the brightness variations are very regular, but the shape is not fully repeatable from cycle to cycle.

The summary of all photometric observations (except Tycho-2) is given in Table 2. As can be seen, there is no indication from this data that the period changed over the past 10 years. The shape of the light-curve and the mean magnitude, however, did change from cycle to cycle, confirming the semi-regular classification of the star. In Fig. 5 we plot all observations in the V-band together. Tycho-2 measurements have been omitted from the plot due to the large error-bars and the Kepler ones due to a non-standard pass-band. We performed a period search on this combined
IRAS 19135+3937: An SRd binary with a disc

Figure 6. Kepler light curve. Colours mark separate acquisition sequences.

Figure 7. Combined V-band light curve based on the TASS, ASAS and our photoelectric photometry (SAI).

Table 2. Summary of the photometric observations

survey	P (d)	<V> (mag)	ΔV (mag)	T_{star} (d)	ΔT (d)
TASS	127.11±0.95	10.69	0.9	52782	477
ASAS	127.15±1.06	11.36	0.7	53884	598
Kepler	127.50±0.01	N/A	N/A	54953	1471
SAI	126.53±0.40	11.23	1.2	56093	519

\(\Delta T \) First day of observation, JD-2400000

5 SPECTROSCOPIC VARIABILITY

5.1 Radial velocities

To determine RV of IRAS 19135+3937, we used a cross-correlation method with a mask containing lines of a G2 star. The correlation was performed on the order-by-order basis, after which the cross-correlation functions (CCFs) from the central 20 orders were merged into one to represent an av-
which included a re-evaluation of the period. The fit is very primary) in a binary system, we fit it with a Keplerian orbit, could be due to the orbital motion of the brighter star (the assigned to the main component. The resulting R Vs are given in the noise or merged with the main component. In such possible to identify the secondary component, because it was nent using a double-Gaussian fit. In several cases it was not identify the main component (which is usually the stronger 9). We then re-determined R Vs separately for each compo-ponent, either strong and narrow or shallow and broad, in one) and the secondary component in the split CCF s (Fig. 9). We then re-determined R Vs separately for each compo-ponent, either strong and narrow or shallow and broad, in other CCF s two separate components can be clearly seen. The determination of the CCF centroid is therefore not straightforward.

To investigate whether this behaviour could be period-ic, we first measured a flux-averaged value of the R V for each CCF, using (1 − Fλ)² as a weighting function. Applying PERIOD04 to these data revealed several peaks on the periodogram, of which the first two strongest ones are at 63 d and 129 days. The latter coincides with the photometric period, while the former reflects the fact that the lines split twice per photometric period. Arranging the CCFs according to the phase calculated with the longer period allowed us to identify the main component (which is usually the stronger one) and the secondary component in the split CCFs (Fig. 3). We then re-determined RVs separately for each compo-ponent using a double-Gaussian fit. In several cases it was not possible to identify the secondary component, because it was in the noise or merged with the main component. In such cases a single-Gaussian fit was performed, and the RV was assigned to the main component. The resulting RVs are given in Table A2.

In order to determine whether the main RV component could be due to the orbital motion of the brighter star (the primary) in a binary system, we fit it with a Keplerian orbit, which included a re-evaluation of the period. The fit is very good – see Table 3 and Fig. 10. The larger residuals from the fit between phases 0.4 – 0.9 are due to the broader CCFs. To estimate the uncertainties on the orbital parameters, we carried out 1000 Monte-Carlo realisations to simulate the observed RVs. For each date we used a Gaussian distribution centred on the observed RV and σ adopted as follows: 0.7 km s⁻¹ for the orbital phases between φ = 0.95 – 1.35 and 3.5 km s⁻¹ for φ = 0.35 – 0.95, based on the residuals from the Keplerian fit. For each realization the orbital parameters were determined, and the σ of the distribution of a given parameter was adopted as the parameter’s uncertainty. Fig. [10] illustrates this procedure for the period and eccentricity.

The RV curve of the secondary CCF component is much less certain, in particularly between phases 0 – 0.3, so we did not attempt to model it. However, we can use the deduced mass function from the fit to the RV of the main component to estimate the mass of the putative companion. Adopting 0.5 M⊙ for the mass of the pAGB primary (a mass of a typical white dwarf), with the mass function of 0.07 M⊙ we obtain masses of the companion between 1.1 and 0.4 M⊙, depending on the adopted inclination of 30° and > 65°, respectively. The companion has a comparable or larger mass than the primary.

IRAS 19135+3937 turned out to be yet another disc system that is a binary. The line behaviour is reminiscent of the double-lined spectroscopic binaries, but not identical: the relative strengths of the two CCF components in our case vary, both with phase and from cycle to cycle. While the main component can be safely attributed to the pAGB star, the association of the secondary component with a physical companion is not straightforward.

In Fig. 12 we overlay RVs of the main CCF component and the Kepler photometry, that were obtained over the same time-span. Despite the cycle-to-cycle variations in the light curve, an offset of a quarter of a period can be clearly seen with the RV curve: the superior conjunction of the primary star (φ ~ 0.2) coincides with the maximum light, while the inferior conjunction (φ ~ 0.7) with the minimum light. Brightness declines are therefore consistent with the obscuration of the primary by the inner disc wall.

Over half of the orbit centred on the minimum light (φ = 0.4 – 1.0) one also observes an increase in the RV scatter. As can be seen in Fig. 10 this is not due to the decreased S/N, but due to the fact that the secondary com-

Table 3. Orbital elements for the primary (pAGB) component of IRAS 19135+3937.

Parameter	Value	σ
P (d)	127.08	0.08
a sin i (AU)	0.20	0.007
f (m) (M⊙)	0.07	0.007
K (km s⁻¹)	17.71	0.5
e	0.14	0.02
ω (°)	66	14
T0 (JD)	2 454 997.8	6.8
γ (km s⁻¹)	1.3	0.4
λ²	1.11	
R²	95.4%	

Listed are orbital parameters with their uncertainties, reduced chi-square, and the coefficient of determination.
component of the CCF becomes of comparable strength to the main component, resulting in the shallower, smeared combined profiles that are difficult to fit. This is not surprising considering that at $\phi = 0.7$ the primary becomes obscured, and the spectrum of the companion should become more visible. In Sec. 6.3 however, we will present some arguments that hinder a definite identification of the secondary CCF component with the spectrum of the companion.

5.2 Emission lines

There are a number of variable emission lines in the spectrum of IRAS 19135+3937. Fig. 13 presents an overview of the discussed features in the form of dynamic spectra. The upper panel shows the behaviour of the photospheric lines using the example of the cross-correlation function and one strong Ba II line; the middle panel shows emission-absorption profiles of Hα and one component of the NaD doublet; the bottom panel compares static emission lines of Fe and TiO with the nearby dynamic photospheric lines.

The most prominent emission line is Hα (higher members of the Balmer series show a similar behaviour, but to a much smaller degree and confined to the line core). Hα profiles, arranged according to the orbital phase, are shown in Fig. 14. Over one half of the period, centred on $\phi = 0.7$ (PAGB inferior conjunction), the profiles take a shape of a double-peak emission, with a distance between the peaks of ~ 100 km s$^{-1}$ and a width at the base of at least 300 km s$^{-1}$ (before photospheric absorption subtraction). Alternatively, such profiles can be interpreted by a broad emission profile with a narrower superimposed absorption component. This absorption can not be photospheric due to the fact that it does not follow the orbital motion, but is permanently 13 km s$^{-1}$ blue-shifted relative to the systemic velocity. Over another half of the period the emission in Hα is overtaken by a broader, asymmetric absorption, with a blue wing that extends to over 350 km s$^{-1}$ near $\phi = 0.2$ (PAGB superior conjunction). This behaviour is identical to that in BD+46°142 (Gorlova et al. 2012).

In some spectra we also spotted weak emission in a number of low-excitation metallic and molecular lines. To study a possible correlation with the orbital phase, we first averaged spectra within each of 10 phase bins to increase the S/N. These combined spectra arranged according to the phase are shown in Fig. 15. Three examples of emission features are given: the resonance lines of Na I, low-excitation Fe I line 8047.62 Å ($\chi_{low} - \chi_{up} = 0.9 - 2.4$ eV), and three close TiO band-heads.
Figure 13. Dynamic spectra of the representative features in the spectra of IRAS 19135+3937: top panel shows the behaviour of the photospheric absorption lines, middle panel - lines dominated by the circumstellar emission and absorption, bottom panel - pure emission lines (with the neighbouring photospheric lines of FeI and CI shown for reference). Colours represent continuum-normalized fluxes, with unity corresponding to the continuum level. Spectra are arranged according to the orbital phase with period 127.08 d; one period is shown twice; time runs down. The following lines are drawn to guide the eye: vertical line for the centre-of-mass velocity, solid curve – for the Kepler’s solution of the main CCF component, dashed curve – of the secondary component. Short horizontal dashes designate observed phases.
IRAS 19135+3937: An SRd binary with a disc

What is not so common is the appearance of the broad emission wings between $\phi = 0.6 - 0.8$ (in Fig.13 they can be seen as a flux excess over the mean profile), that are reminiscent of emission in Hα.

Some weak emission lines are found in the red part of the spectrum, where they better stand out against the dropping continuum. The three most notable lines can be associated with two close low-excitation multiplets ($\chi_{up} = 2 - 3$ eV) of Fe i, with rest wavelengths of 6400.32, 6498.94, and 8047.62 Å. Many more can be hidden in the telluric features and noise. Careful examination reveals that they have double-peak, but relatively narrow, profiles (the distance between the peaks is $\sim 30 \text{ km s}^{-1}$), that are permanently centred on the systemic velocity (within 3 km s^{-1}). The latter two lines were also noted by us in BD+46°442, but in the case of IRAS 19135+3937 they are stronger and clearly variable. In the continuum normalized spectra, they appear to vary in strength with the photometric/orbital period. They are 2.5 times stronger in the minimum light than in the maximum, which coincides with a one magnitude amplitude of the photometric variations. This means that the line emission flux is constant, and the apparent line variability is due to the variations in the continuum flux.

Finally, we detected weak emission from three TiO band-heads belonging to the γ(0,0) system. Similarly to the atomic emission lines, they become strongest during the minimum light, and appear to be stable in the RV. The individual transitions, however, are blended with each other, so it is not possible to gauge the kinematics of the emitting region.

6 DISCUSSION

We showed that IRAS 19135+3937 possesses typical characteristics of a pAGB star with a dusty disc: it is a low-gravity F star with large IR excess but low reddening, it is deficient in refractory elements, and it has a strong and variable Hα profile indicative of mass loss. In particular, it is very similar to BD+46°442 described in our earlier work (Gorlova et al. 2012). The only substantial difference between the two is that IRAS 19135+3937 is a recognized variable star due to the larger amplitude of the light curve. The HERMES survey uncovered periodic, but complex spectral behaviour in both stars. In the following subsections we will elaborate upon our model of an interacting binary system that we developed for BD+46°442 to explain additional aspects exhibited by IRAS 19135+3937: brightness variations (Sec. 6.1), stationary emission lines (Sec. 6.2), photospheric line splitting and peculiar colour variations (Sec. 6.3).

6.1 Binarity and SRd variability

For the first time we have demonstrated that IRAS 19135+3937 is also variable in radial velocity, with a period coinciding with the photometric period. We can now use the same argument as for BD+46°442 to disregard pulsations as the cause of variability. Integrating the RV curve of the main CCF component over half of the period, we obtain a displacement $\sim 90 R_\odot$, which is comparable with the radius of the pAGB star itself and would be prohibitively large for pulsations. And if line
splitting were due to the propagation of shock waves, as in RV Tau stars, one would have to explain why this star does not show other characteristic features of these variables, such as interchanging deep and shallow minima, and, most notably, variations in the effective temperature.

The constancy of T_{eff} is demonstrated in Fig. 16, where we compare a part of IRAS 19135+3937 spectrum in the phases of minimum and maximum light with the spectra of two standard F supergiants from the UVES POP archive: HD 74180 (F3 Ib, Malaroda 1973) and HD 108968 (F7 Ib/II, Houk & Cowley 1973). The standards were chosen to have SpTs expected for IRAS 19135+3937 based on its $B - V$ colour in those phases. It can be seen that in the late-F standard the lines of neutral species become noticeably stronger than in the early-F one. In the spectra of IRAS 19135+3937, however, this effect is not observed, hence, the temperature must have remained constant between the two opposite phases. Another confirmation of this fact is that Rao & Giridhar (2014) studied IRAS 19135+3937 in the intermediate phase ($\phi = 0.49$) and obtained precisely the same value of T_{eff} as us.

We conclude that the RV variations in IRAS 19135+3937 are due to the orbital motion of the giant primary around a much fainter companion, which is very common among pAGB stars with discs. The periodic semi-regular dimmings can be explained by the obscuration of the primary by the circumbinary disc matter, most likely by the puffed-up inner rim during

Figure 15. Emission lines as a function of orbital phase. **Black:** an average of all spectra falling within a given phase bin; **red:** an average spectrum over the entire orbit. All spectra have been normalized to unity at the continuum and shifted vertically according to the orbital phase. Vertical lines mark wavelengths for the identified features at the systemic velocity.

Figure 16. Comparison of IRAS 19135+3937 spectra in the phases of minimum and maximum light with each other and with two spectral standards.
the inferior conjunction. The absence of a flat part on the light curve near maximum light could be due to the permanent obscuration or presence of a large amount of scattered light. This explanation has been already proposed for a few other long-period PAGB variables with the same phase shift between the light and RV curves, such as HR 4049 (Waelkens et al. [1991]), HD 52961 (Van Winckel et al. [1991]), and EN T T A (Van Winckel & et al. [2009]). The very smooth Kepler light curve indicates that the photosphere of IRAS 19135+3937 is very stable.

6.2 Accretion onto companion and gas discs

Furthermore, a number of spectroscopic features in IRAS 19135+3937 point to the presence of an active mass transfer between the primary and companion. In particular, as was described in Sec. 5.2, near $\phi = 0.25$ Hα develops a spectacular P Cyg-like profile. With our phase convention, where phases are counted from the time of the maximum RV of the primary, $\phi = 0.25$ for a nearly-circular orbit corresponds to the giant’s superior conjunction (where it is furthest away from us, while the putative companion is in-between). In Gorlova et al. (2012) and Gorlova et al. (2013) we describe a few other systems from the HERMES survey and from the literature with a similar behaviour of Hα. As was shown by Thomas et al. (2013) for the central star of the RR nebula, this phenomenon can be explained by a wide-angle jet originating at the secondary. The lobe pointing in our direction will be periodically projected against the giant primary and produce the observed transient blue-shifted absorption. The jet is likely powered by accretion from the pAGB primary to the secondary.

The interpretation of the double-peaked emission lines is not so straightforward. Using STIS spectrograph on the Hubble Space Telescope, Thomas et al. (2011) spatially resolved narrow emission (with the distance between the peaks of 12 km s$^{-1}$) in the NaD lines of the RR, and deduced that it is produced in the distant parts of a bipolar outflow, that are seen in the direct light. On the other hand, the much broader emission in Hα according to Witt et al. (2009) could form in the parts of the lobes that are closer to the binary. The RR, however, is not a typical disc object, and the appearance of some features may be affected by its nearly perfect edge-on orientation.

In Figure 17 we show another possibility to explain the formation of the double-peaked emission profiles – in a Keplerian disc. Smak (1964) presented a simple kinematic model of purely gaseous, optically thin disc of constant thickness with density linearly dropping to zero at the outer edge. Using this formulation, we could successfully fit Fe emission line profiles in IRAS 19135+3937 with the following disc parameters: the ratio of the inner to outer radius of 0.15, and the velocity at the outer edge of 12 km s$^{-1}$. Depending on the total mass of the system (0.9–1.6 M$_\odot$) and the inclination angle (30–70$^\circ$), this results in a disc with $R_{in} = 0.2 – 1.3$ AU and $R_{out} = 1.4 – 8.7$ AU.

Is this Fe disc circumcompanion or circumbinary? In Sec. 5.1 we deduced that the semi-major axis of the pAGB primary is 0.2 – 0.4 AU and the secondary is likely more massive than the primary. Hence, the distance between the companions does not exceed 0.4 – 0.8 AU, which is smaller than the outer radius of the Fe disc. This fact, together with the constancy of the RV of the emission lines, imply that this disc is circumbinary. Furthermore, when applying a 2D radiative transfer code (Gielen et al. [2007, 2009]) to fit the SED of IRAS 19135+3937, we obtain that the inner radius of the circumbinary dusty disc is 5 – 10 AU. Thus, the double-peaked Fe emission lines may signal the presence of a gaseous Keplerian circumbinary disc, that is nested within the sublimation boundary of the dusty disc.

In the prototypical disc object 89 Her the above discussed metal lines form part of a much richer emission line spectrum (Clemenhaga et al. [1987], Kipper [2011]). Based on the constancy of the RV, Waters et al. (1993) were first to propose that emission could originate in a circumbinary disc. Indeed, Bujarrabal et al. (2007) possibly detected such a disc as an unresolved component in the interferometric maps of CO. The existence of gas inside a dusty disc has been long anticipated in the framework of the re-accretion hypothesis, designed to explain a depletion pattern in some disc hosts. The observational evidence of circumbinary gas, however, is largely missing. CO studies normally probe material on a much larger scale ($10^3 – 10^5$ AU, Bujarrabal et al. [2013]), which could have been ejected in the preceding AGB stage. In contrast, metal emission lines probe gas on AU scales, and therefore provide a better insight into the current mass loss/accretion.

Furthermore, the ~10 times wider emission in Hα may indicate the presence of gas well inside the binary’s orbit. Giving that there is a jet emanating from the companion, this hot gas could form in the circumcompanion accretion disc. Interestingly, the rare appearance of TiO in emission has been also associated with the presence of an accretion disc. Thus, Hillenbrand et al. (2012) proposed to explain TiO emission in some young stellar objects (YSO) and Be stars by evaporating disc material at the base of the outflow, where it is lifted up and exposed to the UV radiation from the accretion disc. Besides IRAS 19135+3937, TiO emission has been recently discovered in a few candidate pAGB binaries in the Magellanic Clouds (Wood et al. [2013]).

This raises some important questions about the type of the accretion (a wind, a Roche-lobe one, or perhaps even accretion from the circumbinary disc), and whether the three discs (the circumcompanion, circumbinary, and the outer dust+gas one) could be possibly related to each other. The exploration of these possibilities, however, is beyond the scope of this paper.

6.3 Reflection of the circumbinary disc

What is the nature of the companion and could it explain the remaining peculiarities of the system: the secondary set of spectral lines and the bluing of the colours in the light minima?

We applied the FDBINARY code (Illié et al. [2004]) to our spectral data set in the attempt to separate the two components. The code performs separation of spectra in a spectroscopic double-lined binary star in Fourier space without the use of template spectra. The input consists of the continuum-normalized spectra, the relative fluxes of the two components ("light factors") per observation, that were...
taken from our double-gaussian decomposition of the CCFs, and the first approximation for the orbital parameters. In the output we obtained two identical sets of lines, whose shape and relative depths depended somewhat on the selected regions and the number of iterations, but in no case was there an indication that the sets would correspond to two different spectral types. This fact, along with the constancy of temperature in the opposite conjunctions, implies that the companion must have an identical SpT and comparable luminosity to the primary. And yet, only one star is seen in the light curve (no substantial secondary minimum/maximum is observed over the RV period). Also from the evolutionary point of view it is very unlikely to find a companion that must have an identical SpT and constancy of temperature in the opposite conjunctions, implies that the particles in the disc grew to at least 1 mm in size. For pAGB discs the same was previously inferred from the black-body slope of the far-IR excess, which can only be measured for brighter sources. Modelling of the scattered line profiles may prove to be a useful novel tool for studying composition and kinematics of post-AGB discs (e.g. Griffin et al. 2004). While in YSOs the particle growth is the first step toward the planet formation process, the evolution of grains in post-AGB discs is unknown.

Large particles, however, produce gray scattering and settle to the mid-plane of the disc, and hence can not explain the blueing of the system in the minimum light when the primary sinks behind the disc edge. No trace of a hot companion is observed in our spectra either. We propose that the blueing is due to the scattering by the inner wall of the disc. Since we do not resolve the system, the total flux in the telescope beam is always a sum of direct and scattered light in our line of sight. During the inferior conjunction of the primary (phase of minimum light) the amount of bluer, back-scattered (by the farthest side of the inner disc wall) light may exceed the amount of direct, reddened light from the primary, which is possible because, unlike us, the inner disc wall always sees the star unobscured. As a result, in this phase the system will appear bluer to us than in the unobscured phases.

The colours and the level of the scattered light bring stringent constraints on the size distribution and on the chemo-physical properties of the dust grains, as well as on geometry of the inner dusty disc. The reproduction of these observables will need detailed radiative transfer models in which the angle and colour-dependent scattering, as well as dust settling need to be incorporated. This is outside the scope of this paper, however, and will be the subject of a subsequent analysis. The high level of optical scattering seems to be a common property of the circumbinary discs, as also in 89 Her this has been detected using optical interferometry. Hillen et al. (2013, 2014) spatially resolved the optical scattering component and deduced that as much as 40% of the optical flux of 89 Her is due to scattered light.

6.4 Circumstellar geometry

In Fig. 15 we present an artist’s impression of the circumstellar environment of IRAS 19135+3937 based on the discussion in the previous subsections. Like in BD+46°442, in this system the giant primary is transferring mass to a, likely unevolved, companion, which results in the production of a pair of jets emanating from the secondary. The system is surrounded by a dusty disc, and possibly also a smaller gaseous disc. The new element in this picture is the high level of optical reflection from the primary on the wall of the circumbinary disc, that mimics a twin companion in the spectra. This reflected light is observed with a different Dopplershift and hence can be differentiated from the component of direct light. The reflected spectrum and the light amplitude are more pronounced in IRAS 19135+3937 than in BD+46°442 likely due to the higher inclination of the former. The contribution of this reflected light is maximal at minimum light, which indicates an efficient back-scattering and makes the system to appear bluer when fainter.
IRAS 19135+3937: An SRd binary with a disc

Figure 18. Artist’s impression of IRAS 19135+3937 interacting binary system, depicted in the phase near light minimum. The pAGB primary is about to sink behind the dusty disc edge, giving way to the spot of reflected light on the opposite side of the circumbinary disc.

7 CONCLUSIONS

We presented contemporaneous photometric and spectroscopic observations of IRAS 19135+3937, an SRd variable with an IR excess. It is often assumed that variability of such stars is due to pulsations, but there is no theoretical study yet that would consistently reproduce all types of semi-regular variables. We showed that IRAS 19135+3937 is a binary system with a circumbinary dusty disc. These two properties, taken together, can explain the observed light variations with a period of 127 days by an obscuration of the primary star by the inner edge of the disc during inferior conjunctions. Given the very smooth Kepler lightcurve, the photosphere of IRAS 19135+3937 is stable and does not show any pulsations.

IRAS 19135+3937 presents a typical case of a class of pAGB binaries where circumstellar matter is confined to a disc: it is a low-gravity object, a single-line spectroscopic binary, shows a depletion pattern of the refractory elements (albeit on a weaker side of the range), and has a jet-like outflow from the companion, based on the specific Hα profiles. The commonality of the latter phenomenon was realized thanks to the HERMES survey (Gorlova et al. 2013). Furthermore, we detected static emission lines of FeⅠ and TiO that are most pronounced in the spectra taken near minimum light. We successfully fit the double-peaked Fe lines with a circumbinary Keplerian disc, that may be the first evidence of the star-disc interaction leading to the depletion pattern in pAGB atmospheres. The nature of the invisible companion remains unknown. We detected a secondary set of spectral lines, but prove that it must be a reflected spectrum of the primary on the disc grains, rather than a spectrum of a physical companion.

The single case of IRAS 19135+3937 presented here can not rule out pulsations for all SRd variables. What our study illustrates is that the presence of a circumbinary dusty disc may have profound effects on the light and RV curves, and therefore needs to be considered on a par with the more traditional factors, such as stellar eclipses and pulsations.

ACKNOWLEDGMENTS

We would like to thank Drs. P. Harmanec and H. Hensberge for the fruitful discussions, the numerous observers from the HERMES consortium institutions for collecting the spectral data, and the anonymous referee for the comments that helped to sharpen the text. This study is based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias; and with the HERMES spectrograph, which is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of
REFERENCES

Bagnulo S., Jehin E., Ledoux C., Cabanac R., Melo C., Gilmozzi R., ESO Paranal Science Operations Team 2003, The Messenger, 114, 10
Bessell M. S., 2000, PASP, 112, 961
Britavskiy N. E., Andrievsky S. M., Tsymbal V. V., Korotin S. A., Martin P., Andrievska A. S., 2012, A&A, 542, A104
Buchler J. R., Kovacs G., 1987, ApJL, 320, L57
Bujarrabal V., Alcolea J., Van Winckel H., Santander-Garcia M., Castro-Carrizo A., 2013, A&A, 557, A104
Bujarrabal V., Van Winckel H., Neri R., Alcolea J., Castro-Carrizo A., Deroo P., 2007, A&A, 468, L45
Buscombe W., Foster B. E., 1995, MK spectral classifications. Twelfth general catalogue, Epoch 2000 including UBV photometry
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Castelli F., Kurucz R. L., 2003, in N. Piskunov W. W. W., Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Castelli F., Munari U., Castelli F., 2000, A&AS, 141, 141
Castilho B. V., 2005, A&A, 443, 735
De Ruyter S., Van Winckel H., Dominik C., Waters L. B. F. M., Dejonghe H., 2005, A&A, 435, 161
de Ruyter S., Van Winckel H., Maas T., Lloyd Evans T., Waters L. B. F. M., Dejonghe H., 2006, A&A, 448, 641
Deroo P., Acke B., Verhoelst T., Dominik C., Tatulli E., Van Winckel H., 2007, A&A, 474, L45
Droge T. F., Richmond M. W., Sallman M. P., 2006, PASP, 118, 1666
Evans T. L., 1985, MNRAS, 217, 493
Fokin A. B., 1994, A&A, 292, 133
Gorlova N., Van Winckel H., Dominik C., Waters L. B. F. M., Mitchell T., 2007, A&A, 468, 113
Gilmozzi R., ESO Paranal Science Operations Team 2003, The Messenger, 114, 10
Gorlova N., Van Winckel H., Jorissen A., 2012, Baltic Astronomy, 21, 165
Gorlova N., Van Winckel H., Jorissen A., Van Eck S., Demine T., Exter K., Østensen R. H., Van de Steene G., 2011, in Asymmetric Planetary Nebulae 5 Conference HERMES survey of binarity in evolved stars
Gorlova N., Van Winckel H., Van Eck S., Jorissen A., Østensen R. H., 2011, in Asymmetric Planetary Nebulae Conference HERMES survey of binarity in evolved stars
Grinin V. P., Mitskevich A. S., Tambovtseva L. V., 2006, Astronomy Letters, 32, 110
Herbst W., Hamilton C. M., Eker K., Winn J. N., Johns-Krull C. M., Mundt R., Ibrahimov M., 2008, Nature, 452, 194
Herbst W., LeDuc K., Hamilton C. M., Winn J. N., Ibrahimov M., Mundt R., Johns-Krull C. M., 2010, AJ, 140, 2025
Hillen M., Menu J., Van Winckel H., Min M., Gielen C., Wevers T., Mulders G. D., Regibo S., Verhoelst T., 2014, ArXiv e-prints
Hillen M., Verhoelst T., Van Winckel H., Hamers L., Hummel C. A., Mominier J. D., Farrington C., Tycner C., Mourard D., ten Brummelaar T., Banerjee D. P. K., Zavala R. T., 2013, A&A, 559, A111
Hillenbrand L. A., Knapp G. R., Padgett D. L., Rebull L. M., McGehee P. M., 2012, AJ, 143, 37
Hiltner W. A., Johnson H. L., 1956, ApJ, 124, 367
Houk N., Cowley A. P., 1975, University of Michigan Catalogue of two-dimensional spectral types for the HD stars
Iljic S., Hensberge H., Pavlovski K., Freyhammer L. M., 2004, in Hilditch R. W., Hensberge H., Pavlovski K., eds, Spectroscopically and Spatially Resolving the Components of the Close Binary Stars Vol. 318 of Astronomical Society of the Pacific Conference Series, Obtaining normalised component spectra with FDBinary: pp 111–113
Kamath D., Wood P. R., Van Winckel H., 2014, MNRAS, 439, 2211
Kazarovets E. V., Samus N. N., Durlevich O. V., Kireeva N. N., Pastukhova E. N., 2013, Information Bulletin on Variable Stars, 6052, 1
Kharchenko N. V., Roenser S., 2009, VizieR Online Data Catalog, 1280, 0
Kipper T., 2011, Baltic Astronomy, 20, 65
Kiss L. L., Dereks A., Szabó G. M., Bedding T. R., Szabados L., 2007, MNRAS, 375, 1338
Kovtyukh V. V., 2007, MNRAS, 378, 617
Kovtyukh V. V., Andrievsky S. M., 1999, A&A, 357, 597
Lenz P., Breger M., 2005, Communications in Asteroseismology Series Vol. 64 of EAS Publications Series, Monitoring evolved stars for binarity with the hermes spectrograph. pp 163–170
Grinin V. P., Mitskevich A. S., Tambovtseva L. V., 2006, Astronomy Letters, 32, 110
Herbst W., Hamilton C. M., Leduc K., Winn J. N., Johns-Krull C. M., Mundt R., Ibrahimov M., 2008, Nature, 452, 194
Herbst W., LeDuc K., Hamilton C. M., Winn J. N., Ibrahimov M., Mundt R., Johns-Krull C. M., 2010, AJ, 140, 2025
Hillen M., Menu J., Van Winckel H., Min M., Gielen C., Wevers T., Mulders G. D., Regibo S., Verhoelst T., 2014, ArXiv e-prints
Hillen M., Verhoelst T., Van Winckel H., Hamers L., Hummel C. A., Mominier J. D., Farrington C., Tycner C., Mourard D., ten Brummelaar T., Banerjee D. P. K., Zavala R. T., 2013, A&A, 559, A111
Hillenbrand L. A., Knapp G. R., Padgett D. L., Rebull L. M., McGehee P. M., 2012, AJ, 143, 37
Hiltner W. A., Johnson H. L., 1956, ApJ, 124, 367
Hog E., et al. 2000, A&A, 355, L27
Houk N., Cowley A. P., 1975, University of Michigan Catalogue of two-dimensional spectral types for the HD stars
Volume I. Declinations -90 to -53 deg.
Iljic S., Hensberge H., Pavlovski K., Freyhammer L. M., 2004, in Hilditch R. W., Hensberge H., Pavlovski K., eds, Spectroscopically and Spatially Resolving the Components of the Close Binary Stars Vol. 318 of Astronomical Society of the Pacific Conference Series, Obtaining normalised component spectra with FDBinary: pp 111–113
Kamath D., Wood P. R., Van Winckel H., 2014, MNRAS, 439, 2211
Kazarovets E. V., Samus N. N., Durlevich O. V., Kireeva N. N., Pastukhova E. N., 2013, Information Bulletin on Variable Stars, 6052, 1
Kharchenko N. V., Roenser S., 2009, VizieR Online Data Catalog, 1280, 0
Kipper T., 2011, Baltic Astronomy, 20, 65
Kiss L. L., Dereks A., Szabó G. M., Bedding T. R., Szabados L., 2007, MNRAS, 375, 1338
Kovtyukh V. V., 2007, MNRAS, 378, 617
Kovtyukh V. V., Andrievsky S. M., 1999, A&A, 357, 597
Lenz P., Breger M., 2005, Communications in Asteroseismology, 146, 53
Lloyd Evans T., 1974, MNRAS, 167, 17P
Lobel A., 2008, Journal of Physics Conference Series, 130, 012015
Lobel A., 2011, Canadian Journal of Physics, 89, 395
Lyutyj V. M., 1971, Soobshcheniya Gosudarstvennogo Astronomicheskogo Instituta, 172, 30
Malaroda S., 1975, AJ, 80, 637
Mermilliod J. C., 1986, Bulletin d’Information du Centre de Donnees Stellaires, 31, 175
Munari U., Castelli F., 2000, A&AS, 141, 141
O'Donnell J. E., 1994, ApJ, 422, 158
Pigulski A., Pujmański G., Pilecki B., Szczygieł D. M., 2009, Acta Astronomica, 59, 33
Pollard K. R., Cottrell P. L., Lawson W. A., Alrbrow M. D., Tobin W., 1997, MNRAS, 286, 1
Rao S. S., Giridhar S., 2014, Revista Mexicana de Astronomía y Astrofisica, 50, 49
Raskin G., Van Winckel H., Hensberge H., Jorissen A., Lehmann H., Waelkens C., Avila G., de Cuyper J.-P., Degroote P., Dubosson R., 11 coauthors, 2011, A&A, 526, A69
Sallman M., Droge T., 2004, Information Bulletin on Variable Stars, 5600, 27
Schmidt-Kaler T., 1982, in Schaffer K., Voigt H.-H., eds, Landolt-Börnstein New Series Vol. 2b, Stars and Star Clusters. Springer, Berlin
Smak J., 1969, AcA, 19, 155
Sueden C. A., 1973, PhD thesis, The University of Texas at Austin.
Thévenin F., 1989, A&AS, 77, 137
Thévenin F., 1990, A&AS, 82, 179
Thomas J. D., Witt A. N., Aufdenberg J. P., Bjorkman J. E., Dahlstrom J. A., Federman S. R., Hobbs L. M., Vijh U. P., York D. G., 2011, MNRAS, 417, 2860
Thomas J. D., Witt A. N., Aufdenberg J. P., Bjorkman J. E., Dahlstrom J. A., Hobbs L. M., York D. G., 2013, MNRAS, 430, 1230
Van Winckel H., 2003, ARA&A, 41, 391
Van Winckel H., et al. 2009, A&A, 505, 1221
Van Winckel H., Hrivnak B. J., Gorlova N., Gielen C., Lu W., 2012, A&A, 542, A53
Van Winckel H., Jorissen A., Gorlova N., Dermine T., Exter K., Masseron T., Ostensen R., Van Eck S., Van de Steene G., 2010, MmSAI, 81, 1022
Van Winckel H., Reyniers M., 2000, A&A, 354, 135
Van Winckel H., Waelkens C., Fernie J. D., Waters L. B. F. M., 1999, A&A, 343, 202
Waelkens C., Lamers H. J. G. L. M., Waters L. B. F. M., Rufener F., Trams N. R., Le Bertre T., Ferlet R., Vidal-Madjar A., 1991, A&A, 242, 433
Waelkens C., Waters L. B. F. M., 1993, in Sasselov D. D., ed., Luminous High-Latitude Stars Vol. 45 of Astronomical Society of the Pacific Conference Series, Binarity of High-Latitude Supergiants - Observational Evidence. p. 219
Wahlgren G. M., 1993, in Sasselov D. D., ed., Luminous High-Latitude Stars Vol. 45 of Astronomical Society of the Pacific Conference Series, The R V-Tauri and SRD Variables. p. 270
Wallerstein G., 2002, PASP, 114, 689
Waters L. B. F. M., Waelkens C., Mayor M., Trams N. R., 1993, A&A, 269, 242
Windemuth D., Herbst W., 2014, AJ, 147, 9
Witt A. N., Vijh U. P., Hobbs L. M., Aufdenberg J. P., Thorburn J. A., York D. G., 2009, ApJ, 693, 1946
Wood P. R., et al. 1999, in Le Bertre T., Lebre A., Waelkens C., eds, Asymptotic Giant Branch Stars Vol. 191 of IAU Symposium, MACHO observations of LMC red giants: Mira and semi-regular pulsators, and contact and semidetached binaries. p. 151
Wood P. R., Kamath D., Van Winckel H., 2013, MNRAS, 435, 355
APPENDIX A: NEW MEASUREMENTS OF \textit{IRAS} 19135+3937

Table A1: \textit{UBV} photometry in 2012-2013

JD	V	B	U	B − V	U − B
2456093.447	11.730	12.231	12.521	0.501	0.290
2456094.482	11.716	12.236	12.485	0.520	0.249
2456095.375	11.731	12.199	12.522	0.468	0.323
2456101.456	11.674	12.158	12.454	0.484	0.296
2456119.425	11.299	11.854	12.194	0.555	0.340
2456121.473	11.204	11.781	12.147	0.577	0.366
2456122.437	11.180	11.752	12.058	0.527	0.334
2456128.378	10.955	11.550	11.940	0.595	0.300
2456131.353	10.859	11.454	11.874	0.595	0.420
2456133.355	10.781	11.402	11.854	0.621	0.323
2456136.312	10.719	11.344	11.773	0.625	0.429
2456137.447	10.702	11.312	11.758	0.610	0.446
2456146.374	10.674	11.263	11.732	0.648	0.469
2456147.382	10.628	11.286	11.743	0.658	0.457
2456151.353	10.644	11.295	11.765	0.651	0.470
2456159.404	10.793	11.448	11.895	0.655	0.447
2456161.360	10.844	11.488	11.951	0.644	0.463
2456166.472	10.996	11.600	12.012	0.604	0.412
2456176.375	11.318	11.881	12.234	0.563	0.353
2456177.302	11.372	11.913	12.269	0.541	0.356
2456186.302	11.597	12.103	12.365	0.506	0.262
2456189.333	11.598	12.094	12.382	0.496	0.288
2456200.264	11.734	12.215	12.504	0.481	0.289
2456202.319	11.740	12.233	12.545	0.493	0.312
2456208.313	11.722	12.210	12.487	0.488	0.277
2456216.232	11.687	12.180	12.504	0.493	0.324
2456219.222	11.435	11.878	12.192	0.526	0.314
2456249.208	11.017	11.591	11.964	0.574	0.373
2456270.188	10.613	11.249	11.660	0.636	0.411
2456276.184	10.674	11.318	11.760	0.644	0.442
2456405.565	10.669	11.349	11.831	0.680	0.482
2456406.512	10.682	11.352	11.852	0.670	0.500
2456420.503	10.908	11.577	12.045	0.669	0.468
2456422.506	10.945	11.627	12.059	0.682	0.432
2456431.517	11.229	11.865	12.216	0.636	0.351
2456434.490	11.315	11.927	12.278	0.612	0.351
2456445.479	11.641	12.184	12.455	0.543	0.271
2456454.514	11.743	12.239	12.577	0.496	0.338
2456463.510	11.760	12.265	12.546	0.505	0.281
2456472.379	11.748	12.231	12.528	0.483	0.297
2456473.392	11.725	12.240	12.547	0.515	0.307
2456479.367	11.676	12.171	12.510	0.495	0.339
2456482.428	11.609	12.113	12.434	0.504	0.321
2456484.401	11.568	12.102	12.409	0.534	0.307
2456485.356	11.558	12.072	12.402	0.514	0.330
2456487.401	11.504	12.042	12.324	0.538	0.282
2456489.405	11.437	11.988	12.332	0.551	0.344
2456492.399	11.343	11.914	12.309	0.571	0.395
2456504.440	10.860	11.506	11.933	0.646	0.427
2456506.431	10.801	11.437	11.891	0.636	0.454
2456510.426	10.679	11.347	11.801	0.668	0.454
2456513.336	10.649	11.306	11.773	0.657	0.467
2456513.413	10.637	11.307	11.737	0.670	0.430
2456514.339	10.627	11.284	11.787	0.657	0.503
Table A1 – Continued from previous page

JD	V	B	U	B − V	U − B
2456515.397	10.606	11.279	11.744	0.673	0.465
2456517.412	10.594	11.244	11.751	0.650	0.507
2456518.358	10.592	11.258	11.755	0.666	0.497
2456519.424	10.572	11.248	11.729	0.676	0.481
2456520.379	10.575	11.249	11.697	0.674	0.448
2456531.380	10.635	11.304	11.776	0.669	0.472
2456533.410	10.670	11.336	11.819	0.666	0.483
2456545.372	10.965	11.621	12.043	0.656	0.422
2456563.302	11.615	12.127	12.454	0.512	0.327
2456573.270	11.749	12.248	12.519	0.499	0.271
2456574.326	11.738	12.240	12.508	0.502	0.268
2456577.271	11.781	12.280	12.602	0.499	0.322
2456586.236	11.807	12.324	12.649	0.517	0.325
2456591.264	11.790	12.304	12.603	0.514	0.299
2456597.284	11.731	12.222	12.575	0.491	0.353
2456602.292	11.702	12.219	12.505	0.517	0.286
2456606.257	11.687	12.183	12.477	0.496	0.294
2456607.236	11.695	12.203	12.510	0.508	0.307
2456612.229	11.688	12.176	12.463	0.488	0.287

This paper has been typeset from a \TeX/ \LaTeX\ file prepared by the author.
Table A2. Radial velocities in 2009-2013

JD (d)	RV_{main} (km s$^{-1}$)	RV_{sec} (km s$^{-1}$)
2454993.45906	13.90	-20.90
2455003.50920	3.29	-22.24
2455003.52830	3.53	-22.56
2455003.54740	3.62	-19.50
2455012.40789	-6.29	37.08
2455012.42723	-6.05	33.09
2455012.44660	-6.23	34.26
2455025.56787	-16.78	25.22
2455034.55947	-18.74	22.30
2455061.44461	-1.69	N/A
2455084.42500	17.32	-7.19
2455423.61170	-16.83	14.74
2455430.45750	-12.33	12.36
2455501.33556	13.52	-21.61
2455507.32911	7.97	-18.11
2455650.71184	-7.63	33.15
2455707.66632	5.21	-10.86
2455714.50939	6.58	-13.75
2455778.56824	19.68	-22.63
2455761.54727	7.06	-24.93
2455763.56835	4.86	-24.68
2455773.61864	-4.93	30.83
2455778.54334	-8.67	29.72
2455807.49337	-17.13	10.34
2455828.42879	0.22	N/A
2455837.44068	-1.57	N/A
2455843.35922	2.57	-16.91
2455873.34316	20.68	-17.48
2455993.73419	19.49	-20.90
2456010.70972	13.30	-20.14
2456015.64342	7.94	-24.72
2456033.67080	-9.28	27.91
2456056.54496	-16.41	14.72
2456082.96648	0.01	N/A
2456087.52359	-1.19	N/A
2456088.53941	-1.90	N/A
2456103.40544	11.66	-14.23
2456107.43456	11.77	-18.93
2456117.48552	21.29	-18.95
2456127.54549	20.26	-19.66
2456136.41771	14.06	-22.11
2456140.50515	9.14	-24.19
2456144.61982	4.28	N/A
2456146.48406	3.85	N/A
2456152.45858	-2.36	30.74
2456157.49963	-7.44	29.25
2456165.48663	-13.20	27.11
2456176.53346	-14.96	22.14
2456178.58460	-13.87	21.02
2456188.51469	-9.01	16.36
2456194.44581	-8.25	N/A
2456202.74729	12.65	-22.95
2456441.69257	-17.15	11.11
2456457.45702	1.96	N/A
2456468.48879	2.90	-14.97
2456477.43936	2.73	-15.64
2456488.56607	17.36	-15.94
2456512.62342	18.19	-22.41
2456544.46648	-11.58	26.57
2456566.49203	-11.40	16.88

HERMES radial velocities for the main and secondary components in the cross-correlation function of IRAS 19135+3937, as described in Sec. 5.1. "N/A" stands for 'not available' and designates phases where it was not possible to disentangle the secondary component.