Abstract

The success of any football team lies in the performance of its players. Determining the best player among a pool of players is a very difficult task. The purpose of this research is to assess the performance skills of forward football players in a football game. To conduct this research, players were randomly selected from different teams across Europe based on their play positions. One hundred (100) forward players were selected for the analysis. Performance analysis was conducted using Artificial Neural Networks (ANN) Multilayer Perception and compared with the J48 classifier. A model based on the ANN Multilayer Perception was trained and developed using secondary data collected from the online Complete Dataset of the FIFA 2017/2018 football season. The analysis was done with the aid of the WEKA data mining tool. The results show that the Multilayer Perception classification had a better performance than the J48 classification.
1. Torgler, B., & Schmidt, S. 2005. What Shapes Player Performance in Soccer? Empirical findings from a panel analysis. Center for Research in Economics, Management, and the Arts.

2. Feng, B., Jiang, Z. Z., Fan, Z. P., & Fu, N. 2010. A method for member selection of cross-functional functional teams using the individual and collaborative performances. European Journal of Operational Research 203, 652–661.

3. Dey, P., Banerjee, A., Ghosh, D. & Mondal, A. 2014. AHP-Neural Network-Based Player Price Estimation in IPL. International Journal of Hybrid Information, 7.

4. Uzochukwu, O. C., & Enyindah, P. 2015. A Machine Learning Application for Football Players’ Selection. International Journal of Engineering Research & Technology (IJERT), 4(2278-0181).

5. Al-Shboul, R., Syed, T., Memon, J., & Khan, F. 2017. Automated Player Selection for sports Team using Competitive Neural Network. (IJACSA) International Journal of Advances Computer Science and Applications., 8(8).

6. Passi, K., & Pandey, K. 2018. Predicting players’ performance in One-Day International cricket matches using machine learning. Computer Science & Information Technology, 111-126.

7. Hemalatha K. and Rani K. U. 2017. Advancements in Multi-Layer Perceptron Training to Improve Classification Accuracy. International Journal on Recent and Innovation Trends in Computing and Communication, 5(6): 353 – 357

8. Han, J., & Kamber, M. (2006). Data Mining: Concept and Techniques. (2nd. edition, Ed.) 500 Sansome Street, Suite 400, San Francisco, CA 94111: Morgan Kaufmann Publishers is an imprint of Elsevier.

9. Sebastian, S. 2016. Performance Evaluation By Artificial Neural Network Using WEKA. International Research Journal of Engineering and Technology (IRJET), 3 (3).

10. Ian, W. H., & Eibe, F. n.d. Data Mining Practical Machine Learning Tools and Techniques. (2nd Edition, Ed.) Morgan Kaufann Publishers.

11. Powers, D.M.W.2011. Evaluation: From Precision, Recall and F-Measure to Roc, Informedness, Markedness & Correlation. Journal of Machine Learning Technologies. 2 (1) :37-63

12. Chun yan, N., Ju, W., Fang, H. and Reika, S. 2015. Application of J48 Decision Tree Classifier in Emotion Recognition Based on Chaos Characteristics. International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2015).

Index Terms

Computer Science Artificial Intelligence

Keywords

Artificial Neural Networks (ANN), Forward, J48, Multilayer Perceptron, Player, Selection, WEKA.
