ON SINGULARITY TYPES OF DEL PEZZO SURFACES WITH RATIONAL DOUBLE POINTS IN POSITIVE CHARACTERISTIC

TATSURO KAWAKAMI AND MASARU NAGAOKA

Abstract. In this paper, we prove that a pair of the minimal resolution of a del Pezzo surface with rational double points whose general anti-canonical member is smooth and its exceptional divisor lifts to the Witt ring. We also classify a del Pezzo surface with rational double points whose anti-canonical members are all singular. As a corollary, we determine all singularity types of del Pezzo surfaces with rational double points which only appear in positive characteristic.

1. Introduction

Let X be a del Pezzo surface with rational double points, that is, normal projective surface over an algebraically closed field which has only rational double points and the ample anti-canonical divisor. In this paper, we investigate a configuration of rational double points in X in the sense of the corresponding Dynkin diagrams. We call this configuration as the singularity type of X. For example, we say that the singularity type of X is $3A_1 + D_4$ if X has three A_1-singularities and one D_4-singularity. In characteristic zero, the singularity type of X is determined by Furushima [6] when the Picard rank $\rho(X)$ is equal to one. Later, Ye [16] classifies singularity types up to A_n-singularities when $\rho(X) \geq 2$. In characteristic $p > 3$, Lacini [12, Theorem B.7] very recently proved that the singularity type of X is realizable in characteristic zero when $\rho(X) = 1$. On the other hand, when $p = 2$, Keel–McKernan [11, end of Section 9] constructed a del Pezzo surface with $7A_1$-singularities of the Picard rank one, whose singularity type does not appear in characteristic zero (see also [13, Example 8.2], [2, Section 2.2]).

In this paper, we determine all singularity types of del Pezzo surfaces with rational double points which only appear in positive characteristic. For this, we first focus on the smoothness of a general anti-canonical member. We prove that if a general anti-canonical member of X is smooth, then the singularity type of X is realizable in characteristic zero.

Theorem 1.1 (Theorem 3.1 and Theorem 3.4). Let X be a del Pezzo surface with rational double points over an algebraically closed field k of characteristic $p > 0$. Let $\pi : Y \to X$ be the minimal resolution with a reduced exceptional divisor E. Suppose that a general anti-canonical member of X is smooth. Then (Y, E) lifts to the Witt ring $W(k)$. Moreover, there exists a del Pezzo surface with rational double points over 2010 Mathematics Subject Classification. 14J26, 14J45, 14G17.

Key words and phrases. Del Pezzo surfaces; Configuration of singularities; Positive characteristic.
the complex number \mathbb{C} which has the same singularity type, the same Picard rank, and the same degree as X.

We remark that the assumption of Theorem 1.1 is satisfied when $p > 3$. In the proof of Theorem 1.1, we prove the vanishing of the cohomology $H^2(Y, T_Y(- \log E))$ by using a smooth anti-canonical member. Then by using a $W(k)$-lifting of the pair (Y, E), we construct a del Pezzo surface with rational double points over \mathbb{C} which has the same singularity type, the same degree and the same Picard rank as X. By Theorem 1.1, we can conclude that to determine pathological singularity types in positive characteristic, it suffices to consider the case where all anti-canonical members are singular. In section 4, we then determine del Pezzo surfaces with rational double points whose anti-canonical members are all singular by using the classification of rational quasi-elliptic fibrations by Ito ([8], [9]).

From these arguments, we obtain the following theorem.

Theorem 1.2. Let X be a del Pezzo surface with rational double points over an algebraically closed field k of characteristic $p > 0$. Let $d := (K_X^2)$ be the degree and $\rho(X)$ be the Picard rank of X. Then there exists a del Pezzo surface with rational double points over the complex number \mathbb{C} which has the same singularity type, the same Picard rank and the same degree as X except when the following cases.

p	$\rho(X)$	d	The singularity type of X
2	1	2	$7A_1$
		1	$8A_1$
		1	$4A_1 + D_4$

Moreover, for each condition in Table 1, there exists a del Pezzo surface with rational double points over k which satisfies the condition.

Notation. In this paper, a variety means an integral separated scheme of finite type over an algebraically closed field. Throughout this paper, we also use the following notation:

- k: an algebraically closed field of characteristic $p > 0$.
- E_f: the reduced exceptional divisor of a birational morphism f.
- $\rho(X)$: the Picard rank of a projective variety X.

2. Preliminaries

2.1. Del Pezzo surfaces with rational double points. In this subsection, we gather basic results of del Pezzo surfaces with rational double points.

Definition 2.1. Let X be a normal projective surface over an algebraically closed field. We say that X is a del Pezzo surface with rational double points if $-K_X$ is ample and X has only rational double points.

Lemma 2.2. Let X be a del Pezzo surface with rational double points over k and $d := (K_X^2)$. Then the followings hold.
Proof. We refer to [1, Propositions 2.10, 2.12 and 2.14] and [10, Proposition 4.6] for the proof.

2.2. Liftability to the Witt ring. We denote by $W(k)$ (resp. $W_n(k)$) the Witt ring (resp. the Witt ring of the length n) of k.

Definition 2.3. Let T be a spectrum of $W(k)$ or $W_n(k)$ for some $n > 0$. Let Y be a smooth separated scheme over T and $E := \sum_{i=1}^r E_i$ be a reduced divisor on Y, where each E_i is an irreducible component of E. We say that E is simple normal crossing over T if, for any subset $J \subseteq \{1, \ldots, r\}$ such that $\bigcap_{i \in J} E_i \neq \emptyset$, the scheme-theoretic intersection $\bigcap_{i \in J} E_i$ are smooth over T of relative dimension $\dim Y - \dim T - |J|$.

Definition 2.4. Let Y be a smooth separated scheme over $\text{Spec} W_n(k)$ and E be a simple normal crossing divisor over $\text{Spec} W_n(k)$ on Y. We write $E = \sum_{i=1}^r E_i$, where each E_i is an irreducible component of E. We say that the pair (Y, E) is liftable to the Witt ring $W(k)$ (resp. $W_m(k)$, where $m > n$) if there exist

- a smooth and projective morphism $\mathcal{Y} \to \text{Spec} W(k)$ (resp. $\text{Spec} W_m(k)$),
- effective divisors $\mathcal{E}_1, \ldots, \mathcal{E}_r$ on \mathcal{Y} such that $\mathcal{E} := \sum_{i=1}^r \mathcal{E}_i$ is simple normal crossing over $\text{Spec} W(k)$ (resp. $\text{Spec} W_m(k)$),

such that $\mathcal{Y} \otimes_{W(k)} W_n(k) = Y$ and $\mathcal{E}_i \otimes_{W(k)} W_n(k) = E_i$ (resp. $\mathcal{Y} \otimes_{W_m(k)} W_n(k) = Y$ and $\mathcal{E}_i \otimes_{W_m(k)} W_n(k) = E_i$) for $i = 1, 2, \ldots, r$.

Lemma 2.5. Let $f : \mathcal{X} \to \text{Spec} W(k)$ be a morphism from a scheme to the spectrum of the Witt ring. If $f_n : \mathcal{X} \otimes_{W(k)} W_n(k) \to W_n(k)$ is flat for all $n > 0$, then f is flat. In addition, if f is proper and $f_1 : \mathcal{X} \otimes_{W(k)} k \to \text{Spec} k$ is smooth of relative dimension d, then f is smooth of relative dimension d.

Proof. The flatness of f follows from [15, Lemma 10.98.11]. Let us assume that f is proper and $f_1 : \mathcal{X} \otimes_{W(k)} k \to \text{Spec} k$ is smooth. Then we can take an open subscheme $U \subset X$ such that $\mathcal{X} \otimes_{W(k)} k \subset U$ and $f|_U$ is smooth. Since f is proper, $f(X - U)$ is a closed subset of $\text{Spec} W(k)$. Then we have $f(X - U) = \emptyset$ because the unique closed point in $\text{Spec} W(k)$ is not contained in $f(X - U)$. Thus we conclude that $U = X$.

The following lemma is a log version of [4, Theorem 8.5.9]. It seems to be well-known for experts, but we include the sketch of proof for the readers’ convenience.

Lemma 2.6 (cf. [5, Theorem (A1)]). Let Y be a smooth projective variety over k and E a simple normal crossing divisor on Y. If $H^2(Y, T_Y(- \log E)) = H^2(Y, O_Y) = 0$, then (Y, E) is liftable to $W(k)$.
Proof. Suppose that \((Y^n, E^n)\) is a lifting of \((Y, E)\) over \(W_n(k)\). We first see that \((Y^n, E^n)\) is liftable to \(W_{n+1}(k)\). Since \((Y^n, E^n)\) is simple normal crossing over \(W_n(k)\), we can take an affine open covering \(\{U_i\}\) of \(Y\) such that \((U_i, E_i | U_i)\) is liftable to \(W_{n+1}(k)\). Then for each \(i\) and for any open subset \(U\) of \(U_i\), the set of equivalence classes of such liftings is a torsor under the action of \(T_U(-\log E) := \text{Hom}(\Omega_U(\log E), \mathcal{O}_U)\). We refer to the arguments of [3, Section 8] for the details. Then by a similar argument as in [4, Theorem 8.5.9 (b)], the obstruction for the lifting of \((Y^n, E^n)\) over \(W_{n+1}(k)\) is contained in \(H^2(Y, T_Y(-\log E))\). Thus the vanishing of \(H^2(Y, T_Y(-\log E))\) gives a lift of \(Y\) and \(E_i\) as formal schemes. Since \(H^2(Y, \mathcal{O}_Y) = 0\), they are algebraizable and we get a projective scheme \(\mathcal{Y}\) over \(W(k)\) and a closed subscheme \(\mathcal{E} := \sum_{i=1}^r \mathcal{E}_i\) on \(\mathcal{Y}\) such that \(\mathcal{Y} \otimes_{W(k)} W_n(k) = Y^n\) and \(\mathcal{E}_i \otimes_{W(k)} W_n(k) = E_i^n\) for each \(n\) and \(i\) by [4, Corollary 8.4.5]. We take a subset \(J \subseteq \{1, \ldots, r\}\). Since \(\bigcap_{i \in J} \mathcal{E}_i \otimes_{W(k)} W_n(k) = \bigcap_{i \in J} E_i^n\) is smooth over \(W_n(k)\) for all \(n > 0\) and \(\mathcal{X}\) is projective over \(W(k)\), Lemma 2.5 now shows that \(\bigcap_{i \in J} \mathcal{E}_i\) is smooth of relative dimension \(\dim \mathcal{Y} - \dim W(k) - |J|\). Therefore, \((\mathcal{Y}, \mathcal{E} = \sum_{i=1}^r \mathcal{E}_i)\) is a lifting of \((Y, E)\) over \(W(k)\). \(\square\)

Lemma 2.7. Let \(X\) be a projective variety over \(k\) and let \(f : X \to \text{Spec} W(k)\) be a lifting of \(X\) to \(W(k)\). Then \(f_* \mathcal{O}_X = \mathcal{O}_{\text{Spec} W(k)}\). In particular, the generic fiber of \(f\) is geometrically connected.

Proof. We take the Stein factorization of \(f\) and let \(g : \text{Spec} R \to \text{Spec} W(k)\) be a finite part of this Stein factorization. Since \(R\) is a finite extension of a complete discrete valuation ring, \(R\) is also a discrete valuation ring. The reducedness of a closed fiber \(X\) gives \(mR = mR\), where \(m\) and \(mR\) denote the maximal ideal of \(W(k)\) and \(R\), respectively. Since \(k\) is an algebraically closed field, the Nakayama’s lemma shows that \(g^\# : W(k) \to R\) is an isomorphism. Thus \(f_* \mathcal{O}_X = \mathcal{O}_{\text{Spec} W(k)}\). By localizing at the generic point of \(\text{Spec} W(k)\), we have \(H^0(X_K, \mathcal{O}_{X_K}) = K\) and by base change, we get \(H^0(X_K, \mathcal{O}_{X_K}) = \overline{K}\), where \(K\) and \(\overline{K}\) denote the factional filed of \(W(k)\) and its algebraic closure, respectively. Thus \(X_{\overline{K}}\) is connected. \(\square\)

3. DEL PEZZO SURFACES WITH RATIONAL DOUBLE POINTS WHOSE GENERAL ANTI-CANONICAL MEMBER IS SMOOTH

In this section, \(X\) denotes a del Pezzo surface with rational double points over \(k\) and \(\pi : Y \to X\) denotes the minimal resolution. We show that if a general member of \(|-K_X|\) is smooth, then its singularity type is realizable in characteristic zero. For this, we first show that the smoothness of a general anti-canonical member implies a liftability to \(W(k)\) of \((Y, E\pi)\).

Theorem 3.1. Suppose that a general member of \(|-K_X|\) is smooth. Then \((Y, E\pi)\) is liftable to \(W(k)\).

Proof. Since \(Y\) is rational, we have \(H^2(Y, \mathcal{O}_Y) = 0\). Then it suffices to show the vanishing of \(H^2(Y, T_Y(-\log E\pi)) \simeq H^0(Y, \mathcal{O}_Y(\log E\pi) \otimes \omega_Y)\) by Lemma 2.6. This follows from essentially the same arguments as in [10, Theorem 4.8], but we include the proof for completeness. For the sake of a contradiction, we assume that there exists an injective map \(\omega_Y^{-1} \hookrightarrow \omega_Y(\log E\pi)\). By pushing forward by \(\pi\), we get \(s : \omega_X^{-1} \hookrightarrow \omega_X(\log E\pi)\).
\[\pi_*\Omega_Y(\log E_\pi) \subset \Omega_X^{[1]}, \text{ where } \Omega_X^{[1]} \text{ is the reflexive hull of } \Omega_X. \] Let \(C \in | -K_X | \) be a general member. By assumption, \(C \) is a smooth elliptic curve. By restricting \(s \) on \(C \), we have an injective map, \(s_C: \omega_X^{-1}|C \hookrightarrow \Omega_X^1|C \). The generality of \(C \) shows that \(s_C \) is injective, \(\omega_X^{-1}|C \) is ample Cartier and \(\Omega_X^{[1]}|C = \Omega_X^1|C \). Let \(t: \omega_X^{-1}|C \to \omega_C = \mathcal{O}_C \) be the composition of \(s|C: \omega_X^{-1}|C \hookrightarrow \Omega_X^1|C \) and the canonical map \(\Omega_X^1|C \to \omega_C \).

\[
\begin{array}{ccc}
0 & \longrightarrow & \mathcal{O}_C(-C) \\
\downarrow{s|C} & & \downarrow{\omega_X^{-1}|C} \\
& \longrightarrow & \Omega_X^1|C \\
& & \longrightarrow \omega_C \\
& & \longrightarrow 0.
\end{array}
\]

Then \(t \) is the zero map since \(\omega_X^{-1}|C \) is ample. Hence an injective map \(\omega_X^{-1}|C \hookrightarrow \mathcal{O}_C(-C) \) is induced by the conormal exact sequence. This is a contradiction because \(\mathcal{O}_C(-C) = \mathcal{O}_C(K_X) \) is anti-ample.

Remark 3.2. In characteristic zero, the vanishing of \(H^2(Y, T_Y(-\log E_\pi)) \) follows from Bogomolov–Sommese vanishing. Together with Theorem 3.4, we can see that del Pezzo surfaces with rational double points in Table 1 of Theorem 1.2 violate Bogomolov–Sommese vanishing. More precisely, the reflexive cotangent bundle \(\Omega_X^{[1]} \) contains an ample line bundle \(\omega_X^{-1} \) and the logarithmic cotangent bundle \(\Omega_Y(\log E) \) contains a nef and big line bundle \(\omega_Y^{-1} \). We refer [13, Section 8] and [7, Section 11] for counterexamples of Bogomolov–Sommese vanishing in positive characteristic.

Lemma 3.3. If \((Y, E_\pi)\) is liftable to \(W(k) \), then there exists a del Pezzo surface with rational double points over the complex number \(\mathbb{C} \) which has the same singularity type, the same Picard rank and the same degree as \(X \).

Proof. We denote \(E_\pi := \sum_{i=1}^{r} E_i \), where \(E_i \) is an irreducible component for each \(i \). Let \((\mathcal{Y}, \mathcal{E} := \sum_{i=1}^{r} \mathcal{E}_i)\) be a \(W(k) \)-lifting of \((Y, E_\pi)\). For a field \(F \) which contains a fractional field \(K \) of \(W(k) \), we denote \(Y_F := \mathcal{Y} \otimes_{W(k)} F \) and \(E_{i,F} := \mathcal{E}_i \otimes_{W(k)} F \) for each \(i \). Then \(Y_K \) and \(E_{i,K} \) are connected by Lemma 2.7, where \(K \) is the algebraic closure of \(K \). In particular, each \(E_{i,K} \) is a \((-2)\)-curve. Since \(E_{i,K} := \sum_{i=1}^{r} E_{i,K} \) has the same intersection matrix as \(E_\pi \), we have a contraction \(\pi_K: Y_K \to X_K \) of \(E_{i,K} \) and \(X_K \) has the same singularity types as \(X \). We first prove that \(-K_{X_K} \) is ample. For the sake of contradiction, we assume that there exists an integral curve \(C_0 \subset Y_K \) such that \(C_0 \) is not contained in \(E_{i,K} \) and \((-K_{Y_K} \cdot C_0) \leq 0 \). We take a finite extension \(L \) of \(K \) such that \(C_0 \) is defined over \(L \) and we define an effective divisor \(C \) over \(K \) as \(C := \sum_{\sigma \in \Gal(L/K)} \sigma(C_0) \).

Note that \(C_L := C \otimes_K L \) and \(E_L \) have no common components. Indeed, if there exists an integral component \(C_i \) of \(C_L \) such that \(C_i = E_{j,L} \) for some \(j \), then there exists \(\sigma \in \Gal(L/K) \) such that \(C_0 = \sigma(C_i) = \sigma(E_{j,L}) = E_{j,L} \) but this is a contradiction. We denote by \(\overline{C} \) the closure of \(C \) in \(\mathcal{Y} \) and define an effective divisor \(C_k := \overline{C} \otimes_{W(k)} k \). If \(\Supp C_k \subset E_\pi \), we can denote \(C_k = \sum_{a_i > 0} a_i E_i \) for some \(a_i > 0 \). Since \(C_L \) and \(E_L \) have no common components, we have \((C_k^2) = (C_L \cdot \sum_{a_i > 0} a_i E_i) \geq 0 \), but this contradicts the negative definiteness of \(E_\pi \). Therefore, there exists an integral curve \(C_k' \subset C_k \) such that \(C_k' \) is not contained in \(E_\pi \). Since \(-K_Y \) is nef and \(0 \leq (-K_Y \cdot C_k') \leq (-K_Y \cdot C_k) = (-K_{Y_K} \cdot C \otimes_K K) = |Gal(L/K)|(-K_{Y_K} \cdot C_0) \leq 0 \), we
have \((-K_Y \cdot C'_k) = 0\). Then \((-K_X \cdot \pi_*(C'_k)) = 0\) and this contradicts the ampleness of \(-K_X\). Finally, we check that \((K^2_X) = (K^2_{X_Y})\) and \(\rho(X) = \rho(X_Y)\). By the crepantness of \(\pi\) and \(\pi_X\), we get \((K^2_X) = (K^2_Y) = (K^2_{X_Y}) = (K^2_{Y_K})\). Also, since \(Y\) and \(Y_K\) is a smooth rational surface, we have \(\rho(Y_K) = 10 - (K^2_{Y_K}) = 10 - (K^2_Y) = \rho(Y)\). Then we obtain \(\rho(X) = \rho(X_Y)\) because \(\pi_K\) contracts the same number of \((-2)\)-curves as \(\pi\). □

Combining Theorem 3.1 and Lemma 3.3, we get the following theorem.

Theorem 3.4. Let \(X\) be a del Pezzo surface with rational double points. Suppose that a general anti-canonical member of \(X\) is smooth. Then there is a del Pezzo surface with rational double points over \(\mathbb{C}\) which has the same singularity type, the same Picard rank and the same degree as \(X\).

Remark 3.5. By considering the mod \(p\) reduction, all the singularity types in characteristic zero are realized in sufficiently large characteristic.

4. Del Pezzo surfaces with rational double points whose anti-canonical members are all singular

In this section, we determine del Pezzo surfaces with rational double points over \(k\) whose anti-canonical members are all singular by using Ito’s classifications of rational quasi-elliptic fibrations ([8], [9]). Making use of this, we prove Theorem 1.2. By Lemma 2.2, such a del Pezzo surface is of degree at most two, and \(p = 2\) or \(3\). First, we treat the case where the degree is one.

Proposition 4.1. There is one to one correspondence between the isomorphism classes of del Pezzo surfaces with rational double points of degree one whose anti-canonical members are all singular, and the isomorphism classes of rational quasi-elliptic surfaces.

Proof. Let \(X\) be a del Pezzo surface with rational double points of degree one whose anti-canonical members are all singular. Take \(\pi: Y \to X\) as the minimal resolution. Then the base locus of \(|-K_Y|\) consists of one point, say \(y\). The blow-up \(g: Z \to Y\) at \(y\) gives an elimination \(f: Z \to \mathbb{P}^1_k\) of the anti-canonical map. Since a general member of \(|-K_Y|\) is disjoint from \(E_\pi\), it is isomorphic to its image by \(\pi\). Thus all members of \(|-K_Y|\) are also singular. Since any two members of \(|-K_Y|\) intersect transversely with each other at \(y\), each \(f\)-fiber is isomorphic to its image on \(Y\). In particular, \(f: Y \to \mathbb{P}^1_k\) is a quasi-elliptic fibration and \(E_y\) is a \(f\)-section.

\[
\begin{array}{ccc}
Z & \xrightarrow{g} & Y \\
\downarrow f & & \downarrow \pi \\
\mathbb{P}^1_k & \xleftarrow{\varphi_{|-K_X|}} & X
\end{array}
\]

Thus we make a correspondence from the isomorphism classes of such del Pezzo surfaces to the isomorphism classes of pairs of quasi-elliptic surfaces and sections. Since the Mordell–Weil group of a quasi-elliptic surface acts on the set of its sections transitively, an isomorphism class of the pair of a quasi-elliptic surface and a section is the same as that of a quasi-elliptic surface. Hence we have the assertion. □
Corollary 4.2. Let X be a del Pezzo surface with rational double points of degree one whose anti-canonical members are all singular. Then the singularity type of X is one of $E_8, A_2 + D_6$ and $4A_2$ when $p = 3$, and one of $E_8, D_8, A_1 + E_7, 2D_4, 2A_1 + D_6, 4A_1 + D_4$ and $8A_1$ when $p = 2$. Conversely, all the singularity types above are realizable over k.

Proof. By Proposition 4.1, the minimal resolution of X is obtained from a rational quasi-elliptic surface by contracting a section. Quasi-elliptic surfaces are classified by [8, Theorem 3.3] and [9, Theorem 5.2] into 10 types, and each type is realizable over k. When $p = 3$, we can see that rational quasi-elliptic surfaces of type (1), (2) and (3) as in [8, Theorem 3.3] correspond to del Pezzo surfaces of singularity type $E_8, A_2 + D_6$ and $4A_2$ respectively. When $p = 2$, we can also see that rational quasi-elliptic surfaces of type (a), (b), (c), (d), (e), (f) and (g) as in [9, Theorem 5.2] correspond to del Pezzo surfaces of singularity type $E_8, D_8, A_1 + E_7, 2D_4, 2A_1 + D_6, 4A_1 + D_4$ and $8A_1$ respectively. \[\square\]

Next, we treat the case where the degree is two. The following proposition claims that the anti-canonical double covering must be purely inseparable.

Proposition 4.3. Let X be a del Pezzo surface with rational double points with $(K_X^2) = 2$. Suppose that the anti-canonical double covering $\varphi_{-K_X^1}: X \to \mathbb{P}_k^2$ is separable. Then a general anti-canonical member is smooth.

Proof. Take the minimal resolution $\pi: Y \to X$. Let $t \in \mathbb{P}_k^2$ be a general point and $V \subset |-K_Y|$ the pullback of a pencil of $|\mathcal{O}_{\mathbb{P}_k^2}(1)|$ which consists of all the members passing through t. The base locus of V consists of two points, say y_1 and y_2, such that there is no (-1)-curves or (-2)-curves passing through y_1 or y_2 because t is general and there exist only finitely many (-1)-curves and (-2)-curves on Y. Let $g: Z \to Y$ be the blow-up at y_1 and y_2, and E_i the g-exceptional divisor over y_i for $i \in \{1, 2\}$. Then g gives an elimination $f: Z \to \mathbb{P}_k^1$ of the pencil $\varphi_V: Y \to \mathbb{P}_k^1$. Since every two members of V intersect transversely at y_1 and y_2, a general f-fiber is isomorphic to its image on Y.

Now let us show that a general member of $|-K_X|$ is smooth. Conversely, suppose that members of $|-K_X|$ are all singular. Then $f: Y \to \mathbb{P}_k^1$ is a quasi-elliptic fibration, and E_1 and E_2 are f-sections by the same arguments as in Proposition 4.1. Since there are no (-1)-curves on Y which through y_1 or y_2, each (-2)-curves in Z either intersects with both E_1 and E_2 or is disjoint from both E_1 and E_2.

On the other hand, the rational quasi-elliptic surface Z is one of the type (1)-(3) as in [8, Theorem 3.3] and the type (a)-(g) as in [9, Theorem 5.2]. By the configurations of reducible fibers and sections, we can check that such sections E_1 and E_2 can exist.
only when Z is of type (g). Hence Z has eight reducible fiber. This implies, however, Y contains eight disjoint (-2)-curves, a contradiction with $\rho(Y) = 8$. \square

Proposition 4.4. Let X be a del Pezzo surface with rational double points with $(K_Z^2) = 2$. Suppose that members of $| - K_x |$ are all singular. Then $p = 2$ and its singularity type is one of E_7, $A_1 + D_6$, $3A_1 + D_4$ and $7A_1$.

Proof. By Proposition 4.3, the anti-canonical double covering $\varphi_{| - K_x |}: X \to \mathbb{P}^2_k$ is purely inseparable. In particular, we have $p = 2$. Take the minimal resolution $\pi: Y \to X$. Let $t \in \mathbb{P}^2_k$ be a general point and $V \subset | - K_Y |$ the pullback of a pencil of $| O_{\mathbb{P}^2_k}(1) |$ which consists of all the members passing through t. Then the base locus of V consists of one point, say y. By the generality of t, there is no (-1)-curves or (-2)-curves passing through y. For general two members C_1 and C_2 of V, they intersect with each other at y with multiplicity two since $| - K_x |$ is a homeomorphism. Moreover, one of them is smooth at y since otherwise $2 = (K_Z^2) = (C_1 \cdot C_2) \geq 4$. Thus general members of V are smooth at y, and have the same tangent direction at y. Hence there is a point y' infinitely near to y such that the blow-up $g: Z \to Y$ at y and y' gives an elimination $f: Z \to \mathbb{P}^1_k$ of the pencil $\varphi_Y: Y \dashrightarrow \mathbb{P}^1_k$. Since a general member of V is smooth at y, a general f-fiber is isomorphic to its image on Y. In particular, $f: Y \to \mathbb{P}^1_k$ is a quasi-elliptic fibration. By construction, E_q consists of a (-1)-curve E_1 and a (-2)-curve E_2. In particular, E_1 is a f-section and E_2 is contained in a reducible f-fiber.

Suppose that the reduced structure of the f-fiber containing E_2 is simple normal crossing. Then there is another (-2)-curve C intersecting with E_2. Since C and E_2 are contained in the same f-fiber, E_1 is disjoint from C. This implies, however, g_C is a (-1)-curve passing through y, a contradiction with the choice of y. Hence E_2 is contained in a reducible f-fiber whose reduced structure is not simple normal crossing. Combing this fact and [9, Theorem 5.2], we conclude that E_2 is contained in a reducible f-fiber of type III, where we use Kodaira’s notation. In particular, Y is one of the type (c), (e), (f) and (g) as in [ibid.]. Therefore the singularity type of X is one of E_7, $A_1 + D_6$, $3A_1 + D_4$ and $7A_1$. \square

Next, let us show that del Pezzo surfaces of degree two whose anti-canonical members are all singular are uniquely determined by their singularity types.

Proposition 4.5. There is a unique del Pezzo surface with E_7-singularity whose anti-canonical members are all singular over k.

Proof. Let X be a del Pezzo surface with E_7-singularity whose anti-canonical members are all singular. Let $Y \to X$ be the minimal resolution. Combining Corollary 4.2 and Proposition 4.4, we conclude that Y is given from the unique rational quasi-elliptic surface Z of type (c) as in [9, Theorem 5.2] by blowing-down the connected union of a section S and a (-2)-curve in the reducible fiber of type III. Since the Mordell-Weil group of the quasi-elliptic surface Z acts on the set of all sections transitively, the isomorphism class of X is independent of the choice of S. We note that a (-2)-curve intersecting with S is uniquely determined by [ibid.]. Hence X is also uniquely determined if exists.
Next, let us show the existence of such a del Pezzo surface. Fix coordinates \(\{x, y, z\} \) of \(\mathbb{P}^2_k \) and take a net \(N = \langle x^3 + y^2z, xz^2, z^3 \rangle \subset H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(3)) \). Then we can check that members of \(N \) are all singular by the Jacobian criterion. Let \(h_1: Y_1 \to \mathbb{P}^2_k \) be the blow-up at \([0 : 1 : 0] \) and \(C_1 \subset Y_1 \) the strict transform of \(\{x^3 + y^2z = 0\} \). For \(2 \leq i \leq 7 \), we define \(h_i: Y_i \to Y_{i-1} \) as the blow-up at \(E_{h_{i-1}} \cap C_{i-1} \) and \(C_i \subset Y_i \) as the strict transform of \(C_{i-1} \) by induction. For \(1 \leq i \leq 7 \), let \(E_i \) be the total transform of \(E_{h_i} \) in \(Y := Y_7 \). Let \(h = h_1 \circ \cdots \circ h_7 \) be the composition. Then \(| - K_Y | \) is the same as \(h^*N - \sum_{i=1}^7 E_i \), whose members are all singular. On the other hand, \(Y \) contains seven \((-2\)-curves, which are the strict transforms of \(\{z = 0\} \) and \(E_{h_i} \) for \(1 \leq i \leq 6 \) in \(Y \). Hence the contraction \(Y \to X \) of such \((-2\)-curves gives a desired surface \(X \).

Proposition 4.6. There is a unique del Pezzo surface with \(A_1 + D_6\)-singularity whose anti-canonical members are all singular over \(k \).

Proof. Let \(X \) be a del Pezzo surface with \(A_1 + D_6\)-singularity whose anti-canonical members are all singular. Let \(Y \to X \) be the minimal resolution. Combining Corollary 4.2 and Proposition 4.4, we conclude that \(Y \) is given from the unique rational quasi-elliptic surface \(Z \) of type (e) as in [9, Theorem 5.2] by blowing-down connected union of a section \(S \) and a \((-2\)-curve \(T \) in a reducible fiber of type III.

Suppose that \(S = Q \) and \(T \) is the irreducible component of the fiber over \(t = 0 \) intersecting with \(Q \) as in Figure 8 of [ibid.]. Then, by blowing-down the nine \(\mathbb{P}^1 \)'s which are drawn as bold lines, we get birational morphisms \(h: Z \to \mathbb{P}^2_k \) and \(h': Y \to \mathbb{P}^2_k \). The image of the fiber over \(t = 0 \) (resp. \(\infty, 1 \)) is a cuspidal cubic \(C \) (resp. the sum of line \(L \) and a conic \(R \), the sum of two lines \(L_1 \) and \(L_2 \)). Moreover, \(h(E_h) \) consists of three points \(p_1, p_2, p_3 \) which satisfy the following:

- \(C \) is singular at \(p_1 \), and \(L_1 \) and \(R \) pass through \(p_1 \). Moreover, \(h^{-1}(p_1) = S \cup T \).
- \(C \) intersects with \(L \) at \(p_2 \) with multiplicity three, with \(L_1 \) at \(p_2 \) transversally, and with \(L_2 \) at \(p_2 \) transversely.
- \(C \) intersects with \(R \) at \(p_3 \) with multiplicity four and with \(L_2 \) with multiplicity two.

By [14, Theorem 3.1], we can choose coordinates \(\{x, y, z\} \) of \(\mathbb{P}^2_k \) such that \(C \) is defined by \(x^3 + y_2z = 0 \). Then \(p_1 = [0 : 0 : 1] \) and \(p_2 = [0 : 1 : 0] \). Since the automorphism \(\varphi: [x : y : z] \mapsto [ax : y : a^3z] \) of \(\mathbb{P}^2_k \) with \(a \in k^* \) makes \(C \) stable, we also may assume that \(p_3 = [1 : 1 : 1] \). Then an easy calculation shows that \(L, Q, L_1 \) and \(L_2 \) are defined by \(z = 0, xz + y^2 = 0, y = 0 \) and \(x + y = 0 \) respectively. Hence \(Y \) is obtained by blowing-up three points on \(C \) infinitely near to \(p_2 \) and four points on \(C \) infinitely near to \(p_3 \). Moreover, the net \(h'|{-K_Y}| \) is generated by \(C, L_1 + 2L_2 \) and \(3L_2 \), whose members are all singular by the Jacobian criterion. Hence so are members of \(|{-K_X}| \).

When we choose another connected union of a section and an irreducible component of a reducible fiber of type III, we get the same configuration of curves \(C, L, R, L_1 \) and \(L_2 \) after a suitable blow-down by symmetry of the configuration of sections and reducible fibers on \(Z \). Therefore such \(X \) is uniquely determined.

Proposition 4.7. There is a unique del Pezzo surface with \(3A_1 + D_4\)-singularity whose anti-canonical members are all singular over \(k \).
Proof. Let X be a del Pezzo surface with $3A_1 + D_4$-singularity whose anti-canonical members are all singular. Let $Y \rightarrow X$ be the minimal resolution. Combining Corollary 4.2 and Proposition 4.4, we conclude that Y is given from a rational quasi-elliptic surface Z of type (f) as in [9, Theorem 5.2] by blowing-down connected union of a section S and a (-2)-curve T in a reducible fiber of type III.

From now on, we follow the notation used in Figure 10 of [ibid.]. Suppose that $S = O$ and $T = \Theta_{0,0}$. Then, by blowing-down $O, \Theta_{0,0}, P_1, P_2, Q_1, Q_2, \Theta_{1,1}, \Theta_{1,2}$ and $\Theta_{1,3}$ in this order, we get birational morphisms $h: Z \rightarrow \mathbb{P}^2_k$ and $h': Y \rightarrow \mathbb{P}^2_k$. Then $L = h_\ast \Theta_{1,4}$, $L_1 = h_\ast \Theta_{\ast,1}$, $L_2 = h_\ast \Theta_{\alpha,1}$ and $L_3 = h_\ast \Theta_{\alpha,2,1}$ are lines in \mathbb{P}^2_k. Moreover, $h(E_h)$ consists of five points p_0, \ldots, p_4 which satisfy the following:

- $h^{-1}(p_0) = S \cup T$.
- For $1 \leq i \leq 3$, the line L intersects with L_i at p_i.
- L_1, L_2 and L_3 pass through p_4.

We can choose coordinates $\{x, y, z\}$ of \mathbb{P}^2_k such that $p_1 = [0 : 0 : 1]$, $p_2 = [0 : 1 : 1]$, $p_3 = [0 : 1 : 0]$ and $p_4 = [1 : 0 : 0]$. Then L, L_1, L_2 and L_3 are defined by $x = 0$, $x = y = 0$, $y + z = 0$ and $z = 0$ respectively. Hence Y is obtained by blowing-up at two points on L_i infinitely near to p_i for $1 \leq i \leq 3$ and at p_4. Moreover, the net $h'_\ast | - K_Y |$ is generated by $2L + L_1, 2L + L_3$ and $L_1 + L_2 + L_3$, whose members are all singular by the Jacobian criterion. Hence so are members of $| - K_X |$.

When we choose another connected union of a section of an irreducible component of a reducible fiber of type III, we get the same configuration of curves L, L_1, L_2 and L_3 after a suitable blow-down by symmetry of the configuration of sections and reducible fibers on Z. Therefore such X is uniquely determined. □

Proposition 4.8. There is a unique del Pezzo surface with $7A_1$-singularity over k.

Proof. Let X be a del Pezzo surface with $7A_1$-singularity and $Y \rightarrow X$ the minimal resolution. Since [16] shows that there is no del Pezzo surface over \mathbb{C} with such singularity, members of $| - K_X |$ are all singular by Theorem 3.4. Combining Corollary 4.2 and Proposition 4.4, we conclude that Y is given from a rational quasi-elliptic surface Z of type (g) as in [9, Theorem 5.2] by blowing-down the connected union of a section S and a (-2)-curve T. Let us compile the configuration of reducible fibers and sections of Z given in [ibid.]. There are eight reducible singular fibers of type III on Z, and all the other fiber is irreducible. Hence there are exactly sixteen (-2)-curves $\{\Theta_{i,j}\}_{0 \leq i \leq 7, 1 \leq j \leq 2}$ on Z such that $(\Theta_{i,j}, \Theta_{i',j'}) > 0$ if and only if $i = i'$ and $j \neq j'$. On the other hand, there is exactly six sections $\{A_{k,l}\}_{0 \leq k \leq 7, 1 \leq l \leq 2}$ on Z such that $(A_{k,l}, A_{k',l'}) > 0$ if and only if $k = k'$ and $l \neq l'$. We may assume that $S = A_{0,2}$, $T = \Theta_{0,2}$, and $(\Theta_{i,j}, A_{0,2}) = 1$ if and only if $j = 2$. By Figure 11 of [ibid.], we also may assume that $(\Theta_{0,2}, A_{k,l}) = 1$ if and only if $l = 2$. By contracting $A_{0,2}, \Theta_{0,2}$ and $A_{k,l}$ for $1 \leq k \leq 7$, we get a birational morphism $h: Z \rightarrow \mathbb{P}^2_k$.

Let us show that $h_\ast \Theta_{i,j} \sim O_{\mathbb{P}^2_k}(j)$ for each $1 \leq i \leq 7$ and $1 \leq j \leq 2$. We need only consider the case where $i = 1$ by symmetry and the case where $j = 1$ since $h_\ast (\Theta_{1,1} + \Theta_{1,2}) \sim h_\ast (-K_Y) \sim O_{\mathbb{P}^2_k}(3)$. Conversely, suppose that $h_\ast \Theta_{i,1} \sim O_{\mathbb{P}^2_k}(2)$. Then exactly six of $A_{1,1}, A_{2,1}, \ldots, A_{7,1}$ intersect with $\Theta_{i,1}$ since $(h_\ast \Theta_{1,1})^2 - \Theta_{i,1}^2 = 6$. We may assume that $A_{1,1}$ is disjoint from $\Theta_{1,1}$.
Now fix \(i_0 \in \{2, 3, \ldots, 7\} \). If \(h_* \Theta_{i_0,1} \sim \mathcal{O}_{\mathbb{P}^2_k}(2) \), then at least five of \(A_{1,1}, A_{2,1}, \ldots, A_{7,1} \) intersect with both \(\Theta_{1,1} \) and \(\Theta_{i_0,1} \), which implies \(4 = (h_* \Theta_{1,1}, h_* \Theta_{i_0,1}) \geq 5 \), a contradiction. Hence \(h_* \Theta_{i_0,1} \sim \mathcal{O}_{\mathbb{P}^2_k}(1) \). Then exactly three of \(A_{1,1}, A_{2,1}, \ldots, A_{7,1} \) intersect with \(\Theta_{i_0,1} \) since \((h_* \Theta_{i_0,1})^2 - \Theta_{i_0,1}^2 = 3 \). Moreover, \(A_{i,1} \) intersects with \(\Theta_{i_0,1} \) since otherwise we would obtain \(2 = (h_* \Theta_{1,1}, h_* \Theta_{i_0,1}) \geq 3 \). On the other hand, for \(2 \leq i_1 < i_2 \leq 7 \), only \(A_{i,1} \) intersects with both \(\Theta_{i_1,1} \) and \(\Theta_{i_2,1} \) among \(\{A_{k,1}\}_{1 \leq k \leq 7} \) since otherwise we would obtain \(1 = (h_* \Theta_{1,1}, h_* \Theta_{i_0,1}) \geq 2 \). Hence we may assume that \(\Theta_{i,1} \) intersects with \(A_{1,1}, A_{2i-2,1}, A_{2i-1,1} \) for \(2 \leq i \leq 4 \). It implies, however, that \(1 = (h_* \Theta_{5,1}, h_* \Theta_{i,1}) \geq 2 \) for some \(2 \leq i \leq 4 \), a contradiction. Therefore \(h_* \Theta_{i,1} \sim \mathcal{O}_{\mathbb{P}^2_k}(1) \).

Let \(p_i = h(A_{i,1}) \) and \(l_i = h_* \Theta_{i,1} \) for \(1 \leq i \leq 7 \). Then we have checked that \(\{l_i\}_{1 \leq i \leq 7} \) is a set of lines passing through exactly three of \(\{p_i\}_{1 \leq i \leq 7} \). Hence the set \(\Sigma := \{(i, j) \mid l_i \text{ passes through } p_j\} \) consists of 21 elements. On the other hand, distinct two lines cannot share two points. Combining this fact and \(\sharp \Sigma = 21 \), we conclude that \(\{p_i\}_{1 \leq i \leq 7} \) is a set of points contained in exactly three of \(\{l_i\}_{1 \leq i \leq 7} \).

Next let us show that \(\{p_i\}_{1 \leq i \leq 7} \) contains four points in general position. Changing the indices of \(\{l_i\}_{1 \leq i \leq 7} \) and \(\{p_i\}_{1 \leq i \leq 7} \), we may assume that \(l_1 \) (resp. \(l_2 \)) passes through \(p_1 \) and \(p_2 \) (resp. \(p_1 \) and \(p_3 \)). Since three of \(\{l_i\}_{1 \leq i \leq 7} \) passes through \(p_2 \), it contains the line spanned by \(p_2 \) and \(p_3 \), say \(l_3 \). Then there is a unique point, say \(p_4 \), in \(\{p_i\}_{1 \leq i \leq 7} \) disjoint from \(l_1 \cup l_2 \cup l_3 \). Hence \(p_1, p_2, p_3 \) and \(p_4 \) are in general position.

Changing coordinates of \(\mathbb{P}^2_k \), we may assume that \(p_1 = [1 : 0 : 0] \), \(p_2 = [0 : 1 : 0] \), \(p_3 = [0 : 0 : 1] \) and \(p_4 = [1 : 1 : 1] \). Then we can check that \(p_i \)'s and \(l_i \)'s are all the points and lines defined over \(\mathbb{F}_2 \), respectively. Therefore \(Y \) is the blow-up of all the points in \(\mathbb{P}^2_{\mathbb{F}_2} \), and \(X \) is the contraction of strict transforms of all the lines in \(\mathbb{P}^2_{\mathbb{F}_2} \).

Remark 4.9. Cascini–Tanaka [2, Proposition 6.4] proved that some del Pezzo surface constructed by Langer [13, Example 8.2] is actually isomorphic to some del Pezzo surface constructed by Keel–McKernan [11, end of section 9]. Proposition 4.8 gives another proof of this fact. Moreover, Proposition 4.8 says that this surface is also isomorphic to a counterexample of Akizuki–Nakano vanishing in [7, Proposition 11.1 (1)] with \(p = n = 2 \).

Now, we can prove the main theorem.

Proof of Theorem 1.2. When \(p > 3 \), the assertion follows from Lemma 2.2 (3) and Theorem 3.4.

Next suppose that \(p = 3 \). Then, combining Theorem 3.4, Corollary 4.2 and Proposition 4.4, we conclude that there exists a del Pezzo surface with rational double points over \(\mathbb{C} \) which has the same singularity type, the same Picard rank and the same degree as \(X \) except possibly when \(\rho(X) = 1 \) and the singularity type of \(X \) is one of \(E_8, A_2 + D_6 \) and \(4A_2 \). By [16, Theorem 1.2], there is also a desired del Pezzo surface over \(\mathbb{C} \) when the singularity type of \(X \) is one of them.

Finally suppose that \(p = 2 \). Then, combining Theorem 3.4, Corollary 4.2 and Propositions 4.4–4.8, we conclude that there is a desired del Pezzo surface over \(\mathbb{C} \) except possibly when \(\rho(X) = 1 \) and the singularity type of \(X \) is one of \(E_8, D_8, A_1 + E_7, 2D_4, 2A_1 + D_6, 4A_1 + D_4, 8A_1, E_7, A_1 + D_6, 3A_1 + D_4 \) and \(7A_1 \), Comparing this list and
[16, Theorem 1.2], we deduce that there is a desired del Pezzo surface over \(\mathbb{C} \) if and only if the singularity type of \(X \) is not \(7A_1, 8A_1 \) or \(4A_1 + D_4 \).

\[\square\]

Acknowledgments. The authors wish to express their gratitude to Naoki Koseki, Professor Shunsuke Takagi, Shou Yoshikawa, Teppei Takamatsu and Yohsuke Matsuzawa for helpful discussions and comments. The first author was supported by JSPS KAKENHI Grant Number JP19J21085. The second author was supported by JSPS KAKENHI Grant Number JP19J14397.

References

[1] Bernasconi, F and Tanaka, H, On del Pezzo fibrations in positive characteristic, arXiv:1903.10116, to appear in J. Inst. Math. Jussieu.

[2] Cascini, P and Tanaka, H, Smooth rational surface violating Kawamata–Viehweg vanishing, Eur. J. Math., 4(1)(2018), 162–176.

[3] Esnault, H and Viehweg, E, Lectures on vanishing theorems, DMV Seminar Band 13, Birkhäuser(1992).

[4] Fontechi, B, Göttsche, L, Illusie, L, Kleiman S. L, Nithure, N, Vistoli, A, Fundamental Algebraic Geometry: Grothendieck’s FGA Explained, Math. Surveys and Monographs, Vol.123 (2005).

[5] Fujita, T, On polaried varieties of small \(\Delta \)-genera, Tohoku Math. J., 34 (1982), 319–341.

[6] Furushima, M, Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space \(\mathbb{C}^3 \), Nagoya. Math. J., 104 (1986), 1–28.

[7] Graf, P, Differential forms on log canonical spaces in positive characteristic, arXiv:1905.01968.

[8] Ito, H, The Mordell-Weil groups of unirational quasi-elliptic surfaces in characteristic 3, Math Z. 211 (1992), 1–39.

[9] Ito, H, The Mordell-Weil groups of unirational quasi-elliptic surfaces in characteristic 2, Tohoku Math. J. 46(2) (1994), no. 2, 221–251.

[10] Kawakami, T, On Kawamata–Viehweg type vanishing for three dimensional Mori fiber spaces in positive characteristic, preprint arXiv:2004.07125v2.

[11] Keel, S, McKernan, J, Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc. 140 (1999), no. 669.

[12] Lacini, J, On rank one log del Pezzo surfaces in characteristic different from two and three, arXiv:2005.14544.

[13] Langer, A, The Bogomolov–Miyaoka–Yau inequality for logarithmic surfaces in positive characteristic, Duke math. J., 165, no. 14 (2016), 2737–2769.

[14] Lee, W, Park, E, and Schenzel, P, On the classification of non-normal cubic hypersurfaces, J. Pure Appl. Algebra, 215(8) (2011), 2034–2042.

[15] The Stacks Project Authors, Stacks Project.

[16] Ye, Q, On Gorenstein log del Pezzo surfaces, Japan. J. Math. 28 (2002), no.1, 87–136.

E-mail address: kawakami@ms.u-tokyo.ac.jp

E-mail address: nagaoka@ms.u-tokyo.ac.jp

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan