Deformation of Singularities via L_∞-Algebras

Frank Schuhmacher

September 4, 2018

Abstract

This is an addendum to the paper “Deformation of L_∞-Algebras” [9]. We explain in which way the deformation theory of L_∞-algebras extends the deformation theory of singularities. We show that the construction of semi-universal deformations of L_∞-algebras gives explicit formal semi-universal deformations of isolated singularities.

Introduction

In this paper, we apply the following general idea for the construction of moduli spaces to isolated singularities: Take the differential graded Lie algebra L describing a deformation problem (for isolated singularities, this is the tangent complex) and find a minimal representative M of L in the class of formal L_∞-algebras (see [9]). In geometric terms, M is a formal DG-manifold, containing the moduli space as analytic substructure. This general concept is also sketched in [7].

We define a functor F from the category of complex analytic space germs to the localization of the category of L_∞-algebras by L_∞-equivalence. For a singularity X, we take the semi-universal L_∞-deformation (V, Q^V) of $F(X)$ constructed in [9]. For isolated singularities, the components V^i are of finite dimension. The restriction of the vectorfield Q^V defines a formal map (Kuranishi-map) $V^0 \to V^1$ whose zero locus gives the formal moduli space.

1 Definitions and reminders

In the whole paper, we work over a ground field k of characteristic zero.

Denote the category of formal (resp. convergent) complex analytic space germs by \mathfrak{Anf} (resp. \mathfrak{An}). Denote the category of isomorphism classes of formal DG manifolds by $\mathsf{DG-Manf}$. We use the following superscripts to denote full subcategories of $\mathsf{DG-Manf}$:

L (“local”): the subcategory of all (M, Q^M) in $\mathsf{DG-Manf}$ such that $Q^M_0 = 0$;

M (“minimal”): the subcategory of all (M, Q^M) in $\mathsf{DG-Manf}^L$ such that $Q^M_1 = 0$;

G (“g-finite”): the subcategory of all (M, Q^M) in $\mathsf{DG-Manf}^L$ such that $H^1(M, Q^M_1)$

*Supported by: Doktorandenstipendium des Deutschen Akademischen Austauschdienstes im Rahmen des gemeinsamen Hochschulsonderprogramms III des Bundes und der Länder
is g-finite.

We call a morphism $f = (f_n)_{n\geq 1}$ in DG-Manf^L \bf weak equivalence, if the morphism f_1 of DG vectorspaces is a quasi-isomorphism, i.e. if the corresponding morphism of L_∞-algebras is an L_∞-equivalence. Recall that by Theorem 4.4 and Lemma 4.5 of \cite{[3]}, weak equivalences define an equivalence relation in DG-Manf^L and that in each equivalence class, there is a uniquely defined \bf minimal model, i.e. an object belonging to DG-Manf^M.

\textbf{Proposition 1.1.} We can localize the category DG-Manf^L by weak equivalences (\approx). The quotient $\text{DG-Manf}^L/\approx$ is equivalent to the category DG-Manf^M and the localization functor assigns to each object of DG-Manf^L its minimal model.

\textit{Proof.} This follows directly by Corollary 2.5.7 of \cite{[7]}. \hfill \square

\section{The functors F and V}

In this section we explain how to represent (formal) singularities by formal DG manifolds.

Let C be the category of formal analytic algebras, $A \in \text{Ob}(C)$ and $R = (R, s)$ a \bf resolvent of A over k, i.e. a g-finite free DG-algebra in $\text{gr}(C)$ such that $H^0(R, s) \cong A$ and $H^j(R, s) = 0$, for $j < 0$. For $l \geq 0$, let I_l be an index set containing one index for each free algebra generator of R of degree $-l$. Consider the disjoint union I of all I_l as graded set such that $g(i) = l$, for $i \in I_l$. Fix an ordering on I, subject to the condition $i < j$, if $g(i) < g(j)$.

Thus, as graded algebra, $R = k[[X^0]][X^-]$, where $X^0 = \{x_i | i \in I, g(i) = 0\}$ and $X^- = \{x_i | i \in I, g(i) \geq 1\}$ are sets of free algebra generators with $g(x_i) = -g(i)$.

Set $M := \coprod_{i \in I} ke_i$ to be the free, graded k-vectorspace with base $\{e_i : i \in I\}$, where $g(e_i) = g(i)$. Consider $S(M) = \coprod_{n \geq 0} M^\otimes_n$ in the usual way as graded coalgebra (see Section 1.1 of \cite{[9]}). Set

$$S(M)^* := \text{Hom}_{k-\text{graded}}(S(M), k) = \prod_{j \geq 0} \text{Hom}_{k-\text{mod}}(M^\otimes_j, k).$$

We identify products $x_{i_1} \cdots x_{i_l}$ in R with the maps $M^\otimes_l \to k$, defined by $e_{i_1} \cdots e_{i_l} \mapsto 1$ and $e_{j_1} \cdots e_{j_l} \mapsto 0$ for $\{j_1, \ldots, j_l\} \neq \{i_1, \ldots, i_l\}$. Especially, we identify each constant $\lambda \in k$ with the map $k \to k$, sending 1 to λ. We have

$$R^j = \prod_{n \geq 0} \text{Hom}^j(M^\otimes_n, k)$$

and $R = \coprod_{j \geq 0} R^j$. The differential s of R extends naturally to $\bar{R} := \coprod_{j \geq 0} R^j$. As complexes, R and \bar{R} are identical, but not as graded modules. We identify $\bar{R} = S(M)^*$. Set

$$\text{Der}(R) := \coprod_{i \in \mathbb{Z}} \text{Der}^i(R, R) \quad \text{and} \quad \text{Coder}(S(M)) := \coprod_{i \in \mathbb{Z}} \text{Coder}^i(S(M), S(M)).$$
Denote \(\text{Diff}(R) \) (resp. \(\text{Codiff}(S(M)) \)) the submodule of differentials (resp. codifferentials). The following proposition explains why, for a formal DG manifold \(W \), the complex \(\text{Coder}(S(W), S(W)) \) is called tangent complex of \(W \).

Proposition 2.1. Take \(R \) and \(M \) as above. The natural map
\[
\text{Coder}(S(M)) \longrightarrow \text{Der}(R), \quad Q \mapsto s^Q
\]
where \(s^Q(g) = g \circ Q \), is bijective and the restriction gives rise to an isomorphism
\[
\text{Codiff}(S(M)) \longrightarrow \text{Diff}(R).
\]

Proof. The injectivity is clear. Surjectivity: A derivation \(s \) of degree \(j \) on \(R \) induces a differential (also denoted by \(s \)) on \(\bar{R} = S(M)^* \). We have to find a coderivation \(Q \) of degree \(j \) on \(S(M) \) such that, for \(u \in S(M)^* \), we have
\[
s^Q(u) = u \circ Q.
\]
For each \(i \in I \), set \(f_i := s(x_i) \). Then, \(f_i \) is a product \((f_i)_n \) \(n \geq 1 \) with \((f_i)_n \) \(\in \text{Hom}^{g(i)+1}(M^\otimes n, k) \). We define the coderivation \(Q \) by
\[
Q_n(m_1, \ldots, m_n) := \sum_{i \in I} (f_i)_n(m_1, \ldots, m_n) \cdot e_i,
\]
for homogeneous \(m_1, \ldots, m_n \in M \). In fact, the non-vanishing terms in the sum satisfy the condition \(g(m_1) + \ldots + g(m_n) = g(i) \), hence the sum is finite. To show that for \(u \in S(M)^* \), we have \(s(u) = u \circ Q \), it is enough to show that for all \(i \in I \), \(s(x_i) = x_i \circ Q \). But by definition, for \(m_1, \ldots, m_n \in M \), we have
\[
(x_i \circ Q)_n(m_1, \ldots, m_n) = (f_i)_n(m_1, \ldots, m_n) = (s(x_i))(m_1, \ldots, m_n).
\]
The second statement is a direct consequence of the first. \(\square \)

As consequence, the differential \(s \) on \(R \) induces a codifferential \(Q^M \) on \(S(M) \).

We consider the pair \((M, Q^M)\) as formal DG manifold in \(\text{DG-Manf}^k G \). It has the following property: The restriction of \(Q^M \) to \(M^0 \) defines a formal map \(M^0 \longrightarrow M^1 \). Its zero locus is isomorphic to \(X \).

Summarizing the above construction, to each formal space germ \(X \) with associated formal analytic algebra \(A \), we can construct a formal DG manifold \((M, Q^M)\), containing \(X \) as “subspace”. Of course, \((M, Q^M)\) depends on the choice of the resolvent \((R, s)\). But we will show that \((M, Q^M)\) is well defined up to weak equivalence, i.e. that the assignment \(X \mapsto (M, Q^M) \) defines a functor
\[
F : \text{Anf} \longrightarrow \text{DG-Manf}^k G/ \approx
\]

Lemma 2.2. If \(W = (W, d) \) is a DG \(k \)-vectorspace and if the dual complex \(\text{Hom}(W, k) \) is acyclic, then \(W \) is acyclic. Consequently, if \(f : V \longrightarrow W \) is a morphism of DG \(k \)-vectorspaces such that the dual complex \(f^* : W^* \longrightarrow V^* \) is a quasi-isomorphism, then \(f \) is a quasi-isomorphism.
Proof. Assume that M is cyclic, i.e. there is an n and an element $a \in M^n$ such that $d^n(a) = 0$ and $a \notin \text{Im} d^{n-1}$. Let B' be a base of $\text{Im} d^{n-1}$. We extend $B' \cup \{a\}$ to a base B of M^n. Let $p : M^n \to k$ be the projection on the coordinate a of B. Then, $d^n(p) = p \circ d^{n-1} = 0$ and $p(a) = 1$, hence $p \notin \text{Im} d^n$. Contradiction! □

Lemma 2.3. Let $f : M \to M'$ be a morphism of formal DG-manifolds such that the corresponding map $S(M) \to S(M')$ is a quasi-isomorphism of complexes. Then, f is a weak equivalence.

Proof. By the Decomposition Theorem for L_∞-algebras (see Lemma 4.5 of [3]), we may assume that M is minimal and that f is strict. In this case, the homomorphism $f : S(M) \to S(M')$ of DG coalgebras is a direct sum of maps of complexes $f_1 : M \to M'$ and

$$\sum_{j \geq 2} f_1^{\otimes j} : \prod_{j \geq 2} M^{\otimes j} \to \prod_{j \geq 2} M'^{\otimes j}.$$

Since the sum is a quasi-isomorphism, both factors are quasi-isomorphisms. □

Corollary 2.4. Let $F : (M, Q^M) \to (M', Q^{M'})$ be a morphism of formal DG manifolds in DG-Man^G and suppose that the dual map $S(M')^* \to S(M)^*$ is a quasi-isomorphism of free DG algebras, then F is a weak equivalence.

Proof. This follows by Lemma 2.2 and 2.3. □

Thus, we have proved the functoriality of F. Next, we define a functor

$$V : \text{DG-Man}^{GM} \to \text{Anf}$$

as already mentioned above: For a minimal DG manifold (M, Q^M) in DG-Man^{MG}, set $V(M, Q^M)$ to be the zero locus of the formal map $M^0 \to M^1$, induced by Q^M. It can easily be seen that the composition $V \circ F$ is the identity on Anf. As a consequence, we get the following theorem:

Theorem 2.5. The functor F embeds Anf as full subcategory into DG-Man^{GM}.

3 Deformations and embedded deformations

In this section we recall some classical results, showing that each deformation of a singularity is equivalent to an embedded deformation.

A morphism $G : C \to D$ of fibered groupoids over the category An of complex space germs is called smooth if the following condition holds: If $\beta : b \to b'$ is a morphism in D such that $G(\beta) : S \to S'$ is a closed embedding, and if a is an object in C such that $G(a) = b$, then there is a morphism $\alpha : a \to a'$ in C such that $G(\alpha) = \beta$.

Consider a complex space germ X with corresponding analytical algebra O_X. Suppose that X is embedded in the smooth space germ P with corresponding
analytic algebra R^0. Let $R = (R, s)$ be a g-finite, free algebra resolution of O_X such that $R^0 = O_P$.

For any space germ (S, O_S), set $R_S := R \otimes_C O_S$ and

$$C(S) := \{ \delta \in \text{Der}^1(R_S, R_S) \mid \delta(0) = 0 \text{ and } (s + \delta)^2 = 0 \}$$

Furthermore, let $D(S)$ be the equivalence class of deformations of X with base S, i.e., the equivalence class of all flat morphisms $X \rightarrow S$ such that there is a cartesian diagram

\[
\begin{array}{ccc}
X & \rightarrow & X' \\
\downarrow & & \downarrow \\
\ast & \rightarrow & S
\end{array}
\] (3.1)

Then, C and D are fibered groupoids over \mathfrak{An} and we define a morphism $G : C \rightarrow D$ as follows: For $\delta \in C(S)$, let X be the space germ with $O_X = H^0(R_S, \delta + s)$ and $X \rightarrow S$ the composition of the closed embedding $X \rightarrow S \times P$ and the canonical projection $S \times P \rightarrow S$. Obviously, there is a cartesian diagram (3.1). I.e. $G(\delta) := X \rightarrow S$ is a deformation of X. We want to remind the proof of the well-known fact that G is smooth.

Let (A, m) be a local analytic algebra, B a graded, g-finite free A-algebra and C a flat DG-algebra over A. For A-modules M, we set $M' := M \otimes_A A/m$. The following statement is a special case of Proposition 8.20 in Chapter I of [1]:

Proposition 3.1. Let $\nu' \in \text{Der}_{B'}(B', B')$ be a differential and $\phi' : B' \rightarrow C'$ a surjective quasi-isomorphism of DG-algebras over A'. Then, there is a differential $\nu \in \text{Der}_B(B, B)$, lifting ν' and a surjective quasi-isomorphism $\phi : B \rightarrow C$ of DG-algebras, lifting ϕ'.

Corollary 3.2. For all S in \mathfrak{An}, $G(S) : C(S) \rightarrow D(S)$ is surjective.

Proof. For $X \rightarrow S$ in $D(S)$, we have to find a O_S-derivation $\delta : R_S \rightarrow R_S$ of degree 1 with $\delta(0) = 0$ such that $\delta + s$ is a differential and a surjective quasi-isomorphism $(R_S, \delta + s) \rightarrow O_X$. Since $R_S \otimes_{O_S} C = R$ and $O_X \otimes_{O_S} C = O_X$, the existence follows by Proposition 3.1.

Corollary 3.3. G is smooth.

Proof. We have to show that for each $\delta \in C(S)$ and each morphism

\[
\begin{array}{ccc}
X := V(S \times P, \delta + s) & \rightarrow & X' \\
\downarrow & & \downarrow \\
S & \rightarrow & S'
\end{array}
\]

of deformations of X, there exist $\delta' \in C(S')$ such that $G(\delta') = X'$ and a cartesian diagram

\[
\begin{array}{ccc}
(R_S', \delta' + S) & \rightarrow & (R_S, \delta + s) \\
\downarrow & & \downarrow \\
O_{S'} & \rightarrow & O_S
\end{array}
\]
Setting $A := O_{S'}$, this follows by Proposition 3.1

In the literature (see [1], for instance), the deformation functor is defined such that a space germ S maps to the quotient of $C(S)$ by the Lie group, associated to the Lie algebra $\text{Der}^0(R_S, R_S)$. In fact, G factors through this quotient and the first factor is even "minimal smooth". For the construction here, we don’t need to consider this group action to get semi-universal deformations. One can say that the group action is replaced by the going - over to a minimal model.

4 A formal semi-universal deformation

In this section, we apply the new method for the construction of a formal semi-universal deformations to isolated singularities X. Let $(M, Q^M) := F(X)$ be the formal DG-manifold in $\text{DG-Manf}^M G$, assigned to the space germ X. As in Section 2 denote the resolvent of $A = O_X$, having $S(M)$ as completion, by (R, s).

By Theorem 5.13 of [9], there is a semiuniversal deformation (V, Q^V, Q) of (M, Q^M). Recall that as graded modules $V = H[1]$, where H denotes the cohomology of $\text{Coder}(S(M), S(M))$, i.e. the tangent cohomology of X. It is well-known that H is g-finite.

We apply the functor V to the morphism $(V \times M, Q^V + Q^M + Q) \rightarrow (V, Q^V)$ and get a morphism $Y \rightarrow Y$ in Anf.

Theorem 4.1. The morphism $Y \rightarrow Y$ is a formal semi-universal deformation of the space germ X.

Proof. Let

\[
\begin{array}{c}
\tilde{X} \\
\downarrow \\
S \\
\end{array}
\quad
\begin{array}{c}
X \\
\downarrow \\
S \\
\end{array}
\]

be any formal deformation of X. By Corollary 3.3 there is a morphism of the deformation $X \rightarrow S$ to an embedded deformation $\tilde{X} \rightarrow S$, where \tilde{X} is such that $C_{\tilde{X}} = H^0(R_S, s + \delta)$, for a certain $\delta \in C(S)$ (see Section 3). I.e. there is a cartesian diagram

\[
\begin{array}{c}
\tilde{X} \\
\downarrow \\
S \\
\end{array}
\rightarrow
\begin{array}{c}
X \\
\downarrow \\
S \\
\end{array}
\]

Set $(B, Q^B) := F(S)$. By Proposition 2.1 to δ, there corresponds a coderivation Q_δ in $\text{Coder}^{+1}(S(B \times M), S(B \times M))$, defining a deformation (B, Q^B, Q_δ) of (M, Q^M). Since (V, Q^V) is semi-universal, there is a morphism

\[
\begin{array}{c}
(B \times M, Q^B + Q^M + Q_\delta) \\
\downarrow \\
(B, Q^B) \\
\end{array}
\rightarrow
\begin{array}{c}
(V \times M, Q^V + Q^M + Q) \\
\downarrow \\
(V, Q^V) \\
\end{array}
\]
of deformations. Application of the functor V gives a cartesian diagram

$$
\begin{array}{ccc}
\tilde{X} & \rightarrow & Y \\
\downarrow & & \downarrow \\
S & \rightarrow & Y
\end{array}
$$

which obviously respects the distinguished fiber $X \rightarrow \ast$. This shows that $\mathcal{Y} \rightarrow Y$ is versal. Since Y is a formal analytic subgerm of $V^0 = H^1$, we have $\dim(TY) \leq \dim H^1$. Thus, necessarily $\mathcal{Y} \rightarrow Y$ is semi-universal (see Chapter 2.6 of [8]).

□

References

[1] Jürgen Bingener; Siegmund Kosarew: *Modulräume in der analytischen Geometrie*, Vieweg (1987)

[2] Siegmund Kosarew: *Local moduli spaces and Kuranishi maps*, Manuscr. Math. 110, No.2, 237-249 (2003)

[3] Maxim Kontsevich: *Deformation quantization of Poisson manifolds I*, preprint q-alg/9709040

[4] Lada, Tom; Markl, Martin *Strongly homotopy Lie algebras* (English) Commun. Algebra 23, No.6, 2147-2161 (1995)

[5] Manetti: *Deformation of singularities via differential graded Lie algebras*, notes (2001)

[6] S.A. Merkulov: *Frobenius ∞ invariants of homotopy Gerstenhaber algebras I*, Duke Math. J. 105 (2000), 411-461

[7] S.A. Merkulov: *Operads, deformation theory and F-manifolds*, preprint AG/0210478

[8] Palamodov: *Deformations of complex spaces*, in Gindikin; Khenkin: Several complex variables IV, Encyclopaedia of mathematical sciences, vol. 10, Springer (1990) pp. 105-194

[9] Frank Schuhmacher: *Deformation of L_∞-algebras*, preprint QA/0405485

Institut Fourier
UMR 5582
BP 74
38402 Saint Martin d'Hères
France

frank.schuhmacher@ujf-grenoble.fr