Quantitative Proton MR Spectroscopy Findings in the Corpus Callosum of Patients with Schizophrenia Suggest Callosal Disconnection

BACKGROUND AND PURPOSE: The callosal disconnectivity theory was previously proposed to explain the pathophysiology of schizophrenia. The goal of this study was to investigate the metabolic integrity of the corpus callosum in patients with schizophrenia by proton MR spectroscopy.

MATERIALS AND METHODS: Twelve first-episode and 16 chronic patients meeting the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria for schizophrenia and 28 age- and sex-matched control subjects were enrolled in the study. We measured the absolute concentrations of neurometabolites and T2 relaxation times of tissue water (T2_B) in the genu of the corpus callosum by using the internal water-reference method. The severity of symptoms in patients was rated by means of psychopathology scales. Differences in neurometabolite concentrations and T2_B values between the patients and control subjects were assessed. We also investigated the correlation of metabolite concentrations with the severity of symptoms.

RESULTS: N-acetylaspartate (NAA) concentrations were significantly lower in the first-episode as well as in chronic patients, compared with respective control subjects (P < .001). NAA concentrations in the first-episode and chronic patient groups were negatively correlated with both the Brief Psychiatry Rating Scale and the Scale for Assessment of Negative Symptoms scores (P < .001). There was a significant negative correlation between the NAA concentrations and the Scale for Assessment of Positive Symptoms scores in all patients (P = .028). T2_B values were significantly higher in the patients, compared with the control subjects (P < .001).

CONCLUSION: Decreased NAA concentration in the corpus callosum correlates with psychopathology in schizophrenia. This finding, together with prolonged T2_B values of the corpus callosum, supports the previously proposed callosal disconnection theory concerning the pathophysiology of schizophrenia.

The idea that schizophrenia might be a disorder of functional disconnection between the various regions of brain was first proposed by Wernicke in 1906. More recently, the disconnectivity theory has re-emerged in schizophrenia research. Today, there is increasing evidence pointing to the possibility of an abnormal cortical connectivity in the pathophysiology of schizophrenia. Diffusion tensor imaging (DTI) studies have demonstrated the compromised cerebral white matter tracts in patients with schizophrenia. Altered magnetization transfer (MT) ratios in frontotemporal white matter tracts and the genu of the corpus callosum, which might indicate either an axonal or a myelin-related pathology in schizophrenia, were found in patients with schizophrenia in MT imaging studies. Supporting the results of these structural imaging studies, the genetic studies revealed the altered expression of myelin-related genes, suggesting a disruption in oligodendrocyte function in schizophrenia.

Crow further specified the disconnectivity theory and proposed that schizophrenia might be a disorder of transcallosal misconnection. The corpus callosum is the major interhemispheric white matter tract, which plays very important roles in cognitive processes such as language, memory, and sensory-motor integration. Interhemispheric transmission of information, which allows the functional lateralization of cerebral hemispheres, decreases in schizophrenia. Functional and structural asymmetry in cerebral hemispheres in patients with schizophrenia suggests the possibility of altered interhemispheric connectivity. There are several morphometric studies revealing controversial results on the size and shape differences of the corpus callosum in schizophrenia. In a meta-analysis, Woodruff et al reported a small but significant decrease in the midsagittal area of the corpus callosum. Studies investigating shape differences in the corpus callosum showed that patients with schizophrenia had a more curved corpus callosum. In addition, the corpus callosum was one of the common locations showing a reduced diffusion anisotropy and MT ratio in previous DTI and MT imaging studies investigating white matter integrity in patients with schizophrenia. Moreover, the structural MR imaging studies conducted in patients with schizophrenia revealed altered signal-intensity changes and decreased attenuation in the corpus callosum.

Proton MR spectroscopy (1H-MR spectroscopy) is a non-invasive method to investigate neurochemical changes in various pathologic and physiologic conditions. 1H-MR spectroscopy can demonstrate subtle neuroaxonal dysfunction, even in normal-appearing cerebral tissue on conventional MR imaging and DTI. The goal of this study was to investigate the metabolic integrity of the corpus callosum in patients with schizophrenia and to test the “callosal disconnection theory” by using 1H-MR spectroscopy. We hypothesized that microstructural abnormalities in the corpus callosum of patients with schizophrenia might cause axonal dysfunction and lead...
to changes in neurometabolite concentrations, which could be detected by quantitative 1H-MR spectroscopy. We sought to measure the absolute concentrations of major neurometabolites and T_2 relaxation times of tissue water (T_2B) in the corpus callosum of patients with schizophrenia. Additionally, we investigated the relationship of neurometabolite concentrations with T_2B values and the severity of symptoms. We studied the first-episode and relapsing chronic patients in acute phases of illness.

Methods

Subjects

We studied 28 inpatients (19 men and 9 women) with a diagnosis of schizophrenia after Structured Clinical Interviews for DSM-IV Axis I Disorders (SCID) data. Twelve of the patients (8 men and 4 women) were in the first episode of illness, and the remaining 16 (11 men and 5 women) were chronic patients presenting in the acute phase of illness (Table 1). A patient was accepted in his/her first psychotic episode when a previous diagnosis of possible psychosis, antipsychotic treatment, or inpatient care was ruled out. The mean \pm SD duration of untreated psychosis (DUP) was 11.20 \pm 10.20 months in the patients in the first episode. Chronic illness was defined as an interval of illness that had lasted at least 3 years following the diagnosis of schizophrenia. Diagnosis of schizophrenia in first-episode patients was confirmed through a re-interview by using the SCID data on the sixth month following their discharge.

Although 10 of the first-episode patients were drug-naive at admission, only 2 were drug-naive at the time the 1H-MR spectroscopy examinations were performed. Although 8 of the first-episode patients were receiving risperidone (mean dose, 3.9 mg/day), 2 of them were receiving olanzapine (mean dose, 12.5 mg/day). The mean interval between the admissions and 1H-MR spectroscopy examinations was 7.8 days in first-episode patients. On the other hand, all of the chronic patients were taking antipsychotic drugs, both at admission and at the time the 1H-MR spectroscopy examinations were performed. Four patients were taking risperidone (mean dose, 5.5 mg/ day), 3 patients were taking quetiapine (600 mg/day), 2 patients were taking olanzapine (12.5 mg/day), and 5 patients were taking different types of antipsychotics (mean haloperidol-equivalent dose was 12.5 mg/day).

Twenty-eight age- and sex-matched volunteer subjects (14 controls for each patient group) were enrolled in the study as a control group. Each patient group (first episode and chronic) had equal education levels with its respective control group ($P > .05$). The control subjects underwent medical, neurologic, and psychiatric (by using the Structured Clinical Interview for DSM-III-R-Non-Patient Edition by experienced interviewers) evaluation. Patients having any organic disorder, causing psychosis or cognitive impairment, were excluded from the study. Exclusion criteria for the patients and control subjects also included any contraindication for MR imaging, alcohol, or drug abuse; and any history of neurodegenerative disease, seizure, central nervous system infection, cerebrovascular disease, diabetes mellitus, and head trauma causing loss of consciousness that lasted more than 30 minutes or that required hospitalization. All the patients and control subjects were right-handed (Edinburgh Handedness Inventory).

Written informed consent was obtained from 25 patients whose clinical states were stable enough to have a level of factual understanding of research consent forms and from all of the control subjects. Informed consent was taken from legal representatives of 3 patients whose clinical states were insufficient. The study was approved by the local Human Subject Committee.

Clinical Assessment

The psychopathologic state of patients was evaluated through the Brief Psychiatric Rating Scale (BPRS), the Scale for the Assessment of Positive Symptoms (SAPS), and the Scale for the Assessment of Negative Symptoms (SANS). All measures were collected by 2 trained raters. Inter-rater reliabilities for BPRS, SANS, and SAPS scores were acceptable ($r = 0.78$, $r = 0.76$, and $r = 0.83$, respectively). Clinical assessments, MR imaging, and 1H-MR spectroscopy examinations were performed within the same week.

Cranial MR Imaging

All patients underwent conventional cranial MR imaging and 1H-MR spectroscopy examinations on a 1.5T superconducting whole-body MR imaging scanner and spectroscopic system (Symphony Maestro; Siemens, Erlangen, Germany) by using a standard quadrature head coil. Cranial MR images were acquired to position the MR spectroscopy volume of interest (voxel) and to identify any cerebral pathology defined in the exclusion criteria. MR images included the following: 1) axial fast spin-echo (SE) T_2-weighted images ($TR = 5790$ ms, $TE = 103$ ms, $NEX = 2$, echo-train length = 16, matrix = 368×512, 5790 ms, $TE = 103$ ms, $NEX = 2$, echo-train length = 16, matrix = 368×512,

![Table 1: Clinical and demographic characteristics of the patients and control subjects*](image-url)

	FE Patients ($n = 12$)	Controls ($n = 14$)	Chronic Patients ($n = 16$)	Controls ($n = 14$)	All Patients ($n = 28$)	All Controls ($n = 28$)
Age (y)	25.50 \pm 7.56	25.16 \pm 5.35	29.31 \pm 11.41	28.93 \pm 10.24	27.65 \pm 9.46	27.32 \pm 8.58
Male/Female	8/4	9/5	11/5	9/5	19/9	18/10
Education (y)	10.33 \pm 4.47	10.33 \pm 3.89	11.00 \pm 3.65	11.00 \pm 3.40	10.71 \pm 3.96	10.71 \pm 3.56
Age at onset (y)	24.83 \pm 5.30	–	22.37 \pm 8.72	–	23.35 \pm 7.13	–
No. of hospitalizations	–	–	4.30 \pm 3.90	–	–	–
DUP (months)	11.20 \pm 10.20	–	–	–	–	–
Duration of illness (months)	–	–	83.25 \pm 68.65	–	–	–
Psychopathology scores						
BPRS	58.75 \pm 8.60	67.56 \pm 11.18	63.92 \pm 10.96	–	–	–
SANS	40.00 \pm 17.62	50.37 \pm 26.93	45.92 \pm 23.60	–	–	–
SAPS	36.58 \pm 17.11	43.87 \pm 15.89	40.75 \pm 16.52	–	–	–

Note: -- FE indicates first-episode; – data not available; DUP, duration of untreated psychosis; BPRS, Brief Psychiatric Rating Scale; SANS, Scale for the Assessment of Negative Symptoms; SAPS, Scale for the Assessment of Positive Symptoms.

* Data are given as mean \pm SDs except where indicated.
section thickness = 5 mm, intersection distance = 1.2 mm); 2) coro-
nal SE T1-weighted images (TR = 530 ms, TE = 30 ms, NEX = 2,
matrix = 196 × 256, section thickness = 3 mm, intersection dis-
tance = 1 mm); and 3) sagittal fast SE T2-weighted images (TR =
5790 ms, TE = 103 ms, NEX = 4, echo-train length = 16, matrix =
196 × 256, section thickness = 3 mm, intersection distance = 1 mm).

1H-MR Spectroscopy: Data Acquisition and Signal-
Intensity Processing
Single-voxel 1H-MR spectroscopy examinations of the patients and
control subjects were conducted in the same session with conven-
tional cranial MR imaging. On sagittal images, the corpus callosum
was divided into subregions as described by Witelson33 and Highley
et al34 (Fig 1A). Voxels were placed into the superior and posterior
genu of the corpus callosum by excluding CSF around the corpus
callosum (Fig 1B). The localization of both water-suppressed and
unsuppressed proton spectra were acquired by applying a stimulated
echo acquisition mode (STEAM, TR = 3.5 seconds) sequence. Water
suppression was performed with 3 chemical shift selective saturation
pulses at the water resonance. The number of acquisitions for water-
suppressed and unsuppressed spectra was 246 and 16, respectively. T2
values of metabolites and tissue water had to be calculated to correct
signal-intensity decays caused by T2 (transverse) relaxations. There-
fore, we obtained proton spectra with TE values of 30, 38, 48, 65, 84,
135, and 300 ms with water suppression. TE values for water-sup-
pressed spectra were 30, 48, 84, 135, 300, 470, and 800 ms. Because T1
(longitudinal) relaxation does not affect the metabolite concentra-
tions measured with TR values above 3 seconds at 1.5T, a TR value of 3.5
seconds, without T1 correction, was used. Spectral postprocessing
included zero filling to 2048 points, an exponential filter correspond-
ing to 1 Hz of line broadening, Fourier transformation, zero order
phase, and automatic baseline corrections by polynomial interpola-
tion. Spectra with a full width at half maximum smaller than 0.1 ppm
were included in the statistical analysis.

Quantification of MR spectroscopy measurements and calcu-
lization of metabolite concentrations were performed by using the inter-
metal-water reference method.35,36 Major metabolite peaks were assigned
to N-acetylaspartate (NAA) between 2.01 and 2.03 ppm, creatine (Cr)
between 3.01 and 3.03 ppm, and choline (Cho) between 3.21 ppm and
3.23 ppm. Calculation of T2 values and T2-corrected signal-intensity
peak areas for water-suppressed and unsuppressed spectra is an opti-
mization problem that involves minimizing the squared error be-
tween the actual values of the measurement and the estimated func-
tion values evaluated at measurement points (MatLab; MathWorks,
Natick, Mass). A monoexponential curve was fit to the metabolite
peak area values. A double-exponential curve-fitting was performed
for unsuppressed water spectra. CSF contamination was measured by
using the difference in T2 decay between the brain tissue and CSF. The
attenuation of brain tissue is accepted as ρ = 1.04 kg/L, and metabolite
concentrations were calculated in millimoles per kilogram brain.36

Study-specific phantom tests for calibration measurements and
for testing the reproducibility of 1H-MR spectroscopy measurements
were performed every week. In the phantom studies, we used a spheric
phantom containing 0.1 mol/L sodium acetate and 0.1 mol/L/L
lactate. We measured acetate concentration with the internal water-
reference method by using the same TR and TE values. The variation
in the measured acetate concentration in phantom studies was below
7%.

Statistical Analysis
Statistical analyses of the results were performed by using SPSS 11.0
for Microsoft Windows (SPSS, Chicago, Ill). The differences in metab-
olate concentrations and T2B values between each patient and con-
control group were investigated by analysis of variance. Correlation of
metabolite concentrations with psychopathology scale scores was ex-
amined by using regression analysis. The relationship between metab-
olate concentrations and the duration of illness in chronic patients was
assessed. Correlation between neurometabolite concentrations and
DUP in first-episode patients was also tested. We also investigated the
difference in metabolite concentrations between male and female pa-
patients by using the t test. The Bonferroni correction was applied for
multiple comparisons. In the analyses, a P value of less than .05 was
considered to indicate a statistically significant difference.

Results
All the spectra obtained from the patients and control subjects
were deemed to be of good quality (Fig 2A–D). Moreover, the metabolite concentrations measured in the control subjects
were consistent with the metabolite concentrations reported in
previous studies.35,36 Clinical findings and demographic characteristics of the patients and their control subjects are
presented in Table 1. There was no significant difference in the
SANS and SAPS scores between the first-episode and chronic
patients (P > .05). An uncorrected comparison test revealed
significantly higher BPRS scores in chronic patients than in
first-episode patients. However, the significance was lost after
correction for multiple comparisons (P = .08).

Mean NAA concentration in all patients (first-episode and
chronic patients together) was 8.91 ± 0.84 mmol/kg brain,
compared with a value of 10.40 ± 0.44 mmol/kg brain in con-
control subjects (Table 2). The difference in NAA concentrations
On the other hand, the NAA concentrations of patients in the first-episode patient group (\(r = 0.34 \), \(P = .18 \)) in this group. In addition, there was no significant association between the NAA concentrations and DUP values in the first-episode patients (\(r = 0.23 \), \(P = .47 \)). The NAA concentrations of the chronic patients did not correlate with the duration of illness (\(r = 0.03 \), \(P = .89 \)).

Cr and Cho concentrations between first-episode and chronic patient groups and their respective control groups showed no significant difference (\(P > .05 \)) (Table 2). There was no relationship between both Cr and Cho concentrations and psychopathology scale scores (\(P > .05 \)). The Cr and Cho (Cr: \(r = 0.66 \), \(P = .31 \); Cho: \(r = 0.25 \), \(P = .42 \)) concentrations did not correlate with the duration of illness in the chronic patients. There was no association between the Cr and Cho (Cr: \(r = 0.30 \), \(P = .33 \); Cho: \(r = 0.25 \), \(P = .42 \)) concentrations and DUP in the first-episode patients. No sex predilection was noted for the metabolite concentrations (\(P > .05 \)).

The mean T2_B value of all patients was 77.23 \(\pm \) 11.97 ms, compared with a mean value of 59.25 \(\pm \) 7.35 ms in the control subjects (\(P < .001 \)). The T2_B values in both first-episode (\(P < .001 \)) and chronic patient (\(P < .001 \)) groups also differed significantly from those of the respective control subjects. There was no significant difference in T2_B values of first-episode and chronic patients (\(P = .51 \)). Likewise, no association between the T2_B values and duration of illness was present in the chronic patients (\(r = 0.16 \), \(P = .55 \)). The T2_B values did not correlate with the DUP in the first-episode patients (\(r = 0.28 \), \(P = .37 \)). The T2_B values did not correlate with the psychopathology scale scores in any of the patient groups (\(P > .05 \)).

Discussion

Reciprocal and proper interaction of different cortical regions is required for information processing in the brain. Functional integration of spatially remote cognitive events is achieved by corticocortical connections. A disruption of corticocortical connections may lead to cognitive impairments. The connectivity theory involving the pathophysiology of schizophrenia is based on the hypothesis that an abnormality in cerebral cortical interconnections could cause or contribute to cognitive disturbances and symptoms of schizophrenia.2-4 Hoffman and McGlashan37 defined a neural network computer simulation model of reduced corticocortical connectivity in schizophrenia. Their simulation model could explain some of the positive psychotic symptoms of schizophrenia such as auditory hallucinations. The results of previous DTI and MR spectroscopy studies pointed to the presence of an axonal and/or a myelin-related pathology in schizophrenia.5-10,38 DTI measures diffusibility of water molecules in brain parenchyma. Dense packing of axonal fibers and myelination of axons decrease the diffusion rate of water molecules perpendicular to white matter tracts and leads to anisotropy. Thus, anisotropy reflects the structural integrity of axonal fibers and myelination. Pathologies causing demyelination or axonal loss may result in decreased anisotropy. The corpus callosum was found to be one of the common locations with reduced anisotropy in patients with schizophrenia.5-8 Because some of the structural studies selectively indicated abnormalities in the genu of the corpus callosum, we investigated the superior and posterior parts of the genu.5,17,25,26 Axonal fibers crossing the

![Fig 2. A-D. The proton MR spectra (STEAM, TR = 3.5 seconds) obtained from a first-episode patient with different TE values (TE = 30, 65, 135, and 300 ms, respectively) show the major neurometabolite peaks (NAA at 2.02 ppm, Cr at 3.02 ppm, and Cho at 3.22 ppm).](image-url)
crease in NAA concentration.42 On the contrary, increased neuronal mitochondria.39 NAA is believed to be exclusively coenzyme A aspartate by D-aspartate activity in 1H-MR spectroscopy studies.40 Pathologies that cause decreased callosal NAA concentration plays a role in the pathophysiology of schizophrenia.

Schizophrenia is accepted as a genetically mediated neurodevelopmental disease.47 The neurodevelopmental theory of schizophrenia states that genetically mediated pathogenetic factors, long before the onset of formal psychotic symptoms, lead to abnormal changes in the normal course of neurodevelopment, resulting in subtle abnormalities in neurons and neural circuits. The early presentation of cognitive dysfunctions before the onset of psychotic symptoms supports the neurodevelopment theory. The difference in NAA concentrations between first-episode and chronic patients was not significant in our study. This finding shows that the pathology causing a decrease in callosal NAA concentration plays a role in the pathophysiology of schizophrenia.

Pure myelin-related pathologies may cause a decrease in NAA concentration at 1H-MR spectroscopy.41 Decreased callosal NAA concentration observed in our patients may result from a myelin-related pathology or oligodendrocyte dysfunction. Histologic studies suggesting the presence of a myelin-related pathology or oligodendrocyte dysfunction in schizophrenia are present in the English literature.48-51

Table 2: The metabolite concentrations and T2B values of the patients and control subjects*

Subjects	N-acetylaspartate (mmol/kg brain)	Creatine (mmol/kg brain)	Choline (mmol/kg brain)	T2B Values (ms)
First-episode group				
Patients (n = 12)	8.97 ± 0.82	3.63 ± 0.23	1.21 ± 0.08	76.17 ± 12.26
Controls (n = 14)	10.41 ± 0.45	3.56 ± 0.27	1.18 ± 0.07	57.93 ± 6.85
Significance	P < .001	P = .54	P = .39	
Chronic group				
Patients (n = 16)	8.86 ± 0.89	3.68 ± 0.35	1.22 ± 0.09	78.03 ± 12.09
Controls (n = 14)	10.40 ± 0.44	3.72 ± 0.25	1.26 ± 0.10	60.57 ± 7.85
Significance	P < .001	P = .66	P = .99	
Combined group				
Patients (n = 28)	8.91 ± 0.84	3.65 ± 0.30	1.24 ± 0.11	77.23 ± 11.97
Controls (n = 28)	10.40 ± 0.44	3.64 ± 0.27	1.22 ± 0.10	59.25 ± 7.35
Significance	P < .001	P = .84	P = .45	

*Data are given as mean ± SD.
A decrease in attenuation of oligodendrocytes in the frontal cortex of patients with schizophrenia was found in another postmortem study. A link between schizophrenia and the reduced expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene, a marker of myelin forming cells, has been demonstrated in a recent study. Oligodendrocytes and myelin increase neuronal conduction velocity by their insulating properties and provide extrinsic support for axons. Myelin-related pathologies impair neuroaxonal conduction in white matter tracts and consequently cause corticocortical disconnections. Metachromatic leukodystrophy, for instance, is a dysmyelinating metabolic white matter disease, which demonstrates the pathophysiologic linkage between corticocortical disconnection and psychotic symptoms. Patients with adult-onset metachromatic leukodystrophy frequently present psychotic symptoms. Similarly, a myelin-related pathology causing reduced corticocortical connectivity may lead to the symptoms of schizophrenia.

Pure water has a T2 relaxation time of around 3 seconds. Owing to an interaction of water molecules with nonequivalent molecules in brain parenchyma, the T2 relaxation time of brain can be much shorter. In brain parenchyma, the T2 relaxation time of water molecules in brain parenchyma, the T2 relaxation time of water molecules trapped between myelin bilayers (myelin water) constitutes a smaller fraction of tissue-water fraction in brain and has a T2 relaxation time of approximately 80–100 ms. Water molecules trapped between myelin bilayers (myelin water) constitute a smaller fraction of tissue-water and have a shorter T2 relaxation time (approximately 20 ms) than intra- and extracellular water and CSF. Because water trapped between myelin bilayers is proportional to the myelin content of the tissue, T2b can provide indirect measurement of the myelin content of this tissue. Demyelinating diseases decrease the myelin water fraction and prolong the T2b value. In our study, the T2b values in patients were significantly prolonged compared with those of control subjects. A myelin-related pathology or decrease in axonal attenuation may be the cause of prolonged T2b in our patients. Theoretically, any factor or pathology that is able to alter the intrinsic magnetic field within tissue may change T2 relaxation times. Prolonged T2 relaxation time in the genu of the corpus callosum was reported in a recent MR imaging study of patients with schizophrenia. T2 relaxation times in the frontal white matter of patients with schizophrenia was also prolonged. In these studies, the authors proposed that decrease in the myelin water fraction might be the cause of prolonged T2 relaxation times. In our study, the accompaniment of a prolonged T2b value with reduced NAA concentration suggests the presence of an axonal or myelin-related pathology in the corpus callosum in patients with schizophrenia. A prolonged T2b value was associated neither with the duration of illness nor with the severity of psychopathology in our study. This finding is consistent with the possibility that the pathology altering the T2b value has a neurodevelopmental basis.

Phosphorylcholine and glycerophosphorylcholine, which are the precursors of cell membrane synthesis and the breakdown products of myelin and cell membrane, contribute to Cho peak at proton MR spectra. The lack of difference in Cho concentration between the patients and control subjects showed that there was no active demyelination ongoing in the corpus callosum of the patients with schizophrenia.

All of our patients were in the acute phase of illness. Therefore, all the patients except 2 were under antipsychotic treatment during the 1H-MR spectroscopy examinations. Due to ethical considerations, we could not increase the number of drug-naïve patients to compare metabolite concentrations of antipsychotic-naïve patients and the patients under antipsychotic treatment. Hence, we could not exclude the potential effect of antipsychotic drugs on neurometabolite concentrations. This may be accepted as a limitation of our study. However, lack of a difference in NAA concentrations between the first-episode and chronic patients demonstrated that chronic antipsychotic treatment did not lower the NAA concentration in the corpus callosum of the patients. There are controversial results in the previous literature involving the effect of antipsychotic drugs on NAA concentration. In one of the longitudinal 1H-MR spectroscopy studies, Bertolino et al.
References

1. Wernicke C. Grundriss der Psychiatrie. Leipzig, Germany; Thieme; 1906
2. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 2006;59:929–39. Epub 2006 Jan 19
3. Friston KJ. The disinconnection hypothesis. Schizophr Res 1998;30:115–23
4. Crow TJ. Schizophrenia as a transcallosal disconnection syndrome. Schizophr Res 1998;30:111–14
5. Lim KO, Hedehus M, Moseley M, et al. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry 1999;56:367–74
6. Park HE, Westin CF, Kubicki M, et al. White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. Neu- rorimage 2004;23:2123–23
7. Kanaan RA, Kim JS, Kaufmann WE, et al. Diffusion tensor imaging in schizophrenia. Biol Psychiatry 2005;58:921–29. Epub 2005 Jul 25
8. Buchsbaum MS, Friedman J, Buchsbaum BR, et al. Diffusion tensor imaging in schizophrenia. Biol Psychiatry 2006;60:1181–87. Epub 2006 Aug 7
9. Foong J, Maier M, Barker GJ, et al. In vivo investigation of white matter pathology in schizophrenia with magnetization transfer transfer. J Neurolinguistics 2006;8:879–84
10. Hakak Y, Walker JR, Li C, et al. Neuroanatomical abnormalities in schizophrenia: evidence from magnetization transfer imaging. Brain 2001;124:882–92
11. Iwamoto K, Bundo M, Yamada K, et al. DNA Methylhation status of SOX 10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J Neurosci 2005;25:5376–81
12. Gazzaniga MS. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition. Brain 2000;123:1293–326
13. Crow TJ, Ball J, Bloom SR, et al. Schizophrenia as an anomaly of development of cerebral asymmetry: a postmortem study and a proposal concerning the genetic basis of the disease. Arch Gen Psychiatry 1989;46:1145–50
14. Delisi LE, Sakuma M, Kushner M, et al. Anomalous cerebellar asymmetry and language processing in schizophrenia. Schizophr Bull 1997;23:255–71
15. Downhill JE, Buchsbaum MS, Wei T, et al. Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr Res 2000;42:193–208
16. Keshavan MS, Dwivedar VA, Hararinski K, et al. Abnormalities of the corpus callosum in first treatment naive schizophrenia. J Neurolinguistics 2002;72:757–60
17. Rosenthal R, Bigelow LB. Quantitative brain measurements in chronic schizophrenia. Br J Psychiatry 1972;121:259–64
18. Nasrallah HA, Andreasen NC, Coffman JA, et al. A controlled magnetic resonance imaging study of corpus callosum thickness in schizophrenia. Biol Psychiatry 1986;21:2747–82
19. Casanova MF, Sanders RD, Goldberg TE, et al. Morphometry of the corpus callosum in monozygotic twins discordant for schizophrenia: a magnetic resonance imaging study. J Neurolinguistics 1996;5:416–21
20. Woodruff PW, McManus IC, David AS. Meta-analysis of corpus callosum size in schizophrenia. J Neurolinguistics 1995;8:545–77
21. Casanova MF, Zito M, Goldberg TE, et al. Corpus callosum curvature in schizophrenic twins. Biol Psychiatry 1999;45:83–94
22. Nurr KL, Thompson PM, Sharma T, et al. Mapping morphology of the corpus callosum in schizophrenia. Cereb Cortex 2000;10:40–49
23. Fruin M, Golland P, Kikinis R, et al. Shape differences in the corpus callosum in first episode schizophrenia and first episode psychotic affective disorder. Am J Psychiatry 2012;169:866–68
24. Hulshof Pohl HE, Schnack HG, Mandl RC, et al. Focal white matter density changes in schizophrenia: reduced inter-hemispheric connectivity. Neuroimage 2006;27:137–35
25. Dwivedar VA, DeBelliis MD, Sweeney JA, et al. Abnormalities in MRI-measured signal intensity in the corpus callosum in schizophrenia. Schizophr Res 2004;68:277–82
26. Steel RM, Bastin ME, McConnell S, et al. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) in schizophrenic subjects and normal controls. Psychiatry Res 2001;106:161–70
27. First MB, Spitzer RL, Gibbon M, et al. Structured Clinical Interview for DSM-IV Axis I disorders (SCID-I), Clinical Version. Washington, DC: American Psychiatric Press; 1997
28. Finales M, Malhotra A, Breier A. Informed consent in schizophrenia research. Psychiat Serv 1998;49:244
29. Lukoff D, Nuechterlein K, Ventura A. Manual for the expanded brief psychiatric rating scale. Schizophr Bull 1986;12:594–802
30. Andreasen NC, The Scale for the Assessment of Positive Symptoms (SAPS). Iowa City, Iowa: University of Iowa; 1984
31. Andreasen NC. The Scale for the Assessment of Negative Symptoms (SANS). Iowa City, Iowa; University of Iowa; 1983
32. Widelson SF. Hand and sex differences in the illness and genu of the human corpus callosum. Brain 1989;112:278–85
33. Highley JR, Eusti MM, McDonald B, et al. The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 1999;122:99–110
34. Keel PV, Barbiroli B, Brooks IC, et al. Absolute metabolic quantification in vivo by NMR spectroscopy. II. A multicenter trial of protocols for in vivo localized proton studies of human brain. Magn Reson Imaging 1998;16:1093–106
35. Michaelis T, Merboldt KD, Bruhn H, et al. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 1993;187:219–27
36. Hoffman RE, McGlashan TH. Reduced corticocortical connectivity can induce perception pathology and hallucinated voices. Schizophr Res 1998;30:137–41
37. Hoffman RE, McGlashan TH. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 2005;30:1949–62
38. Neale JH, Bzdenga T, Wroblewska B. N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 2000;75:443–52
39. Miller BL. A review of chemical issues in H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 1991;4:47–52
40. Brandao LA, Domingues RC. MR Spectroscopy of the Brain. Philadelphia: Lipincott, Williams & Wilkins; 2004:17–128
41. Lenz TR, Kim JP, Westmoreland SV, et al. Quantitative neuroanatomical correlates of changes in ratio of N-acetylaspartate to creatine in macaque brain. Radiology 2005;235:461–68
42. Najm IM, Wang Y, Shedid D, et al. MR metabolic markers of seizures and seizure-induced neuronal damage. Epilepsia 1998;39:244–50
43. Aydin K, Ciftci K, Tercaghisoglu E, et al. Quantitative proton MR spectroscopic findings of cortical reorganization in the auditory cortex of patients with schizophrenia. AJNR Am J Neuroradiol 2005;26:128–36
44. Nasrallah HA, McCalty-Whitters M, Bigelow LB, et al. A histological study of the corpus callosum in chronic schizophrenia. Psychiatry Res 1985;8:521–60
45. Casanova MF, Zito M, Bigelow LB, et al. Anomalous counts of the corpus callosum of schizophrenic patients. J Neuropsychiatry Clin Neurosci 1989;1:391–93
46. Lieberman JA, Perkins D, Belger A, et al. The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biol Psychiatry 2001;50:884–97
47. Urazova NA, Vostrikov VM, Orlovskaya DJ, et al. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropsychiatry Consortium. Schizophr Res 2004;67:269–76
48. Urazova N, Orlovskaya D, Vikhreva O, et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001;55:597–610
49. Hof PR, Haroutunian V, Copeland C, et al. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 2002;27:1193–200
50. Pericke TR, Bray NJ, Williams NM, et al. Convergent evidence for 2,3’-cyclic nucleotide 3’-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry 2006;63:18–24
51. Hyde TM, Ziegler JC, Weinberger DR. Psychiatric disturbances in metachromatic leukodystrophy: insights into the neurobiology of psychosis. Arch Neurol 1993;50:401–6
52. MacKay A, Laule C, Vavasour I, et al. Insights into brain microstructure from the T2 distribution. Mag Reson Imaging 2006;24:515–25
53. Flynn SW, Lang DJ, Mackay AL, et al. Abnormalities of myelination in schizophrenia: fibre detection in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 2003;8:118–20
54. Bertolino A, Callcott JH, Mattay VS, et al. The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiatry 2001;49:39–46
55. Busto I, Wollf C, Myers-y-Gutierrez A, et al. Treatment of rats with antipsychotic drugs: lack of an effect on brain N-acetylaspartate levels. Schizophr Res 2004;66:31–39