Research Article

A Study on Some New Generalizations of Reversed Dynamic Inequalities of Hilbert-Type via Supermultiplicative Functions

M. Zakarya,1,2 Ahmed I. Saied,3 Ghada ALNemer,4 H. A. Abd El-Hamid,5 and H. M. Rezk6

1King Khalid University, College of Science, Department of Mathematics, P.O. Box 9004, 61413 Abha, Saudi Arabia
2Department of Mathematics, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt
3Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
4Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
5Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
6Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt

Correspondence should be addressed to H. M. Rezk; haythamrezk@azhar.edu.eg

Received 16 February 2022; Revised 15 May 2022; Accepted 20 June 2022; Published 16 August 2022

Academic Editor: Samuel Nicolay

Copyright © 2022 M. Zakarya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, we establish some new generalizations of reversed dynamic inequalities of Hilbert-type via supermultiplicative functions by applying reverse Hölder inequalities with Specht’s ratio on time scales. We will generalize the inequalities by using a supermultiplicative function which the identity map represents a special case of it. Also, we use some algebraic inequalities such as the Jensen inequality and chain rule to prove the essential results in this paper. Our results (when $T \ll \mathbb{N}$) are essentially new.

1. Introduction

In [1], Hardy established that

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{w_m z_n}{m+n} \leq \frac{\pi}{\sin \frac{\pi}{p}} \left(\sum_{m=1}^{\infty} w_m^p \right)^{1/p} \left(\sum_{n=1}^{\infty} z_n^q \right)^{1/q},$$

(1)

where $w_m, z_n \geq 0$ with $\sum_{m=1}^{\infty} w_m^p < \infty, 0 < \sum_{n=1}^{\infty} z_n^q < \infty$ and $p > 1, 1/p + 1/q = 1$. In [2], Hardy showed that

$$\int_0^\infty \int_0^\infty f(\theta) g(y) d\theta dy \leq \frac{\pi}{\sin \frac{\pi}{p}} \left(\int_0^\infty f^p(\theta) d\theta \right)^{1/p} \left(\int_0^\infty g^q(y) dy \right)^{1/q},$$

(2)

where f and g are measurable nonnegative functions such that $0 < \int_0^\infty f^p(\theta) d\theta < \infty$ and $0 < \int_0^\infty g^q(y) dy < \infty$. The constant $\pi/\sin (\pi/p)$ is the best possible.

In [3], Hölder proved that

$$\sum_{k=1}^{n} \xi_k y_k^p \leq \left(\sum_{k=1}^{n} \xi_k^p \right)^{1/p} \left(\sum_{k=1}^{n} y_k^q \right)^{1/q},$$

(3)

where (ξ_k) and (y_k) are positive sequences and $p, q > 1$ such that $1/p + 1/q = 1$. The integral form of (3) is

$$\int_{w}^{z} \psi(\tau) \omega(\tau) d\tau \leq \left(\int_{w}^{z} \psi^p(\tau) d\tau \right)^{1/p} \left(\int_{w}^{z} \omega^q(\tau) d\tau \right)^{1/q},$$

(4)

where $\psi, \omega \in C((w, z), \mathbb{R}^+)$. In [4], Zhao and Cheung showed that if $\psi(\zeta)$ and $\omega(\zeta)$ are nonnegative continuous functions and $\psi^{1/p}(\zeta) \omega^{1/q}(\zeta)$ is integrable on $[w, z]$, then
\[
(\int_w \psi^p(\zeta) d\zeta)^{1/p} \left(\int_w \omega^q(\zeta) d\zeta \right)^{1/q} \leq S \left(\frac{Y \psi^p(\zeta) \omega(\zeta) d\zeta}{\partial \omega(\zeta)} \right),
\]
(5)

with
\[
\theta = \frac{1}{p} \psi^p(\zeta) d\zeta, \quad Y = \frac{1}{q} \omega(\zeta) d\zeta, \quad p > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1,
\]
(6)

where \(S(\cdot)\) is the Specht’s ratio function (see [5]) and defined by
\[
S(l) = \frac{l^{1/(l-1)}}{e \log l^{1/(l-1)}}, l \neq 1, S(1) = 1.
\]
(7)

Also, they proved that if \(\psi, \omega \in C((w, \zeta), \mathbb{R}^r)\) and \(\gamma > 0\), then
\[
\int_w \psi^{p+1}(\zeta) d\zeta \leq \left(\int_w S(G \psi^{p+1}(\zeta) / F \omega(\zeta)) \psi(\zeta) d\zeta \right)^{p+1},
\]
(8)

where
\[
G = \int_w \omega(\zeta) d\zeta, \quad F = \int_w \psi^{p+1}(\zeta) d\zeta.
\]
(9)

In addition to this, they proved the discrete case of (8) as follows:
\[
\sum_{i=1}^{n} w_i^{m+1} \leq \frac{\sum_{i=1}^{n} S(z w_i^{m+1} / w_i^{m+1}) w_i}{(\sum_{i=1}^{n} z_i)^m},
\]
(10)

where \(z = \sum_{i=1}^{n} z_i\) and \(w = \sum_{i=1}^{n} w_i^{m+1} / z_i^m\).

In [6], the authors proved the reverse Hilbert-type inequalities by using the Specht’s ratio as follows: if \(0 \leq p, q \leq 1\) and \(\{\lambda_m\}, \{\psi_n\}\) are nonnegative and decreasing sequences of real numbers for \(m = 1, 2, \ldots, k\) and \(n = 1, 2, \ldots, r\) with \(k, r \in \mathbb{N}\), then
\[
\sum_{m=1}^{k} \sum_{n=1}^{r} S_{p,q,k,r,m,n} \left(\sum_{i=1}^{m} \lambda_i \left(\sum_{i=1}^{n} \psi_i \right)^q \right)^{1/q} \geq 2C(p, q, k, r)
\]
\[
\cdot \left(\sum_{m=1}^{k} \left[\lambda_m \left(\sum_{i=1}^{m} \lambda_i \right)^{p-1} \right]^{1/2} \right)^{1/2} \times \left(\sum_{n=1}^{r} \left[\psi_n \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{1/2} \right)^{1/2},
\]
(11)

where
\[
C(p, q, r, s) = \frac{1}{2} p q (k r)^{1/2},
\]
\[
S_{p,q,k,r,m,n} = S \left(\frac{k \sum_{i=1}^{m} \left[\lambda_i \left(\sum_{i=1}^{m} \lambda_i \right)^{p-1} \right]^{2}}{\sum_{i=1}^{k} \left(k - s + 1 \right) \left[\lambda_i \left(\sum_{i=1}^{k} \lambda_i \right)^{p-1} \right]^{2}} \right)
\]
\[
\times S \left(\frac{r \sum_{i=1}^{n} \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}}{\sum_{i=1}^{r} \left(r - s + 1 \right) \left[\psi_i \left(\sum_{i=1}^{r} \psi_i \right)^{q-1} \right]^{2}} \right)
\]
\[
\times S \left(\frac{m \left[\lambda_i \left(\sum_{i=1}^{m} \lambda_i \right)^{p-1} \right]^{2}}{\sum_{i=1}^{m} \left[\lambda_i \left(\sum_{i=1}^{m} \lambda_i \right)^{p-1} \right]^{2}} \right)
\]
\[
\times S \left(\frac{n \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}}{\sum_{i=1}^{n} \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}} \right),
\]
(12)

where
\[
S \left(\frac{m \left[\lambda_i \left(\sum_{i=1}^{m} \lambda_i \right)^{p-1} \right]^{2}}{\sum_{i=1}^{m} \left[\lambda_i \left(\sum_{i=1}^{m} \lambda_i \right)^{p-1} \right]^{2}} \right) = \max \left\{ S \left(\frac{m \left[\lambda_i \left(\sum_{i=1}^{m} \lambda_i \right)^{p-1} \right]^{2}}{\sum_{i=1}^{m} \left[\lambda_i \left(\sum_{i=1}^{m} \lambda_i \right)^{p-1} \right]^{2}} \right), S \left(\frac{n \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}}{\sum_{i=1}^{n} \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}} \right) \right\},
\]
\[
S \left(\frac{n \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}}{\sum_{i=1}^{n} \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}} \right) = \max \left\{ S \left(\frac{n \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}}{\sum_{i=1}^{n} \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}} \right), S \left(\frac{n \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}}{\sum_{i=1}^{n} \left[\psi_i \left(\sum_{i=1}^{n} \psi_i \right)^{q-1} \right]^{2}} \right) \right\},
\]
(13)
In 1990, Ariño and Muckenhoupt [7] proved an inequality which maps from \(L^p \) to \(L^p, 1 \leq p < \infty \) and contains one weighted function that they characterized such that the inequality
\[
\int_0^\infty w(t) \left(\frac{1}{p} \int_0^t f(x) \, dx \right)^p \, dt \leq C \int_0^\infty w(t)f^p(t) \, dt,
\] (14)
holds for all nonnegative nonincreasing measurable function \(f \) on \((0, \infty)\) with a constant \(C > 0 \) independent on \(f \) (here \(1 \leq p < \infty \)). The characterization reduces to the condition that the function \(u \) satisfies
\[
\int_t^\infty \frac{w(x)}{x^p} \, dx \leq \frac{B}{p^p} \int_0^t w(x) \, dx, \text{ for all } t \in (0, \infty) \text{ and } B > 0.
\] (15)

In 1993, Sinnamon [8] generalized (14) to map from \(L^p \) to \(L^p, 0 < q < 1 < p \) which has two different weighted functions and characterized the weights such that the inequality
\[
\left(\int_a^b u(x) \left(\int_a^x f(t) \, dt \right)^q \, dx \right)^{1/q} \leq C \left(\int_a^b v(x)f^p(x) \, dx \right)^{1/p},
\] (16)
holds for all measurable \(f \geq 0 \) and the constant \(C \) is independent of \(f \) (here \(0 < q < 1 < p \) and \(1/r = 1/q - 1/p \)). The characterization reduces to the condition that the nonnegative functions \(u \) and \(v \) satisfy
\[
\int_a^b \left(\int_a^t u(x) \, dx \right)^{r/p} \left(\int_a^x v^{1-r'}(t) \, dt \right)^{r/p'} \, dx = K < \infty, \quad p' = \frac{p}{p-1}.
\] (17)

Also, many authors study the inequalities with weighted functions (see [9–16]).

For the discrete case of (14), in 2006, Bennett and Grosserdmann [11] characterized the weights such that the inequality
\[
\sum_{n=1}^\infty w_n \left(\frac{1}{p} \sum_{k=1}^n g_k \right)^p \leq C \sum_{n=1}^\infty w_n g_n^p, 1 \leq p < \infty,
\] (18)
holds for all nonnegative nonincreasing sequence \(g_n \) and \(C > 0 \). The characterization reduces to the condition that the nonnegative sequence \(w_n \) satisfies
\[
\sum_{k=1}^n w_k \leq \frac{B}{p^p} \sum_{k=1}^n w_k, \text{ for all } n \in \mathbb{N} \text{ and } B > 0.
\] (19)

In the last decades, a time scale theory has been discovered to unify the continuous calculus and discrete calculus. A time scale \(\mathbb{T} \) is defined as an arbitrary nonempty closed subset of the real numbers \(\mathbb{R} \). Many authors proved some dynamic inequalities on time scales which unify the inequalities in the continuous calculus and discrete calculus (see [17–26]). In particular, in 2021, Saker et al. [25] unified the inequalities (14) and (18) to be general inequalities on time scales and proved that \(\mathbb{T} \) is a time scale with \(a \in \mathbb{T} \) and \(1 \leq p < \infty \). Furthermore, assume that \(f \) is a nonincreasing function and \(\int_a^\infty w(t)f^p(t) \, dt < \infty \). Suppose there is a constant \(B > 0 \) with
\[
\int_t^\infty \frac{w(s)}{(s-a)^p} \, ds \leq \frac{B}{(s(t)-a)^p} \int_t^{s(t)} w(t) \, ds \text{ for all } t \in (a, \infty)_\mathbb{T}.
\] (20)

Then,
\[
\int_a^\infty w(t) \left(\frac{1}{s(t)-a} \right)^p \, dt \leq \frac{p}{B+1} \int_a^\infty w(t)f^p(t) \, dt.
\] (21)

As special cases of (20), when \(T = \mathbb{R}, s(t) = t, a = 0 \), we obtain the inequality (14) and when \(T = \mathbb{N}, s(t) = t + 1, a = 1 \), we have the inequality (18).

Also, we can get new inequalities, for example, when \(T = \mathbb{hN}: h > 0, a = h \), where \(s(t) = t + h \), we get a new inequality in a new calculus of (21) in the form
\[
\sum_{n=h}^\infty \left(\frac{1}{n} \sum_{k=1}^n f_k \right)^p \leq p^p (B+1)^p \sum_{n=h}^\infty w_n f_n^p, 1 \leq p < \infty,
\] (22)

For some reversed dynamic inequalities of Hilbert-type, Hölder-type, and Hardy-type on time scale, see the papers ([27–32]).

The goal of this manuscript is to use reverse Hölder inequalities with Specht’s ratio on \(\mathbb{T} \) to develop some new generalizations of reverse Hilbert-type inequalities via supermultiplicative functions on time scales.

The following is a breakdown of the paper’s structure. In Section 2, we cover some fundamentals of time scale theory as well as several time scale lemmas that will be useful in Section 3, where we prove our findings. As specific examples (when \(T = \mathbb{N} \)), our major results yield (11) proved by Zhao and Cheung [6].

2. Preliminaries and Fundamental Axioms

For completeness, we recall the following concepts related to the notion of time scales. For more details of time scale analysis, we refer the reader to the two books by Bohner and Peterson [33, 34] which summarize and organize much of the time scale calculus. A time scale \(\mathbb{T} \) is an arbitrary nonempty closed subset of the real numbers \(\mathbb{R} \).

First, we define \(\sigma(t) = \inf \{ u \in \mathbb{T} : u > t \} \), \(C_{rd}(\mathbb{T}, \mathbb{R}) \) introduces the set of all such rd-continuous functions, and for any function \(u : \mathbb{T} \longrightarrow \mathbb{R} \), the notation \(u^p(t) \) denotes \(u(\sigma(t)) \).

The derivative of the product \(u \omega \) and the quotient \(u/\omega \) (where \(\omega\omega^{-1} \neq 0 \)) of two differentiable functions \(u \) and \(\omega \).
are given by
\[
(\omega^\Delta = u^\Delta \omega + u^\gamma \omega^\Delta = u \omega^\gamma + u^\Delta \omega^\gamma, (\omega^\triangle) = u^\Delta \omega - u \omega^\Delta).
\]
(23)

The integration by parts formula on \(\mathbb{T}\) is
\[
\int_{v_0}^{\gamma} \lambda(r) \varphi^\gamma(r) \Delta r = [\lambda(r) \varphi(r)]_{v_0}^{\gamma} - \int_{v_0}^{\gamma} \lambda^\gamma (r) \varphi^\gamma (r) \Delta r.
\]
(24)

The time scale chain rule ([19], Theorem 1.87) is
\[
(\omega \circ \varphi)^\Delta (r) = \omega^\gamma (\varphi(t)) \varphi^\Delta (t), \text{ where } \varphi \in [r, \sigma(t)].
\]
(25)

where it is supposed that \(\omega : \mathbb{R} \rightarrow \mathbb{R}\) is continuously differentiable and \(\varphi : \mathbb{T} \rightarrow \mathbb{R}\) is \(\Delta\)-differentiable.

Definition 1 (see [35]). A function \(L : I \rightarrow \mathbb{R}^+\) is submultiplicative if
\[
L(\alpha \zeta) \geq L(\alpha)L(\zeta), \forall \alpha, \zeta \in I \subset \mathbb{R}.
\]
(26)

When \(L\) is the identity map (i.e., \(L(\zeta) = \zeta\)), the inequality (26) holds with equality. \(L\) is said to be a submultiplicative function if the last inequality has the opposite sign.

Lemma 2. If \(u \in \mathbb{T}, \lambda \in C_{rd}(\mathbb{T}, \mathbb{R}), \text{ and } 0 \leq \gamma \leq 1, \text{ then}
\[
\left(\int_{\omega}^{\sigma(t)} \lambda(r) \Delta r \right)^{\gamma} \geq \gamma \int_{\omega}^{\sigma(t)} \left(\int_{\omega}^{\sigma(\delta)} \lambda(r) \Delta r \right)^{-1} \lambda(\delta) \Delta \delta.
\]
(27)

Proof. Using (25) on the term \(\int_{\omega}^{\gamma} \lambda(r) \Delta r\), we get
\[
\left[\left(\int_{\omega}^{\gamma} \lambda(r) \Delta r \right)^{\gamma} \right]^{\Delta} = v \left(\int_{\omega}^{\gamma} \lambda(r) \Delta r \right)^{-1} \lambda(\delta), \zeta \in [0, \sigma(\delta)].
\]
(28)

Since \(\zeta \leq \sigma(\delta)\), we have (note \(0 \leq \gamma \leq 1\)) that
\[
\left(\int_{\omega}^{\gamma} \lambda(r) \Delta r \right)^{-1} \geq \left(\int_{\omega}^{\sigma(\delta)} \lambda(r) \Delta r \right)^{-1}.
\]
(29)

Substituting (29) into (28), we see that
\[
\left[\left(\int_{\omega}^{\gamma} \lambda(r) \Delta r \right)^{\gamma} \right]^{\Delta} \geq \gamma \left(\int_{\omega}^{\sigma(\delta)} \lambda(r) \Delta r \right)^{-1} \lambda(\delta).
\]
(30)

Integrating (30) over \(\delta\) from \(u\) to \(\sigma(t)\), we have
\[
\int_{\omega}^{\sigma(t)} \left[\left(\int_{\omega}^{\gamma} \lambda(r) \Delta r \right)^{\gamma} \right]^{\Delta} \Delta \delta \geq \gamma \int_{\omega}^{\sigma(t)} \left(\int_{\omega}^{\sigma(\delta)} \lambda(r) \Delta r \right)^{-1} \lambda(\delta) \Delta \delta.
\]
(31)

That is,
\[
\left(\int_{\omega}^{\sigma(t)} \lambda(r) \Delta r \right)^{\gamma} \geq \gamma \int_{\omega}^{\sigma(t)} \left(\int_{\omega}^{\sigma(\delta)} \lambda(r) \Delta r \right)^{-1} \lambda(\delta) \Delta \delta.
\]
(32)

which is (27).

Lemma 3 (Specht’s ratio [5]). Let \(\alpha, \beta\) be positive numbers, \(p \geq 1, \text{ and } 1/p + 1/q = 1\). Then,
\[
S\left(\frac{\alpha}{\beta}\right) a^{1/p} b^{1/q} \geq \frac{\alpha}{p} + \frac{\beta}{q},
\]
(33)

where
\[
S(t) = \frac{t^{1/(1-\gamma)} - 1}{\epsilon \log t^{1/(1-\gamma)}}, t \neq 1.
\]
(34)

The function \(S(t)\) is strictly decreasing for \(0 < t < 1\) and strictly increasing for \(t > 1\). In addition, the following equations are true:
\[
S(1) = 1,
\]
\[
S(t) = S\left(\frac{1}{t}\right) \forall t > 0.
\]
(35)

Lemma 4 ([16, when \(\alpha = 1\)]. Let \(f, g \in C([w, z], \mathbb{R}^+)\) such that \(f^\beta, g^\nu\) be \(\Delta\)-integrable on \([w, z]\). If \(\beta > 1\) and \(1/\beta + 1/\nu = 1\), then
\[
\int_{w}^{z} S\left(\frac{f^\beta(\zeta)}{X g^\nu(\zeta)}\right) f(\zeta) g(\zeta) \Delta \zeta \geq \left(\int_{w}^{z} f^\beta(\zeta) \Delta \zeta \right)^{1/\beta} \left(\int_{w}^{z} g^\nu(\zeta) \Delta \zeta \right)^{1/\nu}.
\]
(36)

where \(X = \int_{w}^{z} f^\beta(\zeta) \Delta \zeta\) and \(Y = \int_{w}^{z} g^\nu(\zeta) \Delta \zeta\).

Lemma 5 (Jensen’s inequality, alnamer). Assume that \(\zeta, \xi \in \mathbb{T}\) and \(r_0, r \in \mathbb{R}\). If \(\lambda \in C_{rd}(f, \xi, \mathbb{T}, \mathbb{R}), \varphi \in C_{rd}(f, \xi, \mathbb{T}, \mathbb{R})\), and \(\Psi : (r_0, r) \rightarrow \mathbb{R}\) is continuous and convex, then
\[
\psi\left(\frac{1}{l_{r_0}^\beta \lambda(r_0, \varphi(r_0)) \Delta r_0} \right) \leq \frac{1}{l_{r_0}^\beta \lambda(r_0, \varphi(r)) \Delta r_0} \int_{r_0}^{r} \lambda(r) \psi(\varphi(r)) \Delta r.
\]
(37)

The inequality (37) is reversed when \(\Psi\) is continuous and concave.

Lemma 6. Let \(w \in \mathbb{T}, \alpha, \psi\) be positive and decreasing functions, \(f, g\) be positive and nondecreasing functions, and \(0 \leq p, q < 1\). In addition, assume that \(\phi, \varphi\) are positive, increasing, concave, and supermultiplicative functions. If \(\beta > 1, \nu > 1\) with \(1/\beta + 1/\nu = 1\), then
Proof. For \(\vartheta \leq y \), we have

\[
S \left(\frac{f^{(s)}(\vartheta,t)\Delta T}{f^{(s)}(\vartheta,t)} \right) \geq \max \left\{ S \left(\frac{f^{(s)}(\vartheta,t)\Delta T}{f^{(s)}(\vartheta,t)} \right) \bigg/ \rho \left(f^{(s)}(\vartheta,t)\Delta T \right) \right\} \bigg/ \rho \left(f^{(s)}(\vartheta,t)\Delta T \right).
\]

(38)

and then, where \(\rho \neq 0 \),

\[
S \left(\frac{f^{(s)}(\vartheta,t)\Delta T}{f^{(s)}(\vartheta,t)} \right) \geq \max \left\{ S \left(\frac{f^{(s)}(\vartheta,t)\Delta T}{f^{(s)}(\vartheta,t)} \right) \bigg/ \rho \left(f^{(s)}(\vartheta,t)\Delta T \right) \right\} \bigg/ \rho \left(f^{(s)}(\vartheta,t)\Delta T \right).
\]

(39)

and then,

\[
f^{(s)}(\vartheta) \Delta T \geq f^{(s)}(\vartheta) \Delta T.
\]

(40)

and then (where \(0 \leq \rho \leq 1 \))

\[
\left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \geq \left(\int_{w}^{(s)} \lambda(t) \Delta t \right).
\]

(41)

Since \(\lambda \) is decreasing, we have from (41) (where \(\vartheta \leq y \)) that

\[
\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \geq \lambda(y) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right).
\]

(42)

Using the facts that \(\beta > 1 \), \(\phi \) is an increasing function and (42), we get

\[
\phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \geq \phi^{\beta} \left[\lambda(y) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right],
\]

(43)

and then, we obtain (where \(\vartheta \leq y \) and \(f \) is nondecreasing) that

\[
\frac{1}{f^{(s)}(\vartheta)} \phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \geq \frac{1}{f^{(s)}(y)} \phi^{\beta} \left[\lambda(y) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \bigg/ \phi^{\beta} \left[\lambda(y) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right].
\]

(44)

Thus, the function \(1/f^{(s)}(\vartheta) \phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \) is decreasing. Therefore, we have for \(w \leq \vartheta \) that

\[
\frac{1}{f^{(s)}(w)} \phi^{\beta} \left[\lambda(w) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \geq \frac{1}{f^{(s)}(\vartheta)} \phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right],
\]

(45)

and then,

\[
f^{(s)}(\vartheta) \phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \geq f^{(s)}(\vartheta) \phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right].
\]

(46)

Integrating the last inequality over \(\vartheta \) from \(w \) to \(\vartheta(t) \), we have

\[
\phi^{\beta} \left[\lambda(w) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \geq \phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right].
\]

(47)

Since the function \(f^{(s)}(\vartheta) \phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \) is decreasing, we have for \(\vartheta \leq t \) that

\[
\frac{1}{f^{(s)}(\vartheta)} \phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \geq \frac{1}{f^{(s)}(t)} \phi^{\beta} \left[\lambda(t) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right],
\]

(49)

and then,

\[
f^{(s)}(\vartheta) \phi^{\beta} \left[\lambda(\vartheta) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right] \geq f^{(s)}(\vartheta) \phi^{\beta} \left[\lambda(t) \left(\int_{w}^{(s)} \lambda(t) \Delta t \right) \right].
\]

(50)
By integrating (50) over \(\vartheta \) from \(w \) to \(\sigma(t) \), we have
\[
\begin{align*}
&f^{*}(t) \int_{w}^{\sigma(t)} \varphi^{*}(\vartheta) \left(\lambda(\vartheta) \left(\int_{w}^{\sigma(t)} \lambda(\varrho) \, d\varrho \right)^{-1} \right) \, d\vartheta \geq \varphi^{*}(t) \int_{w}^{\sigma(t)} \lambda(\vartheta) \left(\int_{w}^{\sigma(t)} \lambda(\varrho) \, d\varrho \right)^{-1} \, d\vartheta,
&\text{ for all } 0 \leq t \leq C_{16}/C_{17}^{*}.
\end{align*}
\]
Thus,
\[
\begin{align*}
&\left(\int_{w}^{\sigma(t)} f^{*}(\vartheta) \, d\vartheta \right)^{p-1} \frac{\varphi^{*}(t)}{f^{*}(t)} \int_{w}^{\sigma(t)} \lambda(\vartheta) \left(\int_{w}^{\sigma(t)} \lambda(\varrho) \, d\varrho \right)^{-1} \, d\vartheta \\
&\geq 1,
\end{align*}
\]
From (48) and (52), we observe that
\[
\begin{align*}
&\left(\int_{w}^{\sigma(t)} f^{*}(\vartheta) \, d\vartheta \right)^{p-1} \frac{\varphi^{*}(t)}{f^{*}(t)} \int_{w}^{\sigma(t)} \lambda(\vartheta) \left(\int_{w}^{\sigma(t)} \lambda(\varrho) \, d\varrho \right)^{-1} \, d\vartheta \\
&\geq \cdots \geq 1 \geq \cdots \geq \left(\int_{w}^{\sigma(t)} f^{*}(\vartheta) \, d\vartheta \right)^{p-1} \frac{\varphi^{*}(t)}{f^{*}(t)} \int_{w}^{\sigma(t)} \lambda(\vartheta) \left(\int_{w}^{\sigma(t)} \lambda(\varrho) \, d\varrho \right)^{-1} \, d\vartheta.
\end{align*}
\]
Since \(S(\cdot) \) is decreasing on \((0, 1)\) and increasing on \((1, \infty)\), we get that one of
\[
\begin{align*}
S \left(\int_{w}^{\sigma(t)} f^{*}(\vartheta) \, d\vartheta \right)^{p-1} \frac{\varphi^{*}(t)}{f^{*}(t)} \int_{w}^{\sigma(t)} \lambda(\vartheta) \left(\int_{w}^{\sigma(t)} \lambda(\varrho) \, d\varrho \right)^{-1} \, d\vartheta,
&\text{ is maximum (where } S(1) = 1, \text{ and it is in the form}
\end{align*}
\]
\[
\begin{align*}
&\left(\int_{w}^{\sigma(t)} f^{*}(\vartheta) \, d\vartheta \right)^{p-1} \frac{\varphi^{*}(t)}{f^{*}(t)} \int_{w}^{\sigma(t)} \lambda(\vartheta) \left(\int_{w}^{\sigma(t)} \lambda(\varrho) \, d\varrho \right)^{-1} \, d\vartheta,
&\text{ for all } 0 \leq t \leq C_{16}/C_{17}^{*}.
\end{align*}
\]
which is (38). Similarly, with respect to \(\psi \) when \(0 \leq q \leq 1 \),
\[
\begin{align*}
S \left(\int_{w}^{\sigma(t)} \varphi^{*}(t) \, d\vartheta \right)^{p-1} \frac{\varphi^{*}(t)}{f^{*}(t)} \int_{w}^{\sigma(t)} \lambda(\vartheta) \left(\int_{w}^{\sigma(t)} \lambda(\varrho) \, d\varrho \right)^{-1} \, d\vartheta.
\end{align*}
\]

which is (39).

Throughout the article, we will assume that the functions are nonnegative rd-continuous functions on \([w, \infty) = [w, \infty) \cup T\) and the integrals considered are assumed to exist. Now, we will present and justify our main findings.

3. Main Results

Theorem 7. Let \(w \in T, 0 \leq p, q \leq 1 \), and \(\lambda, \psi \) be positive and decreasing functions. Assume that \(\omega, \varphi, \psi \) are positive functions such that \(\phi, \varphi \) are increasing, concave, and supermultiplicative functions with
\[
A \phi \leq \omega \leq B \phi,
\]
where \(A, B \) are positive constants. If \(f, g \) are positive and non-decreasing functions and \(\beta > 1, \nu > 1 \) with \(1/\beta + 1/\nu = 1 \), then
\[
\begin{align*}
&\int_{w}^{\sigma(t)} \int_{Q(t)} \phi^{*}(t) \, d\vartheta \int_{w}^{\sigma(t)} \lambda(\varphi) \left(\int_{w}^{\sigma(t)} \lambda(\varrho) \, d\varrho \right)^{-1} \, d\vartheta,
&\text{ for all } 0 \leq t \leq C_{16}/C_{17}^{*}.
\end{align*}
\]

which is (38). Similarly, with respect to \(\psi \) when \(0 \leq q \leq 1 \),
holds for all \(r, s \in w, \omega \), where

\[
\Phi(t, \xi) = \frac{f(t)g(\xi)}{\left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \right)^{1/4} \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4}} \times S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\psi(\theta)}{\psi(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

\[
P(t) = \int_w^{\sigma(t)} S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\lambda(\theta)}{\lambda(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

\[
Q(\xi) = \int_w^{\sigma(t)} S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\psi(\theta)}{\psi(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

with

\[
C(p, q, r, s, v) = \frac{\phi(p)\psi(q)}{v} \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \right)^{1/4} \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4},
\]

\[
S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\lambda(\theta)}{\lambda(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

\[
S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\psi(\theta)}{\psi(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

\[
S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\lambda(\theta)}{\lambda(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

\[
S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\psi(\theta)}{\psi(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

Proof. Applying (27) with \(\gamma = p \), we have

\[
\left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^p \geq p \int_w^{\sigma(t)} \lambda(\theta) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \Delta \gamma.
\]

Multiplying the last inequality by

\[
S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\psi(\theta)}{\psi(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

we get (where \(f \) is nondecreasing) that

\[
P(t) \geq \int_w^{\sigma(t)} S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\lambda(\theta)}{\lambda(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \Delta \theta \right) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

\[
\geq \int_w^{\sigma(t)} S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\lambda(\theta)}{\lambda(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

\[
\times \lambda(\theta) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \Delta \delta.
\]

\[
\geq \int_w^{\sigma(t)} S \left(\int_w^{\sigma(t)} f^*(\theta) \Delta \theta \frac{\lambda(\theta)}{\lambda(\gamma)} \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right) \left(\int_w^{\sigma(t)} g^*(\gamma) \Delta \gamma \right)^{1/4} \psi(y) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \psi(y) g(\gamma) \right),
\]

\[
\times \lambda(\theta) \left(\int_w^{\sigma(t)} \lambda(\gamma) \Delta \gamma \right)^{p-1} \Delta \delta.
\]
From Lemma 6.3, the last inequality becomes
\[
S \left(\frac{f'(\theta)\bar{\Delta}\phi^p}{f'(\theta)\bar{\Delta}\phi^p} \right) \leq \frac{\left[\int_{\omega}^{t} \bar{\Delta}A \right]^p}{\left[\int_{\omega}^{t} \bar{\Delta}A \right]^p} \cdot \left(\int_{\omega}^{t} \bar{\Delta}A \right)^p
\]

Similarly, for the decreasing function \(\psi \), the nondecreasing function \(\phi \) and \(\lambda \), we have that
\[
\left(\int_{\omega}^{t} \psi(r)\Delta r \right)^p \leq \frac{\int_{\omega}^{t} \psi(r)\Delta r \phi^p}{\int_{\omega}^{t} \psi(r)\Delta r \phi^p} \cdot \left(\int_{\omega}^{t} \psi(r)\Delta r \phi^p \right)^p
\]

Multiplying (70) and (71), we see that
\[
\omega \left[\left(\frac{f'(\theta)\bar{\Delta}\phi^p}{f'(\theta)\bar{\Delta}\phi^p} \right) \leq \frac{\left[\int_{\omega}^{t} \bar{\Delta}A \right]^p}{\left[\int_{\omega}^{t} \bar{\Delta}A \right]^p} \cdot \left(\int_{\omega}^{t} \bar{\Delta}A \right)^p \right]
\]

and then, by applying the Jensen inequality on the right hand side of (69) (where \(\phi \) is a concave function), we have that
\[
\omega \left[\left(\frac{f'(\theta)\bar{\Delta}\phi^p}{f'(\theta)\bar{\Delta}\phi^p} \right) \leq \frac{\left[\int_{\omega}^{t} \bar{\Delta}A \right]^p}{\left[\int_{\omega}^{t} \bar{\Delta}A \right]^p} \cdot \left(\int_{\omega}^{t} \bar{\Delta}A \right)^p \right]
\]
Applying (36) on the right hand side of (72), we observe that

\[
P(t)w \left[\int_w^{\sigma(t)} f^\prime(\tau) \Delta \tau \right] \phi^\beta \left[\frac{1}{Q(\xi)} \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{-1} \right]
\]
\[
\times \frac{1}{P(t)} \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{1/\beta} f(t)
\]
\[
\times Q(\xi) \omega \left[\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right]^\delta \phi(\xi) \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{-1}
\]
\[
\times \frac{1}{Q(\xi)} \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{1/\beta} \Delta \tau
\]
\[
\times \psi(y) \left(\int_w^{\sigma(t)} \psi(y) \Delta y \right)^{1/\beta} \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{-1} \Delta \tau
\]
\[
(\tau(\xi) \Delta \tau)^{1/\beta}
\]

(73)

Multiplying (73) by

\[
\Phi(t, \xi) = \frac{f(t) g(\xi)}{ \left(\int_w^{\sigma(t)} f^\prime(\tau) \Delta \tau \right)^{1/\beta} \left(\int_w^{\sigma(t)} g^\prime(\gamma) \Delta \gamma \right)^{1/\beta}}
\]
\[
\times S \left[\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right]^\delta \phi(\xi) \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{-1} \Delta \tau
\]
\[
\times \frac{1}{Q(\xi)} \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{1/\beta} f(t)
\]
\[
\times \frac{1}{P(t)} \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{1/\beta} f(t)
\]
\[
\times \frac{1}{Q(\xi)} \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{1/\beta} \Delta \tau
\]
\[
\times \psi(g) \left(\int_w^{\sigma(t)} \psi(y) \Delta y \right)^{1/\beta} \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{-1} \Delta \tau
\]
\[
(\tau(\xi) \Delta \tau)^{1/\beta}
\]

(74)

and then, taking the integration over \(t \) from \(w \) to \(\sigma(r) \) and the integration over \(\xi \) from \(w \) to \(\sigma(s) \), we get to obtain

\[
\int_w^{\sigma(r)} \int_w^{\sigma(s)} \Phi(t, \xi)P(t)Q(\xi)
\]
\[
\times \omega \left[\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right]^\delta \phi(\xi) \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{-1} \Delta \tau
\]
\[
\times \frac{1}{P(t)} \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{1/\beta} f(t)
\]
\[
\times \omega \left[\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right]^\delta \phi(\xi) \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{-1} \Delta \tau
\]
\[
\times \frac{1}{Q(\xi)} \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{1/\beta} \Delta \tau
\]
\[
\times \psi(y) \left(\int_w^{\sigma(t)} \psi(y) \Delta y \right)^{1/\beta} \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{-1} \Delta \tau
\]
\[
(\tau(\xi) \Delta \tau)^{1/\beta}
\]

(75)

Applying the integration by parts formula on the term

\[
\int_w^{\sigma(r)} \phi^\beta \left[\lambda(\xi) \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{-1} \right] \Delta \tau
\]
\[
(\tau(\xi) \Delta \tau)^{-1}
\]

(76)

with \(u(\theta) = (\sigma(r) - \theta) \) and \(v^\beta(\theta) = \phi^\beta \left[\lambda(\xi) \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{-1} \right] \), we get

\[
\int_w^{\sigma(r)} \phi^\beta \left[\lambda(\xi) \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{-1} \right] \Delta \tau
\]
\[
(\tau(\xi) \Delta \tau)^{-1}
\]

(77)

and then where \(v(\xi) = \int_w^\theta \phi^\beta \left[\lambda(\xi) \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{-1} \right] \Delta \theta \),

\[
\int_w^{\sigma(r)} \phi^\beta \left[\lambda(\xi) \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{-1} \right] \Delta \tau
\]
\[
(\tau(\xi) \Delta \tau)^{-1}
\]

(78)

Similarly, we see that

\[
\int_w^{\sigma(s)} \phi^\beta \left[\psi(y) \left(\int_w^{\sigma(t)} \psi(\tau) \Delta \tau \right)^{-1} \right] \Delta \tau
\]
\[
(\tau(\xi) \Delta \tau)^{-1}
\]

(79)

\[
\int_w^{\sigma(r)} \phi^\beta \left[\lambda(\xi) \left(\int_w^{\sigma(t)} \lambda(\tau) \Delta \tau \right)^{-1} \right] \Delta \tau
\]
\[
(\tau(\xi) \Delta \tau)^{-1}
\]

(80)
Substituting (79) and (80) into (76), we observe that

\[
\int_w^{\omega(t)} \Phi(t, \xi) P(t) Q(\xi) \, dt \times S \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta
\]

\[
= A^2 \phi (p) \psi (q) \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta + 1/\beta
\]

\[
= \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta + 1/\beta
\]

\[
= \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta + 1/\beta
\]

and thus, we have from (57) and (60) that

\[
\int_w^{\omega(t)} \Phi(t, \xi) P(t) Q(\xi) \, dt \times S \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta
\]

\[
= \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta + 1/\beta
\]

\[
= \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta + 1/\beta
\]

which is (58).

Remark 8. If \(A = B = 1 \), then \(\omega = \phi, \omega = \psi \) and then we have for \(\omega \in T, 0 \leq p, q \leq 1, \beta > 1, n > 1 \) such that \(1/\beta + 1/n = 1 \) that

\[
\int_w^{\omega(t)} \Phi(t, \xi) P(t) Q(\xi) \, dt \times S \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta
\]

\[
= \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta + 1/\beta
\]

\[
= \left(\int_w^{\omega(t)} \lambda(\tau) \left(\int_w^{\omega(t)} \lambda(\tau) \, d\tau \right)^{p-1} \right) \Delta \theta + 1/\beta
\]
Remark 9. If $T \ll \Re$, $\sigma(s) = s$, and $w = 0$, the inequality (58) becomes

$$
\int_0^T \int_0^T \Phi(t, \xi) P(t) Q(\xi) \times \frac{1}{S} \left[\int_0^T \lambda(\xi) d\xi \right]^{p-1} \left[\int_0^T \lambda(\tau) d\tau \right]^{p-1} d\xi d\tau
$$

This inequality is new in continuous calculus.

Remark 10. As a special case of (84) when $T \ll \Re$, $\varphi(\theta) = \phi(\theta) = \theta$, $f(\theta) = g(\theta) = 1$, $w = 1$, and $\beta = \nu = 2$, we obtain (11) demonstrated in [36].

4. Conclusion and Future Work

In this paper, we studied some new generalizations of reversed dynamic inequalities of Hilbert-type via supermultiplicative functions on time scales by applying reverse Hölder inequalities and the Specht’s ratio function. We generalized the inequality proved by Zhao and Cheung [6] by using a supermultiplicative function which the identity map represents a special case of it and also by using the power greater than 2 when we used different powers β, $\nu > 1$ with $1/\beta + 1/\nu = 1$, where we get the special case when $\beta = \nu = 2$. Also, we added some increasing functions for generalizing the results where we get the results when we take the identity function as a special case. In the future, we will continue to generalize more reversed dynamic inequalities of Hilbert-type by using Kantorovich’s ratio and n-tuple fractional integral. In particular, such inequalities can be introduced by using fractional integrals and fractional derivatives of the Riemann-Liouville type on time scales. In addition to this, we may generalize these results to be with multidimensional Hilbert-type inequalities via supermultiplicative functions on time scales. It will also be very enjoyable to introduce such inequalities in quantum calculus.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

Software and writing—original draft were contributed by H. M. Rezk, G. AlNemer, and A. I. Saied. Writing-review and editing was contributed by H. M. Rezk and M. Zakarya. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

This research project was funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication, grant No. PRFA-P-42-14.

References

[1] G. H. Hardy, “Note on a theorem of Hilbert concerning series of positive term,” Proceedings of the London Mathematical Society, vol. 23, pp. 45-46, 1925.
[2] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, 2nd edition, 1934.
[3] O. Hölder, “Über einen Mittelwerthssatz,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen: Göttingen, Germany, pp. 38–47, 1889.
[4] C. J. Zhao and W. S. Cheung, “Hölder’s reverse inequality and its applications,” Publications de l'Institut Mathematique, vol. 99, no. 113, pp. 211–216, 2016.
[5] M. Tominaga, “Specht’s ratio in the Young inequality,” Scientiae Mathematicae Japonicae, vol. 55, no. 3, pp. 583–588, 2002.
[6] C. J. Zhao and W. S. Cheung, “Reverse Hilbert type inequalities,” Journal of Mathematical Inequalities, vol. 13, no. 3, pp. 855–866, 2007.
[7] M. A. Ariño and B. Muckenhoupt, “Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions,” Transactions of the American Mathematical Society, vol. 320, pp. 727–735, 1990.
[8] G. J. Sinnamon, “Weighted Hardy and Opial-type inequalities,” Journal of Mathematical Analysis and Applications, vol. 160, no. 2, pp. 434–445, 1991.
[9] A. G. Baskakov and K. A. Sintyaeva, “The Bohr-Favard inequalities for operators,” Russian Mathematics, vol. 53, no. 12, pp. 11–17, 2009.
[10] B. Benaisa, M. Z. Sarikaya, and A. Senouci, “On some new Hardy-type inequalities,” Mathematical Methods in the Applied Sciences, vol. 43, no. 15, pp. 8488–8495, 2020.
[11] G. Bennett and K. G. Grosse-Erdmann, “Weighted Hardy inequalities for decreasing sequences and functions,” Mathematische Annalen, vol. 334, no. 3, pp. 489–531, 2006.
[12] S. I. Butt, J. Pecaric, and I. Perić, “Refinement of integral inequalities for monotone functions,” Journal of Inequalities and Applications, vol. 2012, no. 1, 11 pages, 2012.
[13] S. I. Butt, J. Pecaric, and M. Praljak, “Multidimensional reversed Hardy type inequalities for monotone functions,” Asian-European Journal of Mathematics, vol. 7, no. 4, p. 1450055, 2014.

[14] S. I. Butt, J. Pecaric, and M. Praljak, “Reversed Hardy inequality for C-monotone functions,” Journal of Mathematical Inequalities, vol. 10, no. 3, pp. 603–622, 2007.

[15] M. Gürbüz and M. E. Özdemir, “On some inequalities for product of different kinds of convex functions,” Turkish Journal of Science, vol. 5, no. 1, pp. 23–27, 2020.

[16] L. Maligranda, J. E. Pecaric, and L. E. Persson, “Weighted Favard and Berwald inequalities,” Journal of Mathematical Analysis and Applications, vol. 190, no. 1, pp. 248–262, 1995.

[17] A. M. Ahmed, G. AlNemer, M. Zakarya, and H. M. Rezk, “Some dynamic inequalities of Hilbert’s type,” Journal of Function Spaces, vol. 2020, 13 pages, 2020.

[18] G. AlNemer, A. I. Saied, M. Zakarya, H. A. El-Hamid, O. Bazighifan, and H. M. Rezk, “Some new reverse Hilbert’s inequalities on time scales,” Symmetry, vol. 13, no. 12, p. 2431, 2021.

[19] A. Ekinci, “Inequalities for convex functions on time scales,” TWMS Journal of Applied and Engineering Mathematics, vol. 9, no. 1, pp. 64–72, 2019.

[20] A. A. El-Deeb, H. A. El-Sennary, and W.-S. Cheung, “Some reverse Hölder inequalities with Specht’s ratio on time scales,” Journal of Nonlinear Sciences and Applications, vol. 11, no. 4, pp. 444–455, 2018.

[21] P. O. Mohammed, H. Aydi, A. Kashuri, Y. S. Hamed, and K. M. Abualnaja, “Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels,” Symmetry, vol. 13, no. 4, p. 550, 2021.

[22] S. H. Saker, E. Awwad, and A. Saied, “Some new dynamic inequalities involving monotonic functions on time scales,” Journal of Function Spaces, vol. 2019, 11 pages, 2019.

[23] S. H. Saker, A. I. Saied, and M. Krnić, “Some new weighted dynamic inequalities for monotone functions involving kernels,” Mediterranean Journal of Mathematics, vol. 17, no. 2, pp. 1–18, 2020.

[24] S. H. Saker, A. I. Saied, and M. Krnić, “Some new dynamic Hardy-type inequalities with kernels involving monotone functions,” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, vol. 114, no. 3, pp. 1–16, 2020.

[25] S. H. Saker, J. Alzabut, A. I. Saied, and D. O’Regan, “New characterizations of weights on dynamic inequalities involving a Hardy operator,” Journal of Inequalities and Applications, vol. 2021, no. 1, 24 pages, 2021.

[26] S. H. Saker, A. I. Saied, and D. R. Anderson, “Some new characterizations of weights in dynamic inequalities involving monotonic functions,” Qualitative Theory of Dynamical Systems, vol. 20, no. 2, pp. 1–22, 2021.

[27] G. AlNemer, M. Zakarya, H. A. Abd El-Hamid, P. Agarwal, and H. M. Rezk, “Some dynamic Hilbert-type inequalities on time scales,” Symmetry, vol. 12, no. 9, p. 1410, 2020.

[28] B. Benaissa, “Some inequalities on time scales similar to reverse Hardy’s inequality,” Rad Hrvat. Akad. Znan. Umjet. Mat. Znan, Forthcoming papers, 2021.

[29] A. Corvalán and M. Milman, “Reverse Holder inequalities revisited: interpolation, extrapolation, indices and doubling,” 2019, http://arxiv.org/abs/1907.11327.