Appendix to:

EFSA (European Food Safety Authority), 2018. Conclusion on the peer review of the pesticide risk assessment of the active substance methiocarb. EFSA Journal 2018;16(10):5429, 70 pp. doi:10.2903/j.efsa.2018.5429
© European Food Safety Authority, 2018

Appendix A- List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)
Active substance (ISO Common Name)
Function (e.g. fungicide)
Rapporteur Member State
Co-rapporteur Member State

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	4-methylthio-3,5-xylyl methylcarbamate
Chemical name (CA)	3,5-dimethyl-4-(methylthio) phenyl N- methylcarbamate
CIPAC No	165
CAS No	2032-65-7
EC No (EINECS or ELINCS)	217-991-2
FAO Specification (including year of publication)	165/TC (June, 2018)
Minimum purity of the active substance as manufactured	980g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	methyl isocyanate max. 0.2 g/kg
	toluene max. 1 g/kg
	2,4,6-trichloro-3,5-dimethylphenyl methylcarbamate max. 3 g/kg
Molecular formula	C₁₁H₁₅NO₂S
Molar mass	225.3 g/mol
Structural formula	![Structural formula](image)
Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Property	Value/Details																				
Melting point (state purity)	118-119 °C (Purity 99.5%)																				
Boiling point (state purity)	311 ± 37°C estimated for atmospheric pressure (QSAR)																				
Temperature of decomposition (state purity)	DTA indicated melting occurred between 120 and 150°C with measurable exothermic decomposition, with its maximum at 300°C, completed at ca 330°C. (Purity 98.3%)																				
Appearance (state purity)	Colourless crystals, odourless (pure) \n		White to beige powder, phenol-like odour (as manufactured)																		
Vapour pressure (state temperature, state purity)	1.5×10⁻⁵ Pa at 20 °C \n		3.6×10⁻⁵ Pa at 25 °C \n		Very slightly volatile (Purity 99.5%)																
Henry’s law constant (state temperature)	Henry’s law constant at 20 °C (calculated): 1.2×10⁻⁴ \n		Poxₙm³×mol⁻¹																		
Solubility in water (state temperature, state purity and pH)	27 mg/L at 20 °C pH unspecified (moderately soluble) \n		Range of pHs not considered due to the active substance not dissociating and degrading at pH 9 (Purity 99.5%)																		
Solubility in organic solvents (state temperature, state purity)	Solubility in g/L at 20 °C: \n		n-heptane 0.57 \n		dichloromethane >250 \n		2-propanol 42 \n		xylene 20 \n		1-octanol 31 \n		acetone 144 \n		acetonitrile 67 \n		ethylacetate 87 \n		polyethyleneglycol 72 \n		dimethylsulfoxide >250 (Purity 99.5%)
Surface tension (state concentration and temperature, state purity)	72 mN/m at 20 °C (aqueous solution approx. 15.5 mg/L) \n		Methiocarb is classified to be non-surface active. (Purity 99.5%)																		
Partition coefficient (state temperature, pH and purity)	Methiocarb – 99.5% purity \n		At 20 °C \n		unbuffered Pow 1200 log Pow 3.08 \n		pH 4 Pow 1300 log Pow 3.11 \n		pH 7 Pow 1500 log Pow 3.18 \n		pH 9 degradation Metabolite (Methiocarb-methoxy-sulfone):										
At 25°C

pH	Pow	log Pow
5	79	1.9
7	79	1.9
9	79	1.9

Metabolite (Methiocarb-phenol):

At 20°C

pH	Pow	log Pow
Unbuffered	2600	3.41
4	2700	3.43
7	3000	3.48
9	3100	3.49

Metabolite (methiocarb-sulfone-phenol)

At 21°C

pH	Pow	log Pow
5	36.3	1.56
7	32.4	1.51
9	2.33	0.37

Metabolite (Methiocarb-sulfoxide):

At 23°C

pH	Pow	log Pow
5	4.7	0.7
7	5.3	0.7
9	Degradation	

Metabolite (Methiocarb-sulfoxide phenol)

At 23°C

pH	Pow	log Pow
5	12	1.1
7	12	1.1
9	2.9	0.5

Dissociation constant (state purity)

Methiocarb shows neither basic nor acidic properties in aqueous systems. It is not possible to specify a pKa value for methiocarb in water. No dissociation.
UV/VIS absorption (max.) incl. ε
(state purity, pH)

Methiocarb, purity 99.1%

UV (methanol/neutral pH)

Absorption Characteristics:

Peak maxima/ wavelength	Molar extinction coefficient [L/mol x cm]
203 nm	44762
223 nm	12021
267 nm	2582

UV (methanol/buffer solution pH 2)

Absorption Characteristics:

Peak maxima/ wavelength	Molar extinction coefficient [L/mol x cm]
203 nm	52548
223 nm	13026
267 nm	3030

UV (methanol/buffer solution pH 10)

Absorption Characteristics:

Peak maxima/ wavelength	Molar extinction coefficient [L/mol x cm]
219 nm	23298
267 nm	11461

At pH 10, the molar extinction [\(\varepsilon\)] was measured as 182 L/(mol x cm) at 290 nm.

Flammability (state purity)

(99.4% purity)
Not highly flammable in the sense of EC guideline A.10. Does not liberate gases in hazardous amounts as defined in EC guideline A.12.

Explosive properties (state purity)

(99.4% purity)
Not explosive in the sense of EC guideline A.14.

Oxidising properties (state purity)

(99.4% purity)
No oxidising properties in the sense of EC guideline A.17.
Summary of representative uses evaluated, for which all risk assessments needed to be completed *(Methiocarb)*
(Regulation (EU) No 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Member State or Country	Product name	F or G (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks
Maize	Europe	Methiocarb FS 500	F	Oscinella frit repellent for: *Columba livia f.*, *domestica*, *Corvus corone*, *Corvus frugilegus*, *Phasianus colchicus*	FS 500 g/l methio-carb	Seed treatment BBCH 00	75	150	Sowing density: 2 Units per ha

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (Methiocarb) Regulation (EC) No 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop and/or situation (a)	Member State or Country	Product name	F or G or I (b)	Pests or Group of pests controlled (c)	Preparation Type (d-f)	Conc. a.s. (g)	method kind (h)	range of growth stages & season (i)	number min-max (k)	Interval between application (min)	kg a.s./L min-max (l)	Water L/ha min-max	kg a.s./ha min-max (l)	PHI (days) (m)	Remarks
MRL Application (according to Article 8.1(g) of Regulation (EC) No 1107/2009)	none														

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)

(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)

(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds

(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide

(f) All abbreviations used must be explained

(g) Method, e.g. high-volume spraying, low-volume spraying, spreading, dusting, drench

(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated

(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).

(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application

(k) Indicate the minimum and maximum number of applications possible under practical conditions of use

(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha

(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

The representative uses/GAPs are supported.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

The representative uses/GAPs are supported.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

The representative uses/GAPs are supported.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Met1	Met2	Met3	Met4	Met5	Met6
Activity against target organism					
Not required					
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Component	Analytical Method
Technical a.s. (analytical technique)	HPLC-DAD with external standard.
Impurities in technical a.s. (analytical technique)	HPLC-DAD with external standard. GC-Headspace with external standard. GC with external standard. Titration.
Plant protection product (analytical technique)	HPLC-DAD with external standard.

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Component	Residue Definition
Food of plant origin	Methiocarb and methiocarb sulfoxide, expression pending upon outcome of data gap on genotoxicity for M01.
Food of animal origin	Not required.
Soil	Methiocarb and methiocarb sulfoxide
Sediment	Methiocarb and methiocarb sulfoxide
Water surface	Methiocarb and methiocarb sulfoxide
Drinking/ground water	Methiocarb
Air	Methiocarb
Body fluids and tissues	Methiocarb phenol, methiocarb sulfone phenol, methiocarb sulfoxide phenol and their conjugates (glucuronides and sulphates)

Monitoring/Enforcement methods

Component	Method Details
Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	QuEChERS HPLC-MS/MS method was provided covering the following analytes: LOQ = 0.01 mg/kg (methiocarb), 0.01 mg/kg (methiocarb sulfoxide), 0.01 mg/kg (methiocarb sulfone). Validated matrices: rape seed (crop with high oil content) An ILV is available rape seed only. Data gap: monitoring method for residue definition in high water content, high acid content and dry matrices
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

Not required, though a modified QuEChERs method using HPLC-MS/MS is available for determining residues in meat, kidney, liver, fat, milk, and eggs.

LOQ = 0.01 mg/kg (methiocarb), 0.01 mg/kg (methiocarb sulfoxide), 0.01 mg/kg (methiocarb sulfone), 0.01 mg/kg (methiocarb phenol), 0.01 mg/kg (methiocarb sulfoxide phenol), 0.01 mg/kg (methiocarb sulfone phenol).

An ILV is available for the method.

Soil (analytical technique and LOQ)

DFG Method S 19 HPLC/MS-MS, LOQ = 0.02 mg/kg (methiocarb), 0.02 mg/kg (methiocarb sulfoxide).

Water (analytical technique and LOQ)

HPLC-MS/MS, LOQ = 0.05 µg/L (methiocarb), 0.05 µg/L (methiocarb sulfoxide).

An ILV is available for the method.

Air (analytical technique and LOQ)

Trapping by Tenax or XAD, then HPLC- fluorescence detection.

LOQ = 0.4 µg/m³ (methiocarb).

Body fluids and tissues (analytical technique and LOQ)

GC-MS, LOQ = 50 µg/L (body fluids), LOQ = 0.01 mg/kg (tissues) (methiocarb)

Data gap for all components of the residue definition

Classification and labelling with regard to physical and chemical data (Regulation (EU) No 283/2013, Annex Part A, point 10)

Substance	Methiocarb
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:	None
Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:	No classification proposed with regard to physical and chemical data

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) No 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	Rapid absorption, Cmax in plasma at 0.5h. Extensively absorbed after oral dose, 84-90%
Toxicokinetics	In male/female rats (1 mg/kg bw) Cmax methiocarb ~ 0.77 µg/mL. Tmax 0.5 h T1/2 absorption 0.12 h T1/2 elimination 8.17-17.8 h (m/f)
Distribution	Extensively distributed into organs and tissues. Highest concentration of radioactivity in the organs being responsible for the degradation and excretion, i.e. stomach, large and small intestine, kidney, urinary bladder, and liver
Potential for bioaccumulation	No potential for accumulation. T1/2 for elimination is 8h–21h.
Rate and extent of excretion	Rapid elimination mainly in urine (84-90%) within 48h. Faeces was 5-10%
Metabolism in animals	Extensively metabolised in mammals. Four types of metabolic reactions were inferred following oral and dermal application: - Ester hydrolysis of the carbamate group (major metabolic step) - Hydroxylation of the methyl group of carbamate group (minor reaction) - Oxidation of the thioether group to form the sulfoxide and the sulfone - Conjugation of the phenolic hydroxy group with sulfuric acid or glucuronic acid
In vitro metabolism	No unique human metabolite is expected
Toxicologically relevant compounds (animals and plants)	Methiocarb and M03, M04 and M05.
Toxicologically relevant compounds (environment)	Methiocarb and M03, M04 and M05.

Acute toxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.2)

Rat LD50 oral	19 mg/kg bw based on weight of evidence of published data with range of 13–135 mg/kg bw. In the submitted study was 33 mg/kg bw.	H300
Rat LD50 dermal	> 5000 mg/kg bw	
Rat LC50 inhalation	0.433 mg/L	H330
Skin irritation	Not irritating	
Property	Description
Eye irritation	Not irritating
Skin sensitisation	Not sensitising (LLNA method)
Phototoxicity	data gap

Short-term toxicity (Regulation (EU) Nº 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Description
	Rat and dog: Cholinesterase inhibition, clinical signs indicative of cholinergic inhibition and reduction in body weight gain
Relevant oral NOAEL	90 day, dog: 0.25 mg/kg bw per day
	2-year dog: 2.2 mg/kg bw per day
	13-week, rat: 7.34 mg/kg bw per day
Relevant dermal NOAEL	21 day, rabbit: 150 mg/kg bw per day
Relevant inhalation NOAEL	21 day, rats: 6 mg/m³

Genotoxicity (Regulation (EU) Nº 283/2013, Annex Part A, point 5.4)

In vitro studies	Description
	Ames Test, HGPRT assay in CHO cells, Pol test in E. coli; UDS assay and SCE assay in CHO cells: Negative. Chromosomal aberration assay in CHO assay: positive.
In vivo studies	Micronucleus assay and mouse dominant lethal test: Negative.
Photomutagenicity	Not required
Potential for genotoxicity	Overall methiocarb is unlikely to be genotoxic in vivo.

Long-term toxicity and carcinogenicity (Regulation (EU) Nº 283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)	Description
Rats: significant weight loss	
Mice: significant change in ALT and transient significant cholinesterase inhibition	
Relevant long-term NOAEL	2-year, rat: 9.3 mg/kg bw per day
2-year, mice: 14.6 mg/kg bw per day	
Carcinogenicity (target organ, tumour type)	Non-carcinogenic in rats and mice
Relevant NOAEL for carcinogenicity	2-year, rat: ≥9.3 mg/kg bw per day
2-year, mice: ≥ 57 mg/kg bw per day	

Reproductive toxicity (Regulation (EU) Nº 283/2013, Annex Part A, point 5.6)

Reproduction target / critical effect	Description
Parental toxicity: reduced body weights in parental males/females (during lactation for females)	
Reproduction toxicity: Reduced number of	
pups per litter and reduced lactation index

Offspring toxicity: Reduced lactation index in F1 and F2 pups

Relevant parental NOAEL
4.3 mg/kg bw per day

Relevant reproductive NOAEL
4.3 mg/kg bw per day

Relevant offspring NOAEL
4.3 mg/kg bw per day

Developmental toxicity

Developmental target / critical effect
rat:
Parental toxicity: cholinergic signs, weight loss and muscle fasciculations
No developmental toxicity

rabbit
Parental toxicity: clinical signs of toxicity and reductions in body weight
No developmental toxicity

Relevant maternal NOAEL
0.5 mg/kg bw per day in the rat
3 mg/kg bw per day in the rabbit

Relevant developmental NOAEL
5.0 mg/kg bw per day in the rat
10.0 mg/kg bw per day in the rabbit

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity
No specific neurotoxicity study. In the available toxicity studies: No acute neurofunctional effects seen in rats and dogs. Cholinergic effects included trembling, cramps, muscular fasciculations, salivation, diarrhoea, vomiting and ataxia in mammals. No specific target organ toxicity observed at non-lethal dose levels

Repeated neurotoxicity
No specific neurotoxicity study. In the available toxicity studies: No neurofunctional effects seen in rats and dogs. No cumulative effect on the acetylcholinesterase activity was observed

Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)
No evidence of delayed neurotoxicity in hens. Data gap for a comparative ChE study in adults and offspring rats
Other toxicological studies (Regulation (EU) No 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance	Antidote effects: Atropine provided significant antidotal protection against the cholinergic effects of methiocarb. No potentiation effects observed. Open literature: methiocarb may induce oxidative damage in liver and kidney. It does not possess AhR agonistic activity, hPXR and/or mPXR agonistic activity and does not activate PPARα or PPARγ in vitro.
Endocrine disrupting properties	Immunotoxicity: no specific study, no indication in the available toxicity studies.
Studies performed on metabolites or impurities	Methiocarb is unlikely to be an endocrine disruptor.

Methiocarb sulfoxide (M01):	Oral LD₅₀ = 6 mg/kg bw NOAEL cholinergic effects < 0.5 mg/kg bw per day (estimated to be between 0.1 and 0.2 mg/kg bw per day) in the rat (4 weeks, gavage) NOAEL cholinergic effects = 0.05 mg/kg bw per day in the dog (29-day oral, capsule) Relative potency factor of 3 might apply compared to parent provided genotoxicity is excluded. Data gap for in vitro genotoxicity test battery.
Methiocarb sulfone (M02):	Oral LD₅₀ = >1000 mg/kg bw
Methiocarb phenol (M03):	Oral LD₅₀ > 2000 mg/kg bw Ames Test: negative Likely to be of lower toxicity than parent.
Methiocarb sulfoxide phenol (M04):	Oral LD₅₀ > 2000 mg/kg bw Ames Test: negative Likely to be of lower toxicity than parent.
Methiocarb sulfone phenol (M05):	LD₅₀ > 2000 mg/kg bw Ames Test: negative Likely to be of lower toxicity than parent.
N-hydroxymethyl methiocarb:	Oral LD₅₀ > 112 mg/kg bw
N-hydroxymethyl methiocarb sulfone	Oral LD₅₀ > 160 mg/kg bw
N-hydroxymethyl sulfoxide	Oral LD₅₀ > 112 mg/kg bw
Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

Occupational medical surveillance of twenty five workers exposed to methiocarb did not reveal any unwanted effects in the workers. One fatal poisoning of a human with methiocarb was reported.

Summary (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)

	Value (mg/kg bw (per day))	Study	Uncertainty factor
Acceptable Daily Intake (ADI) (b)	0.00025	Dog, 90-day	1000(a)
Acute Reference Dose (ARfD) (b)	0.00050	Rat, Developmental toxicity	1000(a)
Acceptable Operator Exposure Level (AOEL) (b)	0.00025	Dog, 90-day	1000(a)
Acute Acceptable Operator Exposure Level (AAOEL)	0.00050	Rat, Developmental toxicity	1000(a)

(a) An additional factor of 10 was added to the standard uncertainty factor of 100 to take into account the lack of a DNT study and the likely higher sensitivity to AChE inhibition of pups compared to adults.
(b) Different from those set during the first approval (European Commission, 2006) where the ADI, ARfD and AOEL were 0.013 mg/kg bw per day (UF 100).

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (Mesurol FS 500 g/L)

0.9% for the concentrate
1% for 1.2 dilution
2% for 1.8 dilution
Based on in vitro study in human skin on Mesurol FS 500 g/L.

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

Operators directly involved in the seed treatment process
Operator exposure study of seed treatment of maize seeds with 500 g/L FS formulation, 0.075 kg a.s./50,000 seeds.
Operator exposure in seed treatment plant with the following control measures:
- Closed transfer systems during mixing/loading
- Automated, closed bagging line
- Automated, enclosed stacking
- Adequate dust aspiration system throughout the seed treatment process
- Enclosed transport of treated seed
- ‘Dry’ cleaning techniques
The following PPE is required to be worn by all personnel throughout the entire working shift, whilst in

3 If available include also reference values for metabolites
the operational area of the seed-treatment plant:

- Suitable protective coveralls\(^1\) suitable protective gloves, and suitable respiratory protective equipment\(^2\)

\(^1\)Protective coverall – impermeable ‘Tyvek’ type of coverall.
\(^2\) Disposable filtering facepiece respirator to at least EN149 FFP3 or equivalent.

Longer term exposure to methiocarb (sample maximum):
- Machine Operator: 88% AOEL
- Cleaner: 9% AOEL

Acute exposure to methiocarb (parametric 95\(^{th}\) percentile):
- Machine Operator: 96% AAOEL
- Cleaner: 7% AAOEL

Operators within the seed-treatment plant not directly involved in treatment

Seed-TROPEX data for forklift truck drivers whose general work activities were not directly associated with the seed treatment process. Based on the same PPE requirements as detailed above for operators.

Longer term exposure to methiocarb:
- Geometric mean: 19% AOEL
- Parametric 75\(^{th}\) percentile: 33% AOEL
- Sample maximum: 38% AOEL

Acute exposure to methiocarb:
- Parametric 95\(^{th}\) percentile: 93% AAOEL

Workers

Worker exposure during loading and sowing treated seed from worker exposure study. Exposure to methiocarb with the use of workwear, gloves and FFP3 RPE during sowing and loading. Assuming the use of an open cabin tractor during sowing.

Longer term exposure to methiocarb:
- Empirical 75\(^{th}\) percentile: 628% AOEL

Acute exposure to methiocarb:
- Sample maximum: 826% AAOEL

Bystanders and residents

The treatment of maize seeds with ‘Mesurol FS 500’ is usually performed in professional plants where access is restricted to people working at the plant. Therefore it is considered that bystanders and residents will not be exposed to methiocarb during the seed treatment process.
Classification with regard to toxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance: Methiocarb

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]⁴:

Substance	Classification
Methiocarb	Acute Tox. 3 (H301 – Toxic if swallowed)
	Acute Tox. 2 (H300 – Fatal if swallowed)
	(H330 – Fatal if inhaled)

Peer review proposal⁵ for harmonised classification according to Regulation (EC) No 1272/2008:

⁴ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

⁵ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops	Crop groups	Crop(s)	Application(s)	DAT (days)
(Plant groups covered)				
Fruit crops		Apples	1x2 mg a.s./apple (Foliar treatment)	0, 4, 29, 36, 43
			8x10.1 mg a.s./apple (Foliar treatment)	3, 7, 14
		Tomatoes	1x1.12 kg a.s./ha (soil treatment)	1, 3, 7, 14
Leafy crops		Lettuces	1x1.12 kg a.s./ha (soil treatment)	1, 3, 7, 14
Cereals/grass crops	Rice		1x1.12 kg a.s./ha (seed treatment)	14, 21, 28, 35
			1x2.24 kg a.s./ha (Foliar treatment)	0, 1, 3, 6, 14, 28
			2x2.24 kg a.s./ha (Foliar treatment)	0, 6, 14, 21, 28
Pulses/Oilseeds	Oilseed rape		5 kg a.s./100 kg seeds	23 (Forage), 181 (straw, seeds)
			25 kg a.s./100 kg seeds	

Rotational crops	Crop groups	Crop(s)	PBI (days)	Conditions
(metabolic pattern)				20 min, 90°C, pH 4
				60 min, 100°C, pH 5
				20 min, 120°C, pH 6

Rotational crop and primary crop metabolism similar? Yes

Processed commodities (standard hydrolysis study)

Residue pattern in processed commodities similar to residue pattern in raw commodities?

Studies not triggered as residues of all compounds included in the residue definitions for monitoring and risk assessment < LOQ (0.01 mg/kg) of the method in maize grain.
Plant residue definition for monitoring (RD-Mo)	Methiocarb and methiocarb sulfoxide, expression pending upon outcome of data gap on genotoxicity for methiocarb sulfoxide. All categories of crops upon soil and seed treatments.
Plant residue definition for risk assessment (RD-RA)	1) Methiocarb, 2) Methiocarb sulfoxide (M01) (a potency factor of 3 can be established to consider the sum of parent methiocarb and M01, if any genotoxicity potential can be ruled out for M01), 3) Sum of methiocarb phenol (M03), methiocarb sulfoxide phenol (M04) and methiocarb sulfone phenol (M05), free and conjugated. All categories of crops upon soil and seed treatments.
Conversion factor (monitoring to risk assessment)	Open

Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

Animals covered	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Animals covered	Laying hen	4.4	5	The studies are not considered acceptable according to current OECD recommendations.
	Goat/Cow	0.14	5	
	Pig			
	Fish			Not required

Time needed to reach a plateau concentration in milk and eggs (days)	Open
Animal residue definition for monitoring (RD-Mo)	Not required for the representative use on maize.
Animal residue definition for risk assessment (RD-RA)	Not required for the representative use on maize.
Conversion factor (monitoring to risk assessment)	N/A
Metabolism in rat and ruminant similar (Yes/No)	N/A
Fat soluble residues (Yes/No)	Yes for methiocarb and M03 (log P_{ow} >3) No for M01, M04, M05, M10 (log P_{ow} <3)

N/A: Not applicable
Residues in succeeding crops (Regulation (EU) N° 283/2013, Annex Part A, point 6.6.2)

| Confined rotational crop study (Quantitative aspect) | Residues are <0.01 mg/kg in food and <0.05 mg/kg in feed items for methiocarb, M01, M02, M03, M04 and M05 after 163 days. Significant residues of M03, M04 and M05 are expected mainly in wheat straw and of M04 in Swiss chard and in turnip roots at 30 d PBI. |
| Field rotational crop study | From overdosed field residue trials (2×120 g a.s./ha) conducted in Northern and Southern Europe on wheat grain and straw, leafy crops (cauliflower, cabbage, lettuce) and root crops (potatoes, sugar beet root) and following soil application, residue levels of M04 and M05 (including conjugates) were occasionally recovered above the LOQ in lettuces only (0.024 and 0.013 mg eq/kg, respectively) in a glasshouse trial at 30 d PBI and residues of methiocarb and all analysed compounds were <0.05 mg eq/kg in wheat straw, 90 days after treatment. Residue levels in rotational crops are unlikely to exceed 0.01 mg/kg when maize is treated at GAP rate. |
Stability of residues (Regulation (EU) No 283/2013, Annex Part A, point 6.1)

Plant products (Category)	Commodity	T (°C)	MTC sulfoxide (M01)	MTC sulfone (M02)	MTC sulfoxide phenol (M04)	MTC sulfone phenol (M05)	MTC phenol (M03)	Methiocarb
High water content	Peas	-18	24	24	-	-	-	24
	Lettuces	-18	-	-	23	23	23	-
High oil content	Canola/rape seed	-18	24	24	23	23	11 months (converted after 352 days) into M04; sum stable for 23 months	24
High protein content	Bean dry seed	-18	-	-	23	23	23	-
High starch content	Potatoes	-18	24	24	-	-	-	24
	Wheat grain	-18	-	-	23	23	Not stable (converted within 28 days) into M04; sum stable for 24 months	-
High acid content | Grapes | -18 | 24 | 24 | - | - | 6 months (unstable in 9-24 month samples), assumed to be converted into M01 but not confirmed

| Strawberries | -18 | - | - | 23 | 23 | 23 | - |

Additional data were supplied on storage at elevated temperature over a 7 day period and there was no evidence of decline greater than 30% during the storage of the fortified matrices (tomato, wheat green materials, grapes, wheat grain, potato tuber, dry pea and rape seed) for methiocarb, methiocarb sulfoxide (M01), methiocarb sulfone (M02), methiocarb sulfoxide phenol (M04) and methiocarb sulfone phenol (M05).

Animal	Animal commodity	T (°C)	Stability (Month/Year)
	Muscle		
	Liver	-18	-
	Kidney	-	-
	Milk	-	-
	Egg	-	-

Not required
Summary of residues data from the supervised residue trials (Regulation (EU) No 283/2013, Annex Part A, point 6.3)

Crop	Region/Indoor	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)	STMR (mg/kg)
Representative uses						
Maize	NEU	Maize grain: Methiocarb 4 x <0.01				
M01 4 x <0.01						
M03 4 x <0.01						
M04 4 x <0.01						
M05 4 x <0.01						
Maize forage: Methiocarb 4 x <0.01						
M01 4 x <0.01						
M03 4 x <0.01						
M04 4 x <0.01						
M05 4 x <0.01		Open	Open	Open		
SEU	Maize grain: Methiocarb					
Crop | Region/Indoor (a) | Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b) | Recommendations/comments (OECD calculations) | MRL proposals (mg/kg) (c) | HR (mg/kg) (d) | STMR (mg/kg) (d)
--- | --- | --- | --- | --- | --- | ---
Maize forage: Methiocarb | 4 x <0.01 M01 4 x <0.01 M03 4 x <0.01 M04 4 x <0.01 M05 4 x <0.01 | | | | |

Summary of the data on formulation equivalence

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1):
Though no data was provided the data requirement is addressed considering the very limited translocation of methiocarb and metabolites residues throughout the different plant parts observed from the GAP compliant residue trials on maize. The consumer exposure to residues of methiocarb and metabolites in pollen and bee products is therefore expected to be negligible.
Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.
(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.
(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HRMo).
(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMRMo).
Inputs for animal burden calculations\(^{(1)}\)

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment
Representative uses				
Maize grain	Open	STMR	Open	STMR
Maize forage/silage	Open		Open	
Maize stover	Open		Open	
Maize grain by products	Open		Open	

\(^{(1)}\): The plant residue definition for risk assessment is not finalised, the calculation of the livestock dietary burden cannot therefore be conducted.
Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

MRL calculations	Ruminant	Pig/Swine	Poultry	Fish				
Highest expected intake (mg/kg bw/d) (mg/kg DM for fish)								
Beef cattle	N/A	Breeding	N/A	Broiler	N/A	Carp	N/A	
Dairy cattle	N/A	Finishing	N/A	Layer	N/A	Trout	N/A	
Ram/Ewe	N/A			Turkey	N/A			
Lamb	N/A							
Intake >0.004 mg/kg bw	Open	Open	Open	Open	N/A	Fish intake >0.1 mg/kg DM		
Feeding study submitted	No	No	No	No	No	No		
Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates								
Level	Beef: N	Lamb: N	Level	N rate	Level	B or T: N	Level	N rate
Beef: N	Dairy: N	Ewe: N	Breed/Finish		Layer: N		Carp/Trout	
Estimated HR\(^{a}\) at 1N	MRL proposals							
Muscle								
Fat								
Meat\(^{b}\)								
Liver								
Kidney								
Milk\(^{a}\)								
Eggs								
Method of calculation\(^{c}\)								

\(^{a}\): Estimated HR calculated at 1N level (estimated mean level for milk).

\(^{b}\): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry.

\(^{c}\): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by extrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
STMR calculations

Median expected intake (mg/kg bw/d) (mg/kg DM for fish)	Ruminant	Pig/Swine	Poultry	Fish
Beef cattle	N/A	N/A	Breeding	N/A
Dairy cattle	N/A	Lamb	Finishing	N/A
Ram/Ewe	N/A			
N/A				
Breeding				
N/A				
Badger				
N/A				
Movie				
N/A				
Sheep				
N/A				
Pig				
N/A				
Pig/Beef				
N/A				
Pork				
N/A				
Pig/Porcine				
N/A				
Pig/Piglet				
N/A				
Rabbit				
N/A				
Pig/Emu				
N/A				
Pig/Feather				
N/A				
Pig/Chicken				
N/A				
Pig/Goose				
N/A				
Pig/Sheep				
N/A				
Pig/Deer				
N/A				
Pig/Donkey				
N/A				
Pig/Camel				
N/A				
Pig/Cow				
N/A				
Pig/Horse				
N/A				
Pig/Goat				
N/A				
Pig/Pig				
N/A				
Pig/Peacock				
N/A				
Pig/Pigeon				
N/A				
Pig/Parrot				
N/A				
Pig/Parake				
N/A				
Pig/Duck				
N/A				
Pig/Chicken				
N/A				
Pig/Goose				
N/A				
Pig/Sheep				
N/A				
Pig/Deer				
N/A				
Pig/Donkey				
N/A				
Pig/Camel				
N/A				
Pig/Cow				
N/A				
Pig/Horse				
N/A				
Pig/Goat				
N/A				
Pig/Pig				
N/A				
Pig/Peacock				
N/A				
Pig/Pigeon				
N/A				
Pig/Parrot				
N/A				
Pig/Parake				
N/A				
Pig/Duck				
N/A				
Pig/Chicken				
N/A				
Pig/Goose				
N/A				
Pig/Sheep				
N/A				
Processing factors (Regulation (EU) No 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

Crop (RAC)/Edible part or Crop (RAC)/Processed product	Number of studies^(a)	Processing Factor (PF)	Conversion Factor (CF_P) for RA^(b)
Representatives uses		Individual values	Median PF
Not required			

^(a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)

^(b): When the residue definition for risk assessment differs from the residue definition for monitoring

Consumer risk assessment (Regulation (EU) No 283/2013, Annex Part A, point 6.9)⁽²⁾
Including all uses (representative uses and uses related to an MRL application)

ADI
- TMDI according to EFSA PRIMo: 0.00025 mg/kg bw per day
- NTMDI, according to UK model: Highest NTMDI: Open
- IEDI (% ADI), according to EFSA PRIMo: Highest IEDI: Open
- NEDI (% ADI), according to (UK model): Highest NEDI: Open

Factors included in the calculations:

ARfD
- IESTI (% ARfD), according to EFSA PRIMo: Highest IESTI: Open
- NESTI (% ARfD), according to (UK model): Highest NESTI: Open

Factors included in IESTI and NESTI:

(2): As for the pending finalisation of the plant residue definition for risk assessment in absence of toxicity data to rule out the genotoxicity potential of M01, a dietary risk assessment for the consumer cannot be conducted.

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code^(a)	Commodity/Group	MRL/Import tolerance^(b) (mg/kg) and Comments
Plant commodities		
Representative uses		
0500030	Maize	-

No MRL proposal. Finalisation of the plant monitoring residue definition is pending upon the outcome of the requested data on potential genotoxicity of M01.

^(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005

^(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.
Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Parameter	Description	Values (% of applied)	Notes
Mineralisation after 100 days		23.5 – 58.0% at 120 d, median: 36.95% (n=4), [phenyl-1-\(^{14}\)C]methiocarb. Note: minimum value of 23.5% is an underestimate due to losses in the experiment	
		17% after 91 days (n=1), [phenyl-1-\(^{14}\)C]methiocarb	
Non-extractable residues after 100 days		31.2 – 49.9% at 120 d, median: 41.3% (n=4), [phenyl-1-\(^{14}\)C]methiocarb	
		39% after 91 d (n=1), [phenyl-1-\(^{14}\)C]methiocarb	
Metabolites requiring further consideration	- name and/or code, % of applied (range and maximum)	methiocarb sulfoxide (M01), phenyl label: max 30.0 – 58.8%, at 1 – 29 d.	
		methiocarb sulfoxide phenol (M04), phenyl label: max 18.0 – 36.0%, at 7 – 64 d	
		methiocarb sulfone phenol (M05), phenyl label: max 6.1 – 19.8% at 17 – 91 d	
		methiocarb methoxy sulfone (M10), phenyl label: max 3.3 – 13.2%, at 17 – 217 d	

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Parameter	Description	Values (% of applied)	Notes
Mineralisation after 100 days		4 % at 64 d, \[^{14}\text{C-phenyl-1}\]-label (n= 1)	
Non-extractable residues after 100 days		12 % at 64 d, \[^{14}\text{C-phenyl-1}\]-label (n= 1)	Study carried out with 14 days under aerobic conditions followed by 64 days anaerobic conditions after flooding.
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)		Methiocarb sulfoxide (M01), phenyl label: 1% at 64 d (n=1). Max: 24% at 0 d [considered to be residual from aerobic phase of study] (n=1)	
		methiocarb phenol (M03), phenyl label: max 47% at 64 d (n=1)	
Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Metabolite	Phenyl label	% of applied (range and maximum)
methiocarb sulfoxide (M01)		max 57.2% at 1 d, 28.9% at 9 d (n=1, study ‘a’)
		max 42.8% at 15 d, 23.1% at 30d (n=1, study ‘b’)
methiocarb sulfoxide phenol (M04)		max 28.8% at 7 d, 26.4% at 9 d (n=1, study ‘a’)

Mineralisation at study end

Mineralisation	% at 9 d [14C-phenyl-1] label (n=1, study “a”)
	7.6 % at 9 d [14C-phenyl-1] label (n=1, study “a”)

Non-extractable residues at study end

Non-extractable residues	% at 9 d [14C-phenyl-1] label (n=1, study “a”)
	12.6 % at 9 d [14C-phenyl-1] label (n=1, study “a”)

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Methiocarb	Dark aerobic conditions (normalised modelling endpoints)	Values normalised to 20°C, 100 % FC.						
	Soil type	Label	pH	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	DT₅₀ (d) 20 °C pF2/10kPa	St. (χ²)	Method of calculation
	Loamy sand (BBA 2.2)	phenyl	6.3	20 / 40	1.2 / 4.0	1.2	8.5	SFO
	Silt loam (Frankenforst)	phenyl	7.6	20 / 40	0.9 / 3.1	0.68	12.4	SFO
	Silt (Höfchen am Hohenseh)	phenyl	7.2	20 / 40	0.5 / 1.7	0.50	15.8	SFO
	Sandy loam (Laacher Hof)	phenyl	6.4	20 / 40	1.1 / 3.5	0.91	9.2	SFO
	Sandy loam (Howe)	phenyl	6.7	24 / 75	14.5 / 48.1	11.0	4.3	SFO
	Geometric mean (if not pH dependent)	Geometric mean (if not pH dependent)	1.33					
	pH dependence	pH dependence	No					

Notes:
a) Measured in calcium chloride solution
b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
c) % of soil water content at pF=2.5 or 33 kPa matric potential
Methiocarb	Dark aerobic conditions (trigger endpoints normalised to 20 °C for Howe soil)
Soil type | Label | pH | t. °C / % MWHC | DT$_{50}$ / DT$_{90}$ (d) | St. (χ²) | Method of calculation
Loamy sand (BBA 2.2) | phenyl | 6.3 | 20 / 40 | 1.06 / 4.7 | 1.3 | DFOP
Silt loam (Frankenforst) | phenyl | 7.6 | 20 / 40 | 0.83 / 3.7 | 1.1 | DFOP
Silt (Höfchen am Hohenseh) | phenyl | 7.2 | 20 / 40 | 0.38 / 2.9 | 4.3 | DFOP
Sandy loam (Laacher Hof) | phenyl | 6.4 | 20 / 40 | 0.94 / 4.2 | 1.7 | DFOP
Sandy loam (Howe) | phenyl | 6.7 | 24 / 75$^{b)}$ | 20.2 / 84$^{c)}$ | 2.79 | FOMC

Geometric mean (if not pH dependent) | No

pH dependence | No

$^{a)}$ Measured in calcium chloride solution
$^{b)}$ % of soil water content at pF=2.5 or 33 kPa matric potential
$^{c)}$ At study temperature (24°C) DT$_{50}$ / DT$_{90}$ are 14.1 / 58.5 days

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.1)

Methiocarb sulfoxide (M01)	Dark aerobic conditions (normalised modelling endpoints)
The precursor from which the f.f. was derived was methiocarb

Soil type	Label	pH	t. °C / % MWHC	DT$_{50}$ / DT$_{90}$ (d)	f. f. k$_f$ / k$_{dp}$	DT$_{50}$ (d) 20 °C pF2/10kPa$^{b)}$	St. (χ²)	Method of calculation
Loamy sand (BBA 2.2) | phenyl | 6.3 | 20 / 40 | 6.2 / 20.4 | 1 | 6.2 | 12.4 | SFO
Silt Loam (Frankenforst) | phenyl | 7.6 | 20 / 40 | 1.7 / 5.5 | 0.90 | 1.2 | 15.3 | SFO
Silt (Höfchen am Hohenseh) | phenyl | 7.2 | 20 / 40 | 3.8 / 12.6 | 0.81 | 3.6 | 12.5 | SFO
Sandy Loam (Laacher Hof) | phenyl | 6.4 | 20 / 40 | 2.23$^{c)}$ / 27.6$^{d)}$ / 37.0$^{e)}$ | 0.92 | 30.5$^{g)}$ | 14.0 | DFOP$^{g)}$
Sandy Loam (Howe) | phenyl | 6.7 | 24 / 75$^{f)}$ | 14.6 / 48.3 | 0.89 | 11.0 | 10.3 | SFO

Geometric mean (if not pH dependent) | 6.2
Arithmetic mean | 0.9

pH dependence | No

$^{a)}$ Measured in calcium chloride solution
$^{b)}$ Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
$^{c)}$ Fast phase, calculated as ln(2)/K$_1$
$^{d)}$ Slow phase, calculated as ln(2)/K$_2$
$^{e)}$ Overall DT$_{90}$
$^{f)}$ % of soil water content at pF=2.5 or 33 kPa matric potential
$^{g)}$ g = 0.75
Methiocarb sulfoxide phenol (M04)

Dark aerobic conditions (normalised modelling endpoints)

The precursor from which the f.f. was derived was methiocarb sulfoxide phenol.

Soil type	Label	pH	t. °C / % MWHC	DT$_{50}$/ DT$_{90}$ (d)	f. f. k$_{f}$/ k$_{dp}$	DT$_{50}$ (d) 20 °C pF2/10kPa	St. (χ^2)	Method of calculation
Loamy sand (BBA 2.2)	phenyl	6.3	20 / 40	3.8 / 12.6	1	3.8	12.5	SFO
Silt Loam (Frankenforst)	phenyl	7.6	20 / 40	3.6 / 12.1	1	2.6	14.2	SFO
Silt (Höfchen am Hohenseh)	phenyl	7.2	20 / 40	2.8 / 9.2	1	2.7	23.4	SFO
Sandy Loam (Laacher Hof)	phenyl	6.4	20 / 40	10.9 / 36.1	0.79	9.0	12.2	SFO
Sandy Loam (Howe)	phenyl	6.7	24 / 75	61.8/205	0.64	46.7	20.5	SFO

Geometric mean (if not pH dependent):

Arithmetic mean	**0.85**

pH dependence:

No

a Measured in calcium chloride solution
b Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
c % of soil water content at pF=2.5 or 33 kPa matric potential

Methiocarb sulfone phenol (M05)

Dark aerobic conditions (normalised modelling endpoints)

The precursor from which the f.f. was derived was methiocarb sulfoxide phenol.

Soil type	Label	pH	t. °C / % MWHC	DT$_{50}$/ DT$_{90}$ (d)	f. f. k$_{f}$/ k$_{dp}$	DT$_{50}$ (d) 20 °C pF2/10kPa	St. (χ^2)	Method of calculation
Loamy sand (BBA 2.2)	phenyl	6.3	20 / 40	14.2/47.3	0.41	14.2	40.8	SFO
Silt Loam (Frankenforst)	phenyl	7.6	20 / 40	8.0 / 26.4	0.17	5.9	9.2	SFO
Silt (Höfchen am Hohenseh)	phenyl	7.2	20 / 40	4.7 / 15.6	0.51	4.5	15.5	SFO
Sandy Loam (Howe)	phenyl	6.7	24 / 75	61.8/205	0.64	46.7	9.7	SFO

Geometric mean (if not pH dependent):

Arithmetic mean	**11.5**

pH dependence:

No

a Measured in calcium chloride solution
b Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
c % of soil water content at pF=2.5 or 33 kPa matric potential
The dark aerobic conditions (normalised modelling endpoints) with the precursor from which the f.f. was derived was methiocarb sulfo analogue (M10).

Soil type

Soil type	Label	pH	t °C / % MWHC	DT₅₀/ DT₉₀ (d)	f. f. kₜ / kₛₚ	DT₅₀ (d) 20 °C pF2/10kPa	St. (χ²)	Method of calculation
Loamy sand (BBA 2.2)	phenyl	6.3	20 / 40	27.5/91.3	0.80	27.5	13.0	SFO
Silt Loam (Frankenforst)	phenyl	7.6	20 / 40	25.7 / 85.5	-	18.8	3.1	SFO - topdown
Silt (Höfchen am Hohenseh)	phenyl	7.2	20 / 40	49.8 / 166	-	47.5	8.55	SFO - topdown
Sandy Loam (Howe)	phenyl	6.7	24 / 75	66.7/222	-	50.4	6.4	SFO
Geometric mean (if not pH dependent)								33.4
Arithmetic mean								0.80
pH dependence								No

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Parent	Aerobic conditions
	No data submitted and no data required

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)

Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)

No data submitted and no data required

* Only relevant after implementation of the published EFSA guidance describing how to amalgamate laboratory and field endpoints.

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

No data submitted and no data required

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Soil photolysis

Methiocarb DT₅₀ = 3.36 days in natural summer sunlight at 33.3°N (DT₉₀ = 80.9 days). HS kinetics
Soil adsorption active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH	\(K_d\) (mL/g)	\(K_{SOIL}\) (mL/g)	\(K_F\) (mL/g)	\(K_{FOC}\) (mL/g)	1/n
Sand (Howe)	0.52	4.3	5.3	1000	1000	0.87	
Sandy loam (Howe)	0.68	4.9	4.3	632	1000	0.83	
Silt loam (Stanley)	1.53	5.9	9.0	600	1000	0.82	
Clay loam (Hagerstown)	1.16	6.3	4.9	408	1000	0.81	

Geometric mean (if not pH dependent) 627
Arithmetic mean (if not pH dependent) 660 0.83

pH dependence No

* Measured in calcium chloride solution

Soil adsorption transformation products (Regulation (EU) No 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.2.1)

Methiocarb Sulfoxide (M01)
Estimated value 31.26 mL/g (HPLC method).
pH dependency not tested. pH dependence unlikely due to structural similarity to the parent, which shows neither basic nor acidic properties in aqueous systems.

Methiocarb Sulfoxide Phenol (M04)

Soil Type	OC %	Soil pH	\(K_d\) (mL/g)	\(K_{SOIL}\) (mL/g)	\(K_F\) (mL/g)	\(K_{FOC}\) (mL/g)	1/n
Loamy sand (BBA 2.2)	2.48	6.3	0.6611	26.7	0.8915		
Sand (BBA 2.1)	0.70	5.3	0.1885	26.9	0.9099		
Silt loam (Laacher Hof)	0.90	7.3	0.4343	48.2	0.8902		
Silty clay (Lufa Speyer)	0.64	7.4	0.6466	101.0	0.9009		

Geometric mean (if not pH dependent)* 43.2
Arithmetic mean (if not pH dependent) 0.4826 50.7 0.9

pH dependence No

* Measured in calcium chloride solution

Methiocarb Sulfone Phenol (M05)

Soil Type	OC %	Soil pH	\(K_d\) (mL/g)	\(K_{SOIL}\) (mL/g)	\(K_F\) (mL/g)	\(K_{FOC}\) (mL/g)	1/n
Sand (BBA 2.1)	0.38	5.6	0.6195	163.0	0.8704		
Sandy loam (Laacher Hof AXXa)	1.02	6.3	1.5386	150.8	0.9023		
Silt loam (Laacher Hof AIII)	0.98	7.4	0.9057	92.4	0.8431		
Silt	1.55	6.5	1.3377	86.3	0.8886		
Soil Type	OC %	Soil pH	K_d (mL/g)	$K_{d,oc}$ (mL/g)	K_F (mL/g)	$K_{F,oc}$ (mL/g)	1/n
---------------------------	------	---------	--------------	-------------------	-------------	------------------	-----
Sand	0.38	5.6	0.9027	237.6	0.8405		
Sandy loam	1.02	6.3	2.5700	252.0	0.8586		
Silt loam	0.98	7.4	1.2078	123.2	0.8414		
Silt	1.55	6.5	2.4881	145.0	0.8620		
(Hoefchen am Hohenseh 4a)							

Methiocarb Methoxy Sulfone (M10)

Soil Type	OC %	Soil pH	K_d (mL/g)	$K_{d,oc}$ (mL/g)	K_F (mL/g)	$K_{F,oc}$ (mL/g)	1/n
Sand	0.38	5.6	0.9027	237.6	0.8405		
Sandy loam	1.02	6.3	2.5700	252.0	0.8586		
Silt loam	0.98	7.4	1.2078	123.2	0.8414		
Silt	1.55	6.5	2.4881	145.0	0.8620		

Geometric mean (if not pH dependent): 118

Arithmetic mean (if not pH dependent): 1.10, 123, 0.88

pH dependence: No

HOECHEN AM HOHENSEH 4A

Geometric mean (if not pH dependent)

Arithmetic mean (if not pH dependent)

pH dependence

Geometric mean (if not pH dependent)

Arithmetic mean (if not pH dependent)

pH dependence

Measured in calcium chloride solution
Mobility in soil column leaching active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.2.1)

| Column leaching | No information submitted. None required. |

Mobility in soil column leaching transformation products (Regulation (EU) No 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.2.1)

| Column leaching | No information submitted. None required. |

Lysimeter / field leaching studies (Regulation (EU) No 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) No 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

| Lysimeter/ field leaching studies | No information submitted. None required. |

Hydrolytic degradation (Regulation (EU) No 283/2013, Annex Part A, point 7.2.1.1)

| Hydrolytic degradation of the active substance and metabolites > 10 % | pH 5: 321 days at 25 °C (1st order)
Methiocarb sulfoxide: 54.8 days at 25 °C
Methiocarb phenol: 46 % AR (30 d)
Methiocarb sulfoxide: 0.5 days at 25 °C
Methiocarb phenol: 82 % AR (3 d)
Methiocarb sulfoxide phenol: 10.5 % AR (1 d) |

Aqueous photochemical degradation (Regulation (EU) No 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

| Photolytic degradation of active substance and metabolites above 10 % | DT50: 8.17 days
Natural light, 33.3°N; DT50 31 days Phoenix, Arizona
Natural light, 37.58°N; DT50 48 days Athens, Greece
DT50 at pH 5 (acetate buffer), exposed to natural sunlight (Kentucky, USA, 38.05°N, 84.30°W) in January and February, mean temperature of solutions 24.9°C: experimental half-life: >30 days in both the irradiated (88 days) and dark control |
Quantum yield of direct phototransformation in water at Σ > 290 nm

A quantum yield Φ of 0.2828 was calculated. The quantum yield and UV absorption were used to estimate the environmental half-life of methiocarb in water by two simulation models (GC-SOLAR and Frank & Klöpffer). The estimates based on these models resulted in environmental direct photolysis half-lives of about 6 to 16 days for all relevant scenarios investigated (ie. spring and summer application at the 50th degree of latitude). The direct photodegradation in water was concluded only to contribute to a small proportion of the elimination of methiocarb from the environment.

DT₅₀ at pH 5 (acetate buffer), exposed to simulated sunlight (xenon lamp, 290 nm UV filter) at 25°C:

Experimental half-life: 8.17 days, corresponding to a predicted environmental half-life of 31 solar summer days at Phoenix, Arizona and 48 solar summer days at Athens, Greece.

DT₅₀ at pH 5 (acetate buffer), exposed to natural sunlight (Kentucky, USA, 38.05°N, 84.30°W) in January and February, mean temperature of solutions 24.9 °C: experimental half-life: >30 days in both the irradiated (88 days) and dark control samples (238 days)

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

No data submitted, none required. In the absence of data this compound is considered to be not readily biodegradable.

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Methiocarb

No data submitted. None required when only uses as a seed treatment has been requested and there is a statutory condition of use that treated seed must be drilled at 3 cm or deeper.
Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Methiocarb	Distribution (max. sed 36.7 % after 3 d)									
Water / sediment system	pH	pH	t. °C	DT₅₀/DT₉₀	St. (χ²)	DT₅₀/DT₉₀	St. (χ²)	DT₅₀/DT₉₀	St. (χ²)	Method of calculation
Angler Weiher	7.6	7.1	20	1.9/6.3	3.6	1.2/4.0	3.0	4.3/14.4	8.1	SFO/SFO/SFO
Hoenniger Weiher	8.0	6.6	20	8.3/27.7	8.7	2.2/7.4	12	26.9/89.5	8.2	SFO/SFO/SFO
Geometric mean at 20°C^a	4.0/13.1	1.6/5.4	10.8/35.9							

^a Measured in calcium chloride solution

Methiocarb phenol (M03)	Distribution (max in water 15.2 % after 3 d. max. sed 16.5 % after 14 d. max in total system 19.2 % after 3 days)									
Water / sediment system	pH	pH	t. °C	DT₅₀/DT₉₀	St. (χ²)	DT₅₀/DT₉₀	St. (χ²)	DT₅₀/DT₉₀	St. (χ²)	Method of calculation
Angler Weiher	7.6	7.1	20	70.1/233	13.7	SFO – top down				
Hoenniger Weiher	8.0	6.6	20	154/513	4.2	SFO – top down				
Geometric mean at 20°C^a	103.9/345.7									

^a Measured in calcium chloride solution

Methiocarb sulfoxide phenol (M04)	Distribution (max in water 34.1 % after 7 d. max. sed 7.0 % after 62 d. max in total system 40.2 % after 14 days)									
Water / sediment system	pH	pH	t. °C	DT₅₀/DT₉₀	St. (χ²)	DT₅₀/DT₉₀	St. (χ²)	DT₅₀/DT₉₀	St. (χ²)	Method of calculation
Angler Weiher	7.6	7.1	20	44.9/149	6.7	SFO – top down				
Hoenniger Weiher	8.0	6.6	20	51.0/170	13.5	SFO – top down				
Geometric mean at 20°C^a	47.9/159.2									

^a Measured in calcium chloride solution

Mineralisation and non extractable residues (from parent dosed experiments)

Water / sediment system	pH	pH	Mineralisation x % after n d. (end of the study).	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)
Angler Weiher	7.6	7.1	max 25.3 % after 90 d (end of the study).	max 46.3 % after 62 d	max 45.2 % after 90 d (end of the study)
Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Fate and behaviour in air	Value
Direct photolysis in air	Not studied - no data requested
Photochemical oxidative degradation in air	DT50 of 9.5 hours derived by the Atkinson model (version 1.87. OH (24 h) concentration assumed = 1.5 x 10^6)
Volatilisation	from plant surfaces (BBA guideline): not applicable for seed treatment
	from soil surfaces (BBA guideline): not applicable for seed treatment
Metabolites	not applicable for seed treatment

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Residues requiring further assessment	Value
Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure	Soil/Ground water: methiocarb, methiocarb sulfoxide (M01), methiocarb sulfoxide phenol (M04), methiocarb sulfone phenol (M05), methiocarb methoxy sulfone (M10), Surface water/sediment: methiocarb, methiocarb sulfoxide (M01), methiocarb sulfoxide phenol (M04), methiocarb sulfone phenol (M05), methiocarb methoxy sulfone (M10), methiocarb phenol (M03)
Air	Methiocarb

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology
Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5)

Study Type	Result
Soil (indicate location and type of study)	None available and none required
Surface water (indicate location and type of study)	None available and none required
Ground water (indicate location and type of study)	None available and none required
Air (indicate location and type of study)	None available and none required

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent	DT50 (d): Not used
Method of calculation	Kinetics: Only initial PEC calculated so kinetics not used
Field or Lab	Lab

Application data
- Crop: Maize
- Depth of soil layer: 5cm
- Soil bulk density: 1.5g/cm³
- % plant interception: Seed treatment therefore no crop interception
- Number of applications: 1
- Interval (d): n/a
- Application rate(s): 150 g a.s./ha

PEC_(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.200			
Plateau concentration	Not applicable			
Substance	Method of calculation	Application data		
---------------------------------	-----------------------	--		
Methiocarb sulfoxide (M01)		Molecular weight relative to the parent: 1.071 DT₅₀ (d): n/a Kinetics: n/a Field or Lab: n/a		
		Application rate assumed: 94.46 g/ha (assumed M01 is formed at a maximum of 58.8 % of the applied dose)		
PECₙₑₜ (mg/kg)	Single application	Single application Time weighted average Multiple application Multiple application		
Initial	0.126	-		
Plateau concentration				
Methiocarb sulfoxide phenol (M04)		Molecular weight relative to the parent: 0.818 DT₅₀ (d): n/a Kinetics: n/a Field or Lab: n/a		
		Application rate assumed: 43.9 g/ha (assumed M04 is formed at a maximum of 35.8 % of the applied dose)		
PECₙₑₜ (mg/kg)	Single application	Single application Time weighted average Multiple application Multiple application		
Initial	0.059	-		
Plateau concentration				
Methiocarb sulfone phenol (M05)		Molecular weight relative to the parent: 0.889 DT₅₀ (d): n/a Kinetics: n/a Field or Lab: n/a		
		Application rate assumed: 26.4 g/ha (assumed M05 is formed at a maximum of 19.8 % of the applied dose)		
PECₙₑₜ (mg/kg)	Single application	Single application Time weighted average Multiple application Multiple application		
Initial	0.035	-		
Plateau concentration				
Methiocarb methoxy sulfone (M10)		Molecular weight relative to the parent: 0.951 DT₅₀ (d): n/a		
Application data

Kinetics: n/a	Field or Lab: n/a
Application rate assumed: 18.8 g/ha (assumed M10 is formed at a maximum of 13.2 % of the applied dose)	

PEC₁ (mg/kg)	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	0.025	-	-	-
Plateau concentration	Not applicable			
PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter) For FOCUS gw modelling, values used – Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance. Model(s) used: FOCUS PEARL 4.4.4, FOCUS PELMO 5.5.3, FOCUS MACRO 5.5.4

Crop: Maize
Crop interception: Seed treatment therefore no crop interception

Water solubility 27.0 (mg/L) at unknown pH and 20°C
Vapour pressure: 1.5 x 10^-5 Pa at 20°C
Geometric mean parent DT_50 lab = 1.4 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7). *
* DT_50 value of 1.33 days should be used for future modelling.

K_OC: 627 mL/g geometric mean, 1/n = 0.83
Crop uptake factor: 0

Metabolites:

Methiocarb sulfoxide (M01)
Crop uptake factor: 0
Water solubility (mg/L): 10000
Vapour pressure: 0 Pa
Geometric mean DT_50 = 5.9 d (normalisation to 10 kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7). *
KOC: 31.26 mL/g geometric mean
1/n= 1.0.
Formation fraction: 0.9 from methiocarb

* DT_50 value of 6.2 days should be used for future modelling.

Methiocarb sulfoxide phenol (M04)
Crop uptake factor: 0
Water solubility (mg/L): 10000
Vapour pressure: 0 Pa
Geometric mean DT_50 = 6.0 d (normalisation to 10 kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
KOC: 43.2 mL/g geometric mean
1/n= 0.9.
Formation fraction: 0.85 from methiocarb sulfoxide

Methiocarb sulfone phenol (M05)
Crop uptake factor: 0
Water solubility (mg/L): 10000
Vapour pressure: 0 Pa
Geometric mean DT\textsubscript{50} = 11.6 d (normalisation to 10 kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).*
KOC: 118 mL/g geometric mean
1/n = 0.88.
Formation fraction: 0.43 from methiocarb sulfoxide phenol

* DT\textsubscript{50} value of 11.5 days should be used for future modelling.

Methiocarb methoxy sulfone (M10)
Crop uptake factor: 0
Water solubility (mg/L): 10000
Vapour pressure: 0 Pa
Geometric mean DT\textsubscript{50} = 33.7 d (normalisation to 10 kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).*
KOC: 181 mL/g geometric mean
1/n = 0.85.
Formation fraction: 0.8 from methiocarb sulfone phenol

* DT\textsubscript{50} value of 33.4 days should be used for future modelling.

Application rate
Gross application rate: 150 g/ha.
Crop growth stage: 0
Canopy interception %: Seed treatment therefore no crop interception
Application rate net of interception: 150 g/ha.
No. of applications: 1
Time of application (relative application dates): Date of emergence -10 days
PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

Scenario	Methiocarb (µg/L)	Metabolites (µg/L)	Methiocarb Sulfoxide (M01)	Methiocarb Sulfoxide Phenol (M04)	Methiocarb Sulfone Phenol (M05)	Methiocarb Methoxy Sulfone (M10)
PEARL/Maize, 1 x 150 g a.s./ha						
Chateaudun	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Hamburg	<0.001	0.003	0.002	0.001	0.002	0.002
Kremsmunster	<0.001	0.002	0.002	0.001	0.002	
Okehampton	<0.001	0.005	0.007	0.002	0.004	
Piacenza	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Porto	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sevilla	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Thiva	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PELMOMaize, 1 x 150 g a.s./ha						
Chateaudun	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Hamburg	<0.001	0.001	0.001	0.001	0.007	
Kremsmunster	<0.001	0.002	0.002	0.001	0.008	
Okehampton	<0.001	0.007	0.007	0.002	0.015	
Piacenza	<0.001	<0.001	<0.001	<0.001	0.001	
Porto	<0.001	0.001	0.001	0.001	0.009	
Sevilla	<0.001	<0.001	0.000	<0.001	<0.001	<0.001
Thiva	<0.001	<0.001	0.000	<0.001	<0.001	<0.001

PEC\textsubscript{(gw)}: From lysimeter / field studies: not applicable
PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parent

Parameters used in FOCUSsw step 1 and 2

Version control no. of FOCUS calculator:
FOCUS STEPS 1+2 version 3.2
Molecular weight (g/mol): 225.3
K_{OC}/K_{OM} (mL/g): 627/364 geometric mean
DT_{50} soil (d): 1.4 (geomean lab value) *

* DT_{50} value of 1.33 days should be used for future modelling.

| DT_{50} water/sediment system (d): 4.0 (geomean from sediment water studies) |
| DT_{50} water (d): 4.0 |
| DT_{50} sediment (d): 4.0 |
| Crop interception (%): 0 % (no canopy) |

Parameters used in FOCUSsw step 3 (if performed)

Version control no.’s of FOCUS software:
FOCUS SWASH version 5.3, MACRO version 5.5.4, PRZM version 4.6.2 and FOCUS TOXSWA version 4.4.3
DT_{50} soil (d): 1.4 (geomean lab value) *

* DT_{50} value of 1.33 days should be used for future modelling.

| DT_{50} water (d): 4.0/1000 (simulations should be run with both combinations for ascribing the whole system DT_{50} and default to DT_{50} water and DT_{50} sediment) |
| DT_{50} sediment (d): 4.0/1000 (simulations should be run with both combinations for ascribing the whole system DT_{50} and default to DT_{50} water and DT_{50} sediment) |
| Water solubility (mg/L): 27 |
| Vapour pressure: 1.5×10^{-5} Pa at 20°C |
| K_{OM}/K_{OC} (mL/g): 627/364 geometric mean |
| $1/n$: 0.83 |
| Q10=2.58, Walker equation coefficient 0.7 |
| Crop uptake factor: 0 |
| Drilling Depth: 2cm or 3cm |
Crop and growth stage: Maize BBCH 0
Number of applications: 1
Interval (d): n/a
Application rate(s): 150 g a.s./ha
Application window:

Scenario	Application Date
D3	04/05
D4	18/04
D5	11/05
D6	10/04
R1	26/04
R2	22/04
R3	22/04
R4	07/04

FOCUS STEP 1

Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
0 h		28.6	171		

FOCUS STEP 2

Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
Northern EU	0 h	1.38	6.56		
Southern EU	0 h	1.95	11.28		
Drilling depth 2cm

FOCUS STEP 3 Scenario	Water body	Day after overall maximum	\(\text{PEC}_{SW} (\mu g/L) \)	\(\text{PEC}_{SED} (\mu g/kg) \)	
		Actual	TWA	Actual	TWA
D3 ditch	0 h	<0.001		<0.001	
D4 pond	0 h	<0.001		<0.001	
D4 stream	0 h	<0.001		<0.001	
D5 pond	0 h	<0.001		<0.001	
D5 stream	0 h	<0.001		<0.001	
D6 ditch	0 h	<0.001		<0.001	
R1 pond	0 h	<0.001		<0.001	
R2 stream	0 h	0.032	0.010		
R3 stream	0 h	0.003	0.001		
R4 stream	0 h	0.053	0.029		

Drilling depth 3cm

FOCUS STEP 3 Scenario	Water body	Day after overall maximum	\(\text{PEC}_{SW} (\mu g/L) \)	\(\text{PEC}_{SED} (\mu g/kg) \)	
		Actual	TWA	Actual	TWA
D3 ditch	0 h	<0.001		<0.001	
D4 pond	0 h	<0.001		<0.001	
D4 stream	0 h	<0.001		<0.001	
D5 pond	0 h	<0.001		<0.001	
D5 stream	0 h	<0.001		<0.001	
D6 ditch	0 h	<0.001		<0.001	
R1 pond	0 h	<0.001		<0.001	
R1 stream	0 h	<0.001		<0.001	
R2 stream	0 h	<0.001		<0.001	
R3 stream	0 h	<0.001		<0.001	
R4 stream	0 h	<0.001		<0.001	
Metabolite: Methiocarb sulfoxide (M01)

Parameters used in FOCUSsw step 1 and 2

- Molecular weight: 241.3
- Soil or water metabolite: soil
- Koc/Kom (mL/g): 31.26/18.13
- DT$_{50}$ soil (d): 5.9 *
- DT$_{50}$ water/sediment system (d): 1000
- DT$_{50}$ water (d): 1000
- DT$_{50}$ sediment (d): 1000
- Crop interception (%): 0
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: 0 %
- Soil: 58.8 %
- Crop uptake factor: 0

* DT$_{50}$ value of 6.2 days should be used for future modelling.

Parameters used in FOCUSsw step 3 (if performed)

- Water solubility (mg/L): 10000
- Vapour pressure: 0 Pa at 20°C
- Koc/Kom (mL/g): 31.26/18.13
- 1/n: 1.0
- DT$_{50}$ soil (d): 5.9 *
- DT$_{50}$ water (d): 1 (from hydrolysis study; Sneikus, 2001)
- DT$_{50}$ sediment (d): 1000
- Q10=2.58, Walker equation coefficient 0.7
- Crop uptake factor:
- Metabolite kinetically generated in simulation (yes/no): Yes
- Formation fraction in soil (k_f/k_{dp}): 0.9 from parent
- Formation fraction in sediment water (k_f/k_{dp}): n/a
- Cropt uptake factor: 0
- Drilling Depth: 2cm or 3cm

* DT$_{50}$ value of 6.2 days should be used for future modelling.

Application rate

- Crop and growth stage: Maize BBCH 0
- Number of applications: 1
- Interval (d): n/a
- Application rate(s): 150 g a.s./ha

Main routes of entry

FOCUS STEP 1 Scenario	Day after overall maximum	PEC$_{SW}$ (µg/L)	PEC$_{SED}$ (µg/kg)	
	Actual	TWA	Actual	TWA
0h	30.2		9.37	
FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
-----------------------	--------------------------	----------------------	----------------------	
	Actual	TWA	Actual	
Northern EU	0 h	3.78	1.17	
Southern EU	0 h	7.56	2.34	

FOCUS STEP 3

Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
	Actual	TWA	Actual
D3 ditch	0 h	<0.001	<0.001
D4 pond	0 h	<0.001	<0.001
D4 stream	0 h	<0.001	<0.001
D5 pond	0 h	<0.001	<0.001
D5 stream	0 h	<0.001	<0.001
D6 ditch	0 h	<0.001	<0.001
R1 pond	0 h	<0.001	<0.001
R1 stream	0 h	0.145	0.013
R2 stream	0 h	0.025	0.002
R3 stream	0 h	<0.001	<0.001
R4 stream	0 h	0.297	0.036
Drilling depth 3cm

FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
		Actual	TWA	Actual	TWA
D3	ditch	0 h	<0.001		<0.001
D4	pond	0 h	<0.001		<0.001
D4	stream	0 h	<0.001		<0.001
D5	pond	0 h	<0.001		<0.001
D5	stream	0 h	<0.001		<0.001
D6	ditch	0 h	<0.001		<0.001
R1	pond	0 h	<0.001		<0.001
R1	stream	0 h	<0.001		<0.001
R2	stream	0 h	<0.001		<0.001
R3	stream	0 h	<0.001		<0.001
R4	stream	0 h	<0.001		<0.001

Metabolite: Methiocarb sulfoxide phenol (M04)

Parameters used in FOCUSsw step 1 and 2

- Molecular weight: 184.3
- Soil or water metabolite: soil and water
- K_{oc}/K_{om} (mL/g): 43.2/25.1 geometric mean
- DT₅₀ soil (d): 6.0
- DT₅₀ water/sediment system (d): 47.9
- DT₅₀ water (d): 47.9
- DT₅₀ sediment (d): 47.9
- Crop interception (%): 0
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: 40.2%
- Soil: 35.8%

Application rate

- Crop and growth stage: Maize BBCH 0
- Number of applications: 1
- Interval (d): n/a
- Application rate(s): 150 g a.s./ha

Main routes of entry

FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
0h	29.9			12.6	

| FOCUS STEP 2 | Day after | PEC_{SW} (µg/L) | PEC_{SED} (µg/kg) |
Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	2.59		1.09	
Southern EU	0 h	4.76		2.01	

Metabolite: Methiocarb sulfone phenol (M05)

Parameters used in FOCUSsw step 1 and 2

Molecular weight: 200.3
Soil or water metabolite: soil and water
Koc/Kom (mL/g): 118/69 geometric mean
DT50 soil (d): 11.6*
DT50 water/sediment system (d): 1000
DT50 water (d): 1000
DT50 sediment (d): 1000
Crop interception (%): 0
Maximum occurrence observed (% molar basis with respect to the parent)
Total Water and Sediment: 6.6 %
Soil: 19.8%
* DT₅₀ value of 11.5 days should be used for future modelling.

Application rate

| Crop and growth stage: maize BBCH 0 |
| Number of applications: 1 |
| Interval (d): n/a |
| Application rate(s): 150 g a.s./ha |

Main routes of entry

FOCUS STEP 1	Day after overall maximum	PEC₅₀ (µg/L)	PECSED (µg/kg)		
Scenario	PEC₅₀ (µg/L)	Actual	TWA	Actual	TWA
0h	10.2			12.0	

FOCUS STEP 2	Day after overall maximum	PEC₅₀ (µg/L)	PECSED (µg/kg)		
Scenario	PEC₅₀ (µg/L)	Actual	TWA	Actual	TWA
Northern EU	0 h	1.34		1.58	
Southern EU	0 h	2.61		3.07	

Metabolite: Methiocarb methoxy sulfone (M10)

Parameters used in FOCUSsw step 1 and 2

Molecular weight: 214.3
Soil or water metabolite: soil
Koc/Kom (mL/g): 181/105 geometric mean
DT50 soil (d): 33.7 *
DT50 water/sediment system (d): 1000
DT50 water (d): 1000
DT50 sediment (d): 1000
Crop interception (%): 0
Maximum occurrence observed (% molar basis with respect to the parent)
Total Water and Sediment: 0%
Soil: 13.2%

* DT$_{50}$ value of 33.4 days should be used for future modelling.

Application rate

- Crop and growth stage: Maize BBCH 0
- Number of applications: 1
- Interval (d): n/a
- Application rate(s): 150 g a.s./ha

Main routes of entry

FOCUS STEP 1	Scenario	Day after overall maximum	PEC$_{SW}$ (µg/L)	PEC$_{SED}$ (µg/kg)	
		Actual	TWA	Actual	TWA
	0h	5.06		9.15	

FOCUS STEP 2	Scenario	Day after overall maximum	PEC$_{SW}$ (µg/L)	PEC$_{SED}$ (µg/kg)
	Northern EU	0 h	0.93	1.69
	Southern EU	0 h	1.86	3.37
Metabolite: Methiocarb phenole (M03)

Parameters used in FOCUSsw step 1 and 2

- Molecular weight: 168.3
- Soil or water metabolite: water
- Koc/Kom (mL/g): 0
- DT50 soil (d): 1000
- DT50 water/sediment system (d): 103.9
- DT50 water (d): 103.9
- DT50 sediment (d): 103.9
- Crop interception (%): 0 %
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: 19.2 %
- Soil: 0 %

Application rate

- Crop and growth stage: Maize BBCH 0
- Number of applications: 1
- Interval (d): n/a
- Application rate(s): 150 g a.s./ha

Main routes of entry

FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
0h	7.37	<0.001	<0.001		

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
Northern EU 0 h	0.39	<0.001	<0.001		
Southern EU 0 h	0.59	<0.001	<0.001		
Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

| There are no other routes of exposure if the product is used according to good agricultural practice. Therefore no further estimations are considered necessary. |

PEC

Maximum concentration

| There are no other routes of exposure if the product is used according to good agricultural practice. Therefore no further estimations are considered necessary. |
Ecotoxicology
Effects on birds and other terrestrial vertebrates (Regulation (EU) No 283/2013, Annex Part A, point 8.1 and Regulation (EU) No 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Coturnix japonica (Japanese Quail)	a.s.	Acute	LD₅₀	5.0 mg a.s./kg bw
Coturnix japonica (Japanese Quail)	Methiocarb SC 500	Acute	LD₅₀	23.3 mg product/kg bw
				10.37 mg/kg bw (expressed in terms of a.s.)
Coturnix japonica (Japanese Quail)	a.s.	Long-term	LD₅₀/10	0.5 mg a.s./kg bw/d
Anas platyrhynchos (Mallard Duck)	a.s.	Long-term	NOAEL	4.51 mg a.s./kg bw/d
Mammals				
Multiple	a.s.	Acute	LD₅₀	19 mg a.s./kg bw
Rattus norvegicus (rat)	Methiocarb SC 500	Acute	LD₅₀	>5 <50 mg a.s./kg bw
Rattus norvegicus (rat; parent)	a.s.	Long-term	NOAEL	4.3 mg a.s./kg bw/d
Rattus norvegicus	a.s.	Long term	NOAEL	15 mg a.s./kg bw/day
Rattus norvegicus (offspring)	a.s.	Long term; based on body weight depression and clinical signs of toxicity	NOAEL	14.8 mg a.s./kg bw/day

Endocrine disrupting properties (Annex Part A, points 8.1.5)
None provided

Additional higher tier studies (Annex Part A, points 10.1.1.2):
Please refer to Vol 3CP Section B.9

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):
None provided
Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Maize seeds (planted at a rate of 2 units/ha) treated with Methiocarb FS 500 at 5000 mg a.s./kg seed (equivalent to 150 g a.s./ha)

Growth stage	Indicator or focal species	Time scale	Exposure (mg a.s./kg)	TER	Trigger	
Screening Step (Birds – treated seed)	All	Large granivorous bird	Acute	0.1 x 5000	0.01	10
	All	Large granivorous bird	Long-term	0.1 x 5000 x 1	0.001	5
Screening Step (Birds – contaminated seedlings)	All	Large granivorous bird	Acute	0.5x (5000/5)	0.1	10
	All	Large granivorous bird	Long-term	0.5x (5000/5) x 1	0.001	5
Screening Step (Mammals – treated seed)	All	Small omnivorous mammal	Acute	0.24 x 5000	0.016	10
	All	Small omnivorous mammal	Long-term	0.24 x 5000 x 1	0.0036	5
Screening Step (Mammals – contaminated seedlings)	All	Small omnivorous mammal	Acute	0.24 x (5000/5)	0.08	10
	All	Small omnivorous mammal	Long-term	0.24 x (5000/5) x 1	0.018	5

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	0.318	1.65	5
Earthworm-eating mammals	Long-term	0.388	11.08	5
Fish-eating birds	Long-term	0.0000143	34.940	5
Fish-eating mammals	Long-term	0.0000128	336.463	5

Risk from consumption of contaminated water – not required for seed treatment

Data gaps identified for addressing the risk to birds including from biaccumulation for earthworm-eating birds and mammals.
Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)*

Group	Test substance	Time-scale (Test type)	End point	Toxicity1
Laboratory tests				
Fish				
Lepomis macrochirus	a.s.	96 hr	Mortality, LC$_{50}$	0.65 mg a.s./L (nom)
	a.s.	Chronic 56 d (flow-through)	Behaviour (signs of intoxication), NOEC	0.05 mg a.s./L (nom)
	Methiocarb sulfoxide	96 hr	Mortality, LC$_{50}$	6.6 mg/L (mm)
	Methiocarb phenol	96 hr	Mortality, LC$_{50}$	3.2 mg/L (nom)
	Methiocarb sulfoxide phenol	96 hr	Mortality, LC$_{50}$	>106 mg/L (mm)
	Methiocarb sulfone phenol	96 hr	Mortality, LC$_{50}$	68.7 mg/L (mm)
	Methiocarb methoxy sulfone	96 hr	Mortality, LC$_{50}$	26.8 mg/L (mm)
Aquatic invertebrates				
Daphnia magna	a.s.	48 h	Mortality, EC$_{50}$	0.0077 mg a.s./L (mm)
	a.s.	21 d (flow-through)	Reproduction, NOEC	0.0001 mg a.s./L (mm)
	Methiocarb sulfoxide	48 h	Mortality, EC$_{50}$	0.056 mg/L (nom)
	Methiocarb sulfoxide	21 d (flow-through)	Mortality, NOEC	0.00652 mg/L (mm)
	Methiocarb phenol	48 h	Mortality, EC$_{50}$	6.8 mg/L (nom)
	Methiocarb sulfoxide phenol	48 h	Mortality, EC$_{50}$	157 mg/L (nom)
	Methiocarb sulfone phenol	48 h	Mortality, EC$_{50}$	54 mg/L (nom)
	Methiocarb methoxy sulfone	48 h	Mortality, EC$_{50}$	>180 mg/L (nom)
Sediment-dwelling organisms				
Chironomus riparius	a.s.	48 h	EC$_{50}$	0.103 mg a.s./L (mm)
Desmodesmus subspicatus

Group	Test substance	Time-scale (Test type)	End point	Toxicity
Algae	a.s.		Growth rate: E₅₀ [Biomass: E₅₀] NOEC	2.2 mg a.s./L (mm) [0.82 mg a.s./L (mm)] 0.18 mg a.s./L (mm)
	Methiocarb sulfoxide		Growth rate: E₅₀ [Biomass: E₅₀] NOEC	2.75 mg/L (mm) [1.31 mg/L (mm)] 0.41 mg/L (mm)
	Methiocarb phenol	72 h	Growth rate: E₅₀ [Biomass: E₅₀] NOEC	11 mg/L (nom) [6.0 mg/L (nom)] 2.2 mg/L (nom)
	Methiocarb sulfoxide phenol	(NOEC)	Growth rate: E₅₀ [Biomass: E₅₀] NOEC	>100 mg/L (nom) [>100 mg/L (nom)] 100 mg/L (nom)
	Methiocarb sulfone phenol		Growth rate: E₅₀ [Biomass: E₅₀] NOEC	120 mg/L (nom) [105 mg/L (nom)] 25 mg/L (nom)
	Methiocarb methoxy sulfone		Growth rate: E₅₀ [Biomass: E₅₀] NOEC	137 mg/L (nom) [97.7 mg/L (nom)] 40 mg/L (nom)

Higher plant: None required

Further testing on aquatic organisms
None required

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)
None provided

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Methiocarb	Methiocarb phenol
logP_{O/W}	3.18	3.49
Parameter	Value	Reference
---	-------	----------------------------
Steady-state bioconcentration factor (BCF) \(\text{total wet weight/normalised to 5\% lipid content}\)	60-90 (\textit{Lepomis macrochirus})	10.9 (\textit{Lepomis macrochirus})
Uptake/depuration kinetics BCF \(\text{total wet weight/normalised to 5\% lipid content}\)	Not available	Not available
Annex VI Trigger for the bioconcentration factor	1000	1000
Clearance time \(\text{(days)} (\text{CT}_{50})\)	Not available	0.77 days
\(\text{(CT}_{90})\)	Not available	Not available
Level and nature of residues \(\%\) in organisms after the 14 day depuration phase	Not available	Not available

* based on total \(^{14}\)C or on specific compounds
Risk assessment for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

FOCUS, step 1-3 – Maize seeds (planted at a rate of 2 units/ha) treated with Methiocarb FS 500 at 5000 mg a.s./kg seed (equivalent to 150 g a.s./ha)

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae			
		L. macrochirus	O. mykiss	D. magna	NOEC	EC₅₀	NOEC	EC₅₀	
		LC₅₀	NOEC	EC₅₀	NOEC				
		650	50	7.7	0.1			2200	
RAC (µg L)		6.5	5		0.077	0.01	220		
FOCUS Step 1		28.6	6.5	5	0.077	0.01	220		

FOCUS Step 2

		L. macrochirus	O. mykiss	D. magna	NOEC	EC₅₀	NOEC	EC₅₀	
		LC₅₀	NOEC	EC₅₀	NOEC			2200	
		6.5	5	0.077	0.01	220			
		North Europe	1.38	6.5	5	0.077	0.01		
		South Europe	1.95	6.5	5	0.077	0.01		

FOCUS Step 3

		L. macrochirus	O. mykiss	D. magna	NOEC	EC₅₀	NOEC	EC₅₀	
		LC₅₀	NOEC	EC₅₀	NOEC			2200	
		6.5	5	0.077	0.01	220			
		D3 / ditch	0.001		0.077	0.01			
		D4 / pond	0.001		0.077	0.01			
		D4 / stream	0.001		0.077	0.01			
		D5 / pond	0.001		0.077	0.01			
		D5 / stream	0.001		0.077	0.01			
		D6 / Ditch	0.001		0.077	0.01			
		R1 / pond	0.001		0.077	0.01			
		R1 / stream	0.032		0.077	0.01			
		R2 / stream	0.003		0.077	0.01			
		R3 / stream	0.001		0.077	0.01			
		R4 / stream	0.053		0.077	0.01			
		R4 / stream (3 cm drill depth, all scenarios)	0.001						0.01

Numbers in **bold** indicate that the PEC exceeds the RAC and an unacceptable risk is concluded for that scenario.
FOCUS_{sw} step 1-3 - TERs for methiocarb sulfoxide – Maize seeds (planted at a rate of 2 units/ha) treated with Methiocarb FS 500 at 5000 mg a.s./kg seed (equivalent to 150 g a.s./ha)

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae
		O. mykiss	D. magna	D. magna	D. subspicatus
		LC₅₀	EC₅₀	NOEC	EC₅₀
RAC (µg L)	6600 µg L	56 µg L	6.52 µg L	2750 µg L	
FOCUS Step 1	30.2	66	0.56	0.65	275
FOCUS Step 2					
North Europe	3.78		0.56	0.65	
South Europe	7.56		0.56	0.65	
FOCUS Step 3					
D3 / ditch	<0.001		0.56	0.65	
D4 / pond	<0.001		0.56	0.65	
D4 / stream	<0.001		0.56	0.65	
D5 / pond	<0.001		0.56	0.65	
D5 / stream	<0.001		0.56	0.65	
D6 / Ditch	<0.001		0.56	0.65	
R1 / pond	<0.001		0.56	0.65	
R1 / stream	0.145		0.56	0.65	
R2 / stream	0.025		0.56	0.65	
R3 / stream	<0.001		0.56	0.65	
R4 / stream	0.297		0.56	0.65	

Numbers in **bold** indicate that the PEC exceeds the RAC and an unacceptable risk is concluded for that scenario
FOCUS* step 1 - TERs for methiocarb phenol, methiocarb sulfoxide phenol, methiocarb sulfone phenol and methiocarb methoxy sulfone – Maize seeds (planted at a rate of 2 units/ha) treated with Methiocarb FS 500 at 5000 mg a.s./kg seed (equivalent to 150 g a.s./ha)

Methiocarb phenol	PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
		O. mykiss	*D. magna*	*D. subspicatus*
	\(\text{LC}_{50} \)	\(\text{EC}_{50} \)	\(\text{EC}_{50} \)	
	3200 µg L	6800 µg L	11 000 µg L	
RAC (µg L)	32	68	1100	
FOCUS Step 1	7.37	32	68	1100

Methiocarb sulfoxide phenol	PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
	\(\text{LC}_{50} \)	\(\text{EC}_{50} \)	\(\text{EC}_{50} \)	
	\(>106 000 \) µg L	157 000 µg L	\(>100 000 \) µg L	
RAC (µg L)	1060	1570	10 000	
FOCUS Step 1	29.9	1060	1570	10 000
Methiocarb sulfone phenol

PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
	O. mykiss	D. magna	D. subspicatus
	EC₅₀	EC₅₀	
	68 700 µg L	54 000 µg L	120 000 µg L

| RAC (µg L) | 687 | 540 | 12 000 |
| FOCUS Step 1 | 10.2 | 687 | 540 | 12 000 |

Methiocarb methoxy sulfone

PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
	O. mykiss	D. magna	D. subspicatus
	LC₅₀	EC₅₀	
	26 800 µg L	>180 000 µg L	137 000 µg L

| RAC (µg L) | 268 | 1800 | 13 700 |
| FOCUS Step 1 | 5.06 | 268 | 1800 | 13 700 |
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

*This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Apis mellifera	a.s.	Acute 48 h	Oral toxicity (LD₅₀)	0.08 µg/bee
	a.s.	Acute 48 h	Contact toxicity (LD₅₀)	0.23 µg/bee
Bombus terrestris	a.s.	Acute 48 h	Contact toxicity (LD₅₀)	19.3 µg/bee
Apis mellifera	a.s.	Chronic	10 d-LD50 10 d-NOED (mortality)	0.0415 µg/bee/day 0.0149 µg/bee/day
Apis mellifera	a.s.	Bee brood development	72 h LD50 72 h LD 10	0.547 µg/larva 0.043 µg/larva

Potential for accumulative toxicity: not investigated

Semi-field test (Cage and tunnel test)
3 semi-field studies with Methiocarb FS 500 were submitted in support of the risk assessment. For further details please refer to Vol 3CP Section B.9.5

Field tests
2 field studies with Methiocarb FS 500 were submitted in support of the risk assessment. For further details please refer to Vol 3CP Section B.9.5

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Extended laboratory tests

Species	Test substance, substrate	Endpoints
Aphidius rhopalosiphi	Methiocarb FS 500, extended laboratory study with seed treatment dust abraided from maize seeds	LR₅₀ = 8.5 g a.s./ha; ER₅₀ = >6.3 g a.s./ha
Typhlodromus pyri	Methiocarb FS 500, extended laboratory study with seed treatment dust abraided from maize seeds	LR₅₀ = >40.9 g a.s./ha; ER₅₀ = >40.9 g a.s./ha
Chrysoperla carnea	Methiocarb FS 500, extended laboratory study with seed treatment dust abraided from maize seeds	LR₅₀ = 21.2 g a.s./ha; ER₅₀ = >21.2 g a.s./ha
Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation

(Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s.	Time scale	End point	Toxicity
Earthworms				NOEC (weight gain)	0.161 mg a.s./kg d.w.soil
Eisenia fetida	Methiocarb FS 500	Homogenously mixed into soil	Chronic (56 days)	NOEC (overall)	100 mg a.s./kg d.w.soil
	Methiocarb-sulfoxide phenol	Homogenously mixed into soil		NOEC (weight gain)	0.2 mg a.s./kg d.w.soil
	Methiocarb-sulfoxide	Homogenously mixed into soil		NOEC (overall)	100 mg a.s./kg d.w.soil
	Methiocarb-methoxy sulfone	Homogenously mixed into soil		NOEC (overall)	100 mg a.s./kg d.w.soil
	Methiocarb-sulfone phenol	Homogenously mixed into soil		NOEC (overall)	100 mg a.s./kg d.w.soil
Other soil macroorganisms					
Test organism	Test substance	Application method of test a.s.	Time scale	End point	Toxicity
---------------	----------------	--------------------------------	------------	-----------	----------
Folsomia candida	Methiocarb FS 500 G	Homogenously mixed into soil	28 days	NOEC	37.5 mg a.s./kg d.w. soil
	Methiocarb-sulfoxide phenol			EC10	38.02 mg a.s./kg d.w. soil
	Methiocarb-sulfoxide			NOEC corr	18.75 mg a.s./kg d.w. soil
	Methiocarb-methoxy sulfone				
	Methiocarb-sulfone phenol				
Hypoaspis aculeifer	Methiocarb FS 500 G		14 days	NOEC	20.12 mg a.s./kg d.w. soil
	Methiocarb-sulfoxide phenol			NOEC corr	10.06 mg a.s./kg d.w. soil
	Methiocarb-sulfoxide				
	Methiocarb-methoxy sulfone				
	Methiocarb-sulfone phenol				
	Methiocarb-sulfoxide-phenol				
Nitrogen transformation	Methiocarb FS 500		28 days	<25 % effect at day at ≥3.9 mg a.s./kg d.w.soil	
	Methiocarb-sulfoxide-phenol			<25 % effect at day at ≥1.09 mg a.s./kg d.w.soil	
	Methiocarb-sulfoxide			<25 % effect at day at ≥1.47 mg a.s./kg d.w.soil	
	Methiocarb-methoxy-sulfone			<25 % effect at day at ≥1.33 mg a.s./kg d.w.soil	
	Methiocarb-sulfone-phenol			<25 % effect at day at ≥1.20 mg a.s./kg d.w.soil	
Toxicity/exposure ratios for soil organisms

Maize seeds (planted at a rate of 2 units/ha) treated with Methiocarb FS 500 at 5000 mg a.s./kg seed (equivalent to 150 g a.s./ha)

Species	Test substance	Endpoint	Value (mg test substance/kg dry soil)	Maximum PECsoil (mg/kg)	TER	Trigger
E. fetida	Methiocarb FS 500 G	56 d NOEC	0.08* (NOEC\textsubscript{corr}, expressed in terms of a.s.)	0.2	0.4025	
	Methiocarb-sulfoxide phenol	≥100	0.059	≥1695	5	
	Methiocarb-sulfoxide	0.2	0.126	1.59		
	Methiocarb-methoxy sulfone	≥100	0.025	≥4000		
	Methiocarb-sulfone phenol	≥100	0.035	≥2857		

Species	Test substance	Endpoint	Value (mg test substance/kg dry soil)	Maximum PECsoil (mg/kg)	TER	Trigger
F. candida	Methiocarb FS 500 G	28 d NOEC\textsubscript{corr}*	<18.75 (a.s.)	0.2	94	
	Methiocarb-sulfoxide phenol	50	0.059	847.5		
	Methiocarb-sulfoxide	50	0.126	397		
	Methiocarb-methoxy sulfone	10	0.035	286		
	Methiocarb-sulfone phenol	316	0.025	12,640	5	

Species	Test substance	Endpoint	Value (mg test substance/kg dry soil)	Maximum PECsoil (mg/kg)	TER	Trigger
H. aculeifer	Methiocarb FS 500 G	14 d NOEC\textsubscript{corr}*	10.06 (a.s.)	0.2	50.3	
	Methiocarb-sulfoxide phenol	≥100	0.059	≥1695		
	Methiocarb-sulfoxide	10	0.126	79		
	Methiocarb-methoxy sulfone	≥100	0.035	≥2857		
	Methiocarb-sulfone phenol	≥100	0.025	≥4000		

* The endpoint was corrected by a factor of 2 considering that methiocarb has a Log Pow>2

Compound	Species	Endpoint [mg/kg]	PEC\textsubscript{soil,max} [mg/kg]	Refinement required

The endpoint was corrected by a factor of 2 considering that methiocarb has a Log Pow>2
Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Test item	Study type	Test duration	Lowest ER$_{50}$	Most sensitive species
Methiocarb FS 500	Pre-emergence screening; 11 species	21 days	> 240 g a.s./ha	No effect on any species tested
Methiocarb FS 500	Post-emergence screening; 11 species	17 days	> 240 g a.s./ha	No effect on any species tested

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism end point

Activated sludge EC$_{50} = >10 000$ mg a.s./L

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.
Available monitoring data concerning effect of the PPP.

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds

Compartment	Methiocarb and methiocarb sulfoxide	Methiocarb and methiocarb sulfoxide	Methiocarb and methiocarb sulfoxide	Methiocarb
soil				
water				
sediment				
groundwater				

*metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance Methiocarb
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]⁶:

Harmonised Classification	Value
H400 Very toxic to aquatic life	
H410 Very toxic to aquatic life with long lasting effects	
Acute: D. magna 0.0077 mg a.s./L; m factor = 100	
Chronic endpoint: D. magna 0.0001 mg a.s./L; m factor = 1000	
Peer review proposal⁷ for harmonised classification according to Regulation (EC) No 1272/2008:	none

⁶ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

⁷ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.