1 Transfer entropy and its estimation from data.

Let \(\{X_t\} \) and \(\{Y_t\} \) be two strong-sense stationary stochastic processes. Recall that a stochastic process is strong-sense stationary if the joint distribution for the process evaluated at finitely many time points is invariant to an overall timeshift [3]. In our work, these would correspond to the activities, \(X_t(u) \) and \(X_t(v) \), of two users \(u \) and \(v \). We use the notation \(X_{t-k} \) to denote the values of the stochastic process from time \(t-k \) to time \(t \), \(X_{t-k} = (X_{t-k}, X_{t-(k-1)}, \ldots, X_{t-1}, X_t) \). The lag-\(k \) transfer entropy [6] of \(Y \) on \(X \) is defined as

\[
TE_{Y \rightarrow X}^{(k)} = H[X_t|X_{t-k}^{t-1}] - H[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}],
\]

where

\[
H[X_t|X_{t-k}^{t-1}] = -E[\log_2 p(X_t|X_{t-k}^{t-1})]
\]

and

\[
H[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}] = -E[\log_2 p(X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1})]
\]

are the usual conditional entropies over the conditional (predictive) distributions \(p(x_t|x_{t-k}^{t-1}) \) and \(p(x_t|x_{t-k}^{t-1}, y_{t-k}^{t-1}) \). This formulation was originally developed in [6], where transfer entropy was proposed as an information theoretic measure of directed information flow. Formally, recalling that \(H[X_t|X_{t-k}^{t-1}] \) is the uncertainty in \(X_t \) given its values at the previous \(k \) time points, and that \(H[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}] \) is the uncertainty in \(X_t \) given the joint process \(\{(X_t,Y_t)\} \) at the previous \(k \) time points, transfer entropy measures the reduction in uncertainty of \(X_t \) by including information about \(Y_{t-k}^{t-1} \), controlling for the information in \(X_{t-k}^{t-1} \). By the ‘conditioning reduces entropy’ result [1]

\[
H[X|Y,Z] \leq H[X|Y],
\]

we can see that transfer entropy is always non-negative, and is zero precisely when

\[
H[X_t|X_{t-k}^{t-1}] = H[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}],
\]

in which case knowing the past \(k \) lags of \(Y_t \) does not reduce the uncertainty in \(X_t \). If the transfer entropy is positive, then \(\{Y_t\} \) is considered causal for \(\{X_t\} \) in the Granger sense [2].

When estimating transfer entropy from finite data, we will assume that the process \(\{(X_t,Y_t)\} \) is jointly stationary, which gives us that

\[
p(x_t|x_{t-k}^{t-1}) = p(x_{t+1}|x_1^{k})
\]
and
\[p(x_t|x_{t-k}^{t-1}, y_{t-k}^{t-1}) = p(x_{k+1}|x_1^k, y_1^k) \]
(6)
for all \(t \). That is, the predictive distribution only depends on the past, not on when the past is observed. Given this assumption, we compute estimators for \(p(x_{k+1}|x_1^k) \) and \(p(x_{k+1}|x_1^k, y_1^k) \) by ‘counting’: for each possible marginal and joint past \(x_1^k \) and \((x_1^k, y_1^k) \), we count the number of times a future of type \(x_{k+1} \) occurs, and normalize to obtain the appropriate estimators of the one-step-ahead predictive distributions. Call these estimators \(\hat{p}(x_{k+1}|x_1^k) \) and \(\hat{p}(x_{k+1}|x_1^k, y_1^k) \). Then the plug-in estimator for the transfer entropy is
\[\hat{TE}_{Y \rightarrow X}^{(k)} = \hat{H}[X_t|X_{t-k}^{t-1}] - \hat{H}[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}] \]
(7)
where we use the plug-in estimators \(\hat{H}[X_t|X_{t-k}^{t-1}] \) and \(\hat{H}[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}] \) for the entropies. It is well known that the plug-in estimator for entropy is biased [5]. To account for this bias, we use the Miller-Madow adjustment to the plug-in estimator [4]. For a random variable \(X \) taking on finitely many values from an alphabet \(\mathcal{X} \), the Miller-Madow estimator is
\[\tilde{H}[X] = \hat{H}[X] + \frac{|	ilde{X}| - 1}{2n} \]
(8)
where \(|\tilde{X}|\) is the number of observed symbols from the alphabet \(\mathcal{X} \) and \(n \) was the number of samples used to estimate \(\hat{H}[X] \). The definition of transfer entropy (1) can be rewritten in terms of joint entropies as
\[TE_{Y \rightarrow X}^{(k)} = \hat{H}[X_t|X_{t-k}^{t-1}] - \hat{H}[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}] \]
(9)
\[= \hat{H}[X_t, X_{t-k}^{t-1}] - \hat{H}[X_t, X_{t-k}^{t-1}, Y_{t-k}^{t-1}] + \hat{H}[X_{t-k}^{t-1}, Y_{t-k}^{t-1}], \]
(10)
We then apply the Miller-Madow adjustment individually to each of the entropy terms. For example, for the first term, we have
\[\tilde{H}[X_t, X_{t-k}^{t-1}] = \tilde{H}[X_{t-k}^{t-1}] = \hat{H}[X_{t-k}^{t-1}] + \frac{|	ilde{X}_k| - 1}{2n}, \]
(11)
where \(|\tilde{X}_k|\) is the number of \((k+1)\)-tuples we actually observe (of the \(2^k \) possible tuples). Doing this for each term, the overall Miller-Madow estimator for the transfer entropy is
\[\tilde{TE}_{Y \rightarrow X}^{(k)} = \tilde{H}[X_t|X_{t-k}^{t-1}] - \tilde{H}[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}] \]
(12)
\[= \tilde{H}[X_t, X_{t-k}^{t-1}] - \tilde{H}[X_t, X_{t-k}^{t-1}, Y_{t-k}^{t-1}] + \tilde{H}[X_{t-k}^{t-1}, Y_{t-k}^{t-1}], \]
(13)
One possible problem with this estimator is that it can result in negative estimates of entropies. That usually occurs when \(\tilde{H} \) is very small. In these cases, we set the estimator to zero.

References

[1] Thomas M Cover and Joy A Thomas. Elements of information theory. Wiley-Interscience, 2006.
[2] Clive William John Granger. Economic processes involving feedback. Inform. Control, 6(1):28–48, 1963.
[3] Geoffrey Grimmett and David Stirzaker. Probability and random processes. Oxford University Press, 2001.
[4] George A Miller. Note on the bias of information estimates. In H Quastler, editor, Information theory in psychology II-B, pages 95–100. Glencoe, Illinois: Free Press, 1955.
[5] Liam Paninski. Estimation of entropy and mutual information. Neural Comput., 15(6):1191–1253, 2003.
[6] Thomas Schreiber. Measuring information transfer. Phys. Rev. Lett., 85(2):461–464, 2000.