A hygrothermal modelling approach to water vapour sorption isotherm design for mesoporous humidity buffers

Fernando Sarce Thomann a,*, Matthew R. Hall a, Wantana Sangchoom b, Robert Mokaya b

a Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
b School of Chemistry, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK

Abstract

This paper describes the development of a design technique using hygrothermal numerical modelling for top-down predictive design and optimisation of water vapour sorption isotherms to match any humidity buffering application. This was used to inform the design and synthesis of two new mesoporous silica (MS) materials suitable for specific applications. To validate the technique, the new materials were experimentally assessed using gravimetric dynamic vapour sorption (DVS). The experimental isotherms closely matched the optimised isotherm predictions from the design stage, and a positive correlation was observed between the rate of change in adsorbed water content, Δw and the time taken to exceed the permissible upper limit of humidity, ϕU in a closed environment. A positive non-linear correlation was determined between the interior volumetric moisture load, ωvml and the mass of adsorbent required to fully achieve humidity buffering between specified lower/upper limits (ϕL and ϕU). The kinetics of water vapour sorption/desorption were found to have general agreement when using the current hygrothermal numerical model. Current hygrothermal models appear to significantly underestimate the rate of adsorption/desorption in rapid-response mesoporous silica type materials. This is perhaps largely due to the current lack of consideration for scanning curve prediction within hysteresis loops and so is a priority for future research.

1. Introduction

Regulation of the psychrometric variables within pre-defined upper/lower limits, to match the requirements of ‘closed environments’ (e.g. cars, aircraft, buildings, incubators, laboratories, archives, etc.) accounts for the vast majority of global energy consumption and all associated emissions [1–3]. The study of hygrothermics considers an enclosed volume of air in which the psychrometric conditions are isolated from the exterior environment by limiting the exchange of heat, air, and moisture. In relative humidity (RH) buffering applications desirable hygrothermal behaviour is a material’s capacity for simultaneous buffering of fluctuations in energy (air enthalpy) and mass (water vapour) concentration with respect to equilibrium moisture content [4,5]. Some examples of moisture buffering applications in closed environments are preventing mould formation [6–9], building fabric damage [10–12], regulating thermal comfort for human activities [13–17], and energy efficient retrofit of existing/older buildings [18–20]. On the other hand, disregarding RH buffering from hygrothermal materials lead to energy and cost penalties. These are caused by relying on continuous use of air conditioning (normally oversized) regardless of occupation, reducing the efficiency of the systems and increasing the energy consumption [21–23]. Advanced mesoporous materials could be then used to fully buffer fluctuations in psychrometric variables by designing them to have hygrothermal properties compatible with the pre-defined upper/lower limits of any closed environment.

Hygrothermics studies the coupled phenomena in porous solids that occur as a result of adsorption, diffusion, and desorption of heat and moisture (liquid and vapour phases). The moisture storage function is one of several hygrothermal functional properties, where w = f(ϕ) defines the non-linear relationship between the mass of adsorbed water and the ratio of vapour pressure to saturation vapour pressure; known as a sorption isotherm when at constant temperature. The maximum value for w depends on n, corresponding to total pore volume, whilst λ(w) describes the positive dependency of thermal conductivity on w. The summation of cp for the adsorbent and adsorbate describe stored energy, whilst...
substantial heat transfer can occur due to both heat of adsorption and evaporation/condensation of the adsorbate during transport. In the hygroscopic domain, the (Fickian) diffusion coefficient is a function of relative vapour pressure, \(\mu(\phi) \), as a result of pore network constrictions by condensation domain, the (Fickian) diffusion factor, –

- **Nomenclature**

Symbol	Definition
\(\rho \)	bulk density, kg/m\(^3\)
\(\mu_\text{P} \)	specific heat capacity, \(J/(\text{kg K}) \)
\(\lambda(W) \)	moisture-dependent thermal conductivity, \(W/(\text{m K}) \)
\(\varphi \)	relative vapour pressure (\(P_v/P_{\text{sat}} \)), –
\(n \)	bulk porosity, m\(^3\)/m\(^3\)
\(w = f(\phi) \)	water vapour sorption isotherm, kg/m\(^3\)
\(\mu(\phi) \)	water vapour diffusion factor, –
\(D_\mu(W) \)	liquid water diffusivity, m/s
RH	relative humidity; where \(\phi \geq 100 \%, \% \)
\(\psi_{\text{ml}} \)	volumetric moisture load, g/h/m\(^3\)
\(H \)	total enthalpy, J/m\(^3\)
\(h_v \)	latent heat of phase change, J/kg
\(t \)	time, s
\(T \)	temperature, K
\(\nu_p \)	vapour permeability, kg/(m s Pa)

Suffixes

- \(I \): interior |
- \(E \): exterior |
- \(L \): lower limit |
- \(U \): upper limit

Fig. 1. Contra- and counter flow of mass transport. Adapted from Ref. [27].

Powder X-ray diffraction (XRD) analysis was performed using a PANalytical X’Pert PRO diffractometer with Cu-K\(\alpha \) radiation (40 kV, 40 mA), 0.02 step size and 50 s step time. Nitrogen sorption isotherms and textural properties were determined at –196 °C using a conventional volumetric technique by a Micrometrics ASAP 2020 sorptometer. Before analysis, the samples were first dried at 130 °C and then outgassed under vacuum at 200 °C for 12 h. The surface area of the materials was determined using the standard Brunauer–Emmett–Teller (BET) method based on adsorption data in the relative pressure (\(P/P_0 \)) range of 0.05–0.2, and pore volume was calculated from the amount of nitrogen adsorbed at \(P/P_0 \) of ca. 0.99.
Download English Version:

https://daneshyari.com/en/article/72607

Download Persian Version:

https://daneshyari.com/article/72607

Daneshyari.com