Soliton self-formation in the medium with nanorods under conditions of the absorption spectrum finite width

Vyacheslav A. Trofimov, Tatiana M. Lysak, Igor E. Kuchik
Lomonosov Moscow State University, Moscow 119992, Russia

E-mail vatro@cs.msu.ru

Abstract. We investigate numerically an influence of the absorption spectrum width and the absorption spectrum central frequency shift on novel type of solitons (chirped soliton) appearance at a femtosecond pulse propagation in a medium with noble nanoparticles. We take into account the TPA of laser radiation by nanorods, and time-dependent nanorod aspect ratio changing due to their melting or reshaping because of laser energy absorption. The chirped solitons are formed due to the trapping of laser radiation by the nanorods reshaping fronts, if a positive or negative phase-amplitude grating is induced by laser radiation. We consider both linear and strong nonlinear dependences of absorption coefficient on the nanorod aspect ratio. We discuss a physical mechanism of the absorption spectrum width influence on the accelerating soliton formation.

1. Introduction
The influence of the noble metal nanoparticle aspect ratio and orientation, and local environment on the nanoparticle optical response has been widely investigated in recent years [1-12] because of nanorods using in many novel technologies. For example, nanoparticles aspect ratio changing because of photo-thermal reshaping provides the ability for five-dimensional recording [1-6]. Other very important question is the physical mechanism for photo-thermal reshaping of nanorods or wires at the temperatures less than the bulk melting [13-16]. Some models are proposed up to now to explain this phenomenon [15,16].

Among a number of problems of laser radiation interaction with a medium containing nanorods, the self-similar mode of laser pulse propagation is of great importance. This is due to the fact that the laser radiation spectrum distortions taking place due to nonlinear refraction can cause false information recording in all-optical data storage devices. Indeed, nanoparticles reshaping due to the laser radiation absorption leads to the pulse spectrum changing caused by the pulse chirping. This results in violation of optimal conditions for information recording, as well as (that is more essential) in the false information recording and reading. That is why the investigation of the laser pulse interaction with the medium, containing nanoparticles, is an actual problem.

In our previous papers [17-20] we investigated a femtosecond pulse propagation in a medium with nanorods under the conditions of nanorod aspect ratio changing and dependence of laser radiation absorption on nanoparticle aspect ratio. In particular, using the density matrix formalism, we derived the equation set which describes the femtosecond pulse propagation in the medium with nanorods reshaping, and obtained some analytical formulas for such propagation [17]. We also demonstrated the possibility for the superluminality effect implementation [21-22] in such media and discussed a
physical mechanism of chirped soliton formation and light acceleration. In particular, we showed that
the light acceleration takes place for a chirped incident pulse and demonstrated that a nonlinear
frequency chirp is crucial for a self-similar mode realization in a medium with nanorods [18]. We
analyzed the influence of the relation between the nanorods absorption spectrum bandwidth and laser
pulse spectrum bandwidth on the laser pulse spectrum transform [19] and the laser pulse acceleration
[20] under its propagation in a medium containing nanorods.

Our attention in this paper is attracted by an influence of the absorption spectrum central frequency
on the effects of superliminality and soliton formation at laser pulse propagation in a medium with
nanorods under the condition of a narrow bandwidth of the pulse spectrum.

2. Problem statement

We consider a femtosecond laser pulse propagation in a medium with nanorods by taking into account
the nanorod aspect ratio changing due to nanorod reshaping because of TPA of optical energy. In the
framework of slowly varying envelope of wave packet, this process can be described by the following
dimensionless nonlinear equations:

$$\frac{\partial A}{\partial z} + iD \frac{\partial^2 A}{\partial t^2} + f(\varepsilon)(\delta_0 + i\tilde{\xi})|A|^2 \cdot A \cdot \int_{-\infty}^{\infty} \delta(\omega)|A_{\omega}|^2 d\omega = 0 ,$$

$$\frac{\partial^{\circ} E}{\partial^t} = \tilde{\delta} f(\varepsilon)|A|^4 \int_{-\infty}^{\infty} \tilde{\delta}(\omega)|A_{\omega}|^2 d\omega .$$

with initial and boundary conditions for complex amplitude and nanorod aspect ratio

$$A(z,0) = A(z,L_z) = 0, \quad 0 \leq z \leq L_z , \quad A(0,t) = A_0(t), \quad 0 \leq t \leq L_t , \quad \varepsilon(z,t = 0) = \varepsilon_0, \quad 0 \leq z \leq L_z .$$

Above A is dimensionless slowly varying envelope of a wave packet normalized on a square root
from the maximum incident pulse intensity ($z = 0$). $\varepsilon = a/b$ is a nanorod aspect ratio, where a and b
are major and minor axes of nanorods, ε_0 is its initial value. Variable z is a dimensionless longitudinal
coordinate, along which the optical radiation propagates; t is a dimensionless time in the system of
coordinates moving with a pulse, time is measured in the units of τ_{pulse} - duration of the incident
pulse; L_z is a dimensionless time interval, during which the laser pulse interaction with nanorods is
analyzed, L_t is a dimensionless length of nonlinear medium. Parameter D characterizes the group
velocity dispersion (GVD). Parameters δ_0 and $\tilde{\delta}$ characterize the absorption of laser light and a part
of absorbed energy spent on nanorods reshaping, correspondingly. Coefficient $\tilde{\xi}$ characterizes the
laser pulse self-action due to the wave packet carrier frequency detuning from the central frequency of
the nanorod absorption spectrum. The case of $\tilde{\xi} = 0$ corresponds to an optical pulse propagation in a
medium with pure amplitude grating. It means an influence only of a laser energy absorption on the
laser pulse propagation. In the opposite case ($\tilde{\xi} \neq 0$), the phase grating is also induced by the laser
radiation. It should be mentioned, that the positive sign of the parameter ξ (this case is named by us
as positive grating) corresponds to pulse compression and the laser pulse decompression occurs at
negative sign of this parameter (this case is named by us as negative grating).
The function $f(\varepsilon)$ describes the dependence of TPA process on the nanorod aspect ratio ε. Below we consider two possible types of this dependence:

\begin{align}
 f(\varepsilon) &= \varepsilon - 1 \\
 f(\varepsilon) &= \exp(5(\varepsilon - 2)), \quad \varepsilon \leq 2.7,
\end{align}

These dependences approximate the dependence

\begin{equation}
 f(\varepsilon) = \left(\frac{\varepsilon_2 / A^2}{\varepsilon_1 + \frac{1 - A}{A} \varepsilon_m^2} \right) + \varepsilon_2^2,
\end{equation}

\begin{equation}
 A = \left[1 - \frac{\xi Q_1(\xi)}{Q_1(\xi)} \right]^{-1}, \quad \xi = \left[1 - \left(\frac{1}{\varepsilon} \right)^2 \right]^{-1/2}, \quad Q_1(\xi) = \left(\frac{\xi}{2} \right) \ln \left[\frac{\xi + 1}{\xi - 1} \right] - 1, \quad \frac{dQ_1(\xi)}{d\xi},
\end{equation}

which follows from Boyd and Shen shape factor expression [23] for the absorption coefficient of gold nanorods, calculated in the dipole approximation [24] for physical parameters $\varepsilon_1 = -22.4, \varepsilon_2 = 1.8$ for Au at $\lambda = 800$ and $\varepsilon_m = 3$. In Eq.(5)-(6), ε_m is the dielectric permittivity of the ambient medium, $\varepsilon_1 + i \varepsilon_2$ is the complex dielectric permittivity of the nanorods.

Figure 1. Dependence $f(\varepsilon)$ defined by formulas (5)-(6) for gold nanorods at the falling radiation with $\lambda = 800$ nm (solid line), or by formula (3) (dashed line), or by formula (4) (dotted line).

If the aspect ratio varies from 1 to 2, then a laser radiation interaction with nanorods occurs far from the nonlinear absorption resonance. In this case, a linear dependence (3) adequately approximates dependence (5)-(6) (figure1, dashed line). Strongly non-linear dependence (4) can be used to approximate the dependence (5)-(6) if the aspect ratio changes from 1 to 2.6 (2, dotted line). The expression (4) is more preferable for a laser pulse interaction with nanorods near the nonlinear absorption resonance. Below we consider both dependences and choose initial value of aspect ratio as $\varepsilon_0 = 2$ for the dependence (4) and $\varepsilon_0 = 2.6$ for the dependence (5).

In Eqs. (1)-(2), we also take into account the absorption spectrum bandwidth influence on a laser energy absorption. At writing the spectral absorption coefficient $\delta(\omega)$, we consider the Lorentz law for the absorbance cross-section on light frequency. Hence, it is written as

\begin{equation}
 \delta(\omega) = \frac{1}{1 + 4 \left(\frac{\omega_0 - \omega}{\Delta \omega} \right)^2},
\end{equation}

with the absorption spectrum width and the central absorption frequency denoted as $\Delta \omega$ and ω_0, respectively. Obviously, the absorption spectrum central frequency ω_0 does not influence TPA, if the absorption spectrum width is many times larger than the laser pulse spectrum width. Indeed, in this case.
case the integral dependence in (1) and (2) can be omitted because the second item in the denominator of the expression (6) becomes negligible. So, it is possible to choose \(\omega_0 = 0 \) for the wide absorption spectrum. Below we show that the central absorption frequency \(\omega_0 \) greatly influences the process of soliton formation if the absorption spectrum is comparable with the pulse spectrum or narrower.

We specify the following complex amplitude of incident pulse

\[
A(z=0,t) = A_0(t) = \exp\left(-((t-L_z/2)/\tau)^{m}\right), 0 \leq t \leq L_z,
\]

\(\tau \) is a dimensionless pulse duration, \(m = 2 \) describes the Gaussian pulse shape.

We also follow the laser pulse centre position

\[
\tau_c(z) = \int_0^{L_z} (t-L_z/2) |A(z,t)|^2 \, dt \int_0^{L_z} |A(z,t)|^2 \, dt
\]

3. Computer simulation results

Below we present computer simulation results for the incident Gaussian pulse \((m=2, \tau = 1) \) propagation at \(D = 0.1 \) and positive phase-amplitude grating \(\xi = 5 \), and sufficiently small strength of reshaping \(\delta = 5 \) for both types (3) and (4) of the absorption coefficient dependence on aspect ratio. Let us mention that the considered value of GVD corresponds to the pulse duration about 500 fs. We consider narrow absorption spectrum with bandwidth \(\Delta \omega = 1 \), which is less than the pulse spectrum width and three values of the central absorption frequency \(\omega_0 = [0, 1, -1] \) with respect to the carrier frequency of a wave packet.

Before we discuss the computer simulation results, let us note that the absorption spectrum bandwidth \(\Delta \omega \) affects the pulse spectrum changing and the pulse propagation only if it becomes comparable with the initial spectrum width. This is valid for all signs of the phase grating as well as for the pure amplitude grating [19]. Moreover, as it was demonstrated in [20], if the absorption spectrum bandwidth is comparable with the incident pulse spectrum bandwidth or narrower than it, a light acceleration is not so pronounced as in the case of the absorption spectrum that is much wider than the incident pulse spectrum. The pulse splitting also depends on the absorption spectrum bandwidth: it occurs only for a wide spectrum or for the spectrum comparable with the incident pulse spectrum bandwidth. If the absorption spectrum is narrower than the incident pulse spectrum, no pulse splitting occurs, and the pulse propagates as a whole at the velocity corresponding to the pulse front propagation in a linear medium.

![Figure 2](image-url)

Figure 2. Pulse centre shifting along the z-coordinate (a), maximal intensity evolution (b) for the three values of the central absorption frequency \(\omega_0 \) (shown in Figure), positive phase amplitude grating \(\xi = 5 \) and \(\delta_0 = 0.005, \delta = 5, \Delta \omega = 1 \).
3.1. Soliton formation far from nonlinear absorption resonance
We provide computer simulations for the linear dependence (3) of absorption coefficient on nanorod aspect ratio which is valid far from the nonlinear absorption resonance. We considered a small depletion ($\delta_0 = 0.005$) of laser energy due to TPA at a short distance ($z \approx 1$). It should be mentioned that the considered values of phase-amplitude grating and energy depletion correspond to the dimensionless frequency detuning parameter $\theta = (2\omega_p - \omega_{21}) T_\perp = \frac{\xi}{\delta_0} = 10^3$, which is much bigger than the dimensionless value of $\omega_p T_\perp \approx 236$, corresponding to $\lambda = 800$ nm (we consider $T_\perp \approx 10^{-13}$ s [25]). Nevertheless, this parameter values are very important for theoretical consideration.

As it is well seen in figures 2-4, if the central absorption frequency belongs to low frequency area ($\omega_0 = -1$) then the pulse acceleration enhancing occurs in comparison with its zero-value ($\omega_0 = 0$). Shift of the central absorption frequency to the high frequency area ($\omega_0 = 1$) results in the pulse acceleration decreasing.

![Figure 3](image3.png)

Figure 3. Soliton propagation in the medium with positive phase grating $\xi = 5$, $\delta_0 = 0.005$, $\tilde{\delta} = 5$ for $\Delta \omega = 1$, $\omega_0 = 0$ (a), -1(b).

![Figure 4](image4.png)

Figure 4. Maximal intensity position at the incident Gaussian pulse propagation in the medium with positive phase grating $\xi = 5$ and $\delta_0 = 0.005$, $\tilde{\delta} = 5$ for $\Delta \omega = 1$, $\omega_0 = 0$ (a),1(b), -1 (c). The solid lines at the top panels show soliton shapes at the exit section. Dashed line shows pulse shape at its propagation in linear medium (a) or aspect ratio distribution (b, c) at the exit section.
Note, that in the considered case, the soliton position coincides with the pulse front position at its propagation in a linear medium without nanorods (dashed line in figure 4a), if the central absorption frequency is equal to zero ($\omega_0 = 0$). The pulse compression observed at the initial stage of propagation is due to the positive phase grating action and small laser energy depletion (figure 2b). Moreover, a negative value of the central absorption frequency ($\omega_0 = -1$) results in a larger average maximal intensity of the soliton compared to its positive value (compare lines 1 and -1 in figure 2b).

These laser pulse propagation peculiarities can be explained using the physical mechanism of the soliton acceleration due to the laser radiation trapping by the nanorods reshaping front [17]. The trapping of laser radiation is well-seen in figures 4b, 4c, in which the dashed lines show the nanorod aspect ratio distribution. Indeed, as is well seen in figure 5b, up to the section $z=30$, the most part of the pulse leaves the absorption area in the frequency range if $\omega_0 = 1$. So, after this section, the pulse acceleration stops because the slow waves, which are at the pulse front due to the positive phase grating action, are no longer absorbed. If the central absorption frequency is negative ($\omega_0 = -1$), the pulse remains in the frequency area corresponding to a laser energy absorption for a larger distance of
propagation, and therefore its acceleration is greater (figure 5c). As a result, the pulse possesses a higher velocity.

3.2. Soliton formation for strong nonlinear dependence of laser energy absorption

We explore the strong nonlinear dependence (4) of the laser energy absorption on the nanorod aspect ratio for its description near the nonlinear absorption resonance. For example, we choose a maximal value of the absorption coefficient as $\delta_0 = 0.1$. In this case, the dimensionless frequency detuning parameter $\theta = (2\omega_p - \omega_2)T_\perp = \xi / \delta_0 = 50$ corresponds to the frequency detuning of $\approx 0.2\omega_p$ for $\omega_p \approx 2360$ THz ($\lambda = 800$ nm). This frequency detuning is available in physical experiments.

Figure 6. Soliton propagation in the medium with positive phase grating $\xi = 5$ and $\delta_0 = 0.1$, $\bar{\delta} = 5$ for $\Delta \omega = 1$, $\omega_0 = 0$ (a), -1(b).

Figure 7. Maximal intensity position at the incident Gaussian pulse propagation in the medium with positive phase grating $\xi = 5$ and $\delta_0 = 0.1$, $\bar{\delta} = 5$ for $\omega_0 = 0$, $\Delta \omega = 1000$ (a), $\omega_0 = -1$, $\Delta \omega = 1$ (c) near the nonlinear absorption resonance. The solid lines at the top panels show soliton shapes at the exit section. Dashed line shows pulse shape at its propagation in a linear medium (a) or aspect ratio distribution (b, c) at the exit section.
Figure 8. Pulse centre shifting along z-coordinate (a), maximal intensity evolution (b) for positive phase grating \(\xi = 5 \) and \(\delta_0 = 0.1, \tilde{\delta} = 5 \). The values of \(\Delta \omega \) and \(\omega_0 \) are shown in the figure by the pairs of numbers (the first number is for \(\Delta \omega \) and the second is for \(\omega_0 \)).

Figure 9. Pulse spectrum at the incident Gaussian pulse propagation in the medium with positive phase grating \(\xi = 5 \) and \(\delta_0 = 0.1, \tilde{\delta} = 5 \) for \(\Delta \omega = 1000 \) (a), 1(b,c) and \(\omega_0 = 0 \) (a,b), -1(c) and near the nonlinear absorption resonance. Dashed lines show the absorption spectrum.
Let us notice that the function $f(\varepsilon)$ in the form (4) instead of (3), does not influence on the dimensionless frequency detuning θ, but this function type strongly changes the optical energy absorption and the strength of induced phase grating, and, thus, decrease the propagation distance at which the effects under consideration can be observed.

In this case, the multiple solitons formation occurs (figures 6, 7). Nevertheless, similar to the previous case of the dependence (3), the absorption spectrum bandwidth influence on the sub-pulses acceleration becomes noticeable only for the absorption spectrum bandwidth which is comparable with the incident pulse spectrum. Also, the acceleration of the sub-pulses decreases and their number decreases with the absorption spectrum bandwidth decreasing (compare figures 7a and 7b; solid and dashed-dotted curves in figure 8a, marked 1000,0 and 1.0, respectively).

The action of the central absorption frequency position in a spectral domain on the sub-pulses accelerating is also similar to the previous case (section 3.2): its negative value ($\omega_0 = -1$) promotes a pulse acceleration in comparison with its zero-value ($\omega_0 = 0$) (figures 6, 7b,c). But this promotion is much less pronounced then in the case of the linear dependence (3) (compare figures 2a and 8a). Indeed, similar to the previous case, the laser energy absorption occurs for the larger propagation distance if $\omega_0 = -1$ (figures 9b,c). Therefore, the acceleration is more pronounced in this case. For the wide absorption spectrum, the sub-pulses do not leave the absorption area in spectral domain, so they achieve higher velocities (figure 9a).

Due to the stronger depletion of light energy and the nonlinear function $f(\varepsilon)$, there is no compression of the light pulse at the initial stage of propagation and the maximum intensities of the sub-pulses at the medium exit are less 0.2 dimensionless units (figure 8b).

4. Conclusions
We investigated the influence of the central absorption frequency on the process of soliton self-formation and light acceleration for the absorption far and close to the nonlinear absorption resonance. This influence occurs mainly if the absorption spectrum bandwidth is compared to the incident pulse spectrum bandwidth.

We showed that the number of self-formed sub-pulses depends on the absorption spectrum bandwidth: it decreases with the absorption spectrum bandwidth decreasing. In particular, if the absorption spectrum is narrower than the initial pulse spectrum, no pulse splitting occurs for the absorption which is far from the nonlinear absorption resonance.

Acceleration of the sub-pulses is the most pronounced if the absorption spectrum is much wider than the incident pulse spectrum. For the narrow absorption spectrum, the shift of its central absorption frequency into the area of lower frequencies promotes acceleration of the sub-pulses, while the shift into the area of higher frequencies results in a lower light velocity.

Acknowledgments
The investigation was made using support of the Russian Science Foundation (Grant № 14-21-00081).

References
[1] Zijlstra P, Chon J W M, and Gu M 2009 Five-dimensional optical recording mediated by surface plasmons in gold nanorods Nature 459 410-413
[2] Ditlbacher H, Krenn J R, Lamprecht B, Leitner A, and Aussenegg F R 2000 Spectrally coded optical data storage by metal nanoparticles Opt. Lett. 25 563–565
[3] Wilson O, Wilson G J, and Mulvaney P 2002 Laser writing in polarized silver nanorod films Adv. Mater. 14 1000–1004
[4] Pérez-Juste J, Rodríguez-González B, Mulvaney P, and Liz-Marzán L M 2005 Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films Adv. Funct. Mater.
[5] Taylor A B, Kim J and Chon J W M 2012 Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout Opt. Express 20 (5) 5069–5081

[6] Roxworthy B J, Bhuiya A M, Inavalli V V G K, Chen H and Toussaint K C, Jr. 2014 Multifunctional plasmonic film for recording near-field optical intensity Nano Let. 14 4687-4693

[7] Del Fatti N, Christofilos D and Vallée F 2008 Optical response of a single gold nanoparticle Gold Bulletin 41 (2) 147-157

[8] Wijers C M J, Chu J-H, Liu J L and Voskoboynikov O 2006 Optical response of layers of embedded semiconductor quantum dots Phys. Rev. B 74 035323

[9] Mohammadi A, Sandoghdar V and Agio M 2008 Gold nanorods and nanospheroids for enhancing spontaneous emission New Journal of Physics 10 105015

[10] Jin R, Jureller J E, Kim H Y and Scherer N F 2005 Correlating second harmonic optical responses of single Ag nanoparticles with morphology J. Am. Chem. Soc. 127 12482-12483

[11] Drachev V P, Buin A K, Nakotte H and Shalaev V M 2004 Size dependent χ^3 for conduction electrons in Ag nanoparticles Nano Lett. 4 (8) 1535-1539

[12] Eustis S and El-Sayed M A 2006 Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes Chemical Society Reviews 35, 209-217

[13] Taylor A B, Siddiquee A M and Chon J W M 2014 Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion ACS Nano 8 12071-12079

[14] Goswami G K and Nanda K K 2010 Size-Dependent Melting of Finite-Length Nanowires J. Phys. Chem. C 114 (34) 14327–14331

[15] Gan Y and Jiang S 2013 Ultrafast Laser-Induced Premelting and Structural Transformation of Gold Nanorod J. Appl. Phys. 113 073507

[16] Wang Ningyu, Rokhlin S I and Farson D F 2011 Ultrafast laser melting of Au nanoparticles: Atomistic simulations J. Nanopart Res 13 (10), 4491

[17] Trofimov V A and Lysak T M 2016 Acceleration of light and soliton formation due to nonlinear absorption of femtosecond laser pulse energy by the medium containing nanorods J. Opt. Soc. Am. B 33 (1) 62-74

[18] Trofimov VA and Lysak T M 2016 Self-similar mode of laser pulse propagation in a medium containing nanorods J. Opt. 18 (1) 025501

[19] Trofimov V A, Lysak T M and Lan Sh 2012 Influence of ellipticity of nanorods on both TPA of femtosecond laser pulse and transformation of pulse spectrum Proc. of SPIE 8424 842435

[20] Trofimov V A and Lysak T M 2016 Influence of nanorod absorption spectrum width on superluminality effect for laser pulse propagation Proc. of SPIE 9763 97631Q

[21] Hache`A and Poirier L 2002 Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: Theory and experiment Phys. Rev. E. 65 (3) 036608

[22] Blonskyi I, Kadan V, Shpotyuk O and Dmitruk I 2009 Manifestations of sub- and superluminality in filamented femtosecond laser pulse in fused silica Opt. Commun. 282 (9) 1913–1917

[23] Boyd G T, Yu Z H and Shen Y R 1986 Photoinduced Luminescence From the Noble-Metals and Its Enhancement On Roughened Surfaces Phys. Rev. B 33, (12) 7923-7936

[24] Link S, Mohamed M B and El-Sayed M A 1999 Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant J. Phys. Chem. B 103 (16) 3073-3077

[25] Butylkin V S, Kaplan A E, Khronopulo Yu G and Yakubovich EU 1989 Resonant nonlinear interactions of light with matter (Berlin: Springer)