The extremal symmetry of arithmetic simplicial complexes

Benson Farb and Amir Mohammadi

June 21, 2010

1 Introduction

Let K be a nonarchimedean local field, for example the p-adic numbers \mathbb{Q}_p ($\text{char}(K) = 0$) or the field of Laurent series over a finite field $\mathbb{F}_p((t))$ ($\text{char}(p) > 0$). Let $G = \text{PGL}_n(K)$, or more generally the K-points of any absolutely simple, connected, algebraic K-group of adjoint form.

There is a natural way to associate to each cocompact lattice Γ in G a finite simplicial complex B_Γ, as follows. Bruhat-Tits theory (see below) provides a contractible, rank K-dimensional simplicial complex X_G on which G acts by simplicial automorphisms. The lattice Γ acts properly discontinuously on X_G with quotient a simplicial complex B_Γ.

Margulis proved (see, e.g., [Ma]) that $\text{rank}_K G \geq 2$ implies that every lattice Γ in G is arithmetic. We also note that $\text{char}(K) = 0$ implies every lattice in $G(K)$ is cocompact. In this paper we explore one aspect of the theme that, since the complex B_Γ is constructed using number theory, it should have remarkable properties. Here we concentrate on the extremal nature of the symmetry of B_Γ and all of its covers.

Our first result shows that the simplicial structure of B_Γ realizes all simplicial symmetries of any simplicial complex homeomorphic to B_Γ. For any simplicial complex C we denote by $\text{Aut}(C)$ the group of simplicial automorphisms of C. We denote by $|C|$ the simplicial complex C thought of as a topological space, without remembering the simplicial structure.

*BF is supported in part by the NSF.

1If Γ has torsion, one needs to barycentrically subdivide each simplex in X_G in order to make the quotient a true (not orbi) simplicial complex.
Theorem 1.1. Let K be a nonarchimedean local field, and let G be the K-points of an absolutely simple, connected algebraic K-group of adjoint form with $\text{rank}_KG \geq 2$. Let Γ be a cocompact lattice in G, and let B_Γ be the quotient by Γ of the Bruhat-Tits building associated to G. Suppose C is any simplicial complex homeomorphic to $|B_\Gamma|$. Then there is an injective homomorphism

$$\text{Aut}(C) \rightarrow \text{Aut}(B_\Gamma).$$

Of course the simplicial structure on the space $|B_\Gamma|$ coming from the Bruhat-Tits building is not the unique simplicial structure satisfying Theorem 1.1. One can, for example, take all the top-dimensional simplices of B_Γ and subdivide them in the same way, so that the triangulation restricted to any maximal simplex gives a fixed simplicial isomorphism type. Each of these new triangulations of $|B_\Gamma|$ has automorphism group $\text{Aut}(B_\Gamma)$. We call such a simplicial structure on B_Γ an arithmetic simplicial structure.

Our main result is a rigidity theorem characterizing arithmetic simplicial structures among all simplicial structures on $|B_\Gamma|$. It gives a universal constraint on the symmetry of the universal covers of all other simplicial structures on $|B_\Gamma|$.

Theorem 1.2. Let G and Γ as in Theorem 1.1 be given. Fix a normalization of Haar measure μ on G. Then there exists a constant $N \geq 1$, depending only on the $\mu(G/\Gamma)$, with the following property: Let C be any simplicial complex homeomorphic to $|B_\Gamma|$, and let Y be the universal cover of C (which therefore inherits a Γ-equivariant simplicial structure from C). Then either:

1. $[\text{Aut}(Y) : \Gamma] < N$, so in particular $\text{Aut}(Y)$ is finitely generated, or

2. C is an arithmetic simplicial structure, and so $\text{Aut}(Y)$ is uncountable and acts transitively on chambers (simplices of maximal dimension.)

Remarks.

1. Theorem 1.2 is not true in the case that $\text{rank}_KG = 1$, i.e. when X_G is a tree. An example is given in Section 4. The obstruction in this case is the fact that $\text{Aut}(X_G)$ is “far” from $G.$
2. One is tempted to weaken the hypotheses of Theorem 1.1 and Theorem 1.2, for example to only require that C is homotopy equivalent to $|B_{\Gamma}|$ rather than homeomorphic to it. However the conclusion of each theorem is not true in this case, even for C of the same dimension as $|B_{\Gamma}|$. One can see this by taking, for any given $n \geq 2$, a triangulation of the closed disk D^2 by dividing D^2 into n equal sectors based at the origin. This triangulation is invariant by the $2\pi/n$ rotation. Now let C be the complex obtained by attaching the central vertex of D^2 to some vertex of B_{Γ}. It is clear that Aut(C) contains $\mathbb{Z}/n\mathbb{Z}$. Since $n \geq 2$ was arbitrary, the conclusions both of Theorem 1.1 and of Theorem 1.2 do not hold.

3. Theorem 1.1 (resp. Theorem 1.2) is a simplicial analogue of a theorem of Farb-Weinberger from Riemannian geometry, given in [FW1] (resp. [FW2]). However, the mechanism giving rigidity is different here. Further, the type of generality achieved in the theorems in [FW2] seems not to be possible in the simplicial setting, since counterexamples abound, as the last remark indicates.

One consequence of Theorem 1.2 is the following. Suppose B_{Γ} has more than one top-dimensional simplex; this can always be achieved by passing to a finite index subgroup of Γ. Now build a new triangulation C of $|B_{\Gamma}|$ by subdividing the top-dimensional simplices of B_{Γ}, so that the resulting triangulations on some pair of such simplices are not simplicially isomorphic. Then Theorem 1.2 implies that $[\text{Aut}(Y) : \Gamma] < \infty$.

Another way to think of this is that, if we paint the (open) top-dimensional simplices of B_{Γ} with colors, and if we use at least 2 distinct colors, the group of color-preserving automorphisms of the universal cover of B_{Γ} is discrete, and contains Γ as a subgroup of finite index. This result is actually an ingredient in the proof of Theorem 1.2, and so is proven first. Such a result does not hold when rank$_K G = 1$. We give explicit examples of this failure in Section 4.

Outline of paper. After giving some preliminary material on Euclidean buildings in §2 we prove the main results in §3. In §4 we give an explicit example of a B_{Γ} satisfying the hypotheses of Theorem 1.1 and Theorem 1.2 and a non-example in rank one case.

Standing assumption. All simplicial structures considered in this paper are assumed to be locally finite.
Acknowledgments. We would like to thank K. Wortman and S. Weinberger for many helpful comments.

2 Geometry and automorphisms of Euclidean buildings

We now recall some facts from Bruhat-Tits theory which will be needed in this paper. We refer the reader to [AB], [We] and to [Ti2] for these facts and definitions of terms.

2.1 The building X_G

Let K be a nonarchimedean local field. Let G be the adjoint form of an absolutely almost simple, connected, simply connected algebraic group defined over K. Let $G = G(K)$.

The Bruhat-Tits theory associates a contractible simplicial complex X_G to G on which G acts by simplicial automorphisms. This is easiest to describe if we work with the simply connected cover of G. So let \tilde{G} be the simply connected cover of G and let $\tilde{G} = \tilde{G}(K)$.

Let $r := \text{rank}_K(G)$

An Iwahori subgroup I of \tilde{G} is the normalizer of a Sylow pro-p-subgroup of \tilde{G}. These subgroups are conjugate to each other since the Sylow subgroups are conjugate. The Euclidean (or affine) building X_G associated with G is a simplicial complex defined as follows. The vertices of X_G correspond bijectively with maximal compact subgroups of \tilde{G}. A collection of maximal compact subgroups gives a simplex in X_G precisely when their intersection contains an Iwahori subgroup. X_G is a contractible simplicial complex whose dimension equals $\text{rank}_K(G)$. In particular, if $\text{rank}_K(G) = 1$ then X_G is a tree.

We will need the following properties of X_G.

1. X_G is thick; that is, any i-simplex of X_G with $i < r := \text{dim}(X_G)$ is contained in at least three $(i+1)$-simplices.

2. Given any apartment (maximal flat) A in X_G, any $(r-1)$-dimensional simplex lying in A is contained in precisely two r-simplices of A.

3. Any two simplices of X_G are contained in a common apartment.
2.2 The action of \(G \)

The groups \(\tilde{G} \) and \(G \) act simplicially on \(X_G \) by conjugation. The stabilizer in \(\tilde{G} \) of any vertex of \(X_G \) is a maximal compact subgroup of \(\tilde{G} \). There are \(r + 1 \) orbits of vertices of \(X_G \) under the \(\tilde{G} \)-action. In this way each vertex is given a type. The action of \(\tilde{G} \) on \(X_G \) is type-preserving, and is transitive on the set of chambers (simplexes of maximal dimension) in \(X_G \).

Let \(G^+ \) be the normal subgroup of \(G \) generated by all the unipotent radicals of \(K \)-parabolic subgroups of \(G \). The group \(G^+ \) is the image of \(\tilde{G} \) under the covering map \(\tilde{G} \to G \). For example, if \(G = \text{PGL}_n(K) \) then \(G^+ = \text{PSL}_n(K) \); see e.g. [Ma, Chapter I]. The covering map restricted to the unipotent subgroups is injective since the kernel of the covering map is the center of \(\tilde{G} \). The subgroup \(G^+ \) is cocompact in \(G \), and indeed is finite index when \(\text{char}(K) = 0 \). Further, \(G^+ \) acts by type-preserving automorphisms on \(X_G \).

Denote by \(\text{Aut}_{\text{alg}}(G) \) the group of algebraic automorphisms of \(G \). This group is the semidirect product of \(G \) with the group of automorphisms of the Dynkin diagram for (the Lie algebra corresponding to) \(G \), which is a group of order at most 2 (see [PR, Theorem 2.8]). Let \(\text{Aut}_G(K) \) denote the group of field automorphisms \(\sigma \) of \(K \) such that \(\sigma G \) and \(G \) are \(K \)-isomorphic where \(\sigma G \) is the group obtained from \(G \) by applying \(\sigma \) to the defining equations. The group \(G \) is a locally compact topological group under the topology coming from that of \(K \). We then have (see [BT]) that the group of automorphisms of \(G \) which we denote by \(\text{Aut}(G) \) is an extension of \(\text{Aut}_{\text{alg}}(G) \) by \(\text{Aut}_G(K) \) i.e. the sequence

\[
1 \to \text{Aut}_{\text{alg}}(G) \to \text{Aut}(G) \to \text{Aut}_G(K) \to 1
\]

is an exact sequence. If \(G \) is a \(K \)-split algebraic group, then \(\text{Aut}(G) = \text{Aut}_{\text{alg}}(G) \times \text{Aut}(K) \), see [Tii 5.8, 5.9, 5.10] and references there.

From the description of \(X_G \) given above, one sees that the group \(\text{Aut}(G) \) acts on the \(X_G \) by simplicial automorphisms, giving a representation

\[
\rho : \text{Aut}(G) \to \text{Aut}(X_G).
\]

The central theorem about automorphisms of buildings is the following.

Theorem 2.1 (Tits [Tii]). Assume that \(\text{rank}_K G > 1 \). Then the representation

\[
\rho : \text{Aut}(G) \to \text{Aut}(X_G)
\]

is an exact sequence.
is an isomorphism.

Note that G, which is subgroup of index at most 2 in $\text{Aut}_{\text{alg}}(G)$, is a normal subgroup of $\text{Aut}(X_G)$. The group $\text{Aut}(X_G)$ is a locally compact group with respect to the compact-open topology. This topology coincides with the topology on $\text{Aut}(X_G)$ determined by the property that the sequences of neighborhoods about the identity map correspond to sets of automorphisms that are the identity on larger and larger balls in X_G. On the other hand, the groups G and $\text{Aut}_G(K)$ inherit a topology from the topology on K. The isomorphism given in Theorem 2.1 is an isomorphism of topological groups.

2.3 Apartments and root subgroups

The apartments (maximal flats) in X_G correspond to maximal diagonalizable subgroups in \tilde{G}. Suppose S is a maximal diagonalizable subgroup of \tilde{G}, and let A be the corresponding apartment in X_G. Then S acts on A by translation. The root subgroups corresponding to S acts on X_G as follows. Any root subgroup determines a family of parallel hyperplanes in A. If u lies in the root subgroup it will fix a half-apartment of A, i.e. one component of the complement of some hyperplane P in A. Moreover, P is an intersection of apartments, and the action of the root group is transitive on the link of P (see §1.4 and §2.1 of [Ti2] or, alternatively, Proposition 18.17 of [We]). In particular we have the following.

Fact 2.2. Let G be as above. Then for any $(r - 1)$-simplex σ of X_G, and for any three r-simplices $\alpha_1, \alpha_2, \alpha_3$ having σ as their common intersection, there exists an element $\phi \in G^+$ fixing α_1 and switching α_2 and α_3.

As an example consider $G = \text{PGL}_2(\mathbb{Q}_p)$. Then X_G is a $(p + 1)$-regular tree. Let ℓ be the apartment in X_G corresponding to the diagonal group of G. In this case ℓ is a bi-infinite geodesic in X_G. Let $\ell(0)$ be the vertex corresponding to $\text{PGL}_2(\mathbb{Z}_p)$, i.e. the vertex corresponding to the standard lattice \mathbb{Z}_p^2. The geodesic ray $\ell((0, \infty))$ is a half-apartment based at $\ell(0)$. The above fact gives that there are elements u_1, \ldots, u_{p-1} in one of the corresponding root groups (more precisely u_i’s are strictly upper triangular matrices) which map the ray $\ell((-\infty, 0])$ to the other $(p - 1)$-rays based at $\ell(0)$ intersecting ℓ only at that point. These may be taken to be the representatives of nontrivial cosets in $\mathbb{Z}_p/p\mathbb{Z}_p$ if we identify the root group with the additive group \mathbb{Q}_p.

In this paper we will assume $\text{rank}_K G > 1$. Suppose Γ is a lattice in G. Then the Margulis Superrigidity Theorem, proved in positive characteristic by Venkataramana [Ve]
(see also [Ma]), implies (by an argument of Margulis) that Γ is superrigid and hence arithmetic.

3 Proving extremal symmetry

We begin by proving some lemmas and propositions that are used in the proof of both Theorem 1.1 and Theorem 1.2.

3.1 Topological (non)rigidity of X_G

The following is a kind of topological rigidity result for X_G: it gives that the topological structure of X_G remembers the simplicial structure. It is worth mentioning that in section 3.1 we only need Y to be locally compact simplicial complex homeomorphic to X_G.

Proposition 3.1. Let $f : X_G \rightarrow X_G$ be a homeomorphism. Then f maps k-dimensional simplices of X_G onto k-dimensional simplices for each $0 \leq k \leq \text{dim}(X_G)$. Hence there is a natural homomorphism

$$\psi : \text{Homeo}(X_G) \rightarrow \text{Aut}(X_G).$$

Proof. We call a point $x \in X_G$ a k-manifold point of X_G if x has some neighborhood homeomorphic to \mathbb{R}^k, and k is the maximal such number so that this is true. As mentioned above, X_G is a thick building, that is for each $k < \text{dim}(X_G)$, every k-dimensional simplex of X_G is the face of at least three $(k+1)$-dimensional simplices of X_G. From this we clearly have the following:

Let $x \in X_G$ be any point. Then x is a k-manifold point if and only if x lies in the interior of a k-simplex of X_G.

As being a k-manifold point is clearly a topological property for any fixed k, it follows that any homeomorphism $f : X_G \rightarrow X_G$ maps k-manifold points to themselves, and therefore f maps open k-simplices into open k-simplices, for each $0 \leq k \leq \text{dim}(X_G)$. Applying the same argument to f^{-1}, we see that f maps each open k-simplex of X_G homeomorphically onto an open k-simplex of X_G.

As f is a homeomorphism it preserves adjacencies between simplices, and so f induces a simplicial automorphism of X_G. This association of f to the simplicial automorphism it induces is clearly a homomorphism. ♦

Recall that Y and X_G are homeomorphic. Thus we have that

$$\text{Aut}(Y) \subseteq \text{Homeo}(Y) \approx \text{Homeo}(X_G).$$

We will denote by ι the restriction to $\text{Aut}(Y)$ of the homomorphism ψ defined in Proposition 3.1.

Lemma 3.2. Let $\text{Aut}(Y)$ and $\text{Aut}(X_G)$ be endowed with the compact-open topology. Then the homomorphism $\iota : \text{Aut}(Y) \to \text{Aut}(X_G)$ is proper and continuous.

Proof. Continuity follows from the definitions. To see that ι is proper, first note that $\text{Aut}(Y)$ is locally compact since Y is assumed to be locally finite, and that for any compact set K in $\text{Aut}(X_G)$ we have that $\iota^{-1}(K)$ is bounded. Now suppose that we are given any sequence $\varphi_n \in \text{Aut}(Y)$ such that $\{\iota(\varphi_n)\}$ converges to $\tau \in \text{Aut}(X_G)$. Then $\{\varphi_n\}$ is pre-compact in $\text{Aut}(Y)$, and for any limit point φ_∞ we have that $\iota(\varphi_\infty) = \tau$. Hence ι is a proper map. ♦

In contrast to rigidity, it is easy to see that the kernel of ψ is huge. Indeed it clearly contains the infinite product, over all maximal simplices σ, of the group of homeomorphisms of the closed $\text{dim}(X_G)$-disk which are the identity on $\partial \sigma$. On the other hand, when restricted to the subgroup $\text{Aut}(Y)$, the map ψ is injective.

Proposition 3.3. The homomorphism $\iota : \text{Aut}(Y) \to \text{Aut}(X_G)$ is injective.

Proof. Let $\varphi \in \ker(\iota)$. We will argue inductively on the dimension $k \geq 0$ that φ is the identity on the k-skeleton of Y. Since $\iota(\varphi) = \text{id}$, we get $\varphi(v) = v$ for any vertex $v \in X_G$. Now assume that φ is identity on each j-simplex of X_G for each $j < k$. Let D be any k-simplex of X_G. Since $\iota(\varphi) = \text{id}$, we have from the definition of ι that $\phi(D) \subseteq D$. By induction we have that $\phi(x) = x$ for each $x \in \partial D$.

Since Y is a locally finite complex and φ is simplicial automorphism of Y, we have that orbits of points under φ are discrete. Since D is compact, there are only m simplices
of Y intersecting D for some $m < \infty$. It follows that there exists n, depending only on m, so that $\phi^n(x) = x$ for any $x \in D$. Let $\tau := \phi|_D$.

Suppose that $\tau \not= \text{id}$. Then after raising τ to a power we can (and will) assume that τ has order p for some prime p.

Since we have a p-group $\langle \tau \rangle$ acting on a closed disk D, we can apply Smith Theory to this action. The pair $(D, \partial D)$ is of course a homology k-ball. By Smith’s Theorem (see, e.g. [Br], Theorem III.5.2), the pair $(\text{Fix}(\tau), \text{Fix}(\tau|_{\partial D}))$ is a mod-p homology r-ball for some $0 \leq r \leq k$. Since $\tau|_{\partial D} = \text{id}$ by the induction hypothesis, we have that $\text{Fix}(\tau|_{\partial D}) = \partial D$, it follows that $r = k$.

Now suppose that $\text{Fix}(\tau) \not= D$. Pick $x \in D$ in the complement of $\text{Fix}(\tau)$. Then radial projection away from x to ∂D gives a homotopy equivalence of pairs

$$(\text{Fix}(\tau), \text{Fix}(\tau|_{\partial D})) \simeq (\partial D, D).$$

But this contradicts the fact that $(\text{Fix}(\tau), \text{Fix}(\tau|_{\partial D}))$ is a mod-p homology k-disk with $k > 0$, since as such, we have

$$H_k(\text{Fix}(\tau), \text{Fix}(\tau|_{\partial D}); \mathbb{Z}/p\mathbb{Z}) \neq 0 = H_k(D, \partial D; \mathbb{Z}/p\mathbb{Z}).$$

Thus it must be that $\text{Fix}(\tau) = D$; that is, $\tau = \text{id}$. We have just proven that $\phi|_D = \text{id}$ for each k-simplex D of X_G, so by the induction on k we have $\phi = \text{id}$, as desired. ☐

3.2 The extremal symmetry of B_G

With the results from subsection 3.1 in hand, we can now prove Theorem 1.1.

Proof of Theorem 1.1. First note that any simplicial automorphism of B_G induces an automorphism of $\pi_1(B_G) = \Gamma$, well-defined up to conjugacy. We thus have a homomorphism

$$\nu : \text{Aut}(B_G) \to \text{Out}(\Gamma)$$

where $\text{Out}(\Gamma)$ is the group of *outer automorphisms* of Γ, i.e. the quotient of $\text{Aut}(\Gamma)$ by inner automorphisms.

We claim that ν is injective. Suppose $f \in \ker(\nu)$. Since B_G is aspherical and f_* acts trivially (up to conjugation) on $\pi_1(B_G)$, it follows that f is freely homotopic to the identity map. Metrize B_G so that it has the path metric induced by giving each simplex
the standard Euclidean metric; X_Γ then inherits a unique path metric making the covering $X_\Gamma \to B_\Gamma$ a local isometry.

Since f is homotopic to the identity and since B_Γ is compact, each track in this homotopy moves points of B_Γ some uniformly bounded distance D. Thus f has some lift $\tilde{f} \in \text{Aut}(X_G)$ such that \tilde{f} moves each point of X_G at most a distance D. We claim that the only element of $\text{Aut}(X_G)$ that moves all points of X_G at most a uniformly bounded distance is the identity automorphism. Given this claim, it follows that \tilde{f}, and hence f, is the identity, so that ν is injective.

The claim is well known, but for completeness we indicate a proof. The building X_G admits a nonpositively curved (in the CAT(0) sense) metric with the property that $\text{Aut}(X_G) = \text{Isom}(X_G)$. Now, the boundary ∂X_G of X_G as a nonpositively curved space, namely the set of Hausdorff equivalence classes of infinite geodesic rays, can be identified with the spherical Tits building associated to G (see [We, Theorem 8.24 and Chapter 28]). By the nonpositive curvature condition, infinite geodesic rays in X_G either stay a uniformly bounded distance from each other, hence represent the same equivalence class in ∂X_G, or diverge with distance between point being unbounded. If an element $\phi \in \text{Aut}(X_G)$ moves all points of X_G a uniformly bounded distance, it follows that ϕ induces the identity map on ∂X_G. But the natural homomorphism $\text{Aut}(X_G) \to \text{Aut}(\partial X_G)$ is injective (see [Ti1] or [We, Theorem 12.30 and Section 28.29]), from which it follows that ϕ is the identity, proving the claim.

We now claim that ν is surjective, and thus is an isomorphism. To see this, note that by the assumptions on G, we can apply the Margulis Superrigidity Theorem, proved in positive characteristic by Venkataramana [Ve], see [Ma], to the lattice Γ in G. This gives in particular that Γ satisfies strong (Mostow-Prasad) rigidity, which means that any automorphism of Γ can be extended to a continuous homomorphism of G. Note that the group of continuous automorphisms of G is precisely $\text{Aut}(X_G)$. Thus given any $h \in \text{Out}(\Gamma)$, there is some $h' \in \text{Aut}(X_G)$ extending (a representative of) h, and so preserving Γ in G. Thus h' descends to the desired automorphism of B_Γ, proving that ν is surjective. We have thus shown that ν is an isomorphism.

Now each $\varphi \in \text{Aut}(C)$ induces an automorphism of $\pi_1(C) = \Gamma$, which is well-defined up to conjugacy. Hence we obtain a homomorphism

$$\alpha : \text{Aut}(C) \to \text{Out}(\Gamma).$$
Since we just proved that \(\nu^{-1} : \text{Out}(\Gamma) \rightarrow \text{Aut}(B_{\Gamma}) \) is an isomorphism, to prove the theorem it is enough to prove that \(\alpha \) is injective. To this end, consider \(\varphi \in \ker(\alpha) \). Let \(Y \) denote the universal cover of \(C \). Then, just as in the argument above, \(\varphi \) lifts to some \(\tilde{\varphi} \) moving points a bounded distance from the identity. Here we are using the metric induced from the simplicial structure on \(X_{\Gamma} \), not on \(Y \) (although these metrics are uniformly comparable, so it doesn’t actually matter). By Proposition 3.3 the homomorphism \(\iota : \text{Aut}(Y) \rightarrow \text{Aut}(X_{\Gamma}) \) is one to one. As was mentioned above the only element of \(\text{Aut}(X_{\Gamma}) \) moving points a uniformly bounded distance is the identity, we have \(\tilde{\varphi} = \text{id} \), so that \(\varphi = \text{id} \) and \(\alpha \) is injective, as desired. \(\diamond \)

3.3 Characterizing \(X_{\Gamma} \) among all simplicial structures

The following result, crucial to our proof of Theorem 1.2, gives the consequence discussed at the end of the introduction.

Proposition 3.4 (Coloring rigidity). Let the notation and assumptions be as above. Then precisely one of the following holds:

(i) \(\text{Aut}(Y) \) is discrete.

(ii) \(G^+ \subseteq \iota(\text{Aut}(Y)) \), where \(\iota \) is the monomorphism in Proposition 3.3.

Proof. Recall that \(\iota \) is a proper map. Hence \(\iota(\text{Aut}(Y)) \) is a closed subgroup of \(\text{Aut}(X_{\Gamma}) \) with respect to the compact-open topology. The continuity of \(\iota \) together with Proposition 3.3 imply that if \(\iota(\text{Aut}(Y)) \) is discrete then \(\text{Aut}(Y) \) is discrete and so (i) holds and we are done.

We thus assume now that (i) does not hold. So there is a sequence of elements \(\varphi_n \in \text{Aut}(Y) \) such that \(\{g_n = \iota(\varphi_n)\} \) converges to the identity in \(\text{Aut}(X_{\Gamma}) \).

Note that \(\Gamma \subseteq \text{Aut}(Y) \) and, with this abuse of notation, \(\iota(\Gamma) = \Gamma \). Note that \(H := G \cap \iota(\text{Aut}(Y)) \) is closed normal subgroup of \(\iota(\text{Aut}(Y)) \) containing \(\Gamma \). We claim that \(H \) is indiscrete. Assume the contrary and let \(g_n \) be as above. Since \(g_n \) converge to identity it follows that \(g_n \gamma g_n^{-1} \rightarrow \gamma \) for any \(\gamma \in \Gamma \). Since \(H \) is normal and discrete, and since \(\Gamma \subseteq H \), it follows that \(g_n \gamma g_n^{-1} = \gamma \) for \(n \) large enough.

By the assumption \(\text{rank}_K G \geq 2 \), the group \(G \) has Kazhdan’s property T, and so the lattice \(\Gamma \) in \(G \) is finitely generated. Hence there exists some \(n_0 \) such that if \(n > n_0 \) then \(g_n \gamma g_n^{-1} = \gamma \) for all \(\gamma \in \Gamma \).
Thus for each $n \geq n_0$ we have that g_n centralizes Γ. Such g_n however is the trivial isometry. This follows, for example, from the proof of Theorem 1.1. To be more explicit g_n centralizes Γ thus it induces the trivial isometry of B_Γ, since $\text{Aut}(B_\Gamma)$ and $\text{Out}(\Gamma)$ are isomorphic, as we showed in loc. cit. Note now that g_n centralizes Γ so the action of g_n on X_Γ is trivial. Thus g_n is identity if $n \geq n_0$, which is a contradiction. Hence H is indiscrete.

Recall that G/Γ has a finite G-invariant measure and $\Gamma \subset H$, hence G/H has a finite G-invariant measure, namely the direct image of the measure on G/Γ under the natural map $G/\Gamma \to G/H$. Also we showed above that H is an indiscrete subgroup of G. Now [Ma, Chapter II, Theorem 5.1] states that such a subgroup must contain G^+, as we wanted to show.

We are now ready to prove the main theorem of this paper.

Proof of Theorem 1.2. There is nothing to prove if $\text{Aut}(Y)$ is discrete, so suppose this is not the case. By Proposition 3.3 and Proposition 3.4 there exists a subgroup $H \subseteq \text{Aut}(Y)$ such that $\iota : H \to G^+$ is an isomorphism. It follows from the definition of ι that if $\varphi \in \text{Aut}(Y)$ then $\iota(\varphi)(v) = \varphi(v)$ for any vertex $v \in X_\Gamma$. Actually, the proof of Proposition 3.1 immediately gives: if D is any simplex in X_Γ then $\iota(\varphi)(D) = \varphi(D)$ is a simplex of X_Γ whose vertices are the φ-images of the vertices of D.

We claim that for any simplex σ of Y, there is some chamber (simplex of maximal dimension) C of X_Γ such that $\sigma \subseteq C$. We prove this by induction on the dimension $k \geq 0$ of the cell σ. When $k = 0$ this is trivial. Now assume the claim is true up to dimension $k - 1$.

Let $C(k)$ be the standard Euclidean k-dimensional simplex, and $\beta : C(k) \to \sigma$ be a simplicial parameterization. The induction hypothesis guarantees that any simplex of $\beta(\partial(C(k)))$ is contained some chamber of X_Γ. Of course this chamber may not be unique. If $\beta(C(k))$ is not contained in a single chamber, then there exists $x \in C(k)^0$, a neighborhood $B_\delta(x) \subseteq C(k)^0$, and two adjacent chambers C_0 and C_1 of X_Γ such that $B_\delta(x) \cap C_i^0 \neq \emptyset$ for each $i = 0, 1$. Without loss of generality we can (and will) assume that $\beta(x) \in C_0 \cap C_1$.

Since the building X_Γ is thick, there exists a chamber C_2 distinct from C_0 and C_1 such that the facet (i.e. codimension one face) $C_0 \cap C_1$ is a facet of C_2 also. By Fact 2.2 above, there is an element $u \in G^+$ such that $u|_{C_0} = \text{id}$ and $u(C_1) = C_2$. Let $\varphi \in H$ be such that
\(\iota(\varphi) = u \). We have \(\varphi(C_0) = C_0 \) and \(\varphi(C_1) = C_2 \). We also have \(\varphi(v) = v \) for each vertex \(v \) of \(C_0 \).

Now if we argue as in the proof of Proposition \[3.3\] we get \(\varphi|_{C_0} = \text{id}. \) This implies that \(\varphi|_{\beta(B_\delta(x) \cap C_0)} = \text{id} \) and \(\varphi(\beta(B_\delta(x) \cap C_1)) \subseteq C_2 \). Recall however that \(\varphi \) is a simplicial automorphism of \(Y \), so that \(\varphi(\sigma) \) is another \(k \)-cell of \(Y \). Further, \(\varphi(\beta(x)) = \beta(x) \) is an interior point for two different \(k \)-cells of \(Y \), namely \(\sigma \) and \(\varphi(\sigma) \). This is a contradiction. Thus the claim that \(\sigma \) lies in some chamber of \(X_G \) follows.

Let \(C \) be a chamber which is a fundamental domain for the standard action of \(G^+ \) on \(X_G \). As a consequence of the claim above, we have that the restriction of the simplicial structure of \(Y \) to each chamber of \(X_G \) gives a simplicial subdivision of the chamber. In particular \(C \) is simplicially subdivided by \(Y \). Recall that since \(\text{Aut}(Y) \) is indiscrete, there is a subgroup \(H \) which is isomorphically mapped to \(G^+ \) by \(\iota \). Now as \(G^+ \) acts transitively on chambers, we have that if \(C' \) is any chamber of \(X_G \) then there is some \(\varphi \in H \) such that \(\iota(\varphi)(C) = C' \). By the remark we made in the beginning of the proof, we have \(\varphi(C) = C' \). The proof of the theorem is now complete. \(\diamond \)

4 Explicit examples

In this section we give explicit examples of the arithmetic complexes to which Theorem [1.1] and Theorem [1.2] apply. We then give examples in the rank one case where the loc. cit. do not apply.

An explicit example where Theorems [1.1] and [1.2] apply. The explicit construction of these examples is given [LSV], using lattices constructed in [CS]. These examples where constructed as explicit examples of “Ramanujan complexes”. Similar (explicit) constructions of complexes for which the above theorems holds are possible in characteristic zero using lattices constructed in [CMSZ1], [CMSZ2] and [MS].

Let \(G = \text{PGL}_3(F_2((y))) \). We want to describe a quotient of \(X_G \) by a lattice \(\Gamma \) which is a congruence subgroup of a lattice \(\Gamma' \), where \(\Gamma' \) acts simply transitively on the vertices of \(X_G \). Note that the building \(X_G \) is in fact a clique complex, that is, any set of \(k + 1 \) vertices is a cell if and only if every two vertices form a 1-cell. This property holds for quotient complexes as well. Thus, in order to describe the simplicial complex \(B_\Gamma \), it suffices to describe the Caley graph of \(\Gamma'/\Gamma \) with an explicit set of generators.
Let t be a generator for the field of 16 elements whose minimal polynomial is $t^4 + t + 1$. In other words, $F_{16} = F_2[t]/(t^4 + t + 1)$. The following set S of seven matrices generates $\text{PGL}_2(F_{16})$. The clique of the Caley graph of $\text{PGL}_2(F_{16})$ with respect to this set of generators is the complex obtained by taking the quotient of X_G by a lattice Γ, as above. This lattice is a congruence lattice of a lattice Γ' which is constructed using a division algebra which splits at all places except at $1/y$ and $1/(y+1)$, at which it remains a division algebra.

The set S consists of the following seven matrices:

$$
\begin{pmatrix}
 t^2 + t^3 & t^2 & t + t^2 \\
 t & t^3 & 1 + t + t^2 \\
 t + t^2 & 1 + t^2 & 1 + t^3
\end{pmatrix},
\begin{pmatrix}
 1 + t^2 + t^3 & t + t^2 & 1 + t^2 \\
 1 + t & t^2 + t^3 & 1 \\
 1 + t^2 & t & t^3
\end{pmatrix},
\begin{pmatrix}
 1 + t^2 + t^3 & 1 + t^2 & t \\
 1 + t + t^2 & t + t^2 + t^3 & t + t^2 \\
 1 + t & 1 + t + t^2 & t + t^3
\end{pmatrix},
\begin{pmatrix}
 1 + t^3 & 1 + t & 1 + t + t^2 \\
 t^2 & 1 + t^2 + t^3 & 1 + t^2 \\
 1 + t + t^2 & 1 & 1 + t^2 + t^3
\end{pmatrix},
\begin{pmatrix}
 t^3 & 1 + t^2 & 1 \\
 t + t^2 & t + t^2 + t^3 & t \\
 1 & t^2 & 1 + t^2 + t^3
\end{pmatrix},
\begin{pmatrix}
 t^2 + t^3 & 1 & t^2 \\
 1 + t^2 & 1 + t^3 & 1 + t \\
 t^2 & x + x^2 & t + t^2 + t^3
\end{pmatrix}
$$

An example in rank one case. We begin with an example of an (arithmetic) lattice Λ in $G = \text{PGL}_2(Q_5)$, given with a symmetric generating set of Λ with 6 elements, which acts simply transitively on X_G. In other words X_G, which is a 6-regular tree, is the Caley graph of Λ. This lattice Λ is also used in [LPS] to construct explicit examples of “Ramanujan graphs”. Let

$$
H(Z) = \{ \alpha = a_0 + a_1 i + a_2 j + a_3 k : a_i \in Z \}
$$

where $i^2 = j^2 = k^2 = -1$ and $ij = -ji = k$. For any $\alpha \in H(Z)$ we let $\overline{\alpha} = a_0 - a_1 i - a_2 j - a_3 k$ and let $N(\alpha) = \alpha \overline{\alpha}$. Let

$$
\Lambda' = \{ \alpha \in H(Z) : N(\alpha) = 5^k, k \in Z \text{ and } \alpha \equiv 1 \}
$$

14
Now let
\[
\Lambda = \Lambda'/\sim
\]
where
\[
\alpha \sim \beta \ 	ext{if} \ 5^{k_1} \alpha = \pm 5^{k_2} \beta \ 	ext{for some} \ k_1, k_2 \in \mathbb{Z}.
\]
Note that \(\Lambda\) is an (arithmetic) subgroup of \(\text{PGL}_2(\mathbb{Q}_5)\) and \([\alpha][\overline{\alpha}] = 1\). It is easy to see, and is shown in [LPS, Section 3], that \(\Lambda\) is actually a free group in \(\{\alpha_1, \alpha_2, \alpha_3\}\), where \(N(\alpha_i) = 5\) and \(a_0 > 0\) for each \(i = 1, 2, 3\). We identify \(X_G\) with the Cayley graph of \(\Lambda\) with respect to the generating set \(S = \{\alpha_1, \overline{\alpha_1}, \alpha_2, \overline{\alpha_2}, \alpha_3, \overline{\alpha_3}\}\).

Now let \(\Gamma\) be the kernel of the map \(\Lambda \to \mathbb{Z}/4\mathbb{Z}\) given by \(\alpha_i \mapsto i\) for \(i = 1, 2, 3\). Then \(B_\Gamma = X_G/\Gamma\) is the Cayley graph of \(\mathbb{Z}/4\mathbb{Z}\) with respect to this generating set; that is, it is the complete graph with 4 vertices. We now color the edges of \(B_\Gamma\) with 3 different colors so that the edges emanating from a vertex have 3 different colors, and we lift this to a coloring of \(X_G\) using the \(\Gamma\) action.

Fix an arbitrarily large ball in \(X_G\). Consider the automorphism \(\phi\) of the tree \(X_G\) which fixes this ball pointwise and flips two rays corresponding to \(\alpha_1\) and \(\overline{\alpha_3}\) emanating from a vertex on the sphere and is identity everywhere else. Then \(\phi\) lies in the group of color-preserving automorphisms of this tree. As the large ball was chosen arbitrarily, this argument proves that the group of color-preserving automorphisms of \(X_G\) is not discrete. Of course we can replace different “colors” by different simplicial isomorphism types of triangulations of the corresponding simplices. We thus have a contrast with the conclusion of Theorem 1.2.

References

[BT] A. Borel, J. Tits. Homomorphismes “abstraits” de groupes algebriques simples Ann. of Math., Second Series, 97, no. 3 (1973) 499-571

[AB] P. Abramenko and K. Brown, Buildings. Theory and applications, Graduate Texts in Mathematics, 248. Springer, New York, 2008.

[Br] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
[CMSZ1] D. I. Cartwright, A. M. Mantero, T. Steger, A. Zappa, *Groups acting simply transitively on the vertices of a building of type \tilde{A}_2, I*, Geometriae Dedicata **47** (1993) 143-166.

[CMSZ2] D. I. Cartwright, A. M. Mantero, T. Steger, A. Zappa, *Groups acting simply transitively on the vertices of a building of type \tilde{A}_2, II*, Geometriae Dedicata **47** (1993) 143-166.

[CS] D. I. Cartwright, T. Steger, *A family of \tilde{A}_n-groups*, Israel Journal of Math. **103** (1998) 125-140.

[FW1] B. Farb, S. Weinberger, *Hidden symmetries and arithmetic manifolds*, Geometry, spectral theory, groups, and dynamics, 111–119, Contemp. Math., 387, Amer. Math. Soc., Providence, RI, 2005.

[FW2] B. Farb, S. Weinberger, *Isometries, rigidity and universal covers*. Ann. of Math. (2) 168 (2008), no. 3, 915–940.

[LPS] A. Lubotzky, R. Phillips, P. Sarnak, *Ramanujan Graphs*, Combinatorica, **8** (3) (1988) 261-277.

[LSV] A. Lubotzky, B. Samuels, U. Vishne, *Explicit construction of Ramanujan complexes of type A_d*, Europ. J. of Combinatorics. **26** (2005) 965-993.

[Ma] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. **17**, Springer, Berlin, 1991.

[MS] A. Mohammadi, A. Salehi Golsefidy, Discrete vertex transitive actions on Bruhat-Tits building, Preprint.

[PR] V. Platanov, A. Rapinchuk, Algebraic groups and number theory, Academic Press, 1993.

[Ti1] J. Tits, Building of Spherical type and finite B-N pairs, Lecture Notes in Mathematics **386**, Springer-Verlag, Berlin-New York 1974.

[Ti2] J. Tits, Reductive groups over local fields, in *Automorphic Forms, Representations and L-Functions* (Corvallis, Ore., 1977), I, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, 1979, 29–69.
[Ve] T. N. Venkataramana, *On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic*, Invent. Math. 92 (1988), 255-306.

[We] R. Wiess, *The structure of affine buildings*, Ann. of Math. Studies, 168, 2009.

Dept. of Mathematics
University of Chicago
5734 University Ave.
Chicago, IL 60637
E-mail: farb@math.uchicago.edu, amirmo@math.uchicago.edu