Magic numbers in exotic nuclei and spin-isospin properties of $NN$ interaction

Takaharu Otsuka$^{1,2}$, Rintaro Fujimoto$^1$, Yutaka Utsuno$^3$, B.Alex Brown$^4$, Michio Homma$^5$, and Takahiro Mizusaki$^6$

$^1$Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
$^2$RIKEN, Hirosawa, Wako-shi, Saitama 351-0198, Japan
$^3$Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan
$^4$National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824
$^5$Center for Mathematical Sciences, University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan
$^6$Department of Law, Senshu University, Hyigashimira, Tama, Kawasaki, Kanagawa, 214-8580, Japan

(Received July 14, 2001 (PRL in press))

The magic numbers in exotic nuclei are discussed, and their novel origin is shown to be the spin-isospin dependent part of the nucleon-nucleon interaction in nuclei. The importance and robustness of this mechanism is shown in terms of meson exchange, G-matrix and QCD theories. In neutron-rich exotic nuclei, magic numbers such as $N=8, 20, etc.$ can disappear, while $N=16, 16, etc.$ arise, affecting the structure of lightest exotic nuclei to nucleosynthesis of heavy elements.

PACS number(s): 21.30.Fe,21.60.Cs,27.20.+n,27.30.+t

The magic number is the most fundamental quantity governing the nuclear structure. The nuclear shell model has been started by Mayer and Jensen by identifying the magic numbers and their origin [1]. The study of nuclear structure has been advanced on the basis of the shell structure associated with the magic numbers. This study, on the other hand, has been made predominantly in the nuclear chart. This is basically because only those nuclei have been accessible experimentally. In such stable nuclei, the magic numbers suggested by Mayer and Jensen remain valid, and the shell structure can be understood well in terms of the harmonic oscillator potential with a spin-orbit splitting.

Recently, studies on exotic nuclei far from the $\beta$-stability line have started owing to the development of radioactive nuclear beams [2]. The magic numbers in such exotic nuclei can be a quite intriguing issue. In this Letter, we show that new magic numbers appear and some others disappear in moving from stable to exotic nuclei in a rather novel manner due to a particular part of the nucleon-nucleon interaction.

In order to understand underlying single-particle properties of a nucleus, we can make use of effective (spherical) single-particle energies (ESPE's), which represent mean effects from the other nucleons on a nucleon in a specified single-particle orbit. The two-body matrix element of the interaction depends on the angular momentum $J$, coupled by two interacting nucleons in orbits $j_1$ and $j_2$. Since we are investigating a mean effect, this $J$-dependence is averaged out with a weight factor $(2J+1)$, and only diagonal matrix elements are taken. Keeping the isospin dependence, $T=0$ or 1, the so-called monopole Hamiltonian is thus obtained with a matrix element [3,4]:

$$V_T^{j_1j_2} = \frac{\sum_j (2J+1) <j_1j_2|V|j_1j_2>_{JT}}{\sum_j (2J+1)},$$

where $<j_1j_2|V|j_1'j_2'>_{JT}$ stands for the matrix element of a two-body interaction, $V$.

The ESPE is evaluated from this monopole Hamiltonian as a measure of mean effects from the other nucleons. The normal filling configuration is used. Note that, because the $J$ dependence is taken away, only the number of nucleons in each orbit matters. As a natural assumption, the possible lowest isospin coupling is assumed for protons and neutrons in the same orbit. The ESPE of an occupied orbit is defined to be the separation energy of this orbit with the opposite sign. Note that the separation energy implies the minimum energy needed to take a nucleon out of this orbit. The ESPE of an unoccupied orbit is defined to be the binding energy gain by putting a proton or neutron into this orbit with the opposite sign.

Figure 1 shows neutron ESPE's for $^{30}$Si and $^{24}$O, both of which have $N=16$. The Hamiltonian and the single-particle model space are the same as those used in [4], where the structure of exotic nuclei with $N\sim20$ has been successfully described within a single framework. The valence orbits are then $0d_{5/2,3/2}$, $1s_{1/2}$, $0f_{7/2}$ and $1p_{3/2}$.

The nucleus $^{30}$Si has six valence protons in the sd shell and is a stable nucleus, while $^{24}$O has no valence proton and is a neutron-rich exotic nucleus. For $^{30}$Si, the neutron $0d_{3/2}$ and $1s_{1/2}$ are rather close to each other (see Fig. 1(a)). For $^{24}$O, as shown in Fig. 1(b), the $0d_{3/2}$ is lying much higher and is quite close to the $pf$ shell, giving rise to a large gap ($\sim 6$ MeV) between $0d_{3/2}$ and $1s_{1/2}$ [6]. On the other hand, for the stable nucleus $^{30}$Si, a considerable gap ($\sim 4$ MeV) is created between the $0d_{3/2}$ and the $pf$ shell (See Fig. 1(a)). Thus, the $N=20$ magic structure is evident for $^{30}$Si, whereas the $N=16$ magic number arises in $^{24}$O. In $^{24}$O, the $0d_{3/2}$ is lying higher reflecting the large spin-orbit splitting which is basically the same as that for $^{17}$O. Although this high-lying $0d_{3/2}$ orbit is not so relevant to the ground state of lighter O isotopes, it should affect binding energies of nuclei around $^{24}$O. Such an anomaly was pointed out by Ozawa et al. [3] in observed binding energy systematics.

The dramatic change of ESPE's from $^{24}$O to $^{30}$Si is pri-
marily due to the strongly attractive interaction between a proton in \( 0d_{5/2} \) and a neutron in \( 0d_{3/2} \). A schematic picture on this point is shown in Fig. 1 (c) for the general cases comprised of a pair of orbits \( j_\pm = l \pm 1/2 \) and \( j_\mp = l - 1/2 \) with \( l \) being the orbital angular momentum. Note that \( j_\pm \) and \( j_\mp \) are nothing but spin-orbit coupling partners. The present case corresponds to \( l = 2 \). As one moves from \( ^{24}O \) to \( ^{30}Si \), six valence protons are put into the \( 0d_{3/2} \) orbit. Consequently, due to the strong attraction shown in Fig. 1 (c), a neutron in \( 0d_{3/2} \) is more bound in \( ^{30}Si \), and its neutron \( 0d_{3/2} \) ESPE becomes so low as compared to that in \( ^{24}O \) where such attraction is absent.

The process illustrated in Fig. 1 (d) produces the attractive interaction in Fig. 1 (c). The nucleon-nucleon (\( NN \)) interaction in this process is written as

\[
V_{\tau \sigma} = \tau \cdot r \cdot \sigma \cdot f_{\tau \sigma}(r). \tag{2}
\]

Here, the symbol “\( \cdot \)” denotes a scalar product, \( \tau \) and \( \sigma \) stand for isospin and spin operators, respectively, \( r \) implies the distance between two interacting nucleons, and \( f_{\tau \sigma} \) is a function of \( r \). In the long range (or no \( r \)-dependence) limit of \( f_{\tau \sigma}(r) \), the interaction in eq. (2) can couple only a pair of orbits with the same orbital angular momentum \( l \), which are nothing but \( j_\pm \) or \( j_\mp \).

The \( \sigma \) operator couples \( j_\pm \) to \( j_\mp \) (and vice versa) more strongly than \( j_\pm \) to \( j_\mp \) or \( j_\mp \) to \( j_\pm \). Therefore, the spin flip process is more favored in the vertexes in Fig. 1 (d), while spin non-flip contributions certainly exist. The same mathematical mechanism works for isospin: the \( \tau \) operator favors charge exchange processes. Combining these two properties, \( V_{\tau \sigma} \) produces large matrix elements for the spin-flip isospin-flip processes: proton in \( j_\pm \) neutron in \( j_\mp \) and vice versa. This gives rise to the interaction in Fig. 1 (c) with a strongly attractive monopole term for the appropriate sign of \( V_{\tau \sigma} \). This feature is a general one and is maintained with \( f_{\tau \sigma}(r) \) in eq. (2) with reasonable \( r \)-dependences.

In stable nuclei with \( N \sim Z \) with ample occupancy of the \( j_\pm \) orbit in the valence shell, the proton (neutron) \( j_\pm \) orbit is lowered by neutrons (protons) in the \( j_\pm \) orbit. In exotic nuclei, this lowering can be absent, and then the \( j_\pm \) orbit is located rather high, not far from the upper shell. In this sense, the proton-neutron \( j_\pm \) interaction enlarges a gap between major shells for stable nuclei with proper occupancy of relevant orbits. This interaction has been known, for instance \( \{9,10\} \), to play important roles also in other issues, e.g., the onset of the deformation.

The origin of the strong \( V_{\tau \sigma} \) is quite clear. The One-Boson-Exchange-Potentials (OBEP) for \( \pi \) and \( \rho \) mesons have this type of terms as major contributions. While the OBEP is one of major parts of the effective \( NN \) interaction, the effective \( NN \) interaction in nuclei can be provided by the G-matrix calculation with core polarization corrections and other various effects. Such effective \( NN \) interaction will be called simply G-matrix interaction for brevity. The G-matrix interaction should maintain the basic features of meson exchange processes, and, in fact, existing G-matrix interactions generally have quite large matrix elements for the cases shown in Fig. 1 (c), including strongly attractive monopole terms \( \{11\} \).

We would like to point out that the \( 1/N_c \) expansion of QCD by Kaplan and Manohar indicates that \( V_{\tau \sigma} \) is one of three leading terms of the long-range part of the \( NN \) interaction \( \{12\} \). Since the next order of this expansion is smaller by a factor \( (1/N_c)^2 \), the leading terms should have rather distinct significance. One of the other two leading terms in the \( 1/N_c \) expansion \( \{12\} \) is a central force,

\[
V_0 = f_0(r). \tag{3}
\]

where \( f_0 \) is a function of \( r \). The last leading term is a tensor force. We shall come back to these forces later.

Figure 1 shows the effective \( 0d_{3/2} - 1s_{1/2} \) gap, i.e., the difference between ESPE’s of these orbits, in \( N=16 \) isotones with \( Z=8 \sim 20 \) for three interactions: “Kuo” means a G-matrix interaction for the \( sd \) shell calculated by Kuo \( \{1\} \), and USD was obtained by adding empirical modifications to “Kuo”. The present shell-model interaction is denoted SDPF hereafter, and its \( sd \)-shell part is nothing but USD with small changes \( \{\} \). Steep decrease of this gap is found in all cases, as \( Z \) departs from 8 to 14. In other words, a magic structure can be formed around \( Z=8 \), but it should disappear quickly as \( Z \) deviates from 8 because the gap decreases very fast. The slope of this sharp drop is determined by \( V_{0d_{3/2}0d_{3/2}} \) in eq. (4), where the dominant contribution is from \( T=0 \).

Note that \( V_{0d_{3/2}0d_{3/2}} \) is most attractive among all \( V_{j_\pm} \)'s in the \( sd \) shell for each of the three interactions. In SDPF, for instance, its magnitude exceeds by \( \sim 1 \) MeV that of the second most attractive one.
We shall now discuss briefly the present gap in other approaches. The gap can be calculated from the Woods-Saxon potential which is a standard modeling of single-particle structure for stable nuclei. The resultant gap is rather flat, and is about half of the SDPF value for $Z=8$. With Skyrme Hartree-Fock (HF) interactions, the gap changes more smoothly and gradually, too.

![FIG. 2. Effective $1s_{1/2}-0d_{3/2}$ gap in $N=16$ isotones as a function of $Z$. Shell model Hamiltonians, SDPF, USD and "Kuo" are used. See the text.](image)

The occupation number of the neutron $1s_{1/2}$ is calculated by Monte Carlo Shell Model \[13\] with full configuration mixing for the nuclei shown in Fig. 3. It is nearly two for $^24O$ as expected for a magic nucleus, but decreases sharply as $Z$ increases. It remains smaller (< 1.5) in the middle region around $Z=14$, and finally goes up again for $Z≈20$. This means that the $N=16$ magic structure is broken in the middle region of the proton $sd$ shell, where deformation effects also contribute to the breaking. The $N=16$ magic number is thus quite valid at both ends. It is of interest that the gap becomes large again for larger $Z$, due to other monopole components.

We now turn to exotic nuclei with $N≈20$. The ESPE has been evaluated for them in \[14\]. The small effective gap between $0d_{3/2}$ and the $pf$ shell for neutrons is obtained, and is found to play essential roles for various anomalous features. This small gap is nothing but what we have seen for $^{24}O$ in Fig. 3 (b). Thus, the disappearance of $N=20$ magic structure in $Z=9$–14 exotic nuclei and the appearance of the new magic structure in $^{24}O$ have the same origin.

A very similar mechanism works for $p$-shell nuclei. We consider the structure of a stable nucleus $^{13}C$, and exotic nuclei $^{11}Be$ and $^9He$, all of which have $N=7$. Shell model calculations are performed with the PSDMK2 Hamiltonian \[14\] in the $p+sd$ shell model space on top of the $^4He$ core. Figure 3 (c) indicates that the experimental levels are reproduced well for $^{13}C$ \[13\], whereas notable deviations are found in $^{11}Be$ and $^9He$ \[13,14\]. Here, for experimental levels in the continuum, their resonance(-like) energies are compared to the shell-model results.

The $p$-shell part of PSDMK2 is the Cohen-Kurath (CK) Hamiltonian \[17\]. The single-particle energies of $0p_{3/2}$ and $0p_{1/2}$ are 1.38 and 1.68 MeV, respectively, in PSDMK2. These energies correspond to the observed spectra of $^5He$: 1.15 for $0p_{3/2}$ and ~5 MeV for $0p_{1/2}$. We use these observed values as single particle energies, while $0p_{1/2}$ is quite low in PSDMK2. As compared to the G-matrix interaction \[11\], the interaction in Fig. 1 (c) for the $p$-shell is too weak in CK, and is enlarged by shifting all $\langle 0p_{3/2} 0p_{1/2} | V | 0p_{3/2} 0p_{1/2} >_{J,T=0}$'s by ~2 MeV independently of $J$. Thus, the Hamiltonian is modified only for three parameters. Since we are focusing on basic trends and would like to eliminate spurious center-of-mass components, all model shell model calculations for $N=7$ isotones are made in the so-called $0\hbar\omega$ or $1\hbar\omega$ space. Figure 3 (a) indicates that the levels of $^{13}C$ calculated from the present Hamiltonian are similar to the ones obtained from PSDMK2, because the higher-lying $0p_{1/2}$ is pulled down by $V$ as discussed above.

The ground state of $^{11}Be$ and $^9He$ is known for the inversion between $1/2^+$ and $1/2^-$ \[18\]. The present calculation reproduces this inversion for both nuclei, whereas the PSDMK2 fails in either case. With the present Hamiltonian, neutron effective $1s_{1/2} - 0p_{1/2}$ gap decreases from 8.6 MeV for $^{13}C$ down to 0.8 MeV for $^9He$. Dynamical correlations finally invert $1/2^+$ and $1/2^-$ eigenstates \[19\]. Thus, we achieve a reasonable description of stable and exotic nuclei with $N=7$. Although the result appears promising, we have investigated only possible improvements, and further studies are needed for an overall description of $p$-$sd$ nuclei. For instance, in comparison to
experiments, the present interaction gives a 3/2⁻ state in ¹⁵⁰ ≲ 2 MeV too high [13], and ⁹He is too unbound relative to ⁸He by ≲ 4.5 MeV [16]. The latter may be related to coupling to continuum and/or to nuclear-size dependence of two-body interaction.

The neutron ₀p₁/₂ orbit becomes higher as the nucleus loses protons in its spin-flip partner ₀p₃/₄. In nuclei such as He, Li and Be, the N=8 magic structure then disappears. In some cases, N=6 becomes magic; for instance, bound ⁸He and unbound ⁹He are obtained, similarly to bound ¹²O and unbound ⁵¹O.

As the neutron ₀p₁/₂ is shifted quite high in He, Li and Be, this orbit becomes close to the 1s₁/₂ which may come down due to halo structure. This is a situation like the Efimov state [20]. The pairing between these two orbits, including contribution from the tensor force, may stabilize the two-neutron halo and provide us with bound ¹¹Li, etc. Thus, the present mechanism plays a crucial role for the structure of dripline nuclei. Without this mechanism, it is usually difficult to make 0p even such as magic numbers should have a simple and sound explanation.

In conclusion, we showed how magic numbers are changed in nuclei far from the β-stability line: N=6, 16, 34, etc. can become magic numbers in neutron-rich exotic nuclei, while usual magic numbers, N=8, 20, 40, etc., may disappear. Since such changes occur as results of the nuclear force, there is isospin symmetry that similar changes occur for the same Z values in mirror nuclei. The mechanism of this change can be explained by the strong Vₜσ interaction which has robust origins in OBE, G-matrix and QCD. In fact, simple structure such as magic numbers should have a simple and sound basis. Since it is unlikely that a mean central potential can simulate most effects of Vₜσ, we should treat Vₜσ rather explicitly. It is nice to build a bridge between very basic feature of exotic nuclei and the basic theory of hadrons, QCD. In existing Skyrme HF calculations except for those with Gogny force, effects of Vₜσ may not be well enough included, because the interaction is truncated to δ-function type. The Relativistic Mean Field calculations must include pion degrees of freedom to be consistent with Vₜσ. Thus, the importance of Vₜσ opens new directions for mean field theories of nuclei. In addition, f₀(r) in eq. (3) and fₜσ(r) in eq. (4) should have different ranges. Since the latter has smaller contributions in exotic nuclei, this difference should produce very interesting effects on nuclear size. Loose-binding or continuum effects are important in some exotic nuclei. By combining such effects with those discussed in this Letter one may draw a more complete picture for the structure of exotic nuclei. Finally, we would like to mention once more that the Vₜσ interaction should produce large, simple and robust effects on various properties, and may change the landscape of nuclei far from the β-stability line in the nuclear chart.

One of the authors (T.O.) acknowledges the Institute for Nuclear Theory for inviting him to the INT-00-3 program. He is grateful to Prof. K. Yazaki for valuable comment. We thank Prof. A. Gelberg for reading the manuscript. The MCSM calculations were performed by the Alphleet computer in RIKEN. The conventional shell-model calculations were made by the code OXBASH [21]. This work was supported in part by Grant-in-Aid for Scientific Research (A)(2) (10304019) from the Ministry of Education, Science and Culture.

---

[1] M.G. Mayer, Phys. Rev. 75 1969 (1949); O. Haxel, J.H.D. Jensen and H.E. Suess, Phys. Rev. 75 1766 (1949).
[2] I. Tanihata, J. Phys. G22, 157 (1996).
[3] A. Poves and A. Zuker, Phys. Rep. 70, 235 (1981).
[4] Y. Utsuno, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev. C 60, 054315 (1999).
[5] B. A. Brown, Revista Mexicana de Fisica 39, Suppl. 2, 21 (1993).
[6] A. Ozawa et al., Phys. Rev. Lett. 84, 5493 (2000).
[7] T.T.S. Kuo, Nucl. Phys. A103, 71 (1967).
[8] B. A. Brown and B. H. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38, 29 (1988).
[9] P. Federman, S. Pittel and R. Campos, Phys. Lett. B 82, 9 (1979).
[10] K. Heyde et al., Phys. Lett. B 155, 303 (1985).
[11] M. Hjorth-Jensen, T.T.S. Kuo and E. Osnes, Phys. Rep. 261, 125 (1995); M. Hjorth-Jensen, private comm.
[12] D.B. Kaplan and A.V. Manohar, Phys. Rev. C 56, 76 (1997).
[13] T. Otsuka, M. Honma, and T. Mizusaki, Phys. Rev. Lett. 81, 1588 (1998); references therein.
[14] T. Suzuki and T. Otsuka, Phys. Rev. C 56, 847 (1997).
[15] Table of Isotopes, ed. by R. B. Firestone et al. (Wiley, New York, 1996).
[16] L. Chen et al., submitted; references therein.
[17] S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).
[18] I. Talmi and I. Unna, Phys. Rev. Lett. 4, 469 (1960).
[19] For instance, H. Sagawa, B.A. Brown and H. Esbensen, Phys. Lett. B 309, 1 (1993).
[20] V. Efimov, Phys. Lett. B 33, 563 (1970).
[21] A. Etchegoyen et al., MSU-NSCL Report No. 524, 1986.