The light scalar $K_0^*(700)$ in the vacuum and at nonzero temperature

FRANCESCO GIACOSA1,2

1Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland
2Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main, Germany

There is mounting evidence toward the existence of a light scalar kaon $\kappa \equiv K_0^*(700)$ with quantum numbers $I(J^P) = \frac{1}{2}(0^+)$. Here, we recall the results of an effective model with both derivative and non-derivative terms in which only one scalar kaonic field is present in the Lagrangian (the standard quark-antiquark ,,seed'' state $K_0^*(1430)$): a second “companion” pole $K_0^*(700)$ emerges as a dynamically generated state. A related question is the role of $K_0^*(700)$ at nonzero T: since it is the lightest scalar strange state, one would naively expect that it is relevant for π and K multiplicities. However, a repulsion in the πK channel with $I = 3/2$ cancels its effect.

1. Introduction

The lightest scalar kaonic state listed in the PDG $[1]$ is $K_0^*(700)$ (previously called $K_0^*(800)$, see PDG 2016 $[2]$ and older versions). This state, sometimes called κ, still “needs confirmation”, but many works do find a pole in that energy region, see Ref. $[3]$ and refs. therein. The PDG reports at present the following result:

pole κ [PDG]: $(630-730) - i(260-340)$ MeV,

(hence, the pole width lies between 520-680 MeV), while the Breit-Wigner (BW) mass and widths are

BW [PDG]: $m_{\kappa,BW} = 824 \pm 30$ MeV , $\Gamma_{\kappa,BW} = 478 \pm 50$ MeV. (2)

The BW and the pole widths are compatible, but the BW mass is somewhat larger. There is however no friction, since BW and pole masses are different

* Presented at XIII Workshop on Particle Correlations and Femtoscopy, 22-26/5/2018, Krakow.
quantities which coincide only when a resonance is narrow. This is definitely not the case for the κ, which is a very broad state with a width-to-mass ratio larger than 0.5.

In a certain sense, the light κ can be regarded as the “brother” of the light $\sigma \equiv f_0(500)$ meson [1]. This state is also very broad and for a long time it was not clear if there is a pole on the complex plane. Now its existence is confirmed by many studies and the state is listed in the PDG, see also the review paper [4]. The destiny of the light κ looks somewhat similar: its final confirmation is probably just a matter of time.

Yet, a different issue is the nature of the $\kappa \equiv K^*_0(700)$ and the $\sigma \equiv f_0(500)$. According to mounting evidence, both states are not simple quark-antiquark states, but are rather four-quark objects, either in the form of a tetraquark nonet together with $a_0(980)$ and $f_0(980)$ [5] or as dynamically generated molecular-like states [6]. The κ can be then interpreted as a diquark-antidiquark state ([u,d][\bar{d},\bar{s}] ,...) and/or as $K\pi$ state (mixing among these configurations is of course possible and rather probable to occur). If κ is not $\bar{q}q$, where should be the scalar strange quarkonium? According to the quark model [7] and modern chiral approaches [8], the lightest $\bar{q}q$ kaonic state (u\bar{s},...) is the well-established $K^*_0(1430)$ (similarly, the lightest scalar/isoscalar quarkonium is the state $f_0(1370)$). The question that we review in this work is the link between the standard state $K^*_0(1430)$ and the dynamically generated state $K^*_0(700)$. We find (see Sec. 2) that the πK loops dressing $K^*_0(1430)$ generate $K^*_0(700)$ as a companion pole (a peculiar four-quark object) [9] (similarly, the $a_0(980)$ emerges as a companion pole of $a_0(1450)$ [10]).

There is however a related important question: if the light κ is existent, should it be included into thermal hadronic models [11]? At a first sight, the answer is ‘yes’. In fact, the light κ is the second-lightest state with nonzero strangeness, thus potentially relevant. Yet, a detailed analysis of the problem [12] shows that one should better not include this state into a thermal model (see Sec. 3). Namely, also repulsive channels contribute to the thermodynamics [13, 14, 15]. Just as for the $f_0(500)$ whose contribution is cancelled by $\pi\pi$ scattering with $I = 2$, the contribution of the κ is cancelled by the repulsion in πK channel with $I = 3/2$. Thus, the easiest thing to do is to neglect both the $f_0(500)$ and the $K^*_0(700)$ when studying hadronic thermal models for the late stage of heavy ion collisions.

2. The light κ in the vacuum

As a first step, we write down a Lagrangian that contains only one scalar state K^*_0, to be identified with $K^*_0(1430)$, coupled to $K\pi$ pairs:

$$\mathcal{L}_{K^*_0} = aK^*_0 K^- \pi^0 + bK^*_0 \partial_\mu K^- \partial^\mu \pi^0 + \ldots ,$$

(3)
where dots refer to other isospin channels. Note, there is no $\kappa \equiv K_0^*(700)$ into the model (yet). There are both derivative and non-derivative terms: the former naturally dominates in the context of chiral perturbation theory and also emerge from the extended Linear Sigma Model \cite{8}. The decay width reads:

$$\Gamma_{K_0^* \rightarrow K\pi}(m) = 3 \frac{|\vec{k}_1|}{8\pi m^2} \left[a - b \frac{m^2 - M_K^2 - M_\pi^2}{2} \right]^2 F_\Lambda(m), \quad (4)$$

with the vertex function $F_\Lambda(m) = \exp(-2\vec{k}_1^2/\Lambda^2)$. Here, Λ is an energy scale describing the nonlocal nature of mesons \cite{16} and \vec{k}_1 the three-momentum of one outgoing particle, M_K the kaon mass, and M_π the pion mass. (For details and phenomenology of the spectral function, see Refs. \cite{17}).

The propagator of K_0^* is given by

$$\Delta_{K_0^*}(m^2) = \left[m^2 - M_0^2 + \Pi(m^2) + i\epsilon \right]^{-1},$$

M_0 being the bare mass of $K_0^*(1430)$ and $\Pi(m^2)$ the one-loop contribution. The spectral function $d_{K_0^*}(m) = \frac{2\pi}{m^2} |\text{Im}\Delta_{K_0^*}(p^2 = m^2)|$ is the mass probability density (its integral is normalized to unity). Typically, for the “Breit-Wigner” value M_{BW} determined as $M_{BW}^2 - M_0^2 + \text{Re}\Pi(M_{BW}^2) = 0$ the spectral function has a peak’s width $\Gamma_{BW} = \text{Im}\Pi(M_{BW})/M_{BW}$. A useful approximation, valid if the width is sufficiently small, is the relativistic Breit-Wigner expression:

$$d_{K_0^*}(m) \approx d_{K_0^*}^{BW}(m) = N \left[(m^2 - M_{BW}^2)^2 + M_{BW}^2 \Gamma_{BW}^2 \right]^{-1}. \quad (5)$$

Under this approximation, there is only one pole in the complex plane at $m^2 \simeq M_{BW}^2 - iM_{BW}\Gamma_{BW}$ (hence, $m \simeq M_{BW} - i\Gamma_{BW}/2$). But, when a resonance is broad, these approximations are not anymore valid.

We now turn to πK scattering. Within our framework, the pion-kaon phase shift is given by \cite{9}:

$$\delta_{\pi K,\text{swave}}(m) = \delta_{(I=1/2, J=0)}(m) = \frac{1}{2} \arccos \left[1 - \pi \Gamma_{K_0^*}(m)d_{K_0^*}(m) \right], \quad (6)$$

where $\delta_{(I,J)}(m)$ is the general phase shift for a given isospin I and total spin J. The amplitude of the process and the phase-shift are linked by $a_{(I,J)} = (e^{i\delta_{(I,J)}(m)} - 1)/(2i)$. The parameters (a, b, M_0, Λ) entering in Eq. (3) were determined via a fit to πK phase-shift data \cite{18}, see Ref. \cite{9} for details. A very good description of data is achieved. A study of the complex plane shows an interesting fact: besides the pole corresponding to the well-known $K_0^*(1430)$ state $(1.413 \pm 0.002) - i(0.127 \pm 0.003)$ GeV, there is a second pole which correspond to $K_0^*(700)$:

$$(0.746 \pm 0.019) - i(0.262 \pm 0.014) \text{ GeV}. \quad (7)$$
The numerical value is compatible with the PDG value of Eq. (1). A large-N_c study confirms that, while the first pole tends to the real axis (and hence is a $\bar{q}q$ state), the second one moves away from it, as it is expected for a dynamically generated state.

In conclusion, the simple model of Eq. (3) is able to describe πK scattering data and naturally gives rise to the pole of $K^*_0(700)$ as a companion pole of the predominantly quark-antiquark resonance $K^*_0(1430)$.

3. The light κ at nonzero temperature

The partition function of an hadronic gas can be expressed as the sum of the contributions of stable particles and their mutual interactions:

$$\ln Z = \ln Z_{\text{pions}} + \ln Z_{\text{kaons}} + \ldots + \ln Z^{\text{int}}, \quad \ln Z^{\text{int}} = \sum_{I,J} \ln Z_{IJ}.$$ (8)

The first term $\ln Z_{\text{pions}} = 3F_1(m_\pi)$ refers to pions and $\ln Z_{\text{kaons}} = 4F_1(m)$ to kaons, where $F_1(m) = \int \frac{d^3p}{(2\pi)^3} \ln \left[1 - e^{-\sqrt{\vec{p}^2 + m^2}/T}\right]$ is the contribution of a free particle with mass m. The term $\ln Z_{IJ}$ refers to the contribution of the interactions in the (I,J) channel [13]:

$$\ln Z_{IJ} = (2I+1)(2J+1) \int_0^\infty \frac{d\delta_{IJ}(m)}{dm} F_1(m).$$ (9)

When in a certain channel a narrow resonance is present, one finds its standard contribution. For instance, for $I = J = 1$ the ρ meson is produced. In the nonrelativistic BW-limit $\frac{1}{\pi} \frac{d\delta_{1/2,0}(m)}{dm} \simeq \frac{\Gamma_\rho}{2\pi} \left(\frac{m - m_\rho}{\Gamma_\rho^2/4}\right)^{-1}$. Moreover, for $\Gamma_\rho \to 0$, $\delta(m - M_\rho)$ emerges: the contribution of a stable ρ is obtained.

However, Eq. (9) is very general and can describe also broad resonances as well as non-resonant channels, such as repulsive ones. This is important for the κ. In the resonant $I = 1/2, J = 0$ channel in which the κ is formed, one has (upon integrating up to 1 GeV) $\ln Z_{(1/2,0)} = \int_0^{1 \text{ GeV}} \frac{2dm}{\pi} \frac{d\delta_{1/2,0}(m)}{dm} F_1(m)$. This is sizable. However, one should also consider the repulsion in the $I = 3/2, J = 0$ channel. Remarkably, the sum

$$\ln Z_{(1/2,0)} + \ln Z_{(3/2,0)} = \int_0^{1 \text{ GeV}} \frac{2dm}{\pi} \frac{d\delta_{1/2,0}(m)}{dm} + \frac{4}{\pi} \frac{d\delta_{3/2,0}(m)}{dm} F_1(m)$$ (10)

is small. Namely, while $\frac{d\delta_{1/2,0}(m)}{dm} > 0$ (attraction), $\frac{4}{\pi} \frac{d\delta_{3/2,0}(m)}{dm} < 0$ (repulsion). Note: $\frac{1}{\pi} \frac{d\delta_{1/2,0}(m)}{dm} \neq d_{K^*_0}(m)$. (This would be true only in the BW limit). In conclusion, the light κ can be safely neglected in the construction of thermal hadronic models.
4. Conclusions

We have described the emergence of the state $\kappa \equiv K_0^*(700)$ as a companion pole of $K_0^*(1430)$ by using an effective hadronic model [9]. The numerical value of the pole (7) is in agreement with the present PDG estimate of Eq. (1). On the other hand, contrary to the naive expectations, the light κ is not relevant in a thermal hadronic gas. Namely, its influence on thermodynamical properties is cancelled by a repulsion in the $I = 3/2$ channel. Either one includes both the light κ and the repulsion, or -even easier- neglects both of them.

Acknowledgements: The author thanks M. Piotrowska, T. Wolkanowski, W. Broniowski, V. Begun for cooperations. Financial support from the Polish National Science Centre (NCN) through the OPUS project no. 2015/17/B/ST2/01625 is acknowledged.

REFERENCES

[1] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[2] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40 100001 (2016).
[3] S. Ishida, M. Ishida, T. Ishida, K. Takamatsu and T. Tsuru, Prog. Theor. Phys. 98 (1997) 621 [hep-ph/9705437]. D. Black, A. H. Fariborz, F. Sannino and J. Schechter, Phys. Rev. D 58 (1998) 054012. P. C. Magalhaes et al., Phys. Rev. D 84 (2011) 094001 [arXiv:1105.5120 [hep-ph]]. S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 48 (2006) 553 [hep-ph/0607133]. J. R. Pelaez, Phys. Rev. Lett. 92 (2004) 102001 [hep-ph/0309252]. J. R. Pelaez and A. Rodas, Eur. Phys. J. C 77 (2017) no.6, 431 [arXiv:1703.07661 [hep-ph]]. P. Buettiker, S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 33, 409 (2004) [hep-ph/0310283]. J. Sa Borges, J. Soares Barbosa and V. Oguri, Phys. Lett. B 412 (1997) 389. H. Q. Zheng, Z. Y. Zhou, G. Y. Qin, Z. Xiao, J. J. Wang and N. Wu, Nucl. Phys. A 733 (2004) 235 [hep-ph/0310293]. Z. Y. Zhou and H. Q. Zheng, Nucl. Phys. A 775 (2006) 212 [hep-ph/0603062]. A. H. Fariborz, E. Pourjafarabadi, S. Zarepour and S. M. Zerbajad, Phys. Rev. D 92 (2015) 113002 [arXiv:1511.01623 [hep-ph]]. S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 48 (2006) 553 [hep-ph/0607133]. M. Ablikim et al. [BES Collaboration], Phys. Lett. B 698 (2011) 183 [arXiv:1008.4489 [hep-ex]].
[4] J. R. Pelaez, Phys. Rept. 658 (2016) 1 [arXiv:1510.00653 [hep-ph]].
[5] R. L. Jaffe, Phys. Rev. D 15 (1977) 267. R. L. Jaffe, Phys. Rev. D 15 (1977) 281. R. L. Jaffe, Phys. Rept. 409 (2005) 1 [Nucl. Phys. Proc. Suppl. 142 (2005) 343]. L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 93, 212002 (2004) [arXiv:hep-ph/0407017]. F. Giacosa, Phys. Rev. D 74 (2006) 014028 [arXiv:hep-ph/0605191]. F. Giacosa, Phys. Rev. D 75 (2007) 054007 [arXiv:hep-ph/0611388]. A. H. Fariborz, R. Jora
and J. Schechter, Phys. Rev. D 72 (2005) 034001 [hep-ph/0506170]. M. Nap-suciale and S. Rodriguez, Phys. Rev. D 70 (2004) 094043 [hep-ph/0407037].

[6] E. van Beveren et al., Z. Phys. C 30, 615 (1986) [arXiv:0710.4067 [hep-ph]]. E. van Beveren, D. V. Bugg, F. Kleefeld and G. Rupp, Phys. Lett. B 641, 265 (2006) [arXiv:hep-ph/0606022]. J. R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004) [arXiv:hep-ph/0309292]. J. A. Oller and E. Oset, Nucl. Phys. A 620, 438 (1997) [arXiv:hep-ph/9702314]. J. A. Oller, E. Oset and J. R. Pelaez, Phys. Rev. D 59 (1999) 074001 [arXiv:hep-ph/9804209]. J. A. Oller, E. Oset and J. R. Peláez, Phys. Rev. Lett. 80, 3452-3455 (1998).

[7] S. Godfrey and N. Isgur, Phys. Rev. D 32 (1985) 189.

[8] D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D87, 014011 (2012). S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 90 (2014) 11, 114005 [arXiv:1408.4921 [hep-ph]].

[9] T. Wolkanowski, M. Sołtysiak and F. Giacosa, Nucl. Phys. B 909 (2016) 418 [arXiv:1512.01071 [hep-ph]].

[10] T. Wolkanowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 93 (2016) no.1, 014002 [arXiv:1508.0372 [hep-ph]]. M. Boglione and M. R. Pennington, Phys. Rev. D 65 (2002) 114010 [hep-ph/0203149].

[11] A. Andronic, P. Braun-Munzinger and J. Stachel, Nucl. Phys. A 772 (2006) 167 [nucl-th/0511071]. A. Andronic, P. Braun-Munzinger and J. Stachel, Phys. Lett. B 673 (2009) 142 [Phys. Lett. B 678 (2009) 516] [arXiv:0812.1186 [nucl-th]]. P. Alba et al, Phys. Lett. B 738 (2014) 305 [arXiv:1403.4903 [hep-ph]]. G. Torrieri et al., Comput. Phys. Commun. 167 (2005) 229 [nucl-th/0404083].

[12] W. Broniowski, F. Giacosa and V. Begun, Phys. Rev. C 92 (2015) no.3, 034905 [arXiv:1506.01260 [nucl-th]].

[13] R. Dashen, S. K. Ma and H. J. Bernstein, Phys. Rev. 187 (1969) 345. R. F. Dashen and R. Rajaraman, Phys. Rev. D 10 (1974) 694. W. Weinhold, B. L. Friman and W. Noorenberg, Acta Phys. Polon. B 27 (1996) 3249. W. Weinhold, B. Friman and W. Noorenberg, Phys. Lett. B 433 (1998) 236 [nucl-th/9710014].

[14] W. Broniowski, W. Florkowski and B. Hiller, Phys. Rev. C 68 (2003) 034911 [nucl-th/0306034].

[15] P. M. Lo, Eur. Phys. J. C 77 (2017) no.8, 533 [arXiv:1707.04940 [hep-ph]]. P. M. Lo, B. Friman, M. Marczenko, K. Redlich and C. Sasaki, Phys. Rev. C 96 (2017) no.1, 015207 [arXiv:1703.00306 [nucl-th]].

[16] J. Terning, Phys. Rev. D 44 (1991) 887. A. Faessler, T. Gutsche, M. A. Ivanov, V. E. Lyubovitskij and P. Wang, Phys. Rev. D 68 (2003) 014011 [arXiv:hep-ph/0304031]. F. Giacosa, T. Gutsche and A. Faessler, Phys. Rev. C 71, 025202 (2005) [arXiv:hep-ph/0408085].

[17] F. Giacosa and G. Pagliara, Phys. Rev. C 76 (2007) 065204 [arXiv:0707.3594 [hep-ph]]. S. Coito and F. Giacosa, [arXiv:1712.00969 [hep-ph]].

[18] D. Aston et al., Nucl. Phys. B 296 (1988) 493.