Epigenetic regulation of GABAergic neurotransmission and neurosteroid biosynthesis in alcohol use disorder

Eleonora Gatta, Ph.D1; Alessandro Guidotti, M.D1; Vikram Saudagar; Dennis R. Grayson, Ph.D1;
Dario Aspesi, M.S.1; Subhash C. Pandey, Ph.D1,2; Graziano Pinna, Ph.D1

1 Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute,
University of Illinois at Chicago, Chicago, Illinois, USA
2 Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA

Corresponding author:
Dr. Alessandro Guidotti
Center for Alcohol Research in Epigenetics
Psychiatric Institute - Department of Psychiatry
University of Illinois at Chicago
1601 West Taylor Street
Chicago, IL 60612
Phone: +1 (312) 355-5534
Fax: +1 (312) 413-4569
E-mail: aguidott@uic.edu
SIGNIFICANCE STATEMENT

Alcohol use disorder (AUD) is a multifaceted chronic relapsing disorder affecting 6% of the US adult population. GABAergic neurotransmission mediates the behavioral tolerance and dependence to excessive alcohol drinking via brain-region specific alterations in GABA$_A$ receptor subunit expression. Endogenous neurosteroids, including allopregnanolone and pregnanolone play a key role in fine-tuning GABA$_A$ receptor-mediated inhibition. Our study found reduced levels of neurosteroids in the postmortem cerebellum of AUD patients. These changes were associated with increased DNA methylation on key enzymes of the neurosteroidogenesis pathway (i.e., 3α-hydroxysteroid dehydrogenase) and related GABAergic genes. Our data suggest that alcohol-induced changes in GABAergic neurotransmission may be a result of reduced neurosteroid biosynthesis via DNA hypermethylation processes and implicates neurosteroid dysregulation as a primary mechanism for AUD neuropathophysiology. Thus, given the key role of allopregnanolone and pregnanolone in the fine-tuning of GABA$_A$R-mediated inhibition, targeting neurosteroidogenesis may be a promising therapeutic strategy for the management of AUD.
ABSTRACT

BACKGROUND: Alcohol use disorder (AUD) is a chronic relapsing brain disorder. GABA_A receptor (GABA_A R) subunits are a target for the pharmacological effects of alcohol. Neurosteroids play an important role in the fine-tuning of GABA_A R function in the brain. Recently, we have shown that AUD is associated with changes in DNA methylation mechanisms. However, the role of DNA methylation in the regulation of neurosteroid biosynthesis and GABAergic neurotransmission in AUD subjects remain under-investigated.

METHODS: In a cohort of postmortem brains from 20 male controls and AUD subjects, we investigated the expression of GABA_A R subunits and neurosteroid biosynthetic enzymes and their regulation by DNA methylation mechanisms. Neurosteroid levels were quantified by gas chromatography-mass spectrometry.

RESULTS: The α2 subunit expression was reduced due to increased DNA methylation at the gene promoter region in the cerebellum of AUD subjects, a brain area particularly sensitive to the effects of alcohol. Alcohol-induced alteration in GABA_A R subunits was also observed in the prefrontal cortex. Neurosteroid biosynthesis was also affected with reduced cerebellar expression of the 18kDa translocator protein and 3α-hydroxysteroid dehydrogenase (3α-HSD) mRNAs. Notably, increased DNA methylation levels were observed at the promoter region of 3α-HSD. These changes were associated with markedly reduced levels of allopregnanolone and pregnanolone in the cerebellum.

CONCLUSION: Given the key role of neurosteroids in modulating the strength of GABA_A R-mediated inhibition, our data suggest that alcohol-induced impairments in GABAergic neurotransmission might be profoundly impacted by reduced neurosteroid biosynthesis most likely via DNA hypermethylation.

Keywords: cerebellum, GABA_A receptor, neurosteroids, alcohol use disorder, DNA methylation
INTRODUCTION

Alcohol use disorder (AUD) is a multifaceted chronic relapsing disorder often comorbid with mood disorders (Falk et al., 2008) and cognitive impairments (Keedwell et al., 2001). Altered GABAergic neurotransmission is thought to mediate the behavioral tolerance and dependence to protracted and excessive alcohol drinking and to contribute to the pathogenesis of AUD (Tabakoff and Hoffman, 2013). Synaptic changes in the strength of GABAergic neurotransmission are mediated by the structural and functional plasticity of both GABA_A and GABA_B receptors. The GABA_A receptor (GABA_AR) is a pentameric protein complex formed by subunits, whose combination accounts for the diverse pharmacological properties of the receptor (Belelli and Lambert, 2005). On one hand, synaptic GABA_AR, mainly containing α1,2,3 along with β and γ subunit variants (Uusi-Oukari and Korpi, 2010; Fritschy and Panzanelli, 2014), mediate phasic currents (Brickley and Mody, 2012) and are sensitive to both benzodiazepines and barbiturates, but are insensitive to the actions of 3α-hydroxy ring A-reduced pregnane steroids (GABAergic neurosteroids; (Costa and Guidotti, 1991; Hájos et al., 2000). On the other hand, peri- and extrasynaptic GABA_AR containing α4,5,6 with β and δ subunits instead of γ are responsible for a persistent tonic inhibition as a result of diffused extracellular GABA from nearby synapses (Belelli and Lambert, 2005; Uusi-Oukari and Korpi, 2010; Brickley and Mody, 2012). Importantly, the extrasynaptic GABA_AR are highly sensitive (nM concentrations) to the positive allosteric modulation of neurosteroids, e.g., allopregnanolone and its stereoisomer pregnanolone, while the synaptic receptor are less sensitive (µM) to these compounds (Uusi-Oukari and Korpi, 2010; Brickley and Mody, 2012; Belelli et al., 2009). The regulation of GABA steady-state levels is mediated by glutamate decarboxylases (i.e., GAD1 and GAD2) and high affinity transporters primarily located in the presynaptic GABAergic neurons (i.e., GAT1) as well as in surrounding astrocytes (i.e., GAT2 and -3) (Schousboe et al., 2004). GABA may also be metabolized by GABA-transaminase (ABAT) (Madsen et al., 2008). Thus, GABA and neurosteroids interaction is crucial in maintaining physiological neurotransmission and brain function.
GABA_A receptors have been largely implicated in alcohol dependence. In preclinical studies, long-term and continuous ethanol exposure has been found to down-regulate α_1 and α_2-containing GABA_A mRNA expression in the cerebellum (Montpied et al., 1991). Of note, human genetic studies highlighted GABA_A α_2 single nucleotide polymorphisms (SNPs) in association with AUD (Edenberg et al., 2004). Furthermore, numerous preclinical and clinical studies have highlighted a role for GABA_B receptors in mediating the effects of alcohol intake (Walker and Koob, 2007; Addolorato and Leggio, 2010; Maccioni and Colombo, 2019). GABA_B receptor modulators are currently investigated to facilitate abstinence and reduce alcohol use (Farokhnia et al., 2018; Maccioni et al., 2019).

Mounting studies have shown evidence for a role for epigenetic mechanisms (e.g., DNA hypermethylation) in the pathophysiology of AUD and associated maladaptive behaviors (Warnault et al., 2013; Berkel and Pandey, 2017; Gatta et al., 2017, 2019). In a previous study in the cerebellum of AUD patients, we reported a marked decrease in the amounts of the GABA_A δ subunit, which was associated with increased DNA methylation of the corresponding gene promoter (Gatta et al., 2017). Additionally, we observed an impairment of the one-carbon metabolism and a higher methylation index, suggesting the existence of an aberrant DNA methylation in the cerebellum of AUD subjects (Gatta et al., 2017).

The cerebellum is a brain area particularly sensitive to the acute and chronic effects of ethanol (Dar, 2015; Valenzuela and Jotty, 2015). In addition to its well-known role in motor coordination (Ito, 2008), recent studies have demonstrated that cerebellar granule and Purkinje cells also integrate reward expectations (Wagner et al., 2017; Kostadinov et al., 2019). Alcohol affects motor coordination by enhancing tonic inhibition mediated by extrasynaptic receptor containing α_6 and δ subunits (Hanchar et al., 2005), which are almost exclusively present in cerebellar granule cells, where they generate a tonic inhibitory conductance controlling granule cells function (Nusser et al., 1999). Although the role of the δ subunit in mediating the pharmacological effects of alcohol has been previously studied, the effects of alcohol exposure on δ-containing GABA_A in the CNS remains controversial (Korpi et al., 2007). No changes in δ subunit expression have been observed in the brain of preclinical models of alcohol...
consumption (Mehta et al., 2007; Bohnsack et al., 2018). Additionally, δ-deficient mice showed reduced physiological responses to ethanol (Mihalek et al., 2001). However, extrasynaptic GABA$_{	ext{A}}$R are essential in mediating the physiological response to neurosteroids.

The synthesis of neurosteroids starts in glial cells by the transport of cholesterol from the outer to the inner mitochondrial membrane by the 18kDa translocator protein (TSPO) (Costa and Guidotti, 1991; Rupprecht et al., 2009). Cholesterol is then converted by the mitochondrial cholesterol side-chain cleavage enzyme (p450scc), into pregnenolone, which is the precursor for all neurosteroids. Pregnenolone is subsequently taken into neurons where it is further metabolized into progesterone by the 3β-hydroxysteroid dehydrogenase (3β-HSD). Type-1 5α-reductase (5α-R1) and 3α-HSD then convert progesterone into allopregnanolone (Locci and Pinna, 2017). Neurosteroid synthesis has been shown in glutamatergic corticolimbic neurons as well as in cerebellar granule cells (Agís-Balboa et al., 2006). Neurosteroids act through specific binding sites located on the transmembrane domains of α$_6$ and δ subunits of extrasynaptic GABA$_{	ext{A}}$Rs where they potentiate GABAergic inhibition and produce pharmacological effects comparable to those of alcohol (Concas et al., 1998; Hosie et al., 2006; Follesa et al., 2000, 2006).

Acute alcohol intoxication increases serum allopregnanolone levels in human blood samples of adolescent individuals (Torres and Ortega, 2003, 2004) and in rat cerebral cortex (VanDoren et al., 2000). Conversely, chronic ethanol exposure in rodents reduces allopregnanolone levels in several brain regions, including cerebral cortex, hippocampus, medial prefrontal cortex, ventral tegmental area, amygdala and striatum (Cagetti et al., 2004; Maldonado-Devincci et al., 2014). Interestingly, voluntary chronic ethanol intake decreases allopregnanolone in the amygdala and plasma of cynomolgus monkeys (Beattie et al., 2017). However, the alcohol-induced changes in GABAergic synaptic regulation, and neurosteroidogenesis and associated DNA methylation mechanisms in human brain remain largely under-investigated. We therefore tested the hypothesis that alcohol drinking alters GABAergic
neurotransmission in association with changes in allopregnanolone biosynthesis via epigenetic mechanisms in the cerebellum of individuals suffering from AUD.

MATERIALS AND METHODS

Subjects

Frozen *postmortem* brain tissue was obtained from the New South Wales Brain Tissue Resource Centre (NSW BTRC, University of Sydney, Australia) as part of a cohort originally including 25 subjects per group (see Gatta et al., 2017 for details). Postmortem brain tissue was dissected as previously described (Sheedy et al., 2008). For each sample, cerebellar tissue was prepared according to standard NSW BTRC protocol. Briefly, the cerebellum was hemisected through the vermis then dissected into three segments along the parasagittal plane and frozen at -80 °C. Fresh frozen cerebellar cortex was sampled at the level of the dentate nucleus. Use of *postmortem* brain tissue was approved by the Institutional Review Board of the University of Illinois at Chicago. Individuals were diagnosed according to the DSM-IV criteria for AUD. Because of little availability of female samples, we decided to focus our study in the male population and focused our analysis on 20 control and 20 AUD subjects for RNA analysis. Due to tissue availability, only 12 control and 15 AUD subjects were used for neurosteroid determination (Table S1). Focusing on males prevented confounding in allopregnanolone measurements due to menstrual cycle (Uzunova et al., 1998; Maguire et al., 2005). Subjects did not show any hepatic encephalopathy pathology. The AUD cohort of 20 subjects included 7 AUD subjects that had alcohol toxicology at the time of death (0.03–0.430 g/100 mL) and 13 AUD subjects that had unknown (n = 3) or not detected blood alcohol levels (n = 10). Four of the subjects with alcohol toxicology at the time of death were used for neurosteroid levels determination (Table S1).

Neurosteroid measurements

Allopregnanolone and its isomer, pregnanolone, were extracted, derivatized, and quantified as previously described (Uzunov et al., 1996). After addition of deuterium-labeled internal standards to tissue samples, steroids were extracted, purified, and separated by high-pressure liquid chromatography.
After derivatization, gas chromatography–mass spectrometry (GC-MS) analysis in the standard electron impact mode was performed (Pinna et al., 2004; Locci and Pinna, 2019).

Reverse Transcriptase - Quantitative Polymerase Chain Reaction (qRT-PCR)

Total mRNA was extracted using miRNeasy kit following manufacturer instructions (Qiagen, Valencia, CA). DNase treatment was used to avoid any genomic DNA contamination. mRNA levels were measured in prefrontal cortex (BA10), hippocampus, striatum and cerebellum of our control and AUD cohort by qRT-PCR following total RNA extraction as previously described. RIN values were measured with the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Samples with a RIN <3 were excluded from the analyses. Primer sequences used for mRNA expression studies are listed in Table S2. Three reference genes (i.e., Beta-2-Microglobulin [B2M], Glyceraldehyde-3-Phosphate Dehydrogenase [GAPDH], and β-actin) were chosen for normalization of mRNA levels (Gatta et al., 2017, 2019). Our study focused on α and δ-containing GABAA-R.

Methyl-DNA-immunoprecipitation assay

DNA methylation levels were assessed by methyl-DNA-immunoprecipitation (MeDIP) using the MagMeDIP kit (Diagenode, Denville, NJ) as previously described (Gatta et al., 2017, 2019; Gavin et al., 2012). Primers were designed in the promoter region of 3α-hydroxysteroid dehydrogenase (3α-HSD, gene symbol: AKR1C2) and GABAₐ receptor subunit α₂ (GABRA2) genes (Table S2). A schematic representation of the genes’ structure is presented in Figure S1 for the main promoter (Figure S1A, S1B) and the promoter of upstream transcripts for the corresponding gene (Figure S1C, S1D). The efficiency of the MeDIP assay was validated by qRT-PCR using internal positive and negative DNA controls (methylated/hydroxymethylated and unmethylated DNA) as well as control primers for testis specific H2B histone gene (which is methylated in all somatic cells but not in testis), and GAPDH promoter (which is poorly methylated), following manufacturer’s instructions (see (Gatta et al., 2017) and Figure
S2) with a specificity of 97.75%. Data obtained are calculated as % recovery = 2^(input -3.32 -IP) x 100 as recommended by the manufacturer, then expressed as % of control to account for the fact that samples were run in two batches.

Western Blot

Cerebellar proteins were extracted as previously described (Gatta et al., 2017). Briefly, 30 µg of each sample were separated by electrophoresis on Novex 4-12% Tris-Glycine gels (Invitrogen, Carlsbad, CA) then transferred to PVDF membrane (Millipore, Billerica, MA). Membranes were incubated with the following primary antibodies: anti-GABRA2 protein (1:500, Alpha Diagnostic International, San Antonio, TX; #GAA21-A) and anti-GAPDH (1:8,000 Millipore, Billerica, MA; #MAB374). HRP-conjugated secondary anti-rabbit or anti-mouse antibodies (1:10,000, GE Healthcare, Arlington Heights, IL) were used and membranes were developed with Immobilon Western Chemiluminescent HRP Substrate (Millipore, Billerica, MA). Densitometric analysis was performed with ImageJ software.

Statistical analysis

Statistical differences were assessed with two-tailed Student’s t-tests and comparisons were considered statistically significant at p<0.05. Benjamini-Hochberg (1995) multiple comparisons was conducted to control for the false discovery rate (FDR) as previously described (Gatta et al., 2017). ANCOVA was performed for adjusting co-variants on the results. When appropriate, data were analyzed by One-way ANOVA followed by Tukey’s post-hoc comparison. Correlation analyses were performed using two-tailed Pearson’s correlation analysis. All statistical tests were run using PASW v.18 software (SPSS).

RESULTS

Alcohol impairs neurosteroidogenesis in the cerebellum of AUD patients

The mRNA expression of key components of the neurosteroid biosynthetic pathway and the levels of allopregnanolone and its isomer pregnanolone were altered in the cerebellum of AUD patients. We observed a decrease of ~60% in the amounts of allopregnanolone (Figure 1A) and pregnanolone (Figure
1B). These data remained significant after Benjamini-Hochberg’s correction (adjusted $p=0.005$, 0.0004, respectively). Of note, the levels of allopregnanolone measured in our cohort negatively correlated with ethanol daily consumption and the number of standard drinks per week (Table S3). These correlations were not significant when only considering the AUD group. The AUD subjects with positive alcohol toxicology at the time of death did not differ from the other AUD subjects and showed significantly reduced levels of allopregnanolone (One-Way ANOVA, $F_{2,14}=6.69$, $p=0.009$; Tukey’s post-hoc positive alcohol toxicology vs. AUD $p>0.9999$; alcohol toxicology vs. control $p=0.03$). In the cerebellum of the same subjects, we also observed reduced mRNA expression of TSPO and 3α-HSD (Figure 1C). These data remained significant after Benjamini-Hochberg multiple comparison (adjusted p values: TSPO $p=0.007$, 3α-HSD $p=0.076$). A significant inverse correlation was observed between the mRNA expression of TSPO and ethanol daily consumption levels (Table S3). mRNA expression of 3α-HSD correlated with the levels of allopregnanolone ($r=0.45$, $p=0.02$) and pregnanolone ($r=0.57$, $p=0.002$). These correlations were not significant when only considering the AUD group. No significant changes were found for P450scc and 3β-HSD mRNAs (Figure 1C).

DNA methylation and Neurosteroid biosynthesis

We next investigated whether reductions in mRNA expression of 3α-HSD in the cerebellum of AUD subjects is related to changes in DNA methylation of gene promoter. We observed a hypermethylation of the 3α-HSD gene promoter (AKR1C2, Figure 1D) at -1743 to -1594 bp and -1579 to -1430 bp while no differences in methylation levels were observed at -43bp to +56bp. Increased methylation levels were also detected for a promoter of upstream transcripts site at -424 to -325bp and -153 to -52bp (Figure 1E). These data remained significant after Benjamini-Hochberg multiple comparison (main promoter, -1743 to -1594 bp: adjusted $p = 0.0004$, -1579 to -1430 bp: adjusted $p = 0.01$; upstream promoter sites, from -424 to -325bp: adjusted $p = 0.0004$; from -153 to -52bp: adjusted $p = 0.002$). A detailed gene structure for AKR1C2 is shown in Figure S1A and C. These results suggest that DNA hypermethylation of 3α-HSD in
the cerebellum of AUD is responsible for deficits in 3α-HSD expression and might be associated with altered neurosteroid levels in AUD.

Expression of GABA\(_{\alpha_2}\) receptor subunits in the brain of AUD patients

The expression of GABA\(_{\alpha}\)R subunits is brain region specific. To study whether chronic alcohol abuse induces changes in GABA\(_{\alpha}\)R mRNA subtypes expression we presented our data as a fold change of control. In a previous work, we found reduced mRNA expression of GABA\(_{\alpha}\)R \(\delta\) subunit in the cerebellum of AUD subjects (Table 1, Gatta et al., 2017). Here, we extended this study to other GABA\(_{\alpha}\)R subunits not only in cerebellum but also in other brain regions. We observed a statistically significant reduction in the \(\alpha_2\) subunit mRNA expression in PFC and cerebellum (Table 1) of AUD subjects. However, no significant change was observed in the hippocampus nor in striatum (Table 1). Importantly, the GABA\(_{\alpha}\)R \(\delta\) subunit mRNA expression was significantly decreased in PFC, with reduced but not significant levels in the hippocampus and no significant changes detected in striatum (Table 1). GABA\(_{\alpha}\)R \(\alpha_5\) subunit mRNA expression tended to increase but failed to reach statistical significance in the cerebellum and striatum (Table 1, \(p=0.16, p=0.23\), respectively). After Benjamini-Hochberg multiple comparison the changes observed in PFC (\(\alpha_{2,6}\) and \(\delta\) subunits adjusted \(p=0.035\)) and cerebellum (\(\alpha_2\) and \(\delta\) subunits adjusted \(p=0.042\)) remained significant. The \(\beta_{2,3}\) and \(\gamma_2\) subunits of the GABA\(_{\alpha}\) receptor failed to change in a significant manner in all brain areas studied, except for \(\gamma_2\) that was significantly reduced in the cerebellum (Table S4) of AUD subjects. Taken together our data showed that both the synaptic (\(\alpha_2\)) and the extrasynaptic (\(\delta\)) GABAergic transmission are affected in AUD. Cerebellar mRNA levels of the \(\alpha_2\) subunit correlated with PMI (\(\alpha_2\): \(r=-0.39, p=0.01\)), and ethanol daily consumption (Table S5). Adjusting for PMI using ANCOVA maintained a significant group effect (group effect, \(F_{1,38}=5.3, p=0.027\)).

We also observed reduced GABA\(_{\alpha}\)R \(\alpha_2\) protein levels in the cerebellum of male AUD subjects (Figure 2A). Interestingly, the GABA\(_{\alpha}\) \(\alpha_2\) subunit protein levels negatively correlated with the number of
drinking years \((r=-0.36, \ p=0.02)\). In addition, the mRNA expression corresponding to the GABA\(_B\) subunits 1 and 2 were reduced by \(~20\%\) in PFC of male AUD subjects, no changes in the levels of these mRNAs were detected in hippocampus or striatum (Table 1). Only GABA\(_B\) subunit 1 was reduced in the cerebellum (Table 1).

Chronic alcohol consumption impacts promoter methylation of key GABAergic-related genes

The reduced expression of GABA\(_A\)R \(\alpha_2\) subunit was associated with increased DNA methylation levels in the promoter region of GABA\(_A\)R \(\alpha_2\) gene (GABRA2, from -332 to -232 bp, -45 bp to +67 bp, Figure 2B). No differences in methylation levels were observed upstream the CpG island from -1202 to -1091 bp (Figure 2B). Methylation data for an upstream promoter region is provided in Figure 2C and shows higher methylation in the AUD group from -731 to -649 bp and from -91 to +12 bp. These data remained significant after Benjamini-Hochberg multiple comparison (main promoter sites, 332 to -232 bp and -45 bp to +67 bp: adjusted \(p=0.007\); upstream promoter, -731 to -649 bp and -91 to +12 bp: adjusted \(p=0.01\)). Detailed gene structure for GABRA2 is presented in Figure S1B and D.

Alcohol transcriptional effects on presynaptic GABAergic-related genes

We also studied whether chronic alcohol alters the expression of neuronal and glial GABA transporter mRNAs. We observed reduced expression of the neuronal GAT1 mRNA (Figure 3A) and glial GAT2 and GAT3 mRNAs (Figure 3B, C, respectively) in the cerebellum of AUD subjects. mRNA expression of GAT2 correlated with pH \((r=0.35, \ p=0.03)\). Hence, using ANCOVA, we tested the changes in GAT2 after adjusting for the effect of pH. GAT2 mRNA expression remained significantly different between control and AUD groups (group effect, \(F_{1,38}=7.7, \ p=0.009\)). We also measured a decrease in GAD2 mRNA in AUD subjects (Figure 3D). However, no changes were noted for the GABA transaminase ABAT mRNA expression (Figure 3E). The Benjamini-Hochberg correction maintained the significance of our results.
(GAT1 and GAT2 adjusted \(p=0.007 \), GAT3 adjusted \(p=0.008 \), GAD2 adjusted \(p=0.007 \), ABAT adjusted \(p=0.052 \)).

DISCUSSION

GABAergic synapses are a recognized target for the behavioral and molecular actions of alcohol. Chronic alcohol abuse induces tolerance and dependence to its anxiolytic and anticonvulsant properties via \(\text{GABA}_A \text{R} \)-mediated processes (Olsen, 2018). Allopregnanolone and pregnanolone play a pivotal neurophysiological role by potently and allosterically modulating extrasynaptic \(\text{GABA}_A \text{R} \) signaling (Uusi-Oukari and Korpi, 2010; Brickley and Mody, 2012; Belelli et al., 2009). In the current study, we observed reduced levels of allopregnanolone and pregnanolone measured by GC-MS in the cerebellum of AUD patients when compared to controls. The drastic decrease (~60%) in the levels of these neurosteroids observed in the cerebellum of AUD subjects is consistent with the significantly reduced expression of the neurosteroidogenic enzymes (5-\(\alpha \)-R1 that we previously observed (Gatta et al., 2017) and 3\(\alpha \)-HSD showed here), that are rate-limiting steps for allopregnanolone biosynthesis. In our study, chronic alcohol use was also associated with the reduced expression of \(\alpha_2 \) (synaptic) and \(\delta \) (extrasynaptic) containing \(\text{GABA}_A \text{R} \) in PFC and cerebellum (Gatta et al., 2017) but not in striatum and hippocampus of AUD male subjects. Hence, long-term alcohol drinking history differentially alters the expression levels of selected \(\text{GABA}_A \text{R} \) subunits in a brain region-specific manner in humans. The inhibitory control of cerebellar output on deep cerebellar nuclei is exclusively GABAergic. Thus, we focused on this brain region to study whether chronic alcohol abuse affects GABAergic neurotransmission and neurosteroidogenesis via epigenetic mechanisms.

Preclinical studies have shown that chronic ethanol exposure and withdrawal alter brain biosynthesis of allopregnanolone. Similar to our findings in human postmortem brain, reduced allopregnanolone has been observed in corticolimbic brain areas in rats (Cagetti et al., 2004) and mice (Maldonado-Devincci et al., 2014) chronically exposed to ethanol. There have only been a few studies examining the effects of
chronic alcohol on neurosteroid levels in the human postmortem brain. Hasirci and colleagues (2017) using an immunohistochemical approach report increased allopregnanolone-like content in VTA neurons of AUD subjects. If one excludes demographic and methodological divergences, the difference in allopregnanolone levels observed between VTA and cerebellum of AUD subjects suggests the existence of a cell and brain region-specific regulation of neurosteroid biosynthesis following alcohol exposure. The reduced neurosteroid levels we observed in the cerebellum of AUD subjects could contribute to a biochemical adaptation to the GABA-mimetic effects of alcohol. Accordingly, our data indicate that chronic alcohol exposure reduces the expression of neurosteroidogenic enzymes in the cerebellum of AUD subjects. Since acute alcohol stimulates neurosteroidogenesis (Korpi et al., 2001; Khisti et al., 2002), the dampened response we observed after long-term chronic alcohol consumption may be related to an adaptive mechanism leading to alcohol dependence. This may provide a rationale for the use of synthetic neurosteroids (e.g., allopregnanolone) in the treatment of AUD (Morrow et al., 2020). Our previous work showed similar effects in the hippocampus of rats exposed to chronic intermittent ethanol administration (Cagetti et al., 2004). Upon investigating the epigenetic regulation of key enzymes of the neurosteroidogenesis, we observed increased DNA methylation levels at the promoter region of the gene encoding 3-αHSD in the cerebellum of AUD subjects. These epigenetic changes are likely the result of an increased methylation index, associated with higher rates of DNA methylation we previously detected in the cerebellum of AUD subjects, where decreased levels of DNA methylation erasers (i.e., TETs) have been observed (Gatta et al., 2017).

The cerebellum is the host of a complex neuronal circuitry. While the Purkinje cells are considered the sole inhibitory output of the cerebellum, the inputs arriving to these cells are mediated by multiple interneurons. Purkinje cell dendrites synapse with glutamatergic projections coming from the granule cells, i.e., the parallel fibers. The effectiveness of these synapses is modulated by glutamatergic mossy fibers projecting to the granule cells. The inhibitory activity of the Purkinje cells is also tightly regulated by local GABAergic interneurons projecting on the cell body (basket cells) or on the dendrites (stellate cells). Stellate and basket cells also receive inputs from the parallel fibers that send inputs to the Golgi
cells, which in turn release GABA on the granule cell (Ito, 2008). The activation of the inhibitory synaptic transmission, which is triggered by Golgi cells releasing GABA that binds to extrasynaptic δ-containing GABA_AR located on granule cells is particularly evident in the cerebellum (Hanchar et al., 2005). Of note, the cerebellar granule cells are considered the most abundant class of neurons in the human brain (Purves et al., 2001). These cells are known to play a fundamental role in the regulation of neurosteroid biosynthesis and release (Follesa et al., 2000; Agís-Balboa et al., 2006), which may explain why cerebellar GABAergic transmission is particularly sensitive to the effects of alcohol (Figure 4). At the same time, this suggests that neurosteroid dysregulation may be a leading mechanism underlying AUD neuropathophysiology.

Brain-region specific alterations of GABA_AR subunits expression have been observed in postmortem human brain of individuals with AUD (Jin et al., 2012). Here, we report alcohol-induced alterations in both the synaptic and the extra-synaptic GABA_AR composition. Specifically, we observed reductions in α₂ and δ subunits mRNA expression in the PFC and cerebellum of AUD subjects when compared to controls. In agreement with our findings, chronic alcohol administration in rodents reduces α₂ subunit expression in cortex (Montpied et al., 1991) and cerebellum (Marutha Ravindran et al., 2007). Although the association between GABA_AR polymorphisms and the vulnerability for AUD has been somewhat controversial (Cui et al., 2012), genetic alteration of the synaptic α₂ receptor subunit have been associated with AUD (Edenberg et al., 2004). Thus, we focused our studies on the epigenetic mechanisms underlying the reduction of α₂ receptor subunit and found that this change was associated with a significant promoter hypermethylation, consistent with our previous study showing alteration of the methylation index in the cerebellum of AUD subjects (Gatta et al., 2017). Whether these epigenetic modifications elicited by alcohol are specific to granule cells or differ in distinct neuronal populations remains to be determined. In association with changes in neurosteroidogenic enzymes and GABA_AR subunit composition, we also observed a decrease in the neuronal (GAT1) and glial (GAT2/3) GABA transporters. We believe that this may represent a compensatory epigenetic mechanism that maintains
sufficient steady-state GABA levels at synapses during chronic alcohol intoxication. Interestingly, GAT3 expression has been shown to play a key role in alcohol preference, and reduced GAT3 expression was also observed in the central amygdala of AUD subjects when compared to control (Augier et al., 2018). Furthermore, we observed reduced GABA_{B} receptor mRNA expression in the PFC of AUD subjects. The role for GABA_{B} receptors in mediating the effects of alcohol intake has been provided by the evidence that baclofen (a GABA_{B} receptor agonist) administration decreased withdrawal symptoms in Wistar rats (Colombo et al., 2004) and AUD patients (Addolorato and Leggio, 2010). However, the association of SNPs in GABBR1 and GABBR2 genes has raised some controversy (Sander et al., 1999; Köhnke et al., 2006; Terranova et al., 2014; Caputo et al., 2017). In contrast to our observations in the PFC, Flatscher-Bader and colleagues (2005) showed increased mRNA expression of GABBR1 using cDNA microarrays. However, this study was conducted in a smaller cohort of control and AUD subjects and the investigators did not further validation of these findings. Conversely, reduced transcript levels for GABBR2 were observed in the hippocampus of alcohol dependent rats (Ribeiro et al., 2012). A growing body of evidence suggests that the conformational alteration of the GABA_{B} subunits is necessary for effective activation of these receptors (Villas Boas et al., 2012; Shaye et al., 2020), further investigation is needed to determine whether the alterations we observed could be responsible for an alcohol-induced disbalance between the two GABA_{B} subunits.

CONCLUSION

Chronic alcohol exposure alters synaptic and extrasynaptic GABA_{A}R function through changes in subunit expression resulting in altered signaling and neurosteroid sensitivity, thus contributing to alcohol tolerance and dependence (Kumar et al., 2009). Collectively, our data suggest that allopregnanolone plays a significant role in the alcohol-induced impairments of GABAergic neurotransmission. Whether changes in GABA_{A}R subunit expression result from a direct effect of alcohol or whether this is secondary to alcohol impacting neurosteroid biosynthesis remains to be further investigated. Several studies have demonstrated that alcohol addiction is associated with a loss of GABAergic inhibition, suggesting the
existence of an imbalance between excitatory and inhibitory signaling and the loss of control over neuronal firing. Thus, given the key role of allopregnanolone and pregnanolone in the fine-tuning of GABA_AR-mediated inhibition, targeting neurosteroidogenesis may be a promising therapeutic strategy for the management of AUD. Furthermore, preclinical studies have shown that treatment with the DNA methyltransferases (DNMTs) inhibitor, 5-azacytidine, reduces ethanol intake and preference (Warnault et al., 2013; Sakharkar et al., 2019), suggesting that DNA methylation is a putative target for correcting GABAergic neurotransmission and neurosteroid biosynthesis in AUD.
CONFLICT OF INTEREST
GP has two pending patent applications; one on PEA and PPAR-α agonists (US 2018/0369171) and one on allopregnanolone’s analogs in the treatment of neuropsychiatric disorders (WO 2018/237282). All other authors have no conflicts to declare.

FUNDING
This work was supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) grant P50AA022538 (Center for Alcohol Research in Epigenetics) to S.C.P. and A.G., as well as a senior VA research career scientist award to S.C.P., and by a Department of Defense Grant W81XWH-15-1-0521 to G.P.

ACKNOWLEDGEMENTS
The authors would like to thank the New South Wales Brain Tissue Resource Centre (NSW BTRC) at the University of Sydney (Australia), supported by NIH-NIAAA R28AA012725, for providing postmortem brain tissues used in this study.
REFERENCES

Addolorato G, Leggio L (2010) Safety and Efficacy of Baclofen in the Treatment of Alcohol-Dependent Patients. Curr Pharm Des 16:2113–2117.

Agis-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A 103:14602–14607.

Augier E, Barbier E, Dulman RS, Licheri V, Augier G, Domi E, Barchiesi R, Farris S, Nätt D, Mayfield RD, Adermark L, Heilig M (2018) A molecular mechanism for choosing alcohol over an alternative reward. Science 360:1321–1326.

Beattie MC, Maldonado-Devincci AM, Porcu P, O’Buckley TK, Daunais JB, Grant KA, Morrow AL (2017) Voluntary ethanol consumption reduces GABAergic neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) in the amygdala of the cynomolgus monkey. Addict Biol 22:318–330.

Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW (2009) Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci Off J Soc Neurosci 29:12757–12763.

Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575.

Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol 57:289–300.

Berkel TDM, Pandey SC (2017) Emerging Role of Epigenetic Mechanisms in Alcohol Addiction. Alcohol Clin Exp Res 41:666–680.

Bohnsack JP, Hughes BA, O’Buckley TK, Edokpolor K, Besheer J, Morrow AL (2018) Histone deacetylases mediate GABAA receptor expression, physiology, and behavioral maladaptations in rat models of alcohol dependence. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 43:1518–1529.

Brickley SG, Mody I (2012) Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron 73:23–34.

Cagetti E, Pinna G, Guidotti A, Baicy K, Olsen RW (2004) Chronic intermittent ethanol (CIE) administration in rats decreases levels of neurosteroids in hippocampus, accompanied by altered behavioral responses to neurosteroids and memory function. Neuropharmacology 46:570–579.

Caputo F, Ciminelli BM, Jodice C, Blasi P, Vignoli T, Cibin M, Zoli G, Malaspina P (2017) Alcohol use disorder and GABA B receptor gene polymorphisms in an Italian sample: haplotype frequencies, linkage disequilibrium and association studies. Ann Hum Biol 44:384–388.

Colombo G, Addolorato G, Agabio R, Carai MAM, Pibiri F, Serra S, Vacca G, Gessa GL (2004) Role of GABAB receptor in alcohol dependence: Reducing effect of baclofen on alcohol
intake and alcohol motivational properties in rats and amelioration of alcohol withdrawal syndrome and alcohol craving in human alcoholics. Neurotox Res 6:403–414.

Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci U S A 95:13284–13289.

Costa E, Guidotti A (1991) Diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci 49:325–344.

Cui W-Y, Seneviratne C, Gu J, Li MD (2012) Genetics of GABAergic signaling in nicotine and alcohol dependence. Hum Genet 131:843–855.

Dar MS (2015) Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms. Cerebellum Lond Engl 14:447–465.

Edenberg HJ et al. (2004) Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74:705–714.

Falk DE, Yi H-Y, Hilton ME (2008) Age of onset and temporal sequencing of lifetime DSM-IV alcohol use disorders relative to comorbid mood and anxiety disorders. Drug Alcohol Depend 94:234–245.

Farokhnia M, Deschaine SL, Sadighi A, Farinelli LA, Lee MR, Akhlaghi F, Leggio L (2018) A deeper insight into how GABA-B receptor agonism via baclofen may affect alcohol seeking and consumption: lessons learned from a human laboratory investigation. Mol Psychiatry.

Flatscher-Bader T, Brug M van der, Hwang JW, Gochee PA, Matsumoto I, Niwa S, Wilce PA (2005) Alcohol-responsive genes in the frontal cortex and nucleus accumbens of human alcoholics. J Neurochem 93:359–370.

Follesa P, Biggio F, Talani G, Murru L, Serra M, Sanna E, Biggio G (2006) Neurosteroids, GABAA receptors, and ethanol dependence. Psychopharmacology (Berl) 186:267–280.

Follesa P, Serra M, Cagetti E, Pisu MG, Porta S, Floris S, Massa F, Sanna E, Biggio G (2000) Allopregnanolone synthesis in cerebellar granule cells: roles in regulation of GABA(A) receptor expression and function during progesterone treatment and withdrawal. Mol Pharmacol 57:1262–1270.

Fritschy J-M, Panzanelli P (2014) GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 39:1845–1865.

Gatta E, Auta J, Gavin DP, Bhaumik DK, Grayson DR, Pandey SC, Guidotti A (2017) Emerging Role of One-Carbon Metabolism and DNA Methylation Enrichment on δ-Containing GABAA Receptor Expression in the Cerebellum of Subjects with Alcohol Use Disorders (AUD). Int J Neuropsychopharmacol 20:1013–1026.
Gatta E, Grayson DR, Auta J, Saudagar V, Dong E, Chen Y, Krishnan HR, Drnevich J, Pandey SC, Guidotti A (2019) Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1). Mol Psychiatry:1–13.

Gavin DP, Sharma RP, Chase KA, Matrisciano F, Dong E, Guidotti A (2012) Growth Arrest and DNA-Damage-Inducible, Beta (GADD45b)-Mediated DNA Demethylation in Major Psychosis. Neuropsychopharmacology 37:531–542.

Hájos N, Nusser Z, Rancz EA, Freund TF, Mody I (2000) Cell type- and synapse-specific variability in synaptic GABAA receptor occupancy. Eur J Neurosci 12:810–818.

Hanchar HJ, Dodson PD, Olsen RW, Otis TS, Wallner M (2005) Alcohol-induced motor impairment caused by increased extrasynaptic GABA(A) receptor activity. Nat Neurosci 8:339–345.

Hasirci AS, Maldonado-Devincci AM, Beattie MC, O’Brien TK, Morrow AL (2017) Cellular GABAergic Neuroactive Steroid (3α,5α)-3-Hydroxy-Pregnan-20-One (3α,5α-THP) Immunostaining Levels Are Increased in the Ventral Tegmental Area of Human Alcohol Use Disorder Patients: A Postmortem Study. Alcohol Clin Exp Res 41:299–311.

Hosie AM, Wilkins ME, da Silva HMA, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489.

Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313.

Jin Z, Bazov I, Kononenko O, Korpi ER, Bakalkin G, Birnin B (2012) Selective Changes of GABAA Channel Subunit mRNAs in the Hippocampus and Orbitofrontal Cortex but not in Prefrontal Cortex of Human Alcoholics. Front Cell Neurosci 5 Available at: https://www.frontiersin.org/articles/10.3389/fncel.2011.00030/full [Accessed October 30, 2019].

Keedwell PA, Kumari V, Poon L, Marshall EJ, Checkley SA (2001) Information processing deficits in withdrawing alcoholics. Addict Biol 6:239–245.

Khisti RT, Penland SN, VanDoren MJ, Grobin AC, Morrow AL (2002) GABAergic neurosteroid modulation of ethanol actions. World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry 3:87–95.

Köhnke M, Schick S, Lutz U, Köhnke A, Vonthein R, Kolb W, Batra A (2006) GENETIC STUDY: The polymorphism GABABR1 T1974C [rs29230] of the GABAB receptor gene is not associated with the diagnosis of alcoholism or alcohol withdrawal seizures. Addict Biol 11:152–156.

Korpi ER, Debus F, Linden A-M, Malécot C, Leppä E, Vekovischeva O, Rabe H, Böhme I, Aller MI, Wisden W, Lüddens H (2007) Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous. Alcohol 41:163–176.
Korpi ER, Mäkelä R, Romeo E, Guidotti A, Uusi-Oukari M, Furnari C, di Michele F, Sarviharju M, Xu M, Rosenberg PH (2001) Increased behavioral neurosteroid sensitivity in a rat line selectively bred for high alcohol sensitivity. Eur J Pharmacol 421:31–38.

Kostadinov D, Beau M, Blanco-Pozo M, Häusser M (2019) Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci 22:950–962.

Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL (2009) The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 205:529–564.

Locci A, Pinna G (2017) Neurosteroid biosynthesis down-regulation and changes in GABAA receptor subunit composition: a biomarker axis in stress-induced cognitive and emotional impairment. Br J Pharmacol 174:3226–3241.

Locci A, Pinna G (2019) Stimulation of Peroxisome Proliferator-Activated Receptor-α by N-Palmitoylethanolamine Engages Allopregnanolone Biosynthesis to Modulate Emotional Behavior. Biol Psychiatry 85:1036–1045.

Maccioni P, Colombo G (2019) Potential of GABAB Receptor Positive Allosteric Modulators in the Treatment of Alcohol Use Disorder. CNS Drugs 33:107–123.

Maccioni P, Fara F, Lorrai I, Acciaro C, Mugnaini C, Corelli F, Colombo G (2019) Suppressing effect of CMPPE, a new positive allosteric modulator of the GABAB receptor, on alcohol self-administration and reinstatement of alcohol seeking in rats. Alcohol 75:79–87.

Madsen KK, Larsson OM, Schousboe A (2008) Regulation of Excitation by GABA Neurotransmission: Focus on Metabolism and Transport. In: Inhibitory Regulation of Excitatory Neurotransmission (Darlison MG, ed), pp 201–221 Results and Problems in Cell Differentiation. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/400_2007_036 [Accessed November 5, 2019].

Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804.

Maldonado-Dévinci AM, Cook JB, O’Buckley TK, Morrow DH, McKinley RE, Lopez MF, Becker HC, Morrow AL (2014) Chronic intermittent ethanol exposure and withdrawal alters (3α,5α)-3-hydroxy-pregnan-20-one immunostaining in cortical and limbic brain regions of C57BL/6J mice. Alcohol Clin Exp Res 38:2561–2571.

Marutha Ravindran CR, Mehta AK, Ticku MK (2007) Effect of chronic administration of ethanol on the regulation of the δ-subunit of GABAA receptors in the rat brain. Brain Res 1174:47–52.

Mehta AK, Marutha Ravindran CR, Ticku MK (2007) Low concentrations of ethanol do not affect radioligand binding to the delta-subunit-containing GABAA receptors in the rat brain. Brain Res 1165:15–20.
Mihalek RM, Bowers BJ, Wehner JM, Kralic JE, VanDoren MJ, Morrow AL, Homanics GE (2001) GABAA-Receptor δ Subunit Knockout Mice Have Multiple Defects in Behavioral Responses to Ethanol. Alcohol Clin Exp Res 25:1708–1718.

Montpied P, Morrow AL, Karanian JW, Ginns EI, Martin BM, Paul SM (1991) Prolonged ethanol inhalation decreases gamma-aminobutyric acidA receptor alpha subunit mRNAs in the rat cerebral cortex. Mol Pharmacol 39:157–163.

Morrow AL, Boero G, Porcu P (2020) A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 44:320–339.

Nusser Z, Ahmad Z, Tretter V, Fuchs K, Wisden W, Sieghart W, Somogyi P (1999) Alterations in the expression of GABA receptor subunits in cerebellar granule cells after the disruption of the α6 subunit gene. Eur J Neurosci 11:1685–1697.

Olsen RW (2018) GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology 136:10–22.

Pinna G, Costa E, Guidotti A (2004) Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc Natl Acad Sci U S A 101:6222–6225.

Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM (2001) Circuits within the Cerebellum. Neurosci 2nd Ed Available at: https://www.ncbi.nlm.nih.gov/books/NBK10865/ [Accessed February 12, 2020].

Ribeiro AF, Correia D, Torres AA, Boas GRV, Rueda AVL, Camarini R, Chiavegatto S, Boerngen-Lacerda R, Brunialti-Godard AL (2012) A transcriptional study in mice with different ethanol-drinking profiles: Possible involvement of the GABAB receptor. Pharmacol Biochem Behav 102:224–232.

Rupprecht R et al. (2009) Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 325:490–493.

Sakharkar AJ, Kyzar EJ, Gavin DP, Zhang H, Chen Y, Krishnan HR, Grayson DR, Pandey SC (2019) Altered amygdala DNA methylation mechanisms after adolescent alcohol exposure contribute to adult anxiety and alcohol drinking. Neuropharmacology 157:107679.

Sander T, Peters C, Kämmer G, Samochowiec J, Zirra M, Mischke D, Ziegler A, Kaupmann K, Bettler B, Epplen JT, Riess O (1999) Association analysis of exonic variants of the gene encoding the GABAB receptor and idiopathic generalized epilepsy. Am J Med Genet 88:305–310.

Schousboe A, Sarup A, Larsson OM, White HS (2004) GABA transporters as drug targets for modulation of GABAergic activity. Biochem Pharmacol 68:1557–1563.

Shaye H, Ishchenko A, Lam JH, Han GW, Xue L, Rondard P, Pin J-P, Katritch V, Gati C, Cherezov V (2020) Structural basis of the activation of a metabotropic GABA receptor. Nature:1–6.
Sheedy D, Garrick T, Dedova I, Hunt C, Miller R, Sundqvist N, Harper C (2008) An Australian Brain Bank: a critical investment with a high return! Cell Tissue Bank 9:205–216.

Tabakoff B, Hoffman PL (2013) The neurobiology of alcohol consumption and alcoholism: an integrative history. Pharmacol Biochem Behav 113:20–37.

Terranova C, Tucci M, Di Pietra L, Ferrara SD (2014) GABA Receptors Genes Polymorphisms and Alcohol Dependence: No Evidence of an Association in an Italian Male Population. Clin Psychopharmacol Neurosci 12:142–148.

Torres JM, Ortega E (2003) Alcohol intoxication increases allopregnanolone levels in female adolescent humans. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 28:1207–1209.

Torres JM, Ortega E (2004) Alcohol intoxication increases allopregnanolone levels in male adolescent humans. Psychopharmacology (Berl) 172:352–355.

Uusi-Oukari M, Korpi ER (2010) Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 62:97–135.

Uzunov DP, Cooper TB, Costa E, Guidotti A (1996) Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci U S A 93:12599–12604.

Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A (1998) Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci 95:3239–3244.

Valenzuela CF, Jotty K (2015) Mini-Review: Effects of Ethanol on GABAA Receptor-Mediated Neurotransmission in the Cerebellar Cortex—Recent Advances. Cerebellum Lond Engl 14:438–446.

VanDoren MJ, Matthews DB, Janis GC, Grobin AC, Devaud LL, Morrow AL (2000) Neuroactive steroid 3alpha-hydroxy-5alpha-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci Off J Soc Neurosci 20:1982–1989.

Villas Boas GR, Zamboni CG, Peretti MC, Correia D, Rueda AVL, Camarini R, Brunialti-Godard AL, Boerngen-Lacerda R (2012) GABAB receptor agonist only reduces ethanol drinking in light-drinking mice. Pharmacol Biochem Behav 102:233–240.

Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L (2017) Cerebellar granule cells encode the expectation of reward. Nature 544:96–100.

Walker BM, Koob GF (2007) The γ-Aminobutyric Acid-B Receptor Agonist Baclofen Attenuates Responding for Ethanol in Ethanol-Dependent Rats. Alcohol Clin Exp Res 31:11–18.

Warnault V, Darcq E, Levine A, Barak S, Ron D (2013) Chromatin remodeling—a novel strategy to control excessive alcohol drinking. Transl Psychiatry 3:e231.
FIGURE LEGENDS

Figure 1 - Cerebellar neurosteroidogenesis in individuals with alcohol use disorder (AUD).
(A) allopregnanolone ($t_{1,25} = 3.1, p = 0.005$) and (B) pregnanolone ($t_{1,25} = 4.4, p = 0.0002$) cerebellar levels (pg/g of tissue). mRNA expression of (C) 18 kDa translocator protein (TSPO, $t_{1,37} = 3.3, p = 0.002$), Mitochondrial Cholesterol Side-Chain Cleavage Enzyme (p450scc, $t_{1,37} = 1.2, p = 0.2$), 3β-hydroxysteroid dehydrogenase (3β- HSD, $t_{1,37} = 1.3, p = 0.2$), and 3α-HSD ($t_{1,37} = 2.3, p = 0.03$). Methylation levels measured by methylated DNA immunoprecipitation (MeDIP) of 3α-hydroxysteroid dehydrogenase (3α-HSD) (D) main promoter (from -1743 to -1594 bp: $t_{1,35} = 3.6, p = 0.0008$; -1579 to -1430 bp: $t_{1,35} = 2.1, p = 0.04$; -43 to +56 bp: $t_{1,35} = 0.15, p = 0.88$), (E) upstream promoter (from -424 to -325bp: $t_{1,38} = 3.6, p = 0.0009$; from -153 to -52bp: $t_{1,38} = 2.4, p = 0.02$). Methylation levels of 3α-HSD upstream promoter (-153 to -52 bp) negatively correlated with ethanol daily consumption ($r=0.31, p=0.049$), no significant correlation was observed with the number of standard drinks per week or the drinking years. These correlations were not significant when only considering the AUD group. Values are mean ± SEM of 12 control and 16 AUD samples for neurosteroid measurement, 18-20 samples per group for mRNA expression and 17-20 samples per group for DNA methylation levels determination depending on samples availability. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, Student’s t-test vs. controls.

Figure 2 - GABA$_A$ receptor α_2 subunit protein levels and promoter methylation in cerebellum of individuals with alcohol use disorder (AUD).
(A) Protein levels of GABA$_A$ receptor subunit α_2 measured as ratio of α_2/GAPDH optical density (O.D.) expressed as percent of controls ($t_{1,38} = 2.03, p = 0.049$). Representative western blots are shown on the right side. Methylation levels measured by methylated DNA immunoprecipitation (MeDIP) of GABA$_A$ receptor subunit α_2 (GABRA2) (B) main promoter region (from -1202 to -1091 bp: $t_{1,35} = 0.27, p = 0.79$; -332 to -232 bp: $t_{1,35} = 2.61, p = 0.01$ -45 bp to +67 bp: $t_{1,35} = 2.73, p = 0.0098$), (C) upstream promoter (from -731 to -649bp: $t_{1,38} = 2.15, p = 0.04$; from -91 to +12bp: $t_{1,38} = 2.15, p = 0.04$). GABA$_A$R α_2 upstream promoter methylation levels at both measured locations inversely correlated with protein expression (-731 to -649bp, r=-0.4, p=0.01; -91 to +12bp, r=-0.39, p=0.01). No significant correlation was observed with α_2 mRNA expression ($r=-0.08, p=0.59$; $r=-0.08, p=0.61$, respectively). Values are mean ± SEM of 19-20 samples per group for protein levels. 17-20 samples per group were used for DNA methylation levels determination depending on samples availability. * $p < 0.05$, ** $p < 0.01$, Student’s t-test vs. controls.
Figure 3 - Characterization of the cerebellar GABAergic synapse in individuals with alcohol use disorder (AUD).

mRNA expression of (A) high affinity GABA transporters 1 (GAT1, $t_{1,37} = 2.5, p = 0.02$), (B) GAT2 ($t_{1,37} = 2.5, p = 0.02$), (C) GAT3 ($t_{1,37} = 2.2, p = 0.03$), (D) glutamate decarboxylase 2 (GAD2, $t_{1,37} = 2.9, p = 0.005$) and (E) GABA-transaminase (ABAT, $t_{1,37} = 1.2, p = 0.2$). Values are mean ± SEM of 19-20 samples per group. * $p < 0.05$, ** $p < 0.01$, Student’s t-test vs. controls.

Figure 4 - Schematic representation of the effect of alcohol on GABAergic synapse and neurosteroid synthesis via DNA methylation mechanisms.

γ-aminobutyric acid (GABA) is synthesized by glutamate decarboxylases (GAD). Upon release from GABAergic interneurons, GABA acts on synaptic (phasic) and extrasynaptic (tonic) GABA$_\text{A}$ receptors (GABA$_\text{A}$R). Synaptic GABA levels are maintained by high affinity transporters located in the presynaptic GABAergic interneurons (GAT1) as well as in surrounding astrocytes (GAT2/3). Allopregnanolone (Allo), released by glutamatergic neurons, plays a key role in facilitating GABA$_\text{A}$R-mediated inhibition.

The synthesis of Allo results from the transport of cholesterol to the outer membrane of the mitochondria by the 18kDa translocator protein (TSPO), where it will be converted by the mitochondrial cholesterol side-chain cleavage enzyme (p450scc) into pregnenolone (PE). In glutamatergic neurons, PE will then be metabolized by the 3β-hydroxysteroid dehydrogenase (3β-HSD) into progesterone (Prog), which by the action of type-1 5α-reductase (5α-R1) will be converted into 5α-Dihydroprogesterone (5α-DHP). 3α-HSD will then convert 5α-DHP into Allo. The function of GABAergic synapses is altered by chronic alcohol consumption, which increases DNA methylation (Me, hypermethylation) with a consequent downregulation of the rate-limiting steps of Allo biosynthesis (as indicated by the red arrows) and alteration of GABA$_\text{A}$R subunit composition. Chronic alcohol exposure also affects GAT expression in the cerebellum (indicated by red crosses). Created with BioRender.com
Table 1. mRNA expression of GABA\textsubscript{A} (GABA\textsubscript{A}R) and GABA\textsubscript{B} (GABA\textsubscript{B}R) receptor subunits in the prefrontal cortex (PFC, BA10), hippocampus (HPC), striatum (STR), cerebellum (CB) of control (CONT) and alcohol use disorder (AUD) subjects. Values are mean±SEM of 19-20 subjects per group, † these data were part of our previously published study and have been revised to include only the males of the same cohort (Gatta et al., 2017). In cerebellum, similar results were obtained with two different set of primers targeting GABA\textsubscript{A}R \(\alpha_2\) subunit (see Table S2). Values are mean ± SEM of 19-20 samples per group *\(p<0.05\), **\(p<0.01\). Student’s t-test vs. control. \(\alpha_6\) mRNA levels were not detectable in the HPC in our experimental conditions (ND).

	\(\alpha_1\)	\(\alpha_2\)	\(\alpha_4\)	\(\alpha_5\)	\(\alpha_6\)	\(\delta\)	\(1\)	\(2\)
PF								
CO	1.00±0.	1.00±0.07	1.00±	1.00±	1.00±0.	1.00±0.	1.00±	1.00±
NT	04		0.09	0.11	14	12	05	06
AU	0.95±0.		0.77±0.06*	0.85±0.	0.64±0.	0.71±0.	05*	03**
D	04		0.08	0.08	**06*	05*	04*	03**
HPC								
CO	1.00±0.	0.84±0.07	1.00±	0.89±	1.00±0.	1.00±0.	1.00±	1.00±
NT	08		0.07	0.07	0.07	0.07	05	06
AU	1.00±0.		1.00±	0.89±	0.71±0.	0.71±0.	05	06
D	09		1.00±	0.89±	0.71±0.	0.71±0.	05	06
STR								
CO	1.00±0.	1.00±0.15	1.00±	1.00±	1.00±0.	1.00±0.	1.00±	1.00±
NT	16		0.10	0.16	13	21	06	15
AU	0.82±0.		1.07±	0.81±0.8	1.07±0.	1.12±0.	06	15
D	07		0.12	0.32	12	21	06	15
CB								
CO	1.00±0.	1.00±0.11/1.0	1.00±	1.00±	1.00±0.	1.00±0.	1.00±	1.00±
NT	11†		0.13	0.15	0.99±0.	0.75±0.	05	05
AU	0.92±0.		1.11±	1.40±	0.99±0.	0.99±0.	05	05
D	07		5.0±0.08*	0.24	13	07*	05	04
Neurosteroids

A.

[Graph showing Allopregnanolone (pg/g of tissue) for CONT and AUD groups.]

B.

[Graph showing Pregnanolone (pg/g of tissue) for CONT and AUD groups.]

C. Neurosteroidogenesis

[Graph showing mRNA expression (Fold of control) for TSPO, P450sc, 3β-HSD, and 3α-HSD.]

D. 3α-HSD DNA methylation levels main promoter

[Graph showing 3α-HSD MeCpG/IP (as % of control) for different regions.]

E. 3α-HSD DNA methylation levels upstream promoter

[Graph showing 3α-HSD MeCpG/IP (as % of control) for different regions.]

Figure 1
Figure 2

A. GABA$_A$ α_2 subunit protein levels

B. GABA$_A$ α_2 subunit DNA methylation levels
 main promoter

C. GABA$_A$ α_2 subunit DNA methylation levels
 upstream promoter
Cerebellar synaptic regulation of GABA steady-state

Figure 3
