Séminaire STORE

DCoflow: Deadline-Aware Scheduling Algorithm for Coflows in Datacenter Networks

Quang-Trung Luu, Olivier Brun, Rachid El-Azouzi, Francesco De Pellegrini, Balakrishna J. Prabhu

LAAS–CNRS, Toulouse, France

April 6th, 2022
Introduction
Context

- Distributed computing frameworks such as Hadoop MapReduce or Apache Spark
- Massive data transfers in datacenter networks (e.g., shuffle phase)

- **Coflow**: set of concurrent flows related to a common task
Coflow scheduling

- **Minimization of Coflow Completion Time (CCT)**
 - Maximize the rate at which coflows are dispatched in the network fabric.
 - NP-hard, inapproximable below a factor 2
 - Near-optimal algorithms

- **Maximization of Coflow Acceptance Rate (CAR)**
 - Strict coflow deadlines for online services and mission critical computing tasks
 - Joint coflow admission control and scheduling
 - NP-hard, inapproximable within any constant factor

1. M. Shafiee et al., *An improved bound for minimizing the total weighted completion time of coflows in datacenters*, IEEE/ACM Trans. Netw., vol. 26, no. 4, 2018.
2. S. Agarwal et al., *Sincronia: Near-optimal network design for coflows*, in Proc. ACM SIGCOMM, 2018.
3. M. Chowdhury et al., *Near optimal coflow scheduling in networks*, in Proc. ACM SPAA, 2019.
Contributions

- Lightweight method for **coflow scheduling under deadlines**
 - ✔ Admission control and coflow priorities.
 - ✔ Based on known results for open-shop scheduling

- Offline and Online versions

- Extensive simulations with **synthetic traffics and real traces** obtained from a Facebook dataset.
Problem Formulation and Existing Works
System model and notations

- Big-Switch model
 - Capacity B_ℓ for port ℓ

- Set $C = \{1, 2, \ldots, N\}$ of coflows
 - Coflow k is a set F_k of flows, where flow $j \in F_k$ has size $v_{k,j}$
 - Coflow k arrive at time 0 and has deadline T_k
 - $F_{k,\ell}$ is the set of flows of coflow k which use port ℓ
 - The completion time of coflow k at port ℓ in isolation is

\[
p_{\ell,k} = \frac{\sum_{j \in F_{k,\ell}} v_{k,j}}{B_\ell}
\]
System model and notations

Example

- All fabric ports have the same normalized bandwidth of 1
- The flows are organised in virtual output queues at the ingress ports. The virtual queue index represents the flow output port
CAR maximization problem

- Decision variables:
 - $r_{k,j}(t) \geq 0$: rate allocated to flow $j \in \mathcal{F}_k$ at time t
 - $z_k \in \{0, 1\}$ is 1 if coflow k is accepted, 0 otherwise

- Mathematical formulation:

 \[
 \max \sum_{k \in \mathcal{C}} z_k \tag{P1}
 \]

 \[
 \text{s.t. } \sum_{k \in \mathcal{C}} \sum_{j \in \mathcal{F}_k, \ell} r_{k,j}(t) \leq B_\ell, \quad \forall \ell \in \mathcal{L}, \forall t \in \mathcal{T}, \tag{1}
 \]

 \[
 \int_0^{T_k} r_{k,j}(t) \, dt \geq v_{k,j} z_k, \quad \forall j \in \mathcal{F}_k, \forall k \in \mathcal{C}, \tag{2}
 \]

- MILP formulation\(^2\) assuming that rate allocations are constant over the intervals $[0, T_i(1))$, $[T_i(1), T_i(2))$, \ldots, $[T_i(N-1), T_i(N))$

\(^2\) S.-H. Tseng et al., Coflow deadline scheduling via network-aware optimization, Annu. Allert. Conf. Commun. Control Comput., 2018.
\(\sigma\)-order scheduling

- The transport layer may not be able to enforce the per-flow rate allocation \(r_{k,j}(t)\).
- Alternative approach: order the coflows in some appropriate order, and leverage priority forwarding mechanisms:
 - Order \(\sigma\) such that coflow \(\sigma(n)\) has priority over coflow \(\sigma(n+1)\)
 - A flow is blocked if and only if either its ingress port or its egress port is busy serving a higher-priority flow
 - Preemption is allowed
CS-MHA algorithm

Moore-Hogdson algorithm

EDD order	1	2	3	4	5	6	7	8	Rejected	Jobs
Due date	6	8	9	11	20	25	28	35		
Proc. time	4	1	6	3	6	8	7	10		

CCT	4	5	11					
CCT	4	5	*					
CCT	4	5	*	8	14	22	29	3
CCT	4	5	*	8	14	*	21	3, 6
CCT	4	5	*	8	14	*	21	31

CS-MHA³

- **First round**: computes the set of admitted coflows at each port \(\ell \) with Moore-Hogdson. A coflow is admitted if it is admitted at all ports.

- **Second round**: order rejected coflows by increasing value of \(\frac{1}{T_k} \max_\ell p_{\ell,k} \)

S. Luo et al., Decentralized deadline-aware coflow scheduling for datacenter networks, in Proc. IEEE ICC, 2016.
Example

- $T_1 = 1$, $T_2 = T_3 = T_4 = T_5 = 2$
- CS-MHA rejects C_2, C_3, C_4, C_5 (CAR is $\frac{1}{5}$)
- The optimal solution rejects only C_1 (CAR is $\frac{4}{5}$)

CS-MHA neglects the impact that a coflow may have on other coflows on multiple ports.
DCoflow
Parallel inequalities

- If the set $S \subseteq C$ of accepted coflows is feasible, then

$$f_\ell(S) - \sum_{k \in S} p_{\ell,k} T_k \leq 0,$$

for all ports ℓ,

where $f_\ell(S) = \frac{1}{2} \sum_{k \in S} p_{\ell,k}^2 + \frac{1}{2} (\sum_{k \in S} p_{\ell,k})^2$

- If the subset $S \subseteq C$ of coflows is not feasible, we need to reject at least one coflow $k' \in S$. We choose k' so as to minimize

$$f_\ell(S \setminus \{k'\}) - \sum_{k \in S \setminus \{k'\}} p_{\ell,k} T_k = f_\ell(S) - \sum_{k \in S} p_{\ell,k} T_k + \Psi_{\ell,k'}$$

where $\Psi_{\ell,k'} := p_{\ell,k'} (T_{k'} - \sum_{k \in S} p_{\ell,k})$
DCoflow

Input: a set $S = \{1, \ldots, N\}$ of unsorted coflows

Output: scheduling order σ of accepted coflows.

At each round, DCoflow either accepts a coflow or it rejects one:

- Bottleneck link $\ell_b = \arg\max_{\ell} \sum_{k \in S} p_{\ell,k}$

- Let k be the coflow with the largest deadline on port ℓ_b. If coflow k meets its deadline when scheduled last on port ℓ_b, then accept k

- Otherwise, reject the coflow k' which uses port ℓ_b and minimizes

\[
\sum_{\ell : \psi_{\ell,k'} < 0} \psi_{\ell,k'}
\]

- A post-processing is done to accept unduly rejected coflows
Example

$T_1 = 1$, $T_2 = T_3 = T_4 = T_5 = 2$

Round 1: $\ell_b = 1$ with CT $2 + \epsilon$

$$\sum_{\ell: \psi_{\ell,1} < 0} \psi_{\ell,1} = 8 \times 1 \times (1 - (2 + \epsilon)) \approx -8$$

$$\sum_{\ell: \psi_{\ell,2} < 0} \psi_{\ell,2} = 2 \times (1 + \epsilon) \times (2 - (2 + \epsilon)) \approx 0$$

C_1 is rejected an all other coflows are accepted (CAR is $\frac{4}{5}$)
DCoflow – Online Setting

- Coflows arrive sequentially and possibly in batches

- DCoflow recomputes a schedule at frequency f:
 - Updates at arrival instants of coflows ($f = \infty$)
 - Periodic updates with period $1/f$
 - Scheduling order for all coflows present in the system (with residual size)

- The scheduler knows everything about coflows that have arrived, and nothing about future coflows
Numerical Results
Simulation setup

- **Algorithms**: DCoflow, CS-MHA, CDS-LP, CDS-LPA, Varys, Sincronia

- **Instances** $[M, N]$ with $2 \times M$ ports and N coflows
 - Greedy rate allocation by the transport network

- **Synthetic traffic** with 2 types of coflows (type-1 with proba 0.4)
 - Type-1 coflows have a single flow of random volume $\mathcal{N}(1, 0.04)$. The number of flows of type-2 coflows is $\mathcal{U}(\frac{2}{3}M, M)$ (volume ratio is 0.8). The deadline is chosen randomly in $[CCT^0, 2CCT^0]$.

- **Facebook dataset** (MapReduce shuffle, 3000-machines cluster)
 - N coflows are randomly sampled from the dataset.
Offline setting

- Synthetic traffic (100 random instances)

- Facebook (100 random instances)
Offline setting (2)

- 1st-10th - 50th-90th-99th percentiles of gain in CAR for [10, 60]

![Box plot showing the average gain in CAR for different methods]

- Prediction error
 - Relative difference between the number of coflows satisfying their deadline before/after GreedyFlowScheduling
 - Average prediction error below 3.6% for both traffic traces
Online setting – Impact of arrival rate

▶ Synthetic traffic (40 instances)

![Graph showing comparison between CS-MHA, DCoflow, Sincronia, and Varys for synthetic traffic with different arrival rates.

(a) [10, 4000]

▶ Facebook (40 instances)

![Graph showing comparison between CS-MHA, DCoflow, Sincronia, and Varys for Facebook traffic with different arrival rates.

(a) [10, 4000]

(b) [50, 4000]

(b) [100, 4000]
Online setting – Impact of update frequency

► Synthetic traffic [10, 8000] (40 instances)

(a) Without batch arrivals

(b) Batch arrivals
Conclusion
Conclusion

➢ Joint coflow admission control and scheduling with deadlines
 ✔ Based on known results for open-shop scheduling
 ✔ Produces a σ-order of accepted coflows
 ✔ Significant improvements w.r.t. existing algorithms, in particular for large-scale and congested networks

➢ Future works
 ✔ Workload is composed of coflows with deadlines and coflows without deadlines
 ✔ Weighted coflow admission control
 ✔ Incomplete information on the flow volume
Questions?