Data Article

Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method

Deep Pooja a, Lakshmi Tunki a, Hitesh Kulhari a,b,c, Bharathi B. Reddy a, Ramakrishna Sistla a,*

a Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
b IICT-RMIT Joint Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
c Health Innovations Research Institute, RMIT University, Melbourne, Australia

A R T I C L E I N F O

Article history:
Received 13 October 2015
Received in revised form 14 November 2015
Accepted 16 November 2015
Available online 25 November 2015

Keywords:
Solid lipid nanoparticles
Single emulsification-solvent evaporation
Optimization
Formulation parameters
Process variables

A B S T R A C T

This data article contains the data related to the research article “Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of rifampicin” (Pooja et al. 2015) [1]. In the present study, SLN were prepared by a single emulsification-solvent evaporation method and the various steps of SLN preparation are shown in a flow chart. The preparation of SLN was optimized for various formulation variables including type and quantity of lipid, surfactant, amount of co-surfactant and volume of organic phase. Similarly, effect of variables related to homogenization, sonication and stirring processes, on the size and surface potential of SLN was determined and optimized.

© 2015 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area Chemistry, lipids and biology
More specific subject area Targeted nanomedicine

DOI of original article: http://dx.doi.org/10.1016/j.chemphyslip.2015.09.008
* Corresponding author. Tel.: +91 40 27193753 (office).
E-mail address: sistla@iict.res.in (R. Sistla).

http://dx.doi.org/10.1016/j.dib.2015.11.038
2352-3409/© 2015 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Experimental design, material and methods

Solid lipid nanoparticles (SLN) i.e. lipid nanoparticles with solid matrix is the most fascinating carrier for oral drug delivery because of their excellent biocompatibility, high drug loading, long-term stability and feasibility for large scale production [1–5]. In this study, solid lipid nanoparticles (SLN) were prepared by a single emulsification-solvent evaporation method. Fig. 1 presents the various steps of preparation of SLN. Various formulation parameters (Table 1) and process variables (Table 2) were optimized on the basis of their effect on particle size, polydispersity index and zeta potential.

![Single emulsification-solvent evaporation method](image)

Fig. 1. Flow chart representing the preparation of solid lipid nanoparticles.
These parameters included type and quantity of lipid and surfactant, quantity of co-surfactant, volume of organic phase, homogenization speed and time, sonication time, stirring speed and time. Formulations were prepared by changing one parameter at a time while keeping other parameters constant.

1.1. Optimization of formulation variables

1.1.1. Type and quantity of lipids

Three different lipids viz. glyceryl monostearate (GMS), tristearin and tripalmitin were used as lipid matrix. The particle diameter (PD), polydispersity index (PDI) and zeta potential (ZP) were measured using a Zetasizer NanoZS (Malvern, UK). The lipid showing minimum PD and PDI was selected and used in three different quantities (80, 100 and 120 mg).

1.1.2. Type and concentration of surfactants

The type and concentration of surfactant affect the particle size as well as stability of nanoparticles. At low concentration, surfactant will not be sufficient to cover the surface of nanoparticles resulting into increased particle size due to particle aggregation. High concentration of surfactant may lead to bridging between nanoparticles and may also cause toxicity. Therefore, three different surfactants (Tween®80, Poloxomer 188 and polyvinyl alcohol) were evaluated at three different concentrations (1%, 1.5% and 2% w/v).

1.1.3. Volume of organic phase

The organic solvent is used to dissolve the lipids and chloroform was used in this study in varying volumes (1–5 mL). The formulation showing good particle size with minimum volume of solvent was selected.

Table 1	Optimization of various formulation parameters for the preparation of solid lipid nanoparticles.				
Formulation	Variable	PD (nm)	PDI	ZP (mV)	
Type of lipid					
F1	GMS	100	55.53 ± 2.4	0.23 ± 0.04	−23.2 ± 2.1
F2	Tristearin	100	157.5 ± 5.3	0.35 ± 0.11	−26.9 ± 2.3
F3	Tripalmitin	100	119.5 ± 3.9	0.43 ± 0.08	−23.1 ± 1.9
Quantity of lipid (mg)					
F4	GMS	80	49.28 ± 3.1	0.27 ± 0.09	−21.8 ± 1.6
F5	GMS	100	55.53 ± 2.4	0.23 ± 0.04	−23.2 ± 2.1
F6	GMS	120	55.09 ± 3.7	0.30 ± 0.02	−29.7 ± 2.3
Type and concentration of surfactant (%w/v)					
F7	Tween 80	1	66.67 ± 2.5	0.36 ± 0.12	−31.8 ± 2.4
F8	Tween 80	1.5	55.53 ± 2.4	0.23 ± 0.04	−23.2 ± 2.1
F9	Tween 80	2	133.2 ± 5.6	0.27 ± 0.08	−26.6 ± 2.3
F10	Poloxomer 188	1	61.4 ± 4.4	0.38 ± 0.09	−29.9 ± 2.3
F11	Poloxomer 188	1.5	65.7 ± 3.9	0.40 ± 0.12	−26.4 ± 2.1
F12	Poloxomer 188	2	64.9 ± 2.8	0.39 ± 0.10	−23.5 ± 2.5
F13	PVA	1	120.92 ± 6.1	0.15 ± 0.09	−32.0 ± 1.9
F14	PVA	1.5	108.84 ± 4.3	0.20 ± 0.07	−26.6 ± 2.4
F15	PVA	2	102.86 ± 4.8	0.21 ± 0.11	−24.5 ± 1.8
Volume of organic solvent (mL)					
F15	CHCl₃	1	48.91 ± 2.4	0.36 ± 0.11	−19.6 ± 1.4
F16	CHCl₃	2	52.81 ± 1.9	0.21 ± 0.07	−24.3 ± 2.6
F17	CHCl₃	3	55.53 ± 2.4	0.23 ± 0.04	−23.2 ± 2.1
Quantity of co-surfactant (mg)					
F16	lecithin soy	20	52.81 ± 1.9	0.21 ± 0.07	−24.3 ± 2.6
F18	lecithin soy	30	47.54 ± 2.3	0.21 ± 0.09	−25.5 ± 1.8
F19	lecithin soy	40	50.32 ± 3.1	0.28 ± 0.10	−28.6 ± 2.4

GMS: Glyceryl monostearate; PVA: Polyvinyl alcohol; PD: Particle diameter, PDI: Polydispersity index; ZP: Zeta potential.

These parameters included type and quantity of lipid and surfactant, quantity of co-surfactant, volume of organic phase, homogenization speed and time, sonication time, stirring speed and time. Formulations were prepared by changing one parameter at a time while keeping other parameters constant.
1.1.4. Quantity of co-surfactant

Lecithin soy was used as co-surfactant which act as internal emulsifier and favors to particle size reduction and stability. Lecithin soy was used at different concentration (20, 30 and 40) to get a formulation having small particle size, less PDI with good zeta potential and stability.

1.2. Optimization of process variables

1.2.1. Homogenization speed and time, sonication time and stirring speed and time

The organic phase was poured in aqueous surfactant phase and homogenized at different speed (5000, 8000 and 11000 rpm) for different time (3, 4, 5 and 6 min) to get course emulsion. Then this course emulsion was sonicated for different time period to get a nanoemulsion. Finally formulation was stirred to evaporate the organic solvent and to get the nanoparticles. The formulation was stirred at different speed (800, 1000, and 1200 rpm) and for different time period (1, 2 and 3 h) for optimization.

Acknowledgments

S.R.K. acknowledges the financial support by Council of Scientific and Industrial Research (CSIR) under the Project Advanced Drug Delivery Systems (CSC 0302). D.P. thanks to CSIR, New Delhi for awarding a Senior Research Fellowship. H.K. is thankful to the Director of IICT-RMIT Joint Research Centre for PhD scholarship. Authors thank to the Director, CSIR-Indian Institute of Chemical Technology, Hyderabad for providing the necessary facilities.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2015.11.038.

Table 2
Optimization of various process variables for preparation solid lipid nanoparticles.

Formulation	Variable	PD (nm)	PDI	ZP (mV)
Homogenization speed (rpm)				
F20	5000	64.67 ± 4.8	0.56 ± 0.03	–27.5 ± 2.5
F18	8000	47.54 ± 2.3	0.21 ± 0.09	–25.5 ± 1.8
F21	11000	44.43 ± 3.1	0.26 ± 0.03	–26.5 ± 2.1
Homogenization time (min)				
F22	3	157.92 ± 5.7	0.45 ± 0.05	–30.3 ± 3.1
F23	4	76.21 ± 3.9	0.28 ± 0.07	–25.8 ± 2.8
F21	5	44.43 ± 3.1	0.26 ± 0.03	–26.5 ± 2.1
F24	6	71.23 ± 4.8	0.29 ± 0.11	–23.9 ± 2.7
Sonication time (min)				
F25	5	> 500	–	–
F26	10	135.45 ± 6.7	0.32 ± 0.13	–27.1 ± 2.9
F21	15	44.43 ± 3.1	0.26 ± 0.03	–26.5 ± 2.1
F27	20	49.89 ± 2.8	0.24 ± 0.09	–25.8 ± 2.6
Stirring speed (rpm)				
F28	800	59.02 ± 3.9	0.25 ± 0.05	–20.1 ± 1.9
F21	1000	44.43 ± 3.1	0.26 ± 0.03	–26.5 ± 2.1
F29	1200	67.82 ± 4.2	0.27 ± 0.02	–22.9 ± 2.5
Stirring time (h)				
F30	1	69.48 ± 4.5	0.42 ± 0.07	–28.4 ± 2.7
F31	2	57.37 ± 5.1	0.31 ± 0.05	–26.4 ± 1.8
F21	3	44.43 ± 3.1	0.26 ± 0.03	–26.5 ± 2.1
F32	4	61.34 ± 3.8	0.25 ± 0.09	–26.2 ± 2.5
References

[1] D. Pooja, L. Tunki, H. Kulhari, B.B. Reddy, R. Sistla, Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of rifampicin, Chem. Phys. Lipids 193 (2015) 11–17.

[2] A. Dingler, S. Gohla, Production of solid lipid nanoparticles (SLN): scaling up feasibilities, J. Microencapsul. 19 (2002) 11–16.

[3] H. Chauhan, S. Mohapatra, D.J. Munt, S. Chandratre, A. Dash, Physical–chemical characterization and formulation considerations for solid lipid nanoparticles, AAPS PharmSciTech (2015), in press, http://dx.doi.org/10.1208/s12249-015-0394-x.

[4] D. Pooja, H. Kulhari, L. Tunki, S. Chinde, M. Kuncha, P. Grover, S.S. Rachamalla, R. Sistla, Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles, RSC Adv. 5 (2015) 49122–49131.

[5] M.K. Lee, S.J. Lim, C.K. Kim, Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles, Biomaterials 28 (2007) 2137–2146.