On the occurrence, origin, and intake of the nuclides, 210Po and 210Pb, in sclerotia of *Wolfiporia cocos* collected in China

Dagmara Strumińska-Parulśka1 · Jerzy Falandysz2,3 · Aleksandra Moniakowska1

Received: 25 August 2021 / Accepted: 21 December 2021 / Published online: 3 January 2022 © The Author(s) 2022

Abstract
The dried sclerotium of the fungus *Wolfiporia cocos* is edible and has medicinal value. This study aimed to understand the accumulation of radioactivity arising from the alpha 210Po, and beta-emitting 210Pb, in the sclerotium’s shell and core and assess a potential effective dose for consumers. Sclerotia were collected in the wild and from cultivars in China’s Anhui and Yunnan provinces. The mean values of 210Po activity concentration levels were 0.36 Bq kg$^{-1}$ dry weight in the core and 12.0 Bq kg$^{-1}$ dw in the shell; 210Pb activities were 0.43 and 9.84 Bq kg$^{-1}$ dw, respectively. The potential effective radiation doses from core layers (as a major raw material of the sclerotium) ranged from 0.13 to 3.43 µSv kg$^{-1}$ dw from 210Po decay and from 0.11 to 1.52 µSv kg$^{-1}$ dw from 210Pb decay. Corresponding values for shell ranged from 0.80 to 42.4 for 210Po and from 0.53 to 13.6 µSv kg$^{-1}$ dw for 210Pb. In general, the intake of *W. cocos* sclerotia varies between consumers, but this would not significantly change the effective radiation doses from 210Po and 210Pb isotopes. The consumption thus appears to be safe from a radiological protection point of view.

Keywords Radioactivity · 210Po and 210Pb · Foods · Food toxicology · Mushrooms · Nutrition supplements · Alternative medicine products

Introduction
Wolfiporia cocos (Schwein.) Ryvarden *et* Gilb. is one of the earliest and most commonly utilized fungus in traditional China medicine as well as in Japan (Leung and Foster, 1996; Ríos, 2011; Kobira et al. 2012; Wang et al. 2013). It is also part of the complementary economic activity of the rural regions of the Yunnan province in China, e.g., annual export in the years 2011–2016 averaged 9,279.73 t (Chi et al., 2018). Like almost any macroscopic fungus (macromycete, mushroom), this species has several other Latin names, e.g., *Sclerotium cocos*, *Poria cocos*, *Wolfiporia extensa*, *Daedalea extensa*, *Macrohyporia extensa*, *Macrohyporia cocos*, *Pachyma cocos*, or poria (Index Fungorum 2020). In present-day China, it is known as “fu-ling” or “hoelen,” including the bark “fu-ling-pi,” an outermost reddish layer “chih-fu-ling,” the middle white layer “bai-fu-ling,” and the core “fu-shen” (Leung and Foster, 1996; Ríos, 2011). It is a wood-decaying fungus from the Polyporaceae family that in nature grows underground on pine tree (*Pinus yunnanensis* Franch.) roots. When domesticated, it grows on dead and buried pine wood (Wang et al., 2013). For the saprophytic *W. cocos*, the wooden substrate and, indirectly, the soil solution are sources of minerals and trace elements. Its sclerotium has a large coconut-shaped, dense mycelial formation buried underground (in wood or soil) which usually weighs less than a kilogram. Occasionally, it can reach up to several kilograms in the wild (Falandysz et al., 2021).

The moisture content of the freshly harvested sclerotium of *W. cocos* is 50%, and when cleaned and chopped,
it is traditionally air-dried in the shade (Kubo et al., 2006). About 10% of the medicinal preparations listed in the Pharmacopoeia of the People’s Republic of China (2000) contain this sclerotium (Leung and Foster, 1996; Song et al., 2002; Ríos 2011). The primary constituent of the internal part is fiber in the form of beta-glucan and constitutes up to 98% of the dried fungal mass, and there are barely any lipids (<0.15%) or protein (1%) in the fungus (Yang et al., 2014). Polysaccharides show strong antimicrobial and immunomodulatory effects (Ríos 2011). Also, its low molecular weight tetracyclic triterpenes have been found to have immunostimulating, antiviral, tumor inhibitory, and cytotoxic properties (Wang et al., 2013; Nie et al., 2002; Ríos 2011). The primary constituent of the sclerotium (Wiejak et al. 2016; Sun et al. 2016; 2017; Falandysz et al. 2017b and 2020b). The information available on the radionuclides content in W. cocos is even scarcer. So far, only the results on the contents of three gamma-emitting radioisotopes, namely 134Cs, 137Cs, and 40K, are available (Falandysz et al. 2021; Wang et al. 1998; Wang et al. 2015a, b). Such factual data are important for consumers of W. cocos due to its widespread use in traditional medicine. Nowadays, W. cocos has become more popular in other parts of the world. It is available in many retail and online shops under the trade name “poria” or “fu ling” and is recommended as a dietary supplement.

The present study aimed to investigate the occurrence and spatial variability of two radionuclides, 210Po and 210Pb, in shell and core parts of W. cocos sclerotia collected across Yunnan. These radionuclides occur naturally in the environment as uranium daughters and are known to significantly contribute to the radiation dose of every population. There are two primary sources of 210Po and 210Pb isotopes for humans: foods and aerosols, and 210Po, in particular, is one of the most critical natural radionuclides to which people are exposed (Carvalho, 1995). 210Po and 210Pb, together with radium (226Ra) and potassium (40K), deliver the highest natural dose to living organisms from natural radiation sources (Bem, 2005). If radon emanates, the higher the natural radiation background, the higher the doses from ingested 210Po and 210Pb decay. Therefore, research has focused on knowing the spatial occurrence distribution, assessing the potential intake, and evaluating the hypothetical effective exposure doses from the 210Po and 210Pb contained in W. cocos nutrition products that could be received by individuals and for which scientific data are not available.

Materials and methods

Collection and initial preparation

Sclerotia of Wolfiporia cocos (Schwein.) Ryvarden et Gilb. were collected from 26 locations across Yunnan and one from the Anhui province (Table 1). The locations were randomly selected at altitudes between 617 and 2578 m above sea level (Table 1). No specific documents were required for the defined field studies as no protected species were sampled. Sclerotia of wild-growing and cultivated W. cocos were collected (4–63 individuals per location). The white inner part (core) of the sclerotia and the brown external part (shell) were separated for the study. In samples 1–9, only
the internal parts were available for radiochemical analysis. Six subsamples were taken (each ca. 300 g) and pooled to make a bulk sample. The sclerotial parts were cut into small pieces, dried at 65 °C, and powdered using a porcelain mortar. The dried samples were stored in new sealable polythene bags under dry and clean conditions in a herbal materials depository room before further analyses (Falandydz et al., 2020a).

Radiochemical analysis

Analytical samples of *W. cocos* (~ 5 g) were treated with 9.8 mBq of 209Po before radiochemical analysis. All prepared samples were digested using concentrated 65% HNO3. After digestion, the residues were dissolved in 0.5 M HCl, ascorbic acid was added, and polonium was autodeposited on a 100% pure silver disc. The activities of 209Po and 210Po were measured using an alpha spectrometer (Alpha Analyst, Canberra) equipped with semiconductor silicon detectors of a 450 mm2 active surface barrier, 18 keV resolution, and 30–35% efficiency, calibrated using a certified solid Isotruk source 237Np + 241Am + 244Cm (Strumińska-Parulaska and Olszewski 2018). The 210Pb analysis was connected to the polonium analysis—210Po content determination based on its daughter 210Po activity measurement. After 6 months, the samples were spiked with 9.8 mBq of 209Po again, digested in concentrated 65% HNO3, and the activities of the ingrown 210Po were measured in the alpha spectrometer. The residue after the first deposition was heated very strongly, and a few ml of hydrogen peroxide were added. Thanks to this, as we already checked, all residual Po tracer was evaporated and removed. All radionuclides activities at the time of the mushroom collection were calculated using the simplified equation for the daughter activity as a function of time (Strumińska-Parulaska and Olszewski 2018). The 210Po and 210Pb yield in the analyzed mushroom samples ranged from 80 to 99%. The results of 210Po and 210Pb activity concentrations were reported with measurement uncertainty. The accuracy, as well as precision, of the radiochemical method was positively evaluated using IAEA reference materials (IAEA-414), and both estimated at less than 5%. The minimum detectable activity (MDA) was 0.10 mBq.

Table 1 Characteristic of *W. cocos* samples; *specimens from cultivation*

No	Collection site	Altitude (m)	Latitude	Longitude	No of individuals
1	Yuanjiang, Yuxi	1588	N23° 48’23.21″	E102° 51’59.41″	6
2	Jianshui, Honghe	1960	N23° 59’10.14″	E103° 47’29.55″	6
3	Tengchong, Baoshan	1512	N24° 41’07.80″	E98° 36’52.60″	6
4	Huize, Qujing	2578	N26° 28’42.23″	E103° 13’19.90″	6
5	Shiping, Honghe	1462	N23° 46’23.46″	E102° 25’37.57″	6
6	Kaiman, Honghe	1628	N24° 00’11.71″	E102° 59’01.15″	6
7	Octagonal town, Chuxiong	2061	N24° 52’38.66″	E100° 56’32.24″	6
8	Xincun town, Chuxiong	2056	N24° 40’48.91″	E101° 16’57.04″	6
9	Nanhua, Chuxiong	2245	N25° 01’47.28″	E100° 51’21.06″	6
10	Yongping, Dali	1943	N25° 32’09.82″	E99° 41’05.70″	20
11	Lanping, Nujiang	2495	N26° 39’48.19″	E99° 11’23.84″	22
12	Hongta, Yuxi*	1720	N24° 25’54.7″	E102° 31’5.6″	21
13	Changning, Baoshan*	2111	N24° 28’08.51″	E99° 30’11.47″	22
14	Zhenyuan, Pu'er*	1892	N23° 49’12.04″	E100° 44’26.82″	5
15	Shuangbai, Chuxiong*	2062	N24° 41’28.21″	E101° 38’57.42″	21
16	Baozhu, Wenshan	1504	N23° 28’29.99″	E103° 56’50.35″	63
17	Lambing, Nujiang	2495	N26° 39’48.19″	E99° 11’23.84″	8
18	Ninglang, Lijiang*	2560	N26° 52’59.49″	E100° 55’39.13″	38
19	Tengchong, Baoshan*	1582	N25° 25’20.32″	E98° 39’08.66″	18
20	Shuangjiang, Lincang*	1438	N23° 20’55.478″	E100° 01’7.0566″	15
21	Yunlong, Dali*	2066	N25° 38’9.7512″	E99° 7’55.0811″	13
22	Jinggu, Pu'er*	1077	N23° 25’13.454″	E100° 24’15.678″	19
23	Shuangjiang, Lincang*	1052	N23° 28’40.537″	E99° 50’16.134″	11
24	Mojiang, Pu'er*	1979	N23° 43’48.24″	E101° 58’35.501″	8
25	Simao, Pu'er*	1474	N22° 44’55.295″	E101° 3’22.6368″	4
26	Yuexi, Anhui Province*	617	N31° 4’8.584″	E116° 6’49.1472″	16
interpolation maps were prepared using QGIS software (QGIS Development Team).

Statistic tests exposed a positive skewed non-normal distribution of the results, and non-parametric tests, mainly U-test (Mann–Whitney), were used. The Spearman correlation coefficient was used for surveying the relationship between chosen variables. To find out the hidden patterns in the dataset and identify the associations between observations and variables, the principal component analysis (PCA) was used. Data were standardized, the analysis was based on the correlation matrix, and a fiducial significance level of $p < 0.05$ was chosen. The Kaiser rule has been used while selecting the number of components, and only factors with eigenvalues considerably greater than 1 were retained. The length of the PCA lines indicates the variance of the variables. The most influential variables on a given principal component are displayed as the most extended vectors. The angles between the vectors reflect their correlations. Small angle between the vectors suggests a strong positive correlation, whereas a large one suggests a weak negative correlation. Points close together in the two principal component space poses similar scores, i.e., have similar values of the original variables.

Results and discussion

^{210}Po and ^{210}Pb activity concentrations distribution in $W. \text{cocos}$

The study results on ^{210}Po activity concentrations in the sclerotia samples of $W. \text{cocos}$ collected in Yunnan are given in Table 2. The core’s median and mean value of ^{210}Po activity concentrations were calculated at 0.20 and 0.36 Bq kg$^{-1}$ dw, with 11.5 and 12.0 Bq kg$^{-1}$ dw in the shell, respectively. Both maximum and minimum ^{210}Po activities were measured in the samples. The results indicate noticeable differences between ^{210}Po activities in the internal and external parts of

No	Collection site	^{210}Po (Bq kg$^{-1}$ dw)	^{210}Pb (Bq kg$^{-1}$ dw)
	Internal part	External part	Internal part
1	Yuanjiang, Yuxi	0.12 ± 0.02	n/a
2	Jianshi, Honghe	0.11 ± 0.01	n/a
3	Tengchong, Baoshan	0.13 ± 0.01	n/a
4	Huize, Quijing	0.14 ± 0.01	n/a
5	Shiping, Honghe	0.12 ± 0.01	n/a
6	Kaiyuan, Honghe	0.13 ± 0.02	n/a
7	Octagonal town, Chuxiong	0.65 ± 0.04	n/a
8	Xincun town, Chuxiong	0.16 ± 0.02	n/a
9	Nanhua, Chuxiong	0.33 ± 0.02	n/a
10	Yongping, Dali	0.17 ± 0.01	9.96 ± 0.33
11	Lanping, Nuxiang	0.45 ± 0.04	8.35 ± 0.30
12	Hongta, Yuxi*	0.13 ± 0.02	0.67 ± 0.05
13	Changning, Baoshan*	0.66 ± 0.05	11.7 ± 0.83
14	Zhenyuan, Pu’er*	0.19 ± 0.02	13.7 ± 0.91
15	Shuangbai, Chuxiong*	0.23 ± 0.02	11.5 ± 0.35
16	Baozhu, Wenshan	2.86 ± 0.15	35.3 ± 3.00
17	Lanping, Nuxiang	0.73 ± 0.05	13.3 ± 0.36
18	Ninglang, Lijiang*	0.21 ± 0.02	5.13 ± 0.25
19	Tengchong, Baoshan*	0.31 ± 0.02	16.4 ± 0.86
20	Shuangjiang, Lincang*	0.20 ± 0.02	8.23 ± 0.71
21	Yunlong, Dali*	0.20 ± 0.02	17.5 ± 1.03
22	Jinggu, Pu’er*	0.30 ± 0.02	12.2 ± 0.63
23	Shuangjiang, Lincang*	0.14 ± 0.01	5.61 ± 0.58
24	Mojiang, Pu’er*	0.30 ± 0.03	15.8 ± 0.76
25	Simao, Pu’er*	0.15 ± 0.02	10.1 ± 0.67
26	Yuexi, Anhui Province*	0.30 ± 0.03	7.86 ± 0.71

Mean value: 0.36, Median value: 0.20

n/a samples not available
all analyzed pools of sclerotia. The median and mean value of the 210Po activities ratio of the external part to the internal part has been calculated at 41.0 and 40.4 Bq kg$^{-1}$ dw. The maximum 210Po activity in the internal parts of $W. cocos$ was seen in the samples from the Baozhu area (Wenshan Prefecture) (2.86 Bq kg$^{-1}$ dry weight), and the lowest activity was noted in samples from Jianshui (Honghe) (0.11 Bq kg$^{-1}$ dw). Among the determined 210Po activities in the external parts of $W. cocos$ sclerotia, the maximum value was observed in samples from Baozhu (Wenshan) (35.3 Bq kg$^{-1}$ dw), while the sample with the lowest measured value was collected in Hongta (Yuxi) (0.67 Bq kg$^{-1}$ dw) (Table 2). The study results on 210Po activities in external parts of analyzed mushrooms sclerotia are also visualized as an interpolation map, showing that 210Po activities were relatively elevated in the south-eastern part of Yunnan (Fig. 1).

The results of 210Pb activity concentrations determination in samples of $W. cocos$ sclerotia are given in Table 2. The median and mean value of 210Pb activity concentrations in the internal part was calculated at 0.28 and 0.43 Bq kg$^{-1}$ dw, while the median and mean value of 210Pb activity concentrations in the external part was 9.71 and 9.84 Bq kg$^{-1}$ dw. The obtained results indicated noticeable differences between the activities in the internal and external parts of the sclerotia. The median and mean values of the 210Pb activities ratio for the external part relative to the internal were 24.7 and 26.5 Bq kg$^{-1}$ dw. The maximum 210Pb activity in the internal parts of sclerotia was observed in samples from Baozhu (Wenshan) (2.20 Bq kg$^{-1}$ dw), and the minimum was seen in a sample from Hongta (Yuxi) (0.16 Bq kg$^{-1}$ dw). The maximum and minimum values in the external part were also seen in the samples from Baozhu (Wenshan) (19.7 Bq kg$^{-1}$ dw) and Hongta (Yuxi) (0.77 Bq kg$^{-1}$ dw), respectively (Table 2). The study results on 210Pb activities in external parts of sclerotia are also visualized in a map (Fig. 2), with maximal values being observed in the south-eastern part of Yunnan.

Statistical analysis and results discussion

Further statistical analysis of 210Po and 210Pb activity concentrations in sclerotia shows a lack of statistically
significant differences in both ^{210}Po and ^{210}Pb activities between cultivated and wild products (U-test p-values 0.49 and 0.73 respectively for external parts and 0.49 and 0.70 for the respective inner parts). There has also been no correlation (Spearman) noted between sampling site altitudes above sea level (h) and ^{210}Po and ^{210}Pb activities (r values from −0.009 to 0.050). In the studied areas, the content of ^{210}Po and ^{210}Pb in $W.\text{cocos}$ samples appears to relate to the amount in the soil independent of the altitude above sea level. A strong correlation has been noticed between ^{210}Po and ^{210}Pb activities in the same parts of sclerotia, and the correlation coefficient (r-value) has been calculated at 0.96 for $^{210}\text{Po}(\text{ex})$-$^{210}\text{Pb}(\text{ex})$ and 0.90 for $^{210}\text{Po}(\text{in})$-$^{210}\text{Pb}$ (in). However, there was no correlation between ^{210}Po and ^{210}Pb activities in the inner and outer parts (r-values ranged from 0.03 to 0.26). Moreover, the values of ^{210}Po and ^{210}Pb activities in the internal and external parts were significantly different (Table 2). The results suggest that the distribution of ^{210}Po and ^{210}Pb change as the sclerotia grow. The radionuclides amount could be an effect of their dilution in the sclerotia rather than selective bioconcentration (Szymańska and Strumińska-Parulska, 2020).

The $^{210}\text{Po}/^{210}\text{Pb}$ activity ratio values in the external part of the sclerotia were close to 1 (median and mean value of the $^{210}\text{Po}/^{210}\text{Pb}$ activity ratio were 1.12 and 1.16, respectively). In contrast, in the internal parts, the $^{210}\text{Po}/^{210}\text{Pb}$ activity ratio values were lower than 1 (median and mean value of the $^{210}\text{Po}/^{210}\text{Pb}$ activity ratio—0.80 and 0.77, respectively). A statistical analysis (Mann–Whitney U-test) has indicated significant differences between the values of the $^{210}\text{Po}/^{210}\text{Pb}$ activity ratio of the inner and outer parts of $W.\text{cocos}$ (p-value 7×10^{-6}). In the atmosphere, ^{210}Po and ^{210}Pb are rapidly sorbed onto aerosol particles and enter the soils due to atmospheric precipitation, and the values of $^{210}\text{Po}/^{210}\text{Pb}$ activity ratio are much lower than 1 (0.03–0.20) (Titayeva 1994; Persson 2015), whereas in biota samples, the typical $^{210}\text{Po}/^{210}\text{Pb}$ activity ratio values are close to 1 or higher (Carvalho et al., 2017). Previous research on macrofungi has confirmed the various possible mechanisms that would impact the ^{210}Pb and ^{210}Po presence (Vaaramaa et al., 2017).
ther, the amount of adsorbed macrofungi. W. cocos directly linked to morphology, unlike many other sclerotial growth rather than their selective bioconcentration in the mycelium and fruiting bodies both by mycelial absorption from the ground (supported Po) and also in the fruit bodies by direct deposition from radioactive atmospheric fallout (unsupported Po) (Henricsson and Persson, 2012; Szymańska and Strumińska-Parulska, 2020). Despite this, the differences between the 210Po/210Pb activity ratio values in the examined poria’s parts could also result from radionuclides dilution during sclerotial growth rather than their selective bioconcentration directly linked to W. cocos morphology, unlike many other macrofungi. Wolfiporia cocos sclerotia typically grow for 14–24 weeks until they reach a collectible size (Kubo et al., 2006). Tyler (1982) observed that Al, As, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, and Pb concentrations in soil and beech leaf litter, as well as some soil parameters (acidity, clay, and organic matter content, and HCl-extractable amount of the metal), were not the determinant for the uptake of elements by Amanita rubescens and Collybia personata mushrooms (except Rb in litter in the case of C. personata and of Mn in soil and A. rubescens and soil organic matter and Cd in this fungus), in contrast with plants. In principle, only lipophilic metal complexes or organometals can diffuse over biological membranes. In contrast, hydrophilic metal complexes, including free hydrated ions, must pass cell membranes by mechanisms other than free diffusion (Bjerregaard and Andersen, 2007). The research performed on stable Pb has shown that the impact of pH on Pb uptake is essential, and the most significant uptake capacity was found at pH 3.0, uptake of lead was insignificant. Further, the amount of adsorbed Pb2+ per mass unit increased with the increase in initial lead ion concentration (Ezzouhri et al., 2010). The stable lead studies in some macromycetes have indicated that they produced two types of phytochelatins which played a crucial role in removing metals from soil (Damodaran et al., 2013). We might expect similar results in the case of radiolead 210Pb. However, this has not been investigated in the case of polonium and would need further consideration.

Principal component analyses (PCA) of datasets were carried out to characterize better the possible spatial variations in the radionuclides activity concentrations between all sampling sites from Yunnan and Anhui province; principal component analyses (PCA) of datasets were carried out (Fig. 3). The number of significant factors, total variance (%), and factor loadings are tabulated (Table 3). PCA data has revealed that 86.94% of information regarding the radionuclides compositional variability for these sites could be described by three varifactors (Table 3, Fig. 3). Because the eigenvalue of the third PC was 1.11, the third component was not examined. The factor loadings have shown that the first varifactor (PC1) explained 41.15% of the total variance and was loaded heavily towards the positively correlated variables, describing 210Po and 210Pb in the inner parts of sclerotia (loadings were 0.928 and 0.924, respectively). The second varifactor (PC2) was loaded primarily by positively correlated 210Po and 210Pb in external parts (loadings were 0.789 and 0.806, respectively) as well as the ratio of 210Po or 210Pb in the external to 210Po or 210Pb in the inner parts (loadings were 0.805 for 210Po and 0.799 for 210Pb) and accounted for 33.41% of the total variance (Fig. 3). The PCA biplot shown in Fig. 3 indicated that the 210Po/210Pb activity ratios in respective poria parts (internal or external) were the most influential variables to the PC1. In contrast, the most important contributors to the PC2 were height and 210Po and 210Pb activity concentration in the internal part. The PCA plot shows clusters of sampled locations based on their similarity (Fig. 3). There is a positive association with Tengchang and Mojiang and Bazhou—regions related to uranium and coal mines in Yunnan (Ren et al., 1999; Li et al., 2006; Wang et al., 2015a; Chen et al., 2017). Also, other studies have shown that the polymetallic soils of Wenshan (Wenshan mine, Dulong ore field–skarn type tin-zinc-polymetallic sulfide deposits), Chuxiong, Pu’er, Honghe, and Baoshan prefectures contained higher amounts of stable elements as Li, Ti, Cu, Mn, Se, Zn, Sn, Ag, and Pb as well as some radionuclides, i.e., 40K and total uranium (U) (Searls, 1952; Patton Schell, 2014; Wang et al., 2015a, b; Sun et al., 2016; Falandydz et al., 2017a, b, 2020b and 2021). Thus, as a result, the W. cocos samples from these places also contained higher activity concentrations of 210Po and 210Pb, indirect products of 238U decay. Previously measured 210Po activity concentrations in the fruiting bodies of Boletus bainiugan from Yunnan turned out to be similar to those observed here for external parts of the studied sclerotia (Strumińska-Parulska et al., 2020a). Also, the 210Po and 210Pb activity concentrations in cigarette samples originating from Yunnan province were approximately 30% higher than those from Gansu province (Tokonami et al., 2008).

Effective doses from 210Po and 210Pb intake with analyzed parts of W. cocos

The effective exposure doses for human consumers have been evaluated using the previously determined 210Po and 210Pb activities in the examined sclerotia (Table 4). Based
on the obtained results, we have calculated the potential radiotoxicity of analyzed nuclides and the implications for food safety using the ICRP conversion coefficient recommended for 210Po and 210Pb ingestion in the case of adult members of the public (1.2 μSv·Bq$^{-1}$ and 0.69 μSv·Bq$^{-1}$, respectively — ICRP 2012). The effective radiation dose from food mass consumption (Sv kg$^{-1}$ dw) was calculated as the product of the conversion coefficient (Sv Bq$^{-1}$) and the activity concentration (Bq kg$^{-1}$ dw). The results show that the potential consumption of dried mushrooms would result in an effective dose in the range of 0.13 to 42.4 μSv kg$^{-1}$ dw, from 210Po decay, and from 0.11 to 13.6 μSv kg$^{-1}$ dw, from 210Pb decay. Despite different parts of the sclerotia being used in Chinese traditional medicine and much higher activities of 210Po and 210Pb in the external parts of examined samples, one should remember that it is mostly the inner white layer (“poria,” “bai-fu-ling”) and the core (“fu-shen”) that is used (Leung and Foster, 1996). This way, the most

Fig. 3 PCA biplot (no rotation) based on the activity concentrations as well as height above sea level values and score plots of the sampling sites in the space of the first and second varifactor.
probable, hypothetical radiotoxicity of *W. cocos* would come from the available nutrition products and reach the effective dose in the range from 0.13 to 3.43 µSv kg⁻¹ dw or from 0.11 to 1.52 µSv kg⁻¹ dw, in the case of ²¹⁰Pb decay, (Table 4). Rios (2011) recommended daily intake (dosage) of the fungus from 3 to 45 g depending on the medical problem. Thus, consumption may vary, but our calculations allow estimation of the radiation doses individually based on personal consumption. Additionally, the results obtained also allow the potential annual effective dose estimation. The recommended daily intake of the inner part consumption would result in an annual effective dose of 0.14 to 56.4 µSv a⁻¹ dw from ²¹⁰Po decay and 0.12 to 25.0 µSv a⁻¹ dw from ²¹⁰Pb decay. However, in the case of the external part consumption, it might be much higher and result in an annual effective dose of 0.88 µSv a⁻¹ dw to 0.70 mSv a⁻¹ dw from ²¹⁰Po decay while of 0.58 µSv a⁻¹ dw to 0.22 mSv a⁻¹ dw from ²¹⁰Pb decay. The calculated values of effective doses from ²¹⁰Po and ²¹⁰Pb ingestion with *W. cocos* are similar or lower (in the case of inner parts) in comparison to other studies of wild fungi from other parts of the world (Hendry et al., 2009; Vaaramaa et al., 2009; Gwynn et al., 2013; Guillén and Baeza, 2014; Bagchi and Swaroop, 2016; Strumińska-Parulska et al., 2016; 2017; 2020a; 2020b; 2021; Szymańska

Table 3

Factor loadings after normalization (no rotation); values in bold correspond for each variable to the factor for which the squared cosine is the largest

	PC1	PC2	PC3
h	0.676	-0.447	-0.197
²¹⁰Po internal	0.928	-0.039	0.141
²¹⁰Po external	0.580	0.789	-0.006
²¹⁰Pb internal	0.924	-0.158	-0.229
²¹⁰Pb external	0.525	0.806	0.097
²¹⁰Po ex/²¹⁰Pb ex	0.577	0.355	-0.534
²¹⁰Po in/²¹⁰Pb in	0.418	0.308	0.794
²¹⁰Po ex/in	-0.465	0.805	-0.278
²¹⁰Pb ex/in	-0.445	0.799	-0.030
% variance	41.149	33.409	12.383
Cumulative %	41.149	74.558	86.941

Table 4

The values of potential effective doses and measurement uncertainty from ²¹⁰Po and ²¹⁰Pb taken with sclerotia of *W. cocos*; *specimens from cultivation*

No	Collection site	²¹⁰Po (µSv kg⁻¹ dw)	²¹⁰Pb (µSv kg⁻¹ dw)		
		Internal part	External part	Internal part	External part
1	Yuanjiang, Yuxi	0.14	n/a	0.17	n/a
2	Jianshi, Honghe	0.13	n/a	0.14	n/a
3	Tengchong, Baoshan	0.16	n/a	0.12	n/a
4	Huize, Qujing	0.17	n/a	0.18	n/a
5	Shiping, Honghe	0.15	n/a	0.11	n/a
6	Kaiyuan, Honghe	0.15	n/a	0.15	n/a
7	Octagonal town, Chuxiong	0.78	n/a	0.53	n/a
8	Xincun town, Chuxiong	0.20	n/a	0.19	n/a
9	Nanhua, Chuxiong	0.39	n/a	0.23	n/a
10	Yongping, Dali	0.20	11.9	0.17	6.63
11	Lanping, Nujiang	0.54	10.0	0.46	5.95
12	Hongta, Yuxi*	0.15	0.80	0.11	0.53
13	Changning, Baoshan*	0.79	14.0	0.72	7.08
14	Zhenyuan, Pu'er*	0.23	16.5	0.22	7.74
15	Shuangbai, Chuxiong*	0.28	13.8	0.19	7.09
16	Baozhu, Wenshan	3.43	42.4	1.52	13.6
17	Lanping, Nujiang	0.87	15.9	0.58	6.70
18	Ninglang, Lijiang*	0.25	6.16	0.19	3.18
19	Tengchong, Baoshan*	0.37	19.7	0.25	10.1
20	Shuangiang, Lincang*	0.25	9.87	0.26	4.15
21	Yunlong, Dali*	0.24	21.0	0.16	10.5
22	Jinggu, Pu'er*	0.36	14.6	0.25	8.38
23	Shuangjiang, Lincang*	0.16	6.73	0.18	3.40
24	Mojiang, Pu'er*	0.36	18.9	0.26	7.88
25	Simao, Pu'er*	0.18	12.2	0.14	6.36
26	Yuexi, Anhui Province*	0.36	9.43	0.25	6.14

n/a samples not available
et al., 2018, 2019; Pang et al., 2019; Poschl and Nollet, 2019; Strumińska-Parulska and Falandysz 2020). In general, when consumed with staple foodstuffs, the analyzed sclerotia would not significantly increase the values of the effective radiation doses from 210Po and 210Pb isotopes. Therefore, the consumption of W. cocos sclerotia appears to be safe from a radiological protection point of view (IAEA – International Atomic Energy Agency 1996). Even the increase in popularity of W. cocos as a nutrition supplement does not carry radiological risk.

It should be noted that the entire quantity of 210Po and 210Pb contained in consumed sclerotia cannot be absorbed from the gastrointestinal tract. Various studies have shown that absorption of Po from foods is around 50% (ICPR 1993), about 56% (30–70%) from the consumption of caribou meat (Thomas et al., 2001), and considerably higher at 60 to 94%. (mean 76%) from the consumption of crab meat (7 volunteers; daily excretion of 10–25% in the feces and 0.2–0.3% in the urine) (Hunt and Allington, 1993). Nevertheless, the lower the activity concentration, the greater the absorption. For 209Po dosed orally, absorption was reported to range from 50 to 75%, with a biological half-life of 30 to 40 days (Henricsson et al., 2012). Fungal cell walls contain chitin (a fiber-like polysaccharide) that is hardly digestible by humans. As mentioned, the sclerotial chitin content in the form of beta-glucans is high, reducing the 210Po and 210Pb absorption. Still, there are no known studies as yet, to confirm this.

Conclusions

This study presents the first results of 210Po and 210Pb occurrence in the sclerotia of the medicinal fungus Wolfiporia cocos from wild and cultivated sources. 210Po and 210Pb activity concentrations varied widely, and their occurrence in the sclerotia has been correlated. In the studied areas, the activity concentrations of 210Po and 210Pb in W. cocos samples have been independent of the altitude above sea level. Higher activities of 210Po and 210Pb have been measured in the external compared to the inner parts of the sclerotia, possibly because of radionuclide dilution during sclerotial biomass growth rather than their selective biocaccumulation. At some of the study locations, the proximity of uranium and coal mines may influence higher 210Po and 210Pb activity concentrations in W. cocos. The effective exposure doses for human consumers have been calculated for traditional Chinese medicine’s most popular fungal product. This hypothetical radiotoxicity of W. cocos has been evaluated at a low level. From the perspective of food safety, the consumption sclerotia of W. cocos seem to be safe from a radiological protection point of view. There should not be any risk connected to the occurrence of 210Po and 210Pb in its nutritional and medicinal products.

Author contribution Each named author has substantially contributed to the underlying research. Dagmara Strumińska-Parulska: resources, data curation, validation, visualization, writing (original draft), and writing (review and editing). Jerzy Falandysz: resources, conceptualization, supervision, writing (original draft), and writing (review and editing). Aleksandra Moniakowska: formal analysis and investigation.

Funding This study was funded by the Ministry of Science and Higher Education (531-T030-D841-21).

Data availability The datasets used during the study are available from the corresponding author on request.

Declarations

Ethics approval This article does not contain any studies with human participants or animals performed by any authors.

Consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ángeles García M, Alonso J, Julia Melgar M (2009) Lead in edible mushrooms. Levels and bioaccumulation factors. J Haz Mat 167:777–783. https://doi.org/10.1016/j.jhazmat.2009.01.058
Bagchi D, Swaroop A (2016) Food toxicology. CRC Press, Boca Raton. https://doi.org/10.1201/9781315371143
Bem H (2005) Radioaktywność w środowisku naturalnym. PAN, Łódź.
Bjerggaard P, Andersen O (2007) Ecotoxicology of metals – sources, transport, and effects in the ecosystem, pp. 251–280. In: Nordberg GF, Fowler BA, Nordberg M, Friberg LT (editors). Handbook on the Toxicology of Metals, Elsevier
Borościjka J, Randa Z (2007) Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol Progress 6:249–259. https://doi.org/10.1007/s11557-007-0544-y
Carvalho F (1995) 210Po and 210Pb intake by the Portuguese population: the contribution of seafood in the dietary intake of 210Po and 210Pb. Health Phys 69:469–480
Carvalho F, Fernandes S, Fesenko S, Holm E, Howard B, Martin P, Phaneuf M, Porcelli D, Pröh G, Twinning J (2017) The environmental behaviour of polonium. Technical Reports Series No. 484, International Atomic Energy Agency (IAEA), Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/D484_web.pdf

Chen J, Chen P, Yao D, Huang W, Tang S, Wang K, Liu W, Hu Y, Zhang B, Sha J (2017) Abundance, distribution, and modes of occurrence of uranium in Chinese coals. Minerals 7(12):239. https://doi.org/10.3390/min7120239

Cheng J, Yuan X, Zhang H, Mao Z, Zhu H, Wang Y, Li J (2021) Characteristics of heavy metal pollution in soils of Yunnan-Guizhou plateau and their effects on quality of agricultural products. J Ecol Rural Environ 37:636–643

Chi XL, Yang G, Ma S, Cheng M, Que L (2018) Analysis of characteristics and problems of international trade of Porocidae in China. Zhongguo Zhong Yao Za Zhi 43(1):191–196. https://doi.org/10.1054/j.cnki.cjcm.20171030.004

Damodaran D, Balakrishnan RM, Shetty VK (2013) The uptake mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by mycelial and fruiting bodies of Galerina vitiforius. BioMed Res Int 2013:149120. https://doi.org/10.1155/2013/149120

Ezzouhri L, Ruiz E, Castro E, Moya M, Espinola F, Cherrat L, Er-Raioui H, Lairini K (2010) Mechanisms of lead uptake by fungal biomass isolated from heavy metals habitats. Ahmadi̇d – Barcelona LXVII, 545:39–44. https://raconte.ca/index.php/ahmadiad/

Falandysz J, Zalewska T, Krasińska G, Apanel A, Wang Y, Pankavec S (2015a) Evaluation of the radioactive contamination in Fungi genus Boletus in the region of Europe and Yunnan province in China. Appl Microbiol Biotechnol 99:8217–8224

Falandysz J, Zhang J, Wang Y, Saba M, Krasińska G, Wiejak A, Li T (2015b) Evaluation of mercury contamination in fungi Boletus species from latosols, lateritic red earths, and red and yellow earths in the Circum-Pacific Mercuriferous Belt of Southwestern China. PLoS ONE 10(11):e0143608. https://doi.org/10.1371/journal.pone.0143608.eCollection2015

Falandysz J, Zhang J, Wang Y, Krasińska G, Kojeta A, Saba M, Shen T, Li T, Liu H (2015c) Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: accumulation, distribution and probable dietary intake. Sci Total Environ 537:470–478

Falandysz J, Chudzińska M, Baralkiewicz D, Saba M, Wang Y-Z, Zhang J (2017a) Occurrence, variability and associations of trace metallic elements and arsenic in sclerotia of medicinal Wolfiporia extensa from polystromatic soils in Yunnan, China Acta Pol Pharm Drug Res 74(5):1379–1387

Falandysz J, Zhang J, Wiejak A, Baralkiewicz D, Hanč A (2017b) Metallic elements and metaboloids in Boletus luridus, B. magnificus and B. tomentipes mushrooms from polystromatic soils from SW China. Ecotoxicol Environ Saf 142:497–502

Falandysz J, Medyk M, Saba M, Zhang J, Wang Y, Li T (2020a) Mercury in traditionally foraged species of fungi (macromycetes) from the karst area across Yunnan province in China. Appl Microbiol Biotechnol 104(21):9421–9432. https://doi.org/10.1007/s00253-020-10876-6

Falandysz J, Saba M, Zhang J, Hanč A (2020b) Occurrence, distribution and estimated intake of mercury and selenium from sclerotia of the medicinal fungus Wolfiporia cocos from China. Chemosphere 247:125928. https://doi.org/10.1016/j.chemosphere.2020.125928

Falandysz J, Wang Y, Saniewski M (2021) 137Cs and 40K activities and total K distribution in the sclerotia of the Wolfiporia cocos fungus from China. J Environ Radioact 231:106549. https://doi.org/10.1016/j.jenvrad.2021.106549

Guillén J, Baeza A (2014) Radioactivity in mushrooms: a health hazard? Food Chem 154:14–25. https://doi.org/10.1016/j.foodchem.2013.12.083

Gwynn JP, Nalbandyan A, Rudolfesen G (2013) 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. J Environ Radioact 116:34–41. https://doi.org/10.1016/j.jenvrad.2012.08.016

He Z, Zhang M, Wilson MJ (2004) Distribution and classification of red soils in China. In: Wilson MJ (ed) The red soils of China. Springer, Netherlands, pp 29–33

Hendry JH, Simon SL, Wojcik A, Sohrabi M, Burkart W, Cardis E, Laurier D, Tirmarche M, Hayata I (2009) Human exposure to high natural background radiation: what can it teach us about radiation risks? J Radiol Prot 29:A29–A42. https://doi.org/10.1088/0952-4746/29/2/A03

Hericcson F, Persson BRR (2012) Polonium-210 in the bio-sphere: bio-kinetics and biological effects. In: Gerada JG (ed) Radionuclides: sources, properties, and hazards. Nova Science Publishers, New York, pp 33–60

Hericcson CF, Ranebo Y, Hansson M, Rüäf CL, Holm E (2012) A biokinetic study of 209Po in man. Sci Total Environ 437:384–389

Hunt GJ, Allington DJ (1993) Absorption of environmental Poloniu-210 by the human gut. J Radiol Protect 13:119–126

IAEA – International Atomic Energy Agency, 1996. International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources. IAEA Safety Series No. 115. Vienna

ICRP – The International Commission on Radiological Protection, 2012. Compendium of dose coefficients based on ICRP Publication 60, ICRP Publication 119, Ann. ICRP 41(Suppl.), Elsevier

Index Fungorum (2020) http://www.indexfungorum.org/names.aspx

Komorowicz I, Hanč A, Lorenc W, Baralkiewicz D, Falandysz J, Wang Y (2019) Arsenic speciation in mushrooms using dimensional chromatography coupled to ICP-MS detector. Chemosphere 233:223–233

Kubo T, Terabayashi S, Takeda S, Sasaki H, Aburada M, Miyamoto K-I (2006) Indoor cultivation and cultural characteristics of Wolfiporia cocos sclerotia using mushroom culture bottles. Biol Pharm Bull 29(6):1191–1196. https://doi.org/10.1248/bpb.29.1191

Kobira S, Atsumi T, Kakiuchi N, Mikage M (2012) Difference in cultivation characteristics and genetic polymorphism between Chinese and Japanese strains of Wolfiporia cocos. Revarden et Gilberston (Poria cocos Wolf), J Nat Med 66:493–499. https://doi.org/10.1155/2011/047461

Leung A, Foster S (1996) Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics. Wiley, New York, NY

Li X, Walker D (1986) The plant geography of Yunnan Province, southwest China. J Biogeography 13:367–397

Li DH, Tang YG, Chen K, Deng T, Cheng FP, Liu D (2006) Distribution of twelve toxic trace elements in coals from Southwest China. J China Univ Min Technol 35:15–20

Liang B, Han G, Zeng J, Qu R, Liu M, Liu J (2021) Source and risk assessment of trace metals in red soils from Yunnan province. Southwest China Clean Soil Air Water 49(7):2000288

Liu Q, Sun X, Li D, Fu Y, Yang T, Liu Z, Yin R, Tong Z (2020) Geochronology and fluid evolution of the Machangqiu Cu-Mo polymetallic deposit, western Yunnan. SW China. Ore Geol Rev 127:103828

Liu Y, Zhang L, Mo X, Santosh M, Dong G, Hongying Zhou H (2020b) The giant tin polymetallic mineralization in southwest China: Integrated geochemical and isotopic constraints and implications for Cretaceous tectonomagmatic event. Geosci Front 11:1593–1608

Lu J, Tian J, Zhou L, Meng L, Chen S, Ma C, Wang J, Liu Z, Li C, Kang W (2021) Phytochemistry and biological activities of Poria. J Chem 2021:6659775. https://doi.org/10.1155/2021/6659775
Nie A, Chao Y, Zhang X, Jia W, Zhou Z, Zhu C (2020) Phytochemistry and pharmacological activities of Wolfiporia cocos (F.A. Wolf). Ryvarden & Gilb. Front Pharmacol 11:505249. https://doi.org/10.3389/fphar.2020.505249

Pang C, Wang W, Tu F, Yao S, Zhang J (2019) Determinations of 210Pb contents in food, diet, environmental samples and estimations of internal dose due to dietary intakes. J Environ Radioact 203:107–111. https://doi.org/10.1016/j.jenvrad.2019.03.005

Patton Schell T (2014) Governing Uranium in China. DfHS Report 2014:03. Danish Institute For International Studies, Copenhagen. https://www.files.ethz.ch/isn/178281/RP2014-03-UraniumChina-Patton-Schell_cve_1703_web.pdf. Accessed 31.12.2021

Persson BRR (2015) Global distribution of 7Be, 210Pb and, 210Po in the surface air. Acta Scienciarum Lundensia 2015-008:1–24

Poschl M, Nollet LML (2019) Radionuclide concentrations in food and the environment. CRC Press, Boca Raton. https://doi.org/10.1201/9781420019278

Ren DY, Zhao FH, Wang YQ, Yang SJ (1999) Distributions of minor and trace elements in Chinese coals. Int J Coal Geol 40:109–118. https://doi.org/10.1016/S0166-5162(98)00063-9

Rios JL (2011) Chemical consistencies of Poria cocos, Planta Med 77(7):681–691. https://doi.org/10.1055/s-0030-1270823

Searls F (1952) Karst ore in Yunnan. Econ Geol 47(3):339. https://doi.org/10.2113/gsecongeol.47.3.339

Song Z, Bi K, Luo X, Chan K (2002) The isolation, identification and determination of dehydrothymoic acid in Poria cocos. Anal Sci 18(5):529–531. https://doi.org/10.2116/analsci.18.529

Strumińska-Parulska DI, Szymańska K, Krasińska G, Skwarzec B, Szymańsk a-Parulska D, Falandysz J, Wang Y (2020b) Radiotoxic 210Po and 210Pb in forest mushrooms of genus Leccinum and topsoil from northern Poland and its contribution to the radiation dose. Chemosphere 213:133–140. https://doi.org/10.1016/j.chemosphere.2018.09.022

Strumińska K, Strumińska-Parulska D, Falandysz J (2019) Isotopes of 210Po and 210Pb in Hazel bolete (Leccinum pseudocabramun) – bioconcentration, distribution and related dose assessment. Environ Sci Pollut Res 26:18904–18912. https://doi.org/10.1007/s11356-019-05376-9

Strumińska K, Strumińska-Parulska D (2020) Atmospheric fallout impact on 210Po and 210Pb content in wild growing mushrooms. Environ Sci Pollut Res 27:20800–20806. https://doi.org/10.1007/s11356-020-08559-w

Thomas PA, Fisenne I, Chorney D, Bawea JS, Tracy BL (2001) Human absorption and retention of polonium-210 from caribou meat. Radiat Prot Dosimetry 97:241–250

Titivetsa N (1994) Nuclear geochemistry. CRC Press Boca Raton.

Tokonami S, Kovác T, Yoshinaga S, Kobayashi Y, Ishikawa T (2008) 210Pb and 210Po inhalation dose by cigarette smoking in Gansu and Yunnan provinces. China Jpn J Health Phys 43(2):131–134

Tyler G (1982) Accumulation and exclusion of metals in Collybia peronata and Anamita rubescens. Trans Br Mycol Soc 79:239–245

Vaaramaa K, Solatje D, Aro L (2009) Distribution of 210Pb and 210Po concentrations in wild berries and mushrooms in boreal forest ecosystems. Sci Total Environ 408:84–91. https://doi.org/10.1016/j.scitotenv.2009.09.005

Wang J-J, Wang C-J, Lai S-Y, Lin Y-M (1998) Radioactivity concentrations of 137Cs and 40K in basidiomycetes collected in Taiwan. Appl Radiat Isot 49:29–34. https://doi.org/10.1016/S0969-8043(97)00249-2

Wang Y et al (2013) Mycology, cultivation, traditional uses, phytochemistry and pharmacology of Wolfiporia cocos (Schwein.) Ryvarden et Gilb.: a review. J Ethnopharmacol 147:265–276

Wang Y, Zalewska T, Apanel A, Zhang J, Mackiewicz Z, Wiejak A, Falandysz J (2015a) Artificial 137Cs and 134Cs and natural 40K in sclerotia of Wolfiporia extensa fungus collected across the Yunnan land in China. J Environ Sci Health B 50:654–658. https://doi.org/10.1080/03603124.2015.1038958

Wang X, Feng Q, Sun R, Liu G (2015b) Radioactivity of natural nuclides (238U, 232Th, 226Ra) in coals from Eastern Yunnan. China Minerals 5(4):637–646. https://doi.org/10.3390/min5040513

Wang K, Zhang Ch, Chen H, Yue Y, Zhang W, Zhang M, Qi X, Fu Z (2019a) Karst landscapes of China: patterns, ecosystem processes and services. Landscape Ecol 34:2743–2763

Wang Z, Xingyun L, Haoyang Q, Jun Yunnan Province, Geoscience 35(02):412–424. doi. https://doi.org/10.1016/j.geoscience.2010.05.020

Wang Z, Xingyun L, Haoyang Q (2019b) Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. J Geochem Exp 200:159–166

Wang Q, Song Y, Liu X, Peng M, Zhou Y, Han W, Wang Ch (2021) Characteristics and genesis of soil geochemical baselines in western Yunnan Province, Geoscience 35(02):412–424. doi. https://doi.org/10.19657/j.geoscience.1000-8527.2021.02.11

Wiejak A, Wang YZ, Zhang J, Falandysz J (2016) Mercury in sclerotia of Wolfiporia extensa (Peck) G imprint fungus collected across the Yunnan land. Spectr Spekt Analisis 36(9):3083–3086. https://doi.org/10.3964/j.ispubi.issn.1000-0593(2016)09-3083-04

Wong K-H, Cheung PCK (2008) Sclerotia: emerging functional food derived from mushrooms, Mushrooms as Functional Foods, ed. P.C.K. Cheung, John Wiley & Sons, Inc., Hoboken, New Jersey

Yang P-F, Liu C, Wang H-Q, Li J-C, Wang Z-Z, Xiao W, Chen R-Y (2014) Chemical constituents of Poria cocos. Zhongguo Zhong Yao Za Zhi 39(6):1030–1033
Zhang J, Barałkiewicz D, Hanć A, Falandysz J, Wang Y (2019) Contents and health risk assessment of elements in three edible ectomycorrhizal fungi (Boletaceae) from polymetallic soils in Yunnan Province, SW China. Biol Trace Element Res 195:250–259
Zhang J, Barałkiewicz D, Wang Y, Falandysz J, Cai Ch (2020) Arsenic and arsenic speciation in mushrooms from China: a review. Chemosphere 246:125685
Zou L, Yang J, Cheng X, Wang W, Huang Q, Zhang X (2018) Investigation of farmland soil and Chinese cabbage heavy metal pollution along banks of Xiaojiang in Dongchuan, Yunnan province Southwest China J Agric Sci 31(754):758

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.