Association between dose reduction of renin-angiotensin-aldosterone system inhibitors before coronary artery angiography and acute kidney injury: a propensity score-matched study

Hiroyuki Hashimoto, Masato Takeuchi and Koji Kawakami
Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan

ABSTRACT
Objective: The aim of this study was to investigate the association between dose reduction of renin-angiotensin-aldosterone system inhibitors (RAASis) and Acute kidney injury (AKI). AKI, which is commonly observed in hospitalized patients, increases mortality. Although RAASis and coronary artery angiography (CAG) are reported to be risk factors for AKI, whether dose reduction of RAASis can prevent AKI after CAG remains unknown.

Methods: In this retrospective propensity score (PS)-matched cohort from the RWD database, which includes 20 million patients from 190 hospitals in Japan, we examined the impact of dose reduction of RAASis on the development of AKI after CAG. The subjects were patients with an estimated glomerular filtration rate (eGFR) of 15–60 mL/min/1.73 m², and the exposure of interest was the presence of a dose reduction in RAASis within 3 days before CAG was performed. Propensity score matching was performed with 19 baseline characteristics using a logistic regression model.

Results: We identified 3329 patients who were prescribed RAASis at least one month before admission and underwent CAG. Six hundred seventy-four patients had a dose reduction 3 days prior to undergoing CAG, and 2655 patients did not. AKI was observed in 34 (5.0%) patients in the reduction group and 137 (5.2%) patients in the control group. There was no significant difference in the primary outcome between the two groups in the PS-matched cohort (OR: 1.08, 95% CI: 0.70–1.66).

Conclusions: A reduction in the dose of RAASis did not prevent the development of AKI among patients undergoing CAG.

Introduction
Acute kidney injury (AKI), a condition that is observed in 10.5 to 22.0% of inpatients, increases mortality and prolongs the length of hospital stay1–3. Renin-angiotensin-aldosterone system inhibitors (RAASis) and coronary artery angiography (CAG) are reported to be risk factors for AKI4–6. Although some doctors empirically reduce the dose of RAASis before performing CAG, whether dose reduction of RAASis can prevent AKI remains unclear. Three randomized controlled trials (RCTs) were conducted to confirm the efficacy of the dose reduction of RAASis on renal function among patients undergoing CAG; however, there were no differences in the development of AKI between the reduction group and the control group in any of the studies7–10. These results may be due to the following two reasons. First, the sample sizes were small in all studies. Second, the RAASI dose was reduced within 24 h before CAG. The timing of reduction was too late in all studies considering the half-life of RAASis, which is reported to be up to 24 h11. For these reasons, a study with a longer reduction period and a larger sample size is needed to assess the efficacy of dose reduction of RAASis for preventing AKI. The objective of this study was to investigate the association between dose reduction of RAASis and AKI among patients undergoing CAG using a Japanese health care record database.

Methods
Study design and setting
The RWD database, which is administered by the Health, Clinic and Education Information Evaluation Institute (HCEI, Kyoto, Japan), was used for this retrospective cohort study12,13. The HCEI is a not-for-profit research and service foundation in Japan. Real World Data Co., Ltd. (Kyoto, Japan) supports the HCEI in data collection and standardization. The RWD database includes the data of 20 million patients from 200 hospitals in Japan. This information consists of demographic data, prescriptions, laboratory results, diagnoses with International Statistical Classification of Diseases and Related Health Problems, 10th Revision codes (ICD-10 codes) and
inpatient and outpatient procedures. These data are handled by allocating a unique identifier to each individual. We did not link these data with any other databases.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of Kyoto University and was registered in the University hospital Medical Information Network (registration number: R000057896). We performed this study in accordance with the ethical standards set down in the 1964 Declaration of Helsinki and its later amendments. Informed consent was not needed because the data were anonymized.

Data collection and definitions

We included inpatients aged 18 or older who were prescribed RAASis for at least one month prior to admission and were undergoing CAG during hospitalization between April 2005 and March 2019. Only first admissions with CAG and those who had a creatinine measurement within 30 days prior to CAG were included in our study. To restrict the focus to patients at risk of AKI, only patients with an estimated glomerular filtration rate (eGFR) of 15–60 mL/min/1.73 m² were included. To minimize the influence of acute myocardial infarction, unstable angina and the dosage of contrast media, we focused on patients undergoing CAG without percutaneous coronary intervention. Patients undergoing dialysis within 3 days after admission were excluded. Patients with missing values for the primary diagnosis were also excluded because the primary diagnosis was treated as one of the explanatory variables in a previous study and may influence the incidence of AKI. The exposure of interest was the presence of a dose reduction in RAASis during the 3 days before CAG was performed. The definition of dose reduction in RAASis was the change in the ratio of the prescribed dose to the defined daily dose (dose/DDD), which is defined by the World Health Organization. We calculated the dose/DDD of RAASis for all hospitalization days. If the dose/DDD was reduced, the patient was considered to have received a dose reduction of the RAASi and was included in the reduction group. For example, even if there was a change from an angiotensin receptor blocker (ARB) to an angiotensin-converting enzyme inhibitor (ACEi), we did not consider that a reduction unless there was a change in the dose/DDD. We included both discontinuations and dose reductions in the exposure group to avoid misclassification of discontinuations of only one medication for patients prescribed two or more RAASis. The difference in the impact on the development of AKI between discontinuations and reductions (excluding discontinuations) was assessed in the subgroup analysis.

Propensity score matching

We calculated the propensity score (PS) for each patient to balance the baseline characteristics of each group. PSs were estimated using a logistic regression model. The explanatory variables for the model were age, sex, Charlson Comorbidity Index (CCI) score, intensive care unit admission, baseline serum creatinine defined as the last measured serum creatinine level before CAG, primary diagnosis on admission, infection, acute heart failure, hemoglobin, hyponatremia, transfusion, hydration with extracellular fluid, intra-aortic balloon pumping, N-acetyl cysteine, platinum-based chemotherapy, and the use of diuretics, amphotericin B, aminoglycosides, glycopeptides, and nonsteroidal anti-inflammatory drugs. The definitions of these explanatory variables are described in Supplementary Data, Table S1. To ensure balance between the two groups, calipers were applied to maintain statistical power. Standardized differences were used to assess comparability between the two matched cohorts.

Sample size calculation

We also estimated the required sample size to detect the difference in the development of AKI between the two groups because the present study was planned based on the hypothesis that previous studies did not include a sufficient number of patients. The incidence of AKI was set at 10% in the reduction group and 15% in the control group. The effect size was based on a systematic review of 3 RCTs. The required sample size was calculated to be 525 in the reduction group and 1050 in the control group, assuming an alpha error of 0.05, a power of 0.8, and an enrollment ratio of 1:2.

Outcome measures

The primary outcome was AKI defined as an absolute increase in serum creatinine of ≥0.3 mg/dl from baseline, which was defined as the last measured serum creatinine level before CAG, within 48 h or a relative increase in serum creatinine of ≥50% within 7 days. We adopted the definition of AKI as renal injury after contrast use. This is because the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines indicated that contrast-induced nephropathy should be evaluated under the same criteria as AKI. The secondary outcomes were the need for dialysis and inhospital mortality.

Statistical analysis

Continuous variables are reported as the means and standard deviations, and categorical variables are reported as numbers and percentages. First, we described the characteristics of the patients in each group. Binary logistic regression was used to assess significant univariate associations between the reduction group and the control group with the outcomes for the PS-matched cohort. The results are presented as odds ratios (ORs) and 95% confidence intervals (CIs). We defined the main result as the OR in the PS-matched cohort.

Sensitivity analysis was performed by changing the period of time of dose reduction from 1 to 14 days to detect the appropriate timing of dose reduction of RAASis. We also...
performed subgroup analysis to investigate the interaction with age (≤65 and >65 years), type of RAASi (ARB, ACEi, aldosterone blocker and direct renin inhibitor (DRI)), history of diabetes, baseline eGFR (<30, 30–45 and ≥45 mL/min/1.73 m²) and dose reduction or discontinuation. Two post hoc sensitivity analyses were performed to confirm the influence of the duration of reduction and the selection bias of including patients without additional serum creatinine measurements within 7 days after CAG. P values with a two-sided test were reported, and p < .05 was considered to indicate statistical significance. We used R ver. 4.1.2 to perform all statistical analyses.

Results
We identified 11,172 patients who were prescribed RAASis at least one month before admission and who underwent CAG during hospitalization from April 2005 to March 2019. Finally, 7843 patients were excluded for reasons such as age, baseline eGFR, dialysis within three days after admission and no primary diagnosis, and 3329 patients were ultimately included in this retrospective cohort study (Figure 1). Six hundred seventy-four patients were included in the reduction group, and 2655 were included in the control group in the entire cohort. A total of 3329 patients were matched using PSs. After PS matching, 671 patients were matched in the control group, and 1336 were included in the control group in the entire cohort. The baseline characteristics of each group in the entire cohort and PS-matched cohort are described in Table 1. The standardized differences for all variables were balanced after PS matching. AKI was observed in 34 (5.0%) patients in the reduction group and in 137 (5.2%) patients in the control group in the entire cohort. The risk of developing AKI was not different between the reduction group and the control group in the entire cohort (OR: 0.98, 95% CI: 0.66–1.44). In terms of the need for dialysis and in-hospital mortality, there were no significant differences between the two groups among all subgroups.

Sensitivity analysis
We performed a sensitivity analysis by changing the periods of dose reduction of RAASis to 1, 3, 7 and 14 days. The OR was 1.22 (95% CI: 0.75–1.98) for the period of 1 day and 1.17 (95% CI: 0.83–1.66) for the period of 14 days. The results of the sensitivity analysis are shown in Table 3. There was no significant difference between the reduction group and the control group for any length of reduction in the PS-matched cohort. To examine the impact of the duration of RAASis reduction, a post hoc analysis was performed excluding patients with RAASi reduction in a short period of time before CAG was performed (Table S3). Another post hoc sensitivity analysis was performed to confirm the selection bias of including patients without additional serum creatinine measurements within 7 days after CAG (Table S4). The results of the post hoc analyses were consistent with the results of the main analysis.

Subgroup analysis
We performed subgroup analysis for age, type of RAASi, history of diabetes and baseline eGFR to investigate the interaction with the dose reduction of RAASis. The results of the subgroup analysis are presented in Table 4. In terms of the type of RAASi, the sample size of the DRI subgroup was not enough to calculate the odds ratio, and we could not assess the interaction with reduction. For the other 3 types of RAASis, age, history of diabetes, baseline eGFR and degree of reduction, no significant difference was observed between the two groups among all subgroups.

Discussion
In the analysis of the PS-matched cohort of 2007 patients undergoing CAG who were at risk of AKI, we did not find any association between the reduction in the dose of RAASis.
Our findings were consistent with those of previous studies. There were no associations between a reduction in RAASI dose and the development of AKI or contrast-induced nephropathy (CIN). We hypothesized that these negative results were due to the small sample size and the excessively short period of RAASI dose reduction. Although the current study was designed to resolve these issues, the results were consistent with those of previous studies.

One possible explanation for these results may be attributed to hydration. Generally, RAASI treatment reduces the blood flow of the glomerulus by lowering blood pressure and dilating efferent arterioles. Contrast media also reduces the blood flow of the glomerulus through vasoconstriction and dilating efferent arterioles. Contrast-induced nephropathy (CIN) is thought to develop due to the synergistic effect of the decrease in renal blood flow and the development of AKI or contrast-induced nephropathy (CIN). We hypothesized that these negative results were due to the small sample size and the excessively short period of RAASI dose reduction. Although the current study was designed to resolve these issues, the results were consistent with those of previous studies.

and the development of AKI. The results were not changed in the sensitivity analysis. Moreover, no interactions were observed between the dose reduction of RAASIs and age, the type of RAASI or baseline eGFR in the subgroup analysis. Although the dose reduction of RAASIs was not associated with in-hospital mortality, the risk of need for dialysis was significantly higher in the reduction group.

Our findings were consistent with those of previous randomized controlled trials and systematic reviews. In previous studies, there were no associations between a reduction in RAASI dose and the development of AKI or contrast-induced nephropathy (CIN). We hypothesized that these negative results were due to the small sample size and the excessively short period of RAASI dose reduction. Although the current study was designed to resolve these issues, the results were consistent with those of previous studies.

One possible explanation for these results may be attributed to hydration. Generally, RAASI treatment reduces the blood flow of the glomerulus by lowering blood pressure and dilating efferent arterioles. Contrast media also reduces the blood flow of the glomerulus through vasoconstriction. Acute kidney injury is thought to develop due to the synergistic effect of the decrease in renal blood flow caused by contrast and RAASI treatment. However, as shown in the present study, 49.1% of the control group received extracellular fluid infusion, which may have interfered with
the mechanism of AKI development. Hydration with extracellular fluid infusion may have closed the gap between the two groups and resulted in no difference. Some studies have reported that hydration can prevent the development of AKI after contrast use. Another possible explanation of our results is attributed to the effect of RAASis on decreasing distal tubular consumption for tubular reabsorption. Since hypoxic AKI in the situation is principally attributed to outer medullary hypoxia, RAAS blockade may maintain medullary oxygenation by attenuating the GFR. Moreover, the attenuation of RAAS blockade itself may mask the deterioration in kidney function by increasing the GFR.

Strengths and limitations

There are 3 strengths in this study. First, we applied PS matching to balance the baseline characteristics between the reduction group and the control group. In the absence of randomization, the establishment of a valid comparison has increasingly been found in previous studies. This method has been recommended for assessing the association between contrast and AKI. Moreover, this method allowed us to estimate the odds ratio directly. Second, the sample size was much larger than that in previous studies. Even in the systematic review, the cumulative sample size of the RCTs was just 522 for this clinical question, and no association was observed between dose reduction and the development of AKI. We calculated the required sample size in advance and performed the analysis with greater statistical power than that in previous studies. In addressing sample size issues, our study is meaningful because this issue cannot be resolved by RCTs. Considering that there was no significant difference between the two groups even with a sufficient sample size and that the OR was 1.08 in the PS-matched cohort, the potential effect size of the dose reduction of RAASis would be trivial compared to hydration and other interventions, which were reported to have ORs of 0.29–0.31. Finally, we performed a sensitivity analysis by changing the periods of reduction in the RAASi dose. The results were consistent from a period of 1 day to 14 days. Because various types of RAASis were prescribed to the subjects and the half-life varied from 2 to 24 h, this sensitivity analysis was absolutely needed to make our results robust.

Conclusions

A reduction in the dose of RAASis did not prevent the development of AKI among patients undergoing CAG in a Japanese health care record database.

Transparency

Declaration of funding

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (grant number: 20H03941).
Declaration of financial/other relationships

Koji Kawakami has received research funds from Eisai Co., Ltd., Kyowa Kirin Co., Ltd., Sumitomo Pharma Co., Ltd., Mitsubishi Corporation, and Real World Data Co., Ltd.; consulting fees from LEBER Inc., JMDC Inc., Shin Nippon Biomedical Laboratories Ltd., and Advanced Medical Care Inc.; executive compensation from Cancer Intelligence Care Systems, Inc.; and honoraria from Mitsubishi Corporation, Pharma Business Academy, and Toppan Inc. The other authors have no conflicts of interest to declare. Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Author contributions

H.H. conducted the analysis and wrote the first draft of the manuscript. M.T. redrafted the manuscript and commented on the analysis. K.K. advised on the study design and analysis.

Acknowledgements

Not applicable.

Data availability statement

Data sharing is not permitted under HCEI policy. Readers who are interested in our dataset can contact HCEI for data availability (https://www.hcei.or.jp).

ORCID

Masato Takeuchi http://orcid.org/0000-0002-2990-2687

References

[1] McCullough PA, Wolyn R, Rocher LL, et al. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103(5):368–375.

[2] Thakar CV, Christianson A, Freyberg R, et al. Incidence and outcomes of acute kidney injury in intensive care units: a veterans administration study. Crit Care Med. 2009;37(9):2552–2558.

[3] Jabara R, Gadesam RR, Pendyala LK, et al. Impact of the definition utilized on the rate of Contrast-Induced nephropathy in percutaneous coronary intervention. Am J Cardiol. 2009;103(12):1657–1662.

[4] James MT, Samuel SM, Manning MA, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2013;6(1):37–43.

[5] Suh SH, Kim CS, Choi JS, et al. Acute kidney injury in patients with sepsis and septic shock: risk factors and clinical outcomes. Yonsei Med J. 2013;54(4):965–972.

[6] Platika M, Kashini K, Cabello-Garza J, et al. Predictors of acute kidney injury in septic shock patients: an observational cohort study. Clin J Am Soc Nephrol. 2011;6(7):1744–1751.

[7] Bayine KR, Rahim S, Etherington K, et al. Effects of withdrawing vs continuing renin-angiotensin blockers on incidence of acute kidney injury in patients with renal insufficiency undergoing cardiac catheterization: results from the angiotensin converting enzyme inhibitor/angiotensin receptor blocker arm. Am Heart J. 2015;170(1):110–116.

[8] Wolak T, Aleev E, Rogachev B, et al. Renal safety and angiotensin II blockade medications in patients undergoing non-emergent coronary angiography: a randomized controlled study. Isr Med Assoc J. 2013;15(11):682–687.

[9] Penny W, Andrew M, Tomlinson LA, et al. What are the risks and benefits of temporarily discontinuing medications to prevent acute kidney injury? A systematic review and meta-analysis penny. BMJ Open. 2017;7(4):e012674.

[10] Rosenstock JL, Bruno R, Kim JK, et al. The effect of withdrawal of ACE inhibitors or angiotensin receptor blockers prior to coronary angiography on the incidence of contrast-induced nephropathy. Int Urol Nephrol. 2008;40(3):749–755.

[11] Sanders G, Coeytaux R, Dolor R, et al. Angiotensin-Converting enzyme inhibitors (ACEIs), angiotensin II receptor antagonists (ARBs), and direct renin inhibitors for treating essential hypertension: an update. Angiotensin-Converting Enzyme. Inhib. (ACEIs), angiotensin II receptor. Antagon. (ARBs), direct renin inhibit. Treat. Essent Hypertens An Updat. 2011;34:368.

[12] Takeuchi M, Obara M, Minoura T, et al. Comparative effectiveness of sodium-glucose cotransporter-2 inhibitors versus other classes of glucose-lowering medications on renal outcome in type 2 diabetes. Mayo Clin Proc. 2020;95(2):265–273.

[13] Ide K, Fujiwara T, Shimada N, et al. Influence of acetaminophen on renal function: a longitudinal descriptive study using a real-world database. Int Urol Nephrol. 2021;53(1):129–135.

[14] Williams LMS, Walker GR, Loewenherz JW, et al. Association of contrast and acute kidney injury in the critically ill: a propensity-matched study. Chest. 2020;157(4):866–876.

[15] Rodrigo M, Ana Paula de F, Alessandra MVR, et al. Defined daily dose (DDD) and its potential use in clinical trials of resistant hypertension. Int J Cardiol. 2016;202:515–516.

[16] Teng L, Xin H, Blix H, et al. Review of the use of defined daily dose concept in drug utilisation research in China. Pharmacoeconomics Drug Saf. 2012;21(10):1118–1124.

[17] Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399–424.

[18] Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med. 2008;27(12):2037–2049.

[19] Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28(25):3083–3107.

[20] Li B, Yao J, Kawamura K, et al. Real-time observation of glomerular hemodynamic changes in diabetic rats: effects of insulin and ARB. Kidney Int. 2004;66(5):1939–1948.

[21] Deray G, Martinez F, Cacoub P, et al. A role for adenosine calcium and ischemia in radiocontrast-induced intrarenal vasoconstriction. Am J Nephrol. 1990;10(4):316–322.

[22] Rodrigo M, Ana Paula de F, Alessandra MVR, et al. Defined daily dose (DDD) and its potential use in clinical trials of resistant hypertension. Int J Cardiol. 2016;202:515–516.

[23] Teng L, Xin H, Blix H, et al. Review of the use of defined daily dose concept in drug utilisation research in China. Pharmacoeconomics Drug Saf. 2012;21(10):1118–1124.

[24] Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–c184.

[25] Normand SLT, Landrum MB, Guadagnoli E, et al. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. J Clin Epidemiol. 2001;54(4):387–398.

[26] Frohlich ED. Angiotensin convertin enzyme inhibitors. Present and future. Hypertension. 1989;13(supplement):125–130.

[27] Li B, Yao J, Kawamura K, et al. Real-time observation of glomerular hemodynamic changes in diabetic rats: effects of insulin and ARB. Kidney Int. 2004;66(5):1939–1948.

[28] Weisberg LS, Kurnik PB, Kurnik BRC. Radiocontrast-induced nephropathy in humans: role of renal vasoconstriction. Kidney Int. 1990;40(3):C197–C204.

[29] Idé J-M, Lancelot E, Pines E, et al. Prophylaxis of iodinated contrast Media-Induced nephropathy: a pharmacological point of view. Invest Radiol. 2004;39(3):1249–1254.

[30] Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3(1):288–296.
[31] Gorelik Y, Khamaisi M, Abassi Z, et al. Renal functional recovery among inpatients: a plausible marker of reduced renal functional reserve. Clin Exp Pharmacol Physiol. 2021;48(12):1724–1727.

[32] Day AG. Why the propensity for propensity scores? Crit Care Med. 2015;43(9):2024–2026.

[33] Kitsios GD, Dahabreh IJ, Callahan S, et al. Can We trust observational studies using propensity scores in the critical care literature? A systematic comparison with randomized clinical trials. Crit Care Med. 2015;43(9):1870–1879.

[34] Stuart EA. Developing practical recommendations for the use of propensity scores: discussion of “a critical appraisal of propensity score matching in the medical literature between 1996 and 2003” by peter austin, statistics in medicine. Statist Med. 2008;27(12):2062–2065.

[35] McDonald JS, McDonald RJ, Williamson EE, et al. Post-contrast acute kidney injury in intensive care unit patients: a propensity score-adjusted study. Intensive Care Med. 2017;43(6):774–784.

[36] Jurado-Román A, Hernández-Hernández F, García-Tejada J, et al. Role of hydration in contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Am J Cardiol. 2015;115(9):1174–1178.

[37] Putzu A, Boscolo Berto M, Belletti A, et al. Prevention of contrast-induced acute kidney injury by furosemide with matched hydration in patients undergoing interventional procedures: a systematic review and meta-analysis of randomized trials. JACC Cardiovasc Interv. 2017;10(4):355–363.

[38] Wheeler DC, Stefansson BV, Batiushin M, et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant. 2020;35(10):1700–1711.