Advances in Management of Subretinal Choroidal Neovascularization Membrane Clinically

Abstract
Sub retinal choroidal retinal membrane is a disease of the retina that affects elderly patient with degenerative pathologies. This case outlines a brief sketch of pathogenesis and treatment protocol of this disease in current era. It is known for self-limited and regressive behavior that can be observed thoroughly and typically has a favorable visual prognosis.

Keywords: Metamorphopsia; RPE; Choroidal rupture; Central serous chorioretinopathy; Spergnitous choroiditis

Introduction
A 51 year old Asian male presented for examination with the complaint of a dark spot distorting his central vision associated with shady and fuzzy lines in right eye even with correction. He denied ocular hyperemia, lacrimation, discharge, pain and headache. His ocular history included presbyopia and glaucoma suspect. He had cataract extracted OU with OD vitrectomized 15 years prior. He denied positive family ocular history. The patient’s medical history was positive for diabetes and hypertension. He was using medication for both systemic disease but could not recall his prescription. Social history was negative for tobacco, alcohol, or recreational drug use. He was using Alphagan eye drop but no known drug allergies. He was oriented to time, place, and person and his mood was appropriate.

Uncorrected distance visual acuity was 20/160 OD and 20/40 OS. Habitual spectacle correction measured was -2.75/-1.25*140 OD and -1.00/-1.25*100 OS, with an ad of +2.50 OU. Manifest spectacle correction revealed change in refraction. Near visual acuity with correction were not recognizable OD and N5 OS. There was evidence of relative afferent pupillary defect with pupils were equal round sluggishly reactive contralateral eye. Confrontation fields were full to finger counting in OS but restriction of visual field in OD. Extraocular muscles were unrestricted in all gazes without pain or diplopia. Cover test was orthophoric at distance and near. Amsler Grid test effectively depicted central scotoma with metamorphopsia. Goldman applanation tonometry was 14 mmHg OD, 13 mmHg OS at 12:10 pm. Slit lamp biomicroscopy revealed normal adnexa. Bilateral cornea was normal transparency and demonstrated arcus senilis. Both anterior chambers appeared quiet without evidence of cell or flare estimation of the chamber angles was 4/4 via the Von Herrick method. Both irides were flat and brown. Pupils were dilated using one drop 1% Mydriacyl. Evaluation of the posterior segment revealed bilateral pseudophakic. Fundus assessment revealed pale disc with parapapillary atrophy of optic nerve head. The cups were deep and there was no evidence of edema in the neuroretinal rim. Vitreous shows bleed due to extension of blood from retina. It affected central vision as right macula visualized sub macular hemorrhage with hard yellow exudates in retina, chorioretinal atrophy with cystoids macular edema.

Fluorescein angiography (FA) is vital to assess the disease. It helps to determine the location, extent, definition of the disease and its relation to center of fovea for the treatment implications. SRNVM can be divided according to angiographic appearance into those membranes that are well-defined and those that are poorly defined (Figure 1).

Major differential diagnoses to be considered are:

i. Angioid Streaks
ii. Birdshot Retinopathy
iii. Central Serous Chorioretinopathy
iv. Degenerative myopia
v. Presumed Ocular Histoplasmosis Syndrome
vi. Psuedophakic (Irvine-Gass) Macular Edema unlikely 15 year status post-operative
vii. White Dot Syndromes

Figure 1: Illustrates FFA of posterior segment with SRCNVM.
Angioid streak are the result of crack like dehiscence, calified brittle collagenous elastic portion of Bruch’s membrane [1,2]. It is known as “Peau d’ orange” orange skin consisting of melting skin pigmentation. Linear, greyish lesion with irregular edge lies beneath blood vessels and intercommunicate with optic disc and peripheral area of retina. They are commonly associated with optic disc drusen. Visual impairment occurs over 70%. The prognosis can be guarded cautiously because any of the following can result
1) Choroidal neovascularization 2) Choroidal rupture 3) foveal involvement. Photocoagulation can be successful treatment.

Central Serious Chorioretinopathy is characterized by localized detachment of sensory retina secondary to RPE and choroid defects due to breech in retina caused by accumulation of fluid. The major cause that aggravates CSR includes stress, untreated hypertension, alcohol use, organ transplant and administration of steroids [3-5]. Fundoscopy shows RPE lesions with prominent elevation of the neurosensory retina by clear fluid typical of cases of recent onset to shallow detachments overlying large patches of irregularly depigmented RPE. The treatment is based largely on observation. The high spontaneous remission rate favors conservative management, lifestyle counseling, and discontinuation of glucocorticoid medication as first-line therapeutic options. The strategy can be expected to be followed by a resolution of the detachment in nearly 90% of cases within 1.5 months.

Myopia is highly associated with degenerative changes in the posterior segment of the eye that can be degenerative or pathological myopia [4]. It can result in abnormal visual function, such as a decrease in best corrected visual acuity or changes in visual fields. Complications such as retinal detachment and glaucoma are relatively common [5]. Patients with degenerative myopia should be advised to have annual or more frequent examination of eye depending upon the severity of ocular changes. Clinicians should educate them about the causes and symptoms of retinal break or detachment and glaucoma or CNV. Patients should also be advised to seek prompt care if they experience the onset of symptoms. Patients with degenerative myopia should be instructed to avoid the causes of blunt trauma and to wear eye protection when they are at risk for blunt ocular trauma (e.g., playing tennis, racquetball).

Presumed ocular histoplasmosis syndrome
(POHS) is choroidopathy typically characterized by atrophic chorioretinal scar. The ocular manifestation presumably shows a fungal infection which includes peripapillary atrophy, peripheral punched-out lesions, and a macular sub retinal neovascular membrane [6,7]. Laser photocoagulation can be beneficial in reducing visual loss from macular scarring due to sub retinal neovascular membranes. Vision improved from 20/70 to 20/20 in the treated eye.

Birdshot retinochoroidopathy
It is a rare, chronic, bilateral, posterior uveitis with a clinical presentation and a strong genetic association. The pathogenesis is unknown, but HLA-A29 positivity appears to confer predisposition and retinal autoimmunity seems to plays a major role [8]. Patient appears with blurry vision experiencing floaters, dyschromatopsia, light sensitivity, metamorphopsia and decreased peripheral vision. HLA-29 antigen which is present 80-90% controls the risk factors of disease occurrence [9]. The treatment option is considered unless visual acuity reduces bilaterally 20/40 due to cystoid macular oedema. One notable exception to this rule applies to sub retinal neovascularization threatening central vision. The treatment requires prompt laser treatment with periocular and systemic steroidal therapy. Periocular steroid are used for diseases with asymmetric severity and for exacerbations in patients on systemic therapy. Cyclosporine is effective because it compromises CD4 lymphocyte function, which is thought to mediate birdshot.

Pseudophakic macular edema (Irvine-Gass syndrome)
The most common causes of visual loss after cataract surgery are PMO not after 15 years [10,11]. The latest technique phacoemulsification has drastically reduced pseudophakic CME incidence with small incision cataract surgery but pseudophakic CME remains a common complication because it is most common surgery. The management of pseudophakic CME is based largely on observation. It is associated with retinal vein occlusion (RVO), epiretinal membrane (ERM), and prostaglandin analogs [12]. Several clinical trials and cellular studies presented preoperative and postoperative topical glaucoma medications, specifically latanoprost and timolol may increase the incidence of pseudophakic CME [13]. The importance of corticosteroids reduces inflammation by inhibiting phospholipase A2, and nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit COX. The 2 critical COX isoforms are COX-1 and COX-2, and the later is the major isofrom expressed in the retina [14]. The treatment option is topical corticosteroids, Periocular ocular corticosteroids, intracocular triamcinolone, avastin therapy and surgically pars plana vitrectomy [15,16].

White dot syndrome
The white dot syndromes are a group of idiopathic multifocal inflammatory conditions involving the retina and the choroid. They are characterized by the appearance of white dots in the fundus. The diseases that constitute the white dot syndromes include acute posterior multifocal placoid pigmen epitheliopathy (APMPPE), serpiginous choroiditis, multiple evanescent white dot syndrome (MEWDS), multifocal choroiditis and panuveitis (MCP), punctate inner choroidopathy (PIC), and diffuse sub retinal fibrosis (DSF).

Management plan
The management option was considered when it caused vision deterioration due to bleed involving macula and central vision. Initially the disease was variable and observation helped for small nonexudative bleeding. The treatment outlines the extent and location of SRNVM. When there is fluid accumulation with serous separation the treatment should not create a white reaction in the retina [17]. Adequate and successful treatment with photocoagulation limits the size of SRNVM and aborts its growth potential. It includes laser photocoagulation, photodynamic therapy, macugen, lucentis and avastin injections.
Recently, pharmacotherapy with anti-angiogenic drugs has markedly changed our approach and expectations in the management of sub retinal neovascularization. The choice for vitreo-retinal medical community has been intravitreal anti-VEGF injections that target the underlying cause of CNVM in the "wet" form of macular degeneration. The abnormal blood vessels found in CNVM reacts to the medication by "drying up" after multiple injection applications. Its result has been very encouraging for macular degeneration patients.

However, clinically evidence of the peripheral peripapillary SRNVM may cause irreversible threatening of vision due to of bleeds in sub fovea area and may affect bilaterally with ratio of 75% [18,19]. Peripapillary SRNVM often results in very large complexes before they become symptomatic. Although, macular laser can be beneficial, which shows a 50% recurrence rate [20]. Certainly, literature hypothesized surgical pars plana vitrectomy could completely remove the SRNVM complex, possibly decreasing the recurrence rate and sparing the papillaomacular bundle from further damage. Recent studies has shown an effective advancement in treatment with intravitreal injections of recombinent tissue plasminogen activator (rtPA), expansive gas and bevacizumab in eyes with acute subretinal hemorrhage (SRH) has improved patient visual prognosis of 35% after 3 month [21].

Follow Up#1

Patient was advised for intravitreal Avastin Injection with 4-6 weeks follow up examination with repetition of diagnostic test OCT. Patient initially recovered 20/80 or better vision confirming after 3-6 weeks the ability of Avastin injection (ranibizumab) showed good outcome that reduced neovascularization of 45%. Additionally, there was only a 17% recurrence rate within the first 1 year, indicating a lower recurrence rate than noted with macular laser.

Follow#2

Surgical therapy was considered by ophthalmologist with antiangiogenic therapy due cumbersome of follow up therapy for avastin injection. Pars plana vitrectomy with fluid gas exchange was performed to remove SRNVM. The exudates resolved by visual acuity 20/40. Follow up examination after six month was scheduled to observe recurrence.

Discussion

SRNVM is a sight threatening disease that causes degenerative changes in macula involving development of leaking vessels with neovascularization. SRNVM’s have been observed idiopathically in both young and old patients. They are also seen in patients with senile (exudative) macular degeneration, presumed ocular histoplasmosis syndrome, severe myopia, choriotreal atrophy resulting from healed disseminated chorioditis of unknown etiology, toxoplasmosis, toxocariasis, sarcoidosis, drusen of the optic nerve head hereditary drusen of Bruch’s membrane, angioid streaks, pseudotumor cerbri, choroidal folds, fundus flavimaculatus, choroidal melanomas, harada’s disease, acute multifocal posterior placoid pigment epitheliopathy, Behcet’s disease, geographic helicoid (serpiginous) choroiditis and choroidal rupture. SRNVM’s may also occur after excessively intense photocoagulation accumulation [22,23].

The histopathology shows stages of accumulation where the retinal pigmented epithelium and sensory retina may be elevated either by plasma or hemorrhage. Clinically chronic manifestations may be represented by subretinal hemorrhage, reabsorbing subretinal hemorrhage which is often yellow in color, hard yellow exudates in the retina, cholesterol crystals, subretinal fibrosis, chorioretinal atrophy, clumping of melanin granules, areas of hypo and hyperpigmentation, chronic serous separation of the central retina and overlying cystoid macular edema. Hemorrhage from a SRNVM breaks through into the vitreous obscuring fundus details. In the chronic stages one observes subretinal fibrosis, which is largely the residual mesenchymal tissue accompanying the growth of the neovascular component. Some subretinal fibrosis is the result of metaplasia of the retinal pigmented epithelium. This chronic serous of sometimes hemorrhagic separation of the sensory retina predisposes to continuous atrophy of the photoreceptors and a deleterious effect on the retinal pigmented epithelium. As a consequence of chronic serious separation of the retina there may also be dilation and tortuosity of the overlying retinal vessels [24-27].

The history of management of extra foveal SRNVM in 2005 which was initially published in cannes retina annual meeting of American society of Vitreoretina founded unsuccessful outcome from sub retinal surgery [28] Hence hypothesized removal of extrafoveal SRNVM would possibly spare the foveal retinal pigment epithelium (RPE). The success rates were only a 17% recurrence rate within the first 3 years, indicating a lower recurrence rate than noted with macular laser. At final follow-up (i.e. 3 to 6 years following surgery), 83% of patients improved one or more lines [29,30].

Conclusion

Sub retinal choroidal retinal membrane is a degenerative, self remitting and regressive disease of retina that produces abnormal leaking vessels in vital layers of retina which compromise the integrity of retina affecting functionality of blood retinal barrier. It causes central deterioration of vision. The progression of the SRNVM ophthalmoscopically or angiographically might be an indication for laser treatment. Once subfoveal extension occurs, the visual outcome tends to be unfavorable. No patients had recurrence if papilledema regresses.

References

1. Shields JA, Federman JL, Tomer TL, Amnesley WH (1975) Angioid streaks. I. Ophthalmoscopic variations and diagnostic problems. Br J Ophthalmol 59(5): 257-266.
2. Lim JI, Bressler NM, Marsh MJ, Bressler SB (1993) Laser treatment of choroidal neovascularization in patients with angioid streaks. Am J Ophthalmol 116(4): 414-423.
3. Gemenetzii M, De Salvo G, Lotery AJ (2010) Central serous chorioretinopathy: an update on pathogenesis and treatment Eye (Lond) 24(12): 1743-1756.

Citation: Shah R (2017) Advances in Management of Subretinal Choroidal Neovascularization Membrane Clinically. Adv Ophthalmol Vis Syst 7(6): 00241. DOI: 10.15406/aovs.2017.07.00241
4. Goss DA, Eskridge JB (1987) In: Amos JF (Ed.), Diagnosis and management in vision care. Boston: Butterworths, USA, pp. 121-171.

5. Karakus SH, Basarir B, Pinarci EY, Kirandi EU, Demirok A (2013) Long-term results of half-dose photodynamic therapy for chronic central serous choroiditis with contrast sensitivity changes. Eye 27(5): 612-620.

6. Curtin BJ (1985) The myopias: basic science and clinical management. Philadelphia: Harper & Row 31(5): 357-358.

7. Nussenblatt RB, Whitcup SM, Palestone AG (1996) Ocular histoplasmosis. In: Nussenblatt RB et al. (Eds.), Uveitis: fundamentals and clinical practice, (2nd edn), St. Louis: Mosby, USA.

8. Brezin AP, Monnet D, Cohen JH, Levinson RD (2011) HLA-A29 and birdshot chorioretinopathy. Ocul Immunol Inflamm 19(6): 397-405.

9. Zucchini L, Miserochi E, Sacconi R, Bandello F, Modorati G (2013) HLA-A29-Positive Uveitis: Birdshot Chorioretinopathy. What Else? Case Rep Ophthalmol 4(3): 287-293.

10. Johnston RL, Mitchell PC, Berman AM (1988) Omini eye services of Wilmington DE 19808. Journal of American optometric Association 59(5): 401-405.

11. Shelsta HN, Jampol LM (2010) Pharmacologic therapy of pseudophakic cystoid macular edema: 2010 update. Retina 31(1): 4-12.

12. Henderson BA, Kim JV, Ament CS, Ferrufino-Ponce ZK, Grabowska A, et al. (2007) Clinical pseudophakic cystoid macular edema. Risk factors for development and duration after treatment. J Cataract Refract Surg 33(9): 1550-1558.

13. Miyake K, Ibaraki N, Goto Y, Oogiya S, Ishigaki J, et al. (2003) ESCRS Binkhorst lecture 2002: Pseudophakic preservative maculopathy. J Cataract Refract Surg 29(9): 1800-1810.

14. Flach AJ (1998) The incidence, pathogenesis and treatment of pseudophakic cystoid macular edema following cataract surgery. Trans Am Ophthalmol Soc 96: 537-634.

15. Miyake K, Ibaraki N, Goto Y, Oogiya S, Ishigaki J, et al. (2003) ESCRS Binkhorst lecture 2002: Pseudophakic preservative maculopathy. J Cataract Refract Surg 29(9): 1800-1810.

16. Arevalo JF, Garcia-Amaris RA, Roca J, Sanchez JG, Wu L, et al. (2007) Primary intravitreal bevacizumab for the management of pseudophakic cystoid macular edema: pilot study of the Pan-American Collaborative Retina Study Group. J Cataract Refract Surg 33(12): 2098-2105.

17. Fine SL, Patz A, Orth DH, Klein ML, Fin-kelestein D, et al. (1796) Subretinal neovascularization developing after prophylactic argon laser photocoagulation of atrophic macular scars. Amer J Ophthalmol 82(3): 352-357.

18. Yonekawa Y, Kim IK (2012) Pseudophakic cystoid macular edema. Curr Opin Ophthalmol 23(1): 26-32.

19. Lopes PF, Green WR (1992) Peripapillary subretinal neovascularization. A Review. Retina 12(2): 147-171.

20. Kies JC, Bird AC (1988) Juxtapapillary choroidal neovascularization in older patients. Am J Ophthalmol 105(1): 11-19.

21. Michelson JB, Michelson PE, Chisar FV (1980) Amer J Ophthalmol pp. 90.

22. Mayer CH, Scholl HP, Et, N, Halb HM, Holz FG (2008) Combined treatment of acute subretinal haemorrhages with intravitreal recombinant tissue plasminogen activator, expansile gas and bevacizumab: a retrospective pilot study. Acta Ophthalmologica 86(5): 490-494.

23. Morse PH, Leveille AS, Antel JP, Burch JV (1981) Bilateral juxtapapillary subretinal neovascularization associated with pseudotumor cerebri. Amer J Ophthalmol 91(3): 312.

24. Smith RE, Kelley JS, Harbin TS (1974) Late macular complications of choroidal ruptures. Amer J Ophthalmol 77(5): 650-658.

25. Morse PH, Leveille AS, Antel JP, Burch JV (1981) Bilateral juxtapapillary subretinal neovascularization associated with pseudotumor cerebri. Amer J Ophthalmol 91(3): 312.

26. Fine SL (1977) Perspectives in Ophthalmology.

27. Schloegel TP (1977) Perspectives in Ophthalmology.

28. Shcatz H, Patz A (1973) Exudative senile maculopathy. II. Complications of argon laser treatment. Arch Ophthalmol 90(3): 197.

29. Flaxel CJ, Bird AC, Hamilton AM, Gregor ZJ (1996) Partial laser ablation of massive peripapillary subretinal neovascularization. Ophthalmology 103(8): 1250-1259.

30. Kies JC, Bird AC (1988) Juxtapapillary choroidal neovascularization in older patients. Am J Ophthalmol 105(1): 11-19.