The chemical defensome of fish: conservation and divergence of genes involved in sensing and responding to pollutants among five model teleosts.

Marta Eide¹*, Xiaokang Zhang²,³*, Odd André Karlsen¹, Jared V. Goldstone⁴, John Stegeman⁴, Inge Jonassen², Anders Goksøyr¹§

1. Department of Biological Sciences, University of Bergen, Norway
2. Computational Biology Unit, Department of Informatics, University of Bergen, Norway
3. Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospital, Norway
4. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

* The authors contributed equally to the study
§ Corresponding author: anders.goksoyr@uib.no
Abstract

How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Although the types of defensome genes are generally conserved in animals, there are important differences in the complement and function of specific genes between species. Teleost fish is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes.

In this study, we compared the genes comprising the chemical defensome of five fish species that span the teleostei evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafish (Danio rerio), Atlantic cod (Gadus morhua), medaka (Oryzias latipes), Atlantic killifish (Fundulus heteroclitus) and three-spined stickleback (Gasterosteus aculeatus). Genome mining revealed evolved differences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.

Keywords

Chemical defensome; environmental contaminants; detoxification; nuclear receptors; biotransformation; antioxidant proteins; heat shock proteins; model species; toxicology
1. Background

The aquatic environment is a sink for anthropogenic compounds, and aquatic animals are particularly vulnerable to chemical stressors in their natural habitats. Many of these chemicals may profoundly influence organism health, including viability, growth, performance, and reproductive abilities. Aquatic species are also widely used as model organisms to assess responses to environmental pollutants. In the OECD Guidelines for the Testing of Chemicals, 13 tests for toxic properties of chemicals use fish in general, and often specific fish species such as zebrafish, medaka, Atlantic killifish and three-spined stickleback.

The intrinsic defense against toxic chemicals largely depends on a set of genes and proteins collectively known as the chemical defensome \(^1\). The chemical defensome include a wide range of transcription factors, enzymes, transporters, and antioxidant enzymes that together function to detoxify and eliminate harmful compounds, including xenobiotic and endobiotic chemicals. Thus, the composition of genes comprising a species’ chemical defensome will affect the species overall responsiveness and sensitivity towards chemicals stressors. The recent years of sequencing efforts have produced high quality genome assemblies from a wide range of species, facilitating genome-wide mapping and annotation of genes. The chemical defensome was first described in the invertebrates sea urchin and sea anemone \(^1,2\), and was later mapped in zebrafish (\textit{Danio rerio}), coral, arthropods, and partly in tunicates \(^3-6\). Although these reports show that the overall metabolic pathways involved in the chemical defensome are largely evolutionarily conserved, the detailed comparison of defensome gene composition in different teleost fish species is not studied.

The diversity in both presence and number of gene homologs can vary substantially between fish species due to the two whole genome duplication (WGD) events in early vertebrate evolution \(^7\) and a third fish-specific WGD event \(^8\), in addition to other evolutionary mechanisms such as gene loss, inversions and neo- and subfunctionalizations. For example, we have previously shown that several losses of the pregnane x receptor (\textit{pxr}\(^+\), or \textit{nr1l2}) have occurred independently across teleost evolution \(^9\). PXR is an important xenosensor and as a ligand-activated transcription factor one of the key regulators of the chemical defensome \(^10,11\). The importance of PXR in response to chemical stressors in vertebrates, raises questions of how some fish species cope without this gene.

Thus, the objective of this study was to compare the chemical defensome of zebrafish (\textit{Danio rerio}), medaka (\textit{Oryzias latipes}), and Atlantic killifish (\textit{Fundulus heteroclitus}), which are species that have retained a \textit{pxr} gene, to Atlantic cod (\textit{Gadus morhua}) and three-spined stickleback (\textit{Gasterosteus aculeatus}), that have lost this gene by independent mechanisms.

Zebrafish, medaka, killifish, and stickleback are established laboratory and environmental model species in both developmental and toxicological studies \(^12-15\). Atlantic cod is an ecologically and economically important species in the North Atlantic Ocean, and has commonly been used as a bioindicator species in environmental monitoring programs \(^16-18\). The genome of Atlantic cod was published in 2011 \(^19\), which has facilitated its increased use as model in toxicological studies \(^20-24\). Although these fish are all benthopelagic species, their natural habitats range from freshwater to marine environments, from tropical to temperate conditions, and reach sizes ranging from less than five cm (zebrafish and medaka) and 15 cm (killifish and stickleback) to 200 cm (Atlantic cod).

\(^*\) In this paper, the nomenclature is in line with the ZFIN Zebrafish Nomenclature Conventions (https://wiki.zfin.org/display/general/ZFIN+Zebrafish+Nomenclature+Conventions). Thus, fish genes are written in lowercase italic and fish proteins in non-italic and first letter uppercase.
Our results showed that putative orthologs of all genes comprising the chemical defensome were retained in these five fish species, except for the absence of \textit{pxr} in Atlantic cod and stickleback. We found that the number of homologs in some gene families can vary greatly between fish species, which could result in differences in the corresponding defense pathway. However, these variations appeared to be randomly distributed in the defensome gene families and were not unique to known target genes of Pxr or other xenosensors. Furthermore, we found that many of chemical defensome genes are not transcribed in early development of zebrafish and stickleback until after hatching. The consequential lack of transcriptional response in zebrafish embryo compared to larvae were further demonstrated following exposure to the model polycyclic aromatic hydrocarbon contaminant, benzo(a)pyrene.

In conclusion, our study represents the first interspecies comparison of the full complement of chemical defensome genes in teleost model species. We found that although most defensome genes have been retained in the teleost genomes over millions of years, there are distinct differences between the species. Based on our results, we suggest a holistic approach to analyze omics datasets from toxicogenomic studies, where differences in the chemical defensome gene complement are taken into consideration.
2. Material and methods

2.1. Sequence resources

The mapping of chemical defensome genes were performed in the most recently published fish genomes available in public databases (Supplementary Table 1, available at FAIRDOMHub: https://doi.org/10.15490/fairdomhub.1.document.872.1). For zebrafish (Danio rerio, GRCz11), three-spined stickleback (Gasterosteus aculatus, BROAD S1), Atlantic killifish (Fundulus heteroclitus, Fundulus_heteroclitus-3.0.2), and Japanese medaka HdrR (Oryzias latipes, ASM223467v1), we used the genome assemblies and annotations available in ENSEMBL. For Atlantic cod (Gadus morhua), we used the recent gadMor3 genome assembly available in NCBI (GCA_902167405). For all fish, we focused on the protein coding genes and transcripts.

2.2. Identification of chemical defensome genes

Two main approaches were used to identify the genes related to the chemical defensome of the fish species. First, using gene names listed in previous publications on the chemical defensome (available at FAIRDOMHub: https://doi.org/10.15490/fairdomhub.1.datafile.3957.1), we searched the current annotations in NCBI for Atlantic cod or ENSEMBL for zebrafish, stickleback, killifish, and medaka. For the well-annotated zebrafish genome, this approach successfully identified the genes that are part of the chemical defensome, as previously mapped by Stegeman, et al. 3. However, only relying on annotations will not identify all defensome genes in the other less characterized fish genomes. Thus, secondly, we also performed hidden Markov model (HMM) searches using HMMER and Pfam profiles representing protein families that are part of the chemical defensome (available at FAIRDOMHub: https://doi.org/10.15490/fairdomhub.1.datafile.3956.1) in the genomes of the remaining four fish species.

Putative orthologs of the retrieved protein sequences were identified using reciprocal best hit BLAST searches against the well-annotated zebrafish proteome. To capture any species-specific duplications in the fish genomes compared to the zebrafish reference genome, hits from one-way BLAST hits were also included. The identified peptide sequence IDs were subsequently converted to their related gene IDs using the BioMart tool on ENSEMBL (https://m.ensembl.org/biomart/martview) and R package “mygene” (https://doi.org/10.18129/B9.bioc.mygene). Finally, the resulting gene lists were then refined to contain only members of gene families and subfamilies related to the chemical defensome, using the same defensome gene lists as in the first approach (https://doi.org/10.15490/fairdomhub.1.datafile.3957.1).

2.3. Transcription of chemical defensome genes in early development

RNA-Seq datasets of early developmental stages of zebrafish (expression values in Transcripts Per Million from ArrayExpress: E-ERAD-475) and stickleback (sequencing reads from NCBI BioProject: PRJNA395155) were previously published by White, et al. 25 and Kaitetzidou, et al. 26, respectively.

For stickleback, embryos were sampled at early morula, late morula, mid-gastrula, early organogenesis, and 24 hours post hatching (hph). The sequencing data was processed and analyzed following the automatic pipeline RASflow 27. Briefly, the reads were mapped to the stickleback genome downloaded from ENSEMBL of version release-100. HISAT2 28 was
used as aligner and featureCounts \(^{29}\) was used to count the reads. The library sizes were normalized using Trimmed Mean of M values (TMM) \(^{30}\) and the Counts Per Million (CPM) were calculated using R package edgeR \(^{31}\). The source code and relevant files can be found on GitHub: https://github.com/zhxiaokang/fishDefensome/tree/main/developmentalStages/stickleback/RASflow.

The zebrafish dataset included 18 time points from one cell to five days post fertilization (dpf). In order to best compare to the available stickleback developmental data, we chose to include the following time points in this study: Cleavage_2 cell (early morula), blastula_1k cell (late morula), mid-gastrula, segmentation_1-4-somites (early organogenesis), and larval_protruding_mouth (24 hph).

2.4 Exposure response on defensome genes in zebrafish early development

RNA-Seq datasets of zebrafish exposed to benzo(a)pyrene (B(a)P) (gene counts from NCBI GEO: GSE64198) were previously published by Fang, et al. \(^{32}\). Briefly, the datasets are results from the following in vivo experiments: Adult zebrafish were exposed to B(a)P for 7-11 days before their eggs were collected and further exposed until 3.3 (embryonic state) and 96 (larvae state) hours post fertilization (hpf). 200 embryos and 10 larvae were pooled for each group, giving three replicate groups of control and exposed at 3.3 hpf and two replicate groups of control and exposed at 96 hpf. The gene counts were then normalized followed by differential expression analysis using edgeR \(^{31}\).
3. Results and discussion

3.1 Chemical defensome genes present in model fish genomes.

The full complement of chemical defensome genes in zebrafish, killifish, medaka, stickleback and Atlantic cod are available at the FAIRDOMHub (https://doi.org/10.15490/fairdomhub.1.datafile.3958.1). In short, genome analyses of the selected fish species shows that the number of chemical defensome genes range from 446 in stickleback to 510 in zebrafish (Figure 1). Although the number of putative homologous genes in each subfamily varies, we found that all gene subfamilies of the chemical defensome is represented in each species, except for the absence of pxr in stickleback and Atlantic cod.
Figure 1: Chemical defensome genes in five model fish species. The genes were identified by searching gene names and using HMMER searches with Pfam profiles, followed by reciprocal or best-hit blast searches towards the zebrafish proteome. The gene families are organized in categories following Gene Ontology annotations and grouped by their role in the chemical defensome. The size of the disk represents the relative number of genes in the different fish genomes within each group, with the number of genes in a specific gene family as slices.
3.2.2 Soluble receptors and transcription factors

Stress-activated transcription factors serve as important first responders to many chemicals, and in turn regulate the transcription of other parts of the chemical defensome. **Nuclear receptors** (NRs) are a superfamily of structurally similar, ligand-activated transcription factors, where members of subfamilies NR1A, B, C, H, and I (such as retinoid acid receptors, peroxisomal proliferator-activated receptors, and liver X receptor), NR2A and B (hepatocyte nuclear factors and retinoid x receptors), and NR3 (such as estrogen receptors and androgen receptor) are involved in the chemical defense [33-36]. All NR subfamilies were found in the five fish genomes, except for the nr1i2 gene.

NR1I2, or pregnane x receptor (PXR) is considered an important xensor responsible for the transcription of many genes involved in the biotransformation of xenobiotics [10,37]. We have previously shown that loss of the pxr gene has occurred multiple times in teleost fish evolution [9], including in Atlantic cod and stickleback. Interestingly, our searches did not reveal a pxr gene in the ENSEMBL genome assembly of Japanese medaka HdRr, which is considered the reference medaka strain [38,39]. In contrast, a pxr gene is annotated in the ENSEMBL genomes of the closely related medaka strains HSOK and HNI. Our previous study identified a sequence similar to zebrafish Pxr in the MEDAKA1 (ENSEMBL release 93) genome [9], and a partial coding sequence (cds) of pxr is cloned from medaka genome [40]. However, the specific strain of these resources is not disclosed.

To assess the possible absence of pxr in the medaka HdRr strain, we also performed synteny analysis. In vertebrate species, including fish, pxr is flanked by the genes maats1 and gsk3b. These genes are also annotated in medaka HdRr, but the specific gene region has a very low %GC and low sequence quality. Thus, we suspect that the absence of pxr in the Japanese medaka HdRr genome is due to a sequencing or assembly error. However, until more evidence of its absence can be presented, we chose to include the medaka pxr gene (UniProt ID A8DD90ORYLA) in our resulting list of medaka chemical defensome genes.

Other important transcription factors are the **basic helix-loop-helix Per-Arnt-Sim** (bHLH/PAS) proteins and the **oxidative stress-activated transcription factors**. bHLH/PAS proteins are involved in circadian rhythms (such as clock and arntl), hypoxia response (such as hif1a and ncoa), development (such as sim), and the aryl hydrocarbon receptor pathway (ahr and arnt) (as reviewed by Gu, et al. [41] and Kewley, et al. [42]), while oxidative stress-activated transcription factors respond to changes in the cellular redox status and promote transcription of antioxidant enzymes [43,44]. The latter protein family includes, nuclear factor erythroid-derived 2 (NFE2), NFE2-like (NFE2L, also known as NRFs) 1, 2, and 3, BACH, the dimerization partners small-Mafs (MafF, MafG and MafK), and the inhibitor Kelch-like-ECH-associated protein 1 (KEAP1) [45]. Putative orthologs for all these subfamilies were identified in all five fish genomes.

3.2.3 Biotransformation enzymes

In the first phase of xenobiotic biotransformation, a set of enzymes modifies substrates to more hydrophilic and reactive products. The most important gene family of **oxygenases** is the cytochrome P450 enzymes (CYPs, EC 1.14.-.-), a large superfamily of heme-proteins that initiate the biotransformation of numerous xenobiotic compounds through their monooxygenase activity [46]. The subfamilies considered to be involved in xenobiotic transformation is Cyp1, Cyp2, Cyp3, and Cyp4, and genes of these families were found in all fish species. The number of genes in each subfamily slightly differs from previous mappings.
of the CYPome of zebrafish and cod47,48 (Supplementary Table 2, available at FAIRDOMhub: \url{https://doi.org/10.15490/fairdomhub.1.document.872.1}). This is likely explained by the sequence and annotation improvement in latest genome assemblies.

Other oxygenases include flavin-dependent monooxygenases (FMOs, EC 1.14.13.8), aldehyde dehydrogenases (ALDH, EC 1.2.1.3), alcohol dehydrogenases (ADHs, EC 1.1.1.1), and prostaglandin-endoperoxide synthases (PTGS, also known as cyclooxygenases, EC 1.14.99.1). Of these, \textit{aldh} represented the largest family in our study, with number of putative gene orthologs ranging from 19 to 22 genes. In comparison, \textit{fmo} had only one gene in zebrafish and four in killifish and cod.

Furthermore, \textit{reductases} modify chemicals by reducing the number of electrons. Reductases include aldo-keto reductases (AKRs, EC 1.1.1), hydroxysteroid dehydrogenases (HSDs, EC 1.1.1), epoxide hydrolases (EPHXs, EC 3.3.2.9 and EC 3.3.2.10), and the NAD(P)H:quinone oxidoreductases (NQOs, EC 1.6.5.2). Interestingly, the number of putative orthologous genes in the \textit{nqo} reductase families varied greatly between the fish species, ranging from one in zebrafish to ten in stickleback. A phylogenetic analysis of the evolutionary relationship of the sequences (Figure 2), shows that all fish species have a \textit{Nqo1} annotated gene. In addition, medaka, killifish, stickleback and cod have three to nine other closely related genes. The endogenous functions of the different \textit{nqo} genes found in fish, and thus the consequences of their putative evolutionary gain in teleost fish, remains unknown and should be studied further.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Phylogenetic tree of NAD(P)H:quinone oxidoreductases (NQO), also known as DT-diaphorase (DTD). Multiple sequence alignment and phylogenetic tree was built using Clustal Omega49 with standard settings. The tree was drawn using iTol50, and rooted with the archaeabacterial NQO5.}
\end{figure}

In the second phase of biotransformation, endogenous polar molecules are covalently attached to xenobiotic compounds by \textit{transferases}, thus facilitating the generation of more water-soluble products that can be excreted from the cells and the organism. An important
class of such conjugating enzymes are glutathione S-transferases (GSTs, EC 2.5.1.18), which
are divided into three superfamilies: the cytosolic GSTs (divided in six subfamilies designated
alpha through zeta), the mitochondrial GST (GST kappa) and the membrane-associated GST
(designated MAPEG) 51,52. Other classes of conjugating enzymes in vertebrates include
cytoplasmic sulfotransferases (SULTs, EC 2.8.2), UDP-glucuronosyl transferases (UGTs, EC
2.4.1.17), N-acetyltransferases (NATs, EC 2.3.1.5), and arylamine NATs (aa-NAT).

Our searches identified a gstp gene in zebrafish and cod genomes, but not in medaka,
killifish and stickleback. Gstp is previously identified as the major Gst isoenzyme in livers of
marine salmonid species 53. Although the specificity of GSTP is not fully understood, its activity
seems related to oxidative stress 54. Furthermore, the total number of gst encoding genes was
substantially higher in zebrafish (19 genes) compared to the other fish species (9 in
stickleback, 10 in medaka, and 13 in killifish and in cod).

Similarly, the number of ugt encoding genes is considerably higher in zebrafish
compared to the other fish genomes. Whereas 31 ugt genes were found annotated in
zebrafish, we only identified 15 in killifish, 11 genes in medaka, 17 in stickleback, and 16 in
cod. All Ugt subfamilies (ugt1, -2, -5, and -8) are represented in the different fish genomes but
include a varying number of homologs. Previous publications indicate that the number of
zebrafish ugt encoding genes are as high as 45, with the ugt5 subfamily only existing in teleost
and amphibian species 55. One study has found cooperation of NQO1 and UGT in detoxification
of vitamin K3 in HEK293 cell line 56. However, it is not known if there is any correlation between
the high number of ugt genes and low number of nqo genes in zebrafish, relative to the other
fish species.

3.2.3 Transporter proteins

Energy-dependent efflux transport of compounds across both extra- and intracellular
membranes is facilitated by ATP-binding cassette (ABC) transporters. In humans, the ABCs are
organized into seven subfamilies, named ABC A through G, where proteins of B (also known
as MDR1), C and G are known to be involved in multidrug resistance (MDR) 57. A separate
group of proteins is called the Solute Carrier (SLC) ‘superfamily,’ which consists of diverse non-
homologous groups of ion and metal transporting membrane proteins that facilitate passive
transport 58. Relevant solute carrier proteins include the drug transporting SLC22 and SLC47,
the zinc transporting SLC30 and SLC39, the copper transporting SLC31, and the organic anion
transporting SLCO 59.

We found that the number of abcb, abcc, abcg, slc, and slco genes was similar between
the fish species, with zebrafish holding a slightly higher number of homologs. MDR and P-
glycoproteins have been relatively understudied in fish 60-62. A clade of abch transporters
related to abcg is found in some fish species, including zebrafish, but not in Japanese medaka,
stickleback and cod 63. However, as the endogenous function of these genes are not
determined, we have not included them specifically into this study.

3.2.4 Antioxidant proteins

Antioxidant proteins protect against harmful reactive oxygen species (ROS), such as
superoxide anions, hydrogen peroxide and hydroxyl radicals that are formed as by-products
in many physiological processes 64,65. The enzyme superoxide dismutase (SOD, EC 1.15.1.1)
catalyze the conversion of superoxide, one of the most abundant ROS species, to hydrogen
peroxide 66. The further detoxification of hydrogen peroxide can be performed by catalases
(CAT, EC 1.11.1.6) and glutathione peroxidases (GPXs, EC 1.11.1.9) 64. The antioxidants also
include the glutathione (GSH) system, where GSH is supplied by reduction of glutathione disulphide by glutathione reductase (GSR, EC 1.8.1.7), or by de novo synthesis via glutamate cysteine ligase (made up by the subunits GCLC and GCLM, EC 6.3.2.2), and glutathione synthase (GSS, EC 6.3.2.3).

Together with xenobiotic metabolizing enzymes, induction of genes and enzymatic activity involved in antioxidant defense has long been recognized as a gold standard in the biomarker approach to environmental studies. Putative orthologs for all antioxidant genes were clearly identified in the five fish genomes examined.

3.2.5 Heat-responsive genes

Heat-responsive genes represents the largest functional group of genes in the chemical defensome and act in response to a wide range of endogenous and exogenous stressors, such as temperature-shock and heavy metal exposure. In response to stressors, heat shock factors (HSFs) regulate transcription of heat shock proteins (HSPs). HSPs are divided into families based on their molecular size, and each subfamily has various cellular tasks, including cytoskeleton modulation, protein folding, and chaperone functioning.

Not much is known about the heat shock protein expression in fish. We found that all fish genomes hold putative orthologs of *hsf*, heat shock binding proteins (*hsbp*) and *hsp*. The number of putative orthologs of *hsf* and *dnaj* (formerly known as *hsp40*) is high in all fish genomes, with the highest number in killifish with 40 and 60 genes, respectively.

3.2.6 Metal-responsive genes

In response to heavy metals such as zinc, cadmium, and copper, metal-responsive transcription factors (MTFs) induce expression of metal-binding proteins, such as metallothioneins (MT), ferritin (ferritin heavy subunit *fth*/fthl); heme oxygenases (*hmox*, EC 1.14.99.3), transferrins (*tfa*), and ferroxidase (also known as ceruloplasmin, *cp*; EC 1.16.3.1).

In our study, we found putative orthologs for all gene families, except a *mt* encoding gene in stickleback or cod genome assemblies. Metallothioneins are cysteine-rich, low molecular weight proteins, and can thus be lost due to low-quality sequence and subsequent assembly. In discrepancy with the genome data, Mts are previously described in both Atlantic cod (Hylland et al 1994) and stickleback (Uren Webster 2017), and these protein IDs were included into our overview. Similarly, only one or two *mt* genes were found in zebrafish, killifish, and medaka, and this low number is in line with previous findings on metallothioneins in fish.

3.3 Expression of defensome genes in early development of fish

The developmental stage at which a chemical exposure event occurs greatly impacts the effect on fish. In general, chemical exposures during early developmental stages of fish cause the most adverse and detrimental effects. Based on data from the ECETOC Aquatic Toxicity database, fish larvae are more sensitive to substances than embryos and juveniles. However, it is not known how the sensitivity is correlated to the expression of the chemical defensome. As examples in this study, we mapped the expression of the full complement of chemical defensome genes during early development using transcriptomics data from zebrafish and stickleback (Figure 3, relevant data available on FAIRDOMHub: https://doi.org/10.15490/fairdomhub.1.assay.1379.1).
Our results showed that there are many defensome genes that are not expressed until after hatching in both species. The delayed genes belonged to all functional categories but were especially prominent where there are several paralogs within the same gene subfamily, for example the transporters and the transferases (Figure 3). Other genes were highly expressed at the early developmental stages, before gradually decreasing. Glutathione-related genes, such as gclc, were previously shown to be highly expressed in early development of zebrafish due to maternal loading ⁷⁵, and this was supported in our findings in both zebrafish and stickleback.

Moreover, we found patterns of clustered transcriptional regulation of oxygenase and transferase enzymes in both zebrafish and stickleback. For example, the Ahr target genes cyp1a, gsta.1, ugt1a1/7 were transcribed at the early morula stage in both fish species, before the levels decreased at late morula and mid gastrula, before again increasing post hatching (Figure 3). In both zebrafish and stickleback, ahr2 is continuously expressed throughout development, with the highest levels at the 24 hph stage. It has been demonstrated that genes regulated by common transcription factors tend to be located spatially close in the genome sequence and thus facilitate a concerted gene expression ⁷⁶, and our findings could be supporting such an arrangement.

Finally, there were some genes that were transcribed at very high levels at similar developmental stages in both fish. The heat shock proteins hspa8 and hsp90ab1 were highly transcribed at all stages in both zebrafish and stickleback (Figure 3). Hspa8 is a constitutively expressed member of the Hsp70 subfamily, which is previously known as important in rodent embryogenesis ⁷⁷. The role of Hsp90ab1 in development is less known ⁷⁸. Furthermore, the ferritin genes fth1a and fth1b were expressed at high levels in both zebrafish and stickleback, respectively (Figure 3). However, although ferritin mRNA was found present throughout early development of brown trout, the translated protein was only present after hatching ⁷⁹. Importantly, this suggests that there are additional mechanisms that regulate the expression of chemical defensome genes.
Figure 3: Transcription of chemical defensome genes in early development of a) zebrafish (Danio rerio) and b) stickleback (Gasterosteus aculeatus). Absolute transcription values (log2 scale) of defensome genes, grouped into their functional category, are shown at early morula, late morula, mid gastrula, early organogenesis, and 24 hours post hatching (hph).
3.4 Exposure response of the defensome genes

Next, we studied the transcriptional effect of a well-known Ahr agonist, benzo(a)pyrene (BaP), on embryonic and larval stages of zebrafish (relevant data available on FAIRDOMHub: https://doi.org/10.15490/fairdomhub.1.datafile.3961.1). At the embryonic stage (3.3 hours post fertilization (hpf)), the exposure led to a strong upregulation of cyp2aa9 (3.87 fold) and an increased transcription of single genes such as ahr2, nfe2, aanat1, and hspb1 (Figure 4a). Cyp1a, which is an established biomarker of exposure to BaP and other polycyclic aromatic hydrocarbons (PAH) in fish [80-82], was not induced at this stage. However, as described in the original study [32], we found a strong induction of cyp1a (5.67 fold) at the larvae developmental stage (Figure 4b). Induction of zebrafish cyp1a is previously shown from 24 hpf following exposure to the Ahr model-agonist TCDD [83]. Following exposure at the larval stage, we found a trend of clustered regulation of functionally grouped genes. In general, transcription factors were downregulated, whereas biotransformation enzymes were upregulated. However, the BaP xenosensor, ahr2, and the oxidative stress-responsive transcription factor nfe2l1a, were both upregulated (0.53 and 1.28 fold, respectively). The crosstalk between these transcription factors following exposure to chemical stressors is previously studied in zebrafish [84,85].

![Figure 4: Transcriptional responses on chemical defensome genes in a) zebrafish embryo (3.3 hpf) and b) zebrafish larvae (96 hpf) following exposure to benzo(a)pyrene. The transcription is shown as log2 fold change between exposed and control group at each timepoint. The genes are grouped into their functional categories in the chemical defensome and the name of some genes are indicated for clarity.](image-url)
4. Summary and perspectives

The chemical defensome is essential for detoxification and subsequent clearance of xenobiotic compounds, and the composition of the defensome can determine the toxicological responses to many chemicals. Our results showed that the number of chemical defensome genes ranged from 446 in three-spined stickleback to 510 in zebrafish, due to a varying number of gene homologs in the evolutionarily conserved modules. Of the five fish included in this study, zebrafish has the highest number of gene homologs in most gene families, with the interesting exception of the nqo reductases where medaka, killifish, cod, and especially stickleback, had retained a higher number of homologs compared to only one in zebrafish.

We have previously shown that the stress-activated receptor pxr gene has been lost in stickleback and cod, but is retained in zebrafish, Atlantic killifish and medaka (Eide et al., 2018). Still, no differences in the pattern of other defensome genes could be observed linked to this important difference.

Furthermore, we analyzed the transcriptional levels of the defensome genes in early development of zebrafish and stickleback. Importantly, the full complement of defensome genes was not transcribed until after hatching. This was further demonstrated when comparing the transcriptional effects of BaP exposure in two developmental stages of zebrafish, where the larvae had a stronger response that involved more components of the chemical defensome compared to the embryos.

This study presents characterization of the chemical defensome in five different fish species and at different developmental stages as a way of illustrating and understanding inherit interspecies and stage-dependent differences in sensitivity and response to chemical stressors. One aspect not included in the present study is the role of intraspecies, strain-dependent variants in defensome genes. Several studies have identified defensome gene variants linked to pollution tolerance in fish populations, e.g. in the Ahr pathway. Lille-Langøy, et al. showed that single-nucleotide polymorphisms (SNPs) in the zebrafish pxr gene affect ligand activation patterns. Thus, strain- or population-dependent differences in toxicological responses also play an important role.

Traditionally, studying single molecular biomarkers of exposure has proven very useful in toxicological studies. Now, the recent advances in omics technologies enable a more holistic view of toxicological responses, including gene set enrichment analysis and pathway analysis approaches. However, these analyses can be challenging when working with less studied and annotated species, such as marine teleosts. As seen from our results, studying the full gene complement of the chemical defense system can identify trends of grouped responses that can provide a better understanding of the overall orchestrated effects to chemical stressors. Such insights will be highly useful in chemical toxicity testing and environmental risk assessment.

Acknowledgements

The work was supported by the Norwegian Research Council as part of the iCOD and iCOD 2.0 projects (grant no. 192441/I30 and 244654/E40), and the dCod 1.0 project (grant no. 248840) which is part of Centre for Digital Life Norway. The American collaborators were funded by the National Institute of Health (USA) NIH P42ES007381 (Boston University Superfund Center to JJS and JVG), NIH R21HD073805 (JVG) and NHI R01ES029917 (JVG) grants. The Ocean
Outlook exchange program funded the trans-Atlantic collaboration. The authors are thankful for the constructive comments from Adele Mennerat in the writing process.

Author contribution
ME and XZ contributed equally to the study design and execution, and wrote the main draft of the manuscript. OAK, JVG, JJS, IJ and AG contributed to the design of the study, discussion of results, and writing of the manuscript. All authors read and approved the submitted article.
4. References

1. Goldstone, J. V. et al. The chemical defensome: Environmental sensing and response genes in the Strongylocentrotus purpuratus genome. *Dev. Biol.* **300**, 366-384, doi:10.1016/j.ydbio.2006.08.066 (2006).
2. Goldstone, J. V. Environmental sensing and response genes in cnidaria: the chemical defensome in the sea anemone *Nematostella vectensis*. *Cell Biol. Toxicol.* **24**, 483-502, doi:10.1007/s10565-008-9107-5 (2008).
3. Stegeman, J. J., Goldstone, J. V. & Hahn, M. E. in *Fish physiology: Zebrafish* Ch. 10, (Elsevier, 2010).
4. Shinzato, C., Hamada, M., Shoguchi, E., Kawashima, T. & Satoh, N. The repertoire of chemical defense genes in the coral *Acropora digitifera* genome. *Zool. Sci.* **29**, 510-517, doi:10.2108/zsj.29.510 (2012).
5. Yadetie, F. et al. Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics. *BMC Genomics* **13**, 55, doi:10.1186/1471-2164-13-55 (2012).
6. De Marco, L. et al. The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using RNA-Seq. *Sci. Rep.* **7**, doi:ARTN 41312

10.1038/srep41312 (2017).
7. Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. *PLoS Biol.* **3**, 1700-1708, doi:ARTN e314

10.1371/journal.pbio.0030314 (2005).
8. Meyer, A. & Van de Peer, Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). *Bioessays* **27**, 937-945, doi:10.1002/bies.20292 (2005).
9. Eide, M. et al. Independent losses of a xenobiotic receptor across teleost evolution. *Sci. Rep.* **8**, doi:ARTN 10404

10.1038/s41598-018-28498-4 (2018).
10. Blumberg, B. et al. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. *Genes Dev.* **12**, 3195-3205, doi:10.1101/gad.12.20.3195 (1998).
11. Kliwer, S. A., Goodwin, B. & Willson, T. M. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. *Endocr. Rev.* **23**, 687-702, doi:10.1210/er.2001.0038 (2002).
12. Hill, A. J., Teraoka, H., Heideman, W. & Peterson, R. E. Zebrafish as a model vertebrate for investigating chemical toxicity. *Toxicol. Sci.* **86**, 6-19, doi:10.1093/toxsci/kf110 (2005).
13. Embry, M. R. et al. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. *Aquat. Toxicol.* **97**, 79-87, doi:10.1016/j.aquatox.2009.12.008 (2010).
14. Burnett, K. G. et al. Fundulus as the premier teleost model in environmental biology: Opportunities for new insights using genomics. *Comp Biochem Phys D* **2**, 257-286, doi:10.1016/j.cbpd.2007.09.001 (2007).
15. Katsiadaki, I., Scott, A. P. & Mayer, I. The potential of the three-spined stickleback (Gasterosteus aculeatus L.) as a combined biomarker for oestrogens and androgens in European waters. *Mar. Environ. Res.* **54**, 725-728, doi:Pii S0141-1136(02)00110-1

Doi 10.1016/S0141-1136(02)00110-1 (2002).
16. Hylland, K. et al. Water column monitoring near oil installations in the North Sea 2001-2004. *Mar Pollut Bull* **56**, 414-429, doi:10.1016/j.marpolbul.2007.11.004 (2008).
17. Brooks, S. J. et al. Water Column Monitoring of the Biological Effects of Produced Water from the Ekofisk Offshore Oil Installation from 2006 to 2009. *J Toxicol Env Hea A* **74**, 582-604, doi:Pii 934599436

Doi 10.1080/15287394.2011.550566 (2011).
18. Holth, T. F., Beylich, B. A., Camus, L., Klobcuac, G. I. & Hylland, K. Repeated sampling of Atlantic cod (Gadus morhua) for monitoring of nondestructive parameters during exposure to a synthetic produced water. *J. Toxicol. Environ. Health A* **74**, 555-568, doi:10.1080/15287394.2011.550564 (2011).
19. Star, B. et al. The genome sequence of Atlantic cod reveals a unique immune system. *Nature* **477**, 207-210, doi:10.1038/Nature10342 (2011).
20 Yadetie, F. et al. RNA-Seq analysis of transcriptome responses in Atlantic cod (Gadus morhua) precision-cut liver slices exposed to benzo[α]pyrene and 17 alpha-ethynylestradiol. Aquat. Toxicol. 201, 174-186, doi:10.1016/j.aquatox.2018.06.003 (2018).

21 Yadetie, F., Karlsen, O. A., Eide, M., Hogstrand, C. & Goksøyr, A. Liver transcriptome analysis of Atlantic cod (Gadus morhua) exposed to PCB 153 indicates effects on cell cycle regulation and lipid metabolism. BMC Genomics 15, doi:ArtN 481

22 10.1186/1471-2164-15-481 (2014).

23 Bizarro, C., Eide, M., Hilchcock, D. J., Goksøyr, A. & Ortiz-Zarragoitia, M. Single and mixture effects of aquatic micropollutants studied in precision-cut liver slices of Atlantic cod (Gadus morhua). Aquat. Toxicol. 177, 395-404, doi:10.1016/j.aquatox.2016.06.013 (2016).

24 Hansen, B. H. et al. Embryonic exposure to produced water can cause cardiac toxicity and deformations in Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae. Mar. Environ. Res. 148, 81-86, doi:10.1016/j.marenvres.2019.05.009 (2019).

25 Eide, M., Karlsen, O. A., Kryvi, H., Olsvik, P. A. & Goksøyr, A. Precision-cut liver slices of Atlantic cod (Gadus morhua): An in vitro system for studying the effects of environmental contaminants. Aquat. Toxicol. 153, 110-115 (2014).

26 White, R. J. et al. A high-resolution mRNA expression time course in embryos of zebrafish. Elife 6, doi:ARTN e30860

27 10.7554/eLife.30860.001 (2017).

28 Kaitetzidou, E., Katsiadiaki, I., Lagnel, J., Antonopoulou, E. & Sarropoulou, E. Unravelling paralogous gene expression dynamics during three-spined stickleback embryogenesis. Sci. Rep. 9, doi:ARTN 3752

29 10.1038/s41598-019-40127-2 (2019).

30 Zhang, X. K. & Jonassen, I. RASflow: an RNA-Seq analysis workflow with Snakemake. BMC Bioinformatics 21, doi:ARTN 110

31 10.1186/s12859-020-3433-x (2020).

32 Kim, D., Landmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-U121, doi:10.1038/Nmeth.3317 (2015).

33 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930, doi:10.1093/bioinformatics/btt656 (2014).

34 Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25, doi:10.1186/gb-2010-11-3-r25 (2010).

35 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140, doi:10.1093/bioinformatics/btp616 (2010).

36 Fang, X. F. et al. Transcriptomic Changes in Zebrafish Embryos and Larvae Following Benzo[α]pyrene Exposure. Toxicol. Sci. 146, 395-411, doi:10.1093/toxsci/kfv105 (2015).

37 Mangelsdorf, D. J. et al. The Nuclear Receptor Superfamily - the 2nd Decade. Cell 83, 835-839 (1995).

38 Jin, L. H. & Li, Y. Structural and functional insights into nuclear receptor signaling. Adv Drug Deliv Rev 62, 1218-1226, doi:10.1016/j.addr.2010.08.007 (2010).

39 Aranda, A. & Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev. 81, 1269-1304 (2001).

40 Bertrand, S. et al. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. Plos Genet 3, 2085-2100, doi:ARTN e188

41 10.1371/journal.pgen.0030188 (2007).

42 Kretschmer, X. C. & Baldwin, W. S. CAR and PXR: xenosensors of endocrine disrupters? Chem. Biol. Interact. 155, 111-128, doi:10.1016/cbi.2005.06.003 (2005).

43 Spivakov, M. et al. Genomic and phenotypic characterization of a wild medaka population: towards the establishment of an isogenic population genetic resource in fish. G3 (Bethesda) 4, 433-445, doi:10.1534/g3.113.008722 (2014).

44 Kirchmaier, S., Naruse, K., Wittbrodt, J. & Loosli, F. The genomic and genetic toolbox of the teleost medaka (Oryzias latipes). Genetics 199, 905-918, doi:10.1534/genetics.114.173849 (2015).

45 Milnes, M. R. et al. Activation of steroid and xenobiotic receptor (SR, NR1I2) and its orthologs in laboratory, toxicologic, and genome model species. Environ. Health Perspect. 116, 880-885, doi:10.1289/Ehp.10853 (2008).
Gu, Y. Z., Hogesnisch, J. B. & Bradfield, C. A. The PAS superfamily: Sensors of environmental and developmental signals. *Annu. Rev. Pharmacol. Toxicol.* **40**, 519-561, doi:10.1146/annurev.pharmtox.40.1.519 (2000).

Kewley, R. J., Whitelaw, M. L. & Chapman-Smith, A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. *Int. J. Biochem. Cell Biol.* **36**, 189-204, doi:10.1016/S1357-2725(03)00211-5 (2004).

Nguyen, T., Sherrati, P. J. & Pickett, C. B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. *Annu. Rev. Pharmacol. Toxicol.* **43**, 233-260, doi:10.1146/annurev.pharmtox.43.100901.140229 (2003).

Oyake, T. *et al.* Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. *Mol. Cell. Biol.* **16**, 6083-6095 (1996).

Nguyen, T., Nioi, P. & Pickett, C. B. The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. *J. Biol. Chem.* **284**, 13291-13295, doi:10.1074/jbc.R900010200 (2009).

Nelson, D. R. *et al.* Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. *Pharmacogenetics* **14**, 1-18, doi:10.1097/01.prg.0000054151.92680.31 (2004).

Karlson, O. A., Puntervoll, P. & Goksøyr, A. Mass spectrometric analyses of microsomal cytochrome P450 isozymes isolated from beta-naphthoflavone-treated Atlantic cod (*Gadus morhua*) liver reveal insights into the cod CYPome. *Aquat. Toxicol.* **108**, 2-10, doi:10.1016/j.aquatox.2011.08.018 (2012).

Goldstone, J. V. *et al.* Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. *BMCGenomics* **11**, doi:Arth 643

Doi 10.1186/1471-2164-11-643 (2010).

Madeira, F. *et al.* The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res.* **47**, W636-W641, doi:10.1093/nar/gkw268 (2019).

Letunic, I. & Bork, P. Interactive Tree Of Life (iTOl) v4: recent updates and new developments. *Nucleic Acids Res.* **47**, W256-W259, doi:10.1093/nar/gkw239 (2019).

Hayes, J. D., Flanagan, J. U. & Jowsey, I. R. Glutathione transferases. *Annu. Rev. Pharmacol. Toxicol.* **45**, 51-88, doi:10.1146/annurev.pharmtox.45.120403.095857 (2005).

Nebert, D. W. & Vasiliiou, V. Analysis of the glutathione S-transferase (GST) gene family. *Human genomics* **1**, 460-464 (2004).

Dominey, R. J., Nimmo, I. A., Cronshaw, A. D. & Hayes, J. D. The Major Glutathione-S-Transferase in Salmonid Fish Livers Is Homologous to the Mammalian Pi-Class Gst. *Comp Biochem Phys B* **100**, 93-98, doi:10.1016/S0305-0491(91)90090-Z (1991).

Tew, K. D. *et al.* The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. *Free Radic. Biol. Med.* **51**, 299-313, doi:10.1016/j.freeradbiomed.2011.04.013 (2011).

Huang, H. Y. & Wu, Q. Cloning and Comparative Analyses of the Zebrafish Ugt Repertoire Reveal Its Evolutionary Diversity. *PLoS One* **5**, doi:ARTN e9144

Doi 10.1371/journal.pone.0009144 (2010).

Nishiyama, T. *et al.* Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells. *Biochem. Biophys. Res. Commun.* **394**, 459-463, doi:10.1016/j.bbrc.2009.12.113 (2010).

Dean, M., Hamon, Y. & Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. *J. Lipid Res.* **42**, 1007-1017 (2001).

Hediger, M. A. *et al.* The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins - Introduction. *Pflug Arch Eur J Phy* **447**, 465-468, doi:10.1007/S00424-003-1192-Y (2004).

Roth, M., Obaidat, A. & Hagenbuch, B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. *Br. J. Pharmacol.* **165**, 1260-1287, doi:10.1111/j.1476-5381.2011.01724.X (2012).

Fischer, S. *et al.* Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. *BMCGenomics* **11**, doi:Arth 69

Doi 10.1186/1741-7007-11-69 (2013).
699 698 697 696 695 694 693 691 690 688 687 686 684 683 682 681 679 678 677 675 671 670 669 668 667 665 662 661 660 659 658 656 655 654 653 652 651 650 649 648 647 646 645 644 643 642 641 640 639 638 637 636 635 634 633 632 631 630 629 628 627 626 625 624 623 622 621 620 619 618 617 616 615 614 613 612 611 610 609 608 607 606 605 604 603 602 601 600 599 598 597 596 595 594 593 591 590 588 587 586 585 584 583 582 581 579 578 577 575 574 573 572 571 570 569 568 567 566 565 564 563 562 561 560 559 558 557 556 555 554 553 552 551 550 549 548 547 546 545 544 543 542 541 540 539 538 537 536 535 534 533 532 531 530 529 528 527 526 525 524 523 522 521 520 519 518 517 516 515 514 513 512 511 510 509 508 507 506 505 504 503 502 501 500 499 498 497 496 495 494 493 492 491 490 489 488 487 486 485 484 483 482 481 480 479 478 477 476 475 474 473 472 471 470 469 468 467 466 465 464 463 462 461 460 459 458 457 456 455 454 453 452 451 450 449 448 447 446 445 444 443 442 441 440 439 438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369 368 367 366 365 364 363 362 361 360 359 358 357 356 355 354 353 352 351 350 349 348 347 346 345 344 343 342 341 340 339 338 337 336 335 334 333 332 331 330 329 328 327 326 325 324 323 322 321 320 319 318 317 316 315 314 313 312 311 310 309 308 307 306 305 304 303 302 301 300 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Andreasen, E. A. et al. Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: Effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure. Toxicol. Sci. 68, 403-419, doi:10.1093/toxsci/68.2.403 (2002).

Hahn, M. E., Timme-Laragy, A. R., Karchner, S. I. & Stegeman, J. J. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Free Radic. Biol. Med. 88, 275-289, doi:10.1016/j.freeradbiomed.2015.06.022 (2015).

Rousseau, M. E. et al. Regulation of Ahr signaling by Nrf2 during development: Effects of Nrf2 deficiency on PCB126 embryotoxicity in zebrafish (Danio rerio). Aquat. Toxicol. 167, 157-171, doi:10.1016/j.aquatox.2015.08.002 (2015).

Wirgin, I. et al. Mechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River. Science 331, 1322-1325, doi:10.1126/science.1197296 (2011).

Oziolor, E. M., Bigorgne, E., Aguilar, L., Usenko, S. & Matson, C. W. Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas. Aquat. Toxicol. 150, 210-219, doi:10.1016/j.aquatox.2014.03.012 (2014).

Williams, L. M. & Oleksiak, M. F. Ecologically and evolutionarily important SNPs identified in natural populations. Mol. Biol. Evol. 28, 1817-1826, doi:10.1093/molbev/msr004 (2011).

Reid, N. M. et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354, 1305-1308, doi:10.1126/science.aah4993 (2016).

Lille-Langøy, R. et al. Sequence Variations in pxr (nr1i2) From Zebrafish (Danio rerio) Strains Affect Nuclear Receptor Function. Toxicol. Sci. 168, 28-39, doi:10.1093/toxsci/kfy269 (2019).

Peakall, D. B. The Role of Biomarkers in Environmental Assessment .1. Introduction. Ecotoxicology 3, 157-160, doi:Doi 10.1007/Bf00117080 (1994).

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545-15550, doi:10.1073/pnas.0506580102 (2005).

Fabregat, A. et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics 18, 142, doi:10.1186/s12859-017-1559-2 (2017).

Martins, C., Drei, K. & Costa, P. M. The State-of-the-Art of Environmental Toxicogenomics: Challenges and Perspectives of "Omics" Approaches Directed to Toxicant Mixtures. Int J Environ Res Public Health 16, doi:10.3390/ijerph16234718 (2019).

Brooks, B. W. et al. Toxicology Advances for 21st Century Chemical Pollution. One Earth 2, 312-316, doi:10.1016/j.oneear.2020.04.007 (2020).