Electrospinning Nanofibres of Pullulan Extracted From Phylloplane Fungus, Aureobasidium Pullulans

Komal Saraf (komal.saraf@gmail.com)
Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
https://orcid.org/0000-0003-1156-3477

N Vigneshwaran
Principal Scientist, ICAR - Central Institute of Research on Cotton Technology, Mumbai 400019, India

Research

Keywords: Aureobasidium pullulans, BET surface area, Electrospinning, Nanofibres, NMR, Pullulan

Posted Date: September 4th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-70718/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Aureobasidium pullulans isolated from the phylloplane of Peltophorum tree, produced pullulan, an extracellular polysaccharide. It was grown on three different carbon sources, sucrose, wheat bran and cotton stalk dust, for maximizing the pullulan yield. A. pullulans (67.4 gL-1) had the highest yield followed by A. pullulans MTCC 1991 (63.68 gL-1). Pullulan was characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET) surface area analyzer, DSC and NMR. Electrospinning of pullulan blended with poly (vinyl alcohol) (PVA) produced bead-less nanofibres. The optimized parameters for electrospinning were 25 kV applied voltage, 0.5 mL/h flow rate, 18% polymer concentration (pullulan + PVA) and 150 mm tip-to-collector distance. The pullulan nanofibre was characterized by SEM, AFM, BET, contact angle measurement, DSC and CIE color space analyzer. A maximum surface area of 183.4 m²/g while the minimum nanofibre diameter (79 ± 19 nm by SEM) was obtained for the electrospun mat of commercial pullulan + 40% PVA. This work signifies the importance of pullulan extracted from an isolate of Peltophorum tree for conversion to high surface area nanofibres by electrospinning process.

Full Text

This preprint is available for download as a PDF.

Figures
Figure 1

FTIR spectra of Commercial Pullulan (a), Pullulan of A. pullulans MTCC 1991 (b) and EPS of OL3 (c)
Figure 2

Microscopic images of A. pullulans MTCC 1991 showing septate hyphae diameter of 6.08 μm (a), conidiospore bearing conidia of A. pullulans MTCC 1991 observed at 400x magnification (b), Isolate OL3 showing septate hyphae diameter of 2.34 μm (c) and prototunicate asci and blastic conidiogenesis of OL3 observed at 100x magnification (d)
Figure 3

XRD spectra of extracted pullulan from commercial pullulan (a), A. pullulans MTCC 1991 (b) and A.
pullulans (c)
Figure 4

DSC thermograms of Commercial Pullulan (Black) (a), Pullulan of A. pullulans MTCC 1991 (Red) (b) and Pullulan of A. pullulans (Green) (c)
Figure 5

1H-NMR spectra [a] of commercial pullulan (i) and extracted pullulan from A. pullulans MTCC 1991 (ii) and A. pullulans (iii); 13C-NMR spectra [b] of commercial pullulan (i) and extracted pullulan from A. pullulans MTCC 1991 (ii) and A. pullulans (iii)
Figure 6

SEM images of electrospun nanofibres of Commercial pullulan (a); Commercial PVA (b); Commercial pullulan with 40% Poly vinyl alcohol (PVA) (c); Pullulan extracted from A. pullulans MTCC 1991 with 40% PVA (d); Commercial pullulan with 50% PVA (e) and Pullulan extracted from A. pullulans with 50% PVA (f). All images have been taken at 10,000x magnification and scale bars in images represent 2 μm.

Figure 7
AFM 3D images of electrospun nanofibres of Commercial pullulan (a); Commercial PVA (b); Commercial pullulan with 40% Poly vinyl alcohol (PVA) (c); Pullulan extracted from A. pullulans MTCC 1991 with 40% PVA (d); Commercial pullulan with 50% PVA (e) and Pullulan extracted from A. pullulans with 50% PVA (f) at the scale of 2μm

Figure 8

DSC thermogram of electrospun nanofibre mats of commercial pullulan with 40% PVA (a), commercial pullulan with 50% PVA (b), pullulan extracted from A. pullulans MTCC 1991 + 40% PVA (c) and pullulan extracted from A. pullulans + 50% PVA (d)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Graphicalabstract.jpg