Permanent occurrence of *Raphidiopsis raciborskii* and cyanotoxins in a subtropical reservoir polluted by domestic effluents (Itupararanga reservoir, São Paulo, Brazil)

Leila dos Santos Machado¹ · Fabiane Dörr² · Felipe Augusto Dörr² · Daniele Frascareli¹ · Darlene S. Melo¹ · Erik S. J. Gontijo¹ · Kurt Friese³ · Ernani Pinto² · André Henrique Rosa¹ · Marcelo M. Pompêo⁴ · Viviane Moschini-Carlos¹

Received: 12 April 2021 / Accepted: 7 October 2021 / Published online: 25 October 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Toxic cyanobacteria blooms are a frequent problem in subtropical reservoirs and freshwater systems. The purpose of this study was to investigate the occurrence of potentially toxic cyanobacteria and the environmental conditions associated with the presence of cyanotoxins in a Brazilian subtropical reservoir. Five collections were carried out at seven sampling locations in the reservoir, during the rainy and dry seasons, between the years 2016 and 2017. There was permanent occurrence of *Raphidiopsis raciborskii* (Woloszynska) Aguilera, Berrendero Gómez, Kastovsky, Echenique & Salerno (Phycologia 57(2):130–146, 2018), ranging between dominant and abundant, with an average biomass of 38.8 ± 29.9 mg L$^{-1}$. Also abundant were *Dolichospermum solitarium*, *D. planctonicum*, *Planktothrix isothrix*, and *Aphanizomenon gracile*. Saxitoxin (STX) was detected in all the collected samples (0.11 ± 0.05 µg L$^{-1}$). Microcystin (MC) was also detected, but at lower concentrations (0.01 ± 0.0 µg L$^{-1}$). Low availability of NO$_3^-$ and phosphorus limitation had significant effects on the *R. raciborskii* biomass and the levels of STX and MC. It was observed that *R. raciborskii* was sensitive to thermal stratification, at the same time that STX levels were higher. This suggested that STX was produced under conditions that restricted the growth of *R. raciborskii*. These are important findings, because they add information about the permanent occurrence of STX and *R. raciborskii* in an aquatic ecosystem limited by phosphorus, vulnerable to climatic variations, and polluted by domestic effluents.

Keywords Eutrophication · Saxitoxin · Microcystin · Biomass · Blooms · Aquatic ecosystem

Introduction

Tropical and subtropical regions are those most affected by the occurrence of potentially toxic cyanobacteria blooms (WHO 2017). Freshwater ecosystems in these regions are environments conducive to the occurrence of cyanobacteria and cyanotoxins, because in addition to the favorable climate, they frequently contain high levels of nutrients (Mowe et al. 2015).

Several studies point to evidence in other regions of the world that harmful cyanobacterial blooms have increased on a global scale over the past few decades, and that they are likely to expand further in the coming decades, due to continued eutrophication and global warming (Paerl and Paul 2012; Antunes et al. 2015; Huisman et al. 2018; Pham et al. 2020). Given forecasts of increased eutrophication, warming, and salinization, cyanobacterial blooms will become
more intense in tropical reservoir regions (Amorim et al. 2020).

Brazil was the first country to create specific legislation containing guidelines aimed at controlling cyanotoxins and cyanobacteria in drinking water (Bittencourt-Oliveira et al. 2014). According to this legislation, a cyanotoxin analysis must be performed weekly when the cyanobacterial density exceeds 20,000 cells mL\(^{-1}\), observing the maximum acceptable values of 3 µg L\(^{-1}\) for saxitoxin (STX) and 1 µg L\(^{-1}\) for microcystins (MC) (Brasil 2021). This occurred after the reported intoxication of 131 chronic kidney disease patients at a hemodialysis clinic in the city of Caruarú (Pernambuco State, Brazil), due to contamination of the water by microcystins (Carmichael 2001). Studies have reported the occurrence of blooms of potentially toxic species in different regions of Brazil, mainly associated with the presence of *Raphidiopsis raciborskii* and *Microcystis* spp. (Figueredo and Giani 2009; Moschini-Carlos et al. 2009; Cunha and Calijuri 2011b; Bittencourt-Oliveira et al. 2014; Fonseca et al. 2014; Nishimura et al. 2014; Machado et al. 2016; Casali et al. 2017; Santos et al. 2018; Vicentini et al. 2018; Rodrigues et al. 2019). The identified cyanotoxins included saxitoxins, microcystins, and cylindrospermopsin (Molica et al. 2002; Moschini-Carlos et al. 2009; Bittencourt-Oliveira et al. 2014; Casali et al. 2017; Pedrosa et al. 2020).

Toxic cyanobacteria blooms in eutrophic reservoirs represent a major public health problem. Pedrosa et al. (2020) reported that saxitoxin had a synergistic effect in Zika virus (ZIKV) infections in northeast Brazil, even at concentrations considered safe (<3.00 µg L\(^{-1}\)). The authors reported that STX doubled the amount of ZIKV-induced neural cell death in progenitor areas of the human brain organoid, while chronic ingestion of STX-contaminated water before and during pregnancy caused brain abnormalities in the offspring of ZIKV-infected mice. Facciponte et al. (2018) investigated the exposure route of aerosolized STX, showing contamination of the human respiratory tract. Christensen and Khan (2020) reported several other routes of exposure to this toxin, leading to lethal and sublethal effects, together with bioaccumulation, due to different types of direct and indirect contact.

The occurrence of microcystins has been associated with high concentrations of nitrogen, with blooms generally occurring during the rainy season and with high temperatures (Mowe et al. 2015). Worldwide, the taxa frequently identified in blooms with the presence of MC are *Microcystis aeruginosa*, *M. protocystis*, *M. panniformis*, *Planktothrix agardhii*, *P. isothis*, and *Dolichospermum* (Molica et al. 2002; Moschini-Carlos et al. 2009; Sant’anna et al. 2011; Paerl & Paul, 2012; Merel et al. 2013; Bittencourt-Oliveira et al. 2014; Funari et al. 2017; Huisman et al. 2018; Pham et al. 2020). Blooms dominated by these species are more frequent in the summer, when the warm climate favors an increase of biomass and the occurrence of cyanotoxins tends to be higher (Trung et al. 2018). The production of MC can be stimulated in the presence of competing species in the growth medium, such as chlorophytes (*Monoraphidium convolutum* (Corda) Komárková-Legnerová and *Scenedesmus acuminatus* (Largerheim) Chodat) (Bittencourt-Oliveira et al. 2015). In addition to allelopathic interactions, herbicides and nutrient variation in aquatic ecosystems alter the physical and chemical characteristics of water, which could favor the production of cyanotoxins (Brêda-Alves et al. 2021).

The occurrence of STX, produced by toxic strains of *R. raciborskii*, is related to high temperatures, being common in periods of drought and low nitrogen availability (Mowe et al. 2015). The ability to fix atmospheric nitrogen is one of the main adaptations of *R. raciborskii*, enabling its growth in environments limited by phosphorus (Kenesi et al. 2009; Piccini et al. 2011). This allows the maintenance of these species in different environments, despite not necessarily being correlated to environmental variables (Figueredo & Giani 2009). In addition, some studies mention the allelopathic effect of *R. raciborskii*, inhibiting the development of species of the genus *Microcystis*, favoring monospecific blooms (Mello et al. 2012; Mowe et al. 2015; Brêda-Alves et al. 2021). Furthermore, *R. raciborskii* is not tolerant to stratification of the water column and flushing (Reynolds 2006; Padišák et al. 2009). However, the many ecophysiological adaptations reflect the high genetic variability of this species, accounting for its wide occurrence in different regions of the world (Piccini et al. 2011; Antunes et al. 2015; Vanderley et al. 2021).

The problem of eutrophication is global, with widespread occurrence of potentially toxic species, highlighting the need to understand the most important environmental factors influencing this phenomenon (Moschini-Carlos et al. 2009, 2010; Yamamoto et al. 2011; Paerl & Paul, 2012; Merel et al. 2013; Beghelli et al. 2016; Machado et al. 2016; Huisman et al. 2018; Pompêo et al. 2021). Such studies are crucial to support strategies for the management of these environments, aiming at achieving good ecological status and guiding public health actions (Cardoso-Silva et al. 2015; Pompêo et al. 2021). Therefore, in order to better understand the dynamics of cyanobacteria in a eutrophic subtropical reservoir, the aims of this study were to (i) describe the phytoplanktonic community, (ii) investigate the occurrence of cyanotoxins (microcystin and saxitoxin), (iii) elucidate the relationship between cyanotoxins and the cyanobacteria biomass, and (iv) identify the environmental conditions that significantly influence the presence of cyanotoxins.
Materials and methods

Study site

The Itupararanga reservoir is located in the southeastern region of São Paulo State, Brazil (Fig. 1). The main channel of the reservoir is 26 km long and the average depth is 7.8 m, reaching 21 m. The climate in the region is typically subtropical and the average temperature varies between 18 and 22 °C (Melo et al. 2019).

Approximately 63% of the water of this reservoir is used for public supply in several cities located in its vicinity, serving around 800,000 people (Pedrazzi et al. 2013; Rosa et al. 2015). Recent studies have reported significant degradation of the reservoir water quality, due to inflows of domestic effluents in the fluvial region (Cunha & Calijuri 2011a; Taniwaki et al. 2013; Begelli et al. 2016; Melo et al. 2019).

During the period of sample collection, the reservoir was characterized as super-eutrophic (Melo et al. 2019), based on the trophic status index model adapted by Cunha et al. (2013) for tropical and subtropical reservoirs.

Sample collection methods

Samples were collected at seven points (P1–P7) along the longitudinal axis of the reservoir (Fig. 1). The choice of locations considered the characteristics of use and occupation of the margins, as described by Rosa et al. (2015). Five collections were performed during the rainy and dry seasons, in the years 2016 and 2017 (December 2016, March 2017, August 2017, October 2017, and December 2017). The rainy season was from October to March and the dry season was from April to September (Melo et al. 2019).

Data reported previously for the Itupararanga reservoir (Melo et al. 2019) and obtained in the same sampling campaign was used as a reference for the limnological characterization of the water, considering the following parameters: total nitrogen (TN), nitrite (NO₂⁻), nitrate (NO₃⁻), ammonium (NH₄⁺), total phosphorus (TP), orthophosphate (PO₄³⁻), chlorophyll-a (Chl-a), euphotic zone (EZ), depth, temperature (T), pH, electrical conductivity (EC), turbidity (TURB), and redox potential (Eh).

Fig. 1 Map of the Itupararanga reservoir and locations of the sampling points. Original source: Melo et al. (2019)
Analytical methods

For quantitative analysis of phytoplankton, integrated samples of the water column were collected with a plastic hose (1 m length) and were filtered with 1% acetic Lugol. The identification of cyanobacteria was based on the studies of Komárnek and Anagnostidis (1999, 2005), Sant’Anna et al. (2004, 2006, 2012), and Nogueira et al. (2011). Counting was performed as described by Hillebrand et al. (1999) and Sun and Liu (2003). Phytoplankton biomass was estimated according to Wetzel and Likens (2000), where 1 mm3 L$^{-1} = 1$ mg L$^{-1}$. Species were considered abundant when their biomass represented more than 5% of the total biomass.

Samples were collected for analysis of free STX and MC present in the reservoir water. In the laboratory, the samples were filtered using glass fiber filters (Whatman GFC) with pore size of 1.2 μm. The STX content was determined by enzyme-linked immunosorbent assay (ELISA), using the Saxitoxin Plate Kit (Beacon Analytical Systems, USA), according to the manufacturer’s recommendations.

The analysis of microcystins was performed by liquid chromatography coupled with mass spectrometry (LC–MS). For this, a 400 mL volume of each sample was submitted to solid phase extraction (SPE) using 500 mg Sep-Pak C18 6 cc Vac cartridges (Waters, USA), according to the methodology described by Kim et al. (2009). The cartridges were previously conditioned with 10 mL of HPLC grade methanol, followed by 10 mL of Milli-Q water. After eluting the samples, the cartridges were cleaned with 10 mL of Milli-Q water and 10 mL of 20% methanol. Finally, the analytes of interest were eluted with 10 mL of 80% methanol and the eluate was dried at 35 °C, under nitrogen. The dry material was resuspended in 1 mL of 70% methanol and filtered through a 0.45-μm PVDF membrane (Millipore, USA). The analysis employed a 1260 Infinity chromatograph (Agilent Technologies, USA), which was coupled to a triple quadru-pole mass spectrometer (6460 Triple Quad LC/MS, Agilent Technologies, USA), and was performed using the R® 3.4.0 Vegan 2.5–2 software package (Oksanen et al. 2018).

Results

The Cyanophyceae were major contributors to the biomass of the phytoplankton community in the Itupararanga reservoir. Among all groups, cyanobacteria represented 40.3% of the total biomass, with higher levels at the end of the dry period (August 2017) and the beginning of the rainy period (October 2017) (Fig. 2). Among the abundant species identified, R. raciborskii was dominant in December 2016 and March 2017, with its occurrence remaining constant in the other collections (Fig. 3, Table 1). R. raciborskii showed permanent occurrence in the reservoir, with no significant seasonal variations of its biomass (mean 38.8 ± 29.9 mg L$^{-1}$). The apparently seasonal species included Phormidium aerugino-caeruleum (Gomont) Anagnostidis & Komárek (mean 73.5 ± 89.6 mg L$^{-1}$), which only occurred at points P6 and P7, in August 2017. Other abundant species were Dolichospermum solitaryum (Klebahn) Wacklin, L. Hoffmann & Komárek (mean 41.3 ± 73.5 mg L$^{-1}$), Dolichospermum planctonicum (Brunnthaler) Wacklin, L. Hoffmann & Komárek (mean 36.5 ± 60.3 mg L$^{-1}$), Planktothrix isothrix (Skuja) Komárek & Komárková (mean 25.8 ± 29.3 mg L$^{-1}$), and Aphaniizonon gracile Lemmermann (mean 14.7 ± 24 mg L$^{-1}$) (Fig. 3, Table 1).

Between the dry period (August 2017) and the beginning of the rainy period (October 2017), the cyanobacteria composition altered, with abundance of the species D. solitaryum, P. isothrix, and A. gracile, in addition to R. raciborski (Fig. 3).

The average cyanobacteria biomass varied among the sampling periods, indicating a seasonal response of these organisms (Fig. 4a). Spatial heterogeneity of the reservoir
Table 1 Average (avg), minimum (min), maximum (max), and standard deviation (SD) values for the variables analyzed using CCA: total nitrogen (TN), nitrite (NO$_2^-$), nitrate (NO$_3^-$), ammonium (NH$_4^+$), total phosphorus (TP), orthophosphate (PO$_4^{3-}$), chlorophyll-a (Chl-a), euphistic zone (Zeuf), depth (Depth), temperature (T), pH, electrical conductivity (EC), turbidity (TURB), redox potential (Eh), abundant cyanobacteria biomass (A. gracile, R. raciborskii, D. planctonicum, D. solitarium, P. aeruginosa-caeruleum, P. isothrix), saxitoxin (STX), and microcystin (MC-LR).

Variables	Avg	Min	Max	SD
TN (µg L$^{-1}$)	484.66	166.0	1210.00	215.16
NO$_2^-$ (µg L$^{-1}$)	2.44	0.40	10.80	2.36
NO$_3^-$ (µg L$^{-1}$)	81.09	7.90	295.80	83.22
PO$_4^{3-}$ (µg L$^{-1}$)	22.50	3.80	60.40	18.66
STX (µg L$^{-1}$)	0.11	0.04	0.21	0.05
MC-LR (µg L$^{-1}$)	0.01	0.00	0.02	0.00
Aphanizomenon gracile (mg L$^{-1}$)	14.70	0.13	80.81	24.06
Raphidiopsis raciborskii (mg L$^{-1}$)	38.80	3.43	119.76	29.99
Dolichospermum planctonicum (mg L$^{-1}$)	36.54	3.00	143.22	60.37
Dolichospermum solitarius (mg L$^{-1}$)	41.32	0.31	290.57	73.56
Phormidium aeruginos-caeruleum (mg L$^{-1}$)	73.57	2.75	174.36	89.64
Planktothrix isothrix (mg L$^{-1}$)	25.81	1.35	100.30	29.37

Table 2 Pearson correlations between the physical, chemical, and biological variables: total nitrogen (TN), nitrite (NO$_2^-$), nitrate (NO$_3^-$), ammonium (NH$_4^+$), total phosphorus (TP), orthophosphate (PO$_4^{3-}$), chlorophyll-a (Chl-a), euphistic zone (Zeuf), depth (Depth), temperature (T), pH, electrical conductivity (EC), turbidity (TURB), redox potential (Eh), abundant cyanobacteria biomass (A. gracile, R. raciborskii, D. planctonicum, D. solitarium, P. aeruginos-caeruleum, P. isothrix), saxitoxin (STX), and microcystin (MC-LR).

Table 2 Pearson correlations between the physical, chemical, and biological variables: total nitrogen (TN), nitrite (NO$_2^-$), nitrate (NO$_3^-$), ammonium (NH$_4^+$), total phosphorus (TP), orthophosphate (PO$_4^{3-}$), chlorophyll-a (Chl-a), euphistic zone (Zeuf), depth (Depth), temperature (T), pH, electrical conductivity (EC), turbidity (TURB), redox potential (Eh), abundant cyanobacteria biomass (A. gracile, R. raciborskii, D. planctonicum, D. solitarium, P. aeruginos-caeruleum, P. isothrix), saxitoxin (STX), and microcystin (MC-LR).

Variables	TN	NO$_2^-$	NO$_3^-$	NH$_4^+$	TP	PO$_4^{3-}$	Chl-a	Zeuf	Depth	T	pH	EC	TURB	Eh
A. gracile	-0.22	-0.43	0.02	-0.07	-0.27	0.25	0.15	-0.23	0.02	-0.33	0.42	-0.12	0.18	-0.48
R. raciborskii	0.00	-0.40	-0.64	0.23	0.01	-0.55	-0.29	0.37	0.47	0.29	-0.28	-0.58	-0.09	0.01
D. planctonicum	0.23	0.22	0.07	-0.04	0.16	0.42	0.05	-0.17	-0.25	-0.01	0.27	0.27	-0.05	-0.04
D. solitarium	0.15	0.21	0.39	-0.21	0.07	0.48	0.50	-0.24	-0.18	-0.20	0.32	0.53	0.27	0.27
P. aeruginos-cae	-0.42	-0.05	0.23	0.16	-0.05	0.24	-0.18	0.16	0.21	-0.44	-0.05	-0.19	-0.23	-0.07
P. isothrix	-0.09	-0.44	-0.14	-0.27	-0.24	0.01	0.10	-0.05	-0.07	-0.01	0.26	0.06	0.14	-0.35
STX	0.20	-0.42	-0.46	0.20	-0.27	-0.34	-0.10	0.18	0.49	0.37	-0.35	-0.24	0.08	0.09
MC-LR	-0.19	0.05	-0.10	-0.14	0.02	-0.05	-0.16	0.03	-0.11	0.17	0.26	0.11	0.11	-0.18

According to Cohen (1988), the magnitude classification of the coefficients is divided into weak (between 0.10 and 0.29); moderate (between 0.30 and 0.49) and strong (between 0.50 and 1). Therefore, we used the variables with strong and moderate magnitude correlations, which are in bold.

![Fig. 2 Total biomasses of the phytoplankton classes in the Itupararanga reservoir during the periods December 2016, March 2017, August 2017, October 2017, and December 2017](image)

was also evident, since the average cyanobacteria biomass varied among the sampling points (Fig. 4a).

Free STX was detected, with an average concentration of 0.11 ± 0.05 µg L$^{-1}$ over the five collections. Among the MC variants evaluated, only MC-LR was detected at low concentrations (0.01 ± 0.0 µg L$^{-1}$) (Table 1).

Although both cyanotoxins were detected at low concentrations, the patterns of occurrence were different (Fig. 4b, Table 1). There was permanent presence of STX and MC-LR, with the compounds occurring in all five collections between December 2016 and December 2017. The lowest levels of STX were observed in August 2017, when the biomass values were also lower (Fig. 4b).

The environmental variables that showed significant effects in the CCA were TN, NO$_2^-$, NO$_3^-$, and PO$_4^{3-}$ (Table 1). The model provided high explanatory power, with the first two axes explaining 79.5% of the data variation (42.06% by axis 1 and 37.44% by axis 2) (Fig. 5).

Only R. raciborskii was positively correlated with STX and MC-LR, ordered in the quadrant opposite the NO$_3^-$ gradient. Among the species analyzed, no other organism showed a positive correlation with the occurrence of cyanotoxins. Linear regression analysis applied to the R. raciborskii biomass and STX values ($R^2 = 0.21; p < 0.05$) confirmed that the presence of STX in the reservoir depended on the biomass of this species (Fig. 6a).
Fig. 3 Biomasses of abundant cyanobacteria (> 5%) during the periods December 2016, March 2017, August 2017, October 2017, and December 2017.

Fig. 4 a Box plots of cyanobacteria biomasses (mg L⁻¹) in the different collections, and b contents (µg L⁻¹) of saxitoxin (STX) and microcystin (MC-LR).

Fig. 5 CCA biplot with the following variables: total nitrogen (TN), nitrite (NO₂⁻), nitrate (NO₃⁻), orthophosphate (PO₄³⁻), microcystin (MC-LR), saxitoxin (STX, represented by the symbol “■” in red), and abundant cyanobacteria biomasses.
In addition, there was a statistically significant inverse linear relation between NO_3^- and $R. raciborskii$ biomass ($R^2 = 0.41; p < 0.05$) (Fig. 6b). A negative correlation between STX and NO_3^- was observed in the Pearson correlation analysis ($r = -0.46$) (Table 2) and the CCA (Fig. 5), confirming that NO_3^- directly affected the occurrence of $R. raciborskii$ and, consequently, the presence of STX in the reservoir (Tables 2 and 3).

In the case of MC-LR, despite transforming the values using log10, the normality test (W) indicated that the normality criterion was not met. Hence, Spearman’s non-parametric analysis showed that the MC-LR had no significant correlation with $R. raciborskii$ (-0.11) and the environmental variables (Table 4).

Discussion

The observed predominance of cyanobacteria in the Itupararanga reservoir was in agreement with previous findings (Cunha and Calijuri 2011b; Casali et al. 2017; Vargas et al. 2020; Moraes et al. 2021), where the presence of $R. raciborskii$ was identified in the reservoir, its main tributaries, and areas close to the dam. However, Casali et al. (2017) identified an opposite pattern in the dominance of $R. raciborskii$ with respect to the climate, with high biomass values in the dry period ($> 1.0 \times 10^7 \mu \text{m}^3 \text{mL}^{-1}$) and lower values in the rainy season ($< 5.0 \times 10^6 \mu \text{m}^3 \text{mL}^{-1}$). Other studies have also reported the abundance of $R. raciborskii$ in Brazilian reservoirs in the dry and rainy seasons, in addition to species of the genera Dolichospermum and Aphanizomenon (Figueredo and Giani 2009; Moschini-Carlos et al. 2009; Sant’Anna et al. 2011; Bittencourt-Oliveira et al. 2014; Fonseca et al. 2014; Nishimura et al. 2014; Machado et al. 2016; Santos et al. 2018; Vicentin et al. 2018; Rodrigues et al. 2019).

In addition to the dominance of $R. raciborskii$ reported in many regions of Brazil, evidence of the predominance of this cyanobacteria in different regions of the world has been common in recent decades (Paerl and Paul 2012; Sukenik et al. 2012; Antunes et al. 2015; Huisman et al. 2018; Rzymski et al. 2018).

The variation of the average cyanobacteria biomass among the samples revealed the influence of climatic conditions on these organisms. According to Melo et al. (2019), thermal stratification from point P4 to P7 was observed in October 2017, together with a substantial difference in levels of dissolved oxygen (DO) between the surface (7 mg L$^{-1}$) and the bottom (3 mg L$^{-1}$). In the same period, a decrease of the cyanobacteria biomass was observed at the sampling points where there was thermal stratification. According to Visser et al. (2016), thermal stratification tends to favor floating cyanobacteria, due to the weak mixing, allowing better access to light. In the present study, although the cyanobacteria biomass decreased at points where thermal stratification occurred, $R. raciborskii$ and other species that also have aerotopes (D. solitarium, P. isothrix, and A. gracile) were abundant. Furthermore, changes related to the availability of light, due to reduced water transparency, can have a significant influence on regulation of the dominance
of cyanobacteria genera throughout the year (Vanderley et al. 2021).

The levels of STX and MC-LR identified were within the limits recommended by Brazilian legislation (Brasil 2021) and the World Health Organization, of 3 µg L⁻¹ for STX and 1 µg L⁻¹ for MC (Chorus and Bartram 1999; Chorus and Welker 2021). Casali et al. (2017) investigated the presence of STX as a function of the density of *R. raciborskii* in the Itupararanga reservoir, obtaining values between 0.04 and 0.20 µg L⁻¹, which were close to those observed here, as well as strong correlation (*r* = 0.73, *p* < 0.001) between the biomass and STX values. In the present study, although significant linear correlation was observed between *R. raciborskii* biomass and STX, the effect was classified as moderate (*R²* = 0.21; *p* < 0.05). This finding confirms the complexity of interpretation of the mechanisms involved in the biosynthesis of STX by *R. raciborskii*, since growth profiles and STX production/inhibition can also be specific responses to some ions (Ca²⁺, Mg²⁺, and Na⁺) (Burford et al. 2016). However, the ionic composition of the water was not well elaborated in the present study.

The moderate linear relationship between the STX and biomass values could have been related to restrictive environmental conditions, which inhibited increase of the cyanobacteria volume and stimulated the production of cyanotoxins (Yamamoto et al. 2011; Lopes et al. 2012; Sarkar et al. 2021; Moraes et al. 2021). For example, the phosphorus deficiency in the environment could have influenced the production of STX. Melo et al. (2019) observed a continuous decrease in the trophic status index towards the dam, influenced by phosphorus deficiency, classifying this region as meso-oligotrophic. Vargas et al. (2020) tested different strains of *R. raciborskii* from the Itupararanga reservoir, finding that the production of STX by this species increased in an oligotrophic environment. These previous results corroborated the present findings, since higher levels of STX were observed in the region close to the Itupararanga reservoir dam (points P6 and P7). Furthermore, Burford et al. (2016) reported that the main factors affecting the production of STX are temperature, light/dark cycles, light intensity and quality, conductivity, and water hardness.

Shi et al. (2017) reported that high air temperature and high levels of phosphorus can favor blooms, indicating that regions with hot climates are favorable for their occurrence. Although some phylogenetic studies relate the origin of *R. raciborskii* to tropical regions, its current distribution also includes temperate regions, due to climate change (Piccini et al. 2011; Paerl and Paul 2012; O’neil et al. 2012; Antunes et al. 2015; Rzymski et al. 2018; Huisman et al. 2018; Pham et al. 2020; Vanderley et al. 2021). Melo et al. (2019) identified high concentrations of TN (484.66 ± 215.16 µg L⁻¹) in the Itupararanga reservoir during the same period as this study, reporting that the primary productivity of the reservoir was limited by phosphorus. The limitation by phosphorus in this reservoir has been reported in the last 5 years, prior to which there was co-limitation by phosphorus and nitrogen (Cunha and Calijuri 2011a, 2011b; Taniwaki et al. 2013; Beghelli et al. 2016; Casali et al. 2017; Melo et al. 2019).

The inverse correlation between NO₃⁻ and the occurrence of *R. raciborskii* and STX may have been related to the energy expenditure required for these organisms to fix inorganic forms of nitrogen. In the case of diazotrophic cyanobacteria, such as *R. raciborskii*, this occurs in environments limited by phosphorus (Kenesi et al. 2009). According to Brentano et al. (2016), STX biosynthesis is regulated by stress situations related to the depletion of inorganic nitrogen in the environment, restricting biomass increase. The release of STX then has the function of contributing to homeostasis of the organism, regulating cell permeability (Brentano et al. 2016; Brêda-Alves et al. 2021; Sarkar et al. 2021; Moraes et al. 2021).

In the case of MC-LR, which was only detected at low concentrations, the maximum levels occurred in December 2016 and December 2017, considered rainy periods (Melo et al. 2019). At the same time, during these periods there was no abundance of species belonging to the genus *Microcystis*, but there was abundance of *P. isoetrix, Dolichospermum* spp., and *P. aerugino-caeruleum*. It is likely that the presence of MC in these periods was related to the occurrence of these organisms, since they are also potential producers of microcystins (Huisman et al. 2018).

In a study undertaken at the Billings complex reservoir and the Guarapiranga system in the metropolitan region of São Paulo, Moschini-Carlos et al. (2009) found moderate MC-LR concentrations of 0.28 µg L⁻¹ in the rainy season and 0.57 µg L⁻¹ in the dry season, with *P. agardhii* and *Microcystis* spp. being dominant. Bittencourt-Oliveira et al. (2014) found this toxin in 100% of the reservoirs studied in the northeast region of Brazil, with high levels of MC ascribed to high biomasses of cyanobacteria such as *P. agardhii, P. isoetrix*, and *Microcystis* spp.

Table 4 Results of Spearman’s correlation analysis between the environmental variables used in the adjusted model of CCA, *R. raciborskii* and STX.

	TN	NO₂⁻	NO₃⁻	PO₄³⁻	*R. raciborskii*	STX
MC-LR	−0.17	0.03	−0.06	0.10	−0.11	−0.10
In the present study, the occurrence of MC did not correlate with any of the environmental variables, as observed by Moraes et al. (2021). Furthermore, MC was detected at exceptionally low concentrations, compared to STX. In part, this difference may be related to the different analysis methods used. However, its presence at low concentrations in an environment dominated by *R. raciborskii*, with STX, may be an indication that competition for nutrients influences cyanotoxin biosynthesis (Mello et al. 2012). Furthermore, water transparency and temperature can be decisive in the alternation of dominance between *R. raciborskii* and *Microcystis*, consequently influencing the levels of STX and MC (Vanderley et al. 2021).

Conclusions

The high contribution of Cyanophyceae in the Itupararanga reservoir was mainly due to the abundance of *R. raciborskii*. This species was the only one that had constant occurrence, being found in all the samples. The presence of STX was moderately influenced by *R. raciborskii* biomass, according to the classification parameters adopted. In this reservoir, a set of specific environmental conditions determined the variations of *R. raciborskii* biomass and STX. The facilitating environmental conditions included low availability of NO$_3^-$ and phosphorus limitation. The trophic state could have been an additional factor, since the STX levels followed an increasing trend in the region close to the dam, characterized as meso-oligotrophic. However, *R. raciborskii* was sensitive to thermal stratification, at the same time that STX levels increased. Hence, it appeared that STX was produced under conditions restrictive for the growth of *R. raciborskii*. These are important findings, since they provide information about the permanent occurrence of STX and *R. raciborskii* in an aquatic ecosystem with decrease of the trophic status index (upstream → downstream). Potentially toxic cyanobacteria had permanent abundance in the reservoir, with the alternation among them, due to changes in environmental conditions, implying the constant occurrence of cyanotoxins.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-021-16994-6.

Author contribution All authors contributed to the design of this study, as follows: Leila Machado: writing original draft, formal analysis; Fabiane Dörö: chromatographic analysis, formal analysis; Felipe Dörö: chromatographic analysis, formal analysis; Daniele Frascareli: sample collections, formal analysis; Darlene Melo: sample collections, formal analysis; Erik Gontijo: sample collections, formal analysis; Kurt Friese: sample collections, formal analysis, funding acquisition; André Rosa: formal analysis, funding acquisition; Ernani Pinto: formal analysis, chromatographic analysis; Marcelo Pompêo: formal analysis, funding acquisition; Viviane Moschini-Carlos: formal analysis, funding acquisition. All authors commented on previous versions of the manuscript, and read and approved the final manuscript.

Funding The authors are grateful for financial support provided by the Brazilian agencies FAPESP and CNPq (processes 2016/172266–1 and 400305/2016), DAAD/CAPES-Probal (processes 99999.008107/2015–07, 88887.122769/2016-00, and 88887.141964/2017–00), and FAPESP (16/15397–1).

Data availability All data generated or analyzed during this study are included in this published article (and its Supplementary Information files).

Data reported previously for the Itupararanga reservoir (Melo et al. 2019) were used as a reference for the limnological characterization of the water. These data are available at https://doi.org/10.1029/2019WR025991.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Aguilera A, Berrendero E, Kastovsky J, Echenique R, Salerno GL (2018) The polyphasic analysis of two native *Raphidiopsis* isolates supports the unification of the genera *Raphidiopsis* and *Cylindrospermopsis* (Nostocales, Cyanobacteria). Phycologia 57(2):130–146. https://doi.org/10.2216/17-2.1

Amorim CA, Dantas EW, Moura AN (2020) Modeling cyanobacterial blooms in tropical reservoirs: the role of physicochemical variables and trophic interactions. Sci Total Environ 744:140659. https://doi.org/10.1016/j.scitotenv.2020.140659

Antunes JT, Leão PN, Vasconcelos VM (2015) *Cylindrospermopsis raciborskii*: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front Microbiol 6:473. https://doi.org/10.3389/fmicb.2015.00473

Beghelli FGS, Frascareli D, Pompêo MLM, Moschini-Carlos V (2016) Trophic state evolution over 15 years in a tropical reservoir with low nitrogen concentrations and cyanobacteria predomiance. Water Air Soil Pollut 227(3):95. https://doi.org/10.1007/s11270-016-2795-1

Bittencourt-Oliveira MC, Piccin-Santos V, Moura AN, Aragão-Tavares NKC, Cordeiro-Araújo MK (2014) Cyanobacteria, microcystins and cylindropermopsin in public drinking supply reservoirs of Brazil. An Acad Bras Cienc. https://doi.org/10.1590/0001-37652013032512

Bittencourt-Oliveira MC, Chia MA, De Oliveira HSB et al (2015) Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27:275–284. https://doi.org/10.1007/s10811-014-0326-2

Brasil (2021). Ministério da Saúde. Gabinete do Ministro. Portaria GM/MS nº 888, de 4 de maio de 2021. Altera o Anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017. Diário Oficial da União. Publicado em: 07/05/2021 | Edição: 85 | Seção: 11 | Página: 127. 2021

Brêda-Alves F, De Oliveira Fernandes V, Cordeiro-Araújo MK et al (2021) The combined effect of clethodim (herbicide)
and nitrogen variation on allelopathic interactions between Microcystis aeruginosa and Raphidioopsis raciborskii. Environ Sci Pollut Res 28:11528–11539. https://doi.org/10.1007/s11356-020-11367-x

Brentano DM, Giehl ELH, Petrucio MM (2016) Abiotic variables affect STX concentration in a meso-oligotrophic subtropical coastal lake dominated by Cylindrospermopsis raciborskii. Harmful Algae 56:22–28. https://doi.org/10.1016/j.hal.2016.03.017

Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, Azevedo SMFOE, NeiLAN BA (2016) Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53. https://doi.org/10.1016/j.hal.2015.10.012 (ISSN 1568-9883)

Cardoso-Silva S, Mariani CF, Pompeo MLM (2015) Análise crítica da resolução CONAMA n 357 à luz da Diretiva Quadro da Água da comunidade europeia: estudo de caso (represa do Guarapiranga - São Paulo, Brasil). In: Marcelo Pompôeo; Viviane Moschini-Carlos; Paula Y. Nishimura; Sheila Cardoso-Silva; Júlio L. Doval. (Org.). Ecologia de reservatórios e interfaces. 1ed. São Paulo: Universidade de São Paulo, 1: 367–375

Carmichael WW (2001) Health effects of toxin-producing cyanobacteria: “the CyanohABs.” Hum Ecol Risk Assess 7:1393–1407

Casali SP, Santos ACAD, Falco PBD, Calijuri MDC (2017) Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. J Water Health 15(4):509–518. https://doi.org/10.21666/wh.2017.266

Christensen VG, Khan E (2020) Freshwater neurotoxins and concerns for human, animal, and ecosystem health: a review of anatoxin-a and saxitoxin. Sci Total Environ 736:139515. https://doi.org/10.1016/j.scitotenv.2020.139515

Chorus I and Bartram J (1999) Toxic cyanobacteria in water—a guide to their public health consequences, monitoring and management. WHO, Spon Press, London

Chorus I, Welker M, (eds) (2021) Toxic cyanobacteria in water, 2nd edn. CRC Press, Boca Raton (FL), on behalf of the World Health Organization, Geneva.

Cohen J (1988) Statistical power analysis for the behavioral sciences. Hillsdale, NJ, Erlbaum

Cunha DGF, Calijuri MD (2011a) Limiting factors for phytoplankton growth in subtropical reservoirs: the effect of light and nutrient availability in different longitudinal compartments. Lake Reserv Manage 27(2):162–172

Cunha DGF, Calijuri MDC (2011b) Variação sazonal dos grupos funcionais fitoplânctonícos em brasões de um reservatório tropical de usos múltiplos no estado de São Paulo (Brasil). Acta Bot Bras 25:822–831

Cunha DGF, Calijuri MDC, Lamparelli MC (2013) A trophic state index for tropical/subtropical reservoirs (TSIstr). Ecol Eng 60:126–134. https://doi.org/10.1016/j.ecoleng.2013.07.058

Facciponte DN et al (2018) Identifying aerolized cyanobacteria in the human respiratory tract: a proposed mechanism for cyanotoxin-associated diseases. Sci Total Environ 645:1003–1013. https://doi.org/10.1016/j.scitotenv.2018.07.226

Figueiredo CC, Giani A (2009) Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica 39:264–272. https://doi.org/10.1016/j.limno.2009.06.009

Fonseca BM, Ferragut C, Tucci A, Crossetti LO, Ferrari F, Bicudo D, de C, Sant’anna CL, Bicudo CE de M (2014) Biovolume de cianobactérias e algas de reservatórios tropicais do Brasil com diferentes estados tróficos. Hoehnea 41(1):9–30. https://doi.org/10.1590/S2236-89062014000100002

Funari E, Manganelli M, Buratti FM, Testai E (2017) Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities. Sci Total Environ 598:867–880. https://doi.org/10.1016/j.scitotenv.2017.03.232

Hillebrand H, Dürselen C-D, Kirschtel D, Pollinger U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

Huisman J, Codd GA, Paerl HW, Ibelsings BW, Verspang JMH, Visser PMP (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483. https://doi.org/10.1038/s41579-018-0040-1

Kenesi G, Shafik HM, Kovács AW, Herodek S, Présing M (2009) Effect of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia 623(1):191–202. https://doi.org/10.1007/s10750-008-9657-9

Kim J et al (2009) Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics. In: SPE reservoir simulation symposium. Society of Petroleum Engineers Paper presented at the SPE Reservoir Simulation Symposium, The Woodlands, Texas. https://doi.org/10.2118/119084-MS

Komárek J, Anagnostidtis K (1999) Cyanoprocaryota. I. Chroococcales. In: Ettl, H. et al. (ed) Süßwasserflora von Mitteleuropa, Begründet von A. Pascher-Bd. 19/3 Cyanoprocaryota. 1. Teil Chroococcales, Spektrum, Akademischer Verlag, Heidelberg & Berlin, p 1–348

Komárek J, Anagnostidtis K (2005) Cyanoprocaryota. pt.2 Oscillatoriaceae. In: Bridel B et al (eds) Süßwasserflora von Mitteleuropa, vol 19. Elsevier, München, 1, 759p

Lopes VR, Ramos V, Martins A, Sousa M, Welker M, Antunes V, Vasconcelos VM (2012) Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Mar Environ Res 73:7–16. https://doi.org/10.1016/j.marenvres.2011.10.005

Machado LS, Santos LG, Lopez-Doval JC, Pompeo MLM, Moschini-Carlos V (2016) Fatores ambientais relacionados à ocorrência de cianobactérias potencialmente tóxicas no reservatório de Guarapiranga. Revista Ambiente Água 11(4):810–818. https://doi.org/10.4136/ambi-agua.1941

Melo DS, Gontijo ESJ, Frascareli D, Simonetti VC, Machado LS, Barth JAC et al (2019) Self-organizing maps for evaluation of biogeochemical processes and temporal variations in water quality of subtropical reservoirs. Water Resour Res 55:10268–10281. https://doi.org/10.1029/2019WR025991

Mello MM, Soares MCS, Roland F, Lürling M (2012) Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii. J Plankton Res 34(11):987–994. https://doi.org/10.1093/plankt/bhs056

Merel S et al (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327. https://doi.org/10.1016/j.envint.2013.06.013

Moraes MAB, Rodrigues RAM, Schlüter L, Podduturi R, Jørgensen NOG, Calijuri MC (2021) Influence of environmental factors on occurrence of cyanobacteria and abundance of saxitoxin-producing cyanobacteria in a subtropical drinking water reservoir in Brazil. Water 13:1716. https://doi.org/10.3390/w13121716

Moschini-Carlos V, Bortoli S, Pinto E, Nishimura PY, De Freitas LG, Pompeo MLM, Dör R (2009) Cyanobacteria and cyanotoxin in the Billings Reservoir (São Paulo, SP, Brazil). Limnética 28(2):273–282. https://doi.org/10.23818/limn.28.23

Moschini-Carlos V, De Freitas LG, Pompeo M (2010) Limnological evaluation of water in the Rio Grande and Taquacetuba branches of the Billings Complex (São Paulo, Brazil) and management implications. Rev Ambient Água 5(3):47–59

Mowe MA, Mitrovic SM, Lim RP, Furey A, Yeo DC (2015) Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J Limnol 74(2):205–224. https://doi.org/10.4081/jlimnol.2014.1005
Nishimura PY, Meirinho PA, Moschini-Carlos V, Pompeó MLM (2014) Does the plankton community follow the water quality heterogeneity in a tropical urban reservoir (Guarapiranga reservoir, São Paulo, Brazil). Limnetica 33(2):263–280

Nogueira IS, Gama Júnior WA, D’ale assigned EB (2011) Cianobactérias planctônicas de uma lago artificial urbano na cidade de Goiânia GO. Rev Bras Bot 34(4):575–592

Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PRR, O’hara B, Simpson GL, Sølymos P, Stevens MHH, Szoecs E, Wagner H, Vegan R (2018) Community Ecology Package, version 2.5–2. https://CRAN.R-project.org/package=vegan

O’neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophenia and climate change. Harmful Algae 14:313–334. https://doi.org/10.1016/j.hal.2011.10.027 (ISSN 1568-9683)

Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1):1–19. https://doi.org/10.1007/s10750-008-9645-0

Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–1363. https://doi.org/10.1016/j.watres.2011.08.002

Pedrazzi FJDJ, Conceição FTD, Sardinha DDS, Moschini-Carlos V, Pompeó M (2013) Spatial and temporal quality of water in the Itupararanga Reservoir, Alto Sorocaba Basin (SP), Brazil. J Water Resour Prot 5(1):64–71. https://doi.org/10.4236/jwarp.2013.51008

Pedrosa CSG, Souza RQ, Gomes TA, Lima CVF, Ledur PF, Karmirian K et al (2020) The cyanobacterial saxitoxin exacerbatizes neural cell death and brain malformations induced by Zika virus. PLoS Negl Trop Dis 14(3):e0008060. https://doi.org/10.1371/journal.pntd.0008060

Pham TL, Tran THY, Shimizu K et al (2020) Toxic cyanobacteria and microcystin dynamics in a tropical reservoir: assessing the influence of environmental variables. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10826-9

Piccini C, Aubriot L, Fabre A, Amaral V, González-Piana M, Gianni A et al (2011) Geneticandecophysiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes. Harmful Algae 10:644–653. https://doi.org/10.1016/j.hal.2011.04.016

Pompeó M, Moschini-Carlos V, Bitencourt MD et al (2021) Water quality assessment using Sentinel-2 imagery with estimates of chlorophyll a, Secchi disk depth, and cyanobacteria cell number: the Cantareira System reservoirs (São Paulo, Brazil). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12975-x

Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge

Costa Rodrigues EH et al (2019) Phytoplankton, trophic state and ecological potential in reservoirs in the State of São Paulo Brazil. Rev Ambient Água Taubaté 14(5):e2428. https://doi.org/10.4136/ambi-agua.2428

Rosa AH, Silva AAMJ, Melo CA, Carlos VM, Guandique M, Malone CF, Rossini EF, Jacinavicius FR, Hentschke GS, Osi JAS, Santos KRS, Gama-Júnior WA, Rosal C and Adame G (2012) Atlas of cianobactérias e microalgas de águas continentais brasileiras. Publicação eletrônica, Instituto de Botânica, Núcleo de Pesquisa em Ficologia

Santos LG, Machado LDFS, Moschini-Carlos V and Pompeó M (2018) Os grupos funcionais fitoplanctônicos nos reservatórios do Sistema Cantareira, São Paulo, Brasil. Iheringia: Série Botânica 73(3):135–145. https://doi.org/10.21822/iheri.2018.73.01

Sarkar A, Rajaratnam R, Venkateshan RB (2021) A comparative assessment of growth, pigment and enhanced lipid production by two toxic freshwater cyanobacteria Anabaena circinalis FSS 124 and Cylindrospermopsis raciborskii FSS 127 under various combinations of nitrogen and phosphorous inputs. Environ Sci Pollut Res 28:15923–15933. https://doi.org/10.1007/s11356-020-1754-4

Shi K, Zhang Y, Zhou Y et al (2017) Long-term MODIS observations of cyanobacterial dynamics in Lake Tahu: responses to nutrient enrichment and meteorological factors. Sci Rep 7:40326. https://doi.org/10.1038/srep40326

Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25(11):1331–1346. https://doi.org/10.1093/plankt/fbg096

Sukenik A, Hadas O, Kaplan A, Quesada A (2012) Invasion of Nos toxicales (cyanobacteria) to subtropical and temperate freshwater lakes - physiological, regional, and global driving forces. Front Microbiol 9(3):86. https://doi.org/10.3389/fmicb.2012.00086

Taniwaki R, Rosa A, De Lima R, Maruyama C, Secchin L, Calijuri M, Moschini-Carlos V (2013) A influence of the use and occupation of the solo na qualidade e genotoxicidade da água no reservatório de Itupararanga, Sao Paulo Brasil. Intericiencia 38(3):164–170

Trung B, Thanh-Son D, Truong-Giang V, VĂRDリング, M. (2018) Warming affects growth rates and microcystin production in tropical bloom-forming Microcystis strains. Toxins 10:123. https://doi.org/10.3390/toxins10030123

Utermöhl H (1958) Zur vervollkommnung der quantitativen phytoplankton methodik. Mitteilungen Internationale Verein Limnologie 9:1–38

Vanderley RF, Ger KA, Becker V et al (2021) Abiotic factors driving cyanobacterial biomass and composition under perennial bloom conditions in tropical latitudes. Hydrobiologia 849:943–960. https://doi.org/10.1007/s10750-020-04504-7

Vargas SR, Dos Santos PV, Bottino F et al (2020) Effect of nutrient concentration on growth and saxitoxin production of Raphidiasis raciborskii (Cyanophyta) interacting with Monoraphidium contortum (Chlorophyceae). J Appl Phycol 32:421–430. https://doi.org/10.1007/s10811-019-01972-w

Victorin AM, Rodrigues EHC, Moschini-Carlos V, Pompeó MLM (2018) Is it possible to evaluate the ecological status of a reservoir using the phytoplankton community? Acta Limnologica Brasiliensis 30:306. https://doi.org/10.1590/s2179-975x13177

Visser PM, Verspangen JMH, Sandri G, Stal LJ, Matthijs HCP, Davis TW, Paerl HW, Huismann J (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful
Algae 54:145–159. https://doi.org/10.1016/j.algal.2015.12.006
(Wetzel RG, Likens GE (2000) Composition and biomass of phyto-
plankton. In: Limnological analyses. Springer, New York, NY.
https://doi.org/10.1007/978-1-4757-3250-4_10
WHO (2017) Guidelines for drinking-water quality: fourth edition
incorporating the first addendum. World Health Organization,
Geneva
Yamamoto Y, Shiah FK, Chen TL (2011) Importance of large col-
ony formation in bloom-forming cyanobacteria to dominate in
eutrophic ponds. Ann Limnol Int J Lim 47:167–173. https://doi.
org/10.1051/limn/2011013
Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.