Abstract: 1,3-Dithiane-protected enones (enone dithianes) were found to undergo an intramolecular [2+2] photocycloaddition under visible-light irradiation ($\lambda = 405$ nm) in the presence of a Brønsted acid (7.5–10 mol%). Key to the success of the reaction is presumably the formation of colored thionium ions, which are intermediates of the catalytic cycle. Cyclobutanes were thus obtained in very good yields (78–90%). It is also shown that the dithiane moiety can be reductively or oxidatively removed without affecting the photochemically constructed ring skeleton.

Among all photochemical reactions, the [2+2] photocycloaddition is undoubtedly of the greatest synthetic importance. This reaction enables the simultaneous construction of two C–C bonds and up to four stereogenic centers. In this regard, it parallels the thermal [4+2] cycloaddition, the Diels–Alder reaction, which allows for a similarly high increase in complexity. In the case of a [2+2] photocycloaddition, the newly formed ring is a strained four-membered ring (cyclobutane), which offers multiple options for further functionality. The photochemically excitable component of a [2+2] photocycloaddition is frequently a cyclic α,β-unsaturated carbonyl compound, and its olefinic double bond can react with a suitable alkene either inter- or intramolecularly. Embedding the double bond in a cyclic compound avoids deactivation in the excited state by E/Z isomerization. Conjugation to the carbonyl group allows direct long-wavelength excitation, for example, at $\lambda_{abs} = 300–350$ nm with cycloalkenones (enones; Scheme 1).

We recently showed that the long-wavelength absorption of typical enones becomes more intense upon complexation by a Lewis acid. This observation is in agreement with earlier studies that reported on similar behavior for coumarins and other α,β-unsaturated β-aryl-substituted car

bonyl compounds. The reason for the intensity increase is a bathochromic shift of the short-wavelength $\pi\pi^*$ absorption. As a consequence of the high absorption cross-sections of such Lewis acid/enone complexes, [2+2] photocycloaddition reactions can be rendered enantioselective in the presence of a chiral Lewis acid.

When searching for substrates that exhibit a negligible long-wavelength absorption but would potentially show a strong bathochromic shift upon activation by an acid, we tested enones upon transformation of their carbonyl groups into 1,3-dithianes (enone dithianes). The putative thionium ions that were expected to be formed upon protonation could potentially be excited in the visible region ($\lambda_{abs} > 380$ nm), and would thus be suited to undergo a Brønsted acid catalyzed [2+2] photocycloaddition (Scheme 1). Possible background reactions should be completely avoided. We now report initial results of our studies.

In a first set of experiments, the UV/Vis spectra of cyclic S,S-acetals derived from 3-(4-pentenyl)-cyclohex-2-ene were recorded. As expected, no significant absorption was observed at wavelengths of $\lambda > 300$ nm. The spectrum of dithiane 1a is depicted as a representative example in Figure 1 (dotted line). Upon addition of bis(trifluoromethanesulfonyl)imide TiF$_4$NH (Ti = trifluoromethanesulfonyl) as a Brønsted acid, the solution of 1a turned yellow, and a strong long-wavelength absorption with a maximum at $\lambda_{abs} = 356$ nm was observed that stretched into the visible region. The absorbance reached saturation after addition of 12.5 equiv of the Brønsted acid. Assuming full conversion of the dithiane, the value for the molar decadic absorption coefficient ε was calculated as 23 900 M$^{-1}$ cm$^{-1}$.
As the absorption of the putative thionium ion partially lies in the visible region, it was attempted to induce a reaction with light of λ > 380 nm in the presence of a catalytic amount of a Brønsted acid. To this end, light emitting diodes (LEDs) were employed as the light source, which exhibit a sharp emission band.\[13\] To our delight, at λ = 398 nm, 1,3-dithiane 1a was indeed converted into product 2a in an intramolecular [2+2] photocycloaddition upon addition of 10 mol % Tf\(_2\)NH (Table 1, entry 1). The dithiane turned out to be clearly superior to the corresponding 1,3-dithiolane, which did not undergo a reaction under the same reaction conditions.\[15\]

When testing further acids, the strong Brønsted acids HOTf (entry 2), C\(_2\)F\(_5\)CHTF (entry 5), and imide 3 (entry 6) were found to perform well while a weaker acid (camphorsulfonic acid, CSA; entry 3) and the Lewis acid B(C\(_6\)F\(_{13}\))\(_3\) (entry 4) delivered unsatisfactory results. The absence of a reaction with CSA correlates with the fact that there was no long-wavelength absorption to be detected in the UV/Vis spectrum of 1a even upon addition of 40 equivalents of this acid (see the Supporting Information).

It was then unambiguously established that the reaction was indeed light-induced (entry 7). As imide 3 exhibited the strongest rate acceleration, the catalyst loading was lowered for this acid. Even at a loading of 7.5 mol %, the reaction was complete after 3.5 hours (entry 8), and it was possible to apply light of a longer wavelength (λ = 405 nm) without a deterioration in yield (entry 9). These conditions were subsequently employed for the reaction of other dithianes 1 (Table 2).

The δ-dimethylated analogue 1b of enone dithiane 1a reacted as smoothly as the parent compound (entry 1). Compound 1c, which is dimethylated in the side chain, was somewhat less reactive, and a longer irradiation time and a higher catalyst loading were required to guarantee full conversion (entry 2). The reaction of dithiane 1d to the highly strained cyclobutene 2d is a remarkable transformation that proceeded in very high yield (entry 3). With cyclopentenone dithiane 1e, it was already observed by visual inspection that the bathochromic shift that occurs upon Brønsted acid addition is not very extensive, and the reaction was therefore conducted at λ = 366 nm (entry 4). The reactions of the chiral substrates 1f–1i were again conducted under visible-light irradiation (λ = 405 nm), and the yields were very high in all cases (entries 5–8).

As anticipated, a stereogenic center in δ-position led to poor facial differentiation, and product 2f was isolated as a mixture of diastereomers (d.r. = diastereomeric ratio; entry 5). The asymmetric induction by a stereogenic center in γ-position, however, is excellent, and product 2g (entry 6), as well as product 2h (entry 7), was formed in diastereomerically pure form. Owing to 1,3-allylic strain\[16\] the [2+2] photocycloaddition of substrate 1j also proceeded with high facial diastereoselectivity (entry 8). In most instances, the relative configurations were unambiguously assigned by one- and two-dimensional NMR spectroscopy and NOESY experiments (see the Supporting Information). For product 2i, however, a crystal structure was required to determine the relative configuration beyond any doubt (Figure 2). The configuration of product 2i was assigned in analogy to that of 2g.

It is well established that dithiane moieties can be reduced reductively or oxidatively\[19\] and with the tricyclic products 2 of the [2+2] photocycloadditions, the cleavage also proceeded without any complications. The reductive desulfurization\[17\] was exemplarily performed with product 2b and delivered the volatile hydrocarbon 4 in 75 % yield (Scheme 2). Upon treatment of product 2a with bis[(trifluoroacetoxy)iodo]benzene,\[19\] ketone 5 was obtained in 84 % yield. The cleavage can also be used to generate the respective ketones without isolation of the intermediate dithiane photoproducts. In the case of substrate 1j, for example, it turned out to be impossible to separate product 2j from minor impurities. Consequently, the dithiane moiety was

Table 1: Optimization of the reaction conditions for the Brønsted acid catalyzed [2+2] photocycloaddition of 1,3-dithiane 1a to cyclobutane 2a.

Entry	Catalyst\([b]\)	Loading [mol %]	λ [nm]	\(t^h\) [h]	Yield\([d]\) [%]
1	Tf\(_2\)NH	10	398	2.5	88
2	HOTf	10	398	3.0	81
3	CSA	10	398	26.0	94
4	B(C\(_6\)F\(_{13}\))\(_3\)	10	398	22.0	44
5	C\(_2\)F\(_5\)CHTF	10	398	5.5	86
6	Imide 3	10	398	1.5	86
7	Imide 3	10			
8	Imide 3	7.5	398	3.5	86
9	Imide 3	7.5	405	3.5	85\([l]\)

[a] All reactions were performed on 0.1 mmol scale with an LED lamp (7 W power output, emission at the indicated wavelength) as the light source.\[17\] Cooling bath: acetone/dry ice. \[b\] Irradiation time. \[c\] Yield of isolated product. \[d\] No reaction. The starting material was recovered. \[e\] Without irradiation. \[f\] The reaction was successfully performed under almost identical conditions (c = 20 mM, 16 h, 10 W, 93 % yield) on a larger scale (1.6 mmol).
removed oxidatively, and the pure product 6 was isolated as a mixture of the two diastereomers cis-6 and trans-6 (Scheme 3).

The [2+2] photocycloaddition of the Z-configured substrate 1j proceeded in a stereo-unspecific fashion, that is, without retention of the double-bond configuration. The ratio of the two diastereomeric cyclobutanes was already determined prior to cleavage of the dithiane group to be 67:33 by GC analysis. This finding supports the notion that the reaction proceeds via triplet 1,4-diradical 8, in which free rotation about the indicated single bond is feasible (Scheme 4). As illustrated for substrate 1j, the excitation thus proceeds via thionium ion 7, which undergoes ring closure to intermediate 8 upon intersystem crossing (ISC). The strong absorption of the thionium ion (Figure 1) indicates that a \(\pi^* \) singlet state (S1) is populated upon excitation.21

Entry	Substrate[a]	\(t^\text{[b]} \)	Product	Yield[c] [%]
1	1b	5	2b	80[d]
2	1c	22	2c	78[e]
3	1d	24	2d	86[f]
4	1e	21	2e	78[f]
5	1f	24	2f	90[g]
6	1g	21	2g	89[h]
7	1h	24	2h	79[h]
8	1i	6	2i	85[i]

[a] All reactions were performed on 0.1 mmol scale with an LED lamp (7 W power output, \(\lambda = 405 \text{ nm} \)) as the light source. [b] Irradiation time. [c] Yield of isolated product. [d] Catalyst (7.5 mol%). [e] Catalyst (10 mol%). [f] Irradiation at \(\lambda = 366 \text{ nm} \). [g] 60:40 d.r. [h] 95:5 d.r. [i] 90:10 d.r.
The configuration of the C=S double bond in 7 remains unclear but the sensitivity of the reaction towards steric hindrance at the terminal end of the olefinic double bond provides circumstantial evidence for the depicted Z configuration. The dithiane group also points towards the cyclobutane ring in the reaction products (see Figure 2), which indicates that the carbon chain at the sulfur atom is somewhat biased towards this orientation.

In conclusion, we have shown for the first time that derivatives of cyclic enones can undergo a [2+2] photocycloaddition under visible-light irradiation. The resulting dithiines 2 offer several options for chemical functionalization. The most important result of this study, however, seems to be the fact that catalytic amounts of a Brønsted acid are sufficient to render an otherwise photochemically inaccessible reaction pathway viable. We are convinced that the strategy of catalytic chromophore activation will enable further transformations to be performed with visible light that have thus far only been possible upon UV irradiation. Moreover, the use of chiral 1,3-dithianes[22] or chiral Brønsted acids[23] might allow to achieve enantioselectivity with methods that cannot be applied to the classic [2+2] photocycloaddition of enones.

Acknowledgements

Financial support by the European Research Council as part of the European Union’s Horizon 2020 research and innovation programme (grant agreement 665951, ELICOS) is gratefully acknowledged. We thank Dr. Andreas Bauer und M.Sc. Philipp Altmann for their help with the measurement of fluorescence spectra.

Conflict of interest

The authors declare no conflict of interest.

Keywords: Brønsted acids - cycloaddition - diastereoselectivity - enones - homogenous catalysis - photochemistry

How to cite: Angew. Chem. Int. Ed. 2017, 56, 4337–4341
Angew. Chem. 2017, 129, 4401–4405

[1] For reviews, see: a) M. T. Crimmins, T. L. Reinhold, Org. React. 1993, 44, 297–588; b) J. Mattay, R. Conrads, R. Hoffmann in Methoden der Organischen Chemie (Houben-Weyl), 4th ed., issue E 21c (Eds.: G. Helmenhe, R. W. Hoffmann, J. Mulzer, E. Schau mann), Thieme, Stuttgart, 1995, pp. 3085–3132; c) P. Margaretha in Molecular and Supramolecular Photochemistry, Vol. 12 (Eds.: A. Griesbeck, J. Mattay), Dekker, New York, 2005, pp. 211–237; d) J. P. Henn, C. Müller, T. Bach in Handbook of Synthetic Photochemistry (Eds.: A. Albini, M. Fagnoni), Wiley-VCH, Weinheim, 2009, pp. 171–215; e) S. Puplata, A. Troster, Y. Q. Zou, T. Bach, Chem. Rev. 2016, 116, 9748–9815.
[2] For a review, see: J. C. Namysoy, D. E. Kaufmann, Chem. Rev. 2003, 103, 1485–1537.
[3] For applications in total synthesis, see: a) J. Iriondo-Alberdi, M. F. Greaney, Eur. J. Org. Chem. 2007, 4801–4815; b) N. Hoffmann, Chem. Rev. 2008, 108, 1052–1103; c) T. Bach, J. P. Henn, Angew. Chem. Int. Ed. 2011, 50, 1000–1045; Angew. Chem. 2011, 123, 1032–1077; d) M. D. Karkä, J. A. Porco Jr., C. R. J. Stephenson, Chem. Rev. 2016, 116, 9683–9747.
[4] For selected references on the photophysics of α,β-unsaturated cycloalkenones, see: a) G. Marsh, D. R. Kearns, K. Schaffner, Helv. Chim. Acta 1968, 51, 1990–1999; b) R. Bonneau, J. Am. Chem. Soc. 1980, 102, 3816–3822; c) O. Schalk, M. S. Schuurman, G. Wu, P. Lang, M. Mucke, R. Feifel, A. Stolow, J. Phys. Chem. A 2014, 118, 2279–2287; d) J. Cao, Z.-Z. Xie, Phys. Chem. Phys. 2016, 18, 6931–6945.
[5] a) R. Brimiouille, T. Bach, Science 2013, 342, 840–843; b) R. Brimiouille, T. Bach, Angew. Chem. Int. Ed. 2014, 53, 12921–12924; Angew. Chem. 2014, 126, 13135–13138; c) R. Brimiouille, A. Bauer, T. Bach, J. Am. Chem. Soc. 2015, 137, 5170–5176.
[6] a) F. D. Lewis, D. K. Howard, J. D. Oxman, J. Am. Chem. Soc. 1983, 105, 3344–3345; b) S. C. Shim, E. I. Kim, K. T. Lee, Bull. Korean Chem. Soc. 1987, 8, 140–144; c) F. D. Lewis, S. V. Baranecyk, J. Am. Chem. Soc. 1989, 111, 8653–8661; d) H. Görner, T. Wolff, Photochem. Photobiol. 2008, 84, 1224–1230; e) H. Guo, E. Herdtweck, T. Bach, Angew. Chem. Int. Ed. 2010, 49, 7782–7785; Angew. Chem. 2010, 122, 7948–7951; f) N. Vallavoujo, S. Selvakumar, S. Jockusch, M. P. Sibi, J. Sivaguru, Angew. Chem. Int. Ed. 2014, 53, 5604–5608; Angew. Chem. 2014, 126, 5710–5714.
[7] For a review, see: R. Brimiouille, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int. Ed. 2015, 54, 3872–3890; Angew. Chem. 2015, 127, 3944–3963.
[8] The Lewis acid coordination that is responsible for lowering the energy of the π* orbital presumably influences the ππ* triplet state in a similar fashion; see: T. R. Blum, Z. D. Miller, D. M. Bates, I. A. Guzei, T. P. Yoon, Science 2016, 354, 1391–1395.
[9] For early indications for the intense long-wavelength absorption of thorium ions, see: a) B. Föhlisch, E. Haug, Chem. Ber. 1971, 104, 2324–2337; b) J. Fabian, H. Hartmann, Tetrahedron 1973, 29, 2597–2608; c) L. Carlsen, A. Holm, Acta Chem. Scand. B 1976, 30, 277–279; d) M. Ali, D. P. N. Satchell, V. T. Le, J. Am. Chem. Soc. 1993, 115, 917–922.
[10] The 1,3-dithianes were prepared from the respective cycloalk-2-enones with 1,3-propanedithiol and BF3·OEt2 in methanol; see: E. J. Corey, A. X. Huang, J. Am. Chem. Soc. 1999, 121, 710–714. Further details can be found in the Supporting Information.
[11] The emission spectra of the LEDs are shown in the Supporting Information.
[12] According to UV/Vis analysis, the 1,3-dithiolane analogue of 1a requires a significantly higher acid concentration for notable long-wavelength absorption (see the Supporting Information). Under the given catalytic reaction conditions, the concentration of the thorium ion is apparently too low for a [2+2] photocycloaddition to take place.
[13] For the reaction setup, see: a) D. Rackl, V. Kais, P. Kreitmeier, O. Reiser, Beilstein J. Org. Chem. 2014, 10, 2157–2165; b) D. Lenhart, A. Pöthig, T. Bach, Chem. Eur. J. 2016, 22, 6519–6523.
[14] This observation was supported by UV/Vis spectroscopy. The thorium ion derived from 1e exhibits an absorption maximum at λmax = 337 nm.
[15] a) R. W. Hoffmann, Chem. Rev. 1989, 89, 1841–1860; b) T. Bach, K. Jodicke, K. Kather, R. Fröhlich, J. Am. Chem. Soc. 1997, 119, 2437–2445.
[16] For reviews, see: a) D. Seebach, Synthesis 1969, 17–36; b) M. Yus, C. Najera, T. Foubelo, Tetrahedron 2003, 59, 6147–6122; c) A. B. Smith III, C. M. Adams, Acc. Chem. Res. 2004, 37, 365–377; d) M. Nakata in Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, Vol. 30 (Ed.: J. Otera), Thieme, Stuttgart 2007, pp. 351–434.
[17] a) J. Bougault, E. Cattelin, P. Chabrier, C. R. Hebd. Seances Acad. Sci. 1939, 657–659; b) H. Hauptmann, W. F. Walter,
Natural products with an aricyclo[5.4.0.0^1.5]undecane skeleton are known; see: a) J. Leimner, H. Marshall, N. Meier, P. Weyerstahl, Chem. Lett. 1984, 13, 1769 – 1772; b) C. Zdero, F. Bohlmann, H. M. Niemeyer, Phytochemistry 1991, 30, 3683–3691; c) M.-L. Zhang, M. Dong, C.-H. Huo, L.-G. Li, F. Sauriol, Q.-W. Shi, Y.-C. Gu, H. Makabe, H. Kiyota, Eur. J. Org. Chem. 2008, 5414 – 5417; d) M. Dou, L. Di, L.-L. Zhou, Y.-M. Yan, X.-L. Wang, F.-J. Zhou, Z.-L. Yang, R.-T. Li, F.-F. Hou, Y.-X. Cheng, Org. Lett. 2014, 16, 6064 – 6067.

For recent reviews, see: a) M. Mahlau, B. List, Angew. Chem. Int. Ed. 2013, 52, 518 – 533; Angew. Chem. 2013, 125, 540 – 556; b) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047 – 9153; c) T. Akiyama, K. Mori, Chem. Rev. 2015, 115, 9277 – 9366; d) M. R. Monaco, G. Pupo, B. List, Synlett 2016, 1027 – 1040.