A novel engineered oxide buffer approach for fully lattice-matched SOI heterostructures

A Giussani1,3, P Zaumseil1, O Seifarth1, P Storck2 and T Schroeder1

1 IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
2 Siltronic AG, Hanns-Seidel-Platz 4, 81737 München, Germany
E-mail: giussani@ihp-microelectronics.com

New Journal of Physics 12 (2010) 093005 (12pp)
Received 27 May 2010
Published 6 September 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/9/093005

Abstract. Epitaxial (epi) oxides on silicon can be used to integrate novel device concepts on the canonical Si platform, including functional oxides, e.g. multiferroics, as well as alternative semiconductor approaches. For all these applications, the quality of the oxide heterostructure is a key figure of merit. In this paper, it is shown that, by co-evaporating Y_2O_3 and Pr_2O_3 powder materials, perfectly lattice-matched $\text{PrYO}_3(111)$ epilayers with bixbyite structure can be grown on Si(111) substrates. A high-resolution x-ray diffraction analysis demonstrates that the mixed oxide epi-films are single crystalline and type B oriented. Si epitaxial overgrowth of the PrYO$_3$(111)/Si(111) support system results in flat, continuous and fully lattice-matched epi-Si(111)/PrYO$_3$(111)/Si(111) silicon-on-insulator heterostructures. Raman spectroscopy proves the strain-free nature of the epi-Si films. A Williamson–Hall analysis of the mixed oxide layer highlights the existence of structural defects in the buffer, which can be explained by the thermal expansion coefficients of Si and PrYO$_3$.

3 Author to whom any correspondence should be addressed.
1. Introduction

In the recent past, crystalline oxides on silicon (COSs) have been widely investigated as functional materials and epitaxial (epi) templates for microelectronic and optoelectronic applications. As functional layers, for instance, perovskite, e.g. SrTiO$_3$ (STO) [1], and pyrochlore, e.g. La$_2$Zr$_2$O$_7$ [2], high-k dielectrics were successfully grown by molecular beam epitaxy (MBE) on Si(001) and Si(111), respectively, with the aim of replacing SiO$_2$ in silicon complementary metal oxide semiconductor technology (CMOS). Previous efforts have also focused on the implementation of epitaxial perovskite Pb$_{(\text{Zr}_{x}, \text{Ti}_{1-x})_3}O_3$ (PZT) layers on STO/Si substrates with SrRuO$_3$ bottom electrodes in a probe-based data storage concept, based on the Millipede idea developed by IBM [3]–[5], to develop ferroelectric random access memories (FRAMs) [6]. Moreover, PZT thin films deposited on Si(001) wafers with STO/MgO as the buffer layer system and YBa$_2$Cu$_3$O$_7$ (YBCO) as the electrode were successfully prepared by pulse laser deposition (PLD) for ferroelectric film micro-electro-mechanical system (MEMS) devices [7].

COSs have also been considered as templates for the integration of alternative semiconductors on the Si platform. Crack-free, wide-bandgap semiconducting ZnO epi-films on Si(111) were accomplished by PLD using either bixbyite Lu$_2$O$_3$ [8] or Sc$_2$O$_3$ [9] intervening layers, paving the way to the incorporation of ZnO-based optoelectronic functions into Si electronics [10]. Perovskite Sr(Hf, Ti)$_3$O$_5$ [11] and bixbyite cubic (cub)-Pr$_2$O$_3$ [12] were studied for the realization of germanium-on-insulator (GeOI) heterostructures on Si, whereas bixbyite Gd$_2$O$_3$ was examined as a lattice mediator to monolithically combine the optoelectronic properties of InP with Si technology [10]. The growth of epi-Si on epi-oxide/Si support systems is being pursued as well to build up Si-based resonant tunneling devices, e.g. epi-Si/Çe$_2$O$_3$/Si(111) [13] and epi-Si/Gd$_2$O$_3$/Si(111) [14], and silicon-on-insulator (SOI) substrates for high-performance CMOS applications, e.g. epi-Si/γ-Al$_2$O$_3$/Si(001) [15, 16], epi-Si/Y$_2$O$_3$/Pr$_2$O$_3$/Si(111) [17], epi-Si/Y$_2$O$_3$/Si(111) [18, 19] and epi-Si/(La$_x$Y$_{1-x}$)$_2$O$_3$/Si(111) [20]–[22].

Major issues in heteroepitaxy are (i) lattice and thermal mismatch between the film and the substrate, often resulting in unacceptable defect densities and/or cracking; (ii) difference in energetics between the epilayer and the substrate, determining the wetting or non-wetting behavior of the former; and (iii) thermodynamical instability of the epi-film in contact with the substrate. An interesting example, which illustrates challenges (a) and (c), is provided by the above-mentioned epi-Si/(La$_x$Y$_{1-x}$)$_2$O$_3$/Si(111) heterostructure. The ternary oxide was deposited by MBE, using molecular oxygen and thermally evaporated La and Y with the target to achieve a layer lattice matched to the Si substrate. It was demonstrated that, by incorporating a small amount of La (larger atomic radius) into the growing bixbyite Y$_2$O$_3$ film, the lattice mismatch of -2.4% between Y$_2$O$_3$ and Si could be changed to $+0.18\%$ for $x = 0.29$. However,
one disadvantage of the (La,Y\textsubscript{1-x})\textsubscript{2}O\textsubscript{3} system is that the lattice window accessible is limited to x \sim 0.35. For higher La concentrations, phase separation occurs, with formation of hexagonal La\textsubscript{2}O\textsubscript{3} domains in the main cubic Y\textsubscript{2}O\textsubscript{3} matrix [22].

In the present paper, it is proven that an epitaxial insulator perfectly lattice matched to Si(111) can be obtained by MBE by suitably mixing isomorphic oxides, Y\textsubscript{2}O\textsubscript{3} and Pr\textsubscript{2}O\textsubscript{3}, in their cubic phase. Both these oxides indeed crystallize in the bixbyite structure, which can be thought of as an oxygen-deficient fluorite, where the lattice parameter is doubled and an ordered oxygen vacancy superstructure exists by removing a quarter of the oxygen atoms [23, 24]. The Y\textsubscript{2}O\textsubscript{3} and cub-Pr\textsubscript{2}O\textsubscript{3} lattice constants are 2.4\% smaller (a\textsubscript{cub-2} = 1.604 nm) and 2.7\% bigger (a\textsubscript{cub-2} = 1.1152 nm) than twice the Si lattice parameter (a\textsubscript{Si} = 0.5430 nm), respectively. By controlling the co-evaporation of the Y\textsubscript{2}O\textsubscript{3} and Pr\textsubscript{2}O\textsubscript{3} sources and the deposition temperature, the (Pr\textsubscript{x}Y\textsubscript{1-x})\textsubscript{2}O\textsubscript{3} ternary system can span the complete lattice window 0 < x < 1 without running into phase separation, matching the room temperature (RT) Si lattice constant for x = 0.47 (hereafter, the Si-lattice-matched mixed oxide is denoted as PrYO\textsubscript{3} for the sake of simplicity). In addition, it is shown that an epi-Si/PrYO\textsubscript{3}/Si(111) SOI heterostructure characterized as fully lattice matched at RT is not necessarily free from structural defects. High-temperature measurements demonstrate that a more complex treatment, taking the different thermal expansion coefficients of oxide and the Si substrate into account, is required to obtain optimized buffer layers.

2. Experimental

Four-inch B-doped Si(111) wafers (\(\rho = 5–15 \Omega \text{cm}\)) were wet-cleaned according to a standard recipe, recently reported in detail [25]. Loaded onto the DCA 600 MBE machine, samples were first annealed at 700°C for 5 min in ultra high vacuum (UHV) (base pressure 10-10 mbar) to prepare high-quality (7 \times 7) Si(111) reconstructed surfaces. Then epi-oxide thin films were deposited by simultaneous electron beam evaporation of Y\textsubscript{2}O\textsubscript{3} and Pr\textsubscript{2}O\textsubscript{3} powder materials from pyrolytic graphite crucibles at a substrate temperature of 780°C and a growth rate of 0.1 nm s-1. Tuning the Y\textsubscript{2}O\textsubscript{3}/Pr\textsubscript{2}O\textsubscript{3} ratio resulted in (Pr\textsubscript{x}Y\textsubscript{1-x})\textsubscript{2}O\textsubscript{3} films with about x = 0.5, as estimated by XPS measurements [26]. The PrYO\textsubscript{3} oxide was then overgrown with epitaxial Si at a substrate temperature of 625°C and a growth rate of 0.02 nm s-1. The thickness and roughness of the epilayers composing the heterostructures were measured by x-ray reflectivity (XRR) (not shown). Samples were extensively investigated by x-ray diffraction (XRD) techniques. A Rigaku DMAX 1500 instrument equipped with Cu K\textsubscript{α} radiation was employed for specular \(\theta–\theta\) scans, whereas a Kappa-Six circle diffractometer was used at the ID 32 beamline of the European Synchrotron Radiation Facility (ESRF) in Grenoble for synchrotron radiation grazing incident x-ray diffraction (SR-GIXRD) measurements. Here, a beam energy of 10.6 keV was selected, resulting in critical angles \(\alpha\) of 0.17°, 0.22°, and 0.26° for total reflection at the Si, Y\textsubscript{2}O\textsubscript{3} and Pr\textsubscript{2}O\textsubscript{3} surfaces, respectively. SR-GIXRD in-plane scans are recorded in the following with respect to the Si(111) surface unit cell of hexagonal symmetry (indicated by the apex S) [27]. However, for the sake of simplicity, Bragg peaks are also labeled with respect to the bulk cubic unit cells of Si, Pr\textsubscript{2}O\textsubscript{3} and Y\textsubscript{2}O\textsubscript{3}. High-resolution \(\phi\)-scans and high-temperature specular \(\theta–\theta\) scans were performed by means of a Rigaku SmartLab diffractometer with a Cu K\textsubscript{α} source. Finally, Raman spectroscopy was applied to characterize the top epi-Si layers. It is a powerful tool to assess the extent of strain in semiconductor materials, since it is non-
destructive, does not require sample preparation, provides a quick response and allows us to
Figure 1. XRD specular θ–2θ scan of (a) an epi-Si/Y$_2$O$_3$/cub-Pr$_2$O$_3$/Si(111) heterostructure and (b) an epi-Si/PrYO$_3$/Si(111) system.

vary the analysis depth by tuning the laser wavelength [28]. An Invia Renishaw equipment with a wavelength of 364 nm was utilized to confine the excitation within the Si epilayers (the probing depth is about 12 nm).

The structural characterization of the epi-Si/PrYO$_3$/Si(111) system is presented in the following section. For reference, the corresponding data of epi-Si/Y$_2$O$_3$/cub-Pr$_2$O$_3$/Si(111) heterostacks, widely described in [26], are included in the figures.

3. Results and discussion

Figure 1 shows the XRD specular θ–2θ scans for a 70 nm epi-Si/10 nm Y$_2$O$_3$/10 nm cub-Pr$_2$O$_3$/Si(111) specimen (figure 1(a)) and a 70 nm epi-Si/10 nm PrYO$_3$/Si(111) system (figure 1(b)). For the former, together with the Si(111), (222) and (333) Bragg peaks from the Si substrate at the expected positions $2\theta = 28.45^\circ$, 58.87°, and 94.97°, respectively, cub-Pr$_2$O$_3$ (222), (444) and (666) reflections at $2\theta = 27.32^\circ$, 56.48° and 90.26° and Y$_2$O$_3$ (222), (444) and (666) peaks at $2\theta = 29.48^\circ$, 61.31°, and 99.92° are observed. The double peak structure of the oxide bilayer is best seen by focusing on the 2θ interval around the kinematically quasi-forbidden Si(222) reflection. Analysis of the oxide peak positions reveals that, in the vertical direction, the cub-Pr$_2$O$_3$ and Y$_2$O$_3$ lattice parameters are about 1.2% bigger and smaller, respectively, than the corresponding bulk lattice constants (e.g. the experimental 2θ for cub-Pr$_2$O$_3$(444) is 56.48° versus the 57.18° bulk value, and the experimental 2θ for Y$_2$O$_3$(444) is 61.31° versus the 60.44° bulk value). This result is in agreement with a recent in situ RHEED-XPS study of strain relaxation in Y$_2$O$_3$ epi-films on cub-Pr$_2$O$_3$/Si(111) support systems, from which it was revealed that tensile strain in the Y$_2$O$_3$ epilayer is accommodated gradually with increasing Y$_2$O$_3$ thickness [29]. No additional Bragg peaks are detected in figure 1(a), in line with the presence of a fully relaxed Si top epilayer whose reflections overlap the ones from the Si substrate. Differently, in the case of the epi-Si/PrYO$_3$/Si(111) heterostack (figure 1(b)), only
three peaks are detected at the 2θ values of Si(111), (222) and (333). This indicates that the PrYO$_3$ mixed oxide and the epi-Si film have the same vertical (111) orientation and exactly the same lattice constant as the Si substrate. The fringes around the Si(111) and Si(222) reflections were caused by interference effects between the oxide epilayer and the Si substrate, which have different scattering powers. From their spacing it is possible to estimate the thickness of the PrYO$_3$ film, which turns out to be about 8 nm, in line with the XRR analysis. It is worth noting that, whereas the deposition of Pr oxide on Si(111) at temperatures around 600°C results in the growth of the non-thermodynamically stable hexagonal Pr$_2$O$_3$ phase, owing to the low lattice-misfit with Si(111) [30, 31], no hexagonal features are detected in the mixed cubic oxide film. This points to a stabilization of the cub-Pr oxide phase by Y oxide admixture. The specular θ–2θ results are confirmed by the SR-GIXRD analysis. In-plane scans were performed along the $H^S = [100]^S$ direction (corresponding to [1 1 −2] in bulk coordinates) for $L^S = 0.05$ and with an incident angle α of 0.6°, therefore probing the whole heterostructure (figure 2). The curve in figure 2(a) reports the spectrum for the epi-Si/Y$_2$O$_3$/cub-Pr$_2$O$_3$/Si(111) specimen. Two Si crystal truncation rods (CTRs) at $H^S = 1$ and 2 rlu (reciprocal lattice unit) and an Si(2 2 −4) Bragg peak at $H^S = 3$ rlu are seen, originating from the Si(111) substrate and the Si(111) epilayer, the latter causing a broadening of the sharp substrate reflections. Moreover, cub-Pr$_2$O$_3$(-1 −1 2), (-2 −2 4) and (-3 −3 6) Bragg peaks at $H^S = 0.74$, 1.48 and 2.22 rlu, respectively (bulk values $H^S = 0.73$, 1.46 and 2.19 rlu), and Y$_2$O$_3$(-1 −1 2), (-2 −2 4) and (-3 −3 6) Bragg peaks at $H^S = 0.76$, 1.52 and 2.27, respectively (bulk values $H^S = 0.77$, 1.54 and 2.30 rlu), are clearly visible. Instead, the cub-Pr$_2$O$_3$(-4 −4 8) and Y$_2$O$_3$(-4 −4 8) reflections are more difficult to analyze, owing to the close Si(2 2 −4) Bragg peaks from the Si substrate and the Si epilayer at $H^S = 3$ rlu. Comparing the experimental oxide peak positions with the theoretical bulk ones, it turns out that, along [1 1 −2], cub-Pr$_2$O$_3$ is in-plane compressively strained by about 1.3% due to the influence of the smaller

Figure 2. SR-GIXRD in-plane scans along [100]S ([1 1 −2]) with $L^S = 0.05$ rlu and $\alpha = 0.6^\circ$ for (a) the epi-Si/Y$_2$O$_3$/cub-Pr$_2$O$_3$/Si(111) heterostructure and (b) the epi-Si/PrYO$_3$/Si(111) system.
Si lattice underneath (experimental \{112\} d-spacing $d_{112}(\text{cub-Pr}_{2}O_{3}) = 4.493 \text{ nm}$ versus bulk $d_{112}(\text{cub-Pr}_{2}O_{3}) = 4.553 \text{ nm}$), whereas Y_2O_3 is in plane tensely strained by about 1.5\% owing to the bigger cub-Pr$_2$O$_3$ lattice underneath and epi-Si lattice on top (experimental $d_{112}(Y_2O_3) = 4.395 \text{ nm}$ versus bulk $d_{112}(Y_2O_3) = 4.329 \text{ nm}$). Analogous results were obtained along the other high symmetry direction $H^S = K^S = [110]^S$ ([011] in bulk coordinates) (not shown). The scan of figure 2(b) presents the SR-GIXRD scan along $H^S = [100]^S$, with H^S ranging from 0.5 to 3.5 rlu for the epi-Si/PrYO$_3$/Si(111) system. As expected, two CTRs and the Si(2 2 4) Bragg peak from the Si(111) epi-film and the Si(111) substrate are found at $H^S = 1, 2$ and 3 rlu, respectively. Three additional reflections show up at $H^S = 0.75, 1.5$ and 2.25 rlu, which can be assigned to the PrYO$_3$ mixed oxide with bixbyite structure, namely Pr$_2$O$_3$($−1−12$), ($−2−24$) and ($−3−36$), respectively. Interestingly, the calculated d-spacing of the \{112\} netplanes in PrYO$_3$ is $d_{112}(\text{PrYO}_3) = 0.2217 \text{ nm}$, which is exactly the d-spacing of the \{112\} netplanes in the Si lattice. This means that the PrYO$_3$ oxide buffer is in-plane perfectly lattice matched to the Si substrate. For this reason, the Pr$_2$O$_3$($−4−48$) Bragg peak fully coincides with the Si(2 2 4) Bragg peak at $H^S = 3$ rlu. Furthermore, since no extra reflections are detected, it is concluded that the top epi-Si layer is also lattice matched to the underlying Pr$_2$O$_3$(111)/Si(111) support system (consistent results were deduced scanning along [110]S (not shown)). The structural difference between the Y_2O_3/Pr$_2$O$_3$ and the Pr$_2$O$_3$ buffers is best seen by considering figures 3(a) and (b), which report the in-plane (H−K) reciprocal space maps (RSMs), taken with $L^S = 0.05 \text{ rlu}$ and $\alpha = 0.6^\circ$, of the Y_2O_3($−3−36$)/cub-Pr$_2$O$_3$($−3−36$) and Pr$_2$O$_3$($−3−36$) Bragg peaks, respectively. It is clear that, whereas a double peak is observed in the case of the bilayer buffer, a single and homogeneous ($−3−36$) Bragg peak is recorded for the mixed oxide. In the same way, RSMs were also recorded around the Pr$_2$O$_3$($−2−24$) and ($−1−12$) Bragg peaks for the epi-Si(111)/Pr$_2$O$_3$(111)/Si(111) heterostructure (figures 3(c) and (d), respectively). A Williamson–Hall (W–H) analysis [32] of the Pr$_2$O$_3$($−n−n 2n$) reflections ($n = 1, 2, 3$) was performed and the results are shown in figure 4. The full-width at half-maximum (FWHM) of each peak was extracted from the respective RSM along the two in-plane high-symmetry directions [100]S and [110]S and was plotted versus the H^S position of the peak. Afterwards, a linear regression of the two curves was executed. An in-plane Pr$_2$O$_3$ domain size of about 13 nm along [100]S and [110]S was calculated from the line intercepts. Moreover, from the slopes of the FWHM([110]S) and FWHM([100]S) curves, respectively, an in-plane mosaicity of about 0.4\% and in-plane strain variation of about 1\% were estimated. Hence, the W–H study reveals that, although the oxide buffer is perfectly lattice matched to the Si substrate, it is not free from structural defects causing lattice micro-strain and tilt and limiting the long-range order. A point will be made on that at the end of the section.

The anti-parallel indexing of the in-plane Si and oxide Bragg peaks is applied, due to the so-called type-B stacking configuration of ionic insulator heterostructures on Si(111) [17]. Here, it is recalled that a type-B (111)-oriented face centered cubic (fcc) epilayer has its stacking vector rotated by 180\° around [111] with respect to the type-A stacking vector of the Si(111) substrate [33]. Although it is well known that the Y_2O_3(111)/cub-Pr$_2$O$_3$(111) bilayer buffer grows on Si(111) in a type-B fashion [17], the stacking configuration of the (111) netplanes of the Pr$_2$O$_3$(111) epi-film on Si(111) still needs to be determined. For this reason, ϕ scans on the \{400\} and \{200\} families of planes were performed for the fully lattice-matched epi-Si/Pr$_2$O$_3$/Si(111) specimen (figure 5). The ϕ scan on (400), which is allowed for both the diamond Si lattice and the bixbyite Pr$_2$O$_3$ one, shows a group of three intense Bragg peaks at $\phi = 90^\circ$, 210\° and 330\° and three weaker features at $\phi = 30^\circ$, 150\° and 270\°.

New Journal of Physics 12 (2010) 093005 (http://www.njp.org/)
Figure 3. SR-GIXRD RSMs around (a) the $Y_2O_3(-3-3 \cdot 6)$/cub-$Pr_2O_3(-3-3 \cdot 6)$ Bragg peak and (b)–(d) the Pr$YO_3(-n-n 2n)$ Bragg peaks ($n = 3, 2, 1$, respectively). The Cartesian coordinate system is defined as $H^S = H^S + K^S/2; K^S = K^S \cdot \sqrt{3}/2$. The H^S and $H^S = K^S (\{1 1 -2\}$ and $\{0 1 -1\}$ in bulk coordinates, respectively) are depicted in the inset of panel (a). The logarithmic intensity scales are (a) $10^{-10} - 10^{4}$ cps, (b) $10^{-2} - 280$ cps, (c) $30 - 8.5 \times 10^3$ cps and (d) $50 - 1.5 \times 10^3$ cps. $L^S = 0.05$ rlu and $\alpha = 0.6^\circ$.

(figure 5(a)). The former set of reflections mainly originates from the semi-infinite Si(111) substrate with type-A orientation, whereas the latter group of Bragg peaks clearly indicates the presence of some type-B orientation in the heterostructure. In contrast, the ϕ scan on the (200) Bragg peak, which is allowed only for the bixbyite structure, exhibits only three reflections at $\phi = 30^\circ, 150^\circ$ and 270° (figure 5(b)). It is concluded that the Si lattice-matched PrYO_3 oxide layer has its (111) netplanes oriented according to a type-B stacking configuration and it is free from rotational twins. Combining the data of figure 6 with the in-plane measurements of figure 2, the heterostructure azimuthal orientation can be assigned, resulting in epi-Si$[1 1 -2]$$[\parallelPrYO_3(1 -1 2)][\parallelSi[1 1 2]$. Finally, the Si–Si Raman vibration line of about 20 nm-thick Si(111) epilayers grown on a 10 nm PrYO_3/Si(111) support system and on a 10 nm $Y_2O_3/10$ nm cub-Pr_2O_3/Si(111) heterostructure, respectively, were compared, as illustrated in figure 6. As a reference, the Si–Si Raman line of a bare Si(111) wafer was also measured (solid curve (a)) and its position and width were found to be 520.5 and 3.3 cm$^{-1}$, respectively. It is seen that the Si–Si line for the
Figure 4. W–H plot analysis of the PrYO₃(−n−n 2n) Bragg peaks (n = 1–3). Slope and intercept of the curve linear regression resulted in 0.01 ± 0.001 and 0.021 ± 0.001 rlu along H^S (triangles) and 0.008 ± 0.001 and 0.021 ± 0.001 rlu $H^S = K^S$ (circles), respectively.

Figure 5. The ϕ scans with $\alpha = 0.6^\circ$ on (a) {400} and (b) {200} Bragg peaks. During the scans, the sample is rotated over a range of 360° around its surface normal ([00L]$^S = [111]$) while keeping the Bragg–Brentano diffraction condition satisfied for either Si{200} or Si{400} (see [38] for details about ϕ scans).

Si(111) epilayer deposited on the mixed oxide (dashed curve (b)) is symmetric and has within the error limits the same position (520.6 cm$^{-1}$) as the substrate feature, indicating that the epi-Si deposited on the Si-lattice-matched PrYO$_3$ buffer is not strained. However, curve (b) is wider (4.1 cm$^{-1}$) than curve (a), pointing to the presence of structural defects in the epi-Si film, in agreement with the limited long-range order of the mixed oxide buffer. The Raman peak of the epi-Si film grown on the bilayer heterostructure (dashed dotted curve (c)) is asymmetric.
Figure 6. Si–Si Raman spectra of (a) a bare Si(111) reference wafer (solid curve), (b) a 20 nm epi-Si(111)/10 nm PrYO$_3$(111)/Si(111) system (dashed curve) and (c) a 20 nm epi-Si(111)/10 nm Y$_2$O$_3$(111)/10 nm cub-Pr$_2$O$_3$(111)/Si(111) heterostructure (dash-dotted curve).

with a position of 522.1 cm$^{-1}$ and is much broader (4.9 cm$^{-1}$) than the Si(111) substrate line. The shift of the Raman line reveals in-plane compressive strain in the epi-Si film, whereas peak asymmetry and broadening are attributable to inhomogeneous strain distribution along the layer thickness and/or structural defects, as recently outlined for epi-Si layers on SiGe virtual substrates [28].

The fact that the PrYO$_3$ lattice is perfectly matched to the Si substrate while exhibiting structural imperfection, as unveiled by the W–H analysis, seems to be contradictory. However, it has to be kept in mind that the XRD analyses were performed at RT. To figure out what happens during the epitaxial process at 780 °C, high-resolution θ–2θ scans were performed around the Si(111) and Si(222) reflections at temperatures up to 725 °C under an N$_2$ atmosphere. The measured lattice constants in the direction normal to the wafer surface (a_\perp) are shown in figure 7 for the Si substrate and the 10 nm-thick PrYO$_3$ layer (any signal from the epi-Si layer is completely superimposed by the much stronger Si substrate reflection). At RT, the a_\perp parameters of Si and PrYO$_3$ are nearly equal according to the matched lattice. However, with increasing temperature, the a_\perp lattice constant of the mixed oxide increases much faster than that of Si. The main reason for this stronger increase is a significantly larger coefficient of thermal expansion of the oxide. As long as no plastic deformation occurs, the in-plane lattice constant of the oxide is fixed to that of the Si substrate and follows the expansion of Si with increasing temperature. Since the oxide expands more than the Si substrate, this leads to a tetragonal distortion of the oxide lattice, with the oxide a_\perp lattice parameter expanding faster than expected for the bulk values as the temperature rises. The oxide point at 50 °C was measured after heating the sample to 725 °C and then cooling it down. The fact that this point is very close to lattice constant values measured during the ramp-up from RT to 725 °C indicates that no significant additional relaxation occurred during the high-temperature
Figure 7. The a_\perp lattice constants of the Si substrate (squares) and the half a_\perp lattice constants of PrYO$_3$ (triangles) measured in the temperature range $25^\circ C < T < 725^\circ C$. Full and empty circles represent estimated half a_\perp lattice constants at $780^\circ C$ and at RT, respectively, for a (Pr$_x$Y$_{1-x}$)$_2$O$_3$ epifilm lattice matched to Si at the growth temperature of $780^\circ C$.

experiment. The trend of the lattice constants versus temperature is approximated in figure 7 by linear behavior, neglecting any temperature dependence of the expansion coefficients. It is evident that there exists a significant difference (0.0024 nm) between the a_\perp lattice constants of the two materials at the oxide deposition temperature of $780^\circ C$. The mixed oxide layer of the given stoichiometry is obviously strained at the growth temperature and it probably relaxes plastically by the generation of misfit dislocations, which are responsible for the measured mosaicity and micro-strain. In order to increase the long-range order of the mixed oxide, it is therefore important that lattice matching is achieved at the growth temperature (full circle in figure 7) rather than at RT. To do that, the stoichiometry of the (Pr$_x$Y$_{1-x}$)$_2$O$_3$ has to be changed towards the Y$_2$O$_3$ side (smaller x values). Cooling this structure down to RT would then result in an oxide a_\perp lattice constant of about 0.5403 nm (the arrow and the empty circle in figure 7). This means that an oxide lattice with a well-defined mismatch at RT must be the goal for further improvement of the epilayer quality.

4. Conclusions and outlook

It was shown that, by electron gun co-evaporation of Pr$_2$O$_3$ and Y$_2$O$_3$ sources, it is feasible to grow (Pr$_x$Y$_{1-x}$)$_2$O$_3$ epilayers on Si(111) that are perfectly lattice matched at RT. The PrYO$_3$ epi-films are (111) oriented and single crystalline and exhibit a type-B stacking configuration. At the deposition temperature of $780^\circ C$, the cubic bixbyite structure is the thermodynamically stable phase of both Pr$_2$O$_3$ and Y$_2$O$_3$. Therefore, no phase separation occurs within the mixed oxide. This means that the (Pr$_x$Y$_{1-x}$)$_2$O$_3$ lattice constant can be tuned without any restriction, and especially in the range $0.47 < x < 1$ it is possible to fit the lattice parameter of SiGe alloys up to Si$_{0.2}$Ge$_{0.8}$ [34]. This is clearly an advantage compared to the (La$_x$Y$_{1-x}$)$_2$O$_3$ system.
In this case, indeed, La-rich hexagonal domains start nucleating at 600 °C within the cubic matrix for La content \(x > 0.35 \), owing to the fact that, at high temperature, hex-La\(_2\)O\(_3\) and not cub-La\(_3\)O\(_5\) is the stable phase. Furthermore, on the PrYO\(_3\)(111)/Si(111) support system, single crystalline, type-A-oriented epi-Si(111) films could be grown, achieving fully lattice-matched and unstrained epi-Si(111)/PrYO\(_3\)(111)/Si(111) heterostructures with azimuthal orientation given by epi-Si\([11-2][\{PrYO\(_3\)[-1-12][\{Si[11-2].

However, the PrYO\(_3\) domain size is rather limited (13 nm). An explanation for this phenomenon was provided by temperature-dependent XRD measurements. At the elevated growth temperature of 780 °C, PrYO\(_3\) grows in a strained state, and misfit dislocations are probably generated at the PrYO\(_3\)/Si(111) substrate interface, limiting in this way the long-range order of the oxide crystallinity. Experiments are ongoing to tune the \((\text{Pr}_x\text{Y}_{1-x})_{2}\text{O}_3\) epi-film stoichiometry so that lattice match of the mixed oxide to Si is achieved at the oxide growth temperature instead of at RT. It is then expected that the mixed oxide structural quality will be superior to that of the presented specimen. As a result of high-temperature XRD investigations, an optimization of the growth recipe is ongoing in parallel with further XRD/TEM studies of the film defect structure to gain a deeper understanding of the factors limiting the lateral size of the mixed oxide domains. Finally, grazing incidence x-ray absorption fine-structure (XAFS) experiments at the Y K- and Pr L\(_3\)-absorption edges are planned in order to determine whether the mixed oxide exhibits random atomic-scale ordering or whether there is a preference for or against cation clustering [35]–[37]. Such studies could trigger the development of Eu : \((\text{Pr}_x\text{Y}_{1-x})_{2}\text{O}_3\) films as scintillator materials. To optimize the optical activity, it is indeed fundamental that the Eu\(^{3+}\) activator cations reside solely on the non-centrosymmetric C\(_2\) cation sites of the \((\text{Pr}_x\text{Y}_{1-x})_{2}\text{O}_3\) bixbyite crystal, which in principle offers two non-equivalent cation sites with different point group symmetries (C\(_2\) and S\(_6\)) [23]. In general, the development of engineered oxide heterostructures with tailored properties (e.g. lattice constant) will pave the way for the integration of novel oxide and semiconductor device concepts in Si nanoelectronics.

Acknowledgment

The authors are grateful to the following organizations for funding and infrastructure support: the DFG, Siltronic AG and the ESRF.

References

[1] McKee R A, Walker F J and Chisholm M F 1998 Phys. Rev. Lett. 81 3014
[2] Seo J W, Fompeyrine J, Guiller A, Norga G, Marchiori C, Siegwart H and Locquet J P 2003 Appl. Phys. Lett. 83 5211
[3] Vettiger P et al 2002 IEEE Trans. Nanotechnol. 1 39
[4] 2005 III-Vs Rev. 18 24
[5] 2002 Mater. Today 5 7
[6] Martin L W, Chu Y H and Ramesh R 2010 Mater. Sci. Eng. R 68 89
[7] Zhao J, Lu L, Thompson C V, Lu Y F and Song W D 2001 J. Cryst. Growth 225 173
[8] Guo W, Allenc A, Chen Y B, Pan X Q, Tian W, Adamc C and Schlom D G 2008 Appl. Phys. Lett. 92 072101
[9] Guo W, Katz M B, Nelson C T, Heeg T, Schlom D G, Liu B, Che Y and Pan X Q 2009 Appl. Phys. Lett. 94 122107
[10] Saint-Girons G, Regreny P, Largeau L, Patriarche G and Hollinger G 2007 Appl. Phys. Lett. 91 241912

New Journal of Physics 12 (2010) 093005 (http://www.njp.org/)
[11] Seo J W et al 2007 Microelectron. Eng. 84 2328
[12] Giussani A, Rodenbach P, Zaumseil P, Dabrowski J, Kurps R, Weidner G, Mussig H J, Storck P, Wollschläger J and Schroeder T 2009 J. Appl. Phys. 105 033512
[13] Jones J T, Croke E T, Garland C M, Marsh O J and McGill T C 1998 J. Vac. Sci. Technol. B 16 2686
[14] Fissel A, Kühne D, Bugiel B and Osten H J 2006 J. Vac. Sci. Technol. B 24 2041
[15] Ishida M, Katakabe I, Nakamura T and Ohtake N 1988 Appl. Phys. Lett. 52 1326
[16] Ishida M, Yamaguchi S, Masa Y, Nakamura T and Hikita Y 1991 J. Appl. Phys. 69 8408
[17] Schroeder T, Zaumseil P, Seifarth O, Giussani A, Müssig H J, Storck P, Geiger D, Lichte H and Dabrowski J 2008 New J. Phys. 10 113004
[18] Elmasry N A, Hunter M, ElNaggar A and Bedair S M 2005 J. Appl. Phys. 98 106104
[19] Borschel C, Ronning C, Hofsass H, Giussani A, Zaumseil P, Wenger C, Storck P and Schroeder T 2009 J. Vac. Sci. Technol. B 27 305
[20] Guha S, Bojarczuk N A and Narayanan V 2002 Appl. Phys. Lett. 80 766
[21] Bojarczuk N A, Copel M, Guha S, Narayanan V, Preisler E J, Ross F M and Shang H 2003 Appl. Phys. Lett. 83 5443
[22] Narayanan V, Guha S, Bojarczuk N A and Ross F M 2003 J. Appl. Phys. 93 251
[23] Stanek C R, McClellan K J, Uberuaga B P, Sickafus K E, Levy M R and Grimes R W 2007 Phys. Rev. B 75 134101
[24] Eyring L and Baenziger N C 1962 J. Appl. Phys. 33 428
[25] Schaefer A, Schroeder T, Lupina G, Borchert Y, Dabrowski J, Wenger C and Bäumer M 2007 Surf. Sci. 601 1473
[26] Seifarth O et al 2010 J. Appl. Phys. in preparation
[27] Schroeder T, Zaumseil P, Weidner G, Lupina G, Wenger C and Müssig H-J 2005 J. Appl. Phys. 98 123513
[28] Mermoux M, Crisci A, Bailet F, Destefanis V, Rouchon D, Papon A M and Hartmann J M 2010 J. Appl. Phys. 107 013512
[29] Wilke A, Yang J-M, Kim J W, Seifarth O, Dietrich B, Giussani A, Zaumseil P, Storck P and Schroeder T 2010 Surf. Interface Anal. http://dx.doi.org/10.1002/sia.3643
[30] Liu J P, Zaumseil P, Bugiel E and Osten H J 2001 Appl. Phys. Lett. 79 671
[31] Tarsa E J and Speck J S 1993 Appl. Phys. Lett. 63 539
[32] Williamson G K and Hall W H 1953 Acta Metall. 1 22
[33] Fatmaurer R W, Lewis N, Hall E L and Schowalter L J 1986 J. Appl. Phys. 60 3886
[34] Schroeder T, Giussani A, Dabrowski J, Zaumseil P, Müssig H-J, Seifarth O and Storck P 2009 Phys. Status Solidi c 6 653
[35] Boscherini F 2008 XAFS The study of semiconductor heterostructures and nanostructures Characterization of Semiconductor Heterostructures and Nanostructures ed C Lamberti (Amsterdam: Elsevier) pp 289–330
[36] Malvestuto M, Carboni R, Boscherini F, d’Acapito F, Spiga S, Fanciulli M, Dimoulas A, Vellianitis G and Mavrou G 2005 Phys. Rev. B 71 075318
[37] Malvestuto M, Scarel G, Wiemer C, Fanciulli M, D’Acapito F and Boscherini F 2006 Nucl. Instrum. Methods B 246 90
[38] Birkholz M 2006 Thin Film Analysis by X-ray Scattering (Weinheim: Wiley-VCH)