Rostral Geometric Morphometrics in a Hippolytid Shrimp: Are There Elements That Reflect the Homozygous/Heterozygous State of Its Morphotypes?

Chryssa Anastasiadou 1,*, Roman Liasko 2, Athanasios A. Kallianiotis 1 and Ioannis Leonardos 2

1 Hellenic Agricultural Organization “Demeter”, Fisheries Research Institute, Nea Peramos, 64007 Kavala, Greece
2 Laboratory of Zoology, Department of Biological Applications and Technology, School of Health Sciences, University Campus, University of Ioannina, 45110 Ioannina, Greece
* Correspondence: anastasiadou@inale.gr

Abstract: Geometric morphometry has been widely used in decapods’ studies for taxonomic needs, and for eco-morphological adaptation and intraspecific variations recordings. Among the 40 species of the genus Hippolyte, the Mediterranean endemic Hippolyte sapphica is the only one with two distinct conspecific morphotypes, without intermediate forms: morph-A with a long, dentate and morph-B with a very short, toothless rostrum. Previous studies have shown that the “rostral loss” in morph-B seems to be controlled by a single pair of alleles, with a complete dominance of allele b, expressed in morph-B. We aim to elucidate morphotypes’ rostral pattern in relation to size, sex, and season. Shrimps were collected during two different (dry/wet) seasons from two sites: s.1 with a mixed (morph-A and B) and s.2 with a pure, unmixed (morph-A) species populations. After morph and sex identification, individuals were photographed and geometric morphometric analysis of rostrum was carried out on a set of landmarks. The data suggest that only morph-A rostral shape seems to be influenced by shrimp’s size, sex, and time of the year. Interestingly, two distinct morph-B clusters appear, which probably correspond to the homozygous and heterozygous state (BB and BA) of the gene site that controls the species morphotypes’ phenology.

Keywords: Hippolytidae; rostral dimorphism; morphotypes; geometric morphometrics; Mediterranean

1. Introduction

Throughout the study of shape, various approaches have been proposed for the analysis and the quantification of form patterns in biological systems. Geometric Morphometrics (GM) emerged as powerful technique to compare organisms’ shape and identify its causes [1–4]. Particularly in freshwater and marine crustaceans, morphometric analyses are widely used for the study of intra- and inter species population variability and asymmetries [5–11].

Hippolytid species are included in one of the oldest genera, with interesting taxonomic history and a worldwide distribution with the exception of Antarctica waters [12,13] (Figure 1, Table 1). Almost 208 years ago Leach established the new genus Hippolyte Leach, 1814 with the monotypic H. varians. Rafinesque (1814) [14] followed with Carida viridis, which probably corresponded to H. inermis Leach, 1815 [15] and Hippolyte coerulescens (Fabricius, 1775) [16] was then described as Astacus coerulescens [12]. The first complete genus revision in Atlanto-Mediterranean region with a catalogue of the world species was presented by d’Udekem d’Acoz (1996) [12]. Till now, the genus comprises 40 species [17–19] (Figure 1, Table 1), many of them with considerable rostral variation. Rostral structure has a strong taxonomic value [20,21], assists in the buoyancy of the body [9], and eliminates predation [22–24]. Its variability is usually related to environmental conditions [25], to sexual dimorphism [9,12,26], and to reproductive maturation [27]. A remarkably high
rostral variability in shape and dentition has been observed in many hippolytid shrimps (Table 1). For example, *H. garciarasoi*, *H. leptocerus*, and *H. varians* are the species with obvious types in rostral shape and dorso-ventral dentition, while *H. inermis*, *H. niezabitowskii* and *H. prideauxiana* are variable only in the meristic characters and the position of the rostral dentition (Table 1). Usually, the observed variability is continuous with intermediate forms or morphotypes, which are dispersed along the species’ distributional ranges. The only species of the genus with the most characteristic sharp dimorphic rostral system is *H. sapphica*.

Figure 1. World map indicating the geographical distribution of *Hippolyte* species as a percentage % to the total number (species number/total number), according to the main zoogeographic regions. PA: Palaearctic, NA: Nearctic, NT: Neotropical, AT: Afrotropical, OR: Oriental, AU: Australasian, PAC: Pacific Oceanic Islands, ANT: Antarctic. Modified by [28].
Table 1. Zoogeographical distribution, habitat characteristics, rostral formula and body lengths for *Hippolyte* species. Rostral formula: a(b)/c(d), a: dorsal teeth, b: postrostral teeth, c: ventral teeth, d: usual number of ventral teeth. TL: total length, CL: carapace length, RL: rostral length, DD: data deficient.

Taxa	Distribution	Depth Range (m)	Habitat	TL (mm)	RL/CL	Rostral Formula	Reference(s)	Rostral Variability	
Hippolyte acuta (Stimpson, 1860)	Pacific Ocean (N, S Japan, Korea)	2 to 5	eelgrass bed	DD	1.03–1.36	1(0)/0–4 (usually 1–2)	no	[12,29]	
Hippolyte australiensis (Stimpson, 1860)	Australia	0 to 15	tufted algae	18 to 25	1	0(0)/4–6 (rarely 3)	no	[12,30]	
Hippolyte bifidirostris (Miers, 1876)	New Zealand	18 to 36	DD	DD	1	rostrum very long, strongly dentate, with bifid/trifid rostral apex	no	[12,30,31]	
Hippolyte californiensis Holmes, 1895	Northeastern Pacific Ocean	Intertidal	seagrass, gorgonians	38	1.16	3(0)/4–5	no	[32,33]	
Hippolyte caradina Holthuis, 1947	Pacific Ocean	DD	DD	DD	2(1)/1	no	[12,30]		
Hippolyte cataphracta d’Udekem d’Acoz, 2007	S. Africa	6 to 8	*Tropiometra carinata*	22	0.9	1(0)/2–3	yes, males with slender rostrum, rostral formula: 3(0)/0–1	no	[34]
Hippolyte chacei Gan & Li, 2019	Gulf of Guinea, tropical E Atlantic Ocean	34 to 37	*Tanacetipathes* spinescens, *Antipathella* wollastonii, *Muriceopsis* tuberculata	DD	1	3(0)/2	yes, male rostral formula: 1(0)/4	[31]	
Hippolyte clarki Chace, 1951	Hainan Island, NS China Sea	1 to 3	Sargassum sp.	DD	0.9	0(0)/4	yes, male rostral formula: 1(0)/4	[35]	
Hippolyte coerulescens (J.C. Fabricius, 1775)	NE Pacific Ocean	Intertidal to 30	seagrass, gorgonians	28	0.8 to 1.4	3(0)/4	no	[38]	
Hippolyte commensalis Kemp, 1925	Atlantic Ocean	Sublittoral	Drifting substrates, mud-sand flats, Sargassum natans	16.5	0.7–0.9	1(0–2)(0)/1(3)	no	[12]	
Hippolyte edmondsoni Hayashi, 1981	Indo-Pacific Ocean	0.5 to 30	*Xeniia* sp.	DD	0.7	0(0)/1	no	[36]	
Hippolyte dossea (Marin et al., 2011)	Izu Islands, Japan, Ball, and N Great Barrier Reef of Australia	5 to 8	*Steneopeltisa japonica*, *Eflatounaria* sp.	DD	0.5	0(0)/1	no	[36]	
Hippolyte edmondsoni Hayashi, 1981	Indo-Pacific Ocean, Hawaiian Islands	DD	DD	10.3	<0.5	0(1)/0	no	[12,37]	
Taxa	Distribution	Depth Range (m)	Habitat	TL (mm)	RL/CL	Rostral Formula	Rostral Variability	References	
-----------------------------	-----------------------------------	-----------------	---	---------	-------	-----------------	--	------------	
Hippolyte garciarasoi d’Udekem d’Acoz, 1996	Atlantic Ocean, Mediterranean Sea	0 to 15	photophilous algae, Posidonia oceanica, Deep photophile algae, Coralligen, marine caves, coastal detritical bottoms Posidonia oceanica, Cymodocea nodosa, Zostera marina, Zostera noltii, and photophilous algae (Ulva spp.)	15	0.6–0.8	2(1–3)(1)/1–4	yes, in shape and dentition	[12]	
Hippolyte holthuisi Zariquiey Alvarez, 1953	Mediterranean Sea	7 to 50	Deep photophile algae, Coralligen, marine caves, coastal detritical bottoms Posidonia oceanica, Cymodocea nodosa, Zostera marina, Zostera noltii, and photophilous algae (Ulva spp.)	19	0.9	2(0)/2	no	[38,39]	
Hippolyte inermis Leach, 1815	Atlantic Ocean, Mediterranean Sea	1 to 30	Posidonia oceanica, Cymodocea nodosa, Zostera marina, Zostera noltii, and photophilous algae (Ulva spp.)	Atlantic: to 50.1 Mediterranean: to 39.5	1.1	0–1(2)(0)/2–3(0–6)	no	[12]	
Hippolyte jarvinensis Hayashi, 1981	Central Pacific Ocean, Jarvis and Line Islands, Solomon Islands St. Helena in the tropical South-Central Atlantic Ocean	DD DD	Macrorhynchia filamentos, Plumaphyes pennacea Zostera capensis, Thalassodendron ciliatum, Halodule uninervis, Thalassia hemprichii, Halodule wrightii	8	0.7	1(0)/1	no	[12,37]	
Hippolyte karenae Fransen & De Grave, 2019	Atlantic Ocean, Mediterranean Sea	15 to 20.4	Photophilic algae: Laurencia pinnatifida, Gelidium sesquipetale Photophilic algae: small seagrasses, Posidonia oceanica, Leptometa phalangium, L. celtica Muriceopsis tuberculata	DD	<1	3(0)/2	yes, males with slender rostrum, rostral formula: 1–3(0)/0–1	[17]	
Hippolyte kraussiana (Stimpson, 1860)	Indo-Pacific Ocean, Mozambique	50	Zostera capensis, Thalassodendron ciliatum, Halodule uninervis, Thalassia hemprichii, Halodule wrightii	DD	DD	DD	DD	[40]	
Hippolyte lagarderei d’Udekem d’Acoz, 1995	Atlantic Ocean	intertidal	Photophilic algae: Laurencia pinnatifida, Gelidium sesquipetale Photophilic algae: small seagrasses, Posidonia oceanica, Leptometa phalangium, L. celtica Muriceopsis tuberculata	22	0.67 to 0.78	0–2(0)/0–3	yes, in shape inclination	[12]	
Hippolyte leptocerus (Heller, 1863)	Atlantic Ocean, Mediterranean Sea	intertidal to 30	Posidonia oceanica, Leptometa phalangium, L. celtica Muriceopsis tuberculata	Atlantic: 17.7 to 22.4 Mediterranean: 11 to 15	0.4–0.5	2–3(1–6)/1–4(0–4)	yes, in shape and dentition	[12]	
Hippolyte leptometrae Ledoyer, 1969	Atlantic Ocean, Mediterranean Sea	95 to 130	Leptometa phalangium, L. celtica Muriceopsis tuberculata	18	1.4	2(0)/2	no	[12,34]	
Hippolyte longiallex d’Udekem d’Acoz, 2007	NE Atlantic Ocean	35 to 40	Leptometa phalangium, L. celtica Muriceopsis tuberculata	8	0.7	2–3(0)/1–2	no	[34]	
Taxa	Distribution	Depth Range (m)	Habitat	TL (mm)	RL/CL	Rostral Formula	Rostral Variability	References	
----------------------------------	---------------------------------------	-----------------	--------------------------------	---------	-------	-----------------	---------------------	------------	
Hippolyte multicolorata	Yaldwyn, 1971 Pacific Ocean	intertidal	algae	8.5	1.1	0(0)/4–9, trifid apex	no	[41]	
Hippolyte nanhaiensis	Gan & Li, 2019 Xisha Islands, South China Sea	1 to 3	Galaxaura sp., Halimeda sp.	DD	0.7	2(0)/1	no	[31]	
Hippolyte ngi	Gan & Li, 2017 Subar Laut Island, St. John’s Island and Hainan Island, NS China Sea	1 to 5	Sargassum sp.	DD	0.73	1(0)/2	no	[18]	
Hippolyte nicholsoni	Chace, 1972 Caribbean Sea	2 to 12	Pseudopterogorgia acerosa	DD	0.3–0.5	1–2(0)/1–3	no	[12]	
Hippolyte nizabitowskii d’ Acoz, 1996	Mediterranean Sea	0.5 to 5	sheltered meadows, seagrasses	10 to 20	0.8	0–2(0–4)(0)/0–4	yes, in dorsal dentition	[12]	
Hippolyte obliquimanus	Dana, 1852 Antigua, Carriacou, Tobago, Guadeloupe, Curacao, Puerto Rico, Venezuela, Brazil	intertidal	Thalassia testudinum, Syringodium filiforme	15	1	3–4(0)/4, bifid apex	yes, shape and dentition	[42,43]	
Hippolyte orientalis	Heller, 1861 Red Sea, Suez Canal, Gulf of Aden	intertidal	DD	DD	1	1(0)/3	no	[44]	
Hippolyte palliola	Kensley, 1970 Atlantic Ocean	Intertidal to 25	amongst algae on bottom with shells and hydroids, turtle-grass	10	0.3	1(0)/0	no	[12]	
Hippolyte pleuracanthus	(Stimpson, 1871) W Atlantic Ocean	0.4 to 0.8	flatsmuddy substrate with T. testudinum, Zostera, Diplanthera	12 to 18	0.5	2(0)/1	no	[12,45,46]	
Hippolyte prideauxiana	Leach, 1817 (in Leach, 1815–1875) Atlantic Ocean, Mediterranean Sea	intertidal to 60	Antedon bifida and Antedon mediterranea	10.4 to 21.7	0.6	0(0)/1–7	yes, in ventral dentition	[12]	
Hippolyte proteus	(Paulson, 1875) Red Sea, Suez Canal	DD	DD	13	1.1	2(1–4)(0)/2(1–4)	no	[12]	
Taxa	Distribution	Depth Range (m)	Habitat	TL (mm)	RL/CL	Rostral Formula	Rostral Variability	References	
--	---------------------------	-----------------	--	---------	------	-----------------------------------	--------------------	------------	
Hippolyte sapphica d’ Udekem d’Acoz, 1993, “forma A” d’ Udekem d’ Acoz, 1996	Mediterranean Sea	0 to 1.5	*Zostera marina, Cymodocea nodosa*	12 to 27	1.1	2(1–3)(1–2)/2–3(1–4)	sharp dimorphic	[12,47]	
Hippolyte sapphica d’ Udekem d’ Acoz, 1993, “forma B” d’ Udekem d’ Acoz, 1996	Mediterranean Sea	0 to 1.5	*Zostera marina, Cymodocea nodosa, Cystoseira spp.*	15	0.25	0(1)/0	sharp dimorphic	[12,47]	
Hippolyte singaporensis Gan & Li, 2017	Singapore	0 to 1.5	*Enhalus acoroides, Sargassum spp., Padina spp.*	DD	1	0(0)/1	no	[18]	
Hippolyte varians Leach, 1814	Atlantic Ocean	7 to 60 (mainly 20 to 40)	deep photophile algae, Coralligen, marine caves, coastal detritical bottoms	20.1 to 32.2	0.8	2(0)/2(0–4)	yes in dentition	[12]	
Hippolyte ventricosa H. Milne Edwards, 1837 (in H. Milne Edwards, 1834–1840)	Red Sea, Suez Canal, Indian Ocean	1 to 3	*Thalassia sp., Sargassum sp.*	13 to 24	1.1	1–3(0)/1–5	no	[12,31,37]	
Hippolyte williamsi Schmitt, 1924	E Pacific Ocean	Intertidal	*Sargassum sp.* sublittoral, soft substrata, turfe-grass flats, *T. testudinum, Halodule wrightii, Syringodium filiforme*	20	1	3(0)/4	no	[12,42]	
Hippolyte zostericola (Smith, 1873)	W Atlantic Ocean, Pacific Ocean	0.5 to 1.5		DD	0.5–0.7	2(0)/3	no	[12,45]	
Hippolyte sapphica includes two morphotypes, morph-A with a long, dentate rostrum and morph-B with juvenile-like, short rostrum [12] (Figure 2). Ntakis et al. (2010) [48] confirmed the conspecific status of the two distinct morphotypes. Morph-B is distributed only in Central Mediterranean (Amvrakikos Gulf, Greece and Venice Lagoon, Italy), whereas its sympatric morph-A has a wider distribution in Ionian, Aegean, and Black Seas [12,13,39,49,50]. The state of the “rostral loss” in morph-B was subjected to the parsimonious hypothesis that there is a single pair of alleles, with a complete dominance of allele b expressed in morph-B. Indeed, Liasko et al. (2015) [49] confirmed this hypothesis through the analysis of lab-reared offspring, where morph-A females had proportions of morphs in their offspring close to either 1:1 (all-A, or all-B) and morph-B females had offspring either all-B or offspring close to 3:1 [49]. Additionally, Liasko et al. (2017) [9] showed that the rostrum in morph-A follows a strict isometrical growth, so it could serve as a growth and/or age marker of the species and that is sexually dimorphic with the male individuals bearing narrower rostra. Moreover, the hypothesis that morph-B females develop some compensatory morphological traits such as enlargement of the body somites, scaphocerite, and telson, substituting the “rostral loss”, has also been confirmed by the same study. Although carapace structure was subjected to geometric morphometric analysis in H. sapphica morphotypes, this information is lacking for the rostral phenotype. The purpose of the present study is to investigate, by means of GM, possible rostral morphological shifts and correlations with body size, sex, and season. Till now, the rostral shortening and its functions have been associated with sexual maturity and mating in some penaeid and aristeid species [27] and references herein. However, the “rostral loss” as a phenomenon is unique and is presented only in hippolytid shrimps and especially in H. sapphica morphotypes. This fact, combined with our previous studies on the species, makes the current contribution very important, completing the morphological puzzle of the rostral diversity and answering various questions, related to possible occurrence of the phenomenon, and life history adaptations of the species.

Figure 2. Left side of the rostrum of Hippolyte sapphica morphotypes A and B with the configuration of the 8 and 5 landmarks, respectively for each morphotype (modified by [12]). Morph-A, 1: the rear-end of orbital margin, 2: the ventral upper rostral point, 3: the ventral posterior dentition end-point, 4: the ventral anterior dentition end-point, 5: the anterior most rostral tip, 6: the dorsal anterior dentition end-point, 7: the dorsal posterior dentition end-point, 8: the postorbital tooth. Morph-B, 1: the rear-end of orbital margin, 2: the ventral lowest rostral point, 3: the ventral upper rostral point, 4: the anterior most rostral tip, 5: the postorbital tooth.
2. Material and Methods

Shrimp samples were collected during early November and late February 2013 from two sites in the Ionian Sea (Central Mediterranean): s.1, Louros River estuary in Amvrakikos Gulf (39°13'961" N, 020°45'971" E) with a mixed H. sapphica population (morphs A and B) and s.2, Sagiada Lagoon in the Ionian coast, NW Greece (39°62'605" N, 020°18'105" E) with a pure, unmixed species population (morph-A). Samples were collected by means of a hand net, with a frame of 30 cm × 35 cm and a mesh size of 2 mm and preserved in situ in 4% formaldehyde solution. In laboratory, morphotypes, and sexes were identified by stereomicroscopic observation of the rostrum and the second pleopod of shrimps, respectively [12]. Individuals were first photographed and morphometric analysis of the rostrum was carried out on a set of landmarks (Figure 2) defined on the digital photos of shrimps. Coordinates were determined by using image-analyzing software (NIKON Digital Sight DS-L2-Image Pro Plus 7.0; Media Cybernetics, Rockville, MD, USA) and carapace lengths measured with the image analysis system ZEN 2012. The coordinates were submitted to a full Procrustes fit, which project the data to a tangent space by orthogonal projection. After the Procrustes’ fit, landmarks coordinates are abstract units, which reflect the relative distance landmark. The Procrustes coordinates were used in the subsequent analyses. Landmarks topography was selected with the following criteria: in order to detect possible shifts in shape according to the position of dorsal and ventral rostral dentition, the position of postorbital tooth and the rostral points, which indicate the slenderness/wideness of the rostral structure. Only adults with a fully formed rostra were used for morphometric analysis, to avoid possible differences that can be attributed to maturity stage or other factors. Statistical analyses included the study of rostral shape and landmarks’ shift were estimated by MANOVA. As original variables, the Procrustes coordinates of landmarks were used in MANOVA analysis, which allowed an estimation of the overall variability of the carapace form for the dependent or independent factors. Pairwise comparisons were applied in order to reveal significant differences among population types and sexes. Discriminant analysis was also performed in order to test if there is any seasonal classification of Hippolyte sapphica morphotypes, between sexes for the two sampling periods. We also used cluster analysis, in order to access whether there exists a significant underlying variation in morph-B rostra, regardless of any known factor. All statistical analyses were performed by SPSS 23 software and Geometric morphometrics by MorphoJ free software [51].

3. Results and Discussion

A total of 170 morph-A and 99 morph-B individuals of H. sapphica were subjected to geometric morphometric analysis. Morph-A rostral shape varies in relation to carapace length (Wilks’ lambda = 0.26; p < 0.001). In Figure 3A, the landmarks displacements are given per 5 units of size in a total size range of 11–37 units. Rostrum and carapace are solid connected structures, which follow similar growth patterns, as expected, indicating their important function they serve. Our results revealed that, after the regression of Procrustes coordinates versus carapace length for the morphotype A, morph-A rostra, both in the mixed and unmixed populations of H. sapphica, are characterized by isometrical growth pattern. Liasko et al. (2015, 2017) [9,49] showed also the strict isometry in morph-A rostra, proposing that this structure could be also used in the growth or age determination of the species instead of carapace. Similarly, rostral morphology, after the removal of the general allometric tendency, using the residuals of the regression, shows a statistically significant correlation with the sampling station (Wilks’ lambda = 0.74; Partial Eta² = 0.26; p < 0.001), as well as with the sex of the individuals (Wilks’ lambda = 0.62; Partial Eta² = 0.38; p < 0.001) (Figure 3B–E). Additionally, the performed discriminant analysis for morph-A males at different annual timepoint (February and November), showed a good recognition. More specifically, males of the mixed population found statistically significant difference in November (Wilks’ lambda = 0.44; p < 0.01) (Table 2, Figure 3F). Between sexes, male individuals found to bear rostra with shorter rostral width (Figure 3C,E), a fact that is also confirmed in H. sapphica morphs [9]. Slender rostra have been reported also as a
male individuals found to bear rostra with shorter rostral width \([12]\). All these characters are present in the larvae of \(H. sapphica\) bear wider rostra, wider abdominal somites, and wider carapace heights \([9]\) in comparison to the male ones. The robustness of the rostral structure diminishes the turbulent water flows behind the shrimps’ body and helps shrimp’s buoyancy especially for the heavier females. As has been shown by Liasko et al. (2015) \([49]\), the morph-A individuals have a propensity to become females, while the morph-B ones the opposite. Thus, the rostral morphological morph-A pattern could demonstrate variations according to the sex ratio and/or the sampling period during the population dynamics of the species. Recent studies have shown that rostral plasticity in shape and dentition has been evaluated highly in response to environmental conditions and spatial boundaries \([55,56]\).

![Figure 3](image-url)

Figure 3. Rostral morphological patterns of *Hippolyte sapphica* morphotypes. (A) to the total number of morph-A individuals (pool), and after removal of allometry (B) morph-A females in mixed population, (C) morph-A males in mixed population, (D) morph-A females in unmixed population, (E) morph-A males in unmixed population, (F) morph-A males in mixed population, seasonal (typical point shifts for November), (G) morph-B 1st cluster, (H) morph-B 2nd cluster, NI: number of individuals.

Table 2. Seasonal classification table of *Hippolyte sapphica* morph-A species, according to discriminant analysis.

Belong to	Classified in February	Classified in November	Total
February	22	2	24
November	4	16	20

In morph-B, the rostral morphology does not change significantly as a function of carapace length, after regression of Procrustes coordinates vs. CL \((p > 0.05)\) and does not show a significant correlation with sex (MANOVA; Wilks’ lambda = 0.9; \(p > 0.05)\). Probably, its hypoplastic, neotenic character influences its morphogenesis. Neotenic characters have been also recorded in the benthic *Hippolyte inermis* and in the pelagic *Hippolyte coerulescens*, such as tooth in the pleuron of 5th pleonite, unusual disposition of dorsolateral telson spines,
long scaphocerite tooth [12]. All these characters are present in the larvae forms [57–60] and this general morphological heterochrony is usually ontogenetically and evolutionary driven. However, two-step cluster analysis (log-likelihood distance measure; BIC clustering criterion) revealed the existence of two distinct groups in morph-B rostra (MANOVA; Wilks’ lambda = 0.29; p < 0.001): 1st cluster with a robust, short rostra and 2nd cluster with extensive, elongated rostra (Figure 3G,H). These two clusters probably correspond to the homozygous and heterozygous state of the gene site (BB and BA) that controls the species morph-B phenology.

In conclusion, rostral shape in morph-A seems to be influenced by many factors, such as the size of the individual, sex, and time of year, which proves its biological usefulness and a possible complex interaction of genetic and epigenetic mechanisms. On the other hand, the rostral shape in morph-B does not show significant allometry or correlation with sex. Under these conditions, the biological mechanisms by which the B allele manages to be preserved in H. sapphica mixed populations become interesting and worth studying.

Author Contributions: Conceptualization, C.A. and R.L.; methodology, R.L.; software, I.L.; validation, C.A., R.L. and I.L.; formal analysis, R.L.; investigation, A.A.K.; resources, A.A.K.; data curation, R.L.; writing—original draft preparation, C.A.; writing—review and editing, C.A.; visualization, R.L. and A.A.K.; supervision, C.A.; project administration, C.A.; funding acquisition, I.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Elli-Christina Kourmouli, who was undergraduate student during this study, for her assistance to the samplings and material assessment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rohlf, F.J.; Marcus, L.F. A Revolution in Morphometrics. Trends Ecol. Evol. 1993, 8, 129–132. [CrossRef]
2. Adams, D.C.; Rohlf, F.J.; Slice, D.E. A field comes of age: Geometric morphometrics in the 21st century. Hystrix 2013, 24, 7–14.
3. Klingenberg, C.P. Evolution and development of shape: Integrating quantitative approaches. Nat. Rev. Genet. 2010, 11, 623–635. [CrossRef]
4. Klingenberg, C.P. Size, shape, and form: Concepts of allometry in geometric morphometrics. Develop. Genes Evol. 2016, 226, 113–137. [CrossRef]
5. Giri, F.; Collins, P. A geometric morphometric analysis of two sympatric species of the family Aegidae (Crustacea, Decapoda, Anomura) from the La Plata basin. Ital. J. Zool. 2004, 71, 85–88. [CrossRef]
6. Giri, F.; Loy, A. Size and shape variation of two freshwater crabs in Argentinean Patagonia: The influence of sexual dimorphism, habitat, and species interactions. J. Crust. Biol. 2008, 28, 37–45. [CrossRef]
7. Idaszkin, Y.L.; Marquez, F.; Nocera, A.C. Habitat-specific shape variation in the carapace of the crab Cyrtograpsus angulatus. J. Zool. 2013, 290, 117–126. [CrossRef]
8. Torres, M.V.; Giri, F.; Collins, P.A. Geometric morphometric analysis of the freshwater prawn Macrobrachium borellii (Decapoda: Palaemonidae) at a microgeographical scale in a floodplain system. Ecol. Res. 2014, 29, 959–968. [CrossRef]
9. Liasko, R.; Anastasiadou, C.; Ntakis, A. Eco-morphological consequences of the “rostal loss” in the intertidal marine shrimp Hippolyte sapphica morphotypes. J. Mar. Biol. Assoc. UK 2017, 98, 1667–1673. [CrossRef]
10. Tarek, G.I. Effect of geographic location and sexual dimorphism on shield shape of the Red Sea hermit crab Clibanarius signatus using the geometric morphometric approach. Can. J. Zool. 2018, 96, 667–679.
11. Grinang, J.; Das, I.; Ng, P.K.L. Geometric morphometric analysis in female freshwater crabs of Sarawak (Borneo) permits addressing taxonomy-related problems. PeerJ 2019, 7, e6205. [CrossRef]
12. D’Udekem d’Acoz, C. The genus Hippolyte Leach, 1814 (Crustacea, Decapoda, Caridea: Hippolytidae) in the East Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus. Zool. Verh. 1996, 303, 1–133.
13. D’Udekem d’Acoz, C. Inventaire et distribution des Crustacés Décapodes de l’ Antlantique nord-oriental, de la Méditerranée et des eaux continentales adjacentes au nord de 25 N. Collect. Patrim. Nat. 1999, 40, 1–383.
14. Rafinesque, C.S. Précis des Découvertes et Travaux sonomologiques de Mr. C. S. Rafinesque Schmaltz Entre 1800 et 1814. Ou Choix Raisonné de Ses Principales Découvertes en Zoologie et en Botanique, Pour Servir D'Introduction à Ses Ouvrages Futurs; BHL: Palermo, Italy, 1814; pp. 1–55.

15. Fabricius, J.C. Systema Entomologiae, Sistens Insectorum Classes, Ordines, Genera, Species, Adiectis Synonymis, Locis, Descriptionibus, Observationibus; BHL: Aachen, Germany, 1775; pp. 1–832.

16. Leach, W.E. Malacostraca Podopalatinum Britanniæ, Descriptions of Such British Species of the Linnean Genus Cancer as Have Their Eyes Elevated on Footstalks: 124 Unnumbered Pages; BHL: London, UK, 1815; pp. 1–45.

17. Ocasio-Torres, M.E.; Crowl, T.A.; Sabat, A.M. Allometric differences between two phenotypes of the amphidromous shrimp Palaemonetes varians: Phylogeny versus evolution. *J. Crust. Biol.* 2015, 35, 747–752. [CrossRef]

18. De Grave, S.; Cai, Y.; Anker, A. Global diversity of shrimps (Decapoda: Palaemonidae) at Inhaca island, Mozambique. *Invertebr. Reprod. Dev.* 2010, 53, 341–449. [CrossRef]

19. De Grave, S.; Cai, Y.; Anker, A. Global diversity of shrimps (Decapoda: Palaemonidae) at Inhaca island, Mozambique. *Invertebr. Reprod. Dev.* 2010, 53, 341–449. [CrossRef]

20. Holthuis, L.B. The Recent Genera of the Caridean and Stenopodidean Shrimps (Crustacea, Decapoda): With an Appendix on the Order Amphionoidea; Fransen, C.H.J.M., van Achterberg, C., Eds.; Nationaal Natuurhistorisch Museum: Leiden, The Netherlands, 1993; pp. 1–328.

21. Christodoulou, M.; Antoniou, A.; Magoulas, A.; Koukouras, A. Revision of the freshwater genus Atyaephyra (Crustacea, Decapoda, Atyidae) based on morphological and molecular data. *ZooKeys* 2012, 229, 53–110. [CrossRef]

22. Jugovic, J.; Prevorcnik, S.; Aljancic, G.; Sket, B. The atyid shrimp (Crustacea: Decapoda: Atyidae) rostrum: Phylogeny versus adaptation, taxonomy versus trophic ecology. *J. Nat. Hist.* 2010, 44, 2509–2533. [CrossRef]

23. Ocasio-Torres, M.E.; Crowl, T.A.; Sabat, A.M. Allometric differences between two phenotypes of the amphidromous shrimp Xiphocaris elongata. *J. Crust. Biol.* 2015, 35, 747–752. [CrossRef]

24. Haug, J.T.; Waloszek, D.; Maas, A.; Liu, Y.; Hayg, C. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. *Palaeontology* 2012, 55, 369–399. [CrossRef]

25. De Grave, S. Variation in rostral denticion and telson setation in a saltmarsh population of Palaemonetes varians (Leach) (Crustacea: Decapoda: Palaemonidae). *Hydrobiologia* 1999, 397, 101–108. [CrossRef]

26. Kapiris, K.; Thessalou-Legaki, M. Sex related variability of rostrum morphometry of Aristeus antennatus (Decapoda: Aristaeidae) from the Ionian Sea (Eastern Mediterranean, Greece). *Hydrobiologia* 2001, 449, 123–130. [CrossRef]

27. Sardà, F.; Demestre, M. Shortening of the rostrum and rostral variability in Aristeus antennatus (Risso, 1816) (Decapoda: Aristaeidae). *J. Crust. Biol.* 1989, 9, 570–577. [CrossRef]

28. De Grave, S.; Cai, Y.; Anker, A. Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. *Hydrobiologia* 2008, 595, 287–293. [CrossRef]

29. Yang, H.J.; Kim, J.N. New records of Hippolytid shrimps (Crustacea: Decapoda: Caridea) from Korea. *Korean J. Syst. Zool.* 2004, 20, 9–19.

30. Davie, P.J.F. Hippolytidae. Crustacea: Malacostraca: Phyllocarida, Hoplocarida, Eucarida (Part 1). Zoological Catalogue of Australia. 19.3A; CSIRO Publishing: Clayton, Australia, 2001.

31. Gan, Z.; Li, X. Recognizing two new Hippolyte species (Decapoda, Caridea, Hippolytidae) from the South China Sea based on integrative taxonomy. *PeerJ* 2019, 7, e6605. [CrossRef]

32. Schmitt, W.L. The Marine Decapod Crustaceae of California with Special Reference to the Decapod Crustacea Collected by the United States Bureau of Fisheries Steamer “Albatross” in Connection with the Biological Survey of San Francisco Bay during the Years 1912–1913; University of California Pubs in Zoology: Los Angeles, CA, USA, 1921; Volume 7, pp. 1–470.

33. Schram, F.; von Vaupel Klein, C.; Charmantier-Daures, M.; Forest, J. Treatise on Zoology—Anatomy, Taxonomy, Biology. The Crustacea, Volume 9, Part A: Eucarida: Euphausiacea, Amphipondia, and Decapoda (partim) (BRILL EDS). *J. Crust. Biol.* 2010, 33, 445–448.

34. D’Udekem d’Acoz, C. New records of Atlantic Hippolyte, with the description of two new species, and a key to all Atlantic and Mediterranean species (Crustacea, Decapoda, Caridea). *Zoosystema* 2007, 1, 183–207.

35. Kozloff, E.N. Marine Invertebrates of the Pacific Northwest; University of Washington Press: Seattle, WA, USA, 1987.

36. Marin, I.; Okuno, J.; Chan, T.Y. On the “Hippolyte commensalis Kemp, 1925” species complex (Decapoda, Caridea, Hippolytidae), with the description of a new genus and description of two new species from the Indo-West Pacific. *Zoootaxa* 2011, 2768, 32–54. [CrossRef]

37. Hayashi, K.I. The Central Pacific Shrimps of the Genus Hippolyte, with a Description of Two New Species (Decapoda, Caridea, Hippolytidae). *Pac. Sci.* 1981, 35, 185–196.

38. Zariquiey Alvarez, R. Decápodos españoles VII. In Algo Sobre Hippolytidae de las Costas N.E. de España; CSIC-UBG-Instituto de Biología Aplicada: Barcelona, Spain, 1953; Volume 13, pp. 103–109.

39. Koukouras, A.; Anastasiadou, C. The genus Hippolyte (Decapoda, Caridea) in the Aegean and Ionian Seas. *Crustaceana* 2002, 75, 443–449. [CrossRef]

40. Torres, P.; Penha-Lopes, G.; Macia, A.; Paula, J. Population structure and egg production of the seagrass shrimp Hippolyte kruessiana Stimpson, 1860 (Decapoda: Hippolytidae) at Inhaca island, Mozambique. *Invertebr. Reprod. Dev.* 2007, 50, 145–153. [CrossRef]
41. Yaldwyn, J.C. Preliminary descriptions of a new genus and twelve new species of natant Decapod Crustacea from New Zealand. Rec. Dom. Mus. 1971, 7, 85–94.

42. D’Udekem d’Acoz, C. Redescription of Hippolyte obliquimanus Dana, 1852, and comparison with Hippolyte williamsi Schmitt, 1924 (Decapoda, Caridea). Crustaceana 1997, 70, 369–479. [CrossRef]

43. Terassi, M.; Mantelatto, F.L. Morphological and genetic variability in Hippolyte obliquimanus Dana, 1852 (Decapoda, Caridea, Hippolytidae) from Brazil and Caribbean Sea. Crustaceana 2012, 85, 685–712. [CrossRef]

44. D’Udekem d’Acoz, C. Redescription of Hippolyte ventricosa H. Milne Edwards, 1837 based on syntypes, with remarks on Hippolyte orientalis Heller, 1862 (Crustacea, Decapoda, Caridea). Zoosystema 1999, 2, 65–76.

45. Román-Contreras, R.; Martínez-Mayén, M. Shallow water hippolytid shrimps (Crustacea: Decapoda: Caridea) from the Mexican Caribbean coast. Hidrobiológica 2009, 19, 119–128.

46. Schreiber, G.; López-Duarte, P.C.; Able, K.W. Composition, Seasonality, and Life History of Decapod Shrimps in Great Bay, New Jersey. Northeast. Nat. 2019, 26, 817–834. [CrossRef]

47. D’Udekem d’Acoz, C. Description d’une nouvelle crevette de l’île de Lesbos: Hippolyte sapphica sp. nov. (Crustacea, Decapoda, Caridea: Hippolytidae). Belg. J. Zool. 1993, 123, 55–65.

48. Ntakis, A.; Anastasiadou, C.; Liasko, R.; Leonardos, I. Larval development of the shrimp Hippolyte sapphica d’Udekem d’Acoz, 1993 forma A and B (Decapoda: Caridea: Hippolytidae) reared in the laboratory, confirmation of the conspecific status of the two forms. Zootaxa 2010, 2579, 45–58. [CrossRef]

49. Liasko, R.; Anastasiadou, C.; Ntakis, A.; Leonardos, I.D. How a sharp rostral dimorphism affects the life history, population structure and adaptability of a small shrimp: The case study of Hippolyte Sapphica. Mar. Ecol. 2015, 36, 400–407. [CrossRef]

50. Klotz, W.; Miesen, F.W.; Hüllen, S.; Herder, F. Two Asian fresh water shrimp species found in a thermally polluted stream system in North Rhine-Westphalia, Germany. Aquat. Invasions 2013, 8, 333–339. [CrossRef]

51. Christodoulou, M. Investigation of the Taxonomy, Zoogeography and Phylogeny of the Shrimps of the Genus Atyaephyra, in the Circum-Mediterranean Freshwaters. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2014.

52. De Mazancourt, V.; Marquet, G.; Keith, P.H. The “Pinocchio-shrimp effect”: First evidence of variation in rostrum length with the environment in Caridina H. Milne-Edwards, 1837 (Decapoda: Caridea: Atyidae). J. Crust. Biol. 2017, 37, 249–257. [CrossRef]

53. Yasser, A.G.; Sheldon, F.; Hughes, J.M. Spatial distributions and environmental relationships of two species complexes of freshwater atyid shrimps. Ecosphere 2018, 9, e02388. [CrossRef]

54. Sars, G.O. Account of the post-embryonal development of Hippolyte varians Leach. Arch. Math. Nat. 1912, 32, 1–25.

55. Gurney, R. Notes on some decapod Crustacea of Bermuda II. The species of Hippolyte and their larvae. Proc. Zool. Soc. Lond. 1936, 106, 25–32. [CrossRef]

56. Shield, P.D. Larval Development of the Caridean Shrimp, Hippolyte pleuracanthus (Stimpson), reared in the Laboratory. Estuaries 1978, 1, 1–16. [CrossRef]

57. Barnich, R. The Larvae of the Crustacea Decapoda (excl. Brachyura) in the Plankton of the French Mediterranean Coast (Identification Keys and Systematics Review). Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, Göttingen, Germany, 1996.