Geometric descent method for convex composite minimization

Shixiang Chen∗ Shiqian Ma†

January 19, 2017

Abstract

In this paper, we extend the geometric descent method recently proposed by Bubeck, Lee and Singh [5] to solving nonsmooth and strongly convex composite problems. We prove that the resulting algorithm, GeoPG, converges with a linear rate \((1 - 1/√κ)\), thus achieves the optimal rate among first-order methods, where \(κ\) is the condition number of the problem. Numerical results on linear regression and logistic regression with elastic net regularization show that GeoPG compares favorably with Nesterov’s accelerated proximal gradient method, especially when the problem is ill-conditioned.

1 Introduction

Recently, Bubeck, Lee and Singh proposed a geometric descent method (GeoM) for minimizing a smooth and strongly convex function [5]. They showed that GeoM achieves the same optimal rate as Nesterov’s accelerated gradient method (AGM) [13, 14]. In this paper, we provide an extension of GeoM that can minimize a nonsmooth function in composite form as follows:

\[
\min_{x \in \mathbb{R}^n} F(x) := f(x) + h(x),
\]

where \(f\) is \(\alpha\)-strongly convex and \(\beta\)-smooth (i.e., \(\nabla f\) is Lipschitz continuous with Lipschitz constant \(\beta\)), \(h\) is a closed nonsmooth convex function with simple proximal mapping. Commonly seen examples of \(h\) include \(\ell_1\) norm, \(\ell_2\) norm, nuclear norm, and so on.

If \(h\) vanishes, then the objective function of (1.1) becomes smooth and strongly convex. In this case, it is known that AGM converges with a linear rate \((1 − 1/√κ)\), which is optimal among all first-order methods, where \(κ = \beta/\alpha\) is the condition number. However, AGM lacks clear geometric intuition which makes it difficult to interpret. Recently, there have been many works on attempting to explain AGM or designing new algorithms with the same optimal rate (see, e.g. [17, 1, 5, 12, 19]). In particular, the GeoM method proposed in [5] has a clear geometric intuition that is in the flavor of the ellipsoid method. The follow-up works [4, 7] attempted to improve the performance of GeoM by utilizing the gradient information from the past with a “limited-memory” idea. Moreover, Drusvyatskiy, Fazel and Roy [7] showed how to extend the basic version of GeoM (with convergence rate \((1 − 1/κ)\)) to the composite problem (1.1). However, it was not clear how to extend the optimal GeoM to (1.1) and the authors posed this as an open question. In this paper, we settle this question by proposing the GeoPG (geometric proximal gradient) algorithm that can solve the composite problem (1.1), and show how to incorporate various techniques to improve the performance of this algorithm.

∗Department of SEEM, The Chinese University of Hong Kong, Shatin, NT, Hong Kong. Email: sxchen@se.cuhk.edu.hk
†Department of SEEM, The Chinese University of Hong Kong, Shatin, NT, Hong Kong. Email: sqma@se.cuhk.edu.hk
Notation. We use \(B(c, r^2) = \{ x \| x - c \|^2 \leq r^2 \} \) to denote the ball with center \(c \) and radius \(r \). We use \(\text{Line}(x, y) \) to denote the line that connects \(x \) and \(y \), i.e., \(\{ x + s(y - x), s \in \mathbb{R}^n \} \). We use the operation \(\text{line}_\text{search}(x, y) \) to denote the minimizer of \(f \) on \(\text{Line}(x, y) \), i.e.,

\[
\text{line}_\text{search}(x, y) = \text{argmin}_{z} \{ f(z) \mid z = x + t(y - x), t \in \mathbb{R} \}.
\]

The rest of this paper is organized as follows. In Section 2, we briefly review the GeoM method for solving smooth and strongly convex problem. In Section 3, we provide our GeoPG algorithm for solving nonsmooth problem and analyze its convergence rate. We address two practical issues of the proposed method in Section 4 and incorporate two techniques: backtracking and limited memory, to take care of these issues. In Section 5, we report some numerical results of comparing GeoPG with Nesterov’s accelerated proximal gradient method for solving linear regression and logistic regression problems with elastic net regularization. Finally, we conclude the paper in Section 6.

2 Geometric descent method for smooth problem

The GeoM method [5] solves the smooth and strongly convex problem \(\min_{x} f(x) \), whose optimal solution and optimal value are denoted as \(x^* \) and \(f^* \), respectively. We first briefly describe the basic idea of the ordinary GeoM. Since \(f \) is \(\alpha \)-strongly convex, the following inequality holds

\[
f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} \| y - x \|^2 \leq f(y), \quad \forall x, y \in \mathbb{R}^n. \tag{2.1}
\]

By letting \(y = x^* \) in (2.1), one obtains that

\[
x^* \in B \left(x^{++}, \frac{\| \nabla f(x) \|^2}{\alpha^2} - \frac{2}{\alpha} (f(x) - f^*) \right), \quad \forall x \in \mathbb{R}^n. \tag{2.2}
\]

For any \(x \in \mathbb{R}^n \), we denote \(x^+ = x - \frac{1}{\beta} \nabla f(x) \) and \(x^{++} = x - \frac{1}{\alpha} \nabla f(x) \). Note that the \(\beta \)-smoothness of \(f \) implies

\[
f(x^+) \leq f(x) - \frac{1}{2\beta} \| \nabla f(x) \|^2, \quad \forall x \in \mathbb{R}^n. \tag{2.3}
\]

Combining (2.2) and (2.3) yields

\[
x^* \in B \left(x^{++}, \left(1 - \frac{1}{\kappa} \right) \frac{\| \nabla f(x) \|^2}{\alpha^2} - \frac{2}{\alpha} (f(x^+) - f^*) \right), \quad \forall x \in \mathbb{R}^n.
\]

As a result, suppose initially we have a ball \(B(x_0, R_0^2) \) that contains \(x^* \), then it follows that

\[
x^* \in B(x_0, R_0^2) \cap B \left(x_0^{++}, \left(1 - \frac{1}{\kappa} \right) \frac{\| \nabla f(x_0) \|^2}{\alpha^2} - \frac{2}{\alpha} (f(x_0^{++}) - f^*) \right). \tag{2.4}
\]

Some simple algebraic calculation shows that the squared radius of the minimum enclosing ball of the right hand side of (2.4) is no larger than \(R_0^2 (1 - 1/\kappa) \), i.e., there exists some \(x_1 \in \mathbb{R}^n \) such that \(x^* \in B(x_1, R_0^2 (1 - 1/\kappa)) \). Therefore, the squared radius of the initial ball shrinks by a factor \((1 - 1/\kappa)\). Repeating this process yields a linear convergent sequence \(\{x_k\} \) with convergence rate \((1 - 1/\kappa)\):

\[
\|x_k - x^*\|^2 \leq \left(1 - \frac{1}{\kappa} \right)^k R_0^2.
\]

The optimal GeoM (with linear convergence rate \((1 - 1/\sqrt{\kappa})\)) is a bit more involved. The optimal GeoM maintains two balls containing \(x^* \) in each iteration, whose centers are \(c_k \) and
For a given step size t and x, and x^{++}_{k+1} are obtained as follows. First, $x^{+}_{k+1} = \text{line-search}(c_k, x^+_k)$. Second, c_{k+1} (resp. R^2_{k+1}) is the center (resp. squared radius) of the ball (given by Lemma 2.1) that contains

$$B\left(c_k, R^2_k - \frac{\|\nabla f(x_{k+1})\|^2}{\alpha^2}\right) \cap B\left(x^{++}_{k+1}, \left(1 - \frac{1}{\kappa}\right) \frac{\|\nabla f(x_{k+1})\|^2}{\alpha^2}\right).$$

Calculating c_{k+1} and R_{k+1} is simple and we refer to Algorithm 1 of [5] for details. By applying Lemma 2.1 with $x_A = c_k$, $r_A = R_k$, $r_B = \|\nabla f(x_{k+1})\|/\alpha$, $\epsilon = 2 \kappa$ and $\delta = \frac{\alpha}{\kappa} (f(x^+_k) - f(x^*))$, it follows that $R_{k+1} = \left(1 - 1/\sqrt{\kappa}\right)R_k^2$, which further implies that

$$\|x^* - c_k\|^2 \leq \left(1 - \frac{1}{\sqrt{\kappa}}\right) R_0^2,$$

i.e., the optimal GeoM converges with linear rate $(1 - 1/\sqrt{\kappa})$.

Lemma 2.1 (see [5, 7]). Fix centers $x_A, x_B \in \mathbb{R}^n$ and squared radii $r^2_A, r^2_B > 0$. Also fix $\epsilon \in (0, 1)$ and suppose $\|x_A - x_B\|^2 \geq r^2_B$. There exists a new center $c \in \mathbb{R}^n$ such that for any $\delta > 0$, we have

$$B(x_A, r^2_A - \epsilon r^2_B - \delta) \cap B(x_B, r^2_B (1 - \epsilon) - \delta) \subseteq B(c, (1 - \sqrt{\kappa}) r^2_A - \delta).$$

3 Geometric descent method for composite convex problem

Drusvyatskiy, Fazel and Roy [7] extended the ordinary GeoM to solving composite problem (1.1). However, it was not clear how to extend the optimal GeoM to solving (1.1). We resolve this problem in this section.

3.1 Proximal gradient

First, we need some preparation on properties of proximal gradient. It follows from the β-smoothness of f

$$F(y) \leq Q_t(y, x) := f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2t} \|y - x\|^2 + h(y), \ \forall x, y \in \mathbb{R}^n, 0 < t \leq \frac{1}{\beta}.$$

For a given step size $t \in (0, 1/\beta]$, The proximal gradient of F at point x is defined as

$$G_t(x) = (x - x^+)/t,$$

where $x^{+} := \text{Prox}_h(x - t\nabla f(x))$

where the proximal mapping $\text{Prox}_h(\cdot)$ is defined as

$$\text{Prox}_h(x) = \arg\min_z h(z) + \frac{1}{2} \|z - x\|^2.$$

It should be noted that $x^+ = x - tG_t(x)$. It is easy to verify that

$$G_t(x) \in \nabla f(x) + \partial h(x^+),$$

and x is optimal iff $G_t(x) = 0$. Moreover, we define $x^{++} = x - G_t(x)/\alpha$. Note that both x^+ and x^{++} are related to some given step size t, and we have omitted t whenever there is no ambiguity.

The following lemma is useful to our analysis.
Lemma 3.1. Given point \(x \) and step size \(t \in (0, 1/\beta] \), denote \(x^+ = x - tG_t(x) \). The following inequality holds for any \(y \in \mathbb{R}^n \):

\[
F(y) \geq F(x^+) + \langle G_t(x), y - x \rangle + \frac{t}{2}\|G_t(x)\|^2 + \frac{\alpha}{2}\|y - x\|^2. \tag{3.2}
\]

Proof. From the \(\beta \)-smoothness of \(f \), we have

\[
f(x^+) \leq f(x) - t\langle \nabla f(x), G_t(x) \rangle + \frac{t}{2}\|G_t(x)\|^2. \tag{3.3}
\]

Combining (3.3) with (2.1) yields that

\[
F(x^+) \leq f(y) - \langle \nabla f(x), y - x \rangle - \frac{\alpha}{2}\|y - x\|^2 - t\langle \nabla f(x), G_t(x) \rangle + \frac{t}{2}\|G_t(x)\|^2 + h(x^+)
\]

\[
= F(y) - \frac{\alpha}{2}\|y - x\|^2 + \frac{t}{2}\|G_t(x)\|^2 + h(x^+) - h(y) - \langle \nabla f(x) - G_t(x), y - x^+ \rangle - \langle G_t(x), y - x^+ \rangle
\]

\[
\leq F(y) - \frac{\alpha}{2}\|y - x\|^2 + \frac{t}{2}\|G_t(x)\|^2 - \langle G_t(x), y - x^+ \rangle,
\]

where the last inequality is due to the convexity of \(h \) and (3.1). \(\square \)

The following lemma is from [11].

Lemma 3.2 (see Lemma 3.9 of [11]). For \(t \in (0, 1/\beta] \), \(G_t(x) \) is strongly monotone, i.e.,

\[
\langle G_t(x) - G_t(y), x - y \rangle \geq \frac{\alpha}{2}\|x - y\|^2, \forall x, y.
\]

3.2 The GeoPG Algorithm

In this subsection, we describe our geometric proximal gradient descent method (GeoPG) for solving (1.1). For simplicity, throughout this subsection, we fix the step size \(t = 1/\beta \). The key observation is that in order to design GeoPG, in the \(k \)-th iteration, one has to find \(x_k \) that lies on Line\((x_{k-1}, c_{k-1})\) such that the following two inequalities hold:

\[
F(x_k^+) \leq F(x_{k-1}^+) - \frac{t}{2}\|G_t(x_k)\|^2, \text{ and } \|x_k^+ - c_{k-1}\|^2 \geq \frac{1}{\alpha^2}\|G_t(x_k)\|^2. \tag{3.4}
\]

The following lemma provides a sufficient condition for (3.4).

Lemma 3.3. (3.4) holds if \(x_k \) satisfies:

\[
\langle x_k^+ - x_k, x_{k-1}^+ - x_k \rangle \leq 0, \text{ and } \langle x_k^+ - x_k, x_k - c_{k-1} \rangle \geq 0. \tag{3.5}
\]

Proof. Assume (3.3) holds. By letting \(y = x_{k-1}^+ \) and \(x = x_k \) in (3.2), we have

\[
F(x_k^+) \leq F(x_{k-1}^+) - \langle G_t(x_k), x_{k-1}^+ - x_k \rangle - \frac{t}{2}\|G_t(x_k)\|^2 - \frac{\alpha}{2}\|x_{k-1}^+ - x_k\|^2
\]

\[
= F(x_{k-1}^+) + \frac{1}{t}\langle x_k^+ - x_k, x_{k-1}^+ - x_k \rangle - \frac{t}{2}\|G_t(x_k)\|^2 - \frac{\alpha}{2}\|x_{k-1}^+ - x_k\|^2
\]

\[
\leq F(x_{k-1}^+) - \frac{t}{2}\|G_t(x_k)\|^2,
\]

where the last inequality is due to (3.3). Moreover, from the definition of \(x_k^+ \) and (3.3) it is easy to see

\[
\|x_k^+ - c_{k-1}\|^2 = \|x_k - c_{k-1}\|^2 + \frac{2}{\alpha t}\langle x_k^+ - x_k, x_k - c_{k-1} \rangle + \frac{1}{\alpha^2}\|G_t(x_k)\|^2 \geq \frac{1}{\alpha^2}\|G_t(x_k)\|^2.
\]

\(\square \)
Therefore, we only need to find x_k such that (3.5) holds. To do so, we define the following functions for given $x, c (x \neq c)$, and $t > 0$:

$$\phi_{t,x,c}(z) = \langle z^+ - x, z - c \rangle, \forall z \in \mathbb{R}^n$$

and $\tilde{\phi}_{t,x,c}(s) = \phi_{t,x,c}(x + s(c - x)), \forall s \in \mathbb{R}$.

The functions $\phi_{t,x,c}(z)$ and $\tilde{\phi}_{t,x,c}(s)$ have the following properties.

Lemma 3.4. (i) $\phi_{t,x,c}(z)$ is Lipschitz continuous. (ii) $\tilde{\phi}_{t,x,c}(s)$ strictly monotonically increases for $s \in \mathbb{R}$.

Proof. We prove (i) first.

$$|\phi_{t,x,c}(z_1) - \phi_{t,x,c}(z_2)| = |\langle z_1^+ - z_1 - (z_2^+ - z_2), x - c \rangle| \leq \| z_1^+ - z_2^+ - (z_1 - z_2) \| \| x - c \|$$

$$\leq (\| \text{prox}_{t\phi}(z_1 - t\nabla f(z_1)) - \text{prox}_{t\phi}(z_2 - t\nabla f(z_2)) \| + \| z_1 - z_2 \|) \| x - c \|$$

$$\leq (2 + t\beta) \| x - c \| \| z_1 - z_2 \|,$$

where the last inequality is due to the non-expansiveness of the proximal mapping operation.

We now prove (ii). For $s_1 < s_2$, let $z_1 = x + s_1(c - x)$ and $z_2 = x + s_2(c - x)$. We have

$$\tilde{\phi}_{t,x,c}(s_2) - \tilde{\phi}_{t,x,c}(s_1) = \langle z_2^+ - z_2 - (z_1^+ - z_1), x - c \rangle = \frac{t}{s_2 - s_1}(G_t(z_2) - G_t(z_1), z_2 - z_1)$$

$$\geq \frac{\alpha t}{2}(s_2 - s_1) \| x - c \|^2 > 0,$$

where the first inequality follows from Lemma 3.2. \hfill \Box

We are now ready to describe how to find x_k such that (3.5) holds. This is summarized in Lemma 3.5.

Lemma 3.5. There are two ways to find x_k such that (3.5) holds.

- (i) If $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}(1) \leq 0$, then (3.5) holds by setting $x_k := c_{k-1}$; If $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}(0) > 0$, then (3.5) holds by setting $x_k := x_{k-1}^+$. If $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}(1) > 0$ and $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}(0) < 0$, then there exists $s \in [0, 1]$ such that $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}(s) = 0$. As a result, (3.5) holds by setting $x_k := x_{k-1}^+ + s(c_{k-1} - x_{k-1}^-)$.

- (ii) If $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}(0) \geq 0$, then (3.5) holds by setting $x_k := x_{k-1}^+$. If $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}(0) < 0$, then there exists $s \geq 0$, such that $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}(s) = 0$. As a result, (3.5) holds by setting $x_k := x_{k-1}^+ + s(c_{k-1} - x_{k-1}^-)$.

Proof. Case (i) directly follows from the Mean-Value Theorem. Case (ii) follows from the monotonicity and continuity of $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}$ from Lemma 3.3. \hfill \Box

It is indeed very easy to find x_k satisfying the two cases in Lemma 3.5. Specifically, for case (i) of Lemma 3.5, we can use bisection method to find the zero of $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}$ in the closed interval $[0, 1]$. In practice, we found that the Brent-Dekker method [3, 6] performs much better than bisection method, so we used the Brent-Dekker method in our numerical experiments. For case (ii) of Lemma 3.5, we can use the semi-smooth Newton method to find the zero of $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}$ in the interval $[0, +\infty)$. The semi-smooth Newton method updates s_k via

$$s_{k+1} = s_k - \left[\Phi_{t,x_{k-1}^+, c_{k-1}}(s) \right]^{-1} \tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}(s),$$

where $\Phi_{t,x_{k-1}^+, c_{k-1}}(s)$ is the generalized derivative of $\tilde{\phi}_{t,x_{k-1}^+, c_{k-1}}$, which can be computed by $\Phi_{t,x_{k-1}^+, c_{k-1}}(s) = \| d \|^2 - (d, G(u)(I - t\nabla^2 g(z))d)$, where $d = c_{k-1} - x_{k-1}^+$, $G(u)$ is the generalized
derivative of Prox$_t(u)$ and $u = z - t\nabla f(z)$. In our numerical experiment, we implemented the global semi-smooth Newton method \cite{9, 10} and obtained very encouraging results.

These two procedures are described in Algorithms 1 and 2 respectively. Based on the discussions above, we know that x_k generated by these two algorithms satisfies (3.5) and hence (3.4).

Algorithm 1 The first procedure to find x_k from given x_{k-1}^+ and c_{k-1}

1. if $\langle (x_{k-1}^+)^+ - x_{k-1}^+, x_{k-1}^+ - c_{k-1} \rangle \geq 0$ then
2. Set $x_k = x_{k-1}^+$
3. else if $\langle c_{k-1} - c_{k-1}, x_{k-1}^+ - c_{k-1} \rangle \leq 0$ then
4. Set $x_k = c_{k-1}$
5. else
6. Use Brent-Dekker method to find $s \in [0, 1]$ such that $\tilde{\phi}_{t,x_{k-1}^+,c_{k-1}}(s) = 0$ and set $x_k = x_{k-1}^+ + s(c_{k-1} - x_{k-1}^+)$.
7. end if

Algorithm 2 The second procedure to find x_k from given x_{k-1}^+ and c_{k-1}

1. if $\langle (x_{k-1}^+)^+ - x_{k-1}^+, x_{k-1}^+ - c_{k-1} \rangle \geq 0$ then
2. Set $x_k = x_{k-1}^+$
3. else
4. Use the global semi-smooth Newton method \cite{9, 10} to find the root $s \in [0, +\infty)$ of $\tilde{\phi}_{t,x_{k-1}^+,c_{k-1}}(s)$, and set $x_k = x_{k-1}^+ + s(c_{k-1} - x_{k-1}^+)$.
5. end if

We are now ready to present our GeoPG algorithm for solving (1.1). This is described in Algorithm 3. Note that the Step 6 can be easily conducted as shown in \cite[Algorithm 1]{9}.

Algorithm 3 GeoPG: geometric proximal gradient descent for composite convex minimization

Require: Parameters α, β, and initial point x_0.

1. Set $c_0 = x_0^+$, $R_0^2 = \frac{\|G_t(x_0)\|^2}{\alpha^2}(1 - 1/\kappa)$
2. for $k = 1, 2, \ldots$ do
3. Use Algorithm 1 or 2 to find x_k.
4. Set $x_A := x_k^+ = x_k - \frac{G_t(x_k)}{\alpha}$, and $R_A^2 = \frac{\|G_t(x_k)\|^2}{\alpha^2}(1 - 1/\kappa)$.
5. Set $x_B = c_k$, and $R_B^2 = R_{k-1}^2 - \frac{2}{\alpha}(F(x_{k-1}) - F(x_k^+))$.
6. Compute $B(c_k, R_B^2)$: the minimum enclosing ball of $B(x_A, R_A^2) \cap B(x_B, R_B^2)$. This can be done using Algorithm 1 in \cite{9}
7. end for

3.3 Convergence analysis of GeoPG

We are now ready to present our main convergence result for GeoPG. The result is stated in Theorem 3.6. For simplicity, we still assume that the fixed step size $t = 1/\beta$ is used.

Theorem 3.6. Given initial point x_0, we set $R_0^2 = \frac{\|G_t(x_0)\|^2}{\alpha^2}(1 - 1/\kappa)$. Suppose sequence $\{(x_k, c_k, R_k)\}$ is generated by Algorithm 3. Suppose x^* is the optimal solution of (1.1) and F^* is the optimal objective value. For any $k \geq 0$, one has $x^* \in B(c_k, R_k^2)$, and $R_{k+1} \leq (1-1/\sqrt{\kappa})R_k^2$.

and thus
\[\|x^* - c_k\|^2 \leq (1 - 1/(\sqrt{\kappa}))^k R_0^2, \]
and
\[F(x^*_{k+1}) - F^* \leq \frac{\alpha}{2}(1 - 1/(\sqrt{\kappa}))^k R_0^2. \] (3.6)

Proof. We prove a stronger result by induction that for every \(k \geq 0 \), one has
\[x^* \in B \left(c_k, R_k^2 - \frac{2}{\alpha} (F(x^*_k) - F^*) \right). \] (3.7)

By letting \(y = x^* \) and \(t = 1/\beta \) in (3.2) we have
\[\|x^* - x^+\|^2 \leq (1 - \frac{1}{\kappa}) \frac{\|G(x)^2\|}{\alpha^2} - \frac{2}{\alpha} (F(x^+) - F^*), \]
which implies that
\[x^* \in B \left(x^+, \frac{\|G(x)^2\|}{\alpha^2} (1 - \frac{1}{\kappa}) - \frac{2}{\alpha} (F(x^+) - F^*) \right). \] (3.8)

Setting \(x = x_0 \) in (3.8) shows that (3.7) holds for \(k = 0 \). We now assume that (3.7) holds for some \(k \geq 0 \). Combining (3.7) and the first inequality of (3.4) yields,
\[x^* \in B \left(c_k, R_k^2 - \frac{1}{\alpha^2 \kappa} \|G_t(x_{k+1})\|^2 - \frac{2}{\alpha} (F(x^+_k) - F^*) \right). \] (3.9)

By setting \(x = x_{k+1} \) in (3.8) we get
\[x^* \in B \left(x^+_{k+1}, \frac{\|G_t(x_{k+1})\|^2}{\alpha^2} (1 - \frac{1}{\kappa}) - \frac{2}{\alpha} (F(x^+_{k+1}) - F^*) \right). \] (3.10)

We now apply Lemma 2.1 to (3.9) and (3.10). Specifically, we set \(x_B = x^+_{k+1}, \ x_A = c_k, \ \epsilon = \frac{1}{\kappa}, \ r_A = R_k, \ r_B = \frac{\|G_t(x_{k+1})\|}{\alpha}, \ \delta = \frac{2}{\alpha} (F(x^+_k) - F^*), \) and note that \(\|x_A - x_B\|^2 \geq \epsilon r_B^2 \) because of the second inequality of (3.4), then Lemma 2.1 indicates that there exists \(c_{k+1} \), such that
\[x^* \in B \left(c_{k+1}, (1 - 1/(\sqrt{\kappa})) R_k^2 - \frac{2}{\alpha} (F(x^+_{k+1}) - F^*) \right), \] (3.11)
i.e., (3.7) holds for \(k+1 \) with \(R_{k+1}^2 \leq (1 - 1/(\sqrt{\kappa})) R_k^2 \). Note that \(c_{k+1} \) is the center of the minimum enclosing ball of the intersection of the two balls in (3.9) and (3.10), and can be computed in the same way as Algorithm 1 of [5]. From (3.11) we obtain that
\[\|x^* - c_{k+1}\|^2 \leq (1 - 1/(\sqrt{\kappa})) R_k^2 \leq (1 - 1/(\sqrt{\kappa}))^k R_0^2. \]
Moreover, (3.9) indicates that
\[F(x^+_{k+1}) - F^* \leq \frac{\alpha}{2} R_k^2 \leq \frac{\alpha}{2} (1 - 1/(\sqrt{\kappa})) R_0^2. \]

4 Practical Issues

4.1 GeoPG with backtracking

In practice, the Lipschitz constant \(\beta \) might be unknown to us. In this subsection, we describe a backtracking strategy for GeoPG in which \(\beta \) is not needed.

Note that the inequality (3.2) holds because of (3.3), which holds when \(t \in (0, 1/\beta) \). If \(\beta \) is unknown, we can perform backtracking on \(t \) such that (3.3) holds, which is a common practice for proximal gradient method (see, e.g., [2, 16, 15]). Note that the key step in our analysis of GeoPG is to guarantee that the two inequalities in (3.4) hold. According to Lemma 3.3, the second inequality in (3.4) holds as long as we use Algorithm 1 or Algorithm 2 to find \(x_k \), and it does not need the knowledge of \(\beta \). However, the first inequality in (3.4) requires \(t \leq 1/\beta \), because its proof in Lemma 3.3 needs (3.2). As a result, we need to perform backtracking on \(t \).
Theorem 4.1. Suppose sequence \(\{x_k, c_k, R_k, t_k\} \) is generated by Algorithm 4. For any \(k \geq 0 \), one has \(x^* \in B(c_k, R_k^2) \), and \(R_{k+1}^2 \leq (1 - \sqrt{\alpha t_k})^2 R_k^2 \), and thus
\[
\|x^* - c_k\|^2 \leq \sum_{i=0}^{k} (1 - \sqrt{\alpha t_i})^2 R_0^2 \leq (1 - \sqrt{\alpha t_{\min}})^k R_0^2.
\]

4.2 GeoPG with limited memory

The basic idea of GeoM is that in each iteration we maintain two balls \(B(y_1, r_1^2) \) and \(B(y_2, r_2^2) \) that both contain \(x^* \), and then compute the minimum enclosing ball of their intersection, which is expected to be smaller than both \(B(y_1, r_1^2) \) and \(B(y_2, r_2^2) \). One very intuitive idea that can possibly improve the performance of GeoM is to maintain more balls from the past, because their intersection should be smaller than the intersection of two balls. This idea has been
proposed by [1] and [7]. Specifically, [1] suggests to keep all the balls from past iterations, and then compute the minimum enclosing ball of their intersection. For a given bounded set \(Q \), the center of its minimum enclosing ball is known as the Chebyshev center, and is defined as the solution to the following problem:

\[
\min_{y} \max_{x \in Q} \|y - x\|^2 = \min_{y} \max_{x \in Q} \|y\|^2 - 2y^T x + \text{Tr}(xx^T). \tag{4.1}
\]

At this moment, let us assume that (4.1) can be solved for \(Q := \cap_{i=1}^m B(y_i, r_i^2) \). Now we can design a limited memory GeoPG algorithm (L-GeoPG). Specifically, in the \(k \)-th iteration of L-GeoPG, \(c_k \) is computed as the Chebyshev center of the intersection of the following balls:

\[
B(x_{k-m+1}^{++}, r_{k-m+1}^2), B(x_{k-m+2}^{++}, r_{k-m+2}^2), \ldots, B(x_k^{++}, r_k^2), B(c_{k-1}, R_{k-1}^2). \]

L-GeoPG is described in Algorithm 5.

Algorithm 5 L-GeoPG: Limited-memory GeoPG

Require: Parameters \(\alpha, \beta \), memory size \(m > 0 \) and initial point \(x_0 \).

1. Set \(c_0 = x_0^{++}, r_0^2 = \frac{\|G_0(x_0)\|^2}{\alpha^2} (1 - 1/\kappa) \), and \(t = 1/\beta \).
2. **for** \(k = 1, 2, \ldots \) **do**
3. Use Algorithm 1 or 2 to find \(x_k \).
4. Compute \(r_k^2 = \frac{\|G_k(x_k)\|^2}{\alpha^2} (1 - 1/\kappa) \)
5. Compute \(B(c_k, R_k^2) \): an enclosing ball of the intersection of \(B(c_{k-1}, R_{k-1}^2) \) and \(Q_k := \cap_{i=k-m+1}^k B(x_i^{++}, r_i^2) \) (if \(k \leq m \), then set \(Q_k := \cap_{i=1}^k B(x_i^{++}, r_i^2) \)), by solving (4.1)
6. **end for**

Remark 4.2. The backtracking technique can also be incorporated in L-GeoPG. We denote the resulting algorithm as L-GeoPG-B.

L-GeoPG has the same linear convergence rate as GeoPG, as we show in Theorem 4.3.

Theorem 4.3. Consider L-GeoPG algorithm. For any \(k \geq 0 \), one has \(x^* \in B(c_k, R_k^2) \), and \(R_k^2 \leq (1 - 1/\sqrt{\kappa}) R_{k-1}^2 \), and thus

\[
\|x^* - c_k\|^2 \leq (1 - 1/\sqrt{\kappa})^k R_0^2.
\]

Proof. Note that \(Q_k := \cap_{i=k-m+1}^k B(x_i^{++}, r_i^2) \subset B(x_k^{++}, r_k^2) \). Thus, the minimum enclosing ball of \(B(c_{k-1}, R_{k-1}^2) \cap B(x_k^{++}, r_k^2) \) is an enclosing ball of \(B(c_{k-1}, R_{k-1}^2) \cap Q_k \). The proof then follows from the proof of Theorem 3.6 and we omit it for brevity.

Now we come back to the issue of computing Chebyshev center. Apparently, computing the minimum enclosing ball of \(Q_k \) is not easy in general, and it is suggested in [4] to compute the volumetric center [18] of \(Q_k \) as the center of the enclosing ball. In this paper, we propose to compute the relaxed Chebyshev center (RCC) instead. RCC was proposed by Eldar, Beck and Teboulle in [8] and is defined as the solution to the following problem

\[
\min_{y} \max_{(x, \triangle) \in \Gamma} \|y\|^2 - 2y^T x + \text{Tr}(\triangle)
\]

\[
= \max_{(x, \triangle) \in \Gamma} \min_{y} \|y\|^2 - 2y^T x + \text{Tr}(\triangle)
\]

\[
= \max_{(x, \triangle) \in \Gamma} -\|x\|^2 + \text{Tr}(\triangle), \tag{4.2}
\]
where $\Gamma = \{(x, \Delta) : x \in Q, \Delta \succeq xx^\top\}$. Note that (4.2) is a relaxation to (4.1) and more importantly, it is convex. If $Q = \cap_{i=1}^m B(c_i, r_i^2)$, then the dual problem of (4.2) is:

$$
\min \|C\lambda\|_2^2 - \sum_{i=1}^m \lambda_i \|c_i\|_2^2 + \sum_{i=1}^m \lambda_i r_i^2
$$

s.t. $\sum_{i=1}^m \lambda_i \geq 1$, $\lambda_i \geq 0$, $i = 1, \ldots, m,$

(4.3)

where $C := [c_1, \ldots, c_m]$. Note that (4.3) minimizes a quadratic function over a simplex, and is not difficult to solve. It is known that the optimal solutions of (4.2) and (4.3) are linked by $x^* = C\lambda^*$. In our experiment, we compute the RCC in Step 5 of Algorithm 5 instead of solving (4.1).

5 Numerical experiment

In this section, we compare our GeoPG algorithm with Nesterov’s accelerated proximal gradient (APG) method for solving two nonsmooth problems: linear regression and logistic regression, both with an elastic net regularization. Because of the elastic net term, strong convexity parameter α is known. However, we assume that β is unknown and we implement backtracking for both GeoPG and APG, i.e., we test GeoPG-B and APG-B (APG with backtracking). We do not target to compare with other efficient algorithms for solving these two problems. Our main purpose here is to illustrate the performance of this new first-order method GeoPG. Further improvement of this algorithm and comparison with other state-of-the-art methods will be a future research topic.

The initial points were set to zero. GeoPG-B was terminated if $\|G_t(x_k^+)\|_\infty \leq \text{tol}$ and APG-B was terminated if $\|G_t(x_k)\|_\infty \leq \text{tol}$, where tol is the accuracy tolerance. The parameters used in backtracking were set to $\eta = 0.5$ and $\gamma = 0.9$. In GeoPG-B, we used Algorithm 2 to find x_k, because we found that the performance of Algorithm 2 is slightly better than Algorithm 1 in practice. The codes were written in Matlab and run on a standard PC with 3.20 GHz I5 Intel microprocessor and 16GB of memory.

5.1 Linear regression with elastic net regularization

In this subsection, we compare GeoPG-B and APG-B for solving linear regression with elastic net regularization, a problem from machine learning and statistics [20]:

$$
\min_{x \in \mathbb{R}^n} \frac{1}{2p} \|Ax - b\|^2 + \frac{\alpha}{2} \|x\|^2 + \mu \|x\|_1,
$$

(5.1)

where $A \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^p$, $\alpha, \mu > 0$ are weighting parameters.

We first compare these two algorithms on some synthetic data. In our experiments, entries of A were drawn randomly from the standard Gaussian distribution, the solution \bar{x} was a sparse vector with 10% nonzero entries whose locations are uniformly random and whose values follow the Gaussian distribution $3 \ast \mathcal{N}(0, 1)$, and $b = A \ast \bar{x} + n$, where the noise n follows the Gaussian distribution $0.01 \ast \mathcal{N}(0, 1)$. Moreover, since we assume that the strong convexity parameter of (5.1) is equal to α, when $p > n$, we manipulate A such that the smallest eigenvalue of $A^\top A$ is equal to 0. Specifically, when $p > n$, we truncate the smallest eigenvalue of $A^\top A$ to 0, and obtain the new A by eigenvalue decomposition of $A^\top A$. We set $\text{tol} = 10^{-8}$.

In Tables 1, 2 and 3 we report the comparison results of GeoPG-B and APG-B for solving different instances of (5.1). We use “f-ev”, “g-ev”, “p-ev” and “MVM” to denote the number of evaluations of objective function, gradient, proximal mapping of ℓ_1 norm, and matrix-vector multiplications, respectively. The CPU times are in seconds. We use “-” to denote that the
algorithm does not converge in 10^5 iterations. We tested different values of α, which reflect different condition numbers of the problem. We also tested different values of μ, which was set to $\mu = (10^{-3}, 10^{-4}, 10^{-5})/p \times \|A^T b\|_\infty$, respectively. “f-diff” denotes the absolute difference of the objective values returned by the two algorithms.

From Tables 1, 2 and 3 we see that GeoPG-B is more efficient than APG-B in terms of CPU time when α is small. For example, Table 1 indicates that GeoPG-B is faster than APG-B when $\alpha \leq 10^{-4}$, Table 2 indicates that GeoPG-B is faster than APG-B when $\alpha \leq 10^{-6}$, and Table 3 shows that GeoPG-B is faster than APG-B when $\alpha \leq 10^{-8}$. Since a small α corresponds to a large condition number, we can conclude that in this case GeoPG-B is more preferable than APG-B for ill-conditioned problems. Note that “f-diff” is very small in all cases, which indicates that the solutions returned by GeoPG-B and APG-B are very close.

We also conducted tests on three real datasets downloaded from the SVMLIB repository: a9a, RCV1 and Gisette, among which a9a and RCV1 are sparse and Gisette is dense. The size and sparsity (percentage of nonzero entries) of these three datasets are (32561 × 123, 11.28%), (20242 × 47236, 0.16%) and (6000 × 5000, 99.1%), respectively. The results are reported in Tables 4, 5 and 6, where $\alpha \leq 10^{-4}, 10^{-6}, 10^{-8}, 10^{-10}$ and $\mu = 10^{-3}, 10^{-4}, 10^{-5}$. We see from these tables that GeoPG-B is faster than APG-B on these real datasets when α is small, i.e., when the problem is more ill-conditioned.

5.2 Logistic regression with elastic net regularization

In this subsection, we compare the performance of GeoPG-B and APG-B for solving the following logistic regression problem with elastic net regularization.

$$
\min_{x \in \mathbb{R}^n} \frac{1}{p} \sum_{i=1}^{p} \log(1 + \exp(-b_i \cdot a_i^T x)) + \frac{\alpha}{2} \|x\|^2 + \mu\|x\|_1,
$$

(5.2)

where $a_i \in \mathbb{R}^n$ and $b_i \in \{\pm 1\}$ are the feature vector and class label of the i-th sample, respectively, and $\alpha, \mu > 0$ are weighting parameters.

We first compare GeoPG-B and APG-B for solving (5.2) on some synthetic data. In our experiments, each a_i was drawn randomly from the standard Gaussian distribution, the linear model parameter \bar{x} was a sparse vector with 10% nonzero entries whose locations are uniformly random and whose values follow the Gaussian distribution $3 * \mathcal{N}(0, 1)$, and $\ell = A * \bar{x} + n$, where noise n follows the Gaussian distribution $0.01 * \mathcal{N}(0, 1)$. Then, we generate class labels as bernoulli random variables with the parameter $1/(1 + \exp(\ell_i))$. We set $tol = 10^{-8}$.

In Tables 7, 8 and 9 we report the comparison results of GeoPG-B and APG-B for solving different instances of (5.2). From results in these tables we again observe that GeoPG-B is faster than APG-B when α is small, i.e., when the condition number is large.

We also tested GeoPG-B and APG-B for solving (5.2) on the three real datasets a9a, RCV1 and Gisette from SVMLIB, and the results are reported in Tables 10, 11 and 12. We again have the similar observations as before, i.e., GeoPG-B is faster than APG-B for more ill-conditioned problems. Moreover, people usually set α as 10^{-8} or even smaller values in practice. Therefore, our GeoPG-B shows great potential when it is applied to solving real problems in practice.

5.3 Numerical results of L-GeoPG-B

In this subsection, we test the GeoPG with limited memory described in Algorithm 5 on solving (5.2) on Gisette dataset. Since we still need to use backtracking technique, we actually tested L-GeoPG-B. The results for different memory size m are reported in Table 13. Note that $m = 0$ corresponds to the original GeoPG-B without memory. The subproblem (13) is solved using the function “quadprog” in Matlab.

From Table 13 we see that roughly speaking, L-GeoPG-B performs better for larger memory size, and in most cases, the performance of L-GeoPG-B with $m = 100$ is the best among
the reported results. This indicates that the limited-memory idea indeed helps improve the performance of GeoPG.

6 Conclusion

In this paper, we proposed a GeoPG algorithm for solving nonsmooth composite convex problems, which is an extension of the recent algorithm GeoM for solving smooth problems. We proved that GeoPG has the same optimal rate as Nesterov’s accelerated gradient method for solving strongly convex problem. Backtracking technique was adopted to handle the case when the Lipschitz constant is unknown. Limited-memory GeoPG was also considered to improve the practical performance of GeoPG. Numerical results on linear regression and logistic regression with elastic net regularization demonstrated the efficiency of GeoPG. It will be interesting to see how to extend GeoM and GeoPG to solving non-strongly convex problems, and how to further speed up the practical performance of GeoPG, and we leave these questions in a future work.

Acknowledgement

The authors are grateful to Yin Tat Lee for insightful comments and discussions.

α	iter	cpu	f-ev	g-ev	p-ev	MVM	iter	cpu	f-ev	g-ev	p-ev	MVM	f-diff
10^{-2}	172	1.0	354	326	194	384	156	1.1	457	348	352	398	8.5e-14
10^{-4}	538	2.8	1116	1020	611	1203	95	0.7	267	240	245	247	6.4e-14
10^{-6}	905	4.9	1868	1715	1029	2030	94	0.7	260	249	254	247	5.0e-14
10^{-8}	1040	5.4	2146	2003	1182	2332	95	0.7	263	258	263	247	1.4e-14
10^{-10}	964	5.0	2002	1805	1095	2154	95	0.7	263	267	272	247	2.1e-14
10^{-2}	175	0.9	356	332	197	392	168	1.2	493	384	388	432	1.3e-13
10^{-4}	687	3.6	1414	1304	779	1539	145	1.0	411	392	397	377	1.5e-14
10^{-6}	999	5.1	2086	1676	1134	2225	140	1.0	371	384	394	354	6.5e-14
10^{-8}	1122	5.8	2348	1827	1275	2499	143	1.0	374	420	429	365	1.8e-15
10^{-10}	1142	5.9	2388	1858	1298	2545	143	1.0	374	449	458	365	6.2e-15
10^{-2}	168	0.9	346	314	189	374	113	0.8	328	252	256	296	1.4e-14
10^{-4}	911	4.8	1836	1853	1035	2064	207	1.5	603	587	592	535	4.1e-14
10^{-6}	2293	11.9	4744	3936	2605	5132	191	1.4	523	596	602	492	3.8e-14
10^{-8}	3979	20.5	8266	5923	4526	8899	199	1.4	500	713	728	501	9.8e-14
10^{-10}	4503	23.3	9364	6668	5123	10068	185	1.3	456	624	639	465	5.9e-14

Table 1: GeoPG-B and APG-B for solving linear regression with elastic net regularization. $p = 4000, n = 2000$
Table 3: GeoPG-B and APG-B for solving linear regression with elastic net regularization. $p = 2000, n = 2000$

α	iter	cpu	f-ev	g-ev	p-ev	MVM	iter	cpu	f-ev	g-ev	p-ev	MVM	f-diff
$\mu = 1.50e - 02$													
10^{-2}	244	0.7	498	475	276	548	304	1.3	889	690	694	774	3.4e-13
10^{-4}	1900	4.8	3690	3582	2046	4048	545	2.4	1569	1298	1308	1378	1.3e-12
10^{-6}	9706	26.0	19722	20445	11040	21926	557	2.3	1598	1328	1339	1415	2.8e-12
10^{-8}	20056	53.7	40528	43361	22817	45427	561	2.3	1614	1332	1344	1416	2.4e-12
10^{-10}	29352	53.9	41426	44159	23298	46357	565	2.3	1626	1373	1385	1436	2.4e-12

| $\mu = 1.50e - 03$ |
10^{-2}	241	0.6	496	463	273	540	280	1.2	813	634	638	716	1.4e-14
10^{-4}	1926	5.1	3968	3708	2188	4319	1218	5.0	3560	2875	2802	3073	2.0e-11
10^{-6}	12502	32.7	25658	24681	14222	28118	1297	5.3	3718	3065	3097	3262	1.1e-11
10^{-8}	47139	124.3	95560	100584	53646	106652	1289	5.3	3686	3043	3074	3245	2.1e-11
10^{-10}	72186	194.3	145934	156713	82157	163534	1297	5.2	3717	3098	3132	3262	2.5e-11

| $\mu = 1.50e - 04$ |
10^{-2}	239	0.6	488	460	270	536	225	0.9	648	510	514	584	3.3e-13
10^{-4}	1985	5.2	4048	3860	2257	4476	1713	6.9	5041	4040	4058	4322	7.0e-11
10^{-6}	13824	35.7	28534	25354	15726	31010	2527	10.2	7225	6019	6082	6434	2.5e-11
10^{-8}	56339	146.2	116280	106460	64105	126410	2594	10.6	7288	6095	6182	6491	3.6e-11
10^{-10}	–	–	–	–	–	–	–	–	–	–	–	–	

Table 2: GeoPG-B and APG-B for solving linear regression with elastic net regularization. $p = 2000, n = 2000$

α	iter	cpu	f-ev	g-ev	p-ev	MVM	iter	cpu	f-ev	g-ev	p-ev	MVM	f-diff
$\mu = 1.82e - 02$													
10^{-2}	327	1.9	660	680	371	740	387	2.8	1117	936	946	980	2.0e-13
10^{-4}	2263	12.8	4620	4445	2571	5096	2454	17.9	6858	6181	6225	6168	4.3e-11
10^{-6}	12579	67.5	25566	26229	14312	28421	4478	32.7	12494	11180	11216	11300	1.8e-11
10^{-8}	55577	299.3	121120	121939	63268	126044	4595	33.7	12814	11754	11795	11699	1.4e-10
10^{-10}	–	–	–	–	–	–	–	–	–	–	–	–	

| $\mu = 1.82e - 03$ |
10^{-2}	306	1.7	622	621	346	688	279	2.1	813	677	684	713	6.4e-13
10^{-4}	2355	12.7	4820	4534	2675	5296	2634	19.3	7482	6774	6846	6596	3.9e-13
10^{-6}	14827	79.8	30328	28671	16862	33388	12756	94.1	36510	32580	32735	32121	2.2e-10
10^{-8}	56286	305.7	114576	115199	64050	127099	11665	88.0	3397	32580	31987	29352	6.1e-11
10^{-10}	–	–	–	–	–	–	–	–	–	–	–	–	

| $\mu = 1.82e - 04$ |
10^{-2}	283	1.5	576	560	320	636	219	1.6	643	523	528	561	4.7e-13
10^{-4}	2420	13.2	4864	5242	2749	5487	2339	17.2	6818	6467	6509	5882	5.8e-11
10^{-6}	16882	91.4	34412	31337	19186	38049	14803	109.3	41943	44052	44384	37152	4.9e-10
10^{-8}	79903	430.5	163098	146951	90639	179423	41331	305.8	116983	113444	113952	104206	1.6e-10
10^{-10}	–	–	–	–	–	–	–	–	–	–	–	–	

Table 3: GeoPG-B and APG-B for solving linear regression with elastic net regularization. $p = 2000, n = 4000$
λ	APG-B	GeoPG-B	λ	APG-B	GeoPG-B																																																																
10^-2	266	0.3	340	530	301	599	260	0.6	769	602	608	662	1.3E-14	10^-4	1758	1.7	3985	3683	1998	3974	463	1.1	1374	1138	1144	1196	1.2E-14	10^-6	10970	10.4	21654	23858	12277	24518	410	0.9	1216	964	970	1058	1.5E-13	10^-8	23279	22.2	46646	52163	26493	52943	412	0.9	1222	976	982	1060	1.9E-13	10^-10	26057	24.9	52236	58464	29660	59260	431	0.9	1279	1063	1069	1104	2.2E-13

Table 4: GeoPG-B and APG-B for solving linear regression with elastic net regularization on dataset a9a

λ = 1e - 04	APG-B	GeoPG-B	λ = 1e - 05	APG-B	GeoPG-B																																																															
10^-2	267	0.3	544	526	302	600	249	0.5	734	571	577	642	6.7E-16	10^-4	1948	1.9	4088	4319	2315	4622	1701	3.7	5909	4273	4312	3.7E-12	10^-6	14954	14.3	30012	33215	17018	33985	4801	10.4	14388	11381	11386	12223	1.4E-12	10^-8	63920	60.9	127954	144494	72741	145426	910	2.0	2715	2629	2634	2347	3.7E-12	10^-10	94861	90.6	189814	214931	107970	215895	910	2.0	2715	2441	2446	2333	7.0E-13

λ = 1e - 05	APG-B	GeoPG-B	λ = 1e - 06	APG-B	GeoPG-B																																																															
10^-2	258	0.3	518	507	292	600	235	0.5	692	596	602	604	1.2E-14	10^-4	2035	1.9	4088	4319	2315	4622	1701	3.7	5909	4273	4312	3.7E-12	10^-6	16353	15.6	32768	36396	18609	37188	5773	12.5	13706	14961	14967	14808	4.5E-13	10^-8	85246	81.4	170570	193007	97062	194086	910	2.0	2715	2629	2634	2347	3.7E-12	10^-10	26057	24.9	52236	58464	29660	59260	431	0.9	1279	1063	1069	1104	2.2E-13

Table 5: GeoPG-B and APG-B for solving linear regression with elastic net regularization on dataset RCV1
Table 6: GeoPG-B and APG-B for solving linear regression with elastic net regularization on data set Gisette. Note that neither APG-B nor GeoPG-B converges in 10^5 iterates when $\mu = 1e-05$ and $\alpha = 10^{-6}, 10^{-8}, 10^{-10}$.

α	iter	cpu	f-ev	g-ev	p-ev	MVM	iter	cpu	f-ev	g-ev	p-ev	MVM	f-diff
10^{-2}	4026	198.1	8144	7229	4583	9121	4253	239.3	12593	10474	10506	10758	4.8e-14
10^{-4}	30537	1504.2	61478	61380	34786	69371	6030	342.4	17939	17977	18006	15411	1.6e-13
10^{-6}	–	–	–	–	–	–	5197	294.0	15419	16126	16159	13241	–
10^{-8}	–	–	–	–	–	–	5692	322.8	16050	18851	18881	14506	–
10^{-10}	–	–	–	–	–	–	6150	353.5	18295	23420	23450	15714	–

$\mu = 1e-04$

| $\mu = 1e-05$ |
|----------|------|-----|------|------|------|-----|------|-----|------|------|------|-----|-------|

Table 7: GeoPG-B and APG-B for solving logistic regression with elastic net regularization. $p = 6000, n = 3000$

α	iter	cpu	f-ev	g-ev	p-ev	MVM	iter	cpu	f-ev	g-ev	p-ev	MVM	f-diff
10^{-2}	55	0.9	112	96	60	158	46	1.3	125	145	146	207	1.1e-13
10^{-4}	256	4.3	536	470	289	761	55	1.7	144	194	194	269	5.6e-13
10^{-6}	509	8.7	1048	972	577	1551	61	2.0	164	218	220	300	1.3e-12
10^{-8}	573	9.5	1188	1086	649	1737	60	1.9	161	223	225	305	1.4e-12
10^{-10}	585	9.6	1208	1112	663	1777	59	2.1	158	231	233	313	1.4e-12

$\mu = 1.00e-04$

| $\mu = 1.00e-05$ |
|----------|------|-----|------|------|------|-----|------|-----|------|------|------|-----|-------|

| $\mu = 1.00e-06$ |
Table 8: GeoPG-B and APG-B for solving logistic regression with elastic net regularization.
\(p = 3000, n = 6000 \)

\(\alpha \)	iter	cpu	f-ev	g-ev	p-ev	MVM	iter	cpu	f-ev	g-ev	p-ev	MVM	f-diff
10^{-5}	58	0.9	114	107	63	172	60	1.6	169	200	196	279	5.1e-14
10^{-4}	253	4.1	516	466	284	752	110	3.5	292	420	412	562	1.9e-12
10^{-3}	893	15.1	1824	1757	1012	2771	115	4.8	305	464	463	615	4.1e-12
10^{-2}	1265	21.9	2584	2543	1435	3980	114	4.8	302	504	501	649	4.9e-12
10^{-1}	1333	22.6	2712	2691	1513	4206	114	4.8	302	543	540	688	5.0e-12

| \(\mu = 1.00e - 04 \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10^{-5} | 56 | 0.8 | 112 | 89 | 60 | 151 | 42 | 1.1 | 116 | 133 | 132 | 188 | 1.4e-13 |
| 10^{-4} | 159 | 2.2 | 328 | 237 | 174 | 413 | 128 | 3.7 | 340 | 455 | 447 | 616 | 1.7e-11 |
| 10^{-3} | 750 | 11.3 | 1560 | 1238 | 845 | 2085 | 157 | 5.2 | 392 | 621 | 614 | 817 | 5.3e-11 |
| 10^{-2} | 1927 | 30.3 | 4012 | 3447 | 2182 | 5631 | 158 | 5.8 | 410 | 679 | 674 | 877 | 8.6e-11 |
| 10^{-1} | 2364 | 37.5 | 4934 | 4290 | 2677 | 6969 | 164 | 6.6 | 427 | 760 | 753 | 965 | 1.5e-10 |

| \(\mu = 1.00e - 05 \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10^{-5} | 54 | 0.8 | 108 | 85 | 58 | 145 | 42 | 1.1 | 110 | 136 | 134 | 191 | 2.9e-13 |
| 10^{-4} | 118 | 1.6 | 236 | 177 | 126 | 305 | 81 | 2.1 | 207 | 266 | 263 | 365 | 1.4e-11 |
| 10^{-3} | 493 | 6.4 | 1062 | 636 | 551 | 1189 | 153 | 4.9 | 365 | 588 | 580 | 776 | 2.9e-10 |
| 10^{-2} | 3492 | 45.0 | 7742 | 4365 | 3949 | 8316 | 163 | 5.8 | 379 | 686 | 677 | 886 | 8.3e-10 |
| 10^{-1} | 7655 | 98.4 | 17058 | 9498 | 8666 | 18166 | 169 | 6.8 | 403 | 782 | 775 | 990 | 1.7e-09 |

Table 9: GeoPG-B and APG-B for solving logistic regression with elastic net regularization.
\(p = 3000, n = 3000 \)

\(\alpha \)	iter	cpu	f-ev	g-ev	p-ev	MVM	iter	cpu	f-ev	g-ev	p-ev	MVM	f-diff
10^{-5}	55	0.5	110	99	60	161	53	0.8	144	172	171	243	2.7e-13
10^{-4}	278	2.4	566	512	312	826	90	1.4	237	325	322	442	2.7e-12
10^{-3}	845	7.1	1732	1637	957	2396	89	1.5	234	336	334	452	2.6e-12
10^{-2}	1158	9.7	2378	2283	1314	3599	89	1.6	234	361	359	477	2.6e-12
10^{-1}	1186	9.9	2444	2340	1345	3687	88	1.7	231	377	375	492	2.8e-12

| \(\mu = 1.00e - 04 \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10^{-5} | 55 | 0.4 | 108 | 89 | 60 | 151 | 53 | 0.7 | 144 | 172 | 169 | 242 | 3.5e-13 |
| 10^{-4} | 172 | 1.3 | 352 | 273 | 191 | 466 | 122 | 1.8 | 327 | 424 | 415 | 579 | 3.2e-11 |
| 10^{-3} | 868 | 6.6 | 1834 | 1435 | 980 | 2437 | 145 | 2.3 | 374 | 529 | 523 | 714 | 6.8e-11 |
| 10^{-2} | 1985 | 16.0 | 4168 | 3527 | 2248 | 5777 | 144 | 2.5 | 372 | 565 | 563 | 747 | 5.9e-11 |
| 10^{-1} | 2475 | 19.9 | 5160 | 4545 | 2807 | 7354 | 143 | 2.7 | 365 | 607 | 605 | 787 | 7.4e-11 |

| \(\mu = 1.00e - 05 \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10^{-5} | 55 | 0.4 | 108 | 91 | 59 | 152 | 48 | 0.7 | 129 | 158 | 155 | 224 | 6.7e-13 |
| 10^{-4} | 126 | 0.9 | 256 | 185 | 137 | 324 | 126 | 0.9 | 256 | 185 | 137 | 324 | 2.0e-12 |
| 10^{-3} | 515 | 3.4 | 1108 | 680 | 576 | 1258 | 146 | 2.2 | 344 | 524 | 517 | 705 | 4.6e-10 |
| 10^{-2} | 3196 | 21.0 | 7054 | 4118 | 3615 | 7735 | 154 | 2.5 | 372 | 587 | 586 | 778 | 8.9e-10 |
| 10^{-1} | 6434 | 42.7 | 14228 | 8384 | 7284 | 15670 | 152 | 2.8 | 370 | 630 | 629 | 820 | 5.4e-10 |
Table 10: GeoPG-B and APG-B for solving logistic regression with elastic net on dataset a9a

α	iter	cpu	f-ev	g-ev	p-ev	MVM	iter	cpu	f-ev	g-ev	p-ev	MVM	f-diff
10^{-2}	96	0.2	194	174	106	282	96	0.2	194	174	106	282	1.1e-14
10^{-4}	709	1.7	1440	1388	805	2195	756	3.8	2254	2669	2577	3615	8.2e-13
10^{-6}	5195	13.6	10488	10973	5912	16887	2581	13.4	7725	8995	8770	12112	4.4e-11
10^{-8}	25300	64.8	50772	56141	28793	84936	716	3.7	2130	2529	2583	3427	9.9e-10
10^{-10}	42633	109.4	85446	95447	48519	143968	723	3.8	2151	2584	2640	3497	7.9e-11

Table 11: GeoPG-B and APG-B for solving logistic regression with elastic net on dataset Rcv1

α	iter	cpu	f-ev	g-ev	p-ev	MVM	iter	cpu	f-ev	g-ev	p-ev	MVM	f-diff
10^{-2}	106	0.3	210	199	119	320	72	0.4	207	258	255	347	1.4e-14
10^{-4}	770	1.9	1550	1526	874	2402	685	3.5	2038	2448	2367	3301	3.7e-12
10^{-6}	5842	14.7	11762	12453	6648	19084	3026	15.5	9061	11099	10715	14750	2.1e-11
10^{-8}	46819	119.9	93782	104946	5331	158259	7784	38.8	23335	26969	26326	36558	1.9e-12
10^{-10}	–	–	–	–	–	–	1488	8.2	4447	5674	5721	5767	–
\(\alpha \)	\(m = 0 \)	\(m = 5 \)	\(m = 10 \)	\(m = 20 \)	\(m = 50 \)	\(m = 100 \)							
---	---	---	---	---	---	---							
\(\mu = 10^{-2} \)	819	82.5	1310	164.1	1015	125.8							
\(\mu = 10^{-4} \)	2177	217.5	3656	470.8	3430	417.9							
\(\mu = 10^{-6} \)	2013	230.9	1606	235.9	1589	221.5							
\(\mu = 10^{-8} \)	1793	214.9	1622	252.7	1530	224.4							
\(\mu = 10^{-10} \)	1808	227.1	1599	260.8	1549	245.3							

Table 12: GeoPG-B and APG-B for solving logistic regression with elastic net on dataset Gisette

\(\alpha \)	\(\mu = 1e-03 \)	\(\mu = 1e-04 \)	\(\mu = 1e-05 \)	
\(\mu = 10^{-2} \)	961	93.7	2573	312.6
\(\mu = 10^{-4} \)	2146	217.2	2237	312.3
\(\mu = 10^{-6} \)	2226	276.7	2057	329.4
\(\mu = 10^{-8} \)	2283	296.2	2046	361.7
\(\mu = 10^{-10} \)	2776	436.7	2503	432.4

Table 13: L-GeoPG-B for solving logistic regression with elastic net regularization on data set Gisette
References

[1] H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont. Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. *Mathematical Programming*, 2016.

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM J. Imaging Sciences*, 2(1):183–202, 2009.

[3] R. P. Brent. An algorithm with guaranteed convergence for finding a zero of a function. In *Algorithms for Minimization without Derivatives*. Englewood Cliffs, NJ: Prentice-Hall, 1973.

[4] S. Bubeck and Y.-T. Lee. Black-box optimization with a politician. *ICML*, 2016.

[5] S. Bubeck, Y.-T. Lee, and M. Singh. A geometric alternative to Nesterov’s accelerated gradient descent. *arXiv preprint arXiv:1506.08187*, 2015.

[6] T. J. Dekker. Finding a zero by means of successive linear interpolation. In *Constructive Aspects of the Fundamental Theorem of Algebra*. London: Wiley-Interscience, 1969.

[7] D. Drusvyatksiy, M. Fazel, and S. Roy. An optimal first order method based on optimal quadratic averaging. *SIAM Journal on Optimization*, 2016.

[8] Y. C. Eldar, A. Beck, and M. Teboulle. A minimax Chebyshev estimator for bounded error estimation. *IEEE Transactions on Signal Processing*, 56(4):1388–1397, 2008.

[9] M. Gerdts, S. Horn, and S. Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. *Journal of Industrial And Management Optimization*, 13(1):47–62, 2017.

[10] E. Hans and T. Raasch. Global convergence of damped semismooth Newton methods for L1 Tikhonov regularization. *Inverse Problems*, 31(2):025005, 2015.

[11] J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for minimizing composite functions. *SIAM Journal on Optimization*, 24(3):1420–1443, 2014.

[12] L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via integral quadratic constraints. *SIAM Journal on Optimization*, 26(1):57–95, 2016.

[13] Y. E. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence $O(1/k^2)$. *Dokl. Akad. Nauk SSSR*, 269:543–547, 1983.

[14] Y. E. Nesterov. *Introductory lectures on convex optimization: A basic course*. Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004.

[15] Y. E. Nesterov. Gradient methods for minimizing composite functions. *Mathematical Programming*, 140(1):125–161, 2013.

[16] K. Scheinberg, D. Goldfarb, and X. Bai. Fast first-order methods for composite convex optimization with backtracking. *Foundations of Computational Mathematics*, 14(3):389–417, 2014.

[17] W. Su, S. Boyd, and E. J. Candès. A differential equation for modeling Nesterov’s accelerated gradient method: Theory and insights. In *NIPS*, 2014.

[18] P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. *Mathematical Programming*, 73(3):291–341, 1996.
[19] A. Wibisono, A. Wilson, and M. I. Jordan. A variational perspective on accelerated methods in optimization. *Proceedings of the National Academy of Sciences*, 133:E7351–E7358, 2016.

[20] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society, Series B*, 67(2):301–320, 2005.