4-Amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one

Evangelia-Eirini N. Vlachou 1, Thomas D. Balalas 1, Dimitra J. Hadjipavlou-Litina 2 and Konstantinos E. Litinas 1,4*

1 Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; e.e.vlachou@gmail.com (E.-E.N.V.); thombal@hotmail.com (T.D.B.)
2 Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; hadjipav@pharm.auth.gr
* Correspondence: klitinas@chem.auth.gr; Tel.: +30-2310-997864

Abstract: The new 4-amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one was successfully prepared through the Au/TiO2-catalyzed NaBH4 activation and chemoselective reduction of the new 4-nitro-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one. The latter was synthesized by the one-pot tandem reactions of 6-hydroxy-5,7-dinitrocoumarin with p-tolylmethanol under Au/TiO2 catalysis. The dinitrocoumarin was obtained by the nitration of 6-hydroxycoumarin with cerium ammonium nitrate (CAN). The structure of the synthesized compounds was confirmed by FT-IR, HR-MS and 13C-NMR analysis. Preliminary biological tests show low anti-lipid peroxidation activity for the title compound.

Keywords: Au-nanoparticles; NaBH4; amino-substituted fused oxazolocoumarin; fused oxazolocoumarins; chemoselective reduction; 3-hydroxynitrocoumarins

1. Introduction

Coumarin derivatives are widely distributed in nature, presenting interesting biological properties such as anticoagulant, anti-inflammatory, antivirus, anticancer, antioxidant or antidiabetic [1–7]. Fused coumarins also exhibit biological activity. Especially, fused oxazolocoumarins have been tested for their antioxidant [8], antimicrobial [9], anti-inflammatory [10], photosensitizing [11] or photoreleasing of aminolevulinic acid [12] activities. There are several methodologies for the synthesis of fused oxazolocoumarins. The condensation of aminocoumarins through the one-pot Povarov reactions with aromatic aldehydes [9,13–15], acids [14], anhydrides [13,15]; or of α-amidohydroxycoumarins with anhydrides [16], POCl3 [17] or P2O5 [18] led to those products. Furthermore, substituted fused oxazolocoumarins were synthesized by the reduction of 4-hydroxy-3-nitrocoumarin in acetic anhydride in the presence of Pd/C [19], or of 6-hydroxy-4-methyl-5-nitrocoumarin acetate in acetic acid with iron powder [20], or of 3-hydroxy-3-nitrocoumarins in liquid carboxylic acids in the presence of Pd/C or PPh3 and P2O5 [8]. Recently, we prepared oxazolocoumarins by one-pot tandem reactions of α-hydroxynitrocoumarins with benzyl alcohol in toluene under catalytical conditions using gold nanoparticles supported on TiO2, by FeCl3 or by silver nanoparticles supported on TiO2 [21].

Aminocoumarins are valuable building blocks for the synthesis of fused pyridocoumarins presenting significant biological activities such as antibacterial [22], antifungal [23], antimalarial [24], antioxidant [25] and wound-healing [26]. Pyridocoumarins are prepared from aminocoumarins through the one-pot Povarov reactions with aromatic aldehydes and cyclic enol ethers [27], the reactions with vinyl ketones [28], or under Vilsmeier conditions [29] or with phenylacetylene and benzaldehydes under catalysis by I2 [30] or by other Lewis acids [25,31]. The cycloisomerization of propargylaminocoumarins, prepared from aminocoumarins, followed by oxidation, led also to pyridocoumarins under catalysis by AgSbF6 [32] or BF3.Et2O [33] or Au/nanoparticles [34].
The need for the synthesis of new compounds, to probe novel biological activity containing a heterocyclic ring fused to the pyridocoumarin moiety, led us to the synthesis of amino-substituted fused oxazolocoumarins. In continuation of our interest on fused oxazolocoumarin [8,22] and pyridocoumarin [25,33,34] derivatives, we would like to report here the synthesis of novel amine 7, through a selective reduction procedure, and the biological evaluation of the products. The reactions studied and the synthesized products are depicted in Scheme 1.

Scheme 1. Reagents and Conditions: (i) CAN (1 equiv.), CH$_3$CN, r.t. 30 min; (ii) p-tolylmethanol (5) (3 equiv.), Au/TiO$_2$ (4 mol%), toluene, sealed tube, 150 °C, 54 h; (iii) Au/TiO$_2$ (1 mol%), NaBH$_4$ (4 equiv.), MeOH, r.t. 1 h.

2. Results and Discussion

2.1. Synthesis

The starting material for this procedure was the 6-hydroxy-5,7-dinitrocoumarin (4), which was synthesized in 62% yield along with 6-hydroxy-5-nitrocoumarin (2) (22% yield) and 6-hydroxy-7-nitrocoumarin (3) (14% yield) by nitration of 6-hydroxyxocoumarin (1) with cerium ammonium nitrate (CAN) in CH$_3$CN at r.t., according to the literature [35]. In this paper, the authors obtained 3 in 50% yield using 1 equiv. of CAN, while by using 2 equiv. of CAN they isolated compound 3 in 74% yield along with compound 2 (12%). No evidence for the presence of the dinitro-derivative 4 was noticed. When we performed the above reaction with 0.5 equiv. of CAN, only compound 2 [36] (10 %) was isolated along with 85% of the starting compound 1. The spectral data of compound 4 resemble well with that given in the literature [37], where the preparation was achieved by using nitric/acetic acids.

The reaction of 4 with p-tolymethanol (5) in a sealed tube in toluene in the presence of Au/TiO$_2$ (4 mol%) at 150 °C led to 4-nitro-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (6) (45% yield) accompanied by 4-amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (7) (13%). This reaction was performed in analogy to our recent work on the synthesis of fused oxazolocoumarins by the treatment of o-hydroxynitrocoumarins with benzyl alcohol catalyzed by Au/TiO$_2$ or Ag/TiO$_2$ or FeCl$_3$ [21]. During this process, a simultaneous reduction of nitro- to amine-group and oxidation of benzyl alcohol to benzaldehyde occurred, followed by imine formation from the amine and benzaldehyde, cyclization by addition of hydroxy-group to imine and oxidation of the intermediate oxazoline to oxazole. The selective reduction of the 5-nitro group of coumarin in comparison to the 7-nitro group by the intermediate gold-hydride [21] could be attributed to a possible complexation of gold to the 3,4-double bond of coumarin. In the 1H-NMR spectrum of 6, there are two doublets at 6.42 (1 H, $J = 9.6$ Hz) and 8.28 (1 H, $J = 9.6$ Hz) for the 3-H and 4-H, respectively, and one singlet at 8.30 (1 H) for the 8-H. The chemical shift of 4-H (8.28 ppm) is downfield in comparison to 4-H (7.69 ppm) of compound 4 due possibly to de-shielding from the
oxazole-ring. The p-tolyl-group gave rise to the two doublets at 7.35 (1 H, \(J = 7.9 \) Hz) and 8.15 (1 H, \(J = 7.9 \) Hz) and one singlet at 2.43 (3 H). The HR-MS is \(m/z \ [M + H]^+ \) calcld for \(\text{C}_{17}\text{H}_{11}\text{N}_{2}\text{O}_{5} \): 323.2789, found: 323.2791.

The reduction of nitro-derivative 6 with \(\text{NaBH}_4 \) as hydride ion donor, in the presence of the catalyst \(\text{Au/TiO}_2 \), according to a recent publication for the use of \(\text{Au-NPs} \) in the reduction of nitroarenes to anilines [38], resulted to the chemoselective preparation of 4-amino-2-(p-tolyl)-7\(\text{H} \)-chromeno[5,6-d]oxazol-7-one (7) in 94% yield. This is a new compound with absorptions in FT-IR at 3446, 3356 cm\(^{-1}\) for the NH\(_2\) group. There are two doublets at 6.29 (1 H, \(J = 9.6 \) Hz) and 8.26 (1 H, \(J = 9.6 \) Hz) for the 3-H and 4-H, respectively, in the \(^1\text{H}-\text{NMR} \) spectrum of 7, a broad singlet at 4.50 ppm for the NH\(_2\) protons and one singlet at 6.61 (1 H) for the 8-H, see Supplementary Materials. This upfield shift is consistent with the structure of 7 with the oxazole-ring fused at the 5,6-position and the NH\(_2\) group at the 7-position of the coumarin moiety. If the oxazole ring is at the 6,7-position and the amine group at the 5-position of the coumarin (in a structure isomeric to 7), the 8-H would be expected to be above 7.0 ppm. In the case of 2-phenyl-6\(\text{H} \)-chromeno[6,7-d][1,3]oxazol-6-one the 8-H is at 7.54 ppm [21]. The p-tolyl group gives rise to two doublets at 7.36 (1 H, \(J = 7.9 \) Hz) and 8.15 (1 H, \(J = 7.9 \) Hz) and one singlet at 2.46 (3 H). In the \(^{13}\text{C}-\text{NMR} \), there is the upfield peak for the 8-C of the coumarin moiety at 98.1 ppm in comparison to the carbons of nitro-compound 6, see Supplementary Materials. This peak is consistent with the analogous peak (98.9 ppm) for 7-aminocoumarin [39]. The HR-MS is \(m/z \ [M + \text{Na}]^+ \) calcld for \(\text{C}_{17}\text{H}_{12}\text{NaN}_{2}\text{O}_{3} \): 315.2778, found: 315.2784.

2.2. Biology

Preliminary biological experiments were performed in vitro. Compounds 6 and 7 were tested as possible antioxidant agents and inhibitors of soybean lipoxygenase according to our previous published assays [10,25]. They did not present any interaction with DPPH at 100 \(\mu \text{M} \) after 20 and 60 min under the reported experimental conditions. The anti-lipid peroxidation activity was very low at 100 \(\mu \text{M} \) (less than 1% for compound 6 and 23% for compound 7), as tested by the 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH) protocol. No inhibition of soybean lipoxygenase was observed.

3. Materials and Methods

3.1. Materials

All the chemicals were procured from either Sigma–Aldrich Co. or Merck & Co., Inc. (St. Louis, MO, USA) Melting points were determined with a Kofler hotstage apparatus and are uncorrected. IR spectra were obtained with a Perkin–Elmer Spectrum BX spectrophotometer as KBr pellets. NMR spectra were recorded with an Agilent 500/54 (DD2) (Santa Clara, CA, USA) (500 MHz and 125 MHz for \(^1\text{H} \) and \(^{13}\text{C} \), respectively) using CDCl\(_3\) as solvent and TMS as an internal standard. \(J \) values are reported in Hz. Mass spectra were determined with a LCMS-2010 EV Instrument (Shimadzu, Kyoto, Japan) under electrospray ionization (ESI) conditions. HRMS (ESI-MS) were recorded with a ThermoFisher Scientific model LTQ Orbitrap Discovery MS. Silica gel No. 60, Merck A.G. was used for column chromatography.

3.2. Synthesis of 6-Hydroxy-5,7-dinitrocoumarin (4)

Cerium ammonium nitrate (CAN) (1.69 g, 3.08 mmol) in acetonitrile (10 mL) was added in three portions over a period of 15 min to a solution of 6-hydroxycoumarin (1) (0.5 g, 3.08 mmol) in acetonitrile (10 mL) under stirring. The reaction mixture was then stirred for 30 min (TLC-monitored) and then quenched by pouring over ice (~50 g). It was then repeatedly extracted with ethyl acetate (3 \(\times \) 10 mL). The combined extracts washed successively with sodium bisulfite solution, brine and water, and dried (\(\text{Na}_2\text{SO}_4 \)). After evaporation, the residue was subjected to column chromatography [silica gel, hexane: ethyl acetate (1:1)] to give 2 and 3 as a mixture followed by the 6-hydroxy-5,7-dinitrocoumarin (4) (0.48 g, 62 % yield). The mixture of 2 and 3 were subjected to a second column chro-
matography [silica gel, dichloromethane] to give 6-hydroxy-5-nitrocoumarin (2) (0.14 g, 22 % yield) and 6-hydroxy-7-nitrocoumarin (3) (89 mg, 14% yield).

6-Hydroxy-5,7-Dinitrocoumarin (4): Red solid, m.p. 153–155 °C (dec) (EtOH), (lit. [37]: 155–157 °C).

6-Hydroxy-5-nitrocoumarin (2): Yellow solid, m.p. 159–161 °C (EtOH), (lit. [36]: 158–160 °C).

6-Hydroxy-7-nitrocoumarin (3): Yellow solid, m.p. 231–233 °C (EtOH), (lit. [36]: 232 °C).

3.3. Synthesis of 4-Nitro-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (6)

The 6-hydroxy-5,7-dinitrocoumarin (4) (100 mg, 0.40 mmol), p-tolylmethanol (5) (145.4 mg, 1.19 mmol), 1 % Au/TiO$_2$ [156.2 mg (1.56 mg Au, 0.00793 mmol, 2 mol%)] and toluene (4 mL) were added in a sealed tube. The resulted mixture was stirred at 150 °C for 54 h. After cooling, the catalyst was removed by filtration and the solvent was concentrated under reduced pressure. The residue was subjected to column chromatography [silica gel, hexane: ethyl acetate (2:1)] to give compound 6 (57 mg, 45 % yield) followed by the 4-amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (7) (15.2 mg, 13 % yield) and unreacted compound 4 (40 mg, 40 %).

4-Nitro-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (6): Light yellow solid, m.p. 90–92 °C (MeOH). IR (KBr): 3052, 2924, 2853, 1716 cm$^{-1}$. 1H-NMR (500 MHz, CDCl$_3$) δ: 2.43 (s, 3H, CH$_3$), 6.42 (d, 1H, $J = 9.6$ Hz), 7.35 (d, 2H, $J = 7.9$ Hz), 8.15 (d, 2H, $J = 7.9$ Hz), 8.28 (d, 1H, $J = 9.6$ Hz), 8.30 (s, 1H). 13C-NMR (125 MHz, CDCl$_3$) δ: 30.9, 111.1, 116.5, 117.4, 127.4, 127.67, 127.7, 129.9, 132.2, 136.8, 145.8, 146.0, 155.5, 160.6, 164.0. LC-MS (ESI): 320 [M − H]$^-$, HR-MS (ESI), (M.W.: 322): m/z [M + H]$^+$ calcd for C$_{17}$H$_{11}$N$_2$O$_5$: 323.2789, found: 323.2791.

3.4. Synthesis of 4-Amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (7)

The catalyst, 1% Au/TiO$_2$ [12.2 mg (0.12 mg Au, 0.0006 mmol, 1 mol%)], was placed in a 5 mL flask, followed by the addition of methanol (2 mL), nitro compound 6 (20 mg, 0.062 mmol) and NaBH$_4$ (gradual addition because of hydrogen release (9.4 mg, 0.25 mmol)). The reaction mixture was then stirred at room temperature for 1 h. After the completion of the reaction (TLC-monitored), the slurry was filtered under reduced pressure to remove the catalyst and washed with methanol (~5 mL). The filtrate was evaporated under vacuum to afford the corresponding 4-amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one, (7) (17 mg, 94 % yield): Light yellow solid, m.p. 177–179 °C (hexane/ethyl acetate). IR (KBr): 3446, 3356, 2924, 2852, 1725, 1634 cm$^{-1}$. 1H-NMR (500 MHz, CDCl$_3$) δ: 2.46 (s, 3H, CH$_3$), 4.50 (brs, 2H), 6.29 (d, 1H, $J = 9.6$ Hz), 6.61 (s, 1H), 7.36 (d, 2H, $J = 7.9$ Hz), 8.15 (d, 2H, $J = 7.9$ Hz), 8.26 (d, 1H, $J = 9.6$ Hz). 13C-NMR (125 MHz, CDCl$_3$) δ: 31.0, 98.1, 111.4, 116.5, 117.4, 127.3, 127.7, 129.8, 132.2, 136.8, 145.8, 146.0, 155.5, 160.6, 164.0. LC-MS (ESI): 315 [M + Na]$^+$, 347 [M + Na + MeOH]$^+$, HR-MS (ESI), (M.W.: 292): m/z [M + Na]$^+$ calcd for C$_{17}$H$_{12}$NaN$_2$O$_3$: 325.2778, found: 325.2784.

3.5. Biological Experiments: In Vitro Assays

The compounds were dissolved in DMSO.

- Antilipid peroxidation: the AAPH protocol was followed [25].
- Lipoxygenase inhibition: according to our previous protocol [25].
- Antioxidant activity: interaction with the stable free radical DPPH (final concentration 0.05 mM) in ethanol absolute (final concentration of the tested compounds 0.1 mM) [25].

4. Conclusions

We demonstrated an efficient and chemoselective method for the synthesis of amino-substituted fused oxazolocoumarins using Au-NPs catalysis in the presence of NaBH$_4$ for the reduction of the corresponding nitro-substituted fused oxazolocoumarins. The
preliminary biological assays pointed that compound 7 presents low anti-lipid peroxidation activity.

Supplementary Materials: The following are available online, NMR and LC-MS (ESI) spectra of compound 7.

Author Contributions: Conceptualization, writing—original draft preparation, supervision, K.E.L.; performed the biological tests, review and editing the manuscript, D.J.H.-L.; performed the experiments, E.-E.N.V.; performed experiments, editing, in part, the manuscript, T.D.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by “Human Resources Development, Education and Lifelong Learning”, EDBM103, “Synthesis of Fused Pyranquinoline Derivatives with possible Biological Interest” (MIS: 5066801) and “Support for researchers with emphasis on young researchers-cycle B”, (NSRF 2014-2020), (KA1020216).

Data Availability Statement: The data presented in this study are available in this article.

Acknowledgments: “Human Resources Development, Education and Lifelong Learning”, EDBM103, “Synthesis of Fused Pyranquinoline Derivatives with possible Biological Interest” (MIS: 5066801) and “Support for researchers with emphasis on young researchers-cycle B”, (NSRF 2014-2020), (KA1020216).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S.L.; Lee, K.-H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. *Med. Res. Rev.* 2003, 23, 322–345. [CrossRef] [PubMed]
2. Fylaktakidou, K.; Hadjipavlou-Litina, D.; Litinas, K.; Nicolaides, D. Natural and Synthetic Coumarin Derivatives with Anti-Inflammatory/Antioxidant Activities. *Curr. Pharm. Des.* 2004, 10, 3813–3833. [CrossRef] [PubMed]
3. Lacy, A. Studies on Coumarins and Coumarin-Related Compounds to Determine their Therapeutic Role in the Treatment of Cancer. *Curr. Pharm. Des.* 2004, 10, 3797–3811. [CrossRef]
4. Medina, F.G.; Marrero, J.G.; Máciás-Alonso, M.; González, M.C.; Córdova-Guerrero, I.; García, A.G.T.; Osogueda-Robles, S. Coumarin heterocyclic derivatives: Chemical synthesis and biological activity. *Nat. Prod. Rep.* 2015, 32, 1472–1507. [CrossRef] [PubMed]
5. Kubrák, T.; Podgórska, R.; Stompor, M. Natural and Synthetic Coumarins and their Pharmacological Activity. *Eur. J. Clin. Exp. Med.* 2017, 15, 169–175. [CrossRef]
6. Li, H.; Yao, Y.; Li, L. Coumarins as potential anti-diabetic agents. *J. Pharm. Pharmacol.* 2017, 69, 1253–1264. [CrossRef]
7. Salehian, F.; Nadri, H.; Jalili-Baleh, L.; Youseftabar-Miri, L.; Bukhari, S.N.A.; Foroumadi, A.; Küçükkilinci, T.T.; Sharifzadeh, M.; Khoobi, M. A review: Biologically active 3,4-heterocycle-fused coumarins. *Eur. J. Med. Chem.* 2021, 212, 113034. [CrossRef] [PubMed]
8. Balalas, T.D.; Stratidis, G.; Papatheodorou, D.; Vlachou, E.; E.; Gabriel, C.; Hadjipavlou-Litina, D.; Litinas, K. E. One-pot Synthesis of 2-Substituted 4H-Chromeno[3,4-d]oxazol-4-ones from 4-Hydroxy-3-nitrocoumarin and Acids in the Presence of Triphenylphosphine and Phosphorus Pentoxide under Microwave Irradiation. *Synthesis* 2018, 2017, 105–113. [CrossRef]
9. Prasanna, B.; Sandeep, A.; Revathi, T. Green approach to synthesis of novel substituted 8H-pyrano[2,3-e]benzoazole-8-ones. *World J. Pharm. Sci.* 2014, 3, 404–411.
10. Kontogiorgis, C.; Hadjipavlou-Litina, D. Biological Evaluation of Several Coumarin Derivatives Designed as Possible Anti-Inflammatory/Antioxidant Agents. *J. Enzym. Inhib. Med. Chem.* 2003, 18, 63–69. [CrossRef]
11. Pathak, M.; Fellman, J.; Kaufman, K. The Effect of Structural Alterations on the Erythemal Activity of Furocoumarins: Psoralens ** From the Departments of Dermatology and Biochemistry, University of Oregon Medical School, Portland, Oregon and the Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan. *J. Investig. Dermatol.* 1960, 35, 165–183. [CrossRef]
12. Soares, A.M.; Hungerford, G.; Gonzáles, M.S.T.; Costa, S.P.G. Light triggering of 5-aminolevulinic acid from fused coumarin ester cages. *New J. Chem.* 2017, 41, 2997–3005. [CrossRef]
13. Sahoo, S.S.; Shukla, S.; Nandy, S.; Sahoo, H. Synthesis of novel coumarin derivatives and its biological evaluations. *Eur. J. Exp. Biol.* 2012, 2, 898–908.
14. Colotta, V.; Catarzi, D.; Varano, F.; Cecchi, L.; Filacchioni, G.; Martini, C.; Giusti, L.; Lucacchini, A. Tricyclic heteroaromatic systems. Synthesis and benzodiazepine receptor affinity of 2-substituted-1-benzopyrano[3,4-d]oxazol-4-ones, -thiazol-4-ones, and -imidazol-4-ones. *Il Farm.* 1998, 53, 375–381. [CrossRef]
15. Nofal, Z.M.; El-Zahar, M.I.; El-Karim, S.S.A. Novel Coumarin Derivatives with Expected Biological Activity. *Molecules* 2000, 5, 99–113. [CrossRef]
16. Dallacker, F.; Kratzer, P.; Lipp, M. Derivate des 2.4-Pyronons und 4-Hydroxy-cumarins. *Eur. J. Org. Chem.* 1961, 643, 97–109. [CrossRef]
17. Gammon, D.W.; Hunter, R.; Wilson, S.A. An efficient synthesis of 7-hydroxy-2,6-dimethylchromeno[3,4-d]oxazol-4-one—A protected fragment of novenamine. *Tetrahedron* **2005**, *61*, 10683–10688. [CrossRef]

18. Saikachi, H.; Ichikawa, M. Studies on Synthesis of Coumarin Derivatives. XV. On the Preparation of Ethyl Pyranobenzoxazole-carboxylates. *Chem. Pharm. Bull.* **1966**, *14*, 1162–1167. [PubMed]

19. Chantegrel, B.; Nadi, A.I.; Gelin, S. Synthesis of [1]benzopyrano[3,4-d]isoaxozol-4-ones from 2-substituted chrome-3-carboxylic esters. A re-investigation of the reaction of 3-acyl-4-hydroxycoumarins with hydroxylamine. Synthesis of 4-(2-hydroxybenzyl)isoaxozol-5-ones. *J. Org. Chem.* **1984**, *49*, 4419–4424. [CrossRef]

20. Kaufman, K.D.; McBride, D.W.; Eaton, D.C. Synthetic Furocoumarins. VII. Oxazolocoumarins from 6-Hydroxy-4-methylcoumarin. *J. Org. Chem.* **1965**, *30*, 4344–4346. [CrossRef]

21. Vlachou, E.-E.N.; Armatas, G.S.; Litinas, K.E. Synthesis of Fused Oxazolocoumarins from o-Hydroxynitrocoumarins and Benzyl Alcohol Under Gold Nanoparticles or FeCl3 Catalysis. *J. Heterocycl. Chem.* **2017**, *54*, 2447–2453. [CrossRef]

22. El-Saghier, A.M.M.; Naili, M.B.; Rammash, B.K.; Saleh, N.A.; Kreddan, K.M. Synthesis and antibacterial activity of some new fused chromenes. *Arkivoc* **2007**, *2007*, 83–91. [CrossRef]

23. Khan, I.A.; Kulkarni, M.V.; Gopal, M.; Shahabuddin, M.; Sun, C.-M. Synthesis and biological evaluation of novel angularly fused polycyclic coumarins. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 3584–3587. [CrossRef] [PubMed]

24. Levrier, C.; Balasatri, M.; Beattie, K.D.; Carroll, A.; Martin, F.; Chooumenwai, V.; Davis, R.A. Pyridocoumarin, aristolactam and aporphine alkaloids from the Australian rainforest plant Goniolothalamus australis. *Phytochemistry* **2013**, *86*, 121–126. [CrossRef] [PubMed]

25. Symeonidis, T.S.; Lykakis, I.N.; Litinas, K.E. Synthesis of quinolines and fused pyridocoumarins from N-propargylanilines or protected fragment of novenamine. *Tetrahedron* **2021**, *77*, M1237-M1240. [CrossRef]

26. Markey, M.D.; Fu, Y.; Kelly, T.R. Synthesis of Santiagonamine. *Org. Lett.* **2007**, *9*, 3255–3257. [CrossRef] [PubMed]

27. Kudale, A.A.; Kendall, J.; Miller, D.O.; Collins, J.L.; Bodwell, G.J. Povarov Reactions Involving 3-Aminocoumarins: Synthesis of 1,2,3,4-Tetrahydropyrano[2,3-c]coumarins and Pyrido[2,3-c]-coumarins. *J. Org. Chem.* **2008**, *73*, 8437–8447. [CrossRef]

28. Heber, D.; Berghaus, T. Synthesis of 5H-[1]benzopyrano[4,3-b]pyridin-5-ones containing an azacannabinoidal structure. *J. Heterocycl. Chem.* **1994**, *31*, 1353–1359. [CrossRef]

29. Heber, D.; Ivanov, I.C.; Karagiogos, S.K. The vilsmeier reaction in the synthesis of 3-substituted [1]benzopyrano[4,3-b]pyridin-5-ones. An unusual pyridine ring formation. *J. Heterocycl. Chem.* **1995**, *32*, 505–509. [CrossRef]

30. Khan, A.T.; Das, D.K.; Islam, K.; Das, P. A simple and expedient synthesis of functionalized pyrido[2,3-c] coumarin derivatives using molecular iodine catalyzed three-component reaction. *Tetrahedron Lett.* **2012**, *53*, 6418–6422. [CrossRef]

31. Majumdar, K.; Ponra, S.; Ghosh, D.; Taher, A. Efficient One-Pot Synthesis of Substituted 4,7-Phenanthrolinone, Pyrano-[3,2-f]quinoline and Pyrano[3,2-g]quinoline Derivatives by Aza-Diels-Alder Reaction. *Synlett* **2010**, *2011*, 104–110. [CrossRef]

32. Han, Y.T.; Ahn, S.; Yoon, J.A. Total Synthesis of the Natural Pyridocoumarins Goniolothalamine A and B. *Synthesis* **2018**, *51*, 552–556. [CrossRef]

33. Symeonidis, T.S.; Kallitsakis, M.; Litinas, K.E. Synthesis of [5b,6]-fused pyridocoumarins throughaza-Claisen rearrangement of 6-propargylaminocoumarins. *Tetrahedron Lett.* **2011**, *52*, 5452–5455. [CrossRef]

34. Symeonidis, T.S.; Lykakis, I.N.; Litinas, K.E. Synthesis of quinolines and fused pyridocoumarins from N-propargylaminolines or propargylylaminothiones by catalysis with gold nanoparticles supported on TiO2. *Tetrahedron* **2013**, *69*, 4612–4616. [CrossRef]

35. Ganguly, N.C.; Datta, M.; De, P.; Chakravarty, R. Studies on Regioselectivity of Nitration of Coumarins with Cerium(IV) Ammonium Nitrate: Solid-State Nitration of 6-Hydroxy-Coumarins on Montmorillonite K-10 Clay Support Under Microwave Irradiation. *Synth. Commun.* **2003**, *33*, 647–659. [CrossRef]

36. Lei, L.; Yang, D.; Liu, Z.; Wu, L. Mono-nitration of Coumarins by Nitric Oxide. *Synth. Commun.* **2004**, *34*, 985–992. [CrossRef]

37. De Araújo, R.S.A.; Guerra, F.Q.S.; Lima, E.D.O.; De Simone, C.A.; Tavares, J.F.; Scotti, L.; Scotti, M.T.; De Aquino, T.M.; De Moura, R.O.; Mendonça, F.J.B.; et al. Synthesis, Structure-Activity Relationships (SAR) and in Silico Studies of Coumarin Derivatives with AntiFungal Activity. *Int. J. Mol. Sci.* **2013**, *14*, 1293–1309. [CrossRef]

38. Fountoulaki, S.; Daikopoulou, V; Gkizis, P.L.; Tamiolakis, I.; Armatas, G.S.; Lykakis, I.N. Mechanistic Studies of the Reduction of Nitroarenes by NaBH4 or Hydrosilanes Catalyzed by Supported Gold Nanoparticles. *ACS Catal.* **2014**, *4*, 3504–3511. [CrossRef]

39. Wu, J.; Yu, J.; Wang, Y.; Zhang, P. Direct Amination of Phenols under Metal-Free Conditions. *Synlett* **2013**, *24*, 1448–1454. [CrossRef]