Magnetic and Critical Properties of Alternating Spin Heisenberg Chain in a Magnetic Field

Tetsuji Kuramoto

Department of Physics, Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240, Japan
(Received March 22, 2018)

We study magnetic and critical properties of the alternating spin antiferromagnetic Heisenberg chain with \(S = 1/2 \) and 1 in a magnetic field at \(T = 0 \). The numerical diagonalization is applied to the system up to \(2N = 20 \) sites. Checking numerically that magnetic states with the magnetization per site \(m \) obey a conformal field theory with conformal anomaly \(c = 1 \) for \(1/4 < m < 3/4 \), we use the finite-size scaling of the conformal invariance to obtain a magnetization curve in the thermodynamic limit. In the magnetization curve a plateau appears at \(m = 1/4 \). We also calculate two critical exponents \(\eta \) and \(\eta^* \) for \(1/4 < m < 3/4 \), which control the asymptotic behavior of the transverse and parallel spin correlation functions. We check the relation \(\eta \eta^* = 1 \), which universally holds for a \(c = 1 \) conformal field theory.

KEYWORDS: alternating spin chain, numerical diagonalization, conformal field theory

Recently, spin chains with an alternating array of different spins have attracted some current interest. Theoretically, Lieb and Mattis showed that the alternating spin antiferromagnetic Heisenberg chains with some next-nearest-neighbour interactions have a ground state with large total spin. Very recently, numerical calculations of numerical diagonalization, density-matrix renormalization method and quantum Monte Carlo method have been applied to the system up to 20 sites. On the other hand, the integrable alternating spin models have been constructed and solved via Bethe ansatz. Although its Hamiltonian has complicated nearest- and next-nearest-neighbour interactions, the integrable model has a single ground state.

Generalizing the Lieb-Shultz-Mattis theorem, Oshtikawa et al gave a presence condition of a magnetic plateau for spin chains in a magnetic field. The magnetic plateau has been observed in some spin models; for examples, an \(S = 1/2 \) antiferromagnetic chain with period 3 exchange coupling and an \(S = 1 \) antiferromagnetic chain with alternating bond. The alternating spin chain is one of simple examples for the magnetic plateau. Sakai and Takahashi performed the numerical calculation for \(S = 1 \) antiferromagnetic Heisenberg chain in a magnetic field and revealed its magnetic and critical properties in the thermodynamic limit by using the technique of the conformal field theory. Applying the Bethe ansatz to the integrable alternating spin chain with \(S = 1/2 \) and 1, Fujii et al calculated a magnetization curve and some critical exponents. They did not observe any magnetic plateau but a strange cusp in the magnetization curve. In this paper, following the procedure developed in ref.12, we study the magnetic and critical properties of the alternating spin antiferromagnetic Heisenberg chain with \(S = 1/2 \) and 1 in a magnetic field at \(T = 0 \) by numerical diagonalization and use the finite-size scaling of the conformal field theory to find out its magnetic and critical properties in the thermodynamic limit.

The alternating spin chain of \(2N \) sites consists of \(N \) spins \(\sigma_1, \sigma_3, \ldots, \sigma_{2N-1} \) of spin 1/2 and \(N \) spins \(S_2, S_1, \ldots, S_{2N} \) of spin 1. This spin chain in a magnetic field \(H \) is described by the Hamiltonian

\[
\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1
\]

\[
\mathcal{H}_0 = \sum_{i=1}^{N} (\sigma_{2i-1} \cdot S_{2i} + S_{2i} \cdot \sigma_{2i+1})
\]

\[
\mathcal{H}_1 = -H \sum_{i=1}^{N} (\sigma_{2i-1}^z + S_{2i}^z)
\]

where we impose periodic boundary conditions; \(\sigma_{2N+1} = \sigma_1 \) and \(S_{2N+2} = S_2 \). The Hamiltonian \(\mathcal{H} \) is invariant under two-site translation and rotation about \(z \) axis. Thus, all eigenstates of the Hamiltonian \(\mathcal{H} \) can be classified by the magnetization \(M = \sum_{i=1}^{N} (\sigma_{2i-1}^z + S_{2i}^z) \) and the wave vector \(k \) (\(k = 2\pi n/N \), \(n = 0, 1, 2, \ldots, N - 1 \)). We calculate the lowest energy \(E_k(2N, M) \) of the Hamiltonian \(\mathcal{H}_0 \) in the subspace where the system has the magnetization \(M \) and the wave vector \(k \), by the numerical diagonalization with Lanczos algorithm up to \(2N = 20 \). We define \(E(2N, M) \) as the lowest energy of the Hamiltonian \(\mathcal{H}_0 \) in the subspace with the magnetization \(M \). In our case, we find that \(E(2N, M) = E_{k=0}(2N, M) \).

The conformal field theory predicts that if the lowest-energy state with the magnetization per site \(m \) is massless, the size-dependence of the lowest energy per site has
where we must vary $2N$ and M with the magnetization per site fixed at $m = M/(2N)$. $\varepsilon(m)$ is the lowest energy per site and $v_s(m)$ is the sound velocity. They depend on the magnetization per site m. c is the conformal anomaly.

Thus, the sound velocity $v_s(m)$ is estimated by

$$v_s(m) = \frac{N}{\pi} \frac{E(2N, M + 1) - E(2N, M) - H}{E(2N, M) - E(2N, M - 1)}$$

for the largest $2N$. The results of the estimation for the conformal anomaly c is shown in Table I. The value of c for $m = 7/20, 3/8$ and $5/12$ is slightly larger than 1. As we will see later, the universal relation between two exponents η and η' for a $c = 1$ conformal field theory holds in our case. Thus we conclude that $c = 1$ for $1/4 < m < 3/4$.

We consider a magnetization curve of the alternating spin chain in two regions of $0 < m < 1/4$ and $1/4 < m < 3/4$. For $0 < H < H_{c1}$, where the value H_{c1} is equal to the energy gap Δ, the lowest-energy state of the Hamiltonian \mathcal{H} has the magnetization $M = N/2$. This means that $m = 1/4$ for $0 < H < H_{c1}(= \Delta)$. For $1/4 < m < 3/4$, owing to the conformal invariance, the spin-excitation energy of the Hamiltonian \mathcal{H} depends on the system size $2N$ as

$$E(2N, M + 1) - E(2N, M) - H \simeq \pi v_s(m) \frac{1}{2N}$$

in the limit $2N \to \infty$. [14] where we vary $2N$ and M with $m = M/(2N)$ fixed. η is a critical exponent of correlation function for spin-excitations, which we will estimate in the following. In Fig. 2, we plot

$$E(2N, M + 1) - E(2N, M) - H \simeq -\pi v_s(m) \frac{1}{2N}$$

for the largest $2N$. The results of the estimation for the conformal anomaly c is shown in Table I. The value of c for $m = 7/20, 3/8$ and $5/12$ is slightly larger than 1. As we will see later, the universal relation between two exponents η and η' for a $c = 1$ conformal field theory holds in our case. Thus we conclude that $c = 1$ for $1/4 < m < 3/4$.

We consider a magnetization curve of the alternating spin chain in two regions of $0 < m < 1/4$ and $1/4 < m < 3/4$. For $0 < H < H_{c1}$, where the value H_{c1} is equal to the energy gap Δ, the lowest-energy state of the Hamiltonian \mathcal{H} has the magnetization $M = N/2$. This means that $m = 1/4$ for $0 < H < H_{c1}(= \Delta)$. For $1/4 < m < 3/4$, owing to the conformal invariance, the spin-excitation energy of the Hamiltonian \mathcal{H} depends on the system size $2N$ as

$$E(2N, M + 1) - E(2N, M) - H \simeq \pi v_s(m) \frac{1}{2N}$$

in the limit $2N \to \infty$. [14] where we vary $2N$ and M with $m = M/(2N)$ fixed. η is a critical exponent of correlation function for spin-excitations, which we will estimate in the following. In Fig. 2, we plot

$$E(2N, M + 1) - E(2N, M) - H \simeq -\pi v_s(m) \frac{1}{2N}$$

for the largest $2N$. The results of the estimation for the conformal anomaly c is shown in Table I. The value of c for $m = 7/20, 3/8$ and $5/12$ is slightly larger than 1. As we will see later, the universal relation between two exponents η and η' for a $c = 1$ conformal field theory holds in our case. Thus we conclude that $c = 1$ for $1/4 < m < 3/4$.

We consider a magnetization curve of the alternating spin chain in two regions of $0 < m < 1/4$ and $1/4 < m < 3/4$. For $0 < H < H_{c1}$, where the value H_{c1} is equal to the energy gap Δ, the lowest-energy state of the Hamiltonian \mathcal{H} has the magnetization $M = N/2$. This means that $m = 1/4$ for $0 < H < H_{c1}(= \Delta)$. For $1/4 < m < 3/4$, owing to the conformal invariance, the spin-excitation energy of the Hamiltonian \mathcal{H} depends on the system size $2N$ as

$$E(2N, M + 1) - E(2N, M) - H \simeq \pi v_s(m) \frac{1}{2N}$$

in the limit $2N \to \infty$. [14] where we vary $2N$ and M with $m = M/(2N)$ fixed. η is a critical exponent of correlation function for spin-excitations, which we will estimate in the following. In Fig. 2, we plot

$$E(2N, M + 1) - E(2N, M) - H \simeq -\pi v_s(m) \frac{1}{2N}$$

for the largest $2N$. The results of the estimation for the conformal anomaly c is shown in Table I. The value of c for $m = 7/20, 3/8$ and $5/12$ is slightly larger than 1. As we will see later, the universal relation between two exponents η and η' for a $c = 1$ conformal field theory holds in our case. Thus we conclude that $c = 1$ for $1/4 < m < 3/4$.

We consider a magnetization curve of the alternating spin chain in two regions of $0 < m < 1/4$ and $1/4 < m < 3/4$. For $0 < H < H_{c1}$, where the value H_{c1} is equal to the energy gap Δ, the lowest-energy state of the Hamiltonian \mathcal{H} has the magnetization $M = N/2$. This means that $m = 1/4$ for $0 < H < H_{c1}(= \Delta)$. For $1/4 < m < 3/4$, owing to the conformal invariance, the spin-excitation energy of the Hamiltonian \mathcal{H} depends on the system size $2N$ as

$$E(2N, M + 1) - E(2N, M) - H \simeq \pi v_s(m) \frac{1}{2N}$$

in the limit $2N \to \infty$. [14] where we vary $2N$ and M with $m = M/(2N)$ fixed. η is a critical exponent of correlation function for spin-excitations, which we will estimate in the following. In Fig. 2, we plot
nect them by a smooth curve. To estimate $\varepsilon'(m)$ for $1/4 < m < 3/4$, we use the largest- and next-largest-size data for $E(2N, M + 1) - E(2N, M)$ in the form (7) and do the same treatment for $E(2N, M) - E(2N, M - 1)$ in the form (8). Two results of $\varepsilon'(m)$ for $9/20 \leq m$ coincide with each other within a difference less than 0.5%. The difference for $m = 7/20, 3/8$ and $7/12$ is less than 1%. Thus we regard the average of the two results as the extrapolated value of $\varepsilon'(m)$. Using the extrapolated values of $\varepsilon'(m)$, we draw in Fig. 3 the magnetization curve at $T = 0$ in the thermodynamic limit. We see that a plateau appears at $m = 1/4$. The presence of this plateau is expected from the Lieb-Mattis theorem, [1] which shows that the ground state of the alternating spin antiferromagnetic Heisenberg chain has the total spin $N/2$ and has an energy gap between the ground state and the lowest-energy state of spin $N/2 + 1$. It is also consistent with the generalized LSM theorem proposed by Oshikawa et al. [2]. The generalized LSM theorem can be applied to general spin chains with axial symmetry. The quantization condition of a magnetic plateau in our case is that $1/2 + 1 - 2m$ = integer, which holds for $m = 1/4$.

Next we calculate two critical exponents, η and η^z, for correlation functions of the transverse and parallel components to a magnetic field, which behave as $(-1)^{r-\eta}$ for the transverse component and $r^{-\eta} \cos(2k_F r)$ for the parallel one, where r is the distance between two operators in the correlation function and $2k_F$ is a wave vector whose definition will be given later. First we consider the critical exponent η. The exponent η appears in the asymptotic forms (7) and (8) of the spin-excitation energy gaps. Thus, substituting eq.(8) from eq.(7) and using eq.(6), we get the relation

$$
\eta = \frac{E(2N, M + 1) + E(2N, M - 1) - 2E(2N, M)}{2\pi(2N, M) - E(2N, M)}
$$

(9)

The results of η evaluated by eq. (9) for $2N = 16, 18$ and 20 are plotted in Fig.4 versus magnetization per site m. We determine η in the limits of $m \to (1/4)$ + and $m \to (3/4)$ −, by extrapolating the value of η for $M = N/2 + 1 (m = (1/4) +)$ and $M = 3N/2 - 1 (m = (3/4) −)$ linearly to $1/(2N)$ for $2N = 18$ and 20. The results are $\eta = 0.460$ for $m = 1/4$ and $\eta = 0.493$ for $m = 3/4$.

Next we consider the critical exponent η^z for the spin-spin correlation function. In the numerical calculation of $E_k(2N, M)$ for $k = 0, \pi/N, 2\pi/N, \ldots, 2\pi(1 - 1/N)$, we find that a soft mode exits at $k = 2\pi M/N - \pi \pm 2k_F$ for $M \leq N$ and $k = 3\pi - 2\pi M/N \mp 2k_F$ for $M < N$. If the soft mode become a gapless excitation as $2N \to \infty$, the conformal invariance predicts that its energy gap from the lowest energy depends on the system size $2N$ as

$$
E_{2k_F}(2N, M) - E(2N, M) \simeq \pi v_s \eta^z \frac{1}{2N}
$$

(10)

in the limit $2N \to \infty$. [3] We numerically check this asymptotical behavior of the energy gap for $m = 5/12,

m	7/20	3/8	5/12	9/20	1/2	11/20	7/12	5/8	13/20
c	1.20	1.23	1.18	1.07	1.07	1.04	1.08	1.07	1.04

Table I. Conformal anomaly c estimated from eqs. (5) and (6).

Fig. 3. Magnetization curve at the thermodynamic limit. Open circles show plots of magnetization per site m versus $H(= \varepsilon'(m))$ which is estimated by averaging two results extrapolated by eqs. (7) and (8). A plateau appears at $m = 1/4$.

Fig. 4. Critical exponent η estimated from eq.(9) for $2N = 16, 18$ and 20.
1/2 and 7/12. Thus we assume that the gapless excitation exits at \(k = 2k_F \) in the infinite system. To estimate \(\eta^z \), we use the relation

\[
\eta^z = \frac{E_{2k_F}(2N, M) - E(2N, M)}{E_{2\pi/N}(2N, M) - E(2N, M)}
\]

(11)
derived from eqs. (6) and (10). The results of \(\eta^z \) for \(2N = 16, 18 \) and 20 are plotted in Fig. 5.

Fig. 5. Critical exponent \(\eta^z \) estimated from eq. (11) for \(2N = 16, 18 \) and 20.

We compare the above results of \(\eta \) and \(\eta^z \) with those for \(S = 1/2 \) and \(S = 1 \) antiferromagnetic Heisenberg chains. Let us first note the behaviors of \(\eta \) and \(\eta^z \) for \(S = 1/2 \) and \(S = 1 \). For \(S = 1/2 \), when \(m \) varies from 0 to 1/2, \(\eta \) monotonously decreases from 1 to 1/2 and \(\eta^z \) monotonously increases from 1 to 2. For \(S = 1 \), \(\eta = 1/2 \) and \(\eta^z = 2 \) at \(m = 0 \) and \(m = 1 \). \(\eta \) and \(\eta^z \) have a minimum and a maximum near \(m = 1/3 \), respectively.

The parallel spin correlation for \(S = 1/2 \) is stronger than that for \(S = 1 \). In the alternating spin chain, \(\eta \) and \(\eta^z \) have a maximum and a minimum, respectively. The parallel spin correlation for the alternating spin chain is stronger than that for \(S = 1 \) but the transverse one is weaker. The alternating spin is similar in this aspect to \(S = 1 \) conformal field theory. The values of \(\eta^z \) for \(2N = 20 \) are shown in Table II. It shows that the relation \(\eta^z = 1 \) is satisfied within errors.

It is a pleasure to thank T. Ono for valuable discussions. The computation in this paper has been done partially at Supercomputer Center, ISSSP, University of Tokyo.

\(M \)	\(\eta \)	\(\eta^z \)	\(\eta \eta^z \)
6	0.617	2.000	1.234
7	0.608	1.825	1.109
8	0.606	1.744	1.056
9	0.601	1.721	1.034
10	0.592	1.717	1.016
11	0.578	1.777	1.027
12	0.563	1.833	1.031
13	0.548	1.902	1.043
14	0.539	2.000	1.078

Table II. Exponents \(\eta \) and \(\eta^z \) estimated from eqs. (9) and (11) for \(2N = 20 \) and the values of \(\eta \eta^z \).

[1] E. Lieb and D. Mattis: J. Math. Phys. 3 (1962) 749.
[2] F. C. Alcaraz and A. L. Malvezzi: To be published in J. Phys. A.
[3] T. Ono, T. Nishimura, M. Katsumura, T. Morita and M. Sugimoto: J. Phys. Soc. Jpn. 66 (1997) 2576.
[4] S.K. Pati, S. Ramasesha and D. Sen: preprint, cond-mat /9704057 ; H. Niggen, G. Uimin and J. Zittartz: J. Phys.: Condens. Matter 9 (1997) 9031.
[5] S. Brehmer, H.-J. Mikeska and S. Yamamoto: J. Phys.: Condens. Matter 9 (1997) 3921.
[6] M. Verduguer, M. Julve, A. Michalowicz and O. Kahn: Inorg. Chem. 22 (1983) 2624; Y. Pei, M. Verduguer, O. Kahn, J. Sletten and J.-P. Renard: Inorg. Chem. 26 (1987) 138; E. Coronado, M. Drillon, P. R. Noguera, L. J. de Jongh, D. Beltran and R. Georges: J. Am. Chem. Soc. 111 (1989) 3874; P. Zhou, B. G. Morin and A. J. Epstein: J. Appl. Phys. 73 (1993) 6569.
[7] H. J. de Vega and F. Woynarovich: Nucl. Phys. B 251 (1985) 439; F. Woynarovich, J. Phys. A 22 (1989) 4243.
[8] E. H. Lieb, T. Schultz and D. J. Mattis: Ann. Phys. (N. Y.) 16 (1961) 407; I. Affleck and E. H. Lieb, Lett. Math. Phys. 12 (1986) 57.
[9] M. Oshikawa, M. Yamanaka and I. Affleck: Phys. Rev. Lett. 78 (1997) 1984.
[10] K. Hida: Phys. Soc. Jpn. 63 (1994) 2359.
[11] T. Tonegawa, T. Nakano and M. Kaburagi: J. Phys. Soc. Jpn. 65 (1996) 3317.
[12] T. Sakai and M. Takahashi: Phys. Rev. B 43 (1991) 13383; ibid: J. Phys. Soc. Jpn. 60 (1991) 3615.
[13] M. Fujii, S. Fujimoto and N. Kawakami: J. Phys. Soc. Jpn. 65 (1996) 2381.
[14] J. L. Cardy: Nucl. Phys. B 270 [FS16] (1986) 186; H. W. Bötte, J. L. Cardy and M. P. Nightingale: Phys. Rev. Lett. 56 (1986) 742; I. Affleck, Phys. Rev. Lett. 56 (1986) 746.
[15] N. M. Bogoliubov, A. G. Izergin and N. Yu Reshetikhin: J. Phys. A 20 (1987) 5361.
[16] N. M. Bogoliubov, A. G. Izergin and V. E. Korepin: Nucl. Phys. B 275 [FS17] (1986) 687.
[17] F. D. M. Haldane: Phys. Rev. Lett. 45 (1980) 1358; Phys. Lett. A 81 (1981) 153 ; J. Phys. C 14 (1981) 2585.
\[E(2N,M)/(2N) \]

- \(m = \frac{1}{4} \)
- \(m = \frac{1}{2} \)
- \(m = \frac{5}{12} \)
- \(m = \frac{7}{12} \)
