Blood stem cell PU.1 upregulation is a consequence of differentiation without fast autoregulation

Nouraiz Ahmed1, Martin Etzrodt1, Philip Dettinger1, Tobias Kull1, Dirk Loeffler1, Philipp S. Hoppe1, James S. Chavez2, Yang Zhang3, Germán Camargo Ortega1, Oliver Hilsenbeck1, Hideaki Nakajima3, Eric M. Pietras2, and Timm Schroeder1

Introduction
Transcription factors (TFs) are powerful cell fate regulators, and their expression must be tightly regulated. Autoregulation is assumed to regulate many TFs’ own expression to control cell fates. Here, we manipulate and quantify the (auto)regulation of PU.1, a TF controlling hematopoietic stem and progenitor cells (HSPCs), and correlate it to their future fates. We generate transgenic mice allowing both inducible activation of PU.1 and noninvasive quantification of endogenous PU.1 protein expression. The quantified HSPC PU.1 dynamics show that PU.1 up-regulation occurs as a consequence of hematopoietic differentiation independently of direct fast autoregulation. In contrast, inflammatory signaling induces fast PU.1 up-regulation, which does not require PU.1 expression or its binding to its own autoregulatory enhancer. However, the increased PU.1 levels induced by inflammatory signaling cannot be sustained via autoregulation after removal of the signaling stimulus. We conclude that PU.1 overexpression induces HSC differentiation before PU.1 up-regulation, only later generating cell types with intrinsically higher PU.1.

Results and discussion

We aimed to quantify PU.1 protein expression dynamics and cell fates in single HSPCs immediately following PU.1 activation for

1Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland; 2Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; 3Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan.

Correspondence to Timm Schroeder: timm.schroeder@bsse.ethz.ch.

© 2021 Ahmed et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
up to 5 d. We crossed a ubiquitously expressed 4-hydroxytamoxifen (OHT)–inducible PU.1-ERT2 transgene (Fukuchi et al., 2008) into the PU.1eYFPGATA1mCherry (PYGC) reporter mouse line (Hoppe et al., 2016; Kirstetter et al., 2006). This allows quantification of the effects of PU.1-ERT2 activation on the expression dynamics of the PU.1eYFP reporter protein expressed from its endogenous Spi1 locus (Fig. 1 A). We previously showed normal hematopoiesis and normal expression and stability of the PU.1eYFP protein in the extensively validated PYGC mouse line (Etzrodt et al., 2019; Hoppe et al., 2016; Pietras et al., 2016). We could not detect alterations in PU.1eYFP levels or bone marrow HSPC frequency in PYGCPU.1-ERT2 mice, analyzed as previously for the PYGC mouse line (Hoppe et al., 2016; Etzrodt and Schroeder, 2017; data not shown).

As expected, there is more Spi1 mRNA (approximately two- to threefold) expressed in HSPCs of PYGCPU.1-ERT2 than PYGC mice (Fig. 1 B). Since PU.1-ERT2 protein levels were not quantified previously (Fukuchi et al., 2008), we quantified total PU.1 protein by immunostaining. We found no significant increase in PU.1-ERT2 versus WT HSPCs (Fig. S1 A), indicating a very weak expression of PU.1-ERT2 protein. OHT stimulation of CD34− LSK (Lineage-negative, Scal+I, cKit+) cells led to PU.1-ERT2 translocation into the nuclei as confirmed by immunostaining (Fukuchi et al., 2008). In line with previous reports (Hoppe et al., 2016; Kueh et al., 2013; Nerlov and Graf, 1998; Staber et al., 2013; Pietras et al., 2016; Chavez et al., 2021), OHT-induced PU.1-ERT2 activation extended HSC cell cycle length (Fig. 1 C) and reprogrammed megakaryocyte-erythrocyte (MegE) progenitors to the granulocyte-monocyte (GM) lineage (Fig. 1, D–F; and Fig. S1 D). Thus, the inducible PU.1-ERT2 protein was expressed and functional in the HSPC compartments analyzed here.

PU.1 up-regulation is a consequence of HSPC differentiation without direct fast autoregulation

To quantify direct fast PU.1 autoregulation dynamics, we cultured HSCs from PYGCPU.1-ERT2 mice either with OHT to activate PU.1-ERT2 or with TNFα, which directly induces PU.1 expression in HSPCs (Etzrodt et al., 2019). Direct autoregulation was reported to increase a TF’s own mRNA and protein production as early as 3 h (Maeda and Sano, 2006; Bouchoucha et al., 2013; Alon, 2007). Based on gene and protein length, we expect transcription to post-translational modifications of PU.1
to occur in <1 h (Shamir et al., 2016). We therefore expected PU.1eYFP up-regulation within hours after PU.1-ERT2 activation. We quantified PU.1eYFP levels noninvasively by time-lapse imaging and single-cell tracking (Fig. 2 A). As expected, TNFα addition rapidly up-regulated PU.1eYFP expression as early as 3 h. However, surprisingly, we could not detect an increase in endogenous PU.1eYFP levels upon PU.1-ERT2 activation (Fig. 2, B–D). This suggests that PU.1 does not directly regulate its own expression in HSCs.

This was confirmed by immunostaining of WT PU.1 expression in PU.1-ERT2 HSCs (without the PYGC knock-ins) 12 h after TNFα or OHT stimulation. While TNFα stimulation induced PU.1 up-regulation, activated PU.1-ERT2 did not (Fig. S1 E).

To rule out a nonspecific increase in enhanced YFP (eYFP) expression or fluorescence by TNFα stimulation, we quantified HSCs expressing a GATA2Venus fusion from the endogenous Gata2 locus (Ahmed et al., 2020). Different from PU.1eYFP, TNFα stimulation did not increase GATA2Venus fluorescence (Fig. S1 F).

To ask whether PU.1 up-regulation occurs indirectly longer after PU.1 activation, we cultured P10C–PU.1-ERT2 HSCs ± OHT and quantified PU.1eYFP and CD16/32 expression over several days. During myeloid HSC differentiation, PU.1 is up-regulated, followed by onset of CD16/32 expression, a direct PU.1 target gene (Spooner et al., 2009), reporting GM lineage commitment (Fig. 2, E–F; and Fig. S1, B and C; Akashi et al., 2000; Hoppe et al., 2016; Strasser et al., 2018). Without PU.1-ERT2 activation, we observed PU.1eYFP up-regulation after approximately 3–4 d, later followed by CD16/32 onset as expected. In contrast, CD16/32 up-regulation started as early as 18 h after PU.1-ERT2 activation but, importantly, without prior PU.1eYFP up-regulation (Fig. 2, E–F; and Fig. S1, B and C). Thus, while the PU.1 target CD16/32 is induced by PU.1-ERT2 activation, further confirming its functionality, we again did not find direct PU.1 autoregulation. Approximately 2 d after PU.1-ERT2 activation, we could finally observe PU.1eYFP up-regulation (Fig. 2, E and F). While this up-regulation was earlier than without PU.1-ERT2 activation, it was much slower than that of the PU.1 target CD16/32 and slower than expected for direct autoregulation (Maeda and Sano, 2006; Bouchouicha et al., 2013; Alon, 2007; Etzrodt et al., 2019). PU.1eYFP was up-regulated also at day 3 of MegE progenitor to GM lineage reprogramming by PU.1-ERT2 activation (Fig. 1 E and Fig. S1 D). PU.1 up-regulation occurring days after PU.1-ERT2 activation is therefore not due to direct PU.1 autoregulation, but is instead a phenotypic consequence of the generation of differentiated cells with intrinsically higher PU.1 expression.

To rule out that the lack of direct autoregulation is caused by fusion of ERT2 to PU.1, we also overexpressed WT PU.1 in HSCs by lentiviral transduction (Fig. 2 G). Endpoint immunostaining revealed approximately two- to threefold more PU.1 protein in cells upon viral overexpression (Fig. 2 G). As expected, PU.1 overexpression induced myeloid differentiation (data not shown) but again did not increase endogenous PU.1eYFP expression (Fig. 2 H).

The PU.1 binding site at the −14-kb enhancer of Spi1 has been postulated to mediate PU.1 autoregulation. To analyze its potential role, we used PU.1ki/ki mice with a targeted disruption of the PU.1 binding site at the −14-kb URE (Staber et al., 2013). HSCs were stimulated with TNFα or IL-1β for 12 h in culture, and Spi1 mRNA was quantified by quantitative RT-PCR (qRT-PCR; Fig. S2 A). As previously reported (Staber et al., 2013), PU.1ki/ki HSCs have lower baseline Spi1 mRNA expression (Fig. S2 B), but it could still be up-regulated more than fivefold upon TNFα or IL-1β treatment. In addition, as in WT mice, Spi1 is expressed higher in GMPs (granulocyte-monocyte progenitors) than in HSCs also in PU.1ki/ki mice (Fig. S2 B). Altogether, this demonstrates that PU.1 binding to the −14-kb URE is not required for Spi1 up-regulation during HSPC differentiation and upon inflammatory signaling.

To test if PU.1 protein is required for Spi1 up-regulation or expression, we used PU.1wt/G mice with a GFP knock-in into Spi1 exon 1 (Back et al., 2004). In these mice, GFP expression replaces Spi1 mRNA expression. PU.1-deficient PU.1G/G mice die 1 d after birth. We intercrossed PU.1wt/G and harvested E17.5 (embryonic day 17.5) fetal livers (Fig. S3 A). WT, PU.1wt/G, and PU.1G/G embryos were identified by FACS quantification of HSPC GFP expression (Fig. S3 A; Kim et al., 2006; Kent et al., 2009). Interestingly, GFP is expressed even in PU.1G/G HSCs, demonstrating that PU.1 protein is not required for steady-state Spi1 expression. In addition, GFP was still up-regulated upon TNFα stimulation even in PU.1G/G fetal liver HSCs (Fig. S3, B–D).

Importantly, our conclusions are compatible with the data of all previous studies analyzing the steady-state Spi1 expression in HSC pools upon its permanent genetic manipulation. However, these studies could only observe Spi1 mRNA expression weeks to months after genetic PU.1 manipulation (e.g., in conditional PU.1 or Spi1 URE knockout mice). Direct effects of PU.1 manipulation could therefore not be distinguished from indirect effects caused by, for example, changed HSPC pool composition or novel stable HSPC cell states.

PU.1 cannot self-sustain its increased levels induced by inflammatory signaling in HSCs

A core feature of TF autoregulation is the self-stabilization of gene expression in the absence of the stimuli that first initiated the increased expression. By using a transient TNFα stimulation to induce PU.1, we asked if PU.1 could sustain its own increased expression. We cultured HSCs from P10C–reporter mice with or without TNFα. In addition, we treated HSCs with TNFα, but then withdrew it after 12 h once PU.1 levels approached their full induction in a microfluidic device (Fig. 3 A; Dettinger et al., 2020). To exclude possible cell division effects on PU.1 levels, we quantified PU.1eYFP expression only until the first division. As expected, TNFα treatment rapidly induced PU.1eYFP expression. This approximately three- to fourfold PU.1 increase is similar to GM-committed progenitors such as preGMPs (Fig. 2, C and D; Fig. 3, C–E; and Fig. 4 B). However, after withdrawing TNFα, PU.1 levels rapidly declined again (Fig. 3, B–D).

We confirmed these results by IL-1β stimulation, another PU.1 inducer differentiating HSCs to the GM lineage (Etzrodt et al., 2019; Pietras et al., 2016). Like TNFα, IL-1β rapidly induced PU.1 expression as early as 3 h in HSCs, but PU.1 levels...
Figure 2. PU.1 up-regulation is a consequence of HSPC differentiation without direct fast autoregulation. (A) Experimental scheme. HSCs from P/G G− PU.1-ERT2 mice were cultured either with TNFα or OHT followed by time-lapse imaging. (B–D) PU.1-ERT2 activation does not increase PU.1eYFP in HSCs. (B) Representative brightfield and fluorescence HSC images. Scale bar: 20 µm. (C) Single-cell traces of HSC PU.1eYFP levels. Blue traces represent means. Three independent experiments. Tracked HSCs control/+TNFα/+OHT: PYGC: 48/33/48; PYGCPU.1-ERT2: 44/43/44. (D) PU.1eYFP fold-change in HSCs ± treatment. Data relative to 0-h levels. Box and whisker plots with median PU.1 intensity. HSCs across all time points control/+TNFα/+OHT: PYGC: 2,295/2,657/2,381; PYGCPU.1-ERT2: 2,677/3,014/2,957. Three independent experiments. (E and F) PU.1-ERT2 activation rapidly induces CD16/32, but not PU.1eYFP in HSCs. (E) Representative single-cell traces of PU.1eYFP (blue) and CD16/32 (green) levels in P/G G−PU.1-ERT2 HSCs ± OHT (see also Fig. S1, B and C). Fluorescence intensities per cell. CD16/32 detection by live antibody staining. Arrows indicate up-regulation of PU.1eYFP (blue) and CD16/32 (green). (F) PU.1eYFP and CD16/32 quantification in P/G G−PU.1-ERT2 HSCs ± OHT. Box and whisker plots with median PU.1 and CD16/32 intensity per cell. Three independent experiments.
again rapidly declined after withdrawing IL-1β after 12 h (Fig. 3 E).

This demonstrates that cultured HSCs lack the molecular programs to sustain increased PU.1 levels of GM-committed cells by PU.1 autoregulation. PU.1 levels during myeloid differentiation are therefore increased and sustained by indirect feedback loops through other factors, possibly also using PU.1 expression for their effect. These results are based only on in vitro cultures, but they are in agreement with in vivo observations, where TNFα stimulation also leads to only transient Sp1 and PU.1 upregulation in HSCs (Yamashita and Passegué, 2019).

PU.1 does not directly induce its own expression in different HSPCs
To confirm the absence of PU.1 autoregulation in other hematopoietic differentiation stages, we analyzed many different hematopoietic progenitor cells (HPCs; Pronk et al., 2007; Wilson et al., 2008) from PyG-CreERT2 mice. We quantified thousands

Ahmed et al. Journal of Experimental Medicine 5 of 11 No fast PU.1 autoregulation in HSPCs in vitro https://doi.org/10.1084/jem.20202490
Figure 4. **PU.1 TF does not directly autoregulate its expression in different HPC types.** (A) Experimental scheme. P°G° PU.1-ERT° HPCs were cultured with TNFα or OHT followed by time-lapse imaging. (B) Different PU.1eYFP levels in different HPCs. Box and whisker plots with median PU.1 intensity relative to GMPs. Three independent experiments. (C) PU.1-ERT° activation does not rapidly induce endogenous PU.1eYFP levels in HPCs. PU.1eYFP fold-changes relative to 0 h. Box and whisker plots with median PU.1eYFP fold-change. Three independent experiments, >150 starting cells per condition across all replicates. Wilcoxon rank sum test; ***, P < 0.001; **, P < 0.01; *, P < 0.05. P.MegE, preMegE.
of single HPCs by time-lapse imaging (Fig. 4 A). As expected, different HPC types express different PU.1 levels before stimulation (Fig. 4, B and C). We again observed PU.1eYFP induction upon TNFa stimulation but could not find PU.1-ERT2 activation to directly up-regulate PU.1eYFP levels in any of the HPCs (Fig. 4 C).

This was true also in progenitors along the MegE differentiation pathway (MPP2, preMegEs, and MkPs), even though PU.1-ERT2 activation reprograms MegE progenitors (low PU.1) to the GM lineage (high PU.1). Although PU.1 levels increased around day 3 of reprogramming (Fig. 1, E and F; and Fig. S1 D), we again could not find any immediate PU.1 up-regulation (Fig. 4 C). Taken together, this demonstrates that PU.1 activation is not sufficient to directly regulate its own expression in HSPCs.

Previous studies have suggested a role of PU.1 autoregulation in HSC self-renewal and maintenance, mainly using permanent genetic manipulation at the Spi1 locus (Staber et al., 2013; Okuno et al., 2005). Current models assume stochastic fluctuations and PU.1 autoregulation to initiate and stabilize PU.1 up-regulation during HSC lineage commitment (Graf and Enver, 2009; Wheat et al., 2020). In contrast, our data demonstrate that HSCs do not use direct PU.1 autoregulation as a mechanism of PU.1 up-regulation during lineage commitment. Timing of protein expression onset in response to external stimuli differs between direct gene (auto)regulation (immediate effects) versus indirect feedback loops (later effects; Maeda and Sano, 2006; Bouchoucha et al., 2013; Alon, 2007). The very late PU.1 induction in our study suggests that inducing and sustaining PU.1 during HSC lineage commitment requires other inputs from signaling pathways, for example, inflammatory signaling (Pietras et al., 2016; Etzrodt et al., 2019; Chavez et al., 2021), Notch (Schroeder et al., 2003), or indirect feedback loops through other TFs, which are also affected by signaling (Dahl et al., 2003; Kurotaki et al., 2014; Laslo et al., 2006; Tyrkalska et al., 2019).

Our results are in agreement with a previous study that reported no increase in endogenous PU.1 production rates in response to exogenous PU.1 overexpression in fetal liver progenitors (Kueh et al., 2013).

Of note, our conclusions are based mostly on in vitro experiments, although they are in agreement with in vivo experimental data in our study (Fig. S2 and Fig. S3) and in previous reports (Staber et al., 2013; Fukuchi et al., 2008; Pietras et al., 2016; Etzrodt et al., 2019; Yamashita and Passegué, 2019; Chavez et al., 2021).

Thus, while PU.1 may bind to its own UREs, our data demonstrate that both PU.1 protein and its binding to its own Spi1 locus are not used to increase or sustain increased PU.1 expression during myeloid HSPC differentiation. This revises a core idea in HSPC TF regulation. As suggested previously, PU.1 may be required when initiating Spi1 transcription at the start of embryonic hematopoietic lineage specification or for its basal expression during HSC homeostasis (Fig. S2 B; Staber et al., 2013; Rosenbauer et al., 2004).

Materials and methods

Animals

Experiments were performed with 12-16-wk-old male C57BL/6 mice. The PU.1eYFPGATA1mCherryPU.1-ERT2 mouse line was generated by crossing previously described P0G2 (Hoppe et al., 2016) and PU.1-ERT2 mouse lines (Fukuchi et al., 2008). Animals were homozygous for PU.1eYFP and GATA1mCherry alleles and heterozygous for the PU.1-ERT2 transgene. PU.1wt/G mice (Back et al., 2004) were obtained from R. Glaβ (Ludwig Maximilian University of Munich, Munich, Germany), with permission from S. Chan (Institut de génétique et de biologie moléculaire et cellulaire, Strasbourg, France). PU.1ki/ki mice were a kind gift of Dr. Dan Tenen (Beth Israel, Boston, MA) to Eric M. Pietras (Staber et al., 2013). All transgenic mouse lines have been backcrossed to C57BL/6 strains for more than five generations. As a control for PU.1-ERT2 experiments, we used WT C57BL/6 animals from Janvier laboratories and/or in-house-maintained P0G2 mice. Littermates served as control animals for experiments with PU.1wt/G and PU.1ki/ki animals. All mouse experiments were approved according to the institutional guidelines of Eidgenössische Technische Hochschule Zürich and Swiss Federal Law by the Veterinary office of Canton Basel-Stadt, Switzerland (approval license no. 2655) and Institutional Animal Care and Use Committee at the University of Colorado Anschutz Medical Campus (license no. 00091).

Analysis and isolation of HSPCs

Analysis and isolation of primary HSPCs were performed according to protocols as previously described (Pronk et al., 2007; Cabezas-Wallscheid et al., 2014; Hoppe et al., 2016). Briefly, we isolated femurs, tibiae, humeri, and vertebrae from 12-16-wk-old mice and crushed them in PBS (Sigma-Aldrich) + 1 mM EDTA (Invitrogen) + 2% FCS (PAA Laboratories). The bone marrow suspension was subjected to ammonium-chloride-potassium lysis buffer (Lonz) for 2 min at room temperature. Lineage depletion of mature cells was performed by incubating the cells with biotinylated antibodies for 15 min followed by incubation with Streptavidin-conjugated magnetic beads (Roche) for 7 min and immune-magnetic depletion (Stem Cell Technologies) for 7 min. Finally, we stained the lineage-depleted bone marrow cells with primary antibodies conjugated with fluorochromes for 90 min. All steps were performed at 4°C. FACS analysis and sorting was performed on FACS ARIA III (BD Biosciences).

Lineage cocktail was as follows: biotin-conjugated B220 (eBioscience; Clone RA3-6B2), CD19 (eBioscience; Clone MB9-1), CD3e (eBioscience; Clone145-2C11), CD11b (eBioscience; Clone M1/70), Gr-1 (eBioscience; Clone RB6-8C5), and Ter119 (eBioscience; Clone Ter-119) antibodies. FACS antibodies included Sca1-Pacific blue (Biolegend; Clone D7), Sca1-PerCP-Cy5.5 (eBioscience; Clone D7), cKit-PECY7 (eBioscience; Clone 2B8), cKit-BV711 (BD Biosciences; Clone 2B8), CD135-PerCPeFL710 (eBioscience; Clone A2F10), CD34-eFL660 (eBioscience; Clone RAM34), CD34-eFL450 (eBioscience; Clone RAM34), CD48-APCeFL780 (eBioscience; Clone HM48-1), CD150-PE (Biolegend; Clone TC15-12F12.2), CD150-BV650 (Biolegend; Clone TC15-12F12.2), CD16/32-PECY7 (Biolegend; Clone 93), CD16/32-APCCY7 (Biolegend; Clone 93), CD41-BV605 (BD Biosciences; Clone MWReg30), CD41-PerCPeFL710 (eBioscience; Clone MWReg30) and CD105-APC (Biolegend; Clone M7/18). Surface marker combinations used for identification of adult HSPC.
types (Cabezas-Wallscheid et al., 2014; Pronk et al., 2007) were as follows: HSC: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁻, CD48⁻, CD135⁻, CD150^{high}; MPP1: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁺, CD48⁻, CD135^{high}, CD150^{high}; MPP2: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁺, CD48⁻, CD135^{high}, CD150^{high}; MPP3: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁺, CD48⁻, CD135^{high}, CD150^{high}; MP4: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁺, CD48⁻, CD135^{high}, CD150^{high}; PreMegE: Lineage⁻, SCA-1^{neg}, cKIT^{high}, CD34^{neg}, CD16/32^{neg}, CD105^{high}, CD150^{neg}; PreCFUE: Lineage⁻, SCA-1^{neg}, cKIT^{high}, CD34^{neg}, CD16/32^{neg}, CD105^{neg}, CD150^{high}; and GMP: Lineage⁻, SCA-1^{neg}, cKIT^{high}, CD41^{neg}, CD16/32^{high}, CD150^{neg}

Cell culture media

Cell culture media were as follows: SFEM (serum free expansion medium; Stem Cell Technologies; Catalog #09650), P/S (penicillin-streptomycin; Gibco BRL; Catalog #15140-122), FCS (PAA), SCF (stem cell factor; Peprotech; Catalog #250–03), EPO (erythropoietin; Peprotech; Catalog #101–64), TPO (thrombopoietin; Peprotech; Catalog #315–14), IL-3 (Peprotech; Catalog #213–13), IL-6 (Peprotech; Catalog #216–16), TNFα (Peprotech; Catalog #315–01A), IL-1β (Peprotech; Catalog #211–1ib), 4-OHT (Sigma-Aldrich; Catalog #H7904), and 100 ng/ml CD16/32-Alexa647 antibody (AbD Serotec; Catalog #MCA2305A647).

Single-cell liquid culture

For reprogramming of MegE progenitors, we performed single-cell sort of preMegEs in plastic-bottom 384-well plates (Greiner Bio-one) using FACS ARIA III in culture media (SFEM + 1% P/S + 10% FCS + 100 ng/ml SCF – 14, IL-3 – 13, IL-1β – 15, TNFα – 16, 4-OHT (Sigma-Aldrich; Catalog #H7904), and 100 ng/ml CD16/32-Alexa647 antibody (AbD Serotec; Catalog #MCA2305A647).

Quantitative time-lapse imaging of HSPCs

Multilineage supporting media (SFEM + 1% P/S + 10% FCS + 100 ng/ml SCF + 2 U/ml EPO + 100 ng/ml TPO + 10 ng/ml IL-3 + 10 ng/ml IL-6) with color conjugated 100 ng/ml CD16/32-Alexa Fluor 647 antibody with or without 500 nM OHT. Plates were incubated at 37°C and 5% CO₂ and imaged every day. We performed the imaging on a Nikon Eclipse Ti-E microscope as follows: HSC: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁻, CD48⁻, CD135⁻, CD150^{high}; MPP1: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁺, CD48⁻, CD135^{high}, CD150^{high}; MPP2: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁺, CD48⁻, CD135^{high}, CD150^{high}; MPP3: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁺, CD48⁻, CD135^{high}, CD150^{high}; MP4: Lineage⁻, SCA-1^{high}, cKIT^{high}, CD34⁺, CD48⁻, CD135^{high}, CD150^{high}; PreMegE: Lineage⁻, SCA-1^{neg}, cKIT^{high}, CD34^{neg}, CD16/32^{neg}, CD105^{high}, CD150^{neg}; PreCFUE: Lineage⁻, SCA-1^{neg}, cKIT^{high}, CD34^{neg}, CD16/32^{neg}, CD105^{neg}, CD150^{high}; and GMP: Lineage⁻, SCA-1^{neg}, cKIT^{high}, CD41^{neg}, CD16/32^{high}, CD150^{neg}.

Lentiviral transduction

The PU.1 reading frame was linked with miRFP703nucmem (Addgene; #80001; Okita et al., 2004) by a T2A sequence and cloned into a third-generation lentivirus vector (Loeffler et al., 2019) with the In-Fusion Cloning system (Takara Bio). Lentivirus vector carrying only miRFP703nucmem was used as a control. VSV-G pseudo-typed lentivirus production and titration have been previously described (Loeffler et al., 2019). Freshly sorted HSCs were infected with viruses in the culture medium described above and cultured for 24 h before starting the time-lapse imaging. HSCs expressing the transgene (indicated by iRFP onset) were tracked and quantified for the expression of exogenous PU.1eYFP and CD16/32 over the period of 4–5 d.

Quantitative immunostaining

HSCs were freshly sorted and seeded in 5 μg/ml CD43–coated, plastic-bottom, 384-well plates (Greiner Bio-one) in serum-free IMDM media with either TNFα or OHT or without. For endpoint immunostaining, medium was carefully removed from CD43–coated six-channel IBIDI slides after 4–5 d of HSC cultures and immediately fixed with 4% PFA (Sigma-Aldrich) for 10 min at room temperature. Immunostaining of PU.1 in HSCs was performed as previously described (Ahmed et al., 2020; Hoppe et al., 2016; Etzrodt et al., 2019). Briefly, after fixation, cells were washed three times with PBS and one time with TBS-T (Tris buffered saline and Tween) + 0.1% Triton-X. Cells were then incubated with 10 µg/ml 4-OHT (Sigma-Aldrich; Catalog #H7904), and 100 ng/ml CD16/32-Alexa647 antibody (AbD Serotec; Catalog #MCA2305A647).

qRT-PCR

Fresh HSCs and GMPs from PU.1^{ki/ki} mice (Staber et al., 2013) or cage-mate controls were double-sorted for purity in pools of 100 cells directly into a 96-well plate (Thermo Fisher Scientific; AB-2396) containing 5 µl of 2× Cells Direct Reaction Mix (Invitrogen). Additionally, pools of 100 purified LT-HSC from the
mice previously mentioned were cultured with or without 50 ng/ml TNFα or IL-1β (Peprotech) for 12 h, harvested, and resorted based on viability into 5 μl of 2× Cells Direct Reaction Mix within a 96-well plate. After mixing, the plates were sealed with foil-adhesive PCR plate covers (Thermo Fisher Scientific), centrifuged for 5 min at 500 ×g, snap-frozen, and stored at −80°C. cDNA was synthesized from RNA using Superscript III Taq polymerase (Invitrogen) and preamplified with a custom 96-target DeltaGene (Fluidigm) primer set for 18 cycles on a thermocycler (Eppendorf). Remaining primers were digested using Exonuclease-I (NEB), and samples were diluted using DNA suspension buffer (Teknova) before chip loading. Samples, primers, and SooFast SYBR Green Master Mix (Bio-Rad) were loaded on a 96.96 Dynamic Array IFC (Fluidigm) and analyzed using a BioMark HD system (Fluidigm). The data were analyzed using Fluidigm Gene Expression Software. Gene expression data from cultured HSCs were normalized to Gusb, while values from freshly sorted HSCs and GMPs were normalized to Actb. Relative changes in gene expression were identified using the ΔΔCt approach.

For Spil mRNA analysis from PU.1-ERT² mice, RNA was isolated from 3–5 × 10⁴ cells with an RNeasy Plus Micro Kit (Qiagen). DNA templates were generated from RNA with a SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen). Quantitative PCR was performed with TaqMan Gene Expression Assays (Applied Biosystems) for Spil (Mm00488140_m1 FAM) and Ubc (Mm02525934_g1 VIC, as control).

Microfluidics chip for HSC culture
We designed and manufactured double-layered polydimethylsiloxane chips as described (Dettlinger et al., 2020). Dynamic supply of media during HSC culture in the chip was performed using a Solenoid valve-controlled system with valve closing pressure varying between 1.7 and 2.5 bar. Media flow through the culture chamber was produced by pressurizing a media-containing vessel with 0.5-bar filtered air while connected to an inlet in the chip. We added Alexa Fluor 700 dye (1 μg/ml) in the TNFα media to monitor the media supply. A previously published Matlab-based graphic user interface was used to control fluidic dynamics in the chip (Dettlinger et al., 2018).

Quantification pipeline
Single-cell tracking and quantification were performed as described previously (Hoppe et al., 2016; Etzrodt et al., 2019; Loeffler et al., 2018). Briefly, we used the Tracking tool (TtT) to track cells (Hilsenbeck et al., 2016; Rieger et al., 2009; Filipczyk et al., 2018), BaSiC to normalize background fluorescence intensity (Peng et al., 2017), and FastER (Hilsenbeck et al., 2017) and qTFy (Hilsenbeck et al., 2016) to select segments in brightfield and quantify fluorescence signal of PU.1eYFP and CD16/32. Data were analyzed using custom written R scripts.

Statistical analyses
We performed all experiments in three biological and technical replicates. The error bars in this report indicate SD. Sample means with SD were derived from the indicated number of replicates. The difference between two samples or two conditions was analyzed by using two-tailed unpaired t test or Wilcoxon rank sum test with custom written codes in R.

Online supplemental material
Fig. S1 shows total PU.1 protein levels in PU.1-ERT² HSPCs, microscopic images, and quantification of PU.1eYFP, GATAImCherry, and/or CD16/32 in HSCs and during preMegE reprogramming by PU.1-ERT² activation, quantification of WT PU.1 after PU.1-ERT² activation, and the absence of nonspecific TNFα effects on YFP fluorescence. Fig. S2 shows Spil mRNA up-regulation by inflammatory signaling without the Spil −14-kb URE. Fig. S3 shows fetal liver HSC Spil expression or up-regulation by TNFα in the absence of PU.1 protein.

Acknowledgments
We are grateful to the D-BSSE animal facility and single cell unit for support.

This work was supported by Swiss National Science Foundation grant 179490 to T. Schroeder, European Molecular Biology Organization long-term fellowship to M. Etzrodt, and Eidgenössische Technische Hochschule Zürich Career Seed Grant to D. Loeffler and R01 DK19394 to E.M. Pietras. T. Schroeder and O. Hilsenbeck acknowledge financial support from SystemsX.ch.

Author contributions: Conceptualization: N. Ahmed, T. Schroeder; Methodology: N. Ahmed, P. Dettinger, L. Kunz, D. Loeffler, T. Schroeder; Investigation: N. Ahmed, J.S. Chavez, Y. Zhang, P. Dettinger, P.S. Hoppe, T. Kull, G. Camargo Ortega; Data curation: N. Ahmed; Formal analysis: N. Ahmed, J.S. Chavez; Software: D. Loeffler, M. Etzrodt, O. Hilsenbeck, T. Schroeder; Visualization: N. Ahmed, T. Schroeder; Supervision: T. Schroeder; Resources: H. Nakajima, E.M. Pietras, T. Schroeder; Writing—original draft: N. Ahmed, T. Schroeder; Writing—review and editing: N. Ahmed, T. Schroeder, E.M. Pietras, J.S. Chavez, D. Loeffler, G. Camargo Ortega, T. Kull, P.S. Hoppe; Project administration: T. Schroeder; and Funding acquisition: M. Etzrodt, D. Loeffler, T. Schroeder. All authors read and commented on the final manuscript.

Disclosures: The authors declare no competing interests exist.

Submitted: 20 November 2020
Revised: 7 May 2021
Accepted: 23 September 2021

References
Ahmed, N., L. Kunz, P.S. Hoppe, D. Loeffler, M. Etzrodt, G.C. Ortega, O. Hilsenbeck, K. Anastassiadis, and T. Schroeder. 2020. A Novel GATA2 Protein Reporter Mouse Reveals Hematopoietic Progenitor Cell Types. Stem Cell Reports. 15:326–339. https://doi.org/10.1016/j.stemcr.2020.06.008
Akashi, K., D. Traver, T. Miyamoto, and I.L. Weissman. 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 404:193–197. https://doi.org/10.1038/35004599
Alon, U. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8:450–461. https://doi.org/10.1038/nrg2102
Back, J., A. Dierich, C. Bronn, P. Kastner, and S. Chan. 2004. PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood. 103: 3615–3623. https://doi.org/10.1088/blood-2003-11-4089
Peng, T., K. Thorn, T. Schroeder, L. Wang, F.J. Theis, C. Marr, and N. Navab. 2017. A BaSiC tool for background and shading correction of optical microscopy images. Nat. Commun. 8:4836. https://doi.org/10.1038/ncomms4836

Pietras, E.M., C. Mirantes-Barbeito, S. Fong, D. Loeffler, L.V. Kovtonyuk, S. Zhang, R. Lakshmimaran, C.P. Chin, J.M. Techner, B. Will, et al. 2016. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18:607–618. https://doi.org/10.1038/ncb3346

Prötzsch, M., T. Stöhr, T. Schröder, L. Wang, F.J. Theis, C. Marr, and N. Navab. 2017. Pietras, E.M., C. Mirantes-Barbeito, S. Fong, D. Loeffler, L.V. Kovtonyuk, S. Zhang, R. Lakshmimaran, C.P. Chin, J.M. Techner, B. Will, et al. 2016. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18:607–618. https://doi.org/10.1038/ncb3346

Pronk, C.J.H., D.J. Rossi, R. Mánsson, J.L. Arteama, G.L. Norddahl, C.K.F. Chan, M. Sigvardsson, L.I. Weissman, and T. Schröder. 2016. Challenges in long-term renewal. Nat. Cell Biol.

Rosenbauer, F., K. Wagner, J.L. Kutok, H. Iwasaki, M.M. Le Beau, Y. Okuno, K. Scott, E.W., M.C. Simon, J. Anastasi, and H. Singh. 1994. Requirement of Shamirov, M., Y. Bar-On, R. Phillips, and R. Milo. 2016. SnapShot: Timescales in Cell Biology. Cell. 164:1002–1002.e1. https://doi.org/10.1016/j.cell.2016.02.058

Skyakali, S., O. Hilsenbeck, and T. Schroeder. 2016. Challenges in long-term imaging and quantification of single-cell dynamics. Nat. Biotechnol. 34:1137–1144. https://doi.org/10.1038/nbt.3713

Spitz, F., and E.E.M. Furlong. 2012. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13:613–626. https://doi.org/10.1038/nrg3207

Spooner, C.J., J.X. Cheng, E. Pujadas, P. Laslo, and H. Singh. 2009. A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity. 31:576–586. https://doi.org/10.1016/j.immuni.2009.07.011

Staber, P.B., P. Zhang, M. Ye, R.S. Welner, C. Nombela-Arrieta, C. Bach, M. Kerenyi, B.A. Bartholdy, H. Zhang, M. Alberich-Jordà, et al. 2013. Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells. Mol. Cell. 49:934–946. https://doi.org/10.1016/j.molcel.2013.01.007

Strasser, M.K., P.S. Hoppe, D. Loeffler, K.D. Kokkaliaris, T. Schroeder, F.J. Theis, and C. Marr. 2018. Lineage marker synchrony in hematopoietic genealogies refutes the PU.1/GATA1 toggle switch paradigm. Nat. Commun. 9:2697. https://doi.org/10.1038/s41467-018-05037-3

Tyrkalska, S.D., A.B. Pérez-Oliva, L. Rodríguez-Ruíz, F.J. Martínez-Morcillo, F. Alcaraz-Pérez, F.J. Martínez-Navarro, C. Lachauch, N. Ahmed, T. Schroeder, I. Pardo-Sánchez, et al. 2019. Inflammasome Regulates Hematopoiesis through Cleavage of the Master Erythroid Transcription Factor GATA1. Immunity. 51:50–63.e5. https://doi.org/10.1016/j.immuni.2019.05.005

Wheat, J.C., Y. Sella, M. Willcockson, A.I. Skoultchi, R.H. Singer, and U. Steidl. 2020. Single-molecule imaging of transcription dynamics in somatic stem cells. Nature. 583:431–436. https://doi.org/10.1038/s41586-020-2432-4

Wilson, A., E. Laurenti, G. Oser, R.C. van der Wath, W. Blanco-Bose, M. Javorski, S. Offner, C.F. Dunant, L. Eshkind, E. Bockamp, et al. 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 135:1118–1129. https://doi.org/10.1016/j.cell.2008.10.048

Yamashita, M., and E. Passegué. 2019. TNF-α Coordinates Hematopoietic Stem Cell Survival and Myeloid Regeneration. Cell Stem Cell. 25:357–372.e7. https://doi.org/10.1016/j.stem.2019.05.019

Zarnekar, M.A., J. Chen, and E.V. Rothenberg. 2010. Cell-type-specific activation and repression of PU.1 by a complex of discrete, functionally specialized cis-regulatory elements. Mol. Cell. Biol. 30:4922–4939. https://doi.org/10.1128/MCB.00354-10

Zhang, F.X., Z. Zhang, A. Iwama, K.A. Smith, B.J. Mueller, S. Narravula, B.E. Torbett, S.H. Orkin, and D.G. Tenen. 2000. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood. 96:2641–2648. https://doi.org/10.1182/blood.V96.8.2641
Figure S1. **PU.1 up-regulation upon PU.1 activation is a later consequence of differentiation and not of direct autoregulation (related to Fig 1 and Fig. 2).** (A) PU.1-ERT2 protein is expressed at a very low level compared with endogenous PU.1. Quantitative immunostaining against total PU.1 in HSPCs ± PU.1-ERT2 transgene. Box and whisker plots with median absolute PU.1 intensity. Data relative to LSK. Cell numbers HSC/LSK/PreMegE/GMP: WT: 80/4,252/2,003/4,490; PU.1-ERT2: 861/4,459/2,464/5,218. Two independent experiments. (B and C) PU.1-ERT2 activation rapidly induces CD16/32, but not PU.1eYFP expression in HSCs. PYGCPU.1-ERT2 HSCs were cultured ± OHT followed by time-lapse imaging up to 5 d. (B) Representative brightfield, PU.1eYFP, and CD16/32–Alexa Fluor 647 fluorescence images of PYGCPU.1-ERT2 HSCs ± OHT at days 0, 1, 2, 3, and 4. Scale bar: 10 µm. (C) Representative single-cell traces of PU.1eYFP (blue) and CD16/32 (green) levels in PYGCPU.1-ERT2 HSCs ± OHT. Data indicate fluorescence intensity of PU.1eYFP and CD16/32–Alexa Fluor 647 per cell. CD16/32–Alexa Fluor 647 quantification by live antibody staining. Vertical gray lines indicate cell divisions. Only one cell per generation is shown. Arrows indicate up-regulation of PU.1eYFP (blue) and CD16/32 (green). See Fig. 2, E and F. Three independent experiments. (D) Endogenous PU.1eYFP is up-regulated only during later stages of reprogramming. PYGC ± Pu.1-ERT2 PreMegEs were cultured in media ± OHT and imaged once every day. Representative images of PreMegEs from Fig. 1 E at different time intervals. Arrows in right panel indicate onset of PU.1eYFP and CD16/32–A647 at day 3 in response to PU.1-ERT2 activation (see Fig. 1, D–F). Three independent experiments. Scale bar, 20 µm. (E) PU.1-ERT2 activation does not increase endogenous WT PU.1 expression. Quantitative immunostaining against total PU.1 in PU.1-ERT2 HSCs with unmodified endogenous WT Spi1 locus. Box and whisker plots with median absolute PU.1 intensity. Data relative to HSCs at 0-h time point. Cell numbers 0 h: 494; 12 h: control/+TNFα/+OHT: 538/662/521; secondary control: 79. Four independent experiments. (F) TNFα does not nonspecifically increase YFP fluorescence. HSCs from PYGC or GATA2Venus mice were cultured ± TNFα followed by time-lapse imaging. Box and whisker plots with median YFP fluorescence intensity of PU.1eYFP and GATA2Venus HSCs. HSCs across all time points −/+/TNFα: PU.1eYFP: 2,336/2,408; GATA2Venus: 2,881/2,698. Three mice per genotype measured separately in two independent experiments. Wilcoxon rank sum test; ***, P < 0.001; *, P < 0.05. A647, CD16/32–Alexa Fluor 647; P.MegE, preMegE.
Figure S2. **PU.1 binding to its autoregulatory −14-kb URE site is not required for Spi1 mRNA up-regulation.** (A and B) PU.1 binding to −14-kb URE is not required for Spi1 mRNA up-regulation during myeloid differentiation or by inflammatory stimulation. (A) Experimental scheme. HSCs and GMPs from WT or PU.1^{−/−} mice were sorted, cultured with TNFα or IL-1β followed by qRT-PCR using Fluidigm. (B) qRT-PCR of Spi1 mRNA in freshly sorted HSCs and GMPs (left panel) and HSCs treated for 12 h with TNFα and IL-1β (right panel) from PU.1^{−/−} mice and WT littermates. mRNA levels are shown. Eight mice per genotype measured separately at the same day. Student’s t test; ***, P < 0.001.
Figure S3. **PU.1 protein is not required for fetal liver HSC Spi1 expression or up-regulation by inflammatory signaling.** (A) PU.1^{wt/}G mice with heterozygous GFP knock-in in exon 1 of Spi1 locus were crossed, and E17.5 fetal livers were harvested and genotyped by FACS (data not shown). GFP expression (transcription of Spi1 locus) in CD48⁻, CD150^{hi} HSCs from all three genotypes. Note GFP expression in homozygous PU.1 knock-out HSCs. Fetal liver numbers WT/PU.1wt/G/PU.1G/G: 2/4/3. (B–D) PU.1 protein is not required for fetal liver HSC Spi1 up-regulation by inflammatory signaling. (B) Experimental scheme. HSCs from indicated genotypes were cultured ± TNFα followed by time-lapse imaging. (C) Single-cell dynamics of PU.1(Spi1)-GFP fluorescence intensities in HSCs. Blue traces represent means. (D) Box and whisker plots with median PU.1(Spi1)-GFP intensity per cell. Three fetal livers per genotype measured separately at the same day. Cell numbers –/+TNFα: PU.1^{wt/}G: 145/152; PU.1^{G/G}: 100/86. Wilcoxon rank sum test; ***, P < 0.001; *, P < 0.05. a.u., arbitrary unit.