Research and Analysis of Generalized Predictive Identification Algorithm Based On Nonlinear System in Control Field of Hydropower Industry

Xiaoping Gou¹, Wanjun Zhang²,³,⁴, *, Feng Zhang¹, Jingxuan Zhang¹, Jingyi Zhang² & Jingyan Zhang²

¹School of Physical Education, Longdong University, Qingyang 745000, China
²Gansu ZeDe Electronic Technology Company Limited, Gansu 741003, China
³Lanzhou Industry and Equipment Company Limited, Gansu 730050, China
⁴Xi’an Jiaotong University, 710049, Shaanxi, China.

*Corresponding author e-mail: zhang_wanjun@xjtu.edu.cn

Abstract. Due to the uncertainties, constraints, nonlinearity and the correlation among variables in the control of hydropower industry, it is difficult to obtain the accurate mathematical model. In this paper, a generalized predictive identification algorithm based on the nonlinear system in the control field of hydropower industry is presented, and a model of the generalized predictive identification algorithm based on the nonlinear system in the control field of hydropower industry is established by simulation. The simulation results show that the algorithm is robust, can effectively overcome the system delay, and can be applied to the open-loop unstable non-minimum phase system. It has strong applicability in the field of electric industry control and can produce good economic benefits.

Keywords: Control field of hydropower industry; nonlinear system; Generalized Prediction; identification algorithm; research and analysis.

1. Introduction

Due to the uncertainties, constraints, nonlinearity and the correlation between variables in the control of hydropower industry, it is difficult to obtain accurate mathematical model. In order to make up the gap between theory and practical application, we can find the breakthrough point between theory and practical application [1-13]. According to the requirements of industrial process, we can find a simple, high-precision and easy to calculate and derive model in theory [14-20]. These models can be combined with some optimization methods to achieve good control results. Therefore, the actual industrial demand promotes the emergence of new theories. Predictive control (1) is a new type of computer optimal control algorithm which adapts to these requirements and develops.

Hydropower units are widely distributed in modern power system, which have extremely complex nonlinear characteristics of hydro mechanical electrical coupling [21-33]. They play a key role in energy supply, peak load regulation and emergency reserve. The safe, stable and efficient operation of hydropower units is of great significance to improve the power quality and maintain the stability of the power system. In recent years, with the large capacity units and pumped storage units widely put into
operation, the hydropower units show the development trend of large capacity and complex structure, which makes the control of the unit regulation system more and more complex. In order to improve the control performance of the unit and the stability of the unit under complex operating conditions [34-43], it is necessary to study the advanced control theory and method of the regulating system of the hydropower unit.

The least square (LS) method is a widely used mathematical tool in the system parameter estimation [44-56], which has the advantages of easy understanding, fast convergence and concise program.

In this paper, a generalized predictive identification algorithm based on the nonlinear system in the control field of hydropower industry is presented, and the model of the generalized predictive identification algorithm based on the nonlinear system in the control field of hydropower industry is established. The simulation results show that the algorithm is robust, can effectively overcome the system delay, and can be applied to the open-loop unstable non minimum phase system. It has strong applicability in the field of electric industry control and can produce good economic benefits.

2. Nonlinear model in control field of hydropower industry

The model of mould liquid level system is discretized into the following model [30-33]:

\[A(z^{-1})y(k) = B(z^{-1})u(k-d) + C(z^{-1})\omega(k)/\Delta \]

(1)

In the traditional generalized predictive control, \(\xi(k) \) is the white noise sequence with zero mean value in the model Formula (1), and \(\omega(k) \) is the colored noise caused by pulling speed in the mould liquid level control system. Therefore, in order to conform to the generalized predictive control model, the colored noise needs to be processed. The specific method is to generate \(H(z^{-1}) \), i.e. \(\xi(k) \), through a linear link \(\omega(k) = H(z^{-1})\xi(k) \). Nonlinear model in control field of hydropower industry, as is shown in the Figure.1.

\[A(z^{-1})y(k) = B(z^{-1})u(k-d) + C(z^{-1})\xi(k)/\Delta \]

(2)

Subject to the following:

Fig.1 Nonlinear model in control field of hydropower industry.

At this time, the model is transformed into:

\[A(z^{-1})y(k) = B(z^{-1})u(k-d) + C(z^{-1})\xi(k)/\Delta \]

Subject to the following:
\[y'(k) = H(z^{-1}) \cdot y(k) \] (3)

\[u'(k) = H(z^{-1}) \cdot u(k) \] (4)

3. Generalized predictive identification algorithm for Nonlinear Systems

On the basis of the new model obtained from the transformation, the output predictive value is derived from the generalized predictive control:

\[\hat{Y}' = G\Delta U' + f' \] (5)

\[\hat{Y}' = [\hat{y}(k+1), \hat{y}(k+2), \ldots, \hat{y}(k+N)]^T \] (6)

\[\Delta U' = [\Delta u(k), \Delta u(k+1), \ldots, \Delta u(k+N_u+1)]^T \] (7)

\[f' = [f(k+1), f(k+2), \ldots, f(k+N)]^T \] (8)

In the formula: model of mould liquid level system is discretized into the following model.

Because there may be model mismatch, random interference and other factors between the actual system and the prediction model, only using Equation (8) for state prediction will have some deviation from the actual situation. Therefore, in the sampling period of each controller, it is necessary to feedback and correct the state prediction value according to the real-time state information of the system. In this paper, the product of real-time system error and correction coefficient is used as the feedback correction method. The feedback correction formula is shown in Equation (9):

\[
G = \begin{bmatrix}
g_0 & 0
g_1 & g_0 & \ddots
\vdots & \vdots & \ddots & \vdots
g_{N-1} & g_{N-2} & \cdots & g_0
\end{bmatrix}
\] (9)

The main constraints that affect the control system are the velocity constraints and the range constraints of the actuator. Therefore, it is transformed into the control increment and control quantity constraints in the performance index of GPC. At this time, the optimized performance index is:

\[
\min J(k) = E \left\{ \sum_{j=d}^{N} \left[f(k+j) - \omega (k+j) \right]^2 + \sum_{j=1}^{N_u} \lambda(j)[\Delta u(k+j-1)]^2 \right\}
\] (10)

\[
s.t. \begin{cases}
\Delta u_{\min} \leq \Delta u(k+j-1) \leq \Delta u_{\max}, & j = 1, 2, \ldots, N_u
u_{\min} \leq u(k+j-1) \leq u_{\max}, & j = 1, 2, \ldots, N_u
\end{cases}
\] (11)

\(N\) is the maximum prediction length, \(N_u\) is the control length, \(\omega\) is the expected value, and \(\lambda(j)\) is the control weighting coefficient.
4. Simulation and Analysis

Simulation example

According to the mold control system of a casting plant, the simulation research is carried out. Known field parameters are: the cross-sectional dimension of the mold is 230mmx1450mm, the height of the mold is 904mm, the natural frequency of the red control system of the hydraulic valve is $141.3\, \text{rad/s}$, the bulk modulus of elasticity of the red control system of the hydraulic valve is 700MPa, the casting temperature is 15570C, the effective flow area coefficient of the tundish valve is $a = 0.5, b = 1.1$, and the molten steel injection coefficient is $C_v = 0.57$. Combined with the process conditions of field production, the Generalized Prediction Model polynomials are obtained by model identification.

\begin{align}
A\left(z^{-1}\right) &= 1 - 2.1249z^{-1} + 0.4073z^{-2} + 0.04944z^{-3} - 0.72944z^{-4} \\
B\left(z^{-1}\right) &= 0.1249z^{-1} + 0.4073z^{-2} + 0.04944z^{-3} \\
C\left(z^{-1}\right) &= 1, d = 1
\end{align}

Among them, the parameters of predictive controller are $N = 3$, $N_u = 2$, $\lambda = 0.35$; the initial population of genetic algorithm is encoded by floating-point number, with 70 initial population, the probability of crossover and mutation is 0.6 and 0.025 respectively, and the genetic algebra is 120; the control quantity constraint is $-70 \leq u \leq 70$; the control increment constraint is $-10 \leq \Delta u \leq 10$; and the set value is $\omega = 50$mm. The simulation results are based on the application of the described algorithm process.

5. Simulation and Analysis

In this paper, a generalized predictive identification algorithm based on the nonlinear system in the control field of hydropower industry is presented, and the model of the generalized predictive identification algorithm based on the nonlinear system in the control field of hydropower industry is established.

Generalized predictive frequency regulation mode control, Generalized predictive identification for Nonlinear Systems ,Nonlinear predictive model identification control , as is shown in the Figure.1~3.

![Figure 2](image-url)
Fig.2 Generalized predictive frequency regulation mode control.
The simulation results show that the algorithm is robust, can effectively overcome the system delay, and can be applied to the open-loop unstable non minimum phase system.
In Figure 5～8, simulation results show that the algorithm is robust, can effectively overcome the system delay, and can be applied to the open-loop unstable non minimum phase system. It has strong applicability in the field of electric industry control and can produce good economic benefits.
6. Summary
In this paper, a generalized predictive identification algorithm based on the nonlinear system in the control field of hydropower industry is presented, and the model of the generalized predictive identification algorithm based on the nonlinear system in the control field of hydropower industry is established. The simulation results show that the algorithm is robust, can effectively overcome the system delay, and can be applied to the open-loop unstable non minimum phase system. It has strong applicability in the field of electric industry control and can produce good economic benefits.

Acknowledgements
The authors thank the financial supports from National Natural Science Foundation of China(Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX040001-181).

Communication author: Wanjun Zhang received the, M.S. and Ph.D. degrees from ,Lanzhou University of technology , Xi'an Jiaotong University, in 2011 and 2019, respectively. I am currently an associate professor in the School of Mechanical Engineering, Xi'an Jiaotong University, I am currently an Senior Engineer and Senior economist in Gansu ZeDe Electronic Technology Company Limited.His research involved in artificial intelligence, NC, control of complex mechatronic system and failure diagnoses.

Zhang Wanjun, Male, doctor of Engineering (Bachelor of law, Bachelor of Management),senior engineer (senior engineer),senior economist (mechanical engineer, senior technologist),senior member of the Mechanical Engineering, senior member of the agricultural machinery, senior member of the Mechanical Engineering, senior member of the China Electronics Society, senior member of the China electrotechnical society, senior member of the China Instrumentation Society, member of China Invention Society, board member of China Invention Society, board member of Gansu Invention Society, member of Expert Committee of Modern Manufacturing Engineering (Chinese core, science and technology core) , mainly engaged in numerical control technology equipment, control engineering (identification engineering, pattern recognition) , new energy research and electromechanical transmission control and so on. The total number of patents granted has reached more than 600, of which more than 280 patents for inventions and utility models have been granted in the capacity of the first applicant (patentee) and the inventor, as the first applicant (the patentee) and the inventor, more than 380 design patents are granted, more than 70 academic papers are published in journals above the core, and more than 50 papers are retrieved by SCI/EI/ISTP, among which more than 70 are by EI and 5 are by SCI, E-mail:gszwj_40@163.com.

References
[1] Chen Diyi,Yang Pengchao, Ma Xiaoyi,et al.Chaos of Hydro-turbine governing system and its control [J].Proceedings of the CSEE, 2011, 31(14): 113-120.
[2] Song Zhiqiang,LiuYunhe, Ma Zhenyue.Prototype coupled-vibration test of generator set and power-house and FEM feedback analysis[J].Journal of Hydroelectric Engineering, 2007, 26(6): 126-131.
[3] Gou xiaoping,Zhang Wanjun,ZhangFeng,et,al. Research on Fuzzy PID Control of Physical Exercise Supporting Robot Speed Control System [J].Materials Science and Engineering, 2019,11,Vol. 782:2052-2059.
[4] Gou xiaoping,Zhang Wanjun,ZhangFeng,et,al. Research on Key Technologies of Elders Exoskeleton Robot Assisted by Physical Exercise Based on Fuzzy PID Control [J].Materials Science and Engineering, 2019,11,Vol. 782:2052-2059.
[5] Olanrewaju M J, Huang B, Afacan A. Online composition estimation and experiment validation of distillation processes with switching dynamics [J]. Chemical Engineering Science, 2010, 65(5): 1597-1608.
[6] Combes P P, Duranton G, Gobillon L. The identification of agglomeration economies [J]. Journal of Economic Geography, 2011, 11(2): 253-266.
[7] Shi Z K, Wu F X. Robust identification method for nonlinear model structures and its application to high-performance aircraft [J]. International Journal of Systems Science, 2013, 44(6): 1040-1051.

[8] Dorobantu A, Murch A, Mettler B, Balas G. System identification for small, low-cost, fixed-wing unmanned aircraft [J]. Journal of Aircraft, 2013, 50(4): 1117-1130.

[9] Wu Zaixin, Zhang Wanjun, Hu Chibing, et al. Research on NURBS curve modified interpolation for CNC system [J]. Chinese Journal of Manufacturing Automation, 2011, 33(22): 48-50.

[10] Zhang Wanjun, Hu Chibing, Zhang Feng, et al. Honing machine motion control card three B spline curve interpolation algorithm [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2012(8): 80-82.

[11] Zhang Wanjun, Hu Chibing, Zhang Feng, et al. Modification algorithm of Three B Spline curve interpolation technology [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2013(02): 147-150.

[12] Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Fuzzy Control of Wind Turbine Based on Directional Power Conversion [J]. Electric Power Construction, 2014, 10(10): 13-16.

[13] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on modification algorithm of Cubic B-spline curve interpolation technology [J]. Applied Mechanics and Materials, Vol. 687-691, pp. 1596-1599, December 2014.

[14] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on a algorithm of adaptive interpolation for NURBS curve [J]. Applied Mechanics and Materials, Vol. 687-691, pp. 1600-1603, December 2014.

[15] Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Research on NURBS curve of timing/interrupt interpolation algorithm for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2015(04): 210-214.

[16] Zhang Wanjun, Zhang Feng, Zhang Wanliang. Research on high-grade CNC machines tools CNC system for B-Spline curve method of High-speed real-time interpolation arithmetic [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2015(08): 179-183.

[17] Zhang Wanjun, Hu Chibing, Zhang Feng, et al. Finite Element Analysis and Structural Optimization on the Fasteners Testing Head of Wind Power Equipment [J]. Chinese Journal of Mechanical Research & Application, 2016(04): 19-22.

[18] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Application of PLC in the air driven control system [J]. Chinese Journal of Manufacturing Automation, 2017, 39(05): 49-51, 58.

[19] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on NURBS interpolation algorithm based on Newton—Raphson iteration method [J]. Chinese Journal of Industrial Instrumentation & Automation, 2017, 39(05): 49-51, 58.

[20] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on fuzzy control of reference model of brushless DC motor system [J]. Chinese Journal of Industrial Instrumentation & Automation, 2018, (05): 130-134.

[21] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on Cross-coupled Contour Error Compensation Technology of CNC Machine Tool with Multi Axis Linkage [J]. Machine Tool & Hydraulics, 2019, 47(2): 1-5.

[22] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Study on System Recognition Method for Newton-Raphson Iterations [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 130-135.

[23] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Modeling and identification of system model parameters based on information granularity method [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 114-118.

[24] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Optimization of identification structure parameters based on recursive maximum likelihood iteration [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 119-124.
[25] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Parameter optimization and model identification of identification model control based on improved generalized predictive control [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 125–129.

[26] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Cross coupled contour error compensation technology [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 032031:1-5.

[27] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on the vector control system based on the difference frequency of wind turbine generator [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 042020:1-9.

[28] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028:1-14.

[29] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Flow field analysis and parameter optimization of main and measured nozzles of differential pressure type gas momentum instrument based on CFD [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028:1-12.

[30] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on a Kind of Adaptive Fuzzy Control Method and Its Application in Feeding System of CNC Honing Machine [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042076:1-8.

[31] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Application of PLC in Pneumatic Measurement Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042074:1-11.

[32] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research and Analysis on the Identification Model of Multivariate Economic System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 022061:1-11.

[33] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Identification and Analysis of Economic Model Based on Longnan Southeast [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 032058:1-8.

[34] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Based on Brushless DC Motor of Fuzzy and PID Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042075:1-10.

[35] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Application of digital image processing technology in polyaniline deposition on the surface of carbonyl iron powder [J]. Earth and Environmental Science, 2018, 12, Vol. 252:491-500.

[36] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Effect of space stabilizer on in-situ deposition of polyaniline on carbonyl iron powder [J]. Earth and Environmental Science, 2018, 12, Vol. 252:501-509.

[37] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. One-dimensional mathematical model of coal combustion in furnace and its simulation [J]. Earth and Environmental Science, 2018, 12, Vol. 252:1822-1833.

[38] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on Fuzzy Control Based on Directional Power Conversion of Wind Generator [J]. Earth and Environmental Science, 2018, 12, Vol. 252:1912-1923.

[39] Avlyanov J K, Josefowicz J Y, MacDiarmid A. G. Atomic force microscopy surface morphology studies of in situ deposited polyaniline thin films [J]. Synth Met, 1995, 73:205-208.

[40] Mac Diarmid A. G. Progress on the study of polyaniline [J]. Synth Met.1997, 84:27-32.

[41] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research and analysis on parameter identification of model system based on running, gymnastics and other physical exercise population [J]. Earth and Environmental Science, 2020, 3, Vol. 612: 2048-2058.

[42] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research on Simulation and Analysis of Monitoring Process of Hail-proof Apple Bagging Four-rotor Aircraft [J]. Materials Science and Engineering, 2019, 11, Vol. 612: 3826-3837.

[43] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Study on Quality Characteristics and Feasibility
Analysis of Hail-proof Plastic Bagging of 5000 Mu in Gansu[J].Earth and Environmental Science, 2020,3,Vol. 612: 2038-2040.

[44] Gou xiaoping,Zhang Wanjun,ZhangFeng,et,al. Study on the Structure Design and Feasibility Analysis of Apple Inhaled Box Bags Based on Hailproof[J].Earth and Environmental Science, 2018,12,Vol. 252:3826-3837.

[45] Gou xiaoping,Zhang Wanjun,ZhangFeng,et,al. Feasibility Analysis of Auxiliary Training Device for Backhand Turnover Based on Middle School Tumblers[J].Advances in Computer,Signals and Systems,2019,9,Vol.10:252-260.

[46] Gou xiaoping,Zhang Wanjun,ZhangFeng,et,al. Research and Simulation of Table Tennis Track Prediction Based on Double Concave Round Table Tennis[J].Advances in Computer,Signals and Systems, 2019,9, Vol.10:261-270.

[47] Gou xiaoping,Zhang Wanjun,ZhangFeng,et,al. Based on the Physiological Performance Test of Sprinters Through Indoor Treadmill [J].Materials Science and Engineering, 2019,11,Vol. 612:3826-3837.

[48] Zhang Wanjun,Gao Shanping,Zhang Sujia. Modification algorithm of NU R BS curve interpolation [J].Advances in Engineering Research,2016, 83(12) : 507-512.

[49] Zhang Wanjun, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B- spline curve interpolation [J].Advances in Engineering Research,2016,83 (12):513 -518.

[50] Zhang Wanjun,Gao Shanping,Zhang Sujia. Modification algorithm of NU R BS curve interpolation [C] //2016 4th International Conference on Machinery,Materials and Information Technology Applications,2016:507 -512.

[51] Zhang Wanjun,Gao Shanping,Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation [C] //2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016:513 -518.

[52] Zhang Wanjun,Gao Shanping,Zhang Sujia. A improved algorithm of three B -spline curve interpolation and simulation [J] .Advances in Materials, Machinery, Electronics I, 2017(2):41 -46.

[53] Yang Chunhua,Zhang Wanjun, Gou xiaoping,et,al.Research and Analysis on Adaptive Model Identification of System Parameters Based on Sports Safety Model for Children with Different Physique[J].Materials Science and Engineering, 2020,5,Vol. 612:3816-3822.

[54] Guo Qiurong,Zhang Wanjun,Gou xiaoping,et,al. Research on parameter system identification characteristics of physical exercise population in Gansu Province Based on walking and Taijiquan [J].Materials Science and Engineering, 2020,5,Vol. 612:3826-3835.

[55] Bao Haiyan,Yang Jiandong,Li Jinping, et al .Discussion on the setting condition of surge chamber based on operation stability of hydropower station[J].Journal of Hydroelectric Engineering,2011,30(2):44-48.

[56] Shen Zuyi,Hydraulic Turbine Regulation [M] .Beijing:China Water Power Press, 2008.