Economic evaluation of intravenous alteplase for stroke with the time of onset between 4.5 and 9 hours

Jigang Chen,1,2 Xin Liang,3,4 Xin Tong,1,2 Mingyang Han,5 Linjin Ji,6 Songfeng Zhao,5 Zhiqiang Hu,3,4 Aihua Liu 1,2

ABSTRACT

Background A clinical trial proved the clinical effectiveness of perfusion imaging-guided intravenous thrombolysis with alteplase for patients with acute ischemic stroke (AIS) with the time of onset between 4.5 and 9 hours. This study aimed to assess the lifetime cost-effectiveness of alteplase versus placebo from the perspective of Chinese and United States (US) healthcare payers.

Methods A decision-analytic model was built to estimate lifetime costs and quality-adjusted life-years (QALYs) associated with alteplase or placebo. Model inputs were extracted from published sources. Incremental costs, incremental QALYs, and incremental cost-effectiveness ratio (ICER) were calculated to evaluate the base-case scenario. One-way and probabilistic sensitivity analyses were performed to evaluate uncertainty in the results.

Results In China, alteplase yielded an additional lifetime QALY of 0.126 with an additional cost of Chinese Yuan (¥) ¥9552 compared with placebo, and the ICER was ¥83 950 (US$12 157)/QALY. In the US, alteplase had a higher QALY (difference: 0.193) with a lower cost (difference: US$−2024) compared with placebo. In probabilistic sensitivity analyses, alteplase had a 42.54% to 78.3% probability of being cost-effective compared with placebo in China when the willingness-to-pay (WTP) threshold ranged from ¥72 447/QALY to ¥217 341/QALY. In the US, alteplase had a 93.47% to 93.57% probability of being cost-effective under the WTP threshold of US$100 000/QALY to US$150 000/QALY. These findings remained robust under one-way sensitivity analysis.

Conclusion For patients with AIS with a time of onset between 4.5 and 9 hours, perfusion imaging-guided intravenous alteplase was likely to be cost-effective in China and was cost-effective in the US when compared with placebo.

INTRODUCTION

Intravenous (IV) thrombolysis with alteplase, which has been approved by the United States (US) Food and Drug Administration (FDA) for two decades, is effective in reducing disability caused by acute ischemic stroke (AIS).1 However, current guidelines for AIS limit the time of initiating IV alteplase within 4.5 hours after the onset of stroke.2 Perfusion-diffusion magnetic resonance imaging (MRI) and computed tomography (CT) perfusion have been used to identify patients with potential viable brain tissue beyond 4.5 hours after stroke onset and these patients might benefit from reperfusion by means of thrombolysis.3 Recently, a multicenter randomized trial (the EXTEND trial, NCT00887328 and NCT01580839) found that for patients with AIS with the time of onset between 4.5 and 9 hours, IV alteplase guided by perfusion imaging was associated with better functional outcomes than the placebo. However, there were more cases of symptomatic intracranial hemorrhage (ICH) in the alteplase group than in the placebo group.4 In this study, we aim to evaluate the lifetime cost-effectiveness of IV alteplase guided by perfusion imaging for patients with AIS with the time of onset between 4.5 and 9 hours from the perspective of healthcare payers in China and the US.

METHODS

Model overview

This was a modeling study without the involvement of real human subjects and ethical approval from our institutional review board was waived. The study was conducted according to the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) reporting guidelines (online supplemental table 1). A decision-analytic model was developed with TreeAge Pro 2020 (Williamstown, MA, USA) to evaluate the cost-effectiveness of IV alteplase versus placebo. The target population was analogous to that of the EXTEND trial. Patients were 71 years on average (range 60–80 years). They were assumed to have AIS with the time of stroke onset between 4.5 and 9 hours and have hypoperfused but salvageable regions of brain detected on automated perfusion imaging.

The structure of the model is shown in figure 1. In the first 3 months, patients entered the model to receive either IV alteplase or placebo and then moved to one of the seven possible health states based on the degree of disability as assessed by the modified Rankin Scale (mRS) score. After the first 3 months, a Markov state-transition model was used to simulate disease progression until all patients reached 99 years old. The cycle length of the Markov model was 3 months. After each cycle, patients would either stay in the same state, have a recurrent stroke, or die from other causes. The absorbing state was death (mRS 6) from stroke...
Ischemic stroke or other causes. The occurrence of ICH was considered in the model with additional costs and disutility.

Transition probabilities

Clinical parameters were derived from the EXTEND trial, institutional database, or published literature [Table 1]. The transition probabilities to mRS scores during the first 3 months were extracted directly from the EXTEND trial.4 The annual rate of stroke recurrent was 0.118 among the Chinese population5 and 0.05 among the US population.6 The death rate after recurrent stroke was 0.210 and 0.190 in China and the US, respectively.7 Like other similar studies,8–11 we assumed a constant recurrent rate in our study. Patients who survived after the recurrent stroke were assumed to be reallocated equally among health states of equal and greater disability.10 11 The background age-specific death rate was derived from the most recent published census of China12 and the US Life Tables.13 Disabled patients tend to have increased mortality and the death rate was adjusted according to the hazard ratios for each mRS health state.14 Annual transition probabilities were converted to 3-month probabilities according to the standard formula if necessary.15

Costs

This study was conducted from the perspective of healthcare payers and only direct costs were considered. In China, the additional cost of IV alteplase, cost of acute stroke treatment and ICH treatment, and posthospitalization cost were derived from another cost-effectiveness study which was based on the database of Thrombolysis Implementation and Monitor of Acute Ischemic Stroke in China (TIMS-China) and the China National Stroke Registry (CNSR).5 We assumed that all patients used MRI for perfusion imaging and the images were processed by the RAPID automated software (iSchemaView) according to the EXTEND trial. The cost of MRI was obtained from previous literature16 and the cost of image processing was derived from our institutional database. The cost of recurrent stroke was assumed to be the same across two different treatment arms since the type and severity of the recurrent stroke are unlikely to be predicted. We derived the cost of recurrent stroke from our institutional database as the mean expected cost to treat an average stroke without thrombolysis or thrombectomy.

In the US, the cost of MRI was obtained from the Centers for Medicare & Medicaid Services (CPT code 70557).17 Cost of acute stroke treatment, cost of ICH treatment, and posthospitalization cost were extracted from a previous study.8 These costs were validated and used by other similar cost-effectiveness studies.8–10 The additional cost of IV alteplase and the cost of recurrent stroke were reported previously.8 The average cost of imaging processing with RAPID software was US$12,000.19 We used a range of ±25% of the base-case value for the costs to account for the uncertainty. All costs were inflated to 2020 prices using the medical care component of the consumer price index if necessary.20 21

Utility

Health-related quality of life value (utility score) ranged from 0 to 1 and was assigned to all health states. A utility score of 1 means perfect health and 0 means death. Corresponding utility scores were multiplied by the life years spent in a particular health state and summed over the lifetime of the patient to obtain quality-adjusted life-years (QALYs). Currently, the Chinese population-specific utility score for different mRS scores was available in the previous literature. The same utility scores were used in China and the US, which were obtained from a previous validation study.14 Some other studies also used the same values.8 10 Patients with ICH were associated with a disutility of 0.38.22 A discount rate of 3% per year was applied for both costs and utilities.23

Measuring cost-effectiveness

No statistical tests were conducted and no level of statistical significance was relevant to our analysis. The base-case analysis
Table 1 Base-case values and plausible ranges of input parameters

Model input	Base-case value	Range	Distribution	Source
Outcomes at first 3 months for patients with alteplase				
mRS 0	0.124	0–1		4
mRS 1	0.230			
mRS 2	0.141			
mRS 3	0.133			
mRS 4	0.133			
mRS 5	0.124			
mRS 6	0.115			
Outcomes at first 3 months for patients with placebo				
mRS 0	0.107	0–1	Dirichlet	4
mRS 1	0.188			
mRS 2	0.134			
mRS 3	0.143			
mRS 4	0.214			
mRS 5	0.125			
mRS 6	0.089			
Probability of ICH with alteplase	0.062	0.030–0.122	Beta, SD 0.023	4
Probability of ICH with placebo	0.009	0.002–0.049	Beta, SD 0.012	4
Annual probability of recurrent stroke in China	0.118	0.112–0.124	Beta, SD 0.003	5
Death after recurrent stroke in China	0.210	0.189–0.232	Beta, SD 0.011	5
Annual probability of recurrent stroke in the US	0.050	0.040–0.060	Beta, SD 0.005	6
Death after recurrent stroke in the US	0.190	0.100–0.300	Beta, SD 0.05	7
Death hazard ratios				
mRS 0	1	1–1.2	Lognormal, SD 0.050	14
mRS 1	1	1–1.2	Lognormal, SD 0.050	14
mRS 2	1.11	0.89–1.3	Lognormal, SD 0.103	5
mRS 3	1.27	1.02–1.52	Lognormal, SD 0.125	5
mRS 4	1.71	1.37–2.05	Lognormal, SD 0.170	5
mRS 5	2.37	1.90–2.84	Lognormal, SD 0.235	5
Cost in China (¥)				
MRI	600	±25%	Gamma, SD 75	16
Imaging processing with RAPID software	1000	±25%	Gamma, SD 125	Institutional database
Additional cost of rtPA treatment	13 886	10 751–16 194	Gamma, SD 1361	5
Acute stroke (mRS 0–1)	12 214	7055–15 379	Gamma, SD 2081	5
Acute stroke (mRS 2–5)	16 149	8875–21 177	Gamma, SD 3076	5
Acute stroke (death)	13 840	6503–18 293	Gamma, SD 2948	5
ICH	2949	641–6155	Gamma, SD 1379	5
Annual posthospitalization (mRS 0–1)	8684	2600–11 077	Gamma, SD 2119	5
Annual posthospitalization (mRS 2–5)	13 213	3323–16 616	Gamma, SD 3323	5
Recurrent stroke	18 000	±25%	Gamma, SD 2250	Institutional database
Cost in the US (US$)				
MRI	816	±25%	Gamma, SD 102	17
Imaging processing with RAPID software	12 000	±25%	Gamma, SD 1500	19
Additional cost of alteplase treatment	8619	4309–12 928	Gamma, SD 2155	8

Continued
Ischemic stroke was performed with the mean value of all input parameters. We measured the incremental cost-effectiveness ratio (ICER) which was calculated as the incremental cost per additional QALYs gained. There is no standard willingness-to-pay (WTP) threshold in China and we used the 1–3 × gross domestic product (GDP) per capita according to the suggestion of the World Health Organization (WHO). This WTP threshold corresponded to ¥72 447 (US$10 500)/QALY to ¥217 341 (US$31 499)/QALY in the year 2020. In the US, the WTP threshold was recommended to be US$100 000/QALY to US$150 000/QALY.

Sensitivity analysis
One-way sensitivity analyses were performed to identify key parameters related to the robustness of the results by varying one parameter while keeping others fixed. The ranges of different parameters are provided in table 1. Probabilistic sensitivity analysis was also performed with all parameters varying simultaneously. In this process, we assigned a distribution to each parameter. In all, costs were assigned with a gamma distribution, and transition probabilities and utilities were assigned with a beta or Dirichlet distribution. A total of 10 000 iterations were carried out to evaluate the impact of uncertainty. A cost-effectiveness acceptability curve based on the results of 10 000 iterations was generated to evaluate the likelihood that IV alteplase would be considered cost-effective at different WTP thresholds.

Table 1

Model input	Base-case value	Range	Distribution	Source
Acute stroke (mRS 0–3)	9268	4633–13 901	Gamma, SD 2317	18
Acute stroke (mRS 4–5)	14 115	7057–21 171	Gamma, SD 3529	18
Acute stroke (death)	16 457	8228–24 685	Gamma, SD 4114	18
ICH	3399	2719–4079	Gamma, SD 340	18
Annual posthospitalization (mRS 0–3)	8157	4078–12 235	Gamma, SD 2039	18
Annual posthospitalization (mRS 4–5)	22 139	11 070–33 209	Gamma, SD 5535	18
Recurrent stroke	25 143	12 572–37 715	Gamma, SD 6286	18

Utility				
mRS 0	0.80	0.64–1	Beta, SD 0.090	14
mRS 1	0.80	0.64–1	Beta, SD 0.090	14
mRS 2	0.65	0.52–0.78	Beta, SD 0.065	14
mRS 3	0.50	0.4–0.6	Beta, SD 0.050	14
mRS 4	0.35	0.28–0.42	Beta, SD 0.035	14
mRS 5	0.20	0.16–0.24	Beta, SD 0.020	14
Death	0.00	NA	NA	NA
Disutility of ICH	0.38	0.30–0.46	Normal, SD 0.040	22
Discount rate	0.03	0–0.08	Beta, SD 0.020	23

ICER, intracranial hemorrhage; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NA, not available; rt-PA, recombinant tissue-type plasminogen activator; SD, standard deviation; US, United States.

Table 2

Parameter	China	United States	Difference
	Alteplase	Placebo	Difference
Costs	¥122 223	¥111 623	¥9552
QALY	3.474	3.348	0.126
ICER	¥83 950	Negative	

ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year; US, United States.

RESULTS

Base-case analysis

The results of base-case analysis are summarized in table 2. In China, alteplase was associated with an additional cost of ¥10 600 with an additional QALY of 0.126 over a lifetime when compared with placebo, and the ICER was ¥83 950 (US$12 167)/QALY. In the US, alteplase had a higher QALY (difference: 0.193) and a lower cost (difference: ¥−2024) over a lifetime when compared with placebo.

Sensitivity analysis

The results of one-way sensitivity analysis were presented in the tornado diagram. In China, the ICER was particularly sensitive to utility score of mRS 1, discount rate, average age of patients, posthospitalization cost for mRS 2–5, additional cost of alteplase, utility score of mRS 4, probability of ICH with IV alteplase, and posthospitalization cost for mRS 0–1 (figure 2). In the US, the ICER was more sensitive to posthospitalization cost for mRS 4–5, additional cost of alteplase, average age of patients, posthospitalization cost for mRS 0–3, and discount rate (figure 3). All the ICERs were below their corresponding WTP thresholds in China and the US.

According to the probabilistic sensitivity analysis, alteplase had a 42.54% to 78.3% probability of being cost-effective when compared with placebo.
Y72 447/QALY to Y217 341/QALY in China (figure 4, online supplemental figures 1, 2). In the US, alteplase had a 93.47% to 93.57% probability of being cost-effective under the WTP threshold of US$100 000/QALY to US$150 000/QALY (figure 5, online supplemental figure 3, 4).

DISCUSSION

For patients with AIS with the time of stroke onset between 4.5 and 9 hours, perfusion imaging-guided IV alteplase increased QALYs by 0.126 and 0.193 over a lifetime in China and the US, which were near 1.5 and 2.3 months of perfect health at excellent value. In China, IV alteplase had an additional cost of Y10 600 when compared with placebo over a lifetime, yielding an ICER of Y83 950/QALY and it was cost-effective under the current Chinese WTP threshold. In the US, IV alteplase had a lower cost and was cost-saving. We performed the one-way sensitivity analysis to test the robustness of our conclusion and the results show that the corresponding ICERs were all under the WTP threshold with the variation of parameters one by one. In the probabilistic sensitivity analysis, when the current Chinese WTP threshold increased from Y72 447/QALY to Y217 341/QALY , the probability of IV alteplase being cost-effective when compared with placebo would increase from 42.54% to 78.3%, showing that IV alteplase was likely to be cost-effective in China. In the US, when the WTP threshold was US$100 000/QALY to US$150 000/QALY, the probability of IV alteplase being cost-effective when compared with placebo was between 93.47% to 93.57%, indicating that IV alteplase was cost-effective in the US.

Numerous studies have investigated the cost-effectiveness of IV alteplase for the treatment of AIS, while the time windows in these studies were limited to 0–3, 3–4.5, or 0–6 hours. 27 28 Similar to our conclusions, nearly all studies demonstrated that IV alteplase was cost-effective or even cost-saving when compared with the traditional treatment. We also noticed a very recent cost-effectiveness study that investigated the cost-effectiveness of MRI-guided thrombolysis with alteplase for patients with stroke with an unknown time of onset. 29 This study was conducted from the perspective of German healthcare. The data for clinical effectiveness was extracted from the WAKE-UP trial, a multicenter randomized trial that explored MRI-guided IV alteplase based on a mismatch between diffusion-weighted imaging and fluid-attenuated inversion recovery images. 30 This study proved that MRI-guided IV alteplase was cost-effective for AIS with an unknown time of onset in Germany. The target population in the EXTEND trial differed from that of the WAKE-UP trial, in that the WAKE-UP trial used MRI to identify patients with AIS with an unknown time of onset that was likely to be within 4.5 hours. While in the EXTEND trial, the time of stroke onset was between 4.5 and 9 hours, and in some cases patients who were compared with placebo would increase from 42.54% to 78.3%, showing that IV alteplase was likely to be cost-effective in China.

Figure 2 Tornado diagram depicting results of one-way sensitivity analyses in China. The diagram shows how the higher and lower values of a single parameter affect the incremental cost-effectiveness ratio. ICH, intracranial hemorrhage; mRS, modified Rankin scale; QALY, quality-adjusted life-year.

Figure 3 Tornado diagram depicting results of one-way sensitivity analyses in the United States. ICH, intracranial hemorrhage; mRS, modified Rankin Scale; QALY, quality-adjusted life-year.

Figure 4 Cost-effectiveness acceptability curve of intravenous alteplase versus placebo in the treatment of patients with stroke with a time of onset between 4.5 to 9 hours in China. QALY, quality-adjusted life-year.

Figure 5 Cost-effectiveness acceptability curve of intravenous alteplase versus placebo in the treatment of patients with stroke with a time of onset between 4.5 to 9 hours in the United States. QALY, quality-adjusted life-year.
within approximately 12 hours from the onset of AIS might have been included.3

Both IV alteplase and endovascular thrombectomy have become part of the standard treatment for patients with AIS. However, it is a clinical dilemma as to which imaging. However, it is often a clinical dilemma to decide the appropriate imaging for the patient when to select IV alteplase or mechanical thrombectomy. Based on the EXTEND trial, more advanced imaging modalities such as MRI or CT perfusion were needed. According to the Guidelines for the Early Management of Patients With Acute Ischemic Stroke, when selecting patients with the time of stroke onset between 6 and 24 hours,2 obtaining CT perfusion or diffusion-weighted MRI, with or without MRI perfusion, is recommended to aid in patient selection for mechanical thrombectomy. Therefore, diffusion-weighted MRI with MRI perfusion might be the appropriate imaging modality for AIS with an extended time window for IV alteplase or mechanical thrombectomy. However, more studies are needed to verify this suggestion.

This study has several limitations that should be noted. First, in the absence of relevant data, we assumed the probability of a recurrent stroke is the same across different levels of disability after the first stroke, while we might expect that more disabled patients would have a higher recurrent probability. However, sensitivity analysis proved that our model was not sensitive to this assumption. Second, we are not able to derive the data on input parameters from one single source. The inconsistency among different sources might lead to some bias. However, the sensitivity analysis has accounted for these uncertainties and we have limited the data source to a single geographic region based on different study perspectives. Third, the data for clinical effectiveness in the initial 3 months was extracted from the WAKE-UP trial that was conducted internationally. Most of the participants were from Australia, New Zealand, or Finland, while only a small portion of them was from Asia. It is unclear whether similar treatment effects would occur if the participants were limited to a Chinese or US population.

CONCLUSION

In summary, for patients with AIS with the time of stroke onset between 4.5 and 9 hours, perfusion imaging-guided IV alteplase was likely to be cost-effective in China and was cost-effective in the US when compared with placebo.

REFERENCE

Wardlaw JM, Murray V, Benge E, et al. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2014;113.

OPEN ACCESS

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Aihiu Liu http://orcid.org/0000-0002-6391-805X

PREFERENCES

1 Wardlaw JM, Murray V, Benge E, et al. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2014;113.
2 Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019;50:e344–418.
3 Darby DG, Barber PA, Gerraty RP, et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke 1999;30:2043-52.
4 Ma H, Campbell BCV, Parsons MW, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med 2019;380:1795–803.
5 Pan Y, Chen Q, Zhao X, et al. Cost-effectiveness of thrombolysis within 4.5 hours of acute ischemic stroke in China. PLoS One 2014;9:e10525.
6 Hong K-S, Vegiaisian S, Lee M, et al. Declining stroke and vascular event recurrence rates in secondary prevention trials over the past 50 years and consequences for current trial design. Circulation 2011;123:2111-9.
7 Fagan SC, Morgenstern LB, Petitta A, et al. Cost-effectiveness of tissue plasminogen activator for acute ischemic stroke. NINDS rt-PA Stroke Study Group. Neurology 1998;50:883–90.
8 Leppert MH, Campbell JD, Simpson JR, et al. Cost-effectiveness of intra-arterial treatment as an adjunct to intravenous tissue-type plasminogen activator for acute ischemic stroke. Stroke 2015;46:1870-4.
9 Boudreaux DM, Guzukaske GF, Chen E, et al. Cost-effectiveness of recombiant tissue-type plasminogen activator within 3 hours of acute ischemic stroke: current evidence. Stroke 2014;45:3032–9.
10 Peultier A-C, Pandya A, Sharma R, et al. Cost-effectiveness of mechanical thrombectomy more than 6 hours after symptom onset among patients with acute ischemic stroke. JAMA Netw Open 2020;3:e2012476.
11 Tung CE, Win SS, Lansberg MG. Cost-effectiveness of tissue plasminogen activator in the 3- to 4.5-hour time window for acute ischaemic stroke. Stroke 2011;42:2257–62.
12 National Bureau of Statistics of China. The 2010 population census of the People’s Republic of China [in Chinese]. Available: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/index.htm [Accessed 25 Oct 2021].
13 Samsa GP, Reuter RA, Parmigiani G, et al. Performing cost-effectiveness analysis by integrating randomized trial data with a comprehensive decision model: application to treatment of acute ischemic stroke. J Clin Epidemiol 1999;52:259–71.
14 Fleurence RL, Hollenbeak CS. Rates and probabilities in economic modelling. Pharmacoconomics 2007;253:–6.
15 Chen J, Peng X, Peng F, et al. Cost-effective analysis of different diagnostic strategies in screening for aneurysms after spontaneous subarachnoid hemorrhage. Acad Radiol 2020;135. doi:10.1016/j.acra.2020.11.021. [Epub ahead of print: 04 Dec 2020].
16 Centers for Medicare & Medicaid Services. Physician fee schedule. Available: https://www.cms.gov/medicare/medicare-fee-service-payment/physician费schedule/relative-value-units/rvucalc [Accessed 24 Oct 2021].
17 Centers for Medicare & Medicaid Services. Physician fee schedule. Available: https://www.cms.gov/medicare/medicare-fee-service-payment/physicianfeeschdpts-relative-value-units/rvucalc [Accessed 24 Oct 2021].
18 Eamsawat SR, Jackson D, Farkouh R, et al. Cost-effectiveness of patient selection using in-parallel-based MRI for intravenous thrombolysis. Stroke 2009;40:1710–20.
19 RapidAI. 2020 Global AI-based stroke imaging and diagnosis company of the year award. Available: https://www.rapidai.com/hubs/Publications/RapidAI-Award-Frost-Sullivan.pdf [Accessed 3 Nov 2021].
20 National Bureau of Statistics of China. Consumer Price Sub-Indices by Regions [in Chinese]. Available: https://data.stats.gov.cn/tablequery.htm?code=AA0108 [Accessed 29 Oct 2021].

21 US Bureau of Labor Statistics. Consumer price index. Available: http://www.bls.gov/cpi/ [Accessed 29 Oct 2021].

22 Christensen MC, Mayer S, Ferran J-M. Quality of life after intracerebral hemorrhage: results of the Factor Seven for Acute Hemorrhagic Stroke (FAST) trial. Stroke 2009;40:1677–82.

23 Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second Panel on Cost-Effectiveness in Health and Medicine. JAMA 2016;316:1093–103.

24 World Health Organization (WHO). Macroeconomics and health: investing in health for economic development, report of the Commission on Macroeconomics and Health. Available: http://apps.who.int/iris/bitstream/10665/42435/1/924154550X.pdf [Accessed 20 Oct 2021].

25 National Bureau of Statistics of China. Statistical Communiqué of the People’s Republic of China on the 2020 National Economic and Social Development [in Chinese]. Available: http://www.stats.gov.cn/english/PressRelease/202102/t20210228_1814177.html [Accessed 24 Oct 2021].

26 Institute for Clinical and Economic Review. Overview of the ICER value assessment framework and update for 2017-2019. Available: https://icer.org/wp-content/uploads/2020/10/ICER-value-assessment-framework-Updated-050818pdf [Accessed 24 Oct 2021].

27 Joo H, Wang G, George MG. A literature review of cost-effectiveness of intravenous recombinant tissue plasminogen activator for treating acute ischemic stroke. Stroke Vasc Neurol 2017;2:73–83.

28 Jung K-T, Shin DW, Lee K-J, et al. Cost-effectiveness of recombinant tissue plasminogen activator in the management of acute ischemic stroke: a systematic review. J Clin Neurol 2010;6:117–26.

29 Muntendorf L-K, Konnopka A, König H-H, et al. Cost-effectiveness of magnetic resonance imaging-guided thrombolysis for patients with stroke with unknown time of onset. Value Health 2021;24:1620–7.

30 Thomalla G, Simonsen CZ, Boutitie F, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med 2018;379:611–22.