Placental Syncytium Forms a Biophysical Barrier against Pathogen Invasion.

Zeldovich, Varvara B; Clausen, Casper Hyttel; Bradford, Emily; Fletcher, Daniel A; Maltepe, Emin; Robbins, Jennifer R; Bakardjiev, Anna I

Published in:
P L o S Pathogens

Link to article, DOI:
10.1371/journal.ppat.1003821

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Zeldovich, V. B., Clausen, C. H., Bradford, E., Fletcher, D. A., Maltepe, E., Robbins, J. R., & Bakardjiev, A. I. (2013). Placental Syncytium Forms a Biophysical Barrier against Pathogen Invasion. P L o S Pathogens, 9(12), e1003821. https://doi.org/10.1371/journal.ppat.1003821

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Placental Syncytium Forms a Biophysical Barrier against Pathogen Invasion

Varvara B. Zeldovich1,2, Casper H. Clausen3, Emily Bradford1,2,4, Daniel A. Fletcher3, Emin Maltepe1,4, Jennifer R. Robbins1,2,5, Anna I. Bakardjieva1,2,4*

1 Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America, 2 Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America, 3 Department of Bioengineering and Program in Biophysics, University of California, Berkeley, Berkeley, California, United States of America, 4 Biomedical Sciences Program, University of California, San Francisco, San Francisco, California, United States of America, 5 Department of Biology, Xavier University, Cincinnati, Ohio, United States of America

Abstract

Fetal syncytiotrophoblasts form a unique fused multinuclear surface that is bathed in maternal blood, and constitutes the main interface between fetus and mother. Syncytiotrophoblasts are exposed to pathogens circulating in maternal blood, and appear to have unique resistance mechanisms against microbial invasion. These are due in part to the lack of intercellular junctions and their receptors, the Achilles heel of polarized mononuclear epithelia. However, the syncytiotum is immune to receptor-independent invasion as well, suggesting additional general defense mechanisms against infection. The difficulty of maintaining and manipulating primary human syncytiotrophoblasts in culture makes it challenging to investigate the cellular and molecular basis of host defenses in this unique tissue. Here we present a novel system to study placental pathogenesis using murine trophoblast stem cells (mTSC) that can be differentiated into syncytiotrophoblasts and recapitulate human placental syncytiotum. Consistent with previous results in primary human organ cultures, murine syncytiotrophoblasts were found to be resistant to infection with Listeria monocytogenes via direct invasion and cell-to-cell spread. Atomic force microscopy of murine syncytiotrophoblasts demonstrated that these cells have a greater elastic modulus than mononuclear trophoblasts. Disruption of the unusually dense actin structure – a diffuse meshwork of microfilaments - with Cytochalasin D led to a decrease in its elastic modulus by 25%. This correlated with a small but significant increase in invasion of L. monocytogenes into murine and human syncytiotum. These results suggest that the syncytiotum actin cytoskeleton may form a general barrier against pathogen entry in humans and mice. Moreover, murine TSCs are a genetically tractable model system for the investigation of specific pathways in syncytiotum host defenses.

Introduction

Intrauterine infection is associated with pregnancy complications such as preterm labor [1], which affects 10% of all live births [2]. All of the hematogenous placental microbes have at least partially intracellular life cycles [3]. Among these is L. monocytogenes, a facultative intracellular bacterium that causes foodborne disease in humans and other mammals. The relative risk of listeriosis is 115-fold higher in pregnant women compared to non-pregnant women of reproductive age [4]. The Centers for Disease Control reported 1,651 cases in the US during 2009–2011, of these 227 (14%) were pregnancy-associated [5]. L. monocytogenes triggers preterm labor and spreads to the fetus; the neonatal case-fatality rate is 22–45% [6–10]. Thus, pregnancy-associated listeriosis is a severe but rare disease. However, L. monocytogenes is ingested frequently by healthy adults [11]. Thus, it seems reasonable to hypothesize that the maternal-fetal interface forms an extremely effective barrier against infection. Perhaps the etiology of preterm labor is multifactorial even in cases of documented intrauterine infection. Indeed, recent evidence suggests that a combination of host genetic factors and bacterial products triggers preterm labor [12].

The placenta is a transient chimeric organ composed of maternal and fetal cells, and serves two major roles in the course of gestation: to nourish and to protect the fetus. The placenta must protect the fetus both from pathogens and from rejection by the maternal immune system [13,14], which results in a unique immunological environment. The prevailing notion has been that fetal tolerance mechanisms create an immune-privileged site prone to infection [15]; however, recent evidence suggests that the placenta has effective innate defenses against microbial invasion and replication [3,16,17].

The placenta establishes its complex structure throughout the course of gestation: Fetal trophoblasts differentiate into several specialized cell types that perform critical placental functions [18]. Invasive trophoblasts penetrate the uterine lining (decidua) at the implantation site and remodel maternal arterioles to facilitate maternal blood flow into the intervillous space in humans or the labyrinth in mice. Inside these compartments, maternal blood bathes syncytiotrophoblasts (or syncytiotum, SYN), which mediate
Infection of the placenta can lead to pregnancy complications as well as fetal and maternal disease and death. We developed a novel system to study placental infections using murine fetal placental progenitor cells and the bacterial pathogen *Listeria monocytogenes*. In the mature placenta fetal progenitor cells fuse to form a large surface (syncytium) that is bathed in maternal blood and mediates nutrient and gas exchange between maternal and fetal circulation. We found that the syncytium resists physical deformation, and that its unusual cytoskeletal organization contributes to its elasticity. Weakening of its elastic properties correlated with increased susceptibility to infection. Our study presents a novel system to study placental infections, and provides new insights into the nature of the placental barrier.

Author Summary

Infection of the placenta can lead to pregnancy complications as well as fetal and maternal disease and death. We developed a novel system to study placental infections using murine fetal placental progenitor cells and the bacterial pathogen *Listeria monocytogenes*. In the mature placenta fetal progenitor cells fuse to form a large surface (syncytium) that is bathed in maternal blood and mediates nutrient and gas exchange between maternal and fetal circulation. We found that the syncytium resists physical deformation, and that its unusual cytoskeletal organization contributes to its elasticity. weakening of its elastic properties correlated with increased susceptibility to infection. Our study presents a novel system to study placental infections, and provides new insights into the nature of the placental barrier.

Results

L. monocytogenes infects and grows in mTSCs

Murine TSCs were infected with wild type *L. monocytogenes*, 10403S [28] at a multiplicity of infection (MOI) of 12. Gentamicin was added to the culture medium at 1 hour post-inoculation (p.i.) to eliminate extracellular bacteria. On average 32% of mTSCs were infected with one bacterium at 2 hours p.i., and we observed robust intracellular bacterial replication of *L. monocytogenes* in mTSCs (Fig. 1). The bacterial numbers increased by 64-fold, and the doubling time was 80 min between 2 and 8 hours p.i.

Previous studies have shown that entry into primary human trophoblasts is dependent on the bacterial virulence factor Internalin A (InlA) [29,30], and that the interaction of InlA with its host cell receptor E-cadherin is species specific [31]. Therefore, we also infected mTSCs with *L. monocytogenes* expressing murinized InlA (InlA™), which was engineered for optimal interaction with mouse E-cadherin [32], and with a mutant strain deficient in InlA (del-InlA) [30] (Fig. 1A). Average InlA™-expressing bacteria per coverslip at 2 hours p.i. were 30-fold higher than for wild type (p = 0.008 by Student’s T-test). There was no difference in the degree of invasion for wild type versus del-InlA. Intracellular growth of each strain was similar in mTSCs with doubling times of 78–80 min between 2 and 8 hours p.i. These results are consistent with a role of InlA in direct invasion of mTSC, E-cadherin recognition on mTSCs [26], and species-specificity of InlA/ E-cadherin interaction [31].

Murine syncytiotrophoblasts are resistant to bacterial invasion

Next we characterized infection of murine syncytiotrophoblasts with *L. monocytogenes*. Differentiation of mTSCs into syncytiotrophoblasts was induced by the removal of FGF4 and heparin from the culture medium, and enhanced by addition of MEK inhibitor (Fig. 2A) [26]. Syncytiotrophoblasts were clearly recognized by their unique morphology, specifically the lack of long actin stress fibers and intercellular junctions that encompassed multiple nuclei (Fig. 2B) [25,26]. As previously described, short actin filaments formed a thick meshwork across syncytial patches. After 5 days under differentiating conditions, syncytiotrophoblasts covered 65% to 77% of the cell culture dish. The remaining area was occupied by mononuclear trophoblast cells that were not terminally differentiated; these contained stress fibers and prominent boundaries (Fig. 2B).

Differentiated TSCs were infected with InlA™-expressing *L. monocytogenes*. In addition, wild type *L. monocytogenes* was used to determine effects on infection that are independent of E-cadherin expression on host cells. Because syncytialization of mTSCs in molecular pathways to host defenses via isolation of mTSCs from genetically manipulated mice.
Each well is incomplete, colony-forming units (CFU) would reflect the number of intracellular bacteria in both syncytiotrophoblasts and mononuclear trophoblasts. Therefore, we determined the degree of infection at 2 hours p.i. by immunofluorescence microscopy. We outlined the area of syncytiotrophoblast (Fig. 2C). The number of bacteria was represented by the green fluorescence intensity overlaying the area of the syncytiotrophoblast in six random microscopic fields. Infection of mononuclear trophoblasts in the same well was determined by the same method, and the ratio of green fluorescence intensity overlaying mononuclear trophoblast versus syncytiotrophoblast was determined (Fig. 2D). Invasion of syncytiotrophoblasts was lower than invasion of mononuclear trophoblasts by ~25-fold (Fig. 2D). These findings indicate that murine syncytiotrophoblasts are more resistant to bacterial invasion than mononuclear trophoblasts, and are consistent with previous observations in primary human placental organ cultures. Difference in invasion of mononuclear versus syncytiotrophoblasts was similar for wild type and InlA^Δ-expressing <i>L. monocytogenes</i>, suggesting that resistance of the syncytiotrophoblast to pathogen entry is not just due to differential E-cadherin expression.

Syncytiotrophoblasts have greater elasticity than mTSCs

We analyzed the surface resistance to deformation (elasticity) of syncytiotrophoblasts by micro rheology with an atomic force microscope (AFM) [33]. For comparison, we measured the elastic modulus of mTSC. We chose undifferentiated mTSC instead of mononuclear trophoblasts, because the partially differentiated mononuclear trophoblasts are a heterogeneous population of cells at varying stages of differentiation towards syncytiotrophoblast. Given the large variability between samples in this system we decided to measure the extremes of the spectrum: undifferentiated mTSC versus terminally differentiated syncytiotrophoblast.

Murine TSCs were plated onto chambered glass slides and differentiated for five days. Trophoblasts were probed with a polystyrene bead (5 µm diameter) mounted to a cantilever, whose deflection was detected optically (Fig. 3A). Differences in elasticity of the syncytiotrophoblasts and mTSCs were obtained by oscillating the cantilever and measuring the elastic response (see Methods for details). The Young’s modulus of elasticity of the cell cortex was then calculated from a Hertzian mechanics model. The median elasticity of syncytiotrophoblasts and mTSCs differed 4.8-fold (8.6 kPa versus 1.8 kPa) (Fig. 3B); a difference that was statistically significant (p = 4.7×10⁻⁵ by Student’s T-test). The elasticity of mTSCs was within the expected range for mononuclear cells; for example, human embryonic stem cells have an elastic modulus of 3.5 kPa [34]. While a variety of cytoskeletal elements can affect cell elasticity, we hypothesized that the unique actin cytoskeletal organization of the syncytiotrophoblast contributes to its higher structural rigidity. Therefore, we wanted to investigate whether actin de-polymerization decreases syncytiotrophoblast to deformation and increases susceptibility to bacterial invasion.

Decreased surface resistance to deformation increases susceptibility to bacterial invasion

We tested this hypothesis by measuring the elastic modulus of the syncytiotrophoblast before and after treatment with Cytochalasin D (Cyto-D). Cyto-D depolymerizes the actin cytoskeleton [35] and has been shown to decrease the elastic modulus in other cell types [36,37]. For each independent experiment, three distinct spots of syncytiotrophoblasts were measured by AFM prior to treatment; Cyto-D was then added to the culture coverslip for 40–60 minutes, and measurements were repeated in those exact spots. Treatment of murine syncytiotrophoblasts for 40–60 min with Cyto-D significantly decreased the median elastic modulus by 25% (p = 0.001 by Student’s T-test) (Fig. 3B). Others have shown that treatment of fibroblasts with Cyto-D can decrease cell stiffness by up to 50% [38,39]. Decreased elastic modulus in the syncytiotrophoblast was accompanied by consistent morphological changes (Fig. 3C). The thick meshwork of smaller actin filaments was replaced by discrete puncta of actin aggregates. The modest effect of Cyto-D on the elastic modulus of the syncytiotrophoblast suggests that other cellular elements are important for maintaining syncytiotrophic stiffness. Colchicine, a microtubule polymerization inhibitor, did not have a significant effect (data not shown) on syncytiotrophic elasticity, implying yet other cytoskeletal or membrane features contribute to the tissue’s rigidity.
Next, we tested whether disruption of the cortical actin network in syncytiotrophoblasts resulted in higher rates of bacterial infection. We chose to investigate the effect of Cyto-D on syncytial infection via cell-to-cell spread because *L. monocytogenes* travels inside of leukocytes in maternal blood [40,41]. Fetal syncytiotrophoblasts are bathed in maternal blood. Hence, the syncytium comes in contact with infected maternal cells rather than extracellular bacteria. Syncytiotrophoblasts were treated with Cyto-D for 40–60 minutes, washed with PBS to remove Cyto-D, and co-incubated with infected murine macrophages in the presence of gentamicin. In this setup actin was disrupted only in the recipient trophoblast cells while bacterial protrusions formed normally in the donor macrophages. Because the physical force of a protrusion is enough for bacterial spread into an adjacent cell [42], this system allowed us to investigate the defensive role of the syncytial actin network without impairment of protrusion formation in the donor cell.

In most cell lines cell-to-cell spread begins as early as 4 hours p.i. [43,44]. Therefore we determined bacterial spread from macrophages into syncytiotrophoblasts at 5 hours p.i. by quantifying the number of green fluorescence per unit area for each cell type. Each symbol represents the average of green fluorescence per unit area in six random microscopic fields (20×), bar represents median.

Figure 2. Syncytiotrophoblasts (SYN) derived from murine trophoblast stem cells (TSC) resist direct invasion by *L. monocytogenes* (LM). A. Schematic of differentiation process from TSC to SYN, which results in 65–77% of fused syncytium; the remaining cells in the dish are undifferentiated mononuclear trophoblasts (MNT). B. Panel i: Immunofluorescence images of 5-day differentiated multinuclear SYN (outlined and marked by blue star) demonstrates typical clustering of nuclei. Compare to surrounding MNT with stress-fibers, and clear cell boundaries. Bar = 50 um. Panels ii to v show close-up representative examples of actin structure of SYN: a diffuse meshwork of small actin filaments (iii and v show the actin channel of ii and iv respectively). Nuclei are shown in white, Bar = 10 um. C. SYN 2 hours p.i. with LM (green) showing resistant syncytial area (outlined and marked by blue star) neighboring infected mononuclear trophoblasts. Nuclei are shown in white; Bar = 50 um. D. Quantification of invasion of mononuclear trophoblasts (MNT) versus syncytiotrophoblasts with two strains of LM – InlA™-expressing and wt. Bacterial invasion at 2 hours p.i. of MNT versus SYN is represented by the ratio of green fluorescence per unit area for each cell type. Each symbol represents the average of green fluorescence per unit area in six random microscopic fields (20×), bar represents median.

doi:10.1371/journal.ppat.1003821.g002
of bacterial foci in syncytiotrophoblasts (Fig. 4A, B). A bacterial focus was included in the analysis when multiple bacteria were observed overlying syncytiotrophoblasts unbounded by the outline of a macrophage membrane; many such foci were surrounded by actin clouds. The number of bacterial focus was 2-fold higher in Cyto-D–treated syncytiotrophoblasts in comparison to untreated controls, \(p = 0.03 \) by Student’s T-test. In mononuclear trophoblasts Cyto-D treatment did not significantly increase invasion into mononuclear trophoblast cells \(p = 0.33 \) by Student’s T-test. In order to test whether these findings are relevant in humans we turned to primary human placental organ cultures [20].

Figure 3. Actin cytoskeleton of murine syncytiotrophoblast (SYN) contributes to its elastic strength. A. Microrheology with an atomic force microscope was used to measure elastic strength of mouse trophoblast stem cells (TSC) and SYN. Photos depict microscopic cantilever positioned above cultured live cells prior to measurement. B. The elastic modulus (Young’s modulus) of SYN is significantly higher than that of TSC \((p = 4.7 \times 10^{-5}) \) by Student’s T-test. Elastic modulus of SYN was measured in the exact same spot prior to and after treatment with Cyto-D for 40–60 min. Disruption of the actin cytoskeleton with Cyto-D significantly decreased the elastic modulus of SYN \((p = 0.001) \) by Student’s T-test. Bars represent median values. Graph is based on three independent experiments performed in triplicate. C. Immunofluorescence images of the actin (red) in mSYN show that the characteristic actin meshwork \((i–iii) \) is disrupted by 1 hr treatment with Cyto-D \((iv–vi) \). Nuclei are shown in white. Bars in panels i and iv are 50 um. Panels ii–iii and v–vi are representative close-up images of untreated and Cyto-D treated mSYN, respectively. Panels iii and vi show just the actin channel of ii and v respectively. Aggregation of microfilaments in distinct puncta are observed upon treatment. Bars = 10 um. doi:10.1371/journal.ppat.1003821.g003

Cytochalasin D treatment increases bacterial invasion of primary human placental organ cultures

It is not possible to measure the elastic strength of the human syncytiotrophoblast on glass coverslips—they require a gelatinous extracellular substratum. However, the actin cytoskeletal structure of the syncytiotrophoblasts in primary human placental organ cultures is similar to mouse syncytiotrophoblasts (compare Fig. 5A and 2B). Given the results in the mouse syncytiotrophoblasts, we reasoned that decreased elastic modulus of human syncytiotrophoblast due to Cyto-D treatment could influence its susceptibility to bacterial invasion as well. Placental organ cultures were treated with Cyto-D for 40–
60 minutes, washed with PBS to remove Cyto-D, and subsequently co-cultured with \textit{L. monocytogenes}-infected human macrophages in the presence of Gentamicin to eliminate extracellular bacteria. Infection of the syncytium was quantified microscopically by bacterial co-localization with the beta-subunit of human chorionic gonadotropin (b-hCG), a syncytial marker at 24 hours p.i. (Fig. 5B) [20]. Cyto-D treatment increased the number of bacteria co-localizing with b-hCG by 1.4-fold, a difference that was statistically significant (Fig. 5C) (p = 0.04 by Student’s T-test).

Discussion

We adapted the mouse system of differentiated mTSCs to study placental defenses against infection. We show that multineucleated syncytiotrophoblasts have a greater elastic modulus than mononuclear trophoblasts, and that actin contributes to this phenotype. We present evidence that disruption of the actin cytoskeleton decreases the elastic modulus of syncytiotrophoblasts and increases bacterial spread into the syncytium in both mouse and human. Taken together, these findings suggest that the biophysical properties of the syncytium, a tissue unique to the placenta, may contribute to host defense mechanisms and protect the fetus.

The cytoskeletal organization of the syncytium is characterized by an open lattice-like network of microtubules oriented in parallel to the syncytial surface, which support an apparently disordered mesh of actin microfilaments [25,45,46]. Our immunofluorescence microscopy showed such a diffuse actin and microtubule structure (microtubule data not shown) throughout the cytoplasm in both murine and primary human syncytiotrophoblasts [26]. Interestingly, erythrocytes have a similarly disorganized mesh of short actin fragments, which is necessary to withstand the shear forces they experience in the bloodstream [47]. The cytoskeletal organization of the syncytium may have evolved to withstand shear forces as well, since it is in direct contact with large volumes of maternal blood.

The Young’s modulus of elasticity was 4.8-fold higher in syncytiotrophoblasts in comparison to mononuclear mTSCs. Interestingly, small differences in the elastic modulus of different cell types or extracellular matrices have been shown to correlate
with human disease states. Dulinska et al., demonstrated that the Young's modulus in erythrocytes from patients with hemolytic anemia due to hereditary spherocytosis, thalassemia, or glucose-6-phosphate dehydrogenase deficiency is 1.5 to 3.5-fold greater than the Young's modulus of normal erythrocytes [48]. A 5-fold increase in stiffness of leukemic cells correlates with clinical symptoms of leucostasis [49], and a 2 to 4-fold increase in the stiffness of extracellular matrix leads to a small but significant increase in endothelial permeability and leukocyte transmigration, a process that occurs with aging and contributes to the pathogenesis of atherosclerosis [50].

We investigated whether the elastic properties of the syncytium correlate with susceptibility to infection. *L. monocytogenes* can infect non-phagocytic host cells by two mechanisms: direct internalin-mediated invasion and receptor-independent cell-to-cell spread. During cell-to-cell spread, *L. monocytogenes* propels itself in the cytosol of the donor cell into membrane protrusions (listeriapods), which invaginate into and are taken up by neighboring cells. The force applied to the recipient cell by the listeriapod is estimated to be 0.03–0.3 nN [51], and has been found to be sufficient for bacterial uptake in cultured cells [42]. The stiffness of the recipient cell may correlate with its susceptibility to bacterial transmission: *L. monocytogenes* secretes internalin C, which promotes cell-to-cell spread by binding to the cytosolic adaptor protein Tuba, which in turn leads to slackened cell-cell junctions and decreased cortical tension [52].

We used Cyto-D to disrupt the actin cytoskeleton of syncytiotrophoblasts, which decreased their elastic modulus by 25%. In our experimental setup, Cyto-D was added to the placental culture medium to disrupt actin structures and subsequently washed out before addition of untreated donor macrophages, allowing listeriapods in the donor cell to occur normally. Actin structures appeared to return to their original diffuse meshwork configuration over the course of the infection period (data not shown), implying actin dynamics resumed with the removal of the drug. Exposure to Cyto-D

Figure 5. Cell-to-cell spread of *L. monocytogenes* (LM) into human syncytiotrophoblast (SYN) is enhanced by syncytial actin network disruption.

A. Immunofluorescence image of sectioned primary human placenta showing diffuse actin structure in the syncytiotum (outlined and marked by blue star). Bar = 10 um. B. Untreated and 1 hr Cyto-D treated human placental organ cultures were incubated with LM-infected macrophages and foci of spread observed and quantified. Panels i and ii show representative images showing cell-to-cell spread occurs almost exclusively at the extravillous trophoblasts (EVT) in untreated placenta; Cyto-D treatment increases incidence of spread into SYN. Bar = 100 um. Panel iii shows representative image of bacterial presence in the syncytiotum in Cyto-D treated placenta. Bar = 10 um. LM is shown in green, nuclei in white, SYN (b-hCG staining) is shown in red. C. Quantification of cell-to-cell spread into SYN. Each data point represents average co-localization of LM with b-hCG from ten microscopic fields (10×); bar represents median, graph is based on seven independent experiments. Cyto-D treatment significantly increases bacterial cell-to-cell spread into placental syncytiotum (p = 0.04 by Student’s T-test).
doi:10.1371/journal.ppat.1003821.g005
led to a small increase in infection via cell-to-cell spread in both of our model systems: murine and human syncytiotrophoblasts. Our findings suggest two important conclusions: 1) the syncytial horizontal integrity is actively maintained by continuous actin assembly; and, 2) this structure is not permissive to the short-term perpendicular rearrangements engineered by listeriapods.

We admit that the effect of Cyto-D treatment on elasticity and infection is small. Unfortunately, we were unable to decrease the elastic modulus even further by either increasing the dose or prolonging the exposure to Cyto-D, because of drug induced cytotoxicity (data not shown). Thus, we were unable to decrease the elastic modulus of syncytiotrophoblasts to a range comparable with mononuclear cells and we were also unable to maintain these conditions for the entire time of the experiment, which is dictated by the kinetics of cell-to-cell spread. These experimental limitations are one of the possible reasons why Cyto-D treatment led to only a small increase in infection. On the other hand, it is plausible that additional mechanisms influence the susceptibility of the syncytiurn to infection. Further, we cannot discount the possibility that Cyto-D has unknown side effects on placental cells that may affect their susceptibility to infection as well.

Nevertheless, we speculate that syncytial elasticity influences its susceptibility to infection in vivo. Others have found that organization of the actin cytoskeleton can contribute to resistance against pathogen invasion. For instance, plant cells resist penetration by fungal pathogens via actin cytoskeletal reorganization [53]. On the other hand, it has been shown recently that some mammalian pathogens have evolved strategies to subvert the defenses of the actin cytoskeleton. The protozoan pathogen Toxoplasma gondii uses the virulence determinant Toxo-filin to loosen the local host cell actin meshwork to facilitate invasion [54]. Pretreatment of host cells with jasplakinolide, which stabilizes actin filaments, renders them refractory to subsequent parasite entry [55]. However, Toxofilin is apparently inadequate to the task of syncytial actin rearrangement, as T. gondii are significantly inhibited from syncytial invasion [21]

The long-held view of the placenta as an immune compromised organ is slowly being eroded by the discovery of remarkable, unique innate defense mechanisms at the maternal-fetal interface. It appears that multiple forces have to coalesce to damage this barrier: placenta from preterm labor and congenital infections are often colonized by multiple pathogens [36,57], and bacterial products synergize with viral infection to trigger preterm labor in the mouse model [58,59]. Damage to syncytiotrophoblasts by Plasmodium falciparum [60,61] or Trypanosoma cruzi [62] could lead to increased transmission rates of co-pathogens such as HIV [63]. Importantly, host genetic factors may also predispose to preterm labor triggered by bacterial products [12]. We suggest that even small changes in the integrity of the syncytial barrier may predispose the maternal-fetal interface to infections that lead to pregnancy complications, fetal damage and death.

In summary, the placental syncytiurn is a unique structure that arose independently in many different mammals with hemochorial placentation [64]. Its critical role in the maintenance of healthy human pregnancy has been documented in terms of hormone production and proper nutrient and waste exchange. The contribution of its remarkable biophysical properties to resistance against pathogen invasion warrants further study.

Methods

Ethics statement

This study was conducted according to the principles expressed in the Declaration of Helsinki. The study was approved by the Institutional Review Board at the University of California, San Francisco, where all experiments were performed (H197-00836-20). All patients provided written informed consent for the collection of samples and subsequent analysis.

Human tissue collection and culture

All chemicals were purchased from Sigma-Aldrich unless otherwise stated. Placentas from elective terminations of pregnancy (gestational age 4 to 8 weeks) were collected and prepared as previously described [20]. Briefly, fragments from the surface of the placenta were dissected into 1–3 mm tree-like villi, placed on Matrigel (BD Biosciences, San Jose, CA)-coated Transwell filters (Millipore, Bedr icica, MA, 30-mm diameter, 0.4 um pore size) and cultured in Dulbecco’s modified Eagle’s medium-F12 medium (DMEM-F12; 1:1, vol/vol) supplemented with 20% fetal bovine serum (FBS, Fisher Scientific), 1% L-glutamine and 1% penicillin/streptomycin (Invitrogen, Carlsbad, CA).

Mouse trophoblast culture and syncytialization

CellStart Humanized Substrate for Cell Culture (Cell Therapy Systems) was used for culture of mouse trophoblast stem cells (mTSC). Cells were plated onto dishes pre-coated with CellStart diluted at 1:20 with PBS, and maintained in RPMI-1640 with 20% FBS, 1% sodium pyruvate, 100 uM b-mercaptopoethanol, 1% L-glutamine, 1% penicillin/streptomycin. FG4 (25 ng/mL) and Heparin (1 ug/mL) were added fresh to media each time cells were thawed or split.

For differentiation into syncytiotrophoblasts, mTSC were seeded onto coverslips pre-coated with 0,1% gelatin in 24-well dishes at 35,000 cells/well. Cells were maintained in RPMI-1640 with 20% FBS, 1% sodium pyruvate, 100 uM b-mercaptopoethanol, 1% L-glutamine, 1% penicillin/streptomycin, and 10 uM U0126 (MEK inhibitor, Pierce Biotechnology, Rockford, IL) for 5 days. Fresh media containing MEK inhibitor was added to the culture every 2 days.

Pathogen strains and growth conditions

The wild type strain of L. monocytogenes used in this study is 10403S [28]. L. monocytogenes with murinized InlA replacing WT InlA was a gift from Dr. Manuel Amieva [32]. For infections, bacteria were grown overnight to stationary phase in BHI (Brain Heart Infusion broth) at 30°C and washed once with PBS before dilution and infection.

L. monocytogenes infection of mouse trophoblasts

For mTSC infection cells were incubated in antibiotic-free medium for 1 hr before infection. 3 × 10^5 bacteria/mL were added for 60 minutes; cells were washed once with PBS and fresh media with gentamicin (50 ng/mL) was added. At indicated times, cells were lysed, aliquots were plated on BHI agar plates, and CFU were enumerated. Five-day differentiated murine syncytiotrophoblasts (mSYN) were infected under the same conditions. At indicated times, cells were fixed, stained with phalloidin and polyclonal rabbit Listeria O antiserum and examined microscopically. Green fluorescence intensity in six random fiel ds per area of syncytiotrophoblast versus mononucle ar trophoblast was determined. For infection of mSYN via cell-to-cell spread from macrophages, J774 cell line (ATCC TIB-67) was infected with 3 × 10^5 bacteria/mL. (MOI 3) for 60 minutes. Concurrently, mSYN was incubated with antibiotic-free media +/− Cyto-D (10 uM) for 1 hr. Macrophages were washed 1× with PBS, gently scraped off the dishes and resuspended in mouse trophoblast media containing gentamicin (50 uM/mL). Infected
macrophages were added to mSYN cultured on coverslips at 100,000 cells/well.

L. monocytogenes infection of placental explants by cell-to-cell spread

Placental explants were infected via cell-to-cell spread from human macrophage-like U937 cells (ATCC 15932) as previously described [20]. Briefly, U937 cells were grown in RPMI-1640 (UCSF Cell Culture Facility) containing 4500 mg/L glucose, 10% FBS and 1% penicillin/streptomycin (Invitrogen). Forty-eight hrs prior to infection, cells were differentiated by addition of phorbol 12-myristate 13-acetate (PMA; concentration 18 nM) to the medium. On the day of infection, cells were incubated with antibiotic-free medium for 1 hr and subsequently infected with L. monocytogenes for 1 hr at an MOI of 3. Concurrently, explants were incubated with antibiotic-free media +/- Cyto-D (10 uM) for 1 hr, and subsequently washed 3x with PBS. U937 cells were washed once with PBS and lifted from culture plates by incubation in ice cold PBS without divalent cations and gentle scraping. U937 cells were resuspended in explant medium containing 50 ug/ml gentamicin, and 1x10^5 cells per transwell were added to the explants.

Immunofluorescence

Human placental explants were fixed in 3% paraformaldehyde, passed through a sucrose gradient and snap-frozen in OCT (Ted Pella, Redding, CA). Histological slicing was performed on a Hacker-Slee cryostat. Glass slides with sections were incubated in acetone, soaked in blocking solution (1% bovine serum albumin (BSA) in PBS), then incubated with primary antibodies, rinsed in PBS, incubated with secondary antibodies, and affixed over Vectashield mounting medium with DAPI (Vector Laboratories, Burlingame, CA).

Mouse trophoblast cultures were fixed in 4% paraformaldehyde, blocked and permeabilized in 1% BSA and 0.1% Triton-X100, then stained as described above in BSA/TritonX-100/PBS solution.

Primary antibodies: polyclonal rabbit *Listeria* O antiserum (1:1000, BD Biosciences, San Jose, CA), monoclonal mouse anti-human b-hCG (1:500, Neomarkers, Fremont, CA, clone SPM105.) Secondary antibodies: Alexa Fluor 594 goat anti-mouse IgG (1:500, Invitrogen), Alexa Fluor 488 and 594 goat anti-rabbit IgG (1:1000 & 1:500, Invitrogen). Alexa Fluor 594 – conjugated phallolidin (1:100, Invitrogen) was used to stain for actin.

References

1. Goldenberg RL, Hauth JC, Andrews WW (2000) Intrapartum infection and preterm delivery. N Engl J Med 342: 1500–1507.
2. Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, et al. (2010) The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 88: 31–38.
3. Robbins JR, Bakardjiev AI (2012) Pathogens and the placental fortress. Curr Opin Microbiol 15: 36–43.
4. Pouillot R, Hoelzer K, Jackson KA, Henao OL, Silk BJ (2012) Relative risk of *Listeria monocytogenes* infection during pregnancy: a 10 year experience. Isr Med Assoc J 4: 776–780.
5. Siegman-Igra Y, Levin R, Weinberger M, Golan Y, Schwartz D, et al. (2002) *Listeria monocytogenes* infection in Israel and review of cases worldwide. Emerg Infect Dis 8: 305–310.
6. Benshushan A, Tsafrir A, Arbel R, Rahav G, Ariel I, et al. (2002) *Listeria* infection during pregnancy: a 10 year experience. Isr Med Assoc J 4: 776–780.
7. Gellin BG, Broome CV, Bibb WF, Weaver RE, Gaventa S, et al. (1991) The epidemiology of listeriosis in the United States–1986. Listeriosis Study Group. Am J Epidemiol 133: 592–591.
8. Schuchat A, Tsai AM, Arbel R, Rahav G, Ariel I, et al. (2002) *Listeria* infection during pregnancy: a 10 year experience. Isr Med Assoc J 4: 776–780.
9. Cha J, Bartos A, Egashira M, Haraguchi H, Saito-Fujita T, et al. (2013) *Listeria monocytogenes* infection in Israel and review of cases worldwide. Emerg Infect Dis 8: 305–310.
10. Schuchat A, Tsai AM, Arbel R, Rahav G, Ariel I, et al. (2002) *Listeria* infection during pregnancy: a 10 year experience. Isr Med Assoc J 4: 776–780.
11. Gellin BG, Broome CV, Bibb WF, Weaver RE, Gaventa S, et al. (1991) The epidemiology of listeriosis in the United States–1986. Listeriosis Study Group. Am J Epidemiol 133: 592–591.
12. Schuchat A, Liu P, Broome CV, Bibb WF, Weaver RE, Gaventa S, et al. (1991) The epidemiology of listeriosis in the United States–1986. Listeriosis Study Group. Am J Epidemiol 133: 592–591.
13. Erlebacher A (2013) Immunology of the Maternal-Fetal Interface. Annu Rev Immunol.
14. Zeldovich VB, Bakardjiev AI (2012) Host defense and tolerance: unique challenges in the placenta. PLoS Pathog 8: e1002894.
15. Medsawat PB (1993) Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol 7: 320–338.
16. Mor G, Gardenas I, Abravanel V, Goller S (2011) Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 1221: 89–97.
17. Delorne-Axisto E, Donker RB, Moullet JP, Chou T, Bayer A, et al. (2013) Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A 110: 12540–12553.
18. Malhepe E, Bakardjiev AI, Fisher SJ (2010) The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest 120: 1016–1025.
19. Benirschke K, Kaufmann P, Baergen RN (2006) Pathology of the Human Placenta.
20. Robbins JR, Skrzypczynska KM, Zeldovich VB, Kapidzic M, Bakardjiev AI, et al. (2013) Immunology of the Maternal-Fetal Interface. Annu Rev Immunol.
21. Robbins JR, Zeldovich VB, Poukchanski A, Boothroyd JC, Bakardjiev AI (2012) Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PLoS Pathog 6: e1000732.
22. Koi H, Zhang J, Makrigiannakis A, Getsios S, MacCalman CD, et al. (2002) Targeting of trophoblast stem cell proliferation by FGF4. Science 282: 2072–2075.
23. Aplin JD, Jones CJ, Harris LK (2009) Adhesion molecules in human trophoblast - a review. I. Villous trophoblast. Placenta 30: 293–296.
24. Bonazzi M, Cossart P (2011) Impenetrable barriers or entry portals? The role of the immune system at the implantation site. Ann N Y Acad Sci 1221: 1212–1218.
25. Ockleford CD, Wakely J, Badley RA (1981) Morphogenesis of human placental villi. J Ultrastruct Res 85: 101: 6152–6196.
26. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282: 2072–2075.
27. Bishop DK, Hinrichs DJ (1987) Adoptive transfer of immunity to Listeria monocytogenes. EMBO J 18: 3956–3963.
28. Berryman M, Gary R, Bretscher A (1995) Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J Cell Biol 131: 1231–1242.
29. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282: 2072–2075.
30. Bakardjiev AI, Stacy BA, Fisher SJ, Portnoy DA (2004) Listeriosis in the placenta. J Infect Dis 189: 1016–1025.
31. Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, et al. (1999) A single amino acid in E-cadherin responsible for host specificity towards the Toxoplasma gondii internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci U S A 101: 6152–6157.
32. Choi HJ, Sanders TA, Tornos KV, Ameri K, Tsai JD, et al. (2013) ECM-Dependent HHF Induction Directs Trophoblast Stem Cell Fate via LIMK1-Mediated Cytoskeletal Rearrangement. PLoS One 8: e66949.
33. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282: 2072–2075.
34. Hammerick KE, Pasche B, Rochon M, Demegermeur S, van den Hove J, et al. (2007) Extending the host range of Listeria monocytogenes by rational protein design. Cell 129: 891–902.
35. Behn RJ, Hosler W, Ritter E, Binning G (1986) Correlation between domain boundaries and surface steps: A scanning-tunneling-microscopy study on reconstructed Pt(100). Phys Rev Lett 56: 228–231.
36. Amarante D, Le Comber SJ, Taylor CR (2009) Stiffness of the normal and pathological erythrocyte studied by means of atomic force microscopy. J Biomech 42: 1033–1040.
37. Drevets DA, Jelinek TA, Freitag NE (2001) Listeria monocytogenes-infected placenta. Infect Immun 69: 1344–1350.