Metric Dimension of Amalgamation of Graphs

Rinovia Simanjuntak, Saladin Uttunggadewa, and Suhadi Wido Saputro
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung, Bandung 40132, Indonesia
e-mail: \{rino, s_uttunggadewa, suhadi\}@math.itb.ac.id

Abstract

A set of vertices \(S \) resolves a graph \(G \) if every vertex is uniquely determined by its vector of distances to the vertices in \(S \). The metric dimension of \(G \) is the minimum cardinality of a resolving set of \(G \).

Let \(\{G_1, G_2, \ldots, G_n\} \) be a finite collection of graphs and each \(G_i \) has a fixed vertex \(v_0 \) or a fixed edge \(e_0 \), called a terminal vertex or edge, respectively. The vertex-amalgamation of \(G_1, G_2, \ldots, G_n \), denoted by \(\text{Vertex-Amal} \{G_i; v_0\} \), is formed by taking all the \(G_i \)'s and identifying their terminal vertices. Similarly, the edge-amalgamation of \(G_1, G_2, \ldots, G_n \), denoted by \(\text{Edge-Amal} \{G_i; e_0\} \), is formed by taking all the \(G_i \)'s and identifying their terminal edges.

Here we study the metric dimensions of vertex-amalgamation and edge-amalgamation for finite collection of arbitrary graphs. We give lower and upper bounds for the dimensions, show that the bounds are tight, and construct infinitely many graphs for each possible value between the bounds.

1 Introduction

In this paper we consider finite, simple, and connected graphs. The vertex and edge sets of a graph \(G \) are denoted by \(V(G) \) and \(E(G) \), respectively.

The distance \(d(u, v) \) between two vertices \(u \) and \(v \) in a connected graph \(G \) is the length of a shortest \(u - v \) path in \(G \). For an ordered set \(W = \{w_1, w_2, \ldots, w_k\} \subseteq V(G) \), we refer to the \(k \)-vector \(r(v|W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_k)) \) as the \((\text{metric}) \) representation of \(v \) with respect to \(W \). The set \(W \) is called a resolving set for \(G \) if \(r(u|W) = r(v|W) \) implies that \(u = v \) for all \(u, v \in G \). In a graph \(G \), a resolving set with minimum cardinality is called a basis for \(G \). The metric dimension, \(\text{dim}(G) \), is the number of vertices in a basis for \(G \).

The metric dimension problem was first introduced in 1975 by Slater [46], and independently by Harary and Melter [20] in 1976; however the problem for hypercube was studied (and solved asymptotically) much earlier in 1963 by Erdős and Rényi [13]. In general, it is difficult to obtain a basis and metric dimension for arbitrary graph. Garey and Johnson [17], and also Khuller et al. [32], showed that determining the metric dimension of an arbitrary graph is an NP-complete problem. The problem is still NP-complete even if we consider some specific families of graphs, such as bipartite graphs [36], planar graphs [12].
or Gabriel unit disk graphs [29]. Thus research in this area are then constrained towards: characterizing graphs with particular metric dimensions, determining metric dimensions of particular graphs, and constructing algorithm that best approximate metric dimensions.

Until today, only graphs of order n with metric dimension 1 (the paths), $n - 3$, $n - 2$, and $n - 1$ (the complete graphs) have been characterized [10, 22, 29]. On the other hand, researchers have determined metric dimensions for many particular classes of graphs, such as trees [10, 20, 32], cycles [19], grids [37], complete multipartite graphs [10, 1], hypercube [13, 34, 10, 9], wheels [7, 8, 43], fans [8], unicyclic graphs [39], honeycombs [35, 19], circulant graphs [24], Jahangir graphs [48], Sierpiski graphs [30], and classical binomial random graph [6]. Recently in 2011, Bailey and Cameron [3] established relationship between the base size of automorphism group of a graph and its metric dimension. This result then motivated researchers to study metric dimensions of distance regular graphs, such as Grassman [4, 19], Johnson, Kneser [2], and bilinear form graphs [14, 19].

In the area of constructing algorithm that best approximate metric dimensions, researchers have utilized integer programming [11], genetic algorithm [33], variable neighborhood search based heuristic [38], and greedy constant factor approximation algorithm [21].

There are also some results of metric dimensions of graphs resulting from graph operations; for instance: Cartesian product graphs [37, 32, 9, 41], joint product graphs [7, 8, 43], strong product [40], corona product graphs [50, 27], lexicographic product graphs [42], hierarchical product graphs [15], and line graphs [31, 16].

In this paper, we study metric dimension of graphs resulting from another type of graph operations, i.e., vertex-amalgamation and edge-amalgamation of a finite collection of arbitrary graphs. Previous study of such graphs has been done for vertex-amalgamation of two arbitrary graphs [39] and vertex-amalgamation and edge-amalgamation of particular families of graphs, which include cycles, complete graphs, and prisms [25, 26, 44, 45]. We present these known results in the next section and then provide more general results in the last section: give lower and upper bounds for the dimensions, show that the bounds are tight, and construct infinitely many graphs for each possible value between the bounds.

2 Previous Results

Let $\{G_1, G_2, \ldots, G_n\}$ be a finite collection of graphs and each block G_i has a fixed vertex v_0, or a fixed edge e_0, called a terminal vertex or edge, respectively. The **vertex-amalgamation** of G_1, G_2, \ldots, G_n, denoted by $\text{Vertex} - \text{Amal}\{G_i; v_0\}$, is formed by taking all the G_i’s and identifying their terminal vertices. Similarly, the **edge-amalgamation** of G_1, G_2, \ldots, G_n, denoted by $\text{Edge} - \text{Amal}\{G_i; e_0\}$, is formed by taking all the G_i’s and identifying their terminal edges.

In [39], Poisson and Zhang studied vertex-amalgamation of two nontrivial connected graphs G_1, G_2 and provide a lower bound as follow.

Theorem 1. [39] Let G be the vertex-amalgamation of nontrivial connected graphs G_1 and
with terminal vertices \(v_0_1 \) and \(v_0_2 \). Then

\[
dim(G) \geq \dim(G_1) + \dim(G_2) - 2.
\]

Other known results are vertex-amalgamation and edge-amalgamation of particular families of graphs, as presented in the following theorems. We denote by \(G_n \) the cycle of order \(n \), by \(K_n \) the complete graph of order \(n \), and by \(Pr_2n \) the prism of order \(2n \).

Theorem 2. [26, 44] Let \(\{C_{c_1}, C_{c_2}, \ldots, C_{c_n}\} \) be a collection of \(n \) cycles with \(n_e \) cycles of even order. Suppose that \(G \) is the vertex-amalgamation of \(C_{c_1}, C_{c_2}, \ldots, C_{c_n} \) and \(H \) is the edge-amalgamation of \(C_{c_1}, C_{c_2}, \ldots, C_{c_n} \). Then

\[
dim(G) = \begin{cases} \sum_{i=1}^{n} \dim(C_{c_i}) - n, & n_e = 0, \\ \sum_{i=1}^{n} \dim(C_{c_i}) - n + n_e - 1, & n_e \geq 1 \end{cases}
\]

and

\[
\sum_{i=1}^{n} \dim(C_{c_i}) - n - 2 \leq \dim(H) \leq \sum_{i=1}^{n} \dim(C_{c_i}) - n.
\]

Theorem 3. [45] Let \(\{K_{k_1}, K_{k_2}, \ldots, K_{k_n}\} \) be a collection of \(n \) complete graphs with \(n_2 \) complete graphs of order 2 and \(n_3 \) complete graphs of order 3. Suppose that \(G \) is the vertex-amalgamation of \(K_{k_1}, K_{k_2}, \ldots, K_{k_n} \) and \(H \) is the edge-amalgamation of \(K_{k_1}, K_{k_2}, \ldots, K_{k_n} \). Then

\[
dim(G) = \begin{cases} \sum_{i=1}^{n} \dim(K_{k_i}) - n + n_2 - 1, & n_2 \geq 2, \\ \sum_{i=1}^{n} \dim(K_{k_i}) - n, & \text{otherwise} \end{cases}
\]

and

\[
dim(H) = \begin{cases} \sum_{i=1}^{n} \dim(K_{k_i}) - 2n + 1, & n_3 = 0 \text{ or } n = 2 \text{ and } n_3 = 1, \\ \sum_{i=1}^{n} \dim(K_{k_i}) - 2n, & \text{otherwise}. \end{cases}
\]

Theorem 4. [45] Let \(\{Pr_{p_1}, Pr_{p_2}, \ldots, Pr_{p_n}\} \) be a collection of \(n \) prisms with \(n_o \) prisms of odd order. Suppose that \(G \) is the vertex-amalgamation of \(Pr_{p_1}, Pr_{p_2}, \ldots, Pr_{p_n} \) and \(H \) is the edge-amalgamation of \(Pr_{p_1}, Pr_{p_2}, \ldots, Pr_{p_n} \). Then

\[
dim(G) = \begin{cases} \sum_{i=1}^{n} \dim(Pr_{p_i}) - n, & n_o = 0, \\ \sum_{i=1}^{n} \dim(Pr_{p_i}) - n + n_o - 1, & n_o \geq 1 \end{cases}
\]

and

\[
dim(H) = \sum_{i=1}^{n} \dim(Pr_{p_i}) - n + n_o - 1.
\]
3 Main Results

The next theorem provide the sharp lower and upper bounds for the metric dimension of vertex-amalgamation of finite collection of arbitrary graphs, as well as a construction showing that all values between the bound are attainable.

Theorem 5. Let \(\{G_1, G_2, \ldots, G_n\} \) be a finite collection of graphs and \(v_0 \) is a terminal vertex of \(G_i \), \(i = 1, 2, \ldots, n \). If \(G \) is the vertex-amalgamation of \(G_1, G_2, \ldots, G_n \), Vertex – Amal \(\{G_i; v_0\} \), then

\[
\sum_{i=1}^{n} \dim(G_i) - n \leq \dim(G) \leq \sum_{i=1}^{n} \dim(G_i) + n - 1.
\]

Moreover, the bounds are sharp and there are infinitely many graphs with dimension equal to all values within the range of the bounds.

Proof. For the lower bound, consider a vertex set \(W \) with cardinality less than \(\sum_{i=1}^{n} \dim(G_i) - n \). Consequently, there exists a block \(G_i \) which the cardinality of its intersection with \(W \) is less than \(\dim(G_i) - 1 \). Therefore \(W \) could not be a resolving set of \(G \) and so

\[
\dim(G) \geq \sum_{i=1}^{n} \dim(G_i) - n.
\]

For the upper bound, consider two arbitrary blocks \(G_i \) and \(G_j \) of \(G \) and their basis \(R_i \) and \(R_j \). Clearly, at most two vertices in \(G_i \cup G_j \), say \(x \) and \(y \), could have the same representation with respect to \(R_i \cup R_j \), since otherwise there exist two vertices in a block, say \(G_i \), having the same representation with respect to \(R_i \), a contradiction with \(R_i \) being a resolving set. Thus, to guarantee all vertices in \(G_i \cup G_j \) have have different representation, we have to add either \(x \) or \(y \) to \(R_i \cup R_j \). If we consider each pair of blocks in \(G \), we obtain

\[
\dim(G) \leq \sum_{i=1}^{n} \dim(G_i) + n - 1.
\]

Now let us start our construction by considering \(\{G_1, G_2, \ldots, G_n\} \) as a finite collection of complete graphs of order at least 3. By Theorem 5 \(\dim(G) = \sum_{i=1}^{n} \dim(G_i) - n \), which achieve the lower bound. We then replace \(G_1 \) with a path consisting non-leaf terminal vertex. Let \(B \) be the union of all the blocks’ basis. Since the path has dimension 1 and its basis vertex is a leaf vertex, then the two vertices of the path adjacent to the terminal vertex will have the same representation with respect to \(B \). Thus we have to add one vertex, i.e. one of the two vertices of the path adjacent to the terminal vertex, to \(B \) in order to obtain a basis for \(G \). This results in \(\dim(G) = \sum_{i=1}^{n} \dim(G_i) - n + 1 \), which increases the lower bound by one. We continue this process by replacing the \(G_i \)'s one at a time until all complete graphs are replaced with paths (see Figure 1). The resulting graph is a subdivided star, whose dimension achieves the upper bound.

Note that the lower bound in the previous theorem generalizes the result of Poisson and Zhang in Theorem 1. From Theorems 2 and 4, we can see that there exist amalgamations of particular cycles and prisms whose dimensions attaining the lower bounds. These graphs could be used in the construction of the proof of Theorem 5.
To prove the result for edge-amalgamation of a finite collection of graphs, we need to know the dimensions of two special graphs. The first graph is complete bipartite graphs $K_{m,n}$. It is known that $\dim(K_{m,n}) = m + n - 2$ and the basis consists of all vertices in $K_{m,n}$ except for one vertex from each partite set. The second graph is a variation of a cycle of order n, C_n. Suppose that $V(C_n) = \{x_1, x_2, \ldots, x_n\}$ and $E(C_n) = \{x_nx_1, x_ix_{i+1}, i = 1, 2, \ldots, n-1\}$. We add two vertices y_2, y_5 and six edges $y_2x_i, i = 1, 2, 3, y_5x_i, i = 4, 5, 6$. We call the resulting graph a double-hats cycle, denoted by DHC_n (see Figure 2). It is easy to see that a resolving set of DHC_n must consist two vertices: either x_2 or x_5 and either y_2 or y_5. On the other hand, the set $\{x_2, y_5\}$ is a resolving set of DHC_n, and so $\dim(DHC_n) = 2$.

Theorem 6. Let $\{G_1, G_2, \ldots, G_n\}$ be a finite collection of graphs and e_0_i is a terminal edge of G_i, $i = 1, 2, \ldots, n$. If H is the edge-amalgamation of G_1, G_2, \ldots, G_n, Edge $-$ Amal$\{G_i; e_0_i\}$, then

$$\sum_{i=1}^n \dim(G_i) - 2n \leq \dim(H) \leq \sum_{i=1}^n \dim(G_i) + n - 1.$$

Moreover, the bounds are sharp and there are infinitely many graphs with dimension equal to all values within the range of the bounds.

Proof. For the lower bound, consider a vertex set W with cardinality less than $\sum_{i=1}^n \dim(G_i) - 2n$. Consequently, there exists a block G_i which the cardinality of its intersection with W is less than $\dim(G_i) - 2$. Therefore W could not be a resolving set of H and so

$$\dim(G) \geq \sum_{i=1}^n \dim(G_i) - 2n.$$

For the upper bound, consider two arbitrary blocks G_i and G_j of G and their basis R_i and R_j. Clearly, at most two vertices in $G_i \cup G_j$, say x and y, could have the same representation with respect to $R_i \cup R_j$, since otherwise there exist two vertices in a block, say G_i, having the same representation with respect to R_i, a contradiction with R_i being a resolving set.
Thus, to guarantee all vertices in $G_i \cup G_j$ have have different representation, we have to add either x or y to $R_i \cup R_j$. If we consider each pair of blocks in G, we obtain
\[
\text{dim}(G) \leq \sum_{i=1}^{n} \text{dim}(G_i) + n - 1.
\]

Similarly to the construction for vertex-amalgamation of graphs in the proof of Theorem 5, we start by considering \(\{G_1, G_2, \ldots, G_n\} \) as a finite collection of symmetric complete bipartite graphs K_{m_i,m_i} with vertex-set partitioned into \(\{x_1, x_2, \ldots, x_{m_i}\} \) and \(\{y_1, y_2, \ldots, y_{m_i}\} \).
Let \(x_{m_i}, y_{m_i} \) be the terminal edge in each K_{m_i,m_i}. By the first part of the theorem, we have \(\text{dim}(H) \geq \sum_{i=1}^{n} \text{dim}(G_i) - 2n \). Now, consider the set \(R = \bigcup_{i=1}^{n} \{x_1, x_2, \ldots, x_{m_i-2}\} \). It is easy to see that \(R \) is a resolving set for H, and thus \(\text{dim}(H) = \sum_{i=1}^{n} \text{dim}(G_i) - 2n \). Therefore we have amalgamation of graphs attaining the lower bound.

We then replace G_1 with a double-hats cycle DHC_n with terminal edge x_6x_7 (refer to the standard vertices notation of DHC_n). Let B be the union of all the blocks’ basis. The two vertices of DHC_n adjacent to the terminal edge will have the same representation with respect to B. Thus we have to add one vertex, i.e. one of the two vertices of DHC_n adjacent to the terminal edge, to B in order to obtain a basis for H. This results in \(\text{dim}(H) = \sum_{i=1}^{n} \text{dim}(G_i) - n + 1 \), which increases the lower bound by one. We continue this process by replacing the G_is one at a time until all complete bipartite graphs are replaced with DHC_ns. The dimension of the resulting graph then achieves the upper bound.

Notice that there exists edge-amalgamation of some complete graphs with dimension equal to the lower bound (see Theorem 3), and so these graphs could be used in the construction of the proof of the previous theorem. We could also see from Theorems 2, 3, and 4 that the dimensions of edge-amalgamations of cycles and prims are the middle values between the lower and upper bounds, while the dimensions of edge-amalgamation of complete graphs are values around the lower bound. Determining which collection of graphs whose vertex-amalgamation and edge-amalgamation have small dimensions (close to the lower bounds) might be seen as interesting problems.

References

[1] M. Baca, E.T. Baskoro, A.N.M. Salman, S.W. Saputro, D. Suprijanto, The metric dimension of regular bipartite graphs, *Bull. Math. Soc. Sci. Math. Roumanie* 54 (2011) 15-28.

[2] Robert F. Bailey, José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Karen Meagher, María Luz Puertas, Resolving sets for Johnson and Kneser graphs, *European J. Combinat.* 34 (2013) 736-751.

[3] R. F. Bailey and P. J. Cameron, Base size, metric dimension and other invariants of groups and graphs, *Bull. Lond. Math. Soc.* 43 (2011) 209-242.

[4] R.F. Bailey and K. Meagher, On the metric dimension of Grassmann graphs, *Discrete Math. Theoretical Comp. Sci.* 13 (2011) 97-104.

[5] A.F. Beardon, Resolving the hypercube, *Discrete Applied Mathematics* 161 (2013) 1882-1887.
[6] Bela Bollobas, Dieter Mitsche, and Pawel Pralat, Metric dimension for random graphs, *The Electronic Journal of Combinatorics* 20 (2013) 2P1.

[7] P.S. Buczkowski, G. Chartrand, C. Poisson, and P. Zhang, On k-dimensional graphs and their bases, *Period. Math. Hungar.* 46 (2003) 9-15.

[8] J. Caceres, C. Hernando, M. Mora, M.L. Puertas, I.M. Pelayo, C. Seara, and D.R. Wood, On the metric dimension of some families of graphs, *Electronic Notes Discrete Math.* 22 (2005) 129-133.

[9] Jose Caceres, Carmen Hernando, Merce Mora, Ignacio M. Pelayo, Maria L. Puertas, Carlos Seara, and David R. Wood, On The Metric Dimension Of Cartesian Products Of Graphs, *SIAM J. Discrete Math.* 21 (2007) 423-441.

[10] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, *Discrete Appl. Math.* 105 (2000) 99-113.

[11] J. D. Currie and O. R. Oellerman, The metric dimension and metric independence of a graph, *J. Combin. Math. Combin. Comput.* 39 (2001) 157-167.

[12] Josep Daz, Olli Pottonen, Maria Serna, Erik Jan van Leeuwen, On the Complexity of Metric Dimension, *Lecture Notes Comp. Sci.* 7501 (2012) 419-430.

[13] P. Erdős and A. Rényi, On two problems of information theory, *Magyar Tud. Akad. Mat. Kutat Int. Kzl* 8 (1963) 229-243.

[14] Min Feng and Kaishun Wang, On the metric dimension of bilinear forms graphs, *Discrete Math.* 312 (2012) 1266-1268.

[15] Min Feng and Kaishun Wang, On The Metric Dimension And Fractional Metric Dimension Of The Hierarchical Product Of Graphs, *Appl. Anal. Discrete Math.* 7 (2013) 302-313.

[16] Min Feng, Min Xu, Kaishun Wang, On the metric dimension of line graphs, *Discrete Applied Mathematics* 161 (2013) 802-805.

[17] M.R. Garey, and D.S. Johnson, *Computers and Intractability: A Guide to the Theory of NP Completeness*, W.H.Freeman and Company, 1979.

[18] Jun Guo, Kaishun Wang, Fenggao Li, Metric dimension of symplectic dual polar graphs and symmetric bilinear forms graphs, *Discrete Math.* 313 (2013) 186-188.

[19] Jun Guo, Kaishun Wang, Fenggao Li, Metric dimension of some distance-regular graphs, *J. Comb. Optim.* 26 (2013) 190-197.

[20] F. Harary, and R.A. Melter, On the metric dimension of a graph, *Ars Combin.* 2 (1976) 191-195.

[21] Mathias Hauptmann, Richard Schmied, Claus Viehmann, Approximation complexity of Metric Dimension problem, *J. Discrete Algorithms* 14 (2012) 214-222.

[22] Carmen Hernando, Merce Mora, Ignacio M. Pelayo, Carlos Seara, and David R. Wood, Extremal Graph Theory for Metric Dimension and Diameter, *The Electronic Journal of Combinatorics* 17 (2010) 2R30.
[23] Stefan Hoffmann and Egon Wanke, Metric Dimension for Gabriel Unit Disk Graphs is NP-Complete, *Lecture Notes Comp. Sci.* **7718** (2013) 90-92.

[24] M. Imran, A. Q. Baig, S. A. U. H. Bokhary, I. Javaid, On the metric dimension of circulant graphs, *Appl. Math. Lett.* **25** (2012) 320-325.

[25] H. Iswadi, E. T. Baskoro, A. N. M. Salman, Rinovia Simanjuntak, The resolving graph of amalgamation of cycles, *Utilitas Math.* **83** (2010) 121-132.

[26] H. Iswadi, E. T. Baskoro, A. N. M. Salman, Rinovia Simanjuntak, The metric dimension of amalgamation of cycles, *Far East J. Math. Sci.* **41** (2010) 19-31.

[27] H. Iswadi, E.T. Baskoro, R. Simanjuntak, On the metric dimension of corona product of graphs, *Far East J. Math. Sci.* **52** (2011) 155-170.

[28] Mohsen Jannesari, Behnaz Omoomi, The metric dimension of the lexicographic product of graphs, *Discrete Mathematics* **312** (2012) 3349-3356.

[29] Mohsen Jannesari, Behnaz Omoomi, Characterization of n-Vertex Graphs with Metric Dimension n-3, preprint.

[30] Sandi Klavžar and Sara Sabrina Zemljič, On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension, *Appl. Analysis and Discrete Math.* **7** (2013) 72-82.

[31] Douglas J. Klein, Eunjeong Yi, A Comparison on Metric Dimension of Graphs, Line Graphs, and Line Graphs of the Subdivision Graphs, European Journal Of Pure And Applied Mathematics 5 (2012) 302-316

[32] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, *Discrete Appl. Math.* **70** (1996) 217-229.

[33] Jozef Kratica, Vera Kovacevic-Vujcic, Mirjana Cangalovic, Computing the metric dimension of graphs by genetic algorithms, *Comput. Optim. Appl.* **44** (2009) 343-361.

[34] B. Lindstrom, On a combinatorial detection problem I, *Magyar Tud. Akad. Mat. Kutat Int. Kzl.* **9** (1964) 195-206.

[35] P. Manuel, B. Rajan, I. Rajasingh, C. Monica M., On minimum metric dimension of honeycomb networks, *J. Discrete Algorithms* **6** (2008) 20-27.

[36] Paul D. Manuel, Mostafa I. Abd-El-Barr, Indra Rajasingh, Bharati Rajan, An efficient representation of Benes networks and its applications, *Journal of Discrete Algorithms* **6** (2008) 11-19.

[37] R.A. Melter, I. Tomescu, Metric bases in digital geometry, *Comput. Vision, Graphichs, Image Process.* **25**, (1984) 113-121.

[38] Nenad Mladenovic, Jozef Kratica, Vera Kovacevic-Vujcic, Mirjana Cangalovic, Variable neighborhood search for metric dimension and minimal doubly resolving set problems, *European J. Operational Res.* **220** (2012) 328-337.

[39] C. Poisson, P. Zhang, The metric dimension of unicyclic graphs, *J. Combin. Math. Combin. Comput.* **40** (2002) 17-32.
[40] Juan A. Rodryguez-Velazquez, Dorota Kuziak, Ismael G. Yero and Jose M. Sigarreta, The metric dimension of strong product graphs, preprint.

[41] S. W. Saputro, E.T. Baskoro, A.N.M. Salman, D. Suprijanto, The metric dimension of a complete n-partite graph and its Cartesian product with a path, *J. Combin. Math. Combin. Comput.* 71 (2009) 283-293.

[42] S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, E.T. Baskoro, A.N.M. Salman, M. Baća, The metric dimension of the lexicographic product of graphs, *Discrete Math.* 313 (2013) 1045-1051.

[43] B. Shanmukha, B. Sooryanarayana, and K.S. Harinath, Metric dimension of wheels, *Far East J. Appl. Math.* 8 (3) (2002) 217-229.

[44] Rinovia Simanjuntak, Hilda Assiyatun, Herolistra Baskoroputro, Hazrul Iswadi, Yudi Setiawan, and Saladin Uttunggadewa, Graphs with relatively constant metric dimensions, preprint.

[45] Rinovia Simanjuntak and Danang Murdiansyah, Metric dimension of amalgamation of some regular graphs, preprint.

[46] P.J. Slater, Leaves of trees, *Congr. Numer.* 14 (1975) 549-559.

[47] M. Tavakoli, F. Rahbarnia, A.R. Ashrafi, Distribution of some graph invariants over hierarchical product of graphs, *Applied Mathematics and Computation* 220 (2013) 405413.

[48] I. Tomescu and I. Javaid, On the metric dimension of the Jahangir graph, *Bulletin Mathématique de la Soc. Sci. Math. Roumanie* 50 (2007) 371-376.

[49] Dacheng Xu, Jianxi Fan, On the metric dimension of HDN, *Journal of Discrete Algorithms*, to appear.

[50] I.G. Yero, D. Kuziak, and J.A. Rodriguez-Velázquez, On the metric dimension of corona product graphs, *Comput. Math. Appl.* 61 (2011) 2793-2798.