Optical coherence tomography angiography vessel density in children with type 1 diabetes

Joanna Gołębiewska¹*, Andrzej Olechowski¹, Marta Wysocka-Mincewicz², Dominik Odrobina³,⁴, Marta Baszyńska-Wilk², Artur Groszek², Mieczysław Szalecki²,³, Wojciech Hautz¹

¹ Department of Ophthalmology, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw, Poland, ² Department of Diabetology and Endocrinology The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw, Poland, ³ Department of Medicine and Health Sciences, Jan Kochanowski Memorial University of Kielce, Kielce, Poland, ⁴ Ophthalmology Clinic of St. John Boni Fratres Lodziensis, Łódź, Poland

* joanna.golebiewska@wp.pl

Abstract

Purpose
To assess the optical coherence tomography angiography (OCTA) retinal vessel density and foveal avascular zone (FAZ) in children with type 1 diabetes (T1D) and compare potential pathologic early changes in this population to healthy age-matched controls.

Methods
This study included 130 pubescent children: 94 with T1D (188 eyes) and 36 of their age-matched control group (60 eyes). OCTA was performed using AngioVue (Avanti, Optivue). FAZ area (mm²) in superficial plexus, whole superficial capillary vessel density (wsVD), fovea superficial vessel density (fsVD), parafovea superficial vessel density (psVD), whole deep vessel density (wdVD), fovea deep vessel density (fdVD), parafovea deep vessel density (pdVD), foveal thickness (FT) (μm) and parafoveal thickness (PFT) (μm) were taken into analysis. Among the studied patients with T1D there were assessed codependences regarding the investigated foveal and parafoveal parameters and selected potential predictors, i.e. patient’s age (years), diabetes duration time (years), age of onset of the disease (years), mean level of glycated hemoglobin (HbA1C) (%), and concentration of serum creatinine (mg/dL).

Results
None of the abovementioned OCT and OCTA parameters was statistically significantly different between the groups. The patient’s age statistically significantly did not influent any of the OCT and OCTA parameters. Yet an elevated level of HbA1C tended to reduce the parafovea superficial vessel density (p = 0.039), and parafoveal thickness (p = 0.003) and an increased serum creatinine level correlated with the decreased whole deep vessel density (p < 0.001). The parafovea deep vessel density in the diabetic patients decreased when the
serum creatinine level \((p = 0.008)\), age of onset of the disease \((p = 0.028)\), and diabetes duration time \((p = 0.014)\) rose.

Conclusions

Vessel density, both in superficial and deep plexuses, and FAZ area are normal in pubescent children with T1D comparing to healthy subjects. An elevated level of HbA1C correlated with reduced psVD and PFT. Longitudinal observation of these young patients is needed to determine if any of these OCTA measurements are predictive of future DR severity.

Introduction

Diabetes mellitus is the third most common chronic disease among children. Pediatric populations would appear to be at low risk for DR, but some adolescents develop either clinically significant macular edema or even proliferative retinopathy. [1–4] Pubertal status and the prepubertal duration of diabetes influence the risk of developing DR, as children under the age of 10 years have minimal risk, and no cases of proliferative DR in the first decade of life were noted. [5–7] Therefore, early detection of DR through screening programs is crucial for preserving vision in patients with diabetes. [8,9]

Indirect ophthalmoscopy and stereoscopic fundus photography through dilated pupils, a practice commonly used worldwide, provides the great diagnostic accuracy in detecting DR. [9,10] Over the years fluorescein angiography (FA) is the gold standard in diabetic retinopathy diagnosis and classification, but this method requires an intravenous dye injection and causes significant discomfort and stress. [11,12] Optical coherence tomography angiography (OCTA) is a new, non-invasive tool, based on split-spectrum amplitude-decorrelation angiography (SSADA), involving the detection and measurement of intravascular erythrocyte movement. [13] OCTA enables reproducible, quantitative assessment of the microcirculation in the macula and in the optic nerve head and may be used in diagnosing of glaucoma and different retinal vascular diseases, such as diabetic retinopathy, retinal vein occlusion, central serous chorioretinopathy and age-related macular degeneration. [14–16] OCTA provides three-dimensional maps of the macular perfusion and seems to be promising method in the detection of early microcirculation disorders. To date, there are a lot of studies focus on OCTA in adults with diabetes mellitus. [17–20] To the best of our knowledge there are only few studies on OCTA in the diagnostics of pediatric patients and there have been no previous reports on OCTA findings in pediatric population with T1D. [21,22]

The aim of the present study was to assess the OCTA retinal vessel density and FAZ area in children with T1D and compare potential pathologic early changes in this population to healthy age matched controls.

Methods

This prospective, observational study was conducted in The Children’s Memorial Health Institute in Warsaw and enrolled all consecutive patients available between March 2015 and September 2016 in the Department of Endocrinology and Diabetology, who met inclusion criteria. The study was approved by the Bioethics Committee The Children’s Memorial Health Institute in Warsaw and followed the tenets of the Declaration of Helsinki. A written informed consent was obtained from the patient’s legal guardian and from patients > 16 years old after
explanation of the nature of the non-invasive study. Inclusion criteria were age ≥ 11 years and diabetes duration ≥ 1 year. Exclusion criteria were history of prematurity, other concomitant retinal pathologies, such as hereditary retinal dystrophies, vitreoretinal diseases, pathologic myopia (defined as a spherical equivalent of −6 diopters or more), history of uveitis. Eyes with poor quality scans were also excluded. Clinicopathological data recorded for each diabetic subject included duration of diabetes, systolic and diastolic blood pressure, glycated hemoglobin (HbA1C) levels, creatinine in the daily collection of urine and serum creatinine levels, microalbuminuria level. Control subjects were defined as having a normal ophthalmic examination and no history of diabetes. Every patient underwent a complete ophthalmological examination, including best-corrected visual acuity (BVCA), slit-lamp biomicroscopy, dilated fundus examination and color fundus photography.

OCTA was performed using a commercially available RTVue XR Avanti with AngioVue (Optovue, Fremont, CA, USA) with 3 mm x 3 mm images of the macula, centered on the foveola. Each OCTA en face image contains 304 x 304 pixels created from the intersection of the 304 vertical and the 304 horizontal B-scans. AngioVue automatically segments the area into four layers, including superficial capillary plexus layer (SP), deep capillary plexus layer (DP), outer retina layer and choriocapillaries. The SP en face image was segmented with an inner boundary at 3 μm beneath the internal limiting membrane and an outer boundary set at 15 μm beneath the inner plexiform layer, whereas the deep capillary plexus en face image was segmented with an inner boundary 15 μm beneath the inner plexiform layer and an outer boundary at 70 μm beneath the inner plexiform layer. Integrated automated algorithms provided by the machines software were used to quantify FAZ area (mm²) and macular vascular density (%). FAZ area was automatically calculated for superficial plexus. Capillary vascular density in macular and paramacular region were measured both in superficial and deep plexuses. Vessel density is calculated as the percentage area occupied by flowing blood vessels in the selecting region, which enable of quantitative assessment of microvasculature. Whole superficial capillary vessel density (wsVD), fovea superficial vessel density (fsVD), parafovea superficial vessel density (psVD), whole deep vessel density (wdVD), fovea deep vessel density (fdVD), parafovea deep vessel density (pdVD) were taken into analysis. Foveal thickness (FT) (μm) and parafoveal thickness (PFT) (μm) data were obtained from retinal maps, using the same device. All subjects were dilated with 1% tropicamide eye drops before examination. Stabilization was achieved with the standard chinrest and forehead support. Subjects were directed to focus on an internal fixation target. Three scans for each eye were captured, then the best one in quality (with a signal strength index > 60) was considered for analysis. Two trained OCTA readers (JG, AO) reviewed all images independently to ensure correct segmentation and identify poor quality scans, with motion artifacts or blurred images, where data were insufficient for proper analysis. The data collected from both eyes of the studied patients were taken into analysis.

Statistical analysis

The investigated traits were described by way of measures of location–mean, median and quartiles, along with measures of dispersion–interquartile range, standard deviation, standard error of mean, 95% confidence interval, and minimum-to-maximum values.

Differences in the investigated parameters between study groups were tested by using the multifactor analysis of variance (ANOVA) without replication or generalized linear models with intra-subject standard errors.

A level of P < 0.05 was considered statistically significant. All the statistical computations were carried out by means of Stata/Special Edition, release 14.2 (StataCorp LP, College Station, Texas, USA).
Results
A 212 eyes of 106 pediatric patients with T1D were recruited to this study. After exclusion of eyes with poor quality OCTA images (12 patients, 24 eyes), 94 diabetic children (188 eyes) and 36 (60 eyes) their age-matched control group were taken to final analysis. The mean age of the diseased participants amounted to 15.3 (± SD = 2.1) years and in the control group—to 13.6 (± SD = 1.8) years (P < 0.001). The 94 study participants had been diagnosed with T1D, on average, 6.4 (± SD = 3.3) years earlier. The color fundus photographs were normal in all subjects and BCVA was 20/20.

The characteristics of the all participants is summarized in Table 1.

Descriptive measures for investigated ophthalmic parameters in both study groups are summarized in Table 2.

None of the abovementioned parameters was statistically significantly different between the groups. Representative OCTA images of control and diabetic subjects demonstrates Fig 1. Among the studied patients with T1D there were assessed codependences regarding the investigated foveal and parafoveal parameters (displayed in Table 2) and selected potential predictors, i.e. patient’s age (years), diabetes duration time (years), age of onset of the disease (years), mean level of glycated hemoglobin (%), and concentration of serum creatinine (mg/dL). The patient’s age statistically significantly did not influence any of the OCT and OCTA parameters. Yet an elevated level of HbA1C tended to reduce the parafovea superficial vessel density (p = 0.039) (Fig 2), and parafoveal thickness (p = 0.003) (Fig 3) and an increased serum creatinine level correlated with the decreased whole deep vessel density (p < 0.001) (Fig 4). The parafovea deep vessel density in the diabetic patients decreased when the serum creatinine level (p = 0.008), age of onset of the disease (p = 0.028), and diabetes duration time (p = 0.014) rose.

Discussion
Several studies over the past 20–30 years show a declining incidence of DR in children with diabetes, from 49% in the early 1990s to 24% in the early 2000s.

Table 1. Characteristics of the all participants.

Investigated trait	Statistical parameter					
	M*	Me†	Q1−Q3 (IQR***)	SD††	SE‡‡	95% CI***
Age (years)	15.3	13.6	13.4−17.3 (3.9)	2.1	0.2	14.9−15.7
DM (+)	15.7	13.0	12.0−15.0 (3.0)	1.8	0.3	13.1−14.2
DM (-)	13.4−17.3 (3.9)	12.0−15.0 (3.0)	14.9−15.7			
Diabetes duration time (years)	6.4	6.2	4.0−8.6 (4.6)	3.3	0.3	5.8−7.1
Age of onset DM (years)	8.9	9.2	6.0−11.4 (5.4)	3.8	0.3	8.2−9.6
Glycated hemoglobin –actual level (%)	8.2	8.0	7.4−8.8 (1.4)	1.3	0.1	7.9−8.5
Glycated hemoglobin –mean level (%)	8.1	8.0	7.2−8.5 (1.3)	1.1	0.1	7.8−8.3
Microalbuminuria –actual level (mg/d)	10.8	9.3	6.7−12.9 (6.2)	7.2	0.8	9.2−12.3
Microalbuminuria –mean level (mg/d)	9.2	6.5	4.0−11.5 (7.5)	8.4	0.9	7.3−11.0
Serum creatinine (mg/dL)	0.69	0.67	0.59−0.78 (0.19)	0.15	0.02	0.66−0.72
Creatinine in the daily collection of urine (mg/d)	1.24	1.02	0.83−1.47 (0.64)	0.84	0.10	1.03−1.45
Systolic blood pressure (mmHg)	113.4	113.0	105.0−123.0 (18.0)	11.2	1.3	110.8−115.9
Diastolic blood pressure (mmHg)	68.4	69.0	60.0−75.0 (15.0)	10.3	1.2	66.1−70.7

(* M–mean; † Me–median; ‡ Q–quartiles; ** IQR–interquartile range; †† SD–standard deviation; ‡‡ SE–standard error; *** CI–confidence interval)

https://doi.org/10.1371/journal.pone.0186479.t001
This result may be due to more effective treatment, the use of the insulin pumps and better education of the affected children and their families. [23,24] In our study group no child had any signs of diabetic retinopathy on fundus examination and color fundus photography. As with adults, the risk of developing retinopathy in youths is time dependent, but it appears to be non-linear before puberty, as this period contributes less to the development of DR. [25] Classification of Diabetic Retinopathy from Fluorescein Angiograms

In this study we performed quantitative analyses of macular vasculature in a group of pubescent subjects with T1D using novel, non-invasive OCTA, which seemed to be an easily accepted method by youths.

Previous studies based on OCTA reported several retinal microvasculature abnormalities in adult diabetic patients, including capillary dropout, tortuous capillary branches, dilated capillary loops, reduced capillary perfusion, microaneurysms, irregular FAZ contour and FAZ enlargement. Severity of these pathologies correlates with severity of the DR. [17–20,26] Choi

Table 2. Descriptive statistics for investigated ophthalmic parameters in the studied patients by presence of type 1 diabetes mellitus.

Investigated trait	Study group	Statistical parameter	Level of statistical significance
Foveal avascular zone, FAZ (mm²)	DM (+)	M = 0.231, Me = 0.218	P = 0.089
	DM (-)	M = 0.240, Me = 0.253	
Whole superficial vessel density, wsVD (%)	DM (+)	M = 51.98, Me = 51.98	P = 0.741
	DM (-)	M = 52.45, Me = 52.92	
Fovea superficial vessel density, fsVD (%)	DM (+)	M = 32.51, Me = 31.50	P = 0.312
	DM (-)	M = 32.48, Me = 32.38	
Parafovea superficial vessel density, psVD(%)	DM (+)	M = 53.80, Me = 53.91	P = 0.986
	DM (-)	M = 54.41, Me = 54.91	
Foveal thickness, FT (μm)	DM (+)	M = 254.5, Me = 253.0	P = 0.825
	DM (-)	M = 249.9, Me = 250.5	
Parafoveal thickness, PFT (μm)	DM (+)	M = 317.5, Me = 317.0	P = 0.951
	DM (-)	M = 318.1, Me = 318.0	
Whole deep vessel density, wdVD (%)	DM (+)	M = 58.57, Me = 58.68	P = 0.273
	DM (-)	M = 58.57, Me = 59.75	
Fovea deep vessel density, fdVD (%)	DM (+)	M = 32.37, Me = 32.15	P = 0.169
	DM (-)	M = 31.75, Me = 31.92	
Parafovea deep vessel density, pdVD (%)	DM (+)	M = 61.28, Me = 61.69	P = 0.863

* M–mean; † Me–median; ‡ Q–quartiles; ** IQR–interquartile range; †† SD–standard deviation; ‡‡ SE–standard error; *** CI–confidence interval

https://doi.org/10.1371/journal.pone.0186479.t002
Fig 1. Representative OCTA images of a control subject and a patient with diabetes. A- superficial retinal plexus (signal strength = 82), B- superficial vessel density map of healthy subject (whole vessel density = 57.59%), C- superficial retinal plexus (signal strength = 76), D- superficial vessel density map of diabetic subject (whole vessel density = 56.40%).

https://doi.org/10.1371/journal.pone.0186479.g001

Fig 2. Correlation between parafovea vessel density and HbA1C level among the patients with T1D (p = 0.039).

https://doi.org/10.1371/journal.pone.0186479.g002
et al reported capillaries and choriocapillaries alteration not only in patients with proliferative DR (PDR), non-proliferative DR (NPDR) but also in subjects without clinical DR. [27] Our study did not confirm these results in pubescent youths. Several studies using FA and OCTA found enlarged FAZ area as an indicator of early ischemia and predictor of DR progression. [28–31] Arend et al reported the FAZ enlargement in patients with diabetes who exhibited reduced visual acuity. [29] In this study all of the examined eyes had good visual acuity, so we did not analyze the correlation. Our results are consistent with Tam et al, who did not find any significant difference for the FAZ diameters between the control and diabetic eyes using adaptive optics scanning laser. [32]

OCTA offers a quantitative, objective assessment of macular vessel density. Several authors reported decreased vessel density in the superficial and deep vascular plexuses in adults with diabetes, regardless of the presence of diabetic retinopathy, as compared to healthy subjects. Vessels density measurements were lower in more severe disease. [32–35] We found no statistically significant correlation between superficial and deep vessel density between diabetic and healthy children. A multifactorial analysis revealed some significantly negative correlations: duration of diabetes, age of onset of the disease and increased serum creatinine level were associated with decreased parafovea deep vessel density. An elevated level of HbA1C was associated with reduced parafovea superficial vessel density and parfoveal thickness in the diabetic subjects. This result is inconsistent with report of Durbin et al, who did not find any correlations between HbA1C and OCTA parameters in diabetic adults.

Concerning the results, this study revealed much less objective features of microvasculature impairment in youths with T1D than other authors reported in diabetic adults. This might confirm better autoregulation and better state of retinal circulation in children with T1D than

Fig 3. Correlation between parafoveal thickness and HbA1c level in patients with T1D (p = 0.03).

https://doi.org/10.1371/journal.pone.0186479.g003
in adults, although puberty significantly increases the risk of complications of DM. As some previous studies showed that early retinal capillary closure might be transient and reversible the strict control seems to be crucial to prevent the loss of vision in youths with T1D. [36] The main limitation of the study is poor representativeness of the sample–all subjects were Caucasian, majority of them came from the central part of Poland, and the lack of differences in this clinical population may not reflect the entire cohort of T1D children across the world.

Conclusions
Vessel density, both in superficial and deep plexuses, and FAZ area are normal in pubescent children with T1D comparing to healthy subjects. An elevated level of HbA1C correlated with reduced psVD and PFT. Longitudinal observation of these young patients is needed to determine if any of these OCTA measurements are predictive of future DR severity.

Supporting information
S1 File. Database.
(XLSX)

Author Contributions
Conceptualization: Joanna Gołębiewska, Mieczysław Szalecki, Wojciech Hautz.
Data curation: Joanna Gołębiewska, Andrzej Olechowski, Marta Baszyńska-Wilk, Artur Groszek.

Formal analysis: Joanna Gołębiewska, Marta Wysocka-Mincewicz, Marta Baszyńska-Wilk, Artur Groszek.

Funding acquisition: Joanna Gołębiewska, Andrzej Olechowski.

Investigation: Joanna Gołębiewska, Andrzej Olechowski, Marta Wysocka-Mincewicz.

Methodology: Joanna Gołębiewska, Marta Wysocka-Mincewicz, Dominik Odrobina, Mieczysław Szalecki, Wojciech Hautz.

Project administration: Marta Wysocka-Mincewicz, Dominik Odrobina.

Supervision: Dominik Odrobina, Mieczysław Szalecki, Wojciech Hautz.

Validation: Dominik Odrobina.

Writing – original draft: Joanna Gołębiewska, Andrzej Olechowski.

References

1. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J. Incidence of Childhood Type 1 Diabetes Worldwide. Diabetes Care 2000; 23:1516–1526 PMID: 11023146

2. Sultan MB, Starita C, Huang K. Epidemiology, risk factors and management of paediatric diabetic retinopathy. Br J Ophthalmol 2012; 96:312–317 https://doi.org/10.1136/bjophthalmol-2011-300169 PMID: 22241926

3. Forlenza GP, Steward MW. Diabetic retinopathy in children. Ped. Endocrinol. Rev. 2013; 10(2): 217–227

4. Geloneck MM, Forbes BJ, Shaffer J, Ying GS, Binenbaum G. Ocular complications in children with diabetes mellitus. Ophthalmology. 2015; 122:2457–2464 https://doi.org/10.1016/j.ophtha.2015.07.010 PMID: 26341461

5. Holl RW, Lang GE, Grabert M, Heinze E, Lang GK, Debatin M. Diabetic retinopathy in pediatric patients with type-1 diabetes: effect of diabetes duration, prepubertal and pubertal onset of diabetes, and metabolic control. J Pediatrics 1998; 132(5):790–794

6. Donaghue KC, Fung AT, Hing S, Fairchild J, King J, Chang A et al. The effect of prepubertal diabetes duration on diabetes. Microvascular complication in early and late adolescence. Diabetes Care 1997; 20(1):77–80 PMID: 9028699

7. Cho YH, Craig ME, Donaghue KC. Puberty as an accelerator for diabetes complications. Pediatr Diabetes. 2014; 15: 18–26.

8. Lueder GT, Silverstein J. Screening for retinopathy in the pediatric patient with type 1 diabetes mellitus. Pediatrics 2005; 116: 270–273 https://doi.org/10.1542/peds.2005-0875 PMID: 15995070

9. Chakrabarti R, Harper CA, Keeffe JE. Diabetic retinopathy management guidelines. Expert Review of Ophthalmology, 2012 (7): 417–439

10. Sultan MB, Starita C, Huang K. Epidemiology, risk factors and management of paediatric diabetic retinopathy. British Journal of Ophthalmology, 2012 (96): 312–317

11. Early Treatment Diabetic Retinopathy Study Research Group. Fluorescein angiographic risk factors for progression. Ophthalmology 1991; 98(5 Suppl): 834–840.

12. Early Treatment Diabetic Retinopathy Study Research Group. Classification of diabetic retinopathy from fluorescein angiograms: ETDRS report number 11. Ophthalmology 1991; 98(5Suppl):807–822.

13. Jia YL, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ et al. Split-spectrum amplitude decorrelation angiography with optical coherence tomography. Opt Express 2012; 20:4710–4725. https://doi.org/10.1364/OE.20.004710 PMID: 22418228

14. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ et al. Relationship between Optical Coherence Tomography Angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 2016; 123: 2498–2508 https://doi.org/10.1016/j.ophtha.2016.08.041 PMID: 27726964
Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ et al. Optical coherence tomography angiography in age-related macular degeneration with optical coherence tomography angiography. Retina 2015; 35: 2204–2211 https://doi.org/10.1097/IAE.0000000000000867 PMID: 26469533

16. Palejwala NV, Jia Y, Gao SS, Liu L, Elaxel CJ, Hwang TS et al. Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography. Retina 2015; 35: 2204–2211 https://doi.org/10.1097/IAE.0000000000000867 PMID: 26469533

17. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 2015; 160:35–44 https://doi.org/10.1016/j.jajo.2015.04.021 PMID: 25896459

18. Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ et al. Optical coherence tomography angiography features of diabetic retinopathy. Retina 2015; 35: 2371–2376 https://doi.org/10.1097/IAE.000000000000716 PMID: 26308529

19. Matsunaga D, Yi J, De Koo L, Ameri H, Puliafito CA, Kashani AH. Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina 2015; 46:796–805 https://doi.org/10.3928/23258160-20150909-03 PMID: 26431294

20. Ting DSW, Tan GSW, Agrawal R, Yanagi Y, Sie NM, Wong CW et al. Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol. 2017; 135(4):306–312 https://doi.org/10.1001/jamaophthalmol.2016.5877 PMID: 28208170

21. Stanga PE, Papayannis A, Tsamis E, Chwieczak K, Stringa F, Jalil A et al. Swept-Source Optical Coherence Tomography Angiography of Paediatric Macular Diseases. Dev Ophthalmol 2016; 56:166–73 https://doi.org/10.1159/000442809 PMID: 27023179

22. Hautz W, Gołębiewska J, Kocyła-Karczmarewicz B. Optical coherence tomography and optical coherence tomography angiography in monitoring Coats’ disease. J Ophthalmol 2017; Volume 2017, Article ID 7849243, 8 pages

23. Downie E, Craig ME, Hing S, Cusumano J, Chan AK, Donaghe KC. Continued reduction in the prevalence of retinopathy in adolescents with type 1 diabetes: role of insulin therapy and glycernic control. Diabetes Care. 2011; (34): 2368–2373

24. Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014; 311:1778–1786 https://doi.org/10.1001/jama.2014.3201 PMID: 24794371

25. Olsen BS, Sjolie AK, Hougaaard P, Johannesen J, Marinelli K, Jacobsen BB et al. The significance of the prepubertal diabetes duration for the development of retinopathy and nephropathy in patients with type1 diabetes. J Diab Comp 2004; 18:160–164

26. Couturier A, Mane V, Bonnin S, Erginay A, Massin P, Gaudric A et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina 2015; 35: 2384–2391 https://doi.org/10.1097/IAE.0000000000000859 PMID: 26469531

27. Choi W, Waheed NK, Mout E, Adhi M, Lee B, De Carlo T et al. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alteration in diabetic patients with and without retinopathy. Retina 2017; 37:11–21 https://doi.org/10.1097/IAE.0000000000001250 PMID: 27557084

28. Mansour AM, Schachat A, Bodlford G, Haymond R. Foveal avascular zone in diabetes mellitus. Retina 1993; 13:125–128. PMID: 8337493

29. Arend O, Wolf S, Jung F, Bertram B, Postgens H, Toonen H et al. Retinal microcirculation in patients with diabetes-mellitus: Dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol 1991; 75:514–518 PMID: 1911651

30. Samara WA, Say EA, Khoo CT, Higgins G, Ferenczy S et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Br J Ophthalmol 2013; 13:125–128. PMID: 8337493

31. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 2015; 35: 2377–2383 https://doi.org/10.1097/IAE.0000000000000849 PMID: 26457396

32. Tam J, Dhamdhere KP, Tiruvedhula P, Lujan BJ, Johnson RN, Bearer MA Jr et al. Subclinical capillary changes in non-proliferative diabetic retinopathy. OptomVis Sci 2012; 89:E692–E703.

33. Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 2015; 35:2353–2363 https://doi.org/10.1097/IAE.0000000000000862 PMID: 26465617

34. Samara WA, Shahlaee A, Adam MK, Khan MA, Chiang A, Maguire JI et al. Quantification of Diabetic Macular Ischemia Using Optical Coherence Tomography Angiography and Its Relationship with Visual

PLOS ONE | https://doi.org/10.1371/journal.pone.0186479 October 20, 2017 10 / 11
Acuity. Ophthalmology. 2017 Feb; 124(2):235–244 https://doi.org/10.1016/j.ophtha.2016.10.008 PMID: 27887743

35. Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative Retinal Optical Coherence Tomography Angiography in Patients With Diabetes Without Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2017 Jan 1; 58(1):190–196 https://doi.org/10.1167/iovs.16-20531 PMID: 28114579

36. Yamana Y, Oka Y, Ohnishi Y, Ishibashi T, Inoguchi T. Reflow of obstructed capillaries in the maculae of humans with diabetic retinopathy, observed by fluorescein angiography. Br J Ophthalmol 1988; 72:660–665. PMID: 3179253