Hematological and biochemical characteristics of COVID-19 non-survivors: a meta- and network analysis

Rasoul Kowsar (rasoul_kowsarzar@yahoo.com)
Ishafan University of Technology

Khaled Sadeghi
Ishafan University of Technology

Sayed Farshad Kateb
Yektadam Persian Co

Elham Bonakdar
Ishafan University of Technology

Amir Hossein Mahdavi
Ishafan University of Technology

Amir Mohammad Rahimi
Georg-August-University

Magdalena Sroka
Georg-August-University

Systematic Review

Keywords: COVID-19, lymphocyte, mortality, age, non-survivor, meta-analysis, network analysis, GGT, heart failure, hypertension

DOI: https://doi.org/10.21203/rs.3.rs-130151/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Understanding the most relevant hematological/biochemical characteristics, pre-existing health conditions and complications among survivors and non-survivor will help to predict the mortality in COVID-19 patients.

Methods: A literature review was conducted in PubMed, Scopus, and various preprint servers (bioRxiv, medRxiv and SSRN) for COVID-19 mortality, with more than 97 reported clinical studies and preprints, consisting of survivor and non-survivor sub-populations. A total of 19014 patients including 14359 survivors and 4655 non-survivors were included in this meta-analysis. Outcome data was extracted and compared between survivors and non-survivors. Meta and network analyses were performed using META-MAR V2.7.0 and PAST software.

Results: The finding showed higher concentrations of gamma-glutamyl transferase and creatinine and a higher number of neutrophils in non-survivors of COVID-19. A lower number of lymphocytes and platelets and a lower concentration of hemoglobin and albumin were observed in non-survivors. Data showed age, hypertension, and cerebrovascular disease as the most influential risk factors in non-survivors. Heart failure was the most common complication among non-survivors, accompanied by septic shock, and respiratory failure.

Conclusions: Increased number of neutrophils and decreased number of platelets and lymphocytes, along with higher GGT concentration and lower hemoglobin levels were the best mortality indicators for COVID-19 patients. In addition, age, hypertension, and cerebrovascular disease were prevalent risk factors among non-survivors of COVID-19. Heart failure and septic shock were the most common complications among non-survivors. Data indicated that cheap and quick biochemical and hematological tests can be used to predict the risk of mortality in COVID-19 patients.

Introduction

Healthcare staffs face difficulties in reducing the severity and mortality of COVID-19 worldwide. As a growing problem, many sub-populations of patients with moderate or non-severe COVID-19 encounter serious conditions or even death. It has been reported that approximately 19% of COVID-19 patients recorded serious illness and 61.5% died within 28 days of admission, on the other hand, 50% of hospitalized patients recorded no meaningful clinical and imaging remission after 10 days. Therefore, early diagnosis of patients with a potential severe infection with COVID-19 and a high risk of death will reduce pressure on medical services, as the treatment of a large number of patients is a major burden on medical resources. The position of risk prediction is dramatically changing and helps to effectively decide how protective protocols and the treatment of positive cases are being attempted. Therefore, early prognosis and care of this group of patients are crucial to reduce disease progression and death. In general, hematological predictors, risk factors, and possible complications of COVID-19 mortality need further understanding. Understanding the contribution of each risk factor to the progression of disease.
and mortality will help to define at-risk subpopulations and to assess the quality of health care. Efforts should also be made to take into account risk classes and to estimate the risk of fatality in order to better explain the real trends of mortality.

The aim of this systematic study and meta- and network analysis was to investigate which hematological/biochemical parameters, pre-existing conditions, and complications are more prevalent in COVID-19 non-survivors.

Methods

Search strategy and selection criteria

A literature review was conducted in PubMed, Scopus, and various preprint servers (bioRxiv, medRxiv and SSRN) for COVID-19, novel coronavirus, new coronavirus, coronavirus-2019, COVID-2019, SARS-COV-2, and 2019-nCOV with more than 170 published clinical studies and preprints (including 134046 patients) released between December 2019 and April 2020 (no language restrictions were applied). The systematic review resulted in 97 qualified retrospective observational studies (19014 patients), which including strictly sub-populations of survivors (n=14359) and non-survivors (n=4655). Reference lists for papers and other systematic reviews were also scrutinized. Studies without survivors or non-survivors and cases < 19 years of age were excluded. For each paper, an author reads the paper and extracts the necessary numerical data from the tables and the text in a standard format, and the hematological and biochemical indices were checked to be the same, unless otherwise converted to the same unit.

Data extraction and analysis

The results of the search strategy were initially evaluated using abstracts and titles. The full text of the relevant articles was then evaluated on the basis of the inclusion and exclusion criteria. Final lists of articles included were contrasted and the differences were resolved by a consensus discussion between the two contributors. Data including the type and date of publication, country, sample size, age, sex, blood indices and parameters, pre-existing health conditions, and complications were extracted independently by three researchers (SFK, EB, and AMR). Three authors (KS, AHM, and MS) tested the consistency of the data collected using a structured spreadsheet. For each parameter used, we selected those papers that reported hematological and biochemical parameters of survivors and non-survivors. This resulted in different sample sizes for different parameters between survivors and non-survivors. Outcome data were collected and the normality of the data was confirmed using the Anderson–Darling test. Meta-analysis and network analysis were performed using META-MAR V2.7.0 and PAST applications, respectively. The Standardized Mean Difference (SMD) was used to define the effect size of various hematological and biological indices, risk factors (pre-existing conditions), and complications in survivors and non-survivors of COVID-19. Due to heterogeneity within and across parameters, random-effect models were used to calculate the weighted mean prevalence and 95% confidence interval (CI) or the weighted mean and 95%
CI. The \(I^2 \) and \(\tau^2 \) statistics and the Cochran’s Q test were used to determine statistical heterogeneity. In addition, a meta-regression analysis was conducted to determine the effect of variables on the effect size. The Z-test and related P-values evaluated whether the observed prevalence varied from zero percent.

The risk of bias in the included studies was not evaluated because there was no agreement on the ideal method for prevalence studies\(^{103,104}\) and publications were pooled based on the presence of survivors or non-survivors. Furthermore, such tests will not alter the modeling or data presentation approach.\(^{104}\)

Network analysis

Network analysis was performed using the Pearson similarity index. The Circular and Fruchterman-Reingold algorithms were used as a force-directed layout algorithm using the PAST software (accessible at: http://folk.uio.no/ohammer/past).

Results

Characteristics of included studies

As shown in Figure 1A, data from more than 200 published clinical studies and preprints was screened. After a comprehensive review of the data in figures and tables, 85 reports were excluded due to lack of survivor or non-survivor sup-groups, examining infants/children/pediatrics, or had no DOI, resulting in 97 eligible retrospective studies. These criteria resulted in a total of 19014 patients (>20 years of age) including 14359 survivors and 4655 non-survivors. The population considered in these studies originated from China, Italy, Scotland, the United States, UK, Japan, South Korea, Iceland, Chile, the Netherlands and Germany.

Clinical outcomes

Clinical outcomes are shown in Table 1. Based on the studies reported age, patients (n=9375) aged 25.3 to 80.0 years (49.8; CI\(_{95}\%\) [46.9, 52.7]). Of them, 5448 were survivors (age: 46.6; CI\(_{95}\%\) [44.2, 48.9]) and 3927 were non-survivors (age: 71.5; CI\(_{95}\%\) [66.4, 76.5]). In non-survivors, the proportion of males was higher than females (33.3 vs. 17.7%). The prevalence of any comorbidities (65.9%), hypertension (64.5%), diabetes (65.5%), cardiovascular disease (78.8%), chronic obstructive lung (74.1%), cancer (79.9%), and renal disease (88.6%) was higher among COVID-19 non-survivors than among survivors.

Mortality incidence in mild cases was zero compared to 89.8% of mortality in patients with severe COVID-19. The percentage of non-survivors among patients receiving antibiotics or antiviral drugs was 39.0% and 48.4%, respectively. Non-ICU patients were found to have survived; while, 56.8% of ICU (only)-
admitted patients died. Mortality in white or European ethnic groups (75.6%) was higher than in Asian (7.0%), African American (9.5%), and Hispanics-Latino ethnic groups (0.0%).

The number of neutrophils (NEUs) (3.52×10^9 L vs. 6.48×10^9 L found for survivors and non-survivors, respectively) and white blood cells (WBCs) (5.43×10^9 L vs. 8.55×10^9 L found for survivors and non-survivors, respectively) was higher in non-survivors than in survivors (P=0.0001). The number of lymphocytes (LYMs) (0.60×10^9 L vs. 1.23×10^9 L found for non-survivors and survivors, respectively) and PLTs (149.92×10^9 L vs. 187.76×10^9 L found for non-survivors and survivors, respectively) was lower in non-survivors than in survivors (P=0.0001).

Concentrations of aspartate transaminase (AST) (50.68 vs. 30.06 U/L, P=0.0003), creatinine (87.52 vs. 64.64 mol/L, P=0.0001), creatinine kinase (101.0 vs. 73.2 U/L, P=0.032), C-reactive protein (CRP) (96.39 vs. 22.32 mg/L, P=0.0001), and gamma-glutamyl transferase (GGT) (52.50 vs. 11.06 U/L, P=0.0001) were found to be higher in non-survivors compared to survivor. However, the concentrations of albumin (31.93 vs. 38.51 g/L, P=0.048) and hemoglobin (124.03 vs. 134.44 g/L, P=0.0001) were lower in non-survivors than in COVID-19 survivors.

Data showed that acute kidney injury (94.5%) was the most common complication among non-survivors, followed by respiratory failure (93.8%), septic shock (89.3%), heart failure (88.9%), acute cardiac injury (87.3%), coagulopathy (72.5%), acidosis (68.1%) and secondary infection (67.3%).

Quantitative synthesis of data

Meta-regression analysis

The multivariate meta-regression analysis showed that the risk factors (t, 4.77; CI_{95%} [0.64, 1.68]; P=0.000) were associated with the estimated intervention effects on COVID-19 mortality while biochemical/hematological indices (t, 1.85; CI_{95%} [-0.11, 1.60]; P=0.083) tended to be associated with this (Table 2). Moreover, complications were associated with the estimated intervention effects on COVID-19 mortality (t, 3.80; CI_{95%} [1.07, 4.36]; P=0.005).

Meta-analysis of overall and individual hematological indices

The individual Hedges’g for each parameter and the combined effect size with CI_{95%} are shown in Figure 1B. A random-effect model was used for the combined effect size as there was a significant statistical heterogeneity (P=0.000) between the parameters (Tau^2 as the between-group variance and I^2 as the proportion of total variation in the estimates of parameter effects). The overall increase in blood
parameters of COVID-19 non-survivors (0.74 [0.02, 1.46]; Z=2.02; P=0.044; \(\tau^2 = 100.0\% \); \(\tau^2 = 2.13 \)) was shown in the meta-analysis forest plot based on the random effect model (Figure 1B).

The number of NEUs (2.81 [2.70, 2.91]; Z=53.97; P=0.000) and WBCs (2.38 [2.29, 2.47]; Z=50.05; P=0.000) and the concentrations of GGT (4.10 [3.81, 4.39]; Z=27.40; P=0.000), creatinine (2.40 [2.30, 2.49]; Z=49.67; P=0.000), CRP (2.28 [2.19, 2.38]; Z=46.23; P=0.000), AST (1.44 [1.34, 1.54]; Z=29.11; P=0.000), creatinine kinase (1.14 [1.03, 1.25]; Z=19.58; P=0.000), IL-6 (0.95 [0.82, 1.08]; Z=14.04; P=0.000), blood urea nitrogen (BUN) (0.47 [0.38, 0.57]; Z=9.62; P=0.000), and bilirubin (0.20 [0.11, 0.29]; Z=4.46; P=0.000) were higher in non-survivor COVID-19.

The number of LYMs (-1.74 [-1.83, -1.66]; Z=41.36; P=0.000) and PLTs (-1.55 [-1.63, -1.47]; Z=36.89; P=0.000) and the concentration of hemoglobin (-1.26 [-1.35, -1.17]; Z=26.12; P=0.000), albumin (-0.80 [-0.90, -0.70]; Z=15.50; P=0.000) and procalcitonin (-0.12 [-0.20, -0.03]; Z=2.69; P=0.007) in non-survivors were lower than in survivors.

COVID-19 mortality increases with age, hypertension, cerebrovascular disease and diabetes

As shown in the meta-analysis forest plot based on the random effect model (Figure 2A), prevalence of pre-existing conditions increased COVID-19 mortality (1.16 [0.78, 1.55]; Z=5.87; P=0.000; \(\tau^2 = 100.0\% \); \(\tau^2 = 0.63 \)).

Prevalence of individual pre-existing conditions, such as age (3.11 [3.05, 3.17]; Z=100.70; P=0.000); hypertension (2.30 [2.26, 2.35]; Z=100.00; P=0.000), cerebrovascular disease (2.22 [2.13, 2.32]; Z=45.95; P=0.000), diabetes (2.11 [2.06, 2.15]; Z=96.66; P=0.000), any comorbidities (1.97 [1.99, 2.01]; Z=84.99; P=0.000), cardiovascular disease (1.55 [1.51, 1.59]; Z=76.90; P=0.000), COPD (1.16 [1.11, 1.20]; Z=56.68; P=0.000), renal disease (1.10 [1.06, 1.14]; Z=52.59; P=0.000), male sex (0.78 [0.75, 0.82]; Z=44.59; P=0.000), body mass index (BMI) (0.73 [0.46, 0.99]; Z=5.38; P=0.000), time from symptoms appearance to hospitalization (0.66 [0.61, 0.72]; Z=23.17; P=0.000), liver disease (0.52 [0.47, 0.56]; Z=22.42; P=0.000), cancer (0.45 [0.41, 0.48]; Z=23.13; P=0.000) and smoking history (0.13 [0.02, 0.24]; Z=2.41; P=0.016) was higher among non-survivors. The prevalence of current drinkers was lower among non-survivors (-0.62 [-0.82, -0.42]; Z=6.01; P=0.000), which could be product of a relatively small number of non-survivors (n=101) used for meta-analysis (Figure 2A).

Meta-analysis determines common complications among non-survivors of COVID-19

The prevalence of complications among COVID-19 non-survivors (2.71 [1.91, 3.51]; Z=6.66; P=0.000; \(\tau^2 = 100.0\% \); \(\tau^2 = 1.48 \)) increased as shown in the meta-analysis forest plot based on the random effect model (Figure 2B).
Heart failure (7.40 [7.15, 7.64]; Z=58.45; P=0.000) was the most common complication among non-survivors, followed by septic shock (4.49 [4.36, 4.63]; Z=65.90; P=0.000), acidosis (2.90 [2.64, 3.15]; Z=22.24; P=0.000), respiratory failure (2.80 [2.73, 2.87]; Z=78.36; P=0.000), acute cardiac injury (1.89 [1.83, 1.96]; Z=54.84; P=0.000), coagulopathy (1.79 [1.66, 1.93]; Z=25.32; P=0.000), acute kidney injury (1.64 [1.58, 1.69]; Z=58.91; P=0.000), secondary infection (1.31 [1.24, 1.37]; Z=39.24; P=0.000), and liver dysfunction (0.10 [0.01, 0.20]; Z=2.08; P=0.037) (Figure 2B).

Network analysis supports the results of the meta-analysis

The network correlation for blood indices (Figure 3A), risk factor (Figure 3B), and complication (Figure 3C) were shown at cutoff point of 50%. The number of PLTs and LYMs and the concentration of hemoglobin were associated with COVID-19 survivors at a maximum cutoff point of 72%, all parameters were disconnected after this cutoff point (Figure 3D). The number of NEUs, the concentration of GGT, and the incidence of COVID-19 mortality were associated together at a maximum cutoff point of 93% (Figure 3E).

Network analysis showed a relationship between COVID-19 mortality and age, hypertension, cerebrovascular disease, diabetes, any comorbidity, cardiovascular disease (at a maximum cutoff point of 79%, Figure 3F) and heart failure (at a maximum cutoff point of 97%, Figure 3G). These findings supported the results of the meta-analysis; however, the meta-analysis was able to rank the potent factors involved in COVID-19 mortality.

Discussion

This meta-analysis study identified 97 randomized trials that provided outcome data appropriate for three meta-analyses: blood parameters, pre-existing risk factors and complications. The results showed that NEU and WBC number and concentrations of GGT, creatinine and CRP were higher in COVID-19 non-survivors, whereas LYM and PLT count and hemoglobin concentration were lower. Moreover, age, hypertension, cerebrovascular disease, diabetes, heart failure, and septic shock were the most common risk factors and complications among non-survivors.

Our meta-analysis showed increased NEU and decreased LYM count in COVID-19 non-survivors. Qin et al.105 reported that lymphopenia (low counts of lymphocytes) and increased NEU–LYM ratio were frequently observed in patients with severe COVID-19, which was a more common feature of patients that died of disease.6 Serious cases of lymphopenia can be caused by inflammatory mediators, such as IL-2 and IL-6, and can contribute to LYM loss.105 Qin et al.105 indicated that infection with SARS-CoV-2 effects LYMs, leading to secondary bacterial infections and increased NEU count. Indeed, neutrophilia (NEU count > 7.5×109/L) is associated with bacterial inflammation, cytokine storm and hyper-inflammation106, all of which have significant pathogenetic roles in COVID-19.105,107 Our findings support other studies that show a concomitant rise in WBC and NEU counts and a decline in LYM in COVID-19 non-survivors.26
Therefore, changes in WBC, NEU, and LYM count may be considered for predicting the risk of death in COVID-19 patients.

Meta-analysis showed increased concentrations of GGT and AST in non-survivors. Concentrations of alanine aminotransferase (ALT), AST, and GGT have been reported to be markedly higher in deceased patients than in recovered patients26,108 Moreover, studies suggest that serum GGT levels can be used to predict organ injury in hypertension, diabetes, metabolic syndrome and coronary artery disease.109 In our study, 19.1\% of non-survivors were diagnosed with liver damage, while incidence of heart failure, septic shock, acute kidney injury, acute cardiac injury was 88.9\%, 89.3\%, 87.3\%, 94.5\%, and 87.3\%, respectively. With respect to severe conditions or death, GGT has been found to be involved in early stages of heart failure.108-110 Our meta-analysis showed that both hypertension and heart failure were respectively the most prevalent risk factor and complication in non-survivors. Our network-analysis also showed the relationship between GGT, heart failure and mortality in COVID-19 patients. Consequently, the results show that GGT is a promising predictor for predicting organ damage, heart failure and thus COVID-19 mortality.

The meta-analysis revealed higher concentrations of creatinine and BUN in non-survivors. It has also been stated that the occurrence of acute kidney failure of COVID-19 patients ranged from 0.5 to 29\%, a serious situation in which patients need to be admitted to the ICU.111 In our analysis, the prevalence of acute kidney injury in COVID-19 patients was 16.7\% and 94.5\% of these patients died. Angiotensin converting enzyme 2 (ACE2), which is the SARS-CoV-2 entry receptor, has been shown to be highly expressed in the brush border of proximal tubular cells.112 Moreover, SARS-CoV-2 was isolated from the patient’s urine sample and its antigens were accumulated in kidney tubules113-115, indicting the clear effect of SARS-CoV-2 on human kidney111. Higher creatinine and BUN in non-survivors would enable physicians to improve their understanding of impaired renal function in COVID-19 patients.

Current evidence indicates that complications in COVID-19 patients can be caused by the direct effect of the virus, immune-mediated inflammation or drug-induced toxicity, provided that the majority of patients received with high doses of antibiotics, antiviral drugs and steroids.108 Our analysis showed that non-survivors had high a proportion of respiratory failure (93.8\%), heart failure (88.9\%), septic shock (89.3\%), secondary infection (67.3\%), acute kidney injury (94.5\%), and acute cardiac injury (87.3\%). Zhou et al.6 reported that sepsis was the most frequent complication accompanied by respiratory failure, ARDS, heart failure, and septic shock. In our meta-analysis, the most common complications identified in deceased patients were heart failure and sepsis. Moreover, a high concentration of CRP was found in non-survivors. Li et al.116 indicated that direct viral disruption, hyper-inflammation, and hypoxemia may all contribute to cardiac injury. Serum CRP as an inflammatory marker has been reported to have been positively associated with disease severity,117 lung lesions,118 acute kidney damage,119 and cardiac injuries120 in COVID-19 patients. Sahu et al.121 observed stable high levels of CRP in COVID-19 patients that died from infection. Our results support these findings and indicate the significance of CRP as a potential biomarker for COVID-19 mortality, highlighting the importance of close monitoring of CRP changes.
The present meta-analysis revealed a decreased PLT count and concentration of hemoglobin and albumin in COVID-19 non-survivors. Our findings support the other reports that the number of PLTs in non-survivors decreased and increased in survivors.122 Zhao et al.122 suggested that PLT counts could drastically represent pathophysiological changes in COVID-19 patients and that early decrease in PLT counts was correlated with COVID-19 mortality. Viral infection appears to have caused lung tissue damages, resulting in PLT activation, aggregation and entrapment, leading to thrombosis, which enhances PLT consumption.122 PLTs have a short life cycle (8-10 days) and very few PLTs kept in the bone marrow;123 it may be responsive to the seriousness of the condition of the patient. Furthermore, viruses can cause a decrease in PLT production due to megakaryocyte infection, which may contribute to apoptosis of megakaryocytes.124 Therefore, repeated measurements of PLT count may be helpful for the care of COVID-19 patients, leading to a much earlier, more effective prognosis.

Liu et al.125 reported that hemoglobin decreased most frequently in COVID-19 patients. The first case of COVID-19 in the United States showed a small decrease in hemoglobin on day 6 of illness.24 Of note, it was more evident that patients with a composite endpoint (i.e., ICU admission, invasive ventilation, and death) had decreased hemoglobin levels.12 SARS-CoV-2-induced inflammation can interfere with erythropoiesis and reduce hemoglobin production. For example, IL-6 has been shown to be elevated in severe COVID-19 infection107 and disrupts the production of hemoglobin.126 The current meta-analysis showed an increased level of IL-6 in COVID-19 non-survivors. Our results indicate that decreased hemoglobin levels as a potential death marker for COVID-19, and that it would be more relevant to concentrate on the reduction of hemoglobin levels.

Our meta-analysis showed that age, hypertension, cerebrovascular disease, and diabetes are prevalent risk factors among non-survivors. In line with the other reports, we also found that non-survivors were older (46.6 vs. 76.5 years) and had a higher proportion of hypertension and diabetes than survivors.6 Expression of ACE2 has been shown to be significantly increased in patients with type-1 or type-2 diabetes and hypertension.127,128 Alternatively, diabetes and hypertension are treated with ACE inhibitors and angiotensin II type-I receptor blockers, resulting in an up-regulation of ACE2128,129. As a result, increased expression of ACE2 will promote infection with COVID-19.128,129

Importantly, a correlation between the existence of ACE insertion/deletion (I/D) polymorphism and COVID-19 severity and mortality has been reported.129 Li et al.130 reported that the frequency of the D allele is the highest in Europe and America while the lowest frequency is found in East Asia. Therefore, considering the spread of COVID-19 worldwide, European countries tend to have higher incidence and mortality rates.130 Similarly, we found a lower mortality rate for Asian ethnic groups (7.0%) than in White or European ethnic groups (75.6%).

In support of our findings, other studies have documented the association between cerebrovascular disease and the risk of death in COVID-19 patients.131 SARS-CoV-2 has been shown to have neuro-invasive abilities and may spread from the respiratory system to the central nervous system.132 COVID-19
can also cause cerebrovascular diseases due to inflammation, hypoxia, and diffuse intravascular coagulation.133 Thus, clinicians should strengthen the monitoring of COVID-19 patients with the cerebrovascular disease.

In conclusion, some hematological/biochemical indices, such as GGT, NEU and LYM, in combination with pre-existing conditions, such as age, hypertension, cerebrovascular disease and diabetes, have been identified as risk factors of mortality in patients with SARS-CoV-2 infection.

Declarations

Author contributions: SFK, EB, and AMR extracted data; RK and KS planned and drafted the manuscript; KS, AHM, and MS tested the data consistency; RK, AHM, and MS analyzed the data; RK, MS and AHM interpreted the data and reviewed the manuscript. All authors have read and approved the final version of the manuscript and agree with the order of presentation of the authors.

Declaration of Competing Interest

All authors report no conflicts of interest relevant to this article.

Financial support

This work was supported in part by Isfahan University of Technology.

References

1. Nurshad A. Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J Med Virol 2020;10.1002/jmv.26097.

2. Wu JT, Leung K, Bushman M, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med 2020;26:506–10.

3. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 2020;323:1239–42.

4. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020;8:475–81.

5. Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis 2020; https://doi.org/10.1093/cid/ciaa270.
6. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62.

7. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020;20:425-34.

8. Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J Infect 2020;80:388-93.

9. Qian G-Q, Yang N-B, Ding F, et al. Epidemiologic and clinical characteristics of 91 hospitalized patients with COVID-19 in Zhejiang, China: a retrospective, multi-centre case series. QJM 2020;113:474-81.

10. Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 2020;368:m606.

11. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect 2020;8:e1-e5.

12. Guan W-J, Ni Z-Y, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-20.

13. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients With 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA2020;323:1061-69.

14. Chang D, Lin M, Wei L, et al. Epidemiologic and clinical characteristics of novel Coronavirus infections involving 13 patients outside Wuhan, China. JAMA 2020;323:1092-93.

15. Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in Northeast Chongqing. J Med Virol 2020;92:797-806.

16. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020;323:1488-94.

17. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients With Coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180:934-43.

18. Chan JF-W, Yuan S, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514-23.

19. Hill KJ, Russell CD, Clifford S, et al. The index case of SARS-CoV-2 in Scotland: a case report. J Infect 2020;81:147-78.

20. Jin X, Lian J-S, Hu J-H, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020;69:1002-009.

21. Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect 2020;80:639-45.
22. Kim JY, Choe PG, Oh Y, et al. The first case of 2019 novel Coronavirus pneumonia imported into Korea from Wuhan, China: implication for infection prevention and control measures. J Korean Med Sci 2020;35:e61.

23. Lim J, Jeon S, Shin HY, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J Korean Med Sci 2020;35:e79.

24. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel Coronavirus in the United States. N Engl J Med 2020;382:929-36.

25. Wang R, Pan M, Zhang X, et al. Epidemiological and clinical features of 125 Hospitalized Patients with COVID-19 in Fuyang, Anhui, China. Int J Infect Dis 2020;95:421-28.

26. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020;368:m1091.

27. Zheng F, Tang W, Li H, Huang Y-X, Xie Y-L, Zhou Z-G. Clinical characteristics of 161 cases of coronavirus disease 2019 (COVID-19) in Changsha. Eur Rev Med Pharmacol Sci 2020;24:3404-10.

28. Zhao W, Yu S, Zha X, et al. Clinical characteristics and durations of hospitalized patients with COVID-19 in Beijing: a retrospective cohort study. medRxiv 2020; doi:10.1101/2020.03.13.20035436.

29. Liu S, Luo H, Wang Y, Wang D, Ju S, Yang Y. Characteristics and associations with severity in COVID-19 patients: a multicentre cohort study from Jiangsu province, China. BMC Infect Dis 2020;20:584.

30. Li J, Li S, Cai Y, et al. Epidemiological and clinical characteristics of 17 hospitalized patients with 2019 novel Coronavirus infections outside Wuhan, China. medRxiv 2020; doi:10.1101/2020.02.11.20022053.

31. Zhang F, Yang D, Li J, et al. Myocardial injury is associated with in-hospital mortality of confirmed or suspected COVID-19 in Wuhan, China: A single center retrospective cohort study. medRxiv 2020; doi:10.1101/2020.03.21.20040121.

32. Yang Xu. Dynamic profile of severe or critical COVID-19 cases. medRxiv 2020; doi:10.1101/2020.03.18.20038513.

33. Zhang B, Zhou X, Qiu Y, et al. Clinical characteristics of 82 death cases with COVID-19. PLoS ONE 2020;15: e0235458.

34. Miao C, Zhuang J, Jin M, et al. A comparative multi-center study on the clinical and imaging features of confirmed and unconfirmed patients with COVID19. medRxiv 2020; doi: 10.1101/2020.03.22.20040782.

35. Luo X, Xia H, Yang W, et al. Characteristics of patients with COVID-19 during epidemic ongoing outbreak in Wuhan, China. medRxiv 2020; doi:10.1101/2020.03.19.20033175.

36. Shi Q, Zhao K-L, Yu J, et al. Clinical characteristics of 101 non-survivors hospitalized with COVID-19: A single center, retrospective study. medRxiv 2020; doi: 10.1101/2020.03.04.20031039.

37. Yao T, Gao Y, Cui Q, et al. Clinical characteristics of a group of deaths with COVID-19 pneumonia in Wuhan, China: a retrospective case series. BMC Infect Dis 2020;20:695.
38. Huang Y, Zhou H, Yang R, et al. Clinical characteristics of 36 non-survivors with COVID-19 in Wuhan, China. medRxiv 2020; doi:10.1101/2020.02.27.20029009.
39. Lei L, Jian-ya G. Clinical characteristics of 51 patients discharged from hospital with COVID-19 in Chongqing, China. medRxiv 2020; doi:10.1101/2020.02.20.20025536.
40. Wang Y, Zhou Y, Yang Z, Xia D, Hu Y, Geng S. Clinical characteristics of patients with severe pneumonia caused by the 2019 novel Coronavirus in Wuhan, China. Respiration 2020;99:649-57.
41. Liao J, Fan S, Chen J, et al. Epidemiological and clinical characteristics of COVID-19 in adolescents and young adults. The Innovation 2020;1:100001.
42. Liu J, Ouyang L, Guo P, et al. Epidemiological, clinical characteristics and outcome of medical staff infected with COVID-19 in Wuhan, China: a retrospective case series analysis. medRxiv 2020; doi:10.1101/2020.03.09.20033118.
43. Qiu C, Deng Z, Xiao Q, et al. Transmission and clinical characteristics of coronavirus disease 2019 in 104 outside-Wuhan patients, China. J Med Virol 2020;10.1002/jmv.25975.
44. Liao X, Chen H, Wang B, et al. Critical care for patients with severe Covid-19 in Sichuan province, China—a provincial cohort study. medRxiv 2020; doi:10.1101/2020.03.22.20041277.
45. Yan D, Liu X-Y, Zhu Y-n, et al. Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2 infection. Eur Respir J 2020;56:2000799.
46. Tan L, Kang X, Zhang B, et al. A special case of COVID-19 with long duration of viral shedding for 49 day. medRxiv 2020; doi:10.1101/2020.03.22.20040071.
47. Zhang H-Y, Wang L-W, Chen Y-Y, et al. A multicentre study of Coronavirus disease 2019 outcomes of cancer patients in Wuhan, China. medRxiv 2020; doi:10.1101/2020.03.21.20037127.
48. Jiang X, Tao J, Wu H, et al. Clinical features and management of severe COVID-19: A retrospective study in Wuxi, Jiangsu province, China. medRxiv 2020; doi:10.1101/2020.04.10.20060335.
49. Qi X, Liu Y, Fallowfield JA, et al. Clinical course and risk factors for mortality of COVID-19 patients with pre-existing cirrhosis: a multicenter cohort study. Gut 2020; doi:10.1136/gutjnl-2020-321666.
50. Huang Y, Lyu X, Li D, et al. A cohort study of 223 patients explores the clinical risk factors for the severity diagnosis of COVID-19. ppmedxrv 2020;20070656.
51. Pan F, Ye T, Sun P, et al. Time course of lung changes on chest CT during recovery from 2019 novel Coronavirus (COVID-19) pneumonia. Radiology 2020;295:715-21.
52. Xu T, Chen C, Zhu Z, et al. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. Int J Infect Dis 2020;94:68-71.
53. Lillie PJ, Samson A, Li A, et al. Novel coronavirus disease (Covid-19): The first two patients in the UK with person to person transmission. J Infect 2020;80:578-606.
54. Ghinai, McPherson TD, Hunter JC, et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet 2020;395:1137-44.
55. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;581:465–69.
56. Ge R, Tian M, Gu Q, et al. The role of close contacts tracking management in COVID-19 prevention: A cluster investigation in Jiaxing, China. J Infect 2020;81:e71–e74.

57. Xie H, Zhao J, Lian N, Lin S, Xie Q, Zhuo H. Clinical characteristics of Non-ICU hospitalized patients with Coronavirus disease 2019 and liver injury: A Retrospective study. Liver Int 2020;40:1321-26.

58. Zhou Y, Zhang Z, Tian J, Xiong S. Risk factors associated with disease progression in a cohort of patients infected with the 2019 novel Coronavirus. Ann Palliat Med 2020;9:428-36.

59. Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020;117:9490-96.

60. Zhu Z, Lu L, Xu T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect 2020;81:e21-e23.

61. Sun JK. Acute gastrointestinal injury in critically ill patients with Coronavirus disease 2019 in Wuhan, China. medRxiv 2020; doi:10.1101/2020.03.25.20043570.

62. Liu T, Zhang J, Yang Y, et al. The potential role of IL-6 in monitoring severe case of Coronavirus disease 2019. EMBO Mol Med 2020;12:e12421.

63. Fan L, Liu C, Li N, et al. Medical treatment of 55 patients with COVID-19 from seven cities in northeast China who fully recovered: a single-center, retrospective, observational study. medRxiv 2020; doi:10.1101/2020.03.28.20045955.

64. Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel Coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends 2020;14:64-8.

65. The COVID-19 Investigation Team. Clinical and virologic characteristics of the rst 12 patients with Coronavirus disease 2019 (COVID-19) in the United States. Nat Med 2020;26:861-68.

66. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci 2020;63:706-11.

67. Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020;323:1582-89.

68. Auld SC, Caridi-Scheible M, Blum JM, et al. ICU and ventilator mortality among critically ill adults with COVID-19. Crit Care Med 2020;48:e799-e804.

69. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel Coronavirus pneumonia. J Thromb Haemost 2020;18:844–47.

70. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020;323:1775-76.

71. Liu K-C, Xu P, Lv W-F, et al. CT manifestations of Coronavirus disease-2019: a retrospective analysis of 73 cases by disease severity. Eur J Radiol 2020;126:108941.

72. McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N Engl J Med 2020;382:2005-11.
73. Zhou J, Tan Y, Li D, He X, Yuan T, Long Y. Observation and analysis of 26 cases of asymptomatic SARS-COV2 infection. J Infect 2020;81:e69-e70.

74. Shen L, Li S, Zhu Y, et al. Clinical and laboratory-derived parameters of 119 hospitalized patients with Coronavirus disease 2019 in Xiangyang, Hubei province, China. J Infect 2020;81:147-78.

75. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020;69:997-1001.

76. Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic population. N Engl J Med 2020;382:2302-15.

77. Li Y, Xie Z, Lin W, et al. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med (NY). DOI: 10.1016/j.medj.2020.04.001.

78. Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N Engl J Med 2020;382:2081-90.

79. COVID-19 Surveillance Group. Characteristics of COVID-19 patients dying in Italy Report based on available data on March 20th, 2020. https://www.epicentro.iss.it/coronavirus/bollettino/Report-COVID-2019_20_marzo_eng.pdf.

80. Kang M, Wu J, Ma W, et al. Evidence and characteristics of human-to-human transmission of 2019-nCoV. medRxiv. DOI: 10.1101/2020.02.03.20019141.

81. Xu H, Huang S, Liu S, et al. Evaluation of the clinical characteristics of suspected or confirmed cases of COVID-19 during home care with isolation: A new retrospective analysis based on O2O. medRxiv. DOI: 10.1101/2020.02.26.20028084.

82. Chen C, Huang J, Cheng Z, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv.DOI: 10.1101/2020.03.17.20037432.

83. Bi Q, Hong C, Meng J, et al. Characterization of clinical progression of COVID-19 patients in Shenzhen, China. medRxiv. DOI:10.1101/2020.04.22.20076190.

84. Lei F, Qingguang Z, Wei C, et al. Retrospective analysis of 308 cases of new coronavirus pneumonia and the clinical application plan of anti-epidemic exercise prescription. Shanghai Traditional Chinese Medicine. DOI:10.16305/j.1007-1334.2020.05.095.

85. Tiana S, Hub N, Lou J, et al. Characteristics of COVID-19 infection in Beijing. J Infect 2020;80:401-6.

86. Xu Y-H, Dong J-H, An W-M, et al. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect 2020;80:394-400.

87. Han C, Duan C, Zhang S, et al. Digestive symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing, and outcomes. Am J Gastroenterol 2020;115:916-23.

88. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 2020;323:1574–81.

89. Spinato G,Fabbris C,Polesel J, et al. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA 2020;323:2089-90.
90. Chow EJ, Schwartz NG, Tobolowsky FA, et al. Symptom screening at illness onset of health care personnel with SARS-CoV-2 infection in King County, Washington. JAMA 2020;323:2087-89.

91. Chen H, Zhang Z, Wang L, et al. First clinical study using HCV protease inhibitor danoprevir to treat naive and experienced COVID-19 patients. medRxiv. DOI: 10.1101/2020.03.22.20034041.

92. Shi Q, Zhao K, Yu J, et al. Clinical characteristics of 101 non-survivors hospitalized with COVID-19: A single center, retrospective study. medRxiv. DOI: 10.1101/2020.03.04.20031039.

93. Departamento de Epidemiología. Ministerio de Salud de Chile. SITUACIÓN EPIDEMIOLÓGICA COVID-19. CHILE al 23 de marzo de 2020. http://www.colegiomedico.cl/wp-content/uploads/2020/03/Informe_10_COVID_19_Chile.pdf.

94. Li X, Wang L, Yan S, et al. Clinical characteristics of 25 death cases infected with COVID-19 pneumonia: a retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis 2020;94:128-32.

95. Kluytmans M, Buiting A, Pas S, et al. SARS-CoV-2 infection in 86 healthcare workers in two Dutch hospitals in March. medRxiv. DOI: 10.1101/2020.03.23.20041913.

96. ICNARC COVID-19 Study Case Mix Programme Database. ICNARC report on COVID-19 in critical care. https://www.icnarc.org/Our-Audit/Audits/Cmp/Reports.

97. Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. ciaa344; DOI:10.1093/cid/ciaa344.

98. Petrelli C, Jones SA, Yang J, et al. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. medRxiv. DOI: 10.1101/2020.04.08.20057794.

99. Guo A-X, Cui J-J, OuYang Q-Y, He L, Guo C-X, Ji-Ye Yin J-Y. The clinical characteristics and mortal causes analysis of COVID-19 death patients. medRxiv. DOI: 10.1101/2020.04.12.20062380.

100. COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention. Coronavirus disease-19: The first 7,755 cases in the Republic of Korea. Osong Public Health Res Perspect 2020;11:85–90.

101. Qibin Liu1, Xuemin Fang1, Lu Tian et al. The effect of arbidol hydrochloride on reducing mortality of Covid-19 patients: a retrospective study of real-world data from three hospitals in Wuhan. medRxiv. DOI: 10.1101/2020.04.11.20056523.

102. Tao Y, Cheng P, Chen W, High incidence of asymptomatic SARS-CoV-2 infection, Chongqing, China. medRxiv. DOI: 10.21203/rs.3.rs-25603/v1.

103. Hoy D, Brooks P, Woolf A, et al. Assessing risk of bias in prevalence studies: Modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol 2012;65:934–9.

104. Grant MG, Geoghegan L, Arbyn M, et al. The prevalence of symptoms in 24,410 adults infected by the novel Coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries. PLoS ONE 2020;15:e0234765.
105. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020;71:762-68.

106. Lippi G, Plebani M. The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks. Clin Chem Lab Med 2020;58:1063-69.

107. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033-34.

108. Nurshad A. Relationship between COVID-19 infection and liver injury: a review of recent data. Front Med 2020;7:458.

109. Shengyang Jiang, Donglin Jiang, Yijia Tao. Role of gamma-glutamyltransferase in cardiovascular diseases. Exp Clin Cardiol 2013;18:53–6.

110. Makarewicz-Wujec M, Kozlowska-Wojciechowska M. Nutrient intake and serum level of gamma-glutamyltransferase, MCP-1 and homocysteine in early stages of heart failure. Clin Nutr 2011;30:73-8.

111. Yang X, Jin Y, Li R, et al. Prevalence and impact of acute renal impairment on COVID-19: a systematic review and meta-analysis. Critical Care 2020;24:356.

112. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450–4.

113. Wang S, Zhou X, Zhang T, Wang Z. The need for urogenital tract monitoring in COVID-19. Nat Rev Urol 2020;17:314–5.

114. Pan X-W, Xu D, Zhang H, Zhou W, Wang L-H, Cui X-G. Identification of a potential mechanism of acute kidney injury during the Covid-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med 2020;46:1114-16.

115. Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020;98:219–27.

116. Li Y, Li H, Li M, Li L, Xie M. The prevalence, risk factors and outcome of cardiac dysfunction in hospitalized patients with COVID-19. Intensive Care Med. DOI:10.1007/s00134-020-06205-0.

117. Chen W, Zheng KI, Liu S, Yan Z, Xu C, Qiao Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann Clin Microbiol Antimicrob 2020;19:18.

118. Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect 2020;50:332-34.

119. Tang Y, Huang XR, Lv J, et al. C-reactive protein promotes acute kidney injury by impairing G1/S-dependent tubular epithelium cell regeneration. Clin Sci (Lond) 2014;126:645-59.

120. Orn S, Manhenke C, Ueland T, et al. C-reactive protein, infarct size, microvascular obstruction, and left ventricular remodelling following acute myocardial infarction. Eur Heart J 2009;30:1180–86.

121. Sahu BR, Kampa RK, Padhi A, Panda AK. C-reactive protein: A promising biomarker for poor prognosis in COVID-19 infection. Clinica Chimica Acta 2020;509:91–94.

122. Zhao X, Wang K, Zuo P, et al. Early decrease in blood platelet count is associated with poor prognosis in COVID-19 patients—indications for predictive, preventive, and personalized medical approach.
123. Sahler J, Grimshaw K, Spinelli SL, Refaai MR, Phipps RP, Blumberg N. Platelet storage and transfusions: new concerns associated with an old therapy. Drug Discov Today Dis Mech 2011;8:e9–e14.

124. Assinger A. Platelets and infection – an emerging role of platelets in viral infection. Front Immunol 2014;5:649.

125. Liu X, Zhang R, He G. Hematological findings in Coronavirus disease 2019: indications of progression of disease. Ann Hematol 2020;1–8.

126. McCranor BJ, Kim MJ, Cruz NM, et al. Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells. Blood Cells Mol Dis 2014;52:126–33.

127. Liu CX, Hu Q, Wang Y, et al. Angiotensin-converting enzyme (ACE) 2 overexpression ameliorates glomerular injury in a rat model of diabetic nephropathy: a comparison with ACE inhibition. Mol Med 2011;17:59-69.

128. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020;8:e21.

129. Pati A, Mahto H, Padhi S, Panda AK. ACE deletion allele is associated with susceptibility to SARS-CoV-2 infection and mortality rate: An epidemiological study in the Asian population. Clin Chim Acta 2020;510:455–58.

130. Li X, Sun X, Jin L, Xue F. Worldwide spatial genetic structure of angiotensinconverting enzyme gene: a new evolutionary ecological evidence for the thrifty genotype hypothesis. Eur J Hum Genet 2011;19:1002–8.

131. Wang Y, Shi L, Wang Y, Duan G, Yang H. Cerebrovascular disease is associated with the risk of mortality in coronavirus disease 2019. Neurol Sci 2020;41:2017–19.

132. Calcagno N, Colombo E, Maranzano A, et al. Rising evidence for neurological involvement in COVID-19 pandemic. Neurol Sci 2020;41:1–3.

133. Klok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020;191:145–7.

Tables
Table 1. COVID-19 patient characteristics. Blood parameters, pre-existing conditions and complications.

Characteristic	All Patients	Survivors	Non-survivors
Age ± no, yr, mean (95% CI)	9375, 49.8 (46.9, 52.7)	5448, 46.6 (44.2, 48.9)	3927, 71.5 (66.4, 76.5)
Gender			
Male ± no./total no. (%)	9599/17778 (54.0)	6399/9599 (66.7)	3200/9599 (33.3)
Female ± no./total no. (%)	8179/17778 (46.0)	6733/8179 (82.3)	1446/8179 (17.7)
Drinker			
Yes ± no./total no. (%)	253/1606 (15.8)	243/253 (96.0)	10/253 (2.8)
No ± no./total no. (%)	1353/1606 (84.2)	1262/1353 (93.3)	91/1353 (6.7)
Smoker			
Yes ± no./total no. (%)	874/7583 (11.5)	843/874 (96.5)	31/874 (3.5%)
No ± no./total no. (%)	6709/7583 (88.5)	6377/6709 (95.1)	332/6709 (4.9)
Day to Hospital ± no, mean (95% CI)	5456, 5.9 (5.8, 6.0)	2109, 5.7 (5.5, 5.8)	3347, 8.0 (7.9, 8.1)
BMI ± no, mean (95% CI)	383, 24.5 (24.3, 24.7)	314, 24.1 (24.0, 24.3)	69, 25.5 (24.7, 26.3)
Any comorbidities			
Yes ± no./total no. (%)	6321/11473 (55.1)	2156/6321 (34.1)	4165/6321 (65.9)
No ± no./total no. (%)	5152/11473 (44.9)	4873/5152 (94.6)	279/5152 (5.4)
Hypertension			
Yes ± no./total no. (%)	4443/14080 (31.6)	1579/4443 (35.5)	2864/4443 (64.5)
No ± no./total no. (%)	9637/14080 (68.4)	8256/9637 (85.7)	1381/9637 (14.3)
Diabetes			
Yes ± no./total no. (%)	2222/14423 (15.4)	766/2222 (34.5)	1456/2222 (65.5)
No ± no./total no. (%)	12201/14423 (84.6)	9111/12201 (74.7)	3090/12201 (25.3)
Cardiovascular disease			
Yes ± no./total no. (%)	1679/14189 (11.8)	355/1679 (21.1)	1323/1679 (78.8)
No ± no./total no. (%)	12510/14189 (88.2)	9202/12510 (73.6)	3308/12510 (26.4)
COPD			
	Yes	No	Total
------------------	------	------	--------
Yes no./total no. (%)	843/11925 (7.1)	218/843 (25.9)	625/843 (74.1)
No no./total no. (%)	11082/11925 (92.9)	7408/11082 (66.8)	3674/11082 (33.2)
Cancer			
Yes no./total no. (%)	952/11602 (8.2)	191/952 (20.1)	761/952 (79.9)
No no./total no. (%)	10650/11602 (91.8)	6965/10650 (65.4)	3685/10650 (34.6)
Liver disease			
Yes no./total no. (%)	293/7783 (3.8)	121/293 (41.3)	172/293 (58.7)
No no./total no. (%)	7490/7783 (96.2)	3806/7490 (50.8)	3684/7490 (49.2)
Cerebrovascular disease			
Yes no./total no. (%)	233/4172 (5.6)	121/233 (51.9)	112/233 (48.1)
No no./total no. (%)	3939/4172 (94.4)	3368/3939 (85.5)	571/3939 (14.5)
Renal disease			
Yes no./total no. (%)	797/11551 (6.9)	91/797 (11.4)	706/797 (88.6)
No no./total no. (%)	10754/11551 (93.1)	7546/10754 (70.2)	3209/10754 (29.8)
Other disease			
Yes no./total no. (%)	682/10562 (6.5)	437/682 (64.1)	245/690 (35.9)
Severity			
Mild no./total no. (%)	4041/19014 (21.2)	4041/4041 (100.0)	0/4041 (0.0)
Severe no./total no. (%)	4874/19014 (25.6)	498/4874 (10.2)	4376/4874, 89.8
Unreported no./total no. (%)	10099/19014 (53.2)	9800/10099 (97.0)	299/10099 (3.0)
Treatment			
Antibiotics no./total no. (%)	9542/19042 (50.1)	5817/9542 (61.0)	3725/9542 (39.0)
Antiviral drugs no./total no. (%)	10371/19042 (54.5)	5353/10371 (51.6)	5018/10371 (48.4)
ICU admission			
Non-ICU no./total no. (%)	4379/11420 (38.3)	4379/4379 (100.0)	0/4379 (0.0)
ICU-Endpoint no./total no. (%)	6754/11420 (59.2)	6223/6754 (92.1)	531/6754 (7.9)
ICU-Only | no./total no. | 287/11420 (2.5) | 124/287 (43.2) | 163/287 (56.8)

Ethnics
White, European
African American
Asian
Hispanic, Latino
Multi-ethnicity

Hematological indices	n, mean 10^9/L (CI95%)		
WBC	7174, 5.95 (5.52, 6.38)	6591, 5.43 (5.17, 5.70)	583, 8.55 (6.74, 10.36)
Lymphocyte	7640, 1.11 (1.01, 1.22)	6943, 1.23 (1.12, 1.34)	697, 0.60 (0.52, 0.68)
Platelet	7262, 179.49 (172.02, 186.95)	6572, 187.76 (181.12, 194.41)	690, 149.92 (131.13, 168.72)
Neutrophil	4841, 4.19 (3.73, 4.65)	4237, 3.52 (3.24, 3.81)	604, 6.48 (5.39, 7.57)

Biochemical indices	n, mean 10^9/L (CI95%)		
Hemoglobin	6379, 132.58 (130.14, 135.01)	5887, 134.44 (131.95, 136.92)	492, 124.03(118.72, 129.34)
Albumin	3491, 36.75 (33.71, 39.79)	3040, 38.51 (3460, 42.41)	451, 31.93 (30.15, 33.70)
Alanine aminotransferase	5156, 29.41 (25.22, 33.60)	4705, 29.27 (24.30, 34.23)	548, 30.09 (23.38, 36.80)
Aspartate aminotransferase	5020, 33.75 (29.17, 38.32)	4526, 30.06 (26.48, 33.65)	494, 50.68 (32.23, 69.13)
Gamma-glutamyl transferase	1642, 19.35 (5.06, 33.65)	1582, 11.06 (2.69, 19.43)	60, 52.5 (36.88, 68.12)
Total bilirubin	4758, 13.87 (10.94, 16.79)	4206, 13.41 (9.74, 17.08)	552, 15.47 (11.60, 19.34)
Blood urea nitrogen mmol/L	3801, 6.35 (4.30, 8.40)	3326, 5.55 (2.82, 8.28)	475, 8.55 (7.08, 10.02)
----------------------------	---------------------------	---------------------------	---------------------------
Creatinine µmol/L	5306, 69.95 (65.86, 74.04)	4670, 64.64 (61.74, 67.53)	636, 87.52 (76.62, 98.41)
Creatine Kinase U/L	4044, 79.46 (68.26, 90.69)	3706, 73.20 (64.34, 82.06)	338, 101.0 (56.75, 145.25)
C-reactive protein mg/L	4895, 37.36 (26.03, 48.70)	4297, 22.32 (14.63, 30.00)	598, 96.39 (63.46, 129.31)
Interleukin-6 pg/mL	1827, 31.69 (7.44, 55.93)	1557, 18.96 (-9.93, 47.86)	270, 59.68 (8.27, 111.09)
Procalcitonin ng/mL	4012, 0.68 (-0.30, 1.67)	3374, 0.78 (-0.58, 2.14)	638, 0.41 (0.19, 0.62)
D-dimer mg/L	4053, 6.78 (-0.13, 13.69)	3390, 7.08 (-2.08, 16.25)	663, 5.81 (3.00, 8.63)

Complications

Liver dysfunction no./total no. (%)	602/3037 (19.8)	487/602 (80.9)	115/602 (19.1)
Respiratory failure no./total no. (%)	3782/6313 (59.9)	236/3782 (6.2)	3546/3782 (93.8)
Heart failure no./total no. (%)	189/2148 (8.8)	21/189 (11.1)	168/189 (88.9)
Septic shock no./total no. (%)	178/4567 (3.9)	19/178 (10.7)	159/178 (89.3)
Coagulopathy no./total no. (%)	51/1287 (4.0)	14/51 (27.5)	37/51 (72.5)
Acute cardiac injury no./total no. (%)	732/5479 (13.4)	93/732 (12.7)	639/732 (87.3)
Acute kidney injury no./total no. (%)	1155/6936 (16.7)	63/1155 (5.5)	1092/1155 (94.5)
Secondary infection no./total no. (%)	617/4993 (12.4)	202/617 (32.7)	415/617 (67.3)
Acidosis no./total no. (%)	47/515 (9.1)	15/47 (31.9)	32/47 (68.1)
Table 2. The multivariate meta-regression analysis.

Variable	t	CI_{95%}	P value
Blood indices	1.85	(-0.11, 1.60)	0.083
Risk factors	4.77	(0.64, 1.68)	0.000
Complications	3.80	(1.07, 4.36)	0.005

Figures

Figure 1

(A) Flow diagram of the number of records identified, included, and excluded from the search for systematic reviews, meta-analysis and network analysis of COVID-19 mortality interventions. (B) Forest plot of blood parameters in survivors and non-survivors of COVID-19. The Standardized Mean Difference (SMD) and the 95% confidence intervals were used to define the effect size of different blood indices in survivors and non-survivors. S, survivors; GGT, gamma-glutamyl transferase; NEU, neutrophil; WBC, white blood cell; CRP, C-reactive protein; AST, aspartate aminotransferase; CK, creatine kinase; IL-6, interleukin-6; BUN, blood urea nitrogen; ALT, alanine aminotransferase; PCT, procalcitonin; HBG, hemoglobin; PLT, platelet; LYM, lymphocyte.
Figure 2

Forest plot of pre-existing health conditions (A) and complications (B) in survivors and non-survivors of COVID-19. The Standardized Mean Difference (SMD) and the 95% confidence intervals (CIs) were used to define the prevalence of various risk factors and complications for survivors and non-survivors of COVID-19. Time to hospital, time from symptoms appearance to hospitalization; Cerebrovascular, cerebrovascular disease; Cardiovascular, cardiovascular disease; Renal, renal disease; Liver, liver disease;
BMI, body mass index; COPD, chronic obstructive pulmonary disease; ARDS, acute respiratory distress syndrome; S, survivors.

Figure 3

Correlation-based network analysis. The Pearson correlation threshold of 50% was used to show the network of all variables (A-C). More precisely, the Pearson correlation thresholds of 72% and 93% (D, E) were respectively selected to define the connection between survivors, non-survivors and blood parameters. The Pearson correlation thresholds of 79% and 97% were respectively chosen to assess the relationship between survivors, non-survivors and (F) risk factors or (G) complications. Circles of the network indicate the blood parameters (A, D, E), risk factors (B, F) and complications (C, G). The size of the node reflects the degree of connectivity of the node and the edges display the relationship between the two variables. The thicker edges reveal higher correlations between variables. Nodes with more links are close to each other. Network analysis and visualization was carried out using PAST and Fruchterman-Reingold algorithm or Circular algorithm as a force-directed layout algorithm. Abbreviations in panels A, D, and E: Alb, albumin; HBG, hemoglobin; NEU, neutrophil; PLT, platelet; LYM, lymphocyte; WBC, white blood cells, PCT, procalcitonin; GGT, gamma-glutamyl transferase; CRP, C-reactive protein, CK, creatine kinase; Creat: creatinine, BUN, blood urea nitrogen; Bili, total bilirubin; AST, aspartate aminotransferase; ALT, alanine aminotransferase. Abbreviations in panels B and F: BMI, body mass index; Time to H, Time From Symptoms Appearance to Hospitalization; Renal, renal disease; Cereb, Cerebrovascular Disease; Liver, liver disease; COPD, chronic obstructive pulmonary disease; Cardio, Cardiovascular Disease. Abbreviations in panels C and G: Fail, failure; Res, respiratory; Liver, liver dysfunction; Sec, secondary; Kidney, acute kidney injury; Cardiac, acute kidney injury.