Environmental Risk Assessment of a Water Diversion Project for Improving the Water Quality of Chaohu Lake: A Case Study

Xiaodong Liu¹, Lingqi Li¹, Zulin Hua¹, Siwei Peng¹, Dingyi Shen¹ and Ting Yang¹

1 College of Environment Hohai University (HHU) Xikang Road 1 Nanjing 210098
P.R. CHINA
E-mail: xdliu@hhu.edu.cn

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China

Abstract. New method for assessing the environmental risk of water diversion projects is proposed. Fault tree analysis was used to identify risk sources. The project route was divided into four regions: water source region, conveyance region, receiving water region, and drainage region. According to the different characteristics of the four regions, a risk evaluation index system and a multi-layer fuzzy comprehensive evaluation model were established. The results indicated that the environmental risk grade in the water source region was low and those of the other regions were medium-low. This work contributes to the environmental feasibility analysis of water diversion projects.

1. Introduction
Chaohu Lake is one of the five largest freshwater lakes in China and plays a huge role in water storage, flood control, water supply, agricultural irrigation, aquatic products, travel, and etc. [1] With the economy development and population increase, the gradual accumulation of pollution load has exceeded the carrying capacity of the lake, leading to serious eutrophication and loss of ecological function. Water diversion project has been considered as an important and helpful measure to improve water quality in the area. To improve the water quality of Chaohu Lake, a water diversion project was proposed by The Water Resources Department of Anhui Province. However, the water diversion project is complicated and can be influenced by many uncertain factors. So its environmental must be assessed before implementation.

The importance of environmental impact assessment of hydraulic engineerings has been widely recognized. A number of studies on water diversion risk assessment have been performed. Chang et al. [2] presented a comprehensive evaluation index system as a basis for evaluating the impact of inter-basin water diversion on ecological environment. The comprehensive evaluation index system included a target layer, a rule layer, and an index layer. Dou et al. [3] stated that the middle route of the South-to-North Water Transfer Project may produce adverse impacts on the ecological environment of Hanjiang. Yuan [4] established the comprehensive evaluation index system and a multilevel linear weighting and fuzzy mathematical comprehensive evaluation model to assess the environmental impacts of the Three Gorges Project. Xu et al. [5] analysed the “Two Rivers and Two Stations” project for Chaohu, discussed projects that may produce impacts on the social, economic, and ecological environment, and defined an index system. They used field investigation, analysis by analogy, expert...
consultation, and an analytic hierarchy to determine the main impact factors, which they conceptualized as a factor set to carry out a fuzzy comprehensive evaluation. Wang et al.[6] established an evaluation index system and used multi-level fuzzy comprehensive evaluation methods to analyse the social impacts of a water transfer project in Heihe River basin. Jin et al.[7] proposed a risk assessment system for water transfer projects that was structured according to the characteristics of water transfer project accidents. Chen et al.[8] analysed the risk factors of long-distance water transfer project system, which related to hydrology, buildings, economy, policy, the environment, and society. Extremum statistical methods, probability risk analysis methods, gray stochastic risk analysis, maximum entropy risk analysis, and many other methods have also been used[9]-[12].

Most previous studies involving environmental risk assessment of water diversion projects have focused on water quality assessment or safety evaluation of hydraulic structures. Only a small body of published research exists on comprehensive evaluation of environmental risk for a water diversion project. Therefore, in this paper, an environmental risk assessment model has been constructed and applied to the Chaohu water diversion project, which can provide a reference for feasibility analysis of water diversion projects.

2. Materials and Methods

2.1. Study Area
The route of the Chaohu Lake ecological water diversion project is shown in Figure 1.

![Figure 1. Route of the water diversion project.](image)

According to the natural water diversion process, the route was divided into four regions: the water source region, the conveyance region, the receiving water region, and the drainage region:

1. Water source region: the reach of the Yangtze River from a point 3km upstream of the FenghuangjingGate to a point 2km downstream;
2. Conveyance region: the Xihe and Zhaohe Rivers;
3. Receiving water region: East Chaohu Lake;
4. Drainage region: the Yuxi River and the reach of the Yangtze River from 3km upstream of the YuxiGate to 7km downstream.

2.2. Environmental Risk Assessment Method
To control the negative influences and environmental risks which may occur during ecological water transfer, an environment risk assessment was undertaken. The procedure is shown in Figure 2.
Investigation of environmental risk source

water source region → Conveyance region → Receiving water region → Drainage region

Identification of environmental risk → Fault Tree Analysis

Risk evaluation index → The mathematical model of environmental risk

Construction of fuzzy comprehensive evaluation model of Chaohu Lake

Comprehensive evaluate the risk → Risk grade

Figure 2. The flowchart of environment risk assessment

2.3. Source Identification of Environmental Risk

Figure 2 showsthat the first step is identifying the sources of risk. Here, fault tree analysis as an environmental risk identification method has been applied to the Chaohu Lake ecological water diversion project. This approach has been discussed in detail in the literature[13].

2.4. Construction of the Risk Evaluation Index System

According to the source identification of environmental risk and the characteristics of the four regions, a risk evaluation index system was introduced and is shown in Table 1. This system includes 50 indices in five layers: the object layer, the sub-object layer, the criterion layer, the sub-criterion layer, and the index layer.

2.5. Construction of the Fuzzy Comprehensive Evaluation Model

The fuzzy comprehensive evaluation method was used to evaluate the risk of the Chaohu Lake ecological water diversion project. This method was used because of its advantages in solving problems that are vague and hard to quantify. The basic steps are as follows[15]:

1. According to environmental risk characteristics, the evaluation set is divided into five levels: V={V₁,V₂,V₃,V₄,V₅}={low,medium–low, medium, medium–high, high}.
2. Determine the classification standard that determines the membership degree of each index. Membership degrees lie between 0 and 1.
3. Determine the weight matrix. The weight of an index depends on its importance.
4. Determine a fuzzy evaluation model and obtain results. The calculation formula is:

$$D_i = w_{ij}R_{ij}$$

Where D_i is the evaluation result for index i, w_{ij} is the weight of index i, and R_{ij} is the membership degree of index i. Based on the formula, the risk value can be calculated layerbylayer. The last result is the overall evaluation result provided by the model.

Assign an environmental risk grade according to the following classification: low risk is between 0 and 1, low-medium risk is between 1 and 2, medium risk is between 2 and 3, medium-high risk is between 3 and 4, and high risk is between 4 and 5.

3. Results and Discussion

The environmental risk assessment method was used in the current study, with the results shown in Table 2. It is apparent that the risk grade of the water source region is low, whereas those of the other regions are medium-low.
Table 1. Risk evaluation index system of the Chaohu Lake ecological water diversion project

Object layer	Sub-object layer	Criterion layer	Sub-criterion layer	Index layer
		Water quantity risk	Available amount of water in the Yangtze	
		Water quantity risk	Reliability of the hydraulic facilities	
		Water quantity risk	Operating skills and level of management	
Risk evaluation of water source region	Upstream water quality	Water quality assessment	Discharge capacity	
		Upstream water quality	Distance from water inlet	
		Upstream water quality	Shipping sewage volume	
		Upstream water quality	Petroleum emissions	
		Upstream water quality	Crew operating level	
		Upstream water quality	Risks of oil spill	
		Ecological risk	Oncomelania diffusion risk	
		Ecological risk	Average density of living oncomelania	
		Ecological risk	Infection rates of oncomelania	
Environmental risk assessment of water diversion project	Water quality in the water transport channel	Exceed the water quality standard about Xihe		
		Water quality in the water transport channel	Exceed the water quality standard about Zhaohe	
		Water quality in the water transport channel	Water quality compared to the conveyance region	
Risk evaluation of conveyance region	Analysis of the drainage outlet	Scope of normal discharge		
		Analysis of the drainage outlet	Scope of accidental discharge	
		Analysis of the drainage outlet	Oily wastewater emissions	
		Analysis of the drainage outlet	Petroleum emissions	
		Analysis of the drainage outlet	Operating status of environmental protection facilities	
		Vessel pollution index	Proportional area of aquatic breeding	
		Vessel pollution index	Number of oncomelanias outside the gate	
		Vessel pollution index	Number of oncomelanias inside the gate	
Ecological risk	Possibility of oncomelania diffusion by floating	Possibility of oncomelania diffusion with vessels	Proportion of vessels carrying oncomelania	
		Possibility of oncomelania diffusion by floating	The condition of exceed the water quality standard	
		Possibility of oncomelania diffusion by floating	Risks regarding the distribution of water quality differences	
Influence of the river on the lake

Eutrophication of water bodies

Vessel pollution index

Ecological risk

Possibility of oncomelanias breeding and multiplying in Chaohu

Other Risks

Risk of the Yuxi River

Risk of the Yangtze River

Risk evaluation of drainage region

Region	Water source region	Conveyance region	Receiving water region	Drainage region
Evaluation results	0.192	0.352	0.384	0.345
Risk standard values	0.975	1.76	1.92	1.72
Risk grade	low	medium–low	medium–low	medium–low

Table 2. Comprehensive evaluation results for each region.

4. Conclusions
In this paper, a new method for assessing the environmental risk of water diversion projectshas been proposed. Fault tree analysis was used to identify risk sources during water diversion. The project route was divided into four regions: the water source region, the conveyance region, the receiving water region, and the drainage region. To reflect the different characteristics of the four regions, a risk evaluation index system was introduced, including 50 indices in five layers: the object layer, the sub-object layer, the criterion layer, the sub-criterion layer, and the index layer. A fuzzy comprehensive evaluation model was used to evaluate the risk of the Chaohu Lake ecological water
diversion project. Using this method, project risk was successfully assessed. The results indicated that the environmental risk for the water source region was in the low range and for the other regions were in the medium-low range. This work contributes to feasibility analysis of water diversion projects.

5. References

[1] Hongbing Tang, Qian Tan. The diversion scheme comparison of improving the water quality of drinking water in Chaohu, *Water Resources and Power*, 2011, 29(10) pp 60-62, 214 (in Chinese)

[2] Yumiao Chang, Min Zhao. The comprehensive evaluation index system research about inter-basin water transfer impacts ecological environment, *Water conservancy economy*, 2007, 25(2) pp 6-7 (in Chinese)

[3] Ming Dou, Qiting Zuo and Cai Nan Hu. The ecological environment impact assessment of the south-north water diversion project, *Journal of Zhengzhou University* (Engineering Science), 2005(2) pp 63-66 (in Chinese)

[4] Yunxiang Yuan. The comprehensive evaluation method about large hydropower projects produce impacts on environmental and ecological, *Acta Scientiae Circumstantiae*, 1989(2) pp 76-86 (in Chinese)

[5] Fuliu Xu, Xiaoyan Lu and Jiagui Zhou, etc. The evaluation index system and fuzzy comprehensive evaluation of large-scale water conservancy projects produce impacts on environmental, *Bulletin of Soil and Water Conservation*, 2001(4) pp 10-14 (in Chinese)

[6] Ruina Wang and Deshan Tang. The multi-level fuzzy comprehensive evaluation of water control projects in Heihe, *Yangtze River*, 2006(7) pp 27-28, 86 (in Chinese)

[7] Jian Jin and Jianyong Hong. The risk evaluation system research of water diversion Project, *Water Conservancy Science and Technology and Economy*, 2007, 13(4) pp 260-262 (in Chinese)

[8] Jin Chen and Wei Huang. The risk and countermeasures of the cross-basin long distance water transfer engineering system, *Water Resources and Hydropower Engineering*, 2004, 35(5) pp 95-97, 103 (in Chinese)

[9] Ping Feng. The water resources risk management while water supply system of drought, *Journal of Natural Resources*, 1998, 4(13) pp 139-143 (in Chinese)

[10] Tao Tao, Xiang Fu and Changming Ji. Application research on risk analysis of regional water resources supply and demand, *Engineering Journal Wuhan University*, 2002, 35(3) pp 9-12 (in Chinese)

[11] Qiting Zuo, Zening Wu and Wei Zhao. The uncertainty in water resources system and risk analysis method, *Arid Land Geography*, 2003, 26(2) pp 116-121 (in Chinese)

[12] Nianhua Xue, Changming Ji. The research status about risk analysis of water resources system, *Water Resources and Electric Power*, 1993, 20(2) pp 33-36 (in Chinese)

[13] Chunyan Shi, Gongyu Hu, Zulin Hua, Xiaodong Liu, Li Gu and Yu Chen. Environmental Risk Identification of Water Quality in Ecological Water Transfer Project Based On Fault Tree Analysis, *Environmental Science & Technology*, 2007, 30(6) pp 52-54 (in Chinese)

Acknowledgements

This research was supported by the National Nature Science Foundation of China (Grant No. 51479064, 51379058, 51379060), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Qing Lan Project.