Coherence Properties of Guided-Atom Interferometers

H. Kreuzmann,1 U. V. Poulsen,1 M. Lewenstein,1 R. Dumke,2 W. Ertmer,2 G. Birkl,2 and A. Sanpera1

1Institut für Theoretische Physik, Universität Hannover, 30167 Hannover, Germany
2Institut für Quantenoptik, Universität Hannover, 30167 Hannover, Germany

(Dated: March 22, 2022)

We present a detailed investigation of the coherence properties of beam splitters and Mach-Zehnder interferometers for guided atoms. It is demonstrated that such a setup permits coherent wave packet splitting and leads to the appearance of interference fringes. We study single-mode and thermal input states and show that even for thermal input states interference fringes can be clearly observed, thus demonstrating the multimode operation and the robustness of the interferometer.

PACS numbers: 39.20.+q,32.80.Pj

The investigation and exploitation of the wave properties of atomic matter is of great interest for fundamental as well as applied research and constitutes, therefore, one of the most active research areas in atomic physics and quantum optics. Of special interest is the field of atom interferometry. For an interferometer, it is crucial that the beam splitters and mirrors are coherent, i.e., they must not disturb the phase of the matter wave in an uncontrollable fashion. Then a phase shift in one of the paths results in a change of the output signal, and any external influence inducing a phase shift is, in principle, accessible to measurement. Compared to light interferometry, matter wave interferometry with cold atoms offers a much higher sensitivity for certain applications. Furthermore, atoms couple efficiently to a wider variety of external interactions, thus extending the applicability of interferometric measurements.

A novel approach arises from the use of guided atoms. Miniaturized setups for matter wave interferometry with increased stability, large beam separation, and large enclosed areas become possible. These features are specifically appealing to atom-interferometrical measurement of inertial forces and to the investigation of Bose-Einstein condensates in microstructures. Due to the physics involved in the guiding and beam splitting processes, the construction and analysis of guided-atom interferometers become challenging tasks. In order to assess the level of performance that can be reached with realistic setups, coherence and interference, also for mixed input states as well as non-perfect beam splitters, have to be investigated in detail.

In this Letter we study guided-atom interferometers for neutral atoms by solving numerically the time dependent Schrödinger equation for realistic, experimentally accessible configurations. Our study addresses the main issues of atom waveguide propagation, as well as coherence and interference using X-shaped guided-atom beam splitters. In particular, our calculations apply to the interferometer scheme originally proposed in which neutral atoms are guided in dipole potentials created by micro-fabricated optical systems. Many of the experimental prerequisites for that proposal such as atom guides, beam splitters and even geometries composing a complete Mach-Zehnder interferometer for atoms have been realized already.

In the scheme considered here, the beam splitters are achieved by crossing two optical waveguides at some angle. Such a beam splitter splits the atomic wave packet in coordinate space without affecting the internal state. Nevertheless, internal state selective interferometry is also possible in this scheme. During the splitting process the system might exhibit quantum reflections and tunneling between adjacent guides and, therefore, the dynamics is in general complicated. We will, however, demonstrate that such a beam splitter is coherent even for a thermal distribution of atoms with an average energy far exceeding the level spacing of the transverse confinement.

To study the properties of the beam splitter and the interferometer we use the Split-Operator method to solve the time dependent Schrödinger equation

\[i\hbar \frac{\partial \Psi(x, y, t)}{\partial t} = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(x, y) \right) \Psi(x, y, t), \]

where the potential \(V(x, y) \) includes the waveguides potentials as well as any other relevant potential in the problem. For simplicity we shall assume throughout this paper that the atomic wave packet is tightly confined in the third dimension so that the dynamics is well described within a two-dimensional treatment.

The central element of any interferometer is the beam splitter. Consequently, we start our discussion with a detailed analysis of an X-shaped guided-atom beam splitter (BS) created by crossing two identical waveguides \(L_i \) and \(L_j \) at an angle \(\gamma \):

\[U_{BS}(x, y) = U_i(x, y) + U_j(x \cos \gamma - y \sin \gamma, y \cos \gamma + x \sin \gamma) \]

Each waveguide consists of a Gaussian potential of depth \(U_0 \) and width \(\sigma \); thus a waveguide \(L_j \) along the y-direction centered at \(x_0 \) is represented by:

\[U_i(y, x) = -U_0 e^{-(x-x_0)^2/2\sigma^2} \]

Coupling from one guide to the other occurs for any angle \(\gamma \neq 90^\circ \). We observe, however, that the doubling of
the potential depth at the crossing of the two waveguides induces quantum reflections and a highly non-adiabatic dynamics for typical initial momenta of the atomic wave packet. These effects are clearly undesirable for interferometry. For a micro-optical realization of the waveguides, they can be easily avoided by reducing the light intensity at the crossing through overlay of an absorptive mask or by adding a compensating extra potential (e.g., a blue detuned laser field) so that the depth of the total potential at the crossing is equal to the one of each waveguide alone. In our simulations we have taken into account that this compensation might not be perfect.

Our choice of parameters closely matches the relevant experimental parameters of refs. [4, 11] for 85Rb atoms guided in dipole potentials, far detuned below the $5S_{1/2} \rightarrow 5P_{3/2}$ transition at 780 nm. A typical configuration consists of waveguides of width $\sigma = 0.54 \mu m$ (corresponding to a Gaussian beam with 1/e2 waist $w_0 = 1.1 \mu m$) at a laser wavelength of 830 nm and an intensity of $I = 1.1 \times 10^5$ W/cm2 (less than 1 W of required laser power). The depth of potential is $U_0 = 75 \mu K$, the ground state vibrational frequency $\omega = 160 \times 10^3$ s$^{-1}$, and the rate of spontaneous scattering $\Gamma_S = 2.6 \times 10^3$ s$^{-1}$ (thus it can be neglected in our discussion). In our simulations, as initial state we consider an atomic wave packet located in one of the waveguides (L_1 in Fig. 1) at a typical distance of 2.5 μm from BS_1. We perform simulations for both single and multimode transverse occupation of the waveguide. In general, the initial transversal state can be described by a thermal mixture

$$\rho = \frac{1}{Z} \sum_{n=0}^{\infty} e^{-E_n/k_B T} |n\rangle\langle n|,$$ \hspace{1cm} (2)

where $|n\rangle$ denotes the nth eigenstate of the waveguide potential, E_n denotes its energy and Z ensures proper normalization. In the experiment [4] an ultra-cold atomic sample with temperature of $T = 20 \mu K$ is loaded into the waveguide from a single dipole trap. Our set of parameters results in a mean transverse occupation number of $\langle n \rangle \simeq 16$ in the waveguide. For both single-mode ($\rho = |n\rangle\langle n|$) and multimode cases, we assume that the initial atomic wave packet has a Gaussian profile along the longitudinal direction of the waveguide with a mean momentum p_y and a spread of Δp_y. Values of the mean momentum are in the range of $5-10$ recoil momenta p_r ($p_r = \sqrt{2\hbar m\omega_r}$, $\omega_r = 24 \times 10^3$ s$^{-1}$), with a momentum spread $\Delta p_y = 2p_r$.

The splitting of the initial wave packet depends on its initial transversal states, its initial longitudinal momentum p_x, and on the angle γ between the guides. In order to achieve efficient deflection in the beam splitter, the atomic wave packet has to spend enough time at the intersection. Defining the crossing time as $t_c = \sigma/v_y$ with $v_y = p_y/m$, efficient splitting requires $t_c \geq \hbar/E_n$. For a fixed angle γ and a fixed initial momentum p_y, we observe that the dependence of the splitting ratio on the initial transverse state $|n\rangle$ is very strong. This is displayed in Fig. 2, where we plot the fraction of atoms transmitted towards BS_2 (T) and the fraction deflected towards BS_3 (D) as a function of the initial transverse state for $\gamma = 45^\circ$ and two different initial longitudinal momenta, $p_y = 10p_r$ and $p_y = 5p_r$. To “count” the number of deflected (transmitted) atoms we use an absorbing box at L_3 (L_1) after the beam splitter and integrate the loss of norm in each box with time. The transmitted and deflected fraction do not always add up to unity. The missing fraction consists of atoms backscattered into the downward sections of waveguides L_1 and L_3. For $p_y = 10p_r$, an approximately 50/50 splitting ratio occurs for transverse initial states with quantum numbers $n \simeq 8-11$. Losses due to backscattering are very small in this case. For $p_y = 5p_r$ the optimal splitting ratio occurs for $n \simeq 2-3$ although losses are now significantly higher. In both cases, the deflected fraction is narrowly peaked around its maximum evidencing that the beam splitter acts as filter for transverse states. This implies that even for thermal input states, efficient splitting occurs only for a narrow group of states around the optimal one. In both cases the fraction of deflected atoms is very small for the ground state ($\rho = |0\rangle\langle 0|$) of the potential.

The following simple picture helps to understand the selection of the optimal state $|n\rangle$ for a given initial momentum p_y and angle γ: At the intersection, the wave packet is no longer confined transversally and, therefore, expands according to its initial transverse momentum distribution. Optimal splitting occurs for typical transverse momenta $p_x = \sqrt{2mE_n}$ fulfilling $p_x \simeq p_y \tan \gamma$. Approximating the center of the waveguide by a harmonic potential of frequency ω one obtains the estimate $n_{opt} \simeq p_y^2 \tan^2(\gamma)/(2m\hbar\omega)$. Lower transverse states can be made optimal by lowering p_y and/or lowering γ. A lower n_{opt} also implies fewer states within the peak of non-negligible splitting ratios thus enhancing the filtering effect of the beam splitter. Despite the simplicity

FIG. 1: Schematic view of a Mach-Zehnder interferometer for guided atoms using 4 identical waveguides crossing at an angle γ. The initial atomic wave packet is represented by a dot in waveguide L_1 below the first beam splitter (BS_1). The location of the phase shift potential $\hat{U}(x,y)$ is also depicted.
of the argument, it agrees well with our results depicted in Fig. 2 and with our simulations for different initial longitudinal momenta p_y and angles γ. Only for angles $\gamma \leq 25^\circ$ we find strong deviations from our estimate since there backscattering and tunneling start to play an important role in the splitting dynamics and the simplified argument fails to reproduce the numerical results.

The coupling between transverse and longitudinal degrees of freedom in the splitting process results in a complex dynamics after the beam splitter. We calculate the longitudinal phase profile of each wave packet before it reaches the next beam splitter. The transmitted wave packet propagates along the waveguide L_1 almost without distortion and its phase profile agrees well with the phase profile of a wave packet propagating freely in a transverse harmonic potential. The motion along L_3 is more involved. Although the overall behavior of the phase resembles the one of the wave packet along L_1, even for a single mode initial state, the wave packet exhibits transverse oscillatory motion of frequency ω. This is caused by the excitation of a coherent superposition of transverse modes and clearly demonstrates that the splitting process is non-adiabatic. This oscillatory motion has to be taken into account for optimizing the efficiency of the full Mach-Zehnder interferometer.

The full interferometer is realized by appropriately crossing four identical waveguides. Due to numerical limitations, we constrain the distance between L_1 and L_2 to about 7 μm. Atoms loaded in the waveguide L_1 with initial momentum p_y propagate to the first beam splitter BS_1 and are then guided through L_1 and L_3 towards BS_2 and BS_3 respectively. Here BS_2 and BS_3 act as mirrors, but due to the additional output ports also establish new loss channels. Note that this Mach-Zehnder configuration is not symmetric even for 50/50 beam splitters, since, as we have already discussed, the dynamics in each arm of the interferometer becomes quite distinct after the first beam splitter. Following splitting processes in the two arms are no longer equivalent. This lack of symmetry excludes the possibility of achieving 100% visibility (defined as the amplitude [i.e., 1/2 (max-min)] of the modulation in the top output divided by the average in the top output) and demands optimization strategies to improve the visibility.

To demonstrate that coherence is preserved during the propagation through the full interferometer, we calculate the output signals after the final beam splitter BS_4 as a function of the depth d of an additional potential $\tilde{U}(x,y) = -dU_0e^{-(x-x_0)^2/2\sigma_x^2}e^{-(y-y_0)^2/2\sigma_y^2}$ which is inserted in one of the arms of the interferometer (between BS_3 and BS_4) to induce a phase shift between both arms. This extra potential, which can be either attractive or repulsive depending on the sign of d, has a Gaussian profile along the waveguide and smoothly lowers ($d > 0$) or increases ($d < 0$) the potential depth of that part of the waveguide. Our results are summarized in Fig. 3 and Fig. 4. Clear periodic modulations in the number of atoms exiting each output port (labeled top and side outputs for clarity) appear as a function of d for both single-mode (Fig. 3) and thermal initial state (Fig. 4).

For the single mode case, we choose, for simplicity, the ground state with longitudinal momentum $p_y = 10p_r$ as initial state. In Fig. 3a, we display the fraction of atoms at the top output versus d. The expected modulation of the atom number as a function of d is clearly visible. We compare the period of the oscillation with the one obtained using a simplified model of the phase shift ϕ introduced by the additional potential \tilde{U} using the classical action $S = \int dt L$, where L is the Lagrangian. Despite the oversimplification of this model, the calculated period is only a few % too small for low values of d. For larger d the increase in the oscillation period is more accurately described using a WKB approximation.

The combined atom number of both outputs of the interferometer is, for this case, small ($\approx 1\%$ of the initial atom number) since, as shown in Fig. 2, the ground...
FIG. 4: Interference for single-mode and thermal input states: fraction of atoms (in %) in the side (triangles) and top output (circles) versus the strength d of $\hat{U}(x, y)$. Filled symbols correspond to the transverse state with optimal splitting $n = 2$, open symbols to an initial thermal state at $T=20$ μK.

state splits very inefficiently and most of the atoms leave the interferometer at BS$_3$ and BS$_4$. The visibility of the fringes is also low ($\approx 2\%$). Better visibility can be achieved by choosing as the initial state the one with the optimal splitting ratio (c.f. Fig. 4) and using an optimized geometry. An optimized geometry aims at equalizing as much as possible the contributions from both arms of the interferometer to the final signal. This can be accomplished by choosing the distance between the waveguides L_1 and L_2 such that the wave packet that propagates in L_3 with transverse oscillations enters the beam splitter BS$_3$ with a mean transverse momentum appropriate to maximize the fraction of atoms deflected towards BS$_4$. This optimization immediately leads to a visibility of $\approx 7\%$ as shown in Fig. 4(b).

Experimentally, a single transverse mode wave packet is difficult to achieve. A more realistic scenario corresponds to an initial thermal occupation of the transverse modes (Eq. 4). For this case, we calculate the final output signal as a classical (Boltzmann) weighted average of the signal obtained for each transverse mode $|n\rangle$ separately. In our calculations, we now use an optimized geometry but we consider, nevertheless, that the compensation of the double potential in the beam splitters is not perfect but with a much lower signal. For the thermal initial state the different splitting ratios corresponding to the different transverse states lower the total output signal to $\approx 17\%$ but with visibilities up to 10%. This clearly demonstrates the persistence of coherence and interference even for thermal input states and allows for the operation of the interferometer as a multimode device. In fact, compared to the zero temperature case (ground state), a thermal state which inherently contains the optimal state will dramatically improve the performance of the interferometer for large γ.

In summary, we have shown that guided-atom configurations allow for significant extensions of matter wave interferometry. An X-shaped beam splitter created by crossing two identical waveguides (with the doubling of the potential properly compensated) preserves coherence and acts analogously to a “color filter”, selecting only a few optimal radial states which contribute to the final signal. In this way coherence is preserved throughout the interferometer. As a consequence, temperature is not necessarily a limitation for the observation of interference fringes but can rather be a requisite to ensure a good performance. Our simulations show that an additional potential of variable strength in one of the arms of the interferometer can produce a straightforward proof for coherence and interference. Finally, we have also demonstrated improvements by applying optimization strategies.

This work is supported by the Deutsche Forschungsgemeinschaft (SFB 407), the RTN Cold Quantum Gases and the IST-project ACQP of the European Commission.

* Electronic address: krenz@itp.uni-hannover.de

[1] P.R. Berman (Editor) Atom Interferometry (Academic Press, San Diego, 1997), and references therein.
[2] R. Folman et al., Adv. At. Mol. Opt. Phys. 48, 263 (2002), and references therein.
[3] O. Houde, D. Kadio, and L. Pruvost, Phys. Rev. Lett. 85, 5543 (2000).
[4] R. Dumke et al., Phys. Rev. Lett. 89, 220402 (2002).
[5] E.A. Hinds et al., Phys. Rev. Lett. 86, 1462 (2001).
[6] W. Hänsel et al., Phys. Rev. A 64, 063607 (2001).
[7] E. Andersson et al., Phys. Rev. Lett. 88, 100401 (2002).
[8] A. Peters, K.Y. Chung, and S. Chu, Nature 400, 849 (1999); J.M. McGuirk et al., Phys. Rev. A 65, 033608 (2002); T.L. Gustavson, P. Bouyer, and M.A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997); T.L. Gustavson, A. Landragin, and M.A. Kasevich, Class. Quantum Grav. 17, 2385 (2000).
[9] H. Ott et al., Phys. Rev. Lett. 87, 230401 (2001); W. Hänsel et al., Nature 413, 498 (2001); A.E. Leanhardt et al., Phys. Rev. Lett. 89, 040401 (2002); S. Schneider et al., Phys. Rev. A 67, 023612 (2003); M.P.A. Jones et al., Phys. Rev. Lett. 91, 080401 (2003).
[10] M.D. Girardeau, K.K. Das, and E.M. Wright, Phys. Rev.
[11] G. Birkel et al., Opt. Commun., 191, 67 (2001).
[12] C. Bordé, C. R. Acad. Sci., IV, 509 (2001).
[13] Convergence and wave packet spreading effects were studied by performing some runs with a waveguide separation of 21 μm. The results in both cases agree very well showing that spreading does not affect the visibility of the interference fringes.