COVID-19 and Cancer: A Comparative Case Series

seied Asadollah Mousavi
Tehran University of Medical Sciences

Tahereh Rostami
Tehran University of Medical Sciences

Azadeh Kiumarsi
Tehran University of Medical Sciences

Soroush Rad
Tehran University of Medical Sciences

Mohammadreza Rostami
Tehran University of Medical Sciences

Fatemeh Motamedi
Tehran University of Medical Sciences

Alireza Gandomi-Mohammadabadi
Iran University of Medical Sciences

Amirhossein Mirhosseini (✉ Amir.mir85@gmail.com)
Tehran University of Medical Sciences https://orcid.org/0000-0002-8950-9094

Research Article

Keywords: SARS-COV 2, COVID-19, Cancer patients

DOI: https://doi.org/10.21203/rs.3.rs-41710/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Cancer patients, with an incidence of more than 18 million new cases per year, may constitute a significant portion of the COVID-19 infected population. In the pandemic situation, these patients are considered highly vulnerable to infectious complications due to their immunocompromised state.

Material & Methods

In this retrospective case series, the documents of solid cancer patients infected by SARS-CoV-2, hospitalized in Shariati hospital (a tertiary care referral center designated for COVID-19 patients, affiliated by Tehran University of Medical Sciences) between 20 February and 20 April 2020, were evaluated. The diagnosis of COVID-19 was based on a positive real-time fluorescence reverse transcription-polymerase chain reaction (RT-PCR) for SARS-CoV-2 nucleic acids from nasal and/or pharyngeal specimens and/or features of chest CT scan highly suggestive for SARS-CoV-2.

Results

Among 33 patients with solid cancer, 11 patients had a positive RT-PCR for SARS-CoV-2 and 22 patients had highly suggestive chest CT scan findings in favor of SARS-CoV-2 but negative RT-PCR. The mean age of the patients was 63.9 years, and 54.5% of the patients were males. Age and sex of the patients did not correlate with mortality. There was no difference in COVID-19 symptoms, lymphocytopenia, thrombocytopenia between survived and un-survived cancer patients. However, LDH level was significantly higher (7170±2077 vs. 932.3±324.7, P-value=0.016) and also serum albumin was significantly lower in un-survived group (3.6±0.5 vs. 2.9±0.6 p-value=0.03). Among 16 patients with stage IV cancer, thirteen patients died, which was significantly higher compared to stage I-III cancer patients (81.3% vs. 18.8% P-value= <0.001). In terms of developing complications, sepsis, invasive ventilation and mortality was significantly higher in patients who received cytotoxic chemotherapy within the last 14 days. There was no significant difference between the two groups of positive and negative SARS-CoV-2 RT-PCR regarding their sex, age, cancer type, mean Hemoglobin concentration, Platelet count, lymphocyte count, serum albumin level, ESR and CRP titer or other laboratory findings and also in terms of clinical symptoms and coexisting.

Conclusion

In this study, we showed that the mortality rate among cancer patients affected by COVID-19 was higher than general population and this rate has a significant correlation with factors such as the stage of the disease, the type of cancer, the activity of cancer and finally receiving cytotoxic chemotherapy within 14 days before diagnosis of COVID-19. We also showed that the outcome of cancer patients with positive RT-PCR for COVID-19 similar to those with negative RT-PCR with highly suggestive chest CT scan findings.
Introduction

The outbreak of coronavirus disease 2019 (COVID-19) within the viral background of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), which is a novel single-stranded enveloped RNA virus, was first reported in the city of Wuhan, China in December 2019 (1).

Until now, six coronaviruses have been known to infect humans, including two aggressive strains, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), with a fatality rate of about 10% and 34%, respectively (2, 3). However, the fatality rate of SARS-COV-2 in China, has been reported to be 2.3% with a high transmission rate (4). Accordingly, World Health Organization (WHO) declared COVID-19 as a public health emergency with international concern. As of June 2020, this virus has affected more than 216 countries, infecting more than 8,242,999 individuals and causing over 445,535 deaths (5).

Cancer patients, with an incidence of more than 18 million new cases per year, may constitute a significant portion of the COVID-19 infected population (6). In the pandemic situation, these patients are considered highly vulnerable to infectious complications due to their immunocompromised state (7). On the other hand, immunomodulator agents such as programmed cell death (PD) and PD ligand-1 proteins inhibitors, could cause a more severe immune reaction to COVID-19. Moreover, advanced age, poor functional status and frequent hospital visits, could increase the morbidity and mortality of COVID-19 in cancer patients (8).

Therefore, it is imperative to clear the clinical course and the outcomes of cancer patients infected by COVID-19, and the safety of receiving antineoplastic treatments as usual in the outbreak period. In this retrospective case study, we presented the clinical data, laboratory features and outcomes of hospitalized COVID-19 cancer patients.

Material And Methods

Study design and participants

In this retrospective case series, the documents of solid cancer patients infected by SARS-CoV-2, hospitalized in Shariati hospital (a tertiary care referral center designated for COVID-19 patients, affiliated by Tehran University of Medical Sciences) between 20 February and 20 April 2020, were evaluated. The diagnosis of COVID-19 was based on a positive real-time fluorescence reverse transcription-polymerase chain reaction (RT-PCR) for SARS-CoV-2 nucleic acids from nasal and/or pharyngeal specimens and/or features of chest CT scan highly suggestive for SARS-CoV-2 (i.e. the presence of ground glass opacities (GGO), typically with a peripheral and subpleural distribution)(9). Patients were hospitalized according to the following criteria: prolonged fever (> 5 days), respiratory distress (respiratory rate > 24 breaths/min), hypoxia (oxygen saturation ≤ 94% at rest) and hypotension (systolic blood pressure ≤ 90 mmHg) (2). Severe clinical events were defined as intensive care unit (ICU) admission, mechanical ventilation necessity, or death(10). Clinical features, laboratory findings, and chest computed tomography (CT)
images were collected. Moreover, history of antineoplastic treatments and comorbidities of the patients, including chronic obstructive pulmonary disease (COPD), hypertension, and diabetes mellitus (DM), were recorded.

This study was approved under the registration number: IR TUMS.VCR.REC 1399 - 395, by the Ethics committee of Tehran University of Medical Sciences.

Statistical analysis

For descriptive analysis, continuous variables were presented as the mean with standard deviation as appropriate. Categorical variables are presented as number (%). The Shapiro Wilk test was used to test the normality of data distribution. The χ^2 test or Fisher's exact test was used for analysis of categorical data, and the Student t-test or Wilcoxon rank-sum tests were used for continuous data. All statistical analysis was carried out using SPSS Statistics version 26.0 (IBM, New York, NY). A two-side P-value < 0.05 was considered statistically significant.

Results

Between 20 February to 20 April 2020, out of a total of 580 patients admitted in specialized ward for COVID-19 of Shariati hospital, 33 patients had a history of solid cancers (5.68%). Among these, 11 patients had a positive RT-PCR for SARS-CoV-2 and 22 patients had highly suggestive chest CT scan findings in favor of SARS-CoV-2 but negative RT-PCR. The mean age of the patients was 63.9 years, and 54.5% of the patients were males. Age and sex of the patients did not correlate with mortality (P-value = 0.312 and 0.22 respectively). Demographic and clinical features of these patients are summarised in Table 1.
Table 1
Demographic and laboratory data in the patients.

	Total (n = 33)	Survived (n = 17)	Un-survived (n = 16)	P value
Mean age ± SD	63.9 ± 11.98	66.9 ± 12.8	60.7 ± 10.5	> 0.05
Interval from fever onset to dyspnea onset (day)	4.1 ± 4.1	4.69 ± 3.75	3 ± 4.86	> 0.05
Symptoms and signs at on admission				
Fever	20 (60.6)	13 (76.5)	7 (43.8)	> 0.05
Cough	16 (48.5)	9 (52.9)	7 (43.8)	> 0.05
Serum Biomarkers				
Neutrophil × 10^9/L	102.3 ± 7.8	72.1 ± 24.8	84.3 ± 6.8	> 0.05
Lymphocyte × 10^9/L	11.8 ± 10.3	13.8 ± 13	9.6 ± 5.8	> 0.05
Platelet × 10^9/L	176 ± 138	209 ± 152	140 ± 116	> 0.05
Neutrophil-to-lymphocyte ratio (NLR)	12.9 ± 11.7	10.9 ± 9.5	15 ± 13.7	> 0.05
Lymphocyte-to-C-reactive protein ratio (LCR)	42.9 ± 154.8	65.2 ± 214.8	19.3 ± 26.9	> 0.05
Platelet-to-lymphocyte ratio (PLR)	587.8 ± 1478.5	817.5 ± 2024.1	343.8 ± 412.1	> 0.05
Serum Albumin (g/dL)	3.2 ± 0.7	3.6 ± 0.5	2.9 ± 0.6	0.03
LDH (U/L)	1487.5 ± 1392.8	932.3 ± 324.7	7170 ± 2077	0.016
ESR (mm/hr)	69.1 ± 34.9	64.1 ± 34.5	131 ± 74.4	> 0.05
CRP (mg/L)	90.2 ± 58.7	97.6 ± 68.4	2220 ± 82.3	> 0.05

Regarding to laboratory findings, blood count results, at the time of admission showed anemia (i.e. Hb < 12 mg/dl) in 26 (78.78%) patients, lymphocytopenia (absolute lymphocyte count < 1000/µL) in 23 (69.69%) and thrombocytopenia (platelet count Less than 150000/µL) in 14 (42.42%) patients. Mean Neutrophil-to-lymphocyte ratio (NLR) was 12.9. Elevated erythrocyte sedimentation rate (i.e. > 30 mm/hour) was found in 27 patients (81.81%), high C-reactive protein (i.e. > 10 mg/L) levels in 31 patients (93.93%), high levels of lactate dehydrogenase (i.e. > 280 unit/L) in 30 patients (90.90%) and low levels of serum albumin (i.e. < 3.5 g/dL) in 29 patients (87.87%).

There was no difference in COVID-19 symptoms, lymphocytopenia, thrombocytopenia between survived and un-survived cancer patients. However, LDH level was significantly higher (7170 ± 2077 vs. 932.3 ±
324.7, P-value = 0.016) and also serum albumin was significantly lower in un-survived group (3.6 ± 0.5 vs. 2.9 ± 0.6 p-value = 0.03).

The mean length of hospitalization was 7.7 days (range 1.0–30.0) and the mean time from the symptoms onset to admission in COVID-19 unit was 4.34 days (range 0–14.0 days).

Mortality rate was significantly higher in 18 patients who received cytotoxic chemotherapy within the last 14 days (72% vs. 20%, P-value: 0.03) and they had also significantly shorter mean time from admission to death compared with 15 patients who undergone cancer treatment more than two weeks before their admission due to COVID-19 or not given cytotoxic chemotherapy within the last 14 days (5.62 ± 4.7 days vs 18.5 ± 16.2 days P-value: 0.02).

In terms of developing complications, although sepsis was significantly higher in patients who received cytotoxic chemotherapy within the last 14 days (50% vs. 13% P-value: 0.026), occurrence of ARDS, AMI (acute myocardial infarction) and PTE were not significantly different between the two groups (P-value > 0.05) (Fig. 1).

The most frequent cancers were breast cancer (n = 6, 18.2%), colon cancer (n = 6, 18.2%) and gastric cancer (n = 6, 18.2%). Among them, five patients had a history of pulmonary metastasis (Table 2). Moreover, four patients (12.12%) had a primary diagnosis of lung cancer. Type of the cancer did not correlate with mortality (P-value = 0.5). However, the mortality rate was significantly higher in patients with a history of lung cancer or metastasis to lung compared to other types of cancer (77% vs. 37% P-value = 0.039).
Table 2	Total n = 33	Survivors n = 17	Non-survivors n = 16	P value
Mean age ± SD	63.9 ± 11.98	66.9 ± 12.8	60.7 ± 10.5	> 0.05
Tumor diagnosis				
Lung cancer	4 (12.1)	2 (11.8)	2 (11.8)	> 0.05
Breast cancer	6 (18.2)	3 (17.6)	3 (18.8)	> 0.05
Cholangiocarcinoma	1 (3)	0 (0)	1 (6.3)	> 0.05
Colon cancer	6 (18.2)	4 (23.5)	2 (12.5)	> 0.05
Ovarian cancer	3 (9.1)	1 (5.9)	2 (12.5)	> 0.05
Pancreas cancer	2 (6.1)	0	2 (12.5)	> 0.05
Prostate cancer	3 (9.1)	1 (5.9)	2 (12.5)	> 0.05
Stomach cancer	6 (18.2)	5 (29.4)	1 (6.3)	> 0.05
Testis cancer	2 (6.1)	1 (5.9)	1 (6.3)	> 0.05
Tumor stage				
Stage I/II/III	17 (51.5)	14 (82.4)	3 (18.8)	< 0.001
Stage IV	16 (48.5)	3 (17.6)	13 (81.3)	
History of prior treatment				> 0.05
Surgery a	3 (9.1)	2 (11.8)	1 (6.3)	> 0.05
Chemo/Radiotherapy a	26 (78.8)	12 (70.6)	14 (87.5)	> 0.05
Hormone Therapy a	2 (6.1)	2 (11.8)	0	> 0.05
Comorbidities	Total n = 33	Survivors n = 17	Non-survivors n = 16	P value
--	--------------	------------------	----------------------	---------
Chronic cardiovascular and cerebrovascular disease (including hypertension and coronary heart disease)	9 (27.3)	3 (17.6)	6 (37.5)	> 0.05
Diabetes	8 (24.2)	5 (29.4)	3 (18.8)	> 0.05
Chronic pulmonary disease (including chronic obstructive pulmonary disease and asthma)	5 (15.2)	4 (23.5)	1 (6.3)	> 0.05
Chronic liver disease (including chronic hepatitis B and cirrhosis)	1 (3)	0 (0)	1 (6.3)	> 0.05
Cytotoxic chemotherapy within the last 14 days	18 (54.5) versus 15 (45.5)	5 (29.4) versus 12 (70.6)	13 (81.3) versus 3 (18.8)	0.003

Symptoms and signs at on admission				
Fever	20 (60.6)	13 (76.5)	7 (43.8)	> 0.05
Cough	16 (48.5)	9 (52.9)	7 (43.8)	> 0.05
Fatigue	15 (45.5)	7 (41.2)	8 (50)	> 0.05
Dyspnea	30 (90.9)	0 (0)	13 (81.3)	> 0.05
Myalgia	5 (15.2)	3 (17.6)	2 (12.5)	> 0.05
GI symptom	11 (33.3)	6 (35.3)	5 (31.3)	> 0.05

Out of 33 cancer patients, in 16 cases (48.48%) the cancer was in stage IV, at the time of diagnosis. Among 16 patients with stage IV cancer, thirteen patients died, which was significantly higher compared to stage I-III cancer patients (81.3% vs 18.8% P-value < 0.001).

It should be noted that 5 patients (15.15%) developed COVID-19 during antitumour therapy in the hospital (nosocomial SARS-COV-2 infection), but none of them experienced mortality.

In addition to cancer, the most frequent coexisting chronic diseases were cardiovascular diseases (n = 9,27.3%) and diabetes mellitus (n = 8,24.2%). Associated comorbidities did not significantly increase
mortality in this patient series (P-value > 0.05).

The most common symptoms on admission were dyspnea (n = 30, 90.9%), followed by fever (n = 20, 60.6%), dry cough (n = 16, 48.5%) and gastrointestinal symptoms (n = 11, 33.3%). The initiating symptom did not correlate with mortality (P-value > 0.05).

Out of the 33 hospitalized patients, 29 (87.9%) received oxygen therapy, 3 (9.1%) received non-invasive ventilation (NIV) and 16 (48.5%) patients received invasive ventilation (IV). The median duration of NIV and IV were 3 days (range 1.0–8.0) and 8 days (range 0.0–14.0), respectively. Fifteen patients (45.5%) were admitted in intensive care unit (ICU). The most common complication was acute respiratory distress syndrome (n = 9; 27.3%), followed by sepsis and septic shock (n = 11; 33%) and pulmonary thromboembolism (n = 1), respectively. In comparison of severe events between the patients who received cytotoxic chemotherapy within 14 days and other patients, sepsis and IV were significantly higher (Fig. 1). Hydroxychloroquine alone was administered in 5 patients and combined with antiviral agents such as lopinavir/ritonavir, ribavirin and oseltamivir in 28 patients. Corticosteroids were administered in 15 patients, mostly in whom suffered from severe events. A total of 17 (51.5%) patients were discharged from the hospital, with a mean hospital stay of 7.5 days (range 5.0–18.0) and 16 patients (48.8%) died with a mean interval of 7.33 days from admission to death.

In this study, there was no significant difference between the two groups of positive and negative SARS-CoV-2 RT-PCR regarding their sex, age, cancer type, mean Hb concentration, Platelet count, lymphocyte count, serum albumin level, ESR and CRP titer or other laboratory findings and also in terms of clinical symptoms and coexisting (Table 3).
Table 3
Comparison of characteristics of patients with positive or negative RT-PCR.

	Positive PCR(n = 11)	Negative PCR(n = 22)	P Value
Age, years	59.8 ± 16.9	65.9 ± 8.3	> 0.05
Sex, n (%)			
Male	7 (63.6)	11 (50)	> 0.05
Female	4 (36.4)	11 (50)	
Serum Biomarker			
ESR	66.8 ± 37.1	70.3 ± 34.6	> 0.05
CRP	73 ± 35.7	98.8 ± 66.4	> 0.05
NLR	13.5 ± 13.4	12.6 ± 11.1	> 0.05
LCR	98.9 ± 265.1	14.9 ± 23.8	> 0.05
Albumin	3.2 ± 0.65	3.3 ± 0.75	> 0.05
LDH	1586 ± 13	1438 ± 1455	> 0.05
Admit to Death, days	4.2 ± 2.6	8.4 ± 8.6	> 0.05
Length of hospitalization, days	5.45 ± 3.2	8.8 ± 6.9	> 0.05
Symptom to hospital, day	3.2 ± 4.3	4.9 ± 4.1	> 0.05
Severe event, n (%)			
ARDS	1(9.1)	8(36.4)	> 0.05
Sepsis	2(18.2)	9(40.9)	> 0.05
Invasive Ventilation	4(36.4)	12(54.5)	> 0.05
ICU Admission	4(36.4)	11(50)	> 0.05
Death	4(36.4)	12(54.5)	> 0.05

NLR: Neutrophil to Lymphocyte ratio, CRP: C - reactive protein, ESR: Erythrocyte Sedimentation Rate, LCR: Lymphocyte to CRP Ratio, PLR: Platelet count to Lymphocyte Ratio. ARDS, acute respiratory distress syndrome

It was also shown that in terms of the mortality rate, there was no significant difference between the two groups of positive and negative SARS-CoV-2 RT-PCR (P-value = 0.3).

Discussion
The outbreak of COVID-19 is of international concern and as in other infectious diseases, people with compromised immune systems including the many people with cancer and many more cancer survivors are at increased risk for COVID-19 (11).

Wang et al. have reported that the proportion of patients with cancer histories has been higher in a cohort with COVID-19 than in the general population in China, and that the patients with cancer were more likely to develop COVID-19.(12) In our study, 8.1% of the total hospitalized COVID-19 patients had cancer, out of which 48.5% passed away. This rate of mortality was higher than what was reported by Kuderer et al. and the Zhang et al. (13% and 28.6%, respectively) (13, 14). This could be caused by due to the fact that in our hospital patients were admitted according to a strict national guideline and so the mortality rate was higher among all admitted patients. The findings in this study showed that the most common symptom in hospitalized patients was dyspnea. In general population with COVID-19, fever was known to be the most common symptom, which could be due to the absence of feverish reactions in patients with immune system deficiency. On the other hand, 33.3% of our patients suffered from sepsis and septic shock, which also could be in line for immune deficiency.

Among our cancer patients, those with lung cancer or those with lung metastasis due to non-pulmonary cancers showed a higher mortality rate which could be instigated by a decrease in the lung's functional capacity in these patients. This finding was similar to the report by Zhang et al.(13) study. Mengyuan et al.(6) also showed that the mortality rate in COVID-19 patients with lung cancer was higher than other cancers and that the stage of cancer had a direct correlation with mortality. In our series, in patients with stage IV cancer, mortality and severe events were observed more frequently compared those with stage I-III. However, Zhang et al found no significant correlation between the rate of severe events and the stage of cancer.(13)

In terms of life threatening complications, the rate of ARDS in our patients was higher than in the meta-analysis reported by Yong et al.(15)

We found that the mortality rate was significantly higher among the patients with active cancer who had undergone cytotoxic chemotherapy less than 14 days prior to being admitted due to COVID-19, in comparison with the patients who did not have an active cancer and were not on recent cytotoxic therapies. This finding is similar to the report by Zhang et al.(13) However, Kuderer et al.(14) found no significant difference between undergoing cytotoxic chemotherapy within 30 days prior to COVID-19 diagnosis and its consequential mortality rate.(14)

Regarding to the previously conducted studies which reported the sensitivity of chest CT scan for diagnosis of COVID-19 to be 97%(16), we included the cancer patients who had negative RT-PCR for COVID-19 but with highly suggestive chest CT scan findings, in our study. There was no significant difference between the demographic features of these patients and those with positive RT-PCR. Moreover, no difference was observed in terms of outcomes and mortality, except that the rate of ARDS and the need for invasive mechanical ventilation, which were significantly higher in former group, probably due to the primary pulmonary involvement in these patients. Considering the mentioned findings, one can
conclude that the in COVID-19 suspected cancer patients, therapeutic measures should be initiated promptly, regardless of RT-PCR results.

Conclusion

In this study, we showed that the mortality rate among cancer patients affected by COVID-19 was higher than general population and this rate has a significant correlation with factors such as the stage of the disease, the type of cancer, the activity of cancer and finally receiving cytotoxic chemotherapy within 14 days before diagnosis of COVID-19. We also showed that the outcome of cancer patients with positive RT-PCR for COVID-19 similar to those with negative RT-PCR with highly suggestive chest CT scan findings.

Declarations

Ethics approval and consent to participate: This study was approved under the registration number: IR TUMS.VCR.REC 1399-395, by the Ethics committee of Tehran University of Medical Sciences. All patients filled an informed written consent form.

Consent for publication: Not applicable

Availability of data and material: The datasets used and analyzed during the current study are available from the corresponding author on reasonable request

Competing interests: The authors declare that they have no competing interests.

Funding: None declared.

Author contributions: SA.M., T.R., A.K., S.R., MR.R., F.M., and AH.M. conceived and planned the visits. AH.M., F.M., and A.GM. carried out the physical examinations. AH.M. and F.M. planned and carried out the laboratory tests. AH.M., A.GM., SA.M., T.R., and A.K. contributed to analysis of the results. AH.M., SA.M., T.R., A.K., S.R., and MR.R. contributed to the interpretation of the results.

AH.M. and F.M. and A.GM took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Acknowledgements

We thank Hematology, Oncology and Stem cell Transplantation Research Center at Dr.Shariati Hospital and also thank all the medical and nursing for the collaboration and dedication to our patients.

Consent for publication: Not applicable.

References
1. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol. 2020;92(4):401-2.

2. World Health Organization WHO Guidelines for the Global Surveillance of Severe Acute Respiratory Syndrome (SARS) [(accessed on 8 October 2018)];2004 Oct; Updated Recommendations. Available online: .

3. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130-7.

4. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020.

5. (WHO). WHO. Coronavirus disease (COVID-19) outbreak situation.

6. Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z, et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. Cancer Discov. 2020;10(6):783-91.

7. Team CC-R. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343-6.

8. Blimark C, Holmberg E, Mellqvist UH, Landgren O, Bjorkholm M, Hultcrantz M, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2015;100(1):107-13.

9. Mahdavi A, Khalili N, Davarpanah A, Faghihi Langroudi T, Mahdavi A, Haseli S, et al. Radiologic Management of COVID-19: Preliminary Experience of the Iranian Society of Radiology COVID-19 Consultant Group (ISRCC). Iranian Journal of Radiology. 2020;In Press.

10. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.

11. Fu L, Wang B, Yuan T, Chen X, Ao Y, Fitzpatrick T, et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J Infect. 2020;80(6):656-65.

12. Wang H, Zhang L. Risk of COVID-19 for patients with cancer. Lancet Oncol. 2020;21(4):e181.

13. Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 2020;31(7):894-901.

14. Kuderer NM, Choueiri TK, Shah DP, Shyr Y, Rubinstein SM, Rivera DR, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020;395(10241):1907-18.

15. Hu Y, Sun J, Dai Z, Deng H, Li X, Huang Q, et al. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Virol. 2020;127:104371.

16. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020:200642.

Figures
Figure 1

comparison between covid-19 patients who received cytotoxic chemotherapy within the last 14 days & more than 14 days.