Dominant subtype switch in avian influenza viruses during 2016–2019 in China

Yuhai Bi et al.#

We have surveyed avian influenza virus (AIV) genomes from live poultry markets within China since 2014. Here we present a total of 16,091 samples that were collected from May 2016 to February 2019 in 23 provinces and municipalities in China. We identify 2048 AIV-positive samples and perform next generation sequencing. AIV-positive rates (12.73%) from samples had decreased substantially since 2016, compared to that during 2014–2016 (26.90%). Additionally, H9N2 has replaced H5N6 and H7N9 as the dominant AIV subtype in both chickens and ducks. Notably, novel reassortants and variants continually emerged and disseminated in avian populations, including H7N3, H9N9, H9N6 and H5N6 variants. Importantly, almost all of the H9 AIVs and many H7N9 and H6N2 strains prefer human-type receptors, posing an increased risk for human infections. In summary, our nation-wide surveillance highlights substantial changes in the circulation of AIVs since 2016, which greatly impacts the prevention and control of AIVs in China and worldwide.

#A list of authors and their affiliations appears at the end of the paper.
Avian influenza viruses (AIVs) of various subtypes, e.g., H9N2 low pathogenic AIV (LPAIV) and H5N6 highly pathogenic AIV (HPAIV), have been circulating throughout China and elsewhere in the world, causing huge economic losses. In particular, these AIVs were shown to be able to infect humans. As of 24 June 2019, at least 861 human cases with H5N1 infections have been reported globally. Although there were only 50 reported human cases since the first human infection with H9N2 AIVs in 1998, a seroprevalence rate of 11.20% against H9N2 AIVs among healthy occupational workers which is substantially higher than those against H7N9, H5N1, and H6N6 AIVs, implying that H9 AIV has a higher infectivity to humans than other AIVs and can cause transient human infections.

Worryingly, a number of novel reassortant subtypes including H7N9, H6N1, H10N8, H5N6, and H7N4 were reported to infect humans. In particular, evidence has shown that H9N2 contributed to the emergence and evolution of these novel human-infecting AIVs (e.g., H7N9/H10N8, and H5N6) and that poultry carrying H9N2 in live poultry markets (LPMs) may act as the genetic incubator for creating novel reassortant AIVs.

In our previous report, we have established the Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE) surveillance network and performed monitoring studies for AIVs during 2014–2016 in LPMs in China. We found that while H9N2 was the dominant subtype in northern China, H5N6 has replaced H5N1 as a dominant AIV subtype in southern China. Importantly, H5N6 seems to be more virulent than H5N1 in humans based on the clinical data and case fatality rates (CFRs) (H5N6: ~69.60% and H5N1: ~52.50%) compared to those in other regions. The isolation rates of H5 subtypes were higher in the North (33.33%) and in the West regions (42.31%) compared to those in other regions.

In the present study, we continued our previous work from 2014–2016 and report the results of nation-wide AIV surveillance in China during 2016–2019. Our results show that the AIV positive rate at LPMs substantially decreased compared with that during 2014–16. H9N2 has become the dominant subtype both in chickens and ducks across China. In contrast, H7N9 has almost disappeared in 2018. Furthermore, H7N3 reassortants, H5N6 HPAIV variants, as well as H9N9 and H9N6 LPAIV reassortants have emerged, warranting constant monitoring.

Results

AIV positive rates significantly decreased during 2016–19. A total of 16,091 samples were collected from May 2016 to February 2019 from 37 cities in 23 provinces, municipalities and minority autonomous regions in China (Fig. 1a), in which 2048 samples were identified to be AIV positive by next generation sequencing (NGS), with a positive rate of 12.73% (Supplementary Data 1–5).

To better analyze the geographical distribution of AIVs in LPMs in China, 23 provinces were divided into seven different regions on the basis of geographic proximity: North (Inner Mongolia, NM; Jilin, JL), East-Central (Shanxi, SX; Ningxia, NX; Shandong, SD; Shaanxi, SX; Henan, HeN), South-Central (Anhui, AH; Hunan, HuN; Jiangxi, JX; Fujian, FJ), Yangtze River Delta (Jiangsu, JS; Zhejiang, ZJ), South-West (Sichuan, SC; Chongqing, CQ; Yunnan, YN; Guizhou, GZ), South (Guangxi, GX; Guangdong, GD; Hainan, HaN), and West (Xinjiang, XJ; Qinghai, QH; Xizang, XZ). The AIV positive rates in the seven regions were 5.01%, 9.50%, 20.48%, 20.83%, 8.11%, 8.80%, and 4.84%, respectively (Fig. 1a, b). Remarkably, aside from the East-Central region, the AIV positive rates in the other five regions (the North, South-Central, Yangtze River Delta, South-West, and South) substantially decreased during 2016–19 compared to those during 2014–16, especially in the South (from 32.40% to 8.80%) and South-West (from 31.78% to 8.11%) regions (Fig. 1b).

Furthermore, our analysis revealed that the AIV isolation rate in ducks was the highest (17.88% [525 positive/2,936 samples]), followed by geese (14.52% [63/434]), chickens (12.47% [1,290/10,344]), and then pigeons (3.14% [26/827]) (Supplementary Data 1–5). The results demonstrated that the AIV isolation rates were higher in waterfowl (ducks and geese) than those of land poultry (chickens and pigeons).

H9N2 AIV is dominant in LPMs in China. The 2048 AIV-positive isolates were then sequenced using NGS. The isolates with single HxNy subtype (pure isolates) were found in 70.41% (1442/2048) of the 2048 samples, and the isolates with over two HA or NA subtypes (impure isolates) were found in the remaining 29.59% (606/2,048) of the samples (Supplementary Data 1–5). Among the 1442 pure viruses with the AIV subtype clearly determined, H9N2 was the dominant subtype (n = 1049, 72.75%), with the proportions ranging from 57.69% (West) to 82.58% (East) in the seven defined regions (Fig. 1c and Supplementary Data 1–5). However, the proportion of subtype composition and the prevalent subtype in the seven regions were slightly different. The isolation rates of H5 subtypes were higher in the North (33.33%) and in the West regions (42.31%: 30.77% for H5N8 and 11.54% for H5N6) compared to those in other regions (Fig. 1c). However, only 6 and 26 pure isolates were identified in the North and West regions, respectively (Supplementary Data 1–5).

H7N9 AIVs mainly circulated in the Yangtze River Delta with an isolation rate of 14.29% and in the South-Central region with 9.54%. H6N6 was prevalent primarily in three adjacent regions (South-Central, South, and South-West), with isolation rates between 6.20% and 9.32%. Overall, the top four subtypes circulating in LPMs in China included H9N2 (72.75%), H5N6 (7.84%), H7N9 (5.89%), and H6N6 (5.20%), respectively (Fig. 1c), and H9N2 has become dominant in LPMs in both Northern and Southern China.

The proportion of each specific HA and NA gene in the impure AIV isolates based on the NGS results were also analyzed. The top five HA and four NA subtypes for the impure isolates were H9 (41.15%), H5 (25.10%), H6 (14.49%), H3 (8.66%), H7 (7.39%), and N2 (45.14%), N6 (39.35%), N8 (63.1%), and N9 (4.91%), respectively (Fig. 1d and Supplementary Fig. 1a, b). The H9 and N2 were the dominant HA and NA subtypes, respectively. Meanwhile, the proportions of H9 and H5 subtypes in the 71 impure isolates were 42.25% and 7.04% in the North region, respectively, and 43.48% and 41.30% in the 92 impure samples in the West region (Supplementary Data 1–5). It should be noted that a few rare HA and NA subtypes such as H1, H3, H4, H10, H11, N1, N3, and N4 were observed in the impure samples, and a number of rare subtypes, such as H7N2/N3/N6/N7, H6N2/N8, and H9N6/N9, were also identified from the pure isolates (Fig. 1c and Supplementary Fig. 1c).
Therefore, there was a similar trend in the proportion of each HA and NA subtype between the pure and impure isolates, and the dominant HA and NA subtypes were the same in both groups. The top five HA subtypes in the pure isolates were H9 (74.41%), H5 (8.67%), H7 (8.25%), H6 (5.76%), and other (2.91%), whereas those in the impure isolates included H9 (41.15%), H5 (25.10%), H6 (14.49%), H7 (7.39%), and other (11.87%). The top five NA subtypes in the pure isolates were N2 (73.86%), N6 (13.73%), N9 (7.28%), N8 (1.87%), and other (3.26%), while those in the impure isolates were N2 (45.14%), N6 (39.35%), N9 (4.91%), N3 (2.45%), N1 (1.75%), N4 (0.09%).
To explore the distribution of virus subtypes in LPMs over the last few years, the subtype composition based on the NGS results between 2016 and 2019 was analyzed (Fig. 2 and Supplementary Fig. 1a–c). From 2016 to 2018, the proportion of H9N2 AIVs in the pure isolates steadily increased (54.05% in 2016, 68.91% in 2017, and 85.40% in 2018; Supplementary Fig. 1c). All 35 pure isolates from four provinces (Anhui, Henan, Shandong, and Shanxi) belonged to H9 during January and February of 2019 (Fig. 2a and Supplementary Data 1–5), and the H9 subtype was also found in 51.11% of the impure isolates. However, the proportion of pure H5Ny, H6Ny, and H7Ny AIVs decreased from 2016 to 2018 (Fig. 2a).

Notably, the proportion of H7N9 isolates reached the peak in 2017 (11.72%), but almost disappeared in 2018 (Supplementary Fig. 1c), with just one H7N9 impure isolate containing H7 (151,233 reads), N9 (62,015 reads), and H9 (485 reads) gene sequences. Alternatively, H7N3 AIVs were identified in 2018 with a proportion of 5.33% (Fig. 2a and Supplementary Fig. 1c).

Our previous study has shown that different host species carried distinct major AIV subtypes. As shown in Supplementary Fig. 2a, both H9N2 and H7N9 AIVs were mainly

Year	2016	2017	2018	2019
H5	23.24% (N6: 81.40%; N8: 18.60%)	8.12% (N6: 92.31%; N8: 7.69%)	5.15% (N6: 100%)	0.00%
H6	12.43% (N2: 17.39%; N6: 82.61%)	6.56% (N2: 4.76%; N6: 90.48%; N8: 4.76%)	3.09% (N6: 100%)	0.00%
H7	5.95% (N7: 9.09%; N9: 90.91%)	12.03% (N2: 1.30%; N6: 1.30%; N9: 97.40%)	5.33% (N3: 100%)	0.00%
H9	54.05% (N2: 100%)	68.91% (N2: 95.24%; N9: 4.31%)	85.40% (N2: 99.40%; N6: 0.60%)	100% (N2: 100%)
Others	4.33%	4.38%	1.03%	0.00%

Fig. 2 Virus subtype proportions and host species distributions of the pure isolates with a single HxNy subtype. a The proportion of various HA subtypes of pure isolates with a single HxNy subtype isolated between 2016 and 2019. The major prevalent subtypes include H5, H6, H7, and H9. H5 viruses include H5N6 and H5N8; H6 viruses include H6N2, H6N6, and H6N8; H7 viruses include H7N2, H7N3, H7N6, H7N7, and H7N9; H9 viruses include H9N2, H9N6, and H9N9. b Host species distributions of H5N6, H6N6, H7N3, H7N9, H9N2, and other subtypes. Source data are provided as a Source Data file.
isolated from chickens (83.61% vs. 72.95%), and both H6N6 and H5N6 AIVs were mostly isolated from ducks (83.99% vs. 57.51%). Additionally, most of the rare subtypes were primarily isolated from ducks (65.84%). In contrast to our previous report that H9N2 and H5N6 were dominant in chickens and ducks, respectively, H9N2 was the prevalent subtype in both chickens (89.95%) and ducks (35.71%; Fig. 2b and Supplementary Fig. 2b). It should also be noted that for the three subtypes (H9N2, H7N9, and H5N6), more strains were isolated from the oropharyngeal swabs of chickens or ducks (50.05%, 17.65%, and 23.89%) than those from cloacal samples (16.97%, 4.71%, and 15.04%). Regarding the H6N6 subtype, strains isolated from cloacal samples (41.33%) were more than those from oropharyngeal swabs of ducks (25.33%; Supplementary Fig. 2a).

Genetic evolution of H9N2 AIVs. Since H9N2 AIVs have now become dominant in China, we performed a phylogenetic analysis of 7521 HA genes of H9N2 AIVs from China, including 1477 sequences described in the present study (Fig. 3a). The HA phylogenetic tree revealed that Chinese H9N2 AIVs diverged approximately during 2012–13, resulting in three Clades (C1–C3) with between-group distance of ≥1% (Supplementary Data 6). C1 continued to diverge into several highly similar small sub-clades C1.1–C1.5 (with between-group distance of ≥0.3%, Supplementary Data 6), and most have been co-circulating during our surveillance period. In contrast, C2 and C3 viruses circulated at very low levels, with few viruses isolated from 2012 to 2016. However, the prevalence of C2 and C3 remarkably increased during 2017 and 2018. In detail, 2498 H9 strains isolated since 2017 belonged to C1, 783 viruses belonged to C2, and 211 belonged to C3. Regarding our H9 isolates since 2017 (n = 1350), 937 strains fell within C1, 393 in C2, and 20 in C3.

Although the majority of the H9 isolates belonged to the H9N2 subtype, several H9N9 and H9N6 viruses were also found to be co-circulating, scattering amongst the tree with H9N2 AIVs, without forming separate clusters (Fig. 3a). Similarly, in the NA phylogenetic tree of the H9N2 AIVs, there were two major Clades (C1 and C2, with between-group distance of ≥1.5%, Supplementary Data 6), and they also diverged during 2012–13 (Fig. 3b). The majority of our isolates since 2017 (n = 1151) belonged to C1 and 161 isolates belonged to C2. Therefore, multiple clusters of H9N2 AIVs have been co-circulating in China after 2012–13.

Several amino acids (Q226L, I155T, and H183N) affecting the receptor-binding preference of H9 N9 AIVs were analyzed. The majority of the H9 strains possessed 226L (99.93% [1,438/1,439]), 155T (99.58% [1,433/1,439]), and 183N (99.93%, [1,438/1,439]; Supplementary Data 7 and 8), suggesting that they may have acquired human receptor (α2-6-SA) binding capacity. In total, 99.43% (1395/1403) of the sequenced H9N2 strains had NA stalk deletions (positions 62–64), and no NA inhibitor (NAI)-resistant mutations were found in the NA proteins of H9N9 (Supplementary Data 7).
Continued evolution and emergence of H5, H7, and H6 variants. The H5 subtype was detected in 384 of the isolates sequenced from 2016 to 2019. H5N6 subtype AIVs (n = 344) accounted for the majority (89.58%), followed by H5N8 (n = 18, 4.69%) and H5N2 (n = 16, 4.17%). All of the H5N6, H5N8, and H5N2 AIVs fell within Clade 2.3.4.4 (Fig. 4a), which could be classified into four sub-clades, with between-group distance of ≥3% (Supplementary Data 6). Clades 2.3.4.4a and 2.3.4.4d corresponded to the major and minor lineages designated in our previous report13. Clades 2.3.4.4b and 2.3.4.4c were already found to exist in our previous research, but were not designated then. In total, 344 strains, including 332 H5N6 and 12 H5N2 AIVs, fell within Clade 2.3.4.4d (the previously designated major lineage), whereas 28 strains (H5N2, n = 4; H5N6, n = 10; H5N8, n = 14) clustered in 2.3.4.4b and 6 strains (H5N6, n = 2; H5N8, n = 4) clustered in 2.3.4.4c. Notably, none of our strains belonged to Clade 2.3.4.4a (the previously designated minor lineage). Although 344 strains were classified into 2.3.4.4d, most (n = 324) formed a separate sub-clade within 2.3.4.4d with a distance of 1.2%. In addition, >80% strains in this unique sub-clade possessed distinct amino acid substitutions in the HA antigenic regions according to the H3 structure24–26. It should be noted that only six strains from 2018 belonged to the H5N1 subtype, and all of them fell within Clade 2.3.2.1c (Fig. 4a).

Our surveillance identified a total of 160 H7 AIV strains during 2016–19. To our surprise, they belonged to at least six different subtypes: H7N9 (n = 119), H7N3 (n = 33), H7N2 (n = 3), H7N6 (n = 3), H7N8 (n = 1), and H7N7 (n = 1; Fig. 4b, c). Phylogenetic analysis of the HA gene showed that apart from one H7N7 strain Dk/IX/1-07 NCDZT35N-C/2016, all of the remaining H7 strains (n = 159) clustered together with the human-infecting H7N9 AIVs (Fig. 4c) within the Yangtze River Delta lineage. Apart from H7N3, other H7 subtypes, e.g. H7N2, H7N6, and H7N8 AIVs scattered in the Yangtze River Delta lineage with LPAIV H7N9 contemporarily circulating in LPMs in different regions of China (Fig. 4b).

Of note, 31 of 33 H7N3 strains isolated from ducks and two strains from chickens from Fujian in 2018 formed an
independent cluster within the H7N9 HPAIV lineage (Fig. 4b). The NA gene sequences of the H7N3 AIVs showed that they were closely related to AIVs of the N3 subtype circulating in ducks in southern China during 2017–18 (Supplementary Data 9). We have performed a complete phylogenetic analysis of the eight gene segments of 615 H7N3 AIVs (584 strains from public databases). Our analyses revealed that the H7N3 AIVs had diverged into the North American lineage and the Eurasian lineage. These strains could be further classified into 26 genotypes (Supplementary Fig. 3 and Supplementary Data 10), with 14 belonging to the North American lineage and 12 belonging to the Eurasian lineage (Supplementary Fig. 3 and Supplementary Data 9 and 10). Our 31 H7N3 AIVs with whole genome (two isolates only had HA sequences) described here belonged to G11 (n = 30) and G12 (n = 1), respectively. They were different from a reassortant H7N3 strain identified from Japan, A/duck/Japan/AQ-HE30-1/2018(H7N3)27 (G10), in the PB2 gene. Dk/FJ/1.25 FZHX0009-C/2018(H7N3) (G12) differed from the remaining 30 H7N3 strains (G11) in the MP and NS genes. Therefore, all of the H7N3 strains were not closely related to H7 AIVs from other countries, such as Mexico and the USA, and were novel reassortants.

Receptor-binding properties of the major AIVs. In order to identify and provide early-warning of the potential public risks of the AIVs, a total of 43 representative strains including H9N9 (n = 7), H9N2 (n = 3), H5N6 (n = 8), H7N9 (n = 7), H7N3 (n = 9), H6N6 (n = 5), and H6N2 (n = 4) were selected for receptor-binding test using trisaccharide receptors.

All tested H9 isolates possessed residue 226L (Supplementary Data 7). As expected, six H9N9 and two H9N2 testing strains (Cl/JX/08.24 NCDZT12X2-OC/2017(H9N9), Cl/JX/4.30 NCDZT44N2-OC/2017(H9N9), Cl/JX/4.30 NCDZTS9N2-OC/2017(H9N9), Cl/JX/08.24 NCDZT49X2-OC/2017(H9N9), Cl/JX/6.26 NCDZT51R2-OC/2017(H9N9), Cl/JX/4.30 NCDZT6N2-OC/2017(H9N9), Cl/JX/8.26 NCDZTY76-OC/2016(H9N2), and Cl/Hu/N7.21 YYGK54E3-OC/2016(H9N2)) exclusively bound to human-type receptors (a2-6SA). Only one H9N9 strain (Cl/JX/4.30 NCP8N82-OC/2017(H9N9) and one H9N2 (Cl/GD/4.18 SZBJ011-O/2018(H9N2)) presented a dual receptor-binding ability, with preference for human-type receptors (Fig. 5, Supplementary Data 4, and Supplementary Data 8). All tested H5N6 strains possessed 226Q and a loss of glycosylation site at the positions 158 – 18 (Supplementary Data 9). We also observed that all tested H5N6 strains possessed 226Q and a loss of glycosylation site at the positions 158 – 18 (Supplementary Data 9). We performed receptor-binding analysis with trisaccharide receptors (Fig. 5, Supplementary Fig. 4, and Supplementary Data 8). In contrast to H6N2, all four H6N2 representative strains possessed double receptor-binding abilities. Gs/GD/10.21 SZBJ004-O/2016(H6N2) (190V and 228G) and Gs/GD/10.21 SZBJ001-C/2016(H6N2) (190V and 228G) possessed higher affinities to avian-type receptors, while Gs/GD/10.21 SZBJ004-O/2016(H6N2) (190A, 222I, and 228G) and Gs/GD/10.21 SZBJ003-O/2016(H6N2) (190V and 228S) displayed a preference for human-type receptors (Fig. 5, Supplementary Data 4, and Supplementary Data 8).

Receptor-binding analysis also showed that many H5, H6, H7, and H9 AIVs have acquired the ability to bind both avian and human-type receptors. It was notable that four strains (Ev/JX/2.05 SRXZBJT038-E/2017(H7N9) (186V and 226L; mixed R (49.59%) and K (49.27%) at position 173), Ev/JL/04.11 CCHSL037-E/2018(H7N9) (186V and 226L), Ev/JX/2.16 SRGYFK089-E/2017(H7N9) (186V and 226L), and Ev/JX/1.11 NCDZT98F2-E/2017(H7N9) (186V, 226L, 122T, and 236I)) preferred binding to human-type receptors compared to the precursor A/Anhui/2013(H7N9) and other tested strains with 186V and 226L (Fig. 5, Supplementary Fig. 4a, and Supplementary Data 8), suggesting that the transmissibility from avian to humans may have increased for these H7N9 isolates. For the H7N3 reassortants with HA gene from H7N9 HPAIV, six of the nine strains (Dk/FJ/1.25 FZHX0049-O/2018(H7N3), Dk/FJ/1.25 FZHX0017-O/2018(H7N3), Dk/FJ/1.25 FZHX0011-0/2018(H7N3), Dk/FJ/1.25 FZHX0045-C/2018(H7N3), Dk/FJ/1.25 FZHX0014-C/2018(H7N3), and Dk/FJ/1.25 FZHX0046-O/2018(H7N3)) bound to both avian and human-type receptors and the affinities to avian-type receptors were slightly stronger than those to human-type receptors, whereas three strains (Dk/FJ/1.25 FZHX0005-O/2018(H7N3), Dk/FJ/1.25 FZHX0013-C/2018(H7N3), and Dk/FJ/1.25 FZHX0013-C/2018(H7N3)) bound only to avian-type receptors (Fig. 5, Supplementary Fig. 4, and Supplementary Data 8). For the H6 subtype, the tested strains also displayed diverse receptor-binding abilities. Three H6N6 strains with 190E and 228G (Dk/Hu/N2/0.6 YYGK86J3-OC/2018(H6N6), Dk/JX/5.28 NCNP34N3-OC/2018(H6N6), and Dk/Hu/N5.29 YYYK00P3-OC/2018(H6N6)) only bound to avian-type receptors. However, two H6N6 strains also with 190E and 228G (Cl/Hu/N1.12 YYGK22H3-OC/2018(H6N6) and Dk/Hu/N1/11.30 YYGK54E3-OC/2018(H6N6)) possessed both avian- and human-type receptor-binding abilities and preferred avian-type receptors (Fig. 5, Supplementary Fig. 4, and Supplementary Data 8).

The predominance of human-type receptor-binding preference of the tested H7N9, H9N2, and H9N9 strains was further confirmed using pentasaccharide receptors (Supplementary Fig. 4b). The receptor-binding affinities to both trisaccharide and pentasaccharide receptors were also similar for the tested strains of other subtypes, although Dk/FJ/1.25 FZHX0005-0/2018(H7N3) and Dk/Hu/N1/2.06 YYGK86J3-OC/2018(H6N6) displayed slight binding avidities to human-type pentasaccharide receptors, compared with single affinities to avian-type trisaccharide receptors (Fig. 5, Supplementary Fig. 4, and Supplementary Data 8). These data indicated that many H5, H6, H7, and H9 AIVs have acquired a capability for binding to human-type receptors.

Discussion

Compared to our previous study15, the AIV positive rates substantially decreased from 2016 to 2019. Several factors may have accounted for this decline. Due to LPMs as a transmission source and even potential incubator for human infections with AIV28,29, more and more provinces have started to close LPMs30 or take special measures at the human-animal interface to lower the risks of human infection. For example, the “110” strategy for markets (cleaning every day, disinfecting every week, shutting down once per month, and butchering all unsold live birds before closing every day) was first proposed and implemented in Guangdong Province, China in 2014 (http://www.chinanews.com/fz/2014/12-
In addition, the H5/H7 bivalent vaccine may have also contributed to the decreased AIV positive rates. However, after using the H9 and H5 vaccines for lent vaccine may have also contributed to the decreased AIV positive rates in China need to be further investigated. Although the factors contributing to the decreased AIV positive rates in China need to be further investigated, the “1110” strategy may be effective, and lower AIV positive rates in LPMs would be expected as a result.

Since 2016, the dominant AIV subtypes have substantially changed. During 2014–16, H9N2 and H5N6 were the dominant subtypes in Northern and Southern China, respectively. However, after using the H9 and H5 vaccines for –2134 and 1535 years, respectively, these viruses are still circulating and evolving in China. Although the factors contributing to the decreased AIV positive rates in China need to be further investigated, the “1110” strategy may be effective, and lower AIV positive rates in LPMs would be expected as a result.

Since 2016, the dominant AIV subtypes have substantially changed. During 2014–16, H9N2 and H5N6 were the dominant subtypes in Northern and Southern China, respectively. However, the proportion of H9N2 AIVs gradually increased and has now become the most prevalent subtype in both Northern and Southern China. Coupled with the nation-wide and disordered transportation of poultry carrying H9N2, the emergence of H9N9 and H9N6 reassortants, and the dynamic reassortments among H9 and different AIV subtypes, the circulation of H9 LPAIVs has become highly complicated in China. Remarkably, despite the widespread circulation of H7N9 AIVs during 2016–17, it almost disappeared in 2018. The shift of the AIV subtypes in the poultry was not likely associated with intraspecies transmission between chicken and ducks, but may be caused by changes in the management of LPMs, the vaccination strategy, and different sensitivities of various viruses to the disinfectants used in the “1110” strategy. However, these results highlight the distinct change of the dominant AIV subtypes in China and will have a profound influence on prevention strategies against AIVs, including vaccine development and usage.

Moreover, the emergence of a number of variants was notable, especially the H7N3 variant with an HA gene of the H7N9 HPAIV origin and the H5N6 variant. The antigenicity of these mutants, the effectiveness of the current H5/H7 bivalent vaccine against these variants, as well as the reason for H7N9 being replaced by H7N3, warrant further investigation. In addition, AIV isolation rates in the Yangtze River Delta and the South-Central regions only slightly decreased and were still higher than 20.00%. The co-infection or “impure” AIVs may also lead to antigenic or subtype shift. Including the present study, the existence of impure isolates with different subtypes has also been reported in many studies. All the results highlight the necessity of constant surveillance of AIVs in LPMs.

It is known that five out of the 12 AIV subtypes that have been detected in cases of human infections are H7 subtypes, including H7N2, H7N3, H7N4, H7N7, and H7N5. In this study, we revealed that five H7 (H7N2, H7N3, H7N6, H7N7, and H7N9) subtypes were co-detected in LPMs, in which most were isolated from ducks (except for H7N9), suggesting that ducks may also act as a “mixing vessel” for the H7 AIV reasortants. In fact, most of the other rare subtypes with diverse genetic constellations were also found in ducks. This may be partly due to the more contacts between domestic duck and wild waterfowl, which was considered as the natural reservoir of AIVs. H9N2 has also become the major subtype in ducks. Therefore, the probability of emergence of novel AIVs by reassortment among the diverse genetic constellations may likely be higher in ducks, not only because of the high diversity of AIV genetic constellation in ducks but also the excellent genetic compatibilities among H9N2 and other influenza subtypes including H7N9, pandemic H1N1, H5N1, H5N6, and so on.

Receptor binding was considered as the first step of influenza infection to host cells. Almost all H9Ny isolates possessed 226L on HA, and all the tested H9N2 and H9N9 strains mainly bound to human-type receptors. 96.58% (113 out of 117) of the H9N9 isolates possessed both 186V and 226L on HA, and all the tested H9N2 and H9N9 strains mainly bound to human-type receptors. 96.58% (113 out of 117) of the H7N9 isolates possessed both 186V and 226L, which were considered as the critical sites for human-type receptor binding of
H7N9 AIVs, and all the tested H7N9 strains presented affinities to both avian- and human-type receptors. Notably, several representative H7N9 strains during 2017–18 preferred human-type receptors, and the binding avidities were much stronger than a previous H7N9 strain (A/Shenzhen/TH001/2016), which also preferred to bind human-type receptors. Six of the nine tested H7N3 HPAIVs displayed dual receptor-binding abilities though preference to avian-type receptors. This phenomenon was also seen in the H7N9 HPAIVs, indicating potentially similar infectivity of H7N3 and H7N9 HPAIVs to the hosts.

All the sequenced H5N6 strains had 226Q, while some tested strains presented slight preference for human-type receptor, which could be partly explained by the loss of a glycosylation site which was also seen in the H7N9 HPAIVs, indicating the hosts. The hosts.

Whole-genome sequencing of AIV isolates. Viral RNA was extracted directly from AIV-positive allantoic fluid with MagBio Plus Virus RNA Purification Kit (MagBio Group). The whole-genome of AIV isolates was sequenced using Next generation sequencing (NGS). Briefly, RT-PCR and DNA synthesis were performed using the PrimeScript One Step RT-PCR kit (Takara). Next, the sequencing libraries were prepared. The libraries were sequenced on the BGISEQ and ILLUMINA HiSeq 4000. Sequencers by 200 bp or 250 bp paired-end sequencing, and sequencers by 200 bp paired-end sequencing. The NGS method was confirmed by the published qRT-PCR method and qRT-PCR kits (Mabsky Biotech Co., Ltd.) with reference samples.

Sequencing data assembly. Raw NGS reads were processed by filtering out low-quality reads (eight bases with quality <60), adapter-contaminated reads (with >15 bp matched to the adapter sequence), poly-Ns (with >8Ns), duplication and host DNA sequences, and reads (SOAP2:Q20:Q20:99; less than five mismatches). The filtered reads were mapped to the INFLUENZA database (downloaded on 1 June 2018) to choose best-matching reference sequences. Burrows-Wheeler Aligner (BWA version 0.7.12) and SAMtools (version 1.4) were then used to perform reference-based assembly.

Based on the NGS data, each cultured sample with ≥2 HA or NA subtypes was defined as "impure isolate", while those with single HA and NA subtype were defined as "pure isolate". The AIV positive samples were the cultured samples including both pure and impure isolates. The AIV positive rate was then calculated by "the numbers of AIV positive (cultured) samples" divided by "the total numbers of cultured samples". The percentage of the impure or pure isolate was calculated as "the numbers of impure or pure isolates" divided by "the total number of AIV positive samples".

Phylogenetic analyses. Complete genomes of the AIVs isolated in China were downloaded from the FluVirus Resource at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/flp-select.cgi) and the GISAID (https://www.gisaid.org/) database on 2019. Repetitive sequences in the two databases were removed by matching strain names using Bioedit (version 7.1.3.0)66. Only full-length genomes were kept and sequence with obvious errors (e.g. frame shifts or total number of ambiguous bases >100) were excluded manually. The remaining sequences were combined with those generated in the present study, and the sequences of H9N5, H5N6, and H6N6 isolates were phylogenetically analyzed.

Multiple sequence alignment was performed using Muscle (version 3.8.31) and then adjusted manually in Bioedit (version 7.1.3.0)66. Phylogenetic analysis of the aligned HA and NA datasets were performed using RAxML (version 8.1.6)68, with GTR/GAMMA applied as the nucleotide substitution model with 100 bootstrap replicates. Trees were visualized using FigTree (version 1.4.3).

The H5 clades in the phylogenetic trees were defined according to the nomenclature system proposed by FAO/WHO/OIE (https://www.who.int/flu/virus/virus_nomenclature/virus_nomenclature_clade2014/en/) and previous publications. The classification for the Yangtze River Delta and Pearl River Delta lineage in HA genes of the human-infecting H7N9 AIVs is defined based on previous publications. The HA and NA clades of H9N2 were defined based on pairwise distance between taxa calculated with default parameters in MEGA (version 5.2). A HA or NA clade was defined when the between-group distance was ≥0.1%.

Receptor-binding assay. The pure isolates in different HA clades, within three passages and presenting ≥64 HA titers, were selected as the representative strains for receptor-binding testing using the solid-phase direct binding assay. Briefly, 96-well microtitre plates were coated with biotinylated glycan a2-3-SA receptors (trisaccharide: Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-SpNH-LC-LC-Biotin) and trisaccharide: Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-SpNH-LC-LC-Biotin and a2-6-SA receptors (trisaccharide: Neu5Acα2-6Galβ1-4GlcNAcβ1-SpNH-LC-LC-Biotin and Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-SpNH-LC-LC-Biotin) and trisaccharide: Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-SpNH-LC-LC-Biotin). Virus titrations containing 64 HA units with the NA (10 μM each of Oseltamivir and Zanamivir) were incubated. Virus-receptor-binding was detected using goat anti-rabbit antibodies against the influenza viruses (H1, H5, H6, H7, or H9, CASCIRE) and the HRP-linked goat-anti-rabbit antibody (Bioesasytech). HRP-linked goat-anti-rabbit antibody was diluted 2000 times in phosphate buffer saline (PBS) with 1% bovine serum albumin (BSA). The results were measured by tetramethylbenzidine (TMB) at 450 nm. A/Anhui/1/2013 (H7N6) was used as a reference for comparison with the tested H7 strains. Two human strains, A/California/04/2009(H1N1) and A/Vietnam/1194/2004(H5N1) were used as control.

BioSafety statement and facility. Routine surveillance samples were processed in the biosafety level 2 (BSL-2) labs of CASCIRE. Coveralls, gloves, and N95 masks were used during the working in BSL-2 labs, and all wastes were autoclaved. The experiments with live H7N9, H7N3, and H5N6 viruses were conducted in biosafety level 3 (BSL-3) labs of CASCIRE or CASCIRE Network Surveillance Unit (NSU). This study was approved by the Ethics Committee of Institute of Microbiology, Chinese Academy of Sciences (SQIMCAS2016016).
Measures against cross-contamination. First, during the sample collection process, all the tubes with samples were placed into different cells in sample box. Second, our longitude study included 3–16,000 samples, however, samples were tested at the same time. In fact, samples from the same site were detected as soon as possible after collection by month, and usually no more than 200 samples were identified in each experiment. Third, before the inoculation or identification of the original and cultured samples, the surfaces of tubes were disinfected with disinfectant (Benzalkonium bromide or 75% alcohol). Fourth, RNAs were extracted by an automatic nucleic acid purification machine (Nucleic Acid Purification System NPA-32) rather than manually. Fifth, all the experiments associated with original and cultured samples, the surfaces of tubes were disinfected with disinfection machine (Nucleic Acid Puri- fication System) after each usage. In addition, disposable coveralls, N95 masks (Zhuozhou Fumeishendun Biotechnology Co., Ltd., China), and double- deck gloves (the inner shorter gloves cover the cuff by adhesive tape, and the outer longer gloves also cover the cuff but without adhesive tape for easy changing if they were contaminated) were strictly dressed in each experiment.

Data availability
Data supporting the findings of this study are available within the article and its Supplementary Information files. The H9N2, H5N1, H7N9, and H6N6 sequences reported in this paper have been deposited into Global Initiative on Sharing All Influenza Data databases (GISAID; https://www.gISAID.org), and the accession numbers are listed in the Supplementary Data 7. These sequences have also been deposited into GenBank (accession numbers MW094306 - MW110364) and the Chinese National Microbiological Data Center (accession number NMDIC0107696 and genome accession numbers NMDIC0000230 - NMDIC00000HQ). Source data are provided with this paper.

Received: 12 March 2020; Accepted: 20 October 2020; Published online: 20 November 2020

References
1. OIE. Update on avian influenza in animals (types H5 and H7). https://www.oie.int/en/animal-health-in-the-world-update-on-avian-influenza/ (2019).
2. Peacock, T. H. P., James, J., Sealy, J. E. & Iqbal, M. A global perspective on avian influenza H9N2 virus. Viruses 11, 620 (2019).
3. Gao, G. F. From “AVT” to “Z’IKV: Attacks from emerging and re-emerging pathogens. Cell 172, 1157–1159 (2018).
4. Guo, Y., Li, J. & Cheng, X. Discovery of men infected by avian influenza A (H9N2) virus. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 50, 1075–1078 (1999).
5. WHO. Monthly risk assessment summary. https://www.who.int/influenza/human_animal_interface/HAI_Risk_Assessment/en/ (2019).
6. WHO. Cumulative number of confirmed human cases of avian influenza A (H5N1) reported to WHO. https://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_environ/ (2019).
7. Quan, C. et al. Avian influenza A viruses among occupationally exposed populations, China, 2014–2016. Emerg. Infect. Dis. 25, 2215–2225 (2019).
8. Bi, Y. et al. Two novel reassortants of avian influenza A (H5N6) virus in China. J. Gen. Virol. 96, 975–981 (2015).
9. Gao, R. et al. Human infection with a novel avian-origin influenza A (H7N9) virus. New Engl. J. Med. 368, 1888–1897 (2013).
10. Tong, X. C. et al. First human infection by a novel avian influenza A (H7N4) virus. J. Infect. 77, 249–257 (2018).
11. Wei, S. H. et al. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Resp. Med. 1, 771–778 (2013).
12. Zhang, T. et al. Human infection with influenza virus A(H10N8) from live poultry markets, China, 2014. Emerg. Infect. Dis. 20, 2076–2079 (2014).
13. Bi, Y. et al. Coexistence of avian influenza H10 and H9 subtypes among chickens in live poultry markets during an outbreak of infection with a novel H10N8 virus in humans in Nanchang, China. Emerg. Infect. Dis. 21, 1784–1793 (2015).
14. Yuan, J. et al. Effect of live poultry market closure on avian influenza A (H7N9) virus activity in Guangzhou, China. Emerg. Infect. Dis. 21, 719–725 (2015).
15. Pu, J. et al. Evolution of the H9N2 influenza virus in China. J. Virol. 75, 71–75 (2017).
16. Yang, Y. et al. Comparison between human infections caused by highly and low pathogenic avian influenza A (H7N9) viruses. J. Virol. 87, 241–248 (2013).
17. Quan, C. et al. New threats from H7N9 influenza virus: spread and evolution of high- and low-pathogenicity variants with high genomic diversity in wave five. J. Virol. 92, e00301–e00318 (2018).
18. Ha, Y., Stevens, D. J., Skelhel, J. J. & Wiley, D. C. H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza H5H9 subtypes. EMBO J. 21, 865–875 (2002).
19. Munoz, E. T. & Deem, M. W. Epitope analysis for influenza vaccine design. Vaccine 23, 1144–1148 (2005).
20. Imai, M. et al. A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets. Cell Host Microbe 22, 615–626 (2017).
21. Zhang, F. et al. Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China. J. Infect. 75, 71–75 (2017).
22. Yang, Y. et al. Comparison between human infections caused by highly and low pathogenic H7N9 avian influenza viruses in wave five: clinical and virological findings. J. Infect. 78, 241–248 (2019).
23. Quan, C. et al. New threats from H7N9 influenza virus: spread and evolution of high- and low-pathogenicity variants with high genomic diversity in wave five. J. Virol. 92, e00301–e00318 (2018).
24. Peacock, T. H. P., James, J., Sealy, J. E. & Iqbal, M. A global perspective on avian influenza H9N2 virus. Viruses 11, 620 (2019).
25. Ample infrared heater after each usage. In addition, disposable coveralls, N95 marks (Zhuozhou Fumeishendun Biotechnology Co., Ltd., China), and double-deck gloves (the inner shorter gloves cover the cuff by adhesive tape, and the outer longer gloves also cover the cuff but without adhesive tape for easy changing if they were contaminated) were strictly dressed in each experiment.
Yuhai Bi1,2,3,4✉, Juan Li3,4,24, Shaoqin Li2,24, Guanghua Fu5,24, Tao Jin6,24, Cheng Zhang1,7, Yongchun Yang8, Zhenghai Ma9, Wenzhao Tian3,9, Jida Li10, Shuqi Xiao11, Liqiang Li6, Renfu Yin12, Yi Zhang10, Lixin Wang13, Yantao Qin14, Zhongzi Yao15, Fanyu Meng4, Dongfang Hu16, Delong Li17, Gary Wong18,19, Fei Liu1,20.

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS; Grant No. XDB29010102), National Science and Technology Major Project (Grant No. 2018ZX10101004, 2018ZX101201001, 2018ZX1073403, and 2020ZX1001001-016), Second Tibetan Plateau Scientific Expedition and Research Program (STEP; Grant No. 2019QZKK0304), National Key Research and Development Project of China (Grant No. 2016YFE002650), National Natural Science Foundation of China (NSFC; Grant No. 31870163 and 32061123001), Shenzhen Science and Technology Research and Development Project (Grant No. JCYJ20180504165545981), RFRB Research Project (Grant No. 19-54-55004), Earmarked Fund for Modern Agro-industry Technology Research System (CARS-42) from the Ministry of Agriculture of P. R. China, Cooperative Innovation Project (The Shanghai Cooperation Organization Science and Technology Partnership Program; Grant No. 2017E01022), China-U.S. Collaborative Program on Emerging and Re-emerging Infectious Diseases (Grant No. S301/JDP01106-01), and Academic Promotion Programme of Shandong First Medical University (Grant No. 2019QIL006 and 2019PT008). W.S. is supported by the Taishan Scholars program of Shandong Province (ts201511056). Y.B. is supported by the NSFC outstanding young scholars (Grant No. 31822055), and Youth Innovation Promotion Association of CAS (Grant No. 2017122).

Author contributions

Conceptualization by Y.B., W.S., and G.F.G.; Methodology by Y.B., W.S., J.L., S.L., and G.F.; Formal analysis by Y.B., J.L., S.L., Q.C., and W.S.; Investigation by Y.B., J.L., S.L., Q.C., G.F., T.Z., C.J., Y.Z., Z.M., W.T., J.L., S.X., L.L., R.Y., Y.Z., Lx.W., Y.Q., Z.Y., F.M., D.H., D.L., G.W., F.L., N.L., L.W., Y.F., Y.P., J.M., K.S., A.S., M.G., J.C., Y.S., W.L., D.C., Y.H., L.Y., L.L., M.W., and W.S.; Resources by Y.B., W.S., and G.F.G.; Writing – original draft by Y.B., W.S., and Q.C.; Writing – review and editing by Y.B., W.S., G.W., J.L., S.L., Q.C., and G.F.G.; Supervision by Y.B., W.S., and G.F.G.; Project administration by Y.B., W.S., J.L., and W.S.; Funding acquisition by Y.B., W.S., and G.F.G.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-19671-3.

Correspondence and requests for materials should be addressed to Y.B., Q.C. or W.S.

Peer review information Nature Communications thanks Guadalupe Ayora-Talavera, Marie Culhane, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Na Lv1, Liang Wang1, Lifeng Fu1, Yang Yang2, Yun Peng2, Jinmin Ma6, Kirill Sharshov20, Alexander Shestopalov20, Marina Gulyaeva20, George F. Gao1,2,3,21, Jianjun Chen15, Yi Shi1,2, William J. Liu21, Dong Chu22, Yu Huang5, Yingxia Liu3, Lei Liu3, Wenjun Liu1,2, Quanjiao Chen15,6, & Weifeng Shi4,23,4

1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101 Beijing, China. 2University of Chinese Academy of Sciences, 101408 Beijing, China. 3Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People’s Hospital, 518112 Shenzhen, China. 4Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016 Tai’an, China. 5Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, 350013 Fuzhou, China. 6China National Genebank–Shenzhen, BGI–Shenzhen, 518083 Shenzhen, China. 7College of Life Science and Technology, Xinjiang University, 830046 Urumchi, China. 8Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Veterinary Medicine & College of Veterinary Medicine of Zhejiang A&F University, 311300 Hangzhou, China. 9College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271016 Tai’an, China. 10Institute of Zoology, College of Public Hygiene, Zunyi Medical University, 563003 Zunyi, China. 11College of Veterinary Medicine, Northwest A&F University, 712100 Yangling, Shaanxi, China. 12Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, 130062 Jilin, China. 13School of Basic Medicine and Life Science, Hainan Medical University, 571101 Haikou, China. 14Diqing Tibetan Autonomous Prefecture Centers for Disease Control and Prevention, 674400 Shangri-la, China. 15CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CASCIRE, Chinese Academy of Sciences, 430071 Wuhan, China. 16College of Animal Science and Technology, Henan Institute of Science and Technology, 453003 Xinxiang, China. 17College of Animal Science, Southwest University, 402460 Chongqing, China. 18Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China. 19Département de microbiologie-infectiologie et d’immunologie, Université Laval, Québec City G1V 0A6, Canada. 20Federal Research Center of Fundamental and Translational Medicine, Federal State Budget Scientific Institution, Siberian Branch of Russian Academy of Sciences, Novosibirsk State University, Novosibirsk, Russia 630090. 21National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206 Beijing, China. 22General Station for Surveillance of Wildlife-borne Infectious Diseases, State Forestry and Grassland Administration, 110034 Shenyang, Liaoning Province, PR China. 23School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, 271000 Tai’an, China. 24These authors contributed equally: Yuhai Bi, Juan Li, Shanqin Li, Guanghua Fu, Tao Jin. ✉email: beeyh@im.ac.cn; chenqj@wh.iov.cn; shiwf@ioz.ac.cn