Establishing Analytical Validity of BeadChip Array Genotype Data by Comparison to Whole-Genome Sequence and Standard Benchmark Datasets

Praveen F Cherukuri (praveen.cherukuri@sanfordhealth.org)
Sanford Health

Melissa M. Soe
Sanford Health

David E. Condon
Sanford Health

Shubhi Bartaria
Sanford Health

Kaitlynn Meis
Sanford Health

Shaopeng Gu
Sanford Health

Frederick G. Frost
Sanford Health

Lindsay M. Fricke
Sanford Health

Krzysztof P. Lubieniecki
Sanford Health

Joanna M. Lubieniecka
Sanford Health

Robert E. Pyatt
Sanford Health

Catherine Hajek
Sanford Health

Cornelius F. Boerkoel
Sanford Health

Lynn Carmichael
Sanford Health

Research article
Establishing analytical validity of BeadChip array genotype data by comparison to whole-genome sequence and standard benchmark datasets

Praveen F. Cherukuri¹,²,³, Melissa M. Soe¹, David E. Condon¹,², Shubhi Bartaria¹, Kaitlynn Meis¹, Shaopeng Gu¹, Frederick G. Frost¹, Lindsay M. Fricke¹, Krzysztof P. Lubieniecki¹,²,³, Joanna M. Lubieniecka¹,²,³, Robert E. Pyatt¹,², Catherine Hajek¹,², Cornelius F. Boerkoel¹, Lynn Carmichael¹

1. Imagenetics, Sanford Health, Sioux Falls, SD.
2. Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
3. Sanford Research Center, Sioux Falls, SD

Correspondence:
Praveen F. Cherukuri, PhD
Imagenetics, Sanford Health
1410 W 25th St. Room #302
Sioux Falls, SD 57105
Phone: +1 (605) 404-4265
Fax: N/A
Email: praveen.cherukuri@sanfordhealth.org
Abstract

**Background** Clinical use of genotype data requires high positive predictive value (PPV) and thorough understanding of the genotyping platform characteristics. BeadChip arrays, such as the Global Screening Array (GSA), potentially offer a high-throughput, low-cost clinical screen for known variants. We hypothesize that quality assessment and comparison to whole-genome sequence and benchmark data establish the analytical validity of GSA genotyping.

**Methods** To test this hypothesis, we selected 263 samples from Coriell, generated GSA genotypes in triplicate, generated whole genome sequence (rWGS) genotypes, assessed the quality of each set of genotypes, and compared each set of genotypes to each other and to the 1000 Genomes Phase 3 (1KG) genotypes, a performance benchmark. For 59 genes (MAP59), we also performed theoretical and empirical evaluation of variants deemed medically actionable predispositions.

**Results** Quality analyses detected sample contamination and increased assay failure along the chip margins. Comparison to benchmark data demonstrated that > 82% of the GSA assays had a PPV of 1. GSA assays targeting transitions, genomic regions of high complexity, and common variants performed better than those targeting transversions, regions of low complexity, and rare variants. Comparison of GSA data to rWGS and 1KG data showed >99.3% concordance across all measured parameters. GSA detection of variation within the MAP59 genes was 3/261 consistent with predictions from prior studies.

**Conclusion** We establish the analytical validity of GSA assays using quality analytics and comparison to benchmark and rWGS data. GSA assays meet the standards of a clinical screen although assays interrogating rare variants, transversions, and variants within low-complexity regions require careful evaluation.
Keywords Clinical genotyping, genotyping error, analytical validation

Background

Clinical genotyping requires assays with high positive predictive value (PPV) and minimal error (1). The impact of genotyping error has been observed for variant association tests (2), sibling-pair analyses (3), and variant and genotype interpretation (4). Genotyping errors occur when the observed genotype does not correspond to an individual’s true genotype (5). Such errors arise from multiple factors including, but not limited to, biases in modeling algorithms (6), sample and technical batch effects (7), paralogous genomic regions (8), sample contamination (9), allele frequency differences on genotyping platforms (10), and DNA sample quality (11).

Several methods have been developed to detect and minimize genotyping errors. These include the quality control (QC) metrics of genotype call rate (12, 13) and sample contamination detection (14). Additional methods include assessing departure from Hardy-Weinberg Equilibrium (HWE) (15-17), information content for each chromosome before and after removal of SNPs with high linkage disequilibrium (LD) (18), likelihood of error (19), departure from expected Mendelian inheritance (4), and pedigree information (20).

QC of genotype data minimizes the likelihood of errors (11, 21, 22). Estimating true genotypes and detecting errors require well-characterized benchmark datasets such as those described for bioinformatic genotyping pipelines (23), quality control algorithms (24), and sequencing platforms (25-27). Additionally, theoretical benchmark datasets are needed for analysis of
genotype data and estimating genotyping error (28). Compared to NGS (26, 29, 30), genotyping via DNA hybridization has distinct, well described genotyping and platform biases (10, 31, 32).

Clinical genotyping using DNA hybridization, e.g., the Global Screening Array (GSA), requires a comprehensive analytical framework to detect and limit error. Based on current research methodologies, we propose analytical validation of GSA genotyping by assessment of quality metrics and by comparison to truth sets, namely, those of the 1000 Genomes Phase 3 (1KG), the National Institute of Standards and Technology (NIST), and the Genome in a Bottle Consortium (GiAB). To test this, we selected 263 Coriell DNA samples and, for each sample, generated whole genome sequence (rWGS) at >37x read depth and GSA genotypes in triplicate. These data were compared to each other and to the corresponding publicly available truth sets. Additionally, we characterized each GSA assay performance and biases by stratifying GSA assays according to allele frequency, nucleotide variant class, low-complexity regions, medically actionable variants, and other genomic features.
Methods

Aim and design of study

This study defines an analytical validation framework for detecting and limiting genotyping error in GSA data (Figure 1). To minimize platform specific genotyping biases, internally generated genotype data from independent platforms were paired and compared with publicly available genotype datasets.

Samples and datasets

To generate a reference genotype cluster file for the GSA, 664 DNA samples were purchased from the Coriell Institute for Medical Research, Camden, NJ, and 460 samples were selected from the Sanford Biobank. These samples were selected to cover different ethnicities (14 Coriell diversity panels) and the technical variability of the DNA extraction methods (460 samples from the Sanford Biobank). To capture the technical variability of the Infinium® HTS Assay protocol (Illumina Inc.), all samples were genotyped in triplicate (by different technicians, robot-instrument configurations, reagent lots, and days) using the Infinium Global Screening Array-24 v.1.0 BeadChip. The resulting data were loaded into GenomeStudio v2.0.2 and used to generate the genotype cluster file per manufacturer recommendations (https://www.illumina.com/Documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf). Of the 1,104 samples used in cluster file generation 72 were also included among the 263 samples used to define analytical validity (see below and Supplementary Materials – 1 and 2). Two hundred sixty-three (263) DNA samples from Coriell (https://www.coriell.org) were selected as representative of individuals from the 1000 Genomes Project Consortium (n = 258) and from the Genome in a Bottle Consortium (GiAB) (33) (n = 5). Additionally, they were
selected to assess assays genotyping alleles with \( \geq 1\% \) minor allele frequency (MAF) in the
general population (Supplementary Table S1). These 263 DNA samples were resequenced with
whole genome sequencing (rWGS) and genotyped in triplicate (263 x 3) with the GSA. These
data were compared to 1KG and to publicly available Whole Genome Sequence (pWGS) data
(1KG phase 3; downloaded: June 2018). This defined 4 genotype datasets for the 263 samples:
(i) triplicate GSA genotypes (ii) pWGS, (iii) rWGS, and (iv) 1KG (Supplementary Table S2).

**Human Genome reference sequence**

Mapping, alignment, and genotyping were performed using Human Reference Sequence
GRCh37 (Genome Reference Consortium Human build 37).

**Data generation**

**Illumina Infinium GSA**

Illumina’s GSA – 24 v1.0 BeadChips (24-sample format) were processed following the standard
Infinium High-throughput Screening (HTS) protocol using the Freedom EVO® platform (Tecan)
and AutoLoader 2.x (Illumina, Inc.). Raw intensity data for each bead on a BeadChip were
collected using the iScan® System (Illumina, Inc) and saved as intensity (*.idat) files. The
intensity files were converted to genotypes by the AutoConvert feature in the iScan Control
software using the GenCall algorithm and the Illumina GSA manifest (alleles labeled as A and
B) file. The normalized genotype data were saved as binary files (*.gtc) and used as input for
GenomeStudio v2.0.2 to generate preliminary Quality Control (QC) parameters (CallRate,
p10GC), B-allele frequency files, log-likelihood files, and Variant Call Format (VCF) files
([https://samtools.github.io/hts-specs/VCFv4.1.pdf](https://samtools.github.io/hts-specs/VCFv4.1.pdf)). Genotypes were called relative to GRCh37
using *gtc_to_vcf.py* (v1.1.1) (GitHub link: https://github.com/Illumina/GTCtoVCF). Alleles matching the reference allele were encoded as ‘0’, first alternate allele as ‘1’, second alternate allele as ‘2’, and third alternate allele as ‘3’. The allelic combinations for genotypes were encoded as 0/0, 0/1, 1/1, 0/2, etc. for a total of 10 possible genotypes. All possible genotypes and their comparisons are shown in Table 1.

**Table 1.** Definition of genotypes and comparison of test and truth sets to each other

| Test Genotypes | - | J. | J/0 | J/1 | J/2 | J/3 | 0/0 | 0/1 | 0/2 | 0/3 | 1/1 | 1/2 | 1/3 | 2/2 | 2/3 | 3/3 |
|----------------|---|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| J.  | na | na | na  | na  | na  | na  | na  | na  | na  | na  | na  | na  | na  | na  | na  | na  | na  |
| J/0 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| J/1 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| J/2 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| J/3 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 0/0 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 0/1 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 0/2 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 0/3 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 1/1 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 1/2 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 1/3 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 2/2 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 2/3 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |
| 3/3 | na | f  | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   | f   |

Abbreviations: tp, true positive; fp, false positive; tn, true negative; fn, false negative; x, other discordant genotypes; na, no data; f, false genotype; t, true genotype.

**Whole genome sequencing (rWGS)**

The 263 DNA validation samples purchased from Coriell were sequenced using the Illumina HiSeqX by Genome.One (Sydney, Australia). rWGS produced an average of 731 million 150 bp paired-end reads to give an average of 37x depth of coverage (range: 32x – 42x) across the
Human Genome (GRCh37) (Supplementary Tables S3, S4 and S5). Raw sequence data (fastq files) were transferred to GenomeNext (http://genomenext.com) and processed using the Churchill pipeline (34). QC data and genotypes (GRCh37) were saved as VCF, genomic VCF (gVCF), and binary alignment (BAM) files. In total, 22.3 TB of rWGS data were archived on Amazon Web Services Storage 3 (AWS S3).

Data processing
GSA quality control (QC)

Laboratory QC
Genotype clusters for the variants used for clinical reporting were manually curated to ensure accurate variant calling. Other variants were automatically curated using Illumina-recommended filters (Illumina’s technical Note: https://www.illumina.com/Documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf). Using the data of DNA samples from 1,104 individuals run on the GSA in triplicate, the cluster file analyses of each GSA assay found that 610,771 (92%) assays passed and 50,355 (8%) assays failed clustering quality control. Those that failed were excluded and marked as no-calls (./.) in the VCF files.

Bioinformatics QC
The GSA data (n=263 x 3 replicates) were stratified by the GSA BeadChip and the sample location on the BeadChip (row, column) and grouped by sample replicate. For each sample, the 610,771 assays that passed cluster file QC were used to evaluate the following parameters: (i) genotype call rate, (ii) p10GC, and (iii) estimated sample contamination. Using in-house code,
sample contamination was estimated according to the method of Jun, G. and colleagues (Jun et al. 2012) (Methodology is described in Supplementary Material Section 5). Aggregate QC analyses are shown in Figure 2.

**Data comparisons**

**Principal component analysis**

Principal component analysis (PCA), a tool commonly used in genotyping studies (35, 36) to reduce multiple dimensions in order to synthesize and summarize the main structural components, was used to test for intact super-population structure as a corollary for absence of batch and technical artifacts in the genotyping datasets. PCA structure derived from GSA data was compared to the super-population structure derived from 1KG data.

**Whole Genome Sequence data quality control (QC)**

**Bioinformatics QC**

For bioinformatics quality control of rWGS data (n=263), central tendency and anomalous outlier data points were assessed for (i) total processed reads, (ii) discordant reads, (iii) mapq0 reads, (iv) unmapped reads, (v) mapped reads, and (vi) average depth of sequencing (Supplementary Tables S3 and S4). On average >95% of processed reads per sample (731,227,993 / 767,540,183 reads) mapped to the reference sequence. Because the concordance of two rWGS datasets (HG00111 and HG00257) with the 1KG data were 0.870 and 0.622, they were dropped from our GSA analyses leaving a total of 261 samples in the rWGS dataset.

**Performance metrics**
Genotype concordance, Sensitivity, Specificity and Positive Predictive Value (PPV)

GSA and rWGS genotypes were compared to each other and to 1KG genotypes using the following performance metrics: (i) genotype concordance (C), (ii) sensitivity (S), (iii) specificity (P), and (iv) positive predictive value (PPV). We used the following definitions of genotype classification to label genotypes as positive [true positive (tp), false positive (fp)], negative [true negative (tn), false negative (fn)], or discordant (x) (Table 1):

\[
a = \sum tp \quad \text{(1)}
\]

\[
b = \sum fp \quad \text{(2)}
\]

\[
c = \sum tn \quad \text{(3)}
\]

\[
d = \sum fn \quad \text{(4)}
\]

\[
z = \sum x \quad \text{(5)}
\]

Given the above definitions of true / false positive and negative and discordant genotypes (see Table 1), we computed the performance metrics as follows:

Genotype concordance (C)

\[
C = \left( \frac{a+c}{a+b+c+d+z} \right) \quad \text{(6)}
\]

Sensitivity (S)

\[
S = \left( \frac{a}{a+d} \right) \quad \text{(7)}
\]

Specificity (P)

\[
P = \left( \frac{c}{c+b} \right) \quad \text{(8)}
\]

Positive predictive value (PPV)
\[ PPV = \left( \frac{a}{a+b} \right) \]  \quad \text{(9)}

**Classification of GSA assays**

**Variation type**

GSA assays were stratified according to variant classes: single nucleotide variants (SNVs; 656,601), multi-allelic variants (MAVs; 616), deletions (DEL; 2,799), and insertions (INS; 1,110).

**Nucleotide change class**

By parsing the VCF files and cataloging the alternate nucleotide, SNVs were stratified by whether the nucleotide change was a transition or a transversion.

**Allele frequency**

SNVs were binned into 13 strata based on the alternate allele frequency reported in the 1KG VCF file (allele frequency * 100): (a) [0 – 0.1%], (b) (0.1-1%], (c) (1-5%], (d) (5-10%], (e) (10-20%], (f) (20-30%], (g) (30-40%], (h) (40-50%], (i) (50-60%], (j) (60-70%], (k) (70-80%], (l) (80-90%], and (m) (90-100%].

**Genomic complexity of variation locus (low-complexity regions)**

To categorize SNVs based on the genomic complexity of the GSA assay locus, we used the UCSC genome browser bed-file definitions to define simple-repeats, micro-satellite regions, and low-complexity regions. The SimpRep, Microsatellites, and RepeatMasker bedfiles were
downloaded from the UCSC Genome Browser FTP site and intersected with the GSA manifest file. Across the GRCh37 reference sequence, there were 962,715 simple repeat, 41,573 microsatellite, and 5,298,131 RepeatMasker regions.

GSA panels

Medically Actionable Predispositions (MAP) 59 gene panel

GSA assays targeting potentially disease-associated variants in MAP59 genes were selected in a multistep process (Table 2). Firstly, GSA assays that interrogated positions within 1000-bases upstream and downstream of the transcript start and end in Human Genome build GRCh37 were selected for the RefSeq transcript chosen for each gene. Secondly, alleles were annotated with their respective ClinVar classifications, and those that had at least one classification of pathogenic or likely pathogenic were selected. Thirdly, these assays were curated by clinical and laboratory staff to define a managed variant list (MVL) of 1,883 assays appropriate for clinical reporting.

Table 2. Selection process for GSA assays targeting genotypes considered Medically Actionable Predispositions

| GSA MAP59 subsets | Number of Assays |
|-------------------|------------------|
| GSA MAP59 (+/- 1kb) | 6,841 |
| GSA MAP59 (select: “ClinVar” AND “Predicted Path”) | 5,075 |
| GSA MAP59 (select: “ClinVar” AND “Predicted Path” AND “HGMD”) | 3,082 |
| GSA MAP59 MVL (select: “ClinVar” AND “Predicted Path” AND “HGMD” AND “Curated”) | 1,883 |

Abbreviations: HGMD, Human Gene Mutation Database; Path, Pathogenic; MVL, Managed Variant List
Statistics and compute infrastructure

Statistical analyses and data visualization were performed using R (version 3.4.3). Data analysis was done on a Linux Operating System with the following configuration: x86_64, 32 CPUs, 2.8 GHz AMD Opteron Processor 6320. AWS EC2 instances were spun-up for large compute jobs. All NGS and GSA data were archived on AWS S3. In-house software and data processing code and scripts were written primarily in Perl, Ruby, awk, and bash.
Results

Data summary

DNA samples from 263 individuals were purchased from Coriell and genotyped in triplicate (n=789) with the GSA. Genotypes and data for each replicate were saved to a VCF file. The GSA data were grouped and summarized as replicate datasets 1, 2, and 3. Of the 263 samples, 258 were present in the 1KG. Of the other 5 samples, 3 were from the Personal Genomes Project (PGP) (38), and 2 were from the NIGMS Human Genetic Cell Repository. The 263 x 3 data were compared with the 1KG data and with two WGS datasets, the resequenced WGS data (n = 261; rWGS = 37x), and the downloaded public WGS data (n = 24; pWGS = 51x).

Principal component analysis defines the same population structure in GSA data and 1KG data

Principal component analysis (PCA) on each replicate of autosomal GSA data identified 5 major super populations conserved across replicates (Supplementary Material – Section 4). PCA analysis of the 1KG autosomal genotype data from the same loci generated a similar population structure (Figure 2A). This suggested that the GSA data did not have confounding technical factors skewing the PCA plot. To determine if fewer GSA genotypes were sufficient for this test, we randomly sub-sampled close to 10,000 genotypes; these recapitulated the population structure (Supplementary Material – Section 4).
GSA triplicate data analysis shows data reproducibility in the majority of samples and no detectable stochastic QC failure

Given that PCA did not detect major technical confounders within the GSA genotypes, we analyzed the 263 x 3 data for quality and reproducibility (10) (Table 3 and Figure 3). These data were stratified by BeadChip identifiers and sample location on the BeadChip (row, column).

Additionally, samples were grouped by replicates, and each replicate sample was evaluated for (i) genotype call-rate (n=610,771 assays), (ii) p10GC, and (iii) estimated DNA sample contamination. Aggregate quality control analysis showed a lower p10GC in higher numbered rows on the BeadChip (Figure 2B); excluding contaminated samples, p10GC ranged from 0.56-0.61 (Mean = 0.60, SD = 0.0085) in row 1 and from 0.50-0.61 (Mean = 0.55, SD = 0.03) in row 12. Over 99% (782 / 789) of samples had a call rate of > 0.98. 3 samples in the third replicate dataset were contaminated, and 2 of these 3 samples had a call rate < 0.98 (0.93 and 0.94, Figure 2C).

Table 3. Summary of GSA triplicate data and average number of genotypes detected in all triplicate samples.

|                         | Replicate 1     | Replicate 2     | Replicate 3     | All data        |
|-------------------------|-----------------|-----------------|-----------------|-----------------|
| Total Genotypes called* | 609,852 (± 1,625) | 609,723 (± 2,548) | 609,648 (± 3,501) | 609,741 (± 2,668) |
| Missing Genotypes       | 919 (± 1,625)   | 1,048 (± 2,548) | 1,122 (± 3,501) | 1,030 (± 2,668) |
| Autosomal Genotypes     | 599,666 (± 1,619) | 599,538 (± 2,538) | 599,467 (± 3,459) | 599,557 (± 2,645) |
| Autosomal Heterozygous Genotypes | 103,328 (± 4,061) | 103,221 (± 4,063) | 103,309 (± 4,087) | 103,286 (± 4,066) |
| Autosomal Homozygous Alternate Genotypes* | 60,652 (± 3,081) | 60,643 (± 3,098) | 60,623 (± 3,081) | 60,639 (± 3,083) |

*We define the alternate genotype as a genotype different from the hg19 reference genotype.

To test if call-rates were reproducible across replicates, we measured deviations from expectation and dispersion. The first approach, a Z-score method, computes the number of standard deviations a replicate sample call-rate is from the expected as defined by the global dataset average and standard deviation. The second approach computes the average call-rate of
all replicates for a given sample and then computes variation around the average. Using the Z-score method, 7 samples had a Z-score \( \leq -4 \). With a more conservative cut-off (Z-score < -3), 11 samples deviated from expectation (Supplementary Figure 12). When analyzed relative to the BeadChip row and column, outlier Z-scores occurred for wells on the edge of the Illumina BeadChip – R12C01 or R11C01; the only exceptions were two contaminated samples that were in wells R01C01 and R01C02. Dispersion metrics calculated for call rates across each set of three replicates (Table 4) identified higher relative dispersion for the same samples detected by the Z-score method.

### Table 4. Dispersion data paired with Z-score data

| Sample   | R1 call rate | R2 call rate | R3 call rate | Average | Z-score detected replicate | Dispersion (call rate) | Estimated Contamination |
|----------|--------------|--------------|--------------|---------|---------------------------|------------------------|------------------------|
| NA20351  | 0.9987       | 0.9544       | 0.9989       | 0.984   | R2                        | 0.000447               | 2.75                   |
| NA19475  | 0.9793       | 0.9856       | 0.9961       | 0.987   | R1                        | 0.000048               | 2.5                    |
| NA19472  | 0.9986       | 0.9993       | 0.9451       | 0.981   | R3                        | 0.000659               | 3.75                   |
| NA19390  | 0.9918       | 0.9706       | 0.9989       | 0.987   | R2                        | 0.000146               | 2.5                    |
| NA18861  | 0.9991       | 0.9707       | 0.9817       | 0.984   | R2                        | 0.000139               | 2.5                    |
| NA18508  | 0.9987       | 0.9988       | 0.9318       | 0.976   | R3                        | 0.001021               | 4                      |
| HG03279  | 0.9793       | 0.9878       | 0.9967       | 0.988   | R1                        | 0.000051               | 2.5                    |
| NA19466  | 0.9989       | 0.9988       | 0.9971       | 0.998   | -                         | 0.000001               | 4.25 (R3)              |

Replicate pairwise concordance was calculated to assess the stochastic nature of sample genotyping quality and these were plotted as a 3D scatter-plot: [R1 vs. R2 (x-axis), R2 vs. R3 (y-axis), and R1 vs. R3 (z-axis)] (Figure 3). The data along the diagonal of the cube are correlated data values across triplicates for all measured GSA genotypes for a given DNA sample. 260 of 263 samples in the triplicate dataset (262 / 263 R1 vs. R2; 260 / 263 R2 vs. R3; 261 / 263 R1 vs. R3) had concordance greater than 0.999 between replicates suggesting high reproducibility. Off-
diagonal points, i.e., those with poor call rates (<0.98) (Figure 2B), were along the edge of Illumina chip or contaminated; we did not observe random occurrence of poor call rates.

Grouping GSA assays by variation type shows that SNVs have >0.99 performance relative to the benchmark dataset 1KG across all metrics.

Of the 263 samples with GSA data, 258 had corresponding 1KG genotype data for computing performance metrics of concordance, sensitivity, specificity, and PPV. Each GSA assay was grouped according to the type of nucleotide change assessed: (a) single nucleotide variant (SNV), (b) multi-allelic variant (MAV), (c) insertion, and (d) deletion (Table 5). SNVs accounted for 99.3% (656,601 / 661,126); 610,771 of these passed cluster file quality control, and 594,361 detected genotypes present in the 1KG. Among the MAV assays, 526 of 616 passed cluster file QC; however, because only 3 of these had genotypes present in the 1KG, we excluded MAVs from further analysis. Among insertion assays, 1,044 of 1,110 passed cluster file QC, and 36 of these had genotypes present in the 1KG. Among deletion assays 2,677 of 2,799 assays passed cluster file QC, and 95 of these had genotypes present in the 1KG. Using the three replicate GSA genotype datasets, the performance metrics of SNV assays were > 0.99. In contrast, insertion assays had highly variable concordance with the 1KG, and deletion assays had poor performance metrics (Figure 4A).

Table 5. Summary of GSA assays subgrouped by nucleotide variation type

| Nucleotide variant type assay subsets | All GSA data | GSA pass manifest clusterfile QC | GSA pass manifest QC and present in 1KG Phase 3 |
|--------------------------------------|--------------|---------------------------------|-----------------------------------------------|
| Single Nucleotide Variants (SNVs)    | 656,601      | 606,524                         | 594,230                                       |
| Multi-Allelic Variants (MAVs)        | 616          | 526                             | 3*                                            |
| Insertions                           | 1,110        | 1,044                           | 36                                            |
GSA assays for transitions perform better than do those for transversions

Classifying the GSA-detected SNVs as transitions (purine-to-purine OR pyrimidine-to-pyrimidine) or transversions (purine-to-pyrimidine or vice versa) identified 522,938 (79.6%) assays for transitions and 133,663 (20.4%) for transversions. 476,908 (91.2%) transition assays and 117,322 (87.8%) transversion assays passed cluster file QC and had genotypes present in the 1KG.

Assays for transitions performed better than those for transversions across all performance metrics. Overall concordance, sensitivity, specificity and positive predictive value for transitions versus transversions were 0.9985 vs. 0.9965, 0.9982 vs. 0.9965, 0.9994 vs. 0.9985 and 0.998 vs. 0.996, respectively (Figure 4B). The assays for transversions between complementary nucleotides (i.e., A>T, T>A, C>G, G>C; see Supplementary Materials – Section 7) had lower sensitivity (<0.99) and lower cluster file QC pass rate (66-73%; Table 6) than did those for other transversions.

Table 6. Distribution of GSA (reference (Ref) to alternate (Alt) allele) SNV assays present in the 1KG Phase 3 data versus number of assays passing QC

| RefAlt | Purine   | Purine   | Pyrimidine | Pyrimidine |
|--------|----------|----------|------------|------------|
|        |          |          |            |            |
|        | A        | G        | C          | T          |
| Purine |          |          |            |            |
| A      |          |          |            |            |
| G      | 136,350  | 2,065    | 29,629     | 33,115     |
|        | (91%)    | (66%)    | (89%)      | (91%)      |
| Pyrimidine |        |          |            |            |
| C      | 30,130   | 2,339    | 136,392    | 149,801    |
|        | (90%)    | (73%)    | (91%)      |            |
GSA assays for rare variants are harder to evaluate and confirm using benchmark datasets

Using the allele frequency in the 1KG as a surrogate for the general population variant allele frequency, we interrogated the effect of alternate allele (variant allele) frequency on the performance metrics. 643,012 GSA SNV assays were binned according to the alternate allele frequency extracted from the 1KG VCF file (allele frequency * 100): (a) [0 – 0.1%], (b) (0.1-1%], (c) (1-5%], (d) (5-10%], (e) (10-20%], (f) (20-30%], (g) (30-40%], (h) (40-50%], (i) (50-60%], (j) (60-70%], (k) (70-80%], (l) (80-90%], and (m) (90-100%] (Table 7). On average the QC process removed 7-8% of assays from each bin. The bins [0-0.1%] and (90-100%] had 2% and 12% respectively removed (Table 7); this might reflect the small number of assays in these bins (17,830 and 4,552, respectively). Consistent with previous publications (Ritchie et al. 2011), the average performance metrics for GSA assays passing cluster file QC in each bin showed that PPV and sensitivity suffered when the alternate allele frequency was <5%, whereas specificity and concordance declined as the alternate allele frequency increased (Figure 4C).

Table 7. Number of GSA assays and their relative percentages binned by alternate allele frequency in 1KG Phase 3 data.

| Alternate allele frequency bins (%) | All GSA assays and in 1KG | GSA pass QC and in 1KG | Percent assays that failed QC |
|------------------------------------|--------------------------|------------------------|-----------------------------|
| 0-0.1                              | 17,830                   | 17,454                 | 2%                          |
| 0.1-1                              | 148,959                  | 138,342                | 7%                          |
| 1-5                                | 113,374                  | 104,272                | 8%                          |
| 5-10                               | 63,688                   | 58,421                 | 8%                          |
| 10-20                              | 84,729                   | 78,631                 | 7%                          |
Among the 594,346 GSA SNV assays with IKG genotypes, 476,707 had a PPV equal to 1 (zero false positives) based on concordance with the 1KG and rWGS genotypes (Supplementary Table S8). We observed that 81% of GSA assays in the [0 - 0.1%] and 28% of GSA assays in the (0.1%-1%) bins had PPV < 1 (Figure 5 and Table 9), whereas other allele frequency bins had an average of 13% (range: 8-17%) with a PPV<1 (Table 8). These results are consistent with prior observations showing that accurate calling of rare alleles (MAF < 0.01) by genotyping arrays is compromised by low genotype frequencies and an absence of the homozygous alternate alleles needed for construction of cluster files (22, 39).

Table 8. GSA assays with a PPV=1 based on concordance with the 1KG Phase 3 data and the rWGS data. Data is binned by alternate allele frequency.
Table 9. Summary of performance metrics for GSA and rWGS relative to 1KG Phase 3 data

| Performance metrics | Global Screening Array (GSA) vs. 1KG Mean (± std.dev) | Whole Genome Sequencing (WGS) vs. 1KG Mean (± std.dev) |
|---------------------|-------------------------------------------------------|--------------------------------------------------------|
| Concordance          | 0.9932 (± 0.0005)                                      | 0.9981 (± 0.0005)                                      |
| Sensitivity          | 0.9927 (± 0.0007)                                      | 0.9981 (± 0.0005)                                      |
| Specificity          | 0.9957 (± 0.0003)                                      | 0.9991 (± 0.0003)                                      |
| Positive Predictive Value (PPV) | 0.9892 (± 0.0008)                              | 0.9977 (± 0.0007)                                      |

GSA assays interrogating low-complexity genomic regions perform poorer than other assays

To determine assay performance characteristics within repetitive regions of the genome, we intersected GSA assays with annotated low complexity regions (LCRs) including simple repeats, microsatellites, and repeat masked (RepeatMasker-defined) regions in the human genome. Of a total of 594,346 assays passing QC and present in the 1KG, 203,901 (~ 34%) assessed a variant within one of the three annotation classes. 201,579 GSA assays mapped within the RepeatMasker class. Overlapping partially with the other two classes, 431 GSA assays mapped within the simple repeat class. GSA assays targeting genotypes within each LCR class had
poorer performance metrics than did assays interrogating genotypes outside of these regions (Figure 4D).

**rWGS performed better than GSA relative to the benchmark dataset 1KG**

rWGS data corresponding to GSA assays passing QC were extracted from the rWGS gVCF files and compared to the 1KG. Restricting the analyses to GSA assays for which >90% of rWGS samples had genotype data defined 602,582 assays and excluded 38,093 GSA assays. An additional 9,642 assays on the chromosome X were excluded due to discrepancies in genotype representation in comparison datasets. For the remaining 592,940 autosomal assays, the rWGS genotypes with >20x coverage and a Phred score >30 were used for calculation of performance metrics. These analyses, i.e., GSA vs. 1KG and rWGS vs. 1KG, showed consistent average metrics and small standard deviations among datasets (Table 9).

For the 256 Coriell samples with 1KG data, we observed that rWGS performed better than GSA across all 4 performance metrics (Figure 6A and Table 9). Overall average concordance, sensitivity, and specificity for rWGS vs. 1KG were 0.9981, 0.9981 and 0.9991, respectively, whereas for GSA vs. 1KG, they were 0.9932, 0.9927, and 0.9957, respectively. PPV was 0.9977 for rWGS vs. 1KG and was 0.9892 for GSA vs. 1KG (Table 9).

**Over 82% of all GSA assays have a PPV = 1**

We compared the GSA and rWGS genotypes to the 1KG and computed the PPV. As shown in Figure 6B, over 82% (476,828) of assays had a PPV of 1 for both the GSA and rWGS.
Approximately 1.5% (8,710) of rWGS assays had a PPV of 1 when GSA was 0, whereas only 0.12% (699) of GSA assays did when rWGS was 0.

**GSA MAP59 secondary findings validated using rWGS, pWGS, and 1KG**

Given that >80% of GSA assays have a PPV=1, we assessed rare variation detection within the 59 medically actionable predisposition genes (MAP59) defined by the American College of Medical Genetics (ACMG) (37). Given the expected secondary finding rate of 1% - 2% (40-42) and the limited genomic space profiled by the GSA, we hypothesized 2 – 3 or fewer samples with GSA-detectable variants in the 261 cohort. Additionally, we hypothesized that comparison of these data to the 1KG and the rWGS data identifies false negative and false positive variants as well as pathogenic variation undetected by the GSA. Focusing on nucleotides with >20x rWGS coverage (Figure 7), we found that an average of 6,347 (± 88) sites were genotyped by both rWGS and GSA in any given DNA sample. The GSA vs. rWGS average concordance, sensitivity, specificity, and PPV were 0.99897, 0.99367, 0.99962, and 0.9946, respectively.

For clinically reportable rare variants curated into the managed variant list (MVL), the GSA and rWGS were concordant for a heterozygous variant (*MUTYH* p.(Gly368Asp); rs36053993) in three samples and across GSA replicates. Two of the 3 samples had 1KG data and were concordant; one of these two had pWGS data that was also concordant. Highlighting the potential for false positives, rWGS and 1KG data refuted a GSA call of *PKP2* p.(Arg355Ter) (rs754912778) in one sample. Conversely, highlighting the potential for false negatives, rWGS and 1KG detected two variants that were not detected by GSA: *RB1* p.(Arg661Trp) (rs137853294), which the GSA called homozygous reference in triplicate, and *MUTYH*
p.(Pro391Leu) (rs529008617), which the GSA called “no-call” in triplicate. In summary, the
GSA identified 1 pathogenic variant (true positive), 1 false positive, and 2 false negatives (2
assayed and missed) among the MAP59.

To identify rare pathogenic variation discovered by rWGS and not assayed by the GSA (lack of
probe coverage), we intersected rWGS data with ClinVar pathogenic variation and found 4
heterozygote variants not assayed by the GSA. These were APOB p.(Arg3527Trp)
(rs144467873), SDHAF2 p.(Asn103GlufsTer4) (frameshift insertion; rs753554501), BRCA2
p.(Ser1748Ter) (insertion (NM_000059.3:c.5241_5242insTA); rs749980674) and ATP7B
p.(Thr991Met) (rs41292782). One of these 4 (APOB p.(Arg3527Trp); rs144467873) was present
in 1KG. The ATP7B p.(Thr991Met) (rs41292782) variant was likely absent from the 1KG due to
poor coverage. In summary, rWGS identified 7 rare pathogenic variants in MAP59 genes in 9
samples; the GSA lacked assays for 4 rare pathogenic variants detected by WGS.

The rWGS rate of detection of rare pathogenic variants in the MAP59 genes was 0.034 (3.4%); 7
variants in 9 samples from a population of 261. Removing the 3 variants that were not
independently confirmed by the 1KG due to lack of 1KG data gives 4 pathogenic variants in 5
individuals from a population of 261 or a rate of 0.019 (1.9%). This range (0.019 – 0.034) of
pathogenic variants in the MAP59 genes is consistent with the published discovery rate (40, 41,
43, 44).
We report an approach to analytical validation of the GSA through quality analyses and through assessment of performance by comparison to benchmark datasets and independent whole-genome sequencing data. To the best of our knowledge, this is the first comprehensive analytical validation of the GSA for clinical genotyping. Our findings support and extend recently reported research studies assessing the utility of the GSA for genetic screening in primary immunodeficiency (45), for population-based genomic screening for rare and medically relevant variation (46), and for detecting rare and clinically relevant markers in multiethnic Indian populations (47).

In our study we used call rate and sample contamination as preliminary parameters of quality control for genotype analysis. Call rate is a primary quality control parameter in all genotyping studies (12, 13). A high threshold for call rate not only ensures inclusion of samples with high quality genotype data but also allows, independent of sample DNA quality, for detection of assays that perform poorly. Additionally, sample contamination detection (14) is key in preventing return of false positive genotypes and is demonstrated by our results. While more advanced quality control methods such as Hardy-Weinberg Equilibrium (HWE) test (15), likelihood of error (19), departure from Mendelian inheritance and pedigree information are used in various research studies (4, 20), they are implemented in analyses that follow genotype generation and are dependent on what analyses are subsequently performed using the genotype data. HWE is used to detect genotypes that deviate from the expectation of HWE, and it is typically applied to variants with a MAF of greater than 0.05 (12). Consequently, because of our interest in variants of lower MAF, we did not implement this QC metric; however, HWE might
be useful within certain cut-offs for MAF as implemented by Suratannon et. al. (45) and Narang et. al. (47). Similarly, Mendelian inheritance and pedigree information quality control are critical for linkage and segregation analyses and did not apply to our individual-focused assay.

This evaluation of GSA data is consistent with previous studies that demonstrated utility of sample data quality metrics like genotype call-rate, p10GC, and DNA contamination detection (11, 22). By analysis of replicates, we show that the majority of the GSA data are highly reproducible. Outliers arose either from positioning along the edges of the Illumina BeadChip or from contamination. Characterization of each GSA assay by variation class, type, genomic DNA complexity, and alternate allele frequency showed that the GSA has the highest performance for SNVs and transition nucleotide changes in genomic regions of high complexity. In contrast, assays interrogating low-complexity regions, rare alleles, or transversions performed poorly. Transversions between complementary nucleotides likely performed poorly because of the characteristics of the assays for these particular transversions (Supplementary Materials – Section 7). Also, consistent with previous reports (48-50), assays for rare alleles (<0.001) had lower performance and might be improved by using algorithms for rare variant detection (10, 31, 32) or joint-calling (22) rather than the default genotype caller (GenCall). These should be considered in the future to improve detection of rare variants by genotyping chips.

The analytical framework implemented in this study followed a three-way analysis (GSA-rWGS-1KG) to assess the strengths and limitations of individual GSA assays. Unlike many published analyses in which WGS is the test dataset and the BeadArray genotypes are the truth (25-27, 30), our study had the BeadArray as the test dataset and WGS as the truth. The reversal of test and
truth datasets is a major challenge for comparing our results to the published literature. To overcome this challenge, we ensured that the rWGS data had performance metrics comparable to that previously published (concordance=0.9984 (25)). The three-way analysis framework also allowed detection of false positive and false negative genotypes on the GSA platform. Though not evaluated in the current study, the three-way comparison framework in our analysis allows for modeling of genotyping-error specific to variation classes and categories triaged during characterization of the GSA.

Over 82% of assays on the GSA returned genotypes with a high positive predictive value (PPV). The GSA detected some pathogenic variation (MAP59) in the test dataset of 261 Coriell samples, and these variants were independently validated by either the 1KG data or the rWGS / pWGS data or both. Although we attempted to compare GSA results to other chip results (example HumanExome chip), the comparison to previous work was impeded by differences in probe content and density as well as chip design (e.g., 610k assays on GSA, vs. 247k assays on HumanExome chip). Some of the pros and cons of using the GSA are summarized in Table 10 below.

### Table 10. Pros and cons of arrays vs. whole genome sequencing (51)

| Feature               | SNP arrays (GSA)                                                                 | WGS                                                                 |
|-----------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Cost                  | Lower cost                                                                      | Higher cost                                                          |
| Genomic coverage      | • Best for variants for which DNAs of all genotype combinations are available, i.e., not robust for rare variants  
                          | • Requires prior knowledge of the variant, i.e., unable to detect private variants not previously reported  
                          | • Reduced accuracy in genomic regions of low complexity                | • Appropriate for detection of nearly all genetic variation in the genome depending on the depth of sequencing, i.e., not robust for difficult to sequence regions.  
                          |                                                                  | • Reduced accuracy in genomic regions of low complexity                  |
The test characteristics of the GSA compared to WGS clearly show that the GSA is not a diagnostic genomic test for individuals with rare disorders because, as shown by our MAP59 results and recent research studies (45, 46), it lacks robustness for genotyping rare variants as well as probes for detection of private familial disease variants. On the other hand, we show that the GSA has the analytical robustness to serve as a clinical screen for genotypes for which one can establish robust cluster files for the AA, AB, and BB genotypes. This is most easily accomplished for more common genotypes that contribute to polygenic predispositions to disease, particularly common diseases. Screening of an asymptomatic population to assess the likelihood of predisposition to a disease is well established within medicine, and examples include newborn screening for inborn errors of metabolism, mammography for breast cancer, and cholesterol levels for coronary artery disease (52, 53). A major objective of screening tests is to reduce morbidity and mortality in the subject population through risk stratification to target surveillance, early detection, and treatment. With the characterization of genomic risk for drug responsiveness and predisposition to various cancers and cardiovascular disease (54-56), we propose that the GSA offers a potential clinical tool for genomic screening.
Limitations of our study

Our comparison of BeadChip arrays to NGS and benchmark datasets has some limitations. Firstly, we evaluated our dataset using accepted algorithms. This did not take into account the benefits of consensus genotyping by multiple algorithms for GSA or NGS data; Hwang et al. found that consensus genotyping minimized false findings (49). Secondly, cell-line derived variation or low-level somatic variation might also have contributed to differences between datasets (25). Thirdly, we did not analyze variants close to or overlapping other variation in the same location, e.g., insertions/deletions and copy number variation, because these loci are eukaryotic mutation hotspots (57). Fourthly, our analysis would benefit from comparison to variant benchmark datasets defined in more recent publications (49) and to NIST / GiAB datasets.

Conclusions

We established the analytical validity of the GSA via a systematic approach utilizing benchmark and rWGS data to evaluate the performance of each assay. We highlight that although the GSA assays within particular genotype classes, particularly those interrogating rare variants, transversions, and variants within low-complexity regions, need careful evaluation GSA assays can be analytically validated to clinically screen for common genotypes predisposing to disease.

List of abbreviations

SNV – Single Nucleotide Variation
MAV – Multi-allelic variant
DEL - Deletion
INS - Insertion
PPV – Positive predictive value
QC – Quality control
NGS – Next-generation sequencing
GSA – Global screening array
rWGS – Whole-genome sequencing
IKG – 1000 Genomes
HTS – High-throughput sequencing
VCF – Variant call file
AWS – Amazon web services
PCA – Principal component analysis
TP – True positive
TN – True negative
FP – False positive
FN – False negative
MAP – Medically actionable predisposition
LCR – Low-complexity regions
GiAB – Genome in a bottle
Declarations

Ethics approval
On June 6, 2018, the Sanford Health IRB determined that the proposed activity, "STUDY00001343: Framework for Analytical Validation of SNP Arrays" was not human research and therefore Sanford Health IRB review and approval was not required.

Consent to participate
On June 6, 2018, the Sanford Health IRB determined that the proposed activity, "STUDY00001343: Framework for Analytical Validation of SNP Arrays" was not human research and therefore Sanford Health IRB review and approval was not required. For studies deemed not human research, consent is deemed unnecessary under the 2018 Common Rule, (45 CFR 46).

Consent to publish
Not applicable.

Availability of data and materials
The datasets generated and analyzed during the current study are not publicly available due to enormous size of datasets (whole genome sequence and genotyping chip array data: over 22 terabytes (TB)) but are available from the corresponding author on reasonable request. All datasets generated and analyzed during the current study are archived privately on Amazon Web Services Storage 3 (AWS S3). Data supporting our findings when size was not a limitation were made available in Supplementary Material.
Competing interests
The authors declare that they have no competing interests.

Funding
Sanford Health funded the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Authors’ contributions
CFB, CH, LC, and PFC conceived the hypothesis tested in this study. PFC and LC developed the methodology to test that hypothesis. MMS, LMF, KPL, JML generated the data and performed the preliminary data analysis. REP coordinated initial data validation and GSA manifest file curation. PFC, DEC, SB, KM, SG, FGF and MMS aided in data analysis. PFC wrote the manuscript with input and revisions provided by CFB, KPL, JML, DEC, KM, MMS, FGF and LC. LC, CH and CFB aided in the relevance of conclusions drawn from data analysis. All authors read and approved the final manuscript.

Acknowledgements
We acknowledge Drs. Huilin Chin (Khoo Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore), Sylvie Langlois (Provincial Medical Genetics Program, BC Women’s Hospital, University of British Columbia, Canada) and Blake Atwood (Imagenetics, Sanford Health) for critique of the manuscript. Additionally, we acknowledge valuable help and support from the following colleagues and collaborators: Suruchi Ahuja,
Christina Carlson, Chun H Chan, Megan Cornwell, Chris Deschler (GenomeNext), James Hirmas (GenomeNext), Ryan Kelly (Illumina), Danny W Lee, Dmitry Lyalin, Michael Mboob, Lexie Mohror, Michele M Moore, Lisa Mullineaux, Jeremy Pierce (Illumina), Jennifer Reiner, Murat Sincan, Sherin Shabaan, and Bethany Tucker.

References

1. Muyas F, Bosio M, Puig A, Susak H, Domènech L, Escaramis G, et al. Allele balance bias identifies systematic genotyping errors and false disease associations. Hum Mutat. 2019;40(1):115-26.

2. Yan Q, Chen R, Sutcliffe JS, Cook EH, Weeks DE, Li B, et al. The impact of genotype calling errors on family-based studies. Sci Rep. 2016;6:28323.

3. Walters K. The effect of genotyping error in sib-pair genomewide linkage scans depends crucially upon the method of analysis. J Hum Genet. 2005;50(7):329-37.

4. Saunders IW, Brohede J, Hannan GN. Estimating genotyping error rates from Mendelian errors in SNP array genotypes and their impact on inference. Genomics. 2007;90(3):291-6.

5. Pompanon F, Bonin A, Bellemain E, Taberlet P. Genotyping errors: causes, consequences and solutions. Nat Rev Genet. 2005;6(11):847-59.

6. Mayer-Jochimsen M, Fast S, Tintle NL. Assessing the impact of differential genotyping errors on rare variant tests of association. PLoS One. 2013;8(3):e56626.

7. Hong H, Su Z, Ge W, Shi L, Perkins R, Fang H, et al. Assessing batch effects of genotype calling algorithm BRLMM for the Affymetrix GeneChip Human Mapping 500 K array set using 270 HapMap samples. BMC Bioinformatics. 2008;9 Suppl 9:S17.

8. Fadista J, Bendixen C. Genomic Position Mapping Discrepancies of Commercial SNP Chips. PLoS One. 2012;7(2).

9. Chan AW, Williams AL, Jannink J-L. A statistical framework for detecting mislabeled and contaminated samples using shallow-depth sequence data. BMC Bioinformatics. 2018;19(1):478.

10. Ritchie ME, Liu R, Carvalho BS, Australia, New Zealand Multiple Sclerosis Genetics C, Irizarry RA. Comparing genotyping algorithms for Illumina's Infinium whole-genome SNP BeadChips. BMC Bioinformatics. 2011;12:68.

11. Igo RP, Cooke Bailey JN, Romm J, Haines JL, Wiggs JL. Quality Control for the Illumina HumanExome BeadChip. Curr Protoc Hum Genet. 2016;90:2.14.1-2..6.

12. Guo Y, He J, Zhao S, Wu H, Zhong X, Sheng Q, et al. Illumina human exome genotyping array clustering and quality control. Nat Protoc. 2014;9(11):2643-62.

13. Gudiseva HV, Hansen M, Gutierrez L, Collins DW, He J, Verkuil LD, et al. Saliva DNA quality and genotyping efficiency in a predominantly elderly population. BMC Med Genomics. 2016;9:17.
14. Jun G, Flickinger M, Hetrick KN, Romm JM, DohenyKF, Abecasis GR, et al. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am J Hum Genet. 2012;91(5):839-48.

15. Chen B, Cole JW, Grond-Ginsbach C. Departure from Hardy Weinberg Equilibrium and Genotyping Error. Front Genet. 2017;8.

16. Wang J, Shete S. Testing Departure from Hardy-Weinberg Proportions. Methods Mol Biol. 2017;1666:83-115.

17. Zhao S, Jing W, Samuels DC, Sheng Q, Shyr Y, Guo Y. Strategies for processing and quality control of Illumina genotyping arrays. Brief Bioinform. 2018;19(5):765-75.

18. Sellick GS, Goldin LR, Wild RW, Slager SL, Ressenti L, Strom SS, et al. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci for chronic lymphocytic leukemia. Blood. 2007;110(9):3326.

19. Ehm MG, Kimmel M, Cottingham RW. Error detection for genetic data, using likelihood methods. American Journal of Human Genetics. 1996;58(1):225-34.

20. Hao K, Li C, Rosenow C, Hung Wong W. Estimation of genotype error rate using samples with pedigree information—an application on the GeneChip Mapping 10K array. Genomics. 2004;84(4):623-30.

21. Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, et al. Quality control and quality assurance in genotypic data for genome-wide association studies. Genetic Epidemiology. 2010;34(6):591-602.

22. Grove ML, Yu B, Cochran BJ, Haritunians T, Bis JC, Taylor KD, et al. Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS One. 2013;8(7):e68095.

23. O'Reaw J, Jiang T, Sun G, Wu Y, Wang W, Hu J, et al. Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. Genome Med. 2013;5(3):28.

24. Pongpanich M, Sullivan PF, Tzeng J-Y. A quality control algorithm for filtering SNPs in genome-wide association studies. Bioinformatics. 2010;26(14):1731-7.

25. Eberle MA, Fritzilas E, Krusche P, Källberg M, Moore BL, Bekritsky MA, et al. A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree. Genome Res. 2017;27(1):157-64.

26. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nature Biotechnology. 2014;32(3):246-51.

27. Krusche P, Trigg L, Boutros PC, Mason CE, De La Vega FM, Moore BL, et al. Best practices for benchmarking germline small-variant calls in human genomes. Nature Biotechnology. 2019;37(5):555-60.

28. Stephens ZD, Hudson ME, Mainzer LS, Taschuk M, Weber MR, Iyer RK. Simulating Next-Generation Sequencing Datasets from Empirical Mutation and Sequencing Models. PLoS One. 2016;11(11):e0167047.

29. Highnam G, Wang JJ, Kusler D, Zook J, Vijayan V, Leibovich N, et al. An analytical framework for optimizing variant discovery from personal genomes. Nat Commun. 2015;6:6275.

30. Zook JM, McDaniel J, Olson ND, Wagner J, Parikh H, Heaton H, et al. An open resource for accurately benchmarking small variant and reference calls. Nature Biotechnology. 2019;37(5):561-6.
31. Zhou J, Tantoso E, Wong L-P, Ong RT-H, Bei J-X, Li Y, et al. iCall: a genotype-calling algorithm for rare, low-frequency and common variants on the Illumina exome array. Bioinformatics. 2014;30(12):1714-20.

32. Goldstein JI, Crenshaw A, Carey J, Grant GB, Maguire J, Fromer M, et al. zCall: a rare variant caller for array-based genotyping. Genetics and population analysis. Bioinformatics. 2012;28(19):2543-5.

33. Mao Q, Ciotlos S, Zhang RY, Ball MP, Chin R, Carnevali P, et al. The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes. Gigascience. 2016;5(1):42.

34. Kelly BJ, Fitch JR, Hu Y, Corsmeier DJ, Zhong H, Wetzel AN, et al. Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics. Genome Biol. 2015;16:6.

35. Reich D, Price AL, Patterson N. Principal component analysis of genetic data. Nature Genetics. 2008;40(5):491-2.

36. Nyamundanda G, Poudel P, Patil Y, Sadanandam A. A Novel Statistical Method to Diagnose, Quantify and Correct Batch Effects in Genomic Studies. Sci Rep. 2017;7(1):10849.

37. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing. 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249-55.

38. Church GM. The personal genome project. Mol Syst Biol. 2005;1:2005.0030.

39. Perreault L-PL, Legault M-A, Barhdadi A, Provost S, Normand V, Tardif J-C, et al. Comparison of genotype clustering tools with rare variants. BMC Bioinformatics. 2014;15:52.

40. Amendola LM, Dorschner MO, Robertson PD, Salama JS, Hart R, Shirts BH, et al. Actionable exomic incidental findings in 6503 participants: challenges of variant classification. Genome Res. 2015;25(3):305-15.

41. Hart MR, Biesecker BB, Blout CL, Christensen KD, Amendola LM, Bergstrom KL, et al. Secondary findings from clinical genomic sequencing: prevalence, patient perspectives, family history assessment, and health-care costs from a multisite study. Genet Med. 2019;21(5):1100-10.

42. Sapp JC, Johnston JJ, Driscoll K, Heidlebaugh AR, Miren Sagardia A, Dogbe DN, et al. Evaluation of Recipients of Positive and Negative Secondary Findings Evaluations in a Hybrid CLIA-Research Sequencing Pilot. Am J Hum Genet. 2018;103(3):358-66.

43. Dorschner MO, Amendola LM, Turner EH, Robertson PD, Shirts BH, Gallego CJ, et al. Actionable, pathogenic incidental findings in 1,000 participants' exomes. American Journal of Human Genetics. 2013;93(4):631-40.

44. Kim J, Luo W, Wang M, Wegman-Ostrosky T, Frone MN, Johnston JJ, et al. Prevalence of pathogenic/likely pathogenic variants in the 24 cancer genes of the ACMG Secondary Findings v2.0 list in a large cancer cohort and ethnicity-matched controls. Genome Med. 2018;10(1):99.

45. Suratannon N, van Wijck RTA, Broer L, Xue L, van Meurs JBJ, Barendregt BH, et al. Rapid Low-Cost Microarray-Based Genotyping for Genetic Screening in Primary Immunodeficiency. Front Immunol. 2020;11:614.

46. Bowling KM, Thompson ML, Gray DE, Lawlor JM, Williams K, East KM, et al. Identifying rare, medically relevant variation via population-based genomic screening in Alabama: opportunities and pitfalls. Genet Med. 2020.
47. Narang A, Uppilli B, Vivekanand A, Naushin S, Yadav A, Singhal K, et al. Frequency spectrum of rare and clinically relevant markers in multiethnic Indian populations (ClinIndb): A resource for genomic medicine in India. Hum Mutat. 2020;41(11):1833-47.

48. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics. 2011;43(5):491-8.

49. Hwang K-B, Lee I-H, Li H, Won D-G, Hernandez-Ferrer C, Negron JA, et al. Comparative analysis of whole-genome sequencing pipelines to minimize false negative findings. Sci Rep. 2019;9(1):3219.

50. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S, et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nature Genetics. 2008;40(10):1253-60.

51. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467-84.

52. Maxim LD, Niebo R, Utell MJ. Screening tests: a review with examples. Inhal Toxicol. 2014;26(13):811-28.

53. Petros M. Revisiting the Wilson-Jungner criteria: how can supplemental criteria guide public health in the era of genetic screening? Genet Med. 2012;14(1):129-34.

54. Michailidou K, Lindstrom S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92-4.

55. O'Mara TA, Glubb DM, Amant F, Annibali D, Ashton K, Attia J, et al. Identification of nine new susceptibility loci for endometrial cancer. Nat Commun. 2018;9(1):3166.

56. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N Engl J Med. 2016;375(24):2349-58.

57. Tian D, Wang Q, Zhang P, Araki H, Yang S, Kreitman M, et al. Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature. 2008;455(7209):105-8.
Figure Legends

Figure 1. A flow-diagram showing the analytical validation framework for detecting and limiting genotyping error in BeadChip array data

Figure 2. Aggregate quality control analysis of the GSA data. (A) Principal Component Analysis (PCA) plots of 1KG data and GSA genotype data. red: African (AFR), yellow-green: Admixed Americans (AMR), dark-green: East Asian (EAS), blue: European (EUR), purple: South Asian (SAS). (B) Heatmaps of BeadChip array quality control analysis of call-rate (left), p10GC (middle), and estimated DNA contamination (right). Color gradient scales for the three panels are as follows: call-rate (orange < 0.94 – blue > 0.99), p10GC (yellow < 0.50 – blue > 0.60) and estimated DNA contamination (rainbow gradient: purple ~ 1%, blue ~ 2%, green ~3%, orange/red ~ > 4%). (C) Heatmaps of reproducibility quality control analysis using replicate data as measured by call rate, estimated DNA contamination, number of assays with no genotype calls, and heterozygote to homozygote ratio. Color gradient scales for these four heatmaps are as follows: No genotype calls (blue < 166,000 – orange > 400,000), and rainbow gradient for call rate (purple > 0.99 – red < 0.94), estimated DNA contamination (purple < 1% – red > 4%), and heterozygote / homozygote ratio (purple > 2.25 – red < 1.25) respectively.

Figure 3. Three-dimensional scatterplot showing reproducibility of GSA call rate measured in three replicates for each Coriell sample (pairwise analysis of triplicate data). The data is plotted as correlation across triplicates for all measured GSA genotypes for a given DNA sample. Note that most samples had concordance greater than 0.999 between replicates suggesting high
reproducibility. A few samples had off-diagonal points, i.e., those with poor call rates or reproducibility. Color rainbow gradient is from blue ($< 0.996$) to dark red (1.00).

**Figure 4.** Boxplot analysis of the performance metrics of GSA vs 1KG benchmark dataset when assays are classified according to (A) variation type (deletion (DEL), insertion (INS), single nucleotide variant (SNV)), (B) type of single nucleotide change (transition (TNS), transversion (TVS)), (C) frequency of the alternate allele in the 1000 Genomes (1K) data, and (D) interrogation of a low complexity genomic region (microsatellite region (MicroSat), RepeatMasker region (RepMask), or simple repeat (SimRep)). The performance metrics measured and plotted as boxplots for each class/panel are concordance (blue), sensitivity (coral), specificity (green) and positive predictive value (PPV) (orange).

**Figure 5.** Bar plot of percentage of GSA assays with a positive predictive value (PPV) <1 as a function of alternate allele frequency bins (allele frequency bins as percentage). The alternate allele frequency bins were defined based on the frequency information in 1000 Genomes (1KG) data.

**Figure 6.** Scatter-plot comparison of performance metrics of whole genome sequencing (WGS) and GSA using 1KG as the benchmark dataset. (A) Scatter plots show sample-level performance metrics of WGS and GSA relative to 1KG reference data. Plots are concordance (top left; blue), sensitivity (top right; orange), specificity (bottom left; green) and positive predictive value (PPV) (bottom right; maroon) respectively. Each dot represents a single sample’s performance metric value. (B) Density scatterplot of each GSA assay’s positive predictive value computed.
for GSA (y-axis) vs. WGS (x-axis) using 1KG as the benchmark dataset. Each square represents
PPV measured for GSA and WGS relative to 1KG benchmark dataset, and the color indicates
number of assays within each square. Color gradient of each square ranges from 1 assay (dark
purple) to 476,828 assays (yellow), therefore, the color on the scatterplot indicates the density of
data-points in 2 dimensions.

**Figure 7.** Plot of the average percentage of bases within each MAP59 gene covered by whole
genome sequencing (WGS) to a read depth of (A) 10x or more (gte10x) (B) 20x or more (gte20x)
among the 263 samples. Each WGS nucleotide was required to have a Phred-based quality score
of greater than 30 to be considered for this analysis.
Figures

Figure 1

A flow-diagram showing the analytical validation framework for detecting and limiting genotyping error in BeadChip array data
Figure 2

Aggregate quality control analysis of the GSA data. (A) Principal Component Analysis (PCA) plots of 1KG data and GSA genotype data. red: African (AFR), yellow-green: Admixed Americans (AMR), dark-green: East Asian (EAS), blue: European (EUR), purple: South Asian (SAS). (B) Heatmaps of BeadChip array quality control analysis of call-rate (left), p10GC (middle), and estimated DNA contamination (right). Color gradient scales for the three panels are as follows: call-rate (orange < 0.94 – blue > 0.99), p10GC (yellow < 0.50 – blue > 0.60) and estimated DNA contamination (rainbow gradient: purple ~ 1%, blue ~ 2%, green ~3%, orange / red ~ > 4%). (C) Heatmaps of reproducibility quality control analysis using replicate data as measured by call rate, estimated DNA contamination, number of assays with no genotype calls, and heterozygote to homozygote ratio. Color gradient scales for these four heatmaps are as follows: No genotype calls (blue < 166,000 – orange > 400,000), and rainbow gradient for call rate (purple > 0.99 – red < 0.94), estimated DNA contamination (purple < 1% – red > 4%), and heterozygote / homozygote ratio (purple > 2.25 – red < 1.25) respectively.
Figure 3

Three-dimensional scatterplot showing reproducibility of GSA call rate measured in three replicates for each Coriell sample (pairwise analysis of triplicate data). The data is plotted as correlation across triplicates for all measured GSA genotypes for a given DNA sample. Note that most samples had concordance greater than 0.999 between replicates suggesting high reproducibility. A few samples had off-diagonal points, i.e., those with poor call rates or reproducibility. Color rainbow gradient is from blue (<0.996) to dark red (1.00).
Figure 4

Boxplot analysis of the performance metrics of GSA vs 1KG benchmark dataset when assays are classified according to (A) variation type (deletion (DEL), insertion (INS), single nucleotide variant (SNV)), (B) type of single nucleotide change (transition (TNS), transversion (TVS)), (C) frequency of the alternate allele in the 1000 Genomes (1K) data, and (D) interrogation of a low complexity genomic region (microsatellite region (MicroSat), RepeatMasker region (RepMask), or simple repeat (SimRep)). The performance metrics measured and plotted as boxplots for each class / panel are concordance (blue), sensitivity (coral), specificity (green) and positive predictive value (PPV) (orange).
Figure 5

Bar plot of percentage of GSA assays with a positive predictive value (PPV) <1 as a function of alternate allele frequency bins (allele frequency bins as percentage). The alternate allele frequency bins were defined based on the frequency information in 1000 Genomes (1KG) data.
Figure 6

Scatter-plot comparison of performance metrics of whole genome sequencing (WGS) and GSA using 1KG as the benchmark dataset. (A) Scatter plots show sample-level performance metrics of WGS and GSA relative to 1KG reference data. Plots are concordance (top left; blue), sensitivity (top right; orange), specificity (bottom left; green) and positive predictive value (PPV) (bottom right; maroon) respectively. Each dot represents a single sample's performance metric value. (B) Density scatterplot of each GSA assay's positive predictive value computed for GSA (y-axis) vs. WGS (x-axis) using 1KG as the benchmark dataset. Each square represents PPV measured for GSA and WGS relative to 1KG benchmark dataset, and the color indicates number of assays within each square. Color gradient of each square ranges from 1 assay (dark purple) to 476,828 assays (yellow), therefore, the color on the scatterplot indicates the density of data-points in 2 dimensions.
Figure 7

Plot of the average percentage of bases within each MAP59 gene covered by whole genome sequencing (WGS) to a read depth of (A) 10x or more (gte10x) (B) 20x or more (gte20x) among the 263 samples. Each WGS nucleotide was required to have a Phred-based quality score of greater than 30 to be considered for this analysis.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMaterialv1.3.docx