Applications of Borel Distribution for a New Family of Bi-Univalent Functions Defined by Horadam Polynomials

S. R. SWAMY¹, ALINA ALB LUPAŞ², ABBAS KAREEM WANAS³, J. NIRMALA⁴

¹Department of Computer Science and Engineering, RV College of Engineering, Bengaluru - 560 059, Karnataka, INDIA
²Department of Mathematics and Computer Science, University of Oradea, str. Universitatii nr. 1, 410087 Oradea, ROMANIA
³Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Al-Qadisiyah, IRAQ
⁴Department of Mathematics, Maharani’s Science College for Women, Bengaluru - 560 001, INDIA

Abstract: - In this paper, by making use of Borel distribution we introduce a new family $G_{\Sigma}(\delta, \gamma, \lambda, \tau, r)$ of normalized analytic and bi-univalent functions in the open unit disk U, which are associated with Horadam polynomials. We establish upper bounds for the initial Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ of functions belonging to the analytic and bi-univalent function family which we have introduced here. Furthermore, we establish the Fekete-Szegö problem of functions in this new family.

Key-Words: - Bi-univalent function, Bazilevič function, λ-Pseudo-starlike function, Borel distribution, Horadam polynomials, Upper bounds, Fekete-Szegö problem.

Received: May 28, 2021. Revised: October 31, 2021. Accepted: November 12, 2021. Published: December 1, 2021.

1 Introduction

Indicate by \mathcal{A}, the collection of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ that have the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \quad (1)$$

Further, assume that S stands for the sub-collection of the set \mathcal{A} containing of functions in U which are univalent in U.

A function $f \in \mathcal{A}$ is called Bazilevič function in U if (see [26])

$$\text{Re} \left\{ \frac{z^{1-\gamma} f'(z)}{(f(z))^{1-\gamma}} \right\} > 0, \quad (z \in U, \gamma \geq 0).$$

A function $f \in \mathcal{A}$ is called λ-pseudo-starlike function in U if (see [30])

$$\text{Re} \left\{ \frac{z (f'(z))^\lambda}{f(z)} \right\} > 0, \quad (z \in U, \lambda \geq 1).$$

The elementary distributions such as the Poisson, the Pascal, the Logarithmic, the Binomial, the beta negative binomial have been partially studied in Geometric Function Theory from a theoretical point of view (see for example [6, 11, 22, 24, 40]).

Very recently, Wanas and Khutgar [12] introduced the following power series whose coefficients are probabilities of the Borel distribution:

$$M(\tau, z) = z + \sum_{n=2}^{\infty} \frac{(\tau(n-1))^{n-2} e^{-\tau(n-1)}}{(n-1)!} z^n \quad (z \in U; \ 0 < \tau \leq 1).$$

We note by the familiar Ratio Test that the radius of convergence of the above series is infinity.
The linear operator $B_\tau : A \rightarrow A$ is defined as follows (see [42]):

$$B_\tau f(z) = \mathcal{M}(\tau, z) \ast f(z) = z + \sum_{n=2}^{\infty} \frac{(\tau n - 1)^{n-1} e^{-\tau(n-1)}}{(n-1)!} a_n z^n \in U,$$

where (\ast) indicate the Hadamard product of two series.

According to the Koebe One-Quarter Theorem [10] every function $f \in S$ has an inverse f^{-1} defined by $f^{-1}(f(z)) = z$, $(z \in U)$ and $f(f^{-1}(w)) = w, |w| < r_0(f), r_0(f) \geq \frac{1}{2}$, where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + \left(2a_2^2 - a_3\right) w^3 - \left(5a_2^3 - 5a_2 a_3 + a_4\right) w^4 + \cdots . \quad (2)$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ stands for the class of bi-univalent functions in U given by (1).

Srivastava et al. [29] have actually revived the study of analytic and bi-univalent functions in recent years, it was followed by such works as those by Bulut [3], Adegani et al. [2], Gönay et al. [12], Srivastava and Wanas [30] and others (see, for example [4, 13, 16, 19, 23, 25, 27, 31, 34, 35, 36, 37, 38, 39, 43]).

We notice that the class Σ is not empty. For example, the functions $z, \frac{z}{1-z}, -\log(1-z)$ and $\frac{1}{2} \log \frac{1+z}{1-z}$ are members of Σ. However, the Koebe function is not a member of Σ. Until now, the coefficient estimate problem for each of the following Taylor-Maclaurin coefficients $|a_n|, (n = 3, 4, \cdots)$ for functions $f \in \Sigma$ is still an open problem.

Let the functions f and g be analytic in U. We say that the function f is subordinate to g, if there exists a Schwarz function ω analytic in U with $\omega(0) = 0$ and $|\omega'(z)| \leq 1 \ (z \in U)$ such that $f(z) = g(\omega(z))$. This subordination is denoted by $f \prec g$ or $f(z) \prec g(z) \ (z \in U)$. It is well known that (see [21]), if the function g is univalent in U, then $f \prec g$ if and only if $f(0) = g(0)$ and $f(U) \subset g(U)$.

The Horadam polynomials $h_n(r)$ are defined by the following repetition relation (see [14]):

$$h_n(r) = prh_{n-1}(r) + qh_{n-2}(r) \quad (3)$$

$$r \in \mathbb{R}, n \in \mathbb{N} = \{1, 2, 3, \cdots\},$$

with $h_1(r) = a$ and $h_2(r) = br$, for some real constant a, b, p and q. The characteristic equation of repetition relation (3) is $t^2 - prt - q = 0$. This equation has two real roots $x = \frac{pr + \sqrt{pr^2 + 4q}}{2}$ and $y = \frac{pr - \sqrt{pr^2 + 4q}}{2}$.

Remark 2.1. By selecting the particular values of a, b, p and q, the Horadam polynomial $h_n(r)$ reduces to several polynomials. Some of them are illustrated below:

1. Taking $a = b = p = q = 1$, we obtain the Fibonacci polynomials $F_n(r)$;
2. Taking $a = 2$ and $b = p = q = 1$, we attain the Lucas polynomials $L_n(r)$;
3. Taking $a = q = 1$ and $b = p = 2$, we have the Pell polynomials $P_n(r)$;
4. Taking $a = b = p = 2$ and $q = 1$, we get the Pell-Lucas polynomials $Q_n(r)$;
5. Taking $a = b = 1, p = 2$ and $q = -1$, we obtain the Chebyshev polynomials $T_n(r)$ of the first kind;
6. Taking $a = 1, b = p = 2$ and $q = -1$, we have the Chebyshev polynomials $U_n(r)$ of the second kind.

These polynomials, the families of orthogonal polynomials and other special polynomials, as well as their generalizations, are potentially important in a variety of disciplines in many of sciences, especially in the mathematics, statistics and physics. For more information associated with these polynomials see [13, 14, 17, 18].

The generating function of the Horadam polynomials $h_n(r)$ (see [15]) is given by

$$\Pi(r, z) = \sum_{n=1}^{\infty} h_n(r) z^n = \frac{a + (b - ap)r z}{1 - pr z - qz^2}. \quad (4)$$

Srivastava et al. [28] have studied the Horadam polynomials in a similar context involving analytic and bi-univalent functions, it was followed by such works as those by Al-Amouz [3], Wanas and Alb Lupaş [43], Abirami et al. [1] and others (see, for example, [4, 13, 16, 19, 23, 32, 33, 39, 43]).

In this paper we define a subclass $G_{S}(\delta, \gamma, \lambda, \tau, r)$ of normalized analytic and bi-univalent function using Borel distribution and Horadam polynomial $h_n(r)$. We obtain Taylor-Maclaurin coefficient inequalities for functions belonging to the defined subclass $G_{S}(\delta, \gamma, \lambda, \tau, r)$ and study the famous Fekete-Szegő problem.

2 Main Results

We begin this section by defining the family $G_{S}(\delta, \gamma, \lambda, \tau, r)$ as follows:

Definition 2.1. For $0 \leq \delta \leq 1$, $\gamma \geq 0$, $\lambda \geq 1$, $0 < \tau \leq 1$ and $r \in \mathbb{R}$, a function $f \in \Sigma$ is said to be in the family $G_{S}(\delta, \gamma, \lambda, \tau, r)$ if it satisfies the
subordinations:
\[(1 - \delta) z^{1-\gamma} \frac{(B_r f(z))'}{(B_r f(z))^{1-\gamma}} + \delta \frac{z ((B_r f(z))')}{(B_r f(z))^{1-\gamma}} \]
\[\ll \Pi(r, z) + 1 - a\]
and
\[(1 - \delta) w^{1-\gamma} \frac{(B_r g(w))'}{(B_r g(w))^{1-\gamma}} + \delta \frac{w ((B_r g(w))')}{(B_r g(w))^{1-\gamma}} \]
\[\ll \Pi(r, w) + 1 - a\]
where a is real constant and the function \(g = f^{-1}\) is given by (3).

Note: \(\theta = (1 - \delta)(\gamma + 1) + \delta(2\lambda - 1)\) is used throughout the paper unless otherwise mentioned.

Theorem 2.1. For \(0 \leq \delta \leq 1, \gamma \geq 0, \lambda \geq 1, 0 < \tau \leq 1\) and \(r \in \mathbb{R}\), let \(f \in \mathcal{A}\) be in the family \(\mathcal{G}_\Sigma(\delta, \gamma, \lambda, \tau, r)\). Then
\[|a_2| \leq \frac{e^{-\tau} |br| \sqrt{2|br|}}{\sqrt{|(\varphi(\delta, \gamma, \lambda, \tau)b - 2p\theta)| br^2 - 2qab^2}}\]
and
\[|a_3| \leq \frac{e^{2\tau} |br|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]} + \frac{e^{2\tau} b^2}{\theta^2},\]
where
\[\varphi(\delta, \gamma, \lambda, \tau) = (1 - \delta)(\gamma + 2)(4\tau + \gamma - 1) + 2\delta(2\tau (3\lambda - 1) + 2\lambda(\lambda - 2) + 1)\]

Proof Let \(f \in \mathcal{G}_\Sigma(\delta, \gamma, \lambda, \tau, r)\). Then there are two analytic functions \(u, v : U \rightarrow \mathbb{U}\) given by
\[u(z) = u_1 z + u_2 z^2 + u_3 z^3 + \cdots \quad (z \in U)\]
and
\[v(w) = v_1 w + v_2 w^2 + v_3 w^3 + \cdots \quad (w \in U)\]
with \(u(0) = v(0) = 0, |u(z)| < 1, |v(w)| < 1, z, w \in U\) such that
\[(1 - \delta) z^{1-\gamma} \frac{(B_r f(z))'}{(B_r f(z))^{1-\gamma}} + \delta \frac{z ((B_r f(z))')}{(B_r f(z))^{1-\gamma}} = \Pi(r, u(z)) + 1 - a\]
and
\[(1 - \delta) w^{1-\gamma} \frac{(B_r g(w))'}{(B_r g(w))^{1-\gamma}} + \delta \frac{w ((B_r g(w))')}{(B_r g(w))^{1-\gamma}} = \Pi(r, v(w)) + 1 - a\]
Or, equivalently
\[(1 - \delta) z^{1-\gamma} \frac{(B_r f(z))'}{(B_r f(z))^{1-\gamma}} + \delta \frac{z ((B_r f(z))')}{(B_r f(z))^{1-\gamma}} = 1 + h_1(r) + h_2(r)u_1(z) + h_3(r)u_2^2(z) + \cdots \]
and
\[(1 - \delta) w^{1-\gamma} \frac{(B_r g(w))'}{(B_r g(w))^{1-\gamma}} + \delta \frac{w ((B_r g(w))')}{(B_r g(w))^{1-\gamma}} = 1 + h_1(r) + h_2(r)v_1(w) + h_3(r)v_2^2(w) + \cdots \]
Combining (3), (7), (8) and (9) yields
\[(1 - \delta) z^{1-\gamma} \frac{(B_r f(z))'}{(B_r f(z))^{1-\gamma}} + \delta \frac{z ((B_r f(z))')}{(B_r f(z))^{1-\gamma}} = 1 + h_2(r)v_1 w + \left[h_2(r) v_2 + h_3(r) v_1^2\right] w^2 + \cdots \]
It is quite well-known that if \(|u(z)| < 1\) and \(|v(w)| < 1, z, w \in U\), then
\[|u_i| \leq 1 \quad \text{and} \quad |v_i| \leq 1 \quad \text{for all} \quad i \in \mathbb{N}.\]
Comparing the corresponding coefficients in (10) and (11), after simplifying, we have
\[[(1 - \delta)(\gamma + 1) + \delta(2\lambda - 1)] e^{-\tau} a_2 = h_2(r) u_1, \]
\[2\tau \left[(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)\right] e^{-2\tau} a_3 + \left[\frac{1}{2} (1 - \delta)(\gamma + 2)(\gamma - 1) + \delta(2\lambda(\lambda - 2) + 1)\right] e^{-2\tau} a_2^2 = h_2(r) u_2 + h_3(r) u_1^2, \]
\[\left[((1 - \delta)(\gamma + 1) + \delta(2\lambda - 1)) e^{-\tau} a_2 = h_2(r) v_1\right.\]
\[\left.\left(1 - \delta)(\gamma + 1) + \delta(2\lambda - 1)\right] e^{-\tau} a_2 = h_2(r) v_1\right.\]
and
\[2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] e^{-2\tau} (2a_2^2 - a_3) + \]
\[\frac{1}{2} (1 - \delta)(\gamma + 2)(\gamma - 1) + \delta (2\lambda(\lambda - 2) + 1)] e^{-2\tau} a_2^2 \]
\[= h_2(r)v_2 + h_3(r)v_2^2. \]
(16)

It follows from (13) and (15) that
\[u_1 = -v_1 \]
(17)

and
\[2\theta^2 e^{-2\tau} a_2^2 = h_2^2(r)(u_1^2 + v_1^2). \]
(18)

If we add (14) to (16), we find that
\[\varphi(\delta, \gamma, \lambda, \tau) | e^{-2\tau} a_2^2 = h_2(r)(u_2 + v_2) + h_3(r)(u_2^2 + v_2^2), \]
(19)

where \(\varphi(\delta, \gamma, \lambda, \tau) \) is given by (13).

Substituting the value of \(u_1^2 + v_1^2 \) from (18) in the right hand side of (19), we deduce that
\[a_2^2 = \frac{e^{2\tau} h_2^2(r)(u_2 + v_2)}{h_2^2(r)\varphi(\delta, \gamma, \lambda, \tau) - 2h_3(r)\theta^2}. \]
(20)

Further computations using (3), (12) and (20), we obtain
\[|a_2| \leq \frac{e^{2\tau} |b_r| \sqrt{2/|b_r|}}{\sqrt{||\varphi(\delta, \gamma, \lambda, \tau)b - 2\theta^2b_r - 2\varphi(\theta)|.}} \]

Next, if we subtract (16) from (14), we can easily see that
\[2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] e^{-2\tau} (a_3 - a_2^2) = \]
\[h_2(r)(u_2 - v_2) + h_3(r)(u_2^2 - v_2^2). \]
(21)

In view of (17) and (18), we get from (21)
\[a_3 = \frac{e^{2\tau} h_2(r)(u_2 - v_2)}{2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] + e^{2\tau} h_3^2(r)(u_1^2 + v_1^2).} \]

Thus applying (3), we obtain
\[|a_3| \leq \frac{e^{2\tau} |b_r|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] + \frac{e^{2\tau} \theta^2}{2\tau}}. \]

This completes the proof of Theorem 2.1.

In the next theorem, we discuss the Fekete-Szegő problem for the family \(G_{\Sigma}(\delta, \gamma, \lambda, \tau, r) \).

Theorem 2.2. For \(0 \leq \delta \leq 1, \gamma \geq 0, \lambda \geq 1, 0 < \tau \leq 1 \) and \(r, \mu \in \mathbb{R} \), let \(f \in A \) be in the family \(G_{\Sigma}(\delta, \gamma, \lambda, \tau, r) \). Then
\[|a_3 - \mu a_2^2| \leq \]
\[\frac{e^{2\tau} |b_r|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}, \]
\[for \ |\mu - 1| \leq \frac{\|\varphi(\delta, \gamma, \lambda, \tau)b - 2\theta^2b_r - 2\varphi(\theta)|}{2\tau e^{2\tau} [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}, \]
\[\frac{2e^{2\tau} |b_r| |\mu - 1|}{2\tau e^{2\tau} [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}, \]
\[for \ |\mu - 1| \geq \frac{\|\varphi(\delta, \gamma, \lambda, \tau)b - 2\theta^2b_r - 2\varphi(\theta)|}{2\tau e^{2\tau} [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}. \]

Proof. It follows from (20) and (21) that
\[a_3 - \mu a_2^2 = \frac{e^{2\tau} h_2(r)(u_2 - v_2)}{2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] + (1 - \mu) a_2^2 + e^{2\tau} h_2(r)(u_2 - v_2)} \]
\[= \frac{2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] + e^{2\tau} h_2^2(r)(u_2 + v_2)(1 - \mu)}{h_2^2(r)\varphi(\delta, \gamma, \lambda, \tau) - 2h_3(r)\theta^2} \]
\[= h_2(r) \left[\psi(\mu, r) + \frac{e^{2\tau}}{2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]} v_2 \right] \]
\[\psi(\mu, r) = \frac{e^{2\tau} h_2^2(r)(1 - \mu)}{h_2^2(r)\varphi(\delta, \gamma, \lambda, \tau) - 2h_3(r)\theta^2}. \]

According to (3), we find that
\[|a_3 - \mu a_2^2| \leq \]
\[\frac{e^{2\tau} |b_r|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}; \]
\[\frac{2 |b_r| |\psi(\mu, r)|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}; \]
\[\frac{2 |b_r| |\psi(\mu, r)|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}. \]

After some computations, we obtain
\[|a_3 - \mu a_2^2| \leq \]
\[\frac{e^{2\tau} |b_r|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}; \]
\[\frac{2 |b_r| |\psi(\mu, r)|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}; \]
\[\frac{2 |b_r| |\psi(\mu, r)|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}. \]
Putting $\mu = 1$ in Theorem 2, we obtain the following result:

Corollary 2.1. For $0 \leq \delta \leq 1$, $\gamma \geq 0$, $\lambda \geq 1$, $0 < \tau \leq 1$ and $r \in \mathbb{R}$, let $f \in \mathcal{A}$ be in the family $\mathcal{G}_S(\delta, \gamma, \lambda, \tau, r)$. Then

$$|a_4 - a_2^2| \leq \frac{e^{2\tau} |br|}{\tau [(1-\delta)(\gamma+2)+\delta(3\lambda-1)]}.$$

3 Conclusion

The fact that we can find many unique and effective uses of a large variety of interesting functions and specific polynomial in Geometric Function Theory provided the primary inspiration for our analysis in this article. The primary objective was to create a new family $\mathcal{G}_S(\delta, \gamma, \lambda, \tau, r)$ of normalized analytic and bi-univalent function defined by Borel distribution and also using the Horadam polynomial $h_n(x)$, which are given by the recurrence relation (3) and generating function $\Pi(r,z)$ in (4). We generate Taylor-Maclaurin coefficient inequalities for functions belonging to this newly introduced bi-univalent function family $\mathcal{G}_S(\delta, \gamma, \lambda, \tau, r)$ and viewed the famous Fekete-Szegő problem.

References:

[1] C. Abirami, N. Magesh and J. Yamini, Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, *Abstr. Appl. Anal.*, **2020** (2020), Article ID 7391058, 1-8.

[2] E. A. Adeegan, S. Bulut and A. A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, *Bull. Korean Math. Soc.*, **55**(2), (2018), 405-413.

[3] A. G. Al-Amoush, Coefficient estimates for certain subclass of bi functions associated with the Horadam Polynomials, *arXiv*:1812.10589v1, (2018), 1-7.

[4] A. G. Al-Amoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials, *Malaya J. Mat.*, **7**, (2019), 618-624.

[5] A. G. Al-Amoush, Coefficient estimates for a new subclasses of λ-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials, *Turk. J. Math.*, **43**, (2019), 2865-2875.

[6] Ş. Altunkaya and S. Yalçın, Poisson distribution series for certain subclasses of starlike functions with negative coefficients, *Annals of Oradea University Mathematics Fascicola*, **24**(2), (2017), 5-8.

[7] K. O. Babalola, On λ-Pseudo-Starlike Functions, *J. Class. Anal.*, **3**(2), (2013), 137-147.

[8] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions, *Turk. J. Math.*, **40**, (2016), 1386-1397.

[9] S. Bulut and A. K. Wanas, Coefficient estimates for families of bi-univalent functions defined by Ruscheweyh derivative operator, *Math. Moravica*, **25**(1), (2021), 71-80.

[10] P. L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[11] S. M. El-Deeb, T. Bulboaca and J. Dziok, Pascail distribution series connected with certain subclasses of univalent functions, *Kyungpook Math. J.*, **59**(2), (2019), 301-314.

[12] H. O. Güney, G. Murugusundaramoorthy and J. Sokół, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, *Acta Univ. Sapientiae, Mathematica*, **10**(1)(2018), 70-84.

[13] A. F. Horadam, Jacobsthal Representation Polynomials, *The Fibonacci Quarterly*, **35**(2), (1997), 137-148.

[14] A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, *The Fibonacci Quarterly*, **23**(1), (1985), 7-20.

[15] T. Hörcümc and E. G. Kocer, On some properties of Horadam polynomials, *Int. Math. Forum*, **4**, (2009), 1243-1252.

[16] S. Joshi, S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, *J. Egyptian Math. Soc.*, **24**, (2016), 522-525.

[17] T. Koshy, *Fibonacci and Lucas Numbers with Applications*, A Wiley- Interscience Publication, New York, 2001.

[18] A. Lupas, A Guide of Fibonacci and Lucas Polynomials, *Octagon Mathematics Magazine*, **7**(1), (1999), 2-12.

[19] N. Magesh and S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, *Afr. Mat.*, **29** (2018), 203-209.
[20] N. Magesh, J. Yamini and C. Abirami, Initial bounds for certain classes of bi-univalent functions defined by Horadam Polynomials, arXiv:1812.04464v1, (2018), 1-14.

[21] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.

[22] W. Nazeer, Q. Mehmood, S. M. Kang and A. U. Haq, An application of Binomial distribution series on certain analytic functions, J. Comput. Anal. Appl., 26, (2019), 11-17.

[23] Á. O. Páll-Szabó and A. K. Wanas, Coefficient estimates for some new classes of bi-Bazilević functions of Ma-Minda type involving the Sălăgean integro-differential operator, Quaestiones Mathematicae, 44(4), (2021), 495-502.

[24] S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27, (2016), 10-21.

[25] T. G. Shaba and A. K. Wanas, Coefficient bounds for a new family of bi-univalent functions associated with (U,V)-Lucas polynomials, Int. J. Nonlinear Anal. Appl., 13(1), (2022), 615-626.

[26] R. Singh, On Bazilević functions, Proc. Amer. Math. Soc., 38(2), 261-271.

[27] H. M. Srivastava, Ş. Altinkaya and S. Yalçın, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat 32, (2018), 503-516.

[28] H. M. Srivastava, Ş. Altinkaya and S. Yalçın, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43, (2019), 1873-1879.

[29] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain Subclasses of Analytic and Bi-Univalent Functions, Appl. Math. Lett., 23, (2010), 1188-1192.

[30] H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59(3), (2019), 493-503.
[41] A. K. Wanas and L.-I. Cotîrlǎ, Initial coefficient estimates and Fekete–Szegö inequalities for new families of bi-univalent functions governed by (p-q)-Wanas operator, *Symmetry*, **13**, (2021), Art. ID 2118, 1-17.

[42] A. K. Wanas and J. A. Khuttar, Applications of Borel distribution series on analytic functions, *Earthline J. Math. Sci.*, **4**, (2020), 71-82.

[43] A. K. Wanas and A. Alb Lupas, Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions, *Journal of Physics: Conf. Series*, **1294**, (2019), 1-6.

[44] A. K. Wanas and A. H. Majeed, On subclasses of analytic and m-fold symmetric bi-univalent functions, *Iranian J. Math. Sci. Inform.*, **15**(2), (2020), 51-60.

[45] A. k. Wanas and S. Yalçin, Horadam polynomials and their applications to new family of bi-univalent functions with respect to symmetric conjugate points, *Proyecciones (Antofagasta, On line)*, **40**, (2021), 107-116.

Contribution of individual authors to the creation of a scientific article (ghostwriting policy)

S. R. Swamy - conceptualization, methodology, formal analysis.

Alina Alb Lupas - writing—review and editing, supervision, funding acquisition.

Abbas Kareem Wanas - software, validation, data curation, writing—original draft preparation, project administration.

J. Nirmala - investigation, resources, visualization.

All authors have read and agreed to the published version of the manuscript.

Follow: www.wseas.org/multimedia/contributor-role-instruction.pdf

Sources of funding for research

presented in a scientific article or scientific article itself

Report potential sources of funding if there is any

Creative Commons Attribution

License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en_US