Supplementary information for the manuscript:

Electronic and Magnetic Properties of the Graphene-Y-Co(0001) Interfaces: Insights From the DFT Analysis

Wenxuan Yue, Qilin Guo, Yuriy Dedkov,* and Elena Voloshina*

Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China

E-mail: yuriy.dedkov@icloud.com; elena.voloshina@icloud.com
List of tables and figures:

- Table S1. Results obtained for gr/Co(0001): ΔE (in eV/C-atom) is the relative total energy with respect to the energetically most favourable structure; d_0 (in Å) is the mean distance between the graphene overlayer and the interface substrate layer; d_1 (in Å) is the mean distance between the interface substrate layer and the second substrate layer; $m_C (\mu_B)$ is the interface C spin magnetic moment (two values for the nonequivalent carbon atoms are indicated); $m_{Co} (\mu_B)$ is the Co spin magnetic moment (two values are given for the interface/bulk atoms).

- Table S2. Results obtained for gr/Y/Co(0001): ΔE (in eV/C-atom) is the relative total energy with respect to the energetically most favourable structure; d_0 (in Å) is the mean distance between the graphene overlayer and the interface substrate layer; d_1 (in Å) is the mean distance between the interface substrate layer and the second substrate layer; d_2 (in Å) is the mean distance between the second substrate layer and the third substrate layer; $m_{Co} (\mu_B)$ is the Co spin magnetic moment (two values are given for the interface/bulk atoms); $m_{Y} (\mu_B)$ is the Y spin magnetic moment.

- Table S3. Interface C spin magnetic moment (several values for the nonequivalent carbon atoms are indicated) of gr/Y/Co(0001).

- Table S4. Layer resolved magnetic moments μ_i (in μ_B) for Co-terminated and Y-terminated YCo$_2$(111) surfaces. The numbering of the layers starts at the surface Co layer (layer 1) which may be capped with one Y cap layer (layer 0). Subscripts a, b label different sites as depicted in Fig. S10.

- Table S5. Results obtained for gr/1ML-YCo$_2$/Co(0001): ΔE (in eV/C-atom) is the relative total energy with respect to the energetically most favourable structure; d_0 (in Å) is the mean distance between the graphene overlayer and the interface substrate layer; d_1 (in Å) is the mean distance between the interface substrate layer and the
second substrate layer; d_2 (in Å) is the mean distance between the second substate layer and the third substrate layer; d_3 (in Å) is the mean distance between the third substrate layer and the fourth substrate layer; $m_{Co} (\mu_B)$ is the Co spin magnetic moment (two values are given for the interface/bulk atoms); $m_Y (\mu_B)$ is the Y spin magnetic moment.

- Table S6. Interface C spin magnetic moment (several values for the nonequivalent carbon atoms are indicated) of gr/1ML-YCo$_2$/Co(0001).

- Table S7. Results obtained for gr/bulk-like-YCo$_2$(111): ΔE (in eV/C-atom) is the relative total energy with respect to the energetically most favourable structure; d_0 (in Å) is the mean distance between the graphene overlayer and the interface substrate layer; d_1 (in Å) is the mean distance between the interface substate layer and the second substrate layer; d_2 (in Å) is the mean distance between the second substate layer and the third substrate layer; d_3 (in Å) is the mean distance between the third substate layer and the fourth substrate layer; $m_{Co} (\mu_B)$ is the Co spin magnetic moment (two values are given for the interface/bulk atoms); $m_Y (\mu_B)$ is the Y spin magnetic moment.

- Table S8. Interface C spin magnetic moment (several values for the nonequivalent carbon atoms are indicated) of gr/bulk-like-YCo$_2$(111).

- Figure S1. Top views of the crystallographic structures of gr/Co(0001): (a) top-fcc – the C atoms are placed directly above the Co atoms of the first layer (top site) and the fcc hollow site; (b) top-hcp – the C atoms are placed directly above the Co atoms of the first layer (top site) and the second layer (hcp site); (c) fcc-hcp – the C atoms are fcc and hcp hollow sites. The the energetically most favourable structure is surrounded by the red rectangular.

- Figure S2. Spin-resolved band structures of gr/Co(0001) (black dotted line is the band
structures of free-standing graphene). The weight of the graphene-derived p_z character is highlighted by the size of filled circles superimposed with the plot of the band structure.

- **Figure S3.** Spin-resolved band structures calculated for gr/Co(0001). The weight of the C-p_z and Co-$3d$ states in the band structures is proportional to the width of the colored line.

- **Figure S4.** Distribution on the magnetic moments of Co (grey) and Y (yellow) atoms in the considered slabs. (Graphene magnetic moments are not shown.)

- **Figure S5.** Top views of the crystallographic structures of gr/Y/Co(0001) where the Y atoms can be located at the TOP, FCC or HCP site of the Co(0001) surface, respectively, while the two inequivalent carbon atoms of graphene adopt the top-fcc configuration. Three different concentrations of intercalant are considered: 1 ML-Y (a-c); 0.33 ML-Y (d-f); 0.25 ML-Y (g-i). For each concentration, the energetically most favourable structure is surrounded by the red rectangular.

- **Figure S6.** Spin-resolved band structures calculated for gr/1 ML-Y/Co(0001). The weight of the C-p_z and Y-$3d$ states in the band structures is proportional to the width of the colored line.

- **Figure S7.** Spin-resolved band structures of (a) gr/0.33 ML-Y/Co(0001) and (b) gr/0.25 ML-Y/Co(0001) (black dotted line is the band structures of free-standing graphene). The weight of the graphene-derived p_z character is highlighted by the size of filled circles superimposed with the plot of the band structure.

- **Figure S8.** Spin-resolved band structures calculated for gr/0.33 ML-Y/Co(0001). The weight of the C-p_z and Y-$3d$ states in the band structures is proportional to the width of the colored line.
• Figure S9. Spin-resolved band structures calculated for gr/0.25 ML-Y/Co(0001). The weight of the C-p_z and Y-$3d$ states in the band structures is proportional to the width of the colored line.

• Figure S10. (a) Structure of bulk YCo$_2$. (b) Top and side views of the Co-terminated YCo$_2$(111) surface. (c) Top and side views of the Y-terminated YCo$_2$(111) surface. in both slabs ‘a’ and ‘b’ denote different Y and Co sites at the surface.

• Figure S11. (a) Density of state for paramagnetic bulk YCo$_2$. (b,c) Spin-resolved density of states obtained for the Co- as well as Y-terminated YCo$_2$(111) slabs.

• Figure S12. Top views of the crystallographic structures of gr/1 ML-YCo$_2$/Co(0001): for the Co terminated YCo$_2$(111) surface (a-c) and for the Y terminated YCo$_2$(111) surface (d-f). For each configuration, the energetically most favourable structure is surrounded by the red rectangular.

• Figure S13. Top views of the crystallographic structures of graphene/bulk-like-YCo$_2$(111): for the Co terminated YCo$_2$(111) surface (a-c) and for the Y terminated YCo$_2$(111) surface (d-f). For each configuration, the energetically most favourable structure is surrounded by the red rectangular.

• Figure S14. Spin-resolved band structures of gr/1 ML-YCo$_2$/Co(0001) with: (a) Co-terminated YCo$_2$(111) and (b) Y-terminated YCo$_2$(111) (black dotted line is the band structures of free-standing graphene).

• Figure S15. Spin-resolved band structures calculated for gr/1 ML-YCo$_2$/Co(0001) (Co-term.). The weight of the C-p_z and Co-$3d$ states in the band structures is proportional to the width of the colored line.

• Figure S16. Spin-resolved band structures calculated for gr/1 ML-YCo$_2$/Co(0001) (Y-term.). The weight of the C-p_z and Y-$3d$ states in the band structures is proportional to the width of the colored line.
• Figure S17. Spin-resolved band structures of gr/bulk-like-YCo₂(111) with: (a) Co-terminated YCo₂(111) and (b) Y-terminated YCo₂(111) (black dotted line is the band structures of free-standing graphene).

• Figure S18. Spin-resolved band structures calculated for gr/bulk-like-YCo₂(111) (Co-term.). The weight of the C-\(p_z\) and Co-3\(d\) states in the band structures is proportional to the width of the colored line.

• Figure S19. Spin-resolved band structures calculated for gr/bulk-like-YCo₂(111) (Y-term.). The weight of the C-\(p_z\) and Y-3\(d\) states in the band structures is proportional to the width of the colored line.

• Figure S20. Scheme of the gr-Y-Co(0001) slabs used in the present study.
Table S1: Results obtained for gr/Co(0001): ∆E (in eV/C-atom) is the relative total energy with respect to the energetically most favourable structure; d_0 (in Å) is the mean distance between the graphene overlayer and the interface substrate layer; d_1 (in Å) is the mean distance between the interface substrate layer and the second substrate layer; m_C (μ_B) is the interface C spin magnetic moment (two values for the nonequivalent carbon atoms are indicated); m_{Co} (μ_B) is the Co spin magnetic moment (two values are given for the interface/bulk atoms).

Structure	∆E	d_0	d_1	m_C (µB)	m_{Co} (µB)	Reference
top-fcc	0.00	2.09	1.92	0.042/0.039	1.508/1.628	Fig. S1a
top-hcp	0.01	2.09	1.91	0.047/0.044	1.493/1.627	Fig. S1b
fcc-hcp	0.12	3.05	1.91	−0.001/0.001	1.693/1.631	Fig. S1c
Table S2: Results obtained for gr/Y/Co(0001): ΔE (in eV/C-atom) is the relative total energy with respect to the energetically most favourable structure; d_0 (in Å) is the mean distance between the graphene overlayer and the interface substrate layer; d_1 (in Å) is the mean distance between the interface substrate layer and the second substrate layer; d_2 (in Å) is the mean distance between the second substrate layer and the third substrate layer; $m_{Co}(\mu_B)$ is the Co spin magnetic moment (two values are given for the interface/bulk atoms); $m_Y(\mu_B)$ is the Y spin magnetic moment.

Structure	ΔE	d_0	d_1	d_2	m_Y	m_{Co}	Reference
gr/1 ML-Y/Co(0001)							
FCC	0.00	2.55	2.61	1.93	−0.094	1.537/1.642	Fig. S5a
HCP	0.11	2.58	2.53	1.93	−0.126	1.423/1.638	Fig. S5b
TOP	0.18	2.57	2.89	1.94	0.088	1.521/1.640	Fig. S5c
gr/0.33 ML-Y/Co(0001)							
FCC	0.06	2.40	2.24	1.94	−0.181	1.443/1.618	Fig. S5d
HCP	0.00	2.28	2.31	1.95	−0.112	1.499/1.620	Fig. S5e
TOP	0.03	2.41	2.27	1.99	−0.192	1.265/1.620	Fig. S5f
gr/0.25 ML-Y/Co(0001)							
FCC	0.03	2.53	2.16	1.96	−0.230	1.404/1.599	Fig. S5g
HCP	0.00	2.32	2.19	1.95	−0.182	1.443/1.633	Fig. S5h
TOP	0.01	2.45	2.18	1.96	−0.198	1.583/1.598	Fig. S5i
Table S3: Interface C spin magnetic moment (several values for the nonequivalent carbon atoms are indicated) of gr/Y/Co(0001).

Structure	m_{C1}	m_{C2}	m_{C3}	Reference
gr/1 ML-Y/Co(0001)				
FCC	−0.016	0.006	-	Fig. S5a
HCP	−0.003	−0.002	-	Fig. S5b
TOP	−0.002	−0.013	-	Fig. S5c
gr/0.33 ML-Y/Co(0001)				
FCC	0.002	−0.001	0.005	Fig. S5d
HCP	0.005	0.010	-	Fig. S5e
TOP	0.015	0.006	−0.004	Fig. S5f
gr/0.25 ML-Y/Co(0001)				
FCC	−0.002	−0.005	0.002	Fig. S5g
HCP	−0.001	0.001	-	Fig. S5h
TOP	0.002	0.001	−0.015	Fig. S5i
Table S4: Layer resolved magnetic moments μ_i (in μ_B) for Co-terminated and Y-terminated YCo$_2$(111) surfaces. The numbering of the layers starts at the surface Co layer (layer 1) which may be capped with one Y cap layer (layer 0). Subscripts a, b label different sites as depicted in Fig. S10.

Layer (i)	Atom type	Co-terminated μ_i	Y-terminated μ_i
0	Y_b	-	-0.305
1	Co$_a$	1.203	1.183
2	Y_a	-0.299	-0.219
3	Co$_b$	0.985	0.630
4	Y_b	-0.166	-0.119
5	Co$_a$	-0.063	0.056
6	Y_a	-0.011	-0.014
7	Co$_b$	0.164	-0.195
8	Y_b	-0.013	-0.009
9	Co$_a$	-0.020	0.048
Table S5: Results obtained for gr/1ML-YCo₂/Co(0001): ΔE (in eV/C-atom) is the relative total energy with respect to the energetically most favourable structure; d_0 (in Å) is the mean distance between the graphene overlayer and the interface substrate layer; d_1 (in Å) is the mean distance between the interface substrate layer and the second substrate layer; d_2 (in Å) is the mean distance between the second substrate layer and the third substrate layer; d_3 (in Å) is the mean distance between the third substrate layer and the fourth substrate layer; m_{Co} (μ_B) is the Co spin magnetic moment (two values are given for the interface/bulk atoms); m_Y (μ_B) is the Y spin magnetic moment.

Structure	ΔE	d_0	d_1	d_2	d_3	m_Y	m_{Co}	Reference
Co-terminated YCo₂(111)								
top-fcc	0.01	2.05	1.19	0.74	0.87	-0.282	1.290/1.534	Fig. S12a
top-hcp	0.00	2.01	1.16	0.77	0.87	-0.286	1.268/1.534	Fig. S12b
fcc-hcp	0.14	2.95	1.20	0.78	0.82	-0.372	1.297/1.535	Fig. S12c
Y-terminated YCo₂(111)								
top-fcc	0.04	2.41	0.97	0.84	1.02	-0.235	1.286/1.534	Fig. S12d
top-hcp	0.04	2.46	0.92	0.86	1.01	-0.248	1.344/1.534	Fig. S12e
fcc-hcp	0.00	2.27	0.93	0.85	1.03	-0.254	1.282/1.533	Fig. S12f
Table S6: Interface C spin magnetic moment (several values for the nonequivalent carbon atoms are indicated) of gr/1ML-YCo$_2$/Co(0001).

Structure	m_{C1}	m_{C2}	m_{C3}	Reference
Co-terminated YCo$_2$(111)				
top-fcc	-0.033	0.023	-0.017	Fig. S12a
top-hcp	-0.027	0.013	-0.020	Fig. S12b
fcc-hcp	0.002	-0.002	-	Fig. S12c
Y-terminated YCo$_2$(111)				
top-fcc	0.005	-0.003	0.003	Fig. S12d
top-hcp	0.003	-0.001	-0.002	Fig. S12e
fcc-hcp	-0.012	0.006	-	Fig. S12f
Table S7: Results obtained for gr/bulk-like-YCo$_2$(111): ΔE (in eV/C-atom) is the relative total energy with respect to the energetically most favourable structure; d_0 (in Å) is the mean distance between the graphene overlayer and the interface substrate layer; d_1 (in Å) is the mean distance between the interface substrate layer and the second substrate layer; d_2 (in Å) is the mean distance between the second substrate layer and the third substrate layer; d_3 (in Å) is the mean distance between the third substrate layer and the fourth substrate layer; $m_{\text{Co}}(\mu_B)$ is the Co spin magnetic moment (two values are given for the interface/bulk atoms); $m_{\text{Y}}(\mu_B)$ is the Y spin magnetic moment.

Structure	ΔE	d_0	d_1	d_2	d_3	m_{Y}	m_{Co}	Reference
Co-terminated YCo$_2$(111)								
top-hcp	0.00	2.03	1.19	0.77	0.61	-0.155	1.273/0.019	Fig. S13a
top-fcc	0.01	1.98	1.17	0.79	0.49	-0.154	1.232/0.026	Fig. S13b
fcc-hcp	0.13	2.86	1.21	0.86	0.44	-0.293	1.359/0.007	Fig. S13c
Y-terminated YCo$_2$(111)								
top-hcp	0.02	2.53	1.71	1.53	0.61	-0.260	1.116/0.005	Fig. S13d
top-fcc	0.02	2.52	1.70	1.53	0.61	-0.254	1.123/0.011	Fig. S13e
fcc-hcp	0.00	2.34	1.73	1.53	0.61	-0.265	1.113/0.008	Fig. S13f
Table S8: Interface C spin magnetic moment (several values for the nonequivalent carbon atoms are indicated) of gr/bulk-like-YCo$_2$(111).

Structure	m_{C1}	m_{C2}	m_{C3}	Reference
Co-terminated YCo$_2$(111)				
top-fcc	$-$0.015	0.019	$-$0.028	Fig. S13a
top-hcp	$-$0.016	0.014	$-$0.031	Fig. S13b
fcc-hcp	0.001	$-$0.003	-	Fig. S13c
Y-terminated YCo$_2$(111)				
top-fcc	0.007	0.004	0.002	Fig. S13d
top-hcp	0.006	0.002	0.002	Fig. S13e
fcc-hcp	0.001	$-$0.004	-	Fig. S13f
Figure S1: Top views of the crystallographic structures of gr/Co(0001): (a) *top-fcc* – the C atoms are placed directly above the Co atoms of the first layer (*top* site) and the *fcc* hollow site; (b) *top-hcp* – the C atoms are placed directly above the Co atoms of the first layer (*top* site) and the second layer (*hcp* site); (c) *fcc-hcp* – the C atoms are *fcc* and *hcp* hollow sites. The energetically most favourable structure is surrounded by the red rectangular.
Figure S2: Spin-resolved band structures of gr/Co(0001) (black dotted line is the band structures of free-standing graphene). The weight of the graphene-derived p_z character is highlighted by the size of filled circles superimposed with the plot of the band structure.
Figure S3: Spin-resolved band structures calculated for gr/Co(0001). The weight of the C-p_z and Co-$3d$ states in the band structures is proportional to the width of the colored line.
Figure S4: Distribution on the magnetic moments of Co (grey) and Y (yellow) atoms in the considered slabs. (Graphene magnetic moments are not shown.)
Figure S5: Top views of the crystallographic structures of gr/Y/Co(0001) where the Y atoms can be located at the TOP, FCC or HCP site of the Co(0001) surface, respectively, while the two inequivalent carbon atoms of graphene adopt the top-fcc configuration. Three different concentrations of intercalant are considered: 1 ML-Y (a-c); 0.33 ML-Y (d-f); 0.25 ML-Y (g-i). For each concentration, the energetically most favourable structure is surrounded by the red rectangular.
Figure S6: Spin-resolved band structures calculated for gr/1 ML-Y/Co(0001). The weight of the C-p_z and Y-$3d$ states in the band structures is proportional to the width of the colored line.
Figure S7: Spin-resolved band structures of (a) gr/0.33 ML-Y/Co(0001) and (b) gr/0.25 ML-Y/Co(0001) (black dotted line is the band structures of free-standing graphene). The weight of the graphene-derived p_z character is highlighted by the size of filled circles superimposed with the plot of the band structure.
Figure S8: Spin-resolved band structures calculated for gr/0.33 ML-Y/Co(0001). The weight of the C-p_z and Y-$3d$ states in the band structures is proportional to the width of the colored line.
Figure S9: Spin-resolved band structures calculated for gr/0.25 ML-Y/Co(0001). The weight of the C-\(p_z\) and Y-3d states in the band structures is proportional to the width of the colored line.
Figure S10: (a) Structure of bulk YCo$_2$. (b) Top and side views of the Co-terminated YCo$_2$(111) surface. (c) Top and side views of the Y-terminated YCo$_2$(111) surface. In both slabs ‘a’ and ‘b’ denote different Y and Co sites at the surface.
Figure S11: (a) Density of state for paramagnetic bulk YCo$_2$. (b,c) Spin-resolved density of states obtained for the Co- as well as Y-terminated YCo$_2$(111) slabs.
Figure S12: Top views of the crystallographic structures of gr/1 ML-YCo₂/Co(0001): for the Co terminated YCo₂(111) surface (a-c) and for the Y terminated YCo₂(111) surface (d-f). For each configuration, the energetically most favourable structure is surrounded by the red rectangular.
Figure S13: Top views of the crystallographic structures of gr/bulk-like-YCo₂(111): for the Co terminated YCo₂(111) surface (a-c) and for the Y terminated YCo₂(111) surface (d-f). For each configuration, the energetically most favourable structure is surrounded by the red rectangular.
Figure S14: Spin-resolved band structures of gr/1ML-YCo$_2$/Co(0001) with: (a) Co-terminated YCo$_2$(111) and (b) Y-terminated YCo$_2$(111) (black dotted line is the band structures of free-standing graphene).
Figure S15: Spin-resolved band structures calculated for gr/1 ML-YCo$_2$/Co(0001) (Co-term.). The weight of the C-p_z and Co-$3d$ states in the band structures is proportional to the width of the colored line.
Figure S16: Spin-resolved band structures calculated for gr/1 ML-YCo$_2$/Co(0001) (Y-term.). The weight of the C-p_z and Y-$3d$ states in the band structures is proportional to the width of the colored line.
Figure S17: Spin-resolved band structures of gr/bulk-like-YCo$_2$(111) with: (a) Co-terminated YCo$_2$(111) and (b) Y-terminated YCo$_2$(111) (black dotted line is the band structures of free-standing graphene).
Figure S18: Spin-resolved band structures calculated for gr/bulk-like-YCo$_2$(111) (Co-term.). The weight of the C-p_z and Co-$3d$ states in the band structures is proportional to the width of the colored line.
Figure S19: Spin-resolved band structures calculated for gr/bulk-like-YCo$_2$(111) (Y-term.). The weight of the C-p_z and Y-$3d$ states in the band structures is proportional to the width of the colored line.
Figure S20: Scheme of the gr-Y-Co(0001) slabs used in the present study.