Improving Lung Function in Severe Heterogenous Emphysema with the Spiration Valve System (EMPROVE)
A Multicenter, Open-Label Randomized Controlled Clinical Trial

Gerard J. Criner1*, Antoine Delage2, Kirk Voelker3, D. Kyle Hogarth4, Adnan Majid5, Michael Zgoda6, Donald R. Lazarus7, Roberto Casal7, Sadia B. Benzaquen8, Robert C. Holladay9, Adam Wellick10, Karel Calero10, Mark J. Rumbak10, Paul R. Branca11, Muhammed Abu-Hijleh12, Jorge M. Mallea13, Ravi Kalhan14, Ashutosh Sachdeva15, C. Matthew Kinsey16, Carla R. Lamb17, Michael F. Reed18, Wissam B. Abouzgheib19, Phillip V. Kaplan20, Gregory X. Marrujo21, David W. Johnstone22, Mario G. Gasparri22, Arturo A. Meade23, Christopher A. Hergot24, Chakravarthy Reddy25, Richard A. Mularski26, Amy Hajari Case27, Samir S. Makani28, Ray W. Shepherd29, Benson Chen30, Gregory E. Holt31, and Simon Martel32; for the EMPROVE Study Group

1Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; 2Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec, Quebec, Canada; 3Sarasota Memorial Hospital, Sarasota, Florida; 4University of Chicago Medical Center, Chicago, Illinois; 5Beth Israel Deaconess Medical Center, Boston, Massachusetts; 6Carolinas Medical Center (Atrium Health), Charlotte, North Carolina; 7Michael E. DeBakey Veterans Affairs (VA) Medical Center, Dallas, Texas; 8University of Cincinnati Hospital, Cincinnati, Ohio; 9Louisiana State University Health Sciences Center, Shreveport, Louisiana; 10Tampa General Hospital, University South Florida, Tampa, Florida; 11University of Tennessee Medical Center, Knoxville, Tennessee; 12University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; 13Mayo Clinic Florida, Jacksonville, Florida; 14Northwestern University Feinberg School of Medicine, Chicago, Illinois; 15University of Maryland Medical Center, Baltimore, Maryland; 16University of Vermont Medical Center, Burlington, Vermont; 17Lahey Hospital & Medical Center, Burlington, Massachusetts; 18Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania; 19Cooper University Hospital, Camden, New Jersey; 20Detroit Clinical Research Center, Beaumont Botsford Hospital, Farmington Hills, Michigan; 21Kaiser Permanente Riverside Medical Center, Riverside, California; 22Froedtert Hospital, Medical College of Wisconsin, Milwaukee, Wisconsin; 23Sparks Regional Medical Center, Fort Smith, Arkansas; 24Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; 25University of Utah Health Sciences, Salt Lake City, Utah; 26Kaiser Permanente Northwest, Portland, Oregon; 27Piedmont Hospital, Atlanta, Georgia; 28University of California Medical Center at San Diego, San Diego, California; 29Virginia Commonwealth University, Richmond, Virginia; 30California Pacific Medical Center, San Francisco, California; and 31Miami VA Healthcare System, Miami, Florida

ORCID IDs: 0000-0003-1267-3483 (G.J.C.); 0000-0003-2443-0876 (R.K.)

Abstract

Rationale: Less invasive, nonsurgical approaches are needed to treat severe emphysema.

Objectives: To evaluate the effectiveness and safety of the Spiration Valve System (SVS) versus optimal medical management.

Methods: In this multicenter, open-label, randomized, controlled trial, subjects aged 40 years or older with severe, heterogeneous emphysema were randomized 2:1 to SVS with medical management (treatment) or medical management alone (control).

Measurements and Main Results: The primary efficacy outcome was the difference in mean FEV1 from baseline to 6 months. Secondary effectiveness outcomes included: difference in FEV1 responder rates, target lobe volume reduction, hyperinflation, health status, dyspnea, and exercise capacity. The primary safety outcome was the incidence of composite thoracic serious adverse events. All analyses were conducted by determining the 95% Bayesian credible intervals (BCIs) for the difference between treatment and control arms. Between October 2013 and May 2017, 172 participants (53.5% male; mean age, 67.4 yr) were randomized to treatment (n = 113) or control (n = 59). Mean FEV1 showed statistically significant improvements between the treatment and control groups—between-group difference at 6 and 12 months, respectively, of 0.101 L (95% BCI, 0.060–0.141) and 0.099 L (95% BCI, 0.048–0.151). At 6 months, the treatment group had statistically significant improvements in all secondary endpoints except 6-minute-walk distance. Composite thoracic serious adverse event incidence through 6 months was greater in the treatment group (31.0% vs. 11.9%), primarily due to a 12.4% incidence of serious pneumothorax.

Conclusions: In patients with severe heterogeneous emphysema, the SVS shows significant improvement in multiple efficacy outcomes, with an acceptable safety profile.

Clinical trial registered with www.clinicaltrials.gov (NCT01812447).

Keywords: chronic obstructive pulmonary disease; FEV; quality of life

(Received in original form February 20, 2019; accepted in final form July 30, 2019)

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints please contact Diane Gern (dgern@thoracic.org).

Am J Respir Crit Care Med Vol 200, Iss 11, pp 1354–1362, Dec 1, 2019
Copyright © 2019 by the American Thoracic Society
Originally Published in Press as DOI: 10.1164/rccm.201902-0383OC on July 31, 2019
Internet address: www.atsjournals.org

1354
American Journal of Respiratory and Critical Care Medicine Volume 200 Number 11 | December 1, 2019
At a Glance Commentary

Scientific Knowledge on the Subject: Although no medical therapy provides relief from the progressive disability of severe emphysema, improved lung function and survival has been seen with lung volume reduction surgery. However, eligibility for lung volume reduction surgery is contingent upon the patient’s overall health status and pattern of emphysema and is only offered at a limited number of centers. Thus, there is substantial need for less invasive treatment options for severe emphysema.

What This Study Adds to the Field: The Spiration Valve System (SVS) consists of a one-way valve that blocks inspired airflow to distal portions of the lung affected by disease. Treatment of severe heterogeneous emphysema with the SVS in medically optimized participants achieved significant improvements in FEV1, hyperinflation, target lobe volume, dyspnea, and quality of life measures compared with optimal medical management alone. SVS offers clinically relevant benefits to severely ill patients with emphysema. The current study refined objective methods for using quantitative computed tomography as a tool to assess target lobe emphysema characteristics and determine eligibility for bronchoscopic lung volume reduction therapy.

Chronic obstructive pulmonary disease (COPD) affects an estimated 16 million U.S. residents (1) and is the fourth leading cause of death in the United States (2). Emphysema alone affects 4.7 million U.S. residents and is associated with progressive physical activity limitations, dyspnea, and reduced quality of life (QoL) (3, 4).

Pharmacologic COPD treatments have limited benefit (5). Inhaled therapies reduce annual decline in FEV1 more than placebo; however, observed declines have not been clinically relevant. Other guideline-recommended treatments include pulmonary rehabilitation (PR) and continuous oxygen therapy (6), but no medical therapy provides relief from the progressive disability of severe emphysema (5).

The National Emphysema Treatment Trial showed that lung volume reduction surgery (LVRS) improved survival compared with medical treatment in participants with upper-lobe emphysema and low exercise capacity, and also improved health status, dyspnea, exercise capacity, and lung function (7). Although effective, most qualifying individuals (80%) are ineligible for LVRS, primarily due to the potential morbidity associated with surgery and the pattern of emphysema and severity of lung function (8, 9). Thus, there is a substantial need for less invasive treatment options for severe emphysema.

The Spiration Valve System (SVS; formerly known as the intrabronchial valve) consists of a one-way valve that blocks inspired airflow using a flexible umbrella design. This allows for bronchoscopic placement in selected airway regions and limits airflow to distal portions of the lung affected by emphysema. The SVS has been evaluated in prior clinical studies using a bilateral, partial occlusion treatment methodology (10, 11), which proved ineffective. However, Eberhardt and colleagues (12) along with other subsequent studies (13, 14) showed that unilobar total occlusion may provide similar physiologic and clinical benefits to LVRS, including reduced hyperinflation, leading to improved lung function and clinical status, in a minimally invasive and potentially reversible manner (15).

Previous studies using endobronchial valves to treat patients with hyperinflated emphysema have reported that absence of collateral ventilation is pivotal in achieving lobar atelectasis, the overall treatment goal of this therapy (13, 16, 17). Collateral ventilation can be assessed using a balloon-tipped catheter placed bronchoscopically to measure flow and pressure distally in the targeted lobe (18). Alternatively, structural integrity of the fissure(s) adjacent to the targeted lobe can be assessed by quantitative high-resolution computed tomography (HRCT), which also acts as a marker for collateral ventilation and aids in patient and lobe selection (19). The EMPROVE trial represents the largest multicenter study using HRCT analysis of fissure integrity for patient selection and targeted lobar treatment.

The results of the current research have been published in the form of two abstracts presented at the American Thoracic Society (20) and the European Respiratory Society (21) meetings in 2018.

Methods

The EMPROVE study was a prospective, open-label, randomized, controlled, multicenter trial to assess the safety and efficacy of the SVS procedure in participants with severe heterogeneous emphysema.

Participant Population

Up to 220 participants were to be randomized from 41 investigational sites (Appendix E2 in the online supplement), with the potential for the study to be stopped...
The SVS valve is designed for placement in selected regions of bronchial airways using a flexible bronchoscope, deployment catheter, and accompanying loader. The valve has a flexible umbrella that blocks inspired airflow to distal portions of lungs affected by disease, while allowing air and mucus to clear proximally from treated airways. Valves are removable using a flexible bronchoscope and forceps, if necessary. The valve comprises a frame made of a super-elastic, biocompatible alloy (NiTiNol) and a polyurethane membrane (Figure 1). The membrane is held against the airway mucosa by six flexible struts, which expand and contract with airway movement during breathing. The valve is secured in position with five anchors and tips that gently penetrate the airway wall to a controlled depth.

An airway sizing system and calibrated balloon was used to determine the appropriate valve size (5, 6, 7, and 9 mm [the 9-mm valve was introduced after the initial 29 subjects had been randomized in the study]) to treat target lobe airways ranging from 4.75 to 8.75 mm. The treatment algorithm called for the complete occlusion of one lobe; this was achieved by using one or more SVS valves to occlude all segments (i.e., lobar, segmental, and/or subsegmental airways). HRCT imaging and, if necessary, lung perfusion was used to select treatment lobes. Either upper or lower lobes could be targeted for treatment; the right middle lobe was not treated in this study. When two lobes both met criteria for emphysema and heterogeneity, the lobe with the lowest perfusion was treated. To limit subsequent adverse events, physicians were asked to follow a checklist to limit procedure duration. Treated patients remained in the hospital for at least 1 day. The total duration of post-procedural hospitalization was at the discretion of the local investigator and within the norms of clinical practice at the local center.

Follow-up and outcome assessments were scheduled for 2 weeks, 1, 3, and 6 months, and annually through 2 or 5 years for the control and treatment groups, respectively. The primary effectiveness endpoint was mean change in FEV\textsubscript{1} post-bronchodilator from baseline to 6 months between treatment and control groups; 12-month results are also reported. Secondary effectiveness endpoints were FEV\textsubscript{1} difference between responders, defined as a 15% or greater improvement; target lobe volume (TLV) reduction, only assessed in the SVS treatment group, measured by quantitative CT (QCT); hyperinflation, measured by the ratio of RV to TLC; health status and QoL, measured by St. George’s Respiratory Questionnaire (SGRQ); dyspnea, measured by mMRC; and exercise capacity, measured by 6MWT. HRCT, plethysmography, and exercise assessments only occurred between baseline and 6 months; therefore, TLV, hyperinflation, and 6MWT data were not assessed at 12 months.

The primary safety endpoint was the incidence of prespecified composite thoracic serious adverse events (SAEs; Appendix E6) during 6 months; secondary safety endpoints were the rate of each category of thoracic SAEs and thoracic SAE rate per patient-year.

Primary and secondary safety analyses were conducted by determining the 95% Bayesian credible intervals (BCIs) for the difference and ratio of composite SAE probabilities, as well as each individual thoracic SAE category, in the treatment and control groups (Appendix E8). Secondary effectiveness endpoints were computed as the difference between treatment and control groups at 6 and 12 months compared with baseline. Statistical analysis was conducted in the R statistical language.
Results

The trial was conducted from October 8, 2013 to May 3, 2017 at 41 clinical sites (Appendix E1) with 172 participants ultimately randomized to treatment ($n = 113$, 65.7%) and control ($n = 59$, 34.3%) groups at 31 clinical sites (Figure 2). Enrollment was stopped when the predictive probability of success with the existing cohort was greater than 0.999. By 6 months in the treatment group, 6 subjects had died and 107 had an evaluable visit. By 12 months, 96 subjects had evaluable visits. In the control group ($n = 59$), 8 participants withdrew and 1 died, leaving 50 evaluable subjects at 6 months. By 12 months, 43 subjects had an evaluable visit.

Treatment and control group participants had similar baseline characteristics. Demographic data, use of pulmonary medications and supplemental oxygen, medical history, lung function, arterial blood gas results, exercise tolerance, SGRQ, mMRC dyspnea scores, and HRCT characteristics were all comparable (Table 1 and Appendix E9, Table E2). The only demographic difference was sex; the control group had approximately 15% more males.

Mean procedure duration, defined as the time between bronchoscope insertion and removal, was 24.3 minutes (range, 9–73 min). The mean and median duration of hospitalization was 3.83 days and 1 day, respectively (Appendix E10, Table E3). Target lobes, defined by preprocedural imaging, were primarily on the left side (82.3%), with 58.4% being the left upper lobe (Appendix E10, Table E4). QCT was used for target lobe selection in 97.4% of cases. In the remaining three cases, where two potential target lobes were identified by QCT, perfusion scan results were used, and final determination of the target lobe was by the CT corelab. A total of 476 valves were placed in 113 treatment group participants (mean number per participant, 3.83 ± 1.48; Appendix E10, Table E5).

Efficacy Outcomes

The SVS treatment group had significant FEV₁ improvements (Figure 3). At 6 months, the treatment group improved by 0.099 L on average from baseline (95% BCI, 0.069–0.128), whereas the control group changed by -0.002 L (95% BCI, -0.030 to 0.026), for a between-group difference of 0.101 L (95% BCI, 0.060–0.141). At 12 months, the treatment group improved by 0.067 L on average (95% BCI, 0.031 to 0.103), whereas the control group decreased...
Table 1. Subject Demographics and Baseline Characteristics

Characteristics	Treatment Group (n = 113)	Control Group (n = 59)	Difference (T – C; 95% BCI)		
	n	Mean ± SD or n (%)	n	Mean ± SD or n (%)	
Sex, M	113	54 (47.8)	59	38 (64.4)	−30.9% to −0.8%
Age, yr	113	66.7 ± 6.6	59	68.1 ± 6.4	−3.4 to 0.7
BMI, kg/m²	113	25.3 ± 4.3	59	24.6 ± 5.2	−0.8 to 2.3
FEV₁, L	113	0.825 ± 0.264	59	0.792 ± 0.260	−0.051 to 0.116
FEV₁, % predicted	113	30.8 ± 8.1	59	28.5 ± 8.5	−0.4 to 5.0
FVC, L	113	2.492 ± 0.754	59	2.633 ± 0.757	−0.384 to 0.101
FVC%, predicted	113	70.2 ± 16.5	59	70.5 ± 16.7	−5.6 to 5.0
TLC, L	113	7.215 ± 1.530	59	7.649 ± 1.431	−0.904 to 0.035
TLC%, predicted	113	126.5 ± 14.5	59	128.2 ± 17.0	−6.9 to 3.5
RV, L	113	4.573 ± 1.253	59	4.848 ± 1.199	−0.669 to 0.115
RV%, predicted	113	207.5 ± 45.0	59	213.4 ± 49.3	−21.3 to 9.4
RV/TLC ratio	113	0.632 ± 0.080	59	0.632 ± 0.086	−0.028 to 0.026
Prescribed O₂	113	51 (45.1)	59	27 (45.8)	−15.7 to 14.9
Proportion	113	1.18 ± 1.43	59	1.16 ± 1.47	−0.45 to 0.49
Pao₂, mm Hg	112	67.9 ± 10.2	59	68.0 ± 11.6	−3.6 to 3.5
Pco₂, mm Hg	112	40.2 ± 5.7	59	40.9 ± 6.0	−2.7 to 1.1
Pulmonary rehabilitation	113	113 (100)	59	59 (100)	−11.8 to 13.4
Before enrollment	113	39 (34.5)	59	18 (30.5)	−11.8 to 13.4
After follow-up period	113	39 (34.5)	59	18 (30.5)	−11.8 to 13.4
6MWT, m	113	303.5 ± 84.6	59	306.9 ± 104.2	−34.8 to 28.0
Dyspnea, mMRC	113	2.7 ± 0.7	59	2.7 ± 0.6	−0.2 to 0.2
COPD assessment test	113	21.8 ± 6.8	59	20.0 ± 6.3	−0.3 to 3.9
SGRQ total	113	57.2 ± 14.8	59	54.6 ± 13.6	−1.9 to 7.1
TLV, L	113	1.843 ± 0.602	59	1.820 ± 0.456	−0.140 to 0.187
Target lobe	113	27 (23.9)	59	9 (15.3)	−4.2% to 19.5%
Left upper	113	66 (58.4)	59	37 (62.7)	−17.8% to 12.0%
Right lower	113	7 (6.2)	59	7 (11.9)	−15.9% to 2.8%
Right upper	113	13 (11.5)	59	6 (10.2)	−9.4% to 10.1%
Emphysema severity, %	113	63.6 ± 10.1	59	61.6 ± 11.6	−1.8 to 5.5
Emphysema homogeneity, %	113	25.3 ± 12.0	59	23.3 ± 11.6	−1.8 to 5.8

Definition of abbreviations: 6MWT = 6-minute-walk test; BCI = Bayesian credible interval; BMI = body mass index; C = control; COPD = chronic obstructive pulmonary disease; mMRC = Modified Medical Research Council; O₂ = oxygen; RV = residual volume; SGRQ = St. George's Respiratory Questionnaire; T = treatment; TLV = target lobe volume.

Appendix E11, Table E10). Using a 350-ml reduction in TLV as a threshold, 75% of the SVS-treated group achieved a clinically meaningful improvement, with 40% of the entire treatment cohort achieving complete atelectasis of the target lobe.

The SVS treatment group also had significantly greater mean RV/TLC improvement. The between-group difference at 6 months was −0.039 (95% BCI, −0.058 to −0.020; 1.0000 PP) in favor of SVS (Table 3 and Appendix E11, Table E11a).

There was significantly greater mean improvement in SGRQ (health status) for SVS treatment versus control groups at 6 months, with a between-group difference of −13.0 points (95% BCI, −17.4 to −8.5; 1.0000 PP). Results at 12 months were −9.5 points (95% BCI, −14.4 to −4.7; 1.0000 PP) (Table 3 and Appendix E11, Table E12).

Dyspnea, as measured by mMRC, was significantly improved with SVS treatment, with a between-group difference of −0.6 (95% BCI, −0.9 to −0.3; 1.0000 PP) at 6 months and −0.9 (95% BCI, −1.2 to −0.6; 1.0000 PP) at 12 months (Table 3 and Appendix E11, Table E13).

Although not a secondary endpoint of the study, the COPD assessment test scores were improved by 4.3 points at 6 months and 5.3 points at 12 months in the treatment group compared with the control group, and were statistically significant at both time points (Appendix E11, Table E16).

Change in exercise capacity, measured by 6MWT, was not statistically significant at
6 months, with a between-group difference of 6.9 m (95% BCI, −14.2 to 28.2; 0.7438 PP) (Table 3 and Appendix E11, Table E14). Table 2 provides responder rates for all secondary efficacy outcomes.

Safety Outcomes

Short term (0–6 mo). At 6 months, the incidence of composite thoracic SAEs was 31.0% in the treatment group and 11.9% in the control group for a statistically significant between-group difference of 19.1% (95% BCI, 5.9–29.7). The higher treatment group incidence was primarily due to a 12.4% (95% BCI, 4.6–18.6) increased incidence of serious pneumothorax (Appendix E12, Tables E17 and E18), which was statistically significant. Over this time, 32 monitored events of pneumothorax were reported, with 18 protocol-defined (Appendix E6) serious incidents in 16 (14.2%) of 113 treatment group participants, and 14 nonserious pneumothorax events in 13 (11.5%) treatment group participants. The majority (66%) of these pneumothorax events occurred within 3 days of the procedure, within the average hospital stay duration (Appendix E12, Figure E1). Of the 16 subjects with serious pneumothorax events, 11 (69%) had one or more valves removed per the defined pneumothorax management protocol (Appendix E5). Five (5) of these subjects had valves reimplanted upon cessation of the pneumothorax, and this subset showed a TLV reduction of −834.0 ml compared with only −19.2 ml in those that did not have valves replaced. There were no other statistically significant between-group differences in thoracic SAEs by category.

There were six (5.3%) deaths in the treatment group and one (1.7%) death in the control group (Appendix E12, Table E19). This difference between groups was not statistically significant. Only one death (occurring at Day 95 after SVS procedure) was adjudicated by the study clinical events committee as possibly related to the device due to pneumothorax in the contralateral untreated lobe, which did not resolve before death (Table E20).

There were no statistically significant between-group differences for non-horacic SAEs, with 11.5% and 3.4% nonthoracic SAEs in the treatment and control groups, respectively (Appendix E12, Table E19).

Long term (6–12 mo). Between 6 and 12 months, the incidence of composite thoracic SAEs was 21.4% in the treatment group versus 10.6% in the control group (Appendix E12, Table E17), with a between-group difference of 10.7% (95% BCI, −3.0 to 21.2), which was not statistically significant. There were no statistically significant between-group differences in thoracic SAEs by category. There were 3 nonserious events of pneumothorax in 2 of 113 (1.7%) treatment subjects, and no additional serious pneumothorax events (Appendix E12, Figure E1). Three SAEs were adjudicated as device related (one case of infection, one of pneumonia, and one death). There were four (3.9%) deaths in the treatment group (one of which was device related) and three (6.4%) in the control group (Appendix E12, Tables E17 and S19; death details in Table E21). There were no unanticipated device-related SAEs or migration, erosion, or expectoration reported through 12 months of follow-up.

There were no statistically significant between-group differences for nonthoracic SAEs, with rates of 12.6% and 12.8% in the treatment and control groups, respectively (Appendix E12, Table E19).

Discussion

The EMPROVE trial evaluated the safety and efficacy of the SVS compared with optimal medical management in patients with severe heterogeneous emphysema. Although prior SVS trials using bilateral, partial occlusion of the target lobe did not show consistent improvement (10, 11), the
results of the EMPROVE trial, with single-lobe, total lobar occlusion, shows marked benefits. At 6 months, the primary outcome and a majority of secondary outcome measures were improved in the SVS treatment group compared with the control group. There was a significant between-group increase in mean FEV₁ from baseline (0.101 L) and a 25.7% between-group difference in FEV₁ responder rates (defined as improvement of ≥15%). These results persisted at 12 months. The SVS treatment group also saw significant improvements in health status and QoL as measured by the mMRC, SGRQ, and dyspnea (mMRC). Improved health status and QoL was sustained at 12 months. The SVS treatment group compared with the control group (31.0% and 11.9%, respectively). However, pneumothorax was the only individual SAEs with significant differences between the two groups.

Table 3. Secondary Effectiveness Outcomes

Outcome Measure Described as Change from Baseline	Treatment Group [Mean ± SD (N)]	Control Group [Mean ± SD (N)]	Difference between Groups (95% BCI)	Posterior Probability of Superiority
TLV, L 6 mo	−0.974 ± 0.74 (102)	NA	−0.974 (−1.12 to −0.83)*	1.0000
RV, L 6 mo	−0.402 ± 0.85 (105)	−0.042 ± 0.58 (50)	−0.361 (−0.59 to −0.13)	0.9990
RV/TLC 6 mo	−0.035 ± 0.08 (105)	0.005 ± 0.04 (50)	−0.039 (−0.06 to −0.02)	1.0000
SGRQ 6 mo	−8.1 ± 17.1 (105)	4.8 ± 10.6 (50)	−13.0 (−17.4 to −8.5)	1.0000
mMRC 6 mo	−5.8 ± 16.8 (95)	3.7 ± 10.9 (41)	−9.5 (−14.4 to −4.7)	1.0000
mMRC 12 mo	−0.6 ± 1.0 (107)	−0.0 ± 0.6 (50)	−0.6 (−0.9 to −0.3)	1.0000
6MWT, m 6 mo	−0.6 ± 1.1 (94)	0.2 ± 0.6 (41)	−0.9 (−1.2 to −0.6)	1.0000
6MWT, m 12 mo	−4.4 ± 76.7 (102)	−11.3 ± 51.4 (48)	6.9 (−14.2 to 28.2)	0.7438

Definition of abbreviations: 6MWT = 6-minute-walk test; BCI = Bayesian credible interval; mMRC = modified Medical Research Council; NA = not applicable; RV = residual volume; SGRQ = St. George’s Respiratory Questionnaire; TLV = target lobe volume.

Prespecified hierarchy of testing: TLV, hyperinflation (RV/TLC), SGRQ, dyspnea (mMRC), 6MWT, all at 6 months.

*Compared with baseline.

Strengths and Limitations

Strengths of the EMPROVE trial include its use of an adaptive sample size, thus shortening overall enrollment time, and higher treatment group incidence, similar to comparable studies (13, 25). Early-onset pneumothorax in the treatment group likely resulted from lung conformation changes due to acute reduction in lung volume by valve therapy, triggering rapid ipsilateral nontargeted lobe expansion, a recognized indicator of successful target lobe occlusion (28). There was no statistically significant difference in mortality between the study groups at any time point. The 5.3% mortality rate in the treatment group is similar to the 3.1–5.0% documented in other randomized valve trials (11, 25, 29, 30, 31), and lower than the 7.9–12% documented in randomized LVRS trials (7). There were no unanticipated device-related SAEs.

The results of the EMPROVE trial also demonstrate that using HRCT analysis for fissure integrity ≥90% is a useful method to select patients for lack of collateral ventilation that are most likely to achieve targeted lobe atelectasis and improved clinical outcomes. The procedural time for SVS performance was less than other trials using physiological assessment for collateral ventilation, and avoids added procedural costs (32, 33). Moreover, in a broader clinical context, HRCT quantitative assessment of fissure integrity may be easier to implement.
planned long-term follow-up: 5 and 2 years for the treatment and control groups, respectively. A key study limitation was the lack of TLV and hyperinflation assessments at 12 months, which would have provided mechanistic data to support improvements in functional and QoL parameters. In addition, the EMPROVE study, and other recent multicenter, randomized controlled trials, did not blind either subjects or assessors (16, 25, 34). Although this may introduce bias to the QoL assessments and the 6MWT, it is unlikely that measures such as lung function, TLV, and hyperinflation would be affected by this approach.

Conclusions

Treatment of severe heterogeneous emphysema with the SVS in medically optimized participants selected for fissure integrity ≥90% by quantitative HRCT achieved significant improvements in FEV1, hyperinflation, TLV, dyspnea, and QoL measures compared with optimal medical management alone. The SVS offers clinically relevant benefits for severely ill patients with emphysema and, although there are risks with the therapy, they are primarily manageable and tend to diminish over time.

The results of the EMPROVE trial and other randomized trials of valve therapy have led to the inclusion of endobronchial valve therapy as an important component of the clinical therapy recommendations for the underserved patient population with severe emphysema (35, 36). ▶

Author disclosures are available with the text of this article at www.atsjournals.org.

Acknowledgment: The authors thank the EMPROVE trial steering committee, comprised of Douglas Wood, M.D. (Chair), Robert Wise, M.D., Felix Herth, M.D., Christopher Cooper, M.D., Paul Jones, M.D., Atul Mehta, M.D., Steve Springmeyer, M.D., Daniel Sterman, M.D., and Greg Seissler; Nawzer Mehta, Ph.D., and Douglas Sheffield, Ph.D., for overall study management; Michelle Tobin, Susan Anton, Tom Matthews, Gerald Guidry, and Erika Esholik for investigational center oversight and data monitoring; Laurie DeVore for procedure support and patient recruitment; Jacki Campbell, Victoria Simonnet, and Amanda Whitsun for safety reporting and monitoring; Bill Sirokom and David Himes for data management; Andy Mugglin, Ph.D., for performing all statistical analyses; and Caitlin Rothermel, M.P.H., for medical writing and editorial assistance. Additional contributions: safety oversight of the study was provided by a Data and Safety Monitoring Board, comprised of John Beamis, M.D. (Chair), Greg Campbell, Ph.D. (statistician), Frank Detterbeck, M.D., Barry Maké, M.D., and Jonathon Truwit, M.D. The Clinical Events Committee adjudicated adverse events and was comprised of Matthew Brenner, M.D. (Chair), Richard Helmers, M.D., Eric Vallières, M.D., and Roger Yusen, M.D. The study Medical Monitors were Robert Kruklitis, M.D., and Daniel Nader, M.D.

References

1. Wheaton AG, Cunningham TJ, Ford ES, Crotty JB; Centers for Disease Control and Prevention (CDC). Employment and activity limitations among adults with chronic obstructive pulmonary disease: United States, 2013. MMWR Morb Mortal Wkly Rep 2015;64:289–295.

2. U.S. Department of Health and Human Services, National Institutes of Health and National Heart, Lung, and Blood Institute. COPD national action plan. Washington, D.C.: U.S. Department of Health and Human Services; 2017 [accessed 2018 Jul 6]. Available from: https://www.nhlbi.nih.gov/sites/default/files/media/docs/COPD National Action Plan 508.pdf.

3. van Agteren JE, Hnin K, Grosse D, Carson KV, Smith BJ. Bronchoscopic lung volume reduction procedures for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017;2:CD012158.

4. Kaplan RM, Ries AL. Health-related quality of life in emphysema. Proc Am Thorac Soc 2008;5:561–566.

5. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Arch Bronconeumol 2017;53:128–149.

6. Gaseem A, Witt TJ, Weinberger SE, Hanania NA, Criner G, van der Molen EM, Slebos D-J. Endobronchial valves for emphysema without interlobar collateral ventilation. N Engl J Med 2015;373:2325–2335.

7. Davey C, Zoumat Z, Jordan S, McNulty WH, Carr DH, Hind MD, et al. Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial. Lancet 2015;386:1068–1073.

8. Hopkinson NS. Endobronchial valves as a treatment for emphysema: moving out of the shadow of lung volume reduction surgery. Am J Respir Crit Care Med 2016;194:1039–1040.

9. Ninane V, Geltner C, Beazzi M, Foccolari P, Gottlieb J, Welte T, et al. Multicentre European study for the treatment of advanced emphysema with bronchial valves. Eur Respir J 2012;39:1319–1325.

10. Elstad MR, Mehta AC, Nader D, Rai N, Mularski RA, Sterman DH, et al. Bronchial valve treatment of emphysema: procedure and device safety results from a randomized controlled trial [abstract]. Am J Respir Crit Care Med 2012;185:A1112.

11. Eberhardt R, Gompellmann D, Schuhmann M, Reinhardt H, Ernst A, Heusell CP, et al. Complete unilateral vs partial bilateral endoscopic lung volume reduction in patients with bilateral lung emphysema. Chest 2012;142:900–908.

12. Klooster K, ten Hacken NHT, Hartman JE, Kerstjens HAM, van Rikxoort EM, Siebos D-J. Endobronchial valves for emphysema without interlobar collateral ventilation. N Engl J Med 2015;373:2325–2335.

13. Davey C, Zoumat Z, Jordan S, McNulty WH, Carr DH, Hind MD, et al. Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial. Lancet 2015;386:1068–1073.

14. Hopkinson NS. Endobronchial valves as a treatment for emphysema: moving out of the shadow of lung volume reduction surgery. Am J Respir Crit Care Med 2016;194:1039–1040.

15. Kempp SV, Siebos DJ, Kirk A, Kornszewskia M, Carron K, Ek L, et al.; TRANSFORM Study Team. A multicenter randomized controlled trial of Zephyr endobronchial valve treatment in heterogeneous emphysema (TRANSFORM). Am J Respir Crit Care Med 2017;196:1535–1543.

16. Liberator C, Shenoy K, Marchetti N, Criner G. The role of lobe selection on FEV1 response in endobronchial valve therapy. COPD 2016;13:477–482.

17. Gompellmann D, Eberhardt R, Michaud G, Ernst A, Herth FJ. Predicting atelectasis by assessment of collateral ventilation prior to endobronchial lung volume reduction: a feasibility study. Respiration 2010;80:419–425.

18. Li S, Wang G, Wang C, Gao X, Jin F, Yang H, et al. The REACH trial: a randomized controlled trial assessing the safety and effectiveness of the Spirale® Valve System in the treatment of severe emphysema. Respiration. 2019;97:416–427.

19. Criner GJ, Delage A, Voelker KG; for the EMPROVE Trial Investigator Group. The EMPROVE trial: a randomized, controlled multicenter clinical study to evaluate the safety and effectiveness of the
Spiration® Valve System for single lobe treatment of severe emphysema [abstract]. *Am J Respir Crit Care Med* 2018;197:A7753.

21. Criner GJ, Delage A, Voelker K. Endobronchial valves for severe emphysema: 12-month results of the EMPROVE trial. *Eur Respir J* 2018;52:OA4928.

22. Broglio KR, Connor JT, Berry SM. Not too big, not too small: a Goldilocks approach to sample size selection. *J Biopharm Stat* 2014;24:685–705.

23. Saville BR, Connor JT, Ayers GD, Alvarez J. The utility of Bayesian predictive probabilities for interim monitoring of clinical trials. *Clin Trials* 2014;11:485–493.

24. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation: the St. George’s Respiratory Questionnaire. *Am Rev Respir Dis* 1992;145:1321–1327.

25. Criner GJ, Sue R, Wright S, Dransfield M, Rivas-Perez H, Wiese T, et al. LIBERATE Study Group. A multicenter randomized controlled trial of Zephyr endobronchial valve treatment in heterogeneous emphysema (LIBERATE). *Am J Respir Crit Care Med* 2018;198:1151–1164.

26. Celli BR. Pulmonary rehabilitation in patients with COPD. *Am J Respir Crit Care Med* 1995;152:861–864.

27. Keating A, Lee A, Holland AE. What prevents people with chronic obstructive pulmonary disease from attending pulmonary rehabilitation? A systematic review. *Chron Respir Dis* 2011;8:89–99.

28. Valipour A, Slebos DJ, de Oliveira HG, Eberhardt R, Freitag L, Criner GJ, et al. Expert statement: pneumothorax associated with endoscopic valve therapy for emphysema: potential mechanisms, treatment algorithm, and case examples. *Respiration* 2014;87:513–521.

29. Herth FJ, Noppen M, Valipour A, Leroy S, Vergnon JM, Ficker JH, et al.; International VENT Study Group. Efficacy predictors of lung volume reduction with Zephyr valves in a European cohort. *Eur Respir J* 2012;39:1334–1342.

30. Criner GJ, Cordova FC, Furukawa S, Kuzma AM, Travaline JM, Leyenson V, et al. Prospective randomized trial comparing bilateral lung volume reduction surgery to pulmonary rehabilitation in severe chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 1999;160:2018–2027.

31. Hillerdal G, Löfdahl CG, Ström K, Skoogh BE, Jorfeldt L, Nilsson F, et al. Comparison of lung volume reduction surgery and physical training on health status and physiologic outcomes: a randomized controlled clinical trial. *Chest* 2005;128:3489–3499.

32. Herth FJ, Eberhardt R, Gompelmann D, Ficker JH, Wagner M, Ek L, et al. Radiological and clinical outcomes of using Chartis™ to plan endobronchial valve treatment. *Eur Respir J* 2013;41:302–308.

33. Schuhmann M, Raffy P, Yin Y, Gompelmann D, Oguz I, Eberhardt R, et al. Computed tomography predictors of response to endobronchial valve lung reduction treatment: comparison with Chartis. *Am J Respir Crit Care Med* 2015;191:767–774.

34. Valipour A, Slebos DJ, Herth F, Darwiche K, Wagner M, Ficker JH, et al.; IMPACT Study Team. Endobronchial valve therapy in patients with homogeneous emphysema: results from the IMPACT study. *Am J Respir Crit Care Med* 2016;194:1073–1082.

35. Deslee G; Time to Translate Randomized Controlled Trial Results into Routine Clinical Practice. Endobronchial lung volume reduction in severe emphysema. *Am J Respir Crit Care Med* 2018;198:1110–1112.

36. Herth FJF, Slebos DJ, Criner GJ, Valipour A, Sciurba F, Shah PL. Endobronchial lung volume reduction: an expert panel recommendation: update 2019. *Respiration* 2019;97:548–557.