SuperB R&D computing program: HTTP direct access to distributed resources

Armando Fella for the SuperB Computing Group

Computing for High Energy Physics, 21-25 May 2012
New York City, NY, USA
Presentation Layout

- SuperB experiment overview
- SuperB distributed resources
- Data access R&D plan
- WAN data access, work status
- Test http protocol in WAN data access
- Conclusion and future work
SuperB experiment

- SuperB is an asymmetric flavour factory with a two-order of magnitudes jump in luminosity with respect to present B-Factories.
- Data taking is planned to start in 2017
- Computing model definition to be frozen in TDR within one year
 - Luminosity \(\times O(100) \) w.r.t. Present B-Factories (6 years of run)
 - \(L_{\text{inst}} = 10^{36} \text{ cm}^{-2}\text{s}^{-1} \)
 - \(L_{\text{int}} = 75 \text{ ab}^{-1} \)
 - Flexible parameter choice
 - First level trigger expected rate: \(~100\text{KHz}\)
 - Third level trigger expected rate: \(~25\text{KHz}\)
 - Expected event size: \(~200\text{KB}\)
- Large international collaboration:
 Canada, Italy, France, Poland, Russia, Spain, The United Kingdom and the United States.
SuperB distributed resources

- The distributed computing infrastructure, as of May 2012, includes several sites in Europe and North America.
- EGI and OSG Grid flavours have been enabled.
- The LHC Computing Grid architecture was adopted to provide the minimum set of services and applications upon which the SuperB distributed model could be built.
- Computing resources needed in a typical year of SuperB data taking are of the same order as corresponding ATLAS and CMS estimation for 2011.

Parameter	typical Year
Luminosity (ab⁻¹)	15
Storage (PB)	
Tape	113
Disk	52
CPU (KHep-Spec06)	
Event data reconstruction	210
Skimming	250
Monte Carlo	670
Physics analysis	570
Total	1700
General focus

- **Computing TDR works** include an intensive R&D program permitting the experiment to evaluate adoption or development of new solutions in data management field among the others.

- **Data access** is one of the key subjects that will drive the SuperB computing activities aimed to **Data Model definition**.

- The main **areas of interest** are: WAN data access, new generation of mass data transfer system and dynamic file catalogue.
 - Activities carried on by the middleware providers like EMI project
 - LHC experiments are very interested in dynamic and remote data access
 - Alice experiment is fully working in this paradigm since a couple of years, CMS and Atlas recently have implemented such a solutions in specific use cases
WAN data access opportunity

- **Remote data access** will be important together with data placement management in the following specific **use cases**:
 - Interactive usage of SuperB data, for example: event display and single event browsing
 - Writing and debugging **analysis code**
 - **Opportunistic analysis** executed on non SuperB-dedicated resources. Both in terms of non-SuperB grid computing centers and dynamic allocated cloud resources
 - Job execution on **site without** experiment storage support (Tier3 like)
 - Increasing in **reliability and availability**, recovering from temporarily/partial storage failure at SuperB sites
WAN data access requirements

- The **protocols** involved in remote and dynamic data access should provide the following **functionality**:
 - Support to **posix-like call** (open, read, seek, close)
 - Capabilities of **work through routers and firewalls**
 - **Caching and pre-fetching** features for improving performance on high latency network
 - If the protocol is natively **supported by ROOT** framework this will make the adoption much more easy
- At present time at least two protocols are good candidates that could fulfill these requirements: **xrootd and http**.
 - **Xrootd** has a high level of maturity, but it was born and used only within HEP community
 - **http** is collecting huge interest also outside the HEP environment.
- Both of these protocols are supported by ROOT framework.
- The SuperB experiment is interested in testing the remote data access with both of them to understand which one is working better from a point of view of performance and functionality.
WAN data access, past test

- First phase test: SuperB analysis execution reading data over a WAN network using both xrootd and http protocols
 - The results highlighted that the performance could rapidly decrease as soon as the network latency increases
 - We need a common software layer permitting to optimize the access to remote data, by means of data caching and pre-fetch algorithms
Data access software layer

- The development of a **general file access library** that could hide the complexity to the end user is in progress, it will implement:
 - Intelligent pre-fetching and buffering algorithms
 - Using the time spent in processing events in order to read the data from remote storage
 - Logical file name map with different physical storage url
 - Enabling the support to storage protocols not already supported by ROOT
 - Read-head buffer or caching mechanisms in order to match the performance requirements of different network, application, and storage solution
 - A working Proof-of-Concept version of this library is now under development
HTTP data access test, goal

- A very preliminary set of tests have been performed in order to collect a first sample of case related results
- The **aim of the tests** are:
 - Measuring the latency due to the increase of the number of parallel read streams
 - Measuring the latency due to the increase of round trip time elapsed between source and destination
 - Support the development of data access software layer
 - Start the characterization of a concrete WAN, 'general purpose', scenario:
 - Traffic impact, typical latency, network resource overloading
HTTP data access test, layout description

- Test jobs performing data access tasks, have been submitted from CNAF site to Italian, European and extra European target sites via gLite suite
- Each job performs 1, 5, 10, 50, 100 parallel set of read streams on randomly chosen files stored on site SE
 - One read stream is a trace file ruled access to a file
 - The trace file is obtained by a real SuperB analysis job
 - An offset and a buffer size per line has been extracted by the read system calls performed by SuperB analysis
- Each stream performs a curl access to data file per trace file line
HTTP data access test, layout description

- Curl tool:
 - curl 7.15.5 (x86_64-redhat-linux-gnu) libcurl/7.15.5 OpenSSL/0.9.8b zlib/1.2.3 libidn/0.6.5
 - VOMS proxy authentication enabled

- Source data: 250 files, ~500MB each, stored at:
 - CNAF (UI EMI 1.0, StoRM 1.8 over GPFS)
 - BARI (pure apache 2.2 over Lustre FS)
 - NAPOLI (DPM 1.8.2, not still included in this set of tests)

- No http cache mechanism implemented
- BARI SE access do not request authentication
HTTP data access test, read routes

- Job submitted to following sites:
 - CNAF, NAPOLI, BARI, GRIF, CALTECH
 - accessing data file at CNAF and BARI site SE

Data destinations	CNAF	BARI
CNAF	ok	ok
NAPOLI	ok	ok
GRIF	ok	failed
CALTECH	failed	ok
BARI	ok	ok
Results: CNAF storage source

Number of parallel accesses	CNAF	NAPOLI	GRIF	BARI
1	521	1641	1868	6232
5	532	3611	2402	2204
10	654	6385	1138	3651
50	2882	6767	3578	6550
100	6602	10341	7686	9484
Results: BARI storage source

Number of parallel accesses	BARI	CNAF	NAPOLI	CALTECH
1	267	7791	9420	7605
5	336	5096	9235	3643
10	337	7800	9235	2885
50	1725	11012	12624	14023
100	6159	21105	21244	27048
Problems, results

- Unpredictable traffic load on geographical network routes
 - 100 parallel reads overload the links in most of data source sites
 - Two cases of performance degradations also with 1 or 5 parallel streams --> temporary WAN routes saturation
 - Bari link was partially busy by intensive production activity

- Curl vs generic library performing one open, #n seek/read and one close per stream
 - Adopted design suffers of overhead due to open and close system calls per trace file line performed by curl launch
 - Future use of the data access library will fix this behaviour

- Job failures to Caltech and GRIF sites: mostly Grid infrastructure and resource availability problems
Conclusions and future plan

- No authentication layer accessing data to Bari results in a large gain in transfer time --> to be better investigated
- Bari and Napoli links will be upgraded soon to 10 GB/s network bandwidth, tests will be repeated
- Transfers times on regional routes (in Italy) are consistent with the network infrastructure
- This kind of test should be repeated to collect statistics and permit a mean, representative, measure uncorrelated with network instant load
- The tests will be repeated using the data access software layer and a test bed layout including a caching architecture: client side squid proxy