Quality indicators in intensive care medicine: why? Use or burden for the intensivist

Abstract

In order to improve quality (of therapy), one has to know, evaluate and make transparent, one’s own daily processes. This process of reflection can be supported by the presentation of key data or indicators, in which the real as-is state can be represented. Quality indicators are required in order to depict the as-is state. Quality indicators reflect adherence to specific quality measures. Continuing registration of an indicator is useless once it becomes irrelevant or adherence is 100%.

In the field of intensive care medicine, studies of quality indicators have been performed in some countries. Quality indicators relevant for medical quality and outcome in critically ill patients have been identified by following standardized approaches. Different German societies of intensive care medicine have finally agreed on 10 core quality indicators that will be valid for two years and are currently recommended in German intensive care units (ICUs).

Keywords: quality indicators, quality management, intensive care medicine, quality of therapy, outcome
Quality indicators in medicine: the search for meaning

The legal requirement of hospitals (Pursuant to §137, Volume V of the German Social Security Code) to engage with Quality Management, is frequently perceived to be a tedious duty. This is due to Quality Management frequently appearing to be bureaucratic and removed from routine practice. This complicates daily clinical practice with additional paperwork and certification formalities. Quality Management in this form is being incorrectly implemented because the starting point is not routine practice but practice-distant constructions. Vagts, Bauer and Martin [1] have explicitly described this in their article on the meaning of certification. In order to improve quality (of therapy), one has to know, evaluate and make transparent, one’s own daily processes. That is the real driving force behind quality management. The target outcome quality depends on structure and process quality. These are the three interacting dimensions of quality management, as described by Donabedian [2]. The first challenge in quality management is to define which resources are necessary for the required outcome quality. The formation of clinical processes belongs to the core of medical practice and is at the same time the second challenge. This is especially true for such a process intense and interface rich area as intensive care medicine. There is hardly any other area where processes have such direct vital consequences, where information hand over and failure causes such immediate implications, as in intensive care medicine.

All the problems of quality management in medicine can be reduced to two questions each of theory and practice.

Theory:
1. Are their therapy standards and individualized therapy concepts?
2. Are the principles of therapy/therapy standards evidence based, i.e. is there a guideline compliant therapy model?

Practice:
1. Is the clinical routine so organized that errors are minimized?
2. Does the patient normally receive what we would like to believe they receive or what we are trying to achieve?

In order to be able to answer these questions one requires transparency regarding one’s own actions. This process of reflection can be supported by the presentation of key data or indicators, in which the real as-is state can be represented. Quality indicators are required in order to depict the as-is state. Quality indicators are measurements, whose value helps to distinguish between good and bad structural processes and outcome quality. Quality is not measured directly this way; rather the indicators represent surrogate markers that indirectly but numerically map quality. Quality indicators should be based on the best available evidence/be derived from the scientific literature or should at least, in the case of absence of empiric evidence, be based on expert consensus. That also means that quality indicators can and must be evaluated on the basis of the evidence supporting them [3].

The classification of quality indicators is according to the quality dimension at which the indicator is aimed. Analogous to the classification of quality dimensions by Donabedian [4], quality indicators correspond to structure-, process- and outcome quality. Structure or process indicators can only be valid indicators if it is possible to demonstrate a positive effect on outcome. A quality indicator can simultaneously reflect structure- and process-quality or process- and outcome-quality. Quality indicators are control systems in the context of medical quality management, serve to improve quality and are a tool to for mapping or evaluating daily actions. They are not an end in themselves. Indicators should have been accepted by all members of the ICU team and their measurement should be objective. In order that the quality indicators are accepted, they should be compliant with the RUMBA-rule. According to the RUMBA rule, the requirements of indicators are as follows:
1. Relevant to the problem
2. Understandable
3. Measurable (with high dependability and validity)
4. Behavioural (changeable through behavior)
5. Achievable and feasible

These requirements are necessary, in order to be able to have any influence at all on the daily routine of the relevant stakeholders in the ICU [5]. The relevance for patients must be clear to medical personnel, in order that necessary changes in process really are implemented. Nursing staff especially, as those who carry out most of the bedside processes, must be involved in the design and development of patient-near processes, in order that the bridge in quality management between theory and practice can be crossed. For nurses, it is self-evident that they take on the role of the “patient advocate” and this should be used productively regarding quality improving measures, in that awareness of the relevance of the quality indicators is conveyed [6]. If it is not conveyed, that a certain measure is of benefit to patients, there will be problems with the implementation of this measure in routine practice. The indicators should not require any additional documentation, rather it should ideally be possible to collate them using routine documentation. Additional burdens of work lead to errors in data collection. An electronic patient data management system (PDMS) has been described by some authors as being very advantageous [7].

The whole purpose of the indicators is to determine whether in specific areas problems with the implementation of specific therapy forms exist, and whether after successful measurement and presentation of the results an about-turn towards improvement follows. Quality indicators are suitable for showing a team weakness and potential for improvement and for making successes visible. At the beginning of the introduction of quality indicators, regular measurement and presentation of the results have to take place. On the other hand, the requirement for regular measurement of an indicator lapses when uptake reaches 100%. This also arises out of the fact that the indicators have a limited life span and must, after a defined period of use, be reevaluated with respect to their efficacy and validity. If one cannot achieve any (positive) development by using a quality indicator, the observation of this indicator should be viewed as a waste of time, and one should examine whether there are indicators better suited to the support of positive development [8].

Deming and Shewart’s PDCA-cycle (Figure 1) aids regular evaluation [9]. Regular working through of the cycle supports the desired continuous improvement process and helps the team to implement the desired quality improving measures more quickly and effectively and to lead to an enduring improvement in quality.

The principal possible applications of quality indicators are in internal and external control of medical care as well as as tools for continuous improvement. The use of quality indicators serves:

- the measurement of the current degree of implementation (evaluation)
- the description of changes in the degree of implementation over time (monitoring)
- identifies situations that require intervention (alarm function)

The monitoring of individual quality development is in this way to be seen as much more important than the possibility of comparing oneself to others (bench marking). The use of external bench marking is contentious, because due to differing structures between hospitals the outcomes of interest are not 100% comparable. Nevertheless trends in different hospitals or the rate of change in an area of interest and not the absolute values are used as a benchmark, in order to achieve comparability.

Development of quality indicators in intensive care medicine

The development of quality indicators for intensive medicine has already a significant history. The first programmatic impulse came from the department of anesthesiology and intensive care medicine at Johns Hopkins University in Baltimore. In a large study, that was carried out in a total of 13 conservative and operative intensive care units, the steps in the development of quality indicators, which had a local/regional validity, were described [10]:

![Figure 1: PDCA-cycle](image-url)
1. a thorough literature review with the question: what improves outcome in intensive care units?
2. evaluation of various outcome parameters
3. selection of pilot indicators in order to investigate in the field the feasibility of data collection and the evidence with respect to the process to be influenced and outcome
4. definition of the data collection process: who, what, when, how. This was based on the experience collected in the field studies
5. examination of the validity and reliability on the basis of the field studies, i.e. the collected data plausible or are the variations in the results too high for conclusions to be made
6. the real pilot study of the developed indicators

The results of the literature review were assessed by an expert panel and in a Delphi process the indicators that on the basis of the above listed prerequisites should be further researched in the pilot test, were filtered out. On the basis of this very labor intensive and exemplary method, the authors developed the first quality indicators, that were used on many intensive care units [5]. The authors were, on the basis of their comprehensive data collection, in the position to research the effects on the indicators on outcome parameters and economics. For the involved ICUs, the following quality indicators were identified:

- 6 outcome criteria: mortality on the ICU, duration of stay over 7 days, mean duration of stay on the ICU, mean duration of mechanical ventilation, sub-optimal pain therapy, patient and relatives satisfaction.
- 6 process criteria: rate of effective pain measurement, standards compliant transfusion of blood products, prevention of ventilation associated pneumonia, adequate sedation according to standards, adequate stress ulcer prophylaxis and adequate prophylaxis of deep vein thrombosis.
- 4 admission/discharge criteria: rate of delayed admission to the ICU, rate of delayed discharge from the ICU, rate of canceled operations due to lack of ICU beds, emergency admission delays due to lack of ICU beds.
- 3 complications criteria: rate of unplanned re-admissions on the ICU within 48 hours, rate of catheter associated sepsis per 1000-CVC-days. Rate of new infections with multi-resistant organisms.

Health care policy and hospital specific basic conditions differ profoundly between nations. QIs for ICU medicine developed in other countries cannot be transferred unchanged to Germany. For instance the round the clock availability of experienced medical and nursing staff is a prerequisite for health care provider compensation [11]. Duration of ventilation and duration of stay are in the context of the allocation of health care funds in Germany (G-DRG) relevant to how departments are financed, mortality and unplanned re-admissions to the ICU are elements of the core data set for ICU medicine in Germany [12], the communication of the pressure sere rate is a compulsory part of quality assurance for all German hospitals, the measurement of patient satisfaction and the presence of error management are in the context of current certification procedures regularly required by hospitals and the bed occupancy rates are regularly sent.
to insurers and the institutions responsible for hospital planning.

Development of ICU QIs in Germany

The scientific ICU working group of the Germany Society for ICU medicine (DGAI) has, in cooperation with the interdisciplinary working group Quality Assurance in ICU medicine of the German interdisciplinary Association for ICU medicine and Emergency Medicine (DIVI) and the German Society for internal medical ICU medicine (DGII), created a review of the possibilities for the introduction of a German-wide Quality Management system [13]. The scientific working group has in doing this and according to the experience described above, followed the goal of developing a manageable number of practicably applicable QIs, for which outcome relevance has been scientifically demonstrated. The organization of clinical processes in ICU medicine should receive an assistance point of call, in which a framework of key data is available, that serve as an orientation help for all professional groups involved in the process on the ICU. The development of ICU medicine QIs in Germany in closely linked with the development of QIs by the Spanish Society of ICU Medicine. The Spanish intensivists have developed and published a catalog of 120 quality indicators [14]. The Spanish QIs have been excellently drafted and presented in a strict logic. Every indicator is defined by group (efficacy, risk, satisfaction, suitability) an explanation, a mathematical formula, how the indicators are calculated, the details of the population it concerns (ventilated, heart, heart disease, septic etc), bullet point type explanation of the terms, type of indicator (process, structure, result), the data source (patient charts, staff rota, OT plan, quality report), the desired target value and the references as a comment. After translation into German the scientific working group of the DGAI adopted their Spanish colleagues method of presenting the indicators. The list however did not seem to be transferable for German use for the reasons discussed above. Beside clinical process indicators, such as for example target orientated blood sugar therapy or lung protective ventilation, the Spanish list also contained indicators such as the regular changing of warming humidifying systems in ventilated patients or the indication for isolation of patients with multi-resistant bacteria. The later indicators are controlled by infection control guidelines and have no direct connection with process or quality improving measures on the ICU. In the development of QIs we are not concerned with producing parameters that are already managed by existing rules, recommendations or administrative orders. In order to avoid redundancies and in order to correct real profit, initially 36 and finally 10 QIs, with direct influence on the routine daily care on the ICU, were generated by two Delphi rounds of the expert committee. All indicators have a direct influence on improved patient outcome. This first version of the intensive care QIs was signed off by the expert committees of the the DGAI and DIVI with a period of validity of 2 years. The discussion regarding the scientific evidence of each indicator is very important and stimulating, however it should not be forgotten that the existence of every indicator is immediately dependent on the current state of scientific knowledge and every indicator has additionally to prove its own clinical relevance. Further indicators are in development, such as for example an indicator regarding targeted cardiovascular therapy. Should I find an indicator to be irrelevant, it should be removed from the list. Whats more an indicator should be seen to be pointless if its implementation rate is 100% because quality cannot be improved in this case, that is the indicator loses its purpose as a tool.

The first version of the consensus ICU QIs

(see Attachment 1)

QI 1 – upper body elevation

The meaning of a target orientated sedation and analgesia procedure for ICU patients is excellently described in the current S3-guidelines [20] and the evidence is clearly described. The standardized procedure includes a step by step approach to the diagnosis of postoperative delirium. Rational analgesedation and diagnosis and treatment of delirium on the ICU are a working bundle, that positively influences morbidity, mortality and the duration of stay of patients on the ICU.

QI 2 – monitoring of sedation, analgesia and delirium

Lung protective ventilation of patients in acute pulmonary failure has been demonstrated to be outcome relevant [21], [22], [23], [24], [25], [26], [27], [28]. That the described process is not applicable to all ICU patients, has to be critically taken into consideration. Patients with severe obstructive lung disease/high grade emphysema should not be given this therapy in a blind manner.
QI 4 – weaning protocol and spontaneous breathing trial

The use of weaning protocols in the ICU has a positive influence on patient outcome [27], [29], [30], [31], [32], [33]. There is no universal protocol, a structured approach including a standardized procedure involving daily spontaneous breathing trial shortens the duration of ventilation and improves survival. This bundle is closely associated with the analgosedation bundle, because structured weaning requires co-operative patients.

QI 5 – early and adequate antibiotic therapy

Early antibiotic therapy is an element of modern guideline-compliant sepsis therapy [24], [34], [35], [36], [37], [38]. It is a daily duty of every intensivist to promptly diagnose a systemic infection. Many ICU measure make the diagnosis more difficult, such as catecholamine therapy, hypovolemia and postoperative hypermetabolism. This makes a standardized protocol all the more important. This should make the recognition of sepsis for medical and nursing staff easier during routine practice. The adequate therapy of infection can additionally be supported through the use of an online special program such as the so-called x-Program [39], which is diagnosis orientated and includes current scientific discoveries and in so doing provides a continuously up to date, guidelines compliant and resistance pattern orientated anti-infective therapy for every intensive care unit.

QI 6 – therapeutic hypothermia following cardiac arrest

Controlled hypothermia following cardiac arrest is now a gold standard [40], [41], [42], [43], [44]. Its implementation into routine practice still poses a challenge. Vague statements regarding possible short periods of hypoxia in the course of a resuscitation repeatedly lead to controlled hypothermia not being carried out in routine daily practice. This indicator should serve to optimize the implementation rate.

QI 7 – early enteral nutrition

There is a certain uncertainty regarding what early enteral nutrition is. This should be judged on a case by case basis. Nevertheless it can be said that an attempt at enteral nutrition is always possible when there are no contraindications. Even gastroesophageal reflux should not stop the intensivist to give nutrition by the natural route. There are no universal gold standards here. Protocols for enteral nutrition are however helpful and support the goal of good nutrition. The clinical and paraclinical monitoring of nutrition should be defined [45], [46], [47], [48]. Enteral nutrition via a tube is an element of the prophylaxis of stress ulcers, as appears in the indicator list of Johns Hopkins University

QI 8 – documentation of relatives meetings

This indicator may not be immediately accessible to all doctors, however according to the literature the significance of this QI for routine practice is clear. Discussions with patients or relatives are frequently not documented, which after several handovers on the ICU, frequently leads to an information deficit regarding the condition of the patient before admission to ICU, limits of therapy and realistic therapy goals. Ignorance of such information leads to slips in routine practice and to a loss of therapy quality. It builds trust with the relatives and helps them to manage grief, if collective discussion and goal setting are documented and therefore transparent [49], [50]. Additionally in Germany, the legal requirement to respect patient wills and to follow them when making therapy decisions has been cemented by the Patient Directive Law of 01.09.2009. The evaluation of alleged patient wills can only take place with the help of relatives as long as no written provisions exist. Documented relatives meetings take on a medico-legal character in this way. This QI should help the documented meeting to a higher level of implementation.

QI 9 – hand disinfection solution use

This indicator also seems at first to be unusual, it appears however to be the most effective of all indicators [51], [52], [53], [54], [55], [56]. Contaminated staff hands are the most important vector for infections in the hospital, and especially on ICUs. The generation of multiresistant bacteria is assisted by poor hand disinfection and nosocomial infections are ultimately always induced through contamination (mostly hands). Because per ICU bed per day a calculable number of processes with patient contact occur and because each of these should be associated with hand disinfection, which will require the use of 3 to 5 mls of disinfection solution, the use of hand disinfection solution is not an arbitrary parameter. The data on which the calculations are based are well established in the literature and an element of the WHO’s guidelines on hand hygiene. The “clean hands” movement has been very successful in highlighting the problem of hand disinfection in hospitals. The use of disinfection solution is in this way an important indicator of a process with great significance for patients.

QI 10 – 24 hour availability of ICU specialists

The staffing of an ICU with experienced and trained intensivists and nurse specialists has an influence on patient outcome. There is good data supporting this [57], [58], [59]. Not least because the implementation of proven
measures requires experienced personnel. This has not yet reached full implementation in Germany. Even the restructuring of ICU compensation based on G-DRG could achieve little to change this. Quality is connected to specific resources. The complex treatment figure serves to "capture" this human resource. The complex treatment figure may only be relevant to a small proportion of ICU patients (usually not more than 10%), but the complex figure in these cases greatly increases the size of the hospital's compensation for the case. For a 12 bed ICU of a moderately sized hospital, we calculated the sum of the annual contribution of the ICU complex figure to be €500,000. From this the necessary personnel can be financed.

Conclusions

ICU QIs have been developed in several countries in a structured manner, on the basis of best evidence and with the goal of improving the outcome of ICU patients. In this way, structure-, process- and outcome-quality will be systematically further developed. The number of indicators should be manageable and practical. The effective use of the QIs, from the perspective of the intensivist, lies in the orientation aid that can be provided with respect to routine core procedures on the ICU. QIs should be a tool for bringing best evidence and routine practice into harmony. If a QI is no longer of any benefit regarding the implementation of QM in routine practice, it has been overhauled or has become superfluous.

Notes

Conflicts of interest

The declarations of conflict of interest of all authors can be viewed on request.

Acknowledgements

We are very grateful to Dr. Jeffrey Bierbrauer, Dept. of Anaesthesiology and Surgical Intensive Care Medicine, Campus Virchow-Klinikum und Campus Charité Mitte, Charité – Universitätsmedizin Berlin, and Dr. Martin MacGuill, former colleague in this department and native speaker, for their translation into English.

Attachments

Available from
http://www.dgai.de/downloads/OPS-Statement_03_11_2004.pdf

1. GMS-Guideline-QualityIndicators.pdf (262 KB)

10 Quality indicators

References

1. Vagts DA, Bauer M, Martin J. (Un-)Sinn von Zertifizierung in der Intensivmedizin [The (non)sense of certification in intensive care medicine. The problem of the detection of suitable indicator systems]. Anaesthesist. 2009;58(1):81-7. DOI: 10.1007/s00101-008-1465-0

2. Donabedian A. Evaluating the quality of medical care. Milbank Mem Fund Q. 1966;44(3):Suppl:166-206.

3. Geraedts M, Jäckel W, Thomeczek C, Altenhofen L, Birkner B, Blumenstock G, Gibbs B, Kopp I, Kugler C, Ollenschläger G, Raspe H, Reiter A, Szecsenyi J, Zorn U. Qualitatsindikatoren in Deutschland – Positions papier des Expertenkreises Qualitätsindikatoren beim Ärztlichen Zentrum für Qualität in der Medizin (ÄZQ). Berlin. Z Arzti Fortbild Qualitatssch. 2005;99(5):329-31.

4. Donabedian A. The role of outcomes in quality assessment and assurance. QRB Qual Rev Bull. 1992;18(11):356-60.

5. Berenholtz SM, Dorman T, Ng K, Pronovost PJ. Qualitative review of intensive care unit quality indicator. J Crit Care. 2002;17(1):1-12. DOI: 10.1053/jcrc.2002.33035

6. Berenholtz S, Pronovost PJ. Barriers to translating evidence into practice. Curr Opin Crit Care. 2003;9(4):321-5. DOI: 10.1097/00075198-200308000-00012

7. Kastrup M, von Dosow V, Seelig M, Ahlborn R, Tamarkin A, Conroy A, Boemke W, Wernecke KD, Spies C. Key performance indicators in intensive care medicine. A retrospective matched cohort study. J Int Med Res. 2009;37(9):1267-84.

8. De Vos M, Graafmans W, Keessen E, Westert G, van der Voort PHJ. Quality measurement at intensive care units: which indicators should we use? J Crit Care. 2007;22(4):267-74. DOI: 10.1016/j.jcrc.2007.01.002

9. Deming WE, Shewhart WA. Review of the International Statistical Institute. 1968;36(1):372-5. DOI: 10.2307/1401365

10. Pronovost PJ, Berenholtz SM, Ngo K, McDowell M, Holzmueller C, Haraden C, Resar R, Rainey T, Nolan T, Dorman T. Developing and pilot testing quality indicators in the intensive care unit. J Crit Care. 2003;18(3):145-55. DOI: 10.1016/j.jcrc.2003.08.003

11. Burchardi H, Specht M, Braun J, Schleppers A, Martin J. OPS-Code 8-980 "Intensivmedizinische Komplexbehandlung. Nürnberg: DGAI; 2004. Available from: http://www.dgai.de/downloads/OPS-Statement_03_11_2004.pdf

12. Martin J, Schleppers A, Fischer K, Jungner A, Klöss T, Schillig B, Pützholgen G, Bauer M, Krieter H, Reinhart K, Bause H, Kuhlen R, Heinrichs W, Burchardi H, Weghas C. Der Kerndatensatz Intensivmedizin: Mindestinhalte der Dokumentation im Bereich der Intensivmedizin. Nürnberg: DGAI; 2006. Available from: http://www.dgai.de/downloads/Kerndatensatz-Intensivmedizin-DGAI.pdf

13. Martin J, Wegermann P, Bause H, Frank M, Geldner G, Gerlach H, Janssens U, Kuckelt W, Kuhlen R, Max M, Meier-Helmann A, Muhl E, Putensen Ch, Quintel M, Ragaller M, Reinhart K, Schleppers A, Specht M, Spies C, Waydhas C. Qualitätsmanagement in der Intensivmedizin - Eine Aufgabe für das gesamte interdisziplinäre und interprofessionelle Team. Anästhes Intensivmed. 2007;48:540-547.

14. Martin MC, Cabré L, Ruiz J, Blanco L, Blanco J, Castillio F, Galdós P, Roca J, Saura RM. Grupos de trabajo de la Sociedad Española de Medicina Intensiva Crítica y Unidades Coronarias (SEMIYUC), Sociedad Española de Enfermería Intensiva y Unidades Coronarias (SEEIUC) and Fundación AVEDIS Donabedian (FAD). Indicators of quality in the critical patient. Med Intensiva. 2008;32:23-32.
Braun et al.: Quality indicators in intensive care medicine: why? ...

Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. 2008. Intensive Care Med. 2008;34(1):17-60. DOI: 10.1007/s00134-007-0934-2

Alexiou VG, Ierodiakonou V, Dimopoulous G, Falagas ME. Impact of patient position on the incidence of ventilator-associated pneumonia: a meta-analysis of randomized controlled trials. J Crit Care. 2009;24(4):515-22. DOI: 10.1016/j.jcrc.2008.09.003

Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogue S, Ferrer M. Supine body position as a risk factor for nosocomial pneumonias in mechanically ventilated patients: a randomised trial. Lancet. 1999;354(9193):1851-8. DOI: 10.1016/S0140-6736(98)02251-1

Torres Serra-Battles J, Ros E, Piera C, Puig de la Bellacasa J, Cobos A, Lomena F, Rodriguez-Roisin R. Pulmonary aspiration of gastric contents in patients receiving mechanical ventilation: the effect of body position. Ann Int Med. 1992;116(7):540-3.

Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Levy MM. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med. 2004;30(4):536-55. DOI: 10.1007/s00134-004-2210-z

S3-Leitlinie: Analgesie, Sedierung und Delirmanagement in der Intensivmedizin. Düsseldorf: AWMF; 2009. Available from: http://www.uni-duesseldorf.de/AWMF/l1/001-021hl.htm

Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301-8. DOI: 10.1056/NEJM200005043421801

Brower RG, Lanken PN, MacIntyre N, National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Mechanical ventilation with higher versus lower positive end-expiratory pressures in patients with acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2004;351:327-36. DOI: 10.1056/NEJMoa032193

Mercat A, Richard J, Brochard L. Comparison of two strategies for setting PEEP in ALI/ARDS: ExPress study. Intensive Care Med. 2006;32:597.

American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):888-416. DOI: 10.1164/rccm.200405-644ST

Mercat A, Richard JCM, Vielle B, Jaber S, Osman D, Diehl JH, Lefrant JY, Prat G, Richercheur J, Nieszkowska A, Gervais C, Baudot J, Boudama L, Brochard L, and for the Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646-655. DOI: 10.1001/jama.299.6.646

Gastmeier P, Geffers C. Prevention of ventilator-associated pneumonia: analysis of studies published since 2004. J Hosp Infect. 2007;67(1):1-8. DOI: 10.1016/j.jhin.2007.08.011

Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16(3):128-40. DOI: 10.1016/0196-6553(88)90053-3

Villar J, Pérez-Méndez L, López J, Belda J, Blanco J, Saralegui I, Suárez-Sipmann F, López J, Lubillo S, Kacmarek RM; HELP Network. An early PEEP/FIO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;176:795-804. DOI: 10.1164/rccm.200610-1534OC

Lellouche F, Mancebo J, Jolliet P, Poeseler J, Schortgen F, Dojat M, Cabello B, Boudama L, Rodríguez P, Maggiore S, Reynaert M, Mersmann S, Brochard L. A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med. 2006;174:894-900. DOI: 10.1164/rccm.200511-1780OC

Navalesi P, Frigerio P, Moretti MP, Sommariva M, Vescioni S, Biaardi P, Levati A. Rate of reintubation in mechanically ventilated neuromuscular and neurologic patients: evaluation of a systematic approach to weaning and extubation. Crit Care Med. 2008;36(11):2986-92. DOI: 10.1097/01.CCM.0000298158.12101.41

Girard TD, Kress JP, Fuchs BD, Thomason JW, Schweickert WD, Pun BT, Taichman DB, Dunn JG, Pohlman AS, Kinniry PA, Jackson JC, Canonico AE, Light RW, Shintani AK, Thompson JL, Gordon SM, Hall JB, Dittus RS, Bernard GR, Ely EW. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):1264-310. DOI: 10.1016/j.ijicid.2008.01.028

Esteban A, Frutos F, Tobin MJ, Alia I, Solsona JF, Valverdu I, Fernandez de la Cal MA, Benito S, Tomas R, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med. 1995;332:345-50. DOI: 10.1056/NEJM199502093320901

Esteban A, Alia I, Tobin MJ, Gil A, Gordo F, Valverdu I, Blanch L, Bonet A, Vazquez A, de Pablo R, Torres A, de la Cal MA, Macias S. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med. 1999;159(2):512-8.

Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med. 2008;36(1):296-327. DOI: 10.1097/01.CCM.0000298158.12101.41

Bochud PY, Bonten M, Marchetti O, Calandra T. Antimicrobial therapy is the critical determinant of survival in severe sepsis and septic shock: a systematic review. Crit Care Med. 2008;36(1):296-327. DOI: 10.1097/01.CCM.0000298158.12101.41

Kumar A, Roberts D, Wood KE, ight B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zavroti S, Talberg L, Gurka D, Kumar A Cheang M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589 - 96. DOI: 10.1097/01.CCM.0000217961.75225.E9
37. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G; International Sepsis Definitions Conference. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29(4):530-8. DOI: 10.1007/s00134-003-1662-x

38. Nachtigall I, Tamarkin A, Tafelski S, Deja M, Halle E, Gasteiner P, Wernecke KD, Bauer T, Kastrup M, Spies C. Impact of adherence to standard operating procedures for pneumonia on outcome of intensive care unit patients. Crit Care Med. 2009;37(1):159-66. DOI: 10.1097/CCM.0b013e3181934f1b

39. Arbeitsgemeinschaft Abx. Berlin: Charité; 2010. Available from: http://www.dgai-ax.de/

40. Wolfrum S, Radke PW, Fischon T, Willich SN, Schunkert H, Kurovski V. Milder therapeutic hypothermia after cardiac arrest - a nationwide survey on the implementation of the ILCOR guidelines in German intensive care units. Resuscitation. 2007;72(2):207-13. DOI: 10.1016/j.resuscitation.2006.06.033

41. Nolan JP, Deakin CD, Soar J, Böttiger BW, Smith G; European Resuscitation Council. European Resuscitation Council guidelines for resuscitation 2005. Section 4. Adult advanced life support. Resuscitation. 2005;67(Suppl 1):S39-86. DOI: 10.1016/j.resuscitation.2005.10.009

42. Holzer M, Bernard SA, Hachimi-Idrissi S, Roine RO, Sterz F, Mullner M; on behalf of the Collaborative Group on Induced Hypothermia for Neuroprotection after Cardiac Arrest. Hypothermia for neuroprotection after cardiac arrest; Systematic review and individual patient data meta-analysis. Crit Care Med. 2005;33(2):414-8. DOI: 10.1097/01.CCM.0000153410.87750.53

43. Bernard SA, Gray TW, Buist MD, Jones BM, Gutteridge AC, Overcash W, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:549-56. DOI: 10.1056/NEJMoa012689

44. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549-56. DOI: 10.1056/NEJMoa021289

45. Kreymann KG, Berger MM, Deutz NEP, Hiesmayr M, Taenzer A, Niermann V, Govers R, Wolf M, Gehrke T, et al. ESPEN Guideline on Enteral Nutrition: Intensive Care. Clin Nutr. 2006;25(2):210-23. DOI: 10.1016/j.clnu.2006.01.021

46. Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative complications. Cochrane Database Syst Rev. 2006;(4):CD004080. DOI: 10.1002/14651858.CD004080.pub2

47. Heyland DK, Dhalwai R, Drover JW, Gramlich L, Dodek P; Canadian Critical Care Clinical Practice Guidelines Committee. Canadian critical care practice guidelines for nutrition support in critically ill adult patients: JParenter Enter Nutr. 2003;27(5):355-73. DOI: 10.1177/0148607103027005355

48. Kompan L, Tamarink A, Tafelski S, Deja M, Halle E, Gasteiner P, Wernecke KD, Bauer T, Kastrup M, Spies C. Impact of adherence to standard operating procedures for pneumonia on outcome of intensive care unit patients. Crit Care Med. 2009;37(1):159-66. DOI: 10.1097/CCM.0b013e3181934f1b

49. Nachtigall I, Tamarkin A, Tafelski S, Deja M, Halle E, Gasteiner P, Wernecke KD, Bauer T, Kastrup M, Spies C. Impact of adherence to standard operating procedures for pneumonia on outcome of intensive care unit patients. Crit Care Med. 2009;37(1):159-66. DOI: 10.1097/CCM.0b013e3181934f1b

50. Wright AA, Zhang B, Ray A, Mack JW, Trice E, Balboni T, Mitchell SL, Jackson VA, Block SD, Maciejewski PK, Prigerson HG. Associations between end-of-life discussions, patient mental health, medical care near death, and caregiver bereavement adjustment. JAMA. 2008;300(14):1665-73. DOI: 10.1001/jama.300.14.1665

51. Boyce JM, Pittet D; Healthcare Infection Control Practices Advisory Committee; HICPAC/Shea/ACIP/IDSA Hand Hygiene Task Force. Guideline for Hand Hygiene in Health-Care Settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/Shea/ACIP/IDSA Hand Hygiene Task Force, Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Fungal Diseases Society of America. MMWR Recomm Rep. 2002;51(RR-16):1-45.

52. Pittet D. Clean hands reduce the burden of disease. Lancet. 2005;366(9481):185-7. DOI: 10.1016/S0140-6736(05)66886-9

53. Pittet D, Hugonnnet S, Harbarth S, Mourouga P, Sauvan V, Touveneau S, Perneve TV. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection Control Programme. Lancet. 2000;356(9238):1307-12. DOI: 10.1016/S0140-6736(00)02814-2

54. Erasmus V, Brouwer W, van Beeck EF, Genema A, Daha TJ, Richardaus JH, Vos MC, Brug J. A qualitative exploration of reasons for poor hand hygiene among hospital workers: lack of positive role models and of convincing evidence that hand hygiene prevents cross-infection. Infect Control Hosp Epidemiol. 2009;30(5):415-9. DOI: 10.1086/596773

55. Parienti JJ, Thibon P, Héller R, Le Roux Y, von Theobald P, Bensadoun H, Bouvet A, Lémaréchal F, Le Coutour X; Antisépsie chirurgicale des mains Study Group. Hand-rubbing with an aqueous alcoholic solution vs traditional surgical hand-scrubbing and 30-day surgical site infection rates: a randomized equivalence study. JAMA. 2002;288(6):722-7.

56. Pittet D, Dharan S, Touveneau S, Sauvan V, Perneve TV. Bacterial contamination of the hands of hospital staff during routine patient care. Arch Intern Med. 1999;159(8):821-6. DOI: 10.1001/archinte.159.8.821

57. Pronovost PJ, Angus DC, Dorman T, Robinson KA, Dremislov TT, Young TL. Physician staffing patterns and clinical outcomes in critically ill patients: a systematic review. JAMA. 2002;288(17):2151-62.

58. Vincent JL. Need for intensivists in intensive-care units. Lancet. 2000;356(9231):695-6. DOI: 10.1016/S0140-6736(00)02622-2

59. Treggiari MM, Martin DP, Yanez ND, Caldwell E, Hudson LD, Rubenfeld GD. Effect of intensive care unit organizational model and structure on outcomes in patients with acute lung injury. Am J Respir Crit Care Med. 2007;176:685-90. DOI: 10.1164/rccm.200701-165OC

Corresponding author:
Prof. Dr. med. Claudia Spies
Dept. of Anaesthesiology and Surgical Intensive Care Medicine, Charité - University Medicine Berlin, Charité Centrum 7, Charitéplatz 1, 10117 Berlin, Germany, Tel. 0049 30 450531012 claudia.spies@charite.de

Please cite as
Braun JP, Mende H, Bause H, Bloos F, Gelöhr G, Kastrup M, Kühnen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Bausch JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Andersen HK, Lewis SJ, Thomas S. Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical care practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. J Parenter Enteral Nutr. 2003;27(5):355-73. DOI: 10.1177/0148607103027005355

doi:10.3205/000111, urn:urn:nbn:de:0183-0001111

GMS German Medical Science 2010, Vol. 8, ISSN 1612-3174
9/20
Attachment 1: 10 Quality Indicators

Quality Indicator I

Name of the indicator	Semirecumbent position in patients undergoing invasive mechanical ventilation
Dimension	Effectiveness and risk
Justification	The semirecumbent position reduces the incidence of ventilator-associated pneumonia (VAP)
Formula	\[
	\frac{\text{Time spent in semirecumbent position (hours)}}{\text{Duration of mechanical ventilation (MV) (hours)}} \times 100
	\]
Population	All patients requiring MV during the period reviewed
Exclusion criteria	• Patients ventilated in prone position
	• Clinical contraindications
Explanation of the terminology	Semirecumbent position: 30-45° upright position of upper body
Type	Structure / process
Source of data	1) Structure: Query
	2) Process: ICU-patient records, PDMS
Standard	1st step:
	- Structure: Standard yes / no; yes>95%
	2nd step:
	- Process: Realisation yes / no > random testing on 1st day after admission;
	yes>70%
Comments:	The authors recommend measuring this indicator by means of daily or periodically sampling (e.g. all patients for one week/quarter, consider implementation into devices)

Quality Indicator II

Name of the indicator	Monitoring sedation, analgesia, delirium
Dimension	Effectiveness and risk
Justification	Inappropriate sedation (both over- and undersedation) or analgesia, as well as untreated delirium cause prolongation of mechanical ventilation and hospital stays, as well as increased morbidity, mortality and use of resources. The use of validated sedation scales for monitoring of sedation, analgesia and delirium has proven useful in the management of these patients, and their use is recommended in clinical practice guides.
Sedation:

Number of RASS assessments

Default number of assessments

\[
\text{[(days treated -1) x 3]} \times 100
\]

Population

Every 8-hour period (generally) in ICU patients during the entire treatment period

Monitoring:

Assessment of depth of sedation and analgesia as well as presence of delirium according to validated scales for every 8-hour period or once the clinical situation changes.

Algorithm (Lütz A, Spies C et al. Crit Care Med 2009)

Type

1st step:
Structure (sedation/analgesia/delirium): Standard yes / no

2nd step:
Process: Sedation

Source of data

1. Structure: Query
2. Process: Clinical records; patient data management systems (PDMS)

Standard

1st step:
Structure: Yes > 95 %

2nd step:
Process: ≥ 70 %

Attachment to: Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22. DOI: 10.3205/000111, URN: urn:nbn:de:0183-000111

Online freely available from: http://www.egms.de/en/journals/gms/2010-8/000111.shtml
Comments

Recommended scales (sometimes integrated into monitors and devices)
- RASS: Richmond Agitation and Sedation Scale
- NRS: Numeric Rating Scale or BPS: Behavioral Pain Scale
- CAM-ICU: Confusion Assessment Method - Intensive Care Unit or other validated delirium scale

Quality Indicator III

Name of the indicator	Lung-protective ventilation
Dimension	Effectiveness and risk
Justification	High pressure ventilation in patients with ALI/ARDS has been shown to be associated with higher incidences of ventilator-associated pneumonia (VAP), prolonged durations of ventilation, ICU- and hospital stay, as well as mortality. Lung-protective ventilation strategies may result in a 25% improvement of ALI/ARDS survival rate.
Ventilatory mode	Mechanically ventilated patients (ARDS, ALI)
Tidal volume	6 ml/kg ideal body weight
Plateau pressure	< 30 cm H₂O (depending on ventilator: peak pressure < 35 cm H₂O as an alternative)
PEEP	See table on PEEP-adjustment

Table on PEEP adjustment depending on FiO₂

FiO₂	PEEP
0.3	5
0.4	5
0.4	8
0.5	8
0.5	10
0.5	10
0.5	12
0.6	14
0.6	14
0.7	14
0.7	16
0.8	18
0.9	18-24

Population

All patients with ALI/ARDS and mechanical ventilation ≥ 24 hours

Explanation of the terminology

All days of mechanical ventilation in ALI/ARDS patients as well as over the entire treatment.

Type

Structure, process und outcome

Source of data

1st step: Structure: Standard yes / no; checked yes / no
2nd step: Peer review audits: Protective ventilation, tidal volume, plateau pressure (alternatively peak pressure), PEEP (alternatively: devices, PDMS)
3rd step: Outcome: Ventilator-associated pneumonia (VAP) according to ATS criteria

Standard::

1st step: Structure yes > 95 %
2nd step: Process: ≥ 70% protective ventilation
3rd step: Outcome: days with VAP
Quality Indicator IV

Name of the indicator	Weaning protocols incorporating spontaneous breathing trials (SBT)
Dimension	Effectiveness and risk
Justification	Ventilator-associated pneumonia (VAP) represents the most common nosocomial infection on the ICU and is frequently caused by insufficient weaning. The availability of a protocol for weaning from mechanical ventilation (MV) significantly shortens the total time under MV, thus **reducing the risk** of VAP. Weaning strategies in combination with targeted sedation depth are associated with decreased mortality on the ICU.
Population	All mechanically ventilated patients
Formula (process)	Number of mechanically ventilated patients undergoing daily checks according to weaning protocols \[\times 100 \]
Population	All days with mechanical ventilation during the period reviewed (minimum treatment duration = 24 hours)
Population	Patients in need of mechanical ventilation
Type	Structure, process and outcome
Source of data	1. Structure: Query
2. Process: Considering NIV during early patient visits: NIV indicated yes/no (clinical records, PDMS, peer review)
3. Outcome: Results from KISS/SARI -ICU Surveillance (annual reports) |
| **Standard:** | 1. Structure: Yes > 95 %
2. Process: > 70% positive answers
3. Outcomes: Days with ventilator-associated pneumonia (VAP) |

Table:

Type	Structure, process, outcome
Source of data	1st step: Query
2nd step: Process: Peer review (alternatively: devices, PDMS)
3rd step: Outcome: KISS/SAR/-ICU-Surveillance (annual report) |

Formula (process):

- *Duration of lung-protective mechanical ventilation in ALI/ARDS patients*
 \[\times 100 \]
- *Duration of mechanical ventilation in ALI/ARDS patients*

Table:

Name of the indicator	Duration of lung-protective mechanical ventilation in ALI/ARDS patients \[\times 100 \]
Type	Structure, process, outcome
Source of data	1st step: Query
2nd step: Process: Peer review (alternatively: devices, PDMS)
3rd step: Outcome: KISS/SAR/-ICU-Surveillance (annual report) |

Table:

Name of the indicator	Duration of mechanical ventilation in ALI/ARDS patients \[\times 100 \]
Type	Structure, process, outcome
Source of data	1st step: Query
2nd step: Process: Peer review (alternatively: devices, PDMS)
3rd step: Outcome: KISS/SAR/-ICU-Surveillance (annual report) |
Explanation of the terminology

- **Weaning-trial:** Scheduled attempt to disconnect the ventilator by means of a spontaneous breathing trial using any of the following:
 - T-tube test
 - Use of 7 cm H$_2$O pressure support ventilation (PSV)
 - Continuous positive airway pressure (CPAP) 5 cmH$_2$O
- Synchronised intermittent mandatory ventilation (SIMV) is specifically excluded

Comments

The authors consider it more practical to measure the indicator by choosing “patients with MV” to be the unit of analysis rather than “days of MV” because weaning tests are not usually registered in IT systems, and this approach facilitates the application of the exclusion criteria.

We recommend evaluating whether the trial has been performed daily in those patients meeting the above-mentioned inclusion criteria.

Quality Indicator V

Name of the indicator	Early and adequate initiation of antibiotic therapy
Dimension	Effectiveness and risk
Justification	Early and adequate administration of antibiotics improves the prognosis in severe infection/sepsis. Surviving Sepsis Campaign Bundles recommend administration of antibiotics within 1 hour of diagnosing infection/sepsis (Grade C recommendation).
Formula	\[
Number of patients with severe infection/sepsis administered antibiotics early (1h after diagnosis)	x100
Population	All patients with severe infection/sepsis discharged from the ICU during the period reviewed
Explanation of the terminology	- Infection (CDC or ATS)
- SIRS and assumed or proven infection with or without adequate microbial isolation
- Early and adequate administration of antibiotics: within 1 hour after first diagnosis |
| **Type** | 1. Structure: SIRS detection - yes / no and frequency
2. Process: Peer review audit |
| **Source of data** | Structure: Query, process: clinical records, PDMS (manufacturers of monitoring devices) |
Quality Indicator VI

Name of the indicator	Therapeutic hypothermia after cardiac arrest (CA)
Dimension	Effectiveness and risk
Justification	Mild therapeutic hypothermia induced after cardiac arrest (CA) due to ventricular fibrillation (VF) or ventricular tachycardia (VT) without pulse in patients persisting in coma after recovering circulation has been show to improve neurologic prognosis and reduce mortality.
Formula	\[
\frac{\text{Number of patients with CA due to VF or VT without pulse and induced hypothermia}}{\text{Number of patients with CA due to VF or VT without pulse}} \times 100
\]

| **Population** | All patients with CA due to VF or VT without pulse during the period reviewed |

- **Inclusion criteria:**
 - Persistence in coma after restoration of circulation
 - Observed loss of consciousness
 - Maximum of 15 minutes until initiation of sufficient CPR
 - Initial rhythm was VF or VT
 - Maximum of 60 minutes until ROSC

- **Exclusion criteria:**
 - Cardiogenic shock
 - Malignant arrhythmias
 - Pregnancy
 - Coagulopathy

| **Explanation of the terminology** | Therapeutic hypothermia: Induction of mild hypothermia (33± 1°C) within 12 hours of cardiac arrest |
| **Type** | 1. Structure: Yes / No
2. Process: > 90 % |
| **Source of data** | 1. Query
2. Process: Clinical records / PDMS, peer review, manufacturers of monitoring devices |

1. Attachment: Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22. DOI: 10.3205/000111, URN: urn:nbn:de:0183-0001111
Online freely available from: http://www.egms.de/en/journals/gms/2010-8/000111.shtml
| Standard | 1. Structure: Yes > 90 %
2. Process: > 90 % |
|----------|-----------------------------|
| Comment | 32-34°C, moderate! |

Quality Indicator VII

Name of the indicator	Early enteral nutrition
Dimension	Effectiveness and risk
Justification	Early administration of enteral nutrition (EN) has been associated with a reduction in infectious complications and mortality in critically ill patients in the first 48 hours. It has not been associated to longer stays.
Formula (Process)	Daily documented checks whether EN is applied
Number of ICU patients in whom EN is indicated x100	
Population	All patients discharged from the ICU during the period reviewed
Explanation of the terminology	- Indication for EN: All patients without contraindications for EN in whom a complete oral diet is not possible
Type	1. Structure: Yes / no (within the first 48 hours)
2. Process: Implementation rate |
| Source of data | 1. Query
2. Process: Clinical records / PDMS, peer review |
| Standard | 1. Structure: > 95%
2. Process: ≥ 70% |

Quality Indicator VIII

Name of the indicator	Documentation of relative- / next-of-kin communication
Justification	Trust building measure, decreases grief, reduces grief-associated morbidity (depression, PTSD)
Explanation of the terminology	Documentation of relative- / next-of-kin communication => all patients staying > 24 hours
Type	1. Structure: Yes > 100 %
2. Process: Clinical records / PDMS, peer review 70 % |
| Standard | At least once per ICU treatment at any critical event |
Quality Indicator IX

Name of the indicator	Hand disinfection consumption
Dimension	Effectiveness and risk

Justification

Hands are an important mechanism of transmission of nosocomial infections. Improved compliance with hand disinfection protocols before and after contact with patients can reduce nosocomial infection rates over 50% and diminishes the consumption of resources. Goal is to improve adherence to protocols on hand disinfection, which can be monitored indirectly by measuring the consumption of hand disinfection solution and individually audited by peer review processes.

Formula

Liters per 1,000 patient days

Population

The entire ICU staff during the period reviewed (physicians, care givers, support personnel)

Explanation of the terminology

1 = VOR Patientenkontakt

2 = VOR einer aseptischen Tätigkeit

3 = NACH Kontakt mit potentiell infektiösen Materialien

4 = NACH Patientenkontakt

5 = NACH Kontakt mit der unmittelbaren Patientenumgebung

Attachment to: Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22. DOI: 10.3205/000111, URN: urn:nbn:de:0183-000111

Online freely available from: http://www.egms.de/en/journals/gms/2010-8/000111.shtml
Bei der Einreibung des Händedesinfektionsmittels Benutzungslücken vermeiden!

http://www.praxis-page.de/ash/

Type	Outcome
Source of data	Consumption of hand disinfection solution as reflected by ICU expenditures 3 – 5 mL / hand disinfection
Standard	80 – 100 liters / 1,000 patient days (ICU bed occupancy days)

Quality Indicator X

Name of the indicator	ICU administration by an attending intensivist and provision of physical 24-hour ICU presence of at least one board certified intensivist
Dimension	Appropriateness, effectiveness and risk
Justification	The physical presence of an intensivist in the ICU 24 hours per day guarantees the quality of care, decreasing mortality and stay among critically ill patients.
Formula	Number of days without the physical presence of an intensivist 24 hours per day 365 x100
Population	All days of the year during the period reviewed
Explanation of the terminology	• Intensivist: physician that is a certified intensive medicine specialist, excluding specialists in training
 | • Physical presence is considered necessary |
| Type | Structure: Query according to account of complex treatment |

Attachment to: Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22. DOI: 10.3205/000111, URN: urn:nbn:de:0183-000111

Online freely available from: http://www.egms.de/en/journals/gms/2010-8/000111.shtml
Source of data	Human resources departments and duty rosters
Standard (required for accounting of complex treatment)	100 %
Qualitätsindikatoren in der Intensivmedizin: wozu? Nutzen oder Last für Intensivmediziner

Zusammenfassung

Um die (Behandlungs-)Qualität zu verbessern, muss man die eigenen Alltagsprozesse kennen und evaluieren, Transparenz erzeugen. Die Reflexion kann durch die Präsentation von Kennzahlen oder Indikatoren unterstützt werden, in denen der tatsächliche IST-Zustand dargestellt wird. Um dieses IST aufzuzeigen werden Qualitätsindikatoren benötigt. Qualitätsindikatoren zeigen den Erreichungsgrad einer spezifischen Qualität hin. Stellt sich ein Indikator als nicht mehr relevant heraus oder wird ein Erreichungsgrad von 100% erzielt, ist die weitere Erfassung eines solchen Indikators überflüssig.

Für die Intensivmedizin gibt es in unterschiedlichen Ländern Untersuchungen von Qualitätsindikatoren. In standardisierten Verfahren wurden jeweils verschiedene Indikatoren detektiert, die eine Relevanz besitzen in Hinblick auf die medizinische Behandlungsqualität und damit auf das Outcome von Intensivpatienten.

In enger Abstimmung haben in Deutschland die intensivmedizinischen Fachgesellschaften 10 Kern-Qualitätsindikatoren für die Intensivmedizin verabschiedet, die mit einer Gültigkeit von 2 Jahren für deutsche Intensivstationen empfohlen werden.

Schlüsselwörter: Qualitätsindikator, Qualitätsmanagement, Intensivmedizin, Behandlungsqualität, Outcome

Jan-Peter Braun¹
Hendrik Mende²
Hanswerner Bause³
Frank Bloos⁴
Götz Geldner⁵
Marc Kastrup¹
Ralf Kuhlen⁶
Andreas Markewitz⁷
Jörg Martin⁸
Michael Quintel⁹
Klaus Steinmeier-Bauer¹
Christian Waydhas¹⁰
Claudia Spies¹

NeQuI (Netzwerk Qualität in der Intensivmedizin)

¹ Klinik für Anästhesiologie m. S. operative Intensivmedizin, Charité - Universitätsmedizin Berlin, Deutschland
² Regionale Kliniken Holding, RKH GmbH, Ludwigsburg, Deutschland
³ Klinik für Anästhesiologie und operative Intensivmedizin, Asklepiosklinikum Altona, Hamburg, Deutschland
⁴ Klinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Jena, Deutschland
⁵ Klinik für Anästhesiologie, Intensivmedizin, Schmerztherapie und Notfallmedizin, Klinikum Ludwigburg, Deutschland
⁶ Helios Klinikum Berlin Buch, Deutschland
⁷ Abteilung für Herz- und Gefäßchirurgie, Bundeswehrzentralkrankenhaus Koblenz, Deutschland
Qualitätsindikatoren in der Medizin: die Sinnfrage

Die gesetzliche Verpflichtung für Krankenhäuser sich laut §137 SGB V mit Qualität auseinander setzen zu müssen, wird häufig als lästiger Zwang empfunden. Das liegt daran, das Qualitätsmanagement sich oftmals als etwas Praxisfernes und Bürokratisches präsentiert, welches den klinischen Alltag zusätzlich belastet in Form von Papierkrieg und Zertifizierungsformalitäten. In dieser Form wird Qualitätsmanagement tatsächlich falsch „gelebt“ weil nicht am Anfang, in der Praxis, begonnen wird, sondern am Ende, in Praxisfernen Konstrukten. Vagts, Bauer und Martin [1] haben dies in Ihrem Artikel über den Sinn von Zertifizierungen explizit dargelegt.

Um die (Behandlungs-)Qualität zu verbessern, muss man die eigenen Alltagsprozesse kennen und evaluieren, Transparenz erzeugen. Das ist die eigentliche Träßer des Qualitätsmanagements. Die zu erzielenden Ergebnisqualität hängt von der Struktur- und Prozessqualität ab, das sind die drei zusammengehörenden Dimensionen des Qualitätsmanagements, wie sie Donabedian beschrieben hat [2]. Zu definieren, welche Ressourcen für die gewünschte Ergebnisqualität notwendig sind, ist die erste Herausforderung des Qualitätsmanagements. Die Gestaltung der klinischen Prozesse gehört zum Kerngeschäft der Mediziner und stellt zugleich die zweite Herausforderung dar. Dies gilt insbesondere für einen so Prozessintensiven und Schnittstellenreichen Bereich wie die Intensivmedizin. In kaum einem anderen Bereich haben die Prozesse so direkte vitale Konsequenzen, haben Informationsübertragungen und Fehler so unmittelbare Folgen für den Patienten wie in der Intensivmedizin. Die gesamte Problematik des Qualitätsmanagements in der Medizin lässt sich auf jeweils zwei Fragen zur Theorie und zur Praxis reduzieren.

Theorie:

1. Liegen Therapiestandards und individualisierte Therapiekonzepte vor?
2. Sind die Prinzipien der Behandlung/Behandlungsstandards evidenzbasiert, d.h. gibt es ein leitlinienkonformes Behandlungsgerüst?

Praxis:

1. Ist der klinische Alltag so organisiert, dass Fehler bestmöglich vermieden werden?
2. Bekommt der Patient in der Regel das, was wir glauben, bzw. das was wir erzielen möchten?

Um diese Fragen beantworten zu können benötigt man Transparenz hinsichtlich des eigenen Tun und Handelns. Die Reflexion kann durch die Präsentation von Kennzahlen oder Indikatoren unterstützt werden, in denen der tatsächliche IST-Zustand dargestellt wird. Um dieses IST aufzuzeigen werden Qualitätsindikatoren benötigt. Qualitätssicherungen sind Maße, deren Ausprägung zwischen guter und schlechter Struktur-, Prozess- und Ergebnisqualität unterscheiden hilft. Dabei wird die Qualität nicht direkt gemessen, sondern die Indikatoren stellen Hilfsgrößen dar, welche die Qualität durch Zahlen indirekt abbilden. Qualitätsindikatoren sollten auf der bestverfügbar Evidenz basieren bzw. aus der wissenschaftlichen Literatur abgeleitet oder – bei fehlender empirischer Evidenz – im Expertenkonsens gebildet werden. Das bedeutet, dass auch Qualitätsindikatoren hinsichtlich ihrer Evidenz bewertet werden können und müssen [3]. Die Klassifikation von Qualitätsindikatoren erfolgt nach der Qualitätsdimension, auf die der Indikator abzielt. Analog zur Gliederung der Qualitätsdimensionen von Donabedian [4] beziehen sich Qualitätsindikatoren auf Struktur-, Prozess- und Ergebnisqualität. Struktur- bzw. Prozessindikatoren können nur dann valide Indikatoren sein, wenn sich eine positive Auswirkung auf das Ergebnis nachweisen lässt. Ein Qualitätsindikator kann zuehren Struktur- und Prozessqualität oder Prozess- und Ergebnisqualität widerspiegeln. Qualitätsindikatoren sind Steuerungsinstrumente im Rahmen des medizinischen Qualitätsmanagements, dienen der Qualitätsverbesserung und sind ein Werkzeug, um das tägliche Tun und Handeln abzubilden und zu bewerten. Sie sind kein Selbstzweck. Indikatoren sollten vom gesamten Intensivteam akzeptiert sein und deren Messung sollte objektiv erfolgen. Damit die Qualitätsindikatoren akzeptiert werden, sollten sie den Anforderungen der RUMBA-Regel entsprechen. Die Anforderungen an Indikatoren nach der RUMBA-Regel lassen sich wie folgt beschreiben:
1. Relevant für das Problem,
2. Understandable (verständlich formuliert)
3. Messbar sein, mit hoher Zuverlässigkeit und Gültigkeit
4. Behaviourable (veränderbar durch das Verhalten)
5. Achievable and feasible (Erreichbar und durchführbar).

Diese Voraussetzungen sind notwendig, um die beteiligten Akteure einer Intensivstation in ihren täglichen Handlungen überhaupt (positiv) beeinflussen zu können [5]. Die Bedeutung für den Patienten muss dem Personal vermittelbar sein, damit notwendige Prozessveränderungen tatsächlich umgesetzt werden. Insbesondere die Berufsgruppe der Pflege, als diejenige, die die meisten Prozesse direkt am Patienten verrichtet, muss bei der Entwicklung und Gestaltung von patientennahen Prozessen (bzw. der diese Prozesse repräsentierenden Indikatoren) involviert sein, damit die Qualitätsbrücke von Theorie zur Praxis gegeben wird. Es gehört zum Selbstverständnis der Pflege, die Funktion des „Anwalt“ für den Patienten zu übernehmen, dies sollte man bei qualitätsverbessernden Maßnahmen produktiv nutzen, indem das Bewusstsein für die Bedeutung der Qualitätsindikatoren vermittelt wird [6]. Wird nicht vermittelt, dass eine bestimmte Maßnahme dem Patienten nützt, gibt es Probleme bei der Implementierung dieser Maßnahme in der klinischen Routine.

Die Indikatoren sollten keine zusätzliche Dokumentation erfordern, sondern sich bestenfalls aus der Routinedokumentation erfassen lassen. Zusätzliche Belastungen führen zu Fehlern in der Datenerhebung. Ein elektronisches Patientendatenmanagementsystem (PDMS) wird von einigen Autoren in diesem Kontext als sehr vorteilhaft beschrieben [7].

Sinn und Zweck der Indikatoren ist, festzustellen ob in bestimmten Bereichen Probleme mit der Umsetzung bestimmter Therapieformen bestehen, und ob nach erfolgter Messung und Darstellung der Ergebnisse eine Kehrtwendung zum Guten oder Schlechten erfolgt. Qualitätsindikatoren eignen sich, um ein Team Schwächen und Verbesserungspotential zu zeigen und Eingriffe sichtbar zu machen. Zu Beginn der Einführung von Qualitätsindikatoren muss eine häufige Messung und Darstellung der Ergebnisse erfolgen. Auf der anderen Seite wird die regelmäßige Messung eines Indikators hinfällig, wenn die Durchdringung 100% erreicht hat. Daraus ergibt sich aber auch, dass Indikatoren eine begrenzte Haltbarkeit haben und nach einer definierten Anwendungszeit hinsichtlich ihrer Wirksamkeit und Gültigkeit reevaluiert werden müssen. Kann man durch einen Qualitätsindikator keinerlei positive Entwicklung erreichen, ist die Erhebung dieses Indikators als Zeitverschwendung zu bewerten und es sollte geprüft werden, ob ein anderer Indikator besser geeignet ist, eine positive Entwicklung zu unterstützen [8].

Hilfestellung zur regelmäßigen Evaluation bietet der PDCA-Zyklus (Abbildung 1) nach Deming und Shewhart [9]. Das regelmäßige Durchlaufen des Zyklus fördert den angestrebten kontinuierlichen Verbesserungsprozess und hilft dem Team die angestrebten qualitätsverbessernden Maßnahmen schneller und effektiver umzusetzen und zu einer nachhaltigen Qualitätsverbesserung zu führen.

Haupteinsatzmöglichkeiten für Qualitätsindikatoren liegen sowohl in der internen und externen Kontrolle der medizinischen Versorgung als auch als Werkzeuge für den kontinuierlichen Verbesserungsprozess. Der Einsatz von Qualitätsindikatoren dient:

- der Messung des aktuellen Zielerreichungsgrads (Evaluation)
- der Beschreibung der Veränderungen des Zielerreichungsgrades über die Zeit (Monitoring)
- als Hinweis auf Situationen, die ein Eingreifen erfordern (Alarmfunktion).

Das Monitoring der eigenen Qualitätsentwicklung ist hierbei um ein vielfaches höher zu bewerten, als die Möglichkeit, sich mit anderen zu Vergleichen (Benchmarking). Der Nutzen als externes Benchmarking ist umstritten, da durch unterschiedliche Strukturen in den einzelnen Kliniken die erzielten Ergebnisse nicht 100% vergleichbar sind. Trotzdem können Trends in verschiedenen Kliniken bzw. die Rate der erzielten Veränderung und nicht die Absolutwerte als Benchmark herangezogen werden, um eine Vergleichbarkeit zu erzielen.

Entwicklung von Qualitätsindikatoren in der Intensivmedizin

Die Entwicklung von Qualitätsindikatoren für die Intensivmedizin umfasst bereits eine kleine Historie. Die ersten programmatischen Impulse kommen hierbei von der Johns Hopkins Universität in Baltimore aus der Klinik für Anästhesiologie und Intensivmedizin. In einer großen Untersuchung, die auf insgesamt 13 konservativen und operati-
von Intensivstationen durchgeführt wurde, werden die Schritte bei der Entwicklung von Qualitätsindikatoren beschreiben, die eine locale/regionale Gültigkeit besitzen [10]:

1. die ausführliche Literaturrecherche mit der Fragestellung, was das Outcome auf Intensivstationen verbessert
2. Evaluation verschiedener Outcomeparameter
3. Auswählen von Pilotindikatoren um im Feldversuch die Machbarkeit der Datensammlung und die Evidenz in Hinblick auf den zu beeinflussenden Prozess und das Outcome zu untersuchen
4. Definition des Datenerfassungsprozesses: wer, was, wann wie. Dies geschieht aus den Erfahrungen des Feldversuches.
5. Prüfung der Validität und Reliabilität anhand des Feldversuchs, d.h. sind die gesammelten Daten nachvollziehbar oder sind die Variabilitäten bei den Ergebnissen zu hoch, um Aussagen treffen zu können.
6. der eigentliche Pilottest der entwickelten Indikatoren.

In einem Experten-Panel wurden die Ergebnisse der Literaturrecherche ausgewertet und im Delphi-Verfahren wurden die Indikatoren herausgefiltert, die aufgrund der oben genannten Voraussetzungen im Pilottest weiter untersucht werden sollten. Anhand dieser sehr aufwendigen und beispielgebenden Methode entwickelten die Autoren die ersten Qualitätsindikatoren, die auf mehreren Intensivstationen Anwendung fanden [5]. Die Autoren waren aufgrund ihrer umfangreichen Datensammlung in der Lage, die Effekte der Indikatoren in Hinblick auf Outcomeparameter und ökonomischer Effekte zu untersuchen. Für die Beteiligten Intensivstationen wurden folgende Qualitätsindikatoren identifiziert:

- 6 Outcomekriterien: Sterblichkeit auf der Intensivstation, Verweildauer auf der Intensivstation über 7 Tage, mittlere Verweildauer auf der Intensivstation, durchschnittliche Beatmungsdauer, suboptimales Schmerzmanagement, Patienten- und Angehörigenzufriedenheit.
- 6 Prozesskriterien: Rate der effektiven Schmerzmes sung, der adäquaten Transfusionstherapie mit Blutprodukten nach Standard, der Prävention Beatmungsassoziierten Pneumonien, der adäquaten Sedierung nach Standard, der adäquaten Stressulkusprophylaxe und der adäquaten Prophylaxe tiefer Beinvenenthrombose.
- 4 Aufnahme/Entlasskriterien: Rate der verzögerten Aufnahme auf die Intensivstation, Rate der verzögerten Entlassung von der Intensivstation, Rate der Abgesagten Operation aufgrund des Mangels an Intensivbetten, Notaufnahme-Verzögerungen aufgrund des Mangels an Intensivbetten.
- 3 Komplikationskriterien: Rate an ungeplanten Wieder aufnahmen auf die Intensivstation innerhalb von 48 Stunden, Rate von katheterassozierten Septitiden bezogen auf 1000-ZVK-Tage, Rate neu aufgetretener Infektionen mit multiresistenten Erregern.

Qualitätsindikatoren, die auf lokaler Ebene Teil eines Qualitätsmanagementsystems sind und zur Optimierung der Patientenversorgung beitragen sollen, wurden in der Literatur vielfach beschrieben. Kastrup und Mitarbeiter [7] können zeigen, dass zielgerichtete Behandlungsprozesse die durch Experten auf der Basis einer Literaturrecherche erarbeitet wurden, im klinischen Alltag dazu führen, dass Patienten signifikant kürzere Intensivverweildauern und wahrscheinlich auch ein besseres mittelfristiges Outcome zeigen. Diese Prozesse werden in der elektronischen Patientendokumentation dargestellt anhand von Zielparametern, die aus den Daten des PDMS extrahiert wurden. Die Autoren nennen die angestrebten Zielparameter „key performance indicators (KPI)“, also Indikatoren, die intensivmedizinische Schlüsselprozesse abbilden. Die KPIs wurden in Themenbündeln herausgearbeitet: Anaglosesedierungsziele, Kreislaufziele, Beatmungsziele, Infektionsbehandlungsziele und Ernährungsziele. Es ist nicht verwunderlich, dass einige der Indikatoren bei verschiedenen Autoren gleichsam erscheinen als Faktoren, die mit einem besseren Patientenoutcome assoziiert sind. Die von Kastrup in der Charité beschriebenen Prozesse entsprechen in weiten Teilen den an der John Hopkins Universität ermittelten Indikatoren, wie z.B. die Maßnahmen zur Lungenprotektion etwa durch Verwendung niedriger Tidalvolumina, niedriger Beatmungsdrücke und Anwendung der Oberkörperhochlagerung. Mit dem Bestreben über Fachgebietsgrenzen hinweg evidenzbasierte und outcome relevante Verfahren in der Intensivmedizin zu einer breit gestreuten Anwendung zu verhelfen, haben sich nationale Institutionen in verschiedenen Ländern beschäftigt. In den Niederlanden wurde von National Institute for Public Health and Environment in Zusammenarbeit mit dem OLVG Klinikum in Amsterdam eine Machbarkeitsstudie durchgeführt, die Qualitätsindikatoren und deren Nutzen auf Intensivstationen untersucht hat [8]. Hierfür wurde zum einen durch eine umfangreiche Literaturrecherche 50 Indikatoren zusammengetragen (u.a. die der John Hopkins Arbeitsgruppe) und zum anderen durch eine Expertengruppe 12 weitere Indikatoren erarbeitet. Die insgesamt 62 Indikatoren wurden durch eine multidisziplinäre Expertengruppe der niederländischen Fachgesellschaft für Intensivmedizin einer strengen wissenschaftlichen Auswahl unterzogen. 12 Indikatoren hielten den gesetzten Anforderungen stand und wurden in einem Feldversuch näher untersucht. An dieser Untersuchung nahmen Intensivstationen aus 18 Krankenhäusern teil, die paritätisch nach Versorgungs wie higkeit. Die Maßnahmen zur Lungenprotektion etwa durch Verwendung niedriger Tidalvolumina, niedriger Beatmungsdrücke und Anwendung der Oberkörperhochlagerung.
• Strukturindikatoren: Verfügbarkeit des Intensivmediziners, Pflegeschlüssel pro Patient, Fehlermanagement, Patienten/Angehörigen-Zufriedenheit

Gesundheitspolitische und Krankenhausspezifische Rahmenbedingungen unterscheiden sich zwischen den Nationen sehr grundlegend. Die in anderen Ländern erarbeiteten Qualitätsindikatoren für die Intensivmedizin lassen sich nicht 1 zu 1 auf Deutschland übertragen. Beispielsweise ist die 24-stündige Verfügbarkeit von intensivmedizinisch erfahrenem, ärztlichem und pflegerischem Personal eine Aufgabenstellung der Abrechnungsreform der Intensivmedizinischen Komplexpauschale [11], Beatmungsdauer und Verweildauer sind im Rahmen des deutschen Fallpauschalensystems (G-DRG) aus Vergütungsgesichtspunkten ebenfalls von Bedeutung. Sterblichkeit und ungeplante Wiederaufnahme auf die Intensivstation sind Bestandteile des intensivmedizinischen Qualitätsmanagement der Deutschen Gesundheitsbehörden. Die Bewertung der Abrechnung und der Qualität der Intensivmedizin ist eng mit der Entwicklung von intensivmedizinischen Qualitätsindikatoren in Deutschland verbunden. Die Entwicklung intensivmedizinischer Qualitätsindikatoren in Deutschland geht auf die europäische Qualitätssicherungseinrichtung zurück, die gemeinschaftliche Qualitätsverbessernde Maßnahmen durch ein intensivmedizinisches Indikatorensystem nur indirekt zu tun. Bei der Entwicklung von Qualitätsindikatoren ging es nicht darum, Parameter herauszustellen, die bereits durch Bestandteile der Qualitätssicherung, die bisherige Verordnung und Empfehlungen verlangt und die Belegungsdaten werden als Datensatz regelmäßig an Kostenträger und an die mit der Krankenhausplanung beauftragten Institutionen übermittelt.

Entwicklung intensivmedizinischer Qualitätsindikatoren in Deutschland

Der wissenschaftliche Arbeitskreis Intensivmedizin der Deutschen Gesellschaft für Intensivmedizin (DGAI) hat in Zusammenarbeit mit der interdisziplinären Arbeitsgruppe Qualitätssicherung in der Intensivmedizin der Deutschen Interdisziplinären Vereinigung für Intensivmedizin und Notfallmedizin (DIVI) und der Deutschen Gesellschaft für Internistische Intensivmedizin (DGII) einen Überblick über die Möglichkeiten der Einführung eines Qualitätssamments in die Intensivmedizin in Deutschland erarbeitet [13]. Der wissenschaftliche Arbeitskreis hat hierbei entsprechend der oben beschriebenen Erfahrungen das Ziel verfolgt, eine überschaubare Menge von praktisch anwendbaren Qualitätsindikatoren zu entwickeln, für die eine Outcome-Relevanz wissenschaftlich untersucht ist. Die Organisation von klinischen Prozessen in der Intensivmedizin sollte eine „Hilfestellung“ bekommen, indem ein Gerüst von Kennzahlen zur Verfügung steht, die als Orientierungshilfe allen Prozessbeteiligten Berufsgruppen dienen und jeder Indikator außerdem seine klinische Bedeutung hat. Die Entwicklung von intensivmedizinischen Qualitätsindikatoren in Deutschland ist eng verknüpft mit der Entwicklung von Qualitätsindikatoren durch die spanische Gesellschaft für Intensivmedizin (SEMICYUC). Die spanischen Intensivmediziner haben einen 120 Indikatoren umfassenden Katalog entwickelt und publiziert [14]. Die spanischen Qualitätsindikatoren sind exzellent aufgearbeitet und in einer stringanten Logik präsentiert. So ist jeder Indikator definiert durch die Größenordnung (Effektivität, Risiko, Zufriedenheit, Eignung, Wirksamkeit), eine Begründung, eine mathematische Formel, wie der Indikator bestimmt wird, die Angabe der Population, die es betrifft (z.B. Beatmete, Koronarkranke, Septiker usw.), stichwortartige Erklärung der Termini, Art der Indikators (Prozess, Struktur, Ergebnis), die Datenquelle (z.B. Patientenakte, Dienstplan, OP-Plan, Qualitätsbericht), der anzustrebende Zielwert und die Literaturangaben als Kommentar. Nach Übersetzung ins Deutsche hat der wissenschaftliche Arbeitskreis der DGAI die Logik der Aufbereitung und Darstellung der Indikatoren von den spanischen Kollegen übernommen. Die Liste von Qualitätsindikatoren schien jedoch aus oben genannten Gründen nicht auf deutsche Verhältnisse übertragbar. Neben klinischen Prozessindikatoren, wie z.B. zielgerichteter Blutzuckertherapie oder Lungenprotektive Beatmung, enthält die spanische Liste auch Indikatoren wie das regelrechte Auswechseln von wärmenenden Befeuchtungssystemen bei Beatmeten Patienten oder die Indikationsstellung zur Isolation von Patienten mit multiresistenten Keimen. Die letzten genannten Indikatoren sind auf Deutschen Intensivstationen über Hygienierichtlinien geregelt und haben mit Prozess- bzw. Qualitätssichernden Maßnahmen durch ein intensivmedizinisches Indikatorensystem nur indirekt zu tun. Bei der Entwicklung von Qualitätsindikatoren ging es nicht darum, Parameter herauszustellen, die bereits durch bestehende Verordnungen, Empfehlungen oder administrative Vorgaben geregelt sind erneut zu beschreiben. Um Redundanzen zu vermeiden und eine echte Neuwert zu schaffen wurden in zwei Delphi-Runden durch das Expertengremium zunächst 36 und letztlich 10 Qualitätsindikatoren erarbeitet, die direkten Einfluss auf die alltäglichen Prozesse auf der Intensivstation haben. Alle Indikatoren haben einen direkten Hinweis auf ein verbessertes Patienten-Outcome. Die hierdurch entstandene erste Version der intensivmedizinischen Qualitätsindikatoren wurde mit einer Gültigkeitsdauer von 2 Jahren von den Expertengremien derDGAI und der DIVI verabschiedet (siehe Anhang 1: 10 Qualitätsindikatoren). Die Diskussion über die wissenschaftliche Evidenz jedes Indikators ist sehr wichtig und belebend, dabei darf jedoch nicht verkannt werden, dass die Existenz jedes Indikators unmittelbar an der wissenschaftlichen Erkenntnisleistung hängt und jeder Indikator außerdem seine klinische Bedeutung. Unter Beweis stellen muss. Weitere Indikatoren sind in Bearbeitung, wie beispielsweise ein Indikator über zielgerichtete Kreislauftherapie. Sollte ich ein Indikator als nicht evident herausstellen, sollte er aus der Liste entfernt werden. Es ist über dies sinnlos an Indikatoren festzuhalten, deren Implementierungsrate bei 100% liegt, weil Qualität in diesem Fall nicht steigerbar ist, d.h. der Indikator verliert damit seinen Zweck als Werkzeug.
Die erste Version der konsentierten intensivmedizinischen Qualitätsindikatoren
(siehe hierzu auch Anhang 1)

Qualitätsindikator I – Oberkörper-Hochlagerung
Die Diskussion um die Bedeutung der Oberkörperhochlagerung von Beatmeten Patienten zur Prävention nosokomialer Pneumonien an. Nach Studie der Originalliteratur ist nur für die 45° erhöhte Oberkörperlagerung ein Einfluss auf das Patientenoutcome belegt worden [15], [16], [17], [18], [19]. Dennoch belegen Studien die Bedeutung dieser Maßnahme. Die Anwendung dieser Lagerung setzt voraus, dass keine Kontraindikationen gegen diese bestehen.

Qualitätsindikator II – Monitoring von Sedierung, Analgesie, Delir
Die Bedeutung einer zielgerichteten Sedierung und Analgesierung von intensivmedizinischen Patienten ist in der aktuellen S3-Leitlinie [20] exzellent herausgearbeitet und die Evidenzlage ist klar beschrieben. Die standardisierte Vorgehensweise umfasst ein schrittweises Vorgehen zur Erkennung eines postoperativen Delirs. Rationale Analgesiedierung und Diagnose und Behandlung des Delirs in der Intensivmedizin sind ein Arbeitsbündel, welches die Morbidität, Mortalität und die Verweildauer der Patienten auf der Intensivstation positiv beeinflusst.

Qualitätsindikator III – Lungenprotective Beatmung
Die Lungenprotective Beatmung bei Patienten im akuten Lungenversagen hat sich in der Literatur ebenfalls als outcome relevant erwiesen [21], [22], [23], [24], [25], [26], [27], [28]. Dass das beschriebene Vorgehen nicht auf alle beatmeten Intensivpatienten anwendbar ist, muss kritisch festgehalten werden. Die standardisierte Beatmung setzt kooperative Patienten voraus. Dieses Arbeitsbündel hängt engmaschig mit dem Analgosedierungsbündel zusammen, denn das strukturierte Weaning setzt kooperative Patienten voraus.

Qualitätsindikator IV – Weaningprotokoll mit Spontanatmungsversuch
Die Anwendung von Beatmungs-Weaningprotokollen in der Intensivmedizin wirkt sich ebenfalls positiv auf das Patientenoutcome aus [27], [29], [30], [31], [32], [33]. Ein allgemeingültiges Weaningprotokoll existiert nicht, ein strukturiertes Vorgehen inklusive eines standardisierten Vorgehens beim (täglichen) Spontanatmungsversuch verkürzt jedoch die Beatmungsduer und das Überleben der Patien-
Qualitätsindikator VIII – Dokumentation von Angehörigengesprächen

Dieser Indikator erschließt sich nicht jedem Mediziner sofort, nach Studium der Literatur, wird jedoch zunehmend die Bedeutung dieses Qualitätsindikators für den klinischen Alltag deutlich. Absprechen mit Patienten oder Angehörigen sind häufig nicht in Krankenakten dokumentiert, was nach mehreren Übergabevisiten auf Intensivstationen häufig dazu führt, dass ein Informationsdefizit über den Zustand des Patienten vor der Intensivtherapie, über Therapiebeschränkungen und realistische Therapieziele besteht. Die Unkenntnis über solche Informationen führt zu Reibungsverlusten im Alltag und zu einem Verlust der Behandlungsqualität. Es fördert die Vertrauensbildung mit den Patientenangehörigen und deren positiven Umfang mit Trauer, wenn gemeinsame Absprachen und Zielsetzungen dokumentiert und damit transparent sind [49], [50]. In Deutschland besteht zudem über das am 01.09.2009 in Kraft getretene Patientenverfügungsgesetz die gesetzliche Verpflichtung, den Patientenwillen zu respectieren und diesem bei Therapieentscheidungen zu folgen. Die Evaluation des mutmaßlichen Patientenwillens kann nur mit Hilfe von Angehörigen erfolgen, sofern keine schriftlichen Festlegungen existieren. Dokumentierte Angehörigengespräche besitzen damit auch einen medizinalen Charakter. Dieser Qualitätsindikator soll dem dokumentierten Gespräch zu einem höheren Durchdringungsgrad verhelfen.

Qualitätsindikator IX – Händedesinfektionsmittelverbrauch

Auch dieser Indikator erscheint zunächst ungewöhnlich, ist aber von allen Indikatoren der effektivste zu sein [51], [52], [53], [54], [55], [56]. Die kontamierte Hand des Personals ist der bedeutendste Vektor von Infektionen, besonders auf Intensivstationen. Die Entstehung von multiresistenten Krankheitserregern wird durch den Mangel an Händedesinfektion begünstigt, nosokomiale Infektionen werden letztlich immer durch Kontamination (meist Hände) induziert. Da pro Intensivbett pro Tag eine kalkulierbare Anzahl von Prozessen mit Patientenkontakt anfällt, die jeweils mit einer notwendige Händedesinfektion verbunden sind, die wiederum jeweils 3–5 ml Desinfektionsmittel erfordern, ist der Verbrauch von Händedesinfektionsmittel eine der Orientierungshilfe, die durch die Indikatoren in Hinblick auf alltägliche intensivmedizinische Kernprozesse gewährt wird. Qualitätsindikatoren sollen ein Werkzeug sein, um theoretisch wissenschaftliche Erkenntnis und alltägliche Routineprozesse in rationalen Einklang zu bringen. Bietet ein Indikator keine hilfreiche Orientierungshilfe, ist er überholt oder überflüssig.

Schlussfolgerung

Intensivmedizinische Qualitätsindikatoren sind in verschiedenen Ländern strukturiert entwickelt worden auf der Basis wissenschaftlicher Erkenntnisse, dem Ziel das Outcome von Intensivpatienten zu verbessern. Struktur-, Prozess- und Ergebnisqualität werden hierbei systematisch weiter entwickelt. Die Anzahl von Indikatoren soll überschaubar und praktisch nutzbar sein. Der effektive Nutzen bei der Anwendung der erarbeiteten Qualitätsindikatoren für den Intensivmediziner liegt in der Orientierungshilfe, die durch die Indikatoren in Hinblick auf alltägliche intensivmedizinische Kernprozesse gewährt wird. Qualitätsindikatoren sollen ein Werkzeug sein, um theoretisch wissenschaftliche Erkenntnis und alltägliche Routineprozesse in rationalen Einklang zu bringen. Bietet ein Indikator keine hilfreiche Orientierungshilfe, ist er überholt oder überflüssig.

Anmerkung

Interessenkonflikte

Die Erklärungen zu Interessenkonflikten der Autoren können auf Wunsch eingesehen werden.
Danksagung

Wir möchten uns bei Dr. Jeffrey Bierbrauer, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Virchow-Klinikum und Campus Charité Mitte, Charité – Universitätsmedizin Berlin, und Dr. Martin MacGuill, ehemals Kollege in dieser Klinik, für die Übersetzung ins Englische bedanken.

Anhänge

Verfügbar unter http://www.egms.de/en/journals/gms/2010-8/00111.shtml

1. GMS-Guideline-Qualitätsindikatoren.pdf (244 KB)

10 Qualitätsindikatoren

Literatur

1. Vagts DA, Bauer M, Martin J. (Un-)Sinn von Zertifizierung in der Intensivmedizin. [The (non)sense of certification in intensive care medicine. The problem of the detection of suitable indicator systems] Anaesthesist. 2009;58(1):81-7. DOI: 10.1007/s00101-008-1465-0

2. Donabedian A. Evaluating the quality of medical care. Milbank Mem Q. 1966;44(3):Suppl:166-206.

3. Geraedts M, Jäckel W, Thomeczek C, Altenhofen L, Birkner B, Blumenstock G, Gibis B, Kopp I, Kugler C, Olenschläger G, Raspe H, Reiter A, Szecsenyi J, Zorn U. Qualitätsindikatoren in Deutschland – Positionspapier des Expertenkreises Qualitätsindikatoren beim Ärztlichen Zentrum für Qualität in der Medizin (AZQ), Berlin. Z Arztl Fortbild Qualitatssich. 2005;99(4-5):329-31.

4. Donabedian A. The role of outcomes in quality assessment and assurance. QRB Qual Rev Bull. 1992;18(11):356-60.

5. Berenholtz SM, Dorman T, Ngo K, Pronovost PJ. Quality review of intensive care unit quality assurance indicator. J Crit Care. 2002;17(1):1-12. DOI: 10.1053/jccr.2002.33035

6. Berenholtz S, Pronovost PJ. Barriers to translating evidence into practice. Curr Opin Crit Care. 2003;9(4):321-5. DOI: 10.1097/00075198-200308000-00012

7. Kastrup M, von Dosov V, Seelig M, Ahlborn R, Tamarkin A, Conroy A, Boemke W, Wernerke KD, Spies C. Key performance indicators in intensive care medicine. A retrospective matched cohort study. J Int Med Res. 2009;37(12):1267-84.

8. De Vos M, Graafmans W, Keesman E, Westert G, van der Voort PHJ. Quality measurement at intensive care units: which indicators should we use? J Crit Care. 2007;22(4):267-74. DOI: 10.1016/j.jcrc.2007.01.002

9. Deming WE, Shehart WA. Review of the International Statistical Institute. 1968;36(1):372-5. DOI: 10.2307/1401365

10. Pronovost PJ, Berenholtz SM, Ngo K, McDowell M, Holzmueller C, Haraden C, Resar R, Rainey T, Nolán T, Dorman T. Developing and pilot testing quality indicators in the intensive care unit. J Crit Care. 2003;18(3):145-55. DOI: 10.1016/j.jcrc.2003.08.003

11. Burchard H, Specht M, Braun J, Schleppers A, Martin J. OPS-Code 8-980 © Intensivmedizinische Komplexbewandlung. Nürnberg: DGAI; 2004. Available from: http://www.dgai.de/downloads/OPS-Statement_03_11_2004.pdf

12. Martin J, Schleppers A, Fischer K, Junger A, Klöss T, Schwilk B, Pützthofen G, Bauer M, Grieter H, Reinhart K, Bause H, Kuhlen R. Heinrichs W, Burchard H, Waydhas C. Der Kerndatensatz Intensivmedizin: Mindestinhalte der Dokumentation im Bereich der Intensivmedizin. Nürnberg: DGAI; 2006. Available from: http://www.dgai.de/downloads/Kerndatensatz-Intensivmedizin-DGAI.pdf

13. Martin J, Wegermann P, Bause H, Franck M, Geldner G, Gerlach H, Janssens U, Kuckelt W, Kuhlen R, Max M, Meier-Helmann A, Muhl E, Putensen Ch, Quintel M, Ragaller M, Reinhart K, Schleppers A, Specht M, Spies C, Waydhas C. Qualitätsmanagement in der Intensivmedizin - Eine Aufgabe für das gesamte interdisziplinäre und interprofessionelle Team. Anästh Intensivmed. 2007;48:540-547.

14. Martin MC, Cabeú P, Ruiz J, Blanch L, Blanco J, Castillo F, Galdós P, Roca J, Saura RM; Grupos de trabajo de la Sociedad Española de Medicina Intensiva Crítica y Unidades Coronarias (SEMICYUC), Sociedad Española de Enfermería Intensiva y Unidades Coronarias (SEEIUC) and Fundación AVEDIS Donabedian (FAD). Indicators of quality in the critical patient. Med Intensiva. 2008;32:23-32.

15. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marinj JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34(1):17-60. DOI: 10.1007/s00134-007-0934-2

16. Alexiou Y, Ierodiakonou V, Dimopoulos G, Falagas ME. Impact of patient position on the incidence of ventilator-associated pneumonia: a meta-analysis of randomized controlled trials. J Crit Care. 2009;24(4):515-22. DOI: 10.1016/j.jcrc.2008.09.003

17. Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogue S, Ferrer M. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet. 1999;354(9193):1851-8. DOI: 10.1016/S0140-6736(98)12251-1

18. Torres Serra-Battles J, Ros E, Piera C, Puig de la Bellacasa C, Cobos A, Lomena F, Rodriguez-Lois N. Pulmonary aspiration of gastric contents in patients receiving mechanical ventilation: the effect of body position. Ann Int Med. 1992;116(7):540-3.

19. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med. 2008;34(3):536-55. DOI: 10.1007/s00134-008-1210-z

20. Flegel T, Maseragger C, Claas FHJ, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med. 2004;30(4):536-55. DOI: 10.1007/s00134-004-2210-z

21. S3-Leitlinie: Analgesie, Sedierung und Delirmanagement in der Intensivmedizin. Düsseldorf: AWMF; 2009. Available from: http://www.uni-duesseldorf.de/AWMF/ll/001-012l.htm

22. Brower RG, Lanken PN, MacIntyre N, National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Mechanical ventilation with higher versus lower positive end-expiratory pressures in patients with acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301-8. DOI: 10.1056/NEJM200005043421801

23. Martin J, Wegermann P, Bause H, Franck M, Geldner G, Gerlach H, Janssens U, Kuckelt W, Kuhlen R, Max M, Meier-Helmann A, Muhl E, Putensen Ch, Quintel M, Ragaller M, Reinhart K, Schleppers A, Specht M, Spies C, Waydhas C. Qualitätsmanagement in der Intensivmedizin - Eine Aufgabe für das gesamte interdisziplinäre und interprofessionelle Team. Anästh Intensivmed. 2007;48:540-547.

24. Martin MC, Cabeú P, Ruiz J, Blanch L, Blanco J, Castillo F, Galdós P, Roca J, Saura RM; Grupos de trabajo de la Sociedad Española de Medicina Intensiva Crítica y Unidades Coronarias (SEMICYUC), Sociedad Española de Enfermería Intensiva y Unidades Coronarias (SEEIUC) and Fundación AVEDIS Donabedian (FAD). Indicators of quality in the critical patient. Med Intensiva. 2008;32:23-32.
24. American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388-416. DOI: 10.1164/rccm.200405-444ST

25. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L, and for the Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646-655. DOI: 10.1001/jama.299.6.646

26. Gastmeier P, Geffers C. Prevention of ventilator-associated pneumonia: analysis of studies published since 2004. J Hosp Infect. 2007;67(1):1-8. DOI: 10.1016/j.jhin.2007.06.011

27. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16(3):128-40. DOI: 10.1016/0196-6553(88)90053-3

28. Villar J, Pérez-Méndez L, López J, Belda J, Blanco J, Saralegui I, Suárez-Sipmann F, López J, Lubilo S, Kacmarek RM; HELP Network. An early PEEP/FO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;176:795-804. DOI: 10.1164/rccm.200610-1534OC

29. Lellouche F, Mancebo J, Jolliet P, Roeseler J, Schortgen F, Dojat M, Cabello B, Bouadma L, Rodriguez P, Maggiore S, Reynaert M, Mersmann S, Brochard L. A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med. 2006;174:894-900. DOI: 10.1164/rccm.200511-1780OC

30. Navalesi P, Frigerio P, Moretti MP, Sommariva M, Vesconi S, Biaardi P, Levati A. Rate of reintubation in mechanically ventilated neurosurgical and neurologic patients: evaluation of a systematic approach to weaning and extubation. Crit Care Med. 2008;36(11):2986-92. DOI: 10.1097/01.CCM.0000318131.18352.55

31. Girard TD, Kress JP, Fuchs BD, Thomason JW, Schweickert WD, Pun BT, Taichman DB, Dunn JG, Pohlman AS, Kinniry PA, Jackson SM, Hall JB, Dittus RS, Bernard GR, Ely EW. Efficacy and safety of a computer-driven protocolized approach to weaning and extubation. Crit Care Med. 2009;37(1):159-66. DOI: 10.1097/CCM.0b013e3181934f1b

32. Holzer M, Bernard SA, Hachimi-Iddrissi S, Roine RO, Schunkert H, Kuwowski V. Mild therapeutic hypothermia after cardiac arrest - a nationwide survey on the implementation of the ILCOR guidelines in German intensive care units. Resuscitation. 2007;72(2):207-13. DOI: 10.1016/j.resuscitation.2006.06.033

33. Esteban A, Alia I, Tobin MJ, Alia L, Solsona JF, Fiol Y, Fernández R, de la Cal MA, Benito S, Tomas R, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med. 1999;159(2):512-8.

34. Debellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhardt K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marin JI, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL; International Surviving Sepsis Campaign Guidelines Committee; American Association of Critical-Care Nurses; American College of Chest Physicians; American College of Emergency Physicians; Canadian Critical Care Society; European Society of Clinical Microbiology and Infectious Diseases; European Society of Intensive Care Medicine; European Respiratory Society; International Sepsis Forum; Japanese Association for Acute Medicine; Japanese Society of Intensive Care Medicine; Society of Critical Care Medicine; Society of Hospital Medicine; Surgical Infection Society; World Federation of Societies of Intensive and Critical Care Medicine. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36(1):296-327. DOI: 10.1097/01.CCM.0000298158.12101.41

35. Bochud PY, Bonten M, Marchetti O, Calandra T. Antimicrobial therapy for patients with severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004;32(11 Suppl):S495-512. DOI: 10.1097/01.CCM.0000143118.41100.14

36. Kumar A, Roberts D, Wood KE, igh B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Talberg L, Gurda D, Kumar A Cheang M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589 - 96. DOI: 10.1097/01.CCM.0000217961.75225.E9

37. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G; International Sepsis Definitions Conference. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. International Critical Care Med. 2003;29(4):530-8. DOI: 10.1007/s00134-003-1662-x

38. Nichtigall I, Tamarkin A, Tafelski S, Deja M, Halle E, Gastmeier P, Wernecke KD, Bauer T, Kastrup M, Spies C. Impact of adherence to standard operating procedures for pneumonia on outcome of intensive care unit patients. Crit Care Med. 2009;37(1):159-66. DOI: 10.1097/01.CCM.0000318131.18352.55

39. Arbeitsgemeinschaft Abx. Berlin: Charité; 2010. Available from: http://www.dgzi-abx.de/

40. Wolffram S, Radke PW, Pischon T, Willich SN, Schunkert H, Kurovski V. Mild therapeutic hypothermia after cardiac arrest - a nationwide survey on the implementation of the ILCOR guidelines in German intensive care units. Resuscitation. 2007;72(2):207-13. DOI: 10.1016/j.resuscitation.2006.06.033

41. Nolan JP, Deakin CD, Soar J, Böttiger BW, Smith G; European Resuscitation Council. European Resuscitation Council guidelines for resuscitation 2005. Section 4. Adult advanced life support. Resuscitation. 2005;67(Suppl 1):S39-86. DOI: 10.1016/j.resuscitation.2005.10.009

42. Holzer M, Bernard SA, Hachimi-Iddrissi S, Roine RO, Sterf Z, Muller M; on behalf of the Collaborative Group on Induced Hypothermia for Neuroprotection after Cardiac Arrest. Hypothermia for neuroprotection after cardiac arrest: Systematic review and individual patient data meta-analysis. Crit Care Med. 2005;33(2):414-8. DOI: 10.1097/01.CCM.0000153410.87750.53

43. Bernard SA, Gray TW, Buist MD, Jones BM, Silverstein W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557-63. DOI: 10.1056/NEJMoa003289

44. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549-56. DOI: 10.1056/NEJMoa012689
45. Kreymann KG, Berger MM, Deutz NEP, Hiesmayr M, Jolliet P, Kazandijiev G, Nitenberg G, van den Berghe G, Wernerman J, DGEM: Ebner C, Hartl W, von Heymann C, Spies C. Espen Guideline on Enteral Nutrition: Intensive Care, Clin Nutr. 2006;25(2):210-23. DOI: 10.1016/j.cinu.2006.01.021

46. Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative complications. Cochrane Database Syst Rev. 2006;(4):CD004080. DOI: 10.1002/14651858.CD004080.pub2

47. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P; Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27(5):355-73. DOI: 10.1177/0148607103027005355

48. Kompan L, Kremzar B, Gadzijev E, Prosek M. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. Intensive Care Med. 1999;25(2):157-61. DOI: 10.1007/s001340050809

49. Siegel MD, Hayes E, Vanderwerker LC, Loseth DB, Prigerson HG. Psychiatric illness in the next of kin of patients who die in the intensive care unit. Crit Care Med. 2008;36(6):1722-8. DOI: 10.1097/CCM.0b013e31817eda72

50. Wright AA, Zhang B, Ray A, Mack JW, Trice E, Balboni T, Mitchell SL, Jackson VA, Block SD, Maciejewski PK, Prigerson HG. Associations between end-of-life discussions, patient mental health, medical care near death, and caregiver bereavement adjustment. JAMA. 2008;300(14):1665-73. DOI: 10.1001/jama.300.14.1665

51. Boyce JM, Pittet D; Healthcare Infection Control Practices Advisory Committee; HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Guideline for Hand Hygiene in Health-Care Settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control and Infection Diseases Society of America. MMWR Recomm Rep. 2002;51(RR-16):1-45.

52. Pittet D. Clean hands reduce the burden of disease. Lancet. 2005;366(9481):185-7. DOI: 10.1016/S0140-6736(05)66886-9

53. Pittet D, Hugonnet S, Harbarth S, Mouroga P, Sauvan V, Toveneau S, Perneger TV. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection Control Programme. Lancet. 2000;356(9238):1307-12. DOI: 10.1016/S0140-6736(00)02814-2

54. Erasmus V, Brouwer W, van Beeck EF, Oenema A, Daha TJ, Richardus JH, Vos MC, Brug J. A qualitative exploration of reasons for poor hand hygiene among hospital workers: lack of positive role models and of convincing evidence that hand hygiene prevents cross-infection. Infect Control Hosp Epidemiol. 2009;30(5):415-9. DOI: 10.1086/596773

55. Parienti JJ, Thibon P, Heller R, Le Roux Y, von Theobald P, Bensadoun H, Bouvet A, Lemarchand F, Le Coutour X; Antisepsie Chirurgicale des mains Study Group. Hand-rubbing with an aqueous alcoholic solution vs traditional surgical hand-scrubbing and 30-day surgical site infection rates: a randomized equivalence study. JAMA. 2002;288(6):722-7.

56. Pittet D, Dharian S, Toveneau S, Sauvan V, Perneger TV. Bacterial contamination of the hands of hospital staff during routine patient care. Arch Intern Med. 1999;159(8):821-6. DOI: 10.1001/archinte.159.8.821

57. Pronovost PJ, Angus DC, Dorman T, Robinson KA, Dremsizov TT, Young TL. Physician staffing patterns and clinical outcomes in critically ill patients: a systematic review. JAMA. 2002;288(17):2151-62.

58. Vincent JL. Need for intensivists in intensive-care units. Lancet. 2000;356(9231):695-6. DOI: 10.1016/S0140-6736(00)02622-2

59. Treppgari MM, Martin DP, Yanez ND, Caldwell E, Hudson LD, Rubenfeld GD. Effect of intensive care unit organizational model and structure on outcomes in patients with acute lung injury. Am J Respir Crit Care Med. 2007;176:685-90. DOI: 10.1164/rccm.200701-165OC

Korrespondenzadresse:
Prof. Dr. med. Claudia Spies
Klinik für Anästhesiologie m. S. operative Intensivmedizin
Charité - Universitätsmedizin Berlin, Charité Centrum 7,
Charitéplatz 1, 10117 Berlin, Deutschland, Tel. 0049 30 450531012
claudia.spies@charite.de

Bitte zitieren als
Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22.
DOI: 10.3205/000111, URN: urn:nbn:de:0183-000111

Artikel online frei zugänglich unter
http://www.eigms.de/en/journals/gms/2010-8/000111.shtml

Eingereicht: 30.08.2010
Veröffentlicht: 28.09.2010

Copyright
©2010 Braun et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.
Anhang 1: 10 Qualitätsindikatoren

Hauptindikator Nummer I

Ausprägung	Oberkörper-Hochlagerung
Größenordnung	Risiko und Effektivität
Begründung	Die Lagerung des Patienten in halbsitzender Position senkt die Inzidenz von VAP
Mathematische Formel	Zeit mit Oberkörperhochlage (Stunden) x100
Population	Alle Patienten
Erklärung der Terminologie	Aufrechterhalten einer Position mit angewinkeltem Oberkörper ca. 30-45°
Art des Indikators	Struktur / Prozess
Datenquelle	1) Struktur: Abfrage
	2) Prozess: Patientenakte auf Intensivstation, PDMS
Richtwert	1. Schritt: - Struktur: Standard ja / nein; ja>95%
	2. Schritt: - Prozess: Umsetzung ja / nein => Stichprobe am 1. Tag nach Aufnahme; ja>70%
Kommentare	Die Autoren empfehlen, diesen Indikator mittels täglicher Stichproben oder Zeitraumstichprobe (z.B. 1 Woche/Quartal alle Patienten) zu messen (ggf. Implementierung in Geräte)

Hauptindikator Nummer II

Ausprägung	MONITORING VON SEDIERUNG, ANALGESIE, DELIR
Größenordnung	Risiko und Effektivität
Begründung	Eine inadäquate Sedierung (Übersedierung oder Untersedierung), eine inadäquate Analgesie und ein unbehandeltes Delir verursachen verlängerte maschinelle Beatmungszeiten, verlängerte Intensivbehandlung, verlängerte Krankenhausverweildauer sowie eine Steigerung von Morbidität, Letalität und Ressourcenverbrauch. Der Einsatz validierter Sedierungs-, Analgesie- und Delirskalen wird in den klinischen Leitlinien empfohlen.
Mathematische Formel	Sedierung: Anzahl aller durchgeführten Messungen (RASS) x100
---------------------	---
	Gesamtanzahl vorgegebener Messungen [(Behandlungstage -1) x 3]

Population

In Intervallen (i.d.R.) alle acht Stunden bei intensivmedizinischen Patienten während des gesamten Behandlungszeitraums

Erklärung der Terminologie

Überwachung: Beurteilung des Sedierungs- und Analgesieniveaus sowie der Präsenz eines Delirs anhand validierter Skalen alle 8 Stunden oder wenn sich die klinische Situation verändert. Algorithmus (Lütz A, Spies C et al. 2009)

Delir-Monitoring Algorithmus

1. Schritt: Struktur (Sedierung/Analgesie/Delir): Standard ja / nein
2. Schritt: Prozess: Sedierung

Datenquelle

1. Struktur: Abfrage
2. Prozess: Patientenakte (Pflegedokumentation); PDMS

Richtwert

1. Schritt
 Struktur: ja > 95 %
2. Schritt
 Prozess: ≥ 70 %

Kommentare

Empfohlene Skalen (ggf. in Monitor, Geräte integriert)
RASS: Richmond Agitation and Sedation Scale
NRS: Numeric Rating Scale bzw. BPS: Behavioral Pain Scale
CAM-ICU: Confusion Assessment Method - Intensive Care Unit oder andere validierte Delir Scores

Anhang zu: Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22. DOI: 10.3205/000111, URN: urn:nbn:de:0183-000111
Online frei verfügbar unter: http://www.egms.de/en/journals/gms/2010-8/000111.shtml
Hauptindikator Nummer III

Ausprägung	Protektive Beatmung
Größenordnung	Risiko und Effektivität
Begründung	Traumatische Beatmung bei ALI / ARDS Patienten erhöht die Inzidenz beatmungsassoziieter Pneumonien (VAP), verlängert die Beatmungs- und Intensivbehandlungsdauer, die Klinikverweildauer sowie die Letalität. Protektive Beatmungsstrategien konnten die Überlebenserwartung bei ALI/ARDS um 25 % verbessern.
Beatmungsmodi	Maschinell beatmete Patienten (ARDS, ALI)
Atemzugvolumen	6 ml/kg errechnetes Körpergewicht
Plateaudruck	< 30 cm H₂O (alternativ, falls nicht im Ventilator verfügbar: Spitzendruck < 35 cm H₂O)
PEEP	Siehe Tabelle zur PEEP-Einstellung
Tabelle zur PEEP-Einstellung in Kombination mit der FiO₂	
FiO₂	0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
PEEP	5 8 10 12 14 16 18 18-24
Population	Alle maschinell beatmeten Patienten mit ALI/ARDS =/> 24 Stunden
Erklärung	Alle Tage maschineller Beatmung von Patienten mit ALI/ARDS und über Gesamtbehandlungszeitraum.
Art des Indikators	Struktur, Prozess und Ergebnis
Datenquelle	1. Schritt: Struktur: Standard ja / nein; Geprüft ja /nein 2. Schritt: Peer Review Audits: Protektive Beatmung, Tidalvolumen, Plateaudruck, (alternativ Spitzendruck), PEEP (alternativ: Geräte, PDMS) 3. Schritt: Ergebnis: Beatmungsassoziierte Pneumonie nach ATS-Kriterien
Richtwert::	1. Schritt: Struktur ja > 95 % 2. Schritt: Prozess: ≥ 70% Protektive Beatmung 3. Schritt: Ergebnis: Beatmungsassoziierte Pneumonietage 18 Ereignisse auf 1.000 Tage maschineller Beatmung (plus 20 VAP Beatmungstage auf 100 Tage Beatmung) Dauer der Beatmung nach Diagnose VAP <= 10 Tage
Mathematische Formel (Prozess)	Zeit der maschinell beatmeten Patienten mit ALI/ARDS mit lungenprotectiver Beatmungskriterien Gesamtzeit aller maschinell beatmeten Patienten mit ALI/ARDS x100
Hauptindikator Nummer IV

Ausprägung	Weaningprotokoll mit SPONTANATMUNGS-VERSUCH
Größenordnung	Risiko und Effektivität

Begründung

Auf den Intensivstationen entstehen durch und mangelndes Weaning vermehrt beatmungsassozierte Pneumonien (VAP) als häufigste nosokomiale Infektion. Die Verfügbarkeit von Protokollen zum *Weaning* von der maschinellen Beatmung (MB) verkürzt die Gesamtzeit unter MB signifikant und **verringert somit die Wahrscheinlichkeit** für das Auftreten von VAP. Weaningkonzepte konnten in Kombination mit einem Sedierungsziel die Letalität auf den Intensivstationen reduzieren.

1. Struktur: Spontanatmungsversuch 1/Tag durchgeführt: ja/nein
2. Prozess: Peer Review
3. Ergebnis: VAP (nach ATS)

Population

Alle maschinell beatmeten Patienten

Mathematische Formel (Prozess)

\[
\frac{\text{Anzahl der maschinell beatmeten Patienten mit täglicher Prüfung Weaningprotokolls}}{\text{Gesamtanzahl aller maschinell beatmeten Patienten}} \times 100
\]

Population

Alle Tage maschineller Beatmung über beobachteten Zeitraum. (Mindestbehandlung = 24 h)

Datenquelle

1. Struktur: Abfrage
2. Prozess: Frühvisite Prüfung: NIV Indikation ja/nein (Patientenakte, PDMS, Peer Review)
3. Quelle des Ergebnisindikators: Ergebnisse der KISS/SARI-ICU-Surveillance (Jahresberichte)
Anhang zu: Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrap M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22. DOI: 10.3205/000111, URN: urn:nbn:de:0183-0001111

Online frei verfügbar unter: http://www.egms.de/en/journals/gms/2010-8/000111.shtml

Richtwert: Struktur: ja / nein Umsetzung: ja / nein	1. Struktur: ja > 95 % 2. Prozess: > 70% Anzahl positiver Antworten ➢ Missing values <20% 3. Ergebnis: Beatmungsassoziierte Pneumonietage 18 Ereignisse auf 1.000 Tage maschineller Beatmung (plus 20 VAP Beatmungstage auf 100 Tage Beatmung) Dauer der Beatmung nach Diagnose VAP <= 10 Tage
Erklärung der Terminologie	• Weaning-Versuch: geplanter Anlauf mit der Zielsetzung den Patienten vom Ventilator zu trennen, indem ein Spontanatmungs-Versuch unternommen wird mittels einer der folgenden Methoden: o T-Stück o Druckunterstützt mit 7 cmH2O (PSV) o Kontinuierlich positiver Atemwegsdruck von 5 cmH2O (CPAP) • Synchronisierte intermittierende mandatorische Ventilation (SIMV) wird ausdrücklich ausgeschlossen
Kommentare	Die Autoren erachten es als praktikabler, den Indikator über die Maßeinheit „Patienten unter maschineller Beatmung“ zu definieren (anstatt „Tage unter maschineller Beatmung“), zumal Weaning-Versuche üblicherweise nicht von IT-Systemen erfasst werden und dieser Ansatz das Einhalten der Ausschlusskriterien erleichtert. Wir empfehlen die Evaluierung, ob Versuche täglich durchgeführt worden sind und ob sie bei den Patienten durchgeführt wurden, für welche die oben genannten Einschlusskriterien zutreffen

Hauptindikator Nummer V

Ausprägung	FRÜHZEITIGE und Adäquate Antibiotikatherapie
Größenordnung	Effektivität und Risiko
Begründung	Frühzeitige und adäquate Antibiotika-Therapie verbessert die Prognose bei schweren Infektionen/Sepsis. Die Surviving Sepsis Campaign Bundles empfehlen die Gabe innerhalb einer Stunde nach Diagnosestellung der Infektion/Sepsis (Empfehlungsgrad C).
Mathematische Formel	Anzahl der Patienten mit frühzeitiger Antibiotikatherapie (1h nach Diagnosestellung) Anzahl aller Patienten mit Infektion bzw. SIRS und Verdacht auf oder nachgewiesene Infektion mit und ohne adäquatem Erregernachweis x100
Population	Alle über den beobachteten Zeitraum von der Intensivstation entlassenen Patienten mit schwerer Infektion/Sepsis
Erklärung der Terminologie

- Infektion (CDC oder ATS)
- SIRS und Verdacht auf oder nachgewiesene Infektion mit und ohne adäquatem Erregernachweis
- Frühzeitige und adäquate Antibiotikatherapie: innerhalb 1 Stunde nach Diagnosestellung

Art des Indikators

1. Struktur: SIRS Erfassung - ja / nein und Frequenz
2. Prozess: Peer Review Audit

Datenquelle

Struktur: Abfrage, Prozess: Patientenakte, PDMS (ggf. Monitoringhersteller)

Richtwert

1. Struktur: ja > 95 %; Frequenz: 3x/d (ggf. Monitoringhersteller)
2. Prozess: Dokumentation der Diagnosestellung und der Zeitdauer bis zur Gabe des Antibiotikums

Diagnosestellung innerhalb von 4 Std. nach klinischen Zeichen für Infektion / SIRS
Antibiotikatherapie: > 70% innerhalb von 1h nach Diagnosestellung

Hauptindikator VI

Ausprägung

THERAPEUTISCHE HYPOTHERMIE NACH HERZSTILLSTAND
Größenordnung

Begründung

Die Induktion einer moderaten therapeutischen Hypothermie bei komatösen Patienten nach Herzstillstand infolge Kammerflimmerns (VF) oder pulsloser ventrikulärer Tachykardie (pVT) führt zu einer Verbesserung der neurologischen Prognose und Verringerung der Mortalität.

Mathematische Formel

\[
\text{Anzahl aller komatöser Patienten mit Herzstillstand infolge VF oder pVT und induzierter Hypothermie} \times 100 \\
\text{Anzahl aller komatöser Patienten mit Herzstillstand infolge VF oder pVT}
\]

Population

Alle komatöse Patienten nach Herzstillstand infolge VF oder pVT über beobachteten Zeitraum

- Einschlusskriterium:
 - Verbleiben im Koma nach Kreislaufwiederherstellung
 - Beobachteter Bewusstseinsverlust
 - Max. 15 min bis zum Beginn einer suffizienten CPR
 - Initialer Rhythmus ist ein Kammerflimmern bzw. eine Kammertachykardie
 - max. 60 min bis ROSC

- Ausschlusskriterien:
 - Kardiogener Schock
 - Maligne Arrhythmie
 - Schwangerschaft
 - Koagulopathie

Anhang zu: Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22. DOI: 10.3205/000111, URN: urn:nbn:de:0183-000111 Online frei verfügbar unter: http://www.egms.de/en/journals/gms/2010-8/000111.shtml
Erklärung der Terminologie	Therapeutische Hypothermie: Erreichen der Zieltemperatur einer milden Hypothermie (33±1°C) innerhalb von 12 Stunden nach Herzstillstand
Art des Indikators	1. Struktur: ja / nein
2. Prozess: > 90 % |
| Datenquelle | 1. Abfrage
2. Prozess: Krankenakte / PDMS, Peer Review, Monitoringhersteller |
| Richtwert | 1. Struktur: ja > 90 %
2. Prozess: > 90 % |
| Kommentar | 32-34°C, moderat! |

Hauptindikator VII

Ausprägung	FRÜHE ENTERALE ERNÄHRUNG (EE)
Größenordnung	Effektivität und Risiko
Begründung	Der frühe Beginn einer enteralen Ernährung (EE) ist mit der Reduktion infektiöser Komplikationen und einer niedrigeren Mortalität von Intensivpatienten innerhalb der ersten 48 Stunden assoziiert. Es besteht kein Zusammenhang mit längerer Klinikbehandlung.
Mathematische Formel (Prozess)	Täglich Dokumentierte Überprüfung ob enterale Ernährung erfolgt
Anzahl aller ICU-Patienten, die enteral ernährt werden können	
x100	
Population	Alle über den beobachteten Zeitraum von der Intensivstation entlassenen Patienten
Erklärung der Terminologie	- Indikation zur EE: Alle Patienten ohne Kontraindikation bezüglich enteraler Ernährung, bei denen eine vollständige orale Ernährung nicht möglich ist
Art des Indikators	1. Struktur: ja / nein (innerhalb der ersten 48 Std.)
2. Prozess: Implementierungsrate |
| Datenquelle | 1. Abfrage
2. Prozess: Patientenakte /PDMS, Peer Review |
| Richtwert | 1. Struktur: > 95 %
2. Prozess: ≥ 70 % |

Hauptindikator VIII

Ausprägung	Dokumentation von Angehörigengesprächen
Begründung	Vertrauensbildend, Reduzierung von Trauer, Reduzieren von Trauer-induzierter Morbidität (Depression, PTSD)
Erklärung der Terminologie	Dokumentation von Angehörigengesprächen => alle Patienten > 24 Std.
Art des Indikators	1. Struktur: ja > 100 %
2. Prozess: Krankenakte / PDMS, Peer Review 70 % |
|-------------------|--|
| Richtwert | Mind. 1x/ICU-Behandlung bei allen kritischen Ereignissen |

Indikator Nummer IX

Ausprägung	Händedesinfektionsmittelverbrauch
Größenordnung	Risiko und Effektivität

Begründung
Hände stellen einen wichtigen Übertragungsweg nosokomialer Infektionen dar. Ein besseres Befolgen von Protokollen zur Händedesinfektion vor und nach Patientenkontakt kann das Auftreten nosokomialer Infektionen um mehr als 50% senken und verringert den Ressourcenverbrauch. Ziel ist die Anwendung von Protokollen zur Händedesinfektion zu verbessern. Indirekt soll diese Adhärenz durch Messung des Händedesinfektionsmittelverbrauchs überwacht und vereinzelt im Peer-Review Verfahren auditiert werden.

Mathematische Formel
Liter pro 1000 Patiententage

Population
Das gesamte Personal der ITS über den beobachteten Zeitraum (Ärzte, Pflegekräfte, Hilfspersonal)

Erklärung der Terminologie
1 = VOR Patientenkontakt
2 = VOR einer aseptischen Tätigkeit
3 = NACH Kontakt mit potentiell infektiösen Materialien
4 = NACH Patientenkontakt
5 = NACH Kontakt mit der unmittelbaren Patientenumgebung

Anhang zu: Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22. DOI: 10.3205/000111, URN: urn:nbn:de:0183-0001111

Online frei verfügbar unter: http://www.egms.de/en/journals/gms/2010-8/000111.shtml
Bei der Einreibung des Händedesinfektionsmittels Benutzungslücken vermeiden!

http://www.praxis-page.de/ash/

Art des Indikators	Ergebnis
Datenquelle	Desinfektionsmittelverbrauch der Stationen gebucht auf den Kostenstellen 3 – 5 mL / Desinfektion
Richtwert	80 – 100 Liter / 1000 Patiententage (Belegungstage auf Intensivstation)

Hauptindikator X

Ausprägung	Leitung durch einen Intensivmediziner mit Zusatzbezeichnung und Gewährleistung der Präsenz eines Arztes mit Facharztstandard über 24h
Größenordnung	Eignung, Risiko und Effizienz
Begründung	Das Anwesensein eines zertifizierten Intensivmediziners auf der ITS über 24 Stunden am Tag garantiert die Qualität der Versorgung und verringert Mortalität und Behandlungsdauer der Intensivpatienten.
Mathematische Formel	\[
\text{Anzahl der Tage ohne persönliche Anwesenheit eines zertifizierten Intensivmediziners über 24 Stunden am Tag} \times 100 \\
\frac{365}{\text{Population Alle Tage des Jahres über den beobachteten Zeitraum}}
\] |

Anhang zu: Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C, NeQuI (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. GMS Ger Med Sci. 2010;8:Doc22. DOI: 10.3205/000111, URN: urn:nbn:de:0183-0001111

Online frei verfügbar unter: http://www.egms.de/en/journals/gms/2010-8/000111.shtml
| Erklärung der Terminologie | • Zertifizierter Intensivmediziner: Arzt mit Zusatzbezeichnung für Intensivmedizin gemäß Zertifikation, ausgeschlossen sind Intensivmediziner in der Ausbildung
• Persönliche Anwesenheit wird als notwendig erachtet |
Art des Indikators	Strukturabfrage über Komplexziffer
Datenquelle	Personalabteilung und Dienstplan
Richtwert (erforderlich bei Komplexbehandlung)	100 %