Pharmaceutical Standardisation

Phyto-chemical evaluation of dried aqueous extract of Jivanti [Leptadenia reticulata (Retz.) Wt. et Arn]

Atanu Pal, Parmeshwar P. Sharma, Tarulata N. Pandya, Rabinarayan Acharya, Bhupehs R. Patel, Vinay J. Shukla, B. Ravishankar

Lecturer, Department of Dravyaguna Vijnana and Rasa Shastra, Biswanath Ayurveda Mahavidyalaya, Kolkata, West Bengal, 1Ex. Professor and Head, 2Ex. Reader and Head, 3Assistant Professor, 4Associate Professor, Department of Dravyaguna, 5Head, Pharmaceutical Chemistry Laboratory, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, 6Director, Research and Development, SDM College of Ayurveda, Kuthpady, Udupi, Karnataka, India

Abstract

Jivanti (Leptadenia reticulata (Retz.) Wt. et Arn) is a well known climber used for its innumerable therapeutic properties like antioxidant, antibacterial, vasodilator, galactogogue, jivaniya, etc., Its use in veterinary practice is tremendous due to its lactogenic effect. The Ghana (dried aqueous extract) of the whole plant was prepared and evaluated phyto-chemically by subjecting it to various tests like physico-chemical, qualitative analysis; TLC and HPTLC. Qualitative tests revealed the presence of flavonoids and TLC also inferred positive Rf value (0.30), indicating the presence of quercetin in the Ghana.

Key words: Dried extract, Ghana, Jivanti, Leptadenia reticulata, quercetin

Introduction

Plants are preliminary source of chemicals used to treat the various disease conditions of living creature. Chemicals derived from plants fulfill every aspect of our daily requirements, as a source of food as well as medicinal agents.

Leptadenia reticulata (Retz.) Wt. et Arn. is an important plant of Asclepiadaceae family, commonly known as Jivanti in Sanskrit and Dodi in Hindi and Gujarati, is a climber distributed in tropical and sub-tropical parts of Asia and usually grown as hedges in Gujarat. The botanical source of jivanti is in the state of controversy and Charaka mentioned it as a classical whole some vegetable (Shrestha Shaka) to be consumed for maintaining the good health. It is also used as Jivaniya, Snehopaga, Vayasthanapiya, Rasayana, and Chakshushya in Ayurveda. Various herbs are used under the name of Jivanti in the different parts of the country, namely - Dregia volubilis Linn, Holostemma annulare Roxb. of Asclepiadaceae family, Dendrobium normale Fale (Orchidaceae), etc., However, L. reticulata is accepted as a genuine Jivanti.

It is rich in sterols especially stigmastanol and tubers contain fructosan. Physico-chemical parameters, Thin Layer Chromatography (TLC) and High Performance Thin Layer Chromatography (HPTLC) of the methanolic extract of the leaf and stem has been reported but Ghana (dried aqueous extract) of the plant has not been found evaluated yet and hence it was thought to evaluate the Ghana of the whole plant of L. reticulata in the present study.

Materials and Methods

Materials

The matured Jivanti (L. reticulata) was collected from Khatia forest of Jamnagar in the month of March and their authenticity was confirmed by referring various floras and with the help of Pharmacognost of Gujarat Ayurved University. Underground parts of the plant were washed out by running tap water to remove adherent soil, dust, etc., Morphological and microscopical characters of root, stem, leaf, fruit, etc., of the plant were studied separately to confirm the genuinity.

Shade dried plants were subjected to coarse powdering for the preparation of Ghana by following standard methods and converted into tablets of 500 mg weight in the Pharmacy of Gujarat Ayurved University, Jamnagar. The compressed tablets were stored in well closed glass bottles for further study.

Methods

Weight variation, disintegration time, and hardness of the prepared tablets were recorded as per the standard methods preliminarily and then they were subjected to chemical evaluation. Parameters like loss on drying, ash value, water soluble ash, acid insoluble ash, water soluble extractive,
methanol soluble extractive, hexane soluble extractive, pH value and qualitative tests for tannin, terpenoid/sterols, alkaloid, saponin, flavonoid, glycoside, carbohydrate were carried out by following standard methods.\[6\]

In TLC study, methanolic extract of \textit{L. reticulata Ghana} was run on a pre-coated silica gel 60 F 254 plate by using Toluene: Methanol (9:1) as a solvent system and anisaldehyde sulfuric acid as a spray reagent and Quercetin as standard. The solvent was allowed to run up to 8 cm distance and plate was observed as such under long and short ultraviolet (UV) rays and the florescent spots resolved were noted down. Then the plate was sprayed and heated at 110°C in oven. The Rf of the developed colored spots resolved were noted down.

The methanolic extract was also tested by HPTLC with the help of CAMAG Linomat-5 instrument to detect the presence of quercetin in \textit{Jivanti Ghana} by following standard method.\[7\]

Results

Analysis on routine physico-chemical parameters
Prior to physico-chemical tests, the prepared tablet of \textit{Ghana} were tested for the parameters, results show its disintegration time as 37 minutes and hardness as 6.5 kg/cm². The physico-chemical analysis revealed not less than 11.00% W/W as moisture content and not more than 32.50% W/W as ash value. The water soluble ash was not more than 19.50% W/W and acid insoluble ash was not more than 1.50% W/W. There was wide variation in all the extractive values. Water soluble extractive was not less than 56.00% W/W, whereas methanol and hexane soluble extractive were not less than 28.00% and 2.00% W/W, respectively [Table 1].

Analysis on routine qualitative parameters
Qualitative tests revealed the presence of tannin, terpenoid/sterols, alkaloids, saponin, flavonoids, carbohydrate, and glycoside [Table 2].

Analysis on thin layer chromatography separation of the methanol extract
TLC analysis of the extract showed four resolved spots (Rf – 0.30, 0.44, 0.60, and 0.73) and Rf value (0.30) and the color of the quercetin were matching with one of the resolved spot of the extract, indicating the presence of quercetin in \textit{Ghana} [Table 3 and Figure 1].

Table 1: Analytical data of physico-chemical parameters of \textit{Jivanti Ghana} tablet

Parameter	Results (%)
Determination of loss on drying	11.00 W/W
Ash value (% of total ash)	32.50 W/W
Water soluble ash	19.50 W/W
Acid insoluble ash	1.50 W/W
Water soluble extractive value	56.00 W/W
Methanol soluble extractive value	28.00 W/W
Hexane soluble extractive value	2.00 W/W
pH value (5% aqueous solution)	5.88

Table 2: Analytical data of qualitative tests of \textit{Jivanti Ghana} tablet

Components	Tests	Results
Tannin	With dilute solution ferric chloride	Positive
	With 5% lead acetate and KOH	Positive
Terpenoid/sterols	Libermann–Buchhard test	
Alkaloid	Salkowski reaction	Positive
	Dragendroff reagent	Positive
	Mayer’s reagent	Positive
	Wagner’s reagent	Positive
Saponin	With lead acetate	Positive
	Froth test	Positive
Flavonoid	With neutral lead acetate	Positive
	With sulphuric acid	Positive
Glycoside	Molish test	Positive
Carbohydrate	Fehling A and B solution test	Positive

Analysis on HPTLC identity test
In the HPTLC study, same Rf value (0.86) was noticed in all three tracks at 700 nm in track I and track II and at 260 nm in track III [Table 4 and Figure 2].

Discussion
As the drug is in tablet form, it should first be dissolved in the stomach in right time for its proper absorption. Since the drug, having moderate disintegration time and very high water and...
alcohol soluble extractive value, is indicative of proper dissolution and absorption in the acid media of stomach and intestine. Any drug must first pass into solution before it can be absorbed and so the alcohol soluble extractive of Ghana has physiological importance. Hence, it may be inferred that chemical constituents of Jivanti will be physiologically more available in the form of Ghana. Furthermore, other parameters like pH (5.88) and ash value (32.50% W/W) of the Ghana also support its better efficacy. Qualitative assessment in Jivanti Ghana by different tests reveals the presence of tannin, terpinod/sterols, alkaloids, saponins, flavonoids, carbohydrates, and glycosides-like constituents. Presence of carbohydrate denotes Jivanti having Madhura Rasa, may confirms classical reference. The resolution of four spots on TLC indicates the presence of four different chemical constituents one of them being quercetin resolved at 0.30 Rf. In the HPTLC study, same Rf value (0.86) was noticed in all three tracks at 700 nm in track I and track II and at 260 nm in track III. Positive Rf value indicate the possibility of the presence of quercetin-like flavonoid in Jivanti Ghana and variation in covered area due to presence of iso-quercetin, a nearer flavonoid glycoside-like quercetin [Figure 3].

Table 4: HPTLC details of test solution of Jivanti Ghana and quercetin at 254 and 366 nm

Track	Sample	No. of spots at 254 nm	Rf value	No. of spot at 366 nm	Rf value
I	*L. reticulata* MeOH	8	0.02, 0.07	8	0.02, 0.07
			0.10, 0.16	0.10, 0.16	
			0.20, 0.68	0.20, 0.68	
			0.86, 0.97	0.86, 0.97	
II	*L. reticulata* MeOH	9	0.01, 0.07, 0.10, 0.11, 0.15, 0.19, 0.64, 0.86, 0.97	3	0.01, 0.08, 0.10
			0.74, 0.86	0.15, 0.74	
			0.97	0.97	
III	Quercetin	5	0.02, 0.16	4	0.02, 0.09
			0.74, 0.86	0.15, 0.74	
			0.97	0.97	

Conclusion

The absorption and bioavailability of Jivanti (*L. reticulata*) may be better in the form of Ghana. Presence of carbohydrate may confirm classical reference regarding Rasa of Jivanti. Positive R, value at 0.86 confirm the possibility of the presence of quercetin/iso-quercetin in the Ghana.

Acknowledgment

The authors express deepest sense of gratitude to The Director, I.P.G.T and R.A., G.A.U., Jamnagar, Prof. M.S. Baghel Whose blessing at every step have inspired not only to accomplish this work but also in all aspects.
References

1. Agnivesh, Charaka, Dridhabala, Charaka Samhita, Sutrasthana, 25/38, edited by Shastri K, Pandey GS. 4th ed. Chaukhambha Sanskrit Sansthan, Varanasi 1994; p. 317.
2. Bhavamishra, Bhavaprakasha Nighantu, edited by Chunekar KC, Pandey GS. Guduchyadi Varga. 1st ed. Chaukhambha Bharati Academy, Varanasi, 2004. p. 295-6.
3. Kumar RK. Comparative Phyto-chemical Analysis of Leptadenia reticulata W. and A. and Dregia volubilis Linn. (Source of Jivanti). M.Sc. Med. Plants, IAMPs, GAU. Jamnagar, 2006. p. 47-59.
4. Sharma PC, Yelne MB, Dennis TJ. Database on Medicinal Plants Used in Ayurveda Volume 2. CCRAS, Dept.of ISM and H, Ministry of Health and Family welfare, Government of India, 1st ed. 2001. p. 270-3.
5. Anonymous. The Ayurvedic Formulary of India. Kwath Churna Kalpana. Part I, 2nd Revised English ed. New Delhi, The Controller of Publications Civil Lines, 2003. p. 51-62.
6. Baxi Aj. Methods of Qualitative testing of phyto-chemical constituents. In: Shukla VJ, Bhattacharyya UB (prepared). Methods of Qualitative Testing of Some Ayurvedic Formulations, 1st ed. Jamnagar: Gujarat Ayurved University, 2003; p. 3-15.
7. Gupta AK, Tendon N, Sharma M. Leptadenia reticulata W and A. In: Gupta AK editors. Quality Standards of Indian Medicinal Plants. Volume 3, 1st ed. New Delhi: ICMR, 2005. p. 236-45.

हिंदी सारांश

जीवन्ती घन का विश्लेषणात्मक अध्ययन

अन्तु पाल, परमेश्वर पी. शर्मा, तरुलता एन. पंड्य, रबिनारायण आचार्य, भूपेश आर. पटेल,
बिनय जे. शुक्ला, बी. रविशंकर

जीवन्ती एक सर्वबिद्यत लता है जिसका प्रयोग रसायन, जीवायुक्त, सिरा स्थायी, शुद्धद्वृत्त एवं जीवनीय के रूप में किया जाता है। इसका प्रयोग शुद्धद्वृत्त क्रिया के लिये पशु चिकित्सा में होता है । इस लता के पश्चात् से घन बना कर विश्लेषणात्मक तत्त्वों की अनुसूचन परीक्षा (फिजिकोक्मीकल, क्रालिटेटिव, टी.एल.सी. एवं एच.पी.टी.एल.सी.) की गयी है। गुणात्मक परीक्षा में फ्लॉवराइड की उपस्थिति पायी गयी है। इसके घन की टी.एल.सी. परीक्षा में क्रेसिटिन की उपस्थिति पायी गयी है।