Thelazia lacrymalis in horses from Romania: epidemiology, morphology and phylogenetic analysis

Vlad-Dan Cotuțiu¹, Angela Monica Ionică²,³, Menelaos Lefkaditis⁴, Cristina Daniela Cazan², Alina Diana Hașaș⁵ and Andrei Daniel Mihalca¹

Abstract

Background: Equine thelaziosis is a neglected vector-borne parasitic disease in modern veterinary medicine, lacking recent reports. It is transmitted by *Musca autumnalis*, and potentially other Muscidae species, by ingesting the lachrymal secretions of its equine host. The distribution of both *Thelazia lacrymalis* and its intermediate hosts remains largely unknown throughout Europe, with most studies dating back 20 years. The aim of this study was to assess the presence, prevalence and distribution of *T. lacrymalis* in horses from Romania.

Methods: The eyes of 273 horses, slaughtered at two abattoirs from the Northwestern and Western regions of Romania, were examined for the presence of *T. lacrymalis* between March and November 2021. Upon detection, the nematodes were collected and morphologically identified using the keys from literature. Following identification, one specimen from each animal was selected for molecular analysis while the rest underwent detailed morphometric measurements. Mapping and distribution, according to ecoregions, was done using the QGis 3.20 software, while sequences obtained were compared to those available in GenBank through BLAST analysis using the MEGA X software.

Results: Of the 273 animals sampled, 12 (4.39%) were positive for *Thelazia* spp. infection. Eighty-seven nematodes were recovered, all morphologically identified as *T. lacrymalis*. The intensity of infestation varied between one and 33 nematodes/animal while five animals presented a bilateral infestation and seven a unilateral one. The highest prevalence was encountered in Pannonian ecoregion (12.12%) while the lowest was in the Alpine ecoregion (0%). Seventy-five intact specimens underwent detailed morphometric analysis, of the 18–20 parameters, resulting in notable differences in striation lengths compared to the data available in other reports. BLAST analysis identified a 96.46–98.60% similarity to the only other *COI* gene sequence available for *T. lacrymalis*.

Conclusions: The current study represents the first report of *T. lacrymalis* in horses in Romania. The low prevalence rates are probably linked to the wide use of macrocyclic lactones.

Keywords: *Thelazia lacrymalis*, Equine thelaziosis, Romania

Background

Thelaziosis is a parasitic disease caused by nematodes of genus *Thelazia* in the conjunctival sack of their hosts. The intermediate hosts for various *Thelazia* species are non-biting secretophagous flies, which ingest the first stage larvae during their meal on lachrymal secretions.
For *Thelazia* spp. infecting large ruminants and horses, *Musca autumnalis* seems to be the main vector. *Musca domestica* as well as other Muscidae species have also been suggested as vectors [2, 3]. The disease has garnered much attention within the past 2 decades, following the emergence of *Thelazia callipaeda* in carnivores and other hosts, including humans, throughout much of Europe [4]. Additionally, occasional reports of cases in large ruminants still emerge from time to time in Europe [5, 6]. In Romania, *Thelazia* spp. were so far found in domestic and wild carnivores [7–10] and cattle [6, 11].

In horses, the disease is poorly studied, and its epidemiology remains largely unknown. The only species reported in horses is *Thelazia lacrymalis*, first described in Germany in the nineteenth century [12]. The species is cosmopolitan, ranging from Asia to the Americas and Europe [3, 13–19]. However, reports of thelaziosis in horses in Europe are scarce, with the last published case in 2007 in Germany [20]. With the exception of the former USSR, where equine thelaziosis has been reported in the region of Bashkortostan (at the very eastern limit of geographical Europe) [3], equine thelaziosis has not been documented in Eastern Europe. One report of *T. lacrymalis* was published from Switzerland in horses imported from Poland and Hungary, but the infection site of horses is not identified with certainty [2].

The aim of our study was to investigate the occurrence of *Thelazia* spp. in horses from Romania. Additionally, we provide detailed morphometric data to improve the species description.

Materials and methods

Samples consisted of both eyes belonging to 273 horses slaughtered at two different abattoirs from Northwestern and Western Romania between March and December 2021 (Table 1). For each horse, the following data were collected: sampling date, age, sex and origin (locality, geographic coordinates, altitude and ecoregion).

In the slaughterhouse, the eyes of each animal were removed along with adjacent tissues, namely eyelids and lachrymal glands, without perforating the conjunctival sack and individually placed in a sealed zip bag. Any visible *Thelazia* worms were collected in a 1.5-ml plastic tube with saline and placed in the same zip bag as the eyes they belonged to. All samples were then transported to the Department of Parasitology and Parasitic Diseases of the University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca for detailed examination. Upon arrival, the samples were transferred to a refrigerator prior to examination, which was done in maximum 48 h.

Each eye and adjacent structures were carefully examined by opening the lateral canthus followed by the eversion of the eye globe. The third eyelid was inversed and partially detached allowing the lachrymal ducts to be dissected. Subsequently, each eye was flushed with physiological saline along with their corresponding bag into a Petri dish. The content of the Petri dish was examined under a zoom stereomicroscope. All

Variable	Sampled	Positive	Prevalence (%)	95% CI	
Sex	Males	136	5	3.67	1.58–8.32
	Females	137	7	5.11	2.5–10.17
Age interval (months)	1–131	81	7	8.64	4.25–16.78
	132–251	125	4	3.2	1.25–7.94
	252–371	60	1	1.66	0.29–8.86
	≥ 372	7	0	0	0–35.43
Altitude interval (meters)	0–100	38	0	0	0–9.18
	101–200	73	6	8.22	3.82–16.79
	201–300	50	2	4	1.1–13.46
	301–400	58	2	3.44	0.95–11.73
	401–500	23	2	8.69	2.42–26.8
	≥ 501	30	0	0	0–11.35
Ecoregion	Pannonian	33	4	12.12	4.82–27.33
	Continental	161	7	4.35	2.12–8.7
	Alpine	45	0	0	0–7.87
	Steppic	34	1	2.94	0.52–14.92
Total		273	12	4.39	2.53–7.52
collected nematodes were placed in vials with physiological saline and kept in a refrigerator until morphological identification.

Each nematode was morphologically identified to species and developmental stage based on morphological keys described in literature [3, 16, 21]. The undestroyed specimens were preserved in 4% formalin solution and processed by detailed morphometric analysis including 19 parameters in adult males and larvae and 20 in adult females, as shown in Table 3. Morphological identification and measurements were carried out using the Olympus microscope (Olympus BX61) and dedicated software. The number of nematodes was independently recorded for each animal, by stage and sex.

One nematode from each horse was randomly selected and stored in 70% ethanol for further molecular characterization. DNA was extracted individually from 12 nematodes using ISOLATE II Genomic DNA Kit (Bioline Meridian Bioscience, Luckenwalde, Germany), according to the manufacturer’s instructions, and stored at −20 °C until further use. A PCR amplification targeting the mitochondrial cytochrome oxidase I (COI) gene region (670 bp) was performed in 25 μl reaction volume, containing 12.5 μl My Taq® Red PCR Mastermix (Bioline Meridian Bioscience, Luckenwalde, Germany), 6.5 μl of ultrapure water, 1 μl (10 pmol) of each of the two previously described primers [22], COIintF 5′-TGATTGGTG GTTTTGGTTA-3′ and COIintR 5′-ATAAGTACGAGT ATCAATATC-3′, and 4 μl aliquot of isolated DNA. One negative control (PCR water) was included. The PCR was performed using a C1000™ Thermal Cycler (Bio-Rad, London, UK), with the following conditions: initial denaturation at 95 °C for 5 min, followed by 40 cycles of denaturation at 95 °C for 45 s and annealing at 47 °C for 45 min with extension at 72 °C for 1 min. A final extension at 72 °C for 5 min was performed. Amplification products were visualized by electrophoresis on 1.5% agarose gel stained with ECO Safe 20,000 × Nucleic Acid Staining Solution (Pacific Image Electronics, New Taipei, Taiwan), and their molecular weight was assessed by comparison to a molecular marker (HyperLadder™ 100 bp, Bioline Meridian Bioscience, Luckenwalde, Germany). The quality of the samples was visually assessed via gel electrophoresis before samples underwent purification. All PCR products were purified using the ISOLATE II PCR and Gel Kit (Bioline Meridian Bioscience, Luckenwalde, Germany) and sent for sequencing in both directions (Macrogen Europe, Amsterdam, The Netherlands). The attained chromatograms were assembled, and consensus sequences were edited and translated to corresponding proteins using Geneious 4.8.5 software (Biomatters Ltd., Auckland, New Zealand). The consensus sequences were compared to those available in the GenBank® database by means of Basic Local Alignment Search Tool (BLAST).

The statistical analysis was performed using EpilInfo™ 7 software (CDC, USA). The frequency prevalence and 95% confidence interval (CI) of infestation were calculated both overall and according to various categories (Table 1). The differences among categories were assessed by means of Chi-square testing. Mapping and distribution were carried out using the QGis software (version 3.20).

The evolutionary analyses were conducted using MEGA X software [23]. The analysis involved 18 nucleotide sequences: 12 attained within the present study, five sequences of Thelazia spp. retrieved from GenBank and one Dirofilaria immitis sequence as outgroup. The sequences were aligned using the MUSCLE algorithm, and the evolutionary history was inferred by using the maximum likelihood method and Tamura-Nei model [24]. A discrete gamma distribution was used to model evolutionary rate differences among sites.

Results

Of the 273 animals sampled, 12 (4.39%) were positive for Thelazia spp. infestation (Table 1). A total of 87 nematodes were collected (Table 2). Of the infected animals, five presented a bilateral infestation (41.66%) while the rest had a unilateral one (58.33%). The intensity varied between one and 33 nematodes per animal (mean intensity 7.25 nematodes/infected horse and median of 4) with an intensity between one and 20 nematodes/infested eye (mean intensity of 2.66 and 4.58 nematodes per eye, respectively). The adult female-to-male ratio was 3.4 to 1. All individuals were morphologically identified as adults and larvae (L5) of T. lacrymalis. There were no statistically significant differences between the prevalence in any of the considered categories (sex, age group, altitude, ecoregion). Of the four ecoregions from which samples were collected, T. lacrymalis was found in three (Fig. 1).

Of the 85 T. lacrymalis specimens, 75 were selected for a detailed morphometric analysis (Fig. 2) (16 adult males, 36 adult females, 22 female L5). The results are shown in Table 3.

All 12 specimens selected for molecular analysis were successfully sequenced, and 11 unique sequences of the COI gene were obtained. The BLAST analysis revealed a 96.46–98.60% nucleotide similarity to the only T. lacrymalis COI isolate from GenBank (AJ271619). The similarity to other species of Thelazia (e.g. Thelazia gulosia AJ544881, Thelazia rhodesi MT511659, T. callipaedia AM042556) ranged between 85.05 and 88.91%. Our sequences were deposited in GenBank under the accession numbers listed in Table 4. Phylogenetic relationships are presented in Fig. 3.
Discussion

The lack of data over the past decades concerning the distribution of *Thelazia* in large herbivores could be attributed to the appearance of more affordable and potent anthelmintics [25] as well as the overall lack or mildness of clinical signs. Although equine thelaziosis is rarely diagnosed, it may represent an animal welfare concern due to the chronic and sometimes irreversible development of the disease or concurrent diseases [13, 26] combined with its potentially rapid spread in larger herds.

In terms of geographical distribution, equine thelaziosis has been occasionally reported in Europe in Russian Federation, England, France, Germany, Sweden and Italy [3, 14–17, 20, 27]. The current study acts as the

Table 2 Population structure of *Thelazia lacrymalis* in horses in Romania

Code	Total	Males	Females	Laterality
		Adults	Adults	
			L5	
BHC1-1	31	5	10	26
MMC1-21	11	4	7	7
MMC1-44	2	1	1	1
MMC1-14	3	0	3	3
BHC1-4	7	3	3	4
BHC2-11	4	1	1	3
BHC3-12	5	0	3	5
BHC3-31	4	2	2	2
BHC3-7	1	0	1	1
BHC4-12	4	1	3	3
BHC4-49	3	0	1	3
BHC4-46	10	1	6	9
Total	85	18	22	67
first report of equine thelaziosis in the last 15 years in Europe, and the first from Romania and Eastern Europe, with the exceptions of old reports from the former USSR. Although the prevalence is relatively low, we consider that the lack of reports is related to the limited interest of researchers in this disease and the probably limited or absent awareness of veterinary clinicians. The low prevalence could also be attributed to applications of general oral deworming protocols used in horses, which include the use of either ivermectin or fenbendazole [28]. There were no noticeable differences in overall prevalence values during different seasons, the overall value remaining at around 5% throughout the year. Adults have been encountered during every season. L5 females were found only from July to the end of October.

During the present study, no statistically relevant results could be quantified because of the low sample number and wide distribution of both geospatial location and developmental stages. It can be however presumed that altitude is a determining factor in the occurrence of thelaziosis. In this study there were no infested animals originating from the alpine ecoregion (0 of 45); therefore, a plausible explanation could be the decreased vector abundance and shorter seasonal activity at higher altitudes [29–31].

Although clinical signs have been associated with the presence of adults, in most species, it has been theorized that the death of larvae within the lachrymal glands could be responsible for the appearance of coalescing
Table 3: Morphometric analysis of *T. lacrymalis* collected from horses in Romania (n = 75) and comparison with available data from other reports

Parameter	Males Adults	Males L5	Males Adults	Females Adults	Females L5	Females Adults					
	CS^a	Bz^b	Nm^c	Sky^d	CS^a	CS^a	Sky^d	Bz^b	Nm^c		
Length	6514.56–9597.44	6200	–	5696	6262.67–12371	7588.73–17299.9	5696–18000	10500	12500		
Width											
Anterior	98.88–144.27	(118.05)	91.75–172.6	(122.67)	105.15–189.78	(133.21)	–	–	–		
Median	196.76–289.64	(252.64)	181.64–336.91	(261.67)	220.13–415.59	(275.81)	208	289	279		
Tail	62.48–131.27	(93.42)	65.14–112.91	(86.29)	72.46–117.08	(93.52)	–	–	–		
Buccal capsule											
Proximal width	18.95–29.17	(27.57)	20.22–41.03	(28.66)	21.78–34.9	(28.23)	36	35			
Distal width	13.15–28.18	(24.43)	20.23–37.63	(25.68)	19.43–39.64	(25.94)	–	31	–		
Depth	10.26–17.98	(15.84)	11.43–20.1	(16.6)	12.4–20.75	(16.45)	21	–	–		
Nerve ring position											
Anterior distance	189.17–256.45	(220.75)	201.72–263.09	(232.76)	202.66–322.38	(236.11)	192–208	218	–		
Posterior distance	56.29–139.69	(90.09)	76.15–180.33	(115.34)	50.18–105.27	(105.27)	–	–	–		
Esophagus											
Length	292.18–350.15	(319.84)	287.01–443.42	(340.03)	309.05–411.1	(340.06)	309.05–411.1	(340.06)	335–352	333	
Proximal width	34.12–51.73	(46.82)	33.83–63.82	(49.84)	39.93–60.34	(50.7)	48	42	–		
Median width	52.25–83.88	(69.24)	45.94–87.27	(69.77)	61.44–85.5	(70.37)	–	–	–		
Distal width	45.75–70.77	(55.46)	41.5–68.08	(57.58)	50.63–74.65	(58.86)	80	62	–		
Stiation											
Anterior	4.9–7.85	(6.09)	3.92–7.64	(5.82)	3.69–9.09	(6.4)	3.69–9.09	(6.4)	–	4.65	
Median	5.72–8.92	(7.34)	3.76–7.76	(5.97)	4.95–9.77	(7.13)	4.95–9.77	(7.13)	–	3.41	
Posterior	2.69–4.77	(4.97)	3.17–6.18	(4.54)	3.51–7.82	(5.07)	3.51–7.82	(5.07)	–	3.62	
Eggs											
Egg width	74.3–160.46	(90.52)	120	–	75.22–127.52	(103.39)	60.46–114.55	(101.43)	–	83	
Egg length											

^a Measured in micrometers (µm).

^b Number of specimens.

^c Median.

^d Standard deviation.
Table 3 (continued)

Parameter	Males Adults	Females L5 Adults				
Vulva		549.67–588.3 (566.56)	568.34–607.8 (586.83)	528–560	593	493
Spicules length	124.31–180.56/108.11–159.49 (149.8/137.42)	160/100	180/120			

All measurements from the current study given in µm as range (mean)

a Current study
b Beelitz et al. [16]
c Naem [21]
d Skrjabin et al. [3]
granulomas following the administration of oxybenzadole in horses [32]. This theory also underlines the importance of larvae in the pathological processes inherent to conjunctivitis, dacryocystitis and ultimately keratoconjunctivitis sicca [33].

The morphological description was done to improve the data availability for the identification of this poorly known species. Our results provide additional data on 18–20 parameters (Table 3), extending the previously documented variations, in adult parasites (both mature

Table 4 BLAST analysis results and accession numbers of morphologically identified *T. lacrymalis* submitted for molecular analysis

Code	Product (bp)	Molecular ID	Query (%)	Identity (%) with AJ271619	Accession no.
14MMC1	570	*T. lacrymalis*	100	96.80	ON024362
21MMC1	663	*T. lacrymalis*	97	98.15	ON024363
44MMC1	656	*T. lacrymalis*	98	96.92	ON024364
1BHC	659	*T. lacrymalis*	98	98.62	ON024365
4BHC	660	*T. lacrymalis*	98	98.92	ON024366
11BHC2	654	*T. lacrymalis*	99	96.46	ON024367
7BHC3	646	*T. lacrymalis*	99	98.75	ON024368
12BHC3	653	*T. lacrymalis*	99	98.46	ON024369
31BHC3	657	*T. lacrymalis*	98	98.92	ON024370
12BHC4	653	*T. lacrymalis*	99	98.46	ON024371
49BHC4	653	*T. lacrymalis*	99	98.92	ON024372
46BHC4	655	*T. lacrymalis*	98	98.77	ON024373

Fig. 3 Phylogenetic tree. The bootstrap consensus tree inferred from 1000 replicates. The percentage of trees in which the associated taxa clustered together is shown next to the branches (only values > 50% are shown). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 18 nucleotide sequences. There were a total of 571 positions in the final dataset.
and immature stages) as well as comparing our findings to those available in other studies.

Despite the low number of COI gene sequences for nematodes of genus *Thelazia* available for the phylogenetic analysis, we showed that *T. lacrymalis* represents a separate clade within the genus.

Conclusion

Equine thelaziosis is present in Romania at low prevalence values, related probably to the widespread use of macrocyclic lactones. We consider equine thelaziosis a neglected disease in Europe, which requires more attention from veterinary practitioners mainly from an animal welfare point of view due to the potentially severe clinical impact.

Acknowledgements

The authors thank the following students and DVMs involved in the collection and examination of the samples: Teodora Dan, Emil Borza, Diana Oprîş and Alexandru Ivanciuc.

Author contributions

VDC and ADM conceived the studies’ structure; VDC and ADH collected and examined samples from the abattoirs. VDC developed the sampling protocol and created the figures. ADH provided access to the abattoirs. AMI chose and applied the PCR protocol used in the study while CDC processed the samples. ML reviewed the study and assisted in editing the manuscript. All authors read and approved the final manuscript.

Funding

This study was performed under the framework of project Grant Number 57 PcCDI/2018, grant agency ‘The Executive Unit for Financing Higher Education, Research, Development and Innovation’ (UEFISCDI), Romania. The work of CDC was supported by a grant from the Romanian Ministry of Education and Research, CNCS—UEFISCDI, project number PN-III-P1-1.1-PD-2019-0598, within PNCDI III.

Availability of data and materials

All data generated or analyzed during this study are included in this published article as well as its additional data. Sequences generated in this study are available in GenBank (ON024362-ON024373).

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania. 2. CDS-9, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania. 3. Clinical Hospital of Infectious Diseases of Cluj-Napoca, lului Moldovan Street no. 23, Cluj-Napoca, Romania. 4. Laboratory of Microbiology and Parasitology, Department of Veterinary Medicine, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece. 5. Department of Physiopathology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.

References

1. Otranto D, Traversa D. Thelazia eyeworm: an original endo- and ecto-parasitic nematode. Trends Parasitol. 2005;21:1–4.
2. Löhrr J, Hörning B. Thelazia lacrymalis beim Pferd. Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für Tierarztinnen und Tierärzte. 1967;109:644–53. https://doi.org/10.5169/seals-593476.
3. Skjabin KI, Sobolev AA, Ivashkin VM. Sporurata of animals and man and the diseases caused by them. Part 4 thelazioidea. In: Skjabin KI, editor. Essentials of nematology. Moscow: Academy of Sciences of the USSR, 1971. p. 1–54.
4. Otranto D, Mendoza-Roldán JA, Dantas-Torres F. Thelazia callipaeda. Trends Parasitol. 2021;37:263–4. https://doi.org/10.1016/j.pt.2020.04.013.
5. Karbowiak G, Demiaszkiewicz AW, Pyżel AM, Wita I, Mosiwa B, Wersko J, et al. The parasitic fauna of the European bison (*Bison bonasus*) (Linnaeus, 1758) and their impact on the conservation. Part 1. The summarising list of parasites noted. Acta Parasitol. 2014;3:363–71. https://doi.org/10.2478/_s11686-014-0252-0.
6. Deak G, Ionica AM, Otos NV, Gherman CM, Mihalca AD. Thelazia rhodesi in a dairy farm in Romania and successful treatment using eprinomectin. Parasitol Int. 2021;80:102–83. https://doi.org/10.1016/j.parint.2020.102183.
7. Ionica AM, Deak G, Matei IA, D’Amico G, Cotuțiu VD, Mihalca AD, et al. Thelazia callipaeda, an endemic parasite of red foxes (*Vulpes vulpes*) in Western Romania. J Wildl Dis. 2018;54:829–33. https://doi.org/10.7589/2017-10-251.
8. Ionica AM, Deak G, D’Amico G, Gherman CM, Mihalca AD. Thelazia callipae‑da in mustelids from Romania with the European badger, *Meles meles*, as a new host for this parasite. Parasit Vectors. 2019;12:370.
9. Dumitrache MO, Gyorke A, Mircean M, Benea M, Mircean V. Ocular thelaziosis due to *Thelazia callipaeda* (Spurria: Thelaziidae) in Romania: first report in domestic cat and new geographical records of canine cases. Parasitol Res. 2018;117:4037–42.
10. Dumitrache MO, Ionica AM, Voinițchi E, Chavdar N. First report of canine ocular thelaziosis in the Republic of Moldova. Parasit Vectors. 2019;12:505.
11. Dulceanu, N. Cercetări cu privire la localizarea speciilor și intensitatea infestării cu thelazii la taurine. Lucrari stiintifice, Inst. Agronomic. 1971.
12. Gurff EF. Lehrbuch der pathologischen Anatomie der Haustiere, pt 1. Berlin: Reimer, 1831.
13. Parker IK. Case report. *Thelazia lacrymalis* from the eyes of an Ontario horse: Can Vet J. 1970;9:186–9.
14. Arkuckie JB, Khali LF. A survey of thelazia worms in the eyelids of British cattle. Vet Rec. 1978;102:207–10. https://doi.org/10.1136/vr.102.10.207.
15. Höglund J, Ljungström BL, Nilsson O, Lundquist H, Osterman E, Uggl A. Occurrence of *Gasterophilus intestinalis* and some parasitic nemato‑des of horses in Sweden. Acta Vet Scand. 1997;38:157–65. https://doi.org/10.1186/8BF03548495.
16. Beelitz P, Dongus H, Schol H, Gerhards H, Gothe R. *Thelazia lacryma‑lis* (Nematoda, Spurriida, Thelaziidae): report in a horse in Germany and contribution to the morphology of adult worms. Parasitol Res. 1997;83:627–31. https://doi.org/10.1007/s004360050309.
17. Giangaspero A, Tieri E, Otranto D, Battistini ML. Occurrence of *Thelazia lacrymalis* (Nematoda, Spurriida, Thelaziidae) in native horses in Abruz‑zoo region (central eastern Italy). Parasite. 2000;7:51–3. https://doi.org/10.1051/parasite:2000071051.
18. Alsaad KM, Abbas BA, Yaseen J. Keratoconjunctivitis in drought horses in Basrah. Basrah-Iraq Bas J Vet Res. 2010;1:155–63.
19. Arvani D, ShariﬁN, Hashemi SH. First report of isolation and identifica‑tion of *Thelazia lacrymalis* nematodes in horse from Isfahanshahr city. In: Proceedings of the 3rd national congress of equine health and diseases. 29th April–1st May, 2015, Shiraz, Iran, 2015. p. 42.
20. Medi N. *Thelazia lacrymalis* (Gurff, 1831) beim Pferd - epidemiologische und histopathologische Untersuchungen un kritische retrospektive Betrachtung der Klinischen Bedeutung. Inaugural-Dissertation zur Erlangung der medizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians. Munich, Germany; 2007. pp. 39–44.

Received: 22 July 2022 Accepted: 5 October 2022 Published online: 14 November 2022
21. Naem S. Ultrastructural observations on the surface of *Thelazia lacrymalis* (Nematoda: Spirurida. Thelaziidae Acta Vet Hung. 2005;53:205–12.

22. Casiraghi M, Anderson TJ, Bandi C, Bazzocchi C, Gerchi C. A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology. 2001;122:93–103. https://doi.org/10.1017/s003118200007149.

23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. https://doi.org/10.1093/molbev/msy096.

24. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;3:512–26. https://doi.org/10.1093/oxfordjournals.molbev.a040023.

25. Tweedle DM, Fox MT, Gribbons LM, Tennant KV. Change in the prevalence of *Thelazia* species in bovine eyes in England Vet Rec. 2005;18:555–6. https://doi.org/10.1136/vr.157.18.555.

26. Wollanke B, Gerhards H, Pfeighaar S. Chronisch rezidivierende Konjunktivitis infolge *Thelazia lacrymalis* induzierter, chronisch abszedierender Dacryoadenitis bei einem Warmbluthengst. Pferdeheilkunde. 2004;20:131–4.

27. Collobert C, Bernard N, Lamidey C. Prevalence of *Onchocerca* species and *Thelazia lacrymalis* in horses examined post mortem in Normandy. Vet Rec. 1995;136:463–5. https://doi.org/10.1136/vr.136.18.463.

28. Dărăbuș G, et al. Strongilid trichostrongylid digestive. In: Constantin N, Constantinou I, Cosioarbă I, Cozma V, Dărăbuș G, Didă I, et al., editors. Tratat de Medicină Veterinară. București: Risoprint; 2014. p. 648–92.

29. Valiela I. An experimental study of the mortality factors of larval *Musca autumnalis* De Geer. Ecol Monogr. 1969;39:199–225.

30. Hodgkinson ID. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev. 2005;80:489–513. https://doi.org/10.1017/S1464793105006767.

31. Trout Fryxell RT, Moon RD, Bosler DJ, Watson DW. Face fly (Diptera: Muscidae)-biology, pest status, current management prospects, and research needs. J Integr Pest Manag. 2021;12:1–18. https://doi.org/10.1093/jipm/pmaa020.

32. Greenberg Shari M, Plummer CE, Brooks DE, Porter M, Farina LL, Winter MD. Unilateral orbital lacrimal gland abscess in a horse. Vet Ophthalmol. 2011;14:55–60. https://doi.org/10.1111/j.1463-5224.2010.00842.x.

33. Brooks DE, Matthews AG. Equine ophthalmology. In: Gelatt KN, editor. Veterinary ophthalmology. 4th ed. Oxford: Blackwell Publishing; 2007. p. 1165–274.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions