IL23R and ATG16L1 variants in Moroccan patients with inflammatory bowel disease

Nadia Serbati1,3*, Nezha Senhaji1,3†, Brehima Diakite1,3, Wafaa Badre2 and Sellama Nadifi1,3

Abstract

Background: Inflammatory bowel diseases (IBD) are chronic diseases of the gastrointestinal tract. Although their pathogenesis is unclear, the combination of genetic predisposition and environmental components are believed to be the main cause of these diseases. Recently, many variants in interleukin 23 receptor (IL23R) and autophagy-related 16-like 1 (ATG16L1) genes have been associated with the disease. Our objective was to assess the frequency of ATG16L1 (T300A) and IL23R (L310P) variants in Moroccan IBD (Crohn’s disease and Ulcerative Colitis) patients and to evaluate a possible effect of these variants on disease’s phenotype and clinical course.

Methods: 96 Moroccan IBD patients and 114 unrelated volunteers were genotyped for ATG16L1 (T300A) and IL23R (L310P) variants by PCR-restriction fragment length polymorphism.

Results: This is the first report on the prevalence of ATG16L1 (T300A) and IL23R (L310P) variants in a Moroccan group. We found that IL23R (L310P) variant conferred a protective effect for crohn’s disease (CD) but not ulcerative colitis (UC) patients. The presence of ATG16L1 (T300A) mutated alleles was associated with CD type but not with disease onset. In addition, the carriage of T300A variant alleles conferred a protective effect in UC.

Conclusion: Our results showed that the prevalence of ATG16L1 and IL23R variants was not significantly different between patients and controls. However a possible role of ATG16L1 (T300A) on CD phenotype was suggested.

Keywords: IBD, ATG16L1, IL23R, Moroccan population

Background

Inflammatory bowel disease (IBD) is a chronic and multifactorial disease of the gastrointestinal tract. It includes Crohn’s disease (CD), ulcerative colitis (UC) and undetermined colitis. Their etiologies remain complex and unclear involving an inadequately defined relationship between microbial insult, genetic predisposition and altered intestinal barrier permeability [1]. Several genetic studies have attempted to find out more about the molecular pathogenesis of CD and UC.

Genetic variations in genes related to innate and adaptive immunity have been implicated in IBD pathogenesis. Positive correlations were reported for Interleukin 23 receptor (IL23R) [2] and Autophagy related 16-like 1 (ATG16L1) [3,4] genes.

IL-23 is a heterodimeric cytokine produced by activated macrophages and dendritic cells. It consists of two subunits, a p40 subunit, shared with the IL-12, and a specific IL-23 subunit called p19 [5,6]. Studies have shown that IL-23 is involved in the initiation of the innate and adaptive immune activation that characterizes IBD. It binds a complex of IL-23R and IL-12Rβ subunits. IL-23R is predominantly expressed on activated/memory T cells, T-cell clones, natural killer’s (NK) cells and, at low levels, in monocytes, macrophages, and dendritic cell populations [7,8]. Recent studies have shown the association of some single nucleotide polymorphisms (SNPs) in the IL-23R gene with chronic inflammatory diseases especially IBD (CD and UC). The variant L310P of IL23R gene (more frequent in controls) was reported to confer a strong protection against CD [2]. In Ulcerative colitis, the effect of this mutation seems to be insignificant [9]. In addition, Lin Z

* Correspondence: nadiaserbati@yahoo.fr
† Equal contributors
1 Laboratory of Medical Genetics– Medical school of Casablanca, Faculté de Médecine et de Pharmacie de Casablanca, 19, rue Tarik Ibn Liaad, Casablanca, Morocco
2 University Ain Chock Hassan II, Center Of Doctoral Sciences “In Health Sciences”, Casablanca, Morocco
Full list of author information is available at the end of the article
et al. suggested the role of IL23R (L310P) as a protective polymorphism in UC females [10]. Several studies have established an association between ATG16L1 and IBD in various populations. The ATG16L1 gene plays a key role in autophagy pathways. It encodes a protein widely expressed in intestinal epithelial cells, lymphocytes and macrophages and mediates resistance to intracellular pathogens such as bacteria and viral particles [11]. Hampe at al. reported an association between the T300A (c898G > A) polymorphism and Crohn’s disease [3]. Subsequent replication studies revealed divergent results.

No data were available on the frequency of the ATG16L1 and IL23R variants in the Moroccan population. Hence, we aimed to examine the association between IL23R (L310P) and ATG16L1 (T300A) polymorphisms and inflammatory bowel disease (Crohn’s disease and Ulcerative colitis) in a cohort of Moroccan patients.

Methods
Patients and controls
In this study, a group of 96 Moroccan unrelated IBD patients were recruited at the gastroenterology department of Averroes Hospital, Casablanca, Morocco. The control group included 114 unrelated Moroccan volunteers (blood donors) with no discernable symptoms suggestive of IBD. The diagnosis of CD or UC was based on established clinical, radiological, endoscopic, and histopathology criteria.

Demographic and clinical characteristics were obtained from the participants through a detailed questionnaire. CD phenotype was stratified by age at diagnosis, location and disease’s behaviour according to the Montreal classification [12]. For UC patients, anatomic location was subgrouped using the Paris classification as being ulcerative proctitis (E1), left-sided UC (E2), and extensive UC (E3) [13].

Differences in the frequency of disease characteristics such as age at diagnosis, gender, extra-intestinal manifestations, similar familial cases, and antecedents like appendectomy and smoking were also assessed. The study was approved by the medical school of Casablanca ethical committee. A written informed consent was obtained from all participants or their guardians. Both IBD patients and control group are originated from the different regions of Morocco and confirmed the Moroccan origin of their parents and grandparents.

Genotyping methods
Genomic DNA was isolated from whole blood samples by salting-out method [6]. DNA amount and quality were measured by spectrophotometry. IL23R and ATG16L1 variants genotyping was performed using polymerase chain reaction (PCR) restriction fragment length polymorphism analysis (RFLP) as described respectively by Lin et al. and Csöngéi et al. [10,14].

Reactions were performed in a final volume of 25 μl. PCR products were cleaved with Hph I (L310P) and Lwe I (T300A) (New England Biolabs Ipswich, UK) and electrophoresed on a 3% agarose gel in the presence of a molecular weight marker ladder 100 (New England Biolabs Ipswich, UK). After staining with ethidium bromide, Ultraviolet was used on a transilluminator for reading the gel.

Statistical analysis
Statistical analysis was performed using MedCalc statistical software version 11.6. The Hardy-Weinberg equilibrium test was performed separately for patients and controls to measure the distribution of polymorphisms. The association between IBD (CD and UC) and IL23R (L310P) ATG16L1 (T300A) genotypes was determined by Fisher’s exact test (Odds Ratio with Confidence interval (CI) at 95%). The χ2 test or Fisher test was used to correlate the IL23R and ATG16L1 polymorphisms and clinical parameters. The P value (<0.05) was considered statistically significant in all variables.

Results
Epidemiologic data
One hundred fourteen participants from the general population were genotyped for ATG16L1 (T300A) and IL23R (L310P) along with 69 Crohn’s disease patients (25 women and 44 men) and 30 UC patients (14 women and 16 men). The average age of diagnosis was 24.17 ± 2.48 for CD patients and 35.37 ± 5 for UC patients. For control group, epidemiological and clinical data are shown in Additional file 1: Table S1.

Genetic and clinical correlations
Statistical analysis of the distribution of SNPs studied showed that allele frequencies were conformed to Hardy-Weinberg expectations (=1.14, P = 0.57; =0.017, P = 0.99) (=0.03, P = 0.86; =0.017, P = 0.99) for T300A (ATG16L1) and L310P (IL23R) in CD patients and controls respectively.

Correlation between demographic and clinical characteristics according to ATG16L1 and IL23R genotypes (Tables 1 and 2) revealed a positive association between CD Type and ATG16L1 polymorphism (T300A) with P = 0.03 (Table 1). However, no genotype-phenotype correlation was noticed for the IL23R SNP.

Case–control studies were carried out for the selected polymorphisms. The genotypic and allelic frequencies for the T300A and L310P polymorphisms are presented in Tables 3 and 4 respectively.

The non-synonymous polymorphism, rs2241880 (Thr300Ala), located on the ATG16L1 gene, showed no
significantly increased risk of CD among individuals carrying GG genotype or G allele with the respective odds ratio 2.08 (CI: 0.70-6.17, P = 0.19); 1.22 (CI: 0.79-1.86, P = 0.36) (Table 5). In addition, individuals carrying the mutated allele are not protected from the disease. In contrast to the L310P polymorphism in IL23R gene, which confers protection to individuals with the TT genotype and T allele against the development of Crohn's disease, with respective odds
Additionally, our study assessed the association of ATG16L1 (T300A) and IL23R (L310P) polymorphisms with UC. Analysis of distribution of the two polymorphisms showed that allele frequencies were in Hardy-Weinberg equilibrium (=1.76, P = 0.41 and =0.017, P = 0.99) for ATG16L1 and IL23R (=2.9, P = 0.23; =0.017, P = 0.99).

Table 2 Genotypic frequencies according to clinical parameters of the Moroccan CD patients investigated for the L310P polymorphism

Clinical Parameter	N	IL23R L310P	P value	Chi-square Test
Age of onset				
<17 years	10	6 (60.0)	0.16	3.7
17-40	52	40 (76.9)		
>40 years	7	7 (100.0)		
Sex				
Woman	25	19 (76.0)		
Man	44	34 (77.3)		
Type				
Fistulizing	26	20 (76.9)		
Non fistulizing	24	21 (87.5)		
Stenosing	12	9 (75.0)		
Fistulizingstenosing	7	3 (42.9)		
Localization				
L1	19	16 (84.2)		
L1 + P	2	2 (100.0)		
L2	10	6 (60.0)		
L2 + P	7	7 (100.0)		
L3	19	13 (68.4)		
L3 + P	1	-		
L4	2	-		
L4 + L2	4	3 (75.0)		
P	5	4 (80.0)		
SFC Presence	4	4 (100.0)	0.60	0.3
Absence	65	49 (75.4)	16 (24.6)	
Smoking Presence	28	22 (78.6)		1.0
Absence	41	31 (75.6)		0.0
Appendectomy				
Presence	9	6 (66.7)		0.73
Absence	60	47 (78.3)		0.12
EIM Presence	39	33 (84.6)		0.14
Absence	30	20 (66.7)		2.14
Surgery Presence	29	20 (69.0)		0.30
Absence	40	33 (82.5)		1.1

(SFC: Similar familial cases; EIM: Extra intestinal manifestations; N: Total number; CC: wild type IL23R L310P, CT: IL23R L310P heterozygous variant, TT: IL23R L310P homozygous variant).
For both polymorphisms, no genotype-phenotype correlation was observed in UC (Tables 5 and 6).

The genotypic and allelic frequencies did not significantly differ between UC patients and healthy controls for the two polymorphisms (Tables 7 and 8).

Carriers of mutated allele in ATG16L1 gene have a protective effect for UC, with an odds ratio of 0.90 (CI: 0.50-1.61, P = 0.72) (Table 7). While carriers of mutated allele in IL23R gene are not protected from UC, with an OR of 2.10 (CI: 0.92-4.77, P = 0.08) (Table 8).

Discussion

ATG16L1 polymorphism

The association of genes within the autophagy pathway with IBD was observed in several studies. One of the prime candidate genes discovered was the ATG16L1 gene, ATG16L1 is a protein expressed in the colon, leukocytes, intestinal epithelial cells, small intestine, and spleen [15]. A mutation on the gene encoding this protein, located on chromosome 2, has been associated with the onset of ileal CD [16]. It has been shown that ATG16L1 is a key molecule in elucidating the genetic aspects of CD. The findings of associations with variants in ATG16L1 and IBD have prompted further research on understanding the role of the autophagy pathway in disease pathogenesis.

During a genome-wide survey of 19,779 non-synonymous single nucleotide polymorphisms, the (Thr300Ala) variant, located at the N terminus of the WD-repeat domain in ATG16L1, was found to be highly associated with CD by using a haplotype and regression analysis [3]. Subsequent to the initial genome-wide association study, many studies have consistently identified associations between the ATG16L1 (Thr300Ala) variant and CD [17,18]. This finding has been widely replicated in different populations [19-32].

In the present study, we examined the association of ATG16L1 (T300A) genetic variant with CD and UC in Moroccan patients and controls. Upon association analysis, we were not able to establish a significant effect on CD risk in Moroccan IBD cohort. Our result was in concordance with the lack of association reported in a replication study performed in Japan [33]. In addition, Van Limbergen et al. [34] observed that the ATG16L1 variant was found to be highly associated with CD by using a haplotype and regression analysis [3]. Subsequent to the initial genome-wide association study, many studies have consistently identified associations between the ATG16L1 (Thr300Ala) variant and CD [17,18]. This finding has been widely replicated in different populations [19-32].
is associated with susceptibility to adult CD, but not with early-onset disease in a Scottish cohort.

Regarding UC, a protective effect of this polymorphism was identified. At present, it can only be speculated how ATG16L1 T300A variant may confers risk or protection from infection, depending on the nature of the pathogen and the typical duration of infection. The cellular expression of ATG16L1 facilitates bacterial invasion, however the IBD-associated ATG16L1 T300A variant may be protective against bacterial infection.

Messer et al. demonstrated that Intestinal epithelial cells somatically targeted to express the ATG16L1 T300A variant show protection against invasion by Salmonella [23].

Table 6 Genotypic frequencies according to clinical parameters of the Moroccan UC patients investigated for the L310P polymorphism

Clinical parameters	N	IL23L310P P value Chi-deux test
Age of onset		CC CT TT
<17 years	21	16 (76.2) 4 (19.0) 1 (4.8)
17-40	9	5 (55.6) 4 (44.4)
>40 years		
Sex		CC CT TT
Woman	14	11 (78.6) 2 (14.3) 1 (7.1)
Man	16	10 (62.5) 6 (37.5)
Localization		CC CT TT
Left colitis	11	6 (54.5) 5 (45.5)
Right colitis	13	10 (76.9) 2 (15.4) 1 (7.7)
Proctitis	4	4 (100.0)
SFC		CC CT TT
Presence	1	1 (100.0)
Absence	29	20 (69.0) 8 (27.6) 1 (3.4)
Smoking		CC CT TT
Presence	8	6 (75.0) 2 (25.0)
Absence	22	15 (68.2) 6 (27.3) 1 (4.5)
Appendectomy		CC CT TT
Presence	30	
Absence	30	
EIM		CC CT TT
Presence	17	11 (64.7) 5 (29.4) 1 (5.9)
Absence	13	10 (76.9) 3 (23.1)
Surgery		CC CT TT
Presence	26	17 (65.4) 8 (30.8) 1 (3.8)
Absence	4	4 (100.0)

(SFC: Similar familial cases; EIM: Extra intestinal manifestations; N: Total number; CC: wild type IL23R L310P, CT: IL23R L310P heterozygous variant, TT: IL23R L310P homozygous variant.)

Table 7 Genotypic and allelic frequencies for the ATG16L1 of UC patients and controls

Genotype allele	Case (%) N = 30	Controls (%) N = 115	OR (0.95 CI) P value
AA	11 (36.7)	30 (26.1)	1.0
AG	15 (50.0)	76 (66.1)	0.54 (0.22-1.30)
GG	4 (13.3)	9 (7.8)	1.21 (0.31-4.75)
A	37 (61.7)	136 (59.1)	1.0
G	23 (38.3)	94 (40.9)	0.90 (0.50-1.61)

(AA: wild type ATG16L1 T300A, AG: ATG16L1 T300A heterozygous variant, GG: ATG16L1 T300A homozygous variant; N: Total number; OR: odd ratio; CI confidence interval; P: (P < 0.05)).

IL23R polymorphism

The IL23R gene is another potential candidate gene for CD risk [2,35]. IL-23R interacts with IL-23, which is a cytokine that orchestrates intestinal inflammation via multiple pathways. It regulates the activity of immune cells and plays an important role in the inflammatory response against infection by bacteria and viruses [36]. The IL-23-IL17 axis is a key pathogenic mechanism that mediates the development and progress of inflammation by Th-17 cells. The role of the IL23-IL17 axis in IBD was supported in human patients and animal models of colitis [37-39]. Similarly, several studies have pinpointed IL23 receptor as a key pathway in the pathogenesis of inflammatory bowel disease. It was confirmed by the genetic association of several SNPs throughout the IL23R gene with CD and UC [21,22,24-27,30,32,40-43].

It was hypothesized that IL23R gene variants have a differential effect on Th17 cells with increased Th17 cytokine secretion in patients with CD-associated IL23R variants and decreased cytokine secretion in patients with CD-protective IL23R variants [44].

In the present study, carriage of the variant allele was associated with a protective effect for CD patients, similarly to previously reported studies [45,46]. We further analyzed whether the risk factor in the IL23R gene was also shared by UC patients and did not detect a significant association. Our subgroup analyses are likely

Table 8 Genotypic and allelic frequencies for the IL23R of UC patients and controls

Genotype allele	Case (%) N = 30	Controls (%) N = 115	OR (0.95 CI) P value
CC	21 (70.0)	98 (85.2)	1.0
CT	8 (26.7)	14 (12.2)	2.67 (0.99-7.16)
TT	1 (3.3)	3 (2.6)	1.56 (0.15-15.70)
C	50 (83.3)	210 (91.3)	1.0
T	10 (16.7)	20 (8.7)	2.10 (0.92-4.77)

(CC: wild type IL23R L310P, CT: IL23R L310P heterozygous variant, TT: IL23R L310P homozygous variant; N: Total number; OR: odd ratio; CI confidence interval; P: (P < 0.05)).
underpowered for revealing a genotype–phenotype relationship. This result confirms previous studies on Italian [47] and North American populations [42].

Conclusion
In summary, the present study seems to indicate that ATG16L1 plays an important role in CD behaviour and confers protection for UC. In addition, IL23R gene showed a protective effect for individuals with the TT genotype and T allele against the development of Crohn’s disease.

Therefore, our results could reinforce the notion of a different relevance of ATG16L1 and IL23R in the pathogenesis of IBD in patients of different ethnic origin, with a limited role in the Moroccan population. Due to small sample size, an association cannot be ruled out. Further studies in larger groups would be required to confirm these findings.

Additional file

Additional file 1: Table S1. Clinical and epidemiological parameters of control group.

Competing interest
The authors declare that they have no competing interests.

Authors’ contribution
NS and NS carried out the molecular genetic studies, recruited the patients and drafted the manuscript. BD performed the statistical analysis. WB participated in the design of the study and the recruitment of patients. SN conceived the study, participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgments
We would like to thank all the patients and their families for their time and participation. Our gratitude goes also to the clinicians and all the staff of gastroenterology department of CHU Ibn Rochd for their assistance in data collection.

References
1. Peeters M, Ghos Y, Maes B, Hiele M, Geboes K, Vantrappen G, Rutgeerts P: Increased permeability of macroscopically normal small bowel in Crohn’s disease. Dig Dis Sci 1994, 39:2170–2176. doi:10.1007/BF02090367.
2. Duer N, Taylor KD, Brant SR, Roux JD, Silverberg MS, Daly MJ, Steinhardt AH, Abraham C, Regueiro M, Griffiths A, Dassopoulous T, Bitton A, Yang H, Targan S, Datta LW, Kistner ED, Schumpp LR, Lee AT, Grgeson PK, Barnam MM, Rotter A, Nicolaie DL, Cho JH: A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006, 531:461–463. doi:10.1126/science.1135245.
3. Hampe J, Franke A, Rosenthal P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Günther S, Prescott NJ, Omnie CM, Hässer R, Sipos B, Fülsch UR, Lengauer T, Pláter M, Mathew CG, Räwczak M, Schreiber S: A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007, 39:207–211. doi:10.1038/ng1954.
4. Roux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huest A, Green T, Kuballa P, Barnama MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolaie DL, Regueiro M, Schumpp LR, Stenhardt AH, Rotter A, Duer RH, Cho JH, Daly MJ, Brant SR: Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autoimmunity in disease pathogenesis. Nat Genet 2007, 39:596–604. doi:10.1038/ng2032.
5. Fitch E, Harper E, Skoczanki L, Kurtz SE, Blauvelt A: Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines. CurrRheumatol Rep 2007, 9:461–7.
6. Mc Govern D, Powrie F: The IL-23 axis plays a key role in the pathogenesis of IBD. Gut 2007, 56:1333–1336. doi:10.1136/gut.2006.115402.
7. Yen D, Cheung J, Scheeren H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Ouyang A, Mattson J, Bluemenschine W, Murphy E, Sarth S, Cua DJ, Kastelein RA, Rennick D: IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006, 116:1310–1316. doi:10.1172/JCI21404.
8. Pahmar C, Chiche A, Timans J, Vaidog M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F, To W, Wagner J, O’Farrell AM, McClanahan T, Zurawski S, Hannum C, Gorman D, Rennick M, Kastelein RA, de Waal MR, Moore KW: A receptor for the heterodimeric cytokine IL-23 is composed of IL-12beta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 2002, 168:5699–5708.
9. Cummings JR, Ahmad T, Geremia A, Beekly J, Rooney H, Hancock L, Pathan SA, Guo C, Cardon LR, Jewell DP: Contribution of the novel inflam-matory bowel disease gene IL-23R to disease susceptibility and phenotype. Inflamm Bowel Dis 2007, 13:1068–8. doi:10.1002/ibd.20180.
10. Lin Z, Portz L, Franke A, Li TY, Ruerther A, Byrnes KA, Wang Y, Gehbard AW, MacNeill C, Thomas NJ, Schreiber S, Koltun WA: Genetic association of nonsynonymous variants of the IL23R with familial and sporadic inflammatory bowel disease in women. Dig Dis Sci 2010, 55:739–746. Epub 2009 Mar 18. doi:10.1007/s10620-009-0782-8.
11. Stappenbeck TS, Roux JD, Mrozoucki A, Sothg J, Hauert A, Darfeuille-Michaud A, Wileman T, Mizushima N, Carding S, Akira S, Parkes M, Xavier RJ: Crohn disease: a current perspective on genetics, autophagy and immunity. Autoimmun Rev 2011, 11:355–374. doi:10.1016/j.autrev.2011.07.074.
12. Satsangi J, Silverberg MS, Vermeire S, Colombel JF: The Montreal classification of inflammatory bowel disease: controversies, consensos, and implications. Gut 2006, 55(6):749–753.
13. Levine A, Griffiths A, Maskovitz J, Wilson DC, Turner D, Russell RK, Fell J, Rueime Ne MW, Watters L, Sherlock D, MacNeil C, Thomas NJ, Schreiber S, Koltun WA: Genetic association of nonsynonymous variants of the IL23R with familial and sporadic inflammatory bowel disease in women. Dig Dis Sci 2010, 55:739–746. Epub 2009 Mar 18. doi:10.1007/s10620-009-0782-8.
14. Coco Kei J, Løvarr G, Sørensen P, Snijder M, Hyams JS: Pediatric Modification of the Montreal Classification for Inflammatory Bowel Disease: The Paris Classification. Inflamm Bowel Dis 2011 Jun, 17(6):1314–21. doi:10.1002/ibd.21493.
15. Cóngar E, Cárdenas A, Sigueri J, Budin J, García J, Font P, García J, Servet A: sIgA: The most specific marker of increased intestinal permeability as a disease marker. World J Gastroenterol 2012, 18:364–372. doi:10.3748/wjg.v18.i2.364.
16. Venteratye J, Zvirblina K, Verryt K, Kravikovski K, Kupcinskas L, Schreiber S: NOD2, IL23R and ATG16L1 polymorphisms in Lithuanian patients with in-flammatory bowel disease. World J Gastroenterol 2010, 16:2176–83. doi:10.3748/wjg.v16.i2.176.
17. Fujita N, Ishiz T, Omoi H, Fukuda M, Noda T, Yoshimori T: The Atg16L1 complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 2008, 19:2092–2100. doi:10.1091/mbc.E07-12-1257.
18. Sventoratalyte J, Zvirblina K, Farame J, Kravikovski K, Kupcinskas L, Schreiber S: NOD2, IL23R and ATG16L1 polymorphisms in Lithuanian patients with in-flammatory bowel disease. World J Gastroenterol 2010, 16:359–364. doi:10.3748/wjg.v16.i3.359.
19. Roux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huest A, Green T, Kuballa P, Barnama MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolaie DL, Regueiro M, Schumpp LR, Stenhardt AH, Rotter A, Duer RH, Cho JH, Daly MJ, Brant SR: Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autoimmunity in disease pathogenesis. Nat Genet 2007, 39:596–604. doi:10.1038/ng2032.
20. Barrett JC, Hansoul S, Nicolaie DL, Cho JH, Duer RH, Roux JD, Brant SR, Silverberg MS, Taylo KD, Barnama MM, Datta LW, bitton A, Dassopoulous T, Datta LW, Green T, Griffiths AM, Kistner ED, Muirh MT, Regueiro MD, Rotter JI, Schumpp LR, Stenhardt AH, Targan SR, Xavier RJ: Genetics Consortium NIDDKIBD, Libloucle C, Sandor C, Lathrop M, Belachhe J, Dewit O, Gut I, et al: Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008, 40:955–962. doi:10.1038/ng.1175.

Serbati et al. BMC Research Notes 2014, 7:570 http://www.biomedcentral.com/1756-0500/7/570 Page 7 of 8
19. Parkes M, Barrett JC, Prescott NJ, Trenrell M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D, Drummond H, Lees CW, Khatwa SA, Bagnall R, Burke DA, Todhunter CE, Ahmad T, Onnie CM, McCardle W, Strachan D, Bethel G, Bryan C, Lewis CM, Deloukas P, Forbes A, Anderson J, Jewell DP, Satsangi J, Mansfield JC, Wellcome Trust Case Control Consortium, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 2007, 39:830–832. doi:10.1038/ng2061

20. Cummings JR, Cooney R, Pathan S, Anderson CA, Barrett JC, Beckly J, Geremia A, Hancock L, Guo C, Ahmad T, Cardon LR, Jewell DP. Confirmation of the role of ATG16L1 as a Crohn’s disease susceptibility gene. Inflamm Bowel Dis 2007, 13:941–946. doi:10.1097/MIB.0b013e3180168bd0

21. Newman WG, Zhang Q, Liu X, Amos CI, Siminovitch KA: Association analysis of genetic variants in IL23R, ATG16L1 and Sp13.1 loci with Crohn’s disease in Japanese patients. J Hum Genet 2007, 52:575–583.

22. Van Limbergen J, Russell RK, Nimmo ER, Drummond HE, Smith L, Anderson NH, Davies G, Gillett PM, McGroigan P, Weaver LT, Bisset WM, Mahdi G, Arnot ID, Wilson DC, Satsangi J. Autophagene ATG16L1 influences susceptibility and disease location but not childhood-onset in Crohn’s disease in Northern Europe. Inflamm Bowel Dis 2008, 14:338–346. doi:10.1002/ibd.20340

23. Libouli C, Louie H, Hansoul S, Sandor C, Farnir F, Franchimont D, Vermeire S, Dewit O, de Vos M, Dixon A, Demarche B, Gut I, Heath S, Foglio M, Liang L, Laukens D, Mni M, Zelenika D, Van Gossum A, Rutgeerts P, Belaiche J, Lathrop M, Georges M. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on Sp13.1 and modulates expression of PTGER4. PLoS Genet 2007, 3:e58.

24. Medhihov R: Recognition of microorganisms and activation of the immune response. Nature 2010, 449:819–826. (18 October 2007) doi:10.1038/nature06246

25. Sarra M, Pallone F, Macdonald TT, Monteleone G: IL-23/IL-17 axis in IBD. Inflamm Bowel Diseases, 2010, 16(10):1808–1813. doi:10.1002/ibd.2012418

26. McGovern D, Powrie F: The IL-23 axis plays a key role in the pathogenesis of IBD. Gut 2007, 56:1339–1336. doi:10.1136/gut.2006.115402

27. Yaman H: Current perspectives on the role of IL-17 in autoimmune diseases. J Inflamm Res 2010, 3:33–44. doi:10.2147/JIR.S6375

28. Taylor KD, Tarran SR, Mei L, Ippoliti AF, McGovern D, Mengezza E, King L, Rotter JI. IL-23 haptopylotes provide a large population attributable risk for Crohn’s disease. Inflamm Bowel Dis 2008, 14:185–191. doi:10.1002/ibd.20478

29. Arne DK, Mack D, Israel D, Morgan K, Lambrette P, Law L, Grimard G, Baptista ML, Amarante H, Picheth G, Sdepanian VL, Peterson N, Babasukumar U, Lima HC, Kugathasan S: Contributions of IBD5, IL23R, ATG16L1 and NOD2 to Crohn’s disease susceptibility loci in a large Dutch–Belgian cohort. Am J Gastroenterol 2008, 103:630–638. doi:10.1111/j.1572-0241.2008.01111.x

30. Roberts RL, Geary RB, Holis-Moffatt JE, Miller AL, Reid J, Abkevich V, Timms KM, Gutin A, Lanchbury JS, Menzies TR, Barclay ML, Kennedy MA, IL23R R381Q and ATG16L1 T308A are strongly associated with Crohn’s disease in a study of New Zealand Caucasians with inflammatory bowel disease. Am J Gastroenterol 2007, 102:2754–2761. 13 doi:10.1111/j.1572-0241.2007.01525.x

31. Okazaki T, Wang MH, Rawsthorne P, Sargent M, Datta LW, Shugart YY, Bernstein CN, Brant SR: Association with IBD5, IL23R, ATG16L1 and NOD2 to Crohn’s disease risk in a population based case-control study: evidence of gene-gene interaction. InflammBowel Dis 2008, 1020:002. ib23056

32. Lakatos PL, Szamosi T, Szilvai A, Molnar M, Lakatos L, Kovacs A, Molnar T, Attoraj P, Papp M, Tulassy Z, Muller P, Papp J, Tordai A, Andrivcics H, a Hungarian IBD Study Group: ATG16L1 and IL-23 receptor (IL23R) genes are associated with disease susceptibility in Hungarian CD patients. Dig Liver Dis 2008. doi:10.1016/j.dld.2008.03.022

33. Fowler EV, Eoecke J, Simms LA, Zhao ZZ, Webb PM, Hayward NK, Whitmer DC, Finlon TH, Montgomery GW, Cavanaugh JA, Ranford-Smith GL. ATG16L1 T308A shows strong associations with disease subgroups in a large Australian IBD population: further support for significant disease heterogeneity. Am J Gastroenterol 2008, 103:1–8. doi:10.1111/j.1572-0241.2007.01661.x

34. Glas J, Konrad A, Schmeichel S, Dambacher J, Seidler J, Schroff F, Wetzke M, Roeseke D, Török HP, Toncheli I, Pfenning S, Haller D, Griga T, Klein W, Epplin JT, Volcakova L, Cholse P, Göke B, Ochsenuhnt K, Mussack T, Volcakova M, Müller-Mlynsik B, Brand S. The ATG16L1 gene variants rs2241879 and rs2241880 (T308A) are strongly associated with susceptibility to Crohn’s disease in the German population. Am J Gastroenterol 2008, 103:682–91. doi:10.1111/j.1572-0241.2007.01694.x

35. Weersma RK, Zherinarkova A, Nolte IW, Lefebvre C, Roux JD, Mulfer D, van Dulleman HM, Kleibeuker JH, Wijmenga C, Djikstra G. ATG16L1 and IL23R are associated with inflammatory bowel disease but not with celiac disease in the Netherlands. Am J Gastroenterol 2008, 103:621–627. 14 doi:10.1111/j.1572-0241.2007.01660.x

36. The Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 2007, 447:616–678. doi:10.1038/nature05911

37. Latiano A, Palmeiri O, Valvaro MR, D’Incà R, Cucchiara S, Riegler G, Staiano AM, Arizzone S, Accomando S, de Angelis GL, Contore G, Bossa F. Annese V: Replication of interleukin 23 receptor and autophagy-related 16-like 1 association in adult and pediatric-onset inflammatory bowel disease in Italy. World J Gastroenterol 2008, 14:4643–4651. doi:10.3748/wjg.v14.i33.4643

38. Yamazaki K, Onouchi Y, Takazoe M, Kubo M, Nakamura Y, Hata A: Association analysis of genetic variants in IL23R, ATG16L1 and Sp13.1 loci with Crohn’s disease in Japanese patients. J Hum Genet 2007, 52:575–583.

39. van Limbergen J, Russell RK, Nimmo ER, Drummond HE, Smith L, Anderson NH, Davies G, Gillett PM, McGroigan P, Weaver LT, Bisset WM, Mahdi G, Arnot ID, Wilson DC, Satsangi J. Autophagene ATG16L1 influences susceptibility and disease location but not childhood-onset in Crohn’s disease in Northern Europe. Inflamm Bowel Dis 2008, 14:338–346. doi:10.1002/ibd.20340

40. Perricone C, Borgiani P, Romano S, Ciccarelli S, Fusco G, Novelli G, Biancone L, Calabrese E, Pallone F. ATG16L1 A1a197Thr is not associated with susceptibility to Crohn’s disease or with phenotype in an Italian population. Gastroenterology 2008 Jan, 134(1):368–70. doi:10.1053/j.gastro.2007.11.017.

Cite this article as: Serbati et al.: IL23R and ATG16L1 variants in Moroccan patients with inflammatory bowel disease. BMC Research Notes 2014; 7:570.