SO(10)×SO(10) Universal Seesaw Model
and its Intermediate Mass Scales
Yoshio Koide
Department of Physics, University of Shizuoka
52-1 Yada, Shizuoka 422-8526, Japan

Abstract

On the basis of the universal seesaw mass matrix model, which is a promising model of the unified description of the quark and lepton mass matrices, the behaviors of the gauge coupling constants and intermediate energy scales in the SO(10)$_L$×SO(10)$_R$ model are investigated related to the neutrino mass generation scenarios. The non-SUSY model cannot give favorable values of the intermediate energy scales to explain the smallness of the neutrino masses, while the SUSY model can give the plausible values if the number n_ϕ of the weak doublet Higgs scalars is $n_\phi \geq 3$.

Key words: universal seesaw, evolution, SO(10), neutrino mass matrix, intermediate energy scale
PACS numbers: 11.10.Hi, 12.10.Kt, 14.60.Pq
To be published in Physical Review D.

*E-mail address: koide@u-shizuoka-ken.ac.jp
1 Introduction

Recently, a universal seesaw mass matrix model has considerably attracted us as a
unified mass matrix model of the quarks and leptons. The model [1] was proposed
in order to understand the question why the masses of quarks (except for top quark)
and charged leptons are so small compared with the electroweak scale \(\Lambda_L \) (~ \(10^2 \)
GeV). The model has hypothetical fermions \(F_i \) in addition to the conventional
quarks and leptons \(f_i \) (flavors \(f = u, d, \nu, e \); family indices \(i = 1, 2, 3 \)), and those
are assigned to \(f_L = (2,1), f_R = (1,2), F_L = (1,1) \) and \(F_R = (1,1) \) of \(SU(2)_L \times
SU(2)_R \). The \(6 \times 6 \) mass matrix which is sandwiched between the fields \((f_L, F_L) \)
and \((f_R, F_R) \) is given by

\[
M^{6\times6} = \begin{pmatrix}
0 & m_L \\
m_R & M_F
\end{pmatrix},
\]

(1.1)

where \(m_L \) and \(m_R \) are universal for all fermion sectors \((f = u, d, \nu, e) \) and only
\(M_F \) have structures dependent on the flavors \(f \). For \(\Lambda_L < \Lambda_R \ll \Lambda_F \), where \(\Lambda_L = O(m_L), \Lambda_R = O(m_R) \) and \(\Lambda_F = O(M_F) \), the \(3 \times 3 \) mass matrix \(M_f \) for the fermions
\(f \) is given by the well-known seesaw expression \(M_f \simeq -m_L M_F^{-1} m_R \), so that the
quarks and lepton masses \(m_{q,l} \) are given with a suppression factor \(\Lambda_R/\Lambda_F \). In
order to understand the observed heavy top quark mass value \(m_t \approx \Lambda_L \), we put an
additional condition \(\det M_F = 0 \) on the up-quark sector \((F = U) \) [2, 3]. Then, since
one of the fermion masses \(m(U_i) \) \((i = 1, 2, 3) \) is zero [say, \(m(U_3) = 0 \)], so that the
seesaw mechanism does not work for the third family, and the fermions \((u_{3L}, u_{3R}) \)
and \((U_{3L}, U_{3R}) \) acquire masses of \(O(m_L) \) and \(O(m_R) \), respectively, without the
suppression factor \(\Lambda_R/\Lambda_F \). We identify \((u_{3L}, U_{3R}) \) as the top quark \((t_L, t_R) \). An
explicit model for the matrix forms \(m_L, m_R \) and \(M_F \) has been proposed by Fusaoka
and the author [2], and they have successfully obtained the numerical results on
the quark masses and mixings, where those quantities are described in terms of the
charged lepton masses by assuming simple structures of \(m_L, m_R \) and \(M_F \).

For the neutrino mass matrix, we start the following \(12 \times 12 \) mass matrix:

\[
\begin{pmatrix}
\nu_L & \nu_R & \nu_L & \nu_R \\
0 & m_L & 0 & m_R \\
m_R & M_R & M_D & M_D \\
m_L & 0 & M_D^T & M_L
\end{pmatrix}
\begin{pmatrix}
\nu^c_L \\
\nu^c_R \\
N^c_L \\
N^c_R
\end{pmatrix}.
\]

(1.2)

The mass matrix (1.2) leads to different scenarios of the neutrino phenomenol-
ogy correspondingly to the different structure of the intermediate mass scales
Λ_{NL} = O(M_L), Λ_{NR} = O(M_R), and Λ_D = O(M_D) together with to Λ_L, Λ_R, and Λ_F (F \neq N). For example, for the case Λ_{NL}, Λ_{NL} \geq Λ_D, the neutrino mass matrix is approximately given by \(M_ν \simeq -m_LM_L^{-1}m_L^T \), so that the neutrino masses are suppressed by the factors Λ_L/Λ_R and Λ_F/Λ_{NL} compared with the quark and charged lepton masses \(m_{q,l} \).

In spite of such phenomenological successes, there is a reluctance to recognize the model, because the model needs extra fermions \(F \). In most unification models, there are no rooms for the fermions \(F \). Whether we can built a unification model in which the fermions \(F \) are reasonably embedded will be a touchstone for the great future of the universal seesaw mass matrix model.

For this problem, there is an attractive idea [4]. We can consider that the fermions \(F_R^c (\equiv C \bar{F}_R) \) together with the fermions \(f_L \) belong to 16 of SO(10), and also \(F_L^c \) together with \(f_R \) belong to 16 of another SO(10), i.e.,

\[
(f_L + F_R^c) \sim (16, 1), \quad (f_R + F_L^c) \sim (1, 16),
\]

of SO(10)_L \times SO(10)_R. In order to examine the idea (1.3), in the present paper, we investigate the evolution of the gauge coupling constants on the basis of the SO(10)_L \times SO(10)_R model and estimate the intermediate energy scales Λ_R, Λ_F and Λ_N together with the unification energy scale Λ_X. The evolutions of the gauge coupling constants under SO(10)_L \times SO(10)_R \rightarrow [SU(5) \times U(1)]_L \times [SU(5) \times U(1)]_R is easily ruled out phenomenologically. On the contrary, it is not clear that the case SO(10)_L \times SO(10)_R \rightarrow [SU(2) \times SU(2)']_L \times [SU(2) \times SU(2)']_R is ruled out or not, because there are many symmetry breaking patterns which were not discussed in the Ref. [4]. In the present paper, we will systematically investigate the intermediate mass scales for all possible cases (including non-SUSY and SUSY cases), but under a numerical constraint Λ_R/Λ_F \simeq 0.02 \[4\] which were derived from the observed ratio \(m_c/m_t \) under the new scenario of the universal seesaw model.

In Sec. 2, we introduce the Higgs scalars in the present model and classify the possible cases of the symmetry breaking patterns. In Sec. 3, we shortly review possible forms of the active neutrinos \(ν_L \) under the various cases of the intermediate energy scales. In Sec. 4, we discuss the evolution of the gauge coupling constants for the case \(SO(10)_L \times SO(10)_R \rightarrow [SU(2) \times SU(2)']_L \times [SU(2) \times SU(2)']_R \). The numerical results are presented in Sec. 5. Although non-SUSY cases give the value Λ_L/Λ_R \sim 10^{-5}, the value is not sufficient to explain the smallness of the neutrino masses. On the other hand, the SUSY case can give a reasonable order
of $\Lambda_L/\Lambda_R \sim 10^{-10}$ for $n_\phi = 6$, where n_ϕ is the number of the SU(2) doublet Higgs scalars. However, the model will encounter a new problem, i.e., the flavor-changing neutral currents (FCNC) problem. Sec. 6 will be devoted to the conclusions and remarks.

2 Higgs bosons and possible symmetry breaking patterns

In the present model, we consider the following Higgs scalars:

(i) $\Phi_{XL} = (54, 1)$ and $\Phi_{XR} = (1, 54)$, whose vacuum expectation values (VEV) break the symmetries SO(10)$_L$ and SO(10)$_R$ into $[SU(2) \times SU(2)’ \times SU(4)]_L$ and $[SU(2) \times SU(2)’ \times SU(4)]_R$, respectively;

(ii) $\Phi_{NL} = (126, 1)$ and $\Phi_{NR} = (1, 126)$, whose VEV break the symmetries $[SU(2)’ \times SU(4)]_L$ and $[SU(2)’ \times SU(4)]_R$ into $[U(1) \times SU(3)]_L$ and $[U(1) \times SU(3)]_R$, respectively, and generate the Majorana mass terms $\overline{N}_R M_L N_R$ and $\overline{N}_L M_R N_L$, respectively;

(iii) $\Phi_F = (\overline{16}, 16)$, whose VEV break SU(3)$_L \times SU(3)$_R into SU(3)$_{LR}$ and U(1)$_L \times U(1)$_R, and generate the Dirac mass terms $\overline{F}_L M_F F_R$;

(iv) $\phi_L = (10, 1)$ and $\phi_R = (1, 10)$, whose VEV break SU(2)$_L$ and SU(2)$_R$ and generate the mass terms $\overline{f}_L m_L f_R$ and $\overline{f}_L m_R f_R$, respectively.

For example, we consider the following case of the symmetry breaking pattern:

Case RLRL: $\Lambda_{XR} > \Lambda_{XL} > \Lambda_{NR} > \Lambda_{NL} = \Lambda_D > \Lambda_F$

\[
\begin{align*}
SO(10)_L & \times SO(10)_R \\
\downarrow & \text{ at } \mu = \Lambda_{XR} \\
SO(10)_L & \times [SU(2) \times SU(2)’ \times SU(4)]_R \\
\downarrow & \text{ at } \mu = \Lambda_{XL} \\
[SU(2) \times SU(2)’ \times SU(4)]_L & \times [SU(2) \times SU(2)’ \times SU(4)]_R \\
\downarrow & \text{ at } \mu = \Lambda_{NR} \\
[SU(2) \times SU(2)’ \times SU(4)]_L & \times [SU(2) \times U(1) \times SU(3)]_R \\
\downarrow & \text{ at } \mu = \Lambda_{NL} = \Lambda_D \\
[SU(2) \times U(1) \times SU(3)]_L & \times [SU(2) \times U(1) \times SU(3)]_R
\end{align*}
\]
\[\downarrow \] at \(\mu = \Lambda_F \)
\[\text{SU}(2)_L \times \text{SU}(2)_R \times U(1)_{LR} \times \text{SU}(3)_{LR} \]
\[\downarrow \] at \(\mu = \Lambda_R \)
\[\text{SU}(2)_L \times U(1)_Y \times \text{SU}(3)_{LR} \]
\[\downarrow \] at \(\mu = \Lambda_L \)
\[\text{U}(1)_{em} \times \text{SU}(3)_{LR} \], (2.1)

where \(\text{SU}(3)_{LR} \) means the color gauge symmetry \(\text{SU}(3)_c \).

For convenience, we define the following ranges of the energy scale \(\mu \): Range 1 (\(\Lambda_L < \mu \leq \Lambda_R \)); Range 2 (\(\Lambda_R < \mu \leq \Lambda_F \)); Range 3 (\(\Lambda_F < \mu \leq \Lambda_{NL} \)); Range 4 (\(\Lambda_{NL} < \mu \leq \Lambda_{NR} \)); Range 5 (\(\Lambda_{NR} < \mu \leq \Lambda_{XL} \)); Range 6 (\(\Lambda_{XL} < \mu \leq \Lambda_{XR} \)). Here, we regard \(\Lambda_D = \Lambda_{NL} \). Also, for convenience of the next section, let us define the following parameters

\[x_1 = \log(\Lambda_R/\Lambda_L), \quad x_2 = \log(\Lambda_F/\Lambda_R), \quad x_3 = \log(\Lambda_{NL}/\Lambda_F), \]
\[x_4 = \log(\Lambda_{NR}/\Lambda_{NL}), \quad x_5 = \log(\Lambda_{XL}/\Lambda_{NR}), \quad x_6 = \log(\Lambda_{XR}/\Lambda_{XL}). \] (2.2)

The values of \(x_i \) must be positive or zero. Especially, the value of \(x_1 \) must roughly be \(x_1 \geq 1 \) from the experimental lower limit \(\text{[6]} \) of the right-handed weak boson mass.

We also investigate the following cases:
Case RLLR: \(\Lambda_{XR} > \Lambda_{XL} > \Lambda_{NL} > \Lambda_{NR} = \Lambda_D > \Lambda_F \);
Case LRLR: \(\Lambda_{XL} > \Lambda_{XR} > \Lambda_{NL} > \Lambda_{NR} = \Lambda_D > \Lambda_F \);
Case LRRL: \(\Lambda_{XL} > \Lambda_{XR} > \Lambda_{NR} > \Lambda_{NL} = \Lambda_D > \Lambda_F \);
Case RRLL: \(\Lambda_{XR} > \Lambda_{NR} > \Lambda_{XL} > \Lambda_{NL} = \Lambda_D > \Lambda_F \);
Case LLRR: \(\Lambda_{XL} > \Lambda_{NL} > \Lambda_{XR} > \Lambda_{NR} = \Lambda_D > \Lambda_F \).

We consider a model without \(\Phi_{NL} \):
Case RLLD: \(\Lambda_{XR} > \Lambda_{XL} > \Lambda_{NL} > \Lambda_D > \Lambda_F \);
Case LRLD: \(\Lambda_{XL} > \Lambda_{XR} > \Lambda_{NL} > \Lambda_D > \Lambda_F \);
a model without \(\Phi_{NL} \):
Case RLRD: \(\Lambda_{XR} > \Lambda_{XL} > \Lambda_{NR} > \Lambda_D > \Lambda_F \);
Case LRRD: \(\Lambda_{XL} > \Lambda_{XR} > \Lambda_{NR} > \Lambda_D > \Lambda_F \);
and a model without \(\Phi_{NL} \) and \(\Phi_{NR} \):
Case RLD: \(\Lambda_{XR} > \Lambda_{XL} > \Lambda_D > \Lambda_F \);
Case LRD: \(\Lambda_{XL} > \Lambda_{XR} > \Lambda_D > \Lambda_F \).
In addition to these cases, we investigate the following cases, which lead to a model with pseudo-Dirac neutrino states which was pointed out by Bowes and Volkas [5]:

Case RLDN: \(\Lambda_{XR} > \Lambda_{XL} > \Lambda_D > \Lambda_F > \Lambda_{NR/NL} \);

Case LRDN: \(\Lambda_{XL} > \Lambda_{XR} > \Lambda_D > \Lambda_F > \Lambda_{NR/NL} \).

For each case, in a similar way to the case RLRL, we define the energy scale regions and parameters \(x_i \). The definitions for some typical cases are listed in Table 1. For the model without the scalars \(\Phi_{NL} \) and \(\Phi_{NR} \) (the cases RLD and LED) and the Bowes-Volkas model (the cases RLDN and LRDN), we define the ranges without the range 4 (the parameter \(x_4 \)). The definitions for the other cases which are not given in Table 1 can readily be read by the exchange \(L \leftrightarrow R \).

Each case is investigated for the cases of non-SUSY and SUSY. Here, the “SUSY” case means a minimal SUSY model, and for simplicity, we take the SUSY breaking energy scale \(\Lambda_{SUSY} \) as \(\Lambda_{SUSY} = \Lambda_L \) in the numerical estimates.

3 Mass matrix for the active neutrinos

Our interest is in the effective mass matrix \(M_L \) for the active neutrinos \(\nu_L \). For \(\Lambda_D \gg \Lambda_R \gg \Lambda_L \), the mass matrix (1.2) approximately leads to the mass matrix for the neutrinos \((\nu_L^c, \nu_R) \):

\[
M^{6 \times 6} \simeq -\begin{pmatrix} m_L M_{22}^{-1} m_L^T & m_L M_{12}^{-1} m_R \\ m_L^T M_{12}^{-1} m_R^T & m_R M_{11}^{-1} m_R \end{pmatrix},
\]

where

\[
\begin{pmatrix} M_{11}^{-1} & M_{12}^{-1} \\ M_{21}^{-1} & M_{22}^{-1} \end{pmatrix} = \begin{pmatrix} M_R & M_D \\ M_D^T & M_L \end{pmatrix}^{-1},
\]

\[
M_{11} = M_R - M_D M_L^{-1} M_D^T,
\]

\[
M_{22} = M_L - M_D^T M_R^{-1} M_D,
\]

\[
M_{12} = M_{21}^T = M_D^T - M_L M_D^{-1} M_R.
\]

The scenarios for neutrino masses and mixings are highly dependent on the structure of the intermediate mass scales \(\Lambda_{NL}, \Lambda_{NR}, \) and \(\Lambda_D \) relative to \(\Lambda_F \) (\(F \neq N \)), \(\Lambda_R \), and \(\Lambda_L \). In this section, let us review possible matrix forms of the effective mass matrix of the active neutrinos \(\nu_L \).
Case A: $M_L, M_R \geq M_D$

For the case $M_L, M_R \geq M_D$, the 6×6 matrix (3.1) becomes

$$M^{6 \times 6} \simeq \begin{pmatrix}
-m_L M_L^{-1} M_L^T & m_L M_L^{-1} M_D^T M_R^{-1} m_R \\
-m_R^T M_D^{-1} M_L m_L & -m_R^T M_D^{-1} m_R
\end{pmatrix}, \quad (3.4)$$

so that the approximate mass matrix $M(\nu_L)$ for the active neutrinos ν_L

$$M(\nu_L) \simeq -m_L M_L^{-1} m_L^T, \quad (3.5)$$

together with the mass matrix for the neutrinos ν_R

$$M(\nu_R) \simeq -m_R^T M_R^{-1} m_R. \quad (3.6)$$

The smallness of the neutrino masses is given by

$$m_\nu \sim \frac{\Lambda_L}{\Lambda_R} \cdot \frac{\Lambda_F}{\Lambda_{NL}} \cdot m_{e,q}. \quad (3.7)$$

For the case $M_R \gg M_L \sim M_D$, especially for the case $\Lambda_L^2/\Lambda_{NL} \sim \Lambda_R^2/\Lambda_{NR}$, we can build an interesting scenario, where the solar neutrino data [7], atmospheric neutrino data [8] and LSND data [9] are explained from a small mixing $\nu_{eL} \leftrightarrow \nu_{eR}$, a large mixing $\nu_{\mu L} \leftrightarrow \nu_{\tau L}$, and a small mixing $\nu_{\mu L} \leftrightarrow \nu_{eL}$, respectively. In order to realize the smallness of the neutrino masses, $m_\nu/m_{e,q} \sim 10^{-9}$, the constraint

$$\Lambda_{NL} \Lambda_{NR}/\Lambda_F^2 \sim 10^{18}, \quad (3.8)$$

is required.

Case B: $M_L, M_R \ll M_D$

For the case $M_R, M_L \ll M_D$, the matrix (3.1) leads to

$$M^{6 \times 6} \simeq \begin{pmatrix}
-m_L M_D^{-1} M_R M_D^T M_R^{-1} m_L & -m_L M_D^{-1} m_R \\
-m_R^T M_D^{-1} M_L m_L & -m_R^T M_D^{-1} m_R
\end{pmatrix}. \quad (3.9)$$

Since $(M^{6 \times 6})_{12} \gg (M^{6 \times 6})_{11(22)}$ because of $m_R \gg m_L$, the case leads to a model with the pseudo-Dirac neutrino states $\nu_{i\pm} \simeq (\nu_{Li} \pm \nu_{Ri})/\sqrt{2}$, whose masses are given by the order

$$m(\nu_{i\pm}) \sim \frac{\Lambda_L}{\Lambda_R} \cdot \frac{\Lambda_F}{\Lambda_D} \sim (\lambda_F/\Lambda_D) m_{e,q}. \quad (3.10)$$
This case has been discussed by Bowes and Volkas [5].

Case C: $M_R = 0$

For a model without Φ_{NR}, the matrix (3.1) leads to

$$M^{6\times6} \simeq \begin{pmatrix} 0 & -m_L M_D^{-1} m_R \\ -m_R M_D^{-1} m_L & m_R M_D^{-1} M_L M_D^{-1} m_R \end{pmatrix}.$$ \hspace{1cm} (3.11)

When $(\Lambda_R/\Lambda_L)(\Lambda_{NL}/\Lambda_D) \gg 1$, we again obtain the effective mass matrix (3.5) for the active neutrinos ν_L.

Case D: $M_L = 0$

For a model without Φ_{NL}, the matrix (3.1) leads to

$$M^{6\times6} \simeq \begin{pmatrix} m_L M_D^{-1} M_R M_D^{-1} m_L & -m_L M_D^{-1} m_R \\ -m_R M_D^{-1} m_L & 0 \end{pmatrix}.$$ \hspace{1cm} (3.12)

When $\Lambda_{NR}/\Lambda_D \ll \Lambda_R/\Lambda_L$, the case gives a model with pseudo-Dirac neutrinos whose masses are given by (3.10). When $\Lambda_{NR}/\Lambda_D \gg \Lambda_R/\Lambda_L$, the case gives

$$M(\nu_L) \simeq m_L M_D^{-1} M_R M_D^{-1} m_L.$$ \hspace{1cm} (3.13)

Thus, in order to obtain small values of the neutrino masses ($m_\nu/m_{e,q} \sim 10^{-9}$), we need to seek for a model with $(\Lambda_R/\Lambda_L)(\Lambda_{NR}/\Lambda_D) \sim 10^9$, i.e.,

$$x_1 + x_3 \sim 9.$$ \hspace{1cm} (3.14)

4 Evolution of the gauge coupling constants

For convenience, let us discuss on the case RLRL. The electric charge operator Q is given by

$$Q = I^L_3 + \frac{1}{2} Y, \quad \Lambda_L < \mu \leq \Lambda_R,$$ \hspace{1cm} (4.1)

$$\frac{1}{2} Y = I^R_3 + \frac{1}{2} Y_{LR}, \quad \Lambda_R < \mu \leq \Lambda_F,$$ \hspace{1cm} (4.2)

$$\frac{1}{2} Y_{LR} = \frac{1}{2} Y_L + \frac{1}{2} Y_R, \quad \Lambda_F < \mu \leq \Lambda_{NL}.$$ \hspace{1cm} (4.3)
\[
\frac{1}{2} Y_L = I_3^L + \sqrt{\frac{2}{3}} F_{15}^L, \quad \Lambda_{NL} < \mu \leq \Lambda_{XL}, \quad (4.4)
\]

\[
\frac{1}{2} Y_R = I_3^R + \sqrt{\frac{2}{3}} F_{15}^R, \quad \Lambda_{NR} < \mu \leq \Lambda_{XR}, \quad (4.5)
\]

where \(I_3^L, I_3^R, F_{15}^L \) and \(F_{15}^R \) are generators of SU(2)\(_L\), SU(2)\(_R\), SU(4)\(_L\) and SU(4)\(_R\), respectively. We denote the gauge coupling constants corresponding to the operators \(Q, Y, Y_{LR}, Y_L, Y_R, I^L, I^R, I^{\prime L}, I^{\prime R}, F^L \) and \(F^R \) as \(g_{em} \equiv e, g_1, g_{1LR}, g_{1L}, g_{1R}, g_{2L}, g_{2R}, g_{2L}', g_{2R}', g_{4L} \) and \(g_{4R} \), respectively. The boundary conditions for these gauge coupling constants at \(\mu = \Lambda_L, \mu = \Lambda_R, \mu = \Lambda_F, \mu = \Lambda_{NL}, \) and \(\mu = \Lambda_{NR} \) are as follows:

\[
\alpha_{em}^{-1}(\Lambda_L) = \alpha_{2L}^{-1}(\Lambda_L) + \frac{5}{3} \alpha_{1}^{-1}(\Lambda_L), \quad (4.6)
\]

\[
\frac{5}{3} \alpha_{1}^{-1}(\Lambda_R) = \alpha_{2R}^{-1}(\Lambda_R) + \frac{2}{3} \alpha_{1LR}^{-1}(\Lambda_R), \quad (4.7)
\]

\[
\frac{2}{3} \alpha_{1LR}^{-1}(\Lambda_F) = \frac{5}{3} \alpha_{1L}^{-1}(\Lambda_F) + \frac{5}{3} \alpha_{1R}^{-1}(\Lambda_F), \quad (4.8)
\]

\[
\frac{5}{3} \alpha_{1L}^{-1}(\Lambda_{NL}) = \alpha_{2L}^{-1}(\Lambda_{NL}) + \frac{2}{3} \alpha_{4L}^{-1}(\Lambda_{NL}), \quad (4.9)
\]

and

\[
\frac{5}{3} \alpha_{1R}^{-1}(\Lambda_{NR}) = \alpha_{2R}^{-1}(\Lambda_{NR}) + \frac{2}{3} \alpha_{4R}^{-1}(\Lambda_{NR}), \quad (4.10)
\]

respectively, correspondingly to Eqs. (4.1) - (4.5), where \(\alpha_i \equiv g_i^2 / 4\pi \). We also have the following boundary conditions at \(\mu = \Lambda_F, \mu = \Lambda_{NL}, \mu = \Lambda_{NR}, \mu = \Lambda_{XL} \) and \(\mu = \Lambda_{XR} \):

\[
\alpha_{3}^{-1}(\Lambda_F) = \alpha_{3L}^{-1}(\Lambda_F) + \alpha_{3R}^{-1}(\Lambda_F), \quad (4.11)
\]

\[
\alpha_{3L}^{-1}(\Lambda_{NL}) = \alpha_{4L}^{-1}(\Lambda_{NL}), \quad (4.12)
\]

\[
\alpha_{3R}^{-1}(\Lambda_{NR}) = \alpha_{4R}^{-1}(\Lambda_{NR}), \quad (4.13)
\]

\[
\alpha_{2L}^{-1}(\Lambda_{XL}) = \alpha_{2L}^{-1}(\Lambda_{XL}) = \alpha_{4L}^{-1}(\Lambda_{XL}), \quad (4.14)
\]

\[
\alpha_{2R}^{-1}(\Lambda_{XR}) = \alpha_{2R}^{-1}(\Lambda_{XR}) = \alpha_{4R}^{-1}(\Lambda_{XR}), \quad (4.15)
\]

The evolutions of the gauge coupling constants \(g_i \) at one-loop are given by the equations

\[
\frac{d}{dt} \alpha_i(\mu) = -\frac{1}{2\pi} b_i \alpha_i^2(\mu), \quad (4.16)
\]
where \(t = \ln \mu \).

For example, for the case RLRL, the coefficients \(b_i \) are calculated as follows. The quantum numbers of the fermions \(f \) and \(F \) are assigned as those in Table 2. Note that in the model with \(\det M_U = 0 \), the heavy fermions \(F_L \) and \(F_R \) except for \(U_{3L} \) and \(U_{3R} \) are decoupled for \(\mu \leq \Lambda_F \) and the fermions \(u_{3R} \) and \(U_{3L} \) are decoupled for \(\mu \leq \Lambda_R \). Components of the Higgs scalars \(\Phi_{NR}, \Phi_F \) and \(\phi_R \) which contribute to the coefficients \(b_iR \), for example, in the energy-scale range 6, are
\[[1; (1, 3, \overline{10}) + (3, 1, 10)], [\overline{16}; (1, 2, \overline{4})], \text{and } [1; (2, 2, 1)] \) of \(\text{SO}(10)_L \times [\text{SU}(2) \times \text{SU}(2)' \times \text{SU}(4)]_R \), respectively. In the range 5, those become
\[[(1, 1, 1); (1, 3, \overline{10}) + (3, 1, 10)], [(1, 2, \overline{4}); (1, 2, \overline{4})], \text{and } [(1, 1, 1); (2, 2, 1)] \) of \([\text{SU}(2) \times \text{SU}(2)' \times \text{SU}(4)]_L \times [\text{SU}(2) \times \text{SU}(2)' \times \text{SU}(4)]_R \), respectively. The results are listed in Table 3. The coefficients \(b_i \) for the other cases can be calculated in a similar way.

For the numerical study, we use the following input values \(\alpha_1 = 0.01683, \alpha_2 = 0.03349, \text{and } \alpha_3 = 0.1189 \) at \(\mu = m_Z \) instead of those at \(\mu = \Lambda_L \), and

\[
\frac{\Lambda_R}{\Lambda_F} = 0.02 \text{ , i.e., } x_2 = \log \frac{\Lambda_F}{\Lambda_R} = 1.70 \text{ , (4.17)}
\]

which was derived from the observed ratio \(m_c/m_t \) and the modified universal seesaw model \(\text{[2]} \) with the constraint \(\det M_U = 0 \). Since we have four constraint equations (4.14) and (4.15), four of the eight parameters \(x_1, x_3, x_4, x_5, x_6 \) and

\[
\alpha_1 = \alpha_{1R}^{-1}(\Lambda_F), \quad \alpha_2 = \alpha_{2R}^{-1}(\Lambda_R), \quad \alpha_3 = \alpha_{3R}^{-1}(\Lambda_F), \quad (4.18)
\]

are independent. (For the cases with \(x_4 = 0 \), the number of the independent parameters are three.) What is of great interest to us is whether we can give a reasonable order of the neutrino masses or not. Therefore, we evaluate the maximal value of \(x_3 \) under the constraints \(x_1 \geq 1, x_4 \geq 0, x_5 \geq 0, x_6 \geq 0, a_1 \geq 1, a_2 \geq 1 \) and \(a_3 \geq 1 \). If there is no solution with \((x_3)_{max} \geq 0 \), the case will be ruled out. Even if we have a solution with \((x_3)_{max} \geq 0 \), which means that there are the unification points \(\Lambda_{XL} \) and \(\Lambda_{XR} \) of the gauge coupling constants, it will be difficult to explain the smallness of the neutrino masses if the numerical results of \(x_1 + x_3 \) show \(x_1 + x_3 < 8 \).

5 Numerical results

The numerical study has been done for non-SUSY and SUSY cases with \(n_F = 1, 2, 3, 4 \) and \(n_\phi = 1, 2, \cdots, 6 \), where \(n_F \) and \(n_\phi \) are numbers of the Higgs scalars.
In all the non-SUSY cases with $\Lambda_{XR} > \Lambda_{XL}$, there is no solution with $(x_3)_{max} \geq 0$. Therefore, the cases are ruled out. For the non-SUSY case with $\Lambda_{XL} \geq \Lambda_{XR}$, except for the case LRD which gives $(x_3)_{max} < 0$, we can get positive values $(x_3)_{max} \geq 0$. However, the solutions with $(x_3)_{max} \geq 0$ are allowed only when $n_F = 1$ and $n_\phi \geq 5$. In Table 4, the values of $(x_3)_{max}$ and $(x_1)_{max}$ for the cases with $n_F = 1$ and $n_\phi = 6$ are demonstrated. As seen in Table 4, these cases cannot give large values of $(x_1)_{max}$ and/or $(x_3)_{max}$. Therefore, all the non-SUSY cases cannot explain the smallness of neutrino masses m_ν, so that they are ruled out. (A similar study for a non-SUSY case, but for a case with different Higgs scalars, has been done by the author [10]. In Ref. [10], in spite of his numerical result $x_1 \leq 6.1$ for a case with $\Lambda_L > \Lambda_R$, he concluded that the case cannot be ruled out, because the numerical results should not be taken rigidly. However, the discrepancy between 10^6 and 10^9 is too large to reconcile.)

In the SUSY cases, there are solutions with $(x_3)_{max} > 0$ for the cases $n_\phi \geq 3$, but they are allowed only when $x_4 = x_5 = x_6 = 0$ for the cases RLRL, RLLR, LRLR, LLRL, RLLD, LRLD, LRRD, LRRD, and only when $x_5 = x_6 = 0$ for the cases RLD, LRD, RLDN, LRDN. This means that $\Lambda_{XL} = \Lambda_{XR} = \Lambda_{NL} = \Lambda_{NR} = \Lambda_D$, and the symmetries SO(10)$_L \times$ SO(10)$_R$ are directly broken into the symmetries $[SU(2) \times U(1) \times SU(3)]_L \times [SU(2) \times U(1) \times SU(3)]_R$ neither via SU(4) nor SU(5). As seen in Table 4, the results are independent of the number of Φ_F, n_F, for the cases with $x_4 = x_5 = x_6 = 0$. All the cases RLRL, RLLR, · · ·, LRDN give the same numerical results for the cases with the same value of n_ϕ. The results are listed in Table 5. The value of $x_1 + x_3$ for the case $n_\phi = 3$ is somewhat large compared with a desirable value $x_1 + x_3 \sim 9$. If we take the numerical results rigidly, the case $n_\phi = 6$ is favorable to explain $m_\nu/m_{e,q} \sim 10^{-9}$.

Numerical results for a typical SUSY case with $n_\phi = 4$ is as follows: $x_1 = 11.66$, $x_3 = x_4 = x_5 = x_6 = 0$, i.e.,

$\Lambda_L = 0.912 \times 10^2 \text{ GeV} , \quad \Lambda_R = 4.17 \times 10^{13} \text{ GeV} , \quad \Lambda_F = \Lambda_X = 2.08 \times 10^{15} \text{ GeV} , \quad (5.1)$

$\alpha_{1R}^{-1}(\Lambda_F) = \alpha_{2R}^{-1}(\Lambda_F) = 2.41 , \quad \alpha_{3R}^{-1}(\Lambda_R) = 3.66 . \quad (5.2)$

Since the numerical results are same for all the cases RLRL, RLLR, · · ·, the simplest choice will be to consider a model without Majorana mass terms.
Conclusion

In conclusion, by using one-loop evolution equation for the gauge coupling constants, we have investigated possible intermediate mass scales Λ_R, Λ_F, Λ_D, Λ_{NL}, Λ_{NR}, and the unification scales Λ_{XL} and Λ_{XR} in the universal seesaw model with the gauge unification $\text{SO}(10)_L \times \text{SO}(10)_R$. The evolution has systematically been investigated for all the cases in which the symmetries $\text{SO}(10)_L \times \text{SO}(10)_R$ are broken into $[\text{SU}(2) \times U(1) \times \text{SU}(3)]_L \times [\text{SU}(2) \times U(1) \times \text{SU}(3)]_R$. We have evaluated the maximum values of $x_3 = \log(\Lambda_D/\Lambda_F)$ and $x_1 = \log(\Lambda_R/\Lambda_L)$, because in most cases, the neutrino masses are suppressed compared with the charged lepton and quark masses $m_{e,q}$ by the factor $10^{-(x_1+x_3)}$ as stated in Sec. 3.

We have found that all the cases cannot give a model with $\Lambda_D \gg \Lambda_F$, i.e., we obtain, at most, $(x_3)_{\text{max}} = 1.27$ for the SUSY model with $n_\phi = 6$. Therefore, models based on the cases B and D discussed in Sec. 3 are ruled out. The cases A and C and a model without Majorana mass terms are our possible choices.

The non-SUSY model with $\Lambda_{XR} > \Lambda_{XL}$ is also ruled out, because they cannot have the value $(x_3)_{\text{max}} \geq 0$. Although the non-SUSY model with $\Lambda_{XL} > \Lambda_{XR}$ can have the value $(x_3)_{\text{max}} \geq 0$, the values of x_1 and x_3 are not sufficiently large to explain the smallness of the neutrino masses.

In the SUSY cases, there are solutions with $(x_3)_{\text{max}} > 0$, but they are allowed only when $x_4 = x_5 = x_6 = 0$ and $n_\phi \geq 3$. The constraint $x_4 = x_5 = x_6 = 0$ means that the symmetries $\text{SO}(10)_L \times \text{SO}(10)_R$ are directly broken into the symmetries $[\text{SU}(2) \times U(1) \times \text{SU}(3)]_L \times [\text{SU}(2) \times U(1) \times \text{SU}(3)]_R$ neither via SU(4) nor SU(5).

The constraint $n_\phi \geq 3$ is somewhat unwilling, because the cases induce the flavor-changing neutral currents (FCNC). If we take the numerical results in Table 5 rigidly, the case with $n_\phi = 6$ (or $n_\phi = 7$) is favorable. However, the case with $n_\phi = 6$ will fatally bring the FCNC problem to us. If we postpone the FCNC problem to the future, the case with $n_\phi = 6$ ($n_\phi^{\text{up}} = 3$ and $n_\phi^{\text{down}} = 3$) is favorable, where n_ϕ^{up} and n_ϕ^{down} are the numbers of the SU(2) doublet Higgs scalars which couple with up- and down-quark sectors, respectively. Such a multi-Higgs model may play a role of the hierarchical mass structure within the family, i.e., (m_e, m_μ, m_τ) (for example, see Ref. [11]).

On the other hand, if we take the FCNC problem seriously, we must take the case with $n_\phi = 3$. For example, if we consider a case with $n_\phi^{\text{up}} = 2$ and $n_\phi^{\text{down}} = 1$, the FCNC appear only in the up-quark sector, so that the damage form the FCNC will be reduced a little. However, the case gives an over-suppression of the neutrino masses because of $x_1 + x_3 \sim 12$. If we want to take the case $n_\phi = 3$, the excuse for the over-suppression is as follows: the present numerical results should not be
taken too rigidly. (i) The results were obtained by using the one-loop evolution equation (4.16). The consideration of the higher order corrections may slightly change the numerical results. (ii) The constraint (3.14), i.e., \(m_\nu \sim 10^{x_1+x_3}m_{e,q} \), is obtained for the case that \(y_L \sim 1, y_R \sim 1 \) and \(y_F \sim 1 \), where the Yukawa coupling constants \(y_L, y_R \) and \(y_F \) are defined by \(m_L = y_L \Lambda_L, m_R = y_R \Lambda_R \) and \(M_F = y_F \Lambda_F \), respectively. For example, if we suppose the case that \(y_L \sim 1, y_R \sim 1 \) and \(y_F \sim 10^{-1} \), then the suppression can be reduced by a factor \(10^1 \). (iii) We have used the numerical constraint \(\Lambda_R/\Lambda_F = 0.02 \). The constraint came from the phenomenological study [2] of the quark masses based on the universal seesaw model. The value is model-dependent. [However, it is likely that the value of \(\Lambda_R/\Lambda_F \) is of the order of \(m_c/m_t \) (\(m_b/m_t \)) in the framework of the new universal seesaw model. Therefore, the numerical conclusion is still reliable as the order.] Thus, we cannot completely exclude the case with \(n_\phi = 3 \).

We conclude that when we intend to give a gauge unification of the universal seesaw model, the SUSY SO(10)\(_L\) × SO(10)\(_R\) mode is the most attractive one, where the symmetries are directly broken into \([SU(2) \times U(1) \times SU(3)]_L \times [SU(2) \times U(1) \times SU(3)]_R\) and the number of the weak doublet Higgs scalars is \(n_\phi \geq 3 \), although the case still remains problems. It is our next task to investigate whether the Yukawa coupling constants show reasonable behaviors under these symmetries or not.
Acknowledgments

The author would like to thank H. Fusaoka for valuable suggestion on the numerical estimates of $(x_3)_{\text{max}}$, T. Fukuyama for bringing the importance of the SO(10) 126 Higgs scalar to his attention, and M. Tanimoto and N. Okamura for their helpful comments on the evolution equations.

References

[1] Z. G. Berezhiani, Phys. Lett. 129B, 99 (1983); Phys. Lett. 150B, 177 (1985); D. Chang and R. N. Mohapatra, Phys. Rev. Lett. 58, 1600 (1987); A. Davidson and K. C. Wali, Phys. Rev. Lett. 59, 393 (1987); S. Rajpoot, Mod. Phys. Lett. A2, 307 (1987); Phys. Lett. 191B, 122 (1987); Phys. Rev. D36, 1479 (1987); K. B. Babu and R. N. Mohapatra, Phys. Rev. Lett. 62, 1079 (1989); Phys. Rev. D41, 1286 (1990); S. Ranfone, Phys. Rev. D42, 3819 (1990); A. Davidson, S. Ranfone and K. C. Wali, Phys. Rev. D41, 208 (1990); I. Sogami and T. Shinohara, Prog. Theor. Phys. 66, 1031 (1991); Phys. Rev. D47, 2905 (1993); Z. G. Berezhiani and R. Rattazzi, Phys. Lett. B279, 124 (1992); P. Cho, Phys. Rev. D48, 5331 (1993); A. Davidson, L. Michel, M. L, Sage and K. C. Wali, Phys. Rev. D49, 1378 (1994); W. A. Ponce, A. Zepeda and R. G. Lozano, Phys. Rev. D49, 4954 (1994).

[2] Y. Koide and H. Fusaoka, Z. Phys. C71, 459 (1996); Prog. Theor. Phys. 97, 459 (1997).

[3] T. Morozumi, T. Satou, M. N. Rebelo and M. Tanimoto, Phys. Lett. B410, 233 (1997).

[4] A. Davidson and K. C. Wali, in Ref. [1]; P. Cho, in Ref. [1].

[5] J. P. Bowes and R. R. Volkas, J. Phys. G24, 1249 (1998).

[6] Particle data group, Eur. Phys. J. C3, 1 (1998).

[7] GALLEX collaboration, P. Anselmann et al., Phys. Lett. B327, 377 (1994); B357, 237 (1995); SAGE collaboration, J. N. Abdurashitov et al., ibid. B328, 234 (1994); Super-Kamiokande collaboration, Y. Suzuki, in Neutrino 98; also see N. Hata and P. Langacker, Phys. Rev. D50, 632 (1994); D52, 420 (1995).

[8] Y. Fukuda et al., Phys. Lett. B335, 237 (1994); Super-Kamiokande collaboration, Y. Fukuda, et. al., Phys. Rev. Lett. 81, 1562 (1998). Also see, Soudan-2
Collaboration, M. Goodman et al., in *Neutrino 94*, Proceedings of the 16th International Conference on Neutrino Physics and Astrophysics, Eilat, Israel, edited by A. Dar et al. [Nucl. Phys. B (Proc. Suppl.) 38, 337 (1995)]; IBM Collaboration, D. Casper et al., Phys. Rev. Lett. 66, 2561 (1989); R. Becker-Szendy et al., Phys. Rev. D 46, 3729 (1989).

[9] C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1995); Phys. Rev. Lett. 77, 3082 (1996); [nucl-ex/9706006](http://arxiv.org/abs/nucl-ex/9706006) (1997).

[10] Y. Koide, Eur. Phys. J. C9, 335 (1999).

[11] Y. Koide, Phys. Rev. D60, 077301 (1999).
Table 1: Surviving symmetries in each energy-scale range and definition of the parameters \(x_i \) for typical cases. \(G_{224} \) and \(G_{123} \) denote \(G_{224} = SU(2) \times SU(2)’ \times SU(4) \) and \(G_{123} = U(1) \times SU(2) \times SU(3) \), respectively. For all cases, the symmetries in the ranges 1 and 2 are given by \(SU(2)_L \times U(1)_Y \times SU(3)_{LR} \) and \(SU(2)_L \times SU(2)_R \times U(1)_{LR} \times SU(3)_{LR} \), respectively, and the parameters \(x_1 \) and \(x_2 \) are defined by \(x_1 = \log(\Lambda_R/\Lambda_L) \) and \(x_2 = \log(\Lambda_F/\Lambda_R) \). For all cases, we can read \(x_3 \) as
\[x_3 = \log(\Lambda_D/\Lambda_F) \]

Case	Range 3	Range 4	Range 5	Range 6
LRLR	\((G_{123})_L \times (G_{123})_R\)	\((G_{123})_L \times (G_{224})_R\)	\((G_{224})_L \times (G_{224})_R\)	\((G_{224})_L \times SO(10)_R\)
	\(x_3 = \log(\Lambda_{NR}/\Lambda_F)\)	\(x_4 = \log(\Lambda_{NL}/\Lambda_{NR})\)	\(x_5 = \log(\Lambda_{XR}/\Lambda_{NL})\)	\(x_6 = \log(\Lambda_{XL}/\Lambda_{XR})\)
LLRR	\((G_{123})_L \times (G_{123})_R\)	\((G_{123})_L \times (G_{224})_R\)	\((G_{224})_L \times SO(10)_R\)	\((G_{224})_L \times SO(10)_R\)
	\(x_3 = \log(\Lambda_{NR}/\Lambda_F)\)	\(x_4 = \log(\Lambda_{XR}/\Lambda_{NR})\)	\(x_5 = \log(\Lambda_{NL}/\Lambda_{XR})\)	\(x_6 = \log(\Lambda_{XL}/\Lambda_{NL})\)
LRLD	\((G_{123})_L \times (G_{123})_R\)	\((G_{123})_L \times (G_{224})_R\)	\((G_{224})_L \times (G_{224})_R\)	\((G_{224})_L \times SO(10)_R\)
	\(x_3 = \log(\Lambda_{DL}/\Lambda_F)\)	\(x_4 = \log(\Lambda_{NL}/\Lambda_{DL})\)	\(x_5 = \log(\Lambda_{XR}/\Lambda_{NL})\)	\(x_6 = \log(\Lambda_{XL}/\Lambda_{XR})\)
LRRD	\((G_{123})_L \times (G_{123})_R\)	\((G_{224})_L \times (G_{123})_R\)	\((G_{224})_L \times (G_{224})_R\)	\((G_{224})_L \times SO(10)_R\)
	\(x_3 = \log(\Lambda_{DL}/\Lambda_F)\)	\(x_4 = \log(\Lambda_{NR}/\Lambda_{DL})\)	\(x_5 = \log(\Lambda_{XR}/\Lambda_{NR})\)	\(x_6 = \log(\Lambda_{XL}/\Lambda_{XR})\)
LRD	\((G_{123})_L \times (G_{123})_R\)	\((G_{224})_L \times (G_{224})_R\)	\((G_{224})_L \times SO(10)_R\)	\((G_{224})_L \times SO(10)_R\)
	\(x_3 = \log(\Lambda_{DL}/\Lambda_F)\)	\(x_4 = \log(\Lambda_{NR}/\Lambda_{DL})\)	\(x_5 = \log(\Lambda_{XR}/\Lambda_{DL})\)	\(x_6 = \log(\Lambda_{XL}/\Lambda_{XR})\)
LRDN	\((G_{123})_L \times (G_{123})_R\)	\((G_{224})_L \times (G_{224})_R\)	\((G_{224})_L \times SO(10)_R\)	\((G_{224})_L \times SO(10)_R\)
	\(x_3 = \log(\Lambda_{DL}/\Lambda_F)\)	\(x_5 = \log(\Lambda_{XR}/\Lambda_{DL})\)	\(x_6 = \log(\Lambda_{XL}/\Lambda_{XR})\)	

Table 2: Quantum numbers of the fermions \(f \) and \(F \) for \([SU(2) \times SU(2)’ \times SU(4)]_L \times [SU(2) \times SU(2)’ \times SU(4)]_R\).

	\(I_3^L \)	\(I_{1/3}^L \)	\(\sqrt{2}_F^L \)	\(I_3^R \)	\(I_{1/3}^R \)	\(\sqrt{2}_F^R \)
\(u_L \)	\(+1/2\)	\(+1/6\)	\(+1/3\)	\(+1/2\)	\(+1/6\)	\(+1/3\)
\(d_L \)	\(-1/2\)	\(-1/6\)	\(-1/3\)	\(-1/2\)	\(-1/6\)	\(-1/3\)
\(\nu_L \)	\(+1/2\)	\(+1/2\)	\(+1/3\)	\(+1/2\)	\(+1/2\)	\(+1/3\)
\(e_L \)	\(-1/2\)	\(-1/2\)	\(-1/3\)	\(-1/2\)	\(-1/2\)	\(-1/3\)
\(D_{cR} \)	\(-1/2\)	\(+1/6\)	\(-1/3\)	\(-1/2\)	\(+1/6\)	\(-1/3\)
\(U_{cR} \)	\(-1/2\)	\(-1/6\)	\(-1/3\)	\(-1/2\)	\(-1/6\)	\(-1/3\)
\(E_{cR} \)	\(-1/2\)	\(+1/2\)	\(+1/3\)	\(-1/2\)	\(+1/2\)	\(+1/3\)
\(N_{cR} \)	\(-1/2\)	\(+1/2\)	\(+1/3\)	\(-1/2\)	\(+1/2\)	\(+1/3\)
Table 3: Coefficients b_{iL} and b_{iR} of the gauge-coupling-constant renormalization group equations in the case RLRL. The coefficients b_i without the indices L or R, except for b_1 and b_3 in the regions 1 and 2, denote $b_i \equiv b_{iL} = b_{iR}$.

Range	Non-SUSY	SUSY	
Range 1			
$\Lambda_L < \mu \leq \Lambda_R$	$b_3 = 7$	$b_3 = -3$	$h_2 = n_\phi$
	$b_2 = \frac{10}{3} - \frac{1}{6}h_2$	$b_2 = -\frac{1}{2}h_2$	$h_1 = \frac{1}{2}n_\phi$
	$b_1 = -\left(4 + \frac{1}{5}h_1\right)$	$b_1 = -\left(6 + \frac{4}{5}h_1\right)$	
Range 2			
$\Lambda_R < \mu \leq \Lambda_F$	$b_3 = \frac{10}{3}$	$b_3 = 2$	$h_2 = n_\phi$
	$b_2 = \frac{10}{3} - \frac{1}{6}h_2$	$b_2 = -\frac{1}{2}h_2$	$h_1 = n_\phi$
	$b_1 = -\left(\frac{20}{3} + \frac{1}{2}h_1\right)$	$b_1 = -\left(10 + \frac{2}{5}h_1\right)$	
Range 3			
$\Lambda_F < \mu \leq \Lambda_{NL}$	$b_3 = \frac{7}{6}h_3$	$b_3 = 3 - \frac{1}{2}h_3$	$h_3 = 6$
	$b_2 = \frac{10}{3} - \frac{1}{6}h_2$	$b_2 = -\frac{1}{2}h_2$	$h_2 = n_\phi$
	$b_1 = -\left(4 + \frac{1}{5}h_1\right)$	$b_1 = -\left(6 + \frac{3}{5}h_1\right)$	$h_1 = \frac{21}{4} + \frac{1}{2}n_\phi$
Range 4			
$\Lambda_{NL} < \mu \leq \Lambda_{NR}$	$b_{4L} = \frac{33}{5} - \frac{1}{6}h_{4L}$	$b_{4L} = 6 - \frac{1}{2}h_{4L}$	$h_{4L} = 36 + 16$
	$b_{2L} = \frac{10}{3} - \frac{1}{6}h_{2L}$	$b_{2L} = -\frac{1}{2}h_{2L}$	$h_{2L} = 40 + 2n_\phi$
	$b_{3R} = \frac{10}{3} - \frac{1}{6}h_{3R}$	$b_{3R} = 3 - \frac{1}{2}h_{3R}$	$h_{3R} = 40 + 32 + 2n_\phi$
	$b_{2R} = \frac{10}{3} - \frac{1}{6}h_{2R}$	$b_{2R} = -\frac{1}{2}h_{2R}$	$h_{2R} = 16$
	$b_{1R} = -\left(4 + \frac{1}{5}h_{1R}\right)$	$b_{1R} = -\left(6 + \frac{3}{5}h_{1R}\right)$	$h_{1R} = \frac{43}{4} + \frac{1}{2}n_\phi$
Range 5			
$\Lambda_{NR} < \mu \leq \Lambda_{XL}$	$b_1 = \frac{32}{3} - \frac{1}{6}h_4$	$b_4 = 6 - \frac{1}{2}h_4$	$h_4 = 36 + 16n_F$
	$b_2 = \frac{10}{3} - \frac{1}{6}h_2$	$b_2 = -\frac{1}{2}h_2$	$h_2 = 40 + 2n_\phi$
	$b'_2 = \frac{10}{3} - \frac{1}{6}h'_2$	$b'_2 = -\frac{1}{2}h'_2$	$h'_2 = 40 + 32n_F + 2n_\phi$
Range 6			
$\Lambda_{XL} < \mu \leq \Lambda_{XR}$	$b_{4R} = \frac{32}{3} - \frac{1}{6}h_{4R}$	$b_{4R} = 6 - \frac{1}{2}h_{4R}$	$h_{4R} = 36 + 32n_F$
	$b_{2R} = \frac{10}{3} - \frac{1}{6}h_{2R}$	$b_{2R} = -\frac{1}{2}h_{2R}$	$h_{2R} = 40 + 2n_\phi$
	$b'_{2R} = \frac{10}{3} - \frac{1}{6}h'_{2R}$	$b'_{2R} = -\frac{1}{2}h'_{2R}$	$h'_{2R} = 40 + 64n_F + 2n_\phi$
Table 4: Maximal values of $x_3 = \log(\Lambda_D/\Lambda_F)$ and $x_1 = \log(\Lambda_R/\Lambda_L)$ in the non-SUSY cases with $n_F = 1$ and $n_\phi = 6$.

Case	$(x_3)_{\text{max}}$ at x_1	$(x_1)_{\text{max}}$ at x_3
LRLR	+0.642	1.00
LRRL	+0.642	1.00
LLRR	+0.301	1.00
LRLD	+0.647	1.00
LRRD	+0.628	1.00
LRD	−0.049	1.00
LRDN	+0.642	1.00

Table 5: Maximal values of $x_3 = \log(\Lambda_D/\Lambda_F)$ and $x_1 = \log(\Lambda_R/\Lambda_L)$ in the SUSY cases with $n_\phi = 3, 4, 6$.

n_ϕ	$(x_3)_{\text{max}}$ at x_1	$(x_1)_{\text{max}}$ at x_3	$x_1 + x_3$
3	+0.063	+12.38	$12.38 \geq x_1 + x_3 \geq 12.33$
4	+0.570	+11.66	$11.66 \geq x_1 + x_3 \geq 11.23$
6	+1.269	+10.41	$10.41 \geq x_1 + x_3 \geq 9.43$