Cave Actinobacteria as Producers of Bioactive Metabolites

Pharada Rangseekaew 1,2 and Wasu Pathom-aree 3,4*

1 Doctor of Philosophy Program in Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 2 Graduate School, Chiang Mai University, Chiang Mai, Thailand, 3 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 4 Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand

Recently, there is an urgent need for new drugs due to the emergence of drug resistant pathogenic microorganisms and new infectious diseases. Members of phylum Actinobacteria are promising source of bioactive compounds notably antibiotics. The search for such new compounds has shifted to extreme or underexplored environments to increase the possibility of discovery. Cave ecosystems have attracted interest of the research community because of their unique characteristics and the microbiome residing inside including actinobacteria. At the time of writing, 47 species in 30 genera of actinobacteria were reported from cave and cave related habitats. Novel and promising bioactive compounds have been isolated and characterized. This mini-review focuses on the diversity of cultivable actinobacteria in cave and cave-related environments, and their bioactive metabolites from 1999 to 2018.

Keywords: actinobacteria, cave, karst, bioactive compounds, diversity, antimicrobial, anticancer, natural products

INTRODUCTION

Caves are generally regarded as any natural underground chamber that is large enough for human entrance. They can be classified based on type of rock and formation method. The most common types of caves are limestone and other calcareous rocks (Northup and Lavoie, 2001). Though caves have been studied for hundreds of years, their microbiome are generally underexplored and overlooked. Caves are attracting the interests of microbiologists, in terms of microbial diversity, during the past decade (Laiz et al., 1999; Barton et al., 2004; Barton, 2006). It is believed that microbes collected from pristine sites that are unexplored or rarely visited by humans are likely to be novel taxa or strains which produce unique beneficial chemical compounds. Market demand for new drugs is on the rise due to the emergence of new diseases and drug resistant pathogens (Genilloud, 2017; Kemung et al., 2018; Takahashi and Nakashima, 2018). With a combination of unique conditions including high humidity, relatively low and stable temperature, and low nutrients, caves are expected to harbor novel microorganisms with biotechnological benefits. Members of actinobacteria are reported to be a dominant microbial population in several cave ecosystems (Groth and Saiz-Jimenez, 1999; Cheeptham et al., 2013; Tomczyk-Zak and Zielenkiewicz, 2016; Ghosh et al., 2017).

Actinobacteria are large group of high G+C Gram positive bacteria (Barka et al., 2016). They are regarded as the most prolific source of bioactive compounds in particular commercially available antibiotics. Actinobacteria produce approximately two-thirds of all know antibiotics in
the market, most of these are from members of the genus *Streptomyces* (Barka et al., 2016). Several members of diverse actinobacterial taxa were also found to produce wide range of other biologically active compounds, for examples antibacterial, anticancer, or antifungal drugs (Barka et al., 2016; Genilloud, 2017; Castro et al., 2018; Takahashi and Nakashima, 2018). Isolation of actinobacteria from unique natural habitats is of interest to avoid re-isolation of strains that produce known bioactive metabolites and usually lead to highly diverse actinobacterial communities. The present mini-review provides evidence that actinobacteria from caves are expected to be a good source for drug discovery (Yücel and Yamac, 2010; Cheeptham et al., 2013; Kay et al., 2013; Ghosh et al., 2017; Riquelme et al., 2017).

SELECTIVE ISOLATION OF CAVE ACTINOBACTERIA

In the past decade, there are many reports on the discovery of novel actinobacteria in cave habitats. Successful isolation of actinobacteria from caves depend largely on factors of (1) media composition (Kim et al., 1998) (2) culture condition, and (3) pretreatment methods (Kim et al., 1998; Nakaew et al., 2009a,b; Duangmal et al., 2012; Niyomvong et al., 2012; Velikonja et al., 2014; Fang et al., 2017b; Adam et al., 2018). Media used for the isolation of cave actinobacteria range from routine cultivation media such as International *Streptomyces* Project medium 2 (yeast malt extract agar, ISP2) or tryptic soy agar (TSA) to selective media including humic acid vitamin agar (HV), starch casein agar (SC), starch casein nitrate agar (SCN), peptone-yeast extract/brain-heart infusion medium (PY-BHI), R2A medium, actinomycete isolation agar (AI), and Gauze’s medium No.1. Moreover, isolation media that mimic the conditions of low concentration nutrients in caves such as tap water agar, 1/100 ISP2 and oligotrophic medium (MS) were also successfully used for the isolation of actinobacteria. (Lee et al., 2000b; Velikonja et al., 2014; Covington et al., 2018; Passari et al., 2018). High concentration of nutrients in standard cultivation media were reported to cause cell death in cave-associated bacteria due to osmotic stress (Barton, 2006; Ghosh et al., 2017).

Two important culture conditions for actinobacteria isolation are incubation temperature and incubation time. Four incubation temperatures (5°, 15°, 20°, and 28°C) were used for the isolation of soil bacteria including actinobacteria from three caves in Northern Spain (Laiz et al., 2003). The incubation temperature of 5°C was used to represent cave temperature and target psychrophilots, 28°C as laboratory incubation temperature and 20°C as intermediate temperature between cave and laboratory conditions. The highest number of actinobacterial isolates (mostly sporoactinomycetes) was obtained at 28°C followed by 15°, 20° and 5°C, respectively. However, a higher diversity was observed from 13°C than 28°C. Therefore, these authors concluded that the isolation of actinobacteria is a temperature-dependent process. In addition, longer incubation time was successfully used to promote the recovery of slow-growing actinobacteria (Laiz et al., 2003).

Pretreatment, both chemical and physical methods are generally useful for isolation of various actinobacterial species. Physical pretreatments involve the use of air drying, moist heat, dry heat and electromagnetic wave. Moist heating (water bath at 50°C for 5–6 min) is useful for eliminating of fast growing bacteria (Niyomvong et al., 2012; Velikonja et al., 2014). Dry heating at 120°C for 1 h is effective in reducing number of unwanted bacteria and found to be an effective method for isolation of members of the genera *Dactylosporangium*, *Streptosporangium* and *Microbispora*, while growth of streptomycetes was limited (Jiang et al., 2016). In addition, dry heating with or without phenol treatment resulted in a reduction of bacteria and heat-labile *Streptomyces*, thus heat resistant rare actinobacteria were readily isolated (Kim et al., 1998; Nakaew et al., 2009a; Niyomvong et al., 2012). However, these treatments also affect the number of viable actinobacteria (Niyomvong et al., 2012). Pretreatment using microwave irradiation was effective for the isolation of rare actinobacteria (Niyomvong et al., 2012) and capable of inducing spore germination in some species of *Streptomyces*, *Nocardia*, *Streptosporangium*, *Lentzea*, *Micromonospora*, and *Micropyllospora* (currently transferred to *Nocardia*) (Bulina et al., 1997; Wang et al., 2013; Velikonja et al., 2014). For chemical pretreatment, the type and concentration of calcium salts are important for the isolation of actinobacteria (Fang et al., 2017b). Selective media supplemented with CaCO₃ yield higher actinobacterial count than those supplemented with CaCl₂ and (CH₃COO)₂Ca. The concentration of these three salts, at low concentration (0.1 and 0.01% (w/v) yield higher CFU of actinobacteria than in its absence or at high concentration. Calcium is important for environmental stress tolerance in actinobacteria because calcium forms a compound with dipicolinic acid as calcium dipicolinate and acts as secondary stabilizing agent for spore against environmental stress (Moir and Smith, 1990).

NOVEL ACTINOBACTERIAL TAXA

Several novel actinobacterial taxa isolated from caves and cave related habitats during the period of 20 years from 1999 to 2018 were summarized in Table 1. In total, 47 species within 30 genera were described including 7 novel genera. The highest number of novel species was from genus *Streptomyces* (5) followed by *Amycolatopsis* (4) and *Nocardia* (4). The majority of these novel actinobacteria were isolated from cave soils including 6 novel genera, *Antricoccus*, *Beutenbergia*, *Knoolia*, *Lysinibacter Spielaecoccus* and *Sphaerimonospora*. Only the genus *Hoyosella* was recovered from complex biofilm on the ceiling and wall of Altamira cave, Spain. The extreme conditions within the caves are expected to create stress for the inhabitant microorganisms at the genetic level, paving the way for the evolution of new species and their novel metabolites (Tawari and Gupta, 2013). Therefore, caves are considered as an attractive source for the isolation of novel actinobacterial taxa.

Most species were isolated from selective media that were designed for the isolation of actinobacteria such as humic acid vitamin agar, starch casein agar, starch casein nitrate
TABLE 1 | Novel actinobacterial taxa isolated from cave and related habitats between 1999 and 2018.

Family	Genus	Species	Sources	Media	References
Brevibacteriaceae	Spelaeicoccus	Spelaeicoccus albus	Soil from natural cave in Jeju, Korea	Starch casein agar	Lee, 2013b
Conexibacteraceae	Conexibacter		Pieces of stalactites from Yongcheon cave in Jeju, Korea	Starch casein agar	Lee, 2017
Glycomycetaceae	Stackebrandia	Stackebrandia cavernae	Rocks from karst cave, Guizhou, south-west China	Marine agar 2216	Zhang et al., 2016
Intrasporangiaceae	Fodinibacter	Fodinibacter kuteus	Soil from wall of a salt mine in Yunnan, China	Casein mineral medium	Wang et al., 2009
	Knoellia	Knoellia sinensis	Soil from the Reed Flute cave near Guilin, Guizhi, China	Pentapolyeyst extract/brain-heart infusion medium (PY-BHI)	Groth et al., 2002
		Knoellia subterranean	Soil from the Reed Flute cave near Guilin, Guizhi, China	Pentapolyeyst extract/brain-heart infusion medium (PY-BHI)	Groth et al., 2002
			[Continued]		
Kineosporiaceae	Augustibacter	Augustibacter spluncae	Pieces of stalactites from Yongcheon cave in Jeju, Korea	Starch casein agar	Ko and Lee, 2017
Microbacteriaceae	Agromyces	Agromyces subbeticus	Cyanobacterial biofilm from Cave of Bats, near Zuheros, Cordoba, southern Spain	Pentapolyeyst extract/brain-heart infusion medium (PY-BHI)	Jurado et al., 2005
	Huminibacter	Huminibacter antrii	Clay soils from natural cave in Jeju, Korea	Starch casein agar	Lee, 2013a
	Lysinibacter	Lysinibacter cavernae	Soils from wild karst cave in the Wulong region, Chongqing, China	FA (fulvic acid) agar	Tu et al., 2015
Micrococcaceae	Arthrobacter	Arthrobacter psychrophilicus	Carbonate-rich deposit from Alpine ice cave, Salzburg, Austria	Soil-extract agar	Magesin et al., 2004
	Beutenbergia	Beutenbergia cavernae	Soils from the Reed Flute cave near Guilin, Guizhi, China	Casein mineral medium and penta-polyeyst extract/brain-heart infusion medium	Groth et al., 1999
Micromonosporaceae	Catellatospora	Catellatospora koreensis	Soils from gold-mine cave in Kongju, Korea	Yeast extract, glucose, K_2HPO_4, Na_HPO_4, KNO_3, NaCl, MgSO_4, 7H_2O, CaO_2, 2H_2O and trace mineral solution	Lee et al., 2000a
	Micromonospora	Micromonospora kangleipakensis	Sample from limestone quarry at Hundung, Manipur, India	Gauze’s medium	Nimaichand et al., 2013c
	Hoyosella	Hoyosella altamirensis	Complex biofilm on the cave ceiling and walls from Altamara cave, Cantabria, Spain	Starch casein agar	Jurado et al., 2009
	Jiangeella	Jiangeella alkaliphila	Soils from natural cave on Jeju island, Korea	Starch casein agar	Lee, 2008
	Nocardioides	Nocardioides cavernae	Soils from karst cave in Xingyi county, Guizhou, south-western China	R2A agar with cycloheximide and nalidixic acid	Han et al., 2017
	Tenggerimyces	Tenggerimyces flavus	Soil from Shenzhen cave, Henan, China	R2A agar with cycloheximide, nalidixic acid and potassium dichromate	Li et al., 2016
	Nocardia	Nocardia altamirensis	Complex microbial community forming a gray-colored colonization on the walls from Altamara cave, Cantabria, Spain	Trypotose soy agar	Jurado et al., 2008
		Nocardia cavernae	Soil from karst cave in Xingyi county, Guizhou, south-western China	Humic acid-vitamin agar with cycloheximide and nalidixic acid	Li et al., 2017
		Nocardia jejuensis	Soil from natural cave on Jeju island, Korea	Starch casein agar	Lee, 2006c

(Continued)
Family	Genus	Species	Sources	Media	References
Nocardiaceae	Nocardiaceae	Nocardiaceae	Soil from natural cave on Jeju island, Korea	Starch casein agar	Seo et al., 2007
Actinomycetaceae	Actinomycetaceae	Actinomycetaceae	Soil from limestone quarry at Hundung, Manipur, India	Starch casein nitrate agar	Nimaichand et al., 2013b
Micromonosporaceae	Micromonospora	Micromonospora	Soil from limestone open pit mine from Guaja region, Thailand	Starch casein agar	Lee, 2006a
Comammophilaceae	Comammophilaceae	Comammophilaceae	Soil from natural cave on Jeju island, Korea	Starch casein agar	Ko et al., 2015
Amycolatopsaceae	Amycolatopsaceae	Amycolatopsaceae	Soil from limestone open pit mine from Guaja region, Thailand	Starch casein agar	Lee, 2006a
Thermoactinomycetaceae	Thermoactinomycetaceae	Thermoactinomycetaceae	Soil from natural cave on Jeju island, Korea	Starch casein agar	Ko et al., 2015

TABLE 1: Continued

Family	Genus	Species	Sources	Media	References
Propionibacteriaceae	Propionibacteriaceae	Propionibacteriaceae	Soil from limestone open pit mine from Guaja region, Thailand	Starch casein agar	Lee, 2006a
Micropseudomonadaceae	Micropseudomonadaceae	Micropseudomonadaceae	Soil from limestone open pit mine from Guaja region, Thailand	Starch casein agar	Lee, 2006a
Acetobacteraceae	Acetobacteraceae	Acetobacteraceae	Soil from limestone open pit mine from Guaja region, Thailand	Starch casein agar	Lee, 2006a
Not assigned to family (Suborder Frankineae)	Antricoccus	Antricoccus	Soil from natural cave on Jeju island, Korea	Starch casein agar	Lee, 2015
Thermoactinomycetaceae	Thermoactinomycetaceae	Thermoactinomycetaceae	Soil from natural cave on Jeju island, Korea	Starch casein agar	Ko et al., 2015
Thermomonosporaceae	Thermomonosporaceae	Thermomonosporaceae	Soil from natural cave on Jeju island, Korea	Starch casein agar	Ko et al., 2015
aglar. However, some novel species were isolated using general cultivation media such as ISP2 media (Amycolatopsis jiguanaensis and A. xuchangensis) and TSA (Nocardia altamirensis). In addition, low nutrient media (tap water agar and oligotrophic M5 media) were preferable for the isolation of Saccharothrix violacea and S. albidocapsilata. Most novel species were incubated at 28°C–30°C for 1–6 weeks. However, Arthrobacter psychrophilenicolus was isolated at 4°C, this may be because this species originated from Alpine ice cave in Salzburg, Austria (Margesin et al., 2004). Lysinibacter cavernae was isolated at 15°C from soil in a wild karst cave in the Wulong region, Chongqing, China (Tuo et al., 2015). Streptomyces lunaectaris was isolated at 17°C from a moonmilk deposit in the Grotte des Collemboles cave in Belgium (Maciejewska et al., 2015).

Pretreatment procedures were also useful for isolation of some novel species. For example, Microbispora thailandensis was isolated from soil pretreated with microwave radiation at a frequency of 2460 MHz and power setting of 100 W for 45 s (Duangmal et al., 2012). Nonomuraea monospora was isolated from soil treated with phenol (Nakaew et al., 2012). Streptomyces manipurensis was isolated from soil supplemented with 0.1 g of CaCO3 for 1 day to prevent the growth of fast growing bacteria (Nimaichand et al., 2012).

BIOACTIVE COMPOUNDS FROM CAVE ACTINOBACTERIA

Caves are extreme habitats with low nutrient, temperature and light intensity but have high humidity (Schabereiter-Gurtner et al., 2002). These unique characteristics may promote the production of bioactive substances in particular antibiotics by actinobacteria (Nakaew et al., 2009a). Bioactive metabolites from cave associated actinobacteria have been purified, their structure elucidated and reported in recent years (Table 2). These compounds mostly displayed anti-bacterial and/or anti-cancer activities. The most prolific producer is members of the genus Streptomyces.

Cervimycin A, B, C, and D were produced from Streptomyces tendae strain HKI 0179, isolated from a rock wall in an ancient cave, the Grotta dei Cervi in Italy. Cervimycins A and B are novel polyketide glycosides. However, cervimycin C and D have the same structure as known compounds A2121-3 and A2121-2. Cervimycins A–D are highly active against Gram positive bacteria (B. subtilis and S. aureus) and multi-drug-resistant S. aureus (MRSA), vancomycin-resistant Enterococcus faecalis (VRE) and efflux-resistant S. aureus EfS4 (Herold et al., 2005).

Xiakemycin A is a novel pyranonaphthoquinone (PNQ) antibiotics produced by Streptomyces sp. CC8-201 from remote karst soil in China. Xiakemycin A showed strong inhibitory activities against Gram positive bacteria (S. aureus, S. epidermidis, E. faecalis, and E. faecium) and cytotoxic against numerous cancer cell lines (human lung cancer A549 cells, breast cancer MCF-7 cells, hepatoma HepG-2 cell, cervical cancer HeLa cells, colon carcinoma HCT-116 cell p53 wt cells, neuroblastoma SH-SY5Y cells, and human prostate cancer PC-3) (Jiang et al., 2015).

Hypogemeicins A, B, C, and D were produced by Nonomuraea specus isolated from Hardin’s cave system in Tennessee, USA. Hypogemeicin A showed cytotoxicity to colon cancer cell line TCT-1 while hypogemeicin B–D were active against B. subtilis with no cytotoxicity to TCT-1. However, hypogemeicin B–D are not as potent as erythromycin and gentamicin in terms of antimicrobial activity against B. subtilis (Derewacz et al., 2014).

Huanglongmycin A, B, and C are aromatic polyketides from Streptomyces sp. CB09001, isolated from karstic cave soil of Xiangxi, China. Huanglongmycin A showed a weak anti-Gram negative bacteria (Pseudomonas aeruginosa and Escherichia coli) and moderate cytotoxicity against A549 lung cancer cell line. Huanglongmycin B has weak antibacterial activity against S. aureus and multi-drug-resistant S. aureus (MRSA). Huanglongmycin C showed neither antibacterial nor anticancer activities (Jiang et al., 2018). Undecylprodigiosin was produced by Streptomyces sp. JS520 isolated from sediments in cave in the mountain Miroc, Serbia. Undecylprodigiosin is a deep red pigment with antibacterial activity against Micrococcus luteus, B. subtilis, and C. albicans. Moreover, undecylprodigiosin also showed antioxidative and UV-protective properties (Stankovic et al., 2012).

Four known compounds with bioactivity (cyclodysidin D, chaxalactin B, stylissazole B, and gyrophoric acid) were reported to produce by Streptomyces sp. IB 2014/1 78-8 from moonmilk speleothem of Bolshaya Oreshnaya cave in Siberia (Axenov-Gibanov et al., 2016). Cyclodysidin D is previously reported in marine sponge, Dysidea tupha associated Streptomyces sp. RV 15. This compound showed no activity against bacteria, fungi and parasites (Abdelmohsen et al., 2014). Chaxalactin B was produced from Streptomyces sp. C34 from a hyper-arid soil samples collected from the Atacama Desert, Chile. This compound has strong activity against Gram positive bacteria (Castro et al., 2018). Stylissazole B was isolated from the marine sponge Styliella carteri collected in the Solomon islands but no report on bioactivity (Patel et al., 2010). Gyrophoric acid isolated from Humicola sp. FO-2942 is an inhibitor of diacylglycerol acyltransferase and a lipid-lowering agent (Inokoshi et al., 2010).

BIOACTIVITY OF UNCHARACTERIZED COMPOUNDS

Several cave actinobacteria have been screened for their biological activity such as antibacterial, anticancer and antifungal. However, no pure compound and their structure were reported in these studies. The screening of only bioactivity without the structure elucidation of bioactive metabolites may not useful for the discovery of new antibiotics (Hug et al., 2018). Nevertheless, these findings provide evidence which supports the potential of cave actinobacteria to be exploited for novel bioactive compounds.

Turkish karstic caves were reported to harbor actinobacteria, for which 62% of the isolates, were active against several microbial pathogens (Gram positive bacteria, Gram negative bacteria, yeast, and filamentous fungi). Streptomyces sp. 1492 had strong activity against clinical strains of MRSA,
Bioactivity	Compounds	Producing strain	Source of strain	References
Antibacterial	Cervimycins A, B, C, and D	Streptomyces tendae strain HKI 0179	Rock wall from Ancient cave, The Grotta dei Cervi, Italy	Herold et al., 2005
	Undecylprodigiosin	Streptomyces sp. JSS20	Cave on mountain Miroc, Serbia	Stankovic et al., 2012
	Xiakemycin A	Streptomyces sp. CC8-201	Soil from karst cave, Chongqing city, China	Jiang et al., 2015
	Chaxalactin B	Streptomyces sp. IB 2014/V 78-8	Bolshaya Oreshnaya cave in the Mansik area of the Krasnoyarsk, Siberia, Russia	Axenov-Gibanov et al., 2016

(Continued)
TABLE 2 | Continued

Bioactivity	Compounds	Structure	Producing strain	Source of strain	References
Anticancer	Hypogegaminic A	![Structural formula](image)	Nonornatae sp.	Hardin’s cave system located close to Ashland City, Tennessee	Drewsiez et al., 2014
Antioxidative activity	Undecylprodigiosin	![Structural formula](image)	Streptomyces sp. JS530	Cave on mountain, Mio, Serbia	Stankovic et al., 2012
Inhibitory activity against lipid metabolism	Gyrophoric acid	![Structural formula](image)	Streptomyces sp. IB 2014/I/78-8	Bolshaya Oreshnaya cave in the Mansk area of the Krasnoyarsk, Siberia, Russia	Tomoda and Omura, 2001; Axenov-Gibanov et al., 2001; \textit{Frontiers in Microbiology} 2016
Anticancer	Xiakemycin A	![Structural formula](image)	Streptomyces sp. CB99001	Soil from karstic cave in Xiangyi, China	Jiang et al., 2018
Anticancer	Huanglongmycin (HLM) A	![Structural formula](image)	Streptomyces sp. CB99001	Soil from karstic cave in Xiangyi, China	Jiang et al., 2018
Anticancer	Inhibitory activity against lipid metabolism	![Structural formula](image)	Streptomyces sp. IB 2014/I/78-8	Bolshaya Oreshnaya cave in the Mansk area of the Krasnoyarsk, Siberia, Russia	Tomoda and Omura, 2001; Axenov-Gibanov et al., 2001; \textit{Frontiers in Microbiology} 2016

Frontiers in Microbiology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 387
VRE, and *Acinetobacter baumanii* (Yücel and Yamac, 2010). *Streptomyces* E9 isolated from Helmcken Falls cave in British Columbia could inhibit the growth of *Paenibacillus larvae*, a causative agent of American foulbrood disease in honeybees (Kay et al., 2013). A moonmilk speleothems of limestone caves, Grotte des Collemboles in Belgium were investigated for antimicrobial producing cultivable actinobacteria. A collection of obtained *Streptomyces* displayed strong inhibitory activity against Gram positive and Gram negative bacteria (Maciejewska et al., 2016). In a study of cultivable actinobacteria from Azores volcanic caves in Portugal, 18.1% of 148 actinobacterial isolates have antibacterial activity against at least one of the following bacteria: *Salmonella typhimurium*, *E. coli*, *P. aeruginosa*, *Proteus* sp., *Listeria monocytogenes*, *L. innocua*, and *S. aureus*. Most of the active isolates belong to the genus *Streptomyces* (*S. nojiriensis*, *S. spiroverticillatus*, *S. avidinii*, and *S. mauvecolor*) followed by *Arthrobacter* (Riquelme et al., 2017). A total of 40 taxa belonging to the genera *Agromyces*, *Amycolatopsis*, *Kocuria*, *Micrococcus*, *Micromonospora*, *Nocardia*, *Streptomyces*, and *Rhodococcus* were recovered from moonmilk deposits inside the Grotte des Collemboles, Belgium. Antimicrobial activity was found in isolated strains against Gram positive bacteria (87%) and Gram negative bacteria (59%) (Adam et al., 2018). Sixteen isolates of *Streptomyces* spp. from Chaabe cave in Algeria were screened for their antimicrobial activity using agar cylinder method. All of them showed strong anti-Gram positive (*S. aureus, M. luteus, L. monocytogenes*, and *B. subtilis*) activity (Belyagoubi et al., 2018).

For anticancer activity, a rare actinobacterium *Spirillospora albida* strain CMU-PN470 was isolated from Phanangkhoi cave in northern Thailand (Nakaew et al., 2009a). This bacterium showed activity against human small lung cancer cell (NCI-H1870) with an IC₅₀ value of 10.18 μg/ml. Similarly, *Nonomurea roseola* strain PT708 isolated from Phatup cave forest park in northern Thailand was tested positive for anticaner activity against human oral cavity cancer (KB) and human small lung cancer cells (NCI-H187) (Nakaew et al., 2009b). Moreover, these two strains are also active against some Gram positive pathogenic bacteria (*B. cereus, MRSA*, and *Paenibacillus larvae*).

Some examples of antifungal activity from cave actinobacteria have been reported. Antagonistic *Streptomyces, Micromonospora, Streptosporangium*, and *Dactylorhiza* were isolated from five caves (Cheondong, Kosoo, Nadong, Seonggyo, and Ssangyong) in Korea (Kim et al., 1998). They showed activity against at least one of plant pathogenic fungi (*Alternaria solani, Colletotrichum gloeosporioides, Fusarium oxysporum* f.sp. *lycopersici, Magnaporthe grisea, Phytophthora capsici*, and *Rhizoctonia solani*). Similarly, members of genera *Streptomyces* and *Janibacter* isolated from limestone deposit sites in Hundung, Manipur, India were reported to show antifungal and biocontrol activities against rice fungal pathogens (*Curvularia oryzae, F. oxysporum, Helminthosporium oryzae, Pyricularia oryzae, R. pyzae-sativae*, and *R. solani*) as well as antibacterial activity (Nimaichand et al., 2015). However, *Amycolatopsis, Rhodococcus*, and *Pseudonocardia* isolates showed only biocontrol activity against rice fungal pathogen. Recently, five *Streptomyces* spp. from Chaabe cave in Algeria was reported to produce non-polyenic antifungal substances active against *C. albicans* (Belyagoubi et al., 2018).

CONCLUSION AND FUTURE PERSPECTIVES

Emerging and re-emerging infectious diseases are threatening human society at an alarming rate. It is a call of emergency to find an effective cure for these pathogens. Actinobacteria are proving again to be prolific producers of promising bioactive compounds with widely application. Cave and karst environments are underexplored microbiologically and should not be overlooked for the search and discovery of novel actinobacteria and their chemical diversity of useful compounds. It is evident from this mini-review that cave environments harbor novel and diverse actinobacteria (Table 1). These actinobacteria offer a rich source of bioactive compounds as exemplified in Table 2. We opine that in order to explore cave actinobacteria to their full potential, 2 major research area must be addressed. The first area of research should deal with the ability to isolate and cultivate actinobacteria of interest. It is well-accepted that most microorganisms could not be cultivated in laboratory. The isolation and cultivation of bioactive producing actinobacteria under laboratory conditions represent the first challenge. Currently, the isolation strategy specifically for cave actinobacteria is lacking. There is still an urgent need for an improved selective isolation to target specific actinobacterial taxa of interest and extended our ability to tap into the majority of these uncultivable bacteria. Modification of growth conditions and use of new culturing methods were proposed for cultivation of previously uncultivable microorganisms (Pham and Kim, 2012). A combination of enrichment techniques including heat-treatments of samples, adjusting media pH and calcium salts supplements were effectively applied to isolate rare actinobacteria from karstic caves (Fang et al., 2017b).

The advancement of next generation sequencing and accumulation of high quality whole genome data provide a powerful tool and useful information to support the search for novel bioactive metabolites for drug development. Currently, these genome data of actinobacteria reveal the presence of several biosynthetic gene clusters of secondary metabolites and reaffirm status of actinobacteria as prolific producers of bioactive compounds. However, these gene clusters are not normally expressed under laboratory conditions. Many secondary metabolites encoded by these gene clusters remain unidentified in fermentation broth (Scherlach and Hertweck, 2009; Ren et al., 2017). Therefore, the second challenge lies in our ability to activate these silent gene clusters. Recently, specific biological and chemical stimuli namely exposure to antibiotics, metals and mixed microbial culture, were successfully employed to activate secondary metabolites production in cave actinobacteria (Covington et al., 2018). Evidently, the study on cave actinobacteria and their bioactive compounds is still at an early stage. There still remains room for further study to
guarantee cave actinobacteria as producers of new bioactive compounds for the benefit of human well-being.

AUTHOR CONTRIBUTIONS

PR contributed data for selective isolation, novel taxa, bioactive metabolites and Tables 1, 2. WP conceived the idea, wrote, and revised the whole manuscript.

REFERENCES

Abdelmohsen, U. R., Bayar, K., and Hentschel, U. (2014). Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat. Prod. Rep. 31, 381–399. doi: 10.1039/C3NP70111E

Adam, D., Maciejewska, M., Naom, B. A., Martinet, L., Coppeters, W., Karim, L., et al. (2018). Isolation, characterization, and antibacterial activity of hard-to-culture actinobacteria from cave moonmilk deposits. Antibiotics 7:28. doi: 10.3390/antibiotics7020028

Axenov-Gibanov, D., Vaytsekhovskaya, I. V., Tokovenko, B. T., Protasov, E. S., Gamaunov, S. V., Rabets, Y. V., et al. (2016). Actinobacteria isolated from an underground lake moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia as sources of novel biologically active compounds. PLoS ONE 11:e0149216. doi: 10.1371/journal.pone.0149216

Barla, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquier, C., Klenk, H.-P., et al. (2016). Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43. doi: 10.1128/MMBR.00019-15

Barton, A. H., Taylor, M. R., and Pace, N. R. (2004). Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol. J. 21, 11–20. doi: 10.1080/01490450490253434

Barton, H. A. (2006). Introduction to cave microbiology: a review for the non-specialist. J. Cave Karst Stud 68, 43–54.

Belaygoubi, L., Belaygoubi-Benhammou, N., Jurada, V., Dupont, J., Lacost, S., Djebabh, F., et al. (2018). Antimicrobial activities of culturable microorganisms (actinomycetes and fungi) isolated from Chaabe cave, Algeria. Int. J. Speleol. 47, 189–199. doi: 10.5038/1827-806X.47.2.2148

Bulina, T. I., Alferova, I. V., and Terkhova, L. P. (1997). A novel approach to isolation of actinomycetes involving irradiation of soil samples with microwaves. Microbiology 66, 231–234.

Cao, C. L., Zhou, X. Q., Naom, B. A., Martinet, L., Coppeters, W., Karim, L., et al. (2018). Isolation, characterization, and antibacterial activity of hard-to-culture actinobacteria from cave moonmilk deposits. Antibiotics 7:28. doi: 10.3390/antibiotics7020028

ACKNOWLEDGMENTS

This research work was supported by Center of Excellence on Biodiversity (BDC), Office of Higher Education Commission (Project BDC-PG3-161005) and partially supported by Chiang Mai University. PR is grateful to Graduate School, Chiang Mai University for TA/RA scholarship for the academic year 2018–2019.

Duangmal, K., Mingma, R., Pathom-aree, W., Niyomvong, N., Inahashi, Y., Matsumoto, A., et al. (2012). Microbispora thailandensis sp. nov., an actinomycete isolate from cave soil. J. Antibiot. 65, 491–494. doi: 10.1038/ja.2012.57

Fang, B. Z., Han, M. X., Liu, L., Zhang, Z. T., Liu, W. L., Shen, J. T., et al. (2017a). Lentzea覆盖 sp. nov., an actinobacterium isolated from a karst cave sample, and emended description of the genus Lentzea. Int. J. Syst. Evol. Microbiol. 67, 2357–2362. doi: 10.1099/ijsem.0.025364

Fang, B. Z., Nimaichand, S., Han, M. X., Jiao, Y. J., Cheng, J., Wei, D. Q., et al. (2017b). Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare Actinobacteria from karstic caves. Front. Microbiol. 8:1535. doi: 10.3389/fmicb.2017.01535

Genilloud, O. (2017). Actinomycetes: still a source of novel antibiotics. Nat. Prod. Rep. 34, 1203–1232. doi: 10.1039/C7NP000261

Gho, S., Kuisiene, N., and Cheeptham, N. (2017). The cave microbiome as a source for drug discovery: reality or pipe dream? Biochem. Pharmacol. 134, 18–34. doi: 10.1016/j.bcp.2016.11.018

Groth, I., and Saiz-Jimenez, C. (1999). Actinomycetes in hypogean environments. Geomicrobiol. J. 16, 1–8. doi: 10.1080/0149045992707073

Groth, I., Schumann, P., Schuetze, B., Augsten, K., Kramer, I., and Stackebrandt, E. (1999). Beutenbergia覆盖 sp. nov., an L-lysine-containing actinomycete isolated from a cave. Int. J. Syst. Bacteriol. 49, 1733–1740. doi: 10.1099/807137-49-4-1733

Groth, I., Schumann, P., Schuetze, B., Augsten, K., and Stackebrandt, E. (2002). Knieflia sinensis sp. nov., sp. nov. and Knieflia subterranea sp. nov., two novel actinobacteria isolated from a cave. Int. J. Syst. Evol. Microbiol. 52, 77–84. doi: 10.1099/007173-52-1-77

Han, M. X., Fang, B. Z., Tian, Y., Zhang, W. Q., Jiao, J. Y., Liu, L., et al. (2017). Nocardioides覆盖 sp. nov., an actinobacterium isolated from a karst cave. Int. J. Syst. Evol. Microbiol. 67, 633–639. doi: 10.1099/007177-49-4-633

Herold, K., Gollnick, F. A., Groth, I., Roth, M., Menzel, K. D., Pollmann, U., et al. (2005). Cervinycin A-D: a polyketide glycoside complex from a cave bacterium can defeat vancomycin resistance. Chem. Eur. J. 11, 5523–5530. doi: 10.1002/chem.200503320

Huang, J. R., Ming, H., Li, S., Zhao, Z. L., Meng, X. L., Zhang, J. X., et al. (2016). Amycolatopsis xuchangensis sp. nov. and Amycolatopsis jiguannensis sp. nov., isolated from soil. Antonie van Leeuwenhoek 109, 1423–1431. doi: 10.1007/s10482-016-0742-1

Hug, J. J., Bader, C. D., Remskar, M., Cirnski, K., and Muller, R. (2018). Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics 7:44. doi: 10.3390/antibiotics7020044

Inokoshi, J., Takagi, Y., Uchida, R., Masuma, R., Omore, S., and Tomoda, H. (2010). Production of a new type of amidepsine with a sugar moiety by static fermentation of Humicola sp. FO-2942. J. Antibiot. 63, 9–16. doi: 10.1099/007173-52-1-77

Jiang, L., Ku, H., Xiang, X., Su, M., Yan, X., Yang, D., et al. (2018). Huanglongmycin A-C, cytotoxic polyketides biosynthesized by a putative type II polyketide synthase from Streptomyces sp. CB90001. Front. Chem. 6:254. doi: 10.3389/fchem.2018.00254

Jiang, Y., Li, Q., Chen, X., and Jiang, C. (2016). "Isolation and cultivation methods of Actinobacteria" in Actinomycetes: Basics and Biotechnological Applications, ed. D. Dhanasekaran (Rijeka: InTech), 39–57

Jiang, Z. K., Guo, L., Chen, C., Liu, S. W., Zhang, L., Dai, S. J., et al. (2015). Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the...
Ko, D. H., and Lee, S. D. (2017). *Augustibacter spluncae*. Kim, B. S., Lee, J. Y., and Hwang, B. K. (1998). Diversity of actinomycetes. Lee, S. D. (2013a). *Rhodococcus antrifimi*. Lee, S. D. (2015). *Catellatospora koreensis*. Jiangella alkaliphila. Spelaeicoccus albus. Lee, S. D. (2013b). *Lee, S. D. (2006a).* *Lee, S. D. (2006c).* *Lee, S. D., Kang, S. O., and Hah, Y. C.* (2000a). *Saccharothrix albidocapillata* and *M. (* 2000b).* *Nonomuraea emended description of the genus* *Microbispora mesophila* (Zhang et al., 1984). *Sphaerimonospora mesophila* comb. nov. and *Microbispora thailandensis* (Duangmal et al., 2012) to *Sphaerimonospora thailandensis* comb. nov. *Int. J. Syst. Evol. Microbiol.* 66, 1753–1744. doi: 10.1099/ijs.0.000935 Moir, A., and Smith, D. A. (1990). The genetics of bacterial spore germination. *Annu. Rev. Microbiol.* 44, 531–553. doi: 10.1146/annurev.mi.44.100190.025351 Nakaew, N., Pathom-aree, W., and Cheeptham, N. (2013). Screening of volcanic cave actinomycetes for antimicrobial activity against *Paenibacillus larvae* sp. nov., isolated from a cave in southern Spain. *Int. J. Syst. Evol. Microbiol.* 63, 3007–3012. doi: 10.1099/ijs.0.053520 Nimaichand, S., Devi, A. M., Tanmehao, K., Lingthoujam, D. S., and Li, W.-J. (2015). Actinobacterial diversity in limestone deposit sites in Hunding, Manipur (India) and their antimicrobial activities. *Front. Microbiol.* 6:413. doi: 10.3389/fmicb.2015.00413 Nimaichand, S., Sanasam, S., Zheng, L.-Q., Zhu, W.-Y., Yang, L.-L., Tang, S.-K., et al. (2013a). *Rhodococcus canchipersicus* sp. nov., an actinomycete isolated from a limestone deposit site. *Int. J. Syst. Evol. Microbiol.* 63, 114–118. doi: 10.1099/ijs.0.036087-0 Nimaichand, S., Tanmehao, K., Yang, L. L., Zhu, W.-Y., Zhang, Y. G., Li, L., et al. (2013b). *Streptomyces hundungensis* sp. nov., a novel actinomycete isolated from a limestone deposit site in Manipur, India. *Antonie van Leeuwenhoek* 102, 133–139. doi: 10.1007/s10482-012-9720-4 Niyomvong, N., Pathom-aree, W., Thamchaipenet, A., and Duangmal, K. (2012). Actinomycetes from tropical limestone caves. *Chiang Mai J. Sci.* 39, 373–388. Northup, D. E., and Lavoie, K. H. (2001). Geomicrobiology of caves: an overview, " in *Geomicrobiology: Diversity and Biotechnological Applications: New and Future Developments in Microbial Biotechnology and Bioengineering*, eds B. P. Singh, A. K. Passari, and V. Gupta (Amsterdam: Elsevier), 1–11. Patel, K., Lalire, R., Martin, M. T., Tilib, S., Morieu, C., Gallard, J. F., et al. (2010). Unprecedented stylisazoles A-C from *Stylisca carteri*: another dimension for marine pyrrole-2-aminomadazole metabolite diversity. *Angew. Chem. Int. Ed.* 49, 4775–4779. doi: 10.1002/anie.201000444
Pham, V. H., and Kim, J. (2012). Cultivation of unculturable soil bacteria. *Trends Biotechnol.* 30, 475–484. doi: 10.1016/j.tibtech.2012.05.007

Quadri, S. R., Tian, X. P., Zhang, J., Li, J., Nie, G. X., Tang, S. K., et al. (2015). *Nocardiopsis indica* sp. nov., novel actinomycetes isolated from limestone open pit mine, India. *J. Antibiot.* 68, 491–495. doi: 10.1038/ja.2015.24

Ren, H., Wang, B., and Zhao, H. (2017). Breaking the silence: New strategies for discovering novel natural products. *Curr. Opin. Biotechnol.* 48, 21–27. doi: 10.1016/j.copbio.2017.02.008

Riquelme, C., Dapkevicius, M. L. E., Miller, A. Z., Charlop-Powers, Z., Brady, S., Mason, C., et al. (2017). Biotechnological potential of actinobacteria from Canadian and Azorean volcanic caves. *Appl. Microbiol. Biotechnol.* 101, 843–857. doi: 10.1007/s00253-016-7932-7

Schabereiter-Gurtner, C., Saiz-Jimenez, C., Pinar, G., Lubitz, W., and Velikonja, B. H., Tkave, R., and Pasic, L. (2014). Diversity of cultivable bacteria involved in the formation of macroscopic microscopic microbial colonies (cave silver) on the walls of a cave in Slovenia. *Int. J. Speleol.* 43, 45–46. doi: 10.5038/1827-806X.43.1.5

Wang, D. S., Xue, Q. H., Zhu, W. J., Zhao, J., Duan, J. L., and Shen, G. H. (2013). Microwave irradiation is a useful tool for improving isolation of actinomycetes from soil. *Microbiology* 82, 102–110. doi: 10.1134/S0026261712060161

Wang, Z. G., Wang, Y. X., Liu, J. H., Chen, Y. G., Wen, M. L., et al. (2009). *Fodinibacter luteus* gen. nov., sp. nov., an actinobacterium isolated from a salt mine. *Int. J. Syst. Evol. Microbiol.* 59, 2185–2190. doi: 10.1099/ijs.0.006882-0

Yücel, S., and Yamac, M. (2010). Selection of *Streptomyces* isolates from Turkish karstic caves against antibiotic resistant microorganisms. *Pak. J. Pharm. Sci.* 23, 1–6.

Zhang, L. Y., Ming, H., Meng, X. L., Fang, B. Z., Jiao, J. Y., Nimaichand, S., et al. (2018). *Ornithinimicrobium cavernae* sp. nov., an actinobacterium isolated from a karst cave. *Antonie van Leeuwenhoek* 111, 7–11. doi: 10.1007/s10482-018-1141-6

Zhang, W. Q., Li, Y. Q., Liu, L., Nimaichand, S., Fang, B. Z., Wei, D. Q., et al. (2016). *Stackebrandtia cavernae* sp. nov., a novel actinobacterium isolated from a karst cave sample. *Int. J. Syst. Evol. Microbiol.* 66, 1206–1211. doi: 10.1099/ijsem.0.008859

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Rangseekaew and Pathom-aree. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.