Heterotopic ossification in primary total hip arthroplasty: risk factor analysis

Alessandro Aprato · Simone Cambursano · Stefano Artiaco · Stefano Bevilacqua · Paolo Catalani · Alessandro Massè

Received: 27 December 2021 / Accepted: 28 February 2022 / Published online: 19 March 2022
© The Author(s) 2022, corrected publication 2022

Abstract

Background Aim is to identify if age, sex, type of posterolateral approach (mini vs standard), surgical time and time from surgery to drainage removal were independent risk factors for heterotopic ossifications after total hip arthroplasty.

Materials and methods Patients who underwent a THA with posterolateral approach during a 15 years period were included. The exclusion criteria were absence of X-rays follow-up or HO prophylaxis protocol adoption. The following data were collected: age, sex, type of approach (classical/minimal-invasive), surgical time, time from surgery to drainage removal. Two orthopedic surgeons independently reviewed the 2 years follow-up X-rays and classified the HO according to Brooker classification. Severe HO was defined if HO were classified as major than grade 2. Correlation between severe HO and risk factor has been tested with multivariable analysis.

Results About 1225 patients were included: mean age of 63.8 years, 504 were men. HO were found in 67.6%. Men showed higher severe HO rate than woman (44.1% vs 29.1%, \(p = 0.001 \)). Patients older than 65 years showed higher severe HO rate (30.3% vs 39.9%, \(p = 0.002 \)). Standard posterolateral approach was performed in 75.4% and severe HO rate was 32.8% versus 27.1% in those treated with the minimally invasive approach (\(p = 0.067 \)).

In 75.6% of cases surgery lasted less than 90 min and this group showed a severe HO rate in 29.1%, while patient with longer surgical time showed a rate of 35.7% (\(p = 0.033 \)). In 47.4% of patients, the drainage was removed in the first post-operative day, in this group severe HO rate was significantly lower than the others: 24.8 versus 36.2% (\(p = 0.001 \)).

Discussion Male sex, age older than 65 years, surgical time longer than 90 min and delayed drainage removal are risk factors for severe HO. Patients with one or more of those risk factors should be identified as good candidates for HO prophylaxis.

Keywords Total hip arthroplasty · Heterotopic ossification · Brooker classification · Hip arthroplasty outcomes

Introduction

Total hip arthroplasty (THA), described as “the operation of the century” [1] for its good long term results, has a worldwide increasing diffusion [2, 3]. Heterotopic ossification (HO) [4], an abnormal formation of bone in extra-skeletal soft tissue [5, 6] is a common complication of this procedure and may cause significant functional limitations. HO is usually classified according to the Brooker classification system [7] and a recent meta-analysis described an average rate of HO in THA of 30% [8], while other works described rates between 15 and 90% [9, 10].

Several risk factors for HO after a THA are described in the literature. Among these, there are patient related factors (male gender, age, ankylosed hip, ankylosing spondylitis) [8, 11] and surgery related factors (surgical approach, blood loss, procedure duration and use of drainage) [7, 8, 12]. Currently, there are no orthopedic guidelines available on this topic [10], but a recent Cochrane Library meta-analysis demonstrated an HO incidence reduction of 54–64% with an adequate prophylactic therapy [13]. However, an extended prophylaxis to all the patients that underwent a THA could lead to an increased number of adverse events like gastrointestinal bleeding or radiation-related malignant transformation [8, 11]. For this reasons, definition of high risk patients

* Alessandro Aprato
 ale_aprato@hotmail.com

1 University of Turin, Viale 25 aprile 137 int 6, 10133 Turin, Italy
appears extremely important in order to identify patients which may benefit most from the prophylactic treatment.

Aim of the study is to identify if age, sex, type of posterolateral approach (mini vs extended), surgical time and time from surgery to drainage removal were independent risk factors for HO formation after THA.

Materials and methods

This retrospective study was conducted in a single large teaching hospital, study protocol was approved by the local committee (2018/2022), trial number 038.815 (final approval on 26/6/2019).

Patients were included if they underwent a THA with posterolateral approach during a 15 years period. The exclusion criteria were absence of X-rays follow-up longer than 2 years, HO prophylaxis protocol adoption or simultaneous bilateral THA.

The following data were collected: age at surgery, sex, type of approach (classical or minimally invasive), surgical time, time to drainage removal. Cut-off values were determined: 65 years for age, 90 min for surgery duration and 24 h for postoperative drainage removal.

Two orthopedic surgeons reviewed the two-year follow-up X-rays and classified the HO (if present) according to the Brooker classification system [14]: grade 0: no ossification; grade 1: islands of bone in the soft tissues around the hip; grade 2: bone spurs from the proximal femur or from the pelvis with at least 1 cm between opposing bone surfaces; grade 3: bone spurs from the proximal femur or from the pelvis with less than 1 cm between opposing bone surfaces and grade 4: apparent bone ankyloses of the hip. According to Eggli [15] and according to our experience patients’ satisfaction after THA significantly dropped from grade 2 HO, as well as walking capacity and use of analgesics. SO HO was defined as “severe” if classified as major than grade 2. All data were analyzed with standard descriptive statistics. Univariate analysis was performed with regard to severe HO (yes or no). This was done with the chi-squared test or Fisher’s exact test for categorical outcomes and Student’s t test or the Mann–Whitney test for continuous outcomes. The Kolmogorov–Smirnov test was used to determine whether data were normally distributed. The relationship between severe HO and study characteristics was assessed with multivariate linear regression models. p values lower than 0.05 were considered statistically significant. All analyses were performed using Stata version 12 (Stata Corporation, College Station, TX, USA).

Results

During the study period, 1859 patients underwent a THA with posterolateral approach. In 589 cases no x-rays follow-up longer than 2 years was retrievable, 27 underwent an HO prophylaxis and 18 underwent a simultaneous bilateral THA, therefore 1225 patients were included in our study.

Mean age of 63.8 years (SD 13), 721 were women (58.9%) and 504 men (41.1%).

HO were found in 67.6% of cases. According to the Brooker classification system, 32.3% of patients were classified as grade 1, 16.5% as grade 2, 11.4% as grade 3 and 7.4% as grade 4 (Table 1). Men showed severe HO in 44.1% and women in 29.1%: the difference was statistically significant (p = 0.001).

Among the 1225 patients, 48.6% of them was 65 years old or younger, while 51.4% was older. A significant difference in severe HO prevalence (p = 0.002) was found between the first and the second group, respectively with a rate of 30.3% and 39.9%.

In 75.4% of cases a classic posterolateral approach was performed, while in 24.6% of cases a minimally invasive approach was used. Patients treated with the classic posterolateral approach showed severe HO rate of 32.8% versus 27.1% found in those treated with the minimally invasive approach (p = 0.067).

Regarding surgical time, in 75.6% of cases surgery lasted 90 min or less, while in 24.4% of cases it lasted longer. In the first group the severe HO rate was 29.1%, while in the second group it was 35.7%, with a statistically significant difference (p = 0.033).

In 47.4% of patients the drainage was removed before 24 h from surgery, in 52.6% after 24 h. In the second group severe HO rate was significantly higher: respectively 24.8 versus 36.2% (p = 0.001).

Male sex, age older than 65 years, surgical time longer than 90 min and drainage removal after 24 h were significantly associated with higher rated of severe HO in the multivariable analysis (Table 2).

Table 1	Distribution of heterotopic ossification according to Brooker classification		
Brooker grade	Frequency	Rate (%)	Cumulative
0	397	3240	3242
1	396	3233	6475
2	202	1649	8124
3	140	1141	9264
4	90	737	100
Total	1225	100	
consistent with the literature: male sex is widely considered a strong risk factor for clinical relevant HO after THA implant [8, 24, 25].

About the age, there is not a complete concordance between authors: Zhu et al. [8] and Eggli et al. [24] underlined that age is not a risk factor for HO in THA while Biz [22] showed a correlation between young age and HO formation. Furthermore, other authors considered age as a risk factor for HO [7, 11, 26] and our study support those statements.

The degree of soft tissue trauma during surgery and surgery duration are demonstrated to be important risk factors for HO development [7, 27, 28]. Hürlimann [29] reported a statistically significant correlation between incisions longer than 10 cm or surgery duration longer than 60 min and higher grade of HO. In our study, we included only THA implanted with postero-lateral approach, divided between classical and mini-invasive. According to literature [27, 29], a higher prevalence of high grade HO in classical approach should be observed because of the wider soft tissue trauma: the results found was consistent with literature but without a statistical significance.

Surgical time is also considered as an indirect index of tissue damage: a long lasting surgery is usually due to a more complex treatment which implies a wider tissue trauma. In fact, we found a statistically significant higher rate in HO ≥ 2 between the patients that underwent surgery longer than 90 min.

To the best of our knowledge, just only one study focused on the intra-articular drainage as a potential risk factor: Di Benedetto [12] analyzed HO incidence in 425 THA, mostly performed with direct anterior approach, with and without drainage positioning. They showed a significantly higher HO rate in THA with drainage [12]. Similarly, our work showed an increased severe HO rate in patients with a prolonged drainage maintenance. The drainage may stimulate the HO starting process in different ways. Drainage positioning may be considered an additional source of tissue trauma and its presence may spread osteogenic mediators through soft tissues. It may also favor a locally recall of inflammatory factors acting as foreign body [12].

In our study, a statistically significant correlation between male sex and severe HO was demonstrated and this result is consistent with the literature: male sex is widely considered risk factors for HO [7, 11, 26].

Risk factors Coef. Std. err. P 95% Conf. interval

Male sex 0.7041 0.1301 0.001 0.4491–0.9591
Age > 65 year 0.0241 0.0048 0.001 0.0146–0.0336
Surgery duration > 90 min 0.3398 0.1480 0.022 0.0497–0.6299
Drainage removal ≥ 2nd post-op day 0.249 0.1085 0.022 0.0363–0.4616

Discussion

Our study demonstrates that male sex, age older than 65 years, surgical time longer than 90 min and delayed drainage removal are risk factor for severe HO development. Currently there may be the most appropriate approach in high-risk patients (ipsilateral high grade HO) or in those with contraindications to NSAIDS [16–19]. Nowadays NSAIDs are the most commonly used prophylaxis [16, 20]: in particular selective cyclooxygenase 2 (COX-2) inhibitors were found to maintain equally effectiveness in preventing HO formation after hip surgery with a reduced gastrointestinal side effect compared with non-selective NSAIDs [18, 19].

In our study we found an overall HO incidence of 67.6% similarly to other authors who reported an incidence up to 90% [10, 21]. In contrast, a recent meta-analysis presented an average HO incidence after THA of 30% [8]: our higher incidence may be related to the inclusion criteria (patients were excluded if they received a HO prophylaxis) and, according to literature, prophylaxis reduces HO incidence of 54%-64% [13, 22].

The presence of HO has an important impact on the clinical outcome in total hip replacement. Literature reported that 15% of HO patients suffers from pain and limited range of motion of the involved hip [23]. Eggli et al. [15] showed that patients rate with mild or severe pain increased from less than 10% to more than 50% from lower to higher Booker grade. Moreover, is reported that walking capacity decrease and use of analgesic increase starting from Brooker grade 2 to higher grade. Also patient satisfaction was significantly influenced by HO degree, dropping from almost 90% in Brooker grade 0 to less than 30% in Brooker grade 3 and 4, with a significant difference in rating already between the patients in grade 0 and grade 2 [15].

In our study, a statistically significant correlation between male sex and severe HO was demonstrated and this result is consistent with the literature: male sex is widely considered
the positioning and the prolonged maintaining of drainage could be considered an index of soft tissue trauma during surgery: a greater tissue trauma implies a greater bleeding and consequently the need of drainage positioning and its prolonged maintenance.

Our study presents several limits. Its retrospective single-center nature may limit our conclusions. Furthermore, we used the Brooker classification system and the latter is based on a single anteroposterior X-ray of the pelvis and may under or overestimate the HO extension but it is the most widely diffused [7, 30]. Eventually, clinical evaluation was not performed therefore further clinical study should confirm the proposed factors are also valid for clinical impairment related to HO.

Male sex, age older than 65 years, surgical time longer than 90 min and delayed drainage removal are risk factor for severe HO development. Patients with one or more of those risk factors should be identified as good candidates for HO prophylactic treatment.

Authors contributions AA and AM planned and designed the study and analyzed the data and gave interpretation of the results, SC collected data and wrote the manuscript, SA reviewed the manuscript and made the literature review, SB and PC collected the data.

Funding Open access funding provided by Università degli Studi di Torino within the CRUI-CARE Agreement. No funding or other material support have been received for this study.

Data availability All data have been store in the dedicated repository of University of Turin.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

Ethical approval This retrospective study received a waiver from the local committee (Comitato etico Città della Salute e della Scienzi di Torino 2018/20121), trial number 287.718 (14/04/2020).

Consent to participate Each patients gave written consent to participate.

Consent to publish Each patients gave written consent to publish the results.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370(9597):1508–1519. https://doi.org/10.1016/S0140-6736(07)60457-7
2. OECD (2019) Health at a glance 2019: OECD indicators. OECD Publishing. Paris. https://doi.org/10.1787/4dd50c90-en
3. Torre M, Carrani E, Ceccarelli S, Biondi A, Masciocchi M, Cor-nacchia A (2019) Registro Italiano ArtroProtesi. Report Annuale. Il Pensiero, 2020
4. Healy WL, Iorio R, Clair AI, Pellegrini VD, Della Valle CJ, Berend KR (2016) Complications of total hip arthroplasty: standardized list, definitions, and stratification developed by the hip society. Clin Orthop Relat Res 474(2):357–364. https://doi.org/10.1007/s11999-015-4341-7
5. Pakos EE, Pitouli EJ, Tsekeris PG, Papathanasopoulos V, Stafillas K, Xenakis TH (2006) Prevention of heterotopic ossification in high-risk patients with total hip arthroplasty: the experience of a combined therapeutic protocol. Int Orthop 30(2):79–83. https://doi.org/10.1007/s00264-005-0054-y
6. Thomas BJ (1992) Heterotopic bone formation after total hip arthroplasty. Orthop Clin North Am 23(2):347–358
7. Alijanipour P, Patel RP, Naik TU, Parvizi J (2017) Heterotopic ossification in primary total hip arthroplasty using the direct anterior vs direct lateral approach. J Arthroplasty 32(4):1323–1327. https://doi.org/10.1016/j.arth.2016.11.030
8. Zhu Y, Zhang F, Chen W, Zhang Q, Liu S, Zhang Y (2015) Incidence and risk factors for heterotopic ossification after total hip arthroplasty: a meta-analysis. Arch Orthop Trauma Surg 135(9):1307–1314. https://doi.org/10.1007/s00402-015-2277-8
9. Vasileiadis GI, Amanatullah DF, Crenshaw JR, Taunton MJ, Kaufman KR (2015) Effect of heterotopic ossification on hip range of motion and clinical outcome. J Arthroplasty 30(3):461–464. https://doi.org/10.1016/j.arth.2014.09.019
10. Łęgosz P, Otworowski M, Sibilska A et al (2019) Heterotrophic ossification: a challenging complication of total hip arthroplasty: risk factors, diagnosis, prophylaxis, and treatment. Biomed Res Int 2019:3860142. https://doi.org/10.1155/2019/3860142
11. Iorio R, Healy WL (2002) Heterotopic ossification after hip and knee arthroplasty: risk factors, prevention, and treatment. J Am Acad Orthop Surg 10(6):409–416. https://doi.org/10.5435/000124635-200211000-00005
12. Di Benedetto P, Zangari A, Magnanelli S et al (2019) Heterotrophic ossification in primary total hip arthroplasty: Which is the role of drainage? Acta Biomed 90(1-S):92–97. https://doi.org/10.23750/abm.v90i1-S.8077
13. Fransen M, Neal B (2013) Non-steroidal anti-inflammatory drugs for preventing heterotopic bone formation after hip arthroplasty. Cochrane Database Syst Rev 3:CD001160. https://doi.org/10.1002/14651858.CD001160.pub3
14. Brooker AF, Bowerman JW, Robinson RA, Riley LH (1973) Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Jt Surg 55(8):1629–1632
15. Eggl S, Rodriguez J, Ganz R (2000) Heterotopic ossification in total hip arthroplasty: the significance for clinical outcome. Acta Orthop Belg 66(2):174–180
16. Cai L, Wang Z, Luo X, She W, Zhang H (2019) (2019) Optimal strategies for the prevention of heterotopic ossification after total...
10. European Journal of Orthopaedic Surgery & Traumatology (2023) 33:1037–1041

17. Ruokoelessa MG, De Colle C, Bianco L et al (2018) Heterotopic ossifications: role of radiotherapy as prophylactic treatment. Radiol Med 123(6):463–468. https://doi.org/10.1007/s11547-018-0853-z

18. Kan SL, Yang B, Ning GZ et al (2015) Nonsteroidal anti-inflammatory drugs as prophylaxis for heterotopic ossification after total hip arthroplasty. Medicine (United States) 94(18):1–14. https://doi.org/10.1097/MD.0000000000000828

19. Pakos EE, Ioannidis JPA (2004) Radiotherapy vs. nonsteroidal anti-inflammatory drugs for the prevention of heterotopic ossification after major hip procedures: a meta-analysis of randomized trials. Int J Radiat Oncol Biol Phys 60(3):888–895. https://doi.org/10.1016/j.ijrobp.2003.11.015

20. Vavken P, Castellani L, Sculco TP (2009) Prophylaxis of heterotopic ossification of the hip: systematic review and meta-analysis. Clin Orthop Relat Res 467(12):3283–3289. https://doi.org/10.1007/s11999-009-0924-5

21. Regis D, Sandri A, Sambugaro E (2013) Incidence of heterotopic ossification after surface and conventional total hip arthroplasty: a comparative study using anterolateral approach and indomethacin prophylaxis. Biomed Res Int. https://doi.org/10.1155/2013/293528

22. Biz C, Pavan D, Frizziero A, Baban A, Iacobellis C (2015) Heterotopic ossification following hip arthroplasty: a comparative radiographic study about its development with the use of three different kinds of implants. J Orthop Surg Res. https://doi.org/10.1186/s13018-015-0317-2

23. Zhu XT, Chen L, Lin JH (2018) Selective COX-2 inhibitor versus non-selective COX-2 inhibitor for the prevention of heterotopic ossification after total hip arthroplasty: a meta-analysis. Medicine (United States) 97(31):1–10. https://doi.org/10.1097/MD.00000000000011649

24. Eggli S, Woo A (2001) Risk factors for heterotopic ossification in total hip arthroplasty. Arch Orthop Trauma Surg 121(9):531–535. https://doi.org/10.1007/s004020100287

25. Cohn RM, Schwarzkopf R, Jaffe F (2011) Heterotopic ossification after total hip arthroplasty. Am J Orthop Orthop 40(11):E232–E235

26. Ahrengart L, Lindgren U (1993) Heterotopic bone after hip arthroplasty. Defining the patient at risk. Clin Orthop Relat Res 293:153–159

27. Edwards DS, Barbur SAR, Bull AMJ, Stranks GJ (2015) Posterior mini-incision total hip arthroplasty controls the extent of post-operative formation of heterotopic ossification. Eur J Orthop Surg Traumatol 25(6):1051–1055. https://doi.org/10.1007/s00590-015-1646-x

28. Winkler S, Craiovan B, Wagner F, Weber M, Grilka J, Renkawitz T (2015) Pathogenesis and prevention strategies of heterotopic ossification in total hip arthroplasty: a narrative literature review and results of a survey in Germany. Arch Orthop Trauma Surg 135(4):481–489. https://doi.org/10.1007/s00402-015-2174-1

29. Hürlimann M, Schiaparelli FF, Rotigliano N, Testa E, Amsler F, Hirschmann MT (2017) Influence of surgical approach on heterotopic ossification after total hip arthroplasty—is minimal invasive better? A case control study. BMC Musculoskelet Disord 18(1):1–9. https://doi.org/10.1186/s12891-017-1391-x

30. Mary Jiayi T, Linda P, Michael P et al (2017) Potential discrepancy between plain films and CT scans in Brooker classification of heterotopic ossification. Br J Radiol 90(1080):20170263. https://doi.org/10.1259/bjr.20170263

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.