Novel childhood asthma genes interact with in utero and early-life tobacco smoke exposure

To the Editor:

Complex diseases, including asthma, have genetic and environmental origins. Genome-wide association studies have identified multiple genes for the development of asthma, yet they only explain a limited proportion of asthma heritability. Interactions between genetic predisposition and exposure to passive smoking might explain in part the hidden heritability of childhood asthma. However, to date, this approach has not been reported for the discovery of interactions between genes and tobacco smoke exposure.

We performed a genome-wide interaction study (GWIS) on childhood asthma to identify genes that interact with 2 well-known environmental risk factors for childhood-onset asthma: in utero tobacco smoke exposure and childhood tobacco smoke exposure. We meta-analyzed interaction results from 9 studies participating in the GABRIEL consortium including more than 6,000 subjects of European descent. We replicated our findings in 4 independent studies including more than 13,000 subjects. Childhood-onset asthma was defined as asthma diagnosed by a doctor before the age of 16 years, which is consistent with the definition in the GABRIEL consortium. In utero tobacco smoke exposure was defined as “exposure to maternal tobacco smoking at any time during pregnancy.” Childhood tobacco smoke exposure was defined as “exposure to passive tobacco smoking at any time from birth until 16 years of age.” Details on the number of subjects, the design of the individual studies, and outcome and exposure definitions are provided in Tables E1 to E4 in this article’s Online Repository at www.jacionline.org.

The effects of in utero tobacco smoke exposure and childhood tobacco smoke exposure were analyzed separately. All individual studies were analyzed by using a logistic regression model containing the genetic effect, the effect of tobacco smoke exposure, and an interaction term indicating the interaction between the genetic effect and tobacco smoke exposure. Further methodological considerations on GWISs and details on the statistical analyses are described in this article’s Online Repository at www.jacionline.org.

For in utero tobacco smoke exposure, the discovery genome-wide meta-analysis consisted of 2,654 cases and 3,073 control subjects derived from 7 studies (see Table E1). Overall, in utero tobacco smoke exposure increased the risk of childhood-onset asthma (see Fig E1 in this article’s Online Repository at www.jacionline.org). A total of 536,705 single nucleotide polymorphisms (SNPs) were included in the interaction meta-analysis. Fig E2 in this article’s Online Repository at www.jacionline.org shows the Manhattan plot. We identified 27 SNPs in the discovery sample with a P value of less than 10⁻⁴ based on the fixed effect model (Table I and see Table E5 in this article’s Online Repository at www.jacionline.org). Findings did not reach genome-wide significance but were consistent over all studies included, and no significant heterogeneity across studies was present (P value Q-statistic < .05). Four of these SNPs on chromosome 10 were in high linkage disequilibrium with each other in the discovery meta-analysis (r² = 0.82-0.96). The most prominent marker was located on chromosome 18 near EPB41L3 (Forest plot, see Fig E3 in this article’s Online Repository at www.jacionline.org). Table E6 in this article’s Online Repository at www.jacionline.org shows the associations in exposed and nonexposed subjects. EPB41L3 belongs to the protein 4.1 family of membrane-associated proteins, is involved in cell-cell junctions,7 and might play a role in apoptosis.8 The literature shows that in utero tobacco smoke exposure affects the expression of genes involved in biological processes, such as cell proliferation and apoptosis, and influences lung development of the child in general.9 Our data suggest that this effect of in utero smoke exposure might potentially occur through mechanisms involving EPB41L3 (see the additional text in this article’s Online Repository).

For childhood tobacco smoke exposure, the discovery genome-wide meta-analysis consisted of 3,048 cases and 3,509 control subjects derived from 9 studies (see Table E1). Overall, childhood tobacco smoke exposure increased the risk of childhood-onset asthma (see Fig E1). A total of 538,233 SNPs were included in the interaction meta-analysis. Fig E4 in this article’s Online Repository at www.jacionline.org shows the Manhattan plot. We identified 35 SNPs in the discovery sample with a P value of less than 10⁻⁴ based on the fixed effect model. Four of these SNPs were excluded because they showed heterogeneity, and the P value of the random effect was greater than 10⁻⁴. Findings did not reach genome-wide significance. Table II and Table E7 (see this article’s Online Repository at www.jacionline.org) the results for the top SNPs. Seven SNPs on chromosome 5 (except rs2312164) were in high linkage disequilibrium with each other in the discovery studies (r² = 0.83-1.00).

The most prominent marker was located on chromosome 6 in PACRG (parkin coregulated gene; Forest plot, see Fig E5 in this article’s Online Repository at www.jacionline.org). Table E8 in this article’s Online Repository at www.jacionline.org shows the associations in exposed and nonexposed subjects. PACRG is located next to and has an overlapping promoter region with parkin 2 (PARK2).5 The gene has been associated with leprosy and parkinsonian diseases and has an important role in motile cilia function and cilia morphogenesis.7,6 PACRG is relatively highly
expressed in the trachea and nasal mucosa. Ciliary dysfunction might impair mucus clearance from the airways and has been shown to affect asthma severity. Our data suggest that changes in ciliary function particularly affect the development of asthma in children exposed to passive tobacco smoke.

The genes that have been reported previously to interact with tobacco smoke exposure with respect to asthma development (ie, \textit{TNF}, \textit{GSTP1}, and \textit{ADAM33}) were not among our most significant hits. This can be explained by the fact that the genetic variants in these candidate gene studies have a strong main effect on asthma development. Bouzigon et al9 showed a more pronounced effect of the 17q21 region on the development of early-onset asthma in children with early-life tobacco smoke exposure than in those without. The genetic effect of these markers in our GWIS showed a similar direction, but the interaction was not significant.

This study on childhood asthma is the first hypothesis-free GWIS specifically aiming to identify SNPs that interact with tobacco smoke exposure in disease development. We found suggestive evidence for an interaction between rs8094633 on chromosome 18 near \textit{EPB41L3} and in \textit{utero} tobacco smoke exposure and an interaction between rs1575472 on chromosome 6 in \textit{PACRG} and childhood tobacco smoke exposure. The SNPs found have not been identified previously in general genome-wide association studies on childhood asthma. Interestingly, the SNPs interacting with in \textit{utero} and childhood tobacco smoke exposure were different and were not involved in the same pathway (see Fig E6 in this article’s Online Repository at www.jacionline.org). Interactions between these SNPs and tobacco smoke exposure in \textit{utero} and in childhood might explain part of the missing heritability of asthma. Future research needs to confirm these findings and further unravel the biological pathways.

For acknowledgments, see this article’s Online Repository at www.jacionline.org.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\textbf{Ch} & \textbf{SNP} & \textbf{Closest gene*} & \textbf{Type} & \textbf{Discovery} & \textbf{Replication} \\
& & & & \textbf{N} & \textbf{OR} & \textbf{Pf} & \textbf{N} & \textbf{OR} & \textbf{Pf} \\
\hline
1 & rs1674877 & — & Intergenic & 2654 & 0.51 & 2.19×10^{-5} & 201 & 1.06 & .89 \\
2 & rs4670230 & FAM82A1 & Intronic & 2654 & 1.94 & 2.10×10^{-5} & 201 & 0.78 & .51 \\
3 & rs12624082 & GALNT13 & Intronic & 2654 & 1.78 & 3.22×10^{-5} & 697 & 1.00 & .98 \\
4 & rs11684139 & GALNT13 & Intronic & 2654 & 1.77 & 7.37×10^{-5} & 697 & 0.85 & .35 \\
5 & rs729454 & — & Intergenic & 2654 & 1.67 & 9.52×10^{-5} & 697 & 1.13 & .45 \\
6 & rs8356848 & ILSRA & Intronic & 2654 & 1.96 & 5.32×10^{-6} & 201 & 0.59 & .19 \\
7 & rs6782603 & — & Intergenic & 2247 & 0.54 & 1.19×10^{-5} & 562 & 1.20 & .29 \\
8 & rs1990977 & RNU6ATAC2P & Intronic & 2654 & 2.12 & 7.79×10^{-5} & 697 & 0.88 & .60 \\
9 & rs4700239 & — & Intergenic & 2654 & 2.15 & 6.39×10^{-5} & 562 & 0.78 & .34 \\
10 & rs6546433 & — & Intergenic & 2654 & 1.99 & 7.99×10^{-5} & 562 & 0.71 & .15 \\
11 & rs14398 & WDR46 & Nonsynonymous & 2654 & 0.45 & 5.44×10^{-5} & 562 & 1.77 & .01 \\
12 & rs360968 & — & Intergenic & 2654 & 0.54 & 5.05×10^{-5} & 697 & 0.93 & .72 \\
13 & rs943856 & — & Intergenic & 2654 & 0.59 & 9.49×10^{-5} & 697 & 0.70 & .04 \\
14 & rs11006296 & — & Intergenic & 2654 & 2.01 & 3.70×10^{-5} & 562 & 0.84 & .47 \\
15 & rs1407696 & PDCD4 & Intronic & 2654 & 0.57 & 2.36×10^{-5} & 66 & 0.58 & .34 \\
16 & rs7079511 & SHOC2 & Intronic & 2654 & 0.58 & 3.24×10^{-5} & 697 & 0.98 & .91 \\
17 & rs521674 & ADRAD2A & Upstream & 2654 & 0.57 & 5.35×10^{-5} & 562 & 1.16 & .45 \\
18 & rs602618 & ADRAD2A & Downstream & 2654 & 0.57 & 5.63×10^{-5} & 562 & 1.15 & .45 \\
19 & rs1123991 & OR51E2 & Synonymous & 2654 & 0.50 & 6.51×10^{-5} & 697 & 0.68 & .11 \\
20 & rs3898589 & CNTN5 & Intronic & 2654 & 1.83 & 6.11×10^{-5} & 562 & 1.17 & .40 \\
21 & rs10892848 & CNTN5 & Intronic & 2654 & 1.82 & 5.72×10^{-5} & 697 & 1.07 & .71 \\
22 & rs706795 & ACCN2 & Intronic & 2654 & 1.66 & 3.62×10^{-5} & 697 & 0.75 & .07 \\
23 & rs3321384 & C1orf23 & Intronic & 2654 & 0.58 & 9.82×10^{-5} & 697 & 0.92 & .65 \\
24 & rs8053125 & ANK51B & Intronic & 2654 & 0.47 & 8.37×10^{-5} & 562 & 0.80 & .37 \\
25 & rs8094653 & EPB41L3 & Intronic & 2654 & 2.13 & 4.29×10^{-5} & 201 & 2.87 & .03 \\
26 & rs580003 & KCNJ6 & Intronic & 2654 & 1.81 & 8.50×10^{-5} & 697 & 1.00 & 1.00 \\
27 & rs9613256 & CTA-211A9.5 & Within noncoding gene & 2654 & 0.59 & 5.44×10^{-5} & 562 & 1.11 & .60 \\
\hline
\end{tabular}
\caption{Results of the GWIS of \textit{in utero} tobacco smoke exposure and childhood-onset asthma}
\end{table}

\textit{Ch}, Chromosome; \textit{OR}_{\textit{int}}, odds ratio interaction; \textit{Pf}, \textit{P} value, fixed effect.

*Closest gene within range of 500 kb of the position of the SNP.
†Number of studies and cases included in meta-analysis.
‡Additive genetic model.
TABLE II. Results of the GWIS on childhood tobacco smoke exposure and childhood-onset asthma

Ch	SNP	Closest gene*	Type	Discovery	Replication				
				N	OR_{int}	P	N	OR_{int}	P
1.	rs2026604	S100A7L2	Downstream	3048	1.44	7.49 × 10^{-5}	1003	0.83	.17
2.	rs10184453	—	Intergenic	3048	1.53	8.85 × 10^{-5}	1003	1.18	.30
3.	rs8959565	—	Intergenic	3048	1.53	7.26 × 10^{-5}	1003	1.18	.30
4.	rs11126185	—	Intergenic	3048	0.67	6.81 × 10^{-8}	868	1.22	.16
5.	rs4234677	CTD-2230D16.1	Within noncoding gene	3048	0.65	6.57 × 10^{-5}	261	1.58	.22
6.	rs264096	MAGI1	Intron	3048	0.62	6.93 × 10^{-8}	396	0.89	.63
7.	rs17239426	KCNA1	Intron	3048	0.58	7.28 × 10^{-5}	1003	1.18	.39
8.	rs145551	IRF2	Intronic	3048	1.40	6.92 × 10^{-5}	1003	0.98	.86
9.	rs162036	MTRR	Nonsynonymous	3048	0.60	8.26 × 10^{-5}	1003	1.14	.45
10.	rs7719963	—	Intergenic	3048	0.56	3.06 × 10^{-5}	868	0.89	.59
11.	rs7447231	—	Intergenic	3048	1.55	8.36 × 10^{-6}	868	0.85	.31
12.	rs10155635	—	Intergenic	3048	1.56	7.55 × 10^{-6}	261	0.62	.11
13.	rs10038850	—	Intergenic	3048	1.53	1.51 × 10^{-5}	261	0.41	.04
14.	rs10479335	—	Intergenic	3048	1.52	5.98 × 10^{-5}	868	0.85	.29
15.	rs2312164	—	Intergenic	3048	1.42	7.18 × 10^{-6}	1003	0.82	.14
16.	rs13357477	—	Intergenic	3048	1.58	3.59 × 10^{-6}	868	0.83	.24
17.	rs12719549	—	Intergenic	3048	1.57	4.61 × 10^{-6}	868	0.82	.21
18.	rs4607330	—	Intergenic	3048	1.59	2.70 × 10^{-6}	868	0.85	.31
19.	rs441463	LYRM4	Intronic	3048	1.41	4.91 × 10^{-5}	1003	0.90	.42
20.	rs1575472	PACRG	Intronic	3048	1.78	1.37 × 10^{-5}	1003	1.51	.06
21.	rs17544971	GRB10	Intronic	3048	1.70	8.12 × 10^{-5}	868	1.26	.28
22.	rs4977750	MTAP	Nonsense-mediated decay transcript	3048	0.61	1.91 × 10^{-5}	1003	0.93	.66
23.	rs4769148	—	Intergenic	2445	0.67	4.45 × 10^{-5}	261	0.72	.21
24.	rs12874184	—	Intergenic	3048	1.98	8.75 × 10^{-5}	868	1.18	.50
25.	rs16972472	—	Intergenic	3048	1.79	9.59 × 10^{-5}	868	0.79	.32
26.	rs10141836	OR11G2	Upstream	3048	0.70	8.89 × 10^{-5}	1003	0.90	.41
27.	rs2602923	C15orf41	Intronic	3048	1.61	4.52 × 10^{-5}	1003	1.19	.33
28.	rs13331814	ZP2	Intronic	3048	0.62	8.38 × 10^{-5}	868	0.85	.34
29.	rs11805080	PLIN5	Intronic	3048	0.51	6.30 × 10^{-5}	1003	1.12	.63
30.	rs6077755	PSF1	Upstream	3048	1.52	6.65 × 10^{-6}	1003	1.11	.47

*Ch, Chromosome; OR_{int}, odds ratio interaction; P, P value, fixed effect.

*Closest gene within range of 500 kb of the position of the SNP.

†Number of cases and control subjects included in the meta-analysis.

‡Additive genetic model.

Erika von Mutius, PhD
d
Markus Johannes Ege, MD
d
Charlotte Braun-Fahrl
d
Jon Genuite, PhD

the GABRIELA study group

Berit Brunekreef, PhD

Henriette A. Smit, PhD

Alet H. Wijga, PhD

Marjan Kerkhof, PhD

Ivan Carjuric, PhD

Medea Imboden, PhD

Gian A. Thun, PhD

Nicole Probst-Hensch, PhD

Maxim B. Frelin, PhD

Elena Iu. Bragina, PhD

I. A. Dees, PhD

V. P. Puzeyev, PhD

Denise Daley, PhD

Julie Park, MMPhd

Allan Becker, MD

Moira Chan-Yeung, PhD

Anita L. Kozyrska, PhD

Peter Pare, MD

Ingo Marenholz, PhD

Susanne Lau, PhD

Thomas Keil, PhD

Young-Ae Lee, PhD

Michael Kabesch, PhD

Cisca Wijnenga, PhD

Lade Franke, PhD

Ilja M. Nolte, PhD

Judith Vonk, PhD

Ashish Kumar, PhD

Martin Farrell, PhD

William O. C. M. Cookson, PhD

David P. Strachan, PhD

Gerard H. Koppelman, PhD

H. Marike Bozen, PhD

From †the Department of Epidemiology, ‡the Groningen Research Institute for Asthma and COPD (GRIAC), †the Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; †the Division of Respiratory Sciences and ‡Respiratory Epidemiology and Public Health, Imperial College, London, United Kingdom; †the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; †ALSPAC, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom; ‡Sachs’s Children’s Hospital, Stockholm, Sweden; †Global Epidemiology, AstraZeneca R&D, Möln达尔, Sweden; ‡the Institute of Medical Statistics and Epidemiology (IMSE), Klinikum Rechts der Isar, Technical University, Munich, Germany; †Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease (iLBD), Helmholtz Center Munich, Neuherberg, Germany; ‡Bergen Respiratory Research Group, Institute of Medicine, University of Bergen and Department of Occupational Medicine,
The GABRIEL study (a multidisciplinary study to identify the genetic and environmental causes of asthma in the European Community) was supported by the European Commission, contract number 018996, under the Integrated Program LSH-2004-2005-036312. Jean-Philippe Dufour has been supported by one or more grants from the ANR French National Research Agency. The French Agency for Environmental and Occupational Health and Safety has one or more grants pending with the Netherlands Asthma Foundation, Stichting Astma Bestrijding. The rest of the authors declare that they have no relevant conflicts of interest.

Genetic variation in TH17 pathway genes, childhood asthma, and total serum IgE levels

To the Editor:

The role of TH17 cells and TH17-associated cytokines in autoimmune diseases and chronic inflammation is widely recognized. In children with atopic asthma, TH17 cells in peripheral blood were found to be increased and inversely correlated with asthma control. The cytokine milieu has a decisive effect on the balance between developing immunosuppressive regulatory T cells or proinflammatory TH17 cells. Dysregulation of the cytokine balance can therefore contribute to autoimmunity and chronic inflammation. IL-17A and IL-17F are signature cytokines secreted by TH17 cells and potent inducers of inflammation. Increased levels of these cytokines were observed in airways of patients with asthma, and first candidate gene studies suggested single nucleotide polymorphisms (SNPs) in IL17A and IL17F to be associated with asthma.

This study investigated whether genetic variants in the TH17 pathway influence asthma and total serum IgE levels during childhood. We analyzed genes involved in the differentiation and maintenance of TH17 cells and genes coding for TH17-related effector cytokines (Fig 1; see the Methods section in this article’s Online Repository at www.jacionline.org). The relevance of associations in TH17 pathway genes was ranked with an algorithm considering P values, effect sizes, and multiple testing.

Subjects (651 with asthma and 652 without asthma as controls) for association analyses with asthma and total serum IgE levels were derived from the Multicentre Asthma Genetics In Childhood Study (MAGICs, cases) and the International Study of Asthma and Allergy in Childhood, phase II (ISAAC II, reference population). Both populations were of German origin and genetically homogeneous, and the studies were performed with very similar

REFERENCES

1. Moffett MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 2010;363:1211-22.

2. UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 2012;40(Database issue):D71-5.

3. Dafou D, Grun B, Sinclair J, Lawson K, Elizabeth C, Benjamin EC, et al. Microcell-mediated chromosome transfer identifies EBPNIL3 as a functional suppressor of epithelial ovarian cancers. Neoplasia 2010;12:579-89.

4. Maritz GS, Harding R. Life-long Programming implications of exposure to tobacco smoking and nicotine before and after birth: evidence for altered lung development. Int J Environ Res Public Health 2011;8:875-98.

5. West AB, Lockhart PJ, O’Farrel C, Farrer MJ. Identification of a novel gene linked to parkin via a bi-directional promoter. J Mol Biol 2003;326:11-9.

6. Wilson GR, Wang HX, Egan GF, Robinson PJ, Delatycki MB, O’Bryan MK, et al. Deletion of the Parkin co-regulated gene causes defects in endoplasmic ciliary motility and hydrocephalus in the quaking mutant mouse. Hum Mol Genet 2010;19:593-602.

7. Panasevich S, Lindgren C, Kere J, Wickman M, Pershagen G, Nyberg F, et al. Interaction between early maternal smoking and variants in TNF and GSTP1 in childhood wheezing. Clin Exp Allergy 2010;40:458-67.

8. Reijnenink NE, Kerkhof M, Koppelman GH, Gerritsen J, De Jongste JC, Smit HA, et al. Smoke exposure interacts with ADAM33 polymorphisms in the development of lung function and hyperresponsiveness. Allergy 2009;64:898-904.

9. Bouzigon E, Corda E, Aschard H, Dizer MH, Boland A, Bousquet J, et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 2008;359:1985-94.

Available online December 6, 2013. http://dx.doi.org/10.1016/j.jaci.2013.08.049