Modes of the Na Channel Blocking Action of Pilsicainide, a New Antiarrhythmic Agent, in Cardiac Cells

Yoshikazu Hattori and Norio Inomata*

Laboratory of Molecular Pharmacology, Suntory Institute for Biomedical Research, Shimamoto-cho, Mishima-gun, Osaka 618, Japan

Received October 14, 1991 Accepted December 24, 1991

ABSTRACT — Using a whole cell clamp technique, the blockade of sodium currents (INa) by pilsicainide, a new antiarrhythmic agent, applied either intracellularly or extracellularly, was studied in single myocytes isolated from guinea pig right ventricle. Pilsicainide applied extracellularly inhibited the peak amplitude of INa in concentration- (from 10^-5 M to 10^-4 M) and rate- (from 0.5 Hz to 3.0 Hz) dependent manners. The onset rate of the blockade in INa was almost constant, independent of frequency of stimulus, but higher at high concentration of pilsicainide. The time constant in the recovery phase from INa inactivation remained almost constant (65 to 75 msec) in the range of concentrations used. Similar results were obtained by intracellular application of 10^-3 M pilsicainide. Pilsicainide applied intracellularly inhibited INa in a rate-dependent manner. The blocking potency of internally applied pilsicainide almost corresponded to that of external 10^-5 M pilsicainide. The onset rate of INa inactivation (from 0.098/pulse to 0.130/pulse) and the recovery time constant (77 msec) was similar to those of external 10^-5 M pilsicainide. These results suggest that pilsicainide, irrespective of intra- or extracellular application, shares a common binding site to block INa in cardiac myocytes.

Na channel blocking action represents an important mode of action for antiarrhythmic agents. Antiarrhythmic agents of lidocaine derivatives are thought to block Na channels in charged and/or non-charged form at physiological pH (1). It is predicted that a charged molecule would block Na channels through a process different from that of a non-charged one. Non-charged molecules seem to reach their binding sites in the channel by dissolving in the lipid phase of the neuronal membrane (1, 2). In contrast, charged molecules reach their binding sites from the inner side of the Na channels via a hydrophilic pathway (2, 3), which is available when the gates of the channels are open (3).

Recently, Carmeliet et al. (4) have reported that a local anesthetic, penticaainide, which is positively charged at pH 7.4 (pKa = 10.0), exerted a block of cardiac Na channels when it was applied to the outer side of the cardiac cell membrane, while no significant block was observed by application of the drug to the inner side of the S-DPI 201-106 (which is known to slow Na channel inactivation) treated cardiac cell membrane. On the other hand, these authors found that penticaainide reduced INa by acting from the outside as well as from the inside.
cytoplasmic side of the Na channels in untreated guinea pig ventricular myocytes (5). On the basis of these observations, they suggested that S-DPI 201-106 prohibited the binding of penticainide from the inside. Therefore, whether the charged molecule blocks Na channels by acting from the outside or from the inner side of the myocyte membrane, unlike its blocking effect in neurons, remains unclear.

In a recent study with a permanently charged lidocaine-derivative, QX-314, Alpert et al. (6) has shown that QX-314 blocked the Na current not only by its intracellular application, but also by its extracellular application in a single cardiac Purkinje fiber. QX-314 caused a first pulse block (diminution in peak INa in the first depolarizing pulse) when applied to the inside, while it produced a use-dependent block when applied outside. Based on these findings, they have proposed the presence of a second binding site for local anesthetics in the Na channels of cardiac tissue, unlike noncardiac tissue.

Pilsicainide, N-(2,6-dimethylphenyl)-8-pyrrolizidine-acetamide hydrochloride hemihydrate (SUN 1165), is a newly developed antiarrhythmic agent with Na channel-blocking action (7-11). The compound is characterized by its highly basic pyrrolizidine ring structure (12, 13); and because of its high pKa (10.5), most of the pilsicainide molecules exist in the charged form at physiological pH (14). The aim of this study is to determine whether pilsicainide, a charged molecule, blocks Na channels from the inside and/or the outside of the cardiac cell membrane by using a whole cell clamp technique. The possible presence of a second binding site for pilsicainide was also investigated by analyzing the kinetics of its binding to and dissociation from the binding site.

MATERIALS AND METHODS

Preparation

Experiments were carried out on right ventricular cells of the guinea pig. The cells were dispersed by an enzymatic procedure similar to that reported previously (15). Male guinea pigs weighing 300–500 g were anesthetized with sodium pentobarbital (30 mg/kg) applied intraperitoneally. The aorta was cannulated, and the heart was excised and perfused through the aorta with Tyrode's solution (pH 7.4) containing 136.5 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 0.53 mM MgCl2, 0.33 mM NaH2PO4, 11.9 mM NaHCO3, 5.5 mM glucose and 5.0 mM HEPES. The heart was then perfused with "nominal" Ca2+-free Tyrode's solution until the spontaneous contractions stopped. Thereafter, the heart was perfused with Ca2+-free Tyrode's solution containing 0.4 mg/ml collagenase (Sigma, Type I) for about 45 min followed by wash-out with a high K+-storage solution containing 85 mM KCl, 30 mM K2HPO4, 5 mM MgSO4, 5 mM Na3ATP, 5 mM creatine, 20 mM taurine, 20 mM glucose and 0.2 mM EGTA (pH was adjusted to 7.4). The temperature of the perfusate was kept at 37°C during the coronary perfusion. The right ventricle was dispersed in the storage solution with forceps, and dispersed single cells were kept in a storage solution at room temperature (24–26°C) for later experiments.

Electrical recording

The sodium current (INa) in the isolated single ventricular cells was measured by using a single suction pipette which enabled intracellular perfusion and a whole-cell clamp (11, 16). Experiments were carried out with viable rod-shaped myocytes using the concentration-clamp technique (17). Briefly, a single myocyte was aspirated onto the tip of a suction pipette (inner diameter of 2 to 3 μm at the tip) and dialyzed intracellularly with the internal solution (pH 7.4) containing 130.0 mM KOH, 130.0 mM L-aspartate, 2.5 mM KH2PO4, 2.0 mM Na3ATP, 5.5 mM glucose, 10.0 mM HEPES and 5.0 mM EGTA. The tip of the suction pipette with attached cell was inserted into a plastic tube through a circular hole. The lower end of this tube was directly exposed to the external Tyrode's solution (pH 7.4) containing 136.5 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 0.53 mM MgCl2, 0.33 mM
NaH₂PO₄, 11.9 mM NaHCO₃, 5.5 mM glucose and 5.0 mM HEPES. The external Tyrode's solution could be exchanged around a ventricular myocyte with a time constant of 2 msec by the negative pressure controlled by the electromagnetic valve.

The membrane potential was controlled using a single-electrode voltage-clamp circuit, switching at a frequency at 10 kHz and passing current for 36% of the cycle. Clamp currents were measured as the voltage drop across a 10 MΩ resistor in the feedback loop of the head stage amplifier. In this system, the suction electrode could carry time-averaged currents exceeding 20 nA at a switching frequency of 10 kHz without showing signs of polarization or other artifacts. A phase-compensation feedback loop was used to stabilize the clamp circuit. The voltage clamp was turned to give the most rapid response, as follows: the holding potential was set to the resting potential, the gain was gradually increased and the compensation circuit was adjusted. As the gain reached a maximum level, the circuit was adjusted until the voltage trace was critically clamped. INa was elicited by the depolarizing pulse with 20-msec duration from a holding potential of -80 mV to -20 mV, at various intervals. All INa measurements were performed at room temperature (24–26°C).

The amplitude of INa was estimated as the maximal peak INa from the steady background current at the end of the step. To study the rate-dependent inhibition, the trains of depolarizing clamp pulses were applied at frequencies ranging from 0.5 to 3.0 Hz. A rest period of 60 sec, which was enough to ensure full recovery from the rate-dependent decrease in INa, was interposed between the trains of stimuli. The onset rate of INa inactivation was calculated according to the method of Campbell (18) or Courtney (19). The recovery process from inactivation of INa was studied by using the double-pulse method. Each two-pulse sequence, which consists of a 20-msec conditioning pulse and 20-msec test pulse with voltage step from -80 mV to -20 mV, was applied every 10 sec. The recovery time constant (τ₁, τ₂) was calculated according to the method of Yatani and Akaike (7).

In case of intracellular application of pilsicainide, a single cell was dialyzed intracellularly with "internal solution" containing the drug through a suction pipette. The agent was perfused for 5 min to the preparation which was constantly driven at 1 Hz. Thereafter, the preparation was driven at various frequencies with a rest period of 60 sec. In the case of extracellular application of the agent, it was added to the external Tyrode's solution and applied extracellularly by the concentration-clamp technique. The membrane current was monitored on a digital oscilloscope (National, VP-5730A) and simultaneously stored on an FM-tape recorder (Sony, A-45) for further analyses.

RESULTS

Inactivation of INa

The extent of inactivation of INa was determined by applying trains of depolarizing clamp pulses from -80 to -20 mV for 20-msec duration to a single myocyte, at a frequency of 1 Hz. The original current traces of INa are shown in Fig. 1. There were observed slight notches in the decay phase of the capacitive surge of INa. Usually, successful voltage clamp of INa in single myocytes was obtained in a condition of low temperature and low extracellular Na (20). In the present study, we conducted the experiments at room temperature and in normal extracellular Na concentration, which might be a cause of the apparent incomplete voltage clamp.

In the absence of pilsicainide, INa remained fairly constant. Extracellular application of 10⁻⁵ M pilsicainide caused a gradual decrease in the amplitude of INa, which then reached a new steady state level at the 10–20th pulses. In case of intracellular application of 10⁻³ M pilsicainide, the amplitude of INa decreased gradually for the first 5 min, and no further decrease was observed thereafter, suggesting that the intracellular concentration of the drug
reached an equilibrium within 5 min. After confirming that the \(I_{Na} \) reached a steady state, the preparation was driven at 1 Hz after a quiescent period of 60 sec. The amplitude of \(I_{Na} \) gradually decreased in a use-dependent manner. In the cells intracellularly loaded with 10⁻⁴ M pilsicainide, no measurable decrease in \(I_{Na} \) was observed. However, \(I_{Na} \) was decreased in a use-dependent manner following the additional extracellular application of 10⁻⁴ M pilsicainide in the same cells. These results suggest that \(I_{Na} \) use-dependently decreases in the presence of either intracellular or extracellular pilsicainide.

Rate dependent block of \(I_{Na} \)

In the absence of the drug, \(I_{Na} \) remained fairly constant at any pulse frequency. In the presence of extracellular 10⁻⁵ M pilsicainide, the amplitude of \(I_{Na} \) decreased, reaching a new steady state level in a frequency-dependent manner (Fig. 2). No measurable blocking action of pilsicainide was observed at the concentration of 10⁻⁶ M, and complete inhibition of \(I_{Na} \) was induced by 10⁻⁴ M pilsicainide within a few pulses given at any frequency. A similar reduction of \(I_{Na} \) was elicited in the cells loaded with 10⁻³ M pilsicainide intra- or extracellularly. These results imply that a block of \(I_{Na} \) by either externally or internally applied pilsicainide increases proportionally to the increase of the rate of stimulation; and is therefore a rate-dependent block.

Effect on onset rate of \(I_{Na} \) inactivation

Figure 3 illustrates the changes in peak amplitude of \(I_{Na} \) during a train of stimuli at various frequencies in the presence of (extracellular, Fig. 3A or intracellular, Fig. 3B) pilsicainide. The development of the use-dependent block of \(I_{Na} \) is well-characterized as a single exponential process versus the number
of applied pulses (18, 19). In cells loaded with internal 10^{-3} M pilscainide, the onset rate of decline in I_{Na} was relatively constant (0.098 to 0.130 per pulse) regardless of stimulus frequency (Table 1). Similar results were obtained when pilscainide was applied extracellularly (Table 1). The onset rate of I_{Na} inactivation was not dependent on frequency at a given concentration of pilscainide, but was larger at the highest concentration tested (Table 1). It was about 0.10 per pulse and 0.45 per pulse in the presence of extracellular 10^{-5} M and 10^{-4} M pilscainide, respectively. Thus, on both intracellular and extracellular applications of the drug, the onset rate of I_{Na} inactivation was independent of the frequency of stimulus.

Effects on recovery rate from I_{Na} inactivation

I_{Na} (test) / I_{Na} (conditioning) or I_{t}/I_{C} was plotted against the pulse interval (the recovery curve) in the absence (control) and in the presence of extracellular (10^{-5} M) and intracellular (10^{-3} M) pilscainide (Fig. 4A). A logarithmic scale of I_{t}/I_{C} was also plotted against the pulse interval (Fig. 4B).

In the absence of the drug, the recovery curve was fitted by a single exponential with a time constant (τ_r) of 14.0 msec (Table 2). In the presence of 10^{-3} M pilscainide in the internal solution, the recovery curve was fitted...
Table 1. Onset rates of rate-dependent block of INa by pilsicainide applied intracellularly or extracellularly

Intracellularly	Extracellularly		
Pilsicainide, 10^{-3} M	Pilsicainide, 10^{-5} M	Pilsicainide, 10^{-4} M	
N = 4	N = 3	N = 3	
0.5 Hz	0.098 ± 0.008/pulse	0.087 ± 0.006/pulse	0.477 ± 0.195/pulse
1.0 Hz	0.106 ± 0.002	0.096 ± 0.010	0.450 ± 0.092
2.0 Hz	0.115 ± 0.005	0.123 ± 0.038	0.484 ± 0.089
3.0 Hz	0.130 (N = 2)	0.097 ± 0.008	0.434 ± 0.075

Each value represents mean ± S.E.

Fig. 4. Effects of intracellular or extracellular application of pilsicainide on the recovery of INa from inactivation. INa was evoked by a test pulse (I1) at various intervals after a conditioning pulse (Ic). Panel A: Time course of recovery of INa. Inset is the double pulse program. INa was evoked by a test pulse (I1) at varying intervals after a conditioning pulse (Ic). Panel B: Same data as in A, but plotted semilogarithmically. ○ control; ■ intracellularly applied pilsicainide, 10^{-3} M; ▲ extracellularly applied pilsicainide, 10^{-5} M.

Table 2. Effect of pilsicainide applied intracellularly or extracellularly on the time constant for the recovery of INa from inactivation

Control	Intracellularly	Extracellularly
N = 7	N = 4	N = 3
N = 3	N = 2	
τ_1 (msec)	14.0 ± 1.9	17.5 ± 2.7
τ_2 (msec)	77.0 ± 9.5	64.7 ± 12.2

Each value represents mean ± S.E.
by two exponentials, with a first phase ($\tau_1 = 17.5 \text{ msec}$) and a second phase ($\tau_2 = 77 \text{ msec}$). The τ_1 was close to the τ_r. Similar results were obtained in the extracellular application of $10^{-5} \text{ M pilseicainide}$. The τ_1 (15.0 msec) was almost equal to that (17.5 msec) in the cells loaded with internal pilseicainide. In addition, the τ_2 (64.7 msec) was almost similar to that (77.0 msec) in internally loaded cells. When $10^{-4} \text{ M pilseicainide}$ was applied externally, the recovery curve was fitted by a single exponential with a slower phase. Thus, the recovery of I_{Na} from inactivation was delayed in a similar manner in both cases of intracellular and extracellular pilseicainide.

DISCUSSION

In the present experiment, we assessed the I_{Na}-inhibitory action of pilseicainide, a newly developed antiarrhythmic agent of the class Ic type, applied to a single cardiac myocyte intracellularly and extracellularly. Pilseicainide blocked Na current in use- and rate-dependent manners, when it was applied either intracellularly or extracellularly. In regard to the approach of an antiarrhythmic agent to the binding site, its mode of action and kinetics are modulated not only by the molecular form of the drug but also by whether the drug is in the charged or neutral form, which is determined by the pKa of the drug and the pH of the external solution and cytoplasm (1). Penticainide exists as the charged form at physiological pH (pKa = 10.0) and shows a very low lipophilicity (partition coefficient = 0.35) (4), and these characteristics are similar to those of pilseicainide (pKa = 10.5 and partition coefficient = 1.73 at pH 7.0) (13, 14). Therefore, it is expected that the mode of action of pilseicainide is similar to that of penticainide. Recently, Gruber et al. (5) revealed that penticainide blocked the Na channels of cardiac myocytes by acting from the outside as well as from the cytoplasmic side. This finding and our results might support a hypotheses that charged form antiarrhythmic agents are accessible to their binding site from the outside as well as the inside.

In neuronal cells, the quaternary derivatives of lidocaine, which exist as charged molecules at physiological pH, blocked Na channels only from the inside (2). This result does not coincide with the finding obtained by Carmeliet et al. (4) and by ourselves in cardiac myocytes. While it has been believed that Na channels have the same functional and structural profile in neuronal and cardiac cells, recent molecular biological approaches revealed the existence of subtypes of Na channels in neuronal and cardiac cells. In these Na channel subtypes, there was found low homology at the cytoplasmic and extracellular region but high homology at the penetrating region of the cell membrane (21, 22). Therefore, the functional profile of Na channels might be different in neuronal and cardiac cells. Our results also support this possibility.

Recently, Alpert et al. (6) reported that QX-314, a permanently charged analogue of lidocaine, blocked I_{Na} when applied not only from the inside, but also from the outside. On the basis of these observations, they postulated that there are two binding sites for local anesthetics in the heart muscle cell, one inside and another outside of the cell. In the present experiment, pilseicainide reduced I_{Na} in use- and rate-dependent manners, when applied intracellularly or extracellularly. The features of the block by the intracellular application of pilseicainide were almost identical to those induced by the extracellular application. Our results raise a possibility that there is a single binding site for pilseicainide and the drug reaches to the binding site either from outside or from inside of the cell membrane in the Na channel. To further verify the pilseicainide binding site, we analyzed the effects of the intracellularly or extracellularly applied pilseicainide on the onset rate of blockade of and recovery from inactivation of I_{Na}. The onset rate of I_{Na} blockade, which reflects the rate of pilseicainide binding to the specific binding site in Na channels, was essentially constant at any stimulus frequency irrespective of different routes of application. The rate of recovery
from the inactivation of I_{Na}, which represents the rate of dissociation of pilsicainide from the binding site, was almost consistent in both cases of the drug applications and was constant in the drug concentration range used in this study. These results suggest that pilsicainide, when applied inside or outside the cell, shares a common binding site to block the Na current.

When pilsicainide was applied intracellularly, a concentration about 100-fold that required in extracellular application was necessary to obtain a similar blocking action. The result may suggest that pilsicainide is more easily accessible to its binding site from the outer side of the membrane than from the inner side, as suggested by Gruber et al. (5) for penticainide. However, in the present experiments, the intracellular concentration of pilsicainide was not determined since the drug was applied intracellularly by simple diffusion through the recording suction pipette. Accordingly, further experiments with use of an inside-out patch technique are necessary to confirm this assumption.

In conclusion, it is clear that pilsicainide internally applied from the recording pipette blocks I_{Na} in cardiac myocytes with kinetics very similar to those of the drug applied externally. The result suggests that pilsicainide, a charged-form antiarrhythmic agent, is accessible to its binding site either from the outer side or from the inner side of the cardiac cell membrane, and that it shares a common binding site to block I_{Na}.

Acknowledgments

The authors wish to thank Drs. M. Morita, T. Ishihara and Y. Imaizumi for their helpful suggestions on the manuscript and Dr. T. Noguchi, the Director of the Suntory Institute for Biomedical Research, for his support and encouragement throughout this study.

REFERENCES

1. Hille, B.: The pH-dependent rate of action of local anesthetics on the node of ranvier. J. Gen. Physiol. 69, 475–496 (1977)
2. Hille, B.: Local anesthetics: Hydrophobic and hydrophilic pathways for the drug-receptor interaction. J. Gen. Physiol. 69, 497–515 (1977)
3. Courtney, K.R.: Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA968. J. Pharmacol. Exp. Ther. 195, 225–236 (1975)
4. Carmeliet, E., Nilius, B. and Vereecke, J.: Properties of the block of single Na channels in guineapig ventricular myocytes by the local anaesthetic penticainide. J. Physiol. (Lond.) 409, 241–262 (1989)
5. Gruber, R., Vereecke, J. and Carmeliet, E.: Dual effect of the local anaesthetic penticainide on the Na current of guinea-pig ventricular myocytes. J. Physiol. (Lond.) 435, 65–81 (1991)
6. Alpert, L.A., Fozzard, H.A., Hanck, D.A. and Makielski, J.C.: Is there a second external lidocaine binding site on mammalian cardiac cells? Am. J. Physiol. 257, H79–H84 (1989)
7. Yutani, A. and Akaike, N.: Effects of a new antiarrhythmic compound SUN 1165 [N-(2,6-dimethylphenyl)-8-pyrrolizidineacetamide] hydrochloride on the sodium currents in isolated single rat ventricular cells. Naunyn Schmiedebergs Arch. Pharmacol. 326, 163–168 (1984)
8. Hattori, Y., Inomata, N., Aisaka, K. and Ishihara, T.: Electrophysiological actions of N-(2,6-dimethylphenyl)-8-pyrrolizidine-acetamide hydrochloride hemicryst (SUN 1165), a new antiarrhythmic agent. J. Cardiovasc. Pharmacol. 8, 998–1002 (1986)
9. Inomata, N., Ishihara, T. and Akaike, N.: SUN 1165: a new antiarrhythmic Na current blocker in ventricular myocytes of guinea-pig. Comp. Biochem. Physiol. [C] 87C, 237–243 (1987)
10. Hattori, Y., Hidaka, T., Aisaka, K., Satoh, F. and Ishihara, T.: Effect of SUN 1165, a new antiarrhythmic agent, on the kinetics of rate-dependent block of Na channels and ventricular conduction of extrasystoles. J. Cardiovasc. Pharmacol. 11, 407–412 (1988)
11. Inomata, N., Ishihara, T. and Akaike, N.: Different time courses of the blockade of sodium current by lignocaine and SUN 1165 in single myocytes isolated from guinea-pig atrium. Br. J. Pharmacol. 98, 149–154 (1989)
12. Aisaka, K., Hidaka, T., Inomata, N., Hamasaki, S., Ishihara, T. and Morita, M.: N-(2,6-Dimethylphenyl)-8-pyrrolizidineacetamide hydrochloride hemihydrate (SUN 1165): A new potent and long-acting antiarrhythmic agent. Arzneimittel-Forschung 35, 1239–1245 (1985)
13. Miyano, S., Sumoto, K., Satoh, F., Shima, K., Hayashimatsu, M., Morita, M. et al.: New anti-
arrhythmic agents, *N*-aryl-8-pyrrolizidinealkana-
mides. J. Med. Chem. 28, 714–717 (1985)
14 Toyama, J., Kodama, I., Kusunoki, T., Ishihara,
T., Hattori, Y. and Yamada, K.: Use-dependent
blocking action of newly developed lidocaine-anal-
ogs on maximum rate of rise of action potentials
in guinea pig papillary muscle. Japan. Circ. J. 28,
273–285 (1987)
15 Matsuda, H., Noma, A., Kurachi, Y. and Irisawa,
H.: Transient depolarization and spontaneous
voltage fluctuations in isolated single cells from
guinea-pig ventricles. Calcium-mediated membrane
potential fluctuations. Circ. Res. 51, 142–151
(1982)
16 Akaïke, N., Inomata, N. and Tokutomi, N.: Con-
tribution of chloride shifts to the fade of gamma-
aminobutyric acid-gated currents in frog dorsal
root ganglion cells. J. Physiol. (Lond.) 391, 219–
234 (1987)
17 Akaïke, N., Inoue, N. and Krishtal, A.: "Concen-
tration-clamp" study of gamma-aminobutyric acid-induced chloride current kinetics in
frog sensory neurones. J. Physiol. (Lond.) 379,
171–185 (1986)
18 Campbell, T.J.: Importance of physico-chemical
properties in determining the kinetics of the effects
of class I antiarrhythmic drugs on maximum rate of
depolarization in guinea pig ventricle. Br. J. Phar-
macol. 80, 33–40 (1983)
19 Courtney, K.R.: Fast frequency-dependent block
of action potential upstroke in rabbit atrium by
small local anesthetics. Life Sci. 24, 1581–1588
(1979)
20 Brown, A.M., Lee, K.S. and Powell, T.: Sodium
currents in single rat heart muscle cells. J. Physiol.
(Lond.) 318, 479–500 (1981)
21 Noda, M., Ikeda, T., Kayano, T., Suzuki, H.,
Takashima, H., Kurasaki, M. et al.: Existence of
distinct sodium channel messenger RNAs in rat
brain. Nature 320, 188–192 (1986)
22 Rogart, R.B., Cribbs, L.L., Muglia, L.K.,
Kepphart, D.D. and Kaiser, M.W.: Molecular clon-
ing of a putative tetrodotoxin-resistant rat heart
Na channel isoform. Proc. Natl. Acad. Sci. U.S.A.
86, 8170–8174 (1989)