New records of trematode and acanthocephalan species in frogs in Erzurum Province, Turkey

Y. TEPE1*, Y. YILAN1

1Department of Biology, Science Faculty, Ataturk University, Erzurum, Turkey, ORCID: 0000-0002-4589-9860 (Tepe), 0000-0002-6011-7708 (Yilan), *E-mail: ytepe@atauni.edu.tr

Summary

A total of 32 frogs of two species (Rana macrocnemis, Pelophylax ridibundus) that were dissected in some lectures in Ataturk University Science Faculty Biology Department were investigated parasitologically even after the lectures between 2008 and 2014. 9 digenean species (Cephalogonimus retusus [Cephalogonimidae]; Diplodiscus subclavatus [Paramphistomidae]; Gorgodera cygnoides, Gorgoderina vitelliloba [Gorgoderidae]; Haplopora cylindracea, Haematoloechus variegatus, Opisthiothele ranae, Skrjabinoeces similis and Skrjabinoeces breviansa [Plagiorchiidae]), 3 acanthocephalans species (Acanthocephalus ranae, Centrorhynchus sp., Pomphorhynchus laevis) were found. All the parasites are the first record for Erzurum province, Cephalogonimus retusus and Skrjabinoeces similis are the first records of the parasite fauna of Turkey.

Keywords: Anura; Helminths; Erzurum; Turkey

Introduction

The herpetofauna of Turkey consists of 157 species. 14 of those are newts and 14 are frogs (Baran et al., 2012). As a component of the ecosystem frogs can harbour several parasites. There are numerous studies on parasites of amphibians in Turkey as well as all over the world. In the light of the literature, it is figured out that parasites of 24 amphibian species of 29 different provinces of Turkey were investigated but frogs from Erzurum have not been studied for now (Fig. 1).

The study aims to evaluate the dissected frogs used as lecture materials and contribute to the parasite fauna of Turkey.

Material and Method

Between 2008 and 2014, a total of 32 frogs from Erzurum province of 2 species that were etherized and dissected in the Vertebrate Laboratory and the Zoology Laboratory lectures were investigated parasitologically even after. The visceral organs of the frogs, that were died with high-dose ether and dissected, were put into the petri dishes filled with saline water. After the macro investigation, parasites were separated from tissues with needles, forceps and tiny brushes. The trematodes and acanthocephalans were relaxed with an Alcohol-Formalin-Acidic Acid mixture and mounted in Canada balsam according to Pritchard and Kruse (1982). The description of the parasites was executed under the light of the literature (Skrjabin, 1947, 1949, 1950, 1952, 1953, 1962, 1974; Prudhoe & Bray, 1982) and description of the frogs was done according to Budak and Göçmen (2008).

Ethical Approval and/or Informed Consent

This study was approved by Ataturk University Local Ethics Council Of Animal Experiments Erzurum/TURKEY (36643897-118).

* – corresponding author
Results and Discussion

A total of 32 frogs of 2 species were investigated and 149 parasites of 12 species were found. While one of *Rana macrocnemis* (17%) didn’t harbour any parasite species, 4 of *Pelophylax ridibundus* (15%) were found parasite free. Of the investigated frogs, 27 (84%) harboured one or more helminth parasites. One of the *P. ridibundus* was parasitized with 5 different helminth species. *Acanthocephalus ranae* is the most prevalent parasite (34%). 3 different helminth species were come across in *Rana macrocnemis*.

Table 1. Statistical data of parasites of *R. macrocnemis* and *P. ridibundus*

HOST	PARASITE	IFN	TPN	PREV	MA	MI
Rana macrocnemis (n=6)	**D** Dolichosaccus rastellus	2	34	33	17.0	5.7
	Haplometra cylindracea	2	10	33	5.0	1.7
	Gorgodera cygnoidei	1	2	17	2.0	0.3
	A Acanthocephalus ranae	1	4	17	4.0	0.7
Pelophylax ridibundus (n=26)	**D** Cephalogonimus retusus	3	4	12	1.3	0.2
	Diplodiscus subclavatus	5	24	19	4.8	0.9
	Gorgodera cygnoidei	5	11	19	2.2	0.4
	Gorgoderina vitelliloba	1	1	4	1.0	0.01
	Haematoloechus variegatus	1	2	4	2.0	0.1
	Opisthiglypha ranae	5	31	19	6.2	1.2
	Skrjabinoeces similis	1	2	4	2.0	0.1
	Skrjabinoeces breviansa	1	1	4	1.0	0.1
	A Acanthocephalus ranae	10	17	38	1.7	0.7
	Centrorhynchus sp.	1	3	4	3.0	0.1
	Pomphorhynchus sp.	3	4	12	1.3	0.2

(IFN: Infected Frog Number; TPN: Total Parasite Number; PREV: Infection rate; MA: Mean Abundance; MI: Mean Intensity; D: Digenea; A: Acanthocephala; N: Nematoda)
while 11 parasite species were found in Pelophylax ridibundus. (Table 1), (Figs. 2, 3).

Platyhelminthes

Digenea

Cephalogonimidae

Cephalogonimus retusus (Dujardin, 1845)

Synonym: Cephalogonimus europaeus

Host: Pelophylax ridibundus

Site of infection: Bladder

Geographic range: Czechoslovakia, Germany, Iran, Russia, Tatarstan, Turkey

Remarks: Cephalogonimides are parasites of chelonian reptiles and amphibians, the intermediate host is Helisoma sp. (Gastropoda) (Prudhoe & Bray, 1982).

The body is 4 mm in length and covered with spines. Testicles are just behind the ventral sucker and anterior half of the body. The ovary is pretesticular, and the uterus reaches the posterior end. The vitelline glands are located between the pharynx and the level of the posterior margin of the rear testis (Fig. 2e).

Cephalogonimus retusus was recorded before in Pelophylax esculentus (Lühe, 1909b; Dawes, 1946; Walton, 1949; Vojtkova & Vojtek, 1975; Bray et al., 2005; Rana temporaria (Vojtkova & Vojtek, 1975); Natrix tessellata (Buchvarov et al., 2000); Malpolon monspessulanus and Coluber jugularis (Kirin, 1994).

In the study, morphological and anatomical features of C. retusus was convenient with those mentioned by Skrjabin (1950). C. retusus was recorded only in the intestine of P. ridibundus and the infection rate was 12 %. It is found in Turkey for the first time.

Gorgoderidae

Gorgodera cygnioides (Zeder, 1800)

Synonym: Distomum cygnioides

Host: Pelophylax ridibundus, Rana macrocnemis

Site of infection: Bladder

Geographic range: Czechoslovakia, Germany, Poland, Russia, Tatarstan, Turkey

Remarks: Gorgoderids are small and non-spinous trematodes and found in fishes, amphibians and reptiles but Gorgodera and Gorgoderina live in amphibians (Prudhoe & Bray, 1982).

The body is 6.5 mm long. The ventral sucker is distinctly larger than the oral sucker. Testes are divided into nine follicles arranged in two longitudinal rows. The ovary is pretesticular. Vitelline glands are located at the anterior region of the ovary and form two symmetrically disposed oval masses (Fig. 2f).

Gorgodera cygnioides was found before in Bombina bombina and Bombina variegata (Vojtkova & Vojtek, 1975); Bufo igneus (Gurtt, 1845); Pelodytes caucasicus (Yildirimhan et al., 2009); Pelophylax esculentus (Lühe, 1909b; Dawes, 1946; Walton, 1949; (Vojtkova & Vojtek, 1975; Gurtt, 1845; Andre, 1913; Yildirimhan et al., 2005; Duşen & Öz, 2006; Chikhlyaev et al., 2009a; Duşen et al., 2010; Popiolek et al., 2011); Pelophylax lessonae (Vojtkova & Vojtek, 1975; Popiolek et al., 2011); Pelophylax ridibundus (Vojtkova & Vojtek, 1975; Popiolek et al., 2011; (Koyun et al., 2015); Rana arvalis (Vojtkova & Vojtek, 1975); Rana camerani (Yildirimhan et al., 2006a); Rana dalmatina (Yildirimhan et al., 2016); Rana temporaria (Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975; Andre, 1913; Linstow, 1878)).

In the study, anatomical and morphological features of G. cygnioides was the same as those given by Skrjabin (1952). G. cygnioides was recorded in the urinary bladder of both R. macrocnemis (n=11, 17 %) and P. ridibundus (n=2, 19 %). G. cygnioides has been found in some provinces of Turkey before but in Erzurum, it is the first record.

Gorgoderina vitelliloba (Olsson, 1876)

Synonym: Distomum vitellilobum, Distomum cygnioides juv. Gorgoderina simplex, Gorgodera vitelliloba

Host: Pelophylax ridibundus

Site of infection: Urinary bladder

Geographic range: Czechoslovakia, Germany, Iran, Russia, Tatarstan, Turkey

Remarks: Gorgoderina vitelliloba is a parasite of the urinary bladder of amphibians (Prudhoe & Bray, 1982).

The body is almost 2.5 mm and non-spinous. The ventral sucker is larger than the oral one. Testes are large and located at the posterior half of the body. The ovary is lobed and pretesticular. Vitelline glands are situated in the anterior region of the ovary (Fig. 2c).

Gorgoderina vitelliloba is detected formerly in Bombina bombina and Bombina variegata (Vojtkova & Vojtek, 1975); Pelophylax esculentus (Lühe, 1909b; Dawes, 1946; Walton, 1949; Vojtkova & Vojtek, 1975; Chikhlyaev et al., 2009a; Chikhlyaev et al., 2009b; Rezvantseva et al., 2010); Pelophylax bedriagae (Demir et al., 2015); Pelophylax ridibundus (Walton, 1949; Yildirimhan et al., 2005; Duşen & Öz, 2006; Duşen et al., 2010; Koyun et al., 2015; Sağlam & Arıkan, 2006; Saeed et al., 2007; Rezvantseva, 2008; Rezvantseva, 2009; Duşen & Öz, 2010; Karakas, 2015); Rana arvalis (Vojtkova & Vojtek, 1975); Rana camerani (Yildirimhan et al., 2006a); Rana macrocnemis (Yildirimhan et al., 1997a); Rana temporaria (Linstow, 1878; Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975).

Gorgoderina vitelliloba were found in Pelophylax bedriagae, Pelophylax esculentus, Pelophylax ridibundus, Rana camerani and Rana macrocnemis from some provinces of Turkey. According to Skrjabin (1953) length of G. vitelliloba is 6 – 8 mm but in the study, the specimen recorded in the urinary bladder of P. ridibundus was 2.5 mm in length. Other morphological and anatomical features are the same as those given in the literature mentioned before. The infection rate is 4 %. It is found in frogs of Erzurum province for the first time.
Fig. 2. Digenean parasites of frog from Erzurum (a: Diplodiscus subclavatus, b: Dolichosaccus rastellus, c: Gorgoderina vitelliloba, d: Opisthioglyphe ranae, e: Cephalogonimus retusus, f: Gorgodera cygnoidea, g: Skrjabinoeces breviansa, h: Haplometra cylindracea, i: Haematoloechus variegatus, j: Skrjabinoeces similis).
Paramphistomidae

Diplodiscus subclavatus (Goeze, 1782)

Synonym: *Planaria subclavatus*, *Amphistomum subclavatum*

Host: *Pelophylax ridibundus*

Site of infection: Large intestine, rectum

Geographic range: Africa, Austria, Bulgaria, Czechoslovakia, England, Iran, Italy, Moldova, Russia, Serbia, Swiss, Tatarstan, Turkey.

Remarks: *Diplodiscus subclavatus* (Goeze, 1782) lives in the rectum and intestine of frogs (Prudhoe & Bray, 1982). Nonsinuous body is 2 mm long. The ventral sucker is very large and located at the posterior end of the body. The single testis is situated at the median line and anterior of the ovary. Vitelline follicles extend along the caeca (Fig. 2a).

It was previously encountered in *Bombina bombina* (Lühe, 1909b; Vojtkova & Vojtek, 1975; Gurtl, 1845; Diesing, 1835; Diesing, 1851); *Bombina variegata* (Vojtkova & Vojtek, 1975); *Bufo sp.* (Skrjabin, 1916); *Bufo bufo* (Dawes, 1946; Vojtkova & Vojtek, 1975); *Bufo cinereus* (Diesing, 1835); *Bufo viridis* (Lühe, 1909b; Vojtkova & Vojtek, 1975; Linstow, 1878; Diesing, 1851); *Bufo vulgaris* (Lühe, 1909b; Gurtl, 1845; Linstow, 1878); *Dicroglossus occipitalis* (Maeder, 1973); *Dendrohyas viridis* (Diesing, 1835); *Esox lucius* (Öztürk et al., 2000); *Hyla arborea* (Lühe, 1909b; Vojtkova & Vojtek, 1975; Gurtl, 1845; Linstow, 1878; Diesing, 1835); *Hyla savignyi* (Yildirimhan et al., 2012); *Leptodactylus sibilatrix* (Gurtl, 1845; Linstow, 1878; Diesing, 1835; Diesing, 1851); *Molge alpestris* and *Molge vulgaris* (Lühe, 1909b); *Natrix natrix* and *Natrix tessellata* (Buchvarov et al., 2000); *Pelobates fuscus* (Ruchin et al., 2008; Ruchin et al., 2009; Vojtkova & Vojtek, 1975); *Pelophylax esculentus* (Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975; Gurtl, 1845; Andre, 1913; Popiołek et al., 2011; Diesing, 1835; Diesing, 1851; Stossich, 1890; Bjelić-Čabrilo et al., 2009; Chikhlyaev et al., 2009b); *Pelophylax lessonsae* (Vojtkova & Vojtek, 1975; Popiolek et al., 2011); *Pelophylax bedriagae* (Demir et al., 2015); *Pelophylax ridibundus* (Vojtkova & Vojtek, 1975; Erhan & Gherasim, 2015; Yildirimhan et al., 2005; Düşen & Öz, 2006; Chikhlyaev et al., 2009a; Düşen et al., 2010; Popiołek et al., 2011; Koyun et al., 2015; Rezvantseva et al., 2010; Rezvantseva, 2008; Rezvantseva, 2009; Oğuz et al., 1994; Mashaii et al., 2000; Romanova et al., 2010; Indiryakova et al., 2012); *Phryne vulgaris* (Diesing, 1851); *Rana arvalis* (Vojtkova & Vojtek, 1975; Ruchin et al., 2009); *Rana dalmatina* (Vojtkova & Vojtek, 1975; Düşen et al., 2009); *Rana temporaria* (Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975; Gurtl, 1845; Linstow, 1878; Diesing, 1835; Diesing, 1851); *Salamandra maculate* (Gurtl, 1845); *Triton alpestris* (Linstow, 1878); *Triturus vulgaris* (Dawes, 1946). *Diplodiscus subclavatus* was recorded in some frogs i.e. *Hyla savignyi*, *Pelophylax bedriagae*, *Pelophylax ridibundus*, *Rana dalmatina*, and in a fish *Esox lucius* from Turkey. Morphological and anatomical features are convenient with that given by Skrjabin.

Fig. 3. Structure of proboscis of Acanthocephalans (A: *Centrorhynchus* sp., B: *Pomphorhynchus laevis*, C: *Acanthocephalus ranae*).
In the study, *D. subclavatus* was found in the rectum of *P. ridibundus* and the infection rate is 19 %. It is the first record for Erzurum province.

Plagiorchiidae

* Dolichosaccus rastellus (Olsson, 1876) Travassos, 1930
 Synonym: Distomum rastellus, Distomum endolobum, Opisthioglyphe rastellus, Opisthioglyphe histrix, Lecithopyge rastellus rastellus, Lecithopyge rastellus subulatum, Lecithopyge rastellus cylindrinforme
 Host: *Rana macrocnemis*
 Site of infection: intestine
 Geographic range: Czechoslovakia, England, Germany, Greece, Poland, Russia, Turkey
 Remarks: Adults of the *D. rastellus* is found in the intestine of the amphibians and reptiles and larvae develops in the limnid snails (Prudhoe & Bray, 1982).

* Dolichosaccus rastellus was encountered before in an ephemeropteran Cloeon dipterum (Lühe, 1909b); and in Bombina bombina (Vojtkova & Vojtek, 1975); Bombina variegata (Vojtkova & Vojtek, 1975; Sattmann, 1990); Pelophylax esculentus (Dawes, 1946; Vojtkova & Vojtek, 1975); Rana arvalis (Vojtkova & Vojtek, 1975; Ruchin et al., 2009); Rana camerani (Yildirimhan et al., 2006a; Düşen, 2007); Rana temporaria (Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975; Gassmann, 1972); Triturus alpestris (Sattmann, 1990).

* Dolichosaccus rastellus was found before in Bombina bombina and Bombina variegata (Vojtkova & Vojtek, 1975); Bufo bufo (Dawes, 1946; Vojtkova & Vojtek, 1975); Bufo calamita (Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975); Bufo viridis (Lühe, 1909b; Vojtkova & Vojtek, 1975; Chikhlyava, 2014); Bufo vulgaris (Lühe, 1909b); Hyla arborea (Vojtkova & Vojtek, 1975), Molge cristata (Lühe, 1909b); Pelobates fuscus (Ruchin et al., 2008; Ruchin et al., 2009); Pelophylax esculentus (Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975; Erhan & Gerasim, 2015; Andre, 1913; Chikhlyava et al., 2009a; Poppiolek et al., 2011; Chikhlyava et al., 2009b; Rezvantseva et al., 2010; Bjelić-Čabrilović et al., 2009; Gassmann, 1972); Pelophylax lessonae (Vojtkova & Vojtek, 1975; Popiolek et al., 2011); Pelophylax ridibundus (Vojtkova & Vojtek, 1975; Yildirimhan et al., 2005; Düşen & Öz, 2006; Popiolek et al., 2011; Koyun et al., 2015; Saeed et al., 2007; Rezvantseva, 2008; Rezvantseva, 2009; Düşen & Oğuz, 2010; Karakaş, 2015; Mashaii et al., 2000; Romanova et al., 2010; Indiryakova et al., 2012; Sattmann, 1990; Kirin & Buchvarov, 1999); Rana arvalis (Vojtkova & Vojtek, 1975; Ruchin et al., 2009); Rana dalmatina (Vojtkova & Vojtek, 1975), Rana temporaria (Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975; Andre, 1913); Triturus alpestris (Dawes, 1946); Natrix natrix (Edelényi, 1963).

* Dolichosaccus rastellus is found in the intestine of *R. macrocnemis* from Erzurum for the first time.

Opisthioelephre ranae (Frölich, 1791)

* Synonym: Fasciola ranae, Distoma endolobum, Distomum retusum, Monostomum histrix, Opisthioelephre endoloba, Opisthioelephre histrix
* Host: Pelophylax ridibundus
* Site of infection: intestine
* Geographic range: Bulgaria, Czechoslovakia, England, Germany, Greece, Iraq, Iran, Hungary, Poland, Russia, Serbia, Turkey
* Remarks: Larvae of Opisthioelephre ranae occur in Limnea stagnalis and L. palustris, adults harbour in the intestine of anurans (Dawes, 1946).

* The body is covered with spines and 3 mm long. Testes are median and disposed one behind other at about hinder a third of the body. The ovary is submedian and adjacent to the ventral sucker. Vitelline glands are located mainly lateral of caeca, extending between intestinal bifurcation to the posterior end of the body (Fig. 2d).

Haplometra cylindracea (Zeder, 1800)

* Synonym: Distoma cylindraceum, Distoma (Dicrocoelium) cylindraceum
* Host: Rana macrocnemis
* Site of infection: Lungs
* Geographic range: Czechoslovakia, England, Iraq, Iran, Russia, Tatarstan, Turkey
* Remarks: Haplometra cylindracea is a common parasite of the lung of frogs throughout Europe and Northern Asia, larvae develop in the snails (Prudhoe & Bray, 1982).

* The spinosus body is almost 8 mm in length. Testes are large and located at the posterior third of the body. The uterus occupies most of the area between the intestinal caeca and extends to the posterior end of the body. Vitelline follicles are located between intestinal bifurcation and hinder the margin of the posterior testis (Fig. 2h).
et al., 2006a; Düşen, 2007); Rana dalmatina (Vojtkova & Vojtek, 1975; Yildirimhan et al., 2016); Rana lessonae (Vojtkova & Vojtek, 1975); Rana macrocnemis (Düsen, 2007); Rana macrocnemis pseudodalmatina (Masahaii et al., 2008); Rana tavaranesi (Düsen, 2012); Rana temporaria (Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975; Gurtt, 1845; Andre, 1913; Linstow, 1878; Gassmann, 1972).

All the characteristic features are the same as those given by Skrjabin (1958). Haplotrema cylindracea is the first record for Rana macrocnemis from Erzurum.

Haematoloechus variegatus (Rudolphi, 1819)

Synonym: Distoma variegatus, Distoma variegatum, Pneumonoeces variegatus

Host: Pelophylax ridibundus

Site of infection: Lungs

Geographic range: Czechoslovakia, England, Germany, Poland, Russia, Serbia, Tatarstan, Turkey

Remarks: Adults of Haematoloechus variegatus are found in the lungs of the various terrestrial anurans and larvae can be found in freshwater snails of all zoogeographical regions (Prudhoe & Bray, 1982).

The body is non-spinous and almost 1 cm. Ventral sucker is smaller than oral sucker and situated in front of the mid-body. Testes are ovoid and situated side by side in the third quarter of the body. The ovary is ovoid and situated in front of the testes. Vitelline glands extend as ten to twelve rosette-like groups of six to seven follicles on each side from the level of the oesophagus almost to the posterior extremity. The uterus is irregularly folded in front of the gonads and extends between the testes and the posterior extremity (Fig. 2). It was found in Bombina bombina and Bombina variegata (Vojtkova & Vojtek, 1975); Bufo bufo (Dawes, 1946); Bufo viridis (Vojtkova & Vojtek, 1975; Chikhlyaev, 2014); Pelobates fuscus (Ruchin et al., 2008); Pelophylax esculentus (Lühe, 1909b; Dawes, 1946; Walton, 1949; Vojtkova & Vojtek, 1975; Erhan & Gherasim, 2015; Gurtt, 1845; Andre, 1913; Chikhlyaev et al., 2009a; Popiolek et al., 2011; Chikhlyaev et al., 2009b; Rezvantseva et al., 2010; Bjelić-Čabriolo et al., 2009; Gassmann, 1972); Pelophylax lesso­nae (Vojtkova & Vojtek, 1975; Popiolek et al., 2011); Pelophylax ridibundus (Walton, 1949; Vojtkova & Vojtek, 1975; Popiolek et al., 2011; Sağlam & Arkan, 2006; Rezvantseva, 2008; Rezvantseva, 2009; Indiryakova et al., 2012); Rana arvalis (Vojtkova & Vojtek, 1975; Ruchin et al., 2009); Rana temporaria (Dawes, 1946; Vojtkova & Vojtek, 1975).

The main differences between the Skrjabinoeces and Haematoloechus genera are the number and location of the vitelline glands. The vitelline glands of genus Skrjabinoeces is located at the mid-body, but the glands of genus Haematoloechus lays between laterally intestinal bifurcation and hind-body (Skrjabin, 1962). All the taxonomic characters of the species are convenient with that given by Skrjabin (1962). Haematoloechus variegatus is found in many countries of Asia and Europe including Turkey but it has not been recorded before in Erzurum province so far.

Skrjabinoeces breviana (Loss, 1899) Sudarikov, 1950

Synonym: Haematoloechus breviana

Host: Pelophylax ridibundus

Site of infection: Lungs

Geographic range: Iran, Russia, Turkey, Ukraine

Remarks: Skrjabinoeces sp. lives in the lungs of frogs and toads (Prudhoe & Bray, 1982). The body is 5.5 mm and covered with spines. Testes are located at the posterior third of the body. Ascending and descending limbs of the uterus occupy between the caeca. Large follicles of vitelline glands extend laterally between the ventral sucker and fore-testis (Fig. 2g).

Skrjabinoeces breviana was recorded before in Pelophylax esculentus (Kovalenko, 2007); Pelophylax bedriagae (Demir et al., 2015); Pelophylax ridibundus (Yildirimhan et al., 2005; Düsen & Öz, 2006; Koyun et al., 2015; Düsen & Oğuz, 2010; Karakaş, 2015; Mashaii et al., 2000; Romanova et al., 2010; Indiryakova et al., 2012; Kovalenko, 2007). Morphological and anatomical characteristics of Skrjabinoeces breviana are the same as those given by Skrjabin (1962). S. breviana has been recorded in P. ridibundus from Erzurum for the first time.

Skrjabinoeces similis (Loss, 1899)

Synonym: Haematoloechus similis, Haematoloechus similegenus, Distoma simile, Distoma variegatum, Pneumonoeces similis, Pneumonoeces similegenus.

Host: Pelophylax ridibundus

Site of infection: Lungs

Geographic range: Bulgaria, Czechoslovakia, England, Germany, Italy, Iraq, Iran, Russia, Swiss, Tatarstan

Remarks: Skrjabinoeces similis is found in the lung of the frog and toads, larvae develop in the planorbid snails (Prudhoe & Bray, 1982).

The body is covered with spines and 13 mm long. Ventral sucker is smaller than oral sucker and located at mid-region of body. Testes are ovoid, and the ovary is located near the ventral sucker. Vitelline glands are disposed of large follicles, ranging laterally from the anterior of the ventral sucker to the anterior testis (Fig. 2). Skrjabinoeces similis was encountered in Bombina bombina (Vojtkova & Vojtek, 1975); Pelophylax esculentus (Lühe, 1909b; Dawes, 1946; Vojtkova & Vojtek, 1975; Mashaii et al., 2000); Pelophylax ridibundus (Vojtkova & Vojtek, 1975; Andre, 1913; Chikhlyaev et al., 2009a; Chikhlyaev et al., 2009b; Rezvantseva et al., 2010; Saeed et al., 2007; Rezvantseva, 2008; Rezvantseva, 2009; Romanova et al., 2010; Indiryakova et al., 2012; Mashaii et al., 2008; Buchvarov & Irikov, 1997); Rana arvalis (Ruchin et al., 2009); Rana temporaria (Dawes, 1946).
recorded in Turkey. It is the first record for Erzurum province and parasite fauna of Turkey.

Acanthocephala

Echinorhynchidae

Acanthocephalus ranae (Schrank, 1788) Lühe, 1911

Synonym: Echinorhynchus ranae

Host: Pelophylax ridibundus, Rana macrocnemis

Site of infection: intestine

Geographic range: Brazil, Bulgaria, Germany, Greece, Hungary, Poland, Romania, Russia, Serbia, Swiss, Turkey, USA

Remarks: Acanthocephalus ranae lives in the intestine of some frogs and newts generally in Europe and the larva is parasitic in Asellus aquaticus (Lühe, 1911).

Asellus aquaticus was encountered before in Anguis fragilis (Shimalov et al., 2000); Asellus aquaticus (Lühe, 1911); Bombina bombina (Lühe, 1911); Bufo bufo (Gassmann, 1972; Yildirimhan & Karadnez, 2007; Düsen, 2011; Heckmann et al., 2011); Bufo viridis (Karaaş, 2015; Lühe, 1911; Yildirimhan, 1999); Bufo vulgaris (Lühe, 1911); Coronella austriaca (Edelényi, 1963); Diemyctylus viridescens (VanCleave, 1922); Hyla arborea (Heckmann et al., 2011), Hyla orientalis (Düsen & Yaka, 2014; Yakar et al., 2016); Molge cristata (Lühe, 1911); Molge vulgaris (Lühe, 1911); Natrix natrix (Edelényi, 1963); Pelophylax esculentus (Andre, 1913; Popołek, 2005); Pelophylax lessonae (Popołek et al., 2011); Pelophylax bedriagae (Demir et al., 2015); Pelophylax ridibundus (Yildirimhan et al., 2005; Düsen & Öz, 2006; Popołek et al., 2011; Koyun et al., 2015; Sağlam & Ankan, 2006; Düsen & Oğuz, 2010; Karakaş, 2015; Oğuz et al., 1994; Sattmann, 1990; Buchvarov & Iriko, 1997; Heckmann et al., 2011; Iacob, 2021); Rana camerana (Yildirimhan et al., 2006a); Rana dalmatica (Düsen et al., 2009; Yildirimhan et al., 2016). (Heckmann et al., 2011); Rana macrocnemis (Yildirimhan et al., 1997a), (Düsen, 2007), (Heckmann et al., 2011); Rana temporaria (Heckmann et al., 2011; Düsen, 2012); Rana tavarosensis (Heckmann et al., 2011; Düsen, 2012); Rhinellaicterica (Pilati et al., 2013).

A. ranae, which was found formerly in urodeles and anurans from the countries of Europe, Asia and America have been found in some provinces of Turkey, but it is the first record for Erzurum province.

Centrorhynchidae

Centrorhynchus sp. Lühe 1911

Synonym: Centrhorhynchus; Centrhomysoma; Gordiorhynchus; Paradoxites; Travassosina.

Host: Pelophylax ridibundus

Site of infection: intestine

Geographic range: Bulgaria, Porto Rico, Turkey

Remarks: Adults of the acanthocephalan genus Centrorhynchus (Polymorphida: Centrorhynchidae) occur primarily in birds of prey (Richardson & Nickol, 1995).

The trunk is non-spinous and slender. The proboscis is divided into two regions and the anterior swollen region has 8 hooks per 26–28 rows, the posterior region has 3–4 hooks per 26–28 rows. Testes are in the anterior portion of the trunk (Fig. 3a).

Centrorhynchus sp. was recorded before in Eupsophus sp. (Torres & Puga, 1996); Herpestes javanicus auropunctatus (Cable & Quick, 1954); Pelophylax ridibundus (Yildirimhan et al., 2005). While it was found only one individual in P. ridibundus from Istanbul formerly by Yildirimhan et al. (2005), Centrorhynchus sp. is the first record for Erzurum province.

Pomphorhynchidae

Pomphorhynchus laevis (Zoega in Müller, 1776) Van Cleave, 1924

Synonym: Echinorhynchus laevis; Echinorhynchus tereticollis; Pomphorhynchus tereticollis; Echinorhynchus proteus; Pomphorhynchus proteus; Pomphorhynchus intermedius.

Host: Pelophylax ridibundus

Site of infection: intestine

Geographic range: Iraq, Turkey

Remarks: Species of Pomphorhynchus are largely parasites of freshwater fishes (Amin et al., 2003).

The trunk is non-spinous and spindle-shaped. We recorded at 2010 P. spindletregruncatus from some freshwater fish of Erzurum province and marsh frogs of Isparta province (Heckmann et al., 2010). The difference of P. laevis from P. spindletregruncatus is mainly the number of the proboscis' hooks. The proboscis of P. spindletregruncatus is ovoid and 15–18 longitudinal rows of 7–9 hooks of each and proboscis of P. laevis cylindrical to ovoid, with 16–18 longitudinal rows of 11–12 hooks of each. The neck is moderate length and has a distal bulb (Fig. 3b).

P. laevis was recorded in freshwater fishes as Abramis brama, Abramis sapa, Acioperus ruthenus, Alburnus albumus (Nedeva et al., 2003); Alburnus baliki (Aydoğdu et al., 2011); Anguilla anguilla (Sures, 2001); Apollina melanostoma (Kvach & Skora, 2007; Rolbiecki, 2006; Ondrackova et al., 2005); Aspius aspius (Nedeva et al., 2003); Barbus barbus (Nedeva et al., 2003); Schledermann et al., 2003; Laimgruber et al., 2005; Brown et al., 1986; Thieten et al., 2004); Blicca bjorkna and Carassius auratus gibelo (Nedeva et al., 2003); Crenilabrus tinca (Akmirza, 2002); Cyprinus carpio (Buhurcu, 2006); Gobius niger (Zander, 2004); Gymnocephalus chentrorhynchus; Lota lota, Neogobius cephalarges, and Plecosculus euthymus (Nedeva et al., 2003); Neogobius fluvitilis and Neogobius kessleri (Ondrackova et al., 2005); Neogobius iliini (Mineeva, 2013); Percus fluvitilis (Sobecka & Słomińska, 2007), (Nedeva et al., 2003); Phoxinus phoxinus (Kralova-Hromadova et al., 2003; Dudiňák & Šnábel, 2001); Platychthys flesus (Koie, 1999), (Chib-
Caught Near Gökçeada.

Andre, e. Amin, O.m., AbdAllAh, S.m.A., mhAiSen, F.T. AkmirzA, A. 380

BjElIć-ČABrIlo, o., PopovIć, E., PAuNovIć, A. (2009): Helminthofauna of Pelophylax kl. esculentus (Linne, 1758) from petrovaradinski rıt marsh (Serbia). Helminthologia, 46(2): 107 – 111. DOI: 10.2478/s11687-009-0021-z

BomBAROVA, M., MAREC, F., NGUYEN, P., SPAKULOVA, M. (2007): Divergent location of ribosomal genes in chromosomes of fish thorny-headed worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (acanthocephala). Genetica, 131(2): 141 – 149. DOI: 10.1007/s10709-006-9124-3

BrAY, R.A., WEBSTER, B.L., BARTOLI, P., LITTLEWOOD, D.T.J. (2005): Relationships within the Acanthocephalidae Lühe,1906 and their place among the Digenea. Acta Parasitologica, 50(4): 281 – 291

Brown, A.F., CHUBB, J.C., VELTCAMP, J.C. (1986): A key to the species of Acanthocephala parasitic in British freshwater fishes. J. Fish. Biol., 28: 327 – 334

BUCHVAROV, G., IRIKOV, A. (1997): Le reenregistrement de la helmintofaune de la grande grenouille aquatique (Rana ridibunda Pall) provenant du region du combinaud de la production du cuivre, nomnie “G. Damianov” a pirdop [Information on the helmintofauna of the great water frog (Rana ridibunda Pall) from the region of the copper production complex, called “G. Damianov” in pirdop]. Trav. Sci. Univ. Plovdiv, Animalia, 33(6): 45 – 54 (In French)

BUCHVAROV, G., KIRIN, D., KOSTADINOV, A. (2000): Platychelmint parasite assemblages in two species of snakes, Natrix natrix and Natrix tessellata (Reptilia: Colubridae), from Bulgaria: Seasonal variation. J. Environ. Prot. Ecol., 1(1): 124 – 131

BUDAK, A., GÖÇMEN, B. (2008). Herpetology: Ege University Faculty of Science Books Series, No. 194, Ege University Press, Bornova-Izmir, 226 p. (In Turkish)

BUHURCU, H.I. (2006): Studies on the endoparasite fauna of some fish (Cypinus carpio Linnaeus, 1758, Alburnus nasreddini Battalgil, 1944) in Lake Aksuher. Master Thesis, Afyon: Afyon Kocatepe University. (In Turkish)

CAble, R.M., quICK, L.A. (1954): Some Acanthocephala from Puerto Rico with the description of a new genus and three new species. Trans Am Microsoc Soc, 73(4): 393 – 400

CHIBANI, M., ZIÇOKWISH, M., KIJEWSKIH, A., ROKICKI, J. (2001): Pomphorhynchus laevis parasite of flounder Platichthys flesus as a biological indicator of pollution in the Baltic Sea. J. Mar. Biol. Ass. U.K., 81: 165 – 166

CHIKHLAYEV, I.V. (2014): On the fauna helminthes of green toad Bufo viridis Laurenti, 1768 (Anura, Amphibia) in Samara Region [Russian]. Samarskaya Luka : Problemy Regionalnoy i Globalnoy Ekologii, 23(2): 185 – 190

CHIKHLAYEV, I.V., FAYZULIN, A.I., ZAMALETDINOV, R.I. (2009b): Edible frog helminths - Rana esculenta Linnaeus, 1758 (Anura, Amphibia) of the middle Volga region. Povolzhsky Ecol. J., 3: 270 – 274 (In Russian)

CHIKHLAYEV, I.V., FAYZULIN, A.I., ZAMALETDINOV, R.I., KUZOVENKO, A.E. (2009a): [Trophiic relationships and helmintic fauna of green frogs Rana esculenta complex (Anura, Amphibia) in urbanized areas of the Volga basin]. Pratsi Ukrainian Herpetological Association, 2: 102 – 109. (In Russian)

ÇINAR, M.E. (2014): Checklist of the Phyla Platychelminthes, Xenacoelomorpha, Nematoda, Acanthocephala, Myxozoza, Tardigrada, Cephalorhyncha, Nemertea, Echiura, Brachiopoda, Phoronida,

Conflict of Interest

The authors state no conflict of interest.

References

Akmirza, A. (2002): Acanthocephala and Cestoda Parasites Fishes Caught Near Gökçeada. Türkiye Parazitoloj Derg, 26(1) (In Turkish)

AssIN, O.m., ABDALLAH, S.m.A., MHAISEN, F.T. (2003): Description of Pomphorhynchus spinidetruncatus n. sp. (Acanthocephala: Pomphorhynchidae) from freshwater fishes in northern Iraq, with the erection of a new pomphorhynchid genus, Pyriproboscis n. g., and keys to genera of the Pomphorhynchidae and the species of Pomphorhynchus Montcilli, 1905. Syst Parasitol, 54: 229 – 235

Andre, E. (1913): Recherches parasitologiques sur les amphibiens de la suisse II [Parasitological research on amphibians in Switzerland II]. Rev Suisse Zool, 21: 79 – 200 (In French)

AyOdou, A., EmRE, Y., EmRE, N., KUÇÜK, F. (2011): Two new host records for Pomphorhynchus laevis (Müller, 1776) (Acanthocephala) recorded from Antalya, Turkey: Small bleak (Alburnus balıkı Bogutskaya, Kucük & Ünlü, 2000) and Antalya barb (Capoeta antalyensis Battalgi, 1944). Turk Zool Derg, 35(6): 897 – 900.

DOI:10.3906/zo0-0909-32

Baran, İ., ILGaz, Ç., Avcı, A., Kumlutaş, Y., Olgun, K. (2012). Türkiye amfibi ve sürüngenleri, 3 edn. [Amphibians and reptiles of Turkey, 3rd ed] Ankara: TÜBİTAK. 203 pp. (In Turkish)

Bjelic-Čabril, O., Popovic, E., Pavunovic, A. (2009): Helminthofauna of Pelophylax kl. esculentus (Linne, 1758) from petrovaradinski rıt marsh (Serbia). Helminthologia, 46(2): 107 – 111. DOI: 10.2478/s11687-009-0021-z
Chaetognatha, and Chordata (Tunicata, Cephalochordata, and Hemichordata) from the coasts of Turkey. *Turk Zool Derg*, 38: 698 – 722. DOI: 10.3906/zoo-1405-70

Dawe, B. (1946). *The trematoda with special reference to british and other european forms*. Cambridge Univ. Press. 644 pp.

Demir, S., Yakar, O., Yıldırımhan, H.S., Birlik, S. (2015): Helminth parasites of the levantine frog (*Pelophylax bedriagae cameroni*, 1882) from the western part of Turkey. *Helminthologia*, 52(1): 71 – 76. DOI 10.1515/helmin-2015-0013

Dezfuli, B.S., Capuano, S., Pironi, F., Mischati, C. (1999): The origin and function of cement gland secretion in *Pomphorhynchus laevis* (Acanthocephala). *Parasitology*, 119: 649 – 653

Dissing, C.M. (1835): Monographie derGattungen Amphilostoma und Diplodiscus. [Tafel 22-24] Monograf of the genera Amphiystoma and Diplodiscus. (Plate 22-24). Annals of the Vienna Museum of Natural History, 1: 235-260 (In German)

Dissing, C.M. (1851). *Systema helminthum. Volume 2. Vindobonae*. 588 pp.

Dimitrova, Z., Tzvetkov, Y., Tocev, I. (2008): Occurrence of acanthocephalans in the eurasian otter *Lutra lutra* (L.) (Carnivora, Mustelidae) in Bulgaria, with a survey of Acanthocephalans recorded from this host species. *Helminthologia*, 45(1): 41 – 47. DOI: 10.2478/s11687-008-0007-2

Dudinský, V., Šnabel’, V. (2001): Comparative analysis of Slovak and Czech Populations of *Pomphorhynchus laevis* (Acanthocephala) using morphological and isoenzyme analyses. *Acta Zool. Univ. Comen.,* 44: 41 – 50

Düseren, S. (2007): Helminths of the two mountain frogs, banded frog, *Rana camerani* Boulenger, 1886 and Uludağ frog *Rana macrornenis* Boulenger, 1885 (Anura: Ranidae), collected from the Antalya province. *Türkije Parazit Derg*, 31(1): 84 – 88

Düseren, S. (2011): The helminth parasites of the two Bufonid toads, European common toad, *Bufo bufo* (Linnaeus, 1758) and european green toad, *Bufo (Pseudipidalea) viridis* Laurenti, 1768 (Anura: Bufonidae), collected from denizli province, inner-west Anatolia Region, Turkey. *Helminthologia*, 48(2): 101 – 107. DOI: 10.2478/s11687-011-0019-1

Düseren, S. (2012): First data on the helminth fauna of a locally distributed mountain frog, “Tavas frog” *Rana tavasensis* Baran & Atatür, 1986 (Anura: Ranidae), from the inner-west Anatolian region of Turkey. *Turk. J. Zool.*, 36(4): 496 – 502. DOI: 10.3906/ zo0-0909-15

Düseren, S., Oğuz, M. (2008): Occurrence of *Pomphorhynchus laevis* (Acanthocephala) in the marsh frog (*Rana ridibunda* pallas, 1771), from Turkey. *Helminthologia*, 45(3): 154 – 156. DOI: 10.2478/s11687-008-0031-2

Düseren, S., Oğuz, M.C. (2010): Metazoan endoparasites of three species of anurans collected from the Middle Black Sea region of Turkey. *Helminthologia*, 47(4): 226 – 232. DOI: 10.2478/s11687-010-0035-6

Düseren, S., Oğuz, M.C., Barton, D.P., Aral, A., Sülkoğlu, S., Tepe, Y. (2010): Metazoan parasitological research on three species of anurans collected from Çanakkale province northwestern Turkey. *North West J Zool*, 6(1): 25 – 35

Düseren, S., Öz, M. (2006): Helminths of the marsh frog, *Rana ridibunda* pallas, 1771 (Anura : Ranidae), from Antalya province, Southwestern Turkey. *Comp Parasitol*, 73(1): 121 – 129. DOI: 10.1654/4162.1

Düseren, S., Öz, M. (2013): Helminth fauna of the eurasian marsh frog, *Pelophylax ridibundus* (Pallas, 1771) (Anura: Ranidae), collected from Denizli province, inner-west anatolia region, Turkey. *Helminthologia*, 50(1): 57 – 66. DOI: 10.2478/s11687-013-0108-4

Düseren, S., Ügurtaş, I.H., Aydın, A., Oğuz, M.C. (2009): The helminth community of the agile frog, *Rana dalmatina* Bonaparte, 1839 (Anura: Ranidae) collected from northwest of Turkey. *Helminthologia*, 46(3): 177 – 182. DOI: 10.2478/s11687-009-0033-8

Düseren, S., Yakar, H. (2014): Helminths of the eastern tree frog, *Hyla orientalis*, Bedriaga, 1890 (Anura: Hylidae), collected from Denizli province, inner-west Anatolia Region, Turkey. *Helminthologia*, 51(1): 37 – 45. DOI: 10.2478/s11687-014-0206-y

Edelenyi, B. (1963): Hazai hüllők néhány újabb belsőelősködő férge. (eine neure innere parasitenwürmer der in ungarn lebenden reptilien) [Some new internal parasitic worms of domestic reptiles.] *Az Egi Tanárképző Főiskola tudományos közleményei (1. köt.) = Acta Academiae Paedagogicae Agriensis 1*: 323-342. (In Hungarian)

Ehran, D., Gherasim, E. (2015): *Trematodofauna complexulu* *Pelophylax esculenta* (Amphibia, Anura) din codrii centrali ai republicii Moldova. 1. Familile Plagiorchiidae, Cephalogonimidae [Trematodofauna of the *Pelophylax esculenta* complex (Amphibia, Anura) from the central forests of the Republic of Moldova. 1. The families Plagiorchiidae, Cephalogonimidae]. *Studia Universitatis Moldaviae. Real and Natural Sciences Series* 81(1): 148 – 159. (In Romanian)

Galli, P., Croca, G., Mariniello, L., Ortis, M., D’Amelio, S. (2001): Water quality as a determinant of the composition of fish parasite communities. *Hydrobiologia*, 452: 173 – 179

Gassmann, M. (1972): Etudes des trematodes et acanthocephales d’ambiphions du jura [Studies of trematodes and acanthocephales of amphibians of the Jura]. *Rev Suisse Zool.*, 79(3): 980 – 998 (In French)

Gurlt, E.F. (1845): Verzeichnis der thiere, bei welchen entozoa gefunden worden sind [List of animals in which entozoa have been found]. *Arch. Naturg.*, 1: 223 – 325. (In German)

Heckmann, R.A., Amin, O.M., Tepe, Y., Düseren, S., Oğuz, M.C. (2011): *Acanthocephalus ranae* (Acanthocephala: Echinorhynchidae) from amphibians in Turkey, with special reference to new morphological features revealed by sem, and histopathology *Sci. Parasitol.*, 121(1): 23 – 32

Heckmann, R.A., Oğuz, M.C., Amin, O.M., Düseren, S., Tepe, Y., Aslan, B. (2010): Host and geographical distribution of *Pomphorhynchus spindletracratus* (Acanthocephala: Pomphorhynchidae) in Turkey, with enhanced description from new fish and amphibian hosts using SEM, and histopathological notes. *Sci. Parasitol.*, 11: 381
the number of marsh frog (Rana ridibunda) helminths in the vicinity of Tambov. TSU Bulletin, 14(2): 389 – 393. (In Russian)

REZVANTSEVA, M.V., LADA, G.A., KULAKOY, E.J. (2010): [Age and sex characteristics of the helminth fauna of green frogs (Rana esculenta complex) in the east of the central black earth]. TSU Bulletin, 15(2): 646 – 659. (In Russian)

RICHARDSON, D.J., NICKOL, B.B. (1995): The genus Centrorhynchus (Acanthocephala) in North America with description of Centrorhynchus robustus n. sp., redescription of Centrorhynchus conspectus, and a key to species. J Parasitol, 81(5): 767 – 772

ROSLIECKI, L. (2006): Parasites of the round goby, Neogobius melanostomus (Pallas, 1811), an invasive species in the Polish fauna of the Vistula lagoon ecosystem. Oceanologia, 48(4): 545 – 561

ROMANOVA, E.M., INDRIYAKOVA, T.A., MATVEEVA, E.A. (2010): [Biotic relationships in parasitoceneses of Rana ridibunda]. UGSKA Bulletin, 1(11): 69 – 75. (In Russian)

RUCHIN, A.B., CHIKHLYAEV, I.V., LUKYANOY, S.V., RYHOV, M.K. (2008): On helminths of common spadefoot toad – Pelobates fuscus (the eastern form) in floodlands of some rivers in middle and Lower-Volga Region. Povolzhskiy Ecol. J., 1: 48 – 54

RUCHIN, A.B., CHIKHLYAEV, I.V., LUKYANOY, S.V. (2009): [Study of the helminth fauna of the common gallic Pelobates fuscus (laurenti, 1768) and the frog Rana arvalis Nilsson, 1842 (Amphibia: Anura) in their joint habitation]. Parasitology, 43(3): 240 – 247

SAEED, I., AL-BARNI, S.E., AL-HABANI, K.I. (2007): A metazoan parasitological research of some Iraqi amphibians. Türkiye Parazitol. Derg., 31(4): 337 – 345

SAŁAM, N., ARIKAN, H. (2006): Endohelminth fauna of the marsh frog Rana ridibunda from Lake Hazar, Turkey. Dis. Aquat. Org., 72: 253 – 260. DOI: 10.3354/dao072253

SATTMAN, H. (1990): Endohelminths of some amphibians from northern Greece (Trematoda, Acanthocephala, Nematoda; Amphibia: Triturus, Rana, Bombina). Herpetozoa, 3(1/2): 67 – 71

SCHLUDERMANN, C., KONECKY, R., LAINGRUBER, S., LEWIS, J.W., SCHMEER, F., CHOVANECE, A., SURES, B. (2003): Fish macroparasites as indicators of heavy metal pollution in river sites in Austria. Parasitology, 126 Suppl.: S61 – 69. DOI: 10.1017/s0031182003037343

SIMALOV, V.V., SIMALOV, V.T., SIMALOV, A.V. (2000): Helminth fauna of lizards (Reptilia, Sauria) in the southern part of Belarus. Parasitol. Res., 86: 343

SKRJABIN, K.I. (1916): Parasitic trematodes and nematodes collected by the expedition of prof. V. Dogiel and I. Sokolov in British east Africa. Science Research Expedition to British East Africa and Uganda, V. Dogiel and I. Sokolov in 1914, 4: 1 – 157

SKRJABIN, K.I. (1947): Trematody zhivotnyh i cheloveka [Trematodes of animals and man]. Volume 1. Izdatel’stvo Akademii Nauk SSSR, Moscow-Leningrad. 515 pp. (In Russian)

SKRJABIN, K.I. (1949): Trematody zhivotnyh i cheloveka [Trematodes of animals and man]. Volume 3. Izdatel’stvo Akademii Nauk SSSR, Moscow-Leningrad. 623 pp. (In Russian)

SKRJABIN, K.I. (1950): Trematody zhivotnyh i cheloveka [Trematodes of animals and man]. Volume 4. Izdatel’stvo Akademii Nauk SSSR, Moscow-Leningrad. 495 pp. (In Russian)

SKRJABIN, K.I. (1952): Trematody zhivotnyh i cheloveka [Trematodes of animals and man]. Volume 7. Izdatel’stvo Akademii Nauk SSSR, Moscow-Leningrad. 762 pp. (In Russian)

SKRJABIN, K.I. (1953): Trematody zhivotnyh i cheloveka [Trematodes of animals and man]. Volume 8. Izdatel’stvo Akademii Nauk SSSR, Moscow-Leningrad. 618 pp. (In Russian)

SKRJABIN, K.I. (1958): Trematody zhivotnyh i cheloveka [Trematodes of animals and man]. Volume 14. Izdatel’stvo Akademii Nauk SSSR, Moscow-Leningrad. 934 pp. (In Russian)

SKRJABIN, K.I. (1962): Trematody zhivotnyh i cheloveka [Trematodes of animals and man]. Volume 20. Izdatel’stvo Akademii Nauk SSSR, Moscow-Leningrad. 563 pp. (In Russian)

SKRJABIN, K.I. (1974): Trematody zhivotnyh i cheloveka [Trematodes of animals and man]. Volume 24. Izdatel’stvo Akademii Nauk SSSR, Moscow-Leningrad. 379 pp. (In Russian)

SOBECKA, E., SLOMINSKA, M. (2007): Species richness, diversity and specificity of the parasites of bream Abramis brama (L.) and perch Perca fluviatilis L. in the estuary of the Odra River, Poland. Helminthologia, 44(4): 188 – 192. DOI: 10.2478/s11687-007-0030-8

STOSCHICK, M. (1980): Elimi neteni raccolti dal dott. Alessandro p. Ninni [Venetian helminths collected by Dr. Alessandro P. Ninni]. Boll. Soc. Adriatic., 12: 49 – 56. (In Italian)

SUAREZ, B. (2001): The use of fish parasites as bioindicators of heavy metals in aquatic ecosystems: A review. Aquat. Ecol, 35: 245 – 255

THIELEN, F., ZIMMERMANN, S., BASKA, F., TARASCHIEWSKI, H., SUAREZ, B. (2004): The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environ. Pollut., 129(3): 421 – 429. DOI: 10.1016/j.envpol.2003.11.011

TIERI, E., MARIENELLO, L., ORTIS, M., BERTI, M., BATTISTINI, M.L. (2006): Endoparasites of chub (Leuciscus cephalus) in two rivers of the Abruzzo region of Italy. Vet Ital, 42(3): 271 – 279

TORTES, P., PUGA, S. (1996): Occurrence of cystacanths of Centrohrunchus sp. (Acanthocephala:Centrohrunchidae) in toads tf the genus Eupsophus in Chile. Mem Inst Oswaldo Cruz, Rio De Janeiro, 91(6): 717 – 719

VANCELEAVE, H.J. (1922): Acanthocephala from the Illinois river, with descriptions of species and a synopsis of the family Neoechinocephalidae. Bull. Ill. Nat. Hist. Surv. Urbana, Illinois, U. S. A. (1918 – 1921), 13: 225 – 257

VOLYKOVA, L., VOLEK, J. (1975): Die trematoden der amphibien in der tschechoslowakei. II. Die larvesta-dien (mesocercariae un metacercariae) [The trematodes of the amphibians in Czechoslovakia. II. The larval stages (Mesocercaria and metacercaria)]. Folia Fac. sci. nat. Univ. Purkyrn. Brno, Biol., 16: 7 – 84. (In German)

WALTON, A.C. (1949): Parasites of the Ranidae (Amphibia) VII. Trans Am Microsc Soc, 68(1): 49 – 54

YAKER, O., DEMIR, S., YILDIRIMAN, H.S., BIRLIK, S. (2016): Gastrointestinal helminths of the oriental tree frog Hyla orientalis Bedriaga, 1890 (Amphibia: Hylidae) from Izmir province, western Turkey.
Acta Zool Bulg, 68(1): 111 – 115
Yıldırımhan, H. S., Uğurtaş, I. H., Altunel, F. N. (1997a): Rana macrocnemis Boulenger 1885 (uludağ kurbağası)’ın asalak helmintleri üzerine bir araştırma [A study on parasitic helminths of Rana macrocnemis Boulenger 1885 (Uludağ frog)]. Turk. J. Zool., 21: 467 – 473. (In Turkish)
Yıldırımhan, H. S. (1999): Bufo viridis Laurenti, 1768 (Anura; Amphibia)’ın parazitik helmintleri üzerine araştırmalar [Studies on parasitic helminths of Bufo viridis Laurenti, 1768 (Anura; Amphibia)]. Turk. J. Zool., 23(1): 177 – 195. (In Turkish)
Yıldırımhan, H. S., Bursey, C. R., Goldberg, S. R. (2009): Helminth parasites of the caucasian parsley frog, Pelodytes caucasicus, from Turkey. Comp. Parasitol., 76(2): 247 – 257. DOI: 10.1654/4376.1
Yıldırımhan, H. S., Goldberg, S. R., Bursey, C. R. (2006a): Helminth parasites of the banded frog Rana camerani (Ranidae) from Turkey. Comp. Parasitol., 73(2): 222 – 236. DOI: 10.1654/4229.1
Yıldırımhan, H. S., Karadeniz, E. (2007): Helminth parasites of the common toad, Bufo bufo (Linnaeus, 1758) (Anura: Bufonidae) from northeast Turkey. Comp. Parasitol., 74(1): 176 – 178: DOI: 10.1654/4426.1
Yıldırımhan, H. S., Karadeniz, E., Gürkan, E., Koyun, M. (2005): Türkiye’nin değişik bölgelerinden toplanan ova kurbağası (Rana ridibunda Pallas, 1771; Anura)’nin metazoon parazitleri [Metazoan parasites of marsh frog (Rana ridibunda Pallas, 1771; Anura) collected from different regions of Turkey]. Türkiye Parazitol Derg, 29(2): 135 – 139. (In Turkish)
Yıldırımhan, H. S., Sümer, N., Bursey, C. R. (2016): Helminth parasites of the agile frog, Rana dalmatina Fitzinger, 1839 (Anura: Ranidae), collected from two localities in Turkey. Acta Zool Bulg, 68(3): 425 – 432
Yıldırımhan, H. S., Sümer, N., İncedoğan, S., Bursey, C. R. (2012): Helminth parasites of the lemon-yellow tree frog, Hyla savignyi (Hylidae), from Turkey. Turk. J. Zool., 36(2): 171 – 184. DOI:10.3906/zoo-1006-9
Yıldız, K. (2003): Kapulukaya baraj gölündeki kadife balıklarında (Tinca tinca) helmint enfeksiyonları [Helminth infections in tench fish (Tinca tinca) in Kapulukaya reservoir]. Turk. J. Vet. Anim. Sci., 27: 671 – 675 (In Turkish)
Yıldız, K., Çağuşoğlu, K. (2003): Pomphorhynchus laevis’in scanning elektron mikroskobik incelenmesi [SEM investigation of Pomphorhynchus laevis]. Turk. J. Vet. Anim. Sci., 27: 1357 – 1360 (In Turkish)
Zändér, C. D. (2004): Four-year monitoring of parasite communities in gobid fishes of the south-western Baltic. Infracommunity. Parasitol. Res., 93(1): 17 – 29. DOI: 10.1007/s00436-004-1087-7