CELLULAR DISTRIBUTION OF MONOCLONAL ANTIBODY IN HUMAN TUMOURS AFTER I.V. ADMINISTRATION

V. MOSHAKIS, R. A. J. McILHINNEY AND A. M. NEVILLE

From the Ludwig Institute for Cancer Research (London Branch), Royal Marsden Hospital, Sutton, Surrey SM2 5PX

Received 15 April 1981 Accepted 10 July 1981

Summary.—Immune-suppressed mice carrying xenografts of several different types of human germ-cell tumours were injected with a radiolabelled monoclonal antibody (LICR LON/HT13) raised against membrane components of a human germ-cell tumour (HX39). Subsequent assessment of radioactivity in excised organs and tumours showed a selective accretion of antibody in the tumour. Quantitative autoradiography supported the results of radiolocalization observed in vivo in different tumours, and also showed that the antibody localized to viable tumour cells and in close association with their cell membrane. The vascular architecture of tumours was found to be an important factor governing antibody distribution. No localization occurred with radiolabelled normal mouse IgG.

The localization of animal and human tumours in vivo has been demonstrated by the use of radiolabelled affinity-purified conventional antibodies (Primus et al., 1973; Mach et al., 1974, 1980; Goldenberg et al., 1978) and, more recently, by monoclonal antibodies (Ballou et al., 1979). Preferential tumour uptake of the antibody has been shown, either by measuring tumour and normal-tissue radioactivity after their removal from the host, or by external photoscanning of tumours in situ. However, there have been few recent studies which examine the histological distribution of antibody in tumours in conjunction with its in vivo localization (Ghose et al., 1980; Koji et al., 1980).

The aim of this study has been to demonstrate by autoradiography (ARG) the tumour-cell specificity of an antitumour monoclonal antibody administered parenterally, and to confirm histologically that the in vivo localization, observed and described recently in an animal model of human tumours (Moshakis et al., 1981b), is due to antigen–antibody interaction.

MATERIALS AND METHODS

A monoclonal antibody, LICR LON/HT13, was raised against cells from the cell line HX39, established from an undifferentiated human malignant teratoma (MTU) xenografted in immune-suppressed mice (Raghavan et al., 1981). In vivo testing by immunofluorescence and cell-binding assay showed strong binding of the antibody to the tumour-cell membrane (> 10^4 ct/min/10^6 cells). Between 10 and 15 μCi of ^{125}I-labelled antibody (5 μCi/μg) was injected i.v. into mice carrying the xenografted tumour, together with equal amounts of ^{131}I-labelled normal mouse IgG. The same antibody was used for the in vivo and ARG study of localization in other human germ-cell xenografts and non-germ-cell tumours (Table 1). At intervals of between 4 and 96 h after injection, the animals were killed, and radioactivity (^{125}I and ^{131}I) of excised tumours and normal tissues was counted in a dual-channel, well-type scintillation counter (LKB-1280 ultra-gamma). The preparation

Correspondence to: Dr V. Moshakis, Ludwig Institute for Cancer Research (London Branch), Royal Marsden Hospital, Sutton, Surrey SM2 5PX.
of the radioiodinated antibodies, the pathology of the tumours and the in vivo localization experiments, have been described in detail elsewhere (Moshakis et al., 1981b; Monaghan et al., 1981; Raghavan et al., 1981).

Autoradiographs were made of histological sections of tumours and organs excised during the localization experiments; thus, the degree of antibody uptake of each tumour and organ autoradiographed was known. The tumours and organs were fixed and embedded in paraffin. The loss of radioactivity during fixation and processing was calculated by measuring the radioactivity of representative samples of the fixation and processing reagents. From the 3 fixatives used in pilot experiments (neutral formal saline, Bouin's solution and glutaraldehyde), formal saline was found to cause the least loss of radioactivity. This loss amounted to only 10% with the monoclonal antibody, but was 30-40% with the normal mouse IgG.

Since the sections contained both 125I (specific IgG) and 131I (nonspecific IgG) activity, they were left for 3-4 weeks before being dipped in emulsion (Mahaley et al., 1965), so that the decay of 131I and the factors governing the efficiency of grain production (Rogers, 1967) ensured that >95% of the grains were due to the 125I-labelled monoclonal antibody. Dewaxed sections were dipped for 2 sec in photographic emulsion (Ilford K5), maintained at 50°C and at a dilution of 1:1 with distilled water. After the slides had been dried for 30 min, they were placed in light-tight boxes containing silica gel and exposed at 4°C for between 3 days and 5 weeks. Exposed slides were then developed (Kodak D19) and fixed (12.5% Amfix, May & Baker) for 5 min each. Initial experiments enabled us to establish the ideal fixation and developing conditions to give the minimal background activity without appreciable loss of grain formation in the tissues.

Quantitative ARG was undertaken with 3 different xenografts, HX39, HX99 and XK1 (Table I), after their host animal had been injected with 15 μCi of 125I-labelled monoclonal antibody. All tumours were removed from the animals 24 h after injection, and were of similar weights (12-15 g). Formalin-fixed and paraffin-embedded sections were dipped in emulsion, exposed for 5 weeks, developed, fixed and counterstained with haematoxylin and eosin. Dark-field illumination was used to count grains in 10 random fields in 5 different tumours of each type. Thus, the number of cell-associated grains in a total area of 56 x 10^3 μm^2 of each section was counted. Background grains were also counted in 10 fields in each section around the tumour at a distance of 1 to 1½ fields from the tumour edge.

ARG was also performed with frozen sections of tumours. Animals were injected with either 125I-labelled monoclonal antibody or with 125I-labelled normal IgG. Cryostat-cut sections were placed on slides, fixed in formol saline for 5 min and washed for 5 min in distilled water. They were then dipped in K5 photographic emulsion and processed as described above. In conjunction with ARG of tumours labelled in vivo, ARG was also performed on tumours labelled in vitro. Frozen sections of tumours from animals which had received no radioactivity were fixed in formol saline for 5 min, washed with 0.5% BSA in PBS and 100 μl (10^6 cts/min) of 125I-labelled antibody or 125I-labelled normal IgG was placed over the sections and incubated for 1 h. The slides were washed with 0.5% BSA in PBS and, after drying, were dipped in K5 photographic emulsion. Exposure in light-tight boxes was for 2-48 h.

In all the experiments, all sets of ARGs contained positive and negative chemotherapy control slides. All slides were examined under bright and dark-field illumination.

RESULTS

The cellular distribution of the monoclonal antibody after in vivo tumour labelling exhibited 2 patterns: (a) an intense subcapsular concentration of grains at the periphery of the tumours over viable tumour cells (Fig. 1), this
DISTRIBUTION OF MONOCLONAL ANTIBODIES IN TUMOUR CELLS

subcapsular collection of grains being maintained wherever fibrous septa entered the tumour mass from the periphery; and (b) scattered groups of grains within the tumour, mostly situated near blood vessels. In both areas, antibody was in close association with the cell membrane of individual cells (Fig. 2a). Areas of tumour necrosis and fibrosis were devoid of antibody, as were normal mouse tissues. The distribution of the antibody in frozen sections of tumours was the same as in conventional sections. Such frozen sections of tumour labelled in vivo with 125I-normal mouse IgG showed no binding of the IgG to the tumour cell (Fig. 2b). No binding was also demonstrated with 125I-labelled nonspecific monoclonal antibody LICR-LON-FIB75, which was used in latter experiments as an additional control (Moshakis et al., 1981b).

ARGs of frozen sections of tumours incubated in vitro with 125I-labelled antibody showed intense activity associated with all tumour cells, and had a uniform distribution throughout the tumour (Fig. 3a). The antibody did not bind to fibrous areas or areas of necrosis. In parallel, sections of the same tumours treated with 125I-labelled normal mouse IgG showed no binding to the tumour cells (Fig. 3b). In relation to this, it was found in vivo that when non-radiolabelled HT13 (100 µg/animal) was injected simultaneously with radiolabelled HT13, tumour localization was abolished, indicating that the cold antibody was blocking the tumour antigenic sites, thus inhibiting tumour uptake of further radiolabelled antibody. In parallel experiments, such inhibition was not observed when cold nonspecific monoclonal FIB75 or cold mouse IgG

Fig. 1.—ARGs of sections of the germ-cell tumour HX39, labelled in vivo with 125I-monoclonal antibody HT13 and showing its subcapsular distribution. (a) Bright-field and (b) dark-field illumination. × 220.
were used for blocking the antigen (Moshakis et al., 1981b).

The cellular distribution of HT13 in other germ-cell tumour xenografts was the same as in the HX39 tumour, against which the antibody was raised. There was a generalized tendency for the antibody to be segregated in the peripheral, more vascular parts of the tumour and to avoid the central, more necrotic areas. In HX53 (a "mixed" germ-cell tumour containing solid seminoma areas and cystic yolk-sac elements), ARG of in-vivo-labelled tumours demonstrated that HT13 would localize only in the cystic yolk-sac parts of the tumour, and not in the seminoma areas (Fig. 4). There was no detectable difference in distribution of the antibody between yolk sac and MTU elements when the other germ-cell tumours were examined (HX111, HX112, HX57), indicating that both elements have the same antigenic determinants for antibody localization. In the 2 human non-germ-cell tumours examined by ARG, there was no antibody binding in the breast adenocarcinoma (HX99), but there was strong association of the antibody to viable

Table II. Correlation of visual grain count with degree of localization after i.v. administration of 125I-labelled HT13 in 3 groups of animals carrying histologically different tumour xenografts

Absolute grain counts*	Tumour	Per field	Per µm²	24 h	48 h	96 h
	XK1	37465 ± 4531	6·69	7·5	8·7	27·1
	HX39†	10608 ± 1683	1·89	3·1	7·0	10·9
	HX99	1546 ± 192	0·27	1·4	1·1	1·1

* Means ± s.d. of 10 fields of each tumour. Five tumours of each type were examined.
† Localization Index was used in the in vivo experiments to express degrees of localization and is calculated as follows:

\[\frac{125I/131I \text{ in tumour or organ}}{125I/131I \text{ in blood}} \]

When equal amounts of 125I-labelled normal mouse IgG were injected rather than HT13, the absolute grain counts were 408 ± 83/field and 0·07/µm².
Fig. 3.—ARGs of cryostat-cut sections of the germ-cell tumour HX39, incubated in vitro with (a) 125I-labelled monoclonal antibody HT13, and (b) 125I-labelled normal mouse IgG. \times 560 (dark-field illumination).

Fig. 4.—ARG of sections of the "mixed" germ-cell tumour HX53, labelled in vivo with 125I-labelled monoclonal antibody HT13. Grains (antibody) are concentrated in the cystic yolk-sac areas on the left, as opposed to the solid seminoma areas on the right. \times 650.
tumour cells of the renal adenocarcinoma (XK1). This tumour was the only one of 4 non-germ-cell tumours which showed uptake of the antibody in vivo (Moshakis et al., 1981b).

The amount of antibody in the tumours, as found from quantitative ARG, correlated with the various degrees of localization found in the in vivo experiments (Table II). The absolute visual grain count was calculated by subtracting the background grains from the tumour grains in each section.

When the chemography slides were examined in each set of the ARGs throughout the experiments, neither positive chemographic effects nor significant latent-image fading were found.

DISCUSSION

Localization of i.v. radiolabelled antibodies to tumours has been studied in the past either by external radio-imaging or by measurement of tissue radioactivity by means of scintillation counting. Such studies, though important, have certain limitations, however, in that selective homing of the antibody to the tumours can only be expressed as uptake in whole specimens of normal organs and tumours. Demonstration of the binding of the injected antibody to the tumour antigen at cellular level would strengthen any evidence of selective tumour localization obtained from simultaneous in vivo studies, especially when new reagents such as monoclonal antibodies are being examined.

Our finding that the distribution of monoclonal antibody after in vivo tumour-labelling was the same in paraffin-embedded and frozen sections of tumours, confirmed that leaving conventional tumour sections containing both 125I and 131I activity for 3–4 weeks before processing produces ARGs with grain formation due to 125I activity only (i.e. antibody). Thus, orthodox in vivo ARG methods can be used successfully to demonstrate radiolabelled monoclonal antibodies in tumours. We have shown that the mechanism of selective in vivo localization of HT13 to the xenografted tumour is related to antibody binding to the membrane of the teratoma cells against which the antibody was raised. The antibody was seen mostly in areas of high vascularity, and therefore it appears that vascular anatomy of tumours has an important role in determining the access of the antibody to the cell surface. The absence of antibody from areas of viable tumour, especially away from the periphery, is most probably due to the poor blood supply in such areas, rather than to the absence of antigen, since ARG of tumour sections incubated with antibody in vitro revealed that antigen was present in all tumour cells.

The distribution of the antibody in the other germ-cell tumours was the same as in HX39, indicating that the mechanism of localization was similar, and that all the germ-cell tumours examined to date shared the same antigenic determinant. Although the antibody did not localize in non-germ-cell tumours such as breast adenocarcinoma, bronchial adenocarcinoma and a squamous-cell carcinoma (Moshakis et al., 1981b), a high degree of localization was found in a renal adenocarcinoma. The cellular distribution of the injected antibody was the same as in the germ-cell tumours, suggesting that this tumour type can also express the same antigenic determinant.

It is interesting that similar in vivo experiments performed with conventionally raised antibodies to CEA for the localization of human breast-tumour xenografts (Moshakis et al., 1981a) demonstrated that the injected anti-CEA bound mostly to the CEA in the extracellular tumour space, and not to the CEA on the cell membrane (work in progress). However, more work is required to determine whether this is one of the factors responsible for the apparent superiority of monoclonal over conventional antibodies in tumour localization, as seen by us and others (Ballou et al., 1979).
We would like to thank Mr J. T. Ellis, Mr D. Roberts and Mr Shashikant Patel for meticulous technical assistance.

REFERENCES

BALLOU, B., LEVINE, G., HAKALA, R. J. & SOLTER, D. (1979) Tumour localisation detected with radioactivity labelled monoclonal antibody and external scintigraphy. Science, 206, 844.

GHOSE, T., NORVELL, S. T., AQUINO, J. & 4 others (1980) Localisation of 131I-labelled antibodies in human renal cell carcinomas and in a mouse hepatoma and correlation with tumour detection by photoscanning. Cancer Res., 40, 3018.

GOLDENBERG, D. M., DELAND, F., KIM, E. & 6 others (1978) Use of radiolabelled antibodies to carcinoembryonic antigen for the detection and localisation of diverse cancers by external photoscanning. N. Engl. J. Med., 298, 1384.

KOJI, T., ISKII, N., MUNEHISA, Y. & 8 others (1980) Localisation of radiiodinated antibody to α-fetoprotein in hepatoma transplanted in rats and a case report of α-fetoprotein antibody treatment of a hepatoma patient. Cancer Res., 40, 3013.

MACH, J. P., CARREL, S., MERENDA, C., SORDAT, B. & CEROTTINI, J. C. (1974) In vivo localisation of radiolabelled antibodies to carcinoembryonic antigen in human colon carcinoma grafted into nude mice. Nature, 248, 704.

MACH, J. P., CARREL, S., FORNI, M., RITSCHARD, J., DONATH, A. & ALBERTO, P. (1980) Tumour localisation of radiolabelled antibodies against carcinoembryonic antigen in patients with carcinoma. N. Engl. J. Med., 303, 5.

MAHaley, M. S., Jr, MAHaley, J. L. & DAY, E. D. (1966) The localisation of radioantibodies in human brain tumours. II. Radioautography. Cancer Res., 25, 779.

MONAGHAN, P., RAGHAVAN, D. & NEVILLE, A. M. (1981) Ultrastructural studies of xenografted human germ cell tumours. Cancer (in press).

MOSHKIS, V., BAILEY, M. J., ORMEROD, M. G., WESTWOOD, J. H. & NEVILLE, A. M. (1981a) Localization of human breast-carcinoma xenografts using antibodies to carcinoembryonic antigen. Br. J. Cancer, 43, 575.

MOSHKIS, V., McILHINNEY, R. A. J., RAGHAVAN, D. & NEVILLE, A. M. (1981b) Localization of human tumour xenografts after i.v. administration of radiolabelled monoclonal antibodies. Br. J. Cancer, 44, 91.

PRIMUS, F. J., WANG, R. H., GOLDENBERG, D. M. & HANSEN, H. J. (1973) Localisation of human GW-39 tumours in hamsters by radiolabelled hetero-specific antibody to carcinoembryonic antigen. Cancer Res., 33, 2977.

RAGHAVAN, D., GIBBS, J., HEYDERMAN, E., NEVILLE, A. M. & PECKHAM, M. J. (1981) Functional and morphological aspects of human teratoma xenografts. In Thymus Aplastic Nude Mice and Rats in Clinical Oncology. Ed. Bastert et al. Stuttgart: Fisher-Verlag (in press).

ROGERS, A. W. (1967) The efficiency of autoradiographs. In Techniques of Autoradiography. Amsterdam: Elsevier. p. 68.