The excited bottom-charmed mesons in a nonrelativistic quark model

Qi Li, Ming-Sheng Liu, Long-Sheng Lu, Qi-Fang Lü *, Long-Cheng Gui †, and Xian-Hui Zhong ‡
1) Department of Physics, Hunan Normal University, Changsha 410081, China
2) Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha 410081, China and
3) Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China

Using the newly measured masses of \(B_c(1S) \) and \(B_c(2S) \) from the CMS Collaboration and the 1S hyperfine splitting determined from the lattice QCD as constrains, we calculate the \(B_c \) mass spectrum up to the 6S multiplet with a nonrelativistic linear potential model. Furthermore, using the wave functions from this model we calculate the radiative transitions between the \(B_c \) states within a constituent quark model. For the higher mass \(B_c \) states lying above \(DB \) threshold, we also evaluate the Okubo-Zweig-Iizuka (OZI) allowed two-body strong decays with the \(^3P_0 \) model. Our study indicates that besides there are large potentials for the observations of the low-lying \(B_c \) states below the \(DB \) threshold via their radiative transitions, some higher mass \(B_c \) states, such as \(B_c(2^3P_2) \), \(B_c(2^3D_1) \), \(B_c(3^3D_1) \), \(B_c(4^3P_0) \), and the 1F-wave \(B_c \) states, might be first observed in their dominant strong decay channels \(DB, DB^* \) or \(D^*B \) at the LHC for their relatively narrow widths.

PACS numbers:

I. INTRODUCTION

The \(B_c \) states composed of a bottom-charmed quark-antiquark pair, as an important family of hadron spectra was predicted in theory about 40 years ago [1], however, the experimental progress towards establishing the \(B_c \) spectrum is not obvious. Except for the ground state \(B_c \) meson observed in 1998 by the CDF Collaboration at Fermilab [2], until 2018, only the ATLAS Collaboration reported evidence of an excited \(B_c \) state with a mass of 6842 ± 9 MeV [3] consistent with the values predicted for \(B_c(2S) \), while it was not confirmed by the LHCb Collaboration by using their 8 TeV data sample [4]. The poor situation of the observations and measurements of \(B_c \) spectrum is due to that the production yields are significantly smaller than those of the charmonium and bottomonium (\(c\bar{c} \) and \(b\bar{b} \)) states. Fortunately, the LHC provides good opportunities for our search for the excited \(B_c \) states with its high collision energies and integrated luminosity. Very recently, two excited \(B_c^* \) states were observed in the \(B_c^+ \pi^+ \pi^- \) invariant mass spectrum by the CMS Collaboration [5]. Signals are consistent with the \(B_c(2S) \) and \(B_c^*(2S) \) states. These two states are well resolved from each other and are observed with a significance exceeding five standard deviations. The mass of \(B_c(2S) \) meson, 6871 ± 2.8 MeV, measured by the CMS Collaboration is inconsistent with the determination 6842 ± 9 MeV by the ATLAS Collaboration. The reason is that the peak observed by ATLAS could be the superposition of the \(B_c(2S) \) and \(B_c^*(2S) \) states, too closely spaced with respect to the resolution of the measurement [5].

The \(B_c \) states as the only conventional heavy mesons with different flavors have aroused great interests in theory. Compared with the \(c\bar{c} \) and \(b\bar{b} \) spectra, the \(B_c \) spectrum has several special features for the bottom-charmed quark-antiquark pair. (i) The \(B_c \) states cannot annihilate into gluons, thus, the low-lying excited \(B_c \) states below the \(DB \) threshold are more stable with a narrow width less than a few hundred keV, they mainly decay via the electromagnetic or hadronic transitions between two different \(B_c \) states. (ii) In the \(B_c \) meson spectrum there are configuration mixings between the states with different total spins but with the same total angular momentum, such as \(^3P_1 \rightarrow ^1P_1, ^3D_2 \rightarrow ^1D_2, \) and \(^3F_3 \rightarrow ^1F_3 \) mixings via the antisymmetric part of the spin-orbit potential. (iii) Additionally, the \(B_c \) states provide a unique window for studying the heavy-quark dynamics that is very different from those provided by the \(c\bar{c} \) and \(b\bar{b} \) states. In the past years, the \(B_c \) mass spectrum has been predicted with various models [6–34]. Furthermore, a few lattice calculations can be found in Refs. [35–39]. To estimate the production rates in experiments, the production of the excited \(B_c \) states were often discussed in the literature [40–53]. As the dominant decay modes, the electromagnetic transitions of the low-lying \(B_c \) states were also widely estimated in the literature [7, 16, 54–58]. However, the studies of the OZI-allowed strong decays for the high-lying \(B_c \) states are confined only to a few calculations [17, 18, 53, 60].

The successes of the observations of the radially excited \(B_c \) states \(B_c(2S) \) and \(B_c^*(2S) \) by the CMS Collaboration [5] have demonstrated that more excited \(B_c \) states are to be discovered in future LHC experiments. Stimulated by the great discovery potentials of the missing \(B_c \) states in future experiments, in present work we carry out a systematical study of the \(B_c \) spectrum. First, using the newly measured masses of \(B_c(1S) \) and \(B_c(2S) \) from the CMS Collaboration [5] and the 1S hyperfine splitting determined from the lattice QCD [36, 38] as constrains, we calculate the \(B_c \) mass spectrum up to the 6S multiplet with a nonrelativistic linear potential model. The slope parameter of the linear potential has been well determined in our previous study of the charmonium states [61]. To involve the spin-dependent corrections of the spatial wave functions, following the method adopted in Refs. [61, 62] we treat the spin-dependent interactions as nonperturbative terms in our calculations. With this nonperturbative treatment, we can reasonably include the effect of spin-dependent interactions on the spatial wave functions, which is essential for us to gain reliable predictions of the decay behaviors.

*E-mail: lvqifang@hunnu.edu.cn
†E-mail: guilongcheng@hunnu.edu.cn
‡E-mail: zhongxh@hunnu.edu.cn
Then, with the available wavefunctions from the potential model, we evaluate the electromagnetic transitions between the \(B_c \) states within a nonrelativistic constituent quark model developed in our previous works [61, 62]. With this approach the possible higher EM multipole contributions to a EM transition process can be included naturally. Considering the fact that the higher \(B_c \) states lying above the \(DB \) threshold may have enough possibilities to be produced at LHC, and they are easy to be established in the \(D^* B^* \) hadronic final states, thus to give useful references for the LHC observations, we further calculate the OZI-allowed strong decays of the higher \(B_c \) states within the widely used \(^3P_0 \) model [63-65]. It is found that \(B_c(2^3D_2), B_c(2^3D_1), B_c(3^3D_1) \) together with the 1\(F \)-wave \(B_c \) states might be first observed in their dominant strong decay channels \(DB, DB' \) or \(D' B \) at LHC for their relatively narrow width.

This paper is organized as follows. In Sec. II, the \(B_c \) mass spectrum is calculated within a nonrelativistic linear potential model. Then, with the obtained \(B_c \) spectrum the radiative transitions between the \(B_c \) states are estimated in Sec. III within a nonrelativistic constituent quark model. In Sec. IV, the OZI-allowed two-body strong decays of the excited \(B_c \) state are also studied within the \(^3P_0 \) model. In Sec. V we focus on the calculation results and discuss some strategies for looking for the \(B_c \) states in future experiments. Finally, a summary is given in Sec. VI.

II. MASS SPECTRUM

To describe a bottom-charmed meson system, we adopt a nonrelativistic linear potential model. In this model, the effective quark-antiquark potential is written as the sum of the spin-independent term \(H_0(r) \) and spin-dependent term \(H_{sd}(r) \), i.e.,

\[
V(r) = H_0(r) + H_{sd}(r),
\]

where

\[
H_0(r) = \frac{4}{5} \frac{\alpha_s}{r} + b r
\]

includes the standard color Coulomb interaction and the linear confinement. The spin-dependent part \(H_{sd}(r) \) can be expressed as [1, 9, 11]

\[
H_{sd}(r) = H_{SS} + H_T + H_{LS},
\]

where

\[
H_{SS} = \frac{32 \pi \alpha_s}{9 m_q m_{\bar{q}}} \delta_{\sigma}(r) S_q \cdot S_{\bar{q}}
\]

is the spin-spin contact hyperfine potential. Here, we take \(\delta_{\sigma}(r) = (\sigma / \sqrt{3}) e^{-\sigma r^2} \) as suggested in Ref. [60]. The tensor potential \(H_T \) is adopted as

\[
H_T = \frac{4}{3} \frac{\alpha_s}{m_q m_{\bar{q}}} \frac{1}{r^3} \left(S_q \cdot r S_{\bar{q}} \cdot r - S_q \cdot S_{\bar{q}} \right).
\]

For convenience in the calculations, the potential of the spin-orbit interaction \(H_{LS} \) is decomposed into symmetric part \(H_{sym} \) and antisymmetric part \(H_{anti} \).

\[
H_{LS} = H_{sym} + H_{anti},
\]

with

\[
H_{sym} = \frac{S_q \cdot L}{2} \left[\left(\frac{1}{2m_q^2} + \frac{1}{2m_{\bar{q}}^2} \right) \left(4 \frac{\alpha_s}{3} r^2 - b \right) + \frac{8 \alpha_s}{3m_q m_{\bar{q}} r^2} \right],
\]

\[
H_{anti} = \frac{S_q \cdot L}{2} \left(\frac{1}{2m_q^2} - \frac{1}{2m_{\bar{q}}^2} \right) \left(4 \frac{\alpha_s}{3} r^2 - b \right).
\]

In these equations, \(L \) is the relative orbital angular momentum of the \(q \bar{q} \) system; \(S_q \) and \(S_{\bar{q}} \) are the spins of the quark \(q \) and antiquark \(\bar{q} \), respectively, and \(S_{\sigma} \equiv S_q \pm S_{\bar{q}} \); \(m_q \) and \(m_{\bar{q}} \) are the masses of quark \(q \) and antiquark \(\bar{q} \), respectively; \(\alpha_s \) is the running coupling constant of QCD; and \(r \) is the distance between the quark \(q \) and antiquark \(\bar{q} \). The five parameters in the above equations (\(\alpha_s, b, \sigma, m_r, m_c \)) are determined by fitting the spectrum.

We can get the masses and wave functions by solving the radial Schrödinger equation

\[
\frac{d^2 u(r)}{dr^2} + 2\mu_r \left[E - V_{q\bar{q}}(r) - \frac{L(L+1)}{2\mu_r r^2} \right] u(r) = 0,
\]

with

\[
V_{q\bar{q}}(r) = V(r) + H_{SS} + H_{SL} + H_T,
\]

where \(\mu_r = m_q m_{\bar{q}} / (m_q + m_{\bar{q}}) \) is the reduced mass of the system, and \(E \) is the binding energy of the system. Then, the mass of a bottom-charmed state is obtained by

\[
M_{q\bar{q}} = m_q + m_{\bar{q}} + E.
\]

In this work, to reasonably include the corrections from these spin-dependent potentials to both the mass and wave function of a meson state, we deal with the spin-dependent interactions nonperturbatively. We solve the radial Schrödinger equation by using the three-point difference central method [67] from central \((r = 0) \) towards outside \((r \rightarrow \infty) \) point by point. This method was successfully to deal with the spectroscopies of \(cc \) and \(bb \) [61, 62]. To overcome the singular behavior of \(1/r^2 \) in the spin-dependent potentials, following the method of our previous works [61, 62], we introduce a cutoff distance \(r_c \) in the calculation. Within a small range \(r \in (0, r_c) \), we let \(1/r^2 \rightarrow 1/r_c^2 \).

Finally, it should be mentioned that the antisymmetric part of the spin-orbit potential, \(H_{anti} \), can let the states with different total spins but with the same total angular momentum, such as \(B_c(n^3L_J) \) and \(B_c(n^1L_J) \), mix with each other. Thus, as mixing states between \(B_c(n^3L_J) \) and \(B_c(n^1L_J) \), the physical \(B_c \) states \(B_c(nL) \) and \(B_c(nL') \) are expressed as

\[
\begin{pmatrix}
B_c(n^3L_J) \\
B_c(n^1L_J)
\end{pmatrix} = \begin{pmatrix}
\cos \theta_{st} & \sin \theta_{st} \\
-\sin \theta_{st} & \cos \theta_{st}
\end{pmatrix} \begin{pmatrix}
B_c(n^3L_J) \\
B_c(n^1L_J)
\end{pmatrix},
\]
where $J = L = 1, 2, 3 \cdots$, and the θ_{nl} is the mixing angle. In this work $B_s(nL)$ corresponds to the higher mass mixed state as often adopted in the literature.

In this work the parameter set is taken as $\alpha_s = 0.5021$, $b = 0.1425\text{GeV}^2$, $m_b = 4.852\text{ GeV}$, $m_c = 1.483\text{ GeV}$, $\sigma = 1.3$ GeV and $r_c = 0.16$ fm. To consistent with our previous study [6]], the charmed quark mass m_c and the slope for the linear confining potential are taken the determinations, i.e.,
$m_c = 1.483$ GeV and $b = 0.1425$ GeV2. The other three parameters (m_b, α_s, α) are determined by fitting the masses of the B_c, B_c^* and $B_c(2S)$ mesons. The masses of B_c and $B_c(2S)$ are taken from the recent measurements of the CMS Collaboration [5]. Although the B_c^* meson is still not measured in experiments, the mass difference between the B_c^* and B_c is predicted to be around 55 MeV from lattice QCD [36–38].

Thus, combining it with the measured mass 6271 MeV for B_c, in present work we estimate the mass of B_c^* as ~ 6326 MeV. The cutoff distance r_c is determined by the mass of $B_c(1^3P_0)$. To determined the mass of $B_c(1^3P_0)$, we adopt a method of perturbation, i.e., we let $H = H_0 + H'$, where H' is a part which contained the term of $1/r^3$. By solving the equation of $H_0|\psi_n^{(0)}\rangle = E_0|\psi_n^{(0)}\rangle$, we can get the energy E_0 and wave function $|\psi_n^{(0)}\rangle$, then, we obtain the mass of $B_c(1^3P_0)$, $M = m_b + m_c + E_0 + \langle \psi_n^{(0)}|H'|\psi_n^{(0)}\rangle$.

By solving the radial Schrödinger equation and with the determined parameter set, we obtain the masses of the bottom-charmed states, which have been listed in Tab. 1 and shown in Fig. 1. For comparison, the other model predictions in Refs. [7,11,15,16] are listed in the same table as well.

It is found that the masses of the low-lying $1S^-$, $2S^-$, $3S^-$, $1P^-$, $2P^-$, $1D$-wave B_c states predicted in this work are compatible with the other potential model predictions. For the higher mass states, such as $4S^-$, $5S^-$, $6S^-$, $3P^-$, $4P^-$, $2D^-$, $2F^-$, $3F$-wave states, the masses predicted by us are very close to those predicted with a relativistic model in Ref. [8], while are about 100 – 200 MeV smaller than those predicted in Refs. [13,16]. Furthermore, the hyperfine splitting between $B_c^*(2S)$ and $B_c(2S)$ is predicted to be 19 MeV, which

\begin{table}[h]
\centering
\caption{Mixing angles.}
\begin{tabular}{|c|c|c|c|c|}
\hline
Mixing angle & ours [11] [14] [10] \\
\hline
θ_{1F} & 35.5$^\circ$ & 22.4$^\circ$ & 20.57$^\circ$ & 20.4$^\circ$ \\
θ_{2F} & 38.0$^\circ$ & 18.9$^\circ$ & 19.94$^\circ$ & 23.2$^\circ$ \\
θ_{3F} & 39.7$^\circ$ & \ldots & 17.68$^\circ$ & \ldots \\
θ_{4F} & 39.7$^\circ$ & \ldots & \ldots & \ldots \\
θ_{1D} & 45.0$^\circ$ & 44.5$^\circ$ & -2.49$^\circ$ & -35.9$^\circ$ \\
θ_{2D} & 45.0$^\circ$ & \ldots & -2.8$^\circ$ & \ldots \\
θ_{3D} & 45.0$^\circ$ & \ldots & \ldots & \ldots \\
θ_{4D} & 41.4$^\circ$ & 41.4$^\circ$ & \ldots & \ldots \\
θ_{1F} & 43.4$^\circ$ & \ldots & \ldots & \ldots \\
θ_{2F} & 42.4$^\circ$ & \ldots & \ldots & \ldots \\
\hline
\end{tabular}
\end{table}
is slightly smaller than 30 – 45 MeV predicted in previous works [7,11,15,16,36,38]. Finally, it should be pointed out the mixing angles for 3P_1 - 1P_1, 3D_2 - 1D_2, and 3F_3 - 1F_3 have obvious model dependencies (see Tab. III).

III. RADIATIVE TRANSITIONS

We use the nonrelativistic constituent quark model as adopted in Refs. [61,62,63,71,72] to calculate the radiative transitions between the B_c states. In this model, the quark-photon EM coupling at the tree level is taken as

\[H_c = -\sum_j e \bar{\psi}_j \gamma^\mu A^\mu(k, r) \psi_j, \]

where \(A^\mu \) represents the photon field with three momenta \(k \); while \(e_j \) and \(r_j \) stand for the charge and coordinate of the constituent quark \(\psi_j \), respectively. In order to match the nonrelativistic wave functions of the \(B_c \) states, we adopt the nonrelativistic form of Eq. (13), which is given by [73,78],

\[H_c'' = \sum_j \left[e_j r_j \cdot e - \frac{e_j}{2m_j} \sigma_j \cdot (e \times k) \right] e^{-ik r_j}, \]

where \(e \) is the polarization vector of the initial photon, \(m_j \) and \(\sigma_j \) stand for the constituent mass and Pauli spin vector for the \(j \)th quark. The helicity amplitude \(\mathcal{A} \) can be expressed as

\[\mathcal{A} = -i \sqrt{\frac{2}{2J_c + 1}} |H_c''| \). \]

Finally, we obtain the partial decay width of a radiative transition by

\[\Gamma = \frac{|k|^2}{\pi} \frac{2}{2J_c + 1} M_f \sum_{J_f, J_c} |\mathcal{A}_{J_f, J_c}|^2, \]

where \(J_c \) is the total angular momentum of an initial meson, and \(J_{f} \) and \(J_{c} \) are the components of the total angular momenta along the z axis of initial and final mesons, respectively. \(M_i \) and \(M_f \) correspond to the masses of the initial and final \(B_c \) states, respectively.

The radiative decays properties for the \(B_c \) states have been listed in Tables [II][VIII]. For a comparison, some other predictions of the low-lying \(B_c \) states from Refs. [7,8,11] are also given in the tables.

IV. STRONG DECAYS

In this work, we use the \(3P_0 \) model [63,65] to calculate the OZI-allowed strong decays of the bottom-charmed mesons. In this model, it assumes that the vacuum produces a quark-antiquark pair with the quantum number \(0^{++} \) and the heavy meson decay takes place via the rearrangement of the four quarks. The transition operator \(\hat{T} \) in this model can be written as

\[\hat{T} = -3\gamma \sqrt{96\pi} \sum_m \langle m_1 - m | 00 \rangle \int d\mathbf{p}_3 d\mathbf{p}_4 \delta^3(\mathbf{p}_3 + \mathbf{p}_4) \]

\[\times Y_{2}^{m_3} \left(\frac{\mathbf{p}_3 - \mathbf{p}_4}{2} \right) \chi_{34} \omega_0^{34} (\mathbf{p}_3 \cdot \mathbf{p}_4) d_{ij}, \]

where \(\gamma \) is a dimensionless constant that denotes the strength of the quark-antiquark pair creation with momentum \(\mathbf{p}_3 \) and \(\mathbf{p}_4 \) from vacuum; \(d_{ij} \) are the creation operators for the quark and antiquark, respectively; the subscripts, \(i \) and \(j \), are the SU(3)-color indices of the created quark and anti-quark; \(\chi_{34} \) corresponds to flavor and color singlets, respectively.

For an OZI allowed two-body strong decay process \(A \to B + C \), the helicity amplitudes \(M_{M_A, M_B, M_C}(\mathbf{P}) \) can be derived as follow

\[\langle BC|TA \rangle = \delta(\mathbf{P}_A - \mathbf{P}_B - \mathbf{P}_C) M_{M_A, M_B, M_C}(\mathbf{P}). \]

Using the Jacob-Wick formula [79], one can convert the helicity amplitudes \(M_{M_A, M_B, M_C}(\mathbf{P}) \) to the partial wave amplitudes \(M^{HL} \) via

\[M^{HL}(A \to BC) = \frac{\sqrt{4\pi(2J_c + 1)}}{2J_c + 1} \sum_{M_B, M_C} \langle J_B M_B J_C M_C | J_A M_A \rangle M^{HL}(A \to BC) \]

\[\times \langle J_B M_B J_C M_C | J_A M_A \rangle \mathcal{M}_{M_A, M_B, M_C}(\mathbf{P}). \]

In the above equations, \((J_A, J_B, J_C) \), \((L_A, L_B) \) and \((S_A, S_B, S_C) \) are the quantum numbers of the total angular momenta, orbital angular momenta and total spin for hadrons \(A, B, C \), respectively; \(M_{J_c} = M_{J_c} + M_{J_c} \), \(J = J_B + J_C \) and \(J_A = J_B + J_C + L \). In the c.m. frame of hadron \(A \), the momenta \(\mathbf{P}_B \) and \(\mathbf{P}_C \) of mesons \(B \) and \(C \) satisfy \(\mathbf{P}_B = -\mathbf{P}_C \equiv \mathbf{P} \).

Then the strong decay partial width for a given decay mode of \(A \to B + C \) is given by

\[\Gamma = 2\pi |\mathbf{P}| E_B E_C M_A \sum_{J_L} |M^{HL}|^2, \]

where \(M_A \) is the mass of the initial hadron \(A \), while \(E_B \) and \(E_C \) stand for the energies of final hadrons \(B \) and \(C \), respectively. The details of the \(3P_0 \) model can be found in our recent paper [80].

In the calculations, the wavefunctions of the initial \(B_c \) states are adopted our quark model predictions. Furthermore, we need the wavefunctions of the final hadrons, i.e., the \(B^{*0}, B^{*+}, D^{*0}, D^{*+}, D_c^{*0} \) mesons and some of their excitations, which are adopted from the quark model predictions of Refs. [81,82].

In this work, for the masses of the light constituent \(u, d \) and \(s \) quarks, we set \(m_u = m_d = 0.33 \text{ GeV}, m_s = 0.45 \text{ GeV} \); while for the heavy \(b \) and \(c \) quarks, their masses are taken to be \(m_b = 4.852 \text{ GeV} \) and \(m_c = 1.483 \text{ GeV} \) as the determinations in the calculations of the \(B_c \) mass spectrum. The masses of the final hadron states in the decay processes are adopted from the
TABLE III: Partial widths of the $M1$ transitions for the low-lying 1S-, 2S-, and 3S-wave B_c states compared with the other model predictions.

Initial state	Final state	$E_γ$ (MeV)	$Γ_{M1}$ (eV)	$Γ_{M1}$ (eV)							
1^3S_1	1^3S_0	72	62	67	64	55	134.5	73	80	60	57
2^3S_1	2^3S_0	43	46	32	35	19	28.9	30	10	10	2.4
1^3S_0		606	584	588	649	591	123.4	141	600	98	1205
2^3S_0	1^3S_1	499	484	498	550	523	93.3	160	300	96	99
3^3S_1	3^3S_0	22	13	3	0.8						
2^3S_0		405	371	200	356						
1^3S_0		932	915	600	1885						
3^3S_0	2^3S_1	354	341	60	152						
1^3S_1		855	855	4200	510						

TABLE IV: Partial widths of the $M1$ transitions for the higher nS-wave ($n = 4, 5, 6$) B_c states.

Initial state	Final state	$E_γ$ (MeV)	$Γ_{M1}(eV)$	$Γ_{M1}(eV)$
4^3S_0	3^3S_1	283	186	4
2^3S_1		622	579	3
1^3S_1		1116	1122	2
5^3S_0	4^3S_1	251	209	5
3^3S_1		533	720	4
2^3S_1		861	1260	3
1^3S_1		1339	1893	2
6^3S_0	5^3S_1	230	225	6
4^3S_1		481	849	5
3^3S_1		755	1613	4
2^3S_1		1073	2203	3
1^3S_1		1536	2822	2

TABLE V: The masses (MeV) of the final hadrons appearing in the strong decay processes of the B_c states. The masses are taken from the Particle Data Group [83] if there are experimental data, otherwise we take the quark model predictions in Refs. [81, 82].

State	1^1S_0	1^3S_1	1^3P_0	$1P_1$	1^3P_2	
B_c	5279	5325	5683	5729	5754	5768
B_c^*	5367	5415	5756	5801	5836	5851
D	1870	2010	2252	2402	2417	2466
D_c	1968	2112	2344	2488	2510	2559

Recently, signals of two excited $\bar{b}c$ states $B_c(2S)$ and $B_c^*(2S)$ were observed in the $B_c^0\pi^+\pi^-$ invariant mass spectrum by the CMS Collaboration at LHC. These two states are well resolved from each other and are observed with a significance exceeding five standard deviations. The mass of $B_c(2S)$ meson is measured to be 6871 ± 2.8 MeV. Furthermore, a more precise mass of $B_c(2S)$, $M(B_c^*) = 6871.1 \pm 0.5$ MeV, is measured by the CMS Collaboration as well. Combining these newest measurements, we predict that the mass of $B_c(2S)$ might be ~ 6890 MeV, and the mass hyperfine splitting be-

V. DISCUSSION

1. S-wave states

Particle Data Group [83] if there are measured values, otherwise we take the quark model predictions of Refs. [81, 82] (see Table V). There is no experimental data which can be used to determine the quark pair creation strength, thus, in this work we adopt a typical value $\gamma = 0.4$ that gives a reasonably accurate description of the overall scale of decay widths of both light and heavy mesons [66, 84, 85]. The strong decays properties for the bottom-charmed states are presented in Tab. X to XV.
between $B_c^*(2S)$ and $B_c(2S)$,
\[\Delta m(2S) \approx 20 \text{ MeV}, \]
(21)
is slightly smaller than $30 - 45 \text{ MeV}$ predicted in previous works (see Table I). The predicted masses for the other higher S-wave states compared with other works are also given in Table I. Obvious differences can be found in various theoretical predictions.

The $M1$ transitions of the low-lying S-wave states $B_c^*(2S)$ and $B_c^*(1S)$ were often discussed in the literature for these transitions which might be used to establish them in experiments. In this work we also calculate their $M1$ transitions. Our results compared with the some other predictions are listed Table III. Obvious model dependence can be seen in various calculations. Our predicted partial width
\[\Gamma(B_c^*(2S) \rightarrow B_c \gamma) \approx 1.2 \text{ keV}, \]
(22)
for the $M1$ transition $B_c^*(2S) \rightarrow B_c \gamma$ is about an order of magnitude larger than that predicted in Refs. [7, 9, 11], and about a factor 2 larger than the value predicted within the GI model [11]. Combining our calculations of the EM transitions $B_c^*(2S) \rightarrow 1P_\gamma$ and the strong transitions $B_c^*(2S) \rightarrow B_c \pi \pi$ predicted in [11], the total decay width of $B_c^*(2S)$ meson is estimated to be $I_{\text{total}} \sim 75 \text{ keV}$, then the branching fraction for $M1$ transition $B_c^*(2S) \rightarrow B_c \gamma$ is predicted to be
\[Br[B_c^*(2S) \rightarrow B_c \gamma] \sim 2\%. \]
(23)
The fairly large branching fraction may give a good opportunity for us to observe the $B_c^*(2S)$ via the $M1$ transition $B_c^*(2S) \rightarrow B_c \gamma$. This process may be used to determined the mass of $B_c^*(2S)$ in future experiments.

The masses of $3S$-wave states $B_c(3^1 S_0)$ and $B_c(3^3 S_1)$ are predicted to be $\sim 7.24 \text{ GeV}$ and $\sim 7.25 \text{ GeV}$, respectively, which are just above the DB^* threshold. Their radiative and strong decay properties are estimated in this work. The results for the $M1$ transitions, $E1$ dominant transitions and strong decays of the $3S$-wave states are given in Tables III, VII and XI, respectively. There are only a few works about the radiative and strong decay properties of the $3S$-wave states [11, 18, 55, 60]. The $M1$ transitions of the $3S$-wave states roughly agree with the predictions in Ref. [11], except that our predicted partial width $\Gamma(3^3 S_1 \rightarrow 1^1 S_0 + \gamma) \approx 510 \text{ eV}$ for the $M1$ transition $3^3 S_1 \rightarrow 1^1 S_0 + \gamma$ is about an order of magnitude smaller than that in Ref. [11]. The strong decay widths of $B_c(3^1 S_0)$ and $B_c(3^3 S_1)$ predicted by us are comparable to those predicted in recent works [18, 55]. Both $B_c(3^1 S_0)$ and $B_c(3^3 S_1)$ might be broad states with a width of $\sim 100 \text{ MeV}$. The $B_c(3^1 S_0)$ dominantly decay into DB^* channel, while $B_c(3^3 S_1)$ dominantly decay into both DB and DB^* channels. The production rates of the $3S$-wave B_c states in pp collisions at the LHC may be comparable with those of the $2S$-wave B_c states [18]; thus, the $3S$-wave B_c states may have large potentials to be established in the DB^* final states.

The higher S-wave states $B_c(n^1 S_0)$ and $B_c(n^3 S_1)$ ($n \geq 4$) are far from the DB threshold, thus many OZI-allowed two-body strong decay channels are open. There are few discussions of the decay properties of the higher mass S-wave states in the literature. To know some decay properties of these higher S-wave states, in this work we give our predictions of the $M1$ transitions and strong decays of $B_c(nS)$ ($n = 4, 5, 6$), which are listed in Table IV and XII, respectively. It is found these higher mass S-wave states are broad states with a width of $\sim 100 - 400 \text{ MeV}$. Combining $M1$ transitions of higher S-wave states with their strong decays, we found that the branching fractions of the $M1$ transitions $B_c(nS) \rightarrow B_c(1S) + \gamma$ may reach up to a sizeable value $O(10^{-3})$.

2. P-wave states

The masses of $1P$-wave states $B_c(1P)$ might lie in the range of $(6710, 6790) \text{ MeV}$, which are consistent with the other predictions with potential models [7, 11], and the recent lattice calculations [16]. The $1P$-wave $B_c(1P)$ states mainly decays via the E1 dominate transitions $1P \rightarrow 1S$. We have calculated the partial decay widths for the EM transitions $1P \rightarrow 1S$, our results compared with some other predictions are listed in Table VII. Most of our results are compatible with the predictions in [9, 11], except our predicted partial decay widths of $\Gamma(B_c(1P_1) \rightarrow B_c \gamma) \approx 35 \text{ keV}$ and $\Gamma(B_c(1P_1') \rightarrow B_c \gamma) \approx 40 \text{ keV}$ are about a factor of $3 \sim 5$ larger than the predictions in Refs. [9, 11]. The $B_c(1P_1)$ and $B_c(1P_1')$ states might be first found in the $B_c \gamma$ final state via their radiative transitions. The branching fractions for $B_c(1P_1)$ and $B_c(1P_1')$ decay into $B_c \gamma$ are predicted to be
\[Br[B_c(1P_1) \rightarrow B_c \gamma] \sim 33\%, \]
(24)
\[Br[B_c(1P_1') \rightarrow B_c \gamma] \sim 65\%. \]
(25)
While the $B_c(1^3 P_0)$ and $B_c(1^3 P_2)$ states dominantly decay into $B_c^* \gamma$ final state with a decay rate $\sim 100\%$, thus, they have good potentials to be found via the radiative decay chains $B_c(1^3 P_0) \rightarrow B_c(1^3 S_1) \gamma \rightarrow B_c(1^3 S_1) \gamma \gamma$ and $B_c(1^3 P_2) \rightarrow B_c(1^3 S_1) \gamma \gamma$. The $B_c(1^3 S_1) \gamma \gamma$ states might be first found in the $B_c \gamma$ final state via their radiative decays. The radiative decay rates into the $B_c(1^3 S_1) \gamma$ $(n = 1, 2)$ are also sizeable. Their partial widths are predicted to be
\[\Gamma[B_c(2^3 P_2) \rightarrow DB] \approx 760 \text{ keV}, \]
(26)
\[\Gamma[B_c(2^3 P_2) \rightarrow B_c^* \gamma] \approx 52 \text{ keV}, \]
(27)
\[\Gamma[B_c(2^3 P_2) \rightarrow B_c^*(2S) \gamma] \approx 50 \text{ keV}, \]
(28)
Thus, the total width of $B_c(2^3 P_2)$ is $\Gamma_{\text{total}}[B_c(2^3 P_2)] \approx 880 \text{ keV}$. The $B_c(2^3 P_2)$ state may have potentials to be observed in the DB and $B_c \gamma$ final states. While for $B_c(2^1 P_0)$, $B_c(2P_1)$ and $B_c(2P_1')$ states, their decays are governed by the EM transitions. The radiative decay properties of these states have been given in Table VII. With these predictions, the total widths for $B_c(2^3 P_0)$, $B_c(2P_1)$ and $B_c(2P_1')$ are estimated to be...
\(\Gamma_{\text{total}}[B_c(2^3P_0)] \approx 100 \text{ keV}, \Gamma_{\text{total}}[B_c(2^1P_1)] \approx 120 \text{ keV}, \) and \(\Gamma_{\text{total}}[B_c(2^3P_1)] \approx 133 \text{ keV}, \) respectively. The branching fractions for \(B_c(2P_1) \to B_c^{\gamma}, B_c(2P_1^\prime) \to B_c^{\gamma} \) and \(B_c(2^3P_0) \to B_c^{\gamma} \) are predicted to be

\[
\begin{align*}
Br[B_c(2P_1) \to B_c^{\gamma}] &\approx 20\%, \\
Br[B_c(2P_1^\prime) \to B_c^{\gamma}] &\approx 33\%, \\
Br[B_c(2^3P_0) \to B_c^{\gamma}] &\approx 41\%.
\end{align*}
\]

The large branching fractions indicate that these states usually are broad states with a width of about 150 MeV smaller than those predicted in Refs. [15, 16]. The 1D-wave states mainly decay via the \(\pi \pi \) channel, while the \(B_c(2^3P_0) \) may be observed via the radiative decay chain.

\[
B_c(2^3P_0) \to B_c^{\gamma} \to B_c(2^3P_0^*) \to B_c^{\gamma} \gamma. \]

It should be pointed out that the \(B_c(2P_1) \) and \(B_c(2P_1^\prime) \) states may lie above the \(B^D \) threshold, so they may have fairly large strong decay widths \(O(100 - 1000) \text{ MeV} \) into \(B^D \) and/or \(BD \) channels as predicted in Ref. [17].

For the higher \(P \)-wave states \(B_c(nP) \) and \(B_c(nP^\prime) \), the weak decay widths are in reasonable agreement with the other predictions. Our study indicates that the \(B_c(1^3D_1) \) state may have a relatively large potential to be observed via the radiative decay chain

\[
B_c(1^3D_1) \to B_c(1^1P_1) \to B_c(1^3S_1) \to B_c(1^1S_0) \gamma, \]

and the branching fraction for this chain is estimated to be \(\sim 100\% \). The optimal decay chain for the observations of \(B_c(1^3D_1) \) is

\[
B_c(1^3D_1) \to B_c(1^1P_1) \to B_c(1^3S_1) \gamma, \]

and the branching fraction for this chain is estimated to be \(\sim 60\% \). The optimal decay chains for the observations of \(B_c(1D_2) \) are

\[
B_c(1D_2) \to B_c(1P_1) \gamma, \]

and the branching fraction for these chains are estimated to be \(\sim 50\% \) and \(\sim 30\% \), respectively. While for the observations of \(B_c(1D_2) \), the optimal decay chains are

\[
B_c(1D_2) \to B_c(1P_1) \gamma, \]

and the branching fraction for these chains are estimated to be \(\sim 35\% \) and \(\sim 47\% \), respectively.

The masses of the 2D states are predicted to be \(\sim 7.34 \text{ GeV} \), which is very close to the \(D_B \) threshold. Their decays are governed by the strong decay modes, such as \(DB, DB^*, BD^* \) or \(B^D^* \). Their strong decay properties predicted by us have been listed in Table XIII. There are few discussions about the radiative decays of the 2D-wave \(B_c \) states in the literature. In this work, we also calculate their radiative decay properties, our results are given in Table XIV. It is found that the \(B_c(2^3D_1) \) state has a relatively narrow width of \(\Gamma \sim 58 \text{ MeV} \). The decays of \(B_c(2^3D_1) \) are governed by the \(BD^* \) mode with a branching fraction

\[
Br[B_c(2^3D_1) \to BD^*] \approx 87\%. \]

The other three 2D states \(B_c(2^3D_2), B_c(2^3D_2), \) and \(B_c(2^3D_2') \) are broad states with a width of \(\sim 100 - 200 \text{ MeV} \). The \(B_c(2^3D_2) \) mainly decays into \(DB, DB^*, \) and \(B^D^* \) channels. While the \(B_c(2^3D_2) \) and \(B_c(2^3D_2') \) states dominantly decay into \(DB^*, BD^* \) or \(B^D^* \) channels. Combing the strong and radiative decay properties with each other, it is found that the branching fractions of the dominant \(\ell M \) decay processes \(B_c(2D) \to B_c(nP) \) \((n = 1, 2) \) are \(O(10^{-4}) \). The observations of the \(DB, DB^*, BD^* \) or \(B^D^* \) final states might be useful to search for these missing 2D states in future experiments.

The higher 3D-wave states \(B_c(3D) \) are also studied in present work. The masses predicted by us are about 7.62 GeV, which are comparable with those predicted in Ref. [15], while about 150 MeV smaller than those predicted in Refs. [16, 17]. The strong decay properties are shown in Table XIII. It is found that these higher 3D-wave states have a width of \(\sim 100 \text{ MeV} \). These higher states might be observed in their dominant strong decay channels.

\[\text{VI. SUMMARY}\]

In this paper, we have calculated the \(B_c \) meson spectrum up to the 6S states with a nonrelativistic linear potential model by further constraining the model parameters with the mass
of $B_c(2S)$ newly measured by the CMS Collaboration. As important tasks of this work, the radiative transitions between the B_c states and the OZI allowed two body strong decays for the higher mass excited B_c states are evaluated with the wavefunctions obtained from the linear potential model. Our calculations may provide useful references to search for the excited B_c states. The main results are emphasized as follows.

For the S-wave states, the $2S$ hyperfine splitting is predicted to be $m[B_c^*(2S)] - m[B_c(2S)] \approx 19$ MeV. The mass of the newly observed $B_c^*(2S)$ state might be determined via the $M1$ transition $B_c^*(2S) \rightarrow B_c \gamma$ in future experiments. The $3S$-wave states $B_c(3^1S_0)$ and $B_c(3^3S_1)$ are about 50 MeV above the BB^* thresholds, their widths are estimated to be ~ 100 MeV. Since production rates of the $3S$-wave B_c states in $p\bar{p}$ collisions at the LHC are comparable with those of the $2S$-wave B_c states \cite{13}, both $B_c(3^1S_0)$ and $B_c(3^3S_1)$ states may have large possibilities to be established in the BB^* final state, while $B_c(3^3S_1)$ might be observed in the DB final state as well.

For the P-wave states, it is found that the decays of the $2P$-wave states, $B_c(2^1P_0)$, $B_c(2^3P_1)$ and $B_c(2^3P_1')$ together with all of the $1P$-wave states are governed by the $E1$ transitions, their typical decay widths are ~ 100 keV. It should be possible to observe these P-wave states via their dominant radiative decay processes with the higher statistics of the LHC. The $B_c(2^3P_1)$ state is just ~ 20 MeV above the DB threshold. It mainly decays into the DB channel with a very narrow width of $\Gamma \approx 1$ MeV, so it has a large potential to be first observed in the DB final state. The predicted masses of $3P$-wave states are in the range of (7420,7470) MeV. They are broad states with widths of ~ 200 MeV, and strongly couple to the B^*D^* final state. It is interesting found that the $4P$-wave states $B_c(4^3P_0)$, $B_c(4^3P_1)$ and $B_c(4^3P_1')$ with a mass around 7.7 GeV may have relatively narrow widths $\sim O(100)$ MeV, these higher P-wave states might be first observed in their dominant channel DB or D^*B.

The $1D$-wave states mainly decay via the EM transitions. Our study indicates that these $1D$-wave states may have a relatively large potential to be observed via the radiative decay chains. For example, to look for the $B_c(1^1D_1)$ state, the $B_c(1^1D_1) \rightarrow B_c(1^3P_3)\gamma \rightarrow B_c(1^3S_1)\gamma \rightarrow B_c(1^3S_1)\gamma \rightarrow B_c(1^3S_0)\gamma \rightarrow B_c(1^3S_0)\gamma \gamma \gamma$ is worthy to be searched, for the branching fraction of this chain is estimated to be $\sim 100\%$. The masses of the $2D$ and $3D$ states are predicted to be ~ 7.34 and 7.62 GeV, respectively. Their decays are governed by the strong decay modes, such as DB, DB^*, BD^* or B^*D^*. These higher D-wave states usually have a width of $O(100)$ MeV. The observations of the DB, DB^*, BD^* or B^*D^* final states might be useful to search for these missing $2D$ and $3D$ states in future experiments.

For the F-wave states, one should pay more attention to $1F$-wave B_c states in future observations. They have a mass of ~ 7.23 GeV, lie between the DB and B^*D mass thresholds. They are narrow states with a width of several MeV to several ten MeV, and dominantly decay into DB or B^*D channels. For example, the $B_c(1^3F_4)$ state might be very narrow state with a width of ~ 1 MeV, its decays are governed by the DB mode. To look for the missing $1F$-wave B_c states, the DB and B^*D final states are worth observing.

Finally, it should be pointed out the strong decay widths of the excited B_c states predicted in this work may have large uncertainties, for the parameter γ cannot be directly determined by the strong decay processes of B_c states. Fortunately, the uncertainties of the total strong decay widths of the excited B_c states do not affect the important information, such as the dominant decay modes and corresponding decay rates, for our searching for the excited B_c states in future experiments. Furthermore, the mixing angles for $3P_1 \rightarrow 1P_1$, $3D_2 \rightarrow 1D_2$, and $3F_1 \rightarrow F_1$ have obvious model dependencies. The uncertainties of the mixing angles also affect our predictions of the decay properties of the mixed states.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants No. 11775078, No. U1832173, No. 11705056, and No. 11405053.

[1] E. Eichten and F. Feinberg, Spin Dependent Forces in QCD, Phys. Rev. D 23, 2724 (1981).
[2] F. Abe et al. [CDF Collaboration], Observation of B_c mesons in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. D 58, 112004 (1998).
[3] G. Aad et al. [ATLAS Collaboration], Observation of an Excited B_c^* Meson State with the ATLAS Detector, Phys. Rev. Lett. 113, 212004 (2014).
[4] R. Aaij et al. [LHCb Collaboration], Search for excited B_c^* states, JHEP 1801, 138 (2018).
[5] A. M. Sirunyan et al. [CMS Collaboration], Observation of two excited B_c states and measurement of the $B_c(2S)$ mass in $p\bar{p}$ collisions at $\sqrt{s} = 13$ TeV [arXiv:1902.05571] [hep-ex].
[6] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32, 189 (1985).
[7] E. J. Eichten and C. Quigg, Mesons with beauty and charm: Spectroscopy, Phys. Rev. D 49, 5845 (1994).
[8] J. Zeng, J. W. Van Orden and W. Roberts, Heavy mesons in a relativistic model, Phys. Rev. D 52, 5229 (1995).
[9] V. V. Kiselev, A. K. Likhoded and A. V. Tkabladze, B_c spectroscopy, Phys. Rev. D 51, 3613 (1995).
[10] D. Ebert, R. N. Faustov and V. O. Galkin, Properties of heavy quarkonia and B_c mesons in the relativistic quark model, Phys. Rev. D 67, 014027 (2003).
[11] S. Godfrey, Spectroscopy of B_c mesons in the relativized quark model, Phys. Rev. D 70, 054017 (2004).
[12] L. F. Fulcher, Phenomenological predictions of the properties of the B_c system, Phys. Rev. D 60, 074006 (1999).
[13] A. Abd El-Hady, J. R. Spence and J. P. Vary, Radiative decays of B_c mesons in a Bethe-Salpeter model, Phys. Rev. D 71, 034006 (2005).
[14] N. Devlani, V. Kher and A. K. Rai, Masses and electromagnetic transitions of the B_c mesons, Eur. Phys. J. A 50, 154 (2014).
[15] A. P. Monteiro, M. Bhat and K. B. Vijaya Kumar, Mass spectra and decays of ground and orbitally excited $c\bar{b}$ states in nonrelativistic quark model, Int. J. Mod. Phys. A 32, 1750021 (2017).
[16] N. R. Soni, B. R. Joshi, R. P. Shah, H. R. Chauhan and ...
Initial state & Final state & E_γ (MeV) & Γ_{E1} (keV) & Γ_{SM} (keV) \\
--- & --- & --- & --- & --- \\
1^3P_2 & 1^3S_1 & 397 & 416 & 416 & 426 & 445 & 1126 & 122 & 83 & 102.9 & 87 \\
$1P_1$ & & 387 & 405 & 399 & 412 & 433 & 0.1 & 13.7 & 11 & 8.1 & 40 \\
$1P_1$ & & 382 & 389 & 391 & 400 & 416 & 99.5 & 87.1 & 60 & 77.8 & 70 \\
1^3P_0 & & 353 & 355 & 358 & 366 & 377 & 79.2 & 75.5 & 55 & 65.3 & 96 \\
$1P'_1$ & 1^3S_0 & 455 & 463 & 462 & 476 & 484 & 56.4 & 147 & 80 & 131.1 & 74 \\
$1P_1$ & & 450 & 447 & 454 & 464 & 468 & 0 & 18.4 & 13 & 11.6 & 35 \\
1^3D_3 & 1^3P_2 & 258 & 312 & 272 & 264 & 239 & 98.7 & 149 & 78 & 76.9 & 67 \\
1^3D_2 & 1^3P_2 & 310 & 263 & 273 & 241 & 12.6 & 8.8 & 6.8 & 8.3 \\
$1P'_1$ & & 321 & 280 & 287 & 253 & 143 & 63 & 46.0 & 41 \\
$1P_1$ & & 338 & 289 & 301 & 271 & 7.1 & 7 & 25.0 & 0.39 \\
1^3D_2 & 1^3P_2 & 308 & 268 & 258 & 233 & 23.6 & 9.6 & 12.2 & 8.7 \\
$1P'_1$ & & 319 & 285 & 272 & 246 & 14.9 & 15 & 18.4 & 1.09 \\
$1P_1$ & & 335 & 294 & 284 & 263 & 139 & 64 & 44.6 & 44 \\
1^3D_1 & 1^3P_2 & 258 & 303 & 255 & 265 & 229 & 2.7 & 3.82 & 1.8 & 2.2 & 0.7 \\
$1P'_1$ & & 268 & 315 & 273 & 279 & 242 & 0 & 7.81 & 4.4 & 3.3 & 12 \\
$1P_1$ & & 331 & 315 & 281 & 291 & 259 & 49.3 & 65.3 & 28 & 39.2 & 29 \\
1^3D_0 & & 302 & 365 & 315 & 325 & 299 & 88.6 & 133 & 55 & 79.9 & 65 \\
1^3F_4 & 1^3D_3 & 222 & 194 & 81 & 69 \\
$1F_3$ & 1^3D_3 & 227 & 207 & 5.4 & 4.76 \\
$1D_2$ & & 231 & 205 & 82 & 32 \\
$1D_2$ & & 236 & 212 & 0.04 & 0.04 \\
$1F_3$ & 1^3D_3 & 218 & 191 & 3.7 & 4.91 \\
$1D_2$ & & 222 & 189 & 0.5 & 0.22 \\
$1D_2$ & & 226 & 197 & 78 & 29 \\
1^3F_2 & 1^3D_3 & 221 & 202 & 0.4 & 0.12 \\
$1D'_2$ & & 224 & 200 & 6.3 & 5.72 \\
$1D_2$ & & 229 & 208 & 6.5 & 6.36 \\
1^3D_1 & & 237 & 212 & 75 & 78

J. N. Pandya, *Q̄Q (Q ∈ h, c) spectroscopy using the Cornell potential*, Eur. Phys. J. C 78, 592 (2018).

[17] A. P. Monteiro, M. Bhat and K. B. Vijaya Kumar, *c̄b spectrum and decay properties with coupled channel effects*, Phys. Rev. D 95, 054016 (2017).

[18] E. J. Eichten and C. Quigg, Mesons with Beauty and Charm: New Horizons in Spectroscopy, arXiv:1902.09735 [hep-ph].

[19] M. Baldicchi and G. M. Prosperi, *Bc meson and the light-heavy quarkonium spectrum*, Phys. Rev. D 62, 114024 (2000).

[20] S. Tang, Y. Li, P. Maris and J. P. Vary, *Bc mesons and their properties on the light front*, Phys. Rev. D 98, 114038 (2018).

[21] S. M. Ikhdair and R. Sever, *Bc meson spectrum and hyperfine splittings in the shifted large N expansion technique*, Int. J. Mod. Phys. A 18, 4215 (2003).

[22] S. M. Ikhdair and R. Sever, *Spectroscopy of Bc meson in a semirelativistic quark model using the shifted large N expansion method*, Int. J. Mod. Phys. A 19, 1771 (2004).

[23] D. M. Li, B. Ma, Y. X. Li, Q. K. Yao and H. Yu, *Meson spectrum in Regge phenomenology*, Eur. Phys. J. C 37, 323 (2004).

[24] K. W. Wei and X. H. Guo, *Mass spectra of doubly heavy mesons in Regge phenomenology*, Phys. Rev. D 81, 076005 (2010).

[25] X. H. Guo, K. W. Wei and X. H. Wu, *Some mass relations for mesons and baryons in Regge phenomenology*, Phys. Rev. D 78, 056005 (2008).

[26] A. M. Badalian, B. L. G. Bakker and I. V. Danilkin, *The Hyperfine Splittings in Bottomonium and the B_q (q = n, s, c) Mesons*, Phys. Rev. D 81, 071502 (2010) Erratum: [Phys. Rev. D 81, 099902 (2010)].

[27] Z. G. Wang, *Analysis of the vector and axialvector Bc mesons with QCD sum rules*, Eur. Phys. J. A 49, 131 (2013).

[28] W. Chen, Z. X. Cai and S. L. Zhu, *Masses of the tensor mesons with J^P = 2^-, Nucl. Phys. B 887, 201 (2014).*

[29] A. K. Rai, B. Patel and P. C. Vinodkumar, *Properties of Q̄Q mesons in non-relativistic QCD formalism*, Phys. Rev. C 78, 055202 (2008).

[30] B. Patel and P. C. Vinodkumar, *Properties of Q̄Q(Q ∈ h, c) mesons in Coulomb plus Power potential*, J. Phys. G 36, 035003 (2009).

[31] A. Bernotas and V. Simonis, *Heavy hadron spectroscopy and the bag model*, Lith. J. Phys. 49, 19 (2009).

[32] S. M. Ikhdair and R. Sever, *Bc and heavy meson spectroscopy*
TABLE VII: Partial widths of the $E1$ dominant radiative transitions for the $2D$-wave B_c states.

Initial state	Final state	E_r (MeV)	Γ_{EM} (keV)	Initial state	Final state	E_r (MeV)	Γ_{EM} (keV)
2^3D_1	1^3P_2	528	8.13	2^3D_1	1^3P_2	540	32
$1P^*$		540	7.6	$1P^*$		552	0.54
$1P$		557	12.5	$1P$		568	1.23
1^3P_0		596	41.8	1^3P_0		607	2.04
2^3P_2		174	0.58	2^3P_2		186	54
$2P^*$		184	10.15	$2P^*$		195	0.09
$2P$		199	20.88	$2P$		211	0.23
2^3P_0		225	46	2^3P_0		237	0.05
$2D_2$	1^3P_2	535	7.04	$2D_2$	1^3P_2	539	7.28
$1P^*$		547	0.12	$1P^*$		551	19
$1P$		564	22.6	$1P$		567	1.48
1^3P_0		602	0.29	1^3P_0		606	0.3
2^3P_2		181	6.33	2^3P_2		185	6.71
$2P^*$		190	0.74	$2P^*$		194	29
$2P$		206	34	$2P$		210	0.24
2^3P_0		232	0.04	2^3P_0		236	0.05

in the local approximation of the Schroedinger equation with relativistic kinematics, Int. J. Mod. Phys. A 20, 4035 (2005).
[33] A. Abd El-Hady, M. A. K. Lodhi and J. P. Vary, B_c mesons in a Bethe-Salpeter model, Phys. Rev. D 59, 094001 (1999).
[34] L. Motyka and K. Zalewski, Mass spectra and lepton decay widths of heavy quarkonia, Eur. Phys. J. C 4, 107 (1998).
[35] C. T. H. Davies, K. Hornbostel, G. P. Lepage, A. J. Lidsey, J. Shigemitsu and J. H. Sloan, (b) spectroscopy from lattice QCD, Phys. Lett. B 382, 131 (1996).
[36] N. Mathur, M. Padmanath and S. Mondal, Precise predictions of charmed-bottom hadrons from lattice QCD, Phys. Rev. Lett. 121, 202002 (2018).
[37] R. J. Dowdall, C. T. H. Davies, T. C. Hammant and R. R. Horgan, Precise heavy-light meson masses and hyperfine splittings from lattice QCD including charm quarks in the sea, Phys. Rev. D 86, 094510 (2012).
[38] E. B. Gregory et al., A Prediction of the B_s mass in full lattice QCD, Phys. Rev. Lett. 104, 022001 (2010).
[39] I. F. Allison et al. [HPQCD and Fermilab Lattice and UKQCD Collaborations], Mass of the B_s meson in three-flavor lattice QCD, Phys. Rev. Lett. 94, 172001 (2005).
[40] K. M. Cheung, B_s mesons production at hadron colliders by heavy quark fragmentation, Phys. Rev. Lett. 71, 3413 (1993).
[41] E. Braaten, S. Fleming and T. C. Yuan, Production of heavy quarkonium in high-energy colliders, Ann. Rev. Nucl. Part. Sci. 46, 197 (1996).
[42] K. M. Cheung and T. C. Yuan, Heavy quark fragmentation functions for d wave quarkonium and charmed beauty mesons, Phys. Rev. D 53, 3591 (1996).
[43] K. M. Cheung and T. C. Yuan, Hadronic Production of S wave and P wave charmed beauty mesons via heavy quark fragmentation, Phys. Rev. D 53, 1232 (1996).
[44] A. V. Berezhnoy, V. V. Kiselev and A. K. Likhoded, Hadronic production of S and P wave states of $b c$ quarkonium, Z. Phys. A 356, 79 (1996).
[45] C. H. Chang, J. X. Wang and X. G. Wu, Hadronic production of the P-wave excited B_c states $B_{c,±}^{′+}$, Phys. Rev. D 70, 114019 (2004).
[46] C. H. Chang, C. F. Qiao, J. X. Wang and X. G. Wu, The Color-octet contributions to P-wave B_c meson hadroproduction, Phys. Rev. D 71, 074012 (2005).
[47] Q. L. Liao, Y. Deng, Y. Yu, G. C. Wang and G. Y. Xie, Heavy P-wave quarkonium production via Higgs decays, Phys. Rev. D 98, 036014 (2018).
[48] K. He, H. Y. Bi, R. Y. Zhang, X. Z. Li and W. G. Ma, P-wave excited $B_{c}^{∗−}$ meson photoproduction at the LHeC, J. Phys. G 45, 055005 (2018).
[49] Q. L. Liao, Y. Yu, Y. Deng, G. Y. Xie and G. C. Wang, Excited heavy quarkonium production via Z^0 decays at a high luminosity collider, Phys. Rev. D 91, 114030 (2015).
[50] Q. L. Liao and G. Y. Xie, Heavy quarkonium wave functions at the origin and excited heavy quarkonium production via top quark decays at the LHC, Phys. Rev. D 90, 054007 (2014).
[51] Q. L. Liao, X. G. Wu, J. Jiang, Z. Yang and Y. Z. Fang, Heavy Quarkonium Production at LHC through W Boson Decays, Phys. Rev. D 85, 014032 (2012).
[52] Z. Yang, X. G. Wu, L. C. Deng, J. W. Zhang and G. Chen, Production of the P-Wave Excited B_c-States through the Z^0 Boson Decays, Eur. Phys. J. C 71, 1563 (2011).
[53] C. H. Chang, J. X. Wang and X. G. Wu, Production of B_c meson and its excited states via $t \bar{t}$ quark or t quark decays, Phys. Rev. D 77, 014022 (2008).
[54] S. Patnaik, P. C. Dash, S. Kar, S. Patra and N. Barik, Magnetic dipole transitions of B_c and $B_{c}^{∗}$ mesons in the relativistic independent quark model, Phys. Rev. D 96, 116010 (2017) Erratum: [Phys. Rev. D 99, 019901 (2019)]
[55] V. Simonis, Magnetic properties of ground-state mesons, Eur. Phys. J. A 52, 90 (2016).
[56] T. Wang, Y. Jiang, W. L. Ju, H. Yuan and G. L. Wang, The electromagnetic decays of $B_{c,±}^{∗}$, JHEP 1603, 209 (2016).
[57] Z. G. Wang, The radiative decays $B_{c,±}^{∗} \rightarrow B_{c}^{∗−}\gamma$ with QCD sum rules, Eur. Phys. J. C 73, 2559 (2013).
[58] D. Ebert, R. N. Faustov and V. O. Galkin, Radiative $M1$ decays of heavy light mesons in the relativistic quark model, Phys. Lett. B 537, 241 (2002).
[59] J. Ferretti and E. Santopinto, Open-flavor strong decays of
TABLE VIII: Partial widths of the E_1 dominant radiative transitions for the $2S^{-}$, $2P^{-}$-wave B_c states. For comparison, the predictions from the relativistic quark model $[10]$, relativized quark model $[11]$, nonrelativistic constituent quark models $[7, 9]$ are listed in the table as well.

Initial state	Final state	E_r (MeV)	Γ_{E1} (keV)	Γ_{EM} (keV)							
2^3S_1	1^3P_2	151	118	118	159	102	17.7	7.59	5.7	14.8	9.68
$1^3P_1'$	161	130	136	173	115	14.5	7.65	4.7	12.8	4.62	
1^3P_1	167	146	144	185	133	7.8	5.53	2.9	7.7	3.48	
1^3P_0	196	181	179	219	174						
2^1S_0	1^1P_1	119	84	104	138	96	5.2	4.40	6.1	15.9	6.38
	1^1P_1	125	101	113	150	114	0	1.05	1.3	1.9	5.33
2^3P_2	1^3D_3	142	75	118	127	129	17.8	2.08	6.8	10.9	14
	$1^3D_2'$	77	122	118	127						
	1^3D_2	79	127	133	135						
	1^3D_1	142	84	135	126	139	0.2	0.035	0.1	0.1	0.13
2^1S_1	249	270	272	232	265	73.8	75.3	55	49.4	50	
	1^1S_1	770		778	817	785	25.8	14	25.8	52	
2^1S_1	66	113	108	117		1.49	5.5	3.5	1.05		
1^3S_0	303	289	257	274		90.5	52	58.0	36		
	825	871	825	19	131.1	44					
2^3P_1	$1^3D_2'$	47	108	97	101		0.023	0.8	1.2	0.006	
	1^3D_2	49	103	112	109		0.517	3.6	3.9	0.84	
	1^3D_1	125	54	116	105	113	0.3	0.204	1.6	1.6	1.45
2^3S_1	232	241	253	211	240	54.3	45.3	45	32.1	34	
	1^3S_1	754	761	796	762	22.1	5.4	15.3	40		
2^1S_1	285	284	246	258		13.8	5.7	8.1	19		
	820	860	811			1.2	3.1	25			
2^3P_0	1^3D_1	98	19	93	86	6.9	0.041	4.2	3.2	5.6	
	2^3S_1	205	207	231	186	214	41.2	34	42	25.5	53
	1^3S_1	729	741	771	738	21.9	1	16.1	41		
Initial state	Final state	E_γ (MeV)	Γ_{EM} (keV)	Initial state	Final state	E_γ (MeV)	Γ_{EM} (keV)				
--------------	-------------	-----------------	-------------------	--------------	-------------	-----------------	-------------------				
3^1S_0	$2P'$	88	11.13	3^3S_1	2^3P_2	91	11.89				
$2P$		104	10.93	$2P'$		101	2.92				
$1P'$		450	1.74	$2P$		117	7.2				
$1P$		467	1.25	2^3P_0		144	5				
				1^3P_2		450	1.58				
				$1P'$		462	0.7				
				$1P$		479	1.72				
				1^3P_0		518	1.73				
4^1S_0	$1P'$	727	1.93	4^3S_1	1^3P_2	724	1.88				
$1P$		743	1.7	$1P'$		736	0.82				
$2P'$		380	6.31	$1P$		752	1.37				
$2P$		395	5.14	1^3P_0		790	1.3				
$3P'$		82	13	2^3P_2		380	5.78				
$3P$		98	17	$2P'$		389	1.96				
				$2P$		405	4.04				
				2^3P_0		430	3.28				
				3^3P_2		86	16				
				$3P'$		91	4.06				
				$3P$		108	8.71				
				3^3P_0		129	6.12				
3^3P_0	2^3D_1	84	10.93	3^3P_2	2^3D_3	115	22				
1^3D_1		389	1.84	$2^3D'$		116	1.57				
3^3S_1		166	45	$2D$		120	1.72				
2^3S_1		511	36	2^3D_1		127	0.23				
1^3S_1		1013	30	1^3D_2		421	9.07				
				$1D'$		419	1.06				
				$1D$		427	1.16				
				1^3D_1		431	0.94				
				3^3S_1		209	43				
				2^3S_1		552	39				
				1^3S_1		1051	42				
$3P_1$	$2D'$	93	0.003	$3^3P'$	$2D'$	110	1.9				
$2D$		97	1.3	$2D$		114	0.05				
2^3D_1		104	2.39	2^3D_1		121	2.47				
$1D'$		398	0.74	$1D'$		414	0.19				
$1D$		405	0.31	$1D$		421	0.93				
1^3D_1		409	0.67	1^3D_1		425	0.61				
3^3S_1		187	26	3^3S_1		203	25				
2^3S_1		531	27	2^3S_1		546	22				
1^3S_1		1031	30	1^3S_1		1046	24				
3^3S_0		199	18	3^3S_0		216	30				
2^3S_0		548	19	2^3S_0		564	28				
1^3S_0		1078	23	1^3S_0		1093	32				

doscalar meson photoproductions off nucleons in the quark model, Phys. Rev. C 56, 1099 (1997).
[75] Q. Zhao, J. S. Al-Khalili, Z. P. Li and R. L. Workman, Pion photoproduction on the nucleon in the quark model, Phys. Rev. C 65, 065204 (2002).
[76] L. Y. Xiao, X. Cao and X. H. Zhong, Neutral pion photoproduction on the nucleon in a chiral quark model, Phys. Rev. C 92, 035202 (2015).
[77] X. H. Zhong and Q. Zhao, η photoproduction on the quasi-free nucleons in the chiral quark model, Phys. Rev. C 84, 045207 (2011).
[78] X. H. Zhong and Q. Zhao, η' photoproduction on the nucleons
State	Decay mode	Γ_{th} (MeV)	B_r(%)	State	Decay mode	Γ_{th} (MeV)	B_r(%)
$3^1S_0(7239)$	$B'D$	161	100	$3^1S_1(7252)$	BD	28	21
Total		161	100	Total		133	100
$4^1S_0(7540)$	$B'D$	0.14	0.1	$4^1S_1(7550)$	BD	4.53	2.7
BD'	34.9	18.3		$B'D$	0.41	0.2	
$B'D'$	104	54		BD'	17.0	10	
$B_0^0D_s^*$	6.7	3.5		$B_s^*D_s^*$	112	66	
$B_1^0D_s^*$	5.8	3.1		$B_1^0D_s^*$	2.81	1.6	
$B_2^0D_s^*$	15.5	8.1		$B_2^0D_s^*$	5.29	3.1	
$BD(1^3P_0)$	24	12.6		$B_0^0D_s^*$	1.83	1.1	
Total		191	100	Total		171	100
$5^1S_0(7805)$	$B'D$	24.5	5.9	$5^1S_1(7813)$	BD	15.81	3.9
BD'	1.5	0.4		$B'D$	20.18	5	
$B'D'$	2.28	0.6		BD'	2.65	0.7	
$B_0^0D_s^*$	1.62	0.4		$B_0^0D_s^*$	0.19	0.05	
$B_1^0D_s^*$	4.65	1.1		$B_1^0D_s^*$	0.02	0.005	
$B_2^0D_s^*$	5.75	1.4		$B_2^0D_s^*$	0.62	0.2	
$B(1^3P_0)D$	18.6	4.5		$B_0^0D_s^*$	3.02	0.8	
$B(1^3P_2)D$	27.6	6.7		$B_0^0D_s^*$	8.09	2	
$B(1^1P_0)D$	72	19.9		$B(1^3P_0)D$	18.96	4.7	
$B(1^1P_2)D$	6.2	1.5		$B(1^3P_2)D$	13.34	3.3	
$B(1^3P_0)D$	56.5	13.7		$B(1^3P_2)D$	16.1	4	
$BD(1^3P_0)$	23.5	5.7		$B(1^3P_0)D^*$	0.04	0.01	
$BD(1^3P_2)$	48.2	11.7		$B(1^3P_0)D^*$	53.93	13.4	
$B'D(1^1P_0)$	70.9	17.2		$B(1^3P_0)D^*$	5.19	1.3	
$B'D(1^3P_0)$	12.3	3.0		$B(1^3P_2)D^*$	96	24	
$B'D(1^3P_2)$	25.7	6.2		$BD(1^3P_2)$	0.89	0.2	
$B_s(1^3P_0)D_S$	0.17	0.04		$BD(1^3P_2)$	0.63	0.2	
$B_sD_s(1^3P_0)$	0.56	0.14		$BD(1^3P_0)D_S$	17.34	4.3	
Total		413	100	Total		401	100

in the quark model, Phys. Rev. C 84, 065204 (2011).
[79] M. Jacob and G. C. Wick, On the general theory of collisions for particles with spin, Annals Phys. 7, 404 (1959) [Annals Phys. 281, 774 (2000)].
[80] L. C. Gui, L. S. Lu, Q. F. Lü, X. H. Zhong and Q. Zhao, Strong decays of higher charmonium states into open-charm mesons pairs, Phys. Rev. D 98, 016010 (2018).
[81] Q. F. Lü, T. T. Pan, Y. Y. Wang, E. Wang and D. M. Li, Excited bottom and bottom-strange mesons in the quark model, Phys. Rev. D 94, 074012 (2016).
[82] D. M. Li, P. F. Ji and B. Ma, The newly observed open-charm states in quark model, Eur. Phys. J. C 71, 1582 (2011).
[83] M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).
[84] E. S. Ackleh, T. Barnes and E. S. Swanson, On the mechanism of open flavor strong decays, Phys. Rev. D 54, 6811 (1996).
[85] T. Barnes, N. Black and P. R. Page, Strong decays of strange quarkonia, Phys. Rev. D 68, 054014 (2003).
[86] S. Godfrey, K. Moats and E. S. Swanson, B and B_s, Meson Spectroscopy, Phys. Rev. D 94, 054025 (2016).
[87] S. Godfrey and K. Moats, Properties of Excited Charm and Charm-Strange Mesons, Phys. Rev. D 93, 034035 (2016).
TABLE XI: Strong decay properties for the 6s-wave B_s states.

State	Decay mode	Γ_{ik} (MeV)	$B_i(\%)$	State	Decay mode	Γ_{ik} (MeV)	$B_i(\%)$
$6^1S_0(8046)$	B^*D	44.4	12	$6^1S_1(8054)$	BD	17.6	4.7
BD^*		24.3	6.7	BD^*		31	8.3
B^*D^*		24.3	6.7	B^*D^*		19.1	5.1
$B^0D^0_s$		1.11	0.3	$B^0D^0_s$		0.3	0.3
$B^0D^0_s^*$		3.33	0.9	$B^0D^0_s^*$		1.22	0.3
$B(1P_0)D$		11.3	3.1	$B(1P_0)D$		0.09	0.02
$B(1P_2)D$		4.85	1.3	$B(1P_2)D$		2.96	0.8
$B(1P_0)D$		28.3	7.8	$B(1P_0)D$		0.25	0.07
$B(1P_1)D$		24.7	6.8	$B(1P_1)D$		11.1	3
$B(1P_2)D$		20.6	5.7	$B(1P_2)D$		1.09	0.3
$BD(1P_0)$		13.2	3.6	$BD(1P_0)$		10.9	3
$BD(1P_2)$		28.9	8	$BD(1P_2)$		21.2	5.7
$B(1P_0)D^*$		46.8	13	$B(1P_0)D^*$		17	4.6
$B(1P_0)D^*$		41.4	11.4	$B(1P_0)D^*$		9.1	
$B(1P_1)D^*$		23.5	6.5	$B(1P_1)D^*$		34	
$B(1P_2)D^*$		5.5	1.5	$B(1P_2)D^*$		16.6	4.4
$B(1P_0)D^*_s$		0.17	0.05	$B(1P_0)D^*_s$		14.1	3.8
$B(1P_1)D^*_s$		0.88	0.24	$B(1P_1)D^*_s$		12.9	3.5
$B(1P_2)D^*_s$		0.03	0.01	$B(1P_2)D^*_s$		30.5	8.2
$B(1P_0)D^*_s$		0.02	0.01	$B(1P_0)D^*_s$		27.9	7.5
$B(1P_1)D^*_s$		6.62	1.8	$B(1P_1)D^*_s$		39.9	10.7
$B(1P_2)D^*_s$		2.47	0.68	$B(1P_2)D^*_s$		0.61	0.2
$B(1P_0)D^*_s$		4.14	1.1	$B(1P_0)D^*_s$		3.06	0.8
$B(1P_1)D^*_s$		0.23	0.06	$B(1P_1)D^*_s$		0.24	0.1
$B(1P_2)D^*_s$		0.18	0.05	$B(1P_2)D^*_s$		0.001	0.0003
Total		361	100	Total		372	100

[88] F. E. Close and E. S. Swanson, Dynamics and decay of heavy-light hadrons, Phys. Rev. D 72, 094004 (2005).
State	Decay mode	Γ_{th} (MeV)	$B_s(\%)$	State	Decay mode	Γ_{th} (MeV)	$B_s(\%)$
$3^3P_0(7420)$	BD	9.6	3.5	$3^3P_2(7464)$	BD	22	11.1
	$B'D'$	255	93		$B'D'$	16	8.1
	$B_0^0D_s^*$	9.7	3.5		BD'	3.4	1.7
					$B'D'$	146	74
					$B_0^0D_s^{*}$	2.7	1.4
					$B_0^2D_s^{*}$	7.8	4
Total		274	100	$3P_{1/2}(7458)$	$B'D'$	9.3	4.3
					BD'	62	28.1
					$B'D'$	145	65.8
					$B_0^0D_s^*$	4.0	1.8
					Total	198	100
				$3P_{1/2}(7441)$	$B'D'$	9.3	4.3
					BD'	62	28.1
					$B'D'$	145	65.8
					$B_0^0D_s^*$	4.0	1.8
					Total	220	100
$4^3P_0(7693)$	BD	13.6	25.6	$4^3P_2(7732)$	BD	21.76	11.4
	$B'D'$	14	26.4		BD'	30.1	15.8
	$B_0^0D_s^*$	7.16	13.5		BD'	13.9	7.3
	$B_0^2D_s^{*}$	4.6	8.7		$B'D'$	7.82	4.1
	$B(1P')D$	7.66	14.4		$B_0^0D_s^*$	0.84	0.4
	$B(1P)D$	0.44	0.83		$B_0^0D_s^{*}$	0.01	0.005
	$BD(1P)$	0.07	0.13		$B_0^0D_s^{*}$	2.34	1.2
	$B'D(1^3P_0)$	5.5	10.4		$B_0^0D_s^{*}$	11.1	5.8
					$B(1P')D$	27.7	14.5
					$B(1P)D$	6.95	3.6
					$B(1^3P_2)D$	20.2	10.6
					$B(1^3P_0)D'$	8.8	4.6
					$BD(1P')$	13.1	6.9
					$BD(1P)$	6.61	3.5
					$B'D(1^3P_0)$	10.1	5.3
					$B'D(1P)$	9.22	4.8
Total		53	100	$4P_{1/2}(7727)$	$B'D$	24.5	19.4
					BD'	3.7	2.9
					$B'D'$	0.86	0.7
					$B_0^0D_s^*$	4.4	3.5
					$B_0^2D_s^{*}$	6.78	5.4
					$B_0^0D_s^{*}$	6.66	5.3
	$B(1^3P_0)D$	10.4	7.3		$B(1^3P_0)D$	0.002	0.002
	$B(1P')D$	0.03	0.002		$B(1P')D$	0.4	0.3
	$B(1P)D$	0.01	0.01		$B(1P)D$	3.32	2.6
	$B(1^3P_2)D$	36.6	25.6		$B(1^3P_2)D$	15	11.9
	$B(1^3P_0)D'$	0.02	0.01		$B(1^3P_0)D'$	11.8	9.4
	$BD(1^3P_0)$	13.6	9.5		$BD(1^3P_0)$	0.1	0.08
	$BD(1P)$	0.009	0.006		$BD(1P')$	15.32	12.2
	$BD(1P)$	0.05	0.03		$BD(1P)$	23.03	18.3
	$B'D(1^3P_0)$	0.1	0.07		$B'D(1^3P_0)$	10.02	8.0
	$B'D(1P)$	0.31	0.22				
	$B_0D_s(1^3P_0)$	4.75	3.3				
	$B_0(1^3P_0)D_s$	0.41	0.3				
Total		143	100			126	100
TABLE XIII: Strong decay properties for the $2D$-, $3D$-wave B_c states.

State	Decay mode	$Γ_{th}$ (MeV)	B_r (%)	State	Decay mode	$Γ_{th}$ (MeV)	B_r (%)
$2^1D_1(7336)$	BD	0.55	1.0	$2^1D_1(7348)$	BD	41.6	22.1
$B'D$	6.24	10.9		$B'D$	50.8	26.9	
BD'	50.1	87		BD'	9.29	4.9	
$B'D'$	0.48	0.8		$B'D'$	87	46.1	
$B'^0D'^*_1$	0.18	0.3		$B'^0D'^*_1$	0.013	0.01	
Total	57	100		Total	189	100	
$2^3D_3(7347)$	BD	57.1	34.7	$2^3D_3(7343)$	BD	38.2	27
BD'	66.8	40.7		BD'	89	64	
$B'D'$	40.4	24.6		$B'D'$	12.3	9	
Total	164	100		Total	139	100	
$3^1D_1(7611)$	BD	25.2	28.2	$3^1D_3(7625)$	BD	19.3	17
$B'D$	5.65	6.3		$B'D$	29.7	26.5	
BD'	0.48	0.5		BD'	20.8	18.6	
$B'^0D'^*_1$	19.5	21.9		$B'^0D'^*_1$	18.4	16.4	
$B'^0D'^*_2$	2.27	2.5		$B'^0D'^*_2$	1.45	1.3	
$B'^0D'^*_3$	3.16	3.5		$B'^0D'^*_3$	0.12	0.1	
$B'^0D'^*_4$	1.82	2.0		$B'^0D'^*_4$	2.94	2.6	
$B'^0D'^*_5$	16.5	18.5		$B'^0D'^*_5$	6.6	5.9	
$B(1P)D$	0.76	0.9		$B(1P')D$	0.001	0.001	
$B'D(1^3P_0)$	13.9	15.6		$B'D(1^3P_0)$	4.62	4.1	
Total	89	100		Total	112	100	
$3^3D_1(7623)$	BD	45.8	34.6	$3^3D_3(7620)$	BD	38.9	34.2
BD'	20.6	15.6		BD'	13.8	12	
$B'D'$	21.1	16		$B'D'$	22.1	19	
$B'^0D'^*_1$	2.25	1.7		$B'^0D'^*_1$	3.89	3.4	
$B'^0D'^*_2$	6.33	4.8		$B'^0D'^*_2$	6.46	5.7	
$B'^0D'^*_3$	9.07	6.8		$B'^0D'^*_3$	11.6	10	
$B(1P)D$	12.1	9.1		$B(1P')D$	0.03	0.03	
$B(1P)D$	0.02	0.02		$B(1P')D$	2.82	2.5	
$BD(1^3P_0)$	14.4	10.9		$BD(1^3P_0)$	0.65	0.6	
$B'D(1^3P_0)$	0.65	0.5		$B'D(1^3P_0)$	13.6	12	
Total	132	100		Total	114	100	
State	Decay mode	Γ_{th} (MeV)	B_r (%)	State	Decay mode	Γ_{th} (MeV)	B_r (%)
--------------	------------	---------------------	-----------	--------------	------------	---------------------	-----------
$^1F_2(7235)$	BD	61.9	85	$^3F_4(7227)$	BD	0.85	97
	$B'D$	11.1	15	$B'D$		0.03	3
Total		73	100	Total		0.88	100
$^1F_3(7240)$	$B'D$	15.1	100	$^3F_4(7224)$	$B'D$	8.53	100
Total		15.1	100	Total		8.53	100
$^2F_2(7518)$	BD	45.1	20.2	$^3F_4(7514)$	BD	8	6
	$B'D$	19.2	8.6	$B'D$		20.9	16
	BD^*	0.39	0.2	BD^*		37.7	29
	$B'D^*$	151	68	$B'D^*$		57	43
	$^{0}D_{1}^*$	0.68	0.3	$^{0}D_{1}^*$		4.48	3.4
	$^{0}D_{1}^*$	3.63	1.6	$^{0}D_{1}^*$		3.26	2.5
	$^{2}D_{1}^*$	3.17	1.4	$^{2}D_{1}^*$		0.05	0.04
Total		223	100	Total		131	100
$^2F_3(7525)$	$B'D$	45.2	25	$^3F_4(7508)$	$B'D$	43.9	25
	BD^*	41.0	23	BD^*		30.2	17
	$B'D^*$	80.3	45	$B'D^*$		90.2	52
	$^{0}D_{1}^*$	7.19	4	$^{0}D_{1}^*$		7.78	4.5
	$^{2}D_{1}^*$	4.53	3	$^{2}D_{1}^*$		2.57	1.5
Total		178	100	Total		175	100
TABLE XV: Strong decay properties for the $3F$-wave B_s states.

State	Decay mode $	\Gamma_{ik} (\text{MeV}) \mid R_i (%) \mid \text{State}	Decay mode $	\Gamma_{ik} (\text{MeV}) \mid R_i (%)			
$3^3F_2(7730)$	BD	32.1	14	$3^3F_2(7771)$	BD	2.82	1.6
	$B'D$	16.1	7	$B'D$	8.9	5.0	
	BD'	3.89	1.7	BD'	20.2	11.4	
	$B'D'$	72	31.5	$B'D'$	50.9	28.7	
	$B_0^*D_s^*$	0.38	0.2	$B_0^*D_s^*$	3.2	1.8	
	$B_0^*D_s^*$	0.11	0.05	$B_0^*D_s^*$	3.2	1.8	
	$B_0^*D_s^{**}$	2.09	0.9	$B_0^*D_s^{**}$	0.4	0.2	
	$B_0^*D_s^{**}$	5.25	2.3	$B_0^*D_s^{**}$	9.19	5.2	
	$B(1P')D$	19.5	8.5	$B(1P')D$	19.4	10.9	
	$B(1P')D$	5.03	2.2	$B(1P')D$	1.85	1.04	
	$B(1^3P_2)D$	12.1	5.3	$B(1^3P_2)D$	12.3	6.9	
	$B(1^3P_0)D'$	2.56	1.1	$B(1^3P_0)D'$	6.82	3.8	
	$BD(1P')$	45.8	20	$BD(1P')$	0.02	0.01	
	$BD(1P)$	2.3	1	$BD(1P)$	3.03	1.7	
	$B'D(1^3P_0)$	9.14	4	$B'D(1^3P_0)$	9.19	5.2	
	$B'D(1P)$	0.48	0.2	$B'D(1P)$	11.2	6.3	
	$BD(1^3P_0)$	0.008	0.003	$BD(1^3P_0)$	0.01	0.003	
	$B(1P)D$	0.01	0.003	$B(1P)D$	6.25	1.9	
	$B(1P)D$	< 0.001	≃ 0	$B(1P)D$	2.26	0.7	
	$B(1^3P_2)D$	36.7	12	$B(1^3P_2)D$	27.6	8.4	
	$B(1^3P_0)D'$	0.08	0.03	$B(1^3P_0)D'$	8.06	2.5	
	$B(1^3P_0)D'$	30.4	10	$B(1^3P_0)D'$	8.69	2.6	
	$B(1P)D'$	7.75	2.5	$B(1P)D'$	2.3	0.7	
	$B(1^3P_2)D'$	0.68	0.2	$B(1^3P_2)D'$	0.6	0.2	
	$BD(1^3P_0)$	0.11	0.04	$BD(1^3P_0)$	11.6	3.5	
	$BD(1P)$	0.07	0.02	$BD(1P)$	16.6	5.1	
	$BD(1P)$	0.56	0.2	$BD(1^3P_2)$	34.2	10	
	$BD(1^3P_2)$	27.1	8.9	$BD(1^3P_2)$	1.73	0.53	
	$B'D(1^3P_0)$	0.13	0.04	$B'D(1^3P_0)$	57.4	17.5	
	$B'D(1P)$	38.9	12.8	$B'D(1P)$	8.23	2.5	
	$B'D(1P)$	19.2	6.3	$B'D(1^3P_0)$	0.003	≃ 0	
	$B(1^3P_0)D_s$	1.38	0.45	$B(1^3P_0)D_s$	0.14	0.04	
	$B(1P)D_s$	< 0.0001	≃ 0	$B(1P)D_s$	0.01	0.003	
	$B_s D_s (1^3P_0)$	3.03	1.0	$B_s D_s (1^3P_0)$	3.29	10	
	$B_s D_s (1^3P_0)$	0.01	0.003	$B_s D_s (1^3P_0)$	3.29	10	

Total: 228 100

Total 228	100	Total 177	100
3F_2(7779)	$B'D$	33.6	11
	BD'	34.4	11.3
	$B'D'$	59.9	19.6
	$B_0^*D_s^*$	4.2	1.4
	$B_0^*D_s^{**}$	1.69	0.6
	$B_0^*D_s^{**}$	4.85	1.6
	$B(1P)D$	0.008	0.003
	$B(1P)D$	0.01	0.003
	$B(1P)D$	< 0.001	≃ 0
	$B(1P)D$	36.7	12
	$B(1P)D$	36.7	12
	$B(1P)D$	0.08	0.03
	$B(1P)D$	30.4	10
	$B(1P)D$	7.75	2.5
	$B(1P)D$	0.68	0.2
	$BD(1P)$	0.11	0.04
	$BD(1P)$	0.07	0.02
	$BD(1P)$	0.56	0.2
	$BD(1P)$	27.1	8.9
	$BD(1P)$	0.13	0.04
	$BD(1P)$	38.9	12.8
	$BD(1P)$	19.2	6.3
	$B(1P)D_s$	1.38	0.45
	$B(1P)D_s$	< 0.0001	≃ 0
	$B_s D_s (1^3P_0)$	3.03	1.0
	$B_s D_s (1^3P_0)$	0.01	0.003

Total: 305 100

| Total 305 | 100 | Total 329 | 100 |