Algorithm for Solutions of Nonlinear Equations of Strongly Monotone Type and Applications to Convex Minimization and Variational Inequality Problems

Mathew O. Aibinu, Surendra C. Thakur, and Sibusiso Moyo

1Institute for Systems Science & KZN CoLab, Durban University of Technology, Durban 4000, South Africa
2KZN CoLab, Durban University of Technology, Durban 4000, South Africa
3Institute for Systems Science & Office of the DVC Research, Innovation & Engagement Milena Court, Durban University of Technology, Durban 4000, South Africa

1. Introduction

Let $v : [0,\infty) \to [0,\infty)$ be a continuous, strictly increasing function such that $v(t) \to \infty$ as $t \to \infty$ and $v(0) = 0$ for any $t \in [0,\infty)$. Such a function v is called a gauge function. A duality mapping associated with the gauge function v is a mapping $J^v_p : B \to 2^{B^*}$ defined by

$$J^v_p(x) = \{ f \in B^* : \langle x, f \rangle = \|x\|v(\|x\|), \|f\| = v(\|x\|) \},$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing. For $p > 1$, let $v(t) = t^{p-1}$ be a gauge function. $J^v_p : B \to 2^{B^*}$ is called a generalized duality mapping from B into 2^{B^*} and is given by

$$J^v_p(x) = \{ f \in B^* : \langle x, f \rangle = \|x\|^p, \|f\| = \|x\|^{p-1} \}.$$

For $p = 2$, the mapping J^2_2 is called the normalized duality mapping. In a Hilbert space, the normalized duality mapping is the identity map. For $x, y \in B$ and $\eta > 0$, a mapping $T : B \to B^*$ is said to be

1. monotone if $\langle x - y, Tx - Ty \rangle \geq 0$
2. strongly monotone (see, e.g., Alber and Ryazantseva [1], p. 25), if $\langle x - y, Tx - Ty \rangle \geq \eta \|x - y\|^2$
3. η-strongly pseudomonotone if $\langle x - y, Ty \rangle \geq 0$ implies $\langle x - y, Tx \rangle \geq \eta \|x - y\|^2$
4. (p, η)-strongly monotone if $\langle x - y, Tx - Ty \rangle \geq \eta \|x - y\|^p$ (see, e.g., Chidume and Djitte [2], Chidume and Shehu [3], and Aibinu and Mewomo [4, 5]).
Remark 1. According to the definition of Chidume and Djitté [2] and Chidume and Shehu [3], a strongly monotone mapping is referred to as \((2, \eta)\)-strongly monotone mapping.

A monotone mapping \(T\) is called \textit{maximal monotone} if it is a monotone and its graph is not properly contained in the graph of any other monotone mapping. As a result of Rockafellar [6], \(T\) is said to be a maximum monotone if it is a monotone and the range of \((I^B + tT)\) is all of \(B^*\) for some \(t > 0\). The set of zeros of a maximum monotone mapping \(T\), \(T^{-1}(0) := \{x \in B : Tx = 0\}\) is closed and convex. A function \(\varphi : B \rightarrow (-\infty, +\infty)\) is said to be proper if the set \(\{x \in \mathbb{R} : F(x) \in \mathbb{R}\}\) is nonempty. A proper function \(\varphi : B \rightarrow (-\infty, +\infty)\) is said to be convex if for all \(x, y \in B\) and \(\tau \in [0, 1]\), we have

\[
\varphi(tx + (1 - \tau)y) \leq \tau \varphi(x) + (1 - \tau)\varphi(y).
\]

(3)

If the set of \(\{x \in \mathbb{R} : \varphi(x) \leq r\}\) is closed for all \(r \in \mathbb{R}\), \(\varphi\) is said to be \textit{lower semicontinuous}. For a proper lower semicontinuous function \(\varphi : B \rightarrow (-\infty, +\infty)\), the \textit{subdifferential mapping} \(\partial \varphi : B \rightarrow 2^{B^*}\), defined by

\[
\partial \varphi(x) = \{x^* \in B^* : \varphi(y) - \varphi(x) \geq (y - x, x^*) \forall y \in B\},
\]

(4)

is a maximal monotone (Rockafellar [7]). Consider a problem of finding a solution of the equation \(Tu = 0\), where \(T\) is a maximal monotone mapping. Such a problem is associated with the \textit{convex minimization problem}. Indeed, for a proper lower semicontinuous convex function \(\varphi : B \rightarrow (-\infty, +\infty)\), solving the equation \(Tu = 0\) is equivalent to finding \(\varphi(u) = \min_{x \in B} \varphi(x)\) by setting \(\partial \varphi \equiv T\).

For a reflexive strictly convex space \(B\), let \(T\) be a mapping such that the range of \((J_B^B + tT)\) is all of \(B^*\) for some \(t > 0\) and let \(x \in B\) be fixed. Then, for every \(t > 0\), there corresponds a unique \(x_t \in D(T)\) such that

\[
\eta_p x = J_p x_t + tx T x_t.
\]

(5)

Therefore, the \textit{resolvent} of \(T\) is defined by \(J_T^T x = x_t\). In other words, \(J_T^T = (J_B^B + tT)^{-1} J_p^p\) and \(T^{-1} 0 = F(J_T^T)\) for all \(t > 0\), where \(F(J_T^T)\) denotes the set of all fixed points of \(J_T^T\). The resolvent \(J_T^T\) is a single-valued mapping from \(B\) into \(D(T)\) (Kohsaka and Takahashi [8]). \(J_T^T\) is nonexpansive if \(E\) is a Hilbert space (Takahashi [9]). Some existing results proved a strong convergence theorem for nonlinear equations of the monotone type, with the assumption of existence of a real constant whose calculation is unclear (see, e.g., Aibinu and Mewomo [4], Chidume et al. [10], and Diop et al. [11]).

Monotone-type mappings occur in many functional equations, and the research on monotone type mappings has recently attracted much attention (see, e.g., Shehu [12, 13], Chidume et al. [14], Djitte et al. [15], Tang [16], Uddin et al. [17], Chidume and Idu [18], and Aibinu and Mewomo [19]).

In this paper, we consider nonlinear equations of \((p, \eta)\)-\textit{strongly} monotone type, \(p > 1\) and \(\eta \in (1, \infty)\). This is a wider class than the class of strongly monotone mappings. An example is presented for nonlinear equations of \((p, \eta)\)-\textit{strongly} monotone type. Under suitable conditions which do not involve the assumption of existence of a real constant whose calculation is unclear, a sequence of iteration is shown to converge strongly to the zero of a nonlinear equation of \((p, \eta)\)-\textit{strongly} monotone type. As a consequence of the main result, the solution of convex minimization and variational inequality problems is obtained, which has applications in several fields such as economics, game theory, and the sciences.

2. Preliminaries

Let \(B\) be a real Banach space and \(S = \{x \in B : \|x\| = 1\}\). \(B\) is said to have a \textit{Gateaux differentiable norm} if the limit

\[
\lim_{t \to 0} \frac{\|x + ty\| - \|y\|}{t},
\]

(6)

exists for each \(x, y \in S\). A Banach space \(B\) is said to be \textit{smooth} if for every \(x \neq 0\) in \(B\), there is a unique \(x^* \in B^*\) such that \(\|x^*\| = 1\) and \((x, x^*) = \|x\|\), where \(B^*\) denotes the dual of \(B\). \(B\) is said to be \textit{uniformly smooth} if it is smooth and the limit (6) is attained uniformly for each \(x, y \in S\). The \textit{modulus of convexity} of a Banach space \(B\), \(\delta_B : (0, 2) \rightarrow [0, 1]\) is defined by

\[
\delta_B(\epsilon) = \inf \left\{1 - \frac{\|x + y\|}{2} : \|x\| = \|y\| = 1, \|x - y\| > \epsilon\right\}.
\]

(7)

\(B\) is \textit{uniformly convex} if and only if \(\delta_B(\epsilon) > 0\) for every \(\epsilon \in (0, 2]\). A normed linear space \(B\) is said to be \textit{strictly convex} if

\[
\|x\| = \|y\| = 1, x \neq y \implies \frac{\|x + y\|}{2} < 1.
\]

(8)

It is well known that a space \(B\) is uniformly smooth if and only if \(B^*\) is uniformly convex. A mapping \(T : B \rightarrow B^*\) is \textit{locally} bounded at \(v \in D\), if there exist \(r_\epsilon > 0\) and \(m > 0\) such that

\[
\|Tx\| \leq m, \forall x \in D_{r_\epsilon}(v).
\]

(9)

In particular, \(\|Tv\| \leq m\). Therefore, \((v, Tv) \leq m\|v\|\). Let \(X\) and \(Y\) be real Banach spaces and let \(T : X \rightarrow Y\) be a mapping. \(T\) is \textit{uniformly continuous} if for each \(\epsilon > 0\), there exists \(\delta > 0\) such that

\[
\|Tx - Ty\| < \epsilon \quad \forall x, y \in X \text{ with } \|x - y\| < \delta.
\]

(10)

Let \(\psi(t)\) be a function on the set \(\mathbb{R}^+\) of nonnegative real numbers such that

\begin{itemize}
 \item[(i)] \(\psi\) is nondecreasing and continuous
 \item[(ii)] \(\psi(t) = 0\) if and only if \(t = 0\)
\end{itemize}

\(T\) is said to be uniformly continuous if it admits the modulus of continuity \(\psi\) such that

\[
\|T(x) - T(y)\| \leq \psi(\|x - y\|) \quad \forall x, y \in X.
\]

(11)
The modulus of continuity ψ has some useful properties (for instance, see Altmare and Campiti [20], pp. 266–269; Forster [21] and references therein).

2.1. Properties of Modulus of Continuity. Let X and Y be real Banach spaces and let $T : X \to Y$ be a map which admits the modulus of continuity ψ.

(a) **Modulus of continuity is subadditive**: for all real numbers $t_1 \geq 0, t_2 \geq 0$, we have

\[
\psi(t_1 + t_2) \leq \psi(t_1) + \psi(t_2)
\]

(b) **Modulus of continuity is monotonically increasing**: if $0 \leq t_1 \leq t_2$ holds for some real numbers t_1, t_2, then

\[
0 \leq \psi(t_1) \leq \psi(t_2)
\]

(c) **Modulus of continuity is continuous**: the modulus of continuity $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ is continuous on the set positive real numbers; in particular, the limit of ψ at 0 from above is

\[
\lim_{t \to 0} \psi(t) = 0
\]

Let C be a nonempty subset of a Banach space B and T be a mapping from C into itself.

(i) T is nonexpansive provided $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$

(ii) T is firmly nonexpansive type (see, e.g., [22]) if $\langle Tx - Ty, j_p^B (Tx - j_p^B Ty) \rangle \leq \langle Tx - Ty, j_p^B x - j_p^B y \rangle$ for all $x, y \in C$ and $j_p^B \in F_p^B$

The following results about the generalized duality mappings are well known which are established in, e.g., Alber and Ryazantseva [1] (p. 36), Cioranescu [23] (pp. 25–77), Xu and Roach [24], and Zalinescu [25]. Let B be a Banach space.

(i) B is smooth if and only if j_p^B is single-valued

(ii) If B is reflexive, then j_p^B is onto

(iii) If B has uniform Gateaux differentiable norm, then j_p^B is norm-to-weak* uniformly continuous on bounded sets

(iv) B is uniformly smooth if and only if j_p^B is single-valued and uniformly continuous on any bounded subset of B

(v) If B is strictly convex, then j_p^B is one-to-one, that is, \(\forall x, y \in B, x \neq y \implies j_p^B(x) \cap j_p^B(y) = \emptyset \)

(vi) If B and B^* are strictly convex and reflexive, then j_p^B is the generalized duality mapping from B to B^*, and $j_p^{B^*}$ is the inverse of j_p^B.

(vii) If B is uniformly smooth and uniformly convex, the generalized duality mapping $j_p^{B^*}$ is uniformly continuous on any bounded subset of B^*.

(viii) If B and B^* are strictly convex and reflexive, for all $x \in B$ and $f \in B^*$, the equalities $j_p^B j_p^{B^*} f = f$ and $j_p^{B^*} j_p^B x = x$ hold.

Definition 2. Alber [26] introduced the functions $\phi : B \times B \to \mathbb{R}$, defined by

\[
\phi(x, y) = \|x\|^2 - 2\langle x, j_p^B y \rangle + \|y\|^2, \quad \text{for all } x, y \in B,
\]

where j_p^B is the normalized duality mapping from B to B^*. Let B be a smooth real Banach space and $p, q > 1$ with $1/p + 1/q = 1$. Aibinu and Mewomo [4] introduced the functions $\phi_p : B \times B \to \mathbb{R}$, defined by

\[
\phi_p(x, y) = \frac{p}{q} \|x\|^q - p\langle x, j_p^B y \rangle + \|y\|^p, \quad \text{for all } x, y \in B
\]

and $V_p : B \times B^* \to \mathbb{R}$, defined as

\[
V_p(x, x^*) = \frac{p}{q} \|x\|^q - p\langle x, x^* \rangle + \|x^*\|^p \quad \forall x \in B, x^* \in B^*,
\]

where j_p^B is the generalized duality mapping from B to B^*.

Remark 3. These remarks follow from Definition 2:

(i) For $p = 2$, $\phi_p(x, y) = \phi(x, y)$, which is the definition of Alber [26]. It is easy to see from the definition of the function ϕ that

\[
(\|x\| - \|y\|)^2 \leq \phi(x, y) \leq (\|x\| + \|y\|)^2 \quad \text{for all } x, y \in B.
\]

Indeed,

\[
(\|x\| - \|y\|)^2 = \|x\|^2 - 2\|x\|\|y\| + \|y\|^2 \leq \|x\|^2 - 2\langle x, j_p^B y \rangle + \|y\|^2
\]

\[
= \phi(x, y) \leq \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2.
\]
By similar analysis, it can verified that for each $p \geq 2$,
\[(\|x\|-\|y\|)^p \leq \phi_p(x, y) \leq (\|x\|+\|y\|)^p \quad \text{for all } x, y \in B. \quad (20)\]

(ii) It is obvious that
\[V_p(x, x^*) = \phi_p(x, f_p^{\infty} x^*) \quad \forall x \in B, x^* \in B^*. \quad (21)\]

Let B be a topological real vector space and T a multivalued mapping from B into \mathbb{R}^p. Cauchy-Schwartz’s inequality is given by
\[|\langle x, y^* \rangle| \leq \langle x, x^* \rangle^{1/2} \langle y, y^* \rangle^{1/2}, \quad (22)\]
for any x and y in B and any choice of $x^* \in Tx$ and $y^* \in Ty$ (Zarantonello [27]).

In the sequel, we shall need the lemmas whose proofs have been established (see, e.g., Alber [26] and Aibinu and Mewomo [4]).

Lemma 5. Let B be a strictly convex and uniformly smooth Banach space and $p > 1$. Then,
\[V_p(x, x^*) + p \langle f_p^{\infty} x^* - x, y^* \rangle \leq V_p(x, x^* + y^*), \quad (23)\]
for all $x \in B$ and $x^*, y^* \in B^*$.

Lemma 6. Let B be a reflexive strictly convex and smooth real Banach space and $p > 1$. Then,
\[\phi_p(y, x) - \phi_p(y, z) \geq p \langle z - y, f_p^{\infty} x - f_p^{\infty} z \rangle = p \langle y - z, f_p^{\infty} z - f_p^{\infty} x \rangle \quad \text{for all } x, y, z \in B. \quad (24)\]

Lemma 7. Let B be a real uniformly convex Banach space. For arbitrary $r > 0$, let $B_r(0) = \{ x \in B : \|x\| \leq r \}$. Then, there exists a continuous strictly increasing convex function
\[g : [0, \infty) \rightarrow [0, \infty), \quad g(0) = 0, \quad (25)\]
such that for every $x, y \in B_r(0)$,
\[\langle x - y, j_p^{\infty}(x) - j_p^{\infty}(y) \rangle \geq g(\|x - y\|) \quad \text{(see Xu [28])}. \quad (26)\]

Lemma 8. Let $\{a_n\}$ be a sequence of nonnegative real numbers satisfying the following relations:
\[a_{n+1} \leq (1 - \alpha_n)a_n + \alpha_n \sigma_n + \gamma_n, \quad n \in \mathbb{N}, \quad (27)\]
where
\[(i) \quad \{\alpha_n\} \subset (0, 1), \quad \sum_{n=1}^{\infty} \alpha_n = \infty \]
\[(ii) \quad \limsup \sigma_n \leq 0 \]
\[(iii) \quad \gamma_n \geq 0, \quad \sum_{n=1}^{\infty} \gamma_n < \infty \]

Then, $a_n \rightarrow 0$ as $n \rightarrow \infty$ (see Xu [29]).

Lemma 9. Let B be a smooth uniformly convex real Banach space and let $\{x_n\}$ and $\{y_n\}$ be two sequences from B. If either $\{x_n\}$ or $\{y_n\}$ is bounded and $\phi(x_n, y_n) \rightarrow 0$ as $n \rightarrow \infty$, then $\|x_n - y_n\| \rightarrow 0$ as $n \rightarrow \infty$ (see Kamimura and Takahashi [30]).

Lemma 10. A monotone map $T : B \rightarrow B^*$ is locally bounded at the interior points of its domain (see, e.g., Rockafellar [31] and Pascale and Sburlan [32]).

Lemma 11. If a functional ϕ on the open convex set $M \subset \text{dom } \phi$ has a subdifferential, then ϕ is convex and lower semicontinuous on the set (see Alber and Ryazantseva [1], p. 17).

Lemma 12. Let X and Y be real normed linear spaces and let $T : X \rightarrow Y$ be a uniformly continuous map. For arbitrary $r > 0$ and fixed $x^* \in X$, let
\[B_X(x^*, r) = \{ x \in X : \|x - x^*\| \leq r \}. \quad (28)\]

Then, $T(B(x^*, r))$ is bounded (see, e.g., Chidume and Djitte [33]).

3. Main Results

Theorem 13. Let B be a uniformly smooth and uniformly convex real Banach space. Let $p > 1, \eta \in (1, \infty)$; suppose $T : B \rightarrow B^*$ is a continuous (p, η)-strongly monotone mapping such that the range of $(f_p^{\infty} + IT)$ is all of B^* for all $t > 0$ and $T^{-1}(0) \neq \emptyset$. Let $\{\lambda_n\}_{n=1}^{\infty} \subset (0, 1)$ and $\{\theta_n\}_{n=1}^{\infty} \subset (0, 1/2)$ be real sequences such that
\[(i) \quad \lim_{n \rightarrow \infty} \eta_n = 0 \quad \text{and} \quad \{\eta_n\}_{n=1}^{\infty} \text{ is decreasing} \]
\[(ii) \quad \sum_{n=1}^{\infty} \lambda_n \eta_n = \infty \]
\[(iii) \quad \lim_{n \rightarrow \infty} ((\eta_{n+1}\theta_{n+1}) - 1)/\lambda_n \eta_n = 0, \quad \sum_{n=1}^{\infty} \lambda_n \eta_n < \infty \forall \eta \in \mathbb{N} \]

For arbitrary $x_1 \in B$, define $\{x_n\}_{n=1}^{\infty}$ iteratively by:
\[x_{n+1} = f_p^{\infty}(f_p^{\infty}(x_n) - \lambda_n (Tx_n + \theta_n (f_p^{\infty}(x_n) - f_p^{\infty}(x_1)))) \quad n \in \mathbb{N}, \quad (29)\]
where J_p^B is the generalized duality mapping from B into B^*. Then, the sequence $(x_n^\infty)_{n=1}^\infty$ converges strongly to the solution of $Tx = 0$.

Proof. Observe that there is no need for constructing a convergence sequence if $x = 0$ because it is a zero of T (since T is strongly monotone, which is one to one). Consequently, we are looking for a unique nonzero solution of $Tx = 0$. The proof is divided into two parts.

Part 1: the sequence $(x_n^\infty)_{n=1}^\infty$ is shown to be bounded.

Let $q > 1$ with $1/p + 1/q = 1$ and $x \in B$ be a solution of the equation $Tx = 0$. It suffices to show that $\phi_p(x_n^\infty) \leq r$, $\forall n \in \mathbb{N}$. The induction method will be adopted. Let $r > 0$ be sufficiently large such that

$$r \geq \max \left\{ \phi_p(x, x_1), 4M_0M, \frac{4p}{q} \|x\|^q \right\}, \quad (30)$$

where $M_0 > 0$ and $M > 0$ are arbitrary but fixed. For $n = 1$, by construction, we have that $\phi_p(x_1, x_n^\infty) \leq r$ for real $p > 1$. Assume that $\phi_p(x_n^\infty, x_n^\infty) \leq r$ for some $n \geq 1$. From inequality (20), we have $\|x_n^\infty\| \leq r + \|x\|$. Let $D = \{z \in B : x \leq r\}$. Next is to show that $\phi_p(x_n^\infty, x_n^\infty) \leq r$. It is known that T is locally bounded (Lemma 10) and J_p^B is uniformly continuous on bounded subsets of B. Define

$$M_0 := \sup \left\{ \|Tx_n + \theta_n(J_p^B x_n - J_p^B x_1)\| : \theta_n \in (0, \frac{1}{2}), x_n \in D \right\} + 1. \quad (31)$$

Let ψ denote the modulus of continuity of J_p^B. Then,

$$\|x_n - x_{n+1}\| = \|x_n - J_p^B \left(J_p^B x_n - \lambda_n \left(Tx_n + \theta_n(J_p^B x_n - J_p^B x_1) \right) \right)\|

= \|J_p^B(J_p^B x_n - J_p^B x_1) - J_p^B(J_p^B x_n - \lambda_n \left(Tx_n + \theta_n(J_p^B x_n - J_p^B x_1) \right))\|

\leq \psi(\|\lambda_n\|\|Tx_n + \theta_n(J_p^B x_n - J_p^B x_1)\|)

\leq \psi(\|\lambda_n\| M_0) \leq \psi(\sup \{\|\lambda_n\| M_0 : \lambda_n \in (0, 1)\}). \quad (32)$$

Since T is locally bounded and the duality mapping J_p^B is uniformly continuous on bounded subsets of B, the sup $\{\|\lambda_n\| M_0\}$ exists and it is a real number different from infinity. Choose $M = \psi(\sup \{\|\lambda_n\| M_0\})$. Applying Lemma 4 with $\gamma = \lambda_n(Tx_n + \theta_n(J_p^B x_n - J_p^B x_1))$ and by using the definition of x_{n+1}, we compute as follows:

$$\phi_p(x_n, x_{n+1}) = \phi_p(x, J_p^B \left(J_p^B x_n - \lambda_n \left(Tx_n + \theta_n(J_p^B x_n - J_p^B x_1) \right) \right))

= V_{\phi_p}(x, J_p^B x_n - \lambda_n \left(Tx_n + \theta_n(J_p^B x_n - J_p^B x_1) \right)) \quad (by\ (21))

\leq V_{\phi_p}(x, J_p^B x_n - \lambda_n \left(Tx_n + \theta_n(J_p^B x_n - J_p^B x_1) \right))

= \phi_p(x_n, x_{n+1}) - \lambda_n \left(x_n, Tx_n + \theta_n(J_p^B x_n - J_p^B x_1) \right)

- (J_p^B x_n - J_p^B x_1))

\leq \phi_p(x_n, x_{n+1}) - \lambda_n \left(x_n, Tx_n + \theta_n(J_p^B x_n - J_p^B x_1) \right)

- (J_p^B x_n - J_p^B x_1)). \quad (33)$$

By Schwartz inequality and by applying inequality (32), we obtain

$$\phi_p(x_n, x_{n+1}) \leq \phi_p(x_n, x_n) - \lambda_n \left(x_n, Tx_n + \theta_n(J_p^B x_n - J_p^B x_1) \right)

+ \lambda_n M_0 M \leq \phi_p(x_n, x_n) - \lambda_n \left(x_n, Tx_n \right)

- (Tx_n) (since x \in T^{-1}(0))

- \lambda_n \left(x_n, J_p^B x_n - J_p^B x_1 \right) + \lambda_n M_0 M. \quad (34)$$

By Lemma 6, $p(x - x_n, J_p^B x_n - J_p^B x_1) \leq \phi_p(x_n, x_n) - \phi_p(x, x_1)$. Consequently, $p(x - x_n, J_p^B x_n - J_p^B x_1) \leq \phi_p(x_n, x_n)$. Therefore, using (p, η)-strongly monotonicity property of T, we have

$$\phi_p(x_n, x_{n+1}) \leq \phi_p(x_n, x_n) - \lambda_n \|x_n - x\|^p

- \lambda_n \left(x_n, Tx_n \right)

+ \lambda_n M_0 M

\leq \phi_p(x_n, x_n) - \lambda_n \|x_n - x\|^p

+ \lambda_n \left(x_n, \theta_n(J_p^B x_n - J_p^B x_1) \right) + \lambda_n M_0 M

\leq \phi_p(x_n, x_n) - \lambda_n \left(\phi_p(x_n, x_n) - \frac{p}{q} \|x\|^q \right)

+ \lambda_n \theta_n \phi_p(x_n, x_n) + \lambda_n M_0 M

= (1 - \lambda_n) \phi_p(x_n, x_n) + \lambda_n \left(\frac{p}{q} \|x\|^q \right)

+ \lambda_n \theta_n \phi_p(x_n, x_n) + \lambda_n M_0 M

\leq (1 - \lambda_n) r + \lambda_n r \frac{r}{4} + \lambda_n \frac{r}{2} \leq \lambda_n r\frac{r}{4} = (1 - \lambda_n + \lambda_n \frac{1}{4} + \lambda_n \frac{1}{2} + \lambda_n \frac{1}{4}) r = r. \quad (35)$$

Hence, $\phi_p(x_n, x_{n+1}) \leq r$. By induction, $\phi_p(x_n, x_{n+1}) \leq r$ $\forall n \in \mathbb{N}$. Thus, from inequality (20), $(x_n^\infty)_{n=1}^\infty$ is bounded.

Part 2: we now show that $(x_n^\infty)_{n=1}^\infty$ converges strongly to a solution of $Tx = 0$. (p, η)-strongly monotone implies a monotone and the range of $(J_p^B + tT)$ is all of B^* for all $t > 0$. By Kohsaka and Takahashi [8], since B is a reflexive smooth strictly convex space, we obtain for every $t > 0$ and $x \in B$, there exists a unique $x_t \in B$ such that

$$J_p^B x_n \rightarrow J_p^B x_t + tT x_t. \quad (36)$$

Define $J_T^* x_n = x_n$. In other words, define a single-valued mapping $J_T^* : B \rightarrow B$ by $J_T^* = (J_p^B + tT)^{-1} J_p^B$. Such a J_T^* is called the resolvent of T. Setting $t = \frac{1}{\lambda_n}$ and by the result of Aoyama et al. [34] and Reich [35], for some $x_1 \in B$, there exists in B a unique

$$y_n = \left(\frac{J_p^B + \frac{1}{\lambda_n} T}{J_p^B} \right)^{-1} J_p^B x_1. \quad (37)$$
with $y_n \to x \in T^{-1}(0)$. Obviously, one can obtain that
\[
Ty_n = \theta_n \left(f^B_{p}x_n - f^B_{p}y_n \right),
\] (38)
and $\{y_n\}_{n=1}^{\infty}$ is known to be bounded. Also it can be obtained that
\[
\theta_n \left(f^B_{p}y_n - f^B_{p}x_1 \right) + Ty_n = 0.
\] (39)
From (39), we have that
\[
\theta_n \left(f^B_{p}y_n - f^B_{p}x_1 \right) + Ty_n - Tx_1 = T(x_1 - x_n),
\] (40)
which is equivalent to
\[
Ty_n - Tx_1 = -\theta_n \left(f^B_{p}y_n - f^B_{p}x_1 \right) - Tx_1.
\] (41)
Consequently,
\[
\|y_n - x_1\| \leq \|y_n - x_1, Ty_n - Tx_1\| (\text{by } (p, \eta)\text{-strongly monotonicity of } T)
\]
\[
= -\theta_n \left(f^B_{p}y_n - f^B_{p}x_1 \right) - (y_n - x_1, Tx_1)
\]
\[
\leq \|Tx_1\| \|y_n - x_1\|,
\] (42)
which shows that the sequence $\{y_n\}_{n=1}^{\infty}$ is bounded. Moreover, $\{x_n\}_{n=1}^{\infty}$ is bounded, and hence, $\{Tx_n\}_{n=1}^{\infty}$ is bounded. Following the same arguments as in part 1, we get
\[
\phi_p(y_n, x_{n+1}) \leq \phi_p(y_n, x_n) - p\lambda_n (x_n - y_n, TX_n + \theta_n \left(f^B_{p}x_n - f^B_{p}x_1 \right)) + p\lambda_n M_0 M.
\] (43)

By the (p, η)-strongly monotonicity property of T and using Lemma 7 and Equation (39), we obtain
\[
\left\langle x_n - y_n, TX_n + \theta_n \left(f^B_{p}x_n - f^B_{p}x_1 \right) \right\rangle
\]
\[
= \left\langle x_n - y_n, TX_n + \theta_n \left(f^B_{p}x_n - f^B_{p}y_n + f^B_{p}y_n - f^B_{p}x_1 \right) \right\rangle
\]
\[
= \theta_n \left(x_n - y_n, f^B_{p}x_n - f^B_{p}y_n \right) + \left(x_n - y_n, TX_n - Ty_n \right)
\]
\[
\geq \theta_n g(\|x_n - y_n\|) + \|x_n - y_n\| \geq 1/p \phi_p(y_n, x_n).
\] (44)
Therefore, the inequality (43) becomes
\[
\phi_p(y_n, x_{n+1}) \leq (1 - \lambda_n \theta_n) \phi_p(y_n, x_n) + p\lambda_n M_0 M.
\] (45)
Observe that by Lemma 6, we have
\[
\phi_p(y_n, x_n) \leq \phi_p(y_{n-1}, x_n) - p\left(y_n - x_n, f^B_{p}x_{n-1} - f^B_{p}y_n \right)
\]
\[
= \phi_p(y_{n-1}, x_n) + p\left(x_n - y_n, f^B_{p}x_{n-1} - f^B_{p}y_n \right)
\]
\[
\leq \phi_p(y_{n-1}, x_n) + \|f^B_{p}x_{n-1} - f^B_{p}y_n\| \|x_n - y_n\|.
\] (46)
Let $R > 0$ such that $\|x_n\| \leq R, \|y_n\| \leq R$ for all $n \in N$. We obtain from Equation (39) that
\[
f^B_{p}y_{n+1} - f^B_{p}y_n + \frac{1}{\theta_n} (Ty_n - Ty_{n-1}) = \frac{\theta_{n-1} - \theta_n}{\theta_n} \left(y_{n-1} - y_n \right).
\] (47)
By taking the duality pairing of each side of this equation with respect to $y_{n-1} - y_n$ and by the strong monotonicity of T, we have
\[
\langle f^B_{p}y_{n+1} - f^B_{p}y_n, y_{n-1} - y_n \rangle \leq \frac{\theta_{n-1} - \theta_n}{\theta_n} \|f^B_{p}x_1 - f^B_{p}y_{n-1}\| \|y_{n-1} - y_n\|.
\] (48)
Since $\{\theta_n\}_{n=1}^{\infty}$ is a decreasing sequence, it is known that $\theta_{n-1} \geq \theta_n$. Therefore,
\[
\frac{\theta_{n-1} - \theta_n}{\theta_n} = \frac{n-1}{n} - 1 \geq 0.
\] (49)
Consequently,
\[
\|f^B_{p}y_{n+1} - f^B_{p}y_n\| \leq \left(\frac{n-1}{n} - 1 \right) \|f^B_{p}x_1 - f^B_{p}y_{n-1}\|.
\] (50)
Using (46) and (50), the inequality (45) becomes
\[
\phi_p(y_n, x_{n+1}) \leq (1 - \lambda_n \theta_n) \phi_p(y_{n-1}, x_n) + C \left(\frac{n-1}{n} - 1 \right)
\]
\[
+ p\lambda_n M_0 M,
\] (51)
for some constant $C > 0$. By Lemma 8, $\phi_p(y_{n+1}, x_{n+1}) \to 0$ as $n \to \infty$ and using Lemma 9, we have that $x_n - y_{n-1} \to 0$ as $n \to \infty$. Since $y_n \to x \in T^{-1}(0)$, we obtain that $x_n \to x$ as $n \to \infty$.

Corollary 14. Let H be a Hilbert space, $p > 1, \eta \in (1, \infty)$ and suppose $T : H \to H$ is a continuous, (p, η)-strongly monotone mapping such that $D(T) \subseteq \text{range } (1 + tT)$ for all $t > 0$. For arbitrary $x_1 \in H$, define the sequence $\{x_n\}_{n=1}^{\infty}$ iteratively by
\[
x_{n+1} = x_n - \lambda_n T x_n - \lambda_n \theta_n (x_n - x_1), n \in N,
\] (52)
where $\{\lambda_n\}_{n=1}^{\infty} \subseteq (0, 1)$ and $\{\theta_n\}_{n=1}^{\infty}$ in $(0, 1/2)$ are real sequences satisfying the conditions:

(i) $\lim_{n \to \infty} \theta_n = 0$ and $\{\theta_n\}_{n=1}^{\infty}$ is decreasing
Theorem 18. Let B be a uniformly smooth and uniformly convex real Banach space. Let $\varphi : B \to \mathbb{R}$ be a differentiable, convex, bounded, and coercive function. Let $\{\lambda_n\}_{n=1}^{\infty} \subset (0, 1)$ and $\{\theta_n\}_{n=1}^{\infty}$ in $(0, 1/2)$ be real sequences such that,

(i) $\lim_{n \to \infty} \theta_n = 0$ and $\{\theta_n\}_{n=1}^{\infty}$ is decreasing

(ii) $\sum_{n=1}^{\infty} \lambda_n \theta_n = \infty$

(iii) $\lim_{n \to \infty} ((\theta_{n+1}/\theta_n) - 1)/\lambda_n \theta_n = 0, \sum_{n=1}^{\infty} \lambda_n < \infty \forall n \in \mathbb{N}$

For arbitrary $x_1 \in B$, define $(x_n)_{n=1}^{\infty}$ iteratively by

$$x_{n+1} = j_p^B \left(j_p^B x_n - \lambda_n (d\varphi(x_n) + \theta_n \left(j_p^B x_n - j_p^B x_1 \right)) \right), \quad n \in \mathbb{N},$$

(57)

where j_p^B is the generalized duality mapping from B into B^*. Then, φ has a minimizer $x^* \in B$ and the sequence $(x_n)_{n=1}^{\infty}$ converges strongly to x^*.

Proof. φ has a minimizer because it is a function which is lower semicontinuous, convex, and coercive. Moreover, $x^* \in B$ minimizes φ if and only if $d\varphi(x^*) = 0$. It can be inferred that $d\varphi$ is a maximal monotone due to the convexity, the differentiability, and the boundedness of φ (see, e.g., Minty [36] and Moreau [37]). The next task is to show that $d\varphi$ is bounded. Indeed, let $x_0 \in B$ and $r > 0$. By Lemma 17, there exists $L > 0$ such that

$$\|\varphi(x) - \varphi(y)\| \leq L \|x - y\| \quad \forall x, y \in B(x_0, r).$$

(58)

Let $v^* \in d\varphi(B(x_0, r))$ and $x^* \in B(x_0, r)$ such that $v^* = d\varphi(x^*)$. Since $B(x_0, r)$ is open, for all $u \in B$, there exists $\sigma > 0$ such that $x^* + \sigma u \in B(x_0, r)$. From the fact that $v^* = d\varphi(x^*)$ and inequality (58), it is obtained that

$$\langle v^*, \sigma u \rangle \leq \varphi(x^* + \sigma u) - \varphi(x^*) \leq \sigma L \|u\|,$$

(59)

such that

$$\langle v^*, u \rangle \leq L \|u\| \quad \forall u \in B.$$

(60)

Consequently, $\|v^*\| \leq L$, which implies that $d\varphi(B(x_0, r))$ is bounded. Thus, $d\varphi$ is bounded. Hence, it can be deduced from Theorem 13 that the sequence $(x_n)_{n=1}^{\infty}$ converges strongly to x^*, a minimizer of φ.

4. Solution of Convex Minimization Problems

The result of Theorem 13 is applied in this section for solving a problem of finding a minimizer of a convex function φ defined from a real Banach space B to \mathbb{R}. Recall that a mapping $T : B \to B^*$ is said to be coercive if for any $x \in B$,

$$\frac{\langle x, Tx \rangle}{\|x\|} \to \infty \quad \text{as} \|x\| \to \infty.$$

(55)

The following well-known basic results will be used.

Lemma 17. Let $\varphi : B \to \mathbb{R}$ be a real-valued differentiable convex function and $u \in B$. Let $d\varphi : B \to B^*$ denote the differential map associated to φ. Then, the following hold:

(1) The point u is a minimizer of φ on B if and only if $d\varphi(u) = 0$

(2) If φ is bounded, then φ is locally Lipschitzian, i.e., for every $x_0 \in B$ and $r > 0$, there exists $L > 0$ such that φ is L-Lipschitzian on $B(x_0, r)$, i.e.,

$$\|\varphi(x) - \varphi(y)\| \leq L \|x - y\| \quad \forall x, y \in B(x_0, r).$$

(56)

The main result in this section is given below.
Example 19. An example of a function which is coercive is a real valued function $f : \mathbb{R}^2 \to \mathbb{R}$ which is defined by $f(u, v) = u^3 - 7uv + v^4$.

Constructively, $f(u, v) = (u^3 + v^4)(1 - (7uv(u^3 + v^4)))$. As $\|u, v\| \to \infty, 7uv(u^3 + v^4) \to 0$ while $u^3 + v^4 \to \infty$. It follows that

$$\lim_{\|u, v\| \to \infty} f(u, v) = \lim_{\|u, v\| \to \infty} (u^3 + v^4)(1 - 0) = +\infty. \quad (61)$$

Hence, f is coercive.

5. Solutions of Variational Inequality Problems

Let K be a nonempty, closed, and convex subset of a real normed linear space B and let $T : K \to B$ be a nonlinear mapping. The variational inequality problem is to find $x \in K$ such that

$$\langle j_p(x - y), Tx \rangle \geq 0, \quad \forall y \in K, \quad (62)$$

for some $j_p(x - y) \in J_p(x - y)$. The set of solutions of a variational inequality problem is denoted by $VI(T, K)$. If $B = H$, a Hilbert space, the variational inequality problem reduces to

$$\text{find } x \in K \text{ such that } \langle x - y, Tx \rangle \geq 0, \quad \forall y \in K, \quad (63)$$

which was introduced and studied by Stampacchia [38]. Variational inequality theory has emerged as an important tool in studying a wide class of related problems arising in mathematical, physical, regional engineering, and nonlinear optimization sciences. The theories of variational inequality problems have numerous applications in the study of nonlinear analysis (see, e.g., Censor et al. [39], Korpelevich [40], Shi [41], and Stampacchia [38] and the references contained in them). Several existence results have been established for (62) and (63) when T is a monotone type mapping (see, e.g., Barbu and Precupanu [42], Browder [43], and Hartman and Stampacchia [44] and the references contained in them).

Let K be a closed convex subset of H. The projection into K is defined to be the mapping, $P_K : H \to K$, which is given by

$$\|P_K(x) - x\| = \min \{\|y - x\| : y \in K\}. \quad (64)$$

Gradient projection method is an orthodox way for solving (63). The projection algorithm is given by

$$\begin{cases} x_1 \in K, \\
x_{n+1} = P_K(x_n - \eta_n T(x_n)), \quad n \in \mathbb{N}, \end{cases} \quad (65)$$

where T is η-strongly pseudomonotone and L-Lipschitz continuous mapping (see, e.g., Khanh and Vuong [45]). A recent report eliminated some drawbacks in the study of algorithm (65) [46]. The report considered a mapping T, which is η-strongly pseudomonotone and bounded on bounded subsets of K.

We are interested in the set of solutions of the form $VI(T, C)$, where $T : B \to B^*$ is a (ϕ, η)-strongly monotone mapping, $C = \cap_{i=1}^N F(\phi_i) \neq \emptyset$, $\phi_i : K \to B$, $i = 1, 2, \ldots, N$ is a finite family of quasi-ϕ_i-nonexpansive mappings, and B is a uniformly smooth and uniformly convex real Banach space. Recall that a mapping $\phi : K \to K$ is called nonexpansive if $\|\phi x - \phi y\| \leq \|x - y\|, \forall x, y \in K$. The set of fixed points of the mapping ϕ will be denoted by $F(\phi)$. A mapping ϕ is said to be quasi-ϕ-nonexpansive if $F(\phi) \neq \emptyset$ and $\phi(x, \phi x) \leq \phi(x, x), \forall x \in K$ and $x \in F(\phi)$. The proof of the following theorem is given.

Theorem 20. Let B be a uniformly smooth and uniformly convex real Banach space and K a nonempty, closed, and convex subset of B. Let $p > 1, \eta \in (1, \infty)$, suppose $T : B \to B^*$ is a continuous, (ϕ, η)-strongly monotone mapping such that the range of $(I + \lambda T)$ is all of B^* for all $\lambda > 0$. Let $\phi_i : K \to B$, $i = 1, 2, \ldots, N$ be a finite family of quasi-ϕ_i-nonexpansive mappings with $C = \cap_{i=1}^N F(\phi_i) \neq \emptyset$. Let $\{\lambda_n\}^\infty_{n=1} \subset (0, 1)$ and $\{\theta_n\}^\infty_{n=1}$ in $(0, 1/2)$ be real sequences such that

(i) $\lim_{n \to \infty} \theta_n = 0$ and $\{\theta_n\}^\infty_{n=1}$ is decreasing

(ii) $\sum_{n=1}^\infty \lambda_n \theta_n = \infty$

(iii) $\lim_{n \to \infty} ((\theta_n / (\theta_n - 1)) \lambda_n \theta_n = 0, \sum_{n=1}^\infty \lambda_n < \infty, \forall n \in \mathbb{N}$

For arbitrary $x_1 \in B$, define $\{x_n\}^\infty_{n=1}$ iteratively by

$$x_{n+1} = j_p^\beta \left(j_p^\beta \left(\phi \eta_n x_n \right) - \lambda_n \left(T \phi_j x_n \right) + \theta_n \left(j_p^\beta \left(\phi \eta_n x_n \right) - j_p^\beta \phi \eta_n x_n \right) \right), \quad (66)$$

where $\phi_j = \phi_j \text{ModN}$ and J_p^β is the generalized duality mapping from B into B^*. Then, the sequence $\{x_n\}^\infty_{n=1}$ converges strongly to $x \in VI(T, C)$.

Proof. Firstly, it is shown that the sequence $\{x_n\}^\infty_{n=1}$ is bounded.

Let $q > 1$ with $1/p + 1/q = 1$ and $x \in VI(T, C)$. It suffices to show that $\phi_p(x, x_n) \leq r, \forall n \in \mathbb{N}$. The proof is by induction. Let $r > 0$ be sufficiently large such that

$$r \geq \max \left\{ \phi_p(x, x_1), 4M_0 M_1, \frac{4p}{q} \|x\|^q \right\}, \quad (67)$$

where $M_0 > 0$ and $M_0 > 0$ are arbitrary but fixed. By construction, $\phi_p(x, x_1) \leq r$. Suppose that $\phi_p(x, x_n) \leq r$ for some $n \in \mathbb{N}$. From inequality (20), for real $p > 1$, we have $\|x_n\| \leq r^{1/p} + \|x\|$. Let $D = \{z \in B : \phi_p(x, z) \leq r\}$. We show that $\phi_p(x, x_{n+1}) \leq r$. It is known that T is locally bounded and j_p^β is uniformly continuous on bounded subsets of B.
Define

\[M_0 = \sup \left\{ \| T\left(\phi_n\right)\|_p + \theta_n \left(f^\beta_p\left(\phi_n\right) \right), x_n \in D \right\} + 1. \tag{68} \]

Let \(\psi \) denotes the modulus of continuity of \(f^\beta_p \). Then,

\[
\| \phi_n\|_{n,1} = \| \phi_n - f^\beta_p\left(\phi_n\right) \| \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right) \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right).
\]

\[
> \| \phi_n\|_{n,1} = \| \phi_n - f^\beta_p\left(\phi_n\right) \| \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right) \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right).
\]

Since \(T \) is locally bounded and the duality mapping \(f^\beta_p \) is uniformly continuous on bounded subsets of \(B \), the sup \(\{ \lambda_n | M_{\lambda} \} \) exists, and it is a real number different from infinity. Define \(M = \psi(\sup \{ \lambda_n | M_{\lambda} : \lambda_n \in (0, 1) \}) \). Applying Lemma 4 with \(y^\lambda = \lambda_n T\left(\phi_n\right) + \theta_n \left(f^\beta_p\left(\phi_n\right) \right) \) and by using the definition of \(x_{n+1} \), we compute as follows:

\[
\phi_p(x, x_{n+1}) = \phi_p\left(x, f^\beta_p\left(\phi_n\right) \right) - \lambda_n \left(T\left(\phi_n\right) \right)
\]

\[+ \theta_n \left(f^\beta_p\left(\phi_n\right) \right) \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right) \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right). \tag{69} \]

By Schwartz inequality and by applying inequality (69), we obtain

\[
\phi_p(x, x_{n+1}) \leq \phi_p\left(x, \phi_n\right) - \lambda_n \left(T\left(\phi_n\right) \right)
\]

\[+ \theta_n \left(f^\beta_p\left(\phi_n\right) \right) \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right) \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right). \tag{70} \]

By Lemma 6, \(p(x, x_{n+1}) \leq \lambda_n \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right) \leq \phi_p\left(x, \phi_n\right) - \phi_p\left(x, \phi_n\right) \). Consequently, \(p(x, x_{n+1}) \leq \phi_p\left(x, \phi_n\right) - \phi_p\left(x, \phi_n\right) \). Therefore, using (p, \eta) strongly monotonicity property of \(T \), we have

\[
\phi_p(x, x_{n+1}) \leq \phi_p\left(x, \phi_n\right) - \eta_n \left(T\left(\phi_n\right) \right)
\]

\[+ \eta_n \left(f^\beta_p\left(\phi_n\right) \right) \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right) \leq \| \phi_n \| - \theta_n \left(f^\beta_p\left(\phi_n\right) \right). \tag{71} \]

Hence, \(\phi_p(x, x_{n+1}) \leq r \). By induction, \(\phi_p(x, x_{n}) \leq r \forall n \in \mathbb{N} \). Thus, from inequality (20), \(\{ x_n \}_{n=1}^{\infty} \) is bounded. The remaining part of the proof follows from the proof of Theorem 13.
Remark 21. It well known that uniformly smooth and uniformly convex spaces are more general than the Hilbert spaces. Therefore, the following corollary is readily obtainable.

Corollary 22. Let \(H \) be a Hilbert space and and \(K \) a nonempty, closed, and convex subset of \(H \). Let \(p > 1, \eta \in (1,\infty) \); suppose \(T : H \to H \) is a continuous, \((p,\eta)\)-strongly monotone mapping such that \(D(T) \subseteq \text{range } (1 + tT) \) for all \(t > 0 \). Let \(\phi_i : K \to H \), \(i = 1, 2, \ldots, N \) be a finite family of quasi- \(\Phi \)-nonexpansive mappings with \(C := \cap_{i=1}^{N} F(\phi_i) \neq \emptyset \). Let \(\{\lambda_n\}_{n=1}^{\infty} \subset (0, 1) \) and \(\{\theta_n\}_{n=1}^{\infty} \) in \((0, 1/2)\) be real sequences such that

(i) \(\lim_{n \to \infty} \theta_n = 0 \) and \(\{\theta_n\}_{n=1}^{\infty} \) is decreasing

(ii) \(\sum_{n=1}^{\infty} \lambda_n \theta_n = \infty \)

(iii) \(\lim_{n \to \infty} (\lambda_n - \theta_n) = 0 \) \(\sum_{n=1}^{\infty} \lambda_n < \infty \) \(\forall n \in \mathbb{N} \)

For arbitrary \(x_n \in H \), define \(\{x_n\}_{n=1}^{\infty} \) iteratively by

\[
x_{n+1} = \phi_{n} x_n - \lambda_n \left(T(\phi_{n} x_n) + \theta_n (\phi_{n} x_n - \phi_{n-1} x_1) \right), \quad n \in \mathbb{N},
\]

where \(\phi_{n} := \phi_{n}, \text{Mod}N \). Then, the sequence \(\{x_n\}_{n=1}^{\infty} \) converges strongly to \(x \in VI(T, C) \).

6. Conclusion

Real-life problems are usually modeled by nonlinear equations. Nonlinear equations occur in modeling problems, such as minimizing costs in industries and minimizing risks in businesses. Nonlinear equations of \((p, \eta)\)-strongly monotone type, where \(\eta \in (1,\infty), p > 1 \), have been studied in this paper. The result was applied to obtain the solution of convex minimization and variational inequality problems, which have applications in several fields such as economics, game theory, and the sciences.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Disclosure

The abstract of this manuscript is submitted for presentation in the “9th International Conference on Mathematical Modeling in Physical Sciences,” September 7–10, 2020, Tinos island, Greece.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Alber and I. Ryazantseva, *Nonlinear Ill Posed Problems of Monotone Type*, Springer, London, 2006.

[2] C. E. Chidume and N. Djitte, “Approximation of solutions of nonlinear integral equations of Hammerstein type,” *ISRN Mathematical Analysis*, vol. 2012, Article ID 169751, 12 pages, 2012.

[3] C. E. Chidume and Y. Shehu, “Strong convergence theorem for approximation of solutions of equations of Hammerstein type,” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 75, no. 14, pp. 5664–5671, 2012.

[4] M. O. Aibinu and O. T. Mewomo, “Strong convergence theorems for strongly monotone mappings in Banach spaces,” *Boletim da Sociedade Paranaense de Matemática*, p. 19, 2018.

[5] M. O. Aibinu and O. T. Mewomo, “Algorithm for zeros of monotone maps in Banach spaces,” in *Proceedings of Southern African Mathematical Sciences Association (SAMSA 2016) Annual Conference*, 21–24 November 2016, University of Pretoria, pp. 35–44, South Africa, 2017.

[6] R. T. Rockafellar, “On the maximality of sums of nonlinear monotone operators,” *Transactions of the American Mathematical Society*, vol. 149, no. 1, pp. 75–88, 1970.

[7] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” *SIAM Journal on Control and Optimization*, vol. 14, no. 5, pp. 877–898, 1976.

[8] F. Kohsaka and W. Takahashi, “Strong convergence of an iterative sequence for maximal monotone operators in a Banach space,” *Abstract and Applied Analysis*, vol. 2004, no. 3, Article ID 240462, p. 249, 2004.

[9] W. Takahashi, *Nonlinear Functional Analysis. Fixed Point Theory and Its Applications*. Yokohama Publishers, Yokohama, 2000.

[10] C. E. Chidume, A. U. Bello, and B. Usman, “Krasnoselski-type algorithm for zeros of strongly monotone Lipschitz maps in classical Banach spaces,” *SpringerPlus*, vol. 4, no. 1, 2015.

[11] C. Diop, T. M. M. Sow, N. Djitte, and C. E. Chidume, “Constructive techniques for zeros of monotone mappings in certain Banach spaces,” *SpringerPlus*, vol. 4, no. 1, 2015.

[12] Y. Shehu, “Iterative approximations for zeros of sum of accretive operators in Banach spaces,” *Journal of Function Spaces*, vol. 2016, Article ID 5973468, 9 pages, 2016.

[13] Y. Shehu, “Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces,” *Results in Mathematics*, vol. 74, no. 4, 2019.

[14] C. E. Chidume, M. O. Nnakwe, and A. Adamu, “A strong convergence theorem for generalized \(\Phi \)-strongly monotone maps with applications,” *Fixed Point Theory and Applications*, vol. 2019, no. 1, Article ID 11, 2019.

[15] N. Djitte, J. T. Mendy, and T. M. M. Sow, “Computation of zeros of monotone type mappings: on Chidume’s open problem,” *Journal of the Australian Mathematical Society*, vol. 108, no. 2, pp. 278–288, 2020.

[16] Y. Tang, “Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces,” *Journal of Inequalities and Applications*, vol. 2018, no. 1, Article ID 254, 2018.

[17] I. Uddin, C. Garodia, and J. J. Nieto, “Mann iteration for monotone nonexpansive mappings in ordered CAT(0) space with an application to integral equations,” *Journal of Inequalities and Applications*, vol. 2018, no. 1, Article ID 339, 2018.

[18] C. E. Chidume and K. O. Idu, "Approximation of zeros of bounded maximal monotone mappings, solutions of Hammerstein integral equations and convex minimization"
