Liquid Biopsy: The Unique Test for Chasing the Genetics of Solid Tumors

Seyed Mohammad Kazem Aghamir1, Ramin Heshmat2, Mehdi Ebrahimi3 and Fatemeh Khatami1

1Urology Research Center (URC), Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran. 2Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. 3Department of Internal Medicine, Faculty of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran Iran.

ABSTRACT: Blood test is a kind of liquid biopsy that checks cancer cells or cancer nucleic acids circulating freely from cells in the blood. A liquid biopsy may be used to distinguish cancer at early stages and it could be a game-changer for both cancer diagnosis and prognosis strategies. Liquid biopsy tests consider several tumor components, such as DNA, RNA, proteins, and the tiny vesicles originating from tumor cells. Actually, liquid biopsy signifies the genetic alterations of tumors through nucleic acids or cells in various body fluids, including blood, urine, cerebrospinal fluid, or saliva in a noninvasive manner. In this review, we present an overall description of liquid biopsy in which circulating tumor cells, cell-free nucleic acids, exosomes, and extrachromosomal circular DNA are included.

KEYWORDS: Liquid biopsy, cell-free nucleic acids (cfNAs), circulating tumor cells (CTCs), exosomes

Introduction

Cancer is a major worldwide health problem that originates from abnormal and uncontrolled cell division and can eventually spread into other tissues.1 In the past, it was wrongly thought that tumor genes and cells are only present in the exact tumor site. In 1896, the suggestion that circulating tumor cells (CTCs) are a major requirement to metastasis was first proposed by an Australian pathologist, Thomas Ashworth.2 The presence of cell-free DNA (cfDNA) was reported in human plasma by Mandel and Metals in 1948.3 Unfortunately, the concept of liquid biopsy was totally ignored till 1977, when researchers made the novel discovery that cancer patients carried cell-free nucleic acids (cfNAs) and cells in their peripheral blood.4

The exact word of “liquid biopsy” is classically applied for cfDNA and CTCs, but its component can be more. In fact it is a diagnostic molecular test to run on a sample of plasma to discover cancer cells that are shedding from primary or metastatic tumors that are circulating in the blood or DNA fragments of tumor cells.5 Tissue biopsy is a snapshot of tumor and cannot cover tumor heterogeneity.6 Liquid biopsy can be beneficial for early diagnosis of cancer or to examine the treatment efficacy, and because of its noninvasive nature, several samplings of blood over time are possible.7-9

In this review, we explain the molecular importance of the CTCs, cfNAs, and exosomes as the main component of liquid biopsy, in addition to the extrachromosomal circular DNA (eccDNA) as a possible component of liquid biopsy (Figure 1).

Advantages of Liquid Biopsy

In the field of cancer management, there are some problematic issues concerning the early diagnosis, prognosis, and prediction of treatment resistance.10-12 Tumor heterogeneity brings a lot of difficulties for clinicians and stand in the way of cancer treatment.13 The molecular genetics profile of a tumor changes over time and standard tissue biopsies are able to represent an overall view of the tumor.14-16 Moreover, tissue biopsy is an invasive procedure and so is not easily repeatable considering the cost and the risk factors.17 Traditionally, routine histological evaluation and immunohistochemical study have an essential role in several aspects of diagnosis in both neoplastic and non-neoplastic disorders.

Currently, liquid biopsy, as a real-time representative of tumor, is a minimally invasive biopsy method which has been studied by scientists and oncologists over the past decades.9,18,19 The purpose of liquid biopsy is to identify and examine the biological material circulating in body fluid, originating within and from the tumor.20-21 Several research works have defined certain benefits of molecular information about primary tumors by using liquid biopsies and compared the result of liquid biopsy with tumor biopsy.22-30 There are controversies that liquid biopsy can take the place of tissue biopsy or will support “gold standard” tissue biopsies. According to Miro Venturi, Roche’s global head of diagnostics biomarkers, “Liquid biopsies could be a game-changer in cancer testing.” In fact, the minimally invasive nature of liquid biopsy brings a new insight for malignancy checking without delay, expenses, and risks, possibly at a microscopic stage, before the radiological tests.31

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

© The Author(s) 2020

Type: Review

Funding: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Corresponding Author: Fatemeh Khatami, Urology Research Center (URC), Sina Hospital, Tehran University of Medical Sciences, Hassan Abad Sq., Imam Khomeini St., Tehran, Iran. Email: f-khatami@alumnus.tums.ac.ir
Liquid biopsy promises early detection of cancer because of its potential for detecting a classically incurable malignancy at an earlier, more curable, and even curable stage. The use of circulating tumor DNA (ctDNA) genetic changes within blood test has extraordinary applications for the period of cancer treatment, with dynamic monitoring of therapy response, quick detection of resistance, and foretelling the tumor recurrence ahead of clinical relapse.

Circulating Tumor Cells
Circulating tumor cells are tumor cells that are driven from the primary tumor and are released into the blood vessels or lymphatic vessels. The existence of CTCs in the blood of metastatic prostate cancer patients was reported by Thomas Ashworth, an Australian physician, in 1869. Metastasis is the most challenging process of tumor and the key cause of cancer-associated death (9 of 10 deaths). The "seed and soil" hypothesis described that tumor invasion—the intrinsic characteristics of the tumor cells (seeds) and host microenvironment (soil)—are the central elements of the place of tumor development. Watanabe in 1954 by injecting bronchogenic carcinoma cells of mice showed that the CTCs can be the key role players in metastasis. It was shown that the metastases development, to some extent, depends on the size and quantity of the CTC clusters. The CTCs are highly heterogeneous, and several types of CTCs are suggested, which are given below:

Traditional CTCs: The hallmark of these cells is having large and irregular shapes, with an intact, viable nucleus; they express cytokeratins with epithelial origin and not hematopoietic origin (they do not have CD45). Cytokeratin-negative (CK−) CTCs: These types of CTCs are cancer stem cells passing through the epithelial-mesenchymal transition steps and forming the cytokeratin-negative CTCs. They can be opposed to treatment and is the most potential one to invade and form metastasis because they do not have cytokeratins and CD45. Apoptotic CTCs: These are the traditional CTCs that undergo apoptosis. They are distinguishable with nuclear fragmentation or cytoplasmic blubbing associated with cell death. The proportion of apoptotic CTCs compared with the traditional CTCs can be a predictor of treatment efficacy. Small CTCs: These are recognized as the cytokeratin-positive and CD45-negative cells, similar in size to leukocytes. Notably, the small CTCs have been concerned with progressive disease and differentiation into small cell carcinomas, which often need special therapeutic strategies.

However, the new classification system suggested that CTCs should be characterized by their size and the expression of several markers such as EpCAM. The principle of CTC isolation, quantification, and characterization is based on the different physical characteristics (magnitude, electric charges) and genetic properties of the CTCs compared with the nontumor cells. Isolation by size of the epithelial tumor cell (ISET) platform is used for CTC cluster isolation based on tumor and nontumor cell differences. Interestingly, physical
property can also support micro-fluidic technology, which results in making a new flexible micro-spring array device.54-57 The CellSearch platform, Menarini Silicon Biosystems (https://www.cellsearchctc.com/) system, which is based on EpCAM- and cytokeratin-positive CTC selection, is the only Food and Drug Administration (FDA)–approved one and is used in numerous clinical studies.58-61 In breast cancer, it was found that metastatic breast cancer patients who had CTCs ≥ 5, contrary to patients with CTCs <5, in 7.5 mL of blood had failed first-line treatment.62-64 The cutoff value (CTCs $\geq 5/7.5$ mL of blood) in prostate cancer highlighted the fact that the higher CTC numbers resulted in poorer overall survival.65,66 The new cutoff is a CTC threshold of 5 cells per 7.5 mL, which means patient with CTCs ≥ 5 were classified as Stage IV \textit{aggressive} and those with CTCs <5 as Stage IV \textit{indolent}.67 In colorectal cancer, the comparable predictive value of the CTC counts was optional for the selection of first-line treatment.68,69 Higher quantity of CTC number was linked to lower survival in lung cancer as well.

Cell-Free Nucleic Acids

\textbf{Cell-free nucleic acids} is a general term and comprises cfDNA, cell-free RNA (cfRNA), and cell-free mitochondrial DNA (cf-mtDNA). Cell-free DNA are nonencapsulated DNA, free from cells in the bloodstream. They originate from a tumor clone.70 In eukaryotic nucleus, the DNA exists in a structured form termed nucleosomes which consist of around 170 base pairs of DNA wrapped around a core histone octamer (H2A, H2B, H3, and H4), linked by 10 to 100 base pairs of naked DNA as a linker DNA.71,72 The fragmented DNA, in the form of nucleosomes, can be released by various tumor cells, and then these enter the bloodstream during apoptosis or necrosis and normally are removed with macrophages.73,74 In cancerous condition, these cfDNA fragments are overproduced by the tumor cells, which are left behind that the macrophages cannot clean up completely.75 The first connection between cancer and elevated cfDNA was shown in 1977 by Leon et al.76 Then, Stroun et al77 established this link by separating DNA from the plasma of patients with breast cancer and elevated cfDNA isolated from plasma of patients with breast cancer after surgical removal of the primary tumor.108

Extrachromosomal Circular DNA

In the 1980s, the presence of endogenous DNA circles originating from canonical linear chromosomal loci, identified as eccDNA, was described in nuclear fractions of plant cells (wheat and tobacco).109 In fact, the main machinery of oncogenes to aggregate their copy number occurs by eccDNA.110 It was shown that eccDNA can be seen in approximately half of human cancers, while its frequency is different by tumor type.111,112 The presence of tumor eccDNA in blood as a liquid biopsy component has been suggested very recently.113

Exosomes

Microvesicles and exosomes, collectively referred to as extracellular vesicles (EVs), are lipid bilayer structure vesicles that are released from all eukaryotic cells and play an important role in the instruction of extracellular communication, cellular
differentiation, cell migration, and maintenance of normal tissue condition. The size of the exosomes varies from 30 to 100 nm, and they are secreted through the interior budding of the plasma cell membrane. The exosomes can be released through both normal (epithelial, mesenchymal, and immune) and cancerous cells in different settings such as blood, urine, and sputum. They were first described by Pan and Johnstone in 1983 at McGill University. It was suggested that there is a connection among the existence of cfNAs in plasma and exosomes because one possible mechanism for the release of the cfNAs into blood is by exosomes. The transferring of genetic information from the exosomes to the host cells (receiver of exosomes) is possibly involved in the metastatic conversion of the host/receiver cells. Exosomes of diverse cell types have unlike proteins that can be potentially used as biomarkers in clinical experiments.

Exosomes contain dsDNA of the parent cell, so they could be released from a specific tissue or from a specific tumor via the exosomal surface biomarkers. Using sensitive detection technologies such as nano-particle tracking analysis (ZetaView), Western blotting techniques, transmission electron microscopy, the Agilent Bioanalyzer system, and modern droplet digital polymerase chain reaction techniques, we are able to assess the exosomal nucleic acids. Exosome-based liquid biopsy in comparison with the CTCs and cfNAs are more homogeneous in terms of size. Many isolation and characterization protocols are established to prepare the exosomes for the diagnosis of cancer and its therapy.

Clinical Applications of Liquid Biopsy

In fact, CTC, ctDNA, and exosomes have broad biomarker potential because they can timely and dynamically represent the tumor's genetic status both for diagnosis and for prognosis applications. It was suggested that liquid biopsy has a better sensitivity and is extra convenient as a cancer diagnosis tool in comparison with the traditional tissue biopsy methods. In the middle of 2016, the first liquid biopsy test was approved by the FDA. The point mutation of exon 19 deletion or exon 21 [L858R] in the epidermal growth factor receptor (EGFR) gene of ctDNA was approved as a good predictor of the response to the EGFR tyrosine kinase inhibitors in non–small-cell lung cancer patients. When the first test of ctDNA was approved, several studies had already shown the impact of liquid biopsy in the field of cancer management. Several studies have stated that breast and ovarian cancers with ctDNA micro-satellite instability have deprived prognosis. The presence of apoptotic CTCs or fragmented CTCs in the peripheral blood can be an indicator of cancer. Although imaging and tissue biopsy are still the gold standards in solid tumor screening and monitoring, prospective studies have suggested that CTC detection with imaging combination is the greatest choice. The quick diagnostic value of CTCs in primary stages of cancer has been considered several times, and in an animal model, it was shown that CTCs were established very quickly in the “carcinoma in situ” stage, implying the fact that the tumor cells had spread prior to diagnosis. The exceeding indication showed that the CTCs may be a valuable tool for very early cancer diagnosis. The detection of CTCs in different cancer types including colorectal cancer, lung cancer, and prostate cancer correlates with different pathological stages, clinical outcome, and patient’s survival. The first and only actionable test for detecting CTCs in cancer patients is the CellSearch system, which is applicable as a self-determining forecaster of overall and progression-free survival in metastatic breast, prostate, and colorectal cancer. In addition to CTC detection, ctDNA is a gifted approach for primary cancer diagnosis. Many researchers have indicated a positive connection of ctDNA quantity and tumor stage to predict the severity of malignancies and efficacy of treatment. The use of exosomes as a predictive biomarker and indicator of treatment response completely relies on its protein and miRNA expression profiles. It was shown that the downregulation of exosomal miR-92a in hepatocellular carcinoma was connected to cancer development and a high risk of relapse, and the overexpression of exosomal miR-21-3p is a sign of cisplatin resistance in ovarian cancer.

At MD Anderson Cancer Center, the role of liquid biopsy as a medical tool for patients with papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid carcinoma is analyzed. In patients with PTC and MTC, it is shown that the concordance between tissue and liquid biopsy was more than 80%. Thanks to the latest advances in molecular technology detection, in methods such as NGS, whole-genome shotgun bisulfate sequencing, and tagged-amplicon deep sequencing, day by day, the importance of liquid biopsy is highlighted more and more. Most scientists believe that its use in cancer treatment will support the conventional tissue biopsy method instead of replacing it. Liquid biopsies may not replace tissue biopsies at the present or in the future; but it will let many people to be tested. Furthermore, using a blood test along with tissue will be a breakthrough because, more often than not, the traditional biopsy does not pick enough tissue.

Conclusion

Taking everything into consideration, liquid biopsy is a new noninvasive sampling tool which brings a new insight into the cancer diagnosis and prognosis perspectives. It can use several components such as cfDNA, CTCs, and exosomes as the real representative of tumor to evaluate the tumor genetic alterations and status. Mostly, for evaluation of the cancer treatment efficacy, the number of CTCs with cutoff 5 per 7.5 mL of blood works. For real-time tracking, the genetic alterations of tumor cfDNA and exosomes can be used to select the best treatment in the way of personalized medicine. In the near future, liquid biopsy will take the place of tissue biopsy or will
support the suspicious and nondetermining result of it in an excellent way.

Acknowledgements
Special thanks to Urology Research Center (URC), Tehran University of Medical Sciences, Tehran, Iran.

Author Contributions
SMKA: Principal investigator, supervision of the team, and editing the manuscript, RH and ME running the project and data acquisition, FKH wrote the manuscript.

Availability of Data and Material
The datasets used and/or analyzed during the current study are available from the corresponding author.

Consent for Publication
This review article does not contain data from any individual person; consequently, the consent for publication is “Not Applicable” in this section.

Ethics Approval and Consent to Participate
This manuscript does not report on or involve the use of any animal or human data or tissue, so ethical approval is not applicable in this study.

ORCID iD
Fatemeh Khatami https://orcid.org/0000-0002-6311-1336

REFERENCES
1. Siegel RL, Miller KD, Jemal A. Cancer statistics. 2018. CA Cancer J Clin. 2018;68:7-30.
2. Ashworth T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Med J Australia. 1869;14:146-147.
3. Mandel P. Les acides nucleiques du plasma sanguin chez l’homme. C.R. Soc. Biol. 1948;142:241-243.
4. Leon S, Shapiro B, Sklaroff D, Yaros M. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646-650.
5. Kidess E, Jeffrey SS. Circulating tumor cells versus tumor-derived cell-free DNA: rivals or partners in cancer care in the era of single-cell analysis? Genome Med. 2013;5:76.
6. Castro-Giner F, Gkoustanlou S, Donato C, et al. Cancer diagnosis using a liquid biopsy: challenges and expectations. Diagnostics (Basel). 2018;8:31.
7. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: challenges and expectations. Diagnostics (Basel). 2018;8:31.
8. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579-586.
9. Perakis S, Speicher MR. Emerging concepts in liquid biopsies. BMC Med. 2017;15:75.
10. Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17:507.
11. Prasad V, Fojo T, Brada M. Precision oncology: origins, optimism, and potential. Lancet Oncol. 2016;17:81-86.
12. McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27:15-26.
13. Geisinger M, Rowan AJ, Harewell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883-892.
14. Campbell PJ, Yachida S, Madie LJ, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467:1109-1113.
15. Navin N, Kendall J, Tirode J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472:90-94.
16. Arnaud A. Costs and outcomes comparison of tissue and blood based biopsies for the purpose of biomarker testing. Value Health. 2016;19:A134-A144.
17. Karachalios N, Mayo-de-las-Casas C, Molina-Vila MA, Rosell R. Real-time liquid biopsies become a reality in cancer treatment. Ann Transl Med. 2015;3:36.
18. Ross R, Du Z, Rademaker AW, et al. Cell-free DNA and circulating tumor cells: comprehensive liquid biopsy analysis in advanced breast cancer. Clin Cancer Res. 2018;24:560-568.
19. Huang W-L, Chen Y-L, Yang S-C, et al. Liquid biopsy genotyping in lung cancer: ready for clinical utility? Oncotarget. 2017;8:18590-18608.
20. Jeffrey SS, Toner M. Liquid biopsy: a perspective for probing blood for cancer. Lab Chip. 2019;19:548-549.
21. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6:479-491.
22. Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192:373-382.
23. Pantel K, Speicher M. The biology of circulating tumor cells. Onco Targets. 2016;5:1216-1224.
24. Wan JC, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223-238.
25. Samb DH, Hong JY, Park HJ, Lee SK. The role of exomes and miRNAs in drug-resistance of cancer cells. Int J Cancer. 2017;141:220-230.
26. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30:e836-848.
27. Moore C, Kosogdij U, Lange S, Inal JM. The emerging role of exosome and microvesicle (EMV) based cancer therapeutics and immunotherapy. Int J Cancer. 2014;114:428-436.
28. Krishnamurthy N, Spencer E, Torkamani A, Nicholson L. Liquid biopsies for cancer: coming to a patient near you. J Clin Med. 2017;6:3.
29. Kaiser J. Liquid biopsy for Cancer: liquid biopsy. Washington, DC: American Association for the Advancement of Science; 2018.
30. Heitzer E, Ulf P, Geiß J. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chim Acta. 2015;61:112-123.
31. Macias M, Albrege F, Diaz-Lagaras A, et al. Liquid biopsy: from basic research to clinical practice. Adv Clin Chem. 2018;83:73-119.
32. Neoh KH, Hassan AA, Chen A, et al. Rethinking liquid biopsy: microfluidic assays for mobile tumor cells in human body fluids. Biomaterials. 2018;150:112-124.
33. Riquet M, Rivera C, Giault L, et al. Lymphatic spread of lung cancer: anatomical lymph node chains unchained in zones. Res Pneumol Clin. 2014;70:16-25.
34. Pagel S. The distribution of secondary growths in cancer of the breast. Lancet. 1896;3:477-479.
35. Watanabe S. The metastasizability of tumor cells. Cancer. 1954;7:215-223.
36. Liotta LA, Kleinerman J, Saidel GM. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 1974;34:1001-1004.
37. Keisley WH, Mahaley MS Jr. Relationship between size and distribution of “spontaneous” metastases and three sizes of intravenously injected particles of VX2 carcinoma. Cancer Res. 1958;18:900-905.
38. Racila E, Euhus D, Weiss AJ, et al. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95:4589-4594.
39. Liu X, Tafta R, Kawaguchi M, et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 2019;9:96-113.
40. Marrinucci D, Bethel K, Kolatkar A, et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol. 2012;9:016003.
41. Gkoustanlou S, Castro-Giner F, Suczewska BM, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 2019;176:98-112.
42. McCarthy JB, El-Ashry D, Turley E. Hyaluronan, cancer-associated fibroblasts and the tumor microenvironment in malignant progression. Front Cell Dev Biol. 2018;6:48.
43. Allen JE, Saroya BS, Kunkel M, et al. Apoptotic circulating tumor cells (CTCs) in the peripheral blood of metastatic colorectal cancer patients are associated with liver metastasis but not CTCs. Oncotarget. 2014;5:1753-1760.
44. Ren C, Han C, Zhang J, et al. Detection of apoptotic circulating tumor cells in advanced pancreatic cancer following 5-Fluouracil chemotherapy. Cancer Biol Ther. 2011;12:700-706.
45. Wang L, Li Y, Xu J, et al. Quantified post-surgical small cell size CTCs and EpCAM+ circulating tumor stem cells with cytogenetic abnormalities in hepatocellular carcinoma patients determine cancer relapse. Cancer Lett. 2018;412:99-107.
49. Shaw Bagali J, Byun S, Begum S, et al. Deformability of tumor cells versus blood cells. *Sci Rep.* 2015;5:18542.

50. Vallorani R, Bartolini G, Betti G, et al. Circulation type classifications for temperature and precipitation stratification in Italy. *Int J Climatol.* 2018;38:915-931.

51. Balasubramanian P, Lang JC, Jatana KR, et al. Multivariate analysis, including EMT markers, on negatively enriched blood samples from patients with squamous cell carcinoma of the head and neck. *PLoS ONE.* 2012;7:e42048.

52. Stott SL, Hsu C-H, Tsvukov DI, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. *Proc Natl Acad Sci U S A.* 2010;107:18392-18397.

53. Krebs MG, Hou J-M, Sloane R, et al. Analysis of circulating tumor cells in patients with non-small cell lung cancer using epithelial marker-dependent and -independent approaches. *J Thorac Oncol.* 2012;7:306-315.

54. Adams AA, Okagbare PI, Feng J, et al. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. *J Am Chem Soc.* 2008;130:8633-8641.

55. Harouaka RA, Zhou M-D, Yeh Y-T, et al. Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. *Clin Cancer Res.* 2014;20:323-337.

56. Zheng S, Lin H, Liu J-Q, et al. Membrane microfilter device for selective capture, electrophoresis, and genomics analysis of human circulating tumor cells. *J Chromatogr A.* 2007;1162:154-161.

57. Sarioglu AF, Aceto N, Kojic N, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. *Nat Methods.* 2015;12:657-691.

58. Svennenhuis JF, van Dalum G, Zeune LL, Terstappen LWMM. Improving the CellSearch® system. *Expert Rev Mol Diag.* 2016;16:1291-1305.

59. Andreopoulou E, Yang LY, Rangel K, et al. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest Breast Cancer Select/Detect™ vs Veridex CellSearch® system. *Int J Cancer.* 2012;130:1590-1597.

60. Beije N, Jager A, Sleijfer S. Circulating tumor cell enumeration by the CellSearch system: the clinician’s guide to best cancer treatment? *Cancer Treat Rev.* 2015;41:148-150.

61. Khramtov F, Aghayan HR, Sanaei M, Heshmat R, Tavangar SM, Larijani B. The potential of circulating tumor cells in personalized management of breast cancer: a systematic review. *Acta Med Iran.* 2017;55:175-193.

62. Hayes DF, Cristofanilli M, Budd GT, et al. Circulating tumor cells at each follow-up time point during the therapy of metastatic breast cancer patients predict progression-free and overall survival. *Clin Cancer Res.* 2006;12:4218-4224.

63. de Bono JS, Scher HI, Montgomery RB, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. *Clin Cancer Res.* 2008;14:625-630.

64. Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor dna to monitor metastatic breast cancer. *N Engl J Med.* 2013;368:1199-1209.

65. Olmos D, Arkenau H-T, Ang J, et al. Circulating tumor cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-center experience. *Ann Oncol.* 2008;20:27-33.

66. Scher HI, Jia X, de Bono JS, et al. Circulating tumor cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 data. *J Urol.* 2006;175:871-878.

67. Cristofanilli M, Pierga J-Y, Reuben J, et al. The clinical use of circulating tumor cells (CTCs) for staging of metastatic breast cancer (MBC): international expert consensus paper. *Crit Rev Oncol Hematol.* 2019;134:39-45.

68. O’Leary B, Cutts RJ, Liu Y, et al. The genetic landscape and clonal evolution of circulating tumor DNA: new horizons for improving cancer treatment. *Asian Pac J Cancer Prev.* 2017;18:293-294.

69. Rothe F, Laes J-F, Lambrechts D, et al. Plasma circulating tumor DNA as an early circulating marker in breast cancer patients. *Lab Invest.* 2001;81:767-769.

70. Miura N, Shiota G, Nakagawa T, et al. Sensitive detection of human telomerase reverse transcriptase (hTERT) mRNA: a simple blood test to monitor disease in cancer patients. *Lab Invest.* 2003;83:430-434.

71. Lebofsky R, Decraene C, Bernard V, et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. *Clin Cancer Res.* 2005;11:545-548.

72. Shaw Bagnall J, Byun S, Begum S, et al. Deformability of tumor cells versus blood cells. *Sci Rep.* 2015;5:18542.

73. Leon S, Ehrlich G, Shapiro B, Labbate V. Free DNA in the serum of rheumatoid arthritis patients. *J Rheumatol.* 1977;4:139-143.

74. Khatami F, Larijani B, Tavangar SM. Circulating tumor BRAF mutation and associated RNA in the serum of patients with malignant melanoma. *Cancer Res.* 1999;59:1961-1965.

75. Koffler D, Agnello V, Winchester R, Kunkel HG. Deoxynucleobasic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. *J Invest Dermatol.* 1966;45:1732-1740.

76. Prince SJ, Wakerley BR, Rychter P, Perruchoud AP, Block LH. Diagnostic and prognostic value of RNA-proteolipid in sera in patients with malignant disorders following therapy: first clinical evaluation of a novel tumor marker. *Cancer.* 1973;52:198-204.

77. Shaw Bagnall J, Byun S, Begum S, et al. Deformability of tumor cells versus blood cells. *Sci Rep.* 2015;5:18542.

78. Leon S, Ehrlich G, Shapiro B, Labbate V. Free DNA in the serum of rheumatoid arthritis patients. *J Rheumatol.* 1977;4:139-143.

79. Leon S, Ehrlich G, Shapiro B, Labbate V. Free DNA in the serum of rheumatoid arthritis patients. *J Rheumatol.* 1977;4:139-143.

80. Koffler D, Agnello V, Winchester R, Kunkel HG. Deoxynucleobasic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus and other diseases. *J Invest Dermatol.* 1973;52:198-204.

81. Sarioglu AF, Aceto N, Kojic N, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. *Nat Methods.* 2015;12:657-691.

82. Lo K-W, Lo YD, Leung S-F, et al. Analysis of cell-free Epstein-Barr virus-associated RNA in the plasma of patients with nasopharyngeal carcinoma. *Clin Chem.* 1999;45:1292-1294.

83. Lebofsky R, Decraene C, Bernard V, et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. *Clin Cancer Res.* 2000;6:823-826.

84. O’Leary B, Cutts RJ, Liu Y, et al. The genetic landscape and clonal evolution of circulating tumor DNA: new horizons for improving cancer treatment. *Asian Pac J Cancer Prev.* 2017;18:293-294.

85. Rothe F, Laes J-F, Lambrechts D, et al. Plasma circulating tumor DNA as an early circulating marker in breast cancer patients. *Lab Invest.* 2001;81:767-769.

86. Miura N, Shiota G, Nakagawa T, et al. Sensitive detection of human telomerase reverse transcriptase (hTERT) mRNA: a simple blood test to monitor disease in cancer patients. *Lab Invest.* 2001;81:767-769.

87. Miura N, Shiota G, Nakagawa T, et al. Sensitive detection of human telomerase reverse transcriptase (hTERT) mRNA: a simple blood test to monitor disease in cancer patients. *Lab Invest.* 2001;81:767-769.

88. Koffler D, Agnello V, Winchester R, Kunkel HG. Deoxynucleobasic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. *J Invest Dermatol.* 1966;45:1732-1740.

89. Prince SJ, Wakerley BR, Rychter P, Perruchoud AP, Block LH. Diagnostic and prognostic value of RNA-proteolipid in sera in patients with malignant disorders following therapy: first clinical evaluation of a novel tumor marker. *Cancer.* 1973;52:198-204.
