INTRODUCTION

Pseudomonas aeruginosa, a ubiquitous environmental bacterium capable of infecting a wide variety of organisms, has emerged as a leading source of nosocomial infections that display not only an intrinsic resistance to many antibiotics but also a remarkable ability to adapt and develop novel mechanisms of resistance during treatment. Moreover, its pathogenicity is mediated by multiple cell-associated and excreted factors. Type III secretion, quorum sensing, biofilm formation, and motility are the most studied factors of P. aeruginosa that impact infections (Jimenez et al., 2012). However, since almost half of the proteins encoded by the P. aeruginosa genome have not been assigned a function yet (Winsor et al., 2011), numerous additional determinants of pathogenesis, factors involved in resistance to antibacterial treatments and elements responsible for the high adaptive capacity are likely to exist. Among such putative unrecognized factors are members of the Nudix family which could have a significant impact on these processes. The P. aeruginosa genome encodes fourteen Nudix proteins: PA0336, PA0990, PA1823, PA2625, PA2769, PA3180, PA3470, PA3754, PA3755, PA4400, PA4841, PA4916, PA4971, and PA5176. Only for PA0336, PA1823, and PA4916 have the physiological consequences of their absence been investigated.
lack been described (Kujawa et al., 2017; Modzelan, Kujawa, Głąbski, Jagura-Burdzy, & Kraszewska, 2014; Okon et al., 2017).

Genes encoding Nudix hydrolases are present not only in all organisms but also found in viral genomes indicating that they are conserved evolutionarily. Nudix proteins are typically small (16–35 kDa) and have two domains. A highly conserved Nudix motif GX5EX7REUXEEXGU (where U is a hydrophobic amino acid, usually leucine, isoleucine, or valine, and X may be any amino acid) is located in the C-terminal domain and functions as the catalytic site. This motif is a part of the Nudix fold characteristic for all Nudix family members. Nudix proteins are enzymes catalyzing the hydrolysis of pyrophosphate bonds in a variety of substrates, mainly nucleoside diphosphate derivatives such as (d)NTPs and (r)NTPs (canonical and modified), nucleoside sugars, and coenzymes including NAD, NADH, and CoA (McLennan, 2006). Also, proteins from this family hydrolyze the m7GTP mRNA cap in eukaryotes and the 5′-triphosphorylated bacterial transcripts (Messing et al., 2009; Song, Bail, & Kiledjian, 2013). Apart from their catalytic activity, some Nudix proteins can act directly as transcription factors (Gao, Wei, Hassan, Li, Deng, & Feng, 2019; Rodionov et al., 2008), and some play important regulatory functions in response to stress and in pathogenesis (Alva-Pérez, Arellano-Reynoso, Hernández-Castro, & Suárez-Güemes, 2014; Modzelan et al., 2014; Okon et al., 2017; Wagley et al., 2018; Zhang, Zborníková, Rejman, & Gerdes, 2018).

To address the question of the possible involvement of Nudix proteins in pathogenesis and stress response of *P. aeruginosa*, nine single nudix mutants were constructed and their phenotypic features determined.

2 | EXPERIMENTAL PROCEDURES

2.1 | Bacterial strains, plasmids, primers, and media

The *Escherichia coli* and *P. aeruginosa* strains used in this study are listed in Table 1. Plasmids and primers are listed in Tables A1 and A2, respectively. Primer synthesis and DNA sequencing were performed at the Institute of Biochemistry and Biophysics, PAS. Bacteria were

Strain	Description	Source
Pseudomonas aeruginosa		
PAO1161	leu-r-Rif^R	Lasocki, Bartosik, Mierzejewska, Thomas, and Jagura-Burdzy (2007)
PAO1161ΔPA0990	leu-r, Rif^R, ΔPA0990	This study
PAO1161ΔPA2769	leu-r, Rif^R, ΔPA2769	This study
PAO1161ΔPA3180	leu-r, Rif^R, ΔPA3180	This study
PAO1161ΔPA3470	leu-r, Rif^R, ΔPA3470	This study
PAO1161ΔPA3754	leu-r, Rif^R, ΔPA3754	This study
PAO1161ΔPA3755	leu-r, Rif^R, ΔPA3755	This study
PAO1161ΔPA4400	leu-r, Rif^R, ΔPA4400	This study
PAO1161ΔPA4841	leu-r, Rif^R, ΔPA4841	This study
PAO1161ΔPA5176	leu-r, Rif^R, ΔPA5176	This study
Escherichia coli		
S17-1	recA pro hsdRhsdMTpRStrR ΩRPT-Tc::Mu-Km::TnT	Simon, O’Connell, Labes, and Puhler (1986)
XL1-Blue MRF’	Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac I^F proAB	Baba et al. (2006)
HB101	supE44 hsdS20(rB-mB-) recA13 ara-14 proA2 lacY1 galK2 rpsL20 (SmR) xyl-5 mtl-1	Boyer and Roulland-Dussoix (1969)
DH5_apir	supE44, ΔlacU169 (φ80 lacZΔM15), hsdR17 (rk-mk+), recA1, endA1, th1, gyrA, relA, ΔpirI lysogen	Martinez-García and de Lorenzo (2011)
OP50	Uracl auxotroph	Brenner (1974)
grown in Luria-Bertani (L-broth) medium, on L-agar (L-broth with 1.5% w/v agar) at 37°C or in minimal media M9 (Sambrook, Fritsch, & Maniatis, 1989), supplemented with thiamine (1 µg/ml). If needed, appropriate antibiotics were added to the media as follows: ampicillin, 100 µg/ml for Ap in *E. coli*; chloramphenicol, 25 µg/ml for Cm in *E. coli* and 200 µg/ml in *P. aeruginosa*; kanamycin sulfate, 50 µg/ml for Km in *E. coli* and 500 µg/ml in *P. aeruginosa*; carbenicillin disodium salt, 300 µg/ml for Cb in *P. aeruginosa*; and rifampicin, 300 µg/ml in *P. aeruginosa*.

2.2 Introduction of mutant nudix alleles into *Pseudomonas aeruginosa* PAO1161

Mutants were obtained with the use of two slightly different methods. **ΔPA0990, ΔPA3180, ΔPA3755, ΔPA4841,** and **ΔPA5176** mutants were obtained as follows: for each gene, upstream and downstream DNA fragments of about 300–500 nucleotides were amplified using chromosomal DNA as a template. These fragments were subsequently ligated to the suicide pAKE600 vector and a gentamicin cassette was ligated in between. The pAKE600 vector encodes a pMBI ori that enables it to replicate in *P. aeruginosa* (El-Sayed, Hothersall, & Thomas, 2001). *Escherichia coli* S17-1 was transformed with the obtained plasmids (pAKEΔ0990, pAKEΔ3180, PAKEΔ3755, pAKEΔ4841, or pAKEΔ5176), and the transformants were conjugated with *P. aeruginosa* PAO1161 as the recipient strain using the procedure described by Bartosik, Mierzejewska, Thomas, and Jagura-Burdzy (2009). Following removal of the integrated suicide vector, *P. aeruginosa* colonies were analyzed by RT-PCR to determine whether the allele exchange was successful and the transcript of the particular *nudix* gene was absent (Figure A1).

The **ΔPA3470, ΔPA3754,** and **ΔPA4400** mutants were obtained by the method developed by Martínez-García and de Lorenzo (2011). For each gene, upstream and downstream DNA fragments of 300–500 nucleotides in length were amplified as before and ligated to the suicide pEMG Km vector and a gentamicin cassette was ligated in between. The pEMG-derived plasmids were subsequently ligated to the suicide pEMG vector and subsequently subcloned into the pBBR plasmids (Table A1). The plasmid carrying the wild-type copy of a *nudix* gene was introduced by conjugation (see above) into the appropriate deletion mutant. Production of the protein was induced by 0.02% arabinose.

2.3 Introduction of wild-type allele into mutant strain- trans-complementation

The PA3470, PA3754, PA4400, PA4841, or PA5176 genes were PCR-amplified from the *P. aeruginosa* genome and cloned into pQE80L vectors and subsequently subcloned into the pBBR plasmids (Table A1). The plasmid carrying the wild-type copy of a *nudix* gene was introduced by conjugation (see above) into the appropriate deletion mutant. Production of the protein was induced by 0.02% arabinose.

2.4 Biofilm production assay

Overnight cultures of *P. aeruginosa* PAO1161 and mutant strains were diluted 1:100 in fresh L-broth medium in three replicates, and 100 µl of each diluted culture was transferred into 8 wells on a 96-well plate (wild-type *P. aeruginosa* PAO1161 and one mutant strain on each plate). The plates were incubated statically at 37°C for approximately 20 hr. OD600 was measured with a plate reader. The medium with planktonic bacteria was removed, the wells were washed three times with PBS, 200 µl of 0.1% crystal violet solution was added to each well and incubated for 30 min at room temperature. The solution was removed, and the wells were washed three times with water and once with PBS. The plates were dried and 100 µl of 96% ethanol was added to dissolve the bound stain. After 10 min of incubation at room temperature, the solution was mixed by pipetting, OD590 was determined, and the OD590/OD600 ratio was calculated.

2.5 Motility assays

The assays were performed according to Rashid and Kornberg (2000). Swimming plates (1% tryptone, 0.5% NaCl, 0.3% agar), swarming plates (0.8% nutrient broth, 0.5% dextrose, 0.5% agar), and twitching plates (1% bactotryptone, 0.5% NaCl, 1.5% agar) were inoculated from fresh overnight cultures on L-agar plates with a sterile toothpick and observed after incubation at 37°C for 24 hr. Motility tests were repeated at least three times.

2.6 Pyocyanin quantification

Overnight cultures of *P. aeruginosa* PAO1161 and mutant strains were inoculated 1:100 in 20 ml of L-broth and at grown in triplicate at 37°C with aeration. After 12 hr of incubation, two 7.5-ml samples were withdrawn from each culture and extracted with 4.5 ml of chloroform and then 1.5 ml 0.2 M HCl was added to the extract causing the color change. OD520 was determined and the obtained values were converted to pyocyanin content following Essar, Eberly, Hadero, and Crawford (1990). The experiment was repeated at least three times.
2.7 | Antibiotic sensitivity tests

Overnight cultures of *P. aeruginosa* PAO1161 and mutant strains were diluted 1:100 in 15 ml of fresh L-broth medium and grown at an OD_{460} of ~0.6. For each assay, 8 ml of culture was centrifuged and the pellet suspended in 8 ml of sterile 0.8% NaCl. A sample of the cell suspension was diluted and spread on L-agar plates and H_{2}O_{2} the pellet suspended in 8 ml of sterile 0.8% NaCl. A sample of the formed by untreated cells (taken as 100%).

4 of 18

2.8 | Determination of H_{2}O_{2}-induced killing

Overnight cultures of *P. aeruginosa* PAO1161 and mutant strains were diluted 1:100 in 15 ml of fresh L-broth medium and grown to an OD_{460} of ~0.6. For each assay, 8 ml of culture was centrifuged and the pellet suspended in 8 ml of sterile 0.8% NaCl. A sample of the cell suspension was diluted and spread on L-agar plates and H_{2}O_{2} (Sigma-Aldrich) was added to the remaining cells immediately to a final concentration of 200 mM. After 15 min of shaking at 37°C, the cells were transferred to the fresh L-broth medium to obtain appropriate dilutions. To determine survivability, the dilutions were spread on L-broth agar plates, incubated overnight at 37°C and colonies were counted. The survival rate was calculated as a ratio of the number of colonies formed by cells treated with H_{2}O_{2} to that of colonies formed by untreated cells (taken as 100%).

2.9 | Mutation frequency

To determine the mutation frequency of PAO1161 and mutant strains in response to fosfomycin (Fos) or streptomycin (Str), overnight culture in 10 ml L-broth was centrifuged and the pellet was suspended in 1 ml of L-broth. Portions (100 µl) from this suspension and successive dilutions were plated onto L-agar plates as well as onto L-agar plates containing 128 µg/ml fosfomycin or 300 µg/ml streptomycin. The number of colonies (CFU) was counted after incubation at 37°C for 48 hr, and the ratio between colonies on L-agar agar and antibiotic plates refers to the mutation frequency. These experiments were reproduced at least three times.

2.10 | Nematode handling

Caenorhabditis elegans wild-type strain N2 (Brenner, 1974) used in this study was obtained from the Caenorhabditis Genetics Center (GCG), University of Minnesota, USA. Worms were grown at 20°C on nematode growth medium (NGM) plates with *E. coli* HB101 as a food source. Gravid adults were synchronized by hypochloride treatment and eggs hatched in S-Basal buffer (Brenner, 1974) with vigorous shaking at 20°C. At approximately 18–20 hr, L1 larvae were harvested and grown to the L4 stage at 25°C for use in killing experiments.

2.11 | *Caenorhabditis elegans* killing assay

This method was first described by Tan et al. (1999). Overnight cultures of *P. aeruginosa* PAO1161 and mutant strains were diluted 1:100 in 15 ml of fresh L-broth medium, and 120 µl was spread on 35-mm NGM plates and incubated at 37°C for 24 hr and then for 24 hr at 25°C. Each plate was then seeded with 50 L4-stage hermaphrodite worms. Plates were incubated at 25°C and scored for live worms every 24 hr. Three or four replicates were carried out for each bacterial strain. *Escherichia coli* OP50 was used as a negative control. A worm was considered dead when it no longer responded to touch. Any worms that died as a result of getting stuck to the wall of the plate were excluded from the analysis. The experiment was repeated at least three times for each strain.

3 | RESULTS

Phenotypic characteristics of ΔPA0990, ΔPA2769, ΔPA3180, ΔPA3470, ΔPA3754, ΔPA3755, ΔPA4400, ΔPA4841, and ΔPA5176 deletion mutants.

3.1 | Growth

To examine the biological impact of Nudix hydrolases on *P. aeruginosa*, we tested the effects of individual chromosomal deletions of the PA0990, PA2769, PA3180, PA3470, PA3754, PA3755, PA4400, PA4841, or PA5176 genes on *P. aeruginosa* cells. The mutated allele in which the coding sequence was replaced with an antibiotic cassette was cloned into a suicide vector and introduced by mobilization into the *P. aeruginosa* PAO1161 strain and then incorporated into the chromosome by homologous allele exchange (Bartosik et al., 2009; Martínez-García & de Lorenzo, 2011). The effect of the insertion was verified by RT-PCR, and no wild-type transcripts of the respective genes were detected in any of the mutant strains (Figure A1).

To determine how the lack of the *nudix* genes affected growth, single bacterial colonies of each mutant were transferred into L-broth and growth was monitored. No major differences in the growth rate were observed between the mutants and the parental strain in either the exponential or stationary phase. (Figure 1a). Similarly, no growth alterations were found when the rich medium was replaced with the M9 minimal medium. The only mutant that showed slower growth was ΔPA4400 (Figure 1b). Interestingly, the amino acid sequence of the
C-terminal part of PA4400 protein is 47% identical to the consensus sequence of thiamine monophosphate synthase (Figure 1c), suggesting that PA4400 is bifunctional and apart from its nudix function plays a role in thiamine biosynthesis. Indeed, when the M9 medium was supplemented with thiamine no differences in growth were observed between the mutant and the parental strain (Figure 1d).
3.2 | Biofilm formation

Recently, it was shown that the RenU Nudix hydrolase of *Mycobacterium smegmatis* influences biofilm formation (Wolff et al., 2015). To check whether any of the *P. aeruginosa* Nudix enzymes tested had a similar effect, biofilm production by the mutants was determined. No significant differences between the mutants and the parental strain were observed indicating that none of these Nudix proteins participated in this process (Figure 2).

3.3 | Motility

It is well recognized that motility is strongly associated with bacterial adaptation and virulence. To establish whether the Nudix proteins influenced motility, each mutated strain was tested for their swimming, swarming, and twitching ability. While the swimming and twitching motility was not disturbed in the mutants (Figures A2 and A4), the lack of either PA4400 or PA5176 protein severely impaired the type IV pili–flagella–rhamnolipids-dependent swarming as compared to the wild-type cells (Figures 3 and A3).

3.4 | Pyocyanin production and antibiotic susceptibility

We have earlier shown that Nudix hydrolase PA0336 (RppH) influences pyocyanin production in *P. aeruginosa* (Kujawa et al., 2017). To check whether any other Nudix protein could be important for this process, the level of pyocyanin was determined in the *nudix* mutants. Pyocyanin content was increased in the ΔPA3470, ΔPA3754, and ΔPA4400 mutants by 43%, 58%, and 33%, respectively (Figure 4a). Interestingly, the same mutants were also more resistant to piperacillin than was the parental strain or the other *nudix* mutants. (Figure 5a). Notably, both differences werenullified following trans-complementation with the respective *nudix* gene (Figures 4b and 5b). Except for piperacillin, no significant differences in the response to other antibiotics were observed between the strains assayed (Figure A5).

3.5 | Oxidative stress and mutation frequency

As a consequence of inflammation, bacteria colonizing human airways are exposed to massive oxidative stress caused by the reactive oxygen species released by leukocytes as the first line of defense (Ciofu, Riis, Pressler, Poulsen, & Høiby, 2005). To infect humans effectively *P. aeruginosa* responds with adaptive and protective strategies against these toxic molecules. To examine whether Nudix hydrolases participate in the response to such stress, the mutated *P. aeruginosa* strains were exposed to hydrogen peroxide. The ΔPA3470, ΔPA3754, ΔPA4400, and ΔPA4841 mutants were sensitized to killing by H$_2$O$_2$ (Figure 6a), indicating that these Nudix proteins may play a protective role, for example, by hydrolyzing the oxidized dNTPs which appear in the nucleotide pool following oxidative stress. Oxidized dNTPs are highly mutagenic (Pericone et al., 2002). To establish whether indeed these Nudix hydrolase mutagenic dNTP derivatives mutation frequency was determined for the *nudix* mutants by measuring the frequency of appearance of antibiotic-resistant colonies for two types of antibiotics. Apart from ΔPA4400, no mutant tested displayed an increased spontaneous mutation frequency (Table 2), suggesting that except PA4400, the other Nudix enzymes have no antimutator activity. Interestingly, the lack of PA5176 hydrolase increases bacterial resistance to killing by H$_2$O$_2$. Comparing to the parental strain, the ΔPA3470, ΔPA3754, ΔPA4400, and ΔPA4841 mutants complemented with a wild-type copy of the respective gene were no longer sensitized to killing by H$_2$O$_2$ (Figure 6b).

Figure 3 Effect of ΔPA4400 and ΔPA5176 mutation on swarming. Swarming motility of wild-type *Pseudomonas aeruginosa* PAO1161 and ΔPA4400 or ΔPA5176 mutants was examined as described in Experimental Procedures. Representative results obtained from three independent experiments are shown.
3.6 | Virulence

To determine whether the lack of Nudix hydrolase affected bacterial virulence, we employed *C. elegans*, a widely used model eukaryotic organism to study various aspects of host-pathogen interactions (Tan, Mahajan-Miklos, & Ausubel, 1999). Only the ΔPA4400 and ΔPA5176 mutants displayed an attenuated virulence compared to the wild type, indicating that these Nudix proteins participate in *P. aeruginosa* pathogenicity (Figure 7a and Appendix Figure A6). As before, the differences in virulence between the mutants and the parental strain were lost when the mutants were trans-complemented with a wild-type copy of the respective nudix gene. Pyocyanin level (μg/ml) was determined at the stationary phase of growth. The mean value of at least three independent replicates ± SD is shown. Significant differences were indicated as *p* ≤ .05

![Figure 4](image_url)

FIGURE 4 Effect of nudix mutation on pyocyanin production. (a) Production of pyocyanin by wild-type *Pseudomonas aeruginosa* PAO1161 and nudix mutants. (b) Production of pyocyanin by nudix mutants transformed either with empty pBBR vector or pBBR carrying wild-type copy of the respective nudix gene. Pyocyanin level (μg/ml) was determined at the stationary phase of growth. The mean value of at least three independent replicates ± SD is shown. Significant differences were indicated as *p* ≤ .05

4 | DISCUSSION

Here, we present characteristics of the ΔPA0990, ΔPA2769, ΔPA3180, ΔPA3470, ΔPA3754, ΔPA3755, ΔPA4400, ΔPA4841, and ΔPA5176 nudix mutants of *P. aeruginosa*, focusing on pathogenesis and stress-related features.

The first characterized Nudix family member was the MutT protein from *E. coli*. A mutT1 mutant strain displayed a significantly higher spontaneous mutation frequency than the wild type (Treffers, Spinelli, & Belser, 1954). Expression, purification, and characterization of the gene product led to the identification of a new enzyme, a nucleoside triphosphatase with a preference for dGTP and its mutagenic oxidized derivative 8-oxo dGTP (Yanofsky, Cox, & Horn, 1966).

Functional homologues of the *E. coli* antimutator MutT protein were identified in other bacteria including *Mycobacterium tuberculosis*, *Bacillus subtilis*, *Bdellovibrio bacteriovorus*, *Vibrio parahaemolyticus*, and *Streptococcus oligofermentans* (Castellanos-Juárez et al., 2006; Patil, Sang, Govindan, & Varshney, 2013; Steyert, Messing, Amzel, Gabelli, & Piñeiro, 2008; Wagley et al., 2018; Zhou, Liu, Tong, & Dong, 2012). It was also noticed that the *PA4400* gene of *P. aeruginosa* can complement mutT- deficient strain of *E. coli* (Oliver, Sánchez, & Blázquez, 2002). Inactivation of the *P. aeruginosa* PA4400 gene increased spontaneous mutation frequency indicating that the encoded protein has an antimutator effect (Sanders, Sudhakara, & Sutton, 2009). In addition to these observations, we found here that the ΔPA4400 mutation stimulates pyocyanin production, severely impairs swarming motility, decreases virulence, and increases resistance to piperacillin. Moreover, we found possible participation of PA4400 protein in thiamine biosynthesis. This hypothesis is under investigation.

A vast majority of Nudix enzymes are not highly specific and exhibit considerable substrate ambiguity, which makes it difficult to assess their biological functions based solely on the substrate preferences established in vitro. Up to now, more than one hundred chemical compounds that are hydrolyzed by Nudix enzymes have been identified (Srouji, Xu, Park, Kirsch, & Brenner, 2017). Despite this, in numerous cases, the identity of the true physiological substrate of many of these hydrolases is uncertain (McLennan, 2013; Nguyen et al., 2016). It appears therefore that the best way to assess the biological role of a Nudix hydrolase is to study the cellular effects of its deficiency.
FIGURE 5 Effect of nudix mutation on antibiotic susceptibility. (a) Susceptibility to piperacillin of wild-type Pseudomonas aeruginosa PAO1161 and nudix mutants. (b) Susceptibility to piperacillin of ΔPA3470, ΔPA3754, and ΔPA4400 transformed either with empty pBBR vector or pBBR carrying wild-type copy of the respective nudix gene. Susceptibility to the antibiotic was determined by disk diffusion assay as described in Experimental Procedures. The mean value of at least three independent replicates ± SD is shown. Significant differences were indicated as *p ≤ .05.

FIGURE 6 Effect of nudix mutation on susceptibility to killing by H$_2$O$_2$. (a) Susceptibility to H$_2$O$_2$ of Pseudomonas aeruginosa wild-type PAO1161 and nudix mutant mutants. (b) Susceptibility to H$_2$O$_2$ of ΔPA3470, ΔPA3754, ΔPA4400, ΔPA4841, or ΔPA5176 transformed either with empty pBBR vector or pBBR carrying wild-type copy of the gene indicated. To determine survivability, the bacteria were treated with 200 mM H$_2$O$_2$ as described in Experimental Procedures. The mean value of at least three independent replicates ± SD is shown. Significant differences were indicated as *p ≤ .05.
Of the nine nudix mutants tested, four, ΔPA0990, ΔPA2769, ΔPA3470, and ΔPA3755, did not display any significant phenotypic changes compared to the parental strain. This observation suggests that either these proteins are not essential for the bacteria under the experimental conditions used or that they can be functionally substituted by other Nudix enzymes. Despite the effort, we were unable to construct the ΔPA2625 and ΔPA4971 mutants. Whether it was due to the physiological significance of these genes or to the recombinant difficulties in the respective loci remains to be recognized.

Similarly to the ΔPA4400, disabling of the PA3470, PA3754, or PA4841 genes sensitized P. aeruginosa to killing by H₂O₂, suggesting that the gene products could participate in the repair of the cytotoxic lesions caused by oxidative stress as has been shown for the P. aeruginosa PA4400 protein (Oliver et al., 2002 and Table 2 here). It has also been observed that in addition to their preferred substrates some other non-MutT Nudix hydrolases often display a residual antimutator activity (Arczewska et al., 2011; Dos Vultos, Blazquez, Rauzier, Matic, & Gicquel, 2006). However, no increase in the mutation frequency was observed in these nudix mutants indicating that the PA3470, PA3754 and PA4841 proteins have no such activity.

It is well known that cell motility and pyocyanin production are among the factors modulating P. aeruginosa virulence (Hall et al., 2016; Kazmierczak, Schniederberend, & Jain, 2015). However, the

Strain	Str⁺	Fold change	Fos⁺	Fold change
PAO1161 Rif⁺	6.26 × 10⁻¹⁰	-	2.30 × 10⁻⁶	-
PAO1161 Rif⁻ Δ0990	6.22 × 10⁻¹⁰	-	2.00 × 10⁻⁶	-
PAO1161 Rif⁻ Δ2769	5.80 × 10⁻¹⁰	-	2.52 × 10⁻⁶	-
PAO1161 Rif⁻ Δ3180	6.20 × 10⁻¹⁰	-	1.92 × 10⁻⁶	-
PAO1161 Rif⁻ Δ3470	5.95 × 10⁻¹⁰	-	2.33 × 10⁻⁶	-
PAO1161 Rif⁻ Δ3754	6.00 × 10⁻¹⁰	-	2.30 × 10⁻⁶	-
PAO1161 Rif⁻ Δ3755	5.50 × 10⁻¹⁰	-	1.88 × 10⁻⁶	-
PAO1161 Rif⁻ Δ4400	2.33 × 10⁻⁷	372	0.80 × 10⁻⁴	35
PAO1161 Rif⁻ Δ4841	6.18 × 10⁻¹⁰	-	2.20 × 10⁻⁶	-
PAO1161 Rif⁻ Δ5176	5.89 × 10⁻¹⁰	-	2.41 × 10⁻⁶	-

Of the nine nudix mutants tested, four, ΔPA0990, ΔPA2769, ΔPA3470, and ΔPA3755, did not display any significant phenotypic changes compared to the parental strain. This observation suggests that either these proteins are not essential for the bacteria under the experimental conditions used or that they can be functionally substituted by other Nudix enzymes. Despite the effort, we were unable to construct the ΔPA2625 and ΔPA4971 mutants. Whether it was due to the physiological significance of these genes or to the recombinant difficulties in the respective loci remains to be recognized.

Similarly to the ΔPA4400, disabling of the PA3470, PA3754, or PA4841 genes sensitized P. aeruginosa to killing by H₂O₂, suggesting that the gene products could participate in the repair of the cytotoxic lesions caused by oxidative stress as has been shown for the P. aeruginosa PA4400 protein (Oliver et al., 2002 and Table 2 here). It has also been observed that in addition to their preferred substrates some other non-MutT Nudix hydrolases often display a residual antimutator activity (Arczewska et al., 2011; Dos Vultos, Blazquez, Rauzier, Matic, & Gicquel, 2006). However, no increase in the mutation frequency was observed in these nudix mutants indicating that the PA3470, PA3754 and PA4841 proteins have no such activity.

It is well known that cell motility and pyocyanin production are among the factors modulating P. aeruginosa virulence (Hall et al., 2016; Kazmierczak, Schniederberend, & Jain, 2015). However, the
increased pyocyanin level in ΔPA3470, ΔPA3754, and ΔPA4400 was not accompanied by an increased virulence. Most probably, this was due to the mutant’s increased sensitivity to H₂O₂. It is well recognized that H₂O₂ production by macrophages is often the host’s first line of defense against a pathogen.

Of the mutants tested only ΔPA4400 and ΔPA5176 with severely affected swarming motility also displayed lower virulence as compared to the parental strain, which suggests that in the experimental conditions used swarming motility is the most significant determinant of P. aeruginosa pathogenicity.

Taken together, we have demonstrated that most of the Nudix hydrolases present in P. aeruginosa are important in the response to genotoxic stress and only a few play a role in bacterial pathogenicity.

ACKNOWLEDGMENTS
This work was supported by grant UMO-2014/15/B/NZ6/02562 from the National Science Center (Narodowe Centrum Nauki). Caenorhabditis elegans strain was provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440).

CONFLICT OF INTEREST
None declared.

AUTHOR CONTRIBUTIONS
Elzbieta Kraszewska: Conceptualization (lead); Funding acquisition (lead); Supervision (lead); Writing – review and editing (lead).
Joanna Drabinska: Formal analysis (equal); Investigation (equal); Methodology (equal).
Mateusz Ziecina: Data curation (equal); Investigation (equal); Methodology (equal).
Grazyna Jagura-Burdzy: Funding acquisition (supporting); Supervision (supporting); Writing – review and editing (supporting).

ETHICS STATEMENT
None required.

DATA AVAILABILITY STATEMENT
All data are provided in full in the results section of this paper.

ORCID
Elzbieta Kraszewska https://orcid.org/0000-0003-0353-6508

REFERENCES
Alva-Pérez, J., Arellano-Reynoso, B., Hernández-Castro, R., & Suárez-Güemes, F. (2014). The invA gene of Brucella melitensis is involved in intracellular invasion and is required to establish infection in a mouse model. Virulence, 5, 563–574.
Arczewska, K. D., Baumeier, C., Kassahun, H., SenGupta, T., Bjärrás, M., Kuśmierek, J. T., & Nilsen, H. (2011). Caenorhabditis elegans NDX-4 is a MutT-type enzyme that contributes to genomic stability. DNA Repair, 10, 176–187. https://doi.org/10.1016/j.dnarep.2010.10.009
Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., ... Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Molecular Systems Biology, 2, 2006.0008.
Bartosik, A. A., Glabski, K., Jecz, P., Lasocki, K., Mikosa, M., Plochocka, D., ... Jagura-Burdzy, G. (2014). Dissection of the region of the Pseudomonas aeruginosa ParA that is important for dimerization and interactions with its partner ParB. Microbiology, 160, 2406–2420. https://doi.org/10.1099/mic.0.081216-0
Bartosik, A. A., Mierzejewska, J., Thomas, C. M., & Jagura-Burdzy, G. (2009). ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. Microbiology, 155, 1080–1092. https://doi.org/10.1099/mic.0.024661-0
Boyer, H. W., & Roulland-Dussoix, D. (1969). A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology, 41, 459–472. https://doi.org/10.1016/0022-2836(69)90288-5
Brener, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.
Castellanos-Juárez, F. X., Alvarez-Alvarez, C., Yashin, R. E., Setlow, B., Setlow, P., & Pedraza-Reyes, M. (2006). YtkD and MutT protect vegetative cells but not spores of Bacillus subtilis from oxidative stress. Journal of Bacteriology, 188, 2285–2289. https://doi.org/10.1128/JB.188.6.2285-2289.2006
Ciofu, O., Riis, B., Pressler, T., Poulsen, H. E., & Høiby, N. (2005). Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrobial Agents and Chemotherapy, 49, 2276–2282. https://doi.org/10.1128/AAC.49.6.2276-2282.2005
de Lorenzo, V., & Timmis, K. N. (1994). Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived mini transposons. Methods Enzymology, 235, 386–405.
Dos Vultos, T., Blazquez, J., Rauzier, J., Matic, I., & Gicquel, B. (2006). Identification of Nudix hydrolase family members with an antimuta-
tor role in Mycobacterium tuberculosis and Mycobacterium smegmatis. Journal of Bacteriology, 188, 3159–3161. https://doi.org/10.1128/JB.188.8.3159-3161.2006
El-Sayed, A. K., Hothersall, J., & Thomas, C. M. (2001). Quorum-sensing dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology, 147, 2127–2139.
Essar, D. W., Eberly, L., Hadero, A., & Crawford, I. P. (1990). Identification and characterization of genes for a second anthra-
nilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications. Journal of Bacteriology, 172, 884–900. https://doi.org/10.1128/JB.172.2.884-900.1990
Gao, R., Wei, W., Hassan, B. H., Li, J., Deng, J., & Feng, Y. (2019). A single regulator NrtR controls bacterial NAD⁺ homeostasis via its acetylation. eLife, 8, e51603.
Hall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A., Forbes, A., Perkins, A., ... Grant, G. D. (2016). Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins, 8, E236.
Jimenez, P. N., Koch, G., Thompson, J. A., Xavier, K. B., Cool, R. H., & Quax, W. J. (2012). The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Review, 76, 46–65. https://doi.org/10.1128/MMBR.05007-11
Kazmierczak, B. I., Schniederbernd, M., & Jain, R. (2015). Cross-regulation of Pseudomonas motility systems: The intimate relationship between flagella, pili and virulence. Current Opinion in Microbiology, 28, 78–82. https://doi.org/10.1016/j.mib.2015.07.017
Kujawa, M., Lisirski, M., Ziecina, M., Drabinska, J., Modzelan, M., & Kraszewska, E. (2017). Nudix-type RNA pyrophosphohydrolase provides homeostasis of virulence factor pyocyanin and functions as a
global regulator in Pseudomonas aeruginosa. Molecular Microbiology, 106, 381–394.

Lasocki, K., Bartosik, A. A., Mierzzejewska, J., Thomas, C. A., & Jagura-Burzy, G. (2007). Deletion of the ParA (Soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. Journal of Bacteriology, 189, 5762–5772. https://doi.org/10.1128/jb.00371-07

Martínez-García, E., & de Lorenzo, V. (2011). Engineering multiplex genomic deletions in Gramnegative bacteria: Analysis of the multiresistant antibiotic profile of Pseudomonas putida KT2440. Environmental Microbiology, 13, 2702–2716. https://doi.org/10.1111/j.1462-2920.2011.02538.x

McLennan, A. G. (2006). The Nudix hydrolase superfamily. Cellular and Molecular Life Sciences, 63, 123–143. https://doi.org/10.1007/s00018-005-5386-7

McLennan, A. G. (2013). Substrate ambiguity among the Nudix hydrolases: Biologically significant, evolutionary remnant, or both? Cellular and Molecular Life Sciences, 70, 373–385. https://doi.org/10.1007/s00018-012-1210-3

Messing, S. A., Gabelli, S. B., Liu, Q., Celesnik, H., Belasco, J. G., Piñeiro, S. A., & Amzel, L. M. (2009). Structure and biological function of the RNA pyrophosphohydrolase BdRppH from Bdellovibrio bacteriovorus. Structure, 17, 472–481. https://doi.org/10.1016/j.str.2008.12.022

Modzelan, M., Kujawa, M., Głąbski, K., Jagura-Burzy, G., & Kraszewska, E. (2014). NudC Nudix hydrolase from Pseudomonas syringae, but not its counterpart from Pseudomonas aeruginosa, is a novel regulator of intracellular redox balance required for growth, motility and biofilm formation. Molecular Microbiology, 93, 867–882.

Nguyen, V. N., Park, A., Xu, A., Srouji, J. R., Brenner, S. E., & Kirsch, J. F. (2016). Substrate specificity characterization for eight putative Nudix hydrolases. Evaluation of criteria for substrate identifi-
cation within the Nudix family. Proteins, 84, 1810–1822. https://doi.org/10.1002/prot.25163

Onken, E., Dethlefsen, A., Peñivech, A., Barneveld, A. V., Munder, A., & Tümler, B. (2017). Key role of an ADP · ribose · dependent transcriptional regulator of NAD metabolism for fitness and virulence of Pseudomonas aeruginosa. International Journal of Medical Microbiology, 307, 83–94. https://doi.org/10.1016/j.ijmm.2016.09.007

Oliver, A., Sánchez, J. M., & Blázquez, J. (2002). Characterization of the GO system of Pseudomonas aeruginosa. FEMS Microbiology Letters, 217, 31–35.

Patil, A. G., Sang, P. B., Govindan, A., & Varshney, U. (2013). Mycobacterium tuberculosis MutT1 (Rv2985) and ADPase (Rv1700) proteins constitute a two-stage mechanism of 8-oxo-dGTP and 8-oxo-GTP detoxification and adenosine to cytidine mutation avoidance. Journal of Biological Chemistry, 288, 11252–11262.

Pericone, C. D., Bae, D., Shchepetov, M., McCool, T., Jeffrey, N., & Weise, J. N. (2002). Short-sequence tandem and nontandem DNA repeats and endogenous hydrogen peroxide production contribute to genetic instability of Streptococcus pneumoniae. Journal of Bacteriology, 184, 4392–4399. https://doi.org/10.1128/JB.184.16.4392-4399.2002

Rashid, M. H., & Kornberg, A. (2000). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 97, 4885–4890. https://doi.org/10.1073/pnas.060030097

Rodionov, D. A., De Ingeniis, J., Mancini, C., Cimadomaro, F., Zhang, H., Osterman, A. L., & Raffaelli, N. (2008). Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Research, 36, 2047–2059. https://doi.org/10.1093/nar/gkn047

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.) Cold Spring, NY: Cold Spring Harbor Laboratory Press.

Sanders, L. H., Sudhakara, J., & Sutton, M. D. (2009). The GO system prevents ROS induced mutagenesis and killing in Pseudomonas aeruginosa. FEMS Microbiology Letters, 294, 89–96.

Simon, R., O’Connell, M., Labes, M., & Puhler, A. (1986). Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. (1986). Methods in Enzymology, 118, 640–659.

Song, M. G., Baik, S., & Kiledjian, M. (2013). Multiple Nudix family proteins possess mRNA decapping activity. RNA, 19, 390–399. https://doi.org/10.1261/rna.037309.112

Srouji, J. R., Xu, A., Park, A., Kirsch, J. F., & Brenner, S. E. (2017). The evolution of function within the Nudix homology clan. Proteins, 85, 775–811. https://doi.org/10.1002/prot.25223

Steyert, S. R., Messing, S. A., Amzel, L. M., Gabelli, S. B., & Piñeiro, S. A. (2008). Identification of Bdellovibrio bacteriovorus HD100 Bd0714 as a Nudix dGTPase. Journal of Bacteriology, 190, 8215–8219. https://doi.org/10.1128/JB.01009-08

Tan, M. W., Mahajan-Miklos, S., & Ausubel, F. M. (1999). Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 96, 715–720. https://doi.org/10.1073/pnas.96.2.715

Treffers, H. P., Spinelli, V., & Belser, N. O. (1954). A factor (or Mutator Gene) influencing mutation rates in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 40, 1064–1071. https://doi.org/10.1073/pnas.40.11.1064

Wagley, S., Borne, R., Harrison, J., Baker-Austin, C., Ottaviani, D., Leoni, F., … Titball, R. W. (2018). Galleria mellonella as an infection model to investigate virulence of Vibrio parahaemolyticus. Virulence, 9, 197–207.

Winos, G. L., Lam, D. K., Fleming, L., Lo, R., Whiteside, M. D., Yu, N. Y., … Brinkman, F. S. (2011). Pseudomonas Genome Database: Improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Research, 39(Database issue), D596–D600. https://doi.org/10.1093/nar/gkw869

Wolff, K. A., de la Peña, A. H., Nguyen, H. T., Pham, T. H., Amzel, L. M., Gabelli, S. B., & Nguyen, L. (2015). A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathology, 11, e1004839.

Wong, S. M., & Mekalanos, J. J. (2000). Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 97, 10191–10196. https://doi.org/10.1073/pnas.97.18.10191

Yanofsky, C., Cox, E. C., & Horn, V. (1966). The unusual mutagenic specificity of an E. coli mutator gene. Proceedings of the National Academy of Sciences of the United States of America, 55, 274–281. https://doi.org/10.1073/pnas.55.2.274

Zhang, Y., Zborniková, E., Rejman, D., & Gerdes, K. (2018). Novel (p) ppGpp binding and metabolizing proteins of Escherichia coli. MolBio, 9, e022188-17.

Zhou, P., Liu, L., Tong, H., & Dong, X. (2012). Role of operon aaoSo-mutT in antioxidant defense in Streptococcus oligofermentans. PLoS ONE, 7, e38133. https://doi.org/10.1371/journal.pone.0038133

How to cite this article: Drabinska J, Ziecina M, Modzelan M, Jagura-Burzy G, Kraszewska E. Individual Nudix hydrolases affect diverse features of Pseudomonas aeruginosa. MicrobiologyOpen. 2020;9:e1052. https://doi.org/10.1002/mbo3.1052
APPENDIX 1

SUPPLEMENTARY EXPERIMENTAL PROCEDURES

Bacterial transformation

Competent *Escherichia coli* were prepared by the standard CaCl₂ method, and plasmid DNA was introduced by the heat shock method (Sambrook et al., 1989).

DNA manipulations

Purification of plasmids and *Pseudomonas* genomic DNA was conducted using Plasmid MiniKit and Genomic Mini Kit, respectively (Sambrook et al., 1989). The purification method, and plasmid DNA was introduced by the heat shock method conducted using Plasmid MiniKit and Genomic Mini Kit, respectively.

TABLE A1 Plasmids used in this study

Name	Relevant feature	Source
pQE−80L	oriColE1 ApR T5p lacO÷aclq His6 tag, expression vector	Qiagen
pBBR	araBADp, araC,CmR broad-host-range expression vector	Bartosik et al. (2014)
pAKE600	oriMB1 oriRK2 ApR,sacB	El-Sayed et al. (2001)
pEMG	KmR, oriRK2, lacZα with two flanking I-SceI sites	Martínez-Garcia and de Lorenzo (2011)
pRK2013	ori (ColE1) tra⁺ (RK2) KmR helper plasmid for conjugation	Martínez-Garcia and de Lorenzo (2011)
pSW-I	ApR, oriRK2, xylS, Pm → I-scel (transcriptional fusion of I-scel to Pm)	Wong and Mekalanos (2000)
pAKEΔ0999	pAKE600 derivative with 297 upstream bp (incl. first 15 bp of the gene) and 300bp downstream incl. 3 bp of PA0990 gene cloned as EcoRI-BamHI fragment separated by GmR gene cloned into PstI site	This study
pAKEΔ2769	pAKE600 derivative with 368 bp upstream (incl. first 6 bp of the gene) and 249 bp downstream incl. 7 bp of PA2769 gene cloned as EcoRI-BamHI fragment separated by GmR gene cloned into PstI site	This study
pAKEΔ3180	pAKE600 derivative with 300 bp upstream (incl. first 15 bp of the gene) and 351 bp downstream incl. last 3 bp of PA3180 gene cloned as EcoRI-BamHI fragment separated by GmR gene cloned into PstI site	This study
pEMGΔ3470	pEMG derivative with 320 bp upstream (incl. first 15 bp of the gene) and the last 435 bp downstream incl. 7 bp of PA3470 gene cloned as EcoRI-BamHI fragment separated by GmR gene cloned into PstI site	This study
pEMGΔ3754	pEMG derivative with 446 bp upstream (incl. first 9 bp of the gene.) and the 369 bp downstream incl. 9 bp of PA3754 gene cloned as EcoRI-BamHI fragment separated by GmR gene cloned into XbaI site	This study
pAKEΔ3755	pAKE600 derivative with 305 bp upstream (incl. 6 first bp of the gene) and 297 bp downstream incl. 3 bp of PA3755 gene cloned as EcoRI-BamHI fragment separated by GmR gene cloned into PstI site	This study
pEMGΔ4400	pEMG derivative with 302 bp upstream (incl. first 3 bp of the gene) and the 317 bp downstream incl. 9 bp of PA4400 gene cloned as EcoRI-BamHI fragment separated by GmR gene cloned into XbaI site	This study
pEMGΔ4841	pEMG derivative with 301 bp upstream (first 3 bp of the gene) and 301 bp incl. 12 bp of PA4841 gene cloned as EcoRI-BamHI fragment separated by GmRgene cloned into KpnI site	This study
pAKEΔ5176	pAKE600 derivative with 327 bp upstream (first 3 bp of the gene) and 300 bp downstream incl. 50 bp of PA5176 gene cloned as EcoRI-BamHI fragment separated by GmR gene cloned into PstI site	This study
pQE3470	pQE-80L derivative with PA3470 cloned into BamHI-PstI site of the vector	This study
pQE3754	pQE-80L derivative with PA3754 cloned into BamHI-PstI site of the vector	This study
pQE3755	pQE-80L derivative with PA3755 cloned into BamHI-PstI site of the vector	This study
pQE4400	pQE-80L derivative with PA4400 cloned into BamHI-PstI site of the vector	This study
pQE4841	pQE-80L derivative with PA4841 cloned into BamHI-PstI site of the vector	This study
pQE5176	pQE-80L derivative with PA5176 cloned into BamHI-PstI site of the vector	This study
pBBR3470	pBBR derivative with His₆-tag-PA3470 cloned into BamHI-PstI site of the vector	This study
pBBR3754	pBBR derivative with His₆-tag-PA3754 cloned into EcoRI-SacI site of the vector	This study
pBBR3755	pBBR derivative with His₆-tag-PA3755 cloned into EcoRI-SacI site of the vector	This study
pBBR4400	pBBR derivative with His₆-tag-PA4400 cloned into EcoRI-SacI site of the vector	This study
pBBR4841	pBBR derivative with His₆-tag-PA4841 cloned into EcoRI-SacI site of the vector	This study
pBBR5176	pBBR derivative with His₆-tag-PA5176 cloned into EcoRI-SacI site of the vector	This study
TABLE A2 Primers used in this study

Name	Sequence 5’ → 3’	Restriction enzyme if used (underlined)	Usage
RT0990F	CCGTCTTCTGGAAATTTGACT	RT-PCR analysis	
RT0990R	CCGAAGGCTCAAGTTCTCG	RT-PCR analysis	
RT2625F	CTCAGGCCGCTACCGCCAT	RT-PCR analysis	
RT2625R	AGTTCTCAGGCTGGCTGCA	RT-PCR analysis	
RT2769F	TGTATCTGGCCGAGCCAGAAG	RT-PCR analysis	
RT2769R	CCGCCCTAAGACGCTTAC	RT-PCR analysis	
RT3180F	AACCTCTATCGGATGCCGAG	RT-PCR analysis	
RT3180R	ATGCGCATATTGCTGCA	RT-PCR analysis	
RT3470F	GCACTCAGGCTCCATTC	RT-PCR analysis	
RT3470R	GAGATTGTCGGCTGCTGCTG	RT-PCR analysis	
RT3754F	GCGCTACTTCCGGACCTC	RT-PCR analysis	
RT3754R	TTTGACGAACTCGACATGAC	RT-PCR analysis	
RT3755F	ATGGAGAACGCGGACGACGAC	RT-PCR analysis	
RT3755R	GGAATCTCGGTCCATTC	RT-PCR analysis	
RT4400F	AGTGGAGTTCGTCAG	RT-PCR analysis	
RT4400R	GCCGAAGCAGGACGCCGAG	RT-PCR analysis	
RT4841F	GCCCGGGATCCGGACGACGAC	RT-PCR analysis	
RT4841R	GATAGCGCTCGCCTTCGAC	RT-PCR analysis	
RT4971F	GCTTCCGTGGCTTCTGATC	RT-PCR analysis	
RT4971R	GGTGGGCGAGCTTTGGCATA	RT-PCR analysis	
RT5176F	GAGTTGCAACTCCGGCTCC	RT-PCR analysis	
RT5176R	CTGCGGAAGCAGACGACGAC	RT-PCR analysis	
Δ0990-F1	CCGGAAATTCTCTTCTACCTGGAATGCT	EcoRI Mutant construction	
Δ0990-R1	AACTCGACGCTGAGCCGATGAC	PstI Mutant construction	
Δ0990-F2	AACTGCAGCTAGCCCAGGACCTC	PstI Mutant construction	
Δ0990-R2	CCGGATCCCTAGGACGAGCTGAC	BamHI Mutant construction	
Δ2625-F1	CGGGATTCGAGGATGTCGAC	EcoRI Mutant construction	
Δ2625-R1	AACTCGACGCTCCATGTGAC	PstI Mutant construction	
Δ2625-F2	AACTCGACGCTCCATGTGAC	PstI Mutant construction	
Δ2625-R2	CGGGATTCGAGGATGTCGAC	BamHI Mutant construction	
Δ2769-F1	CCGGATTCATTATCCCTGCAAACCTGAG	EcoRI Mutant construction	
Δ2769-R1	AACTCGAGCAGGATGTCGAC	PstI Mutant construction	
Δ2769-F2	AACTCGAGCAGGATGTCGAC	PstI Mutant construction	
Δ2769-R2	CGGGATTCCTGAGGATGTCGAC	BamHI Mutant construction	
Δ3180-F1	CCGGATTCCTTCAAGCTGTTCG	EcoRI Mutant construction	
Δ3180-R1	AACTCGACGAGGATGTCGAC	PstI Mutant construction	
Δ3180-F2	AACTGCAGGACGAGGATGTCGAC	PstI Mutant construction	
Δ3180-R2	CCGGATTCCTTGAGGATGTCG	BamHI Mutant construction	
Δ3470-F1	CCGGATTCAGGGGATGTCGAC	EcoRI Mutant construction	
Δ3470-R1	AACTCGACGAGGATGTCGAC	PstI Mutant construction	
Δ3470-F2	AACTGCAGGACGAGGATGTCGAC	PstI Mutant construction	
Δ3470-R2	CCGGATTCCTGAGGATGTCG	BamHI Mutant construction	
Δ3574-F1	CCGGATTCAGGGGATGTCGAC	EcoRI Mutant construction	
Δ3574-R1	TATCTAGAGCAGTTCAGACTGCGG	XbaI Mutant construction	
Name	Sequence 5′ → 3′	Restriction enzyme if used (underlined)	Usage
--------------	-----------------	--------------------------------------	----------------------------
Δ3754-F2	TCTCTAGACTGAGTTGACCGACGG	XbaI	Mutant construction
Δ3754-R2	AGGGATCCGTACGTCGGACGCTTC	BamHI	Mutant construction
Δ3755-F1	CGGAATCTCAGGTGAGCAAAACC	EcoRI	Mutant construction
Δ3755-R1	GAGGGATCCGTACGTCGGACGCTTC	PstI	Mutant construction
Δ3755-F2	AACTCGAGTGAACCTGGCGCG	PstI	Mutant construction
Δ3755-R2	CGGAATCTCAGGTGAGCAAAACC	BamHI	Mutant construction
Δ4400-F1	CGGAATCTCAGGTGAGCAAAACC	EcoRI	Mutant construction
Δ4400-R1	GCTCTAGACGGAACGATCTTC	XbaI	Mutant construction
Δ4400-F2	GCTCTAGACGGAACGATCTTC	XbaI	Mutant construction
Δ4400-R2	ATGGATCCCGGCCCCGCTGAA	BamHI	Mutant construction
Δ4841-F1	CGGAATCTGTTGCTGAGATCGAC	EcoRI	Mutant construction
Δ4841-R1	GGGATCCATGGGTCAGCCATC	KpnI	Mutant construction
Δ4841-F2	GGGATCCATGGGTCAGCCATC	KpnI	Mutant construction
Δ4841-R2	CGGAATCTCAGGTGAGCAAAACC	BamHI	Mutant construction
Δ4971-F1	CGGAATCTCAGGTGAGCAAAACC	EcoRI	Mutant construction
Δ4971-R1	TATCTAGAGTTTCCGACATC	XbaI	Mutant construction
Δ4971-F2	TATCTAGAGTTTCCGACATC	XbaI	Mutant construction
Δ4971-R2	CGGAATCTCAGGTGAGCAAAACC	BamHI	Mutant construction
Δ5176-F1	CGGAATCTCAGGTGAGCAAAACC	EcoRI	Mutant construction
Δ5176-R1	AACTCGAGTGAACCTGGCGACG	PstI	Mutant construction
Δ5176-F2	AACTCGAGTGAACCTGGCGACG	PstI	Mutant construction
Δ5176-R2	CGGAATCTCAGGTGAGCAAAACC	BamHI	Mutant construction
gentxbaF	GCTCTAGAATTTAGTACGCAAGCA	XbaI	Mutant construction
gentxbaR	GCTCTAGAATTTAGTACGCAAGCA	XbaI	Mutant construction
gentpstF	ATCTCGAGATGGTACGCAAGCA	PstI	Mutant construction
gentpstR	ATCTCGAGATGGTACGCAAGCA	PstI	Mutant construction
gentkpnF	ATCTTCAGTCTAGTGCCGCG	KpnI	Mutant construction
gentkpnR	ATCTTCAGTCTAGTGCCGCG	KpnI	Mutant construction
QE3470F	TAAATCCACGCAAAACCTCTGTG	BamHI	Mutation complementation
QE3470R	GGGATCCATGGGTCAGCCATC	PstI	Mutation complementation
QE3754F	TAAATCCACGCAAAACCTCTGTG	BamHI	Mutation complementation
QE3754R	GGGATCCATGGGTCAGCCATC	PstI	Mutation complementation
QE3755F	CCGGAATCTCAGGTGAGCAAAACC	BamHI	Mutation complementation
QE3755R	AAGAAAGCTCTTACGTCCTTTTATAGGAAGC	HindIII	Mutation complementation
QE4400F	CCGGAATCTCAGGTGAGCAAAACC	BamHI	Mutation complementation
QE4400R	AAGAAAGCTCTTACGTCCTTTTATAGGAAGC	HindIII	Mutation complementation
QE4841F	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE4841R	CCGGAATCTCAGGTGAGCAAAACC	BamHI	Mutation complementation
QE5176F	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	AAGAAAGCTCTTACGTCCTTTTATAGGAAGC	HindIII	Mutation complementation
QE5176R	AAGAAAGCTCTTACGTCCTTTTATAGGAAGC	HindIII	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QE5176R	ATGGATCCATGGGTCAGCCATC	BamHI	Mutation complementation
QECcoF	CCGGAATTTGAGGATAGTCAGCAACCATC	EcoRI	Mutation complementation
BBR3470R	CCGGAATCTCAGGGACCAGTACGTCG	SacI	Mutation complementation
BBR3754R	CCGGAATCTCAGGGACCAGTACGTCG	SacI	Mutation complementation
BBR3755R	CCGGAATCTCAGGGACCAGTACGTCG	SacI	Mutation complementation
BBR3755R	CCGGAATCTCAGGGACCAGTACGTCG	SacI	Mutation complementation

(Calendar table continuation)
were identified by agarose gel electrophoresis. The primers are listed in Table A2.

RNA isolation and RT-PCR

RNA was isolated with the use of Total RNA Zol-Out™ Kit (A&A Biotechnology) and genomic DNA was removed with the use of the Clean-UP RNA Concentrator kit (A&A Biotechnology), according to the manufacturer’s instructions. The RT-PCR reaction was performed with the use of the QuantiTect® Reverse transcription Kit (Qiagen) according to the manufacturer’s instructions. A reaction without the addition of reverse transcriptase was prepared for negative control. RNA isolated from wild-type *P. aeruginosa* PAO1161RifR was used as a positive control.
FIGURE A2 Swimming motility of *Pseudomonas aeruginosa* PAO1161 wild type and mutant strains, tested as described under Experimental Procedures

FIGURE A3 Swarming motility of *Pseudomonas aeruginosa* PAO1161 wild type and mutant strains. Tested as described under Experimental Procedures
FIGURE A4 Twitching motility of *Pseudomonas aeruginosa*
PAO1161 wild type and mutant strains. Tested as described under Experimental Procedures
FIGURE A5 Antibiotics susceptibility of wild type *Pseudomonas aeruginosa* PAO1161 and nudix mutants tested with the use of disc diffusion assay as described in Experimental Procedures. CAZ10—ceftazidime (10 μg), CIP—ciprofloxacin (5 μg) CT—colistin (10 μg), IMP—imipenem (10 μg), MEM—meropenem (10 μg), PB—polymyxin B (300 μg), PRL—piperacillin (100 μg), TOB—tobramycin (10 μg)

FIGURE A6 Effect of nudix mutations on *Pseudomonas aeruginosa* virulence. *Pseudomonas aeruginosa–Caenorhabditis elegans* infection model was used to determine pathogenicity of *Pseudomonas* strains as described under Experimental Procedures. The experiment was repeated at least three times. Shown are results of the representative experiments presented as the Kaplan–Meier survival curves of *C. elegans* fed wild type PAO1161 and nudix mutant strains. The significant differences between wild type and mutant were determined by the log-rank test (**p < .0001**)

TABLE

Antibiotic	Concentration (μg)
CAZ10	10
CIP	5
CT	10
IMP	10
MEM	10
PB	300
PRL	100
TOB	10

Graph

- **PA0900**
- **PA2769**
- **PA3180**
- **PA3470**
- **PA3754**
- **PA3755**
- **PA4400**
- **PA4841**
- **PA5176**

Legend

- PAO1161
- ΔPA0900
- ΔPA2769
- ΔPA3180
- ΔPA3470
- ΔPA3754
- ΔPA3755
- ΔPA4400
- ΔPA4841
- ΔPA5176