Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo

Sonja Lindfors 1 · Zydrune Polianskyte-Prause 1 · Rim Bouslama 1 · Eero Lehtonen 2 · Miia Mannerla 1,3,4 · Harry Nisen 5 · Jukka Tienari 6 · Hanne Salmenkari 7 · Richard Forsgård 7 · Tuomas Mirtti 6,8 · Markku Lehto 1,3,4 · Per-Henrik Groop 1,3,4,9 · Sanna Lehtonen 1,2

Received: 9 October 2020 / Accepted: 1 March 2021 / Published online: 14 May 2021
© The Author(s) 2021

Abstract
Aims/hypothesis Chronic low-grade inflammation with local upregulation of proinflammatory molecules plays a role in the progression of obesity-related renal injury. Reduced serum concentration of anti-inflammatory adiponectin may promote chronic inflammation. Here, we investigated the potential anti-inflammatory and renoprotective effects and mechanisms of action of AdipoRon, an adiponectin receptor agonist.

Methods Wild-type DBA/2J mice were fed with high-fat diet (HFD) supplemented or not with AdipoRon to model obesity-induced metabolic endotoxaemia and chronic low-grade inflammation and we assessed changes in the glomerular morphology and expression of proinflammatory markers. We also treated human glomeruli ex vivo and human podocytes in vitro with AdipoRon and bacterial lipopolysaccharide (LPS), an endotoxin upregulated in obesity and diabetes, and analysed the secretion of inflammatory cytokines, activation of inflammatory signal transduction pathways, apoptosis and migration.

Results In HFD-fed mice, AdipoRon attenuated renal inflammation, as demonstrated by reduced expression of glomerular activated NF-κB p65 subunit (NF-κB-p65) (70%, p < 0.001), TNFα (48%, p < 0.01), IL-1β (51%, p < 0.001) and TGFβ (46%, p < 0.001), renal IL-6 and IL-4 (21% and 20%, p < 0.05), and lowered glomerular F4/80-positive macrophage infiltration (31%, p < 0.001). In addition, AdipoRon ameliorated HFD-induced glomerular hypertrophy (12%, p < 0.001), fibronectin accumulation (50%, p < 0.01) and podocyte loss (12%, p < 0.001), and reduced podocyte foot process effacement (15%, p < 0.001) and thickening of the glomerular basement membrane (18%, p < 0.001). In cultured podocytes, AdipoRon attenuated the LPS-induced activation of the central inflammatory signalling pathways NF-κB-p65, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38-MAPK) (30%, 36% and 22%, respectively, p < 0.001), reduced the secretion of TNFα (32%, p < 0.01), and protected against podocyte apoptosis and migration. In human glomeruli ex vivo, AdipoRon reduced the LPS-induced secretion of inflammatory cytokines IL-1β, IL-18, IL-6 and IL-10.

Conclusions/interpretation AdipoRon attenuated the renal expression of proinflammatory cytokines in HFD-fed mice and LPS-stimulated human glomeruli, which apparently contributed to the amelioration of glomerular inflammation and injury. Mechanistically, based on assays on cultured podocytes, AdipoRon reduced LPS-induced activation of the NF-κB-p65, JNK and p38-MAPK pathways, thereby impelling the decrease in apoptosis, migration and secretion of TNFα. We conclude that the activation of the adiponectin receptor by AdipoRon is a potent strategy to attenuate endotoxaemia-associated renal inflammation.

1 Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
2 Department of Pathology, University of Helsinki, Helsinki, Finland
3 Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
4 Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
5 Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
6 Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
7 Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
8 Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
9 Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia

© Springer
Introduction

Obesity and diabetes are important risk factors for the development of chronic kidney disease [1]. Both conditions are characterised by increased serum levels of lipopolysaccharides (LPSs), a state recognised as metabolic endotoxaemia, and chronic low-grade inflammation [2–5], and thus share a common trigger for the progression of renal injury. In response to metabolic stress and inflammatory milieu, renal cells secrete proinflammatory molecules, which activate an innate immunity response and promote renal abnormalities [4, 5]. Injury to podocytes, the specialised glomerular epithelial cells that maintain the glomerular filtration barrier, is considered a major contributor to both obesity- and diabetes-related kidney disease [1, 6].

Obesity and type 2 diabetes are associated with decreased serum concentrations of adiponectin, a peptide hormone secreted by the adipose tissue [7]. As adiponectin has anti-inflammatory properties [7], its deficiency may promote chronic inflammation.

Keywords Adiponectin · AdipoRon · Diabetes · Diabetic kidney disease · Inflammation · Inflammatory cytokines · LPS · Obesity · Obesity-related kidney disease · Podocyte
Incidentally, adiponectin-deficient mice develop podocyte injury and albuminuria even in the absence of diabetes [8], and renal injury is further aggravated by experimental diabetes [8, 9]. Correspondingly, exogenous administration of adiponectin or overexpression of the adiponectin gene attenuates renal injury in rodent models of diabetes [10, 11]. Both in obese individuals without diabetes and in individuals with type 2 diabetes, the serum adiponectin concentrations inversely correlate with the degree of albuminuria [12–14].

In the present study, we hypothesised that enhancing anti-inflammatory signalling by activating the adiponectin signalling pathway with AdipoRon, an orally active small-molecule agonist of adiponectin receptor 1/2 (AdipoR1/2) [15], prevents inflammation-related renal injury. We investigated whether AdipoRon ameliorates renal inflammation and injury using high-fat diet-fed obese mice as a model of metabolic endotoxaemia and local tissue inflammation [2]. In addition, to characterise the molecular mechanisms underlying the anti-inflammatory effects of AdipoRon, we used endotoxin-stimulated human glomeruli ex vivo and human podocytes in vitro as model systems.

Methods

Reagents AdipoRon was purchased from Enamine (#Z32352521; Kiev, Ukraine) for the mouse experiment and from MilliporeSigma (#SML0998) for the cell culture studies. Antibodies (electronic supplementary material [ESM] Table 1) were validated by knockout/overexpression experiments or passed the manufacturer’s application-specific testing standards. Further reagent details are given in the ESM Methods.

Animals Five-week-old male DBA/2J mice were purchased from Charles River Laboratories (Lyon, France). After acclimation for 1 week, mice were randomly assigned to experimental groups (2 mice/cage) based on body weight, and fed with either low-fat diet (LFD; 10% kJ fat, #D12450B, Research Diets, NJ, USA) (n = 8), high-fat diet (HFD; 60% kJ fat, #D12492, Research Diets) (n = 14), or HFD supplemented with AdipoRon (380 mg/kg diet, custom-made by Research Diets) (n = 14), for 9 weeks. The dose was chosen based on previous studies administering AdipoRon 30–50 mg/kg body weight [15, 16], yielding a mean dose of AdipoRon 51.5 mg/kg at the beginning and 28.2 mg/kg at the end of the experiment, as the mice gained weight. The experiments were performed according to the Federation of European Laboratory Animal Science Associations (FELASA) guidelines (2015) and approved by the National Animal Experiment Board.

Body weight and food intake were monitored weekly. After 7 weeks of treatment, blood glucose was measured after 6 h fasting. Urine and faecal pellets were collected individually in metabolic cages (24 h) at the baseline and after 8 weeks of treatment. A detailed description of the housing and experimental procedures is given in ESM Methods.

Harvesting of organs After 9 weeks of treatment, mice were killed for tissue collection. Serum samples were prepared from blood obtained by cardiac puncture. Renal cortex tissue was either snap-frozen, or fixed in 10% (vol./vol.) formalin followed by paraffin embedding, or embedded and frozen in optimal cutting temperature (OCT) compound or fixed in 1.5% (vol./vol.) glutaraldehyde, 3% (wt/vol.) paraformaldehyde, 5% (wt/vol.) sucrose in 0.1 mol/l phosphate buffer (pH 7.4) and processed for electron microscopy as described [17]. Intestinal tissue was snap-frozen. Preparation of protein lysates from renal tissue extracts is described in ESM Methods.

Serum and urine biochemical analysis Serum concentrations of adiponectin, insulin and LPS were measured by ELISA kits (see ESM Methods for details). The urinary albumin and creatinine concentrations were measured at the Biochemical Analysis Core for Experimental Research (University of Helsinki).

Immunoblotting Expression of AdipoR1, toll-like receptor 4 (TLR4), cleaved caspase-3 and the phosphorylated forms of NF-kappa-B inhibitor alpha (IxBα), NF-κB-p65, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38-MAPK) was studied by immunoblotting. Equal amounts of protein samples prepared from tissue or cellular extracts were separated by SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA), blocked with Odyssey blocking buffer (LI-COR, Lincoln, NE, USA) diluted 1:1 with TRIS-buffered saline and incubated with primary and secondary antibodies (for antibody details, see ESM Table 1). Membranes were analysed by Odyssey Infrared Imaging System and Image Studio software (LI-COR). See ESM Methods for details.

Iohexol experiment for intestinal permeability After 6 weeks of treatment, eight mice randomly selected from each group were tested for intestinal permeability by the iohexol assay. Briefly, mice were administered 4 ml/kg iohexol by gavage and placed into metabolic cages for urine collection (24 h). Urinary iohexol concentration was measured by ELISA. See ESM Methods for details.

Faecal albumin assay Albumin concentration in faecal extractions prepared from faecal pellets collected after 8 weeks of treatment was measured by ELISA. See ESM Methods for details.

Intestinal alkaline phosphatase assay The intraluminal contents of caecum and distal colon were homogenised in
extraction buffer. Intestinal alkaline phosphatase (IAP) activity was determined by p-nitrophenyl phosphate (pNPP) assay. See ESM Methods for details.

Immunohistochemistry and morphometric analysis Four-micrometre-thick sections were prepared for immunohistochemistry or periodic acid–Schiff (PAS) staining using standard procedures. After deparaffinisation and antigen retrieval, sections were incubated with antibodies against TGFβ, TNFα, IL-1β, phospho-NF-κB-p65, F4/80, fibronectin and Wilms’ tumour protein (WT1). For details on antigen retrieval conditions and antibodies, see ESM Methods and ESM Table 1, respectively. Normal rabbit or mouse IgGs were used as negative controls. Detection was performed using BrightView Poly-HRP-anti-Rabbit IgG kit (for mouse tissue; ImmunoLogic, Amsterdam, the Netherlands), EnVision+ immunohistochemistry kit (for mouse tissue; Dako, Santa Clara, USA) or EnVision FLEX+ immunohistochemistry kit (for human tissue; Dako) and 3,3′-diaminobenzidine (Dako). Slides were counterstained with Mayer’s Hematoxylin (Dako). Images were obtained using 3DHISTECH Pannoramic 250 FLASH II digital slide scanner (Genome Biology Unit supported by HiLIFE and the Faculty of Medicine, University of Helsinki, and Biocenter Finland) at 20× magnification. Glomerular staining area and total glomerular tuft area in PAS-stained sections was quantified from 15–20 glomeruli/section using the Histoquant module of the QuanCenter software version 2.0 (3DHISTECH, Budapest, Hungary). For podocyte count, WT1-positive nuclei were counted from glomeruli larger than 70 μm diameter to ensure sectioning through the centre of the glomerulus.

Cytokine measurements Cytokines were measured from renal cortex lysates (IL-4, IL-6) and culture media supernatants of podocytes or isolated human glomeruli (IL-1β, IL-6, IL-8, IL-10, IL-18, TNFα) with multiplex Q-Plex cytokine assays (Quansys Biosciences, Logan, UT, USA). For details, see ESM Methods.

Macrophage polarisation analysis Double immunofluorescence staining was performed on OCT-embedded frozen renal cortical sections (5 μm) against CD16/32 (M1 marker) or CD206 (M2 marker) and F4/80 (total macrophage marker). Images were generated using 3DHISTECH Pannoramic 250 FLASH II digital slide scanner at 40× magnification. See ESM Methods for details on staining procedure and image analysis.

Electron microscopy Transmission electron microscopy images were obtained and analysed as described [17] (n = 3 mice for each group). Mean podocyte foot process width was analysed from 5–7 glomeruli/mouse and the thickness of glomerular basement membrane (GBM) from three glomeruli/mouse. See ESM Methods for details.

Cell culture and treatments Conditionally immortalised human podocytes AB8/13 [18] (provided by M. Saleem [Southmead Hospital, University of Bristol, Bristol, UK]) were maintained at 33°C (5% CO2) in RPMI-1640 (2 g/l glucose) supplemented with 10% (vol./vol.) FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, 2 mmol/l glutamine and 1% (vol./vol.) insulin-transferrin-selenium (ITS). Podocytes were differentiated at 37°C for 12–14 days, pre-treated with 12 μmol/l AdipoRon (maximum serum concentration in AdipoRon-administered mice [15]) or DMSO for 2 h, with subsequent stimulation with 200 ng/ml LPS for 1 h (phospho-proteins), 24 h (migration, cytokines) or 48 h (apoptosis). Cells were tested negative for mycoplasma contamination. Preparation of protein lysates from cell extracts is described in ESM Methods.

Generation of stable AdipoR1 knockdown podocyte line Stable AdipoR1 knockdown human podocyte cell line was generated by lentiviral delivery of human ADIPOR1 short hairpin RNA (shRNA) into proliferating AB8/13 podocytes. Infected podocytes were selected with puromycin for 9 days. See ESM Methods for details.

Migration assay Podocyte migration was measured by in vitro scratch assay as described [19]. Briefly, a scratch was made on a cell monolayer, and the plate was imaged at 0 h and after 24 h of treatment with Cytation5 Multi-Mode Reader (BioTek, Winooski, VT, USA). The number of migrated cells was counted from captured images. See ESM Methods for details.

Apoptosis assay Podocyte apoptosis was measured by double staining for annexinV-FITC and 7-aminoactinomycin D (7-AAD) (BD Biosciences, Franklin Lakes, NJ, USA) as described [20]. Cells positive for annexinV-FITC but negative for 7-AAD were defined as apoptotic. See ESM Methods for details.

Isolation of human glomeruli Use of human material was approved by the Ethical Committee of the Hospital District of Helsinki and Uusimaa. Written informed consent was obtained from all study participants. Renal cortex tissue was collected from the non-malignant part of the nephrectomies performed at the Helsinki University Hospital. Characteristics of the participants (n = 9) are described in ESM Table 2. Glomeruli were isolated by graded sieving with 425/250/150 μm sieves (Retsch, Haan, Germany). Immediately after isolation, glomeruli were evenly divided to culture plates (n = 2–3 wells/treatment, 500 μl/well) in DMEM (1.0 g/l glucose) supplemented with 15% (vol./vol.) FBS, 100 U/ml penicillin,
100 μg/ml streptomycin and 2 mmol/l glutamine, stimulated or not with 200 ng/ml LPS and 12 μmol/l AdipoRon or DMSO, and incubated in a 37°C 5% CO₂ humidified incubator for 24 h. After collecting culture media, glomeruli were sonicated in 100 mmol/l PBS pH 7.4 supplemented with 0.5 mol/l potassium iodide and protease/phosphatase inhibitors, and lysed with 1% (vol/vol.) Triton X-100, 1% (vol/vol.) Igepal and 0.1% (wt/vol.) SDS. The concentration of secreted cytokines (pg/ml) was normalised to the total protein content of corresponding glomerular lysate (μg).

Statistics Statistical analyses were performed using SPSS version 25.0 (IBM, Chicago, IL, USA) and data presented as mean ± SD unless otherwise specified. To compare differences between groups, unpaired two-tailed Student’s t test (two groups), one-way ANOVA or Kruskal–Wallis test with Bonferroni or Tamhane post hoc test was performed (see ESM Methods for details) unless otherwise specified. Mouse weight gain was analysed by two-way repeated measures ANOVA for three-group comparison with Bonferroni-adjusted post hoc test. The relative effect of LPS-AdipoRon treatment in comparison with corresponding LPS administration, possibly resulting from a transitory iohexol-induced diarrhoea (ESM Fig. 2e), as demonstrated by post- to pretreatment ratio for body weight (ESM Fig. 2f). As a result, the weight difference between HFD- and HFD-AdipoRon-fed mice was lost (Fig. 1b).

AdipoRon ameliorates glomerular structural changes, podocyte loss and fibrosis in HFD-fed mice At 8 weeks of HFD, both control and AdipoRon-treated mice showed a mild increase in 24 h urine albumin excretion in comparison with LFD-fed mice (with no difference in 24 h urine volume between groups) whereas urine albumin/creatinine ratio was not increased by HFD (ESM Table 3). HFD feeding increased glomerular fibronectin expression and glomerular size, indicative of glomerular hypertrophy, and these variables were lowered by AdipoRon by 50% (p < 0.01) and 12% (p < 0.001), respectively (Fig. 2a,b,d). Similarly, the HFD-induced reduction in the number of WT1-positive nuclei, indicative of lowered podocyte count, was restored by 12% (p < 0.001) by AdipoRon (Fig. 2a,c). AdipoRon also attenuated the HFD-induced widening of the podocyte foot processes by 15% (p < 0.001) (Fig. 2e,f) and thickening of the GBM by 18% (p < 0.001) (Fig. 2e,g).

AdipoRon attenuates renal inflammation in HFD-fed mice HFD-AdipoRon-treated mice showed reduced expression of inflammatory cytokines TGFβ (46%, p < 0.001) (Fig. 3a,b), TNFα (48%, p < 0.01) (Fig. 3a,c) and IL-1β (51%, p < 0.001) (Fig. 3a,d) and reduced renal levels of IL-6 and IL-4 (21% and 20%, respectively, p < 0.05) (Fig. 3e,f) in comparison with HFD-fed mice. In addition, AdipoRon attenuated the HFD-induced glomerular expression of phosphorylated NF-κB p65 subunit (NF-κB-p65) by 70% (p < 0.001) (Fig. 3g,h) and infiltration of F4/80⁺ macrophages by 31% (p < 0.001) (Fig. 3g,i). However, the percentage of CD16/CD32⁺ F4/80⁺ cells (M1 macrophages) and the
percentage of CD206+ F4/80+ cells (M2 macrophages) (ESM Fig. 3) did not differ between the groups, indicating that altered macrophage polarisation between the M1 and M2 phenotypes is not involved in this model of renal inflammation.

AdipoRon reduces LPS-induced inflammatory signalling in cultured podocytes To understand the underlying molecular mechanisms through which AdipoRon ameliorates glomerular inflammation, we carried out studies on LPS-stimulated cultured human podocytes. AdipoRon reduced the LPS-induced phosphorylation of IκBα, NF-κB-p65, JNK and p38-MAPK by 30%, 30%, 36% and 22%, respectively (p < 0.001) (Fig. 4a–e), indicating that its anti-inflammatory actions are mediated via suppression of the NF-κB-p65, JNK and p38-MAPK pathways. Accordingly, AdipoRon reduced the LPS-induced secretion of TNFα by 32% (p < 0.01) (Fig. 4f). AdipoRon-mediated suppression of the aforementioned signalling pathways was abolished in podocytes with stable shRNA-mediated knockdown of AdipoR1 (ESM Fig. 4).

AdipoRon attenuates LPS-induced migration and apoptosis of cultured podocytes In vitro, stimulation with LPS increases migration of podocytes [24]. Using a scratch assay, we observed that AdipoRon attenuated LPS-induced podocyte migration by 39% (p < 0.001) (Fig. 5a,b). To investigate whether AdipoRon protects against LPS-induced podocyte apoptosis [20], we measured the expression of cleaved caspase-3 and the percentage of apoptotic annexinV-positive/7-AAD-negative cells. AdipoRon prevented LPS-induced apoptosis, as demonstrated by the reduction of the cleavage of caspase-3 by 47% (p < 0.001) (Fig. 5c,d) and the percentage of apoptotic cells by 75% (p < 0.001) (Fig. 5e).

AdipoRon reduces LPS-induced secretion of proinflammatory cytokines in human glomeruli To explore whether AdipoRon lowers LPS-induced inflammation in human glomeruli ex vivo, glomeruli isolated from renal cortex obtained from nephrectomies of nine study participants (ESM Table 2) were treated with DMSO, LPS or LPS-AdipoRon for 24 h. ESM Fig. 5 shows the cytokine secretion separately for each participant. The secretion of IL-1β, IL-18, IL-6 and IL-10 was increased by LPS and reduced by AdipoRon (Fig. 6a–c,f). The secretion of TNFα and IL-8 was upregulated by LPS in glomeruli of several participants (ESM Fig. 5d,e), but did not reach statistical significance in the collective analysis (Fig. 6d,e). In the analysis of the relative cytokine secretion upon LPS-AdipoRon treatment (% of LPS-treated), the secretion of IL-1β, IL-18, IL-6, TNFα and IL-10 was reduced (60 ± 22%, 37 ± 28%, 51 ± 27%, 27 ± 26% and 35 ± 22%, respectively,
The LPS-induced cytokine secretion or the relative cytokine secretion with LPS-AdipoRon treatment (% of LPS-treated) did not differ between the participants with and without diabetes, or with BMI below or above 30 (data not shown).

Both the LPS-induced cytokine secretion (ESM Table 4) and the relative cytokine secretion upon LPS-AdipoRon treatment (% of LPS-treated) (ESM Table 5) showed a strong positive correlation between the studied cytokines. To evaluate whether the basal inflammatory status of the kidneys contributes to the cytokine response, we immunostained renal sections for TLR4, phospho-NF-κB-p65 and macrophage marker CD68 (ESM Fig. 6). The LPS-induced cytokine secretion did not correlate with the glomerular expression of TLR4 or phospho-NF-κB-p65, the glomerular number of CD68-positive macrophages, or BMI (ESM Table 4). Interestingly, the relative effect of AdipoRon on LPS-induced IL-6 secretion negatively correlated with the glomerular expression of TLR4, indicating that higher TLR4 expression resulted in reduced effect of AdipoRon on IL-6 secretion (ESM Table 5).
Discussion

We show that AdipoRon ameliorates renal inflammation and injury in HFD-fed mice, attenuates LPS-induced inflammation and dysfunction in cultured human podocytes, and suppresses LPS-induced inflammatory cytokine secretion in isolated human glomeruli. Chronic low-grade inflammation precedes and promotes the progression of renal injury in obesity and diabetes [3–5, 25, 26]. Both conditions associate with increased serum activity of bacterial LPS [2, 27], which promotes chronic low-grade inflammation [2]. Taken together, our data indicate that activation of the adiponectin receptor may be a potent therapeutic strategy to ameliorate inflammation-related glomerular injury.

One of our main findings was that AdipoRon attenuated the glomerular expression of activated NF-κB-p65, TNFα, and IL-1β and the renal expression of IL-6 in HFD-fed obese mice. Studies on obese or diabetic animal models [5, 28–30] and clinical trials targeting proinflammatory molecules in diabetic kidney disease (DKD) [5] suggest that proinflammatory cytokines directly contribute to the progression of renal injury. Proinflammatory cytokines and related molecules are upregulated in the glomeruli of individuals with obesity- or diabetes-related kidney disease [31–33] and associate with the
severity of diabetic glomerular injury [34, 35]. Interestingly, studies on obese individuals with pre-existing renal impairment undergoing bariatric surgery indicate that a reduction of renal inflammation may associate with improvements in renal function [3]. Renal upregulation of proinflammatory cytokines induces infiltration of macrophages, which further facilitates the inflammatory reaction. Accordingly, we observed increased glomerular infiltration of F4/80-positive macrophages in HFD-fed mice, and this was reduced by AdipoRon. Renal inflammation precedes and contributes to the development of glomerular fibrosis, which is an early sign of renal injury in obesity and diabetes and predicts the disease progression [1, 36]. Indeed, along with the reduction of glomerular fibronectin in HFD-fed mice, AdipoRon attenuated the glomerular expression of TGFβ and renal expression of IL-4, both known to promote renal fibrosis [6, 36, 37].

We also observed that AdipoRon ameliorates the structural changes of the glomerular filtration barrier, including glomerular hypertrophy, thickening of the GBM and podocyte foot process effacement (FPE). This is in line with previous studies on adiponectin-treated adiponectin-knockout mice [8] and AdipoRon-treated db/db mice [16]. Glomerular hypertrophy and thickening of the GBM are early renal manifestations of obesity- and diabetes-related kidney disease and precede albuminuria [1, 5]. FPE appears to precede podocyte detachment, and unlike podocyte detachment, it is a reversible process, which enables recovery of the normal podocyte structure if the local stress signals disappear [38]. In line with the reduced FPE, we observed that AdipoRon attenuated the LPS-induced migration of cultured podocytes, which is considered an in vitro analogue of FPE in vivo [38]. AdipoRon also prevented HFD-induced loss of glomerular podocytes, consistent with the protection against LPS-induced apoptosis of podocytes in vitro. Collectively, our study showed that AdipoRon reduces glomerular inflammatory signalling, expression of inflammatory cytokines and macrophage infiltration in HFD-fed mice, potentially contributing to the amelioration of glomerular injury.

AdipoRon also reduced HFD-induced weight gain in mice, which is in line with a previous study on corticosterone-induced obesity in mice [39] but in contrast to previous studies on db/db mice that exhibit, however, more severe metabolic dysfunction than HFD-fed mice [15, 16]. On the basis of the previous literature on adiponectin [40], we hypothesised that...
AdipoRon may prevent HFD-induced intestinal leakage, which potentially predisposes to renal injury [22]. Although the intestinal permeability was not upregulated by HFD in our DBA/2J mice as previously described in C57Bl6/J mice [21], HFD-fed mice showed an elevated serum LPS concentration. The unaltered intestinal permeability may be explained by the HFD-induced upregulation of intraluminal IAP activity, which detoxifies LPS and counteracts increased intraluminal LPS activity, potentially preventing intestinal leakage [21]. Genetic differences between the mouse strains may affect the sensitivity to developing intestinal dysfunction by regulating the capacity to maintain sufficient IAP activity when the intraluminal level of endotoxins is elevated [41, 42]. This may explain why HFD-induced intestinal leakage was not observed in the DBA/2J mice.

Stimulation of cultured podocytes with LPS revealed that the suppression of the central inflammatory signalling pathways, including NF-κB-p65, JNK and p38-MAPK, contributes to the anti-inflammatory effects of AdipoRon in an AdipoR1-dependent manner. As the renal expression of neither AdipoR1 nor TLR4 was altered by AdipoRon, our data suggest that the anti-inflammatory effects of AdipoRon are mediated, at least partly, by the activation of AdipoR1 and the downstream signalling pathways. Upregulation of the aforementioned signalling pathways is also observed in the glomeruli of individuals with obesity- and diabetes-related kidney disease [31, 32, 43–45]. These pathways contribute to renal fibrosis [4, 5], upregulation of proinflammatory cytokines and macrophage infiltration [4, 5], podocyte apoptosis [4, 6, 43] and derangement of the podocyte actin cytoskeleton, which is linked to increased podocyte migration [6]. In line with the suppressed inflammatory signalling, AdipoRon reduced the LPS-stimulated secretion of TNFα, migration and apoptosis in cultured podocytes. A reduced podocyte number is a strong predictor of albuminuria in obesity and diabetes [1, 6, 36], and apoptosis at least partly contributes to podocyte loss in DKD [43]. Taken together, our data suggest that the activation of AdipoR1 by AdipoRon attenuates podocyte injury via inhibition of the NF-κB-p65, JNK and p38-MAPK pathways and TNFα secretion.

A key finding of our study is that AdipoRon reduced the LPS-induced secretion of inflammatory cytokines in human glomeruli ex vivo, further highlighting the relevance of our data for inflammation-related renal injury in humans. Along with the downregulation of proinflammatory cytokines IL-1β, IL-18 and IL-6, AdipoRon downregulated the LPS-induced secretion of anti-inflammatory IL-10, which is secreted in response to proinflammatory cytokines in order to attenuate the established inflammatory reaction [46]. Indeed, reduction of IL-10 secretion by AdipoRon suggests that AdipoRon comprehensively reduces the glomerular inflammatory response. Although metabolic endotoxaemia contributes to chronic inflammation in obesity and diabetes, LPS-independent factors are also involved. Notably, the anti-
inflammatory effects of AdipoRon are not limited to LPS-driven inflammation. AdipoRon suppresses proinflammatory cytokines in vitro in response to other inflammatory triggers as well [47–49], and attenuates inflammation in vivo in models of non-metabolic diseases [47, 48].

Our study has its limitations. The renoprotective effects of AdipoRon, including reduced glomerular expression of TGFβ and infiltration of macrophages, have been described in db/db mice, a model of advanced type 2 diabetes [16]. In that study, AdipoRon was shown to mediate its renoprotective effects through the Ca²⁺/liver kinase B1 (LKB1)–AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor α (PPAR-α) pathway, leading to a reduction in lipotoxicity and oxidative stress [16]. Our study expands the previous data in multiple ways. First, we analysed the renal expression of numerous central proinflammatory molecules in HFD-fed mice. Second, we identified the intracellular signalling pathways that mediate the anti-inflammatory effects of AdipoRon in glomerular podocytes in vitro. Third, by demonstrating that AdipoRon reduced the secretion of inflammatory cytokines in LPS-stimulated human glomeruli, we confirmed that the anti-inflammatory effects of AdipoRon are mediated via lowering local glomerular inflammation, thus excluding the effects of systemic inflammation. Importantly, isolated human glomeruli provide several advantages over cell lines and animal models, as they retain their original donor-related morphological and functional characteristics, and therefore, better reflect the in vivo environment of the human kidney.

Collectively, our data indicate that the renoprotective effects of AdipoRon in mice receiving HFD are mediated via lowering inflammatory signalling and the secretion of proinflammatory cytokines in the glomerular cells. Inflammation is a potential therapeutic target in both obesity- and diabetes-related kidney disease. Due to the
pleiotropic nature of cytokines, targeted inhibition of individual cytokines with, for example, monoclonal antibodies may disturb their complex interplay and thereby cause adverse effects, such as an impaired host defence. Hence, a better strategy could be to target the molecules that exert wide anti-inflammatory actions through effects on several signalling pathways and cytokines, such as the adiponectin signalling pathway. Furthermore, the manufacturing of biologics is expensive compared with chemical drugs. AdipoRon has emerged as a promising drug candidate for a wide range of diseases [50], and our study proposes that activating the adiponectin receptor by AdipoRon is a potent strategy to alleviate inflammation-related renal injury.

Supplementary Information The online version contains peer-reviewed but unedited supplementary material available at https://doi.org/10.1007/s00125-021-05473-9.

Acknowledgements We thank M. Saleem (Southmead Hospital, University of Bristol, Bristol, UK) for providing human podocytes and C. Haglund and P. Saarinen (University of Helsinki [UH], Finland) for TLR4 antibody, T. Arumäe (UH), L. Saikko (UH), S. Hänninen (UH), H. Olanne (Folkhälsan Research Center, Helsinki, Finland), F. Zhao (UH), Laboratory Animal Centre (UH), Tissue Preparation and Histochemistry Unit (UH), Biochemical Analysis Core for Experimental Research (UH), Genome Biology Unit (UH), Flow Cytometry Unit (UH), Finnish Institute of Molecular Medicine (Helsinki, Finland), Finnish Centre for Laboratory Animal Pathology (UH), HUSLAB Laboratory of Pathology (Helsinki, Finland), Electron Microscopy Units of the Institute of Biotechnology (UH) and HUS (Helsinki, Finland) are acknowledged for technical assistance. Some of the data were presented as an abstract at the 53rd EASD Annual Meeting in 2017 and at the 56th EASD Annual Meeting in 2020, and a conference abstract has been published in the abstract book of the Annual Meeting of the European Diabetic Nephropathy Study Group, 2020.

Data availability All data generated and analysed during this study are available from the corresponding author on reasonable request.

Funding Open access funding provided by University of Helsinki including Helsinki University Central Hospital. This study was supported by Päiviikki and Sakari Sohlberg Foundation (SLe, SLi, ML), Finnish Cultural Foundation (SLi), Finnish Kidney Foundation (SLi), Finnish-Norwegian Medical Research Foundation (SLi), Sigrid Juselius Foundation (SLe), Finnish Diabetes Research Foundation (SLe, ML), Jane and Aatos Erkkö Foundation (SLe), HiLife and Faculty of Medicine, University of Helsinki (SLe), The Doctoral Programme in Biomedicine of University of Helsinki (RB), Juhani Aho Medical Research Foundation (HS), Finska Läkaresällskapet (RF), Folkhälsan Research Foundation (ML, PHG), Helsinki University Central Hospital Research Funds (ML, PHG) and Novo Nordisk Foundation (#NNF OCO013659) (ML, PHG).

Authors’ relationships and activities PHG has received research grants from Eli Lilly and Roche, is an advisory board member for AbbVie, Astellas, Astra Zeneca, Bayer, Boehringer-Ingelheim, Eli Lilly, Janssen, Medscape, MSD, Mundipharma, Novartis, Novo Nordisk and Sanofi. He has received lecture fees from Astra Zeneca, Boehringer-Ingelheim, Eli Lilly, Genzyme, Medscape, MSD, Novartis, Novo Nordisk, Peer Voice, Sanofi and SCIARC. All other authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Contribution statement SLi wrote the manuscript and performed the experimental work and statistical analyses. SLe contributed to the conception of the idea and design of the study and critically evaluated the manuscript. ZP, RB, MM, EL, HN, JT, HS and RF were involved with the experimental work and critically evaluated the manuscript. TM, ML and PHG participated in the interpretation of the results and critically evaluated the manuscript. All authors approved the final content of the manuscript. SLe is the guarantor of this work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. D'Agati VD, Chagnac A, de Vries A et al (2016) Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol 12(8):453–471. https://doi.org/10.1038/nrneph.2016.75
2. Cani PD, Ostro M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3(4):279–288. https://doi.org/10.4161/gmic.19625
3. Neff KJ, Frankel AH, Tam FWK, Sadlier DM, Godson C, Le Roux CW (2013) The effect of bariatric surgery on renal function and disease: a focus on outcomes and inflammation. Nephrol Dial Transplant 28:iv73–iv82. https://doi.org/10.1093/ndt/gft262
4. Lim AKH, Tesch GH (2012) Inflammation in diabetic nephropathy. Mediat Inflamm 2012:146154. https://doi.org/10.1155/2012/146154
5. Rayego-Mateos S, Morgado-Pascual J, Opazo-Rios L et al (2020) Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci 21(11):3798. https://doi.org/10.3390/ijms21113798
6. Vallon V, Komers R (2011) Pathophysiology of the diabetic kidney. Compr Physiol 1(3):1175–1232. https://doi.org/10.1002/cphy.c100049
7. Zha D, Wu X, Gao P (2017) Adiponectin and its receptors in diabetic kidney. Compr Physiol 1(3):1175–1232. https://doi.org/10.1002/cphy.c100049
8. Sharma K, Ramachandranrao S, Qiu G et al (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118(5):1645–1656. https://doi.org/10.1172/JCI32691
9. Fang F, Bae EH, Hu A et al (2015) Deletion of the gene for adiponectin accelerates diabetic nephropathy in the Ins2 (+/C96Y) mouse. Diabetologia 58(7):1668–1678. https://doi.org/10.1007/s00125-015-3605-9
10. Guo X, Zhou G, Guo M, Cheung AK, Huang Y, Beddu S (2014) Adiponectin retards the progression of diabetic nephropathy in db/db mice by counteracting angiotensin II. Physiol Rep 2(2):e00230. https://doi.org/10.1002/physr.2230.
11. Yuan F, Liu YH, Liu FY, Peng YM, Tian JW (2014) Intraperitoneal administration of the globular adiponectin gene ameliorates diabetic nephropathy in Wistar rats. Mol Med Rep 9(6):2293–2300. https://doi.org/10.3892/mmr.2014.2133

12. Kacso IM, Bondor CI, Kacso G (2012) Plasma adiponectin is related to the progression of kidney disease in type 2 diabetes patients. Scand J Clin Lab Invest 72(4):333–339. https://doi.org/10.3109/03655313.2012.689298

13. Ljubic S, Jazbec A, Tomic M et al (2015) Inverse levels of adiponectin in type 1 and type 2 diabetes are in accordance with the state of albuminuria. Int J Endocrinol 2015:372796. https://doi.org/10.1155/2015/372796

14. Yano Y, Hoshide S, Ishikawa J et al (2007) Differential impacts of adiponectin on low-grade albuminuria between obese and nonobese persons without diabetes. J Clin Hypertens 9(10):775–782. https://doi.org/10.1111/j.1524-6175.2007.07321.x

15. Okada-Iwabu M, Yamauchi T, Iwabu M et al (2013) A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503(7477):493–499. https://doi.org/10.1038/nature12656

16. Kim Y, Lim JH, Kim MY et al (2018) The adiponectin receptor agonist AdipoRon ameliorates diabetic nephropathy in a model of type 2 diabetes. J Am Soc Nephrol 29(4):1108–1127. https://doi.org/10.1681/ASN.20170600627

17. Hyvonen ME, Dumont V, Tienari J et al (2015) Early-onset diabetic E1-DN mice develop albuminuria and glomerular injury typical of diabetic nephropathy. Biomed Res Int 2015:102969. https://doi.org/10.1155/2015/102969

18. Saleem MA, O’Hare A, Lehtonen E et al (2015) Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway. Cell Death Dis 6:e1752. https://doi.org/10.1038/cddis.2015.125

19. Kallman K, Hamarneh SR, Economopoulos KP et al (2013) Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci U S A 110(17):7003–7008. https://doi.org/10.1073/pnas.1220180110

20. Lehto M, Groop PH (2018) The gut-kidney axis: putative interconnections between gastrointestinal and renal disorders. Front Endocrinol (Lausanne) 9:553. https://doi.org/10.3389/fendo.2018.00351

21. Saurus P, Kuusela S, Lehtonen E et al (2015) Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway. Cell Death Dis 6:e1752. https://doi.org/10.1038/cddis.2015.125

22. Calman K, Hamarneh SR, Economopoulos KP et al (2013) Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci U S A 110(17):7003–7008. https://doi.org/10.1073/pnas.1220180110

23. Lehto M, Groop PH (2018) The gut-kidney axis: putative interconnections between gastrointestinal and renal disorders. Front Endocrinol (Lausanne) 9:553. https://doi.org/10.3389/fendo.2018.00351

24. Wang L, Llorente C, Hartmann P, Yang AM, Chen P, Schnabl B (2017) Protein tyrosine phosphatase Shp2 deficiency in podocytes attenuates albuminuria in diabetic rats. Kidney Int 86(6):1229–1243. https://doi.org/10.1038/ki.2014.116

25. Wang H, Li J, Gai Z, Kullak-Ublick G, Liu Z (2017) TNF-α deficiency prevents renal inflammation and oxidative stress in obese mice. Kidney Blood Press Res 42(3):416–427. https://doi.org/10.1159/000478869

26. Wu R, Liu X, Yin J et al (2018) IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice. Metab Clin Exp 83:18–24. https://doi.org/10.1016/j.metabol.2018.01.002

27. Creely SJ, McTernan PG, Kusminski CM et al (2007) Macrophage-derived tumor necrosis factor-alpha mediates diabetic renal injury. Kidney Int 88:722–733. https://doi.org/10.1038/ki.2015.162

28. Awad AS, You H, Gao T et al (2015) Macrophage-derived tumor necrosis factor-alpha mediates diabetic renal injury. Kidney Int 88:722–733. https://doi.org/10.1038/ki.2015.162

29. Verzola D, Cappuccino L, D’Amato E et al (2014) Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney Int 86(6):1229–1243. https://doi.org/10.1038/ki.2014.116

30. Wu Y, Liu Z, Xiang Z et al (2006) Obesity-related glomerulopathy: insights from gene expression profiles of the glomeruli derived from renal biopsy samples. Endocrinology 147(1):44–50. https://doi.org/10.1210/en.2005-0641

31. Araújo LS, Torquato BGS, da Silva CA et al (2020) Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol 21(1):308. https://doi.org/10.1186/s12882-020-01960-0

32. Suzuki D, Miyazaki M, Nakra R et al (1995) In situ hybridization of interleukin 6 in diabetic nephropathy. Diabetes 44(10):1233–1238. https://doi.org/10.2337/dbab.44.10.1233

33. Milas O, Gadalean F, Vlad A et al (2019) Pro-inflammatory cytokines are associated with podocyte damage and proximal tubular dysfunction in the early stage of diabetic kidney disease in type 2 diabetes mellitus patients. J Diabetes Complicat 34:107479. https://doi.org/10.1016/j.jdc.2019.107479

34. Brosius FC (2008) New insights into the mechanisms of fibrosis and sclerosis in diabetic nephropathy. Rev Endocr Metab Disord 9(4):245–254. https://doi.org/10.1007/s11154-008-9100-6

35. Rüger BM, Hasan Q, Erh KJ, Davis PF (1999) Progression of renal disease in interleukin-4 transgenic mice: involvement of transforming growth factor-beta. Int J Exp Pathol 80(3):113–123. https://doi.org/10.1080/001076581.1999.111500005.x

36. Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV (2013) The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 304(4):F333–F347. https://doi.org/10.1152/ajprenal.00478.2012

37. Nicolas S, Debayle D, Béchade C et al (2018) Adiporon, an adiponectin receptor agonist acts as an antidepressant and metabolic regulator in a mouse model of depression. Transl Psychiatry 8(1):159. https://doi.org/10.1038/s41398-018-0210-y

38. Olefs S, Wankell M, Charrez B et al (2017) Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem 292(16):659–682. https://doi.org/10.1074/jbc.M117.712646

39. de la Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299(2):G440–G448. https://doi.org/10.1152/ajpgi.00098.2010

40. West DB, Boozer CN, Moody DL, Atkinson RL (1992) Dietary potassium deficiency prevents renal inflammation and oxidative stress in obese mice. Proc Natl Acad Sci U S A 110(17):7003–7008. https://doi.org/10.1073/pnas.1220180110

41. Nymark M, Pussinen PJ, Tuomainen AM et al (2009) Serum lipopolysaccharide activity is associated with the progression of kidney disease in Finnish patients with type 1 diabetes. Diabetes Care 32(9):1689–1693. https://doi.org/10.2337/dc09-0467

42. Creely SJ, McTernan PG, Kusminski CM et al (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292(3):E740–E747. https://doi.org/10.1152/endo.00302.2006

43. Adhikary L, Chow F, Nikolaic-Paterson D et al (2004) Abnormal p38 mitogen-activated protein kinase signalling in human and...
45. De Borst MH, Prakash J, Melenhorst W et al (2007) Glomerular and tubular induction of the transcription factor c-Jun in human renal disease. J Pathol 213(2):219–228. https://doi.org/10.1002/path.2228

46. Stenvinkel P, Ketteler M, Johnson RJ et al (2005) IL-10, IL-6, and TNF-α: central factors in the altered cytokine network of uremia — the good, the bad, and the ugly. Kidney Int 67(4):1216–1233. https://doi.org/10.1111/j.1523-1755.2005.00200.x

47. Zhou Q, Xiang H, Li A et al (2019) Activating adiponectin signaling with exogenous AdipoRon reduces myelin lipid accumulation and suppresses macrophage recruitment after spinal cord injury. J Neurotrauma 36(6):903–918. https://doi.org/10.1089/neu.2018.5783

48. Abou-Samra M, Selvais CM, Boursereau R, Lecompte S, Noel L, Brichard SM (2020) AdipoRon, a new therapeutic prospect for Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 11(2):518–533. https://doi.org/10.1002/jcsm.12531

49. Zhang Y, Zhang Y, Huang Q et al (2019) AdipoRon alleviates free fatty acid-induced myocardial cell injury via suppressing Nlrp3 inflammasome activation. Diabetes Metab Syndr Obes 12:2165–2179. https://doi.org/10.2147/DMSO.S221841

50. Otvos L (2019) Potential adiponectin receptor response modifier therapeutics. Front Endocrinol 10:539. https://doi.org/10.3389/fendo.2019.00539

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.