Research Paper

Relationship of Somatotype With Static, Semi-dynamic and Dynamic Balance of Adolescent, Young and Middle-aged Women

*Mahbubeh Keivan1, Heydar Sadeghi2

1. Department of Sports Biomechanics, Faculty of Physical Education and Sports Science, Islamic Azad University Central Tehran Branch, Tehran, Iran.
2. Department of Biomechanics and Sport Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran.

Extended Abstract

1. Introduction

Postural control is a complex process, involving the center of gravity maintenance within the base of support. Moreover, it requires the co-ordination of the somatosensory, visual, and vestibular systems [1]. The information provided by these three systems is executed by the Central Nervous System (CNS) and integrated in the form of an appropriate motor response to maintain body balance. Balance is actively controlled by the CNS, which predicts the perturbations of whole body or trunk movements. A key feature of balance is stability.
Stability is related to motor control resistance and a smooth state without changing in response to a perturbation or oscillations creating perturbations. Typically, if the posture returns to its original state during the perturbation, it is considered as stable. Somatotype is a means of describing human body shape and condition in addition to height and weight; it can affect postural control [10-12]. Somatotype is also used to determine the body types most exposed to various diseases. Studies have examined the relationship between body type and health status [14-16] and physical activity [15, 17, 18]. Previous studies have reported that postural control is different in different somatotypes; however, they only examined the effect of somatotype on static or dynamic control in one age group. Thus, we examined the relationship between somatotype and static, semi-dynamic, and dynamic postural controls in adolescent, young, and middle-aged females.

2. Participants and Methods

A total of 140 females aged 12-50 years (Mean±SD of age=26.45±10.94 y) with no skeletal abnormalities, lower extremity pain, and injury, as well as vestibular and neuromuscular injury were included in the study. The study participants’ anthropometric characteristics were measured. Then, they were classified into three groups of ectomorph

| Table 1. Postural control measurement results based on somatotype groups |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Balance | Number of Errors | Frequency | Group | Total |
| | | Percentage | Ectomorph | Mesomorph | Endomorph | |
| <3 | | | N | 13 | 21 | 9 | 43 |
| % | | | % | 28.3 | 46.7 | 18.4 | 30.7 |
| 3-6 | | | N | 10 | 10 | 7 | 27 |
| % | | | % | 21.7 | 22.2 | 14.3 | 19.3 |
| 6-9 | | | N | 4 | 2 | 7 | 13 |
| % | | | % | 8.7 | 4.4 | 14.3 | 9.3 |
| 9-12 | | | N | 9 | 2 | 9 | 20 |
| % | | | % | 19.6 | 4.4 | 18.4 | 14.3 |
| 12-15 | | | N | 5 | 6 | 9 | 20 |
| % | | | % | 10.9 | 13.3 | 18.4 | 14.3 |
| >15 | | | N | 5 | 4 | 8 | 17 |
| % | | | % | 10.9 | 8.9 | 16.3 | 12.1 |
| Total | | | N | 46 | 45 | 49 | 140 |
| % | | | % | 100.0 | 100.0 | 100.0 | 100.0 |
| <10 | | | N | 20 | 30 | 18 | 68 |
| % | | | % | 43.5 | 66.7 | 36.7 | 48.6 |
| 10-20 | | | N | 20 | 10 | 22 | 52 |
| % | | | % | 43.5 | 22.2 | 44.9 | 37.1 |
| 20-30 | | | N | 4 | 5 | 7 | 16 |
| % | | | % | 8.7 | 11.1 | 14.3 | 11.4 |
| >30 | | | N | 2 | 0 | 2 | 4 |
| % | | | % | 4.3 | 0.0 | 4.1 | 2.9 |
| Total | | | N | 46 | 45 | 49 | 140 |
| % | | | % | 100.0 | 100.0 | 100.0 | 100.0 |
(n=46), mesomorph (n=45), and endomorph (n=49) based on the heath-carter method. Somatotype was determined based on the dominant component, i.e. ≥1.5 units of difference from the other two components [13]. After determining the somatotype, the Y Balance Test (YBT) was performed to evaluate the study subjects’ dynamic control.

3. Results

One-way Analysis of Variance (ANOVA) results suggested a significant difference in the mean static, semi-dynamic, and dynamic balance scores between the three groups of an ectomorph, mesomorph, and endomorph. Table 1 presents the postural control measurement results of the somatotype group. In total, 46.7%, 28.3%, and 18.4% of the mesomorphs, ectomorphs, and endomorphs had the lowest error <3 in static postural control, respectively. This was also observed in the next category (3-6 errors). Regarding the highest error rate >15, only 8.9% of the mesomorphs had >15 errors, followed by ectomorphs with 10.9%, and endomorphs with 16.3%. In terms of semi-dynamic balance, a high percentage of mesomorph subjects (66.7%) gained the lowest error rate <10, followed by 43.5% of ectomorphs, and 36.7% of endomorphs (Table 1).

4. Discussion

The current study investigated the relationship between somatotype, and static, semi-dynamic, and dynamic balance. The obtained results suggested a significant difference in the static, semi-dynamic, and dynamic balance between three ectomorph, mesomorph, and endomorph female groups. The mean static balance (i.e. the number of errors in the Balance Error Scoring System test) in the mesomorph group (6.66) was significantly higher than the ectomorph (8.64) and endomorph (10.22) groups. Chi-square test results revealed that the mesomorph group indicated the best, and endomorphs demonstrated the poorest performance in static balance. This finding is consistent with those of Lee et al. [12] who reported that mesomorphic girls had substantially better one-sided static stability, compared to endomorphic and ectomorphic girls; they also reported the somatotype components effects on the postural stability in young girls.

The achieved data highlighted that the mesomorphic subjects had a better balance performance, while the performance of endomorphs was poor. Muscle strength and structure are useful for joint stability and postural control; the might be the main reason for the better performance of mesomorphs in our study (previous studies have supported the same finding) [11, 12, 29]. Unlike some previous studies, the ectomorphs in our study had better postural control than endomorphs. Although the high height-to-weight ratio is a characteristic of ectomorphs, the Mean±SD height of these subjects (1.59±5.92) was not significantly different from that of endomorphs (1.59±6.35); however, the difference between the two groups was significant in weight. Therefore, the height of the center of gravity to the base of support, which is one of the main determinants of stability, has not been increased; the mass distribution was probably the factor that differentiated the postural control of ectomorphs and endomorphs. Studies have documented that obese people with an asymmetric distribution of fat, especially in the abdomen, are more prone to fall [8].

5. Conclusion

The mesomorphic component of somatotype was associated with postural control. Besides, the endomorphic component impaired balance more than the ectomorphic component. Comparing these findings with those of other studies revealed the necessity for further investigations regarding the postural control of three somatotypes.

Ethical Considerations

Compliance with ethical guidelines

Prior to the study, a written informed consent was signed by the subjects or their parents. They were assured of the confidentiality of their information and were free to leave the study at any time.

Funding

The present paper was extracted from the MA thesis of the first author, Mahbubeh Keivan, Department of Sports Biomechanics, Faculty of Physical Education and Sports Science, Islamic Azad University Central Tehran Branch, Tehran.

Authors’ contributions

Conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing - original draft preparation, writing - review & editing, visualization: Mahbubeh Keivan; Supervision, project administration: Heydar Sadeghi.

Conflicts of interest

The authors declared no conflict of interest.
تیپ بدنی با یک چرخ‌سپر پاس‌چر ایستا، تیپ بدنی با یک چرخ‌سپر پاس‌چر نیمه‌پویا و تیپ بدنی با یک چرخ‌سپر پاس‌چر پویا.

مقدمه
کنترل پاس‌چر عملکرد پیچیده‌ای است که حفظ مسیر حرکتی و قابلیت حرکت بدن را ایجاد می‌کند. کنترل پاس‌چر ایستا، نیمه‌پویا و پویا مربوط به سیستم ویژگی‌های ترسیم‌دهنده سیستم عصبی مرکزی است. کنترل پاس‌چر ایستا به‌طور فعال به حفظ تعادل و بازگشت سرعت و حالت تعادل بدن بپردازد.

در این تحقیق ارتباطات بدنی با کنترل پاس‌چر ایستا، نیمه‌پویا و پویا در زنان نوجوان، جوان و میان سال بررسی شده است.

روش‌ها
آزمودنی‌ها به‌صورت تصادفی به سه گروه تقسیم شدند. برای ارزیابی کنترل پاس‌چر پویا، تست بی‌پیش‌بینی شمارش خطا اجرا شد. برای تیپ بدنی نزدیک به کنترل پاس‌چر ایستا و نیمه‌پویا، از همبستگی کای اسکوئر در سطح معناداری

یافته‌ها
همچنین کنترل پاس‌چر ایستا و نیمه‌پویا بهتر از گروه اکتومورف (نمونه‌بندی ریس) بودند و کمترین میزان خطا را داشتند. در کنترل پاس‌چر پویا، در جهت قدامی تست مورف و اندومورف بیشترین دستیابی را داشتند. در جهت خلفی داخلی اگرچه گروه اندومورف ضعیف‌ترین عملکرد را داشت، اما آزمون کای اسکوئر تفاوت معناداری را نشان نداشت. در جهت خلفی خارجی نیز کنترل پاس‌چر پویا به‌طور معناداری به‌طور متفاوتی به نسبت دو گروه دیگر ضعیف‌تر بود.

عملکرد بهتر مورف‌ها نشان دهنده سودمندی قدرت و ساختار عضلانی مناسب و ممکن است به‌طور کلی برای حفظ تعادل و بازگشت سرعت و حالت تعادل بدن کنترل پاس‌چر ایستا، نیمه‌پویا و پویا کمک کند.

کلیدواژه‌ها
تیپ بدنی، کنترل پاس‌چر ایستا، کنترل پاس‌چر نیمه‌پویا، کنترل پاس‌چر پویا.
محبوبه کیوان و همکاران. ارتباط تیپ بدنی با پاسچر، واکنش‌های فیزیکی و معنای ورزشکاران و غیر ورزشکاران در سال‌های اخیر، به‌ویژه افراد نوجوانی، تفاوت در واکنش‌های قامتی مشاهده شده است. این تفاوت‌ها ممکن است به علت میزان تیپ بدنی آن‌ها باشد. به‌طور کلی، افراد با تیپ بدنی اندومورف و اکتومورف، نسبت به مزومورف، کنترل پاسچر بهتری دارند. تحقیقات نیز نشان داده‌اند که تیپ بدنی تأثیری بر کنترل پاسچر دارد.

4. Center of pressure

3. Center of mass
روش‌شناسی
ساله با میانگین سن 50 ± 10/94 تعداد، که هیچ گونه ناهنجاری اسکلتی، آسیب و درد در اندام تحتانی، آسیب دهلیزی و عصبی عضلانی نداشتند به عنوان آزمودنی در این تحقیق شرکت کردند. جامعه آماری هزار نفر از زنان نوجوان، جوان و میان سال شهر دامغان شامل و شیوه نمونه‌گیری به طور تصادفی در دسترس بود. ویژگی‌های آنتروپومتریک مربوط به تیپ بدنی اندازه‌گیری شد و سپس بر اساس روش هیث کارتر آزمودنی‌ها در یکی از سه گروه اکتومورف (۴۹ نفر) قرار گرفتند. اندومورف (۴۵ نفر)، مزومورف (۴۶ نفر) و...
و پویا بین سه تیپ بدنی اکتومورف، مزومورف و اندومورف وجود نشان می‌گذارد. بر اساس آزمون کلموگروف اسمیرنوف توزیع وزن، قد و شاخص تیپ بدنی با کنترل پاسچر از آزمون کای اسکوئر و جدول‌های اندومورف از تحلیل واریانس یک طرفه و همچنین برای ارتباط ایستا، نیمه‌پویا و پویا از آمار توصیفی و تی‌تاک زبان‌ها استفاده شد.

تیپ بدنی	گروه کنترل	فراوانی	جمع کل
اکتومورف	100	33	33
مزومورف	37	10	47
اندومورف	48	9	57

TAB. 1. جدول متقاطع کنترل پاسچر، ایستا و نیمه‌پویا

پویا (فصل دوم سالنی در سه جهت آزمون 7) از آزار توصیفی و برای مقایسه کنترل پاسچر آزمون‌هاي اکتومورف، مزومورف و ان‌دومورف از تحلیل واریانس یکطرفه و همچنین برای لیست تیپ بدنی با کنترل پاسچر از آزمون‌هاي کا، اسکورت و جدول‌های مقاطع در سطح معناداری 0.0\% استفاده شد.

نتایج

براساس آزمون کلموگروف اسمیرنوف توزیع وزن، قد و شاخص توده بدنی 7 نمونه‌زا ترامل بود. تحلیل واریانس یکطرفه نشان داد که تفاوت معناداری بین میانگین کنترل پاسچر، ایستا، نیمه‌پویا و پویای بین سه تیپ بدنی اکتومورف، مزومورف و اندومورف وجود ندارد. جدول‌های باعث و 2 جدول مقاطع، کنترل پاسچر بر اساس تیپ بدنی را نشان می‌دهد. ۴۸۶۸۸ الف: فراوانی

7. Body Mass Index (BMI)
8. ANOVA

محمدرضا ذوالفقاری و همکاران. ارتباط تیپ بدنی با کنترل پاسچر، ایستا و نیمه‌پویا

یافته‌ها

۲۰۱۶. دوره ۲ شماره ۲
جدول ۳. جدول مقاطع کنترل پاسچر پویا

تعداد خطای فراوانی	جمع کل	درصد در بین تیپ بدنی	۵۵-۶۵	۶۵-۸۵	۸۵-۹۵	جمع کل
اکتومورف	۷	درصد نری ۲۶/۰۴	۱۴۸۳	۱۷۵۷	۹۲۵	۴۹۳۷
مزومور	۵۵	درصد نری ۲۷/۰۳	۱۷۲۴	۱۷۰۲	۹۲۵	۴۹۳۱
اندومور	۴۴	درصد نری ۲۷/۰۳	۱۷۴۴	۱۷۰۰	۹۲۵	۴۹۱۹
جمع کل	۱۱۴	درصد نری ۲۷/۰۳	۱۷۴۱	۱۷۰۱	۹۲۵	۴۹۳۱

ذاتیت داخلی

تعداد خطای فراوانی	جمع کل	درصد در بین تیپ بدنی	۵۵-۶۵	۶۵-۸۵	۸۵-۹۵	جمع کل
اکتومورف	۷	درصد نری ۲۳/۰۴	۱۷۴۳	۱۷۰۲	۹۲۵	۴۹۳۲
مزومور	۵۱	درصد نری ۲۷/۰۳	۱۷۴۴	۱۷۰۱	۹۲۵	۴۹۱۹
اندومور	۴۴	درصد نری ۲۷/۰۳	۱۷۴۰	۱۷۰۰	۹۲۵	۴۹۱۹
جمع کل	۱۱۲	درصد نری ۲۷/۰۳	۱۷۴۰	۱۷۰۱	۹۲۵	۴۹۱۹

ذاتیت خارجی

تعداد خطای فراوانی	جمع کل	درصد در بین تیپ بدنی	۵۵-۶۵	۶۵-۸۵	۸۵-۹۵	جمع کل
اکتومورف	۷	درصد نری ۲۳/۰۴	۱۷۴۳	۱۷۰۲	۹۲۵	۴۹۳۲
مزومور	۵۱	درصد نری ۲۷/۰۳	۱۷۴۴	۱۷۰۱	۹۲۵	۴۹۱۹
اندومور	۴۴	درصد نری ۲۷/۰۳	۱۷۴۰	۱۷۰۰	۹۲۵	۴۹۱۹
جمع کل	۱۱۲	درصد نری ۲۷/۰۳	۱۷۴۰	۱۷۰۱	۹۲۵	۴۹۱۹
تقریب ۳، کنترل: پاپر تیره (میزان صمتي)
آزمون کاواکهیکو نشان داده است که هر چه زیادتر از انرژی انیمیورف ها میزان میزان صمتي افزایش یافت. این نتیجه به‌طور کلی متفق‌العملی و هم‌گرایان می‌باشد که در راهه کاهش بیماری‌های پوستی ممکن است به‌طور معنی‌داری فعالیت نشان‌دهند. در این مطالعه، میزان میزان صمتي در آزمودنیها به‌طور کلی زیادتر بود.

برای اولین بار، در یک گروه، میزان میزان صمتي در آزمودنیها به‌طور کلی زیادتر بود.

نتیجه‌گیری همکاران نیز این نتایج را تأیید کردند. محیط شکم، اندومورفی و وزن مهم‌ترین تغییراتی در بدنی بود که باعث جلوگیری از تغییرات در کنترل قامتی بود. به‌طور کلی، میزان میزان صمتي در هر دو شرایط، بهترین کنترل قامتی در گروه اندومورف ممکن است ناشی از اینکه اکتومورف‌ها تا حد زیادی میزان صمتي خود را رو به بهبود در رده‌های بالا و پایین‌تری باعث شده‌اند. این امر نشان‌دهندهٔ این است که در رده‌های بالا و پایین‌تری، اکتومورف‌ها بهبودی در رده‌های بالا و پایین‌تری بهبودی را به‌طور قابل‌توجهی بهبودی می‌دهند.

تقویم ۲، کنترل: پاپر تیره (میزان صمتي)
آزمون کاواکهیکو نشان داده است که هر چه زیادتر از انرژی انیمیورف ها میزان میزان صمتي افزایش یافت. این نتیجه به‌طور کلی متفق‌العملی و هم‌گرایان می‌باشد که در راهه کاهش بیماری‌های پوستی ممکن است به‌طور معنی‌داری فعالیت نشان‌دهند. در این مطالعه، میزان میزان صمتي در آزمودنیها به‌طور کلی زیادتر بود.

برای اولین بار، در یک گروه، میزان میزان صمتي در آزمودنیها به‌طور کلی زیادتر بود.

نتیجه‌گیری همکاران نیز این نتایج را تأیید کردند. محیط شکم، اندومورفی و وزن مهم‌ترین تغییراتی در بدنی بود که باعث جلوگیری از تغییرات در کنترل قامتی بود. به‌طور کلی، میزان میزان صمتي در هر دو شرایط، بهترین کنترل قامتی در گروه اندومورف ممکن است ناشی از اینکه اکتومورف‌ها تا حد زیادی میزان صمتي خود را رو به بهبود در رده‌های بالا و پایین‌تری باعث شده‌اند. این امر نشان‌دهندهٔ این است که در رده‌های بالا و پایین‌تری، اکتومورف‌ها بهبودی در رده‌های بالا و پایین‌تری بهبودی را به‌طور قابل‌توجهی بهبودی می‌دهند.
بحث و نتیجه‌گیری به‌طور کلی نتایج حاکی از عملکرد بهتر مزومورف‌ها و ضعف اندومورف‌ها بود. قدرت و ساختار عضلانی مناسب برای پایداری مفصلی و کنترل قامتی سودمند است و می‌تواند دلیل اصلی عملکرد بهتر مزومورف‌ها باشد. اگرچه برخی از مطالعات نشان داده‌اند که افراد چاقی که توزیع نامتقارن چربی به ویژه در ناحیه شکم دارند، بیشتر مستعد سقوط هستند. مطالعاتی نشان داده‌اند افراد که توزیع نامتقارن چربی در بدن خود دارند، بیشتر مستعد سقوط هستند. اما به نظر می‌رسد که مزومورف‌ها بهترین کنترل پاسچر ایستا داشتند. اگرچه اکتومورف و اندومورف‌ها ضعیف‌ترین کنترل پاسچر نیمه‌پویا را داشتند. این امر نشان می‌دهد مشابه کنترل پاسچر ایستا، گروه مزومورف بهترین و اندومورف‌ها ضعیف‌ترین کنترل پاسچر نیمه‌پویا را داشتند. این امر نشان می‌دهد مشابه کنترل پاسچر ایستا، جزء عضلانی غالب به خوبی می‌تواند اغتشاشات ناشی از جابجایی مرکز گرانش حین ایستادن روی سطح ناپایدار را کنترل کند.

در جهت قدامی، میانگین دستیابی گروه اکتومورف و مزومورف بسیار نزدیک بود و تفاوت معناداری نشان داد. به طوری که گروه اکتومورف در هر سه جهت قدامی، خلفی داخلی و خلفی خارجی به ترتیب با میانگین سانتی‌متر بهتر از دو گروه دیگر عمل کرد. تحلیل واریانس یک‌طرفه نشان داد میزان دستیابی اکتومورف‌ها در کنترل پاسچر به طور معناداری بیش از اندومورف‌ها بود، اما تفاوت معناداری با مزومورف‌ها نداشت. در جهت قدامی و خلفی داخلی تست عملکرد اکتومورف‌ها بهتر بود. معناداری بیشتر بودن میانگین دستیابی گروه اکتومورف در جهت قدامی مربوط به فراوانی این طبقه بوده است. در جهت قدامی، به ترتیب اکتومورف‌ها، مزومورف‌ها و اندومورف‌ها بیشترین دستیابی و اگرچه گروه اندومورف ضعیف‌ترین عملکرد را داشت، اما آزمون کای اسکوئر تفاوت معناداری نشان نداشت. در کنترل پاسچر، خلفی خارجی همچنین بهانه گروه اندومورف به طور معناداری نسبت به دو گروه دیگر ضعیف تر بود.

نتیجه‌گیری به‌طور کلی نتایج حاکی از عملکرد بهتر مزومورف‌ها و ضعف اندومورف‌ها بود. البته، بررسی‌های بیشتری نیاز است تا از جمله مشابهات و تفاوت‌های موجود در ناحیه چربی و حجم وزن در اکتومورف‌ها و مزومورف‌ها بهره ببریم. به طور کلی، نتایج حاکی از عملکرد بهتر مزومورف‌ها و ضعف اندومورف‌ها بود. البته، بررسی‌های بیشتری نیاز است تا از جمله مشابهات و تفاوت‌های موجود در ناحیه چربی و حجم وزن در اکتومورف‌ها و مزومورف‌ها بهره ببریم.
[31] Allard P, Chavet P, Barbier F, Gatto L, Labolle H, Sadeghi H. Effect of body morphology on standing balance in adolescent idiopathic scoliosis. American Journal of Physical Medicine & Rehabilitation. 2004; 83(9):689-97. [DOI:10.1097/01.PHM.0000137344.95784.15] [PMID]

[32] Peterson ML, Christou E, Rosengren KS. Children achieve adult-like sensory integration during stance at 12-years-old. Gait & Posture. 2006; 23(4):455-63. [DOI:10.1016/j.gaitpost.2005.05.003] [PMID]

[33] Lebiedowska MK, Syczewska M. Invariant sway properties in children. Gait & Posture. 2000; 12(3):200-4. [DOI:10.1016/S0966-6362(00)00080-1]

[34] Patel L, Sarkar B, Kumar P, Sahay P, Laha K, Sarkar N. Normative values of star excursion balance test in young adults: A cross sectional study. International Journal of Advanced Research. 2018; 6(8):206-14. [DOI:10.21474/IJAR01/7512]

[35] Gribble PA, Hertel J, Plisky P. Using the star excursion balance test to assess dynamic postural control deficits and outcomes in lower extremity injury: A literature and systematic review. Journal of Athletic Training. 2012; 47(3):339-57. [DOI:10.4085/1062-6050-47.3.08] [PMID] [PMCID]

[36] Bell DR, Guskiewicz KM, Clark MA, Padua DA. Systematic review of the balance error scoring system. Sports Health: A Multidisciplinary Approach. 2011; 3(3):287-95. [DOI:10.1177/1941738111403122] [PMID] [PMCID]

[37] Daniels SR. The consequences of childhood overweight and obesity. The Future of Children. 2006; 16(1):47-67. [DOI:10.1353/foc.2006.0004] [PMID]

[38] Fregly AR, Oberman A, Graybiel A, Mitchell RE. Thousand aviator study: Nonvestibular contributions to postural equilibrium functions. Aerospace Medicine. 1968; 39(1):33-7.