Correlates of alcohol consumption in rural western Kenya: A cross-sectional study

Risa Takahashi1,2*, Calistus Wilunda3, Karani Magutah4, Wanja Mwaura-Tenambergen5, Boniface Wilunda6 and Usaneya Perngparn2

Abstract

Background: Studies on alcohol consumption in rural areas in sub-Saharan Africa are scarce. This study aimed to determine the prevalence and determinants of alcohol consumption in rural western Kenya. The study was conducted as a preliminary stage of a community-based intervention to reduce hazardous alcohol consumption.

Methods: A cross-sectional survey of 478 participants aged 18–65 years residing in Ikolomani Sub-county, Kakamega County was conducted in April 2015. Data were collected using an interviewer-administered questionnaire. We defined current drinkers as participants who consumed any alcoholic product in the preceding one month, and hazardous/high-risk drinkers as participants with an Alcohol Use Disorders Identification Test (AUDIT) score of 8 and above. We summarised data using descriptive statistics and used logistic regression to explore for the correlates of each of current alcohol consumption and hazardous/high-risk alcohol consumption.

Results: The sex-standardized prevalence of current alcohol drinkers was 31.7% (95% confidence interval (CI): 26.8%–37.2%). The prevalence was higher in men (54.6%) than in women (8.9%). The mean AUDIT score among current drinkers was 16.9 (SD 8.2) and the sex-standardized prevalence of hazardous/high-risk alcohol drinking was 28.7% (95% CI: 24.1%–34.0%). Traditional brews were the most commonly consumed types of alcohol and most drinkers took alcohol in the homes of alcohol sellers/brewers. In multivariate analyses, the number of drinkers in the family, the number of friends who are drinkers and the attitude towards alcohol intake were positively associated with current alcohol drinking status, and with hazardous/high-risk alcohol consumption. Women were less likely to be current drinkers and hazardous/high-risk drinkers than were men. Other socio-demographic factors were not significantly associated with alcohol consumption.

Conclusions: The prevalence of alcohol consumption in the study area was higher than the national level estimate of 13.3%. The results suggest that the social environment is the main determinant of alcohol consumption in this setting. These findings imply that interventions to mitigate alcohol consumption in this area will have to target the social networks of the alcohol consumers, change the drinkers’ attitude towards alcohol, and tackle the issue of availability of unlicensed homemade brews.

Keywords: Alcohol use, Hazardous drinking, Substance use, Rural health, Sub-Saharan Africa, Kenya
Background
The third goal of the 17 Sustainable Development Goals (SDGs) focuses on health including mental health and specifies the strengthening, prevention and treatment of the harmful use of alcohol [1]. Harmful alcohol consumption is a major public health problem and a risk factor for poor health globally. Alcohol consumption is the world’s third largest risk factor for disease and disability; in middle-income countries, it is the greatest risk factor for disease, a causal factor in 60 types of diseases and injuries, and a component cause in 200 others [2, 3]. Alcohol abuse is related to the psychological, physical and social health of communities, families and individuals in developed and developing countries [4].

Alcohol-related problems are emerging as major health issues in Africa [5]. Despite this, only a few surveys on alcohol consumption have been conducted in sub-Saharan Africa, especially in rural settings [3, 6, 7] where the economic status, lifestyle, and culture differs from that in urban areas. Most of the available data are disaggregated at the regional level and hence are of little use at the sub-regional/county level: the basic operational level of the health system in Kenya.

In Kenya, reliable data on alcohol consumption and its effects in rural communities are limited, yet consumption of traditional brews is a common practice in many rural parts of the country [5]. Effects of alcohol consumption are emerging in Kenya. A study conducted in Eldoret found that 23.4% of crash-involved patients of motor vehicle accidents were blood alcohol concentration positive and 12.2% were intoxicated [8]. A survey among women in Nairobi found that women who had partners who drink alcohol were significantly more likely to experience both lifetime violence and violence in the preceding year, and those whose partners were intolerable drinkers had a significantly higher reporting of domestic violence compared with those whose husbands drank moderately [9]. Media reports of deaths from consumption of homemade alcohol in Kenya are common [10, 11]. Despite these problems, there is scarce information on the main determinants of alcohol consumption in rural Kenya. Therefore, it is important to understand the prevalence and the main determinants of alcohol drinking to inform the planning of public health intervention strategies to mitigate the problem. This paper presents data on the prevalence and determinants of alcohol consumption in a rural sub-county in western Kenya. The study was conducted as a preliminary stage of an intervention project to reduce hazardous alcohol consumption in the sub-county.

Methods
Study design and setting
This cross-sectional study was conducted in Ikolomani Sub-county, Kakamega County, Western Kenya. Ikolomani Sub-county has a population of approximately 104,669 inhabitants [12], a surface area of 143.6 km², and is divided into 4 wards. Subsistence crop and livestock farming are the mainstay economic activities in the area and the predominant ethnic community is the Luhya. Kakamega County is generally composed of a young population: 58% of the population is aged less than 20 years and 37% is aged 20–65 years. A report based on the 2009 Kenya Population and Housing Census data shows that, of the 47 counties in Kenya, Kakamega contributes the highest proportion (4.8%) to the national poverty, and has a poverty incidence of 49.2% [13]. Despite being mainly rural, it is the 7th most densely populated county (546 people/km²) in the country [13]. The nearest drug and alcohol rehabilitation centre is located about 100 km away in Eldoret town, Uasin Gishu County [14].

Sample size and sampling
The study population for the present study is men and women aged 18–65 years residing in Ikolomani Sub-county. According to the National Authority for the Campaign Against Alcohol and Drug Abuse (NACADA), 10.2% of individuals aged 15–65 years in western Kenya currently use alcohol (i.e. use within last 1 month) [15]. Using this information and an alpha value of 0.05 at 95% confidence interval, the minimum required sample size to estimate the prevalence of alcohol consumption was calculated using the Kish Leslie formula [16] to be 478 after further adjustment for a conservative design effect of 3.4.

Multistage sampling using a modified Expanded Program on Immunisation method [17] was used to select study participants. In the first stage, villages were selected by probability proportionate to size. In the second stage, an equal number of individuals to be surveyed in each village was selected. A location near the centre of each selected village was identified and a random walking direction was determined by spinning a pen. Households lying on the transect from the centre to the border of the village were counted and one of them was chosen at random as a starting point. Proximity selection was then used to select subsequent households as the “next nearest” until the desired sample size for the village was attained [18]. In the case of non-response, data collectors replaced the non-responding household with the next one. This method has been validated for use in sampling study subjects in developing countries where it may be difficult to construct a sampling frame [17, 18]. The approach ensures that the sample is self-weighted; eliminating the need to weight the data during analysis. Thirty villages (clusters) were selected. This is the minimum number of clusters that should be selected through this method to ensure sufficient spread of the sample and reduced inter-village variability [18]. Given the sample size of 478, 16 participants were recruited from each village. In each household, all members fulfilling the
had a high internal consistency (reliability), with a
attitude towards alcohol intake. The attitude tool
explained 35.5% of the variance, was used to represent
components were extracted and the first, which ex-
alcohol intake and its effects (Additional file 1). Three
published studies, which assessed attitude towards
attitude towards alcohol was derived through PCA of
which explained 25.6% of the variance, was used to
household assets, access to utilities and type of housing
–
obtained through principal component analysis (PCA) of
and alcohol attitude score (tertile). The wealth index was
–
preparation alcohol at home (yes, no), number of drinkers in
living together, not married), use tobacco (yes, no), sell/
Catholic, protestant, Muslim), marital status (married/
3, 4–6, >6), religion (Roman
64 years [25].
To assess the determinants of current alcohol use and
hazardous/high-risk alcohol consumption, we performed
univariate and multivariate analyses using logistic regres-
sion. Variables with \(p < 0.1 \) in univariate analyses were
incorporated in multivariate analysis. We included all subjects
in descriptive and univariate analyses but in multivariate
analysis, we excluded 19 (4%) subjects who had missing
data for either wealth index or attitude score. We report
unadjusted and adjusted odds ratios with 95% confidence
intervals (CIs) and \(p \) values. We considered \(p \) values of
less than 0.05 to be statistically significant. All analyses
were performed in Stata 12 using survey commands to
account for clustering at the village level.

Results
Characteristics of participants and the prevalence of
current drinking and hazardous/high-risk drinking
The survey included 478 eligible participants, 280 (58.6%) of whom were female, with a mean age of
41 years (Table 1). Only 36.8% of the participants had
at least secondary level education, 14% were current
tobacco users, 11.9% were from households that sell
prepare alcohol at home, 46.4% had at least one
friend who drinks alcohol, and 55.6% had at least one friend who drinks alcohol. The proportion of
current tobacco users was higher among men than
among women. Men were also more likely to be from
households where alcohol was prepared/sold, to have
a higher number of drinking friends and family mem-
bers, and to have a positive attitude towards alcohol
than women were. There was little difference in the
distribution of men and women by age group, educa-
tion, wealth index tertile, household size, religion,
marital status. The prevalence of both current alcohol
consumption and hazardous/high-risk drinking was
substantially higher in men than in women (54.6% vs
8.9% and 51.0% vs 6.4%, respectively).

Statistical analysis
Data were double entered into EpiData (EpiData Association, Odense Denmark) and validated. We used
descriptive statistics to summarise the characteristics of
participants, the usual place of drinking and types of
alcohol consumed. Because our sample contained a
disproportionately higher number of women than men,
which is contrary to the national population structure,
we calculated sex standardised prevalence of current
alcohol drinkers and of hazardous/high-risk drinkers.
We performed the standardisation using the direct
method based on the Kenyan population structure,
which consists of about 50% men and 50% women in
the age group 15–64 years [25].
Table 2 summarises the prevalence of alcohol consumption and hazardous/high-risk drinking by background characteristics according to sex. For both men and women, the prevalence of alcohol consumption and hazardous/high-risk drinking was highest in those with no education, Roman Catholics, current tobacco users, those from households where alcohol is prepared/sold, those with >5 friends who drink, and those with a positive attitude towards alcohol. The sex-standardized prevalence of current alcohol consumption was 31.7% (95% CI: 26.8%–37.2%) while that of hazardous/high risk drinking was 28.7% (95% CI: 24.1%–34.0%). The mean AUDIT score was similar among those who had ever consumed alcohol and the current drinkers: 16.7 (SD 8.1) and 16.9 (SD 8.2), respectively.

Usual drinking place and types of alcohol consumed
The most common drinking place for both male (n = 108) and female (n = 25) drinkers was the alcohol seller’s home [67.6% and 44.0%, respectively (Table 3)]. However, the second most common usual drinking place was own home (32.0%) among women and bar (18.5%) among men. There were no significant differences between men and women in types of alcohol consumed, except for whisky, which was more likely to be consumed by men. The most frequently consumed type of alcohol were homemade brews called chang‘aa and busaa. Most male drinkers (70.4%) consumed chang‘aa whereas most female drinkers consumed busaa (76.0%).

Determinants of current alcohol consumption
In unadjusted analysis (Table 4), only education, household size, and marital status were not statistically significantly associated with alcohol intake. In adjusted analysis, sex, the number of drinkers in the family, the number of friends who drink, and attitude towards alcohol showed statistically significant associations with alcohol drinking (Table 4). The number of drinkers in the family had the strongest effect on current alcohol consumption followed by attitude score and the number of friends who drink alcohol. Participants with more than one drinker in the family had more than a 35-fold increase in the odds of alcohol intake compared with those who did not have any drinker in the family (OR = 35.11, 95% CI: 10.30–111.75). Those with a positive attitude towards alcohol intake had about eight times higher odds of being alcohol drinkers compared with those with a poor attitude (OR = 7.73, 95% CI: 2.53–23.63).

Determinants of hazardous/high-risk alcohol use
In unadjusted analysis (Table 5), only education, wealth index, and marital status were not significantly associated with hazardous/high-risk alcohol drinking. After adjustment for other factors, sex, the number of drinkers in the family, the number of friends who drink and attitude towards alcohol consumption were associated with
Table 2: The prevalence of current alcohol consumption and hazardous/harmful alcohol consumption by background characteristics

Characteristics	Current drinker	Hazardous/harmful drinker		
	Male	Female	Male	Female
	[n (%), n = 108]	[n (%), n = 25]	[n (%), n = 101]	[n (%), n = 18]
Age group				
18–29	15 (30.0)	3 (4.1)	12 (24.0)	2 (2.7)
30–49	45 (64.3)	12 (10.3)	42 (60.0)	8 (6.9)
50–65	48 (61.5)	10 (11.0)	47 (60.3)	8 (8.8)
Education				
None	17 (77.3)	7 (16.3)	17 (77.3)	6 (14.0)
Primary	49 (53.9)	14 (9.6)	49 (53.9)	9 (6.2)
Secondary/higher	42 (49.4)	4 (4.4)	35 (41.2)	3 (3.3)
Wealth index tertile				
Rich	27 (43.6)	3 (3.1)	21 (33.9)	1 (1.0)
Middle	32 (50.8)	11 (12.0)	32 (50.8)	7 (7.6)
Poor	45 (66.2)	10 (11.4)	44 (64.7)	9 (10.2)
Number of household members				
> 6	37 (56.1)	12 (12.9)	34 (51.5)	8 (6.6)
4–6	55 (59.1)	9 (6.2)	53 (57.0)	7 (4.8)
1–3	16 (41.0)	4 (9.5)	14 (35.9)	3 (7.1)
Religion				
Other	54 (47.0)	6 (3.3)	47 (40.9)	4 (2.2)
Roman Catholic	53 (64.6)	19 (19.2)	53 (64.6)	14 (14.1)
Marital status				
Married/living together	83 (58.5)	13 (6.4)	78 (54.9)	6 (3.0)
Not married	25 (44.7)	12 (15.4)	23 (41.1)	12 (15.4)
Uses tobacco				
No	67 (46.2)	21 (8.0)	62 (42.5)	15 (5.7)
Yes	41 (77.4)	4 (25.0)	39 (75.0)	3 (20.0)
Sell/prepare alcohol at home				
No	80 (47.6)	17 (6.7)	71 (42.3)	13 (5.1)
Yes	28 (93.3)	8 (39.6)	30 (100)	5 (18.5)
Number of drinkers in family				
0	9 (10.8)	2 (1.2)	9 (10.8)	1 (0.6)
1	51 (86.4)	13 (17.8)	45 (76.3)	8 (11.0)
> 1	48 (85.7)	10 (29.4)	47 (83.9)	9 (26.5)
Number of friends who drink				
0	5 (10.6)	4 (2.4)	5 (10.6)	3 (1.8)
≤ 5	39 (59.1)	13 (15.1)	33 (50.0)	9 (20.7)
> 5	64 (75.3)	8 (27.6)	63 (74.1)	6 (20.7)
Attitude score tertile				
1 (poor attitude)	10 (17.3)	2 (2.1)	9 (15.5)	3 (3.1)
2	28 (53.9)	9 (8.7)	24 (46.2)	6 (5.8)
3 (good attitude)	67 (79.8)	13 (8.8)	65 (77.4)	8 (11.1)
hazardous/high-risk alcohol drinking (Table 5). The number of drinkers in the family had the strongest association with hazardous/high-risk alcohol drinking, with the odds of hazardous/high-risk alcohol consumption increasing with the increasing number of drinkers in the family members, the number of friends who drink alcohol, and alcohol altitude score. The determinants of hazardous/high-risk alcohol intake were similar to those of current alcohol consumption.

Discussion
This study provides a snapshot of the prevalence and correlates of alcohol consumption in Kakamega County for the first time. The sex standardised prevalence of current alcohol intake was 31.7%, which is much higher than the official 2012 national level of 13.3% [26] and the prevalence of 9.2% reported in the neighbouring Kisumu County [1]. Factors that could explain these discrepancies include potential underreporting in previous surveys conducted by government agencies (consumption of some traditional brews used to be illegal for a long time [27]) and the true regional variations in the prevalence of alcohol consumption in Kenya. The reported prevalence is, however, similar to that in the neighbouring country of Uganda (28.6%) [7]; the second highest alcohol consumer in Africa [25]. This is not surprising given that Western Kenya borders Eastern Uganda and the residents in the bordering areas have similar ethnic and cultural backgrounds including consumption of traditional alcohol.

The most common types of alcohol consumed in the study area were homemade traditional brews namely, chang’aa and busaa, which explains why the usual drinking place was the seller’s home. Chang’aa is a high alcohol content spirit-like clear drink made by fermenting a mixture of corn/sorghum/millet and sugar for about a week followed by distillation whereas busaa is a malt liquor made from fermenting corn flour and sorghum/millet over a shorter period of time (typically two days) [28]. These traditional brews are not standardised, but some studies have estimated their alcohol content to range from 15.3%–34% for chang’aa and 3.9%–5.4% for busaa [28, 29]. For many years, the Chang’aa Prohibition Act of 1980 [27] prohibited the production, supply, possession, and consumption of chang’aa, but not of busaa, in Kenya. The Alcoholic Drinks Control Act of 2010 [30] and the Alcoholic Drinks Control Amendment Bill of 2013 [31] repealed the Chang’aa Prohibition Act and focused on production, sale, and licensing rather than on illegalising traditional brews. Thus, traditional brews are legal if the producer is licensed. However, it is difficult for traditional brewers to meet the high standards for licensing as stipulated in the law. The traditional brews are usually not sold in bars or in shops but in people’s homes. One village could contain 3 to 5 such drinking places and this, coupled with affordable prices, ensures that the brews are easily accessible. These results differ from those of another study conducted in a rural setting in eastern Kenya which reported that the most commonly consumed alcohol type was bottled beer (64.8%) followed by local brews [3]. However, this study by Kinoti and colleagues was based on a smaller (N = 217) non-random sample, and hence it is subject to a greater degree of random error and selection bias. The price of a half-litre bottle of beer starts from 1.3 US$ (130 Ksh) which is quite expensive for most villagers, but the price of a cup of local brew is only about 0.5 US$; which highlights the issue of affordability of local brews.

The finding of a gender gap in alcohol consumption is similar to what other studies from East Africa have reported [1, 7]. The reasons for the prevalence gap between men and women might be cultural, for instance, gender-based distinctions between male and female based on the traditional system of patriarchy in the community. A qualitative study in the neighbouring Uganda found that alcohol intake among men is associated with masculinity, social dependence and lesser financial empowerment among women [32]. Men have easier access to money than women do. Among rural women, alcohol intake is associated with defiance of the feminine ideals of domesticity [6]. A qualitative study might help to elicit other factors for the gender discrepancy in alcohol intake in the current setting.

Although based on small numbers, we noted some differences in the drinking behaviours between men and women. The proportion of individuals who drank at home was higher among women than among male drinkers. This may be because women in this setting are more likely to be uncomfortable to drink in public places because drinking among women is perceived to be socially

| Table 3 Usual place of drinking and type of alcohol consumed |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | [n (%), | [n (%), | | | |
| | n = 108] | n = 25] | | | |
| Usual place of drinking | 0.008 | | | |
| Chang’aa/busaa seller’s home | 73 (67.6) | 11 (44.0) | | |
| Pub/Bar | 20 (18.5) | 3 (12.0) | | |
| Respondent’s home | 12 (11.1) | 8 (32.0) | | |
| Friends home | 3 (2.8) | 3 (12.0) | | |
| Types of alcohol consumed** | | | | |
| Chang’aa | 76 (70.4) | 14 (56.0) | 0.235 | |
| Busaa | 69 (63.0) | 19 (76.0) | 0.349 | |
| Beer | 46 (42.6) | 6 (24.0) | 0.112 | |
| Whiskey | 24 (22.2) | 1 (4.0) | 0.045 | |
| Wine | 10 (9.3) | 0 (0.0) | 0.207 | |

**Fisher’s exact test
**The numbers do not add up to the total because multiple responses were allowed
Table 4 Prevalence of current alcohol use and its relationship with socio-demographic variables

Characteristics	Number of drinkers	Unadjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value
Age group					
18–29	18	1		1	
30–49	56	2.55 (1.46–4.46)	0.002	2.29 (0.78–6.71)	0.129
> 49	59	3.02 (1.74–5.24)	<0.001	1.89 (0.68–5.23)	0.213
Sex					
Male	108	1		1	
Female	25	0.08 (0.05–0.15)	<0.001	0.07 (0.02–0.18)	<0.001
Education					
None	24	1			
Primary	63	0.62 (0.33–1.15)	0.127		
Secondary/higher	46	0.59 (0.30–1.18)	0.133		
Wealth index tertile					
Rich	30	1		1	
Middle	43	1.71 (0.95–3.08)	0.074	1.45 (0.49–4.29)	0.492
Poor	55	2.42 (1.31–4.46)	0.006	2.12 (0.78–5.72)	0.134
Household size					
> 6	49	1			
4–6	64	0.81 (0.50–1.33)	0.400		
1–3	20	0.74 (0.40–1.37)	0.324		
Religion					
Other*	60				
Catholic	72	2.64 (1.63–4.28)	<0.001	2.01 (0.92–4.39)	0.079
Marital status					
Married/living together	96	1			
Not married	37	1.00 (0.60–1.64)	0.986		
Uses tobacco (478)					
No	88	1		1	
Yes	45	6.92 (3.70–12.93)	<0.001	2.23 (0.63–7.68)	0.209
Sell/prepare alcohol at home					
No	36	1		1	
Yes	97	5.79 (3.28–10.20)	<0.001	1.72 (0.54–5.55)	0.351
Number of drinkers in family					
0	11	1		1	
1	64	20.64 (8.10–52.56)	<0.001	19.91 (6.88–57.65)	<0.001
> 1	58	40.37 (16.38–99.50)	<0.001	35.11 (10.30–119.75)	<0.001
Number of friends who drink					
0	9	1		1	
≤ 5	52	11.50 (5.99–22.09)	<0.001	3.68 (1.61–8.41)	0.003
> 5	72	38.67 (18.98–78.76)	<0.001	5.49 (1.66–18.22)	0.007
Attitude score tertile					
1 (poor attitude)	12	1		1	
2	37	3.71 (1.64–8.37)	0.002	3.66 (1.16–11.51)	0.027
3 (good attitude)	80	12.39 (5.38–28.50)	<0.001	7.73 (2.53–23.63)	0.001

*The entire sample included 113 Protestants and only 2 Muslims
Table 5 Prevalence of hazardous alcohol use and its relationship with socio-demographic variables

Characteristics	Number of drinkers	Unadjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value
Age group					
18–29	14	1	1		
30–49	49	2.83 (1.54–5.20)	0.001	2.67 (0.82–8.67)	0.100
> 49	56	3.76 (1.97–7.17)	<0.001	1.97 (0.68–5.81)	0.213
Sex					
Male	101	1	1		
Female	18	0.07 (0.03–0.13)	<0.001	0.08 (0.02–0.18)	<0.001
Education					
None	23	1	1		
Primary	58	0.60 (0.31–1.13)	0.110	0.33 (0.08–1.37)	0.123
Secondary/higher	38	0.49 (0.23–1.06)	0.068	0.49 (0.10–2.41)	0.371
Wealth index tertile					
Rich	22	1	1		
Middle	39	2.18 (1.15–4.11)	0.018	1.51 (0.53–4.31)	0.431
Poor	53	3.33 (1.64–6.76)	0.001	2.06 (0.73–5.78)	0.165
Household size					
> 6	42	1	1		
4–6	60	0.92 (0.58–1.45)	0.701		
1–3	17	0.73 (0.40–1.33)	0.299		
Religion					
Other*	51	1	1		
Catholic	67	2.91 (1.76–4.79)	<0.001	1.89 (0.86–4.17)	0.113
Marital status					
Married/living together	84	1	1		
Not married	35	1.10 (0.71–1.70)	0.650		
Uses tobacco					
No	76	1	1		
Yes	43	7.32 (4.03–13.31)	<0.001	2.26 (0.63–8.08)	0.205
Sell/prepare alcohol at home					
No	84	1	1		
Yes	35	6.44 (3.73–11.12)	<0.001	1.70 (0.54–5.38)	0.359
Number of drinkers in family					
0	10	1	1		
1	53	16.13 (6.03–43.13)	<0.001	19.62 (6.39–60.23)	<0.001
> 1	56	40.35 (5.65–104.05)	<0.001	37.95 (9.86–146.02)	<0.001
Number of friends who drink					
0	8	1	1		
1	42	9.59 (4.19–21.98)	<0.001	4.33 (1.63–11.53)	0.004
> 5	69	39.10 (16.90–90.44)	<0.001	6.47 (1.72–24.38)	0.007
Attitude score tertile					
1 (poor attitude)	12	1	1		
2	30	2.82 (1.35–5.87)	0.007	3.18 (1.04–9.75)	0.043
3 (good attitude)	73	10.27 (4.67–22.59)	<0.001	7.03 (2.37–20.82)	0.001

The entire sample included 113 Protestants and only 2 Muslims
undesirable. The most popular drink among women was busaa while among men it was chang’aa. Women prefer busaa over chang’aa because of the former’s lower alcohol content [28] and sweeter flavour.

The findings of this study show that having family members and friends who drink is strongly associated with current alcohol drinking status and hazardous/high-risk alcohol drinking. Possible explanation for this can be the influence of peer pressure and easier access to alcohol because friends/family members may buy alcohol for each other. The business of brewing and selling local brews is common in the study setting because of the prevailing poverty situation and the lack of employment opportunities to meet the costs of living including school fees for children. Although these businesses are illegal, they continue to flourish due to limited alternative economic opportunities and probably weaknesses in law enforcement [33].

This study has some limitations. First, some participants, especially women, might have underreported their alcohol consumption due to social desirability and stigma associated with alcohol consumption. Alcohol use by women is a taboo in the study community and women who drink alcohol are held in low esteem. Moreover, as mentioned above, consumption of chang’aa was for a long time illegal, which may further affect reporting by both genders. To minimise this bias, data collectors were trained to reassure respondents and to ensure confidentiality before asking questions. Second, the sample size was insufficient to allow precise assessment of multiple correlates of alcohol intake. This may explain why some of the estimates have wider confidence intervals. Third, the measurement of alcohol units in this setting was a challenge because it is difficult to standardise the alcohol content of homemade brews and to estimate the amount consumed. We used the data from a study conducted in 2010 that estimated the alcohol content of traditional brews in western Kenya to be 34% for chang’aa and 4% for busaa [28]. We also asked participants to estimate their alcohol intake based on measurement containers commonly used by alcohol sellers. Finally, the number of adverse life events, social support, and severity of psychological distress may be associated with hazardous alcohol use, but the present study did not collect data on these variables. Nonetheless, a previous study in Kenya did not find any significant association between these variables and current alcohol intake [6]. Finally, given that this study was conducted in only one sub-county, generalisability of the findings may be limited to other regions with similar socio-cultural and economic profile as the study sub-county.

Conclusions
In this study conducted in rural western Kenya, we found a prevalence of alcohol intake that is higher than the regional and national levels. Drinkers mainly consumed homemade brews that are cheaper, culturally appropriate and easily accessible. The results on the determinants of alcohol intake suggest that the social environment, rather than an individual’s socio-demographic characteristics, is the main determinant of alcohol consumption in this setting. Although this observation could be due to reverse causation, the findings imply that interventions to mitigate alcohol consumption in this area will have to target the social networks of the alcohol consumers, change the drinkers’ attitude towards alcohol, and tackle the issue of availability of unlicensed traditional brews. Given the resource constraints to tackle the problem of alcoholism in the study area, innovative community-based approaches using locally available resources to mitigate the problem of alcoholism should be piloted and implemented in this and similar contexts. Moreover, the poor economic status in the study area should be addressed and alternative sources of income for traditional alcohol brewers and sellers should be created.

Additional file

Additional file 1: Attitude towards drinking alcohol and AUDIT tools.

Availability of data and materials
The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Acknowledgements
Not applicable.

Funding
This study was supported by JSPS KAKENHI, Grant-in-Aid for Young Scientists (B) Grant Number 26861906 held by RT.

Authors’ contributions
Conceived and designed the study: RT UP; Collected data: RT CW BW; Analysed data RT CW; Wrote the first draft of the manuscript RT. All authors contributed to drafting and revising the manuscript. All authors read and approved the final version.

Ethics approval and consent to participate
The Institutional Research and Ethics Committee of Moi University College of Health Sciences and Moi Teaching & Referral Hospital and the Scientific and Ethics Review Committee of Kenya Methodist University approved the study protocol and tools. Literate participants provided a written consent while those who were not able to write provided a verbal consent in the presence of a witness. This was done after data collectors had introduced to the participants the purpose of the study and informed them about their right to interrupt the interview at any time or to decline to be interviewed without any future prejudice. For participants with AUDIT score of >19 and were willing to undergo rehabilitation, data collectors provided them with information about the nearest rehabilitation centre.

Consent for publication
Not applicable.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The Institutional Research and Ethics Committee of Moi University College of Health Sciences and Moi Teaching & Referral Hospital and the Scientific and Ethics Review Committee of Kenya Methodist University approved the study protocol and tools. Literate participants provided a written consent while those who were not able to write provided a verbal consent in the presence of a witness. This was done after data collectors had introduced to the participants the purpose of the study and informed them about their right to interrupt the interview at any time or to decline to be interviewed without any future prejudice. For participants with AUDIT score of >19 and were willing to undergo rehabilitation, data collectors provided them with information about the nearest rehabilitation centre.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Nursing Science, Faculty of Health Care, Tenri Health Care University, 80-1 Bessho-cho, Tenri City, Nara 632-0018, Japan. 2College of Public Health Sciences, Chulalongkorn University, Chulalongkorn soi 62, Phayathai Rd, Bangkok 10330, Thailand. 3Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshida Konoe-cho, Sakyoku, Kyoto 606-8501, Japan. 4Department of Medical Physiology, Mji University, P.O. Box 4608-30100, Eldoret, Kenya. 5Department of Health Systems Management, Kenya Methodist University, P.O. Box 45240-00100, Nairobi, Kenya. 6United Nations Office on Drugs and Crime, Regional Office for Eastern Africa, P.O. Box 30218-00100, Nairobi, Kenya.

Received: 7 December 2016 Accepted: 3 May 2017

Published online: 10 May 2017

References
1. Jenkins R, Othieno C, Ongeri L, Kima D, Sifuna P, Kingora J, Omollo R, Oguta B. Alcohol consumption and hazardous drinking in western Kenya—a household survey in a health and demographic surveillance site. BMC psychiatry. 2015;15:25.
2. WHO. Global status report on alcohol and health. Geneva: World Health Organization; 2011.
3. Corraro G, Bagnard V, Zambon A, La Vecchia C. A meta-analysis of alcohol consumption and the risk of 15 diseases. Prev Med. 2004;38(5):613–9.
4. WHO. Global strategy to reduce the harmful use of alcohol. Geneva: World Health Organization; 2010.
5. Ferreira-Borges C, Rehm J, Dias S, Babor T, Parry CD. The impact of alcohol consumption on African people in 2012: an analysis of burden of disease. Tropical medicine & international health : TM & IH. 2016;21(1):52–60.
6. Teferra S, Medhin G, Selamu M, Bhana A, Hanlon C, Fekadu A. Hazardous alcohol use and associated factors in a rural Ethiopian district: a cross-sectional community survey. BMC Public Health. 2016;16:218.
7. Kabwama SN, Ndyanyabangi S, Mutungi G, Wesonga R, Bahendeka SK, Guwatudde D. Alcohol use among adults in Uganda: findings from the countrywide non-communicable diseases risk factor cross-sectional survey. Glob Health Action. 2016;9:31302.
8. Odero W. Alcohol-related road traffic injuries in Eldoret, Kenya. East Afr Med J. 1998;75(2):708–11.
9. Gichangi P. Domestic violence in Kenya: report of a baseline survey among women in Nairobi. Kenya FIDA Kenya; 2002.
10. Illegal local brew kills 14 in Kenya. http://edition.cnn.com/2010/WORLD/africa/07/27/kenya.brew.deaths/. Accessed 17 Apr 2016.
11. Illegal alcohol kills at least 33 people in Kenya. http://www.reuters.com/article/us-kenya-alcohol-casualties-idUSBREA450GK20140506. Accessed 17 Apr 2016.
12. Drummond C, Deluca P, Coutlou S, Bland M, Cassidy P, Crawford M, Dale V, Gilvray E, Godfrey C, Heather N, et al. The effectiveness of alcohol screening and brief intervention in emergency departments: a multicentre pragmatic cluster randomized controlled trial. PLoS One. 2014;9(6):e94463.
13. Wiesmann U, Kiteme B, Mwangi Z. Socio-economic atlas of Kenya: depicting the National Population Census by county and sub-location. Kenya National Bureau of Statistics, Centre for Training and Integrated Research in ASAL Development, Centre for Development and Environment: Nairobi, Nanyuki, Bungoma, 2016.
14. Rehabilitation centers, http://nacada.go.ke/?id. Accessed 20 Apr 2016.
15. NACADA. Rapid situation assessment of the status of drug and substance abuse in Kenya, 2012. Nairobi: NACADA; 2012.
16. Kish L. Survey sampling. New York: John Wiley and Sons, Inc.; 1965.
17. Bostoen K, Chalabi Z. Optimization of household survey sampling without sample frames. Int J Epidemiol. 2006;35(3):751–5.
18. Milligan P, Nje A, Bennett S. Comparison of two cluster sampling methods for health surveys in developing countries. Int J Epidemiol. 2004;33(3):469–76.
19. Saunders JB, Aasland OG, Babor TF, de Fuente JR, Grant M. Development of the alcohol use disorders Identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption–II. Addiction. 1993(88)(6):791–803.
20. WHO. Audit the alcohol use disorders Identification test. Geneva: WHO; 2001.
21. United Nations. Transforming our world: the 2030 agenda for sustainable Development. New York: United Nations; 2015.
22. Conigrave KM, Hall WD, Saunders JB. The AUDIT questionnaire: choosing a cut-off score. Alcohol use disorder Identification test. Addiction. 1995;90(10): 1349–56.
23. Allen JP, Litten RZ, Fertig JB, Babor T. A review of research on the alcohol use disorders Identification test (AUDIT). Alcohol Clin Exp Res. 1997;21(4):613–9.
24. WHO. Global strategy to reduce the harmful use of alcohol. Geneva: WHO; 2012.
25. WHO. Global status report on alcohol and health. 2014. Geneva: WHO; 2014.
26. Drug Facts. http://nacada.go.ke/?page_id=309. Accessed 27 Apr 2016.
27. National Council for Law Reporting: The Changaa Prohibition Act, Cap 70. Nairobi: National Council for Law Reporting; 1980.
28. Papas RK, Sidle JE, Wamalwa ES, Okumu TO, Goulet JL, Maisto SA, Braithwaite RS, Justice AC. Estimating alcohol content of traditional brew in western Kenya using culturally relevant methods: the case for cost over volume. AIDS Behav. 2010;14(4):836–44.
29. Johnstone MB, Peter KK. Production and consumption of non-standardised alcohol in Kenya: with whom does the buck stop. Global Journal of Arts, Humanities and Social Sciences. 2015;3(10):8–16.
30. National Council for Law Reporting: The Alcoholic Drinks Control Act , 2010. Nairobi: National Council for Law Reporting; 2012.
31. Republic of Kenya. The alcoholic drinks Control (amendment) bill. Nairobi: Government Printer; 2013.
32. Rathod SD, Nadkarni A, Bhana A, Shidhaye R. Epidemiological features of alcohol use in rural India: a population-based cross-sectional study. BMJ Open. 2015;5(12):e009802.
33. Kenya’s illegal alcohol industry. http://news.bbc.co.uk/2/hi/africa/1039582.stm. Accessed 16 Sept 2016.