Sliding-Window QPS (SW-QPS): A Perfect Parallel Iterative Switching Algorithm for Input-Queued Switches

Jingfan Meng
Georgia Tech
jmeng40@gatech.edu

Long Gong
Georgia Tech
gonglong@gatech.edu

Jun (Jim) Xu
Georgia Tech
jx@cc.gatech.edu

ABSTRACT

In this work, we first propose a parallel batch switching algorithm called Small-Batch Queue-Proportional Sampling (SB-QPS). Compared to other batch switching algorithms, SB-QPS significantly reduces the batch size without sacrificing the throughput performance and hence has much lower delay when traffic load is light to moderate. It also achieves the lowest possible time complexity of $O(1)$ per matching computation per port, via parallelization. We then propose another algorithm called Sliding-Window QPS (SW-QPS). SW-QPS retains and enhances all benefits of SB-QPS, and reduces the batching delay to zero via a novel switching framework called sliding-window switching. In addition, SW-QPS computes matchings of much higher qualities, as measured by the resulting throughput and delay performance, than QPS-1, the state-of-the-art regular switching algorithm, each matching has only a single time slot to find opportunities to have the quality of the matching improved by the underlying bipartite matching algorithm, whereas in a regular switching algorithm, multiple (say T) consecutive time slots are grouped as a batch and these T matching decisions are batch-computed. Hence, in a batch switching algorithm, each of the T matchings-under-computation in a batch has a period of T time slots to find opportunities to have the quality of the matching improved by the underlying bipartite matching algorithm, whereas in a regular switching algorithm, each matching has only a single time slot to find such opportunities. As a result, a batch switching algorithm can usually produce matchings of higher qualities than a regular switching algorithm using the same underlying bipartite matching algorithm, because such opportunities for improving the quality of a certain matching usually do not all present themselves in a single designated time slot (for a regular switching algorithm to compute this matching). Intuitively, the larger the batch size T is, the better the quality of a resulting matching is, since a larger T provides a wider “window of opportunities” for improving the quality of the matching as just explained.

However, existing batch switching algorithms are not without shortcomings. They all suffer from at least one of the following two problems. First, all existing batch switching algorithms except [18] are serial algorithms and it is not known whether any of them can be parallelized. As a result, they all have a time complexity of at least $O(N)$ per matching computation, since it takes $O(N)$ time just to “print out” the computed result. This $O(N)$ time complexity is clearly too high for high-radix high-line-rate switches as just explained. Second, most existing switching algorithms require a large batch size T to produce high-quality matchings that can lead to high throughputs, as will be elaborated in §5. For example, it was reported in [18] that the batch size had to

Keywords

Switching, input-queued switch, bipartite matching

1. INTRODUCTION

Many present day switching systems in Internet routers and data-center switches employ an input-queued crossbar to interconnect their input ports and output ports. In an $N \times N$ input-queued crossbar switch, each input port has N Virtual Output Queues (VOQs). A VOQ i at input port i serves as a buffer for the packets going into input port i destined for output port j. The use of VOQs solves the Head-of-Line (HOL) blocking issue [13], which severely limits the throughput of input-queued switches.

In an $N \times N$ input-queued crossbar switch, each input port can be connected to only one output port and vice versa in each switching cycle or time slot. Hence, in every time slot, the switch needs to compute a one-to-one matching (i.e., the crossbar schedule) between input and output ports. A major research challenge of designing high-link-rate switches with a large number of ports (called high-radix [3]) is to develop switching algorithms that can compute “high quality” matchings – those that result in high switch throughput and low queuing delays for packets – in a short time slot.

1.1 Existing Approaches

While many switching algorithms have been proposed for input-queued switches, they either have a (relatively) high time complexity that prevents a matching computation from being completed in a short time slot, or cannot produce high-quality matchings that translate into excellent throughput and delay performances. For example, the widely-used iSLIP algorithm [14] can empirically achieve over 80% throughputs under most of traffic patterns, as will be shown in §6.2. However, even with a parallel iterative implementation, its time complexity per port is $O(\log^2 N)$, which is still too high when the switch size N is large and the time slot is short (say a few nanoseconds long).

It is possible to improve the quality of the matching without increasing the time complexity of the switching algorithm using a strategy called batching [1, 16, 18]. Unlike in a regular switching algorithm, where a matching decision is computed for every time slot, in a batch switching algorithm, multiple (say T) consecutive time slots are grouped as a batch and these T matching decisions are batch-computed. Hence, in a batch switching algorithm, each of the T matchings-under-computation in a batch has a period of T time slots to find opportunities to have the quality of the matching improved by the underlying bipartite matching algorithm, whereas in a regular switching algorithm, each matching has only a single time slot to find such opportunities. As a result, a batch switching algorithm can usually produce matchings of higher qualities than a regular switching algorithm using the same underlying bipartite matching algorithm, because such opportunities for improving the quality of a certain matching usually do not all present themselves in a single designated time slot (for a regular switching algorithm to compute this matching). Intuitively, the larger the batch size T is, the better the quality of a resulting matching is, since a larger T provides a wider “window of opportunities” for improving the quality of the matching as just explained.

However, existing batch switching algorithms are not without shortcomings. They all suffer from at least one of the following two problems. First, all existing batch switching algorithms except [18] are serial algorithms and it is not known whether any of them can be parallelized. As a result, they all have a time complexity of at least $O(N)$ per matching computation, since it takes $O(N)$ time just to “print out” the computed result. This $O(N)$ time complexity is clearly too high for high-radix high-line-rate switches as just explained. Second, most existing switching algorithms require a large batch size T to produce high-quality matchings that can lead to high throughputs, as will be elaborated in §5. For example, it was reported in [18] that the batch size had to
be 3,096 (for $N = 300$ ports) for the algorithm to attain 96% throughputs under some traffic patterns. A large batch size T is certain to lead to poor delay performance: Regardless of the offered load condition, the average packet delay for any batch switching algorithm due to batching is at least $T/2$, since any packet belonging to the current batch has to wait till at least the beginning of the next batch to be switched.

1.2 Our Contributions

The first contribution of this work is a novel batch switching algorithm, called SB-QPS (Small-Batch QPS), that addresses both weaknesses of existing batch switching algorithms. First, it can attain a high throughout of over 85%, under various traffic load patterns, using only a small batch size of $T = 16$ time slots. This much smaller batch size translates into much better delay performances than those of existing batch switching algorithms, as will be shown in §6.3. Second, SB-QPS is a fully distributed algorithm so that the matching computation load can be efficiently divided evenly across the $2N$ input and output ports. As a result, its time complexity is the lowest possible: $O(1)$ per matching computation per port.

The design of the SB-QPS algorithm is extremely simple. Only T rounds of request-accept message exchanges by the input and the output ports are required for computing the T matchings used (as the crossbar configurations) in a batch of T time slots. In each round, each input port i sends a pairing request to an output port that is sampled (by input port i) in a random queue-proportional fashion: Each output port j is sampled with a probability proportional to the length of the corresponding VOQ. For this reason, we call this algorithm small-batch QPS (queue-proportional sampling). Since each QPS operation can be performed in $O(1)$ time using a simple data structure as shown in [9], the time complexity of SB-QPS is $O(1)$ per matching computation per port. As will be explained in §3.2, the way QPS is used in this work (SB-QPS) is very different than that in [9]. For one thing, whereas in [9] QPS is used as an auxiliary component to other switching algorithms such as iSLIP [14] and SERENA [7], in this work, QPS serves the primary building block for SB-QPS.

Even though SB-QPS has a much smaller batching delay than other batch switching algorithms due to its much smaller T, the batching delay accounts for the bulk of the total packet delay under light to moderate traffic loads, when all other delays are comparatively much smaller. The second contribution of the work is to achieve the unthinkable: a novel switching algorithm called SW-QPS (SW for sliding window) that inherits and enhances all the good features of SB-QPS yet pays zero batching delay. More precisely, it has the same $O(1)$ time complexity as and achieves strictly better throughput and delay performances than SB-QPS.

SW-QPS does so by solving the switching problem under a novel framework called sliding-window switching. A sliding-window switching algorithm is different than a batch algorithm only in the following aspect. In a batch switching algorithm, a batch of T matchings are produced every T time slots. In contrast, in a sliding-window switching algorithm, each window is of size T but a single matching is produced every time slot just like in a regular switching algorithm. More precisely, at the beginning of time slot t, the sliding window contains matchings-under-computation for the T time slots t, $t + 1$, ..., $t + T - 1$. The “leading edge of the window”, corresponding to the matching for the time slot t (the “senior class”), “graduates” and is used as the crossbar configuration for the current time slot t. Then at the end of time slot t, a new and currently empty matching is added to the “tail end of the window” as the “freshman class”. This matching will be computed in the next T time slots and hopefully becomes a high-quality matching by the time $t + T$, when it “graduates”. SW-QPS completely removes the batching delay because “it graduates a class every year” and furthermore always schedules an incoming packet to “graduate” at the earliest “year” possible.

We consider SW-QPS to be the only research outcome of this work, since it strictly outperforms SB-QPS. However, we describe both SB-QPS and SW-QPS in detail for two reasons. First, the incremental contributions of SB-QPS over existing batch switching algorithms and that of SW-QPS over SB-QPS are orthogonal to each other: The former is to significantly reduce the batch size without sacrificing the throughput performance much and to reduce the time complexity to $O(1)$ via parallelization, whereas the latter is to retain the full benefits of batching without paying the batching delay. Second, thanks to this orthogonality, explaining the differences between SB-QPS and existing batch switching algorithms and that between SW-QPS and SB-QPS separately and incrementally makes the presentation much easier, as will become apparent in §3 and §4.

The rest of this paper is organized as follows. In §2, we state assumptions and the problem model used in this work. §3 and §4 detail the SB-QPS and SW-QPS algorithms respectively. In §5, we survey the related works. Then, we evaluate the performances of SB-QPS and SW-QPS in §6 and in §7, we conclude this paper.

2. Assumptions and Problem Model

In this work, we make the following two assumptions that are widely adopted in the literature (e.g., [10, 14]). First, we assume that all incoming variable-length packets are first segmented into fixed-length packets, which are then reassembled before leaving the switch. Hence, we consider the switching of only fixed-length packets in the sequel, and each such fixed-length packet takes exactly one time slot to transmit. Second, we assume that input ports, output ports and the crossbar operate at the same speed.

An $N \times N$ input-queued crossbar can be modeled as a weighted bipartite graph, of which the two disjoint vertex sets are the N input ports and the N output ports respectively. We note that the edge set in this bipartite graph might change from a time slot to another. In this bipartite graph during a certain time slot t, there is an edge between input port i and output port j, if and only if the jth VOQ at input port i, the corresponding VOQ, is nonempty (at t). The weight of this edge is defined as the length of (i.e., the number of packets buffered at) this VOQ. A set of such edges constitutes a valid crossbar schedule, or a matching, if any two of them do not share a common vertex.

3. Small-Batch QPS

3.1 Batch Switching Algorithms

Since Small-Batch QPS (SB-QPS) is a batch switching
The operations at output port 1 depend on the number of proposals it receives. If output port 1 receives exactly one proposal from an input port (say input port i), it tries to accommodate this proposal using an accepting strategy called First Fit Accepting (FFA). The FFA strategy is to match in this case input port i and output port 1 at the earliest time slot (in the batch of T time slots) during which both are still available (for pairing); if they have “schedule conflicts” over all T time slots, this proposal is rejected. If output port 1 receives proposals from multiple input ports, then it first sorts (with ties broken arbitrarily) these proposals in a descending order according to their corresponding VOQ lengths, and then tries to accept each of them using the FFA strategy.

In SB-QPS, opportunities – in the form of proposals from input ports – can arise, throughout the time window (up to T time slots long) for computing the joint calendar, to fill any of its TN cells. As explained earlier, this “capturing every opportunity” to fill the joint calendar allows a batch switching algorithm to produce matchings of much higher qualities than a regular switching algorithm that is based on the same underlying bipartite matching algorithm can. Indeed, SB-QPS, the batch switching algorithm that is based on the QPS bipartite matching primitive, significantly outperforms QPS-1, the regular switching algorithm that is also based on QPS, as we will show in §6.

Time Complexity. The time complexity for the accepting phase at an output port is $O(1)$ on average, although in theory it can be as high as $O(N\log N)$ since an output port can receive up to N proposals and have to sort them based on their corresponding VOQ lengths. Like in [9], this time complexity can be made $O(1)$ even in the worst case by letting the output port drop (“knock out”) all proposals except the earliest few (say 3) to arrive. In this work, we indeed set this threshold to 3 and find that it has a negligible effect on the quality of resulting matchings.

We now explain how to carry out an FFA operation in $O(1)$ time. In SB-QPS, we encode the availability information of an input port i as a T-bit-long bitmap $B_i[1..T]$, where $B_i[t] = 1$ if input port i is available (i.e., not already matched with an output port) at time slot t and $B_i[t] = 0$ otherwise. The availability information of an output port

Figure 1: A joint calendar. “–” means unmatched.
o is similarly encoded into a T-bit-long bitmap $B_o[1..T]$. When input port i sends a proposal, which contains the availability information $B_i[1..T]$, to output port o, the corresponding FFA operation is for the output port o to find the first bit in the bitmap $(B_i&B_o)[1..T]$ that has value 1, where “&” denotes bitwise-AND. Since the batch size T in SB-QPS is a small constant (say $T=16$), both bitmaps can fit into a single CPU word and “finding the first 1” is an instruction on most modern CPUs.

To summarize, the worst-case time complexity of SB-QPS is $O(T)$ per input or output port for the joint calendar consisting of T matchings, since SB-QPS runs T iterations and each iteration has $O(1)$ worst-case time complexity per input or output port. Hence the worst-case time complexity for computing each matching is $O(1)$ per input or output port.

Message Complexity. The message complexity of each “propose-accept” iteration is $O(1)$ messages per input or output port, because each input port sends at most one proposing message per iteration and each output port sends out at most 3 acceptance messages (where 3 is the “knockout” threshold explained above). Each proposing message is $T+\lceil \log_2 W \rceil$ bits long (T bits for encoding the availability information and $\lceil \log_2 W \rceil$ bits for encoding the corresponding VOQ length), where W is the longest possible VOQ length. Each acceptance message is $\lceil \log_2 T \rceil$ bits long (for encoding the time slot the pairing is to be made).

4. SLIDING-WINDOW QPS

In this section, we present in detail the Sliding-Window QPS (SW-QPS) algorithm, the final and only research product of this work. Before we do so, we describe next the sliding-window framework that SW-QPS builds on.

4.1 Sliding-Window Switching

![Figure 2: Sliding-window switching.](image)

As mentioned earlier, the only difference between SW-QPS and SB-QPS is that SW-QPS changes the batch switching operation of SB-QPS to a sliding-window switching operation. Sliding-window switching combines regular switching with batch switching and gets the better of both worlds, as follows. On one hand, during each time slot, under a sliding-window switching operation, there are T matchings under computation, just like under a batch switching operation. Each such matching has had or will have a window of T time slots to find opportunities to have its quality improved by the underlying bipartite matching algorithm before it “graduates”. Hence, each such matching, when it “graduates”, can have a similar or even better quality than that computed by the batch switching algorithm that is based on the same underlying bipartite matching algorithm, as will be confirmed in §6.

On the other hand, under a sliding-window switching operation, the “windows of opportunities” of these T matchings are staggered so that one matching (“class”) is output (“graduated”) every time slot. This matching is to be used as the crossbar configuration for the current time slot. In this respect, it behaves like a regular switching algorithm and hence completely eliminates the batching delay of the batch switching. More specifically, at the beginning of time slot t, the most senior matching (“class”) in the window was added (“enrolled”) to the window at the end of time slot $t-T-1$ and is to “graduate” at the beginning of time slot t, so its “window of opportunity” (to have its quality improved) is $[t-T, t-1]$. The “window of opportunity” for the second most senior matching is $[t-T+1, t]$ and so on. At the end of time slot t, a “freshman class” (an empty matching) is “enrolled” and scheduled to “graduate” at time slot $t+T+1$ in the future.

Figure 2 shows how the sliding window evolves from time slot t to time slot $t+1$. In Figure 2, each interval along the timeline corresponds to a “class”. As shown in Figure 2, at the beginning of time slot t, the current window contains “classes of years” (matchings-under-computation to be used as crossbar schedules for time slots) $t, t+1, \cdots, t+T-1$. Then, at the beginning of time slot $t+1$, the current window slides right by 1 (time slot), and the new window contains “classes of years” $t+1, t+2, \cdots, t+T$, because the “class of year t' just graduated and the “class of year $t+T$” was just “enrolled”.

In theory, almost any batch switching algorithm can be converted into a sliding-window switching algorithm by making the “windows of opportunity” for the batch of T matchings-under-computation staggered instead of aligned. This conversion would in general improve switching performance by eliminating the batching delay. Hence, this sliding-window switching framework is itself a separate contribution of this work.

4.2 The SW-QPS Algorithm

SW-QPS is exactly such a conversion of the batch switching algorithm SB-QPS into a sliding-window switching algorithm. SW-QPS is also a parallel iterative algorithm whose each iteration is identical to that of SB-QPS. Hence SW-QPS has the same $O(1)$ time and $O(1)$ message complexities (per port per matching computation) as SB-QPS. The only major difference is that, SW-QPS “graduates” a matching every time slot whereas SB-QPS “batch-graduates” T matchings every T time slots. This “graduating a class each year” allows SW-QPS to completely eliminate the batching delay. As explained earlier, in SW-QPS, at the beginning of time slot t, the joint calendar consists of the T matchings-under-computation that are to “graduate” in “years” (time slots) $t, t+1, \cdots, t+T-1$ respectively. Hence at time slot t, the T-bit-long availability bitmap of an input port i indicates the availabilities of i during $[t, t+T-1]$.

Note that SW-QPS inherits the FFA (First Fit Accepting) strategy of SB-QPS that is to arrange for an input-output pairing – and hence the switching of a packet between the pair – at the earliest mutually available time slot. In other words, an incoming packet is always “advanced to the most senior class that it can fit in schedule-wise” so that it can “graduate” at the earliest “year” possible. This greedy strategy further reduces the queuing delay of a packet, as will be shown in §6.

5. RELATED WORK
In this section, we provide a brief survey of prior studies that are directly related to ours.

Regular Switching Algorithms. Using MWM (Maximum Weighted Matching) as crossbar schedules is known to result in 100% switch throughput and near-optimal queues delays under various traffic patterns [15], but each MWM takes \(O(N^{2.5}\log W)\) time to compute using the state-of-the-art algorithm [4], where \(W\) is the maximum possible length of a VOQ. Motivated by this, various parallel exact or approximate MWM algorithms (e.g., [2, 5]) have been proposed to reduce its time complexity. However, the time complexities of all these algorithms above are still too high to be used in high-line-rate high-radix switches.

The family of parallel iterative algorithms [10–12, 14] generally has a low time complexity per port. However, their throughput and delay performances are generally much worse than those of MWM. We note that QPS-r [10], the state-of-the-art algorithm in this family, also builds on QPS [9]. It simply runs \(r\) (a small constant) iterations of QPS to arrive at a final matching. We will compare our SB-QPS and SW-QPS with it in §6.

Batch Switching Algorithms. Most of the existing batch switching algorithms [1, 16, 18] model the process of packetizing the joint calendar as an edge-coloring problem, but until now, most practical solutions to the latter problem are centralized and have high complexity. For example, the Fair-Frame algorithm [16] based on the Birkhoff von Neumann Decomposition (BvND) has a time complexity of \(O(N^{1.1}\log N)\) per matching computation.

A recent work, based on parallel edge coloring, has been proposed in [18]. It pushes the per-port time complexity (per matching computation) down to \(O(\log N)\). It requires a path size of only \(O(\log N)\), but as mentioned in §1, the constant factor hidden in the big-O is very large.

6. PERFORMANCE EVALUATION

In this section, we evaluate, through simulations, the throughput and delay performances of SB-QPS and SW-QPS under various load conditions and traffic patterns. Our algorithms are compared against iSLIP [14], which runs \(\log N\) request-grant-accept iterations and is hence much more expensive computationally. Our algorithms are also compared against QPS-1 (QPS-r with \(r=1\) iteration) [10]. This is a fair comparison because QPS-1, like our algorithms, runs only a single iteration to compute a matching. The MWM algorithm, which delivers near-optimal delay performance [17], is also compared against as a benchmark.

6.1 Simulation Setup

In our simulations, we fix the number of input and output ports \(N\) to 64; we however will investigate in §A.1 how the mean delay performances of these algorithms scale with respect to \(N\). To accurately measure throughput and delay, we assume that each VOQ has an infinite buffer size, so no packet is dropped at any input port. Each simulation run follows the stopping rule in [6, 8]. The number of time slots simulated is at least \(500N^2\) and guarantees the difference between the estimated and the actual average delays to be within 0.01 time slots with at least 0.98 probability.

We assume in our simulations that each traffic arrival matrix \(A(t)\) is i.i.d. Bernoulli with its traffic rate matrix equal to the product of the offered load and a traffic pattern matrix (defined next). Similar Bernoulli arrivals were studied in [7, 9, 14]. Later, in §A.2, we will look at burst traffic arrivals. Note that only synthetic traffic (instead of that derived from packet traces) is used in our simulations because, to the best of our knowledge, there is no meaningful way to combine packet traces into switch-wide traffic workloads.

The following four standard types of normalized (with each row or column sum equal to 1) traffic patterns are used: (I) Uniform: packets arriving at any input port go to each output port with probability \(\frac{1}{N}\). (II) Quasi-diagonal: packets arriving at input port \(i\) go to output port \(j = i\) with probability \(\frac{1}{N}\) and go to any other output port with probability \(\frac{3}{N^2}\). (III) Log-diagonal: packets arriving at input port \(i\) go to output port \(j = i\) with probability \(\frac{2(N-i)}{N^2}\) and go to any other output port \(j\) with probability \(\frac{1}{N}\). (IV) Diagonal: packets arriving at input port \(i\) go to output port \(j\) with probability \(\frac{1}{N}\) and go to output port \((i \mod N) + 1\) with probability \(\frac{1}{N}\). These traffic patterns are listed in order of how skewed the volumes of traffic arrivals to different output ports are: from uniform being the least skewed, to diagonal being the most skewed.

When implementing SB-QPS and SW-QPS, we have to first decide on the value of batch (for SB-QPS) or window (for SW-QPS) size \(T\). As explained earlier in §1, for SB-QPS, a larger batch size \(T\) generally results in matchings of higher qualities and hence leads to better throughput performances. However, a larger \(T\) results in longer batching delays and hence can lead to worse overall delay performances for SB-QPS. In addition, since the availability information in a proposal message is \(T\) bits long, a larger \(T\) leads to a higher communication complexity for SB-QPS. Through simulations (results not shown here in the interest of space), we have found that \(T = 16\) strikes a nice performance-cost tradeoff. The batching delay is reasonably low and the proposal message size is small when \(T = 16\), yet the throughput gains when increasing \(T\) beyond 16 (say to 32) are marginal for SB-QPS. Hence we set \(T = 16\) for SB-QPS, SB-QPS clearly deserves its name (small-batch) since this tiny batch size of 16 is much smaller than that of any other batch switching algorithm.

Since SW-QPS completely eliminates the batching delay, the only cost of increasing \(T\) for SW-QPS is the larger proposal message size. Nonetheless, we have found that \(T = 16\) is a nice performance-cost tradeoff point, and hence is adopted, also for SW-QPS. For SW-QPS, \(T\) does not have to grow with \(N\) (to deliver similar throughput and delay performances), as we will show in §A.1 that the delay performance of SW-QPS (with \(T = 16\)) does not degrade when \(N\) grows larger.

6.2 Throughput Performance Results

Traffic	Uniform	Quasi-diag	Log-diag	Diag
SB-QPS	86.88%	87.10%	87.31%	86.47%
SW-QPS	92.56%	91.71%	91.40%	87.74%
iSLIP	99.56%	80.43%	83.16%	82.96%
QPS-1	63.54%	66.60%	68.78%	75.16%

Table 1 presents the maximum achievable throughput of SB-QPS, SW-QPS, iSLIP, and QPS-1, under the aforemen-
tioned four standard traffic patterns and an offered load close to 1 (more precisely, 0.9999). We do not include the throughout of MWM in Table 1, because it can provably attain 100% throughput. We make three observations from Table 1. First, SW-QPS significantly improves the throughput performance of QPS-1, increasing it by an additive term of 0.2902, 0.2511, 0.2262, and 0.1258 for the uniform, quasi-diagonal, log-diagonal, and diagonal traffic patterns respectively. Second, the throughput of SW-QPS is consistently higher than that of SB-QPS under the four traffic patterns. Third, under all traffic patterns except uniform, SW-QPS significantly outperforms iSLIP, which is much more expensive computationally as it runs $\log_2 N$ iterations for each matching computation.

6.3 Delay Performance Results

Figure 3 shows the mean delays of SB-QPS, SW-QPS, iSLIP, QPS-1, and MWM under the aforementioned four traffic patterns. As we have shown in §6.2, SB-QPS, SW-QPS, iSLIP and QPS-1 generally cannot attain 100% throughput, so we only measure their delay performances for the offered loads under which they are stable; in all figures in the sequel, each “missing point” on a plot indicates that the corresponding algorithm is not stable under the corresponding traffic pattern and offered load. Figure 3 shows that, when the offered load is not very high (say < 0.6), SB-QPS has a much higher mean overall delay than others thanks to its batching delay that is still relatively quite high (despite a small batch size of $T = 16$); in comparison, SW-QPS completely eliminates this batching delay. Figure 3 also shows that SW-QPS outperforms QPS-1 everywhere and outperforms iSLIP under all traffic patterns except uniform. Since as shown in Table 1 and Figure 3, the throughput and the delay performances of SW-QPS are strictly better than those of SB-QPS, we will show the performance results of only SW-QPS in Appendix A, in which we present more evaluation results.

7. CONCLUSION

In this work, we first propose a batch switching algorithm called SB-QPS that significantly reduces the batch size without sacrificing the throughput performance much, and achieves a time complexity of $O(1)$ per matching computation per port via parallelization. We then propose a regular switching algorithm called SW-QPS that improves on SB-QPS using a novel sliding-window switching framework. SW-QPS inherits and enhances all benefits of SB-QPS and reduces the batching delay to zero. We show, through simulations, that the throughput and delay performances of SW-QPS are much better than those of QPS-1, the state-of-the-art regular switching algorithm based on the same underlying bipartite matching algorithm.

Acknowledgments. This material is based upon work supported by the National Science Foundation under Grant No. CNS-1909048 and CNS-2007006.

8. REFERENCES

[1] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu. Switch scheduling via randomized edge coloring. In Proc. of the IEEE FOCS, pages 502–512, Oct 2003.
[2] M. Bayati, B. Prabhakar, D. Shah, and M. Sharma. Iterative scheduling algorithms. In Proc. of the IEEE INFOCOM, pages 445–453, May 2007.
[3] C. Cakir, R. Ho, J. Lexau, and K. Mai. Scalable high-radix modular crossbar switches. In Proc. of the HOTI, pages 37–44, Aug 2016.
[4] R. Duan and H. Su. A scaling algorithm for maximum weight matching in bipartite graphs. In Proceedings of the ACM-SIAM SODA, pages 1413–1424, 2012.
[5] M. Fayyazi, D. Kaeli, and W. Meleis. Parallel maximum weight bipartite matching algorithms for scheduling in input-queued switches. In Proc. of the IEEE IPDPS, pages 4–11, Apr. 2004.
[6] J. Flegal, G. Jones, et al. Batch means and spectral variance estimators in markov chain monte carlo. Ann. Stat., 38(2):1034–1070, 2010.
[7] P. Giaccone, B. Prabhakar, and D. Shah. Randomized scheduling algorithms for high-aggregate bandwidth switches. IEEE J. Sel. Areas Commun., 21(4):546–559, 2003.
[8] P. Glynn, W. Whitt, et al. The asymptotic validity of sequential stopping rules for stochastic simulations. Ann. Appl. Probab., 2(1):180–198, 1992.
[9] L. Gong, P. Tune, L. Liu, S. Yang, and J. Xu. Queue-proportional sampling: A better approach to crossbar scheduling for input-queued switches. Proc. of the ACM SIGMETRICS, 1(1):31–33, June 2017.
[10] L. Gong, J. Xu, L. Liu, and S. T. Maguluri. QPS-r: A cost-effective crossbar scheduling algorithm and its stability and delay analysis. In Proc. of the EAI VALUETOOLS, 2020.
APPENDIX

A. MORE EVALUATION RESULTS

A.1 How Mean Delay Scales with N

In this section, we investigate how the mean delays of SW-QPS, iSLIP, QPS-1, and MWM scale with the number of input/output ports N under (non-bursty) i.i.d. Bernoulli traffic. We have simulated seven different N values: $N = 8, 16, 32, 64, 128, 256, 512$. We have simulated various offered loads, but here we only present the results under an offered load of 0.8; other offered loads (say 0.6) lead to similar conclusions. Figure 4 shows the simulation results, under the 4 different traffic patterns under an offered load of 0.8. The results of QPS-1 are not shown, because it is not stable when the offered load is 0.8 under all four traffic patterns. Some points for iSLIP are missing because iSLIP is not stable for some, and QPS-1 is not stable for all, average burst sizes under the offered load of 0.8. One point for QPS-1 is missing in the leftmost sub-figure in Figure 5, because QPS-1 is not stable when the average burst size becomes 1,024 under the uniform traffic pattern and an offered load of 0.6. Figure 5 clearly shows that SW-QPS outperforms iSLIP (under all traffic patterns except uniform), and QPS-1 (under all traffic patterns) by an increasingly wider margin in both absolute and relative terms as the average burst size becomes larger.

A.2 Bursty Arrivals

In real networks, packet arrivals are likely to be bursty. In this section, we evaluate the performances of SW-QPS, iSLIP, QPS-1, and MWM under bursty traffic, generated by a two-state ON-OFF arrival process. The durations of each ON (burst) stage and OFF (no burst) stage are geometrically distributed: the probabilities that the ON and OFF states last for $t \geq 0$ time slots are given by $P_{ON}(t) = p(1-p)^t$ and $P_{OFF}(t) = q(1-q)^t$, with the parameters $p, q \in (0,1)$ respectively. As such, the average duration of the ON and OFF states are $(1-p)/p$ and $(1-q)/q$ time slots respectively.

In an OFF state, an incoming packet's destination (i.e., output port) is generated according to the corresponding traffic pattern. In an ON state, all incoming packet arrivals to an input port would be destined to the same output port, thus simulating a burst of packet arrivals. By controlling p, we can control the desired average burst size while by adjusting q, we can control the load of the traffic.

We evaluate the mean delay performances of these four algorithms, with the average burst size ranging from 16 to 1,024 packets, under a moderate offered load of 0.6 and a heavy offered load of 0.8, respectively. The simulation results for the former are shown in Figure 5; those for the latter are omitted, since they are similar except that iSLIP is not stable for some, and QPS-1 is not stable for all, average burst sizes under the offered load of 0.8. One point for QPS-1 is missing in the leftmost sub-figure in Figure 5, because QPS-1 is not stable when the average burst size becomes 1,024 under the uniform traffic pattern and an offered load of 0.6. Figure 5 clearly shows that SW-QPS outperforms iSLIP (under all traffic patterns except uniform), and QPS-1 (under all traffic patterns) by an increasingly wider margin in both absolute and relative terms as the average burst size becomes larger.

[11] B. Hu, F. Fan, K. L. Yeung, and S. Jamin. Highest rank first: A new class of single-iteration scheduling algorithms for input-queued switches. IEEE Access, 6:11046–11062, 2018.
[12] B. Hu, K. L. Yeung, Q. Zhou, and C. He. On iterative scheduling for input-queued switches with a speedup of $2 - 1/n$. IEEE/ACM Trans. Netw., 24(6):3565–3577, December 2016.
[13] M. Karol, M. Hluchyj, and S. Morgan. Input versus output queueing on a space-division packet switch. IEEE Trans. Commun., 35(12):1347–1356, 1987.
[14] N. McKeown. The iSLIP Scheduling Algorithm for Input-queued Switches. IEEE/ACM Trans. Netw., 7(2):188–201, Apr. 1999.
[15] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100% Throughput in an Input-Queued Switch. IEEE Trans. Commun., 47(8):1260–1267, Aug. 1999.
[16] M. J. Neely, E. Modiano, and Y. S. Cheng. Logarithmic Delay for $N \times N$ Packet Switches Under the Crossbar Constraint. IEEE/ACM Trans. Netw., 15(3):657–668, June 2007.
[17] D. Shah and D. Wischik. Optimal scheduling algorithms for input-queued switches. In Proc. of the IEEE INFOCOM, pages 1–11, Apr. 2006.
[18] L. Wang, T. Ye, T. Lee, and W. Hu. A parallel complex coloring algorithm for scheduling of input-queued switches. IEEE Trans. Parallel Distrib. Syst., 29(7):1456–1468, 2018.
Figure 4: Mean delays v.s. number of (input/output) ports under i.i.d. Bernoulli traffic arrivals (offered load: 0.8).

Figure 5: Mean delays of SW-QPS, iSLIP, QPS-1, and MWM under bursty arrivals (offered load: 0.6).