A Covariance-Based Hybrid Channel Feedback
in FDD Massive MIMO Systems

Shuang Qiu, David Gesbert, Fellow, IEEE, Da Chen, Member, IEEE
and Tao Jiang, Fellow, IEEE

Abstract

In this paper, a novel covariance-based channel feedback mechanism is investigated for frequency
division duplexing (FDD) massive multi-input multi-output (MIMO) systems. The concept capitalizes
on the notion of user statistical separability which was hinted in several prior works in the massive
antenna regime but not fully exploited so far. We here propose a hybrid statistical-instantaneous feedback
mechanism where the users are separated into two classes of feedback design based on their channel
covariance. Under the hybrid framework, each user either operates on a statistical feedback mode or
quantized instantaneous channel feedback mode depending on their so-called statistical isolability. The
key challenge lies in the design of a covariance-aware classification algorithm which can handle the
complex mutual interactions between all users. The classification is derived from rate bound principles. A
suitable precoding method is also devised under the mixed statistical and instantaneous feedback model.
Simulations are performed to validate our analytical results and illustrate the sum rate advantages of
the proposed feedback scheme under a global feedback overhead constraint.

Index Terms

Massive MIMO, FDD, user classification, channel feedback, channel covariance.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is expected to be a key enabler for the next
generation communication systems [1], [2]. It has drawn considerable interest from both academia
and industry for its potential energy savings and spectral efficiency gains [3]–[5].

S. Qiu, D. Chen and T. Jiang are with Wuhan National Laboratory for Optoelectronics, School of Electronic Information
and Communications, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. (e-mail: sqiu@hust.edu.cn,
chenda@hust.edu.cn, tao.jiang@ieee.org).

D. Gesbert is with EURECOM, 06410 Sophia-Antipolis, France. (e-mail: David.Gesbert@eurecom.fr).
However, the large number of antennas brings up new challenges, one of which is the acquisition of accurate instantaneous channel state information (CSI), especially the downlink CSI. To counteract this effect, a majority of works considered the time-division duplex (TDD) mode where downlink instantaneous CSI is obtained by estimating uplink CSI via channel reciprocity [6], although the downlink CSI is not always accurate in practice due to calibration error in baseband-to-radio frequency chains [7]. While the bulk of available systems today is frequency division duplex (FDD) based, a successful deployment of massive MIMO in the FDD setting hinges on an ever bigger problem: The uplink feedback overhead for downlink channel acquisition increases linearly with the number of antennas, hence may quickly grow prohibitive. In practice, feedback channel estimates are quantized and subject to a uplink bit resource constraint [8]. This unfortunately leaves the system designer with a tough dilemma: Allow precise feedback at the unbearable cost of uplink bit resources or keep quantizing rough at the risk inducing undue downlink interference.

To solve this well recognized problem, a large array of strategies have been proposed in the last years to reduce MIMO feedback overhead, including recent efforts tackling massive MIMO specifically, such as advanced trellis-extended codebook design [9], compressive sensing based channel feedback reduction [10], [11], antenna grouping based feedback reduction technique [12], frequency-independent parameter extraction and downlink channel reconstruction [13], [14], angular domain energy distribution based channel estimation [15], [16] etc. Moreover, the channel limited feedback issue was also tackled by exploiting user cooperation via device-to-device communications [17], [18]. The authors in [18] adopted cooperative precoder feedback scheme among users to further improve system performance. Quite notably, some works took advantage of special low-rank channel covariance exhibited in the large array regime first characterized in [19], [20] to reduce feedback information [11], [19]–[23]. The key principle is that the low-rank covariance behavior that stems from finite scattering channel models can be used to project channel information into a lower dimensional space with little or no loss of information. In turn, a two-stage precoding structure was presented in [19] where the first-stage precoding is the key step to reduce the cost of downlink training and uplink feedback through user grouping. Interestingly, this result prompted a series of subsequent studies on the problem of user grouping itself, such as agglomerative clustering method [24], density-based clustering [25], [26] etc.

Note that, while the above-mentioned works do capitalize on the low rank aspect of the covariance, they fail to exploit fully the mutual inter-covariance orthogonality aspect that inherently
comes along with it, and not for the purpose of feedback reduction. To further build up intuition into this issue, consider the following two examples: First, the case of two closely spaced users whose channels undergo scattering over a limited radius around them (e.g. under the famed one ring model [19]). In this case, while the users’ channels can be equivalently represented by their low-rank covariance’s signal space projections, (reduced) instantaneous feedback is required by the BS to design an interference canceling precoder. In other words, the low rank property does not facilitate spatial separation in this case because the signal subspaces happen to mostly coincide among the two users. However in a second example, consider those same users to move apart from each other in such a way that their intervals of multipath angles becomes distinct, hence their signal subspaces cease to overlap. In this case, it is well known that an interference canceling precoder can be designed based on covariance signal subspace projection alone, making instantaneous feedback completely unnecessary [19], [21], [27]! In other words, inter-user signal subspace orthogonality can be leveraged for the purpose of feedback reduction. Interesting results were earlier reported about the impact of spatial statistics on feedback overhead [28]. Elsewhere, the allocation of feedback bits was even designed as a function of transmit covariance matrix information [29]. While that and other existing work exploits finely the per-user covariance properties, the inter-user orthogonality remained ignored. For example, this can be best seen from the fact: the existing work leads to an identical feedback bit allocation to all the users when the users have roughly the same covariance rank and eigenvalues. In contract, this work highlights the fact that even in such symmetric cases, much feedback overhead can be saved by not allocating feedback in symmetric ways across users. To the best of our knowledge, the pairwise degree of orthogonality among users has not yet been exploited for feedback bit allocation. While the above phenomenon will make intuitive sense to most readers, a possible reason for this effect to not have been pointed or analyzed is the irregularity of the phenomenon: Random channel statistical behavior causes a variety of ranks to be observed in channel covariances as well as highly diverse “degrees” of orthogonality between pairs of users, making it very difficult in practice to assign a rate-optimal amount of instantaneous feedback to each user.

In this paper, we counteract this issue by proposing a new simplification strategy for the feedback assignment policy, while retaining the essential non-symmetric user-dependent design idea. Our basic concept lies in a binary version of the hybrid statistical-instantaneous feedback scheme alluded to above. Under this feedback concept, each user will be classified either as an instantaneous feedback user (labeled as class-I user) or a statistical feedback user (labeled as
class-S user). Hybrid classes could be considered in principle but are in fact fairly challenging and left out for further studies. The classification is assumed to be carried out as a preamble on the basis of statistical information alone (covariance matrices). The challenge lies in the task of coming up with an optimal classification algorithm capable of processing the complex mutual interactions that users exhibit via their covariance matrices.

The solution of this problem is carried out in two steps. First, we articulate a precoder design capable of handling the mixed statistical-instantaneous type of feedback information, which can be seen as a relatively straightforward extension of both the statistical signal-to-leakage-and-noise ratio (SLNR) [31] and instantaneous SLNR precoders [30]. Second, we present a rate bound analysis predicting the rate performance under the above precoder and any classification solution. Finally, while the optimal classifier is computationally complex, the rate bound is exploited to guide the derivation of a suboptimal greedy classifier with good performance-complexity trade-off. Critically, the classifier is designed to operate under the same feedback resource constraint as a conventional feedback scheme, allowing to observe substantial spectral efficiency gains, on a fair feedback rate basis. For ease of exposition, our results are mainly presented in a single-cell setting (interference of intra-cell nature only). The accounting of the multi-cell case is discussed in Section VI.

Note that above ideas have been presented in our previous conference paper [32]. There are clear differences however. First, the full rate analysis is explicit here while only a sketch was given before. Secondly, the number of BS antennas was ideally assumed to be infinite in the analysis carried out in the conference paper, leading to the ignorance of inter-user interference when any two users lie in non-overlapping but adjacent subspaces. Here, we consider a more practical assumption on the number of antennas which accounts for finite-antenna regime inter-user interference. Furthermore, the multi-cell scenario is touched upon in this paper.

The rest of the paper is organized as follows. In Section II, the system and channel models are described. In Section III the SLNR-based precoder is proposed for both class-I and class-S users. The system sum rate bound is derived based on channel covariance in Section IV. A user classification method is elaborated under the criterion of system sum rate maximization in Section V. The user classification for multi-cell scenario is given in Section VI. The simulation results and conclusions are presented in Section VII and VIII, respectively.

Notations: Boldface lowercase (uppercase) letters denote column vectors (matrices). The superscripts $(\cdot)^H$ represents conjugate transpose and $E\{\cdot\}$ denote expectation operation. The
notation $\mathbb{C}^{m \times n}$ represents a set of $m \times n$ matrices with complex entries and \triangleq is used to denote a definition. An $n \times n$ identity matrix is denoted as I_n and $A = \text{diag}(a_1, \ldots, a_l, \ldots, a_M)$ denotes a diagonal matrix whose l-th diagonal element is $[A]_l = a_l$. The notations $\lceil x \rceil$, $\lfloor x \rfloor$ and $\lbrack x \rbrack$ imply rounding a decimal number to its nearest, nearest lower and nearest higher integers, respectively. The notation $z \sim \mathcal{CN}(0, \Sigma)$ means z is a complex Gaussian random vector with zero mean and covariance matrix Σ. In addition, we use $\mathcal{X} = \{x_1, \ldots, x_N\}$ and $|\mathcal{X}| = N$ to denote a set and its cardinal number, respectively.

II. System and Channel Models

A. Channel Model

A single-cell massive MIMO system is first considered where the BS is equipped with M antennas and simultaneously serves K single-antenna users labeled as user set $\mathcal{K} = \{1, \ldots, K\}$. For each user $k \in \mathcal{K}$, a physical channel model which describes the multiple paths propagation is exploited and given classically as [10], [20]

$$h_k \triangleq \frac{1}{\sqrt{P}} \sum_{p=1}^{P} \gamma_{kp} a(\theta_{kp}),$$

(1)

where P is the number of independent, identically distributed (i.i.d.) paths, γ_{kp} represents the complex gain of the p-th ray, $a(\theta_{kp})$ is the steering vector. For tractability, we consider a uniform linear array (ULA) and the steering vector is given as

$$a(\theta_{kp}) \triangleq \left[1, e^{j2\pi \frac{d}{\lambda} \sin(\theta_{kp})}, \ldots, e^{j2\pi \frac{(M-1)d}{\lambda} \sin(\theta_{kp})} \right]^T,$$

(2)

where θ_{kp} is the random angle of arrival (AoA) corresponding to the p-th path, d is the antenna spacing at the BS and λ is wavelength. The AoA of the P paths are assumed to be uniformly distributed over $[\bar{\theta}_k - \theta_{\Delta}/2, \bar{\theta}_k + \theta_{\Delta}/2]$ where $\bar{\theta}_k \in [-\pi/2, \pi/2]$ is the mean AoA and θ_Δ is spread AoA (SAoA).

We assume that the BS holds the statistical information of users, such as channel covariance matrix $\Phi_k = E \{h_k h_k^H\}, k \in \mathcal{K}$. Compared to instantaneous CSI, accurate estimation of channel covariance is much easier to obtain by long-term statistics. Furthermore, downlink channel covariance estimation for FDD systems can be estimated from uplink channel covariance matrix through certain frequency calibration processing [35].
B. Feedback Model

Under the proposed hybrid statistical-instantaneous feedback scheme, the K users are classified into K_S so-called statistical feedback users (labeled class-S users) and K_I instantaneous feedback users (labeled class-I users). The user sets are denoted as $\mathcal{K}_S = \{1, \ldots, K_S\}$ and $\mathcal{K}_I = \{1, \ldots, K_I\}$, respectively. Different from conventional channel feedback schemes where all the users need to feed back quantized instantaneous channel, only the class-I users feed their quantized channel back to the BS after pilot-based channel estimation. In contrast, the class-S users are assigned zero bit towards instantaneous feedback, as shown in Fig. 1. As a result, if the total feedback bit budget is B_{total}, each class-I user can use $B = \left\lfloor \frac{B_{\text{total}}}{K_I} \right\rfloor$ bits for channel feedback.

![Channel Feedback Diagram](image)

Fig. 1. Illustration of channel feedback and downlink data transmission under the proposed hybrid statistical-instantaneous feedback scheme. Only class-I users feed back instantaneous data.

Throughout the paper, we use subscript $(\cdot)_{i,I}$ and $(\cdot)_{n,S}$ to denote the notations for the i-th class-I and n-th class-S users, respectively. The quantized channel vector $\hat{\mathbf{h}}_{i,I}^B$ for the i-th class-I user is selected based on its codebook $\mathcal{C}_{i,I} \triangleq \{c_1, \ldots, c_X\}$ with $X = 2^B$ and obtained as

$$\hat{\mathbf{h}}_{i,I}^B = \arg\max_{c_u \in \mathcal{C}_{i,I}} |\mathbf{h}_{i,I}^H c_u|^2,$$

where $\mathbf{h}_{i,I} \in \mathbb{C}^{M \times 1}$ represents the downlink instantaneous CSI. Thus, the BS holds the quantized channel matrix of all the class-I users as $\hat{\mathbf{H}}_I^B \triangleq \left[\hat{\mathbf{h}}_{1,I}^B, \ldots, \hat{\mathbf{h}}_{K_I,I}^B\right] \in \mathbb{C}^{M \times K_I}$ and channel covariance matrix only $\mathbf{\Phi}_k, k \in \mathcal{K}$ of all the users for downlink data transmission. Note that our
analysis does not account for the cost related to collecting covariance information, which is left out for future studies.

C. Proposed Downlink Data Transmission

As we are interested in downlink design, a first challenge is how the BS can serve class-I and class-S users simultaneously while managing inter-user interference and despite the lack of instantaneous CSI related to class-S users. To go around this problem, we first characterize the received signals $y_{l,i}$ and $y_{S,n}$ at an arbitrary i-th class-I user and n-th class-S user as

$$y_{l,i} = p_d h_{l,i}^H \left(\hat{W}_I x_I + \hat{W}_S x_S \right) + n_{l,i}, \quad (4)$$

$$y_{S,n} = p_d h_{S,n}^H \left(\hat{W}_I x_I + \hat{W}_S x_S \right) + n_{S,n}, \quad (5)$$

where p_d is downlink transmit power to each user, $h_{S,n} \in \mathbb{C}^{M \times 1}$ represents the downlink channel vector of the n-th class-S user, $x_I \triangleq [x_{I,1} \ldots x_{I,K}]^T$ and $x_S \triangleq [x_{S,1} \ldots x_{S,K_S}]^T$ are consisted of downlink data symbols satisfying $E \{ x x^H \} = I$, $n_{l,i}$ and $n_{S,n}$ denote i.i.d. additive white Gaussian noise (AWGN) with zero mean and unit variance, $\hat{W}_I \triangleq [\hat{w}_{I,1} \ldots \hat{w}_{I,K_I}] \in \mathbb{C}^{M \times K_I}$ and $\hat{W}_S \triangleq [\hat{w}_{S,1} \ldots \hat{w}_{S,K_S}] \in \mathbb{C}^{M \times K_S}$ denote the precoding matrices with $\hat{w}_{I,i}$ and $\hat{w}_{S,n}$ representing the precoding vectors for the i-th class-I and the n-th class-S users, respectively.

The received signal $y_{l,i}$ and $y_{S,n}$ are further expressed as

$$y_{l,i} = p_d h_{l,i}^H \hat{w}_{I,i} x_{I,i} + p_d \sum_{j=1, j \neq i}^{K_I} h_{l,i}^H \hat{w}_{I,j} x_{I,j} + \underbrace{p_d \sum_{n=1}^{K_S} h_{l,i}^H \hat{w}_{S,n} x_{S,n}}_{\text{AWGN}} + n_{l,i}. \quad (6)$$

$$y_{S,n} = p_d h_{S,n}^H \hat{w}_{S,n} x_{S,n} + \underbrace{p_d \sum_{q=1, q \neq n}^{K_S} h_{S,n}^H \hat{w}_{S,q} x_{S,q}}_{\text{AWGN}} + \sum_{i=1}^{K_I} h_{S,n}^H \hat{w}_{I,i} x_{I,i} + n_{S,n}. \quad (7)$$

Thus, the signal-to-interference-plus-noise ratio (SINR) $r_{l,i}$ for the i-th class-I user is given as

$$r_{l,i} = \frac{|h_{l,i}^H \hat{w}_{I,i}|^2}{\sum_{j=1, j \neq i}^{K_I} |h_{l,i}^H \hat{w}_{I,j}|^2 + \sum_{n=1}^{K_S} |h_{l,i}^H \hat{w}_{S,n}|^2 + \frac{1}{p_d}}. \quad (8)$$

Following a similar approach, the SINR of the n-th class-S user $r_{S,n}$ can be derived as

$$r_{S,n} = \frac{|h_{S,n}^H \hat{w}_{S,n}|^2}{\sum_{q=1, q \neq n}^{K_S} |h_{S,n}^H \hat{w}_{S,q}|^2 + \sum_{i=1}^{K_I} |h_{S,n}^H \hat{w}_{I,i}|^2 + \frac{1}{p_d}}. \quad (9)$$
Based on the assumption of block fading channel model, the downlink ergodic achievable rate of the i-th class-I and the n-th class-S users are obtained as

$$R_{I,i} = \mathbb{E} \{ \log_2 (1 + r_{I,i}) \},$$

$$R_{S,n} = \mathbb{E} \{ \log_2 (1 + r_{S,n}) \},$$

respectively. The system sum rate under feedback bit constraint B_{total} is

$$R_{\text{sum}}(K_I, K_S, B_{\text{total}}) = \sum_{i=1}^{K_I} R_{I,i} + \sum_{n=1}^{K_S} R_{S,n}.$$ \hspace{1cm} (12)

Clearly, the system sum rate is highly influenced by the user classification decisions and by the accuracy of class-I users’ quantized channel. Hence, the challenge behind this approach is to find the optimal classifier capable of leveraging the complex mutual interactions among users’ channel statistics. To solve this problem, we propose below a precoder design in the next section to handle the mixed statistical-instantaneous feedback information and then derive a sum rate bound to evaluate the performance of different user classification results.

III. SLNR-Based Downlink Precoder Design

Precoding methods with mixed utilization of statistical and instantaneous CSI have been studied in [33], where the interference between two user classes is canceled by removing the common channel existing in the overlapping subspaces. To minimize the loss, a SLNR-based downlink precoder is designed in this paper with the mixed statistical-instantaneous feedback information introduced in Section II. The motivation to use SLNR precoder is twofold. First, the leakage-based criterion leads to a decoupled optimization problem and gives an analytical closed-form solution which is critical to derive the rate bounds needed for the classification algorithm. Secondly, SLNR precoder takes the Gaussian noise into consideration and has been illustrated to achieve identical performance to minimum mean square error precoder [30], [36].

With the coexistence of class-I and class-S users, the SLNR expressions of the i-th class-I and the n-th class-S users are

$$\Gamma_{I,i} = \frac{|h_{I,i}^H \hat{w}_{I,i}|^2}{\sum_{j=1}^{K_I} |h_{I,j}^H \hat{w}_{I,j}|^2 + \sum_{n=1}^{K_S} |h_{S,n}^H \hat{w}_{I,i}|^2 + \frac{1}{p_d}},$$

$$\Gamma_{S,n} = \frac{|h_{S,n}^H \hat{w}_{S,n}|^2}{\sum_{q=1}^{K_S} |h_{S,q}^H \hat{w}_{S,n}|^2 + \sum_{i=1}^{K_I} |h_{I,i}^H \hat{w}_{S,n}|^2 + \frac{1}{p_d}},$$

\hspace{1cm} (13)
respectively. Since the BS only has the statistical information of class-S users, we will bound the average SLNR $E \{ \Gamma_{I,i} \}$ and $E \{ \Gamma_{S,n} \}$ \cite{27}. By using Mullen’s inequality $E \{ X \} \geq E \{ Y \}$, the lower bounds $E \{ \Gamma_{I,i}^{LB} \}$ and $E \{ \Gamma_{S,n}^{LB} \}$ of the average SLNR are obtained with channel covariance as \cite{37}

\[
E \{ \Gamma_{I,i} \} \geq E \{ \Gamma_{I,i}^{LB} \} = \frac{\hat{w}_{I,i}^H H_{I,i} \hat{w}_{I,i}}{\hat{w}_{I,i}^H \sum_{j=1,j\neq i}^{K_I} H_{I,j} \hat{w}_{I,i} + \hat{w}_{I,i}^H \sum_{n=1}^{K_S} \Phi_{S,n} \hat{w}_{I,i} + \frac{1}{p_d}},
\]

\[
E \{ \Gamma_{S,n} \} \geq E \{ \Gamma_{S,n}^{LB} \} = \frac{\hat{w}_{S,n}^H \Phi_{S,n} \hat{w}_{S,n}}{\hat{w}_{S,n}^H \sum_{q=1,q\neq n}^{K_S} \Phi_{S,q} h_{S,n}^H \hat{w}_{S,n} + \hat{w}_{S,n}^H \sum_{i=1}^{K_I} H_{I,i} \hat{w}_{S,n} + \frac{1}{p_d}},
\]

respectively, where $H_{I,i} = \hat{h}_{I,i}^R \left(\hat{h}_{I,i}^R \right)^H$. With the goal of maximizing the lower bounds $E \{ \Gamma_{I,i}^{LB} \}$ and $E \{ \Gamma_{S,n}^{LB} \}$, the closed-form precoding vectors are straightforwardly obtained as

\[
\hat{w}_{I,i} = u_{\text{max}} \left\{ \left(\sum_{j=1,j\neq i}^{K_I} H_{I,j} + \sum_{n=1}^{K_S} \Phi_{S,n} + \frac{1}{p_d} I_M \right)^{-1} H_{I,i} \right\},
\]

\[
\hat{w}_{S,n} = u_{\text{max}} \left\{ \left(\sum_{q=1,q\neq n}^{K_S} \Phi_{S,q} h_{S,n} H_{I,i} + \sum_{i=1}^{K_I} H_{I,i} H_{I,i} + \frac{1}{p_d} I_M \right)^{-1} \Phi_{S,n} \right\}.
\]

It can be seen that the proposed SLNR-based precoder is an extension of both the statistical SLNR and instantaneous SLNR precoders. When all the users are selected as class-I users, the proposed precoder becomes the classical instantaneous SLNR precoder \cite{30}, likewise for class-S users, the proposed precoder becomes the statistical SLNR precoder \cite{31}.

IV. System Sum Rate Bound Analysis

Under the proposed feedback framework, the BS needs to classify the users in the first place. After that, the class-I users are able to quantize their instantaneous CSI according to the assigned feedback bits and pre-defined codebooks. In other words, the BS has no any instantaneous CSI of class-I users when it performs user classification. Therefore, system performance prediction is necessary at the BS to evaluate different user classification solutions. In this section, we present a rate bound derived from covariance matrices alone to predict the rate performance under the proposed SLNR-based precoder and any classification solution. The objective behind the rate bound is less to characterize precisely the system throughput as it is to drive the design of a classification algorithm with satisfactory properties and performance.
In the following subsections, so-called beam domain channel and beam domain covariance are first introduced to rewrite the actual channel and covariance in form of discrete Fourier transform (DFT) matrix. Secondly, a prediction method for quantized instantaneous channel of class-I users is presented exploiting the beam domain representation and DFT matrices. Note that the quantized instantaneous channel prediction is one-off operation and is only used for rate bound derivation. Once the rate bound is obtained, the BS can directly use the closed-form rate bound to evaluate system performance under any user classification.

A. Beam Domain Channel and Covariance

Channel vectors can be equivalently presented in virtual angular domain by simply sampling at equi-spaced angular intervals at the BS side. Then, the multipath channel vector \(h_k, k \in \mathcal{K} \), can be approximately rewritten as a beam domain channel and given as

\[
\overline{h}_k = \sum_{t=1}^{M} [h_{k}^{BD}]_t a(\varphi_t) = A h_{k}^{BD}, \tag{19}
\]

where \(A = [a(\varphi_1), \ldots, a(\varphi_t), \ldots, a(\varphi_M)] \in \mathbb{C}^{M \times M} \) with \(a(\varphi_t) \) representing the \(t \)-th virtual beam and \(\varphi_t \) representing its AoA, and \(h_{k}^{BD} = [[h_{k}^{BD}]_1, \ldots, [h_{k}^{BD}]_t, \ldots, [h_{k}^{BD}]_M]^T \) with \([h_{k}^{BD}]_t \) denoting the complex gain of the \(t \)-th beam. By considering ULA with half wavelength antenna spacing, the matrix \(A \) can be approximately constructed as a DFT matrix \(V \) \([19], [38]\). Set \(\varphi_t = \arcsin\left(\frac{2tM - 1}{M}\right), t = 1, \ldots, M, \) and the \(t \)-th column of matrix \(V \) is given as

\[
V (\cdot; t) = \frac{1}{\sqrt{M}} \left[1, e^{j\pi\left(\frac{2tM - 1}{M}\right)}, \ldots, e^{j\pi(M-1)\left(\frac{2tM - 1}{M}\right)} \right]^T. \tag{20}
\]

Thus, the \(p \)-th path of the \(k \)-th user can be presented with virtual beams as

\[
\gamma_{kp} a(\theta_{kp}) = \sum_{t=1}^{M} [h_{kp}^{BD}]_t V (\cdot; t), \tag{21}
\]

where \([h_{kp}^{BD}]_t \) denotes the gain of the \(p \)-th path in the \(t \)-th virtual beam given as

\[
| [h_{kp}^{BD}]_t | = |\gamma_{kp}| V (\cdot; t)^H a(\theta_{kp}) = |\gamma_{kp}| \sqrt{M} e^{j\frac{M-1}{2} \pi \beta_{kp}^t} \sin\left(\frac{M}{2} \pi \beta_{kp}^t\right) \sin\left(\frac{1}{2} \pi \beta_{kp}^t\right), \tag{22}
\]

where \(\beta_{kp}^t = \sin(\theta_{kp}) - \frac{2tM}{M} + 1 \). Then, the beam domain gain of the \(k \)-th user in the \(t \)-th beam is given as

\[
| [h_{k}^{BD}]_t | = \frac{1}{\sqrt{P}} \sum_{p=1}^{P} | [h_{kp}^{BD}]_t |. \tag{23}
\]
The beam domain channel covariance matrix is given as

$$\Phi_k = \mathbb{E}\left\{h_k h_k^H\right\} = V \Phi_{BD}^k V^H, \quad (24)$$

where $\Phi_{BD}^k = \text{diag}\left(\mathbb{E}\left\{|h_{BD}^k|_1|^2\right\}, \ldots, \mathbb{E}\left\{|h_{BD}^k|_M|^2\right\}\right)$. For the simplicity of notations, we assume the complex gain of each path satisfies $\gamma_{kp} \sim \mathcal{CN}(0, 1)$. Thus, the t-th diagonal element of Φ_{BD}^k is given as

$$[\Phi_{BD}^k]_t = \mathbb{E}\left\{|[h_{BD}^k]_t|^2\right\} = \frac{1}{MP} \sum_{p=1}^P \left| \frac{\sin\left(\frac{M}{2} \pi \beta_{kp}^t\right)}{\sin\left(\frac{1}{2} \pi \beta_{kp}^t\right)} \right|^2. \quad (25)$$

It can be seen that the beam domain channel covariance is only related to the number of paths and antennas, and the AoAs of paths which can be obtained via long-term statistics.

B. Quantized Instantaneous Channel Prediction

To derive a rate bound, the BS needs to know the quantized instantaneous channel of class-I users which influences the downlink precoder design. However, the quantized instantaneous channel of class-I users cannot be fed back before user classification operation. One possible solution for the BS is to predict the quantized instantaneous channel and then to derive the rate bound. The prediction method is given as follows.

The users usually feed back the codewords which are most similar to their channel directions. The codebook size decides the number of predefined spatial directions and impacts the accuracy of quantized channel. Although the instantaneous channel gain of class-I users is unavailable at the BS, the BS is assumed to know the beam domain channel covariance. Therefore, the BS can predict the channel direction (quantized channel) of class-I users based on beam gain variance under a given feedback bit budget and user classification.

Since the users lie in low-dimension subspaces due to limited scatterers, the codebook design for spatially correlated channel usually takes the subspaces into account \[^{[39]}\]. Therefore, we first present approximate subspaces of users with virtual beams. Due to the limited angular spread of multipaths, the dominant nonzero elements in Φ_{BD}^i are limited and assumed to be distributed between indices $x_{1,i,\text{min}}$ and $x_{1,i,\text{max}}$. Then, the dominant subspace of the i-th class-I user can

\[^{1}\text{The parameters } x_{1,i,\text{min}} \text{ and } x_{1,i,\text{max}} \text{ are influenced by the number of BS antennas } M \text{ and SAoA of users } \gamma_{kp}. \text{ It is difficult to determine the parameters in theoretical analysis, while they can be obtained from long-term statistics or off-line tables at the BS.} \]
be presented as

$$S_{I,i} = \text{Span} \{ V(:, x), x_{I,i,\text{min}} \leq x \leq x_{I,i,\text{max}} \}. \tag{26}$$

The predicted codewords are simply considered to be isotropically distributed in subspace $S_{I,i}$.

Thus, the codewords $c_{I,i,u} \in C_{I,i}, u = 1, \ldots, X,$ is created as

$$c_{I,i,u} = \frac{1}{\sqrt{M}} \left[1, e^{j\pi \eta_{I,i}(u)}, \ldots, e^{j\pi(M-1)\eta_{I,i}(u)} \right]^T, \tag{27}$$

where $\eta_{I,i}(u)$ is given as

$$\eta_{I,i}(u) = \left(\frac{2x_{I,i,\text{min}}}{M} - 1 \right) + u \frac{2(x_{I,i,\text{max}} - x_{I,i,\text{min}})}{MX}. \tag{28}$$

Thus, the codebook is also presented in form of DFT vectors. Given feedback bits $B(X = 2^B)$ for each class-I user, the codebook and quantized channel of the i-th class-I user can be predicted based on its channel statistics. The codeword index and quantized channel are respectively given as

$$\hat{u}_{I,i}^* = \arg \max_{u=1,\ldots,X} \left[\Phi_{I,i}^{BD} \right] \left[M \left(\frac{\eta_{I,i}(u)+1}{2} \right) \right], \tag{29}$$

$$\hat{h}_{I,i}^B = c_{I,i,\hat{u}_{I,i}^*}. \tag{30}$$

The proof of Equation (29) and (30) is given in Appendix A.

Although the channel quantization given in (30) is not obtained from instantaneous CSI, the predicted channel can be accurate in direction based on statistical information. Note that the quantized channel prediction is one-off operation at the BS and is only used for rate bound derivation.

C. Lower Bound Analysis of System Sum Rate

After quantized channel of class-I users is predicted and known by the BS, the BS can forecast the system sum rate under the proposed SLNR-based precoder.

First, the downlink SLNR-based precoding vectors for the i-th class-I and the n-th class-S users can be approximately obtained as

$$\hat{w}_{I,i} = V(:, \tilde{m}_{I,i}), \tag{31}$$

$$\hat{w}_{S,n} = V(:, \tilde{n}_{S,n}). \tag{32}$$
respectively, where the index $\tilde{m}_{l,i}$ is

$$\tilde{m}_{l,i} = \left\lfloor \frac{x_{l,i,\min} + x_{l,i,\max} - x_{l,i,\min}}{X} \right\rfloor,$$

(33)

and the index $\tilde{l}_{S,n}$ is obtained from

$$\tilde{l}_{S,n} = \arg \max_{l=1,\ldots,M} \left[\tilde{\Sigma}_{S,n,l} \right],$$

(34)

with the l-th diagonal element of matrix $\tilde{\Sigma}_{S,n}$ given as

$$\left[\tilde{\Sigma}_{S,n} \right]_l = \frac{\left[\Phi_{S,n,l}^{BD} \right]}{K_S \sum_{q=1,q \neq n} \left[\Phi_{S,n,l}^{BD} \right]_{l} + \sum_{i=1}^{K_I} \delta(\tilde{m}_{l,i} - l) + \frac{1}{p_d}}.$$

(35)

The proof of Equation (31) and (32) is given in Appendix B.

Next, with the predicted quantized channel of class-I users and the approximate SLNR-based precoding vectors, a lower bound of system sum rate can be obtained as

$$\tilde{R}_{sum}^{LB} = \sum_{i=1}^{K_I} \log \left(1 + E\{\tilde{r}_{L,I,i}^{LB}\}\right) + \sum_{n=1}^{K_S} \log \left(1 + E\{\tilde{r}_{L,S,n}^{LB}\}\right),$$

(36)

where $E\{\tilde{r}_{L,I,i}^{LB}\}$ and $E\{\tilde{r}_{L,S,n}^{LB}\}$ denote the effective SINR and are respectively given as

$$E\{\tilde{r}_{L,I,i}^{LB}\} = \frac{\left[\Phi_{L,I,i}^{BD} \right]_{\tilde{m}_{l,i}}}{\sum_{j=1,j \neq i}^{K_I} \left[\Phi_{L,I,j}^{BD} \right]_{\tilde{m}_{l,j}} + \sum_{n=1}^{K_S} \left[\Phi_{L,I,i}^{BD} \right]_{\tilde{l}_{S,n}} + \frac{1}{p_d}},$$

(37)

$$E\{\tilde{r}_{L,S,n}^{LB}\} = \frac{\left[\Phi_{S,n,l}^{BD} \right]_{\tilde{l}_{S,n}}}{\sum_{q=1,q \neq n}^{K_S} \left[\Phi_{S,n,l}^{BD} \right]_{\tilde{l}_{S,q}} + \sum_{i=1}^{K_I} \left[\Phi_{S,n,l}^{BD} \right]_{\tilde{m}_{l,i}} + \frac{1}{p_d}}.$$

(38)

The proof of Equation (36) is given in Appendix C.

Note that the rate bound is computed based on channel statistics alone and can be directly used to predict system performance under any user classification. A greedy user classification algorithm using the bound is presented in the next section.

V. GREEDY USER CLASSIFICATION

The optimal classifier for the proposed feedback scheme to maximize the system sum rate is computationally complex. Therefore, the rate bound obtained in Section IV is exploited to
obtain a suboptimal greedy classifier with good performance-complexity trade-off. The user classification problem can be formulated as

$$K_{\text{sub}}^{\text{I}}, K_{\text{sub}}^{\text{S}} = \arg \max \tilde{R}_{\text{sum}}^{\text{LB}}(K_{\text{I}}, K_{\text{S}}, B^{\text{total}}) \quad (39a)$$

subject to

$$K = K_{\text{I}} \cup K_{\text{S}}, \quad (39b)$$

$$K = K_{\text{I}} + K_{\text{S}}, \quad (39c)$$

$$B = \left\lfloor \frac{B^{\text{total}}}{K_{\text{I}}} \right\rfloor, \quad (39d)$$

where the system sum rate in the objective function (39a) is given in (52), the constraints (39b) and (39c) is to make sure all the K users are classified and each user only belongs to one user class, and the constraint (39d) indicates that class-I users share the total feedback bit budget B^{total} evenly.

To find the solution for problem (39), a greedy user classification algorithm is proposed in Alg. 1. First, we assume all the K users are class-I users and calculate the predicted sum rate $\tilde{R}_{\text{sum}}^{\text{LB}, K}$ based on (52). Then, we choose one user from class-I user set who can achieve the largest $\tilde{R}_{\text{sum}}^{\text{LB}, K-1}$ as a new class-S user. Repeat this procedure until all the users have been selected as class-S users. Finally, compare all the $K+1$ sum rate $\tilde{R}_{\text{sum}}^{\text{LB}, f}, f = 0, \ldots, K$, and select the largest rate with index d^*. Thus, the optimal numbers of class-I and class-S users are $d^* - 1$ and $K + 1 - d^*$, respectively. The user set of class-S users $K_{\text{sub}}^{\text{S}}$ consists of the first $K + 1 - d^*$ selected class-S users and the remaining users are class-I users.

VI. USER CLASSIFICATION FOR MULTI-CELL SCENARIO

Different from the single-cell setting, the multi-cell scenario will give rise to inter-cell interference, especially for the users located in the edge of cells. Thus, any user classification algorithm should consider all the users in the multi-cell network to maximize the system sum rate. In this section, we introduce the system model, precoding design, a lower bound for the system sum rate and user classification for a multi-cell network. Note that the principles are easily derived from the single cell setting, hence only sketches of results are detailed below.

An L-cell massive MIMO network is considered serving K users simultaneously. We use $K_{\text{l}}^{[\text{I}]}$ and $K_{\text{l}}^{[\text{S}]}$ to represent the user sets of class-I and class-S users in the l-th cell, respectively. The numbers of class-I and class-S users are labeled as $|K_{\text{l}}^{[\text{I}]}| = K_{\text{l}}^{[\text{I}]}$ and $|K_{\text{l}}^{[\text{S}]}| = K_{\text{l}}^{[\text{S}]}$, respectively. The total numbers of class-I and class-S users in this network are $K^{[\text{I}]}$ and $K^{[\text{S}]}$, respectively.
Algorithm 1 Greedy User Classification Algorithm

Input: $\Phi^\text{BD}_k, k \in \mathcal{K}, B^\text{total}$

Output: $\mathcal{K}^\text{sub}_I, \mathcal{K}^\text{sub}_S$

1: Initialize

 Set $f = K$ and a vector $\tilde{r}_\text{sum} = \emptyset$

 The set of class-I users $\mathcal{K}_I = \{1, \ldots, K\}$

 The set of class-S users $\mathcal{K}_S = \emptyset$

 Calculate \tilde{R}^LB_f based on (52)

 Update $\tilde{r}_\text{sum} = [\tilde{r}_\text{sum} \ \tilde{R}^\text{LB}_f K]$

2: while $f \geq 0$ do

3: Decrease f by 1 and calculate $B = \left\lfloor \frac{B^\text{total}}{f} \right\rfloor$

4: Find the user with index n_S as class-S user satisfying

 $$n_S = \arg \max_{u \in \mathcal{K}_I} \tilde{R}^\text{LB} (\mathcal{K}_S \cup \{u\}, \mathcal{K}_I \setminus \{u\}, B^\text{total})$$

5: Update \mathcal{K}_S and \mathcal{K}_I as

 $$\mathcal{K}_S = \mathcal{K}_S \cup \{n_S\}$$

 $$\mathcal{K}_I = \mathcal{K}_I \setminus \{n_S\}$$

6: Update $\tilde{r}_\text{sum} = [\tilde{r}_\text{sum} \ \tilde{R}^\text{LB}_f]$

7: end while

8: Find the largest rate with index d^* in vector \tilde{r}_sum

9: The first $K + 1 - d^*$ users in \mathcal{K}_S belong to \mathcal{K}^sub_S and \mathcal{K}^sub_I consists of the remaining users

10: Return $\mathcal{K}^\text{sub}_I, \mathcal{K}^\text{sub}_S$

Moreover, the channel vector between the BS in the l-th cell to user k in the j-th cell is modeled as

$$g_{l,j,k} = \sqrt{s_{l,j,k}} h_{l,j,k},$$

(40)

where $s_{l,j,k}$ is large-scale fading and $h_{l,j,k}$ is fast fading given in Eq. (1). All the class-I users in this network share the total feedback bit budget B^total evenly and each of them can be assigned $B = \left\lfloor \frac{B^\text{total}}{K^\text{sub}_I} \right\rfloor$ bits for channel quantization. No cooperation is considered among the
BSs and the class-I users in the l-th cell only feed back their quantized channel to its own BS for downlink precoding design. Moreover, each BS is assumed to have the statistical information of all the K users in this network, including the AoAs of multipaths for each user, gain variance of each path and covariance matrices. Then, the BSs transform the statistical information into beam domain channel covariance which is composed of DFT matrix and one diagonal matrix with gain variance of virtual beams, e.g., $\Phi_{l,j,k} = V \Phi_{l,j,k}^{\text{BD}} V^H$. We assume that the diagonal matrices $\Phi_{l,j,k}^{\text{BD}}$ held by the BSs can be exchanged or sent a central control unit to conduct user classification.

First, by considering inter-cell interference leakage, the SLNR expressions for class-I user i and class-S user n in the l-th cell are respectively given as

$$\Gamma_{l,i}^{[\text{I}]} = \frac{\left| \left(h_{l,i,i}^{[\text{I}]} \right)^H \tilde{w}_{l,i,i}^{[\text{I}]} \right|^2}{\sum_{b \in K_i^{[\text{I}] \setminus \{i\}}} \left| \left(h_{l,i,b}^{[\text{I}]} \right)^H \tilde{w}_{l,i,b}^{[\text{I}]} \right|^2 + \sum_{n \in K_l^{[\text{S}]} \setminus \{i\}} \left| \left(h_{l,i,n}^{[\text{S}]} \right)^H \tilde{w}_{l,i,n}^{[\text{S}]} \right|^2 + L_{l,i}^{\text{inter}} + \frac{1}{p_d}}$$

$$\Gamma_{l,n}^{[\text{S}]} = \frac{\left| \left(h_{l,i,n}^{[\text{S}]} \right)^H \tilde{w}_{l,i,n}^{[\text{S}]} \right|^2}{\sum_{q \in K_{l,n}^{[\text{S}]} \setminus \{n\}} \left| \left(h_{l,i,q}^{[\text{S}]} \right)^H \tilde{w}_{l,i,q}^{[\text{S}]} \right|^2 + \sum_{i \in K_l^{[\text{I}]} \setminus \{i\}} \left| \left(h_{l,i,i}^{[\text{I}]} \right)^H \tilde{w}_{l,i,i}^{[\text{I}]} \right|^2 + L_{l,n}^{\text{inter}} + \frac{1}{p_d}}$$

where $\tilde{w}_{l,i,i}^{[\text{I}]}$ and $\tilde{w}_{l,i,n}^{[\text{S}]}$ denote the precoding vectors, $L_{l,i}^{\text{inter}}$ and $L_{l,n}^{\text{inter}}$ represent the interference leakage to the users in the other cells and are given as

$$L_{l,i}^{\text{inter}} = \sum_{j \neq l} \sum_{k \in K_j} \left| h_{l,j,k}^H \tilde{w}_{l,i,i}^{[\text{I}]} \right|^2,$$

$$L_{l,n}^{\text{inter}} = \sum_{j \neq l} \sum_{k \in K_j} \left| h_{l,j,k}^H \tilde{w}_{l,i,n}^{[\text{S}]} \right|^2,$$

respectively. Exploiting the same idea given in Section III to maximize the lower bound of average SLNR with the quantized channel of class-I users and the channel covariance matrices of the remaining users, the precoding vectors for the users in the l-th cell are obtained as

$$\tilde{w}_{l,i,i}^{[\text{I}]} = u_{\text{max}} \left\{ \left(\sum_{b \in K_i^{[\text{I}] \setminus \{i\}}} \tilde{H}_{l,i,b}^{[\text{I}]} + \sum_{n \in K_l^{[\text{S}]}} \tilde{\Phi}_{l,i,n}^{[\text{S}]} + \sum_{j \neq l} \sum_{k \in K_j} \tilde{\Phi}_{l,j,k} + \frac{1}{p_d} \mathbf{I} \right)^{-1} \tilde{H}_{l,i,i}^{[\text{I}]} \right\},$$

$$\tilde{w}_{l,i,n}^{[\text{S}]} = u_{\text{max}} \left\{ \left(\sum_{i \in K_l^{[\text{I}]}} \tilde{H}_{l,i,i}^{[\text{I}]} + \sum_{q \in K_{l,n}^{[\text{S}] \setminus \{n\}}} \tilde{\Phi}_{l,i,q}^{[\text{S}]} + \sum_{j \neq l} \sum_{k \in K_j} \tilde{\Phi}_{l,j,k} + \frac{1}{p_d} \mathbf{I} \right)^{-1} \tilde{\Phi}_{l,i,n}^{[\text{S}]} \right\},$$
where $\mathbf{H}^{[i]}_{l,i,i} = (\mathbf{H}^{[i]}_{l,i,i})^{H} \hat{\mathbf{h}}^{[i]}_{l,i,i}$. Each user in the network suffers intra-cell and inter-cell interference (from both class-I and class-S users). Take class-I user i as an example, its SINR is

$$
\tau^{[i]}_{l,i,i} = \frac{\left(\mathbf{h}^{[i]}_{l,i,i}\right)^{H} \mathbf{\tilde{w}}^{[i]}_{l,i,i}\right)^{2}}{\sum_{b \in K^{[i]}} \left|\left(\mathbf{h}^{[i]}_{l,b,i}\right)^{H} \mathbf{\tilde{w}}^{[i]}_{l,b,i}\right|^{2} + \sum_{q \in K^{[i]}} \left|\left(\mathbf{h}^{[i]}_{l,i,q}\right)^{H} \mathbf{\tilde{w}}^{[i]}_{l,i,q}\right|^{2} + \sum_{j \neq l} \sum_{n \in K^{[j]}} \left|\left(\mathbf{h}^{[j]}_{l,i,i}\right)^{H} \mathbf{\tilde{w}}^{[j]}_{l,j,n}\right|^{2} + \frac{1}{p_{d}}}. \tag{47}
$$

Then, we intend to obtain effective SINR $\varrho^{[i]}_{l,i,i}$ and $\varrho^{[S]}_{l,i,n}$ to derive a lower bound of multi-cell sum rate. To achieve this goal, we first calculate the predicted quantized channel for class-I users following the similar approach of Equation (29) and (30), and denote the feedback codeword index as $\tilde{u}^{[i]}_{l,i,i}$ for the class-I user i in the l-th cell. Then, by exploiting the predicted channels and beam domain covariance matrices, approximate precoding vectors of the users in the l-th cell are obtained with the similar procedure given in Equation (31) and (32), and presented as $\hat{\mathbf{w}}_{l,i,k} = \mathbf{V} \left(:, \mathbf{m}_{l,i,k}\right), k \in K_{l}$. Due to the limited space, we omit the details to obtain $\mathbf{m}_{l,i,k}$ and directly present the result for a class-I user as $\mathbf{m}_{l,i,k} = \left[q_{1,i}, \ldots, q_{M,i}\right]$. For a class-S user, we have

$$
\mathbf{m}_{l,i,k} = \arg \max_{x=1, \ldots, M} \left[\tilde{\Sigma}_{l,k}\right]_{x}, \tag{48}
$$

where $\tilde{\Sigma}_{l,k}$ is a diagonal matrix and its x-th element is given as

$$
\left[\tilde{\Sigma}_{l,k}\right]_{x} = \sum_{q \in K_{l}^{[S]} \setminus \{k\}} \left[\Phi^{[S],BD}_{l,q}\right]_{x} + \sum_{i \in K_{l}^{[i]}} \delta(m_{l,i} - x) + \sum_{j \neq l} \sum_{k \in K_{j}} \left[\Phi^{BD}_{l,j,k}\right]_{x} + \frac{1}{p_{d}}, \tag{49}
$$

where the superscript $(\cdot)^{[S],BD}$ denotes that the user belongs to class-S users. Combining with the beam domain channel representation and the approximate precoding vectors, the effective SINR can be obtained based on (47) as

$$
\varrho^{[i]}_{l,i,i} = \frac{\left[\Phi^{[i],BD}_{l,i}\right]_{m_{l,i}}} {\sum_{b \in K^{[i]}} \left[\Phi^{[i],BD}_{l,b}\right]_{m_{l,b}} + \sum_{q \in K^{[i]}} \left[\Phi^{[i],BD}_{l,i,q}\right]_{m_{l,i,q}} + \sum_{j \neq l} \sum_{t \in K_{j}} \left[\Phi^{[i],BD}_{j,t,i}\right]_{m_{j,t,i}} + \frac{1}{p_{d}}}, \tag{50}
$$

$$
\varrho^{[S]}_{l,i,n} = \frac{\left[\Phi^{[S],BD}_{l,i,n}\right]_{m_{l,i,n}}} {\sum_{i \in K_{l}^{[i]}} \left[\Phi^{[S],BD}_{l,i,n}\right]_{m_{l,i,n}} + \sum_{q \in K_{l}^{[S]} \setminus \{n\}} \left[\Phi^{[S],BD}_{l,q,n}\right]_{m_{l,q,n}} + \sum_{j \neq l} \sum_{t \in K_{j}} \left[\Phi^{[S],BD}_{j,t,n}\right]_{m_{j,t,n}} + \frac{1}{p_{d}}}. \tag{51}
$$
Thus, the sum rate of the network is given as
\[
\tilde{R}_{\text{net,LB}} = \sum_{l=1}^{L} \sum_{i \in \mathcal{K}_{l}^{[I]}} \log \left(1 + \varrho_{l,i}^{[I]} \right) + \sum_{l=1}^{L} \sum_{n \in \mathcal{K}_{l}^{[S]}} \log \left(1 + \varrho_{l,n}^{[S]} \right),
\] (52)
Replacing the sum rate expression as \(\tilde{R}_{\text{net,LB}} \) and inputting the beam domain channel covariance \(\Phi_{BD}^{l,j,k} \) of this network into Alg. 1, we can get the user classification result for multi-cell network.

VII. SIMULATION RESULTS
In this section, the analytical rate bound and the performance of the proposed hybrid statistical-instantaneous channel feedback mechanism\[\text{I}\] are evaluated. For any user \(k \), we set the number of multipaths \(P = 20 \), SAoA \(\theta_{\Delta} = 10^\circ \), \(x_{k,\min} = 1 \) and \(x_{k,\max} = M \) for channel feedback prediction. For conventional feedback schemes, we assume all the \(K \) users evenly share the feedback budget and SLNR precoder is adopted \[30\]. Moreover, two types of codebook with and without channel covariance are considered for the simulations, i.e., DFT-based codebook and skewed codebook:

1) DFT-based codebook: The DFT-based codebook does not take channel statistics into consideration. When the codebook size is \(X \), the \(u \)-th codeword \(c_u \) is defined as
\[
c_u \triangleq \frac{1}{\sqrt{M}} \begin{bmatrix} 1, e^{j\pi(2u/X - 1)}, \ldots, e^{j\pi(M-1)(2u/X - 1)} \end{bmatrix}^T. \tag{53}
\]
2) Skewed codebook: For class-I user \(i \), the codebook with size \(X \) is given as
\[
\mathcal{C}_{1,i} = \left\{ \frac{\Phi_{1,i}^{1/2} f_u}{\|\Phi_{1,i}^{1/2} f_u\|}, u = 1, \ldots, X \right\}, \tag{54}
\]
where \(f_u \in \mathbb{C}^{M\times1} \) is isotropically distributed on the unit-sphere. This codebook is more efficient for spatially correlated channel than DFT-based codebook \[39\].

A. Evaluation for Single-cell Scenario
Fig. 2 depicts the system sum rate under the proposed feedback mechanism with Monte Carlo result and analytical lower bound derived in Section IV. As a comparison, the Monte Carlo result of system sum rate with perfect downlink instantaneous CSI is also provided. Fig. 2

\[\text{In the simulations, the minimum number of selected class-I user is } \lceil \frac{B_{\text{total}}^{\text{class-I}}}{20} \rceil \text{ to guarantee that each class-I user is assigned less than 20 bits for feedback. But the number of selected class-I users can be zero.}\]
shows that the proposed channel feedback scheme achieves similar sum rate performance under the DFT-based and skewed codebooks. Although there are only 40 feedback bits for 10 users, the proposed feedback scheme can still obtain satisfying system performance. Moreover, although the analytical lower bound of system sum rate is derived only from channel statistics and does not rely on codebook design, it can display the change of system sum rate versus transmit power.

![Graph showing system sum rate versus transmit power for different feedback schemes.](image)

Fig. 2. Performances comparison of Monte Carlo and the analytical lower bound results with $M = 128$, $K = 10$ and $B_{\text{total}} = 40$ bits.

The performance comparison of conventional and the proposed feedback schemes is provided in Fig. 3 under different downlink transmit power. It is shown that the proposed feedback scheme outperforms the conventional one, especially when DFT-based codebook is used. Besides, the skewed codebook achieves better performance than DFT-based codebook due to the consideration of channel statistics. Moreover, the conventional scheme only obtains marginal performance gain in high SNR regime, while the performance of the proposed feedback scheme keeps growing with the downlink transmit power increasing.

Fig. 4 indicates the system sum rate versus different numbers of users under the same feedback bit budget $B_{\text{total}} = 40$ bits. When only a few of users exist in the cell and each user has sufficient feedback bits (i.e., $K = 4$), the BS takes every user as class-I user. Then, the proposed feedback scheme has identical performance as conventional scheme. Moreover, with the increasing of users, the performance of conventional scheme with DFT-based codebook badly deteriorates and the performance with skewed codebook is also restricted. However, the performance of the
Fig. 3. System sum rate versus different downlink transmit power to each user with conventional and the proposed feedback schemes when $M = 128$, $K = 10$, $B_{\text{total}} = 40$ bits and $B = 4$ bits for each user under conventional scheme.

proposed feedback scheme keeps growing with K increasing. When $K = 20$, the system sum rate under the proposed feedback scheme is more than 20 times larger than the conventional one with DFT-based codebook and 1.4 times larger with skewed codebook.
Fig. 5. System sum rate versus different numbers of feedback bit budget with conventional and the proposed feedback schemes when $M = 128$, $K = 20$, $p_d = 10$ dB, $B = \left\lceil \frac{B_{\text{total}}}{K} \right\rceil$ for each user under conventional scheme.

Fig. 6. System sum rate versus different SAoA with conventional and the proposed feedback scheme when $M = 128$, $K = 10$, $p_d = 10$ dB, $B_{\text{total}} = 40$ bits and $B = 4$ bits for each user under conventional scheme.

Fig. 5 shows the system sum rate under different feedback bit budget. The proposed scheme can always achieve much better system performance even when the feedback bit budget is very limited, i.e., 10 bits in total for 20 users. With the increasing of feedback bit budget,
the performance of the proposed feedback scheme with skewed codebook keep rising, while the performance with DFT-based codebook slightly decreases. When feedback bit budget is extremely large, the performances of the conventional and the proposed scheme will be identical.

The system sum rate under different channel correlation is shown in Fig. 6. When SAoA becomes larger, users have stronger channel correlation with the others and suffer more inter-interference. Then, the system performance decreases under identical feedback bit budget. However, the performance of the proposed feedback scheme outperforms the conventional scheme and achieves more stable system sum rate with the increasing SAoA.

![Fig. 7. The topology of 3-cell massive MIMO network where only the users located in the adjacent three sectors are considered and the number of users in each cell is $K_l = 4, l = 1, \ldots, 3$.](image)

B. Evaluation for Multi-cell Scenario

We consider $L = 3$ cells with the radius of 500 meters and each BS is equipped with $M = 128$ antennas. We assume that the users are randomly distributed in the adjacent three sectors of the cells and no user is closer to the BSs than $r_h = 100$ meters. The topology of the system is shown in Fig. [7]. The large-scale fading is modelled as $\varsigma_{l,j,k} = z/(d_{l,j,k}/r_h)^\nu$, where z is a log-normal random variable with standard deviation σ_{shadow}, the variable $d_{l,j,k}$ is the distance between user k in the j-th cell to the BS in the l-th cell and ν is the path loss exponent. For fair comparison, the inter-cell interference suppression is also considered in conventional SLNR precoding scheme.
which is taken as a special case of (45) and (46) with \(\mathcal{K}^{[S]}_l = \emptyset, l = 1, 2, 3 \). Fig. 8 illustrates that the system sum rate of the proposed feedback scheme outperforms the conventional scheme, especially when DFT-based codebook is used.

VIII. Conclusions

In this paper, a hybrid statistical-instantaneous channel feedback scheme was proposed for FDD massive MIMO systems, where only class-I users need to estimate downlink CSI and feedback the quantized instantaneous channel to the BS by sharing the feedback bit budget evenly. Enabling downlink data transmission with hybrid statistical-instantaneous feedback information, we proposed a SLNR-based precoder. Then, we presented a rate bound analysis which is only based on channel covariance of users and can be exploited to predict the system performance under any user classification solution and feedback bit overhead constraint. To balance the computational complexity of user classification and system performance gain, a sub-optimal classifier was elaborated with the purpose of maximizing the analytical rate bound. Furthermore, we analyse the user classification for multi-cell case. Finally, simulations illustrated that the proposed channel feedback scheme significantly improves system sum rate over the conventional schemes under global feedback bit constraint, especially when the feedback bit budget is deficient.
APPENDIX A

PROOF OF EQUATION (29) AND (30)

The quantized channel for the \(i\)-th class-I user is obtained by

\[
\hat{h}_{i,i}^B = \arg \max_{c_{i,i,u} \in \mathcal{C}_{i,i}} \left| h_{i,i}^H c_{i,i,u} \right|^2 ,
\]

where \(c_{i,i,u}\) is given in (27) and \(\left| h_{i,i}^H c_{i,i,u} \right|^2\) can be further derived with beam domain channel as

\[
\left| h_{i,i}^H c_{i,i,u} \right|^2 = \sum_{m=1}^{M} \left| h_{i,i}^B \right|_m^2 \left| \mathbf{V} (\cdot, m) c_{i,i,u} \right|^2 = \frac{1}{M^2} \sum_{m=1}^{M} \left| h_{i,i}^B \right|_m^2 \zeta ,
\]

where \(\zeta = \left| e^{j \frac{M-1}{2} \pi (\eta_{i,(u)} - \frac{2m}{M} + 1)} \sin \left(\frac{\pi}{2} \eta_{i,(u)} - \frac{2m}{M} + 1 \right) \right|^2\). When the number of BS antennas satisfies \(M \to \infty\), we have \(\zeta \to M^2 \delta \left(\theta_{i,(u)} - \frac{2m}{M} + 1 \right)\). Then, the expression \(\left| h_{i,i}^H c_{i,i,u} \right|^2\) is

\[
\left| h_{i,i}^H c_{i,i,u} \right|^2 = \sum_{m=1}^{M} \left| h_{i,i}^B \right|_m^2 \zeta \left(\eta_{i,(u)} - \frac{2m}{M} + 1 \right) .
\]

Only one nonzero value exists for (57) when \(\eta_{i,(u)} - \frac{2m}{M} + 1 = 0\). Therefore, the virtual beam selected for the \(i\)-th user should be \(m_{i,i} = \frac{M}{2} (\eta_{i,(u)} + 1)\) and the obtained value is \(\left| h_{i,i}^B \right|_{m_{i,i}}^2\).

However, when \(M\) is not infinite, power leakage may happen around \(m_{i,i}\) leading to multiple nonzero values for (57). But most of the power still concentrates around \(m_{i,i}\). We denote the closest beam index to \(m_{i,i}\) as \(\tilde{m}_{i,i} = \left\lfloor \frac{M}{2} (\eta_{i,(u)} + 1) \right\rfloor\). Moreover, due to the absence of instantaneous channel gain, the channel feedback is decided by channel covariance. Thus, the value of objective function \(\left| h_{i,i}^B \right|_{\tilde{m}_{i,i}}^2\) corresponding to the \(u\)-th codebook is replaced by its variance \(\Phi_{i,i}^{BD} \tilde{m}_{i,i}^2\). The codeword index for the \(i\)-th class-I user is

\[
\tilde{u}_{i,i}^* = \arg \max_{u=1,\ldots,X} \left| \Phi_{i,i}^{BD} \left(\frac{M}{2} (\eta_{i,(u)} + 1) \right) \right| ,
\]

and the quantized channel is \(\hat{h}_{i,i}^B = c_{i,i,\tilde{u}_{i,i}^*}\).

APPENDIX B

PROOF OF EQUATION (31) AND (32)

For the ease of analysis for system sum rate, we first rewrite the quantized channel in the form of DFT matrix \(\mathbf{V}\). Following the similar derivation given in (56), there exists a column vector in \(\mathbf{V}\) which is identical or closest to the predicted channel feedback \(\hat{h}_{i,i}^B\). The index of the DFT vector satisfies \(\eta_{i,i}(\tilde{u}_{i,i}^*) - \frac{2\tilde{m}_{i,i}}{M} + 1 = 0\) and is obtained as \(\tilde{m}_{i,i} = \left[x_{i,i,\min} + \frac{x_{i,i,\max} - x_{i,i,\min}}{X} \tilde{u}_{i,i}^* \right]\).
Thus, the quantized channel $\tilde{H}_{l,i}^B$ is approximately written as $\tilde{h}_{l,i}^B = Ve(\tilde{m}_{l,i})$, where $e(\tilde{m}_{l,i})$ is the $\tilde{m}_{l,i}$-th column of an identity matrix.

By substituting $\tilde{H}_{l,i}^B$ into the SLNR-based precoding vectors, an approximate precoding vector for the i-th class-I user is obtained as

$$\bar{w}_{1,i} = \u_{\text{max}} \left\{ \left(\sum_{j=1,j\neq i}^{K_1} Ve(\tilde{m}_{l,j}) e^H(\tilde{m}_{l,j}) V^H + \sum_{n=1}^{K_S} V \Phi_{S,n}^{BD} V^H + \frac{1}{p_d} V V^H \right)^{-1} Ve(\tilde{m}_{l,i}) e^H(\tilde{m}_{l,i}) V^H \right\}$$

$$= \u_{\text{max}} \left\{ V \left(\sum_{j=1,j\neq i}^{K_1} e(\tilde{m}_{l,j}) e^H(\tilde{m}_{l,j}) + \sum_{n=1}^{K_S} \Phi_{S,n}^{BD} + \frac{1}{p_d} I_M \right)^{-1} e(\tilde{m}_{l,i}) e^H(\tilde{m}_{l,i}) V^H \right\} = Ve(\tilde{m}_{l,i}).$$

Similarly, an approximate SLNR-based precoding vector for the n-th class-S user is

$$\bar{w}_{S,n} = \u_{\text{max}} \left\{ \left(\sum_{q=1,q\neq n}^{K_S} V \Phi_{S,q}^{BD} V^H + \sum_{i=1}^{K_1} Ve(\tilde{m}_{l,i}) e^H(\tilde{m}_{l,i}) V^H + \frac{1}{p_d} V V^H \right)^{-1} V \Phi_{S,n}^{BD} V^H \right\}$$

$$= \u_{\text{max}} \left\{ V \left(\sum_{q=1,q\neq n}^{K_S} \Phi_{S,q}^{BD} + \sum_{i=1}^{K_1} e(\tilde{m}_{l,i}) e^H(\tilde{m}_{l,i}) + \frac{1}{p_d} I_M \right)^{-1} \Phi_{S,n}^{BD} V^H \right\}$$

$$= \u_{\text{max}} \left\{ V \Sigma_{S,n} V^H \right\},$$

where $\Sigma_{S,n} = \left(\sum_{q=1,q\neq n}^{K_S} \Phi_{S,q}^{BD} + \sum_{i=1}^{K_1} E(\tilde{m}_{l,i}) + \frac{1}{p_d} I_M \right)^{-1} \Phi_{S,n}^{BD}$ with $E(\tilde{m}_{l,i}) = e(\tilde{m}_{l,i}) e^H(\tilde{m}_{l,i})$. The l-th diagonal element is

$$\left[\Sigma_{S,n} \right]_l = \frac{\left[\Phi_{S,n}^{BD} \right]_l}{\sum_{q=1,q\neq n}^{K_S} \left[\Phi_{S,q}^{BD} \right]_l + \sum_{i=1}^{K_1} \delta(\tilde{m}_{l,i} - l) + \frac{1}{p_d}}.$$

The vector in matrix V corresponding to the largest $\left[\Sigma_{S,n} \right]_l$ is selected as $\bar{w}_{S,n}$ and the index of the largest diagonal element is labeled as $\hat{l}_{S,n}$, such that $\hat{l}_{S,n}^e = \arg \max_{l=1,...,M} \left[\Sigma_{S,n} \right]_l$. Therefore, the approximate precoding vector for the n-th class-S user is $\bar{w}_{S,n} = Ve(\hat{l}_{S,n}^e) = V(:, \hat{l}_{S,n}^e).$
APPENDIX C

PROOF OF EQUATION (36)

Combining with the beam domain channel representation and the approximate precoding vectors, we obtain the lower bound SINR of the i-th class-I user as

$$\tilde{\gamma}_{I,i}^{LB} = \frac{E \left(\left| (\mathbf{h}_{I,i}^{BD})^H \mathbf{e} \left(\tilde{\mathbf{m}}_{I,i} \right) \right|^2 \right)}{\sum_{j=1, j \neq i}^{K_I} \left| (\mathbf{h}_{I,i}^{BD})^H \mathbf{e} \left(\tilde{\mathbf{m}}_{I,j} \right) \right|^2 + \sum_{n=1}^{K_S} \left| (\mathbf{h}_{I,i}^{BD})^H \mathbf{e}(\tilde{\mathbf{r}}_{S,n}) \right|^2 + \frac{1}{p_d}}$$

Similarly, the lower bound SINR of the n-th class-S user is

$$\tilde{\gamma}_{S,n}^{LB} = \frac{E \left(\left| (\mathbf{h}_{S,n}^{BD})^H \mathbf{e} \left(\tilde{\mathbf{m}}_{S,n} \right) \right|^2 \right)}{\sum_{q=1, q \neq n}^{K_S} \left| (\mathbf{h}_{S,n}^{BD})^H \mathbf{e}(\tilde{\mathbf{r}}_{S,n}) \right|^2 + \sum_{i=1}^{K_I} \left| (\mathbf{h}_{S,n}^{BD})^H \mathbf{e}(\tilde{\mathbf{r}}_{I,i}) \right|^2 + \frac{1}{p_d}}$$

Since the BS only holds channel statistics, effective SINR are considered and given as

$$E \left\{ \tilde{\gamma}_{I,i}^{LB} \right\} = \frac{E \left(\left| (\mathbf{h}_{I,i}^{BD})^H \mathbf{e} \left(\tilde{\mathbf{m}}_{I,i} \right) \right|^2 \right)}{\sum_{j=1, j \neq i}^{K_I} E \left(\left| (\mathbf{h}_{I,i}^{BD})^H \mathbf{e} \left(\tilde{\mathbf{m}}_{I,j} \right) \right|^2 \right) + \sum_{n=1}^{K_S} E \left(\left| (\mathbf{h}_{I,i}^{BD})^H \mathbf{e}(\tilde{\mathbf{r}}_{S,n}) \right|^2 \right) + \frac{1}{p_d}}$$

$$E \left\{ \tilde{\gamma}_{S,n}^{LB} \right\} = \frac{E \left(\left| (\mathbf{h}_{S,n}^{BD})^H \mathbf{e} \left(\tilde{\mathbf{m}}_{S,n} \right) \right|^2 \right)}{\sum_{q=1, q \neq n}^{K_S} E \left(\left| (\mathbf{h}_{S,n}^{BD})^H \mathbf{e}(\tilde{\mathbf{r}}_{S,n}) \right|^2 \right) + \sum_{i=1}^{K_I} E \left(\left| (\mathbf{h}_{S,n}^{BD})^H \mathbf{e}(\tilde{\mathbf{r}}_{I,i}) \right|^2 \right) + \frac{1}{p_d}}$$

Thus, the effective achievable sum rate is obtained as

$$\tilde{R}_{sum}^{LB} = \sum_{i=1}^{K_I} \log \left(1 + E \left\{ \tilde{\gamma}_{I,i}^{LB} \right\} \right) + \sum_{n=1}^{K_S} \log \left(1 + E \left\{ \tilde{\gamma}_{S,n}^{LB} \right\} \right).$$
REFERENCES

[1] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.

[3] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.

[4] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, April 2013.

[5] P. Liu, S. Jin, T. Jiang, Q. Zhang, and M. Matthaiou, “Pilot power allocation through user grouping in multi-cell massive MIMO systems,” IEEE Trans. Commun., vol. 65, no. 4, pp. 1561–1574, April 2017.

[6] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell TDD systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640–2651, Aug. 2011.

[7] W. Zhang, H. Ren, C. Pan, M. Chen, R. C. de Lamare, B. Du, and J. Dai, “Large-scale antenna systems with UL/DL hardware mismatch: Achievable rates analysis and calibration,” IEEE Trans. Commun., vol. 63, no. 4, pp. 1216–1229, April 2015.

[8] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 1341–1365, Oct. 2008.

[9] J. Choi, D. J. Love, and T. Kim, “Trellis-extended codebooks and successive phase adjustment: A path from LTE-advanced to FDD massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 14, no. 4, pp. 2007–2016, April 2015.

[10] P. H. Kuo, H. T. Kung, and P. A. Ting, “Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays,” in Proc. IEEE Wireless Communications and Networking Conf., Shanghai, China, April 2012.

[11] Z. Gao, L. Dai, Z. Wang, and S. Chen, “Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO,” IEEE Trans. Signal Process., vol. 63, no. 23, pp. 6169–6183, Dec. 2015.

[12] B. Lee, J. Choi, J. Seol, D. Love, and B. Shim, “Antenna grouping based feedback compression for FDD-based massive MIMO systems,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3261–3274, Sept. 2015.

[13] X. Zhang, L. Zhong, and A. Sabharwal, “Directional training for FDD massive MIMO,” IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5183–5197, Aug. 2018.

[14] Y. Han, T.-H. Hsu, C.-K. Wen, K.-K. Wong, and S. Jin, “Efficient downlink channel reconstruction for FDD transmission systems,” in Proc. 27th Wireless Optical Commun. Conf., Hualien, Taiwan, 2018.

[15] H. Xie, F. Gao, S. Jin, J. Fang, and Y.-C. Liang, “Channel estimation for TDD/FDD massive MIMO systems with channel covariance computing,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4206–4218, Jun. 2018.

[16] M. Khalisaraii, S. Haghighatshoar, X. Yi, and G. Caire, “FDD massive MIMO via UL/DL channel covariance extrapolation and active channel sparsification,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 121–135, Nov. 2018.

[17] H. Mao, W. Feng, and N. Ge, “Receiver cooperation for MIMO broadcast channels with finite-rate feedback,” IEEE Commun. Lett., vol. 19, no. 5, pp. 887–890, May 2015.

[18] J. Chen, H. Yin, L. Cottatellucci, and D. Gesbert, “Feedback mechanisms for FDD massive MIMO with D2D-based limited CSI sharing,” IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5162–5175, Aug. 2017.

[19] A. Adhikary, J. Nam, J. Y. Ahn, and G. Caire, “Joint spatial division and multiplexing: The large-scale array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.
[20] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 264–273, Feb. 2013.
[21] H. Yin, D. Gesbert, and L. Cottatellucci, “Dealing with interference in distributed large-Scale MIMO systems: A statistical approach,” IEEE J. Sel. Top. Signal Process., vol. 8, no. 5, pp. 942–953, Oct. 2014.
[22] F. Domene, G. Piero, M. de Diego, and A. Gonzalez, “Channel quantization based on the statistical characterization of spatially correlated fading,” IEEE Trans. Veh. Technol., vol. 64, no. 9, pp. 3931–3943, Sept. 2015.
[23] S. Wagner, R. Couillet, M. Debbah, and D. T. M. Stock, “Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4509–4537, July 2012.
[24] X. Sun, X. Gao, G. Y. Li, and W. Han, “Agglomerative user clustering and downlink group scheduling for FDD massive MIMO systems,” in Proc. IEEE Int. Conf. Communications, Paris, France, May 2017.
[25] Y. Sun, S. Lv, S. Liu, and Y. Zhang, “Density based user grouping for massive MIMO downlink in FDD system,” in Proc. IEEE 9th Int. Conf. Communication Software and Networks, Guangzhou, China, May 2017.
[26] A. Grassi, M. Kurras, G. Piro, G. Boggia, S. Faehse, and L. Thiele, “Density based clustering for downlink user grouping in FDD massive MIMO,” in Proc. IEEE European Wireless, Catania, Italy, May 2018.
[27] J. Wang, S. Jin, X. Gao, K. K. Wong, and E. Au, “Statistical eigenmode-based SDMA for two-user downlink,” IEEE Trans. Signal Process., vol. 60, no. 10, pp. 5371–5383, Oct. 2012.
[28] B. Clerckx, G. Kim, J. Choi, and S. Kim, “Correlated fading in broadcast MIMO channels: Curse or blessing?” in Proc. IEEE Globecom, New Orleans, LO, USA, Nov. 2008.
[29] B. Clerckx, G. Kim, J. Choi, and S. Kim, “Allocation of feedback bits among users in broadcast MIMO channels,” in Proc. IEEE Globecom, New Orleans, LO, USA, Nov. 2008.
[30] M. Sadek, A. Tarighat, and A. H. Sayed, “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1711–1721, May. 2007.
[31] J. Wang, S. Jin, X. Gao, K. Wong, and E. Au, “Statistical eigenmode-based SDMA for two-user downlink,” IEEE Trans. Signal Process., vol. 60, no. 10, pp. 5371–5383, June 2012.
[32] S. Qiu, D. Gesbert, and T. Jiang, “Enabling covariance-based feedback in massive MIMO: A user classification approach,” in Proc. 2018 Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, Oct. 2018.
[33] S. Qiu, D. Chen, K. Luo, D. Qu, and T. Jiang, “Downlink precoding with mixed statistical and imperfect instantaneous CSI for massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3028–3041, April 2018.
[34] A. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2563–2579, Oct. 2002.
[35] Y.-C. Liang and F. P. S. Chin, “Downlink channel covariance matrix (DCCM) estimation and its applications in wireless DS-CDMA systems,” IEEE J. Sel. Areas Commun., vol. 19, no. 2, pp. 222–232, Feb. 2001.
[36] M. Sadek, A. Tarighat, and A. H. Sayed, “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1711–1721, May 2007.
[37] D. Tse and P. Viswanath, Fundamentals of Wireless Communications, Cambridge Univ. Press, 2005.
[38] C. Sun, X. Gao, S. Jin, M. Matthaiou, Z. Ding, and C. Xiao, “Beam division multiple access transmission for massive MIMO communications,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2170–2184, June 2015.
[39] D. Love and R. Heath Jr., “Limited feedback diversity techniques for correlated channels,” IEEE Trans. Veh. Technol., vol. 55, no. 2, pp. 718-722, Mar. 2006.