A CHARACTERIZATION OF MAXIMAL IDEALS IN THE FRÉCHET ALGEBRAS OF HOLOMORPHIC FUNCTIONS \(F_p \) \((1 < p < \infty)\)

ROMEO MEŠTROVIĆ

Abstract. The space \(F_p \) \((1 < p < \infty)\) consists of all holomorphic functions \(f \) on the open unit disk \(D \) for which \(\lim_{r \to 1} (1 - r)^{1/p} \log^+ M(r, f) = 0 \), where \(M(r, f) = \max_{|z| \leq r} |f(z)| \) with \(0 < r < 1 \). Stoll [5, Theorem 3.2] proved that the space \(F_p \) with the topology given by the family of seminorms \(\{ \| \cdot \|_{q,c} \} \) \(c > 0 \) defined for \(f \in F_q \) as \(\|f\|_{q,c} := \sum_{n=0}^{\infty} |a_n| \exp(-cn^{1/(q+1)}) < \infty \), is a countably normed Fréchet algebra.

Notice that for each \(p > 1 \), \(F_p \) is the Fréchet envelope of the Privalov space \(N_p \). In this paper we study the structure of maximal ideals in the algebras \(F_p \) \((1 < p < \infty)\).

1. Introduction, Preliminaries and Results

Let \(D \) denote the open unit disk in the complex plane and let \(T \) denote the boundary of \(D \). Let \(L^q(T) \) \((0 < q \leq \infty)\) be the familiar Lebesgue space on the unit circle \(T \).

The Privalov class \(N_p \) \((1 < p < \infty)\) is defined as the set of all holomorphic functions \(f \) on \(D \) such that
\[
\sup_{0 < r < 1} \int_0^{2\pi} (\log^+ |f(re^{i\theta})|)^p \frac{d\theta}{2\pi} < +\infty
\]
holds, where \(\log^+ |a| = \max\{\log |a|, 0\} \). These classes were firstly considered by Privalov in [1, pages 93–10], where \(N_p \) is denoted as \(A_q \).

Notice that for \(p = 1 \), the condition (1) defines the Nevanlinna class \(N \) of holomorphic functions in \(D \). Recall that the Smirnov class \(N^+ \) is the set of all functions \(f \) holomorphic on \(D \) such that
\[
\lim_{r \to 1} \int_0^{2\pi} |f(re^{i\theta})| \frac{d\theta}{2\pi} = \int_0^{2\pi} |f^*(e^{i\theta})| \frac{d\theta}{2\pi} < +\infty
\]
where \(f^* \) is the boundary function of \(f \) on \(T \); that is,
\[
f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})
\]
is the radial limit of \(f \) which exists for almost every \(e^{i\theta} \in T \). We denote by \(H^q \) \((0 < q \leq \infty)\) the classical Hardy space on \(D \).

It is known (see [2, 3, 4]) that the following inclusion relations hold:
\[
N^r \subset N^p \quad (r > p), \quad \bigcup_{q > 0} H^q \subset \bigcap_{p > 1} N^p, \quad \text{and} \quad \bigcup_{p > 1} N^p \subset N^+ \subset N,
\]
where the above containment relations are proper.

The study of the spaces \(N^p \) \((1 < p < \infty)\) was continued in 1977 by M. Stoll [5] (with the notation \((\log^+ H)^a\) in [5]). Further, the topological and functional properties of these spaces have been studied by several authors (see [2, 6, 7, 8] and [9–23]).
M. Stoll [5, Theorem 4.2] proved that for each $p > 1$ the space N^p (with the notation $(\log^+ H)^\alpha$ in [5]) equipped with the topology given by the metric d_p defined by

$$d_p(f, g) = \left(\int_0^{2\pi} \left(\log(1 + |f^*(e^{i\theta}) - g^*(e^{i\theta})|) \right)^p \frac{d\theta}{2\pi} \right)^{1/p}, \quad f, g \in N^p,$$

becomes an F-algebra, that is, N^p is an F-space (a complete metrizable topological vector space with the invariant metric) in which multiplication is continuous.

Recall that the function $d_1 = d$ defined on the Smirnov class N^+ by (5) with $p = 1$ induces the metric topology on N^+. N. Yanagihara [24] showed that under this topology, N^+ is an F-space.

In connection with the spaces $N^p (1 < p < \infty)$, Stoll [5] (see also [6] and [18, Section 3]) also studied the spaces $F^q (0 < q < \infty)$ (with the notation $F_1^/q$ in [5]), consisting of those functions f holomorphic on D such that

$$\lim_{r \to 1} (1 - r)^{1/q} \log^+ M_\infty(r, f) = 0,$$

where

$$M_\infty(r, f) = \max_{|z| \leq r} |f(z)| \quad (0 < r < 1).$$

Here, as always in the sequel, we will need some Stoll’s results concerning the spaces F^q only with $1 < q < \infty$, and hence, we will assume that $q = p > 1$ be any fixed number.

Theorem 1 (see [5, Theorem 2.2]). Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a holomorphic function on D. Then the following statements are equivalent:

(a) $f \in F^p$;

(b) there exists a sequence $\{c_n\}_n$ of positive real numbers with $c_n \to 0$ such that

$$|a_n| \leq \exp \left(c_n n^{1/(p+1)} \right), \quad n = 0, 1, 2, \ldots;$$

(c) for any $c > 0$,

$$\|f\|_{p,c} := \sum_{n=0}^{\infty} |a_n| \exp \left(-cn^{1/(p+1)} \right) < \infty.$$

Remark 2. Notice that in view of Theorem 1 ((a)\iff(c)), by (10) it is well defined the family of seminorms $\{\| \cdot \|_{p,c}\}_{c>0}$ on F^p.

Recall that a locally convex F-space is called a Fréchet space, and a Fréchet algebra is a Fréchet space that is an algebra in which multiplication is continuous. Stoll [5] also proved the following result.

Theorem 3 (see [5, Theorem 3.2]). The space $F^q (0 < q < \infty)$ equipped with the topology given by the family of seminorms $\{\| \cdot \|_{q,c}\}_{c>0}$ defined for $f \in F^q$ as

$$\|f\|_{q,c} := \sum_{n=0}^{\infty} |a_n| \exp \left(-cn^{1/(q+1)} \right) < \infty,$$

is a countably normed Fréchet algebra.

For our purposes, we will need the following result which characterizes the topological dual of the space F^p.

Theorem 4 (see [5, Theorem 3.3]). If γ is a continuous linear functional on F^p, then there exists a sequence $\{\gamma_n\}_n$ of complex numbers with

$$\gamma_n = O\left(\exp \left(-cn^{1/(p+1)} \right) \right), \quad \text{for some } c > 0,$$
such that
\[\gamma(f) = \sum_{n=0}^{\infty} a_n \gamma_n, \]
(12)

where \(f(z) = \sum_{n=0}^{\infty} a_n z^n \in F^p \), with convergence being absolute. Conversely, if \(\{\gamma_n\}_n \) is a sequence of complex numbers for which
\[\gamma_n = O \left(\exp \left(-cn^{1/(p+1)} \right) \right), \]
(13)

then (13) defines a continuous linear functional on \(F^p \).

Notice that the Privalov space \(N^p \) \((1 < p < \infty)\) is not locally convex (see [6, Theorem 4.2] and [12, Corollary]), and hence, \(N^p \) is properly contained in \(F^p \). Moreover, \(N^p \) is not locally bounded (see [19, Theorem 1.1]). Moreover, Stoll showed ([5, Theorem 4.3]) that for each \(p > 1 \) \(N^p \) is a dense subspace of \(F^p \) and the topology on \(F^p \) defined by the family of seminorms (10) is weaker than the topology on \(N^p \) given by the metric \(d_p \) defined by (5). Furthermore, Eoff showed ([6, Theorem 4.2, the case \(p > 1 \)]) that \(F^p \) is the Fréchet envelope of \(N^p \). For more information on Fréchet envelope, see [25, Theorem 1], [22, Section 1] and [26, Corollary 22.3, p. 210].

Remark 5. For \(p = 1 \), the space \(F_1 \) has been denoted by \(F^+ \) and has been studied by N. Yanagihara in [27, 24]. It was shown in [27, 24] that \(F^+ \) is actually the containing Fréchet space for \(N^+ \), i.e., \(N^+ \) with the initial topology embeds densely into \(F^+ \), under the natural inclusion, and \(F^+ \) and the Smirnov class \(N^+ \) have the same topological duals.

Observe that the space \(F^p \) topologised by the family of seminorms \(\{\| \cdot \|_{p,c}\}_{c>0} \) given by (10) is metrizable by the metric \(\lambda_p \) defined as \(\lambda_p(f, g) = \sum_{n=1}^{\infty} 2^{-n} \frac{\|f-g\|_{n^{1/n^p/(p+1)}}}{1+\|f-g\|_{n^{1/n^p/(p+1)}}} \) with \(f, g \in F^p \).

Since Privalov space \(N^p \) and its Fréchet envelope \(F^p \) \((1 < p < \infty)\) are algebras, they can be also considered as rings with respect to the usual ring’s operations addition and multiplication. Notice that these two operations are continuous on \(N^p \) and \(F^p \) because the spaces \(N^p \) and \(F^p \) become \(F \)-algebras.

Motivated by several results on the ideal structure of some spaces of holomorphic functions given in [28, 2, 12] and [29-35], related investigations for the spaces \(N^p \) \((1 < p < \infty)\) and their Fréchet envelopes were given in [2, 9, 12, 30, 18] and [23]. Note that a survey of these results was given in [37]. The \(N^p \)-analogue of the famous Beurling’s theorem for the Hardy spaces \(H^q \) \((0 < q < \infty)\) [29] was proved in [36]. Moreover, it was proved in [31, Theorem B]) that \(N^p \) \((1 < p < \infty)\) is a ring of Nevanlinna–Smirnov type in the sense of Mortini. The structure of closed weakly dense ideals in \(N^p \) was established in [18]. The ideal structure of \(N^p \) and the multiplicative linear functionals on \(N^p \) were studied in [2] and [23, Theorem 1]. These results are similar to those obtained by Roberts and Stoll [31] for the Smirnov class \(N^+ \).

Motivated by results of Roberts and Stoll given in [31, Section 2] concerning a characterization of multiplicative linear functionals on \(F^+ \) and closed maximal ideals in \(F^+ \), in this paper we prove the analogous results for the spaces \(F^p \) \((1 < p < \infty)\) given by Proposition 5, Proposition 6, Theorem 7 and Theorem 8.

Proposition 5. Let \(\lambda \in \mathbb{D} \) and let \(\gamma_\lambda \) be a functional on \(F^p \) defined as
\[\gamma_\lambda(f) = f(\lambda) \]
(14)

for every \(f \in F^p \). Then \(\gamma_\lambda \) is a continuous multiplicative linear functional on \(F^p \).
For $\lambda \in \mathbb{D}$, we define
\[
\mathcal{M}_\lambda = \{ f \in F^p : f(\lambda) = 0 \}. \tag{15}
\]

Proposition 6. The set \mathcal{M}_λ defined by (15) is a closed maximal ideal in F^p for each $\lambda \in \mathbb{D}$.

Theorem 7. Let γ be a nontrivial multiplicative linear functional on F^p. Then there exists $\lambda \in \mathbb{D}$ such that
\[
\gamma(f) = f(\lambda) \tag{16}
\]
for every $f \in F^p$. Moreover, γ is a continuous map.

Theorem 8. Let $p > 1$ and let \mathcal{M} be a closed maximal ideal in F^p. Then there exists $\lambda \in \mathbb{D}$ such that $\mathcal{M} = \mathcal{M}_\lambda$.

2. Proof of the Results

Proof of Proposition 5. Clearly, for each $\lambda \in \mathbb{D}$, γ_λ is a multiplicative linear functional on the space F^p. In order to show that γ_λ is a continuous functional on F^p, note that for any function $f(z) = \sum_{n=0}^{\infty} a_n z^n \in F^p$ ($z \in \mathbb{D}$) we have
\[
\gamma_\lambda(f) = f(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n. \tag{17}
\]
Clearly, the sequence $\{\gamma_n\}$ defined as $\gamma_n = \lambda^n$ $(n = 0, 1, 2 \ldots)$ satisfies the asymptotic condition (11) of Theorem 4. This together with the equality (17) implies that γ_λ is a continuous functional on F^p, and the proof is completed. \qed

Proof of Proposition 6. Notice that in view of (15), \mathcal{M}_λ is the kernel of the functional γ_λ defined on F^p by (14). From this and the fact that by Proposition 5, γ_λ is a continuous multiplicative linear functional on the space F^p, we conclude that \mathcal{M}_λ is a closed maximal ideal in F^p. \qed

Proof of Theorem 7. If we take $\gamma(z) = \lambda$, then $\gamma(z - \lambda) = 0$. If we suppose that $\lambda \notin \mathbb{D}$, then $z \mapsto 1/(z - \lambda)$ ($z \in \mathbb{D}$) is a bounded function on the closed unit disk $\overline{\mathbb{D}} : |z| \leq 1$. Therefore, $z \mapsto z - \lambda$ ($z \in \mathbb{D}$) is an invertible element of the algebra F^p. If f is any invertible element in F^p, then $1 = \gamma(1) = \gamma(f) \gamma(f^{-1})$, and thus, $\gamma(f) \neq 0$. Especially, we have $\gamma(z - \lambda) \neq 0$. A contradiction, and hence, it must be $\lambda \in \mathbb{D}$. Then consider the set
\[
(z - \lambda)F^p := \{(z - \lambda)f(z) : f \in F^p\}. \tag{18}
\]
For each $\lambda \in \mathbb{D}$, let \mathcal{M}_λ be a set defined by (15). Then obviously, $(z - \lambda)F^p \subset \mathcal{M}_\lambda$. Moreover, if $f \in \mathcal{M}_\lambda$, then by (6) and (7) easily follows that f can be expressed as a product $f(z) = (z - \lambda)g(z)$ with $g \in F^p$. Therefore,
\[
\mathcal{M}_\lambda = (z - \lambda)F^p, \tag{19}
\]
whence it follows that
\[
\mathcal{M}_\lambda \subseteq \ker \gamma, \tag{20}
\]
where $\ker \gamma$ denotes the kernel of the functional γ. By Proposition 6, \mathcal{M}_λ is a closed maximal ideal in F^p. This together with the inclusion relation (20) implies that $\mathcal{M}_\lambda = \ker \gamma$. Moreover, $\gamma(f) = f(\lambda)$ for all $f \in F^p$ and γ is continuous on F^p by Proposition 5. This completes the proof of the theorem. \qed

Proof of Theorem 8. We proceed as in [32, Theorem 2]. If we set $X = F^p/\mathcal{M}$, then in the terminology of Arens [38], X is complete, metrizable, convex complex topological division algebra. Therefore, by [38], $X \cong \mathbb{C}$. Thus, there exists a multiplicative linear functional γ
on F^p such that $M = \ker \gamma$. Then by Theorem 7, $M = M_\lambda$ for some $\lambda \in \mathbb{D}$, as asserted.

\[\square\]

References

[1] I. I. Privalov, *Boundary Properties of Analytic Functions*, Izdat. Moskovskogo Universiteta, Moscow, Russia, 1941.

[2] N. Mochizuki, “Algebras of holomorphic functions between H^p and N_+,” *Proceedings of the American Mathematical Society*, vol. 105, pp. 898–902, 1989.

[3] R. Meštrović and Ž. Pavičević, “Remarks on some classes of holomorphic functions,” *Mathematica Montisnigri*, vol. 6, pp. 27–37, 1996.

[4] Y. Iida, “Bounded subsets of classes $M^p(X)$ of holomorphic functions,” *Journal of Function Spaces*, vol. 2017, Article ID 7260602, 4 pages, 2017.

[5] M. Stoll, “Mean growth and Taylor coefficients of some topological algebras of analytic functions,” *Annales Polonici Mathematici*, vol. 35, no. 2, pp. 139–158, 1977.

[6] C. M. Eoff, “Fréchet envelopes of certain algebras of analytic functions,” *Michigan Mathematical Journal*, vol. 35, pp. 413–426, 1988.

[7] C. M. Eoff, “A representation of N_+^+ as a union of weighted Hardy spaces,” *Complex Variables, Theory and Application*, vol. 23, pp. 189–199, 1993.

[8] Y. Iida and N. Mochizuki, “Isometries of some F-algebras of holomorphic functions,” *Archiv der Mathematik*, vol. 71, no. 4, pp. 297–300, 1998.

[9] R. Meštrović, “Ideals in some rings of Nevanlinna-Smirnov type,” *Mathematica Montisnigri*, vol. 8, pp. 127–135, 1997.

[10] R. Meštrović, *Topological and F-algebras of holomorphic functions [Ph.D. Thesis]*, University of Montenegro, Podgorica, Montenegro, 1999.

[11] R. Meštrović and A. V. Subbotin, “Multipliers and linear functionals for Privalov spaces of holomorphic functions in the disc,” *Doklady Akademii Nauk*, vol. 365, no. 4, pp. 452–454, 1999 (Russian).

[12] Y. Matsugu, “Invariant subspaces of the Privalov spaces,” *Far East Journal of Mathematical Sciences*, vol. 2, no. 4, pp. 633–643, 2000.

[13] B. R. Choe and H. O. Kim, “Composition operators between Nevanlinna-type spaces,” *Journal of Mathematical Analysis and Applications*, vol. 257, pp. 378–402, 2001.

[14] R. Meštrović, “The failure of the Hahn-Banach properties in Privalov spaces of holomorphic functions,” *Mathematica Montisnigri*, vol. 17, pp. 27–36, 2004.

[15] A. K. Sharam and S.-I. Ueki, “Composition operators from Nevanlinna type spaces to Bloch type spaces,” *Banach Journal of Mathematical Analysis*, vol. 6, no.1, pp. 112–123, 2012.

[16] R. Meštrović, “On F-algebras $M^p (1 < p < \infty)$ of holomorphic functions,” *The Scientific World Journal*, vol. 2014, Article ID 901726, 10 pages, 2014.

[17] R. Meštrović and Ž. Pavičević, “Topologies on some subclasses of the Smirnov class,” *Acta Scientiarum Mathematicarum*, vol. 69, pp. 99–108, 2003.

[18] R. Meštrović and Ž. Pavičević, “Weakly dense ideals in Privalov spaces of holomorphic functions,” *Journal of the Korean Mathematical Society*, vol. 48, no. 2, pp. 397–420, 2011.

[19] R. Meštrović and Ž. Pavičević, “A topological property of Privalov spaces on the unit disk,” *Mathematica Montisnigri*, vol. 31, pp. 5–15, 2014.

[20] R. Meštrović and J. Šušić, “Interpolation in the spaces $N^p (1 < p < \infty)$,” *Filomat*, vol. 27, pp. 293–301, 2013.

[21] R. Meštrović, “On F-algebras $M^p (1 < p < \infty)$ of holomorphic functions,” *The Scientific World Journal*, vol. 2014, Article ID 901726, 10 pages, 2014.

[22] R. Meštrović, “Topological and functional properties of some F-algebras of holomorphic functions,” *Journal of Function Spaces*, vol. 2015, Article ID 850709, 6 pages, 2015.

[23] R. Meštrović, “Maximal ideals in some F-algebras of holomorphic functions,” *Filomat*, vol. 29, pp. 1–5, 2015.

[24] N. Yanagihara, “Multipliers and linear functionals for the class N^+,” *Transactions of the American Mathematical Society*, vol. 180, pp. 449–461, 1973.

[25] J. H. Shapiro, “Mackey topologies, reproducing kernels, and diagonal maps on Hardy and Bergman spaces,” *Duke Mathematical Journal*, vol. 40, pp. 187–202, 1976.

[26] J. E. Kelley, I. Namioka et al., *Linear topological spaces*, Princeton, 1963.

[27] N. Yanagihara, “The containing Fréchet space for the class N^+,” *Duke Mathematical Journal*, vol. 40, no. 1, pp. 93–103, 1973.
[28] H. O. Kim, “On closed maximal ideals of M,” *Proceedings of the Japan Academy A*, vol. 62, pp. 343–346, 1986.

[29] A. Beurling, “On two problems concerning linear transformations in Hilbert space,” *Acta Mathematica*, vol. 81, pp. 239–255, 1949.

[30] J. W. Roberts and M. Stoll, “Prime and principal ideals in the algebra N^+,” *Archiv der Mathematik (Basel)*, vol. 27, no. 4, pp. 387–393, 1976; Correction, vol. 30, no. 1, p. 672, 1978.

[31] J. W. Roberts and M. Stoll, “Composition operators on F^+,” *Studia Mathematica*, vol. 57, pp. 217–228, 1976.

[32] M. Stoll, “A characterization of $F^+ \cap N$,” *Proceedings of the American Mathematical Society*, vol. 57, no. 1, pp. 97–98, 1976.

[33] W. S. McVoy and L. A. Rubel, “Coherence of some rings of functions,” *Journal of Functional Analysis*, vol. 21, pp. 76–87, 1976.

[34] M. von Renteln, “Ideals in the Nevanlinna class N,” *Mitteilungen aus dem Mathematischen Seminar Gießen*, vol. 123, pp. 57–65, 1977.

[35] R. Mortini, Zur Idealstruktur von Unterringen der Nevanlinna-klasse N, *Séminaire de Mathématique de Luxembourg*, vol. 1, pp. 81–91, 1989.

[36] R. Meštrović and Ž. Pavičević, “The logarithmic analogue of Szegö’s theorem,” *Acta Scientiarum Mathematicarum*, vol. 64, pp. 97–102, 1998.

[37] R. Meštrović and Ž. Pavičević, “A short survey of the ideal structure of Privalov spaces on the unit disk,” *Mathematika Montisnigri*, vol. 32, pp. 14–22, 2015.

[38] R. Arens, “Linear topological division algebras” *Bulletin of the American Mathematical Society*, vol. 53, pp. 623–630, 1947.

University of Montenegro, Maritime Faculty Kotor, Dobrota 36, 85330 Kotor, Montenegro, e-mail: romeo@ucg.ac.me