Reflexive tactics for algebra, revisited

Kazuhiko Sakaguchi
Japan

Abstract
Computational reflection allows us to turn verified decision procedures into efficient automated reasoning tools in proof assistants. The typical applications of such methodology include mathematical structures that have decidable theory fragments, e.g., equational theories of commutative rings and lattices. However, such existing tools are known not to cooperate with packed classes, a methodology to define mathematical structures in dependent type theory, that allows for the sharing of vocabulary across the inheritance hierarchy. Additionally, such tools do not support homomorphisms whose domain and codomain types may differ. This paper demonstrates how to implement reflexive tactics that support packed classes and homomorphisms. As applications of our methodology, we adapt the ring and field tactics of Coq to the commutative ring and field structures of the Mathematical Components library, and apply the resulting tactics to the formal proof of the irrationality of $\zeta(3)$ by Chyzak, Mahboubi, and Sibut-Pinote, to bring more proof automation.

2012 ACM Subject Classification Computing methodologies → Theorem proving algorithms; Theory of computation → Automated reasoning; Theory of computation → Type theory; Theory of computation → Constraint and logic programming

Keywords and phrases Coq, Elpi, λProlog, Mathematical Components, algebraic structures, packed classes, canonical structures, proof by reflection

Supplementary Material https://github.com/math-comp/algebra-tactics

Acknowledgements We thank Enrico Tassi for his help with Coq-Elpi, particularly for adding some features and fixing performance bottlenecks. We thank Assia Mahboubi for providing useful examples for identifying issues. Their comments on early drafts of this paper have also been a great help.

1 Introduction

Computational reflection [2] makes it possible to replace proof steps with computations and has been widely used to automate proofs in some proof assistants such as Coq [51] and Agda [10]. For example, we can prove an integer equation $(a - b) - (b - a) = 0$ as follows.

1. We obtain a term $e := \text{Sub(Sub(X_0, X_1), Sub(X_1, X_0))}$ from the LHS of the equation, where Sub : $E \to E \to E$ and X : $N \to E$ are constructors of an inductive type E describing the syntax. This step is called reification (also called metaification or quotation).
2. We normalize e to a formal sum $0X_0 + 0X_1$ and check that all its coefficients are zero. This decision procedure is implemented and performed inside the proof assistant, and its validity is justified by a correctness lemma.

This process (detailed in Section 2.3 and 2.4) applies to any equation over an Abelian group, and this proof scheme can be adapted to other mathematical structures, e.g., commutative rings [9, 29], fields [57], lattices [22], and Kleene algebras [12].

Unfortunately, existing implementations of this proof methodology are known not to cooperate with packed classes very well [25, 31]. The packed classes discipline [24] is a methodology to define mathematical structures in dependent type theory, which allows for the sharing of vocabulary (definitions and lemmas) across the inheritance hierarchy of structures as well as multiple inheritance (Section 2.1 and 2.2). This methodology is used in the MathComp library [37] for Coq extensively, to provide more than 70 mathematical structures such as finite groups, rings, fields, as well as their homomorphisms.
The source of the incompatibility between proof by large-scale reflection and packed classes is twofold. Firstly, packed classes require the proof tools (e.g., the rewriting tactic) to compare overloaded operators (e.g., the multiplication of rings) modulo conversion to enable the sharing of vocabulary. This conversion is another instance of computational reflection, so-called small-scale reflection. In the case of MathComp, the mechanism achieving such term comparison is the keyed matching discipline \cite{keyed_matching} implemented as a part of the SSReflect plugin\cite{ssreflect}. Secondly, in most of the existing tactics based on large-scale reflection, their reification procedures recognize operators purely syntactically and do not take conversion into account. We propose a reification scheme based on keyed matching to address this shortcoming (Section 3).

Another issue is that extending the above reflection scheme to support homomorphisms, whose domain and codomain types may differ, requires a more involved data type describing the syntax, another decision procedure, and correctness proof. In this paper, instead of redefining the syntax and the decision procedure, we propose a new reflection scheme consisting of two reflection steps. The first step, which we call preprocessing, pushes down homomorphisms in the input terms to leaves using the structure preservation laws, e.g., $f(x + y) = f(x) + f(y)$. Although preprocessing requires a heterogeneous syntax that can express a term that has subterms of different types, it remains quite simple since we do not have to replace variables with numbers in preprocessing as in X^n above. In the second step, we apply the reflexive decision procedure that uses a homogeneous syntax, as explained at the beginning of this section. Since these two kinds of reified terms mostly follow the same syntactic structure, it is possible to implement a reification procedure that produces both reified terms simultaneously. Moreover, the preprocessing step allows us to adapt an existing reflexive tactic to operators not directly supported by its syntax, e.g., opposite which can be expressed as a combination of zero and subtraction, without modifying the existing syntax, procedures, and correctness proofs (Section 4).

As an application of our methodology, we adapt the ring and field tactics\cite{ring_field} of Coq to the commutative ring and field structures of MathComp, with support for homomorphisms and some operators that cannot be directly described by the provided syntax (Section 5.1). Furthermore, we apply our tactics to the formal proof of Apéry's theorem (the irrationality of $\zeta(3)$ where ζ is the Riemann zeta function)\cite{apery} by Chyzak, Mahboubi, and Sibut-Pinote\cite{apery_sibut}, to bring more proof automation (Section 5.3). For this purpose, we also reimplemented their technique\cite{apery_sibut} to automatically prove proof obligations generated by the field tactic using the lia (linear integer arithmetic) tactic\cite{lia} of Coq. This reimplementation is done based on the approach of Gonthier et al.\cite{gonthier} to use canonical structures (Section 2.1) for proof automation, extensible by declaring canonical structure instances, and supports a broader range of problems (Section 5.2).

Our reification procedures are written in Coq-Elpi\cite{coq_elpi} (Section 2.4). Elpi\cite{elpi,clausel} is a dialect of λProlog\cite{lambda_prolog}, a higher-order logic programming language. The Coq-Elpi plugin lets us write Coq commands and tactics in Elpi, and provides a higher-order abstract syntax (HOAS)\cite{hoas} embedding of Coq terms in Elpi, to manipulate syntax trees with binders in a comfortable way.

2 Background

This preliminary section briefly reviews the main ingredients of this paper, namely, canonical structures (Section 2.1), the hierarchy of mathematical structures in MathComp (Section 2.2), large-scale reflection (Section 2.3), and reification in Coq-Elpi (Section 2.4).
2.1 Canonical structures

Canonical structures [36, 44, 54] make it possible to implement ad-hoc inference mechanisms in Coq by giving a particular form of hints [4] to the unification engine [60]. An interface to trigger such an inference is expressed as a record. For example, a record type declaration

```
Structure eqType := { eq_sort : Type; eq_op : eq_sort -> eq_sort -> bool }.
```

represents a type (eq_sort) equipped with a comparison function (eq_op). At the same time, it is an interface to relate a type to its canonical comparison function. Structure is just a synonym of Record, but we reserve the former for interfaces for canonical structure resolution. A hint can be given as a record instance. For example, an instance

```
Canonical nat_eqType : eqType := {| eq_sort := nat; eq_op := eqn |}.
```

allows us to type check (@eq_op _ 0%N 1%N), where 0%N and 1%N are Peano natural numbers of type nat and eqn is the comparison function of type (nat -> nat -> bool). Since eq_op has type (forall e : eqType, eq_sort e -> ...), applying eq_op to 0%N requires solving a type equation (eq_sort ?e ≡ nat) to type check, where ?e is a unification variable of type eqType. For a Canonical declaration, the system synthesizes a unification hint between the projections (eq_sort and eq_op) and the head symbols of the fields (nat and eqn), respectively. Therefore, the above equation is solved by instantiating ?e with nat_eqType.

Additionally, declaring the eq_sort projection as an implicit coercion [43, 44, 53] allows us to use (T : eqType) in the context that expects a term of type Type, so that one may write (x : T) rather than (x : eq_sort T).

```
Coercion eq_sort : eqType >>-> Sortclass.
```

2.2 The hierarchy of mathematical structures in MathComp

We illustrate a part of the hierarchy of mathematical structures provided by the MathComp library in Figure 1 and summarize its three most basic structures below. The ones not summarized below are required only in Section 5 and explained there. Each structure is defined as a record bundling a Type with operators and axioms as in eqType of Section 2.1.

More details on the structures and their operators, including those introduced later, can be found in Appendix A (Table 2) and in Chapter 2 and 4.

(T : eqType) is a type whose propositional equality is decidable. The eqType record in Section 2.1 is a simplified version of this structure. For any x and y of type T, (x == y) (:= eq_op x y) tests if x is equal to y. Its negation can be expressed as (x != y).

(V : zmodType) is a Z-module (additive Abelian group). For any x and y of type V, (x + y) (:= GRing.add x y), (- x) (:= GRing.opp x), and 0 (:= GRing.zero V) denotes the sum of x and y, the opposite of x, and zero, respectively.

(R : ringType) is a ring. For any x and y of type R, (x * y) (:= GRing.mul x y) and 1 (:= GRing.one R) denotes the product of x and y, and one, respectively.
Reflexive tactics for algebra, revisited

where “$E_1 := E_2$” means that E_1 is a notation for E_2, and they are syntactically equal. Each operator above takes a structure instance as its first argument, which is implicit except for $\texttt{GRing.zero}$ and $\texttt{GRing.one}$.

These structures are defined by following packed classes, advocated by Garillot et al. [24] and also detailed in [1, 23, 37, 45]. For example, the $\texttt{ringType}$ structure is defined as follows.

```coq
Record mixin_of (R : zmodType) : Type :=
  Mixin { one : R; mul : R -> R -> R; ... (* properties of one and mul *) }.

Record class_of (R : Type) : Type :=
  Class { base : Zmodule.class_of R; mixin : mixin_of (Zmodule.Pack base) }.

Structure type : Type := Pack { sort : Type; class : class_of sort }.

Definition zmodType (cT : type) : zmodType :=
  @Zmodule.Pack (sort cT) (base (class cT)).

End Ring.
```

The $\texttt{GRing.Ring}$ module serves as a namespace qualifying the definitions inside the module, which are internals to define the $\texttt{ringType}$ structure. Each structure has such a module, e.g., $\texttt{GRing.Zmodule}$ is for $\texttt{zmodType}$. The structure is divided into three kinds of records: mixin (Line 4), class (Line 7), and structure (Line 10). The mixin record gathers operators and axioms newly introduced by the structure, e.g., the multiplication, multiplicative identity, and their properties are required to define rings by extending \mathbb{Z}-modules. The class record assembles the mixins of the superclasses. The structure record is the actual interface of the structure that bundles a \texttt{Type} with its class instance.

$\texttt{GRing.Ring.zmodType}$ is an explicit subtyping function that takes a $\texttt{ringType}$ and returns its underlying $\texttt{zmodType}$, which can be made implicit by declaring it as a coercion.

```coq
Coercion Ring.sort : Ring.type -> Sortclass.
Coercion Ring.zmodType : Ring.type -> Zmodule.type.
```

Furthermore, declaring this subtyping function as a canonical instance allows us to write a term that mixes \mathbb{Z}-module and ring operators, e.g., $(0 + 1)$, by solving type equation of the form $(\texttt{GRing.Zmodule.sort} ?V \equiv \texttt{GRing.Ring.sort} ?R)$. In general, solving an equation $(\texttt{GRing.Ring.sort} ?R \equiv ?T)$ gives us the ring instance $?R$ of type $?T$.

```coq
Canonical Ring.zmodType.
```

The ring operators are defined by lifting the projections of the mixin record to the structure record, as follows.

```coq
Definition one (R : ringType) : R := Ring.one (Ring.mixin (Ring.class R)).
Definition mul (R : ringType) : R -> R -> R := Ring.mul (Ring.mixin (Ring.class R)).
```

Packed classes can also express the hierarchy of morphisms. For example, the $\texttt{MathComp}$ library provides the structure $\langle \texttt{additive U -> V} \rangle$ of additive functions (\mathbb{Z}-module homomorphisms) from U to V. Its record projection $\texttt{GRing.Additive.apply}$ returns a function of type $\langle U -> V \rangle$ and is used for triggering instance resolution (e.g., Section 4.1) in the same way as $\texttt{GRing.Ring.sort}$ above. Similarly, there is a structure of ring homomorphisms $\langle \texttt{rmorphism R -> S} \rangle$ which inherits from additive functions.
2.3 Large-scale reflection

This section demonstrates how to prove \mathbb{Z}-module equations by reflection. Firstly, we define the data type describing the syntax as follows:

```coq
Inductive AGExpr : Type :=
| AGX : nat -> AGExpr (* zero *)
| AGO : AGExpr (* opposite *)
| AGOpp : AGExpr -> AGExpr (* addition *)
| AGAdd : AGExpr -> AGExpr -> AGExpr (* addition *)

where (AGX j) means j-th variable. This inductive data type allows us to write a Coq function manipulating the syntax. For example, we can interpret a syntax tree as follows:

```coq
Fixpoint AGeval (V : Type) (zero : V) (opp : V -> V) (add : V -> V -> V) (varmap : list V) (e : AGExpr) : V :=
 match e with
 | AGX j => nth zero varmap j
 | AGO => zero
 | AGOpp e1 => opp (AGeval varmap e1)
 | AGAdd e1 e2 => add (AGeval varmap e1) (AGeval varmap e2)
 end.
```

where the first four arguments are the carrier type and operators of a $\mathbb{Z}$-module, and varmap is a list whose j-th item gives the interpretation of the j-th variable. Such an object representing variable assignments is called a variable map.

Similarly, we can define a function AGnorm of type (AGExpr -> list int) that normalizes a syntax tree to a list of integers representing a formal sum, e.g., [1;−2] represents $X_0 - 2X_1$, where int is the type of integers defined in MathComp. Their correctness specialized for the case that V is int can be stated as follows.

```coq
Lemma int_correct (varmap : list int) (e1 e2 : AGExpr) :
 (* if all the coefficients of the normal form of e1 - e2 is equal to 0, *)
 all (fun i => i == zero) (AGnorm (AGAdd e1 (AGOpp e2))) = true ->
 (* e1 and e2 evaluated to integers by AGeval are equal. *)
 AGeval zero oppz addz varmap e1 = AGeval zero oppz addz varmap e2.
```

where zeroz, oppz, and addz are $\mathbb{Z}$-module operators for int.

Suppose we want to prove a goal ((x + (- y)) + x = (- y) + (x + x)) for some (x y : int) where + and - here mean addz and oppz, respectively. Thanks to the above reflection lemma, the proof can be done by the following proof term.

```coq
let e1 := AGAdd (AGAdd (AGX 0) (AGOpp (AGX 1))) (AGX 0) in
let e2 := AGAdd (AGOpp (AGX 1)) (AGAdd (AGX 0) (AGX 0)) in
@int_correct [:; x; y] e1 e2 erefl.
```

Here we used computational reflection twice. Firstly, e1 and e2, the reified terms representing the LHS and RHS of the goal, interpreted by (AGeval ... [:; x; y]) are convertible to the LHS and RHS, respectively. This conversion is triggered by applying the proof term (@int_correct ...) to the goal. Secondly, the nullity conditions (all ... = true) required by the reflection lemma int_correct is checked by reducing its LHS to true. This conversion is triggered by checking if reflexivity (erefl) is acceptable as the last argument of int_correct. In the former case, unfolding too many constants may lead to performance issues, and conversion should be performed carefully. In the latter case, we can simply reduce the LHS to true, and this is the case where optimized reduction procedures such as vm_compute [28] and native_compute [8] can be useful.
2.4 Implementing reification in Coq-Elpi

To turn the above method into an automated proof tool, the reified terms and the variable map must automatically be obtained from the goal. Since we cannot pattern match on the operators such as `oppz` in the object level, this reification has to be done in the meta level.

In this section, we implement reification in Coq-Elpi. An example of Elpi program follows.

```plaintext
1 pred mem o:list term, o:term, o:term.
2 mem [X1] X {{ 0 }} :- !.
3 mem [_] X {{ S lp:N }} :- !, mem XS X N.

In this code, we define a predicate `mem`. Line 1 is the type signature of `mem`, meaning that `mem` has three arguments of type `list term`, `term`, and `term`, respectively, where `term` is the type of Coq terms. Line 2 and 3 are two rules that define the meaning of `mem`. Capital identifiers such as `X`, `XS`, and `N` are unification variables. The syntax `[X]XS` is a cons cell of lists whose head and tail are `X` and `XS`, respectively. The syntaxes `{ { ... } }` and `lp:` are the quotation from Elpi to Coq and the antiquotation from Coq to Elpi, respectively. Therefore, these two rules are equivalent to the following:

```plaintext
1 mem [X1] X (global (indc «0»)) :- !.
2 mem [ _ ] X (app (global (indc «S»), N)) :- !, mem XS X N.
```

where `app` of type `(list term -> term)` is a constructor of `term` meaning an n-ary function application of Coq, and `(global (indc _))` means a constructor of Coq.

Actually, the proposition `(mem XS X N)` asserts that the `(N + 1)`th element of `XS` is `X`, where `N` is a Coq term of type `nat`. Let us consider an example `(mem [Y, Z] Z M)`, where `Y` and `Z` are distinct Coq terms and `M` remains unknown. The LHS of the first rule requires that the head of `XS` is `X`, but this does not apply to our example. Thus, it attempts matching with the second rule by solving equations `[_]XS = [Y, Z], X = Z, and {{ S lp:N }} = M`. Then we get `XS = [Z]` from the first equation, and proceed to execute its RHS `{ !, mem [Z] Z N }`, which is the conjunction of the cut (`!`) operator and `(mem [Z] Z N)`. The cut operator prevents backtracking, i.e., trying other rules of `mem` when the later items of the conjunction fails. Since `(mem [Z] Z N)` matches with the first rule, `N` is instantiated with `{ { 0 } }`. In the end, our example `(mem [Y, Z] Z M)` succeeds with `(Z 0)` substituted to the variable `M`. Indeed, `Z` is the second element of `[Y, Z]`.

If the first argument `XS` is an open-ended list `[X0, ..., XN | XS']` where `XS'` remains unknown, and the given item `X` is none of the known elements, `(mem XS X _)` instantiates `XS'` with `[X | _]` and `X` becomes the `(N + 2)`th element of `XS`.

We implement reification as a predicate `quote`, such that `(quote In Out VarMap)` reifies `In` of type `int` to `Out` of type `AGExpr` and produces an open-ended variable map `VarMap`:

```plaintext
1 pred quote 1:term, o:term, o:list term.
2 quote {{ zeroz }} {{ AG0 }} :- !.
3 quote {{ oppz lp:In1 }} {{ AGopp lp:Out1 }} VarMap :- !,
4 quote In1 Out1 VarMap.
5 quote {{ addz lp:In1 lp:In2 }} {{ AGAdd lp:Out1 lp:Out2 }} VarMap :- !,
6 quote In1 Out1 VarMap, quote In2 Out2 VarMap.
7 quote In {{ AGX lp:N }} VarMap :- !, mem VarMap In N.
```

where `1:` and `o:` stand for input and output, respectively. Marking an argument as input avoids instantiation of that argument. The first three rules of `quote` are just simple syntactic translation rules for the operators. If the input does not match with any of those, it should be treated as a variable by the last rule, which is implemented using the `mem` predicate above.
3 Large-scale reflection for packed classes

Thanks to the techniques reviewed in Section 2.3 and 2.4, we can implement a tactic int_zmodule for solving any integer equation that holds for any \(\mathbb{Z} \)-module. However, its generalization poly_zmodule to arbitrary \(\mathbb{Z} \)-modules, declared as instances of the zmodType structure, is actually not trivial. First, we describe a naive implementation that fails and analyze the source of the failure in Section 3.1. Then, we propose a solution to this issue based on the keyed matching discipline [26] in Section 3.2.

3.1 Purely syntactic reification does not work for packed classes

We first generalize the correctness and reflection lemmas int_correct to any \(\mathbb{Z} \)-module:

\[
\begin{align*}
\text{Lemma AG_norm_subst} & \quad (V : \text{zmodType}) \quad (\text{varmap : list } V) \quad (e : \text{AGExpr}) : \\
\text{AGsubst} & \quad 0 -\%R +%R \text{ varmap} \quad (\text{AGnorm } e) = \text{AGeval} \quad 0 -\%R +%R \text{ varmap } e. \\
\end{align*}
\]

\[
\begin{align*}
\text{Lemma AG_correct} & \quad (V : \text{zmodType}) \quad (\text{varmap : list } V) \quad (e_1 \quad e_2 : \text{AGExpr}) : \\
\text{all} & \quad \text{fun} \quad i \Rightarrow i == 0 \quad (\text{AGnorm} \quad (\text{AGAdd } e_1 \quad (\text{AGOpp } e_2))) = \text{true} \rightarrow \\
\text{AGeval} & \quad 0 -\%R +%R \text{ varmap } e_1 = \text{AGeval} \quad 0 -\%R +%R \text{ varmap } e_2. \\
\end{align*}
\]

where AG_norm_subst is the key lemma to prove AG_correct, AGsubst is the function to substitute a variable map to a formal sum, and -\%R and +%R are 0-ary notations for GRing.opp and GRing.add implicitly applied to \(V \), respectively.

To reimplement the quote predicate, we add a new argument \(V \) which is the zmodType instance for the type of the input term, and replace operators zeroz, oppz, and addz with (@GRing.zero \(V \)), (@GRing.opp \(V \)), and (@GRing.add \(V \)), respectively.

\[
\begin{align*}
\text{pred quote} & \quad i : \text{term}, \quad i : \text{term}, \quad o : \text{term}, \quad o : \text{list } \text{term}. \\
\text{quote} & \quad V \quad {{ \text{AGO} }} \quad _{-} \quad !. \\
\text{quote} & \quad V \quad {{ \text{AGOpp } lp:V \quad lp:In1 }} \quad \text{VarMap} : - \quad !, \\
\text{quote} & \quad V \quad \text{In1} \quad \text{Out1} \quad \text{VarMap}. \\
\text{quote} & \quad V \quad {{ \text{AGAdd } lp:V \quad lp:In1 \quad lp:In2 }} \quad \text{VarMap} : - \quad !, \\
\text{quote} & \quad \text{In1} \quad \text{Out1} \quad \text{VarMap}, \quad \text{quote} \quad V \quad \text{In2} \quad \text{Out2} \quad \text{VarMap}. \\
\text{quote} & \quad _{-} \quad \text{In} \quad {{ \text{AGX } lp:N }} \quad \text{VarMap} : - \quad !, \quad \text{mem} \quad \text{VarMap} \quad \text{In} \quad N. \\
\end{align*}
\]

However, this quote predicate fails to reify at least one addition operator in the goal \((\forall x : \text{int}, \ x + 1 = 1 + x)\). Let us take a closer look at it by Set Printing All:

\[
\begin{align*}
\forall x : \text{int}, \\
\text{eq} & \quad (\text{GRing.\text{Zmodule.sort } int_\text{ZmodType}}) \\
& \quad (\text{GRing.add } \text{int_\text{ZmodType}} \quad x \quad (\text{GRing.\text{one } int_\text{Ring}})) \\
& \quad (\text{GRing.add } (\text{GRing.\text{Ring.sort } int_\text{Ring}}) \quad (\text{GRing.\text{one } int_\text{Ring}}) \quad x) \\
\end{align*}
\]

where int_\text{ZmodType} and int_\text{Ring} are the canonical zmodType and ringType instances of \text{int}, respectively.

The root of the issue is that the two occurrences of GRing.add take syntactically different zmodType instances as highlighted in red. The former instance is inferred from the type of \(x \), by solving the type equation (GRing.\text{Zmodule.sort } ?V \equiv \text{int}). The latter instance is inferred from the type of (GRing.\text{one } ?R) where ?R is eventually instantiated with int_\text{Ring}, by solving the type equation (GRing.\text{Zmodule.sort } ?V \equiv \text{GRing.\text{Ring.sort } ?R}) whose solution is (?V := GRing.\text{Ring.zmodType } ?R). The quote predicate above requires that all the zmodType instances occurring as the first argument of the operators are syntactically equal to each other. However, the above goal does not respect this restriction. In the presence of the inheritance mechanism of packed classes, such syntactically different instances for the same type
and structure coexist \cite{1} Section 3.1, \cite{24} Section 2.4, \cite{45} Section 3., and canonical structure resolution may infer them simultaneously. Nevertheless, definitional equality of those instances is ensured by forgetful inheritance \cite{1}, that is, the practice of implementing inheritance and subtyping functions by record inclusion and erasure of some record fields, respectively.

3.2 Reification by small-scale reflection

Reification recognizing operators by conversion or unification rather than purely syntactic matching would address the above issue. However, using full unification for term matching, e.g., triggering unification \((@GRing.opp V ?t' \equiv t) \) to check if \(t \) is the opposite of an unknown term \(?t' \), can make reification too costly. Thus, we propose a solution that mixes syntactic matching and conversion as in the keyed matching discipline \cite{26}. The idea of keyed matching is to find a subterm that matches with a pattern \((f t_1 \ldots t_n) \) by attempting the matching operation only on subterms of the form \((f t_1' \ldots t_n') \). While the head constant (the key) \(f \) has to be the same constant, its arguments can be compared by conversion or unification.

In our case, the keys are the \(\mathbb{Z} \)-module operators \(\text{GRing.zero}, \text{GRing.opp}, \) and \(\text{GRing.add} \). The \textit{quote} predicate can be reimplemented as follows:

```coq
1 pred quote i:term, i:term, o:term, o:list term.
2 quote V {{ @GRing.zero lp:V }} {{ AGO }} _ := coq.unify-eq V V' ok, !.
3 quote V {{ @GRing.opp lp:V' lp:In1 }} {{ AGOpp lp:Out1 }} VarMap :=
   coq.unify-eq V V' ok, !, quote V In1 Out1 VarMap.
4 quote V {{ @GRing.add lp:V' lp:In1 lp:In2 }} {{ AGAdd lp:Out1 lp:Out2 }} VarMap :=
   coq.unify-eq V V' ok, !, quote V In1 Out1 VarMap, quote V In2 Out2 VarMap.
5 quote _ In {{ AGX lp:N }} VarMap := !, mem VarMap In N.
```

where \((\text{coq.unify-eq } V V' \text{ ok}) \) asserts that \(V \) unifies with \(V' \). Since the first argument \(V \) and the input term do not have any unification variable under normal use of \textit{quote}, this unification problem falls in a conversion problem that is generally easier and less costly to solve than unification. For example, the second rule of \textit{quote} (Line 3) does not require \(V' \) in the input term \((@GRing.opp V' \text{ In1}) \) to be syntactically equal to the first argument \(V \), but it compares \(V' \) with \(V \) by conversion after syntactic matching of the opposite operator \textit{GRing.opp}. Since this conversion is a part of term matching, the cut operator to prevent backtracking comes after conversion.

The \textit{zmodType} instance to use as the first argument of \textit{quote} can be obtained by canonical structure resolution. This inference is implemented as follows:

```coq
1 pred solve i:goal, o:list sealed-goal.
2 solve (goal _ _ {{ @eq lp:Ty lp:T1 lp:T2 }} _ as G) GS :=
   std.assert-ok! (coq.unify-eq {{ GRing.Zmodule.sort lp:V }} Ty)
   "Cannot find a declared \( \mathbb{Z} \)-module", !,
3 quote V T1 ZE1 VarMap, !, quote V T2 ZE2 VarMap, !,
4 ...
```

The \textit{solve} predicate is the entry point of a tactic in \texttt{Coq-Elpi}. The above rule matches the goal proposition with a pattern \((T_1 = T_2) \) where \(T_1 \) and \(T_2 \) have type \(Ty \) (Line 2), triggers unification \((\textit{GRing.Zmodule.sort } V \equiv Ty) \) to find the canonical \textit{zmodType} instance \(V \) of \(Ty \) (Line 3), and then reifies \(T_1 \) to \(\text{ZE1} \) and \(T_2 \) to \(\text{ZE2} \) using \(V \) obtained in the second step (Line 5). Note that if unification by \textit{coq.unify-eq} fails, its third argument of type \textit{diagnostic} carries the error message. The \textit{std.assert-ok!} predicate of Line 3 asserts that unification given as the first argument succeeds, but if it fails, it prints the carried error message with the string given as the second argument.
4 Extending the syntax with homomorphisms and more operators

In this section, we implement a new tactic morph_zmodule, that extends the syntax supported by poly_zmodule with \(\mathbb{Z}\)-module homomorphisms (Section 4.1) and subtraction (Section 4.2) which is not directly supported the syntax AGExpr. These extensions are achieved by adding another layer of reflection which we call preprocessing. This twofold reflection scheme allows us to reuse the syntax AGExpr, interpretation and normalization procedures AGeval and AGnorm, and the reflection lemma AG_correct presented in Section 2 and 3 as is.

4.1 Homomorphisms

Firstly, we define another inductive type describing the syntax involving homomorphisms.

```
Implicit Types (U V : zmodType).

Inductive MExpr : zmodType -> Type :=
| MX V : V -> MExpr V |
| MO V : MExpr V |
| MOpp V : MExpr V -> MExpr V |
| MAdd V : MExpr V -> MExpr V -> MExpr V |
| MMorph U V : {additive U -> V} -> MExpr U -> MExpr V. |
```

The main difference of this type compared with AGExpr is that: MExpr (Line 3) is parameterized by a zmodType instance \(V\), the constructor MX (Line 4) representing a variable takes a term of type \(V\) instead of an index of type nat, and the constructor MMorph (Line 8), representing a homomorphism application, allows for changing the parameter \(V\). Therefore, one shall interpret a reified term of this type without a variable map provided.

```
Fixpoint Meval V (e : MExpr V) : V :=
match e with
| MX _ x => x |
| MO _ => 0 |
| MOpp _ e1 => - Meval e1 |
| MAdd _ e1 e2 => Meval e1 + Meval e2 |
| MMorph _ _ f e1 => f (Meval e1) |
end.
```

The normalization procedure we need for MExpr is just pushing down homomorphisms appearing as the MMorph constructor to the leaves of the syntax tree:

```
Fixpoint Mnorm U V (f : {additive U -> V}) (e : MExpr U) : V :=
match e in MExpr U return {additive U -> V} -> V with
| MX _ x => fun f => f x |
| MO _ => fun _ => 0 |
| MOpp _ e1 => fun f => - Mnorm f e1 |
| MAdd _ e1 e2 => fun f => Mnorm f e1 + Mnorm f e2 |
| MMorph _ _ g e1 => fun f => Mnorm (additive f o g) e1 |
end f.
```

where the third argument \((f : \{\text{additive U -> V}\})\) accumulates homomorphisms applied to \(e\). Therefore, the case for \((e := \text{MMorph} _ _ g e1)\) (Line 7) constructs a homomorphism \([\text{additive of f o g}]\) that is the function composition of \(f\) and \(g\), and passes it to the recursive call for normalizing \(e1\). On the other hand, the case for \((e := \text{MX} _ x)\) (Line 3) applies \(f\) to the variable \(x\). Since dependent pattern matching on \((e : \text{MExpr U})\) forces instantiation of \(U\) in type checking of each clause, defining Mnorm that type checks requires the so-called convoy pattern [13] to propagate this instantiation to the type of \(f\).
Thanks to the structure preservation laws of homomorphisms, a result of normalization (\(\text{Mnorm } f \ e\)) should be equal to \(f\) applied to (\(\text{Meval } e\)). That is to say, the following correctness lemma holds:

\[
\text{Lemma } \text{M_correct } V (e : \text{MExpr } V) : \text{Meval } e = \text{Mnorm [additive of idfun]} e.
\]

where [additive of idfun] is the identity homomorphism.

The reification procedure for the \texttt{morph_zmodule} tactic should take an input term \(\text{In}\) of type \(V : \text{zmodType}\), and obtain a variable map \(\text{varmap}\) and two reified terms \(\text{OutM}\) and \(\text{Out}\) of types \(\text{MExpr } V\) and \(\text{AGExpr}\), respectively. For any such \texttt{Coq} terms, the following chain of equations should hold to justify the completeness of the tactic:

\[
\begin{align*}
\text{In} & \equiv \text{Meval } \text{OutM} & & \text{(a meta property)} \\
& = \text{Mnorm [additive of idfun]} \text{OutM} & & \text{(Lemma M_correct)} \\
& \equiv \text{AGeval } \ldots \text{varmap } \text{Out} & & \text{(a meta property)} \\
& = \text{AGsubst } \ldots \text{varmap } (\text{AGnorm } \text{Out}) & & \text{(Lemma AG_norm_subst)}
\end{align*}
\]

where \(\equiv\) and \(=\) respectively mean definitional equality and propositional equality. Although these meta properties of reification cannot be proved inside \texttt{Coq}, the kernel of \texttt{Coq} will check them for every invocation of the tactic, as explained in Section 2.3.

Considering the above requirements, reification can be reimplemented as follows.

The new \texttt{quote} predicate takes three input arguments: \(V\) is a \texttt{zmodType} instance, \(F\) is a homomorphism from \(V\) to another \texttt{zmodType} instance, and \(\text{In}\) is the input term of type \(V\). Then, it produces three output arguments: \(\text{OutM}\) and \(\text{Out}\) are the reified terms of types \(\text{MExpr } V\) and \(\text{AGExpr}\), respectively, and \(\text{VarMap}\) is the variable map. The second argument \(F\) is required to make recursion of \texttt{quote} work and accumulates homomorphisms as in the third argument \texttt{f} of \texttt{Mnorm}. Note that \(F\) is represented as an \texttt{Elpi} function from \texttt{term} to \texttt{term}, which lets us compose functions without leaving a beta redex in the \texttt{Coq} level. While the first reified term \(\text{OutM}\) exactly corresponds to \(\text{In}\), the second reified term \(\text{Out}\) and the variable map corresponds to \((F \ \text{In})\).

The most crucial part of the new \texttt{quote} predicate is its fourth rule (Line 12), which handles the case that the input \(\text{In}\) is a homomorphism application. It first triggers unification (\@GRing\ Additive.apply \(U \ V \ _ \ G \text{In1} \equiv \text{In}\)) to decompose the input into the homomorphism instance \(G\) and its argument \(\text{In1}\). Then, since \(G\) is a homomorphism from \(U\)
to \(V \), it invokes the recursive call of \texttt{quote} on \texttt{In1} with \(U \) as the first argument (the \texttt{zmodType} instance) and the composition of \(F \) and \(G \) as the second argument (the homomorphism). This composition is written as \((x \ldots)\) which means an abstraction \((\lambda x. \ldots)\).

4.2 More operators

Based on our twofold reflection scheme, we can add support for operators not directly supported by the syntax \texttt{AGExpr}. For example, let \texttt{subr} be an opaque subtraction operator of type \((\forall U : \texttt{zmodType}, U \to U \to U)\). By opaque we mean that \texttt{subr} does not reduce and thus we cannot rely on its definitional behavior, but we can reason about it through a lemma:

\[
\texttt{subr} : \forall U : \texttt{zmodType} \Rightarrow (x : U) \Rightarrow (y : U) \Rightarrow x + (-y).
\]

Firstly, we add the following constructor to \texttt{MExpr} representing \texttt{subr}.

\[
\begin{align*}
\text{Inductive } \texttt{MExpr} & : \texttt{MExpr} \to \texttt{MExpr} \to \texttt{MExpr} \to \texttt{MExpr} \times \texttt{MExpr} \\
\text{Fixpoint } \texttt{Meval} & : \texttt{MExpr} \to \texttt{MExpr} \\
\text{Fixpoint } \texttt{Mnorm} & : \texttt{MExpr} \\
\end{align*}
\]

Then, the interpretation and normalization function have to be adapted to the new definition of \texttt{MExpr}, by adding the following cases.

\[
\begin{align*}
\text{quote } V \texttt{F} & \{{\texttt{MSub }lp:V lp:OutM1 lp:OutM2}\} \texttt{AGAdd lp:Out1 (AGOpp lp:Out2)} \texttt{VarMap}, \texttt{quote } V \texttt{F In1 OutM1 Out1 VarMap}, \texttt{quote } V \texttt{F In2 OutM2 Out2 VarMap}.
\end{align*}
\]

In fact, even if an operator can be supported by relying on its definitional behavior, our methodology is sometimes performance-wise better than doing so. For example, \(n%:\texttt{R} := 1 *+ n\) and \(n%:\texttt{~R} := 1 *~ n\) are generic embeddings of \(n : \texttt{nat}\) and \(n : \texttt{int}\) to a ring, respectively, where \((x *+ n) := \texttt{GRing.natmul} x n\) and \((x *~ n) := \texttt{intmul} x n\) are \(n\) times addition of \(x\) defined for any \(V : \texttt{zmodType}\). For any \(n\) of type \texttt{nat}, \(n%:\texttt{R}\) and \((\texttt{Posz} n)%:\texttt{~R}\) are convertible since the latter unfolds to the former, where \texttt{Posz} is a constructor of \texttt{int} that embeds \texttt{nat} to \texttt{int}. Therefore, if a reflexive tactic supports \(n%:\texttt{~R}\), it is possible to support \(n%:\texttt{R}\) by reifying it in the same way as \((\texttt{Posz} n)%:\texttt{~R}\). However, it may lead to performance issues by triggering conversions such as:

\[
\text{Time Check erefl : (Posz 6 * 6)%:~R = 36%:R :> rat. (*) 36.364s *)}
\]

where \(:> \texttt{rat}\) means that the LHS and RHS are rational numbers of type \texttt{rat}.

1. Note that this particular performance issue reproduces only with MathComp 1.12.0 or earlier.
The source of this inefficiency is that conversion unfolds too many constants. Computations involving rational numbers are particularly inefficient because \texttt{rat} is defined as a dependent pair of the numerator and denominator that are coprime \cite{section4.4.2} and every \texttt{rat} operator performs GCD calculation to ensure the canonicity of representations. In our reflection scheme, conversion between \texttt{GRing.natmul} and \texttt{intmul} can be hidden in preprocessing. It makes conversion performing only a small number of unfolding and thus more efficient.

5 Applications: ring, field, and the irrationality of \(\zeta(3)\)

As an application of the methodology presented in Section 3 and Section 4, we briefly report our effort to adapt the \texttt{ring} and \texttt{field} tactics \cite{section5.1} of \texttt{Coq} to the commutative ring and field structures of \texttt{MathComp} in Section 5.1. The \texttt{field} tactic generates proof obligations describing the non-nullity of the denominators in the given equation. Those conditions can often be simplified to equivalent integer disequations and solved by the \texttt{lia} tactic. In Section 5.2, we implement this simplification based on the approach of Gonthier et al. \cite{section5.2} to use canonical structures for proof automation. In Section 5.3, we apply the above proof tools to the formal proof of Apéry’s theorem by Chyzak, Mahboubi, and Sibut-Pinote \cite{section5.3} to bring more proof automation. Our \texttt{ring} and \texttt{field} tactics for \texttt{MathComp} are available as a \texttt{Coq} library called \texttt{Algebra Tactics} \cite{section5.4}.

We summarize the mathematical structures of \texttt{MathComp} relevant to this section below. Their inheritance hierarchy is illustrated in Figure 1.

\begin{center}
\begin{tabular}{ll}
(R : comRingType) & is a commutative ring. \\
(R : unitRingType) & is a ring structure with computable inverses. For any \(x\) of type \(R\), \\
\(x^{-1} := \texttt{GRing.inv}\(x\) \(\) denotes the multiplicative inverse of \(x\), which is equal to \(x\) itself \(\) if \(x\) is not a unit, i.e., has no multiplicative inverse. \\
(R : comUnitRingType) & is a commutative ring with computable inverses. \\
(F : fieldType) & is a field. \\
(R : numDomainType) & is a partially ordered integral domain. \\
(F : numFieldType) & is a partially ordered field.
\end{tabular}
\end{center}

5.1 The ring and field tactics

The \texttt{ring} and \texttt{field} tactics \cite{section5.1} of \texttt{Coq} respectively solve polynomial and rational equations by computational reflection. Their reflexive decision procedures are based on normalization to the \textit{sparse Horner form} \cite{section5.2}, a multivariate, computationally efficient version of the Horner normal form of polynomials.

The following inductive type describes the syntax supported by the \texttt{ring} tactic:

\begin{verbatim}
Inductive PExpr (C : Type) : Type :=
| PED : PExpr C (* zero: GRing.zero *)
| PEI : PExpr C (* one: GRing.one *)
| PEC : C -> PExpr C (* constant: _%:~R *)
| PEX : positive -> PExpr C (* variable *)
| PEadd : PExpr C -> PExpr C -> PExpr C (* addition: GRing.add *)
| PEsub : PExpr C -> PExpr C -> PExpr C (* subtraction: _ - _ *)
| PEmul : PExpr C -> PExpr C -> PExpr C (* multiplication: GRing.mul *)
| PEmul : PExpr C -> PExpr C (* opposite: GRing.opp *)
| PEpow : PExpr C -> N -> PExpr C. (* power: GRing.exp *)
\end{verbatim}
where \(C \) is the type of coefficients and fixed to the binary integer type \(\mathbb{Z} \) of the Coq standard library in our usage. For each constructor, its meaning and the corresponding operator in MathComp are indicated in the code comment left. Note that \((x \mapsto n) \) \((:= \text{GRing.exp } x \text{ n})\) is the \(n \)-th power of \(x \) with \((n : \text{nat})\). There is also \(x \mapsto n \) \((:= \text{exprz } x \text{ n})\) operator, namely, \(n \)-th power of \(x \) with \((n : \text{int})\), which works only for unitRingType.

In addition to the above constructs, the \textbf{field} tactic supports the following two operators.

\begin{verbatim}
(* in Inductive FExpr: *)
| FEinv : FExpr C -> FExpr C (* inverse: GRing.inv *)
| FEdiv : FExpr C -> FExpr C -> FExpr C (* division: _ / _ *)
\end{verbatim}

On top of these syntaxes, we implemented preprocessors to support homomorphisms and more operators such as \texttt{GRing.natmul}, \texttt{intmul}, and \texttt{exprz}. Since rings and fields have poorer structures such as \(\mathbb{Z} \)-modules, subexpressions of these structures may appear under homomorphism applications. For example, let \(f : V \to R \) be an additive function whose codomain \(R \) is a ring, and we want to perform the following equational reasoning in preprocessing:

\begin{verbatim}
f (x *- (n + m))
f x * (n + m)%:~R
f x * (n%:~R + m%:~R).
\end{verbatim}

This example indicates that ring multiplication may appear in a \(\mathbb{Z} \)-module subexpression of a ring expression, and homomorphisms can be pushed down through it.

Therefore, we defined three inductive types describing the syntax: \texttt{NExpr} for expressions of type \(\text{nat} \), \texttt{RExpr} for ring expressions, and \texttt{ZMExpr} for \(\mathbb{Z} \)-module expressions. The latter two are defined as mutually inductive types. \texttt{RExpr} contains constructors for field operators and is used for both \texttt{ring} and \texttt{field} tactics. Since a ring homomorphism can be pushed down through these operators only if the codomain of the homomorphism is a field, we define normalization functions for \texttt{RExpr} and \texttt{ZMExpr} for each of the \texttt{ring} and \texttt{field} tactics separately. The definitions of these syntaxes, evaluation and normalization functions, and the correctness lemmas are available in Appendix B.

5.2 Automating proofs of non-nullity conditions for \texttt{field}

The \texttt{field} tactic can now solve a goal

\begin{verbatim}
((n \mapsto 2)%:~R - 1) / (n%:~R - 1) = (n%:~R + 1) :> F
\end{verbatim}

where \(F \) is a field. The \texttt{field} tactic then generates a proof obligation \((n%:~R - 1 != 0 :> F)\) describing the non-nullity of the denominator in the equation. If \(F \) is a partially ordered field (\texttt{numFieldType}), this obligation can be simplified to \((n != 1 :> \text{int})\) because \(%:~R \) for any partially ordered integral domain (\texttt{numDomainType}) is injective. The simplified obligation can sometimes be solved by other automated tactics such as \texttt{lia} [6, 56], which can solve linear goals over integers. Note that applying the \texttt{lia} tactic to formulae stated using the arithmetic operators of MathComp requires another preprocessing, which we reimplemented as another small library called Mczify [47]. This combination of the \texttt{field} and \texttt{lia} tactics is extensively used in the formal proof of Apéry’s theorem [15, Section 4.3] [35, Section 2.4].

In this section, we reimplement this simplification based on the approach of Gonthier et al. [27]. Firstly, we define a canonical structure \texttt{zifyRing} that relates a ring expression that is an element of the integer subring \((rval : R)\), to the corresponding integer expression \((zval : \text{int})\) such that \((rval = zval%:~R)\).
Section ZifyRing.

Variable R : ringType.

Structure zifyRing :=
 ZifyRing { rval : R; zval : int; zifyRingE : rval = zval%:~R }.

For instance, the zifyRing record allows us to relate (0 : R) to (0 : int) and (1 : R) to (1 : int).

Canonical zify_zero := @ZifyRing 0 0 (erefl : 0 = 0%:~R).
Canonical zify_one := @ZifyRing 1 1 (erefl : 1 = 1%:~R).

Since the integer subring is closed under opposite, (- x = (- n)%:~R) holds if (x = n%:~R). This implication can be encoded as a canonical instance that takes another instance as an argument, as follows.

Lemma zify_opp_subproof (e1 : zifyRing) : - rval e1 = (- zval e1)%:~R.
Canonical zify_opp (e1 : zifyRing) :=
 @ZifyRing (- rval e1) (- zval e1) (zify_opp_subproof e1).

Similarly, the closure properties under GRing.add, GRing.mul, and intmul can be implemented as the following instances.

Canonical zify_add e1 e2 := @ZifyRing (rval e1 + rval e2) (zval e1 + zval e2) ...
Canonical zify_mul e1 e2 := @ZifyRing (rval e1 * rval e2) (zval e1 * zval e2) ...
Canonical zify_mulrz e1 n := @ZifyRing (rval e1 *~ n) (zval e1 *~ n) ...

In general, solving an equation (rval ?e1 ≡ x) gives us an integer expression n and its correctness proof of (x = n%:~R) from a ring expression x. Let us consider an example (x := 1 + n%:~R *~ 2). Solving the equation (rval ?e1 ≡ x) proceeds by instantiating ?e1 with (zify_add ?e2 ?e3) since the head symbol of x is GRing.add, and then the problem is divided into two sub-problems (rval ?e2 ≡ 1) and (rval ?e3 ≡ n%:~R *~ 2).

Solving the former sub-problem is done by instantiating ?e2 with zify_one, solving the latter proceeds by instantiating ?e3 with (zify_mulrz ?e4 2), and we get another sub-problem (rval ?e4 ≡ n%:~R). By repeating this recursive process, we eventually get the canonical solution (?e4 := zify_mulrz zify_one n). The zval and zifyRingE fields of the solution (?e1 := zify_add zify_one (zify_mulrz (zify_mulrz zify_one n) 2)) give us the integer expression and the proof, respectively.

Reducing a ring (dis)equation to an integer (dis)equation is performed by rewriting the ring equation by the following lemma.

End ZifyRing.

Lemma zify_eqb (R : numDomainType) (e1 e2 : zifyRing R) :
 (rval e1 == rval e2) = (zval e1 == zval e2).

For example, combining the above lemma and the lia tactic allows us to solve the following goal. We use a small Ltac script to perform this proof automation in practice.

Goal forall n : int, n%:~R *~ 2 + 1 != 0 :> rat.
Proof. move=> n; rewrite zify_eqb /=; lia. Qed.
Table 1 Performance comparison of the `rat_field` tactic and our `field` tactic in ops_for_b.v of the formal proof of Apéry’s theorem, which proves a recurrence equation satisfied by a sequence called b [15 Section 4]. The size of a problem is the number of constructors of reified terms of type `FEExpr`. Note that Problem #1 has many relatively large coefficients greater than 10^{12}. Therefore, the ratio of time spent for its normalization is higher than those of the other problems, and thus its improvement in execution time is relatively minor.

Lemma	# Problem	Size	Time (s)	Time (s)
P_eq_Delta_Q	1	14,690	91.872	87.410
recAperyB	2	8,407	4.168	1.957
recAperyB	3	113,657	39.033	26.680

5.3 The irrationality of $\zeta(3)$

This section briefly reports the result of applying the proof tools presented in the previous sections to the formal proof of Apéry’s theorem [14 15 35]. This proof involves various collections of numbers such as integers, rational numbers `rat`, their real closure `realalg`, algebraic numbers `algC`, and Cauchy sequences. These types are equipped with ring instances except for Cauchy sequences and also with field instances except for integers. Therefore, the embedding functions corresponding to their inclusion, e.g., $Z \subset Q$, are ring homomorphisms. Since the type of integers `int` of MathComp is defined based on Peano natural numbers `nat`, it is well suited for proofs but prevents us from performing computation involving large integer constants in a reasonable time. Therefore, this proof also uses the binary representation of integers Z for computation purposes and defines a function that embeds Z to rational numbers (`rat_of_Z : Z -> rat`). This embedding function is made opaque to prevent computing in `rat`.

We managed to replace two tactics in this proof with our tools: `rat_field` adapting the `field` tactic to MathComp, and `goal_to_lia` implementing the reduction of Section 5.2, both of which are implemented in Ltac and specific to rational numbers `rat`. This replacement is done by adding the support for Z constants and operators to our `field` tactic and by making `rat_of_Z` canonically a ring homomorphism. That is to say, we did not have to implement any treatment specific to this proof to our tools, since supporting large integer constants is considered to be of general interest. Moreover, our `ring` and `field` tactics can reason about any ring and field instances and ring homomorphisms. Thus, they can solve a broader range of subgoals, and some manual labor before or after invoking them, e.g., tweaking ring homomorphisms, has been handed off to our tools.

Our tools not only automate more proofs but also, directly and indirectly, make proofs more concise and faster to check. To give some figures, Table 1 summarizes the performance of the invocations of `rat_field` and `field` that take more than 1 second in the proof. In those cases, `field` is consistently faster than `rat_field`. Moreover, by extensively refactoring proofs using our tools, we could reduce 485 lines of specifications and proofs out of 5881 lines excluding code for proof automation, and checking the entire proof became 26% faster (6 min 52 s) than before (9 min 19 s).

On the other hand, we still see some room for improvement in this refactoring work. For example, our `field` tactic cannot directly solve an equation that has rational exponents, e.g., $x^\frac{1}{2}$, or variables in exponents [6], e.g., $x^{n+m} = x^n x^m$. However, they require reimplementing reflexive decision procedures and are pretty orthogonal to the present work, except that it might be possible to implement incomplete support for the latter case in preprocessing.
6 Conclusion

We proposed a methodology for building reflexive tactics and their concrete implementations in Coq-Elpi that cooperate with algebraic structures (Section 3) and their homomorphisms (Section 4.1) represented by packed classes. The issue we solved in Section 3 is not specific to packed classes, as the issue solved by forgetful inheritance [1] also appears in semi-bundled [58, Section 4.1] type classes [48]. On the other hand, purely syntactic reification works fine with unbundled [19] type classes, where operators appear as parameters of interfaces, as is the case in [11] [12]. However, this approach does not scale up to larger hierarchies, e.g., as noted in [12, Section 6.1]. Reification by small-scale reflection can also be adapted to reification by parametricity [30], although it does not deal with variable maps and thus does not fit our purpose. Such implementation can be done by using the ssrpattern tactic in place of the pattern tactic, but it may not preserve the efficiency of reification by parametricity.

We argue that Coq-Elpi turned out to be a practical tool to implement our methodology, and in particular, provides features that made our reification procedures concise, although we could reimplement our tactics with other meta-languages such as OCaml, Ltac [20], Ltac2 [40], and Mtac2 [33]. For example, the cut operator, which is unavailable in Ltac, offers a pretty intuitive way to control backtracking, and quotation and antiquotation allow us to embed Coq terms with holes to our Elpi code in a readable way. Moreover, our resulting tactics run in reasonable times.

Our twofold reflection scheme and its preprocessing step to support homomorphisms allow us to adapt an existing reflexive tactic to new operators without either reimplementing the whole tactic or reifying similar terms twice (Section 4.2). However, it does not let users extend an existing preprocessor with new rules as the ppsimpl tactic [7] does, although ppsimpl is not flexible enough to cover our use cases. Since Coq-Elpi provides the abilities to generate inductive data types, Coq constants, and Elpi rules, we could improve this situation by writing an Elpi program that produces a reflexive preprocessor and reification rules from their high-level descriptions. Furthermore, we could integrate such an enhancement to Hierarchy Builder [19] to utilize metadata about the hierarchy of structures in reification.

As an application of our methodology, we adapted the ring and field tactics of Coq to the commutative rings and fields of MathComp (Section 5.1). We demonstrated their practicality and scalability by applying them to the formal proof of Apéry’s theorem (Section 5.3). Although their reflexive decision procedures are not our contribution, we found room for improvement on this point. For example, the ring_exp tactic [5] of Lean [30] solves ring equations with variables in exponents, which is one of the cases we wished to solve in Section 5.3. The ring_exp tactic does not directly support homomorphisms, but the simp and norm_cast tactics [34] serve as preprocessors for pushing down and up homomorphisms as in Section 4.1 and 4.2. In contrast to our approach, those Lean tactics can be performed alone, which is an easier way to achieve modularity of proof tools, but then, each tactic has to traverse the goal. Also, they are not reflexive and produce proof terms explaining rewriting steps. While such implementation does not require proving the procedure correct and is regarded as performance-wise better than reflection in Lean, it would not scale up to large equations and expressions that have large normal forms. On the other hand, implementing efficient tactics using computational reflection requires verified and efficient procedures involving computation-oriented data structures such as sparse Horner form [29]. Cohen and Rouhling [18] proposed a modular approach to define and reason about efficient decision procedures using CoqEAL refinement framework [17, 21], which is a suitable candidate method for extensively developing reflexive tactics for mathematical structures of MathComp.
References

1. Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Roulhing, and Kazuhiko Sakaguchi. Competing inheritance paths in dependent type theory: A case study in functional analysis. In Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science, pages 3–20. Springer, 2020. doi:10.1007/978-3-030-51054-1_1

2. Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William E. Aitken. The semantics of reflected proof. In Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June 4-7, 1990, pages 95–105. IEEE Computer Society. doi:10.1109/LICS.1990.113737

3. Roger Apéry. Irrationalité de $\zeta(2)$ et $\zeta(3)$. Astérisque, 61, 1979. Société Mathématique de France.

4. Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. Hints in unification. In Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science, pages 84–98. Springer, 2009. doi:10.1007/978-3-642-03359-9_8

5. Anne Baanen. A Lean tactic for normalising ring expressions with exponents (short paper). In Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science, pages 21–27. Springer, 2020. doi:10.1007/978-3-030-51054-1_2

6. Frédéric Besson. Fast reflexive arithmetic tactics the linear case and beyond. In Types for Proofs and Programs, International Workshop, TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected Papers, volume 4502 of Lecture Notes in Computer Science, pages 48–62. Springer, 2006. doi:10.1007/978-3-540-74464-1_4

7. Frédéric Besson. ppsimpl: a reflexive Coq tactic for canonising goals. In The Third International Workshop on Coq for Programming Languages, CoqPL 2017, 2017. URL: https://popl17.sigplan.org/details/main/3/ppsimpl-a-reflexive-Coq-tactic-for-canonising-goals

8. Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full reduction at full throttle. In Certified Programs and Proofs - First International Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume 7086 of Lecture Notes in Computer Science, pages 362–377. Springer, 2011. doi:10.1007/978-3-642-25379-9_26

9. Samuel Boutin. Using reflection to build efficient and certified decision procedures. In Theoretical Aspects of Computer Software, Third International Symposium, TACS ’97, Sendai, Japan, September 23-26, 1997, Proceedings, volume 1281 of Lecture Notes in Computer Science, pages 515–529. Springer, 1997. doi:10.1007/BFb0014565

10. Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - a functional language with dependent types. In Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science, pages 73–78. Springer, 2009. doi:10.1007/978-3-642-03359-9_6

11. Thomas Braibant and Damien Pous. Tactics for reasoning modulo AC in Coq. In Certified Programs and Proofs - First International Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume 7086 of Lecture Notes in Computer Science, pages 167–182. Springer, 2011. doi:10.1007/978-3-642-25379-9_14

12. Thomas Braibant and Damien Pous. Deciding Kleene algebras in Coq. Logical Methods in Computer Science, 8(1), 2012. doi:10.2168/LMCS-B(1:16)2012

13. Adam Chlipala. Certified Programming with Dependent Types - A Pragmatic Introduction to the Coq Proof Assistant. MIT Press, 2013. URL: http://mitpress.mit.edu/books/certified-programming-dependent-types

14. Frédéric Chyzak, Assia Mahboubi, and Thomas Sibut-Pinote. Apery: A formal proof of the irrationality of zeta(3), the Apéry constant, 2020. Accessed: 2022-02-08. URL: https://github.com/coq-community/apery
Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, and Enrico Tassi. A computer-algebra-based formal proof of the irrationality of $\zeta(3)$. In Interactive Theorem Proving - 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer Science, pages 160–176. Springer, 2014. doi:10.1007/978-3-319-08970-6_11

Cyril Cohen. Formalized algebraic numbers: construction and first-order theory. (Formalisation des nombres algébriques : construction et théorie du premier ordre). PhD thesis, École Polytechnique, Palaiseau, France, 2012. URL: https://tel.archives-ouvertes.fr/pastel-00790448.

Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for free! In Certified Programs and Proofs - Third International Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings, volume 8307 of Lecture Notes in Computer Science, pages 147–162. Springer, 2013. doi:10.1007/978-3-642-38545-1_10

Cyril Cohen and Damien Rouhling. A refinement-based approach to large scale reflection for algebra. In JFLA 2017 - Vingt-huitième Journées Francophones des Langages Applicatifs, 2017. URL: https://hal.inria.fr/hal-01414881.

Cyril Cohen, Kazuhihko Sakaguchi, and Enrico Tassi. Hierarchy builder: Algebraic hierarchies made easy in Coq with Elpi (system description). In 5th International Conference on Formal Structures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference), volume 167 of LIPIcs, pages 34:1–34:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.FSCD.2020.34

David Delahaye. A tactic language for the system Coq. In Logic for Programming and Automated Reasoning, 7th International Conference, LPAR 2000, Reunion Island, France, November 11-12, 2000, Proceedings, volume 1955 of Lecture Notes in Computer Science, pages 85–95. Springer, 2000. doi:10.1007/3-540-44404-1_7

Maxime Dénès, Anders Mörtberg, and Vincent Siles. A refinement-based approach to computational algebra in Coq. In Interactive Theorem Proving - Third International Conference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012. Proceedings, volume 7406 of Lecture Notes in Computer Science, pages 83–98. Springer, 2012. doi:10.1007/978-3-642-32347-8_7

Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. ELPI: fast, embeddable, ΛProlog interpreter. In Logic for Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in Computer Science, pages 460–468. Springer, 2015. doi:10.1007/978-3-662-48899-7_32

François Garillot. Generic Proof Tools and Finite Group Theory. (Outils génériques de preuve et théorie des groupes finis). PhD thesis, École Polytechnique, Palaiseau, France, 2011. URL: https://tel.archives-ouvertes.fr/pastel-00649586.

François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau. Packaging mathematical structures. In Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science, pages 327–342. Springer, 2009. doi:10.1007/978-3-642-03559-9_23

Paolo G. Giarrusso. ring tactic breaks on mathcomp: it requires all ring operations are defined on syntactically equal types, not definitionally equal ones., 2020. Accessed: 2021-12-07. URL: https://github.com/coq/coq/issues/11998

Georges Gonthier and Enrico Tassi. A language of patterns for subterm selection. In Interactive Theorem Proving - Third International Conference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012. Proceedings, volume 7406 of Lecture Notes in Computer Science, pages 361–376. Springer, 2012. doi:10.1007/978-3-642-32347-8_25

Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. How to make ad hoc proof automation less ad hoc. Journal of Functional Programming, 23(4):357–401, 2013. doi:10.1017/S0956796813000051
Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction. In *Proceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP ’02)*, Pittsburgh, Pennsylvania, USA, October 4-6, 2002, pages 235–246. ACM, 2002. doi:10.1145/581478.581501

Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative ring done right in Coq. In *Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings*, volume 3603 of *Lecture Notes in Computer Science*, pages 98–113. Springer, 2005. doi:10.1007/11541868_7

Jason Gross, Andres Erbsen, and Adam Chlipala. Reification by parametricity - fast setup for proof by reflection, in two lines of Ltac. In *Interactive Theorem Proving - 9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings*, volume 10895 of *Lecture Notes in Computer Science*, pages 289–305. Springer, 2018. doi:10.1007/978-3-319-94821-8_17

Benjamin S. Hvass. ring tactic for math-comp integers, 2019. Accessed: 2021-12-07. URL: https://github.com/math-comp/math-comp/issues/401

Daniel W. H. James and Ralf Hinze. A reflection-based proof tactic for lattices in Coq. In *Proceedings of the Tenth Symposium on Trends in Functional Programming, TFP 2009, Komárno, Slovakia, June 2-4, 2009*, volume 10 of *Trends in Functional Programming*, pages 97–112. Intellect, 2009.

Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, and Derek Dreyer. Mtac2: typed tactics for backward reasoning in Coq. *Proceedings of the ACM on Programming Languages*, 2(ICFP):78:1–78:31, 2018. doi:10.1145/3236773

Robert Y. Lewis and Paul-Nicolas Madelaine. Simplifying casts and coercions (extended abstract). In *Joint Proceedings of the 7th Workshop on Practical Aspects of Automated Reasoning (PAAR) and the 5th Satisfiability Checking and Symbolic Computation Workshop (SC-Square) Workshop*, 2020 co-located with the 10th International Joint Conference on Automated Reasoning (IJCAR 2020), Paris, France, June-July, 2020 (Virtual), volume 2752 of *CEUR Workshop Proceedings*, pages 53–62, 2020. URL: http://ceur-ws.org/Vol-2752/paper4.pdf

Assia Mahboubi and Thomas Sibut-Pinote. A formal proof of the irrationality of $\zeta(3)$. *Logical Methods in Computer Science*, 17(1), 2021. doi:10.23638/LMCS-17(1:16)2021

Assia Mahboubi and Enrico Tassi. Canonical structures for the working Coq user. In *Interactive Theorem Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013, Proceedings*, volume 7998 of *Lecture Notes in Computer Science*, pages 19–34. Springer, 2013. doi:10.1007/978-3-642-39834-2_5

Assia Mahboubi and Enrico Tassi. *Mathematical Components*. Zenodo, 2021. doi:10.5281/zenodo.4457887

Dale Miller and Gopalan Nadathur. *Programming with Higher-Order Logic*. Cambridge University Press, 2012. doi:10.1017/CBO9781139021326

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The Lean theorem prover (system description). In *Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings*, volume 9195 of *Lecture Notes in Computer Science*, pages 378–388. Springer, 2015. doi:10.1007/978-3-319-21401-6_26

Pierre-Marie Pédrot. Ltac2: Tactical warfare. In *The Fifth International Workshop on Coq for Programming Languages, CoqPL 2019*, 2019. URL: https://popl19.sigplan.org/details/CoqPL-20198/Ltac2-Tactical-Warfare

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In *Proceedings of the ACM SIGPLAN’88 Conference on Programming Language Design and Implementation (PLDI)*, Atlanta, Georgia, USA, June 22-24, 1988, pages 199–208. ACM, 1988. doi:10.1145/53990.54010
A. Descriptions of structures and operators

We summarize the mathematical structures and their operators relevant to this paper in Table 2. Besides those, each structType (:= Struct.type) structure is equipped with:

- an implicit coercion Struct.sort from Struct.type to types (Sortclass) that returns the underlying carrier of a structure instance, and
- a notation [structType of T] that gives the canonical structType instance of T if it exists; otherwise, it does not type-check.

B. Reflexive preprocessors for the ring and field tactics

Implicit Types (V : zmodType) (R : ringType) (F : fieldType).

Inductive NExpr : Type :=
| NC of N | NX of nat | NAdd of NExpr & NExpr | NSucc of NExpr | NMul of NExpr & NExpr | NExp of NExpr & N.

Fixpoint Neval (e : NExpr) : nat :=
match e with
| NC n => nat_of_N_expand n
| NX x => x
| NAdd e1 e2 => Neval e1 + Neval e2
| NSucc e => S (Neval e)
| NMul e1 e2 => Neval e1 * Neval e2
| NExp e1 n => Neval e1 ^ nat_of_N_expand n
end.

Inductive RExpr : ringType -> Type :=
| RX R : R -> RExpr R | RO R : RExpr R |
| ROpp R : RExpr R -> RExpr R |
| RZOpp : RExpr [ringType of Z] -> RExpr [ringType of Z] |
| RAdd R : RExpr R -> RExpr R -> RExpr R |
| RZAdd : RExpr [ringType of Z] -> RExpr [ringType of Z] -> RExpr [ringType of Z] |
| RSub : RExpr [ringType of Z] -> RExpr [ringType of Z] -> RExpr [ringType of Z] |
| RZSub : RExpr [ringType of Z] -> RExpr [ringType of Z] -> RExpr [ringType of Z] |
| R1 R : RExpr R |
| RZ1 R : RExpr R -> RExpr [ringType of int] -> RExpr R |
| R1 R : RExpr R |
| RZ1 R : RExpr R -> RExpr [ringType of Z] -> RExpr [ringType of Z] |
| RExpR R : RExpr R -> N -> RExpr R |
| RExpPosz (R : unitRingType) : RExpr R -> N -> RExpr R |
Reflexive tactics for algebra, revisited

| RExpNegz F : RExpr F -> N -> RExpr F |
| RZExp : RExpr [ringType of Z] -> Z -> RExpr [ringType of Z] |
| RInv F : RExpr F -> RExpr F |
| RMorph R' R : {rmorphism R' -> R} -> RExpr R' -> RExpr R |
| RPsz : NExpr -> RExpr [ringType of int] |
| RNegz : NExpr -> RExpr [ringType of int] |
| RZC : Z -> RExpr [ringType of Z] |

with ZMExpr : zmodType -> Type :=
| ZMX V : V -> ZMExpr V |
| ZM0 V : ZMExpr V |
| ZMAdd V : ZMExpr V -> ZMExpr V |
| ZMmuln V : ZMExpr V -> NExpr -> ZMExpr V |
| ZMMulz V : ZMExpr V -> RExpr [ringType of int] -> ZMExpr V |
| ZMMorph V' V : {additive V -> V} -> ZMExpr V' -> ZMExpr V. |

Fixpoint Reval R (e : RExpr R) : R :=

match e with
| RX _ x => x |
| R0 _ => 0%R |
| ROpp _ e1 => - Reval e1 |
| RZOpp e1 => Z.opp (Reval e1) |
| RAdd _ e1 e2 => Reval e1 + Reval e2 |
| RZAdd e1 e2 => Z.add (Reval e1) (Reval e2) |
| RZSub e1 e2 => Z.sub (Reval e1) (Reval e2) |
| RMuln _ e1 e2 => Reval e1 *+ Neval e2 |
| RMulz _ e1 e2 => Reval e1 *~ Reval e2 |
| R1 _ => 1%R |
| RMul _ e1 e2 => Reval e1 * Reval e2 |
| RZmul e1 e2 => Z.mult (Reval e1) (Reval e2) |
| RExp _ e1 n => Reval e1 ^+ nat_of_N_expand n |
| RExpPosz _ e1 n => Reval e1 ^ Posz (nat_of_N_expand n) |
| RExpNegz _ e1 n => Reval e1 ^ Negz (nat_of_N_expand n) |
| RZExp e1 n => Z.pow (Reval e1) n |
| RInv _ e1 => (Reval e1)^-1 |
| RMorph _ _ f e1 => f (Reval e1) |
| RMorph' _ _ f e1 => f (ZMeval e1) |
| RPsz e1 => Posz (Neval e1) |
| RNegz e2 => Negz (Neval e2) |
| RZC x => x |
end

with ZMeval V (e : ZMExpr V) : V :=

match e with
| ZMX _ x => x |
| ZM0 _ => 0%R |
| ZMOpp _ e1 => - ZMeval e1 |
| ZMAdd _ e1 e2 => ZMeval e1 + ZMeval e2 |
| ZMMuln _ e1 e2 => ZMeval e1 *+ Neval e2 |
| ZMMulz _ e1 e2 => ZMeval e1 *~ Reval e2 |
| ZMMorph _ _ f e1 => f (ZMeval e1) |
end.

Section Rnorm.

Variables (R' : ringType).

Variables (R_of_Z : Z -> R) (R_of_ZE : R_of_Z = (fun n => (int_of_Z n)%:~R)).

Variables (zero : R) (zeroE : zero = 0%R) (opp : R -> R) (oppE : opp = -%R).

Variables (one : R) (oneE : one = 1%R).

Variables (mul : R -> R -> R) (mulE : mul = *%R).

Variables (exp : R -> N -> R) (expE : exp = (fun x n => x ^+ nat_of_N n)).

Fixpoint Nnorm (e : NExpr) : R :=
 match e with
 | NC N0 => R_of_Z Z0
 | NC (Npos n) => R_of_Z (Zpos n)
 | NX x => x%:~R
 | NAdd e1 e2 => add (Nnorm e1) (Nnorm e2)
 | NSucc e1 => add one (Nnorm e1)
 | NMul e1 e2 => mul (Nnorm e1) (Nnorm e2)
 | NExp e1 n => exp (Nnorm e1) n
 end.

Fixpoint Rnorm R (f : {rmorphism R -> R}) (e : RExpr R) : R :=
 match e in RExpr R return {rmorphism R -> R} -> R with
 | RX _ x => fun f => f x
 | R0 _ => fun f => zero
 | ROpp _ e1 => fun f => opp (Rnorm f e1)
 | RZAdd e1 e2 => fun f => add (Rnorm f e1) (Rnorm f e2)
 | RZSub e1 e2 => fun f => sub (Rnorm f e1) (Rnorm f e2)
 | RZMul e1 e2 => fun f => mul (Rnorm f e1) (Rnorm f e2)
 | RZC x => fun f => R_of_Z x
 | RNegz e1 => fun f => opp (add one (Nnorm e1))
 | RZC x => fun f => R_of_Z x
 end f

with R2Mnorm V (f : (additive V -> R')) (e : ZMExpr V) : R' :=
 match e in ZMExpr V return (additive V -> R') -> R' with
 | ZMX _ x => fun f => f x
 | ZM0 _ => fun f => zero
 | ZMOpp _ e1 => fun f => opp (R2Mnorm f e1)
 | ZMAdd e1 e2 => fun f => add (R2Mnorm f e1) (R2Mnorm f e2)
 | ZMMul e1 e2 => fun f => mul (R2Mnorm f e1) (R2Mnorm f e2)
 | ZMMulz e1 e2 => fun f =>
Reflexive tactics for algebra, revisited

mul (RZMnorm f e1) (Rnorm [rmorphism of intmul 1] e2)
| ZMMorph _ _ g e1 => f => RZMnorm [additive of f \o g] e1
end f.

Lemma Rnorm_correct (e : RExpr R') : Reval e = Rnorm [rmorphism of idfun] e.
End Rnorm.

Section Fnorm.

Variables (F : fieldType).
Variables (F_of_Z : Z -> F) (F_of_ZE : F_of_Z = (fun n => (int_of_Z n)%:~R)).
Variables (zero : F) (zeroE : zero = 0%R) (opp : F -> F) (oppE : opp = -%R).
Variables (add : F -> F -> F) (addE : add = +%R).
Variables (sub : F -> F -> F) (subE : sub = (fun x y => x - y)).
Variables (one : F) (oneE : one = 1%R) (mul : F -> F -> F) (mulE : mul = *%R).
Variables (exp : F -> N -> F) (expE : exp = (fun x n => x ^+ nat_of_N n)).
Variables (inv : F -> F) (invE : inv = GRing.inv).

Notation Nnorm := (Nnorm F_of_Z add one mul exp).

Fixpoint Fnorm R (f : {rmorphism R -> F}) (e : RExpr R) : F :=
match e in RExpr R return {rmorphism R -> F} -> F with
| RX _ x => f x
| RO _ => fun f => zero
| ROpp _ e1 => fun f => opp (Fnorm f e1)
| RZOpp e1 => fun f => opp (Fnorm f e1)
| RAdd _ e1 e2 => fun f => add (Fnorm f e1) (Fnorm f e2)
| RZAdd e1 e2 => fun f => add (Fnorm f e1) (Fnorm f e2)
| RZSub e1 e2 => fun f => sub (Fnorm f e1) (Fnorm f e2)
| RMuln _ e1 e2 => fun f => mul (Fnorm f e1) (Nnorm e2)
| RMulz _ e1 e2 => fun f => mul (Fnorm f e1) (Nnorm e2)
| R1 _ => fun f => one
| RMul _ e1 e2 => fun f => mul (Fnorm f e1) (Fnorm f e2)
| RZMul e1 e2 => fun f => mul (Fnorm f e1) (Fnorm f e2)
| RExp _ e1 n => fun f => exp (Fnorm f e1) n
| RExpNegz _ e1 n => fun f => inv (exp (Fnorm f e1) (N.succ n))
| RZExp e1 (Z.neg _) => fun f => zero
| RZExp e1 n => fun f => exp (Fnorm f e1) (Z.to_N n)
| RInv _ e1 => fun f => inv (Fnorm f e1)
| RZInv _ e1 => fun f => inv (Fnorm f e1)
| RZMorph _ _ e1 g e1 => fun f => RN_norm [rmorphism of f \o g] e1
| RZMorph' _ _ g e1 => fun f => FZMnorm [additive of f \o g] e1

end f.

match e in ZMExpr V return {additive V -> F} -> F with
| ZMX _ x => f x
| ZMO _ => fun f => zero
| ZMOpp _ e1 => fun f => opp (FZMnorm f e1)
| ZMAdd _ e1 e2 => fun f => add (FZMnorm f e1) (FZMnorm f e2)
| ZMMuln _ e1 e2 => fun f => mul (FZMnorm f e1) (Nnorm e2)
fun f =>
 mul (FZMnorm f e1) (Fnorm \[rmorphism of intmul 1\] e2)
 end f.

| ZMMorph _ _ g e1 => fun f => FZMnorm \[additive of f \o g\] e1

Lemma Fnorm_correct (e : RExpr F) : Reval e = Fnorm \[rmorphism of idfun\] e.
End Fnorm.
Table 2 An excerpt of the descriptions of structures and operators in MathComp.

Coq judgements	Synonym of	Informal semantics
\[\vdash T : \text{eqType} \] (RHS) \[::= \text{Equality.type} \]	T is a Type whose propositional (Leibniz) equality is decidable.	
\[T : \text{eqType}, x, y : T \vdash x == y : \text{bool} \] \[::= @\text{eq_op} T x y \]	a Boolean test to decide if x is equal to y.	
\[T : \text{eqType}, x, y : T \vdash x != y : \text{bool} \] \[::= \neg (x == y) \]	a Boolean test to decide if x is not equal to y.	
\[\vdash V : \text{zmodType} \] (RHS) \[::= \text{GRing.Zmodule.type} \]	V is a \(\mathbb{Z}\)-module, i.e., an additive Abelian group.	
\[V : \text{zmodType}, x : V \vdash 0 : V \] \[::= \text{GRing.zero} V \]	the zero (additive identity) of V.	
\[V : \text{zmodType}, x : V \vdash -x : V \] \[::= @\text{GRing.opp} V x \]	the opposite (additive inverse) of x in V.	
\[V : \text{zmodType}, x, y : V \vdash x + y : V \] \[::= @\text{GRing.add} V x y \]	the sum of x and y in V.	
\[V : \text{zmodType}, x, y : V \vdash x - y : V \] \[::= x + (-y) \]	the difference of x and y in V.	
\[V : \text{zmodType}, x : V, n : \text{nat} \vdash x \times n : V \] \[::= @\text{GRing.natmul} V x n \]	n times x with \((n : \text{nat})\).	
\[U, V : \text{zmodType} \vdash f : \{\text{additive} U \rightarrow V\} \]	the underlying function of an additive function (implicit coercion).	
\[U, V : \text{zmodType}, f : \{\text{additive} U \rightarrow V\} \vdash f : U \rightarrow V \] \[::= @\text{GRing.Additive.apply} U V _ f \]	the canonical additive function of f if it exists; otherwise, it does not type-check.	
\[U, V : \text{Type}, f : U \rightarrow V \vdash [\text{additive of} f] : \{\text{additive} U \rightarrow V\} \]	f is an additive function (\(\mathbb{Z}\)-module homomorphism) from U to V.	
\[\vdash R : \text{ringType} \] (RHS) \[::= \text{GRing.Ring.type} \]	R is a (not necessarily commutative) ring.	
\[R : \text{ringType} \vdash 1 : U \] \[::= \text{GRing.one} R \]	the one (multiplicative identity) of R.	
\[R : \text{ringType}, x, y : R \vdash x \times y : R \] \[::= @\text{GRing.mul} R x y \]	the product of x and y in R.	
\[R : \text{ringType}, n : \text{nat} \vdash n\%:R : R \] \[::= 1 \times n \]	the ring image of \((n : \text{nat})\) in R.	
\[R : \text{ringType}, n : \text{int} \vdash n\%:~R : R \] \[::= 1 \times n \]	the ring image of \((n : \text{int})\) in R.	
\[R : \text{ringType}, x : R, n : \text{int} \vdash x \times n : R \] \[::= @\text{GRing.exp} R x n \]	the n-th power of x in R.	
Expression	Meaning	
------------	---------	
\(R, S : \text{ringType} \vdash f : \{ \text{rmorphism} \ R \to S \} \)	\(f \) is a ring homomorphism from \(R \) to \(S \).	
\(\vdash f : R \to S \) : \(\text{GRing.RMorphism.apply} \ R \ S _ \ f \)	the underlying function of a ring homomorphism (implicit coercion).	
\(R, S : \text{Type}, f : R \to S \vdash \{ \text{rmorphism of} \ f \} : \{ \text{rmorphism} \ R \to S \} \)	the canonical ring homomorphism of \(f \) if it exists; otherwise, it does not type-check.	

Expression	Meaning
\(\vdash R : \text{comRingType} \) : \(\text{GRing.ComRing.type} \)	\(R \) is a ring whose multiplication is commutative.
\(\vdash R : \text{unitRingType} \) : \(\text{GRing.UnitRing.type} \)	\(R \) is a ring with computable inverses.
\(\vdash x^{-1} : R \) : \(\text{GRing.inv} \ R \ x \)	the multiplicative inverse of \(x \) if exists; otherwise \(x \) itself.
\(R : \text{unitRingType}, y : R \vdash x / y : R \) : \(x \times y^{-1} \)	\(x \) divided by \(y \).
\(R : \text{unitRingType}, x : R, n : \text{nat} \vdash (x^{+n})^{-1} \)	the inverse of \((x^{+n}) \).
\(R : \text{unitRingType}, x : R, n : \text{int} \vdash x^{\times n} : R \) : \(\text{exprz} \ R \ x \ n \)	the \(n \)-th power of \(x \), reduces to either \((x^{+_}) \) or \((x^{-_}) \).
\(\vdash R : \text{comUnitRingType} \) : \(\text{GRing.ComUnitRing.type} \)	\(R \) is a commutative ring with computable inverses.
\(\vdash F : \text{fieldType} \) : \(\text{GRing.Field.type} \)	\(F \) is a field.
\(\vdash R : \text{numDomainType} \) : \(\text{Num.NumDomain.type} \)	\(R \) is a partially ordered integral domain.
\(\vdash F : \text{numFieldType} \) : \(\text{Num.NumField.type} \)	\(F \) is a field with a partial order and a norm.