Determination of effective photon lifetime in nitrogenic laser in one and two dimension

S. N. Hosseinimotlagh, M. T. Yazdani, H. Zare

Abstract: Since one of the most valuable measurable parameters in laser, called effective cavity lifetime, gives useful information about laser, this paper aims to study the description of its dependency, \(\tau_{\text{eff}} \), on geometrical characteristics of \(\text{N}_2 \)-laser, electrodes length and amplifier gap separation. First based on the studies carried out on it, an oscillator-amplifier laser is used which operates under moderate current density conditions; Then in order to obtain a theoretical relation for effective cavity lifetime and to demonstrate the mentioned dependency using rate equations, at first a one-dimensional method is used for the photon density. Since the answers of rate equations in an oscillator-amplifier laser are complicated, a single-oscillator based models offered to make rate equations simpler. In this model, at first it is supposed that the photon density of inner part of the amplifier could be
\[
\phi(z,t) = n^{\text{ph}}(0,t) \exp(g_0(z)z),
\]
then rate equations are used for this density and since \(g_0 \) is a function of \(z \) or amplifier electrode length \(Z \), the cavity effective lifetime is calculated for equivalent oscillator. Then, since most of studies carried out in one dimension, so for approaching to more actual system a two-dimensional method is used for the photon density. So, we consider \(Z \) and \(Y \), which \(Z \) is along amplifier electrodes length and \(Y \) is along gaps separation. Supposing that \(Z \) and \(Y \) are independent on the photon density, two independent relations can be considered for the photon density. In this step, 2-dimensional photon density could be regarded as:
\[
\phi(z,y,t) = n^{\text{ph}}(z,t) n^{\text{ph}}(y,t).
\]
and then 2-dimensional effective cavity lifetime amount is obtained as:
\[
(\tau_{\text{eff}})^{-1} = \frac{c}{l_{\text{AMP}}} \left(1 + 4 t + b l_{\text{AMP}} y^2 + c d_{\text{AMP}} y^2 \right),
\]
This relation includes 2 independent values along the electrodes length \(Z \) and gap separation \(Y \). It also demonstrates that the obtained 2-dimensional relation represents a perfect schema for lifetime behavior. The results of this calculation are consistent with other reported \(\text{N}_2 \)-laser effective cavity lifetime values measured under moderate current density conditions.

Keywords: Laser, Photon, Nitrogenic, Lifetime, Effective

1. Introduction

1.1. Historical Background

The milestones in the history of lasers dates back 100 years when Einstein came up with the idea of stimulated emissions, which became a platform for the Nobel prize winner T. H. Maiman in inventing the first ever known laser in 1960. The first gas laser was developed by A. Javan, W. Benneth and D. Harriott of Bell laboratories in 1961 using a mixture of helium and neon gases before Heard demonstrated the action of the first nitrogen laser in 1963. Although the average power of this laser was very low, it captured people's attention to develop new design methodologies to improve the peak power output. Research continued until a transverse electrical discharge at atmospheric pressure (TEA) nitrogen laser was developed which was capable of producing megawatt powers using molecular nitrogen at atmospheric conditions. This appeared at a time when it was needed in ultraviolet laser development, which led to excimer lasers which are now of great use on large scale [15]. Since then, lasers have developed enormously with a wide range of applications in industries, military, medical, and academic research. Today, laser devices have numerous applications in communication systems, in supermarkets as check out scanners, in photocopying and scanning machines, in home compact disc players and CDs, and many others. There are various types of lasers that have been developed so far with a wide range of physical and operating parameters,
characterized by their state of lasing material such as solid-state, liquid or gas.

1.2. Motivation

Nitrogen molecules are the most abundant molecules in the earth's atmosphere, constituting 78.08%. Electron collisions with molecular nitrogen continue to receive interest due to their importance in gaseous discharge processes, such as those involved in nitrogen lasers. Nitrogen lasers are capable of producing very high power short pulses of ultraviolet light at a wavelength of 337.1nm. Therefore their studies play an important role in laser technology. They have a wide range of applications in dye laser pumping, lidar (remote sensing), fast speed photography, atomic and lifetime spectroscopy, medical and biological research, etc. Compared to other gas lasers, nitrogen lasers are very cheap and easy to construct. This explains why they are sometimes called "home built lasers". However, their applications are limited by very poor efficiency, which does not often exceed 1%. A surprising report of higher efficiencies of about 3% was reported by Oliveira et al. [11]. As long as nitrogen lasers have been in the field, theoretical and experimental investigations on various parameters and electronic discharge circuit designs continue in order to improve their efficiencies. Thus, following the previous work done in [13, 11, 10], it has been shown that nitrogen lasers operate efficiently, depending on a fast discharge circuit to provide a high voltage across the laser tube, anterior to the gas breakdown.

2. Pumping Mechanism for a Nitrogen Laser

A nitrogen molecule like any other diatomic molecule possesses vibronic energy levels that constitute both vibrational and electronic states. These energy states are mainly separated by the change in electron energy of the atoms, and a small contribution resulting from the vibrations within the nitrogen molecules themselves. The laser action therefore involves a series of the transitions, resulting from the changes in vibrational and electronic states of the nitrogen molecules, which are nearly spaced to favor the emission of ultraviolet radiation at 337.1nm [2]. The pumping mechanism in a nitrogen laser, involves collision of high energy electrons with the gas molecules in a laser tube through electron impact excitation. The accelerated electrons in the laser tube strike the nitrogen molecules, thus exciting them to a higher electronic energy state. Figure 1.5 shows the energy level scheme for a nitrogen laser, with each level showing a series of vibrational energy level, which depends on the internuclear separation relevant for the nitrogen laser [15].

The biggest problem with a nitrogen laser is the lifetime of the upper lasing level, which is their greatest barrier in the laser development. The transition lifetime of the gas molecules from the upper lasing level to the lower lasing level is very short (≤ 40 ns) as compared to lifetime for the transition between the lower lasing level and the metastable state (about 10 μs) [2]. Thus the population of the gas molecules at the lower level exceeds that at the upper lasing level. This means that the lasing process will terminate, since the condition for lasing to take place is violated. Creating a population inversion at the upper lasing level in this case, is only possible if the pump power from the source is sufficient to have the nitrogen molecules in the upper lasing level as quick as possible. Gas lasers in general, are pumped directly by electron-impact excitation. The gas molecules are excited from the ground level to the upper level through collisions with the electrons accelerated by the electric field set-up between the electrodes of the discharge chamber. Two types of gas discharge are commonly used for the N2-laser excitation. They are transversal and longitudinal discharges. High laser output powers can usually be obtained by the use of
transversal discharge of the types transversely excited (TE), and transversely excited atmospheric pressure (TEA) nitrogen lasers. The alternative approach is the longitudinal discharge scheme (LE) which is applicable to be used at the low gas pressure operational regime. The advantage of longitudinal discharge devices is the discharge uniformity that can be easily achieved at gas pressures of a few Torr. In addition, a low beam divergence and good circular mode structure of Gaussian type can be expected from the LE configurations. The output energy of lasers based on the longitudinally excited mechanism, however, is limited in the order of tens of mJ and that is mainly due to the higher impedance of the gas discharge compared to that of transversal discharges. On the other hand, for improving the laser beam quality, enhancement of the laser output energy, and reducing the laser beam divergence, designs based on oscillator-amplifier (Osc-Amp) N2-lasers have also been proposed. These include TEA–TEA, TE–TE, and the transversal discharge of the types transversely excited (TE), and transversely excited atmospheric pressure (TEA) nitrogen lasers. The alternative approach is the longitudinal discharge scheme (LE) which is appropriate to be used at the low gas pressure operational regime. The advantage of longitudinal discharge devices is the discharge uniformity that can be easily achieved at gas pressures of a few Torr. In addition, a low beam divergence and good circular mode structure of Gaussian type can be expected from the LE configurations. The output energy of lasers based on the longitudinally excited mechanism, however, is limited in the order of tens of mJ and that is mainly due to the higher impedance of the gas discharge compared to that of transversal discharges. On the other hand, for improving the laser beam quality, enhancement of the laser output energy, and reducing the laser beam divergence, designs based on oscillator-amplifier (Osc-Amp) N2-lasers have also been proposed. These include TEA–TEA, TE–TE, and the combined TEA–TE oscillator–amplifier systems [1–12]. In a laser system consists of an Osc–Amp, in addition to achieving improvement in laser performances, it gives also a method of probing the laser output extracted from the amplifier as the input energy to the amplifier changes. This technique is commonly used for measurements of the small signal gain, \(g_0 \), and saturation energy density, \(E_s \), of the amplifier section.

3. Theoretical Considerations

Based on studies that have been done on the N-2 lasers characteristics, we introduce a method to obtain an analytical expression for the effective cavity lifetime. For our study purposes we consider an oscillator amplifier (Osc-Amp) laser system. Details of theoretical approach including the electric-circuit behavior and the rate equations for an Osc-Amp laser system using Blumlein circuit have been reported previously [14]. Briefly In fact, in the theoretical approach it was shown that in an Osc-Amp laser system, where the solution to the relevant equations (i.e. the equivalent electric circuit, and the rate equations) become complicated, a model based on introducing an equivalent N2 laser system to apply as a single traveling wave oscillator can be used to simplify the equations and consequently to reach the appropriate results, compatible with the measurements. For applying the model it was required to use an open-circuit Osc condition in the real Osc-Amp laser system both through the experiment and the data reduction procedure, for obtaining the electric-circuit parameters. This was simply obtained by letting \(J_L = 0 \), where \(J_L \) is the current corresponding to the Osc section of the Osc-Amp electric-circuit system. The advantages of using the equivalent Osc-laser system instead of applying a complicated real Osc-Amp configuration are as follows:

1. We can apply the rate equations and the equivalent electric-circuit for a single Osc, where the relevant equations for an Osc laser system have been realized in the past [4], and almost in recent years [12]; and also with the proposed model, the approach for the numerical solution to the equations is easily attainable.

2. For evaluating the equivalent electric-circuit parameters, such as resistance and inductance of the laser system, it is required to observe the voltage waveforms corresponding to the relevant laser charging capacitors. For this purpose it is only needed to use a open-circuit condition of \(J_L = 0 \) for the Osc section in the Osc-Amp laser system, and the analysis of the waveforms corresponding to charging capacitors of C1 and C2 can be performed without any complications using the relevant equations given in Refs. [14,12].

3. It has shown that it is not necessary to drop some terms such as spontaneous emission and pumping rate in the rate equations which is commonly appeared in the literature [5]. In fact simulation studies have proved that keeping these terms in the rate equations will affect the calculated results and consequently it was realized that they cannot be simply ignored.

In the present study we are extending the studies that have been done on understanding the effective cavity lifetime behavior in the N2-laser. For completing the one dimensional traveling wave model with more accurate results Section 3.1 has been introduced. To finalize our work in this respect a model based on a 2-dimensional approach for the photon density is given in Section 3.2. In this approach the electrodes gap separation of the amplifier, \(d_{\text{AMP}} \), will appear in the effective cavity lifetime formulation. Thus, the dependency of the N2-laser lifetime on \(d_{\text{AMP}} \) and \(d_{\text{AMP}} \), where they are referring to the laser geometrical configurations will be introduced in this section.

3.1. One Dimensional Model

Following the rate equations given by Fitzsimmons et al. [3], there required equations for the \(C^3\Pi_u \) and \(B^3\Pi_g \) states along with the equation for the photon density are given by

\[
\frac{dN_c}{dt} = n_eN_{\text{gas}}\int_0^\infty g(T_e,\nu)\sigma_e(\nu)4\pi\nu^3 d\nu - \frac{N_c}{\tau_c} - \sigma_{\text{stim}}n_{\text{ph}}C(N_c - N_B) - \frac{N_c}{\tau_c}
\]

\[
\frac{dN_B}{dt} = n_eN_{\text{gas}}\int_0^\infty g(T_e,\nu)\sigma_B(\nu)4\pi\nu^3 d\nu + \sigma_{\text{stim}}n_{\text{ph}}C(N_c - N_B) - \frac{N_B}{\tau_B} + \frac{N_c}{\tau_c}
\]

\[
\frac{dn_{\text{ph}}}{dt} = \sigma_{\text{stim}}n_{\text{ph}}C(N_c - N_B) - \frac{n_{\text{ph}}}{\tau_{\text{ph}}} + \frac{N_c}{\tau_c}
\]

For the small signal gain and the output energy extracted from the gain medium, we have

\[
g_0 = \sigma_{\text{stim}}(N_c - N_B)
\]

\[
e_{\text{out}} = n_{\text{ph}}h\nu V_{\text{dis}}
\]

where in Eqs. (1) and (2), \(N_{\text{gas}} \) is the ground-state gas density; \(\sigma_e \) and \(\sigma_B \) are the electron impact cross-sections of
the N2(C) and N2(B) states, respectively; \(g(T, \nu) \) is the normalized Maxwell–Boltzmann distribution; \(\sigma_{\text{stim}} \) is the stimulated emission cross-section and is given by
\[
\frac{A^2}{8\pi n^2 \Delta \nu \tau_c} \approx 4.5 \times 10^{-15} \text{cm}^2 \quad \text{for} \quad \Delta \nu = 278 \text{ GHz} \quad [6]
\]
\(\tau_c \) and \(\sigma_g \) (40 ns and 6 \(\mu \text{s} \) respectively) are the spontaneous lifetime of the geometrical factor for spontanous emission; and \(V_{\text{dis}} = \text{I}_{\text{AMP}} \text{d}_{\text{AMP}} \) is the discharge volume. Referring to the theory of pulse propagation. In a laser amplifier, the left-hand side of Eq. (1c) has to modified to a right-traveling wave, accommodating for any mirrors reflectivity and cavity losses, simplifying an OSC–AMP calculation, and by applying a stimulated emission cross-section and is given by
\[
\begin{align*}
\frac{dn_{ph}}{dt} + C \frac{dn_{ph}}{dx} = C V_{\text{dis}} n_{ph} - n_{ph} \\
\end{align*}
\]
By introducing the equivalent OSC system, we have further assumed that the equivalent OSC system, we have further assumed that photon density inside the AMP section can be written as
\[
\frac{dn_{ph}(z, t)}{dt} + C \frac{dn_{ph}(z, t)}{dx} = C V_{\text{dis}} n_{ph} - n_{ph} \\
\]

Where \(n_{ph}(z, t) \) is the photon density corresponding to photon travelling in the z-direction [9], \(\tau_{ph} \) is the photon lifetime in the amplifier. By introducing the equivalent OSC system, we have further assumed that photon density inside the AMP section can be written as
\[
\frac{dn_{ph}(z, t)}{dt} = n_{ph}(0, t) e^{\gamma_1(z)x} \\
\]

In the theory of pulse amplification the above equation refers to the photon density growth rate which is given by the exponential law in the limit of infinitesimal pulse width [5]. By substituting Eq. (4) in Eq. (3), and by considering that \(g_0 \) is also a function of \(z \), and the length of the amplifying medium \((z \approx \text{L}_{\text{AMP}}) \), Eq. (3) changes to
\[
\frac{dn_{ph}(z, t)}{dt} + C \left(\frac{1}{\text{L}_{\text{AMP}}} + \left| \frac{\partial g_0}{\partial \text{L}_{\text{AMP}} \text{L}_{\text{AMP}}} \right| \right) n_{ph}(z, t) = 0 \\
\]

According this relation the cavity effective lifetime for the introduced OSC will be obtained
\[
\frac{1}{\tau_{eff}} = C \left(\frac{1}{\text{L}_{\text{AMP}}} + \left| \frac{\partial g_0}{\partial \text{L}_{\text{AMP}} \text{L}_{\text{AMP}}} \right| \right) \\
\]

Also, a further remark on the mean cavity lifetime \(\tau_{ph} \) should be given at this stage. For a traveling wave excitation, we can write, \(\tau_{ph} = \frac{\text{I}_{\text{AMP}}}{\text{C}} \) this relation has already been introduce by ChangandTeil[7,14]. For simplifying an OSC–AMP calculation, and by applying a model base on a single OSC, without considering anamorphic reflectivity and cavity losses, \(\tau_{ph} \) has to be modified. The approach for this modification relies on experimental observations, we can realiszethat for short electrode lengths \(\tau_{ph} \) needsto be somehow smaller than \(\frac{\text{I}_{\text{AMP}}}{\text{C}} \) to get a better agreement with the experimental observations. Observations are indicating that for this purpose we can introduce the effective cavity lifetime \(\tau_{eff} = k \frac{\text{I}_{\text{AMP}}}{\text{C}} \). Furthermore, in the equivalent OSC system at the lasing threshold we have related \(g_0 \) to the power loss, given by \(\gamma_1 = \gamma_{1,\text{max}} e^{-b \text{L}_{\text{AMP}}} \), where \(\gamma_{1,\text{max}} \) is the maximum power loss and \(b \) is a constant and with some approximation it has been determined by the simulation and experiment [14]. So with these considerations we can get a new relation for the effective cavity lifetime. Note that because of the term appeared inside the absolute value we have two values for \(\tau_{eff} \).
\[
\begin{align*}
\tau_{eff}^{\text{amp}} &= \frac{\text{I}_{\text{AMP}}}{C(1+\gamma_1-b)} \quad (7a)
\tau_{eff}^{\text{amp}} &= \frac{\text{I}_{\text{AMP}}}{C(1-\gamma_1+b)} \quad (7b)
\end{align*}
\]

As you can see there are two values for \(k \) that are given by
\[
\begin{align*}
k^{(1)} &= \gamma_1 \frac{1}{1+\gamma_1+b} \quad (8a) \\
k^{(2)} &= \gamma_1 \frac{1}{1-\gamma_1-b} \quad (8b)
\end{align*}
\]

But it seems that just Eqs (7a) and also (8a) are in good agreement with measurement and results that are available based on studies that had been done on N-2 laser parameters observations are indicating [8] that \(k \) is a positive number and is less than 1. In Fig.1, we have shown the behavior of \(k^{(1)} \) and \(k^{(2)} \) vs. \(\text{I}_{\text{AMP}} \), here \(\gamma_{1,\text{max}} = 4.193 \) and \(b = 0.042 \text{ (cm}^{-1} \text{)} \) have been used.

![Fig 1. Plots corresponding to single dimensional model: (a) \(k^{(1)} \) as given by Eq (8a) and (b) \(k^{(2)} \) as given by (8b) vs. \(\text{I}_{\text{AMP}} \). In both figures the parameters given to the corresponding equations deduced from [8].](image)

Plot (a) shows \(k^{(1)} \) increases as the electrode length of amplifier increases, it’s a positive value that does not exceed from one. Plot (b) shows \(k^{(2)} \) reduces as \(\text{I}_{\text{AMP}} \) increases and it’s a negative value, so it will be ignored simply for amplifiers of long electrode lengths, which are usually used in any laser laboratory, we can apply \(\tau_{eff}^{\text{amp}} = \frac{\text{I}_{\text{AMP}}}{\text{C}} \), i.e., \(k = 1 \). For amplifiers of short electrode lengths, however, the effective cavity lifetime \(\tau_{eff}^{\text{amp}} = k \frac{\text{I}_{\text{AMP}}}{\text{C}} \) appropriate \(k \) parameter has to applied. The profile corresponding to \(\tau_{eff}^{\text{amp}} \) is given in Fig.2. Parameters \(\gamma_{1,\text{max}} = 4.193 \), \(b = 0.042 \text{ (cm}^{-1} \text{)} \) labeled by (Data1) and \(\gamma_{1,\text{max}} = 3.89 \), \(b = 0.06 \text{ (cm}^{-1} \text{)} \) labeled by (Data2) that have been used for drawing \(\tau_{eff}^{\text{amp}} \) profile are based on experimental measurements.
Fig. 2. Plot of τ_{ph}^{eff} vs. l_{AMP}. Data 1 deduced from [8] and Data 2 deduced from [7].

Plots are indicating that, τ_{ph}^{eff} is increasing as l_{AMP} increases.

3.2. Two Dimensional Model

For describing this model two directions; z and y, chosen parallel to the optical axis and electrodes direction, respectively, are used. While the whole system as a traveling wave OSC must be faced with a single value for the photon lifetime given by $\tau_{ph} = \frac{l_{AMP}}{C}$, where it corresponds to the z-direction, i.e., to the direction of the laser output beam. Thus, with the assumption of z and y independency of the photon density, we can rewrite two independent equations for the photon density, i.e.

$$\frac{\partial n_{ph, x}(z,t)}{\partial t} + C \frac{\partial n_{ph, x}(z,t)}{\partial z} = C g_{0z} n_{ph, x}(z,t) - \frac{n_{ph, x}(z,t)}{\tau_{ph}}$$ (9a)

$$\frac{\partial n_{ph, y}(y,t)}{\partial t} + C \frac{\partial n_{ph, y}(y,t)}{\partial y} = C g_{0y} n_{ph, y}(y,t)$$ (9b)

Where in Eq. (9a), in contrast to Eq. (9b), we dropped the term corresponding to the photon-lifetime in the y-direction, otherwise its presence leads to an inconsistency with the measurements. Thus, up to this stage two independent gain-values corresponding to z and y-directions, i.e. g_{0z} and g_{0y} are introduced, as given by Eqs (9a) and (9b).

Multiplying Eq. (9a) by $n_{ph, y}(y,t)$ and Eq. (9b) by $n_{ph, z}(z,t)$, we have

$$n_{ph, x}(z,t) = n_{ph, y}(z,t)$$

Then by adding two produced equations and with assumption of: $n_{ph}(z,y,t) = n_{ph, x}(z,t) n_{ph, y}(y,t)$ a new relation will acquire

$$\frac{\partial n_{ph}(z,y,t)}{\partial t} + C \frac{\partial n_{ph}(z,y,t)}{\partial z} + C \frac{\partial n_{ph}(z,y,t)}{\partial y} = C (g_{0z} + g_{0y}) n_{ph}(z,y,t) - \frac{n_{ph}(z,y,t)}{\tau_{ph}}$$ (11)

With the following assumptions:

$$\nabla = \frac{\partial}{\partial z} + \frac{\partial}{\partial y}$$

we can write

$$\frac{\partial n_{ph}(z,y,t)}{\partial t} + C \nabla n_{ph}(z,y,t) = C g_{0z} n_{ph}(z,y,t) - \frac{n_{ph}(z,y,t)}{\tau_{ph}}$$ (12)

For evaluating the cavity effective lifetime, we can repeat our argument as in the previous section, or equivalently by introducing the overall photon density in an equivalent two-dimensional OSC; so

$$n_{ph}(z,y,t) = n_{ph}(0,0,0) e^{\frac{\tau_{ph}}{\tau_{C}} z} \exp \left[g_{0z}(z,\gamma_x^z) z + g_{0y}(y,\gamma_y^y) y \right]$$ (13)

Where, we assumed that g_{0z} and g_{0y} are functions of z, γ_x^z; and y, γ_y^y, respectively. γ_x^z and γ_y^y are two independent power losses correspond to z and y-directions, respectively. For the power loss, γ_x^z in the z-direction we can write

$$\gamma_x^z = \gamma_x^z max e^{-b_1 t} \left(z = l_{AMP} \right)$$ (14)

Where $\gamma_x^z max$ and b_1 are constants that can be determined experimentally. For the y-direction, we can also write analogous to the z-direction:

$$\gamma_y^y = \gamma_y^y max e^{-a y} \left(y = d_{AMP} \right)$$ (15)

Where again $\gamma_y^y max$ and a are introduced as constants. The behavior of γ_y^y as given by Eq. (15) was found that it is consistent with the experiment. Plots of γ_x^z and γ_y^y corresponding to Eq. (13) and (14) are given in Fig. 3.
Upon substituting Eq. (13) into Eq. (11), we have
\[
\frac{\partial \phi_n(z,y,t)}{\partial t} + \left[\frac{C}{z} + Cz \frac{\partial \phi_n}{\partial z} + Cy \frac{\partial \phi_n}{\partial y} \right] \phi_n(z,y,t) = 0 \tag{16}
\]
\[
\frac{1}{\tau_{ph}} \frac{\partial \phi_n}{\partial t} = \left[\frac{C}{z} + Cz \frac{\partial \phi_n}{\partial z} + Cy \frac{\partial \phi_n}{\partial y} \right] \tag{17}
\]
At the threshold, we can introduce the following two equations, corresponding to two different directions
\[
g_{th}^z = \gamma_i \gamma_t^z > 0 \tag{18a}
\]
\[
g_{th}^y = \gamma_i \gamma_t^y > 0 \tag{18b}
\]
And by use of Eqs. (18a) and (18b), we can evaluate the last two terms appeared in Eq. (17), i.e.
\[
Cz \left[\frac{\partial g_{th}^z}{\partial z} \right] = Cz \left[\frac{\partial \gamma_i}{\partial z} \frac{\gamma_t^z}{z^2} \right] = C \left(\gamma_t^z + b \gamma_t^y \right) \tag{19a}
\]
\[
Cy \left[\frac{\partial g_{th}^y}{\partial y} \right] = Cy \left[\frac{\partial \gamma_i}{\partial y} \frac{\gamma_t^y}{y^2} \right] = C \left(\gamma_t^y + a \gamma_t^y \right) \tag{19b}
\]
Thus by substituting Eqs. (19) and (19b) in Eq. (17) we have
\[
(\tau_{ph})^{-1} = \frac{1}{\tau_{AMP}} \left(1 + \gamma_t^z + b \gamma_t^y \right) \tag{20}
\]
Above relations show that we can define two independent effective cavity lifetimes for z and y directions, i.e.
\[
(\tau_{ph}^z)^{-1} = \frac{c}{\tau_{AMP}} \left(1 + \gamma_t^z + b \gamma_t^y \right) \tag{21a}
\]
\[
(\tau_{ph}^y)^{-1} = \frac{c}{\tau_{AMP}} \left(\gamma_t^y + a \gamma_t^y \right) \tag{21b}
\]
From Eq. (20) the overall effective cavity lifetime can be obtained
\[
(\tau_{eff})^{-1} = (\tau_{ph}^z)^{-1} + (\tau_{ph}^y)^{-1} \tag{22}
\]
Now we are able to plot the overall effective cavity photon lifetime of N2-lasers

Fig. 4. Three dimensional profile of the inverse of effective cavity photon lifetime of N2-lasers

As we have an accurate relation for the overall effective cavity photon lifetime, with applying the corresponding relation and by using of experimental parameter deduced from [8], \(y_t^{max} = 4.193 \) (labeled data 1), plus, \(y_t^{max} = 3.897 \) \(S. N. \ Hosseinimotlagh \) (labeled data 2), we can draw the profile corresponding to use of first term appeared in the left side of Eq. (13). Using \(a = 0.06 \text{(cm}^{-1}\text{)} \) and \(y_t^{max} = 0.08 \) [8] (labeled data 1), plus, \(y_t^{max} = 0.058, \alpha = 0.78 \text{(cm}^{-1}\text{)} \) [7] (labeled data 2), we can draw profile corresponding to use of second term appeared in the left side of Eq. (13).

4. Conclusion and Discussion

In this paper, based on experimental measurements for the effective photon lifetime in N2-laser, and the simulation study, we developed a model to explain the dependency of this parameter on the geometrical dimensions given by \(l_{AMP} \) and \(d_{AMP} \), where they are referring to the AMP electrodes length and gap separation, respectively. It is shown that the model can be viewed according to one- and two dimensional approaches. We have shown that the effective photon lifetime obey the one-dimensional equation of the type \((\tau_{ph})^{-1} = \frac{l_{AMP}}{C(1+\gamma_t^z+l_{AMP}\gamma_t^y)} = \frac{l_{AMP}}{C(1+\gamma_t^y+d_{AMP}^2)} \), where \(b \) is some constant. This equation is indicating that for short \(d_{AMP} \), the effective cavity photon lifetime decreases. Our simulation studies using rate equations with different photon effective life time, give also a gain enhancement upon reducing the electrodes length, as given in Ref. [14]. In the two dimensional approach we have also shown that gain value in N2-lasers can be viewed as a two dimensional coefficient depending on photon density equations in the rate equations.

References

[1] E. Armandillo, A. Luches, V. Nassisi, M.R. Perrone, Appl. Opt. 24 (1985) 18.
[2] M. Csele, Fundamentals of light sources and lasers, John Wiley, 2004.
[3] F. Docchio, V. Magni, R. Ramponi, Rev. Sci. Instrum. 55 (1984) 477
[4] W.A. Fitzsimmons, L.W. Anderson, C.E. Riedhauser, Jan M. Vrtilek, IEEE, J. Quant.
[5] L.M. Frantz, J.S. Nodvik, J. Appl. Phys. 34 (1963) 2346.
[6] M.C. Gower, C.B. Edwards, Opt. Commun. 40 (1982) 369.
[7] A. Hariri, S. Ghoreyshi, K. Rahimian, J. Appl. Phys. 101 (2007) 033132.
[8] A. Hariri, M. Jaberi, S. Ghoreyshi, Opt. Commun. 281 (2008) 3841.
[9] A. Hariri, S. Sarikhani. Optics Communications 284 (2011) 2153–2163
[10] H. K. Law, W O. Siew, K. K. Tham, and T. Y. Tou, An ultraviolet.
[11] A. V. Martinez and V. Aboites, Experimental optimization of an ultraviolet laser, Instrumentation and development. 39 (1993), 396.
[12] A.D. Papadopoulos, A.A. Serafetinides, IEEE J. Quant. Electron. 26 (1990) 177.
[13] R. L. Roma and H. J. Ramos, Experimental investigation and characterization of a compact pulsed tea molecular nitrogen laser, Philippine Journal of Science. 2 (1996), 241-254.
[14] S. Sarikhani, A. Hariri, Opt. Commun. 283 (2010) 118.
[15] W. T. Silfvast, Laser fundamentals, second edition, Cambridge University press, 2004.
[16] O. Svelto, Principles of laser, Springer Science and Business Media,Inc., 2009.