Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Dysregulated miRNAs network in the critical COVID-19: An important clue for uncontrolled immunothrombosis/thromboinflammation

Seyed Shahabeddin Mortazavi-Jahromi a,b,*, Mona Aslani a, *

a Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
b Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran

* Corresponding authors.

E-mail addresses: sh.mortazavi@ut.ac.ir (S.S. Mortazavi-Jahromi), maslani@alumnus.tums.ac.ir (M. Aslani).

https://doi.org/10.1016/j.intimp.2022.109040
Received 13 April 2022; Received in revised form 2 July 2022; Accepted 6 July 2022
Available online 11 July 2022

Abstract

Known as a pivotal immunohemostatic response, immunothrombosis is activated to restrict the diffusion of pathogens. This beneficial intravascular defensive mechanism represents the close interaction between the immune and coagulation systems. However, its uncontrolled form can be life-threatening to patients with the critical coronavirus disease 2019 (COVID-19). Hyperinflammation and ensuing cytokine storm underlie the activation of the coagulation system, something which results in the provocation of more immune-inflammatory responses by the thrombotic mediators. This vicious cycle causes grave clinical complications and higher risks of mortality. Classified as an evolutionarily conserved family of the small non-coding RNAs, microRNAs (miRNAs), the complement system components, nicotinamide adenine dinucleotide phosphate (NADPH) oxides, and reactive oxygen species (ROS) have apparently disrupted their expressions/functions. This review study aims to give an overview of the role of miRNAs in the context of uncontrolled immunothrombosis/thromboinflammation accompanied by some presumptive interfering factors affecting their expressions in the critical COVID-19. Detecting,
1. Introduction

The coronavirus disease 2019 (COVID-19) is a multifaceted medical condition caused by the novel member of the Coronaviridae family named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Entering through angiotensin-converting enzyme 2 (ACE2)-mediated endocytosis or fusion, this virus can clinically create a heterogeneous infection. Nearly 20% of patients develop a critical condition. Despite the discovery and production of different vaccines worldwide, SARS-CoV-2 infections and COVID-19 critical forms are still being reported (especially in poor countries). Its mutation-prone nature (more than 50 mutations only caused by the Omicron variant) necessitates adopting the novel therapeutic methods by more precise diagnosis of COVID-19 molecular-immunogenetic mechanisms. In patients with the critical COVID-19, dysregulated immune reactions and high-level production of inflammatory mediators have been observed in the circulation and monitoring, and resolving these interfering agents may facilitate the design and development of the novel miRNAs-based therapeutic approaches to the reduction of complications incidence and mortality in patients with the critical COVID-19.

Fig. 1. The most pivotal processes/pathways involved in the development of uncontrolled immunothrombosis in the critical COVID-19. A1) SARS-CoV-2/ACE2 interaction and ligation of different receptors of neutrophils provoke their activation and NETs formation. These cells then interact with PLTs and ECs and release NETs. A2) Ligation of diverse receptors of monocytes (e.g., pattern recognition receptors (PRRs) and CRs), their interplay with ECs and PLTs, and also released NETs cause the activation of monocytes followed by high-level production of pro-inflammatory cytokines. A3) NETs are decorated with TF on the one hand and induce factor XII (FXII) on the other, respectively resulting in the activation of extrinsic and intrinsic coagulation pathways and formation of cross-linked fibrin clots. TF is also expressed on the monocytes and activates the extrinsic coagulation pathway. B) Activation of the complement system through all three pathways can lead to the formation of MAC, production of C3a, C5a, iC3b, etc. each of which directly and indirectly causes NETosis induction, inflammation development, and fibrinolysis inhibition. The MASP-1 and MASP-2 molecules also play key roles in the coagulation induction and fibrinolysis restraining. C) During the fibrinolysis process, plasminogen is converted into plasmin under the influence of t-PA and u-PA eventually leading to the breakdown of the cross-linked fibrin clots and generation of D-dimer. PAI-1 inhibits these plasminogen activators and is activated by several factors involved in uncontrolled immunothrombosis. Endogenous anticoagulants also play central roles provoking fibrinolysis and preventing the formation of the clots. In addition to the induction of some anti-inflammatory roles, TM forms a complex with thrombin and activates the PC (bound to the endothelial protein C receptor (EPCR)), whereas aPC inhibits the coagulation mediators in different ways. Anticoagulants, PS, directly and indirectly (as an aPC’s co-factor) participates in the fibrinolysis process. Another anticoagulant, PS, directly and indirectly (as an aPC’s co-factor) participates in the fibrinolysis process. AT and TFPI also inhibit the coagulation pathways. E) SARS-CoV-2/ACE2 and endosomal TLR7/virus single-strand RNA (ssRNA) interactions, and also the ligation of different receptors of PLTs can cause their activation leading to the NETosis induction, PLT extracellular vesicles (PEVs) release, NF-κB pathway activation, and PLTs degranulation. The released NETs, cytokine storm, and hypoxia/hypoxemia are the other stimulants of PLTs activation. G) Hypoxia/hypoxemia stimulates different processes involved in the uncontrolled immunothrombosis and also mediates the production of HIF-1α and HIF-2α. These two factors perpetuate NETosis. HIF-1α also induces the activities of CXCL12 and the complement system. Therefore, it can proceed the ECs dysfunction leading to excessive NETosis, inflammation, and coagulation.
bronchoalveolar lavage fluid (BALF) causing a hyperinflammatory condition called the cytokine storm [1–8]. At the same time, accomplished assessments have shown high rates of thrombotic events in these patients leading to a hypercoagulability situation and high mortality rates [1–3,9–13]. In other words, the COVID-19 is a kind of endotheliopathy that causes hypercoagulability situation, exhausted fibrinolysis, and extensive vascular thrombosis associated greatly with a hyperinflammatory condition. According to the research evidence, there is a reciprocal correlation between the immune and coagulation systems that reinforce each other. In the critical COVID-19, the excessive immune responses have a key role in the incidence of uncontrolled immunothrombosis/thromboinflammation through the development of inflammation and induction of thrombotic factors (Fig. 1). Venous thromboembolism, ischemic stroke (IS), neurological disorders, acute coronary syndrome, and myocardial damage are among the grave clinical complications ensuing from the above-mentioned processes in patients with the critical COVID-19 [1–3,10–14]. Normally, there is a balance between the pro/anticoagulant factors and pro-/anti-inflammatory ones that would maintain homeostasis [1]. Acting as post-transcriptional regulators of gene expression, microRNAs (miRNAs) are pivotal molecules for the well-balanced inflammatory and thrombotic processes. These non-coding RNAs mostly bind to the 3’-untranslated region (3’-UTR) of their target molecules and regulate their expressions [14,19–22]. Many studies have demonstrated the role of miRNAs in the pro-inflammatory pathways, activated in the severe/critical COVID-19, which we discussed in another paper [5]. As exemplified, an investigation into the mouse model of ovalbumin (OVA)/complete Freund’s adjuvant (CFA)-induced neutrophilic asthma indicates a significant elevation of the nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3)-Inflammasome level and activity in miR-223−/− mice [23]. Moreover, a clinical study on patients with systemic lupus erythematosus (SLE) revealed the crucial role of miR-410 in targeting the signal transducer and activator of transcription 3 (STAT3) playing a key role in interleukin (IL)-6/IL-6 receptor (IL-6R) pathway [24]. Regarding the close correlation between pro-inflammatory and procoagulant processes as well as the bilateral role of miRNAs in their balance, any disruption to the expressions or efficient functions of these small RNAs can underlie the development of excessive inflammatory or thrombotic reactions consequently followed by the intensification of another system activation. Accordingly, this review study aims to discuss the role of miRNAs in the incidence of uncontrolled immunothrombosis/thromboinflammation accompanied by some interfering factors affecting their expressions/functions in the critical COVID-19 and to propose some miRNAs-based therapeutic approaches.

2. Interaction of the immune and coagulation systems in critical COVID-19

2.1. Uncontrolled immunothrombosis/thromboinflammation

The immune and coagulation systems cooperate to restrict the diffusion of pathogens. The term “immunothrombosis”, which is considered as an example of their interaction, refers to an effective endogenous process of the innate immune system induced by the pathogens and damaged cells. It can be considered a beneficial intravascular immune mechanism. However, its uncontrolled form can underpin the inflammation and immunologically-mediated microthrombosis formation leading to thromboinflammation (Fig. 1). This physiological process is mostly mediated by the neutrophils and monocytes in which they release neutrophil extracellular traps (NETs) and express tissue factor (TF) on the one hand and restrain the endogenous anticoagulants on the other resulting in severe inflammation-induced coagulation [2,3,14,25] (Fig. 1-A1-A3, 1C). In particular, the myeloperoxidase (MPO) of NETs provokes the monocytes toward the pro-inflammatory M1 phenotype contributing to the thromboinflammation and endothelial cells (ECs) damage [2,26,27] (Fig. 1-A2, 1-D, 1-E). The interaction of monocytes and platelets (PLTs), which has elevated in the COVID-19 patients, is another factor for more activation of the former and subsequently higher NETs formation [28–30] (Fig. 1-A2, 1-E). The broad infiltration of neutrophils into diverse organs and uncontrolled immunothrombosis associated with the disease exacerbation have been observed in patients with the critical COVID-19 [2,3,25,31,32]. Many immunologic-hemostatic processes participate in the incidence and development of the dysregulated form of immunothrombosis (Fig. 1), something which will be discussed in the following.

2.1.1. NETosis

Several in vitro and in vivo studies have reported that neutrophils release NETs in a process called “NETosis” following the stimulation by the inflammatory mediators or pathogens and also mitochondrial dysfunction. NETs are the structures that consist of cell-free DNA (cfDNA), histones, and granular as well as cytoplasmic proteins [3,9,14,25,33–39]. Moreover, multiple investigations have observed mitochondrial DNA in the NETs, such as the ones released by isolated neutrophils of patients with the systemic inflammatory response syndrome (SIRS) and also inflammatory-stimulated neutrophils of healthy donors [40–42] (Figs. 1-A1). During the NETosis, neutrophil elastase (NE) and MPO translocate into the nucleus and proceed decondensation of DNA. Activities of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex (reactive oxygen species (ROS) production) and protein arginine deiminase 4 (PAD4) (histone citrullination) are the other important factors in the NETosis [14,25,33,39,43] (Fig. 2a-A1). In this regard, using the NADPH oxidase inhibitor can inhibit NETosis in the circulating neutrophils isolated from patients with coronary artery disease [43]. Furthermore, the inability to citrullinate the histones or form the NETs was observed in PAD4−/− mice neutrophils [39]. Despite the beneficial roles of NETs (e.g., inducing type-I interferons (IFNs-I) and trapping the inflammatory mediators), their excessive formation is followed by vascular occlusion, hyperinflammation, and disease exacerbation [2,3,14,25,26,33,44,48]. In addition, NETs-derived thrombosis is mostly PLTs-dependent mediated by some adhesion molecules such as P-selectin and its receptor, called P-selectin glycoprotein ligand-1 (PSGL-1) (Figs. 1-A1). Consistently, high levels of neutrophils-PLTs aggregations, excessive NETs formation, and neutrophils activation markers have been reported in the critical COVID-19 [29,30,36,49,50]. In this context, a clinical study on patients with the severe and critical forms reported the augmented NETs in plasma, tracheal aspirate, and lung autopsies tissues. Other studies have found the vast infiltration of neutrophils along with the acute capillaritis and fibrin deposition in the lung autopsies of patients with the critical COVID-19. Their neutrophils were somewhat degenerated and trapped in fibers indicating the production of NETs [36,51,52]. These findings show that SARS-CoV-2, similar to the inflammatory mediators, can provoke the neutrophils toward the NETosis in the COVID-19 patients [36,42,53]. Most importantly, NETs can activate both extrinsic and intrinsic coagulation pathways [2,14,47,54] (Figs. 1-A1, 1-A3). High levels of NETs and their components have been observed in the circulation of the patients with the critical COVID-19 positively associated with inflammation, endothelial dysfunction, and mortality [54–58]. The histones of NETs can dose-dependently increase thrombin generation and fibrin deposition through the inhibition of activated protein C (aPC) (known as an endogenous anticoagulant) and activation of PLTs [2,59–61] (Fig. 1-C, F). Moreover, several studies such as the ones conducted on golden Syrian hamsters with SARS-CoV-2 and patients with SLE reported that NETs damaged the ECs leading to the fibrin clots formation [47,62–65] (Fig. 1D). Another study also found that NETs acted as a scaffold and directly induced the activation of the complement system [33,66,67] (Figs. 1-A1, 1B).

2.1.2. Complement system activation

As a humoral innate immune response, the activation of the complement system through all three classical, alternative, and lectin
pathways can play a crucial role in the development of inflammation and coagulation [9,10]. The enhanced activation of this system alongside the uncontrolled immunothrombosis was reported in the critical COVID-19. According to the research evidence, both SARS-CoV-2 proteins (e.g., nucleocapsid (N) and spike (S)) and immune complexes can activate the complement cascade in these patients. Considerably, the increased levels of soluble and deposited complement component (C) 5b-9 (membrane attack complex (MAC)), C4d (caused by C4b breakdown), and mannann-binding lectin serine protease (MASP)-2 have been observed in the lung microvasculature of the patients with the critical COVID-19. The evaluation of their purpuric skin lesions resulted in similar findings. Moreover, the elevated circular levels of CsA and Cs5b-9 along with the high expression of the CsA receptor (C5AR) on the surface of neutrophils and monocytes were found in the patients with the critical COVID-19. The increased expression of MASP-2 was also accompanied by the enhanced coagulation [54,68–72]. The activated complement proteins play a central role in the uncontrolled immunothrombosis. They can directly (through neutrophils activation/recruitment) and indirectly (with the activation of TF, ECs, PLTs, and inflammation) provoke the NETosis [2,3,9,14,25,33,54,73–80] (Fig. 1B, F). The induction of PLTs activation/aggregation and expression of von Willebrand factor (vWF) by the activated ECs are pivotal in the development of NETosis, fibrin deposition, and dysregulated immunothrombosis [3,10,81,82]. At the same time, in vitro and in vivo studies reported that the complement factors (e.g., CsA) could induce the expression of plasminogen activator inhibitor-1 (PAI-1) by different cells and inhibit fibrinolysis (Fig. 1C). In this regard, Shagdarsuren et al. reported the reduction of PAI-1 levels in the atherosclerosis-prone mice, treated with the CsA antagonist. MASP-1 also activates thrombin activatable fibrinolysis inhibitor (TAFI) (known as a fibrinolysis inhibitor) [3,83–86] (Fig. 1B).

2.1.3. Exhausted fibrinolysis and inefficient endogenous anticoagulants

Following the increased formation of clots, the fibrinolysis process is activated whereby plasminogen is converted into the active plasmin under the influence of tissue plasminogen activator (t-PA) and urokinase plasminogen activator (u-PA). The active plasmin then breaks down the fibrin in the vasculature [87–89] (Fig. 1C). Being affected by different factors involved in the uncontrolled immunothrombosis (e.g., NETs and ECs activation/dysfunction), exhaustion/disruption of the fibrinolytic system occurs in patients with the critical COVID-19 leading to its inefficiency [2,3,9,87,90,91] (Fig. 1C). Both hyperfibrinolysis (high levels of D-dimer) and hypofibrinolysis (plasmin consumption, its reduced efficiency [2,3,86]) (Fig. 1B) have been reported in these patients [3,87–89,92–102]. Moreover, hyperinflammation, NE, and hypoxia-inducible factor (HIF)-2α inhibit the tissue factor pathway inhibitor (TFPI), whereas MASP-1 activates TAFI resulting in the disrupted fibrinolysis [3,85,103–105] (Fig. 1B, C). The upregulated levels of D-dimer, t-PA, u-PA, soluble u-PA receptor (suPAR), and thrombin-anti-thrombin (AT) complexes have been reported in patients with the critical COVID-19 positively associated with the activation of neutrophils, NETs plasma levels, and mortality. Disruption to the functions of endogenous anticoagulants has also been observed in these patients. Based on the research evidence, activities and plasma levels of AT, PC, and protein S (PS) have been reduced in patients with the critical COVID-19 under the influence of the factors involved in the uncontrolled immunothrombosis and have negatively been associated with these cells’ death, exacerbation and mortality [2,57,87,88,98–100,102,104–116]. Furthermore, the increased soluble form (inefficient/attenuated form) of thrombomodulin (TM) (known as an anticoagulant and anti-inflammatory molecule) and its decreased tissue expression level were reported in patients with the critical COVID-19 accompanied by the disease severity [3,97,102,105,111,117].

2.1.4. ECs activation and dysfunction

Activation, dysfunction, and pyroptosis of the ECs (known as important pathological events found in the critical COVID-19) can occur directly after the SARS-CoV-2 entrance and indirectly as a result of the immunologic-hemostatic responses (Fig. 1D). Regarding the crucial role of the endothelium in the maintenance of vascular homeostasis and immune responses, its dysfunction acts as a stimulator for uncontrolled immunothrombosis [2,3,9,118–120]. Studies on the COVID-19 and severely septic patients have revealed that the interaction of the SARS-CoV-2 infected/activated ECs with neutrophils and monocytes can lead to the activation of the latter and higher levels of NETosis. The interplay between neutrophils and PLTs is another underlying factor in this process and ECs activation [53,121] (Figs. 1-A1 and 1-A2). As Nitric oxide (NO) is vital for the normal function of the ECs, the occurrence of oxidative stress and high-levels production of ROS (induced by the different factors involved in the uncontrolled immunothrombosis, and reducing NO bioavailability) are the most important mechanisms of the ECs dysfunction [26,43,118,120,122] (Fig. 1D, E). Accordingly, the decreased and increased levels of the NO and ROS have respectively been reported in the patients with the critical COVID-19 [5,123–125]. Above all, ROS provoke NETosis [25,43,118] (Fig. 1E). NETs do not directly activate the ECs and induce their apoptosis [14]. The excessive production of these molecules can also damage endothelium integrity and activate the complement system resulting in the ECs dysfunction [62,66] (Figs. 1-A1, 1-D). According to in vitro and in vivo studies, angiotensin II (Ang II)/Ang II type 1 receptor (AT1R) axis and cytokine storm precede the ECs dysfunction [2,3,9,118,120,126,127] (Fig. 1D). The elevated levels and activity of several markers related to the ECs activation/dysfunction and pyroptosis (e.g., VWF, P-selectin, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and caspase-1) were observed in the patients with the critical COVID-19 positively associated with the disease severity and mortality [102,117,119,128–131]. Known as a stimulator of coagulation, complement activation, and NETosis, the VWF plays a major role in the uncontrolled immunothrombosis [132,133] (Figs. 1-A1, 1-D). Apparently, its increased expression is associated with the reduced activity of a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13 (ADAMTS13) (known as a regulator of VWF multimers size) in the critical COVID-19. According to the research evidence, a high level of IL-6 (found in the critical COVID-19) inhibits the activity of this metalloprotease [2,9,134,135] (Fig. 1D). The negative correlation between NETs and ADAMTS13 levels was reported in the patients with the critical COVID-19 [57,136].

2.1.5. PLTs activation

Apart from the key role of PLTs in the coagulation cascade, these cells have recently been considered the crucial and unique components of the immune system [137–139]. The immunologic functions of the PLTs are mediated by the pro-inflammatory molecules stored in their granules (degranulation) and/or newly synthesized (through the long-lived transcripts) [2,9,137,140]. Moreover, several immune-inflammatory receptors such as toll-like receptors (TLRs) 1, 2, 4, 6, 7, 9, complement receptors (CRs), and cytokine receptors are expressed by the PLTs underlying their activation, launching the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway (in a non-genomic route), and release of the pro-inflammatory mediators. The ligation of non-immune receptors of the PLTs (e.g., P2Y12) also causes their activation. Most importantly, thrombocytes express the ACE2 and transmembrane protease, serine 2 (TMPRSS2) that can underpin the coagulation cascade (Figs. 2-A1, 2-A2) and contribute to the development of uncontrolled immunothrombosis [9,141–145] (Fig. 1-F). In this connection, the increased expression levels of the markers related to the PLTs activation (e.g., P-selectin, VWF, and the cluster of differentiation 40 ligand (CD40L)) were reported in the critical COVID-19 [3,9,102,117,146,147]. Moreover, the activation of PLTs through TLR4 and TLR9 (with high expression levels in the critical COVID-19) is followed by their further interactions with neutrophils and NETosis [148–150]. According to different in vitro and in vivo studies,
NETs induce pro-inflammatory effects through the activation of TLR2, 4, 9, and PLTs activation, in turn, leading to the higher expressions of these three TLRs [25,141,151–153]. The majority of molecules released by the activated PLTs (e.g., IL-1 beta (IL-1β), high mobility group box 1 (HMGB1), human β-defensin-1 (hBD-1), and complement factors) can also provoke NETosis. In this regard, it was observed that HMGB1−/− PLTs, isolated from the Ly5.1 C57BL/6 mice, failed to induce the generation of NETs [2,3,9,33,137,154,155] (Fig. 1F).

2.1.6. Hypoxia/hypoxemia

Hypoxia/hypoxemia is among the stimulant and supportive factors of uncontrolled immunothrombosis in the critical COVID-19 [2,9]. Following the SARS-CoV-2 infection, extensive pulmonary infiltration of the neutrophils and other immune cells causes the local consumptive hypoxia, high-level production of ROS, and excessive NETosis. Moreover, the increased permeability of the endothelium is followed by the NETs leakage into the alveolar space, disruption to the gas exchange, and the incidence of hypoxemia [53]. Hypoxia/hypoxemia also acts as a predisposing factor in the promotion of inflammation and coagulation resulting in the further production of NETs [2,3,26,27,53] (Fig. 1E, G).

Under hypoxic conditions, HIFs (e.g., HIF-1α and HIF-2α) are expressed by the immune cells and ECs. Although these two HIFs have been reported to be able to preclude the infection of the lung epithelial cells with the SARS-CoV-2, their inappropriate activities can be followed by the persistence of neutrophils, higher rates of the NETosis, and uncontrolled immunothrombosis [26,156] (Fig. 1G). Consistently, the significantly elevated expression of the HIF-1α was reported in the COVID-19, especially in the critical form [157,158]. The HIF-1α-induced C-X-C motif chemokine ligand 12 (CCL12) also plays a pivotal role in the uncontrolled immunothrombosis by recruiting the leukocytes (Fig. 1G).

In this context, the CCL12-mediated transmigration of monocytes into the brain perivascular space and consequent neuroinflammation were observed in a study conducted on the spared nerve injury (SNI) mouse model [26,159]. In a preclinical study on the C57BL/10 male mice, Pandya et al. have reported the inhibition of CD55 by HIF-1α. Therefore, this molecule can intensify the complement-mediated EC damage [3,27,160] (Fig. 1B, G). According to in vitro and in vivo studies, HIF-2α causes the upregulated and downregulated expressions of the PAI-1 and TFPI, respectively. Therefore, it can take part in the uncontrolled immunothrombosis [26,103,161] (Fig. 1C).

3. miRNAs

The miRNAs are classified as an evolutionarily conserved family of the small non-coding RNAs with an average length of 22 nucleotides found in diverse forms such as intracellular (nuclear, cytoplasmic, and organellar), circular/extracellular (in the biofluids), and exosomal types. The transcription of the miRNAs genes (located in the exonic, intergenic, and intronic regions) is accomplished by the RNA polymerase II/III (RNA pol II/III) leading to the formation of primary stem-loop structures called primary miRNAs (Pri-miRNAs). The breakdown of these molecules by Drosha/DiGeorge critical region 8 (DGCGR8) complex is followed by the generation of hairpin molecules called precursor miRNAs (pre-miRNAs) transported into the cytoplasm by exportin-5 (XPO5). Afterwards, the Dicer/transactivation response element RNA-binding protein (TRBP) complex does more processing on them; therefore, mature miRNAs are produced. Finally, these mature strands are loaded on the argonaute (AGO) protein leading to the formation of miRNA-induced silencing complex (miRISC) which binds to the messenger RNAs (mRNAs). The binding sites of the miRNAs are mostly located in the 3′-UTR regions of their target mRNAs. However, research evidence has shown that they can also bind to the 5′-UTR region, gene promoters, and coding areas. Every single miRNA can regulate the expressions of several target mRNAs. At the same time, the expression of every single mRNA can be controlled by several miRNAs. This represents the functional extensiveness of the miRNAs. Although the interactions between the miRNAs and their targets usually cause the translation inhibition or instability/destruction of the latter, they can be followed by the induction of the gene expression under certain conditions. The miRNAs act as a post-transcriptional gene fine-tuner. However, the regulation of a gene’s expression or production of a protein can either arise from the direct interaction of a miRNA and the corresponding mRNA or targeting the miRNAs of the factors involved in the induction of a gene’s expression (e.g., transcription factors and receptors). In other words, the outcomes of the expression regulation of an mRNA by a miRNA can underlie the induction or repression of other genes on the transcription, post-transcription, translation, and post-translation levels depending on the role of the target mRNA (even if they are not the direct target of the considered miRNA). According to the research evidence, human miRNAs can, directly and indirectly, affect the expression of the molecules involved in the immunothrombosis [5,21,162–168]. Therefore, any disruption to their optimal expression levels or efficient functions can result in the incidence of an uncontrolled form of this process and thromboinflammation. Differential expressions of miRNAs have been reported in the COVID-19 patients [163,169–177].

3.1. miRNAs affecting neutrophils/monocytes activities and NETosis

A wide spectrum of miRNAs can affect the activities of the neutrophils. For instance, miR-146a, miR-223, and miR-17 target the IL-8 and control their recruitment. However, miR-155 acts toward their increased infiltration and NETosis through the induction of the IL-8 and PAD4 genes [178–180] (Fig. 2a-A1). The miR-223 and miR-130a restrict the NETosis and preclude the development of uncontrolled immunothrombosis through the negative regulation of NE, MPO, and prevention of the perpetuated activity of neutrophils [180–182] (Fig. 2a-A1). Receptors and adhesion molecules involved in the NETosis process are also among the target molecules of miRNAs. As exemplified, miR-15a, miR-31, and miR-let-7a restrict the expression/activation of the integrin αIIbβ3 (αIIbβ3) on the surface of the activated PLTs. The miR-26b targets the P-selectin, whereas miR-146a, miR-124, miR-223, miR-133a, miR-1, etc. target the macrophage-1 antigen (Mac-1) to limit neutrophils/-monocytes-PLTs interactions and regulate the NETs formation [138,183–186] (Fig. 2a-A1, 2a-A2). Moreover, targeting the TLR2 by miR-146a, miR-143, and miR-195, expression regulation of the TLR4 by miR-146a, miR-let-7, miR-135a, and miR-16, targeting the IL-6 by miR-223, miR-let-7, and miR-410, and expression regulation of the IL-6R by miR-205-3p, miR-299-3p, and miR-124-3p underlie the regulation of NETosis [5,181,183,187–189] (Fig. 2a-A1, 2a-A2). The negative regulation of the expression/activation of the NADPH oxidases and the production of ROS by miR-146a, miR-25, miR-218a, miR-29c-3p, miR-34a, miR-138, miR-126a, etc. are among the other factors controlling the release of NETs [168,183,190–192]. However, the miR-21, miR-155, miR-506, etc. induce the ROS production and the resultant NETs formation [191] (Fig. 2a-A1, 2a-A2). In this connection, the disrupted expression of some above-mentioned miRNAs such as miR-223, miR-17, miR-130a, miR-15a, miR-31, miR-16, miR-124, miR-146a, miR-218, miR-126-3p (reduced), and miR-155 (elevated) were reported in the circulation of patients with the COVID-19 [170,171,173–176,193–199]. The downregulated level of miR-34a was also observed in the post-mortem lung biopsy of patients with severe forms of the disease [163]. All of the miRNAs affecting the other pathways/events (e.g., activation of PLTs and the complement system, in addition to hypoxia/hypoxemia) (Fig. 2b-D, 2c-E, 2c-G) also indirectly affect the neutrophils/monocytes activities and NETosis. Moreover, some miRNAs may interact with the genome of SARS-CoV-2 and regulate the expression of its genes [5,200]. Therefore, they may have some indirect impacts on the activation of neutrophils/monocytes and the generation of NETs.

3.2. miRNAs affecting coagulation cascade

The extrinsic, intrinsic, and common pathways of coagulation can be
regulated by miRNAs. For instance, miR-145, miR-106b, miR-103-3p, miR-19b, miR-223, etc. target the TF, whereas miR-19a/b-3p, miR-134, miR-885, etc. target the factor VII (FVII) to control the extrinsic coagulation pathway [201–203] (Fig. 2b-B1-3, 2b-C). Furthermore, factor IX (FIX) is the target molecule of miR-223, miR-125, and miR-128. Studies have shown that several miRNAs such as miR-145, miR-93, miR-15b, miR-96, etc. can negatively regulate the intrinsic coagulation pathway by targeting the factor XI (FXI) [202,203] (Fig. 2b-B2). The miR-24 and miR-103-3p through targeting the factor X (FX) and VWF, miR-34a/c, miR-26b, miR-15b-3p, miR-7, miR-186, etc. by targeting the factor VIII (FVIII), and miR-18a, miR-29a/b/c, miR-211, miR-193-3p, miR-186, etc. by targeting the fibrinogen (Fg) regulate the common coagulation pathway [202–205] (Fig. 2b-B1-3, 2b-D). The non-optimal circular levels of some of these miRNAs such as miR-223, miR-93, miR-186, miR-18a (reduced), and miR-19a/b-3p as well as miR-15b (elevated) have been found in patients with the COVID-19 [170,171,174,176,197]. Decreased levels of miR-24 in ECs-derived extracellular vesicles (EVs) accompanied by more cerebrovascular complications have been reported in these patients [206]. The down-regulation of miR-34a and miR-29b-3p was also reported in the post-mortem lung biopsy of patients with the severe COVID-19 [163]. In addition, the indirect effects of the miRNAs controlling the other
pathways/events (e.g., neutrophils/monocytes activities, NETosis, ECs activation/dysfunction, and activation of PLTs as well as the complement system, fibrinolysis, and hypoxia/hypoxemia) (Fig. 2a, 2b-C, 2b-D, 2c-E-G) on the coagulation cascade cannot be ignored.

3.3. miRNAs affecting ECs activation/dysfunction

The miRNAs can extensively affect the activation or dysfunction of ECs. As exemplified, miR-223, miR-let-7, and miR-410 by targeting the IL-6, miR-93, miR-15b, miR-26b, miR-106b, etc. through the expression regulation of the IFN gamma (IFN-\(\gamma\)), and miR-134 by targeting the AT1R participate in the regulation of their activation/dysfunction and pyroptosis. Moreover, the expression regulation of the P-selectin by miR-26b, and targeting the ADAMTS13 by miR-192 and miR-525 affect those processes [5,180,181,187,202,207] (Fig. 2b-C). In this regard, the deregulated circular expression levels of some of the mentioned miRNAs such as miR-223, miR-93, miR-134, (reduced), and miR-15b (elevated) have been reported in patients with COVID-19 [176,197,198]. Moreover, the regulation of other pathways/events (e.g., neutrophils/monocytes activities, NETosis, NADPH oxidases/ROS axis, coagulation cascade, the complement activation, and hypoxia/hypoxemia) (Fig. 2a, 2b-B2, 2c-E, 2c-G) by miRNAs can also affect the ECs activation/dysfunction and pyroptosis, indirectly. As mentioned earlier, some miRNAs may target the SARS-CoV-2 genome [5,200]. Thus, they may affect the activation/dysfunction of ECs that express ACE2.

3.4. miRNAs affecting PLTs activation

The activation and degranulation of PLTs can be controlled by miRNAs. For instance, miR-146a, miR-143, miR-195, miR-let-7, miR-135a, miR-16, and miR-7 regulate the expression of the TLR2, 4, 7, 9. However, miR-146a can also target the CD40L on the surface of the PLTs [5,183,187–189,208,209] (Fig. 2b-B3, 2b-D). Their P2Y12 receptor is the target molecule of miR-223 and miR-126 [184,210] (Fig. 2b-D). Moreover, targeting the synaptosomal-associated protein 23 (SNAP23) and vesicle-associated membrane protein 8 (VAMP8) (known as the vital molecules for the PLTs degranulation) by miR-223, miR-let-7, and miR-96, expression regulation of the P-selectin by miR-26b, and targeting the \(\alpha\)IIb\(\beta\)3 molecule by miR-15a, miR-31, and miR-let-7a can affect the PLTs activation and degranulation [138,184–187,203,210–212] (Fig. 2b-B1, 2b-B3, 2b-D). Among these miRNAs, the disrupted expression patterns of miR-146a, miR-16, miR-223, miR-126-3p, miR-15a, and miR-31 (reduced) have been found in the circulation of patients with the COVID-19 [174–176,195–199]. It is remarkable that all of the miRNAs...
affecting the other pathways/events (e.g., neutrophils/monocytes activities, NETosis, coagulation cascade, and hypoxia/hypoxemia) (Fig. 2a, 2b-B2, 2c-G) can also indirectly impact the PLTs activation. The predicted miRNAs (targeting the genome of SARS-CoV-2) may be involved in the activation of these cells, as PLTs express ACE2 [5,200].

3.5. miRNAs affecting complement system activation

Different complement components and regulators are among the target molecules of miRNAs. For instance, miR-145, miR-150, miR-218–2, and miR-92-d negatively regulate the C3 and miR-328 induces its deposition [213–216]. The miR-494-3p and miR-574 also target the C7 [217] (Fig. 2c-E). Moreover, CD46 and CD59 are the target molecules of miR-328, miR-616, and miR-20b/e, and at the same time, miR-155, miR-125b, and miR-9 target another regulatory factor of this system called complement factor H (CFH) all resulting in the excessive complement activation [214,218–220] (Fig. 2c-F). Several miRNAs such as miR-150, miR-200b/c, and miR-217 underpin the more regulated activity of the complement system through the positive regulation of CD46 and CD55 molecules [214,221] (Fig. 2c-E). In this regard, the non-optimal circular expression levels of some of these miRNAs such as miR-150, miR-218, miR-494-3p, miR-20b (reduced), and miR-155 (elevated) have been observed in patients with the COVID-19 [173,193,196,199,222]. Furthermore, the indirect effects of the miRNAs on the other pathways/events (e.g., neutrophils/monocytes activities, NETosis, and hypoxia/hypoxemia) (Fig. 2a, 2c-G) involved in the activation of this system should be taken into consideration.

3.6. miRNAs affecting fibrinolysis process and endogenous anticoagulants

Several studies have reported that the activation of fibrinolysis process can be regulated by some miRNAs. For instance, miR-645 and miR-193a/b target the u-PA, whereas miR-340 controls the t-PA gene expression [223–225]. However, the miR-617 induces their both activations [226] (Fig. 2c-F). Multiple miRNAs such as miR-143/-145 cluster, miR-30a/b/c, miR-let-7 g, and miR-421 target the PAI-1 and regulate its expression [203,227,228] (Fig. 2c-F). Moreover, miR-27a/b, miR-605, etc. target the TFPI, miR-885, miR-375, miR-105–2, etc. regulate the expression of the PS, whereas miR-26a targets the TM to control the expression and function of the endogenous anticoagulants [202,203,229] (Fig. 2c-F). In this regard, the deregulated expression patterns of miR-340, miR-375 (reduced), and miR-27a/b (elevated) were found in patients with the COVID-19 [170,196,198,222]. Considerably, all of the miRNAs affecting the other pathways/events (e.g., neutrophils/monocytes activities, NETosis, ECs dysfunction, the complement activation, and hypoxia/hypoxemia) can indirectly affect the
fibrinolysis process and endogenous anticoagulants (Fig. 2a, 2b-C, 2c-E, 2c-G).

3.7. miRNAs affecting hypoxia/hypoxemia

Some miRNAs such as miR-138, miR-199a, miR-18a/b, miR-640, miR-424, etc. can negatively regulate the HIF-1α. However, miR-214, miR-135b, miR-675, etc. can induce its gene expression [212,230–232]. The HIF-2α is a direct target of miR-185, miR-223, miR-145, etc. [232–234] (Fig. 2c-G). Moreover, miR-23a, miR-146a, miR-126, miR-130b, miR-31, miR-17, miR-103a-3p, etc. can inhibit the CXCL12 expression [183,202,235–237] (Fig. 2c-G). The non-optimal circular expression levels of miR-18a, miR-223, miR-146a, miR-126-3p, miR-31, miR-17 (reduced), and miR-199a (elevated) have been reported in patients with the COVID-19 [170,171,175,176,195–199]. Furthermore, all of the miRNAs affecting the other pathways/events (e.g., neutrophils and monocytes activities) (Fig. 2a) can also indirectly impact the hypoxia/hypoxemia.

4. miRNAs and interfering factors

Although miRNAs play crucial roles in controlling immunothrombosis process, clinical manifestations and paraclinical findings of patients with the critical COVID-19 indicate that the expressions and functions of these small RNAs have largely been disrupted [163,169–177]. Various studies have demonstrated that several agents such as SARS-CoV-2-induced interfering factors can affect the expression levels and efficient functions of miRNAs which have been discussed in another paper [5]. According to in vitro and in vivo studies, the upregulated expressions of miRNAs are not always followed by their higher efficiency [238,239]. Research evidence indicates that miRNAs regulate the expressions of their target molecules in a dose-dependent manner and display their best functions at optimal levels [240,241]. The literature review revealed that several genetic agents and uncontrolled immunothrombosis-induced interfering factors could affect the expressions and functions of these non-coding RNAs (Table 1) which will be discussed in the following.

4.1. miRNA-single nucleotide polymorphisms

In fact, miRNA-single nucleotide polymorphisms (miR-SNPs) are the most rampant genetic variations in the human genome affecting the processing and expression of miRNAs (Table 1). As exemplified, the minor T allele of miR-SNP rs2431697 (located 16 kb upstream of pre-miR-146a) causes the reduced gene expression-production of mature miR-146a leading to the high-levels generation of pro-inflammatory mediators. In this regard, the in vitro and in vivo observations have revealed that the activation of neutrophils with this SNP is accompanied by more NETs formation consistent with the high plasma levels of NE found in the T allele carriers. The CC genotype of miR-SNP rs2910164 (located in the stem region opposite to mature miR-146a sequence) and the A/G genotype of miR-SNP rs57095329 (located in the promoter region of the miR-146a gene) are the two other SNPs in the miR-146a gene that can decrease its expression. The existence of the A/T allele of miR-SNP rs767649 (located in the regulation region of the miR-155 gene) can underlie the elevated transcriptional activity of this gene [183,242–247] (Table 1). Moreover, the reduced expressions of miR-143 and miR-145 have respectively been reported in the carriers of CT/TT variant of miR-SNP rs355292 (located 673 bp upstream from the start site) and C/T variant of miR-SNP rs74693964 (located 65 bp downstream of the miR-145 genomic region) [248,249] (Table 1). Accordingly, the presence of the miR-SNPs in patients with the critical COVID-19 can be followed by the disrupted functions of these miRNAs (Table 1). The correlation between miR-SNPs and the incidence of various diseases (e.g., autoimmune disorders and cancers) has been proven. For instance, the downregulation of miR-146a, correlated with

Table 1
Interfering factor

miR-SNPs rs2431697 T allele
miR-SNPs rs2910164 CC genotype
miR-SNPs rs767649 A/T allele
miR-SNPs rs355292 CT/TT variant
miR-SNPs rs74693964 C/T variant
Table 1 (continued)

Interfering factor	Effect	Ref	Expected results
Higher complement activation, Enhanced NETosis, Severe inflammation and coagulation, Uncontrolled immunothrombosis			
C5a	Expression reduction of miR-193 and miR-133a	[250]	Increased production of Fg and Mac-1, Reduced u-PA and fibrinolysis regulation, Increased NETosis, Severe inflammation and coagulation, Uncontrolled immunothrombosis
Excessive expression of miR-26b			Deviation from optimal expression level and inefficient function of this miRNA, based on the manifestations of the critical COVID-19, Reduced regulation of P-selectin, FVIII, and IFN-γ expressions, Activation, dysfunction, and pyroptosis of ECs, Increased NETosis, Severe inflammation and coagulation, Uncontrolled immunothrombosis
C3	Expression reduction of miR-145	[216]	Higher expression of TF, FXI, HIF-2α, C3, and PAI-1, Enhanced complement activation, Increased neutrophils persistence and monocytes activation, Reduced/inefficient fibrinolysis, Elevated NETosis, Severe inflammation and coagulation, Uncontrolled immunothrombosis
NADPH oxidases and ROS	Expression reduction of miR-29a/b, miR-29c-3p, miR-24-2, miR-145, miR-128, miR-let-7, miR-199a, miR-125b, and miR-126a	[192,251,252,257,258]	Increased expression/production of NADPH oxidases, ROS, Fg, VWF, TF, FIX, FXI, HIF-1/2α, CXCL12, C3, PAI-1, IL-6, TLR4, TLR7, miR-93, SNAP23, and P2Y12, Elevated neutrophils persistence and monocytes activation, Higher complement activation, Inefficient fibrinolysis, PLTs activation and degranulation, Activation, dysfunction, and pyroptosis of ECs, Increased NETosis, Severe inflammation and coagulation, Uncontrolled immunothrombosis
NADPH oxidases and ROS	Expression reduction of miR-155, miR-21, miR-103, and miR-146a		
PAD enzymes and histone citrullination	Expression elevation of miR-21, miR-146a, miR-9, and miR-143	[251,253–256,259]	Uncontrolled immunothrombosis
Hypoxia/hypoxemia	Expression elevation of miR-155, miR-21, miR-103, and miR-146a	[262,264–266]	Deviation from optimal expression levels and inefficient functions of these miRNAs, based on the manifestations of the critical COVID-19, Reduced regulation of Mac-1, TLR2, TLR4, IL-8, CD40L, CXCL12, and PAI-1 expressions, Upregulated activity of NADPH oxidases and excessive production of ROS, Decreased expression of CFH, Elevated activation of neutrophils, monocytes, and PLTs, Activation, dysfunction, and pyroptosis of ECs, Higher component activation, Reduced/inefficient fibrinolysis, Increased NETosis, Severe inflammation and coagulation, Uncontrolled immunothrombosis

(continued on next page)
Table 1 (continued)

Interfering factor	Effect	Ref	Expected results
IL-8, and CD40L expressions, Higher complement activation, Enhanced activation of neutrophils, monocytes, and PLTs, Activation, dysfunction, and pyroptosis of ECs, Increased NETosis, Severe inflammation and coagulation, Uncontrolled immunothrombosis	Elevated activity of NADPH oxidases and excessive production of ROS, αβ3, IL-6R, and FVIII, Enhanced activation of neutrophils, monocytes, and PLTs, Activation, dysfunction, and pyroptosis of ECs, Higher complement activation, Increased NETosis, Severe inflammation and coagulation, Uncontrolled immunothrombosis	[267–271]	
CXCL12	Inefficient function of miR-31	[237]	
Fibrin	Expression reduction of miR-146a	[272]	
PDGF-BB	Expression reduction of miR-145	[273]	

Table 1 (continued)

Interfering factor	Effect	Ref	Expected results
aPC	Expression reduction of miR-199a, miR-29b, and miR-211	[275]	
t-PA	Expression reduction of miR-15a	[276]	
Inefficient function of miR-146a	[272]		

Abbreviations: αβ3, Integrin αβ3; aPC, Activated protein C; C, Complement component; CD40L, Cluster of differentiation 40 ligand; CFH, Complement factor H; CXCL12, C-X-C motif chemokine ligand 12; EGs, Endothelial cells; Fg, Fibrinogen; FVIII, Factor VIII; FIX, Factor IX; FX, Factor X; FXI, Factor XI; HIF, Hypoxia-inducible factor; IFN-γ, Interferon gamma; IL, Interleukin; IL-6R, IL-6 receptor; Mac-1, Macrophage-1 antigen; MAC, Membrane attack complex; miRNAs, MicroRNAs; miR-SNPs, MicroRNA-single nucleotide polymorphisms; NADPH oxidase, Nicotinamide adenine dinucleotide phosphate oxidase; NET, Neutrophil extracellular trap; PAD, Protein arginine deiminase; PAI-1, Plasminogen Activator Inhibitor-1; PDGF-BB, Platelet-derived growth factor-BB; PLTs, Platelets; ROS, Reactive oxygen species; SNAP23, Synaptosomal-associated protein 23; TF, Tissue factor; TLR, Toll-like receptor; t-PA, Tissue plasminogen activator; u-PA, Urokinase plasminogen activator; VWF, Von Willebrand factor.

T allele of miR-SNP rs2431697, has been observed in patients with SLE, whereas higher expressions of miR-155 have been reported in patients with hepatocellular carcinoma (HCC) carrying the risk allele of miR-SNP rs767649. This can increase the risk of uncontrolled immunothrombosis in the COVID-19 patients with these comorbidities [246,247].

4.2. Complement system components

According to the research evidence, sublytic (non-lytic) doses of
MAC can affect the expression of miRNAs (Table 1). Although incomplete MAC complexes do not cause cell lysis, they activate many cellular inflammatory responses (e.g., NF-κB pathway) and affect the production of pro-inflammatory cytokines, adhesion molecules, and miRNAs. Accordingly, the prompt increased expressions of miR-328 and miR-616 have been reported following the cell stimulation with sublytic doses of MAC that can have specific effects on the expression of their target molecules and consequently different cellular processes [214] (Table 1). It has also been observed that C5a can change the expression of several miRNAs in the ECs. For instance, it significantly reduces the expression of miR-193 and miR-133a and underlies the increased expression of miR-26b [250] (Table 1). The C3-mediated downregulation of miR-145 has also been found [216] (Table 1).

4.3. NADPH oxidases and ROS

The reduced expressions of miR-29b, miR-24–2, miR-145, and miR-128, as well as the elevated expression of miR-21 have been observed under the influence of NADPH oxidases and ROS (Table 1). In fact, ROS can change the expression of these small regulatory RNAs in different ways such as affecting the enzymes involved in the miRNAs biogenesis, activities of transcription factors, and epigenetic modifications. Consistently, the ROS-induced enhanced activation of the NF-κB affects the chromatin organization and genes expression (e.g., miRNAs genes) by converting the arginine residues into the citrulline ones. Accordingly, the upregulated expressions of miR-146a and miR-125b through the induction of their genes hypermethylation [191,251–259] (Table 1). Liu et al. reported that the NADPH oxidase 4 inhibitor provoked the expression of miR-29a and miR-29c-5p, and that the inhibition of NADPH oxidase 2 was followed by the induction of miR-126a expression [192] (Table 1).

4.4. PAD enzymes and histone citrullination

The PAD enzymes (e.g., PAD4 playing a key role in the NETosis) affect the chromatin organization and genes expression (e.g., miRNAs genes) by converting the arginine residues into the citrulline ones. According to the literature review, the expressions of miR-let-7c-2, miR-29c, and miR-16 are suppressed by the histone citrullination (Table 1), and the inhibition of PAD enzymes is accompanied by their expression restoration [260,261].

4.5. Hypoxia/hypoxemia

Research evidence has shown that hypoxia/hypoxemia can affect the gene expression of molecules involved in the miRNAs biogenesis (e.g., Dicer) and also the ones participating in their functions (e.g., EIF2C4 encoding the AGO4). Accordingly, the upregulated expressions of miR-155, miR-21, miR-103, and miR-146a, as well as the reduced expressions of miR-150, miR-25, miR-15a, miR-205, and miR-34a were reported under the hypoxic condition in vitro and in vivo [231,232,262–271] (Table 1). The miR-146a elevation was hypoxia level-dependent. The higher expression of CXCL12, induced by HIF-1α, was accompanied by the disrupted function of miR-31 [237] (Table 1).

4.6. Coagulation and fibrinolysis mediators

According to the research evidence, fibrin reduced the production of mature miR-146a in the ECs, and platelet-derived growth factor-BB (PDGF-BB), which is the primary source was alpha-granules of the activated PLTs, suppressed the expression of miR-145 [272–274] (Table 1). Moreover, aPC had some reducing effects on the expression of miR-199a, miR-29b, and miR-211. The high levels of t-PA decreased the miR-15a expression levels and also caused the inefficient function of miR-146a [272,275,276] (Table 1).

5. Conclusion and therapeutic perspective

Representing the close interactions between the immune and coagulation systems, uncontrolled immunothrombosis/thromboinflammation is a life-threatening event leading to the administration of anticoagulant medicines in patients with the critical COVID-19. However, the efficacy of these medications is still open to dispute. Inadequate responses and also adverse effects such as the higher risks of severe hemorrhagic complications have been reported in some cases possibly resulting from the excessive hyperinflammation and disrupted functions of PLTs or coagulation factors [1–3,88,277–282]. Moreover, preclinical and clinical studies respectively on relevant mouse models and patients with the critical COVID-19 reported the aggregated NETs-mediated vascular occlusion which is not resolved merely by anticoagulants [14,53,283]. In addition, NETs can trap the clots and impose some antifibrinolytic effects [284]. DNase and Ruxolitinib (a Janus kinase inhibitor) have respectively been utilized for the destruction of NETs and suppression of their formation [2,283,285]. However, they can remove the beneficial effects of NETs (e.g., provocation of the IFNs-1 release). Moreover, a high level of human cathelicidin LL-37, which is produced by neutrophils and can stabilize the NETs against DNase, has been observed in the lung tissue and also in an embedded form inside the NETs of the COVID-19 patients and has led to the inefficiency of DNase [286,287]. Cellular heparan sulfate (HS) has also been proposed as a co-receptor for the SARS-CoV-2/ACE2 interaction. Thus, exogenous heparin can affect viral attachment and infection [3,288]. Heparin may also not work efficiently or even cause resistance in patients suffering from the critical COVID-19 with a low level of free AT and functional defects of ECs [87,281]. Hence, the efficiency of anticoagulant medicines is yet to be completely confirmed in the critical COVID-19, and alternative therapeutic strategies are needed. As discussed earlier, miRNAs act as the fine-tuners of gene expression but not suppressors. Due to the extensive roles of these small RNAs in different cellular pathways, their optimal expression levels or efficient functions may underpin the homeostasis of the immune and coagulation systems rescuing the patients with the critical COVID-19. Above all, some of them (e.g., miR-146a and miR-155) regulate the expressions of several key molecules involved in uncontrolled immunothrombosis accentuating their roles in the regulation of this process (Fig. 2a–2c). However, multiple factors may disrupt their normal expressions and functions (Table 1). The adoption of some therapeutic strategies for resolving the interferer factors may pave the way for the optimal expression and efficient functions of miRNAs leading to the reduction of complications incidence and mortality in patients with the critical COVID-19. In this regard, clustered regularly interspaced short palindromic repeats (CRISPR)-based therapeutic approaches (e.g., CRISPR-associated protein 9 (Cas9)) can be beneficial. These are promising methods for a permanent modification of the genome. Most importantly, the novel designed web tool called SNP-CRISPR has improved the systematic study of the SNP variants and can be used for the elimination of negative effects of miR-SNPs on the expressions/functions of miRNAs [289]. Since the majority of these interfering agents result from the hyperinflammatory and hyperoxidant states, the utilization of anti-inflammatory and anti-oxidant drugs can be greatly advantageous in restraining uncontrolled immunothrombosis/thromboinflammation [3,5]. Various studies have proven the brilliant anti-inflammatory and anti-oxidant effects of a wide spectrum of medications in the COVID-19 [290–293]. In this regard, Al-Kuraishy et al. reported that Metformin, with its anti-oxidant and anti-inflammatory properties, plays a considerable role alleviating the severity of the COVID-19 and its complications (e.g., acute lung injury (ALI) and acute IS (AIS)) through the modulation of inflammatory reactions in patients with the type II diabetes mellitus (T2DM) comorbidity [291]. The sequential combination therapy with Colchicine and Doxycycline has also been followed by the restriction of inflammation and remission of the patients with the critical COVID-19 [292]. Another study has demonstrated that the administration of Allopurinol in patients with the critical COVID-19 can lead to
a significant reduction of inflammatory factors and oxidative stress index [293]. The application of AMY-101 and Narsoplimab (C3 and MASP-2 inhibitors, respectively) has also been accompanied by attenuation of inflammation [294,295]. Not only do these medications control the hyperinflammatory/hyperoxidant states but they may also recover the efficient functions and optimal expressions of miRNAs resulting in the limitation of uncontrolled immunothrombosis/thromboinflammation. Some other groups of drugs such as anti-heart failure ones, anti-histamines, leukotriene receptor antagonists (LTRAs), the phosphodiesterase (PDE) inhibitors, etc., with confirmed anti-inflammatory and anti-oxidant roles, can also be administrated for the amelioration of miRNAs performances [17,18,296]. Produced in the body, some alarming agents can also be helpful. For instance, Neo-phosphodiesterase (PDE) inhibitors, etc., with confirmed anti-inflammatory and anti-oxidant roles, can also be administrated for the amelioration of miRNAs performances [294,295]. The development of its agonists can be of great importance in retrieving the efficiency of the miRNAs [302]. The estrogen therapy, especially in women during the postmenopausal period, can also be prescribed due to its eminent anti-inflammatory roles [303]. Furthermore, as miRNAs display their best functions in the optimal levels [240,241], their upregulated expressions are not always followed by their higher efficiency [238,239]. Moreover, each miRNA can neutralize the functions of the other ones by affecting some target molecules (e.g., induction and inhibition of IL-8 by miR-155 and miR-146a, respectively). Therefore, the identification and application of the drugs affecting the miRNAs and bringing them to the optimal levels are more efficient than the administration of the ones merely affecting a special protein molecule [5,21,162]. The drugs β-D-mannuronic acid (M2000) and α-L-guluronic acid (G2013) are the two novel members of the non-steroidal anti-inflammatory drugs (NSAIDs) family whose anti-inflammatory and immunomodulatory properties have been proven in the cellular, animal, and human levels. Interestingly, they leave some regulatory effects on the expressions and functions of miRNAs (e.g., miR-146a and miR-155) [238,239,304–319]. The modulation of the production and performance of these two miRNAs (and also the other miRNAs) may simultaneously alleviate the hyperinflammation and restrict the uncontrolled immunothrombosis/thromboinflammation. As the dysfunction of ECs is correlated with the activation of endothelial matrix metalloproteinase (MMP)-2 by MMP-9 (existing in NETs), the reduction of these MMPs by M2000 can be of great importance [62,320]. Moreover, M2000 and G2013 have anti-oxidant and angioprotective properties reinforcing their positive effects on the limitation of uncontrolled immunothrombosis [321–324]. In addition, the phase III clinical trial of drug G2013 (IRCT20080901001165N64) is being conducted on patients with moderate to severe symptoms of the COVID-19. The regulatory effects of Metformin, Colchicine, and Doxycline on the expression levels of miRNAs have also been illustrated [325–327]. Moreover, the modulation of miRNAs content of EVs (e.g., exosomal ones), released by the cells with the key roles in the uncontrolled immunothrombosis (e.g., activated PLTs and ECs) through drug consumption or utilization of the non-immunogenic engineered exosomes, may limit the uncontrolled immunothrombosis/thromboinflammation in patients with the critical COVID-19 [162,328].

A few studies have meticulously evaluated the roles of miRNAs in the critical COVID-19, especially in the uncontrolled immunothrombosis. Moreover, most studies have assessed the expression levels of miRNAs in the circulation of the patients. Their tissue as well as cellular expression amounts and functions have remained poorly identified. However, this review cast light on the pivotal roles of these small RNAs in the processes involved in the uncontrolled immunothrombosis and can act as a beneficial clue to design and conduct the future preclinical and clinical studies. In addition, the interfering factors, affecting the miRNAs expression/function, should be analyzed further in preclinical and clinical studies.

Funding
This review article received no specific grant from any funding agency in public, commercial, or not-for-profit sectors.

Author contribution
SSM-J and MA collected the data following the raising the issue. SSM-J and MA then designed the figures and wrote/editied the manuscript in equal parts.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability
No data was used for the research described in the article.

Acknowledgements
SSM-J and MA appreciate all of the friendly consultations and advice of Prof. Abbas Mirshafiey, Dept. of Immunology, School of public health, Tehran University of Medical Sciences (TUMS) to prepare the manuscript in the best way.

References
[1] J. Leentjens, T.F. van Haaps, P.F. Wessels, R.E. Schutgens, S. Middeldorp, COVID-19-associated coagulopathy and antithrombotic agents—lessons after 1 year, Lancet Haematol. (2021).
[2] A. Bonaventura, A. Vecchié, L. Dagna, K. Martinod, D.L. Dixon, B.W. Van Tassel, F. Dentali, F. Montecucco, S. Massberg, M. Levi, Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19, Nat. Rev. Immunol. 21 (5) (2021) 319–329.
[3] J. Loo, D.A. Spittle, M. Newham, COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms, Thorax 76 (4) (2021) 412–420.
[4] A. Mirshafiey, M. Aslani, S.S. Mortazavi-Jahromi, Possibilities for the Entrance of SARS-Cov-2 as an Archaeal Virus into the Ecosystem, Iranian J. Public Health (2021) 2680–2609.
[5] M. Aslani, S.S. Mortazavi-Jahromi, A. Mirshafiey, Cytokine storm in the pathophysiology of COVID-19: possible functional disturbances of miRNAs, Int. Immunopharmacol. 101 (2021), 108172.
[6] W. Huang, M. Li, G. Luo, X. Wu, B. Su, L. Zhao, S. Zhang, X. Chen, M. Jin, J. Zhu, The inflammatory factors associated with disease severity to predict COVID-19 progression, J. Immunol. 206 (7) (2021) 1597–1608.
[7] R.S. Thaïes, A. Sanchez Severa Urruchutu, M.K. Siggins, F. Liew, C.D. Russell, S.C. Moore, C. Fairfield, E. Carter, S. Abrams, C.-E. Short, Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19, Sci. Immunol. 6 (57) (2021) eabg9873.
[8] A. Saris, T.D. Reijnders, E.J. Nouss, A.R. Schuurman, J. Verhoeff, S. Van Asten, H. Bontek, S. Blok, J. Duitman, H.-J. Bogaard, Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19, Thorax 76 (10) (2021) 1010–1019.
[9] M. Khamans Vajari, M. Shirin, A. Pourbagheri-Sigaroodi, M.E. Akbari, H. Abolghasemi, D. Bashash, COVID-19-related coagulopathy: A review of pathophysiology and pharmaceutical management, Cell Biol. (2021).
[10] A. Fletcher Sanderjos, B.M. Bellander, Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review, Thrombosis research 194 (2020) 36–41.
[11] H.M. Al-Kuraishy, A.I. Al-Gareeb, L. Alkazmi, A. Alexiou, G.-E.-S. Batiha, The inflammatory factors associated with disease severity to predict COVID-19 progression, J. Immunol. 206 (7) (2021) 1597–1608.
[12] F. Klok, M. Kruip, N. Van der Meer, M. Arbous, D. Gommers, K. Kant, F. Kaptein, J. Heijmans, Incidence of venous thromboembolism: biological mechanisms, Thorax 76 (4) (2021) 412–420.
[13] S. Middeldorp, M. Coppens, T.F. van Haaps, M. Fopen, A.P. Vlaar, M.C. Müller, C.C. Bouman, L.F. Beenen, R.S. Kootte, J. Heijmans, Incidence of venous thromboembolism in hospitalized patients with COVID-19, J. Thromb. Haemost. 19 (3) (2021) 1010–1019.
[14] M. Ackermann, H.-J. Anders, R. Bilby, G.L. Bowlin, C. Daniel, R. De Lorenzo, M. Egeblad, T. Hennec, A. Hidalgo, M. Hoffmann, Patients with COVID-19 in the dark-NETs of nephrology, Cell Death Differ. (2021) 1–15.
S.S. Mortazavi-Jahromi and M. Aslani

International Immunopharmacology 110 (2022) 109040

infection—an autopsy study of the first 30 cases in Hamburg, Germany, Int. J. Legal Med. 134 (4) (2020) 1275-1284.

H.M. Al-Kuraisyah, A.I. Al-Gareeb, M.S. Fageyimbo, G.E.S. Batila, Vincopetite is the forthingominant agent in the management of COVID-19, Future Sci. OA 0 (2022) FS0797.

H. Onohuan, H.M. Al-Kuraisyah, A.I. Al-Gareeb, S. Quiti, E.M. Elhammaram, G.E.-S. Batila, Covid-19-induced dysautonomia: a menace of sympathetic storm, ASN Neurol. 13 (2021) 7599014211075635.

H.M. Al-Kuraisyah, A.I. Al-Gareeb, M.S. Fageyimbo, G.E.S. Batila, COVID-19 infection—development of heart failure: mystery and truth, Naunyn-Schmiedebergs Arch. Pharmacol. 394 (10) (2021) 2013–2021.

A. Güters, C.H. de Azeredo Lima, R.L. Miranda, M.R. Gadelha, What is the potential function of microRNA as biomarkers and therapeutic targets in COVID-19 infection, Genet. Mol. Biol. 45 (2020), 104441.

H. Liu, C. Lei, Q. He, Z. Pan, D. Xiao, Y. Tao, Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer, Molecular cancer 14 (2020) 187.

J.J. Lai, F.M. Cruz, K.L. Rock, Immune cell death through recognition of nucleic acid patterns by pattern-recognition receptors in human immune disease, Immunity 52 (2020) 123-135. e6.

L. Nicolai, A. Leunig, S. Brams, R. Kaiser, T. Weinberger, M. Weigand, M. Muenchhoff, J.C. Hellmuth, S. Lederreiter, H. Schulz, Immunohemodynamic derangement in COVID-19 coronavirus: multifaceted pathophysiologic failure and coagulopathy, Circulation 142 (2020) 1176–1189.

E. Petitio, E. Falcinelli, U. Paliani, E. Cesarì, G. Vaudo, M. Sebastiani, V. Cerotto, G. Guglielmini, F. Gori, M. Malvestiti, Association of neutrophil activation, more than platelet activation, with severe COVID-19 in the patient population, J. Infect. Dis. 223 (6) (2021) 933–944.

B.J. Barnes, J.M. Adrover, A. Baxter-Stoltzus, A. Borkucz, J. Cools-Lartigue, J. Crawford, J. Daßler-Pfenker, P. Goertt, C. Huynt, J.S. King, Targeting potential drivers of COVID-19: Neutrophil extracellular traps, J. Exp. Med. 217 (2020) 1883–1914.

S.E. Fox, A. Almatheb, J.H. Harber, G. Li, J.Q. Brown, R.S. Vander Heide, Pulmonary and cardiac infection in African American patients with COVID-19: an autopsy series from New Orleans, Lancet Respir. Med. 8 (7) (2020) 681–688.

M. Szturmowicz, U. Demkow, Neutrophil Extracellular Traps (NETs) in Severe SARS-CoV-2 Lung Disease, Int. J. Mol. Sci. 22 (16) (2021) 8854.

S. Batiha, Covid-19-induced dysautonomia: a menace of sympathetic storm, ASN Neurol. 13 (2021) 7599014211075635.

J.P. Redmond, K. Smith, H.L. Malech, J.A. Ledbetter, K.B. Elkon, M.J. Kaplan, Neutrophil extracellular traps promote thrombosis, Proc. Natl. Acad. Sci. 107 (36) (2010) 15880–15885.

K. Smith, H.L. Malech, J.A. Ledbetter, K.B. Elkon, M.J. Kaplan, Neutrophil extracellular traps drive endothelial-to-mesenchymal transition, Arterioscler. Thromb. Vasc. Biol. 35 (2015) 1424–1432.

H. Ng, S. Havervall, A. Rosell, K. Aguilera, K. Parv, F.A. Von Meijenfeldt, T. Liman, N. Mackrex, C. Thalín, M. Phillipson, Circulating markers of neutrophil extracellular traps are prognostic markers in patients with COVID-19, Arterioscler. Thromb. Vasc. Biol. 41 (2) (2021) 988–994.

J. Vaz, E. Jawad, L. Fisher, M. Xiao, K. Xue, M. Matsuda, A.C. Borczuk, M. Loda, Neutrophil extracellular traps are key drivers in COVID-19 immunomodulation, J. Clin. Investig. 130 (11) (2020) 6511–6517.

Y. Zuo, S. Yanlavarthi, H. Shi, K. Gockman, M. Zuo, J.A. Madison, C. Blair, A. Weber, B.J. Barnes, E. Egeland, Neutrophil extracellular traps in COVID-19, JCI insight 5 (11) (2020).

P.B. Kaempfer, J.F. Ahrens, P. Kucharski, L. Zhang, J. Wang, C. Petrey, N.D. Tolley, L. Guo, M. Cody, Platelet gene expression and function in COVID-19, Front. Immunol. 12 (2021) 370.
I. Jarlhelt, S.K. Nielsen, C.X.H. Jahn, C.B. Hansen, L. P. M. Cugno, P.L. Meroni, R. Gualtierotti, S. Griffini, E. Grovetti, A. Torri, A.J. Chauhan, L.J. Wiffen, T.P. Brown, COVID-19: a collision of complement, C. Magro, J.J. Mulvey, D. Berlin, G. Nuovo, S. Salvatore, J. Harp, A. Baxter-K.E. Foreman, A.A. Vaporciyan, B.K. Bonish, M.L. Jones, K.J. Johnson, M. A. Krarup, R. Wallis, J.S. Presanis, P. G. R.-F. Guo, P.A. Ward, Role of C5a in inflammatory responses, Annu. Rev. Immunol. 23 (2005) 821–840.

2. J. A. Madison, J.S. Knight, Y. Kanthi, D.A. Lawrence, Plasma tissue plasminogen activator and fibrinogen in patients with severe COVID-19, MedRxiv (2020) 2021.12.2255-22556.

H.C. Kwaan, Coronavirus disease 2019: the role of the fibrinolytic system from transmission to organ injury and sequelae, Seminars in thrombosis and hemostasis, Thieme Medical Publishers, 2020, pp. 841-844.

3. M. Bachler, J. B. Schwartz, L. Leonard-Lorant, M. Ohana, X. Delabranche, M. Herdij, R. Clerc-Jehl, M. Schenck, F. Fagot Gandel, High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study, Intensive Care Med. 46 (6) (2020) 1089–1096.

4. G. Gouba, A.B. Pine, M.L. Mihelich, H.-C. Chang, H. Zhang, B. Pahel, A. Baluba, N. Bar, R.D. Bona, A.J. Burns, Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study, Lancet Haematol. 7 (8) (2020) e575-e582.

5. S.C. Karunaratne, G. Kulwahna, P.P. Kulkarni, R.L. Mallick, N.A. Latheef, J. Chauhan, L. Singh, L. F. Tyas, J. Gole, A. Linkermann, M. Saffarzadeh, K. Schwierczek, M. Aslani, Nicolai, High D dimer and global fibrinolysis coexist in COVID19 patients: what is going on in there? J. Thromb. Thrombolysis 51 (2) (2021) 308-312.

6. D. Cabral-Garcia, K. Milosevic, S. Panasenko, G. Wagner, N.L. Harrison, High levels of plasminogen activating inhibitor-1, tissue plasminogen activator and fibrinogen in patients with severe COVID-19, MedRxiv (2020) 2021.12.22948899.

7. Y. Fei, N. Tang, H. Liu, W. Cao, Coagulation DysfunctionA Hallmark in COVID-19, J. Allergy Clin. Immunol. 146 (1) (2021) E9618–E9625.

8. J. Ho, C. Tsuchiya, N. Tatsukawa, O. Polat, G. Orhun, G.H. Alay, V. Tuna, E. Celiksoy, M. Kılıç, M. Mercan, A. Ali, Prognostic value of antithrombin levels in COVID-19 patients and impact of fresh frozen plasma treatment: a retrospective study, Turkish J. Hematol. 38 (1) (2021) 15.

9. G. Lippi, B.M. Henry, F. Sanchis-Gomar, Plasma antithrombin values are decreased in COVID-19 patients with severe illness, Seminars in Thrombosis and Hemostasis, Thieme Medical Publishers, Inc., 2021, pp. 462-466.

10. G.T. Gerotziafas, T.N. Sergentanis, G. Voirot, L. Lassal, C. Papageorgiou, A. Eleredab, M. Turpeent, L. Papagiannis, C. Afshari, Derivation and validation of a predictive score for disease worsening in patients with COVID-19, Thorbm. Haemost. 120 (12) (2020) 1680–1690.

11. J. Jin, Y. Duan, T. Bao, J. Gu, Y. Chen, Y. Li, S. Mao, Y. Chen, W. Xie, The values of coagulation function in COVID-19 patients, PLoS ONE 15 (10) (2020) e0241329.

12. E.A. Mast, A.S. Wolberg, D. Gailani, C. Alvarez, J.I. Miller, A.E. Mast, A.S. Wolberg, D. Gailani, C. Alvarez, J.I. Miller, Soluble Urokinase Plasminogen Activator Receptor (sPAR) is Increased in Patients with COVID-19, Intensive Care Med. 46 (10) (2020) 1690–1691.

13. H. Ercoskun, C. Iba, E. Güney, M. Saffarzadeh, K. Schwierczek, M. Aslani, Nicolai, High D dimer and global fibrinolysis coexist in COVID19 patients: what is going on in there? J. Thromb. Thrombolysis 51 (2) (2021) 308-312.

14. R. Kettritz, Necroptosis controls NET generation and mediates complement activation, Anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis, Mol. Immunol. 61 (2) (2014) 69–75.

15. F. Wilt, T.O. Vogerle, E.E. Moore, H.B. Moore, M.V. Wohlauer, S. Urban, T.L. Nydam, P.K. Moore, R.C. McIntyre Jr, Fibriolysis shutdown correlation with thromboembolic events in severe COVID-19 infection, Journal of the American College of Surgeons 231(2) (2020) 193-203 e1.

16. I. Anaklı, P.E. Ocak, O. Polat, G. Orhun, G.H. Alay, V. Tuna, E. Celiksoy, M. Kılıç, M. Mercan, A. Ali, Prognostic value of antithrombin levels in COVID-19 patients and impact of fresh frozen plasma treatment: a retrospective study, Turkish J. Hematol. 38 (1) (2021) 15.

17. B. Aracun, F. Sanchis-Gomar, Plasma antithrombin values are decreased in COVID-19 patients with severe illness, Seminars in Thrombosis and Hemostasis, Thieme Medical Publishers, Inc., 2021, pp. 462-466.

18. G. Enocsson, C. Idoff, A. Gustafsson, M. Govender, F. Hopkins, M. Larsson, H. Enocsson, C. Idoff, A. Gustafsson, M. Govender, F. Hopkins, M. Larsson, Soluble Urokinase Plasminogen Activator Receptor levels in COVID-19 patients With and Without Respiratory Dysfunction: A Retrospective Study, J. Thorbm. Thrombolysis 40 (10) (2020) 1690–1691.

19. T. K. Mishra, D. Platelet HIP-2a promotes thrombogenicity through PAR-1 synthesis and extracellular vesicle release, HaematoLOGICA 104 (12) (2019) 2482-2492.

20. T. F. Doshi, T.C. Trouwborst, W.M. Lesschen, A. R. Buurman, V. Kinkhabwala, A.B. Kandagale, Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases, Nat. Med. 16 (8) (2010) 887-896.

21. S. I. Leitner, J. F. Henslee, P. J. Simon, R. S. Bhatnagar, A. J. Dungan, M. B. Davis, A. L.قریبی شرقی, A. Calvo, C. Ferrando, J. Reverter, D. Tassies, A. Blasi, High D dimers and low fibrinolytic capacity coexist in COVID19 patients: what is going on in there? J. Thromb. Thrombolysis 51 (2) (2021) 308-312.

22. D. Cabral-Garcia, K. Milosevic, S. Panasenko, G. Wagner, N.L. Harrison, High levels of plasminogen activating inhibitor-1, tissue plasminogen activator and fibrinogen in patients with severe COVID-19, MedRxiv (2020) 2021.12.22948899.

23. J. Ho, C. Tsuchiya, N. Tatsukawa, O. Polat, G. Orhun, G.H. Alay, V. Tuna, E. Celiksoy, M. Kılıç, M. Mercan, A. Ali, Prognostic value of antithrombin levels in COVID-19 patients and impact of fresh frozen plasma treatment: a retrospective study, Turkish J. Hematol. 38 (1) (2021) 15.

24. G. Lippi, B.M. Henry, F. Sanchis-Gomar, Plasma antithrombin values are significantly decreased in patients with COVID-19 pneumonia, J. Clin. Med. 9 (10) (2020) e312.
M.P. Fernández-Pérez, S. Argüelles, L. Reguil, F. Anguel, H. Yaqoobi, N. Dikmen, A. Ózcan, O. Zucchetti, L. Rivadeneyra, A. Carestia, J. Etulain, R.G. Pozner, C. Fondevila, S. Negrotto, K. Kojok, A.-E.-H. El-Kadiry, Y. Merhi, Role of NF-

α in sepsis, Am. J. Respir. Cell Mol. Biol. 55 (6) (2016) 985–995.

A. Podrez, Engagement of platelet toll-like receptor 9 by novel endogenous ligands is another non-genomic role of nuclear factor-kappaB, Thromb. Res. 130 (2012) 567–572.

S. Zhang, Y. Liu, X. Wang, L. Yang, H. Li, Y. Wang, M. Liu, X. Zhao, Y. Xie, Y. Yang, SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19, J. Hematol. Oncol. 13 (1) (2020) 1–22.

M.L.M. Franciosi, M.D.M. Lima, M.R.C. Schettering, A.M. Cardoso, Possible role of purinergic signaling in COVID-19, Mol. Cell. Biochem. 476 (8) (2021) 2891–2898.

E.D. Hottz, I.G. Azevedo-Quiñimilla, L. Palhita, L. Teixeira, E.A. Barreto, C. Rios, C. Rigby, S. Franco, T.M. Sousa, P. Kurtz, Platelet activation and plasma monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19, Blood 136 (11) (2020) 1330–1341.

G. Campo, M. Colulli, A. Fogagnolo, F. Vicedo Della Sega, O. Zucchetti, L. Romondi, M. Verzi, F. Fortini, R. Pavlin, L. Mirabelli, Over-time relationship between platelet reactivity, myocardial injury and mortality in patients with SARS-CoV-2-associated respiratory failure, Platelets 32 (4) (2021) 560–567.

S. Panigrahi, Y. Ma, L. Hong, D. Gao, X.Z. West, R.G. Salomon, T.V. Byезa, E. A. Pederzoli, Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis, Circ. Res. 112 (1) (2013) 103–112.

R.J. Stark, N. Aghakishian, R.E. Rumbaut, Platelet-derived Toll-like receptor 4 (TLR-4) is sufficient to promote microvascular thrombosis in endotoxemia, PLoS ONE 7 (12) (2012) e41254.

G.F. Bezemer, J. Garsen, TLR9 and COVID-19: a multidisciplinary theory of a multifaceted therapeutic target, Front. Pharmacol. 11 (2021) 1958.

D. Dinger, T. Wolther, S. Bøhmer, Neurotrophin extracellular traps activate proinflammatory functions of human neutrophils, Front. Immunol. 12 (2021) 1190.

T.-D. Tsourouktsoglou, A. Warnatch, M. Ioannou, D. Hoving, Q. Wang, W. Papayannopoulos, Histones, DNA, and ciliation promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4, Cell Rep. 31 (5) (2020), 107602.

T. Quillard, H.A. Araújo, G. Franck, E. Shvartz, G. Suhová, P. Libry, TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion, Eur. Heart J. 36 (22) (2015) 1394–1404.

B.F. Kraemer, R.A. Campbell, H. Schwertz, M.J. Cody, Z. Franks, N.D. Tolley, W.H. Geller, S. Lindeman, D.C. Dzau and T. Fuster, Novel bacteriolar activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation, PLoS Pathog. 7 (11) (2011) e1002355.

N. Maugeri, L. Campana, M. Gavina, C. Covino, M. De Metrio, C. Panciroli, L. Musetti, A. Maseri, E. Nobili, Effects of D-dimer, antithrombin and PAP complex on platelet activation, Thromb. Res. 213 (2022) 97–104.

T.S. Rodrigues, K.S. de Sá, A.Y. Ishimoto, A. Becerra, S. Oliveira, L. Almeida, A. V. Gonçalves, D.B. Peruccello, W.A. Andrade, R. Castro, Inflammases are showcased in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients, J. Exp. Med. 218 (3) (2021) 861–879.

F. Gragnano, S. Sperlongano, E. Golia, F. Natale, R. Bianchi, M. Crisci, F. Fimiani, T.S. Rodrigues, K.S. de Sá, L. Ruhl, I. Pink, J.F. Kühne, K. Beushausen, J. Keil, S. Christoph, A. Sauer, S.R. Clark, A.C. Ma, S.A. Tavener, B. McDonald, Z. Goodarzi, M.M. Kelly, K. Y. Jin, W. Ji, H. Yang, S. Chen, W. Zhang, G. Duan, Endothelial activation and immune system, Curr. Trends Immunol. 16 (2015) 65–74.

M. Afzal, F. Biciper, C. Logins, O.H. Orasan, A.L. Lazar, C. Buchman, P. Hänggli, A. Strolin Netoli, M.C. Notarangelo, Endothelial dysfunction, inflammation, and oxidative stress in COVID-19—Mechanisms and therapeutic targets, Oxid. Med. Cell. Longevity 2021 (2021).

S. Nagahama, M.C. Mendes, A.P. Camargo Martins, N.H. Borge, T.M. Godoy, A.F.R.D.S. Miggiolaro, F. da Silva Dezidério, C. Machado-Souza, L. de Noronha, Endothelial dysfunction and thrombosis in patients with COVID-19—brief report, Arterioscler. Thromb. Vasc. Biol. 40 (10) (2020) 2404–2407.

Y. Jin, W. Ji, H. Yang, S. Chen, W. Zhang, G. Duan, Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches, Signal Transduction Targeted Ther. 5 (1) (2020) 1–13.

S.R. Clark, A.C. Ma, S.A. Tavener, B. McDonald, Z. Goodarzi, M.M. Kelly, K. Y. Jin, W. Ji, H. Yang, S. Chen, W. Zhang, G. Duan, Endothelial activation and immune system, Curr. Trends Immunol. 16 (2015) 65.

M. Gobe, B. Gianesin, M. Morandi, C. Lunardi, G. Lippi, A relative ADAMTS13 deficiency components on endothelial cell-anchored ultra-large von Willebrand factor links inflammation: from pathogenesis to targeted therapy, Mediators Inflamm. 2017 (2017) 1–7.

H. Maiuri, A. Maseri, A. Dall’Ora, I. Bolognesi, J. Schmidt, S. David, Endothelial dysfunction contributes to severe COVID-19 in combination with dysregulated lymphocyte responses and cytokine networks, Signal Transduction Targeted Ther. 5 (1) (2020) 1–13.

S. Panigrahi, Y. Ma, L. Hong, D. Gao, X.Z. West, R.G. Salomon, T.V. Byезa, E. A. Pederzoli, Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis, Circ. Res. 112 (1) (2013) 103–112.

T. Quillard, H.A. Araújo, G. Franck, E. Shvartz, G. Suhová, P. Libry, TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion, Eur. Heart J. 36 (22) (2015) 1394–1404.

B.F. Kraemer, R.A. Campbell, H. Schwertz, M.J. Cody, Z. Franks, N.D. Tolley, W.H. Geller, S. Lindeman, D.C. Dzau and T. Fuster, Novel bacteriolar activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation, PLoS Pathog. 7 (11) (2011) e1002355.

N. Maugeri, L. Campana, M. Gavina, C. Covino, M. De Metrio, C. Panciroli, L. Musetti, A. Maseri, E. Nobili, Effects of D-dimer, antithrombin and PAP complex on platelet activation, Thromb. Res. 213 (2022) 97–104.

T.S. Rodrigues, K.S. de Sá, A.Y. Ishimoto, A. Becerra, S. Oliveira, L. Almeida, A. V. Gonçalves, D.B. Peruccello, W.A. Andrade, R. Castro, Inflammases are showcased in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients, J. Exp. Med. 218 (3) (2021) 861–879.

F. Gragnano, S. Sperlongano, E. Golia, F. Natale, R. Bianchi, M. Crisci, F. Fimiani, L. Parrigiano, V. Diana, A. Carbone, The role of von Willebrand factor in vascular inflammation: from pathogenesis to targeted therapy, Mediators Inflamm. 2017 (2017).
D. Müller, A.-K. Bosserhoff, Integrin W. Chen, M.C. Harbeck, W. Zhang, J.R. Jacobson, MicroRNA regulation of A.B. Arroyo, M.P. Fernández, X. Kong, A.A. Kondkar, L.C. Edelstein, L. Ma, J. Chen, G. J. Wu, X. Liu, J. Shao, Y. Zhang, R. Lu, H. Xue, Y. Xu, L. Wang, H. Zhou, L. Yu, T.-R. Li, Y.-J. Jia, C. Ma, W.-Y. Qiu, Q. Wang, X.-Q. Shao, R.-J. Lv, The role of the V. Zapilko, R.J. Fish, A. Garcia, J.-L. Reny, S. Dunoyer-Geindre, T. Lecompte, R.J. Wan, Y.H. Li, MicroRNA-146a/NAPDH oxidase4 decreases reactive oxygen R.J. Farr, C.L. Rootes, L.C. Rowntree, T.H. Nguyen, L. Hensen, L. Kedzierski, A. S.S. Mortazavi-Jahromi and M. Aslani Function on Antiplatelet Therapy: A Review, Front. Physiol. 12 (2021) 498. J. Hernández-Antunes, N. García-Barberá, R. de Los Reyes-García, P. González-Jiménez-Antolín, N. García-Barberá, E.M. Quinn, J.H. Wang, G. O’Riordan, H. Guo, T. Chen, Z. Wang, X. Wei, B. Zhang, Z. Wen, H. Fang, Q. Pang, F. Yi, Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX expression in experimental diabetic nephropathy, Am. J. Nephrol. 32 (6) (2010) 581–589.

J. He, B.-H. Jiang, Interplay between reactive oxygen species and microRNAs in cardiovascular diseases, Curr. Pharm. Des. 18 (2012) 8224–8230.

Y. Li, Y.-H. Tu, J.-W. Chen, Q.-Y. Wang, S. Li, M.-C. Li, L. Dai, J.-S. Wang, Y.-L. Zhang, L. Feng, NADPH oxidase inhibitor regulates microRNAs with improved outcome after mechanical reperfusion, J. Neurointerventional Surg. 9 (7) (2017) 702–706.

R.-A.H. Haroun, W.H. Osman, A.R. Akram, H.S. Wab-Shanab, A. M. Essa, Circulating plasma miR-155 is a potential biomarker for the detection of SARS-CoV-2 infection, Pathology 54 (1) (2022) 104–110.

P. Martínez-Pelete, P. Vera-Tomás, M. Jiménez-Fernández, S. Requena, E. Roy-Vallejo, A. Sanz-García, M. Lozano-Prieto, C. López-Sanz, A. Avar, A. Lanchón-Sánchez, A Differential Signature of Circulating miRNAs and Cytokines Between COVID-19 and Community-Acquired Pneumonia Uncovers Novel Physiopathological Mechanisms of COVID-19, Front. Immunol. 12 (2021).

J. Sabbatiniello, A. Giuliani, G. Matacchi, S. Latini, M. Lapovorita, G. Pomponio, A. Ferrari, S.S. Baroni, M. Pavani, M. Mestreti, Decreased serum levels of the inflamming marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients, Mech. Ageing Dev. 193 (2021), 111413.

R. Rekhi, S. Hashemi-Shahri, A. Jelabi, The miRNA neuroinflammatory biomarkers in COVID-19 patients with different severity of illness, Neurology (London) 86 (2021) 1–6.

H. Tang, Y. Gao, Z. Li, Y. Miao, Z. Huang, X. Liu, L. Xie, H. Li, W. Yin, Y. Zheng, The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19, Clin. Translational Med. 10 (6) (2020) e200.

D. de Gonzalo-Calvo, B. Podestá, L. Pinilla, A. Carratalá, A. Moncunill-Moya, C. Gort-Paniello, M. Molinero, J. González, G. Torres, M. Bernal, Circulating microRNA profiles predict the severity of COVID-19 in hospitalised patients, Translational Res. 256 (2021) 97–109.

S. Sarvastava, I. Garg, S. Kumari, K. Meena, A.A. Hembrom, N. Ghosh, B. Kumari, V. Kumar, M.R. Edavalath, S. Singh, Evaluation of altered miRNA expression pattern to predict COVID-19 severity, (2021).

J.-T.-S. Chow, L. Salmena, Prediction and analysis of SARS-CoV-2-targeting MicroRNA in human lung epithelium, Genes 11 (9) (2020) 1002.

A. Sahu, P.K. Jha, A. Prabhakar, H.D. Singh, N. Gupta, T. Chatterjee, T. Tyagi, S. Sharma, B. Kumari, S. Singh, MicroRNA-145 impedes thrombus formation via targeting tissue factor in venous thrombosis, ElBioMedicine 26 (2017) 175–186.

K.J. Jankowska, Z.E. Sauna, C.D. Atreya, Role of microRNAs in hemophilia and thrombosis in humans, Int. J. Mol. Sci. 21 (10) (2020) 3598.

R. Teruel-Montoya, F. Rosendaal, C. Martínez, MicroRNAs in hemostasis, J. Thromb. Haemost. 18 (5) (2020) 170–181.

J.-K. Jankowska, J. McCull, B. Pезенкпор, J. Oldenburg, Z.E. Sauna, C.D. Atreya, Further evidence that microRNAs can play a role in Hemophilia A manifestation: F8 gene downregulation by miR-19b-3p and miR-186-5p, Front. Immunol. 8 (2017) 3387.

Y. Yang, J. Cheng, D. Wang, X. Huo, Y. Xie, J. Sitham, G. Attreya, J. Du, W. H. Tang, S.H. Lee, Hyperglycemia repression of miR-24 coordinateely upregulates endothelial cell expression and secretion of von Willebrand factor, Blood, J. Am. Soc. Hematol. 125 (22) (2015) 3377–3387.

J. Gambardella, A. Coppola, R. Izzo, G. Fiorentino, B. Trimarco, G. Santulli, Role of endothelial miR-24 in COVID-19 cerebrovascular events, Crit. Care 25 (1) (2021) 1–3.

L. Zhao, H. Cui, Y. Li, Q. Sun, W. Wu, miR-525-5p inhibits ADAMTS13 and is correlated with Icheemia/reperfusion injury-induced neuronal cell death, Int. J. Clin. Exp. Med. 8 (10) (2015) 42–55.

T. Chen, Z. Li, W. Zhu, J. Ge, X. Zheng, X. Fan, H. Yan, J. Zhu, MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells, FEBS Lett. 585 (3) (2011) 175–186.

F. Yi, Regulation of NADPH oxidase activity is associated with miRNA-25 expression in mesangial cells, NMJ 3387 (2012) 1–5.

M. Biják, M. Drzícel, J. Ryvacek, J. Salák, M. Žítek, Platelets miRNA as a prognostic marker of chronic diseases, Dis Markers 2872507 (2016).

Y. Li, X. Mu, S. Chen, J. Ge, Z. Wang, Q. Pang, F. Yi, Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX expression in experimental diabetic nephropathy, Am. J. Nephrol. 32 (6) (2010) 581–589.

J. He, B.-H. Jiang, Interplay between reactive oxygen species and microRNAs in cardiovascular diseases, Curr. Pharm. Des. 18 (2012) 8224–8230.

Y. Su, Q. Li, Z. Zheng, W. Pei, H. Hou, Identification of genes, pathways and transcription factor-miRNA-target gene networks and experimental verification in venous thromboembolism, Sci. Rep. 11 (1) (2021) 1–16.
H. Guo, Z. Yan, Y. Hu, X. Huang, C. Pan, Complement C7 is specifically expressed in mesangial cells and is a potential diagnostic biomarker for diabetic nephropathy and is regulated by miR-494-3p and miR-574-5p. Diabetes, Metabolic Syndrome and Obesity: Targets Ther 14 (2021) 3077.

W. Cui, Y. Zhang, N. Hu, C. Shan, S. Wang, Z. Xiang, Z. L. Ye, miRNA-520b and miR-520e sensitize breast cancer cells to complement attack via directly targeting C1r and C4D6. Cancer Biol Ther 10 (2010) 225-241.

Y.Y. Li, P.N. Alexandrov, A.I. Pogue, Y. Zhao, S. Bhattacharjee, W.J. Lukiw, miRNA-155 up-regulates and complement factor H (CHF) deficiency in Down’s Syndrome. NeuroReport 23 (3) (2012) 169.

W.J. Lukiw, B. Suryadiputra, D. Pan, P.N. Alexandrov, Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age-related macular degeneration (AMD). J. Int. Biochem. Mol. Biol. 3 (1) (2012) 105.

J. Shu, Z. Xia, L. Li, E.T. Liang, N. Slipek, D. Shen, J. Foo, S. Subramanian, C. Harris, P.R. Thompson, L.J. Hofseth, The miR-143/-145 cluster regulates plasminogen activator and decreases the invasive growth of MDA-MB-231 triple-negative breast cancer cells. Oncotarget 11 (2018) 7773.

M.L. Du Meng, Y. Han, D. Zhao, X. Zhang, Y. Liu, MicroRNA-645 targets urokinase plasminogen activator decreases and the invasive growth of MDA-MB-231 triple-negative breast cancer cells. Oncotarget 7 (2016) 30603.

B. Wang, Y. Liu, L. Liu, Y. Li, A. Chang, J. Zhang, J. Mei, C. Liu, The interaction between HIF-1α and miR-217, J. Immunol. 196 (12) (2016) 5156.

S.M. Akula, P. Bolin, P.P. Cook, Cellular miR-150-5p may have a crucial role to play in the biology of SARS-CoV-2 infection by regulating mi10p gene expression. RNA Biol 19 (2021) 1-11.

W.J. Lukiw, B. Suryadiputra, D. Pan, P.N. Alexandrov, Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age-related macular degeneration (AMD). J. Int. Biochem. Mol. Biol. 3 (1) (2012) 105.

Y. Hillman, N. Mazkereth, L. Farberov, N. Shomron, Z. Fishelson, Regulation of miRNAs in cancer, J. Exp. Clin. Cancer Res. 39 (1) (2020) 1.

R. Bartoszewski, miRNAs regulate the HIF switch during hypoxia: a novel noncoding RNAs in cancer, J. Exp. Clin. Cancer Res. 39 (1) (2020) 16.

S. Suehiro, S. Kohno, H. Harada, J. Tanaka, miR340 suppresses the stem-like cell differentiation through the AMPK pathway by targeting PFKFB3, Oncotarget 6 (2015) 2928.

R. Alipoor, H. Ghaedi, R. Meshkani, M. Omrani, Z. Sharifi, T. Mohammadi, The miR-143/-145 family regulates expression of miR-236, Cancer Biol Ther. 10 (3) (2010) 232.

F. Yuan, Y. Wang, L. Liu, Y. Li, A. Chang, J. Zhang, J. Mei, C. Liu, A functional variant m353292 in the region of miR-143/145 contributes to the risk of colorectal cancer. Sci. Rep. 6 (1) (2016) 1-7.

D. Wang, Q. Liu, Y. Ren, Y. Zhang, X. Wang, B. Liu, Association analysis of miRNA-related genetic variation and colorectal cancer susceptibility and survival, Biosci. Rep. 41 (4) (2021). BSR20204136.

M.T. Eadon, A. Jacob, P.N. Cunningham, R.J. Quigg, J.G. Garcia, J.J. Alexander, Transcriptional profiling reveals that C5bα targets micro RNA in brain endothelial cells, Immunology 143 (3) (2016) 363-373.

S. Thulasisingam, C. Masslamany, A. Gangapara, H. Dai, S. Yarbaeva, S. Subramanian, J.-J. Riethofer, E. Moud, J. Reddy, miR-27β+, an oxidative stress-responsive microRNA regulates nuclear factor-κB pathway in RAW 264.7 cells. Mol. Cell. Biochem. 352 (1) (2011) 181-188.

Q. Li, X. Liu, Y. Yin, J.T. Zheng, C.F. Jiang, J. Wang, H. Shen, C.-Y. Li, M. Wang, L.-Z. Liu, Insulin regulates glucose consumption and lactate production through effects on oxygen species and pyruvate kinase M2, Oxid. Med. Cell. Longevity 2014 (2014).

F. Pacifico, E. Cresceni, S. Melione, A. Iannetti, N. Porrino, D. Liguoro, J. Shu, Z. Xia, L. Li, E.T. Liang, N. Slipek, D. Shen, J. Foo, S. Subramanian, C. Massilamany, A. Gangaplara, H. Dai, S. Yarbaeva, A functional variant m353292 in the region of miR-143/145 contributes to the risk of colorectal cancer. Sci. Rep. 6 (1) (2016) 1-7.

D. Wang, Q. Liu, Y. Ren, Y. Zhang, X. Wang, B. Liu, Association analysis of miRNA-related genetic variation and colorectal cancer susceptibility and survival, Biosci. Rep. 41 (4) (2021). BSR20204136.

M.T. Eadon, A. Jacob, P.N. Cunningham, R.J. Quigg, J.G. Garcia, J.J. Alexander, Transcriptional profiling reveals that C5bα targets micro RNA in brain endothelial cells, Immunology 143 (3) (2016) 363-373.

S. Thulasisingam, C. Masslamany, A. Gangapara, H. Dai, S. Yarbaeva, S. Subramanian, J.-J. Riethofer, E. Moud, J. Reddy, miR-27β+, an oxidative stress-responsive microRNA regulates nuclear factor-κB pathway in RAW 264.7 cells. Mol. Cell. Biochem. 352 (1) (2011) 181-188.

Q. Li, X. Liu, Y. Yin, J.T. Zheng, C.F. Jiang, J. Wang, H. Shen, C.-Y. Li, M. Wang, L.-Z. Liu, Insulin regulates glucose consumption and lactate production through effects on oxygen species and pyruvate kinase M2, Oxid. Med. Cell. Longevity 2014 (2014).

F. Pacifico, E. Cresceni, S. Melione, A. Iannetti, N. Porrino, D. Liguoro, J. Shu, Z. Xia, L. Li, E.T. Liang, N. Slipek, D. Shen, J. Foo, S. Subramanian, C. Massilamany, A. Gangaplara, H. Dai, S. Yarbaeva, A functional variant m353292 in the region of miR-143/145 contributes to the risk of colorectal cancer. Sci. Rep. 6 (1) (2016) 1-7.

D. Wang, Q. Liu, Y. Ren, Y. Zhang, X. Wang, B. Liu, Association analysis of miRNA-related genetic variation and colorectal cancer susceptibility and survival, Biosci. Rep. 41 (4) (2021). BSR20204136.
S.S. Mortazavi-Jahromi and M. Aslani

International Immunopharmacology 110 (2022) 109040

20

S.S. Mortazavi-Jahromi, M.M. Jamshidi, M. Yousefi, S.S. Navabi, N. Motamed, F. Jafarnezhad-Ansariha, M. Oraei, A. Mirshafiey, The oral administration effect of β-D-mannuronic acid in rheumatoid arthritis patients, Curr. Drug Discov. Technol. 17 (5) (2020) 704–710.

S.S. Mortazavi-Jahromi, S. Alizadeh, M.H. Javanbakht, A. Mirshafiey, Anti-Immunopharmacological effect of guluronic acid (G2013) as a New NSAID in the Experimental Model of Diabetes, Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 20 (3) (2020) 446–452.

M. Taeb, S.S. Mortazavi-Jahromi, M.R. Mirzaei, A. Mirshafiey, An in vitro evaluation of anti-aging effect of guluronic acid (G2013) based on enzymatic oxidative stress gene expression using healthy donor peripheral blood mononuclear cells for evaluating the anti-aging property, Curr. Drug Discov. Technol. 16 (3) (2019) 265–271.

S.S. Mortazavi-Jahromi, M.H. Javanbakht, A. Mirshafiey, Anti-diabetic effect of β-D-mannuronic acid (M2000) as a novel NSAID with immunosuppressive property on insulin production, blood glucose, and inflammatory markers in the experimental diabetes model, Arch. Physiol. Biochem. 125 (5) (2019) 435–446.

H. Ahmadi, A.R. Jamshidi, F. Gharibdoost, M. Mahmoudi, A. Mirshafiey, Effects of guluronic acid (M2000) on gene expression profile of signal transducer and activator of transcription proteins (STATs) in rheumatoid arthritis patients, Reumatismo 72 (2) (2020) 93–102.

S.S. Mortazavi-Jahromi, S. Nazeri, F. Jafarnezhad-Ansariha, M. Oraei, A. Mirshafiey, Assessment of immunological profile in ankylosing spondylitis patients following a clinical trial with guluronic acid (G2013), as a new NSAID with immunomodulatory properties, Immunol. Res. 67 (1) (2019) 108–115.

Z. Rezaieyazdi, A. Farooqi, H. Soleymani-Salehabadi, A. Ahmadzadeh, M. Aslani, S. Omidian, A. Razavi, A. Mirshafiey, Immunological profile in rheumatoid arthritis patients, Inflammopharmacology 27 (5) (2019) 911–921.

S.S. Mortazavi-Jahromi, S. Alizadeh, M.H. Javanbakht, A. Mirshafiey, Anti-diabetic effect of β-D-mannuronic acid (M2000) as a novel NSAID with immunosuppressive property on insulin production, blood glucose, and inflammatory markers in the experimental diabetes model, Arch. Physiol. Biochem. 125 (5) (2019) 435–446.

H. Ahmadi, A.R. Jamshidi, F. Gharibdoost, M. Mahmoudi, N. Rastkari, A. Mirshafiey, Oral administration effect of β-D-mannuronic acid in rheumatoid arthritis patients, Drug Dev. Res. 81 (3) (2020) 295–304.

N. Gaafar, M. Aslani, Z. Aghazadeh, S. Mortazavi-Jahromi, A. Razavi, A. Mirshafiey, Effects of guluronic acid (M2000) on gene expression profile of signal transducer and activator of transcription proteins (STATs) in rheumatoid arthritis patients, Reumatismo 72 (2) (2020) 93–102.

S.S. Mortazavi-Jahromi, S. Nazeri, F. Jafarnezhad-Ansariha, M. Oraei, A. Mirshafiey, Assessment of immunological profile in ankylosing spondylitis patients following a clinical trial with guluronic acid (G2013), as a new NSAID with immunomodulatory properties, Immunol. Res. 67 (1) (2019) 108–115.

Z. Rezaieyazdi, A. Farooqi, H. Soleymani-Salehabadi, A. Ahmadzadeh, M. Aslani, S. Omidian, A. Sadoughi, Z. Vahidi, M. Khodashahi, S. Zamurrad, International multicenter randomized, placebo-controlled phase III clinical trial of β-D-mannuronic acid in rheumatoid arthritis patients, Inflammopharmacology 26 (3) (2018) 737–745.

S.S. Mortazavi-Jahromi, A. Faramand, N. Motamed, S.S. Navabi, A. Mirshafiey, Effects of guluronic acid (G2013) on SHIP1, SOCS1 induction and related molecules in TLR4 signaling pathway, Int. Immunopharmacol. 55 (2018) 323–329.

M.J. Fattahi, H. Ahmadi, F. Jafarnezhad-Ansariha, S.S. Mortazavi-Jahromi, B. H. Behn, S. Cuzzocrea, H. Matsuo, A. Mirshafiey, Oral administration effects of β-D-mannuronic acid (M2000) on Th17 and regulatory T cells in patients with ankylosing spondylitis, Biomed. Pharmacother. 100 (2018) 495–500.

M. Jahanbakhshi, Z. Babaloo, S.S. Mortazavi-Jahromi, M.M. Shokri, H. Ahmadi, A. Mirshafiey, Modification of sexual hormones in rheumatoid arthritis patients by M2000 (β-D-mannuronic acid) as a Novel NSAID with immunosuppressive property, Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 18 (5) (2018) 530–536.

S. Omidian, Z. Aghazadeh, A. Ahmadzadeh, M. Aslani, M. Hosseini, S. Abbasi, A. Mirshafiey, Evaluating mannuronic acid effect on gene expression profile of inflammatory mediators in rheumatoid arthritis patients, Iranian J. Allergy, Asthma Immunol. (2021) 1–13.

N.A. Gaafar, M. Aslani, Z. Aghazadeh, A. Razavi, A. Mirshafiey, The oral administration effect of drug mannuronic acid (M2000) on gene expression of matrix and tissue inhibitor of metalloproteinases in rheumatoid arthritis patients, Curr. Drug Discov. Technol. 17 (5) (2020) 704–710.

S.S. Mortazavi-Jahromi, S. Alizadeh, M.H. Javanbakht, A. Mirshafiey, Anti-Diabetic and Angio-Protective Effect of Guluronic Acid (G2013) as a New Nonsteroidal Anti-Inflammatory Drug in the Experimental Model of Diabetes, Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 20 (3) (2020) 446–452.

M. Taeb, S.S. Mortazavi-Jahromi, N. Zainodini, M.R. Mirzaei, A. Mirshafiey, S. Cuzzocrea, B. Rehm, H. Matsuo, M2000: a revolution in the treatment of rheumatoid arthritis, Adv. Mater. 32 (18) (2020) 1904040.