Helicobacter pylori Suppresses Serum Immunoglobulin Levels in Smokers with Peptic Ulcer: Probable Interaction Between Smoking and H. pylori Infection in the Induction of Th1 Predominant Immune Response and Peptic Ulceration

Yoshihiro Matsukawa1 and Kimitoshi Kato2

1Division of Hematology and Rheumatology
2Division of Gastroenterology and Hepatology
Department of Medicine
Nihon University School of Medicine
Japan

1. Introduction

1.1 T helper cell subset

Helicobacter pylori (H. pylori) and smoking are well known risk factors for gastric ulcer, and both are classified as definite carcinogens. Interestingly, the two also reportedly share common immune response features.

With recent advances in immunology, various functions of T lymphocytes (T cells) have been discovered. T cells are divided into suppressor and helper on the basis of immunological functionings, and T helper cells are now known to consist of two distinct groups, as demonstrated using mouse models in the 1980s [Reiner, 2008; Mosman & Coffman, 1989]. Both groups are derived from naïve T cells: interleukin-12 (IL-12) causes naïve T helper cells to differentiate into type 1 (Th1) cells, while augmentation of IL-4 around naïve T cells leads to Th2 differentiation. Th1 cells produce IL-2 and interferon-\(\gamma\) (IFN-\(\gamma\)) to maintain cell mediated immunity against intracellular organisms such as viruses and mycobacteria, and Th2 cells produce IL-4 and IL-13 promoting the differentiation of B cells to plasma cells and the induction of class-switching resulting in IgE production. Differentiated plasma cells produce immunoglobulins which participate in mucosal defense against extracellular organisms including H. pylori. Groundbreaking research inspired subsequent studies which finally led to the discovery of Th17 cells [Steinman, 2007] and T regulatory cells (Treg) [Sakaguchi et al., 1995, 2008]. As a consequence of this pioneering research, T helper cells, at present, are sub-grouped into 4 types according to the differences in their cytokine productions (Table 1).
Table 1. T helper subsets

T helper subset	Cytokines Secreted	Cytokines Secreted
Th1*	IL-12, IFN-γ	IL-2, TNF, IFN-γ
Th2**	L-4, IL-33	IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-25
Th17	TGF-β, IL-6, IL-23	IL-17, IL-6, IL-22, TNF
Treg	TGF- β, IL-10	TGF- β IL-10, CTLA4

Table 1a. Subsets of T helper cells and related cytokines

T helper subset	Protection	Pathology
Th1*	Defense against intracellular organisms	Inflammation
Th2**	Defense against extracellular bacteria at mucosal and epithelial surface	Allergy
Th17	Defense against extracellular bacteria	Autoimmunity
Treg	Suppression of immune response	Anti-inflammation

Concept of Th1 and Th2 cells originate from the cytokine production pattern of murine T cells. Therefore attention such differences is necessary when considering human immunity.

*Exert cell mediated immunity
**Exert humoral immunity
CTLA4: Cytotoxic T lymphocyte antigen 4
IFN: Interferon
IL: Interleukin
TGF: Tumor growth factor
TNF: Tumor necrosis factor

Table 1b. Roles of each T helper subset

Th1 cells produce IL-2, IFN-γ, tumor growth factor-β (TGF-β) and so on, thereby exerting cell mediated immunity mainly through IFN-γ.
Th2 cells produce IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, and so on, thereby up-regulating humoral immunity against extracellular pathogens and inducing allergy mainly through IL-4.
Th17 cells produce IL-17A, IL-17F, IL-22 and so on, thereby eradicating bacterial/fungal infections and might be related to autoimmunity and cancer. Th17 cells produce inflammatory cytokines, and over-expression of such cytokines is associated with autoimmune diseases such as type 1 diabetes, inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IL-6 and TGF-β are key cytokines for differentiation into Th17.
Treg produces TGF-β, IL-10, and cytotoxic T lymphocyte antigen 4 (CTLA4), and suppress activated T cells/dendritic cells. Treg can suppress Th1, Th2, and Th17 to terminate immune responses/inflammation and also plays crucial roles in immune tolerance [Sakaguchi et al., 1995, 2008].
Helicobacter pylori Suppresses Serum Immunoglobulin Levels in Smokers with Peptic Ulcer:
Probable Interaction Between Smoking and H. pylori Infection in the Induction of Th1…

As stated above, Th1 cells can down-regulate immunoglobulin production through secretion/production of IFN-γ whereas Th2 cells IL-4-dependently up-regulate immunoglobulin secretion/production.

1.2 Th1 response in patients with peptic ulcer
As to gastric and duodenal ulcers, H. pylori infection has increasingly been reported to exert a Th response on type 1 (Th1 cells) [Hida et al., 1999; Holck et al.; 2003; D’Elios et al., 1997, 2003,2005; Itoh et al., 2005; Goll et al., 2007; Ayada et al., 2009; Mohammadi et al., 1996; Fan et al., 1998; Bamford et al., 1998; sommer et al., 1998; Lindholm et al., 1998; Ihan et al., 2000; Smythies et al., 2000; Akhiani et al., 2002; Guiney et al., 2003; Amedei et al., 2006; Taylor et al, 2006], and peptic ulcer disease has also been increasingly reported to produce Th1 skew [Hida et al., 1999; D’Elios et al., 2007; Goll et al., 2008; Codolo et al., 2008; Del Prete et al., 2008; Shimada et al., 2008; Watanabe et al., 2010; Hosseini et al., 2010]. In addition, a unique study conducted by Itoh et al. suggested Th1 polarization of gastric T cells in the antrum of dyspeptic patients, irrespective of H. pylori infection [Itoh et al, 1999].

1.3 Th1 response in patients with H. pylori infection
H. pylori has increasingly been reported to show Th1 predominance [Mohammadi et al., 1996; D’Elios et al., 1997, 2003,2005; Bamford et al., 1998; Fan et al., 1998; Lindholm et al., 1998; Sommer et al., 1998; Hida et al., 1999; Ihan et al., 2000; Smythies et al., 2000; Akhiani et al., 2002; Guiney et al., 2003; Holck et al.; 2003; Itoh et al., 2005; Amedei et al., 2006; Taylor et al, 2006; Goll et al., 2007; Ayada et al., 2009] with only a few studies obtaining opposing results [Bergman et al., 2004; Campbell et al., 2004; Kayhan et al., 2008; Kido et al., 2010]. Therefore, H. pylori is presumed to down-regulate immunoglobulin production/secretion.

1.4 Influence of smoking on serum immunoglobulins and Th response
Smoking has been reported to suppress serum immunoglobulin levels [Andersen et al., 1982; Tollerud et al., 1995; Barbour et al., 1997; Gonzalez-Quintela et al., 2007] and some studies have indicated a Th1 skew in smokers [Hallquist et al., 2000; Whetzel et al., 2007; Kikuchi et al., 2008], although controversial data have also been reported [Hagiwara et al., 2001; Zeidel et al., 2002; Cozen et al., 2004].

1.5 Possible mechanisms by which H. pylori infection induces Th1 skew
Although a Th1 skew in H. pylori-infected patients is suggested by the vast majority of research conducted on this subject, the precise mechanism by which Th1 differentiation is induced has yet to be elucidated. However, some investigators have conducted crucial studies that may explain this phenomenon: Eaton et al. reported CD4+ T cells to be essential for the development of H. pylori-induced gastritis [Eaton et al., 2001], and Nagai et al. showed the coccoid form of H. pylori to reach to Peyer’s patches and then be phagocytosed by dendritic cells thereby sensitizing CD4+ T cells, and that these sensitized CD4+ T cells homed to the lamina propria of the gastric mucosa [Nagai et al., 2007]. Finally, such dendritic cells produce IL-12 which promotes Th1 differentiation after phagocytosis of H. pylori [Codolo et al., 2008].

In addition to mentioned above, a number of investigators have demonstrated a Th1 skew in patients with peptic ulcers, as compared to those with gastritis or gastric cancer [Hida et al., 1999; D’Elios et al., 2007; Goll et al., 2008; Codolo et al., 2008; Del Prete et al., 2008; Shimada et al., 2008; Hosseini et al., 2010; Watanabe et al., 2010].
We therefore conducted the current study to assess the influence of both *H. pylori* and smoking on serum immunoglobulin levels for the purpose of evaluating the presence of Th1 skew in patients with peptic ulcers.

2. Patients and method

2.1 Study design

Study 1. Effects of current smoking on levels of serum immunoglobulins

To evaluate the influences of smoking on serum immunoglobulin levels, serum IgG, IgA, and IgM levels were measured in both peptic ulcer and non-ulcer gastritis patients with and without *H. pylori* infection.

Study 2. Effects of *H. pylori* infection on levels of serum immunoglobulins in peptic ulcer patients

To evaluate the influences of *H. pylori* infection on serum immunoglobulin levels, serum IgG, IgA, and IgM were measured in peptic ulcer patients, both current smokers and non-smokers.

Study 3. As a control for study 2, serum IgG, IgA, and IgM levels were measured in non-ulcer gastritis patients with and without current smoking.

2.2 Patients

Dyspeptic patients and those recommended to undergo fibrescopic examination received gastroduodenoscopic examinations. Those endoscopically diagnosed as having gastric or duodenal ulcers were included in the current study. Following informed consent to check *H. pylori* status and immunohematologic parameters, dyspeptic patients underwent gastrofiberscopic examination. Patients with hematologic, immunologic, rheumatic, malignant, and infectious diseases were excluded. Those taking corticosteroids, antibiotics, and/or immunosuppressive drugs were also excluded. Because non-steroidal anti-inflammatory drugs (NSAIDs) [Franch et al, 1994; Mazzeo et al., 1998; Yamaki et al., 2003, 2005; Andreone et al., 2004; Mored et al., 2004] and proton-pump inhibitors (PPIs) [Tsutsumi et al., 2005; Matsukawa et al., 2007] have increasingly been reported to skew the T helper response toward type 2, patients taking these drugs were also excluded. Both smokers and non-smokers with endoscopically diagnosed non-ulcer gastritis were also evaluated as control groups.

2.3 Methods

Following informed consents to measure titers of serum anti-*H. pylori* IgG antibody, serum immunoglobulins and complete blood cell counts, patients with gastric or duodenal ulcer was diagnosed according to the classification of Sakita and Miwa [Matsukawa et al., 1997], and those with non-ulcer gastritis did according to the updated Sydney System [Dixon et al., 1996] under gastrofiberscopic observation. To evaluate *H. pylori* status, biopsy specimens were obtained from the antrum and lower body of the greater curvature in the stomach and from the major lesions. The samples from the antrum and lower body were placed in rapid urease test (RUT) kits, and the results were evaluated 24 hr later. These samples were also prepared for pathologic evaluation. Immediately after completion of the procedure, blood samples were collected to measure IgG, IgA, IgM, and anti-*H. pylori* IgG antibodies. Serum levels of IgG, IgA, and IgM were measured by an automated turbidimetric immunoprecipitation method [Matsukawa et al., 1997], and the anti-*H. pylori* antibody was measured by a commercially available ELISA kit. Confirmed *H. pylori* infection required
both RUT and anti-\textit{H. pylori} IgG antibody to be positive. Smoking status was ascertained on the day of the endoscopic examination.

2.3.1 Statistical analysis
Data were expressed as means+/SD. The statistical significance of differences was analyzed employing the Student unpaired \textit{t}-test and the χ^2-square test. We evaluated statistical differences using Macintosh StatView version 4, and p values less than 0.05 were accepted as statistically significant.

3. Results

3.1 Recruited patients and controls
Table 2. Profiles of patients and controls

Sex	Female	Male
Number	90	146
Age (years)**	60.0+//-11.5	53.4+//-13.6
H. pylori*	66 (73.3%)	127 (87.0%)
Smokers*	24 (37.5%)	82 (56.2%)

Table 2a. Profiles of patients with peptic ulcer

Sex	Female	Male
Number	408	312
Age (years)	56.6+//-14.3	55.8+//-13.3
H. pylori*	229 (56.1%)	192 (61.1%)
Smokers*	44 (10.8%)	106 (34.0%)

Smokers: peptic ulcer>non-ulcer gastritis (female.=0001 and male <.0001)
H. pylori prevalence: peptic ulcer>non-ulcer gastritis (<.0001 for females and males)
*P<.0001 **P=.0001

Table 2b. Profiles of patients with non-ulcer gastritis
There were 146 patients with gastric ulcer, 58 with duodenal ulcer, and 32 with both types (Table 3). There were no differences in these lesions between smokers and non-smokers.

Smokers (F:M)

Body (F:M)	Angle/Antrum	Duodenum	Multiple
33 (7:26)	30(10:20)	28 (2:26)	15 (5:10)
Non-smokers (F:M)			
51 (32:19)	32(15:17)	30 (15:15)	17 (5:12)
Total	84 (39:45)	58 (17:41)	32 (10:22)

Table 3. Ulcer location (F:M)
Table 2 presents the profiles of both patients with peptic ulcer and those with non-ulcer gastritis serving as controls. In total, 236 patients (F:M=90:146) were diagnosed as having gastric and/or duodenal ulcers and were enrolled in this study. There was an age difference
between female and male patients (F:M=60.0+/-11.5 vs. 53.4+/-13.6 years, p=.0001) (Table 2a). Patients with non-ulcer gastritis consisted of 408 females and 312 males, and there was no difference in age between genders (56.6+/-14.3 vs. 55.8+/-13.3 years) (Table 2b).

Patients with peptic ulcer had higher prevalences of both *H. pylori* infection and smoking, as compared to those with non-ulcer gastritis: p=.0001 for smoking in females and <.0001 for smoking in males, while p<.0001 for *H. pylori* infection in both females and males (Tables 2a and 2b).

3.2 Serum levels of IgG, IgA, and IgM in the current study

3.2.1 The results of study 1

Tables 4 and 5 show the results of study 1, examining the effects of current smoking on serum immunoglobulin levels in patients with peptic ulcer and non-ulcer gastritis. There was an age difference between smokers and non-smokers with *H. pylori* infection among ulcer patients (p=.0019). Smoking was associated with definite suppressions of serum IgG, IgA, and IgM levels in *H. pylori*-infected patients with peptic ulcer (p<.0001, .0006, and .0009, respectively), whereas ulcer patients without *H. pylori* infection showed no such tendency. Table 5 presents the effects of current smoking on serum immunoglobulin levels in non-ulcer patients with gastritis. There was an age difference between smokers and non-smokers (p<.0001). Among patients with non-ulcer gastritis, smokers had suppressed serum IgG (p<.0001), IgA (p<.05), and IgM levels, although the reduction of IgM in patients with *H. pylori* infection failed to reach statistical significance. Like those with *H. pylori* infection, non-ulcer patients without *H. pylori* infection also showed suppression of both IgG and IgM (p<.05, respectively).

Table 4. Influence of smoking on serum immunoglobulin levels in peptic ulcer patients

	Smokers	Non-smokers	P
N	92	101	
Age	52.2+/-12.2	58.0+/-13.2	.0019
IgG	1178.0+/-250.3	1376.6+/-343.2	<.0001
IgA	218.4+/-98.2	271.4+/-109.1	.0006
IgM	93.8+/-41.9	123.1+/-71.1	.0009

Table 4a. Serum immunoglobulin levels in *H. pylori*-infected patients

	Smokers	Non-smokers	P
N	14	29	
Age	56.0+/-13.7	60.7+/-13.7	NS
IgG	1348.6+/-254.7	1463.7+/-286.3	NS
IgA	295.1+/-113.2	253.2+/-99.3	NS
IgM	105.8+/-49.8	123.5+/-47.9	NS

IgG: Immunoglobulin G (mg/dl)
IgA: Immunoglobulin A (mg/dl)
IgM: Immunoglobulin M (mg/dl)
N: Number of patients
NS: Not significant
P: Probability

Table 4b. Serum immunoglobulin levels in patients without *H. pylori* infection
Table 5. Effects of smoking on serum immunoglobulin levels in non-ulcer gastritis patients

	Smokers	Non-smokers	P
N	93	325	
Age	53.5+/−11.6	60.0+/−11.4	<.0001
IgG	1224.1+/−264.3	1392.1+/−278.6	<.0001
IgA	236.6+/−97.0	264.0+/−112.7	.0384
IgM	104.7+/−58.6	112.4+/−63.5	NS

IgG: Immunoglobulin G (mg/dl)
IgA: Immunoglobulin A (mg/dl)
IgM: Immunoglobulin M (mg/dl)
N: Number of patients
NS: Not significant
P: Probability

Table 5a. Serum immunoglobulin levels in *H. pylori*-infected patients

	Smokers	Non-smokers	P
N	57	247	
Age	51.9+/−13.4	57.8+/−13.9	.0071
IgG	1205.5+/−278.6	1295.0+/−237.7	.0228
IgA	254.7+/−118.3	251.0+/−89.7	NS
IgM	83.4+/−42.9	104.8+/−69.0	.0408

IgG: Immunoglobulin G (mg/dl)
IgA: Immunoglobulin A (mg/dl)
IgM: Immunoglobulin M (mg/dl)
N: Number of patients
NS: Not significant
P: Probability

Table 5b. Serum immunoglobulin levels in patients without *H. pylori* infection

3.2.2 The results of study 2

Table 6. Effects of *H. pylori* infection on serum immunoglobulin levels in peptic ulcer patients

H. pylori	Positive	Negative	P
N	92	14	
Age	52.6+/−12.2	56.0+/−13.7	NS
IgG	1177.9+/−250.3	1348.6+/−254.7	.0197
IgA	218.4+/−98.2	295.1+/−113.2	.0092
IgM	93.8+/−41.9	105.8+/−49.8	NS

IgG: Immunoglobulin G (mg/dl)
IgA: Immunoglobulin A (mg/dl)
IgM: Immunoglobulin M (mg/dl)
N: Number of patients
NS: Not significant
P: Probability

Table 6a. Serum immunoglobulin levels in smokers

H. pylori	Positive	Negative	P
N	101	29	
Age	58.0+/−13.2	60.7+/−13.7	NS
IgG	1376.6+/−343.3	1463.7+/−286.3	NS
IgA	271.4+/−109.1	253.2+/−99.3	NS
IgM	123.1+/−71.1	123.5+/−47.9	NS

IgG: Immunoglobulin G (mg/dl)
IgA: Immunoglobulin A (mg/dl)
IgM: Immunoglobulin M (mg/dl)
N: Number of patients
NS: Not significant
P: Probability
Table 6 presents the results of study 2, examining the effects of \textit{H. pylori} infection on serum levels of immunoglobulins in peptic ulcer patients. As a whole, patients with peptic ulcer showed decreases in serum IgG, IgA, and IgM levels, although only the decrease in IgG reached statistical significance (data not shown). Among those with peptic ulcer, smokers with \textit{H. pylori} infection showed decreases in both IgG and IgA (p<.0197 and .0092, respectively), whereas the difference in IgM did not reach statistical significance (Table 6a). In contrast to smokers, among patients with peptic ulcers, non-smokers with \textit{H. pylori} infection showed no difference in IgG, IgA, or IgM levels.

3.2.3 The results of study 3

Table 7 presents the results of study 3, the control for study 2, examining the effects of \textit{H. pylori} infection on serum levels of immunoglobulins in non-ulcer gastritis patients. As to the effect of \textit{H. pylori} infection, patients with non-ulcer gastritis showed a phenomenon opposite to that in peptic ulcer patients, except for IgA in smokers. Patients with \textit{H. pylori} infection had increased serum IgG, IgA, and IgM levels regardless of smoking status, although only the IgG difference in non-smokers (p<.0001) and the IgM difference in smokers (p=.0288) were statistically significant. Compared to patients with peptic ulcer, \textit{H. pylori} infection, at minimum, did not suppress serum immunoglobulin levels regardless of smoking status. \textit{H. pylori} infection appeared to up-regulate serum immunoglobulin levels in non-ulcer patients with gastritis.

\textit{H. pylori}	Positive	Negative	P
N	93	57	
IgG	1234.5+/-264.3	1205.5+/-278.6	NS
IgA	236.6+/-97.0	254.7+/1-111.8	NS
IgM	104.7+/-58.6	83.4+/42.9	.0288

Table 7a. Serum immunoglobulin levels in smokers

\textit{H. pylori}	Positive	Negative	P
N	325	247	
IgG	1392.1+/-288.7	1295.0+/-237.7	<.0001
IgA	264.0+/-112.7	251.0+/-89.7	NS
IgM	112.4+/-63.5	104.8+/69.0	NS

IgG: Immunoglobulin G (mg/dl)
IgA: Immunoglobulin A (mg/dl)
IgM: Immunoglobulin M (mg/dl)
N: Number of patients
NS: Not significant
P: Probability

Table 7b. Serum immunoglobulin levels in non-smokers
4. Discussion

We initially showed definite suppression of serum immunoglobulin levels in current smokers with *H. pylori*-associated peptic ulcer (Tables 4a), and this suppression was observed even in patients without *H. pylori* infection, although the difference did not reach statistical significance possibly due to our small sample size (Table 4b). In contrast to patients with peptic ulcer, those with non-ulcer gastritis showed suppressed levels of serum immunoglobulins, regardless of *H. pylori* status. These observations support the notion that smoking causes a skewed Th1 response in current smokers, regardless of whether or not *H. pylori* infection or peptic ulceration is present. As to the Th skew in smokers, there are conflicting reports, with some reporting a Th2 skew in smokers [Hagiwara et al., 2001; Zeidel et al., 2002; Cozen et al., 2004]. However, two noteworthy studies conducted recently have challenged this concept. Whetzel et al. reported elevated peripheral IFN-γ levels, especially in female smokers, and in surgically resected specimens from the colon of smokers [Whetzel et al., 2007], and Kikuchi et al. showed that nicotine exerted a Th1-dominant effect via nicotinic acetylcholine receptors in the intestine [Kikuchi et al., 2008].

As stated in the introduction, *H. pylori* infection is known to skew T helper differentiation toward type 1 (Th1) properties (production of IL-2, IFN-γ, and TNF)- thereby counteracting Th2-dependent processes. Th1 differentiation may reduce humoral immunity by down-regulating immunoglobulin production resulting in suppressions of serum IgG, IgA, and IgM levels. *H. pylori*, therefore, is presumed to down-regulate serum immunoglobulin levels in infected individuals. On the contrary, extracellular bacterial infections usually up-regulate IgM initially, and then IgG. Because *H. pylori* extracellularly colonizes the gastric mucosa, it should induce a Th2 response because such ubiquitous bacterium would be expected to colonize the mucosa (Table 1b). In accordance with this theory, Mohammadi et al. reported the presence of a Th2 response to effectively reduce the bacterial load in a mouse model of *H. pylori* infection: Th1 cells enhance gastritis and Th2 cells reduce bacterial load [Mohammadi et al., 1997]. The current data from the control group in study 3 are also in accordance with this theory, i.e., *H. pylori* infection raises levels of serum immunoglobulins in both smokers (IgM) and non-smokers (IgG) with non-ulcer gastritis. This differs from the situation in patients with peptic ulcer, in whom *H. pylori* infection did not suppress serum immunoglobulin levels, of non-ulcer patients suggesting the unique phenomenon of Th1 skew seen only in patients with peptic ulcer (Table 7). Taking our current observations together, suppression, i.e., a lack of upregulation of serum immunoglobulins appears to be a unique feature of smokers with both peptic ulcer and *H. pylori* infection. Th1 skew observed in *H. pylori*-infected patients with peptic ulcer appeared to exceed the expected Th2 skew in patients infected with extracellular bacteria such as *H. pylori* itself, especially in smokers. In addition, vast majority of gastric T cells may be already polarized to produce Th1 cytokine even in the absence of *H. pylori* infection [Itoh, et al., 1999]. We therefore stress that the Th1 skew induced by *H. pylori*, smoking, and the presence of peptic ulceration may synergistically exert a Th1 response which prevails over the expected Th2 skew, i.e., up-regulation of serum immunoglobulin levels induced by the presence of extracellular bacterial infection by *H. pylori* itself.

The Th1 skew observed in patients with *H. pylori* infection indicated a Th1-polarized response to be associated with mucosal damage that can induce peptic ulcer, while a mixed Th1 and IL-4-driven Th2 polarized response appeared to be associated with a low degree of gastric inflammation and reduced bacterial load resulting in the prevention of ulcer
formation [D’Elios et al., 1997, 2003, 2005; Mohammadi et al., 1997; Holck et al., 2003]. Th2 drive therefore may be preferable to hasten ulcer healing in such patients. However, mixed or dysregulated Th responses may trigger T cell-dependent B cell activation involved in the development of low grade B cell lymphoma associated with H. pylori [D’Elios et al., 2003, 2005].

5. Conclusion

As shown herein, current smoking is consistently associated with suppressed serum immunoglobulin levels (study 1), and H. pylori infection definitely reduced these levels in smokers with peptic ulcer (study 2). Furthermore H. pylori infection up-regulated IgG, IgA, and IgM in the absence of peptic ulceration. Current smoking, H. pylori infection, and the presence of peptic ulceration may interact to suppress the levels of serum immunoglobulins as a result of a Th1 shift which overwhelms the Th2 shift expected with extracellular bacterial infection.

6. References

[1] Fundamental Immunology. 6th ed., 2008 pp411-412, 742-744, 1147 Paul WE ed, Wolters Kluwer/Lippincott Williams&Wilkins, Philadelphia PA 191 USA
[2] Mosmann, T.R.& Coffman, R.I. (1989). TH1 and Th2 cells: different patterns of lymphokine secretion lead in different functional properties. Annual Review of Immunology, vol.7, pp145-173
[3] Steinman, L. (2007). A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of cell mediated tissue damage. Nature Medicine vol.13, pp139-145
[4] Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology vol.155, pp1151-1164
[5] Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell vol.133, pp775-787
[6] Hida, N., Shimoyama, T. Jr., Neville, P., Dixon, M.F., Axon, A.T.R., Shimoyama, T., Sir. & Crabtree, J.E. (1999). Increased expression of IL-10 and IL-12 (p40) mRNA in Helicobacter pylori infected gastric mucosa: relation to bacterial cag status and peptic ulceration. Journal of Clinical Pathology vol.52, pp658-664
[7] Holck, S., Norgaard, A., Bennedsen, M., Permin, H., Norn, S. & Andersen, L.P. (2003). Gastric mucosal cytokine responses in Helicobacter pylori-infected patients with gastritis and peptic ulcers. Association with inflammatory parameters and bacterial load. FEMS Immunology and Medical Microbiology vol.36, pp175-180
[8] D’Elios, M.M., Amedei, A. & Del Prete, G. (2003). Helicobacter pylori antigen-specific-cell responses at gastric levels in chronic gastritis, peptic ulcer, gastric ulcer, gastric cancer and low-grade mucosa-associated lymphoid tissue (MALT) lymphoma. Microbes and Infection vol.5, pp723-730
[9] Itoh, T., Seno, H., Kita, T., Chiba, T. & Wakatsuki, Y. (2005). The response to Helicobacter pylori differs between patients with gastric ulcer and duodenal ulcer. Scandinavian Journal of Gastroenterology vol.40, pp641-647
[10] D’Elios, M.M., Amedei, A., Benagiano, M., Azzurri, A. & Del Prete, G. (2005). Helicobacter pylori, T cells and cytokines: “dangerous liaisons”. FEBS Immunology and Medical Microbiology vol.44, pp113-119

[11] Goll, R., Cui, G., Olsen, T., Isaksen, V., Gruber, F., Husebekk, A. & Florholmen, J. (2007). Alterations in antral cytokine gene expression in peptic ulcer patients during ulcer healing and after Helicobacter pylori eradication. Scandinavian Journal of Immunology vol. 67, pp57-62

[12] Ayada, K., Yokota, K., Kawahara, Y., Yamamoto, Y., Hirai, K., Inaba, T., Kita, M., Okada, H., Yamamoto, K. & Oguma, K. (2009). Immune reactions against elongation factor 2 kinase: specific pathogenesis for gastric ulcer from Helicobacter pylori infection. Clinical and Developmental Immunology 2009;Article ID850623,10pages.

[13] Mohammadi, M., Czinn, S., Redline, R. & Nedrud, J. (1996). Helicobacter-specific cell-mediated responses display a predominant Th1 phenotype and promote a delayed-type hypersensitivity response in the stomach of mice. Journal of Immunology vol.156, pp4729-4738

[14] D’Elios, M.M., Manghetti, M., De Carli, M., Costa, F., Baldari, C.T., Burrini, D., Telford, J.L., Romagnani, S. & Del Prete, G. (1997). T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. Journal of Immunology vol.158, pp962-967

[15] D’Elios, M.M., Manghetti, M., Almerigogna, F., Amedei, A., Costa, F., Burrini, D., Baldari, C.T., Romagnani, S., Telford, J.L. & Del Prete, G. (1997). Different cytokine profile and antigen-specificity repertoire in Helicobacter pylori-specific T cell clones from the antrum of chronic gastritis patients with or without peptic ulcer. European Journal of Immunology vol.27, pp1751-1755

[16] Fan, X., Crowe, S.E., Behar, S., Gunasena, H., Ye, G., Haeberle, H., Van Houten, N., Gourley, W.K. Ernst, P.B. & Reyes, V.E (1998). The effect of class II major histocompatibility complex expression on adherence of Helicobacter pylori and induction of apoptosis in gastric epithelial cells: a mechanism for T helper cell type 1 mediated damage. Journal of Experimental Medicine vol.187, pp1659-1669

[17] Bamford, K.B., Fan, X., Crowe, S.E., Leary, J.F., Gourley, W.K., Luthra, G.K., Brooks, E.G., Graham, D.Y., Reyes, V.E. & Emst, P.B. (1998). Lymphocytes in the human gastric mucosa during Helicobacter pylori infection have a T helper cell 1 phenotype. Gastroenterology vol.114, pp482-492

[18] Sommer, F., Faller, G., Konturek, P., Kirchner, T., Hahn, E.G., Zeus, J., Rollinghoff, M. & Lohof, M. (1998). Antrum- and corpus mucosa-infiltrating CD4(+) lymphocytes in Helicobacter pylori gastritis display a Th1 phenotype. Infection and Immunity vol.66, pp5543-5546

[19] Lindholm, C., Quiding-Jarbrink, M., Lonroth, H., Hamlet, A. & Svennerholm, A.M. (1998). Local cytokine response in Helicobacter pylori-infected subjects. Infection and Immunity vol.66, pp5964-5971

[20] Ihan, A., Tepes, B. & Gubina, M. (2000). Diminished Th1-type cytokine production in gastric mucosa T lymphocytes after H. pylori eradication in duodenal ulcer patients. Pflugers Archives-European Journal of Physiology vol.440, pp[Suppl]:R89-R90

[21] Smythies, L.E., Waites, K.B., Lindsey, J.R., Harris, P.R., Ghiara, F. & Smith, P.D. (2000). Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4, but not IFN-gamma, gene-deficient mice. Journal of Immunology vol.165, pp1022-1029.
[22] Akhiani, A.A., Pappo, J., Kabok, Z., Schon, K., Gao, W., Franzen, I.E. & Lycke N. (2002). Protection against Helicobacter pylori infection following immunization is IL-12 dependent and mediated by Th1 cells. *Journal of Immunology* vol.169, pp.6977-6984

[23] Guiney, D.G., Hasegawa, P. & Cole, S.P. (2003). Helicobacter pylori preferentially induces interleukin 12 (IL-12) rather than IL-6 or IL-10 in human dendritic cells. *Infection and Immunity* vol.71, pp.4163-4166

[24] Amedei, A., Cappon, A., Codolo, G., Cabrelle, A., Polenghi, A., Benagiano, M., Tasca, E., Azzurri, A., D’Elios, M.M., Del Prete, G. & de Bernard, M. (2006). The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. *Journal of Clinical Investigation* vol.116, pp.1092-1101

[25] Taylor, J.M., Ziman, M.E., Huff, J.L., Moroski, N.M., Vajdy, M. & Solnick, J.V. (2006). Helicobacter pylori lipopolysaccharide promotes a Th1 type immune response in immunized mice. *Vaccine* vol.24, pp.4987-4994

[26] D’Elios, M.M., Amedei, A., Cappon, A., Del Prete, G. & de Bernard, M. (2007). The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. *FEMS Immunology and Medical Microbiology* vol.50, pp.157-164

[27] Goll, R., Cui, G., Olsen, T., Isaksen, V., Gruber, F., Husebekk, A. & Florholmen, J. (2008). Alteration in antral cytokine gene expression in peptic ulcer patients during ulcer healing and after Helicobacter pylori eradication. *Scandinavian Journal of Immunology* vol.67, pp.57-62

[28] Codolo, G., Mazzi, P., Amedei, A., Del Prete, G.D., Berton, G., D’Elios, M.M. & Bernard, M. (2008). The neutrophil-activating protein of Helicobacter pylori down-modulates Th2 inflammation in ovalbumin-induced allergic asthma. *Cellular Microbiology* vol.10, pp.2355-2363

[29] Del Prete, G., Chiumiento, L., Amedei, A., Piazza, M., D’Elios, M.M., Codolo, G., Bernard, M., Masetti, M. & Bruschi, F. (2008). Immunosuppression of Th2 responses in Trichinella spiralis infection by Helicobacter pylori neutrophil-activating protein. *Journal of Allergy and Clinical Immunology* vol.122, pp.908-913

[30] Shimada, M., Ando, T., Peek, R.M., Watanabe, O., Ishiguro, K., Maeda, O., Ishikawa, D., Hasegawa, M., Ina, K., Ohmiya, N., Niwa, Y. & Goto, H. (2008). Helicobacter pylori infection upregulates interleukin-18 production from gastric epithelial cells. *European Journal of Gastroenterology* vol.20, 1144-1150

[31] Watanabe, T., Asano, N., Kitani, A., Fuss, I.J., Chiba, T. & Strober, W. (2010). NOD1-mediated mucosal host defense against Helicobacter pylori. *International Journal of Inflammation* Article ID476482,6 pages.

[32] Hosseini, M.E., Oghalaie, A., Habibi, G., Nahvijoo, A., Hosseini, Z.M., Tashakoripoor, M. & Mohammadi, N.M. (2010). Molecular detection of host cytokine expression in Helicobacter pylori infected patients via semi-quantitative RT-PCR. *Indian Journal of Medical Microbiology* vol.28, pp.40-44

[33] Itoh, T., Wakatsuki, Y., Yoshida, M., Usui, T., Matsunaga, Y., Kaneko, S., Chiba, T. & Kita, T. (1999). The vast majority of gastric T cells are polarized to produce T helper 1 type cytokines upon antigenic stimulation despite the absence of Helicobacter pylori infection. *Journal of Gastroenterology* vol.34, pp.560-570

[34] Campbell, D.I., Pearce, M.S., Parker, L. & Thomas, J.E. (2004). IgG subclass responses in childhood Helicobacter pylori duodenal ulcer: evidence of T-helper cell type 2 responses. *Helicobacter* vol.9, pp.289-292

[35] Kido, M., Tanaka, J., Aoki, N., Iwamoto, S., Nishiura, H., Chiba, T. & Watanabe, N. (2010). Helicobacter pylori promotes the production of thymic stromal lymphopoietin by...
Helicobacter pylori Suppresses Serum Immunoglobulin Levels in Smokers with Peptic Ulcer: Probable Interaction Between Smoking and H. pylori Infection in the Induction of Th1...

[36] Kayhan, B., Arasli, M., Eren, H., Aydemir, S., Kayhan, B., Aklas, E. & Tekin, I. (2008). Analysis of peripheral blood lymphocyte phenotypes and Th1/Th2 cytokines profile in the systemic immune responses of Helicobacter pylori infected individulas. Microbiology and Immunology vol.52, pp531-538

[37] Bergman, M.P., Engering, A., Smits, H.H., van Vliet, S.J., van Bodegraven, A.A., Wirth, H., Kapsenberg, M.L., Vandenbroucke-Grauls, C.M.J.E., van Kooyk, Y. & Applemelm, B.J. (2004). Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. Journal of Experimental Medicine vol.200, pp979-990

[38] Andersen, P., Pedersen, O.F., Bach, B. & Bonde, G.J. (1982). Serum antibodies and immunoglobulins in smokers and non-smokers. Clinical and Experimental Immunology vol.47, pp467-473

[39] Tollerud, D.J., Brown, L.M., Blattner, W.A., Weiss, S.T., Maloney, E.M., Kurman, C.C., Nelson, D.L. & Hoover, R.N. (1995). Racial difference in serum immunoglobulin levels: relationship to cigarette smoking, T-cell subsets, and soluble interleukin-2 receptors. Journal of Clinical and Laboratory Analysis vol.9, pp37-41

[40] Barbour, S.E., Nakashima, K., Zhang, J., Tangada, S., Hahn, C., Schenkein, H.A. & Tew, J.G. (1997). Tobacco and smoking: environmental factors that modify the host response (Immune system) and have an impact on periodontal health. Critical Review in Oral Biology and Medicine vol.8, pp437-460

[41] Gonzalez-Quintela, A., Alende, R., Gude, F., Campos, J., Rey, J., Meijide, L.M., Fernandez-Merino, C. & Vidal, C. (2008). Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clinical and Experimental Immunology vol.151, pp42-50

[42] Hallquist, N., Hakki, A., Becker, L., Friedman, H. & Pross, S. (2000). Differential effects of nicotine and aging on splenocyte proliferation and the promotion of Th1-vs. Th2-type cytokines. Proceedings of Society for Experimental Biology and Medicine vol.224, pp141-146

[43] Whetzel, C.A., Corwin, E.J. & Klein, L.C. (2007). Disruption in Th1/Th2 response in young adult smokers. Addictive Behaviors vol.32, pp1-8

[44] Kikuchi, H., Itoh, J. & Fukuda, S. (2008). Chronic nicotine stimulation modulates the immune response of mucosal T cells to Th1-dominant pattern via nAChR by upregulation of Th1-specific transcriptional factor. Neuroscience Letter vol.432, pp217-221

[45] Hagiwara, F., Takahashi, K., Okubo, T., Ohno, S., Ueda, A., Aoki, A., Odagiri, S. & Ishigatsubo Y. (2001). Cigarette smoking depletes cells spontaneously secreting Th1 cytokines in the human airway. Cytokines vol.14, pp121-126

[46] Cozen, W., Diaz-Sanchez, D., Gauderman, W.J., Zadnik, J., Cockburn, M.G., Gill, P.S., Masood, R., Hamilton, A.S., Jyrala, M. & Mack, T.M. (2004). Th1 and Th2 cytokines and IgE levels in identical twins with varying levels of cigarette consumption. Journal of Clinical Immunology vol.24, pp617-22

[47] Zeidel, A., Beilin, B., Yardeni, I., Mayburg, E., Smirnov, G. & Bessler, H. (2002). Immune response in asymptomatic smokers. Acta Anaesthesiologica Scandinavica vol.46, pp959-964
[48] Eaton, K.A. & Mefford, M.E. (2001). Cure of Helicobacter pylori infection and resolution of gastritis by adoptive transfer of splenocytes in mice. Infection and Immunity vol.69, pp1025-1031

[49] Nagai, S., Mimuro, H., Yamada, T., Baba, Y., Moro, K., Nochi, T., Kiyono, H., Suzuki, T, Sasakawa, C. & Koyasu, S. (2007). Role of Peyer’s patches in the induction of Helicobacter pylori-induced gastritis. Proceedings of the National Academy of Sciences of the United States of America vol.104, pp8971-8976

[50] Franch, A., Castellote, M. & Castell, M. (1994). Effect of acetylsalicylic acid and dexamethasone on antibody production in adjuvant arthritis. Rheumatology International vol.14, pp27-31

[51] Mazzeo, D., Panina-Bordignon, P., Recalde, H., Sinigaglia, F. & D’Ambrosio, D. (1998). Decreased IL-12 production and Th1 cell development by acetyl salicylic acid-mediated inhibition of NF-kappa B. European Journal of Immunology vol.28, pp3205-3213

[52] Yamaki, K., Uchida, H., Harada, R., Yanagisawa, R., Takano, H., Hayashi, H., Mori, Y. & Yoshino, S. (2003). Effect of nonsteroidal anti-inflammatory drug indomethacin on Th1 and Th2 immune response in mice. Journal of Pharmaceutical Sciences vol.92:1723

[53] Andreone, P., Gramenzi, A., Loggi, E., Favorelli, L., Cursaro, C., Margotti, M., Biselli, M., Lorenzini, S. & Bernardi, M. (2004). In vivo effect of indomethacin and interferon on Th1 and Th2 cytokine synthesis in patients with chronic hepatitis C. Cytokine vol.26, pp95-101

[54] Mored, H., Stooft, T.J., Boorsma, D.M., von Blomberg, B.M., Gibbs, S., Bruynzeel, D.P, Scheper, R.J. & Rustemeyer, T. (2004). Identification of anti-inflammatory drugs according to their capacity to suppress type-1 and type-2 cell profiles. Clinical and Experimental Allergy vol.34, pp1868-1875

[55] Yamaki, K., Uchida, H., Mori, Y. & Yoshino, S. (2005). Effect of varying types of anti-arthritis drugs on Th1 and Th2 immune responses in mice. International Journal of Immunopathology and Pharmacology vol.18, pp133-144

[56] Tsutsumi, Y., Kanamori, H., Yamato, H., Ehira, N., Kawamura, T., Umehara, S., Mori, A., Obara, S., Ogura, N., Tanaka, J., Asaka, M., Imamura, M. & Msauzi, N. (2005). Randomized study of Helicobacter pylori eradication therapy and proton pump inhibitor monotherapy for idiopathic thrombocytopenic purpura. Annals of Hematology vol.84, pp807-811.

[57] Matsukawa, Y., Kurosaka, H., Kato, K., Hayashi, I., Minekawa, K., Arakawa, Y. & Sawada, S. (2007). Lansoprazole increases serum IgG and IgM in H. pylori-infected patients. International Journal of Immunopathology and Pharmacology vol.20, pp173-179

[58] Matsukawa, Y., Tomita, Y., Nishinari, S., Horie, T., Kato, K., Arakawa, Y., Ko, K., Shimada, H., Nakano, M., Kitami, Y. & Kurosaka, H. (1997). Efficacy of lansoprazole against peptic ulcers induced by non-steroidal anti-inflammatory drugs: endoscopic evaluation of ulcer healing. Journal of International Medical Research vol.25, pp190-195.

[59] Dixon, M., Genta, R.M, Yardley, J.H. & Correa, P. (1996). Classification and grading gastritis: The updated Sydney system. American Journal of Surgical Pathology vol.20, pp1161-1181

[60] Mohammadi, M., Nedrud, J., Redline, R., Lycke, N. & Czinn, S. (1997). Murine, CD4 T-cell response to Helicobacter infection:Th1 cells enhance gastritis and Th2 cells reduce bacterial load. Gastroenterology vol.113, pp1848-1857
Peptic ulcer disease is one of the most common chronic infections in human population. Despite centuries of study, it still troubles a lot of people, especially in the third world countries, and it can lead to other more serious complications such as cancers or even to death sometimes. This book is a snapshot of the current view of peptic ulcer disease. It includes 5 sections and 25 chapters contributed by researchers from 15 countries spread out in Africa, Asia, Europe, North America and South America. It covers the causes of the disease, epidemiology, pathophysiology, molecular-cellular mechanisms, clinical care, and alternative medicine. Each chapter provides a unique view. The book is not only for professionals, but also suitable for regular readers at all levels.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yoshihiro Matsukawa and Kimitoshi Kato (2011). Helicobacter pylori Suppresses Serum Immunoglobulin Levels in Smokers with Peptic Ulcer: Probable Interaction Between Smoking and H. pylori Infection in the Induction of Th1 Predominant Immune Response and Peptic Ulceration, Peptic Ulcer Disease, Dr. Jianyuan Chai (Ed.), ISBN: 978-953-307-976-9, InTech, Available from: http://www.intechopen.com/books/peptic-ulcer-disease/helicobacter-pylori-suppresses-serum-immunoglobulin-levels-in-smokers-with-peptic-ulcer-probable-int
