ACE Inhibitory Activity and Functional Group Analysis of Solvent-Partitioned Fractions of *Eleusine indica*

Jade Celon Cometa, Liahona Faith Roldan Mancol, Anthony Nalzaro Yen, Joanne Katherine Talens Manlusoc*

Adamson University – College of Pharmacy, 900 San Marcelino St. Ermita Manila 1000 Philippines

ABSTRACT

Eleusine indica Linn. Gaerth or Indian goose grass has been widely used as an alternative natural anti-hypertensive agent. However, the rationale behind this mechanism is still unknown. The purpose of this study is to confirm the presence of functional groups that may be responsible for its ACE inhibitory activity and its possible synergism. Each solvent-partitioned fraction was analyzed by FTIR, individual ACE inhibitory activity, and combination of fractions. FTIR results of solvent-partitioned fractions revealed that O-H and C-H stretches were present in all fractions. In addition to this, C-O and C=O groups were also present in all fractions except in ethyl acetate. S=O groups were also present in chloroform, ethyl acetate, and n-butanol fractions. Other function groups such as N-O and C=C groups were present in ethyl acetate and n-butanol fractions, respectively. The highest % inhibition obtained among the individual fraction is n-butanol at 96.031 % ± 0.004 at 500 ug/ml. The lowest % inhibition obtained among the individual fraction is chloroform at 32.544 % ± 0.011 at 500 ug/ml. The highest % inhibition among the combined fractions is ethyl acetate butanol at 95.727% ± 20.847, while the lowest % inhibition in combination is hexane:chloroform at 89.626 % ± 19.577. The fraction with the lowest IC\(_{50}\) is hexane at 15.357, while the highest IC\(_{50}\) is chloroform at 168.207 ug/ml. Functional group present may be associated with the antihypertensive activity of the *E. indica* extracts. The more polar solvent-partitioned fractions of *E. indica* has a higher ACE inhibitory activity compared to its less polar solvent-partitioned fractions. The higher ACE inhibitory activity may be associated with the secondary metabolites present in the more polar fractions. There is also possible synergism present in the combined solvent-partitioned fractions as their % inhibition is higher than their individual effects.

Keywords: *Eleusine indica; paragis; ace inhibition; FTIR; ace kit-wst*

INTRODUCTION

Eleusine indica or commonly known in the Philippines as *paragis*, is a terrestrial plant with a wide distribution across the world including Asia, Africa, North America, and parts of Europe due to its wide tolerance to various environmental conditions. (Cha, et al., 2014). Aside from this, *E. indica* is a native plant in tropical and subtropical regions like the Philippines. Traditionally, its decoction from the leaves are used to treat asthma, muscle pains, febrifuge, diarrhea, and dysentery. In addition, *E. indica* is used to treat bladder disorders, convulsions and childbirth aid in other countries. The whole plant is usually used as a diuretic, laxative, and depurgative making it useful for the treatment of influenza, oliguria, and hypertension (Ettebong et al., 2012).

Hypertension is a major risk factor for cardiovascular diseases that commonly affects adults. Since high blood pressure is usually asymptomatic in its initial stages, it has been labelled as a silent killer. It can cause diseases such as heart failure, kidney failure, and stroke. (Amin et al., 2013). According to the World Health Organization (WHO) (2017), the rampant increase of hypertension cases is associated with population growth, aging and behavioral risk factors. The Renin-Angiotensin-Aldosterone-System (RAAS), a powerful arterial blood pressure regulator, has become a focus on the hunt for targets in the elimination of hypertension. (Bangalore et al., 2016). A component of the RAAS is the Angiotensin-Converting Enzyme (ACE) which in high levels leads to increased concentration of angiotensin II causing to hypertension.

In the study of Hernandez and Tutor (2018), hexane and ethyl acetate sequential fractions of *E. indica* showed lower ACE inhibitory activity compared to the crude methanolic extract. The researchers attribute the result to a possible synergism, an activity in which activity is lost in purified fractions.

In this study, the researchers confirm the presence of functional groups that may be responsible for its ACE inhibitory activity.
METHODS

Chemicals
The ACE kit-WST by Dojindo Molecular Technologies, Inc. was purchased from Integrated Biolabs, Taiwan.

Plant Sample Preparation
E. indica was collected from the wide grasslands of San Fernando, Romblon, Philippines as the grass is abundant and grows all year round. The plant samples were collected in October 2018. The plant samples were cleaned with distilled water and were air-dried in shade for 3 days. It was grinded with a Wiley-mill grinder and stored in a wide mouthed amber bottle. The samples were identified and authenticated by Philippine Bureau of Plant Industry (BPI) and a voucher specimen was made.

Crude Extraction
The extraction was adapted from the study of Hernandez and Tutor (2018) with a slight modification. Dried powdered sample of *E. indica* was soaked in methanol for 3 days. The sample was collected using a percolator and was evaporated in a digital water bath at 40°C. The collected methanolic extract was oven-dried and weighed. The % yield was calculated using the formula:

\[
\text{% Yield} = \frac{\text{weight of crude extract}}{\text{total weight of sample}} \times 100
\]

Solvent Partition
The solvent partition method was adapted from the methods of Kupchan (2016) with slight modifications by adding chloroform into the process. Five g of the crude methanolic extract was partitioned using hexane, chloroform, ethyl acetate, and n-butanol to obtain their fractions. The fractions obtained were evaporated in a digital hot bath at 50°C. and were dried in an oven at 40°C and weighed.

Fourier Transform Infrared (FTIR) Analysis
The spectra measurement of the crude methanolic extract and the fractions collected was performed using the PerkinElmer Spectrum Two FT-IR. A pinch amount of the dried samples was placed in the universal attenuated total reflectance (ATR) (Rohman & Che, 2012).

ACE Inhibitory Activity Determination
ACE inhibition assay kit was used to determine the angiotensin converting enzyme inhibitory activity from the obtained crude methanolic extract, solvent-partitioned fractions of hexane, chloroform, ethyl acetate, and n-butanol, and its chosen combination.

The working solution was prepared as specified in the manual included in the kit. A solution containing Enzyme B was prepared by dissolving the solution with 2 ml of deionized water. Then, 1.5 ml of the solution was added to Enzyme A to prepare the Enzyme sample. An indicator working solution was also prepared by dissolving a solution containing Enzyme C and coenzyme with 3 ml each of deionized water. Afterwards, 2.8 mL of the solution containing Enzyme C was added to 2.8 ml of coenzyme solution for the preparation of the indicator working solution. The sample solution was prepared into several portions by diluting it with deionized water by two-fold dilution. Starting concentration was 500 μg/mL of plant extract.

Twenty μl of sample solution was placed in a well and a separate two 20 μl of deionized water for blank 1 and blank 2. Twenty μl of the substrate buffer was placed on all wells. Twenty μl of deionized water was added to the well of blank 2. Subsequently, 20 μl of enzyme solution was added to each sample well and blank 1 well. The plate was incubated at 37°C for 1 hour. Afterwards, 200 μl of indicator working solution was added to all wells. In the final step, the solution was incubated at room temperature for 10 minutes before the absorbance was read at 450 nm using a microplate reader (Dojindo Laboratories, 2016).

ACE inhibitory activity was calculated by the following equation:

\[
\text{ACE inhibitory activity (inhibition rate%) } = \left[\frac{(\text{Ablank1} - \text{Asample})}{(\text{Ablank1} - \text{Ablank2})} \right] \times 100
\]

\[
\text{IC}_{50} = \text{IC}_{50} \text{ was determined using Quest Graph™ IC}_{50} \text{ Calculator.}
\]

The formula used is as follows:

\[
Y = \text{Max} - \text{Min} \times \left(1 + \left(\frac{X}{\text{IC}_{50}} \right)^{\text{Hill coefficient}} \right)^{-1}
\]

RESULTS AND DISCUSSION

FTIR
The FTIR analysis was performed to identify the functional groups present in the crude methanolic extract and various solvent-partitioned fractions of *E. indica*. The FTIR spectroscopic analysis showed various functional groups present in the plant and exists both or copiously on almost all solvent-partitioned fractions.

The crude methanolic extract (Figure 1) FTIR results revealed that the O-H (3200-2700 cm\(^{-1}\) and 1420-1330 cm\(^{-1}\)), and C-H (3000-2840 cm\(^{-1}\) and 700 ± 20 cm\(^{-1}\)) groups have been detected. In addition, C-O (1210-1163 cm\(^{-1}\)) and C=O (1710-1680 cm\(^{-1}\)) groups were also detected.
The hexane-partitioned fraction (Figure 2) FTIR results revealed that the O-H (3200-2700 cm\(^{-1}\) and 1420-1330 cm\(^{-1}\)) and C-H (3000-2840 cm\(^{-1}\) and 700 cm\(^{-1}\)) groups have been detected. In addition, C-O and (1210-1163 cm\(^{-1}\)) and C=O (1710-1680 cm\(^{-1}\)) groups were also detected.

The chloroform-partitioned fraction (Figure 3) FTIR results revealed that the O-H (3200-2700 cm\(^{-1}\) and 1420-1330 cm\(^{-1}\)), and C-H (3000-2840 cm\(^{-1}\) and 700 cm\(^{-1}\)) groups have been detected. In addition, C-O and (1210-1163 cm\(^{-1}\)) and C=O (1710-1680 cm\(^{-1}\)) groups, and notably, an S=O functional group, were all present.

The ethyl acetate-partitioned fraction (Figure 4) FTIR results revealed that the O-H (3200-2700 cm\(^{-1}\) and 1420-1330 cm\(^{-1}\)), and C-H (3000-2840 cm\(^{-1}\) and 700 cm\(^{-1}\)) groups were detected. In addition, C-O and (1210-1163 cm\(^{-1}\)) and C=O (1710-1680 cm\(^{-1}\)) groups were also detected. Notably, S=O (1372-1335 cm\(^{-1}\) and 1070-1030 cm\(^{-1}\)) and N-O (1650-1580 cm\(^{-1}\)) functional groups were detected in chloroform, ethyl acetate, and n-butanol-partitioned fractions, while N-O (1650-1580 cm\(^{-1}\)) functional group and C=C (1678-1668 cm\(^{-1}\)) were detected in ethyl acetate-solvent partitioned fraction and n-butanol-partitioned fraction, respectively.

The n-butanol-partitioned fraction (Figure 5) FTIR results revealed that the O-H (3200-2700 cm\(^{-1}\) and 1420-1330 cm\(^{-1}\)), and C-H (3000-2840 cm\(^{-1}\) and 700 cm\(^{-1}\)) groups were detected. In addition, C-O and (1210-1163 cm\(^{-1}\)) and C=O (1710-1680 cm\(^{-1}\)) groups were also detected. Notably, S=O (1372-1335 cm\(^{-1}\) and 1070-1030 cm\(^{-1}\)) and N-O (1650-1580 cm\(^{-1}\)) functional group and C=C (1678-1668 cm\(^{-1}\)) were detected in ethyl acetate-solvent partitioned fraction and n-butanol-partitioned fraction, respectively.

The overlaid spectra (Figure 6) showed all individual solvent-portioned fractions to have the O-H (3200-2700 cm\(^{-1}\) and 1420-1330 cm\(^{-1}\)), and C-H (3000-2840 cm\(^{-1}\) and 700 cm\(^{-1}\)) functional groups. In addition, C-O and (1210-1163 cm\(^{-1}\)) groups were detected in all solvent-partitioned fractions except for ethyl acetate. S=O (1372-1335 cm\(^{-1}\) and 1070-1030 cm\(^{-1}\)) groups were detected in chloroform, ethyl acetate, and n-butanol-partitioned fractions, while N-O (1650-1580 cm\(^{-1}\)) functional group and C=C (1678-1668 cm\(^{-1}\)) were detected in ethyl acetate-solvent partitioned fraction and n-butanol-partitioned fraction, respectively.

The FTIR analysis helps to identify a possible secondary metabolite that may be present in each fraction based on their characteristic functional groups. One of the secondary metabolites that may have exerted ACE inhibitory activity and functional group analysis.
inhibitory activity would be the flavonoids. It is shown that various flavonoids can inhibit ACE with varying % inhibition, with luteolin having the highest recorded % inhibition of 95% (Garcia-vallve, et al., 2012). Furthermore, *Eleusine indica* is found to have two flavonoids called vitexin and isovitexin (Yeligar, 2018). We can validate the presence of the flavonoids, since its characteristic functional groups are O-H, C-O, and C=O which were revealed by the FTIR, and certain extracts of *Eleusine indica* contain flavonoids based on various phytochemical screening conducted in previous studies. Although flavonoids are often related to the
anti-hypertensive effects in literatures, anti-hypertensive effects are not necessarily exclusive to it, and other secondary metabolites may also contribute or exhibit anti-hypertensive properties.

ACE Inhibitory Activity

The % inhibition of crude methanol extract (Figure 7) with varying concentrations of 500 μg/ml, 250 μg/ml, 125 μg/ml, and 62.5 μg/ml inhibits ACE at 86.919% ± 0.006, 80.108% ± 0.035, 59.179% ± 0.023, 49.346% ± 0.048 respectively. The relationship of the % inhibition and concentration is dose dependent.

The % inhibition of hexane-partitioned fraction (Figure 8-A) with varying concentrations of 500 μg/ml, 250 μg/ml, 125 μg/ml, and 62.5 μg/ml inhibits ACE at 91.926% ± 0.003, 74.222% ± 0.032, 60.352% ± 0.023, 35.769% ± 0.011, respectively. The % inhibition of chloroform-partitioned fraction (Figure 8-B) with varying concentrations are similar to the previously mentioned concentrations inhibiting ACE at 90.325% ± 0.011, 72.779% ± 0.035, 51.037% ± 0.112, 32.544% ± 0.182, respectively. The % inhibition of ethyl acetate-partitioned fraction (Figure 8-C) with varying concentrations are similar to the previously mentioned concentrations inhibiting ACE at 92.309% ± 0.043, 82.206% ± 0.027, 51.624% ± 0.058, 32.815% ± 0.099, respectively. The % inhibition of n-butanol-partitioned fraction (Figure 8-D) with varying concentrations are similar to the previously mentioned concentrations inhibiting ACE at 96.031% ± 0.004, 82.251% ± 0.007, 65.111% ± 0.005, 43.843% ± 0.128, respectively. All solvent fractions exhibited a dose-dependent response.

All concentrations of all solvent-partitioned fractions ranging from 125-500 μg/ml have significant % inhibition. N-butanol-partitioned fraction has the highest % inhibition across most concentrations (500 μg/ml, 250 μg/ml, and 125 μg/ml) having a % inhibition of 96.031%, 82.251%, and 65.111%, respectively, with the exemption on the lowest concentration in which methanol crude extract exhibited the highest % inhibition of 43.843%. On the other hand, the chloroform-partitioned fraction has the lowest % inhibition across all concentrations (500 μg/ml, 250 μg/ml, 125 μg/ml, and 62.5 μg/ml) having a % inhibition of 90.325%, 74.779%, 51.037%, 32.544%, respectively. We have observed that the polar fractions (ethyl acetate and n-butanol fractions) tend to have
ACE Inhibitory Activity of Combined Solvent-Partitioned Fractions

Six combinations of the fractions ethyl acetate: hexane (EA:H), ethyl acetate:chloroform (EA:C), hexane: chloroform (H:C), ethyl acetate:n-butanol (EA:B), chloroform:n-butanol (C:B), and hexane:n-butanol (H:B) at a concentration of 500 ug/ml were tested. Figure 9 shows the % inhibition per fraction combination. EA:H shows a % inhibition of 93.009% ± 20.232, EA:C at 94.204% ± 20.604, H:C at 89.626% ± 19.577, EA:B at 95.737% ± 20.847, C:B at 93.978% ± 20.477, and H:B at 93.978% ± 20.604. It is observed that the combination of the polar fraction EA+B exhibited the highest % inhibition of 95.737% ± 20.847, and that the combination of the non-polar fraction H+C exhibited the lowest % inhibition of 89.626% ± 19.577. There might be a possible synergism present in the combined fractions, since their % inhibition were greater than their individual effects.

IC$_{50}$

Figure 10 (a-e) shows the IC$_{50}$ of the methanol crude extract and each individual solvent-partitioned fraction. The IC$_{50}$ of the methanol crude extract is at 164.318 ug/ml, n-butanol-partitioned fraction at 37.590 ug/ml, hexane-partitioned fraction at 15.357 ug/ml (the lowest), chloroform-partitioned fraction at 168.207 ug/ml (the highest), and ethyl acetate-partitioned fraction at 153.078 ug/ml.

Both hexane and n-butanol-partitioned fraction exhibited low IC$_{50}$ compared to other portioned fractions. Both partitioned fractions have also shown some similar peaks in FTIR which refers to functional groups such as C-H, C-O, and C=O.
Figure 9. ACE inhibitory activity of combined solvent-partitioned fractions of Eleusine indica

Figure 10 (a-e). IC50 methanolic crude extracts and solvent-partitioned fractions
CONCLUSIONS

Functional group present may be associated with the antihypertensive activity of the *E. indica* extracts. *Eleusine indica* shows significant ACE inhibitory activity across all fractions at concentrations ranging from 500 ug/ml to 125 ug/ml, since % inhibition exceeds 50%. Among the individual fractions, n-butanol shows the highest % inhibition. The more polar solvent-partitioned fractions of *E. indica* has a higher ACE inhibitory activity compared to its less polar solvent-partitioned fractions. The higher ACE inhibitory activity may be associated with the secondary metabolites present in the more polar fractions., while among the combined fractions EA:B showed the highest % inhibition. There is also possible synergism present in the combined solvent-partitioned fractions as their % inhibitions are higher than their individual effects.

REFERENCES

Ajiwe, I. O. (2015). Phytochemical and anti – microbial screening of the aerial parts of *Eleusine indica*, 3(1), 257–264.

Babu, R. H., & Savithramma, N. (2013). Phytochemical screening of underutilized species of Poaceae, 1(10), 947–951.

Bangalore, S., Fakheri, R., Toklu, B., & Messerli, F. H. (2016). Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: Systematic review and meta-analysis of randomized trials. *BMJ (Online)*, 352(December), 1–12. https://doi.org/10.1136/bmj.i438

Barbosa-Filho, J. M., Martins, V. K. M., Rabelo, L. A., Moura, M. D., Silva, M. S., Cunha, V. L., … Medeiros, I. A. (2006). Natural products inhibitors of the angiotensin converting enzyme (ACE). A review between 1980-2000. *Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy* (Vol. 16).

Cha, T. S., Najihah, M. G., Sahid, I. Bin, & Chuah, T. S. (2014). Molecular basis for resistance to ACCase-inhibiting fluzifop in Eleusine indica from Malaysia. *Pesticide Biochemistry and Physiology*, 111(1), 7–13. https://doi.org/10.1016/j.pestbp.2014.04.011

Dojindo Laboratories. (2016). ACE Kit - WST Technical Manual, 29–30. Retrieved from https://www.dojindo.com/TechnicalManual/Manual_A502.pdf

Elbl G, Wagner H. A new method for the in vitro screening of inhibitors of angiotensin-converting enzyme (ACE) using the cromophore and fluorophore labelled substrate, dansyltriglycine. *Planta Medica*, 57(2), 137-141. https://doi.org/10.1055/s-2006-960050

Ettebong, E. O., Nwafor, P. A., & Okokon, J. E. (2012). In vivo antiplasmodial activities of ethanolic exact and fractions of Eleucine indica. *Asian Pacific Journal of Tropical Medicine*, 5(9), 673–676. https://doi.org/10.1016/S1995-7645(12)60105-9

Guleria, S. (2017). Assessment of Synergy, 1–6. Retrieved from http://www.remedypublications.com/pharmacology-and-pharmaceutics/articles/pdfs_folder/app-v2-id1086.pdf

Hassan, S. M. (2015). Detection of hypertension among cardiac diseases inpatients at Kirkuk City Hospitals. *Iraqi National Journal of Nursing Specialties* (Vol. 28).

Iberahim, R., Yaacob, W. A., & Ibrahim, N. (2015). Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambuai). *AIP Conference Proceedings*, 1678(August 2016). https://doi.org/10.1063/1.4931234

Nakamura, M., Ra, J., Jee, Y., & Kim, J. (2016). ScienceDirect Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. *Journal of Food and Drug Analysis*, 25(2), 316–326. https://doi.org/10.1016/j.jfda.2016.08.006

Ocana, A., Amir, E., Princess, T., Hospital, M., & Seruga, B. (2012). How valid are claims for synergy in published clinical studies?, (February). https://doi.org/10.1093/annonc/mdr608

Quin, M., Garcia-vallve, S., & Pujadas, G. (2012). Inhibition of angiotensin-converting enzyme activity by flavonoids : Structure-activity relationship studies, 7(11), 1–11. https://doi.org/10.1371/journal.pone.0049493

Responde, M. A., Dacar, M. R. B., Nuñeza, O. M., & Uy, M. M. (2015). Extracts of Eleusine indica, 7(2), 90–95.

Rohman, A., & Che, Y. B. (2012). Chemometrics and intelligent laboratory systems the chemometrics approach applied to FTIR spectral data for the analysis of rice bran oil in extra virgin olive oil. *Chemometrics and Intelligent Laboratory Systems*, 110(1), 129–134. https://doi.org/10.1016/j.chemolab.2011.10.010

Sharifi, N., Souri, E., Ziai, S., Amin, G., & Amanlou, M. (2013). Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay. *DARU Journal of Pharmaceutical Sciences*, 21(1), 74. https://doi.org/10.1186/2008-2231-21-74
Steed, S., Marble, C., Boyd, N. S., Macrae, A., & Fnu, K. (n.d.). Biology and management of goosegrass (Eleusine indica (L.) Gaertn.) in ornamental plant production and other common names. Retrieved from http://edis.ifas.ufl.edu.

Tallarida, R. J. (2001). Drug synergism: its detection and applications. *The Journal of Pharmacology and Experimental Therapeutics, 298*(3), 865–872. https://doi.org/10.1074/jbc.M503833200

Tallarida, R. J. (2006). An Overview of Drug Combination Analysis with Isobolograms. *Journal of Pharmacology and Experimental Therapeutics, 319*(1), 1–7. https://doi.org/10.1124/jpet.106.104117

Tutor, J. T., & Chichioco-Hernandez, C. L. (2017). Angiotensin-Converting Enzyme Inhibition of Fractions from Eleusine indica Leaf Extracts. *Pharmacognosy Journal, 10*(1), 25–28. https://doi.org/10.5530/pj.2018.1.5

Yeligar, V. C. (2018a). World Journal of Pharmaceutical Research in-vivo diuretic and in-vitro anti-urolithiatic, (July 2017). https://doi.org/10.20959/wjpr20178-8978

Yeligar, V. C. (2018b). World Journal of Pharmaceutical Research In-vivo diuretic and in-vitro anti-urolithiatic, (August). https://doi.org/10.20959/wjpr20178-8978

World Health Organization. (2017, May 17). Cardiovascular Diseases (CVD). Retrieved from: http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

World Health Organization. (2013). WHO Traditional Medicine Strategy. Retrieved from: http://www.searo.who.int/entity/health_situation_trends/who_trm_strategy_2014-2023.pdf?ua=1