Anatomia diagnostyczna i diagnostyka patologii strefy entezy pierścienia rotatorów

Diagnostic anatomy and diagnostics of enthesal pathologies of the rotator cuff

Zbigniew Czyrny

Adres do korespondencji: Praktyka Prywatna, ul. Magnolii 8, 05-126 Michałów-Grabina, Polska, e-mail: zbigniew.czyrny@wp.pl, www.czyrny.pl

Streszczenie

Anatomia szczegółowa, jakiej wymaga nowoczesna diagnostyka obrazowa, jest podstawą zrozumienia obrazów diagnostycznych oraz natury diagnozowanej choroby. Celem pracy jest przedstawienie nowego modelu anatomicznego struktur mięśniowo-ścięgnowych i torebkowo-więzadłowych o kompleksowej nazwie pierścień rotatorów, na podstawie schematów anatomicznych i anatomicznej diagnostyki (ultrasonografia i rezonans magnetyczny) pierścienia z zastosowaniem koncepcji rdzeni ścięgnowych. Omawiane są odpowiednie warstwy tkankowe pierścienia rotatorów. W części diagnostycznej przedstawiono niektóre patologie entezy ramiennej pierścienia rotatorów.

Materiał i metoda:

Przeanalizowano najnowsze dane z badań anatomicznych struktury warstw pierścienia rotatorów – ich lokalizację, wymiary i strukturę w badaniach ultrasonograficznym i rezonansu magnetycznego.

Wnioski:

Pierścień rotatorów powinien być rozpatrywany jako wielowarstwowa struktura składająca się z przeplatających się i zespalających się włókien ścięgien i kompleksu torebkowo-więzadłowego spełniających różne funkcje stańno-dynamiczne. Grubość tych warstw jest porównywalna, stąd duże znaczenie ma świadomość, że patologie kompleksu torebkowo-więzadłowego mogą stać się poważną przeszkodą dla prawidłowego funkcjonowania stawu ramiennoj, mając istotny wpływ na zachowanie się całego pierścienia rotatorów. Zrozumienie anatomicznej funkcji warstw pierścienia rotatorów wyjaśnia część zagadki tworzenia się hydroksyapatytowych jam wapiennych pomiędzy warstwami ścięgien/kompleksu. Jamy te są konsekwencją uszkodzeń entezy pierścienia rotatorów na granicy przejścia warstwy ścięgnowej i torebkowo-więzadłowej. Takie uszkodzenie entezy otwiera drogę do wypełniania już istniejących rozwarstwień ścięgno-kompleksu oraz aktywnego ich rozlaminowywania poprzez ciągłe wypełnianie materiałem wapiennym.
Diagnostic anatomy and diagnostics of enthesal pathologies of the rotator cuff

Abstract
Detailed anatomy, crucial in modern high-definition diagnostics imaging, is a base for understanding diagnostic images and the nature of the diagnosed disease. The aim of this paper is presentation of a new anatomical model of the rotator cuff, which includes definition of tendinous and capsule-ligamentous layers as equally important to rotator cuff function understanding. Schematic and diagnostic (ultrasonography, magnetic resonance imaging) anatomy of the rotator cuff based on the core tendon concept is presented. Appropriate tissue layers of the cuff are discussed in detail. In the diagnostics part some enthesal pathologies of the rotator cuff are presented.

Material and methods: New anatomical data was analyzed in the context of rotator cuff layers – their presence, thickness and structure observed on magnetic resonance imaging and ultrasonographic images.

Conclusions: Rotator cuff should be regarded as a multilayer structure consisting of fused fibers of tendons and capsuloligamentous complex. The thickness of these layers is comparable therefore it is important to realize that capsular pathologies may become a serious obstacle to normal shoulder joint function. Understanding of anatomical rotator cuff layers explains the formation of calcific cavities within the rotator cuff. In fact between layers of the cuff. Calcific cavities are a sequelae of chronic enthesopathy/enthesal tear with hydroxyapatite filling and probably delaminating the tendinous layer from the capsuloligamentous one.

Key words rotator cuff, anatomy, enthesopathy, US, MRI

Wstęp
W opinii wielu diagnostów oraz chirurgów stożek rotatorów jest jedynie strukturą ścięgnistą. Własne badania analizujące tę strukturę wykazały jednoznacznie, że jest to złożony kompleks, który składa się z zewnętrznej warstwy ścięgnistej i wewnętrznej torebkowo-więzadłowej. Zgodnie z własnymi niepublikowanymi pomiarami grubość tej wewnętrznej warstwy kompleksu torebkowo-więzadłowego dochodzi do 2, a nawet 3 mm, co stanowi najczęściej około 1/3 do 1/2 grubości pierścienia rotatorów, rozumianego jako kompleks ścięgnisto-torebkowo-więzadłowy.

Najnowsze wysokiej klasy urządzenia diagnostyczne, takie jak USG i RM, jak również aktualne badania anatomiczne pozwalają na precyzyjną identyfikację i diagnostykę struktur powyższego pakietu struktur torebkowo-więzadłowych. Obejmuje on kompleks przednio-dolny w strefie podłopatkowej i kompleks górny w strefie nadgrzebieniowej i podgrzebieniowej oraz struktury ścięgniste mięśni pierścienia rotatorów.

Badania anatomiczne i diagnostyczne wykazują, że sformułowanie pierścieni rotatorów powinno dotyczyć kompleksu struktur torebkowo-więzadłowych stawu ramiennego oraz mięśni/ścięgien mm. podłopatkowego, nadgrzebieniowego, podgrzebieniowego i oblego mniejszego.

Schemat anatomii strefy nadgrzebieniowej i podgrzebieniowej w przekroju czołowym skośnym przedstawia ryc. 1.

Kompleks górny składa się z więzadł kruczo-ramiennego, obrąbkowo-ramiennego górnego, kruczo-

Introduction
Many diagnostic imaging specialists as well as orthopedic surgeons think that the rotator cuff is a structure built of tendons. Own investigation show clearly that rotator cuff is a complex which consists of outer tendinous layer and inner capsuloligamentous complex (CLC). My own unpublished data shows that the thickness of the CLC reaches up to 2–3 mm, and that most frequently is a 1/3 to 1/2 of the rotator cuff thickness. State of the art diagnostic imaging tools such as US and MRI as well as newest anatomical data allow us today to precisely and separately diagnose ligamentous and tendinous structures of the shoulder’s rotator cuff.

US and MRI images published until now describe all tendinous-ligamentous structures between the scapula and humeral tubercles as tendons.

In fact recent anatomical data published prove beyond any doubt that this a complex structure combined of a ligamentous (superior and anteroinferior complex) and tendinous layers.

The supraspinatus/infraspinatus zone is schematically presented in fig. 1.

Superior complex consists of coracohumeral ligament, superior glenohumeral ligament, coracoglenoid and for the first time described by Pouliart in 2006 superior posterior glenohumeral ligament. The latter one makes a posterior limb of the superior complex and distally interweaves through a rotator cable with superior glenohumeral ligament and coracohumeral ligament (anterior limb of the superior complex). There are many anatomical variants of the superior complex built.
Superior as well as anterior-inferior complex can be depicted by both US and MRI as separate from supraspinatus, infraspinatus and subscapularis tendon layers of tissue with different fiber orientation in dynamic US inspection. US seems much more precise in visualization of the superior complex and rotator cuff tendons(3). MRI gets on top when we need to know what happens to the bone underneath the enthesis. The area of tendinous and superior complex fiber fusion layer may be therefore wrongly interpreted as delamination zone within the tendon.
Diagnostic anatomy and diagnostics of enthesal pathologies of the rotator cuff

Diagnostic anatomy of the rotator cuff

The key point to understanding rotator cuff anatomy and later pathologies is the structure of muscle and core tendons\(^4\) of the subscapularis, supraspinatus, infraspinatus and teres minor muscles. Those muscles have vast scapular insertions where the muscle attaches via small core tendons and directly attached bands of endomysium and perimysium.

Their distal core tendons run inside the muscle (pen-nate) (fig. 2).

Core tendons appear on the inner surface of the muscles (become semipennate) just laterally to the plane of acetabulum (figs. 3, 4). Starting from here their fibers touch the CLC and start to intermingle their fibers to create a tendon-complex fusion. The fusion gradually becomes full towards the enthesis (fig. 5).

As for the US visualization of the cuff any plane can be chosen especially when the images are presented in real-time mode when a different fiber direction of

Ryc. 4. Przekrój strzałkowy skośny RM około 6–7 mm bocznie od ryc. 3. Obrys niebieski – kompleks górny, obrys czerwony i strzałka – zarysy i grubość brzusza mięśnia nadgrzebiennieowego, obrys czarny – rdzeń ścięgnotowy nadgrzebiennieowy i ścięgno podrzędzeniowe. W tym rejencie włókien ścięgien i kompleksu torebkowo-więzadłowego ulegają przemieszaniowi/figuracji

Fig. 4. MRI sagittal oblique section approx 6–7 mm laterally to the image from fig. 3. Blue dotted margins – superior complex, red dotted margins and red double arrow – supraspinatus muscular layer, black dotted margins – intramuscular core tendons of supraspinatus and infraspinatus muscles. At this level tendinous layer and ligamentous complex begin to fuse their fibers

Ryc. 5. Przekrój strzałkowy skośny RM około 6–7 mm bocznie od ryc. 4, w okolicy bocznego szczytu wyrostka barkowego łopatki. Obrys czarno-niebieski – zarys ścięgniastej (czarna) oraz torebkowo-więzadłowej (niebieska) powierzchni pierścienia rotatorów. Jest to już strefa fuzji włókien ścięgien i kompleksu torebkowo-więzadłowego

Fig. 5. MRI sagittal oblique section approx. 6–7 mm laterally to the image from fig. 4 – at the edge of the acromion. Blue dotted margin – superior complex side, black dotted margin – tendinous side of the rotator cuff

i USG, ze wskazaniem autora na badanie USG jako dokładniejsze i posiadające możliwość badania struktur pierscienia rotatorów w ruchu oraz wymuszo-nych pozycjach. Oba badania rozróżniają warstwową budowę pierscienia, wykazującą zróżnicowany układ i wymiary pasm ścięgien i kompleksu torebkowo-więzadłowego. Badanie USG jest bardziej precyzyjne od RM w diagnostyce struktury i powierzchni entez – w obrębie warstwy korowej i gąbczastej kości.

Anatomia diagnostyczna pierscienia rotatorów

Elementem kluczowym dla zrozumienia anatomii pierscienia rotatorów jest szczegółowa budowa anatomiczna rdzeni ścięgien i ścięgień mięśni\(^4\) pod-łopatowego, nadgrzebienniowego, podrzędzeniowe-go i oblego mniejszego oraz ich relacji z kompleksem torebkowo-więzadłowym.
Ta grupa mięśni ma rozległe przyczepy łopatkowe, które zawierają rdzenie ścięgienne (bez odcinka ścięgna) oraz bezpośrednie przyczepy endomysisu i perimysisu.

Ich rdzenie ścięgienne obwodowe biegną śródmięśniowo (ryc. 2) i mają formę pierzastą.

Dopiero bocznie od panewki stawu ramiennego pojawiają się na wewnętrznej powierzchni swoich mięśni jako rdzenie ścięgienne (bez odcinka ścięgna) oraz bezpośrednie przyczepy endomysisu i perimysisu.

W badaniu USG pierścienia rotatorów dobró płaszczyn obrazowania należy dopasować do pozycji/przebiegu ścięgna. Generalnie stosuje się przekroje

the ligamentous complex and tendons can be much better visualized. Some US images of the cuff are shown in figs. 6–9.

Pathologies of the enthesis zone of the rotator cuff

Magnetic resonance and ultrasonographic imaging are the main two methods used for assessment of the rotator cuff of the shoulder nowadays. Both methods have advantages over the other and used together give the fullest picture of rotator cuff pathologies.

Recent literature helps to explain not only the structure of rotator cuff pathologies but also their nature and to some extent their origin\(^1\,^2\,^4\).
Diagnostic anatomy and diagnostics of enthesal pathologies of the rotator cuff

Firstly it needs to be stressed that the cuff consists of two comparable layers – tendinous and capsuloligamentous. Secondly the layers have both different and similar anatomical and biomechanical properties. The internal, capsuloligamentous, connects bone to bone (scapular acetabulum to collum anatomicum of the humerus), is passive and less susceptible to elongation. The external – tendinous, connects bone to bone (fossa subscapularis, supraspinalis and infraspinalis to tuberculum minor and major of the humerus) is active and more susceptible to elongation.

The pivotal area is where both layers attach to the humerus. The place where they attach one next to and over another is where the bone undergoes shearing stress and may produce most peculiar pathologies (fig. 10).

Podłużne i poprzeczne, jednak przewagą badania USG nad RM jest możliwość dowolnego doboru prze- kroju w celu jak najlepszego uwidocznienia badanej struktury i jej patologii.

Patologie strefy entez pierścienia rotatorów

Rezonans magnetyczny i ultrasonografia są dwoma podstawowymi metodami oceny struktury pierścienirotatorów. Obie metody mają swoje mocne i słabe strony, stąd najpełniejszy obraz patologii pierścieni rota torów uzyskuje się po wykonaniu obu badań. Ważne dla zrozumienia obrazów patologii pierścienia rotatorów jest posiadanie prawidłowej wiedzy na te mat badanych struktur, co szczęśliwie zapewnia nam nowoczesna literatura anatomiczna\(^{(1,2,4)}\).
Pierwszym istotnym elementem nowego spojrzenia na pierścienie rotatorów jest porównywalna grubość warstw ścięgnistych i torebkowo-więzadłowych w strefie podłopatkowej, nadgrzebieniowej i podgrzebieniowej. Mają one zarówno podobne, jak i odmienne właściwości anatomiczno-biomechaniczne.

Warstwa wewnętrzna pierścienia – torebkowo-więzadłowa – łączy elementy kostne łopatki z kością ramienną. Jest to warstwa pasywna (nie posiada aktywnych elementów kurczliwych) i relatywnie mało podatna na wydłużenie. Warstwa zewnętrzna – ścięgnista – również łączy elementy kostne łopatki z kością ramienną, jednak obecność brzusców mięśniowych zmienia jej charakterystykę na aktywną/dynamiczną i bardziej podatną na wydłużenie.

Z punktu widzenia entezopatii, czyli uszkodzeń przyzepsu ramienno-teczki pierścienia, bardzo istotnym punktem jest strefa styku/fuzji obu warstw w polu przyzepsu ramienno-teczki i w jego bezpośrednim sąsiedztwie. Jest to strefa, w obrębie której generowane są siły ścinające, co może sprzyjać powstawaniu różnorodnych patologii urazowych.

USG wydaje się badaniem bardziej czułym i specyficznym w detekcji patologii pierścienia rotatorów i jego entezy ramiennej. Badanie to potrafi uwidocznić cienką warstwę chrząstkę błonięcką pierścienia rotatorów w strefach podłopatkowych, nadgrzebieniowych i podgrzebiennych. Najbardziej charakterystycznymi elementami uszkodzeń przyzepsu ramienno-teczki są drobne, ultraszbowe obwodki warstwy chrzęstkowej (ryc. 11). Ultrasound seems more sensitive and convincing as to the rotator cuff and its enthesis pathologies detection. Since it can show the fibrocartilaginous layer of the cuff’s enthesis (fig. 7) it can also show usually subclinical early-stage damage if that layer (fig. 11) and subsequent tears of the cuff within and away from the insertion (figs. 12 and 13).

The most characteristic elements of the rotator cuff’s humeral enthesis damage/tear are small collagenous and/or mineralized/calcified scars reaching into the elements of the cuff or between its layers. Blurring of the smooth enthesis’ margin, erosions and deep

Ryc. 11. Drobne blizny po mikrouszkodzeniu warstwy chrzęstnej entezy w strefie górnego kompleksu i na granicy warstwy ścięgnowej (strzałki)

Fig. 11. Scars after a microtear of the enthesis fibrocartilage at the border between the tendinous and the ligamentous layers (left arrow) of the rotator cuff as well as within the ligamentous layer (right arrow)

Ryc. 12. Podłużny (lewy) i poprzeczny (prawy) obraz USG częściowego uszkodzenia strefy entezy pierścienia rotatorów w warstwie wewnętrznej ścięgnowej i zewnętrznej torebkowo-więzadłowej z ubytkiem warstwy chrzęstnej oraz płatką nadżerką/destrukcją warstwy korowej entezy (pomiary)

Fig. 12. Longitudinal (left) and transverse (right) US image of the rotator cuff partial tear at the border between the tendinous/ligamentous layers with a faint erosion of the cortical bone of the enthesis (measurements)

Ryc. 13. Pacjent z poprzedniej ryciny, przekrój podłużny. Na przekroju tym wyraźnie widoczna strefa delaminacji (lub blizny po delaminacji) ścięgna/kompleksu

Fig. 13. Patient from previous figure. Enthesis and delamination tear of the cuff at the border between the tendinous/ligamentous layers with a faint erosion/deformation of the cortical bone of the enthesis
vløkniste i/lub zmineralizowane blizny „wnikające” w strukturę ścięgna/kompleksu lub pomiędzy te dwie warstwy, zatarcie gładkiego zarysu/nadżerki entez i głębokie nadżerki/geody w polu i pod polem przyczepu. Spotyka się również pewną różnorodność form mieszanych uszkodzeń.

W badaniu USG nie można w tak dokładny sposób jak w RM uwidocznić struktury głębokich warstw przyczepu oraz kości gąbczastej głowy kości ramiennej, pseudocysts within and under the entesis. Lesions listed above may be observed in combinations.

The MRI in turn can depict the rest of the disease (figs. 14 and 15), reaching deep into the bone which may in US assessment (figs. 12 and 13) seem small and easy to heal. So despite the superior resolution of the US so useful in depiction minor cuff injuries and scars the MRI seems to be important in confirmation/
A specific form of chronic enthesis damage at the border between the tendinous and capsuloligamentous layers is formation of calcific/hydroxyapatite cavities. These cavities are a sequelae of enthesis tear/decomposition at the border of the tendinous and capsuloligamentous complex. Chronic delamination shearing forces generated between tendon and capsuloligamentous complex within the layer corresponding to the enthesis tear create a space for a cavity to become (fig. 18). The precise mechanism of the cavity’s creation is unknown to author’s knowledge.

Mineral parts besides filling and probably creating a second delaminating force, may make deep incrustations into the structure of both the tendons and the exclusion of those bony surprises that can alter clinical approach to the cuff pathology.

Of course not only small lesions of the cuff can be visualized by the US examination. The larger ones too (fig. 16). US is sensitive in increased perfusion detection, which indicates the presence of vital tissue. Additionally US can indicate precisely which layer, tendinous or ligamentous, is a most likely pain generator. Frequently sites of cuff injury do not generate pain at pressure.

In many cases of rotator cuff tears a dynamic examination (not available in other diagnostic imaging methods) helps to establish a final diagnosis.

A specific form of chronic enthesis damage at the border between the tendinous and capsuloligamentous layers is formation of calcific/hydroxyapatite cavities. These cavities are a sequelae of enthesis tear/decomposition at the border of the tendinous and capsuloligamentous complex. Chronic delamination shearing forces generated between tendon and capsuloligamentous complex within the layer corresponding to the enthesis tear create a space for a cavity to become (fig. 18). The precise mechanism of the cavity’s creation is unknown to author’s knowledge.
Specyficzną formą przewlekłego uszkodzenia entezy na granicy ściegien/kompleksu torebkowo-więzadłowego jest tworzenie jam wapiennych. Jamy te powstają poprzez uszkodzenie entezy na granicy ściegien i kompleksu i przewlekłe rozlaminowywanie tych warstw w niewyjaśnionym, według wiedzy autora, mechanizmie "wpompowywania" drobin hydroksyapatytów z kości do strefy rozwarstwienia (ryc. 18). Drobiny mineralne, poza wypełnianiem samego rozwarstwienia, mogą inkrustować głęboko ścianę ściegienistą i torebkowo-więzadłową jamy. W ten sposób tworzą się jamy o wymiarach przekraczających nawet 20×20 mm i grubości przekraczającej czasem naturalną grubość pierścienia rotatorów.

Konsystencja jam wapiennych może różnić się w zakresie od rozwodnionej pasty do zębów do twardej kredy szkolnej. Historyczna nazwa tendinitis ossificans czy tendinitis calcificans/calcarea jest błędna, ponieważ nie mamy w tej patologii do czynienia z zapaleniem, lecz z uszkodzeniem specyficznej lokalizacji entezy ramiennej pierścienia rotatorów, czyli entezopatią i dziwacznym procesem wypełniania uszkodzenia materiałem pochodzenia kostnego.

Historical name tendinitis ossificans, or tendinitis calcificans/calcarea is false because the pathology is not related to inflammation but to chronic damage of the enthesis in the specific location. And that means enthesopathy in general sense or enthesal tear in specific sense with peculiar process of filling delaminated spaces and their walls with bone-originated material.

Piśmiennictwo/References

1. Pouliart N, Somers K, Eid S, Gagey O: Variations in the superior capsuloligamentous complex and description of a new ligament. J Shoulder Elbow Surg 2007; 16: 821–836.
2. Pouliart N, Somers K, Gagey O: Arthroscopic glenohumeral folds and microscopic glenohumeral ligaments: the fasciculus obliquus is the missing link. J Shoulder Elbow Surg 2008; 17: 418–430.
3. Czyrny Z: Postępy w diagnostyce ultrasonograficznej układu ruchu. Ultrasonografia 2010; 10: 55–64.
4. Czyrny Z: Muscles – histology, micro/macronatomy and US anatomy, a brand new perspective. Ultrasonografia 2012; 12: 9–27.