Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications

Antonietta R. Silini1, Taja Železnik Ramuta21, Ana Salomé Pires3.4.5, Asmita Banerjee6, Marie Dubus7, Florelle Gindraux8, Halima Kerdjoudj7, Justinas Maciulatis9, Adelheid Weidinger6, Susanne Wolbank6, Günther Eissner10, Bernd Giebel11, Michelé Pozzobon12, Ornella Parolini13.14 and Mateja Erdani Kreft2*

Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadriinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.
1 Introduction

Perinatal derivatives or PnDs (that include tissues and cells and secretomes from perinatal, or birth-associated tissues), and especially mesenchymal stromal cells (MSC) from perinatal tissues, have been mostly exploited for their applications in regenerative medicine, substantiated by their ability to modulate immune responses and/or to act in a pro-regenerative manner by promoting progenitor/stem cell differentiation (Silini et al., 2017; Silini et al., 2019). What has been largely unexplored is the applications of PnDs in other sectors, such as in oncology.

As a matter of fact, PnDs have only recently been investigated in vitro and in vivo for their potential as antitumor therapies. In this context, PnDs have been shown to act multimodally through complex mechanisms of action (MoA), and to target various hallmarks of cancer that capture essential features of tumorigenesis, such as sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming cellular metabolism, avoiding immune destruction, tumor-promoting inflammation, genome instability, and deregulating cellular metabolism (Hanahan and Weinberg 2011). Treatments that shift the focus to the systemic level and that target the hallmarks of cancer are urgently needed and highly relevant.

In the context of cancer, PnDs have been reported to play opposing roles. Herein we will discuss these studies along with the in vitro and in vivo assays implemented to obtain a clearer understanding of the potential applications of PnDs as an antitumor treatment.

In addition to the potential applications of PnDs in oncology, several PnDs have been shown to possess antimicrobial properties (King et al., 2007a; Klaffenbach et al., 2011; Ramuta et al., 2021a), which is highly relevant in the field of oncology. As a matter of fact, in the last decade, growing evidence has emerged demonstrating that microbiota and microbial pathogens have immense effect on cancer development and treatment (Bhatt et al., 2017; Raza et al., 2019; Jain et al., 2021). While in 15–20% of cancer cases microbial pathogens drive tumorigenesis, even a larger part of malignancies is associated with the altered composition of commensal microbiota (Bhatt et al., 2017). Furthermore, bacteria are also able to affect the efficacy of chemotherapeutic drugs, either by inhibiting or enhancing their effect (Lehouritis et al., 2015; Roy and Trinchieri 2017). Namely, the microbiota and pathogens may affect the pharmacokinetics, antitumor activity and drug toxicity of chemotherapeutic agents by 1) changing the chemical structure of the drug (biotransformation) (Haiser and Turnbaugh 2012; Wilson and Nicholson 2017), 2) decreasing the absorption of certain drugs (Carmody and Turnbaugh 2014), or even indirectly by 3) affecting the host’s gene expression and physiology (e.g., of the local mucosal barrier), which results in altered metabolism of drugs (Björkholm et al., 2009; Selwyn et al., 2015; Selwyn et al., 2016; Roy and Trinchieri 2017).

Thus, herein both the anticancer and antimicrobial properties will be discussed alongside one another to provide a better understanding of the potential applications of PnDs as therapeutic strategies in these fields. We briefly summarize the results obtained using PnDs and then focus on the most frequently used functional assays for analyzing the antitumor and antimicrobial effects of PnDs in order to potentially provide insight into the future development of new functional and/or potency assays.

This review is part of a series of contributions from the COST Action (CA17116) entitled “International Network for Translating Research on Perinatal Derivatives into Therapeutic Approaches-SPRINT”. This Action is broadly aimed at establishing consensus for different aspects of PnDs research. The aim of this review is to provide inputs for the development of functional and potency assays that can be used to test PnDs before their oncological and antimicrobial application.

2 The effects of perinatal derivatives on the hallmarks of cancer

In this section we summarize the most frequently used in vitro and in vivo assays for analyzing the effects of PnDs on several hallmarks of cancer such as cell proliferation and metabolism, cell death and apoptosis, cell migration and invasion, angiogenesis, and metastasis.

2.1 Investigating perinatal derivatives actions on tumor cell proliferation

One of the most widely analyzed hallmark of tumor cells is proliferation. Indeed, in vitro PnDs have been shown to mostly exert antiproliferative effects on tumor cells (Gauthaman et al., 2012; Magatti et al., 2012; Liu et al., 2013; Hendijani et al., 2015; Kalamegam et al., 2019; Ramuta et al., 2020a), but it has also been shown that they may induce tumor cell proliferation (Kim et al., 2015; Li et al., 2015).

Several assays are used to assess the effect of PnDs on tumor cell proliferation. The investigation of DNA synthesis analyzes the effects of PnDs on tumor cell proliferation. Incorporation of radiolabeled DNA precursor 3H-thymidine (Ayuzawa et al.,...
2.3 Investigating perinatal derivatives actions on tumor cell proliferation

In vitro objective assessment of tumor growth is a crucial tool for the advancement of cancer therapies. In vitro, PnDs have been shown to both inhibit (Ayuwaza et al., 2009; Wu et al., 2013) and induce (Yang C. et al., 2014; Wang M et al., 2015; Svitina et al., 2018) tumor growth. These contradictory results could be due to several variations, either given by the PnDs used (e.g., tissues, cells, secretomes, homogenates), by the tumor model (e.g., tumor cells, rodent model and strain), by the different treatment regimens (e.g., administration route, dosage), or by the method used to monitor tumor progression (e.g., caliper measurements, imaging).

Monitoring tumor progression after PnDs treatment has been performed through the measurement of tumor diameters (Du et al., 2014; Ma et al., 2015; Bu et al., 2017; Yuan L et al., 2019) (or volumes deducted from diameters) or tumor weight, but also through more sophisticated in vivo optical imaging techniques (Di et al., 2014; Leng et al., 2014; Ciavarella et al., 2015; Cafforio et al., 2017; Zhang et al., 2017; Yuan Z et al., 2019; Chetty et al., 2020), which include fluorescence and bioluminescence studies. Although traditional caliper measurement is a simple and low-cost method, its major disadvantages include variability of tumor size measurements and tumoral heterogeneity. In contrast, optical imaging is a more accurate, sensitive and specific technique for tumor imaging, allowing the detection of microscopic tumors. The main limitation of optical imaging is the need of tumor cells to express a reporter gene (Puaux et al., 2011). Cell proliferation is often used as a measure of tumor response, with immunohistochemistry being the most widely used in vivo technique.

2.2 Investigating perinatal derivatives actions on tumor cell metabolism

Altered cell metabolism is another feature of tumor cells, and proliferating tumor cells hijack their metabolism to fuel continuous growth. Cell metabolism is commonly measured through the reduction of substrates to a final product by intracellular enzyme activity in living cells can be assessed by colorimetric assays. The degree of color change is not directly proportional to the number of viable cells, but rather to enzyme activity. This method permits only a moderately robust measurement of viability; however, the ease of use and potential for high throughput analysis in multwell plates has made it very popular. The most frequently used tetrazolium compound (MTT) is reduced to formazan (Li et al., 2011; Chao et al., 2012; Gauthaman et al., 2012; Kang et al., 2012; Liu et al., 2013; Lin et al., 2014; Niknejad et al., 2014; Rolfo et al., 2014; Bonomi et al., 2015; Lang et al., 2015; Li et al., 2015; Kamalabadi-Farahani et al., 2018; Mandal et al., 2019; Riedel et al., 2019). A less toxic alternative, Cell Counting Kit-8 (CCK-8) (Wu et al., 2013; Yan et al., 2013; Yang C. et al., 2014; Kim et al., 2015; Di Germanio et al., 2016), has also been used, with a detection sensitivity higher than tetrazolium salts such as MTT or MTS (Wang W et al., 2015). Tumor cell oxidative stress, using superoxide dismutase, intracellular accumulation of reactive oxygen species (ROS), glutathione peroxidase, hydrogen peroxide and lipid peroxidation assays have also been investigated after PnDs treatment (Lin et al., 2014).

2.3 Investigating perinatal derivatives actions on tumor cell death and apoptosis

Similar to their effects on tumor cell proliferation PnDs have been shown to have dual effects on tumor cell death and apoptosis, by either promoting (Chen et al., 2012; Jiao et al., 2012; Del Fattore et al., 2015; Kalamegam et al., 2018) or inhibiting (Niknejad et al., 2014) these processes.
There are several assays used to assess the effect of PnDs on tumor cell death. For example, annexin V/PI assay and flow cytometry are the most popular approaches for detection of apoptosis in tumor cells after PnDs treatment (Gauthaman et al., 2012; Wu et al., 2013; Yang X. et al., 2014; Niknejad et al., 2014; Mamede et al., 2015; Lin et al., 2016; Paris et al., 2016; Shen et al., 2016; Lin H et al., 2017; Chai et al., 2018; Jiao et al., 2018; Yuan et al., 2018; Khalil et al., 2019; Rezaei-Tazangi et al., 2020; Silva et al., 2020). The TUNEL assay (Wu et al., 2013; Niknejad et al., 2014) detects DNA fragmentation in apoptotic cells in vitro. After staining, cells can be analyzed by light or fluorescent microscopy. TUNEL staining is fast, accurate and sensitive but fails in discriminating the different types of cell death. The assay can also be used to assess the effect of PnDs on tumor cell death ex vivo. Detection of apoptosis regulators, such as caspases (Wu et al., 2013; Yang C. et al., 2014; Niknejad et al., 2014; Mamede et al., 2015; Lin et al., 2016; Kalamegam et al., 2018; Mandal et al., 2019; Rezaei-Tazangi et al., 2020), cytochrome c, Bcl-2, Bax, Flt, Fas, Fasl, Danger Associated Molecular Proteins (DAMPs), CRT, Hsp90 and Hsp70, etc. Can be detected at the protein and/or mRNA level using flow cytometry, multi-detection plate reader (Mamede et al., 2015), immunoblot (Dzobo et al., 2016; Shen et al., 2016; Yuan et al., 2018), immunohistochemistry, immuno-fluorescence (Dzobo et al., 2016; Lin H et al., 2017), and RT-PCR (Yang X. et al., 2014). As further progress is made in understanding the mechanisms of cell death, more accurate and precise interpretations of the results of these tests will be possible.

Cell death induced by PnDs in animal models has been mainly analyzed by in situ detection of apoptosis as mentioned previously regarding the in vitro assays (Dong et al., 2018; Kamalabadi-Farahani et al., 2018; Chen et al., 2019; Fan et al., 2020). An alternative approach is the in vivo imaging of apoptosis, using radiabeled forms of annexin V for positron emission tomography (PET) and single photon emission computed tomography (SPECT) (Irvani and Hicks 2020).

Mitochondria play a key role in response to cellular stress and injury. For this reason, the evaluation of mitochondrial membrane potential (MMP) (Mamede et al., 2015; Lin et al., 2016) could also be used as the marker of cell death. However, the interpretation should be carefully and critically performed. Measurement of mitochondrial activity could not only serve as an alternative to cell viability assays, but also provide distinct information on the metabolic state, and therefore the quality of a cell. For the application of therapeutic cells, knowledge on the mode of energy production can be important. Mitochondrial activity can be determined by quantification of the activity of single complexes such as complex I by measuring the light absorbance of nicotinamide adenine dinucleotide (NADH), the electron donor for complex I, at 340 nm (Nelson and Cox 2004). The downside of this method is that it does not provide any information on the coupling state of the electron transfer system, and therefore, also not on the production level of adenosine triphosphate (ATP). Activity of the entire electron transfer system can be determined, for example, with a Clark electrode-based measurement (Hütter et al., 2006). With this method, the oxygen concentration of a solution is measured as oxygen is reduced at the cathode. The resulting current is directly proportional to the oxygen concentration of the solution (Gnaiger 2008). The advantage of this method is that distinct respiration states can be determined (Gnaiger 2008). By addition of specific substrates and inhibitors, total oxygen consumption (routine respiration) can be distinguished from oxygen consumption with ATP production (oxidative phosphorylation) and oxygen consumption without ATP production (LEAK) (Gnaiger 2008). With this method, mitochondrial respiration can be measured in tissue, tissue homogenate, cells and isolated mitochondria. To our knowledge, there are no studies that have evaluated the effects of PnD on tumor MMP, however, such measurements have successfully been performed in human amniotic membrane tissue (Banerjee et al., 2015; Pozenel et al., 2019), isolated human amniotic membrane epithelial cells (Banerjee et al., 2018a), and human amniotic membrane derived MSC (Banerjee et al., 2018a; Banerjee et al., 2018b). In addition to the mitochondrial respiration assay, mitochondrial status can also be monitored with the membrane permeable dye JC-1. JC-1 is a fluorescent cationic carbocyanine dye that exhibits potential-dependent accumulation in mitochondria, forming J-aggregates and diffuses across mitochondria upon depolarisation to form a monomeric state (Sivandzaee et al., 2019). Currently, to our knowledge, there is only one study that has investigated the function of amniotic membrane proteins (AMPs) extracted from hAM against hypoxia-induced H9c2 cardiomyoblast cells (Faridvand et al., 2019). AMPs have potent cardioprotective effects in H9c2 cells by inhibiting the Ca2+ overload and the mitochondrial membrane potential dysfunction during hypoxia (Faridvand et al., 2019). Furthermore, there are few studies that evaluated mitochondrial membrane potential in placental trophoblast cells from patients with preeclampsia (Zhang et al., 2022). The anticancer effect of PnDs have not yet been evaluated with the mitochondrial dye JC-1.

In this section, we presented an overview of the most common functional assays that have been used for evaluating the pro-cell death/proapoptotic activity of PnDs. Each assay has its advantages and an understanding of strengths and limitations can allow for the selection of the optimal assay based on a specific need. No matter how appropriate and well accepted the assay is, it is recommended that a second assay using a different principle should be used to confirm the detection of cell-death. In the future, we should also have in mind that intact efferocytosis, i.e. the clearance of apoptotic cells, can promote cancer disease (Vaught et al., 2015). It is therefore important that both processes, apoptosis and efferocytosis are fine-tuned in specific tumor microenvironments. Hence, the novel functional assays for analyzing the influence of PnD on efferocytosis-mediated...
regulation of the tumor microenvironment needs to be developed/used.

2.4 Investigating perinatal derivatives actions on tumor cell migration and invasion

PnDs have been reported to both inhibit (Fong et al., 2011; Gauthaman et al., 2012; Kalamegam et al., 2018; Li et al., 2019) and induce (Kim et al., 2015; Li et al., 2015) tumor cell migration. The spread of neoplastic disease has been described as a sequential multi-step process, termed the invasion-metastatic cascade (Martin and Jiang 2009). During migration and invasion, cells squeeze through tight interstitial spaces, which includes cellular and nuclear deformation caused by the confining microenvironment (Kramer et al., 2013). Overall, during the metastatic cascade, changes in cell-cell and cell-matrix adhesion are of paramount importance and lead to the formation of secondary tumors in distant organs and are largely responsible for the mortality and morbidity of cancer (Martin et al., 2013). There are several commonly used in vitro assays to investigate the effects of PnDs on tumor cell migration and invasion potential. Transwell migration and invasion assay (Boyden chamber) is the most frequently used approach. In this assay, a double chamber is filled with two media, one with an attractant (like FBS) to trigger chemotaxis. Cells are seeded in the upper well and migrate vertically between the chambers through a porous membrane (Menyhárt et al., 2016). Migrated cells can be visualized by cytological dyes or stained fluorescent and then assessed by flow cytometry, light or fluorescence microscopy, or lysed and assessed by a plate reader, usually following treatment with MTT reagent (Gauthaman et al., 2012; Kim et al., 2015; Li et al., 2015; Kalamegam et al., 2018; Yuan et al., 2018; Mandal et al., 2019; Silva et al., 2020). By coating the porous filter with ECM components like type I collagen or a basement membrane-like matrix (Matrigel (So et al., 2015; Bu et al., 2017; Meng et al., 2019)) or reduced growth factor matrix (Touboul et al., 2013), invasive cells can be detected by their ability to degrade the matrix and move through the membrane to the bottom well. Parallel measurements with ECM-coated and non-coated assays allow one to calculate an “invasive index”: the rate of invasiveness versus migration (Marshall 2011), however this approach is currently missing in vitro assays investigating migration and invasion potential of PnDs. The most frequently used method due to its easy setup is the transwell migration assay. More sophisticated migration assays using microfluidic migration devices overcome the limitations of traditional migration assays and promote a stable diffusion-generated concentration gradient that is consistently linear and lasts for more than 48 h. These devices are usually plastic with high optical qualities similar to those of glass, and are specially designed for video microscopy assays. At specific time intervals, images of the observation area can be acquired, allowing real-time monitoring and quantitative measurements of cell migration and thus could also be used in investigating PnDs actions on cancer cell migration and invasion.

Investigation into the effect of PnDs on the invasive potential of cancer cells has been also performed using intact or decellularized human amniotic membrane or amniochorionic membrane. These were used in some studies as a natural 3D scaffold to evaluate tumor cell metastatic and invasion potential in 3D conditions (Ganjibakhsh et al., 2019) or direct influence of PnDs on metastatic and invasion behavior of tumor cells (Touboul et al., 2013; Ramuta T. Z. et al., 2020).

2.5 Investigating perinatal derivatives actions on the tumor vasculature and angiogenesis

PnDs have been widely reported to produce angiogenic factors and induce angiogenesis (Bajetto et al., 2017; Dabrowski et al., 2017; Komaki et al., 2017; Wu et al., 2022), yet some studies have described antiangiogenic effects (Faraj, Stewart et al., 2015), and PnD preparation seems to be a critical point that can influence this feature (Wolbank et al., 2009).

Quantitative real time polymerase chain reaction is often performed to detect and quantify the relative expression levels of angiogenic genes, such as VEGF (Lin D et al., 2017; Mandal et al., 2019), ANG (Mandal et al., 2019; Yuan L et al., 2019), PDGF (Yuan Z et al., 2019), FGF-2 (Subramanian et al., 2012), etc. However, this method is time and resource consuming, requires subsequent post-PCR analysis and may provide only limited information on gene expression that must be followed with immunoblot or ELISA. Indeed, the latter have been widely used to detect known angiogenesis activators by immunoblot or ELISA (Table 1). However, Western blot can produce false-positive/negative results in the sample of interest and requires a larger amount of starting material. Immunophenotypic analysis to measure the expression of major angiogenic proteins, such as VEGF (Borghesi et al., 2020) can be performed with flow cytometry. Despite its ability to identify small populations and quantify the intensity of fluorescence, it still requires complex instrumentation, and highly trained technical staff to manage microfluidics, laser calibration and cleaning, as well as ample experience with the relevant software. In addition, direct and indirect immunocytochemistry (ICCH) can visualize and localize the target VEGF protein expression at a cell compartment level (Subramanian et al., 2012). Indirect ICCH can, however, be more laborious and time-consuming, with the additional risk of non-specific binding of the secondary antibody.

Monitoring the proliferation of human umbilical vein endothelial cells (HUVECs) is often used to evaluate the developing tumor vasculature. These assays have been used to estimate antiangiogenic properties of PnDs in the context of early tumor pre-vasculature. CCK8 (Yuan L et al., 2019) assay offer
3 Antimicrobial effects of perinatal derivatives

One of the most intriguing characteristics of PnDs is their direct and indirect antimicrobial properties, which have therapeutic potential. PnDs have been shown to possess antimicrobial activity against various microorganisms in planktonic form and also in complex microenvironments. While the precise nature of antimicrobial action of PnDs is not well understood, it is clear that more than one mechanism working simultaneously to inhibit microbe growth and endotoxin activity, contributes to this activity (Magatti, Vertua et al., 2017). Antimicrobial properties of PnDs have been investigated in bacteria (Talmi et al., 1991; Mao et al., 2016; Mao et al., 2017; Tehrani et al., 2017; Mao et al., 2018; Ashraf et al., 2019; Palanker et al., 2019; Šket et al., 2019; Ramuta et al., 2020a), fungi (Wang, Xie et al., 2012), bacteria-infected cell cultures (Ramuta et al., 2021b) and rat in vivo models (Robson and Krizek 1973; Yadav et al., 2017). Antimicrobial peptides, such as α and β defensins, human cathelicidin LL37, lipocalin, elafin and secretory leukocyte protease inhibitor (SLPI), have been identified in various PnDs (King et al., 2007a; King et al., 2007b; Ramuta T.Ž. et al., 2021; Dubus et al., 2022). Furthermore, it was shown that histones H2A and H2B could also exert an antimicrobial action as a endotoxin-neutralizing barrier (Kim et al., 2002). Moreover, it was reported that hemoglobin-derived peptides purified from a human placenta exhibited antimicrobial activity. These peptides inhibited the growth of Gram-positive and Gram-negative bacteria and yeasts in micromolar concentrations, as well they reduced endotoxin activity by binding to LPS (Liepke et al., 2003; Dubus et al., 2022). In case of decellularized Wharton’s jelly tissue, the mass spectrometry analysis showed the release of antimicrobial molecules involved in the innate immune response but also some molecules involved in bacterial agglutination such as fibrinogen beta chain and Fibulin 1 (Dubus et al., 2022). These molecules are thought to exert a bacteriostatic effect on both Gram-positive and Gram-negative strain. In this section, we offer an overview of the most common in vitro and in vivo functional assays that have been used for evaluating the antimicrobial activity of PnDs against bacteria and fungi.

The gold standards for antimicrobial susceptibility testing have been set by the Clinical and Laboratory Standards Institute, however, due to the versatility of PnDs, the following assays do not strictly follow the standard protocols, as they had to be adapted to enable the analysis of various PnDs-derived preparations in bacterial suspensions.

TABLE 1 Angiogenesis activators produced by PnDs.

Activator	PnDs
VEGF	Placenta-based somatic stem cells (Zhang et al., 2015) Placental-derived adherent stromal cells (Allen et al., 2018) Umbilical cord MSCs (Bajetto et al., 2017; Lin D et al., 2017; Cavarella et al., 2015) Wharton jelly MSCs (Kalamegam et al., 2019; Mandal et al., 2019; Subramanian et al., 2012) Umbilical cord MSCs (Dabrowski FA et al., 2017); Amniotic membrane MSCs (Dabrowski FA et al., 2017)
FGFS	Umbilical cord MSCs (Ciavarella et al., 2015) Wharton jelly stem cells (Kalamegam et al., 2019)
MMPs	Placenta derived MSCs (Choi et al., 2016) Placental-derived adherent stromal cells (Allen et al., 2018)
TIMPs	Umbilical cord MSCs (Ciavarella et al., 2015) Human amniotic membrane (Modaresifar et al., 2017)
ANG	Umbilical cord MSCs (Bajetto et al., 2017)
EGF	Umbilical cord MSCs (Ciavarella et al., 2015; Dabrowski FA et al., 2017); Amniotic membrane MSCs (Dabrowski FA et al., 2017)
3.1 Investigating the antimicrobial effects of perinatal derivatives in bacterial suspension

A broth (micro)dilution assay is a simple and inexpensive method which is consequently often used to test the susceptibility of bacterial isolates to various antimicrobials. PnDs (often at various dilutions) are added to liquid broth media, which are then inoculated with bacterial suspensions. Following incubation (the length of which can vary from a couple of hours to several days), bacterial growth is evaluated based on turbidity by using visual or spectrophotometric methods (Jorgensen and Ferraro 2009; Sung et al., 2016; Šket et al., 2019; Dubus et al., 2020; El-Mahdy et al., 2021). Furthermore, bacterial growth can be also quantified by plating serial dilutions of bacterial suspensions incubated with the antimicrobial agent and counting the colony forming units (CFU) (Thadepalli et al., 1977; Mao et al., 2018; Šket et al., 2019). The broth microdilution method is often used to determine the minimum inhibitory concentration (Wiegand et al., 2008; Kim et al., 2012; Yadav et al., 2017) of an antimicrobial agent, which is the lowest concentration that will inhibit the visible growth of a microorganism after overnight incubation. The advantages of using the broth (micro)dilution test are the generation of a quantitative result and high reproducibility, while the main shortcoming is that it is less sensitive and more time-consuming (Jorgensen and Ferraro 2009) than some of the other functional assays for determination of the antimicrobial effects of PnDs. Furthermore, the presence of dead bacteria in the presence of PnDs cannot be determined.

A similar method is a disk diffusion assay. Namely, a bacterial inoculum is plated onto the surface of the agar plate and subsequently PnDs (often at various dilutions) are applied to the inoculated agar surface. After incubation of the agar plates the inhibition zones around the site of application of the PnDs antimicrobials are measured (Talmi et al., 1991; Kjaergaard et al., 2001; Jorgensen and Ferraro 2009; Tehrani et al., 2013; Tehrani et al., 2017; Šket et al., 2019; Ramuta et al., 2020b; Ramuta T.Z. et al., 2021). The shortcoming of this method is its inability to precisely determine the minimum inhibitory concentration of the antimicrobial agent.

3.2 Investigating the antimicrobial effects of perinatal derivatives in complex (micro)environments

The antimicrobial properties of PnDs have been evaluated in complex (micro)environments, such as biofilms and bacteria-infected epithelia. The effect of PnDs on biofilms has been evaluated by the biofilm formation assay (Dubus et al., 2020; El-Mahdy et al., 2021). The antiadhesive and antifouling properties of PnDs such as Wharton’s jelly were mainly attributed the presence of hyaluronic acid and its composites (Drago et al., 2014; Marcuzzo et al., 2017). Biofilm is defined as a bacterial community which is metabolically heterogeneous and embedded in a self-produced extracellular matrix, causing a critical virulence factor responsible for treatment failure and chronicity in medical device-related infections. The (micro)plates are inoculated with fresh bacterial cell suspensions and subsequently the PnDs are added. The biofilms are grown for several hours to days. After staining with crystal violet, the effect of the PnDs on biofilm is quantified spectrophotometrically. This is an inexpensive and easy method which can directly evaluate the biofilm formation on several surfaces (i.e., titanium alloys, calcium phosphate, polymers, etc). However, there are a few shortcomings of the biofilm formation assay. Firstly, it is not possible to distinguish whether the antimicrobial effect can be attributed to killing of planktonic bacteria before the biofilm forms or to the specific antibiofilm effects, because the antimicrobial agent is added to the bacterial suspension before the biofilm is formed. Furthermore, the crystal violet stains the whole biomass (bacteria and exopolymers) and not only the living bacteria, hence it is not possible to determine the ratio of alive vs. dead bacteria in the biofilm (Haney et al., 2018). To get comprehensive insight into how PnDs affect biofilms, additional experiments should be performed also on pre-formed biofilms (Segev-Zarko and Shai 2017). To determine the metabolically active cells in the biofilm, resazurin staining (Yadav et al., 2017) is used. To evaluate the viability of the cells, forming the biofilm, the live/dead bacterial viability kit (El-Mahdy et al., 2021; Dubus et al., 2022) is used. To evaluate the morphology of the biofilm, most frequently confocal microscopy or scanning electron microscopy are used (Yadav et al., 2017; Mao et al., 2018; El-Mahdy et al., 2021).

To evaluate the antimicrobial effect of PnDs in bacteria-infected epithelia, the following cellular in vitro models have been established. Cells are grown to confluence using antibiotic-free medium and then inoculated with bacteria. The number of viable bacteria in culture medium are quantified by plating serial dilutions of bacterial suspensions and counting the CFU (Josse et al., 2014; Sung et al., 2016; Dubus et al., 2020; Ramuta et al., 2021a; El-Mahdy et al., 2021). Next, the permeabilization agent is used to release the intracellular bacteria, which are then quantified by plating serial dilutions of bacterial suspensions and counting the CFU. (Josse et al., 2014; Dubus et al., 2020; El-Mahdy et al., 2021). Moreover, the effect of bacteria and PnDs on eukaryotic cells are evaluated by quantifying the number and viability of eukaryotic cells and also the intracellular localization of bacteria is assessed by using various methods of light, confocal and electron microscopy (Josse et al., 2014; Ramuta et al., 2021b; El-Mahdy et al., 2021). To gain better understanding of the effect of PnDs in bacteria-infected
TABLE 2 Summary of assays used to detect antitumor and antimicrobial effects of PnDs.

Anti-microbial effects	Functional assays	References	
Tumor cell proliferation and metabolism	Incorporation of radiolabeled DNA precursor 3H-thymidine into the new strands of chromosomal DNA	Ayuzawa et al. (2009), Magatti et al. (2012), Marleau et al. (2012), Yuan et al. (2013), Riedel et al. (2019), Ramuta et al. (2020c), Tian et al. (2010)	
	Incorporation of a synthetic nucleoside analog BrdU or EdU into the new strands of chromosomal DNA	Gauthaman et al. (2012), Han et al. (2014), Hendi et al. (2015), Wang M et al. (2015), Lin et al. (2014), Riedel et al. (2019), Magatti et al. (2012), Ayuzawa et al. (2009), Liu et al. (2013), Ciavarella et al. (2015), Li et al. (2015), Wang M et al. (2015), Wang W et al. (2015)	
	Immunolabeling of cell cycle-related proteins (e.g., Ki67, cyclins)		
	Colony forming unit (CFU) assay		
	Colorimetric assays for metabolism analysis	MTT assay	
			Li et al. (2011), Chao et al. (2012), Gauthaman et al. (2012), Kang et al. (2012), Liu et al. (2013), Lin et al. (2014), Niknejad et al. (2014), Rolf et al. (2014), Bonomi et al. (2015), Lang et al. (2015), Lin et al. (2015), Kamalabadi-Farahani et al. (2018), Mandal et al. (2019), Wu et al. (2013), Yan et al. (2014a), Kim et al. (2015), De Germanio et al. (2016)
			Cell Counting Kit-8
	Annexin V/PI assay and flow cytometry		
	TUNEL assay	Wu et al. (2013), Niknejad et al. (2014), Rezaei-Tazangi et al. (2020), Silva et al. (2020)	
	Detection of apoptosis regulators (e.g., caspases, Bcl-2, DAMPs)	Flow cytometry, Multi-detection plate reader	

(Continued on following page)
Anti-microbial effects	Functional assays	References
Immunoblot		Mamede et al. (2015)
Immunohistochemistry, Immunofluorescence	RT-PCR	Dzobo et al. (2016)

Evaluation of mitochondrial membrane potential (MMP)

Evaluation of the mitochondrial status by membrane permeable dye JC-1

Evaluation of the activity of the entire electron transfer system

Tumor cell migration and invasion potential	Transwell migration and invasion assay (Boyden chamber)	Gauthaman et al. (2012)
		Lin et al. (2015)
		Li et al. (2015)
		Kalamegam et al. (2018)
		Yuan et al. (2018)
		Mandal et al. (2019)
		Silva et al. (2020)

Evaluation of the metastatic and invasion potential of cancer cells on intact or decellularized human amniotic membrane- or amniochorionic membrane-derived scaffolds

Angiogenesis

| Quantitative RT-PCR for detection of angiogenic genes (e.g., VEGF, ANG, PDGF) | Lin D et al. (2017) | Mandal et al. (2019) |
| | Subramanian et al. (2012) |

Immunodetection of factors affecting tumor cell angiogenesis

Immunoblot, ELISA	Zhang et al. (2015)	Allen et al. (2018)
	Bajetto et al. (2017)	Lin H et al. (2017)
	Ciavarella et al. (2015)	Kalamegam et al. (2019)
	Mandal et al. (2019)	Subramanian et al. (2012)
	Choi et al. (2016)	Modaresifar et al. (2017)
	Bajetto et al. (2017)	Dabrowski FA et al. (2017)
	Borghesi et al. (2020)	Subramanian et al. (2012)

Monitoring proliferation of human umbilical vein endothelial cells

Cell Counting Kit-8 Trypan blue assay Monitoring of electrical impedance changes	Yuan Z et al. (2019)	Chen et al. (2012)
	Grzywocz et al. (2018)	

Rat aorta ring assay

Measurements of tumor diameters	Modaresifar et al. (2017)	Du et al. (2014)
	Ma et al. (2015)	Bu et al. (2017)
	Yuan L et al. (2019)	Di et al. (2014)
	Leng et al. (2014)	Ciavarella et al. (2015)
	Cafforio et al. (2017)	

Optical imaging techniques

(Continued on following page)
epithelia, special attention must be given to establishment of physiologically-relevant in vitro models. For example, a multilayered biomimetic porcine urothelial model that has been shown to react differently to pathogenic vs. non-pathogenic E. coli strains has been used for evaluating the antimicrobial properties of PnDs (Ramuta T.Z. et al., 2021; Predojević et al., 2022). Similar complex in vitro models have been established to study the host-pathogen interactions in the airway mucosa (Marrazzo et al., 2016; Hasan et al., 2018), intestine (Pearce et al., 2018; García-Díaz et al., 2022) and skin (Bolle et al., 2020), but have not yet been used for evaluation of PnDs.

The antimicrobial properties of PnDs have also been evaluated in vivo using several different methods. These studies have assessed the antimicrobial activity by quantifying bacteria in the spleen or blood or indirectly by measuring antimicrobial cytokines. For example, PnDs have been shown to protect against experimental sepsis (murine cecal ligation and puncture model of sepsis) (Parolini et al., 2014; Laroye et al., 2019) and E. coli-induced acute lung injury (Sung et al., 2016).

Conclusion

PnDs have demonstrated contradictory effects in the field of oncology. Various factors that include the specific PnD tissue of origin, the type and size of tumor, the PnD injection route, the treatment regimen and interactions with the host appear to play a role in determining whether PnD exert pro-tumorigenic or antitumorigenic properties. To facilitate the translation of PnDs towards the clinic, it is crucial to standardize procedures for evaluating the properties of PnDs and to define the criteria that distinguish each PnD as suitable for clinical use. PnDs-derived preparations are a very versatile group, ranging from cells and their conditioned media to tissue-derived scaffolds. This must be taken into account when selecting methods and defining criteria for validating the multimodal functions of PnDs to be used in oncological and antimicrobial applications. Another challenge is the development of assays that can efficiently and reproducibly measure the anticancer and antimicrobial properties of PnDs in vitro and in vivo models of cancer and infection.

In summary, there is a growing awareness that PnDs possess precisely tuned anticancer and antimicrobial activities. In this review, we
References

Allen, H., Shraga-Heled, N., Blumenfeld, M., Dego-Ashto, T., Fuchs-Telem, D., Gilert, A., et al. (2018). Human placental-derived adherent stromal cells Co-induced with TNF-alpha and IFN-gamma inhibit triple-negative breast cancer in nude mouse xenograft models. Sci. Rep. 8 (1), 670. doi:10.1038/s41598-017-18428-1

Alshareeda, A. T., Rakha, E., Alghweinam, A., Alrfaei, B., Alsowayan, B., Albagami, A., et al. (2018). The effect of human placent al chorionic villi derived mesenchymal stem cell on triple-negative breast cancer hallmark. F1000Res One 11 (11), e207593. doi:10.1371/journal.pone.0207593

Ashraf, H., Font, K., Powell, C., and Schurr, M. (2019). Antimicrobial activity of an amnion-chorion membrane to oral microbes. Int. J. Dent. 2019, 1269534. doi:10.1155/2019/1269534

Ayuzawa, R., Doi, C., Rachakatla, R. S., Pyle, M. M., Maurya, D. K., Troyer, D., et al. (2009). Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett. 280 (1), 31–37. doi:10.1016/j.canlet.2009.02.011

Bajetto, A., Pattarozi, A., Corsaro, A., Barbieri, F., Daga, A., Bosio, A., et al. (2017). Different effects of human umbilical cord mesenchymal stem cells on glioblastoma stem cells by direct cell contact or via released soluble factors. Front. Cell. Neurosci. 11, 312. doi:10.3389/fncel.2017.00312

Banerjee, A., Lindennair, A., Hennerbichler, S., Steinborn, P., Steinborn, R., Kozlov, A. V., et al. (2018a). Cellular and site-specific mitochondrial characterization of vital human amniotic membrane. Cell Transplant. 27 (1), 3–11. doi:10.1177/0963689717753332

Banerjee, A., Lindennair, A., Steinborn, R., Dumitsrescu, S. D., Hennerbichler, S., Kozlov, A. V., et al. (2018b). Oxygen tension strongly influences metabolic parameters and the release of interleukin-6 of human amniotic mesenchymal stromal cells. Stem Cells Int. 2018, 11. doi:10.1186/s13287-018-02451

Banerjee, A., Weidinger, A., Hofer, M., Steinborn, R., Lindennair, A., Hennerbichler-Luhscheider, S., et al. (2015). Different metabolic activity in placental and reflected regions of the human amniotic membrane. Placenta 36 (11), 1329–1332. doi:10.1016/j.placenta.2015.08.015

Bhatt, A. P., Redinbo, M. R., and Bultman, S. J. (2017). The role of the microbiome in cancer development and therapy. CA A Cancer J. Clin. 67 (4), 326–344. doi:10.3322/caac.21398

Björkholm, B., Bok, C. M., Lundin, A., Rafter, J., Hibberd, M. L., and Pettersson, S. (2009). Intestinal microbiota regulate xenobiotic metabolism in the liver. PloS one 4 (9), e6958. doi:10.1371/journal.pone.0006958

Bolle, E. C. L., Verderossa, A. D., Dhouib, R., Parker, T. J., Fraser, J. F., Dazguerville, T. R., et al. (2020). An in vitro reconstructed human skin equivalent model to study the role of skin integration around percutaneous devices against bacterial infection. Front. Microbiol. 11, 670. doi:10.3389/fmicb.2020.00670

Bonomi, A., Silini, A., Vertua, E., Signoroni, P. B., Cocce, V., Cavicchini, L., et al. (2015). Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: An in vitro study. Stem Cell Res. Ther. 6 (1), 155. doi:10.1186/s13287-015-0040-z

Borghesi, J., Caceres, S., Mario, L. C., Alonso-Diez, A., Silveira Rabelo, A. C., Illera, M. J., et al. (2020). Effects of doxorubicin associated with amniotic membrane stem cells in the treatment of canine inflammatory breast carcinoma (IPC-366) cells. BMC Vet. Res. 16 (1), 353. doi:10.1186/s12917-020-02576-0

Bu, S., Zhang, Q., Wang, Q., and Lai, D. (2017). Human amniotic epithelial cells inhibit growth of epithelial ovarian cancer cells via TGF-β1-mediated cell cycle arrest. Int. J. Oncol. 51 (5), 1405–1414. doi:10.3892/ijo.2017.4123

Caffortio, P., Viggiano, L., Mannavola, F., Felli, E., Caporusso, C., Maiorano, E., et al. (2017). pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal cells are highly cytotoxic for myeloma cells both in vitro and in vivo. Stem Cell Res. Ther. 8 (1), 206. doi:10.1038/s41598-017-0055-6

Carmody, R. N., and Turnbaugh, P. J. (2014). Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J. Clin. Invest. 124 (10), 4173–4181. doi:10.1172/jci72335

Chai, L., Bai, L., Li, L., Chen, F., and Zhang, J. (2018). Biological functions of lung cancer cells are suppressed in co-culture with mesenchymal stem cells isolated from umbilical cord. Exp. Ther. Med. 15 (1), 1076–1080. doi:10.3892/etm.2017.5436

Chao, K. C., Yang, H. T., and Chen, M. W. (2012). Human umbilical cord mesenchymal stem cells suppress breast cancer tumorigenesis through direct cell-cell contact and internalization. J. Cell. Mol. Med. 16 (8), 1803–1815. doi:10.1111/j.1582-4934.2011.01459.x

Chen, Q., Cheng, P., Song, N., Yin, T., He, H., Yang, L., et al. (2012). Antitumor activity of placenta-derived mesenchymal stem cells producing pigment epithelium-derived factor in a mouse melanoma model. Oncol. Lett. 4 (3), 413–418. doi:10.3892/ol.2012.772

Chen, X., Wang, K., Chen, S., and Chen, Y. (2019). Effects of mesenchymal stem cells harboring the Interferon-β gene on A549 lung cancer in nude mice. Pathology - Res. Pract. 215 (3), 586–593. doi:10.1016/j.prp.2019.01.013

Chetty, S. S., Prasannetha, S., Vadiel Muragan, A., Goparathanan, K., and Verma, R. S. (2020). Human umbilical cord wharton’s jelly-derived mesenchymal stem cells labeled with Mn(2+) and Gd(3+) Co-doped CuxS2(2−) ZnS nanocrystals for multimodality imaging in a tumor mouse model. ACS Appl. Mater. Interfaces 12 (3), 3419–3429. doi:10.1021/acsami.9b19054
Microenvironmental interaction between hypoxia and endothelial cells controls the migration ability of placenta-derived mesenchymal stem cells via α4 integrin and rho signaling. J. Cell. Biochem. 117 (5), 1145–1157. doi:10.1002/jcb.25398

Ciavarella, S., Caselli, A., Tamma, A. V., Savonarola, A., Loverro, G., Paganelli, R., et al. (2015). A peculiar molecular profile of umbilical cord-mesenchymal stem cells drives their inhibitory effects on multiple myeloma cell growth and tumor progression. Stem Cell. Dev. 24 (12), 1457–1470. doi:10.1089/scd.2014.0254

Dabrowska, F. A., Burdzinska, A., Kulesza, A., Sladowska, A., Zolocinska, A., Gala, K., et al. (2017). Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J. Obstet. Gynaecol. Res. 43 (11), 1758–1766. doi:10.1111/jog.13452

Del Fattore, A., Luciano, R., Saracino, R., Battalagno, G., Rosso, C., Pasucci, L., et al. (2015). Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glialoma cells. Expert Opin. Biol. Ther. 15 (4), 495–504. doi:10.1517/17420661.2015.997706

Di Gennario, C., Bernier, M., Petri, M., Mattioli, M., Barboni, B., and de Cabo, R. (2016). Cardiac rat amniotic epithelial cells confer protection against inflammation, cancer, and senescence. Oncotarget 7, 39051–39064. doi:10.18632/oncotarget.9694

Di G., Liu, Y., Lu, Y., Liu, J., Wu, C., and Duan, H. F. (2014). IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS One 9 (11), e113572. doi:10.1371/journal.pone.0113572

Dong, L., Pu, Y., Zhang, L., Qi, X., Lu, L., Li., et al. (2018). Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis. 9 (2). doi:10.1038/s41419-018-0323-5

Drago, L., Cappelluti, D., Vecchi, E., Pignataro, L., Torretta, S., and Mattina, R. (2014). Antiadhesive and antimicrobial activity of hyaluronic acid against bacteria responsible for respiratory tract infections. Appl Microb. 122 (10), 1013–1019. doi:10.1111/apm.12254

Du, T., Ju, G., Wu, S., Cheng, Z., Cheng, J., Zou, X., et al. (2014). Microvesicles derived from Wharton’s jelly mesenchymal cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor. PLoS One 9 (5), e96836. doi:10.1371/journal.pone.0096836

Dubus, M., Scocramon, L., Chevrier, J., Ledouble, C., Baldit, A., Braux, J., et al. (2022). Antibacterial and immunomodulatory properties of acellular Wharton’s jelly matrix. Biomedicines 10 (2), 227. doi:10.3390/biomedicines10020227

Dubus, M., Varin-Simon, J., Prada, P., Scocramon, L., Refuavelle, F., Alem, H., et al. (2020). Biopolymer-sodium-chloride antimicrobial coating coates the pathogenicity of internalized bacteria by mesenchymal stem cells. Biomater. Sci. 8 (20), 5763–5773. doi:10.1039/d0bm00962h

Dubov, K., Vogelsang, M., Thomford, N. E., Dandara, C., Kallmeyer, K., Pepper, M. S., et al. (2016). Wharton’s jelly-derived mesenchymal stem cells and fibroblast-derived extracellular matrix synergistically activate apoptosis in a p21-dependent mechanism in WHCO1 and MDA MB 231 cancer cells vitro. Stem Cells Int. 2016, 1–17. doi:10.1155/2016/482134

El-Mahdy, T. S., Mongaret, C., Varin-Simon, J., Prada, P., Scomazzon, L., Reffuveille, F., Alem, H., et al. (2021). Tumor-host interaction: Implanted cell therapy as a modern tool in aging research. Exp. Gerontol. 147, 1–17. doi:10.1016/j.exger.2020.09.011

Ervani, A., and Hicks, R. I. (2020). Imaging the cancer immune environment and its response to pharmacologic intervention, Part 2: The role of new PET agents. J. Nucl. Med. 61 (11), 1553–1559. doi:10.2967/jnumed.119.248823

Jain, T., Sharma, P., Are, A. C., Vickers, S. M., and Dudeja, V. (2021). New insights into the cancer-microbiome-immune Axis: Decrypting a decade of discoveries. Front. Immunol. 12, 622064. doi:10.3389/fimmu.2021.622064

Janev, A., Ramuta, T. Ž., Tratnjek, L., Sardožić, Ž., Obrovčić, H., Mojsilović, Š., et al. (2021). Detrimental effect of various preparations of the human amniotic membrane homogenate on the 2D and 3D bladder cancer in vitro models. Front. Bioeng. Biotechnol. 9, 690358. doi:10.3389/fbioe.2021.690358

Jiao, H., Guan, F., Yang, B., Li, J., Song, L., Hu, X., et al. (2012). Human amniotic membrane derived-mesenchymal stem cells induce C6 gloma apoptosis in vivo through the Bcl-2/caspase pathways. Mol. Biol. Rep. 39 (1), 467–473. doi:10.1007/s11033-011-0760-3

Jiao, Y., Zhao, H., Chen, G., Sang, X., Yang, L., Hou, Z., et al. (2018). Pyrroptosis of MCC7 cells induced by the secreted factors of UMSCMCs. Stem Cells Int. 2018, 1–12. doi:10.1155/2018/5912194

Jorgensen, J. H., and Ferraro, M. J. (2009). Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 49 (11), 1749–1755. doi:10.1086/547952

Josse, I., Velard, F., Mechiche Alami, S., Brun, V., Guillaume, C., Kerdjoudj, H., et al. (2014). Increased internalization of Staphylococcus aureus and cytokine expression in human Wharton’s jelly mesenchymal stem cells. Biomater. Med. Eng. 24 (1), 27–35. doi:10.1007/s13233-bmc014971

Kalamegam, G., Sait, K. H. W., Ahmed, F., Kadam, R., Pushparaj, N., Anfinan, N., et al. (2018). Human Wharton’s jelly stem cell (hWJSC) extracts inhibit ovarian cancer cell lines OVCAR3 and SKOV3 in vitro by inducing cell cycle arrest and apoptosis. Front. Oncol. 8, 592. doi:10.3389/fonc.2018.00592

Kalamegam, G., Sait, K. H. W., Anfinan, N., Kadam, R., Ahmed, F., Rao, M., et al. (2019). Cytokines secreted by human Wharton’s jelly stem cells inhibit the proliferation of ovarian cancer (OVCAR3) cells in vitro. Oncol. Lett. 17 (5), 4521–4531. doi:10.3892/ol.2019.10094

Kalabaldib-Farahani, M., Vaset, M., Ahmadzeghan, N., Ebrahimis-Barough, S., Soleimani, M., and Roozafzoon, R. (2018). Anti-tumour effects of TRAIL-expressing human placental derived mesenchymal stem cells with curcumin-loaded chitosan nanoparticles in a mice model of triple negative breast cancer.
mesenchymal stem cell conditioned medium. Stem Cell Res. Rep. 13 (6), 801–816. doi:10.3389/stem.2015.017.9767-8

Lin H., Fang Z., Su, Y., Li, P., Wang, J., Liao, H., et al. (2017). DHX32 promotes angiogenesis in colorectal cancer through augmenting β-catenin signaling to induce expression of VEGFA. EBioMedicine 18, 62–72. doi:10.1016/j.ebiom.2017.03.012

Lin H., D. Fong, C. Y., Biswas, A., Choolani, M., and Bongo, A. (2016). Human umbilical cord whatron’s jelly stem cell conditioned medium induces tumorigenic effects on lymphoma cells through hydrogen peroxide mediation. J. Cell. Biochem. 117 (9), 2045–2055. doi:10.1002/jcb.25501

Lin H., D., Fong, C. Y., Biswas, A., Choolani, M., and Bongo, A. (2014). Human whatron’s jelly stem cells, its conditioned medium and cell-free lysate induce the growth of human lymphoma cells. Stem Cell Res. Rep. 10 (4), 573–586. doi:10.3389/stem.2015.014.9541-3

Liu, J., Han, G., Liu, H., and Qin, C. (2013). Suppression of cholangiocarcinoma cell growth by human umbilical cord deric mesenchymal stem cells (hMSCs). J. Biomed. Nanotechnol. 9, 752–757. doi:10.1160/jbmn.2013.9.6.752

Mao, F., Chen, D., Chen, F., Chi, Y., Han, Z., Feng, X., et al. (2015). Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by activating α/β integrins, CD44, and αvβ5 in vitro. J. Biol. Chem. 290 (1), 285–299. doi:10.1074/jbc.M114.638473

Magatti, M., De Munari, S., Vertua, E., and Parolini, O. (2012). Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. J. Cell. Mol. Med. 16 (9), 2208–2218. doi:10.1111/j.1582-4934.2012.01531.x

Magatti, M., Vertua, E., De Munari, S., Caro, M., Caruso, M., Silini, S., et al. (2017). Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features. J. Tissue Regen. Eng. 11 (10), 2895–2911. doi:10.2193/term.2193

Mamede, A. C., Guerra, S., Larzeno, M., Carvalho, M. J. O., Oliveira, R. C., Gonçalves, A. C., et al. (2015). Selective cytotoxicity and cell death induced by human umbilical cord mesenchymal membrane in hepatocellular carcinoma. Med. Oncol. 32 (12), 257. doi:10.1007/s12302-015-0702-x

Mandal, S., Arfluo, F., Sethi, G., Dharmarajan, A., and Warrier, S. (2019). Encapsulated human mesenchymal stem cells (eMSCs) as a novel anti-cancer agent targeting breast cancer stem cells: Development of 3D primed therapeutic MSCs. Int. J. Biochem. Cell Biol. 110, 59–69. doi:10.1016/j.biocel.2019.02.001

Mao, Y., Hoffman, T., Johnson, A., Duan-Arnold, Y., Danilkovitch, A., and Kohn, J. (2016). Human cyropreserved viable amnic membrah inhibits the growth of bacteria associated with chronic wounds. J. Tissue Regen. Eng. 11 (4), 1–3. doi:10.1160/jbmn.2015.25

Mao, Y., Hoffman, T., Singh-Varma, A., Duan-Arnold, Y., Moorman, M., Danilkovitch, A., et al. (2017). Anti-microbial peptides secreted from human cyropreserved viable amniotic membrane contribute to its antibacterial activity. Sci. Rep. 7 (13), 13330. doi:10.1038/s41598-017-13330-6

Mao, Y., Singh-Varma, A., Hoffman, T., Dhall, S., Danilkovitch, A., and Kohn, J. (2018). The effect of cyropreserved human placental tissues on biofilm formation of wound-associated pathogens. J. Funct. Biomater. 9, 1–3. doi:10.3390/jfb9010003

Marcuzzo, A. V., Tofanelli, M., Boscolo Nata, F., Gatto, A., and Tirelli, G. (2017). Anti-inflammatory activity of cryopreserved human amniotic membrane. Apmis, 125 (9), 830–837. doi:10.1111/apm.12884

Marcuzzo, A. V., Tofanelli, M., Boscolo Nata, F., Gatto, A., and Tirelli, G. (2017). Selective cytotoxicity and cell death induced by human umbilical cord mesenchymal stem cells (hMSCs) as a novel anti-cancer agent targeting breast cancer stem cells: Development of 3D primed therapeutic MSCS. Int. J. Biochem. Cell Biol. 110, 59–69. doi:10.1016/j.biocel.2019.02.001

Menyhárt, O., Harami-Papp, H., Sukumar, S., Schäfer, R., Magnani, L., de Barrios, M., et al. (2015). Selective cytotoxicity and cell death induced by human umbilical cord mesenchymal stem cells (hMSCs) as a novel anti-cancer agent targeting breast cancer stem cells: Development of 3D primed therapeutic MSCs. Int. J. Biochem. Cell Biol. 110, 59–69. doi:10.1016/j.biocel.2019.02.001

Marleau, A. M., McDonald, G., Koropatnick, J., Chen, C.-S., and Koo, D. (2012). Reduction of tumorigenicity by placental extracts. Anticancer Res. 32 (4), 1153–1161.

Marrazzo, P., Maccari, S., Taddei, A., Bevan, L., Telford, J., Sornari, M., et al. (2016). 3D reconstruction of the human airway mucosa in vitro as an experimental model to study NTHI infections. PLoS One 11 (4), e0153985. doi:10.1371/journal.pone.0153985

Martin, J. (2011). Transwell® invasion assay. Methods Mol. Biol. 769, 97–110. doi:10.1007/978-1-61779-207-6_8

Martin, T. A., and Jiang, W. G. (2009). Loss of tight junction barrier function and its role in cancer metastasis. Biochimica Biophysica Acta - Biomembr. 1798 (4), 872–891. doi:10.1016/j.bbamem.2008.11.005

Martin, T. A., Ye, L., Sanders, A. J., Lane, J., and Jiang, W. G. (2013). Cancer invasion and metastasis: Molecular and cellular perspective. Austin (TX) Landes Bioscience.

Meng, M. Y., Li, L., Wang, W. J., Liu, F. F., Song, J., Yang, S. L., et al. (2019). Assessment of tumor promoting effects of amniotic and umbilical cord mesenchymal stem cells in vitro and in vivo. J. Cancer Res. Clin. Oncol. 145 (5), 1133–1146. doi:10.1007/s00432-019-02839-6

Menyhárt, O., Harami-Papp, H., Sukumar, S., Schäfer, R., Magnani, L., de Barrios, M., et al. (2016). Guidelines for the selection of functional assays to evaluate the hallmarksm of cancer. Biochimica Biophysica Acta (BBA) - Rev. Cancer 1866 (2), 300–319. doi:10.1016/j.cban.2016.10.002
Modaresifar, K., Arzian, S., Zolgahd, M., Moravej, H., Ahmadiani, A., and Niknejad, H. (2017). The effect of cryopreservation on anti-cancer activity of human amniotic membrane. Cryobiology 74, 61–67. doi:10.1016/j.cryobiol.2016.12.001

Nelson, D. L., and Cox, M. M. (2004). Leukinlg principles of biochemistry. New York, NY: W. H. Freeman.

Niknejad, H., Khayat-Khoei, M., Peirovi, H., and Abolghasemi, H. (2014). Human amniotic epithelial cells induce apoptosis of cancer cells: A new anti-tumor therapeutic strategy. Cytotherapy 16 (1), 33–40. doi:10.1016/j.jcyt.2013.07.005

Palanker, N. D., Lee, C. T., Weltman, R. L., Tratnjek, L., and Kreft, M. E. (2019). Antimicrobial efficacy assessment of human derived composite amnion-chorion membrane. Sci. Rep. 9 (1), 15600. doi:10.1038/s41598-019-42150-4

Paris, J. L., de la Torre, P., Manzano, M., Cabatu, M. V., Flores, A. I., and Vallet-Regí, M. (2016). Decidua derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. in vitro and in vivo evaluation on mammary tumors. Acta Biomater. 33, 275–282. doi:10.1016/j.actbio.2016.01.017

Parolini, O., Souza-Moreira, L., O’Valle, F., Magatti, M., Hernandez-Cortes, P., Gonzalez-Ray, E., et al. (2014). Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis Rheumatol. 66 (2), 327–339. doi:10.1002/art.38206

Pears, S. C., Coa, H. G., Karl, J. P., Pantano-Feliciano, I. G., Zachos, N. C., and Racicot, K. (2018). Mitochondrial function and cell viability in vitro. Curr. Protoc. 81 (1), 1641. doi:10.1002/9781118032804.mc12164101

Poletti, L., Lindemair, A., Schmidt, K., Kozov, A. V., Grillari, J., Wolbahn, S., et al. (2019). Critical impact of human amniotic membrane tension on mitochondrial function and cell viability in vitro. Cells 8 (12), 1841. doi:10.3390/cells8121641

Predojević, L., Keč, D., Žigert, B., Železnik Ramuta, T., Veranič, P., Erjavec, M., et al. (2020). A biomimetic porcine uterine model for assessing Esherichia coli pathogenicity. Microorganisms 10 (4), 783. doi:10.3390/microorganisms10040783

Puaux, A. L., Ong, L. C., Jin, Y., Teh, I., Hong, M., Chow, P. K., et al. (2011). A novel assay for evaluating the activity of antimicrobial peptides. J. Immunol. Meth. 359 (1–2), 14–20. doi:10.1016/j.jim.2010.11.009

Ramuta, T., Jerman, U. D., Tratnjek, L., Janev, A., Magatti, M., Vertua, E., et al. (2020a). The cells and extracellular matrix of human amniotic membrane hinder the growth and invasive potential of bladder urothelial cancer cells. Front. Bioeng. Biotechnol. 8, 554380. doi:10.3389/fbioe.2020.554380

Ramuta, T., Šket, T., Starčič Erjavec, M., and Kreft, M. E. (2021a). Antimicrobial activity of human fetal membranes: From biological function to clinical use. Front. Bioeng. Biotechnol. 9, 691522. doi:10.3389/fbioe.2021.691522

Ramuta, T., Starčič Erjavec, M., and Kreft, M. E. (2020b). Amniotic membrane preparation crucially affects its broad-spectrum activity against uropathogenic bacteria. Front. Microbiol. 11, 469. doi:10.3389/fmicb.2020.00469

Ramuta, T., Tratnjek, L., Janev, A., Šeme, K., Starčič Erjavec, M., and Kreft, M. E. (2021b). The antibacterial activity of human amniotic membrane against multidrug-resistant bacteria associated with urinary tract infections: New insights from normal and cancerous uterine models. Biomolecules 9 (2), 218. doi:10.3390/biomolecules9020218

Saito, K., Min, K. J., Hong, J. H., and Lee, J. K. (2015). Interleukin-6 expression by interactions between gynecologic cancer cells and human mesenchymal stem cells promotes epithelial-mesenchymal transition. Int. J. Oncol. 47 (4), 1451–1459. doi:10.3892/ijo.2015.3122

Silini, A. R., Masserottii, A., Papait, A., and Parolini, O. (2019). Shaping the future of perinatal cells: Lessons from the past and interpretations of the present. Front. Bioeng. Biotechnol. 7, 75. doi:10.3389/fbioe.2019.00077

Silini, A. R., Nasreddini, A., Scott, A., Riedel, M., and Lal, C. S. (2016). Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis. Oncotarget 7 (23), 34172–34179. doi:10.18632/oncotarget.9949

Silini, A. R., Magatti, M., Cargnioni, A., and Parolini, O. (2017). Is immune modulation the mechanism underlying the beneficial effects of amniotic cells and their derivatives in regenerative medicine? Cell Transpl. 26 (4), 531–539. doi:10.3727/096368916X693699

Sung, C. J., Chan, T. F., Chen, C. C., Hsu, Y. C., Long, C. Y., and Lai, C. S. (2016). Human umbilical cord matrix-derived stem cells demonstrates antitumor activity against breast and lung cancer cell lines. Front. Cell Dev. Biol. 8, 471. doi:10.3389/fcell.2020.00471

Subramanian, A. A., Liu, L., Sun, H., Zhou, C., Wang, P., and Yang, J. Z. (2018). Transplantation of placenta-derived multipotent cells in rats with dimethylhydrazine-induced colon cancer decreases survival rate. Oncol. Lett. 15 (4), 5034–5042. doi:10.3892/ol.2018.9796

Talmi, Y. P., Sigler, L., Inge, E., Finkelstein, Y., and Zohar, Y. (1991). Antibacterial properties of human amniotic membranes. Placenta 12 (5), 288–288. doi:10.1016/0143-4004(91)90100-d

Tebrani, F. A., Ahmadiani, A., and Niknejad, H. (2013). The effects of preservation procedures on antibacterial property of amniotic membrane. Cryobiology 67 (3), 293–298. doi:10.1016/j.cryobiol.2013.08.010

Tebrani, F. A., Modaresifar, K., Arzian, S., and Niknejad, H. (2017). Induction of antimicrobial peptides secretion by L-17p enhances human amniotic membrane for regenerative medicine. Sci. Rep. 7 (1), 10322. doi:10.1038/s41598-017-17210-7

Thadepalli, H., Appleman, M. D., Maidman, J. E., Arce, J. J., and Davidson, E. C., Jr (1977). Antimicrobial effect of amniotic uid against anaerobic bacteria. Am. J. Obstet. Gynecol. 127 (3), 250–254. doi:10.1016/0002-9378(77)90465-x

Tian, K., Yang, S., Ren, Q., Han, Z., Lu, S., Ma, F., et al. (2010). p38 MAPK contributes to the growth inhibition of leukemic tumor cells mediated by human umbilical cord mesenchymal stem cells. Cell. Physiol. Biochem. 26 (6), 799–808. doi:10.1159/000332973
Touboul, C., Liu, R., Al Farsi, H., Raynaud, C. M., Warfa, M., Althawadi, H., et al. (2013). Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL-6 secretion in an amniocchorionic membrane based 3D model. J. Transl. Med. 11 (1), 28. doi:10.1186/1476-5774-11-28

Vaugh, D. B., Stanford, J. C., and Cook, R. S. (2015). Effectorcysis creates a tumor microenvironment supportive of tumor survival and metastasis. Cancer Cell Microenviroment. 2 (1), e666. doi:10.14800/ccm.666

Wang M, M., Cai, J., Huang, F., Zhu, M., Zhang, Q., Yang, T., et al. (2015). Pretreatment of human umbilical cord-derived mesenchymal stem cells with interleukin-6 abolishes their growth-promoting effect on gastric cancer cells. Int. J. Mol. Med. 35 (2), 367–375. doi:10.3892/ijmm.2014.2019

Wang, W., Zhong, W., Yuan, J., Yan, C., Hu, S., Tong, Y., et al. (2015). Involvement of Wnt/β-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma. Oncotarget 6 (39), 42276–42289. doi:10.18632/oncotarget.5514

Wang, X., Xie, J., Tan, L., Luo, J., and Xie, H. (2012). A new vision of definition, commentary, and understanding in clinical and translational medicine. Clin. Transl. Med. 6 (21), 5. doi:10.1186/2001-1326-1-5

Wiegand, I., Hilpert, K., and Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3 (2), 163–175. doi:10.1038/nprot.2007.521

Wilson, I. D., and Nicholson, J. K. (2017). Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 179, 204–222. doi:10.1016/j.trsl.2016.08.002

Wolbank, S., Haldner, F., Reß, H., van Griensven, M., Gabriel, C., and Hennebicke, S. (2009). Impact of human amniotic membrane preparation on release of angiogenic factors. J. Tissue Eng. Regen. Med. 3 (8), 651–654. doi:10.1002/term.207

Wu, M., Yu, Z., Matar, D. Y., Karvar, M., Chen, Z., Ng, B., et al. (2022). Human amniotic membrane promotes angiogenesis in an oxidative stress chronic diabetic murine wound model. Adv. Wound Care (New Rochelle) 11 (8), 355–365. doi:10.1089/wound.2020.0005

Wu, S., Ju, G. Q., Du, T., Zhu, Y. J., and Liu, G. H. (2013). Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 8 (4), e6366. doi:10.1371/journal.pone.0061366

Yadav, M. K., Go, Y. Y., Kim, S. H., Chae, S. W., and Song, J.-J. (2017). Antimicrobial and antifibrotic effects of human amniotic/chorionic membrane extract on Streptococcus pneumoniae. Front. Microbiol. 8, 1948. doi:10.3389/fmicb.2017.01948

Yan, C., Li, S., Li, Z., Peng, H., Yuan, X., Jiang, L., et al. (2013). Human umbilical cord mesenchymal stem cells as vehicles of CD20-specific TRAIL fusion protein delivery: A double-target therapy against non-hodgkin’s lymphoma. Mol. Pharm. 10 (1), 142–151. doi:10.1021/mp300261e

Yang, C., Lei, D., Ouyang, W., Ren, J., Li, H., Hu, J., et al. (2014a). Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human gliona cell lines in vitro. Biomed. Res. Int. 2014, 109389. doi:10.1155/2014/109389

Yang, X., Li, Z., Ma, Y., Gao, J., Liu, S., Gao, Y., et al. (2014b). Human umbilical cord mesenchymal stem cells promote carcinoma growth and lymph node metastasis when co-injected with esophageal carcinoma cells in nude mice. Cancer Cell Int. 14 (1), 93. doi:10.1186/s12935-014-0093-9

Yuan, L., Liu, Y., Qu, Y., Liu, L., and Li, H. (2019). Exosomes derived from MicroRNA-148b-3p-overexpressing human umbilical cord mesenchymal stem cells restrain breast cancer progression. Front. Oncol. 9, 1056. doi:10.3389/fonc.2019.01076

Yuan, Y., Xu, L., Tao, C. L., Chen, X., Shao, H. W., and Huang, S. L. (2013). Forced expression of indoleamine-2,3 dioxygenase in human umbilical cord-derived mesenchymal stem cells abolishes their anti-apoptotic effect on leukemia cells in vitro. Vitro Cell. Dev. Biol. -Animal. 49 (10), 752–758. doi:10.1007/s11626-013-9667-4

Yuan, Y., Zhou, C., Chen, X., Tao, C., Cheng, H., and Lu, X. (2018). Suppression of tumor cell proliferation and migration by human umbilical cord mesenchymal stem cells: A possible role for apoptosis and wnt signaling. Oncol. Lett. 15 (6), 8536–8544. doi:10.3892/ol.2018.8368

Yuan Z. Z., Bian, Y., Ma, X., Tang, Z., Chen, N., and Shen, M. (2019). LncRNA H19 knockdown in human amniotic mesenchymal stem cells suppresses angiogenesis by associating with EZH2 and activating vasothein-1. Stem Cells Dev. 28 (12), 781–790. doi:10.1089/scd.2019.0114

Zhang, J., Huang, J., Lin, X., Fei, K., Xie, Y., Peng, Q., et al. (2022). Phosphoglycerate mutase 5 promotes necrotosis in trophoblast cells through activation of dynamin-related protein 1 in early-onset preeclampsia. Am. J. Reprod. Immunol. 87 (6), e13539. doi:10.1111/aji.13539

Zhang, W., Yang, H., Zhang, Y., Lu, Y., Zhou, T., Li, M., et al. (2015). A biotherapy based on PSCs-in-3D spheroid-amerelated biologics depletes in vivo cancer-sustaining stem cells. Oncotarget 6, 40762–40774. doi:10.18632/oncotarget.6591

Zhang, X., Yang, Y., Zhang, L., Lu, Y., Zhang, Q., Fan, D., et al. (2017). Mesenchymal stromal cells as vehicles of tetravalent bispecifc Tandab (CD3/ CD19) for the treatment of B cell lymphoma combined with Ido pathway inhibitor D-1-methyl-trypothan. J. Hematol. Oncol. 10 (1), 56. doi:10.1186/s13045-017-0397-z