Evidence for stratified conflicts of interest policies in research contexts: a methodological review

S Scott Graham 1, Martha S Karnes,2 Jared T Jensen,3 Nandini Sharma,3 Joshua B Barbour 2, Zoltan P Majdik 4, Justin F Rousseau 5

ABSTRACT

Objectives The purpose of this study was to conduct a methodological review of research on the effects of conflicts of interest (COIs) in research contexts.

Design Methodological review.

Data sources Ovid.

Eligibility criteria Studies published between 1986 and 2021 conducting quantitative assessments of relationships between industry funding or COI and four target outcomes: positive study results, methodological biases, reporting quality and results–conclusions concordance.

Data extraction and synthesis We assessed key facets of study design: our primary analysis identified whether studies stratified industry funding or COI variables by magnitude (ie, number of COI or disbursement amount), type (employment, travel fees, speaking fees) or if they assessed dichotomous variables (ie, conflict present or absent). Secondary analyses focused on target outcomes and available effects measures.

Results Of the 167 articles included in this study, a substantial majority (98.2%) evaluated the effects of industry sponsorship. None evaluated associations between funding magnitude and outcomes of interest. Seven studies (4.3%) stratified industry funding based on the mechanism of disbursement or funder relationship to product (manufacturer or competitor). A fifth of the articles (19.8%) assessed the effects of author COI on target outcomes. None evaluated COI magnitude, and three studies (9.1%) stratified COI by disbursement type and/or reporting practices. Participation of an industry-employed author showed the most consistent effect on favourability of results across studies.

Conclusions Substantial evidence demonstrates that industry funding and COI can bias biomedical research. Evidence-based policies are essential for mitigating the risks associated with COI. Although most policies stratify guidelines for managing COI, differentiating COIs based on the type of relationship or monetary value, this review shows that the available research has generally not been designed to assess the differential risks of COI types or magnitudes. Targeted research is necessary to establish an evidence base that can effectively inform policy to manage COI.

BACKGROUND

Substantial evidence indicates that industry funding of biomedical research and author financial conflicts of interest (COIs) arising from financial relationships with medically related industry can bias research results.1–7 Associations between industry funding or COI and positive outcomes, such as results favourable to the sponsor, are the most well documented.3–5,7 Available evidence indicates that industry-funded trials can be up to 5.4 times more likely to return positive results than trials not sponsored by industry,8 and trials with author COI may be as much as 8.4 times more likely to return favourable results when compared with those without author COI.6 Additional research has demonstrated that industry funding and COI may be associated with reduced drug and device safety8,9 and can have adverse effects on the methodological quality of clinical trials.10–12 Recent studies also suggest that industry sponsorship may be associated with premature trial termination and non-reporting of trial results.13,14 Calls for more evidence documenting that industry funding and COI can measurably bias biomedical research persist even though these findings have been repeatedly replicated.15

Recognising the risks of bias, many organisations involved in biomedical research have adopted specific policies designed to address industry funding and COI. These include
both policies designed to manage the risks associated with individual researcher COIs and guidelines addressing potential institutional COI resulting from industry gifts and research sponsorship. The need for such policies is clear, which in turn raises important questions about the form those policies should take. Differentiation among COI types and magnitudes is a common feature of the policies adopted by universities, academic medical centres (AMCs), government laboratories and similar research institutions. COI policy guidelines published in the literature and by professional medical organisations also routinely differentiate among different COI types and magnitudes. COI policy guidelines published in the literature and by professional medical organisations also routinely differentiate among different COI types and magnitudes. That is, COI policies and guidelines routinely make distinctions based on the method of remuneration (industry employment, consultancy relationships, honoraria, travel fees, etc), the nature of the funder (eg, industry, nonprofit, government agency), the recipient of remuneration (eg, self, partner, family and collaborator) and the magnitude or monetary value of the disbursement. Table 1 describes explicit recommendations by the American Medical Student Association (AMSA),16 the Association of Academic Medical Centers (AAMC),17 the British Medical Association (BMA)18 and Brennen et al.’s19 recommendations for whether AMC COI policies should prohibit, restrict or require disclosure of specific COI strata. Where entries are blank, the guidance provided no specific recommendations for that type of relationship.

AAMC, Association of Academic Medical Centers; AMC, academic medical centre; AMSA, American Medical Student Association; BMA, British Medical Association; COI, conflict of interest.

This table shows AMSA,16 AAMC,17 BMA18 and Brennen et al’s19 recommendations for whether AMC COI policies should prohibit, restrict or require disclosure of specific COI strata. Where entries are blank, the guidance provided no specific recommendations for that type of relationship.

COI	AMSA	AAMC	BMA	Brennen et al
Attendance at unaccredited industry-sponsored events	Prohibit	Prohibit	Prohibit	Prohibit
Consulting	Restrict			
Donations	Disclose			
Ghostwriting	Prohibit	Prohibit	Prohibit	Prohibit
Gifts	Prohibit	Prohibit	Prohibit	Prohibit
Grants	Disclose			
Industry access: device representatives	Restrict	Restrict	Restrict	Restrict
Industry access: pharmaceutical representatives	Prohibit	Restrict	Restrict	Prohibit
Industry sponsored continuing medical education	Restrict	Restrict	Restrict	Restrict
Industry sponsored scholarships	Restrict			
Meals	Prohibit	Restrict	Prohibit	Prohibit
Pharmaceutical samples		Restrict		
Research contracts	Disclose			
Speakers bureaus	Prohibit			Prohibit
Travel funds	Restrict			
Travel for industry sponsored meetings				Prohibit
Travel funds for trainees	Prohibit	Prohibit	Prohibit	Prohibit
Treatment inducements				Prohibit

This table shows AMSA,16 AAMC,17 BMA18 and Brennen et al’s19 recommendations for whether AMC COI policies should prohibit, restrict or require disclosure of specific COI strata. Where entries are blank, the guidance provided no specific recommendations for that type of relationship.

AAMC, Association of Academic Medical Centers; AMC, academic medical centre; AMSA, American Medical Student Association; BMA, British Medical Association; COI, conflict of interest.

The establishment of approaches to COI management that differentiate by type and magnitude indicate that common guidance assumes that different COI types and should merely require disclosure. However, different policies and guidelines do not agree on the risk presented by different types or magnitudes of COI. The recommendations typically advise a total prohibition on gifts from industry and ghostwriting but recommendations about other COI types vary widely. For example, AMSA recommends restrictions on consulting fees, but the AAMC, BMA and Brennen et al do not address consultancy outside general recommendations for transparency via COI disclosure. All four guidelines disagree if industry representative access to research spaces should be restricted or prohibited outright.

Various policies also make distinctions about the magnitude or monetary value of COI to set disclosure thresholds. However, recommended thresholds vary widely within and between organisations. For example, since 1995, the US Department of Health and Human Services has required AMCs and other entities that receive federal research funding to adopt policies that require disclosure of COI over a certain threshold.20 This value was lowered from $10 000 to $5000 in 2011.21 The BMA sets the declaration threshold for gifts at £500 and for equity holdings at greater than 1% of the value of the company or greater than £25 000.18

The establishment of approaches to COI management that differentiate by type and magnitude indicate that common guidance assumes that different COI types and
magnitudes carry different degrees of risk for biomedical research and require different responses. This assumption even drives much of the available research on COI policies at AMCs and similar institutions. The AMSA scorecard, for example, is a well-established framework for COI policy evaluation.\(^1\)\(^6\)\(^\text{22}\) It has been used to assess the extent to which COI policies at AMCs in the USA,\(^1\) France,\(^2\)\(^3\) and Germany,\(^2\)\(^4\) follow AMSA recommendations for COI policy construction and stratification.

Despite the significant investments in developing and evaluating stratified COI policies, it is not clear that different types of COI do, in fact, carry different risks or levels of risk for biomedical research. If one were to assess the efficacy of COI policies (ie, determine if COI policies have any effects on the quality of research), one must first assess whether policies stratified by COI types are grounded in evidence about the differential risks of different COI types. This study sought to assess the extent to which orthodox research designs for assessing the effects of COI on biomedical research have been designed to generate evidence relevant to the stratification of COI policies. Demonstrating the existence of differential risk profiles for different COI types would require, at minimum, research designs that stratify COI variables prior to analysis. They should further disaggregate industry research sponsorship generally from specific forms of author COI. Therefore, the goal of this methodological review is to evaluate the extent to which study designs in available industry funding and COI research can support COI policies or that policy recommendations should assume differential risk profiles for different types of COI and/or different monetary values. Put another way, the evidence for the need for mitigating the risks imposed by COI is strong, but the state of the research that can guide how to manage that risk is unclear. This study reviews methodological designs for: (1) industry funding variable stratification and disaggregation, (2) COI variable stratification and disaggregation and (3) diversity of outcomes assessments.

METHODS

Methodological reviews are designed to provide information on the prevalence of available study designs in a body of literature. They have facilitated advances in a wide variety of health and health policy contexts and can be used to identify and prioritise new pathways for research.\(^2\)\(^5\)\(^-\)\(^8\)\(^\text{26}\) A methodological review is the ideal approach for this study, which requires identifying if research on the effects of industry funding and COI has been conducted in ways that could support current COI policy stratifications. Our review proceeded in three phases. First, we replicated the search strategy and article screening protocol for a previously published Cochrane systematic review of the effects of industry funding on biomedical research.\(^2\) The prior Cochrane review evaluated the overall strength of the evidence base regarding the association of industry funding with results favourable to the sponsor, risks of bias associated with the methodological design and the quality of reporting of the concordance between results and conclusions, but it did not document the methodological design elements in focus in this study.\(^3\) While the meta-analysis did not expressly evaluate author COI as an isolated variable ‘conflicts of interest’ was a key term in the search strategy, and many articles included in the Cochrane review used COI as proxy for industry funding. Our study adopted the search strategy and screening protocol of the original review, and the second phase of this review involved conducting a novel assessment of the methodological features of included articles, with particular focus on how industry funding and COI variables were operationalised in statistical analyses. Finally, we used these data to synthesise the evidence for evaluating different types of industry funding or author COI on target outcomes in biomedical research.

Search strategy and study selection

We began by replicating the search strategy in a previously published Cochrane review. The strategy was designed to identify relevant articles indexed in the Ovid database. (See the online supplemental materials for complete details.) The original review and screening protocol identified 75 studies of interest published between 1986 and 2016. We retrieved each of the original 75 studies, and in June 2021, we repeated the search strategy to collect additional relevant articles published since 2016. We also replicated the study inclusion protocol from the previous Cochrane review. Specifically, eligible studies provided a quantitative assessment of the extent to which industry funding or author COI were associated with target outcomes of interest (ie, results favourable to industry, methodological biases, reporting quality and results–conclusions concordance) within research on drug and device products. All collected studies evaluated one of these outcomes on a dataset of clinical trials. Clinical trials data may come from published articles, clinical trials registries or both. Studies of the effects of industry funding and/or COI in research areas related to smoking, nutrition, physical therapy, psychotherapy and surgery were excluded except in cases where analyses were performed on separate identifiable drug or device data. Additionally, studies that evaluated the effects of industry funding or COI on clinical practices, guidelines development, patient organisations and regulatory policy were excluded.

Three evaluators screened titles and abstracts. After initial norming, a random sample of 255 titles and abstracts were selected by all three raters to assess reliability across screeners. A sample size of 255 was chosen to achieve 90% assurance using the intraclass correlation coefficient (ICC).\(^2\) Overall agreement between the three raters was 94.9% with an ICC=0.801. A secondary analysis of the random sample indicated that the abstracts for all articles selected for further screening included at least one of the following terms: ‘funding’, ‘funded’, ‘COI’, ‘ICOI’, ‘conflict’ or ‘sponsor’, which allowed us...
to develop an automated screening tool based on those terms. Articles selected for full-text review passed both automated and manual screening. The full article text of the remaining articles was evaluated by three raters.

Data extraction and synthesis
The current methodological review was designed to collect data on the underlying analytic designs in selected articles. Specifically, the investigators collected data on which independent and dependent variables had been operationalised and defined. That is, each industry funding and COI independent variable was categorised as ‘stratified’, ‘unstratified’ or ‘magnitude’. Here, ‘stratified’, refers to what is often called categorical or nominal variables. For example, a study that stratified industry funding variables might assess if funding provided by a drug manufacturer or a competing pharmaceuticals company has differential impacts on target outcomes. Similarly, a study that stratified a COI variable might evaluate the relative impact of different disclosed COI types such as ‘industry employed author’, ‘receipt of consulting fees’ or ‘receipt of travel fees’. We classified independent variables as ‘magnitude’ if they assessed industry funding or COI as a continuous or ordinal variable. This might mean assessing industry funding in terms of disbursed amounts (eg, $5000 or £20 000) or the total number of COI per article. Relevant variables were identified as ‘unstratified’ when they were assessed as simply present or absent (eg, industry funded vs non-industry funded or reported COI vs no reported COI). We also noted if variables had been dichotomised prior to analysis. This occurs when articles present stratified variable data as part of descriptive statistics, but then perform statistical analyses on simplified, unstratified, dichotomous industry funding or COI variables.

Our analysis also assessed whether author COI was used as a proxy for industry funding. This research design choice would indicate that the article in question did not fully disaggregate general industry sponsorship from specific types of author COI. Each outcome variable was also categorised according to the primary domain of interest, including outcome favourability to sponsor, drug or device safety; quality of study design or reporting; and if results were reported at all. Finally, for all articles with stratified independent variables for industry funding or author COI, we identified clinical areas of interest, sample sizes used, each assessed stratum, outcomes against which the stratum were assessed, significance of the results and any reported effect sizes. A complete description of the criteria is available in online supplemental table 1.

Patients and public involvement
No patients or public were involved in the study.

RESULTS
Our replication of the previously published search strategy retrieved 3884 unique records for articles published in 2016 and later. Automated screening removed 2671 articles from consideration. Subsequent manual screening of titles and abstracts excluded another 926 articles. The remaining 287 articles were selected for full-text review, and 92 studies were ultimately selected for inclusion. An additional 75 articles were included from the pre-existing systematic review for a dataset of 167 articles (see figure 1).

Industry funding variable assessment
Of the 167 articles included in this study, a substantial majority (n=164, 98.2%) evaluated the effects of industry sponsorship (see online supplemental table 2). In most cases, industry funding was determined based on an article’s acknowledgements or sponsorship declaration. However, some studies collected data from clinical trials registries like clinicaltrials.gov, which index sponsorship. Notably, 35 studies (21.3%) assessing industry funding used author employment in industry or other author COI as part of the inclusion criteria for a variable identified as ‘industry funding’ or ‘industry sponsorship’. Studies also used industry provision of drugs or devices as a criterion for industry funding. Others treated provision of supplies as its own isolated variable.

Among the articles that assessed industry funding in some form, none evaluated associations between funding magnitude and outcomes of interest. Ten studies (6.1%) collected stratified data on industry funding but dichotomised the variable prior to statistical analysis. Only seven studies (4.3%) stratified industry funding for analysis in any way. Evaluated strata included details about the nature of the sponsor (evaluated drug manufacturer vs competitor company) or the nature of the sponsorship (full study sponsorship, collaborative sponsorship with other funders or provision of medications). Three of the seven studies included assessed differences in favourable outcomes based on funder relationship to the product evaluated (eg, manufacturer vs competitor company).

Only one study found significant results: this review of 542 psychiatry studies found that a greater percentage of studies sponsored by the drug manufacturer have positive outcomes than those not sponsored by a pharmaceutical company (78% vs 48%) and that research sponsored by a competitor had the lowest rate of favourable findings (28%). Pairwise comparisons between manufacturer-funded or competitor-funded and non-industry-funded studies were significantly different, but the study reported no indicators of effect size. Three studies evaluated strata related to the mode of industry involvement. These studies assessed the relationship between favourable outcomes and industry provision of medication, report of findings in an industry publication venue and other (unspecified) industry involvement. One study found significant results and reported that ‘other’ industry involvement associates with favourable outcomes for industry.

See table 2 for further details. In sum, a substantial proportion of the research that might provide insight into COI policy design assesses only industry sponsorship generally. Nearly a quarter of...
the assessed studies conflate industry funding and COI variables making it impossible for results to shed light on potentially useful policy differences. And, finally, studies of industry funding that do stratify variables primarily provide insight on different sponsorship modalities and not on issues related to author COI.

COI variable assessment

Of the 167 articles evaluated, only 33 (19.8%) assessed COI as a discrete variable. Attention to COI began considerably later in the dataset, not appearing until 2005. Most studies that evaluated author COI relied on the data in the published disclosure statement. A handful of studies used the author’s institutional affiliation as an indicator of industry employment, and a few studies also compared disclosure statements to data available in the Open Payments Database. Of the articles that evaluated author COI, none assessed COI magnitude, and only three studies (9.1%) stratified COI for analysis. Four studies (12.1%) collected stratified COI data but dichotomised it prior to analysis. The few studies that assessed COI strata independently tended to evaluate disclosure practices as opposed to COI types.36–38 These articles report on evaluations of the relationship between favourable outcomes or methodological quality and COI disclosure, lack of funding disclosure, incomplete disclosure, lack of disclosure requirements by journal or affirmative statements of no author COI. Disclosure of COI and ‘full’ disclosure of COI were most strongly associated with results favourable to industry.37 38 Here ‘full’ disclosure meant that all payments reported to the Open Payments Database were reflected in published disclosure statements. Assessments of these different disclosure practices returned non-significant results or smaller effect sizes. Two studies evaluated the relationship between participation of industry-employed authors and results favourable to industry.33 34 An evaluation of 215 psychiatric studies published between 1998 and 2003 found that participation of industry authors was significantly associated with favourable outcomes.33 Similarly, an assessment of 91 asthma product studies found that favourable outcomes were more likely for studies with industry-employed authors34 (see table 2).

Target outcomes evaluation

Most studies in the dataset (n=108, 64.7%) evaluated the relationship between industry funding or COI and outcomes favourability for sponsors. Sixty-six (39.5%) evaluated methodological or reporting quality. Nineteen (11.4%) assessed reporting of results, and 15 (9.0%)...
Article	Area	Samp.	Outcome	Strata	Sig.	Effect measure	Effect
Ahmer 2005	Psychiatry	306	Outcome favourability	Industry provided medications	0.053	–	–
				Author is industry employee	0.01*	OR	8.33 (1.64–50.0)
Bartels 2012	Spine research	51	Outcome favourability	Disclosed COI	<0.05*	OR	16.5 (4.7–58.1)
				Statement of no COI		–	–
				Disclosure not required by journal		–	–
Bond 2012	Asthma	91	Outcome favourability	Industry sponsorship	0.546	–	–
				Industry publication venue	0.191	–	–
				Other industry involvement	NR	–	–
				Author is industry employee	0.003*	Risk ratio	1.42 (1.10–1.82)
Jinapriya 2011	Latanoprost	44	Outcome favourability	Sponsorship by parent company	0.53	–	–
				Sponsorship by competing company	0.53	–	–
Kelly 2006	Psychiatry	542	Outcome favourability	Sponsorship by manufacturer	0.001*	–	–
				Sponsorship by competing company	0.001*	–	–
Rattinger 2009	Thiazolidinediones	61	Outcome favourability	Sponsorship by manufacturer	0.7778	–	–
				Sponsorship by competing company	0.037*	OR	0 (0.0886)
				No funding disclosure	0.4153	–	–
				Corresponding author COI	0.3939	–	–
				Corresponding author is sponsor employee	0.5714	–	–
				Corresponding author no disclosure	0.4388	–	–
				Corresponding author COI with sponsor	0.049*	OR	4.125 (1.048;19.525)
Vlad 2007	Osteoarthritis	15	Outcome favourability	First author COI	0.1667	–	–
				First author is sponsor employee		–	–
				First author no disclosure		–	–
				First author COI with sponsor	0.4588	–	–
Cherla 2018	Multiple	590	Outcome favourability	Industry sponsorship	0.05	–	–
				Other industry involvement	0.02*	Random effects	0.55 (0.29–0.81)
				Author COI	0.04*	Random effects	0.55 (0.27–0.84)
				Full disclosure	0.001*	OR	8.65 (2.46–30.44)
				Incomplete industry disclosure	0.003*	OR	3.61 (1.53–8.51)
				Incomplete self-disclosure (partial)	0.004*	OR	4.14 (1.58–10.82)
				Incomplete self-disclosure (none)	0.002*	OR	0.14 (0.37–1.15)
evaluated drug or device safety. Attention to specific outcomes appears to have changed over time. Industry favourability of study outcomes had long been the dominant focus of research on industry funding and COI. Quality, safety and reporting grew increasingly prevalent (figure 2). Importantly, however, studies that stratified industry funding or COI variables were less diverse in their target outcomes. Of the 10 studies that stratified relevant variables, outcomes favourability to industry was assessed in all cases. One study also assessed the relationship between disclosure practices and methodological or reporting quality.36

DISCUSSION

For COI policies to make effective distinctions based on nature of relationships or amount of remuneration, these distinctions must be grounded in research that assesses differential risk profiles of COI types and magnitudes. However, a substantial majority of research assessing the effects of industry funding and author COI on biomedical research does not stratify relevant variables. Remarkably, zero studies included in this review conducted any assessments of the magnitude of either industry funding or author COI. Additionally, the available literature’s ability to support evidence-based stratifications in COI policies is further compromised by regular conflation of industry sponsorship and author COI variables as well as the practice of dichotomising variables prior to conducting statistical analyses. The few studies that did stratify COI variables tended to focus on disclosure practices rather than...
than COI types, and most studies assess only if COI types associated with results favourable to industry and not if they associated with other target outcomes of interest. These findings point to limitations in current disclosure practices that allow authors a great deal of latitude in reporting and describing COI. The variability of disclosure statements limits the extent to which research on COI can evaluate differential effects. Nevertheless, the results of this methodological review indicate that the available research on industry funding and COI has generally not been designed to guide COI policy stratifications or the establishment of disclosure thresholds.

Appropriate and evidence-based COI policies are essential for safeguarding the integrity of the biomedical research enterprise. Therefore, it is critical that research can meaningfully inform continued policy refinement. Clearly, guiding the design of COI policy requires additional research designed to assess the differential risks associated with various COI types and magnitudes.

Furthermore, research in this area could also be better supported by the development of standardised taxonomies of industry funding and/or author COI. Since the literature variously defines ‘industry funding’ as sponsorship, employment, provision of medications or any author COI, it is quite difficult to compare and aggregate findings across studies. Likewise, competing understandings of author COI based in different disclosure practices and type definitions also indicate the strong need for robust taxonomies that can guide future research. Empirically validated taxonomies could also support more consistent disclosure practices, which would aid future research evaluating the differential effects of COIs by type or magnitude.

These taxonomies combined with evidence about the magnitude of COIs would allow for computation and aggregation of COIs essential for supporting research that could effectively guide COI policy refinement. New research on the risks of COI would also benefit from continued diversification of outcomes assessment. Recent years have seen a steady expansion of outcomes of interest (eg, outcomes favourability giving way to more assessments of quality, safety and reporting practices), but favourability of results is still the overwhelmingly dominant target outcome.

Finally, the results of this review also suggest that researchers and policymakers would benefit from considering COI risks beyond those manageable at the individual researcher level. It is notable that common COI policies and guidelines tend to be strict with respect to relationships of modest economic benefit to individuals (eg, meals and travel), whereas relationships with well-documented risks but considerable economic benefit to institutions (eg, industry grants and collaborations) are largely left out of COI policy recommendations. Furthermore, the strongest evidence relates to author employment in industry, although specific instructions about disclosing employment have been removed from the latest ICMJE disclosure guidance. Given that collaborations with industry are a common form of institutional COI, and one not addressed by individualised COI policies, these findings support recent calls for greater attention to institutional COI at institutions that conduct biomedical research. Research conducted primarily at universities, AMCs and other research institutions may be more prone to bias when it is supported by industry funding or industry collaboration. COI policies that focus on individual researchers alone will not mitigate against these risks.

This study has several limitations that should inform the reading of the findings. Our review evaluates the methodological design and approaches to variable stratification for studies of the relationships between industry funding or author COI and four specified outcomes of interest in biomedical research. Although we are aware of studies that evaluate COI magnitude, for example, they were not returned by our search strategy either because they treat COI magnitude in the aggregate or because they assess non-target outcomes such as associations with commercial publishing practices. Additionally, AMC guidelines are designed to respond to COI risks in multiple domains including research, clinical practice and medical education. We assume that COI strata related to industry-funded continuing medical education or pharmaceutical representative access to AMCs are designed primarily to address risks of bias associated with medical education and clinical practice. Additional research not covered by this review is available that evaluates the relationships of industry funding and COI with prescription practices, guidelines development and policy decision making.

These limitations notwithstanding, the results suggest that policies designed to address COI risks associated with clinical practice may not effectively safeguard the integrity of biomedical research across institutional contexts because of the gap between policy and available COI research. Furthermore, it is possible that a one-size-fits-all COI policy may not be appropriate. Additional efforts should be made to ensure that COI policies are responsive to risks associated with bias in biomedical research. For example, AMCs should potentially consider differential policies based on institutional roles. Future research might, therefore, investigate the utility of separate COI policies for clinical, educational and research staff as well as staff holding multiple roles. In such cases, it might be appropriate to require staff to adhere to the most restrictive policy. COI policies should be developed based on an understanding of the differential effects of distinct strata and magnitudes of COI on outcomes across the multiple domains.

CONCLUSION

Current COI policies in research contexts devote considerable attention to distinguishing between different types and magnitudes of COI. Although substantial evidence exists that industry funding and COI have adverse effects on biomedical research, the current evidence cannot
guide policy stratification by type or magnitude. Given the broad adoption of policies that distinguish between COI types and set disclosure thresholds, the shortcomings identified here are weaknesses of current research that must be addressed. Importantly, however, we are not calling for a suspension of COI policies while this research is conducted. Inaccurate claims to insufficient evidence have long served to limit the scope of COI policies and to delay adoption. A precautionary approach would involve adopting more restrictive unstratified policies until such time that certain COI types are demonstrated to be of lower risk. Furthermore, our findings also suggests that these problematic claims may have adversely affected COI research itself. Unspecified calls for ‘more research’ might partially explain why, despite the clear findings of the 2017 meta-study, so many studies continue to assess if COI has an effect rather than which COI have what effects and why. Instead of suggesting the need for more COI research broadly, the current methodological review points towards targeted research needs about COI types and magnitudes. If stratified policies at research institutions are to mitigate the risks of COI, they must be based on comparative assessments of differential risks.

Twitter S Scott Graham @SScottGraham, Joshua B Barbour @barbourjosh, Zoltan P Majdik @zoltanmajdik and Justin F Rousseau @JFRousseau_MD

Contributors SG designed the study, conducted the study and is the guarantor. SG, JBB and JFR executed the search strategy and screened abstracts. SG, MSK, JTJ and NS collected the data. SG, JBB, JFR and ZM analyzed the data. SG, MSK and NS drafted the manuscript. SG, JBB, JFR and ZM revised the manuscript.

Funding This work was funded by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM141476.

Competing interests SG has received grant support from the National Institute of General Medical Sciences of the National Institutes of Health and the National Endowment for the Humanities; compute time from the National Science Foundation’s Extreme Science and Engineering Discovery Environment; and support for consulting from the Texas Health and Human Services Commission. JBB has received grant support from the National Institute of General Medical Sciences of the National Institutes of Health, The National Science Foundation and Blue Cross Blue Shield/Health Care Service Corporation. JFR has received grant support from the National Institutes of Health (National Institute of General Medical Sciences, National Institute of Allergy and Infectious Diseases, the National Institute of Mental Health), the Health Care Cost Institute, the Texas Child Mental Health Care Consortium and the Michael and Susan Dell Foundation. He has received support through research service agreements with Austin Public Health and the Integrated Care Collaboration. He has also received funds from National Center for Advancing Translational Sciences via the NIH Division of Loan Repayment. ZM has received grant support from the National Institute of General Medical Sciences of the National Institutes of Health, the National Science Foundation, the Summer Institute in Computational Social Science and consulting fees from the University of Texas at Austin.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

Supplemental material This content has been supplied by the author(s) and is not endorsing BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
S Scott Graham http://orcid.org/0000-0003-1569-2428
Joshua B Barbour http://orcid.org/0000-0001-8384-7175
Zoltan P Majdik http://orcid.org/0000-0002-3851-4694
Justin F Rousseau http://orcid.org/0000-0002-2817-9124

REFERENCES
1 Institute of Medicine. Conflict of interest in medical research, education, and practice. Washington, DC: The National Academies Press, 2009.
2 Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. Cochrane Database Syst Rev 2017:2:MR000033.
3 Waqas A, Baig AA, Khalid MA, et al. Conflicts of interest and outcomes of clinical trials of antidepressants: an 18-year retrospective study. J Psychiatr Res 2019;116:83–7.
4 Ahn R, Woodbridge A, Abraham A, et al. Financial ties of principal Investigators and randomized controlled trial outcomes: cross sectional study. BMJ 2017;356:e7870.
5 Fisco ME, Manzoli L, Boccia S, et al. Head-To-Head randomized trials are mostly industry sponsored and almost always favor the industry sponsor. J Clin Epidemiol 2015;68:811–20.
6 Perlis RH, Perlis CS, Wu Y, et al. Industry sponsorship and financial conflict of interest in the reporting of clinical trials in psychiatry. Am J Psychiatry 2005;162:1957–60.
7 Djulbegovic B, Lavecic M, Cantor A, et al. The uncertainty principle and industry-sponsored research. Lancet 2000;356:635–8.
8 Alis-Nielsen B, Chen W, Gluud C, et al. Association of funding and conclusions in randomized drug trials: a reflection of treatment effect or adverse events? JAMA 2003;290:921–8.
9 Gaywali B, Tessema FA, Jung EH, et al. Assessing the Justification, funding, success, and survival outcomes of randomized Noninferiority trials of cancer drugs: a systematic review and pooled analysis. JAMA Netw Open 2019;2:e199570.
10 Fraguas D, Diaz-Canaja CM, Pina-Camacho L, et al. Predictors of placebo response in pharmacological clinical trials of negative symptoms in schizophrenia: a meta-regression analysis. Schizophr Bull 2019;45:57–68.
11 Gao Y, Ge L, Ma X, et al. Improvement needed in the network geometry and inconsistency of Cochrane network meta-analyses: a cross-sectional survey. J Clin Epidemiol 2019;113:214–27.
12 Kapelios CJ, Naci H, Vardas PE, et al. Study design, result posting, and publication of late-stage cardiovascular trials. Eur Heart J Qual Care Clin Outcomes 2022;8:77–88.
13 Roddick AJ, Chan FTS, Stefanick JD, et al. Discontinuation and non-publication of clinical trials in cardiovascular medicine. Int J Cardiol 2017;244:309–15.
14 Stefanick JD, Lam TCH, Sim NE, et al. Discontinuation and non-publication of neurodegenerative disease trials: a cross-sectional analysis. Eur J Neurol 2017;24:1071–6.
15 Goldberg D. On physician-industry relationships and Unreasonable standards of proof for harm: a population-level bioethics approach. Kennedy Inst Ethics J 2016;26:173–94.
16 Carlat DJ, Fagarus T, Ramachandran R, et al. The updated AMSA scorecard of conflict-of-interest policies: a survey of U.S. medical schools. BMC Med Educ 2016;16:202.
17 AAMC. Industry funding of medical education report of an AAMC Task force, 2008. Available: https://www.aamc.org/system/files/c2/482220-industryfundingmedicaleducation.pdf [Accessed 27 Jan 2022].
18 BMA. Transparency and doctors with competing interests – guidance from the BMA, 2017. Available: https://www.bma.org.uk/media/1853/bma-transparency-and-doctors-with-competing-interests-apr-2017.pdf
19 Brennan TA, Rothman DJ, Blank L, et al. Health industry practices that create conflicts of interest: a policy proposal for academic medical centers. *JAMA* 2006;295:429–33.
20 Lo B, Wolf LE, Berkeley A. Conflict-of-interest policies for investigators in clinical trials. *N Engl J Med* 2000;343:1616–20.
21 Natl. Inst. Health NIH. Hhs Tightens financial conflict of interest rules for researchers, 2015. Available: https://www.nih.gov/news-events/news-releases/hhs-tightens-financial-conflict-interest-rules-researchers [Accessed 27 Jan 2022].
22 Fabbri A, Hone KR, Hrobjartsson A, et al. Conflict of interest policies at medical schools and teaching hospitals: a systematic review of cross-sectional studies. *Int J Health Policy Manag* 2021;10:e048178. doi:10.34172/ijhpm.2021.12. [Epub ahead of print: 03 Mar 2021].
23 Scheffer P, Guy-Coichard C, Outh-Gauer D, et al. Conflict of interest policies at French medical schools: starting from the bottom. *PLoS One* 2017;12:e0168258.
24 Grubitz P, Friedmann Z, Gepp S, et al. Quantity and quality of conflict of interest policies at German medical schools: a cross-sectional study and survey. *BMJ Open* 2020;10:e029782.
25 Oakley A, Fullerton D, Holland J, et al. Sexual health education interventions for young people: a methodological review. *BMJ* 1995;310:158–62.
26 Mellor K, Eddy S, Peckham N, et al. Progression from external pilot to definitive randomised controlled trial: a methodological review of progression criteria reporting. *BMJ Open* 2021;11:e048178.
27 Windt J, Arden CL, Gabbett TJ, et al. Getting the most out of intensive longitudinal data: a methodological review of workload-injury studies. *BMJ Open* 2018;8:e022626.
28 Arkes H, O'Malley L. Scoping studies: towards a methodological framework. *Int J Soc Res Methodol* 2005;8:19–32.
29 Zou GY. Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. *Stat Med* 2012;31:3972–81.
30 Kelly RE, Cohen LE, Semple RJ, et al. Relationship between drug company funding and outcomes of clinical psychiatric research. *Psychol Med* 2006;36:1647–56.
31 Jinapriya D, Anraku A, Alsabli T, et al. Evaluation of investigator bias in industry-funded clinical trials of latanoprost. *Can J Ophthalmol* 2011;46:531–6.
32 Rattinger G, Bero L. Factors associated with results and conclusions of trials of thiazolidinediones. *PLoS One* 2009;4:e5826.
33 Ahmer S, Arya P, Anderson D, et al. Conflict of interest in psychiatry. *Psychiatr. bull.* 2005;29:302–4.
34 Bond K, Spooner C, Tjosvold L, et al. The nature and influence of pharmaceutical industry involvement in asthma trials. *Can Respir J* 2012;19:267–71.
35 Vlad SC, LaValley MP, McAlindon TE, et al. Glucosamine for pain in osteoarthritis: why do trial results differ? *Arthritis Rheum* 2007;56:2267–77.
36 Saa C, Bunout D, Hirsch S. Industry funding effect on positive results of probiotic use in the management of acute diarrhea: a Systematized review. *Eur J Gastroenterol Hepatol* 2019;31:289–302.
37 Bartels RHMA, Delve H, Boogaarts J. Financial disclosures of authors involved in spine research: an underestimated source of bias. *Eur Spine J* 2012;21:1229–33.
38 Cherila DV, Viso CP, Holihan JL, et al. The effect of financial conflict of interest, disclosure status, and relevance on medical research from the United States. *J Gen Intern Med* 2019;34:429–34.
39 Slaughter S, Feldman MP, Thomas SL. U.S. research universities’ institutional conflict of interest policies. *J Empir Res Hum Res Ethics* 2009;4:3–20.
40 Rochon PA, Sekeres M, Lexchin J, et al. Institutional financial conflicts of interest policies at Canadian academic health science centres: a national survey. *Open Med* 2010;4:e134–8.
41 Resnik DB, Ariansen JL, Jamal J, et al. Institutional conflict of interest policies at U.S. academic research institutions. *Academic Medicine* 2016;31:242–6.
42 Nichols-Casebolt A, Macrina FL. Current perspectives regarding institutional conflict of interest. *Sci Eng Ethics* 2019;25:1671–7.
43 Graham SS, Majdik ZP, Barbour JB, et al. Associations between aggregate NLP-extracted conflicts of interest and adverse events by drug product. *Stud Health Technol Inform* 2022;290:405–9.
44 Graham SS, Majdik ZF, Clark D, et al. Relationships among commercial practices and author conflicts of interest in biomedical publishing. *PLoS One* 2020;15:e0235166.
Search strategy

MEDLINE via OvidSP (2015 – June 2021)

1. Drug Industry/
2. ((drug$ or pharmaceutical or device$ or for-profit or commercial$) adj2 (industr$ or company or companies or manufacturer$ or organi#ation$ or agency or agencies or source$ or party or parties)).ti,ab.
3. private industr$.ti,ab.
4. (industr$ or nonindustr$ or non-industr$).ti,ab.
5. or/1-4
6. "Conflict of Interest"/
7. Financial Support/
8. Research Support as Topic/
9. (influenc$ or funded or funding or sponsor$ or support$ or financ$ or involvement).ti,ab.
10. competing interest$.ti,ab.
11. or/6-10
12. and/5,11
13. Publication Bias/
14. "bias (epidemiology)"/
15. bias$.ti,ab.
16. or/13-15
17. and/12,16
18. Treatment Outcome/
19. "Outcome Assessment (Health Care)"/
20. (outcome$ or finding$).ti,ab.
21. or/18-20
22. (favo?r$ or positive or significan$ or beneficial or benefit$ or effective or effectual or efficacious).ti,ab.
23. (insignifican$ or nonsignifican$ or negative or adverse or ineffectiv$ or ineffectual or unfavo?r$ or detrimental).ti,ab.
24. or/22-23
25. and/21,24
26. and/12,25
27. ((favo?r$ or positive or significan$ or insignifican$ or nonsignifican$ or negative or unfavo?rabil$ or detrimental) adj2 (event$ or result$ or outcome$ or conclusion$)).ti,ab.
28. and/12,27
29. or/17,26,28
Supplementary Online Materials

Industry Funding Independent Variable (IV) Type.

Type	Description
Stratified	Study provides a quantitative assessment of the relationship between different types of industry funding and one or more outcomes of interest. Industry funding may be analyzed as a categorical variable or as a series of dichotomous variables representing a range of industry funding categories. Funder stratifications may include level of involvement (primary, secondary), relationship to drug or device under study (manufacturer, competitor), or mode of sponsorship (study sponsor, medication provider, author employer).
Unstratified	Industry funding is analyzed as a dichotomous variable or as one category in a categorical variable, e.g. funder types might include industry, government, nonprofit.
Magnitude	Industry funding is a continuous variable representing either the total number of industry funders per study or total dollar value of contributions.

Author COI IV Type

Type	Description
Stratified	Study provides a quantitative assessment of the relationship between different types of COI and one or more outcomes of interest. COI stratifications may include type of disbursement (employment, speaker fees, etc) and affiliation (trial sponsor vs. non-sponsor funder).
Unstratified	COI is analyzed as a dichotomous variable or as one category in a categorical variable, e.g., Industry funding, Author COI, Government Funding.
Magnitude	COI is a continuous variable representing either the total number of relationships or the total dollar value of contributions.

COI as Proxy for Industry Funding Study

Type	Description
Yes	Disclosed author COI are used as inclusion criteria for industry funding.
No	Disclosed COI are not used as inclusion criteria for industry funding or industry funding is not measured.

IV Dichotomization

Type	Description
NA	The IV used in the statistical analysis was stratified or an assessment of magnitude.
Yes	The categorical schema was converted to dichotomous variables that were used for analysis.
No	The IV was consistently treated as dichotomous throughout the article.

Dependent Variable Type (DV Type)

Type	Description
Outcome	The analysis evaluates if chosen IVs are associated with results indicating the success of the intervention (drug, device, etc) or are otherwise favorable to trial sponsors. Includes drug efficacy, response rate, positive interpretation of findings, etc.
Safety	The analysis evaluates if chosen IVs associate with results related to drug safety.
Quality	The analysis evaluates if chosen IVs are associated with results related to methodological or reporting quality. Includes issues of statistical power, risk of bias, presence of hype or spin.
Reporting	The analysis evaluates whether or not trial results were reported at all. May include reporting to ClinicalTrials.Gov or publication of findings.

Supplemental Table 1. Methodological Design Feature Schema for Analyzed Studies.

Definition and details for industry funding IV type, author COI IV type, COI as proxy for industry funding, dichotomization, and DV type analyses.

Supporting Information, p. 1
Article	Year	IF IV Type	COI IV Type	DV Type	COI Proxy	IF Dichotomize	COI Dichotomize
Abildgaard et al. (1)	2019	Unstratified	None	Outcome	yes	yes	NA
Addin et al. (2)	2019	Unstratified	None	Outcome, Safety	no	no	NA
Ahmer et al. (3)	2005	Stratified	Unstratified	Outcome	no	NA	no
Ahn et al. (4)	2016	Unstratified	Unstratified	Outcome	no	no	yes
Alasbali et al. (5)	2009	Unstratified	None	Outcome, Quality	no	no	NA
Al-Nielsen et al. (6)	2003	Unstratified	None	Outcome	yes	NA	NA
Arni et al. (7)	2004	Unstratified	None	Quality	no	no	NA
Aysel et al. (8)	2019	Unstratified	None	Quality	no	NA	NA
Azharmuddin et al. (9)	2020	Unstratified	None	Quality	no	no	NA
Barden et al. (10)	2005	Unstratified	None	Outcome	yes	no	NA
Barani et al. (11)	2013	Unstratified	Unstratified	Outcome	no	yes	yes
Bartolo et al. (12)	2012	Unstratified	Stratified	Outcome	yes	no	NA
Ber et al. (13)	2007	Unstratified	Unstratified	Outcome	no	NA	no
Bhanderi et al. (14)	2004	Unstratified	None	Outcome	no	yes	no
Bighelli et al. (15)	2020	Unstratified	Unstratified	Quality	no	no	NA
Bond et al. (16)	2012	Stratified	Unstratified	Outcome	yes	NA	no
Booth et al. (17)	2008	Unstratified	None	Outcome, Quality	no	NA	NA
Bougenis et al. (18)	2010	Unstratified	None	Outcome, Quality	no	NA	NA
Brown et al. (19)	2006	Unstratified	None	Outcome, Quality	no	no	NA
Buchkowsky and Jewesson (20)		Unstratified	Unstratified	Outcome	no	NA	no
Bugano et al et al. (22)		Unstratified	None	Outcome	no	NA	NA
Catillon (23)	2019	Unstratified	None	Outcome, Quality	no	no	NA
Chang et al. (24)	2021	Unstratified	None	Quality	no	NA	NA
Chaud et al. (25)	2000	Unstratified	None	Outcome, Quality	no	NA	NA
Chen et al. (26)	2016	Unstratified	None	Reporting	no	NA	NA
Clerka et al. (27)	2018	None	Stratified	Outcome	no	NA	NA
Cho and Bera (28)	1996	Unstratified	None	Outcome, Quality	yes	no	NA
Clark et al. (29)	2002	Unstratified	None	Outcome	no	no	NA
Clifford et al. (30)	2002	Unstratified	None	Outcome, Quality	no	NA	NA
Corona et al. (31)	2014a	Unstratified	None	Quality, Safety	yes	no	NA
Corona et al. (32)	2014b	Unstratified	None	Outcome, Quality	yes	no	NA
Cristea et al. (33)	2017	None	Unstratified	Outcome	no	NA	no
Crocetti et al. (34)	2010	Unstratified	None	Quality	no	NA	NA
Daridovči et al. (35)	2021	Unstratified	None	Outcome, Reporting	no	no	NA
Davidson (36)	1986	Unstratified	None	Outcome	yes	no	NA

Supporting Information, p. 2
Author(s)	Year	Stratification	Use of Stratification	Outcome Quality	Outcome Safety	Reporting Quality	Reporting Safety	Safety	Outcome	Reporting	Quality	Safety	Reporting
Davis et al. (37)	2008	Unstratified	None	Outcome	yes	no	NA						
de Souza Gutierres et al. (38)	2020	Unstratified	None	Quality	no	no	NA						
DeFrance et al. (39)	2021	None	Unstratified	Outcome	no	NA	no						
DeGeorge et al. (40)	2015	Unstratified	Unstratified	Outcome	no	NA	no						
Del Paggio et al. (41)	2017	Unstratified	None	Outcome	no	no	NA						
Falk Delgado and Falk Delgado (42)	2017a	Unstratified	Unstratified	Reporting	no	NA	no						
DePasse et al. (44)	2018	Unstratified	None	Reporting	no	NA	NA						
DeGeorge et al. (40)	2015	Unstratified	None	Reporting	no	NA	NA						
DePasse et al. (44)	2018	Unstratified	None	Reporting	no	NA	NA						
Djulbegovic et al. (46)	2013	Unstratified	None	Quality	yes	no	NA						
Djulbegovic et al. (47)	2000	Unstratified	None	Quality	yes	no	NA						
Dyer et al. (48)	2007	Unstratified	None	Outcome	yes	no	NA						
Finnane and Boult (49)	2004	Unstratified	None	Outcome	yes	no	NA						
Vlaicu et al. (50)	2015	Unstratified	Unstratified	Outcome	yes	yes	no						
Fragas et al. (51)	2018	Unstratified	None	Quality	no	no	NA						
Freeman et al. (52)	2000	Unstratified	None	Outcome	no	no	NA						
Fung et al. (53)	2017	Unstratified	None	Quality	no	no	NA						
Gabler et al. (54)	2016	Unstratified	None	Reporting	no	no	NA						
Gao et al. (55)	2012	Unstratified	None	Quality	no	no	NA						
Garcia et al. (56)	2019	Unstratified	None	Quality	no	NA	NA						
Gardiner et al. (57)	2010	Unstratified	None	Outcome	yes	no	NA						
Gandino et al. (58)	2020	Unstratified	Unstratified	Outcome	yes	no	yes						
Gonzalez et al. (59)	2019	Unstratified	None	Quality	no	NA	NA						
Grey et al. (60)	2018	Unstratified	None	Outcome	no	no	NA						
Gysuwe et al. (61)	2019	Unstratified	None	Safety	no	no	NA						
Hajibeneh et al. (62)	2017	Unstratified	Unstratified	Outcome	no	no	no						
Hargem et al. (63)	2004	Unstratified	None	Quality	no	NA	NA						
Henneman et al. (64)	2016	Unstratified	None	Outcome	no	NA	NA						
Hashemipour et al. (65)	2019	Unstratified	Unstratified	Outcome	no	no	no						
Hendrier et al. (66)	2021	Unstratified	None	Safety	yes	no	NA						
Hern et al. (67)	2006	Unstratified	None	Outcome	no	no	NA						
Jansan et al. (68)	2018	Unstratified	None	Outcome	no	yes	NA						
Jefferson et al. (69)	2000	Unstratified	None	Quality	no	no	NA						
Jellison et al. (70)	2020	Unstratified	None	Quality	no	yes	NA						
Jinnapota et al. (71)	2011	Stratified	None	Outcome	no	NA	NA						
Johnson et al. (72)	2020	Unstratified	None	Reporting	no	NA	NA						
Authors	Year	Stratification	Characteristics	Safety	Outcome	Quality	Reporting	Source					
----------------------	------	----------------	-----------------	--------	---------	---------	-----------	---------					
Jones et al. (73)	2010	Unstratified	Quality	no	NA	NA	NA						
Kakkar et al. (74)	2019	Unstratified	Quality	no	no	NA	NA						
Kapellos et al. (75)	2020	Unstratified	Outcome, Quality	no	no	NA	NA						
Kelly et al. (76)	2006	Stratified	Outcome	yes	NA	NA	NA						
Kemmeren et al. (77)	2012	Unstratified	Outcome, Quality	no	no	NA	NA						
Kakkar et al. (78)	2019	Unstratified	None	no	no	NA	NA						
Kapellos et al. (79)	2014	Unstratified	Outcome	yes	no	NA	NA						
Kjaergard and Als- Nielsen (80)	2002	Unstratified	None	no	NA	NA	NA						
Loo et al. (81)	2012	Unstratified	COI, Outcome	no	no	NA	NA						
Loo et al. (82)	2020	Unstratified	None	no	no	NA	NA						
Leit et al. (83)	2017	Unstratified	Unstratified	Outcome	no	no	no						
Leucht et al. (84)	2017	Unstratified	Outcome, Quality	no	no	NA	NA						
Leucht et al. (85)	2019	Unstratified	None	Outcome	no	no	NA						
Lin et al. (86)	2017	Unstratified	None	Outcome	no	no	NA						
Litz (87)	2006	Unstratified	None	Outcome	yes	no	NA						
Lin et al. (88)	2018	Unstratified	None	Outcome	no	NA	NA						
Lubowitz et al. (89)	2007	Unstratified	None	Outcome	no	no	NA						
Lynch et al. (90)	2007	Unstratified	None	Outcome	yes	NA	NA						
Ma et al. (91)	2014	Unstratified	None	Outcome	no	no	NA						
Magnani et al. (92)	2021	Unstratified	None	Reporting, Outcome	no	NA	NA						
Maillet et al. (93)	2015	Unstratified	None	Outcome	no	no	NA						
Madik et al. (94)	2017	Unstratified	None	Outcome	no	no	NA						
Main et al. (95)	2020	Unstratified	None	Quality	no	NA	NA						
Mitchell and Patterson (96)	2000	Unstratified	None	Outcome	no	no	NA						
Momma et al. (97)	2009	Unstratified	None	Outcome	no	NA	NA						
Momper (98)	2003	Unstratified	None	Outcome	no	no	NA						
Montgomery et al. (99)	2004	Unstratified	Unstratified	Outcome, Quality	no	no	no						
Morones et al. (100)	2017	Unstratified	Unstratified	Outcome	no	NA	no						
Mosman et al. (101)	2021	Unstratified	None	Outcome	no	no	NA						
Nacn et al. (102)	2014	Unstratified	None	Outcome, Quality	no	no	NA						
Ng et al. (103)	2016	Unstratified	None	Quality	no	no	NA						
Nier et al. (104)	2007	Unstratified	None	Safety	no	no	NA						
Nithianandan et al. (105)	2020	Unstratified	None	Outcome	no	no	NA						
Oudaloye et al. (106)	2017	Unstratified	None	Outcome	no	no	NA						
Paguen et al. (107)	2021	Unstratified	None	Quality	no	no	NA						
Pasalic et al. (108)	2020	Unstratified	None	Quality	no	no	NA						
Pengel et al. (109)	2009	Unstratified	None	Quality	yes	NA	NA						
Reference	Year	Stratification	Quality	Outcome	Safety	Reporting	Limitations	Outcome	Safety	Reporting	Limitations		
--------------------	------	----------------	---------	---------	--------	-----------	-------------	---------	--------	-----------	-------------		
Perz et al. (109)	2019	Unstratified	Safety	no	no	NA							
Perz et al. (111)	2007	Unstratified	Unstratified	Outcome	yes	no	no						
Perz et al. (112)	2005a	Unstratified	Unstratified	Outcome, Quality	yes	no	no						
Perz et al. (113)	2005b	Unstratified	Unstratified	Outcome	yes	no	no						
Pinto et al. (114)	2010	Unstratified	None	Outcome	no	NA	NA						
Pinnel et al. (115)	2017	Unstratified	None	Outcome, Quality	no	no	NA						
Prakash et al. (116)	2018	Unstratified	None	Outcome, Quality	no	NA	NA						
Price-Haywood et al. (117)	2019	Unstratified	None	Safety	no	NA	NA						
Printz et al. (118)	2013	Unstratified	None	Outcome	yes	no	NA						
Probst et al. (119)	2016	Unstratified	None	Outcome	no	no	NA						
Punja et al. (120)	2016	Unstratified	None	Outcome, Quality	no	no	NA						
Putman et al. (121)	2018	Unstratified	None	Safety	no	NA	NA						
Ramani et al. (122)	2009	Unstratified	None	Outcome	yes	yes	NA						
Rasmussen et al. (123)	2009	Stratified	Stratified	Outcome	yes	NA	NA						
Rassier and Borre (124)	2016	Unstratified	None	Outcome, Quality	no	yes	NA						
Rege et al. (125)	2019	Unstratified	None	Reporting	no	NA	NA						
Reuter and Torres (127)	2006	Unstratified	None	Outcome	no	NA	NA						
Rius et al. (128)	2008	Unstratified	None	Quality	no	NA	NA						
Rochon et al. (129)	1994	Unstratified	None	Outcome, Quality	yes	no	NA						
Rodick et al. (130)	2017	Unstratified	None	Outcome	no	NA	NA						
Roter et al. (131)	2014	Unstratified	None	Limitations, Outcome, Quality	no	NA	NA						
Rönn et al. (132)	2010	Unstratified	None	Outcome, Quality	no	no	NA						
Rönn et al. (133)	2011	Unstratified	None	Outcome	no	NA	NA						
Saa et al. (134)	2018	Stratified	None	Outcome, Quality	yes	NA	NA						
Salih et al. (135)	2020	Unstratified	None	Outcome	no	no	NA						
Schild et al. (136)	2019	Unstratified	None	Quality, Reporting	no	no	NA						
Shepard et al. (137)	2021	Unstratified	None	Quality	no	NA	NA						
Silva et al. (138)	2017	Unstratified	None	Safety, Quality	no	no	NA						
Simonetti et al. (139)	2019	Unstratified	None	Safety	no	no	NA						
Sinyor et al. (140)	2012	Unstratified	None	Outcome, Safety	yes	no	NA						
Sun et al. (141)	2016	Unstratified	None	Outcome	no	no	NA						
Spanenberg et al. (142)	2011	Unstratified	None	Outcome, Quality	no	no	NA						
Strijous et al. (143)	2017	Unstratified	None	Quality	no	no	NA						
Stefano et al. (144)	2017	Unstratified	None	Reporting, Quality	no	NA	NA						
Steffen et al. (145)	2021	Unstratified	None	Outcome, Quality	yes	no	NA						

Supporting Information, p. 5
Reference	Year	Stratification	Funding	Outcome	Safety	Quality	Reporting	Reporting	COI as Proxy	Dichotomization
Sung et al. (146)	2013	Unstratified	None	Outcome	yes	NA	NA	no	NA	NA
Tsaiou et al. (147)	2018	Unstratified	None	Outcome	no	NA	NA	NA	NA	NA
Trinquart et al. (148)	2018	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Tulikangas et al. (149)	2006	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Tungaraza and Poole (150)	2016	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Trinquart et al.	2018	None	None	Outcome	no	no	NA	NA	NA	NA
Tiabau et al. (151)	2019	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Tulikangas et al. (152)	2014	Unstratified	None	Outcome	yes	NA	NA	NA	NA	NA
Tungaraza and Poole	2016	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Tungaraza and Poole	2018	None	None	Outcome	no	no	NA	NA	NA	NA
Venincasa et al. (153)	2018	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Walkup et al. (154)	2019	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Wacker et al. (155)	2018	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Waggas et al. (156)	2019	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Webb et al. (157)	2018	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Wise et al. (158)	2021	Unstratified	None	Outcome	no	yes	no	no	no	no
Wong et al. (159)	2019	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Wortzel et al. (160)	2020	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Xu et al. (161)	2013	Unstratified	None	Safety	no	no	NA	NA	NA	NA
Yunus et al. (162)	2018	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Youssef et al. (163)	2018	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Zhang et al. (164)	2013	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Yilmaz et al. (165)	2019	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
van den Bogert et al. (166)	2016	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
van Heteren et al. (167)	2018	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Van Lent et al. (168)	2014	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Venincasa et al. (169)	2019	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Vlad et al. (170)	2007	Stratified	Unstratified	Outcome	no	NA	NA	no	NA	no
Walkup et al. (171)	2017	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Walter et al. (172)	2020	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Waggas et al. (173)	2019	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Webb et al. (174)	2018	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Wise et al. (175)	2021	Unstratified	None	Outcome	no	yes	no	no	no	no
Wong et al. (176)	2019	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Wortzel et al. (177)	2020	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Xu et al. (178)	2013	Unstratified	None	Safety	no	no	NA	NA	NA	NA
Yunus et al. (179)	2018	Unstratified	None	Reporting	no	no	NA	NA	NA	NA
Youssef et al. (180)	2018	Unstratified	None	Outcome	no	no	NA	NA	NA	NA
Zhang et al. (181)	2013	Unstratified	None	Outcome	no	no	NA	NA	NA	NA

Supplemental Table 2. Methodological Design Analysis for All Collected Articles. Includes industry funding IV type, author COI IV type, DV type(s), COI as proxy, and dichotomization data.

Supplemental References
1. Abildgaard JT, Chung AS, Tokish JM, Hattrup SJ. Clinical efficacy of liposomal bupivacaine: a systematic review of prospective, randomized controlled trials in orthopaedic surgery. JBJS Rev. 2019 Jul;7(7):e8.
2. Addeo A, Weiss GJ, Gyawali B. Association of industry and academic sponsorship with negative phase 3 oncology trials and reported outcomes on participant survival: A pooled analysis. JAMA Netw Open. 2019 May 3;2(5):e193684.
3. Ahmer S, Arya P, Anderson D, Faruqui R. Conflict of interest in psychiatry. Psychiatric Bulletin. 2005 Aug;29(8):302-4.
4. Ahn R, Woodbridge A, Abraham A, Saba S, Korenstein D, Madden E, et al. Financial ties of principal investigators and randomized controlled trial outcomes: cross sectional study. BMJ. 2017 Jan 17;356:i6770.
5. Alasbali T, Smith M, Geffen N, Trope GE, Flanagan JG, Jin Y, et al. Discrepancy between results and abstract conclusions in industry- vs nonindustry-funded studies comparing topical prostaglandins. Am J Ophthalmol. 2009 Jan;147(1):33-38.e2.

Supporting Information, p. 6
6. Als-Nielsen B, Chen W, Gluud C, Kjaergard LL. Association of funding and conclusions in randomized drug trials: a reflection of treatment effect or adverse events? JAMA. 2003 Aug 20;290(7):921–8.
7. Avni T, Shiber-Ofer S, Leibovici L, Paul M. Assessment of bias in outcomes reported in trials on pneumonia: a systematic review. Eur J Clin Microbiol Infect Dis. 2014 Jun;33(6):969–74.
8. Azad TD, Feng AY, Mehta S, Bak AB, Johnson E, Mittal V, et al. Randomized controlled trials in functional neurosurgery—association of device approval status and trial quality. Neuromodulation: Technology at the Neural Interface. 2020;23(4):496–501.
9. Azharuddin M, Adil M, Khan RA, Ghosh P, Kapur P, Sharma M. Systematic evidence of health economic evaluation of drugs for postmenopausal osteoporosis: A quality appraisal. Osteoporosis and Sarcopenia. 2020 Jun 1;6(2):39–52.
10. Barden J, Derry S, McQuay HJ, Moore AR. Bias from industry trial funding? A framework, a suggested approach, and a negative result. Pain. 2006 Apr;121(3):207–18.
11. Bariani GM, de Cesèis Ferrari ACR, Hoff PM, Krzyzanowska MK, Riechelmann RP. Self-reported conflicts of interest of authors, trial sponsorship, and the interpretation of editorials and related phase III trials in oncology. J Clin Oncol. 2013 Jun 20;31(18):2289–95.
12. Bartels RHMA, Delye H, Boogaarts J. Financial disclosures of authors involved in spine research: an underestimated source of bias. Eur Spine J. 2012 Jul;21(7):1229–33.
13. Bero L, Oostvogel F, Bacchetti P, Lee K. Factors associated with findings of published trials of drug-dos comparisons: why some statins appear more efficacious than others. PLoS Med. 2007 Jun;4(6):e184.
14. Bhandari M, Busse JW, Jackowski D, Montori VM, Schünemann H, Sprague S, et al. Association between industry funding and statistically significant pro-industry findings in medical and surgical randomized trials. CMAJ. 2004 Feb 17;170(4):477–80.
15. Bighelli I, Leucht C, Huhn M, Reitmeir C, Schwermann F, Wallis S, et al. Are randomized controlled trials on pharmacotherapy and psychotherapy for positive symptoms of schizophrenia comparable? a systematic review of patient and study characteristics. Schizophr Bull. 2020 Apr 10;46(3):496–504.
16. Bond K, Spooner C, Tjosvold I, Lemière C, Rowe BH. The nature and influence of pharmaceutical industry involvement in asthma trials. Can Respir J. 2012;19(4):267–71.
17. Booth CM, Cescon DW, Wang L, Tannock IF, Krzyzanowska MK. Evolution of the randomized controlled trial in oncology over three decades. J Clin Oncol. 2008 Nov 20;26(33):5458–64.
18. Bourgeois FT, Murthy S, Mandl KD. Outcome reporting among drug trials registered in ClinicalTrials.gov. Ann Intern Med. 2010 Aug 3;153(3):158–66.
19. Brown A, Kraft D, Schmitz SM, Sharpless V, Martin C, Shah R, et al. Association of industry sponsorship to published outcomes in gastrointestinal clinical research. Clin Gastroenterol Hepatol. 2006 Dec;4(12):1445–51.
20. Buchkowsky SS, Jewesson PJ. Industry sponsorship and authorship of clinical trials over 20 years. Ann Pharmacother. 2004 Apr;38(4):579–85.
21. Budhiraja P, Kaplan B, Kalot M, Alayli AE, Dimassi A, Chakker HA, et al. Current state of evidence on kidney transplantation: how fragile are the results? Transplantation. 2022 Feb 1;106(2):248–56.
22. Bugano DDG, Hess K, Jardim DLF, Zer A, Meric-Bernstam F, Siu LL, et al. Use of expansion cohorts in phase I trials and probability of success in phase II for 381 anticancer drugs. Clin Cancer Res. 2017 Aug 1;23(15):4020–6.
23. Catillon M. Trends and predictors of biomedical research quality, 1990-2015: A meta-research study. BMJ Open. 2019 Sep 1;9:e030342.
24. Chang MJ, Qiu Y, Lipner SR. Race reporting and representation in onychomycosis clinical trials: A systematic review. Mycoses. 2021 Aug;64(8):954–66.
25. Chard JA, Tallon D, Dieppe PA. Epidemiology of research into interventions for the treatment of osteoarthritis of the knee joint. Ann Rheum Dis. 2000 Jun;59(6):414–8.
26. Chen Y-P, Liu X, Lv J-W, Li W-F, Zhang Y, Guo Y, et al. Publication status of contemporary oncology randomised controlled trials worldwide. Eur J Cancer. 2016 Oct;66:17–25.
27. Cherla DV, Viso CP, Holihan JL, Bernardi K, Moses ML, Mueck KM, et al. The effect of financial conflict of interest, disclosure status, and relevance on medical research from the United States. J Gen Intern Med. 2019 Mar;34(3):429–34.
28. Cho MK, Bero LA. The quality of drug studies published in symposium proceedings. Ann Intern Med. 1996 Mar 1;124(5):485–9.
29. Clark O, Adams JR, Bennett CL, Djulbegovic B. Erythropoietin, uncertainty principle and cancer related anaemia. BMC Cancer. 2002 Sep 24;2:23.
30. Clifford TJ, Barrowman NJ, Moher D. Funding source, trial outcome and reporting quality: are they related? Results of a pilot study. BMC Health Serv Res. 2002 Sep 4;2(1):18.
31. Corona G, Isidori AM, Buvat J, Aversa A, Rastrelli G, Hackett G, et al. Testosterone supplementation and sexual function: a meta-analysis study. J Sex Med. 2014 Jun;11(6):1577–92.
32. Corona G, Masero R, Rastrelli G, Isidori AM, Sforza A, Mannucci E, et al. Cardiovascular risk associated with testosterone-boosting medications: a systematic review and meta-analysis. Expert Opin Drug Saf. 2014 Oct;13(10):1327–51.
33. Cristea IA, Gentili C, Pietrini P, Cuijpers P. Is investigator background related to outcome in head to head trials of psychotherapy and pharmacotherapy for adult depression? A systematic review and meta-analysis. PLoS One. 2017;12(2):e0171654.
34. Crocetti MT, Amin DD, Scherer R. Assessment of risk of bias among pediatric randomized controlled trials. Pediatrics. 2010 Aug;126(2):298–305.
35. Vrljićak Davidović N, Komić L, Mešin I, Kotarac M, Okmažić D, Franić T. Registry versus publication: discrepancy of primary outcomes and possible outcome reporting bias in child and adolescent mental health. Eur Child Adolesc Psychiatry. 2021 Jan 18;
36. Davidson RA. Source of funding and outcome of clinical trials. J Gen Intern Med. 1986 Jun;1(3):155–8.
37. Davis JM, Chen N, Glick ID. Issues that may determine the outcome of antipsychotic trials: industry sponsorship and extrapyramidal side effect. Neuropsychopharmacology. 2008 Apr;33(5):971–5.
38. de Souza Gutierres B, Aguier PN, Dourado BB, Alves AL, Matsas S, Simões AR, et al. Evidence strength of pharmaceutical industry-funded clinical trials in metastatic nsclc: a comparison with other sources of funding. J Thorac Oncol. 2020 Jul;15(7):1170–6.
39. DeFrance MJ, Yayac MF, Courtney PM, Squire MW. The impact of author financial conflicts on robotic-assisted joint arthroplasty research. J Arthroplasty. 2021 Apr;36(4):1462–9.
40. DeGeorge BR, Holland MC, Drake DB. The impact of conflict of interest in abdominal wall reconstruction with acellular dermal matrix. Ann Plast Surg. 2015 Feb;74(2):242–7.
41. Del Paggio JC, Azariah B, Sullivan R, Hopman WM, James FV, Roshni S, et al. Do contemporary randomized controlled trials meet ESMO thresholds for meaningful clinical benefit? Ann Oncol. 2017 Jan 1;28(1):157–62.
42. Falk Delgado A, Falk Delgado A. The association of funding source on effect size in randomized controlled trials: 2013-2015 - a cross-sectional survey and meta-analysis. Trials. 2017 Mar 14;18(1):125.
43. Falk Delgado A, Falk Delgado A. Outcome switching in randomized controlled oncology trials reporting on surrogate endpoints: a cross-sectional analysis. Sci Rep. 2017 Aug 3;7:9206.
44. DePasse JM, Park S, Elliott AE, Daniels AH. Factors predicting publication of spinal cord injury trials registered on www.ClinicalTrials.gov. J Back Musculoskelet Rehabil. 2018 Feb 6;31(1):45–8.
45. DeVito NJ, Bacon S, Goldacre B. Compliance with legal requirement to report clinical trial results on ClinicalTrials.gov: a cohort study analysis. Lancet. 2020 Feb 1;395(10221):361–9.
46. Djulbegovic B, Lacevic M, Cantor A, Fields KK, Bennett CL, Adams JR, et al. The uncertainty principle and industry-sponsored research. Lancet. 2000 Aug 19;356(9230):635–8.
47. Djulbegovic B, Kumar A, Miladinovic B, Reljic T, Galeb S, Mhaskar A, et al. Treatment success in cancer: industry compared to publicly sponsored randomized controlled trials. PLoS One. 2013;8(3):e58711.
48. Etter J-F, Burri M, Stapleton J. The impact of pharmaceutical company funding on results of randomized trials of nicotine replacement therapy for smoking cessation: a meta-analysis. Addiction. 2007 May;102(5):815–22.
49. Finucane TE, Boult CE. Association of funding and findings of pharmaceutical research at a meeting of a medical professional society. Am J Med. 2004 Dec 1;117(11):842–5.
50. Flacco ME, Manzoli L, Boccia S, Capasso I, Aleksovska K, Rosso A, et al. Head-to-head randomized trials are mostly industry sponsored and almost always favor the industry sponsor. J Clin Epidemiol. 2015 Jul;68(7):811–20.
51. Fraguas D, Díaz-Caneja CM, Pina-Camacho L, Umbricht D, Arango C. Predictors of placebo response in pharmacological clinical trials of negative symptoms in schizophrenia: a meta-regression analysis. Schizophr Bull. 2019 Jan 1;45(1):57–68.
52. Freemantle N, Anderson IM, Young P. Predictive value of pharmaceutical activity for the relative efficacy of antidepressant drugs. Meta-regression analysis. Br J Psychiatry. 2000 Oct;177:292–302.
53. Fung M, Yuan Y, Atkins H, Shi Q, Bubela T. Responsible translation of stem cell research: an assessment of clinical trial registration and publications. Stem Cell Reports. 2017 May 9;8(5):1190–201.
54. Gabler NB, Duan N, Raneses E, Suttner L, Ciarametaro M, Cooney E, et al. No improvement in the reporting of clinical trial subgroup effects in high-impact general medical journals. Trials. 2016 Jul 16;17(1):320.
55. Gan HK, You B, Pond GR, Chen EX. Assumptions of expected benefits in randomized phase III trials evaluating systemic treatments for cancer. J Natl Cancer Inst. 2012 Apr 18;104(8):590–8.
56. Gao Y, Ge L, Ma X, Shen X, Liu M, Tian J. Improvement needed in the network geometry and inconsistency of Cochrane network meta-analyses: a cross-sectional survey. J Clin Epidemiol. 2019 Sep;113:214–27.
57. Gartlehner G, Morgan L, Thieda P, Fleg A. The effect of study sponsorship on a systematically evaluated body of evidence of head-to-head trials was modest: secondary analysis of a systematic review. J Clin Epidemiol. 2010 Feb;63(2):117–25.
58. Gaudino M, Hameed I, Rahouma M, Khan FM, Tam DY, Biondi-Zoccai G, et al. Characteristics of contemporary randomized clinical trials and their association with the trial funding source in invasive cardiovascular interventions. JAMA Intern Med. 2020 Jul 1;180(7):993–1001.
59. González-González JG, Dorsey-Treviño EG, Alvarez-Villalobos N, Barrera-Flores FJ, Díaz González-Colmenero A, Quintanilla-Sánchez C, et al. Trustworthiness of randomized trials in endocrinology-A systematic survey. PLoS One. 2019;14(2):e0212360.
60. Grey P, Grey A, Bolland MJ. Outcomes, interventions and funding in randomised research published in high-impact journals. Trials. 2018 Oct 29;19(1):592.
61. Gyawali B, Tessema FA, Jung EH, Kesselheim AS. Assessing the justification, funding, success, and survival outcomes of randomized noninferiority trials of cancer drugs: a systematic review and pooled analysis. JAMA Netw Open. 2019 Aug 2;2(8):e199570.
62. Hajibandeh S, Hajibandeh S, Antoniou SA, Antoniou GA, Torella F. Industry sponsorship and positive outcome in vascular and endovascular randomised trials. Vasa. 2017 Jan;46(1):67–8.
63. Halpern MP, Amendola S, Kaminski JA, Kindler S, Bschor T, Plöderl M. Suicide risk with selective serotonin reuptake inhibitors and other new-generation antidepressants in adults: a systematic review and meta-analysis of observational studies. J Epidemiol Community Health. 2021 Mar 8;jech-2020-214611.
64. Heres S, Davis J, Maino K, Jetzinger E, Kissling W, Leucht S. Why olanzapine beats risperidone, risperidone beats quetiapine, and quetiapine beats olanzapine: an exploratory analysis of head-to-head comparison studies of second-generation antipsychotics. Am J Psychiatry. 2006 Feb;163(2):185–94.
68. Janioud P, Cristea I-A, Ioannidis JPA. Industry-funded versus non-profit-funded critical care research: a meta-epidemiological overview. Intensive Care Med. 2018 Oct;44(10):1613–27.

69. Jefferson T, Di Pietrantonj C, Debalini MG, Rivetti A, Demicheli V. Relation of study quality, concordance, take home message, funding, and impact in studies of influenza vaccines: systematic review. BMJ. 2009 Feb 12;338:b534.

70. Jellison S, Roberts W, Bowers A, Combs T, Beaman J, Wayant C, et al. Evaluation of spin in abstracts of papers in psychiatry and psychology journals. BMJ Evid Based Med. 2019 Aug 5;178–81.

71. Jinapriya D, Anraku A, Alasbali T, Trope GE, Buys YM. Evaluation of investigator bias in industry-funded clinical trials of latanoprost. Can J Ophthalmol. 2011 Dec;46(6):531–6.

72. Johnson AL, Fladie I, Anderson JM, Lewis DM, Mons BR, Vassar M. Rates of discontinuation and nonpublication of head and neck cancer randomized clinical trials. JAMA Otolaryngol Head Neck Surg. 2020 Feb 1;146(2):176–82.

73. Jones R, Younie S, Macallister A, Thornton J. A comparison of the scientific quality of publicly and privately funded randomized controlled drug trials. J Eval Clin Pract. 2010 Dec;16(6):1322–5.

74. Kakkar AK, Padhy BM, Sarangi SC, Gupta YK. Methodological characteristics of clinical trials: impact of mandatory trial registration. J Pharm Pharm Sci. 2019;22(1):131–41.

75. Kapelios CJ, Naci H, Vardas PE, Mossialos E. Study design, result posting and publication of late-stage cardiovascular trials. Eur Heart J Qual Care Clin Outcomes. 2020 Oct 24;12:22.

76. Kelly R, Cohen L, Semple R, Bialer P, Lau A, Bodenheimer A, et al. Relationship between drug company funding and outcomes of clinical psychiatric research. Psychological medicine. 2006 Dec 1;36(6):285–96.

77. Kemmeren JM, Algra A, Grobbee DE. Third generation oral contraceptives and risk of venous thrombosis: meta-analysis. BMJ. 2001 Jul 21;323(7305):131–4.

78. Khan NA, Lombeida JI, Singh M, Spencer HJ, Torralba KD. Association of industry funding with the outcome and quality of randomized controlled trials of drug therapy for rheumatoid arthritis. Arthritis Rheum. 2012 Jul;64(7):2059–67.

79. Killin LOJ, Russ TC, Starr JM, Abrahams S, Della Sala S. The effect of funding sources on donepezil randomised controlled trial outcome: a meta-analysis. BMJ Open. 2014 Apr 7;4(4):e004083.

80. Kjaergard LL, Als-Nielsen B. Association between competing interests and authors’ conclusions: epidemiological study of randomised clinical trials published in the BMJ. BMJ. 2002 Aug 3;325(7358):249.

81. Lee KC, Wu BW, Chuang S-K. Which factors affect the completion and publication of dental implant trials? J Oral Maxillofac Surg. 2020 Oct;78(10):1726–35.

82. Lee Y-K, Chung CY, Koo K-H, Lee KM, Ji H-M, Park MS. Conflict of interest in the assessment of thromboprophylaxis after total joint arthroplasty: a systematic review. J Bone Joint Surg Am. 2012 Jan 4;94(1):27–33.

83. Leite ETT, Moraes FY, Marta GN, Taunk NK, Vieira MTL, Hanna SA, et al. Trial sponsorship and self-reported conflicts of interest in breast cancer radiation therapy: An analysis of prospective clinical trials. Breast. 2017 Jun;33:29–33.

84. Leucht S, Chaimani A, Mavridis D, Leucht C, Huhn M, Helfer B, et al. Disconnection of drug-response and placebo-response in acute-phase antipsychotic drug trials on schizophrenia meta-regression analysis. Neuropsychopharmacology. 2019 Oct;44(11):1955–66.

85. Leucht S, Leucht C, Huhn M, Chaimani A, Mavridis D, Helfer B, et al. Sixty years of placebo-controlled antipsychotic drug trials in acute schizophrenia: systematic review, bayesian meta-analysis, and meta-regression of efficacy predictors. Am J Psychiatry. 2017 Oct 1;174(10):927–42.

86. Liang F, Zhu J, Mo M, Zhou CM, Jia HX, Xie L, et al. Role of industry funders in oncology RCTs published in high-impact journals and its association with trial conclusions and time to publication. Ann Oncol. 2018 Oct 1;29(10):2129–34.

87. Liss H. Publication bias in the pulmonary/allergy literature: effect of pharmaceutical company sponsorship. Isr Med Assoc J. 2006 Jul;8(7):451–4.
88. Liu X, Zhang Y, Tang L-L, Le QT, Chua MLK, Wee JTS, et al. Characteristics of radiotherapy trials compared with other oncological clinical trials in the past 10 years. JAMA Oncol. 2018 Aug 1;4(8):1073–9.
89. Lubowitz JH, Appleby D, Centeno JM, Woolf SK, Reid JB. The relationship between the outcome of studies of autologous chondrocyte implantation and the presence of commercial funding. Am J Sports Med. 2007 Nov;35(11):1809–16.
90. Lynch J, Cunningham M, Warme W, Schaad D, Wolf F, Leopold S. Commercially funded and United States-based research is more likely to be published; good-quality studies with negative outcomes are not. The Journal of bone and joint surgery American volume. 2007 Jun 1;89:1010–8.
91. Ma D, Zhang Z, Zhang X, Li L. Comparative efficacy, acceptability, and safety of medicinal, cognitive-behavioral therapy, and placebo treatments for acute major depressive disorder in children and adolescents: a multiple-treatments meta-analysis. Curr Med Res Opin. 2014 Jun;30(6):971–95.
92. Magnani CJ, Steinberg JR, Harmange CI, Zhang X, Driscoll C, Bell A, et al. Clinical trial outcomes in urology: assessing early discontinuation, results reporting and publication in clinicaltrials.gov registrations 2007–2019. J Urol. 2021 Apr;205(4):1159–68.
93. Maillet D, Blay JY, You B, Rachdi A, Gan HK, Péron J. The reporting of adverse events in oncology phase III trials: a comparison of the current status versus the expectations of the EORTC members. Ann Oncol. 2016 Jan;27(1):192–8.
94. Malek E, Saygin C, Ye R, Covut F, Kim B-G, Welge J, et al. Predicting successful phase advancement and regulatory approval in multiple myeloma from phase I overall response rates. JCO Clin Cancer Inform. 2017 Nov;1:1–14.
95. Mian MK, Sreedharan S, Limaye NS, Hogan C, Darvall JN. Research trends in anticoagulation therapy over the last 25 years. Semin Thromb Hemost. 2020 Nov;46(8):919–31.
96. Mitchell JM, Patterson JA. The Inclusion of Economic Endpoints as Outcomes in Clinical Trials Reported to ClinicalTrials.gov. J Manag Care Spec Pharm. 2020 Apr;26(4):386–93.
97. Momeni A, Becker A, Bannasch H, Antes G, Blümle A, Stark GB. Association between research sponsorship and study outcome in plastic surgery literature. Ann Plast Surg. 2009 Dec;63(6):661–4.
98. Moncrieff J. Clozapine v. conventional antipsychotic drugs for treatment-resistant schizophrenia: a re-examination. Br J Psychiatry. 2003 Aug;183:161–6.
99. Montgomery JH, Byerly M, Carmody T, Li B, Miller DR, Varghese F, et al. An analysis of the effect of funding source in randomized clinical trials of second generation antipsychotics for the treatment of schizophrenia. Control Clin Trials. 2004 Dec;25(6):598–612.
100. Moraes FY, Mendez LC, Taunk NK, Raman S, Subh JH, Souhami L, et al. Funding source, conflict of interest and positive conclusions in neuro-oncology clinical trials. J Neurooncol. 2018 Feb;136(3):585–93.
101. Mossman SA, Mills JA, Walkup JT, Strawrn JR. The impact of failed antidepressant trials on outcomes in children and adolescents with anxiety and depression: a systematic review and meta-analysis. J Child Adolesc Psychopharmacol. 2021 May;31(4):259–67.
102. Naci H, Dias S, Ades AE. Industry sponsorship bias in research findings: a network meta-analysis of LDL cholesterol reduction in randomised trials of statins. BMJ. 2014 Oct 3;349:g5741.
103. Ng T, Mazzarello S, Wang Z, Hutton B, Dranitsaris G, Vandermeer L, et al. Choice of study endpoint significantly impacts the results of breast cancer trials evaluating chemotherapy-induced nausea and vomiting. Breast Cancer Res Treat. 2016 Jan;155(2):337–44.
104. Nieto A, Mazon A, Pamies R, Linana JJ, Lanuza A, Jiménez FO, et al. Adverse effects of inhaled corticosteroids in funded and nonfunded studies. Arch Intern Med. 2007 Oct 22;167(19):2047–53.
105. Nithianandan H, Kuriyan AE, Venincasa MJ, Sridhar J. Analysis of Funding Source and Spin in the Reporting of Studies of Intravitreal Corticosteroid Therapy for Diabetic Macular Edema: A Systematic Review. Clin Ophthalmol. 2020;14:2383–95.
106. Odutayo A, Emdin CA, Hsiao AJ, Shakir M, Copsey B, Dutton S, et al. Association between trial registration and positive study findings: cross sectional study (Epidemiological Study of Randomized Trials-ESORT). BMJ. 2017 Mar 14;356:j917.
Del Paggio JC, Berry JS, Hopman WM, Eisenhauer EA, Prasad V, Gyawali B, et al. Evolution of the Randomized Clinical Trial in the Era of Precision Oncology. JAMA Oncol. 2021 May 1;7(5):728–34.

Pasalic D, McGinnis GJ, Fuller CD, Grossberg AJ, Verma V, Mainwaring W, et al. Progression-free survival is a suboptimal predictor for overall survival among metastatic solid tumour clinical trials. Eur J Cancer. 2020 Sep;136:176–85.

Pengel LHM, Barcena I, Morris PJ. The quality of reporting of randomized controlled trials in solid organ transplantation. Transpl Int. 2009 Apr;22(4):377–84.

Pepper DJ, Sun J, Rhee C, Welsh J, Powers JH, Danner RL, et al. Procalcitonin-guided antibiotic discontinuation and mortality in critically ill adults. Chest. 2019 Jun;155(6):1109–18.

Peppercorn J, Blood E, Winer E, Partridge A. Association between pharmaceutical involvement and outcomes in breast cancer clinical trials. Cancer. 2007 Apr 1;109(7):1239–46.

Perlis CS, Harwood M, Perlis RH. Extent and impact of industry sponsorship conflicts of interest in dermatology research. J Am Acad Dermatol. 2005 Jun;52(6):967–71.

Perlis RH, Perlis CS, Wu Y, Hwang C, Joseph M, Nierenberg AA. Industry sponsorship and financial conflict of interest in the reporting of clinical trials in psychiatry. Am J Psychiatry. 2005 Oct;162(10):1957–60.

Probst P, Knebel P, Grummich K, Tenckhoff S, Ulrich A, Büchler MW, et al. Industry bias in randomized controlled trials in general and abdominal surgery: an empirical study. Ann Surg. 2016 Jul;264(1):87–92.

Ridker PM, Torres J. Reported outcomes in major cardiovascular clinical trials funded by for-profit and not-for-profit organizations: 2000-2005. JAMA. 2006 May 17;295(19):2270–4.

Supporting Information, p. 12
128. Rios LP, Odueyungbo A, Moitri MO, Rahman MO, Thabane L. Quality of reporting of randomized controlled trials in general endocrinology literature. J Clin Endocrinol Metab. 2008 Oct;93(10):3810–6.
129. Rochon PA, Gurwitz JH, Simms RW, Fortin PR, Felson DT, Minaker KL, et al. A study of manufacturer-supported trials of nonsteroidal anti-inflammatory drugs in the treatment of arthritis. Arch Intern Med. 1994 Jan 24;154(2):157–63.
130. Roddick AJ, Chan FTS, Stefaniak JD, Zheng SL. Discontinuation and non-publication of clinical trials in cardiovascular medicine. Int J Cardiol. 2017 Oct 1;244:309–15.
131. Roper N, Zhang N, Korenstein D. Industry collaboration and randomized clinical trial design and outcomes. JAMA Intern Med. 2014 Oct;174(10):1695–6.
132. Rösner S, Hackl-Herrwerth A, Leucht S, Lehert P, Vecchi S, Soyka M. Acamprosate for alcohol dependence. Cochrane Database Syst Rev. 2010 Sep 8;(9):CD004332.
133. Rösner S, Hackl-Herrwerth A, Leucht S, Vecchi S, Srisurapanont M, Soyka M. Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev. 2010 Dec 8;(12):CD001867.
134. Saa C, Bunout D, Hirsch S. Industry funding effect on positive results of probiotic use in the management of acute diarrhea: a systematized review. Eur J Gastroenterol Hepatol. 2019 Mar;31(3):289–302.
135. Saleh RR, Meti N, Ribnikar D, Goldvaser H, Ocana A, Templeton AJ, et al. Associations between safety, tolerability, and toxicity and the reporting of health-related quality of life in phase III randomized trials in common solid tumors. Cancer Med. 2020 Nov;9(21):7888–95.
136. Sendyk DI, Rovai ES, Souza NV, Deboni MCZ, Pannuti CM. Selective outcome reporting in randomized clinical trials of dental implants. J Clin Periodontol. 2019 Jul;46(7):758–65.
137. Shepard S, Wise A, Johnson BS, Sajjadi NB, Hartwell M, Vassar M. Are randomized controlled trials in urology being conducted with justification? J Osteopath Med. 2021 May 21;12(8):665–71.
138. Silva MA, Duarte GS, Camara R, Rodrigues FB, Fernandes RM, Abreu D, et al. Placebo and nocebo responses in restless legs syndrome: A systematic review and meta-analysis. Neurology. 2017 Jun 6;88(23):2216–24.
139. Simonetti RG, Perricone G, Nikolova D, Bjelakovic G, Glaud C. Plasma expanders for people with cirrhosis and large ascites treated with abdominal paracentesis. Cochrane Database Syst Rev. 2019 Jun 28;6:CD004039.
140. Sinyor M, Schaffer A, Smart KA, Levitt AJ, Lancot K, Grysman NH. Sponsorship, antidepressant dose, and outcome in major depressive disorder: meta-analysis of randomized controlled trials. J Clin Psychiatry. 2012 Feb;73(2):e277-287.
141. Son C, Tavakoli S, Bartanusz V. No publication bias in industry funded clinical trials of degenerative diseases of the spine. J Clin Neurosci. 2016 Mar;25:58–61.
142. Spanemberg L, Massuda R, Lovato L, Paim L, Vares EA, Sica da Rocha N, et al. Pharmacological treatment of bipolar depression: qualitative systematic review of double-blind randomized clinical trials. Psychiatr Q. 2012 Jun;83(2):161–75.
143. Sriganesh K, Bharadwaj S, Wang M, Abbade LPF, Jin Y, Philip M, et al. Quality of abstracts of randomized control trials in five top pain journals: A systematic survey. Contemp Clin Trials Commun. 2017 Sep;7:64–8.
144. Stefaniak JD, Lam TCH, Sim NE, Al-Shahi Salman R, Breen DP. Discontinuation and non-publication of neurodegenerative disease trials: a cross-sectional analysis. Eur J Neurol. 2017 Aug;24(8):1071–6.
145. Steffens ANV, Langerhuizen DWG, Doornberg JN, Ring D, Janssen SJ. Emotional tones in scientific writing: comparison of commercially funded studies and non-commercially funded orthopedic studies. Acta Orthop. 2021 Apr;92(2):240–3.
146. Sung KH, Chung CY, Lee KM, Lee Y-K, Lee SY, Lee J, et al. Conflict of interest in the assessment of botulinum toxin A injections in patients with cerebral palsy: a systematic review. J Pediatr Orthop. 2013 Aug;33(5):494–500.
147. Tibau A, Anguera G, Andrés-Pretel F, Templeton AJ, Seruga B, Barnadas A, et al. Role of cooperative groups and funding source in clinical trials supporting guidelines for systemic therapy of breast cancer. Oncotarget. 2018 Mar 13;9(19):15061–7.
148. Trinquart L, Dunn AG, Bourgeois FT. Registration of published randomized trials: a systematic review and meta-analysis. BMC Med. 2018 Oct 16;16(1):173.

149. Tulikangas PK, Ayers A, O’Sullivan DM. A meta-analysis comparing trials of antimuscarinic medications funded by industry or not. BJU Int. 2006 Aug;98(2):377–80.

150. Tungaraza T, Poole R. Influence of drug company authorship and sponsorship on drug trial outcomes. Br J Psychiatry. 2007 Jul;191:82–3.

151. Urrútia G, Ballesteros M, Djulbegovic B, Gich I, Roqué M, Bonfill X. Cancer randomized trials showed that dissemination bias is still a problem to be solved. J Clin Epidemiol. 2016 Sep;77:84–90.

152. van den Bogert CA, Souverein PC, Brekelmans CTM, Janssen SWJ, Koëter GH, Leufkens HGM, et al. Primary endpoint discrepancies were found in one in ten clinical drug trials. Results of an inception cohort study. J Clin Epidemiol. 2017 Sep;89:199–208.

153. van Heteren JAA, van Beurden I, Peters JPM, Smit AL, Stegeman I. Trial registration, publication rate and characteristics in the research field of otology: A cross-sectional study. PLoS One. 2019;14(7):e0219458.

154. van Lent M, Overbeke J, Out HJ. Role of editorial and peer review processes in publication bias: analysis of drug trials submitted to eight medical journals. PLoS One. 2014;9(8):e104846.

155. Venincasa MJ, Kurtian AE, Sridhar J. Effect of funding source on reporting bias in studies of intravitreal anti-vascular endothelial growth factor therapy for retinal vein occlusion. Acta Ophthalmol. 2019 Mar;97(2):e296–302.

156. Vlad SC, LaValley MP, McAlindon TE, Felson DT. Glucosamine for pain in osteoarthritis: why do trial results differ? Arthritis Rheumat. 2007 Jul;56(7):2267–77.

157. Walkup JT. Antidepressant efficacy for depression in children and adolescents: industry- and NIMH-funded studies. Am J Psychiatry. 2017 May 1;174(5):430–7.

158. Walter SD, Han H, Guyatt GH, Bassler D, Bhatnagar N, Gloy V, et al. A systematic survey of randomised trials that stopped early for reasons of futility. BMC Med Res Methodol. 2020 Jan 16;20(1):10.

159. Waqas A, Baig AA, Khalid MA, Aedma KK, Naveed S. Conflicts of interest and outcomes of clinical trials of antidepressants: an 18-year retrospective study. J Psychiatr Res. 2019 Sep;116:83–7.

160. Welsh J, Lu Y, Dhruba SS, Bikkedi B, Desai NR, Bencherit I, et al. Age of data at the time of publication of contemporary clinical trials. JAMA Netw Open. 2018 Aug 3;1(4):e181065.

161. Wise A, Mannem D, Anderson JM, Weaver M, Hartwell M, Vassar M. Do author conflicts of interest and industry sponsorship influence outcomes of systematic reviews and meta-analyses regarding glaucoma interventions? a cross-sectional analysis. J Glaucoma. 2021 Apr 1;30(4):293–9.

Supporting Information, p. 14