Environmental factors, life events, and trauma in the course of bipolar disorder

Fanny Aldinger, MD and Thomas G. Schulze, MD*
Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University, Munich, Germany

The etiology and clinical course of bipolar disorder are considered to be determined by genetic and environmental factors. Although the kindling hypothesis emphasizes the impact of environmental factors on initial onset, their connection to the outcome and clinical course have been poorly established. Hence, there have been numerous research efforts to investigate the impact of environmental factors on the clinical course of illness. Our aim is to outline recent research on the impact of environmental determinants on the clinical course of bipolar disorder. We carried out a computer-aided search to find publications on an association between environmental factors, life events, and the clinical course of bipolar disorder. Publications in the reference lists of suitable papers have also been taken into consideration. We performed a narrative overview on all eligible publications. The available body of data supports an association between environmental factors and the clinical course of bipolar disorder. These factors comprise prenatal, early-life, and entire lifespan aspects. Given varying sample sizes and several methodological limitations, the reported quality and extent of the association between environmental factors and the clinical course of bipolar disorder should be interpreted with utmost caution. Systematic longitudinal long-term follow-up trials are needed to obtain a clearer and more robust picture.

Key words: bipolar disorder, clinical course, environmental factors, life events, trauma.

Bipolar disorder is one of the most common psychiatric illnesses. Its lifetime prevalence is about 3% worldwide.1–3 Patients with bipolar disorder suffer from instability of mood, cycling between opposing affective states (i.e. between mania and depression). The mean age of onset is set in late adolescence and early adulthood.4 According to the diagnostic criteria listed in DSM-IV and ICD-10, the core symptoms of depression are depressed mood, loss of energy, inability to experience pleasure, loss of interest in activities, cognitive impairment, changes in sleep and appetite, decreased libido, and suicidal thoughts. Mania, by contrast, is characterized by unusually cheerful and optimistic mood, elevated energy, racing thoughts and accelerated speaking, decreased need for sleep, and unrealistic ideas without considering the consequences. Delusions and hallucinations can occur in both mania and depression. Even in euthymic states, patients with bipolar disorder may suffer from constant neuropsychological impairment, such as mnemonic deficits and a reduced psychological capacity,5 factors that negatively impact on participation in daily life, social integration, and employment status. The etiology and clinical course of bipolar disorder are considered to be determined by genetic and environmental factors.6–8 Clinicians observe a high diversity of the clinical course and outcome for this
disease. Kraepelin was one of the first to define the distinct nosology of bipolar disorder and emphasized the importance of the knowledge of the clinical course of illness.9,10 Based on Post’s kindling hypothesis, subsequent episodes have been considered to occur unpredictably and without pattern.11,12 This also highlights the need to study disease trajectories, in particular given the recent major achievements in psychiatric genetics.13–20 We now need to learn more about the non-genetic factors and their interaction with genetic underpinnings. A better understanding of the complex interplay between life events and disease course is warranted. Bipolar disorder may serve as a case in point.

Our aim is to summarize and discuss recent research on the impact of environmental factors, trauma, and life events on the clinical course of bipolar disorder in a narrative review.

METHODS

A computer-aided literature search using PubMed was carried out to find articles published between 2005 and January 2016 on the topic of a potential association between environmental factors, life events, and trauma, and the course of bipolar disorder. The keywords ‘bipolar disorder’, ‘manic depressive illness’, and ‘course’ or ‘outcome’ in combination with ‘environmental factors’ or ‘environmental triggers’, ‘life events’, ‘early adversities’, ‘recurrence’, ‘life stress’, ‘climate’, ‘prenatal infections’, ‘influenza’, ‘early adversities’, ‘maternal smoking’, and ‘childhood trauma’ were used. Publications in the reference list of suitable papers were also taken into consideration.

RESULTS

There is a substantial number of studies investigating factors influencing the course of bipolar disorder. The number of identified studies focusing on specific aspects varied broadly, and so did the sample sizes (see Table 1).21–89 Categorizing the different aspects has proven to be a non-trivial task as some of the factors may fall within more than one category (see Fig. 1). For example, exposure to maternal smoking during pregnancy can be seen as an environmental trigger, but it is also an early adverse life event and may be considered a trauma to fetal development. Similarly, lack of social support is a traumatic life experience and can also be seen as an adverse life event. Moreover, the amount of social support is an environmental trigger. The complexity and mutual interference of the different categories lead to inconsistent categorization in the literature. Therefore, developing a systematic categorization seems quite infeasible or is at least far beyond the scope of this paper.

Infections

Infections, especially intrauterine infections, are supposed to interfere with fetal and postnatal neurodevelopment. This could lead to impaired neuropsychological health and a higher vulnerability for psychiatric disorders.28 Canetta et al. evaluated whether serologically confirmed maternal exposure to influenza was associated with an increased risk of bipolar disorder.24 Furthermore, they investigated its impact on psychotic features within bipolar disorder. Their data suggested a fivefold increased risk for bipolar disorder with psychotic symptoms, whereas influenza did not influence bipolar disorder without psychotic symptoms. This could be interpreted as an impact on clinical course as psychotic features stand for a more severe course of illness.24 Parboosing et al. observed a fourfold increased risk for bipolar disorder in general due to gestational influenza infection, regardless of the presence or absence of psychotic symptoms.23 However, on the other hand, the hypothesis of gestational viral infections increasing susceptibility to bipolar disorder could not be verified by either Pang et al.21 or Mortensen et al.22

The influence of viral infections during adulthood has been investigated in only a few studies. Okusaga et al. evaluated the relation between seropositivity for coronaviruses, influenza A and B viruses, and mood disorders with or without psychotic features and suicide attempts. An infection with any of the three respiratory viruses was associated with major depressive disorder, but not with bipolar disorder. Only influenza B was linked to a history of suicide attempts and psychotic symptoms.25 It should be pointed out that the sample size was small and that viral infections occur epidemically. Therefore, the results should be considered with caution.

As Toxoplasma gondii parasites are supposed to influence dopamine metabolism, toxoplasmosis could possibly influence psychiatric health and impairment, such as bipolar disorder.90 Only a few studies have investigated T. gondii infection in adult...
Topic	Author Ref.	Year	Sample size	Diagnostic criteria	Country
Infections during pregnancy	Pang et al.	2009	3076	ICD-9	UK
Mortensen et al.	2011	127	ICD-10		Denmark
Parboosing et al.	2013	92	DSM-IV		USA
Canetta et al.	2014	85	DSM-IV		USA
Infections in adulthood	Okusaga et al.	2011	257	DSM-IV	USA
Tedla et al.	2011	495	CIDI, SCAN		Ethiopia
Pearce et al.	2012	1211	DSM-III		USA
Hamdani et al.	2013	110	—		France
Maternal smoking	Ekblad et al.	2010	25,590	ICD-10	Finland
Talati et al.	2013	79	DSM-IV		USA
Chudal et al.	2015	724	ICD-10		Finland
Birth complications	Bain et al.	2000	301	ICD-9/-10	Scotland
Øgendahl et al.	2006	196	ICD-8/-10		Denmark
Nosarti et al.	2012	217	ICD-9/-10		Sweden
Chadal et al.	2014	724	ICD-9/-10		Finland
Climate	Volpe et al.	2010	5172	ICD-10	Brazil
Dominia et al.	2015	257	ICD-10		Poland
Geoffroy et al.	2014	Review	—		—
Young et al.	2015	Review	—		—
Rajkumar et al.	2015	357	ICD-10		India
Childhood trauma	Hochman et al.	2016	148	DSM-IV	Israel
Kennedy et al.	2002	20	DSM-IV		USA
Garno et al.	2005	100	DSM-IV		USA
Kauer-Sant Anna et al.	2007	163	DSM-IV		Brazil
Quarantini et al.	2009	140	DSM-IV		Brazil
Fisher et al.	2010	Review	—		—
Daruy-Filho et al.	2011	Review	—		—
Miller et al.	2013	80	DSM-IV		USA
Aas et al.	2014	97	DSM-IV		Norway
Girshkin et al.	2014	Meta-analysis	—		—
Benedetti et al.	2014	136	DSM-IV		Italy
Sala et al.	2014	1600	DSM-IV		USA
Baumeister et al.	2016	Meta-analysis	—		—
Etain et al.	2015	126	DSM-IV		France/Brazil
Oliveira et al.	2015	531	DSM-IV		France
Benedetti et al.	2015	87	DSM-IV		Italy
Mert et al.	2015	91	MINI		Turkey
Aas et al.	2016	Review	—		—
Ellickott et al.	1990	61	DSM-III		USA
Malkoff-Schwartz et al.	1998	39	DSM-IV		USA
Hlastala et al.	2000	64	DSM-IV		USA
Paykel et al.	2003	Review	—		—
Christensen et al.	2003	56	ICD-10		Denmark
Hillegers et al.	2004	140	DSM-IV		Netherlands
Cohen et al.	2004	52	DSM-IV		USA
Johnson et al.	2005	Review	—		—
Kessing et al.	2005	Review	—		—
Alloy et al.	2005	Review	—		—
Kim et al.	2007	38	DSM-IV		USA
Johnson et al.	2008	125	DSM-IV		USA
Gruber et al.	2011	196	DSM-IV		USA
bipolar patients, but all of them found a higher seroprevalence in bipolar disorder with an odds ratio (OR) between 2.17 and 3.26. However, none of these publications provides information about the influence on the clinical course. Yagmur et al. showed a higher seroprevalence in patients who attempted to commit suicide than in controls. The underlying psychiatric diagnoses were not listed.91

Maternal smoking

Maternal smoking has been suggested to increase the risk of various mental illnesses, such as attention-deficit and hyperactivity disorder, conduct disorder,92 and autism spectrum disorder.93 In a study with a large sample size, Ekblad et al. observed an increased risk of psychiatric disorders except for schizophrenia and anorexia nervosa.29 A respective association with bipolar disorder is poorly investigated and findings are inconsistent. Two studies showed an increased risk of bipolar disorder due to maternal smoking during pregnancy.29,30

Table 1. (Continued)

Topic	Author et al.	Year	Sample size	Diagnostic criteria	Country
Social support	Boland et al.72	2012	184	DSM-IV	USA
	Hosang et al.73	2012	512	DSM-IV	UK
	de Dios et al.74	2012	595	DSM-IV	Spain
	Gershon et al.75	2013	131	DSM-IV	USA
	Koeners et al.76	2014	173	DSM-IV	Netherlands
	Simhandl et al.77	2014	222	ICD-10	Austria
	Kemner et al.78	2015	51	DSM-IV	Netherlands
	Kemner et al.79	2015	108	DSM-IV	Netherlands
	Maciukiewicz et al.80	2016	443	DSM-IV	Poland
	Johnson et al.81	1999	59	DSM-III	USA
	Johnson et al.82	2000	31	DSM-III	USA
	Johnson et al.83	2000	43	DSM-III	USA
	Johnson et al.84	2003	94	DSM-IV	USA
	Cohen et al.65	2004	52	DSM-IV	USA
	Miklowitz et al.85	2005	360	DSM-IV	USA
	Coville et al.86	2008	44	DSM-IV	USA
	Greenberg et al.87	2014	Review	—	—
	Ellis et al.88	2014	95	DSM-IV	USA
	Maciukiewicz et al.80	2016	443	DSM-IV	Poland
	Owen et al.89	2015	20	DSM-IV	UK

The colors illustrate the sample sizes. Red: n ≤ 100; yellow: V = 101–500; green: n ≥ 500. The numbers in the cells indicate the exact sample size. To provide a better overview on the literature, reviews and meta-analyses are included in the table.

CIDI, Composite International Diagnostic Interview; MINI, Mini-International Neuropsychiatric Interview; SCAN, Schedules for Clinical Assessment in Neuropsychiatry.

Figure 1. Impact on the course of bipolar disorder.

© 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
et al. found a dose relation in the risk of mood disorders, namely less than 10 cigarettes daily with an adjusted OR of 1.65 and more than 10 cigarettes daily with an adjusted OR of 1.93. In this regard, Talati et al. observed a twofold greater risk of bipolar disorder. An influence of the quantity of maternal smoking could not be supported.30 Chudal et al. reported a 1.41-fold risk for bipolar disorder with maternal smoking in the past. This increase in risk did not withstand an adjustment for factors such as familial background.31 Until now, there have not been any systematic research protocols dealing with the impact of maternal smoking during pregnancy on the clinical course of bipolar disorder.

Birth complications

Whether birth complications have an impact on bipolar disorder in general is unclear. There exists only one study that suggests an association with 2.5-fold higher risk of bipolar disorder in offspring delivered by planned cesarean section35 compared to natural birth. Bain et al. could not find such association.32 There are, anyhow, only a few studies investigating this topic, none of which found an association among birthweight, gestational age, and the risk of bipolar disorder.32–35 One of these studies found preterm birth to be associated with a higher risk of bipolar disorder.34 Up to January 2016, there existed no study focusing on a potential impact of birth complications on the clinical course.

Climate

Seasonal effects supposedly influence the regulation of mood, especially in bipolar disorder.94,95 The first systematic review of this topic concluded that there was a replicable association of seasonal variation and bipolar disorder symptoms.38 Bipolar patients with seasonal patterns form the minority but suffer from a more severe clinical course. Manic episodes seem to be more frequently linked to seasonality than depressive episodes.41 Overall mania has its peaks in spring and summer and a third peak in mid-winter, while depression shows high occurrence in winter and spring.37,38 Furthermore, there are indications that climate factors, such as mean daylight hours, mean daily temperature, and the daily number of sunshine hours, are associated with relapse in bipolar disorder. The shortening of sunlight in particular triggers depressions.96 The relation between sunlight and mood states is furthermore supported by the positive therapeutic effect of phototherapy in mood disorders. Young et al. argue that this fact may lose importance due to the weakening of circadian rhythm in consequence of electric light.39 It is worth noting that a higher vulnerability to climate and seasonal changes has been reported in females.38 In contrast, Rajkumar et al. observed a greater degree of seasonality in men.40 In addition to that, these patients suffer more frequently from psychotic features and substance misuse.36,41

Childhood trauma

A history of childhood trauma is common in patients with mental disorders, such as bipolar disorder. The prevalence of post-traumatic stress disorder (PTSD) in bipolar disorder ranges from 16% to 39%.2,97,98 Childhood trauma in the broader sense is considered to be evident in almost 50% of patients with bipolar disorder.43 There are several bipolar patients who report childhood trauma and do not fulfill the criteria of PTSD. Still, childhood trauma is assumed to impact on the onset and the clinical course of bipolar disorder. So far, there are only four reviews that address childhood trauma. The association between childhood trauma and the onset and course of bipolar disorder has been established quite robustly.46,47,58,98 The latest review by Aas et al. was published in January 2016.58 The most relevant findings of this review are: Childhood trauma influences the clinical course by leading to an earlier age of onset. It also increases the likelihood of a rapid cycling course, the occurrence of psychotic features, the number of lifetime mood episodes, the risk of suicide ideation and attempts, and substance misuse. Gender issues have been found as well. Females with bipolar disorder reported childhood trauma more frequently and had a stronger association with a more severe clinical course (i.e. rapid cycling, early age of onset, suicide attempts, and more depressive episodes).58 In contrast to that, Quarantini et al. showed that bipolar patients with trauma experienced more severe manic symptoms than depressive symptoms compared to controls.45 Sala et al. investigated dose-response effects of childhood maltreatment and the course of bipolar disorder, including clinical characteristics, probability of treatment, and psychiatric comorbidities.52 There are different types of trauma, such as physical abuse and neglect, emotional abuse and
neglect, and sexual abuse. Robust data on the epidemiology of trauma types and their impact on the onset and course of bipolar disorder are scarce. Most research into this field concentrated on physical and sexual abuse. But there are indications that emotional abuse and neglect have the highest prevalence among trauma subtypes. Emotional abuse seems to be disregarded in the literature. One possible explanation is the difficulty to detect emotional abuse in assessment surveys. It is worth noting that bipolar patients gain traumatic experience not only due to childhood trauma, but also as a consequence of their own disruptive behavior during manic episodes.

Aas et al. also summarize biological and molecular modifications in bipolar disorder due to childhood trauma. A reduction of brain-derived neurotrophic factor (BDNF) plus alterations in inflammatory processes and hypothalamic–pituitary–adrenal (HPA) axis functioning have been described. Genetic variations in the following genes have been found as mediating factors in bipolar patients with traumatic experience: BDNF val66met, 5-HTTLPR, TLR2, CLOCK, and SNPs near genes coding for calcium-channel-related proteins. Furthermore, epigenetic modifications of HPA-axis-related genes, stress regulatory genes, and glucocorticoid receptor genes have been implicated. Additionally, reduced telomere length, a marker for biological aging, was found as a mediator of the negative effects of childhood trauma in bipolar disorders.

Life events

The term 'life events' describes any substantial changes in personal surroundings resulting in personal and social consequences. Life events might occur unexpectedly or in an anticipated manner. The social zeitgeber theory has recently gained attention. Social zeitgebers comprise social contact and solitary activities. Changes in social zeitgebers are followed by rhythm disruption in daily life. In consequence, biological circadian rhythms are disrupted and may affect mood stability. Numerous researchers have shown that certain life events influence the age of onset and the clinical course of bipolar disorder. The types of stressful life events differ in triggering either mania or depression. The literature emphasizes that positive life events and goal attainment are more likely to be followed by mania. Others support the point of view that negative as well as positive life events are able to trigger both depression and mania. Bereavement is assumed to trigger mania, while personal illness more likely causes depression. Interpersonal problems, financial crises, work-related difficulties, failure, and job loss were often found prior to mania. Unemployment at onset is considered to be a risk factor of relapse and psychotic features. A poor premorbid social status does not influence the course of bipolar disorder. Gershon et al. showed that trauma exposure is related to more severe interpersonal chronic stressors, which causes more severe depressive episodes. There are indications that living in a mixed urban-rural area is associated with a higher risk of relapse. Minor life events have less influence on mood changes than severe life events or several consecutive life events. The definition of minor and major life events, respectively, remains uncertain as the perception of burden is highly individual. Overall, the findings are heterogeneous. There exists one prospective study with a considerable sample size of 222 patients by Simhandl et al. More than 60% of the patients experienced at least one life event 6 months before a new episode. The risk of a depressive episode was associated with the number of life events, but was independent of the quality of the life event. The quantity of life events has also been investigated. An increased life event load stands for a higher risk of experiencing a first episode plus subsequent episodes. Whether life events are cause or consequence of mood changes is a topic debated frequently. Life events prior to subsequent episodes were discussed to be caused by the illness itself. Kemner et al. reported that life events in consequence to affective episodes were independent from the psychiatric illness itself. Furthermore, they report a slightly higher impact of life events on onset than on recurrence of bipolar disorder, which underlines Post's kindling hypothesis that emphasizes that external triggers, such as life events, have a greater impact on the first episode than on subsequent episodes. Accordingly, recurrent episodes occur more autonomously and independently of life events. In terms of life events over the lifespan, the decay model deserves mention. This model describes that the fact that earlier life events will no longer have the same impact anymore as time passes. Due to life experience, people gain different coping strategies. Thus, the kindling hypothesis is supported from another perspective.
Social support

Social support can be defined as the perception of being loved, cared for, esteemed, valued, and belonging to a network of communication and mutual obligation.106 As poor social support is considered a long-term psychosocial stress, it has been a research topic in the field of psychiatric diseases. Its influence on bipolar disorder has been investigated as an important impact on clinical course of illness. The reverse influence of the severity of illness on social support should not be neglected. Up to now it has been poorly examined. Greenberg et al. published a review concerning social relationships in bipolar disorder. Emerging as the main results of this review is that individuals with bipolar disorder report deficits in many fields of social relationships, such as relationship to parents, family, partner, and friends.87 The rate of relapse is higher in patients with low social support.81,82,84,87 Here again, the causality remains unclear. Johnson et al. report that patients with incomplete recovery between episodes receive less social support and that vice versa less social support leads to a residual status complicating socialization.84 Furthermore, the results show that having a partner at onset of illness has a positive effect on the course of illness, especially on the remission between episodes.84 Furthermore, patients without partners have an increased risk of psychotic features.80 Owen et al. investigated qualitative social factors that prevent or trigger suicidal thoughts and suicide attempts.89 Overall, controversy surrounds the question of whether low social support influences the recurrence of mania or depression or both.81,83,84 In addition to social support, family behavior plays an influencing role on the course of bipolar disorder. High expressed emotions and negative affective styles increase the likelihood of a higher risk of relapse.85,86 High expressed emotions may even influence the prevalence of suicide ideation in young bipolar patients.88 Miklowitz pointed out that patients who were more distressed by criticisms from their relatives showed more severe symptoms in both depression and mania.107 Overall, research in this field faces challenges and limitations. Instruments for investigating social support are usually self-rating tools and the evaluation can often be influenced by mood episodes and a possible discrepancy between real and desired social integration. Consequently, the findings are inconsistent and need further investigation.

CONCLUSION

The available body of evidence suggests that environmental factors may either trigger or prevent the development of a psychiatric disorder. Moreover, there is some circumstantial evidence of an association between environmental factors and the clinical course of bipolar disorder.

To conclude, viral infections during pregnancy and adulthood might influence onset and clinical course of bipolar disorder. However, this is only supported by a scarce body of studies. Similarly, the studies concerning maternal smoking show inconsistent findings. Some researchers suggest a strong association between onset and clinical course of bipolar disorder and maternal smoking, and others do not. Likewise, the impact of birth complications on onset and course of bipolar disorder needs further research efforts to allow for robust findings. There is relatively ample data on the influence of climatic factors on bipolar disorder. The occurrence of depressive and manic episodes shows replicable seasonal peaks. Furthermore, there are indications that bipolar patients with seasonality suffer from more severe clinical course.

There are robust findings that childhood trauma triggers onset and especially clinical course. Bipolar patients with trauma history are more likely to show rapid cycling course, psychotic features, higher number of lifetime mood episodes, and greater risk for suicide ideation and attempts, and substance misuse. It seems worthwhile highlighting that emotional abuse has been disregarded in the literature although it is supposed to have the highest prevalence among adverse childhood experiences. Additionally, there are interesting findings in molecular biology, genetics, and epigenetics that need to be vetted in large-scale replication studies. Findings concerning the quality of live events remain inconsistent. As we might assume, social support influences the course of bipolar disorder, with low social support worsening the disease outcome. It is to be noted that live events and social support are influenced by the illness itself. Furthermore, there are national and cultural limitations to be pointed out. These have already been described by Merikangas in context of the World Mental Health Survey Initiative.4 The countries in which the trials were carried out are listed in Table 1. Nevertheless, there is no detailed information about the participants’ ethnicity. The impact of life events, trauma, and social
support on an individual varies across countries and cultures. For example, the actual impact of job loss on one’s life will to a large part be determined by the level of social security or public welfare provided. In addition to that, the diagnosis of mental disorders is related to a different degree of stigmatization in different cultures and countries.

Overall, research in this field faces methodological challenges. Therefore, results should be considered cautiously. First, there are fundamental limitations due to different diagnostic definitions. Mostly, the diagnostic interviews are based on the DSM and ICD; still there is a cross-national and cross-cultural variation remaining (for diagnostic criteria see Table 1). In general, apart from environmental factors, trauma, and life events (which influence the clinical course), the differences in the availability of mental health treatment may have an important but often neglected impact on the illness. Most of the studies are retrospective and only a few provide long-term follow-up data. Furthermore, inconsistency of study designs, measures, and analyses lead to partially inconsistent findings. There is an evident problem of how to categorize the influencing factors into further (sub-) groups (see Fig. 1). Creating a standardized consensus categorization would simplify the comparison of research results. One approach has been reached by the International Society for Bipolar Disorders developing consensus nomenclature to describe course and outcome of bipolar disorder. Even if this could be achieved, other challenges remain: we have to consider the critical timing of events and the distinction between general and personal risk factors. The field furthermore needs to reach consensus on the most reliable and valid assessment tools: Structured or at least semi-structured phenotyping tools may be preferred over self-rating questionnaires. Moreover, prospective study designs should be favored over retrospective approaches. Finally, truly large samples sizes are needed. This will require international collaborative networks of peers.

ACKNOWLEDGMENTS

During the conduct of the study, Professor Schulze and Dr Aldinger report: grants from DFG, Klinische Forschergruppe 241: SCHU 1603/4-1, SCHU 1603/5-1; grants from DFG, PsyCourse: SCHU 1603/7-1; grants from BMBF, BipoLife: 01EE1404H; and grants from the Dr.-Lisa-Oehler Foundation.

DISCLOSURE STATEMENT

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

F.A. and T.G.S. designed the study. F.A. wrote the first draft of the manuscript. Both authors worked on further versions of the manuscript and approved the current version.

REFERENCES

1. Ketter TA. Diagnostic features, prevalence, and impact of bipolar disorder. J. Clin. Psychiatry 2010; 71: e14.
2. Merikangas KR, Akiskal HS, Angst J et al. Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch. Gen. Psychiatry 2007; 64: 543–552.
3. Bauer M, Pfennig A. Epidemiology of bipolar disorders. Epilepsia 2005; 46 (Suppl. 4): 8–13.
4. Merikangas KR, Jin R, He J-P et al. Prevalence and correlates of bipolar spectrum disorder in the World Mental Health Survey Initiative. Arch. Gen. Psychiatry 2011; 68: 241–251.
5. Latalova K, Prasko J, Dvekle T, Kamaradova D, Velartova H. Cognitive dysfunction, dissociation and quality of life in bipolar affective disorders in remission. Psychiatr. Danub. 2010; 22: 528–534.
6. Phillips ML, Kupfer DJ. Bipolar disorder diagnosis: Challenges and future directions. Lancet 2013; 381: 1663–1671.
7. Hosang GM, Korszun A, Jones L et al. Adverse life event reporting and worst illness episodes in unipolar and bipolar affective disorders: Measuring environmental risk for genetic research. Psychol. Med. 2010; 40: 1829–1837.
8. Anand A, Koller DL, Lawson WB, Gershon ES, Nurnberger JI. Genetic and childhood trauma interaction effect on age of onset in bipolar disorder: An exploratory analysis. J. Affect. Disord. 2015; 179: 1–5.
9. Mondimore FM. Kraepelin and manic-depressive insanity: An historical perspective. Int. Rev. Psychiatry 2005; 17: 49–52.
10. Zivanovic O, Nedic A. Kraepelin’s concept of manic-depressive insanity: One hundred years later. J. Affect. Disord. 2012; 137: 15–24.
11. Bender RE, Alloy LB. Life stress and kindling in bipolar disorder: Review of the evidence and integration with emerging biopsychosocial theories. Clin. Psychol. Rev. 2011; 31: 383–398.
12. Post RM. Kindling and sensitization as models for affective episode recurrence, cyclicity, and tolerance phenomena. Neurosci. Biobehav. Rev. 2007; 31: 858–873.
13. Ferreira MAR, O’Donovan MC, Meng YA et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 2008; 40: 1056–1058.

14. Fiorentino A, O’Brien NL, Locke DP et al. Analysis of ANK3 and CACNA1C variants identified in bipolar disorder whole genome sequence data. Bipolar Disord. 2014; 16: 583–591.

15. Craddock N, Sklar P. Genetics of bipolar disorder. Lancet 2013; 381: 1654–1662.

16. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 2013; 381: 1371–1379.

17. Forstner AJ, Hofmann A, Maaser A et al. Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder. Transl. Psychiatry 2015; 5: e678.

18. Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nat. Rev. Genet. 2012; 13: 537–551.

19. Baum AE, Akula N, Cabanero M et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKHI) and several other genes in the etiology of bipolar disorder. Mol. Psychiatry 2008; 13: 197–207.

20. Sklar P, Ripke S, Scott LJ et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODS2. Nat. Genet. 2011; 43: 977–983.

21. Pang D, Syed S, Fine P, Jones PB. No association between prenatal viral infection and depression in later life—a long-term cohort study of 6152 subjects. Can. J. Psychiatry 2009; 54: 565–570.

22. Mortensen PB, Pedersen CB, McGrath JJ et al. Neonatal antibodies to infectious agents and risk of bipolar disorder: A population-based case–control study. Bipolar Disord. 2011; 13: 624–629.

23. Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry 2013; 70: 677–685.

24. Canetta SE, Bao Y, Co MD et al. Serological documentation of maternal influenza exposure and bipolar disorder in adult offspring. Am. J. Psychiatry 2014; 171: 557–563.

25. Okusaga O, Yolken RH, Langenberg P et al. Association of seropositivity for influenza and coronavirus with history of mood disorders and suicide attempts. J. Affect. Disord. 2011; 130: 220–225.

26. Tedla Y, Shibire T, Ali O et al. Serum antibodies to Toxoplasma gondii and Herpesviridae family viruses in individuals with schizophrenia and bipolar disorder: A case–control study. Ethiop. Med. J. 2011; 49: 211–220.

27. Pearce BD, Kruszon-Moran D, Jones JL. The relationship between Toxoplasma gondii infection and mood disorders in the third National Health and Nutrition Survey. Biol. Psychiatry 2012; 72: 290–295.

28. Hamdani N, Daban-Huard C, Lajnef M et al. Relationship between Toxoplasma gondii infection and bipolar disorder in a French sample. J. Affect. Disord. 2013; 148: 444–448.

29. Ekblad M, Gissler M, Lehtonen L, Kerkeila J. Prenatal smoking exposure and the risk of psychiatric morbidity into young adulthood. Arch. Gen. Psychiatry 2010; 67: 841–849.

30. Talati A, Bao Y, Kaufman J, Shen L, Schaefer CA, Brown AS. Maternal smoking during pregnancy and bipolar disorder in offspring. Am. J. Psychiatry 2013; 170: 1178–1185.

31. Chudal R, Brown AS, Gissler M, Suominen A, Sourander A. Is maternal smoking during pregnancy associated with bipolar disorder in offspring? J. Affect. Disord. 2015; 171: 132–136.

32. Bain M, Juszczak E, McInneny K, Kendell RE. Obstetric complications and affective psychoses. Two case–control studies based on structured obstetric records. Br. J. Psychiatry 2000; 176: 523–526.

33. Øgendahl BK, Agerbo E, Byrne M, Licht RW, Eaton WW, Mortensen PB. Indicators of fetal growth and bipolar disorder: A Danish national register-based study. Psychol. Med. 2006; 36: 1219–1224.

34. Nosarti C, Reichenberg A, Murray RM et al. Perinatal factors and the risk of bipolar disorder in Finland. J. Affect. Disord. 2014; 155: 75–80.

35. Volpe FM, da Silva EM, dos Santos TN, de Freitas DEG. Further evidence of seasonality of mania in the tropics. J. Affect. Disord. 2010; 124: 178–182.

36. Dominik M, Swieczki L, Rybakowski J. Psychiatric hospitalizations for affective disorders in Warsaw, Poland: Effect of season and intensity of sunlight. Psychiatry Res. 2015; 229: 287–294.

37. Geoffroy PA, Bellivier F, Scott J, Etain B. Seasonality and bipolar disorder: A systematic review, from admission rates to seasonality of symptoms. J. Affect. Disord. 2014; 168: 210–233.

38. Young JW, Dulcis D. Investigating the mechanism(s) underlying switching between states in bipolar disorder. Prim. Care Companion CNS Disord. 2015; 17: doi: 10.4088/PCC.15m01780.

39. Hochman E, Valevski A, Ozn R, Weizman A, Krivoy A. Seasonal pattern of manic episode admissions among bipolar I disorder patients is associated with male gender and presence of psychotic features. J. Affect. Disord. 2016; 190: 123–127.

40. Kennedy BL, Dhaliwal N, Pedley L, Sahner C, Greenberg R, Manshadi MS. Post-Traumatic Stress

© 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology
Disorder in subjects with schizophrenia and bipolar disorder. J. Ky. Med. Assoc. 2002; 100: 395–399.
43. Garro JL, Goldberg JE, Ramirez PM, Ritzler BA. Impact of childhood abuse on the clinical course of bipolar disorder. Br. J. Psychiatry 2005; 186: 121–125.
44. Kauer-Sant’Anna M, Tramontina J, Andreazza AC et al. Traumatic life events in bipolar disorder: Impact on BDNF levels and psychopathology. Bipolar Disord. 2007; 9 (Suppl. 1): 128–135.
45. Quarantini LC, Miranda-Scipia A, Nery-Fernandes F et al. The impact of comorbid posttraumatic stress disorder on bipolar disorder patients. J. Affect. Disord. 2010; 123: 71–76.
46. Fisher H, Hosang S. Childhood maltreatment and bipolar disorder: A critical review of the evidence. Mind Brain 2010; 1: 1–11.
47. Daruy-Filho L, Bietrzer E, Lafer B, Grassi-Oliveira R. Childhood maltreatment and clinical outcomes of bipolar disorder. Acta Psychiatr. Scand. 2011; 124: 427–434.
48. Miller S, Hallmayer J, Wang PW, Hill SJ, Johnson SL, Ketter TA. Brain-derived neurotrophic factor val66met genotype and early life stress effects upon bipolar course. J. Psychiatr. Res. 2013; 47: 252–258.
49. Aas M, Hauvik UK, Djurovic S et al. Interplay between childhood trauma and BDNF val66met variants on blood BDNF mRNA levels and on hippocampus subfields volumes in schizophrenia spectrum and bipolar disorders. J. Psychiatr. Res. 2014; 59: 14–21.
50. Girshkin L, Matheson SL, Shepherd AM, Green MJ. Morning cortisol levels in schizophrenia and bipolar disorder: A meta-analysis. Psychoneuroendocrinology 2014; 49: 187–206.
51. Benedetti F, Riccaboni R, Poletti S et al. The serotonin transporter genotype modulates the relationship between early stress and adult suicidality in bipolar disorder. Bipolar Disord. 2014; 16: 857–866.
52. Sala R, Goldstein BI, Wang S, Blanco C. Childhood maltreatment and the course of bipolar disorders among adults: Epidemiologic evidence of dose–response effects. J. Affect. Disord. 2014; 165: 74–80.
53. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-a. Mol. Psychiatry 2016; 21: 642–649.
54. Etain B, Lajnef M, Henrion A et al. Interaction between SLC6A4 promoter variants and childhood trauma on the age at onset of bipolar disorders. Sci. Rep. 2015; 5: 16301.
55. Oliveira J, Etain B, Lajnef M et al. Combined effect of TLR2 gene polymorphism and early life stress on the age at onset of bipolar disorders. PLoS One 2015; 10: e0119702. doi: 10.1371/journal.pone.0119702.
56. Benedetti F, Riccaboni R, Dallapiccola S, Locatelli C, Smeraldi E, Colombo C. Effects of CLOCK gene variants and early stress on hopelessness and suicide in bipolar depression. Chronobiol. Int. 2015; 32: 1156–1161.
57. Mert DG, Kelleci M, Mizrak A, Semiz M, Demir MO. Factors associated with suicide attempts in patients with bipolar disorder type I. Psychiatr. Danub. 2015; 27: 236–241.
58. Aas M, Henry C, Andreassen OA, Bellivier F, Melle I, Etain B. The role of childhood trauma in bipolar disorders. Int. J. Bipolar Disord. 2016; 4: 2. doi: 10.1186/s40345-015-0042-0.
59. Ellicott A, Hammen C, Gitlin M, Brown G, Jamison K. Life events and the course of bipolar disorder. Am. J. Psychiatr. 1990; 147: 1194–1198.
60. Malkoff-Schwartz S, Frank E, Anderson B et al. Stressful life events and social rhythm disruption in the onset of manic and depressive bipolar episodes: A preliminary investigation. Arch. Gen. Psychiatr. 1998; 55: 702–707.
61. Hastala SA, Frank E, Kowalski J et al. Stressful life events, bipolar disorder, and the "kindling model". J. Abnorm. Psychol. 2000; 109: 777–786.
62. Paykel ES. Life events and affective disorders. Acta Psychiatr. Scand. 2003; 108: 61–66.
63. Christensen EM, Gjerris A, Larsen JK et al. Life events and onset of a new phase in bipolar affective disorder. Bipolar Disord. 2003; 5: 356–361.
64. Hillegers MHJ, Burger H, Wals M et al. Impact of stressful life events, familial loading and their interaction on the onset of mood disorders: Study in a high-risk cohort of adolescent offspring of parents with bipolar disorder. Br. J. Psychiatry 2004; 185: 97–101.
65. Cohen AN, Hammen C, Henry RM, Daley SE. Effects of stress and social support on recurrence in bipolar disorder. J. Affect. Disord. 2004; 82: 143–147.
66. Johnson SL. Life events in bipolar disorder: Towards more specific models. Clin. Psychol. Rev. 2005; 25: 1008–1027.
67. Kessing LV, Andersen PK. Predictive effects of previous episodes on the risk of recurrence in depressive and bipolar disorders. Curr. Psychiatry Rep. 2005; 7: 413–420.
68. Alloy LB, Abramson LY, Urosevic S, Walshow PD, Nusslock R, Neeren AM. The psychosocial context of bipolar disorder: Environmental, cognitive, and developmental risk factors. Clin. Psychol. Rev. 2005; 25: 1043–1075.
69. Kim EY, Miklowitz DJ, Biuckians A, Mullen K. Life stress and the course of early-onset bipolar disorder. J. Affect. Disord. 2007; 99: 37–44.
70. Johnson SL, Cuellar AK, Ruggero C et al. Life events as predictors of mania and depression in bipolar I disorder. J. Abnorm. Psychol. 2008; 117: 268–277.
71. Gruber J, Miklowitz DJ, Harvey AG et al. Sleep matters: Sleep functioning and course of illness in bipolar disorder. J. Affect. Disord. 2011; 134: 416–420.
72. Boland EM, Bender RE, Alloy LB, Conner BT, Labelle DR, Abramson LY. Life events and social
rhythms in bipolar spectrum disorders: An examination of social rhythm sensitivity. J. Affect. Disord. 2012; 139: 264–272.

73. Hosang GM, Korszun A, Jones L, Jones I, McGiffin P, Farmer AE. Life-event specificity: Bipolar disorder compared with unipolar depression. Br. J. Psychiatry 2012; 201: 458–465.

74. De Dios C, González-Pinto A, Montes JM et al. Predictors of recurrence in bipolar disorders in Spain (PREBIS study data). J. Affect. Disord. 2012; 141: 406–414.

75. Gershon A, Johnson SL, Miller I. Chronic stressors and self-esteem predict changes in bipolar depression. Psychiatr. Q. 2014; 161: 55–64.

76. Simhandl C, Radua J, König B, Amann BL. The prevalence and effect of life events in bipolar I and II disorder: Cause or consequence of mood symptoms? J. Affect. Disord. 2014; 161: 166–171.

77. Kemner SM, van Haren N, Bootsman F et al. The influence of life events on first and recurrent admissions in bipolar disorder. Int. J. Bipolar Disord. 2015; 3: 6. doi: 10.1186/s40345-015-0022-4.

78. Kemner SM, Mesman E, Nolen WA, Eijckmans MJ, Hillegers MHH. The role of life events and psychological factors in the onset of first and recurrent mood episodes in bipolar offspring: Results from the Dutch Bipolar Offspring Study. Psychol. Med. 2015; 45: 2571–2581.

79. Maciukiewicz M, Pawlak J, Kapelski P et al. Can psychological, social and demographic factors predict clinical characteristics symptomatology of bipolar affective disorder and schizophrenia? Psychiatr. Q. 2016; 87: 501–513.

80. Johnson SL, Winett CA, Meyer B, Greenhouse WJ, Miller I. Social support and the course of bipolar disorder. J. Abnorm. Psychol. 1999; 108: 558–566.

81. Johnson SL, Meyer B, Winett C, Small J. Social support and self-esteem predict changes in bipolar depression but not mania. J. Affect. Disord. 2000; 58: 79–86.

82. Johnson SL, Sandrow D, Meyer B et al. Increases in manic symptoms after life events involving goal attainment. J. Abnorm. Psychol. 2000; 109: 721–727.

83. Johnson L, Lundström Ö, Abeng-Wistedt A, Mathé AA. Social support in bipolar disorder: Its relevance to remission and relapse. Bipolar Disord. 2003; 5: 129–137.

84. Miklowitz DJ. The role of the family in the course and treatment of bipolar disorder. Curr. Dir. Psychol. Sci. 2007; 16: 192–196.

85. Coville AI, Miklowitz DJ, Taylor DO, Low KG. Correlates of high expressed emotion attitudes among parents of bipolar adolescents. J. Clin. Psychol. 2008; 64: 438–449.

86. Greenberg S, Rosenblum KL, McInnis MG, Muzik M. The role of social relationships in bipolar disorder: A review. Psychiatry Res. 2014; 219: 248–254.

87. Ellis AJ, Portnoff LC, Axelson DA, Kovatch RA, Walsh P, Miklowitz DJ. Parental expressed emotion and suicidal ideation in adolescents with bipolar disorder. Psychiatry Res. 2014; 216: 213–216.

88. Owen R, Gooding P, Dempsey R, Jones S. A qualitative investigation into the relationships between social factors and suicidal thoughts and acts experienced by people with a bipolar disorder diagnosis. J. Affect. Disord. 2015; 176: 133–140.

89. Prandovszky E, Gaskell E, Martin H, Dubey JP, Webster JP, McConkey GA. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS One 2011; e23866. doi: 10.1371/journal.pone.0023866.

90. Yagmur F, Yazar S, Temel HO, Cuvusoglu M. May Toxoplasma gondii increase suicide attempt-preliminary results in Turkish subjects? Forensic Sci. Int. 2010; 199: 15–17.

91. Hultman CM, Sparén P, Cnattingius S. Perinatal risk factors for infantile autism. Epidemiology 2002; 13: 417–423.

92. Etain B, Milhiet V, Bellivier F, Leboyer M. Genetics of circadian rhythms and mood spectrum disorders. Eur. Neuropsychopharmacol. 2011; 21 (Suppl. 4): 676–682.

93. Niemegeers P, Dumont GJH, Patteet L, Neels H, Sabbé BGC. Bupropion for the treatment of seasonal affective disorder. Expert Opin. Drug Metab. Toxicol. 2013; 9: 1229–1240.

94. Etain B, Henry C, Bellivier F, Mathieu F, Leboyer M. Genetics of circadian rhythms and mood spectrum disorders. Eur. Neuropsychopharmacol. 2011; 21 (Suppl. 4): 683–693.

95. Etain B, Millhiet V, Bellivier F, Leboyer M. Genetics of circadian rhythms in bipolar offspring: Results from the Dutch Bipolar Offspring Study. Psychol. Med. 2015; 45: 2571–2581.

96. Niemegeers P, Dumont GJH, Patteet L, Neels H, Sabbé BGC. Bupropion for the treatment of seasonal affective disorder. Expert Opin. Drug Metab. Toxicol. 2013; 9: 1229–1240.

97. Etain B, Henry C, Bellivier F, Mathieu F, Leboyer M. Genetics of circadian rhythms and mood spectrum disorders. Eur. Neuropsychopharmacol. 2011; 21 (Suppl. 4): 676–682.

98. Niemegeers P, Dumont GJH, Patteet L, Neels H, Sabbé BGC. Bupropion for the treatment of seasonal affective disorder. Expert Opin. Drug Metab. Toxicol. 2013; 9: 1229–1240.

99. Etain B, Henry C, Bellivier F, Mathieu F, Leboyer M. Genetics of circadian rhythms and mood spectrum disorders. Eur. Neuropsychopharmacol. 2011; 21 (Suppl. 4): 683–693.

100. Glaser D. Emotional abuse and neglect (psychological maltreatment): A conceptual framework. Child Abuse Negl. 2002; 26: 697–714.

101. Kaplan SJ, Pelcovitz D, Labruna V. Child and adolescent abuse and neglect research: A review of the past 10 years. Part I: Physical and emotional abuse and neglect. J. Am. Acad. Child Adolesc. Psychiatry 1999; 38: 1214–1222.

102. Martins CMS, Von WB, De CT, Juruna Francisco M. Emotional abuse in childhood is a differential factor for the development of depression in adults. J. Nerv. Ment. Dis. 2014; 202: 774–782.
103. Thombs BD, Bernstein DP, Ziegelstein RC et al. An evaluation of screening questions for childhood abuse in 2 community samples: Implications for clinical practice. *Arch. Intern. Med.* 2006; 166: 2020–2026.

104. Grandin LD, Alloy LB, Abramson LY. The social zeitgeber theory, circadian rhythms, and mood disorders: Review and evaluation. *Clin. Psychol. Rev.* 2006; 26: 679–694.

105. Weiss RB, Stange JP, Boland EM et al. Kindling of life stress in bipolar disorder: Comparison of sensitization and autonomy models. *J. Abnorm. Psychol.* 2015; 124: 4–16.

106. Cobb S. Presidential address-1976. Social support as a moderator of life stress. *Psychosom. Med.* 1976; 38: 300–314.

107. Miklowitz DJ, Wisniewski SR, Miyahara S, Otto MW, Sachs GS. Perceived criticism from family members as a predictor of the one-year course of bipolar disorder. *Psychiatry Res.* 2005; 136: 101–111.

108. Tohen M, Frank E, Bowden CL et al. The International Society for Bipolar Disorders (ISBD) Task Force report on the nomenclature of course and outcome in bipolar disorders. *Bipolar Disord.* 2009; 11: 453–473.