Instrumental possibilities of skin parameters assessment — literature review

Sonia Stachowiak¹, Aleksandra Buszmak¹, Teresa Matthews-Brzozowska², Leszek Kubisz³

¹ Students’ Scientific Society of Department of Maxillofacial Orthopaedics and Orthodontics, Poznan University of Medical Sciences, Poland
² Department of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Poland
³ Department of Biophysics, Poznan University of Medical Sciences, Poland

ABSTRACT

The authors reviewed the literature on the most commonly used devices for measuring skin parameters. The instruments were selected to measure: skin elasticity Cutometer® (Courage-Khazaka, Koln, Germany), Reviscometer® RVM600; hydration while using skin properties such as resistance, capacity, conductivity and impedance, the Corneometer CM 820 and CM 825 (Courage & Khazaka, Koln, Germany), Nova DPM 9003 (Nova Technology Corporation, Gloucester, MA, USA), DermaLab® USB Moisture Module (Cortex Technology, Hadsund, Denmark) and Scalar Moisture Checker MY-808S (Scalar Corporation, Japan), to test percutaneous water loss (TEWL) with Tewameter® TM 300 (Courage-Khazaka, Koln, Germany); high-frequency ultrasound

DOI: https://doi.org/10.20883/jofa.37

* Corresponding author / Osoba do kontaktu
Sonia Stachowiak, Koło Naukowe STN Katedry i Kliniki Ortopedii Szczękowej i Ortodoncji, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu

Instrumentalne możliwości oceny parametrów skóry — przegląd piśmiennictwa

STRESZCZENIE

Autorzy dokonali przeglądu piśmiennictwa dotyczącego najczęściej używanych urządzeń do pomiarów parametrów skóry. Wyselekcjonowano przyrządy do pomiaru: elastyczności skóry Cutometer® (Courage-Khazaka, Koln, Germany), Reviscometer® RVM600; pomiaru nawodnienia przy pomocy takich właściwości skóry, jak rezystancja, pojemność, przewodzenie i impedancja, służą do tego Corneometer CM 820 and CM 825 (Courage & Khazaka, Koln, Germany), Nova DPM 9003 (Nova Technology Corporation, Gloucester, MA, USA), DermaLab® USB Moisture Module (Cortex Technology, Hadsund, Denmark) i Scalar Moisture Checker MY-808S (Scalar Corporation, Japan), do zbadania przezskórnej utraty wody (TEWL) za pomocą
Introduction

The skin is the largest organ of the human body. It is a specific barrier which, while receiving stimuli, enables contact with the outside world, and protects the body against infections, participates in thermoregulation, vitamin D metabolism and the immune processes of the organism. The growing importance of healthy, youthful-looking skin as a determinant of beauty has now become a challenge for pharmaceutical and cosmetic companies which carry out complex tests to measure skin parameters. Many highly advanced biophysical methods have been developed to objectively assess the structure, function and mechanical properties of the skin without compromising its integrity. Precision, sensitivity and repeatability, operator independence and validation make modern devices extremely useful. These techniques describe: surface properties such as moisture, dryness, surface lipid content, color and pigmentation, facial sculpture and wrinkles, and skin functions such as blood flow, evaporation, sweating. In clinical practice, the most frequently used method of examining skin lesions is dermatoscopy. This work, however, focuses on devices used to monitor the condition of the skin and its changes under the influence of drugs, cosmetics and external factors [1].

Keywords: measurement of skin parameters, instrumental skin examination.

Wstęp

Skóra jest największym organem ludzkiego ciała. Stanowi swoistą barierę, która, odbierając bodźce, umożliwia kontakt ze światem zewnętrznym, a także ochrania organizm przed infekcjami, bierze udział w termoregulacji, metabolizmie witamin D i procesach odpornościowych ustroju. Rosnące znaczenie zdrowej, młodo wyglądającej skóry jako wyznacznika urody stało się w dzisiejszych czasach wyzwaniem dla firm farmaceutycznych i kosmetycznych do przeprowadzania skomplikowanych badań parametrów skóry. Opracowano wiele wysoce zaawansowanych metod biofizycznych do obiektywnej oceny struktury, funkcji oraz właściwości mechanicznych skóry bez naruszania jej integralności. Precyzyjność, czułość i powtarzalność, niezależność od operatora i walidacja czynią nowoczesne urządzenia niezwykle użytelnymi. Techniki te opisują: właściwości powierzchniowe, takie jak: wilgotność, suchość, zawartość lipidów powierzchniowych, kolor i pigmentacja, rzeźba i zmarszczki oraz funkcje skóry, takie jak: przepływ krwi, parowanie, pocenie. W praktyce klinicznej najczęściej używaną metodą badania zmian skórnych jest dermatoskopia. Ta praca skupia jednak się na urządzeniach służących do monitorowania stanu skóry i zachodzących w niej zmian pod wpływem stosowania leków, kosmetyków oraz oddziaływania czynników zewnętrznych [1].
Aim

The aim of the study is to present various possibilities of skin assessment based on the publication.

Material and Methods

The literature was analyzed in the PubMed, ResearchGate and GoogleScholar online databases by entering the following keywords: skin parameters measurement, skin examination. 97 scientific articles were obtained. After the analysis, publications were selected dealing with the issue of skin parameters measurements in medical testing. After analysis of the literature, the materials were divided into 7 parts distinguishing individual skin parameters such as: elasticity, hydration, percutaneous water loss, high-frequency ultrasound measurement, skin pH, sebum and skin phototype.

Results

Measuring the elasticity of the skin
The viscoelasticity of the skin surface is determined by elastin and collagen fibers. As a result of skin aging and many other additional factors, the fiber network becomes stiffer and focused, which leads to sagging skin and the formation of wrinkles. The measurement of skin’s viscoelastic properties is therefore a true indicator of the true biological age of the skin [14]. It is the most frequently studied parameter of the skin. It is performed to examine changes in the skin with age and to demonstrate the effectiveness of cosmetic products [9, 19]. There are many devices on the market to measure skin elasticity. Their action is based on various methods of assessing the mechanical properties of the skin. Cutometer® (Courage-Khazaka, Koln, Germany) is recognized as the gold standard in the measurement of skin elasticity, the measuring principle of which is based on the suction method in which negative pressure mechanically deforms the skin [17]. The pressure generated in the device pulls the skin into the probe hole, inside which the penetration depth is determined using a non-contact optical measuring system and then after a certain time the skin is released. The resistance of the skin to negative pressure (firmness) and its ability to return to its original position (elasticity) are displayed in real time of measurement as curves (penetration depth in mm / time). Based on these curves, it

Cel

Celem pracy jest ukazanie różnych możliwości oceny skóry na podstawie publikacji.

Materiał i metody

Dokonano analizy piśmiennictwa w bazach internetowych PubMed, ResearchGate, GoogleScholar, wpisując słowa kluczowe: pomiar parametrów skóry, badanie skóry. Uzyskano 97 artykułów naukowych. Po analizie wybrano publikacje poruszające problematykę pomiarów parametrów skóry z zastosowaniem urządzeń do pomiarów parametrów skóry w medycynie. Po analizie piśmiennictwa materiały podzielono na 7 części wyodrębniających poszczególne pomiary parametrów skóry, takie jak: elastyczność, nawodnienie, przesz skórną utratę wody, pomiar ultrasonografii wysokiej częstotliwości, pH skóry, sebum i fototypu skóry.

Wyniki

Pomiar elastyczności skóry
O lepkosprężystości powierzchni skóry decydują włókna elastyków i kolagenu. Na skutek starzenia się skóry oraz wielu innych dodatkowych czynników sieć włókien staje się sztywniejsza i skupiona, co prowadzi do wiotczenia skóry i powstawania zmarszczek. Pomiar właściwości lepkosprężystych skóry jest zatem prawdziwym wskaźnikiem rzeczywistego biologicznego wieku skóry [14]. Jest to najczęściej badany parametr skóry. Wykonuje się go, aby zbadać zmiany zachodzące w skórze wraz z wiekiem oraz w celu wykazania efektywności produktów kosmetycznych [9, 19]. Na rynku dostępnych jest wiele urządzeń do pomiaru elastyczności skóry. Ich działanie oparte jest na różnych metodach oceny mechanicznych właściwości skóry. Jako złoty standard w pomiarze elastyczności skóry uznawany jest Cutometer®(Courage-Khazaka, Koln, Germany), którego zasadą pomiaru opiera się na metodzie ssania, w której podciśnienie mechanicznie deformuje skórę [17]. Ciśnienie powstale w urządzeniu wciąża skórę w otwór sondy, wewnątrz której określa się głębokość penetracji za pomocą bezdotykowego optycznego układu pomiarowego i następnie po określonym czasie skóra jest uwalniana. Odporność skóry na działanie podciśnienia (jedność) i jej zdolność do powrotu do pierwotnej pozycji (elastyczność) są wyświetlane w czasie rzeczywi-
is possible to calculate a number of interesting measurement parameters related to the elastic and viscoelastic properties of the skin surface and skin aging [12]. There are eight parameters determined with the Cutometer® related to flexibility, which are: R0 (stretch / firmness), R1 / R4 (recovery ability), R2 (overall elasticity), R3 / R9 (fatigue), R5 (elasticity) net), R6 (viscoelasticity), R7 (ratio of elastic recovery to total deformation), R8 (total stress relaxation) [10]. Cutometer® skin measurements may be supplemented with additional skin directivity measurements taken with the Reviscometer®RVM600. This measurement is based on the measurement of the time required for an acoustic pulse to travel from the transmitter to the receiver defined as resonance running time (RRT). There are two needle sensors on the skin: one emitting an acoustic shock wave, and the other receiving it. The time it takes the wave to travel from the emitter to the receiver for the measured parameter. The shock wave propagates through the fibers of the skin differently depending on moisture and elasticity. The higher the RRT, the lower the skin elasticity. Measurements at different angles (from 0° to 350°) in the same place of the body correlate exceptionally well with the anisotropy of stym pomiaru jako krzywe (głębokość penetracji w mm/czasie). Na podstawie tych krzywych można obliczyć szereg interesujących parametrów pomiarowych związanych z właściwościami sprężystymi i lepkosprężystymi powierzchni skóry i starzenia się skóry [12]. Istnieje osiem parametrów wyznaczonych przy pomocy urządzenia Cutometer® związanych z elastycznością, którymi są: R0 (rozciągliwość/jędrność), R1/R4 (zdolność powrotu do stanu pierwotnego), R2 (ogólna elastyczność), R3/R9 (zmęczenie), R5 (elastyczność netto), R6 (lepkosprężystość), R7 (stosunek odzysku sprężystego do całkowitego odkształcenia), R8 (całkowita relaksacja po naciśku) [10]. Pomiary skóry wykonane za pomocą Cutometer® mogą zostać uzupełnione dodatkowymi pomiarami kierunkowości sił działających na skórę, wykonanymi za pomocą urządzenia Reviscometer®RVM600. Pomiar ten opiera się na pomiarze czasu wymaganego do przejścia impulstu akustycznego z nadajnika do odbiornika definicjiowego jako resonance running time (RRT). Na skórze umieszczone są dwa czujniki igłowe: jeden emitujący akustyczną falę uderzeniową, a drugi ją odbierający. Czas potrzebny fali do przejścia z emitera do odbiornika to mierzony parametr. Fala uderzeniowa rozchodzi

▲ Figure 1. Reviscometer® RVM600 and Cutometer® – measurement methods [12]
▲ Rycina 1. Reviscometer® RVM600 i metoda pomiaru; Cutometer® i metoda pomiaru [12]

▲ Figure 2. Reviscometer® RVM600 and Cutometer® – measurement methods [24]
▲ Rycina 2. Reviscometer® RVM600 i metoda pomiaru; Cutometer® i metoda pomiaru [24]
Langer’s line, ie the biological animal [12]. This non-invasive method of measuring the directivity of tension provides more information related to the aging process and is used to investigate the relationship between aging and the directivity of mechanical forces acting on the skin, supports the assessment of skin aging, it serves to orient the incision during skin operations, and provides effective preventive and repair support [8].

Measuring hydration
Parameters such as hydration of the stratum corneum (SCH) or transepidermal water loss (TEWL) are used, for example, as indicators of skin barrier status and integrity [1]. Adequate skin hydration is critical to the function of the skin and the health of the body as a whole. The skin’s ability to hold water is primarily related to the stratum corneum-SC, which acts as a barrier to water loss. A water content of SC > 10% ensures a “normal”, healthy skin appearance [2]. Hydration measurement is the primary measurement in all biomedical and cosmetic tests. It is measured by testing the effectiveness and safety of all skin care cosmetics and products, thanks to electrical instruments based on the electrical properties of the skin, such as resistance, capacitance, electrical conductivity and impedance. There are five electrical devices available to assess skin hydration based on the capacitance or conductivity method: Corneometer CM 820 and CM 825 (Courage & Khazaka, Koln, Germany), Nova DPM 9003 (Nova Technology Corporation, Gloucester, MA, USA), DermaLab® USB Moisture Module (Cortex Technology, Hadsund, Denmark) and Scalar Moisture Checker MY-808S (Scalar Corporation, Japan) [10]. One of the most commonly used devices to measure skin hydration status is the Corneometer® (Courage-Khazaka, Koln, Germany), which can be used for clinical measurements of skin hydration due to the objectivity and sensitivity of the measurements. It records the water content by measuring the high-frequency (0.9–1.2 MHz) high-frequency dielectric medium in the skin. Two metal plates are insulated with an insulating material called a dielectric as a capacitor. After connecting the voltage source to the capacitor, electrons flow from one plate above the terminal to the other. Most of the materials (dielectric constant <7) introduced between the plates of the capacitor will increase its capacity compared to the vacuum capacitor, eg water

Pomiar nawodnienia
Parametry, takie jak nawodnienie warstwy rogowej naskórka (SCH) lub przeznaskórka utrata wody (TEWL) stosowane są na przykład jako wskaźniki statusu i integralności bariery skórnej [1]. Odpowiednie nawodnienie skóry ma kluczowe znaczenie dla pełnionej przez skórę funkcji oraz utrzymania zdrowia całego organizmu. Zdolność skóry do utrzymywania wody jest przede wszystkim związana z warstwą rogową naskórka (stratum corneum – SC), który odgrywa rolę bariery dla utraty wody. Zawartość wody w SC > 10% zapewnia “normalny”, zdrowy wygląd skóry [2]. Pomiar nawodnienia jest podstawowym pomiarem we wszystkich biomedycznych i kosmetycznych badaniach. Mierzony jest podczas testowania skuteczności i bezpieczeństwa wszystkich kosmetyków i produktów do pielęgnacji skóry, dzięki instrumentom elektrycznym opierającym się na właściwościach elektrycznych skóry, takich jak pomiar rezystancji, pojemności, przewodnictwa elektrycznego oraz impedancji. Istnieje pięć dostępnych urządzeń do oceny stanu nawodnienia skóry w oparciu o metodę pojemności lub przewodnictwa: Corneometer CM 820 and CM 825 (Courage & Khazaka, Koln, Germany), Nova DPM 9003 (Nova Technology Corporation, Gloucester, MA, USA), Derma-Lab® USB Moisture Module (Cortex Technology, Hadsund, Denmark) and Scalar Moisture Checker MY-808S (Scalar Corporation, Japan) [10]. Jednym z najczęściej stosowanych urządzeń do pomiaru stanu nawodnienia skóry jest Corneometer® (Courage-Khazaka, Koln, Germany), który może być stosowany do pomiarów klinicznych nawodnienia skóry, dzięki obiektywności i czułości pomiarów. Rejestruje on zawartość wody
(dielectric constant 81) [24]. Thus, the change in the water content in the measured skin leads to a change in the capacitance of the measuring capacitor. The electric field of the measurement reaches a depth of 15 μm, and the measurement is expressed in arbitrary units (a.u.), ranging from 0 a.u. (no water) up to 120 a.u. (complete saturation) [3]. According to the manufacturer’s guidelines, the measurements should not differ by more than 4 a.u. If the five repeated measurements of the water content contain two or more values which differ by more than 4 a.u., an additional sixth measurement must be made. This will give a more accurate estimate of the true water content of the skin [16].

The Nova DPM 9003BT™ device is used for research purposes only. It measures the relative hydration of the skin by measuring skin impedance.

Scalar Moisture Checker MY-808S uses the measurement of the stratum corneum capacity value to measure skin hydration. It uses a positive correlation between the water content and the dielectric constant, so that the percentage of skin moisture can be measured. It ensures high accuracy of the current level of skin hydration [11].

Transductive water loss
Transcutaneous water loss (TEWL) is considered to be one of the most important parameters characterizing the skin barrier function. High TEWL values reflect a reduction in the barrier quality and then a high permeability [8]. Assessment poprzez pomiar pojemnościowy wysokiej częstotliwości (0,9–1,2 MHz) ośrodka dielektrycznego w skórze. Dwie metalowe płytki są izolowane za pomocą materiału izolującego, zwanego dielektrykiem, jako kondensator. Po podłączeniu źródła napięcia do kondensatora elektryczny przepływają z jednej płytki nad termi nalem do drugiej. Większość materiałów (stała dielektryczna < 7) wprowadzonych między płytki kondensatora zwiększy jego pojemność w porównaniu do kondensatora próżniowego np. woda (stała dielektryczna 81) [24]. Zatem zmiana zawartości wody w mierzonej skórze prowadzi do zmiany pojemności kondensatora pomiarowego. Pole elektryczne pomiaru sięga na głębokość 15 μm, a pomiar wyrażony jest w jednostkach umownych (arbitrary units – a.u.), w zakresie od 0 a.u. (brak wody) do 120 a.u. (całkowite nasycenie) [3]. Zgodnie z wytycznymi producenta pomiary nie powinny się różnić bardziej niż 4 a.u. Jeśli pięć powtarzających się pomiarów zawartości wody zawiera co najmniej dwie wartości, które różniły się o więcej niż 4 a.u., należy wykonać dodatkowy szósty pomiar. Spowoduje to dokładniejsze oszacowanie prawdziwej zawartości wody w skórze [16].

Urządzenie Nova DPM 9003BT™ wykorzystywane jest wyłącznie do celów badawczych. Służy do pomiaru względnego nawilżenia skóry, poprzez pomiar impedancji skóry.

Scalar Moisture Checker MY-808S do pomiaru nawodnienia skóry wykorzystuje pomiar wartości pojemności warstwy rogowej naskór-
measurement of percutaneous water loss can be performed using various techniques, i.e. open, closed or vented chamber methods. As the "open chamber" measurement is the only method of continuous TEWL assessment without impact on the microenvironment, it is the most common method of measuring transepidermal water loss [15]. It is widely used in medical research to assess the condition of diseased skin, including atopic dermatitis. As the most accurate measurement technique, it forms the basis of commercially available instruments [11]. In the literature, the most commonly used device for measuring TEWL is the Tewameter® TM 300 (Courage-Khazaka, Koln, Germany), which measures the density gradient of water evaporation from the skin, which is proportional to the TEWL value, indirectly via two sensor pairs (temperature and relative humidity) inside an empty cylinder [21].

High frequency ultrasonography
In medicine most useful ultrasound frequencies range between 2–50 MHz. Devices operating in the frequency range from 10 MHz to 100 MHz are called high-frequency scanners and are used in the diagnosis of skin lesions. Higher frequency waves are absorbed more strongly which means that the penetration depth is lower. The scanners are used for the diagnosis of superficial lesions rather than internal organs [20]. In the ultrasound image of the skin, three layers can be distinguished: the entrance echo—a highly echogenic band mainly responsible for the image of the epidermis; the dermis—an intermediate band; the subcutaneous tissue—a low echogenic band. Studies have confirmed that the thickness of the echo of the epidermis in relation to the dermis decreases with age [18]. The ultrasound image of the aging skin allows to distinguish a new additional layer of SLEB (subepidermal low-echogenic band). Ultrasonographically, it is a low-echogenic layer, histopathologically corresponding to skin elastosis, degeneration of elastic fibres and changes in collagen fibre architecture. These parameters are used to describe changes caused by natural ageing and photoaging processes. Additionally, they enable specialists to diagnose particular dermatological diseases and monitor their treatment, as well as tissue reactions to the applied therapeutic substances and cosmetic products. More and more often these parameters are used for imaging skin cancers and their spread in adjacent tissues.

Dub®SkinScanner 75 (TPM Company, Lueneburg, Germany) can handle the following fre-

ka. Wykorzystuje dodatnią korelację pomiędzy zawartością wody a stałą dielektryczną, dzięki czemu można zmierzyć procentową wilgotność skóry. Zapewnia wysoką dokładność pomiaru aktualnego stanu nawodnienia skóry [11].

Przezskórna utrata wody
Przezskórna utrata wody (transpidermal water loss – TEWL) jest uważana za jeden z najważniejszych parametrów charakteryzujących funkcję bariery skórnej. Wysokie wartości TEWL odzwierciedlają obniżenie jakości bariery, a następnie wysoką przepuszczalność [8]. Ocenę przezskórnej utraty wody można przeprowadzić przy użyciu różnych technik, tj. metoda otwartej, zamkniętej lub wentylowanej komory. Jako że pomiar „otwartej komory” jest jedyną metodą ciągłej oceny TEWL bez wpływu na mikrośrodowisko jest to najbardziej rozpoznawana metoda pomiaru przezskórnej utraty wody [15]. Jest ona szeroko stosowana w badaniach medycznych, służy do oceny stanu chorej skóry, między innymi w atopowym zapaleniu skóry. Jako najbardziej dokładna technika pomiarowa stanowi podstawę dostępnych w handlu instrumentów [11]. W piśmiennictwie najczęściej używanym urządzeniem do pomiaru TEWL jest Tewameter® TM 300 (Courage-Khazaka, Koln, Germany), który mierzy gradient gęstości parowania wody ze skóry, który jest proporcjonalny do wartości TEWL, pośrednio przez dwie pary czujników (temperatura i względna wilgotność) wewnątrz pustego cylindra [21].

Ultrasonografia wysokiej częstotliwości
W ultrasonografii wykorzystywanej w medycynie użyczane są częstotliwości 2–50 MHz. Urządzenia pracujące w zakresie częstotliwości od 10 MHz aż do 100 MHz nazywane są skanerami wysokiej częstotliwości i mają zastosowanie w diagnostyce zmian skórnych. Fale o wyższej częstotliwości są absorbowane silniej, co oznacza, że głębokość wnikania jest mniejsza. Skanery te służą do diagnostyki zmian powierzchnich, a nie głębokich narządów wewnętrznych [20]. W obrazie ultrasonograficznym skóry można wyróżnić trzy warstwy: echo wejścia – pasmo echogeniczne odpowiedzialne głównie za obraz naskórka; skórę właściwą – pasmo pośrednie; tkankę podskórną – pasmo nisko echogeniczne. Badania potwierdziły, że grubość echa naskórka w stosunku do skóry właściwej zmniejsza się z wiekiem [18]. Obraz ultrasonograficzny starzejącej się skóry pozwala wyodrębnić nową dodatkową warstwę SLEB.
frequencies 18, 22, 33, 50 or 75 MHz depending on the head used. It therefore gives the researcher a number of possibilities, depending on the layers of skin which are in its interest. The DermaScan® C USB from Cortex Technology performs measurements in the frequency range from 20 to 50 MHz only [13].

Skin pH measurement

The pH scale allows to determine the acidity (< 7.0) or alkalinity of aqueous solutions (> 7.0). The value of 7 is considered to be neutral. The correct pH of the skin ranges from 4.7 to 5.75. Skin with a pH < 5.0 is in better condition than skin with a pH > 5.0. The pH of the skin is acidic, which has a clinical implication, because it inhibits the growth of pathogenic microorganisms while maintaining a normal skin microflora. It is important that the cosmetics, drugs, especially detergents applied to the skin do not disturb the pH value, instead they should help to maintain its normal value [7]. Skin-pH-Meter PH 905 (Courage-Khazaka, Koln, Germany) is used for pH testing. The housing contains both a high quality combination electrode and a glass electrode sensitive to H+ ions. The operation is facilitated by an additional reference electrode, which connects to the probe holder containing the measuring part [23]. An alternative device is the Mettler Toledo product, pH meter ‘1140’, which has a round electrode but no stabilisation, whereas the Skin-pH-Meter PH 900 (Courage-Khazaka, Koln, Germany) has a stabilisation period of 3s and a pointed probe [5].

Sebum measurement

Another parameter used to evaluate the skin is the quantity of skin sebum secretion. Sebum is an oily material produced in mammalian sebaceous glands, consisting of a mixture of triglycerides, wax esters, cholesterol esters and squalene. After sebum is secreted by the sebaceous glands, it moves upwards along the hair shaft and then spreads on the skin. It fulfills the following functions: reduces water loss (TEWL), prevents infections and penetration of contact allergens [22]. In order to measure the amount of sebum, a matt tape is applied on the skin and it absorbs the sebum with a constant pressure of 10 N for 30 sec. The oils absorbed from the skin cause the transparency of the tape, which is then placed in the apparatus to be analysed. The measurement is based on sebum spot photometry, which is measured optically [6, 22]. (subepidermal low-echogenic band). Ultrasonographically is to warstwa niskoechogeniczna, histopathologicznie odpowiadający elastozone skóry, degeneracji włókien elastycznych oraz zmianom architektury włókien kolagenowych. Parametry te wykorzystuje się, opisując zmiany spowodowane naturalnymi procesami starzenia i fotostarzenia. Dodatkowo umożliwiają specjalistom diagnozowanie poszczególnych chorób dermatologicznych i monitorowanie ich leczenia, reakcje tkank na aplikowane substancje lecznicze i produkty kosmetyczne. Coraz częściej parametry te wykorzystuje się do obrazowania zmian nowotworowych skóry oraz szerzenia się ich w tkankach przylegających.

Urządzenie Dub®SkinScanner 75 (TPM Company, Lueneburg, Germany) w zależności od użytej głowicy może obsługiwać następujące częstotliwości 18, 22, 33, 50 lub 75 MHz. Daje zatem badaczowi szereg możliwości w zależności od warstw skóry i naskórka, którym jest zainteresowany w danym momencie. Urządzenie DermaScan® C USB firmy Cortex Technology wykonuje pomiary jedynie w zakresie częstotliwości od 20 do 50 MHz [13].

Pomiar pH skóry

Skala pH pozwala określić kwasowość (< 7,0) lub zasadowość roztworów wodnych (> 7,0). Wartość 7 uważa się za odczyn obojętny. Prawidłowe pH skóry waha się od 4,7 do 5,75. Skóra o pH < 5,0 jest w lepszym stanie niż skóra o pH > 5,0. pH skóry jest kwasowe, co ma inklinacje kliniczne polegające na hamowaniu wzrostu mikroorganizmów chorobotwórczych, jednocześnie utrzymując prawidłową mikroflorę skóry. Istotne jest, aby aplikowane na skórę kosmetyki, leki, a w szczególności detergenty nie zaburzały wartości pH, a wręcz utrzymywały jego prawidłową wartość [7]. Do badania pH stosuje się Skin-pH-Meter PH 905 (Courage-Khazaka, Koln, Germany). W obwodzie znajduje się zarówno wysokiej jakości elektroda kombinowana, jak i elektroda szklana wrażliwa na jony H+. Pracę ułatwia dodatkowa elektroda odniesienia, która łączy się z uchwytem sondy zawierającym część pomiarową [23]. Alternatywnym urządzeniem jest produkt firmy Mettler Toledo, pH meter ‘1140’, który posiada okrągłą elektrodę, ale nie ma stabilizacji, nastomiast Skin-pH-Meter PH 900 (Courage-Khazaka, Koln, Germany) posiada okres stabilizacji 3 s, a elektroda zakończona jest spiczastie [5].
The Sebumeter® SM 815 is a precision analysis instrument manufactured by the German company Courage-Khazaka, Koln, Germany. In addition to the individual level of sebum, the device allows to observe its changes depending on the application of drugs, emollients and other cosmetics on the skin surface, and therefore it is commonly used in test studies [22].

Skin phototype
Skin phototype is a complex parameter, determined mainly by pigments such as haemoglobin, melanin, bilirubin and carotene. The level of a given pigment varies in response to UV radiation and certain substances, including drugs. When testing skin colour, parameters are determined: Erythema Index (EI), erythema (erythema) refers to localized redness of the skin caused by dilatation of superficial blood vessels, and Melanin Index (MI), melanins are natural pigments present in organisms [12]. For objective colour evaluation, the CIEL*a*b colour space as defined by the International Lighting Commission is used, where L* refers to brightness, a* refers to the colour range from green to red and b* from blue to yellow, while the RGB colour space model refers to the colour coordinates, where R refers to red, G green, B blue. Standardized methods of measuring skin parameters are of great importance in dermatology and cosmetology and relate, among other things, to skin discoloration, its correction and protection. They help to assess the efficacy of UV filters contained in medicinal and cosmetic products [5].

The Mexameter® MX 18 determines the Erythema Index and Melanin Index values. The built-in probe sends out waves of three lengths: 1. 660 nm (red) 2. 880 nm (infrared) 3. 568 nm (green). The red and infrared waves correspond to the melanin measurements and the red and green waves correspond to the haemoglobin absorption. CM-2600d Spectrophotometer (Konica Minolta, Tokyo, Japan) uses wavelengths 360 nm-740 nm. In the Minolta Chromameter CR-200 (Konica Minolta, Tokyo, Japan) the skin surface is illuminated by a xenon lamp. The light reflected perpendicularly to the surface is analyzed by 6 photocells, three of which are used to measure the light source and three to measure the reflected light sample [11, 4].

Pomiar sebum
Kolejnym parametrem służącym do oceny skóry jest ilość wytwarzanego sebum, czyli łoju skórnego. Sebum jest oleistym materiałem produkowanym w gruczołach łojowych ssaków, składającym się z mieszaniny trójglicerydów, estrów woskowych, estrów cholesterolu i skwalu. Po wydzieleniu sebum przez gruczoły łojowe przesuwa się ono w górę wzdłuż łodygi włosa, a następnie rozprzestrzenia się na skórze. Spełnia następujące funkcje: zmniejszenie utraty wody (TEWL) oraz zapewnienie warstwy ochronnej przed różnego pochodzenia infekcji oraz przenikaniem alergenów kontaktowych [22]. Taśmę matową pochłaniającą serum aplikuje się na skórę przy użyciu stałego nacisku o sile 10 N przez 30 s. Wchłaniające się oleje ze skóry powodują przejrzystość taśmy, którą następnie umieszcza się w aparacie i analizuje. Pomiar oparty jest na fotometrii plamki łoju, która jest mierzona optycznie [6, 22].

Sebumeter® SM 815 jest precyzyjnym przyrządem analitycznym produkowanym przez niemiecką firmę Courage-Khazaka, Koln, Germany. Urządzenie to oprócz indywidualnego poziomu łoju pozwala obserwować jego zmiany w zależności od aplikacji leków, emolientów oraz innych kosmetyków, dlatego jest powszechnie używane w badaniach testowych [22].

Fototyp skóry
Fototyp skóry jest złożonym parametrem determinowanym głównie przez pigmenty, takie jak hemoglobina, melanina, bilirubina i karoten. Poziom danego barwnika zmienia się w odpowiedzi na promieniowanie UV i niektóre substancje, w tym leki. Podczas badania koloru skóry określa się parametry: Erythema Index (EI), rumień (erytema) odnosi się do zlokalizowanego zaczerwienienia skóry spowodowanego rozszerzeniem powierzchnich naczyń krwiowych, oraz Melanin Index (MI), melaniny to naturalne pigmenty występujące w organizmach [12]. Do obiektywnej oceny barw wykorzystywana jest przestrzeń barw CIEL*a*b ustalona przez Międzynarodową Komisję Oświetleniową, gdzie L* odnosi się do jasności, a* oznacza przedział barw od zielonej do czerwonej, a b* od niebieskiej do żółtej, natomiast model przestrzeni barw RGB odnosi się do współrzędnych barw, gdzie R oznacza barwę czerwoną, G zieloną, B niebieską. Standardyzowane metody pomiarów parametrów skóry mają duże znaczenie w dermatologii i kosmetologii i odnoszą się m.in. do
Summary

When selecting a device to measure the biomechanical properties of the skin, the mechanism of the device and the accuracy of the measurement should be taken into account. In order for a test result to be reliable, the manufacturer’s recommendations regarding the measurement technique and the conditions under which the test is performed must be strictly adhered to. A review of the literature indicates that the most frequently chosen device is Cutometer® (Courage-Khazaka, Koln, Germany) - for measuring elasticity, Corneometer® (Courage-Khazaka, Koln, Germany) - for measuring skin hydration, Tewameter® (Courage-Khazaka, Koln, Germany) - for measuring percutaneous water loss, Skin-pH-Meter PH 905 (Courage-Khazaka, Koln, Germany) - a measure of the skin pH, Sebumeter® (Courage-Khazaka, Koln, Germany) - a measure of the amount of sebum secreted, The Mexameter® MX 18 (Courage-Khazaka, Koln, Germany) - a determination of the skin phenotype and Dub® SkinScanner 75 (TPM Company, Lueneburg, Germany) - used for skin ultrasonography.

Podsumowanie

Podczas wyboru urządzenia do pomiaru biomechanicznych właściwości skóry należy kierować się mechanizmem działania urządzenia oraz dokładnością pomiaru. Aby wynik badania danym urządzeniem był wiarygodny, należy ścisłe przestrzegać zaleceń producenta odnośnie techniki pomiarowej oraz warunków, w których przeprowadzone jest badanie. Na podstawie przeglądu piśmiennictwa stwierdza się, że najczęściej wybieranym urządzeniem jest Cutometer® (Courage-Khazaka, Koln, Germany) – do pomiaru elastyczności, Corneometer® (Courage-Khazaka, Koln, Germany) – do pomiaru nawodnienia skóry, Tewameter® (Courage-Khazaka, Koln, Germany) – do pomiaru przezskórnej utraty wody, Skin-pH-Meter PH 905 (Courage-Khazaka, Koln, Germany) – do pomiaru pH skóry, Sebumeter® (Courage-Khazaka, Koln, Germany) – do pomiaru ilości wydzielanego sebum, The Mexameter® MX 18 (Courage-Khazaka, Koln, Germany) – do określenia fenotypu skóry oraz Dub® SkinScanner 75 (TPM Company, Lueneburg, Germany) – stosowane do ultrasonografii skóry.
Acknowledgements

Conflict of interest statement
The authors declare no conflict of interest.

Funding sources
There are no sources of funding to declare.

References / Piśmiennictwo
1. Trojahn C, Dobos G, Lichterfeld A, Blume-Peytavi U, Kottner J. Characterizing Facial Skin Ageing in Humans: Disentangling Extrinsic from Intrinsic Biological Phenomena. Hindawi Publishing Corporation/BioMed Research International 2015;1:1-9.

2. Blank IH. Factors which influence the water content of the stratum corneum. J Invest Dermatol 1952;18:433-40.

3. Fluhr JW, Gloor M, Lazzерini S, Kleez P, Grieshaber R, Berardesca E. Comparative study of five instruments measuring stratum corneum hydration (Corneometer CM 820 and CM 825, Skicon 200, Nova DPM 9003, Dermalab), Part I In vitro. Skin Res Technol 1999;5:161-170.

4. Clarys P, Alexaerets K, Lambrecht R, Barel AO. Skin color measurements: comparison between three instruments: the Chromometer(R), the DermaSpectrometer(R) and the Mexameter(R). Skin Research and Technology 2000;6:230-238.

5. Eilers C, Ivens I, Mfiller M, Senderovitz T, Serup J. Comparison of two pH meters used for skin surface pH measurement: the pH meter ‘pH900’ from Courage &Khazaka versus the pH meter ‘1140’ from Mettler Toledo. Skin Research and Technology 2001;7:84-89.

6. Youn S, Na J, Choi S, Hun Huh Ch, Park K. Regional and seasonal variations in facial sebum secretions: a proposal for the definition of combination skin type. Skin Research and Technology 2005;11:189-195.

7. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5.5, which is beneficial for its resident flora. Int J Cosmet Sci 2006;28:359.

8. Pedersen L, Jemec G. Mechanical Properties and Barrier Function of Healthy Human Skin. Acta Derm Venereol 2006;86:308-311.

9. Krueger N, Luebeberding S, Otterm M, Streker M, Kerscher M. Age-related changes in skin mechanical properties: a quantitative evaluation of 120 female subjects. Skin Research and Technology 2011;17:141-148.

10. Choi J, Kwon S, Hun Huh Ch, Park K, Woong Yoon S. The influences of skin visco-elasticity, hydration level and aging on the formation of wrinkles: a comprehensive and objective approach. Skin Research and Technology 2012;20:1-7.

11. Mohamad M, Msabbri A, MatJafri M. Non Invasive Measurement of Skin Hydration and Transepidermal Water Loss in Normal Skin. IEEE Colloquium on Humanities, Science &Engineering Research CHUSER 2012;3-4.

12. Neto P, Ferreira M, Bahia F, Costa P. Improvement of the methods for skin mechanical properties evaluation through correlation between different techniques and factor analysis. Skin Research and Technology 2013;19:405-416.

13. Mlosek R, Malinowska S. Ultrasonographic obraz skóry, aparatura i podstawy obrazowania. J Ultrason 2013;13:212-221.

14. Fluhr J, Darlenski R. Transepidermal Water Loss (TEWL). Non Invasive Diagnostic Techniques in Clinical Dermatology 2014:353-356.

15. Luebeberding S, Krueger N, Kerscher M. Mechanical properties of human skin in vivo: a comparative evaluation in 300 men and women. Skin Research and Technology 2014;20:127-135.

16. Anthonissen M, Daly D, Peeters R, Van Brussel M, Fieuws S, Moortgat P, Flour M, Van den Kerckhove E. Reliability of Repeated Measurements on Post-Burn Scars with Corneometer CM 825®. Skin Research and Technology 2015;21:302-312.

17. Hashmi F, Wright C, Nester Ch, Lam S. The reliability of non-invasive biophysical outcome measures for evaluating normal and hyperkeratotic foot skin. Journal of Foot and Ankle Research 2015;8:28.

18. Miyuki Tanaka M, Yamamoto Y, Misawa E, Nabeshima K, Saito M, Yamauuchi K, Abe F, Furukawa F. Effects of Aloe Sterol Supplementation on Skin Elasticity, Hydration, and Collagen Score: A 12-Week Double-Blind, Randomized, Controlled Trial. Skin PharmacolPhysiol 2016;29:309-317.

19. Barcaui E, Carvalho A, Lopes F, Pilheiro-Maceira J, Barcaui C. High frequency ultrasound with color Doppler in dermatology. An. Bras. Dermatol 2016;91:262-273.

20. Crowther JM. Method for quantification of oils and sebum levels on skin using the Sebumeter®. International journal of cosmetic science Lubnt J Cosmet Sci. 2016;38:210-6.

21. Gardien KL, Baas DC, de Vet HC, Middelkoop E. Transepidermal water loss measured with the Tewameter TM300 in burn scars. Burns 2016;42:1455-1462.

22. Firooz A, Rajabi-Estarabadi A, Zartab H, Pazhohi N, Fani F, Janani L. The influence of gender and age on the thickness and echodensity of skin. Skin Research and Technology 2016;23.

23. Prakash C, Bhargava P, Tiwari S, Majumdar B, Bhargava RK. Skin Surface pH in Acne Vulgaris: Insights from an Observational Study and Review of the Literature. J Clin Aesthetic Dermatol 2017;10:33-39.

24. Strona internetowa Courage + Khazaka GmbH. Corneometer® CM 825, https://www.courage-khazaka.de/en/16-wissenschaftliche-produkte/alle-produkte/183-corneometer-e. Dostęp 23.06.2020.