A Randomized, Open-Label, Multicenter Comparative Study of the Efficacy and Safety of Piperacillin-Tazobactam and Cefepime for the Empirical Treatment of Febrile Neutropenic Episodes in Patients with Hematologic Malignancies

E. J. Bow, C. Rotstein, G. A. Noskin, M. Laverdière, A. P. Schwarer, B. H. Segal, J. F. Seymour, J. Szer, and S. Sanche

1 Departments of Internal Medicine and Medical Microbiology, the University of Manitoba, and 2 Department of Medical Oncology and Haematology, CancerCare Manitoba, Winnipeg, Manitoba; 3 Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario; 4 Division of Infectious Diseases, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, and 5 Department of Microbiology and Infectious Diseases, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada; 6 Bone Marrow Transplant Programme, The Alfred Hospital; 7 Bone Marrow Transplant Service, Royal Melbourne Hospital, and 8 Division of Hematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; 9 Division of Infectious Diseases, State University of New York at Buffalo, Roswell Park Cancer Centre, Buffalo, New York; and 10 Department of Medicine, Division of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois

Background. The empirical treatment of febrile, neutropenic patients with cancer requires antibacterial regimens active against both gram-positive and gram-negative pathogens. This study was performed to demonstrate the noninferiority of monotherapy with piperacillin-tazobactam, compared with cefepime.

Methods. We conducted a randomized-controlled, open-label, multicenter clinical trial among high-risk patients from 34 university-affiliated tertiary care medical centers in the United States, Canada, and Australia who were undergoing treatment for leukemia or hematopoietic stem cell transplantation and were hospitalized for empirical treatment of febrile neutropenic episodes. Patients received piperacillin-tazobactam (4.5 g every 6 h) or cefepime (2 g every 8 h) intravenously. The primary outcome was success (defined by defervescence without treatment modification) at 72 h of treatment, end of treatment, and test of cure in the modified intent-to-treat analysis. Secondary outcomes included time to defervescence, microbiological efficacy, the additional use of glycopeptide antibiotics, emergence of resistant bacteria, and safety.

Results. For 528 subjects (265 received piperacillin-tazobactam and 263 received cefepime), success rates were 57.7% and 48.3%, respectively (P = .04) at the 72-h time point, 39.6% and 31.6% (P = .06) at end of treatment, and 26.8% and 20.5% (P = .11) at the test-of-cure visit. The analyses demonstrated noninferiority for piperacillin-tazobactam at all time points (P < .0001). Treatment with piperacillin-tazobactam was independently associated with treatment success in multivariate analysis (odds ratio, 1.65; 95% confidence interval, 1.04–2.64; P = .035). Both regimens were well tolerated.

Conclusions. This study demonstrates the noninferiority and safety of piperacillin-tazobactam monotherapy, compared with cefepime, for the empirical treatment of high-risk febrile neutropenic patients with cancer.

Clinical practice guidelines published by the Sociedad Española de Quimioterapia in Spain [1], the Infectious Diseases Society of America [2], the Infectious Diseases Working Party of the German Society of Hematology and Oncology [3], and the National Comprehensive Cancer Network [4] recommend the prompt administration of empirical broad-spectrum antibacterial...
therapy for the management of high-risk febrile neutropenic patients with cancer. Recommendations for combination therapy based on an extended spectrum antipseudomonal β-lactam agent plus an aminoglycoside remain prominent in the American [2, 4] and German [3]—but not in the Spanish [1]—guidelines. Despite this, the weight of clinical trial experience supports the adoption of monotherapy as the standard of treatment of febrile neutropenic patients with cancer [5, 6].

There is no consensus with regard to the optimal agent for monotherapy. Broad-spectrum antipseudomonal cephalosporins (such as ceftazidime [7] and cefepime [8–14]), carbapenems (such as imipenem-cilastatin [15, 16] and meropenem [17–29]), and β-lactam–β-lactamase inhibitor combinations (such as ticarcillin-clavulanate [13, 30, 31] and piperacillin-tazobactam [10, 17, 32–37]) have been evaluated as monotherapy in this setting. The Spanish and German guidelines support choices from each antibiotic class, whereas the American guidelines have not recommended β-lactam–β-lactamase inhibitor agents, such as piperacillin-tazobactam, as monotherapy, citing limited experience with these agents when the guidelines were published in 2002 [2]. Since then, further studies have been published that show that these agents have an important role in treatment [10, 13, 17, 30–37]. Here, we report the results of a large, multicenter, multinational, open-label, randomized-controlled clinical trial that examines the safety and efficacy of piperacillin-tazobactam monotherapy, compared with cefepime, for the empirical treatment of fever in neutropenic patients with cancer.

PATIENTS AND METHODS

Patients. Eligible subjects included those patients at high risk for medical complications [38–40] who were ≥18 years old, severely neutropenic (defined as having an absolute neutrophil count [ANC] of <0.5 × 10⁹ cells/L or a count of <1.0 × 10⁹ cells/L with the expectation that it will decrease to <0.5 × 10⁹ cells/L after cytotoxic therapy), hospitalized for the management of a febrile episode complicating the course of cytotoxic therapy for a hematological malignancy or for a hematopoietic stem cell transplant (HSCT), and who had provided written, informed consent according to institutional protocol. The protocol was approved through the ethics review process of each
of the participating university-affiliated institutions. Exclusion criteria included a history of hypersensitivity to β-lactam antibiotic agents, evidence of hepatic dysfunction (defined as a total serum bilirubin level ≥3 times the upper limit of the normal range or as a serum transaminase level ≥5 times the upper limit of the normal range), severe renal insufficiency requiring dialysis, or a positive test result for HIV antibodies.

Antibacterial regimens. Patients were randomly allocated to receive piperacillin-tazobactam (Zosyn, Wyeth Ayerst; 4.5 g intravenously every 6 h) or cefepime (Maxipime, Bristol-Myers Squibb; 2 g intravenously every 8 h). Regimens were assigned using a centralized randomization procedure in a 1:1 ratio and were stratified according to receipt of prophylactic antibiotic agents. Antibacterial prophylaxis was discontinued at the time of study entry. Study regimens were administered for up to 21 days and were modified at the investigator’s discretion. Adherence to published management guidelines was encouraged [41].

Study design. The study was conducted as an open-label, randomized-controlled, multicenter, noninferiority clinical trial. Calculation of the sample size was based on the assumption that the study agents were equally effective. Assuming an evaluable rate of at least 50%, ~528 patients were to be enrolled to obtain 264 evaluable patients. If the 2 treatments were equally effective, with success rates of 50% at the test-of-cure visit, ~132 clinically evaluable patients per treatment group would be required.

Definitions. The primary outcome was treatment success without regimen modification assessed at 72 h of therapy, end of therapy, and the test-of-cure review among the modified intent-to-treat population (patients receiving at least 1 dose of the study agents), in accordance with recommendations [42–44]. Treatment success was assessed at the test-of-cure assessment (defined as at least 7 days posttreatment). Fever and febrile episodes were defined and classified in accordance with current guidelines [2, 45]. Defervescence was defined as a reduction in body temperature to <38°C when measured orally, sustained over at least 48 h. Treatment success was defined as resolution of all signs and symptoms of infection without modification of the initial empirical antibacterial regimen. Initial treatment response but with a modified regimen was defined as recrudescence of fever within 48 h of defervescence because of a viral, fungal, or parasitic pathogen outside the spectrum of activity of the antibacterial study agents that required regimen modification. Treatment failure was defined as death due to infection or the administration of any additional antibacterial agent for persistent fever, lack of improvement, progressive infection, or new bacterial infection. Indeterminate status was defined as loss to follow-up; an instance in which the etiology of the initial febrile episode was determined to be due to a viral, fungal, parasitic, or mycobacterial pathogen; or an instance in which the patient received concomitant antibacterial therapy for reasons other than treatment failure.

Statistical analysis. The primary objective was to demonstrate piperacillin-tazobactam to be noninferior to cefepime in the modified intent-to-treat analysis. One-sided 95% CIs (corrected for continuity) were calculated for the difference in treatment success to evaluate noninferiority between treatment groups. Noninferiority was concluded if the lower bound of the 95% CI for the difference in success was ≥−0.20. Secondary outcome analyses included microbiological success; treatment success by prestudy use of antibacterial prophylaxis, by classification of infection, or by neutrophil recovery profile; time (in days) to defervescence; emergence of vancomycin-resistant enterococci or extended-spectrum β-lactamase–producing gram-negative bacteria in rectal surveillance cultures; and the emergence of *Clostridium difficile*–associated diarrhea. Success rates with 95% CIs were compared between treatment groups using the Cochrane-Mantel-Haenszel statistic stratified across study centers. Time-to-event analyses were conducted using Kaplan-Meier product limit estimates. Differences by allocation were examined using the log-rank test.

Logistic regression was used to assess the influence of potential prognostic factors on treatment success. In univariate analysis, variables associated with treatment success, including demographic covariates, such as age and country of residence (P = .05), were entered into a stepwise multivariate logistic regression model. Those variables with a P value ≤ .15 were subsequently entered into the final model. The final model was developed with variables (P ≤ .1) retained from the first model. Similarly, variables associated with defervescence and with prolonged neutropenia were entered into multivariate Cox regression models in order to identify predictors. Such variables included age (≥65 years vs. <65 years), sex, underlying diagnoses (acute leukemia, lymphoma, or other), treatment (HSCT vs. chemotherapy), characteristics of the HSCT (autologous vs. allogeneic; stem cell source [peripheral blood vs. bone marrow]), use of hematopoietic growth factors either prior to or concomitantly with the initiation of empirical antibacterial therapy, neutrophil recovery profile from baseline to end of treatment (ANC < 0.5 x 10⁹ cells/L at baseline to > 0.5 x 10⁹ cells/L at end of treatment; ANC < 0.5 x 10⁹ cells/L at baseline remaining through the end of treatment; ANC > 0.5 x 10⁹ cells/L at baseline to < 0.5 x 10⁹ cells/L at end of treatment; ANC > 0.5 x 10⁹ cells/L at baseline remaining through the end of treatment), classification of infection (unexplained fever, clinically documented infection, and microbiologically documented infection with and without bacteremia), pathogens in bacteremic patients (gram-positive organisms vs. gram-negative organisms), country of residence, and randomization to the piperacillin-tazobactam or cefepime arm.

Safety was evaluated by analyzing adverse events, vital signs,
Table 1. Baseline characteristics of the modified intent-to-treat population.

Characteristic	Piperacillin-tazobactam recipients (n = 265)	Cefepime recipients (n = 263)
Age, years		
Mean ± SD	50.2 ± 15.1	50.1 ± 14.5
Median (range)	52 (17–83)	52 (18–79)
Sex		
Male	166	146
Female	99	117
Body weight, kg		
Mean ± SD	80.95 ± 20.37	76.34 ± 17.36
Median (range)	78.1 (42.2–172.5)	73.1 (45.0–146.36)
Underlying disease		
Acute leukemia	103d	99o
Acute myeloid leukemia	76	82
Acute lymphoblastic leukemia	27	16
Chronic leukemia	12	11
Chronic lymphocytic leukemia	6	7
Chronic myeloid leukemia	6	4
Myelodyplasia	8	7
Non-Hodgkin lymphoma	76f	68
Hodgkin lymphoma	16	14
Myeloma	50f	66
Other	6g	0
Underlying disease treatment		
Chemotherapy	131	116
Hematopoietic stem cell transplant	134 (50.6)	147 (55.9)
Autologous BMT	0	1
Autologous PBSCT	57	65
Autologous, stem cell source specified	29	29
Allogeneic BMT	4	3
Allogeneic PBSCT	16	13
Allogeneic, stem cell source specified	23	22
PBSCT, not otherwise specified	5	14
Hematopoietic growth factors		
Total	171 (64.5)	182 (69.2)
Administered prior to study entry	72	100
Administered concomitant with study entry	99	82
Antibacterial prophylaxis		
Receiving at least 1 agent	141 (53.2)	150 (57.0)
Trimethoprim-sulfamethoxazole	45 (17.0)	51 (19.4)
Fluoroquinolone	102 (38.5)	108 (41.1)
Duration, mean days ± SD (median)	9.3 ± 5.2 (9)	9.7 ± 9.1 (9)
Central venous catheter		
Total	259 (97.7)	250 (95.1)
Myelosuppression at study entry, median ANC × 10^9 cells/L		
<0.1	209 (78.9)	217 (82.5)
0.1–0.499	46 (17.4)	35 (13.3)
0.5–1.0	5 (1.9)	7 (2.7)
>1.0	5 (1.9)	4 (1.5)
Duration of myelosuppression, mean days ± SD (median)		
ANC, <0.1 × 10^9 cells/L	9.18 ± 6.96 (7)	8.20 ± 6.07 (7)
ANC, 0.1–0.499 × 10^9 cells/L	4.17 ± 5.04 (2)	3.66 ± 4.23 (2)
ANC, 0.5–9.99 × 10^9 cells/L	11.71 ± 7.97 (10.5)	10.25 ± 6.53 (9)
ANC, 0.5–9.99 × 10^9 cells/L	5.29 ± 6.72 (1)	4.27 ± 5.50 (1)
ANC, <1.0 × 10^9 cells/L	13.92 ± 8.64 (13)	11.98 ± 7.50 (11)
(continued)		
Characteristic	Piperacillin-tazobactam recipients (n = 265)	Cefepime recipients (n = 263)
---------------------------------------	---	-----------------------------
Febrile neutropenic episode		
Unexplained fever	157 (59.2)	150 (57.0)
Clinically documented	27 (10.2)	27 (10.3)
Oral mucositis	8	8
Gastrointestinal mucositis	4	4
Sinusitis	2	1
Pneumonia	6	10
Soft tissue infection, NOS	1	0
CVAD-related cellulitis	2	3
Perianal cellulitis	2	0
Both CVAD and perianal cellulitis	0	1
Other	2	0
Microbiologically documented		
All cases	81 (30.6)	86 (32.7)
Bacteremia		
GNO, total	73 (27.5)	74 (28.1)
Escherichia coli	17	21
Klebsiella, Enterobacter, and/or Serratia species	5	11
Pseudomonas aeruginosa	7	6
Other	3	2
GPO, total	41	39
Staphylococcus aureus	13	14
Coagulase-negative staphylococci	16	11
α-Hemolytic streptococci	6	3
Streptococcus pneumoniae	4	3
Other	4	4
Polymicrobial bacteremia	15	14
GNO-GNO	6†	4†
GNO-GPO	6†	4†
GPO-GPO	8†	4†
Nonbacteremic infection	8 (3.0)	12 (4.6)

NOTE. Data are no. (%) of patients, unless otherwise indicated. ALC, absolute lymphocyte count; ANC, absolute neutrophil count; BMT, bone marrow transplant; CVAD, central venous access device; GNO, gram-negative organism; GPO, gram-positive organism; NOS, not otherwise specified; PBSCT, peripheral blood stem cell transplant.

* P = .111
* P = .006
* Total numbers reflect that some patients who received >1 diagnosis.
* Previous diagnoses of Hodgkin lymphoma, non-Hodgkin lymphoma, and myelodysplasia were recorded in 1, 1, and 2 patients, respectively.
* One patient received a previous diagnosis of myelodysplasia.
* One patient in each case received a previous diagnosis of chronic lymphocytic leukemia.
* Diagnoses of myelofibrosis (1), amyloidosis (1), hairy cell leukemia (1), lymphoreticular malignancy not otherwise specified (2), and breast cancer (1).
* P = .0228
* Infection with *E. coli* and unspecified, gram-negative bacilli.
* Infections with the following: (1) *E. coli* and *Proteus mirabilis*; (2) *Klebsiella pneumoniae* and *Citrobacter freundii*; (3) *E. coli*, *Citrobacter* species, and *Moraxella catarrhalis*; and (4) *P. aeruginosa* and *K. pneumoniae*.
* Infections with the following: (1) *K. pneumoniae*, *Bacillus cereus*, *Enterococcus faecalis*, and α-hemolytic streptococcus; (2) *K. pneumoniae*, *E. faecalis*, and *K. pneumoniae*; (3) *Enterobacter cloacae* and 2 α-hemolytic streptococci; (4) *P. aeruginosa* and 2 coagulase-negative staphylococci; (5) *E. coli* and 2 α-hemolytic streptococci; and (6) *P. aeruginosa* and *Staphylococcus haemolyticus*.
* Infections with the following: (1) *E. coli*, *Klebsiella oxytoca*, and coagulase-negative staphylococci; (2) *K. pneumoniae* and α-hemolytic streptococci; (3) *P. aeruginosa* and 2 α-hemolytic streptococci; (4) *E. coli*, 2 α-hemolytic streptococci, and coagulase-negative staphylococci; (5) *E. coli*, β-hemolytic streptococci, and coagulase-negative staphylococci; and (6) *K. pneumoniae*, *Acinetobacter anitratus*, and *S. aureus*.
* Infection with the following: (1) *Streptococcus mitis* and *Streptococcus oralis*; (2) α-hemolytic streptococcus and coagulase-negative staphylococci; (3) *Staphylococcus epidermidis* and *Staphylococcus warneri*; (4) *E. faecalis* and *S. epidermidis*; (5) *Enterococcus hirae* and *S. epidermidis*; (6) coagulase-negative staphylococcus and *Propionibacterium acnes*; (7) 2 α-hemolytic streptococci; and (8) *S. epidermidis* and *S. haemolyticus*.
* Infection with the following: (1) α-hemolytic streptococcus and coagulase-negative staphylococcus; (2) 2 α-hemolytic streptococci; (3) *S. epidermidis* and *Staphylococcus hominis*; and (4) *S. mitis* and *S. oralis*.
Table 2. Response to treatment, by randomization and by classification of febrile neutropenic episodes at the test-of-cure time point for the modified intent-to-treat population.

Classification	Piperacillin-tazobactam recipients	Cefepime recipients
	(n = 265)	(n = 263)
Success	71 (26.8)	54 (20.5)
IR:RM	7 (2.6)	6 (2.3)
Indeterminate	47 (17.7)	41 (15.6)
Regimen modification	118	134
Glycopeptide	106	117
Breakthrough infection	10	13
No improvement	5	3
Not reported	1	4
Lost to follow-up	3	1

Febrile neutropenic episode

Unexplained fever	53/157 (33.7)	45/150 (30.0)
Clinically documented infection	7/27 (25.9)%	2/27 (7.4)%
Microbiologically documented infection		
Overall	11/81 (13.6)	7/86 (8.1)
Bloodstream infection	11/73 (16.4)	5/74 (6.8)
With gram-positive organisms	60	27
With gram-negative bacilli	26	24
With polymicrobial organisms	22	16
Other	0/8	2/12 (16.7)

Chemotherapy

| Chemotherapy | 38/131 (29.0) | 24/116 (20.7) |

HSCT

HSCT	33/134 (24.6)	30/147 (20.4)
Overall	23/86 (26.7)	24/95 (25.3)
Autologous	7/43 (16.3)	3/38 (7.9)
Allogeneic	3/5 (60)	3/14 (21.4)

HSCT stem cell source

PBSC	24/78 (30.8)	25/92 (27.1)
Bone marrow	0/4	0/4
NOS	9/52 (17.3)	5/51 (9.8)

Hematopoietic growth factors prior to study entry

| Yes | 21/72 (29.2) | 28/100 (28.0) |
| No | 50/193 (25.9) | 26/163 (16.0) |

Hematopoietic growth factors with study entry

| Yes | 19/99 (19.2) | 10/82 (12.2) |
| No | 52/166 (31.3) | 44/181 (24.3) |

ANC recovery profile, ×10⁹ cells/L

Baseline, <0.5; EOT, <0.5	4/32 (12.5)	2/34 (5.9)
Baseline, >0.5; EOT, <0.5	0/0	0/4
Baseline, <0.5; EOT, >0.5	58/207 (28.0)	48/197 (24.4)
Baseline, >0.5; EOT, >0.5	4/9 (44.4)	1/6 (16.7)
Incomplete data	17	22

NOTE. Data are no. (%) of patients, unless otherwise indicated. ANC, absolute neutrophil count; BSI, bloodstream infection; CVAD, central venous access device; EOT, end-of-treatment; HSCT, hematopoietic stem cell transplant; IR:RM, initial response, regimen modified; NOS, not otherwise specified; PBSC, peripheral blood stem cell.

a Response in clinically documented infection in the piperacillin-tazobactam group are as follows: 2 of 13 cases were oral mucositis, 1 of 4 cases was gastrointestinal mucositis, 4 of 4 cases were pneumonia, 0 of 4 cases were skin and soft tissue–related infection, and 0 of 2 cases were other clinically documented infections that were not otherwise specified.

b Clinically documented infection in the cefepime group are as follows: 5 of 14 cases were oral mucositis, 1 of 4 cases were gastrointestinal mucositis, 6 of 6 cases were pneumonia, 0 of 2 cases were skin and soft tissue infection, and 0 of 1 case was sinusitis.

c Infection with the following: S. aureus, S. epidermidis, α-hemolytic streptococci (3); and Rhodococcus equi.

d Infection with α-hemolytic streptococci (2).

e Infection with α-hemolytic streptococci (2).

f Infection with the following: E. coli and aerobic, gram-negative bacillus.

g Infection with the following: E. coli and P. aeruginosa.

h Infection with the following: α-hemolytic streptococci and E. coli; S. epidermidis and Propionibacterium species; and Klebsiella species and Enterobacter species.

i Infection with S. epidermidis and α-hemolytic streptococci.

j Patients with insufficient data to determine the neutrophil recovery profile.
clinical laboratory results, and physical examination. Treatment-related adverse events were classified by body system and by allocation. Adverse events with an overall incidence of ≥3% were compared using Fisher’s exact test.

RESULTS

A total of 528 eligible subjects were enrolled from 34 institutions in the United States, Canada, and Australia (figure 1 and table 1). Of these, 265 subjects were randomized to receive at least 1 dose of piperacillin-tazobactam, and 263 subjects were randomized to receive at least 1 dose of cefepime over a mean (± SD) of 9 (± 5) days (median, 8 days; range, 1–26 days). The duration of treatment was longer for piperacillin-tazobactam recipients (mean [± SD], 9.9 [± 5.3] days; median, 8 days; range, 1–23 days) than it was for cefepime recipients (mean [± SD], 8.1 [± 4.4] days; median, 7 days; range, 1–26 days; P < .001). Ninety-five percent of patients entered the trial with severe neutropenia.

Treatment success rates were higher among piperacillin-tazobactam recipients than cefepime recipients (26.8% vs. 20.5%; OR, 1.42; 95% CI, 0.95–2.12; χ² = 2.863; P = .09), and treatment failure rates were lower among piperacillin-tazobactam recipients than cefepime recipients (51.7% vs. 61.2%; OR, 0.68; 95% CI, 0.48–0.96; χ² = 4.865; P = .027) (table 2). The response rate for clinically documented infections was marginally higher in the piperacillin-tazobactam group (25.9%) than in the cefepime group (7.4%; χ² = 3.333; P = .068). At each of the response assessment time points of 72 h, end of treatment, and the test-of-cure visit, piperacillin-tazobactam was noninferior to cefepime (table 3).

Table 3 shows the results of the logistic regression analyses of covariates predictive of treatment success. Allocation to piperacillin-tazobactam predicted treatment success (OR, 1.65; 95% CI, 1.04–2.64; P = .034); however, having an indwelling central venous catheter, experiencing failure of neutrophil recovery, having documented infection, and undergoing allogeneic HSCT were associated with poorer outcomes. Treatment success was almost one-half as likely among subjects for whom hematopoietic growth factors were initiated with the empirical antibacterial therapy.

Overall, defervescence occurred at a median of 7 and 10 days for the piperacillin-tazobactam and cefepime groups, respectively (P = .1058; figure 2A). Among patients classified as experiencing treatment success, defervescence at 5 days was observed in each study group (P = .9649; figure 2B), versus 9 days and 14 days among subjects in the piperacillin-tazobactam and cefepime groups, classified as experiencing treatment failure (P = .0202; figure 2C).

Cox proportional hazard models were used to examine factors associated with time to defervescence. Treatment allocation

Time of evaluation	Piperacillin-tazobactam recipients (n = 265)	Cefepime recipients (n = 263)
72 h	153 (57.7)	127 (48.3)
End of treatment	105 (39.6)	83 (31.6)
Test-of-cure visit	71 (26.8)	54 (20.5)

NOTE. Data are no. (%) of patients. Pnoninferiority = probability that the observed noninferiority of piperacillin-tazobactam, compared with cefepime, is random; Psuperiority = probability that the observed superiority in success rates for piperacillin-tazobactam over cefepime is random.

Table 4 shows the results of the logistic regression analyses of covariates predictive of treatment success. Allocation to piperacillin-tazobactam predicted treatment success (OR, 1.65; 95% CI, 1.04–2.64; P = .034); however, having an indwelling central venous catheter, experiencing failure of neutrophil recovery, having documented infection, and undergoing allogeneic HSCT were associated with poorer outcomes. Treatment success was almost one-half as likely among subjects for whom hematopoietic growth factors were initiated with the empirical antibacterial therapy.

Overall, defervescence occurred at a median of 7 and 10 days for the piperacillin-tazobactam and cefepime groups, respectively (P = .1058; figure 2A). Among patients classified as experiencing treatment success, defervescence at 5 days was observed in each study group (P = .9649; figure 2B), versus 9 days and 14 days among subjects in the piperacillin-tazobactam and cefepime groups, classified as experiencing treatment failure (P = .0202; figure 2C).

Cox proportional hazard models were used to examine factors associated with time to defervescence. Treatment allocation

was included as a forced variable. Glycopeptide antibiotic treatment modification (with vancomycin or teicoplanin) (hazard ratio [HR], 0.71; 95% CI, 0.58–0.87; P = .001) and study enrollment in the United States (HR, 0.54; 95% CI, 0.42–0.70; P < .0001) were less likely to be associated with earlier defervescence, and a diagnosis of lymphoma (HR, 1.25; 95% CI 1.01–1.54; P = .0452) and receipt of piperacillin-tazobactam (HR, 1.24; 95% CI, 1.02–1.51; P = .0332) were more likely to be associated with earlier defervescence.

Regimen modification with glycopeptides for persistent fever was the most frequent reason for treatment failure (table 2). Glycopeptides were added at an overall median of 4 days (range, 1–8 days) for piperacillin-tazobactam recipients and 3 days (range, 1–14 days) for cefepime recipients. Canadian physicians tended to prescribe glycopeptides later (for 96 patients; median, 11 days; 95% CI, 6–15 days) than either the physicians in the United States (for 206 patients; median, 6 days; 95% CI, 5–8 days) or Australia (for 87 patients; median, 4 days; 95% CI, 3–5 days) (P = .0061 by log rank test).

Documented breakthrough infections were uncommon and were evenly distributed between the study groups (piperacillin-tazobactam group, 10 infections; cefepime group, 13 infections). Fewer piperacillin-tazobactam recipients required more systemic antifungal therapy during treatment than cefepime recipients (106 recipients [40%] vs. 132 [50.2%] recipients; χ² = 5.536; P = .019). Only 4 infections—2 in each group—were considered to be fungal breakthrough infections. One piperacillin-tazobactam recipient developed candidemia. The remaining patients had oropharyngeal candidiasis.

The study agents were well tolerated. Adverse events with frequencies of ≥10% are listed in table 5. Skin rash (29.4% of piperacillin-tazobactam recipients vs. 22.1% of cefepime recipients; P = .059) and prolonged severe neutropenia (11.7 [± 8.0] days vs. 10.3 [± 6.5] days; P = .023) were more com-
Table 4. Logistic regression analysis of variables associated with treatment success without regimen modification.

Variable	Univariate OR (95% CI)	Univariate P	Multivariate OR (95% CI)	Multivariate P
Allocation of piperacillin-tazobactam vs. cefepime^a	1.42 (0.95–2.12)	.0914	1.65 (1.04–2.64)	.0354
Male vs. female	0.71 (0.48–1.07)	.1023
Age, >65 vs. ≤65 years	1.40 (0.85–2.29)	.1843
Antibacterial prophylaxis, yes vs. no	1.09 (0.73–1.64)	.6644
ANC, ×10⁹ cells/L	1.13 (0.41–3.11)	.8117
Baseline, >0.5 vs. ≤0.5	0.26 (0.11–0.62)	.0023	0.37 (0.15–0.94)	.0363
HSCT, yes vs. no	0.86 (0.58–1.29)	.4697
Autologous HSCT, yes vs. no	1.20 (0.79–1.82)	.3996
Allogeneic HSCT, yes vs. no	0.41 (0.21–0.83)	.0129	0.33 (0.16–0.70)	.0039
BMT, yes vs. no	<0.001 (0.001 to >999)	.9844
PBSCT, yes vs. no	1.50 (0.99–2.28)	.559
Central venous catheter, yes vs. no	0.35 (0.20–0.62)	.004	0.32 (0.16–0.65)	.0014
Hematological malignancy, yes vs. no	1.94 (1.27–2.98)	.0024	1.58 (0.95–2.62)	.0793
Acute leukemia, yes vs. no	0.53 (0.34–0.82)	.045
Lymphoma, yes vs. no	1.81 (1.18–2.78)	.0066
HGF administered prior to study entry	1.47 (0.97–2.23)	.0713
HGF administered concomitant with study entry	0.50 (0.31–0.79)	.0198
Region of residence				
United States^a	0.47 (0.31–0.72)	.0005	0.54 (0.29–1.02)	.0567
Canada^a	2.35 (1.55–3.56)	<0.001	1.72 (0.93–3.19)	.0835
Australia	0.93 (0.57–1.52)	.7612

NOTE. ANC, absolute neutrophil count; BMT, bone marrow transplant; BSI, bloodstream infection; CDI, clinically documented infection; HGF, hematopoietic growth factors; HSCT, hematopoietic stem cell transplant; MDI, microbiologically documented infection; PBSCT, peripheral blood stem cell transplant; UF, unexplained fever.

^a Forced variables in the multivariate model.

mon among piperacillin-tazobactam recipients. Figure 1 shows that more cefepime patients discontinued taking the study agent (64 vs. 43 recipients; χ² = 5.371; P = .02); mostly this was because of adverse events (30 vs. 19 recipients; χ² = 2.815; P = .093). Acute leukemia (HR, 0.46; 95% CI, 0.38–0.57; P < .0001), glycopeptide administration (HR, 0.75; 95% CI, 0.59–0.94; P = .046), and use of fluoroquinolone antibiotics (HR, 0.71; 95% CI, 0.58–0.87; P = .0009), but not randomization to receive piperacillin-tazobactam (HR, 0.87; 95% CI, 0.71–1.06; P = .1555), were independently associated with prolonged time to neutrophil recovery in a Cox proportional hazards model. Acquisition of vancomycin-resistant enterococci and extended-spectrum β-lactamase–producing gram-negative bacilli were not observed during this trial. *Clostridium difficile*–associated diarrhea was observed more often among cefepime recipients than among piperacillin-tazobactam recipients (2.3% vs. 6.8%; OR, 0.32; 95% CI, 0.12–0.81; χ² = 6.381; P = .012).

There were 8 deaths (3%) during the course of treatment in the piperacillin-tazobactam group and 15 (5.7%) in the cefepime group (OR, 0.51; 95% CI, 0.21–1.24; χ² = 2.283; P = .131). The causes of death among piperacillin-tazobactam recipients included pneumonia and respiratory failure in 4, multiorgan system failure in 1, sepsis syndrome in 1, intracranial hemorrhage in 1, and cardiac failure in 1. The causes of death in the cefepime group included pneumonia and respiratory failure in 9, shock in 2, sepsis syndrome in 1 myocardial infarction in 1, pulmonary hemorrhage in 1, and cardiac failure in 1.

DISCUSSION

This study achieved its primary objective of demonstrating noninferiority of piperacillin-tazobactam, compared with cefepime, for the empirical treatment of high-risk febrile neutropenic patients with cancer. Furthermore, randomization to receive piperacillin-tazobactam was an independent predictor of treatment success and defervescence in multivariate analyses, which is consistent with the results of recent systematic reviews [46].

The multivariate analyses identified a treatment effect for piperacillin-tazobactam that was not observed in the primary analysis, but was consistent with previous reports from the
European Organization for Research and Treatment of Cancer [47]. This was likely obscured in our study by other variables. Furthermore, our analyses confirmed previously reported relationships between outcome and neutrophil recovery, presence of indwelling central venous catheters, underlying diagnosis, and HSCT. The analyses also identified some unexpected relationships. First, the parallel use of hematopoietic growth factors with empirical antibacterial therapy was associated with a lower likelihood of treatment success (OR, 0.53; 95% CI, 0.31–0.91; P < .02). Although this may represent a selection for a subgroup of subjects with more-severe infection, it may also be a surrogate, given our study design, for physicians more inclined to prescribe additional interventions in the circumstance of persistent fever, despite current guidelines [48–51]. Second, we noted that US subjects had a lower likelihood of earlier defervescence (HR, 0.65; 95% CI, 0.53–0.78; P < .0001), which suggests that either there may have been more patients at higher risk of nonresponse enrolled in US centers or, alternatively, US physicians may have been more likely to initiate salvage treatments for perceived nonresponse due to persistent fever.

Gram-positive bacteria was the predominant cause of microbiologically documented infections, causing two-thirds of the bloodstream infections. Piperacillin-tazobactam and cefepime both have a spectrum of activity that is well suited for the management of patients at risk for gram-positive infections. Despite this, we noted that second-line administration of glycopeptides for persistent fever was a common phenomenon with a regional time-to-prescription effect. Canadian investigators tended to prescribe glycopeptides later than either their US or Australian counterparts, suggesting a differential tolerance for persistent fever. Moreover, more than three-quarters of the subjects who experienced treatment failure received glycopeptides as empirical second-line therapy after a median of only 3 days of initial therapy, whereas defervescence among responders was observed after a median of 5 days of initial therapy, suggesting that modification prior to 5 days may have been unnecessary in many patients, as reported previously [37, 52, 53]. Furthermore, we noted a relationship between prolonged neutropenia and glycopeptide administration not here-tofore reported, except in anecdotal reports [37, 54–58]. These and other observations [14, 59, 60] suggest that in the interest of reducing excess glycopeptide-related adverse events and emergence of resistant pathogens, continued observation of empirical piperacillin-tazobactam monotherapy recipients without regimen modification in hemodynamically stable patients with persistent but unexplained fever for >5 days should be considered.

We noted a differential median time to response of 9 days in the piperacillin-tazobactam group and 14 days in the cefepime group among patients classified as experiencing treatment

Figure 2. A, Time to defervescence for all patients in the modified intent-to-treat analysis. Median times were 7 days and 10 days for the piperacillin-tazobactam and cefepime groups, respectively (P = .1058). B, Time to defervescence for modified intent-to-treat patients classified as experiencing treatment success without modification. Median times were 5 days in both groups (P = .9649). C, Time to defervescence for modified intent-to-treat patients classified as experiencing treatment failure. The median times were 9 days and 14 days for the piperacillin-tazobactam and cefepime groups, respectively (P = .0202).
Table 5. Common adverse events observed.

Adverse event	Piperacillin-tazobactam recipients (n = 265)	Cefepime recipients (n = 263)	P*
Any adverse event	257 (97.0)	257 (97.7)	.788
Laboratory abnormalities			
Hypokalemia	65 (24.5)	66 (25.1)	.920
Hypomagnesemia	32 (12.1)	32 (12.2)	1.000
Hypophosphatemia	31 (11.7)	42 (16.0)	.167
Duration of neutropenia, mean days ± SDb	11.7 ± 8.0	10.3 ± 6.5	.023c
Clinical abnormalities			
Skin/mucous membranes			
Rash	78 (29.4)	58 (22.1)	.059
Stomatitis	58 (21.9)	56 (21.3)	.369
Infusion site reaction	53 (21.9)	56 (21.3)	.916
Epistaxis	35 (13.2)	24 (9.1)	.167
Cardiorespiratory system			
Cough	29 (10.9)	50 (19.0)	.010
Dyspnea	18 (6.8)	33 (12.5)	.027
Tachycardia	17 (6.4)	30 (11.4)	.048
Gastrointestinal system			
Abdominal pain	58 (21.9)	61 (23.2)	.755
Nausea	33 (12.5)	38 (14.4)	.526
Vomiting	33 (12.5)	39 (14.8)	.449
Diarrhea	91 (34.3)	80 (30.4)	.353
Anorexia	17 (6.4)	31 (11.8)	.035
CNS			
Headache	40 (15.1)	36 (13.7)	.710
Somnolence	21 (7.9)	27 (10.3)	.367

NOTE. Data are no. (%) of patients, unless otherwise indicated. A common adverse event is defined as an event with an incidence of ≥10%.

* By Fisher’s exact test.
* Neutropenia defined as an absolute neutrophil count <0.5 x 10^9 cells/L.
* By Student’s t test.

failure (P = .02). The distributions of second-line antibiotic modifications, breakthrough infections, or empirical antifungal therapy by allocation did not account for this difference. Whether this represents a function of a heretofore undetected delayed primary treatment effect cannot be discerned from the present data; however, this observation, to our knowledge, appears to be unique and should be explored further in future studies.

The study regimens were well tolerated in both arms of the trial. Rashes and diarrhea were reported relatively frequently, 26% and 33%, respectively, compared with other trials [34, 47] and may have been a function of the high proportion of patients (53%) who underwent HSCT. Consistent with previous studies [61–63], we noted a reduced risk for *C. difficile*-associated diarrheaa among piperacillin-tazobactam recipients (OR, 0.32; 95% CI, 0.12–0.81), an observation with important economic implications [64]. Although piperacillin-related myelosuppression has been reported previously [65, 66], the prolonged neutropenia observed among piperacillin-tazobactam recipients in our study was associated with other factors, including underlying disease and use of other potentially myelosuppressive agents, such as glycopeptides [54–58]. The all-cause mortality among cefepime recipients was nonsignificantly higher in our study (3% in the piperacillin-tazobactam group vs. 5.7% in the cefepime group), a finding that is in keeping with a recent systematic review [46].

This study has several limitations. First, the study design would have been enhanced by double-blinding. The differing schedules of drug administration, however, made this logistically difficult. Second, like previous studies [67], early modification of the primary empirical antibacterial regimen with a glycopeptide was at the discretion of the investigator and may have impaired our ability to recognize a treatment effect. Third, our rates of treatment success were low but consistent with previous reports, which reflects higher-risk patient populations with similar rigorous definitions of treatment success and fail-
ure [34, 37, 47]. Fourth, a treatment success difference of 20% between the 2 treatment regimen arms may be too large to be clinically acceptable. Because the piperacillin-tazobactam arm achieved response rates that were as good as or, in some instances, better than the cefepime arm, this a priori requirement had no impact on the analysis. Finally, the advantages for piperacillin-tazobactam over cefepime were observed only after controlling for other variables in the multivariate analyses, which suggests that the entry criteria permitted enrollment of a study population too heterogeneous to detect the treatment effect in the primary analysis. This not withstanding, the study achieved its primary objective of noninferiority.

This trial, taken together with other large clinical trials, firmly establishes the safety and efficacy of piperacillin-tazobactam monotherapy for the empirical treatment of the febrile neutropenic patients with cancer. Based on our observations and in consideration of the Spanish [1] and German [3] guidelines, it seems appropriate to revise the North American guidelines [2, 4] to include piperacillin-tazobactam as an acceptable monotherapeutic option in the higher-risk febrile neutropenic population.

Acknowledgments

The authors thank Jennifer Kehs, for her help in preparing the data for the manuscript, and the following investigators participated in this study: T. Campbell (Gosford, New South Wales, Australia); K. Cleyz (Randywick, New South Wales, Australia); J. Harkness (Darlinghurst, New South Wales, Australia); S. Durrant (Herston, Queensland, Australia); D. Grimard (Chicoutimi, Quebec); A. McCarthy (Ottawa, Ontario); E. Anaissie (Little Rock, AR); I. Baird and T. Chidiac (Columbus, OH); R. Betts (Rochester, NY); L. Campbell (Shreveport, LA); T. Cartwright (Ocala, FL); C. Cicogna (Hackensack, NJ); W. Friedenberg (Sayre, PA); R. Gucalp (Bronx, NY); W. Harrer (Thomasville, GA); R. Herzig (Louisville, KY); R. Hohl (Iowa City, IA); R. Jones (West Reading, PA); S. Khan (Gainesville, FL); Z. Kramer (Rochester, NY); M. Lill (Los Angeles, CA); J. Lynch (Tulsa, OK); M. Mogyvos (Denver, CO); I. Raad (Houston, TX); M. Schuster (New York, NY); and D. Vesole (Milwaukee, WI).

Potential conflicts of interest. E.J.B. is a consultant for Astellas Pharma, Pfizer, Amgen, and Wyeth-Ayerst and has received research support from Wyeth-Ayerst. C.R. is a consultant for Wyeth-Ayerst, Merck Frosst Canada, Astellas Pharma, and Pfizer; is on the speakers bureaus for Wyeth-Ayerst, Merck Frosst Canada, Pfizer, and Bayer; and has received research support from Astellas Pharma, Johnson & Johnson Pharmaceuticals, Pfizer, Merck Frosst Canada, and Wyeth-Ayerst. G.A.N. is a consultant and has received research support from Wyeth-Ayerst. B.H.S. is a consultant for and has received research support from Astellas Canada, Merck Frosst Canada, Pfizer Canada, Johnson & Johnson Pharmaceuticals, Pfizer, Merck Frosst Canada, and Wyeth-Ayerst. G.A.N. is a consultant and has received research support from Wyeth-Ayerst. M.L. is a consultant for Pfizer Canada, Astellas Canada, and Merck Frosst Canada; and has received research support from Astellas Pharma, Johnson & Johnson Pharmaceuticals, Pfizer, Merck Frosst Canada, and Wyeth-Ayerst. B.H.S. is a consultant for and has received research support from Astellas Canada, Merck Frosst Canada, Pfizer Canada, Johnson & Johnson Pharmaceuticals, Pfizer, Merck Frosst Canada, and Wyeth-Ayerst. J.F.S. has received research support from Wyeth-Ayerst. B.H.S. is a consultant for and has received research support from Enzon Pharmaceuticals, Astellas Pharma, and Wyeth-Ayerst. J.F.S. has received research support from Wyeth-Ayerst. J.S. has received research support from Wyeth-Ayerst; and S.S. is a consultant for Pfizer and Astellas Pharma and has received research support from Wyeth-Ayerst.

References

1. Garcia-Rodriguez JA, Gobernado M, Gomis M, et al. Clinical guide for the evaluation and treatment of patients with neutropenia and fever (in Spanish). Rev Esp Quimioter 2001; 14:75–83.
2. Hughes WT, Armstrong D, Bodey GP, et al. 2002 Guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis 2002; 34:730–51.
3. Link H, Bohme A, Cornely OA, et al. Antimicrobial therapy of unexplained fever in neutropenic patients—guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO), Study Group Interventional Therapy of Unexplained Fever. Arbeitsgemeinschaft Supportivmaßnahmen in der Onkologie (ASO) of the Deutsche Krebsgesellschaft (DKG-German Cancer Society). Ann Hematol 2003; 82(Suppl 2):S105–17.
4. Freifeld AG, Baden LR, Brown AE, et al. Fever and neutropenia. J Natl Compr Canc Netw 2004; 2:390–432.
5. Paul M, Soares-Weiser K, Leibovici L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for fever with neutropenia: systematic review and meta-analysis. BMJ 2003; 326:1111–20.
6. Furno P, Bucanove G, Del Favero A. Monotherapy or aminoglycoside-containing combinations for empirical antibiotic treatment of febrile neutropenic patients: a meta-analysis. Lancet Infect Dis 2002; 2:231–42.
7. Sanders JW, Powe NR, Moore RD. Cefazidime monotherapy for empiric treatment of febrile neutropenic patients: a meta-analysis. J Infect Dis 1991; 164:907–16.
8. Yamamura D, Gucalp R, Carlisle P, Cimino M, Roberts J, Rotstein C. Open randomized study of cefepime versus piperacillin-gentamicin for treatment of febrile neutropenic cancer patients. Antimicrob Agents Chemother 1997; 41:1704–8.
9. Biron P, Fuhrmann C, Cure H, et al. Cefepime versus imipenem-clavulanic acid as empirical monotherapy in 400 febrile patients with short duration neutropenia. CEMIC (Study Group of Infectious Diseases in Cancer). J Antimicrob Chemother 1998; 42:511–8.
10. Bohme A, Shah PM, Stille W, Hoezel D. Piperacillin/tazobactam versus cefepime as initial empirical antimicrobial therapy in febrile neutropenic patients: a prospective randomized pilot study. Eur J Med Res 1998; 3:324–30.
11. Chandrasekar PH, Arnow PM. Cefepime versus cefazidime as empiric therapy for fever in neutropenic patients with cancer. Ann Pharmacother 2000; 34:969–95.
12. Chuang YY, Hung IJ, Yang CP, Jaing TH, Lin TY, Huang YC. Cefepime versus ceftazidime as empiric monotherapy for fever and neutropenia in children with cancer. Pediatr Infect Dis J 2002; 21:203–9.
13. Fleming DR, Ziegler C, Baize T, Mudd L, Goldsmith GH, Herzig RH. Cefepime versus ticarcillin and clavulanate potassium and aztreonam for febrile neutropenia therapy in high-dose chemotherapy patients. Am J Clin Oncol 2003; 26:285–8.
14. Raad II, Escalante C, Hackem RB, et al. Treatment of febrile neutropenic patients with cancer who require hospitalization: a prospective randomized study comparing imipenem and cefepime. Cancer 2003; 98: 1039–47.
15. Deane NB, Tate H. A meta-analysis of clinical studies of imipenem-clavulanic acid for febrile neutropenic cancer patients. J Antimicrob Chemother 1996; 37:975–86.
16. Sanz MA, Bermudez A, Rovira M, et al. Imipenem/clavulanic acid versus piperacillin/tazobactam plus amikacin for empirical therapy in febrile neutropenic patients: results of the COSTINE study. Curr Med Res Opin 2005; 21:645–55.
17. Reich G, Cornely OA, Sandherr M, et al. Empirical antimicrobial monotherapy in patients after high-dose chemotherapy and autologous stem cell transplantation: a randomised, multicentre trial. Br J Haematol 2005; 130:263–70.
18. Agaoglu L, Devecioglu O, Anak S, et al. Cost-effectiveness of cefepime + netilmicin or ceftazidime + amikacin or meropenem monotherapy in febrile neutropenic children with malignancy in Turkey. J Chemother 2001; 13:281–7.
19. Behre G, Link H, Machmeyer G, et al. Meropenem monotherapy versus combination therapy with ceftazidime and amikacin for empirical treatment of febrile neutropenic patients. Annals of Hematology 1998; 76:73–80.
versus combination therapy with ceftazidime plus amikacin as empiric therapy for fever in granulocytopenic patients with cancer. Anti-

21. de la Camara R, Figuera A, Sureda A, et al. Meropenem versus cef-
tazidime plus amikacin in the treatment of febrile episodes in neutro-
penic patients: a randomized study. Haematologica 1997; 82:668–75.

22. Duzova A, Kutluç T, Kanra G, et al. Monotherapy with meropenem versus combination therapy with piperacillin plus amikacin as empiric therapy for neutropenic fever in children with lymphoma and solid tumors. Turk J Pediatr 2001; 43:105–9.

23. Feld R, De Pauw B, Berman S, Keating A, Ho W. Meropenem versus ceftazidime in the treatment of cancer patients with febrile neutropenia: a randomized, double-blind trial. J Clin Oncol 2000; 18:3690–8.

24. Equivalent efficacies of meropenem and ceftazidime as empirical monotherapy of febrile neutropenic patients. The Meropenem Study Group of Leuven, London and Nijmegen. J Antimicrob Chemother 1995; 36:185–200.

25. Lindblad R, Rodjer S, Adreasson B, et al. Empiric monotherapy for febrile neutropenia- a randomized study comparing meropenem with ceftazidime. Scandinavian Journal of Infectious Diseases 1998; 30: 237–43.

26. Vandercam B, Gerain J, Humblet Y, et al. Meropenem versus cef-
tazidime as empirical monotherapy for febrile neutropenic patients with cancer. J Antimicrob Chemother 2004; 53:1697–9.

27. Fleischhack G, Hartmann C, Simon A, et al. Meropenem versus cef-
tazidime as empirical monotherapy in febrile neutropenia of paediatric patients with cancer. J Antimicrob Chemother 2001; 47:841–53.

28. Malik I, Shaharyar. Comparison of meropenem with ceftazidime as monotherapy of cancer patients with chemotherapy induced febrile neutropenia. J Pak Med Assoc 2002; 52:15–8.

29. Shah PM, Heller A, Fuhr HG, et al. Empirical monotherapy with meropenem versus imipenem/cilastatin for febrile episodes in neutro-
penic patients. Infection 1996; 24:480–4.

30. Pettrili AS, Cypriano M, Dantas LS, et al. Evaluation of ticarcillin/ clavulanic acid versus ceftriaxone plus amikacin for fever and neutro-
penia in pediatric patients with leukemia and lymphoma. Braz J Infect Dis 2003; 7:111–20.

31. Williams ME, Harman C, Scheld M, Hess CE, Donowitz GR. A con-
trolled study of ticarcillin plus clavulanic acid versus piperacillin as empiric therapy for fever in the immunocompromised host. Am J Med 1985; 79:67–72.

32. Bauduer F, Cousin T, Boulat O, et al. A randomized prospective mul-
ticentre trial of cefpirome versus piperacillin-tazobactam in febrile neu-
ropenia. Leuk Lymphoma 2001; 42:379–86.

33. Cornely OA, Wicke T, Seifert H, et al. Once-daily oral levofloxacin monotherapy versus piperacillin-tazobactam in three febrile day: a ran-
domized controlled multicenter trial in patients with febrile neutro-
penia. Int J Hematol 2004; 79:74–8.

34. Del Favero A, Menichetti F, Martino P, et al. A multicenter, double-
blind, placebo-controlled trial comparing piperacillin-tazobactam with and without amikacin as empiric therapy for febrile neutropenia. Clin Infect Dis 2001; 33:1295–301.

35. Gorschulten M, Hahn C, Fixson A, et al. Piperacillin-tazobactam is more effective than ceftiraxone plus gentamicin in febrile neutropenic patients with hematological malignancies: a randomized comparison. Support Care Cancer 2003; 11:362–70.

36. Hess U, Bohme C, Rey K, Senn HJ. Monotherapy with piperacillin/ tazobactam versus combination therapy with ceftazidime plus amikacin as an empiric therapy for fever in neutropenic cancer patients. Support Care Cancer 1998; 6:402–9.

37. Cometta A, Kern WV, De Bock R, et al. Vancomycin versus placebo for treating persistent fever in patients with neutropenic cancer re-
cieving piperacillin-tazobactam monotherapy. Clin Infect Dis 2003; 37: 382–9.

38. Talcott JA, Siegel RD, Finberg R, Goldman L. Risk assessment in cancer patients with fever and neutropenia: a prospective, two-center vali-
dation of a prediction rule. J Clin Oncol 1992; 10:316–22.

39. Talcott JA, Finberg R, Mayer RJ, Goldman L. The medical course of cancer patients with fever and neutropenia: clinical identification of a low-risk subgroup at presentation. Arch Intern Med 1988; 148:2561–8.

40. Rolston KV, Rubenstein EB, Freifeld A. Early empiric antibiotic therapy for febrile neutropenia patients at low risk. Infect Dis Clin North Am 1996; 10:223–37.

41. Hughes WT, Armstrong D, Bodey GP, et al. 1997 Guidelines for the use of antimicrobial agents in neutropenic patients with unexplained fever. Clin Infect Dis 1997; 25:551–73.

42. Moher D, Schulz KF, Altman D. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 2001; 285:1987–91.

43. Feld R. Multinational cooperation in trials and guidelines dealing with febrile neutropenia. Int J Antimicrob Agents 2000; 16:185–7.

44. Feld R, Paesmans M, Freifeld AG, et al. Methodology for clinical trials involving patients with cancer who have febrile neutropenia: updated guidelines of the Immunoconcomplicated Host Society/Multinational Association for Supportive Care in Cancer, with emphasis on outpatient studies. Clin Infect Dis 2002; 35:1463–8.

45. The design, analysis, and reporting of clinical trials on the empirical antibiotic management of the neutropenic patient. J Infect Dis 1990; 161:397–401.

46. Paul M, Yahav D, Fraser A, Leibovici L. Empirical antibiotic mono-
therapy for febrile neutropenia: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother 2006; 57: 176–89.

47. Cometta A, Zinner S, De Bock R, et al. Piperacillin-tazobactam plus amikacin versus ceftazidime plus amikacin as empiric therapy for fever in granulocytopenic patients with cancer. The International Anti-
microbial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. Antimicrob Agents Chemother 1995; 39:445–52.

48. Bennett CL, Smith TJ, Weeks JC, et al. Use of hematopoietic colony-
stimulating factors: the American Society of Clinical Oncology survey. The Health Services Research Committee of the American Society of Clinical Oncology. J Clin Oncol 1996; 14:2511–20.

49. Bennett CL, Bishop MR, Tallman MS, Somerfield MR, Feinglass J, Smith TJ. The association between physician reimbursement in the US and use of hematopoietic colony stimulating factors as adjunct therapy for older patients with acute myeloid leukemia: results from the 1997 American Society of Clinical Oncology survey. Health Services Research Committee of the American Society of Clinical Oncology. Ann Oncol 1999; 10:1355–9.

50. Bennett CL, Weeks JA, Somerfield MR, Feinglass J, Smith TJ. Use of hematopoietic colony-stimulating factors: comparison of the 1994 and 1997 American Society of Clinical Oncology surveys regarding ASCO clinical practice guidelines. J Clin Oncol 1999; 17:3676–81.

51. Ozer H, Armitage JO, Bennett CL, et al. 2000 Update of recommenda-
tions for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. J Clin Oncol 2000; 18: 3558–85.

52. Erjavec Z, Vries-Hosppers HG, Laseur M, Halie RM, Daenen S. A pro-
spective, randomized, double-blinded, placebo-controlled trial of empiric teicoplanin in febrile neutropenia with persistent fever after imipenem monotherapy. J Antimicrob Chemother 2000; 45:843–9.

53. Wade JC, Glasma cher A. Vancomycin does not benefit persistently febrile neutropenic people with cancer. Cancer Treat Rev 2004; 30: 119–26.

54. Borland CD, Farrar WE. Reversible neutropenia from vancomycin. JAMA 1979; 24:2392–3.

55. Sanche SE, Dust WN, Shevchuk YM. Vancomycin-induced neutropenia resolves after substitution with teicoplanin. Clin Infect Dis 2000; 31: 824–5.

56. Schwartz MD. Vancomycin-induced neutropenia in a patient positive for an antineutrophil antibody. Pharmacotherapy 2002; 22:783–8.

57. Segarra-Newnham M, Tagoff SS. Probable vancomycin-induced neu-
ropenia. Ann Pharmacother 2004; 38:1855–9.
58. Wood MJ. Comparative safety of teicoplanin and vancomycin. J Chemother 2000; 12(Suppl 5):21–5.
59. Glasmacher A, von Lillienfeld-Toal M, Schulte S, Hahn C, Schmidt-Wolf IGH, Prentice A. An evidenced-based evaluation of important aspects of empirical antibiotic therapy in febrile neutropenic patients. Clin Microbiol Infect 2005; 11:17–23.
60. Paul M, Borok S, Fraser A, Vidal L, Leibovici L. Empirical antibiotics against gram-positive infections for febrile neutropenia: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother 2005; 55:436–44.
61. Anand A, Bashey B, Mir T, Glatt AE. Epidemiology, clinical manifestations, and outcome of Clostridium difficile-associated diarrhea. Am J Gastroenterol 1994; 89:519–23.
62. Settle CD, Wilcox MH, Fawley WN, Corrado OJ, Hawkey PM. Prospective study of the risk of Clostridium difficile diarrhoea in elderly patients following treatment with cefotaxime or piperacillin-tazobactam. Aliment Pharmacol Ther 1998; 12:1217–23.
63. Wilcox MH, Freeman J, Fawley W, et al. Long-term surveillance of cefotaxime and piperacillin-tazobactam prescribing and incidence of Clostridium difficile diarrhoea. J Antimicrob Chemother 2004; 54: 168–72.
64. Kyne L, Hamel MB, Polavaram R, Kelly CP. Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile. Clin Infect Dis 2002; 34:346–53.
65. Peralta FG, Sanchez MB, Roiz MP, Pena MA, Tejero MA, Arjona R. Incidence of neutropenia during treatment of bone-related infections with piperacillin-tazobactam. Clin Infect Dis 2003; 37:1568–72.
66. Kumar A, Choudhuri G, Aggarwal R. Piperacillin induced bone marrow suppression: a case report. BMC Clin Pharmacol 2003; 3:2.
67. Viscoli C, EORTC International Antimicrobial Therapy Group. Management of infection in cancer patients. Studies of the EORTC International Antimicrobial Therapy Group (IATG). Eur J Cancer 2002; 38(Suppl 4):S82–7.