BAPTISTE FAURE - CEA SACLAY

HIERARCHICAL FRAGMENTATION IN HIGH REDSHIFT GALAXIES REVEALED BY HYDRODYNAMICAL SIMULATIONS AND STRONG GRAVITATIONAL LENSING

With Frédéric Bournaud, Emanuele Daddi, Jérémy Fensch, Manuel Behrendt, Andreas Burkert, Johan Richard
GIANT CLUMPS

- Disk like kinematics (Genzel et al, 2008)

- Giant clumps properties:
 - Mass ~ 10^8 and 10^9 M$_\odot$ (Elmegreen & Elmegreen, 2005)
 - SFR ~ 20%-50% of the whole galaxy
GIANT CLUMPS

(a) Clumpy galaxies at high redshift
UDF1801 (z=1.6)
UDF4006 (z=2.3)
UDF6462 (z=1.6)
UDF6911 (z=2.1)

(b) Modern spiral galaxies
M33
M33 (z=1.2)
M81
M81 (z=2)

©Bournaud, 2009
CLUMP EVOLUTION

Strong feedback effect:
Clumps are short-lived
~20 Myr

(Oklopčić et al 2016, Hopkins et al 2015)

Weaker feedback effect:
Clumps are long-lived
~ 500 Myr
=> Bulge growth

(Bournaud et al 2014, Ceverino et al 2012, Agertz et al 2009)

New debate:
Do they exist at all?
STRONG GRAVITATIONAL LENSING

Cava et al, 2018

Dessauges-Zavadsky et al, 2015
SUB-PARSEC SIMULATIONS

- Simulations made with RAMSES AMR Hydro code
- Stellar formation and feedback

	Simulation 1	Simulation 2	Simulation 3
Gas mass	20×10^9 MSun	35×10^9 MSun	64×10^9 MSun
Gas fraction	~50%	~50%	~50%
Typical size	5 kpc	13 kpc	12 kpc
Feedback	SN+HII+Radiative	SN+HII+Radiative	SN
Max res.	1.5 pc/px	0.4 pc/px	0.2 pc/px

+1 from Behrendt et al, 2016 with different IC and FB
SIMULATIONS: FULL RESOLUTION

Full resolution

Full resolution
Mock observation at HST resolution vs Full resolution simulation.
Mock observation at HST resolution vs full resolution simulation.

[Graph showing mock observation and full resolution simulation with arrows indicating differences.]
MASS DISTRIBUTION

Gas mass distribution of clumps

- **Density function**

 - **Gas mass** \([\log(M/M_\odot)]\)

- **Stellar mass distribution of clumps**

 - **Density function**

 - **Stellar mass** \([\log(M/M_\odot)]\)

Total mass distribution of clumps

- **Density function**

 - **Total mass** \([\log(M/M_\odot)]\)
VIRIAL PARAMETER

\[\alpha = \frac{5 \sigma_v R_{1/2}}{GM} \]
TAKE HOME MESSAGE

- Giant clumps not detected in strongly lensed clumpy galaxies
- Presence of sub-clumps separated by lensing
- Giant clumps have a physical existence (i.e., they are gravitationally bound)
- Future work on physical properties of giant clumps and sub-clumps