Is Hypoxic/Altitude Training an Important Topic in the Field of Hypoxia?

Grégoire P. Millet1,2 · Martin Burtscher3 · Johannes Burtscher1,2

Received: 16 August 2021 / Accepted: 29 September 2021 / Published online: 9 December 2021
© The Author(s) 2021

Abstract

Hypoxia is an essential topic in medical or biological sciences. The main aims of the present study were to examine the most important medical articles (i.e., the top 100 most cited) on hypoxia. We examine how the Nobel-prize awarded hypoxia inducible factor (HIF)-pathway discovery in the early 1990s has changed the thematic composition of this body of literature, with a special emphasis on the studies linking hypoxia and cancer. We searched Pubmed for articles with the terms #Hypox, #Altitude, or #Mountain in the title that have been published in biomedical journals and ranked the articles on their number of citations in Web of Science. A second search was performed in all journals for articles related to hypoxia and cancer. Strikingly, only 12 of the top-100 most-cited articles on hypoxia and only 3 articles of the top-100 articles related to cancer were published before 1995. Moreover, only 5 articles from prior 1995 reached 1000 citations, while 27 articles published in 1995 or later were cited more than 1000 times, most of them on the HIF-1 pathway. Eighty percent of the top-100 articles were related to the HIF pathway and of its molecular regulation has shifted the focus of hypoxia research towards molecular mechanisms and consequences of tissue hypoxia, most notably in cancer. The importance of studies focusing on clinical and performance applications of systemic hypoxia is relatively lower.

Keywords
Altitude training · Cancer · Hypoxia · HIF pathway · Mountain

Introduction

Between 1775 and 1777, Scheele [103] and Priestley [93] found a previously unknown gas in the air that was named “oxygen” by Lavoisier [64]. This fundamental finding paved the way for the understanding of the primary importance of the metabolic and physiological adaptations to oxygen availability and consequently to “The history of hypoxia” as elegantly reported by Richalet [98]. The Nobel prize in physiology or medicine for 2019 awarded to William Kaelin Jr, Sir Peter Ratcliffe, and Gregg Semenza for their work on the molecular mechanisms underlying how cells adapt to different levels of oxygen supply is the most prestigious event of this long journey.

Since the 1950s, the term hypoxia” (i.e., “abnormal condition resulting from a decrease in the oxygen supplied to or utilized by body tissue”: Webster’s New World College Dictionary, 4th ed 2010; from [98]) has been increasingly deployed in the medical or biological scientific literature:

1. In environmental physiology, to deepen the understanding of the physiological (i.e., cardiovascular and respiratory adaptations) and pathophysiological (i.e., acute mountain sickness) responses to severe hypoxia (e.g., in aviation physiology [34]) or to high altitude, as pioneered at the end of 19th–early twentieth century in Europe [97] and USA [134]).
2. With the development of cellular or molecular biology, to understand how variations in oxygen delivery lead to changes in gene transcription and to adaptive responses in cells and tissues. The importance of the isolation
of the hypoxia inducible factor (HIF) has been unanimously recognized and celebrated by bestowal of the Nobel Prize [83]. The subsequent growing understanding of its role in cellular pathways and its molecular regulation, e.g., by the von Hippel–Lindau (VHL) protein, contributed to the recognition of various potential clinical applications, especially with regard to associated drug targets in various cancers [125]. Various HIF molecules and subunits (HIF-1α, HIF-1β, HIF-2α, HIF-2β, HIF-3α, HIF-3β) have been characterized and our understanding of their differential roles has increased substantially during the last decades. For example, the unique target genes of HIF-1α and HIF-2α and their different functions in glycolytic regulation, glucose consumption, or hypoxia responses are being continuously unraveled [50].

Numerous applications of hypoxia have also been investigated and published in the scientific literature:

3. In the clinical field, the continuous exposure to altitude or systemic intermittent hypoxic conditioning/training (not to be confused with pathology-associated "intermittent hypoxia" as in sleep apnea, for example) has been proposed to be an effective treatment strategy against different diseases, conferring various health benefits: e.g., cardioprotection [77]; neuroprotection [13]; and reduction of obesity [135]; cancer mortality [14], and cardiovascular diseases [28, 29].

4. Since the 1960s for enhancing performance in athletes, initially only in endurance sports due to the hematological benefit of prolonged exposure to altitude [23, 74] and more recently in intermittent (i.e., team or racket) sports [36, 82].

To our knowledge, there is no detailed analysis of the scientific contributions related to hypoxia. The main aims of the present study were to examine the most important (i.e., the most-cited) articles in this field and to examine how the HIF-pathway discovery may have changed the thematic composition of this body of literature, with a special emphasis on the studies linking hypoxia and cancer. Finally, the relative representation in hypoxia research of five different topics (pathophysiological responses to high altitude; physiological adaptive responses to hypoxia; molecular responses to hypoxia; clinical/therapeutic use of hypoxia; altitude training) was analyzed.

Methods

We first identified biomedical (biology, medicine, physiology, or “sport sciences”) journals in PubMed (https://pubmed.ncbi.nlm.nih.gov/) with potential articles on altitude or hypoxia. All journals with the terms #Med, #Physiol, #Biol, #Exerc, and #Cell in the journal name were first selected. For inclusion of the highest ranked general scientific and medical journals, we added journals with #Sci, #Lancet, #Jama, #Nature, #PNAS, and #BMJ in their names.

This yielded a list of 1726 journals or source titles. From this list, we removed those that were not closely related to human physiology or medicine (e.g., plants, veterinary, zoology, animals) reducing the list to 1668 journals.

Next we searched Pubmed for articles with the terms Hypox*, Altitude, or Mountain* in the title. This yielded 29,888 articles on the 15th March 2021.

The next step was to determine the number of citations for these articles. We performed a complete search for all the articles on Web of Science (https://www.webofscience.com/) on 16–17th March 2021. Basic information, including source journal, publication year, citations per year, and total number of citations, was extracted.

These publications were then ranked by the number of times cited and a list of the top-100 cited articles was created. Finally, we extracted from this list all articles related to cancer (i.e., titles containing the terms “tumour”/“tumor” or “cancer”), yielding a list of the top-100 articles on hypoxia but without a primary focus on cancer (Table 1).

Each of these 100 articles was then analyzed by two independent reviewers (GPM and JB) to classify them according to five distinct categories, regarding their main purpose:

1. Pathophysiological responses to high altitude—focus on adverse/maladaptive systemic physiological effects to hypoxia or high altitude.
2. Physiological responses to hypoxia—focus on adaptive systemic physiological and genetic effects to hypoxia.
3. Molecular responses to hypoxia—mechanistic studies with a focus on cell physiology and pathology.
4. Clinical/therapeutic use of hypoxia—therapeutic use of hypoxia in clinical populations, except cancer.
5. Altitude training—use of altitude/hypoxia for sport performance enhancement purpose.

A second search in Pubmed was performed in all journals for articles related to hypoxia and cancer, i.e., articles with #Hypox or #Altitude and #cancer in the title. This search yielded 3173 articles. As described for Table 1, we ranked
Order number	References	Citations
1	[130] Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–5514	4517
2	[120] Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–845	3721
3	[79] Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–275	3667
4	[31] Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16(9):4604–4613	2932
5	[58] Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–185	2103
6	[17] Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–864	1972
7*	[94] Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–684	1683
8	[118] Shankaran S, Loptook AR, Ehrenkranz RA, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353(15):1574–1584	1557
9*	[116] Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408	1557
10*	[109] Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–578	1552
11	[133] Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–1237	1381
12	[18] Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998;95(20):11715–11720	1363
13*	[110] Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol (1985). 2000;89(4):1474–1480	1359
14	[89] Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–197	1341
15	[107] Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269(38):23,757–23,763	1323
16	[19] Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130–25138	1302
17	[102] Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272(36):22642–22647	1264
18*	[76] Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309	1210
19	[108] Semenza GL, Jiang BH, Leung SW, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996;271(51):32529–32537	1199
20	[73] Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet. 1981;1(8222):681–686	1192
21	[62] Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain is a hypoxic switch. Science. 2002;295(5556):858–861	1156
22	[88] Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol. 2000;2(7):423–427	1109
23	[5] Berne RM. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol. 1963;204:317–322	1109
24	[131] Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 1993;90(9):4304–4308	1071
25*	[25] Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364(7):656–665	1058
26	[144] Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10982–10903	1048
27	[63] Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001;21(12):3995–4004	1048
Table 1 (continued)

Order number	References	Citations
28*	[12] Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996;76(3):839–885	1008
29	[40] Guzy RD, Hoyos B, Robin E, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–408	988
30	[99] Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453(7196):807–811	983
31	[81] Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011;481(7381):380–384	969
32	[51] Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996;271(50):32253–32259	948
33	[99] Rius J, Guma M, Schachtrop C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453(7196):807–811	934
34	[81] Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011;481(7381):380–384	917
35	[50] Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–9374	882
36	[142] Yi X, Liang Y, Huerta-Sanchez E, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329(5987):75–78	879
37	[4] Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29(10):2570–2581	855
38	[21] Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146(5):772–784	829
39	[55] Jiang BH, Rue E, Wang GL, Roe R, Semenza GL. Dimerization, DNA binding, and transcriptional properties of hypoxia-inducible factor 1. J Biol Chem. 1996;271(30):17771–17778	829
40*	[43] Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345(2):107–114	837
41	[67] Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270(22):13333–13340	835
42	[20] Cockman ME, Masson N, Mole DR, et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem. 2000;275(23):27,333–27,741	817
43	[39] Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9(5):617–628	817
44	[61] Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol. 2007;27(5):1859–1867	809
45*	[71] Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002;282(2):C227–241	809
46	[33] Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129(1):111–122	796
47*	[48] Hochachka PW, Buck LT, Doll CJ, Land SC. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A. 1996;93(18):9493–9498	796
48	[26] Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A. 1997;94(9):4273–4278	795
49*	[112] Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13(2):167–171	785
50	[87] Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211(5):781–790	783
51	[75] Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145(5):732–744	762
52	[84] Mu J, Brozinick JT, Jr., Valladares O, Bucan M, Birnbaum MJ. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell. 2001;7(5):1085–1094	752
53*	[113] Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med. 2001;7(8):345–350	752
54*	[124] Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev. 2001;81(3):1065–1096	740
55	[2] Appelhoff RJ, Tian YM, Raval RR, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279(37):38458–38465	736
Table 1 (continued)

Order number	References	Citations
56	[1] An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 1998;392(6674):405–408	727
57	[132] Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 1995;268(29):21513–21518	722
58*	[111] Semenza GL. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1–3	715
59	[122] Simonson TS, Yang Y, Huff CD, et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010;329(5987):72–75	702
60	[30] Fasanaro P, D’Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283(23):15878–15883	698
61	[72] Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14(2):177–185	684
62	[56] Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L. Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin–proteasome pathway. J Biol Chem. 1999;274(10):6519–6525	675
63	[53] Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr., Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci U S A. 1996;93(20):10595–10599	675
64	[114] Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24:97–106	611
65	[41] Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91(5):807–819	586
66	[10] Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A. 2000;97(16):9082–9087	627
67	[22] Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science. 1990;247(4948):1341–1344	621
68	[90] Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104(13):5431–5436	615
69	[119] Shimizu S, Eguchi Y, Kosaka H, Kamiike W, Matsuda H, Tsujimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature. 1995;374(6525):811–813	611
70	[123] Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1999;274(29):18092–18098	585
71	[46] Lee PJ, Jiang BH, Chin BY, et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 1999;272(9):5375–5381	590
72	[127] Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1999;272(9):5375–5381	586
73	[141] Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of db/db and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1118–1128	582
74	[3] Arany Z, Huang LE, Eckner R, et al. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A. 1996;93(23):12969–12973	579
75	[44] Hagen T, Taylor CT, Lam F, Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science. 2003;302(5652):1975–1978	578
these articles by citations. We added to this list the articles related to cancer extracted from Table 1 to create Table 2 with the top-25 articles related to hypoxia and cancer.

A third search was performed only in “sport sciences” journals, with “exercise,” “sport,” “applied physiology,” or “rehabilitation” in the journal title. This search yielded 3113 articles.

Table 1 (continued)

Order number	References	Citations
82 [86]	Neonatal Inhaled Nitric Oxide Study G. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N Engl J Med. 1997;336(9):597–604	576
83 [37]	Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ Jr., Giaccia AJ. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol. 1994;14(9):6264–6277	569
84* [16]	Carreau A, El Hafny-Rabbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239–1253	565
85 [24]	Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem. 1998;273(19):11619–11624	556
86 [69]	Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem. 1996;271(5):2746–2753	547
87 [143]	Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 2009;5(3):237–241	546
88 [126]	Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 2006;281(14):9030–9037	545
89 [45]	Hewitson KS, McNeill LA, Riordan MV, et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cinp structural family. J Biol Chem. 2002;277(29):26351–26355	542
90 [85]	Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature. 1995;375(6532):577–581	541
91 [129]	Walmsley SR, Print C, Farahi N, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med. 2005;201(1):105–115	537
92 [54]	Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttita F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem. 2002;277(33):29936–29944	537
93 [100]	Rubanyi GM, Vanhoutte PM. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol. 1985;364:45–56	536
94 [68]	Levy NS, Chung S, Furneaux H, Levy AP. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem. 1998;273(11):6417–6423	535
95 [140]	Yaffe K, Laffan AM, Harrison SL, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011;306(6):613–619	533
96 [42]	Hackett PH, Rennie D, Levine HD. The incidence, importance, and prophylaxis of acute mountain sickness. Lancet. 1976;2(7996):1149–1155	529
97 [60]	Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem. 2004;279(23):24218–24225	524
98 [80]	Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995;182(6):1683–1693	518
99 [121]	Shweiki D, Neeman M, Itin A, Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci U S A. 1995;92(3):768–772	516
100 [59]	Koumenis C, Naczi C, Koritzinsky M, et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol. 2002;22(21):7405–7416	506

The articles related to “cancer” are not displayed (see Table 2)

* Shows the review articles

Results

The number of citations of the (bio)medical articles on hypoxia began to increase in the 1960s, while the rise in citations on “hypoxia and cancer” started later, in the end 90 s. The total number of citations is > 68,000 and > 18,000 in 2020, respectively (Fig. 1).
Table 2 Top-25 cited articles on “hypoxia and cancer”

Order number	References	Order number	References	Citations
1	[15]	2045		
2	[38]	2032		
3*	[136]	1809		
4*	[10]	1745		
5	[49]	1508		
6*	[128]	1460		
7	[145]	1280		
8*	[92]	1233		
9*	[115]	1150		
10	[91]	1008		
11	[8]	896		
12*	[117]	894		
13	[78]	889		
14	[70]	847		
15*	[7]	842		
16*	[57]	799		
17	[27]	768		
18	[96]	694		
19	[32]	672		
20	[139]	638		
21*	[138]	623		
22	[6]	611		
23	[101]	588		
24*	[95]	586		
25*	[9]	579		

*Shows the review articles
Table 1 displays the top-100 most-cited articles on hypoxia and Table 2 shows the top-25 articles on hypoxia related to cancer.

The mean number of citations of the top-100 articles on hypoxia (Table 1) is 973 (range: 506–4517) and 28 articles reached > 1000 citations. The publication years ranged between 1963 and 2014. Of the identified articles, 17 were reviews, of which 7 were (co-)authored by Gregg L. Semenza.

The mean number of citations of the top-100 articles related to cancer is 493 (range 213–2045). Only three articles were published prior 1995 (range: 1978–2018). Ten articles have > 1000 citations. Overall 31 articles related to cancer (Table 2 displays the top-25, all published since 1995; 11 are review articles) would be in the top-100 articles on hypoxia.

Of the top-100 articles on hypoxia, only 7 were on the pathophysiological responses and risks of hypoxia, 13 on the physiological responses to hypoxia, and most of them (80) on the molecular responses, mainly related to the HIF-1 pathway.

We did not identify any articles on the application of hypoxia either for therapeutic use (i.e., hypoxic conditioning in patients) or for performance enhancement (i.e., altitude training in athletes) in the top 100. However, there is a large increase in the number of citations in the “sport sciences” journals (Fig. 1), starting in the 1960s with an important rise in the last twenty years.

Wang et al. [130] published the most-cited article in 1995. Consequently, to display the impact of the discovery of the HIF pathway on the body of literature related to hypoxia, we arbitrarily chose to analyze two distinct periods (until 1994 vs. since 1995): it is striking that only 12 of the top-100 most-cited articles on hypoxia and only 3 articles of the top-100 articles related to cancer were published prior 1995. Moreover, before 1995, only 5 articles reached 1000 citations. Since 1995, 27 articles reached 1000 citations, most of them on the HIF-1 pathway.

The three journals with the larger number of the top-100 articles published on hypoxia are The Journal of Biological Chemistry (26 articles), PNAS (11), and Molecular and Cellular Biology (8), while the preferred journals for the top-100 articles related to “cancer” were Cancer Research (17), PNAS (7), and British Journal of Cancer (6).

An outstanding point is that the Nobel laureate Gregg Semenza published 27 of these most-cited articles on hypoxia, including 10 with GL Wang as a co-author (including the most cited article in the list).

Discussion

The presented descriptive overview of the current biomedical literature provides some insights into the evolution of the research related to hypoxia:

1. The mechanistic investigation of how the body adapts to hypoxia is an important topic in biology and medicine since “the responses to oxygen in the cells and organisms is one of the most central physiological adaptation that animals have” (statement of the Nobel assembly).
2. The HIF pathway discovery in the 1990s, which was made possible with the increasing effectiveness of the molecular biology methods, opens the way to many...
medical or pharmacological applications in many diseases, especially cancer. Since the literature on clinical applications of hypoxia is still relatively scarce, harnessing related strategies seems to be still at an early stage and requires future research.

3. Altitude training for sport performance enhancement is an important topic in sport sciences but attracts relatively limited attention compared to the overall hypoxia research field.

There is a long-term interest in medical sciences for hypoxia. This is shown by the increase in the total number of citations starting in the 1960s. Great studies have been published on pathophysiological and systemic physiological responses to acute hypoxia or to adaptations to prolonged exposure. One perfect example is the study by Shweiki et al. [120] on angiogenesis that is the most-cited article (3721 citations) prior 1995.

The scientific importance of the HIF pathway is confirmed by the large majority of publications based on molecular approaches related to HIF. Importantly, 97 of the top-100 articles on hypoxia have been published since 1995 with 27 having > 1000 citations. Thus, the early 1990s period—characterized by a switch from non-molecular to highly molecular-focused research—could be regarded as the period “when mountains moved.” This is further supported indirectly by the recent (end 1990s) increase in citations of the articles on hypoxia and cancer. Unsurprisingly, there is a large number of review articles (i.e., 17 in top-100 on “hypoxia”; 11 in the top-25 articles on “hypoxia and cancer”) in the most-cited ones. This has to be taken into account since the publication of original data is associated with different citation patterns than the publication of review articles.

Surprisingly, although several molecular articles on cancer suggested clinical potentialities and the fact that the Nobel committee awarded the prize also for the potential clinical applications, to date none of the clinical articles reached the top-100 position yet. While there is an increasing body of literature on the pros and cons of hypoxic conditioning, most of these papers have been published very recently. Similarly, the articles on the application of hypoxia in athletes exhibit a comparable minor impact, although the most-cited article of this field by Levine and Stray-Gundersen [66] reached 493 citations. Of interest is the discrepancy between the continuous increase of citations in “sport sciences” journals (Fig. 1) and the fact that the most-cited articles are almost exclusively in-vitro/in-cellulo molecular studies (Table 1). Our analysis shows that there is no decline in the (applied) physiology studies but the highly cited molecular studies “dilute” their numbers. Similar trends likely occur in many other “biomedical” fields.

One obvious limitation of this type of bibliometric analysis is the relevance of the citations number as metrics for assessing the research impact. Important articles for specific fields (e.g., mainly relevant for clinicians) may be cited more rarely than their (theoretical or practical) impact would suggest.

In conclusion, the discovery of the HIF pathway and of its molecular regulation in the early 1990s has revolutionized the research on hypoxia with the emergence of a considerably growing interest for its link to cancer. However, studies on clinical applications of hypoxia remain of comparatively lower interest yet but are promising.

Funding Open Access funding provided by Université de Lausanne.

Availability of Data and Material Not applicable.

Code Availability Not applicable.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 1998;392(6674):405–8.
2. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279(37):38458–65.
3. Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A. 1996;93(23):12969–73.
4. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, Mazeau NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29(10):2570–81.

Not applicable.

Ethical Approval

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
12. Bunn HF, Poyton RO. Oxygen sensing and molecular adapta-
11. Bruick RK. Expression of the gene encoding the proapoptotic
10. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer
9. Brown JM. The hypoxic cell: a target for selective cancer ther-
6. Birner P, Schindl M, Obermair A, Plank C, Breitenecker G,
5. Berne RM. Cardiac nucleotides in hypoxia: possible role in regu-
302 Journal of Science in Sport and Exercise (2022) 4:293–305
16. Carreau A, Hafny-Rahbi BEI, Matejuk A, Grillon C, Kieda C.
17. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM,
19. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melen-
20. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW,
20. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW,
19. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon
18. Chandel NS, Feliciano CE, Wood TM, Melen-
17. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM,
16. Carreau A, Hafny-Rahbi BEI, Matejuk A, Grillon C, Kieda C.
15. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans
14. Berne RM. Cardiac nucleotides in hypoxia: possible role in regu-
13. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst

 Springer
Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9(5):617–28.

40. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8.

41. Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2002;347(2):178–85.

42. Hackett PH, Rennie D, Levine HD. The incidence, importance, and prophylaxis of acute mountain sickness. Lancet. 1976;2(7996):1149–55.

43. Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345(2):107–14.

44. Hagen T, Taylor CT, Lam F, Moncada S. Redistribution of intra-cellular oxygen in hypoxia by nitric oxide: effect on HIF-1alpha. Science. 2003;302(5652):1975–8.

45. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Lindau PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin superfamily. J Biol Chem. 2002;277(29):26351–5.

46. Hiratsuka M, Kojunen P, Gümzler V, Kivirikko KI, Myllyharju J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem. 2003;278(33):30772–80.

47. Hochachka PW. Defense strategies against hypoxia and hypothermia. Science. 1986;231(4735):234–41.

48. Hochachka PW, Buck LT, Doll CJ, Land SC. Unifying theory of hypoxia tolerance: molecular/metallic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A. 1996;93(18):9493–8.

49. Hockel M, Schlegener A, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56(19):4509–15.

50. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–74.

51. Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996;271(50):32253–9.

52. Hudson CC, Liu M, Chiang GG, Ottermann DM, Abraham RT. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22(20):7004–14.

53. Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel–Lindau protein. Proc Natl Acad Sci U S A. 1996;93(20):10595–9.

54. Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel–Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem. 2002;277(33):29393–46.

55. Jiang BH, Bao S, Wu Q, Yang H, Coker C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15(6):501–13.

56. Keith B, Simon MC. Hypoxia-inducible transcription factor eIF2alpha. Mol Cell Biol. 2002;22(21):7405–16.

57. Koumenis C, Naczk C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters BG. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol. 2002;22(21):7405–16.

58. Kumar P, Hawes CR, Baker TA, Bhatia S, Clegg JB, Cooper MD, Farley TC, Feathers S, Henshall D, Jaquette JM. Hypoxia increases the rate of hypoxia-inducible factor (HIF) synthesis by increasing mRNA stability. J Biol Chem. 2002;277(9):5375–81.

59. Levine J, Harman D, Chiarelli P, Schekman R. HER2 (neu) signaling increases the rate of hypoxia-inducible factor synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001;21(12):3995–4004.

60. Levy AP, Peet DJ, Whelan GA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transcription domain as a hypoxic switch. Science. 2002;295(5556):858–61.

61. Levy AP, Segers S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270(22):13333–40.

62. Levy NS, Chung S, Furneaux H, Levy AP. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem. 1998;273(11):6417–23.

63. Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem. 1996;271(5):2746–53.

64. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15(6):501–13.

65. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002;288(2):C227–41.

66. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14(2):177–85.

67. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet. 1981;1(8222):681–6.

68. Lundby C, Millet GP, Calbet JA, Bärtsch P, Subudhi AW. Does “altitude training” increase exercise performance in elite athletes? Br J Sports Med. 2012;46(1):792–5.

69. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Senenza GL. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145(5):732–44.

303
76. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309.

77. Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Fred DH. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms and therapeutic potential. Am J Physiol Heart Circ Physiol. 2018;315(2):H216–32.

78. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford JJ, Hankinson O, Pugh CW, Ratcliffe PJ. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1997;94(15):8104–9.

79. Maxwell PH, Wiesener MS, Chang GW, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

80. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995;182(6):1683–93.

81. Metallo CM, Gameiro PA, Bell EL, Maire P, Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996;271(51):32529–37.

82. Millet GP, Girard O, Beard A, Brocherie F. Repeated sprint training in hypoxia—an innovative method. Deutsche Zeitschrift für Sportmedizin. 2019;70:115–22.

83. Mosleh J, Rathmell WK. The 2019 Nobel Prize honors fundamental discoveries in hypoxia response. J Clin Invest. 2020;130(1):4–6.

84. Mu J, Brozinick JT, Valladares O, Bucaen M, Birnbaum MJ. Hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2015;212(10):1441–56.

85. Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature. 1999;399(6733):271–5.

86. Neonatal Inhaled Nitric Oxide Study G. Inhaled nitric oxide in failure. N Engl J Med. 1997;336(9):597–604.

87. Neumann D, Edgerton VR, Morgan BJ. Hypoxia and adaptations in skeletal muscle. J Physiol. 2018;315(2):H216–32.

88. Ohh M, Park CW, Ivan M, Hoffman MA, Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol. 2000;2(7):423–7.

89. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97.

90. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104(13):5431–6.

91. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3(3):347–61.

92. Pouysségur J, Dayan F, Mazeau NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437–43.

93. Priestley J. Experiments and observations on different kinds of air. Printed for J. Johnson. 1775:72.

94. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84.

95. Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15(4):678–85.

96. Raval RR, Lau KW, Tran MGB, Sowter HM, Mandriota SJ, Li JL, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25(13):5675–86.

97. Richalet JP. The scientific observatories on Mont Blanc. High Alt Med Biol. 2001;2(1):57–68.

98. Richalet JP. The invention of hypoxia. J Appl Physiol. 2021;130(5):1573–82.

99. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinker nagel AS, Nizet V, Johnson RS, Haddad GG, Karin M. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453(7196):807–11.

100. Rubanyi GM, Vanhoutte PM. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol. 1985;364:45–56.

101. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A. 2008;105(17):6392–7.

102. Salceda S, Caro J. Hypoxia-inducible factor Ialpha (HIF-Ialpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272(36):22642–7.

103. Scheele C. d. Königl. Schwed. Acad. d. Wissenschaft. Mitgiedes, Chemische Abhandlung von der Luft und dem Feuer. Uppsala and Liepzig: Magnus Swederus; 1777.

104. Schmidtle JJ Jr, YS Ji, Liu W, DuBois RN, Runge MS. Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem. 1999;272(1):601–8.

105. Schmedtje JF Jr, YS Ji, Liu WL, DuBois RN, Runge MS. Hypoxia activates transcription factor HIF-1alpha, and its blockade under some system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 2003;198(9):1391–402.

106. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991;88(13):5680–4.

107. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269(38):23757–63.

108. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996;271(51):32529–37.

109. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–78.

110. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000;88(4):1474–80.

111. Semenza GL. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1–3.

112. Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13(2):167–71.
113. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med. 2001;7(8):345–50.

114. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24:97–106.

115. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625–34.

116. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408.

117. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207–14.

118. Shankaran S. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353(15):1574–84.

119. Shimizu S, Eguchi Y, Kosaka H, Kamiwaki W, Matsuda H, Tsuchimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature. 1995;374(6525):811–3.

120. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–5.

121. Shweiki D, Neeman M, Itin A, Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicellular spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci U S A. 1995;92(3):768–72.

122. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010;329(5987):72–5.

123. Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7(3):380–90.

124. Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev. 2001;81(1):1065–96.

125. Trio Wins Nobel for Hypoxia Discoveries. Cancer Discov. 2019;9(12):1636–7.

126. Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 2006;281(14):9030–7.

127. Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273(29):18092–8.

128. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225–39.

129. Wiesner S, Haufe S, Engeli S, Mutschler H, Haas U, Luft FC, Jordan J. Influences of normobaric hypoxia training on physical fitness and metabolic risk markers in overweight to obese subjects. Obesity (Silver Spring). 2010;18(1):116–20.

130. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):3510–4.

131. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 1993;90(9):4304–8.

132. Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 1993;268(29):21513–8.

133. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–7.

134. West JB. 100th anniversary of the Anglo–American Pikes Peak expedition. High Alt Med Biol. 2011;12(3):189–90.

135. Wiesner S, Haufe S, Engeli S, Mutschler H, Haas U, Luft FC. Hypoxia promotes isocitrate dehydrogenase-dependent carbonylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011;108(49):19611–6.

136. Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–64.

137. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65(2):613–21.

138. Yaffe K, Laffan AM, Harrison SL, Redline S, Spira AP, Ensrud KE, Ancoli-Israel S, Stone KL. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011;306(6):613–9.

139. Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of obese mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1118–28.

140. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliusssen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo L, Gusan L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang X, Zn Z, Yang H, Nielsen R, Wang J, Wang J. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329(5987):75–8.

141. Yoshida Y, Takahashi Y, Okita K, Ichisaka T, Yamanaka S. Hypoxia induces factor 1a. J Biol Chem. 1995;270(3):1230–7.