Review Article

Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive *Toxoplasma gondii* Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

C. J. Carter

Polygenic Pathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK

Correspondence should be addressed to C. J. Carter; chris_car@yahoo.com

Received 19 June 2012; Revised 18 August 2012; Accepted 10 September 2012

Academic Editor: Cormac G. M. Gahan

Copyright © 2013 C. J. Carter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer’s or Parkinson’s disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ∼3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer’s disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson’s disease, attention deficit hyperactivity disorder (*P* from 8.01×10^{-5} (ADHD) to 1.22×10^{-71}) (multiple sclerosis), and autism (*P* = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by *T. gondii* proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself.

1. Introduction

The protozoan parasite *Toxoplasma gondii* (*T. gondii*) which causes toxoplasmosis, is primarily hosted not only in cats but also in mice, rabbits, dogs, farmedyard and wild animals, and domestic fowl, and is transmissible to man [1–5]. It has been implicated in the pathogenesis of many diseases, most notably schizophrenia [6–8], but also with bipolar disorder [9] depression and suicide attempts [10]. There is also evidence from serological antibody studies that the parasite may be implicated in the aetiology of Alzheimer’s and Parkinson’s disease [11–13] and in certain epilepsies of unknown origin [14]. The parasite has also been implicated in a number of autoimmune disorders including antiphospholipid syndrome, cryoglobulinemia, ANCA-associated vasculitides, autoimmune thyroid diseases, systemic sclerosis, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus, possibly related to host/pathogen antigen homology [15, 16].

It has already been noted that several schizophrenia susceptibility genes are related to the *T. gondii* life cycle, as well as to that of other pathogens implicated in this condition (cytomegalovirus, influenza, rubella, and herpes viruses) [17, 18] and that in both Alzheimer’s disease (herpes simplex, *Chlamydia pneumoniae*, *Helicobacter pylori*, and *Cryptococcus neoformans*) [19, 20] and multiple sclerosis (Epstein-Barr virus) [21], susceptibility genes are also related to the life cycles of suspect pathogens. In animal models, and without the aid of any gene variant, such agents can, per se, induce pathological features relevant to the disease process, for example amyloid deposition and tau phosphorylation (induced by herpes simplex, *C. Pneumoniae*, treponemmas, *Borreia burgdorferi*, and other spirochetes) [22–24], demyelination induced by various viruses [25], or dopaminergic overactivity in the case of *T. gondii* [26]. The H1N1 strain of the influenza virus is also able to destroy neurones in the substantia nigra, provoking Parkinsonian symptoms in laboratory models [27]. Pathogens can thus be regarded as
potential causes, likely acting in a gene dependent manner. Many such agents show a seroprevalence far above the incidence of the disease with which they are implicated; for example, *T. gondii* may infect 30% of the world’s population [28] in comparison to a schizophrenia prevalence of ~1% [29], and, as is the case with genetic risk factors, conflicting epidemiological data have often cast doubt upon whether such pathogens can truly cause disease [30]. However, this situation also applies to *Helicobacter pylori*, which indubitably causes stomach ulcers and likely gastric cancer [31, 32], situational soappliesto *Helicobacter pylori*, which indubitably causes stomach ulcers and likely gastric cancer [31, 32], although not all of the many infected with this agent (~50% of the world population [33]) succumb to these conditions. Any causative effects of such agents in man must therefore be conditioned by other factors, among which are immunity and resistance to the pathogen; pathogen strain or the timing and severity of infection; other confounding environmental and medical factors as well as the susceptibility genes for each disease. The effects of risk promoting gene variants, which are also present in control populations, albeit in lower proportion, must also be conditioned by environmental and epigenetic factors, as well as by gene/gene interactions.

During its life cycle any pathogen interacts with hundreds of human proteins whose function can only be compromised by their diversion to the attentions of the invader. In addition, bacteria and parasites scavenge important metabolites from host cells or fluids and donate other compounds to the host which must react accordingly. Activation of the immune system and inflammatory defence, involving chemokines, cytokines and numerous other mediators are an evident consequence of any infection, as are the resulting fevers [34]. It has also been noted in many bioinformatics studies that pathogen proteins closely resemble our own, and that immune attack directed towards the pathogen may thus result in antibody cross-reactivity with human proteins. The development of pathogen-derived autoantibodies may also play a key role in this pathological scenario [18, 19, 21, 35–39].

As shown below, the hundreds of human proteins implicated in the *T. gondii* life cycle are highly enriched in the products of susceptibility genes for the numerous conditions with which this parasite has been associated, as well as for others where a link is not yet suspected. The human pathways deranged by the parasite are also relevant to each condition. Subsets of the extensive *T. gondii* host/pathogen interactome appear to be relatively specific for distinct diseases suggesting that they relate to the cause of the disease, and that they may be able to direct the attentions of the pathogen towards particular pathways, pathologies, and disease.

2. Methods

Briefly, lists of several hundred susceptibility genes involved in eleven different diseases were compared with a list of several thousand host genes implicated in the *T. gondii* host/pathogen interactome. Any significant enrichment of interactome genes within susceptibility gene datasets (and vice versa) was identified by statistical analysis.

The genes and environmental factors implicated in the various diseases (Alzheimer’s disease, attention deficit hyperactivity disorder, autism, bipolar disorder, chronic fatigue syndrome, depression, schizophrenia, multiple sclerosis, Parkinson’s disease, anorexia, and childhood obesity) are listed at PolygenicPathways (http://www.polygenicpathways.co.uk/) and at sites therein (including the autism database at Mindspec (AutDB) [40], the Bipolar database at the University of Chicago [41], AlzGene, MSGene, PDGene and SZGene [42–45]). Genome-wide association data can be accessed at the National Human Genome Research Institute http://www.genome.gov/gwastudies/ [46].

Host/pathogen interactions for *T. gondii* and microarray data (mRNA expression changes in response to *T. gondii* infection) were collected by literature survey and are listed at http://www.polygenicpathways.co.uk/tgondii.htm. Pathway analysis of the human arm of this interactome was performed using KEGG mapper [47] http://www.genome.jp/kegg/tool/map_pathway2.html, and the results are posted at http://www.polygenicpathways.co.uk/keggtgondii.htm. These and various other files relating to the analysis are posted at http://www.polygenicpathways.co.uk/toxoplasmosis.htm.

3. Statistics

The human genome currently contains 26,846 genes, 2792 of which are contained in the *T. gondii* host/pathogen interactome. In any other dataset, one would expect 2792/26846 genes to be involved with the pathogen (10.4%). Similarly, for N susceptibility genes in any disorder, one would expect N/26846 to appear in the host/pathogen interactome, providing the expected numbers in each colliding dataset. The significance of differences between the observed and expected values was assessed using the chi-squared test. Statistical analysis for the enrichment of particular KEGG pathways within datasets was performed using the tools at the Consensus Path Database (CPDB) [48] developed by the Max Planck Institute for molecular genetics http://cpdb.molgen.mpg.de/CPDB. Overlapping gene sets were identified using the Venny tool [49] at http://bioinfogp.cnb.csic.es/tools/venny/index.

4. Results

4.1. KEGG Pathway Analysis of the *T. gondii*/Host Interactome.

2792 proteins or mRNAs are involved in the host/pathogen interactome, approximating to 10% of the human genome. A summary of the KEGG pathway analysis of the human arm of this interactome is provided in Tables 1 and 2.

As might be expected, a high proportion of genes are involved in the immune system and in pathogen defence pathways. Many are also involved in the life cycle pathways of a number of viruses, bacteria, and other parasites (Table I). These stem in part from the common immune and defence mechanisms not only related to the pathogens (chemokine and cytokine activation, etc.), but also related to common signalling networks. The involvement of dedicated bacterial and viral defence pathways in the interactome (NOD, RIGI, and cytosolic DNA-sensing pathways) is likely to impact upon viral defence, although in which direction is impossible to determine. Interestingly, *T. gondii* produces an interferon-like substance with antiviral activity [50]. The host intestinal
Table 1: Results of the KEGG pathway analysis of the *T. gondii* host/pathogen interactome (host genes): Immune and defence pathways, Diseases and other infections. The number of genes recovered in each pathway is in brackets and the enrichment *P* value from the CPDB analysis, provided where available, and significant values highlighted in bold.

Pathway Description	Number of genes	*P* value
Immune and defence		
Cytokine-cytokine receptor interaction	(103)	2.02E − 20
Chemokine signalling pathway	(64)	3.19E − 09
Toll-like receptor signalling pathway	(52)	9.24E − 17
Phagosome	(47)	1.02E − 05
Natural killer cell mediated cytotoxicity	(46)	2.73E − 07
T cell receptor signalling pathway	(45)	1.52E − 10
Hematopoietic cell lineage	(42)	1.52E − 12
Leukocyte transendothelial migration	(36)	
NOD-like receptor signalling pathway	(34)	9.21E − 14
Fc epsilon RI signalling pathway	(29)	0.000764
Fc gamma R-mediated phagocytosis	(29)	0.00115
Complement and coagulation cascades	(28)	5.80E − 07
B cell receptor signalling pathway	(28)	1.01E − 05
Lysosome	(27)	
Antigen processing and presentation	(26)	5.34E − 05
Salivary secretion	(26)	
Adipocytokine signalling pathway	(25)	0.000221
RIG-I-like receptor signalling pathway	(23)	0.000354
Cytosolic DNA-sensing pathway	(22)	0.000106
Intestinal immune network for IgA production	(22)	7.87E − 07
Diseases		
Pathways in cancer	(94)	2.67E − 08
Transcriptional misregulation in cancer	(52)	3.32E − 06
Prostate cancer	(34)	6.94E − 06
Small cell lung cancer	(31)	4.04E − 06
Colorectal cancer	(23)	3.33E − 05
Pancreatic cancer	(21)	0.0019
Acute myeloid leukaemia	(21)	8.14E − 05
Neurological		
Alzheimer’s disease	(52)	2.02E − 05
Huntington’s disease	(34)	
Amyotrophic lateral sclerosis (ALS)	(30)	7.94E − 10
Parkinson’s disease	(27)	
Prion diseases	(22)	2.26E − 08
Autoimmune and atopic diseases		
Systemic lupus erythematosus	(45)	2.48E − 06
Rheumatoid arthritis	(44)	1.26E − 12
Type I diabetes mellitus	(25)	1.11E − 08
Allograft rejection	(23)	1.56E − 09
Autoimmune thyroid disease	(22)	1.62E − 05
Cardiac		
Viral myocarditis	(31)	1.24E − 08
Dilated cardiomyopathy	(27)	0.00109
Hypertrophic cardiomyopathy (HCM)	(25)	0.00164
Arrhythmogenic right ventricular cardiomyopathy (ARVC)	(18)	
Other		
Alcoholism	(40)	
Type II diabetes mellitus	(19)	0.00194
Maturity onset diabetes of the young	(2)	
Other infections		
HTLV-I infection	(85)	1.62E − 10
Tuberculosis	(80)	6.67E − 19
Influenza A	(69)	5.11E − 14
Toxoplasmosis	(66)	6.90E − 20
Herpes simplex infection	(66)	6.88E − 12
Epstein-Barr virus infection	(65)	
Measles	(56)	3.36E − 13
Amoebiasis	(56)	4.59E − 13
Table 1: Continued.

Disorder/Infection	Number of genes	P value
Chagas disease (American trypanosomiasis)	(55)	2.70E – 16
Pertussis	(52)	1.38E – 20
Leishmaniasis	(51)	2.49E – 20
Salmonella infection	(47)	1.85E – 14
Hepatitis C	(39)	0.000135
Legionellosis	(35)	9.83E – 15
Malaria	(32)	2.90E – 13
Shigellosis	(29)	4.94E – 09
epithelial cell signalling in		
Helicobacter pylori infection	(26)	1.83E – 05
Bacterial invasion of epithelial cells	(26)	1.01E – 05
African trypanosomiasis	(24)	1.56E – 07
Staphylococcus aureus infection	(24)	7.63E – 07
Pathogenic *Escherichia coli* infection	(21)	0.000147
Vibrio cholerae infection	(18)	

Table 2: Continued.

Pathway	Number of genes	P value
Bile secretion	(25)	
Melanogenesis	(25)	
Pancreatic secretion	(23)	
Mineral absorption	(22)	
Oocyte meiosis	(21)	
Carbohydrate digestion and absorption	(20)	0.00207
Protein digestion and absorption	(20)	
Endocrine and other factor-regulated calcium reabsorption	(19)	
Olfactory transduction	(17)	
Gastric acid secretion	(17)	
Aldosterone-regulated sodium reabsorption	(16)	0.00283
Progestrone-mediated oocyte maturation	(16)	
Cardiac muscle contraction	(13)	
Proximal tubule bicarbonate reclamation	(10)	
Vasopressin-regulated water reabsorption	(9)	
Taste transduction	(6)	
Vitamin digestion and absorption	(6)	
Collecting duct acid secretion	(4)	
Fat digestion and absorption	(4)	
Dorso-ventral axis formation	(4)	
Primary bile acid biosynthesis	(2)	
Renin-angiotensin system	(1)	
Focal adhesion	(56)	5.95E – 06
Cell adhesion molecules (CAMs)	(50)	5.84E – 10
Regulation of actin cytoskeleton	(49)	0.00475
Apoptosis	(45)	1.75E – 15
Endocytosis	(42)	
Protein processing in endoplasmic reticulum	(33)	
Extracellular matrix-receptor interaction	(31)	2.29E – 06
ABC transporters	(23)	
Gap junction	(22)	
Cell cycle	(20)	
Ubiquitin mediated proteolysis	(20)	
Tight junction	(18)	
RNA transport	(16)	
Adherens junction	(16)	
Peroxisome	(15)	
Ribosome	(14)	
Regulation of autophagy	(11)	

Signalling networks

Pathway	Number of genes	P value
MAPK signalling pathway	(72)	8.43E – 06
Jak-STAT signalling pathway	(59)	9.01E – 12
Calcium signalling pathway	(44)	0.00797
Insulin signalling pathway	(34)	
Wnt signalling pathway	(31)	
PPAR signalling pathway	(29)	1.36E – 05
GnRH signalling pathway	(28)	
ErbB signalling pathway	(26)	0.00146
p53 signalling pathway	(25)	1.83E – 05
VEGF signalling pathway	(24)	0.0017
TGF-beta signalling pathway	(19)	
Phosphatidylinositol signalling system	(19)	
mTOR signalling pathway	(15)	
Hedgehog signalling pathway	(7)	
Notch signalling pathway	(6)	

Tissue process

Pathway	Number of genes	P value	
Osteoclast differentiation	(61)	7.00E – 17	
Vascular smooth muscle contraction	(27)		
Number of genes	P value	Number of genes	P value
-----------------	---------	-----------------	---------
Ribosome biogenesis in eukaryotes	(10)	Pentose phosphate pathway	(8)
Spliceosome	(10)	Nicotinate and nicotinamide metabolism	(8)
Proteasome	(10)	Alanine, aspartate and glutamate metabolism	(8)
RNA degradation	(8)	Metabolism of xenobiotics by cytochrome P450	(8)
RNA polymerase	(8)	Histidine metabolism	(7)
Base excision repair	(8)	Butanoate metabolism	(7)
Nucleotide excision repair	(6)	Cysteine and methionine metabolism	(7)
DNA replication	(5)	Drug metabolism: cytochrome P450	(7)
Circadian rhythm: mammal	(4)	Steroid hormone biosynthesis	(7)
Basal transcription factors	(3)	Aminoacyl-tRNA biosynthesis	(7)
Protein export	(3)	N = 6: One carbon pool by folate Biosynthesis of unsaturated fatty acids Linoleic acid metabolism	
mRNA surveillance pathway	(3)	Lysine degradation Ether lipid metabolism	
Mismatch repair	(2)	N = 5: Sphingolipid metabolism N-Glycan biosynthesis	
SNARE interactions in vesicular transport	(2)	Porphyrin and chlorophyll metabolism	
Homologous recombination	(1)	N = 4: alpha-Linolenic acid metabolism Phenylalanine metabolism	
Metabolism			
Purine metabolism	(53)	Pentose phosphate pathway	(8)
Pyrimidine metabolism	(31)	Nicotinate and nicotinamide metabolism	(8)
Arginine and proline metabolism	(24)	Alanine, aspartate and glutamate metabolism	(8)
Glycolysis/Gluconeogenesis	(23)	Metabolism of xenobiotics by cytochrome P450	(8)
Glutathione metabolism	(21)	Histidine metabolism	(7)
Arachidonic acid metabolism	(20)	Butanoate metabolism	(7)
Glycerophospholipid metabolism	(20)	Cysteine and methionine metabolism	(7)
Tryptophan metabolism	(19)	Drug metabolism: cytochrome P450	(7)
Oxidative phosphorylation	(19)	Steroid hormone biosynthesis	(7)
Amino sugar and nucleotide sugar metabolism	(18)	N = 6: One carbon pool by folate Biosynthesis of unsaturated fatty acids Linoleic acid metabolism	
Inositol phosphate metabolism	(14)	Lysine degradation Ether lipid metabolism	
Fatty acid metabolism	(14)	N = 5: Sphingolipid metabolism N-Glycan biosynthesis	
Galactose metabolism	(13)	Porphyrin and chlorophyll metabolism	
Valine, leucine and isoleucine degradation	(12)	N = 4: alpha-Linolenic acid metabolism Phenylalanine metabolism	
Glycine, serine and threonine metabolism	(12)	Retinol metabolism Synthesis and degradation of ketone bodies	
Starch and sucrose metabolism	(12)	Fatty acid elongation Butirosin and neomycin biosynthesis	
Fructose and mannose metabolism	(12)	Glycosaminoglycan degradation	
Tyrosine metabolism	(12)	Steroid biosynthesis	
Glycerolipid metabolism	(12)	N = 3: Glycosaminoglycan biosynthesis: chondroitin sulfate Pantothenate and CoA biosynthesis	
beta-Alanine metabolism	(11)	Glycosylphosphatidylinositol (GPI)-anchor biosynthesis	
Propanoate metabolism	(10)	Mucin type O-Glycan biosynthesis	
Glyoxylate and dicarboxylate metabolism	(10)	Pentose and glucuronate interconversions	
Pyruvate metabolism	(9)	Selenocompound metabolism	
Citrate cycle (TCA cycle)	(9)	Ascorbate and aldarate metabolism D-Glutamine and D-glutamate metabolism	
Drug metabolism, other enzymes	(8)	N = 2: Vitamin B6 metabolism Riboflavin metabolism	
Terpenoid backbone biosynthesis: (Cholesterol) Homo sapiens (human)	(8)	Cyanocobalamin acid metabolism	
The microbiome also influences *T. gondii* and is also able to act as an adjuvant in response to *T. gondii* infection by stimulating dendritic cells that provide the immunostimulation necessary to combat the parasite [51]. Such effects and the shared pathways between pathogens highlight an important potential cross talk between elements of the microbiome.

Diverse pathogens are implicated in all of the diseases in this study, and many of the pathways traced out by the disease susceptibility genes, *per se*, (posted on the PolygenicPathways website) also involve multiple viral and pathogen life cycle and immune-related pathways.

A number of cancer-related pathways are highly represented in the *T. gondii* interactome (Table 1). While a recent study has suggested its involvement in brain cancer, based on a correlation between cancer mortality and *T. gondii* seroprevalence [52], the parasite is able to arrest the growth of other cancerous cells via stimulation of the immune response and inhibition of angiogenesis. Antitumour effects have been observed in relation to spontaneous mammary tumours, leukaemia, lung cancer, and carcinogen-induced tumours following injections of Toxoplasma antigen or viable parasites in laboratory animals or cells [53].

Several autoimmune and atopic disease networks are involved in the parasite interactome. A high *T. gondii* antibody seroprevalence (as well as to the cytomegalovirus and the Epstein-Barr virus) has been observed in systemic lupus erythematosus, and it has been suggested that antibodies raised to the pathogen may contribute to the autoimmunity characteristic of this condition via pathogen/host protein mimicry [16, 54, 55]. Conversely, *T. gondii* infection has been shown to prevent the development of lupus-related nephritis in rabbits [56], a factor perhaps related to the immunosuppressant properties of parasitic infection. Toxoplasmosis has been reported to decrease leukocyte, natural killer cell, and monocyte counts in men, while increasing the same in women, with reduced B-cell counts in both [57]. No references were found for relationships between toxoplasmosis and Type 1 diabetes, a pathway also figuring in the interactome. Prior *T. gondii* infection has been associated with poor outcome in heart transplant patients (allograft rejection) [58]. Toxoplasmosis and other infectious agents have also been linked to cardiac myopathy [59–62], and diverse pathways of which were concentrated in the *T. gondii* interactome. In relation to asthma, the hygiene hypothesis, linking a reduced incidence of childhood infections (in general) to the worldwide increase in asthma and other allergic conditions, may be related to the concentration of *T. gondii* interactome genes within the asthma pathway, although a positive correlation of *T. gondii* infection and asthma has also been noted in Sweden [63–65]. The parasite clearly has multiple effects on diverse immune-related networks as noted above, and such effects are likely to be both beneficial and nefarious. For example parasite-related immunosuppression may well be useful (but perhaps not advisable) in autoimmune diseases such as multiple sclerosis but might also be expected to favour other infections.

Many of the more specific signalling networks within the interactome (Table 2) can be related to the general processes described above. While the MAP kinase pathway is involved in a multitude of functions, the JAK/STAT pathway is involved in cytokine signalling, also bridging cytokine activation to cancer pathways [66]. The calcium signalling pathway is also activated by many processes and more
specifically by voltage or receptor-gated ion channels (and is relevant to the “channelopathies” implicated in autism, depression, bipolar disorder and schizophrenia, and in neurological disorders [67, 68]) or by processes modulating intracellular stores, while the phosphatidylinositol signalling system is also involved in the actions of multiple messengers. TGF beta regulates proliferation, apoptosis, differentiation, and migration (definition from KEGG). Calcium channel blockers, calmodulin antagonism, or extracellular calcium depletion diminish cellular invasion by the parasite [69, 70]. The P53 and growth factor signalling networks (ErbB, VEGF) can be cancer related, while insulin signalling is evidently related to diabetes. PPAR receptors control the transcription of many genes especially those related to fatty acid metabolism, but also those involved in cell proliferation and differentiation [71]. These and other pathways control a host of processes from embryonic differentiation to cellular death and apoptosis, and many metabolic pathways that are too numerous to individually review.

In relation to the diseases that are the object of this study, the Alzheimer’s and Parkinson’s disease pathways were both represented, as were the complement, PPAR, and terpenoid (cholesterol synthesis) pathways relevant to Alzheimer’s disease [72], and the ubiquitin pathway relevant to Parkinson’s disease and other degenerative disorders [73]. Erbb signalling is highly relevant to the control of peripheral and central myelination [74], and thus to multiple sclerosis and Alzheimer’s disease, but also to a range of psychiatric disorders including autism, anorexia, ADHD, bipolar disorder, depression, and schizophrenia [75]. Myelin is exquisitely sensitive to oxidative stress and glutathione depletion (c.f. glutathione pathways), and the glutathione precursor N-acetylcysteine has been shown to be of benefit in a number of psychiatric disorders [76–80]. The diverse neurotransmitter pathways and many signalling networks are also relevant to most of these conditions. Rather than single out any particular pathway from this extensive dataset (Tables 1 and 2), suffice it to say that parasitic infection has massive effects upon a variety of host signalling networks, metabolic pathways, and processes. These are nevertheless relatively selective, in the sense that certain pathways are more affected than others. In addition, within each disease dataset, the spectrum of pathways within the overlapping datasets is distinct and biologically relevant, as detailed below.

4.2. Enrichment of Interactome Genes within Susceptibility Gene Datasets (Table 3). T. gondii interactome genes were significantly enriched in the susceptibility gene datasets for all diseases with the exception of anorexia and chronic fatigue and represented from ~13% (autism) to 33% (multiple sclerosis) of the total number of susceptibility genes analysed, with enrichment values from 1.08 to 2.83 fold the expected number (Table 3). For schizophrenia, the fold enrichment (interactome genes in susceptibility gene dataset) of 2.03 compares with a recent meta-analysis of T. gondii seroprevalence studies providing an odds ratio (OR) of 2.71 [81]. A further meta-analysis showed significant associations of schizophrenia with infections by human herpesvirus 2 (OR = 1.34), Borna Disease Virus (OR = 2.03), human endogenous retrovirus W (OR = 19.31), Chlamydia pneumoniae (OR = 6.34), and Chlamydia psittaci (OR = 29.05), including values far in excess of those for any gene [82]. For schizophrenia at least, these data and ample evidence from epidemiological and animal behaviour studies [83–85] firmly advocate toxoplasmosis as a significant cause of the disease, in those with a particular genetic constitution. The ability of the parasite to manipulate dopaminergic metabolism (via its own tyrosine hydroxylase) [86] and the involvement of NMDA receptor (e.g., glutamatergic signalling and long-term potentiation), serotonin, or cannabinoid-related signalling networks within the interactome is relevant to the drug-induced psychosis associated with the amphetamines, LSD, cannabis, or phencyclidine (see [87]). Dopamine also increases the number of T. gondii tachyzoites in cultured fibroblasts suggesting that neurotransmitters may also be able to manipulate the parasite [88].

For each disease, and across diseases, the types of susceptibility genes influenced were distinct and relatively selective for each disease. This was assessed in two ways: firstly by statistical analysis of the enrichment of KEGG pathways in each overlapping T. gondii interactome/disease dataset and secondly by a comparison of individual shared and specific overlapping interactome/disease genes across four diseases (the maximum possible using the Venny tool). The diseases analysed in this way were Alzheimer’s disease and multiple sclerosis, bipolar disorder, and schizophrenia.

4.3. Overlapping Interactome/Susceptibility Genes Common and Specific to Four Diseases (Table 4, Figure 1). The permutations of genes common or specific to the various chosen diseases (Alzheimer’s disease, bipolar disorder, schizophrenia, and multiple sclerosis) are shown by the Venn diagram Figure 1 summarised in Table 4. All of these genes are members of the host/pathogen interactome. Several immune/cytokine and oxidative stress related genes, with different identities, but similar roles, appear as common risk factors across various permutations of diseases, which are all characterised by immune activation [89–91] and oxidative stress [92, 93].

Bipolar disorder and schizophrenia share many common genes, risk factors, endophenotypes, and subpathologies, and interactome genes relevant to certain of these are related to circadian rhythm, dopaminergic and glutamatergic neurotransmission, growth factors, and signalling networks as highlighted in previous reviews [75, 94, 95].

After sifting through these common subsets, the overlapping T. gondii interactome/susceptibility genes specific to each disease are remarkably relevant to the key primary pathologies in each. They include APP processing, cholesterol and lipoprotein function, complement and immune related genes, and oxidative stress, apoptosis and ubiquitin genes in Alzheimer’s disease [96–100]. In bipolar disorder, monoamine/GABA, signalling, adhesion, and ion transport genes are highlighted (see above and [101–103]) while in schizophrenia, monoamine/glutamate/neuregulin neuronal development and associated signalling related genes figure prominently, along with those related to adhesion, oxidative stress, and immune activation (see above). In multiple sclerosis, almost the entire common dataset is related to immune
Table 3: A Statistical analysis of the overlap between human genes in the *T. gondii* Interactome, and the susceptibility genes in various diseases. The number of susceptibility genes analysed (*N* genes) is shown for each disease, together with the observed and expected values for each condition, the fold and mean enrichments, and the *P* value derived from the chi squared test.

Disease	*N* Genes	% Involved in *T. gondii* Interactome	Condition	Observed	Expected	Enrichment (fold)	Mean enrichment (A + B)/2	*P* value
Multiple Sclerosis	408	32.5	Susceptibility genes in interactome (A)	135	54.6	2.47	2.83	1.22E − 71
			Interactome genes in disease dataset (B)	135	42.4	3.38		
Alzheimer's	432	27.3	Susceptibility genes in interactome	118	57.8	2.04	2.33	2.26E − 41
			Interactome genes in disease dataset	118	44.9	2.63		
Schizophrenia	759	21.1	Susceptibility genes in interactome	160	101.6	1.57	1.80	3.06E − 27
			Interactome genes in disease dataset	160	78.9	2.03		
Bipolar disorder	443	21.2	Susceptibility genes in interactome	94	59.3	1.58	1.81	5.36E − 17
			Interactome genes in disease dataset	94	46.05	2.04		
Depression	221	23.5	Susceptibility genes in interactome	52	29.6	1.76	2.01	2.41E − 13
			Interactome genes in disease dataset	52	22.97	2.26		
Childhood obesity	73	31.5	Susceptibility genes in interactome	23	9.77	2.35	2.69	2.32E − 12
			Interactome genes in disease dataset	23	7.58	3.03		
Parkinson's disease	263	19.7	Susceptibility genes in interactome	52	35.21	1.47	1.69	3.82E − 08
			Interactome genes in disease dataset	52	27.34	1.90		
ADHD	237	17.7	Susceptibility genes in interactome	42	31.73	1.32	1.51	8.01E − 05
			Interactome genes in disease dataset	42	24.63	1.70		
Autism	1117	12.7	Susceptibility genes in interactome	142	149.55	0.95	1.08	0.013
			Interactome genes in disease dataset	142	116.13	1.22		
Anorexia	74	16.2	Susceptibility genes in interactome	12	9.91	1.21	1.38	0.09
			Interactome genes in disease dataset	12	7.69	1.55		
Chronic Fatigue	95	12.6	Susceptibility genes in interactome	12	12.72	0.94	1.08	0.48
			Interactome genes in disease dataset	12	9.87	1.21		
Table 4: The genes within each partition of Figure 1 are annotated in the table below.

Alz, Bip, Sz	Bip, Sz and MS	Alz and Ms	Bip and Sz	Alz and Sz	Alz and Bip	MS and SZ
Common to all	**Neuronal development/growth**	**Chemokine**	**Immune**	**Immune**	**Cholesterol/lipoprotein**	**HSPA5**
	APOE, GSK3B, SYN3, Cytokine, IL10, IL1B, IL1RN, IL6, TNF	Oxidative stress, MAOA, NOS1, SOD2	CCL2, Oxidative stress, ND1	CTLA4, IFNG, Other, MMP9	ABCA1, LPL, Immune, C4B, EBF3, IL18, IL1A, Other, KLF5, PCK1	HSPA5, Growth, IGF1
	Neuronal development/growth	**Oxidative stress**	**Immune**	**Immune**	**Cholesterol/lipoprotein**	**HSPA5**
	DPYS1L2, MAOA, NOS1, SOD2	MAOA, NOS1, SOD2	CTLA4, IFNG, Other, MMP9	CTLA4, IFNG, Other, MMP9	ABCA1, EBF3, IL18, IL1A, KLF5, PCK1	HSPA5, Growth, IGF1
	Chemokine	**Oxidative stress**	**Immune**	**Immune**	**Immune**	**HSPA5**
	CCL2	ND1	CCL3, CCR2, CD14, CD86	ATP6, C4A, CAV1, CYTB, ESRI, MMP3, PPARG, PTGS2, VDR	ATP6, C4A, CAV1, CYTB, ESRI, MMP3, PPARG, PTGS2, VDR	HSPA5, Growth, IGF1
	Oxidative stress	**Immune**	**Immune**	**Immune**	**Immune**	**Immune**
	IL8, TAP2, TGFβ1, GRN, ICAM1, SPPINE1, TOMM40	CCL3, CCR2, CD14, CD86	ATP6, C4A, CAV1, CYTB, ESRI, MMP3, PPARG, PTGS2, VDR	ATP6, C4A, CAV1, CYTB, ESRI, MMP3, PPARG, PTGS2, VDR	ATP6, C4A, CAV1, CYTB, ESRI, MMP3, PPARG, PTGS2, VDR	HSPA5, Growth, IGF1
	Immune/inflammation	**Dopamine/glutamate/synaptic**	**Dopamine/glutamate/synaptic**	**Dopamine/glutamate/synaptic**	**Cholesterol/lipoprotein**	**HSPA5**
	C4A, PTGS2, Oxidative stress	DRD2, GRIN2, SYN, TH, Signalling	DRD3, GRIN2, SYN, TH, Signalling	DRD3, GRIN2, SYN, TH, Signalling	ABCA1, EBF3, IL18, IL1A, KLF5, PCK1	HSPA5, Growth, IGF1
	Growth	**Circadian**	**Growth**	**Circadian**	**Other**	**Immune**
	BMP6, CSF2RB, EGR2, EGR3	PER3	BMP6, CSF2RB, EGR2, EGR3	PER3	ABCA13, ABCB1, ALOX12, BCL9, C1TH, DTNBPI, FabP7, GNL3, MLC1, MTHFD1, NAP5, NCAN, PPARD, TDO2, YWHAH	Immune, CCR5, CD4, CNTF, HLA-A, IGH@, IL2B, IL2, IL4, LTA, Other, MYH9, PRKCA, UCP2
	Other	**Other**	**Other**	**Other**	**Other**	**Immune**
	ABCA13, ABCB1, ALOX12, BCL9, C1TH, DTNBPI, FabP7, GNL3, MLC1, MTHFD1, NAP5, NCAN, PPARD, TDO2, YWHAH	ABCA13, ABCB1, ALOX12, BCL9, C1TH, DTNBPI, FabP7, GNL3, MLC1, MTHFD1, NAP5, NCAN, PPARD, TDO2, YWHAH	ABCA13, ABCB1, ALOX12, BCL9, C1TH, DTNBPI, FabP7, GNL3, MLC1, MTHFD1, NAP5, NCAN, PPARD, TDO2, YWHAH	ABCA13, ABCB1, ALOX12, BCL9, C1TH, DTNBPI, FabP7, GNL3, MLC1, MTHFD1, NAP5, NCAN, PPARD, TDO2, YWHAH	ABCA13, ABCB1, ALOX12, BCL9, C1TH, DTNBPI, FabP7, GNL3, MLC1, MTHFD1, NAP5, NCAN, PPARD, TDO2, YWHAH	Immune, CCR5, CD4, CNTF, HLA-A, IGH@, IL2B, IL2, IL4, LTA, Other, MYH9, PRKCA, UCP2

Note: The table includes genes associated with neurological and immune-related conditions, reflecting the complexity of gene interactions in these diseases.
Specific to Alzheimer’s:	Bipolar disorder:	Schizophrenia:	Multiple sclerosis:			
APP processing: APP APBB1 APBB2 APH1B ADAM10 GAPDH PSEN1	**Monoamine/GABA** DDC DRD1 GABBR3 GCH1	**Monoamine** ADRA1A ALDH1A2 DRD4 DRD5 HTR3E PHOX2A SLC6A3	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	Specific to Bipolar disorder: **Monoamine/GABA** DDC DRD1 GABBR3 GCH1 **Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB **Complement/immune/cytokine** C3 CFB C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)
Cholesterol/lipoprotein/PPAR AP0D CH25H FDP5 HMGCR HMGCS2 LDLR LRP1 MPP1 NPC2 OLRI PPARA SOAT1	**Signalling** AKT1 CREBI DUSP6 PLCGI TEC			**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	
Complement/immune/cytokine A2M CD2AP CD33 CD36 CR1 CRP CSF1 F13A1 IL3 LCK PLAU PLTP SERPINA1 TAPBPL TLR2 TLR4	**Adhesion** CD276 CDH20 SDC2			**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	
Lysosome CTSH LAMP3	**Lysosome** CTSH LAMP3			**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	
Ion channel/transport: SCN8A SLC12A6 SLC26A7 TRPM2				**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	
Apoptosis CTSD NLRP1	**Apoptosis** CTSD NLRP1			**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	
Ubiquitin UBD UBE2I UCHL1	**Ubiquitin** UBD UBE2I UCHL1			**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	
Other: ACAN AHSG ALB ARSB CAND1 CDC2 CECR2 FAM63A GBP2 HSPG2 LMNA MTHFD1 OTC PPAR1 PMCD1D1 PDE9A PVRL2 RB1L SASH1 SCN2A SELIL SGPL1 SSB TTLI7 ZBP1	**Other**: ACAN AHSG ALB ARSB CAND1 CDC2 CECR2 FAM63A GBP2 HSPG2 LMNA MTHFD1 OTC PPAR1 PMCD1D1 PDE9A PVRL2 RB1L SASH1 SCN2A SELIL SGPL1 SSB TTLI7 ZBP1			**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	
Neuroplasticity ACAN AHSG ALB ARSB CAND1 CDC2 CECR2 FAM63A GBP2 HSPG2 LMNA MTHFD1 OTC PPAR1 PMCD1D1 PDE9A PVRL2 RB1L SASH1 SCN2A SELIL SGPL1 SSB TTLI7 ZBP1				**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	
Other: ACAN AHSG ALB ARSB CAND1 CDC2 CECR2 FAM63A GBP2 HSPG2 LMNA MTHFD1 OTC PPAR1 PMCD1D1 PDE9A PVRL2 RB1L SASH1 SCN2A SELIL SGPL1 SSB TTLI7 ZBP1				**Neuropeptide/growth factor** CSPG5 EGR4 ERBB2 GFRA3 NRG2 PGDFB	**Complement/immune/cytokine** C5 C7 CCL1 CCL11 CCL14 CCL5 CCL7 CD226 CD24 CD28 CD40 CIITA CXCL10 CXCL12 CXCR4 CXCR5 EAP3 FCR3B ICS1 IFI30 IFIT1 IFNGR2 IL12A IL2RA IL4R IL7 IL7R IRF1 IRF8 MIF MXI NOD2 PDCDI1 PRF1 PTGER4 PYV SLC11A1 SPP1 TNFSF1A TNFSF10 TRB@ TRD@ TYK2 CYP24A1 (Vitamin D)	
function and associated signalling pathways, that are relevant to the autoimmune aspects of the disease [104, 105], with a limited number of genes related to oxidative stress and apoptosis.

While the evidence for an involvement of toxoplasmosis in psychiatric disorders is relatively strong, there is less work either in the human condition or in animal models in the case of neurological disorders, such as Alzheimer’s or Parkinson’s diseases or multiple sclerosis. Toxoplasmosis has, however, been associated with a loss of grey matter density in schizophrenic patients, but not in controls, suggesting an influence on degenerative components [8]. *T. gondii* infection may not always be deleterious. For example, it inhibits the development of arthritis in mice deficient in the interleukin 1 receptor antagonist (IL1RN) [106]. *T. gondii* infection is also able to reduce infarct size in focal cerebral ischaemia in mice, an effect attributed to the ability of infection to increase the expression of nerve growth factor, as well as that of anti-inflammatory cytokines and of glutathione and oxidative stress protective genes, while reducing the expression of proinflammatory cytokines [107].

Parasites have learnt to live with us for many millennia, and their immunosuppressive effects appear to be a relatively common defence mechanism. Indeed, the use of helminths (parasitic worms) has been suggested in a number of autoimmune settings including irritable bowel disease and multiple sclerosis [108]. A clinical trial with helminth egg infection (*Trichuris Suis*) in autism is also listed at http://clinicaltrials.gov/, based on anecdotal reports of effectiveness in relation to certain symptoms. The preponderance of immune-related host/pathogen genes in the multiple sclerosis dataset (and to a lesser extent within other datasets) may be related to these potentially beneficial effects, although the clinical use of *T. gondii* would be contraindicated by its malevolence directed elsewhere.

4.4. KEGG Pathway Analysis of the OverlappingDatasets

4.4.1. Immune and Pathogen Defence Pathways Common to Most Diseases.

The KEGG pathways influenced by *T. gondii* (restricted to the overlapping interactome genes within each disease dataset) are posted at http://www.polygenicpathways.co.uk/toxoplasmosis.ltm, and the CPDB enrichment analysis depicted in Tables 5 and 6. These tables report only the significantly enriched pathways, but many others figure within these overlapping datasets. In all diseases, except for ADHD and anorexia, the significantly enriched subsets involved immune or defence related pathways. For the most part (autism, childhood obesity, depression, bipolar disorder and schizophrenia, Alzheimer’s and Parkinson’s disease, and multiple sclerosis), the bacterial defence NOD signalling network was involved, while the similar Toll pathway was more restricted (Alzheimer’s and Parkinson’s disease and multiple sclerosis, bipolar disorder, and schizophrenia). The RIG1 and cytosolic DNA-sensing pathways recognise viral nucleic acids. The RIG-1 pathway was significantly enriched in multiple sclerosis and schizophrenia, while the cytosolic DNA-sensing pathway was enriched in Alzheimer’s and Parkinson’s disease as well as in multiple sclerosis and schizophrenia. Diverse pathogen life cycle pathways were enriched in all but the ADHD and anorexia datasets.

4.4.2. Childhood Obesity and Anorexia.

There are few studies relating either obesity or anorexia to toxoplasmosis in man, although both anorexia or subsequent partial weight gain postinfection, as well as hypermetabolism have been associated with *T. gondii* infection in laboratory and farm animals [109–111].

The only significantly enriched pathways common to the *T. gondii* interactome in anorexia all relate to neuronal systems (dopamine, serotonin, and addiction pathways).

In childhood obesity, a number of autoimmune related pathways were highlighted, as well as the Alzheimer’s disease pathway, pathways related to PPAR signalling (regulating fatty acid metabolism), and glycerolipid metabolism. A recent review has highlighted the risk promoting effects of midlife obesity (and several other preventable risk factors) in relation to Alzheimer’s disease [112]. The childhood obesity epidemic, fuelled largely by dietary and sedentary culture [113], has been associated with an increased risk of affective disorders in adulthood [114] and has also led to an increased incidence of a number of diseases in young children (dyslipidemia, carotid artery atherosclerosis, cardiac problems, hypertension, the metabolic syndrome, and diabetes and fatty liver disease) [115–118] that were previously the reserve of old age. Many of these are also risk factors for Alzheimer’s disease and are able, per se, to increase cerebral beta-amyloid deposition in laboratory models, perhaps a herald for the unwelcome imminence of dementia in young adults.

Diet, including saturated fat [119, 120], affects the microbiome, and a recent study has shown that, in infants fed formula or breast milk, changes in the gut microbiome can alter the expression of genes related to the innate immune system [121]. This microbiome/immune link may be important in the development of inflammation and metabolic diseases [120]. There do not appear to have been any microbiome studies in relation to *T. gondii*. However, the parasite scavenges host cholesterol, while host fatty acids and low-density lipoproteins stimulate a *T. gondii* acyl-CoA, cholesterol acyltransferase, which then provides cholesterol esters that the parasite needs for its survival [122]. Fatty diets would certainly be expected to impact upon the success of this parasite, which in turn must influence the lipid metabolism of the host. Indeed, *T. gondii* infection may even possess beneficial effects in hypercholesterolaemic conditions in mice, reducing the development of atherosclerosis via cholesterol and lipoprotein scavenging effects [123].

Pathway correlates such as these of course predict relationships but not directionality, which can only be imputed by prior knowledge and future research. Certain of the pathways common to the *T. gondii* interactome and obesity (and to Alzheimer’s disease, see below) could well reflect a beneficial component of parasitic infection.

4.4.3. Attention Deficit Hyperactivity Disorder and Autism.

No clinical studies have specifically linked ADHD or autism to toxoplasmosis, although hyperactivity, modified social
Figure 1: The Venn diagram illustrates the number of susceptibility genes (all within the $T. gondii$/host interactome) that are common or specific to various permutations of Alzheimer’s disease (Alz), Bipolar disorder (Bip) Schizophrenia (SZ) or multiple sclerosis (MS) (see Table 4 for genes in each section).

interactivity, and sensorimotor effects are features of infection in mice that are of relevance to both conditions [124–126].

In ADHD, the primary common emphasis was on the calcium signalling pathway to a number of metabolic pathways: phenylalanine and tyrosine (DDC and MAOA), tyrosine, histidine (DDC, HNMT, and MAOA) tryptophan (ACAT1, DDC, and MAOA), and unsaturated fatty acid synthesis (FADS1 and FADS2) and to neurotransmitter pathways (cocaine addiction and ligand/receptor interactions). This is a relatively small dataset, but it highlights an important distinction for bacteria or parasites, which, unlike viruses, participate in substrate and metabolite exchange with the host, enabling a much greater effect on metabolic pathways. This influence may be particularly relevant to the reported risks and benefits of various types of diets in many diseases, and in particular, saturated and unsaturated fats [127].

In autism, various cardiomyopathy pathways were enriched in the overlapping dataset. Autistic components have been observed in a number of cardiomyopathy disorders (MELAS and Timothy syndromes and Danon disease) [128–130]. $T. gondii$ seropositivity has also been associated with cardiomyopathy [60]. Cellular adhesion and the extracellular matrix play a key role in brain development and in autism [131, 132], and these pathways were the only significantly enriched “processes” in the overlapping dataset. VEGF signalling, dopamine, serotonin, and addiction pathways, but no metabolic pathways, were also enriched. Serum VEGF levels have been reported to be reduced in severely affected autism cases [133].

4.4.4. Depression and Bipolar Disorder. Although perhaps less evident than with schizophrenia, toxoplasmosis has nevertheless been associated with prenatal depression, depression, bipolar disorder, and with a history of suicide attempts in recurrent mood disorders [9, 10, 134, 135].

In depression, as well as immune, defence, and diverse pathogen related pathways, autoimmune diseases, hypertrophic cardiomyopathy, rheumatoid arthritis and osteoclast differentiation, cancer pathways, and Alzheimer’s disease were overrepresented in the overlapping dataset. Depression and arthritis have been reported as comorbid conditions [136], and prior depression is a significant risk factor in both cardiac conditions and Alzheimer’s disease [137, 138]. Numerous studies have implicated the VEGF pathway is relevant to depression and to the mechanism of action of antidepressants [139]. With regard to transforming growth factor, TGF-beta, an anti-inflammatory cytokine, an imbalance of pro- and anti-inflammatory cytokines has been observed in major depression studies [140]. Neuronal pathways primarily concerned reward/addiction, glutamate, dopamine, serotonin, and cannabinoid networks. An overrepresentation of phenylalanine and tryptophan metabolism is also relevant. The circadian clock pathway, which was also over-represented, plays a key role in depression and related disorders [141]. In drosophila, the circadian clock regulates the phagocytosis of bacteria [142], and within its many functions are the control of the immune system [143]. Unsaturated fatty acid metabolism again figured in this group, and the general benefits of modifying saturated/unsaturated fat ratios in diet are increasingly recognised, including in the area of psychiatry [144].

The overlapping dataset in bipolar disorder also concerned immune related pathways, several autoimmune disease networks (Type 1 diabetes, arthritis (and osteoclast differentiation), graft-versus-host disease, and allograft rejection), and a number of pathogen life cycle pathways. In relation to cancer pathways, slight increases in overall cancer risk have been reported in both bipolar disorder and schizophrenia, which appear to be gender dependent [145]. In relation to the Alzheimer’s disease pathway (which independently figures in all KEGG pathways related to susceptibility genes alone in most of these disorders), prior psychiatric illness has been shown to be generally associated with an increased risk of developing dementia [146]. Common pathological features across many psychiatric disorders and Alzheimer’s disease also include white matter changes related to demyelination [147, 148]. Many of the stressors involved in these conditions (starvation, viruses, infections and fever, cytokines,
Table 5: Significantly enriched KEGG pathways within the overlapping interactome/susceptibility gene datasets (Immune related, other diseases and infections). *P* values from the CPDB analysis are provided after each pathway description.

	Immune and defence	Diseases	Other infections	
ADHD	None	Dilated cardiomyopathy	Leishmaniasis 0.00605	
	Intestinal immune network for IgA production 0.00138	Arrhythmogenic right ventricular cardiomyopathy		
	Hematopoietic cell lineage 0.00196	Hypertrophic cardiomyopathy (HCM) 0.00151		
	T cell receptor signalling pathway 0.00439	Viral myocarditis 0.00548		
	Fc epsilon RI signalling pathway 0.00838			
Autism				
	Graft-versus-host disease 0.0000725	Type I diabetes mellitus 0.0000837	Chagas disease (American trypanosomiasis) 0.00114	
	NOD-likereceptorsignalling pathway 0.000203	Transcriptional misregulation in cancer 0.000397	African trypanosomiasis 0.00223	
	Hematopoietic cell lineage 0.000998	Rheumatoid arthritis 0.000774	Malaria 0.0047	
Anorexia	Intestinal immune network for IgA production 0.00417	Allograft rejection 0.0025	Legionellosis 0.00544	
	NOD-like receptor signalling pathway 0.00604	Type II diabetes mellitus 0.00417	Herpes simplex infection 0.0056	
	Intestinal immune network for IgA production 0.0000494	Alzheimer's disease 0.00426	Pertussis 0.00968	
	NOD-likereceptorsignalling pathway 0.000203			
	Hematopoietic cell lineage 0.0000998			
	Cytokine-cytokine receptor interaction 0.0000494	Rheumatoid arthritis 0.0000006	Leishmaniasis 0.0000000000696	
	NOD-likereceptorsignalling pathway 0.000203	Graft-versus-host disease 0.0000516	Malaria 0.000000000132	
	Hematopoietic cell lineage 0.0000998	Alzheimers disease 0.000173	African trypanosomiasis 0.000000000337	
Depression	Intestinal immune network for IgA production 0.00181			
	T cell receptor signalling pathway 0.00199	Type I diabetes mellitus 0.00131		
	Antigen processing and presentation 0.00665	Amyotrophic lateral sclerosis (ALS) 0.00215	Chagas disease (American trypanosomiasis) 0.00000000199	
	Fc epsilon RI signalling pathway 0.00741	Pathways in cancer 0.006	Tuberculosis 0.0000000149	
	Intestinal immune network for IgA production 0.0000494	Hypertrophic cardiomyopathy (HCM) 0.00848	Amoebiasis 0.0000000505	
	NOD-likereceptorsignalling pathway 0.000203	Small cell lung cancer 0.00965	Legionellosis 0.00000786	
	Hematopoietic cell lineage 0.0000998			
Bipolar disorder	T cell receptor signalling pathway 0.0000000071	Prostate cancer 0.00000601	Influenza A 0.0000249	
	NOD-likereceptor signalling pathway 0.0000794	Pathways in cancer 0.0000895	Herpes simplex infection 0.000033	
	Cytokine-cytokine receptor interaction 0.0000951	Osteoclast differentiation 0.00000583	Pertussis 0.0000338	
	Antigen processing and presentation 0.00275	Amyotrophic lateral sclerosis (ALS) 0.0000424	Toxoplasmosis 0.00000548	
	Fc epsilon RI signalling pathway 0.00317	Rheumatoid arthritis 0.0000681	Salmonella infection 0.000916	
	Natural killer cell mediated cytotoxicity 0.00379	Prion diseases 0.000042	HTLV-I infection 0.00202	
	Toll-like receptor signalling pathway 0.00784	Graft-versus-host disease 0.0000266	Measles 0.00463	
		Alzheimer's disease 0.000268		
		Allograft rejection 0.00283	Malaria 0.000000108	
		Type I diabetes mellitus 0.00435	Tuberculosis 0.0000000925	
		Prostate cancer 0.00000601	Chagas disease (American trypanosomiasis) 0.0000000122	
		Pathways in cancer 0.0000895	African trypanosomiasis 0.00000646	
		Osteoclast differentiation 0.00000583	Measles 0.00000734	
		Amyotrophic lateral sclerosis (ALS) 0.0000424	HTLV-I infection 0.000178	
		Rheumatoid arthritis 0.0000681	Influenza A 0.0000371	
		Prion diseases 0.000042	Amoebiasis 0.00132	
		Graft-versus-host disease 0.0000266	Leishmaniasis 0.0000226	
		Alzheimer's disease 0.000268	Pertussis 0.0025	
		Allograft rejection 0.00283	Herpes simplex infection 0.00273	
		Type I diabetes mellitus 0.00435	Toxoplasmosis 0.000368	
		Prostate cancer 0.00000601	Legionellosis 0.00867	
Table 5: Continued.

Immune and defence	Diseases	Other infections
Cytokine-cytokine receptor interaction 0.000000000286	Type I diabetes mellitus 0.00000000983	Leishmaniasis 0.00000000000322
T cell receptor signalling pathway 0.00000000429	Allograft rejection 0.00000000512	Tuberculosis 0.00000000000102
NOD-like receptor signalling pathway 0.0000216	Graft-versus-host 0.00000000000079	Pertussis 0.000000000075
Hematopoietic cell lineage 0.0000452		
Fc epsilon RI signalling pathway 0.000161		
Adipocytokine signalling pathway 0.00053		
Intestinal immune network for IgA production 0.000682		
Toll-like receptor signalling pathway 0.000773		
Antigen processing and presentation 0.000887		
Cytosolic DNA-sensing pathway 0.00218		
Natural killer cell mediated cytotoxicity 0.00387		
RIG-I-like receptor signalling pathway 0.00395		
B cell receptor signalling pathway 0.00472		

Schizophrenia

Immune and defence	Diseases	Other infections
Cytokine-cytokine receptor interaction 0.00000000000286	Systemic lupus erythematosus 0.0009	African trypanosomiasis 0.0000000032
T cell receptor signalling pathway 0.00000000000429	Transcriptional misregulation in cancer 0.001	Legionellosis 0.0000000029
NOD-like receptor signalling pathway 0.000216	Prion diseases 0.001	Influenza A 0.0000017
Hematopoietic cell lineage 0.0000452	Prostate cancer 0.002	Toxoplasmosis 0.00000446
Fc epsilon RI signalling pathway 0.000161	Pathways in cancer 0.003	Herpes simplex infection 0.0000056
Adipocytokine signalling pathway 0.00053	Acute myeloid leukaemia 0.0099	Amoebiasis 0.00000259
Intestinal immune network for IgA production 0.000682	Paths in cancer 0.0000000102	Malaria 0.0000099
Toll-like receptor signalling pathway 0.000773		Staphylococcus aureus infection 0.00000152
Antigen processing and presentation 0.000887		Viral myocarditis 0.00372

Multiple sclerosis

Immune and defence	Diseases	Other infections
Cytokine-cytokine receptor interaction 1.02E − 28	Allograft rejection 0.000000000000147	Chagas disease (American trypanosomiasis) 5.89E − 22
Toll-like receptor signalling pathway 0.0000000000032	Type I diabetes mellitus 0.00000000983	Influenza A 2.81E − 19
Chemokine signalling pathway 0.000000000000747	Rheumatoid arthritis 0.00000000549	Toxoplasmosis 4.01E − 18
Intestinal immune network for IgA production 0.000000000007	Graft-versus-host disease 0.00000000153	Tuberculosis 9.96E − 17
T cell receptor signalling pathway 0.00000000000237	Autoimmune thyroid disease 0.00000000425	Leishmaniasis
NOD-like receptor signalling pathway 0.00000000000639	Systemic lupus erythematosus 0.00000000625	0.000000000000000001
Hematopoietic cell lineage 0.0000000000469	Prion diseases 0.000000316	Malaria 0.000000000000000001
Natural killer cell mediated cytotoxicity 0.000000058	Alzheimer’s disease 0.0000000422	African trypanosomiasis 0.00000000000585
RIG-I-like receptor signalling pathway 0.000188		Legionellosis 0.00000000000143
Primary immunodeficiency 0.000000316		Malaria 0.000000000000000413
Antigen processing and presentation 0.0000325		Amoebiasis 0.00000000000237
Leukocyte transendothelial migration 0.0000719		Legionellosis 0.000000000000346
Cytosolic DNA-sensing pathway 0.0000921		Viral myocarditis 0.0000000089
Complement and coagulation cascades 0.00927		Salmonella infection 0.00000000677
Adipocytokine signalling pathway 0.000927		HTLV-I infection 0.000000052
		Hepatitis C 0.00000000538
		Staphylococcus aureus infection 0.00000000371
		Shigellosis 0.0000786
		Epithelial cell signalling in Helicobacter pylori infection 0.00882
Table 5: Continued.

Immune and defence	Diseases	Other infections
Hematopoietic cell lineage 0.000000276	Rheumatoid arthritis 0.0000000000007	Malaria 6.05E−17
Complement and coagulation cascades 0.000000499	Alzheimer’s disease 0.000000013	Chagas disease (American trypanosomiasis) 0.000000000004
Toll-like receptor signalling pathway 0.000000982	Graft-versus-host disease 0.00000035	Pertussis 0.000000000204
NOD-like receptor signalling pathway 0.000002	Type I diabetes mellitus 0.000076	Leishmaniasis 0.000000000283
Cytokine-cytokine receptor interaction 0.000003	Prion diseases 0.0000442	Tuberculosis 0.000000000325
Cytosolic DNA-sensing pathway 0.000436	Transcriptional misregulation in cancer 0.00049	Legionellosis 0.00000000407
Phagosome 0.00098		
Intestinal immune network for IgA production 0.00148		
Adipocytokine signalling pathway 0.00558		
NOD-like receptor signalling pathway 0.00000539	Rheumatoid arthritis 0.000000131	Staphylococcus aureus infection 0.00246
Toll-like receptor signalling pathway 0.00000543	Graft-versus-host disease 0.000000932	Pertussis 0.00000000000612
Hematopoietic cell lineage 0.00000417	Type I diabetes mellitus 0.00000019	Tuberculosis 0.0000000000987
Cytokine-cytokine receptor interaction 0.000153	Asthma 0.00031	Leishmaniasis 0.000000000254
T cell receptor signalling pathway 0.00123	Systemic lupus erythematosus 0.000327	Influenza A 0.00000000547
Intestinal immune network for IgA production 0.00152	Prion diseases 0.00000491	Amoebiasis 0.0000000126
	Allograft rejection 0.000054	Salmonella infection 0.000000226
NOD-like receptor signalling pathway 0.0000000539	Rheumatoid arthritis 0.000000131	Staphylococcus aureus infection 0.00246
Toll-like receptor signalling pathway 0.0000000543	Graft-versus-host disease 0.000000932	Pertussis 0.00000000000612
Hematopoietic cell lineage 0.00000417	Type I diabetes mellitus 0.00000019	Tuberculosis 0.0000000000987
Cytokine-cytokine receptor interaction 0.000153	Asthma 0.00031	Leishmaniasis 0.000000000254
T cell receptor signalling pathway 0.00123	Systemic lupus erythematosus 0.000327	Influenza A 0.00000000547
Intestinal immune network for IgA production 0.00152	Prion diseases 0.00000491	Amoebiasis 0.0000000126
	Allograft rejection 0.000054	Salmonella infection 0.000000226

oxidative, and endoplasmic reticulum stress) converge on a pathway that ultimately inhibits translation initiation and protein synthesis. This network is counterbalanced by growth factors and neurotransmitter influences that affect plasticity and growth and is particularly important in regulating oligodendrocyte viability, myelination, and synaptic plasticity [149] (c.f. the neurotrophin pathway within this dataset and related glutamatergic and growth factor signalling networks in others). Neurotransmitter networks within the overlapping bipolar/interactome are predominantly related to dopamine and reward pathways and to tyrosine, phenylalanine, and tryptophan metabolism.

4.4.5. Schizophrenia. The link between schizophrenia and toxoplasmosis is perhaps the strongest in relation to published studies [6, 82, 150–152], and of particular relevance is the parasite’s ability to increase cerebral dopamine levels (see above). In this respect, the overlapping interactome/gene dataset was enriched in dopaminergic pathways, and also in those related to serotonergic and glutamatergic transmission as well as cocaine and amphetamine addiction. As in most autoimmune and atopic diseases, which are commonly associated with schizophrenia, were well represented. In many autoimmune conditions the link with schizophrenia was positive and gender specific, while an
already been mentioned. Other relevant pathogens, to favour the promulgation of one may conceivably be related to the abilities of T. gondii antibodies. Interestingly, the antiparasitic agent artemisinin reduces the titre of antibodies to gliadin in a subset of schizophrenic patients, and these observations testify to the ability of the parasite to modulate immune function (and perhaps the antigenicity of other proteins). However, artemisinin did not reduce the titre of antibodies to T. gondii, nor did artemisinin (as add on therapy) have significant effects on symptomatology [155–157]. Artemisinin and its analogues are known to produce neurotoxic effects in laboratory models, an effect possibly linked to excitotoxicity and oxidative stress [158, 159], and clearly more suitable agents are needed in the research domain. The overlapping dataset also included significant enrichment of adhesion molecule, glutathione, and growth factor and related signalling pathways (VEGF, MAPK, and Wnt, but not ERBB signalling, although this pathway is affected by T. gondii). The PPAR network was also enriched in this dataset and is relevant in relation to the inflammatory arm of this pathway and to the ability of the pathway to regulate cholinergic and dopaminergic function [160, 161]. With regard to the cancer pathways in this dataset, schizophrenia has been associated with a reduced cancer incidence, but with no familial explanation, suggesting a nongenetic reason that may conceivably be related to the abilities of T. gondii, and other relevant pathogens, to favour the promulgation of one disease, but perhaps protect against another. In relation to the overlapping Alzheimer’s disease pathway within this dataset, the association of prior psychiatric illness with dementia has already been mentioned [146].

4.5. Neurodegenerative Disorders

4.5.1. Parkinson’s Disease. There are only limited human seroprevalence studies and no apparent animal studies specifically in relation to the substantia nigra, linking toxoplasmosis to Parkinson’s disease [11, 12]. Nevertheless the overlap between the T. gondii interactome and susceptibility genes figures certain key pathways that may merit further research. The interactome/genetic overlap for significantly enriched pathways in Parkinson’s disease in relation to neurotransmission was restricted to dopaminergic systems, and a number of key genes including those of the mitochondrial respiratory chain (ATP6, CYTB, and ND2), the quinone reductase NQO2, and two key Parkinson’s disease genes (PINK1 and UCHL1) figure within the enriched T. gondii interactome. While an ability of T. gondii to promote dopamine synthesis might be considered beneficial in Parkinson’s disease, it has also been shown that dopamine promotes synuclein conformational changes, which may directly contribute to pathology [162]. As with other diseases, autoimmune networks, cancer pathways, and Alzheimer’s disease were represented. Cancer and neurodegenerative diseases in general appear to be inversely correlated [163].

4.5.2. Alzheimer’s Disease. Any link between Alzheimer’s disease and toxoplasmosis is limited to a seroprevalence study [13] and to scattered case reports [164, 165].

In Alzheimer’s disease, the significantly enriched pathways included PPAR signalling, terpenoid biosynthesis (cholesterol synthesis) concerned with fatty acid, lipid, and cholesterol homoeostasis, and the arginine and proline metabolism pathway, primarily concerning nitric oxide, all of which play a key role in Alzheimer’s disease physiology [166, 167]. Several pathogens (herpes simplex, C. pneumoniae, treponemas, and spirochetes) [24, 168, 169] increase beta-amyloid deposition. The gamma secretase network and APP are localised in immunocompetent dendritic cells, and, as the amyloid peptide possesses antimicrobial and antiviral effects [170, 171], beta-amyloid production may well be a general defensive response to pathogen invasion [20]. In normal conditions, it is not known whether beta-amyloid production is also a response to larger parasites, or whether beta-amyloid has antiparasitic activity.

In Tg2576 transgenic mice (the Swedish APP mutation), T. gondii infection in fact reduces cerebral beta-amyloid deposition and increases the levels of anti-inflammatory cytokines, effects attributed to the immunosuppressant effects of infection [172]. In relation to the cholesterol related genes in the Alzheimer’s disease T. gondii dataset, the parasite cannot synthesis its own sterols and scavenge host cholesterol. Its growth in macrophages can be inhibited by statins [173]. While a living cholesterol lowering agent might be considered useful in the periphery, such effects may be deleterious if limited to cerebral areas, as the brain synthesises its own cholesterol. This is mostly present in myelin and is generally indispensable for function [167]. In the Alzheimer’s disease Tg2576 transgenic model, T. gondii lysate antigen inhibits the production of nitrites in microglial cells, contributing to the protective effects of infection in this model [172]. As with obesity, certain interactome/susceptibility gene pathways involved in parasitic infection might well be considered as beneficial.

4.5.3. Multiple Sclerosis. Although by far the most enriched dataset in terms of interactome/susceptibility gene overlaps, there appear to have been no studies either in the clinic or in relation to myelination in laboratory studies linking multiple sclerosis and toxoplasmosis. A study in 3 pairs of identical twins reared apart was generally inconclusive, although T. gondii or other pathogen seropositivity were observed in some cases [174]. Further work will be of interest in relation to this close association.

In multiple sclerosis, the major overlapping pathways primarily concerned cytokine and TGF-beta signaling, the related JAK-STAT pathway, and the ErbB and p53 signalling pathways that plays a key role in myelination [175, 176].

5. Summary

Within each disease dataset, the susceptibility genes that overlap with the T. gondii interactome, analysed by either method, appear highly relevant to the pathological processes
Table 6: Significantly enriched KEGG pathways within the overlapping interactome/susceptibility gene datasets (Signalling networks, metabolic pathways and neuronal pathways). P values are provided after each pathway description.

Genotype	Signalling networks	Process	Metabolism	Neuronal
ADHD	Calcium signalling pathway		Histidine metabolism 0.000162	Dopaminergic synapse 5.29E−07
			Tryptophan metabolism 0.000473	Cocaine addiction 7.07E−07
			Phenylalanine metabolism 0.00213	Neuroactive ligand-receptor interaction 0.000559
			Biosynthesis of unsaturated fatty acids 0.0029	
			Tyrosine metabolism 0.00932	
Autism	VEGF signalling pathway	ECM-receptor interaction 0.000918	None	Cocaine addiction 0.000086
		Cell adhesion molecules (CAMs) 0.00109		Amphetamine addiction 0.00061
		Focal adhesion 0.00239		Dopaminergic synapse 0.00203
				Serotonergic synapse 0.0079
Anorexia	None	None	None	Dopaminergic synapse 0.0000132
		None		Cocaine addiction 0.000019
		None		Neuroactive ligand-receptor interaction 0.000239
		None		Amphetamine addiction 0.00296
		None		Morphine addiction 0.00501
				Serotonergic synapse 0.00924
Childhood obesity	PPAR signalling pathway	None	Glycerolipid metabolism 0.00525	Dopaminergic synapse 0.0000000000736
	0.0000011			Cocaine addiction 0.0000000875
	p53 signalling pathway 0.00822			Amphetamine addiction 0.00000108
	Calcium signalling pathway			Serotonergic synapse 0.0000323
	0.000239			Morphine addiction 0.00104
	Circadian rhythm—mammal			Retrograde endocannabinoid signalling 0.00155
	0.00546			Neuroactive ligand-receptor interaction 0.00244
	VEGF signalling pathway 0.00618	Osteoclast differentiation 0.000453	Tryptophan metabolism 0.0000468	Dopaminergic synapse 0.0000000000736
	Jak-STAT signalling pathway 0.00772	Apoptosis 0.000876	Arginine and proline metabolism 0.00296	Cocaine addiction 0.0000000875
	TGF-beta signalling pathway 0.00877	Gap junction 0.00104	Phenylalanine metabolism 0.00366	Amphetamine addiction 0.00000108
		Melanogenesis 0.00166	Biosynthesis of unsaturated fatty acids 0.00498	Serotonergic synapse 0.0000323
			alpha-Linolenic acid metabolism 0.00498	Morphine addiction 0.00104
			Histidine metabolism 0.00876	Retrograde endocannabinoid signalling 0.00155
				Neuroactive ligand-receptor interaction 0.00244
				Glutamatergic synapse 0.00351
				Long-term depression 0.00529
Signalling networks	Process	Metabolism	Neuronal	
---------------------	------------------	----------------------	-----------------------------------	
Bipolar disorder	Calcium signalling pathway 0.000384	Apoptosis 0.0000464	Tyrosine metabolism 0.00306	
	Jak-STAT signalling pathway 0.00121		Tryptophan metabolism 0.00354	
			Phenylalanine metabolism 0.00828	
Schizophrenia	Jak-STAT signalling pathway 0.00000299		Cocaine addiction 0.0000000151	
	MAPK signalling		Dopaminergic synapse 0.0000001479	
	pathway 0.000558			
	VEGF signalling			
	pathway 0.00077			
	PPAR signalling			
	pathway 0.00395			
	Calcium signalling			
	pathway 0.00444			
	Wnt signalling			
	pathway 0.00661			
Multiple sclerosis	Jak-STAT signalling pathway 0.000000259	Osteoclast differentiation 0.00000000314	Terpenoid backbone biosynthesis 0.00125	
	MAPK signalling			
	pathway 0.000492			
	TGF-beta signalling pathway 0.00126	Cell adhesion molecules (CAMs) 0.0000000558	Arginine and proline metabolism 0.0028	
	ErbB signalling			
	pathway 0.00382			
	p53 signalling			
	pathway 0.00882			
Alzheimer's	PPAR signalling			
	pathway 0.000000416			
Parkinson's	MAPK signalling			
	pathway 0.00623			
and physiology of the disease. This convergence suggests a massive effect of infection on numerous processes. However, while some may be deleterious, (e.g., the promotion of dopaminergic activity in relation to psychosis), others may be beneficial (e.g., immunosuppression in autoimmune diseases). Even within any particular disease, the diverse effects of the parasite could be either favour or inhibit the development of particular endophenotypes. As suggested below, the overall direction taken and the resulting pathology are likely to depend upon a combination of factors including the strain of parasite, the timing and localisation of infection, our prior immune status, and the susceptibility genes.

In many cases, the signalling networks influenced by susceptibility genes either per se or within the overlapping host/pathogen interactome involve many diseases other than the primary disease concerned. Diseases are often associated with other diseases, either positively or inversely [177]. For example degenerative disorders may be inversely associated with cancer [163, 178]. This may be related to particular signalling networks, for example growth factor signalling pathways are essential for myelination or involved in long-term potentiation, but excessive stimulation will promote cancerous growth. The ability of T. gondii (and other pathogens) to affect so many processes, which may be either deleterious or beneficial to various disease-related networks, suggests that pathogens may also be the pivot around which such relationships revolve.

5.1. Autoimmunity and Host/Pathogen Protein Homology. Several studies have recently shown that the entire human proteome contains short sequences (pentapeptides to heptapeptides or longer gapped consensi) that are identical to those within proteins expressed by numerous viruses, bacteria and other pathogens. For diverse pathogens, these human homologues appear to be concentrated within networks that are relevant to diseases in which the pathogen is implicated [35, 37, 38, 179, 180]. This problem is extensive and concerns all human proteins, along their entire length. For example, there are 18,000 pentapeptide overlaps between the poliovirus and the human proteome [181] while a single immunogenic pentapeptide (VGGVV) within the beta-amyloid peptide is identical to that within proteins from the herpes simplex virus and from 68 other viral species [19]. The extensive host/pathogen interactomes of numerous viruses, bacteria, and parasites no doubt result from this homology which enables pathogen proteins to mimic particular motifs within their human counterparts and to compete for their usual binding partners. Such homology must presumably relate to our evolutionary decent from monocolonial organisms and to horizontal gene transfer, a process that applies to all living matter [182]. It is now also appreciated that DNA derived from both DNA and RNA viruses (and not only from retroviruses) has been extensively incorporated into the human genome, and it seems likely that this has also played a role in our evolution, and evidently in the generation of this protein homology [182–185]. Host parasite interactions have also contributed to this gene transfer, and genes from the Chagas disease vector, Rhodnius prolixus, have been found within the genomes of its tetrapod hosts [186]. Peptide homology is more extensive than genetic homology, due to the fact that a number of amino acids can be coded for by several triplet DNA codons (6 for arginine leucine and serine, 4 for alanine, glycine, proline, threonine, and valine, 3 for isoleucine, and 2 for asparagine, aspartate, glutamate, glutamine, cysteine, histidine, lysine, and phenylalanine) (see http://en.wikipedia.org/wiki/DNA_codon). These essentially correspond to single nucleotide polymorphisms that do not modify the translated amino acid. For short peptide sequences, numerous different DNA sequences can thus code for identical peptides.

This extensive homology, and more particularly slightly differing rather than identical peptides (which are more likely to be recognised as nonself) [36, 187], may well also contribute to autoimmunity problems that are evident in many diseases. For example, in Alzheimer's disease, multiple sclerosis, schizophrenia, and AIDS, antigenic regions of several autoantigens particular to each disease are homologous to proteins expressed by the pathogens implicated in the same disease (including T. gondii and schizophrenia) [18–21, 39].

Diseases currently classified as autoimmune include celiac disease, multiple sclerosis, myasthenia gravis, lupus, rheumatoid arthritis, and inter alia (see Medline Plus article at http://www.nlm.nih.gov/medlineplus/ency/article/000816.htm). However, the autoimmune problem appears to be much more extensive than currently appreciated. For example, using a protein array of 9,486 unique human protein antigens, even control blood samples averaged over 1000 autoantibodies, although with extreme intersample variation. As only ~30% of the human proteome was used in this experiment, we may each eventually accumulate over 3000 autoantibodies, irrespective of any particular disease. However, in both Parkinson's and Alzheimer's disease the target profile of the autoantibodies is distinct and can be reliably used as a diagnostic and predictive tool [188, 189]. Autoimmune signatures, with diagnostic predictive value have also been reported in multiple sclerosis [190], breast cancer [191], and nonsmall cell lung cancer [192]. Such data, (in diseases generally not regarded as autoimmune) and the recognition that so many diseases are characterised by immune activation and inflammation suggest that further research in this area would be fruitful in relation to the understanding of the pathologies and eventual treatment of many diseases.

The immune system is trained, in early life, not to recognize the body's own proteins as self [193]. These bioinformatics data suggest that the multiple autoantibodies seen in man (even in the absence of disease) may stem not from some inherent malfunction of the immune system itself, but from antibodies raised to the numerous pathogens that we randomly encounter during the course of our lifetime. Because of this extensive host/pathogen homology, such antibodies are also likely to target human proteins, and even if the pathogen is eliminated, continued encounter of these human homologues would sustain an autoimmune response. In this way, pathogens might be able to influence disease processes, even when no longer present, perhaps accounting for numerous studies that have failed to find pathogen DNA or protein within diseased tissue, a finding often cited as evidence against pathogen involvement, as recently applied.
to the controversial implication of the XMRV virus with chronic fatigue or prostate cancer [194–197]. The prospect that autoimmunity is pathogen related suggests that such agents may be able to punch far above their weight and influence biological processes even after their successful removal. This entails a revision of Koch’s postulate as already discussed in a recent review on autoimmunity and the metagenome [177]. This autoimmune scenario might also explain why the antiparasitic agent artemisinin failed to influence psychotic symptoms (as add-on therapy) in schizophrenia [156], as destruction of the parasite needs not to affect the behaviour of antibodies raised to it.

Antibodies to pathogens are clearly cross-reactive with cerebral tissue, although the precise targets remain to be identified. For example 14/25 antibodies to 17 neurotropic pathogens, including Borrelia burgdorferi, T. gondii, and various DNA and RNA viruses were found to bind to western blots of human nervous tissue [198]. It is impossible to verify cross-reactivity solely from sequence analysis, but the ability of pathogen antibodies to react with human proteins could perhaps be tested in bulk using the protein arrays described above. It is now known that antibodies can enter cells, transported by the pathogens to which they bind, [199], and are also able to traverse the blood brain barrier [200]. Antibodies to receptors can also enter cells using the receptor endocytosis apparatus [201]. Antibodies can have devastating pathological consequences. For example, in transgenic mice engineered to express nerve growth factor antibodies only in lymphocytes, the blood brain barrier is soon disrupted, with cerebral antibody entry provoking extensive cortical degeneration, cholinergic neuronal loss, tau hyperphosphorylation, and beta-amyloid deposition (i.e., the cardinal pathology of Alzheimer’s disease) [202]. This phenomenon is applicable to human diseases, including Sydenham’s chorea, believed to be caused by streptococcus induced antibodies which cross-react with basal ganglia antigens [203]. The same streptococcal pathogens (and likely a similar mechanism) have been implicated in paediatric autoimmune neuropsychiatric disorders (PANDAs) whose diverse symptoms include tics, and dystonias, Tourette syndrome, and obsessive-compulsive disorder [204].

If autoantibodies do indeed play a key role in the pathogenesis of many diseases, then it is likely that their removal may be of benefit. However, given the large number of autoantibodies, some of which may well be beneficial and also required for pathogen defence, this may be no easy task. However, the research so far suggests that the number of autoantibodies specific to a particular disease may be more limited, allowing scope for analysis of their pathological or redemptive properties.

5.2. Population Genetics and a Proposed Gene/Environment Interaction Model (Figure 2). The mechanisms described above provide a general example of multiple gene/environment interactions in relation to a single pathogen interactome, where several thousand genes (human and protozoan) are involved. Even for a simple population genetics model, with two genes, two risk factors, and a single cause, varying permutations can dramatically influence the eventual outcome. For example, the light and dark coloured genes of the peppered moth, or the light and dark colours of the clean or polluted trees on which they alight, can all be either risk promoting or protective depending on the varying permutations (the light gene “kills” the moth alighting on dark trees but is protective on the lighter trees, etc.) [205]. Neither gene, nor risk factor is relevant if there are no hungry birds or at night time. If one splits a complex disease into its component parts and gives the number of interacting processes involved in the T. gondii interactome, even this single pathogen could act either as a cause, a risk promoter, or as a protective agent, depending upon the pathways that it influences the most. For example, its effects on dopamine could promote psychosis or synuclein polymerisation, and its cholesterol scavenging may have beneficial effects in atherosclerosis, but deleterious effects on myelination, immunosuppressive effects might well protect against autoimmunity, but favour other infections, while the host’s inflammatory reaction or associated fever might contribute to inappropriate collateral damage.

These complex interactions are nevertheless based on a relatively simple concept; that each interaction has an effect on the processes and pathways regulated by the human protein concerned. This suggests a model that may have general application to the many other pathogens and environmental agents implicated in these diseases.

If one imagines the T. gondii proteins as a number of spheres, each with particular affinity for certain human genes or proteins, and their human interactome partners as a further series of spheres perched on a genetic ledge whose characteristics and apertures are regulated by polymorphisms, mutations, deletions, translocations, or copy number variations, then the trajectory of each, dropped through this genetic sieve or knocked off the ledge and falling through the apertures, will be influenced both by the strain of pathogen with different host/pathogen affinities, the dropping point, the timing, and localisation of infection, when and where different human genes are expressed and by the polymorphic genes themselves (for both the host and the pathogen).

Each of these human genes controls a particular element of one or many signalling networks, metabolic pathways, structural elements, developmental processes, and so forth, each represented by reception bins at different positions beneath the sieve. Depending upon varying permutations of these factors, the eventual number of spheres in each bin will vary, resulting in a diverse spectrum of pathway disturbance. Each pathway may be affected either positively or negatively, and the eventual assembly of this pathway mosaic leads to particular endophenotypes or subpathologies, which together combine to assemble into a particular disease. In this way, the same pathogen can produce diverse effects ranging from cause to prevention depending on a permutation of circumstance.

The genes, risk factors, and the immune system thus work together to determine the final outcome, while neither per se are likely to provoke a particular disease. While gene/environment interactions are appreciated in both genetic and epidemiological studies, most, particularly in relation to GWAS, are performed without data partitioning in relation to other variables [206]. Many other pathogens
Infection: when, where, and prior immunity?

Pathogen proteins

Human: expression, time, localisation, and genetics

Pathways

Apoptosis
Growth factors
Dopamine, serotonin, and so forth
Glutamate
Oxidative stress
Inflammation/immune

Processes endophenotypes

Tumorigenesis
Cell death
Neuromaintenance, plasticity
Reward/behaviour

Disease

Cancers
Degenerative diseases
Psychiatric disorders

HLA, pathogen defense, inflammation, immune activation, fever, collateral damage, and autoimmunity

Human genetic sieve

Interaction

Human proteins

Figure 2: A model of the host pathogen interactome illustrating how multiple gene/environment interactions might direct the attentions of the pathogen towards distinct pathways, processes, and diseases. For any pathogen, immune and pathogen defence pathways as well as inflammatory processes will be activated to counter the infection. Although the pathogen can interact with hundreds of host genes and proteins, those chosen will depend upon the strain of pathogen, the timing and localisation of infection, and on whether prior immune barriers exist. In turn, which human elements are available for interaction will depend upon their expression (time and location) upon their functional quirks dictated by polymorphisms or mutations, and so forth. This selection process, involving a genetic sieve and individual interaction probabilities, enables similar interactome selectivity, allowing the pathogen to specifically affect different series of pathways in different circumstances (illustrated by the number of human proteins ending their route in a particular pathway bin). The differential modification of particular pathways will in turn affect particular processes and endophenotypes, whose final assembly constitutes the eventual mosaic of disease. This triage, involving both human and pathogen genes and proteins, as well as environmental factors, may explain how the same pathogen could cause, prevent, or otherwise influence a variety of diseases, depending upon genetic factors and a series of coincidences (see text for further details).
(each no doubt with extensive host pathogen interactomes) and many other risk factors are implicated in these and other diseases, and many are able to influence several relevant aspects of pathology (see Section 1). A clearer understanding of these complex effects could perhaps result in a metamorphosis from multiple genes of small effect in large populations to more restricted numbers of greater effect in particular conditions. It is likely that many disease phenotypes have several "causes," that subsets of overlapping genes are relevant to each, and that despite the mass of data collection and processing entailed, a dissection of these relationships could eventually lead to disease prevention and cure in multiple conditions.

By their very nature, polygenic diseases are complex, with several underlying pathologies and endophenotypes, hundreds of interacting genes, and dozens of environmental risk factors. The failure to replicate either genetic or epidemiological data is a situation peculiar to these diseases, not seen in many other fields. However, the effects of genes and risk factors are clearly conditional and, as illustrated above, may well depend upon each other. Replication inconsistency may well be part of the answer and not part of the problem.

6. Conclusion

The host/pathogen interactome influences ~10% of the human genome products. This may seem a surprisingly high figure, but a similar interactome for the HIV-1 virus, maintained by NCBI [http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=DetailsSearch&Term=hiv1interactions [properties]], contains 1443 human genes (5.4% of the human genome). Bacteria and larger protozoan parasites, which, unlike viruses, also scavenge for host nutrients, as well as injecting their own metabolites into the host's environment, thus influence a larger spectrum of biochemical rather than signalling pathways. These data were also collected from experiments using various host (and species) tissues, and it is likely that brain or other tissue or time-specific interactomes would be more selective.

The relevance of many genes to a particular condition is often tested by gene knockout in transgenic models and comforted by the resulting endophenotypes which mimic those of the particular disease [207]. However, risk promoting variants are, for the most part, single nucleotide polymorphisms rather than deletions and while expression may be altered (in either direction) in mRNA or protein expression studies, there is little to suggest a similar knockout in the human condition (see for example the microarray Geopfiles database at NCBI [http://www.ncbi.nlm.nih.gov/sites/geo/]).

However, there are two pathogen-related effects that equate to conditional protein knockout which could be cell and regionally and temporally specific. The first relates to the host/pathogen interactome and the second to autoimmunity. If a host protein is engaged with that of a pathogen, it is effectively taken out of circulation during this period, and the pathways in which it is implicated can but be compromised. Secondly, because of extensive homology between pathogen and human proteins, antibody cross reactivity is likely to target the human counterparts of the pathogen antigen, effectively resulting in immunopharmacological knockout. In addition to these knockout effects, immune activation and the general reaction to infection are also likely to influence cellular function, as are the multitude of genes whose mRNA levels are influenced by this and other pathogens. In relation to prenatal effects, laboratory models have shown that maternally administered nonspecific viral DNA mimics and inflammatory agents or cytokines can also induce behavioural disturbances and psychopathology in the offspring [208, 209]. Fever during pregnancy also increases the risk of the offspring later developing autism and schizophrenia [210, 211], and it seems likely that prenatal infection in general is able to markedly affect brain development. The consequences would also depend upon which particular brain process and region is concerned at which period of embryogenesis.

Many other pathogens have been implicated in several of these conditions. In some of the diseases studied, almost one-third of the susceptibility genes were implicated in the T. gondii interactome (Table 3). Other pathogens will also have extensive interactomes, specific to each, but with a degree of overlap, and it would not be implausible if the near totality of susceptibility genes, in certain diseases, were involved in the summated life cycles of these diverse environmental triggers. It would thus seem that many susceptibility genes are related to the causes of disease, rather than (and as well as) to the disease itself. It is likely that stratification of GWAS and other genetic data in relation to infection status and history and many other environmental variables would be useful in determining the contribution of different genes to different risk factors and to their commonly affected pathways.

Many psychiatric disorders are associated with a degree of social stigma and blame often apportioned to the genes, parentage and upbringing, and behaviour of the affected individuals. These and other chronic diseases also place a heavy long-term burden on family, friends, and caregivers [212]. This analysis suggests that T. gondii is a likely cause of certain aspects of psychiatric disorders, but perhaps a protective agent in others. Hopefully, an appreciation that such diseases may well be caused by pathogens and vectored by family pets will help to dispel such prejudice and more importantly create a new framework for the development of new methods of treatment and prevention. Given the massive problem of autoimmunity, however, it may be simplistic to suggest that removing the pathogen will halt the disease, although prevention of its initial access might be expected to affect disease incidence. Such approaches need not necessarily be clinical. For example if toxoplasmosis in cats and other pets was registered as a notifiable disease requiring obligatory treatment by veterinarians, perhaps the incidence of several diseases could be reduced.

Acknowledgments

The author is particularly indebted to the KEGG staff for their pathway contribution and for permission to post pathways on the PolygenicPathways website and to the numerous authors who have provided reprints.
[66] P. Sansone and J. Bromberg, “Targeting the interleukin-6/Jak/Stat pathway in human malignancies,” *Journal of Clinical Oncology*, vol. 30, no. 9, pp. 1005–1014, 2012.

[67] P. Liao and T. W. Soong, “CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency,” *Pflugers Archiv European Journal of Physiology*, vol. 460, no. 2, pp. 353–359, 2010.

[68] D. M. Kullmann, “Neurological channelopathies,” *Annual Review of Neuroscience*, vol. 33, pp. 151–172, 2010.

[69] N. Pezzella, A. Bouchot, A. Bonhomme et al., “Involvement of calcium and calmodulin in *Toxoplasma gondii* tachyzoite invasion,” *European Journal of Cell Biology*, vol. 74, no. 1, pp. 92–101, 1997.

[70] H. O. Song, M. H. Ahn, J. S. Ryu, D. Y. Min, K. H. Joo, and Y. H. Lee, “Influence of calcium ion on host cell invasion and intracellular replication by *Toxoplasma gondii*,” *The Korean journal of parasitology*, vol. 42, no. 4, pp. 185–193, 2004.

[71] L. Michalik, J. Auwerx, J. P. Berger et al., “International union of pharmacology. LXI. Peroxisome proliferator-activated receptors,” *Pharmacological Reviews*, vol. 58, no. 4, pp. 726–741, 2006.

[72] P. L. McGeer, H. Akiyama, S. Itagaki, and E. G. McGeer, “Activation of the classical complement pathway in brain tissue of Alzheimer patients,” *Neuroscience Letters*, vol. 107, no. 1–3, pp. 341–346, 1989.

[73] A. N. Hegde and S. C. Upadhya, “Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease,” *Biochimica et Biophysica Acta*, vol. 1809, no. 2, pp. 128–140, 2011.

[74] J. Newbern and C. Birchmeier, “Nrg1/ErbB signaling networks,” *Journal of Pathogens* 25 no. 2, pp. 78–86, 2011.

[75] C. J. Carter, “EIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia?” *Trends in Pharmacological Sciences*, vol. 33, no. 6, pp. 1343–1353, 2007.

[76] O. Dean, F. Giorlando, and M. Berk, “N-acetylcyesteine in psychiatry: current therapeutic evidence and potential mechanisms of action,” *Journal of Psychiatry and Neuroscience*, vol. 36, no. 2, pp. 78–86, 2011.

[77] M. Bulut, H. A. Savas, A. Altindag, O. Virit, and A. Dalkicil, “Beneficial effects of N-acetylcysteine in treatment resistant schizophrenia,” *World Journal of Biological Psychiatry*, vol. 10, no. 4, pp. 626–628, 2009.

[78] M. Berk, F. Ng, O. Dean, S. Dodd, and A. I. Bush, “Glutathione: a novel treatment target in psychiatry,” *Trends in Pharmacological Sciences*, vol. 29, no. 7, pp. 346–351, 2008.

[79] M. Berk, O. Dean, S. M. Cotton et al., “The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial,” *Journal of Affective Disorders*, 2011.

[80] A. Y. Hardan, L. K. Fung, R. A. Libove et al., “A randomized controlled pilot trial of oral N-acetylcysteine in children with autism,” *Biological Psychiatry*, vol. 71, no. 11, pp. 956–961, 2012.

[81] E. F. Torrey, J. J. Bartko, and R. H. Yolken, “*Toxoplasma gondii* and other risk factors for Schizophrenia: an update,” *Schizophrenia Bulletin*, vol. 38, no. 3, pp. 642–647, 2012.

[82] I. Arias, A. Sorlozano, E. Villegas et al., “Infectious agents associated with schizophrenia: a meta-analysis,” *Schizophrenia Research*, vol. 136, no. 1, pp. 128–136, 2012.

[83] S. Kamerkar and P. H. Davis, “*Toxoplasma* on the brain: understanding host-pathogen interactions in chronic CNS infection,” *Journal of Parasitology Research*, vol. 2012, Article ID 589295, 10 pages, 2012.

[84] J. Gatkowska, M. Wieczorek, B. Dziadek, K. Dzitko, and H. Dlugonska, “Behavioral changes in mice caused by *Toxoplasma gondii* invasion of brain,” *Parasitology Research*, vol. 111, no. 1, pp. 53–58, 2012.

[85] S. Bech-Nielsen, “*Toxoplasma gondii* associated behavioural changes in mice, rats and humans: evidence from current research,” *Preventive Veterinary Medicine*, vol. 103, no. 1, pp. 78–79, 2012.

[86] E. Prandovszky, E. Gaskell, H. Martin, J. P. Dubey, J. P. Webster, and G. A. McConkey, “The neurotropic parasite *Toxoplasma gondii* increases dopamine metabolism,” *PLoS ONE*, vol. 6, no. 9, Article ID e23866, 2011.

[87] A. Paparelli, M. Di Forti, P. D. Morrison, and R. M. Murray, “Drug-induced psychosis: how to avoid star gazing in schizophrenia research by looking at more obvious sources of light,” *Frontiers in Behavioral Neuroscience*, vol. 5, p. 1, 2011.

[88] J. S. Strobl, D. G. Goodwin, B. A. Rzigalinski, and D. S. Lindsay, “Dopamine stimulates propagation of *Toxoplasma gondii* tachyzoites in human fibroblast and primary neonatal rat astrocyte cell cultures,” *Journal of Parasitology*, vol. 98, no. 6, pp. 1296–1299, 2012.

[89] M. Kunz, K. M. Cereser, P. D. Goi et al., “Serum levels of IL-6, IL-10 and TNF-a in patients with bipolar disorder and schizophrenia: differences in pro- and anti-inflammatory balance,” *Revista Brasileira de Psiiquiatria*, vol. 33, no. 3, pp. 268–274, 2011.

[90] V. Piazza, A. Agresta, C. W. DaCunto, M. Festa, and A. Capasso, “Neuroinflamm-aging and neurodegenerative diseases: an overview,” *CNS and Neurological Disorders*, vol. 10, pp. 621–634, 2011.

[91] J. J. Hoarau, P. Krejbich-Trotot, M. C. Jaffar-Bandjee et al., “Activation and control of CNS innate immune responses in health and diseases: a balancing act finely tuned by neuroimmune regulators (NIReg),” *CNS & neurological disorders drug targets*, vol. 10, no. 1, pp. 25–43, 2011.

[92] O. M. Dean, M. van den Buse, A. I. Bush et al., “Role for glutathione in the pathophysiology of bipolar disorder and schizophrenia? Animal models and relevance to clinical practice,” *Current Medicinal Chemistry*, vol. 16, no. 23, pp. 2965–2976, 2009.

[93] H. Lassmann, “Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease,” *Journal of Neural Transmission*, vol. 118, no. 5, pp. 747–752, 2011.

[94] C. J. Carter, “Schizophrenia susceptibility genes converge on interlinked pathways related to glutamatergic transmission and long-term potentiation, oxidative stress and oligodendrocyte viability,” *Schizophrenia Research*, vol. 86, no. 1–3, pp. 1–14, 2006.

[95] C. J. Carter, “Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability,” *Neurochemistry International*, vol. 50, no. 3, pp. 461–490, 2007.

[96] J. Hardy, “Has the amyloid cascade hypothesis for Alzheimer’s disease been proved?” *Current Alzheimer Research*, vol. 3, no. 1, pp. 71–73, 2006.

[97] C. J. Carter, “Convergence of genes implicated in Alzheimer’s disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis,” *Neurochemistry International*, vol. 50, no. 1, pp. 12–38, 2007.

[98] P. Ekelenboom, R. Veerhuis, E. van Exel, J. J. M. Hoozemans, A. J. M. Rozemuller, and W. A. van Gool, “The early involvement of the innate immunity in the pathogenesis of lateonset
Alzheimer's disease: neuropathological, epidemiological and genetic evidence,” Current Alzheimer Research, vol. 8, no. 2, pp. 142–150, 2011.

[99] A. Rosello, G. Warnes, and U. C. Meier, “Cell death pathways and autophagy in the central nervous system and its involvement in neurodegeneration, immunity and central nervous system infection: to die or not to die—that is the question,” Clinical & Experimental Immunology, vol. 168, no. 1, pp. 52–57, 2012.

[100] D. A. T. Nijholt, L. De Kimpe, H. L. Elfrink, J. J. M. Hoozemans, and W. Schaper, “Removing protein aggregates: the role of proteolysis in neurodegeneration,” Current Medicinal Chemistry, vol. 18, no. 16, pp. 2459–2476, 2011.

[101] A. P. Corvin, “Neuronal cell adhesion genes: key players in risk for schizophrenia, bipolar disorder and other neurodevelopmental brain disorders?” Cell Adhesion and Migration, vol. 4, no. 4, pp. 511–514, 2010.

[102] S. Y. T. Cherlyn, P. S. Woon, J. J. Liu, W. Y. Ong, G. C. Tsai, and K. Sim, “Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance,” Neuroscience and Biobehavioral Reviews, vol. 34, no. 6, pp. 958–977, 2010.

[103] L. Herman, T. Houglund, and R. S. El-Mallakh, “Mimicking human bipolar ion dysregulation models mania in rats,” Neuroscience and Biobehavioral Reviews, vol. 31, no. 6, pp. 874–881, 2007.

[104] K. Vass, “Current immune therapies of autoimmune disease of the nervous system with special emphasis to multiple sclerosis,” Current Pharmaceutical Design, vol. 18, no. 29, pp. 4513–4517, 2012.

[105] C. Selmi, E. Mix, and U. K. Zettl, “A clear look at the neuroimmunology of multiple sclerosis and beyond,” Autoimmunity Reviews, 2011.

[106] T. Washino, M. Moroda, Y. Iwakura, and F. Aosai, “Toxoplasma gondii infection inhibits Th17-mediated spontaneous development of arthritis in interleukin-1 receptor antagonist-deficient mice,” Infection and Immunity, vol. 80, no. 4, pp. 1437–1444, 2012.

[107] D. Arsenijevic, F. de Bilbo, P. Vallet et al., “Decreased infarct size after focal cerebral ischemia in mice chronically infected with Toxoplasma gondii,” Neuroscience, vol. 150, no. 3, pp. 537–546, 2007.

[108] D. E. Elliott and J. V. Weinstock, “Helminth-host immunological interactions: prevention and control of immune-mediated diseases,” Annals of the New York Academy of Sciences, vol. 1247, no. 1, pp. 83–96, 2012.

[109] J. H. Kim, K. I. Kang, W. C. Kang et al., “Porcine abortion outbreak associated with Toxoplasma gondii in Jeju Island, Korea,” Journal of Veterinary Science, vol. 10, no. 2, pp. 147–151, 2009.

[110] S. M. Nishi, N. Kassai, and S. M. Gennari, “Antibody levels in goats fed Toxoplasma gondii oocysts,” Journal of Parasitology, vol. 87, no. 2, pp. 445–447, 2001.

[111] D. Arsenijevic, L. Girardier, J. Seydoux, H. R. Chang, and A. G. Dulloo, “Altered energy balance and cytokine gene expression in a murine model of chronic infection with Toxoplasma gondii,” American Journal of Physiology, vol. 272, no. 5, pp. E908–E917, 1997.

[112] D. E. Barnes and K. Yaffe, “The projected effect of risk factor reduction on Alzheimer’s disease prevalence,” The Lancet Neurology, 2011.

[113] G. M. Sargent, L. S. Pilotto, and L. A. Baur, “Components of primary care interventions to treat childhood overweight and obesity: a systematic review of effect,” Obesity Reviews, vol. 12, no. 501, pp. e219–e235, 2011.

[114] K. Sanderson, G. C. Patton, C. McKercher, T. Dwyer, and A. J. Venn, “Overweight and obesity in childhood and risk of mental disorder: a 20-year cohort study,” Australian and New Zealand Journal of Psychiatry, vol. 45, no. 5, pp. 384–392, 2011.

[115] L. Pacífico, V. Nobili, C. Anania, P. Verdecchia, and C. Chiesa, “Pediatric nonalcoholic fatty liver disease, metabolic syndrome and cardiovascular risk,” World Journal of Gastroenterology, vol. 17, no. 26, pp. 3082–3091, 2011.

[116] T. Reinehr and R. Wunsch, “Intima media thickness-related risk factors in childhood obesity,” International Journal of Pediatric Obesity, vol. 6, supplement 1, pp. 46–52, 2011.

[117] M. Juonala, C. G. Magnusson, A. Venn et al., “Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the cardiovascular risk in young finns study, the childhood determinants of adult health study, the bogalusa heart study, and the muscainute study for the international childhood cardiovascular cohort (i3C) consortium,” Circulation, vol. 122, no. 24, pp. 2514–2520, 2010.

[118] A. Virdis, S. Ghiadoni, S. Masi et al., “Obesity in the childhood: a link to adult hypertension,” Current Pharmaceutical Design, vol. 15, no. 10, pp. 1063–1071, 2009.

[119] F. Fava, R. Gitau, B. A. Griffin, G. R. Gibson, K. M. Tuohy, and J. A. Lovegrove, “The type and quantity of dietary fat carbohydrate after faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome “at-risk” population,” International Journal of Obesity. In press.

[120] R. Burcelin, L. Giridou, and C. Pomic, “Immuno-microbiota cross and talk: the new paradigm of metabolic diseases,” Seminars in Immunology, vol. 24, no. 1, pp. 67–74, 2012.

[121] S. Schwartz, I. Friedberg, I. V. Ivanov et al., “A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response,” Genome Biology, vol. 13, no. 4, Article ID r32, 2012.

[122] Y. Nishikawa, F. Quittnat, T. T. Stedman et al., “Host cell lipids control cholesterol ester synthesis and storage in intracellular Toxoplasma,” Cellular Microbiology, vol. 7, no. 6, pp. 849–867, 2005.

[123] L. R. Portugal, L. R. Fernandes, V. S. Pietra Pedroso, H. C. Santiago, R. T. Gazzinelli, and J. I. Alvarez-Leite, “Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection,” Microbes and Infection, vol. 10, no. 3, pp. 276–284, 2008.

[124] J. Hay, P. P. Atkien, and M. A. Arnott, “The influence of congenital Toxoplasma infection on the spontaneous running activity of mice,” Zeitschrift fur Parasitenkunde, vol. 71, no. 4, pp. 459–462, 1985.

[125] C. Alfonso, V. B. Paixao, and R. M. Costa, “Chronic toxoplasma infection modifies the structure and the risk of host behavior,” PLoS ONE, vol. 7, no. 3, Article ID e32489, 2012.

[126] M. Gulinello, M. Acquarone, J. H. Kim et al., “Acquired infection with Toxoplasma gondii in adult mice results in sensorimotor deficits but normal cognitive behavior despite widespread brain pathology,” Microbes and Infection, vol. 12, no. 7, pp. 528–537, 2010.

[127] R. J. Deckelbaum and C. Torrejon, “The omega-3 fatty acid nutritional landscape: health benefits and sources,” Journal of Nutrition, vol. 142, supplement 3, pp. 5875–5915, 2012.
through nicotinic receptors," *Biological Psychiatry*, vol. 68, no. 3, pp. 256–264, 2010.

[162] T. F. Outeiro, J. Klucken, K. Bercury et al., "Dopamine-induced conformational changes in alpha-synuclein," *PloS one*, vol. 4, no. 9, p. e6906, 2009.

[163] J. A. Driver, A. Beiser, R. Au et al., "Inverse association between cancer and Alzheimer’s disease: results from the Framingham Heart Study," *British Medical Journal*, vol. 344, p. e1442, 2012.

[164] M. Habek, D. Ozretić, Ž. Žarković, V. Djaković, and Z. Mubrin, "Unusual cause of dementia in an immunocompetent host: toxoplasmal encephalitis," *Neurological Sciences*, vol. 30, no. 1, pp. 45–49, 2009.

[165] S. Freidel, C. Martin-Söffch, and U. Schreiter-Gasser, "Alzheimer’s dementia or cerebral toxoplasmosis? Case study of dementia following toxoplasmosis infection," *Nervenarzt*, vol. 73, no. 9, pp. 874–878, 2002.

[166] R. K. Sodhi, N. Singh, and A. S. Jaggi, "Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer’s disease," *Naunyn-Schmiedeberg’s Archives of Pharmacology*, vol. 384, no. 2, pp. 115–124, 2011.

[167] I. Björkhem, S. Meaney, and A. M. Fogelman, "Brain cholesterol: long secret life behind a barrier," *Experimental Medicine and Biology*, vol. 55, no. 4, pp. 806–815, 2004.

[168] C. S. Little, C. J. Hammond, A. MacIntyre, B. J. Balin, and D. M. Appelt, "Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice," *Neurobiology of Aging*, vol. 25, no. 4, pp. 419–429, 2004.

[169] M. A. Wozniak, R. F. Izhaki, S. J. Shipley, and C. B. Dobson, "Herpes simplex virus infection causes cellular β-amyloid accumulation and secrete upregulation," *Neuroscience Letters*, vol. 429, no. 2–3, pp. 95–100, 2007.

[170] G. L. Lucchese, A. Stufano, M. Calabro, and D. Kanduc, "Charting the peptide crossreactome between HIV-1 and the human proteome," *Frontiers in Bioscience*, vol. 3, pp. 1385–1400, 2011.

[171] G. Capone, G. Novello, S. L. Bavaro et al., "A qualitative description of the peptide sharing between poliovirus and Homo sapiens," *Immunotoxicology*, vol. 34, no. 5, Article ID 089239, pp. 779–785, 2012.

[172] J. G. Sinkovics, "Horizontal gene transfers with or without cell fusions in all categories of the living matter," *Advances in Experimental Medicine and Biology*, vol. 950, pp. 5–89, 2011.

[173] M. Horie, T. Honda, Y. Suzuki et al., "Endogenous non-retroviral RNA virus elements in mammalian genomes," *Nature*, vol. 463, no. 7277, pp. 84–87, 2010.

[174] S. Z. Liu, Y. Fu, D. J. Jiang et al., "Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes," *Journal of Virology*, vol. 84, no. 22, pp. 11876–11887, 2010.

[175] A. Katzourakis and R. J. Gifford, "Endogenous viral elements in animal genomes," *PLoS Genetics*, vol. 6, no. 11, Article ID e1001191, 2010.

[176] C. Gilbert, S. Schaack, J. K. Pace II, P. J. Brindley, and C. Foschotte, "A role for host-parasite interactions in the horizontal transfer of transposons across phyla," *Nature*, vol. 464, no. 7293, pp. 1347–1350, 2010.

[177] D. Kanduc, "Potential cross-reactivity between hPV16 L1 protein and sudden death-associated antigens," *Journal of Experimental Therapeutics and Oncology*, vol. 9, no. 2, pp. 159–165, 2011.

[178] E. Nagele, M. Han, C. DeMarshall, B. Belinka, and R. Nagele, "Diagnosis of Alzheimer’s disease based on disease-specific autoantibody profiles in human sera," *PLoS ONE*, vol. 6, no. 8, Article ID e23112, 2011.

[179] E. Nagele, M. Han, C. DeMarshall, B. Belinka, and R. Nagele, "Diagnosis of Alzheimer’s disease based on disease-specific autoantibody profiles in human sera," *PLoS ONE*, vol. 6, no. 8, Article ID e23112, 2011.

[180] E. M. Cameron, S. Spencer, J. Lazarini et al., "Potential of a unique antibody gene signature to predict conversion to clinically definite multiple sclerosis," *Journal of Neuroimmunology*, vol. 213, no. 1-2, pp. 123–130, 2009.

[181] K. S. Anderson, S. Sibani, G. Wallstrom et al., "Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer," *Journal of Proteome Research*, vol. 10, no. 1, pp. 85–96, 2011.

[182] L. Wu, W. Chang, J. Zhao et al., "Development of autoantibody signatures as novel diagnostic biomarkers of non-small cell lung cancer," *Clinical Cancer Research*, vol. 16, no. 14, pp. 3760–3768, 2010.

[183] D. Male, J. Brostoff, D. Roth, and I. Roitt, *Immunology*, Elsevier, New York, NY, USA, 2010.

[184] J. N. Baraniuk, "Xenotropic murine leukemia virus-related virus in chronic fatigue syndrome and prostate cancer," *Current Allergy and Asthma Reports*, vol. 10, no. 3, pp. 210–214, 2010.

[185] V. C. Lombardi, F. W. Ruscetti, J. D. Gupta et al., "Detection of an infectious retrovirus, XMRV, in blood cells of patients with..."
chronic fatigue syndrome,” *Science*, vol. 326, no. 5952, pp. 585–589, 2009.

[196] E. Dolgin, “Chronic controversy continues over mysterious XMRV virus,” *Nature Medicine*, vol. 16, no. 8, p. 832, 2010.

[197] A. Urisman, R. J. Molinaro, N. Fischer et al., “Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant,” *PLoS Pathogens*, vol. 2, no. 3, pp. 0211–0225, 2006.

[198] P. Birner, B. Gatterbauer, D. Drobna, and H. Bernheimer, “Molecular mimicry in infectious encephalitis and neuritis: binding of antibodies against infectious agents on Western blots of human nervous tissue,” *Journal of Infection*, vol. 41, no. 1, pp. 32–38, 2000.

[199] G. Baravalle, M. Brabec, L. Snyers, D. Blaa, and R. Fuchs, “Human Rhinovirus Type 2-Antibody Complexes Enter and Infect Cells via Fc-γ Receptor IIB1,” *Journal of Virology*, vol. 78, no. 6, pp. 2729–2737, 2004.

[200] W. M. Pardridge, “Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses,” *Bioconjugate Chemistry*, vol. 19, no. 7, pp. 1327–1338, 2008.

[201] Y. Zhou and J.D. Marks, “Discovery of internalizing antibodies to tumor antigens from phage libraries,” *Methods in Enzymology*, vol. 502, pp. 43–66, 2012.

[202] S. Capsoni, G. Ugolini, A. Comparini, F. Ruberti, N. Berardi, and A. Cattaneo, “Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 97, no. 12, pp. 6826–6831, 2000.

[203] F. Cardoso, “Sydenham’s chorea,” *Handbook of Clinical Neurology*, vol. 100, pp. 221–229, 2011.

[204] H. B. D. Kettlewell, “Selection experiments on industrial melanism in the *Lepidoptera*,” *Heredity*, vol. 9, pp. 323–342, 1955.

[205] C. J. Patel, R. Chen, and A. J. Butte, “Data-driven integration of epidemiological and toxicological data to select candidate interacting genes and environmental factors in association with disease,” *Bioinformatics*, vol. 28, no. 12, Article ID Article numberbs229, pp. i121–i126, 2012.

[206] L. Desbonnet, J. L. Waddington, and C. M. P. O’Tuathaigh, “Mutant models for genes associated with schizophrenia,” *Biochemical Society Transactions*, vol. 37, no. 1, pp. 308–312, 2009.

[207] H. Nawa and K. Yamada, “Experimental schizophrenia models in rodents established with inflammatory agents and cytokines,” *Methods in Molecular Biology*, vol. 829, pp. 445–451, 2012.

[208] G. Pacheco-Lopez, S. Giovanoli, W. Langhans, and U. Meyer, “Priming of metabolic dysfunctions by prenatal immune activation in mice: relevance to Schizophrenia,” *Schizophrenia Bulletin*. In press.

[209] O. Zerbo, A.-M. Iosif, C. Walker, S. Ozonoff, R. L. Hansen, and I. Hertz-Picciotto, “Is maternal influenza or fever during pregnancy associated with Autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) Study,” *Journal of Autism and Developmental Disorders*, vol. 43, no. 1, pp. 25–33, 2013.

[210] E. Fuller Torrey, R. Rawlings, and R. H. Yolken, “The antecedents of psychoses: a case-control study of selected risk factors,” *Schizophrenia Research*, vol. 46, no. 1, pp. 17–23, 2000.