Explaining muon magnetic moment and AMS-02 positron excess in a gauged horizontal symmetric model

Gaurav Tomar

Abstract We extended the standard model with a fourth generation of fermions to explain the discrepancy in the muon magnetic moment and to describe the positron excess observed by AMS-02 experiment. We introduce a gauged SU(2)$_{HV}$ horizontal symmetry between the muon and the 4th generation lepton families and identified the 4th generation right-handed neutrino as the dark matter with mass ~ 700 GeV. The dark matter annihilates through SU(2)$_{HV}$ gauge boson into final states ($\mu^+\mu^-$) and ($\nu^c_\mu\nu_\mu$). The SU(2)$_{HV}$ gauge boson with mass ~ 1.4 TeV gives the required contribution to the muon $(g-2)$ and satisfy the experimental constraint from BNL measurement.

1 Introduction

The discrepancy between the experimental measurement [1] and the standard model (SM) projection of muon anomalous magnetic moment (in short muon $g-2$) and the excess of positrons observed by AMS-02 [2] are the two interesting signals which may have a common beyond standard model explanation.

In the standard model, the muon anomalous magnetic moment behaves as $a_\mu \propto m_\mu^2/M_{W,Z}^2$ and its contribution is $a_\mu^{SM} = 19.48 \times 10^{-10}$ [3]. But SM contribution is 3.6 σ away from the measured [4] value of muon $g-2$, which states

$$ \Delta a_\mu \equiv a_\mu^{Exp} - a_\mu^{SM} = (28.7 \pm 8.0) \times 10^{-10}, \quad (1) $$

Gaurav Tomar
Physical Research Laboratory, Ahmedabad 380009, India,
Indian Institute of Technology, Gandhinagar 382424, India,
e-mail: tomar@prl.res.in
where a_{μ} is the anomalous magnetic moment in the the unit of $e/2m_{\mu}$. The mass suppression in muon $g - 2$ can be evaded by proposing a horizontal symmetry [6,7].

AMS-02 experiment [2] has observed the excess of positron over cosmic-ray background, which goes up to ~ 500 GeV. The dark matter (DM) annihilation with leptonic final states μ or τ can explain the observed excess very well. The absence of antiproton excess over cosmic-ray background also indicates towards a leptophilic dark matter.

We introduce a 4th generation fermions family and propose a $SU(2)_{HV}$ gauge symmetry between 4th generation leptons and muon families. As an artefact of $SU(2)_{HV}$ gauge symmetry, we have new contributions to muon $g - 2$ from $SU(2)_{HV}$ gauge boson θ^+ and different scalars. In this model, we identified the 4th generation right-handed neutrino $\nu_{\mu R}$ as dark matter. The annihilation of dark matter takes place through $SU(2)_{HV}$ gauge boson θ_3 with only possible final states ($\mu^+\mu^-$) and ($\nu_{\mu c\nu_{\mu}}$). The dark matter stability is insured by taking 4th generation charged lepton heavier than dark matter. The required cross-section to explain AMS-02 positron excess is $\sigma_{\nu_{\chi\chi} \rightarrow \mu^+\mu^-} = 2.33 \times 10^{-25}$ cm3/sec, which is larger than the cross-section $\sigma_{\nu_{\chi\chi} \rightarrow SM} \sim 3 \times 10^{-26}$ cm3/sec required for getting correct relic density [8].

2 Model

Keeping the exact structure of SM, we add the 4th generation of quarks (c', s') and leptons (ν'_{μ}, μ') (of both chiralities) into it. In addition we also introduce three-right handed neutrinos and extend the standard model gauge group by proposing a $SU(2)_{HV}$ horizontal symmetry. In this model, we have taken e and τ families as a singlet of $SU(2)_{HV}$ for simplicity and explain muon $g - 2$ and AMS-02 positron excess simultaneously.

The left-handed muon and 4th generation lepton families are denoted by $\Psi_{Li\alpha}$ and their right-handed neutral and charged counterparts are denoted by $N_{R\alpha}$ and $E_{R\alpha}$ respectively. We denote the left-handed electron and tau doublet by ψ_{eLi} and $\psi_{\tau Li}$ and their right-handed equivalent by e_R and τ_R respectively. In this model, the gauge fields correspond to $SU(2)_L \times U(1)_Y \times SU(2)_{HV}$ groups are A_{μ}^a, B_{μ} and θ_{μ}^a ($a = 1, 2, 3$) with gauge couplings g, g' and g_H respectively. The gauge couplings of muon and 4th generation lepton families are given as,

$$\mathcal{L}_\psi = i\bar{\Psi}_{Li\alpha} \gamma^\mu \left(\partial_\mu - \frac{i}{2} g\tau \cdot A_\mu + ig' B_\mu - \frac{i}{2} g_H \tau \cdot \theta_\mu \right)_{ij; \alpha \beta} \Psi_{Lj \beta}$$

$$+ i\bar{E}_{R\alpha} \gamma^\mu \left(\partial_\mu + i2g' B_\mu - \frac{i}{2} g_H \tau \cdot \theta_\mu \right)_{\alpha \beta} E_{R\beta} + i\bar{N}_{R\alpha} \gamma^\mu \left(\partial_\mu - \frac{i}{2} g_H \tau \cdot \theta_\mu \right)_{\alpha \beta} N_{R\beta}$$

(2)
from eq.2, it is clear that the “neutral current” of $SU(2)_{HV}$ contributes to the annihilation process, $(\nu^\mu, \nu'^\mu) \rightarrow \theta^\pm_3 \rightarrow (\mu^+ \mu^-), (\nu^\mu, \nu'^\mu)$, which is appropriate for AMS-02 and relic density. The “charged-current” contributes to the muon $g - 2$.

There exist strong bounds on the 4th generation from the higgs production at LHC, so we extend the higgs sector (in addition to ϕ_i) by a scalar η^β_α.

As a $SU(2)$ doublet η^β_α lifts the bounds from higgs overproduction and 125 GeV mass eigenstate is mainly constituted by η. To generate masses for $SU(2)_{HV}$ gauge bosons, we introduce another scalar χ^α, which is a doublet under $SU(2)_{HV}$. The quantum numbers of the scalars and fermions in the model are shown in table I. After corresponding scalars take their vacuum expectation values (vevs), the masses of the gauge bosons come,

$$M^2_W = \frac{g^2}{2} (2\langle \eta \rangle^2 + \langle \phi \rangle^2), \quad M^2_Z = \frac{g^2}{2} \sec^2 \theta_W (2\langle \eta \rangle^2 + \langle \phi \rangle^2), \quad M^2_A = 0,$$

$$M^2_\beta_+ = g^2_\beta (4\langle \eta \rangle^2 + \frac{1}{2} \langle \chi \rangle^2), \quad M^2_\beta_3 = \frac{1}{2} g^2_\beta (\chi)^2 \quad (3)$$

The Yukawa couplings of the leptons are given by,

$$\mathcal{L}_Y = -h_1 \bar{\psi}_{Li} \phi_i \psi_{R} - h_2 \bar{\psi}_{Li} \phi_i E_{Ra} - h_2 \bar{\psi}_{Li} \phi_i \psi_{R}$$

$$- h_2 \bar{\psi}_{Li} \phi_i E_{R} - h_3 \bar{\psi}_{Li} \phi_i \psi_{R} + h.c$$

which generate the following masses for leptons,

$$m_e = h_1 \langle \phi \rangle, \quad m_\tau = h_3 \langle \phi \rangle, \quad m_{\nu_e} = h_1 \langle \phi \rangle, \quad m_{\nu_\tau} = h_3 \langle \phi \rangle$$

$$m_\mu = h_2 \langle \phi \rangle + k_2 \langle \eta \rangle, \quad m_{\nu_\mu} = h_2 \langle \phi \rangle + k_2 \langle \eta \rangle, \quad (5)$$

$$m_{\mu'} = h_2 \langle \phi \rangle - k_2 \langle \eta \rangle, \quad m_{\nu_{\mu'}} = h_2 \langle \phi \rangle - k_2 \langle \eta \rangle,$$

The required lepton masses can be generated by choosing the appropriate values of Yukawas.

3 Dark Matter Phenomenology

In this model, the 4th generation right-handed neutral lepton $(\nu'^\mu_\mu \equiv \chi)$ is identified as dark matter. The only possible dark matter annihilation final states are $(\mu^+ \mu^-)$ and $(\nu'^\mu \nu^\mu_\mu)$. To get the correct relic density \cite{8}, we use the Breit-Wigner resonant enhancement and take $M_\beta_3 \simeq 2m_\chi$. By taking the 4th generation charged lepton μ' heavier than χ, the dark matter stability is insured. The annihilation rate of χ for a single channel in the limit of massless leptons, is given as
Table 1 The Representation of the various fields in the model under the gauge group $G_{STD} \times SU(2)_{HV}$. Here i and α are the $SU(2)_L$ and $SU(2)_L$ and $SU(2)_HV$ indices respectively, which run through the value 1 and 2.

Particles	$G_{STD} \times SU(2)_{HV}$ quantum numbers
$\psi_{eL_i} \equiv (\nu_e, e)$	(1, 2, −1, 1)
$\psi_{L_i\alpha} \equiv (\psi_\mu, \psi_\mu')$	(1, 2, −1, 2)
$\psi_{\tau L_i} \equiv (\nu_\tau, \tau)$	(1, 2, −1, 1)
$E_{R\alpha} \equiv (\mu_R, \mu_R')$	(1, 1, −2, 2)
$N_{R\alpha} \equiv (\nu_\mu R, \nu_\mu' R)$	(1, 1, 0, 2)
$\nu_{eR}, \nu_{\tau R}$	(1, 1, 0, 1)
ϕ_i	(1, 2, 1, 1)
$\eta_{i\alpha}$	(1, 2, 1, 3)
χ_α	(1, 1, 0, 2)

$$\sigma v = \frac{1}{16\pi} \frac{g_H^2 m_X^2}{(s - M_{\theta_3})^2 + i^2 M_{\theta_3}^2}$$ \hspace{1cm} (6)$$

where g_H is the horizontal gauge boson coupling, m_X the dark matter mass, M_{θ_3} and Γ_{θ_3} are the mass and the decay width of $SU(2)_{HV}$ gauge boson respectively. By calculating thermal average of annihilation cross-section rate using eq.(6) and solving Boltzmann equation, we get the desired relic density of dark matter. The required parameters for getting the correct relic density is given in table 2.

In this model, the dark matter annihilates to $\mu^+\mu^-$ final state and their further decay produce positrons, which we use to explain the positron excess seen at AMS-02. We use the publicly available code PPPC4DMID to compute the positron spectrum $\frac{dN}{dT}$ and then forward it to the GALPROP code for its propagation. To fit the AMS-02 data, the required cross-section (CS) in the GALPROP is $\sigma v_{\chi\chi \rightarrow \mu^+\mu^-} = 2.3 \times 10^{-25}\text{cm}^3\text{s}^{-1}$. The annihilation CS for μ final state from eq.(6) is $\sigma v \approx 2.8 \times 10^{-25}\text{cm}^3\text{s}^{-1}$, which signify that in the fitting of AMS-02 data, we do not need astrophysical boost factor. In fig.(1), we compare the output of GALPROP code to the AMS-02 data and find it in well agreement with the data.

Table 2 Numerical values of the parameters.

g_H	y_h	y_{A}	y_{H^+}	m_χ	m_{μ^+}	M_{θ_3}	m_{H^+}
0.087	0.037	0.020	0.1	700 GeV	740 GeV	1400 GeV	1700 GeV
Fig. 1 The positron flux spectrum measured by AMS-02 [2] and PAMELA [3] (red and black points respectively) and best fit using the contributions of different channels (μ_L, μ_R) in our model.

4 Muon magnetic moment

The SU(2)_HV symmetry gives additional contributions to the muon g − 2. The diagrams containing gauge boson θ^+ and scalar η^± cause extra contributions to muon g − 2. In the limit of M^2_θ^+ >> m^2_μ', the contribution from SU(2)_HV gauge boson θ^+ comes,

\[[\Delta a_\mu]_{\theta^+} = \frac{g^2 H}{8\pi^2} \left(\frac{m_\mu m_\mu' - 2/3m_\mu^2}{M^2_{\theta^+}} \right) \]

we note from the first term in eq.(7) that there is m_μm_μ' enhancement in the muon (g − 2). In the limits m^2_μ' ≫ m^2_η, m^2_μ' ≫ m^2_A, the contribution to muon g − 2 from neutral higgs η (CP-even h and CP-odd A) comes,

\[[\Delta a_\mu]_{h,A} = \frac{1}{8\pi^2} \left(\frac{3m_\mu m_\mu' (y^2_h - y^2_A) + m_\mu^2 (y^2_h + y^2_A)}{6m^2_\mu'} \right) \]

where y_h and y_A are the Yukawa couplings of CP-even and CP-odd higgs respectively. In the similar way, the contribution from the charged higgs η^± is given by,

\[[\Delta a_\mu]_{H^\pm} = -\frac{y^2_{H^\pm}}{8\pi^2} \left(\frac{3m_\mu m_\mu' + m_\mu^2}{6m^2_{H^\pm}} \right) \]

The total contribution to the muon anomalous magnetic moment is given as,

\[\Delta a_\mu = [\Delta a_\mu]_{\theta^+} + [\Delta a_\mu]_{h,A} + [\Delta a_\mu]_{H^\pm} \]

by taking into account the parameters shown in table[2] we finally get,

\[\Delta a_\mu = 2.9 \times 10^{-9} \]

which is in agreement with the experimental result [1] within 1σ.
5 Conclusion

We studied a 4th generation extension of SM introducing $SU(2)_{HV}$ gauge symmetry between 4th generation fermions and muon families. We identified the 4th generation neutral lepton as dark matter and proposed a common explanation for AMS-02 positron excess and muon anomalous magnetic moment. The dark matter annihilates through $SU(2)_{HV}$ gauge boson θ_3 and gives the correct relic density. The muons produced from the dark matter annihilation further decays and give positrons, which is used for the explanation of AMS-02 positron excess. The $SU(2)_{HV}$ gauge boson θ^+ and scalars give the additional contributions to the muon $g - 2$. We found that for suitable choice of parameters, it is possible to get muon $g - 2$ within 1σ of the BNL measurement.

Acknowledgements I would like to thank the organizers of XXI DAE-BRNS High Energy Physics Symposium 2014 for inviting me and giving me opportunity to present my work. I also like to thank Prof. Subhendra Mohanty for valuable discussion. This contribution is based on our recent work [7].

References

1. G. W. Bennett et al. [Muon (g-2) Collaboration], Phys. Rev. D 80, 052008 (2009) [arXiv:0811.1207 [hep-ex]].
2. L. Accardo et al. [AMS Collaboration], Phys. Rev. Lett. 113, 121101 (2014).
3. O. Adriani et al. [PAMELA Collaboration], Nature 458, 607 (2009) [arXiv:0810.4995 [astro-ph]].
4. J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86, 010001 (2012).
5. T. Moroi, Phys. Rev. D 53, 6565 (1996) [Erratum-ibid. D 56, 4424 (1997)] [hep-ph/9512396].
6. S. Baek, N. G. Deshpande, X. G. He and P. Ko, Phys. Rev. D 64, 055006 (2001) [hep-ph/0104141].
7. G. Tomar and S. Mohanty, JHEP 1411, 133 (2014) [arXiv:1403.6301 [hep-ph]].
8. P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5076 [astro-ph.CO].