Overvaluation of Weight or Shape and Loss-of-Control Eating Following Bariatric Surgery

Valentina Ivezaj, Ashley A. Wiedemann, and Carlos M. Grilo

Objective: Little is known regarding overvaluation of weight or shape, a key cognitive feature of eating disorders, among individuals with disordered eating following bariatric surgery. This study examined the significance of overvaluation of weight or shape among post-bariatric surgery patients with loss-of-control (LOC) eating.

Methods: Participants were 145 individuals who had undergone sleeve gastrectomy within the previous 6 months and reported regular LOC eating. Overvaluation of weight or shape, LOC eating, and eating disorder psychopathology were assessed using the Eating Disorder Examination (EDE)-Bariatric Surgery Version interview; depressive symptoms and disability were assessed by the Beck Depression Inventory (BDI-II) and the Sheehan Disability Scale (SDS), respectively.

Results: Overvaluation of weight or shape, examined continuously, was correlated significantly with higher levels of eating disorder psychopathology (EDE), depression (BDI-II), and disability (SDS). Categorically, using established clinical cut points, relative to the subclinical overvaluation group (n = 70 [48.3%]), the clinical overvaluation group (n = 75 [51.7%]) reported significantly greater frequency of LOC eating episodes and higher EDE, BDI-II, and SDS scores. The two groups did not differ significantly in current BMI or percent weight loss following surgery.

Conclusions: These findings, which highlight the clinical significance of overvaluation of weight or shape among patients with LOC eating following bariatric surgery, are similar to those previously reported for binge-eating disorder. Postoperatively, overvaluation of weight or shape was associated with greater eating disorder psychopathology, depression, and disability.

Introduction

Overvaluation of weight or shape is defined as when individuals’ self-evaluation or self-worth is predominately or overly based on their weight or shape (1). Although associated with the broader concept of body image dissatisfaction, overvaluation of weight or shape is a distinctly specific construct, more strongly related to self-esteem, and viewed as a core cognitive feature of some eating disorders (2,3). Overvaluation, which distinguishes patients with eating disorders from controls (4,5), is a required diagnostic criterion for bulimia nervosa and anorexia nervosa in the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (6). In other eating disorders that do not require overvaluation for the diagnosis, such as binge-eating disorder (BED), the presence of overvaluation has been found to be associated with greater psychopathology and severity (7-12) and to prospectively predict poorer treatment outcomes (13,14).

Much of the literature on overvaluation has focused on eating disorder and/or obesity study groups, and very little is known about overvaluation among individuals who undergo bariatric surgery and particularly those who struggle with controlling their eating postoperatively. Both disordered eating and loss-of-control (LOC) eating have been associated with poorer long-term weight outcomes after surgery (15-18). Emerging evidence has suggested that careful attention during the postoperative period is warranted as problematic eating behaviors might hinder weight loss (19). To our knowledge, no studies have yet examined the significance of overvaluation among individuals struggling with disordered eating following bariatric surgery.

The purpose of this study was to examine the significance of overvaluation of weight or shape among postoperative bariatric surgery patients with LOC eating. The aims of this investigation were to (1) examine the frequency of overvaluation of weight or shape among patients with LOC eating following bariatric surgery, (2) examine associations between overvaluation and clinical features (i.e., eating disorder psychopathology, depressive symptoms, and functioning), and (3) compare weight and clinical features among patients with and without clinical levels of overvaluation after bariatric surgery.

Funding agencies: This research was supported, in part, by National Institutes of Health grant R01 DK098492.

Disclosure: The authors reported no conflict of interest. Outside the submitted work, CMG reports personal fees from Sunovion and Weight Watchers International and royalties from Guilford Press and Taylor and Francis Publishing.

Received: 12 February 2019; Accepted: 8 April 2019; Published online 17 June 2019. doi:10.1002/oby.22514
Methods

Participants

Participants were 145 adults (aged 18-65) who had undergone sleeve gastrectomy surgery approximately 6 months prior (mean [SD]: 6.3 [1.5] months; range 4-9 months) at the Yale Bariatric/Gastrointestinal Surgery Center of Excellence and were seeking treatment for eating and weight concerns. All participants experienced regular LOC eating, defined as occurring at least once weekly during the prior 28 days. Exclusion criteria included any use of medications known to effectively influence weight or eating, current substance dependence, or severe psychiatric illness requiring immediate treatment. Recruitment methods included direct referrals from the bariatric team and/or mailings and flyers advertising a study on postoperative eating concerns. All study procedures were conducted independently from the bariatric program. The study received Institutional Review Board approval, and written informed consent was provided by all participants.

Participants were majority female (n=120 [82.8%]) and comprised diverse racial identities (White: n=78 [53.8%]; Black or African American: n=51 [35.2%]; other: n=10 [6.9%]; biracial/multiracial: n=3 [2.1%]; American Indian or Alaska Native: n=2 [1.4%]; and Native Hawaiian or other Pacific Islander: n=1 [0.7%]). Of the overall group, 9.7% (n=14) identified as Latino or Hispanic. Average postsurgical BMI was in the obesity range (37.7 [7.3] kg/m²).

Procedures and assessments

Participants were assessed by doctoral-level therapists with advanced training in eating and weight disorders. Weight was collected at the evaluation using a high-capacity digital scale. Height and presurgical weight were obtained from the bariatric surgery center of excellence. Measured height and weight were used to calculate BMI postoperatively. BMI change was calculated based on the following formula: [(preoperative weight) – (postoperative weight)] ÷ [(preoperative weight)] × 100. All weight and height variables were measured by trained clinicians (i.e., not self-report).

Weight-change variables. Current BMI (approximately 6 months postoperatively) and preoperative BMI were used to calculate BMI change. Percent total weight loss (%TWL) was determined based on the following formula: [(preoperative weight) – (postoperative weight)] ÷ [(preoperative weight)] × 100. All weight and height variables were measured by trained clinicians (i.e., not self-report).

Investigator-based interviews. The Eating Disorder Examination (EDE)-Bariatric Surgery Version, a semistructured interview modified for bariatric surgery patients (15,20,21), was used to assess LOC eating episodes and eating disorder psychopathology. LOC eating was defined as feeling a sense of LOC while eating, difficulty stopping or inability to stop eating, or inability to prevent eating regardless of the quantity of food consumed. Frequency of LOC eating episodes during the prior 28 days was obtained. In addition, the standard EDE global severity score, comprising the average of four subscales, was computed; scores range from 0 to 6, with higher scores suggesting greater severity. The EDE also assesses overvaluation of weight and overvaluation of shape with two items (which include several follow-up prompts and queries to clarify the concepts and to rate the presence and severity of the concerns) to determine the level/severity of overvaluation of weight or shape. Scores range from 0 to 6 with a clinical cut point of 4 to categorize clinical levels of overvaluation (7,22). Most research has used this convention (e.g., (9)). The Mini-International Psychiatric Interview (23), a widely used structured interview for determining psychiatric diagnosis based on the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition), was administered to assess lifetime (presurgical) and current BED. Interviews were conducted by postdoctoral assessors trained in diagnostic interviewing, including use of the Mini-International Psychiatric Interview, and in working with patients with eating or weight concerns.

Self-report measures. The Beck Depression Inventory-Second Edition (BDI-II) is a widely used 21-item self-report measure assessing current depressive symptomatology during the prior 2 weeks (24). Higher scores signify greater depressive symptomatology and capture a broad range of negative affect and psychopathology among bariatric patients (25). Scores of 0 to 13 represent scores in the minimal depression range, 14 to 19 in the mild depression range, 20 to 28 in the moderate depression range, and 29 to 63 in the severe depression range. The Sheehan Disability Scale (SDS) (26) is a well-established measure of functioning in multiple life domains, including work or school, social life or leisure activities, and family life or home responsibilities. Participants are asked to identify how a particular concern or issue affects these different domains. For this study, participants were asked how their weight impacts each domain (SDS-Weight) and how their eating behaviors (e.g., LOC eating, binge eating) or feelings about eating, shape, or weight impact each domain (SDS-Eating). Responses are based on an 11-point scale ranging from 0 (no impairment) to 10 (extreme impairment), with total scores ranging from 0 to 30. Higher scores are indicative of greater disability or poorer functioning.

TABLE 1 Demography and weight variables by overvaluation status

Overall, N=145, mean (SD)	Subclinical overvaluation, n=70, mean (SD)	Clinical overvaluation, n=75, mean (SD)	Independent-samples t test	P value	
Age	45.41 (11.18)	45.10 (11.52)	45.71 (10.91)	0.326	0.745
Presurgical BMI	46.84 (8.89)	46.75 (9.07)	46.92 (8.78)	0.0118	0.906
Postoperative BMI	37.68 (7.28)	37.67 (7.51)	37.70 (7.11)	0.022	0.982
BMI change	9.16 (4.05)	9.08 (4.03)	9.23 (4.08)	0.218	0.828
%TWL	19.30 (6.93)	19.25 (7.03)	19.34 (6.89)	0.079	0.937
Time since surgery (mo)	6.34 (1.51)	6.24 (1.49)	6.43 (1.54)	0.729	0.467
Gender (female)	120 (82.8%)	58 (82.9%)	62 (82.7%)	0.001	0.976
Race (white)*	74 (51.0%)	37 (52.9%)	37 (49.3%)	0.180	0.671

*Hispanic/Latino participants who reported White as race (n = 4) were categorized as ‘Non-White’ for this analysis.
Statistical analyses

Data were analyzed using SPSS Statistics version 24.0 (IBM Corp., Armonk, New York). Bivariate correlations examined the association between overvaluation of weight or shape (measured continuously) and the demographic variables (e.g., age), weight variables, eating disorder psychopathology (EDE), depression (BDI-II), and disability/functioning (SDS-Weight, SDS-Eating). Independent-samples t tests were used to compare demographic and clinical variables between those with and without clinical levels of overvaluation. Analyses with the EDE-Global scale were conducted both with and without the two overvaluation items to ensure that the group differences were not partly due to the item overlap. A Bonferroni adjustment was also used for multiple comparisons with a P value of 0.01.

Results

Mean overall scores of overvaluation of weight or shape were in the subclinical range (2.8 [2.0] and 2.7 [2.1], respectively). Of the overall participant group, 75 (51.7%) endorsed clinical levels of overvaluation of either weight or shape, 61 (42.1%) endorsed clinical levels of overvaluation of weight, 62 (42.8%) endorsed clinical levels of overvaluation of shape, and 48 (33.1%) reported clinical levels of overvaluation of both weight and shape; 24 participants (16.6%) reported no overvaluation of weight or shape.

The parallel analyses with and without the overvaluation items in the EDE-Global scale score yielded similar findings. Thus, we report here findings regarding the EDE-Global scale based on the composite score without the overvaluation items.

Overvaluation of weight or shape was not associated significantly with age (r = 0.529, P = 0.053), BMI (r = 0.029, P = 0.730), %TWL (r = -0.035, P = 0.675), time since surgery (r = -0.025, P = 0.768), or onset of postsurgical LOC eating (r = -0.067, P = 0.426). Overvaluation of weight or shape was associated significantly with greater frequency of LOC eating (r = 0.228, P = 0.006), EDE-Global (r = 0.518, P = 0.0005), BDI-II (r = 0.399, P < 0.005), SDS-Weight (r = 0.314, P < 0.0005), and SDS-Eating (r = 0.322, P < 0.0005).

Table 1 summarizes demographic and weight-change variables overall and by group (participants with and without clinical levels of overvaluation). There were no significant differences in age, gender, race, time since surgery, or any of the weight-change variables, including presurgical BMI, current BMI, BMI change, or %TWL between those categorized with and without clinical levels of overvaluation.

Table 2 shows the means and standard deviations (SD) of eating disorder psychopathology, depressive symptoms, and disability/functioning based on the overvaluation levels. Participants with clinical levels of overvaluation of weight or shape endorsed significantly greater scores on all clinical measures (including the EDE-Global, BDI-II, SDS-Weight, and SDS-Eating scores) and greater frequency of LOC eating behaviors and were significantly more likely to have a history of BED. The effect size for eating disorder psychopathology was in the large range, while effect sizes for LOC eating behavior, depressive symptoms, and disability/functioning were in the small range.

With the use of the conservative Bonferroni adjustment for multiple comparisons (P < 0.01), significant group differences remained for EDE-Global (P < 0.0005); however, the group differences for LOC eating (P = 0.017), BDI-II (P = 0.012), and SDS-Eating (P = 0.015) became nonsignificant trends, and the group differences in SDS-Weight (P = 0.041) became nonsignificant using the adjusted lower P level.

Discussion

This study examined overvaluation of weight or shape among patients with LOC eating following sleeve gastrectomy surgery. On average, subclinical levels of overvaluation of weight or shape were reported, and roughly half (52%) endorsed clinical levels of overvaluation of weight or shape. Overvaluation, when examined continuously, was associated

TABLE 2 Eating disorder psychopathology, depressive symptoms, and disability/functioning by overvaluation status

	Overall, N = 145, mean (SD)	Subclinical overvaluation, n = 70, mean (SD)	Clinical overvaluation, n = 75, mean (SD)	Independent-samples t test	P value	Effect size, Cohen’s d
EDE-Global (without overvaluation)	2.13 (0.98)	1.74 (0.86)	2.50 (0.94)	-5.12	<0.0005	0.84
LOC eating episodes	21.61 (20.45)	17.96 (18.00)	25.01 (22.08)	-2.42	0.017	0.42
BDI-II	12.11 (10.32)	9.76 (9.13)	14.21 (10.92)	-2.56	0.012	0.44
SDS-Weight	15.92 (20.59)	12.16 (18.68)	19.24 (21.74)	-2.06	0.041	0.36
SDS-Eating	12.75 (20.51)	7.68 (15.73)	17.24 (23.16)	-2.47	0.015	0.43
Lifetime (presurgical) binge-eating disorder	69 (47.9%)	25 (36.2%)	44 (63.8%)	7.25	0.007	0.224
Current (postsurgical) binge-eating disorder	8 (5.5%)	1 (12.5%)	7 (87.5%)	NA²	NA²	NA²

LOC eating episodes occurred during the prior 28 days.

²Cells too small to run statistical analyses.

BDI-II, Beck Depression Inventory—Second Edition; EDE, Eating Disorder Examination; LOC, loss-of-control; NA, not applicable; SDS, Sheehan Disability Scale.
significantly with greater eating disorder psychopathology, including more frequent LOC eating, and was associated with greater depressive symptomatology and disability/poorer functioning due to weight and eating; overvaluation was not, however, associated significantly with either BMI or weight loss following surgery. The lack of association between overvaluation and BMI (and weight loss) is important because it indicates that this specific cognitive construct, unlike body dissatisfaction, is not merely weight dependent or a proxy for excess weight (9,10). Similarly, when considered categorically, individuals with clinical levels of overvaluation of weight or shape reported greater levels of eating disorder behavior and psychopathology, including a greater proportion with presurgical lifetime diagnoses of BED, greater disability related to weight and eating concerns, and greater depressive symptoms. In fact, the group with clinical overvaluation reported depressive symptoms in the mild range, whereas the group without clinical overvaluation reported depressive symptoms in the minimal range, although the effect size was in the small to medium range. Importantly, the effect size for group differences in eating disorder psychopathology was large, while the relationship between presurgical range. Importantly, the effect size for group differences in eating disorder psychopathology was large, while the relationship between presurgical BED and postoperative clinical overvaluation was weak. Our findings regarding the clinical significance of overvaluation of weight or shape for patients with LOC eating following bariatric surgery closely parallel those previously reported for individuals with BED (7,8,10-12).

In addition to replicating and extending the literature on overvaluation of weight or shape to a unique and clinically relevant subgroup of bariatric patients (i.e., those experiencing LOC eating postoperatively), our study extends the overall literature on overvaluation by examining functional impairment. In the present study, overvaluation (when examined continuously or categorically) was associated with reports of poorer functioning in various life domains (including work or school, social life or leisure activities, and family life or home responsibilities) due to weight and eating concerns, albeit with small effects. Thus, our findings suggest that overvaluation of weight or shape is a useful signal for broader levels of impairment. Improved understanding of overvaluation among this patient group may help inform treatment needs of patients struggling with disordered eating and associated features following bariatric surgery. For instance, individuals with overvaluation of weight or shape after bariatric surgery might benefit from cognitive behavioral therapy, an evidence-based treatment for disordered eating (27), or by tailoring and incorporating coping and skills-building methods to enhance activities and functioning.

Study strengths and limitations provide important context when interpreting results. Strengths include the use of the rigorous interview method to assess eating disorder behaviors and psychopathology as well as the use of well-established self-report instruments for depression and disability. In addition, this study involved individuals who underwent the laparoscopic sleeve gastrectomy surgery, currently the most commonly performed bariatric surgical procedure in the United States (28), and experienced regular LOC eating. Generalizability to other bariatric procedures or to bariatric patients without LOC eating is uncertain. Although this study included a diverse bariatric patient group, Latino/Hispanic adults were underrepresented. Furthermore, this study employed a cross-sectional design, and the period of follow-up was brief; future studies with diverse patients examining the prognostic significance of overvaluation among individuals with and without LOC eating, throughout the course following bariatric surgery, are needed.

With the use of the conservative Bonferroni adjustment for multiple comparisons (P < 0.01), significant group differences remained for eating disorder psychopathology, while group differences in LOC eating, depressive symptoms, and disability became nonsignificant trends using the adjusted lower P level. Importantly, however, adjustments for multiple comparisons are not necessarily warranted for exploratory studies or post hoc analyses of existing data (29). Nonetheless, future studies with a priori hypotheses should be conducted to confirm the present findings.

Conclusion

Roughly half of patients experiencing LOC eating at approximately 6 months following sleeve gastrectomy surgery met clinical levels of overvaluation of weight or shape. Overvaluation was associated with significantly greater eating disorder psychopathology, poorer psychological functioning, and greater impairment across multiple life domains. Assessment of overvaluation of weight or shape following bariatric surgery may provide useful clinical information to identify patients with potentially greater clinical needs across an array of domains and may inform more targeted treatments. Moreover, the combination of overvaluation and LOC eating 6 months postoperatively might serve as a marker for diminished functioning. To date, no studies have prospectively examined overvaluation of weight or shape from the preoperative phase to the acute and longer-term postoperative phase. Future research is needed to examine the prognostic significance of presurgical or early postsurgical overvaluation of weight or shape among a general bariatric population with and without disordered eating. Longer-term follow-up is needed to ascertain potential effects on weight loss and associated outcomes.

© 2019 The Obesity Society

References

1. Fairburn CG, Cooper Z, Shafran R. Cognitive behaviour therapy for eating disorders: a “transdiagnostic” theory and treatment. Behav Res Ther 2003;41:509-528.

2. Grilo CM. Why no cognitive body image feature such as overvaluation of shape/weight in the binge eating disorder diagnosis? Int J Eat Disord 2013;46:208-211.

3. Masheb RM, Grilo CM. The nature of body image disturbance in patients with binge eating disorder. Int J Eat Disord 2003;33:333-341.

4. Goldfein JA, Walsh BT, Midlarsky E. Influence of shape and weight on self-evaluation in bulimia nervosa. Int J Eat Disord 2000;27:435-445.

5. McFarlane T, McCabe RE, Jarry J, Omlsted MP, Polivy J. Weight-related and shape-related self-evaluation in eating-disordered and non-eating-disordered women. Int J Eat Disord 2001;29:328-335.

6. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Association; 2013.

7. Goldschmidt AB, Hilbert A, Manwaring JL, et al. The significance of overevaluation of shape and weight in binge eating disorder. Behav Res Ther 2010;48:187-193.

8. Grilo CM, Crosby RD, Masheb RM, et al. Overvaluation of shape and weight in binge eating disorder, bulimia nervosa, and sub-threshold bulimia nervosa. Behav Res Ther 2009;47:692-696.

9. Grilo CM, Habrosky JJ, White MA, Allison KC, Stunkard AJ, Masheb RM. Overvaluation of shape and weight in binge eating disorder and overweight controls: refinement of a diagnostic construct. J Abnorm Psychol 2008;117:414-419.

10. Grilo CM, White MA, Masheb RM. Significance of overvaluation of shape and weight in an ethnically diverse sample of obese patients with binge-eating disorder in primary care settings. Behav Res Ther 2012;50:298-303.

11. Lydecker JA, White MA, Grilo CM. Form and formulation: examining the distinctiveness of body image constructs in treatment-seeking patients with binge-eating disorder. J Consult Clin Psychol 2017;85:1095-1103.

12. Wang SB, Jones PJ, Dreier M, Elliott H, Grilo CM. Core psychopathology of treatment-seeking patients with binge-eating disorder: a network analysis investigation [published online September 20, 2018]. Psychol Med 2018. doi:10.1017/S0033291718002702.

13. Grilo CM, Masheb RM, Crosby RD. Predictors and moderators of response to cognitive behavioral therapy and medication for the treatment of binge eating disorder. J Consult Clin Psychol 2012;80:897-906.

14. Grilo CM, White MA, Gueorguieva R, Wilson GT, Masheb RM. Predictive significance of the overvaluation of shape/weight in obese patients with binge-eating disorder: findings from a randomized controlled trial with 12-month follow-up. Psychol Med 2013;43:1335-1344.

15. Devlin MJ, King WC, Kalarchian MA, et al. Eating pathology and experience and weight loss in a prospective study of bariatric surgery patients: 3-year follow-up. Int J Eat Disord 2016;49:1058-1067.

1242 Obesity | VOLUME 27 | NUMBER 8 | AUGUST 2019 www.obesityjournal.org
16. Kalarchian MA, King WC, Devlin MJ, et al. Psychiatric disorders and weight change in a prospective study of bariatric surgery patients: a 3-year follow-up. Psychosom Med 2016;78:373-381.

17. White MA, Kalarchian MA, Masheb RM, Marcus MD, Grilo CM. Loss of control over eating predicts outcomes in bariatric surgery patients: a prospective, 24-month follow-up study. J Clin Psychiatriy 2010;71:175-184.

18. Devlin MJ, King WC, Kalarchian MA, et al. Eating pathology and associations with long-term changes in weight and quality of life in the longitudinal assessment of bariatric surgery study. Int J Eat Disord 2018;51:1322-1330.

19. Meany G, Conceicao E, Mitchell JE. Binge eating, binge eating disorder and loss of control eating: effects on weight outcomes after bariatric surgery. Eur Eat Disord Rev 2014;22:87-91.

20. de Zwaan M, Hilbert A, Swan-Kremeier L, et al. Comprehensive interview assessment of eating behavior 18–35 months after gastric bypass surgery for morbid obesity. Surg Obes Relat Dis 2010;6:79-85.

21. Mitchell JE, Selzer F, Kalarchian MA, et al. Psychopathology before surgery in the longitudinal assessment of bariatric surgery-3 (LABS-3) psychosocial study. Surg Obes Relat Dis 2012;8:533-541.

22. Fairburn CG, Cooper Z. The Eating Disorder Examination. New York, NY: Guilford Press; 1993.

23. Sheehan DV, Lecrubier Y, Sheehan KH, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998;59:22-33;quiz 34–57.

24. Beck AT, Steer RA, Brown GK. Beck Depression Inventory-Second Edition Manual. San Antonio: Psychological Corporation; 1996.

25. Ivezaj V, Barnes RD, Grilo CM. Validity and clinical utility of subtyping by the Beck Depression Inventory in women seeking gastric bypass surgery. Obes Surg 2016;26:2068-2073.

26. Sheehan DV, Harnett-Sheehan K, Raj BA. The measurement of disability. Int Clin Psychopharmacol 1996;11:89-95.

27. Grilo CM. Psychological and behavioral treatments for binge-eating disorder. J Clin Psychiatry 2017;78:20-24.

28. Spaniolas K, Kasten K, Brinkley J, et al. The changing bariatric surgery landscape in the USA. Obes Surg 2015;25:1544-1546.

29. Althouse A. Adjust for multiple comparisons? It’s not that simple. Ann Thorac Surg 2016;101:1644-1645.