Lost in translation: Exposing hidden compiler optimization opportunities

Kyriakos Georgiou, Zbigniew Chamski, Andres Amaya Garcia, David May, Kerstin Eder
University of Bristol, UK

Abstract. To increase productivity, today’s compilers offer a two-fold abstraction: they hide hardware complexity from the software developer, and they support many architectures and programming languages. At the same time, due to fierce market competition, most processor vendors do not disclose many of their implementation details. These factors force software developers to treat both compilers and architectures as black boxes. In practice, this leads to a suboptimal compiler behavior where the maximum potential of improving an application’s resource usage, such as execution time, is often not realized. This paper exposes missed optimization opportunities and is of interest to all three communities, compiler engineers, software developers and hardware architects. By exploiting the behavior of the standard optimization levels, such as the -O3, of the LLVM v6.0 compiler, we show how to reveal hidden cross-architecture and architecture-dependent potential optimizations on two popular processors: the Intel i5-6300U, widely used in portable PCs, and the ARM Cortex-A53-based Broadcom BCM2837 used in the Raspberry Pi 3B+. The classic nightly regression testing can then be extended to use the resource usage and compilation information collected while exploiting subsequences of the standard optimization levels. This provides a systematic means of detecting and tracking missed optimization opportunities. The enhanced nightly regression system is capable of driving the improvement and tuning of the compiler’s common optimizer.

1 Introduction

Producing cost-effective software requires a high degree of productivity without sacrificing quality. The relationship between these two factors is complex. Typically, a careless increase in productivity aiming at reducing software development costs can harm quality, while poor end-product quality can lead to increased costs of deploying and maintaining an application. Furthermore, while application quality in terms of a reduced number of bugs being discovered is easy to quantify, assessing other quality metrics such as execution time and energy consumption is often less straightforward. For example, consider a mobile application that has been extensively tested and offers to the end user an almost bug-free experience and a good overall response time. Still, it is difficult to argue that this application has reached its maximum potential in regards to
execution time and energy efficiency on a given architecture. Perhaps, there is
another more energy-efficient version of the same application that provides the
same functionality? Considering that this application may run on millions of
devices, the aggregate effect of even small energy savings can be substantial.

Compilers are at the heart of software development. Their primary goal is
to increase software productivity. They are a key element of the software stack,
providing an abstraction between high-level languages and machine code. The
challenge now lies with the compiler engineers as they have to support a vast
amount of architectures and programming languages and adapt to their rapid
advances. To mitigate this, modern compilers, such as the LLVM [LA04, LLVc]
and GCC [GCC] compilers, are designed to be modular. For example, they make
use of a common optimizer across all the architectures and programming lan-
guages supported. The common optimizer exposes to the software developer a
large number of available code optimizations via compiler flags; for example, the
LLVM’s optimizer has 56 documented transformations [LLVb]. The challenge
then becomes to select and order the flags to create optimization configurations
that can achieve the best resource usage possible for a given program and archi-
tecture. Due to the huge number of possible flag combinations and their possible
orderings, it is impractical to explore the complete space of optimization con-
figurations. Thus, finding optimal optimization configurations is still an open
challenge.

To address this, compilers offer standard optimization levels, typically -O0,
-O1, -O2, -O3 and -Os, which are predefined sequences of optimizations. These
sequences are tuned through each new compiler release to perform well on a
number of micro-benchmarks and a range of mainstream architectures. Starting
from the -O0 level, which has no optimizations enabled, and moving to level -O3,
each level offers more aggressive optimizations with the main focus being perfor-
mance, while -Os is focused on optimizing code size. Still, such optimizations are
proven not optimal, as iterative compilation and machine-learning approaches
can find optimization sequences that offer better resource usage than the stan-
dard optimization levels, on a particular program and architecture [WO18]. The
main idea of such approaches is to find good optimization sequences by exploiting
only a fraction of the optimization space [AKC+18a]. Although such techniques
are promising for auto-tuning the compiler’s optimizer settings for a particular
application [WO18], they typically act as a “black box”, providing no insights
into why certain configurations are better than others. Thus, it is difficult to use
them as guidance for developing new systematic optimizations or improving the
existing ones.

Another dimension to the problem is the non-disclosure of hardware imple-
mentation details by processor vendors. This has two serious implications. First,
compilers are slow in adapting to architectural performance innovations. Even
worse, in some cases legacy optimization techniques which performed well on
previous hardware generations can actually perform poorly on newer hardware
(for example, see if-conversion and interactions with branch prediction poten-
tial optimizations reported in Section 4.2). Secondly, programmers often have no
clear view on the architecture’s and compiler’s internals and thus may produce code that is neither compiler- nor architecture-friendly.

In [GBXdSE18], we made the interesting observation that by performing fewer of the optimizations available in a standard compiler optimization level such as -O2, while preserving their original ordering, significant savings can be achieved in both execution time and energy consumption. This observation has been validated on two embedded processors, namely the ARM Cortex-M0 and the ARM Cortex-M3, using two different versions of the LLVM compilation framework: v3.8 and v5.0. Building on these findings, this paper makes the following contributions:

- It investigates if the technique proposed in [GBXdSE18] is applicable on a broader class of architectures beyond the deeply embedded processors initially tested. The technique is applied to the Intel i5-6300U X86-based architecture popular in desktop and laptop PCs, and to the ARM Cortex-A53, an ARMv8-A 64-bit based architecture frequently used in mobile devices (Section 3).
- It proposes an enhanced nightly regression system that can help tuning the standard compiler optimization levels for better resource usage (execution time, energy consumption and code size), and demonstrates how this approach can expose hidden architecture-dependent and cross-architecture optimization opportunities (Section 4).

Experimental evaluation with 42 benchmarks, which are part of the LLVM’s test suite [LLVa], demonstrated performance gains for at least half of the benchmarks, with an average of 11.5% and 5.1% execution time improvement for the i5-6300U and the Cortex-A53 processors, respectively. These findings confirm that the technique can detect compiler inefficiencies beyond deeply embedded architectures, like the Cortex-M0 and Cortex-M3 examined in [GBXdSE18], and across multiple versions of compilers: namely the LLVM 3.8 and LLVM 5.0 used in [GBXdSE18] and the LLVM 6.0 used in this paper.

These results motivate the search for a systematic way of exploiting the compiler optimization inefficiencies exposed by the technique proposed in [GBXdSE18] to drive the tuning of the compiler’s common optimizer. Thus, benchmarking results were then exploited by our enhanced nightly regression system. The enhanced system directly pinpoints behaviors common across multiple benchmarks and architectures and reveals their possible causes. Using only a selection of the information collected during enhanced regression tests, we demonstrate the value of the enhanced system by exposing two significant cross-target shortcomings of the LLVM common optimizer, two distinct opportunities for target-aware heuristics adjustments and a possible direction for improving the support of advanced hardware branch prediction at compiler level.

The rest of the paper is organized as follows. Section 2 gives a brief overview of the common optimizer exploitation technique that was introduced in [GBXdSE18] and the adjustments needed for the architectures used in this paper. Our benchmarking experimental evaluation results are presented and discussed in Section 3.
Section 4 introduces the enhanced nightly regression system and demonstrates how it can guide compilers engineers to tune the common compiler optimizer. Section 5 critically reviews previous work related to ours. Finally, Section 6 concludes the paper and outlines opportunities for future work.

2 Exploiting Standard Optimization Levels

Figure 1 demonstrates the process used to evaluate the effectiveness of the different optimization configurations explored. Each configuration is a set of ordered flags used to drive the analysis and transformation passes by the LLVM optimizer. An analysis pass can identify properties and expose optimization opportunities that can later be used by transformation passes to perform optimizations. A standard optimization level (-O1, -O2, -O3, -Os, -Oz) can be selected as the starting point. Each optimization level represents a list of optimization flags which have a predefined order. Their order influences the order in which the transformation/optimization and analysis passes will be applied to the code under compilation. A new flag configuration is obtained by excluding the last transformation flag from the current list of flags. Then the new optimization configuration is being applied to the unoptimized IR of the program, obtained from the Clang front-end. Note that the program’s unoptimized IR only needs to be generated once by the Clang front-end; it can then be used throughout the exploration process, thus saving compilation time. The optimized IR is then passed to the LLVM back-end and linker to generate the executable for the architecture under consideration. Note that both the back-end and linker are always called using the optimization level selected for exploration, in our case -O3. The executable’s resource usage are measured and stored for each tested configuration. The exploration process finishes when the current list of transformation flags is empty. This is equivalent to optimization level -O0, where the optimizer applies no optimizations. Then, depending on the resource requirements, defined as optimization criteria, the best flag configuration is selected. A more detailed explanation of the technique is given in [GBXdSE18].

In [GBXdSE18], the primary focus was deeply-embedded processors, typically used in Internet of Things (IoT) applications, and thus, we demonstrated the technique’s effectiveness on the Arm Cortex-M0 [Cora] and the Arm Cortex-M3 [Corb] processors. In this paper, the technique is being ported to two, more complex processors, namely the Intel i5-6300U and the Arm Cortex-A53. Porting to a new architecture is not time-consuming since the technique treats an architecture as a black box. This is feasible because no resource models are required, neither for execution time nor for energy consumption. Instead, physical measurements of such resources can be used to assess the effectiveness of a new optimization configuration on a program.

Similarly, the technique treats the compiler as a black box. It only uses the compilation framework to exercise the different optimization configuration scenarios extracted from a predefined optimization level on a particular program. In contrast, machine-learning-based techniques typically require a heavy training
phase for each new compiler version or when a new optimization flag is introduced [ABP+17, BRE15]. For demonstrating the portability of the technique across different compiler versions, in [GBXdSE18], the analysis for the Cortex-M0 processor was performed using the LLVM compilation framework v3.8., and for the Cortex-M3 using the LLVM compilation framework v5.0. In this paper, the LLVM compilation framework v6.0 is used. Overall, the porting to the new architectures and the new version of the LLVM compiler was completed within an hour.

The Collective Knowledge (CK) [FLSU18, cTu], a framework for collaborative research that supports compilers’ optimization auto-tuning, was used for evaluation. CK includes a variety of benchmark suites for the training and the evaluation of auto-tuning techniques for compiler optimization, such as iterative-based and ML-based techniques. One of them is the Milepost-GCC-codelet benchmark suite, which was used in the seminal work on ML-based compiler optimization, MilePostGcc [Fea11]. These benchmarks represent hot spots extracted together with there datasets from several real software projects [FLSU18]. These benchmarks are also part of the LLVM-compiler’s test-suite, under the MiBench benchmark suite [LLVa]. Both the Milepost-GCC and its benchmark suite are now integrated into the CK framework and are often used as the baseline to compare the effectiveness of new auto-tuning techniques [FLSU18, ABP+17, BRE15]. Thus, this paper also uses the Milepost-GCC-Codelet for evaluation.

The Resource Usage Measurement box that is part of our compilation and evaluation process, shown in Fig. 1, can be used to determine the execution time, energy consumption and code size for each executable generated. Various measurement or estimation techniques can be utilized as part of our framework in a plug-and-play approach to address different hardware platforms and optimization requirements. For this work, we focus on the execution time and code size since there is no support for direct hardware energy measurements on the devices under test. As demonstrated in [GBXdSE18], the technique is capable

![Compilation and evaluation process](image-url)
of accounting for energy consumption, when accurate energy measurements or estimations are available. The code size can be obtained by examining the size of the “.text” section of the executable. For execution time measurements we use the CK’s built-in execution time measurement framework. The framework has a calibration process that is needed prior to measurement to determine the number of times a benchmark should be executed in a loop while measuring to obtain a representative average execution time for each benchmark. In addition, we repeat the evaluation process ten times and obtain the mean execution time values for each benchmark to ensure minimization of other events that can affect a benchmark’s execution, such as Dynamic Voltage and Frequency Scaling (DVFS) and noise from the operating system or other applications running on the machines under test.

In the case of the Intel i5-6300U, the above settings were adequate to provide stable and trustworthy results. In the case of the ARM Cortex-A53 as used in a Raspberry Pi 3B+ board, the measurements were still not sufficiently stable. To achieve stable measurements, we had to disable DVFS, fixing the processor’s frequency to 1200 MHz, and disable the wireless communication (WiFi and Bluetooth) modules.

CK has a built-in self-test mechanism that detects and reports when a generated executable is invalid, i.e., it does not provide the expected results. We modified this mechanism to check the benchmark’s results for each optimization configuration against those of the -O0 compilation with no optimizations enabled. This is because compiled unoptimized programs are considered to act as intended by the programmer.

3 Benchmark Evaluation

The 42 benchmarks from the CK Milepost-GCC-Codelet benchmark suite, listed in Table 2c, were used for both the Intel i5-6300U and the Arm Cortex-A53 processors to facilitate the discovery of potential cross-architecture compiler optimizations. For each benchmark, Figure 2 (Figure 2a for the i5-6300U and Figure 2b for the Cortex-A53) demonstrates the biggest performance gains achieved by the proposed technique compared to the standard optimization level under investigation, -O3. In other words, this figure represents the resource usage results of the optimization configuration which achieved the best performance gains among the configurations exercised by our technique, when compared to -O3 for each benchmark. A negative percentage represents an improvement on a resource, e.g., a result of -20% for execution time represents a 20% reduction in the execution time obtained by the selected optimization configuration when compared to the execution time of the reference -O3 optimization configuration. The code-size improvements are also given for the selected configurations. If two optimization configurations have the same performance gains, then code-size improvement is used as a second criterion to select the best optimization configuration. The selection criteria can be modified according to the resource requirements for a specific application. Moreover, a function can be introduced to
Lost in translation: Exposing hidden compiler optimization opportunities

(a) Results for the i56300U processor and the LLVM v6.0 compilation framework.

(b) Results for the Cortex-A53 processor and the LLVM v6.0 compilation framework.

(c) The GCC-Milepost benchmarks used for evaluation.

Fig. 2: Best achieved execution-time improvements over the standard optimization level -O3. For the best execution-time optimization configuration, code size improvements are also given. A negative percentage represents a reduction of resource usage compared to -O3.

ID	Benchmark Name	ID	Benchmark Name
1	automotive-basicmath-cubic-3-1	2	automotive-basicmath-isqrt-1-1
3	automotive-qsort1-src-qsort-1-1	4	automotive-susan-e-src-susan-10-1
5	automotive-susan-e-src-susan-2-1	6	automotive-susan-s-src-susan-1-1
7	consumer-jpeg-c-src-jdctmgr-13-1	8	consumer-jpeg-c-src-jchuff-9-1
9	consumer-jpeg-c-src-jdctint-2-1	10	consumer-lame-src-fft-2-1
11	consumer-lame-src-newmdct-10-1	12	consumer-lame-src-newmdct-3-1
13	consumer-lame-src-psymodel-17-1	14	consumer-lame-src-quantize-7-1
15	consumer-lame-src-quantize-pvt-6-1	16	consumer-lame-src-takehiro-16-1
17	consumer-lame-src-takehiro-5-1	18	consumer-mad-src-layer3-5-1
19	consumer-mad-src-layer3-6-1	20	consumer-tiff2rgba-src-tif-predict-4-1
21	consumer-tiffdither-src-tif-fax3-8-1	22	consumer-tiffdither-src-tif-fax3-9-1
23	consumer-tiffdither-src-tiffdither-1-1	24	consumer-tiffmedian-src-tiffmedian-1-1
25	consumer-tiffmedian-src-tiffmedian-3-1	26	consumer-tiffmedian-src-tiffmedian-4-1
27	consumer-tiffmedian-src-tiffmedian-5-1	28	consumer-tiffmedian-src-tiffmedian-6-1
29	network-dijkstra-src-dijkstra-large-5-1	30	office-ghostscript-src-gdevpbox-1-1
31	office-rysynth-src-nsynth-5-1	32	office-rysynth-src-nsynth-9-1
33	security-pgp-d-src-mpilib-1-1	34	security-pgp-e-src-mpilib-1-1
35	security-pgp-e-src-mpilib-3-1	36	security-pgp-e-src-mpilib-4-1
37	telecomm-adpcm-c-src-adpcm-1-1	38	telecomm-adpcm-d-src-adpcm-1-1
39	telecomm-ft-fftmisc-5-1	40	telecomm-ft-fourierf-3-1
41	telecomm-gsm-src-rte-4-1	42	telecomm-gsm-src-short-term-2-1
further formalize the selection process when complex multi-objective optimization is required. Energy consumption can be another resource to be exploited whenever accurate energy measurements are available for the processor under investigation.

For the i5-6300U processor, we observed an average reduction in execution time of 11.5%, with 26 out of the 42 benchmarks seeing execution time improvements over -O3 ranging from around 1% to 71%. For the Cortex-A53 processor, we observed an average reduction in execution time of 5.1%, with 26 out of the 42 benchmarks seeing execution time improvements over -O3 ranging from around 1% to 28%. In contrast, there were only a few significant code-size improvements; namely benchmarks labeled 13, 34, 33, 42, 18, 40 have a code size reduction of 14.7%, 6.8%, 6.8%, 4.3%, 4%, and 1.9%, respectively, for the i5-6300U processor, and benchmarks labeled 9, 10, 13 have a code-size reduction of 33.3%, 33.3%, 25%, respectively, for the Cortex-A53 processor. For embedded applications, code size is often the first resource targeted for optimization due to the limited memory of the processor. In such cases, our optimization exploitation can use as a starting point the -Os or -Oz optimization levels, which both aim to achieve smaller code size.

Considering Figures 2a and 2b, at first sight it seems that our optimization strategy performed significantly different for the two processors for most of the benchmarks. Section 4 will take a closer look into the results and how we can expose cross-architecture compiler optimizations.

Fig. 3: Optimization-performance example on the i5-6300U. For each optimization configuration tested by the proposed technique, the execution-time and code-size improvements over -O3 are given. A negative percentage represents a reduction of resource usage compared to -O3. Each element of the horizontal axis has the name of the last flag applied and the total number of flags used. The configurations are incremental subsequences of the -O3, starting from -O0 and adding optimization flags till reaching the complete -O3 set of flags.

Figure 3 demonstrates the effect of each optimization configuration, exercised by our exploitation technique, on the two resources (execution time and code size), for the consumer-jpeg-c-src-jchuff-9-1 benchmark on the i5-6300U
processor. Similar figures were obtained for all the 42 benchmarks and for both of the processors. As in Figure 2, a negative percentage represents a reduction (thus, an improvement) in the usage of the given resource compared to the one achieved by standard -O3 optimization. The horizontal axis of the figures shows the flag at which compilation stopped together with the total number of flags included up to that point. This represents an optimization configuration that is a subsequence of the -O3 optimization sequence. For example, the best optimization configuration for performance for the benchmark in Figure 3 is achieved when the compilation stops at flag number 9, $sroa$. This means that the optimization configuration includes the first nine flags of the -O3 configuration with their original ordering preserved. The optimization configurations include both transformations and analyses passes. The -$O0$-custom configuration is the split version of the -O0 optimization level where the compilation is explicitly decomposed into the front-end, common optimizer and back-end, as described in Section 2. Its results are compared to the ones with the normal -O0 compilation, to ensure that the decomposition of the compilation did not introduce any significant variation in benchmark performance.

The number of optimization configurations exercised in each case depends on the number of transformation flags included in the -O3 level of the version of the LLVM optimizer used. Note that we are only considering the documented transformation passes [LLVb]. For example, 64 and 66 different configurations are being automatically detected and tested by our technique for the Cortex-A53 and the i5-6300U processors, respectively. The difference for the -O3 optimization level in terms of optimization flags between the two processors is probably an attempt by the compiler engineers to better address the performance characteristics of the two architectures. Overall, more analysis passes are used for the i5-6300U processor. Many of the transformation passes are applied multiple times in a standard optimization level, but because of their different position in the configuration sequence they may have a different effect. Thus, we consider each repetition as an opportunity to create a new optimization configuration. Furthermore, note that more transformation passes exist in the LLVM optimizer, but typically, these are passes that have implicit dependencies on the documented passes. The methodology of creating a new optimization configuration explained in Section 2 ensures the preservation of all the implicit dependencies for each configuration.

It is time-consuming to identify any optimization patterns across multiple benchmarks, by manually inspecting the compilation profiles obtained for all the benchmarks, similar to the ones presented in Figure 3. In the next section, we show how the benchmarks can be automatically clustered based on their compilation profiles. We then demonstrate the value of such clustering as part of a nightly-regression system, as it can expose potential hidden architecture-dependent and cross-architecture optimizations. Moreover, it can pinpoint optimizations that degrade performance.
4 Exposing Hidden Optimization Opportunities

Retargetable compiler frameworks achieve their generality by abstracting target architecture properties and by relying on cross-target heuristics in the front- and middle-end compilation passes. The abstract properties may be parameterized by quantitative characteristics of each actual target used, but the decision heuristics and the actual sequence of optimizations are often defined by experimentation and, once established, are seldom questioned in subsequent releases of the compiler framework. Therefore, evaluating the pertinence and the quality of the heuristics used in a compiler may provide valuable insights into the quality of the current compiler configuration and its potential for further improvement.

The standard approach to tuning a compiler’s common optimizer remains the repetitive testing of the compiler on a variety of benchmarks and mainstream architectures. This approach is typically called nightly regression testing, and it mainly aims at validating benchmark results in terms of correctness and improving performance (or, in some application domains, code size). The output of a nightly regression session is typically a report with information about the compilation time, execution time and the correctness of the output for each test. These results are then compared to a reference point, usually the result of a previous nightly-regression run that passed all the validation tests and exhibits the best achievable execution and compilation times so far. The purpose of nightly regression is to constantly monitor the quality of the modifications in a compiler towards the release of a new version.

All observed regressions (either correctness failures or significant degradations in the execution time of a benchmark relative to its reference point) have to be investigated by a compiler engineer. However, the detection of a regression does not offer any insights into what actually caused it and requires the engineer to manually examine and track the source of the problem. Depending on the engineer’s experience and the complexity of the issue, the identification of the root cause of a regression can be an extremely time-consuming task. Furthermore, a standard nightly regression system will only report regressions or improvements for individual tests, but will not directly pinpoint behaviors common across multiple benchmarks and architectures that can indicate hidden optimization opportunities.

In this section we propose an enhancement of the classic nightly-regression testing that utilizes the technique explained in Section 2 to extract recurring behaviors of the compiler. By exposing and quantifying the effect of successive optimizations across all tested benchmarks and supported target architectures of a compiler, the enhanced nightly regression approach enables the discovery of unexploited cross-architecture and architecture-dependent optimization opportunities and the identification of optimization passes that have a negative impact on target resource utilization (execution time, energy consumption, or code size). The insights gained in this way can drastically improve the process of tuning the compiler’s common optimizer, even without detailed knowledge of the target architecture.
To demonstrate this, we will use the results obtained by our technique on the Milepost-GCC benchmarks, as described in Section 3. Milepost-GCC benchmarks are an excellent candidate for this exercise as they are also part of the LLVM compiler’s test suite (under the MiBench subsuite [LLVa]). From Figure 2, we already know that significant performance gains can be achieved using the proposed technique across both architectures. A compiler engineer will need to focus first on the cases where the same optimizations appear across multiple benchmarks. These repeating patterns indicate potential optimization opportunities that can benefit a wider group of programs and/or architectures. To this end, the benchmark results are first classified to expose common optimization behaviors which are then analyzed in more depth.

4.1 Classification of nightly regression results

Figure 4 shows the outcome of the initial result classification. Figure 4a and Figure 4b are the new proposed reports for a compiler’s nightly-regression system for the i5-6300U and the Cortex-A53 processors, respectively. The reports include all the benchmarks where our technique achieved an execution time reduction of more than 3%. The benchmarks are then grouped in terms of their observed optimization behavior. The first level of grouping is done on the First Config.

Better than -O3 column, which represents the first optimization configuration that outperformed the -O3 (e.g., pass sroa in Figure 5a), and on the Config. Removing Gains column, which represents the configuration in which those achieved gains were lost by the addition of more optimization flags (e.g., pass simplifycfg 34 in Figure 5a). The second grouping appears on the Best Overall Config. column which represents the configuration that achieved the best performance against -O3. Finally, the benchmarks within groups are sorted based on their achieved performance gains over -O3, in descending order. This is also the case for any benchmarks that do not belong to any group, e.g., the last 8 benchmarks in Figure 4b. The reports presented in Figure 4 will be used in the later sections to demonstrate how they can guide the tuning of the compiler’s optimizer.

The comparison of performance figures achieved after each optimizing transformation gives a direct insight into that transformation’s effectiveness, relative both to preceding and subsequent optimizations, and to the “best optimization level” baseline. Our experiments demonstrate that for many compute kernels the best overall performance is achieved at an intermediate step of the optimization process, indicating that certain transformations applied at later optimization stages are in fact counter-productive.

The number of cases where an intermediate optimization configuration leads to a substantially better performance than the reference “best” optimization level -O3 is significant: 21 out of 42 benchmarks on the i5-6300U platform, and 20 out of 42 benchmarks on the ARM Cortex-A53 core achieve a performance gain of at least 3%, and in some cases up to 71% wrt. using optimization level -O3. For these benchmarks, simply stopping the optimization process at the appropriate intermediate stage provides a directly exploitable gain.
Benchmark ID	First Config. Better than -O3	Config. Removing Gains	Best Overall Config.	Execution Time Reduction %
2	sroa - 9	instcombine - 34	sroa - 9	-40.98
37	sroa - 9	instcombine - 34	sroa - 9	-32.34
13	sroa - 9	instcombine - 34	sroa - 9	-24.76
25	sroa - 9	instcombine - 34	spec - 20	-12.53
7	sroa - 9	instcombine - 34	sroa - 9	-8.82
42	sroa - 9	instcombine - 34	spec - 20	-6.11
35	sroa - 9	instcombine - 221	instcombine - 34	-8.82
24	sroa - 9	instcombine - 34	functionattrs - 39	-50.79
31	instcombine - 34	instcombine - 34	instcombine - 34	-6.25
5	sroa - 8	instcombine - 27	instcombine - 31	-31.38
29	sroa - 8	instcombine - 27	instcombine - 31	-31.38
21	sroa - 8	instcombine - 27	instcombine - 34	-29.51
6	loop-unroll - 21	instcombine-99	instcombine-80	-21.05
41	loop-lower - 75	instcombine-101	instcombine-87	-26.00
27	sroa - 9	instcombine - 31	sroa - 9	-21.05
40	sroa - 9	instcombine - 27	instcombine-80	-20.51
9	loop-unroll - 21	instcombine-99	instcombine-80	-20.51
10	sroa - 8	instcombine - 27	instcombine - 34	-17.82
36	sroa - 8	instcombine - 27	instcombine - 34	-17.82
31	sroa - 8	instcombine - 27	instcombine - 34	-17.82
13	loop-lower - 75	instcombine-99	instcombine-80	-16.23
18	loop-lower - 75	instcombine-99	instcombine-80	-16.23
20	loop-lower - 75	instcombine-99	instcombine-80	-16.23
17	loop-lower - 75	instcombine-99	instcombine-80	-16.23
3	sroa - 8	instcombine - 33	instcombine - 34	-16.23
14	sroa - 8	instcombine - 33	instcombine - 34	-16.23
4	sroa - 8	instcombine - 33	instcombine - 34	-16.23

(a) Advanced nightly regression report for the i5-6300U processor.

(b) Advanced nightly regression report for the Cortex-A53 processor.

Fig. 4: Advanced regression reports using our technique on the Milepost-GCC benchmarks.
The analysis of performance degradations between consecutive transformations provides a means of improving the overall quality of the optimizations constituting the -O3 level. Such degradations are a direct indication of incorrect or inadequate transformation behavior, unless the degradation is transitory and enables subsequent, highly effective optimizations.

ID	Opportunity	Category	Target and Benchmark ID	Location in Repository [Z.]
1	If-conversion heuristics	GI	i5—6300u — 8	results/i5/benchmark-8
			A53 — 31	results/A53/benchmark-31
2	Dead code in unrolling	GI	A53 — 9	results/A53/benchmark-9
			A53 — 18	results/A53/benchmark-18
3	Tuning of unrolling parameters	TA	A53 — 9	results/A53/benchmark-9
			A53 — 18	results/A53/benchmark-18
4	Stores-vs-recompute tradeoffs	TA	A53 — 10	results/A53/benchmark-10
5	Explicit conversion instructions	TS	A53 — 7	results/A53/benchmark-7
			A53 — 42	results/A53/benchmark-42
6	Better-predicted branch conditions	TS	A53 — 17	results/A53/benchmark-17
			A53 — 36	results/A53/benchmark-36

Categories: GI: General Improvement, TA: Target-Aware heuristic tuning, TS: Target-Specific optimization refinement

Table 1: Selected compiler improvement opportunities with locations of example target code in [Z.].

In the following sections we illustrate one possible approach to analyzing the data produced by optimization-enhanced nightly regression tests. The list of findings in this illustrative study is by no means exhaustive and additional compiler improvement opportunities could be identified by further exploring the collected data. We begin the analysis with the identification of recurring sources of untapped optimization potential on the i5-6300U and Cortex-A53 platforms. We then review the reasons for the potential gains and the ways in which the potential is canceled. We mainly focus on the Cortex-A53 architecture which exhibits a more diverse range of performance and code size artefacts, and we only use the i5-6300U case for demonstrating potential cross-architecture optimization opportunities.

The findings are grouped into three categories corresponding to compiler reengineering tasks with increasing levels of knowledge and understanding of the target architectures: generic optimization improvements, target-aware heuristic tuning, and target-specific optimization refinement (Table 1). Generic optimization improvements are expected to be applicable to all targets, or to large classes of targets sharing a common feature such as predicated instructions or advanced branch predictors. Target-aware heuristic tuning is intended to help better exploiting the target architectures without modifying the common optimizer of a compiler. Finally, findings falling into the target-specific optimization refinement category identify the interactions between architectural mechanisms and compiler technology which cannot be easily captured in a common optimizer.
For each case discussed below, a set of supporting IR and object files is available in repository [Z.] at the location indicated in the corresponding entry of Table 1. Each set contains matching IR and target object files corresponding to:

- the state of optimization immediately before and after the transformation that introduces the better-than-O3 performance;
- the state of optimization immediately before and after the transformation that discards the corresponding gains;
- the outcome of the standard -O3 optimization flow.

4.2 Identifying recurring patterns of optimization potential

As shown in Figure 4, there is potential for improvement over the -O3 performance baseline across recurring ranges of optimization passes. The number of benchmarks sharing a given “opportunity range” is a direct indication of the relevance of that range, and can be directly used to focus the compiler re-engineering effort. For each such range, the first configuration which exhibits the potential gains helps identify the unexploited feature, whereas the configuration which cancels the potential improvement points directly to the counter-productive optimization. Since our enhanced nightly regression system stores all IR files, the corresponding object files, and the executables for all configurations being tested, the compiler engineer can start the analysis process by reviewing the IR files generated before and after the passes that delimit each opportunity range.

The largest cluster of optimization configurations offering hidden optimization potential on the i5-6300U architecture involves 9 benchmarks with potential performance gains of up to 71% (cf. Figure 4a). The corresponding opportunity range begins at the first application of the static replacement of aggregates pass (sroa 9) and ends with the subsequent application of the control flow graph simplification pass (simplifycfg 34), which removes the potential gains in 10 out of 21 benchmarks.

The analysis of the generated target code and the IR files shows that on i5-6300U the first application of the simplifycfg pass is repeatedly too aggressive in applying the conversion of conditional control flow to predicated instructions (called also if-conversion) inside loop bodies. In benchmark 8 (Figure 5a), the potential gain is available until the application of pass simplifycfg 34. This pass replaces a sequence of four conditional loopback jumps with the computation of loopback condition using predicated instructions and a single conditional jump. As a result, the average loop execution increases three-fold, thus canceling almost the entire gain potential. This behavior calls for an in-depth revision of if-conversion strategies in the compiler and is a clear opportunity for a generic optimization improvement that should benefit multiple targets, cf. case 1 in Table 1.

The largest cluster of similarly behaving benchmarks on Cortex-A53 (see Figure 4b) consists of benchmarks 10, 36, 42, 31, and 7. Its corresponding opportunity range starts with the first “static replacement of aggregates” (sroa 8) pass
Fig. 5: Selected examples of better-than-O3 optimization potential. Note these figures are similar to Figure 3 but with the first 3 configurations (-O0, -O8-custom, simplifycfg) removed. These configurations were significantly slower than -O3, and thus, they were obfuscating the rest of the configurations’ results.
and ends with the first application of the instruction combiner (\texttt{instcombine}) pass. The instruction combiner pass removes many of the explicit conversion instructions and performs selective \textit{if-conversion}. A deeper analysis of the IR files and the generated target code for the benchmarks of the cluster leads to a broad range of findings:

- In benchmark 31, the source of the hidden performance potential is the presence of explicit conditional control flow with unbalanced workloads in the “true” and “false” paths. The instruction combiner pass replaces the explicit conditional control flow structure with predicated instructions, thus aligning the critical path of the resulting code on the longest of the critical paths of the original control flow structure. Like in the case of i5-6300U and the \texttt{simplifcfg} pass, this issue signals a deficiency of the \textit{if-conversion} strategy and is an example of a general optimization improvement which can benefit all targets. The similarity with the case of benchmark 8 on i5-6300U suggests that the two deficiencies of \textit{if-conversion} may have to be addressed in conjunction, and have therefore been grouped together as case 1 in Table 1.

- In benchmark 10 (Figure 5b, case 4 in Table 1), the presence of an explicit conversion instruction forces the recomputation of a value which would otherwise require an additional register. The corresponding reduction in register pressure increases the performance and reduces both memory traffic and the actual code size. This case can lead to target-aware heuristic tuning of store-vs-recompute tradeoffs.

- The presence of explicit conversion instructions enables the recognition of complex instruction patterns involving explicit conversions (multiply-accumulate in benchmark 42 and addition/subtraction with operand shift in benchmark 7, case 5 in Table 1) and the use of seemingly faster branch instructions (conditional branches on signed rather than unsigned comparison conditions in benchmark 36, case 6 in Table 1). These three cases are linked to the specific instruction set and the microarchitectural behavior of the target architecture and belong to the category of target-specific optimization refinements.

The opportunity ranges opened on Cortex-A53 by loop rotate passes (\texttt{loop-rotate} and \texttt{loop-rotate 145}) are associated with loop transformations. Optimization opportunities offered by the second loop rotation pass (\texttt{loop-rotate 145}, cf. Figure 5c) are more significant and illustrate a changing behavior of the compiler regarding the interactions between loop vectorization and loop unrolling.

In benchmark 9 (upper graph of Figure 5c), pass \texttt{loop-rotate 145} vectorizes the original loop, yielding an outer loop with only two iterations and a performance improvement of 27.7% over the code generated using the standard -O3 optimizations. The subsequent unrolling of the outer loop in pass \texttt{loop-unroll 186} fully unrolls the loop body producing code that is fully sequential but twice as large, and the corresponding performance loss may be caused by instruction cache trashing artefacts.

In contrast, in benchmark 18 (lower graph of Figure 5c) a similar performance gain is achieved through loop vectorization, but it is not canceled by a subsequent
Lost in translation: Exposing hidden compiler optimization opportunities

loop unrolling of the vectorized loop. This difference in behavior is explained by the fact that quantitative settings of the loop-unroll pass depend on the optimization flag used when invoking the optimizer. Our optimization sequences start from level -O0 and therefore, the loop unrolling passes use the default loop unrolling threshold value applied at optimization levels lower than -O3.

On the other hand, the standard optimization sequence of the -O3 level uses a default unroll threshold value which is twice as large, enabling the unrolling where our partial optimization sequences prevent it. This artefact raises the importance of target-aware heuristic tuning (case 3 in Table 1) which requires significant understanding of the target architecture, but may be needed to utilize the target architecture at its best.

In Figure 5c, the final loop unrolling pass (loop-unroll 186) not only impacts performance, but also cancels the potential for code size reduction observed in benchmarks 9 and 18. The increase in code size caused by this optimization pass is linked to the introduction of additional “catch-up” loops intended to handle the cases where the actual number of iterations is not known beforehand and might not be a multiple of the unrolling factor. However, in the tested benchmarks the loop has a constant number of iterations and once vectorized, it is fully unrolled to linear code. This means that the catch-up loops are redundant and should be removed, yet they are actually left in the code calling for a generic optimization improvement (cf. case 2 in Table 1).

As a last example, the analysis of behavior of benchmark 17 on Cortex-A53 leads to a potential target-specific optimization refinement (case 6 in Table 1): the loss of performance potential during the first loop-rotate pass (loop-rotate 73) corresponds to the inversion of conditional branch conditions in the benchmark core loop, with all other instructions of the core loop remaining identical. The associated 16.2% decrease in code performance hints at a branch prediction artefact that could be related to the findings of benchmark 36 (described above) in which the benchmark performance is directly linked to the relative execution times of signed vs. unsigned conditional branch instructions.

4.3 Leveraging the identified optimization opportunities

The example findings described in the preceding section suggest that our approach of testing the quality of partial optimization configurations in compilers can benefit the compiler technology community, industrial users and developers of compilers, as well as hardware architects. Generic optimization improvement opportunities, once identified, should ideally be reported to compiler maintainers and the compiler technology community at large. The resulting improvements in the given compiler will benefit all developers and users of that compiler on many if not all target platforms it supports.

Target-aware heuristic tuning opportunities are of particular importance to developers and maintainers of industrial compilers, who focus on the best possible utilization of their target architectures. The findings can help selecting the most appropriate values of quantitative parameters of transformations, if these
parameters can be controlled by the user (such as the loop-unrolling threshold), and can identify the cases where new parameters should be introduced.

The performance potential identified in nightly regression tests can then be easily made available to users, e.g., by supplying sets of parameter options tuned for the different configurations of the target architecture. In addition, the performance of the generated code can be finely matched to the target platforms without affecting the basic principle of a common optimizer and without having to modify the optimizer code (with all the quality risks it would imply.)

Finally, target-specific optimization refinements identify subtle interactions between architectural mechanisms and compiler technology which may require a coordinated effort of the hardware and compiler communities. This category of findings requires by far the deepest levels of hardware architecture and compiler technology knowledge. Findings regarding the behavior of branch predictors, for example, can simultaneously provide useful feedback to hardware architects and to compiler developers. The former can gain additional awareness of the ways the branch prediction is behaving on compiler-generated code, and the latter will be able to review the flow of predictor-aware code generation. We have seen in the previous section that branch prediction and code generation may interfere in significant ways.

In order to assess the actual impact of these interactions, the static analysis of generated code may prove insufficient, requiring detailed information about the behaviour of specific micro-architectural features of the target platform, e.g., in the form of data from hardware performance counters [Opr]. The use of performance counters requires a good understanding of the target architecture, making them a tool aimed primarily at expert compiler engineers.

However, once the correlation between specific hardware events, the readings of the performance counters and the effects of a given optimization has been established, the monitoring of the relevant hardware events can be integrated into the nightly regression tests as an additional metric to be tracked in addition to execution time, code size or energy consumption.

5 Related Work

Auto-tuning of compiler optimizations has emerged in the last decade, taking two main forms; iterative and machine-learning-based (MLB) compilation [WO18, AKC+18b]. Typically, the aim is to find new optimization sequences that can outperform what the standard compiler optimization levels can achieve in terms of effective resource usage on an architecture; the resource of interest being execution time, energy consumption or memory usage (code size). The motivation for automatic tuning is that the possible optimization configuration space is too large to be explored in practice, and thus, hidden optimization opportunities can exist within that space. These can outperform the standard optimization levels for a specific architecture or programming language. For example, GCC v4.7 has 2^{82} possible optimization combinations [PHB15], not counting the possible values of quantitative parameters. The concept of common architecture-independent
optimizers, while helping compiler developers in supporting more programming languages and more architectures, has the adverse effect of preventing high-level optimizations from matching target architectures’ quantitative characteristics. This can produce suboptimal executables in terms of efficiently using a specific architecture’s resources.

Iterative compilation typically randomly samples the optimization configuration space until finding a configuration that outperforms a predefined optimization level [ABP+17]. The technique has in many cases proven to provide significant performance gains [BKK*98, FLSU18], but typically a large number of optimization configurations, in the order of hundreds to thousands, need to be evaluated before reaching any performance gains over standard optimization levels. Thus, iterative compilation has been traditionally used as a baseline to assess the performance of MLB compiler auto-tuning techniques [Fea11, ABP+17, BRE15]. MLB techniques aim to beat the performance of iterative compilation by finding a better optimization configuration in a shorter time. Thus, MLB techniques try to strategically sample the optimization configuration space based on the models built during their training phase. Such models are being trained on either static code features [Fea11] or profiling information [CFA+07], such as performance counter values that characterize the programs in the training set, and a performance metric for the dependent variable. An example of such a performance metric is the execution time of programs when applying a specific optimization configuration.

Typically, these techniques require a large training phase [OPWL17] to create their predictive models. Furthermore, they are hardly portable across different compilers, different versions of the same compiler, or different architectures. Even if a single flag is added to the set of a compiler’s existing flags, the whole training phase has to be repeated. Moreover, extracting some of the metrics that these techniques depend on, such as static code features, might require a significant amount of engineering [WO18]. Thus, MLB techniques are inadequate for systematic testing and improvement of compilers.

Furthermore, while iterative compilation and MLB approaches aim to assist the software developers in improving their application resource usage by auto-tuning the compilers settings, they offer limited value to the compiler engineer on how to improve the compiler’s common optimizer. This is because they typically offer limited information in regards to the potential causes of their achieved gains over a standard optimization level. Furthermore, MLB approaches only provide suggestions of good optimization sequences, that might or might not work well on applications that are unseen by the machine-learning training phase. Compiler engineers need more concrete evidence to guide their efforts of tuning the compiler’s common optimizer.

Our enhanced nightly regression system, introduced in Section 4, offers a different approach which can assist the compiler engineer to “debug” the compiler optimization sequences in terms of their effectiveness in a systematic way. This is due to: a) the ability of our technique to attribute the optimization effects observed to specific transformation passes exercised in an optimization sequence,
and b) the technique offering concrete data to drive the tuning of the common optimizers, instead of MLB predictions.

Energy consumption of computing is becoming critically important for economic, environmental, and reliability reasons [Eea16, GdSE17]. In [GBXSE18], the technique also used in this paper for exploring the standard optimization levels, was able to accurately account for energy consumption through physical hardware measurements on deeply embedded devices. In future work, we will explore if energy profilers [INT] can achieve the same for platforms with higher-end architectures that do not allow for processor’s direct energy measurements, such the ones explored in this paper.

6 Conclusion

Traditional auto-tuning techniques, such as iterative compilation and MLB approaches, are not suitable for routine testing of compilers as they tend to require a new training phase at each compiler update, or need to run for thousands of iterations. Furthermore, such techniques typically act as a “black box”, without providing any insights into why any detected optimization configuration performs better than expected or conversely, degrades benchmark performance. Thus, while they can be useful in achieving better resource usage than the standard optimization levels for particular applications, they are of limited value to a compiler engineer.

In this paper, we propose a new take on the classic nightly regression system, enhanced with statistics that expose the behaviour of the standard compiler optimization levels wrt. performance. To achieve this, we adopt the technique proposed in [GBXSE18], i.e. we exploit subsequences of the standard optimization levels rather than arbitrary permutations of optimizations. Thus, in contrast with iterative compilation or MLB techniques, our approach offers compiler engineers an intuitive way of correlating performance variations with the internal structure of the optimizer.

By applying the technique to benchmarks from the LLVM test-suite, we established the existence of significant optimization opportunities within the standard optimization levels, firstly, on more complex architectures (the X-86-based i5-6300U and the ARMv8-A-based Cortex-A53) than the deeply embedded ones used in [GBXSE18], and secondly, across multiple versions of the LLVM compiler, namely the LLVM v3.8 and v5.0 examined in [GBXSE18] and also the v6.0 examined in this paper. These findings motivated our investigation into how the technique can be utilized for systematic tuning of compiler optimizers.

Significant performance gains were observed for more than half of the 42 benchmarks tested, with an average of 11.5% and 5.1% execution time improvement for the i5-6300U and the Cortex-A53 processors, respectively. These results were collected, classified and exploited by the proposed nightly regressions system to expose a series of potential architecture-depended and cross-architecture optimizations, see Section 4.
This is of significant value for compiler engineers who can focus their efforts on exploiting the hidden gains and removing the shortcomings of the key performance-affecting optimizations. The resulting insights may lead to cross-architecture optimizer improvements that benefit all users of the compiler, to architecture-specific tuning relevant for suppliers and users of industrial compilers, and to new ways of handling innovative hardware mechanisms at compiler level. To the best of our knowledge, this is the first work on automated tuning of compilers that enables the discovery and the analysis of new optimization potential to this extent.

In the future, we plan to extend our nightly regression system with the collection of hardware performance counter data to further support compiler engineers in identifying and exploiting potential optimization opportunities that are not statically analyzable and may be linked to micro-architectural features of the target processors.

Acknowledgments

This research is supported by the European-Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 779882, TeamPlay (Time, Energy and security Analysis for Multi/Many-core heterogeneous PLAtforms).

References

ABP+17. Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer Kulkarni, and John Cavazos. Micomp: Mitigating the compiler phase-ordering problem using optimization sub-sequences and machine learning. *ACM Trans. Archit. Code Optim.*, 14(3):29:1–29:28, September 2017. URL: http://doi.acm.org/10.1145/3124452, doi:10.1145/3124452.

AKC+18a. A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. A Survey on Compiler Autotuning using Machine Learning. *CoRR*, abs/1801.04405, 2018. URL: http://arxiv.org/abs/1801.04405, arXiv:1801.04405.

AKC+18b. Amir Hossein Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. A survey on compiler autotuning using machine learning. *CoRR*, abs/1801.04405, 2018. URL: http://arxiv.org/abs/1801.04405, arXiv:1801.04405.

BKK+98. François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and Erven Rohou. Iterative compilation in a non-linear optimisation space. In *Workshop on Profile and Feedback-Directed Compilation*, Paris, France, Oct 1998. URL: https://hal.inria.fr/inria-00475919.

BRE15. Craig Blackmore, Oliver Ray, and Kerstin Eder. A logic programming approach to predict effective compiler settings for embedded software. *Theory and Practice of Logic Programming*, 15(4-5):481–494, 2015. doi: 10.1017/S1471068415000174.
CFA+07. John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle, and Olivier Temam. Rapidly selecting good compiler optimizations using performance counters. In *Proceedings of the International Symposium on Code Generation and Optimization*, CGO ’07, pages 185–197, Washington, DC, USA, 2007. IEEE Computer Society. URL: http://dx.doi.org/10.1109/CGO.2007.32, doi:10.1109/CGO.2007.32.

Cora. Arm Cortex-M0 Processor. https://developer.arm.com/products/processors/cortex-m/cortex-m0 (accessed February 19, 2018).

Corb. Arm Cortex-M3 Processor. https://developer.arm.com/products/processors/cortex-m/cortex-m3 (accessed February 19, 2018).

cTu. cTuning Foundation and Dividiti. Collective Knowledge. http://cknowledge.org/ (accessed October 18, 2018).

Eea16. K. Eder and et al. ENTRA: Whole-systems energy transparency. *Microprocess. Microsyst.*, 47, Part B:278–286, November 2016. URL: https://doi.org/10.1016/j.micropro.2016.07.003, doi:10.1016/j.micropro.2016.07.003.

Fea11. Grigori Fursin and et al. Milepost gcc: Machine learning enabled self-tuning compiler. *International Journal of Parallel Programming*, 39(3):296–327, Jun 2011. URL: https://doi.org/10.1007/s10766-010-0161-2, doi:10.1007/s10766-010-0161-2.

FLSU18. Grigori Fursin, Anton Lokhmotov, Dmitry Savenko, and Eben Upston. A collective knowledge workflow for collaborative research into multi-objective autotuning and machine learning techniques. *CoRR*, abs/1801.08024, 2018. URL: http://arxiv.org/abs/1801.08024, arXiv:1801.08024.

GBXdSE18. Kyriakos Georgiou, Craig Blackmore, Samuel Xavier-de Souza, and Kerstin Eder. Less is more: Exploiting the standard compiler optimization levels for better performance and energy consumption. In *Proceedings of the 21st International Workshop on Software and Compilers for Embedded Systems*, SCOPES ’18, pages 35–42, New York, NY, USA, 2018. ACM. URL: http://doi.acm.org/10.1145/3207719.3207727, doi:10.1145/3207719.3207727.

GCC. GCC team. GCC, the GNU Compiler Collection. https://gcc.gnu.org/ (accessed February 10, 2019).

GdSE17. K. Georgiou, S. Xavier de Souza, and K. Eder. The IoT energy challenge: A software perspective. *IEEE Embedded Systems Letters*, PP(99):1–1, 2017. doi:10.1109/LES.2017.2741419.

INT. INTEL Open Source Org. RAPL Power Meter. https://01.org/rapl-power-meter (accessed February 20, 2019).

LA04. C. Lattner and V.S. Adve. LLVM: A compilation framework for lifelong program analysis and transformation. In *CGO*, pages 75–88, 2004.

LLVa. LLVM Org. LLVM Test Suite - MiBench. https://github.com/llvm/llvm-test-suite/tree/master/Benchmarks/MiBench (accessed January 29, 2019).

LLVb. LLVM Org. LLVM’s Analysis and Transform Passes. https://llvm.org/docs/Passes.html (accessed February 19, 2018).

LLVc. LLVM Org. The LLVM Compiler Infrastructure. http://www.llvm.org/ (accessed January 19, 2019).
Opr. Oprofile community. Oprofile - An open source project that includes a statistical profiler for Linux systems. http://cknowledge.org/ (accessed February 20, 2019).

OPWL17. W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather. Minimizing the cost of iterative compilation with active learning. In 2017 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages 245–256, Feb 2017. doi:10.1109/CGO.2017.7863744.

PHB15. James Pallister, Simon J. Hollis, and Jeremy Bennett. Identifying compiler options to minimize energy consumption for embedded platforms. The Computer Journal, 58(1):95–109, 2015. URL: http://dx.doi.org/10.1093/comjnl/bxt129, doi:10.1093/comjnl/bxt129.

WO18. Z. Wang and M. OBoyle. Machine learning in compiler optimization. Proceedings of the IEEE, 106(11):1879–1901, Nov 2018. doi:10.1109/JPROC.2018.2817118.

Z. Z. Chamski and K. Georgiou. "Lost in translation" github repository. https://github.com/TrustworthySystemLab/LostInTranslation (accessed March 25, 2019).