The non-unique Universe

Gordon McCabe

January 23, 2010

Abstract

The purpose of this paper is to elucidate, by means of concepts and theorems drawn from mathematical logic, the conditions under which the existence of a multiverse is a logical necessity in mathematical physics, and the implications of Goëdel’s incompleteness theorem for theories of everything.

Three conclusions are obtained in the final section: (i) the theory of the structure of our universe might be an undecidable theory, and this constitutes a potential epistemological limit for mathematical physics, but because such a theory must be complete, there is no ontological barrier to the existence of a final theory of everything; (ii) in terms of mathematical logic, there are two different types of multiverse: classes of non-isomorphic but elementarily equivalent models, and classes of model which are both non-isomorphic and elementarily inequivalent; (iii) for a hypothetical theory of everything to have only one possible model, and to thereby negate the possible existence of a multiverse, that theory must be such that it admits only a finite model.

1 Introduction

In modern mathematical physics and cosmology, a multiverse is defined to be a collection of possible physical universes. Multiverses can be either timeless collections of disjoint, non-interacting universes, or the result of common physical processes. The primary examples of the latter are the universe-domains in Linde’s chaotic inflation theory (1983a and 1983b), and the universes created inside black holes in Smolin’s theory of cosmological natural selection (2006). The primary focus of this paper, however, is on timeless multiverses.

The logical existence of such multiverses is a consequence of the fact that mathematical physics represents the physical world by means of mathematical

\footnote{This paper will refrain from using the phrase ‘ensemble of universes’, given that an ensemble is typically considered to be a space which possesses a probability measure. It is debatable whether the universe collections postulated by mathematical physicists and cosmologists possess a well-defined probability measure. As Tegmark comments, “Further work on all aspects of the measure problem is urgently needed...as this is necessary for observationally testing any theory that involves parallel universes at any level, including cosmological inflation and the string theory landscape,” (2008, VIII, C).}
structures. These are sets equipped with properties, relationships, operations and distinguished elements, which are collectively required to satisfy certain conditions, called the axioms of the structure. To be precise, the axioms define a species of structure, and each set which possesses that structure is a member of the species. For example, the vector space axioms define a species of structure, and each particular vector space is a member of that species.

It is useful at the outset here to introduce some definitions from mathematical logic, including, in particular, the distinction therein between theories and models. A theory T is defined to be a set of sentences, in some language, which is closed under logical implication (Enderton, p155). In other words, any sentence which can be derived from a subset of the sentences in a theory, is itself a sentence in the theory. A subset of sentences in a theory, from which the entire theory can be generated by logical implication, is referred to as a set of axioms for the theory. An interpretation of a language provides the language with its semantics, in the sense that it identifies: the domain over which the variables in the language range; the elements in the domain which correspond to the constants in the language; the elements which possess the predicates in the language; the n-tuples of elements which are related by the n-ary relations in the language; and the elements which result from performing n-ary operations upon n-tuples in the domain. A model \mathcal{M} of a theory T is an interpretation of the language in which that theory is expressed, which renders each sentence in the theory as true.

In this precise sense, the axioms which define a mathematical structure are the axioms of a theory, and each member of a species of structure is a model of that axiomatic theory.

If our physical universe is conceived to possess a mathematical structure, then one can define a multiverse consisting of all the models of that species of structure. Let us consider a couple of examples. In general relativity, a universe is represented by a 4-dimensional differential manifold \mathcal{M} equipped with a metric tensor field g and a set of matter fields and gauge force fields $\{\phi_i\}$ which generate an energy-stress-momentum tensor T that satisfies the Einstein field equations

$$T = 1/(8\pi G)(\text{Ric} - 1/2 \text{R} \text{g})$$

Ric denotes the Ricci tensor field determined by g, and R denotes the curvature scalar field. The matter fields have distinctive equations of state, and include fluids, scalar fields, tensor fields, and spinor fields. Gauge force fields, such as electromagnetism, are described by n-form fields. Hence, one can define a general relativistic multiverse to be the class of all models of such n-tuples $\{\mathcal{M}, g, \phi_1, \ldots\}$, interpreted in this sense.

Alternatively, quantum field theory represents a universe to be a Lorentzian manifold (\mathcal{M}, g) which is equipped with a Hilbert space \mathcal{H}, a density oper-

\footnote{As defined in Section 4, the subset of sentences must also be decidable.}

\footnote{In this context, it should be noted that Tegmark (1998, 2008) draws a distinction between formal systems and mathematical structures, rather than a distinction between theories and models.}
ator ρ on \mathcal{H}, and a collection of operator-valued distributions $\{\hat{\phi}_i\}$ on \mathcal{M} which take their values as bounded self-adjoint operators on \mathcal{H} (Wallace 2001). A quantum field theory multiverse is the class of all models of such n-tuples $\{\mathcal{M}, g, \mathcal{H}, \rho, \hat{\phi}_1, \ldots \}$, interpreted in this sense.

Such universe collections logically exist by virtue of the absence of contradiction in their definition. In the style of Max Tegmark (1998, 2008), one can then go further, and propose that these universe collections physically exist.

Tegmark first considers the proposal that “some subset of all mathematical structures...is endowed with...physical existence,” (1998, p1), but dismisses this as inadequate because it fails to explain why some particular collection of mathematical structures is endowed with physical existence rather than another. This is what philosophers would refer to as a problem of contingency, where a contingent fact is something which happens to be true, but isn’t true as a matter of necessity.

Tegmark’s first multiverse paper responded to this problem of contingency by suggesting that all mathematical structures have physical existence. Tegmark’s 2008 paper, however, incorporated the implications of Gödel incompleteness and Church-Turing uncomputability, by formulating alternative proposals that only computable structures, or finite computable structures, physically exist (2008, p22).

In light of such speculation, the following sections analyse the concept of the multiverse in more detail: Section 2 examines the relationship between multiverses, theories, models and the ‘parameters of physics’; Section 3 considers multiverses generated by different Lagrangians; and Section 4 assesses the implications of Gödel’s incompleteness theorem for theories of everything, and considers whether the prospect of a parameter-free theory of everything would really negate the possible existence of a multiverse.

2 Multiverses, parameters, theories and models

Multiverses are often introduced by varying the so-called ‘parameters of physics’. These are typically parameters in the standard model of particle physics or parameters which specify the initial conditions in general relativistic cosmology. The values of these parameters cannot be theoretically derived, and need to be determined by experiment and observation.

Philosopher of science Jesus Mosterin (2004) points out that “the set of all possible worlds is not at all defined with independence from our conceptual schemes and models. If we keep a certain model (with its underlying theories and mathematics) fixed, the set of the combinations of admissible values for its free parameters gives us the set of all possible worlds (relative to that model). It changes every time we introduce a new cosmological model (and we are in-

\[4\] Tegmark defines a computable structure to be one whose relations can be obtained by computations which are guaranteed to halt after a finite number of steps (2008, p20).

\[5\] Note that the standard ‘model’ is, in terms of mathematical logic, a theory and not a model.
troducing them all the time). Of course, one could propose considering the set of all possible worlds relative to all possible models formulated in all possible languages on the basis of all possible mathematics and all possible underlying theories, but such consideration would produce more dizziness than enlightenment.”

Mosterin’s point here is aimed at the anthropic principle, and the suggestion that there are multiverses which realise all possible combinations of values for the parameters of physics. At face value, this might seem to be a different type of multiverse than that obtained by varying mathematical structures and models, but in fact, the values chosen for the free parameters of a theory actually correspond to a choice of model.

As an example, consider the free parameters of the standard model of particle physics. These include: the coupling constants of the strong and electromagnetic forces; two parameters which determine the Higgs field potential; the Weinberg angle; the masses of the elementary quarks and leptons; and the values of four parameters in the Kobayashi-Maskawa matrix which specifies the ‘mixing’ of the \{d, s, b\} quark flavours in weak force interactions. In terms of a choice of model, the value chosen for the coupling constant of a gauge field with gauge group \(G\) corresponds to a choice of metric in the Lie algebra \(g\), (Derdzinski 1992, p114-115); the Weinberg angle corresponds to a choice of metric in the Lie algebra of the electroweak force, (ibid., p104-111); the values chosen for the masses of the elementary quarks and leptons correspond to the choice of a finite family of irreducible unitary representations of the local space-time symmetry group, from a continuous infinity of alternatives on offer (McCabe 2007); and the choice of a specific Kobayashi-Maskawa matrix corresponds to the selection of a specific orthogonal decomposition \(\sigma_d \oplus \sigma_s \oplus \sigma_b\) of the fibre bundle which represents a generalization of the \{d, s, b\} quark flavours, (Derdzinski 1992, p160).

Nevertheless, Lee Smolin (2009) argues against the notion that there exists a multiverse of (timeless) universes. Smolin believes that the need to invoke a multiverse is rooted in the dichotomy between laws and initial conditions in existing theoretical physics, and suggests moving beyond this paradigm.

A choice of initial conditions, however, is merely one of the means by which particular solutions to the laws of physics are identified. More generally, there are boundary conditions, and free parameters in the equations, which have no special relationship to the nature of time. To reiterate, each theory in mathematical physics represents the physical world by a species of mathematical structure, for which there are, in general, many possible non-isomorphic models; the laws associated with that theory select a particular sub-class of these models. As Earman puts it, “a practitioner of mathematical physics is concerned with a certain mathematical structure and an associated set \(\mathcal{M}\) of models with this structure. The... laws \(L\) of physics pick out a distinguished sub-class of models \(\mathcal{M}_L := \text{Mod}(L) \subset \mathcal{M}\), the models satisfying the laws \(L\) (or in more colorful, if misleading, language, the models that “obey” the laws \(L\)),” (p4, 2002).

If those laws contain a set of free parameters \(\{p_i : i = 1, ..., n\}\), then one has a different class of models \(\mathcal{M}_{L(p_i)}\) for each set of combined values of the parameters \(\{p_i\}\).
application of a theory to explain or predict a particular empirical phenomenon, then requires the selection of a particular solution, i.e., a particular model. The choice of initial conditions and boundary conditions is simply a way of picking out a particular model of a theory.

One point of nomenclature to note in passing here is that, whilst mathematical logicians consider a theory to be the set of sentences which define a species of structure, physicists consider the laws which define a sub-class of mathematical models to define a theory. If one retains the same species of mathematical structure, but one changes the laws imposed upon it, then, as far as physicists are concerned, one obtains a different theory. Thus, for example, whilst general relativity represents space-time as a 4-dimensional Lorentzian manifold, if one changes the laws imposed by general relativity upon a Lorentzian manifold, (the Einstein field equations), then one obtains a different physical theory.

Irrespective of the nomenclature, the crucial point is that any theory whose domain extends to the entire universe, (i.e. any cosmological theory), potentially has a multiverse associated with it: namely, the class of all models of that theory. Irrespective of whether a future theory abolishes the dichotomy between laws and initial conditions, as Smolin prescribes, the application of that theory will require a means of identifying particular models of the species of mathematical structure selected by the theory. If there is only one physical universe, as Smolin claims, then the problem of contingency will remain: why does this particular model exist and not any one of the other possibilities? The invocation of a multiverse solves the problem of contingency by postulating that all the possible models physically exist.

3 Lagrangians and multiverses

At a classical level in mathematical physics, the equations of a theory can be economically specified by a Lagrangian, hence it is typical in physics to identify a theory with its Lagrangian. This point is particularly crucial because it also explains why different ‘Effective Field Theories’ (EFTs) are associated with different ‘vacua’.

The Lagrangians of particle physics typically contain scalar fields, such as the Higgs field in the unified electroweak theory, or the moduli fields of string theory, (which purportedly control the way in which six of the ten space-time dimensions are compactified). The scalar fields have certain values which constitute minima of their respective potential energy functions, and such minima are called vacuum states (or ground states). If one assumes that in the current universe such scalar fields reside in a vacuum state, then this can yield new Lagrangians in two different ways. Firstly, if a particular vacuum state is chosen and substituted into the general Lagrangian, then this yields a reduced Lagrangian. Each different vacuum state can yield a different reduced Lagrangian. Secondly, however, the choice of a vacuum state can yield a Lagrangian for the low-energy fluctuations above the vacuum state. This is called the Lagrangian of an effective field theory. As Smolin puts it, “An effective
field theory is a semiclassical field theory which is constructed to represent the
can be a theory expanded around a particular solution, treating that solution as
behaved by the excitations of a vacuum state of a more fundamental theory
below some specified energy scale. They have the great advantage that one can
field theory is a semiclassical field theory which is constructed to represent the
behavior of the excitations of a vacuum state of a more fundamental theory
below some specified energy scale. They have the great advantage that one can
study a theory expanded around a particular solution, treating that solution as
a fixed background.” (2005, p29). Different choices of vacuum state will yield
different effective theories of low-energy phenomenology.
Neither the reduced Lagrangian nor an effective Lagrangian are the La-
grangian of the fundamental theory. The selection of a vacuum state yields a
new Lagrangian, and because a Lagrangian defines a theory, the selection of a
vacuum state for a scalar field is seen to define the selection of a theory. It is
therefore typical in physics to speak, interchangeably, about the number of poss-
possible vacua, and the number of possible effective field theories in string theory.
The collection of different string theory vacua defines the so-called string theory
‘landscape’, and this landscape defines a type of multiverse.
However, it should be carefully noted that the string theory landscape defines
a collection of different (effective) theories, not a collection of models of a fixed
theory. Hence, even if one fixes a particular fundamental string theory, and even
if one selects a particular vacuum state and a particular low-energy effective
theory, this point in the string theory landscape itself corresponds to another
multiverse, consisting of the class of all models of that effective theory.

4 Mathematical logic, theories of everything,
and multiverses
A final theory of everything, with no free parameters, has often been postulated
as a superior alternative to the multiverse generated by our current suite of
theories, with their various free parameters. The idea here is that the values of
free parameters in current theories, will follow by definition from the axioms
of a final theory, in the same way that the value of pi follows from the axioms of
classical Euclidean geometry. However, whilst there may be no free parameters
in a final theory, the absence of free parameters is no guarantee that a theory
will possess only one model. Hence, even if a final, parameter-free, theory of
everything is obtainable, it may still generate a multiverse consisting of all its
mutually non-isomorphic models.
However, before we proceed to consider the conditions under which a theory
of everything will generate a multiverse, we first need to address the frequent
question of whether Gödel’s incompleteness theorem is inconsistent with the
possibility of a theory of everything.
To reiterate, theories generally have many different models. For example,
each different vector space is a model for the theory of vector spaces, and each

Note that not all EFTs are obtained from a fundamental theory by the selection of a
vacuum state. Whilst the latter can be considered a ‘top-down’ approach to obtaining EFTs,
there are also ‘bottom-up’ approaches, in which, for example, the parameters in an existing
Lagrangian are modified under Renormalization Group equations to obtain a new EFT. See
Hartmann (2001) for a comprehensive analysis of EFTs.
different group is a model for the theory of groups. The class of groups and the class of vector spaces can be said to be species of mathematical structure. Conversely, given any structure or model \mathfrak{U}, there is a theory $\text{Th} \mathfrak{U}$ which consists of the sentences which are true in the structure \mathfrak{U}. (Enderton, p148).

Now, a theory T, in the sense defined in mathematical logic, is defined to be complete if for any sentence σ, either σ or its negation $\neg \sigma$ belongs to T (Enderton p156). A theory T is defined to be decidable if there is an effective procedure of deciding whether any given sentence σ belongs to T, where an ‘effective procedure’ is generally defined to be a finitely-specifiable sequence of algorithmic steps, (ibid., p61-62). A theory is axiomatizable if there is a decidable set of sentences in the theory, whose closure under logical implication equals the entire theory (ibid., p156).

Gödel’s incompleteness theorem revolves around the theory of Peano arithmetic (the theory of conventional additional and multiplicative arithmetic), and a particular model $\mathfrak{R} = (\mathbb{N}; 0, S, <, +, \cdot, \mathbf{E})$ of Peano arithmetic, whose theory $\text{Th} \mathfrak{R}$ can be referred to as ‘number theory’ (Enderton, p182). It transpires that the theory of Peano arithmetic is both incomplete and undecidable. Moreover, whilst Peano arithmetic is axiomatizable, Gödel demonstrated that number theory $\text{Th} \mathfrak{R}$ is undecidable and non-axiomatizable, (ibid., p202ff). Gödel obtained sentences σ, which are true in the model, but which cannot be proven from the theory of the model. These sentences are of the self-referential form, $\sigma = ‘I$ am not provable from A’, where A is a subset of sentences in the theory, (ibid., p184).

It should be recognized that an incomplete theory is a highly generic occurrence in mathematics, and is not in itself a pathology. The axiomatic theory of groups, for example, is incomplete. Moreover, an incomplete theory can be turned into a complete theory by adding more axioms. For example, whilst the theory of fields is not complete, the theory of algebraically closed fields of characteristic zero is complete (Enderton p156). The undecidability of a theory can also be remedied in some cases by adding more axioms, but the crucial point is that Gödel discovered a type of undecidability which cannot be remedied by the addition of extra axioms.

Whilst the application of mathematics to the physical world may be fairly untroubled by the difficulties of self-referential sentences, undecidable sentences which are free from self-reference have been found in various branches of mathematics. It has, for example, been established that there is no general means of proving whether or not a pair of ‘triangulated’ 4-dimensional manifolds are homeomorphic (topologically identical) (Geroch and Hartle, 1986).

Any theory which includes number theory will be undecidable, hence if a final theory of everything includes number theory, then the final theory will also be undecidable. Given that the use of number theory is fairly pervasive in mathematical physics, this appears to be highly damaging to the prospects for a final theory of everything.

\mathbb{N} is the set of natural numbers, 0 denotes the number zero as a distinguished element, S is the successor function, $S(n) = n + 1$, $<$ is the ordering relation on \mathbb{N}, and $+, \cdot, \mathbf{E}$ are addition, multiplication and exponentiation.
However, it is still conceivable that a final theory of everything might not include number theory, and in this case, a final theory of everything could still be both complete and decidable. In addition, even if a final theory of everything is incomplete and undecidable, it is the models \mathcal{U} of a theory which purport to represent physical reality, and whilst the theory of a model, $\text{Th}\mathcal{U}$, may be undecidable, it is guaranteed to be complete. That is, every sentence in the language of the theory will either belong or not belong to $\text{Th}\mathcal{U}$.

In conclusion, the potential undecidability of $\text{Th}\mathcal{U}$, the theory of the structure of our universe, constitutes a potential epistemological limit for mathematical physics; it is potentially a limit on what can be proven about the structure of our universe. However, the guaranteed completeness of $\text{Th}\mathcal{U}$, entails that there is no ontological barrier to the existence of a final theory of everything.

The concepts of mathematical logic, introduced to explain Gödel’s theorem, can also be exploited to shed further light on the existence of multiverses in mathematical physics. In particular, it is fruitful to introduce the concept of elementary equivalence.

Two models of a theory are defined to be elementarily equivalent if they share the same truth-values for all the sentences of the language (Enderton p97). Whilst isomorphic models must be elementarily equivalent, there is no need for elementarily equivalent models to be isomorphic. For example, the structure $(\mathbb{R}, <_R)$ consisting of the real numbers, equipped with its conventional ordering relationship, is elementarily equivalent to $(\mathbb{Q}, <_Q)$, the set of rational numbers equipped with its conventional ordering relationship. They both provide models of a complete theory formulated in a first-order language containing the symbols $=, \forall, <$. However, whilst \mathbb{Q} is a countable set, \mathbb{R} is uncountable; there cannot be an isomorphic mapping between sets of different cardinality, hence these structures are non-isomorphic (Enderton p97-98).

Recall that any physical theory whose domain extends to the entire universe, (i.e. any cosmological theory), potentially has a multiverse associated with it: namely, the class of all models of that theory. Both complete and incomplete theories are capable of generating such multiverses. Recalling that a complete theory T is one in which any sentence σ, or its negation $\neg\sigma$, belongs to the theory T, it follows that every model of a complete theory must be elementarily equivalent. A theory will in general possess non-isomorphic models, but in the case of a complete theory its class of non-isomorphic models will be elementarily equivalent.

In contrast, if a theory is such that there are sentences which are true in some models but not in others, then that theory must be incomplete, and in this case, the models of the theory will be mutually non-isomorphic and elementarily inequivalent.

Hence, mathematical logic suggests that the application of mathematical physics to the universe as a whole can generate two different types of multiverse: classes of non-isomorphic but elementarily equivalent models; and classes of model which are both non-isomorphic and elementarily inequivalent.

See Enderton p159, for the axioms of this theory.
The further question then arises: are there any conditions under which a theory has only one model, up to isomorphism? In other words, are there conditions under which a theory doesn’t generate a multiverse, and the problem of contingency (‘Why this universe and not some other?’) is eliminated?

The Löwenheim-Skolem theorem, a significant result in mathematical logic concerning the cardinalities of the models of theories, has a corollary which provides an answer to this. This corollary holds that if a theory has a model of any infinite cardinality, then it will have models of all infinite cardinalities (Enderton p154). Models of different cardinality obviously cannot be isomorphic, hence any theory, complete or incomplete, which has at least one model of infinite cardinality, will have a multiverse associated with. (In the case of a complete theory, the models of different cardinality will be elementarily equivalent, even if they are non-isomorphic). Needless to say, general relativity has models which employ the cardinality of the continuum, hence general relativity, for example, will possess models of every cardinality.

For a theory of mathematical physics to have only one possible model, it must have only a finite model. A theory of everything must have a unique finite model if the problem of contingency, and the potential existence of a multiverse is to be eliminated.

References

[1] Derdzinski, A. (1992). Geometry of the Standard Model of Elementary Particles, Texts and Monographs in Physics, Berlin-Heidelberg-New York: Springer Verlag.

[2] Earman, J. (2002). Laws, Symmetry, and Symmetry Breaking; Invariance, Conservation Principles, and Objectivity, Presidential address PSA 2002.

[3] Enderton, H.B. (2001). A Mathematical Introduction to Logic, Second Edition, London: Academic Press.

[4] Geroch, R., Hartle, J.B. (1986). Computability and Physical Theories, Foundations of Physics, vol.16, No.6, pp533-550.

[5] Hartmann, S. (2001). Effective field theories, reductionism and scientific explanation, Studies in the History and Philosophy of Modern Physics, 32, pp267-304.

[6] Linde, A.D. (1983a). Chaotic inflating universe. Pis’ma v Zhurnal Eksperimental’ noj i Teoreticheskoi Fiziki 38, pp149-151. [English translation: Journal of Experimental and Theoretical Physics Letters 38, pp176-179.]

[7] Linde, A.D. (1983b). Chaotic inflation. Physics Letters 129B, pp177-181.

[8] McCabe, G. (2007). The structure and interpretation of the standard model, (Philosophy and Foundations of Physics Volume 2). Amsterdam: Elsevier.
[9] Mosterin, J. (2004). Anthropic explanations in cosmology, in *Proceedings of the 12th International Congress of Logic, Methodology and Philosophy of Science*, Hajek, Valds and Westerstahl (eds.). Amsterdam: North-Holland Publishing.

[10] Smolin, L. (2005). The case for background independence, arXiv:hep-th/0507235v1.

[11] Smolin, L. (2006). The status of cosmological natural selection, arXiv:hep-th/0612185.

[12] Smolin, L. (2009). The unique universe, *Physics World*, June 2009, pp21-25.

[13] Tegmark, M. (1998). Is ‘the theory of everything’ merely the ultimate ensemble theory?, *Annals of Physics*, 270, pp1-51. arXiv:gr-qc/9704009

[14] Tegmark, M. (2008) The Mathematical Universe, *Foundations of Physics* 38, pp101-50. arXiv:0704.0646v2

[15] Wallace, D. (2001). Worlds in the Everett Interpretation, *Studies in the History and Philosophy of Modern Physics*, 33, pp637-661.