Taguchi-grey-fuzzy method for optimization of turning process parameters with environmentally friendly cooling

Dian Ridlo Pamuji*, Nuraini Lusi
Mechanical Engineering Department, Politeknik Negeri Banyuwangi
Raya Jember Km.13 Labanasem, Kabat, Banyuwangi, Indonesia
*Email: ridlodian@poliwangi.ac.id

Abstract. Surface roughness is an indicator of the quality of workpieces produced by machining processes. Whereas, the indicator of the productivity of the machining process is the metal removal rate. Surface roughness and metal removal rate have different characteristics. Setting the combination of turning parameters results is essential to get optimal responses. This research has been carried out of determining the parameters of the turning process to produce an optimal response with the use of environmentally friendly coolant. The turning process parameters that are varied are the cutting fluids, spindle rotation, feeding motion, and cutting depth while the tool used is the CNMG insert tool. The optimization method used is Taguchi, combined with grey and fuzzy logic. The results showed that to obtain the optimum arithmetic surface roughness, average total surface roughness and metal removal rate, the cutting fluids is set at level 1, which is soluble cold water + air pressure, level 3 spindle rotation with a value of 1200 rpm, level 3 feeding with an amount of 0.161 mm rev⁻¹, and cutting depth level 3 of 0.5 mm.

Keywords: grey-fuzzy, metal removal rate, surface finis, Taguchi, turning.

1. Introduction
The machining process plays a very important role in the manufacturing industry. One of the most common machining processes is the turning process. The turning process is a metal cutting process using a single-edged cutting tool with a workpiece rotating on its chuck [1]. One indicator of the quality of the turning process is the value of the workpiece surface roughness [2]. The lower the workpiece surface roughness value, the higher the quality of the workpiece resulting from the turning. Besides being demanded to have high quality, the turning process is also demanded to have high productivity. Indicator of productivity in the turning is the rate of metal removal rate (MRR). The higher of metal removal rate, the higher the productivity. Workpiece surface roughness and metal removal rate resulting from the turning process is determined by variables as cutting speed, feeding motion and cutting depth [3-5].

Besides being influenced by turning process variables, surface roughness and the metal removal rate are also influenced by the cutting fluid. The coolant in the turning process is essential because it can reduce the friction coefficient and reduce heat on the cutting tool caused by friction between the workpiece and the cutting tool so that the cutting tool does not wear out quickly. In addition, the use of coolant in the turning process can improve the surface quality of the workpiece [6]. In the turning process, one way of providing coolant is using the flooding method. It
is a method of administering coolant by flooding the surface of the workpiece. However, excessive use of coolant, such as flooding methods can induce health problems for the operator such as irritation of the skin and environmental problems [7]. Some environmentally friendly methods of cutting fluids as an alternative to the flooding method are the Minimum Quantity Lubrication (MQL) methods. In the MQL method, the coolant used is minimized [8]. In addition to the MQL method, an environmentally friendly cooling fluid method is the Minimum Quantity Cooling Lubrication (MQCL) method. In this method, in addition to minimizing the coolant, cold pressurized air is also added so that the cooling process is more optimal [9-11].

Determination of the proper setting of the turning process variables to get a low surface roughness of the workpiece with a high metal removal rate simultaneously is very necessary to be done. However, in the turning process, surface roughness has opposite characteristics to the metal removal rate (MRR). Surface roughness has the characteristics, the smaller the better while the MRR has the characteristics, the greater the better. Therefore, determining the combination of turning parameters or optimization process is very important to get optimal results. The optimization method that is often used in the machining process for single responses is Taguchi. As for multi-response, the Taguchi-Grey-Fuzzy method can be used [12-14].

2. Methods and material

2.1 Research material
This research uses ST 60 material with dimensions of Ø50 mm x 100 mm. An insert cutting tool with CNMG type used as the cutting tool in this study, which has a corner radius of 0.4 mm. Conventional turning with 2000 rpm spindle rotation is used in this research. Surface roughness is measured using Mahr Surftest. The cutting time is measured with a stopwatch which is then entered into equation (1) to get the metal removal rate (MRR).

\[
MRR = \frac{\text{Volume of workpiece removed}}{\text{Machining time}} \text{ (mm}^3\text{min)}
\]

(1)

2.2 Cooling system installation
The cooling system installation diagram used in this study can be seen in Figure 1. The cooling liquid in the form of soluble oil is cooled to a cooler at 9-10°C then sprayed with a flow rate of 200 ml/hour with 8 bar of compressed air relief produced by the compressor. The volume of coolant that is sprayed is kept to a minimum through the screw regulating the discharge of the coolant.

![Cooling system installation diagram](image-url)
2.3 Process variables and orthogonal matrix
Table 1 shows the process variables used in the study. Response variables used in this study are arithmetic surface roughness (Ra), average total roughness (Rz) and metal removal rate (MRR). Whereas the orthogonal matrix used can be seen in Table 2.

No.	Process Variable	Level
1	Cutting fluids (CF)	Cold Soluble oil+air
2	Spindle Rotation (N)/rpm	550
3	Feeding Motion (F)/mm/rev.	0.053
4	Cutting depth (A)/mm	0.125

Table 2. Orthogonal matrix L_{18}

No.	CF	N	F	A	No.	CF	N	F	A
1	1	1	1	1	10	2	1	1	3
2	1	1	2	2	11	2	1	2	1
3	1	1	3	3	12	2	1	3	2
4	1	2	1	1	13	2	2	1	2
5	1	2	2	2	14	2	2	2	3
6	1	2	3	3	15	2	2	3	1
7	1	3	1	2	16	2	3	1	3
8	1	3	2	3	17	2	3	2	1
9	1	3	3	1	18	2	3	3	2

2.4 Taguchi-grey-fuzzy method
The Taguchi method is an optimization method that can only be used for one response. To optimize multiple responses simultaneously, it is used a combination of the Taguchi with grey and fuzzy logic method. Grey relational analysis is used to create relationship models and analyze the relationships between responses and parameters, and as a basis for predicting and making decisions. Basically, GRA is used in optimization to convert several responses into one response. Fuzzy logic is formulated to find a middle value between 0 and 1. Fuzzy logic has the ability to process response variables that are fuzzy or cannot be described exactly, for example, high, slow, and noisy. The ambiguity in describing a response variable can be naturally modelled using fuzzy logic. The steps of the optimization process with the Taguchi-Grey-Fuzzy method can be seen in Figure 2.

Figure 2. The steps of the grey-fuzzy method optimization process

3 Results and discussion
3.1 Research Results Data
The results of the study in the form of arithmetic surface roughness (Ra), average total roughness (Rz) and metal removal rate (MRR) can be seen in Table 3.

The first step in the Taguchi-Grey-Fuzzy optimization process is calculate of the S/N ratio of the research data results shown in Table 3. The S/N ratio is determined by the quality characteristics of the responses. For arithmetic surface roughness (Ra) and average total roughness (Rz), they have the characteristics the smaller the better following equation 2, while the characteristics of quality for metal removal rate (MRR) are the greater the better according to equation 3 [14-15]. Smaller the better

\[
S/N = -10 \log \left[\frac{1}{n} \sum_{i=1}^{n} y_i^2 \right]
\]

(2)
Greater the better

\[
S/N = -10 \log \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{y_i^2} \right) \right)
\]

(3)

The results of S/N ratio calculation can be seen in Table 4.

3.3 Normalization of data for each response

The second step is the normalization of data for each response. Normalization is changing the S/N ratio value in Table 4 to a value that is among 0 and 1 [16-17]. Quality characteristics the smaller the better for surface roughness is using equation 4 and the greater the better for the rate of material work is using equation 5. The results of normalization can be seen in Table 5.

The smaller the better:

\[
X_{i}^+(k) = \frac{X_{i}(k) - \min X_{i}(k)}{\max X_{i}(k) - \min X_{i}(k)}
\]

(4)

The greater the better:

\[
X_{i}^-(k) = \frac{\max X_{i}(k) - X_{i}(k)}{\max X_{i}(k) - \min X_{i}(k)}
\]

(5)

Table 5. Normalization of response data

No	S/N Ra	S/N Rz	S/N MRR	Ra	Rz	MRR
1	1.211	-10.024	61.256	0.000	0.042	0.000
2	1.255	-15.226	73.209	0.338	0.129	0.191
3	2.232	-13.830	83.082	0.451	0.283	0.734
4	0.454	-15.001	63.447	0.237	0.154	0.019
5	1.645	-14.698	75.652	0.385	0.187	0.275
6	5.628	-12.495	85.579	0.760	0.430	1.000
7	6.533	-8.568	73.794	0.820	0.862	0.209
8	8.101	-8.029	85.390	0.914	0.921	0.976
9	8.706	-8.810	77.915	0.946	0.835	0.376
10	-0.084	-16.233	73.443	0.163	0.019	0.199
11	0.542	-16.296	67.440	0.248	0.012	0.067
12	1.097	-15.992	76.970	0.320	0.045	0.331
13	0.425	-16.402	69.367	0.234	0.000	0.100
14	4.884	-11.550	81.664	0.701	0.534	0.614
15	1.663	-14.344	73.085	0.397	0.226	0.188
16	8.171	-7.310	79.605	0.918	1.000	0.471
17	5.823	-10.357	74.157	0.770	0.665	0.221
18	9.813	-8.688	83.380	1.000	0.848	0.762

3.4 Determining the deviation sequence \(\Delta_{0,x}(k) \)

The third step is to determine the value of the deviation sequence \(\Delta_{0,x}(k) \). The deviation sequence is the absolute difference between the maximum values of the result of normalization of one magnitude with the normalized data [18]. Calculation of the value of the deviation sequence uses equation 6 [18]. Deviation sequence values can be seen in Table 6.

\[
\Delta_{0x}(k) = |X_{0}(k) - X_{x}^{*}(k)|
\]

(6)
Table 6. Deviation sequence value

No	Normalization \((x_1[k])\)	Deviation sequence	Normalization \((x_2[k])\)	Deviation sequence		
	Ra	Rz	MRR	Ra	Rz	MRR
1	0.000	0.042	0.000	1.0000	0.9585	1.0000
2	0.338	0.129	0.191	0.7763	0.8707	0.5086
3	0.451	0.283	0.734	0.6877	0.7172	0.1026
4	0.237	0.154	0.019	0.8490	0.8459	0.9099
5	0.385	0.187	0.275	0.7410	0.8126	0.4081
6	0.760	0.430	1.000	0.3797	0.5703	0.0000
7	0.820	0.862	0.209	0.2975	0.1383	0.4845
8	0.914	0.921	0.976	0.1554	0.0791	0.0078
9	0.946	0.835	0.376	0.1005	0.1650	0.3151
10	0.163	0.019	0.199	0.8978	0.9815	0.4989
11	0.248	0.012	0.067	0.8410	0.9883	0.7458
12	0.320	0.045	0.331	0.7906	0.9549	0.3539
13	0.234	0.000	0.100	0.8516	1.0000	0.6665
14	0.701	0.534	0.614	0.4471	0.4664	0.1609
15	0.397	0.226	0.188	0.7393	0.7737	0.5137
16	0.918	1.000	0.471	0.1489	0.0000	0.2456
17	0.770	0.665	0.221	0.3620	0.3352	0.4696
18	1.000	0.848	0.762	0.0000	0.1516	0.0904

3.5 Calculating grey relational coefficient (GRC)

Table 7. Grey Relational Coefficient (GRC) value

No	Deviation sequence \((\Delta_q(k))\)	Grey relational coefficient \((\xi(k))\)				
	Ra	Rz	MRR	Ra	Rz	MRR
1	0.000	0.042	0.000	1.0000	0.9585	1.0000
2	0.338	0.129	0.191	0.7763	0.8707	0.5086
3	0.451	0.283	0.734	0.6877	0.7172	0.1026
4	0.237	0.154	0.019	0.8490	0.8459	0.9099
5	0.385	0.187	0.275	0.7410	0.8126	0.4081
6	0.760	0.430	1.000	0.3797	0.5703	0.0000
7	0.820	0.862	0.209	0.2975	0.1383	0.4845
8	0.914	0.921	0.976	0.1554	0.0791	0.0078
9	0.946	0.835	0.376	0.1005	0.1650	0.3151
10	0.163	0.019	0.199	0.8978	0.9815	0.4989
11	0.248	0.012	0.067	0.8410	0.9883	0.7458
12	0.320	0.045	0.331	0.7906	0.9549	0.3539
13	0.234	0.000	0.100	0.8516	1.0000	0.6665
14	0.701	0.534	0.614	0.4471	0.4664	0.1609
15	0.397	0.226	0.188	0.7393	0.7737	0.5137
16	0.918	1.000	0.471	0.1489	0.0000	0.2456
17	0.770	0.665	0.221	0.3620	0.3352	0.4696
18	1.000	0.848	0.762	0.0000	0.1516	0.0904

The fourth step is to calculate the value of the GRC. It shows the relationship between the ideal and the actual conditions of normalized responses that are worth one if the normalized responses match the ideal condition [18]. Calculation of the value of the deviation sequence uses equation 7.
\[\xi_i (k) = \frac{\Delta \min + \zeta \Delta \max}{\Delta a_i (k) + \zeta \Delta \max} \]
(7)

\(\zeta \) is the distinguish coefficient, the value used in general is 0.5 [19]. The results of the Grey Relational Coefficient (GRC) can be seen in Table 7.

3.6 Fuzzification stage
Fuzzification is the process of changing the initial value, namely the grey relation coefficient to fuzzy numbers using the membership function. The membership value interval used is between 0 to 1 [20]. The input variable in the fuzzification process is the GRC value of each response. The output variable of the fuzzy logic system in this study is the grey-fuzzy reasoning grade (GFRG) which is converted into fuzzy linguistic subsets, using triangular membership functions.

3.7 Fuzzy Rules
Fuzzy rules are rules that explain the relationship between input variables and output variables. This study uses 3 input variables, namely GRC from arithmetic surface roughness response (Ra), average total surface roughness (Rz) and metal removal rate (MRR) with each having 3 fuzzy subsets, so 27 fuzzy rules are needed to combine all inputs. The overall fuzzy rules used in this study are shown in Table 8.

Table 8. Fuzzy rules
No

1
2
3
4
5
6
7
8
9
10
11
12
13
14

3.8 Defuzzification
Defuzzification is the conversion of fuzzy values to grey fuzzy reasoning grade (GFRG) by mapping fuzzy sets to firm sets. The input variable from the defuzzification process is the GRC value. The results of defuzzification in the form of GFRG values can be seen in Table 9.

Table 9. Grey Fuzzy Reasoning Grade (GFRG)
No.

1
2
3
4
5
6
7
8
9
3.9 Determining the combination of process variables for optimum responses

Determination of the best combination of variables begins with making an average table of GFRG as shown in Table 10. The greater the value of GFRG, the better the responses of the process to the combination of these variables. After the average table of GFRG is made, the next step is to create a graph for the average of GFRG at each level of the cutting fluid, spindle rotation, feed motion and cutting depth as shown in Figure 3.

Table 10. The average of GFRG

	Level 1	Level 2	Level 3
CF	0.518	0.506	-
N	0.385	0.455	0.696
F	0.463	0.515	0.558
A	0.449	0.488	0.599
Average	0.512		

Figure 3. Plot GRFG average value

Based on Figure 4, the combination of levels of process variables that produce arithmetic surface roughness (Ra), average total surface roughness (Rz) and optimum metal removal rate (MRR) are cutting fluids (CF) level 1 that is Cold soluble oil + air pressure, spindle rotation (N) level 3 with a value of 1200 rpm, feed motion (F) level 3 with a value of 0.161 mm/rev and cutting depth (A) level 3 with a value of 0.5 mm.

4. Conclusion

Combination settings for turning process parameters that can minimize arithmetic surface roughness (Ra) and average total surface roughness (Rz), as well as maximizing metal removal rate (MRR) simultaneously are as follow:

- Type of coolant is cold soluble oil + air pressure.
- Spindle rotation of 1200 rpm.
- Feeding of 0.161 mm/rev
- Cutting depth 0.5 mm
5. Acknowledgement
Thanks to the directorate of research and community service, directorate general of strengthening research and development (DRPM), the ministry of research, technology and higher education who has provided financial support through a research scheme for novice lecturers in 2019.

6. References
[1] Kalpakjian, S., Schmid, S.R., & Musa, H., Manufacturing Engineering and Technology, Prentice Hall, 2009.
[2] Moshat, S., Parametric Optimization of CNC End Milling using Entropy Measurement Technique Combined with Grey-Taguchi Methode, International Journal of Engineering, Science and Technology, 2(2), pp. 1-12, 2010.
[3] Qehaja, N., Jakupi, K., Bunjaku, A., Bruci, M. & Osmani, H., Effect of Machining Parameters and Machining Time on Surface Roughness in Dry Turning Process, Procedia Engineering, pp. 135-140, 2015.
[4] Arefi, A.G., Das, R., Sahoo, A.K., Routara, B.C. & Nanda, B.K., A Study on the Effect of Machining Parameter in Turning of Lead Alloy, Material Today: Proceedings, pp. 7562-7572, 2017.
[5] Gunjal, S.U., & Patil, G.N., Experiment Investigations Into Turning of Hardened AISI 4340 Steel Using Vegetable Based Cutting Fluids Under Minimum Quantity Lubrication, Procedia Manufacturing, pp. 18-23, Apr. 2018.
[6] Jagadish, & Ray, A., Cutting Fluid Selection for Sustainable Design for Manufacturing: an Integrated Theory, Procedia Materials Science, pp. 450 – 459, 2014.
[7] Dahlin, J, & Isaksson, M., Occupational Contact Dermatitis Caused By N-Butyl- 1,2-Benzisothiazolin-3-One In A Cutting Fluid. Contact Dermatitis, 73, pp. 49–67, 2015.
[8] Gajrani, K. K., Ram, d, & Sankar, R.M., Biodegradation And Hard Machining Performance Comparison Of Eco-Friendly Cutting Fluid And Mineral Oil Using Flood Cooling And Minimum Quantity Cutting Fluid Techniques, J. Clean. Prod., 165, pp. 1420–1435, Jul. 2017.
[9] Zhang, S., Li, F.J, & Wang, E.Y., Tool Life And Cutting Forces In End Milling Inconel 718 Under Dry And Minimum Quantity Cooling Lubrication Cutting Conditions, Journal of Cleaner Production, 32, pp. 81-87, March. 2012.
[10] Maruda, R.W., Krolczyk, G.M., Feldshtein, E., Pusavec, F., Szydłowski, M, & Legutko, S., A Study On Droplets Sizes, Their Distribution And Heat Exchange For Minimum Quantity Cooling Lubrication (MQCL), International Journal Machine Tools and Manufacture, 100, pp. 81–92, Jan. 2016.
[11] Pervaiz, S., Rashid, A., Dejab, I, & Nicolescu, M.C., An Experimental Investigation on Effect of Minimum Quantity Cooling Lubrication (MQCL) in Machining Titanium Alloy (Ti6Al4V), The International Journal of Advanced Manufacturing Technology, 87, pp. 1371–1386, Nov. 2016.
[12] Mahesh, P.T, & Rajesh, R., Optimal Selection of Process Parameters in CNC End Milling of Al 7075-T6 Alluminium Alloy Using Taguchi-Fuzzy Approach. International Conference on Advances in Manufacturing and Material Engineering (AMME), Pp. 2493-2502, 2014.
[13] Maiyar, M.L., Ramanujam, R., Venkatesan, K, & Jerald, J., Optimization of Machining Parameters for End Milling of Inconel 718 Super Alloy Using Taguchi Based Grey Relational Analysis. International Conference on Design and Manufacturing, Pp. 1276-1282, 2013.
[14] Li, Y., Shieh, M., Yang, C, & Zhu, L., Application of Fuzzy-Based Hybrid Taguchi Method for Multiobjective Optimization of Product Form Design. Mathematical Problems in Engineering, 2018.
[15] Pundir, R., Chary, G.H.V.C., & Dastidar, M.G., Application of Taguchi method for Optimizing the Process parameters for the Removal of Copper and Nickel by Growing Aspergillus SP, Water Resources and Industry, 20, pp. 83–92, Dec. 2018.

[16] Mia, M., AL Bashir, M., Khan, A.M.D., & Dhar, R.N., Optimization Of MQL Flow Rate for Minimum Cutting Force and Surface Roughness in End Milling Of Hardened Steel (Hrc 40), Int. J. Adv. Manuf. Technol., 89, pp. 675–690, 2017.

[17] Sahu, K.P., & PAL, S., Multi-Response Optimization of Process Parameters in Friction Stir Welded AM20 Magnesium Alloy by Taguchi Grey Relational Analysis, Journal of Magnesium and Alloys, 3, pp. 36-46, Jan. 2015.

[18] Gohil, V., & PURI, Y.M., Optimization of Electrical Discharge Turning Process using Taguchi-Grey Relational Approach, Procedia CIRP. 68, pp. 70-75, 2018.

[19] Shi, K., Zhang, D., & Ren, J., Optimization of Process Parameters for Surface Roughness and Microhardness in Dry Milling of Magnesium Alloy Using Taguchi with Grey Relational Analysis, Int. J. Adv. Manuf. Technol., 81, pp. 645-651, May. 2015.

[20] Das, B., Roy, S., Rai, R.N., & Saha, S.C., Application of Grey Fuzzy Logic for the Optimization of CNC Milling Parameters for Al–4.5%Cu–TiC MMCs with Multi-Performance Characteristics, Engineering Science and Technology, an International Journal, 19, pp. 857–865, Jan. 2016.