Corrosion on Mars: An Investigation of Corrosion under Relevant Simulated Martian Environments

Luz M. Calle,1 Wenyan Li,2 Jerry W. Buhrow,3 Michael R. Johansen,4 and Carlos I. Calle5
NASA, John F. Kennedy Space Center, FL 32899

This research concerns the development of a systematic approach to understand corrosion of spacecraft materials on Mars, by conducting a literature search of available data relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This work was motivated by newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation on Curiosity's wheels, that cannot be attributed to rock scratching, may be caused by corrosive interactions with the brines. An extensive literature search, on data relevant to Mars corrosion, confirmed the need for further investigation of the effect of the Mars environment on the materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between AA7075-T73 aluminum alloy and the gases present in the Mars atmosphere, at 20°C and a pressure of 633 Pa, showed that there is a significant interaction between the small amount of oxygen present in the Mars gas and the alloy, when there is a scratch that removes the protective aluminum oxide film. There are many other important components of the Mars environment that can affect this interaction such as: the photocatalytic effect of radiation on the oxidizing species, and the effect of salts in Martian soil. These initial experimental results provide strong justification for further investigation of the corrosion mechanism of materials relevant to long-term surface operations in support of future human exploration missions on Mars.

Nomenclature

- $DAN = \text{Dynamic Albedo of Neutrons}$
- $E^\circ = \text{standard potential}$
- $E_A = \text{Activation energy}$
- $e^- = \text{electron}$
- $GCR = \text{cosmic-ray particles}$
- $GRS = \text{Gamma Ray Spectrometer}$
- $GEX = \text{Gas Exchange Experiment}$
- $KSC = \text{Kennedy Space Center}$
- $LR = \text{labeled release}$
- $MEPAG = \text{Mars Exploration Program Analysis Group}$
- $MER = \text{Mars Exploration Rover}$
- $mM = \text{millimolar}$
- $MSL = \text{Mars Science Laboratory}$
- $NASA = \text{National Aeronautics and Space Administration}$
- $REMS = \text{Rover Environmental Monitoring Station}$
- $ROS = \text{reactive oxygen species}$
- $RSL = \text{recurring slope lineae}$

1 Senior Research Scientist, Science and Technology Programs Division, Mail Code: UB-R3-A
2 Research Scientist, URS Federal Services, Inc., Mail Code: LASSO-001
3 Research Engineer, URS Federal Services, Inc., Mail Code: LASSO-001
4 Research Engineer, Science and Technology Programs Division, Mail Code: UB-R2
5 Senior Research Scientist, Science and Technology Programs Division, Mail Code: UB-R2
Metal corrosion is the deterioration of a metal or its properties because of a reaction with its environment. Corrosion occurs mainly through electrochemical reactions. These are chemical reactions that take place when electrons are transferred from one chemical species to another in the presence of an electrolyte. An electrolyte is an aqueous solution that can carry an electrical current by the movement of the ions dissolved in it. The chemical species that loses electrons is oxidized (anodic reaction or oxidation) and the chemical species that gains electrons is reduced (cathodic reaction of reduction). When a metal corrodes, it loses electrons to form ions and its charge increases from zero to a positive number that is determined by the number of electron lost. For example, when aluminum (Al) metal corrodes (or oxidizes), by losing 3 electrons, it forms the aluminum(III) ion (Al$^{3+}$). This process can be expressed as an electrochemical oxidation reaction, often described as the half reaction for oxidation, in an oxidation reduction or redox reaction:

$$\text{Al} \rightarrow \text{Al}^{3+} + 3e^-$$ (1)

Corrosion of a metal requires the following components:
- Anode: Where metal is lost and electrons are produced (oxidation).
- Cathode: Where electrons are consumed (reduction).
- Metal: Provides the path for current to flow when electrons move from the anode to the cathode.
- Electrolyte: An aqueous solution in which the electrical current is carried by ions. Negative ions (anions) flow towards the anode and positive ions (cations) flow towards the cathode.

A metal can be protected from corrosion by covering it with a coating that isolates it from the environment, thus preventing its reaction with it. An intact paint film (coating) protects the metal by preventing its interaction with the environment. The metal is protected for as long as the coating remains intact. When oxygen (O$_2$) is present in the environment, such as the Earth’s atmosphere, metals react with it to form an oxide layer on the surface that may act as a coating to protect them from corrosion. Aluminum is a reactive metal that spontaneously forms a thin but protective oxide layer, on contact with air, which prevents further oxidation. This oxide, unlike the oxide layers on many other metals, adheres strongly to the base metal. If damaged mechanically, the aluminum oxide layer repairs itself immediately. This layer is stable in the general pH range between 4 and 9.

Aerospace aluminum alloys are lightweight, durable, strong, and their corrosion resistance is generally good in most terrestrial environments. However, it is not known how aluminum and its alloys interact with the Martian environment. The Curiosity mission is just the latest example of aluminum’s vital role in the development of modern aviation and mankind’s exploration of space. Chosen for its lightweight and ability to withstand the stresses that occur during ground and launch operations, aluminum has been used on Apollo spacecraft, the Sky-lab, the Space Shuttles, and the International Space Station. Aluminum alloys consistently outperform other metals in areas such as mechanical stability, dampening, thermal management and reduced weight. “NASA could not have made it to the surface of Mars without aluminum.” The alloy used to make the thin-walled rigid wheel on the Mars Science Laboratory (MSL) is aluminum alloy AA7075-T7351 (Figure 1). The wheel was made from a mandrel forged ring. It is hard anodized, a process used to increase the thickness of the natural oxide layer on the surface of the metal, for greater strength and improved corrosion resistance in terrestrial environments. The Mars mission, scheduled to launch in 2020, will use the same type of corrosion protection. This is understandable, given the

Figure 1. Curiosity’s wheel made from a single piece of machined aluminum alloy AA7075-T7351. The main rim is 1.9 cm thick (0.75-inches).
fact that one of the most important factors in the design of the wheels is the mechanical strength required to transport heavy instruments across the rugged surface of Mars. The current state-of-the-art (SOA), regarding the selection of materials for landed spacecraft for human surface operations on Mars, is to assume that their corrosion behavior on Mars will be similar as that on Earth.

The need to investigate the corrosion behavior of materials relevant to Mars exploration was suggested, as a low priority objective, by the Mars Exploration Program Analysis Group (MEPAG) as Investigation B7.1.6 Analyze regolith and surface aeolian fines (dust), with a priority placed on the characterization of the electrical and thermal conductivity, triboelectric and photoemission properties, and chemistry (especially chemistry of relevance to predicting corrosion effects), of samples of regolith from a depth as large as might be affected by human surface operations.

Since the publication of the first evidence of liquid water on present-day Mars by Martin-Torres et al.,7 according to Curiosity data, and the corroboriation of the presence of hydrated salts by Ojha et al.,9 a new frontier of scientific challenges has emerged, such as the corrosive interaction between brines (electrolytes) and spacecraft materials in the Mars environment.9 The hydrated salts on the recurring slope lineae (RSL) would lower the freezing point of a liquid brine, just as salt on roads here on Earth causes ice and snow to melt more rapidly. Ojha et al.9 interpreted the spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars instrument, onboard the Mars Reconnaissance Orbiter, as being caused by hydrated minerals called perchlorates. The hydrated salts most consistent with the chemical signatures are likely a mixture of magnesium perchlorate (Mg(ClO$_4$)$_2$), magnesium chlorate (Mg(ClO$_3$)$_2$) and sodium perchlorate (NaClO$_4$). Some perchlorates have been shown to keep liquids from freezing, even when conditions are as cold as minus 70°C (203K). On Earth, naturally produced perchlorates are concentrated in desserts, and some types of perchlorates can be used as rocket propellant. Perchlorates have previously been seen on Mars. NASA's Phoenix lander and Curiosity rover both found them in the planet's soil, and some scientists believe that the Viking missions in the 1970s measured signatures of these salts. However, this study of recurring slope lineae detected perchlorates, now in hydrated form, in different areas than those explored by the landers. While the cause of the Mars RSL formation is still a subject for continuous research, intermittent liquid water flow was proposed as one of the possible mechanisms.10,11

Mars is often called the red planet. The reddish color of the Martian surface is due to the high iron oxide (Fe$_2$O$_3$), also known as iron(III) oxide or hematite, content in its regolith. Iron oxide (rust) is formed when iron metal becomes oxidized in the presence of oxygen. This process is also known as corrosion. There is evidence that the Martian soil was capable of decomposing organic molecules and releasing O$_2$ upon the introduction of water vapor.12,13 This reactivity was attributed to the possible formation of superoxide radical ions (O$_2^-$) in the Mars environment under ultra violet (UV) radiation14 or to the activation of an oxidizing agent under radiation, such as perchlorate (ClO$_4^-$) radiolysis under gamma rays.15

Despite the overwhelming evidence that oxidation of materials is unavoidable on Mars, corrosion of materials has not been a major concern for Mars Missions, due to its arid atmosphere and the lack of evidence of liquid water. The recent discovery of perchlorates in the equatorial Gale Crater, in addition to the Phoenix lander finding it in the Martian arctic, supports the widespread presence of perchlorates on the surface of Mars.16 Perchlorate and chlorate (ClO$_4^-$) species have also been found in a Martian meteorite.17 Its role in lowering the freezing temperature of water in Martian soil supports the presence of transient liquid water on Mars.7 This new found evidence of liquid water (brine) coincided with the surprisingly significant damage observed on Curiosity's wheels (Figure 2). Rover engineers have concluded that the damage was caused exclusively by mechanical forces. However, there is a pattern of distributed sub-millimeter-sized blisters in the vertical wall of the T-print of the wheels that cannot be attributed to rock scratching. This pattern resembles aluminum alloy pitting corrosion. A team of researchers has suggested that, given the strong oxidizing character of perchlorate ions and their byproducts, these blisters may be caused by corrosive interactions of brines with the aluminum alloy wheel.7,18 Anodizing increases the thickness of the natural oxide layer on the aluminum wheels, but abrasion can wear out the external protecting layer and expose the internal aluminum to corrosion. The presence of chloride and perchlorate anions in brines could potentially comprise the structure integrity of aluminum alloy through pitting corrosion. Thus, it can be hypothesized that the presence of corrosive chloride-containing brines on Mars should have implications on spacecraft design for human surface operations in support of long-duration exploration missions. Considering that the overall environment of Mars is more oxidizing than that of Earth, the potential challenge of metal corrosion and materials degradation should not be ignored. One important question to address, regarding the corrosion of aluminum in the Mars environment, is whether or not its protective oxide layer will repair itself when it is scratched on Mars, as it would be the case on Earth.

International Conference on Environmental Systems
The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars, by conducting a literature search of available data relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions.

II. Approach/Methodology

Considering that corrosion is the interaction between a material and its environment, it cannot be assumed that, for a given material such as aluminum alloys, this interaction is going to be similar in the terrestrial and in the Martian environments, since they are significantly different. The Martian environment includes: the composition and conditions of the atmosphere, soil composition and chemistry, radiation conditions, and the presence of transient liquid brines. This investigation was focused on the interaction between aerospace aluminum alloy AA7075-T73 (the alloy used for Curiosity’s wheels) and selected simulated Martian atmospheric environments. Understanding this interaction is very important in the selection of materials and their corrosion protection methods for their long-term performance in the Mars environment. The corrosion resistance of aluminum alloys in the Earth’s atmosphere depends on their ability to form a protective surface oxide layer. If the same alloys will be used under Martian conditions, it is important to understand their interaction with the Martian environment and to find out if a protective layer will form when the original oxide layer is damaged, as it happens here on Earth. It is also important to characterize the layer and its properties. Furthermore, it can be expected that the presence of corrosive brines on Mars should have significant implications on the selection of materials for spacecraft and structures built to support long-term surface operations for the human exploration of Mars.

Our investigation began with a literature search of available data relevant to corrosion on Mars. One important recent finding was the presence of corrosive brines and what is known about their composition and properties. These brines are known to contain perchlorates which can play an important role in the corrosion of materials under Martian conditions. This investigation also focused on what is known about perchlorates here on Earth and how their reactivity can be different in the Mars environment. The investigation concluded with some preliminary experiments designed to compare the interaction between a sample of aluminum alloy AA7075-T73, scribed in situ, and three different environments at room temperature (20°C): Earth’s atmosphere at 100 kPa (1 bar), pure carbon dioxide gas (CO₂) and Mars gas at 700 Pa (7 mbar). This pressure was selected because the average pressure on Mars is roughly 7.5 mbars.

III. Available Data Relevant to Corrosion on Mars

The quest to find life on Mars, by searching for organics and microbial life in the regolith, has generated a great deal of data relevant to corrosion on Mars. Results from experiments designed to look for life have indicated that Mars’ surface is lifeless and depleted of organics at the part-per-billion levels. These results have been explained by the presence of oxidizing agents on the surface of Mars. These oxidizing agents also can cause corrosion of materials on Mars. One of the most significant recent findings, that are relevant to corrosion, is the existence of transient liquid water and water activity at Gale crater on Mars (the exploration zone of NASA’s Curiosity rover).
Although perchlorate is a powerful oxidizing agent when heated, this data is relevant to study the interaction between spacecraft materials and the Mars environment.

IV. Brines on Mars

Brines on Mars are produced under specific environmental conditions in the daily capture (and release) of atmospheric water vapor by deliquescent salts, such as chlorides and perchlorates, that exist at the surface of Mars. The perchlorates found in situ are likely calcium perchlorate (Ca(ClO$_4$)$_2$), as detected by Curiosity at Gale,19 and magnesium perchlorate ((Mg(ClO$_4$)$_2$) (or sodium perchlorates (NaClO$_4$)) as observed at the Phoenix polar landing site.20 Reanalysis of Viking data suggested that perchlorates could have been present there as well.21 Chloride is distributed globally on Mars as detected by the Mars Odyssey Gamma Ray Spectrometer (GRS).$^{22, 23}$ Oxygen was one of the most abundant gases released during thermal analysis of materials at Curiosity’s Rocknest site. Its release was correlated with the release of chlorinated hydrocarbons.24 This O$_2$/Cl correlation makes a strong case for the presence of chlorine in the form of perchlorates.

V. Perchlorates

Perchlorate (ClO$_4^-$) is a negative ion (anion) with a charge of -1 where 4 oxygen atoms are bound to a central chlorine atom in a tetrahedral geometry. The oxidation state of the central chlorine atom is +7, which is its highest oxidation state. They are powerful oxidants when heated, but are stable at room and lower temperatures. In biology, the high oxidation state of perchlorates enables their use as an electron acceptor by microorganisms to provide energy for growth. Early interest in the chemistry of perchlorates here on Earth was primarily motivated by their application as powerful oxidants in fireworks, military ordnance, flares, and as solid rocket fuel. Ammonium perchlorate is among the most important propellants because it has a high oxygen content and decomposes into the gaseous phase products water, hydrochloric acid (HCl), nitrogen (N$_2$), and oxygen leaving no residue. These applications resulted in the presence of perchlorate as a contaminant in ground and drinking water. This prompted research efforts aimed at the elimination of perchlorate as a contaminant. One of their main health hazards is that they interfere with iodide uptake in the thyroid gland.25 Although perchlorate is a powerful oxidizing agent when heated, it is notoriously unreactive at room and lower temperatures, due to high activation energy required for its reduction reaction. Due to the kinetic stability of perchlorates, typical remediation schemes involving direct chemical or electrochemical reduction are not effective. A great deal of research efforts have been dedicated to its removal.27 There are biological systems (bacteria) that naturally reduce perchlorate and harvest energy through anaerobic reduction processes.28

There is a renewed research interest on perchlorate as a result of its presence in the Martian environment.

The activation energy of ammonium perchlorate is 123.8 kJ/mol below 240°C, 79.1 kJ/mol above 240°C, and 307.1 kJ/mol between 400 and 440°C.29 The decomposition of perchlorates is usually initiated using a high temperature source, such as a glow wire, to overcome the kinetic barrier or activation energy (E$_a$). Once decomposition of some perchlorate molecules is initiated, the resulting reaction produces a large amount of heat. Between 200 and 300°C, ammonium perchlorate undergoes an autocatalytic decomposition.30 At about 400°C, ammonium perchlorate decomposes very fast and suddenly explodes. The reactivity is a function of the reaction pathway. Different reaction pathways for perchlorates would have different barriers than the thermal decomposition discussed above. The reduction of perchlorate to chloride and oxygen, shown in reaction (2), is relevant to corrosion in the Mars environment since a major oxygen release, between 300 and 500°C, was detected by the Mars Curiosity Rover Sample Analysis at Mars (SAM) instrument at the Rocknest eolian site. Thermal decomposition of perchlorate salts in the Rocknest samples is a possible explanation for this evolved oxygen release.$^{16, 31}$

\[
\text{ClO}_4^- \rightarrow \text{Cl}^- + 2 \text{O}_2 \quad (2)
\]

International Conference on Environmental Systems
VI. Aluminum and perchlorate

It is important to consider the oxidation reaction of aluminum by perchlorate. Aluminum is a strong reducing agent with a standard reduction potential $E^\circ(Al^{3+}/Al) = -1.662$ V. The standard potential for the oxidation of aluminum, reaction (1), by perchlorate is obtained by adding the oxidation potential of aluminum, $E^\circ(Al^{3+}/Al) = 1.662$ V, to the reduction potential of perchlorate, reaction (2), $E^\circ(ClO_4^−/Cl^-) = 1.287$ V, to obtain a potential value (ΔF°) of 2.949 V for the overall reaction (3):

$$8Al + 3 ClO_4^- + 24H^+ → 8Al^{3+} + 3Cl^- + 12H_2O$$

(3)

The positive value of the potential means that this reaction is thermodynamically favorable (spontaneous).

However, aluminum metal is often passivated by an aluminum oxide film. This dense oxide film of a few nanometers thick, can form instantly on the aluminum surface when exposed to air and/or water to prevent further reaction. The dense oxide film is, however, not a hurdle for employing aluminum as a reducing agent at high temperatures. This prompts the question: What is the passivation mechanism of aluminum under Martian conditions where there is only 0.13% of oxygen in the atmosphere compared to 20% here on Earth?

As mentioned earlier, perchlorate is kinetically inert, at ambient temperatures, to reduction due to the high activation energy involved. However, the kinetic barrier can be overcome, as it happens when aluminum reacts rapidly with ammonium perchlorate, as shown in reaction (4). In this reaction, aluminum is oxidized to aluminum oxide (Al_2O_3) and perchlorate is reduced to Cl^-. This reaction is used in rockets (such as NASA’s solid rocket boosters), explosives, pyrotechnics, flares, and ammunition.

$$10 Al + 6 NH_4ClO_4 → 4 Al_2O_3 + 2 AlCl_3 + 12 H_2O + 3 N_2$$

(4)

NASA’s Space Shuttle used approximately two million pounds of solid fuel per launch. The mixture contained 70% ammonium perchlorate, 16% aluminum, and 14% of an organic polymer.

VII. Perchlorates and Martian Conditions

Perchlorate is widespread in Martian soils at concentrations between 0.5 and 1%. Turner et al.33 cited concentrations between 0.4-0.6 wt% discovered at the north polar landing site of the Phoenix spacecraft and at the southern equatorial landing site of the Curiosity Rover. At such concentrations, perchlorate could be an important source of oxygen, but it could also become a critical chemical hazard to astronauts and cause corrosion on landed spacecraft and ground support equipment. The amount of perchlorate in the surface regolith of Mars is significant compared to that in soils on Earth, where typical concentrations are lower (0.03 to 0.6 wt %)34,35 than on Mars. Since its discovery on Mars, perchlorate has become a focus of research interest due to its possible role in destroying organics in the thermal stage of analytical instruments sent to Mars to detect them. Quinn et al.15 and Navarro-Gonzalez et al.21 have shown that ionizing radiation decomposes perchlorate resulting in the formation of hypochlorite (ClO^-), other lower oxidation state oxychlorine species and production of O_2 gas that remains trapped in the salt crystal. They suggest that ionization processing of perchlorate alone can explain the Viking Labeled Release (LR) and Gas Exchange Experiment (GEX) results. Turner et al.32 conducted laboratory experiments to explore the temperature-dependent decomposition mechanisms of hydrated perchlorates, namely magnesium perchlorate hexahydrate $(Mg(ClO_4)_2·6H_2O)$, and to provide yields of the oxygen-bearing species formed in these processes at Mars-relevant surface temperatures from -108 to 37°C (165 to 310K) in the presence of galactic cosmic-ray particles (GCRs). Their experiments revealed that the response of the perchlorates to the energetic electrons is dictated by the destruction of the perchlorate ion and the inherent formation of chlorates (ClO_3^-) plus atomic oxygen (O). Isotopic substitution experiments revealed that the oxygen is released solely from the perchlorate ion and not from the water of hydration. The atomic oxygen recombines to molecular oxygen (O_2) within the perchlorates, with the overall yield of molecular oxygen increasing as the temperature drops from -13 to -113°C (260 to 160K). Perchlorate could also lead to transient, metastable brines by way of deliquescence, even under current climate conditions, and therefore plays a role in the meagre hydrological cycle on Mars. Deliquescence is the process of absorption of water vapor by salts, leading to the formation of a saturated aqueous solution. In addition, perchlorate can be used as a terminal electron acceptor by a variety of prokaryotes, which has potential implications for habitability of Martian soils. Davila et al.36 reported that, although perchlorate is the only Cl-oxyanion that has been found on Mars, studies on Earth show that perchlorate co-occurs with chloride (ClO_3^-) in all environments, often at equimolar concentrations. In addition, ionizing radiation can decompose perchlorate into other reactive Cl-oxyanions such as chlorite (ClO_2^-) and hypochlorite (ClO^-).

These more reactive species can cause corrosion of metallic components used on astronaut suits, instruments, landed spacecraft, and surface operations equipment.
Clays were detected on Mars by the Mars Express Orbiter,37,38 with an abundance of 4–5 wt % in the regolith, calculated from the Thermal Emission Spectrometer data of the MERs.39 Curiosity analyzed mudstone samples in Gale Crater, which showed the presence of clays in this region.40 Clays could be widespread on the planet and in some regions hidden under a layer of volcanic residue. Clays themselves are not oxidants, but they can catalyze oxidation reactions likely to take place in the regolith.

Since the detection of perchlorates on Mars,17 several studies have been aimed at understanding their effects on the habitability of the planet. The recent work of J. Wadsworth and C.S. Cockell41 showed the significant bactericidal effects of UV-irradiated perchlorate on life at ambient temperatures and under Martian conditions. This finding is relevant to corrosion since it showed that, when irradiated with a simulated Martian UV-flux, perchlorate is more reactive at ambient temperatures and ambient conditions. The study also showed that two other components of the Martian surface, iron oxides and hydrogen peroxide (H$_2$O$_2$), act in synergy with perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. The mechanism of perchlorate action on cells is likely to be its degradation to deleterious reactive oxygen species, such as hypochlorite (ClO$^-$), commonly known as chlorine bleach, and chlorite (ClO$_2^-$). Similar photoproducts have been previously observed in perchlorate irradiated with ionizing radiation.15,42 Figure 3 shows the oxidation state diagram for oxychlorine species (with the oxidation number of chlorine shown on top).32 C.D. Georgiou \textit{et al.}43 reported that γ-radiolyzed perchlorate-containing Mars soil salt analogues (in a CO$_2$ atmosphere) generate, upon H$_2$O wetting, the reactive oxygen species (ROS) superoxide radical (O$_2^-$), H$_2$O$_2$, and hydroxyl radicals (OH$^-$). This study also validated the finding that analogue radiolysis forms oxychlorine species that, in turn, can UV-photolyze to OH$^-$ upon UV photolysis. Additionally, UV photolysis of the perchlorate γ-radiolysis product, chlorite (ClO$_2^-$), generated the oxychlorine products trihalide (Cl$_3^-$), chlorine dioxide free radical (ClO$_2^-$), and hypochlorite (ClO$^-$), with the formation of OH$^-$ by UV photolysis of ClO$^-$.

\centering
\includegraphics[width=0.8\textwidth]{Figure3.png}

\textbf{Figure 3. Oxidation state diagram for oxychlorine species.}

A recent review paper by Lasne \textit{et al.}44 provides a summary of the oxidants detected or proposed to be present at the surface of Mars (Table 1) in light of recent exploration results. These findings suggest the importance of conducting experiments to investigate the combined effects of Martian soil simulant, activated by surface photochemistry, as well as the influence of clays as catalysts, on materials relevant to long-duration surface operations on Mars.

\section*{VIII. Materials and Methods}

\subsection*{A. Materials}

10mm × 10mm × 1.5mm AA7075-T73 aluminum alloy samples (nominal composition: 5.6–6.1 wt% Zn; 2.1–2.5 wt% Mg; 1.2–1.6 wt% Cu; less than 0.5 wt% Si; and Al balance) were polished using 800 grit grinding silicon carbide (SiC) paper. The panels were scribed using a SiC rod (1/8 inch diameter, 1.5 inch length, manufactured by Ultra-Met). The AA7075-T73 temper is achieved by overaging (meaning aging past the peak hardness) the material to reduce the susceptibility to corrosion.
Table 1. Oxidants Detected or Suggested to be Present on Mars

Group	Oxidant	Detected or Suggested	Origin
Perchlorate salt	ClO₄⁻	Detected²⁷,²⁸	Produced in the atmosphere
			Produced by UV irradiation of Cl-bearing minerals
Iron-bearing species	Fe₂O₃	Detected*	Thermodynamically stable on Mars’ surface
	Fe₃O₄	Suggested³⁷,³⁸,³⁹,⁴⁰	Minor phase (thermodynamically unstable)
	Clays	Suggested*	Alteration of silicates in presence of water
Reactive oxygenated species	Peroxide or superoxide	Suggested¹³,¹⁴,³⁵,³⁶	Detection of species that could form superoxides or peroxides
	species		Formed in the presence of oxygen and UV radiation
	superoxide radical ion	Suggested¹²,¹⁴,³⁵,³⁶	Formed with H₂O₂
	(O₂⁻)		
H₂O₂	H₂O₂ in the atmosphere	Detected²⁵,²⁶	Produced photochemically and during dust devils and storms
	H₂O₂ in the regolith	Suggested²⁵,²⁶,²⁷,²⁸	Diffusion of H₂O₂ formed in the atmosphere
			Produced by interaction between minerals and water

*The Fe₂O₃ group includes hematite and maghemite; only hematite has been detected at the surface of Mars.
** The clays studied to explain the Viking results were enriched with iron; the presence of this type of clay on Mars has not been confirmed yet.

B. Experimental Procedures

1. Exposure Environments

Three exposure environments were selected to investigate their effects in the formation of the aluminum oxide film on a freshly scratched AA7075-T73 aluminum alloy test panel by X-ray photoelectron spectroscopy (XPS). This would simulate what happens when, for example, the wheel of a Mars rover is scratched by a sharp object such as a rock with a sharp edge. The objective was to observe if a protective film would form under Martian atmospheric conditions as it does under the Earth’s atmospheric conditions. The control sample was scratched under terrestrial (sea level) atmospheric conditions in the laboratory (100 kPa) and placed immediately after in the XPS instrument chamber for analysis (0-days of exposure to air) at room temperature. This sample was also analyzed after one week of exposure to air. Two other exposure conditions were selected to simulate the composition and pressure of the Mars atmosphere: Pure CO₂ and a Mars gas mixture. Pure CO₂ was selected since it is the main component of the Mars atmosphere (95.32 percent). The composition of the Mars gas mixture was: 0.100% oxygen, 0.100% carbon monoxide (CO), 1.59% argon (Ar), 2.70% nitrogen (N₂), and 95.5% CO₂. Both mixtures were at a pressure of 700 Pa (7 mbar). All experiments were conducted at a room temperature of 20°C. The CO₂ and Mars gas exposures were carried out using the Mars chamber shown in Figure 4. Initial experiments on AA7075-T73 aluminum alloy samples, scribed in situ inside the chamber, included one week of exposure to CO₂ and one week of exposure to Mars gas.

After seeing the surprising results obtained with the exposure to Mars gas, it was decided to conduct two additional experiments, where the exposure to Mars gas was shorter (3 days) and longer (2 weeks).

The Mars chamber offers the capability to select the chemical composition and pressure of the atmosphere inside and to control the pressure within a few mTorr through the use of an MKS Type 640 pressure controller with an external LabView® software monitor and control. The pressure and temperature inside the chamber were maintained at 700 Pa and 20°C. To get the appropriate mix of gases in the chamber, the chamber pressure was first reduced to less than 13.3 Pa (0.133 mbar) using a Varian TriScroll 300 scroll pump. The pressure...
was recorded once per minute for each long-duration experiment to ensure power outages or other system anomalies were not present during testing. The pressure stability for one experiment is displayed in Figure 5.

2. **Scribing tool design and fabrication**

 The aluminum alloy test panels were scribed remotely inside the Mars chamber with a scribing set up designed and fabricated specifically for this project (Figure 6A). Several design iterations were necessary to develop an adequate scribing tool for the aluminum alloy coupons. Ultimately, an optics table with a mix of stainless steel and acrylonitrile butadiene styrene (ABS) 3D-printed components was used in the final design. A Micos VT-80 translation stage, with LabView® control, was used to move the scribing tool across the surface of the aluminum alloy sample. The optics table and stainless steel rods provided the structural rigidity needed to withstand the forces applied when scribing the aluminum alloy surface with the silicon carbide tip.

 A variety of scribing tips were used to achieve the proper scribe dimensions needed for the XPS analysis described in the following section. The goal was to have a wide shallow channel scribed into the aluminum alloy sample. The profiles created by these scribing tools were observed using laser confocal microscopy to select the best scribing tool. A cylindrical carbide scribe tool was selected. The channel profile could be adjusted by angling the scribe tool. To create an adequately wide and shallow profile, as shown in Figure 6, the scribe tool was angled roughly 25 degrees from parallel to the aluminum alloy sample. The confocal microscopy images show that the scribe channel is 250 µm wide with a large radius of curvature and maximum depth of 9 µm. This profile was the most suitable for XPS analysis.

![Figure 6. Sample holder with scribing tool (A); scibe profile imaged by laser confocal microscope (B) and (C).](image)

To perform the experiments, the chamber was filled with pure CO₂ or Mars gas at 700 Pa (7 mbar). The cylindrical carbide scribe tip was used to scribe the sample surfaces inside the chamber. The scribed surface was left exposed to the low pressure environment for a pre-determined amount of time. Afterwards, the chamber was vented to ambient conditions and the aluminum alloy sample was vacuum-sealed before it was transfer into the sample chamber of the XPS under high vaccume.

3. **XPS Analysis**

 XPS analysis was carried out using a K-alpha X-ray photoelectron spectrometer (XPS) system, a monochromatic small-spot XPS system. Depth profile data were collected for both survey and element scans.

IX. Results and Discussion

A. **XPS Analysis**

 Figure 7 shows a typical survey scan of AA7075-T73 aluminum alloy where the main peaks are labeled with the elements present: Al, Mg, Zn, Cu, O, and C.

1. **Control sample (0-days of exposure to air)**

 An AA7075-T73 aluminum alloy sample was polished and scribed in air, before transfer to the XPS chamber for analysis. This sample was used as a control. The scribed area was unavoidably exposed to air (for about 5 minutes) before the XPS analysis. XPS composition depth profile data was collected at the scribed area (Figure 8 and Figure 9); the total etch time was more than 2000 seconds, at an experimental setting where one second of etch time corresponds to 0.35 nm tantalum pentoxide (Ta₂O₅).
The depth profile for oxygen is indicative of slight oxidation at the scribe that resulted from the brief exposure to the oxygen in the air. Below the top surface layer, the carbon content is relatively low but it is present through the whole depth profile. The high carbon content on the sample surface is due to adventitious carbon contamination. The other elements are present in the expected composition range.

Figure 10 shows selected spectra of element scans from the depth profile: series 1, 2, 10, 20, and 40 that correspond to the etch times of 0, 10, 90, 190, and 2190 seconds. Figure 11 shows the same depth profile plot shown in Figure 8 zoomed in for 0-500 second etch time and for 0-10 atomic percentage to show the elements (Cu, Zn, and Mg) that are present at low level. Both sets of data show that there is some slight surface enrichment of Mg and Zn (between 0 and 100 seconds etch time). Their atomic percent compositions are relatively constant, whereas Al and Cu show a gradual increase as the O content decreases away from the surface.
The observed Mg and Zn enrichment is consistent with similar results obtained by C.M. Abreu et al. who performed an XPS study that included AA7075-T73. Their results showed a Mg\(^{2+}\) enrichment, very similar to the Mg enrichment obtained in this study. They attributed it to the formation of magnesium oxide (MgO). In summary, the results for the control (labeled as 0-day-air exposure) AA7075-T73 aluminum alloy sample, briefly exposed to air, showed a slight oxidation on the surface, a low carbon content through the depth profile (less than 1 micron from the surface) which can be attributed to adventitious carbon contamination from an unknown source, and a slight surface enrichment of Mg and Zn (less than 50 nanometer from the surface).

1. One week of exposure to air

The AA7075-T73 aluminum alloy sample was polished, scribed, and exposed to air for one week before transfer to the XPS chamber for analysis. Survey scan and depth profile data was collected over the scribed area (Figures showing the results are available in NASA Technical Publication 2017-219743. The surface analysis showed a high oxygen content (etch time below 200 seconds) where oxygen was present through the depth profile at a higher content than that in the control (0-Day-Air sample). Aluminum also showed a larger peak component, at a higher

International Conference on Environmental Systems
content than that in the control (0-Day-Air sample). Aluminum also showed a larger peak component, at a higher binding energy, indicating the presence of aluminum oxide or hydroxide. The carbon content was higher at the surface, but quickly decreased to a level that was comparable to that in the control. Other elements were present in the expected composition range. There was some surface enrichment of Mg similar to that obtained for the control. There was also an enrichment of Zn that was lower than that of Mg.

In summary, the XPS analysis obtained after exposing the scribed area of an AA7075-T73 aluminum alloy sample to air for one week showed that the scribed area was oxidized and that the oxide layer was enriched in Mg at a level similar to that of the control sample. There was also a slight surface enrichment of Zn that was lower than that of Mg. The carbon content was very low below the surface.

3. One-week of exposure to CO₂

Figures 12-14 show the survey scan and depth profile data collected over the scribed area of an AA7075-T73 aluminum alloy sample after one week of exposure to CO₂ at room temperature and 700 Pa of pressure. Figure 15 shows selected spectra of element scans. The oxygen content was lower than that of the sample exposed to air for one week but slightly higher than that of the control sample. This can be attributed to a possible chemical interaction between CO₂ and the sample. Unlike the AA7075-T73 sample that was exposed to air for one week, the aluminum peak does not have a significant higher binding energy component (indicative of a metal oxide or carbonate) below the surface, which can be interpreted as an indication of a weak interaction between aluminum and the CO₂ environment. The other elements were present in the expected composition range. There was some surface enrichment of Mg and Zn where the Mg enrichment was slightly more pronounced.

Figure 12. Survey scan and depth profile data collected over the scribed area of an AA7075-T73 alloy sample exposed to CO₂ for one week at 700 Pa (7 mbar) pressure and room temperature.

Figure 13. Depth profile data collected over the scribed area of an AA7075-T73 aluminum alloy sample, immediately after exposure to CO₂ for one week, zoomed in for 0-500 seconds etch time (left image) and for 0-10 atomic percentage (right image).
Figure 14. Depth profile data, for individual elements, collected over the scribed area of an AA7075-T73 alloy exposed to CO$_2$ for one week at room temperature and a pressure of 700 Pa.

Figure 15. Selected spectra of individual element scans from the depth profile data collected over the scribed area of an AA7075-T73 alloy sample exposed to CO$_2$ for one week at 20°C and a pressure of 700 Pa.

4. One-week of exposure to Mars gas

Figure 16, Figure 17, and Figure 18, show the survey scan and depth profile data collected over the scribed area of an AA7075-T73 aluminum alloy sample after one week of exposure to Mars gas at 20°C and 700 Pa of pressure. Figure 19 shows selected spectra of element scans. Figure 16 and Figure 17 show that the content of carbon and oxygen are lower than those of the control sample (Figure 8 and Figure 11). Surprisingly, there is a noticeable difference between the one week Mars gas sample and the one week CO$_2$ sample. First, there is very little carbon below the sample surface (where the carbon presence is due to surface contamination) for the one-week Mars gas sample that is significantly lower than that of the one-week CO$_2$ sample. Second, the overall oxygen content is lower.
sample that is significantly lower than that of the one-week CO₂ sample. Second, the overall oxygen content is lower in the sample exposed to the Mars gas for one week, and the oxygen content drops more quickly below the surface. Furthermore, below the surface, the aluminum peak has a higher binding energy component (Figure 19), indicating the presence of aluminum oxide. When comparing the results of the sample exposed for 1 week to Mars gas to those of the sample exposed for 1 week CO₂, it appears that in the Mars gas, a thinner, yet more protective oxygen-containing layer, is formed, thus preventing further interaction between the metal and the gas environment. One logical explanation for these results is the formation of a thin oxide layer by the interaction between the aluminum alloy sample and the small amount of oxygen present in the Mars gas, which prevents further interaction between CO₂ and the aluminum sample. This will result in very little carbon below the sample surface and in the overall low oxygen content. The other elements were present at the levels expected based on the composition of the alloy. There is some surface enrichment of Mg and Zn where the Mg enrichment is slightly more pronounced. In order to confirm these results, two additional exposures to Mars gas were conducted: a shorter one for two days and a longer one for two weeks.

5. Three-day and two-week exposure to Mars gas

The results from the surface analysis of the AA7075-T73 aluminum alloy samples exposed for three days and two weeks to Mars gas are available in NASA Technical Publication 2017-219743. The samples that were exposed for three days to the Mars gas had a lower content of oxygen and aluminum oxide than the sample that was exposed for one week and, as it was expected, the sample exposed for two weeks had a higher content of oxygen and a thicker aluminum oxide layer than the sample exposed for one week. The carbon inclusion into the oxide layer was minimal if at all. This is different from what was observed when the alloy was exposed to pure CO₂ under the same conditions of temperature and pressure.

Figure 16. Survey scan and depth profile data collected over the scribed area of an AA7075-T73 alloy sample exposed to Mars Gas for one week at a temperature of 20°C and a pressure of 700 Pa.

Figure 17. Depth profile data collected over the scribed area of an AA7075-T73 alloy sample, immediately after exposure to Mars gas for one week, zoomed in for 0-500 seconds etch time (left image) and for 0-10 atomic percentage (right image).
Figure 18. Depth profile data, for individual elements, collected over the scribed area of an AA7075-T73 alloy exposed to Mars gas for one week at a temperature of 20°C and a pressure of 700 Pa.

Figure 19. Selected spectra of individual element scans from the depth profile data collected over the scribed area of an AA7075-T73 alloy sample exposed to Mars gas for one week at room temperature and a pressure of 700 Pa (7 mbar).

X. Conclusions

Our literature search on the available data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials, used for spacecraft and structures to support long-term surface operations on Mars, and the Mars environment as it was first suggested by F.J. Martin-Torres et al. and recommended in the “Mars Science Goals, Objectives, Investigations, and Priorities: 2015 Version,” prepared by the Mars Exploration Program Analysis Group (MEPAG) Goals Committee.
The quest on Mars has been to “follow the water.” Water is critical for life as we know it and it is also critical for corrosion, given that an aqueous electrolyte solution is one of the critical requirements for corrosion to occur. It is important to note that some data relevant to corrosion on Mars is available from investigations and experiments that were designed to look for evidence of life on Mars. Oxidants were hypothesized as being responsible for the lack of organics found by the Viking mission. The presence of perchlorates in Mars regolith was identified by NASA’s Phoenix Lander in 2009, and demonstrated as transient liquid brines on September 2015. These findings are relevant to corrosion since oxidants can corrode materials and transient liquid brines can serve as the electrolyte solution that supports corrosion. Furthermore, the finding, by J. Wadsworth and C. S. Cockell in 2017, that perchlorates become more bactericidal when irradiated with simulated Martian UV flux, and that other components of the Martian surface act in synergy with the irradiated perchlorates, has implications for the corrosive interaction between materials and the brines that are worth of investigation. It is well known that perchlorates here on Earth are powerful oxidants at high temperatures but stable at room and lower temperatures. However, it is not known how perchlorates interact with materials when they are activated by high energy radiation as it exists on Mars.

Our simple preliminary experiments, designed to look at the interaction between spacecraft AA7075-T73 aluminum alloy and the gases present in the Mars atmosphere, at 20°C and a pressure of 700 Pa, showed that there is an interaction between the small amount of oxygen present in the Mars gas and the aluminum alloy. Further studies are needed to consider other important components of the Mars environment that can affect this interaction such as: the effect of radiation on the oxidizing properties of perchlorates and the possible catalytic effects of the clays present in the Martian regolith.

These results provide justification for further investigation of the corrosion mechanism of materials relevant to long-term surface operations in support of the human exploration on Mars. The interaction between materials and the Martian environment should be studied under simulated Martians conditions that include: Martian atmospheric conditions (composition, temperature, and pressure), soil chemistry, radiation, and exposure to brine water.

Acknowledgments

The authors gratefully acknowledge the NASA Science Innovation Fund for funding this one-year project. The authors would also like to acknowledge: Patrick DeGrosse, Jr., from NASA JPL, for providing information on the M2020 mobility wheels and for supporting the proposal; Saverio D’Agostino, from NASA JPL, Charles D. Quincy, and Stanley O. Starr, from NASA KSC, for all the help and support they provided with the proposal; and James Phillips III, from NASA KSC, for his technical help on the experiments conducted in the Mars chamber.

References

1 Pourbaix, M., “Atlas d’Equilibres Electrochimiques,” 1st ed., Gauthier-Villars, Paris, 1963., p. 171.
2 Pourbaix, M., Deltombe E. C., and Vanleugenhaghe, M., “Atlas of Electrochemical Equilibria in Aqueous Solution,” 1st ed., Pergamon Press, Oxford, UK, 1966.
3 Vargel, C., “Corrosion of Aluminum,” 1st ed. Elsevier, Oxford, 2004.
4 Grotzinger, J., “The Aluminum Association’s 2014 Spring Meeting in San Antonio,” TX, URL: http://www.aluminum.org/aluminum-goes-mars [cited 17 January 2018].
5 Whitwam, R., “NASA Reports Two New Breaks in Curiosity Rover’s Wheels,” URL: https://www.extremetech.com/extreme/246398-nasa-reports-two-new-breaks-curiosity-rovers-wheel [cited 17 January 2018].
6 MEPAG Goals Committee, “Mars Science Goals, Objectives, Investigations, and Priorities,” 2015 Version, URL: https://mepag.jpl.nasa.gov/reports/MEPAG%20Goals_Document_2015_v18_FINAL.pdf [cited 17 January, 2018].
7 Martin-Torres, F. J. et al., “Transient Liquid Water and Water Activity at Gale Crater on Mars,” Nature Geoscience, Vol 8, 2015, pp. 357-361.
8 Ojha, L. et al., “Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars,” Nature Geoscience, Vol. 8, 2015, pp. 829-832.
9 Martin-Torres F. J., and Zorzano M.P., “Should We Invest in Martian Brine Research to Reduce Mars Exploration Costs?,” Astrobiology, Vol. 17, No. 1, 2017, pp. 3-7.
10 Schmidt, F., Andrieu, F., Costard, F., Kocifaj, M., and Meresescu, A.G., “Formation of Recurring Slope Lineae on Mars by Rarefied Gas-Triggered Granular Flows,” Nature Geoscience, Vol. 10, 2017, pp. 270-273.
11 “NASA Confirms Evidence that Liquid Water Flows on Today’s Mars,” https://www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-todays-mars [cited 17 January 2018].
12 Klein H. P., et al., “The Viking Biological Investigation: Preliminary Results,” Science, Vol. 194, No. 4260, 1976, pp. 99-105.
13 Oyama, V. I., Berdahl, B. J., “The Viking Gas Exchange Experiment Results from Chryse and Utopia Surface Samples,” Journal of Geophysical Research, Vol. 82, No. 28, 1977, pp. 4669-4676.

14 Yen, A. S., Kim, S. S., Hecht, M. H., Frant, M. S., and, Murray, B., “Evidence that the Reactivity of the Martian Soil is Due to Superoxide Ions,” Science, Vol. 289, 2000, pp. 1909-1912.

15 Quinn, R. C., Martucci, H. F. H., Miller, S. R., Bryson, C. E., Grunthaner, F. J., and Grunthaner, P. J., “Perchlorate Radioisotopes on Mars and the Origin of Martian Soil Reactivity,” Astrobiology, Vol. 13, No. 6, 2013, pp. 515-520.

16 Kerr, R. A., “Pesky Perchlorates all over Mars,” Science, Vol. 340, No. 6129, 2013, pp.138.

17 Kounaves, S., Carrier, B. L., O'Neil, G. D., Stroble, S. T., and Claire, M.W., “Evidence of Martian Perchlorate, Chlorate and Nitrate in Mars Meteorite EETA79001: Implications for Oxidants and Organics,” Icarus, Vol. 229, 2014, pp. 206-213.

18 David L., “Curiosity’s Wheel Damage: Effects of Corrosion?,” URL: http://www.leonarddavid.com/curiositys-wheel-damage-effects-of-corrosion/ [cited 17 January, 2018].

19 Leshin, L. et al., “Volatile, Isotope and Organic Analysis of Martian Fines with the Mars Curiosity Rover,” Science, Vol. 341, No. 6153, 2013, pp. 1-9.

20 Hecht M. H., et al., “Detection of Perchlorate and the Soluble Chemistry of Martian Soil at The Phoenix Lander Site,” Science, Vol. 325, No. 5936, 2009, pp. 64-67.

21 Navarro-Gonzalez, R., Vargas, E., de la Rosa, J., Raga, A.C., and McKay, C.P., “Reanalysis of the Viking Results Suggests Perchlorate and Organics at Midlatitudes on Mars,” Journal of Geophysical Research, Vol. 115, E12010, 2010, pp. 1-10.

22 Keller J. M., et al., “Equatorial and Midlatitude Distribution of Chlorine Measured by Mars Odyssey GRS,” Journal of Geophysical Research, Vol. 111, E03S08, 2006, pp. 1-18.

23 Feldman W.C., et al., “Global Distribution of Near-Surface Hydrogen on Mars,” Journal of Geophysical Research, Vol. 109, E09006, 2004, pp. 1-13.

24 Archer, P. D. et al., “Abundances and Implications of Volatile-Bearing Species from Evolved Gas Analysis of the Rocknest Aeolian Deposit, Gale Crater, Mars,” Journal of Geophysical Research: Planets, Vol. 119, 2014, pp. 237-254.

25 Braverman, L. E., He X., Pino S., et al., “The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term,” The Journal of Clinical Endocrinology & metabolism, Vol 90, No. 2, 2005, pp. 700–706.

26 Urbansky, E. T. “Perchlorate Chemistry: Implications for Analysis and Remediation,” CRC Press LLC, 1998, URL: https://clu-in.org/download/contaminantfocus/perchlorate/urbansky2.pdf [cited 18 January, 2018].

27 Brown G. M., and Gu, B., “The Chemistry of Perchlorate in the Environment,” Perchlorate: Environmental Occurrence, Interactions and Treatment, edited by B. Gu, and J. D. Coates, Springer, New York, 2006, Chapter 2.

28 Attaway, H. and, Smith, M., “Reduction of Perchlorate by an Anaerobic Enrichment Cuture,” Journal of Industrial Microbiology, Vol. 12, No. 6, 1993, pp. 408-412.

29 Mendiratta, S. K., Dotson, and Brooker, R. T., “Perchloric Acid and Perchlorates,” Kirk-Orthmer Encyclopedia of Chemical Technology, 4th Ed., edited by J. I. Kroschwitz, and M. Howe-Grant, Vol.18, John Wiley and Sons, New York, 1996.

30 Singh, G., Kapoor, I.P.S., and Dubey, S., “Kinetics of Thermal Decomposition of Ammonium Perchlorate with Nanocrystals of Binary Transition Metal Ferrites,” Propellants, Explosives, Pyrotechnics, Vol. 34, No. 1, 2008, pp. 1-6.

31 Glavin D. P., et al., “Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater,” Journal of Geophysical Research: Planets, Vol. 118, No. 10, 2013, pp. 1955-1973.

32 Conkling, J. A., and Mocella, C. J., “Chemistry of Pyrotechnics: Basic Principles and Theory,” 2nd ed., CRC Press Taylor and Francis Group, Boca Raton, 2010.

33 Turner, A. M., Abplanalp, M. J., and Kaiser, R. I., “Mechanistic Studies on the Radiolytic Decomposition of Perchlorates on the Martian Surface,” The Astrophysical Journal, Vol. 820, No. 127, 2016, pp. 1-8.

34 Parker, D. R., “Perchlorate in the Environment: The Emerging Emphasis on Natural Occurrence,” Environ. Chem., Vol. 6, Jan., 2009, pp. 10-27.

35 Catling, D. C., et al., “Possible Atmospheric Origins of Perchlorate on Mars and in the Atacama,” Journal of Geophysical Research, Vol. 115, No. E00E11, 2010, pp. 1-15.

36 Davila, A. F., Willson, D., Coates, J. D., and McKay, C. P., “Perchlorate on Mars: a Chemical Hazard and a Resource for Humans,” International Journal of Astrobiology, Vol. 12, No. 4, 2013, pp. 321-325.

37 Birbring, J.-P., et al., “Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations,” Science, Vol. 307, No. 5715, 2005, pp. 1576–1581.

38 Poulet, F., et al., “Phyllosilicates on Mars and Implications for Early Martian Climate,” Nature, Vol. 438, 2005, pp. 623–627.

39 McKnight, J. W., Greenberg, L., and Rogers, A. D., “Determining the Modal Mineralogy of Martian Soils,” Journal of Geophysical Research: Planets, Vol. 115, No. E00F12, 2010, pp. 1-10.

40 Vaniman, D. T., et al., “MSL Science Team, Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars,” Science, 343, No. 6169, 2014, pp. 1-8.

41 Wadsworth J., and Cockell, C. S., “Perchlorates on Mars Enhance the Bacteriocidal Effects of UV Light,” Scientific Reports 7, published online July 7, 2017, https://www.nature.com/articles/s41598-017-04910-3 [cited 19 January, 2018].

42 Martucci, H. F. H., “Characterization of Perchlorate Photostability under Simulated Martian Conditions,” Proceedings of the Nat. Conf. Undergrad. Res. (NCUR), 2012, pp. 1359-1363.

43 Georgiou, C. D., Zisimopoulos, D., Kalaitzopoulou, E., and Quinn, R. C., “Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues,” Astrobiology, Vol. 17, No. 4, 2017, pp. 319-336.
Lasne, J., et al., “Oxidants at the Surface of Mars: A Review in Light of Recent Exploration Results,” *Astrobiology*, Vol. 16, No. 12, 2016, pp. 977-996.

Christensen, P. R., “Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for Near-Surface Water,” *Journal of Geophysical Research: Planets*, Vol. 105, No. E4, 2000, pp. 9623-9642.

Christensen, P. R., et al., “Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover,” *Science*, Vol. 306, 2004, pp. 1733–1739.

Tsapin, A. I., et al., “Iron(VI): “Hypothetical Candidate for The Martian Oxidant,” *Icarus*, Vol. 147, No. 1, 2000, pp. 68–78.

Carter, J., Poulet, F., Bibring, J.-P., and Murchie, S., “Detection of Hydrated Silicates in Crustal Outcrops in the Northern Plains of Mars,” *Science*, Vol. 328, No. 5986, 2010, pp.1682–1686.

Ponnamperuma, C., Shimoyama, A., Yamada, M., Hobo, T., and Pal, R., “Possible Surface Reactions on Mars: Implications for Viking Biology Results,” *Science*, Vol. 197, No. 4302, 1977, pp. 455–457.

Blackburn, T. R., Holland, H. D., and Ceasar, G. P., “Viking Gas Exchange Reaction: Simulation on UV-Irradiated Manganese Dioxide Substrate,” *Journal of Geophysical Research: Solid Earth*, Vol. 84, Issue B14, 1979, pp.8391–8394.

Klein, H. P., “The Viking Biological Experiments on Mars,” *Icarus*, Vol. 34, No. 3, 1978, pp. 666–674.

Chun, S. F. S., Pang, K. D., Cutts, J. A., and Ajello, J. M., “Photocatalytic Oxidation of Organic Compounds on Mars,” *Nature*, Vol. 274, Aug. 1978, pp. 875–876.

Zent, A. P., Ichinoura, A. S., Quinn, R. C., and Harding, H. K., “The Formation and Stability of the Superoxide Radical (O$_2^-$) on Rock-Forming Minerals: Band Gaps, Hydroxylation State, and Implications for Mars Oxidant Chemistry,” *Journal of Geophysical Research*, Vol. 113, No. E09001, 2008, pp. 1-13.

Georgiou, C.D., et al., “ Evidence for Photochemical Production of Reactive Oxygen Species in Desert Soils,” *Nature Communications* [online journal], Vol. 6, URL: https://www.researchgate.net/profile/GE_Christidis/publication/276149220_Evidence_for_photochemical_production_of_reactive_oxygen_species_in_desert_soils/links/555b151308ae6943a8781893/Evidence-for-photochemical-production-of-reactive-oxygen-species-in-desert-soils.pdf [cited 23 January 2018].

Clancy, R. T., Sandor, B. J., and Moriarty-Schieven, G. H., “A Measurement of the 362 Ghz Absorption Line of Mars Atmospheric H$_2$O$_2$,” *Icarus*, Vol. 168, No. 1, 2004, pp. 116–121.

Encrenaz, T., et al., Hydrogen peroxide on Mars: evidence for spatial and seasonal variations. *Icarus*, Vol. 170, 2004, pp. 424–429.

Chyba, C. F., Squyres, S. W., and Sagan, C., “Depth to Unoxidized Material in the Martian Regolith,” 20th Lunar and Planetary Science Conference, Vol. 20, Lunar and Planetary Institute, Houston, 1989, pp. 157-158.

Bullock, M. A., Stoker, C. R., McKay, C. P., and Zent, A. P., “A Coupled Soil-Atmosphere Model of H$_2$O$_2$: on Mars,” *Icarus*, Vol. 107, No. 1, 1994, pp. 142–154.

Hartman, H., and McKay, C. P., “Oxygenic Photosynthesis and the Oxidation State of Mars,” *Planetary and Space. Science*, Vol. 43, No. 1-2, 1995, pp. 123–128.

Zent, A. P., “On the Thickness of The Oxidized Layer of The Martian Regolith,” *Journal of Geophysical Research: Planets*, Vol. 103, No. E13, 1998, pp. 31491–31498.

Abreu, C. M., Cristobal, M. J., Figueroa, R., Pena, G., and Perez, M. C., “An XPS Study On The Influence Of Nitrogen Implantation on the Passive Layers Developed on Different Tempers of AA7075 Aluminum Alloy,” *Surface and Interface Analysis*, Vol. 42, No. 6-7, 2010, pp. 592-596.