SUPPORTING INFORMATION

Design of potent fluoro-substituted chalcones as antimicrobial agents

Serdar Burmaoglua,c,*, Oztekin Alğulb,*, Arzu Gobekc, Derya Aktas Anılc, Mahmut Ulgerd, Busra Gül Erturkb, Engin Kaplane, Aylin Dogend, Gönül Aslanf

aTercan Vocational High School, Erzincan University, 24800, Erzincan, Turkey
bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey
cDepartment of Chemistry, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
dDepartment of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey
eAdvanced Technology Education, Research, and Application Center, Mersin University, 33343, Mersin, Turkey
fDepartment of Medical Microbiology, Faculty of Medicine, Mersin University, 3343, Mersin, Turkey

* These authors contributed equally.

Contents

Chemistry experimental procedure:...2

Copies of 1H and 13C NMR spectra of compound 11..2

* Corresponding authors. These authors contributed equally. Tel.: +90-324-341-2815; fax: +90-324-341-3022 (O.A); +90-446-441-3627; fax: +90-446-441-3672 (S.B) e-mail: oztekinalgul@mersin.edu.tr, sburmaoglu@erzincan.edu.tr
(E)-3-(4-fluorophenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (11);

To a solution of 2,4,6-trimethoxyacetophenon (1) (1g, 4.75 mmol) in MeOH (20 mL) 4-F benzaldehyde (7) (0.6mL 7.6 mmol) and 50% KOH solution (10 mL) was added sequentially and stirred for 15 h at room temperature. After 15 h solvent was evaporated. 2M HCl solution (15 mL) was added and crude product was extracted with DCM (3x20 mL). The combined extracts were dried over Na₂SO₄. The solvent was removed in vacuo and the remaining residue purified via column chromatography over silica gel using gradient elution with EtOAc and Hexanes to yield compound 11, as a yellow solid (80% yield). Rf (EtOAc/Hexanes 30:70) = 0.27; MP = 122-123°C; IR (KBr, cm⁻¹) vmax 3502, 2941, 2841, 1651, 1599; Anal. calcd for C₁₈H₁₈O₄: C, 68.35; H, 5.42; Found: C, 68.16; H, 5.38

¹H NMR (400 MHz, CDCl₃) δ 7.52–7.48 (m, 2H), 7.32 (d, 1H, B part of AB system, J = 16 Hz.), 7.07–7.01 (m, 2H), 6.87 (d, 1H, A part of AB system, J = 16 Hz.), 6.15 (s, 2H), 3.84 (s, 3H), 3.76 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 194.1, 164.0 (d, C-20, J_CF=249.8 Hz), 162.7, 159.1, 142.8, 131.5, 130.4 (d, C-18, J_CF=8.4 Hz), 129.0, 116.1 (d, C-19, J_CF=21.7 Hz), 111.9, 90.9, 56.1, 55.7.

¹H NMR spectrum of compound 11.
13C NMR spectrum of compound 11.