Single-ion conducting polymer electrolyte for Li\(|\text{LiNi0.6Mn0.2Co0.2O2}\) batteries-impact of the anodic cutoff voltage and ambient temperature

Dominik Steinle, Zhen Chen, Huu-Dat Nguyen, Matthias Kuenzel, Cristina Iojoiu, Stefano Passerini, Dominic Bresser

To cite this version:

Dominik Steinle, Zhen Chen, Huu-Dat Nguyen, Matthias Kuenzel, Cristina Iojoiu, et al.. Single-ion conducting polymer electrolyte for Li\(|\text{LiNi0.6Mn0.2Co0.2O2}\) batteries-impact of the anodic cutoff voltage and ambient temperature. Journal of Solid State Electrochemistry, 2022, 26, pp.97-102. 10.1007/s10008-020-04895-6 . hal-03123466

HAL Id: hal-03123466
https://hal.science/hal-03123466v1
Submitted on 27 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Single-ion conducting polymer electrolyte for Li||LiNi_{0.6}Mn_{0.2}Co_{0.2}O_{2} batteries
– Impact of the anodic cut-off potential and ambient temperature

We would like to dedicate this manuscript to Professor Roberto Marassi.

Dominik Steinle,¹,² Zhen Chen,¹,² Huu-Dat Nguyen,³,# Matthias Kuenzel,¹,²
Cristina Iojoiu,³,⁴,* Stefano Passerini,¹,²,* Dominic Bresser¹,²,*

¹ Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany
² Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
³ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering Univ.
Grenoble Alpes), LEPMI, UMR5279, 38000, Grenoble, France
⁴ Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459, 80 039, Amiens Cedex, France

* Corresponding Authors:
dominic.bresser@kit.edu (D. Bresser); stefano.passerini@kit.edu (S. Passerini);
cristina.iojoiu@lepmi.grenoble-inp.fr (C. Iojoiu)

Present affiliation:
Laboratoire Matériaux Batteries (LM)/STB/DEHT/LITEN, CEA Grenoble, 17 avenue des Martyrs,
38000 Grenoble, France

ORCID Information:
Zhen Chen: 0000-0002-1854-1476 Huu-Dat Nguyen: 0000-0002-7870-2331
Matthias Kuenzel: 0000-0002-5877-7053 Cristina Iojoiu: 0000-0002-5823-8025
Stefano Passerini: 0000-0002-6606-5304 Dominic Bresser: 0000-0001-6429-6048
Abstract

Polymer-based electrolytes potentially enable enhanced safety and increased energy density of lithium metal batteries employing high capacity, transition metal oxide positive electrodes. Herein, we report the investigation of lithium-metal battery cells comprising Li[Ni_{0.6}Mn_{0.2}Co_{0.2}]O_2 as active material for the positive electrode and a poly(arylene ether sulfone)-based single ion conductor as the electrolyte incorporating ethylene carbonate (EC) as selectively coordinating molecular transporter. The resulting lithium-metal battery cells provide very stable cycling for more than 300 cycles accompanied by excellent average Coulombic efficiency (99.95%) with anodic cut-off potential of 4.2 V. To further increase the achievable energy density, the stepwise increase to 4.3 V and 4.4 V is herein investigated, highlighting that the polymer electrolyte offers comparable cycling stability, at least, as common liquid organic electrolytes. Moreover, the impact of temperature and the EC content on the rate capability is evaluated, showing that the cells offer a capacity retention at 2C rate equal to 61% of the capacity recorded at 0.05C.

Keywords:

polymer electrolyte; single-ion conductor; NMC_{622}; cycling parameters; lithium battery
Introduction

Rechargeable lithium-metal batteries are considered the next great leap forward towards higher energy densities [1]. Nevertheless, the severe risk of lithium dendrite formation, potentially causing a short circuit of the cell, and the continuous electrolyte decomposition at the electrode–electrolyte interface have so far hampered the commercial exploitation of such batteries – with one little exception: lithium-polymer batteries comprising an electrolyte based on poly(ethylene oxide) (PEO) [2]. This polymer electrolyte, however, suffers of two major drawbacks related with the operating temperature of about 60–80 °C (especially during charge when Li plating occurs) and the choice of the active material for the positive electrode is limited to materials which are de-/lithiated below 4 V, such as LiFePO₄ [2–6]. These two issues originate from the facts that the charge transport is coupled with the segmental motion of the polymer, which is faster the higher the temperature, and that the lithium-coordinating ether group and/or terminal hydroxyl groups are not sufficiently stable towards oxidation beyond 4 V.[4, 7–11] Another issue is the potential reversed cell polarization at elevated current densities, leading to accelerated cell failure and favoring inhomogeneous (dendritic) lithium deposition [12–15].

Very recently, we have reported a new multi-block co-poly(arylene ether sulfone) electrolyte which addresses these issues by covalently tethering the anionic function to the polymer backbone, stabilizing the ether group through adjacent electron-withdrawing groups, and introducing, e.g., ethylene carbonate (EC) as “molecular transporter” to facilitate Li⁺ conduction; the latter effect being facilitated by the selective coordination of EC to the ionophilic block (psi-PES) in which the charge transport occurs, while the ionophobic blocks (FPES) provide mechanical stability [16, 17]. This nanophase-separated, single-ion conducting, multi-block copolymer electrolyte comprising EC allows for the stable cycling of Li||Li[Ni₁/₃Mn₁/₃Co₁/₃]O₂ (NMC₁₁₁) full-cells with an anodic cut-off voltage of 4.2 V for more
than 200 cycles at 40 °C with a specific capacity of about 100 mAh g⁻¹ at C/5 (32 mA g⁻¹) [16,17].

Herein, we investigate the use of this multi-block copolymer electrolyte in high-energy Li||Li[Ni₀.₆Mn₀.₂Co₀.₂]O₂ (NMC₆₂₂) cells, as schematized in Figure 1, with particular regard to the impact of the stepwise increasing anodic cut-off voltage from 4.2 V to 4.3 V and 4.4 V. Moreover, we investigated the effect of increasing the EC concentration and the ambient temperature on the achievable rate capability, revealing very good rate capability thanks to an ionic conductivity well above 1 mS cm⁻¹ under such conditions.

Experimental

Copolymer synthesis

The synthesis of the partially fluorinated multi-block poly(arylene ether sulfone) with covalently tethered lithium perfluorosulfonimide functions (herein referred to as SI), serving as electrolyte, and its characterization have been described in detail in Nguyen et al. [16]. Briefly, the block copolymer backbone (with block lengths 15 kg/mole) was synthesized via co-polycondensation and subsequently region-selectively brominated in order to allow for the covalent tethering of the sulfonimide anion using Ullman’s coupling reaction [18] and lithium 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-2-iodoethoxy)ethanesulfonimide (I-psiLi) as precursor. EC was purchased from Merck or BASF and used as received. The copolymer was characterized via ¹H NMR and ¹⁹F NMR spectroscopy to confirm the molecular architecture. Size-exclusion chromatography coupled with multiangles laser light scattering detecteur revealed a weigh average molecular weight (Mw) of 724 kg mol⁻¹. The solvent content (SC), indicated as x in SIx%, is defined as ration between the mass of the EC swollen membrane (Mₛ) and the sum of the of Mₛ and the dried membrane (Mₐ) multiplied by 100% [17]:

\[\text{SC} = \frac{M_s}{M_s + M_d} \times 100\% \]
The handling and processing of the ionomer membranes were conducted either in an argon-filled glove box or in the dry room to avoid a relevant impact of moisture.

Electrode preparation and electrochemical characterization

The NMC\textsubscript{622} electrodes preparation was performed in the dry room as well. NMC\textsubscript{622} (commercial source) was dispersed together with Super C65 (IMERYS) and poly(vinylidene difluoride) (PVdF, Solvay) in N-methyl-2-pyrrolidone (NMP, Aldrich) via magnetic stirring (3 h at 500 rpm). The resulting slurry was cast on aluminum foil using a laboratory-scale doctor blade with a wet film thickness of 130 µm. The resulting electrode sheets were dried at 60 °C overnight. Disk-shaped electrodes (Ø = 12 mm) were punched from the thus pre-dried electrode sheets and subsequently dried at 120 °C for 12 h under vacuum. Eventually, the electrodes were pressed at 10 t for 10 s. The total electrode composition was 88 wt\% NMC\textsubscript{622}, 7 wt\% Super C65, and 5 wt\% PVdF. The active material mass loading was around 2.0 ±0.2 mg cm-2. For the electrochemical characterization, two-electrode, Swagelok-type cells were assembled sandwiching the ionomer electrolyte membrane between the NMC\textsubscript{622} electrode and the lithium metal electrode (Honjo, battery grade). The whole cell was subjected to a pressure (4-5 t) for 3 min to infiltrate the ionomer electrolyte into the porous NMC\textsubscript{622} electrode. Galvanostatic cycling was conducted using a Maccor 4000 battery tester. The temperature was controlled by placing the cells in climatic chambers (Binder). The cathodic cut-off voltage was kept constant at 2.8 V throughout all tests reported herein, while the anodic cut-off voltage was varied from 4.2 V to 4.3 V and 4.4 V. A dis-/charge rate of 1C corresponds to a specific current of 160 mA g-1. For comparison, also cells with a liquid organic electrolyte (1M LiPF\textsubscript{6} in EC-DMC, 1:1 by weight; UBE) were assembled and tested. For the determination of the limiting current density,
two-electrode pouch cells were assembled with the ionomer electrolyte membranes sandwiched between two lithium foils. The cells were kept in a climatic chamber at the corresponding temperature for 6 h prior to the application of a sweep rate of 0.025 mV s\(^{-1}\) using a Solatron 1400 CellTest system.

Results and discussion

To start with, Li|SI55%|NMC\(_{622}\) cells were subjected to galvanostatic cycling at 40 °C, setting the anodic cut-off voltage to 4.2 V in order to have a direct comparison with the results reported earlier for Li|SI55%|NMC\(_{111}\) cells [16]. Figure 2a shows the dis-/charge profiles for the initial five formation cycles at 0.05C. The cell delivers a specific capacity of 157 mAh g\(^{-1}\), while the first cycle Coulombic efficiency is about 85%. The subsequent long-term cycling (300 cycles performed at 0.5C) is presented in Figure 2b. The delivered capacity during the first cycles is 93 mAh g\(^{-1}\), which slightly decreased upon cycling to stabilize at about 85 mAh g\(^{-1}\). As a result, the capacity retention was 91.1%, 87.2%, and 81.1% after 100, 200, and 300 cycles, respectively. This impressive cycling stability considering the use of the Li metal electrode is accompanied by a very high average Coulombic efficiency of 99.95%, which is a remarkably high as a result of the excellent compatibility of the ionomer electrolyte with Li metal.

In a next step, the cells were tested using higher upper cut-off voltage (4.3 V and 4.4 V, see Figure 3a). The dis-/charge rate was initially varied from 0.05C up to 2C to investigate the rate performance and then kept constant at 0.5C in order to study the cycling stability. At 0.05C, the reversible specific capacity, i.e., the capacity obtained upon lithiation (discharge), increases from the 157 mAh g\(^{-1}\) (@ 4.2 V) to 162 and 173 mAh g\(^{-1}\) when elevating the anodic cut-off voltage to 4.3 and 4.4 V, respectively. This trend is maintained increasing the C rate to 0.1C with slightly higher capacities for the Li|SI55%|NMC\(_{622}\) cycled with an anodic cut-off of 4.4 V. When further increasing the dis-/charge rate to 0.2C, however, very similar capacities were
obtained. Finally, at even higher C rates, the cells cycled with an anodic cut-off of 4.3 V showed higher capacities than the cell cycled with an anodic cut-off of 4.4 V. Precisely, specific discharge capacities of about 108, 86, and 49 mAh g\(^{-1}\) were obtained at 0.5C, 1C, and 2C, respectively, for an anodic cut-off of 4.3 V, while setting the anodic cut-off to 4.4 V led to capacities of around 103, 78, and 36 mAh g\(^{-1}\) at 0.5C, 1C, and 2C, respectively. After this rate capability test, the dis-/charge rate was set constantly to 0.5C to evaluate the general cycling stability. For an anodic cut-off of 4.3 V, the cells provided very stable cycling with about 73.8% capacity retention after 200 cycles (i.e., about 80 mAh g\(^{-1}\)). A very similar capacity retention of 74.4% was obtained for an anodic cut-off of 4.4 V, but after 100 cycles. These results suggest that the detrimental reactions occurring at the interface between the cathode and the ionomer electrolyte are more pronounced when elevating the anodic cut-off voltage to 4.4 V and that this effect outweighs the initially beneficial impact on the achievable specific capacity. This is in good agreement with a recent study on a very similar ionomer electrolyte system [17]. Remarkably, though, the capacity retention is slightly higher than for Li||NMC\(_{622}\) cells comprising a common liquid organic electrolyte (1M LiPF\(_6\) in EC/DMC), i.e., 74.4% vs. 74.0%, as depicted in Figure 3b – despite the generally higher specific capacity across all dis-/charge rates, which is assigned to the substantially higher ionic conductivity (>10 mS cm\(^{-1}\) at 20 °C\(^{10}\) vs. <1 mS cm\(^{-1}\) at 40 °C [16]) and potentially a better penetration of the electrolyte in the electrode’s pores. This result indicates that the fading is, at least partially, related to the performance of the cathode active material itself when setting the upper cut-off to 4.4 V and/or that the ionomer electrolyte offers the same oxidation stability of organic carbonate-based liquid electrolytes, in spite of the reportedly poor stability of ethylene carbonate at elevated potentials [19]. Following these results, 4.3 V was chosen as the anodic cut-off voltage for the subsequent investigation of the impact of the EC content and ambient temperature on the rate capability of
Li|SIx%|NMC622 cells (Figure 4). In Figure 4a, the evaluation of the rate capability for Li|SI55%|NMC622 at 40 °C is shown again, serving as reference. The same test was subsequently applied for Li|SI65%|NMC622 cells, i.e., employing a higher EC content in the ionomer membrane (Figure 4b). This increase in EC concentration leads to higher capacities across all dis-/charge rates, particularly, at C rates above 0.5C. At 1C, for instance, the capacity increased from about 86 mAh g⁻¹ to 102 mAh g⁻¹, and at 2C the capacity increased from around 49 mAh g⁻¹ to 78 mAh g⁻¹, corresponding to relative increases of about 19% and 58% at 1C and 2C, respectively. This superior rate capability is assigned to the improved ionic conductivity for Si65% compared to Si55% (around 1.2 mS cm⁻¹ vs. 0.5 mS cm⁻¹ at 40 °C [16]) and the enhanced limiting current density (1.3 mA cm⁻² at 40 °C vs. 1.2 mA cm⁻² at 50 °C). In fact, when increasing the ambient temperature to 60 °C (Figure 4c), a further rate capability improvement is observed – also at the lowest C rate of 0.05C, resulting in a specific about 171 mAh g⁻¹ vs. 160 mAh g⁻¹ for the Li|SI65%|NMC622 cells. At 2C, the specific capacity was still around 104 mAh g⁻¹, which translates into a capacity retention of around 61% with regard to the capacity obtained at 0.05C – or an increase in capacity by 34% compared to the Li|SI65%|NMC622 cells run at 40 °C. As a matter of fact, the enhanced kinetics are reflected also in an increased limiting current density with an increased temperature of around 1.5 mA cm⁻² (vs. 1.3 mA cm⁻² at 40 °C). The overall comparison of the rate capability when varying the EC content and elevating the ambient temperature is summarized in Figure 4d, highlighting the stepwise improvement for an increased EC concentration and testing temperature.

Conclusions
Li||NMC622 cells comprising single-ion conducting SIx% as electrolyte provide excellent cycling stability for more than 300 cycles. Elevating the anodic cut-off voltage to 4.3 V and
4.4 V leads to a slight decrease in cycling stability. However, the comparison with a common liquid organic electrolyte reveals that this decrease in cycling stability is either related to the cathode active material and/or the presence of EC, while the ionomer electrolyte is at least as stable as the liquid electrolyte at such elevated cut-off voltages. The rate capability, however, is lower for the Li||NMC_{622} cells containing the ionomer electrolyte, though this can be substantially enhanced when increasing the EC content and/or applying elevated temperatures due to the increased ionic conductivities and limiting current densities at such conditions.

Notes

The authors declare no competing financial interest.

Acknowledgement

The authors would like to acknowledge financial support from the Federal Ministry of Education and Research (BMBF) within the FestBatt project (03XP0175B), the Helmholtz Association, the French National Research Agency within the NSPEM project (ANR-16-CE05-0016), and the Centre of Excellence of Multifunctional Architectured Materials “CEMAM” AN-10-LABX-44-01).
References

1. Varzi A, Thanner K, Scipioni R, Lecce DD, Hassoun J, Dörfler S, Altheus H, Kaskel S, Prehal C, Freunberger SA (2020) Current status and future perspectives of lithium metal batteries. J Power Sources 480:228803

2. Kalhoff J, Eshetu GG, Bresser D, Passerini S (2015) Safer electrolytes for lithium-ion batteries: State of the art and perspectives. ChemSusChem 8(13):2154–2175

3. Wetjen M, Kim GT, Joost M, Appetecchi GB, Winter M, Passerini S (2014) Thermal and electrochemical properties of PEO-LiTFSI-PyT14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials. J Power Sources 246:846–857

4. Bresser D, Lyonnard S, Iojoiu C, Picard L, Passerini S (2019) Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. Mol Syst Des Eng 4:779–792

5. Xia Y, Fujieda T, Tatsumi K, Prosini PP, Sakai T (2001) Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J Power Sources 92:234–243

6. Prosini PP, Passerini S (2001) The role of conductive carbon in PEO-based composite cathodes. Eur Polym J 37:65–69

7. Armand M (1990) Polymers with ionic conductivity. Adv Mater 2:278–286

8. Ratner MA, Johansson P, Shriver DF (2000) Polymer electrolytes: ionic transport mechanisms and relaxation coupling. MRS Bull 25:31–37

9. Yang X, Jiang M, Gao X, Bao D, Sun Q, Holmes N, Duan H, Mukherjee S, Adair K, Zhao C, Liang J, Li W, Li J, Liu Y, Huang H, Zhang L, Lu S, Lu Q, Li R, Singh C., Sun X (2020) Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group?. Energy Environ Sci 13:1318–1325
10. Marchiori CF, Carvalho RP, Ebadi M, Brandell D, Araujo CM (2020) Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: The role of Li-ion salts. Chem Mater 32:7237–7246

11. Hallinan Jr DT, Balsara NP (2013) Polymer electrolytes. Annual review of materials research 43:503–525

12. Brissot C, Rosso M, Chazalviel JN, Lascaud S (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81–82:925–929

13. Jeong K, Park S, Lee SY (2019) Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. J Mater Chem A 7(5):1917–1935

14. Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z (2017) Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 46(3):797–815

15. Doyle M, Fuller TF, Newman J (1994) The importance of the lithium ion transference number in lithium/polymer cells. Electrochim Acta 39: 2073–2081

16. Nguyen HD, Kim GT, Shi J, Paillard E, Judeinstein P, Lyonnard S, Bresser D, Ioioiu C (2018) Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy Environ Sci 11:3298–3309

17. Chen Z, Steinle D, Nguyen HD, Kim JK, Mayer A, Shi J, Paillard E, Ioioiu C, Passerini S, Bresser D (2020) High-energy lithium batteries based on single-ion conducting polymer electrolytes and Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2 cathodes. Nano Energy 77:105129–105139

18. Assumma L, Ioioiu C, Mercier R, Lyonnard S, Nguyen HD, Planes E (2015) Synthesis of partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions. J Polym Sci Pol Chem 53:1941–1956
19. Petibon R, Xia J, Ma L, Bauer MK, Nelson KJ, Dahn J (2016) Electrolyte system for high voltage Li-ion cells. J Electrochem Soc 163:A2571–A2578