Targeted Gene Disruption Reveals an Adhesin Indispensable for Pathogenicity of Blastomyces dermatitidis

By T. Tristan Brandhorst,* Marcel Wüthrich,* Thomas Warner,† and Bruce Klein**†§

From the *Department of Pediatrics, the †Department of Internal Medicine, the ‡Department of Medical Microbiology and Immunology, and the §Department of Pathology and Laboratory Medicine, and the ¶Comprehensive Cancer Center, University of Wisconsin Medical School, Madison, Wisconsin 53792

Summary

Systemic fungal infections are becoming more common and difficult to treat, yet the pathogenesis of these infectious diseases remains poorly understood. In many cases, pathogenicity can be attributed to the ability of the fungi to adhere to target tissues, but the lack of tractable genetic systems has limited progress in understanding and interfering with the offending fungal products. In Blastomyces dermatitidis, the agent of blastomycosis, a respiratory and disseminated mycosis of people and animals worldwide, expression of the putative adhesin encoded by the WI-1 gene was investigated as a possible virulence factor. DNA-mediated gene transfer was used to disrupt the WI-1 locus by allelic replacement, resulting in impaired binding and entry of yeasts into macrophages, loss of adherence to lung tissue, and abolishment of virulence in mice; each of these properties was fully restored after reconstitution of WI-1 by means of gene transfer. These findings establish the pivotal role of WI-1 in adherence and virulence of B. dermatitidis yeasts. To our knowledge, they offer the first example of a genetically proven virulence determinant among systemic dimorphic fungi, and underscore the value of reverse genetics for studies of pathogenesis in these organisms.

Key words: dimorphic fungi • gene targeting • virulence factor • pathogenic mechanism • adhesin

The systemic dimorphic fungi Blastomyces dermatitidis, Coccidioides immitis, Histoplasma capsulatum, Paracoccidiodes brasilienisi, and Sporothrix schenckii inhabit soil worldwide as saprophytic molds. They also cause hundreds of thousands of new fungal respiratory and deep tissue infections annually in healthy individuals (1, 2) and reactivate as opportunistic infections in up to 40% of AIDS patients in some geographic regions (1).

Despite the worldwide occurrence and growing incidence of these fungal infections, little is known about the factors that account for their pathogenicity. In many cases, pathogenicity can be attributed to the ability of fungi and other microbes to adhere to target tissues, but the lack of tractable genetic systems in systemic dimorphic fungi has severely limited our understanding of the responsible products. This stands in contrast to recent progress that has been made in genetically manipulating opportunistic fungi such as Cryptococcus neoformans (3) and Candida albicans (4), and to the well-established systems available for manipulating model fungi such as Saccharomyces cerevisiae (5). Nonetheless, there are theoretical and real advantages to performing genetic studies of pathogenicity in the pathogenic fungus itself, rather than in a more genetically manipulable, heterologous fungus.

The systemic dimorphic fungus Blastomyces dermatitidis produces a progressive pulmonary and disseminated infection and is one of the principal systemic mycoses of humans and animals worldwide. An immunodominant antigen and putative adhesin termed WI-1 decorates the fungus (6–8). Cell biological studies have shown that WI-1 binds the yeast to CD11b/CD18 and CD14 receptors on human macrophages (9). Fluorescence staining of the fungal surface and extractions of cell wall proteins have shown that WI-1 varies in expression in up to 40% of AIDS patients in some geographic regions (1).

Despite the worldwide occurrence and growing incidence of these fungal infections, little is known about the factors that account for their pathogenicity. In many cases, pathogenicity can be attributed to the ability of fungi and other microbes to adhere to target tissues, but the lack of tractable genetic systems in systemic dimorphic fungi has severely limited our understanding of the responsible products. This stands in contrast to recent progress that has been made in genetically manipulating opportunistic fungi such as Cryptococcus neoformans (3) and Candida albicans (4), and to the well-established systems available for manipulating model fungi such as Saccharomyces cerevisiae (5). Nonetheless, there are theoretical and real advantages to performing genetic studies of pathogenicity in the pathogenic fungus itself, rather than in a more genetically manipulable, heterologous fungus.
A Virulence Determinant of B. dermatitidis

We endeavored here to accomplish the following specific objectives: (a) to target and disrupt the WI-1 locus in B. dermatitidis by allelic replacement, thus creating WI-1 null strains, and to reconstitute WI-1 expression in knockout strains, also by means of gene transfer; (b) to analyze the adherence-promoting role of WI-1 in binding and phagocytosis assays using isogenic strains that do and do not display the putative WI-1 adhesin; and (c) to quantify the pathogenicity of these isogenic WI-1 null and reconstituted strains in an animal model of blastomycosis that closely mimics the human form of pulmonary disease. We report here successful homologous gene targeting and allelic re- placement at the WI-1 locus in B. dermatitidis, and unambiguously establish the pivotal role of WI-1 in both adherence and virulence. To our knowledge, this work illustrates the first genetically proven virulence factor in B. dermatitidis and related systemic dimorphic fungi, and emphasizes the power of reverse genetics for studies of pathogenesis in these complex microorganisms.

Materials and Methods

Fungal Strains and Plasmids. Blastomyces dermatitidis ATCC strains 26199 and 60915 were used for gene disruption. The wild-type, parental strain 26199 was isolated originally from a human patient and is highly virulent in an experimental mouse model of infection (14). The genetically related strain 60915 was derived after repeated passage of strain 26199 in vitro and is reported to be 10,000-fold less virulent in mice (15).

The targeting vector pQW hph (see Fig. 1A) was constructed as follows: pQ E32/ WI-1 (8.3 kb) was derived from a QIagen® expression vector pQ E32 (3.5 kb) and an Acc11I fragment of the genomic WI-1 gene (4.8 kb) (8). A BamHI site in the 3' UTR of WI-1 was removed by HindIII digestion and religation. Another BamHI site in the 5' UTR was removed by EcoRI–Nru I nul deletion. The resulting plasmid, pQW ΔΔ, was digested with BamHI to excise 1.4 kb of WI-1 coding sequence. A 1.4-kb hph cassette (E. coli hph driven by 375 bp of WI-1 upstream sequence) was amplified from pWl-1P (13) using PCR primers TB No. 1 (5'-ATCCGATCCCGTACGTTTATTGCATCTCTA-3') and TB No. 2 (5'-ATCCGATCCCGTACGTTTATTGCATCTCTA-3'), which added BamHI sites (underlined). The hph cassette was ligated into the pQW ΔΔ BamHI-digested vector, which was then linearized with HindIII, and the 1.4-kb HindIII fragment containing the 3'-untranslated region of WI-1 was ligated back into place. The orientations of the hph cassette and the HindIII fragment were verified by restriction analysis.

pCB1528, containing the sulfonyl urea resistance gene of Magnaporthe grisea, was provided by Drs. James Sweigard (Dupont) and Paul Szaniszlo (University of Texas, Austin, TX) (16), and was used for reconstitution of WI-1 in knockout strains.

Growth of fungi. B. dermatitidis was maintained in the yeast form by growth on Middlebrook 7H10 agar medium containing oleic acid–albumin complex (OADC; Sigma Chemical Co.). Liquid cultures of yeast were grown in Histoplasm macrophage medium (HMM) (17) on a rotary shaker at 200 rpm. All cultures were maintained at 37°C.

To measure the growth rate of yeasts, cells were grown synchronously in HMM and inoculated at a concentration of 2 × 10⁶ per ml into 50 ml of fresh medium. Cultures were incubated at 37°C on a rotary shaker at 200 rpm for 72 h. Growth rates were monitored every 24 h by both hemacytometer cell count and OD₆₀₀. Doubling time was calculated from the results of hemacytometer cell counts according to the formula: Nₜ = (Log Nᵢ – Log Nₒ) / Log 2, where Log Nₒ is the number of yeasts at the starting point and Log Nᵢ is the number of yeasts at each time point analyzed. The doubling time is then equal to 24 h divided by the number of divisions. Results are the mean ± SD of three replicates per time point.

A lethal replacement of WI-1 and Its restoration. B. dermatitidis yeast cells of strains 26199 and 60915 were transformed with 5–10 μg of XbaI-linearized pQW hph, using electroporation conditions previously described (13). Transformants were selected on HMM agar containing 200 μg/ml of hygromycin B. Replicates plated onto nitrocellulose membranes overlaying brain–heart infusion agar (Difco Labs.) were lysed with 0.2 M NaOH, 0.1% SDS and 0.5% mercaptoethanol as previously described (18). Membranes were probed with pooled anti-WI-1 mAbs DDS-CB4, AD-3-BD6, BD6-BC4, and CAS-AD3 (19) using standard immunoblotting techniques (hybridomas were provided by Drs. Errol Reiss and Christine Morrison, Centers for Disease Control, Atlanta, GA).

The multinucleate nature of B. dermatitidis yeast had to be addressed to isolate cells with a WI-1–negative phenotype, as the presence of heterologous “silent” nuclei might allow phenotypic reversion. To obtain genetic homogeny at the WI-1 locus, each candidate isolate was taken through several rounds of single-cell isolation on selective medium with resultant colonies re-screened as above. This protocol has been shown to render transformants of multinucleate fungi homogenous for altered genes (20, 21).

Resulting candidates were screened for evidence of gene replacement by PCR. Primers internal to the WI-1 gene were used to determine if candidates contained an intact WI-1 locus. If an intact locus was not detectable, as in candidates 55 and 99 (described in R esults), homologous recombination was assessed by amplifying the junction between the transformed hph gene and sequences 5'- to the WI-1 promoter (not on the transforming vector) (see Fig. 1, A and B). Primers were 5'-TTGGTTTTGTCCTGCCCCGTTTTCTC-3' (forward) and 5'-CGTCCGGTGAAGTCACGTCCTTTTTTTT-3' (reverse). Knockouts were confirmed by Southern blot analysis as described below.

To restore the expression of WI-1 in knockout strains, yeast were cotransformed with pCB1528, together with WI-1 genomic clone 1 (8). After electroporation of 10⁷ yeasts with a pool of 10 μg of each plasmid, transformants were selected on HMM plates containing 150 μg/ml of chlorimuron ethyl (Chem Service). Out of 19 total transformants, 18 were found to produce WI-1 in the colony immunoblot assay noted above. Transformants producing the most WI-1 were passed serially on HMM under selection as above to obtain a genetically homogeneous isolate. After repeated passage, strain 4/55 appeared closest to the parental strain 26199 in WI-1 production and was chosen for further study.

Expression of WI-1 Protein and DNA in B. dermatitidis. The expression of WI-1 protein was assayed by immunofluorescence staining, SDS-PAGE, and Western blotting. Immunofluorescence staining was performed as previously described (8–10). In brief, yeast (10⁶ cells) were stained for WI-1 indirectly using 1 μg anti-WI-1 mAb DDS-CB4 followed by goat anti–mouse IgG–FITC. Stained cells were inspected for fluorescence microscopically us-

1A abbreviation used in this paper: HMM, Histoplasm macrophage medium.
ing an Olympus BX 60 fluorescent microscope or a FACScan® flow cytometer (Becton Dickinson). Cell-associated proteins were extracted by boiling yeast in treatment buffer containing 1.5% SDS, and 5.0% 2-ME for 3–5 min, followed by analysis of the cell-free material by SDS-PAGE and Western blotting using anti-WI-1 mAb DDS-CB4 as previously described (8). For Southern blot analysis, chromosomal DNA was prepared by grinding cells in liquid nitrogen and extracting them in detergent as previously described (13). Purified DNA was restricted with Xbal (Promega Corp.) at a ratio of 40 U/10 μg of DNA, incubated at 37°C overnight, and then separated on 1% agarose gel and transferred to nitrocellulose membrane. A 100-ng aliquot of probe was labeled with α-[32P]dCTP to a specific activity of 108 cpm/μg using random oligonucleotides as primers (Amersham Pharmacia Biotech). Waxed Southern blots were used to expose Kodak X AR -5 film with intensifying screens at −80°C.

Binding and Phagocytosis Assays. Murine macrophage cell line J774.A1 (22–25), provided by Dr. Arturo Casadevall (Yeshiva University, NY), was used in most in vitro binding and phagocytosis assays. Further experiments were done with resident peritoneal macrophages of BALB/c mice. Macrophages were grown in DMEM (GIBCO BRL) with 10% heat-inactivated fetal calf serum (HyClone Laboratories Inc.), 10% NCTC-109 medium, and 1% nonessential amino acids (GIBCO BRL), and plated at 2.5 × 105 cells per well in 16-well tissue culture Chamber Slides (Nunc Inc.). Cells were stimulated with 500 U/ml of recombinant murine IFN-γ (Boehringer Mannheim). After overnight incubation at 37°C/8% CO2, medium in each well was replaced with fresh medium containing 500 U of IFN-γ/ml, 3 μg/ml of LPS (Sigma Chemical Co.), and 2×106 B. dermatitidis yeasts.

Binding and phagocytosis of yeasts was analyzed in vitro as previously described (22–25). In brief, yeasts were heat killed for 45 min at 65°C and stained with rhodamine isothiocyanate (RITC) (10 μg/ml). Assays done in the presence and absence of complement used 10% normal mouse serum (NMS) and heat-inactivated NMS, respectively. Complement was inactivated by heating NMS at 56°C for 30 min. Yeasts and macrophages were incubated at an E/T ratio of 1:4 for varying periods at 37°C/8% CO2. Unattached yeasts were removed by washing wells three times with PBS. Attached but uningested yeasts were stained with 0.1% Uvitex 2B (Specialty Chemicals for Medical Diagnos- tics, Germany) for 30 s. Cells were fixed in 1% paraformaldehyde for 15 min. After fixation, glycerol was added to the slide. To quantify binding and phagocytosis, the number of yeasts attached to and ingested by 100 macrophages was counted by the number of macrophages divided by the number of macrophages counted. The ingestion index is defined as the number of yeasts ingested per macrophage.

Results

A Ileic Replacement of WI-1 and Its R constitution. Our gene targeting efforts capitalized on the preferred fate of incoming DNA in B. dermatitidis, which is integrative transformation (13). Substantial WI-1 DNA flanking the hph selectable marker was used to target the knockout vector pQW hph and achieve the desired crossover event (Fig. 1A).

WI-1 was disrupted by allelic replacement in ATCC strains 26199 and 60915. Presumptive evidence of homologous recombination was sought by PCR amplification of the junction between the hph gene on the transforming vector and the upstream sequences 5′ to the WI-1 promoter (not on the transforming vector) (Fig. 1, A and B). Either of two possible products could signal such an event. A joint fragment of 1.6 kb would be amplified if chromosomal DNA had recombinated at the 1 kb of WI-1 flanking sequence on pQW hph, whereas a joint fragment of 675 bp would be amplified if chromosomal DNA had recombinated within the WI-1 mini promoter (375 bp) that directs expression of the hph gene. In each positive candidate (strains 55 and 99) the amplified joint fragment was 675 bp (Fig. 1B). To verify the amplified product’s authenticity, it was digested with EcoRV and AatII (Fig. 1B); the resulting DNA fragments corresponded in size to predictions based on the genomic sequence of WI-1 (8). Southern blot analyses described below confirmed the initial PCR results and demonstrated allelic replacement of WI-1 after screening for standard analysis of variance (29). P < 0.05 was considered significant.
60 transformants of ATCC 26199 and 100 transformants of ATCC 60915. The frequency of homologous targeting at the WI-1 locus was 1–2%.

WI-1 expression was restored in one of the knockout strains, 55, by means of gene transfer involving cotransformation with pCB1528 and genomic clone 1 containing WI-1 (as described in Materials and Methods), yielding strain 4/55.

Phenotypic and Genotypic Analyses of Recombinant Strains. The phenotype and genotype of the knockouts and the reconstituted strain were established by anti-WI-1 mAb fluorescence staining, Western blotting of extracted protein, and Southern blot analysis (Fig. 2, A–C). Surface WI-1 was not detectable on knockout strain 55 by either FACS® analysis or Western blotting of extracted cell wall proteins (Fig. 2, A and B). In contrast, the amount of surface WI-1 on the reconstituted strain 4/55 was comparable to, if not greater than, the amount detected on the parental strain. Similar results were observed in isogenic strains ATCC 60915 and knockout strain 99 (data not shown).

To confirm that WI-1 had been disrupted by allelic replacement, and to analyze the nature of the transforming event, Southern blot analyses were performed (Fig. 2 C). The upstream WI-1 probe hybridized to a 9.3-kb XbaI fragment in DNA from parental strains 26199 and 60915, but not knockout strains 55 and 99. Instead, the WI-1 probe hybridized to a novel fragment of ~8.3 kb in each of these knockout strains. The hph gene probe also hybridized with this same 8.3-kb fragment in the knockouts, indicating that the residual, upstream sequence for WI-1 and the hph sequence were on the same DNA fragment. For each knockout strain, the presence of a single band hybridizing with WI-1 sequences has been interrupted by hph in the manner depicted by a dashed line in A, yielding an interrupted locus shown at the bottom of A and in B. The product’s authenticity is confirmed by the presence of EcoRV and AatII restriction sites in the WI-1 upstream segment of the product, as shown in an accompanying agarose gel, and in accord with published WI-1 genomic sequence (8).

To confirm that WI-1 had been disrupted by allelic replacement, and to analyze the nature of the transforming event, Southern blot analyses were performed (Fig. 2 C). The upstream WI-1 probe hybridized to a 9.3-kb XbaI fragment in DNA from parental strains 26199 and 60915, but not knockout strains 55 and 99. Instead, the WI-1 probe hybridized to a novel fragment of ~8.3 kb in each of these knockout strains. The hph gene probe also hybridized with this same 8.3-kb fragment in the knockouts, indicating that the residual, upstream sequence for WI-1 and the hph sequence were on the same DNA fragment. For each knockout strain, the presence of a single band hybridizing with the WI-1 probe, which differs in size from the respective one in the parental strain, indicates a disrupted WI-1 locus without other ectopic integrations. The size of this fragment in knockout strains (~8.3 kb; Fig. 2 C), together with the size of the joint fragment amplified in PCR (675 bp; Fig. 1 B), suggests that transforming DNA crossed over at the 375-bp stretch of homology (minipromoter) with the 5’ region of WI-1, excising ~1 kb of coding sequence. This event probably placed the full 5’ region and the complete, endogenous WI-1 promoter upstream of E. coli hph (Fig. 1 B), perhaps transcribing hph more efficiently.

Southern blot analysis of reconstituted strain 4/55 demonstrated that the WI-1 transgene was located on a single XbaI fragment that differed in size from the retained 8.3-kb fragment harboring an hph-disrupted copy of WI-1 (Fig. 2 C). This indicated that the WI-1 transgene had integrated ectopically, rather than homologously, into the chromosome in a single copy.

Thus, phenotypic and genotypic analyses demonstrated that isogenic strains differing in the expression of WI-1 had been created: wild-type parental strain 26199, with a high
level of expression; strain 55, devoid of WI-1; and strain 4/55, with expression restored to the level of wild-type, or perhaps higher. In addition, parental strain 60915 contained the wild-type isolate 4/55 bound avidly (Fig. 3 D), emphasizing the key role of WI-1 in promoting interactions directly with constituents of the lung alveolus.

Indispensable Role of WI-1 in Virulence. We hypothesized that yeasts unable to bind lung tissues and enter macrophages during infection would be much less virulent, and tested this in a previously described murine model of lethal pulmonary blastomycosis (27). All mice infected with the wild-type strain ATCC 26199 at a dose of 10^5 yeasts died from an overwhelming pulmonary and disseminated infection several weeks after inoculation, whereas all mice infected with the same dose of isogenic, WI-1 knockout strain 55 lived and appeared healthy during observation over 72 d (Fig. 4 A). Mice infected with either 10^3 or 10^4 yeasts of knockout strain 55, which are respectively 10 and 100 times the lethal dose of wild-type yeast, also survived and appeared healthy during the 72-d observation period. Finally, lethality studies comparing parental strain ATCC 60915 (15) and its isogenic WI-1 knockout strain 99 yielded similar results (data not shown).

Representative mice infected with knockout strain 55 were killed 3 wk after they were infected with 10^3 yeasts. They had <600 organisms in the lungs and none in the liver or spleen, suggesting that strain 55 produces a self-limited infection. To analyze the evolution and clearance of infection with the knockout and wild-type strains over time, groups of mice were tested serially for the burden of infection 1–14 d after they were infected intranasally with 10^4 yeasts. The number of yeasts in the lungs of mice infected with the knockout remained low throughout the study interval, whereas the number for the wild-type strain 26199 grew steadily; a sharp difference in the burden of infection between the strains was evident by 3 d and became statistically significant after 1 wk of infection (Table I). On
postmortem examination, the lungs of mice infected with the knockout were macroscopically normal, but contained a small number of well-formed granulomas with sequestered organisms (Fig. 4 B). The lungs of mice infected with the wild-type strain were filled with organisms and widespread inflammation. Taken together, these findings suggest that eliminating WI-1 expression greatly reduces the pathogenicity of the yeast.
We found no evidence for a growth defect in strain 55 knockout yeasts, as an alternative explanation for its reduced pathogenicity. Doubling times in liquid culture were calculated to be 17.5 h for the knockout strain and 17.1 h for the wild-type strain at 48 h after inoculation into liquid, which represented the peak log phase of growth. Wild-type parental yeasts and strain 55 knockout yeast appeared morphologically similar on agar and on microscopic examination. However, knocking out WI-1 in strain 99 led to excessive elongation into pseudohyphae, with few round yeast cells like those seen in parental ATCC strain 60915 (data not shown). This could be due to accumulated defects in the cell wall, as parental strain 60915 also has diminished α-(1,3)-glucan (30).

Restoration of Virulence in the Knockout Strain. We next confirmed that loss of WI-1 is directly responsible for reduced virulence of strain 55 in vivo, by showing that restored expression of WI-1 conferred pathogenicity. The WI-1 reconstituted strain 4/55 killed 100% of infected mice, as did the wild-type strain 26199 (Fig. 4 C). Strain

Figure 4. Targeted gene replacement of WI-1 reduces the pathogenicity of B. dermatitidis. (A) Survival after infection with wild-type strain 26199 and WI-1 knockout strain 55. Male BALB/c mice (n = 15 mice/group) were infected intranasally with yeast cells of each strain, in varied doses. Survival was monitored for 72 d after infection. The two groups differ significantly (P < 0.001) at each infectious dose tested. The experiment shown is representative of three independent experiments. The phenotype of knockout yeasts was stable; no revertants were identified among yeasts grown from mice infected with strain 55. (B) Gross and microscopic pathology of mice infected with ATCC 26199 wild-type yeasts or WI-1 knockout yeasts. Mice were analyzed 3 wk after infection. Lungs were stained with hematoxylin and eosin to assess inflammation, and with Gomori methenamine silver to visualize yeasts. The arrow denotes an isolated granuloma surrounded by normal lung tissue in a mouse infected with the WI-1 knockout strain 55. (C) Survival after infection with wild-type strain 26199, WI-1 knockout strain 55, and WI-1 reconstituted strain 4/55. Survival experiments were done as in A, using a dose of 10⁴ yeasts to establish infection. The wild-type and WI-1 reconstituted strains were significantly different from the WI-1 knockout strain (P < 0.001 for each comparison).
Table 1. Burden of Yeast in Lungs after Mice Were Infected with B. dermatitidis

Strain	3 h	24 h	3 d	7 d†	14 d§
Knockout strain 55	750 ± 150	850 ± 150	750 ± 250	500 ± 100	1,250 ± 300
ATCC 26199	600 ± 150	500 ± 150	2,300 ± 750	4,600 ± 1,350	60,450 ± 15,550

*Mean CFU/lung ± SEM, n = 6 mice per time point for each yeast strain.
†P = 0.06 when comparing the burden of infection between the strains at this time point.
§P = 0.005 when comparing the burden of infection between the strains at this time point.

4/55 accelerated the time to death and thus appeared more virulent than the parental strain 26199. Strain 4/55 yeast also displayed larger amounts of WI-1 than did the parent strain, as observed in FACS® and in Western blots of yeast cell extracts (Fig. 2, A and B), suggesting a possible dose effect on virulence. To assess the appearance and extent of infection with strain 4/55, mice were analyzed at the time of death. These mice demonstrated severe pulmonary and disseminated disease with >10⁷ yeasts in the lungs and >2.5 × 10⁴ yeasts in the liver, indicating that they died from an overwhelming infection, similar to that observed with wild-type yeast.

Discussion

Formal proof of the importance of a virulence determinant requires fulfillment of a “molecular” Koch’s postulate: loss of virulence upon gene disruption, and restoration of virulence upon gene reconstitution (31). Prior studies of systemic dimorphic fungi have implicated candidate virulence factors through correlative and other means (32), but none of the observations have been substantiated by genetic tests, leaving their validity open to debate. Past studies that have implicated WI-1 in adherence, pathogenesis, and virulence are one such example, using exclusively non-genetic methods. Genetic intractability of B. dermatitidis and related fungi has, until very recently, prevented definitive studies. In addition to the transformation system recently described for B. dermatitidis (13), high efficiency transformation can be accomplished in the dimorphic fungus H. capsulatum (33), and the molecular and genetic tools for manipulation of that pathogen are now in hand (33–35).

In this study, we analyzed the pathogenetic role of WI-1 in B. dermatitidis by reverse genetics, overcoming past limitations in virulence studies of systemic dimorphic fungi. Here, the WI-1 locus was targeted and disrupted by allelic replacement using the dominant selectable marker encoding resistance to hygromycin B. Evidence of homologous gene targeting and elimination of WI-1 expression was provided at both the DNA and protein levels. The frequency of homologous gene targeting at the WI-1 locus ranged from 1 to 2% in the two independent strains studied, 26199 and 60915, which compares favorably with rates observed in a study of H. capsulatum. Woods et al. (35) reported that homologous gene targeting is a rare event in that pathogen, occurring at a frequency of <10⁻³ at the URA5 locus. Several reasons could account for the higher frequency of targeting in the current study of B. dermatitidis, including the differences in pathogen, genetic locus, and gene targeting strategy.

We suspect that the gene targeting strategy used here was a critical feature and increased the rate of homologous recombination. Our targeting plasmid allowed a crossover event to occur in either of two locations in the 5′ region, as illustrated in Fig. 1 A: a long, 1-kb stretch of WI-1 coding sequence, or a shorter 375-nucleotide stretch of WI-1 mini-promoter that served to express E. coli hph transforming DNA. The plasmid had been designed so that the long stretch of homologous sequence in the 5′ (and 3′) region might enhance the frequency of gene targeting. Surprisingly, B. dermatitidis handled the transforming DNA in an unanticipated way in both instances in which homologous recombination was observed. Crossing over in the 5′ region occurred preferentially at the shorter stretch of homologous sequence rather than at the longer stretch. Evidence for the nature of the crossover event includes the size of the joint fragment PCR-amplified from the knockout strains (Fig. 1 B), and the size of the hybridizing band detected in Southern blot analysis (Fig. 2 C). This type of crossover event may have had the effect of “trapping” a more active WI-1 promoter in front of the hph coding sequence. Gene targeting by “promoter trapping” has been described in mammalian embryonic stem cells (36), where the expression of selection genes was made dependent on acquisition of transcriptional start signals from host DNA, thereby enriching for homologous recombination among preponderantly random integrations. This sort of targeting strategy may have broader application to other genes and dimorphic fungi if it renders them more amenable to allelic replacement and gene disruption by enhancing low frequencies of homologous recombination.

The isogenic strain pairs created here were used to investigate the role of WI-1 in the pathogenesis of blastomycosis. Prior work using cell biological approaches suggested that WI-1 promotes binding to human macrophages (8–10). Genetically related strains of B. dermatitidis that vary in surface expression of WI-1 showed concordant differences in binding to macrophages in vitro: Fab fragments of anti-
When administered at 100 times the minimal lethal in-
dis. WI-1 is indispensable for the pathogenicity of
and underscored the need for reverse genetics to allow a
dependent role of WI-1 or any other single component,
multiple defects impeded a definite conclusion about an in-
surface expression of the polymer
ing impaired secretion of WI-1 and reduced or absent
those variants also had multiple coexisting defects, includ-
WI-1 interferes with virulence of the yeast. However,
Thus, a possible interpretation of that study could be that
highest level of surface WI-1 (and binding to macrophages).

The indispensable role of WI-1 in pathogenicity is sub-
stantiated by this study, but the mechanism(s) whereby the
molecule exerts its effect requires more investigation. A deeper
understanding of WI-1 and other fungal virulence mecha-
nisms will be important in developing new pharmacologi-
and immunological approaches to management of sys-
temic fungal infections. Moreover, insight into where and
when fungal virulence determinants are expressed in vivo
and how virulence genes are regulated should provide new
information about how pathogenic fungi sense the inimical
environment of the host and adapt to it successfully. Our
study marks a significant first advance toward these goals by
establishing WI-1 as a key virulence determinant of B. dema-
titidis worthy of further investigation.

We thank Brian Aizenstein for technical assistance; Bob Gordon for preparing illustrations; Lan Zheng and
Dr. Michael Kosorok for statistical assistance; Dr. Jon Woods for helpful discussions; and Peggy Roney and
Drs. Robert DeMars and James Malter for comments on the manuscript.

Supported by grants from the U.S. Public Health Service. B. Klein is the recipient of a National Institutes of
Health Research Career Development Award (K04 AI01308) and is a Burroughs Wellcome Fund Scholar in
Molecular Pathogenic Mycology.

Address correspondence to Bruce S. Klein, University of Wisconsin-Madison, 600 Highland Ave., Rm. K4/
343, Madison, WI 53792. Phone: 608-263-9217; Fax: 608-263-0440; E-mail: bsklein@facstaff.wisc.edu

Received for publication 24 December 1998 and in revised form 26 February 1999.

1215 Brandhorst et al.
References

1. Sternberg, S. 1994. The emerging fungal threat. Science. 266: 1632–1634.
2. Ajello, L. 1970. Comparative study of pulmonary mycoses in the United States and Canada. In Proceedings of the Pan American Health Organization International Symposium on the Mycoses. Pan American Sanitary Bureau Scientific Publication No. 205, Washington, D.C. 3–10.
3. Edman, J.C. 1992. Isolation of telomericlike sequences from Cryptococcus neoformans and their use in high-efficiency transformation. Molec. Cell. Biol. 12:2777–2783.
4. Fonzi, W.A., and M.Y. Irwin. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 134: 717–728.
5. Struhl, K. 1983. The new yeast genetics. Nature. 305:391–397.
6. Klein, B.S., and J.M. Jones. 1990. Isolation, purification and radiolabeling of a novel 120 kD surface protein on Blastomyces dermatitidis yeasts to detect antibody in infected patients. J. Clin. Invest. 85:152–161.
7. Klein, B.S., L.H. Hogan, and J.M. Jones. 1993. Immunologic recognition of a 25-amino acid repeat arrayed in tandem on the major antigen of Blastomyces dermatitidis. J. Clin. Invest. 92:330–337.
8. Hogan, L.H., S. Josvai, and B.S. Klein. 1995. Genomic cloning, characterization, and functional analysis of the major surface adhesin WI-1 on B. dermatitidis yeasts. J. Biol. Chem. 270:30725–30732.
9. Newman, S.L., S. Chaturvedi, and B.S. Klein. 1995. The WI-1 antigen on Blastomyces dermatitidis yeasts mediates binding to human macrophage C D 18 and C D 14 receptors. J. Immunol. 154:753–761.
10. Klein, B.S., S. Chaturvedi, L.H. Hogan, J.M. Jones, and S.L. Newman. 1994. Altered expression of the surface protein WI-1 in genetically related strains of Blastomyces dermatitidis that differ in virulence regulates recognition of yeasts by human macrophages. Infect. Immun. 62:3536–3542.
11. Klein, B.S., and S.L. Newman. 1996. Role of cell surface molecules on Blastomyces dermatitidis in host-pathogen interactions. Trends Microbiol. 4:246–251.
12. Klein, B.S., L.H. Hogan, and S.L. Newman. 1997. Surface molecules on Blastomyces dermatitidis and their role in virulence. Am. Soc. Microbiol. News. 63:140–145.
13. Hogan, L.H., and B.S. Klein. 1997. Transforming DNA integrates at multiple sites in the dimorphic fungal pathogen Blastomyces dermatitidis. Gene. 186:219–226.
14. Harvey, R.P., E.S. Schmid, C.C. Carrington, and D.A. Stevens. 1978. Mouse model of pulmonary blastomycosis: Utility, simplicity, and quantitative parameters. Am. Rev. Respir. Dis. 117:695–703.
15. Brass, C., C.M. Volkman, D.E. Phlipott, H.P. Klein, C.J. Halde, and D.A. Stevens. 1982. Spontaneous mutant of Blastomyces dermatitidis attenuated in virulence for mice. Sabouraudia. 20:145–158.
16. Swieglard, J. 1997. A series of vectors for fungal transformation. Fungal Genet. Newsletter. 44:52–53.
17. Worsham, P.L., and W.E. Goldman. 1988. Quantitative plating of Histoplasma capsulatum without addition of conditioned medium or siderophores. J. Med. Vet. Mycol. 26:137–143.
18. Lyons, S., and N. Nelson. 1984. An immunological method for detecting gene expression in yeast colonies. Proc. Natl. Acad. Sci. USA. 81:7426–7430.
19. Klein, B.S., and J.M. Jones. 1994. Purification and characterization of the major antigen WI-1 from Blastomyces dermatitidis yeasts, and immunological comparison with A antigen. Infect. Immun. 62:3890–3900.
20. Fincham, J.R. 1989. Transformation in fungi. Microbiol. Rev. 53:148–170.
21. Miao, V.P., M.R. Routree, and E.U. Selker. 1995. Ectopic integration of transforming DNA is rare among Neurospora transformants selected for gene replacement. Genetics. 139:1533–1544.
22. Chan, J., Y. Xing, R.S. Magliozzo, and B.R. Bloom. 1992. Killing of virulent M. tuberculosissus by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175:1111–1122.
23. Mukherjee, J., L.S. Zuckier, M.D. Scharff, and A. Casadevall. 1994. Therapeutic efficacy of monoclonal antibodies to C. neoformans glucuronoxylomannan alone and in combination with amphotericin B. Antimicrob. Agents Chemother. 38:580–587.
24. Zebedee, S.L., R.K. Koduri, J. Mukherjee, S. M. Mukherjee, S. Lee, D.F. Sauer, M.D. Scharff, and A. Casadevall. 1994. Mouse-human immunoglobulin G1 chimeric antibodies with activities against Cryptococcus neoformans. Antimicrob. Agents Chemother. 38:1507–1514.
25. Mukherjee, J., S.C. Lee, and A. Casadevall. 1995. Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. Infect. Immun. 63:573–579.
26. Riesselman, M.H., T. Kanbe, and J. Cutler. 1991. Improvements and important considerations of an ex vivo assay to study C. albicans-splenic tissue interactions. J. Immunol. Methods. 145:153–160.
27. Wüthrich, M., W.L. Chang, and B.S. Klein. 1998. Immunogenicity and protective efficacy of the WI-1 adhesin of Blastomyces dermatitidis. Infect. Immun. 66:5443–5449.
28. Fisher, L.D., and G. van Belle. 1993. Biostatistics: A Methodology for the Health Sciences. John Wiley & Sons, New York. 611–613.
29. Collett, D. 1994. Modeling Survival Data in Medical Research. Chapman-Hall, London.
30. Hogan, L.H., and B.S. Klein. 1994. Altered expression of alpha-(1,3)-glucan on genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect. Immun. 62:3534–3546.
31. Fakhour, S. 1988. Molecular Koch’s postulates applied to microbrial pathogenicity. Rev. Infect. Dis. 10:5274–5276.
32. Hogan, L.H., S.M. Levits, and B.S. Klein. 1996. Virulence factors of medically important fungi. Clin. Microbiol. Rev. 9:469–488.
33. Woods, J.P., and W.E. Goldman. 1993. In vivo generation of linear plasmids with addition of telomeric sequences by Histoplasma capsulatum. Mol. Microbiol. 6:3603–3610.
34. Woods, J.P., and W.E. Goldman. 1993. Autonomous replication of foreign DNA in Histoplasma capsulatum: role of native telomeric sequences. J. Bacteriol. 175:636–641.
35. Woods, J.P., D.M. Retallack, E.L. Hinecke, and W.E. Goldman. 1998. Rare homologous gene targeting in Mycoplasma pneumoniae. Proc. Natl. Acad. Sci. USA. 95:4024–4029.
36. te Riele, H., E.R. Mandaag, A. Clarke, M. Hooper, and A. Berns. 1990. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature. 348:649–651.