Electronic Supplementary Information

Redox activity of nickel and vanadium porphyrins: also a possible mechanism behind petroleum genesis and maturation?

G. Munoz, B. K. Guenessee, D. Bégué, B. Bouyssiere, I. Baraille, G. Vallverdu, H. Santos Silva

February 1, 2019

Contents

List of Figures

1 Total electronic density mapped by the molecular electrostatic potential surfaces. 2
2 PorVO molecule showing the localization of the unpaired electron over the VO region. 3
3 Reaction path of methanol into methanal conversion catalyzed by one VO porphyrin. 4
4 Geometries of the transition states. 5
5 Reaction coordinate scan of the PorVO—H dissociation in both S_0 and T_0 spin states. . . 6
6 Molecular orbital 95 (HOMO), relative to vanadium d_{xy}. 7
7 Structure de PorNi + ligand: (a) SH$^-$; (b) CH$_3$CH$_2$COO$^-$; (c) Pyridine. 8
8 2D PES scand of the PorNi-H$_2$ system. 9
9 3D PES scand of the PorNi-H$_2$ system. 9
10 H$_2$ adsorption geometry on top of PorNi. 10
Figure 1 Total electronic density mapped by the Molecular Electrostatic Potential surfaces of (a) PorH₂, (b) PorFe, (c) PorNi, (d) PorVO (top) and (e) PorVO (side). The scale of color varies from -2×10^{-2} (red) to 2×10^{-2} e (blue).
Figure 2 PorVO molecule showing the localization of the unpaired electron over the VO region (total spin density mapped by the molecular electrostatic potential). The spin density varies from 0 (red) to 0.5 (blue).
Figure 3 Reaction path of methanol into methanal conversion catalyzed by one VO porphyrin. 1a is constituted of PorVO (D_0) + CH$_3$OH (S_0) and 1b is PorVO (Q_0) + CH$_3$OH (S_0). TS$_{1a-2a}$ is a D_0 state. 2a is constituted of PorVOH(T_0) + *CH$_2$OH (D_0) and 2b is PorVOH(S_0) + *CH$_2$OH (D_0). TS$_{2a-3a}$ is a Q_0 state whereas TS$_{2a-3a}$ is a D_0 state. Finally, 3a is composed of PorVOH$_2$ in Q_0 state and CH$_2$O in S_0 state whereas 3b is PorVOH$_2$ in D_0 state and CH$_2$O in S_0. The BDE(nc) marked levels stand for the required energy barriers when no catalyst is present. It means that, to abstract the first hydrogen of the CH$_3$ group, one would need 91.8 kcal.mol$^{-1}$ to do so, whereas one needs 49.2 kcal.mol$^{-1}$ to have it abstracted using a porphyrin molecule. Further on, to abstract the hydrogen of the hydroxyl group, without catalyst, one would need to give 31.7 kcal.mol$^{-1}$ of extra energy (the showed number was renormalized to have 2a as reference) instead of 1.9 only kcal.mol$^{-1}$ when a porphyrin is involved. The gray labels indicate the reaction path passing by another pristine PorVO porphyrin to abstract the hydroxyl hydrogen. TS$_{2a-4a}$ is a T_0 state whereas TS$_{2a-4a}$ is the S_0 equivalent. They result both 4a or 4b which are composed of either PorVOH (T_0) and CH$_2$O (S_0) or PorVOH (S_0) and CH$_2$O (S_0), respectively.
Figure 4 Geometries of the transition states in their lowest energy spin states. (a) $\text{TS}_{1\alpha-2\alpha}$, (b) $\text{TS}_{2\alpha-3\alpha}$ and (c) $\text{TS}_{3\alpha-4\alpha}$.
Figure 5 Reaction coordinate scan of the PorVO–H dissociation in both S_0 and T_0 spin states. S_0 fails to describe this dissociation curve since it tries to share a single electron in two different atoms far apart (oxygen and hydrogen). The T_0 spin state describes the dissociation curve appropriately and indicates a dissociation energy of ~ 52 kcal.mol$^{-1}$. The reference is the PorVO system separated from the H* by an infinite distance.
Figure 6 Molecular orbital 95 (HOMO), relative to vanadium d_{xy}.
Figure 7 Structure de PorNi + ligand: (a) SH$^-$; (b) CH$_3$CH$_2$COO$^-$; (c) Pyridine.
Figure 8 2D PES scan of the PorNi-H$_2$ system.

Figure 9 3D PES scan of the PorNi-H$_2$ system.
Figure 10 H_2 adsorption geometry on top of PorNi.