Minireview

Effects of erythropoietin receptors and erythropoiesis-stimulating agents on disease progression in cancer

M Aapro*,1, W Jelkmann2, SN Constantinescu3 and B Leyland-Jones4

1Institut Multidisciplinaire d’Oncologie, Clinique de Genolier, Route du Muids 3, PO Box 100, Genolier CH-1272, Switzerland; 2Institute of Physiology, University of Lübeck, Ratzeburger Allee 160, Lübeck D-23538, Germany; 3Ludwig Institute for Cancer Research and de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, UCL 75-4, Brussels B-1200, Belgium; 4Winship Cancer Institute, Emory University, School of Medicine, 1365 Clifton Rd NE, Ste 4014, Atlanta, GA 30322, USA

Erythropoiesis-stimulating agents (ESAs) increase red blood cell (RBC) production in bone marrow by activating the erythropoietin receptor (EpoR) on erythrocytic-progenitor cells. Erythropoiesis-stimulating agents are approved in the United States and Europe for treating anaemia in cancer patients receiving chemotherapy based on randomised, placebo-controlled trials showing that ESAs reduce RBC transfusions. Erythropoiesis-stimulating agent-safety issues include thromboembolic events and concerns regarding whether ESAs increase disease progression and/or mortality in cancer patients. Several trials have reported an association between ESA use and increased disease progression and/or mortality, whereas other trials in the same tumour types have not provided similar findings. This review thoroughly examines available evidence regarding whether ESAs affect disease progression. Both clinical-trial data on ESAs and disease progression, and preclinical data on how ESAs could affect tumour growth are summarised. Preclinical topics include (i) whether tumour cells express EpoR and could be directly stimulated to grow by ESA exposure and (ii) whether endothelial cells express EpoR and could be stimulated by ESA exposure to undergo angiogenesis and indirectly promote tumour growth. Although assessment and definition of disease progression vary across studies, the current clinical data suggest that ESAs may have little effect on disease progression in chemotherapy patients, and preclinical data indicate a direct or indirect effect of ESAs on tumour growth is not strongly supported.

Keywords: disease progression; erythropoietin receptor; erythropoiesis-stimulating agents

Anaemia is often associated with chemotherapy treatment because of the myelosuppressive effects of chemotherapy and/or the cancer disease itself (Groopman and Itri, 1999; Ludwig et al, 2004). As anaemia can lead to fatigue and decreased quality of life (Cella et al, 2004), its management is important for patient care. Anaemia therapies include red blood cell (RBC) transfusions and erythropoiesis-stimulating agents (ESAs), which increase RBC production in bone marrow by activating the erythropoietin receptor (EpoR) on erythrocytic-progenitor cells (Egrie et al, 1986, 2003). Transfusions quickly increase haemoglobin levels but are associated with risks such as transmission of infectious pathogens and transfusion-related acute-lung injury (Klein et al, 2007). Large, placebo-controlled clinical trials have shown that ESAs decrease transfusion rates in cancer patients (Littlewood et al, 2001; Vansteenkiste et al, 2002; Hedensu et al, 2003). Based on these trials, ESAs such as epoetin alfa and darbepoetin alfa are approved in the United States (Amgen, 2011; Centocor Ortho Biotech Products, 2011) and other countries (EMEA, 2011; eMC, 2011) for treating anaemia in patients with non-myeloid malignancies receiving chemotherapy. Additional ESAs are approved outside the United States for this indication (Jelkmann, 2010).

Clinical and preclinical research has examined the benefits and risks associated with ESA use. Although ESAs decrease transfusions, they are associated with an increase in thromboembolic events (Bennett et al, 2008; Glaspy et al, 2010). The potential for ESAs to affect disease progression and/or mortality in cancer patients has also been of concern (Bennett et al, 2008; Bohlius et al, 2009; Tonelli et al, 2009; Glaspy et al, 2010). To better understand ESA-related safety issues, several recent large meta-analyses have examined how ESAs affect thromboembolic events and mortality. Disease progression, however, was not always addressed (Bennett et al, 2008; Bohlius et al, 2009). Difficulties in analysing disease progression include variation in endpoints (e.g., progression-free survival, locoregional control, tumour response, etc.) and varying quality of disease-assessment measurements. Nonetheless, understanding if and how ESAs impact disease progression are key issues. This narrative review discusses clinical-trial data regarding ESAs and disease progression as well as preclinical research regarding how ESAs could affect disease progression at a cellular/molecular level.

ERYTHROPOIESIS-STIMULATING AGENTS AND DISEASE PROGRESSION: EVIDENCE FROM CLINICAL TRIALS

As anaemia is an independent-risk factor for mortality in many cancer types (Caro et al, 2001), one question of interest was
whether treating anaemia with ESAs improves cancer-patient survival. Higher haemoglobin levels were postulated to enhance tumour-tissue oxygenation, leading to increased chemotherapy and/or radiotherapy efficacy (Hadland and Longmore, 2009). Though some preclinical (Thews et al, 1998; Mittelman et al, 2001) and early clinical data (Littlewood et al, 2001; Vansteenkiste et al, 2002) suggested an ESA-associated survival benefit, other trials suggested that ESAs increased disease progression and/or mortality. Currently, the ESA-product labelling (Amgen, 2011; Centocor Ortho Biotech Products, 2011; EMEA, 2011; eMC, 2011) describes eight clinical trials of concern that suggest ESA use increases disease progression and/or mortality in cancer patients (Table 1). Two studies were performed in the non-indicated setting of disease progression and/or mortality in cancer patients (Table 1). Two studies were performed in the non-indicated setting of disease progression and/or mortality in cancer patients (Table 1). Two studies were performed in the non-indicated setting of disease progression and/or mortality in cancer patients (Table 1).

Radiotherapy only setting

The Erythropoietin in Head and Neck Cancer (ENHANCE) study was one of the first clinical trials to raise concerns about ESAs and disease progression (Table 1) (Henke et al, 2003). In this study, head and neck cancer patients scheduled to receive radiotherapy only (N=351) were randomised to placebo or epoetin beta 300IU kg⁻¹ 3 × weekly. This study tested whether using ESAs to increase haemoglobin to ≥14 g dl⁻¹ would enhance curative radiation by improving tumour oxygenation. An intent-to-treat analysis stratified by cancer stage and treatment indicated that ESA-treated patients experienced increased locoregional progression (relative risk RR=1.70; 95% CI: 1.16–2.47; P=0.007) and decreased survival (RR=1.39; 95% CI: 1.05–1.84; P=0.02).

Table 1 Controlled ESA oncology trials included in the meta-analysis by Glaspy et al (2010) that examined whether ESAs affect disease progression

Study publication	Study number or alias	Tumour type	Number of patients analysed	Odds ratio (95% CI) for disease progression
Radiotherapy only setting				
Henke et al, 2003³	ENHANCE	Head and neck	513	1.77 (1.25–2.52)
Overgaard et al, 2007³⁺⁻	SE-2002-9001 (DAHANCA-10)	Head and neck	351	1.56 (1.01–2.39)
Machay et al, 2007	RTOG-99-03	Head and neck	148	1.05 (0.55–2.00)
Identified as unpublished in Glaspy et al, 2010⁷	EPO-GBR-7	Head and neck	300	1.02 (0.65–1.62)
Anemia of cancer setting				
Wright et al, 2007³⁴	EPO-CAN-20	NSCLC	70	1.08 (0.30–3.95)⁶
Smith et al, 2008⁶	AMG 2000103	Non-myeloid malignancies	985	No disease progression data collected
Chemotherapy setting				
Osterborg et al, 1996⁷	MF250	Haematological	144	1.20 (0.60–2.40)
Littlewood et al, 2001³⁺⁻	EPO-INT-10	Solidoid-myoed malignancy	375	0.64 (0.40–1.02)
Pronzato et al, 2001⁷	EPO-INT-47	Breast	223	1.02 (0.46–2.26)
Vansteenkiste et al, 2002	AMG 982097	SCLC and NSCLC	314	0.58 (0.30–1.11)
Hedenus et al, 2003³⁺⁻	AMG 20000161	Haematological	344	1.08 (0.66–1.76)
Milroy et al, 2003³⁺⁻	EPO-INT-49	NSCLC	424	0.90 (0.57–1.41)
Blohmer et al, 2008¹⁰	AGO/NOOGO	Cervical	250	0.61 (0.33–1.13)
Vadhan-Raj et al, 2004³⁺⁻	EPO-GER-B	Gastric and rectal	60	1.01 (0.35–2.94)
Chang et al, 2005⁴	EPO-CAN-17	Breast	354	0.82 (0.39–1.72)
Grote et al, 2005⁴	N93-004	SCLC	224	0.85 (0.50–1.44)
Leyland-Jones et al, 2003³⁺⁻	EPO-INT-7 (BEST)	Breast	939	0.84 (0.64–1.08)
Osterborg et al, 2005⁵	MF4467	Haematological	343	0.74 (0.44–1.25)
Witzig et al, 2005⁵	PR98-27-008	Mixed	344	1.20 (0.75–1.91)
Wilkinson et al, 2006⁴	EPO-INT-45	Ovarian	181	7.47 (0.95–58.54)
Englert et al, 2007⁴	GHSC	Hodgkin’s lymphoma	688	0.86 (0.33–2.24)
Moebus et al, 2007⁵	EPO-GER-7	Breast	643	1.05 (0.75–1.48)
Aapro et al, 2008	BRAVE	Breast	463	1.07 (0.82–1.40)
Pirker et al, 2008	AMG 2000145	SCLC	596	0.87 (0.52–1.46)
Strauss et al, 2008²	MARCH	Cervical	74	0.87 (0.32–2.33)
Thomas et al, 2008²	GOO-191	Cervical	109	1.02 (0.48–2.15)
Untch et al, 2008²⁺⁻	PREPARE	Breast	733	1.36 (0.97–1.91)

Abbreviations: BEST = Breast Cancer Erythropoietin Survival Trial; CI = confidence interval; DAHANCA-10 = The Danish Head and Neck Cancer-10, ENHANCE = Erythropoietin in Head and Neck Cancer; EPO = erythropoietin; NSCLC = non-small cell lung cancer; PREPARE = The Preoperative Epirubicin Paclitaxel Aranesp; RTOG = The Radiation Therapy Oncology Group; SCLC = small cell lung cancer. Data are from the Glaspy et al (2010) study-level meta-analysis of controlled ESA trials in the oncology setting that reported survival data (these data are not from the ESA-product labels). Odds ratios were calculated using a random effects model. References listed refer to those used for the Glaspy et al (2010) meta-analysis. ¹ESA oncology studies of concern described in the ESA-product labeling. ²As the Glaspy et al (2010) meta-analysis, updated publications have been made available for these studies. ³The study published by Wright et al (2007) did not formally collect disease progression data. Disease progression was based on the reported deaths because of progressive lung cancer. ⁴Studies in which disease progression was evaluated only as part of tumour assessment. ⁵Patients received chemotherapy and radiotherapy.
However, results analysed ‘per protocol’ indicated no significant effect of ESAs on disease progression. Study limitations included multiple protocol violations and imbalances in some baseline characteristics (e.g., more ESA-treated patients had relapsed cancer and were smokers). A post-hoc analysis of EpoR expression in tumour cells from ESA-treated and control patients suggested that locoregional progression-free survival was poorer in ESA-treated patients with EpoR-positive tumours (Henke et al, 2006). However, the EpoR antibody used was later shown to be non-specific because of cross-reactivity with heat-shock proteins (Elliott et al, 2006; Brown et al, 2007).

The Danish Head and Neck Cancer-10 (DAHANCA-10) study in head and neck cancer patients receiving radiotherapy only evaluated whether using darbepoetin alfa (150 mg weekly) to maintain haemoglobin between 14.5 and 15.5 g dl\(^{-1}\) could improve the effect of primary-curtative radiotherapy (Overgaard et al, 2010). Study outcomes were recently reported (Overgaard et al, 2010) but have yet to be published in a manuscript. Overall, results from 514 patients showed poorer disease progression and survival outcomes in the darbepoetin arm. The RR was 1.51 (95% CI: 1.05–2.17) for 5-year locoregional control, 1.52 (95% CI: 1.07–2.16) for disease-free survival, and 1.39 (95% CI: 0.98–1.97) for overall survival (Overgaard et al, 2010).

Although the ENHANCE and DAHANCA-10 trials suggested ESA use increases disease progression, this finding was not replicated in two randomised, controlled trials in the radiotherapy setting for the treatment of patients with head and neck cancer (Table 1). The Radiation Therapy Oncology Group (RTOG 99-03) trial that evaluated 40 000 IU weekly erythropoietin (Epo) to maintain haemoglobin between 9.0 and 13.5 g dl\(^{-1}\) (Machtay et al, 2007) and the controlled EPO-GBR-7 trial (Hoskin et al, 2009) that evaluated 10 000 IU three times weekly epoetin alfa (haemoglobin <12.5 g dl\(^{-1}\)) or 4000 IU three times weekly epoetin alfa (haemoglobin ≥12.5 g dl\(^{-1}\)), did not show ESA use increased disease progression. Nonetheless, based on the ENHANCE and DAHANCA-10 studies, the ESA-product labelling does not recommend ESA use in the radiotherapy-only setting.

Anaemia of cancer setting

The EPO-CAN-20 study evaluated non-small cell lung cancer patients randomised to epoetin alfa (40 000 IU weekly) or placebo (Wright et al, 2007). Enrolled patients received neither chemotherapy nor radiotherapy, although this was not stipulated in the trial design. An unplanned-interim analysis (N = 66) indicated that ESA use increased mortality (hazard ratio (HR) = 1.84; 95% CI: 1.01–3.35; P = 0.04). Though the target study size was 300 patients, concerns about ESA-associated mortality led to study termination after 70 patients were randomised. Final results indicated that death occurred in 32 out of 33 patients receiving ESA and in 34 out of 37 patients receiving placebo. Kaplan–Meier curves of overall survival indicated that the median time to death favored placebo treatment (131 days) compared with ESA (68 days; P = 0.04). Disease progression data were not formally collected.

The AMG 20000161 study evaluated 985 patients with non-myeloid malignancies and anaemia of cancer randomised to receive darbepoetin alfa (6.75 µg kg\(^{-1}\) every 4 weeks) or placebo (Smith et al, 2008). No disease progression data were collected per study protocol, but a mortality analysis adjusted for stratification factors that impact ESA response indicated increased mortality in the ESA arm (HR = 1.22; 95% CI: 1.03–1.45; P = 0.022) (Smith et al, 2008). However, exploratory analyses (adjusted for baseline imbalances or known prognostic factors and for stratification factors that impact ESA response) diminished the mortality HR and statistical significance (HR = 1.15; 95% CI: 0.97–1.37; P = 0.121), suggesting that the possible negative effect of ESAs did not apply to all patient subsets. Of note, the mortality HR (95% CI) was 0.95 (0.73–1.23) for female patients compared with 1.32 (1.05–1.66) for male patients; however, the interaction between sex and treatment group was not statistically significant (P = 0.066) (Smith et al, 2008).

Based on mortality data from the EPO-CAN-20 and AMG 20010103 studies, the ESA-product labelling does not recommend ESA use in the anaemia-of-cancer setting.

Chemotherapy setting

The Breast Cancer Erythropoietin Survival Trial (BEST) was one of the first chemotherapy studies to report an association between increased mortality and ESA use (Leyland-Jones et al, 2003). Patients (N = 939) with metastatic breast cancer were randomised to either epoetin alfa (40 000 IU weekly) or placebo as needed for up to 12 months; haemoglobin levels were maintained between 12 and 14 g dl\(^{-1}\). Although the target sample size was achieved, an independent data-monitoring committee recommended early termination of study-drug administration because of an interim analysis that indicated higher mortality in the ESA arm. In an intent-to-treat analysis adjusted for demographic and prognostic factors, mortality was reported as significantly higher in the ESA arm at 12 months (HR = 1.36; 95% CI: 1.053–1.753; P = 0.02). However, no difference in progression-free survival was observed (HR = 1.00; P = 0.98). An article written on behalf of the BEST investigators suggested that study-design issues (including possible imbalances in risk factors between study arms) (Leyland-Jones, 2003) may have prevented a conclusive interpretation of trial results. In addition, understanding the disease progression results may have been hampered by lack of prespecified tumour assessments at study entry, during the study, and during follow-up (Johnson and Johnson Pharmaceutical Research and Development LLC, 2004).

The AMG 20000161 study evaluated patients with lymphoproliferative malignancies receiving chemotherapy (N = 344), who were randomised to receive darbepoetin alfa (2.25 µg kg\(^{-1}\) weekly) or placebo for 12 weeks. The target haemoglobin level was 13–14 g dl\(^{-1}\) for women and 13–15 g dl\(^{-1}\) for men (Hedenus et al, 2003). The protocol was amended to allow collection of long-term follow-up data for survival and disease progression. Hedenus et al (2003) reported that after a median follow-up of 11 months, an initial analysis of long-term data indicated no difference between treatment groups for disease progression or death. After a median follow-up of 29 months, a prespecified analysis indicated higher mortality rates in ESA-treated patients (HR = 1.36; 95% CI: 1.02–1.82) (Amgen, 2011). Erythropoiesis-stimulating agent use was not reported to affect disease progression (Amgen, 2011). Only limited conclusions can be drawn, however, as this study was neither designed to evaluate long-term survival or disease progression outcomes nor stratified to balance relevant prognostic factors.

The Gynaecologic Oncology Group (GOG)-191 study was conducted in cervical cancer patients receiving chemotherapy who were randomised to receive or not receive recombinant Epo (40 000 IU weekly) during treatment (the overall radiation treatment time was ≤8 weeks). This trial assessed whether maintaining haemoglobin levels of 13–14 g dl\(^{-1}\) would improve survival and progression outcomes (Thomas et al, 2008). Based on concerns of increased thromboembolic events in the ESA arm, breast patients treated after <25% of the planned accrual (460 patients were targeted to allow for 165 recurrences within 2 years). After a median follow-up of 37 months, results from 109 patients (52 in the control arm and 57 in the ESA arm) indicated that 25% of control patients and 33.3% of ESA-treated patients experienced disease recurrences; however, this result was not statistically significant (P = 0.65) (Thomas et al, 2008). At ~3 years, 73% of control patients and 61% of ESA-treated patients were still alive; 65% of control patients and 60% of ESA-treated patients were progression-free (Thomas et al, 2008). As this trial closed prematurely, the effect of ESAs on progression and mortality in this study remains undetermined.

The Preoperative Epirubicin Pacitaxel Aranesp (PREPARE) study evaluated the effect of preoperative dose-dense, dose-
intensified chemotherapy with anthracyclines and taxanes in breast cancer patients (N = 733). A second randomisation assigned patients to receive or not receive darbepoetin alfa 4.5 μg kg−1 every 2 weeks to maintain haemoglobin concentrations between 12.5–13 g dl−1. Secondary endpoints included the effect of darbepoetin alfa on disease-free survival and overall survival. After a median follow-up of ~3 years, an unplanned-interim analysis of 733 patients indicated that survival and progression-free survival rates were lower in ESA-treated patients (this difference was not statistically significant) (Ampen, 2008). Final results from the PREPARE trial were recently published in two manuscripts (Untch et al, 2011a, 2011b). When comparing ESA-treated patients with control patients, the 3-year estimated HR (95% CI) was 1.31 (0.99–1.74; P = 0.061) for disease-free survival and 1.33 (0.91–1.95; P = 0.139) for overall survival (Untch et al, 2011b). Though these results suggest a trend of decreased disease-free survival with darbepoetin alfa use, the findings were not statistically significant. Darbepoetin alfa use did not affect pathological-complete response (Untch et al, 2011a).

In summary, of the eight oncology studies of concern described in the ESA-product labelling, the two conducted in head and neck cancer patients receiving radiotherapy only showed the strongest evidence for an association between ESA use and disease progression. A recent study level meta-analysis by Glaspery et al (2010) reported an odds ratio (OR) for disease progression for each of the eight studies of concern. These results also suggested that only the ENHANCE and DAHANCA-10 studies demonstrated a statistically significant impact of ESA use on disease progression (Table 1).

Additional chemotherapy studies

As the eight studies of concern were added to the ESA-product labelling, several large trials published between 2008 and 2010 have reported data regarding ESAs and disease progression in the chemotherapy setting. Four larger additional studies are described below.

The randomised, placebo-controlled AMG 20010145 study in small-cell lung cancer patients receiving chemotherapy (N = 596 evaluated) compared overall survival (primary endpoint) and disease progression (additional efficacy endpoint) in patients receiving darbepoetin alfa (haemoglobin <13 g dl−1) (Pirker et al, 2008). This is one of the few controlled ESA trials in which all patients received the same chemotherapy regimen and in which tumour progression was assessed radiographically using blinded-centralised review. Published results of analyses stratified by randomisation factors indicated no significant difference between the two arms for progression-free survival (HR = 1.02; 95% CI: 0.86–1.21; P = 0.82) or overall survival (HR = 0.93; 95% CI: 0.78–1.11; P = 0.43) (Pirker et al, 2008).

Results from an Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) phase 3 trial (Moebus et al, 2010) were recently published. This trial compared dose-dense chemotherapy vs conventionally scheduled chemotherapy in high-risk primary breast cancer patients with or without endometrial lymph node involvement. Patients in the dose-dense arm (N = 641 evaluated) were additionally randomised to receive or not receive epoetin alfa (haemoglobin at 12.5–13 g dl−1). In ad-hoc analyses, the manuscript reported that epoetin alfa did not affect overall survival or event-free survival (defined as locoregional or distant relapse, contralateral breast cancer, second primary-cancer occurrence, or death) but that detailed information will be communicated in a later publication (Moebus et al, 2010). (Of note, the most recent available data from the AGO trial were used in the meta-analysis of controlled ESA trials by Glaspery et al (2010) that examined the impact of ESAs on mortality/disease progression).

Results from the large GHSG HD15EPO trial were also recently published. Patients (N = 1328 evaluated for safety) with advanced Hodgkin’s lymphoma receiving chemotherapy were randomised to epoetin alfa or placebo (haemoglobin at 12–14 g dl−1 during chemotherapy and <12 g dl−1 after chemotherapy) (Engert et al, 2010). Results indicated that after a median-observation period of 3 years, epoetin alfa had no impact on freedom-from-treatment failure (HR = 0.87; 95% CI: 0.63–1.20) or overall survival (HR = 0.74; 95% CI: 0.45–1.22) (Engert et al, 2010).

A LNH03-6B Groupe d’ Etude des Lymphomes de l’ Adulte (GELA) study is currently being conducted in patients with large B-cell lymphoma receiving chemotherapy (R-CHOP) (Delarue et al, 2011). Patients were secondarily randomised to darbepoetin alfa (N = 238; initially to maintain haemoglobin at 13–15 g dl−1 and later amended to 13–14 g dl−1) or to receive best-supportive care (ESA and transfusions as usual). The results from the GELA study are currently being awaited.

Meta-analyses of ESA trials

Several recent meta-analyses have examined ESA use and safety outcomes in cancer patients. The large meta-analyses by Bennett et al (2008) and Bohlius et al (2009) reported a negative ESA impact risk on mortality but not on how ESAs affect disease progression. A recent meta-analysis by Tonelli et al (2008) analysed 52 controlled ESA-ontology trials; this meta-analysis was unique in that it did not include the BEST trial (Leyland-Jones et al, 2005) and included studies examining preoperative-ESA therapy. This meta-analysis did summarise two trials (N = 247) that reported numbers of disease progression and metastatic progression. These numbers did not differ significantly between ESA-treated and control patients (risk ratio for complete response = 0.88; 95% CI: 0.69–1.12; risk ratio for partial response = 0.70; 95% CI: 0.44–1.11).

Meta-analyses of ESA trials

Several recent meta-analyses have examined ESA use and safety outcomes in cancer patients. The large meta-analyses by Bennett et al (2008) and Bohlius et al (2009) reported a negative ESA impact risk on mortality but not on how ESAs affect disease progression. A recent meta-analysis by Tonelli et al (2008) analysed 52 controlled ESA-ontology trials; this meta-analysis was unique in that it did not include the BEST trial (Leyland-Jones et al, 2005) and included studies examining preoperative-ESA therapy. This meta-analysis did summarise two trials (N = 247) that reported numbers of disease progression and metastatic progression. These numbers did not differ significantly between ESA-treated and control patients (risk ratio for complete response = 0.88; 95% CI: 0.69–1.12; risk ratio for partial response = 0.70; 95% CI: 0.44–1.11).

Table 2 lists six meta-analyses that examined disease progression data from more than two controlled-ESA studies. These six meta-analyses examine overlapping data as they include subsets of the same studies. The publications by Hedenus et al (2005), Boogaerts et al (2006), and Seidenfeld et al (2006) reported results from three smaller meta-analyses (<1200 patients each). These meta-analyses suggested no significant impact of ESAs on disease progression (Table 2) (Hedenus et al, 2005; Boogaerts et al, 2006; Seidenfeld et al, 2006). The larger meta-analysis by Ludwig et al (2009) described a patient-level analysis of six randomised,
controlled darbepoetin alfa trials performed in chemotherapy patients (N = 2122). Analyses stratified by study indicated that darbepoetin alfa had no effect on disease progression (HR = 0.92; 95% CI: 0.82 – 1.03), progression-free survival (HR = 0.93; 95% CI: 0.84 – 1.04), or mortality (HR = 0.97; 95% CI: 0.85 – 1.11). Aapro et al (2009b) described a meta-analysis using individual patient-level data from 12 randomised, controlled epoetin beta studies (N = 2297) conducted in the oncology settings of chemotherapy, radiotherapy only, and surgery. An un-stratified analysis indicated a reduced risk of disease progression in the epoetin beta-treated patients (HR = 0.85; 95% CI: 0.72 – 1.01). A study-level meta-analysis by Glaspy et al (2010) examined disease progression in 26 controlled-ESA studies (N = 9646). These studies were a subset of 60 studies identified in a literature search for controlled-ESA trials that reported mortality data in the chemotherapy, radiotherapy only, and anaemia-of-cancer settings (Table 1) (Glaspy et al., 2010). Results indicated that ESA use did not significantly impact disease progression (OR = 1.01; 95% CI: 0.90 – 1.14) (Table 2).

Based on the balance of evidence to date, the six meta-analyses described above do not support an effect of ESAs on disease progression. However, safety data from some individual, controlled trials suggest that ESAs might affect disease progression and/or mortality in certain cancer patient populations (head and neck cancer patients receiving radiotherapy only may be at particular risk). The need for additional research to understand whether and how ESAs affect tumour cell growth has stimulated much preclinical work in this field.

ESAS AND DISEASE PROGRESSION MECHANISMS: EVIDENCE FROM PRECLINICAL STUDIES

To explain the conflicting clinical data, several mechanisms for disease progression have been postulated. The most widely studied is whether an Epo-specific receptor exists on tumour cells, endothelial cells, or other non-erythrocyte progenitor cells.

The EpoR and tumour cells

Like endogenous Epo, ESAs bind to and activate EpoR on erythrocytic progenitors (colony-forming units erythroid) in bone marrow (Broudy et al., 1991). This stimulates erythrocytic progenitor cells to proliferate and differentiate into RBCs. Without an ESA or endogenous Epo, erythrocytic precursors at the proerythroblast stage undergo apoptosis (Koury and Bondurant, 1988). Activation of EpoR stimulates JAK2 kinase, which binds to the cytosolic domains of the EpoR dimers (Figure 1) (Witthuhn et al., 1993). Activated JAK2 kinase stimulates multiple signalling pathways in erythrocytic precursor cells (Huang et al., 2001; Jelkmann et al., 2008). The JAK2 kinase is also an essential chaperone for translocating EpoR to the cell surface (Huang et al., 2001). It has been postulated that if tumour cells express EpoR, ESAs could activate these receptors to induce tumour cell proliferation (Hadland and Longmore, 2009). Thus, examining whether tumour cells express ESA-responsive EpoR has been of interest.

Several studies have suggested that tumour tissues and tumour cell lines express EpoR mRNA and also contain EpoR protein as...
It has been proposed that ESAs could affect the cardiovascular system (van der Meer et al., 2004; Ribatti, 2010). There are reports showing in vitro angiogenic effects of Epo on human bone marrow-derived endothelial progenitor cells (EPCs) (Muller-Ehmsen et al., 2006; Zwezdaryk et al., 2007) and on endothelial cells derived from human adult myocardial tissue (Jaquet et al., 2002). Erythropoiesis-stimulating agent therapy has also been reported to increase circulating levels of EPCs (Bahlmann et al., 2003) and endogenous Epo levels were found to correlate with circulating EPCs in patients with ischaemic cardiomyopathy (Heeschen et al., 2003). However, ESA therapy did not affect the number of EPCs in donors for allogenic peripheral blood stem cell transplantation (Kim et al., 2009) nor in patients with acute myocardial infarction (Taniguchi et al., 2010). In addition, some cell types using a recently developed specific anti-Epo monoclonal antibody (Elliott et al., 2010). Erythropoiesis-stimulating agents were also observed to have no effect in a rat angiogenesis assay (Sinclair et al., 2010). These findings call into the question whether ESAs could indirectly stimulate disease progression via angiogenesis.

Venous thromboembolic events

Venous thromboembolic events (VTEs) represent a known risk associated with ESA use in cancer patients (Bennett et al., 2008; Glaspy et al., 2010). This risk is described in the ESA-product labelling (Amgen, 2011; Centocor Ortho Biotech Products, 2011) and can be managed clinically (of note, a recent exploratory analysis of a controlled ESA trial suggested that in patients treated with anti-thrombotic therapy with ESAs may lower VTE rates) (Aapro et al., 2009a). Although a link between VTEs and disease progression has not been established, it has been hypothesised that VTEs may account for the increased mortality associated with ESAs in some studies (Hadland and Longmore, 2009). One proposed hypothesis is that ESAs could increase the incidence of VTEs by stimulating platelet production. Although some results suggest that Epo binds to megakaryocytes (but not platelets) (Fraser et al., 1988), whether functional Epo is expressed on megakaryocytes remains unclear (Grossi et al., 1989; Yonemura et al., 1992) and high levels of endogenous Epo do not appear to elevate platelet counts in humans (Akan et al., 2000). Studies evaluating platelet counts after ESA administration have reported varying results (Grossi et al., 1989; Yonemura et al., 1992; Ait-Oudghia et al., 2010). Furthermore, a clear association between increased platelet counts and an increased incidence of VTEs has not been demonstrated (Buss et al., 1994; Basser et al., 1997).

Another hypothesis is that JAK2 kinase is a key mediator of EpoR activity (Figure 1), an association may exist between VTEs and JAK2 kinase activation. Research has shown that 30 – 50% of patients with splanchnic-vein thromboses associated with Budd-Chiari syndrome (including portal-venous and hepatic-vein thrombosis) harbour a somatic mutation of the JAK2 gene (JAK2 V617F) that constitutively activates JAK2 kinase (Kiladjian et al., 2008). However, the JAK2V617F mutation is detected in multiple haematopoietic lineages (Ishii et al., 2006), and JAK2 kinase is...
essential for mediating signalling pathways for many cytokine receptors other than EpoR (Seidel et al., 2000). Therefore, no direct link between ESA-mediated JAK2 kinase activation and VTEs in cancer patients has been definitively established. Additional studies are required to understand the precise mechanism underlying the increased risk of VTEs associated with ESA use.

SUMMARY AND CONCLUSION

This review summarised results from clinical and preclinical studies that evaluated whether ESAs affect disease progression. Although there are important limitations on the quality and assessment of disease progression in these studies, the current meta-analyses suggest no overall effect of ESAs on disease progression. Several individual studies have shown a potential trend associating ESA use with increased disease progression. This suggests that ESAs may affect disease progression in particular cancer patient populations (e.g., head and neck cancer patients receiving radiotherapy only) and that additional research is needed to define these populations and how ESAs mediate this effect. Although indirect effects on tumours induced by increased RBC production are theoretically possible, preclinical data to date suggest that tumour cells either do not express EpoR or express low levels of EpoR molecules that are non-functional and/or are not present at the cell surface. Overall, the balance of current evidence does not support an effect of ESAs on either activating EpoR on tumour cells or indirectly stimulating disease progression via angiogenesis. Future clinical trials, meta-analyses, and preclinical research should provide additional data to guide evidence-based use of ESAs in cancer patients.

REFERENCES

Aapro M, Barnadas A, Leonard RC, Marangolo M, Untch M, Uckarma L, Burger HU, Scherhag A, Osterwalder B (2009a) What is the impact of antithrombotic therapy and risk factors on the frequency of thromboclotary events in patients with metastatic breast cancer receiving epoetin beta? Eur J Cancer 45: 2984 – 2991

Aapro M, Leonard RC, Barnadas A, Marangolo M, Untch M, Malamos N, Mayordomo J, Reichert D, Pedrini JLI, Uckarma L, Scherhag A, Burger HU (2008) Effect of once-weekly epoetin beta on survival in patients with metastatic breast cancer receiving anthracycline- and/or taxane-based chemotherapy: results of the Breast-Cancer-Anemia and the Value of Erythropoietin (BRAVE) study. J Clin Oncol 26: 592– 598

Aapro M, Osterwalder B, Scherhag A, Burger HU (2009b) Epoetin-beta treatment in patients with cancer chemotherapy-induced anaemia: the impact of initial haemoglobin and target haemoglobin levels on survival, tumour progression and thromboembolic events. Br J Cancer 101: 1961 – 1971

Ait-Oudhia S, Scherrmann JM, Krzyzanowski W (2010) Simultaneous pharmacokinetics/pharmacodynamics modeling of recombinant human erythropoietin upon multiple intravenous dosing in rats. J Pharmacol Exp Ther 334: 897 – 910

Akan H, Guven N, Aydogdu I, Arat M, Beksac M, Dalva K (2000) Thrombopoietic cytokines in patients with iron deficiency anaemia with or without thrombocytosis. Acta Haematol 103: 152 – 156

Amgen (2008) Amgen Inc. in collaboration with Johnson & Johnson Pharmaceutical Research and Development, L.L.C.Background Information. For The Oncologic Drugs Advisory Committee (ODAC) Meeting. 13 March 2008 available from http://www.fda.gov/ohrms/dockets/docket/2008-43452-00-FDA-index.htm

Aman. Aranesp® (Darbepoetin alfa) Package Insert. Amgen Inc., Thousand Oaks, CA, (2011)

Anagnostou A, Lee ES, Kessinian N, Levinson R, Steiner M (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA 87: 5978 – 5982

Anagnostou A, Liu Z, Steiner M, Chin K, Lee ES, Kessinian N, Noguchi CT (1994) Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci USA 91: 3974 – 3978

Bamberg MR, DeClerk V, Duckett T, Niemczyk E, Bahlmann E, Boehm SM, Haller H, Flier D (2003) Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int 64: 1648 – 1652

Basser RL, Rasko JE, Clarke K, Cebon J, Green MD, Grigg AP, Zalcberg J, Cohen B, O’Byrne J, Menchaca DM, Fox RM, Begley CG (1997) Randomized, blinded, placebo-controlled phase I trial of pegylated recombinant human megakaryocyte growth and development factor with filgrastim after dose-intensive chemotherapy in patients with advanced cancer. Blood 89: 3118 – 3128

Bennett CL, Silver SM, Djulbegovic B, Samaras AT, Blau CA, Gleason KJ, Barnato SE, Elverman KM, Courtney DM, McKoy JM, Edwards BJ, Tigue CC, Raisch DW, Yarnold PR, Dorr DA, Kuzel TM, Tallman MS, Trifilo SM, West DP, Lai SY, Henke M (2008) Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA 299: 914 – 924

Bloomer J-U, Wurschmidt F, Petrty U, Weise G, Sehoulji J, Kimming R, Dressler P, Kentenich H, Kohls A, Lichtenegger W (2004) Results with sequential adjuvant chemo-radiotherapy with vs without epoetin alfa for patients with high-risk cervical cancer: Results of a prospective, randomised, open and controlled AGO- and NOGGO intergroup study. Ann Oncol 15(Suppl 3): 128

Bohlius J, Schmidlin K, Brilliant C, Schwarzer G, Trelle S, Seidenfeld J, Zwanenh M, Clarke M, Weingart O, Kluge S, Piper M, Rades D, Steensma DP, Djulbegovic B, Fey MF, Ray-Coquard I, Machayt M, Moebus V, Thomas G, Ucht M, Schumacher M, Egger M, Engert A (2009) Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: a meta-analysis of randomised trials. Lancet 373: 1532 – 1542

Boogaerts M, Oberhoff C, Ten Bakkel Hunink W, Nowoverous MR, Hayward CR, Burger HU (2006) Epoetin beta (NeoRecormon) therapy in patients with solid tumours receiving platinum and non-platinum chemotherapy: a meta-analysis. Anticancer Res 26: 479 – 484

Broudy VC, Lin N, Brice M, Nakamoto B, Papayannopoulou T (1991) Erythropoietin receptor characteristics on primary human erythroid cells. Blood 77: 2583 – 2590

Brown WM, Maxwell P, Graham AN, Yakkundi A, Dunlop EA, Shi Z, Johnston PG, Lappin TR (2007) Erythropoietin receptor expression in non-small cell lung carcinoma: a question of antibody specificity. Stem Cells 25: 718 – 722

Buss DH, Cashell AW, O’Connor ML, Richards 2nd F, Case LD (1994) Erythropoietin receptor characteristics on primary human erythroid cells. Proc Natl Acad Sci USA 91: 2214 – 2221

Cella D, Kall Gh, McDermott A, Xu X (2004) The longitudinal relationship of hemoglobin, fatigue and quality of life in anemic cancer patients: results from five randomized clinical trials. Ann Oncol 15: 979 – 986

Centocor Ortho Biotech Products (2011) Procrit® (Epoetin alfa) Package Insert. Centocor Ortho Biotech Products, L.P.: Raritan, NJ

Conflict of interest

M Aapro has received honoraria from and has had a consultant or advisory relationship with Amgen, Roche, and Sandoz. In addition, M Aapro has received research funding from Sandoz. W Jelkmann has received honoraria from and has had a consultant or advisory relationship with Amgen and Sandoz. In addition, W Jelkmann holds stock in Amgen and Roche, which are makers of Aranesp and NeoRecormon, respectively. SN Constantinescu has received honoraria from and has had a consultant or advisory relationship with Amgen. B Leyland-Jones declares no conflicts of interest.

ACKNOWLEDGEMENTS

We thank Linda Rice and Shawn Lee at Amgen Inc. who provided writing assistance. Amgen Inc. reviewed this article for data accuracy.

Erythropoietin receptors and ESAs in disease progression

M Aapro et al

© 2012 Cancer Research UK

British Journal of Cancer (2012) 106(7), 1249 – 1258

1255
Erythropoietin receptor and ESAs in disease progression

M Aapro et al

Chang J, Couture F, Young S, McWatters KL, Lau CY (2005) Weekly epoetin alfa maintains hemoglobin, improves quality of life, and reduces transfusion in breast cancer patients receiving chemotherapy. J Clin Oncol 23: 2597 – 2605

Delarue R, Haïoun C, Coiffier B, Fornecker L, Fournier M, Mounier N, Molina TJ, Bologna S, Fruchtach C, Picard S, Tilly H, Bosly A (2011) Survival effect of darbepoetin alfa in patients with diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy: The LNHH3-68 study. J Clin Oncol 29(Suppl 15): abstract 9048

Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31: 290 – 299

Egrie JC, Strickland TW, Lane J, Aoki K, Cohen AM, Smalling R, Trail G, Lin FK, Browne JK, Hines DK (1996) Characterization and biological effects of recombinant human erythropoietin. Immunobiology 172: 213 – 224

Elliott S, Busse L, Bass MB, Lu H, Sarosi I, Sinclair AM, Spahr C, Um M, Van G, Begley CG (2006) Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood 107: 1892 – 1895

Elliott S, Busse L, McCaffrey I, Rossi J, Sinclair A, Spahr C, Swift S, Begley CG (2010) Identification of a sensitive anti-erythropoietin receptor monoclonal antibody allows detection of low levels of EpoR in cells. J Immunol Methods 352: 126 – 139

eMC (2011) Electronic Medicines Compendium (eMC) website Available from http://www.emc-medicines.org.uk

EMEA (2011) European public assessment reports for authorised medicinal products for human use. European Medicines Agency website Available from http://www.emea.europa.eu/hums/human/epar/sa.htm

Engert A, Diehl V, Stein H, Mueller R-P, Eich H, Dietlein M, Paulus U, Groopman JE, Itri LM (1999) Chemotherapy-induced anemia in adults: a clinical review. J Natl Cancer Inst 91: 387 – 396

Glaspy J, Crawford J, Vansteenkiste J, Henry D, Rao S, Bowers P, Berlin JA, Gupta S, Singh PK, Bisth SS, Bhatt ML, Pant M, Gupta R, Singh S, Negi MP (2004) Patterns of use and risks associated with erythropoiesis-stimulating agents among Medicare patients with cancer. J Natl Cancer Inst 101: 1633 – 1641

Groopman JE, Itri LM (1999) Chemotherapy-induced anemia in adults: incidence and treatment. J Natl Cancer Inst 91: 1616 – 1634

Hedenus M, Adriansson M, San Miguel J, Kramer KH, Janssen HL, Gardin C, Cereja S, Tonetti C, Giraudier S, Plessier A, Garcia-Pagan JC, Darwish Murad S, Raffa S, Janssen HL, Gardin C, Cereja S, Tonetti C, Giraudier S, Condob, Casa... (1999) Expression of erythropoietin receptor. BJH 11: 4922 – 4929

Huang LJ, Constantinescu SN, Lodish HF (2001) The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 8: 1327 – 1338

Ishii T, Nomura E, Hoffman R, Xu M (2006) Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood 108: 3128 – 3134

Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck KH (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64: 326 – 333

Jelkmann W (2010) Bioisomeric epoetins and other ‘follow-on’ biologics: update on the European experiences. Am J Hematol 85: 771 – 780

Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ (2008) The erythropoietin receptor in normal and cancer tissues. Crit Rev Oncol Hematol 67: 39 – 61

Johnson & Johnson Pharmaceutical Research and Development LLC (2004) Erythropoiesis-stimulating agents among Medicare patients with cancer. Background Information for Oncologic Drugs Advisory Committee Meeting 4 May 2004. Available from http://www.fda.gov/ohrms/dockets/ac/04/briefing/4037b2.htm

Kadotriou E, Verrou E, Hadijjagielidou C, Gastari V, Laschos K, Kontovinisa L, Katepabonas D, Constantinou N, Terpos E, Zervas K (2008) Erythropoiesis-stimulating agents are associated with reduced survival in patients with multiple myeloma. Am J Hematol 83: 697 – 701

Kaldjian JJ, Cervantes F, Leebeek FW, Marzac C, Cassinant B, Chevet S, Carals-Hatem D, Plessier A, Garcia-Pagan JC, Darwish Murad S, Raffa S, Janssen HL, Gardin C, Cereja S, Tonetti C, Giraudier S, Condob, Casadevall N, Fenaux P, Valla DC (2008) The impact of JAK2 and MPL mutations on diagnosis and prognosis of splenic vein thrombosis: a single-center study on 241 cases. Blood 112: 4922 – 4929

Kim SN, Moon JH, Kim JG, Chae YS, Cho YY, Lee SJ, Kim YJ, Lee YJ, Suh JS, Lee KS, SOHN (2009) Mobilization effects of G-CSF, GM-CSF, and darbepoeitin-alpha for allogeic peripheral blood stem cell transplantation. J Clin Apher 24: 173 – 179

Klein HG, Spahn DR, Carlson JL (2007) Red blood cell transfusion in clinical practice. Lancet 370: 415 – 426

Koury MJ, Bondurant MC (1988) Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells. J Cell Physiol 137: 65 – 74

LaMontagne KR, Butler J, Marshall DJ, Tullai J, Gechtman Z, Hall C, Meshaw A, Farrell FX (2006) Recombinant epoetin alfa does not stimulate tumor growth in erythropoietin receptor-positive breast carcinoma models. Mol Cancer Ther 5: 347 – 355

LaMontagne KR, Butler J, Marshall DJ, Tullai J, Gechtman Z, Hall C, Meshaw A, Farrell FX (2006) Recombinant epoetin alfa does not stimulate tumor growth in erythropoietin receptor-positive breast carcinoma models. Mol Cancer Ther 5: 347 – 355

Lauda E, Ciampi A, Capri A, Murtas F, Svelto M, Pizzuti M, Capri A, Murtas F, Svelto M (2009) Recombinant human erythropoietin in combination with chemotherapy increases breast cancer metastasis in preclinical mouse models. Clin Cancer Res 17: 6151 – 6162

Heeschen C, Aicher A, Lehmann B, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102: 1340 – 1346

Jelkmann W (2010) Bioisomeric epoetins and other ‘follow-on’ biologics: update on the European experiences. Am J Hematol 85: 771 – 780

Krause K, Tawakol-Khodai M, Geidel S, Kuck KH (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64: 326 – 333

LaMontagne KR, Butler J, Marshall DJ, Tullai J, Gechtman Z, Hall C, Meshaw A, Farrell FX (2006) Recombinant epoetin alfa does not stimulate tumor growth in erythropoietin receptor-positive breast carcinoma models. Mol Cancer Ther 5: 347 – 355

LaMontagne KR, Butler J, Marshall DJ, Tullai J, Gechtman Z, Hall C, Meshaw A, Farrell FX (2006) Recombinant epoetin alfa does not stimulate tumor growth in erythropoietin receptor-positive breast carcinoma models. Mol Cancer Ther 5: 347 – 355

Leyland-Jones B (2003) BEST Investigators and Study Group: breast cancer trial with erythropoietin terminated unexpectedly. Lancet Oncol 4: 575 – 576

Leyland-Jones B, Semiglavov Z, Pawlicki M, Pienkowski T, Tjulandin S, Manikhas G, Makohon S, Roth A, Dodwell D, Baselaar J, Biakhov M, Valuckas K, Voznyi E, Liu X, Vercammen E (2005) Maintaining normal hemoglobin levels with epoetin alfa in mainly nonaneamic patients with metastatic breast cancer receiving first-line chemotherapy: a survival study. J Clin Oncol 23: 5980 – 5972

British Journal of Cancer (2012) 106(7), 1249 – 1258 © 2012 Cancer Research UK
Erythropoietin receptors and ESAs in disease progression

M Aapro et al

In multiple Myeloma and Non-Hodgkin’s Lymphoma. *Blood* 87: 2675–2682

Osterborg A, Brandberg Y, Hedenus M (2005) Impact of epoetin-beta on survival of patients with lymphoproliferative malignancies: long-term follow up of a large randomized study. *Br J Haematol* 129: 206–209

Overgaard J, Hoff C, Hansen HS, Specht L, Overgaard M, Grau C, Andersen E, Johansen L, Andersen LJ, Evensen JF (2010) Randomized study of Aranesp® as modifier of radiotherapy in patients with primary squamous cell carcinoma of the head and neck (HNSCC) - Final outcome of the DAHANCA 10 trial. *Radiother Oncol* 96(Suppl 5): abstract 197

Overgaard J, Hoff C, Sand Hansen H, Specht L, Overgaard M, Grau C, Andersen E, Johansen L, Andersen L, Evensen J (2007) Randomized study of the importance of Novel erythropoietin stimulating protein (Epo, nesp)® for the effect of radiotherapy in patients with primary squamous cell carcinoma of the head and neck (HNSCC)- the Danish Head and Neck Cancer Group DAHANCA 10 randomized trial. *Eur J Cancer* 5(Suppl 7): 4

Pawlak K, Pawlak D, Mysliwiec M (2007) Long-term erythropoietin therapy does not affect endothelial markers, coagulation activation and oxidative stress in haemodialyzed patients. *Thromb Res* 120: 797–803

Pirker R, Ramalau RA, Schuette W, Zatloukal P, Ferreira I, Lillie T, Vanstenekiste JF (2008) Safety and efficacy of darbepoeitin alfa in previously untreated extensive-stage small-cell lung cancer treated with platinum plus etopoide. *J Clin Oncol* 26: 2342–2349

Ponzoni M, Cortesi E, van der Rijt C, Moreno-Noquez A, Raimundo D, Ostler P, Bola A, Rosso R (2002) Early intervention with epoetin alfa in breast cancer (BC) patients (pts) undergoing chemotherapy (CT): Results of a randomized, multicenter, phase IIb study (EPO-INT-47 Study Group). *Ann Oncol* 13(Suppl 3): 158

Reed SD, Radeva JI, Daniel DB, Fastenau JM, Williams D, Schulman KA (2005) Early hemoglobin response and alternative metrics of efficacy with erythropoietic agents for chemotherapy-related anemia. *Curr Med Res Opin* 21: 1527–1533

Ribatti D (2010) Erythropoietin and tumor angiogenesis. *Stem Cells Dev* 19: 1–4

Rossi J, McCaffrey I, Pawelztk T, Tudor Y, Elliott S, Fitzpatrick PD, Patterson SD (2009) Molecular mechanisms of cell surface erythropoietin receptor (Epor) expression and function in human epithelial tissue. *J Clin Oncol* 27(Suppl 15): abstract 11104

Seidel HM, Lamb P, Rosen J (2000) Pharmaceutical intervention in the JAK/ STAT signaling pathway. *Oncogene* 19: 2645–2656

Seidenfeld J, Piper M, Bohlius J, Weingart O, Trelle S, Engert A, Skoetz N, Seidenfeld J, Schumacher U, Runnebaum IB, Hinke A, Kreienberg R, Konecny GE, Untch M, Kuhn W, Nitz U, Schneeweiss A, Huober J, Harbeck N, von Minckwitz G, Schwarzer G, Wilson J, Brunskill S, Hyde C, Bonnell C, Ziegler KM, Aronson N (2006) Comparative Effectiveness of Epoetin and Darbepoeitin for Managing Anemia in Patients Undergoing Cancer Treatment Comparative Effectiveness Review No. 3. (Prepared by Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center under Contract No. 290-02-0026). Agency for Healthcare Research and Quality: MD, May 2007 Available from http://effectivehealthcare.ahrq.gov/reports/EPO%20final.pdf

Shander A, Spence RK, Auerbach M (2010) Can intravenous iron therapy meet the unmet needs created by the new restrictions on erythropoietic stimulating agents? *Transfusion* 50: 719–732

Sinclair AM, Coxon A, McCaffrey I, Kaufman S, Pawelztk L, Liu L, Busse L, Swift S, Elliott S, Begley CG (2010) Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. *Blood* 115: 4264–4272

Sinclair AM, Rogers N, Busse L, Archibeque I, Brown W, Kassner PD, Watson JEV, Arnold GE, Nguyen KCQ, Powers S, Elliott S (2008) Erythropoietin receptor transcription is neither elevated nor predictive of surface expression in human tumour cells. *Br J Cancer* 99: 1059–1067

Sinclair AM, Todd MD, Ferrando A, Smith J, Elliott S, Begley CG (2007) Expression and function of erythropoietin receptors in tumors: implications for the use of erythropoiesis-stimulating agents in cancer patients. *Cancer* 110: 477–488

Smith Jr RE, Aapro MS, Ludwig H, Pinter T, Smakal M, Ciuleanu TE, Chen L, Lillie T, Gajewski JA (2006) Darbepoeitin alfa in the treatment of anemia in patients with active cancer not receiving chemotherapy or radiotherapy: results of a phase III, multicenter, randomized, double-blind, placebo-controlled study. *J Clin Oncol* 26: 1040–1050

Strauss HG, Haensgen G, Dunst J, Hayward CR, Burger HU, Scherhag A, Koelbl H (2008) Effects of epoetin correction with epoetin beta in patients receiving radiochemotherapy for advanced cervical cancer. *Int J Gynecol Cancer* 18: 515–524

© 2012 Cancer Research UK
