Addendum: Metabolic Syndrome, and Particularly the Hypertriglyceridemic-Waist Phenotype, Increases Breast Cancer Risk, and Adiponectin Is a Potential Mechanism: A Case–Control Study in Chinese Women

Yujuan Xiang1,2†, Wenzhong Zhou1,3†, Xuening Duan4, Zhimin Fan5, Shu Wang6, Shuchen Liu1,3, Liyuan Liu1,2, Fei Wang1,2, Lixiang Yu1,2, Fei Zhou1,2, Shuya Huang1,2, Liang Li1,2, Qiang Zhang1,2, Qinye Fu1,2, Zhongbing Ma1,2, Dezong Gao1,2, Shude Cui7, Cuizhi Geng8, Xuchen Cao9, Zhenlin Yang10, Xiang Wang11, Hong Liang12, Hongchuan Jiang13, Haibo Wang14, Guolou Li15, Qitang Wang16, Jianguo Zhang17, Feng Jin18, Jinhai Tang19, Fuguo Tian20, Chunmiao Ye1,2 and Zhigang Yu1,2†

1 Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China, 2 Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China, 3 School of Medicine, Shandong University, Jinan, China, 4 Breast Disease Center, Peking University First Hospital, Beijing, China, 5 Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China, 6 Breast Disease Center, Peking University People’s Hospital, Beijing, China, 7 Department of Breast Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China, 8 Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China, 9 Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China, 10 Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Binzhou Medical University, Binzhou, China, 11 Department of Breast Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China, 12 Department of General Surgery, Linyi People’s Hospital, Linyi, China, 13 Department of General Surgery, Beijing Chaoyang Hospital, Beijing, China, 14 Breast Center, Qingdao University Affiliated Hospital, Qingdao, China, 15 Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, China, 16 Department of Breast Surgery, The Second Affiliated Hospital of Qingdao Medical College, Qingdao Central Hospital, Qingdao, China, 17 Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China, 18 Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China, 19 Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital China Institute of Jiangsu Province, Nanjing, China, 20 Department of Breast Surgery, Shandong Cancer Hospital, Taiyuan, China, 21 Suzhou Institute, Shandong University, Suzhou, China

Keywords: breast cancer, metabolic syndrome, hypertriglyceridemic-waist phenotype, adiponectin, risk

An Addendum on

Metabolic Syndrome, and Particularly the Hypertriglyceridemic-Waist Phenotype, Increases Breast Cancer Risk, and Adiponectin Is a Potential Mechanism: A Case–Control Study in Chinese Women

by Xiang, Y., Zhou, W., Duan, X., Fan, Z., Wang, S., Liu, S., et al. (2020) Front. Endocrinol. 10:905. doi: 10.3389/fendo.2019.00905

In the original article, there were mistakes in Table 6, Table 7, Table 9 as published. The numbers of patients in Table 6 and Table 9 were incorrect. The contents in Table 7 and Table 9 were repetitive to some degree in that we had shown the association between adiponectin with metabolic syndrome and HW phenotype. Therefore, for this Correction, we analyzed...
the association between adiponectin and metabolic syndrome, and the association in pre- and postmenopausal subgroups in Table 7. In Table 9, we converted the numerical variable into categorical variable, which should provide better guide for clinical practice. In our view, this avoids the repetition. These new tables appear below as Tables 6, 7, 9. The authors apologize for these errors and any confusion that may have arisen due to them and hopes these additional tables sufficiently addresses them.

In the original article, corresponding text of Table 6, Table 7, and Table 9 was corrected. A correction has been made to Abstract, Results, Paragraph number 1:

In addition, total adiponectin levels among breast cancer patients were much lower than among controls \((p = 0.005)\) only in the HW phenotype subgroup. Furthermore, the HW phenotype was associated with increased risk of estrogen receptor/progesterone receptor-positive (ER+/PR+) breast cancer, with a 95\% \((OR = 1.95, 95\% CI: 1.21–3.13)\) increase. However, there was no significant association between the HW phenotype and both ER+/PR– and ER–/PR– subtypes.

A correction has been made to Results, Cluster Mode of HW Phenotype Significantly Increases Breast Cancer Risk, Paragraph number 3:

HW phenotype was associated with ER+/PR+ breast cancer, with a 95\% \((OR = 1.95, 95\% CI: 1.21–3.13)\) increase in risk for women with a positive HW phenotype. However, there was no significant association between HW phenotype and both ER+/PR– and ER–/PR– subtypes.

A correction has been made to Results, Adiponectin Might Be the Mechanism Linking Metabolic Syndrome to Breast Cancer, Paragraph number 2:

total adiponectin levels among breast cancer patients were much lower than among the controls \((p = 0.005)\) in the HW phenotype subgroup.

A correction has been made to Results, Adiponectin Might Be the Mechanism Linking Metabolic Syndrome to Breast Cancer, Paragraph number 3:

there was a significant difference of total adiponectin in ER+/PR+ \((p = 0.028)\) and ER–/PR– \((p = 0.043)\) breast cancer compared to the controls, who were much lower in the HW phenotype subgroup.

A correction has been made to Discussion, Paragraph number 6:

We revealed that HW phenotype was an independent risk factor for the ER+/PR+ subtype.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

TABLE 6 | Association between HW phenotype and breast cancer by logistic regression.

	All subjects \((n = 595)\)	Premenopausal \((n = 383)\)	Postmenopausal \((n = 209)\)
	OR 95% CI P	OR 95% CI P	OR 95% CI P
Univariate model			
WC, TG (reference)	1.66 1.10–2.50 0.016	1.63 0.98–2.42 0.077	1.72 0.91–3.22 0.049
WC+TG	1.66 1.10–2.50 0.016	1.63 0.98–2.42 0.077	1.72 0.91–3.22 0.049
WC+TG (normal)	1.56 1.02–2.39 0.038	1.49 0.85–2.63 0.167	1.60 0.82–3.12 0.170
Multivariate model \(a\)			
WC, TG (reference)	1.70 1.07–2.70 0.006	1.64 0.99–2.62 0.031	1.73 0.99–3.31 0.007
WC+TG	1.70 1.07–2.70 0.006	1.64 0.99–2.62 0.031	1.73 0.99–3.31 0.007
WC+TG (normal)	1.58 1.02–2.39 0.032	1.49 0.85–2.63 0.167	1.60 0.82–3.12 0.170

WC, waist circumference; TG, triglycerides; ER, estrogen receptor; PR, progesterone receptor.

\(a\)Adjusted for age, number of childbirths, age at menarche, smoking, alcohol use, family history of breast cancer, and contrceptive drug use.
TABLE 7 | Association between total adiponectin, HMW adiponectin, HMW/total ratio, and metabolic syndrome.

	All subjects	Premenopausal	Postmenopausal						
	With MetS	Without MetS	p	With MetS	Without MetS	p	With MetS	Without MetS	p
Total adiponectin	5.970 ± 3.789	2.807 ± 2.007	0.004	5.960 ± 3.830	6.637 ± 3.558	0.054	5.979 ± 3.762	6.909 ± 3.875	0.022
HMW adiponectin	2.408 ± 1.870	2.807 ± 2.007	0.004	2.371 ± 1.830	2.757 ± 1.958	0.037	2.445 ± 1.915	2.935 ± 2.116	0.024
HMW/total ratio	0.39 ± 0.14	0.41 ± 0.16	0.101	0.39 ± 0.14	0.40 ± 0.17	0.233	0.39 ± 0.15	0.42 ± 0.15	0.150

MetS, metabolic syndrome; HMW, high molecular weight.

TABLE 9 | The association among metabolic syndrome, breast cancer, and adiponectin.

	Controls	All cases	ER+/PR+	ER+/PR−	ER−/PR−
METABOLIC SYNDROME					
YES					
Total adiponectin	0.362	0.944	0.764	0.023	
High	26 (22.2%)	27 (17.8%)	17 (21.8%)	3 (15.8%)	5 (12.8%)
Low	91 (77.8%)	125 (82.2%)	61 (78.2%)	16 (84.2%)	34 (87.2%)
HMW adiponectin	0.296	0.597	0.113	0.403	
High	66 (56.4%)	76 (50.0%)	41 (52.6%)	7 (36.8%)	19 (48.7%)
Low	51 (43.6%)	76 (50.0%)	37 (47.4%)	12 (63.2%)	20 (51.3%)
HMW/total ratio	0.354	0.069	0.805	0.711	
High	59 (50.4%)	66 (44.7%)	29 (37.2%)	9 (47.4%)	21 (53.8%)
Low	58 (49.6%)	84 (55.3%)	49 (62.8%)	10 (52.6%)	18 (46.2%)
No	0.097	0.121	0.339	0.118	
Total adiponectin	106 (25.5%)	92 (20.8%)	43 (20.0%)	13 (32.5%)	20 (18.3%)
High	309 (74.5%)	351 (79.2%)	172 (80.0%)	27 (67.5%)	89 (81.7%)
HMW adiponectin	0.507	0.970	0.588	0.244	
High	287 (69.2%)	297 (67.0%)	149 (69.3%)	26 (65.0%)	69 (63.3%)
Low	128 (30.8%)	146 (33.0%)	66 (30.7%)	14 (35.0%)	40 (36.7%)
HMW/total ratio	0.359	0.229	0.873	0.062	
High	213 (51.3%)	213 (48.2%)	99 (48.3%)	20 (50.0%)	45 (41.3%)
Low	202 (48.7%)	229 (51.8%)	115 (53.7%)	20 (50.0%)	64 (58.7%)
HW PHENOTYPE					
YES					
Total adiponectin	0.005	0.028	1.000	0.043	
High	14 (35.9%)	9 (13.0%)	6 (14.6%)	2 (28.6%)	1 (6.7%)
Low	25 (64.1%)	60 (87.0%)	35 (85.4%)	5 (71.4%)	14 (93.3%)
HMW adiponectin	0.717	0.527	0.424	0.583	
High	24 (61.5%)	40 (58.0%)	28 (68.3%)	3 (42.9%)	8 (53.3%)
Low	15 (38.5%)	29 (42.0%)	13 (31.7%)	4 (57.1%)	7 (46.7%)
HMW/total ratio	0.570	0.263	1.000	0.839	
High	17 (43.6%)	34 (49.3%)	23 (56.1%)	3 (42.9%)	7 (46.7%)
Low	22 (56.4%)	35 (50.7%)	18 (43.9%)	4 (57.1%)	8 (53.3%)
NO	0.247	0.442	0.632	0.150	
Total adiponectin	118 (23.9%)	110 (20.9%)	54 (21.4%)	14 (26.9%)	24 (18.0%)
High	375 (76.1%)	416 (79.1%)	198 (78.6%)	38 (73.1%)	109 (82.0%)
Low	329 (66.7%)	333 (63.3%)	162 (64.3%)	30 (57.7%)	80 (60.2%)
HMW adiponectin	0.252	0.505	0.191	0.157	
High	164 (33.3%)	193 (36.7%)	90 (35.7%)	22 (42.3%)	53 (39.8%)
Low	0.136	0.011	0.813	0.132	
High	255 (51.7%)	247 (47.0%)	105 (41.8%)	26 (50.0%)	59 (44.4%)
Low	238 (48.3%)	278 (53.0%)	146 (58.2%)	26 (50.0%)	74 (55.6%)

ER, estrogen receptor; PR, progesterone receptor.

Cut-off value of high and low level for total adiponectin, HMW adiponectin, and HMW/total ratio is 8.768, 1.635, and 0.399, respectively.