A REMARK ON 'SOME NUMERICAL RESULTS IN COMPLEX DIFFERENTIAL GEOMETRY'

KEFENG LIU AND XIAONAN MA

Abstract. In this note we verify certain statement about the operator Q_K constructed by Donaldson in [3] by using the full asymptotic expansion of Bergman kernel obtained in [2] and [4].

In order to find explicit numerical approximation of Kähler-Einstein metric of projective manifolds, Donaldson introduced in [3] various operators with good properties to approximate classical operators. See the discussions in Section 4.2 of [3] for more details related to our discussion. In this note we verify certain statement of Donaldson about the operator Q_K in Section 4.2 by using the full asymptotic expansion of Bergman kernel derived in [2, Theorem 4.18] and [4, §3.4]. Such statement is needed for the convergence of the approximation procedure.

Let (X, ω, J) be a compact Kähler manifold of dim $\mathbb{C} = n$, and let (L, h^L) be a holomorphic Hermitian line bundle on X. Let ∇^L be the holomorphic Hermitian connection on (L, h^L) with curvature R^L. We assume that

\(\frac{\sqrt{-1}}{2\pi} R^L = \omega. \)

Let $g^{TX}(\cdot, \cdot) := \omega(\cdot, J\cdot)$ be the Riemannian metric on TX induced by ω, J. Let dv_X be the Riemannian volume form of (TX, g^{TX}), then $dv_X = \omega^n/n!$. Let $d\nu$ be any volume form on X. Let η be the positive function on X defined by

\(dv_X = \eta d\nu. \)

The L^2–scalar product $\langle \quad \rangle_\nu$ on $\mathcal{C}^\infty(X, L^p)$, the space of smooth sections of L^p, is given by

\(\langle \sigma_1, \sigma_2 \rangle_\nu := \int_X \langle \sigma_1(x), \sigma_2(x) \rangle_{L^p} d\nu(x). \)

Let $P_{\nu,p}(x, x') (x, x' \in X)$ be the smooth kernel of the orthogonal projection from $\langle \mathcal{C}^\infty(X, L^p), \langle \quad \rangle_\nu \rangle$ onto $H^0(X, L^p)$, the space of the holomorphic sections of L^p on X, with respect to $d\nu(x')$. Note that $P_{\nu,p}(x, x') \in L^p_x \otimes L^{p*}_{x'}$. Following [3, §4], set

\(K_p(x, x') := |P_{\nu,p}(x, x')|^2_{h^p_x \otimes \overline{h}^p_{x'}}, \quad R_p := (\dim H^0(X, L^p))/\text{Vol}(X, \nu), \)

here $\text{Vol}(X, \nu) := \int_X d\nu$. Set $\text{Vol}(X, dv_X) := \int_X dv_X$.

Let Q_{K_p} be the integral operator associated to K_p which is defined for $f \in \mathcal{C}^\infty(X)$,

\(Q_{K_p}(f)(x) := \frac{1}{R_p} \int_X K_p(x, y)f(y)d\nu(y). \)
Let Δ be the (positive) Laplace operator on (X, g^{TX}) acting on the functions on X. We denote by $|f|_{L^2}$ the L^2-norm on the function on X with respect to dv_X.

Theorem 1. There exists a constant $C > 0$ such that for any $f \in \mathcal{C}^\infty(X)$, $p \in \mathbb{N}$,

\[
\begin{aligned}
(6) & \quad \left| \left(Q_{K_p} - \frac{\Vol(X, \nu)}{\Vol(X, dv_X)} \eta \exp \left(- \frac{\Delta}{4\pi p} \right) \right) f \right|_{L^2} \leq \frac{C}{p} |f|_{L^2}, \\
(7) & \quad \left| \left(\frac{\Delta}{p} Q_{K_p} - \frac{\Vol(X, \nu)}{\Vol(X, dv_X)} \Delta \eta \exp \left(- \frac{\Delta}{4\pi p} \right) \right) f \right|_{L^2} \leq \frac{C}{p} |f|_{L^2}.
\end{aligned}
\]

Moreover, \(6\) is uniform in that there is an integer s such that if all data h^L, dv run over a set which are bounded in \mathcal{C}^s and that g^{TX}, dv_X are bounded from below, then the constant C is independent of h^L, dv.

Proof. We explain at first the full asymptotic expansion of $P_{\nu,p}(x, x')$ from [2] Theorem 4.18] and [4 § 3.4]. For more details on our approach we also refer the readers to the recent book [5].

Let $E = \mathbb{C}$ be the trivial holomorphic line bundle on X. Let h^E the metric on E defined by $|1|_{h^E}^2 = 1$, here 1 is the canonical unity element of E. We identify canonically L^p to $L^p \otimes E$ by Section 1.

As in [4 § 3.4], let h_{ω}^E be the metric on E defined by $|1|_{h_{\omega}^E}^2 = \eta^{-1}$, here 1 is the canonical unity element of E. Let $\langle \cdot, \cdot \rangle_\omega$ be the Hermitian product on $\mathcal{C}^\infty(X, L^p \otimes E) = \mathcal{C}^\infty(X, L^p)$ induced by h^L, h_{ω}^E, dv_X as in [3]. Then by [2],

\[
(7) \quad (\mathcal{C}^\infty(X, L^p \otimes E), \langle \cdot, \cdot \rangle_\omega) = (\mathcal{C}^\infty(X, L^p), \langle \cdot, \cdot \rangle_p).
\]

Observe that $H^0(X, L^p \otimes E)$ does not depend on g^{TX}, h^L or h^E. If $P_{\omega,p}(x, x')$, $(x, x' \in X)$ denotes the smooth kernel of the orthogonal projection $P_{\omega,p}$ from $(\mathcal{C}^\infty(X, L^p \otimes E), \langle \cdot, \cdot \rangle_\omega)$ onto $H^0(X, L^p \otimes E) = H^0(X, L^p)$ with respect to $dv_X(x)$, from [2], as in [4 (3.38)], we have

\[
(8) \quad P_{\nu,p}(x, x') = \eta(x') P_{\omega,p}(x, x').
\]

For $f \in \mathcal{C}^\infty(X)$, set

\[
K_{\omega,p}(x, x') = |P_{\omega,p}(x, x')|^2_{(h^L \otimes h_{\omega}^E) \otimes (h^{L^p} \otimes h_{\omega}^E)^*},
\]

(9) \quad $(K_{\omega,p}f)(x) = \int_X K_{\omega,p}(x, y)f(y)dv_X(y)$.

By the definition of the metric h^E, h_{ω}^E, if we denote by 1^* the dual of the section 1 of E, we know

\[
(10) \quad 1 = |1 \otimes 1^*|_{h^E \otimes h_{\omega}^E}^2(x, x') = |1 \otimes 1^*|_{h^E \otimes h_{\omega}^E}^2(x, x')\eta(x)\eta^{-1}(x').
\]

Recall that we identified (L^p, h^{L^p}) to $(L^p \otimes E, h^{L^p} \otimes h^E)$ by Section 1. Thus from [4], [8] and [11], we get

\[
(11) \quad K_p(x, x') = |P_{\nu,p}(x, x')|^2_{(h^L \otimes h_{\omega}^E) \otimes (h^{L^p} \otimes h_{\omega}^E)^*} = \eta(x) \eta(x') K_{\omega,p}(x, x'),
\]

and from [2], [5] and [11],

\[
(12) \quad Q_{K_p}(f)(x) = \frac{1}{R_p} \int_X K_{\omega,p}(x, y)f(y)dv_X(y).
\]
Now for the kernel \(P_{\omega,p}(x,x') \), we can apply the full asymptotic expansion [2, Theorem 4.18]. In fact let \(\overline{\mathcal{D}}^{L_p \otimes E, \omega} \) be the formal adjoint of the Dolbeault operator \(\overline{\mathcal{D}}^{L_p \otimes E} \) on the Dolbeault complex \(\Omega^0 \cdot (X, L_p \otimes E) \) with the scalar product induced by \(g^{TX}, h^L, h^E, dv_X \) as in [3], and set

\[
D_p = \sqrt{2(\overline{\mathcal{D}}^{L_p \otimes E} + \overline{\mathcal{D}}^{L_p \otimes E, \omega})}.
\]

Then \(H^0(X, L_p \otimes E) = \text{Ker} \: D_p \) for \(p \) large enough, and \(D_p \) is a Dirac operator, as

\[
g^{TX}(\cdot, \cdot) = \omega(\cdot, J \cdot) \text{ is a Kähler metric on } TX.
\]

Let \(\nabla^E \) be the holomorphic Hermitian connection on \((E, h^E)\). Let \(\nabla^{TX} \) be the Levi-Civita connection on \((TX, g^{TX})\). Let \(R^E, R^{TX} \) be the corresponding curvatures.

Let \(a^X \) be the injectivity radius of \((X, g^{TX})\). We fix \(\varepsilon \in]0, a^X/4[\). We denote by \(B^X(x, \varepsilon) \) and \(B^{TX}(0, \varepsilon) \) the open balls in \(X \) and \(TX \) with center \(x \) and radius \(\varepsilon \). We identify \(B^X(x, \varepsilon) \) with \(B^X(x, \varepsilon) \) by using the exponential map of \((X, g^{TX})\).

We fix \(x_0 \in X \). For \(z \in B^{TX}(0, \varepsilon) \) we identify \((L_z, h^E_Z), (E_z, h^E_Z) \) and \((L_z, h^E_Z) \) to \((L_{x_0}, h^E_{x_0}), (E_{x_0}, h^E_{x_0}) \) and \((L, h^E) \) by parallel transport with respect to the connections \(\nabla^L, \nabla^E \) along the curve \(\gamma_z : [0, 1] \ni u \mapsto \exp_{x_0}(uZ) \). Then under our identification, \(P_{\omega,p}(Z, Z') \) is a function on \(Z, Z' \in T_{x_0}X, |Z|, |Z'| \leq \varepsilon \), we denote it by \(P_{\omega,p}(Z, Z') \). Let \(\pi : TX \times_X TX \to X \) be the natural projection from the fiberwise product of \(TX \) on \(X \). Then we can view \(P_{\omega,p}(Z, Z') \) as a smooth function on \(TX \times_X TX \) (which is defined for \(|Z|, |Z'| \leq \varepsilon \)) by identifying a section \(S \in \mathcal{C}^\infty(TX \times_X TX, \pi^* \text{End}(E)) \) with the family \((S_z)_{z \in X} \), \(S_z = S|_{\pi^{-1}(z)} \), \(\text{End}(E) = \mathbb{C} \).

We choose \(\{w_i\}_{i=1}^n \) an orthonormal basis of \(T_{x_0}X \), then \(e_{2j} = \frac{1}{\sqrt{2}} (w_j + \overline{w}_j) \) and \(e_{2j} = \frac{1}{\sqrt{2}} (w_j - \overline{w}_j), j = 1, \ldots, n \) forms an orthonormal basis of \(T_{x_0}X \). We use the coordinates on \(T_{x_0}X \cong \mathbb{R}^{2n} \) where the identification is given by

\[
(14) \quad (Z_1, \ldots, Z_{2n}) \in \mathbb{R}^{2n} \longrightarrow \sum_i Z_i e_i \in T_{x_0}X.
\]

In what follows we also introduce the complex coordinates \(\zeta = (z_1, \ldots, z_n) \) on \(\mathbb{C}^n \cong \mathbb{R}^{2n} \). By [2, (4.114)] (cf. [4, (1.91)]), set

\[
(15) \quad P^N(Z, Z') = \exp \left(-\frac{\pi}{2} \sum_i (|z_i|^2 + |z_i'|^2 - 2z_i \overline{z}_i') \right).
\]

Then \(P^N \) is the classical Bergman kernel on \(\mathbb{C}^n \) (cf. [4, Remark 1.14]) and

\[
(16) \quad |P^N(Z, Z')|^2 = e^{-\pi|Z-Z'|^2}.
\]

By [2, Proposition 4.1], for any \(l, m \in \mathbb{N} \), \(\varepsilon > 0 \), there exists \(C_{l,m,\varepsilon} > 0 \) such that for \(p \geq 1, x, x' \in X \),

\[
(17) \quad |P_{\omega,p}(x, x')|_{\mathcal{E}^m(X \times X)} \leq C_{l,m,\varepsilon} p^{-l} \quad \text{if } d(x, x') \geq \varepsilon.
\]

Here the \(\mathcal{E}^m \)-norm is induced by \(\nabla^L, \nabla^E, \nabla^{TX} \) and \(h^L, h^E, g^{TX} \).

By [2, Theorem 4.18], there exist \(J_r(Z, Z') \) polynomials in \(Z, Z' \), such that for any \(k, m, m' \in \mathbb{N} \), there exist \(N \in \mathbb{N}, C_0 > 0, C_0 > 0 \) such that for \(\alpha, \alpha' \in \mathbb{N}^n, |\alpha| + |\alpha'| \leq m, \)
There exist function on an operator L, the polynomials coefficients are polynomials in R. Now, from [2, Theorem 5.1] (or [4, (1.87), (1.97)]), equation of (19).

Here $C^{m'}(X)$ is the $C^{m'}$ norm for the parameter $x_0 \in X$. The term $O(p^{-\infty})$ means that for any $l, l_1 \in \mathbb{N}$, there exists $C_{l,l_1} > 0$ such that its C^{l_1}-norm is dominated by $C_{l,l_0}p^{-l}$. (In fact, by [2, Theorems 4.6 and 4.17, (4.117)] (cf. [4, Theorem 1.18, (1.31)]), the polynomials $J_r(Z, Z')$ have the same parity as r and $\deg J_r(Z, Z') \leq 3r$, whose coefficients are polynomials in $R^{\nabla X}$, R^E and their derivatives of order $\leq r - 1$).

Now we claim that in [18],

$$J_0 = 1, \quad J_1(Z, Z') = 0.$$

In fact, let $dv_{T_{x_0}X}$ be the Riemannian volume form on $(T_{x_0}X, g_{T_{x_0}X})$, and κ be the function defined by

$$dv_X(Z) = \kappa(x_0, Z)dv_{T_{x_0}X}(Z).$$

Then (also cf. [4] (1.31))

$$\kappa(x_0, Z) = 1 + \frac{1}{6} \langle R_{T_{x_0}X}(Z, e_i)Z, e_i \rangle_{x_0} + O(|Z|^3).$$

As we only work on $C^{\infty}(X, L^p \otimes E)$, by [2] (4.115), we get the first equation in (19).

Recall that in the normal coordinate, after the rescaling $Z \to Z/t$ with $t = 1/\sqrt{p}$, we get an operator \mathcal{L} from the restriction of D^2_p on $C^{\infty}(X, L^p \otimes E)$ which has the following formal expansion (cf. [2] (1.104), [4] Theorem 1.4),

$$\mathcal{L} = \mathcal{L} + \sum_{r=1}^{\infty} Q_r t^r.$$

Now, from [2] Theorem 5.1] (or [4] (1.87), (1.97)),

$$\mathcal{L} = \sum_{j=1}^{\infty} (-2\frac{\partial}{\partial z_j} + \pi z_j)(2\frac{\partial}{\partial z_j} + \pi z_j), \quad Q_1 = 0.$$

(In fact, $P^N(Z, Z')$ is the smooth kernel of the orthogonal projection from $L^2(\mathbb{R})$ onto Ker(\mathcal{L})). Thus from [2] (4.107) (cf. [4] (1.111)), [21] and [23] we get the second equation of (19).

Note that $|P_{\omega, p, x_0}(Z, Z')|^2 = P_{\omega, p, x_0}(Z, Z')P_{\omega, p, x_0}(Z, Z')$, thus from [4], [18] and [19], there exist $J'_r(Z, Z')$ polynomials in Z, Z' such that

$$\sup_{Z, Z'} \left| 1 \right| p^{n+1} \Delta Z \left(K_{\omega, p, x_0}(Z, Z') - \left(1 + \sum_{r=2}^{k} p^{-r/2} J'_r(\sqrt{p}Z, \sqrt{p}Z') e^{-\pi p |Z-Z'|^2} \right) \right| \leq C p^{-(k+1)/2} (1 + |\sqrt{p}Z| + |\sqrt{p}Z'|)^N \exp(-C_0 \sqrt{p} |Z-Z'|) + O(p^{-\infty}).$$

For a function $f \in C^{\infty}(X)$, we denote it as $f(x_0, Z)$ a family (with parameter x_0) of function on Z in the normal coordinate near x_0. Now, for any polynomial $Q_{x_0}(Z')$, we
define the operator

\[(Q_p f)(x_0) = p^n \int_{|Z'| \leq \varepsilon} Q_{x_0}(\sqrt{p} Z') e^{-\pi p|Z'|^2} f(x_0, Z') dv_X(x_0, Z'). \]

Then we observe that there exists \(C_1 > 0 \) such that for any \(p \in \mathbb{N}, f \in C^\infty(X) \), we have

\[|Q_p f|_{L^2} \leq C_1 |f|_{L^2}. \]

In fact,

\[|Q_p f|_{L^2}^2 \leq \int_X dv_X(x_0) \left\{ p^n \left(\int_{|Z'| \leq \varepsilon} |Q_{x_0}(\sqrt{p} Z')| e^{-\pi p|Z'|^2} dv_X(x_0, Z') \right)^2 \right\} \leq C' \int_X dv_X(x_0) p^n \int_{|Z'| \leq \varepsilon} |Q_{x_0}(\sqrt{p} Z')| e^{-\pi p|Z'|^2} f(x_0, Z')^2 dv_X(x_0, Z') \leq C_1 |f|_{L^2}^2. \]

Observe that in the normal coordinate, at \(Z = 0, \Delta_Z = -\sum_{j=1}^{2n} \frac{\partial^2}{\partial Z_j^2} \). Thus

\[(\Delta_Z e^{-\pi p|Z-Z'|^2})|_{Z=0} = 4\pi p (n - \pi p|Z'|^2) e^{-\pi p|Z'|^2}. \]

Thus from \(16, 18, 19, 24 \) and \(26 \), we get

\[\left| p^{-n} K_{\omega, p} f - p^n \int_{|Z'| \leq \varepsilon} e^{-\pi p|Z'|^2} f(x_0, Z') dv_X(x_0, Z') \right|_{L^2} \leq \frac{C}{p} |f|_{L^2}, \]

\[\left| p^{-n-1} \Delta K_{\omega, p} f - 4\pi p^n \int_{|Z'| \leq \varepsilon} (n - \pi p|Z'|^2) e^{-\pi p|Z'|^2} f(x_0, Z') dv_X(x_0, Z') \right|_{L^2} \leq \frac{C}{p} |f|_{L^2}. \]

Set

\[K_{\eta, \omega, p}(x, y) = \langle d(\eta(x), d_x K_{\omega, p}(x, y), g, T_X), \]

\[(K_{\eta, \omega, p} f)(x) = \int_X K_{\eta, \omega, p}(x, y) f(y) dv_X(y). \]

Then from \(18, 19 \) and \(26 \), we get

\[\left| p^{-n-1} K_{\eta, \omega, p} f - 2\pi p^n \int_{|Z'| \leq \varepsilon} \sum_{i=1}^{2n} \frac{\partial}{\partial Z_i}(\eta)(x_0, 0) Z_i e^{-\pi p|Z'|^2} f(x_0, Z') dv_X(x_0, Z') \right|_{L^2} \leq \frac{C}{p} |f|_{L^2}. \]

Let \(e^{-u\Delta}(x, x') \) be the smooth kernel of the heat operator \(e^{-u\Delta} \) with respect to \(dv_X(x') \). Let \(d(x, y) \) be the Riemannian distance from \(x \) to \(y \) on \((X, g, T_X) \). By the heat kernel expansion in \(11 \) Theorems 2.23, 2.26, there exist \(\Phi_i(x, y) \) smooth functions on \(X \times X \) such that when \(u \to 0 \), we have the following asymptotic expansion

\[\left| \frac{\partial}{\partial u} \left(e^{-u\Delta}(x, y) - (4\pi u)^{-n} \sum_{i=0}^k u^i \Phi_i(x, y) e^{-\frac{1}{4u}(d(x, y)^2)} \right) \right|_{\psi^m(X \times X)} = \tilde{O}(u^{k-n-l-\frac{m}{2}+1}), \]
If we still use the normal coordinate, then by (32), there exist $\phi_{i,x_0}(Z') := \Phi_i(0, Z')$ such that uniformly for $x_0 \in X$, $Z' \in T_{x_0}X$, $|Z'| \leq \varepsilon$, we have the following asymptotic expansion when $u \to 0$,

$$\left| \frac{\partial^l}{\partial u^l} \left(e^{-u\Delta}(0, Z') - (4\pi u)^{-n} \left(1 + \sum_{i=1}^{k} u^i \phi_{i,x_0}(Z') \right) e^{\frac{-1}{4\pi u}|Z'|^2} \right) \right| \leq \mathcal{O}(u^{k-n-l+1}), \quad (34)$$

and

$$\left| \left(d\eta(x_0), d_{x_0} e^{-u\Delta} \right)_{g^{tr}X}(0, Z') \right| - (4\pi u)^{-n} \sum_{i=1}^{2n} \left(\frac{\partial}{\partial Z_i} \eta \right)(x_0, 0) \frac{Z'_i}{2u} \left(1 + \sum_{i=1}^{k} u^i \phi_{i,x_0}(Z') \right) e^{\frac{-1}{4\pi u}|Z'|^2} \right| \leq \mathcal{O}(u^{k-n+\frac{1}{2}}), \quad (35)$$

Observe that

$$\frac{1}{p} \Delta \exp \left(- \frac{\Delta}{4\pi p} \right) = \left. - \frac{1}{p} \left(\frac{\partial}{\partial u} e^{-u\Delta} \right) \right|_{u=\frac{1}{4\pi p}}. \quad (36)$$

Now from (26), (29)–(36), we get

$$\left| \left(p^{-n} K_{\omega,p} - \exp \left(- \frac{\Delta}{4\pi p} \right) \right) f \right|_{L^2} \leq \frac{C}{p} \| f \|_{L^2}, \quad (37)$$

and

$$\left| \left(\frac{1}{p} \left(p^{-n} \Delta K_{\omega,p} - \Delta \exp \left(- \frac{\Delta}{4\pi p} \right) \right) f \right|_{L^2} \leq \frac{C}{p} \| f \|_{L^2}. \quad (38)$$

Note that

$$\left(\Delta \eta K_{\omega,p} \right)(x, y) = (\Delta \eta)(x) K_{\omega,p}(x, y) + \eta(x) \Delta_x K_{\omega,p}(x, y) - 2\left(d\eta(x), d_x K_{\omega,p}(x, x') \right)_{g^{tr}X}, \quad (39)$$

and $R_p = \frac{\text{Vol}(X, d\nu_p)}{\text{Vol}(X, \nu)} p^n + \mathcal{O}(p^{n-1})$. From (12), (37)–(39), we get (6).

To get the last part of Theorem 1, as we noticed in [2, §4.5], the constants in (18) will be uniformly bounded under our condition, thus we can take C in (6), (37) and (38) independent of h^k, $d\nu$.

Acknowledgments. We thank Professor Simon Donaldson for useful communications.
References

[1] N. Berline, E. Getzler, and M. Vergne, *Heat kernels and Dirac operators*, Grundl. Math. Wiss. Band 298, Springer-Verlag, Berlin, 1992.

[2] X. Dai, K. Liu, and X. Ma, *On the asymptotic expansion of Bergman kernel*, C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 193–198. The full version: J. Differential Geom. to appear, math.DG/0404394.

[3] S. K. Donaldson, *Some numerical results in complex differential geometry*, math.DG/0512625.

[4] X. Ma and G. Marinescu, *Generalized Bergman kernels on symplectic manifolds*, C. R. Math. Acad. Sci. Paris 339 (2004), no. 7, 493–498. The full version: math.DG/0411559.

[5] _____, *Holomorphic Morse Inequalities and Bergman Kernels*, book in preparation, (2006).

Center of Mathematical Science, Zhejiang University and Department of Mathematics, UCLA, CA 90095-1555, USA (liu@math.ucla.edu)

Centre de Mathématiques Laurent Schwartz, UMR 7640 du CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France (ma@math.polytechnique.fr)