Quasinormal modes of black holes with a scalar hair in Einstein-Maxwell-dilaton theory

Ángel Rincón and Grigoris Panotopoulos

1 Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso, Chile
2 Centro de Astrofísica e Gravitação, Departamento de Física, Instituto Superior Técnico-IST, Universidade de Lisboa-UL, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

E-mail: angel.rincon@pucv.cl and grigorios.panotopoulos@tecnico.ulisboa.pt

Received 7 May 2020, revised 27 June 2020
Accepted for publication 2 July 2020
Published 9 July 2020

Abstract

We compute the quasinormal frequencies for scalar perturbations of hairy black holes in four-dimensional Einstein-Maxwell-dilaton theory assuming a non-trivial scalar potential for the dilaton field. We investigate the impact on the spectrum of the angular degree, the overtone number, the charges of the black hole as well as the magnitude of the scalar potential. All modes are found to be stable. Our numerical results are summarized in tables, and for better visualization, we show them graphically as well.

Keywords: relativistic wave equations, physics of black holes, classical general relativity

(Some figures may appear in colour only in the online journal)

1. Introduction

Black holes (BHs), one of the most remarkable predictions of Einstein’s General Relativity (GR) [1] and other metric theories of gravity, are without a doubt fascinating objects of paramount importance both for classical and quantum gravity, linking together several different research areas, from gravitation and astrophysics to quantum mechanics and statistical physics. Their existence has been established over the last years in a two-fold way, namely from the one hand by the first image of a black hole shadow announced last year by the Event Horizon Telescope [2–7] as well as by the numerous direct detection of gravitational waves from BH binary systems by the LIGO/Virgo collaborations [8–12].

The gravitational wave astronomy has opened up a new window to our Universe, and it provides us with an excellent tool to test gravitation under extreme conditions. The signal of the gravitational waves emitted from the merger of the two BHs during the ring down phase is dominated by the fundamental mode of the so called quasinormal modes (QNMs) of the black holes. The QN frequencies $\omega = \omega_R + i \omega_I$ are complex numbers that encode the information on how a black hole relaxes after a perturbation is not applied any longer. Their main features may be summarized as follows: a) They only depend on the space-time and the type of perturbation, and not on the initial conditions. Therefore they are characteristic frequencies of the system, b) They have a non-vanishing imaginary part, ω_I, due to the fact that a perturbed BH responds emitting gravitational waves, and the sign of the imaginary part indicates if the mode is stable or unstable. To be more precise, a mode is unstable (exponential growth) when $\omega_I > 0$, otherwise it is stable (exponential decay) when $\omega_I < 0$, c) in the case where a mode is stable, the real part gives the frequency of the oscillation, $\omega_R/(2\pi)$, while the inverse of $|\omega_I|$ determines the dumping time, $t_D = 1/|\omega_I|$. Black hole perturbation theory has been developed thanks to the works of Regge and Wheeler [13], Zerilli [14–16], Moncrief [17] and Teukolsky [18]. Chandrasekhar’s monograph [19] is a standard textbook that contains the mathematics of black holes, while for reviews of the same topic see [20–22].

According to the standard lore, ideal isolated black holes are characterized by a small number of parameters, namely...
2. Gravitational background and wave equation

2.1. The model

We start by introducing the model (see [39] and references therein), which consists of the usual Einstein-Hilbert term for gravity plus the Maxwell-dilaton Lagrangian for matter, where a concrete dilaton potential is considered. The model is described by the following action

\[S[g_{\mu\nu}, A_\mu, \phi] = \frac{1}{2\kappa} \int d^4x \sqrt{-g} \left[R - e^{\phi} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right] \]

where \(\kappa \equiv 8\pi G \) with \(G \) being Newton’s constant, \(g \) is the determinant of the metric tensor \(g_{\mu\nu} \), \(R \) is the corresponding Ricci scalar, \(F_{\mu\nu} \equiv \partial_\mu A_\nu - \partial_\nu A_\mu \) is the electromagnetic field strength, and \(\phi \) is the dilaton field. The latter is non-minimally coupled to the electromagnetic Lagrangian with a coupling constant \(\gamma \). In the discussion to follow, we shall use geometrical units such as \(\kappa = 1 = c \). Finally, for the dilaton field we shall consider a non-trivial potential given by

\[V(\phi) = 2\alpha [2\phi + \phi \cosh(\phi) - 3 \sinh(\phi)] \]

with \(\alpha \) being a dimensionfull parameter with dimensions \([\alpha] = L^{-2} \).

As was pointed out in [40] and subsequently in [39], the scalar potential assumed here was originally introduced to obtain exact solutions in EMD gravity. Moreover, the theory described by the action \(S[g_{\mu\nu}, A_\mu, \phi] \) can also be considered as a consistent truncation of \(\mathcal{N} = 2 \) supergravity in four space-time dimensions, coupled to a vector multiplet and deformed by a Fayet-Iliopoulos term [41], see e.g. [39, 42] for further details.

The field equations for the metric tensor, the Maxwell potential and the dilaton are found to be [39, 43]

\[G_{\mu\nu} = \frac{1}{2} (T^{(\phi)}_{\mu\nu} + T^{(M)}_{\mu\nu}) \]

\[\partial_\mu (\sqrt{-g} e^{\phi} F^{\mu\nu}) = 0 \]

\[\frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu \phi) = \frac{dV(\phi)}{d\phi} + \gamma e^{\phi} F^2 \]

respectively, where the energy-momentum tensor associated to the dilaton and the Maxwell potential are computed to be [39, 43]

\[T^{(\phi)}_{\mu\nu} \equiv \partial_\mu \phi \partial_\nu \phi - g_{\mu\nu} \left(\frac{1}{2} (\partial_\phi)^2 + V(\phi) \right) \]

\[T^{(M)}_{\mu\nu} \equiv 4e^{\phi} (F_{\mu\beta} F^{\beta\nu} - \frac{1}{4} g_{\mu\nu} F^2) \]

respectively.

2.2. Black hole solution

For static, spherically symmetric solutions in Schwarzschild coordinates, \((t, r, \vartheta, \varphi)\), and adopting the mostly positive metric signature \((-,+,+,+\)), we make as usual the following ansatz for the line element:

\[ds^2 = -f(r) dt^2 + g(r)^{-1} dr^2 + r^2 d\vartheta^2 \]

where \(df^2 \equiv dt^2 + \sin^2(\vartheta)d\varphi^2 \), while \(f(r) \) and \(g(r) \) are two unknown functions of the radial coordinate. Equivalently, one may introduce two new functions \(\sigma(r), m(r) \) as follows

\[f(r) \equiv g(r) \sigma(r)^2 \]

\[g(r) \equiv 1 - \frac{2m(r)}{r} \]

with \(m(r) \) being the Misner-Sharp mass function [44], while the red-shift function \(\sigma(r) \) is computed to be [39]

\[\sigma(r) = \left(1 + \frac{Q_e^2}{4r^2} \right)^{-1/2} \]

where \(Q_e \) is the scalar charge of the hairy black hole. Accordingly, the Misner-Sharp mass function is found to be [39]

\[m(r) = \frac{r}{2\sigma^2(r)} \left[\frac{Q_e^2}{r^2} [\chi(r) - 1] - \alpha \left(\frac{Q_e^2}{2} \chi(r) - r^2 \phi(r) \right) \right] - \frac{Q_e^2}{8r} \]
auxiliary function χ is defined by
\begin{equation}
\chi(r) \equiv \sqrt{1 + 4r^2/Q^2}.
\end{equation}
Notice that the black hole solution with a scalar hair obtained in the model considered here is characterized by two charges $\{Q_e, Q_s\}$. The electric charge is associated to a Gauss’ law, and it can be formally defined in the following way [39]
\begin{equation}
Q_e \equiv \frac{1}{8\pi} \int d^3x \epsilon^{\mu\nu\rho} F_{\mu\nu}.
\end{equation}
In absence of sources to Maxwell’s equations, the corresponding charge is independent of the surface S. What is more, we can also identify the ADM mass taking advantage of the asymptotic value of $m(r)$, namely [39]:
\begin{equation}
M = \frac{Q_e^2}{Q_s} - \frac{1}{12\alpha} Q_s^3.
\end{equation}
Therefore the scalar charge may be computed in terms of the mass and the electric charge. This implies that Q_s is a secondary charge, according to the terminology of [23], since it is not an independent quantity.

3. Scalar perturbations

We shall now perturb the black hole background, presented in the previous subsection, with a probe scalar field, and we study its propagation in a fixed gravitational-space-time. A massless canonical scalar field Φ is described by a Lagrangian density of the form
\begin{equation}
\mathcal{L} = \frac{1}{2} (\partial \Phi)^2
\end{equation}
and the corresponding Klein–Gordon equation is given by
\begin{equation}
\frac{1}{\sqrt{-g}} \partial_{\nu} (\sqrt{-g} g^{\mu\nu} \partial_{\mu}) \Phi = 0.
\end{equation}
In a four-dimensional space-time, and in the Schwarzschild coordinates used here, we attempt to find solutions for the scalar field applying the method of separation of variables, making as usual the following ansatz:
\begin{equation}
\Phi(t, r, \theta, \varphi) = e^{-i\omega t} \frac{\Psi(r)}{r} Y^m_l(\theta, \varphi)
\end{equation}
where $Y^m_l(\theta, \varphi)$ are the spherical harmonics, while ω is the frequency to be computed. It is not difficult to show that the radial part satisfies an ordinary second order linear differential equation, and after a straightforward calculation one obtains for the unknown function Ψ a Schrödinger-like equation
\begin{equation}
\frac{d^2 \Psi}{dx^2} + [\omega^2 - V(x)] \Psi = 0
\end{equation}
with x being the so called tortoise coordinate, which is computed by
\begin{equation}
x = \int \frac{dr}{\sqrt{g(r)f(r)}}.
\end{equation}
while the corresponding effective potential barrier is found to be [45, 46]
\begin{equation}
V_s(r) = \frac{l(l+1)f(r)}{r^2} + \frac{f'(r)g(r) + f(r)g'(r)}{2r}
\end{equation}
where the prime denotes differentiation with respect to r, while $l \geq 0$ is the angular degree.

Notice that since in the hairy black hole solution studied in this work the two metric potentials $f(r), g(r)$ are different, the effective potential barrier is found to be slightly more complicated in comparison with the usual case where $g(r) = f(r)$. It is easy to verify that in the special case in which $\sigma(r) = 1$, our expressions boil down to the standard ones, namely
\begin{equation}
f(r) = g(r)
\end{equation}
\begin{equation}
x = \int \frac{dr}{f(r)}
\end{equation}
\begin{equation}
V_s(r) = f(r) \left(\frac{l(l+1)}{r^2} + \frac{f'(r)}{r} \right)
\end{equation}
The effective potential barrier as a function of the radial coordinate is shown in (1) for several different values of the angular degree l, the electric charge of the black hole Q_e, and the magnitude of the scalar potential α. Left, middle and right panels of first row show $V_s(r)$ for $\alpha = 0, \alpha = 0.1$ and $\alpha = 0.2$ respectively. See each row for specific details. Clearly, the effective potential barrier increases both with Q_s and l, whereas it is not sensitive to the variation of the α parameter, as it can be seen in the second raw of figure 1. In the first raw the potential seems to decrease with α, but this is misleading since other parameters also vary at the same time.

Finally, to complete the formulation of the physical problem we must also impose the appropriate boundary conditions, both at infinity (no radiation is incoming from infinity) and at the horizon (nothing can escape from the horizon of the BH). For asymptotically flat space-times the appropriate boundary conditions to be imposed are given by [47]
\begin{equation}
\Psi(x) \to \begin{cases}
A e^{-i\omega x} & \text{if } x \to -\infty \\
C e^{i\omega x} & \text{if } x \to +\infty
\end{cases}
\end{equation}
where A, C are two arbitrary coefficients.

4. QN frequencies of hairy black holes

As far as QNMs computations are concerned, exact analytic expressions may be obtained in a few cases, see for instance [48–55]. In most of the cases, however, in order to compute the QN spectra one is obliged to develop or adopt one of the currently available numerical methods. Among the approaches used to achieve that, one method is ‘Evolving the time dependent wave equation’ [56], which has some advantages, due to the fact that we do not need to be extremely careful about the adequate boundary conditions on the horizon or at infinity. A second approach called ‘Integration of the Time Independent Wave equation’ was first used by Chandrasekhar.
and Detweiler [57]. The key point in this method relies on the assumption that a QNM is a solution of an ‘incoming waves on the horizon and outgoing at infinity’ [20]. Thus, we can take an expansion of the Zerilli wave equation [58–60] at horizon and infinity of the form given by (25). They found initial values for the numerical integration of the equation [20]. In addition to those, there is also the popular and extensively used semi-analytic WKB method [61–63], and recently [64]. For an incomplete list see e.g. [65–71], and for more recent works [72–83], and references therein.

Within the WKB approximation the QN frequencies are given by

$$\omega^2 = V_0 + (-2V_0^n)^{1/2} \lambda(n) - i\nu(-2V_0^n)^{1/2}[1 + \Omega(n)]$$

(26)

where $n = 0, 1, 2, \ldots$ is the overtone number, $\nu = n + 1/2$, V_0 is the maximum of the effective potential, V_0^n is the second derivative of the effective potential evaluated at the maximum, while $\lambda(n), \Omega(n)$ are complicated expressions of ν and higher derivatives of the potential evaluated at the maximum. The interested reader may consult for instance [66, 72] where the expressions can be found. In the present work we have used the Wolfram Mathematica [84] code with WKB of 6th order presented in [85], and we have considered the cases $n \leq l$ only, since it is known in the literature that the WKB approach works very well up to that level, see e.g. Tables II, III, IV and V of [86].

Our results are summarized in tables I–12, and for better visualization are shown in figure 2. The real part of the modes decreases with n and increases with α, l, Q_α, whereas the absolute value of the imaginary part of the frequencies increases with n, Q_α, and decreases with α, l. Our results are similar to the ones of [38] for a massless and electrically neutral scalar field.

The QN modes for neutral scalar perturbations of black holes in the three-dimensional EMD theory [87] were computed in [52], where an exact analytical expression for the spectrum was obtained, and all modes were found to be purely imaginary. On the contrary, in the parameter space considered here, all modes are found to have a non-vanishing real part.

5. Conclusions

To summarize, in the present work we have computed the quasinormal spectrum for scalar perturbations of a black hole with a scalar hair in the Einstein-Maxwell-dilaton model in four space-time dimensions assuming a non-trivial scalar potential for the dilaton. The black hole is characterized by an electric charge as well as a scalar charge, which nevertheless depends on the other properties of the black hole solution. After summarizing the model, the field equations and the solution, we perturbed the black hole with a test massless scalar field, investigating its propagation into a fixed gravitational background. The effective potential barrier of the corresponding Schrödinger-like equation for scalar perturbations was obtained. Finally, the quasinormal frequencies were
Table 1. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0$, $q_\alpha = Q_2^2$ and $Q_\epsilon = 0.2$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.111 249 -0.101024 i	0.294 913 -0.0979603 i	0.486 919 -0.0967954 i	0.679 931 -0.0967117 i	0.873 273 -0.0966038 i
1	0.266 69 -0.306994 i	0.467 277 -0.29621 i	0.665 349 -0.2929898 i	0.861 754 -0.291498 i	
2	0.434 076 -0.509528 i	0.638 48 -0.496951 i	0.839 802 -0.491312 i		
3	0.603 595 -0.712548 i	0.809 543 -0.698771 i			
4	0.773 858 -0.915726 i				

Table 2. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0$, $q_\alpha = Q_2^2$ and $Q_\epsilon = 0.4$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.113 615 -0.101748 i	0.301 218 -0.0985422 i	0.497 217 -0.0975905 i	0.694 273 -0.0973332 i	0.891 673 -0.0972279 i
1	0.273 688 -0.308355 i	0.478 067 -0.297911 i	0.680 055 -0.294689 i	0.880 441 -0.293326 i	
2	0.445 696 -0.511904 i	0.653 861 -0.499691 i	0.859 039 -0.494209 i		
3	0.619 855 -0.715893 i	0.829 539 -0.702517 i			
4	0.794 759 -0.920035 i				

Table 3. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0$, $q_\alpha = Q_2^2$ and $Q_\epsilon = 0.6$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.118 615 -0.10242 i	0.312 834 -0.0994461 i	0.516 155 -0.0985552 i	0.720 633 -0.0983114 i	0.925 484 -0.0982119 i
1	0.286 614 -0.310356 i	0.497 939 -0.30053 i	0.707 105 -0.297483 i	0.914 796 -0.296194 i	
2	0.467 137 -0.515405 i	0.682 184 -0.503884 i	0.894 433 -0.498704 i		
3	0.649 829 -0.720847 i	0.866 368 -0.708226 i			
4	0.833 282 -0.926424 i				

Table 4. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0$, $q_\alpha = Q_2^2$ and $Q_\epsilon = 0.8$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.129 042 -0.101423 i	0.332 021 -0.100473 i	0.547 375 -0.0996847 i	0.764 056 -0.0994681 i	0.981 166 -0.0993804 i
1	0.307 969 -0.312315 i	0.530 756 -0.303444 i	0.751 706 -0.300711 i	0.971 406 -0.299552 i	
2	0.502 61 -0.518801 i	0.728 945 -0.508475 i	0.952 81 -0.503815 i		
3	0.699 358 -0.725739 i	0.927 165 -0.714395 i			
4	0.896 91 -0.932771 i				

Table 5. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0.1$, $q_\alpha = 0.2$ and $Q_\epsilon = 0.4$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.111 261 -0.101013 i	0.294 914 -0.0979604 i	0.486 919 -0.0967954 i	0.679 931 -0.0967117 i	0.873 273 -0.0966038 i
1	0.266 69 -0.306995 i	0.467 278 -0.29621 i	0.665 355 -0.292898 i	0.861 755 -0.291499 i	
2	0.434 077 -0.509527 i	0.638 481 -0.496952 i	0.839 803 -0.491312 i		
3	0.603 595 -0.712548 i	0.809 543 -0.698771 i			
4	0.773 86 -0.915724 i				

Table 6. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0.1$, $q_\alpha = 0.4$ and $Q_\epsilon = 0.159995$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.113 734 -0.10164 i	0.301 219 -0.0985427 i	0.497 219 -0.0975908 i	0.694 275 -0.0973355 i	0.891 675 -0.0972282 i
1	0.273 686 -0.308363 i	0.478 069 -0.297912 i	0.680 057 -0.29469 i	0.880 444 -0.293327 i	
2	0.445 699 -0.511904 i	0.653 863 -0.499692 i	0.859 041 -0.494211 i		
3	0.619 857 -0.715895 i	0.829 542 -0.702519 i			
4	0.794 762 -0.920037 i				
Table 7. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0.1$, $Q_{c} = 0.6$ and $Q_{s} = 0.35986$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.118 441 -0.102568 i	0.312 834 -0.0994459 i	0.516 155 -0.0985551 i	0.720 632 -0.0983113 i	0.925 483 -0.0982118 i
1	0.286 617 -0.310352 i	0.497 939 -0.300529 i	0.707 105 -0.297483 i	0.914 795 -0.296193 i	0.894 432 -0.298703 i
2	0.467 137 -0.515405 i	0.682 184 -0.503883 i	0.866 366 -0.708226 i	0.833 278 -0.926428 i	
3					
4					

Table 8. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0.1$, $Q_{c} = 0.8$ and $Q_{s} = 0.638614$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.126 487 -0.10344 i	0.303 038 -0.100468 i	0.547 379 -0.096838 i	0.764 062 -0.0994672 i	0.981 175 -0.0993795 i
1	0.308 088 -0.312194 i	0.530 757 -0.303443 i	0.751 713 -0.300708 i	0.971 415 -0.299549 i	0.952 819 -0.50381 i
2	0.502 601 -0.51881 i	0.728 954 -0.508468 i	0.896 195 -0.50381 i	0.896 915 -0.932767 i	
3					
4					

Table 9. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0.2$, $Q_{c} = 0.2$ and $Q_{s} = 0.04$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.111 263 -0.101011 i	0.294 914 -0.0979604 i	0.486 919 -0.0969755 i	0.679 932 -0.0967118 i	0.873 274 -0.0966039 i
1	0.266 69 -0.306995 i	0.467 278 -0.296261 i	0.665 35 -0.292989 i	0.861 755 -0.291499 i	0.839 800 -0.489212 i
2			0.638 481 -0.496952 i	0.839 803 -0.491313 i	0.809 544 -0.698771 i
3					0.773 859 -0.915726 i
4					

Table 10. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0.2$, $Q_{c} = 0.4$ and $Q_{s} = 0.159989$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.113 747 -0.101628 i	0.301 218 -0.0985423 i	0.497 217 -0.0975905 i	0.694 273 -0.0973331 i	0.891 672 -0.0972278 i
1	0.273 685 -0.308359 i	0.478 067 -0.297911 i	0.680 055 -0.294689 i	0.880 441 -0.293326 i	0.859 038 -0.494209 i
2			0.653 86 -0.499691 i	0.859 038 -0.494209 i	0.829 539 -0.702517 i
3					0.794 759 -0.920034 i
4					

Table 11. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0.2$, $Q_{c} = 0.6$ and $Q_{s} = 0.359721$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.118 456 -0.102554 i	0.312 835 -0.0994459 i	0.516 156 -0.0985552 i	0.720 633 -0.0983114 i	0.925 483 -0.0982119 i
1	0.286 619 -0.310351 i	0.497 939 -0.300529 i	0.707 106 -0.297483 i	0.914 797 -0.296193 i	0.894 434 -0.498704 i
2			0.682 185 -0.503884 i	0.894 434 -0.498704 i	0.866 368 -0.708226 i
3					0.833 281 -0.926427 i
4					

Table 12. QN frequencies (scalar perturbations) for $M = 1 = \gamma$, $\alpha = 0.2$, $Q_{c} = 0.8$ and $Q_{s} = 0.637252$.

n	$l = 0$	$l = 1$	$l = 2$	$l = 3$	$l = 4$
0	0.126 564 -0.103373 i	0.332 038 -0.100467 i	0.547 383 -0.099683 i	0.764 069 -0.0994664 i	0.981 184 -0.0993787 i
1	0.308 08 -0.312201 i	0.530 762 -0.30344 i	0.751 721 -0.300705 i	0.971 424 -0.299547 i	0.952 829 -0.503806 i
2			0.502 607 -0.518804 i	0.728 962 -0.508463 i	0.927 184 -0.714382 i
3					0.896 927 -0.932758 i
4					
Computed adopting the semi-analytic WKB method of 6th order. Contrary to the three-dimensional EMD theory, where the QN frequencies for scalar perturbations of black holes were found to be purely imaginary, here all modes have a non-vanishing real part. Moreover, all modes were found to be stable. Our results have been shown in tables as well as in figures, for better visualization. The impact on the spectrum of the overtone number, the angular degree, the charges of the black hole as well as the magnitude of the dilaton potential has been investigated in detail.

Acknowledgments

We wish to thank the anonymous reviewers for useful comments and suggestions as well as for pointing out an error in our original computation. The author Á R acknowledges DIVIEA for financial support through Proyecto Postdoctorado 2019 VRIEA-PUCV. The author G P thanks the Fundação para a Ciência e Tecnologia (FCT), Portugal, for the financial support to the Center for Astrophysics and Gravitation-CENTRA, Instituto Superior Técnico, Universidade de Lisboa, through the Project No. UIDB/00099/2020.
References

[1] Einstein A 1916 The Foundation of the general theory of relativity Annalen Phys. 49 769–822
Einstein A 2005 Annalen Phys. 14 517
Einstein A 1916 Annalen Phys. 14 65
Einstein A 1916 Annalen Phys. 354 769

[2] Akiyama K et al 2019 First M87 event horizon telescope results. I. The shadow of the supermassive black hole Astrophys. J. 875 L1

[3] Akiyama K et al 2019 First M87 event horizon telescope results. II. Array and instrumentation Astrophys. J. 875 L2

[4] Akiyama K et al 2019 First M87 event horizon telescope results. III. Data processing and calibration Astrophys. J. 875 L3

[5] Akiyama K et al 2019 First M87 event horizon telescope results. IV. Imaging the central supermassive black hole Astrophys. J. 875 L4

[6] Akiyama K et al 2019 First M87 event horizon telescope results. V. Physical origin of the asymmetric ring Astrophys. J. 875 L5

[7] Akiyama K et al 2019 First M87 event horizon telescope results. VI. The shadow and mass of the central black hole Astrophys. J. 875 L6

[8] Abbott B P et al 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett. 116 011102

[9] Abbott B P et al 2016 GW151226: observation of gravitational waves from a 22-Solar-Mass binary black hole coalescence Phys. Rev. Lett. 116 241103

[10] Abbott B P et al 2017 GW170104: observation of a 50-Solar-Mass binary black hole coalescence at redshift 0.2 Phys. Rev. Lett. 118 221101

[11] Abbott B P et al 2018 GW170104: observation of a 50-Solar-Mass binary black hole coalescence at redshift 0.2 Phys. Rev. Lett. 121 129901

[12] Abbott B P et al 2017 GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence Phys. Rev. Lett. 119 141101

[13] Abbott B P et al 2017 GW170608: observation of a 19-solar-mass binary black hole coalescence Astrophys. J. 851 L35

[14] Regge T and Wheeler J A 1957 Stability of a Schwarzschild singularity Phys. Rev. 108 1063–9

[15] Zerilli F J 1970 Effective potential for even parity Regge-Wheeler gravitational perturbation equations Phys. Rev. Lett. 24 737–8

[16] Zerilli F J 1970 Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics Phys. Rev. D 2 2141–60

[17] Zerilli F J 1974 Perturbation analysis for gravitational and electromagnetic radiation in a reissner-nordstrom geometry Phys. Rev. D 9 860–8

[18] Moncrief V 1975 Gauge-invariant perturbations of Reissner-Nordstrom black holes Phys. Rev. D 12 1526–37

[19] Teukolsky S A 1972 Rotating black holes—separable wave equations for gravitational and electromagnetic perturbations Phys. Rev. Lett. 29 1114–8

[20] Chandrasekhar S 1992 The Mathematical Theory of Black Holes (Oxford, UK: Clarendon) p 646 OXFORD, UK: CLARENDON (1985) 646 P., 1985.

[21] Berti E, Cardoso V and Starinets A O 2009 Quasinormal modes of black holes and black branes Class. Quant. Grav. 26 163001

[22] Konoplya R A and Zhidenko A 2011 Quasinormal modes of black holes: From astrophysics to string theory Rev. Mod. Phys. 83 793–836

[23] Herdeiro C A R and Radu E 2015 Asymptotically flat black holes with scalar hair: a review Int. J. Mod. Phys. D 24 1542014

[24] Nilles H P 1984 Supersymmetry, supergravity and particle physics Phys. Rept. 110 1–162

[25] Green M B, Schwarz J H and Witten E 1988 Introduction Superstring Theory (Cambridge Monographs on Mathematical Physics) 1

[26] Green M B, Schwarz J H and Witten E 2012 Superstring Theory (Cambridge Monographs on Mathematical Physics vol 2) (Cambridge: Cambridge University Press)

[27] Polchinski J 2007 String Theory. Vol. 1: An Introduction to the Bosonic String (Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press)

[28] Polchinski J 2007 String Theory. Vol. 2: Superstring Theory and Beyond (Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press)

[29] Clement G, Gal’siov D and Leygnac C 2003 Linear dilaton black holes Phys. Rev. D 67 024012

[30] Clement G, Fabris J C and Marques G T 2007 Hawking radiation of linear dilaton black holes Phys. Lett. B 651 54–7

[31] Bertoldi G and Hoyos-Badajoz C 2009 Stability of linear dilaton black holes at the Hagedorn temperature J. High Energy Phys. JHEP08(2009)078

[32] Pasaoglu H and Sakalli I 2009 Hawking radiation of linear dilaton black holes in various theories Int. J. Theor. Phys. 48 3517–25

[33] Sakalli I, Halilsoy M and Pasaoglu H 2011 Entropy conservation of linear dilaton black holes in quantum corrected hawking radiation Int. J. Theor. Phys. 50 3212–24

[34] Sakalli I 2015 Quantization of rotating linear dilaton black holes Eur. Phys. J. C 75 144

[35] Sakalli I and Aslan O A 2016 Absorption cross-section and decay rate of rotating linear dilaton black holes Astropart. Phys. 74 73–8

[36] Sakalli I 2016 Analytical solutions in rotating linear dilaton black holes: resonant frequencies, quantization, greybody factor, and Hawking radiation Phys. Rev. D 94 084040

[37] Sakalli I and Tokgoz G 2016 Spectroscopy of rotating linear dilaton black holes from boxed quasinormal modes Annalen Phys. 528 612–8

[38] Chowdhury A and Banerjee N 2018 Quasinormal modes of a charged spherical black hole with scalar hair for scalar and Dirac perturbations Eur. Phys. J. C 78 594

[39] Astefanesei D, Blázquez-Salcedo J L, Herdeiro C, Radu E and Sanchis-Gual N 2019 Dynamically and thermodynamically stable black holes in Einstein-Maxwell-dilaton gravity

[40] Anabalon A, Astefanesei D and Mann R 2013 Exact asymptotically flat charged hairy black holes with a dilaton potential J. High Energy Phys. JHEP10(2013)184

[41] Fayet P and Iliopoulos J 1974 Spontaneously broken supergauge symmetries and goldstone spinors Phys. Lett. 51B 461–4

[42] Anabalon A, Astefanesei D, Galliart A and Trigiante M 2018 Hairy black holes and duality in an extended supergravity model J. High Energy Phys. JHEP04(2018)058

[43] Astefanesei D, Mann R B and Rosas R 2019 Hairy black hole chemistry J. High Energy Phys. JHEP11(2019)043

[44] Misner C W and Sharp D H 1964 Relativistic equations for adiabatic, spherically symmetric gravitational collapse Phys. Rev. 136 B571–6
[45] Konoplya R A and Zhidenko A 2007 Perturbations and quasinormal modes of black holes in Einstein-Aether theory Phys. Lett. B 644 186–91
[46] Zinhailo A F 2018 Quasinormal modes of the four-dimensional black hole in Einstein-Weyl gravity Eur. Phys. J. C 78 992
[47] Ferrari V and Guatieri L 2008 Quasi-normal modes and gravitational wave astronomy Gen. Rel. Grav. 40 945–70
[48] Cardoso V and Lemos J P S 2001 Scalar, electromagnetic and Weyl perturbations of BTZ black holes: quasinormal modes Phys. Rev. D 63 124015
[49] Birmingham D 2001 Choptuik scaling and quasinormal modes in the AdS/CFT correspondence Phys. Rev. D 64 064024
[50] Poschl G and Teller E 1933 Bemerkungen zur Quantenmechanik des anharmonischen Oszillators Z. Phys. 83 143–51
[51] Ferrari V and Mashhoon B 1984 New approach to the quasinormal modes of a black hole Phys. Rev. D 30 295–304
[52] Fernando S 2004 Quasinormal modes of charged dilaton black holes in (2+1)-dimensions Gen. Rel. Grav. 36 71–82
[53] Fernando S 2008 Quasinormal modes of charged scalars around dilaton black holes in 2 + 1 dimensions: exact frequencies Phys. Rev. D 77 124005
[54] Rincón Á and Panotopoulos G 2018 Greybody factors and quasinormal modes for a nonminimally coupled scalar field in a cloud of strings in (2+1)-dimensional background Eur. Phys. J. C 78 858
[55] Destounis K, Panotopoulos G and Rincón Á 2018 Stability under scalar perturbations and quasinormal modes of 4D Einstein-Born-Infeld dilaton spacetime: exact spectrum Eur. Phys. J. C 78 139
[56] Vishveshwara C V 1970 Scattering of Gravitational Radiation by a Schwarzschild Black-hole Nature 227 936–8
[57] Chandrasekhar S and Detweiler S L 1975 The quasi-normal frequencies Phys. Rev. D 77 124005
[58] Andersson N, Kokkotas K D and Schutz B F 1995 A New numerical approach to the oscillation modes of relativistic stars Proc. Roy. Soc. Lond. A 344 441–52
[59] Andersson N, Kokkotas K D and Schutz B F 1999 Gravitational radiation limit on the spin of young neutron stars Astrophys. J. 510 846
[60] Andersson N, Kokkotas K D and Stergioulas N 1999 On the relevance of the r mode instability for accreting neutron stars and white dwarfs Astrophys. J. 516 307
[61] Schutz B F and Will C M 1985 Black hole normal modes: a semianalytic approach Astrophys. J. 291 L33–6
[62] Iyer S and Will C M 1987 Black hole normal modes: a WKB approach. 1. Foundations and application of a higher order WKB analysis of potential barrier scattering Phys. Rev. D 35 3621
[63] Konoplya R A 2003 Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach Phys. Rev. D 68 024018
[64] Konoplya R A, Zhidenko A and Zinhailo A F 2019 Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations Class. Quant. Grav. 36 155002
[65] Iyer S 1987 Black hole normal modes: a wkb approach. 2. Schwarzschild black holes Phys. Rev. D 35 3632
[66] Kokkotas K D and Schutz B F 1988 Black hole normal modes: a WKB approach. 3. The Reissner-Nordstrom black hole Phys. Rev. D 37 3378–87
[67] Seidel E and Iyer S 1990 Black hole normal modes: a WKB approach. 4. Kerr black holes Phys. Rev. D 41 374–82
[68] Konoplya R 2005 Quasinormal modes of the charged black hole in Gauss-Bonnet gravity Phys. Rev. D 71 024038
[69] Fernando S and Holbrook C 2006 Stability and quasi normal modes of charged black holes in Born-Infeld gravity Int. J. Theor. Phys. 45 1630–40
[70] Chakrabarti S G 2007 Quasinormal modes of tensor and vector type perturbation of Gauss Bonnet black hole using third order WKB approach Gen. Rel. Grav. 39 567–82
[71] Flachi A and Lemos J P S 2013 Quasinormal modes of regular black holes Phys. Rev. D 87 024034
[72] Fernando S and Correa J 2012 Quasinormal modes of bardeen black hole: scalar perturbations Phys. Rev. D 86 064039
[73] Santos V, Maluf R V and Almeida C A S 2016 Quasinormal frequencies of self-dual black holes Phys. Rev. D 93 084047
[74] Blázquez-Salcedo J L, Kho F S and Kunz J 2017 Quasinormal modes of Einstein-Gauss-Bonnet-dilaton black holes Phys. Rev. D 96 064008
[75] Panotopoulos G and Rincón Á 2017 Quasinormal modes of black holes in Einstein-power-Maxwell theory Int. J. Mod. Phys. D 27 1850034
[76] Rincón Á and Panotopoulos G 2018 Quasinormal modes of scale dependent black holes in (1+2)-dimensional Einstein-power-Maxwell theory Phys. Rev. D 97 024027
[77] Panotopoulos G and Rincón Á 2019 Quasinormal modes of regular black holes with non linear-Electrodynamical sources Eur. Phys. J. Plus 134 300
[78] Panotopoulos G and Rincón Á 2020 Quasinormal modes of five-dimensional black holes in non-commutative geometry Eur. Phys. J. Plus 135 33
[79] Panotopoulos G 2020 Quasinormal modes of charged black holes in higher-dimensional Einstein-Power-Maxwell theory Axioms 9 33
[80] Cardoso V, Costa J L, Destounis K, Hintz P and Jansen A 2018 Quasinormal modes and strong cosmic censorship Phys. Rev. Lett. 120 031103
[81] Konoplya R A, Zinhailo A F and Stuchlík Z 2019 Quasinormal modes, scattering, and Hawking radiation in the vicinity of an Einstein-dilaton-Gauss-Bonnet black hole Phys. Rev. D 99 124042
[82] Oliveira R, Dantas D M, Santos V and Almeida C A S 2019 Quasinormal modes of bumblebee wormhole Class. Quant. Grav. 36 105013
[83] Rincón Á and Panotopoulos G 2020 Quasinormal modes of an improved Schwarzschild black hole Phys. Dark Univ. 30 100639
[84] Wolfram alpha software. http://www.wolfram.com. Accessed: 2019-06-11.
[85] Konoplya R A and Zhidenko A 2010 Passage of radiation through wormholes of arbitrary shape Phys. Rev. D 81 124036
[86] Matyjašek J and Opala M 2017 Quasinormal modes of black holes. The improved semianalytic approach Phys. Rev. D 96 024011
[87] Chan K C K and Mann R B 1994 Static charged black holes in (2+1)-dimensional dilaton gravity Phys. Rev. D 50 6385
[88] Chan K C K and Mann R B 1995 Static charged black holes in (2+1)-dimensional dilaton gravity Phys. Rev. D 52 2600

Erratum: