Characterization of Periplasmic Protein BP26 Epitopes of *Brucella melitensis* Reacting with Murine Monoclonal and Sheep Antibodies

Jinlang Qiu1, Wenjing Wang1, Jingbo Wu1, Hui Zhang2, Yuanzhi Wang2, Jun Qiao2, Chuangfu Chen2, Goeye F. Gao3, Jean-Pierre Allain1,4, Chengyao Li1*

1 Department of Transfusion Medicine, Southern Medical University, Guangzhou, China, 2 Animal Science and Technology College, Shihzei University, Shihzei, China, 3 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China, 4 Department of Haematology, University of Cambridge, Cambridge, UK

Abstract

More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated *B. melitensis* vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of *B. melitensis* M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90.

Introduction

Brucella are gram-negative intracellular bacterial pathogens of both humans and animals. More than 50,000 new cases of human brucellosis are annually reported, which may greatly be underestimated according to the World Health Organization [1]. Since 1995 the incidence of human brucellosis has sharply increased in China [2]. Over 35,000 human cases were identified in 2010 by the laboratories of Chinese Center for Disease Control and Prevention (CDC) [3], and about 83% cases were caused by *B. melitensis* infected sheep or goats [2,4]. Vaccination for animals is considered as the most efficient way to control brucellosis. An attenuated *B. melitensis* vaccine M5-90 has been mostly used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of *B. melitensis* M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90.

Results

Production of monoclonal antibodies to *B. melitensis* BP26

Recombinant periplasmic protein BP26 (rBP26) of *B. melitensis* M5-90 was produced by gene expression in E. coli and used as the immunogen for monoclonal antibody preparation. A panel of 16mer overlapping peptides, 9mer shortened peptides and mutated peptides derived from M5-90 BP26 were synthesized for mAb’s recognition analysis and epitope mapping (Table 1). A total of 29 mAbs reactive to rBP26 of *B. melitensis* were selected from screening of hybridomas by indirect-ELISA. Of 29 clones, 18 IgG1 (k), 1 IgG2a (k), 8 IgG2b (k), 1 IgG3 (k) and 1 IgA (k) were identified (Table 2).

E-mail: chengyaoali@hotmail.com

These authors contributed equally to this work.

Table 1.

Epitope Type	Peptide	Reactivity
Linear		
Semi-Conformational		
Conformational		

Table 2.

Clone	IgG1 (k)	IgG2a (k)	IgG2b (k)	IgG3 (k)	IgA (k)
1					
2					
3					

E-mail: chengyaoali@hotmail.com

These authors contributed equally to this work.
Table 1. Peptides derived from BP26 of *B. melitensis* M5-90.

Peptide	Sequence	Position
Group A		
P01	MNTRASNFLAAS	1–12
P02	SNFLAASSTIMLVGA	6–21
P03	TMLGVGASLPFAAQFE	15–30
P04	LPFAQEAQGMPNMTQPAP	24–39
P05	MTQPAFIATVGGMN	33–48
P06	VTGEMGNTASPDMAIL	42–57
P07	SFDPAINLSVLRQAK	51–66
P08	SLRQAKTAREMTAN	60–75
P09	REAMTANEAMTKVLD	69–84
P10	AMTKVLDAMKAGIED	78–93
P11	KKAGIEDRLQTGGIN	87–102
P12	LQTGGINIQPYIVYPD	96–111
P13	PIYVYDQDKNNLKEPT	105–120
P14	NNLKEPTITGYSVST	114–129
P15	GYSVSTLTVQRELA	123–138
P16	VRRELANVKGILDES	132–147
P17	GKILDESVTLGVNQGG	141–156
P18	LGVNGCGDNLNVNP	150–165
P19	NLVNDNPSAVINERK	159–174
P20	VINEARAKNATAK	168–183
P21	VANAIAKAKTLADAAG	177–192
P22	TLADAGVSVGLRVVEI	186–201
P23	LGRVEIESLSRPPMP	195–210
P24	LSRPPMPMPIARGQFR	204–219
P25	IARGQFRTMLAAAAPDN	213–228
P26	LAAAPPNSVPIAAGEN	222–237
P27	PIAAGENSYNV	231–241
P28	GENSVNSVNVVVFELK	235–250
P12$'$	NIQPYIVYPDKNNLK	102–117

Group B		
P1101	GIEDRDLQT	90–98
P1102	IERDLQT	91–99
P1103	ERDLQTG	92–100
P1104	DRDLQTGI	93–101
P1105	RDLQTGGIN	94–102
P1106	DLQTGG$\text{I}$$\text{N}$	95–106
P1201	NIQPIYYV	101–109
P1202	NIQPIYYVP	102–110
P1203	IQPIYYVP	103–111
P1204	QPIYYVPDD	104–112
P1205	PIYPYD	105–113
P1206	IYYVPD	106–114

Group C		
MutP11	KKAGIEDRLQG	87–102
MutP12$'$	NIQPIYYVPDKNNLK	102–117

Table 1. Cont.

Peptide	Sequence	Position
Group D		
HCV NS3	SGLGLNAVAYYRGLDV	

Four groups of synthesized peptides are listed. Group A, 27 of 16mer peptides and 2 of 12 or 11mer peptides with 7mer overlapping deriving from BP26 of *B. melitensis* M5-90. Group B, 12 of 9mer peptides with 8mer overlapping shortening from P11 or P12. Group C, The mutated peptides basing on P11 and P12; in which two site mutations are presented in underline bold letters. Group D, an HCV NS3 peptide deriving from an HCV 1b strain in the laboratory. A single letter was used for encoding amino acid (aa) sequence and aa position was numbered from BP26 protein.

Plos ONE | www.plosone.org | 2 March 2012 | Volume 7 | Issue 3 | e34246

Identification of epitope recognitions of monoclonal antibodies to *B. melitensis* BP26

To classify mAb’s epitope recognitions, 29 mAbs were tested for reactivity with a panel of 28 of 16mer overlapping peptides and native BP26 containing membrane protein extracts (NMP) of M5-90, respectively. Eleven mAbs reacted with three peptides P11, P12 or P13 in peptide-ELISA (Figure 1A), 19 mAbs reacted with the denatured native BP26 of NMP in Western-Blot (Figure 1B), 16 mAbs recognized non-denatured native BP26 of NMP in Dot-ELISA (Figure 1C), and 2 mAbs were only reactive with recombinant BP26. According to the nature of antigen, the epitopes of natural periplasmic protein BP26 were classified into three groups of linear, semi-conformational and conformational epitopes, which were recognized by 11, 8 and 8 mAbs, respectively (Table 2).

Identification of BP26 epitopes recognized by monoclonal antibodies

Of 11 mAbs reacted with peptides (Table 1 and 2), mAbs 3D7, 3H5 and 4D9 were reactive with P11 (aa 87–102); mAbs 2A4, 2H9, 3H6 and 5F12 were reactive with P12 (aa 96–111); mAbs 1G1, 5A5, 5B12 and 7C6 were reactive with both P12 and P13 (aa 105–120) (Figure 1A). The amino acid sequences indicated that P11 and P12 spanned the different linear epitopes, while P13 shared a partly linear epitope with P12. Seven mer amino acids overlapped between P11 and P12 (Table 1). In order to distinguish these two epitopes, a 16mer peptide designated as P12$'$ (aa 102–117) within only 1mer overlapping with P11 was synthesized and showed reactivity similar to P12 in Peptide-ELISA (Figure 1A).

To localize the epitopes of BP26, three truncated proteins of rBP26-1 (aa 29–250), rBP26-2 (aa 48–131) and rBP26-3 (aa 129–250) were tested by ELISA for reacting with 16 semi-conformational and conformational mAbs. All of those mAbs reacted with the truncated rBP26-1 protein, 5 reacted with rBP26-2, 2 reacted with rBP26-3 and 1 reacted with both rBP26-2 and rBP26-3 (Table 2). Other 9 mAbs were not reactive with the shorter rBP26 proteins.

Fine mapping for the linear epitopes of BP26

In order to fine mapping the two linear epitopes, a panel of six 9mer peptides with 8mer amino acid overlap shortened from P11 or P12 was tested for competitive binding to mAbs 3H5, 2A4 and 5A5 in the P11 or P12 coated plates by Peptide-ELISA, respectively. The binding of mAb 3H5 to P11 was inhibited by the 9mer peptide P1104 and P11 itself (Figure 2A). The core motif of amino acid residues within P11 recognized by mAb 3H5...
was \(^{93}\text{DRDLQTTGGI}^{101}\) (position 93 to 101 within BP26). The bindings of mAbs 2A4 and 5A5 to P12 coated plates were competitively inhibited by five 9mer peptides P1202, P1203, P1204, P1205 and P12 itself (Figure 2B and 2C). P1203 and P1204 strongly inhibited both 2A4 and 5A5 mAbs binding to P12, while P1202 and P1205 inhibited weakly and P1206 did not inhibit (Figure 2B and 2C). Comparing strongly reactive sequences of 9mer peptides and P12, the core motif of amino acid residues within P12 was \(^{104}\text{QPIYVYPD}^{111}\).

For further confirming those two linear epitopes of BP26, two mutated peptides MutP11 and MutP12 were synthesized by substituting two amino acids D93N and D95N from P11 or substituting amino acids Y107F and Y109F from P12, respectively (Figure 2B and 2C). Comparing strongly reactive sequences of 9mer peptides and P12, the core motif of amino acid residues within P12 was \(^{104}\text{QPIYVYPD}^{111}\).

Reactivity of linear epitope peptides and proteins of BP26 to sheep sera

To evaluate the potential capacity of those two new epitopes for raising antibody response in sheep, we tested 137 sheep sera with P11-KLH and P12-KLH conjugates, rBP26 and native BP26 containing membrane protein extracts (NMP) of M5-90 by ELISAs. Of 137 sheep sera, 59 (39 infected and 20 vaccinated) were positive using either Standard Tube Agglutination Test (SAT) or Rose Bengal Plate Test (RBPT). Sheep antibody response to epitope peptides, rBP26 or NMP were analyzed in line with the results obtained by combination of SAT and RBPT, and their ROC curves were plotted (Figure 3). In term of sensitivity and specificity of peptides and proteins reacting to sheep antibodies, Figure 3 showed that the detection of reactive antibodies in the order by NMP, rBP26, P12-KLH or P11-KLH antigens in ELISA was closer to the result by a combination of SAT and RBPT \((P<0.001-0.002)\). Two linear epitope peptide conjugates (P11-KLH and P12-KLH) were reactive to 65–70% sheep sera in peptide-ELISA consistent with the standard serological tests \((P<0.001 \text{ and } 0.002)\) (Figure 3A, 3B and 3C).

Table 2. Classification of mAbs reactive to the epitopes of native BP26.

MAb	Isotype	Peptide-ELISA	Western-Blot	Dot-ELISA	Epitope type (aa position)
3D7	IgA (k)	++	--	--	L (93–101)
3H5	IgG2b (k)	+	--	--	L (93–101)
4D9	IgG2b (k)	+	--	+	L (93–101)
1G1	IgG1 (k)	+	--	--	L (104–111)
5A5	IgG2b (k)	+	--	+	L (104–111)
5B12	IgG1 (k)	+	--	+	L (104–111)
7C6	IgG2b (k)	+	--	--	L (104–111)
2A4	IgG1 (k)	+	+	--	L (104–111)
3H6	IgG1 (k)	+	+	+	L (104–111)
2H9	IgG1 (k)	+	+	+	L (102–117)
5F12	IgG1 (k)	+	+	--	L (102–117)
1A1	IgG1 (k)	--	+	+	SC (29–250)
1A6	IgG1 (k)	--	+	--	SC (29–250)
1B7	IgG1 (k)	--	--	+	SC (29–250)
1C11	IgG1 (k)	--	+	--	SC (48–131)
4A12	IgG2b (k)	+	--	--	SC (48–131)
4D7	IgG2b (k)	--	+	--	SC (129–250)
7A8	IgG2b (k)	--	+	--	SC (48–131)
5H3	IgG1 (k)	--	+	--	SC (48–131)
3H3	IgG2b (k)	--	--	+	C (48–131)
3C3	IgG1 (k)	--	--	+	C (48–131, 129–250)
2C12	IgG1 (k)	--	--	+	C (29–250)
3F9	IgG1 (k)	--	--	+	C (29–250)
4A2	IgG1 (k)	--	--	+	C (29–250)
4E6	IgG2a(k)	--	--	+	C (29–250)
4E12	IgG1 (k)	--	--	+	C (29–250)
4G1	IgG3 (k)	--	--	+	C (29–250)
3H2	IgG1 (k)	--	--	+	Un-classified
4E4	IgG1 (k)	--	--	--	Un-classified

MAbs were individually tested to react with the synthetic peptides by Peptide-ELISA, denatured and non-denatured native BP26 containing membrane protein extracts of M5-90 (NMP) by Western-Blot or Dot-ELISA, respectively. According to the nature of antigen, the epitopes recognized by mAbs were classified into three statuses of linear (L), semi-conformational (SC) and conformational (C) epitopes. Un-classified indicates artificial epitopes of recombinant BP26.

doi:10.1371/journal.pone.0034246.t002
Figure 1. Reactivity of mAbs to 16mer peptides and native BP26 containing membrane protein extracts of *B. melitensis* M5-90. (A) Bindings of mAbs to 16mer overlapping peptides in Peptide-ELISA. Twenty-nine of 16mer overlapping peptides spanning the entire sequence of BP26 were coated to the plates with 5 μg/ml in CBS buffer (pH 9.6). The peptides bound plates were tested with 29 mAb supernatants of hybridomas. An HCV NS3 peptide coated wells were used as negative-controls. Cut off was defined above 2.1 folds of OD value to negative control. The dot line indicates the level of cut off. (B) Reactivity of mAbs to the SDS denatured native BP26 of NMP in Western-Blot. (C) Reactivity of mAbs to non-denatured native BP26 of NMP in Dot-ELISA. NC, a negative control of an un-related mAb to HCV rNS3.

doi:10.1371/journal.pone.0034246.g001

Figure 2. Competitive binding of mAb to the 16mer peptide inhibited by 9mer or mutated peptides in Peptide-ELISA. (A) P11 and mAb 3H5; (B) P12 and mAb 2A4; (C) P12 and mAb 5A5. A volume of 50 μl of supernatants of mAb 2A4, 3H5 or 5A5 cell cultures was pre-mixed with 50 μl of each 9mer peptide dilution (P1101 to P1106 or P1201 to P1206 and control peptides) at concentration of 0, 2, 4, 8, 16 and 32 μg/ml. A volume of 100 μl of the mAb and peptide mixture was added to the 16mer peptides P11 or P12 coated wells. P11 or P12 was used as an inhibitive (positive) control (PC), respectively. One HCV NS3 peptide was used a non-inhibitive (negative) control (NC). (D) Binding of mAbs to P11 and P12 compared with their mutated peptides MutP11 and MutP12.

doi:10.1371/journal.pone.0034246.g002
Table 3, which indicated that both linear epitopes were dominant in M5-90 vaccine elicited antibodies. By using the antigens rBP26 and NMP, the ELISA had higher sensitivity and specificity for detection of antibodies to Brucella infection or vaccination in sheep, for which 83% or 90% were identical to the results from the combined SAT and RBPT (Figure 3C, 3D and Table 3), suggesting that NMP could be a potential antigen in immunoenzyme assay (EIA) for diagnosis or quantification of antibodies to Brucella in infected/vaccinated animals.

Discussion

The live attenuated Brucella melitensis vaccine strain Rev.1 is recognized worldwide as the best vaccine available against brucellosis in sheep and goats [14–16]. Currently a similar attenuated B. melitensis vaccine strain M5-90 is mostly used in China [17], which is also considered to be an important strategy leading to the decline of brucellosis incidence in humans and animals between the 1970 and 1990s in China [2]. However, the antibody responses raised by those two live vaccines are difficult to distinguish from naturally Brucella infected animals using the conventional serological tests. In addition, those attenuated vaccines still keep residual virulence for humans and may result

Table 3: Evaluation for reactivity of peptides and proteins of B. melitensis to sheep sera in ELISAs.

Antigen	P11-KLH	P12-KLH	rBP26	NMP
Sera dilution	1/20	1/20	1/200	1/200
Sensitivity (%)	68.3	83.3	84.5	89.7
Specificity (%)	62.3	59.7	81.4	90.0
Agreement (%)	65.0	70.1	82.8	89.8
PPV (%)	58.5	61.7	79.0	88.1
NPV (%)	71.6	82.1	86.4	91.3
True positive (a)	41	50	49	52
False positive (b)	29	31	13	7
False negative (c)	19	10	9	6
True negative (d)	48	46	57	63
Total	137	137	128	128

Reactivity of epitope peptides and proteins of B. melitensis to 137 sheep sera were tested, and the predictive values in ELISAs were evaluated in line with the combined SAT and RBPT. PPV, positive predictive value; NPV, negative predictive value. Sensitivity = a/(a+c); Specificity = d/(b+d); agreement = (a+d)/(a+b+c+d); PPV = a/(a+b); NPV = d/(c+d).

doi:10.1371/journal.pone.0034246.t003
in pregnant sheep abortion [2,18,19]. In previous studies, a mutant obtained by deleting BP26 of Rev.1 was developed [20], which was found protective against \textit{B. melitensis} in sheep or \textit{B. ovis} in rams [21,22]. In contrast, the BP26-deleted M5-90 mutant did not conserve the protective immunity from its parental vaccine strain [23,24], which suggested that BP26 might be associated with protective efficacy in M5-90 vaccine.

Previous data demonstrated that BP26 provided a strong protection antigen within Rev. 1 inducing not only high IgG titers but also cellular response of IFN-\(\gamma\), IL-4, IL-5 and IL-6 [11–13]. In a separate study, we determined the IFN-\(\gamma\) response specific to T cell epitopes of BP26 [\textit{data not shown}], which also indicated that BP26 was responsible for the mixed Th cell response. The 62\% (18/29) IgG1 of murine mAbs obtained in the present study, it suggested that BP26 might be associated with Th2 cytokine responses. Additionally the presence of BP26 enhanced antibody response to the chaperone protein, trigger factor (TF) [11–13], suggested that BP26 and other relevant proteins such as TF and omp31 might be involved in protective immunity to \textit{Brucella} infections [25–28].

Molecular epitopes of BP26 to both B cells and T cells have not been explored extensively. A region of amino acid residues position 55 to 152 within a truncated BP26 protein had been previously found reactive with two monoclonal antibodies, but the epitopes recognized had not been identified [10]. In this study, 29 mAbs were produced against recombinant BP26 and 27 of them were reactive with native BP26 containing membrane protein extracts (NMP) of \textit{B. melitensis} M5-90. Two linear epitopes were initially discovered using 28 overlapping peptides spanning the whole sequence of BP26. The core motifs of those two linear epitopes were accurately defined as amino acid sequences \textit{95DRLQTTGGI101} and \textit{104QIVYVPPD111} recognized by 11 of 29 mAbs, indicating that both were dominant epitopes within the BP26 antigen. Additionally the semi-conformational and conformational epitopes of native BP26 recognized by two groups of each eight mAbs were identified. All 16 mAbs were reactive to the truncated BP26-1 protein (aa 29–250) that did not contain 28 amino acid signal peptide. Four semi-conformational and one conformational epitopes were approximately localized between aa 48–131, and one semi-conformational epitope was identified between aa 129–250, which suggested that amino acids 48–131 within BP26 contained major semi-conformational and conformational epitopes. MAb 3C3 recognized both aa 48–131 and aa 129–250 of truncated rBP26 proteins, which indicated the conformational epitope was structurally formed by those two parts of BP26 protein. Other un-identified 9 mAbs might be involved in more complicated epitope recognitions, consequently, semi-conformations.

Recombinant BP26 was investigated for diagnosis of brucellosis in sheep and goats [6,7,10,29,30]. By ELISA, we compared the reactivity of sheep sera to two linear epitope peptides (P11-KLH and P12'-KLH), rBP26 and NMP in line with the combination of SAT and RBPT. Peptides P11 and P12' reacted with sera of \textit{Brucella} infected or M5-90 vaccinated sheep, which were 65\% or 70\% consistent with results of the combined SAT and RBPT. The reactivity of two linear epitopes of BP26 to mAbs could be inactivated by mutations of two critical amino acids, which suggested that molecular modification for BP26 epitopes of M5-90 could be genetically realized without altering the protein structure. Compared with rBP26, the NMP appeared more sensitive and specific in ELISA for detection of antibodies to \textit{Brucella} from sheep, and had 90\% agreement with the combination of SAT and RBPT.

In this study, we identified linear, semi-conformational and conformational B cell epitopes within \textit{B. melitensis} BP26 and finally mapped two novel linear epitopes reacting with antibodies in sheep. Taking together with T cell epitopes of BP26, the results were helpful for evaluation of BP26 antigen function within vaccine M5-90.

Materials and Methods

Ethics statement

All animal care and procedures were in accordance with national and institutional policies for animal health and well-being. Mouse experimentation and Sheep blood sample collection and field study were approved by Southern Medical University (SMU) Animal Care and Use Committee (permit numbers: NFYY-2008-043 and NFYY-2010-076). All mouse surgery was performed under anesthesia, and all efforts were made to minimize suffering of animals.

\textit{Brucella} strain and serum

Attenuated \textit{B. melitensis} vaccine strain M5-90 was cultured in the broth of Trypticase Soy medium (TSB) supplemented with 0.1\% (w/v) yeast extract, which was used for extraction of DNA or membrane proteins. A total of 137 sheep serum samples (117 random, 20 vaccinated) were collected from the farms in \textit{Brucella} epidemic area of Shihezi, Xinjiang or provided by the Chinese Center for Disease Control and Prevention, Beijing, China. Sera were tested by Standard Tube Agglutination Test (SAT) and Rose Bengal Plate Test (RBPT), and positive samples were confirmed by either or both tests.

Recombinant periplasmic protein BP26

By using pET-28a plasmid, recombinant entire BP26 (rBP26), truncated rBP26-1 (aa 29–250), truncated rBP26-2 (aa 48–131) and truncated rBP26-3 (aa 129–250) were expressed in \textit{E. coli} induced for 4 hours by 1 mM Isopropyl-1-thio-D-galactopyranoside (IPTG) at 37\°C. Soluble rBP26 was purified by Ni-NTA agarose (GE Healthcare, Milwaukee, Wisconsin, United States) and analyzed by Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE).

Peptides and conjugates

A panel of 44 peptides was synthesized by a commercial company (Chinese Peptide Company, Hangzhou, Zhejiang, China). Twenty-eight of 16mer peptides with 7mer overlap were designated as P01 to P28 spanning the 250 amino acids of the entire BP26 periplasmic protein. Twelve of 9mer peptides shortened from P11 and P12 were designated as P1101 to 06 or P1201 to 06. One of 16mer peptide was designated as P12', as it’s only the first amino acid overlapped with the C-terminal amino acid of P11. Two mutated P11 and P12’ were designated as MutP11 and MutP12’, respectively. One HCV NS3 peptide is used as a negative control. All peptides had above 90\% purity.

P11 and P12’ conjugates coupled with keyhole limpet hemocyanin (P11-KLH and P12'-KLH) were prepared by a commercial company (Chinese Peptide Company, Hangzhou, Zhejiang, China).

\textit{B. melitensis} M5-90 membrane protein extraction

Native BP26 containing membrane proteins (NMP) were extracted from the attenuated \textit{B. melitensis} strain M5-90 by ReadyPrep Protein Extraction Kit (membrane II) (Bio-Rad Laboratories, Hercules, California, United States). The cells were sonicated in Lysis buffer to fractionate and isolate membrane proteins by sodium carbonate extraction methods applied in the kit [31]. The carbonate treated membranes were collected by...
ultracentrifugation in a Beckman Coulter 70 Ti rotor at an average of 100 000 g for 1 h at 4°C. The membrane pellet was washed and resuspended in PBS (50 mM, pH 7.2), and analyzed by SDS-PAGE.

Mouse immunization
Three 6-weeks old BALB/c female mice were housed at the Laboratory Animal Center, Southern Hospital, Southern Medical University, Guangzhou, China. Mice were inoculated with rBP26 antigens for three times at 2-week intervals. The first subcutaneous injection contained 100 μg of rBP26 in a final volume of 100 μl (100 μg/100 μl) of complete Freund adjuvant (Sigma-Aldrich, St Louis, Missouri, United States). The second subcutaneous injection was 50 μg/100 μl rBP26 antigen with incomplete Freund adjuvant (Sigma-Aldrich, St Louis, Missouri, United States). The final boost was intraperitoneally injected with 50 μg of rBP26 in 100 μl of PBS. The antibody titers to rBP26 were determined on day 3 after the final injection, and the best responding mice were sacrificed and the spleens were obtained. Pre- and post-immunization sera were collected and used as negative or positive controls for screening monoclonal antibodies (mAbs).

Monoclonal antibody production
The spleen cells of rBP26 immunized mice were fused with SP2/0 myeloma cells in a ratio of 5:1 by polyethylene glycol 4000 (PEG 4000, Sigma-Aldrich, St Louis, Missouri, United States). Mouse myeloma cell line SP2/0 was provided by the laboratory, which was originated from Division of Transfusion Medicine, Department of Haematology, University of Cambridge, UK [32]. Antibody-producing hybridomas were primarily screened by an indirect ELISA with 3 μg/ml of rBP26 coated Nunc Immuno microtiter plates (JET BIOFIL, Bio-filtration Products Co. Ltd, Guangzhou, Guangdong, China). Single hybridoma cell was cloned by limiting dilution in RPMI1640 (Hyclone Lab Inc, Nampa, Idaho, United States) supplemented with 20% fetal calf serum (PAA Laboratories, Tawasu, Makira-Ulawa, Solomon Islands, Australia), 100 IU/ml penicillin and 100 μg/ml streptomycin. Supernatants of cloned hybridoma cultures were collected for mAb analyses. mAb Isotyping was performed by IsoQuick Strips for Mouse Monoclonal Isotyping (Sigma-Aldrich, St Louis, Missouri, United States) or Mouse Monoclonal Antibody Isotyping Kit (Hycult Biotech Inc, Uden, Netherlands). One mAb (IgG1 kappa) to recombinant HCV NS3 (rNS3) was used as an unrelated negative control.

Peptide-ELISA
Nunc Immuno microtiter plates were coated with 5 μg/ml of 16mer peptides in 0.1 M carbonate buffer (pH 9.6) and were incubated overnight at 4°C as described previously [32]. Plates were washed four times with phosphate-buffered saline (PBS, pH 7.2) containing 0.05% Tween-20 (PBST) and blocked in 4% bovine serum albumin (BSA) PBS buffer for 1 h at 37°C. For detecting mAb reactivity to peptides, 100 μl of hybridoma supernatant was added into each well of plates; goat anti-mouse IgG and IgM horseradish peroxidase (HRP)-conjugate (Rockland Immunoreagents Corp, Boyertown, Pennsylvania, United States) was used as secondary antibody, and 3,3',5,5'-tetramethylbenzidine (TMB) was used as the colorimetric substrate. The reaction was determined by a microplate reader at the absorption of 450 nm (Model 530, Bio-Rad Laboratories, Hercules, California, United States).

To map epitopes accurately, a panel of 9mer shorter peptides derived from P11 or P12 was synthesized for competitive binding to mAbs in peptide-ELISA. An HCV NS3 peptide was used as negative control.

Western-Blot
The rBP26 or native BP26 containing membrane protein extracts (NMP) of M5-90 were denatured and electrophoresed on SDS-PAGE, then transferred to Polyvinylidene Fluoride membranes (PVDF membranes, Millipore, Billerica, Massachusetts, United States), and finally blocked in TBST containing 3% non-fat dry milk for 2 h. Protein bound membranes were saturated with the diluted supernatants of mAbs cultures for 1 h at room temperature. The membranes were washed three times with TBST and incubated with 1:10000 diluted goat anti-mouse IgG and IgM HRP-conjugate in TBST for 1 h. MAb bound membranes were washed and visualized by adding immunochromiluminescence reagent (ECL, Millipore, Billerica, Massachusetts, United States). An unrelated mAb to HCV rNS3 was used as negative control.

Dot-ELISA
PVDF membranes (8 mm × 8 mm) were soaked in methanol for 1 min and then dried at room temperature. One microliter of native BP26 containing membrane protein extract (NMP) of M5-90 was dropped onto the center of each membrane and dried at room temperature. MAbS of cloned supernatant cultures were added to NMP on the membranes and the bound mAbs were detected by goat anti-mouse HRP-conjugate. The membranes were visualized by adding dianinobenzidine (DAB) substrate for color development. An unrelated mAb to HCV rNS3 was used as negative control.

Statistical analysis
The overall sensitivity of Peptide-ELISA, rBP26-ELISA, NMP-ELISA for detection of antibodies to Brucella from sheep sera were calculated using receiver operating characteristic (ROC) curves. Optimal cutoff values were defined using the highest sum of sensitivity and specificity. For each optimal cutoff value, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated [33]. P value was obtained for comparing the differences between the areas under ROC curve (AUC) and reference (0.5) by the Kolmogorov-Smirnov Z analysis in SPSS software version 13.0.

Acknowledgments
The authors thank for designing the mutant peptides and revising the manuscript from Dr Peter Smethurst, Division of Transfusion Medicine, University of Cambridge, UK.

Author Contributions
Conceived and designed the experiments: CL, JQ, WW. Performed the experiments: JQ, WW, JW, HZ, YW, JQ. Analyzed the data: CL, CC, GFG. Contributed reagents/materials/analysis tools: CC, GFG. Wrote the paper: CL, JQ, JPA.
3. Chinese Center for Disease Control and Prevention (2011) Chinese Health Statistical Digest 2010: Number of reported incidence and death of 28 infectious diseases in 2009. March 4, 2011, Beijing, China.
4. Zhang WY, Guo WD, Sun SH, Jiang JF, Sun HL, et al. (2010) Human brucellosis, Inner Mongolia, China. Emerg Infect Dis 16: 2003–2003.
5. Cloeckaert A, Debarbhart HS, Vizcaino N, Saman E, Dubray G, et al. (1996) Cloning, nucleotide sequence, and expression of the \textit{Brucella melitensis} bp26 gene coding for a protein immunogenic in infected sheep. \textit{FEBS Microbiol Lett} 140: 139–144.
6. Rossetti OL, Arrese AI, Boscieri ML, Cravero SL (1996) Cloning of \textit{Brucella abortus} short gene and characterization of expressed 26-kDa periplasmic protein: potential use for diagnosis. \textit{J Clin Microbiol} 34: 165–169.
7. Salih-Alj, Debarbhart H, Cloeckaert A, Bezard G, Dubray G, et al. (1996) Enzyme-linked immunosorbent assay with partially purified cytosoluble 28-kDa protein for serological differentiation between \textit{Brucella melitensis}-infected and \textit{B. melitensis} Rev.1-vaccinated sheep. \textit{Clin Diag Lab Immunol} 3: 305–308.
8. Cloeckaert A, Bauchereron S, Vizcaino N, Zygmunt MS (2001) Use of recombinant BP26 protein in serological diagnosis of \textit{Brucella melitensis} infection in sheep. \textit{Clin Diag Lab Immunol} 8: 722–727.
9. Gupta VK, Kumar R, Vohra J, Singh NV, Vihan VS (2010) Comparative evaluation of recombinant BP26 protein for serological diagnosis of \textit{Brucella melitensis} infection in goats. \textit{Small Ruminant Research} 93: 119–123.
10. Seco-Mediavilla P, Verger JM, Grayon M, Cloeckaert A, Marin CM, et al. (2003) Epitope mapping of the \textit{Brucella melitensis} BP26 immunogenic protein: usefulness for diagnosis of sheep brucellosis. \textit{Clin Diag Lab Immunol} 10: 647–651.
11. Clapp B, Walters N, Thornburg T, Hoyt T, Yang X, et al. (2011) DNA vaccination of hace to brucellar antigens eicits elevated antibody and IFN-\(\gamma\) responses. \textit{J Wildl Dis} 47: 501–510.
12. Yang X, Hudson M, Walters N, Bargatze RF, Pascual DW (2005) Selection of protective epitopes for \textit{Brucella melitensis} by DNA vaccination. \textit{Infect Immun} 73: 7297–7303.
13. Yang X, Walters N, Robison A, Trunkle T, Pascual DW (2007) Nasal immunization with recombinant \textit{Brucella melitensis} bp26 and trigger factor with choler toxin reduces \textit{B. melitensis} colonization. \textit{Vaccine} 25: 2261–2266.
14. Blasco JM (1997) A review of the use of \textit{B. melitensis} Rev1 vaccine in adult sheep and goats. \textit{Prev Vet Med} 31: 275–283.
15. Elberg SS, Faunce JrK (1957) Immunization against \textit{Brucella} infection. VI. Immunity conferred on goats by a nondependent mutant from a streptomycicin-dependent mutant strain of \textit{Brucella melitensis}. \textit{J Bacteriol} 73: 211–217.
16. Garin-Bastuji B, Blasco JM, Grayon, M, Verger JM (1998) \textit{Brucella melitensis} infection in sheep: present and future. \textit{Vet Res} 29: 255–274.
17. Research Group of Brucellosis of Harbin Veterinary Research Institute (1991) Study on the \textit{Brucella melitensis} strain M5-90 vaccine. \textit{Chinese J Control Animal Intestinal} 6: 65–68.
18. Blasco JM, Diaz R (1993) \textit{Brucella melitensis} Rev.1 vaccine as a cause of human brucellosis. \textit{Lancet} 342: 805.
19. Ficht TA, Kahm-McDonagh MM, Arenas-Gamboa AM, Rice-Ficht AC (2008) \textit{Brucellosis: the case for live, attenuated vaccines for \textit{Brucella melitensis}}. \textit{Rev.1 single and double deletion mutants of the bp26 and omp31 genes coding for antigens of diagnostic significance in ovine brucellosis. Vaccine 22: 2827–2835.
20. Grillo MJ, Marin CM, Barbéran M, de Miguel MJ, Laroucau K, et al. (2009) Efficacy of bp26 and bp26/ omp31 \textit{B. melitensis} Rev.1 deletion mutants against \textit{Brucella ovis} in rams. \textit{Vaccine} 27: 187–191.
21. Jacques I, Verger JM, Laroucau K, Grayon M, Vizcaino N, et al. (2007) Immunological responses and protective efficacy against \textit{Brucella melitensis} induced by bp26 and omp31 \textit{B. melitensis} Rev.1 deletion mutants in sheep. \textit{Vaccine} 25: 794–805.
22. Qi Q, Wang Zh, Zhen Q, Huang LY, Yu YQ, et al. (2009) Effect of bp26 on immune response and protective efficacy of M 5 against \textit{Brucella melitensis} in mice. \textit{Journal of Jilin Agricultural University} 31: 438–446.
23. Wang Zh, Zhen Q, Qiao F, Wang YF, Du XY, et al. (2009) Construction of BP26 tagged vaccine strain and development of discriminating PCR for \textit{Brucella}. \textit{Acta Microbiologica Sinica} 49: 405–409.
24. Vizcaino N, Cloeckaert A, Zygmunt MS, Dubray G (1996) Cloning, nucleotide sequence, and expression of the \textit{Brucella melitensis} omp31 gene coding for an immunogenic major outer membrane protein. \textit{Infect Immun} 64: 5744–5751.
25. Casatator J, Estin SM, Pasquevich KA, Velikovsky CA, de la Barrera S, et al. (2005) Vaccination with the recombinant \textit{Brucella} outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4\(^+\) T helper 1 response that protects against \textit{Brucella melitensis} infection. \textit{Infect Immun} 73: 8079–8088.
26. Casatator J, Velikovsky CA, de la Barrera S, Estin SM, Bruno L, et al. (2005) A DNA vaccine coding for the \textit{Brucella} outer membrane protein 31 confers protection against \textit{B. melitensis} and \textit{B. suis} infection by eliciting a specific cytotoxic response. \textit{Infect Immun} 73: 6537–6546.
27. Pasquevich KA, Estin SM, Garcia Samartino C, Zwerdling A, Coria LM, et al. (2009) Immunization with recombinant \textit{Brucella} species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4\(^+\) and CD8\(^+\) T cells as well as systemic and oral protection against \textit{Brucella abortus} infection. \textit{Infect Immun} 77: 436–445.
28. Liu WY, Hu S, Qiao Zh, Chen WY, Liu LT, et al. (2011) Expression, purification, and improved antigenic specificity of a truncated recombinant bp26 protein of \textit{Brucella melitensis} MS-90: a potential antigen for differential serodiagnosis of brucellosis in sheep and goats. \textit{Biotechnol Appl Biochem} 58: 32–38.
29. Salih-Alj, Debarbhart H, Zygmunt MS, Dubray G, Cloeckaert A (1996) Competitive enzyme-linked immunosorbent assay using monoclonal antibodies to the \textit{Brucella melitensis} BP26 protein to evaluate antibody responses in infected and \textit{B. melitensis} Rev.1 vaccinated sheep. \textit{Vet Microbiol} 53: 325–337.
30. Molloy MP, Herbst BR, Slade MB, Rahalloud T, Nouwens AS, et al. (2000) Proteomic analysis of the \textit{Escherichia coli} outer membrane. \textit{Eur J Biochem} 267: 2861–2868.
31. Li G, Candotti D, Allain JP (2001) Production and characterization of monoclonal antibodies specific for a conserved epitope within hepatitis C virus hypervariable region 1. \textit{J Virol} 75: 12412–12420.
32. Ndongo N, Berthillon P, Pradat P, Vieux C, Bordes I, et al. (2010) Association of anti-E1E2 antibodies with spontaneous recovery or sustained viral response to therapy in patients infected with hepatitis C virus. \textit{Hepatology} 52: 1531–1542.