A redescription of *Salmoneus tafaongae* Banner & Banner, 1966 (Malacostraca: Decapoda: Alpheidae)

Sammy De Grave, Jin-Ho Park, Arthur Anker

Abstract.— The alpheid shrimp *Salmoneus tafaongae* Banner & Banner, 1966 was described based on a fragmentary holotype from Samoa, which was subsequently lost in the devastating fire of the Hawaii Marine Laboratory in 1961. The species is here fully redescribed based on new material from French Polynesia, Australia (Great Barrier Reef) and Solomon Islands, and compared to closely related species.

Key words: Decapoda, Alpheidae, *Salmoneus*, shrimp, coral reef, West Pacific

Introduction

Salmoneus is the third most species rich genus in the family Alpheidae, with currently 53 species known, although several more await description (De Grave & Fransen, 2011; Anker, 2011a, 2011b, 2019a, 2019b, 2020a; Komai & Anker, 2012; Anker & Lazarus, 2015; Komai et al., 2015; Anker & Ashrafi, 2019; Anker et al., 2020). The genus is near-cosmopolitan in distribution, occurring in tropical to temperate latitudes, with species known from the Mediterranean Sea, West Africa, islands of the central Atlantic, Brazil, the wider Caribbean-Florida-Gulf of Mexico area, tropical eastern Pacific, as well as across the Indo-West Pacific from the Red Sea and South Africa through to Japan, Hawaii and French Polynesia (see references above). Ecologically, a wide number of niches are occupied, with cave dwellers (e.g. *S. sketi* Fransen, 1991; *S. antricola* Komai, Yamada & Yunokawa, 2015) and inhabitants of mangroves and mudflats (e.g. *S. seticheles* Anker, 2003; *S. carvachoi* Anker, 2007) known. The majority of species, however, are associated with coral reefs and adjacent habitats rich in coral rubble (e.g. *S. serratidigitus* Coutière, 1897); *S. camaroncito* Anker, 2010a; *S. paulayi* Anker, 2011b). In addition, several species of *Salmoneus* are associated with a variety of burrowing invertebrates, such as larger snapping shrimps of the genus *Alpheus* Fabricius, 1798 (e.g. *S. colinorum* De Grave, 2004; *S. alpheophilus* Anker & Marin, 2006), ghost-shrimps of the family Callianassidae (e.g. *S. brucei* Komai, 2009; *S. ikaros* Anker, Al-Kandari & De Grave, 2020) and echiuran worms (e.g. *S. gracilipes* Miya, 1972, perhaps only occasionally) (Komai, 2009; Anker et al., 2020).

Several species of *Salmoneus* are currently poorly known because of the incomplete condition of their type material. One of them is *S. tafaongae* Banner & Banner, 1966, described on the basis of a single fragmentary ovigerous specimen, collected on a fringing reef at Apia, Upolu, Samoa, in 1954 (Banner & Banner, 1966). The original description of *S. tafaongae* is rather brief and unillustrated. The holotype lacked the major cheliped, with the minor cheliped and the second pereiopods also accidentally lost after initial examination (Banner & Banner, 1966). In addition, the holotype of *S. tafaongae* was apparently consumed, prior to publication, by the devastating fire, which destroyed part of the Hawaii Marine Laboratory.
in December 1961, where most of the alpheid material gathered and studied by the Banners was stored (Banner & Banner, 1962, 1966; see also Banner & Banner, 1973: footnote on p. 334). The fire destroyed almost all specimens collected in Samoa in 1954, as well as material from several other localities.

In the present study, we fully redescribe *S. tafaongae* on the basis of material collected by one of us (AA) in French Polynesia (Moorea), Australia (Great Barrier Reef) and the Solomon Islands (New Georgia), between 2009 and 2016. Material is deposited in the Zoological Collections of the Oxford University Museum of Natural History, Oxford, United Kingdom (OUMNH.ZC), Muséum National d’Histoire Naturelle, Paris, France (MNHN), and Florida Museum of Natural History, University of Florida, Gainesville, USA (FLMNH UF). Carapace length (cl, in mm) was measured from the tip of the rostrum to the posterior margin of the carapace. The term “cuspitate seta” is used for stout spiniform setae inserted in deep pits, e.g. on the dorsal surface of the telson and on the pereiopodal ischia (formerly often called “spines”). As all individuals of *Salmoenue*us appear to be simultaneous hermaphrodites and have a well-developed appendix masculina, a distinction is only made between ovigerous (ov.) and non-ovigerous specimens (non-ov.) (see Anker 2011a). The abbreviation “fcn” stands for field collection number/photographic voucher.

Taxonomy

Family Alpheidae Rafinesque, 1815

*Salmoenue*us Holthuis, 1955

*Salmoenue*us *tafaongae*
Banner & Banner, 1966

Figs. 1–5

*Salmoenue*us *tafaongae* Banner & Banner, 1966: 155.

Material examined

French Polynesia: 1 ov. specimen, cl 3.6 mm, FLMNH UF54333, Society Islands, Moorea, Moorea Biocode sta. BIZ-172, Temae, close to public beach, lagoon with strong current, depth 0.5–2 m, on sand under large coral rocks and corals, leg. A. Anker, 16.11.2009.

Australia: 1 ov. specimen, cl 5.0 mm, OUMN.ZC.2018-07-03, Queensland, Great Barrier Reef, Heron Island, southern side, shallow reef flat, near-shore area, depth 0.5–1 m at low tide, under rocks and rubble, leg. A. Anker, 27.09.2016 [fcn HE-072]; 1 ov. specimen, cl 4.6 mm, MNHN-IU-2019-3162, same collection data as for previous specimen [fcn HE-076]; 1 ov. specimen, cl 4.0 mm, 1 non-ov. specimen, cl 3.6 mm, MNHN-IU-2019-3163, Queensland, Great Barrier Reef, Heron Island, southern side, reef crest area, depth 0–1 m at low tide, under rocks and rubble, leg. A. Anker, 27.09.2016 [fcn HE-061].

Solomon Islands: 1 non-ov. specimen, cl 3.7 mm, OUMN.ZC.2018-06-03, New Georgia, Munda, Kunda Kunda Hite, sand-rubble flat with scarce coral bommies near coral reef, depth less than 1 m at low tide, under coral rubble, leg. A. Anker, 16.09.2016 [fcn SOL-150]; 1 ov. specimen, cl 3.0 mm, MNHN-IU-2019-3164, New Georgia, Munda, Sosu Hite, shallow sand-rubble flat around small island, depth less than 1 m at low tide, under coral rubble, leg. A. Anker, 13.09.2016 [fcn SOL-169].

Description

Small-sized (cl 3.0–5.0 mm) alpheid shrimp with moderately slender, non-compressed body. Carapace mostly glabrous, with some erect setae on dorsal surface and rostrum (Fig. 1A, B, D). Rostrum long, about twice as long as wide at base, acute distally, reaching to middle of third article of antennular peduncle; ventral margin typically with single subterminal tooth, sometimes without tooth; mid-dorsal carina absent (Fig. 1B–D). Orbital teeth well de-
REDESCRIPTION OF *SALMONEUS TAF AONGAE*

Crustacean Research 49

veloped, distally sharp, reaching almost mid-length of first article of antennular peduncle, usually somewhat upturned (Fig. 1B–D). Pterygostomial margin broadly rounded, anterolateral suture present; cardiac notch well developed (Fig. 1A, D).

Pleon with first to fourth pleura broadly rounded; fifth pleuron with posteroventral margin forming acute angle; sixth pleonite with short, partly internal suture, but without distinct articulated flap; posterolateral margin with long sharp tooth flanking telson (Fig. 2A). Preanal plate medially rounded, laterally with rounded lobes (Fig. 2B). Telson moderately slender, subrectangular, with distal portion tapering, about 2.3 times as long as proximal width; dorsal surface with two pairs of small cuspidate setae, both inserted at some distance from lateral margin; proximal pair slightly posterior to telson mid-length, distal pair at about 0.75 of telson length; posterior margin with notch relatively deep, trapeziform, narrow, with two long plumose setae; posterolateral angles each with one pair of spiniform setae, equally stout, mesial ones about 1.4 times as long as lateral (Fig. 2C, D).

Fig. 1. *Salmoneus tafaongae* Banner & Banner, 1966. A, carapace and frontal region of pleon, lateral; B, frontal region of carapace, dorsal (right side deformed by bopyrid infestation); C, anterior region of carapace and left eye, lateral; D, frontal region of carapace, lateral. A, B: non-ov. specimen, cl 3.7 mm, from New Georgia, Solomon Islands (OUMNH.ZC. 2018-06-03); C, ov. specimen, cl 3.66 mm, from Moorea, French Polynesia (FLMNHF UF 00000); D, ov. specimen, cl 5.0 mm, from Heron Island, Australia (OUMNH. ZC. 2018-07-03).
Eyes only partly concealed, visible between orbital teeth and rostral base in dorsal view, most of cornea also visible in lateral view; cornea facetted, pigmented (Fig. 1).

Antennular peduncle stout; stylocerite long, slender, with acute tip reaching to distal margin of second article; ventromesial carina with small, anteriorly directed tooth; second article subquadrate, about as long as wide; lateral antennular flagellum with short fused portion, secondary ramus well-developed, with six or seven subdivisions, each with a group of 2–3 aesthetascs; mesial antennular flagellum stouter than lateral (Fig. 1A, B, D). Antenna with basicerite stout, its distoventral margin armed with robust acute tooth; scaphocerite ovate in

Fig. 2. *Salmoneus tafaongae* Banner & Banner, 1966. A, pleon, lateral; B, preanal plate of sixth pleonite, ventral; C, telson and right uropod, dorsal; D, telson, posterior margin, dorsal; E, third maxilliped, lateral; F, tip of ultimate article of third maxilliped; G, second pleopod, anterolateral; H, same, detail of appendix masculina and appendix interna. All from non-ov. specimen, cl 3.7 mm, from New Georgia, Solomon Islands (OUMNH.ZC. 2018-06-03).
general shape, almost reaching end of antennular peduncle, with straight lateral margin and broad blade; distolateral tooth strong, over-reaching distal margin of blade; carpocerite cylindrical, reaching mid-length of scaphocerite (Fig. 1A, B, D).

Mouthparts not dissected, typical for genus in external observation. Third maxilliped slender, pediform; coxa with oval-shaped lateral plate; penultimate article about one-third length of antepenultimate article and about three times as long as wide; ultimate article about six times as long as wide, with numerous rows of serrulate setae and longer simple setae, tip with blunt corneous point and 2–3 stout spiniform setae; arthrobranch well-developed (Fig. 2E, F).

Chelipeds very asymmetrical in shape and dissimilar in size, carried flexed in resting position (Fig. 5). Major cheliped relatively slender; ischium typically armed with single cuspidate seta (absent in one specimen); merus slender, more than seven times as long as proximal width, widening distally, smooth, distodorsal and distomesial margins with subquadrate lobes, ventral surface depressed distally; carpus short, cup-shaped, without distoventral process; chela subcylindrical, more or less rounded in cross-section, with palm about 0.85 as long as fingers, smooth; fingers slightly gaping when closed, subequal, crossing distally, not noticeably twisted, with evenly serrated cutting edges; cutting edge of both dactylus and pollex with about 14–15 teeth of approximately same size (Fig. 3A–C). Minor cheliped significantly smaller than major cheliped, slender; ischium typically armed with single cuspidate seta on ventral surface (two in one specimen); carpus slightly shorter in length than merus, cylindrical, somewhat widening distally; chela about 0.8 length of carpus, simple, with palm subequal to fingers in length, smooth; fingers slightly gaping when closed, subequal in length, crossing distally, cutting edges armed with one to three minute teeth in distal half (Fig. 3D, E).

Second pereiopod slender; ischium typically armed with single cuspidate seta on ventral surface (sometimes with two cuspidate setae); merus slightly longer than ischium; carpus with five subdivisions, with ratio approximately equal to 3.7 : 1.0 : 0.5 : 0.5 : 1.0 (proximal to distal); chela longer than distal-most subdivision, simple (Fig. 4A). Third pereiopod slender; ischium typically armed with three cuspidate setae on ventral surface (rarely two or four); merus about eight times as long as wide, unarmmed; carpus about 0.75 times length of merus, with stiff seta distoventrally; propodus about 0.85 times as long as carpus, with two widely spaced spiniform setae on ventral margin, and two longer spiniform setae near dactylar base; dactylus about 0.3 times as long as propodus, slender, conical, simple, smoothly curved distally (Fig. 4B, C). Fourth pereiopod similar to third, slightly more slender; ischium armed with three cuspidate setae on ventral surface; merus more than nine times as long as wide; carpus about 0.8 times as long as merus, more slender than merus, unarmmed distoventrally; propodus slightly shorter than carpus, with two widely spaced spiniform setae on ventral margin, and two longer spiniform setae near dactylar base; dactylus about 0.6 times as long as propodus, similar to that of third pereiopod (Fig. 4D, E). Fifth pereiopod more slender than others; ischium unarmmed, merus about 10 times as long as wide; carpus somewhat more slender than merus, about same length as merus, unarmmed distoventrally; propodus long, slender, about 1.2 times as long as carpus, with numerous rows of serrulate setae forming dispersed cleaning brush on ventral surface from mid-length to distal margin, ventral margin with five or six dispersed spiniform setae and two longer, slender spiniform setae near dactylar base; dactylus about 0.4 times as long as propodus, otherwise similar to that of third and fourth pereiopods (Fig. 4F, G).
Second pleopod with appendix masculina slightly longer than appendix interna, furnished with several long simple setae (Fig. 2G, H).

Uropod with lateral lobe of protopod ending in acute tooth; exopod broadly ovate, with well-developed distolateral tooth and moderately...
REDESCRIPTION OF *SALMONEUS Tafaongae*

Fig. 4. *Salmoneus tafaongae* Banner & Banner, 1966. A, second pereiopod, lateral; B, third pereiopod, lateral; C, same, distal portion of propodus and dactylus, lateral; D, fourth pereiopod, lateral; E, same, distal portion of propodus and dactylus, lateral; F, fifth pereiopod, lateral; G, same, distal portion of propodus and dactylus, lateral. All from non-ov. specimen, cl 3.7 mm, from New Georgia, Solomon Islands (OUMNH.ZC. 2018-06-03).
developed spiniform seta; diaeresis sinuous; endopod as long as exopod, ovate (Fig. 2C). Gill formula typical for genus.

Colouration

Semi-translucent, varying from whitish with slight yellow tinge to pale yellow or more intense yellow (in larger ovigerous specimens); whiter specimens with more conspicuous lilac-purple margins of pleonites forming very fine transverse half-rings; antennular and antennal peduncles and flagella with reddish-purple or lilac-purple tinge; eggs bright orange-yellow (Fig. 5).
Distribution
West Pacific: currently known from Samoa (Upolu, type locality), French Polynesia (Society Islands: Moorea), Australia’s Great Barrier Reef (Queensland: Heron Island) and Solomon Islands (New Georgia) (Banner & Banner, 1966; present study).

Habitat
All specimens (including the holotype) were collected under coral rubble on reef flats, either near the shore or closer to the reef crest, at depths of up to 1 m at low tide (Banner & Banner, 1966; present study).

Remarks
The material examined herein, corresponds closely to the superficial description of S. tafaongae provided by Banner & Banner (1966), especially in the shape and length of the rostrum, the partial covering of the eyes, the somewhat upturned orbital teeth, as well as the proportions of the articles of the ambulatory pereiopods. However, some minor differences between the holotype and the present material are evident. The ischium of the third pereiopod of the holotype was stated to harbour two movable spines, whilst the present specimens typically have three cuspidate setae on this article (Fig. 4B). However, in one of the two specimens from lot MNHN-IU-2019-3163 from Heron Island, one of the third pereiopods was armed with two cuspidate setae on the ischium, whilst the other had four such setae on the ischium, thus showing that there is indeed some variation in the ischial armature of S. tafaongae. The carpus of the third pereiopod of the holotype was described as armed with movable spine on inferior margin, whereas in the present material, this article is armed with three spiniform setae in addition to a pair of them, longer indeed, adjacent to the propodo-dactylar articulation (Fig. 4B, C). The propodal cleaning brush of the fifth pereiopod was described as “poorly developed” by Banner & Banner (1966), but in the present material appears to be fairly well developed, although somewhat dispersed (Fig. 4F, G). In the holotype, the mesial spiniform setae of the posterior margin of the telson were described as “1.6 times as long as posterior margin is broad”, whilst in our material, these spiniform setae are of about the same length (1.2 times as long) as the posterior margin (Fig. 2D). Finally, the posterior notch of the telson was described by Banner & Banner (1966) as “shallow”, whilst it appears to be relatively deep in the present material. We believe that all these are discrepancies may be due to differences in the interpretation or observation by Banner & Banner (1966) and can be considered as intra-specific variation.

In the present material, the major cheliped ischium typically bears one stout cuspidate seta, whilst its counterpart, the minor cheliped ischium, typically bears one, rarely two, cuspidate setae. The unarmed major cheliped of one specimen (MNHN-IU-2019-3163, Heron Island), appears to be an exception. Banner & Banner (1966) did not describe (possibly overlooked) the armature on the minor cheliped ischium. Nevertheless, the presence of armature in the form of cuspidate setae on the first and second pereiopods ischia represents an important character contributing to the differentiation of S. tafaongae from some other species (see below).

Banner & Banner (1966) originally stated that S. tafaongae belongs to the genus Salmoneus for “it has the articulated pleura of the sixth abdominal segment [pleonite], as is characteristic of Salmoneus”. Later, Banner & Banner (1973: footnote on p. 334) corrected
this “error crept in during the rewriting of the paper” and stated that based on their original notes, the sixth pleonite of *S. tafaongae* does not have an articulated plate. Although *Salmoneus* is generally defined by the absence of an articulated plate on the sixth pleonite (Anker & Marin, 2006), a variously developed oblique suture, sometimes partly internal but visible through the somewhat translucent tegument, may be present in some species, e.g. *S. cavicolus* Felder & Manning, 1986, *S. tiburon* Anker, 2019b (Felder & Manning, 1986; Anker, 2019b). In the present material, a short suture is visible in the distolateral angle of the sixth pleonite, where a triangular articulated plate or flap is present in some other alpheid genera (Fig. 2A); this suture is particularly visible in ventral view of the pleonite and with lateral illumination.

Salmoneus tafaongae clearly belongs to the somewhat heterogeneous *S. gracilipes* species group, as defined by Anker & Marin (2006). The main characteristics of this group are the long and slender rostrum, often with a small subdistal tooth on its ventral margin; the dorsally partly exposed eyes; the slender dactyls of the ambulatory pereiopods; the major chela armed with relatively small teeth over the entire length of the cutting edges; and the ischia of the chelipeds and second pereiopods sometimes armed with one cuspidate seta. As originally defined, in addition to *S. gracilipes*, this group comprised the Indo-Pacific *S. alpheophilus*, *S. colinorum*, *S. falcidactylus* Anker & Marin, 2006, *S. pusillus* Anker & Marin, 2006, and *S. seticheles*, as well as the Atlantic *S. cavicolus*. Among taxa described since 2006, the Atlantic *S. hispaniolensis* Anker, 2010a and the recently described *S. ikaros* from the Indian Ocean can be confidently placed in this relatively heterogeneous and possibly non-monophyletic grouping. Two further species, the western Atlantic *S. camaronicito* and the western Pacific cave-dwelling *S. antricola* show some affinities to the *S. gracilipes* group (Anker et al., 2020), but differ from other members of this group in a number of important morphological characters, especially of the chelipeds. The western Atlantic *S. armatus* Anker, 2010a, originally considered to be somehow allied to the *S. gracilipes* group (Anker, 2010a), was recently transferred to *Triacanthoneus* Anker, 2010b, due the presence of a strong dorsal tooth on the mid-dorsal line of the carapace (Anker, 2020a).

Salmoneus tafaongae can be distinguished from *S. alpheophilus* by the narrower and longer rostrum, reaching almost to the end of the antennular peduncle (vs. wider and only reaching to the end of the second article of the antennular peduncle in *S. alpheophilus*); the carapace without small post-rostral tubercle (vs. typically with such tubercle in *S. alpheophilus*); the deeper notch on the posterior margin of the telson (vs. much shallower in *S. alpheophilus*) and the eyes without small anteromesial tubercle (vs. with such tubercle in *S. alpheophilus*) (cf. Anker & Marin, 2006). *Salmoneus tafaongae* can be easily distinguished from *S. colinorum* by the presence of a cuspidate seta on the ischium of the first and second pereiopods (vs. absent in *S. colinorum*); the posterior margin of the telson with a deep notch (vs. straight in *S. colinorum*) (cf. De Grave, 2004); and the presence of very fine lilac-coloured half-rings on the pleon (vs. broad dark purple bands in *S. colinorum*; cf. Fig. 5; Anker et al., 2015; Anker, 2020b).

Salmoneus tafaongae can be distinguished from *S. falcidactylus* most easily by the stouter, shorter dactylus of the ambulatory pereiopods (vs. much more slender, sickle-shaped dactylus in *S. falcidactylus*); the presence of one cuspidate seta (usually) on the ischium of the first and second pereiopods (vs. absent in *S. falcidactylus*); and the better developed notch on the posterior margin of the telson (vs. very shallow in *S. falcidactylus*) (cf. Anker & Marin, 2006).

It can also be distinguished from *S. pusillus*,
S. ikaros and the western Atlantic S. hispaniolensis by the much longer, narrower rostrum, reaching at least to the middle of the third article of the antennular peduncle (vs. relatively wider and shorter, reaching at most to the middle of the second article in the other species); and the posterior margin of the telson with a deep notch (vs. absent or at most indicated and very shallow in the other species) (cf. Anker & Marin, 2006; Anker, 2010a; Anker et al., 2020). Additionally, S. ikaros has a unique eye structure and lives in association with burrowing callianassid ghost-shrimps (Anker et al., 2020), thus being ecologically very different from S. tafaongae.

Salmoneus tafaongae can be readily separated from S. seticheles, e.g. by the dorsal and ventral margins of the major chela not fringed with long flexible setae (which represent one of the main diagnostic characters of S. seticheles); the posterior margin of the telson with a deep notch (vs. very shallow one in S. seticheles); the ischia of both first pereiopods each typically armed with a stout cuspidate seta (vs. unarmed in S. seticheles); and the appendix masculina not exceeding the distal margin of the endopod (vs. far exceeding it in S. seticheles) (cf. Anker, 2003). In addition, these two species live in very different habitats, the former on reef flats on offshore islands and the latter on continental mudflats.

Salmoneus tafaongae also differs in many respects from the western Atlantic S. cavicolus, including the rostrum without a mid-dorsal carina (vs. with a carina in S. cavicolus); the much longer stylocerite, reaching to the distal margin of the second article of the antennular peduncle (vs. not reaching the mid-length of the second article in S. cavicolus); the noticeably shorter scaphocerite; the ischia of the first pereiopods each typically armed with a stout cuspidate seta (vs. unarmed in S. cavicolus); and the posterior margin of the telson with a deep notch (vs. straight in S. cavicolus) (cf. Felder & Manning, 1986).

Salmoneus tafaongae appears to be morphologically most similar to S. gracilipes, e.g. in the general configuration of the rostro-orbital region, the presence of a relatively deep notch on the posterior margin of the telson, and the general shape and proportions of the chelipeds and ambulatory pereiopods. Anker et al. (2020) raised the possibility that S. gracilipes could be a species complex as the presence or absence of a stout cuspidate seta on the ischium of the first and second pereiopods, as well as the presence or absence of the ventral subdistal tooth on the rostrum has been variously mentioned in several subsequent records of the species (see also Miya, 1984; Đuriš & Horká, 2016). Although a similar variation in the presence or absence of a ventral rostral tooth can be seen in the studied specimens of S. tafaongae (Fig. B–D), it is most likely not of any taxonomic significance. As the presence of a cuspidate seta on the ischium of the first and second pereiopods appears to be variable to some extent in the material currently referred to S. gracilipes (Anker et al., 2020) as well as in S. tafaongae (at least in the major cheliped, see above), it cannot be used to differentiate the two species.

The longitudinal groove on the dorsal surface of the major chela palm (Miya, 1972; Đuriš & Horká, 2016) has been considered diagnostic for S. gracilipes, although Anker et al. (2020) noted it to be less conspicuous in some specimens from Kuwait. This groove appears to be absent in S. tafaongae, with the palm being rounded in cross-section and no grooves visible, and could thus potentially serve as a distinguishing feature between these two species. Irrespective of whether S. gracilipes represents a species complex, several differences can be observed between the original description of the species (Miya, 1972) and S. tafaongae. Most importantly, in S. tafaongae, the rostrum is much narrower at its base and reaches to the mid-length of the third article of the antennular peduncle, whereas in S. gracilipes, it is rela-
tively broad and reaches only to the distal margin of the second article of the antennular peduncle. In addition, in *S. tafaongae*, the rostrum is devoid of a mid-dorsal carina (vs. present in *S. gracilipes*) the orbital teeth are typically upturned in *S. tafaongae* (vs. not so in *S. gracilipes*) and the distolateral tooth of the scaphocerite of *S. tafaongae* is comparatively larger than in *S. gracilipes*.

Acknowledgements

Most of the present material was collected in 2016 during the project “Comparative and experimental studies of crustacean morphology and development” based at the Heron Island Research Station of the University of Queensland, and funded by NSERC Canada Accelerator Grant RGPAS 462299 to A. Richard Palmer (recently retired from the University of Alberta, Edmonton), with additional samples collected during a short survey of decapods near Munda, Solomon Islands. Javier Luque (currently at Yale University), A. Richard Palmer and the late Tomonari Kaji made fieldwork in Australia and Solomon Islands more enjoyable. Fieldwork in Moorea, based at the Richard B. Gump South Pacific research station of the University of California, Berkeley, was sponsored by the Biocode Moorea project (http://www.mooreabiocode.org/) through the Gordon and Betty Moore Foundation. At our request, Hossein Ashrafi (University of Ostrava) kindly helped measuring the MNHN specimens and checked some characters on them.

Literature Cited

Anker, A., 2003. New records of *Salmonesus Holthuis, 1955* (Crustacea: Decapoda: Alpheidae) from northern Australia, with description of one new species and remarks on *S. serratidigitus* (Coutière, 1896). The Beagle, Records of the Museums and Art Galleries of the Northern Territory, 19: 101–117.

Anker, A., 2007. New species and records of alpheid shrimps, genera *Salmonesus Holthuis and Parabetaeus Coutière*, from the tropical western Atlantic (Decapoda, Caridea). Zootaxa, 1653: 21–39.

Anker, A., 2010a. The shrimp genus *Salmonesus Holthuis, 1955* (Crustacea, Decapoda, Alpheidae) in the tropical western Atlantic, with description of five new species. In: S. De Grave & C. H. J. M. Fransen (eds.), Contributions to shrimp taxonomy. Zootaxa, 2372, pp. 177–205.

Anker, A., 2010b. A new genus and three new species of alpheid shrimps (Crustacea, Decapoda, Caridea) from the tropical American coasts. Zootaxa, 2652: 47–63.

Anker, A., 2011a. Two new species of *Salmonesus Holthuis, 1955* with a deep dorsal depression on the carapace (Crustacea, Decapoda, Alpheidae). Zootaxa, 3041: 39–50.

Anker, A., 2011b. Three new species of the alpheid shrimp genus *Salmonesus Holthuis, 1955* (Crustacea, Decapoda) from the tropical western Pacific. Zootaxa, 2839: 67–84.

Anker, A., 2019a. On three symbiotic species of the alpheid shrimp genus *Salmonesus Holthuis, 1955* from the Indo-West Pacific, including one new to science (Malacostraca: Decapoda: Caridea). Zootaxa, 4651: 51–63.

Anker, A., 2019b. The eastern Pacific species of *Salmonesus Holthuis, 1955*, with description of a remarkable new species from Las Perlas Archipelago, Panama (Malacostraca: Decapoda: Alpheidae). Zootaxa, 4651: 125–140.

Anker, A., 2020a. Taxonomic remarks on the alpheid shrimp genus *Triacanthoneus Anker, 2010*, with description of a second eastern Pacific species (Malacostraca: Decapoda). Zootaxa, 4772: 450–468.

Anker, A., 2020b. Two new species and new records in the alpheid shrimp genera *Salmonesus Holthuis, 1955* and *Deioneus Dworschak, Anker & Abed-Navandi, 2000* in the Atlantic Ocean (Malacostraca: Decapoda). Zootaxa, 4786: 345–368.

Anker, A., & Ashrafi, H., 2019. *Salmonesus durisi*
sp. nov., an infaunal alpheid shrimp probably associated with callianassid ghost shrimps in the tropical Indo-West Pacific (Malacostraca: Decapoda: Caridea). Zootaxa, 4651: 64–74.

Anker, A., & Lazarus, J. F., 2015. On two new species of the shrimp genus Salmoneus Holthuis, 1955 (Decapoda, Caridea, Alpheidae) from the tropical eastern Pacific. Zootaxa, 3957: 520–534.

Anker, A., Marin, I. N., 2006. New records and species of Alpheidae (Crustacea: Decapoda) from Vietnam. Part I. Genus Salmoneus Holthuis, 1955. The Raffles Bulletin of Zoology, 54: 295–319.

Anker, A., Al-Kandari, M., & De Grave, S., 2020. On two species of the alpheid shrimp genus Salmoneus Holthuis, 1955 from Kuwait, one of them new to science (Malacostraca: Decapoda: Caridea). Zootaxa, 4780: 77–92.

Banner, A. H., & Banner, D. M., 1962. Contributions to the knowledge of the alpheid shrimp of the Pacific Ocean. VIII. Losses of specimens in the fire of the Hawaii Marine Laboratory. Pacific Science, 16: 238–240.

Banner, A. H., & Banner, D. M., 1966. Contributions to the knowledge of the alpheid shrimp of the Pacific Ocean. Part X. Collections from Fiji, Tonga and Samoa. Pacific Science, 20: 145–188.

Banner, D. M., & Banner, A. H., 1973. The alpheid shrimp of Australia. Part I: The lower genera. Records of the Australian Museum, 28: 291–382.

Coutière, H., 1897. Note sur quelques genres nouveaux ou peu connus d’Alphéïdes, formant la sous-famille des Alphéopsidés. Bulletin du Muséum d’Histoire naturelle, 2: 380–386 [imprint 1896].

De Grave, S., 2004. A new species of Salmoneus (Crustacea: Decapoda: Alpheidae) from Palau. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 74: 41–48.

De Grave, S., & Fransen, C. H. J. M., 2011. Carideorum Catalogus: The recent species of the dendrobranchiate, stenopodidean, procariodean and caridean shrimps (Crustacea: Decapoda). Zoologische Mededelingen, 85: 195–588.

Ďuriš, Z., & Horká, I., 2016. Salmoneus chadwickae, a new alpheid shrimp (Crustacea: Decapoda: Alpheidae) from the Red Sea, with remarks on related or regional congener. Marine Biodiversity, 46: 773–793.

Fabricius, J.C., 1798. Supplementum Entomologiae Systematica. Proft et Storch, Hafniae, 572 pp.

Felder, D. L., & Manning, R. B., 1986. A new genus and two new species of alpheid shrimps (Decapoda: Caridea) from south Florida. Journal of Crustacean Biology, 6: 497–508.

Fransen, C. H. J. M., 1991. Salmoneus sketi, a new species of alpheid shrimp (Crustacea: Decapoda: Caridea) from a submarine cave in the Adriatic. Zoologische Mededelingen, 65: 171–179.

Holthuis, L. B., 1955. The recent genera of the caridean and stenopodidean shrimps (class Crustacea, order Decapoda, supersection Natantia) with keys for their determination. Zoologische Verhandelingen, 26: 1–157.

Komai, T., 2009. A new species of the alpheid shrimp genus Salmoneus (Decapoda, Caridea) from the Ryukyu Islands, Japan, associated with a callianassid ghost shrimp (Decapoda, Thalassinidea). Crustaceana, 82: 869–880.

Komai, T., & Anker, A., 2012. A distinctive new species of the alpheid genus Salmoneus Holthuis, 1955 (Crustacea: Decapoda: Caridea) from the northwestern Pacific. Zootaxa, 3344: 60–68.

Komai, T., Yamada, Y., & Yunokawa, K., 2015. A new cave-dwelling species of the alpheid shrimp genus Salmoneus Holthuis, 1955 (Crustacea: Decapoda: Caridea) from the Ryukyu Islands, southern Japan. Zootaxa, 4028: 413–420.
Miya, Y., 1972. The Alpheidae (Crustacea, Decapoda) of Japan and its adjacent waters. Part I. Publications from the Amakusa Marine Biology Laboratory, 3: 23–101.
Miya, Y., 1984. Alpheid shrimps from the Truks, Ponape and Majuro Atoll (Crustacea, Decapoda). Proceedings of the Japanese Society of Systematic Zoology, 27: 67–100.
Rafinesque, C. S., 1815. Analyse de la Nature ou Tableau de l’Univers et des corps organisés. Palermo, pp. 1–224.

Addresses
(SDG) Oxford University Museum of Natural History, Parks Road, Oxford, U.K.
(JHP) College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
(AA) Universidade Federal de Goiás, Campus Samambaia, Instituto de Ciências Biológicas–ICB-5. Av. Esperança, s/n., 74690-900, Goiânia, Goiás, Brazil.

E-mail addresses
(SDG)* sammy.degrave@oum.ox.ac.uk
(JHP) jhpark1985@gmail.com
(AA) arthuranker7@gmail.com
* corresponding author