Chromium(III)-Induced 8-Hydroxydeoxyguanosine in DNA and Its Reduction by Antioxidants: Comparative Effects of Melatonin, Ascorbate, and Vitamin E

Wenbo Qi, Russel J. Reiter, Dun-Xian Tan, Joaquin J. Garcia, Lucien C. Manchester, Malgorzata Karbownik, and Juan R. Calvo

Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, USA

Chromium compounds are well documented carcinogens. Cr(III) is more reactive than Cr(VI) toward DNA under in vitro conditions. In the present study, we investigated the ability of Cr(III) to induce oxidative DNA damage by examining the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA incubated with CrCl₃ plus H₂O₂. We measured 8-OH-dG using HPLC with electrochemical detection. In the presence of H₂O₂, we observed that Cr(III)-induced formation of 8-OH-dG in isolated DNA was dose and time dependent. Melatonin, ascorbate, and vitamin E (Trolox), all of which are free radical scavengers, markedly inhibited the formation of 8-OH-dG in a concentration-dependent manner. The concentration that reduced DNA damage by 50% was 0.51, 30.4, and 36.2 μM for melatonin, ascorbate, and Trolox, respectively. The results show that melatonin is 60- and 70-fold more effective than ascorbate or vitamin E, respectively, in reducing oxidative DNA damage in this in vitro model. These findings also are consistent with the conclusion that the carcinogenic mechanism of Cr(III) is possibly due to Cr(III)-mediated Fenton-type reactions and that melatonin’s highly protective effects against Cr(III) relate, at least in part, to its direct hydroxyl radical scavenging ability. Key words: ascorbate, chromium, 8-hydroxydeoxyguanosine, melatonin, vitamin E. Environ Health Perspect 108:399-402 (2000). [Online 16 March 2000] http://ehpnet1.niehs.nih.gov/docs/2000/108p399-402qi/abstract.html

Chromium is a widely used industrial chemical, with uses in steel, alloy cast irons, chrome paints, metal finishes, and wood treatments. Cr causes allergic dermatitis and has toxic and carcinogetic effects in humans and animals. Chrome-induced sickle cell trait is common in the African American population. Epidemiologic studies have shown that industrial workers exposed to Cr have a higher incidence of respiratory cancer than does the unexposed population. Dermal, renal, and hepatic toxicity have been reported in Cr-exposed humans and animals. Cr also induces tumors in experimental animals and cause genotoxicity, i.e., chromosome aberrations, sister chromatid exchanges, cell transformations, and gene mutations in mammalian cell cultures. Cr is found in the workplace primarily in the valence forms Cr(VI) and Cr(III). Cr(VI) compounds are more toxic and carcinogenic than Cr(III) (12, 13) because Cr(VI), in contrast to Cr(III), can readily cross cellular membranes via non-specific anion carriers. However, once inside cells, Cr(VI) is reduced through reactive Cr intermediates such as Cr(V) and Cr(IV) to the ultimate kinetically stable Cr(III) by cellular reductants including glutathione and vitamin C. Therefore, Cr(III) or other intermediate oxidation states probably play an important role in Cr(VI)-induced toxicity.

Cr(III), which was initially thought to be relatively nontoxic, recently was found to be more effective than Cr(VI) in causing genotoxicity in cell-free systems. Cr(III) interacts with DNA to induce DNA strand breaks, DNA-protein cross-links, and oxidative DNA base modifications such as the formation of 8-hydroxydeoxyguanosine (8-OH-dG). 8-OH-dG is a key biomarker relevant to carcinogenesis because the formation of 8-OH-dG in DNA causes misincorporation during replication and subsequently leads to G→T transversions. The carcinogenic mechanisms of Cr(III) relate to its ability to generate hydroxyl radicals ("OH) from H₂O₂ via a Fenton-type reaction. The highly toxic "OH then targets DNA, resulting in oxidative DNA base adducts such as 8-OH-dG.

Melatonin, an indoleamine product of the pineal gland, is an endogenous "OH scavenger and a highly effective antioxidant. In vitro melatonin is as effective or more effective than either glutathione and mannitol in reducing "OH toxicity and is possibly more efficient than vitamin E in reducing the toxicity of the peroxyl radical. Moreover, melatonin is highly lipophilic as well as somewhat hydrophilic; therefore, it easily passes all known morpho-physiologic barriers and enters all subcellular compartments. Melatonin has a high affinity for cell nuclei in mammalian tissues, where its concentration can be 5 times higher than levels found in blood. By measuring a variety of oxidative indexes (including levels of 8-OH-dG), earlier studies have shown that melatonin effectively protects DNA from oxidative damage induced by a number of free-radical-generating agents including safrole, kainic acid, lipopolysaccharide, ferric nitroltriacetate, ischemia/reperfusion, and ionizing radiation both in vitro and in vivo.

In the present study, we investigated the ability of melatonin to reduce Cr(III)-induced oxidative DNA damage in vitro and compared melatonin’s efficacy to that of two well-known antioxidants, vitamins E and C. We examined the formation of 8-OH-dG in calf thymus DNA with CrCl₃ plus H₂O₂ using HPLC with electrochemical detection.

Materials and Methods

Reagents. We purchased calf thymus DNA, CrCl₃·6H₂O, H₂O₂, and ascorbate from Sigma (St. Louis, MO), and we obtained Trolox from Aldrich (Milwaukee, WI). Pure melatonin was a gift from Helsin Chemicals SA (Biasca, Switzerland). We purchased nuclease P₁ and alkaline phosphatase from Boehringer Mannheim (Indianapolis, IN). We used MilliQ-purified H₂O₂ to prepare all solutions. All other chemicals were of the highest quality available.

Treatment. We dissolved calf thymus DNA (500 μg) in 10 mM potassium phosphate buffer (pH 7.4) at a final volume of 0.45 mL. In the first study, we incubated DNA with six concentrations of CrCl₃ (10, 50, 100, 250, 500, or 750 μM) in the presence of 0.5 mM H₂O₂ for 1 hr at 37°C in a water bath. This study was performed to establish the concentration of Cr(III) required to induce an appropriate amount of 8-OH-dG formation. In the second study, we selected 500 μM CrCl₃ for incubation with DNA in the presence of 0.5 mM H₂O₂ for 0, 20, 40, 60, 80, or 100 min to determine the optimal incubation time. In the final study, we used several concentrations of H₂O₂.

Address correspondence to R.J. Reiter. Department of Cellular and Structural Biology, Mail Code 7762, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA. Telephone: (210) 567-3859. Fax: (210) 567-6948. E-mail: reiter@uthscsa.edu

This study was supported in part by the Amoun Pharmaceutical Industries Company. Received 27 August 1999; accepted 1 November 1999.
melatonin (0.25, 0.5, 1, 2.5, 5, or 10 μM), ascorbate (1, 10, 25, 50, 100, or 250 μM), or Trolox (1, 10, 25, 50, 100, or 250 μM) in combination with 500 μM CrCl₃ plus 0.5 mM H₂O₂ for 60 min to test the efficacy of these antioxidants in altering oxidative DNA damage.

Assay for 8-OH-dG. After incubation, we added 50 μL sodium acetate (3 M, pH 5.0) and two volumes of -20°C to each sample to terminate the reaction. DNA was precipitated and washed once with 70% ethanol. The DNA sample was dried and dissolved in 200-μL 20 mM sodium acetate (pH 5.0); the samples were denatured by heating at 95°C for 5 min and then cooled on ice. The DNA samples were digested to nucleotides by incubation with 8 U nuclease P₁ at 37°C for 30 min. Next, we added 20 μL 1-M Tris-HCl (pH 8.0) to the samples and they were treated with 4 U alkaline phosphatase at 37°C for 1 h. We filtered the resulting deoxyxynucleoside mixture through a Millipore filter (0.22 μm, Millipore) and analyzed it using HPLC with an electrochemical detection system. We used an ESA HPLC system (ESA, Chelmsford, MA) equipped with an eight-channel CoulArray 5600 electrochemical detector: YMC-BD (4.6 mm × 250 mm, Partisil 5 μ OD53; Waters, Milford, MA) column (3 μm, 150 × 4.6 mm i.d.). The eluent was a 10% aqueous methanol containing 12.5 mM citric acid, 25 mM sodium acetic acid, 30 mM sodium hydroxide, and 10 mM acetic acid at a flow rate of 1 mL/min. We measured the quantities of 8-OH-dG and 2-deoxyguanosine (2-dG) using different channels and two oxidative potentials (300 and 900 mV, respectively). The level of 8-OH-dG in each sample was expressed as the ratio of 8-OH-dG to 10⁻²-dG (37).

Statistical analysis. We analyzed all data by a one-way analysis of variance followed by the Tukey test.

Results

The levels of 8-OH-dG increased in a dose-dependent manner with increasing concentrations of CrCl₃ (Figure 1). All concentrations of Cr(III) from 10 μM to 0.75 mM caused significant increases in 8-OH-dG levels in DNA. We selected a concentration of 0.5 mM Cr(III) for the subsequent studies because it yielded high levels of 8-OH-dG. In the second study, 8-OH-dG levels increased essentially in a linear manner during the incubation period when 0.5 mM CrCl₃ plus 0.5 mM H₂O₂ were incubated with DNA (Figure 2). We selected an intermediate time of 60 min for the subsequent studies because this incubation time produced optimal levels of 8-OH-dG. Figure 3 shows that melatonin inhibited Cr(III)-induced formation of 8-OH-dG in a dose-dependent manner. All melatonin concentrations > 0.25 μM significantly reduced 8-OH-dG formation in DNA induced by 0.5 mM Cr(III) plus 0.5 mM H₂O₂ (p < 0.05). Figure 4 shows that ascorbate inhibited Cr(III)-induced formation of 8-OH-dG in a dose-dependent manner. The effective concentrations of ascorbate against Cr(III)-induced formation of 8-OH-dG in DNA were between 1 and 250 μM. Figure 5 shows that the formation of 8-OH-dG in DNA was also inhibited by Trolox in a dose-dependent manner. The effective concentrations of Trolox ranged from 10 to 250 μM. To compare the efficacy of melatonin, ascorbate, and Trolox, we calculated the percentage-inhibition curves (Figure 6). The IC₅₀ is the concentration of a particular agent that inhibits the formation of 8-OH-dG in DNA by 50%. The IC₅₀ for melatonin was 0.51 μM; this value is much less than for ascorbate (IC₅₀ = 30.4 μM) or Trolox (IC₅₀ = 36.2 μM).

Discussion

H₂O₂ is a normal metabolite in the cell; its steady-state concentrations range from 10⁻⁹ to 10⁻⁸ M (38). The concentrations of H₂O₂ may markedly increase in tissues when they are subjected to ionizing radiation, during the metabolism of carcinogens, and at sites of inflammation (39-41). Although H₂O₂ may not cause DNA damage under physiologic conditions, it participates in the metal ion-catalyzed Haber-Weiss reaction and generates the highly reactive ·OH, which can target DNA, resulting in oxidative DNA damage (42). Electron spin resonance spectroscopy studies have shown that ·OH are generated in a DNA-free solution containing Cr(III) and H₂O₂ (43). The present study demonstrates that Cr(III) plus H₂O₂ is capable of inducing oxidative DNA damage. When we incubated calf thymus DNA with CrCl₃ + H₂O₂, the levels of 8-OH-dG detected were approximately 40 times higher than those in the untreated controls. Furthermore, the formation of 8-OH-dG increases in a dose- and time-dependent manner in the presence of 0.5 mM H₂O₂. Melatonin, ascorbate, and vitamin E (Trolox) all function as free radical scavengers and markedly inhibited the formation of 8-OH-dG in a concentration-dependent manner but, clearly, with different efficacies. Vitamin E, a well-known antioxidant and inhibitor of lipid peroxidation in biologic membranes, has protective effects against the carcinogenic or mutagenic activity of chemical agents and ionizing radiation (16).

We found that Trolox, a water-soluble vitamin E analogue, successfully inhibited the Cr(III)-induced formation of 8-OH-dG in isolated DNA in a concentration-dependent manner. Trolox concentrations > 10 μM significantly reduced 8-OH-dG levels. The IC₅₀ value for Trolox was 36.2 μM.

In this *in vitro* system, we also found that ascorbate, a water-soluble physiologic antioxidant, had a protective effect, with an IC₅₀ value of 30.4 μM calculated from its percent-inhibition curve. Vitamin C has antiviral, anticancer, and antimutagenic activity (16). However, under certain conditions, vitamin C acts as prooxidant, generating free radicals (44). In a number of studies, ascorbate...
potentiates the production of reactive oxygen species, DNA strand breaks, and 8-OH-dG formation induced by Cr(VI) plus H₂O₂ (45–47). Thus, although ascorbate functions as a free radical scavenger in the Cr(III) plus H₂O₂ system, the utility of ascorbate in Cr detoxification in vivo should be cautiously considered.

As compared to ascorbate (IC₅₀ = 30.4 μM) and vitamin E (IC₅₀ = 36.2 μM), melatonin was more effective in reducing the formation of 8-OH-dG in this system (IC₅₀ = 0.51 μM). Thus, melatonin was roughly 60- and 70-fold more effective in reducing oxidative damage to DNA than ascorbate and vitamin E, respectively. Also, the minimal concentration of melatonin required to significantly reduce 8-OH-dG formation was much less than that of either vitamin. A melatonin concentration of 0.25 μM significantly reduced the 8-OH-dG formation, and a 10-μM concentration of the indole essentially reduced 8-OH-dG levels to control levels.

In the present study, melatonin's highly effective protection against Cr(III)-induced formation of 8-OH-dG in DNA may relate to several actions of the indoleamine. First, melatonin is a direct free radical scavenger and is a particularly efficient scavenger of the highly toxic ⋅OH (25, 48, 49). Melatonin neutralizes two ⋅OH for each melatonin molecule, resulting in the formation of the product cyclic 3-hydroxymelatonin (50). In the present study, the formation of 8-OH-dG was thought to be due to a Cr(III)-mediated Fenton-type reaction that generates ⋅OH, which in turn attacked DNA, resulting in the accumulation of the oxidative DNA base adduct 8-OH-dG (29, 24). Second, melatonin not only detoxifies the highly toxic ⋅OH, but also scavenges its precursor, H₂O₂. We recently uncovered a new pathway in which melatonin interacts with H₂O₂ to yield N¹-acetyl-N²-formyl-5-methoxykynuramine (51). The structure of the product was confirmed using mass spectrometry, proton nuclear magnetic resonance, and carbon nuclear magnetic resonance. By lowering the concentration of H₂O₂, ⋅OH generation in this system would also be proportionally reduced. Such a dual strategy of antioxidant protection would be much more efficient than simply scavenging ⋅OH. Third, because melatonin is highly lipophilic (28) as well as somewhat hydrophilic (29), it easily enters cells and sub-cellular compartments. Intracellularly, the highest radioimmunoassayable concentrations of melatonin are measured in the nuclei of brain cells after its peripheral administration to animals (30). Melatonin has a high affinity for the nucleus (and possibly DNA itself), which may contribute to its protective effect against Cr-induced formation of 8-OH-dG. Cr(III) accumulates in nuclei and has a high affinity for DNA (52). Melatonin may prevent the formation of 8-OH-dG by displacing Cr(III) from the Cr-DNA binding complex and thereby reduce H₂O₂-mediated ⋅OH generation in the vicinity of DNA. Fourth, melatonin and its precursors reportedly have a high metal-binding affinity (53). Limson et al. (33) showed that melatonin chelated aluminum, cadmium, iron, copper, and lead, etc. Although the authors did not investigate Cr, melatonin may also chelate this transition metal ion to prevent the formation of the ⋅OH via the Cr-mediated Fenton-type reaction: Cr(III) + H₂O₂ → Cr(IV) + ⋅OH + OH⁻.

Susa et al. (54) used different end points and cultured primary rat hepatocytes and found that melatonin markedly reduced nuclear DNA single-strand breaks induced by K₂Cr₂O₇ [Cr(VI)]. They speculated that melatonin protected cells from free radical toxicity by one of several means, including melatonin's ability to preserve intracellular levels of vitamins E and C, stimulation of catalase activity, and/or by directly scavenging the ⋅OH. In current studies, two of the options proposed by Susa et al. (54), i.e., maintenance of Vitamin E and C levels and the stimulation of catalase activity, were clearly not involved in melatonin's protection of DNA from oxidative damage. Thus, the most likely explanation for the current findings is that melatonin's effects were a consequence of its ability to scavenge the ⋅OH and possibly also H₂O₂.

In the current in vitro study, which used purified DNA, the curves for the inhibition of DNA damage by each of the three antioxidants, i.e., melatonin, ascorbate, and Trolox (Figure 6), were quite different. The relevance of these curves to the pharmacologic utility of these molecules in protecting nuclear DNA from oxidative damage in vivo remains to be investigated. However, in vivo studies where other free-radical-generating agents were used, melatonin also proved highly effective in reducing DNA damage consistent with its ability to enter the nucleus with ease (55, 56). There have been no in vivo studies where vitamin E, ascorbate, and melatonin were compared for their relative efficacies in protecting DNA from oxidative destruction.

Melatonin as an antioxidant is effective in protecting membrane lipids, nuclear DNA, and protein from oxidative damage induced by a variety of free-radical-generating agents and processes both in vitro as well as in vivo (26, 55–58). Considering the apparent virtual absence of acute or chronic toxicity, melatonin's clinical application against Cr-induced genotoxicity in occupational and environmental situation where this metal is a problem should be considered.

References and Notes

1. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336 (1995).
2. Anttila S. Biological effects of occupational and environmental exposure to chromium. In: Metal Ions in Biology and Medicine (Collery P, ed). London:John Libbey, 1990:315–319.
3. Langard S. One hundred years of chromium and cancer: a review of epidemiological evidence and selected case reports. Am J Ind Med 17:189–215 (1990).
6. Specific base during DNA synthesis past the oxidation-induced DNA adduct 323:431-434 (1991).

7. Induction of sister chromatid exchanges induced by nickel and chromium compounds. Carcinogenesis 12:255-257 (1991).

8. Yang JI, Hayashi Y-C, Yu CW, Lee T-C. Mutation specificity of chromium(VI) compounds in the hprt locus of Chinese hamster ovary-K1 cells. Carcinogenesis 12:159-117 (1991).

9. Taudt H, Kato K. Chromosomal aberrations and morphological transformation in hamster embryonic cells treated with potassium dichromate in vitro. Mutat Res 46:67-94 (1977).

10. De Sola S, Banasco S, Serra D, Zannacchi P. Mutagenicity of compounds: a review. Mutat Res 238:59-112 (1986).

11. Broderick JN, Colecio N, Lanzani A, Majoro J, Marin G, Montalbini A, Spandonino T, Gavini P, Zambelli A, et al. Genetic effects of chromium compounds. Mutat Res 117:279-300 (1983).

12. Danielsson T, Swenberg J. Mechanisms of chromatin metabolism and genotoxicity. Life Sci Rev 7:164-188 (1989).

13. Davidsson BRG, Hassoun E, Dencker L. Embryo toxicity of chromium: distribution in pregnancy and effects on embryonic cells in vitro. Arch Toxicol 51:235-245 (1982).

14. Lu Y-Y, Yang J-L. Long-term exposure to chromium(VI) oxide leads to defects in sulfate transport system in Chinese hamster ovary cells. J Cell Biochem 57:655-665 (1995).

15. Sugiyama M. Role of physiological antioxidants in chromium(VI)-induced cellular injury. Free Radiac Biol Med 12:297-407 (1992).

16. Wolf TH, Kassemann R, Ottenwalder H. Molecular interaction of different chromium species with nucleotide and nucleic acids. Carcinogenesis 10:655-659 (1989).

17. Singh J, Carlisle DC, Pritchard DE, Paterno SR. Chromium-induced genotoxicity and apoptosis: relationship to workers with chronic chromium intoxication. Oncol Rep 13:107-112 (1996).

18. Aybar J, Berovita HJ, Ford RA, Wetterhall KE. Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage. Environ Health Perspect 92:53-62 (1991).

19. Tsou TC, Chen CL, Liu T-Y, Yang J-L. Induction of 8-hydroxydeoxyguanosine and mutation in DNA by chromium(VI) and hydrogen peroxide and its prevention by scavengers. Carcinogenesis 17:108-116 (1996).

20. Snow ET. A possible role for chromium(III) in genotoxicity. Environ Health Perspect 72:57-81 (1991).

21. Chen YC, Calhoun DS, Kase H, Nishimura S, Sleaf EB. 8-Hydroxydeoxyguanosine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem 267:166-172 (1992).

22. Shibutani S, Takeshita M, Grossman AP. Insertion of the 323:431-434 (1991).