Irradiation therapy is used in combination with chemotherapy to treat head and neck cancers. These cancers have been known to rapidly develop, especially those of the tongue, salivary glands, and hypopharynx (2, 3). In comparison to other malignant diseases, head and neck cancers have a higher prevalence because they involve soft and hard structures of that area, including the oral cavity (1). Inadequate saliva production can lea...
and low pH, and due to reduced likelihood to ensure a normal microflora in human mouth. It has been confirmed that irradiation can result in possible degradation of hard dental tissues, and this is the reason for rapid growth of decay in treated patients (6). A reduced amount of saliva and enlarged plaque generation lead to periodontal diseases, resulting in premature tooth loss; therefore it essential to provide correct tooth brushing techniques (7,8). An ever-increasing number of studies are focused on the effects of irradiation on hard dental tissues, with specific focus on potential changes in microhardness and microstructure of teeth (9, 10), but all-conquering evaluations of direct irradiation on hard tissues are deficient. Dose amount also plays a significant role. Low tooth breakage appears beneath 30 Gy irradiation; increasing with doses larger than 60 Gy which is a consequence of hyposalivation (11). The amounts exceeding 60 Gy resulted in reduced surface hardiness, modification in elasticity and increased likelihood of hard tissue breakage (12, 13). Finally, head and neck irradiation procedures can lead to potential tooth tissues damage rising with the amount of the entire received irradiation. (11).

Patients suffering from malignant diseases of head and neck need to be warned about potential side effects and need for adequate professional dental procedures. More often dental checkups are advised, with proper oral hygiene in combination with use of topical fluorinated pastes, gels or varnishes. (14-16). Therefore, it is also very important for our patients to examine the effect of irradiation on enamel and dentin and to develop good treatment plans in order to impede potential formations of early cervical caries. Providing better oral health and examining the role of hard tissue damage and formation of radiation caries or enamel and dentin erosion on vestibular and occlusal part as the consequence of irradiation therapy should be one of the main goals.

The objective of the study was to investigate the effects of direct irradiation on surface hardness and roughness of human enamel and dentin. The null hypotheses were: I) there will not be any differences in points of surface hardness and roughness between the teeth without irradiation effects and the teeth subjected to irradiation (II) there will not be any distinctions between various irradiation protocols in point of surface hardness and roughness.

Material and methods

Specimen preparation

Twenty fresh, intact third molars were used in this study. Teeth were cleansed and conserved in 1% chloramine dilution. The application of extracted molars was authorized by the Ethics Committee of the School of Dental Medicine, University of Zagreb and University Hospital Centre Zagreb, Croatia. The roots were removed from the coronal portion with a precise diamond saw (Isomet, Buehler Düsseldorf, Germany) around 2 mm beneath the enamel-cement connection. Coronal parts were kept in distilled water at 4°C. After the coronal parts had been cleansed, they were built in transparent acrylate (AcryFix Kit; Struers, Balerrup, Denmark). Prior to slicing of the coronal parts in halves the specific microflora in human mouth. It has been confirmed that irradiation can result in possible degradation of hard dental tissues, and this is the reason for rapid growth of decay in treated patients (6). A reduced amount of saliva and enlarged plaque generation lead to periodontal diseases, resulting in premature tooth loss; therefore it essential to provide correct tooth brushing techniques (7,8). An ever-increasing number of studies are focused on the effects of irradiation on hard dental tissues, with specific focus on potential changes in microhardness and microstructure of teeth (9, 10), but all-conquering evaluations of direct irradiation on hard tissues are deficient. Dose amount also plays a significant role. Low tooth breakage appears beneath 30 Gy irradiation; increasing with doses larger than 60 Gy which is a consequence of hyposalivation (11). The amounts exceeding 60 Gy resulted in reduced surface hardiness, modification in elasticity and increased likelihood of hard tissue breakage (12, 13). Finally, head and neck irradiation procedures can lead to potential tooth tissues damage rising with the amount of the entire received irradiation. (11).

Patients suffering from malignant diseases of head and neck need to be warned about potential side effects and need for adequate professional dental procedures. More often dental checkups are advised, with proper oral hygiene in combination with use of topical fluorinated pastes, gels or varnishes. (14-16). Therefore, it is also very important for our patients to examine the effect of irradiation on enamel and dentin and to develop good treatment plans in order to impede potential formations of early cervical caries. Providing better oral health and examining the role of hard tissue damage and formation of radiation caries or enamel and dentin erosion on vestibular and occlusal part as the consequence of irradiation therapy should be one of the main goals.

The objective of the study was to investigate the effects of direct irradiation on surface hardness and roughness of human enamel and dentin. The null hypotheses were: I) there will not be any differences in points of surface hardness and roughness between the teeth without irradiation effects and the teeth subjected to irradiation (II) there will not be any distinctions between various irradiation protocols in point of surface hardness and roughness.

Material and methods

Specimen preparation

Twenty fresh, intact third molars were used in this study. Teeth were cleansed and conserved in 1% chloramine dilution. The application of extracted molars was authorized by the Ethics Committee of the School of Dental Medicine, University of Zagreb and University Hospital Centre Zagreb, Croatia. The roots were removed from the coronal portion with a precise diamond saw (Isomet, Buehler Düsseldorf, Germany) around 2 mm beneath the enamel-cement connection. Coronal parts were kept in distilled water at 4°C. After the coronal parts had been cleansed, they were built in transparent acrylate (AcryFix Kit; Struers, Balerrup, Denmark). Prior to slicing of the coronal parts in halves the specific microflora in human mouth. It has been confirmed that irradiation can result in possible degradation of hard dental tissues, and this is the reason for rapid growth of decay in treated patients (6). A reduced amount of saliva and enlarged plaque generation lead to periodontal diseases, resulting in premature tooth loss; therefore it essential to provide correct tooth brushing techniques (7,8). An ever-increasing number of studies are focused on the effects of irradiation on hard dental tissues, with specific focus on potential changes in microhardness and microstructure of teeth (9, 10), but all-conquering evaluations of direct irradiation on hard tissues are deficient. Dose amount also plays a significant role. Low tooth breakage appears beneath 30 Gy irradiation; increasing with doses larger than 60 Gy which is a consequence of hyposalivation (11). The amounts exceeding 60 Gy resulted in reduced surface hardiness, modification in elasticity and increased likelihood of hard tissue breakage (12, 13). Finally, head and neck irradiation procedures can lead to potential tooth tissues damage rising with the amount of the entire received irradiation. (11).

Patients suffering from malignant diseases of head and neck need to be warned about potential side effects and need for adequate professional dental procedures. More often dental checkups are advised, with proper oral hygiene in combination with use of topical fluorinated pastes, gels or varnishes. (14-16). Therefore, it is also very important for our patients to examine the effect of irradiation on enamel and dentin and to develop good treatment plans in order to impede potential formations of early cervical caries. Providing better oral health and examining the role of hard tissue damage and formation of radiation caries or enamel and dentin erosion on vestibular and occlusal part as the consequence of irradiation therapy should be one of the main goals.

The objective of the study was to investigate the effects of direct irradiation on surface hardness and roughness of human enamel and dentin. The null hypotheses were: I) there will not be any differences in points of surface hardness and roughness between the teeth without irradiation effects and the teeth subjected to irradiation (II) there will not be any distinctions between various irradiation protocols in point of surface hardness and roughness.
imens were randomly sorted out to irradiation procedure and control groups by applying a lottery model. Each crown half (n=40), served for concurrent enamel and dentin surface hardness and roughness measurements as the surface was flat, and both hard tissues were free of acrylic resin. Group one (1) (n=20) was subjected to usual irradiation procedure (2 Gy for 35 days), group two (2) (n=20) was subjected to single proba-
tionary exposition of 70 Gy. Each specimen served as its own control. (Figure 1). Specimens were kept in distilled water at 37 °C (Domel Incubator, Domel d.o.o., Zelezniki, Slovenia) amongst two metering.

To measure both enamel and dentin surface hardness and roughness, coronal parts were built in transparent ac-
crylate with the buccal or palatal surfaces oriented upwards, collateral with stand and without any resin on top. Speci-
mens of the buccal or palatal surfaces were finely furbished with discs (Water Proof Silicon Carbide Paper, 4000 grits; Buehler, Dusseldorf, Germany) and 1.0 μm, 0.3 and 0.05 μm professional polishing silicon granules (Buehler, Dussel-
dorf, Germany). The polishing procedure was carried out using polishing appliance (Minitech 250, Presi, France). After that, samples were washed in distilled water.

Irradiation protocol

After initial microhardness and surface roughness testing, the samples were positioned on a little vitreous pad (Thermo Scientific, Portsmouth, NH, USA) with adhesive wax (Kefo, skupinama primjenom modela lutrije. Svaka polovina kruni-
ce (n = 40) služila je za istodobna mjerenja tvrdoće i hrapavo-
sti površine cakline i dentina jer je površina bila ravn, a oba
tvrd cviva nis na sebi imala akrilatnu smolu. Prva skupina
(1) (n = 20) bila je podvrgnuta uobičajenom postupku zrače-
nja (2 Gy tijekom 35 dana), a druga (2) je bila (n = 20) pod-
vrgnuta jednom pokusnom, eksperimentalnom zračenju od
70 greja. Svaki je uzorak služio kao vlastita kontrola (slika 1.).
Uzori su između dvaju mjerenja bili pohranjeni u destilira-
noj vodi na temperaturi od 37 °C (Domel inkubator, Domel
d.o.o., Zelezniki, Slovenija).

Za mjerenje tvrdoće i hrapavosti površine cakline i dentina, koronarni dijelovi zuba uloženi su u prozirni akrilat s bu-
kalnim ili palatalnim površinama okrenutima prema gore, paralelnima s postoljem i bez akrilata na površini. Uzori bu-
kalne ili palatalne površine bili su polirani finim diskovi-
ma (vodootporni papir od silicijeva karbida, 4000 granula-
cia; Bühler, Düsseldorf, Njemačka) i 1,0 μm, 0,3 i 0,05 μm
profesionalnim silikonskim granulama za poliranje (Bühler,
Düsseldorf). Postupak poliranja obavljen je uređajem za po-
liranje (Minitech 250, Presi, Francuska). Nakon toga uzorci
su isprani u destiliranoj vodi.

Postupak zračenja

Nakon početnoga ispitivanja mikrotvrdoće i hrapavo-
sti površine, uzori su postavljeni na malo stakleno postol-
je (Thermo Scientific, Portsmouth, NH, SAD) s ljeplјivim

![Figure 1](#)
Figure 1 Preparation of teeth samples and measurements methods.
Slika 1. Priprema uzoraka zuba i metode mjerenja
Sisak, Croatia) and located with the buccal surface upward. For conversion of head and neck irradiation protocol, samples in group 1 were irradiated with 2 Gy doses, per 5 days during one week. This procedure was repeated for 7 weeks in total to accumulate 70 Gy (frequent oral cancer dosage). Throughout the weekend time specimens were not exposed to irradiation (17). Prepared specimens in group 2 were subject to single probationary exposition of 70 Gy. Irradiation procedure was done at Department of Oncology, University Hospital Centre Zagreb with a linear accelerator Siemens Primus (Siemens Healthineers AG, Erlangen, Germany). 6 MV irradiation ray was applied with SSD (source to surface distance) of 100 cm. Two cm of construction material was put over and beneath specimens to provide satisfying beam dissipation. The control specimens were stored in distilled water with no irradiation. After different irradiation exposition protocols had been used, coronal samples were washed with distilled water.

Surface hardness measurements

The microhardness of hard tissues in groups 1 and 2 was evaluated at the beginning (initial), and upon completion of the irradiation procedure. Measuring was provided by Vickers microhardness testing machine (ESI Prüftechnik GmbH, Wendlingen, Germany). A pyramidal shaped diamond peak was applied on specimen surface using pressure of 100 g during 10 s. Vickers measurements (VHN) were performed at three various parts on both hard tissues: superficial part, middle, and inner part (with 50 μm interspace) and mean Vickers hardness values were calculated. Microhardness test was done prior to and upon irradiation so that every specimen served as its own control.

Surface roughness measurements

Surface roughness (μm) of hard tissues in groups 1 and 2 were evaluated at the beginning (initial), and upon completion of irradiation procedure using transferable superficial roughness testing machine (Mitutoyo Surftest SJ-210 Series 178, Houston, USA) set at a 0.25 mm cut-off, and 0.2 mm/s speed. Evaluations were done at three different parts and average roughness worth was calculated. Roughness test was done prior to evaluation and beyond irradiation so that every specimen served as its own control.

Statistical analysis

The average changes in surface hardness and roughness after different treatments were compared by t-test for independent samples. In all experimental groups, the data met the assumption of normality. Normality was tested by the Shapiro-Wilk test and by review of asymmetry and roundness indicators. In case of inhomogeneity of variance between experimental groups, the Cochran test was used instead of the standard t-test. The average change in microhardness or roughness after irradiation compared to the initial measurement was compared by t-test for dependent samples. If the values divergent significant from the standard division, the Wilcoxon Signed Rank test was used instead of the t-test. Data were evaluated at a significate degree of 0.05. Evaluation was made using SAS System program (SAS Institute Inc., North Carolina, USA).

voskom (Keo, Sisak, Hrvatska) and usmjereni bukalnom površinom prema gore. Za provedbu protokola zračenja glave i vrata, uzorci u skupini 1 izloženi su 5 dana tijekom jednog tjedna dozi od 2 greja. Taj se postupak ponavljao ukupno 7 tjedana kako bi se akumuliralo 70 greja (standardni postupak zračenja kod karcinoma glave i vrata). Tijekom vikendana uzorci nisu bili zračeni. Pripremljeni uzorci u skupini 2 podvrgnuti su jednoj eksperimentalnoj dozi zračenja od 70 greja. Postupak je proveden na Odjelu za onkologiju KBC-a Zagreb linearnim acceleratorom Siemens Primus (Siemens Healthineers AG, Erlangen, Njemačka). Zraka zračenja od 6 MV primijenjena je SSD-om (od izvora do površine) od 100 cm. Dva centimetra konstrukcijskoga materijala postavljeno je iznad uzoraka i ispod njih da bi se osigurala zadovoljavajuća disipacija snopa zračenja. Kontrolni uzorci pohranjeni su u destiliranoj vodi bez zračenja. Nakon izlaganja različitim protokolima zračenja, uzorci su isprani destiliranom vodom.

Mjerenje površinske tvrdoće

Mikrotvrdoća tvrdih tkiva u skupinama 1 i 2 mjeren je na početku (početna) i završetku postupka zračenja. Mjere-nje je obavljeno uređajem za ispitivanje mikrotvrdoće Vickers (ESI Prüftechnik GmbH, Wendlingen, Njemačka). Dio-mantni vrh piramidalnog oblika utisnuo se u površinu uzor-ka pritiskom od 100 grama tijekom 10 sekunda. Vrijednosti Vickersove mikrotvrdoće (VHN) mjerene su na trima različitim dijelovima na oba tvrda tkiva: površinskom, srednjim i unutarnjim dijelom (s međuprostorom od 50 μm) i izračunate su srednje vrijednosti Vickersove tvrdoće. Mikrotvrdoća je ispitivana prije zračenja i poslije toga postupka tako da je svaki uzorak služio kao vlastita kontrola.

Mjerenje površinske hrapavosti

Površinska hrapavost (μm) tvrdih tkiva u skupinama 1 i 2 procijenjena je na početku (početno) i poslije završetka postupka zračenja, prijenosnim strojem za ispitivanje površinske hrapavosti (Mitutoyo Surf test SJ-210 Series 178, Houston, SAD) koji je postavljen na vrijednosti od 0,25 mm cut-off, i brzinu od 0,2 mm/s. Mjerenja su obavljena na trima različitim dijelovima i izračunate je prosječna vrijednost hrapavosti. Hrapavost je ispitivana prije zračenja i poslije toga postupka tako da je svaki uzorak služio kao vlastita kontrola.

Statistička analiza

Prospečne promjene površinske tvrdoće i hrapavosti nakon različitih tretmana uspoređene su t-testom za nezavisne uzorke. U svim eksperimentalnim skupinama ispunjena je pretpostavka o približno normalnoj raspodjeli podataka. Normalnost je testirana Shapiro-Wilkovim testom. U slučaju nehomogenosti varijance između eksperimentalnih skupina, umjesto standardnoga t-testa korišten je Cochranov test. Prosječna promjena mikrotvrdoće ili hrapavosti nakon zračenja, u usporedbi s početnim mjerenjem, uspoređena je s t-testom za zavisne uzorke. Ako su se vrijednosti značajno razlikovale od standardne podjele, umjesto t-testa korišten je Wilcoxon Signed Rank test. Podatci su procijenjeni signifikantnim stupnjem od 0,05. Procjena je obavljena u programu SAS System (SAS Institute Inc., Ševerna Karolina, SAD).
Results

After both, the usual irradiation procedure (2 Gy for 35 days), or one single probationary exposition of 70 Gy, there was a statistically significant decrease in the mean surface hardness of both hard dental tissues (<0.001) (Table 1). The alteration in surface hardness of enamel after radiation exposition did not vary significantly in terms of irradiation type and dosage (p=0.867). The change in dentin surface hardness after irradiation did not vary statistically significantly in terms of irradiation type and dosage (p=0.461). The change in surface hardness after usual irradiation procedure did not differ significantly between enamel and dentin (p=0.491). The alteration in surface hardness after single probationary exposition of 70 Gy did not differ significantly between the enamel and dentin (p=0.798) (Figure 2-5).

After both, the usual irradiation procedure (2 Gy for 35 days), and/or one single probationary exposition of 70 Gy, there was a statistically significant increase in the mean surface roughness of both hard dental tissues (<0.001) (Table 2). The alteration in enamel roughness after radiation exposition did not vary significantly in terms of irradiation type and dosage (p=0.282). The change in dentin roughness did not differ significantly with respect to irradiation type (p=0.462). The change in roughness after usual irradiation procedure did not differ significantly between the enamel and dentin (p=0.485). The change in roughness after one single probationary exposition of 70 Gy did not differ significantly between the enamel and dentin (p=0.081) (Figure 6-9).

Rezultati

Nakon oba uobičajena postupka ozračivanja (2 Gy tijekom 35 dana), ili jedne eksperimentalne ekspozicije od 70 greja, statistički je značajno smanjenja srednja površinska tvrdoća obaju tvrdih zubnih tkiva (< 0.001) (tablica 1.). Promjena površinske tvrdoće cakline nakon izlaganja zračenja nije značajno varirala kad je riječ o vrsti zračenja i dozi (p = 0.867). Promjena tvrdoće površine dentina nakon ozračivanja nije se statistički značajno razlikovala s obzirom na vrstu zračenja i dozu (p = 0.461). Promjena površinske tvrdoće nakon uobičajenog postupka zračenja nije se značajno razlikovala između cakline i dentina (p = 0.491). Promjena površinske tvrdoće nakon jednokratnoga eksperimentalnog zračenja od 70 greja nije se značajno razlikovala između cakline i dentina (p = 0.798) (slike 2 – 5).

Nakon oba uobičajena postupka ozračivanja (2 Gy tijekom 35 dana) ili jedne eksperimentalne ekspozicije od 70 greja, statistički se značajno povećala srednja hrapavost površine obaju tvrdih zubnih tkiva (< 0.001) (tablica 2.). Promjena hrapavosti cakline nakon izlaganja zračenju nije značajno varirala u odnosu prema vrsti zračenja i dozi (p = 0.282). Promjena hrapavosti dentina nije se značajno razlikovala s obzirom na vrstu zračenja (p = 0.462). Promjena hrapavosti nakon uobičajenog postupka zračenja nije se značajno razlikovala između cakline i dentina (p = 0.485). Promjena hrapavosti nakon jednokratnoga eksperimentalnog zračenja od 70 greja nije se značajno razlikovala između cakline i dentina (p = 0.081) (slike 6 – 9).

Table 1
The change in microhardness (VHN) after irradiation compared to the initial measurement (the observed variable is base – irradiation).

Tissue • Područje	Treatment • Tretman	n	Mean • Prosjek	Std	Median • Medijan	1. quartile • 1. kvartil	3. quartile • 3. kvartil	p-value • p-vrijednost*
Enamel • Caklina	70 Gy • Jako zračenje	20	11.4	7.0	11.4	6.7	16.2	< 0.001
Dentin	70 Gy • Jako zračenje	20	11.0	7.5	10.8	5.5	15.4	< 0.001
Enamel • Caklina	2x35 Gy • Slabo zračenje	20	11.2	6.4	11.1	6.7	14.0	< 0.001
Dentin	2x35 Gy • Slabo zračenje	20	12.2	7.3	10.8	7.8	15.9	< 0.001

*P-value t-test for dependent samples • P – vrijednost t-testa za zavisne uzorke

Table 2
The change in surface roughness (µm) after irradiation in relation to the initial measurement (the observed variable is base – irradiation).

Tissue • Područje	Treatment • Tretman	n	Mean • Prosjek	Std	Median • Medijan	1. quartile • 1. kvartil	3. quartile • 3. kvartil	p-value • p-vrijednost*
Enamel • Caklina	70 Gy • Jako zračenje	20	-0.11	0.08	-0.10	-0.15	-0.04	< 0.001
Dentin	70 Gy • Jako zračenje	20	-0.07	0.06	-0.09	-0.11	-0.02	< 0.001
Enamel • Caklina	2x35 Gy • Slabo zračenje	20	-0.09	0.07	-0.09	-0.12	-0.04	< 0.001
Dentin	2x35 Gy • Slabo zračenje	20	-0.07	0.05	-0.10	-0.10	-0.07	< 0.001

*P-value t-test for dependent samples • P – vrijednost t-testa za zavisne uzorke

1 Due to deviations from the normal distribution, the Wilcoxon Signed Rank test was used. • Zbog odstupanja od normalne distribucije korišten je Wilcoxonov Signed Rank test
Protokol radioterapije na površinskoj strukturi tvrdoga zubnog tkiva

Figure 2 Box plot diagrams of enamel microhardness (VHN) distribution for standard irradiation
Figure 3 Box plot diagrams of dentin microhardness (VHN) distribution for standard irradiation
Figure 4 Box plot diagrams of enamel microhardness (VHN) distribution for experimental irradiation
Figure 5 Box plot diagrams of dentin microhardness (VHN) distribution for experimental irradiation
Figure 6 Box plot diagrams of enamel surface roughness (µm) distribution for standard irradiation
Figure 7 Box plot diagrams of dentin surface roughness (µm) distribution for standard irradiation
Figure 8 Box plot diagrams of enamel surface roughness (µm) distribution for experimental irradiation
Figure 9 Box plot diagrams of dentin surface roughness (µm) distribution for experimental irradiation

Slika 2. Dijagrami raspodjele mikrotvrdoće cakline (VHN) za standardno zračenje
Slika 3. Box plot dijagrami raspodjele mikrotvrdoće dentina (VHN) za standardno zračenje
Slika 4. Box plot dijagrami raspodjele mikrotvrdoće cakline (VHN) za eksperimentalno zračenje
Slika 5. Box plot dijagrami raspodjele mikrotvrdoće dentina (VHN) za eksperimentalno zračenje
Slika 6. Dijagrami raspodjele hravosti površine cakline (µm) za standardno zračenje
Slika 7. Dijagrami raspodjele hravosti površine dentina (µm) za standardno zračenje
Slika 8. Dijagrami raspodjele hravosti površine cakline (µm) za eksperimentalno zračenje
Slika 9. Dijagrami raspodjele hravosti površine dentina (µm) za eksperimentalno zračenje
Discussion

Head and neck malignant diseases are fairly common these days, with over 550,000 cases diagnosed each year throughout the world. At present, it is the seventh most prevalent cancer, as well as the seventh most common cause of cancer-related mortality (18). For head and neck irradiation, high-energy radioactive elements and particle accelerators are now commonly used. They work either directly by inducing the breaking of DNA strands or indirectly by producing the tissue necrosis. It can be used as a last-resort treatment following surgery, with or without chemotherapy. Radiation to these specific areas can harm healthy adjacent tissues such as bones, mucosa, dental tissue, and salivation glands, which are not adequately protected. Furthermore, the head and neck architecture is complex, and all systems, including digestive, respiratory, masticatory, and endocrine, are contained inside a very compact space. Modern oncology recommends employing “standard fractionation,” which consists of a total of 65 to 72 Gy of high-energy irradiation divided into 1.8 to 2 Gy daily fractions (treatment series). These fractions are delivered over the period of seven weeks, five days every week (19, 20). Because of the accurate irradiation beam, normal tissue is not excessively bombarded, and toxicity is reduced, while greater doses are administered to tumors without sacrificing control rates (21).

Radiation in the head and neck area can cause changes in crystal structure, increased enamel meltability, decreased microhardness, and radiation-related caries, among other things (16). The results of this study either show that ionizing radiation can cause a dose-dependent increase or a decrease in dental hard tissues microhardness. De Siqueira Mellara et al. (22) found that accumulative dosage of 60 Gy resulted in the superior surface hardness values when compared to enamel without irradiation effect, which was in contrast to previous studies which had found that either the surface hardness of irradiated enamel is lower in position than that of non-irradiated (23), which is similar to our findings, or that there is no alteration in surface hardness as a role of irradiation (24, 25). Lu et al. (26) reported a decrease in surface hardness after exposition to 30 Gy, but it showed that when the dose was close to 60 Gy, the breakdown was even worse, which is similar to previous findings which revealed that exposition to 30 Gy arose in lowering surface microhardness and elastic modality of enamel near the dentin-enamel binding but without alteration in the middle of enamel or dentin after exposition to 60 Gy (27, 28). Impaired microhardness and modulus of elasticity at the dentin-enamel binding may limit tooth distortion throughout mastication (28), potentially resulting in enamel pilling a several weeks after irradiation (29).

When compared to the non-exposed group, irradiation with 60 Gy induced a drop in microhardness of enamel and dentin, as well as declines in structural components (30). A number of other studies have documented potential changes following direct induced radiation, such as an enhancement in surface hardness of hard tooth structures (26,27), as well as a decrease (31,32) in cumulative microhardness of enamel and dentin after this specific area irradiation protocol. Goncalves et al. (33) found that total cumulative radiation dose of 60 Gy resulted in a decrease (31, 32) in cumulative microhardness of enamel and dentin within one week after the irradiation. De Siqueira Mellara et al. (22) found that 4 days of 60 Gy induced a decrease in microhardness of enamel and dentin after this specific area irradiation protocol. Goncalves et al. (33) found that total cumulative radiation dose of 60 Gy resulted in a decrease (31, 32) in cumulative microhardness of enamel and dentin within one week after the irradiation.

Rasprava

Zloćudne bolesti glave i vrata su dosta česte – sva ke godine dlijem svijeta dijagnosticira se više od 550 000 slučajeva. Trenutačno su sedmi najčešći oblik raka te sedmi najčešći uzrok smrti od raka (18). Za zračenje glave i vrata danas se obično koriste viskoenergijski radioaktivni elementi i akceleratori čestica. Djeluju ili izravno lomeći lanac DNK ili ne izravno proizvodeći nukrovu tkivu. Zračenje se provodi kao posljednja mjera nakon operacije, s kometerapijom ili bez nje. Zračenje tih specifičnih područja može ošteti zdrava su sjedna tkiva kao što su kosti, služnica, zubno tkivo i salivarne žlijezde koje nisu adekvatno zaštićene. Nadalje, struktura glave i vrata je zložena, a sot vlasti, uključujući probavni, dišni, žvačni i endokrini, nalaze se unutar vrlo kompaktnog prosto ra. Moderna onkologija preporučuje korištenje “standardnog frakcioniranja” koje se sastoji od 65 do 72 grega visokoenergijskoga zračenja podijeljenih u dnevne frakcije od 1,8 do 2 grega (serija tretmana). Te se doze primjenjuju sedam tjedana – pet dana tijekom tjedna (19, 20). Zbog preciznoga snopa zračenja normalno tkivo nije toliko bombardirano, a toksičnost je smanjena. Veće doze određuju se za tumore bez smanjivanja ukupne doze (21).

Zračenje u području glave i vrata može, između ostalog, prouzročiti promjene u kristalnoj strukturi, povećano topljivost caklina, smanjenu mikrotvrdoću caklina i nanove doze zračenja, smanjujući kontrolne račune (21). Značajna je neodoljivost zračenja (16). Rezultati ovog istraživanja pokazuju da ionizirajuće zračenje može povećati ili smanjiti mikrotvrdoću tvari tvari zbog zračenja (24, 25). Lu i suradnici (26) iskazali su o smanjenju površinske mikrotvrdoće nakon izlaganja zračenom već od 30 grega, ali kada je doz bila blizu 60 grega oštećenje je bilo veće. Sauklinogenija je smanjena, a smanjena je površinska mikrotvrdoća cakline i dentina, dok se nisu smanjeni vrijednosti gradivnih komponenti (30). U mnogobrojnim studijama ima saznanja o smanjenju površinske mikrotvrdoće i elastičnosti modula cakline. Lu i suradnici (26) iskazali su o smanjenju površinske mikrotvrdoće nakon izlaganja zračenom već od 30 grega. Narašćena mikrotvrdoća i modul elastičnosti na spoju dentina i caklina mogu ograničiti distorziju, zbog tijekom žvakanja i potencijalno rezultirati odlanjanjem cakline nekoliko tjedana nakon zračenja (29). U usporedbi sa neeksponiranim skupinom, zračenje od 60 grega smanjilo je mikrotvrdoću cakline i dentina, a smanjenje je ujedno smanjeno vrijednosti gradivnih komponenti (30). U mnogobrojnim studijama ima saznanja o smanjenju površinske mikrotvrdoće i elastičnosti modula cakline.
et al. (27), for example, found a reduction in enamel micro-hardness in exterior layers up to 30 Gy accumulative dosages, but there was an augmentation with higher doses. After accumulative irradiation dosages of 10, 30, 40, 50, and 60 Gy, micro-hardness in the midsection of enamel did not differ significantly from non-exposed enamel, but micro-hardness in lower layers of enamel did not alter. When compared to non-exposed dentin, dentin microhardness reduced after 10, 20, 30, and 60 Gy accumulative irradiation doses. This finding was opposite to ours where the change in microhardness of hard dental tissues after radiation did not result in significant difference in comparison to radiation tenacity, meaning that higher irradiation dosage did not end with more alteration. After both, conventional irradiation protocol (2 Gy for 35 days) or powerful, exploratory dose of 70 Gy there was a significant reduction in the mean microhardness of both dental tissues with no distinction to irradiation tenacity, hence the first null hypothesis that there is no distinction in ways of microhardness between the non-exposed teeth was consequently rejected, while the second hypothesis that there is no distinction between the various irradiation proceedings was completely accepted. Gülşüm et al. (28) reported that surface hardness of enamel reduced (from top to inner structures) with augmentation of radiation dosage up to 60 Gy and other papers reported a reduction in upper layers of dentin structural hardness (33-35) which is later elucidated with more water composition inside of dentin (10%), occultation of dentin tubuli, destruction of collagen layer and stronger potential of free radicals disengaged post radiation (36), which can be compared to our findings where both irradiation protocols led to reduction in the mean microhardness of hard tissues, while their surface roughness enlarged significantly. Rodríguez et al. (37) reported that accumulative irradiation of 30 and 60 Gy resulted in no surface changes, especially in the prism construction, but the space between the prisms is bigger with the augmentation of the irradiation dosage. Prism composition of irradiated enamel stayed unchanged irrespective to irradiation dosages. A small structural alteration was noted in the space between the prisms after 30 Gy irradiation dosages. Dentin of non-exposed teeth resulted in well-formed dentin tubuli and collagen layer but with enhanced superficial structure change in post irradiation period using 30 and 60 Gy (37). Our study reported that stronger higher irradiation dose could lead to severe damage, and can be result of intense radiation outcome, which can affect the structure of enamel and dentin. This was also reported in findings by Ferraz et al. (38) who stated that lower saliva flow, which can be affected with radiation, had lower ability for remineralization of enamel in comparison to regular flow. Previous investigations reported that the radiation therapy in a number of smaller doses is used to evade the negative change in saliva excretion or damage of adjacent structures dealing with dose cumulation (39), hence our experiment of applying one strong dose of 70 Gy, which is not clinically authorized, showed that the number of severe destructions of hard dental tissues was smaller than in cases when more cumulated dosages are applied; however, it is not yet recommended for application to living patients. Scientific reports dealing with tvrdca in središnjem dijelu cakline nije se značajno razlikovala od neeksporirane cakline, ali se mikrotvrdča u donjim slojevima cakline nije mijenjala. U usporedbi s neeksporiranim dentinom, mikrotvrdča dentina smanjena je nakon kumulativnih doza zračenja od 10, 20, 30, 50 i 60 greja. Taj je nalaz bio suprotna našemu u kojem promjena mikrotvrdčе tvrdih zubnih tkiva nakon zračenja nije rezultirala značajnim razlikom u odnosu prema vrsti i količini zračenja, što znači da veća doza zračenja nije završila sa većim promjenama. Nakon obaju koncepcionih protokola zračenja (2 Gy tjekom 35 dana) ali nizne, eksperimentalne, jednokratne doze od 70 greja, dogodilo se značajno smanjenje srednje mikrotvrdče obaju zubnih tkiva bez ovisnosti o vrsti zračenja, pa se prva nulta hipoteza da nema razlike u mikrotvrdči između ozračenih i neozračenih zuba posljedično odbacuje, a druga hipoteza da nema razlike između različitih postupaka zračenja potpuno se prihvaća. Gülşüm i suradnici (28) usta-novili su da se površinska tvrdča cakline smanjuje (od vrha prema unutarnjim strukturama) s povećanjem doze zračenja do 60 greja, a u drugim radovima navodi se smanjenje u gornjim slojevima strukturne tvrdča dentina (33 – 35), što se poslije objašnjava većom količinom vode unutar denti na (10 %), začeplenjušću dentinskih tubulusa, destrukcijom kolagenskoga sloja i jačim potencijalom oslobađanja slobodnih radikala nakon zračenja (36). To se može usporediti s našim nalazima u kojima su oba protokola zračenja rezultirala smanjenjem srednje mikrotvrdčе tvrdih tkiva, dok je njihova površinska hrapavost značajno povećana. Rodríguez i su-radnici (37) izvijestili su da kumulativno zračenje od 30 i 60 greja nije rezultiralo promjenom površine, posebno u izgledu caklinskih prizmi, ali je prostor između njih postao veći s povećanjem doze zračenja. Sastav prizme ozračene cakline ostao je nepromijenjen bez obzira na doze zračenja. Mala struktur na promjena zabilježena je u prostoru između prizma nakon doze zračenja od 30 greja. Dentin neeksporiranih zuba rezul- tiraо je dobrom oblikovanim dentinskih tubulusa i slojem kolagenata, ali s pojava promjenom površinske strukture u razdoblju poslije zračenja primjenom 30 i 60 greja (37). Na- ša studija pokazala je da veće doze zračenja mogu prouzročiti teška oštećenja i mogu biti rezultat intenzivnog ishoda zračenja koje može utjecati na strukturu cakline i dentina, što je također navedeno u nalazu Ferraza i suradnika (38) – oni su zabilježili da manji protok sline na koji se može utjecati zračenjem ima i manje svojstvo remineralizacije cakline u odnosu prema normalnom protoku. Dosadašnja istraživanja pokazala su da radioterapija u nekoliko manjih doza ne potiče negativne promjene u izlučivanju sline ili oštećenju susjednih struktura (39) pa je naš eksperiment s primjenom jedne jakosti doze od 70 greja, koji nije bio klinički odobren, potvrdio da nema daljnjeg uništavanja tvrdoga zubnog tkiva osim ako se primjenjuju veće kumulirane doze, no još se uvijek ne može koristiti na živim pacijentima. Znanstvena izvješća koja su bave jednom eksperimentalnom dozom od 70 greja linearnom akceleratorskom jedinicom nisu česti predmet istraživanja, ali mogu se usporediti s radom Piocha i suradnika (40) koji nisu upotrijebili frakcioniranu dozu, nego jednu dozu od 70 greja, ali s izvorom kobalta-60 i zabilježili su blaga oštećenja na spoju cakline i dentina.
one experimental dose of 70 Gy by linear accelerator unit are not frequent in previous papers, apart from one paper by Ploch et al. (40) who did not use fractionated dose. One dose of 70 Gy was used with cobalt-60-source, and transience in the part of the dentin-enamel constriction was observed.

Nowadays, linear accelerator for radiotherapy is beneficial, mostly for 360° rotation, thus allowing the tissue to accumulate only relevant to specific treatment, while the adjacent soft and hard structures and organs are at smaller jeopardy (41). Despite its benefits, this procedure is rather costly, and it is not the preferred option in all nations. Even with the use of this approach and distributed dosages, the hard dental tissues are closer to the referred region in clinical practice, and exposition of hard dental structures cannot be evaded (9).

When assessing changes in surface hardness and roughness of hard tooth structures after radiotherapy, measuring methods can have an influence on final outcomes. Since dry surroundings can affect the mechanical characteristics of tooth sample which is connected to dehydration and can result in reduced surface hardness, one of the main consequences is humidity of the tissue during experimental measuring (41). Between measurements, the dental samples were kept in deionized water in our investigation. Other investigations have found that radiotherapy on sterilized extracted teeth, showed no substantial changes in the mechanical qualities or chemical composition of hard tissues (42, 43). Differences in storage type and duration of tooth specimens can have an impact on surface hardness values (44, 45), as well as which part of the tooth sample served for measuring (46). Finally, one of the most important reasons for microhardness data difference is the variation across teeth of different patients, even within the same sample (47, 48).

Different approaches, such as scanning electron microscopy or surface roughness, can be used to determine the surface structure. There was a statistically significant increase in the average surface roughness of all hard tissues after both, the usual radiotherapy procedure and one dose of 70 Gy, which resulted in rejecting the first hypothesis which stated that there is no difference in surface roughness between the non-exposed and the irradiated teeth. The change in hard tissues roughness after radiotherapy was not significantly different in terms of irradiation tenacity, therefore, the second hypothesis claiming that there were no differences between various radiotherapy procedures of surface roughness was accepted. Our findings could not be easily compared to other studies since there is the lack of other studies dealing with surface roughness following irradiation of these specific hard tissues. Based on the results, we can only assume that both irradiation techniques damage the surface by increasing roughness. Few SEM studies dealing with irradiation effect obtained similar results which can be partially compared to our findings related to surface roughness. Gülsüm et al. (28) reported that the when irradiation dosage enhances, some amorphous formations can be created on the upper layers of hard dental tissues leading to superficial fissures on the irradiated enamel surfaces, while de Siqueira Mellara et al. (22) observed a gradual deterioration of enamel and dentin structure connected to en-
larged irradiation dosage. Using three distinct radiation doses (20, 40, and 70 Gy), had no different effect on cervical, middle, and occlusal part of enamel without any morphological or mineral alteration (33).

Our findings were based on extracted teeth in laboratory conditions and the main purpose was to find the difference between various radiotherapy solutions on hard dental tissues. Due to in vitro study restrictions, an important conclusion can be drawn: direct irradiation can result in possible destruction of enamel and dentin with reduction in surface hardness and enlarged roughness irrespective of the irradiation technique. This study has some drawbacks. The position of enamel buds and crystals, as well as the position of dentin tubuli, determine the mechanical qualities of hard dental tissues. Teeth are more likely to be exposed to smaller values of irradiation in the mouth during the real in vitro radiotherapy treatment than in the tentative laboratory setting. On the basis of this study and other research, we are still a long way from reaching a consensus about the optimal clinical approach, potential materials for restoration of hard dental tissues and strategies for people who may face a number of complications in the future. In order to obtain a better understanding of direct effects of irradiation on teeth and adjacent soft tissues, further in-vivo studies are needed.

Conclusions

This paper has confirmed the fact that, despite various irradiation procedures, direct effects of radiotherapy can result in possible breakdown of hard dental structures. Bearing in mind the potential limitations (no saliva, extraoral conditions, extracted teeth, etc.), but in compliance with aforementioned studies, a particular concern should be taken about hard and soft oral tissues after standard irradiation protocol of head and neck radiotherapy. Various conclusions in the abovementioned studies point out that there is not a concise piece of information in the area of irradiation and hard dental structures, and that further studies dealing with possible remineralization processes and different requirements are needed.

Conflict of interest

No conflict of interest

Acknowledgements

This study was supported by Grant of University of Zagreb, year 2020/2021.

Author’s contribution: E.K.S. – scientific and intellectual contribution; A.T. – scientific and intellectual contribution; J.K. – scientific and intellectual contribution; M.S. – scientific contribution; T.G. – scientific contribution.

Naši su se nalazili temeljili na podatcima dobivenima na ekstrahiranim zubima u laboratorijskim uvjetima, a glavna svrha bila je uočiti razliku između različitih radioterapijskih postupaka na tvrdim zubnim tkivima. Zbog ograničenja ove studije in vitro mogu se zaključiti dvije važne stvari – izravno zračenje može oštetiti caklinu i dentin, uz smanjenje površinske tvrdoće i povećanu hrapavost neovisno o vrsti zračenja. No ova studija ima i velike nedostatke. Za zube će vjerojatno biti utvrđene manje vrijednosti zračenja u ustima tijekom stvarne radiotherapie in vivo, nego u laboratorijskim uvjetima. Na temelju ovoga i drugih istraživanja još smo daleko od dogovora o optimalnom kliničkom pristupu, potencijalnim materijalima za restauraciju tvrdih zubnih tkiva i strategijama za ljude koji bi se mogli suočiti s nizom komplikacija kao posljedicama radiotherapie glave i vrata. Za daljnje razumijevanje izravnih učinaka zračenja na zube i susjedna meka tkiva, potrebne su studije in vivo.

Zaključak

U ovome radu istaknuto je da izravan učinak radioterapije može rezultirati oštećenjem tvrdih zubnih struktura, nevezano o kojemu načinu zračenja je riječ. Prema ovim rezultatima i imajući na umu potencijalna ograničenja studije (nekorištenje sline, ekstraoralno mjerenje, izvađeni zubi i sl.), ali u skladu s prije navedenim studijama, nakon standar-dnoga protokola zračenja radiotherapie glave i vrata treba uzeti u obzir pojavu mogućih oštećenja tvrdih zubnih struktura i okolnih mekih tkiva. Različiti zaključci u navedenim rado-vima ističu da nema evidentnih i konzistentnih informacija i zaključaka u području zračenja i tvrdih zubnih struktura te da su za daljnja istraživanja nužne slične studije koje se bave mogućim utjecajem različitih postupaka remineralizacije na tvrda zubna tkiva.

Sukob interesa

Nije bilo sukoba interesa.

Zahvala

Ovo istraživanje obavljeno je zahvaljujući stipendiji Sveučilišta u Zagrebu za mala istraživanja (godina 2020./2021.).

Doprinos autora: E. K. S. – znanstveni i intelektualni doprinos; N. A. – znanstveni i intelektualni doprinos; J. K. – znanstveni i intelektualni doprinos; M. S. – znanstveno doprinos; T. G. – znanstveni doprinos. Svi autori autorizirali su završni rad.
Izvornik: Klaric Sever et al.

Zaprimljen: 22. kolovoza 2021.

Sazetak

Uvod: Radiotherapija se primjenjuje u liječenju neoplazmijskih lezija, a uobičajene nuspojave u tom postupku su otekle i osjetljivost slijepacne površine u području zračenja, smanjeno izločavanje slije- ne-karijes, parodontalna bolest i smanjena kvaliteta života. Svrsu ovog istraživanja bila je procijeniti učinak izravnoga zračenja na fizičke i površinske karakteristike tvrdih Zubnih tkiva. Materiaj i metode: Istraživanje je provedeno na 20 trećih kutnjaka bez karijesa. Prije primjene različitih protokola zračenja, polovine zuba raspoređene su u ispitni i kontrolni skupini metodom nasumičnog izvlačenja. Na obojima skupinama (n = 20) bila je izložena jednoj, eksperimentalnoj dozi od 70 greja, uz smanjenu prosječnu mikrotvrdoću i povećanu prosječnu hrapavost (p < 0,001) obnaju tvrdih Zubnih tkiva. Mikrotvrdoća i hrapavost površine cakline i dentina nisu se značajno razlikovale s obzirom na različite protokole zračenja. Zaključak: Standardni protokol zračenja greja, i vrata može ošte- titi caklinu i dentin, uz smanjenu mikrotvrdoću i povećanu hrapavost površine bez obzi na korište- ni protokol zračenja.

Zaključak: Standardni protokol zračenja greja i vrata može oštetiti caklinu i dentin, uz smanjenu mikrotvrdoću i povećanu hrapavost površine bez obzi na korišteni protokol zračenja.

References

1. Argris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008 May 17;371(9625):1695-709.
2. Suh JD, Cho JH. Trends in head and neck cancer in South Korea between 1999 and 2012. Clin Exp Otorhinolaryngol. 2016 Sep;9(3):263-9.
3. Fabric D, Seiberth S, Baraba A, Vučičević Boras V. Mandibular Osteonecrosis due to the Pulpal-PeriodONTAL Syndrome: a Case Report and Review of the Literature. Acta Stomatol Croat. 2017 Mar;51(1):65-71.
4. Specht L. Oral complications in the head and neck radiation patient. Introduction and scope of the problem. Support Care Cancer. 2002 Jan;10(1):36-9.
5. Kelly C, Paleri V, Downs C, Shah R. Deterioration in quality of life and depressive symptoms during radiation therapy for head and neck cancer. Otolaryngol Head Neck Surg. 2007 Jan;136(1):108-11.
6. Vissink A, Jansma J, Spijkervet F, Burlage FR, Coppes RP. Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003;14(3):199-212.
7. Kilbassa AM, Hinkelbein W, Hellwig E, Meyer-Lückel H. Radiation-related damage to dentition. Lancet Oncol. 2006 Apr;7(4):326-35.
8. Jansma J, Spijkervet F, Burlage FR, Coppes RP. Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003;14(3):199-212.
9. Lieshout HF, Bots CP. The effect of radiotherapy on dental hard tissue—a systematic review. Clin Oral Investig. 2014 Jan;18(1):17-24.
10. de Siqueira MT, Palma-Dibb RG, de Oliveira HF, Garcia Paula-Silva FW, Nelson-Filho P, da Silva RA, da Silva LA, de Queiroz AM. The effect of radiation therapy on the mechanical and morphological properties of the enamel and dentin of deciduous teeth—an in vitro study. Radiat Oncol. 2014 Jan 22;9:30.
11. Walker MP, Wichman B, Cheng A-L, Coster J, Williams KB. Impact of radiation therapy on the mechanical and mineral composition of dental enamel of permanent and deciduous teeth—an in vitro study. Oral Radiol. 2014 Jan;10(1):5.
12. Joyston-Bechal S. The effect of X-radiation on the susceptibility of enamel to an artificial caries-like attack in vitro. J Dent. 1985 Mar;13(1):41-4.
13. de Menezes Oliveira MA, Torres CP, Gomes-Silva JM. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microsc Res Tech. 2010 May;73(5):572-7.
14. Lu H, Zhao Q, Guo J, Zeng B, Yu X, Yu D, et al. Direct radiation-induced effects on dental hard tissue. Radiat Oncol. 2019 Jan 11;14(1):5.
15. Gonçalves LM, Palma-Dibb RG, Oliveira HF, Nelson-Filho P, da Silva RA, da Silva LA, Queiroz AM. The effect of radiation therapy on the mechanical and morphological properties of the enamel and dentin of deciduous teeth—an in vitro study. Radiat Oncol. 2014 Jan 22;9:30.
16. Poyton HG. The effects of radiation on teeth. Oral Surg Oral Med Oral Pathol. 1968 Nov;26(5):639-46.
17. Joyston-Bechal S. The effect of X-radiation on the sensitivity of enamel to an artificial caries-like attack in vitro. J Dent. 1983 May;13(1):41-4.
18. Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017 Apr 1;3(4):524-548.
19. Reed R, Xu C, Liu Y, Gorski JP, Wang Y. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol. 2015 May;60(3):690-7.
20. Reed R, Xu C, Liu Y, Gorski JP, Wang Y. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol. 2015 Mar;60(3):30-37.
21. Reed R, Xu C, Liu Y, Gorski JP, Wang Y. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol. 2015 May;60(5):690-7.
22. Reed R, Xu C, Liu Y, Gorski JP, Wang Y. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol. 2015 May;60(5):690-7.
23. Reed R, Xu C, Liu Y, Gorski JP, Wang Y. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol. 2015 May;60(5):690-7.
24. Reed R, Xu C, Liu Y, Gorski JP, Wang Y. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol. 2015 May;60(5):690-7.
25. Reed R, Xu C, Liu Y, Gorski JP, Wang Y. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol. 2015 May;60(5):690-7.
26. Reed R, Xu C, Liu Y, Gorski JP, Wang Y. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol. 2015 May;60(5):690-7.
32. Franzel W, Gerlach R. The irradiation action on human dental tissue by Xrays and electrons - a nanoindenter s also. Z Med Phys. 2009;19(1):5-10.
33. Qing P, Huang S, Gao S, Qian L, Yu H. Effect of gamma irradiation on the wear behavior of human tooth enamel. Sci Rep. 2015 Jun 23;5:11568.
34. de Barros da Cunha SR, Fonseca FP, Ramos P, Haddad CMK, Fregnani ER, Aranha ACC. Effects of different radiation doses on the microhardness, superficial morphology, and mineral components of human enamel. Arch Oral Biol. 2017 Aug;80:130-135.
35. Kielbassa AM, Munz I, Bruggmoser G, Schulte-Monting J. Effect of demineralization and remineralization on microhardness of irradiated dentin. J Clin Dent. 2002;13(3):104-10.
36. Wu L, Geng K, Gao Q. Effects of different anti-caries agents on microhardness and superficial microstructure of irradiated permanent dentin: an in vitro study. BMC Oral Health. 2019 Jun 14;19(1):113.
37. Kielbassa AM, Wrbas KT, Schulte-Mönting J, Hellwig E. Correlation of transversal microradiography and microhardness on in situ induced demineralization in irradiated and non-irradiated human enamel. Arch Oral Biol. 1999 Mar;44(3):243-51.
38. Rodríguez-Martínez J, Valiente M, Sánchez-Martín M-I. 2019. Tooth whitening: from the established treatments to novel approaches to prevent side effects. JERD. 2019;31(5):431–40.
39. Ferraz LN, Isabele V, Giáucia M, Ambrosano B 3, Lopes M, Alves D. Effect of tooth bleaching and application of different dentifrices on enamel properties under normal and hyposalivation conditions: an in situ study. Clin Oral Investig. 2021 Oct;25(10):5929-5944.
40. Hoebers F, Yu E, Eisbruch A, Thorstad W, O’Sullivan B, Dawson LA, Hope A. A pragmatic contouring guideline for salivary gland structures in head and neck radiation oncology: the MOIST target. Am J Clin Oncol. 2013 Feb;36(1):70-6.
41. Pioch T, Golfels D, Staehle HJ. An experimental study of the stability of irradiated teeth in the region of the dentinoenamel junction. Endod Dent Traumatol. 1992 Dec;8(6):241-4.
42. Lewis G, Nyman JS. The use of nanoindentation for characterizing the properties of mineralized hard tissues: state-of-the-art review. J Biomed Mater Res B Appl Biomater. 2008 Oct;87(1):286-301.
43. Brauer DS, Saeki K, Hilton JF, Marshall GW, Marshall SJ. Effect of sterilization by gamma radiation on nano-mechanical properties of teeth. Dent Mater 2008;24(8):1137–40.
44. Gellrich NC, Schramm A, Bockmann R, Kugler J. Follow-up in patients with oral cancer. J Oral Maxillofac Surg. 2002 Apr;60(4):380-6; discussion 387-8.
45. Park S, Wang DH, Zhang D, Romberg D, Arola D. Mechanical properties of human enamel as a function of age and location in the tooth. J Mater Sci Mater Med. 2008 Jun;19(6):2317-24.