A New Genetic Algorithm for the Optimal Centralized Wireless Access Network

Dac-Nhuong Le
Hanoi University of Science, Vietnam National University, Vietnam

ABSTRACT
The wireless access networks design problem is formulated as a constrained optimization problem, where the goal is to find a network topology such that an objective function is optimized, subject to a set of constraints. The objective function may be the total cost, or some performance measure like utilization, call blocking or throughput. The constraints may be bounds on link capacities, cost elements, or some network performance measure. However, the optimization problem is too complex. In this paper, we propose a new genetic algorithm (GA) to finding the total cost of connecting the BSs to the MSCs, and connecting the MSCs to the LE called by the optimal centralized wireless access network. Numerical results show that performance of our proposed algorithm is much better than previous studies.

Copyright © 2013 Institute of Advanced Engineering and Science. All rights reserved.

Corresponding Author:
Dac-Nhuong Le,
Hanoi University of Science, Vietnam National University, Vietnam
334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
Email: nhuongld@hus.edu.vn

1. INTRODUCTION
The wireless access network of a cellular telephone system consists four interacting layers. These layers are the mobile station or user equipment layers, the base transceiver stations layer, the mobile switching centers layer, and lastly local exchanges of the public switched telephone network (PSTN). Each cell in the hexagonal cell grid contains one base station (BS) and mobile station (MS). A set of BS’s are physically connected to and served by a mobile switching center (MSC). In turn, a set of MSC’s are physically connected to and served by a local exchange (LE).

Figure 1. A cellular access network

Journal homepage: http://iaesjournal.com/online/index.php/IJINS
Figure 1 depicts the general configuration of a cellular access network. Each BS is typically assigned a group of radio channels (*frequency carriers*) to support a number of mobile stations in its cell. BS’s at adjacent cells are assigned different sets of frequencies. The antennas of a BS are designed to achieve coverage only within the particular cell. By limiting coverage of a BS to its cell area, the set of frequencies assigned to this BS can be reused at other BS’s that are distant enough to keep co-channel interference within acceptable limits.

A BS contains the radio transceivers defined for its cell, and handles the radio-link protocols with the user’s wireless device (cell phone). In addition, it may house a controller that handles radio-channel setup, frequency hopping and handovers. In a large metro area, a potentially large number of BS’s are deployed at pre-determined locations. The BS controllers are connected by land-wires to nearby MSC’s in the area. The MSC provides all the functionality needed to handle a mobile subscriber, such as registration, authentication, location updating, handovers, and call routing to a roaming subscriber. To switch calls from/to local mobile users to/from remote users, MSCs are connected by land-cables to nearby LEs of the PSTN. The potential locations of MSCs are judiciously determined with respect to the BS locations and to the LEs in the region. Typically, the locations of the LEs are fixed, and a single LE serves an area with many BS’s and multiple MSCs [1-2].

In the latest paper [3], we have proposed a novel Particle Swarm Optimization (PSO) [4] algorithm based on Ford-Fulkerson algorithm find maximum flow in networks for the optimal location of controllers in a mobile communication network. In [5], the authors have presented the topological design of the network connecting the BSs to the MSCs and the MSCs to the LEs in a typical region of the cellular system. The access network has a centralized tree topology. That is, a single LE facility controls a set of MSCs, and a single MSC controls, in turn, a set of BS’s. Finally, a BS supports a group of mobile stations through wireless connections. A tree topology of the wireless access network, consisting of 1 LE, 2 MSCs, 4 BSs, and 18 MSs is shown in Figure 2.

The topological design of access networks has been a very important part of cellular network research in recent years. Recent studies are given in references [5-9]. Generally, the design problem is formulated as a constrained optimization problem, where the goal is to find a network topology such that an objective function is optimized, subject to a set of constraints. The objective function may be the total cost, or some performance measure like utilization, call blocking or throughput. The constraints may be bounds on link capacities, cost elements, or some network performance measure. However, the optimization problem is too complex, or it’s computationally impractical to search for the optimal solution. So, one usually resorts to heuristic methods that enable one to determine a near-optimum network topology more easily. The simple design of access network has one single LE. The objective function is the total cost of connecting the BSs to the MSCs, and connecting the MSCs to the LE. Authors in [6] proposed an exhaustive search algorithm to generating all the possible matrices and searches for the matrix that yields the minimum cost. In [7-9], the authors presented a heuristic algorithm to finding the best solution is the topology with the smallest cost across all the iterations.

In this paper, we propose a new Genetic Algorithm (GA) [10] to finding the total cost of connecting the BSs to the MSCs, and connecting the MSCs to the LE. Numerical results show that our proposed algorithm is much better than previous studies. The rest of this paper is organized as follows: Section 2 presents the problem formulation the simple centralized access network. Section 3 presents our new
2. PROBLEM FORMULATION

The simple centralized access network can be defined as follows [5]: Let \(N \) be the number of BSs \((T_1, T_2, \ldots, T_N)\). The locations of the \(N \) terminals are assumed known and fixed. Let \(M \) be the number of potential sites \((S_1, S_2, \ldots, S_M)\), where up to \(M \) MSCs can be placed. In one extreme situation, none of the \(M \) sites is used, and all the \(N \) BSs are linked directly to the central LE, \(S_0 \).

In the other extreme, all the \(M \) MSC sites are used, each serving a subset of BS’s. The principal constraint is that the MSC at site \(S_j \) can handle up to a maximum of \(P_j \) BSs \((1..M)\). This can be a hardware limitation, or a capacity constraint of the land-cable connecting the MSC to the LE. The central site is assumed to have no such constraint.

2.1 The Simple Centralized Wireless Access Network

We want to formulate the network design problem as an optimization problem. Let \(c_{ij} \) be the cost of connecting base station \(T_i \) to MSC site \(S_j \) or to the central site \(S_0 \). The cost \(c_{ij} \) is measured in some unit (e.g., dollar/month), and represents the overall BS-MSC connection cost (e.g., transmission cabling, interfacing, maintenance, leasing). Note that a base station may be located at the site of an MSC, in which case the corresponding \(c_{ij} \) cost is zero.

These cost elements \(c_{ij} \) can be written in the form of a matrix, as follows:

\[
C = \begin{pmatrix}
 c_{10} & c_{11} & \cdots & c_{1M} \\
 c_{20} & c_{21} & \cdots & c_{2M} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{N0} & c_{N1} & \cdots & c_{NM}
\end{pmatrix}
\]

If an MSC at site \(S_j \) is utilized, the MSC capital cost and its connection cost to the LE are also incurred. Let \(f_j \) be the cost of connecting an MSC at \(S_j \) to the central LE \(S_0 \), and \(b_j \) the capital cost of the MSC at \(S_j \). We can write these 2 costs as row vectors, as follows:

\[
F = \begin{pmatrix}
 f_0 \\
 f_1 \\
 \vdots \\
 f_M
\end{pmatrix}, \quad B = \begin{pmatrix}
 b_0 \\
 b_1 \\
 \vdots \\
 b_M
\end{pmatrix}
\]

We assumed that the capital cost of the central LE is not counted. That is, \(b_0 = 0 \), and clearly \(f_0 = 0 \). Similarly, we can write the MSC constraints as the following row vector:

\[
P = \begin{pmatrix}
 p_0 \\
 p_1 \\
 \vdots \\
 p_M
\end{pmatrix}
\]
where, \(p_j \) is the maximum number of BSs that MSC at site \(S_j \) can handle \((j=1..M) \), with \(p_0 = N \) (i.e., the central LE can handle all the \(N \) base stations).

A network design can be defined by the following matrix variable:

\[
X = (x_{ij})_{N \times M+1} = \begin{pmatrix}
x_{00} & x_{01} & \cdots & x_{0M} \\
x_{10} & x_{11} & \cdots & x_{1M} \\
\vdots & \vdots & \ddots & \vdots \\
x_{N0} & x_{N1} & \cdots & x_{NM}
\end{pmatrix}
\]

(4)

where, the element variable \(x_{ij} \) \((i=1..N, j=0..M) \) is defined as:

\[
x_{ij} = \begin{cases}
1 & \text{if } T_i \text{ is connected to } S_j \\
0 & \text{if } T_i \text{ is not connected to } S_j
\end{cases}
\]

(5)

Note that since a BS may be connected to at most one of the \(M \) MSC sites or to the central LE site, there must be only one “1” in each row of matrix \(X \). In addition, note that the number of 1’s in column \(j \) is the number of BSs connected to the MSC at site \(S_j \) \((j=0..M) \). Thus, an all-zero column of matrix \(X \) corresponds to an MSC site that is not used.

Displayed equations or formulas are centered and set on a separate line (with an extra line or half line space above and below). Displayed expressions should be numbered for reference. The numbers should be consecutive within each section or within the contribution, with numbers enclosed in parentheses and set on the right margin.

From matrix \(X \), we extract the following MSC-usage vector:

\[
Y = (y_0, y_1, ..., y_M)
\]

(6)

where, the element variable \(y_j \) \((j=0..M) \) is defined as:

\[
y_j = \begin{cases}
1 & \text{if } S_j \text{ used, if } \sum_{i=1}^{N} x_{ij} > 0 \\
0 & \text{if } S_j \text{ not used, if } \sum_{i=1}^{N} x_{ij} = 0
\end{cases}
\]

(7)

The cost of a network design (defined by matrix \(X \) and vector \(Y \)) is thus expressed as follows:

\[
Z = \sum_{i=1}^{N} \sum_{j=1}^{M} (c_{ij} \times x_{ij}) + \sum_{j=0}^{M} (f_{j} \times y_{j}) + \sum_{j=0}^{M} (b_{j} \times y_{j})
\]

\[
\Leftrightarrow Z = \text{sumdiag} \left(C \times X^T \right) + F \times Y^T + B \times Y^T
\]

(8)

In expression (8), the superscript \(T \) means transpose of matrix or vector, and \(\text{sumdiag}(A) \) is a function that sums up the diagonal elements of matrix \(A \). The first term in the cost function \(Z \) is the cost of connecting the \(N \) BSs to the \(M \) MSCs used or to the central LE, the second term is the cost of connecting the MSCs to the LE, and the third term is the hardware cost of the MSCs used.

2.2 The Optimal Centralized Wireless Access Network

The optimal centralized wireless access network (OCWAN) in network design problem can thus be stated as the following optimization problem.

Problem instance:
- A set of BSs at known locations: \(T_1, T_2, ..., T_N \).
- A set of possible MSC sites: \(S_1, S_2, ..., S_M \).
- BS-connection cost matrix:
 \[
 C = (c_{ij})_{N \times M+1}
 \]
- The cost of connecting an MSC at \(S_j \) to the central LE \(S_0 \): \(F = (f_0, f_1, ..., f_M) \)
• The capital cost of the MSC at S_j: $B = (b_0, b_1, \ldots, b_M)$
• The mux capacity constraint vector: $P = (p_0, p_1, \ldots, p_M)$

Objective function: Find the matrix X (thus the vector Y) that minimizes the network cost Z:

$$Z = \sum \text{diag}(C \times X^T) + F \times Y^T + B \times Y^T \rightarrow \min$$ \hspace{1cm} (9)

Subject to the following 2 constraints:
• The first constraint indicates that the sum of the elements in row i of matrix X must be 1 ($i=1,2,\ldots,N$). E is the column vector of all 1’s.

$$X \times E = E$$ \hspace{1cm} (10)

• The second constraint indicates that the sum of elements in column j of matrix X must be less than or equal to p_j ($j = 0..M$).

$$E^T \times X \leq P$$ \hspace{1cm} (11)

In the matrix inequality of equation (11), the inequality relation is defined element by element.

3. **GENETIC ALGORITHM FOR OCWAN**

In this section, we present application of GA algorithm for the OCWAN problem. Our novel algorithm is described as follows. We consider that configurations in our algorithm are sets of N BSs and set of M MCSs.

3.1 **Represent and decode an individual**

The encoding of the configuration is by means of matrix x, say

$$x = (x_{ij})_{N \times M}, \; (i = 1..N, j = 0..M)$$

where, $x_{ij}=1$ means that the corresponding BS T_i has been connected to MSC site S_j, and otherwise, $x_{ij}=0$ means that the corresponding BS T_i has been not connected to MSC site S_j.

3.2 **Initialization**

```
INDIVIDUAL_REPAIR_ALGORITHM (x = (x_{ij})_{N \times M, 1})
Input: The individual x
Output: The individual x will satisfies constraints in (10) and (11)
{ FOR i=1..N
    r_i = Number of 1s in row i
    IF r_i>1 THEN Select (r_i -1) 1s randomly and removes them from row i
    ELSE IF Count<1 THEN
        Adds 1 1s in random positions in row i.
    ENDIF
ENDFOR
FOR j=0..M
    c_j = Number of 1s in column j
    IF ( c_j > p_j )
        Select (c_j - p_j) 1s randomly and removes them from columnj
    ELSE IF ( c_j < p_j )
        Adds (p_j -c_j) 1s in random positions in column j.
ENDIF
ENDFOR
```

Figure 4. **Individual _Repair algorithm**

A New Genetic Algorithm for the Optimal Centralized Wireless Access Network (Dac-Nhuong Le)
We use fully random initialization in order to initialize the individuals. We present \textit{Individual_Repair Algorithm} to ensure that the individual x satisfies constraints in (10) and (11) shown in Figure 4.

After that, the individual x will have the sum of the elements in row i of matrix x must be 1 ($i=1,2,\ldots,N$) and the sum of elements in column j of matrix x must be less than or equal to p_j ($j=0..M$).

3.3 Crossover Operator

This operator mimics the mating process in the nature. To do crossover, two individuals are picked first and two integer numbers (i, j) (crossover point is x_{ij}) are generated randomly between $[1,N]$ and $[1,M]$ (where N is number of BSs and M is number of MCSs).

Then the offspring is generated by interchanging the second halves of its parent, as illustrated in Figure 5. In the crossover stage, the algorithm examines all pairs of individuals. It begins with the pairs that include the individual with a higher fitness value until the population size becomes twice of the original size.

3.4 Mutation Operator

The mutation operation is one kind of random change in the individual. In our algorithm, pointwise mutation is adopted, in which one gene in the individual is changed with a certain probability, referred to as the mutation probability. This operator allows the algorithm to search for new and more feasible individuals in new corners of the solution spaces.

3.5 Evaluation function

After the mutation, each individual x is satisfies constraints in (10) and (11).

The cost function of the individual x given by:

\[\text{cost}(x) = \ldots \]
\[f(x) = \text{sumdiag}(C \times X^T) + F \times Y^T + B \times Y^T \] (12)

In which, \(Y \) defined in (7) and (8).

3.6 Our genetic algorithm

The pseudo-code of the genetic algorithm based for the OCWAN problem as follows:

GENETIC ALGORITHM_OCWAN (GA_OCWN)
BEGIN
\text{INITIALISE population} with random candidate solutions;
INDIVIDUAL_REPAIR (candidate);
EVALUATE FUNCTION each candidate;
REPEAT
1. SELECT parents;
2. RECOMBINE pairs of parents;
3. CROSSOVER the resulting offspring;
4. MUTATION the resulting offspring;
5. INDIVIDUAL_REPAIR (candidates);
6. EVALUATE FUNCTION new candidates;
7. SELECT individuals for the next generation;
UNTIL (TERMINATION CONDITION is satisfied)
END

Figure 7. Genetic algorithm for OCWAN

4. EXPERIMENTS AND RESULTS

For the experiments, we have tackled several OCWAN instances of different difficulty levels. There are 8 OCWAN instances with different values for \(N \) and \(M \), and BS-connection cost matrix show in Table 1.

Problem #	#1	#2	#3	#4	#5	#6	#7	#8
Number of MSCs	4	5	8	10	20	40	50	60
Number of BSs	10	20	40	80	100	150	200	250

In our experiments, we have already defined our crossover probability as 0.7, we will work with a population size of 500 and a mutation rate of \(p_m = 1/m \).

Our genetic algorithm to tackle these problems can be specified as below in Table 2.

Table 2. Genetic algorithm specifications
Representation
Recombination
Recombination probability
Mutation
Mutation probability \(p_m \)
Parent selection
Survival selection
Population size
Number of offspring
Initialisation
Termination condition

The experiment was conducted on Genuine Intel® CPU DuoCore 3.0 GHz, 2 GB of RAM machine. We ran experiment GA algorithm, Exhaustive Search algorithm [5] and Heuristic algorithm [8] implemented...
using C language. The experimental results of our algorithm was finally compared with others algorithm shown in Figure 8.

![Figure 8](image1.png)

Figure 8. The results obtained in the OCWAN instances tackle

The results show that the objective function values of our algorithm has achieved a much better than a Heuristic algorithm and approximate good solutions of Exhaustive Search algorithm. But, the performance of our proposed algorithm is better than other algorithm.

The comparison of time processing shows in Figure 9.

![Figure 9](image2.png)

Figure 9. The comparison of time processing OCWAN instances tackle

5. CONCLUSION

In this paper, we have proposed a new Genetic Algorithm (GA) to finding the total cost of connecting the BSs to the MSCs, and connecting the MSCs to the LE called by the optimal centralized wireless access network. Numerical results show that performance of our proposed algorithm is much better than previous studies.

With a growing need for anywhere and anytime access to information and transaction, optimal capacity expansion of wireless networks to accommodate next-generation wireless service is our next research goal.

REFERENCES

[1]. Mathar, R., Niessen, T., “Optimum positioning of base stations for cellular radio networks”, Wireless Networks, N0.6, 2000.
[2]. Schwartz, M., “Computer-communication Networks”, Prentice-Hall, 1977.
[3]. Dac-Nhuong Le, Nhu Gia Nguyen, and Trong Vinh Le, “A Novel PSO-Based Algorithm for the Optimal Location of Controllers in Wireless Networks”, International Journal of Computer Science and Network Security, Vol.12 No.8, pp.23-27,2012.
[4]. J. Kennedy and R. Eberhart, “Swarm Intelligence”, Morgan Kaufmann Publisher Inc, 2001.
[5]. K. Kraimeche, B. Kraimeche, K. Chiang, “Optimization of a wireless access network”, 2005.
[6]. Glaber, C., S. Reith, and H. Vollmer., “The Complexity of Base Station Positioning in Cellular Networks. Approximation and Randomized Algorithms in Communication Networks”, In Proceedings of ICALP, pp.167-177, 2000.
[7]. Galota, M., Glaber, C., Reith, S. Vollmer, H., “A Polynomial-time approximation scheme for base station positioning in UMTS networks”, ACM, 2001.
[8]. B. Krishnamachari, S.Wicker, “Base station location optimization in cellular wireless networks using heuristic search algorithms”, Wang, L.(Ed.), Soft Computing in Communications, Springer.
[9]. Raisane, L., Whitaker, R., Hurley, S., “A comparison of randomized and evolutionary approaches for optimizing base station site selection”. ACM Symposium on Applied Computing, 2004.
[10]. Michalewicz, Z., “Genetic Algorithms + Data Structures = Evolution programs”, Springer-Verlag, 1992.
[11]. T. Bäck, “Evolutionary Algorithms in Theory and Practice”. Oxford University Press, New York, 1996.
[12]. D.E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning”, Addison-Wesley Publishing Company, Inc., 1997
[13]. Ahn, C.W., Ramakrishna, R.S, “A Genetic algorithm for shortest path routing problem and the sizing of populations”, IEEE transactions on evolutionary computation, vol.6. No.6, 2002.
[14]. F. Houeto, S. Pierre, Assigning cells to switches in cellular mobile networks using taboo search, Systems, Man and Cybernetics, Part B, IEEE Transactions, vol. 32 No.3, pp.351-356, 2002.
[15]. S. Salcedo-Sanz, and Xin Yao, “A hybrid Hopfield network-genetic algorithm for the terminal assignment problem”, IEEE Transaction on Systems, Man and Cybernetics. B, v36 i6, pp.2343-2353, 2006.
[16]. S. Salcedo-Sanz, J. A. Portilla-Figuera, E. G. Ortiz-García, A. M. Pérez-Bellido, C. Thraves, A. Fernández-Anta, and X. Yao, “Optimal switch location in mobile communication networks using hybrid genetic algorithms”, Applied Soft Computing, pp.1486-1497, 2008.
[17]. Dac-Nhuong Le, and Nhu Gia Nguyen, “A New Evolutionary Approach for Gateway Placement in Wireless Mesh Networks”, International Journal of Computer Networks and Wireless Communications (IJCNWC), Vol.2, No.5, pp.550-555, 2012, India.
[18]. Dac-Nhuong Le, “Optimizing Resource Allocation to Support QoS Requirements in Next Generation Networks using ACO Algorithm”, International Journal of Computer Science and Information Technology & Security (IJCSITS), Vol.2, No.5, pp.931-938, 2012, India.

BIOGRAPHY OF AUTHORS

Dac-Nhuong Le
He received the BSc degree in computer science and the MSc degree in information technology from College of Technology, Vietnam National University, Vietnam, in 2005 and 2009, respectively. He is a lecturer at the Faculty of information technology in Haiphong University, Vietnam. He is currently a Ph.D student at Hanoi University of Science, Vietnam National University. His research interests include algorithm theory, computer network and networks security.