Prevalence of hemoplasmas and Bartonella species in client-owned cats in Beijing and Shanghai, China

Yingxin Zhang, Zhixuan Zhang, Yinying Lou and Yonglan Yu*

College of Veterinary Medicine, China Agricultural University, Beijing 100193, China

*Correspondence to: Yu, Y.: gaodifeihao@cau.edu.cn

Running head: FELINE HEMOPLASMAS AND BARTONELLA IN CHINA
ABSTRACT

A year-round molecular epidemiological survey (2017 to 2018) was conducted on three hemoplasmas and two Bartonella species with zoonotic potential in client-owned cats in Beijing and Shanghai. Among 668 specimens, the overall hemoplasma-positive rate was 4.9% (3.4% for Candidatus Mycoplasma haemominutum, 0.9% for Mycoplasma haemofelis and 1.2% for Candidatus Mycoplasma turicensis). The overall Bartonella-positive rate was 8.5% (4.8% for B. henselae and 4.3% for B. clarridgeiae). Age, breed, ectoparasiticide use and stray history, but not city, season and gender, were significantly associated with the positive rates of one or more pathogens. This is also the first report on the prevalence of Candidatus Mycoplasma turicensis in cats in China.

Keywords: Bartonella, China, feline, hemoplasma, risk factor
 Hemoplasmas (aka hemotropic mycoplasmas) and *Bartonella* are vector-transmitted gram-negative bacterial pathogens in animals. Hemoplasmas adhere to and disrupt erythrocytes, causing hemolytic anemia in animals. Cats may be infected by *Mycoplasma haemofelis* (*Mhf*), “*Candidatus Mycoplasma haemominutum*” (*CMhm*), “*Candidatus Mycoplasma turicensis*” (*CMt*), and “*Candidatus Mycoplasma haematoparvum*-like” (*CMhp*) species [18, 19]. Among them, *Mhf* may cause severe to fatal hemolytic anemia in cats. *CMhm* is typically low virulent, but can cause severe clinical signs when co-infected with other pathogens and/or if the animal is under stressed or immunodeficient condition [18]. *CMt* can induce mild to moderate anemia in experimentally infected cats in the acute infection phase [24], while the clinical significance of *CMhp* is not fully understood.

Bartonella species are intracellular pathogens infecting animals including cats and dogs. Cats can serve as reservoir host for *B. henselae, B. clarridgeiae* and *B. koehlerae*. Among them, *B. henselae* and *B. clarridgeiae* are the causative agents of cat scratch disease (CSD) in humans [15]. However, naturally infected cats usually exhibit no clinical signs even after long-term experience of bacteremia [10]. Fleas are believed to be the predominant vector responsible for the transmission of *Bartonella* species.

Despite their importance in animal health and zoonotic potential, there were limited studies on the prevalence of feline hemoplasma and *Bartonella* in China. The presence of feline *Mhf* and *CMhm* in the mainland China was first reported in 2010, in which the scale of the study was limited and the prevalence of *CMt* was not evaluated [27]. A few other studies investigated the prevalence of *Bartonella* in stray or pet cats in some regions in China [25, 26]. However, the prevalence of feline hemoplasma and *Bartonella* in Beijing, the nation’s capital with high population densities of human residents and pets, has not been reported.

In the present study, we conducted a year-round molecular survey between 2017 and 2018 on the prevalence of three hemoplasmas (*Mhf, CMhm* and *CMt*) and two *Bartonella* species (*B. henselae* and *B. clarridgeiae*) in client-owned cats in Beijing and Shanghai, two of the most populated cities in the north and south regions in China, and analyzed associated risk factors to expand epidemiological information.

For specimen collection, a total of 668 blood samples were collected from client-owned cats at four veterinary hospitals in Beijing and one in Shanghai between March, 2017 to March, 2018. Specimens were shipped to the College of Veterinary Medicine, China Agricultural
University for storage at -20 °C until use. During sample collection, the following information on cats was recorded by veterinarians or collected from clients: city (Beijing, Shanghai), season (spring, summer, autumn, winter), age (≤1 year, 1-10 years, ≥10 years), gender (male, female), breed (purebreds, mixed including crossbreeds or unknown breeds), stray history, and ectoparasiticide use in the past 6 months. The animal use protocol was reviewed and approved by the Laboratory Animal Welfare and Animal Experimental Ethics Committee, China Agricultural University (permit number: AW21012020-2). Prior to specimen collection, permission was obtained from animal owners.

For molecular detection by PCR, genomic DNA was extracted from 200 μl of each blood sample using a QIAamp DNA Blood Mini Kit according to the manufacturer’s instructions (Qiagen, Hilden, Germany), eluted in 100 μl elution buffer and stored at -20 °C until use. Hemoplasmas and Bartonella species were detected by nested PCR that amplified a 16S-23S rRNA intergenic transcribed spacer (ITS). Primary PCR used genus-specific primers, while secondary PCR used species-specific primers as described (Supplementary Table 1) [12, 16, 22-23]. PCR was performed in 25 μl volume containing 12.5 μl of 2× PCR Starmix (GenStar BioSolutions, Beijing), 1.0 μM each of specified primers and 2.0 μl sample DNA for primary PCR (or 1.0 μl primary PCR product for secondary PCR), using thermal cycling conditions described in Supplementary Table 1. DNA elution buffer and hemoplasma or Bartonella DNA samples were used for negative and positive controls, respectively. PCR products were electrophoresed in 2% agarose gels. All samples were tested at least twice. PCR products were extracted from gels and submitted to Beijing Majorbio Sanger Bio-pharm Technology for bi-directional automated sequencing using ABI Prism 3730XL DNA Analyzer (Applied Biosystems, Foster City, CA, USA). Hemoplasmas and Bartonella DNAs detected in the present study were compared with genomic sequences in the GenBank by BLAST search.

The association between individual risk factors and infections of hemoplasma or Bartonella was evaluated by Chi-square (χ²) test or by a two-tailed Fisher’s exact test when expected numbers of observations were less than five using SPSS (version 20). Variables with P-values < 0.05 in the univariant analysis were further tested using a multivariable logistic regression model. A P-value <0.05 was considered statistically significant in both univariate and multivariate analyses.

The results showed that the overall positive detection rate by nested PCR for hemoplasmas was 4.9% (n = 33 of the total 668 specimens) (Table 1). Among them, CMhm was the most
prevalent species (n = 23; 3.4%), followed by CMt (n = 8; 1.2%) and Mhf (n = 6; 0.9%).

Coinfections by two hemoplasma species were observed in some cats, including three specimens with CMhm and Mhf (0.4%) and one with Mhf and CMt (0.1%), but none with three hemoplasma species (i.e., CMhm, Mhf and CMt). The positive rate of hemoplasmas (i.e., 4.9%) is much lower than an earlier study conducted in a southern city Guangzhou, China, (i.e., 41.4%) [27], and those reported in other countries, including Japan (26.4%) [21], Thailand (38.1%) [3], South Korea (47.9%) [6], Iran (22%) [4], the United States (18% to 27%) [19, 20], and the United Kingdom (18% to 27%) [14].

The overall positive detection rate for Bartonella spp. in this study was 8.5% (n = 57 of the total 668 specimens), which was much higher than that of hemoplasmas. It included 4.8% (n = 32) for B. henselae and 4.3% (n = 29) for B. clarridgeiae. Among them, 0.6% (n = 4) of the Bartonella-positive specimens were coinfect ed both species (Table 1). The overall positive rate of 8.5% was between the two values reported earlier for feline Bartonella in other regions in China, i.e., 3.9% in cats from the southern city Shenzhen [26], and 12.7% in cats from 7 provinces (Beijing not included) [25]. In comparison with studies in other countries, the overall prevalence of Bartonella in our study is comparable to those reported in Japan (4.6%) [16], Turkey (9.4%) [1], Greece (8.5%) [13], and Ireland (5.2%) [8], but lower than that those in Thailand (16.3%) [7], South Korea (41.8% to 44.1%) [9] Taiwan (19.1%) [2], and Israel (18.7 to 30.7%) [5].

Our results indicated that hemoplasmas and Bartonella species were commonly present as a potential health risk to cats in China. The presence of zoonotic B. henselae and B. clarridgeiae was also an indication of potential risk for CSD in humans. Indeed, several CSD cases have already been reported in China [11], suggesting the necessity for veterinarians to educate pet owners regarding the risk of CSD in contacting with cats.

In risk factor analysis, we observed no significant differences between Beijing and Shanghai in the overall positive detection rates of feline hemoplasmas or Bartonella (P = 0.285 to 0.856 by the univariant test) (Table 2). Although both bacterial groups had the highest positive rates in the spring, season was not a significant risk factor (P = 0.344 to 0.935). Gender was also not a significant risk factor for infections of hemoplasma or Bartonella species (P = 0.690 to 0.910). However, age, breed, ectoparasiticide use and stray history were significantly associated with the positive detection rates of one or more pathogens (Table 2). For age, significantly higher hemoplasma-positive rates were observed in 1 to 10-year old cats.
cats (8.0%) than in younger (≤1 year) or older (≥10 years) animals (2.6%, \(P = 0.006 \)); while
significantly higher positive rates of \textit{Bartonella} species were observed in both ≤1 year and 1
to 10-year old groups (5.6% to 7.2%) than in older animals (≥10 years) (1.3% to 1.7%, \(P =
0.019 \) to 0.025).

Between the two breed types, mixed breeds had significantly higher positive rates (6.7% to
7.6%) than purebreds (2.1% to 2.6%) for both hemoplasmas and \textit{Bartonella} spp. (\(P = 0.002 \)
to 0.008). Cats with stray history had >2 times higher positive rates (8.0% to 9.1%) than
those without stray history (2.7% to 3.5%, \(P = 0.001 \) to 0.015). Further analysis by multiple
logistic regression indicated that age (\(P = 0.018 \)) and breed (\(P = 0.025 \)) were significantly
associated with hemoplasma infections after the adjustment for stray history (Table 3). Age
(\(P = 0.014 \) and 0.044), stray history (\(P = 0.028 \)) and ectoparasiticide use (\(P = 0.022 \)) were
significantly associated with \textit{B. henselae} infection, while only age (\(P = 0.012 \) and 0.032) was
significantly associated with \textit{B. clarridgeiae} infection (Table 3).

The fact that both hemoplasma and \textit{Bartonella} infections are more frequently observed in
mixed breed cats than purebreds may relate to their living environments, since mixed breed
cats are more likely to be allowed for outdoor activities in China. Outdoor cats are more
prone to the exposure to arthropod vectors that potentially carry pathogens. Another
possibility is that most mixed breed cats are adopted from places where they were housed in
groups with higher chances to socialize with infected-cats. The behavior changes in cats over
the age might also be a contributor to the variation of infection. For instance, higher
hemoplasma-positive rates were observed in 1 to 10-year old cats that are generally more
aggressive in interacting with each other, thus increasing the risk of infection. On the other
hand, older cats (≥10 years) might spend less time roaming outside [17], thus reducing the
risk of vector exposure, resulting in lower infections for both hemoplasmas and \textit{Bartonella}.
Among other risk factors, the significantly higher prevalence of hemoplasmas and \textit{Bartonella}
in cats with stray history, and that of \textit{B. henselae} in cats without ectoparasiticide use, were
apparently related to the higher chances of animal exposure to vectors (e.g., fleas).

We were able to retrieve medical records of 224 sampled cats from veterinarians in Beijing
for analyzing the relationship between infection and anemia, but observed that the overall
hemoplasma-positive rate was not statistically different between cats with and without
anemia (9.2% vs. 12.9%; \(P = 0.372 \)) (Table 2). This observation suggested that hemoplasma
infection contributed no more than other possible factors to the overall rate of feline anemia
in Beijing. However, there is a lack of more direct evidence on the relationship between hemoplasma-infection and anemia because the medical records were not individually paired between anemia status and hemoplasma infection. We could only retrieve four paired records, showing three (75%) of the four Mhf-positive cats had anemia, weakly supporting Mhf as a potential cause of feline anemia.

In summary, our year-round survey between 2017 and 2018 indicated the presence of three hemoplasmas and two Bartonella species in cats in two Chinese metropolitan cities. Age of animals and their stray history are the two major factors positively associated with the infection rates. The presence of zoonotic Bartonella species indicates a significant risk for CSD in humans.

Conflict of interest

The authors declare no conflict of interest with respect to the publication of this manuscript.

Acknowledgments

We would like to thank participating veterinarians from China Agricultural University Veterinary Teaching Hospital, Meilian Zhonghe Animal Hospital, Puppy Town Animal Hospital and Kang Cheng Pet Hospital for their assistance in sample collection. The positive control DNA samples of hemoplasmas and Bartonella species were kindly provided by LPet Veterinary Diagnostic Center (Beijing, China) and Dr. Qiyong Liu at the National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing.

References:

1. Celebi, B., Kilic, S., Aydin, N., Tarhan, G., Carhan, A. and Babur, C. 2009. Investigation of Bartonella henselae in cats in Ankara, Turkey. Zoonoses and public health; 56: 169-175.
2. Chang, C. C., Lee, C. C., Maruyama, S., Lin, J. W. and Pan, M. J. 2006. Cat-scratch disease in veterinary-associated populations and in its cat reservoir in Taiwan. Vet Res; 37: 565-577.
3. Do, T., Kamyingkird, K., Bui, L. K. and Inpankaew, T. 2020. Genetic characterization and risk factors for feline hemoplasma infection in semi-domesticated cats in
4. Ghazisaeedi, F., Atyabi, N., Zahrai Salehi, T., Gentilini, F., Ashrafi Tamai, I., Akbarein, H. and Tasker, S. 2014. A molecular study of hemotropic mycoplasmas (hemoplasmas) in cats in Iran. *Vet Clin Pathol*; 43: 381-386.

5. Gutiérrez, R., Morick, D., Gross, I., Winkler, R., Abdeen, Z. and Harrus, S. 2013. Bartonellae in domestic and stray cats from Israel: comparison of bacterial cultures and high-resolution melt real-time PCR as diagnostic methods. *Vector borne and zoonotic diseases (Larchmont, NY)*; 13: 857-864.

6. Hwang, J., Gottdenker, N., Oh, D. H., Lee, H. and Chun, M. S. 2017. Infections by pathogens with different transmission modes in feral cats from urban and rural areas of Korea. *J Vet Sci*; 18: 541-545.

7. Inoue, K., Maruyama, S., Kabeya, H., Kawanami, K., Yanai, K., Jitchum, S. and Jittaparapong, S. 2009. Prevalence of Bartonella infection in cats and dogs in a metropolitan area, Thailand. *Epidemiol Infect*; 137: 1568-1573.

8. Juvet, F., Lappin, M. R., Brennan, S. and Mooney, C. T. 2010. Prevalence of selected infectious agents in cats in Ireland. *Journal of feline medicine and surgery*; 12: 476-482.

9. Kim, Y. S., Seo, K. W., Lee, J. H., Choi, E. W., Lee, H. W., Hwang, C. Y., Shin, N. S., Youn, H. J. and Youn, H. Y. 2009. Prevalence of Bartonella henselae and Bartonella clarridgeiae in cats and dogs in Korea. *J Vet Sci*; 10: 85-87.

10. Kordick, D. L., Wilson, K. H., Sexton, D. J., Hadfield, T. L., Berkhoff, H. A. and Breitschwerdt, E. B. 1995. Prolonged Bartonella bacteremia in cats associated with cat-scratch disease patients. *J Clin Microbiol*; 33: 3245-3251.

11. Liu, Q., Eremeeva, M. E. and Li, D. 2012. Bartonella and Bartonella infections in China: from the clinic to the laboratory. *Comp Immunol Microbiol Infect Dis*; 35: 93-102.

12. Messick, J. B., Berent, L. M. and Cooper, S. K. 1998. Development and evaluation of a PCR-based assay for detection of Haemobartonella felis in cats and differentiation of H. felis from related bacteria by restriction fragment length polymorphism analysis. *J Clin Microbiol*; 36: 462-466.

13. Mylonakis, M. E., Schreeg, M., Chatzis, M. K., Pearce, J., Marr, H. S., Saridomichelakis, M. N. and Birkenheuer, A. J. 2018. Molecular detection of vector-borne pathogens in Greek cats. *Ticks and tick-borne diseases*; 9: 171-175.
14. Peters, I. R., Helps, C. R., Willi, B., Hofmann-Lehmann, R. and Tasker, S. 2008. The prevalence of three species of feline haemoplasmas in samples submitted to a diagnostics service as determined by three novel real-time duplex PCR assays. *Vet Microbiol*; **126**: 142-150.

15. Regier, Y., F. O. R. and Kempf, V. A. 2016. *Bartonella* spp. - a chance to establish One Health concepts in veterinary and human medicine. *Parasit Vectors*; **9**: 261.

16. Sato, S., Kabeya, H., Negishi, A., Tsujimoto, H., Nishigaki, K., Endo, Y. and Maruyama, S. 2017. Molecular survey of *Bartonella henselae* and *Bartonella claridgeiae* in pet cats across Japan by species-specific nested-PCR. *Epidemiol Infect.*; **145**: 2694-2700.

17. Sordo, L., Breheny, C., Halls, V., Cotter, A., Tørnqvist-Johnsen, C., Caney, S. M. A. and Gunn-Moore, D. A. 2020. Prevalence of Disease and Age-Related Behavioural Changes in Cats: Past and Present. *Vet Sci*; **7**: 85.

18. Sykes, J. E. 2010. Feline hemotropic mycoplasmas. *J Vet Emerg Crit Care*; **20**: 62-69.

19. Sykes, J. E., Drazenovich, N. L., Ball, L. M. and Leutenegger, C. M. 2007. Use of conventional and real-time polymerase chain reaction to determine the epidemiology of hemoplasma infections in anemic and nonanemic cats. *J Vet Intern Med*; **21**: 685-693.

20. Sykes, J. E., Terry, J. C., Lindsay, L. L. and Owens, S. D. 2008. Prevalences of various hemoplasma species among cats in the United States with possible hemoplasmosis. *J Am Vet Med Assoc*; **232**: 372-379.

21. Tanahara, M., Miyamoto, S., Nishio, T., Yoshii, Y., Sakuma, M., Sakata, Y., Nishigaki, K., Tsujimoto, H., Setoguchi, A. and Endo, Y. 2010. An epidemiological survey of feline hemoplasma infection in Japan. *J Vet Med Sci*; **72**: 1575-1581.

22. Watanabe, M., Hisasue, M., Soma, T., Namikawa, K., Segawa, K., Neo, S. and Tsuchiya, R. 2011. Detection of new hemoplasma "*Candidatus Mycoplasma turicensis*" infection in domestic cats in Japan. *J Jpn Vet Med Assoc*; **64**: 150-153.

23. Watanabe, M., Hisasue, M., Hashizaki, K., Furuichi, M., Ogata, M., Hisamatsu, S., Ogi, E., Hasegawa, M., Tsuchiya, R. and Yamada, T. 2003. Molecular detection and characterization of *Haemobartonella felis* in domestic cats in Japan employing sequence-specific polymerase chain reaction (SS-PCR). *J Vet Med Sci*; **65**: 1111-1114.
experimental transmission of a new hemoplasma isolate from a cat with hemolytic anemia in Switzerland. *J Clin Microbiol;* 43: 2581-2585.

25. Yuan, C., Zhu, C., Wu, Y., Pan, X. and Hua, X. 2011. Bacteriological and molecular identification of *Bartonella* species in cats from different regions of China. *PLoS Negl Trop Dis*; 5: e1301.

26. Zhang, X. L., Li, X. W., Li, W. F., Huang, S. J. and Shao, J. W. 2019. Molecular detection and characterization of *Bartonella* spp. in pet cats and dogs in Shenzhen, China. *Acta tropica;* 197: 105056.

27. Zhuang, Q. J., Zhang, H. J., Lin, Q., Yuan, Z. G., Liang, X. J., Qin, X. W., Pu, W. J. and Zhu, X.-Q. 2010. The Occurrence of *Mycoplasma haemofelis* and *Candidatus Mycoplasma Haemominutum* in Cats in China Confirmed by Sequence-Based Analysis of Ribosomal DNA. *J Anim Vet Adv;* 9: 635-638.
Table 1 PCR results for hemoplasma and *Bartonella* infections in 668 cat samples

Nested-PCR result (N = 668)	No. of positive cats	Positive rate (%)
Hemoplasmas		
CMhm	23	3.4
Mhf	6	0.9
CMt	8	1.2
CMhm only	20	3.0
Mhf only	2	0.3
CMt only	7	1.0
CMhm + *Mhf*	3	0.4
Mhf + *CMt*	1	0.1
CMhm + *Mhf* + *CMt*	0	0
Bartonella species	57	8.5
B. henselae	32	4.8
B. clarridgei	29	4.3
B. henselae only	28	4.2
B. clarridgei only	25	3.7
B. henselae + *B. clarridgei*	4	0.6
Table 2 Univariate analysis of risk factors for infection of feline hemoplasmas and *Bartonella* spp. in cats

Risk Factors	Total N	Hemoplasmas	B. henselae	B. clarridgeiae			
		N of positive cats (%)	P	N of positive cats (%)	P	N of positive cats (%)	P
City	668	33 (4.9%)	0.285	32 (4.8%)	0.580	29 (4.3%)	0.856
Beijing	516	28 (5.4%)	0.580	26 (5.0%)	0.267	22 (4.3%)	0.856
Shanghai	152	5 (3.3%)	0.856	6 (3.9%)	0.856	7 (4.6%)	0.856
Season	668						
Spring	200	13 (6.5%)	0.360	14 (7.0%)	0.344	10 (5.0%)	0.935
Summer	122	3 (2.5%)	0.935	5 (4.1%)	0.935	5 (4.1%)	0.935
Autumn	132	5 (3.8%)	0.935	4 (3.0%)	0.935	6 (4.5%)	0.935
Winter	214	12 (5.6%)	0.935	9 (4.2%)	0.935	8 (3.7%)	0.935
Age	668						
≤1year	153	4 (2.6%)	0.006	11 (7.2%)	0.025	10 (6.5%)	0.019
1-10years	286	23 (8.0%)	0.006	17 (5.9%)	0.025	16 (5.6%)	0.019
≥10years	229	6 (2.6%)	0.006	4 (1.7%)	0.025	3 (1.3%)	0.019
Breed	668						
Mixed breeds	327	25 (7.6%)	0.002	22 (7.0%)	0.008	22 (6.7%)	0.003
Purebreds	341	8 (2.3%)	0.002	9 (2.6%)	0.008	7 (2.1%)	0.003
Gender	668						
Male	403	21 (5.2%)	0.690	19 (4.7%)	0.910	17 (4.2%)	0.848
Female	265	12 (4.5%)	0.690	13 (4.9%)	0.910	12 (4.5%)	0.848
Ectoparasitic use	668						
Yes	292	13 (4.5%)	0.608	8 (2.7%)	0.029	13 (4.5%)	0.901
No	376	20 (5.3%)	0.608	24 (6.4%)	0.029	16 (4.3%)	0.901
Former stray	668						
Yes	187	17 (9.1%)	0.002	15 (8.0%)	0.015	16 (8.6%)	0.001
No	481	16 (3.3%)	0.002	17 (3.5%)	0.015	13 (2.7%)	0.001
Anemia status	224						
Yes	131	12 (9.2%)	0.372				
No	93	12 (12.9%)	0.372				
Table 3 Multivariate analysis of risk factors for infection of feline hemoplasmas and *Bartonella* spp. in cats

	OR (CI₉₅)	P
1. Hemoplasmas		
Age (n=668)		
≤1 year	1.030 (0.283-3.745)	0.964
1-10 years	3.099 (1.209-7.943)	**0.018**
≥10 years	Ref.	
Breed (n=668)		
Mixed breed	2.888 (1.139-7.321)	**0.025**
Purebreds	Ref.	
Former strays (n=668)		
Yes	1.436 (0.629-3.278)	0.390
No	Ref.	
2. Bartonella henselae		
Age (n=668)		
≤1 year	4.325 (1.342-13.940)	**0.014**
1-10 years	3.147 (1.029-9.627)	**0.044**
≥10 years	Ref.	
Former strays (n=668)		
Yes	Ref.	
No	2.283 (1.093-4.772)	**0.028**
Ectoparasiticide use (n=668)		
Yes	2.610 (1.145-5.949)	**0.022**
No	Ref.	
3. Bartonella clarridgeiae		
Age (n=668)		
≤1 year	5.424 (1.452-20.258)	**0.012**
1-10 years	3.988 (1.124-14.144)	**0.032**
≥10 years	Ref.	
Breed (n=668)		
Mixed breed	2.631 (0.973-7.116)	0.057
Purebreds	Ref.	
Former strays (n=668)		
Yes	Ref.	
No	1.878 (0.778-4.532)	0.161

OR = odds ratio, CI₉₅ = 95% confidence interval
Supplementary Table 1 Polymerase chain reaction details for the nested PCR assays used in the study for the detection of hemoplasma and *Bartonella* spp.

RCR	Target	Primer	Sequence (5' → 3')	Fragment size (bp)	Ref.	Thermal cycling protocols	
	Primary	hemoplasmas	fHf1	ACGCGTCGA CAGAGTTTG ATCCTGGCT	1499 bp	12	95°C, 5 min; 35 cycles of 45 sec at 95°C, 1 min at 51°C, 2 min at 72°C; 72°C, 7 min
			rHf2	CGCGGATCC GCTACCTTG TTACGACTT			
	Secondary	Mhf	OH-Ok1	ATGCCCCCTC TGTTGGGGGA TAGCCG	273 bp	23	
			00CB-rl	ATGGTATTTG CTCCATCAG ACTTTTCG			
	Secondary	CMhm	CA-B2	CTGGGAAAAA CAATGGTC GGAAG	202 bp	23	95°C, 5 min; 35 cycles of 45 sec at 95°C, 45 sec at 58.4°C, 45 sec at 72°C; 72°C, 7 min
			00CB-r1	ATGGTATTTG CTCCATCAG ACTTTTCG			
	Secondary	CMt	CMrR	TCCTATAGT TCCTCCATC AGACA	210 bp	22	
			00CB-r1	ATGGTATTTG CTCCATCAG ACTTTTCG			
	Primary	Bartonella	URBarto1	CTTCGTTTCT CTTTCTTCA	722 bp	16	95°C, 5 min; 35 cycles of 45 sec at 95°C, 45 sec at 50°C, 1 min at 72°C; 72°C, 7 min
			URBarto2	CTTCTCTTC ACAATTTCAT			
	Secondary	*B. henselae*	URBhen-f	TTGCTTTCA AAAAGCTT ATCAA	240 bp	16	
			URBhen-r	CAAAAGAG GGATTACA AAATC			95°C, 5 min; 35 cycles of 45 sec at 95°C, 45 sec at 50°C, 1 min at 72°C; 72°C, 7 min
			URBcla-f	ATGCTAAAA GTGCTATA TTGG	285 bp	16	
	Secondary	*B. clarridgeiae*	URBcla-f	CCTCACACT AAAATATAA AAAAC			

259