Title Page

Addressing Data and Methodological Limitations in Estimating Catastrophic Health Spending and Impoverishment in India, 2004-18

List of Authors:

1. Sanjay K. Mohanty, Ph.D. Professor, Department of Fertility Studies, International Institute for Population Sciences, Mumbai, India. Email: sanjayiips@yahoo.co.in

2. Laxmikant Dwivedi, Ph.D. Associate Professor, Department of Mathematical Demography and Statistics, International Institute for Population Sciences, Mumbai, India. Email: laxmikant@iips.net

Corresponding Author
Sanjay K. Mohanty, Ph.D.
Professor, Department of Fertility Studies, International Institute for Population Sciences, Mumbai, India. Email: sanjayiips@yahoo.co.in
Addressing Data and Methodological Limitations in Estimating Catastrophic Health Spending and Impoverishment in India, 2004-18

Abstract

Background
Estimates of catastrophic health expenditure (CHE) are counterintuitive to researchers, policy makers, and developmental partners due to data and methodological limitation. While inferences drawn from use of capacity-to-pay (CTP) and budget share (BS) approaches are inconsistent, the non-availability of data on food expenditure in the health survey in India is an added limitation.

Methods
Using data from the health and consumption surveys of National Sample Surveys over 15 years, we have overcome these limitations and estimated the incidence and intensity of CHE and impoverishment using the CTP approach.

Results
The incidence of CHE for health services in India has declined from 12.5% in 2004 to 9.1% by 2018 and that of intensity of CHE has increased from 1.25 to 1.31 during the same period. The impoverishment due to health spending was 4.8% in 2004, 5.1% in 2014 and 3.3% in 2018. The state variations in incidence and intensity of CHE and incidence of impoverishment is large. The odds of incurring CHE were lowest among the richest households [OR 0.22; 95% CI: 0.21,0.24], households with elderly members [OR 1.20; 95% CI :1.12,1.18] and households using both inpatient and outpatient services [OR 2.80, 95% CI 2.66, 2.95]. Access to health insurance reduced the chance of CHE and impoverishment among the richest households. The pattern of impoverishment was similar to that of CHE.

Conclusion
We recommend the CTP approach when estimating CHE and impoverishment in low and middle-income countries.

Key Words: Catastrophic health spending, impoverishment, India, capacity-to-pay

1. Introduction
Reliable estimates of catastrophic health expenditure and medical impoverishment are increasingly sought by national and state governments, public health professionals, international organisations, and developmental partners. Catastrophic health expenditure (CHE) is one of the monitoring indicators of health-related SDGs and financial risk protection (UN 2016). Available estimates of CHE are incomplete owing to data and methodological constraints and the use of varying analytical approaches. Varying estimates from the same data source or from different but contemporaneous surveys are counterintuitive to policy makers, planners, and researchers. In this paper, we demonstrate how to overcome these constraints by estimating CHE and impoverishment using a unique approach and appropriate data source in the Indian context.

In India, the health surveys (HSs) of 2004 and 2014 and the consumption survey (CSs) of 2004 and 2011-12 – conducted by the National Sample Survey (NSS) – have been the main basis of estimating CHE and provide evidences for national and state policy (NSS 2006a; NSS 2006b; NSS 2014; NSS 2016). While the HSs collected comprehensive information on hospitalisation, outpatient visits, health expenditure, and reimbursement, it had canvassed few questions on consumption expenditure. The HSs did not collect data on the food expenditure of households which used to be the basis for estimating CHE in India. The CSs collected detailed information on household consumption. Unlike in the HSs, the questions on health expenditure in the CSs were limited and were canvassed at the household level. Surveys with fewer questions yield lower estimates compared to those with detailed questions (Lu et al. 2009). With regard to the suitability of data, the HSs are ideal for estimating CHE, but researchers often cite the non-availability of information on food expenditure as the reason for not using the CTP approach.

A large body of literature suggests that the high OOP payment are positively associated with CHE and distress financing, and increases the probability of poverty and impoverishment (Karan et al 2014; Joe 2015; Hooda 2017; van Doorslaer et al 2006; Garg and Karan 2009;
Kumar et al 2015; Wagstaff 2018). The risk of CHE is said to be higher among the rich (Pandey et al 2018), possibly due to choice of methods. Impoverishment, defined an increase in poverty level owing to OOP payment for health care is an important measure of financial protection. The impoverishment effect of health spending are estimated using international, national and regional poverty lines or from subsistence expenditure along with household income/consumption expenditure (Ladusingh and Pandey 2013; Garg and Karan 2009). About 12 million households in India (accounting for 6.2% of the population in 2004) were impoverished due to health spending and impoverishment was higher for those using outpatient care than inpatient care (Berman et al 2010).

In India, over two-thirds of households resort to OOP payment for health care and it remained high over time (MoHFW 2009; 2016). A growing number of studies have highlighted the high OOP payment for varying health services in India (Pandey et al 2018; Authors et al 2019; Dash and Mohanty 2019). Among others, low insurance coverage, high cost of treatment, increased income level, low public spending on health, type of diseases and increased use of private health centres are leading factors of high OOP (Kastor and Mohanty 2018; Pandey et al 2018).

In response to the high OOP payments, CHE and low health care utilisation, the Government of India and the states governments have implemented several schemes in recent decades. Among others, the National Health Mission (NHM) was implemented in 2005; this is the largest conditional cash transfer programme worldwide and has been successful in improving maternal care and reducing CHE for maternal care throughout the country (Authors; 2017). The Ayusman Bharat Yojana (ABY), implemented in 2018, is the largest-ever publicly funded financial protection scheme world (www.ayushmanbharat.co.in/). The National Health Policy (NHP, 2017) stipulated that central government spending on health should increase to 2.5% of
GDP by 2025 and the state govt spending to 8% of respective state budget by 2020 and to reduce CHE by 25% by 2025 (MoHFW, 2017).

In this paper, we link household consumption and health survey to address the data gap and provided estimates for the incidence and intensity of CHE and impoverishment from the health surveys of 2004, 2014 and 2018 using the capacity-to-pay approach. We prefer to focus on the intensity of CHE as a large proportion of the households who do not use health services are probably doing so due to lack of resources and the CHE estimates are thus considered only to account for those who used health services (Gabani and Guinness 2019; Chuma and Maina 2012; Ngcamphalala and Ataguba 2018). The contribution of the paper is two-fold. First, it demonstrates how to derive estimates of CHE in the absence of data on food expenditure from the health surveys. Second, it provides comprehensive estimates of CHE based on hospitalisation and outpatient visits over three periods of time in the Indian context. The estimates derived are robust, captured the equity concern and can be replicated elsewhere in a similar situation.

2. Data and Methods

2.1. Data

We have used unit data from the five cross-sectional nationwide surveys on consumption and health care carried out by the National Sample Survey (NSS), in the country between 2004 and 2018. The consumption surveys (schedule 1.0) of 2004 and 2011-12 (henceforth referred to as 61(1.0) and 68(1.0) respectively) were population-based surveys specifically designed to estimate poverty, inequality, food consumption patterns, calorie intake, and per capita consumption expenditure etc. across states by rural and urban areas. The consumption surveys (CSs) recorded consumption of over 200 food and non-food items and limited information about outpatient and inpatient expenditure, over a reference period of 30 days and 365 days respectively.
Data on health expenditure in these surveys was collected at the household level rather than the individual level and information about reimbursement was not collected in these surveys.

The National Sample Survey (NSS) is the only data source that provides the opportunity to estimate OOP, CHE and impoverishment periodically in India. The HSs (schedule 25.0) of 2004, 2014 and 2017-18 henceforth referred to as 60(25.0), 71(25.0) and 75(25.0) respectively were population-based health surveys carried out across all states and union-territories in India. The reference period for hospitalisation (365 days) and outpatient visit (15 days) was uniform in all three rounds of the survey. Typically, the HSs record expenditure on health for each episode of hospitalisation, expenditure on maternal care (antenatal, natal, post-natal and immunisation) and reimbursement for member of households and provide data at different levels. The comprehensive measures of OOP, CHE and impoverishment typically includes all expenditure on hospitalisation, outpatient visit and maternal care at the household level. Data on household consumption expenditure was collected through a few questions over a 30-day reference period. The estimates derived from CSs and HSs are reliable and conducted at regular intervals of time and the details of the survey findings are available in national reports (NSS 2006a, NSS 2006b; NSS 2014; NSS 2016). We have used these five cross sectional surveys due to the close proximity of the survey periods or because they are the most recent survey periods. The sample design of the NSSO survey was uniform across different rounds and used a two-stage stratified sampling approach, with the first sampling units being village and urban blocks and the second being households. All the results including regression analysis were reported after assigning the appropriate weight. The cluster and stratification adjustment was made in Stata using the “svyset” command.

Outcome Variables
Catastrophic health expenditure (CHE) and impoverishment are two outcome variables in the analyses, derived from OOP payment for hospitalisation and outpatient visits. The analytical strategy was to capture the aggregate health expenditure of households as some households had spent on hospitalisation only, some on outpatient care only, and some on both. The NSS data is usually analysed for hospitalisation or outpatient visits and not aggregated at household level; our estimates are at household level. We have aggregated healthcare payments at the episode level (separately for hospitalisation and outpatient visits), derived estimates at the individual and household level to derive household expenditure and reimbursement. OOP payments for inpatient and outpatient care were standardised to 30 days period as household consumption expenditure data was available on a monthly basis. OOP payments for health services were derived by combining payment for both hospitalisation and outpatient services including maternal care. The antenatal, natal, post-natal and immunisation received are included in inpatient care as these services are received almost a year. Our variable for health expenditure includes expenditure on medicine, diagnosis tests, bed charges, physicians fees, transportation and other expenses.

2.2. Statistical Methods

A number of methods were used for estimating incidence and intensity of CHE, impoverishment, inequality and determinants of CHE. A brief description of each of methods used is provided below.

2.2.1. Incidence and Intensity of CHE using the Capacity-to-Pay Approach

The incidence and intensity of CHE were computed in two steps. In the first step, a household was classified as incurring CHE based on their consumption expenditure (C), OOP payments for health care (OOP), and subsistence expenditure (S). In micro data, a household was dichotomised as incurring catastrophic health expenditure (1=yes and 0=no) if their OOP exceeded
40% of capacity to pay (WHO 2005). In the second step, the households were aggregated in order to derive the incidence of CHE. The threshold of CHE of a household is defined as

\[E_i = \frac{OOP_i}{(C_i - SE_i)} - OOP_i/ctp_i > 0.04 \] \tag{1}

Where ctp is capacity to pay of household. Ei is binary; takes value of 1 if household incurred CHE and 0 otherwise.

Subsistence expenditure (the minimum expenditure of the household for meeting basic needs) was computed as the median food expenditure adjusted by the equivalent household size.

Incidence is estimated based on all sample households (N).

Incidence of CHE = \(\frac{1}{N} \sum E_i \) \(\tag{2} \)

Intensity is computed based on those households who had incurred the CHE and defined as

Incidence of CHEi = \(\frac{1}{U} \sum (\frac{OOP_i}{CTP_i} - 0.4) \) \(\tag{3} \)

Where U is the number of households incurring CHE.

2.3.1 Estimation of Impoverishment

Estimation of impoverishment was derived from the CTP approach. A non-poor household was said to be impoverished by health payments if their consumption expenditure fell short of subsistence expenditure following health expenditure (WHO, 2005), i.e.

\[IMPO_i: C_i > SE_i \text{ and } C_i - OOP_i < S E_i \] \(\tag{4} \)

where IMPO is impoverishment, C is household consumption expenditure before OOP payment and SE is subsistence expenditure

The incidence of impoverishment was estimated by summing up the impoverished households over all sample households.

2.3.2 Estimates at constant prices

All price sensitive estimates (MPCE, OOP payments, reimbursements) were presented at 2018 prices in order to facilitate comparison over time. The state-specific price index (agricultural
labourer for rural areas and industrial workers for urban areas) were used in deriving the comparable estimates over time.

2.4. Procedure of Estimating CHE and Impoverishment from NSS Data

CHE and impoverishment were estimated using the CTP approach. To estimate CHE, we assumed that the share of per capita food expenditure to per capita consumption expenditure by states and place of residence has remained similar in recent times. For those households for whom the household consumption expenditure is lower than the subsistence expenditure, any OOP for health services is catastrophic. It should be mentioned that the share of per capita food expenditure to consumption expenditure is a key and stable economic indicator. In the short run this indicator is less likely to change though it will decline in long run (say ten years or more) with the expected increase in income level of the population. Based on these assumptions, we used the following steps to derive subsistence expenditure and the capacity to pay from the health surveys.

Step 1: Estimate share of per capita food expenditure (median) to monthly per capita consumption expenditure (median per capita consumption expenditure) from the nearest consumption survey year, i.e. 2004 and 2011-12, by each states and for rural and urban areas.

Step 2: Regress household food expenditure and household size for urban and rural areas separately (from consumption surveys) for 2004 and 2011-12.

\[
\ln_{\text{food}}_i = a + b \ln_{\text{hsize}}_i + \sum c_{\text{state}}_i + e \-----------------------------(1)
\]

where \(\ln_{\text{food}}_i\) is the logarithmic transformation of per capita food expenditure of \(i^{th}\) household,

\(\ln_{\text{hsize}}_i\) is the logarithmic transformation of \(i^{th}\) household size,

and \(\text{state}_i\) is the \(i^{th}\) state/ union territory.
Step 3: Impute the share of food expenditure from consumption survey to state-specific per capita consumption expenditure from the health survey, separately for rural and urban areas, in order to obtain food expenditure in the health surveys

Step 4: Adjust the food expenditure to the equivalent household size in health survey data to obtain household subsistence expenditure

Step 5: If household consumption expenditure is lower than subsistence expenditure, treat the household health expenditure as catastrophic.

Step 6: The incidence of CHE is estimated by using all sample households in the denominator irrespective of use of health services,

2.4.4. Logistic regression analyses

The logistic regression analysis was used to understand the significant predictors of CHE on health care and impoverishment in India. Our dependent variable was the use of any health services by the household. Data from health surveys of 2004, 2014 and 2018 were polled in order to understand the effect of time on CHE and impoverishment. The analysis of pooled cross section data account for secular differences in the variables over time. In fact, in addition to increasing the sample size, the point of a pooled cross-sectional analysis is to ascertain how a key relationship has changed over time (Wooldridge, 2013).

The set of covariates used were MPCE quintile, place of residence, household size, health insurance coverage, type of main employment of household, demographic characteristics of head of household, presence of elderly member(s) in the household, type of health services (inpatient care, outpatient care and both inpatient and outpatient care) religion of head of households. The inclusion of these variables in the analyses was based on the literature and the availability of data in various health surveys. MPCE is a direct measure of the economic well-being of households and was used in the absence of income data. We categorised MPCE into five quintiles; poorest, poorer, middle, richer and richest. Place of residence was dichotomised as rural or
urban. Household size was reclassified into three categories; 1-4, 5-7 and 8+. The type of main employment of the household was recategorized as labourer, self-employed, wage/salary and others. Of these, the wage and salary are the better off groups while labourers are the poorer group in the population. The age of the head of the household was measured in years and re-categorised as under 30, 30-44, 45-59 and 60+. Similarly, the sex of the household head was classified as either male or female, as reported in the survey. The education level of the household head was categorised as no education (none), up to primary (5 years of schooling), up to secondary (6-10 years) and higher secondary and above (10+ years). Furthermore, we computed a variable to identify if any member in the household was over 60 years (elderly) and included in the analyses. The religion of the household head was categorised as Hindu, Muslim, Christian, Sikh and other. Health insurance is one of the key variables in reducing CHE and impoverishment but the health insurance variable was not uniform over all three health survey rounds. For this reason, we reclassified health insurance to dichotomous variables; households covered by any health insurance and households not covered by health insurance. We created the interaction term of time and all the selected covariates in order to capture the changing nature of the covariates over time if any. The interaction term of time, insurance coverage and MPCE quintile were also used in the model to help understand whether insurance helped to reduce CHE across the economic quintile over time. Adding interaction between time and all selected covariates in the multivariate logistic regression analysis is equivalent to the multilevel random slope model where observations are nested within different time periods (Twisk; 2010). We have presented our results in four sections; section 1 presents descriptive statistics. Section 2 presents estimation of capacity to pay, section 3 presents estimates of CHE and impoverishment and section 4 presents determinant of CHE and impoverishment.

3. Results
3.1. Descriptive Statistic

Table 1 presents set of key variables from consumption and health surveys between 2004 and 2018 at 2018 prices. The overall use of health services (either inpatient or outpatient) has increased between 2004-14 and remained similar in 2018. There has been increase in utilisation of inpatient care over time. About three-fifth households used inpatient care including maternal care in 2018. The estimates of inpatient care from consumption survey was lower than that of health survey. Similarly, about one-third of households availed the out-patient care in 15 days reference period (health survey) and it was higher in consumption surveys. Reference period of outpatient care was 15 days for health survey and 30 days for consumption survey. The household size from both the surveys were similar and has been declining over time. During 2004-18, the MPCE (both mean and median) at constant prices has increased by about 33% (from HS) and similar increase was also found during 2004-12. Food expenditure– the basis of computing subsistence expenditure – was about 62% of per capita consumption expenditure in 2004 and declined to 55% by 2011-12. This is expected as the share of food expenditure is likely to decline with improvement in living standard of the population. The proportion of households who had availed hospitalisation or outpatient visit has increased during 2004 and 2014 and remains similar in 2018. The mean OOP payment on hospitalisation of the household (from health surveys) has increased by 60% during 2004-14 while it has declined by 205% during 2014-18 (at 2018 prices). Among those availed reimbursement, the mean reimbursement has increased by 56% during 2004-18; 19.6% between 2004-14 and 30.5% between 2014-18.

3.2. Estimation of Household Subsistence Expenditure

One of the key estimates of this exercise was the derivation of the subsistence expenditure of households in India. Table 2 presents the coefficient estimated by regressing food expenditure and household size for 2004 and 2011-12, derived from unit data. The coefficient was lower in
rural than in urban areas, suggesting that average increase in food consumption for an additional member of the household was lower in the latter than in the former. The coefficient was smaller in 2011-12 than in 2004, for both rural and urban areas.

Household subsistence expenditure is the key variable for estimating CHE and impoverishment using the CTP approach. In the CTP approach, subsistence expenditure is defined as the median food expenditure and we used similar concept in our estimation. Median food expenditure as a share of household consumption expenditure, derived from the consumption surveys has declined over time in both rural and urban areas. In rural India, the monthly per capita consumption expenditure (median) was 456 rupees in 2004 and 1198 rupees in 2011-12. Food expenditure accounted for 64% of consumption expenditure in 2004 and 61% in 2011-12. In urban India, the MPCE was 1198 rupees in 2004 and 2019 rupees in 2011-12 and food expenditure accounted for 52% of MPCE in 2004 and 35% in 2011-12. We imputed the median food expenditure from the consumption survey to the health survey. The distribution from consumption survey of 2004 was used for the 2004 health survey and that of 2011-12 was used for 2014 and 2018 health surveys. Using these distributions and the median MPCE from the health surveys, the state estimates of median food expenditure were imputed to the health survey data and adjusted by equivalent household size in order to derive the household subsistence expenditure. Subsistence expenditure as a share of consumption expenditure declined in rural India from 44% in 2004 to 40% in both 2014 and 2018. Subsistence expenditure in urban India was 28% in 2004, 18% in 2014, and 19% in 2018 (Appendix 1). Fig 1 presents the state variations in household subsistence expenditure which shows the general pattern of development observed in the states of India. It was lower in rural areas than in urban areas across all states. For example, in 2018, subsistence expenditure in rural Odisha accounted half of household consumption expenditure compared to about one-quarter in urban areas. Similarly, subsistence expenditure as a share of household consumption expenditure was higher in the poorer states.
of Odisha, Bihar, Chhattisgarh, and Uttar Pradesh and lower in the richer states of Delhi, Goa, Chandigarh, and Kerala in all three period (Appendix 1).

Fig 1: Subsistence expenditure as share of household consumption expenditure in states of India, 2018

3.3. Variations in CHE and impoverishment by socio-economic and demographic characteristics in India

CHE and impoverishment had a strong socio-economic gradient in all three periods (Table 3). For example, in 2018, about 15% of households in the poorest MPCE quintile incurred CHE, compared to 6% in the richest MPCE quintile. There was a decline in both CHE and impoverishment in health services across each MPCE quintile, and the decline was slower in the poorest MPCE quintile than in all the others. However, the differences in CHE between the richest and poorest MPCE quintiles remained similar over time. Furthermore, CHE and impoverishment both showed a strong variation with the socio-demographic characteristics of households over time. Both CHE and impoverishment were consistently higher in rural than urban areas and declined over time. Households with coverage of any insurance had lower CHE and impoverishment than those households without insurance coverage. CHE and impoverishment by type
of employment showed a lower prevalence in waged and salaried households and a higher prevalence in labourer households. Similarly, households with at least one elderly member had a high prevalence of CHE and impoverishment over time. Households headed by persons without any education had higher CHE and impoverishment while it was lowest among those with higher secondary education or above, in all three periods. Both CHE and impoverishment were higher in female-headed households. Religious variations in CHE were not large in 2004 but widened by 2018. In 2018, CHE was lowest among Sikhs and highest among “other religious groups” followed by Hindus. On average, household incurring CHE have incurred 125% of capacity to pay in 2004, 171% in 2014 and 131% in 2018 (intensity of CHE). The intensity of CHE is high and follows similar pattern as that of CHE.

Table 4 presents the state pattern in incidence and intensity of CHE in India. The state variation in these variables is large. In 2018, incidence of CHE was highest in Odisha, followed by Kerala, and lowest in Dadra and Nagar Haveli. Many states in India showed a reduction in incidence of CHE (Fig. 2). In 2004, the incidence of CHE was over 10% in 19 states/union territories in India, and it remained similar in 2014. In 2018, 11 of the states had incidence of CHE over 10%; it was higher in the poorer and developed states.
Table 5 presents the incidence of impoverishment in the states of India. In 2018, the incidence of impoverishment, like CHE, was highest in Odisha. In general, the extent of impoverishment was higher in the poorer states. Many of the states experienced reduction in impoverishment over time.

3.5. Determinants of CHE and Impoverishment in India

Two regression models were estimated in order to understand the significant predictors of CHE and impoverishment. Estimates were derived from the polled data from the three periods: 2004, 2014, and 2018. Model 1 presents the odds ratio (OR) and 95% confidence interval of CHE, and model 2 presents the OR and the 95% confidence interval of impoverishment. The probability of incurring CHE was lower in urban than in rural areas [OR: 0.37, 95% CI: 0.35, 0.39]. The probability of incurring CHE decline with MPCE quintile; 66% lower among the richer
MPCE quintile [OR: 0.34, 0.32-0.37] and 78% lower among the richest MPCE quintile [OR: 0.22, 95% CI: 0.21, 0.24] than among the poorest households. The interaction between time and MPCE quintile was found to be lower in 2018 than in 2014, suggesting that CHE declined across economic class in the later period. However, the gap among MPCE quintiles widened over various time periods. Similarly, households with at least one elderly member were significantly more likely to incur CHE than households without an elderly member, and the intensity of CHE significantly increased between 2004 and 2018. Demographic characteristics (age and sex) of household heads was significantly associated with CHE. Female-headed households were more likely to incur CHE than male-headed households [OR: 1.14, 95% CI: 1.06-1.23]. Religious differentials in CHE were not significant, but Christians and the “other religions” group were significantly less likely to incur CHE than Hindus. The OR of incurring CHE was 2.80 for those using both inpatient and outpatient care, compared to those who only used inpatient care [95% CI: 2.66-2.95], and the gap has increased over time. The interaction between insurance coverage, MPCE quintile, and time suggests that insurance helped to reduce CHE among the richer and richest MPCE quintiles, while it remained similar among the poorer and middle MPCE quintiles.

The pattern of impoverishment was similar to CHE (model 2). Rural households, poorest and poorer households, and female-headed households were significantly more likely to incur impoverishment due to health expenditure in India. The pattern of the different characteristics for the study sample was similar to CHE. However, the interaction between time and MPCE quintile was significant, and shows that the gap widened between the poorest and richest categories between 2004 and 2018.
4. Discussion and Conclusion

Reliable estimates of catastrophic health expenditure and impoverishment are paramount for monitoring global, national and state developmental goals. While estimates for India have been provided time and again, they differ to a large extent owing to data and methodological limitations. In this context, this paper has addressed the data and methodological limitations in estimating CHE in India and makes both methodological and empirical contributions. Methodologically, it has demonstrated how to estimate catastrophic health expenditure and impoverishment with limited information about consumption expenditure by using the capacity-to-pay approach. Empirically, this is the first-ever attempt to provide comprehensive estimates on incidence and intensity of catastrophic health expenditure and impoverishment in India over the last 15 years. Previous studies have invariably cited lack of data on food expenditure for estimating CHE using health surveys (NSS). We have overcome this limitation and provided robust estimates for India. The followings are the salient findings of the study.

First, our results demonstrate that it is possible to derive robust estimates of CHE and impoverishment using the CTP approach, even with the limited data on consumption expenditure available from health surveys in India. Our findings suggest declining in CHE and impoverishment in India over time. Between 2004 and 2018, the incidence of CHE on health services declined from 4.8% to 3.3%. Second, the intensity of CHE remained high in India and across many states and socio-economic characteristics. For example, among those in poorest MPCE quintile and incurring CHE, they incurred over 184% of their capacity to pay. Patten is similar for labourer households, households with an elderly member and rural households. Both estimates of CHE derived using the capacity-to-pay approach have a strong economic gradient.

The literature suggests that OOP and CHE are regressive and affect the poor the most, and that reliable measures need to be sensitive to the lower strata of the population. Our results support the findings that CHE and impoverishment among the poorest and poorer households remained
consistently high over three point of time. Finally, our findings suggest that rural households, poor households, female-headed households, households with either outpatient care or both inpatient and outpatient care and households with at least one elderly member are more likely to incur CHE and face impoverishment due to health expenditure.

We have provided up-to-date estimates of CHE and impoverishment at household level with trend analyses from health surveys using the CTP approach. To our knowledge, we have not come across similar studies in India. We made two improvements when deriving the estimates of CHE and impoverishment using the CTP approach. First, we derived the per capita food expenditure from the CSs and used the HSs to derive the subsistence expenditure. Our assumption of stability in the share of food expenditure in the consumption basket in the short run is rational. The distribution of food expenditure can be taken from independent consumption surveys and then integrated into health surveys that lack such information. Second, we adjusted the household size separately for rural and urban areas. Furthermore, we assumed that households whose total consumption expenditure was lower than the subsistence expenditure and which incurred OOP expenditure on health services were incurring CHE. This exercise can be replicated elsewhere (any other country) with similar information. We have put forward some plausible explanation for declining CHE and impoverishment in India. Though the mean medical expenditure can increase with greater income, it may not necessarily involve OOP payments if insurance coverage or public spending on health also increases. Evidence suggests that in the last decade, there has been an increase in insurance coverage in India and the mean reimbursement at constant prices has increased over time. Our findings support that health insurance has reduced catastrophic health expenditure and impoverishment among richer and richest households, but not among the poorest, poorer, and middle MPCE quintiles. Essential
drugs, as well as the prices of certain medical services such as stents, have been regulated may have reduced CHE.

The study has the following limitations. First, it did not take into account the impact of the Ayushman Bharat Yojana (ABY) launched in 2018. The ABY is the largest-ever nationwide health scheme implemented to protect the poor and the needy from financial catastrophe. It aims to provide health protection to over 100 million families, accounting for over 40% of the population (www.ayushmanbharat.co.in). The effects of ABY may well be captured in the next round of survey. These estimates of CHE and impoverishment may serve as baseline estimates for ABY. Second, though CHE provides numerical estimates of the financial hardship faced by households, it has not captured the extent of distress financing such as borrowing and selling assets.

Based on our results, we suggest that studies on CHE should estimate CHE and impoverishment using the CTP approach. Estimates of CHE based on the BS method should not be used in policy formulation. The NSS health survey (schedule 25.0) should include a smaller module of consumption expenditure. Increasing investments in public health can reduce catastrophic health expenditure and impoverishment.

Declarations:

Ethics approval and consent to participate: As the analysis is based on secondary data available in the public domain, it needs no prior approval.

Consent for publication: This manuscript is an original work and has been done by the authors, SKM and LKD who all are aware of its content and approve its submission. This manuscript has not been published elsewhere in part or in entirety, and is not under consideration by another journal. All authors gave their consent for publication in International Journal for Equity in Health.
Availability of data and material: The dataset used and analysed for the current study is available in publicly available

Competing interests: The authors declare that they do not have any competing interest.

Funding: Not applicable

Authors' contributions: Conception and design of study: SKM; analysis and interpretation of data: SKM and LKD; drafting the manuscript: SKM; critical revision of the manuscript for important intellectual content: SKM, LKD.
References

Arsenijevic, J., Pavlova, M., & Groot, W. (2013). Measuring the catastrophic and impoverishing effect of household health care spending in Serbia. Social Science & Medicine, 78, 17-25.

Berki SE. A look at catastrophic medical expenses and the poor. Health Aff. 1986;5:138–45.

Berman, P., Ahuja, R., & Bhandari, L. (2010). The impoverishing effect of healthcare payments in India: new methodology and findings. Economic and Political Weekly, 65-71.

Boerma, T., Eozenou, P., Evans, D., Evans, T., Kieny, M. P., & Wagstaff, A. (2014). Monitoring progress towards universal health coverage at country and global levels. PLoS medicine, 11(9).

Bonu, S., Bhushan, I., Rani, M., & Anderson, I. (2009). Incidence and correlates of catastrophic maternal health care expenditure in India. Health policy and planning, 24(6), 445-456.

Chuma, J., & Maina, T. (2012). Catastrophic health care spending and impoverishment in Kenya. BMC health services research, 12(1), 413.

Cylus, J., Thomson, S., & Evetovits, T. (2018). Catastrophic health spending in Europe: equity and policy implications of different calculation methods. Bulletin of the World Health Organization, 96(9), 599.

Dash, A., & Mohanty, S. K. (2019). Do poor people in the poorer states pay more for healthcare in India?. BMC public health, 19(1), 1020.

Gabani, J., & Guinness, L. (2020). Correction to: Households forgoing healthcare as a measure of financial risk protection: an application to Liberia. International Journal for Equity in Health, 19(1), 1-1.

Garg CC, Karan AK. Reducing out-of-pocket expenditures to reduce poverty: a disaggregated analysis at rural-urban and state level in India. Health Policy Plan. 2009;24(2):116–28.

Ghosh S. (2011). Catastrophic payments and impoverishment due to out-of-pocket health spending: The effects of recent health sector reforms in India. Economic and Political Weekly. 46(47): 63-70.

Goli, S., Rammohan, A., & Pradhan, J. (2016). High Spending on Maternity Care in India: What Are The Factors Explaining It? PLoS ONE, 11(6), e0156437.

Hooda, S. K. (2017). Out-of-pocket payments for healthcare in India: who have affected the most and why?. Journal of Health Management, 19(1), 1-15.

Hsu, J., Flores, G., Evans, D., Mills, A., & Hanson, K. (2018). Measuring financial protection against catastrophic health expenditures: methodological challenges for global monitoring. International journal for equity in health, 17(1), 69.

Joe, W. (2015). Distressed financing of household out-of-pocket health care payments in India: incidence and correlates. Health policy and planning, 30(6), 728-741.
Karan A, Selvaraj S, Mahal A. Moving to Universal Coverage? Trends in the Burden of Out-Of-Pocket Payments for Health Care across Social Groups in India, 1999–2000 to 2011–12. PLoS One. 2014;9(8):e105162

Kastor, A., & Mohanty, S. K. (2018). Disease-specific out-of-pocket and catastrophic health expenditure on hospitalization in India: Do Indian households face distress health financing?. *PLoS One*, 13(5).

Kumar, K., Singh, A., Kumar, S., Ram, F., Singh, A., Ram, U.,Negin J. & Kowal, P. R. (2015). Socio-economic differentials in impoverishment effects of out-of-pocket health expenditure in China and India: evidence from WHO SAGE. *PloS one*, 10(8).

Lu, C., Chin, B., Li, G., & Murray, C. J. (2009). Limitations of methods for measuring out-of-pocket and catastrophic private health expenditures. *Bulletin of the World Health Organization*, 87(3), 238-244D.

Ministry of Health and Family Welfare. *National Health Account Estimates for India, 2004-05*. New Delhi, India: Ministry of Health System Resources Centre, Government of India; 2009.

Ministry of Health and Family Welfare. National Health Account estimates for India 2013-14. In: Ministry of Health System Resources Centre, Government of India; 2016.

Ngcamphalala, C., & Ataguba, J. E. (2018). An assessment of financial catastrophe and impoverishment from out-of-pocket health care payments in Swaziland. *Global health action*, 11(1), 1428473.

NSSO (2006a) "Morbidity, Health Care and the Condition of the Aged". Report No 507 (60/25.0/1). New Delhi: Ministry of Statistics and Programme Implementation, Government of India: 2006.

NSSO (2006b)."Level and Pattern of Consumer Expenditure, 2004-05".Report No. 508 (61/1.0/1). New Delhi: Ministry of Statistics and Programme Implementation, Government of India: 2006.

NSSO (2014). Level and Pattern of Consumer Expenditure, 2011-12, NSS Report No 555(68/1.0/1), Ministry of Statistics and Program Implementation

NSSO (2016). Health in India, NSS Report No 574 (71/25.0), Ministry of Statistics and Program Implementation

Pandey, A., Clarke, L., Dandona, L., & Ploubidis, G. B. (2018a). Inequity in out-of-pocket payments for hospitalisation in India: Evidence from the National Sample Surveys, 1995–2014. *Social Science & Medicine, 201*, 136-147.

Pandey, A., Kumar, G. A., Dandona, R., & Dandona, L. (2018b). Variations in catastrophic health expenditure across the states of India: 2004 to 2014. *PloS one*, 13(10).

Pandey, A., Ploubidis, G. B., Clarke, L., & Dandona, L. (2018c). Trends in catastrophic health expenditure in India: 1993 to 2014. *Bulletin of the World Health Organization*, 96(1), 18.
Raban, M. Z., Dandona, R., & Dandona, L. (2013). Variations in catastrophic health expenditure estimates from household surveys in India. *Bulletin of the World Health Organization, 91*, 726-735.

Rashad, A. S., & Sharaf, M. F. (2015). Catastrophic and impoverishing effects of out-of-pocket health expenditure: New evidence from Egypt. *Am J Econ, 5*(5), 526-533.

Tripathy, J. P., Prasad, B. M., Shewade, H. D., Kumar, A. M. V., Zachariah, R., Chadha, S., ... & Harries, A. D. (2016). Cost of hospitalisation for non-communicable diseases in India: are we pro-poor?. *Tropical medicine & international health, 21*(8), 1019-1028.

Twisk, JOS. W. R (2010) Applied Multilevel Analysis: A Practical Guide, Cambridge University Press, Cambridge

UN 2016. Final list of proposed Sustainable Development Goal indicators. *Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators (E/CN. 3/2016/2/Rev. 1).*

Wagstaff A, Paci P, Van Doorslaer E (1991). On the measurement of inequalities in health. Soc Sci Med. 1991;33(5):545–5

Wooldridge, J.M (2013). Introductory Econometrics: A Modern Approach, 5th Edition South-Western Cengage Learning, USA

World Health Organization. (2005). *Distribution of health payments and catastrophic expenditures methodology* (No. EIP/FER/DP. 05.2). Geneva: World Health Organization.

Xu K, Evans DB, Kawabata K, Zeramdini R, Klavus J, Murray CJL (2003). Household catastrophic health expenditure: a multicountry analysis. *The Lancet*. 362(9378):111-17.

www.ayushmanbharat.co.in/, accessed on 2nd April, 2020

https://sustainabledevelopment.un.org/
Table 1: Descriptive statistics from various rounds of health and consumption survey in India, 2004-18

Variables/ Characteristics	Health Survey 2004	Health Survey 2014	Health Survey 2018	Consumption Survey 2004	Consumption Survey 2011-12
Number of households covered	73,868	65932	113,823	124,644	101,651
Percentage of household availed inpatient care*	43.09	72.68	73.23	10.72	15.87
Percentage of household availed outpatient care*	36.51	38.35	27.50	61.39	75.85
Percentage of household availed either inpatient or outpatient care	59.36	81.35	79.94	64.81	79.14
Mean Household Size	4.82	4.51	4.35	4.74	4.42
Monthly per capita Consumption Expenditure (MPCE) in Indian Rupees at 2018 prices (95% CI)	1516	1915	2162	1728	2542
Food expenditure as share of monthly per capita consumption expenditure (median)	NA	NA	NA	61.81	54.72
Mean expenditure on hospitalization of households in 365 days* at 2018 prices (95% CI)	15311	24561	19574	17996	19386
Mean reimbursement of household on hospitalization in 365 days at 2018 prices (in Indian Rupees)	1116	1335	1742	NA	NA

NA: Not available
* Among those incurred any expenditure and does not exclude reimbursement

Table 2: Result of regression analyses with monthly per capita consumption expenditure (MPCE) as dependent and household size as independent variable, 2004 & 2011-12

Parameters/N	2004 Rural	2004 Urban	2014 Rural	2014 Urban					
Coefficient	0.79	0.65	0.72	0.56					
Standard error	0.003	0.004	0.003	0.004					
Confidence Interval	0.782-0.792	0.647-0.661	0.719-0.730	0.557-0.571					
R²	0.56	0.44	0.51	0.41					
N	79265	45303	59,678	41,960					
MPCE Quintile	Incidence of Catastrophic Health Spending	Intensity of CHS	Impoverishment						
------------------------	--	------------------	----------------						
	2004	2014	2018	2004	2014	2018	2004	2014	2018
Poorest	17.95	21.94	14.51	2.50	3.40	1.84	8.83	10.44	6.53
Poorer	13.15	14.24	9.46	0.82	0.89	0.92	4.99	5.52	3.36
Middle/Secondary	11.90	11.72	8.47	0.76	0.62	0.76	4.15	3.59	2.74
Richer	11.63	11.36	6.88	0.74	0.63	0.59	3.65	3.04	1.80
Richest	11.05	10.68	6.35	0.58	0.55	0.62	3.17	2.71	1.73
Place of residence									
Rural	13.91	14.98	10.34	1.34	1.92	1.46	5.58	6.01	3.94
Urban	8.67	10.22	6.56	0.87	1.08	0.83	2.89	3.17	2.04
Covered by any health insurance schemes									
Any Insurance coverage	12.49	13.45	9.00	1.25	1.86	1.40	4.86	5.19	3.35
No insurance coverage	10.30	13.31	9.54	0.91	1.04	0.93	3.30	4.65	3.20
Age of head of household									
Li 30	11.47	11.55	7.18	1.22	1.09	2.28	4.90	4.33	2.66
30-44	11.05	10.79	7.17	1.42	1.79	1.00	4.24	3.93	2.52
45-59	12.09	13.09	8.40	1.11	1.47	1.13	4.45	4.94	3.14
60+	16.84	20.06	16.50	1.21	2.17	1.44	6.63	7.95	6.00
Sex of the head of household									
Male	12.34	13.19	8.87	1.20	1.48	1.18	4.73	4.91	3.19
Female	13.35	15.20	10.76	1.60	3.20	2.08	5.67	6.39	4.27
Educational Attainment of head of household									
No education	12.96	15.06	10.37	1.51	2.44	1.52	5.51	6.33	3.97
up to Primary	12.77	14.46	9.53	1.21	1.43	1.06	4.84	5.32	3.46
Middle/Secondary	12.95	13.20	8.75	1.03	1.24	1.50	4.58	4.62	3.12
higher secondary	9.03	9.24	7.36	0.74	1.15	0.95	3.03	3.14	2.53
Type of employment of household									
Labour	13.53	14.45	9.24	1.65	2.05	1.83	5.72	6.08	3.52
Self Employed	7.12	10.32	7.22	0.79	1.42	0.76	2.24	3.26	1.91
Wage/salary	12.52	13.33	9.28	1.01	1.38	1.12	4.56	4.85	3.56
Others	14.37	19.12	12.01	1.29	2.75	1.64	5.96	8.17	4.59
Any elderly member in the household									
Yes	10.95	11.24	7.32	1.15	1.41	1.12	4.26	4.21	2.65
No	16.64	19.40	15.19	1.42	2.19	1.62	6.42	7.47	5.61
Religion of household									
Hindu	12.09	13.15	8.94	1.25	1.76	1.33	4.70	5.01	3.28
Muslim	14.90	14.91	9.83	1.23	1.52	1.08	6.06	5.71	3.73
Christian	14.72	14.26	9.55	1.50	1.14	0.92	4.86	5.54	3.13
Sikh	13.28	16.04	7.40	0.86	0.62	0.52	4.08	4.58	1.92
Others	9.32	11.43	15.50	1.36	4.22	3.57	3.71	3.21	4.45
Total	12.45	13.43	9.10	1.25	1.71	1.31	4.83	5.09	3.32
	Incidence of CHS		Intensity of CHS						
----------------------	------------------	----------	------------------	----------					
	2004	2014	2018	2004	2014	2018			
Dadra & Nagar Haveli	4.02	7.20	0.49	0.77	0.48	0.30			
Daman & Diu	2.33	2.33	0.49	0.39	0.26	0.53			
Nagaland	4.75	1.39	0.99	0.65	0.30	0.37			
Meghalaya	1.19	2.38	1.06	0.70	0.15	0.38			
Pondicherry	7.06	10.56	1.74	0.66	0.57	1.30			
Andaman & Nicobar	2.31	4.14	2.22	NC	1.87	1.30			
Sikkim	5.92	2.38	2.60	0.68	0.50	1.30			
Mizoram	1.16	2.13	2.73	0.54	0.49	1.30			
Goa	6.97	13.73	2.90	2.13	0.31	1.30			
Uttarakhand	8.83	12.51	3.41	0.95	0.83	1.30			
Assam	10.96	9.05	3.55	0.80	0.90	1.30			
Delhi	1.04	2.40	3.80	0.83	0.93	1.30			
Gujarat	10.47	5.97	3.97	1.07	0.85	1.30			
Jammu & Kashmir	12.87	12.17	4.76	0.68	0.99	1.30			
Lakshadweep	10.94	10.01	4.77	0.92	0.50	1.30			
Telangana	9.94	15.77	5.28	2.36	1.08	1.30			
Manipur	5.09	9.76	5.40	0.58	0.87	1.30			
Chandigarh	3.55	3.36	5.49	1.30	0.34	1.30			
Bihar	11.13	13.93	5.78	1.43	1.56	1.30			
Karnataka	8.72	13.08	5.95	1.35	0.88	1.30			
Haryana	14.06	10.22	5.97	0.77	0.57	1.30			
Tamil Nadu	10.89	10.97	6.12	1.41	0.80	1.30			
Rajasthan	12.42	9.97	6.69	1.08	0.67	1.30			
Punjab	13.30	15.60	7.08	0.93	0.61	1.30			
Madhya Pradesh	10.90	13.76	7.82	1.10	5.27	1.30			
Tripura	15.78	8.54	7.94	2.55	1.01	1.30			
Chhattisgarh	13.07	8.75	8.13	1.61	5.71	1.30			
Maharashtra	12.32	11.12	9.10	0.95	1.02	1.30			
India	12.45	13.43	9.10	1.25	1.71	1.30			
Arunachal Pradesh	12.59	19.59	9.16	2.90	19.21	1.30			
Himachal Pradesh	16.30	12.44	10.27	1.21	0.94	1.30			
Andhra Pradesh	12.63	15.90	12.31	1.07	0.56	1.30			
West Bengal	14.14	18.45	12.50	1.87	1.24	1.30			
Jharkhand	7.98	11.03	13.34	1.60	2.42	1.30			
Uttar Pradesh	15.39	16.25	13.52	1.20	2.60	1.30			
Kerala	22.32	16.37	16.55	0.81	0.61	1.30			
Orissa	14.03	21.60	16.78	1.14	2.71	1.30			
Table 5: Incidence of impoverishment in states of India, 2004-18

State	Incidence of impoverishment		
	2004	2014	2018
Andaman & Nicobar	1.13	3.20	1.62
Andhra Pradesh	4.75	13.01	4.66
Arunachal Pradesh	5.06	15.30	7.85
Assam	3.75	10.29	3.27
Bihar	5.29	13.27	7.06
Chandigarh	1.04	3.50	0.18
Chhattisgarh	5.89	17.48	3.47
Dadra & Nagar Haveli	1.46	3.39	0.94
Daman & Diu	1.09	4.88	0.20
Delhi	0.35	1.62	1.10
Goa	2.70	6.41	2.89
Gujarat	3.26	8.14	1.94
Haryana	5.24	11.15	2.20
Himachal Pradesh	6.60	16.29	5.60
India	4.83	11.86	5.09
Jammu & Kashmir	3.37	8.01	4.09
Jharkhand	3.05	8.79	4.25
Karnataka	3.47	11.01	5.35
Kerala	7.75	10.88	4.49
Lakshadweep	3.27	5.77	2.24
Madhya Pradesh	4.42	11.96	6.03
Maharashtra	4.80	11.51	3.75
Manipur	1.42	3.96	3.98
Meghalaya	0.52	2.28	0.08
Mizoram	0.25	1.41	0.25
Nagaland	1.15	2.67	0.09
Orissa	5.48	16.46	10.88
Pondicherry	1.62	3.45	2.81
Punjab	3.75	7.29	4.73
Rajasthan	5.46	15.70	3.02
Sikkim	2.30	10.80	0.61
Tamil Nadu	3.95	10.82	3.37
Telangana	4.32	13.62	6.37
Tripura	5.22	11.51	2.60
Uttar Pradesh	6.22	13.07	6.42
Uttarakhand	3.76	10.20	5.31
West Bengal	5.36	11.78	6.92
Table 6: Result of logistic regression analyses showing significant predictors of catastrophic health spending and impoverishment in India

Variables	CHE OR (95% CI)	p-value	IMP OR (95% CI)	p-value			
Place of residence							
Rural (R)	1		1				
Urban	0.37 (0.35-0.39)	0.00	0.31 (0.29-0.34)	0.00			
MPCE Quintile							
Poorest (R)	1		1				
Poorer	0.54 (0.50-0.58)	0.00	0.50 (0.46-0.55)	0.00			
Middle	0.40 (0.37-0.43)	0.00	0.37 (0.33-0.40)	0.00			
Richer	0.34 (0.32-0.37)	0.00	0.28 (0.25-0.31)	0.00			
Richest	0.22 (0.21-0.24)	0.00	0.16 (0.15-0.18)	0.00			
Household Size							
1-4 (R)	1		1				
5-7	0.61 (0.58-0.65)	0.00	0.53 (0.50-0.57)	0.00			
8+	0.40 (0.38-0.43)	0.00	0.33 (0.30-0.36)	0.00			
Any elderly member in household							
No elderly member in the household (R)							
Any elderly member in the household	1.20 (1.12-1.28)	0.00	1.14 (1.04-1.25)	0.01			
Main employment of household							
Labourer Household (R)	1		1				
Wage/salary	0.94 (0.86-1.04)	0.22	1.04 (0.91-1.20)	0.55			
Self Employed	1.11 (1.05-1.17)	0.00	1.08 (1.01-1.16)	0.04			
Others	1.35 (1.24-1.46)	0.00	1.50 (1.35-1.67)	0.00			
Age of head of household							
Lt 30 (R)	1		1				
30-44	1.22 (1.14-1.32)	0.00	1.22 (1.10-1.35)	0.00			
45-59	1.44 (1.34-1.55)	0.00	1.44 (1.30-1.59)	0.00			
60+	1.56 (1.42-1.72)	0.00	1.60 (1.41-1.83)	0.00			
Sex of the head of household							
Male (R)	1		1				
Female	1.14 (1.06-1.23)	0.00	1.20 (1.05-1.33)	0.00			
Educational level of household							
No education of head of household (R)							
Up to Primary	1.03 (0.98-1.09)	0.26	1.03 (0.95-1.11)	0.47			
Middle/Secondary	1.19 (1.12-1.27)	0.00	1.16 (1.07-1.26)	0.00			
Higher secondary	1.28 (1.17-1.39)	0.00	1.20 (1.06-1.34)	0.00			
Religion							
Hindus (R)	1		1				
Muslim	1.05 (0.98-1.12)	0.16	1.04 (0.95-1.14)	0.41			
Christian	0.81 (0.72-0.92)	0.00	0.99 (0.83-1.19)	0.95			
Sikh	1.11 (0.94-1.33)	0.23	1.20 (0.93-1.54)	0.17			
Others	1.00 (0.85-1.18)	0.09	0.91 (0.72-1.16)	0.46			
Inpatient and outpatient care							
Availed inpatient care only	1		1				
Availed outpatient care only	1.33 (1.25-1.40)	0.00	1.28 (1.18-1.39)	0.00			
Availed both inpatient and outpatient care	2.80 (2.66-2.95)	0.00	3.12 (2.91-3.34)	0.00			
Insurance coverage							
No (R)	1		1				
Yes	0.89 (0.76-1.03)	0.11	0.93 (0.74-1.17)	0.55			
Time							
2004 (R)	1		1				
2014	0.80 (0.71-0.91)	0.00	0.67 (0.57-0.80)	0.00			
2018	0.56 (0.50-0.63)	0.00	0.41 (0.33-0.49)	0.00			
Interaction between Time and MPCE Quintile							
2014*Poorer	0.89 (0.81-0.99)	0.03	0.90 (0.79-1.02)	0.10			
2018*Poorer	0.83 (0.76-0.92)	0.00	0.82 (0.73-0.93)	0.00			
2014*Middle	0.90 (0.81-0.99)	0.03	0.82 (0.72-0.94)	0.00			
2018*Middle	0.82 (0.74-0.90)	0.00	0.75 (0.66-0.85)	0.00			
Year	Quintile	Estimate	Lower CI	Upper CI	Estimate	Lower CI	Upper CI
------	----------	----------	----------	----------	----------	----------	----------
2014	Richer	0.80	0.72-0.88	0.00	0.71	0.62-0.81	0.00
2018	Richer	0.66	0.60-0.73	0.00	0.72	0.63-0.82	0.00
2014	Richest	1.01	0.90-1.13	0.87	0.91	0.78-1.06	0.21
2018	Richest	0.71	0.65-0.79	0.00	0.76	0.66-0.88	0.00

Interaction of Time, Insurance and MPCE Quintile

Interaction	Estimate	Lower CI	Upper CI
2014* Richer*Poorer	1.10	0.93-1.32	0.27
2018* Richer*Poorer	1.03	0.89-1.2	0.66
2014* Richer*Middle	1.06	0.89-1.26	0.52
2018* Richer*Middle	0.94	0.82-1.09	0.43
2014* Richer*Richer	1.05	0.89-1.25	0.54
2018* Richer*Richer	1.06	0.92-1.22	0.45
2014* Richer*Richest	0.79	0.67-0.92	0.00
2018* Richer*Richest	0.84	0.74-0.96	0.01
Puuedo R²	0.14		0.15