Big bang nucleosynthesis with a varying fine structure constant and non-standard expansion rate

Kazuhide Ichikawa and Masahiro Kawasaki
Research Center for the Early Universe, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
(Dated: March 26, 2022)

We calculate primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take non-standard values. We compare them with the recent values of observed D, 4He, and 7Li abundances, which show slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a non-standard expansion rate separately but solutions are found by their simultaneous existence.

Big Bang nucleosynthesis (BBN) theory calculates how much light elements are produced in the early universe. The standard BBN takes initial amount of baryons as only one input which is parametrized by baryon number density divided by photon number density: \(\eta \equiv n_b/n_\gamma \). With \(\eta \sim O(10^{-10}) \), the theory successfully predicts observed D, 4He and 7Li abundances extending over ten digits.

However, the recent measurements of the primordial light elements abundances indicate that the success does not seem to be perfect \[1,2,3,4,5\]. Such discrepancy between the observation and the theory is most likely ascribed to the existence of unknown systematic errors in the observation. It is usually considered that systematic errors in D observation are smaller than those in 4He and 7Li because D is observed in primordial objects, quasar absorption systems, but regression with respect to metallicity is necessary to deduce primordial 4He and 7Li abundance. In addition, the observed D abundance is consistent with the baryon density from the cosmic microwave background (CMB) data \[6\], which supports its robustness. Therefore, from this viewpoint, unexplored systematic errors in both 4He and 7Li measurements solve the discrepancy \[31\].

From another viewpoint, the investigations correctly estimate the systematic errors in 4He and 7Li measurements so that the discrepancy is solved by non-standard physics. The recent studies on non-standard BBN include non-standard expansion rate (number of neutrino species other than 3) \[8\], lepton asymmetry \[9\], and a varying fine structure constant, \(\alpha \) \[10\]. They can solve discrepancy between either D and 4He or D and 7Li but solution for three elements together is not obtained by their individual application \[32\].

In this paper, we show the current measurement of the three light elements is consistent without invoking further observational systematic errors if \(\alpha \) is higher than today's value during BBN and the expansion rate is slower than the standard value. One might think that three parameters (\(\eta \), \(\alpha \) and the expansion rate) necessarily explain any three observations, but since the combination of non-standard expansion rate and lepton asymmetry (which has been investigated in Ref. \[8\]) can only solve D-4He discrepancy, it is worth searching some combination to reconcile the three. Moreover, varying \(\alpha \) and non-standard expansion of the universe may both appear from common models based on string theory which accommodates both a dynamical origin of coupling constants and unusual characteristics of spacetime such as extra dimensions.

First of all, we summarize in Fig. 1 the current status of predicted and measured abundances of D, 4He and 7Li. Theoretical uncertainties are computed through Monte Carlo simulations using the values of Ref. \[12\] based on the reaction rates of Ref. \[13\]. Measured values are taken from Refs. \[14\] (Eq. (1)) and \[15\] (Eq. (2)) for 4He, from Ref. \[16\] for D, and from Ref. \[17\] for 7Li:

\[
Y_{4He,FO} = 0.238 \pm 0.002 \pm 0.005, \quad \text{(1)}
\]

\[
Y_{4He,IT} = 0.2421 \pm 0.0021, \quad \text{(2)}
\]
the Ref. [10]'s improvements concerning described in our previous paper [18], we have added understood as follows. For Δn, the freeze-out ratio of neutron to proton increases and so does ^4He abundance [20, 21]. Meanwhile, other light elements abundances are affected mainly by the change in the Coulomb barrier penetrability for the charged-particle induced nuclear reaction rates [10, 22], which is the exponential factor in the following expression of the cross section $\sigma(E)$ at energy E,

$$
\sigma(E) = \frac{S(E)}{E} \exp \left(-2\pi \alpha Z_i \sqrt{\frac{\mu}{2E}} \right),
$$

where $S(E)$ is the astronomical S-factor, μ is the reduced mass, and $Z_{i,j}$ are the atomic number of the colliding nuclei. Since larger α suppresses the charged-particle reaction rates, the nucleosynthesis proceeds slower and this saves more D to be burned out. The same is true for T and more of it survives with higher α. This explains the ^7Li increase for lower η since ^7Li is mainly produced by $^4\text{He}(T,\gamma)^7\text{Li}$. For higher η, ^7Li comes from the electron capture of ^7Be. ^7Be is in turn produced through $^4\text{He}(\gamma,\gamma')^7\text{Be}$, which is strongly suppressed by higher α because of the large Coulomb barrier ($Z_i = Z_j = 2$ in Eq. (5)).

Especially, the dependence of ^4He on α is derived from a number ratio of neutron to proton when their interchange freezes out, that is, when the weak interaction becomes comparable to the expansion rate of the universe. Since almost every neutron is synthesized into ^4He, its mass fraction is approximately expressed by neutron and proton number density, n_n and n_p at freeze-out (denoted by subscript "f") as

$$
Y_{^4\text{He}} = \frac{2n_n}{n_n + n_p}_f = 2 \left(1 + \frac{n_p}{n_n} \right)_f = \frac{2}{1 + e^{\Delta m/T_f}},
$$

where freeze-out temperature T_f is about 0.7 MeV. Since Δm is measured to be 1.293 MeV and its electromagnetic part is -0.76 MeV [23],

$$
\Delta m = -0.76 \frac{\alpha}{\alpha_0} + 2.05 \text{ MeV}.
$$

Then $\Delta Y_{^4\text{He}}/Y_{^4\text{He}} \approx \Delta \alpha/\alpha_0$ follows.

To figure out whether varying α can solve the discrepancy between D and ^4He and/or ^7Li, we calculate χ^2 as a function of η and α and search parameter space allowed by the observation of the light elements. The results are summarized in Fig. 8. We note that we take into account the uncertainty in the present value of the electromagnetic part of Δm (which we neglected in Ref. [18]). Since Ref. [22] have reported it to be less than 0.3 MeV, we regard this value to be 3σ of a gaussian error profile and incorporate in our Monte Carlo simulation along with uncertainties in the reaction rates. This uncertainty does not exist when $\alpha = \alpha_0$, at which theoretical errors become discontinuous and we have to split the χ^2 calculation like Fig. 8.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2.pdf}
\caption{\small α-dependence of light element abundances. The cases for $\Delta \alpha/\alpha_0 = (\alpha - \alpha_0)/\alpha_0 = 0, +0.05, -0.05$ are drawn with solid, dashed, and dotted lines.}
\end{figure}

\begin{align}
(D/H) &= 2.78_{-0.38}^{+0.44} \times 10^{-5},
(7\text{Li}/H) &= 1.29_{-0.32}^{+0.68} \times 10^{-10} \ (95\%);
\end{align}

In Eq. (1), the first uncertainty is statistical and the second one is systematic. Their root-mean-square, $[(\text{stat.})^2 + (\text{syst.})^2]^{1/2}$, is the combined 1σ error. For asymmetric errors, we adopt conservatively the larger one as 1σ error (for ^7Li, we divide the error in Eq. (1) by 2 to make it 1σ). From the figure, we see ^4He and ^7Li are compatible with $\eta \approx (2 \sim 4) \times 10^{-10}$ but higher baryon density $\eta \approx 6 \times 10^{-10}$ is necessary for D. On performing χ^2 analysis, due to the severer D-^7Li discrepancy, we do not have a η range to explain three elements abundances together with standard BBN at 99\% confidence level (for either ^4He observations). We stress once again that such a discrepancy first requires a reassessment of systematic effects in the measurements of primordial abundances (especially that of ^7Li), but below, assuming further systematic errors are not found, we investigate whether this discrepancy is solved by considering varying α and/or non-standard expansion rate.

We calculate BBN abundances when α is different from the measured value at present, $\alpha_0 \approx 1/137$, as is described in our previous paper [18, 23]. We have added the Ref. [10]'s improvements concerning α-dependence of the nuclear reaction rates and binding energies. Fig. 2 shows how abundances change when α is varied, reproducing the results of Ref. [10]. The dependence is understood as follows. For ^4He, since increasing α decreases the neutron-proton mass difference (a proton is electrically charged so it becomes heavier than a neutron, which is electrically neutral), Δm, the freeze-out ratio of neutron to proton increases and so does ^4He abundance [20, 21]. Meanwhile, other light elements abundances are affected mainly by the change in the Coulomb barrier penetrability for the charged-particle induced nuclear reaction rates [10, 22], which is the exponential factor in the following expression of the cross section $\sigma(E)$ at energy E,

$$
\sigma(E) = \frac{S(E)}{E} \exp \left(-2\pi \alpha Z_i \sqrt{\frac{\mu}{2E}} \right),
$$

where $S(E)$ is the astronomical S-factor, μ is the reduced mass, and $Z_{i,j}$ are the atomic number of the colliding nuclei. Since larger α suppresses the charged-particle reaction rates, the nucleosynthesis proceeds slower and this saves more D to be burned out. The same is true for T and more of it survives with higher α. This explains the ^7Li increase for lower η since ^7Li is mainly produced by $^4\text{He}(T,\gamma)^7\text{Li}$. For higher η, ^7Li comes from the electron capture of ^7Be. ^7Be is in turn produced through $^4\text{He}(\gamma,\gamma')^7\text{Be}$, which is strongly suppressed by higher α because of the large Coulomb barrier ($Z_i = Z_j = 2$ in Eq. (5)).

Especially, the dependence of ^4He on α is derived from a number ratio of neutron to proton when their interchange freezes out, that is, when the weak interaction becomes comparable to the expansion rate of the universe. Since almost every neutron is synthesized into ^4He, its mass fraction is approximately expressed by neutron and proton number density, n_n and n_p at freeze-out (denoted by subscript "f") as

$$
Y_{^4\text{He}} = \frac{2n_n}{n_n + n_p}_f = \frac{2}{1 + \left(\frac{n_p}{n_n}\right)_f} = \frac{2}{1 + e^{\Delta m/T_f}},
$$

where freeze-out temperature T_f is about 0.7 MeV. Since Δm is measured to be 1.293 MeV and its electromagnetic part is -0.76 MeV [23],

$$
\Delta m = -0.76 \frac{\alpha}{\alpha_0} + 2.05 \text{ MeV}.
$$

Then $\Delta Y_{^4\text{He}}/Y_{^4\text{He}} \approx \Delta \alpha/\alpha_0$ follows.

To figure out whether varying α can solve the discrepancy between D and ^4He and/or ^7Li, we calculate χ^2 as a function of η and α and search parameter space allowed by the observation of the light elements. The results are summarized in Fig. 8. We note that we take into account the uncertainty in the present value of the electromagnetic part of Δm (which we neglected in Ref. [18]). Since Ref. [22] have reported it to be less than 0.3 MeV, we regard this value to be 3σ of a gaussian error profile and incorporate in our Monte Carlo simulation along with uncertainties in the reaction rates. This uncertainty does not exist when $\alpha = \alpha_0$, at which theoretical errors become discontinuous and we have to split the χ^2 calculation like Fig. 8.
In Fig. 3, as is expected from Figs. 1 and 2 or has been demonstrated in Ref. [10], there is no region that explains measurements of the three elements together. Roughly speaking, ^4He observation constrains α-direction while D and ^7Li constrain η-direction because they are more sensitive to corresponding parameters (see Fig. 2). The $^4\text{He} + ^7\text{Li}$ contour lies around $\alpha = \alpha_0$ because they are already consistent in the standard BBN. The $D + ^4\text{He}$ contour lies in $\alpha < \alpha_0$ because, as can be seen in Fig. 1, ^4He is too much synthesized around the η range determined by D and cutting it down by decreasing α makes it consistent with the observation. At last, the $D + ^5\text{Li}$ contours exist in both $\alpha > \alpha_0$ and $\alpha < \alpha_0$. The former corresponds to the region where D determines the η-range (in which ^7Li is over-synthesized) and the α-direction is constrained by required increase in α to bring down the ^7Li. Meanwhile, for the latter, since ^7Li fix the η-range, $\alpha < \alpha_0$ is necessary to decrease over-produced D. However, such $\alpha \neq \alpha_0$ capable of reconciling D and ^7Li either over- or under-produce ^4He.

The story so far on BBN with varying α (and with the observations we adopt) is summarized as follows. It fails to explain the observed three light elements abundances because α required to make D and ^7Li compatible creates too much or too small ^4He. Since it is difficult to come up with any non-standard BBN other than varying α which reconciles D and ^7Li, considering one which recovers ^4He without violating the success of the varied α on D and ^7Li would be next best option.

Our choice in this paper is non-standard expansion rate. It is usually treated and parameterized as effective number of neutrino species, N_ν, and we follow this convention. The standard BBN corresponds to $N_\nu = 3$. The dependence of the light elements abundances on N_ν is shown in Fig. 4, which we explain briefly. ^4He is again determined by Eq. (6). Since increasing N_ν means increasing expansion rate, it raises freeze-out temperature and leaves more neutrons which synthesize into ^4He. Faster expansion rate also makes nucleosynthesis less effective so more D is left unburned. So is T which fuses with ^4He to be ^7Li for lower η. As for ^7Be (which is the origin of ^7Li for higher η), its destruction process $^7\text{Be}(n,p)^8\text{Li}$ is enhanced due to increased n. The reason for increase in n is same as D.

We see from the figure that N_ν does worse than α as for reconciling D and ^7Li because N_ν barely alter them (especially for higher η) while changing the ^4He abundance substantially. However, this turns out to be the advantage when combined with varying α because that is the very required property mentioned above. For $\alpha > \alpha_0$, since ^4He is overproduced in order to adjust D and ^7Li, N_ν has to increase. On the other hand, for $\alpha < \alpha_0$, N_ν has to decrease.

With this insight, we perform χ^2 calculations similar
Combinations of all three elements observations, D, 4He and 7Li, for various N_ν. Solid lines use 4He data of Ref. [14] and dotted lines use those of Ref. [15]. We do not find an allowed region for $\alpha < \alpha_0$ by varying N_ν.

to Fig. 3 making N_ν less than 3 for $\alpha > \alpha_0$ and more than 3 for $\alpha < \alpha_0$. Naive expectation is that the contours including 4He seen in Fig. 3 would approach 4He+7Li contours and eventually they would merge to form allowed regions of three elements observations for both $\alpha > \alpha_0$ and $\alpha < \alpha_0$. However, while solutions are obtained for $\alpha > \alpha_0$ as Fig. 4 there is no solution for $\alpha < \alpha_0$. Notice that we look for solutions in the range $0.71 < \alpha < 1.29$, where the modification to the reaction rates caused by varying α is considered to be valid [11]. The different behavior stems from subtle effects of varying N_ν on D and 7Li. With $N_\nu < 3$, from Figs. 1 and 2 we see that the measured D and 7Li are more consistent (with smaller η) than the standard BBN because D is predicted to be smaller (7Li is predicted to have larger abundance which means working in opposite way but N_ν- and η-dependencies are both larger for D, especially when the measured value of 7Li is around the trough of the theoretical curve, so D is thought to be the decisive factor). On the contrary, since $N_\nu > 3$ makes D larger, higher η is more consistent. This requires very small α to decrease D, so small as to be outside the region with theoretical reliability.

Fig. 5 shows our solutions to the inconsistency between the standard BBN and the measured primordial abundances of the light elements, Eqs. 1 to 4. The different 4He measurements give similar results because the theoretical uncertainty is comparable to the combined uncertainty in the observation of Eq. 1. This mainly comes from the uncertainty in the electromagnetic part of the neutron-proton mass difference because the effect of uncertainties in the reaction rates on 4He yield is negligible. The estimation for this error affects the size of the allowed regions but central values and qualitative features do not change. It is concluded that larger α and slower expansion rate (expressed by $N_\nu < 3$) solve the discrepancy between the standard theory and the observations. The solution with maximum N_ν is found at about $N_\nu \approx 1.16$, $\eta \approx 4.7 \times 10^{-10}$ and $\alpha/\alpha_0 \approx 1.05$.

As we finish, we would like to make some comments. The first is on possible origins of lower-than-standard expansion rate ($N_\nu < 3$). We present here three possibilities: 1) non-thermal distribution of active neutrinos caused by low reheating temperature [12, 13] and 2) negative dark radiation possibly exists in brane world scenarios [14, 15] and 3) a varying (smaller at BBN) gravitational constant which is often found when the Ricci scalar is non-minimally coupled to a scalar field [21]. The 1) is limited to $N_\nu > 0$ but 2) and 3) can be any value as far as the total energy is positive. Their connection to varying α would be promising and quite interesting. The second is consistency with the CMB data. To our knowledge, there is no analysis of CMB data concerning simultaneous change in α and N_ν. Since full statistical treatment is beyond the scope of this paper, we just check the effect of our solution on the first peak. An increase in α raises the first peak [22] and a decrease in N_ν lowers it [20]. It is reassuring that some cancellation is likely to take place but details remain to be worked out. Third, another solution should be found by considering lepton asymmetry instead of the non-standard expansion rate because its existence change 4He abundance considerably while leaving D and 7Li almost unchanged. These issues are discussed in other places [23].

[1] R. H. Cyburt, B. D. Fields and K. A. Olive, Phys. Lett. B 567, 227 (2003).
[2] G. Steigman, arXiv:hep-ph/0309347
[3] A. Coc, E. Vangioni-Flam, P. Descouvemont, A. Adahchour and C. Angulo, Astrophys. J. 600, 544 (2004).
[4] A. Coc, E. Vangioni-Flam, P. Descouvemont, A. Adahchour and C. Angulo, arXiv:astro-ph/0401008
[5] R. H. Cyburt, arXiv:astro-ph/0401001
[6] D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).
[7] P. Bonifacio et al., Astron. Astrophysics. 390, 91 (2002).
[8] V. Barger, J. P. Kneller, H. S. Lee, D. Marfatia and G. Steigman, Phys. Lett. B 566, 8 (2003).
[9] V. Barger, J. P. Kneller, P. Langacker, D. Marfatia and G. Steigman, Phys. Lett. B 569, 123 (2003).
[10] K. M. Nollett and R. E. Lopez, Phys. Rev. D 66, 063507 (2002).
[11] V. F. Dmitriev, V. V. Flambaum and J. K. Webb, arXiv:astro-ph/0310892
[12] R. H. Cyburt, B. D. Fields and K. A. Olive, New Astron. 6, 215 (2001).
[13] C. Angulo et al., Nucl. Phys. A. 656, 3 (1999).
[14] B. D. Fields and K. A. Olive, Astrophys. J. 506, 177.
(1998).
[15] Y. I. Izotov and T. X. Thuan, [arXiv:astro-ph/0310421]
[16] D. Kirkman, D. Tytler, N. Suzuki, J. M. O'Meara and D. Lubin, Astrophys. J., Suppl. Ser. 149, 1 (2003).
[17] S. G. Ryan, T. C. Beers, K. A. Olive, B. D. Fields, and J. E. Norris, Astrophys. J. Lett., 530, L57 (2000).
[18] K. Ichikawa and M. Kawasaki, Phys. Rev. D 65, 123511 (2002).
[19] M. Dine, Y. Nir, G. Raz and T. Volansky, Phys. Rev. D 67, 015009 (2003)
[20] E. W. Kolb and M. S. Turner, The Early Universe (Addison Wesley, Reading, MA, 1990).
[21] J. P. Uzan, Rev. Mod. Phys. 75, 403 (2003).
[22] L. Bergstrom, S. Iguri and H. Rubinstein, Phys. Rev. D 60, 045005 (1999) [arXiv:astro-ph/9902157].
[23] J. Gasser and H. Leutwyler, Phys. Rept. 87, 77 (1982).
[24] M. Kawasaki, K. Kohri and N. Sugiyama, Phys. Rev. Lett. 82, 4168 (1999).
[25] M. Kawasaki, K. Kohri and N. Sugiyama, Phys. Rev. D 62, 023506 (2000).

[26] T. Shiromizu, K. i. Maeda and M. Sasaki, Phys. Rev. D 62, 024012 (2000).
[27] S. Mukohyama, Phys. Lett. B 473, 241 (2000).
[28] C. J. A. Martins, A. Melchiorri, G. Rocha, R. Trotta, P. P. Avelino and P. Viana, [arXiv:astro-ph/0302295]
[29] W. Hu, D. Scott, N. Sugiyama and M. J. White, Phys. Rev. D 52, 5498 (1995).
[30] K. Ichikawa and M. Kawasaki, in preparation.
[31] Or, higher 7Li value such as measured in Ref. [7] may be a solution. However, it will be only marginal due to the discrepancy between D and 4He.

[32] Ref. [11] discusses that a varying deuteron binding energy may have the capacity to render internal agreement between the light element abundances.
[33] Here we only vary α and do not consider possible change in QCD scale, Λ_{QCD}, of which variation was taken into account in Ref. [18]. The relation between $\Delta \alpha$ and $\Delta \Lambda_{QCD}$ is model dependent and it is possible that $\Delta \alpha / \alpha \gg \Delta \Lambda_{QCD} / \Lambda_{QCD}$ [19].