QUADRATIC GRÖBNER BASES OF TWINNED ORDER POLYTOPES

TAKAYUKI HIBI AND KAZUNORI MATSUDA

ABSTRACT. Let P and Q be finite partially ordered sets on $[d] = \{1, \ldots, d\}$, and $\mathcal{O}(P) \subset \mathbb{R}^d$ and $\mathcal{O}(Q) \subset \mathbb{R}^d$ their order polytopes. The twinned order polytope of P and Q is the convex polytope $\Delta(P, Q) \subset \mathbb{R}^d$ which is the convex hull of $\mathcal{O}(P) \cup (-\mathcal{O}(Q))$. It follows that the origin of \mathbb{R}^d belongs to the interior of $\Delta(P, Q)$ if and only if P and Q possess a common linear extension. It will be proved that, when the origin of \mathbb{R}^d belongs to the interior of $\Delta(P, Q)$, the toric ideal of $\Delta(P, Q)$ possesses a quadratic Gröbner basis with respect to a reverse lexicographic order for which the variable corresponding to the origin is smallest. Thus in particular if P and Q possess a common linear extension, then the twinned order polytope $\Delta(P, Q)$ is a normal Gorenstein Fano polytope.

INTRODUCTION

In [5], from a viewpoint of Gröbner bases, the centrally symmetric configuration (7) of the order polytope (8) of a finite partially ordered set is studied. In the present paper, a far-reaching generalization of [5] will be discussed.

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be finite partially ordered sets (posets, for short) with $|P| = |Q| = d$. A subset I of P is called a poset ideal of P if $p_i \in I$ and $p_j \in P$ together with $p_j \leq p_i$ guarantee $p_j \in I$. Thus in particular the empty set \emptyset as well as P itself is a poset ideal of P. Write $\mathcal{J}(P)$ for the set of poset ideals of P and $\mathcal{J}(Q)$ for that of Q. A linear extension of P is a permutation $\sigma = i_1 i_2 \cdots i_d$ of $[d] = \{1, \ldots, d\}$ for which $i_a < i_b$ if $p_{i_a} < p_{i_b}$.

Let e_1, \ldots, e_d stand for the canonical unit coordinate vectors of \mathbb{R}^d. Then, for each subset $I \subset P$ and for each subset J of Q, we define $\rho(I) = \sum_{i \in I} e_i$ and $\rho(J) = \sum_{i \in J} e_i$. In particular $\rho(\emptyset)$ is the origin 0 of \mathbb{R}^d. Define $\Omega(P, Q) \subset \mathbb{Z}^d$ as

$$\Omega(P, Q) = \{ \rho(I) : \emptyset \neq I \in \mathcal{J}(P) \} \cup \{ -\rho(J) : \emptyset \neq J \in \mathcal{J}(Q) \} \cup \{0\}$$

and write $\Delta(P, Q) \subset \mathbb{R}^d$ for the convex polytope which is the convex hull of $\Omega(P, Q)$. We call $\Delta(P, Q)$ the twinned order polytope of P and Q. In other words, the twinned order polytope $\Delta(P, Q)$ of P and Q is the convex polytope which is the convex hull of $\mathcal{O}(P) \cup (-\mathcal{O}(Q))$, where $\mathcal{O}(P) \subset \mathbb{R}^d$ is the order polytope of P and $-\mathcal{O}(Q) = \{-\beta : \beta \in \mathcal{O}(Q)\}$. One has $\dim \Delta(P, Q) = d$. Since $\rho(P) = \rho(Q) = e_1 + \cdots + e_d$, it follows that the origin 0 of \mathbb{R}^d cannot be a vertex of $\Delta(P, Q)$. In fact, the set of vertices of $\Delta(P, Q)$ are $\Omega(P, Q) \setminus \{0\}$.

1
This paper is organized as follows. In Section 1, a basic fact that the origin of \(\mathbb{R}^d \) belongs to the interior of \(\Delta(P, -Q) \) if and only if \(P \) and \(Q \) possess a common linear extension (Lemma 1.1). We then show, in Section 2, that, when the origin of \(\mathbb{R}^d \) belongs to the interior of \(\Delta(P, -Q) \), the toric ideal of \(\Delta(P, -Q) \) possesses a quadratic Gröbner basis with respect to a reverse lexicographic order for which the variable corresponding to the origin is smallest (Theorem 2.1). Thus in particular if \(P \) and \(Q \) possess a common linear extension, then the twinned order polytope \(\Delta(P, -Q) \) is a normal Gorenstein Fano polytope (Corollary 2.2). Finally, we conclude this paper with a collection of examples in Section 3. We refer the reader to [4] for fundamental materials on Gröbner bases and toric ideals.

1. Linear extensions

Let \(P \) and \(Q \) be finite posets with \(|P| = |Q| = d \). In general, the origin \(0 \) of \(\mathbb{R}^d \) may not belong to the interior of the twinned order polytope \(\Delta(P, -Q) \) of \(P \) and \(Q \). It is then natural to ask when the origin of \(\mathbb{R}^d \) belongs to the interior of \(\Delta(P, -Q) \).

Lemma 1.1. Let \(P = \{p_1, \ldots, p_d\} \) and \(Q = \{q_1, \ldots, q_d\} \) be finite posets. Then the following conditions are equivalent:

(i) The origin of \(\mathbb{R}^d \) belongs to the interior of \(\Delta(P, -Q) \);

(ii) \(P \) and \(Q \) possess a common linear extension.

Proof. ((i) \(\Rightarrow \) (ii)) Suppose that the origin \(0 \) of \(\mathbb{R}^d \) belongs to the interior of \(\Delta(P, -Q) \). Since \(\Omega(P, -Q) \setminus \{0\} \) is the set of vertices of \(\Delta(P, -Q) \), the existence of an equality

\[
0 = \sum_{\emptyset \neq I \in \mathcal{I}(P)} a_I \cdot \rho(I) + \sum_{\emptyset \neq J \in \mathcal{J}(Q)} b_J \cdot (-\rho(J)),
\]

where each of \(a_I \) and \(b_J \) is a positive real numbers, is guaranteed. Let

\[
\sum_{\emptyset \neq I \in \mathcal{I}(P)} a_I \cdot \rho(I) = \sum_{i=1}^{d} a_i^* e_i, \quad \sum_{\emptyset \neq J \in \mathcal{J}(Q)} b_J \cdot \rho(J) = \sum_{i=1}^{d} b_i^* e_i,
\]

where each of \(a_i^* \) and \(b_i^* \) is a positive rational number. Since each \(I \) is a poset ideal of \(P \) and each \(J \) is a poset ideal of \(Q \), it follows that \(a_i^* > a_j^* \) if \(p_i < p_j \). Let \(\sigma = i_1 i_2 \cdots i_d \) be a permutation of \([d]\) for which \(i_a < i_b \) if \(a_i^* > a_j^* \). Then \(\sigma \) is a linear extension of \(P \). Furthermore, by using \((\Pi)\), one has \(a_i^* = b_i^* \) for \(1 \leq i \leq d \). It then turn out that \(\sigma \) is also a linear extension of \(Q \), as required.

((ii) \(\Rightarrow \) (i)) Let \(\sigma = i_1 i_2 \cdots i_d \) be a linear extension of each of \(P \) and \(Q \). Then \(I_k = \{p_{i_1}, \ldots, p_{i_k}\} \) is a poset ideal of \(P \) and \(J_k = \{q_{i_1}, \ldots, q_{i_k}\} \) is a poset ideal of \(Q \) for \(1 \leq k \leq d \). Hence

\[
\pm e_{i_1}, \pm (e_{i_1} + e_{i_2}), \ldots, \pm (e_{i_1} + \cdots + e_{i_d})
\]
belong to $\Omega(P, -Q)$. Let $\Gamma \subset \mathbb{R}^d$ denote the convex polytope which is the convex hull of $[2]$. Since $\dim \Gamma = d$ and since the origin of \mathbb{R}^d belongs to the interior of Γ, it follows that the origin of \mathbb{R}^d belongs to the interior of $\Delta(P, -Q)$, as desired. \hfill \square

2. Quadratic Gröbner bases

Let, as before, $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be finite partially ordered sets. Let $K[t, t^{-1}, s] = K[t_1, \ldots, t_d, t_1^{-1}, \ldots, t_d^{-1}, s]$ denote the Laurent polynomial ring in $2d + 1$ variables over a field K. If $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}^d$, then t^α is the Laurent monomial $t_1^{\alpha_1} \cdots t_d^{\alpha_d}$. In particular $t^0 = s$. The toric ring of $\Omega(P, -Q)$ is the subring $K[\Omega(P, -Q)]$ of $K[t, t^{-1}, s]$ which is generated by those Laurent monomials t^α with $\alpha \in \Omega(P, -Q)$. Let

$$K[x, y, z] = K[\{x_I\}_{\emptyset \not\in I \in \mathcal{J}(P)} \cup \{y_J\}_{\emptyset \not\in J \in \mathcal{J}(Q)} \cup \{z\}]$$

denote the polynomial ring in $|\Omega(P, -Q)|$ variables over K and define the surjective ring homomorphism $\pi : K[x, y, z] \to K[\Omega(P, -Q)]$ by setting

- $\pi(x_I) = t^{\rho(I)}s$, where $\emptyset \not\in I \in \mathcal{J}(P)$;
- $\pi(y_J) = t^{-\rho(J)}s$, where $\emptyset \not\in J \in \mathcal{J}(Q)$;
- $\pi(z) = s$.

The toric ideal $I_{\Omega(P, -Q)}$ of $\Omega(P, -Q)$ is the kernel of π.

Let $<$ denote a reverse lexicographic order on $K[x, y, z]$ satisfying

- $z < x_I$ and $z < y_J$;
- $x_{I'} < x_I$ if $I' \subset I$;
- $y_{J'} < y_J$ if $J' \subset J$,

and \mathcal{G} the set of the following binomials:

(i) $x_I x_{I'} - x_{I \cap I'} x_{I \cup I'}$;
(ii) $y_J y_{J'} - y_{J \cap J'} y_{J \cup J'}$;
(iii) $x_I y_J - x_{I \setminus \{p_i\}} y_{J \setminus \{q_i\}}$,

where

- $x_\emptyset = y_\emptyset = z$;
- I and I' belong to $\mathcal{J}(P)$ and J and J' belong to $\mathcal{J}(Q)$;
- p_i is a maximal element of I and q_i is a maximal element of J.

Theorem 2.1. Work with the same situation as above. Suppose that P and Q possess a common linear extension. Then \mathcal{G} is a Gröbner basis of $I_{\Omega(P, -Q)}$ with respect to $<$.

Proof. It is clear that $\mathcal{G} \subset I_{\Omega(P, -Q)}$. In general, if $f = u - v$ is a binomial, then u is called the first monomial of f and v is called the second monomial of f. The initial monomial of each of the binomials (i) – (iii) with respect to $<$ is its first monomial. Let $\text{in}_<(\mathcal{G})$ denote the set of initial monomials of binomials belonging to \mathcal{G}. It follows from $[6]$ (0.1) that, in order to show that \mathcal{G} is a Gröbner basis
of $I_{\Omega(P,-Q)}$ with respect to $<$, what we must prove is the following: (♣) If u and v are monomials belonging to $K[x,y,z]$ with $u \neq v$ such that $u \not\in \langle \text{in}_{<}(G) \rangle$ and $v \not\in \langle \text{in}_{<}(G) \rangle$, then $\pi(u) \neq \pi(v)$.

Let u and v be monomials belonging to $K[x,y,z]$ with $u \neq v$. Write

$$u = z^\alpha x_{I_1}^{\xi_1} \cdots x_{I_a}^{\xi_a} y_{J_1}^{\nu_1} \cdots y_{J_b}^{\nu_b}, \quad v = z^\alpha' x_{I'_1}^{\xi'_1} \cdots x_{I'_a}^{\xi'_a} y_{J'_1}^{\nu'_1} \cdots y_{J'_b}^{\nu'_b},$$

where

- $\alpha \geq 0$, $\alpha' \geq 0$;
- $I_1, \ldots, I_a, I'_1, \ldots, I'_a \in \mathcal{J}(P) \setminus \{\emptyset\}$;
- $J_1, \ldots, J_b, J'_1, \ldots, J'_b \in \mathcal{J}(Q) \setminus \{\emptyset\}$;
- $\xi_1, \ldots, \xi_a, \nu_1, \ldots, \nu_b, \xi'_1, \ldots, \xi'_a, \nu'_1, \ldots, \nu'_b > 0$,

and where u and v are relatively prime with $u \not\in \langle \text{in}_{<}(G) \rangle$ and $v \not\in \langle \text{in}_{<}(G) \rangle$. Especially either $\alpha = 0$ or $\alpha' = 0$. Let, say, $\alpha = 0$. Thus

$$u = z^0 x_{I_1}^{\xi_1} \cdots x_{I_a}^{\xi_a} y_{J_1}^{\nu_1} \cdots y_{J_b}^{\nu_b}, \quad v = x_{I'_1}^{\xi'_1} \cdots x_{I'_a}^{\xi'_a} y_{J'_1}^{\nu'_1} \cdots y_{J'_b}^{\nu'_b}.$$

By using (i) and (ii), it follows that

- $I_1 \subset I_2 \subset \cdots \subset I_a, I_1 \neq I_2 \neq \cdots \neq I_a$;
- $J_1 \subset J_2 \subset \cdots \subset J_b, J_1 \neq J_2 \neq \cdots \neq J_b$;
- $I'_1 \subset I'_2 \subset \cdots \subset I'_a, I'_1 \neq I'_2 \neq \cdots \neq I'_a$;
- $J'_1 \subset J'_2 \subset \cdots \subset J'_b, J'_1 \neq J'_2 \neq \cdots \neq J'_b$.

Furthermore, by virtue of [2], it suffices to discuss u and v with $(a,a') \neq (0,0)$ and $(b,b') \neq (0,0)$.

Let A_i denote the power of t_i appearing in $\pi(x_{I_i}^{\xi_i} \cdots x_{I_a}^{\xi_a})$ and A'_i the power of t_i appearing in $\pi(x_{I'_i}^{\xi'_i} \cdots x_{I'_a}^{\xi'_a})$. Similarly let B_i denote the power of t_i^{-1} appearing in $\pi(y_{J_i}^{\nu_i} \cdots y_{J_b}^{\nu_b})$ and B'_i the power of t_i^{-1} appearing in $\pi(y_{J'_i}^{\nu'_i} \cdots y_{J'_b}^{\nu'_b})$.

Since P and Q possess a common linear extension, after relabeling the elements of P and Q, we assume that if $p_r < p_s$ in P, then $r < s$, and if $q_{r'} < q_{s'}$ in Q, then $r' < s'$.

Let $1 \leq j_* \leq d$ denote the biggest integer for which one has $A_{j*} \neq A'_{j*}$. Since $I_a \neq I'_a$, the existence of j_* is guaranteed. Let $j_* = d$ and, say, $A_d > A'_d$. Then $p_d \in I_a$. Since p_d is a maximal element of P and q_d is that of Q, by using (iii), it follows that q_d cannot belong to J_h. Hence $\pi(u) \neq \pi(v)$, as desired.

Let $j_* < d$ and $A_{j_*} > A'_{j_*}$. Let $1 \leq e \leq a$ denote the integer with $p_{j_*} \in I_e$ and $p_{j_*} \not\in I_{e-1}$. We claim that p_{j_*} is a maximal element of I_e. To see why this is true, let $p_{j_*} < p_h$ in I_e. Then $j_* < h$. Since both p_{j_*} and p_h belong to each of $I_e, I_{e+1}, \ldots, I_a$, it follows that $A_{j_*} = A_h$. Now, since $p_{j_*} < p_h$, one has $A'_{j_*} \geq A'_h$. Hence $A_h = A_{j_*} > A'_{j_*} \geq A'_h$. However, the definition of j_* says that $A_h = A'_h$, a contradiction. Hence p_{j_*} is a maximal element of I_e.

Now, suppose that $\pi(u) = \pi(v)$. Then $B_d = B'_d, \ldots, B_{j_*+1} = B'_{j_*+1}$ and $B_{j_*} > B'_{j_*}$. Then the above argument guarantees the existence of $J_{e'}$ for which q_{j_*} is a maximal element of $J_{e'}$. The fact that p_{j_*} is a maximal element of $I_{e'}$ and q_{j_*} is that of $J_{e'}$ contradicts (iii). As a result, one has $\pi(u) \neq \pi(v)$, as desired.

Theorem 2.1 is a far-reaching generalization of [5, Theorem 2.2]. We refer the reader to [5] and [8] for basic materials on normal Gorenstein Fano polytopes. As in [5, Corollary 2.3] and [8, Corollary 1.3], it follows that

Corollary 2.2. If P and Q possess a common linear extension, then the twinned order polytope $\Delta(P, -Q)$ is a normal Gorenstein Fano polytope.

3. Examples

We conclude this paper with a collection of examples. It is natural to ask, if, in general, the toric ideal of $I_{\Omega(P, -Q)}$ possesses a quadratic Gr"obner basis with respect to a reverse lexicographic order as in Theorem 2.1.

Example 3.1. In general, a toric ideal $I_{\Omega(P, -Q)}$ may not possess a quadratic Gr"obner basis with respect to a reverse lexicographic order $<$ introduced as above. Let $P = \{p_1, \ldots, p_5\}$ and $Q = \{q_1, \ldots, q_5\}$ be the following finite posets:

![Diagram of posets P and Q](image)

Since $p_1 < p_3$ and $q_3 < q_1$, it follows that no linear extension of P is a linear extension of Q. Then a routine computation guarantees that, for any reverse lexicographic order as in Theorem 2.1, the binomial

$$ (3) \quad x_{\{2\}}x_{\{1,2,3,4\}}y_{\{1,2,3,4,5\}} - x_{\{2,4\}}y_{\{4,5\}}z $$

belongs to the reduced Gr"obner basis of $I_{\Omega(P, -Q)}$ with respect to $<$. However, the toric ideal $I_{\Omega(P, -Q)}$ is generated by quadratic binomials. The S-polynomial of the binomials

$$ x_{\{2,4\}}x_{\{1,2,3\}} - x_{\{2\}}x_{\{1,2,3,4\}}, \quad x_{\{1,2,3\}}y_{\{1,2,3,4,5\}} - y_{\{4,5\}}z $$

belonging to a system of generators of $I_{\Omega(P, -Q)}$ coincided with the binomial (3).

Conjecture 3.2. Let P and Q be arbitrary finite posets with $|P| = |Q| = d$. Then the toric ideal $I_{\Omega(P, -Q)}$ is generated by quadratic binomials.

Let $\delta(\Delta(P, -Q))$ denote the δ-vector ([8, p. 79]) of $\Delta(P, -Q)$. It then follows that, if P and Q possess a common linear extension, then $\delta(\Delta(P, -Q))$ is symmetric and unimodal.
Example 3.3. Let $P = \{p_1, \ldots, p_d\}$ be a chain and $Q = \{q_1, \ldots, q_d\}$ an antichain. Then the δ-vector of $\Delta(P, -Q)$ is

\[
\begin{align*}
\delta_2 &= (1, 3, 1), \\
\delta_3 &= (1, 7, 7, 1), \\
\delta_4 &= (1, 15, 33, 15, 1), \\
\delta_5 &= (1, 31, 131, 131, 31, 1), \\
\delta_6 &= (1, 63, 473, 883, 473, 63, 1).
\end{align*}
\]

It seems likely that $\delta(\Delta(P, -Q))$ coincides with the Pascal-like triangle [1, pp. 11–12] with $r = 1$.

References

[1] P. Barry, General Eulerian polynomials as moments using exponential Riordan arrays, *J. Integer Seq.* 16 (2013), Article 13.9.6.

[2] T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, *in “Commutative Algebra and Combinatorics”* (M. Nagata and H. Matsumura, Eds.), Advanced Studies in Pure Math., Volume 11, North–Holland, Amsterdam, 1987, pp. 93 – 109.

[3] T. Hibi, “Algebraic Combinatorics on Convex Polytopes,” Carslaw Publications, Glebe NSW, Australia, 1992.

[4] T. Hibi, Ed., “Gröbner Bases: Statistics and Software Systems,” Springer, 2013.

[5] T. Hibi, K. Matsuda, H. Ohsugi and K. Shibata, Centrally symmetric configurations of order polytopes, arXiv:1409.4386

[6] H. Ohsugi and T. Hibi, Quadratic initial ideals of root systems, *Proc. Amer. Math. Soc.* 130 (2002), 1913–1922.

[7] H. Ohsugi and T. Hibi, Centrally symmetric configurations of integer matrices, *Nagoya Math. J.* 216 (2014), 153–170.

[8] H. Ohsugi and T. Hibi, Reverse lexicographic squarefree initial ideals and Gorenstein Fano polytopes, arXiv:1410.4786

[9] R. P. Stanley, Two poset polytopes, *Disc. Comput. Geom.* 1 (1986), 9–23.

(Takayuki Hibi) Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: hibi@math.sci.osaka-u.ac.jp

(Kazunori Matsuda) Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: kaz-matsuda@math.sci.osaka-u.ac.jp