Potential of economical productivity of faba bean/onion intercropping patterns under North Sinai conditions.

Abo El-Kassem, S.A.A.¹ and A.A.H. El-Shaieny²*

¹ Vegetable crop Department, Horticulture Research Institute, Agricultural Research Center, 12511 Giza, Egypt.
² Horticulture Department, Faculty of Agriculture, South Valley University, 83523 Qena, Egypt.

Abstract
A field experiment was conducted during two seasons in North Sinai, to study the effects of intercropping and density treatments on yield and the productivity of faba bean and onion plants. Combinations of intercropping and density treatments were used. The experimental design used in this study was RCBD with three replicates in five treatments: single faba beans, and single onions, as well as the three intermodal patterns (faba beans: onions) with the substitution method due to changed density ratios. Three intercropping patterns include different areas of faba bean and onions. The intercropping area ratios occupied by faba bean and onion were 11.8:88.2%, 7.6:92.4% and 4.9:95.1%, respectively, for the three respective manners. Intercropping effects were significant for yields of each crop species. On average, monoculture faba bean yielded 1.965 and 0.462 ton/fed seed dry and straw yields, respectively, as well as a sole onion of 15.95 ton/fed bulb yield. The mean faba bean seeds dry yield and, straw decreased by 17.2% and 3.4%, respectively, while, bulbs yield increased by 82.6% when the faba bean plants densities/m², in the intercrop, decreased from 4.0 to 2.9 plants/m² while increasing the onion plants rate/m² from 30 to 50 plants/m². The highest total intercrop yield of 15.125 ton/fed and a gross monetary value of 12853 L.E. was obtained when onion intercropped with faba bean in an intercropping pattern of F3O3 (including 50 and 2.9 plants/m² for onion and faba bean, respectively). The gross monetary value followed the same trend as the total land equivalent ratio.

Keywords: Competitive ratio; faba bean; growth; intercropping; onion; yield.

1. Introduction
Monoculture was widely used in traditional farming systems across the world, where plants are grown on the same land for at least a year (Gallaher, 2009). On the other hand, intercropping is an agronomic structure that includes growing two or more crops on the same field in the same year. To date, three categories have been described within this system, based on the extent of physical association between crops: full, relay, and sequential intercropping, also known as multiple cropping. Also, one of the good issues that can be done to increase the production from the unit area is planting at different densities along with intercropping (Beets, 1982; Ghosh et al., 2004; Sobkowicz, 2006).

Faba beans (Vicia faba L.) are an imperative economic crop since of their contribution to the soil and plant system characteristics through biological nitrogen (N) fixation, as it is capable of meeting its nitrogen requirements primarily from the atmosphere, as well as the legumes' high protein content (Matthews and Hary, 2003; Wenxue et al., 2005; Jensen et al., 2010; El-Kholy et al., 2019). However, the extent to
which legume crops can replace the use of mineral N fertilizers is unknown (Reining, 2005).

Onion (Allium cepa L.) is grown in Egypt for local consumption as well as consider a source of income for many small-scale farmers, commercial growers and it has numerous pharmacological features. Furthermore, it is suitable for planted with faba bean plants. Onions can be eaten fresh, as in a green salad, or in a variety of other forms and used in food processing (Refaey et al., 2016; El-Shaieny et al., 2022). The densities control is one of the cultural practices to control bulb size, shape and yield (Geremew et al., 2010).

The North Sinai region is well-known for its diverse features, including low land organic content and nutrients, as well as the presence of calcium carbonate, which directly affects nutrient absorption. As a result, it is classified as low yielding agricultural land, and limited areas of land are under pressure to meet basic demands. As a result, the ability to grow multiple crops in small areas is required (Awad et al., 2022). Therefore, the aim of this work was to investigate intercropping of faba beans and onions with respect to plants and growing traits to see if resources can be used more efficiently compared to single cultivation and thus higher profitability. Both crops are included in the list of compatible crops that can be produced at the El Arish site.

2. Materials and methods

Two field experiments were conducted in the experimental farm at the Agricultural Research Station, Veg. Res. Dept., Hort. Res. Inst., Agric. Res. Center, in El- Arish, North Sinai Governorate, Egypt, during two successive seasons 2020-21 and 2021-22 to study the efficiency of some intercropping and plant density treatments in maximizing faba bean productivity and onions across the Arish location. The experimental unit contained intercropping and density plant treatments in five dripper irrigation lines, the experiment unit area was 30 m² established 5 m long and 6 m width. Faba bean "Semillas cv.," was sown before planting onions "Giza Red cv.," in F₁ (F₁, F₂ and F₃) densities while intercropping onion seedlings consisted of O₁ (O₁, O₂ and O₃) cultivation densities as shown in Table 1. The experimental soil texture was sandy loam with pH 7.7, EC 0.74 dS/m, organic matter 0.11 %, and CaCO₃ 9.13 % (average of two seasons). However, chemical analysis of irrigation water had EC 4.02 dS/m and pH 7.6 (over two seasons).

Treatments	Density (plants/m²)	Number of row	Intra-row Spacing	Planting between dripper irrigation lines				
	Faba bean (cm)	Onion (cm)		Faba bean (cm)	Onion (cm)		Faba bean (cm)	Onion (cm)
Sole faba bean (F)	4	0	0	25	0	100	100	
Sole onion (O)	0	50	4	0	10	100	100	
intercropping (F₁O₁)	4	30	3	25	10	100	100	
intercropping F₂O₂	3.3	40	4	30	10	100	100	
intercropping (F₃O₃)	2.9	50	5	35	10	100	100	

The planting of onion and faba bean treatments were on dripper irrigation lines with a distance of 100 cm. The density distributed for each faba bean row and onion group lines plant at the same distance as previously mentioned (100 cm). The density of planting faba bean was 25, 30, and 40

Table 1. Experimental treatments as faba bean and onion densities
cm in the same planting line at rate densities of 4, 3.3, and 2.9 plants per m2, respectively, while the onion seedling was in rows between them was 10 cm at a rate 3, 4, and 5 rows distributed between dripper irrigation lines in 100 cm distance. Its density was 30, 40, and 50 bulbs per m2, respectively. The experimental design used in this study was a randomized complete block design with three replications with five treatments as follows:

1) sole cropping of faba bean at a rate of 25 cm intra-row spacing at density (4 plants/m2)
2) sole cropping of onion at a rate of 10 cm inter-row spacing× 4 rows at density (50 bulbs /m2)
3) Intercropping system F$_1$O$_1$: since planting one side of faba bean at a rate of 25 cm between plants in the same lines at density (4 plants/m2) alternated with three rows of onion at density (30 bulbs /m2)
4) Intercropping system F$_1$O$_1$: since planting one side of faba bean at a rate of 30 cm between plants in the same lines at density (3.3 plants/m2) alternated with four rows of onion at density (40 bulbs /m2)
5) Intercropping system F$_1$O$_1$: since planting one side of faba bean at a rate of 35 cm between plants in the same lines at density (2.9 plants/m2) alternated with five rows of onion at density (50 bulbs /m2)

In both years, faba bean seeds and onion bulb seedlings were hands planted in mid-October and mid-December in both seasons respectively. All necessary agricultural practices for production of faba bean have been implemented as followed by the technical recommendations of the Ministry of Agriculture.

2.1. Recorded Data

2.1.1. Faba bean plants

1- Vegetative growth parameters

Five plants from each treatment were randomly taken after 120 days from sowing for recorded plant height (cm), No. branches/plant, No. leaves/plant, both fresh and dry total weight (g).

2- Yield and its components

Green harvest: faba bean pods at the marketable stage were harvested and the following data were recorded; pod length (cm), number of pods/plant, number of seeds/pod, pod weight /plant, green pod weight/m2 and total green yield /fed.

Dry harvest: Data were recorded from the average of 5 plants taken from each treatment as seed weight/plant (g), seed yield/m2 (g) and seed yield/fed as well as seed chemical analysis of N, P, K and protein content

2.1.2. Onion plants

Vegetative growth parameters: Fifteen plants from each treatment were randomly taken after 120 days from transplanting and the following data were recorded; plant height (cm), number of leaves/plant, leave weight (g), total fresh weight (g), total dry weight /plant (g) and dry matter/plant (%).

Bulb parameters: Bulb length (cm), bulb diameter (cm), bulb shape index,

Onion bulb yield and chemical: Bulb fresh and dry weights (g) and yield (g/plant, g/m2 and ton/fed.) as well as TSS, N, P, K and protein content

2.1.3. Competitive relationship

In order to evaluate the competitive effects among component crops and to determine intercropping performance, different indices were calculated as:

1- Land equivalent ratio (LER) is an index of intercropping advantage that indicated the amount of interspecific competition or facilitation in an intercropping system (Fetene, 2003). It was calculated as (Willey, 1979), where, LER > 1 shows intercropping advantage and LER < 1 means monoculture advantage (Mazaheri, 1993).

2- Land Equivalent Coefficient (LEC) is a measure of interaction concerned with the
strength of relationship (Adetiloye et al., 1983) where a yield advantage is obtained if LEC value exceeds 0.2.

3- Competitive ratio (CR) was used to evaluate which one crop competes with the other in an intercropping system (Willey and Rao, 1980; Wahla et al., 2009).

4- Relative crowding coefficient (RCC) was calculated as (De Wit, 1960).

5- Aggressivity index by compares the yields between intercropping and sole cropping, as well as their respective land occupancy (Wahla et al., 2009).

6- Relative value total (RVT) proposed by (Alabi and Esobhawan, 2006) offers a solution to a shortcoming in LER which does not account for the economic value of the cultivated crops. So, RVT is very appropriate, particularly to the farmer who is aiming at getting the economic value out of the intercropping enterprise. (Vandermeer, 1992), where RVT > 1 indicates intercropping advantage.

7- Replacement value of intercropping (RVI) is an index that accounts for variable cost of production; hence it is superior to RVT (Moseley, 1994 and Singh et al., 2015).

8- Actual yield loss (AYL) was used to provide detailed information about competition between intercrops as it indicates the equivalent yield gain or loss of component crops in comparison to the respective pure stands (Banik, 1996). As opposed to LER, AYL takes into consideration the actual sown proportion of land occupied by the component crops in the field. A positive AYL value indicates an advantage accrued when crops are grown as intercrops and vice versa applies for a negative value (Dhima et al., 2007; Machiani et al., 2018).

9- Monetary advantage index (MAI) was determined according to the equation described by (Willey, 1979), to measure the productivity and profitability of intercropping as compared to solid planting of the associated component crops.

2.1.4. Gross return of intercropping cultures

GR = Price of faba bean (dry seeds plus straw) yield/fed + price of onion bulb yield/fed (L.E.).

Net return/fed = Total return – (fixed costs of faba bean + variable costs of onion according to market prices (2020/2021 and 2021/2022).

One kilo of faba bean seeds was L.E. 13 and 0.35 L.E. for faba bean straw as well as L.E. 2.5 for kilo of onion bulb.

2.2. Statistical analysis

Analysis of variance was done on the two-year data for a Randomized Complete Block Design according to (Gomez and Gomez, 1984). Means were compared by Duncan's multiple range tests (Duncan, 1955). For the analysis, the M-stat C software was utilized.

3. Results and discussion

3.1. Faba Bean traits

The results in Table 2. showed that the faba bean plants were significantly influenced by the various factors applied through the experiment in both seasons in all the studied traits except pod weight/m², K and N % in 1st season and P % content in the 2nd season. The intercropped faba beans/onions in an intercropping F₃O₃ pattern (2.9 and 50 plants/m² for faba bean and onion densities, respectively) recorded higher as a result of all studied traits except pod weight/m², total pod yield per feddan, seed/m² and seed yield/feddan in which F₁O₁ (4 and plants/m² for faba bean and onion densities, respectively) exhibited the heaviest weights during the two seasons.
Table 2. Effect of faba bean plants intercropped densities on vegetative growth, green pod and dry seed yield related traits in 2020-21 and 2021-22 seasons.

Seasons	2020-2021	2021-2022														
Variables	Densities ratio (faba bean/onion) of intercropping patterns.	Densities	4	4:30	3.3:40	2.9:50	4	4:30	3.3:40	2.9:50						
Densities	Vegetative traits of faba bean plants															
Plant height (cm)	89.76b	84.15b	89.61b	99.25b	93.20c	91.41c	97.56b	103.1b	89.61b	84.15b	89.76b	99.25b	93.20c	91.41c	97.56b	103.1b
No. branches	4.59ab	4.06b	5.11ab	5.50a	4.73bc	4.32c	5.21ab	5.79a	4.59ab	4.06b	5.11ab	5.50a	4.73bc	4.32c	5.21ab	5.79a
No. leaves	262.9b	238.5b	283.2b	331.1a	283.2c	246.3d	300.6b	347.5a	262.9b	238.5b	283.2b	331.1a	283.2c	246.3d	300.6b	347.5a
Total fresh weight (g)	237.1b	335.5b	228.3c	262.6b	226.4c	233.6c	262.4b	272.2a	237.1b	335.5b	228.3c	262.6b	226.4c	233.6c	262.4b	272.2a
Total dry weight/plant (g)	35.7b	32.51b	38.12bc	42.44a	37.72b	33.79c	41.12b	47.12a	35.7b	32.51b	38.12bc	42.44a	37.72b	33.79c	41.12b	47.12a

Means with the same letter (s) are not significantly different according to Duncan's multiple range test at (P ≤0.05).

Densities: namely, the intercropped densities were (4, 4:30, 3.3:40, 2.9:50 plant/m² for the planting of faba bean: onion, respectively.)

3.2. Onion traits

The plant was significantly influenced by the various factors applied through the experiment in both seasons in all the studied traits (Table 3) except total fresh weight, leaves weight, TSS in 2nd season and bulb shape index in both seasons. Intercropped onion/faba bean pattern with high density of onion plants (F₁O₁ include 50 and 2.9 plants/m² for onion and faba bean, respectively), recorded the highest result for all studied traits of both seasons. No significant differences were observed between the three intercropping patterns in No. leaves, leaves weight, both total fresh and dry weight/plant as well as bulb shape index in both seasons, dry matter in 1st season and TSS in 2nd one. Average bulb weight was significantly increased as the onion plant densities of intercropped types increased from 30/4, 40/3.3 to 50/2.9 plants/m² resulted in significantly heaviest bulb/plant, bulb/m² and bulb yield/fed of F₁O₁ in which the weight/plant and weight/m² heavier than monoculture bulb weight. While, the lightest one achieved with F₁O₁. These results are true in both seasons.

3.3. Competitive relationships

The effects of intercropping on crop yields were significant for each crop species (Table 4). On average, monoculture faba bean provided yields of 1.965 and 0.462 ton/fed, of seed dry and straw, respectively as well as sole onion produced 15.95 ton/fed bulb yield. The mean faba bean dry yield decreased (by 17.2% for seeds and 3.4% for straw). Whereas, onion yield increased by 82.6% when the rate/m² of faba bean plants, in the intercrop, decreased from 4.0 to 2.9 plants/m² with increasing the onion plants rate/m² from 30 to 50 plants/m². The highest total intercrop yield of 15.125 ton/fed and gross
monetary value of 12853 L.E. were obtained when onion intercropped with faba bean in an intercropping pattern of F2O3 (include 50 and 2.9 plants/m² for onion and faba bean, respectively). The gross monetary value followed the same trend as the total land equivalent ratio. These results come to an agreement with the findings of (Holland and Brummer, 1999; Agegnehu et al., 2006 a,b; Getahun et al., 2018). LER (land equivalent ratio) is an index of intercropping advantage that indicated the amount of interspecific competition or facilitation in an intercropping system (Fetene, 2003) are presented in (Tables 4 & 5 and illustrated in Fig. 1).

Table 3. Effect of onion plants intercropped densities on vegetative growth, bulb and chemical traits in 2020-21 and 2021-22 seasons

season	2020-2021	2021-2022
variables	Densities ratio (faba bean/onion) of intercropping patterns.	Densities ratio (faba bean/onion) of intercropping patterns.
Densities	50:30:40:30:2.9:50 plant/m² for the planting	
Onion vegetative traits		
Plant height (cm)	60.50ab 48.00c 58.57b 61.61a 62.30ab 59.65b 50.04c 63.49a	
No. leaves	9.02a 7.53b 7.76b 8.00b 9.12a 7.85b 7.98b 8.81ab	
Leave weight (g)	51.42a 49.2ab 45.58b 49.90ab 54.73a 48.69a 51.60a 52.87a	
Total plant fresh weight (g)	133.25a 129.33b 130.56ab 131.86ab 138.74a 131.90a 133.04a 136.83a	
Total plant dry weight (g/plant)	13.34a 10.82b 12.3ab 12.30ab 17.89a 13.58b 14.1b 15.7a	
Dry matter %	10.00a 8.36b 9.42ab 9.33ab 12.9a 10.30c 10.80bc 11.60b	
Bulb traits		
Bulb Diameter (cm)	5.19a 4.60c 4.89b 5.07ab 5.92a 4.54c 4.83bc 5.56ab	
Bulb length (cm)	6.51a 5.77b 6.17ab 6.38a 6.69a 6.51b 5.92ab 6.57a	
Shape index	1.25a 1.25a 1.26a 1.26a 1.14a 1.24a 1.22a 1.18a	
Average Bulb weight (g/plant)	81.83a 71.50b 72.23b 85.76a 84.24a 72.58b 74.93b 86.59a	
Bulb weight (g/m²)	4091.9a 2145.2c 2889.3b 4288.4a 4212.1b 2177.6c 2997.2c 4329.6a	
Total Bulb weight (ton/fed.)	17.18a 7.51d 10.11c 15.01b 17.69a 7.62d 10.49c 15.15b	
Chemical traits (%)		
TSS	14.50a 13.04b 14.48a 14.54a 14.6a 14.08a 14.5a 14.8a	
N	3.20a 2.59b 2.38b 2.85ab 3.40a 2.59b 2.67b 3.07a	
P	0.34a 0.20c 0.26b 0.26b 0.36a 0.27b 0.32b 0.33ab	
K	3.26b 2.16c 2.29c 3.53a 3.42b 2.87d 3.26c 3.72a	
Protein %	20.10a 16.20bc 14.87c 17.81b 21.30a 16.18d 16.70c 19.20b	

* Means with the same letter (s) are not significantly different according to Duncan's multiple range test at (P ≤0.05)

Densities: namely, the intercropped densities were (4, 4:30, 3.3:40, and 2.9:50 plant/m² for the planting of faba bean: onion, respectively)

Table 4. Effect of intercropping on competitive relationships and advantages of combined data.

Traits	Sole	intercropping systems		
		F2O3	F2O2	F3O3
Yield (ton/fed)				
Faba bean	1.965	0.918	0.781	0.76
Straw	0.462	0.208	0.207	0.201
Onion	15.95	8.285	10.8	15.125
LER				
Onion	---	0.52	0.68	0.95
F/O	---	0.98	1.08	1.34
Faba	---	6.69	7.28	8.03
CR				
Onion	---	0.15	0.14	0.13
F/O	---	6.84	7.42	8.15
MAI	1000 L.E.	5.959	8.662	12.853
RVI	---	2.277	2.594	3.328
Overall, the LER values of onion were higher than those of faba bean. The maximum LER was 1.35 (1st season) and 1.34 (2nd season) from intercropping F$_3$O$_3$ pattern explained that faba bean combined with onion would save nearby 0.35 feddan of land without any drop in combined yield and these two crops are the best companions for offseason irrigated production practices (Getahun et al., 2018). Therefore, 35% additional land should be used in sole cropping with a view attain the same yield of intercropping, which designates the superiority of the intercrops over pure stands in terms of the use of environmental resources during plant growth and development (Dhima et al., 2007).

![Fig. 1. Land equivalent ratio (LER) for two seasons in faba bean–onion intercropping pattern](image)

Table 5. Land equivalent ratio (LER), competitive ratio (CR) and relative crowding coefficient (RCC) as affected by faba bean-onion intercropping systems.

	RCC	CR	LER						
	Faba	Onion	F/O	Faba	Onion	F/O	Faba	Onion	F/O
F$_1$O$_1$	6.49	0.15	0.96	6.62	0.15	0.53	0.99	6.77	0.46
F$_2$O$_2$	8.31	0.18	1.48	6.75	0.15	0.68	1.09	6.90	0.41
F$_3$O$_3$	12.30	1.12	13.80	7.20	0.14	0.96	1.35	7.34	0.39
	2020/2021			2021/2022					
F$_1$O$_1$	6.44	0.14	0.90	7.36	0.14	0.51	0.98	7.49	0.46
F$_2$O$_2$	8.32	0.17	1.39	7.85	0.13	0.67	1.08	7.98	0.41
F$_3$O$_3$	12.89	0.83	10.69	8.20	0.12	0.94	1.34	8.32	0.40

Results presented in Table 5 and Fig. 2 showed the effect of intercropping patterns between faba bean and onion on their relative crowding coefficients (RCC). Obtained results revealed that all values of faba bean were higher than those of onion which indicated that faba bean
was the dominant crop whereas onion was the dominated one. The highest coefficients of both crops were found with the intercropping systems F\textsubscript{3}O\textsubscript{3} in both seasons. On the whole, Relative crowding coefficients (RCC) revealed again the superiority of F\textsubscript{3}O\textsubscript{3} faba bean with onion intercropping manner, followed by those of F\textsubscript{2}O\textsubscript{2} one in average of both seasons (Fig. 2). This was attributed to effectual competition of faba bean was its RCC coefficients was very high to that of onion. In addition, most values of the coefficient products (RCC F/O) were higher than one which indicated that there were yield advantages, i.e., the combined intercrop yield was higher than expected (Willey, 1979). Similar results were obtained by (Abd El-lateef et al., 2011).

Likewise, land equivalent coefficient (LEC) is used to determine the strength of the intercropping interaction which referred to as the productivity index because it is a more superior index in evaluating crop mixture performance in terms of mixture productivity (Adetiloye et al., 1983). The study showed that LEC was generally greater than 25% in both F\textsubscript{2}O\textsubscript{2} and F\textsubscript{3}O\textsubscript{3} treatments as well as slightly in F\textsubscript{1}O\textsubscript{1} (Table 6 and Fig. 3). Faba bean-Onion intercropping patterns demonstrated more productivity as was demonstrated by higher LEC values. The results demonstrated that intercropping had yield advantage over sole cropping.

Table 6. Aggressivity and land equivalent coefficient (LEC) as affected by faba bean-onion intercropping systems.

Treatments	Aggressivity	LEC	
	Faba	Onion	
	2020/2021		
F\textsubscript{1}O\textsubscript{1}	0.033	-0.033	0.24
F\textsubscript{2}O\textsubscript{2}	0.0002	-0.033	0.28
F\textsubscript{3}O\textsubscript{3}	0.0004	-0.046	0.37
2021/2022			
F\textsubscript{1}O\textsubscript{1}	0.0004	-0.046	0.24
F\textsubscript{2}O\textsubscript{2}	0.001	-0.069	0.27
F\textsubscript{3}O\textsubscript{3}	0.001	-0.071	0.38

Fig. 2. Relative crowding coefficients (RCC) for two seasons in faba bean–onion intercropping pattern
Similarly, the competitive ratio of faba bean (CR) in intercropping patterns always exceeded 1.0 in both two seasons and thus was higher than the competitive ratios of onion during both seasons, suggesting that faba bean had greater competitive intensity relative to onion (Table 5 and Fig. 4).

Also, our results recommend that faba bean is the leading crop, at least under the present experimental settings, as indicated by the higher RCC, competitive ratios and positive aggressivity (Table 5 and Fig. 2).
This discloses that faba bean intercropped with onion utilized the resources more aggressively, and its production was the major factor that determined the overall yields. Aggressivity was pronounced especially under F_1O_1 intercropping pattern. The aggressivity values were negative in all patterns for onion revealing the prevailing effect of faba bean.

3.4. Economic advantage of intercropping

Greatest intercropping indices mainly give the agronomic and yield advantages of intercropping, and do not reflect the economic and absolute yield comparisons (Tamado and Mulatu, 2000; Yayeh et al., 2014). Nevertheless, it is desirable to evaluate yield advantage on monetary basis following (Willey, 1979) formula. Monetary values of the combined intercrop yield of faba bean and onion were calculated according to their price in local market for wholesale after the harvest season (2020/2021 and 2021/2022). The intercropping faba bean with onion showed that MAI was positive in all the intercropping systems and higher above one (Table 7). Obtained values shown in Table 6 indicated that the highest cash advantage was achieved from intercropping system F_3O_3, F_2O_2 and F_1O_1, in descending order under experimental area conditions.

For farmers concerned in attainment maximum income, using F_3O_3 (2.9 and 50 plants/m² for faba bean and onion, respectively) intercropping system would be the best treatment (gave 12.053 and 13.654 thousand pounds advantage at 1st and 2nd season, respectively). This indicates that the intercropping systems were more economically feasible weighed compared to monoculture. This conforms to similar results by (Dutta et al., 1994) on maize-rape combinations. Another indicator used in assessment of intercropping is relative value total (RVT), which evaluates intercropping in terms of economic value and solution to the problem with LER that such calculation does not account for the value of the crops that are being sown. RVT calculation is relevant for the farmer that has monetary value as his farming goal (Vandermeer, 1992). By placing the numbers associated with each parameter in the formula of this index, the economic value of each treatments of intercropping can be calculated and interpreted.
Table 7. Actual yield loss (AYL), Relative value total (RVT), replacement value of intercropping (RVI) and MAI as affected by faba bean-onion intercropping systems.

	AYL Faba	AYL Onion	AYL Total	RVT Faba	RVT Onion	RVT Total	RVI Faba	RVI Onion	RVI Total	MAI
F₂O₁	6.88	0.19	7.07	1.30	1.17	1.47	3.68	5.889		
F₂O₂	11.91	0.11	12.02	1.48	1.34	1.42	4.78	7.772		
F₂O₃	21.26	0.21	21.46	1.89	1.71	1.37	6.68	12.053		

F₂O₁	6.88	0.16	7.05	1.25	1.17	1.04	4.32	6.030		
F₂O₂	11.97	0.09	12.06	1.42	1.33	0.89	5.65	9.552		
F₂O₃	21.94	0.19	22.12	1.82	1.71	0.88	7.93	13.654		

In calculations of this study, the daily price tested products were used, so that the price of each kilogram of faba bean seed was calculated about 13 L.E., straw about 0.35 L.E and onion, around 1.75 L.E. These prices were approved by the local market. Treatment F₂O₃ showed the highest value of RVT about 1.8 and 1.765 in the first and second season, respectively (Table 7 and Fig. 6). The results showed that the relative value total of both crops in all intercropping treatments were more than one. This issue indicates the economic advantage of faba bean and onion intercropping more than the sole cropping of both. One reason for the preference of the intercropping over the pure cropping, is the lesser interspecific competition of the crops of intercropping compared to the intraspecific competition of the crops of pure cropping. Similar results were also reported by (Rahimi et al., 2011; Tayefehnuri, 2004) reported that in all the intercropping, the value of RVT is more than one and the highest value was obtained in high density about 1.34 of two plants.

Fig.6. Relative Value Total (RVT) and relative Value of intercropping (RVI) as affected by faba bean-onion intercropping systems
In particular, faba bean AYL\(_F\) values were positive and also higher than the faba bean AYL\(_O\) values Figure 7, which confirmed the results of aggressivity, RCC and CR values indicating that faba bean was more resistant to yield loss than onion in all intercropping patterns. Also, the total AYL value was more than one in all cropping patterns indicating an advantage of intercropping over monoculture. Similar results have been reported by (Dhima et al., 2007; Mansouri et al., 2013).

![Fig. 7. Actual yield loss (AYL) as affected by faba bean-onion intercropping systems](image_url)

Relative Value of Intercropping (RVI) should be well-thought-out since it joins the farmers to the real-world situation, and the cost of production is considered. RVI of intercropping shows that faba bean/onion intercrops has >100% economic advantage over monocrops (as average of both crops over both seasons, Table 7 and Fig 7), this may be the reason why the farmers are still planting them together. The economic implication of this study is that any strategy that reduces cost of production in faba bean/onion intercrops will increase its profitability and attractiveness to farmers. Such policies as price support and subsidizing of inputs are example of such strategies. However, more investigations should be carried out, using diverse planting arrangements, so that the appropriate densities that will maximize the economic advantages of the intercropping of the faba bean/onion can be recommended to the farmers. The higher yielding of the onion integrated treatments over those with faba bean, as noted in Table 7 for RVI, and most indices may be attributed to the phenological differences between these crops.

For example, the faba bean was harvested through March month when onion was at bulb formation stage. This may have allowed onion to utilize the water remaining in the soil and nutrients mineralized from residues of the harvested faba bean resulting in optimum yield. Such findings were reported by (Hinsinger et al., 2011) under maize and faba bean intercropping system.

3.5. Economic evaluation

The highest gross income and net return values were recorded with F\(_3\)O\(_3\) followed by F\(_2\)O\(_2\) with high differences (Table 8). Results also showed that the increases in net return reached 24.4 and 24.8%, in the first and second seasons, respectively by F\(_3\)O\(_3\) intercropping pattern compared with sole culture of onion, which increases farmer’s benefit by about LE 5000 per feddan. The results suggest that intercropping faba bean cultivar with onion was more profitable to farmers than sole culture of onion. These findings are parallel with those obtained by (El-Dein, 2015) who showed that
intercropping faba bean with onion was more profitable to farmers than onion or faba bean sole cultures.

Table 8. Economic return of intercropping faba bean cultivars with onion in 2020/2021 and 2021/2022 growing seasons

Treatments	Income	Gross income (LE/fed)	Net return LE/fed			
	Straw	Seed	Straw+Seed	Onion bulbs		
F₁O₁	71.538	11570	11641.5	20775.0	32416.5	10887.1
F₂O₂	69.719	9880	9949.7	27025.0	36974.7	15279.6
F₃O₃	66.557	9490	9556.6	37750.0	47306.6	25504.3
Sole faba bean	157.150	24830	24987.2	-	24987.2	8587.2
Sole onion	-	-	-	39500.0	39500.0	20500.0
F₁O₁	74.354	12220	12294.4	20650.0	32944.4	10339.6
F₂O₂	75.206	10400	10475.2	26975.0	37450.2	14565.4
F₃O₃	73.896	10270	10343.9	37875.0	48218.9	25153.0
Sole faba bean	165.995	26260	26426.0	-	26426.0	11426.0
Sole onion	-	-	-	40250.0	40250.0	20150.0

* Onion prices were LE 2500/ton of bulbs, meanwhile faba bean prices were LE 13000/ton of seed and LE 350/ton of straw.
* Production costs were about LE 21000/fed for intercropping culture system and average LE 16500 and 21050/fed for the solo culture of faba bean and onion, respectively.

4. Conclusion

The present study concludes that intercropping of faba bean with onion may affect yield, competition between the 2 species (*Vicia faba* and *Allium cepa*), and economics of mixtures as compared to monoculture of the same species. Regardless of various varieties, faba bean-onion intercropping had the yield advantages of intercropping and optimum exploitation of the environmental resources as opposed to other intercropping systems. Additionally, these 3 intercropping patterns (F₁O₁, F₂O₂ and F₃O₃) were observed to be the most profitable. Generally, although faba bean crops had lower yield in mixture but are more expensive in markets, solitary planting of them would not reach the profitable level gained with onion or other crops cited in literature. On the other hand, mixtures with faba bean and onion resulted in significant advantages of intercropping as confirmed by the economic and land use efficiency values. Faba bean "Semillas cv.," intercropped with onion, cv., "Giza red" in F₃O₃ intercropping pattern presented the greatest monetary advantage. Such a system can be easily practiced especially by peasants from the north Sinai regions in Egypt, as well as in other countries that have similar climate. Therefore, with a higher socio-economic return for farming system, as well as soil conservation can be improved in such environments.

Authors’ Contributions

All authors are contributed in this research.

Funding There

is no fund in this research.

Institutional Review Board Statement

All Institutional Review Board Statement are confirmed and approved.

Data Availability Statement

Data presented in this study are available on fair request from the respective author.

Ethics Approval and Consent to Participate

This work carried out at the Agriculture Research Station, Veg. Res. Dept., Hort. Res. Inst., Agric. Res. Center, in El- Arish, North Sinai, and Horticulture department, Faculty of Agriculture, South Valley University, Qena.

Consent for Publication

Not applicable.

Conflicts of Interest

Declare no conflict of interest.

5. Reference

Abd El-Lateef, A.A., Ghodai, R.H., Barsoum, M. S. (2011). ‘Studies on intercropping maize and tomato under organic manure
effects at new valley’, *Egypt J. of Appl. Sci.*, 26(1), pp. 88-113.

Adetiloye, P. O., Ezedinma, F. O. C., Okigbo, B. N. (1983). ‘A land equivalent coefficient (LEC) concept for the evaluation of competitive and productive interactions in simple to complex crop mixtures’, *Ecological Modelling* 19(1), pp. 27-39.

Agegnehu, G., Ghizaw A., Sinebo W. (2006a). ‘Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands’, *Eur. J. Agron.* 25, pp. 202–207.

Agegnehu, G., Ghizaw A., Sinebo W. (2006b). ‘Crop productivity and land-use efficiency of a teff/faba bean mixed cropping system in a tropical highland environment’, *Exp. Agr.* 42, pp. 495–504.

Akter, N., Alim, A., Islam, M.M., Naher, Z., Rahman, M., Iqbal Hossein, A.S.M. (2004). ‘Evaluation of mixed and intercropping of lentil and wheat’, *Journal of Agronomy*. 3, pp. 48-51.

Alabi, R.A., Esobhavan, A.O. (2006). ‘Relative Economic value of maizeokra intercrops in Rain forest Zone’, *Nig. J. cent. Euro. Agric.*, 7, pp. 433-438.

Awad, N. N., Mahmoud, M. I., Abo ElKasm, S. A., Mubarak, M. H. (2022). ‘Vegetative growth and yield of faba bean and onion plants as affected by their intercropping and planting distances under El-Arish region conditions’, *Sinai Journal of Applied Sciences*, 11(1), pp. 23-36.

Banik, P. (1996). ‘Evaluation of wheat (*T. aestivum*) and legume intercropping under 1:1 and 2:1 row-replacement series system’, *J. Agron. Crop Sci.*, 176, pp. 289-294.

Beets, W.C. (1982). ‘Multiple Cropping and Tropical Farming System’, *Westview Press, Boulder, Colorado*, pp. 31-43.

Bhatti I. H., Ahmad, R. Jabbar, A. Nazir, M. S., Mahmood, T. (2006). ‘Competitive behavior of component crops in different sesamelegume intercropping systems’, *Int. J. Agric. Biol.*, 8, pp. 165–167.

Bulson, H.A.J., Snaydon, R.W., Stopes, C.E. (1997). ‘Effects of plant density on intercropped wheat and filed beans in an organic farming system’, *J. Agr. Sci.*, 128, pp. 59-71

Caballero, R., Goicoechea, E.L., Hernaiz, P.J., (1995). ‘Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of common vetch’, *Field Crops Res.*, 41, pp. 135–140.

Carr, M.P., Gardner, C.J., Schatz, G.B., Zwinger, W.S., Guldan, J.S. (1995). ‘Grain yield and weed biomass of a wheat-lentil intercrop’, *Agron. J.*, 87, pp. 574–579.

De Wit, C. T., (1960). ‘On competition. Verslagen van landbouwkundige onderzoekingen’, No. 66, 1-82. First published in 1960 and now reprinted as Evolutionary Monographs, vol. 7 by University of Chicago Press, 915 East 57th St, Chicago, IL 60637, USA. 1986. 82 pages. Genetical Research, 50 (1), pp. 82-82.

Dhima, K.V., Lithourgidis, A.S., Vasilakoglu, I.B., Dordas, C.A. (2007). ‘Competition indices of common vetch and cereal intercrops in two seeding ratio’, *Field Crops Res* 100, pp. 249-256.

Duncan, D. B. (1955). ‘Multiple ranges and multiple F. test’, *Biometrics*, 11, pp. 1-42

Dutta, H., Barooa, S. R., Rakhowa, D. J. (1994). ‘Feasibility and economic profitability of wheat (*Triticum aestivum*)-based intercropping systems under rainfed conditions’, *Indian Journal of Agronomy* 39(3), pp. 448-450.

El-Dein, A. A. M. Z. (2015). ‘Effect of intercropping some winter crops with sugar beet under different nitrogen fertilizer on yield and its components’, *Global Journal of Agriculture and Food Safety Sciences*, 2, pp. 303-318.

El-Kholy, A.S.M., Aly, R.M.A., El-Bana, A.Y.A., Yasin, M.A.T. (2019). ‘Yield of faba bean (*Vicia faba L.*) as influenced by planting density, humic acid rate and...
phosphorus fertilization level under drip irrigation system in sandy soils’, Zagazig J. Agric. Res., 46(6A).

El-Shaiey, A. H. A., Farrag, H. M., Bakr, A. A., Abdelrasheed, K. G. (2022). ‘Combined use of compost, compost tea, and vermicompost tea improves soil properties, and growth, yield, and quality of (Allium cepa L.)’, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1).

Fetene, M. (2003). ‘Intra-and inter-specific competition between seedlings of Acacia etbaica and a perennial grass (Hyparrhenia hirta)’, J. Arid. Environ, 55, pp. 441–451.

Gallaher, R. (2009). ‘Multiple cropping systems, in Management of Agricultural’, Forestry, and Fisheries Enterprises, vol 1, ed. by Hudson RJ. Encyclopedia of Life Support Systems, Oxford, pp. 254–265.

Geremew, A., Teshome, A., Kasaye, T., Amenti, C. (2010). ‘Effect of intra-row spacing on yield of three onion (Allium cepa L.) varieties at Adami Tulu agricultural research center (mid rift valley of Ethiopia)’, Journal of Horticulture and Forestry, 2(1), pp. 7-11.

Getahun, D., Getaneh, M., Habte, B. (2018). ‘Companion crops for intercropping with onion production in the dry Season at Fogera District of South Gondar Zone in Ethiopia’, International J. of Res. Studies in Agric. Sci. (IJRASAS) 4(4), pp. 17-24.

Ghosh, P. K. (2004). ‘Growth, Yield, Competition and Economics of Groundnut/Cereal Fodder Intercropping Systems in the Semi-Arid Tropics of India’, Field Crops Research, 88, 227-237.

Gomez, K.A., Gomez, A.A. (1984). ‘Statistical procedure for agricultural research’, an IRRI Book. John Willey and Sons, New York, pp. 20–356

Curtis, H., Noll, U., Störmann, J., Slusarenko, A. J. (2004). ‘Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi and Oomycetes’, Physiological and Molecular Plant Pathology, 65, pp. 79-89.

Hefzy, M., Mostafa, H.H.A., Zahran, M.M.A.A. (2020). ‘Enhancement of onion (Allium cepa L.) drought tolerance in calcareous soils by using biostimulants’, Environment Biodiversity & Soil Security, 4, pp. 239-251. DOI: 10.21608/jenvbs.2020.41196.1104.

Hinsinger, P., Betencourt, E., Bernard, L., Brauman, A., Plassard, C., Shen, J., Tang, X., Zhang, F. (2011). ‘P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species’, Plant Physiol, 156, pp. 1078–1086.

Holland, J.B., Brummer, E.C. (1999). ‘ Cultivar effects on oatberseem clover intercrops’, Agronomy J., 91, pp. 321-329.

Jensen, E.S., Peoples, M.B., Hauggaard-Nielsen, H. (2010). ‘ Faba bean in cropping systems’, Field Crop Res., 115, pp. 203-215.

Koocheki, A., NassiriMahallati, M., Mondani, F., Feizi, H., Amirmoradi, S. (2009). ‘Evaluation of radiation interception and use by maize and bean intercropping canopy’, Journal of Agroecology, 1, pp. 13-23.

Machiani, M.A., Javanmarda, A., Morshedloo, M.A., Maggi, F. (2018). ‘Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean’, Ind. Crops Prod., 111, pp. 743–754.

Mansouri, L., Jamshidi, K., Rastgoo, M., Saba, J., Mansouri, H. (2013). ‘ The effect of additive maize-bean intercropping on yield, yield components and weeds control in zanjian climate conditions’, Iranian Journal of Field Crops Research, 11, 3, pp. 483-492.

Matthews, P., Harry, T. (2003). ‘ Faba bean Res’, Agro. Aust., pp. 1-23.

McGilchrist, C.A., (1965). ‘Analysis of competition experiments’, Biometrics, 21, pp. 975–985

Moseley, W.G., (1994). ‘An equation for the replacement value of agroforestry’, Agrofor. Sys., 26, pp. 47–52.
Muhammad, A., Umer, E. M., Karim, A. (2008). ‘Yield and competition indices of intercropping cotton (Gossypium hirsutum L.) using different planting patterns’, *Tarim Bilimleri Dergisi*, 14(4), pp. 326-333.

Darabad, G. R., Kandi, M. A. S., Barmaki, M., Sharifi, R. S., Hokmalipour, S., Asadi, S. (2011). ‘Evaluation of Yield and Yield Components In Potato-safflower Intercropping’, *Australian Journal of Basic and Applied Sciences*, 5(11), pp. 1423-1428.

Rahimi, V., Madadi, H. (2022). ‘Effect of additive intercropping kidney bean Phaseolus vulgaris with some aromatic plants on Thrips tabaci population’, *Journal of Crop Protection*, 11(1), pp. 93-105.

Rafaei, R. A., Abd El Razek, U. A., Sherief, M. N., Shehata, M. A. (2016). ‘Influence of intercropping onion with faba bean on faba bean productivity and its quality under different ridge widths’, *Journal of Environmental Studies and Researches*, 6(E2), pp. 242-259.

Reining, E., (2005). ‘Assessment tool for biological nitrogen fixation of Vicia faba cultivated as spring main crop’, *Eur J. Agron.*, 23, pp. 392-400.

Khan, S., Khan, M. A., Akmal, M., Ahmad, M., Zafar, M., Jabeen, A. (2014). ‘Efficiency of wheat brassica mixtures with different seed rates in rainfed areas of Potohar-Pakistan, Pak’, *J. Bot.*, 46(2), pp. 759-766.

Singh, R., Ahlawat, I., Sharma, N. (2015). ‘Resource use efficiency of transgenic cotton and peanut intercropping system using modified fertilization technique’, *International Journal of Plant Production*, 9(4), pp. 523-540.

Sobkowicz, P., (2006). ‘Competition between triticale (Tritico scalewitt) and field beans (Vicia faba var minorl) in additive intercrops’, *Plant Soil Environ.*, 52, pp. 42-54.

Tamado, T., Mulatu, E. (2000). ‘Evaluation of sorghum, maize and common bean cropping systems in East Hararghe, Eastern Ethiopia’, *Ethiopian Journal of Agricultural Sciences*, 17(2), pp. 33-45.

Tayefehnuri, M. (2004). ‘Intercropping maize and been’. M.Sc College of Agriculture, Tabriz University. Tabriz, Iran.

Vandermeer, J.H. (1992). *The Ecology of Intercropping*, Cambridge University Press. Cambridge, UK.

Wahla, I. H., Ahmad, R., Ehsanullah, A., Ahmad, A., Jabbar, A. (2009). ‘Competitive functions of components crop in some barley based intercropping systems’, *Int. J. Agric. Biol.*, 11, pp. 69–72.

Wenxue, Li., Long, L., Jianhao, S., Tianwen, G., Fusuo, Z., Xingguo, B., Peng, A. Tang, C. (2005). ‘Effects of inter cropping and nitrogen application on nitrate presentin the profile of orthic an orthic anthrosol west China’, *Agric. Ecosystem. Environ.*, 105, pp. 483-491.

Willey, R. W., Rao, M. R. (1980). ‘A competitive ratio for quantifying competition between intercrops’, *Exp. Agric.*, 16, pp.117–125.

Willey, R. W. (1979). ‘Intercropping. Its importance and research needs. Part 1. Competition and yield advantages’, *Field crop abstr.*, 32, pp. 1-10.

Yayeh, B., Fetien, A., Tadesse, D. (2014). ‘Effect of lupine (Lupinus spp.) intercropping and seed proportion on the yield and yield component of small cereals in North western Ethiopia’, *African Journal of Agricultural Research*, 9(30), pp. 2287-2297.