Original Article

Diagnostic and surgical challenges in resection of cerebellar angle tumors and acoustic neuromas

Neal Patel, Jared Wilkinson, Nicholas Gianaris, Aaron A. Cohen-Gadol

Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University, Indianapolis, Indiana, USA

E-mail: Neal Patel – nebpatel@iupui.edu; Jared Wilkinson – wilkinsonj@WUSTL.edu; Nicholas Gianaris – ngianari@iupui.edu;
*Aaron A. Cohen-Gadol - acohenmd@gmail.com
*Corresponding author

Received: 24 October 2011 Accepted: 30 December 2011 Published: 15 February 2012

This article may be cited as:
Patel N, Wilkinson J, Gianaris N, Cohen-Gadol AA. Diagnostic and surgical challenges in resection of cerebellar angle tumors and acoustic neuromas. Surg Neurol Int 2012;3:17.

Available FREE in open access from: http://www.surgicalneurologyint.com/text.asp?2012/3/1/17/92931

Copyright: © 2012 Patel N. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Cerebellopontine angle (CPA) lesions can mimic more common tumors through nonspecific symptoms and radiologic findings.

Methods: To increase the preoperative diagnostic accuracy for CPA pathologies, the authors review the full spectrum of reported CPA lesions.

Results: A wide spectrum of lesions mimics vestibular schwannoma (VS) in the space of the CPA.

Conclusion: The presence of any suspicious clinical and radiographic finding uncharacteristic of VS makes it necessary to maintain a broad differential diagnosis list. Differentiation of CPA lesions, although challenging, may be best achieved by incorporating the clinical history, physical exam findings, audiometry results, and multi-modality imaging studies to construct a comprehensive preoperative knowledge of the lesion. This knowledge will allow improved operative execution and outcomes.

Key Words: Acoustic neuroma, cerebellopontine angle tumor, ependymoma, neurosurgical procedures

INTRODUCTION

Housing 6–10% of all intracranial tumors,[7,8,19,22,36] the cerebellopontine angle (CPA) represents a space bounded by the pons, anterior cerebellum, and petrous temporal bone.[4] CPA lesions most commonly present with symptoms related to the brainstem or cranial nerves compressed by or involved with the lesion and are difficult to differentiate based on clinical presentation alone.[4] Vestibular schwannomas (VSs) comprise 70–90% of all mass lesions within the CPA space.[2,19] After VSs, the next two most common lesions found within the CPA are meningiomas (5–10%) and epidermoid cysts (3–7%).[6,15,17,24,26,30]

The remaining abnormalities found within the CPA account for less than 1% of all lesions in this region, are exceedingly rare, and may be challenging to preoperatively diagnose with accuracy. Although the introduction of various magnetic resonance imaging (MRI) sequences has allowed for an earlier and more accurate diagnosis of intracranial masses, CPA lesions may be misdiagnosed as they can mimic VS and other more common tumors in the area through their nonspecific presenting signs, symptoms, and radiologic findings.

Inaccurate diagnosis may lead to suboptimal treatment strategies. Therefore, to potentially increase the preoperative diagnostic accuracy of clinicians involved
with the care of patients with CPA pathologies, the authors attempt a comprehensive review of the full spectrum of reported CPA lesions.

SPECIFIC TUMOR TYPES

The broad spectrum of unusual lesions within the CPA includes dermoid cysts, lipomas, neurenteric cysts, neuroepithelial cysts, cholesterol granulomas, paragangliomas, chordomas, chondrosarcomas, pituitary adenomas, endolymphatic sac tumors, arachnoid cysts, metastasis, non-vestibular schwannomas, gliomas, lymphomas, ependymomas, papillomas, hemangioblastomas, and medulloblastomas, among others.\[1,3,4,6,7,30\] The authors provide a brief overview of a few selected lesions. The features of other tumors are summarized in Table 1.

Vestibular schwannomas

VSs are benign, slow-growing schwann cell tumors that typically arise from the interior vestibular portion of the VIII cranial nerve.\[4\] VSs do not typically invade surrounding cerebrovascular tissues. Most VSs originate from the VIII cranial nerve in the lateral third of the internal auditory canal, where they grow medially along the line of least resistance, remodeling and expanding the canal and extending into the CPA. In 90% of patients, the initial presenting symptoms entail unilateral sensorineural hearing loss, tinnitus, and imbalance. Atypical symptoms include headache, facial numbness, facial weakness, nausea, vomiting, otalgia, dysarthria, and dysphagia. Facial weakness does not usually appear until the tumor has grown quite large.\[9\]

Resection of large VS may be challenging due to the adherence of the tumor to the surrounding

Table 1: Partial list of tumors found within the cerebellopontine angle

Lesion	MRI T1	MRI T2	Suggestive features	
Meningioma	Isointense to hypointense	Hypointense to variable	Broad base, hemispheric shape; “dural tail”; may appear as lytic or osteoblastic lesions on plain X-ray; usually forms an obtuse angle with the petrous ridge	
Epidermoid cyst	Hypointense	Hyperintense	No	Hyperintense on diffusion-weighted imaging; lobulated margins; produces no reaction of the adjacent bony structures
Dermoid cyst	Hyperintense	Hypointense	No	Midline lesions that rarely invade the CPA laterally; contain elements from all skin layers; T1 images suggestive with fat, calcification, and fat-fluid levels
Arachnoid cyst	Hypointense	Hyperintense	No	Isointense to CSF on all sequences; hypointense on diffusion-weighted imaging; erodes adjacent bone structures
Lipoma	Hyperintense	Isointense to fat	No	Exactly matches signal intensity of fat with all sequences
Facial schwannoma	Hypointense	Hyperintense	Yes	Plain X-rays may show widening of the IAC and fallopian canal expansion; extends much further laterally than acoustic neuromas
Trigeminal schwannoma	Hypointense	Hyperintense	Yes	Follows the anatomical course of the nerve; plain X-ray may demonstrate enlargement of the foramen lacerum/rotundum/ovale or erosion of Meckel’s cave
Aneurysm	Hypointense	Hypointense	Possible	High-flow aneurysms appear as oval or round masses that demonstrate flow void; low signal intensity on T2-weighted imaging is suggestive; thrombosed aneurysms demonstrate high signal intensity on T1
Melanoma	Hyperintense	Isointense or hypointense	Yes	Variable signal intensity on T1- and T2-weighted images in proportion to the amount of melanin
Cholesterol granuloma	Hyperintense	Hyperintense	No	Hypointense rim on T1- and T2-weighted images; arises from the petrous apex and expands into the posterior cranial fossa and produces nerve disturbances; homogenous central high signal intensity on T1-weighted images is very suggestive
Paragangioma	Hypointense	Hyperintense	Yes	Salt-and-pepper appearance, flow voids

Contd...
cerebrovascular structures. However, the tumor does not typically invade the arachnoid membranes and those considered subarachnoid tumors are characterized by the arachnoid membrane remaining on the tumor surface after moving the arachnoid fold. These membranes provide a great opportunity to protect the nerves and vasculature along the brainstem and avoid operative injury. Samii has recommended that if the tumor capsule alone is held with a forceps and tumor dissection is performed at the level of the arachnoid plane, such inadvertent injuries might be avoided.

Radiographically, VS are round or oval lesions that typically enhance after contrast administration and are located either in the internal acoustic canal or protrude into it [Figure 1]. Computed tomography (CT) images usually demonstrate widening of the canal and other bony changes caused by the lesion. Such bony changes confirm the slow growth rate and pressure characterized by the lesion.
by this tumor type. Audiometry classically demonstrates sensorineural impairment with high-frequency hearing loss, resultant poor speech discrimination, and abnormal auditory brainstem responses. None of these radiologic or audiometry findings are specific for VS.

Meningiomas

Meningiomas originate from the cells lining the arachnoid villi that are predominately found along the major venous sinuses of the petrous bone. Meningiomas that occupy the CPA are usually based at the posterior surface of the petrous bone or the petrotentorial junction. Because the anatomical location of meningiomas differs from that of VS, hearing loss tends to occur later in the disease process and other cranial nerves are more frequently involved. Furthermore, facial nerve symptoms are more likely to occur with meningiomas than with VSs when the lesion size is small due to the higher chance that meningiomas can originate from the dura anterior to the porus acusticus and affect the anteriorly located facial nerve in the VII/VIII complex.

Radiographically, CT scan may demonstrate either bony destruction or hyperostosis due to the higher tendency of meningiomas invading the surrounding skull base bone as compared with VS. Meningiomas may present as homogenous masses with a flat base off-center from the internal auditory canal (IAC) although they can invade the IAC and cause its expansion. The presence of calcification and dural tails may be helpful in distinguishing meningiomas from VSs. Both VSs and meningiomas are isointense to hypointense on T1-weighted MRI and are of variable signal intensity on T2-weighted sequences. The rapid progression of symptoms, including facial nerve involvement and weight loss, are strongly suggestive of malignancy. Edema of the adjacent brain parenchyma may be seen in metastatic lesions to the CPA. Multiplicity of the lesion leads the clinician to consider metastasis as a strong consideration of a mass in the CPA. In addition, leptomeningeal involvement on imaging can be another feature of metastatic tumors. The presenting symptoms vary based on the particular location of the mass in the CPA.

Epidermoid cysts

Epidermoid cysts are the third most frequent tumor of the CPA. They encase and surround nerves and arteries rather than displace them. Facial twitching, pain, spasms, and weakness tend to occur earlier and with a relatively higher incidence in epidermoid cysts than with VSs.

Radiographically, epidermoid cysts present as hypodense lesions with irregular margins eccentric to the IAC, which do not enhance with administration of gadolinium and may cause erosion of the petrous apex. They appear hypointense on T1-weighted and hyperintense on T2-weighted MRI. As opposed to arachnoid cysts, which are the primary differential diagnosis for this lesion, epidermoid cysts demonstrate high signal intensity on diffusion-weighted imaging.

Metastatic malignancies

The most common malignant neoplasms in the CPA include breast, lung, skin (melanoma), gastrointestinal, and genitourinary cancers. The rapid progression of symptoms, including facial nerve involvement and weight loss, are strongly suggestive of malignancy. Edema of the adjacent brain parenchyma may be seen in metastatic lesions to the CPA. Multiplicity of the lesion leads the clinician to consider metastasis as a strong consideration of a mass in the CPA. In addition, leptomeningeal involvement on imaging can be another feature of metastatic tumors. The presenting symptoms vary based on the particular location of the mass in the CPA.

Non-vestibular schwannomas

Non-vestibular schwannomas rarely present in the CPA.
These lesions are usually easily distinguished from VSs based on different symptom patterns, neuroanatomic locations, shapes, and relationships within the skull base foramina and canals.[4]

Trigeminal nerve neuromas
Trigeminal neuromas are exceedingly rare tumors.[22] Patients usually present with facial numbness or pain. On imaging, most trigeminal neuromas are located cephalad to VSs, have an anterior–posterior direction in the CPA cistern, and may extend into the Meckel's cave.[4] [Figure 5]. MRI reveals an isointense or hypointense mass on T1 and isointense image on T2-weighted sequences.[23]

Facial nerve neuromas
Eighty percent of facial neuromas involve two adjacent nerve segments and are often dumbbell shaped.[4] Facial nerve schwannomas may be difficult to distinguish from VSs based on their very similar clinical and radiographic presentation.[4,22] Intratemporal facial neuromas may demonstrate fallopian canal expansion.

Lipomas
Lipomas rarely occur within the CPA.[22,29,34] They tend to surround and encase normal adjacent neurovascular structures with dense adhesions and produce progressive focal symptoms.[22] They may present clinically like an acoustic neuroma with asymmetrical hearing loss and tinnitus. Radiographically, they appear as homogeneously hypodense lesions on CT and may cause widening of the IAC. The characteristic feature of a lipoma is its high signal intensity on the unenhanced T1-weighted MRI sequence [Figure 6].[3,22,29,34]

Dermoid cysts
Dermoid cysts may contain fat, hair, or sebaceous glands in addition to squamous epithelium. They are usually midline lesions that rarely invade the CPA laterally. They demonstrate high signal intensity on T1-weighted MRI sequences due to their fatty content and may have a very suggestive fat-fluid level.[3,12,31,36]

Arachnoid cysts
Arachnoid cysts form as a result of splitting and duplication of the arachnoid layers. These lesions can develop secondary to congenital malformation, infection, trauma, increased intraventricular pressure, or embryonic rests.[18,22] These lesions usually present with hearing loss, though atypical cases can present with facial weakness. On imaging, the attenuation and signal intensities for an arachnoid cyst match the CSF almost exactly[3] [Figure 7]. As opposed to epidermoid cysts, which have a high signal intensity on diffusion-weighted imaging, arachnoid cysts, like CSF, have a low signal intensity on diffusion-weighted imaging.[22,23]

Glomus jugulare tumors
Only the largest group of glomus jugulare tumors is found in the CPA, and when they occur, they present...
with pulsative tinnitus, headaches, hearing loss, and disequilibrium along with dysphonia and dysphagia. Conductive hearing loss and a red pulsatile mass behind the tympanic membrane are characteristic signs for this tumor type. In addition to VII and VIII cranial nerve palsies, IX, X, XI, and XII cranial nerve palsies may occur.[22] Arteriography demonstrates the rich, complex blood supply from the external and internal carotid arteries. With selective catheterization of the ascending pharyngeal artery, a dense tumor blush can be seen.[3,4,22,23]

Enhanced MR images reveal an intense enhancement pattern which is most commonly homogenous.

Vascular lesions

Vascular lesions are rare within the CPA but include distal anterior inferior cerebellar artery (AICA) aneurysms,[35] posterior-inferior cerebellar artery (PICA) aneurysms, vascular loops, a distal AICA mycotic fusiform pseudoaneurysm,[10] an intracanalicular arteriovenous malformation, and a cavernous hemangioma.[5,22] On imaging, vascular lesions are often visualized secondarily due to their flow voids; otherwise, the thrombosed lesion may be overlooked. Contrast administration will enhance these lesions when the blood is fast moving, but the lesion will not enhance if the blood is slow moving.[10,24,35]

Inflammatory lesions

Inflammatory lesions of the cranial nerves have demonstrated both focal and diffuse enhancement patterns on neuroimaging and have mimicked VS. These inflammatory lesions have been associated with Bell’s palsy[33] and Ramsey-Hunt syndrome.[13,14,33] Patients usually present with sudden onset of symptoms that localize to cranial nerves V, VII, and/or VIII. Conservative treatment with anti-inflammatory medications, including steroids, will reduce symptoms even though radiographic enhancement remains. In most of the reported cases, diffuse enhancement was noted along the course of the nerves. Lesions such as HIV-associated neurosyphilis may mimic an acoustic neuroma.[5]

Infectious lesions

Numerous case reports have documented infectious etiologies for CPA lesions that mimic VS. For instance, a necrotizing granulomatous inflammatory lesion cultured positive for acid-fast bacilli,[20] sterile abscesses following resection of a VS 13 years earlier,[32] gummas from neurosyphilis, neurocysticercosis in the desert Southwest, and bacterial abscesses secondary to chronic suppurative otitis media have all masqueraded as CPA lesions.[1,32] These diverse infection-related lesions display unique imaging characteristics native to their individual etiology. Generally, abscesses demonstrate hypointensity on T1-weighted sequences due to central fluid collection and reveal minimal hyperintensity on T2-weighted imaging with surrounding edema. The striking feature, which is unique to abscesses, is the rim of intense contrast enhancement in the region of the capsule.[1,32]

Ependymomas

Ependymomas usually arise from the fourth ventricle and its lateral recess and extend into the CPA by means of exophytic growth.[3] However, ependymomas of an extra-axial origin also exist and may grow directly into the CPA. They appear irregular and may invade the cerebellar parenchyma. Radiographically, ependymomas appear as hypointense lesions on T1-weighted imaging and as hyperintense lesions on T2-weighted imaging [Figure 8]. Ependymomas are markedly heterogeneous due to calcification, hemorrhage, cystic components, or necrosis.[3]
MANAGEMENT RECOMMENDATIONS

Except for the inflammatory and infectious lesions, operative intervention remains a reasonable option for other lesions that are causing mass effect on the brainstem and cause corresponding compressive signs and symptoms. Particularly for VSs and other solid lesions, if the lesion is adherent to the important neighboring cerebrovascular structures, a radical resection is contemplated, with a small piece of the tumor left behind to avoid the associated morbidity. With the availability of radiosurgery for the treatment of residual lesions, postoperative morbidity should be minimized.

CONCLUSIONS

A wide spectrum of lesions mimics VS in the space of the CPA. The presence of any suspicious clinical and radiographic findings uncharacteristic of VS makes it necessary to maintain a broad differential diagnosis list. Differentiation of CPA lesions, although challenging, may be best achieved by incorporating the clinical history, physical exam findings, audiometry results, and multimodality imaging studies to construct a comprehensive preoperative knowledge of the lesion. This knowledge will allow improved operative execution and outcomes.

REFERENCES

1. Ahn MS, Jackler RK. Exophytic brain tumors mimicking primary lesions of the cerebellopontine angle. Laryngoscope 1997;107:466-71.
2. Berens ME, Rutka JT, Rosenblum ML. Brain tumor epidemiology, growth, and invasion. Neurosurg Clin N Am 1990;1:1-18.
3. Bonneville F. Unusual Lesions of the Cerebellopontine Angle: A Segmental Approach, in 1999 RSNA Scientific Assembly, 1999.
4. Bonneville F, Savatovsky J, Chiras J. Imaging of cerebellopontine angle lesions: an update. Part 1: Enhancing extra-axial images. Eur Radiol 2007;17:2472-82.
5. Bösel J, Klinebiele R, Schildke E. HIV-associated neurosyphilis mimicking acoustic neurinoma. J Neurol 2006;253:250-2.
6. Brackmann DE, Bartels UJ. Rare tumors of the cerebellopontine angle. Otolaryngol Head Neck Surg 1980;88:555-9.
7. Brunori A, Scarrano P, Chiappetta F. Non-acoustic neuroma tumor (NANT) of the cerebello-pontine angle: A 15-year experience. J Neurol Surg C 1994;41:159-68.
8. Cushing H. Intracranial tumors. Springfield, IL: Charles C Thomas; 1932.
9. Dazer S, Alesee C, Brous D, Mlynski R, Sudhoff H, Hildmann H, et al. Rare tumors of the internal auditory canal. Eur Arch Otorhinolaryngol 2005;262:550-4.
10. Dimaio S, Mohr G, Dufour JJ, Albrecht S. Distal mycotic aneurysm of the AICA mimicking intracanalicular acoustic neuroma. Can J Neurol Sci 2003;30:388-92.
11. Dinh DH, Clark SB, Whitehead M, Amedee R, Bhattacharjee MB. Intracanalicular meningioma. South Med J 2000;93:618-21.
12. Gao PY, Osborn AG, Smirniotopoulos JG, Harris CP. Radiologic-pathologic correlation. Epidermoid tumor of the cerebellopontine angle. AJNR Am J Neuroradiol 1992;13:863-72.
13. Goldsmith P, Zmimitz-Maempel I, Meickle D, Ramsey Hunt syndrome mimicking acoustic neuroma on MRL. J Laryngol Otol 1995;109:1013-5.
14. Han MH, Jabour BA, Andrews JC, Canalis RF, Chen F, Anzai Y, et al. Nonneoplastic enhancing lesions mimicking intracanalicular acoustic neuroma on gadolinium-enhanced MR images. Radiology 1991;179:795-6.
15. Hultschberger WE, Gardner G Jr. Other tumors of the cerebellopontine angle. Arch Otolaryngol 1968;88:712-4.
16. Kohno M, Sato H, Sora S, Miwa H, Yokoyama M. Is an acoustic neuroma an epianar or subarachnoid tumor? Neurosurgery 2001;48:1006-16; discussion 16-7.
17. Laiwani AK. Meningiomas, epidermoids, and other nonacoustic tumors of the cerebellopontine angle. Otolaryngol Clin North Am 1992;25:707-28.
18. Little JR, Gomez MR, MacCarty CS. Infratentorial arachnoid cysts. J Neurosurg 1973;39:380-6.
19. Mahaley MS Jr, Mettlin C, Natarajan N, Laws ER, Jr. Peace BB. Analysis of patterns of care of brain tumor patients in the United States: A study of the Brain Tumor Section of the AANS and the CNS and the Commission on Cancer of the ACS. Clin Neurosurg 1990;36:347-52.
20. Marple BF, Milchbrub S, Meyerhoff WL, Roland PS. Necrotizing granulomatous inflammation of the superior vestibular nerve mimicking an acoustic neuroma. Otolaryngol Head Neck Surg 1998;118:862-5.
21. Michaels L. Origin of congenital cholesteatoma from a normally occurring epidermoid rest in the developing middle ear. Int J Pediatr Otorhinolaryngol 1988;15:51-65.

Figure 8: Ependymomas usually arise from the fourth ventricle and its lateral recess and extend into the cerebellopontine angle (CPA) by means of exophytic growth. However, ependymomas of an extra-axial origin also exist and may grow directly into the CPA. They appear irregular and may invade the cerebellar parenchyma. Ependymomas appear as hypointense lesions on T1-weighted imaging and as hyperintense lesions on T2-weighted imaging (a and b: axial and coronal contrast-enhanced images and c: axial T2-weighted sequence).
22. Moffat DA, Ballagh RH. Rare tumours of the cerebellopontine angle. Clin Oncol (R Coll Radiol) 1995;7:28-41.
23. Moffat DA, Saunders JE, McElveen JT Jr, McFerran DJ, Hardy DG. Unusual cerebello-pontine angle tumours. J Laryngol Otol 1993;107:1087-98.
24. Morris DP, Ballagh RH, Hong A, Moffat DA, Hardy DG. Thrombosed posterior-inferior cerebellar artery aneurysm: A rare cerebellopontine angle tumour. J Laryngol Otol 1995;109:429-30.
25. Morrison AW, King TT. Space-occupying lesions of the internal auditory meatus and cerebellopontine angle. Adv Otorhinolaryngol 1984;34:121-42.
26. Nedzelski J, Tator C. Other cerebellopontine angle (non-acoustic neuroma) tumors. J Otolaryngol 1982;11:248-52.
27. Piedra MP, Scheithauer BW, Driscoll CL, Link MJ. Primary melanocytic tumor of the cerebellopontine angle mimicking a vestibular schwannoma: Case report. Neurosurgery 2006;59:E206, discussion E.
28. Samii M, Gerganov VM, Samii A. Functional outcome after complete surgical removal of giant vestibular schwannomas. J Neurosurg 2010;112:860-7.
29. Saunders JE, Kwartler JA, Wolf HK, Brackmann DE, McElveen JT Jr. Lipomas of the internal auditory canal. Laryngoscope 1991;101:1031-7.
30. Shramek J, Gray L. Tumors of the cerebellopontine angle: Imaging. In: Wilkins R, Rengachary S, editors. Neurosurgery. New York: McGraw-Hill; 1996. p. 1049-63.
31. Smirniotopoulos JG, Chiechi MV. Teratomas, dermoids, and epidermoids of the head and neck. Radiographics 1995;15:1437-55.
32. Srinivasan V, Anandacoomaraswamy KS, Atlas MD. Sterile abscess mimicking recurrent tumour in the cerebellopontine angle. J Laryngol Otol 2002;116:379-81.
33. Tien R, Dillon WP, Jackler RK. Contrast-enhanced MR imaging of the facial nerve in 11 patients with Bell's palsy. AJNR Am J Neuroradiol 1990;11:735-41.
34. Wong ML, Larson TI, Brackmann DE, Lo WW. Lipoma of internal auditory canal. Otolaryngol Head Neck Surg 1992;107:374-6.
35. Zager EL, Shaver EG, Hurst RW, Flamm ES. Distal anterior inferior cerebellar artery aneurysms. Report of four cases. J Neurosurg 2002;97:692-6.
36. Zulch K. Brain Tumours: Their Biology and Pathology. New York: Springer-Verlag; 1957.