Improving the Delsarte bound

Gary R.W. Greavesa, Jack H. Koolenb,c and Jongyook Parkd

aSchool of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
bSchool of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
cCAS Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, 96 Jinzhai, Road, Hefei, Anhui, 230026, PR China
dDepartment of Mathematics, Kyungpook National University, Daegu, 41566, Republic of Korea

e-mail: gary@ntu.edu.sg, koolen@ustc.edu.cn, jongyook@knu.ac.kr

May 12, 2021

Abstract

In this paper, we study the order of a maximal clique in an amply regular graph with a fixed smallest eigenvalue by considering a vertex that is adjacent to some (but not all) vertices of the maximal clique. As a consequence, we show that if a strongly regular graph contains a Delsarte clique, then the parameter μ is either small or large. Furthermore, we obtain a cubic polynomial that assures that a maximal clique in an amply regular graph is either small or large (under certain assumptions). Combining this cubic polynomial with the claw-bound, we rule out an infinite family of feasible parameters (v, k, λ, μ) for strongly regular graphs. Lastly, we provide tables of parameters (v, k, λ, μ) for nonexistent strongly regular graphs with smallest eigenvalue -4, -5, -6 or -7.

Key Words: Strongly regular graphs, Cliques, Smallest eigenvalues, Hoffman bound, Delsarte bound, Claw-bound, Feasible parameters

2020 Mathematics Subject Classification: 05E30

1 Introduction

The following bounds are well-known for the order of a clique in a graph, regular graph, and strongly regular graph, respectively.

(i) For a graph Γ with v vertices, Cvetković proved that the order of a coclique in Γ is at most $\min\{v - n_+, v - n_-\}$ [2, Theorem 3.5.1], where n_+ and n_- are the numbers of positive and negative eigenvalues of Γ, respectively. We call this bound the Cvetković bound.

(ii) For a regular graph with valency k and smallest eigenvalue $-m$, Hoffman proved that the order of a coclique in Γ is at most $v \frac{m}{k + m}$ [2, Theorem 3.5.2]. We call this bound the Hoffman bound.

(iii) For a strongly regular graph with valency k and smallest eigenvalue $-m$, Delsarte proved that the order of a clique in Γ is at most $1 + \frac{k}{m}$ [4, Section 3.3.2]. We call this bound the Delsarte bound and a clique in Γ is called a Delsarte clique if its order is equal to $1 + \frac{k}{m}$.

From the Hoffman bound and Cvetković bound, we can obtain an upper bound on the order of a clique in a graph Γ by considering the complement of Γ. We note that if the graph Γ is a strongly regular graph, then the bound obtained from the Hoffman bound is the same as the Delsarte bound [1, Proposition 1.3.2].

Our purpose is to study the order of a maximal clique in an amply regular graph with a fixed smallest eigenvalue by considering a vertex that is adjacent to some (but not all) vertices of the maximal clique. As
a consequence, we show that if a strongly regular graph contains a Delsarte clique, then the parameter \(\mu \) is either small or large. Our main tool, which we exhibit in Section 3, is a cubic polynomial corresponding to an amply regular graph \(\Gamma \) that can be used to bound that size of a maximal clique in \(\Gamma \). In Section 4 we combine this cubic polynomial with the claw-bound to rule out an infinite family of feasible parameters \((v, k, \lambda, \mu)\) for strongly regular graphs. In the appendix, we provide tables of parameters \((v, k, \lambda, \mu)\) for nonexistent strongly regular graphs with smallest eigenvalue \(-4, -5, -6\) or \(-7\).

2 Definitions and preliminaries

All the graphs considered in this paper are finite, undirected and simple. For basic definitions and terminology, the reader is referred to [1]. Let \(\Gamma \) be a connected graph with vertex set \(V(\Gamma) \). The distance \(d(x, y) \) between two vertices \(x, y \in V(\Gamma) \) is the length of a shortest path between \(x \) and \(y \) in \(\Gamma \). The maximum distance occurring in \(\Gamma \) is called the diameter of \(\Gamma \). For each \(x \in V(\Gamma) \), denote by \(\Gamma(x) \) the set of vertices in \(\Gamma \) that are adjacent to \(x \). For a vertex \(x \) of \(\Gamma \), the number \(|\Gamma(x)| \) is called the valency of \(x \) in \(\Gamma \). In particular, if \(k = |\Gamma(x)| \) holds for all \(x \in V(\Gamma) \), then \(\Gamma \) is regular with valency \(k \).

A regular graph with \(v \) vertices and valency \(k \) is called edge-regular with parameters \((v, k, \lambda)\) if any two adjacent vertices have exactly \(\lambda \) common neighbors. An edge-regular graph with parameters \((v, k, \lambda)\) is called amply regular with parameters \((v, k, \lambda, \mu)\) if any two vertices at distance 2 have exactly \(\mu \) common neighbors. An amply regular graph with parameters \((v, k, \lambda, \mu)\) with diameter at most 2 is also called strongly regular with parameters \((v, k, \lambda, \mu)\).

Theorem 2.1. (Cf. [3] Theorem 8.6.3) Let \(m \geq 2 \) be an integer. Let \(\Gamma \) be a strongly regular graph with parameters \((v, k, \lambda, \mu)\) and eigenvalues \(k > \sigma > \tau \). If \(\tau = -m \) and \(\sigma > \frac{1}{2}m(m-1)(\mu+1) - 1 \), then one of the following holds:

(i) \(\mu = m(m-1) \) and \(\Gamma \) is a Latin square graph \(LS_m(n) \),

(ii) \(\mu = m^2 \) and \(\Gamma \) is a block graph of Steiner system 2-(mn + m - n, m, 1),

where \(\sigma = n - m \).

We use the above theorem as follows. Let \(m \geq 2 \) be an integer and let \(\Gamma \) be a strongly regular graph with parameters \((v, k, \lambda, \mu)\) and smallest eigenvalue \(-m\). Assume that \(\mu \neq m(m-1) \) and \(\mu \neq m^2 \), then by Theorem 2.1 we have \(\sigma \leq \frac{1}{2}m(m-1)(\mu+1) - 1 \). Since \(\lambda - \mu = \sigma - m \) and \(k - \mu = \sigma \mu \) (\[6] p. 219), we have \(\lambda = \sigma + \mu - m \leq \frac{1}{2}(m^2 - m + 2)(\mu - 1) + m^2 - 2m \) and \(k = \sigma m + \mu \leq \frac{1}{2}m^2(m-1)(\mu+1) - m + \mu \). Furthermore, one can see that \(v = 1 + k + k(k - \lambda - 1)/\mu \). Neumaier [10] Theorem 3.1 showed that \(\mu \leq m^3(2m - 3) \) if we refer to this bound as the \(\mu \)-bound. The \(\mu \)-bound shows that there are finitely many such strongly regular graphs (for fixed \(m \)). For a pair \((\lambda, \mu)\) satisfying \(\lambda - \sigma + \mu - m = \frac{1}{2}(m^2 - m + 2)(\mu - 1) + m^2 - 2m \) and \(\mu \leq m^3(2m - 3) \), if the multiplicities of the eigenvalues of \(\Gamma \) are integral and both the Krein condition [10] Lemma 2.1 and the absolute bound [10] Lemma 2.2 are satisfied, then we call the parameters \((v, k, \lambda, \mu)\) feasible for a strongly regular graph.

Let \(\Gamma \) be a connected graph. A clique in \(\Gamma \) is a set of pairwise adjacent vertices of \(\Gamma \), and a coclique in \(\Gamma \) is a set of pairwise non-adjacent vertices of \(\Gamma \). The number of vertices in a clique or coclique is called the order of the clique or coclique. A clique \(C \) in \(\Gamma \) is called maximal if there is no clique in \(\Gamma \) that contains \(C \) and at least one other vertex of \(V(\Gamma) \). A complete graph \(K_n \) is a graph whose vertex set is a clique of order \(n \). For a vertex \(x \) of \(\Gamma \), if \(\Gamma(x) \) contains a coclique \(C \) of order \(s \), then the subgraph induced on \(\Gamma \setminus \{x\} \) is called the \(s \)-claw. The adjacency matrix \(A = A(\Gamma) \) of \(\Gamma \) is the matrix whose rows and columns are indexed by vertices of \(\Gamma \) and the \((x, y)\)-entry is 1 whenever \(x \) and \(y \) are adjacent and 0 otherwise. The eigenvalues of \(\Gamma \) are the eigenvalues of \(A \).

The following well-known result is called the Interlacing Theorem, and it shows that for a graph \(\Gamma \), the eigenvalues of an induced subgraph of \(\Gamma \) interlace the eigenvalues of \(\Gamma \).

Theorem 2.2. (Cf. [7]) Let \(m \leq n \) be two positive integers. Let \(A \) be an \(n \times n \) matrix, that is similar to a (real) symmetric matrix, and let \(B \) be a principal \(m \times m \) submatrix of \(A \). Then,

\[
\theta_{n-m+1}(A) \leq \theta_i(B) \leq \theta_i(A)
\]

holds for \(i = 1, \ldots, m \), where \(A \) has eigenvalues \(\theta_1(A) \geq \theta_2(A) \geq \ldots \geq \theta_n(A) \) and \(B \) has eigenvalues \(\theta_1(B) \geq \theta_2(B) \geq \ldots \geq \theta_m(B) \).
Remark 1. A partition $\Pi = \{P_1, P_2, \ldots, P_m\}$ of the vertex set of a graph Γ is called equitable if there exist non-negative integers q_{ij} ($1 \leq i, j \leq m$) such that each vertex in P_i has exactly q_{ij} neighbors in P_j. Moreover, an eigenvalue of the quotient matrix $Q = (q_{ij})$ of the equitable partition $\Pi = \{P_1, P_2, \ldots, P_m\}$ is also an eigenvalue of the graph Γ [Lemma 2.3.1]. Together with Theorem 2.2, this shows that eigenvalues of the quotient matrix of an equitable partition of the vertex set of an induced subgraph of the graph Γ interlace those of Γ.

3 Maximal-clique polynomial

In this section, we introduce a cubic polynomial (see Remark 2) that gives a new bound on the order of a maximal clique in an amply regular graph. Indeed, this cubic polynomial says that a maximal clique in an amply regular graph is either large or small under certain assumptions.

For positive integers a and t, let us consider the graph with $a + t + 1$ vertices consisting of a complete graph K_{a+t} together with a vertex x that is adjacent to precisely a vertices of K_{a+t}. We denote this graph by $H(a, t)$. Note that the vertex partition of $\Gamma = H(a, t)$ with parts $\{x\}$, $\Gamma(x)$ and their complement is equitable with quotient matrix

$$Q = \begin{bmatrix} 0 & a & 0 \\ 1 & a - 1 & t \\ 0 & a & t - 1 \end{bmatrix}.$$

For a graph with smallest eigenvalue $-m$ containing $H(a, t)$ as an induced subgraph, the following lemma gives a relationship between a, t and m.

Lemma 3.1. Let Γ be a graph with smallest eigenvalue $-m$ that contains $H(a, t)$ as an induced subgraph. Then

$$(a - m(m - 1))(t - (m - 1)^2) \leq (m(m - 1))^2. \tag{3.1}$$

Proof. Note that Remark 1 says that the smallest eigenvalue of Q is at least $-m$. Thus $\det(mI + Q) \geq 0$, from which (3.1) follows directly.

In the following lemma, we show that the parameter a in Lemma 3.1 is small when any two non-adjacent vertices of Γ have few common neighbors.

Lemma 3.2. Let Γ be a graph with smallest eigenvalue $-m$ such that any two non-adjacent vertices have at most μ common neighbors. Suppose that Γ has a maximal clique C of order $c \geq (m - 1)(4m - 1)$ and a vertex $y \notin C$ with m neighbors in C. If $\mu < \frac{c + m - 1 + \sqrt{D}}{2}$ then $a \leq \frac{c + m - 1 - \sqrt{D}}{2}$, where $D = (c + m - 1)(c - (m - 1)(4m - 1))$.

Proof. Note that Γ contains $H(a, c - a)$ as an induced subgraph. Then (3.1) becomes

$$a^2 - a(c + m - 1) + m(m - 1)(c + m - 1) \geq 0$$

Since $c \geq (m - 1)(4m - 1)$, we know that $(c + m - 1)(c - (m - 1)(4m - 1)) \geq 0$. Hence either

$$a \leq \frac{c + m - 1 - \sqrt{(c + m - 1)(c - (m - 1)(4m - 1))}}{2}$$

or

$$a \geq \frac{c + m - 1 + \sqrt{(c + m - 1)(c - (m - 1)(4m - 1))}}{2}$$

holds. But, since C is maximal, we must have $a \leq \mu$.

We apply the proof of Lemma 3.2 to strongly regular graphs having a Delsarte clique to obtain the following result.

Proposition 3.3. Let Γ be a strongly regular graph with parameters (v, k, λ, μ) having smallest eigenvalue $-m$. Assume that $k \geq m^2(4m - 5)$ and that Γ contains a Delsarte clique. Then either

$$\mu \leq \frac{k+m^2-\sqrt{(k+m^2)(k-4m^3+5m^2)}}{2} \quad \text{or} \quad \mu \geq \frac{k+m^2+\sqrt{(k+m^2)(k-4m^3+5m^2)}}{2}.$$
Lemma 3.7. Let \(C \) be a Delsarte clique in \(\Gamma \). Then \(C \) has order \(c = 1 + \frac{k}{m} \). By [1, Proposition 1.3.2], every vertex outside \(C \) has \(\frac{\mu}{m} \) neighbors in \(C \). Since \(k \geq m^2(4m-5) = m(m-1)(4m-1) - m \), we know that \(c = 1 + \frac{k}{m} \geq (m-1)(4m-1) \). Then from the proof of Lemma 3.2 we know that either \(\frac{\mu}{m} \leq \frac{c+m-1-\sqrt{(c+m-1)(c-(m-1)(4m-1))}}{2} \) or \(\frac{\mu}{m} \geq \frac{c+m-1+\sqrt{(c+m-1)(c-(m-1)(4m-1))}}{2} \).

Replace \(c \) by \(1 + \frac{k}{m} \) to obtain that either
\[
\mu \leq \frac{k+m^2-\sqrt{(k+m^2)(k-4m^3+5m^2)}}{2} \quad \text{or} \quad \mu \geq \frac{k+m^2+\sqrt{(k+m^2)(k-4m^3+5m^2)}}{2}.
\]
This finishes the proof. \(\square \)

Next we provide a technical lemma for adjacency for cliques in edge-regular graphs.

Lemma 3.4. Let \(\Gamma \) be an edge-regular graph with parameters \((v,k,\lambda)\) having a clique \(C \) of order \(c \). For a vertex \(x \) in \(C \), if every vertex in \(\Gamma(x) \setminus C \) has at most \(n \) neighbors in \(C \setminus \{x\} \), then
\[
\frac{(c-1)(\lambda-(c-2))}{(k-(c-1))} \leq n.
\]

Proof. Note that every vertex in \(\Gamma(x) \) has \(\lambda \) neighbors in \(\Gamma(x) \). Then every vertex in \(C \setminus \{x\} \) has \(\lambda-(c-2) \) neighbors in \(\Gamma(x) \setminus C \). Thus, there are \((c-1)(\lambda-(c-2))\) edges between \(C \setminus \{x\} \) and \(\Gamma(x) \setminus C \). Since every vertex in \(\Gamma(x) \setminus C \) has at most \(n \) neighbors in \(C \setminus \{x\} \), we have \((c-1)(\lambda-(c-2)) \leq n(k-(c-1))\), as required. \(\square \)

As an immediate consequence of Lemma 3.4 we have the following corollary.

Corollary 3.5. Let \(\Gamma \) be an amply regular graph with parameters \((v,k,\lambda,\mu)\) having a clique \(C \) of order \(c \). Then
\[
\frac{(c-1)(\lambda-(c-2))}{(k-(c-1))} \leq \mu - 1.
\]

Proof. Let \(x \) be a vertex in \(C \) and let \(y \) be a vertex in \(\Gamma(x) \setminus C \). Note that there is a vertex \(z \) in \(C \setminus \{x\} \) such that \(z \) is not adjacent to \(y \). Then, since \(d(y,z) = 2 \), the vertex \(y \) has at most \(\mu - 1 \) neighbors in \(\Gamma(x) \setminus C \). By Lemma 3.4, we obtain that \(\mu - 1 \) is at least \(\frac{(c-1)(\lambda-(c-2))}{(k-(c-1))} \), as required. \(\square \)

We combine Lemma 3.2 and Lemma 3.4 to establish the following lemma.

Lemma 3.6. Let \(\Gamma \) be an amply regular graph with parameters \((v,k,\lambda,\mu)\) having smallest eigenvalue \(-m\). Suppose that \(\Gamma \) has a maximal clique of order \(c \geq (m-1)(4m-1) \) such that \(\mu < \frac{c+m-1+\sqrt{D}}{2} \), where \(D = (c+m-1)(c-(m-1)(4m-1)) \). Then
\[
(c+m-3)(k-c+1) - 2(c-1)(\lambda-c+2) \geq (k-c+1)\sqrt{D}.
\]

Proof. Let \(x \) be a vertex in \(C \). For a vertex \(y \) in \(\Gamma(x) \setminus C \), we denote the number of neighbors of \(y \) in \(C \setminus \{x\} \) by \(n_y \). Let \(n = \max\{n_y \mid y \in \Gamma(x) \setminus C\} \). Then by Lemma 3.4 we have \(\frac{(c-1)(\lambda-(c-2))}{(k-(c-1))} \leq n \). Let \(z \) be a vertex in \(\Gamma(x) \setminus C \) having \(n \) neighbors in \(C \setminus \{x\} \), that is, the vertex \(z \) has \(n+1 \) neighbors in \(C \) including \(x \). By Lemma 3.2, we have \(n+1 \leq \frac{c+m-1+\sqrt{D}}{2} \). Thus, we obtain that
\[
\frac{(c-1)(\lambda-(c-2))}{(k-(c-1))} + 1 \leq n+1 \leq \frac{c+m-1+\sqrt{D}}{2},
\]
from which (3.2) follows directly. \(\square \)

Alternatively, Lemma 3.6 can be written as the following lemma.

Lemma 3.7. Let \(\Gamma \) be an amply regular graph with parameters \((v,k,\lambda,\mu)\) having smallest eigenvalue \(-m\) such that \(\mu > m(m-1) \). Suppose that \(\Gamma \) has a maximal clique \(C \) of order \(c > \frac{\mu^2}{\mu-\mu(m(m-1))} - m + 1 \). Then
\[
(c+m-3)(k-c+1) - 2(c-1)(\lambda-c+2)^2 - (k-c+1)^2(c+m-1)(c-(m-1)(4m-1)) \geq 0. \quad (3.3)
\]
Proof. Let $D = (c + m - 1)(c - (m - 1)(4m - 1))$. Since $\mu > m(m - 1)$, the inequality $c > \frac{\mu^2}{\mu - m(m - 1)} - m + 1$ implies that $(\mu - m(m - 1)c > \mu^2 - (m - 1)(\mu - m(m - 1)))$, which is equivalent to $(2\mu - c - m + 1)^2 < D$. Hence $2\mu - c - m + 1 < 2\mu - c - m + 1 < \sqrt{D}$, that is, $\mu < \sqrt{c + m - 1}$. Since $(\mu - 2m(m - 1))^2 \geq 0$, we have that $\mu^2 \geq 4m(m - 1)(\mu - m(m - 1))$. Then $\mu > m(m - 1)$ implies that $\frac{\mu^2}{\mu - m(m - 1)} > 4m(m - 1)$, and this shows that $c > \frac{\mu^2}{\mu - m(m - 1)} - m + 1 \geq (m - 1)(4m - 1)$. Now we can apply Lemma 3.6 to obtain the inequality (3.2), and this implies the inequality (3.3), as required. \qed

Remark 2. We denote the polynomial on the left hand side of the inequality (3.3) by $M_\Gamma(c)$, and we will call it the maximal-clique polynomial. Note that $M_\Gamma(c)$ is a cubic polynomial in the variable c and that the leading coefficient of $M_\Gamma(c)$ is positive.

4 The claw-bound and cliques

In this section, we recall the claw-bound which was found by several authors [8, Section 3]. From the claw-bound, we will show that if an amply regular graph Γ with parameters (v, k, λ, μ) does not contain a coclique of order \bar{c} in a local graph (a graph induced on the set of neighbors of a vertex), then Γ contains a clique of order at least $2 + 2\lambda - (2\bar{c} - 2)(\mu - 1)$.

The claw-bound is given below, and it follows from the principle of inclusion and exclusion (5.9).

Lemma 4.1. (Cf. [8][9]) Let Γ be an amply regular graph with parameters (v, k, λ, μ). Let x be a vertex of Γ and let C be a coclique of order $\bar{c} \geq 2$ in $\Gamma(x)$. Then

$$(\frac{\bar{c}}{2})(\mu - 1) \geq \bar{c}(\lambda + 1) - k$$

Remark 3. Lemma 4.1 says that if $(\frac{\bar{c}}{2})(\mu - 1) < \bar{c}(\lambda + 1) - k$, then the graph induced on $\Gamma(x)$ contains no coclique of order \bar{c}, i.e., the graph Γ does not contain a \bar{c}-claw.

From the claw-bound, we give a bound on the order of a clique in an amply regular graph when the graph does not contain a \bar{c}-claw.

Lemma 4.2. Let Γ be an amply regular graph with parameters (v, k, λ, μ). If $(\frac{\bar{c}}{2})(\mu - 1) < \bar{c}(\lambda + 1) - k$ for some integer $\bar{c} \geq 2$, then Γ contains a clique of order at least $2 + 2\lambda - (2\bar{c} - 2)(\mu - 1)$.

Proof. Let x be a vertex of Γ and let s be the maximum number such that the graph induced by $\Gamma(x)$ contains a coclique of order s. Note that, by Remark 3, we know that $s \leq \bar{c} - 1$. Assume that $\{y_1, y_2, \ldots, y_s\}$ is a coclique of order s in $\Gamma(x)$. The vertex y_1 has λ neighbors in $\Gamma(x) \setminus \{y_2, \ldots, y_s\}$ and that for each $i \in \{2, \ldots, s\}$, the vertices y_1 and y_i have at most $\mu - 1$ common neighbors in $\Gamma(x) \setminus \{y_2, \ldots, y_s\}$. Hence, there are at least $\lambda - (s - 1)(\mu - 1)$ vertices in $\Gamma(x)$ that are adjacent to y_1 but not adjacent to y_i for all $i \in \{2, \ldots, s\}$. If two such vertices were not adjacent, then those two vertices together with y_2, \ldots, y_s would induce a coclique of order $s + 1$, a contradiction. Thus, the graph induced by $\Gamma(x)$ contains a clique of order at least $1 + \lambda - (s - 1)(\mu - 1)$ and hence, Γ contains a clique of order at least $2 + 2\lambda - (s - 1)(\mu - 1) \geq 2 + 2\lambda - (2\bar{c} - 2)(\mu - 1)$. \qed

As an application of the maximal clique polynomial, we prove that there cannot exist any strongly regular graph having the feasible parameters (v, k, λ, μ) in the following theorem.

Theorem 4.3. Let $m \geq 4$ be an integer. Then, there are no strongly regular graphs with the following parameters:

\begin{align*}
 v &= 1 + k + k(k - \lambda - 1)/\mu, \\
 k &= (m + 1)(m(2 - \mu) + 2\lambda)/2 + 1, \\
 \lambda &= \frac{(m - 3)^2 + 15(m - 3)^2 + 9(m - 3)^2 + 283(m - 3)^2}{2} + 226(m - 3) + 148, \\
 \mu &= (m - 3)^3 + 10(m - 3)^2 + 33(m - 3) + 38.
\end{align*}
Proof. Suppose that there exists a strongly regular graph Γ with such parameters (v, k, λ, μ) for some integer $m \geq 4$. Set $\bar{c} = m + 2$. Then $\binom{\bar{c}}{2}(\mu - 1) < \bar{c}(\lambda + 1) - k$, and, by Lemma 4.2, we know that Γ contains a clique of order at least $2 + \lambda - m(\mu - 1)$. Thus, the graph Γ contains a maximal clique C of order $c_1 \geq 2 + \lambda - m(\mu - 1)$. Note that the Delsarte bound implies that $2 + \lambda - m(\mu - 1) \leq c_1 \leq 1 + \frac{\mu}{m}$.

Recall the maximal-clique polynomial $M_\Gamma(c)$. Since $m \geq 4$, we know that

$$c_1 \geq 2 + \lambda - m(\mu - 1) > \frac{\mu^2}{\mu - m(m-1)} - m - 1.$$

Then Lemma 3.7 implies that $M_\Gamma(c_1) \geq 0$. Note that $M_\Gamma(0) > 0$, $M_\Gamma(2 + \lambda - m(\mu - 1)) < 0$ and $M_\Gamma(1 + \frac{\mu}{m}) < 0$. But this is not possible since $M_\Gamma(c)$ is a cubic polynomial with a positive leading coefficient (Remark 3.2). Therefore, there are no strongly regular graphs with such parameters (v, k, λ, μ) for all integer $m \geq 4$.

5 Acknowledgements

Gary Greaves is partially supported by the Singapore Ministry of Education Academic Research Fund (Tier 1); grant numbers: RG29/18 and RG21/20.

Jack H. Koolen is partially supported by the National Natural Science Foundation of China (No.12071454), Anhui Initiative in Quantum Information Technologies (No. AHY150000) and by the project “Analysis and Geometry on Bundles” of Ministry of Science and Technology of the People’s Republic of China.

Jongyook Park is partially supported by Basic Science Research Program through the National Research Foundation of Korea funded by Ministry of Education (NRF-2017R1D1A1B03032016) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1A2C1A01101838).

References

[1] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.

[2] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Universitext, Springer, 2012.

[3] A.E. Brouwer and H. Van Maldeghem, Strongly regular graphs, preprint (downloaded on October 19, 2020), https://homepages.cwi.nl/~aeb/math/srg/rk3/srgw.pdf.

[4] P. Delsarte, An algebraic approach to the association schemes of coding theory. PhD thesis, Universite Catholique de Louvain, 1973.

[5] A.L. Gavrilyuk, On the Koolen-Park inequality and Terwilliger graphs, Electron. J. Combin. 17 (2010) R125.

[6] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, Berlin, 2001.

[7] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226/228 (1995), 593-616.

[8] J.H. Koolen, Q. Iqbal, J. Park and M.U. Rehman, There does not exist a distance-regular graph with intersection array \{80, 54, 12; 1, 6, 60\}, Graphs Combin. 35 (2019) 1597–1608.

[9] J.H. Koolen and J. Park, Shilla distance-regular graphs, European J. Combin. 31 (2010) 2064–2073.

[10] A. Neumaier, Strongly regular graphs with smallest eigenvalue $-m$, Arch. Math. (Basel) 33 (1979) 392–400.
6 Appendix

In this appendix, we give tables of parameters \((v, k, \lambda, \mu)\) for nonexistent strongly regular graphs with smallest eigenvalue \(-4, -5, -6\) or \(-7\). Note that all of those parameters \((v, k, \lambda, \mu)\) are feasible (see the definition in Section 2). In the tables below, ‘forbidden range’ means that the graph does not contain a maximal clique of order in the forbidden range (Lemma 3.7), ‘Delsarte bound’ means \(\left\lfloor 1 + \frac{k}{m} \right\rfloor\), where \(-m\) is the smallest eigenvalue, and ‘guaranteed clique order’ means the graph contains a (maximal) clique of order at least that guaranteed clique order (Lemma 4.2).

\(\mu\)	\(v\)	\(k\)	\(\lambda\)	forbidden range	Delsarte bound	guaranteed clique order
58	23276	1330	372	[71, 340]	333	146
62	25025	1426	399	[74, 368]	357	157
80	27455	1696	480	[92, 450]	425	166
82	38875	2046	569	[94, 539]	512	247

Table 1: Parameters for nonexistent strongly regular graphs with smallest eigenvalue \(-4\)

\(\mu\)	\(v\)	\(k\)	\(\lambda\)	forbidden range	Delsarte bound	guaranteed clique order
115	133570	4365	960	[136, 885]	874	278
122	230958	5917	1276	[142, 1202]	1184	673
150	235586	6625	1440	[170, 1367]	1326	697
152	317628	7747	1666	[172, 1593]	1550	913
168	328560	8283	1786	[187, 1714]	1657	953
170	259000	7395	1610	[189, 1538]	1480	767
172	309016	8127	1758	[191, 1686]	1626	905
205	225885	7580	1675	[224, 1605]	1517	453
214	404587	10374	2241	[233, 2170]	2075	1178
240	314116	9675	2122	[258, 2052]	1936	929
240	485815	12040	2595	[258, 2524]	2409	1402

Table 2: Parameters for nonexistent strongly regular graphs with smallest eigenvalue \(-5\)
μ	v	k	λ	forbidden range	Delsarte bound	guaranteed clique order
201	545832	11451	2070	[232, 1926]	1909	472
204	895665	14784	2628	[235, 2484]	2465	1412
206	1331968	18122	3186	[237, 3042]	3021	1958
210	997920	15834	2808	[241, 2664]	2640	1556
212	1371657	18656	3280	[242, 3137]	3110	2016
252	1352572	20196	3570	[282, 3428]	3367	2066
254	1756209	23108	4057	[284, 3915]	3852	2541
264	717574	15048	2722	[293, 2582]	2509	620
267	886222	16821	3020	[296, 2880]	2804	1160
270	1112320	18954	3378	[299, 3237]	3160	1766
273	1423818	21567	3816	[302, 3675]	3595	2186
276	1867591	24840	4364	[305, 4223]	4141	2716
280	1026875	18544	3318	[309, 3178]	3091	1646
315	855570	17949	3248	[344, 3110]	2992	738
324	1462209	23808	4232	[353, 4093]	3969	2296
327	1791882	26481	4680	[356, 4540]	4414	2726
330	2232000	29694	5218	[359, 5078]	4950	3246
380	1503625	26144	4668	[408, 4530]	4358	2396
390	2223180	32214	5688	[418, 5549]	5370	3356
438	1148448	24522	4446	[466, 4311]	4088	952
440	1212001	25250	4569	[468, 4433]	4209	1498
450	1605240	29394	5268	[478, 5132]	4900	2576
456	1920621	32370	5769	[484, 5632]	5396	3041
468	2835028	39852	7026	[496, 6888]	6643	4226
470	3039520	41354	7278	[498, 7140]	6893	4466
472	3268897	42946	7545	[500, 7407]	7158	4721

Table 3: Parameters for nonexistent strongly regular graphs with smallest eigenvalue $\lambda = -6$
μ	v	k	λ	forbidden range	Delsarte bound	guaranteed clique order
322	1769600	25753	3948	[365, 3702]	3680	1061
329	4271421	40460	6055	[372, 5810]	5781	3761
338	6057152	48841	7260	[380, 7016]	6978	4903
364	2747626	34125	5180	[406, 4937]	4876	2278
369	5619713	49152	7331	[411, 7088]	7022	4757
372	5783316	50065	7464	[414, 7221]	7153	4869
382	2369800	32463	4958	[424, 4716]	4638	1531
392	5873750	51793	7228	[434, 7485]	7400	4993
394	7404736	58305	8660	[436, 8417]	8330	5911
417	7939750	60743	9028	[458, 8786]	8678	6118
467	2897225	39688	6063	[508, 5824]	5670	1871
474	4178176	48025	7260	[515, 7021]	6861	3951
483	7331625	64232	9583	[524, 9342]	9177	6211
486	9133968	71921	10684	[526, 10443]	10275	7291
522	3891200	48633	7388	[562, 7150]	6948	3222
522	7314000	66993	9968	[562, 9728]	9528	6323
532	4231150	51198	7763	[572, 7525]	7315	3517
539	7818591	70070	10465	[579, 10226]	10011	6701
596	3190151	46998	7217	[635, 6982]	6715	1279
630	325728	49835	7588	[670, 7354]	7056	1300
630	10072881	85988	12817	[670, 12578]	12285	8416
634	11915776	93825	13940	[673, 13701]	13404	9511
665	12031999	96558	14357	[704, 14118]	13795	9711
689	5860526	68575	10380	[728, 10144]	9797	5566
714	3844176	56525	8680	[753, 8447]	8076	1552
735	5498361	68600	10423	[774, 10188]	9801	4553
742	6244525	73458	11123	[781, 10888]	10495	5197
746	6729536	76465	11556	[785, 11321]	10924	6343
762	9236916	90551	13582	[801, 13346]	12936	8257
763	9431401	91560	13727	[802, 13490]	13081	8395
770	4190144	61285	9408	[809, 9176]	8756	1720
777	12822369	107744	16051	[816, 15813]	15393	10621
780	13752261	111800	16633	[819, 16395]	15972	11182
816	12114648	107321	16024	[855, 15787]	15332	10321
833	4666865	67228	10311	[872, 10079]	9605	2825
841	5217895	71478	10925	[880, 10692]	10212	3367
849	5861241	76120	11595	[888, 11362]	10875	4813
882	9888000	100793	15148	[921, 14913]	14400	8983
888	10974960	106553	15976	[927, 15740]	15222	9769
889	11171083	107562	16121	[928, 15885]	15367	9907
900	5357638	74925	11468	[939, 11236]	10704	3379
903	14734110	123403	18396	[942, 18159]	17630	12084
918	5105376	73865	11332	[957, 11101]	10553	3081
924	6973876	86625	13160	[963, 12927]	12376	5778
980	13835098	125685	18788	[1018, 18552]	17956	11937
990	5550960	79985	12268	[1028, 12037]	11427	3369
1007	8792255	101548	15363	[1045, 15130]	14507	8323

Table 4: Parameters for nonexistent strongly regular graphs with smallest eigenvalue −7