A PSH HOPF LEMMA FOR DOMAINS WITH CUSP CONDITIONS

BO-YONG CHEN AND YUANPU XIONG

ABSTRACT. We obtain a psh Hopf lemma for domains satisfying certain cusp conditions by using a sharp estimate for the Green function of a planar cusp along the axis. As an application, we obtain a negative psh exhaustion function with certain global growth estimate on a pseudoconvex domain with Hölder boundary.

1. INTRODUCTION

Let \(\Omega \subset \mathbb{R}^n \) be a domain satisfying the inner ball condition (e.g., a domain with \(C^2 \) boundary). The classical Hopf lemma asserts that if \(u \) is a negative harmonic function on \(\Omega \) with \(u(x_0) = 0 \) for some \(x_0 \in \partial \Omega \), then \(\partial u(x_0)/\partial \nu < 0 \), where \(\nu \) is the inner normal vector field of \(\partial \Omega \). In particular, we have \(u \lesssim -\delta_\Omega \), where \(\delta_\Omega \) is the boundary distance. Sometimes, such an inequality is also called a Hopf lemma in literature. Indeed, we only need \(u \lesssim -\delta_\Omega^{1/\alpha} \) \((0 < \alpha < 1)\) for some applications (cf. [6]), which is available for domains satisfying cone conditions (cf. [10], [13]).

In this paper, we obtain a Hopf lemma for plurisubharmonic (psh) functions on domains satisfying cusp conditions. A domain of the form

\[
\Gamma = \Gamma(C, \alpha) = \{ z \in \mathbb{C}^n; \text{Re } z_n > C(|z'|^2 + (\text{Im } z_n)^2)^{\alpha/2}\}
\]

is called a \((C, \alpha)\)-cusp along the \text{Im} \(z_n \)-axis and with vertex at the origin. By a finite \((C, \alpha, r)\)-cusp we mean an intersection of \(\Gamma \) with a ball centered at the vertex with radius \(r \). Roughly speaking, a domain is said to satisfy the \((C, \alpha, r)\)-cusp condition if for any \(p \in \partial \Omega \), one can transplant a finite \((C, \alpha, r)\)-cusp inside \(\Omega \) with vertex \(p \) (through translations and rotations). We refer to Definition 3.1 for more details.

The main result of the paper is the following

Theorem 1.1 (Hopf lemma). Let \(\Omega \subset \mathbb{C}^n \) be a domain satisfying the \((C, \alpha, r)\)-cusp condition. Then

\[
\rho \lesssim -\exp \left(-\frac{A}{\delta_\Omega^{1/\alpha-1}} \right)
\]

for every \(\rho \in PSH^{-}(\Omega) \), where \(PSH^{-}(\Omega) \) denotes the set of negative psh functions on \(\Omega \), and

\[
A := \frac{\pi C^{1/\alpha}}{2(1/\alpha - 1)}.
\]
Usually, Hopf lemmas for subharmonic functions are proved by constructing barrier functions for the complement of the closure of the domain (see, e.g., [11], [12], [13]). This breaks down in our case. Indeed, one can apply Wiener’s criterion to show that a closed cusp Γ is thin at the vertex for $0 < \alpha < 1$ and $n \geq 2$ (see Appendix). That is, there does not exist a barrier function at the vertex of Γ for $C^1 \setminus \overline{\Gamma}$, which clearly satisfies certain cusp condition. On the other hand, a planar cusp is not thin at the vertex. The proof of Theorem 1.1 is based on the following optimal estimate of the Green function on a planar cusp along the axis, which is of independent interest.

Theorem 1.2. Let

$$\Gamma := \{z = x + iy; x > C|y|^\alpha\},$$

where $C > 0$ and $0 < \alpha < 1$, and Δ_R be the disk centered at 0 with radius R. For $a := R/2$ and $0 < t \ll 1$, the (negative) Green function of $\Gamma \cap \Delta_R$ satisfies

$$g_{\Gamma \cap \Delta_R}(t, a) \approx -\exp\left(-\frac{A}{t^{1/\alpha - 1}}\right).$$

The key ingredient of the proof of Theorem 1.2 is an explicit construction of a comparison function of a planar cusp at the vertex by using conformal mappings and a result of Li-Nirenberg [9].

This paper is motivated by a recent work [2] of the first author, where the local order of hyperconvexity is obtained for bounded pseudoconvex domains with H"older boundaries (written as H"older domains for short). This together with a result of Kerzman and Rosay [7] imply the hyperconvexity of such domains. It remains a question whether there exists a negative psh exhaustion function with certain global estimate on bounded pseudoconvex H"older domains.

We shall give a partial answer to this question by using Theorem 1.1. Let Ω be a bounded pseudoconvex H"older domain, which naturally satisfies certain (C, α, r)-cusp condition (see Proposition 3.2). Theorem 1.1 and the main result in [2] yield

$$\psi(-\delta_\Omega(z)) \leq \rho_j(z) \leq \varphi(-\delta_\Omega(z))$$

where $\psi(t) := -C_1(-\log(-t))^{-\beta}$ and $\varphi(t) := -C_2 \exp(-A/(-t)^{1/\alpha - 1})$ for certain positive constants $\alpha, \beta, C_1, C_2, M$. Let $\{\alpha_\nu\}$ be an increasing sequence with $\alpha_\nu < 0$, α_1 sufficiently close to 0, and

$$\alpha_{\nu+1} = \psi^{-1}(\varphi(\alpha_\nu)/2).$$

We define

$$\lambda(t) := \max\{\nu \in \mathbb{Z}^+; \alpha_\nu \leq -t\}, \quad t > 0.$$

Since $\lim_{\nu \to \infty} \alpha_\nu = 0$, it follows that $\lambda(t) \to +\infty$ as $t \to 0+$. It is easy to see that λ is not an elementary function. The method of Coltoiu-Mihalche [4] together with Lemma 2.1 in [2] yield the following

Theorem 1.3. Let $\Omega \subset \mathbb{C}^n$ be a bounded pseudoconvex H"older domain and \overline{B} be a closed ball in Ω. Then there exists a constant $\varepsilon_0 > 0$ depending only on Ω and \overline{B} such that

$$\theta_{\Omega, \overline{B}} \gtrsim -e^{-\varepsilon_0 \lambda(\delta_\Omega)}.$$
Lemma 2.1. There exists a constant $R > 0$ depending only on C and α such that the holomorphic function F, given in (2.2), maps $\Gamma \cap \Delta_R$ conformally to a domain $D \subset \mathbb{C}$.
Proof. It suffices to show that F is injective on $\Gamma \cap \Delta_R$ for some sufficiently small R. We first verify the injectivity of $G(z) := -A/z^{1/\alpha-1}$. Given $z_1 = r_1e^{i\theta_1}$ and $z_2 = r_2e^{i\theta_2}$, $G(z_1) = G(z_2)$ if and only if $r_1 = r_2$ and $(1/\alpha - 1)(\theta_1 - \theta_2) = 2k\pi$ for some integer k. Since

$$|\theta(s)| \leq |c|s^{1/\alpha-1} \leq C^{1/\alpha}s^{1/\alpha-1}$$

in view of (2.1), we have $|\theta_1 - \theta_2| < 2\pi/(1/\alpha - 1)$ for $z_1, z_2 \in \Gamma \cap \Delta_R$, provided that

$$C^{1/\alpha}R^{1/\alpha-1} < \frac{\pi}{(1/\alpha - 1)}.$$

Thus G is injective on $\Gamma \cap \Delta_R$. Moreover, for $z = \gamma_c(s) \in \Gamma$, we have $\mathrm{Im} G(z) = \overline{\theta}(s) \in (-\pi/2, \pi/2)$ in view of (2.3). Since the exponential mapping $w \mapsto e^w$ is injective on the strip $\{\mathrm{Im} w < \pi/2\}$, we conclude that $F = e^G$ is injective on $\Gamma \cap \Delta_R$. \hfill \Box

The domain D is also symmetric about the \overline{x}-axis and ∂D is more regular than $\partial \Gamma$. In a neighbourhood of $0 \in \partial D$, the curve ∂D is precisely $F \circ \gamma_c$ with $c = \pm C^{-1/\alpha}$. Since $\overline{\theta}(s) \to \pm \pi/2$ as $s \to 0$ and $c = \pm C^{-1/\alpha}$, ∂D is tangent to the y-axis at 0. To obtain an estimate for the Green function of D near $0 \in \partial D$, we need more information about the regularity of ∂D near 0. Choose a neighbourhood $U \ni 0$ such that

$$D \cap U = \{z = x + iy \in U; \ x > h(|y|), \ |y| < \varepsilon_0\},$$

where h is a real function on $[0, \varepsilon_0)$ and $0 < \varepsilon_0 \ll 1$ is a constant depending only on C and α. Note that h is smooth on $(0, \varepsilon_0)$ and differentiable at 0 with $h(0) = h'(0) = 0$. Now we fix $c = C^{-1/\alpha}$ and set

$$\overline{x}(s) = \overline{r}(s) \cos \overline{\theta}(s), \quad \overline{y}(s) = \overline{r}(s) \sin \overline{\theta}(s).$$

The function h is given by the equation

$$\overline{x}(s) = h(\overline{y}(s)), \quad 0 < s \ll 1.$$

Thus

$$(2.6) \quad h(\overline{y}(s)) = \frac{\overline{y}(s)}{\tan \overline{\theta}(s)} \sim \overline{y}(s) \cdot \left(\frac{\pi}{2} - \overline{\theta}(s)\right), \quad s \to 0.$$

Moreover, (2.4) together with (2.1) imply

$$\overline{\theta}(s) = \frac{A \sin \left((1/\alpha - 1)\arctan(C^{-1/\alpha}s^{1/\alpha-1})\right)}{s^{1/\alpha-1}(1 + s^2/\alpha - 1)(1/\alpha - 1)/2}$$

$$(2.7) \quad = \frac{A \sin \left((1/\alpha - 1)(C^{1/\alpha}s^{1/\alpha-1} - \frac{1}{2}C^{-3/\alpha}s^{3/\alpha-3} + o(s^{3/\alpha-3}))\right)}{s^{1/\alpha-1} + \frac{1}{2}(1/\alpha - 1)s^{3/\alpha-3} + o(s^{3/\alpha-3})}$$

$$= \frac{\pi}{2} - A_1s^{2/\alpha-2} + o(s^{2/\alpha-2}), \quad s \to 0.$$
for some constant $A_1 = A_1(C, \alpha) > 0$. It follows from (2.1), (2.3) and (2.7) that

$$
\log \frac{1}{|y(s)|} = \log \frac{1}{r(s)} - \log \sin \bar{\theta}(s) = \frac{A \cos \left(\frac{(1/\alpha - 1)\theta(s)}{r(s)^{1/\alpha - 1}} \right) - \log \sin \bar{\theta}(s)}{s^{1/\alpha - 1}} \quad \text{as} \quad s \to 0.
$$

By (2.6), (2.7) and (2.8), we finally obtain

$$
h(|y|) \sim A_2 |y| \left(\log \frac{1}{|y|} \right)^{-2}, \quad y \to 0,
$$

where $A_2 = A_1 A^2$.

Recall that the (negative) Green function of a planar domain Ω can be defined as

$$
g_\Omega(z, a) := \sup \left\{ \varphi \in SH^-(\Omega); \varphi(z) - \log \frac{1}{|z - a|} = O(1) \right\},
$$

where $SH^-(\Omega)$ denotes the set of negative subharmonic functions on Ω. It is well-known that $g_\Omega(\cdot, a)$ is a subharmonic function on Ω and is harmonic on $\Omega \setminus \{a\}$.

Proof of Theorem 7.2 By Lemma 2.1 we have

$$
g_{\Omega \cap \Delta_r}(t, a) = g_D(F(t), F(a)).
$$

It suffices to estimate $g_D(x, F(a))$ when $x \to 0^+$ and $x \in \mathbb{R}$.

From (2.9), there is a constant $B > 0$ such that

$$
h(u) < Bu \left(\log \frac{1}{u} \right)^{-2} =: h_B(u), \quad 0 < u < u_0 < 1.
$$

Here, the constant u_0 depends only on C and α. Let

$$
D_B := \{ z = x + iy; \ x > h_B(|y|), \ -u_0 < y < u_0 \}.
$$

It follows from (2.11) that $D_B \cap \Delta_r \subset D$ for some $0 < r \ll 1$. We may choose $r = r(C, \alpha)$ so small that $F(a) \notin \Delta_r$. Thus $g_D(\cdot, F(a))$ is a harmonic function on $D \cap \Delta_r$.

The boundary of $D_B \cap \Delta_r$ can be divided into the following two parts:

$$
E_1 := \partial D_B \cap \{ |z| = r \}, \quad E_2 := \{ z = x + iy; \ x = h_B(|y|), \ |z| < r \}.
$$

By (2.11), E_1 is a compact subset in D, while E_2 satisfies the following conditions:

1. h_B is smooth on $(0, u_0)$ and C^1 on $[0, u_0]$;
2. $\int_0^x h_B(u)/u^2du < \infty$ for $0 < \varepsilon < \min\{u_0, 1\}$;
3. $h_B(0) = h'_B(0) = 0$ and $h''_B(u) \geq 0$;
4. $h''_B(u) + h_B(u)/u$ is nonincreasing.

It follows from the proof of Theorem 1 of [9] that

$$
\varphi(z) := x + 2h_B(x) + 2x \int_0^x \frac{h_B(u)}{u^2}du - 2h_B(|z|), \quad (z = x + iy)
$$
is a subharmonic function on $D_B \cap \Delta_r$ with $\varphi \leq 0$ on E_2 and $\varphi(x) > 0$ for $x > 0$. The constant
\[
M := \frac{\sup_{E_1} \varphi}{\inf_{E_1} (-g_D)}
\]
is positive and depends only on C and α. Thus
\[
(2.12) \quad -g_D(z, F(a)) \geq \frac{\varphi(z)}{M}, \quad z \in E_1.
\]
The same inequality clearly holds for $z \in E_2$ since $g_D \leq 0$. Thus (2.12) holds for all $z \in D_B \cap \Delta_r$ in view of the maximum principle. In particular,
\[
g_D(x, F(a)) \lesssim -\varphi(x) \leq -x, \quad 0 < x \ll 1.
\]
On the other hand, by comparing $g_D(\cdot, F(a))$ with the negative harmonic function $z = x + iy \mapsto -x$ on D, we have
\[
g_D(x, F(a)) \gtrsim -x, \quad 0 < x \ll 1.
\]
The conclusion follows immediately from (2.10). \qed

3. THE CUSP CONDITION

For a unit vector $v \in \mathbb{C}^n$, we consider the half space
\[
H_v := \{z \in \mathbb{C}^n; \ \text{Re} \langle z, v \rangle > 0\}.
\]
Let π_v be the orthogonal projection $H_v \to \partial H_v$. A (C, α)-cusp with axis v and vertex p is defined to be
\[
\Gamma(p, v, C, \alpha) := \{z \in H_v; \ \text{Re} \langle z - p, v \rangle > C|\pi_v(z - p)|^\alpha\}.
\]

Definition 3.1. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain. Let $B_r(p)$ be the ball with center p and radius r. We say that Ω satisfies the (C, α, r)-cusp condition if there is some $r > 0$, such that every $z \in \Omega$ sufficiently close to $\partial\Omega$ lies on the axis of a (C, α)-cusp $\Gamma(p, v, C, \alpha)$ with
\begin{enumerate}
\item $p \in \partial\Omega$;
\item $\Gamma(p, v, C, \alpha) \cap B_r(p) \subset \Omega$;
\item $|z - p| < r/2$.
\end{enumerate}

The condition (3) implies that z is not very close to $\partial B_r(p)$ so that $|z - p| < \delta_{\partial B_r(p)}(z)$. Hence
\[
\delta_{\Gamma \cap B_r(p)}(z) = \delta_{\Gamma}(z),
\]
where $\Gamma := \Gamma(p, v, C, \alpha)$.

Lemma 3.1. For $z := p + tv \in \Gamma(p, v, C, \alpha)$ $(0 < t \ll 1)$, we have
\[
\delta_{\Gamma}(z) \approx t^{1/\alpha}.
\]

Proof. We may assume that $p = 0$ and $v = (0, \cdots, 0, 1)$. Set $z = (0, \cdots, 0, \text{Re} z_n)$ (i.e., $t = \text{Re} z_n$). For any $z^* \in \partial \Gamma(p, v, C, \alpha)$, we define
\[
w^* = (z_1^*, \cdots, z_{n-1}^*, \text{Im} z_n^*) \in \mathbb{C}^{n-1} \times \mathbb{R}
\]
so that Re $z_n^* = C |w^*|^\alpha$. In particular, if we take $z_0^* = (C^{-1/\alpha} t^{1/\alpha}, 0, \ldots, 0, t) \in \partial \Gamma(p, v, C, \alpha)$, then
\[
\delta_\Gamma(z) \leq |z - z_0^*| = C^{-1/\alpha} |z - p|^{1/\alpha}.
\]
On the other hand, we have
\[
|z - z^*|^2 = |w^*|^2 + |\text{Re} (z_n - z_n^*)|^2.
\]
We shall divide the argument into the following two cases:

(1) If $\text{Re} z_n^* \leq \frac{1}{2} \text{Re} z_n$, then $\text{Re} (z_n - z_n^*) \geq \frac{1}{2} \text{Re} z_n > 0$, so that
\[
|z - z^*| \geq |\text{Re} (z_n - z_n^*)| \geq \frac{1}{2} \text{Re} z_n = \frac{1}{2} t \geq \frac{1}{2} t^{1/\alpha};
\]

(2) If $\text{Re} z_n^* > \frac{1}{2} \text{Re} z_n$, then we have
\[
|z - z^*| \geq |w^*| = \left(\frac{1}{C} \right)^{1/\alpha} (\text{Re} z_n^*)^{1/\alpha} > \left(\frac{1}{2C} \right)^{1/\alpha} (\text{Re} z_n)^{1/\alpha}
\]
\[
= \left(\frac{1}{2C} \right)^{1/\alpha} t^{1/\alpha}.
\]
Hence $\delta_\Gamma(z) \geq B t^{1/\alpha}$ with $B := \min \{ 1/2, (2C)^{-1/\alpha} \}$. \hfill \Box

Remark. Let Ω be a domain satisfying the (C, α, r)-cusp condition and $z \in \Omega$ satisfying the conditions in Definition\[3.7\] Lemma\[3.7\] together with (3.1) imply that
\[
|z - p| \lesssim \delta_\Gamma(z)^\alpha = \delta_{\Gamma \cap B_r(p)}(z)^\alpha \leq \delta_\Omega(z)^\alpha.
\]
That is, if z is sufficiently close to the boundary, then $|z - p|$ is also sufficiently small.

Recall that Ω is a bounded Hölder domain if $\partial \Omega$ is locally the graph of a Hölder continuous function. More precisely, there exist

1. a finite open covering $\{ V_j \}$ of $\partial \Omega$;
2. $p_j \in V_j$;
3. a unit vector v_j;
4. a neighbourhood V_j' of 0 in ∂H_{v_j} with $\pi_{v_j} (w - p_j) \in V_j'$ for all $w \in V_j$;
5. a Hölder continuous function h_j of order α_j on V_j' with $h_j(0) = 0$, such that
\[
\Omega \cap V_j = \{ w \in V_j; \text{Re} (w - p_j, v_j) > h_j(\pi_{v_j}(w - p_j)) \}.
\]

Proposition 3.2. If $\Omega \subset \mathbb{C}^n$ is a bounded Hölder domain, then there exist constants C, α and r such that Ω satisfies the (C, α, r)-cusp condition. Moreover precisely, $\alpha = \min \{ \alpha_j \}$, where α_j is given as above.

Proof. Let V_j, p_j, v_j, V_j', h_j be as above. Suppose that
\[
|h_j(x_1) - h_j(x_2)| \leq C_j |x_1 - x_2|^\alpha_j, \quad x_1, x_2 \in V_j'
\]
for some $C_j > 0$. For any $w \in V_j$, let $w^* \in \partial \Omega$ be the point with
\[
\pi_{v_j} (w - p_j) = \pi_{v_j} (w^* - p_j).
\]
That is, $w = w^* + tv_j$ for some t. We may take another covering $\{U_j\}$ of $\partial \Omega$ with $p_j \in U_j \subset \subset V_j$, such that $w^* \in U_j \cap \partial \Omega$ and $|w - w^*| < r/2$ for some $0 < r \ll 1$ whenever $w \in U_j$. Moreover, we may take r so small that $B_r(x) \subset V_j$ for all $x \in U_j \cap \partial \Omega$. Set

$$U_j^+ := U_j \cap \Omega.$$

Then any $z \in \Omega$ sufficiently close to $\partial \Omega$ lies in some U_j^+. For $p := z^*$, it follows from (3.2) and the definition of U_j that $z \in \Gamma(p, v_j, C_j, \alpha_j) \cap B_r(p)$ and $|z - p| < r/2$. Moreover, for any $w \in \Gamma(p, v_j, C_j, \alpha_j) \cap B_r(p)$, we have $w \in V_j$ and

$$\text{Re} \langle w - p, v_j \rangle > C_j |\pi_{v_j}(w - p)|^\alpha = C_j |\pi_{v_j}(w - p_j) - \pi_{v_j}(p - p_j)|^\alpha \\
\geq h(\pi_{v_j}(w - p_j)) - h(\pi_{v_j}(p - p_j)).$$

Since $p \in \partial \Omega$, we have

$$\text{Re} \langle p - p_j, v_j \rangle = h(\pi_{v_j}(p - p_j)).$$

Hence $\text{Re} \langle w - p_j, v_j \rangle > h(\pi_{v_j}(w - p_j))$, i.e.,

$$\Gamma(p, v_j, C_j, \alpha_j) \cap B_r(p) \subset \Omega \cap V_j \subset \Omega.$$

It suffices to take $\alpha = \min\{\alpha_j\}$ and $C = \max\{C_j\}$.

4. PROOF OF THEOREM 1.1

The following lemma is essentially known, but we shall provide a proof for the sake of completeness.

Lemma 4.1. Let $\Omega \subset \mathbb{C}$ be a bounded domain and $\rho \in SH^{-} (\Omega)$. If $\Delta_{R_1} (a) \subset \subset \Omega \subset \subset \Delta_{R_2} (a)$, then

$$\rho(z) \leq \frac{\inf_{\partial \Delta_{R_1} (a)} (-\rho)}{\log (R_2/R_1)} \cdot g_{\Omega}(z, a)$$

in a neighbourhood of $\partial \Omega$.

Proof. Let $\{\Omega_m\}$ be a sequence of domains with smooth boundaries such that $\Omega_m \subset \subset \Omega_{m+1}$ and $\bigcup \Omega_m = \Omega$. Then $g_{\Omega_m} \searrow g_{\Omega}$ when $m \to \infty$. We may assume that $\Delta_{R_1} (a) \subset \subset \Omega_m \subset \subset \Delta_{R_2} (a)$. Thus

$$g_{\Omega_m}(z, a) \geq \log \frac{|z - a|}{R_2}, \quad z \in \Omega_m.$$

In particular,

$$g_{\Omega_m}(z, a) \geq -\log \frac{R_2}{R_1}, \quad z \in \partial \Delta_{R_1} (a).$$

For $C_0 := \inf_{\partial \Delta_{R_1} (a)} (-\rho) = -\sup_{\partial \Delta_{R_1} (a)} \rho$, we have

$$\frac{\log (R_2/R_1)}{C_0} \rho \leq -\log \frac{R_2}{R_1}, \quad z \in \partial \Delta_{R_1} (a).$$

Note that $g_{\Omega_m}(\cdot, a) = 0$ on $\partial \Omega_m$. It follows from the maximum principle that

$$\rho(z) \leq \frac{C_0}{\log (R_2/R_1)} g_{\Omega_m}(z, a).$$
on $\Omega_m \setminus \Delta_{R_1}(a)$. Letting $m \to \infty$, we complete the proof.

Proof of Theorem 1.1 Let R be the constant in Lemma 2.1 for planar (C,α)-cusps. We may assume that $0 < R < r$. Given $z \in \Omega$ sufficiently close to $\partial \Omega$ (i.e., $\delta_\Omega(z) \ll 1$), there exists a (C,α)-cusp $\Gamma(p, v, C, \alpha)$ satisfying the conditions (1)-(3) in Definition 3.1 with z lying on the axis. By the remark after Lemma 3.1 we have $|z - p| \ll 1$. We may identify

$$D_p := \{p + tv; t \in \mathbb{C}\} \cap \Gamma(p, v, C, \alpha) \cap B_R(p)$$

with a domain in \mathbb{C}. Thus $\rho|_{D_p}$ is a subharmonic function on D_p. Set $a = p + Rv/2$. By Lemma 4.1 and Theorem 1.2 we have

$$\rho(z) \lesssim g_{D_p}(z, a) \leq g_{D_p \cap B_R(p)}(z, a) \lesssim -\exp \left(-\frac{A}{|z - p|^{1/\alpha - 1}}\right).$$

Since $|z - p| \geq \delta_\Omega(z)$, we conclude the proof.

5. Proof of Theorem 1.3

Recall that $\{U_j\}$ is a finite covering of $\partial \Omega$, ρ_j is a negative psh function on U_j with $\psi(-\delta_\Omega) \leq \rho_j \leq \varphi(-\delta_\Omega)$, and $\alpha_{\nu+1} = \psi^{-1}(\varphi(\alpha_{\nu})/2)$ with α_1 sufficiently close to 0. We set

$$a_\nu = \begin{cases} \varphi(\alpha_{\nu}), & \text{if } \nu \text{ is odd;} \\ \psi(\alpha_{\nu}), & \text{if } \nu \text{ is even.} \end{cases}$$

From (1.5) and the fact that $\varphi \geq \psi$, we obtain

$$a_{2\nu} = a_{2\nu-1}/2, \quad a_{2\nu+1} = \varphi \circ \psi^{-1}(\varphi(\psi^{-1}(a_{2\nu})/2)) \geq a_{2\nu}/2.$$

In particular, $\{a_\nu\}$ is an increasing sequence with $a_\nu \to 0$ as $\nu \to \infty$. We consider the following convex increasing function $\tau : (-\infty, 0) \to [0, +\infty)$ introduced in [4]:

$$\tau(x) = \begin{cases} 0, & x \leq a_1, \\ \nu - \sum_{k=1}^{\nu-1} a_{k+1}/a_k - x/a_\nu, & a_\nu \leq x \leq a_{\nu+1}, \end{cases}$$

which satisfies

$$\tau(a_{\nu+1}) - \tau(a_\nu) = 1 - \frac{a_{\nu+1}/a_\nu}{a_\nu} < 1, \quad \forall \nu \in \mathbb{Z}^+.$$

On the other hand, we infer from (5.2) that $\tau(a_{\nu+1}) - \tau(a_\nu) \geq 1/2$. Hence

$$\tau(a_\nu) \geq \frac{\nu}{2} - c_0$$

for some constant $c_0 > 0$. If $z \in \Omega \cap U_j \cap U_k$ and $a_{2\nu} \leq -\delta_\Omega(z) \leq a_{2\nu+2}$, then it follows from (1.4) and (5.1) that

$$\min\{\rho_j(z), \rho_k(z)\} \geq \psi(\alpha_{2\nu}) = a_{2\nu}$$

and

$$\max\{\rho_j(z), \rho_k(z)\} \leq \varphi(\alpha_{2\nu+2}) \leq \varphi(\alpha_{2\nu+3}) = a_{2\nu+3}.$$

Thus $|\tau(\rho_j) - \tau(\rho_k)| < 3$ on $\Omega \cap U_j \cap U_k$. Since τ is convex, we have

$$|\tau(\rho_j - \varepsilon) - \tau(\rho_k - \varepsilon)| < 3$$
on $\Omega \cap U_j \cap U_k$ for any $\varepsilon > 0$. Moreover,
\begin{equation}
\tau(\rho_j - \varepsilon) \leq \tau(a_{2\nu+3} - \varepsilon) \leq \tau(a_{2\nu} - \varepsilon) + 3
\end{equation}
and
\begin{equation}
\tau(\rho_j - \varepsilon) \geq \tau(a_{2\nu} - \varepsilon) \geq \tau(a_{2\nu+2} - \varepsilon) - 2
\end{equation}
Next we use the standard Richberg technique (compare [5]) to patch these ρ_j together. Choose $U'_j \subset U'_j \subset U_j$ and $U_0 \subset \Omega$ such that $\overline{\Omega_j \setminus U_0} \subset U'_j$. Take $\chi_j \in C_0^\infty(U'_j)$ with $\chi_j \equiv 1$ in a neighbourhood of $\overline{U'_j}$. There are constant M, N satisfying $|z|^2 - M < 0$ and
\begin{equation}
3\chi_j + N(|z|^2 - M) \in PSH(\mathbb{C}^n).
\end{equation}
Set
$$u_{j,\varepsilon}(z) := \tau(\rho_j(z) - \varepsilon) + 3\chi_j(z) - 3 + N(|z|^2 - M).$$
Then $u_{j,\varepsilon}$ is a plurisubharmonic function on U_j, and it follows from (5.4) that $u_{j,\varepsilon} < u_{k,\varepsilon}$ in a neighbourhood of $\Omega \cap \overline{U'_k} \cap \partial U'_j$. Choose a so that $\sup_{U_0 \cup U_j} \rho_j < a < 0$ for all $j \geq 1$ and fix $N \gg 1$ such that (5.7) holds and $\tau(a) + N(|z|^2 - M) < 0$ on $\overline{\Omega}$. Hence
$$u_\varepsilon(z) := \max\{u_{j,\varepsilon}(z), \tau(a) + N(|z|^2 - M)\} \in PSH(\Omega)$$
when $\varepsilon \ll 1$. Moreover, it follows from (5.5) and (5.6) that
\begin{equation}
\tau(\rho_j - \varepsilon) - c_1 \leq u_\varepsilon \leq \tau(\rho_j - \varepsilon) + c_2
\end{equation}
for some constants $c_1, c_2 > 0$.
Now we shall derive a global estimate by the method in [2]. Fix $l \in \mathbb{Z}^+$ for a moment. We set
$$w_\nu := \frac{u_{-a_{2\nu+2l}}}{\tau(a_{2\nu+2l})}.$$
For $\Omega_\nu := \{\delta_\Omega > -a_{2\nu}\}$, we infer from (5.8) that
\begin{equation}
\frac{\tau(a_{2\nu} + a_{2\nu+2l}) - c_1}{\tau(a_{2\nu+2l})} \leq \sup_{\partial \Omega_\nu} w_\nu \leq \frac{\tau(a_{2\nu} + a_{2\nu+2l}) + c_2}{\tau(a_{2\nu+2l})}
\end{equation}
and
\begin{equation}
\inf_{\Omega_\nu \cap \Omega_{\nu+1}} w_\nu \geq \frac{\tau(2a_{2\nu+2l}) - c_1}{\tau(a_{2\nu+2l})} = \frac{\tau(a_{2\nu+2l-1}) - c_1}{\tau(a_{2\nu+2l})}.
\end{equation}
If we choose $l \gg 1$ so that $(2l - 1)/2 > c_1 + c_2$, then

$\kappa_\nu := \frac{\inf_{\Omega \setminus \Omega_{\nu+l}} w_\nu - \sup_{\partial \Omega_\nu} w_\nu}{1 - \sup_{\partial \Omega_\nu} w_\nu} \geq \frac{\tau(a_{2\nu+2l-1}) - \tau(a_{2\nu} + a_{2\nu+2l}) - c_1 - c_2}{\tau(a_{2\nu+2l}) - \tau(a_{2\nu} + a_{2\nu+2l}) + c_1} \geq \frac{\tau(a_{2\nu+2l-1}) - \tau(a_{2\nu}) - c_1 - c_2}{\tau(a_{2\nu+2l}) - \tau(a_{2\nu-1}) + c_1} \geq \frac{(2l - 1)/2 - c_1 - c_2}{2l + 1 + c_1} \geq c_3$

for some constant $c_3 > 0$.

The rest part of the proof is essentially parallel to [2], which we still include here for the sake of completeness. Set $M_\nu := \sup_{\Omega \setminus \Omega_\nu} (-\varrho_{\Omega, \overline{B}})$. For $z \in \partial \Omega_\nu$, we have

$(5.10) \quad (1 - w_\nu(z)) M_\nu \geq \left[1 - \sup_{\partial \Omega_\nu} w_\nu\right](-\varrho_{\Omega, \overline{B}}(z)).$

Since $\varrho_{\Omega, \overline{B}}(z) \to 0$ when $z \to \partial \Omega$, (5.10) also holds on $\partial \Omega_{\nu+k}$ for $k \gg 1$. An equivalent statement of (5.10) is

$(5.11) \quad \varrho_{\Omega, \overline{B}}(z) \geq \frac{M_\nu}{1 - \sup_{\partial \Omega_\nu} w_\nu} (w_\nu(z) - 1),$

which actually holds for all $z \in \Omega_{\nu+k} \setminus \Omega_\nu$ by the maximal property of $\varrho_{\Omega, \overline{B}}$. Finally, letting $k \to \infty$, we conclude that (5.11) remains valid for $z \in \Omega \setminus \Omega_{\nu+1}$, i.e.,

$-\varrho_{\Omega, \overline{B}}(z) \leq \frac{1 - \inf_{\Omega \setminus \Omega_{\nu+l}} w_\nu}{1 - \sup_{\partial \Omega_\nu} w_\nu} M_\nu = (1 - \kappa_\nu) M_\nu, \quad z \in \Omega \setminus \Omega_{\nu+1}.$

This combined with (5.9) gives

$M_{\nu+l} \leq (1 - c_3) M_\nu.$

Thus

$-\varrho_{\Omega, \overline{B}}(z) \gtrsim (1 - c_3)^{\nu/l} = \exp \left(-\nu l \log \frac{1}{1 - c_3}\right)$

for $z \in \Omega \setminus \Omega_\nu$. The assertion follows immediately from the definition of $\lambda(t)$. \hfill \Box

6. APPENDIX: THINNESS AT THE VERTEX OF A CLOSED CUSP

Recall that a boundary point x_0 of a domain $\Omega \subset \mathbb{R}^m$ is regular if and only if Ω admits a barrier at x_0. This is also equivalent to the thinness of $\mathbb{R}^m \setminus \Omega$ at x_0 (cf. [8], Theorem 4.8 and 5.10). Thinness can be characterized by using Wiener’s criterion. For a compact set $K \subset \mathbb{R}^m$ ($m \geq 3$), we define the capacity of K by

$\text{Cap}(K) := \inf \left\{ \int_{\mathbb{R}^m \setminus K} |\nabla \varphi|^2; \varphi \in C_0^1(\mathbb{R}^m), \varphi|_K \geq 1 \right\}.$
Indeed, $\text{Cap} (\cdot)$ is precisely the Newtonian capacity up to a constant multiplier (cf. [3], Chapter V, 25). Wiener’s criterion asserts that a closed set $E \subset \mathbb{R}^m (m \geq 3)$ is thin at some $x_0 \in \partial E$ if and only if
\[
\sum_{k=1}^{\infty} 2^{k(m-2)} \text{Cap} (E_k) < \infty,
\]
where $E_k := E \cap \{x; 2^{-k-1} \leq |x-x_0| \leq 2^{-k}\}$ (cf. [8] Theorem 5.2).

Consider the closed cusp $\Gamma := \{z \in \mathbb{C}^n; \text{Im} z \geq C(|z'|^2 + (\text{Re} z)^2)^{\alpha/2}\} \subset \mathbb{C}^n = \mathbb{R}^{2n}$.

Clearly, Γ is not thin at the vertex when $n = 1$ since $\mathbb{C} \setminus \Gamma$ is simply connected (cf. [14], Theorem 4.2.1). Cusps can be also defined in real Euclidean spaces and every closed cusp in \mathbb{R}^3 is not thin at the vertex (cf. [8], Chapter V, §1, No.3). In contrast, the following conclusion holds

Proposition 6.1. Every closed cusp in $\mathbb{C}^n = \mathbb{R}^{2n}$ is thin at the vertex when $n \geq 2$.

This result might be known. However, we still provide a proof since we cannot find the result in literature explicitly.

Proof of Proposition 6.1. Take $m = 2n$ and $E = \overline{\Gamma}$. It follows that
\[
E_k \subset \{z \in \mathbb{C}^n; |z'|^2 + (\text{Re} z)^2 \leq (2^{-k}/C)^{2/\alpha}, 2^{-k-2} \leq \text{Im} z \leq 2^{-k+1}\} = \overline{B(2^{-k}/C)^{1/\alpha}(0)} \times [2^{-k-2}, 2^{-k+1}] \subset \mathbb{R}^{2n-1} \times \mathbb{R}.
\]

Set $F_k := \overline{B(2^{-k}/C)^{1/\alpha}(0)} \times [1/4, 2]$. The affine mapping
\[
T : \mathbb{C}^n \to \mathbb{C}^n, \quad z \mapsto ((2^{-k}/C)^{1/\alpha} z', (2^{-k}/C)^{1/\alpha} \text{Re} z, 2^{-k} \text{Im} z)
\]
maps the set $F := \overline{B}(0) \times [1/4, 2]$ onto F_k. For any $\varphi \in C_0^1(\mathbb{C}^n)$ with $\varphi|_{F_k} \geq 1$, we have
\[
\int_{F_k} |\nabla_x \varphi(x)|^2 dx = \int_F |(\nabla_x \varphi)(Ty)|^2 |\det T'(y)| dy \leq 2^{2k/\alpha} \times 2^{-(2n-1)k/\alpha} \times 2^{-k} \int_F |\nabla_y (\varphi \circ T)|^2
\]
\[
= 2^{-(2n-3)/\alpha + 1} k \int_F |\nabla_y (\varphi \circ T)|^2.
\]

Therefore,
\[
\text{Cap} (F_k) \lesssim 2^{-(2n-3)/\alpha + 1} k
\]
and
\[
\sum_{k=1}^{\infty} 2^{2k(2n-2)} \text{Cap} (E_k) \leq \sum_{k=1}^{\infty} 2^{k(2n-2)} \text{Cap} (F_k) \lesssim \sum_{k=1}^{\infty} 2^{-(2n-3)(1/\alpha - 1)k} < \infty,
\]
i.e., Γ is thin at the vertex when $n \geq 2$. \qed
REFERENCES

[1] Z. Blocki, The Complex Monge-Ampère Operator in Pluripotential Theory, lecture notes, 2002, available at http://gamma.im.uj.edu.pl/~blocki.

[2] B.-Y. Chen, *Every bounded pseudoconvex domain with Hölder boundary is hyperconvex*, Bull. London Math. Soc. **53** (2021) 1009–1015.

[3] G. Choquet, *Theory of Capacities*, Ann. Inst. Fourier. **56** (1955) 131–295.

[4] M. Coltoiu and N. Mihalche, *Pseudoconvex domain on convex domains with singularities*, Compositio Math. **72** (1989), 241–247.

[5] J.-P. Demailly, *Mesures de Monge-Ampère et mesures pluriharmoniques*, Math. Z. **194** (1987), 519–564.

[6] J. E. Fornaess and B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Mathematical Notes, 33. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1987.

[7] N. Kerzman and J.-P. Rosay, *Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut*, Math. Ann. **257** (1981), no. 2, 171–184.

[8] N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.

[9] Y. Y. Li and L. Nirenberg, *On the Hopf Lemma*, arXiv: 0709.3531v1, available at https://www.researchgate.net/publication/1766306.

[10] P. Mercer, *A general Hopf lemma and proper holomorphic mappings between convex domains in \(\mathbb{C}^n \)*, Proc. Amer. Math. Soc. **119** (1993), no. 2, 573–578.

[11] K. Miller, *Barriers on cones for uniformly elliptic operators*, Ann. Mat. Pura Appl. **76** (1967), 93–105.

[12] K. Miller, *Extremal barriers on cones with Phragmén-Lindelöf theorems and other applications*, Ann. Mat. Pura Appl. **90** (1971), 297–329.

[13] J. K. Oddson, *On the boundary point principle for elliptic equations in the plane*, Bull. Amer. Math. Soc. **74** (1968), 666–670.

[14] T. Ransford, Potential Theory in the Complex Plane, London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995.

School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

Email address: boychen@fudan.edu.cn

School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

Email address: ypxiong18@fudan.edu.cn