Definition and diagnosis of postsurgical hypoparathyroidism after thyroid surgery: meta-analysis

Kathrin Nagel1, Anne Hendricks1, Christina Lenschow1, Michael Meir1, Stefanie Hahner2, Martin Fassnacht2, Armin Wiegering3, Christoph-Thomas Germer4 and Nicolas Schlegel1,*

1Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
2Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
3Correspondence to: Nicolas Schlegel, Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, Germany (e-mail: Schlegel_N@ukw.de)

Abstract

Background: Postsurgical hypoparathyroidism (PH) is the most frequent complication after thyroid surgery. The aim of this systematic review and meta-analysis is to summarize a unifying definition of PH and to elucidate the best possible approach for early detection of PH.

Methods: A systematic review of the literature according to the PICO framework using Embase, PUBMED and the Cochrane library was carried out on 1 December 2021 followed by analysis for risk of bias, data extraction and meta-analysis. All studies addressing the definition of postoperative hypoparathyroidism and/or diagnostic approaches for early detection and diagnosis were included. Case reports, commentaries, non-English articles, book chapters and pilot studies and reviews were excluded.

Results: From 13,704 articles, 188 articles were eligible for inclusion and further analysis. These articles provided heterogeneous definitions of PH. Meta-analysis revealed that postoperative measurements of parathormone (PTH) levels have a higher sensitivity and specificity than intraoperative PTH measurements to predict PH after thyroid surgery. None of the timeframes analysed after surgery within the first postoperative day (POD1) was superior to predict the onset of PH. PTH levels of less than 15 pg/ml and less than 10 pg/ml are both reliable threshold levels to predict the postoperative onset of PH. A relative reduction of mean(s.d.) PTH levels from pre- to postoperative values of 73 (standard deviation 11) per cent may also be predictive for the development of PH. The estimation of calcium levels on POD1 are recommended.

Conclusion: PH is best defined as an undetectable or inappropriately low postoperative PTH level in the context of hypocalcaemia with or without hypocalcaemic symptoms. PTH levels should be measured after surgery within 24 h. Both threshold levels below 10 and 15 pg/ml or relative loss of PTH before/after thyroid surgery are reliable to predict the onset of PH.

Introduction

With a rate of 14–60 per cent, postsurgical hypoparathyroidism (PH) is the most frequent complication after thyroid surgery.1–3 Although most patients seen with PH only have transient problems, there is still a significant number of patients (up to 33 per cent) suffering from persisting hypoparathyroidism (reduced parathyroid hormone [PTH] and calcium levels persisting more than 6 months after thyroid surgery).4–6 In a narrative review it has been proposed previously that the time dimension should be incorporated when describing PH. Based on this, PH includes the syndromes of postoperative parathyroid failure, protracted hypoparathyroidism and permanent hypoparathyroidism.7,8

The symptoms of hypoparathyroidism are extremely variable and range from no symptoms to mild numbness and tingling, muscle cramps, tetany, seizures and life-threatening laryngospasm and cardiac arrhythmia.

In most cases, the onset of PH is within the first 48 h after thyroid surgery.5–8; however, it has also been reported that the first symptoms of hypocalcaemia begin much later, up to 64 h after surgery.5,9–11 This has also been described as postoperative parathyroid failure.5 In view of this, ongoing efforts to discharge patients 24–48 h after thyroid surgery can lead to significant danger for patients, as they will not receive adequate and timely therapeutic intervention if they develop symptoms later. This concern requires a standardized follow-up of patients after thyroid surgery and the earliest possible detection of PH. It would also be desirable to have reliable markers to predict the potential onset of PH to start a (preventive) therapeutic intervention before patients get symptomatic. This is important because a standard ‘blind’ substitution of calcium and vitamin D with the aim of preventing the onset of symptoms has been reported to be one of the main risk factors of developing PH, as the physiological trigger for PTH secretion is blocked.12

All these aspects have been addressed by numerous studies so far. Accordingly, there is a large body of literature focusing on how to diagnose PH at the earliest possible time point to decide whether therapeutic intervention is required; however, because even the definition of PH is heterogeneous and there are many...
different studies addressing this, there remains uncertainty about the appropriate approach for early recognition of PH.

A systematic analysis of the literature on postsurgical hypoparathyroidism was therefore conducted focusing on the following issues: the most common definitions of PH were systematically analysed and discussed. Next, the question of whether there is an ideal time point for early detection of PH or postoperative parathyroid failure respectively, was assessed. Finally, the best possible predictive approach for early recognition of PH was determined.

Materials and methods

Search strategy

A systematic review of the literature was conducted according to the PRISMA guidelines. The review protocol was registered at Prospero (https://www.crd.york.ac.uk/; PROSPERO 2022 CRD42022303713).

To get a comprehensive overview of the existing body of literature, a systematic literature search of PubMed via MEDLINE, Embase and the Cochrane library electronic databases was performed on 1 December 2021. The timeframe of the literature search was from the overall start of documentation in the databases until 30 November 2021. A systematic analysis of the literature was conducted according to the PICO framework. According to this, ‘patients after thyroid surgery’ were defined as the population and ‘postsurgical hypoparathyroidism’ as the phenomenon of interest, and ‘diagnostics’ as the context. All search terms were assigned into these three subgroups (Table S1). The words ‘AND’ and ‘OR’ were used as Boolean operators. To increase the sensitivity of the literature search, the following medical subject heading terms were included: ‘hypoparathyroidism’, ‘hypocalcemia’, ‘postoperative complications’, ‘postoperative period’, ‘thyroidectomy’, ‘parathyroid hormone’, ‘hemithyroidectomy’ and ‘subtotal thyroidectomy’. Again ‘AND’ and ‘OR’ were used as Boolean operators.

All studies with abstracts in the English language were included. Duplicates were removed by the literature organization program in addition to manual control. Two independent reviewers (K.N. and N.S.) performed the screening of titles and abstracts of all studies. Potentially relevant articles were reviewed in full to determine eligibility for inclusion. Data for meta-analysis were extracted by one author (K.N.) and double checked by the other authors (A.H. and N.S.). In case of missing/incomplete data, the study investigator was contacted for additional details. Any disagreement was discussed and solved by consensus among the authors.

Study selection criteria

All studies addressing the definition of PH and/or diagnostic approaches for early detection and diagnosis were included. Both, prospective and retrospective studies were included. Case reports, commentaries, non-English articles, book chapters and pilot studies and reviews were excluded. Conference proceedings and unpublished studies were included if they provided sufficient information. If two studies examined the same study population, the more recent study was included.

For meta-analyses, all studies were manually screened and compared regarding whether they displayed a comparable study design and equal outcome parameters. This is outlined in detail in the results for the respective topic addressed.

Data management, risk of bias assessment and statistical analysis

The literature organization was performed with Endnote20 (Clarivate Analytics, Munich, Germany). Charts and tables were created with Microsoft® Word and Microsoft® PowerPoint (Microsoft, Redmond, Washington, USA), and RevMan5 (Cochrane Community). The studies included for meta-analysis were assessed for the risk of bias using the ROBINS-I tool (Table S2).

To compare PTH levels and calcium levels and to provide a comprehensive overview, units were adapted for PTH in pg/ml and for calcium in mmol/l. The calculation was performed using the calculator provided in unitslab.com.

Statistical analysis was performed with SPSS® version 26 (IBM, Armonk, New York, USA), RevMan5 and OpenMeta (Analyst). As a measure of effects, bivariate analysis for sensitivity and specificity with the corresponding 95 per cent confidence interval (c.i.) was calculated.

Results

The database search identified 13 704 articles. After removing duplications, 8850 articles were screened for eligibility and inclusion in the systematic review (Fig. 1). After exclusion of studies by title/abstract and full text screening, 188 articles were eligible for inclusion in this review. After this, all articles were analysed in depth according to the main foci of this review. This led to a variable number of studies included for the different subheadings, stated below. Analyses for risk of bias in the studies included in the meta-analyses are shown in Table S2.

Definition of postsurgical hypoparathyroidism

According to the focus ‘definition of PH’, 188 articles identified in the database were assessed for eligibility. From these, 31 studies were excluded because hypoparathyroidism was not defined, or no clear definition was stated so that 157 articles including 29 346 patients were subject to further analysis.

As shown in Table I, these studies could be assigned into four subgroups. The definitions of PH included reduced PTH levels only, hypocalcaemia only, reduced PTH or hypocalcaemia or a combination of both. In most cases, these groups could be subdivided into studies that included the presence or absence of symptoms to define the presence of PH. Taken together, this confirmed that there is a large heterogeneity of definitions of PH in the different studies. Therefore, direct systematic comparisons of the parameters discussed below are nearly impossible.

In addition, the lower limits of serum calcium levels seem slightly heterogeneous depending on the local laboratories. Forty studies including 7718 patients defined hypocalcaemia according to the lower limit of normal of the local laboratories in which their measurements were carried out. This corresponds to the recommendation of the American Association of Clinical Endocrinology. The majority of 52 studies including 11 504 patients, defined hypocalcaemia as a calcium level below the lower limit of 2.0 mmol/l (less than 8.0 mg/dl), which is in accordance with other recommendations. It must be considered whether uncorrected serum calcium levels, albumin-corrected serum calcium levels or ionized calcium levels are the basis for the different studies to define hypocalcaemia. In addition, there is evidence that patients with calcium values less than 2.0 mmol/l may develop symptoms of hypocalcaemia. In view of all these aspects, both
approaches to define hypocalcaemia seem justified although they do not necessarily correspond to clinical symptoms.

On the other hand, the reduction of PTH levels is a good predictor for symptomatic hypoparathyroidism. It has been shown that it is more sensitive at detecting patients at risk and detecting them earlier because loss of PTH precedes biochemical hypocalcaemia. Therefore, based on the literature search, the diagnosis should be predominately oriented on the early biochemical changes of PTH levels after surgery.

When addressing the clinical picture caused by hypoparathyroidism, a large inter-individual variety was found ranging from ‘no symptoms’ in patients with clear biochemical evidence for the presence of PH to a group of patients with ‘potentially life-threatening symptoms’ because of laryngospasm, muscle cramps or cardiac arrhythmia with biochemical changes that were mild at the time when symptoms started.

Therefore, it was concluded that the presence of clinical symptoms seemed to not be applicable to define PH. Furthermore, changes in calcium and PTH levels and their interdependence need to be considered to define PH.

Taking all these considerations into account, the following definition is suggested: PH can be defined as an undetectable or inappropriately low postoperative PTH level in the context of hypocalcaemia with or without hypocalcaemic symptoms. In this definition, the term ‘inappropriately low’ is thought to reflect the strong interdependence between PTH and calcium levels as even PTH in lower-normal ranges may be inappropriate to maintain normal calcium levels. Therefore, hypoparathyroidism may be present even when PTH levels seem to be in the normal range. As the development of symptoms is subjective, it remains unclear and not clearly quantifiable how low PTH levels can be to be considered as inappropriately low. It can be speculated whether the ratio between PTH and calcium levels is correlated with symptoms, and a prospective study specifically designed to address this question would be required.

Suitable time point to predict postsurgical hypoparathyroidism based on PTH levels

The significant correlation of reduced PTH levels with the manifestation of PH following thyroid surgery is well established. Many studies have aimed to determine a suitable time point for intraoperative or postoperative PTH measurements to predict the development of PH as early and precisely as possible.
The first aim was to determine whether intraoperative or postoperative PTH measurements are superior for early and specific prediction of developing PH. Intraoperative PTH measurements were usually carried out between 10 and 20 min after thyroidectomy or at the time point when surgery ended with skin closure.

The direct comparison between intra- and postoperative PTH measurements was carried out in a total of 13 studies. Eight articles including 652 patients supported the view that postoperative PTH measurements are more sensitive and more specific compared with intraoperative PTH measurements in predicting PH.22,83-85,105,106,176 (Table S3). Three articles including 392 patients did not show a significant difference between intra- and postoperative PTH measurements107-108 whereas two studies with 223 patients claimed that the intraoperative measurement of PTH is advantageous for early detection of PH109,110. Seven of these articles could be summarized in a meta-analysis (Fig. 2). The meta-analysis demonstrated a sensitivity of 80 per cent (95 per cent c.i. 0.66 to 0.90) and a specificity of 92 per cent (95 per cent c.i. 0.85 to 0.96) for intraoperative measurements of PTH values to be predictive for PH. However, with a sensitivity of 87 per cent (95 per cent c.i. 0.81 to 0.93) and a specificity of 95 per cent (95 per cent c.i. 0.89 to 0.98), the postoperative measurement of PTH levels seems to be superior compared with the intraoperative measurement of PTH levels to predict PH. Despite an overlap of confidence intervals, this seems to support the view of most studies that postsurgical measurements of PTH levels can be recommended for a reliable detection of PH rather than intraoperative measurements.

Next, the focus was on articles that performed postoperative PTH measurements with the aim of determining the best time point after thyroid surgery to detect PH. Overall, 21 articles were found to address the most suitable time point for PTH measurements ranging from 1 h and 6 h until 24 h after surgery or within the first postoperative day (POD1) (Table 2). All articles identified a time point of PTH measurement that was reported to be advantageous for early detection of PH, however none of the studies reported statistical significance when different time points were compared. In addition, there was extreme heterogeneity concerning study design, outcomes reported, and time points investigated. Therefore, only five studies were suitable to compare the sensitivity and specificity of two timeframes of postoperative PTH measurements, as they allowed direct comparison of the reported data (Fig. 3). It was decided to compare the timeframe within the first 6 and 24 h or within POD1 for PTH measurements after thyroid surgery as these timeframes were assessed most often in the literature and can result in clinical consequences. The early timeframe for measurements of PTH levels within 1–6 h after thyroid surgery resulted in an overall sensitivity of 88 per cent (95 per cent c.i. 0.81 to 0.92) and a specificity of 97 per cent (95 per cent c.i. 0.87 to 1.00) in predicting PH. The analysis of the later timeframe included data on post-surgical PTH measurements after 24 h or within POD1, which provided an overall sensitivity of 89 per cent (95 per cent c.i. 0.81 to 0.94) and a specificity of 98 per cent (95 per cent c.i. 0.86 to 1.00) in predicting PH. In summary, both timeframes resulted in almost equally high sensitivity and specificity values with small 95 per cent c.i. ranges in detecting PH. The conclusion therefore is that there is no distinct time after surgery that can be recommended for PTH measurements.

It is reasonable that earlier measurements of PTH levels in the postoperative course will enable the early recognition of a potential problem and may lead to an indication for earlier therapeutic administration of calcium and vitamin D medication before patients develop symptoms. This is supported by 10 additional articles that could not be included in the meta-analysis showing the predictive value of PTH measurements 1 h after surgery is comparable to later time points.20,32-34,42,104,108,111,112,164 This supports the main conclusion of the meta-analysis. The decision of which standard is the most applicable, however, will

Study	TP	FP	FN	TN	Sensitivity (95% c.i.)	Specificity (95% c.i.)
Barczynski et al.a	18	2	172	1	0.90 (0.68, 0.99)	0.96 (0.91, 0.99)
Cavicchi et al.110	14	4	78	2	0.78 (0.52, 0.94)	0.90 (0.81, 0.95)
Lang et al.109	14	5	95	1	0.82 (0.57, 0.96)	0.95 (0.89, 0.98)
Lo et al.117	11	25	0	64	1.00 (0.72, 1.00)	0.72 (0.61, 0.81)
Lombardi et al.7	13	0	3	37	0.81 (0.54, 0.96)	1.00 (0.91, 1.00)
McLeod et al.10	5	3	50	1	0.71 (0.29, 0.96)	0.94 (0.84, 0.99)
Roh, Park et al.106	29	9	5	49	0.85 (0.69, 0.95)	0.84 (0.73, 0.93)
Bivariate summary:						
Sensitivity	0.8017 (0.6581, 0.8946)	0.8522 (0.8502, 0.961)				

a Studies analysing the value of a intraoperative parathyroid hormone measurements and b postoperative parathyroid hormone measurements to identify postsurgical hypoparathyroidism. The outcome parameter is hypocalcaemia in the presence or absence of symptoms as indicated by the study protocol of the studies included. Bivariate analysis summarized the sensitivity and specificity for each condition. TP, true positive; FP, false positive; FN, false negative; TN, true negative.
Threshold levels for PTH to predict postsurgical hypoparathyroidism

The main problem in defining threshold levels for PTH is that there are different assays that result in different normal ranges of PTH levels. This is supported by the observation that 81 studies defined 40 different PTH levels as the most reliable threshold to detect hypoparathyroidism (Table S4). Therefore, to avoid assay-related confusion in preoperative PTH and calcium measurements, it is suggested that both PTH and calcium levels should be estimated by the same laboratories/institutions where postsurgical measurements will take place.

In addition, 20 articles were identified that analysed the diagnostic value of their lower limits of normal and included
them in the more detailed analysis of the most commonly identified thresholds. In summary, 55 articles were eligible for further analysis. Seven articles that tested the predictive value of PTH levels below 20 pg/ml, 19 articles on threshold levels below 15 pg/ml, and 29 articles that tested the predictive value of PTH threshold levels below 10 pg/ml were identified. Out of these articles, the studies that aimed to identify PTH threshold levels as isolated parameters to predict PH were selected (Table 3). For each of the threshold levels of 10 pg/ml and 15 pg/ml, five studies were identified that analysed this aspect with a comparable study setting for further analyses (Fig. 4). The other studies could not be included because the study design was different, or data could not be extracted. It was not possible to summarize studies for the threshold level of 20 pg/ml due to their heterogeneity. When summarizing the results from the studies for 15 pg/ml (Fig. 4a) and 10 pg/ml (Fig. 4b), threshold levels of less than 15 pg/ml were found to have a sensitivity of 90 per cent (95 per cent c.i. 0.79 to 0.96) and a specificity of 85 per cent (95 per cent c.i. 0.55 to 0.96) in predicting PH. The threshold level of PTH values less than 10 pg/ml had a sensitivity of 84 per cent (95 per cent c.i. 0.46 to 0.97) and specificity of 94 per cent (95 per cent c.i. 0.82 to 0.98) in predicting PH. In an additional meta-analysis with studies that used threshold levels of 10 pg/ml to predict symptoms of hypoparathyroidism, a sensitivity of 87 per cent (95 per cent c.i. 0.58 to 0.97) and specificity of 90 per cent (95 per cent c.i. 0.74 to 0.97) were found (Fig. 5). This led to the conclusion that both threshold levels are suitable to reliably predict the onset of PH. Taken together, using a threshold level that is oriented at the assay-specific lower limit of normal for PTH will lead to a high specificity and sensitivity for early detection of PH.

Relative reduction of pre- and postoperative PTH levels to predict postsurgical hypoparathyroidism

In view of the difficulties comparing different PTH assays it was proposed that a ratio between preoperative and postoperative PTH value may be suitable to reliably predict the manifestation of PH. In the literature, 51 articles were identified that focused on the relative reduction of PTH levels when pre- and postoperative measurements were compared. Looking at these articles systematically, 29 different ratios between preoperative and postoperative PTH values were found that were reported to predict PH. These ranged between a relative reduction of PTH preoperative/postoperative values of 19.4 per cent and 88.0 per cent. Two studies sought to optimize the predictive value by forming risk groups in addition to the relative reduction of PTH levels after surgery, which resulted in the highest sensitivity and specificity to predict patients with PH. This approach, however, seems to not be applicable in daily clinical practice. One of the main problems in determining a ratio between pre- and post-surgical PTH levels is that the time points of PTH measurements vary considerably in each study. As PTH levels show rapid changes under physiological conditions it can be impossible to exactly standardize time points of PTH measurements in daily routine. This is exemplified by a study that assessed PTH levels in 74 patients undergoing thyroidectomy before induction of anaesthesia, after induction of anaesthesia, 20 min after thyroidectomy and in the postoperative course. This showed that during induction of anaesthesia, there is a relevant but unpredictable dynamic of PTH that changed to 149 (standard deviation 93) per cent of baseline levels (range 42–49.4 per cent) and normalized during surgery.

A meta-analysis by Noordzij et al. analysed nine studies to assess in more detail whether the relative loss of PTH before, during and after surgery can predict PH. In 85 patients, a loss of more than 65 per cent of PTH levels compared before and 6 h after surgery had a sensitivity of 96.4 per cent and a specificity of 91.2 per cent to adequately predict PH.

In further analyses, eight original articles (Table 4) with comparable features in terms of pre- and postoperative setting for PTH measurements were identified. Studies in which PTH measurements had been carried out before induction of anaesthesia were compared. When taking them together, a mean reduction of PTH levels of 73 ± 11 per cent was observed in the patient cohort that developed hypocalcaemia, whereas the group of patients with a mean reduction of PTH levels of 39.5 ± 7.3 per cent had no hypocalcaemia in the following course (P < 0.0001; Fig. 6).

Based on this and on the results of the meta-analysis described above, it can be concluded that a relative reduction of PTH of more than 70 per cent after surgery can be predictive for the development of PH. On the other hand, this should be considered with caution as, in addition to the measurement uncertainty, other physiological factors, including vitamin D status may affect the relative loss of PTH levels after surgery. The relationship between preoperative vitamin D status and the development of PH is controversial as there are a number of manuscripts supporting this, and some that do not show a significant relationship. Due to this, all studies independent of the vitamin D status were included in this meta-analysis.

Role of postsurgical calcium measurements

It goes without saying, that PTH measurements do not replace the need to control postsurgical calcium levels. Therefore, it is broadly accepted and recommended that calcium measurements should be carried out after surgery at least on POD1, whereas some favour including measurements on POD2. In cases, in which PTH levels have been measured at appropriate levels after surgery and calcium levels on POD1 are in the normal range, it may be discussed that the control of calcium levels on POD2 are dispensable. This is supported by three articles confirming that the combination of early PTH measurements and calcium estimation on POD1 is a safe procedure for patients to reliably identify those patients who will not develop PH.

In summary, based on the present review of the literature, structured surveillance of perioperative parathyroid function in thyroid surgery is recommended, which should include early postsurgical PTH values to decide on (prophylactic) therapeutic intervention that should be completed by estimation of calcium levels at least on POD1. In cases of abnormal results such as low levels of calcium and PTH or hypocalcaemic symptoms, measurements of calcium should be repeated on POD2.

Discussion

The literature provides a lot of heterogeneous and observational studies focusing on the problem of PH. In the future, a consensus-based uniform definition for PH should be developed to provide the basis for future studies and clinical application. Based on this review and meta-analysis and keeping the mentioned limitations in mind, the key conclusions and suggestions are as follows:
Table 3 Overview of studies focusing on threshold levels of 10 pg/ml, 15 pg/ml and 20 pg/ml, including study design, number of patients, time point of parathyroid hormone measurement following thyroid surgery and endpoint to identify postsurgical hypoparathyroidism

Threshold levels of PTH less than 10 pg/ml	Reference	Year of publication	Study design	Number of patients included	Lower limit of normal PTH (pg/ml)	Time point of PTH measurement	Endpoint
Richards et al.	88	2003	Prospective	30	12 pg/ml	SC	Symptoms
Lombardi et al.	7	2004	Prospective	53	10 pg/ml	4 h/6 h	Symptoms
Quirós et al.	181	2005	Prospective	72	10 pg/ml	SC	Symptoms
Lombardi et al.	120	2006	Prospective	523	10 pg/ml	4 h	Symptoms
Barczyński et al.	6	2007	Prospective	200	10 pg/ml	4 h	Symptoms
Gentleschi et al.	103	2008	Prospective	119	15 pg/ml	1 h	NA
Youngwirth et al.	186	2010	Retrospective	371	10 pg/ml	4 h/POD1	Ca\(^{2+}\) < 1.13 mmol/l Symptoms
Wiseman et al.	46	2010	Retrospective	421	11 pg/ml	1 h	Ca\(^{2+}\) < 2.2 mmol/l Symptoms
Kim et al.	104	2011	Retrospective	112	11 pg/ml	1 h	Symptoms
Mayo et al.	82	2012	Prospective	147	Not reported	POD1	Symptoms
Riaz et al.	182	2014	Not reported	110	Not reported	1 h	NA
White et al.	34	2016	Prospective	190	15 pg/ml	1 h	NA
Inversini et al.	124	2016	Retrospective	260	Not reported	3–6 h	Ca\(^{2+}\) < 1.9 mmol/l Symptoms
Al Khadem et al.	122	2018	Retrospective	119	10 pg/ml	PACU	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Sahli et al.	114	2018	Retrospective	218	10 pg/ml	1 h	iCa\(^{2+}\) < 1.3 mmol/l Symptoms
Essa et al.	106	2021	Prospective	100	15 pg/ml	10 min after TT	Ca\(^{2+}\) < 2.1 mmol/l Symptoms
Abdullah et al.	49	2021	Retrospective	57	10 pg/ml	3 h	Ca\(^{2+}\) < 2.1 mmol/l Symptoms
Warren et al.	117	2002	Retrospective	53	Not reported	IntraOp	Ca\(^{2+}\) < 1.0 mmol/l Symptoms
Chia et al.	118	2006	Prospective	103	Not reported	8 h	Ca\(^{2+}\) < 1.9 mmol/l Symptoms
Ghaheri et al.	67	2006	Retrospective	80	Not reported	PACU	Ca\(^{2+}\) < 1.0 mmol/l Symptoms
Chindavijjak et al.	58	2007	Prospective	30	15 pg/ml	IntraOp	Ca\(^{2+}\) < 2.1 mmol/l Symptoms
Lewandowicz et al.	116	2007	Prospective	54	15 pg/ml	SC	Ca\(^{2+}\) < 2.2 mmol/l Symptoms
Cote et al.	116	2008	Prospective	270	Not reported	1 h	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Gentleschi et al.	103	2008	Prospective	119	15 pg/ml	1 h	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Asari et al.	136	2008	Prospective	170	15 pg/ml	POD1	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Huang et al.	24	2012	Prospective	197	15 pg/ml	IntraOp	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Yano et al.	37	2012	Retrospective	296	15 pg/ml	POD1	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Islam et al.	45	2013	Prospective	65	12 pg/ml	IntraOp	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Cmilansky et al.	29	2014	Prospective	115	15 pg/ml	POD1	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Yetkin et al.	33	2016	Prospective	274	15 pg/ml	1 h	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Sableh et al.	44	2009	Retrospective	448	15 pg/ml	PACU	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Proczko- Markuszewska et al.	42	2010	Prospective	100	10 pg/ml	1 h	Symptoms
Houkton et al.	23	2011	Retrospective	180	15 pg/ml	PACU	Ca\(^{2+}\) < 2.0 mmol/l Symptoms
Noureldine et al.	113	2014	Retrospective	304	10 pg/ml	6–8 h	Symptoms
Lee et al.	86	2015	Prospective	817	Not reported	1 h	iCa\(^{2+}\) < 1.1 mmol/l Symptoms
Sahli et al.	114	2018	Prospective	218	Not reported	1 h	iCa\(^{2+}\) < 1.1 mmol/l Symptoms
Bashir et al.	115	2021	Prospective	175 (phase 1)	14.9 pg/ml	Immediately after surgery	Ca\(^{2+}\) < 2.0 mmol/l Symptoms

If required calcium and PTH values were adapted to pg/ml or mmol/l respectively. PTH, parathyroid hormone; POD1, postoperative day 1; IntraOp, measurement during surgery; cCa\(^{2+}\), corrected calcium; iCa\(^{2+}\), ionized calcium; PACU, post-anaesthesia care unit; NA, not available; SC, PTH measurement skin closure; TT, total thyroidectomy.
Table 4 Overview of the studies that tested the predictive value when the relative loss of parathyroid hormone levels between pre- and postoperative levels were compared

Reference	Year of publication	Number of patients included	Mean postoperative reduction of PTH levels	Patients without hypocalcaemia (%)	Patients with hypocalcaemia (%)
Roh/Park et al.	2006	92		37	81
Barczynski et al.	2007	200		32	69
Toniato et al.	2008	160		40	63
Mehrvarz et al.	2014	99		41	60
Puziello et al.	2015	75		44	62
Seo et al.	2015	349		49	80
Sieniawski et al.	2016	142		36	82
Swannasarn et al.	2017	65		29	83
Mo et al.	2020	176		53	86
Mean(s.d.)		1358		39.5(7.3)	73.0(11)

PTH, parathyroid hormone.

Fig. 4 Forest plot (left) and summary receiver operating characteristic curves (right)
Studies of parathyroid hormone threshold levels of a less than 15 pg/ml and b less than 10 pg/ml to identify postsurgical hypoparathyroidism (development of hypocalcaemia). Bivariate analysis summarized the sensitivity and specificity for each condition. TP, true positive; FP, false positive; FN, false negative; TN, true negative.

Fig. 5 Forest plot (left) and summary receiver operating characteristic curves (right)
Studies of parathyroid hormone threshold levels of less than 10 pg/ml to identify postsurgical hypoparathyroidism (development of symptoms) are shown. Bivariate analysis summarized the sensitivity and specificity for each condition. TP, true positive; FP, false positive; FN, false negative; TN, true negative.

Table 4 Overview of the studies that tested the predictive value when the relative loss of parathyroid hormone levels between pre- and postoperative levels were compared

Reference	Year of publication	Number of patients included	Mean postoperative reduction of PTH levels	Patients without hypocalcaemia (%)	Patients with hypocalcaemia (%)
Roh/Park et al.	2006	92		37	81
Barczynski et al.	2007	200		32	69
Toniato et al.	2008	160		40	63
Mehrvarz et al.	2014	99		41	60
Puziello et al.	2015	75		44	62
Seo et al.	2015	349		49	80
Sieniawski et al.	2016	142		36	82
Swannasarn et al.	2017	65		29	83
Mo et al.	2020	176		53	86
Mean(s.d.)		1358		39.5(7.3)	73.0(11)

PTH, parathyroid hormone.
Data availability statement

The data of this review and meta-analysis can be made available to any researcher. All relevant data are included in the tables and supplemental material. All other material and data can be provided directly on request to the corresponding author.

References

1. Edafe O, Antakia R, Laskar N, Uttley L, Balasubramanian SP. Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br J Surg 2014;101:307–320
2. Orloff LA, Wiseman SM, Bernet VJ, Fahey TJ III, Shaha AR, Shindo ML et al. American thyroid association statement on postoperative hypoparathyroidism: diagnosis, prevention, and management in adults. Thyroid 2018;28:830–841
3. Qiu Y, Xing Z, Fei Y, Qian Y, Luo Y, Su A. Role of the 2018 American Thyroid Association statement on postoperative hypoparathyroidism: a 5-year retrospective study. BMC Surg 2021;21:334

Funding

The authors have no funding to declare.

Disclosure

The authors declare no conflict of interest.

Supplementary material

Supplementary material is available at BJS Open online.
16. Wallace BC, Dahabreh JJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Software 2012;49:1–15
17. Lewandowicz M, Kuzdak K, Pasieka Z. Intraoperative parathyroid hormone measurement in thyroidectomized patients: preliminary report. Endocr Regul 2007;41:29–34
18. Ezzat W, Fathey H, Fawaz S, El-Ashri A, Youssef T, Othman HB. Intraoperative parathyroid hormone as an indicator for parathyroid gland preservation in thyroid surgery. Swiss Med Wkly 2011;141:w13299
19. Yaczczylo M, Yilmaz A, Kocaiz S, Ozcahyran R, Parlak O. Risks and prediction of postoperative hypoparathyroidism due to thyroid surgery. Sci Rep 2021;11:11876
20. Sieniawski K, Kaczka K, Fendler W, Tomasik B, Omanski L. Early predictors of post-thyroidectomy hypoparathyroidism. Pol Przegl Chir 2016;88:305–314
21. Cho JN, Park WS, Min SY. Predictors and risk factors of hypoparathyroidism after total thyroidectomy. Int J Surg 2016;34:47–52
22. Melo F, Bernardes A, Velez A, Campos de Melo C, de Oliveira FJ. Parathyroid hormone as a predictor of post-thyroidectomy hypocalcemia: a prospective evaluation of 100 patients. Acta Med Port 2015;28:322–328
23. Houlton JJ, Pechter W, Steward DL. PACU PTH facilitates safe outpatient total thyroidectomy. Otolaryngol Head Neck Surg 2011;144:518–521
24. Huang SM. Do we overtreat post-thyroidectomy hypocalcemia? World J Surg 2012;36:1503–1508
25. Sainsbury CS, Newbold P, Cavaglione P, Niederle B. Postoperative hypoparathyroidism after total thyroidectomy - retrospective analysis. J Surg Res 2011;159:224–231
26. Filho EBY, Machry RV, Mesquita R, Scheffel RS, Maia AL. The timing of parathyroid hormone measurement defines the cut-off values to accurately predict postoperative hypocalcemia: a prospective study. Endocrine 2018;61:224–231
27. Yano Y, Masaki C, Sugino K, Nagahama M, Kitagawa W, Sibuya H et al. Serum intact parathyroid hormone level after total thyroidectomy or total thyroidectomy plus lymph node dissection for thyroid nodules: report from 296 surgical cases. Int J Endocrinol Metab 2012;10:594–598
28. Sands N, Young J, MacNamara E, Black MJ, Tamilar M, Hier MP et al. Preoperative parathyroid hormone levels as a predictor of postthyroidectomy hypocalcemia. Otolaryngol Head Neck Surg 2011;144:518–521
29. De Pasquale L, Lartourn PV, Vicentini L, Beretta E, Bonardini M, Leopaldi E et al. Necessity of therapy for post-thyroidectomy hypocalcaemia: a multi-centre experience. Langenbecks Arch Surg 2015;400:319–324
30. Salinger EM, Moore JT. Perioperative indicators of hypocalcemia in total thyroidectomy: the role of vitamin D and parathyroid hormone. Am J Surg 2013;206:876–882
31. Poulis D, Bydolf J, Zedienius J, Branstrom R, Nilsson IL. A single parathyroid hormone measurement two hours after a thyroidectomy reliably predicts permanent hypoparathyroidism. Scand J Surg 2021;110:322–328
32. Lam A, Kerr PD. Parathyroid hormone: an early predictor of postthyroidectomy hypocalcemia. The Laryngoscope 2003;113:2196–2200
33. Proczko-Markuszewska M, Kobiela J, Stefaniak T, Lachinski AJ, Sledzinski Z. Postoperative PTH measurement as a predictor of hypocalcaemia after thyroidectomy. Acta Chir Belg 2010;110:40–44
34. Sabour S, Manders E, Steward DL. The role of rapid PACU parathyroid hormone in reducing post-thyroidectomy hypocalcemia. Otolaryngol Head Neck Surg 2009;141:727–729
35. Islam MS, Sultana T, Paul D, Huq AHMZ, Chowdhury AA, Ferdous C et al. Intraoperative serum parathyroid hormone level is an indicator of hypocalcemia in total thyroidectomy patients. Bangladesh Med Res Counc Bull 2013;38:84–89
36. Wiseman JE, Mossanan M, Utarte PH, Bath JM, Yeh MW. An algorithm informed by the parathyroid hormone level reduces hypocalcemic complications of thyroidectomy. World J Surg 2010;34:532–537
37. Ghaferi BA, Liebler SL, Andersen PE, Schuff KG, Samuels MH, Klein RF et al. Perioperative parathyroid hormone levels in thyroid surgery. Laryngoscope 2006;116:518–521
38. Sywak MS, Palazzo FF, Yeh M, Wilkinson M, Snook K, Sidhu SB et al. Parathyroid hormone assay predicts hypocalcaemia after total thyroidectomy. ANZ J Surg 2007;77:667–670
39. Abdullah AS. The role of early postoperative parathyroid hormone level after total thyroidectomy in prediction of hypocalcemia. Ann Med Surg 2021;65:102252
40. Taretto F, Buonaguida G, Patrizi G, Di Pico R, Blasi S et al. Is ionized calcium a reliable predictor of hypocalcemia after total thyroidectomy? A before and after study. G Chir 2014;35:27–35
51. Tredici P, Grosso E, Gibelli B, Massaro MA, Arrigoni C, Tradati N. Identification of patients at high risk for hypocalcemia after total thyroidectomy. Acta Otorhinolaryngol Ital 2011;31:144–148
52. Sousa AD, Salles JMP, Soares JMA, de Moraes GM, Carvalho JR, Rocha FRS. Course of ionized calcium after thyroidectomy. World J Surg 2010;34:987–992
53. Chow TL, Choi CY, Chiu ANK. Postoperative PTH monitoring of hypocalcemia expedites discharge after thyroidectomy. Am J Otolaryngol 2014;35:736–740
54. Suwannasarn M, Jongjaroenprasert W, Chayangsu P, Suvikapakornkull N, Sripapradang C. Single measurement of intact parathyroid hormone after thyroidectomy can predict transient and permanent hypoparathyroidism: a prospective study. Asian J Surg 2017;40:350–356
55. Pissano A, Saba A, Coghe F, Uccheddu A. Early prediction of hypocalcemia following total thyroidectomy using combined intact parathyroid hormone and serum calcium measurement. Langenbecks Arch Surg 2013;389:423–430
56. Puzzizzio A, Gervasi R, Orlando G, Innaro N, Vitale M, Sacco R. Hypocalcaemia after total thyroidectomy: could intact parathyroid hormone be a predictive factor for transient postoperative hypoparathyroidism? Surgery 2015;157:344–348
57. Alia P, Moreno P, Rigo R, Francois JM, Navarro MA. Postresection parathyroid hormone and parathyroid hormone decline accurately predict hypocalcaemia after thyroidectomy. Am J Clin Pathol 2007;127:592–597
58. Chindavijak S. Prediction of hypocalcaemia in postoperative total thyroidectomy using single measurement of intra-operative parathyroid hormone level. J Med Assoc Thai 2007;90:1167–1171
59. Seo ST, Chang JW, Jin J, Lim YC, Rha KS, Koo BS. Transient and permanent hypocalcaemia after total thyroidectomy: Early predictive factors and long-term follow-up results. Surgery 2015;158:1492–1499
60. Cannizzaro MA, Okatyeva V, Lo Bianco S, Caruso V, Buffone A. Hypocalcaemia after thyroidectomy: iPTH levels and iPTH decline are predictive? Retrospective cohort study. Am Med Surg 2018;30:42–45
61. Cherian AJ, Ramakant P, Paul TV, Abraham DT, Paul MJ. Next-day parathyroid hormone as a predictor of post-thyroidectomy hypocalcaemia. World J Endocr Surg 2016;8:203–207
62. Cahill RA, Harty R, Cotter S, Watson RGK. Parathormone response to thyroid surgery. Am J Surg 2006;191:453–459
63. Košec A, Hergesić F, Matovinović F, Rašić I, Vagić D, Bedeković V. Identifying early postoperative serum parathyroid hormone levels as predictors of hypocalcaemia after total thyroidectomy: a prospective non-randomized study. Am J Otolaryngol 2020;41:102416
64. Strajina V, Dy BM, McKenzie TJ, Thompson GB, Lyden ML. Predicting postthyroidectomy hypocalcaemia: improving predictive ability of parathyroid hormone level. Am Surg 2020;86:121–126
65. Kakava K, Tournis S, Makris K, Papadakis G, Kassi E, Dontas I et al. Identification of patients at high risk for postsurgical hypoparathyroidism. In vivo 2020;34:2973–2980
66. Karatzanis AD, Lerodiakonou DP, Fountakis ES, Velegrakis SG, Doulaptsi MV, Prokopakis EP et al. Postoperative day 1 levels of parathyroid as predictor of occurrence and severity of hypocalcaemia after total thyroidectomy. Head Neck 2018;40:1040–1045
67. Grodski S, Farrell S. Early postoperative PTH levels as a predictor of hypocalcaemia and facilitating safe discharge after total thyroidectomy. Asian J Surg 2007;30:178–182
68. Graf AT, Miller FR, Roehm CE, Prihoda TJ. Predicting hypocalcemia after total thyroidectomy: parathyroid hormone level vs. serial calcium levels. Ear Nose Throat J 2010;89:462–465
69. Toniato A, Boschin IM, Piotto A, Pelizzo M, Sartori P. Thyroideotomy and parathyroid hormone: tracing hypocalcemia-prone patients. Am J Surg 2008;196:285–288
70. Walsh SR, Kumar B, Coveney EC. Serum calcium slope predicts hypocalcaemia following thyroid surgery. Int J Surg 2007;5:41–44
71. Costanzo M, Marziani A, Condorelli F, Migliore M, Cannizzaro MA. Post-thyroidectomy hypocalcemia syndrome: predictive value of early PTH. Preliminary results. Ann Ital Chir 2010;81:301–305
72. Bozec A, Guevara N, Bailleux S, Castillo L, Santini J. Early PTH assay after total thyroidectomy: predictive factor for postoperative hypocalcaemia? Rev Laryngol Otol Rhinol 2006;127:141–144
73. Saba A, Podda M, Messina Campanella A, Pisanu A. Early prediction of hypocalcemia following thyroid surgery: a prospective randomized clinical trial. Langenbecks Arch Surg 2017;402:1119–1125
74. Bove A, Di Renzo RM, Palone G, D’Addetta V, Percario R, Panaccio P et al. Early biomarkers of hypocalcaemia following total thyroidectomy. Int J Surg 2014;12:5202–204
75. Flores-Pastor B, Miquel-Perrélo J, Del Pozo P, Perez A, Soria-Aledo V, Aguayo-Albasini JL. [Diagnostic value of intraoperative parathyroid hormone decline in prediction of hypocalcemia after total thyroidectomy]. Med Clin 2009;132:136–139
76. O’Neill CJ, Jinih M, Boyle S, Brennan SA, Majeed M, Ackhazia AA et al. Risk reduction of hypocalcaemia after thyroidectomy: review of a clinical practice in an Irish cohort. Eur Surg Acta Chir Austriaca 2018;50:8–13
77. Luu Q, Anderssen PE, Adams J, Wax MK, Cohen JI. The predictive value of perioperative calcium levels after thyroid/parathyroid surgery. Head Neck 2002;24:63–67
78. Adams J, Anderssen P, Everts E, Cohen J. Early postoperative calcium levels as predictors of hypocalcaemia. The Laryngoscope 1998;108:1829–1831
79. Stedman T, Truran P, Harrison B, Balasubramanian S. Postoperative hypocalcaemia after bilateral thyroid surgery. Closed loop audit. Int J Surg 2016;36:572
80. Kim D5, Barber AE, Wang R. Early prediction of post-thyroidectomy hypocalcaemia using intraoperative parathyroid hormone assay. Thyroid 2015;25:71–77
81. Kahan S, Najafian A, Mathur A, Schneider EB, Zeiger M. Lowparathyroidhormonelevels actuallyd not predict the need for calcium supplementation after total thyroidectomy. Thyroid 2015;25:A173–A174
82. Cayo AK, Yen TW, Misustin SM, Wall K, Wilson SD, Evans DB et al. Predicting the need for calcium and calcitriol supplementation after total thyroidectomy: results of a prospective, randomized study. Surgery 2012;152:1059–1067
83. Kim JP, Park JJ, Son HY, Kim RB, Kim HY, Woo SH. Effectiveness of an i-PTH measurement in predicting post thyroidectomy hypocalcaemia: prospective controlled study. Yonsei Med J 2013;54:637–642
84. Hermann M, Ott J, Promberger R, Kober F, Karik M, Freiessmuth M. Kinetics of serum parathyroid hormone during and after thyroid surgery. Br J Surg 2008;95:1480–1487
85. McLeod IK, Arciero C, Noordzij JP, Stojadinovic A, Peoples G, Melder PC et al. The use of rapid parathyroid hormone assay in predicting postoperative hypocalcaemia after total or completion thyroidectomy. Thyroid 2006;16:259–265
86. Lee YM, Cho JY, Sung TY, Kim TY, Chung KW, Hong SJ et al. Clinico-pathological risk factors and biochemical predictors of safe discharge after total thyroidectomy and central compartment node dissection for thyroid cancer: a prospective study. Int J Endocrinol 2015;2015:1-6
87. An CM, Tang PZ, Xu ZG, Zhang B, Zhang ZM, Yan DG et al. Role of parathyroid hormone measurement in prediction for symptomatic hypocalcaemia after total thyroidectomy. Zhonghua Er Bi Yan Hou Jing Wai Ke Za Zhi 2010;45:217-221
88. Richards ML, Bingener-Casey J, Pierce D, Strodel WE, Sirinek et al. Parathyroid hormone determination. Arch Surg (Chicago, Ill. : 1960) 2003;138:632-635
89. Carter Y, Chen H, Sippel RS. An intact parathyroid gland as a predictor of symptomatic hypocalcaemia following thyroidectomy. J Surg Res 2013;186:23–28
90. Carr AA, Yen TW, Fareau GG, Cayo AK, Misustin SM, Evans DB et al. A single parathyroid hormone level obtained 4 h after total thyroidectomy predicts the need for postoperative calcium supplementation. J Am Coll Surg 2014;219:757-764
91. Sebastian A. Clinical and biochemical factors affecting postoperative hypocalcaemia after near-total thyroidectomy. Adv Clin Exp Med 2013;87:675-682
92. Wong C, Price S, Scott-Coombes D. Hypocalcaemia and parathyroid hormone assay following total thyroidectomy: predicting the future. World J Surg 2006;30:825–832
93. Vanderlei FA, Vieira JG, Hojaij FC, Cervantes O, Kunii IS, Ohe et al. Parathyroid hormone: an early predictor of symptomatic hypocalcaemia after total thyroidectomy. Arq Bras Endocrinol Metabol 2012;56:168–172
94. Zhou TJ, Zhang JC, Lu W, Zhao F, Li XF, Chen B. The predictive value of parathyroid hormone levels and decreases for postoperative hypocalcaemia after total thyroidectomy. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2017;31:1880-1883
95. Castro A, Del Rio L, Gavilán J. Stratifying the risk of developing hypocalcaemia after thyroidectomy with parathyroid hormone. Otolaryngol Head Neck Surg 2018;158:76–82
96. Arer IM, Kus M, Akkapulu N, Aytaç HO, Yabanoglu H, Caliskan K et al. Prophylactic oral calcium supplementation therapy to prevent early post thyroidectomy hypocalcaemia and evaluation of postoperative parathyroid hormone levels to detect hypocalcaemia: a prospective randomized study. Int J Surg 2017;38:9–14
97. Luo H, Yang H, Wei T, Gong Y, Su A, Ma Y et al. Protocol for management after thyroidectomy: a retrospective study based on one-center experience. Ther Clin Risk Manag 2017;13:635–641
98. Gutierrez G, Garcia J, Toledo E, Del Castillo A, Cañon M, Casanova D. Short stay thyroidectomy based in quick parathyroid hormone determination. Langenbecks Arch Surg 2017;402:398
99. Goh S, Rao A, Singaporewalla R. Use of serum parathyroid hormone (PTH) and ionized calcium (ICA) trend as a predictor of early next day discharge after total thyroidectomy. Thyroid 2017;27:496
100. Yun N, Lee Y, Cho J, Sung T, Chung K, Hong S et al. Predictors of the development of hypocalcemic symptoms according to postoperative days after total thyroidectomy. Thyroid 2013;23;A59
101. Scully WC Jr, Beus KS, Hollenbeak CS, Stack BC Jr. Perioperative parathyroid hormone assay for diagnosis and management of postthyroidectomy hypocalcaemia. Laryngoscope 2005;115:1362–1366.
102. Bahler S, Muller W, Linder T, Frotzler A, Fischli S, Aqtaishi B et al. Intraoperative parathyroid hormone measurement is the best predictor of postoperative symptomatic hypocalcaemia. Hno 2017;65:1000–1007
103. Gentileschi F, Gacek IA, Manzelli A, Coscarella G, Sileri P, Lirosi F et al. Early (1 h) post-operative parathyroid hormone (PTH) measurement predicts hypocalcaemia after thyroidectomy: a prospective case-control single-institution study. Chir Italiana 2008;60:519–528
104. Kim JH, Chung MK, Son YI. Reliable early prediction for different types of post-thyroidectomy hypocalcaemia. Clin Exp Otorhinolaryngol 2011;4:95–100
105. Del Río L, Castro A, Bernáldez R, Del Palacio A, Giráldez CV, Lecumberri B et al. Parathyroid hormone as a predictor of post-thyroidectomy hypocalcaemia. Acta Otorrinolaringol Esp 2011;62:256–273
106. Essa MS, Ahmad KS, Fadey MA, El-Shaer MO, Salama AMF, Zayed ME. Role of perioperative parathyroid hormone level assay after total thyroidectomy as a predictor of transient and permanent hypocalcaemia: prospective study. Ann Med Surg 2021;69:102701
107. Lo CY, Luk JM, Tam SC. Applicability of intraoperative parathyroid hormone assay during thyroidectomy. Ann Surg 2002;236:564–569
108. Roh JI, Park CIL. Intraoperative parathyroid hormone assay for management of patients undergoing total thyroidectomy. Head Neck 2006;28:990–997
109. Lang BH, Yih PC, Ng KK. A prospective evaluation of quick intraoperative parathyroid hormone assay at the time of skin closure in predicting clinically relevant hypocalcaemia after thyroidectomy. World J Surg 2012;36:1300–1306
110. Cavicchi O, Piccin O, Caliceti U, Fernandez JJ, Bordonaro C, Saggese D et al. Accuracy of PTH assay and corrected calcium in early prediction of hypoparathyroidism after thyroid surgery. Otolaryngol Head Neck Surg 2008;138:594–600
111. Schlottmann F, Arbulu AL, Sadava EE, Mendez P, Pereyra L, Fernandez Vila JM et al. Algorithm for early discharge after total thyroidectomy using PTH to predict hypocalcaemia: prospective study. Langenbecks Arch Surg 2015;400:831–836
112. Vescan A, Witterick I, Freeman J. Parathyroid hormone as a predictor of hypocalcaemia after thyroidectomy. The Laryngoscope 2005;115:2105–2108
113. Noureldine SI, Genther DJ, Lopez M, Agrawal N, Tufano RP. Early predictors of hypocalcaemia after total thyroidectomy: an analysis of 304 patients using a short-stay monitoring protocol. JAMA Otolaryngol Head Neck Surg 2014;140:1006–1013
114. Sahli Z, Najafian A, Kahan S, Schneider EB, Zeiger MA, Mathur A. One-hour postoperative parathyroid hormone levels do not reliably predict hypocalcaemia after thyroidectomy. World J Surg 2018;42:2128–2133
115. Bashir AY, Alzubaidi AN, Bashir MA, Obed AH, Zakarneh RK, Ennab HZ et al. The optimal parathyroid hormone cut-off threshold for early and safe management of hypocalcaemia after total thyroidectomy. Endocr Practice 2021;27:925–933
116. Cote V, Sands N, Hier MP, Black MJ, Tamila M, MacNamara E, Zh XZ et al. Cost savings associated with post-thyroidectomy parathyroid hormone levels. Otolaryngol Head Neck Surg 2008;138:204–208
117. Warren FM, Andersen PF, Wax MK, Cohen JL. Intraoperative parathyroid hormone levels in thyroid and parathyroid surgery. The Laryngoscope 2002;112:1866–1870
118. Chia SH, Weisman RA, Tieu D, Kelly C, Dillmann WH, Orloff LA. Prospective study of perioperative factors predicting hypocalcemia after thyroid and parathyroid surgery. Arch Otolaryngol Head Neck Surg 2006;132:41–45
119. Erbil Y, Bozbora A, Ozben N, Issever H, Aral F, Ozarmagan S et al. Predictive value of age and serum parathormone and vitamin d3 levels for postoperative hypocalcemia after total thyroidectomy for nontoxic multinodular goiter. Arch Surg 2007;142:1182–1187
120. Lombardi CP, Raffaelli M, Princi P, Dobrinja C, Carrozza C, Di Stasio E et al. Parathyroid hormone levels 4 h after surgery do not accurately predict post-thyroidectomy hypocalcemia. Surgery 2006;140:1016–1025
121. Warren FM, Andersen PE, Wax MK, Cohen JI. Perioperative parathyroid hormone levels in thyroid surgery. preliminary report. Laryngoscope 2004;114:689–693
122. Al Khadem MG, Retig EM, Dhillon VK, Russell JO, Tufano RP. Postoperative IPTH compared with IPTH gradient as predictors of post-thyroidectomy hypocalcemia. Am J Surg 2015;210:1162–1169
123. Albuja-Cruz MB, Pozdeyev N, Robbins S, Chandramouli R, Raeburn CD, Klopper J et al. A safe and effective protocol for management of post-thyroidectomy hypocalcemia. Am J Surg 2016;5:522–528
124. Raffaelli M, De Crea C, Carrozza C, D’Amato G, Zuppi C, Bellantonio R et al. Combining early postoperative parathyroid hormone and serum calcium levels allows for an efficacious selective post-thyroidectomy supplementation treatment. World J Surg 2012;36:1307–1313
125. Grodski S, Lundgren CI, Sidhu S, Sywak M, Delbridge L. Postoperative PTH measurement facilitates day 1 discharge after total thyroidectomy. Clin Endocrinol 2009;70:322–325
126. Mehrvarz S, Mohebhi HA, Motamedi MH, Khatami SM, Rezaie R, Rasouli HR. Parathyroid hormone measurement in prediction of hypocalcaemia following thyroidectomy. J Coll Physicians and Surg Pak 2014;24:82–87
127. Galy-Bernadou C, Laillement B, Chambron G, Pham HT, Reynaud C, Alovissetti C et al. Parathyroid hormone assays following total thyroidectomy: is there a predictive value? Eur Thyroid J 2018;7:34–38
128. Kolahdouzan M, Shahmiri SS, Hashemi SM, Keleidari B, Nazem M, Moftad RM. Is decline rate of intact parathyroid hormone level a reliable criterion for early discharge of patients after total thyroidectomy? Iran J Otorhinolaryngol 2017;29:239–246
129. Reddy AC, Chand G, Sabaretnam M, Mishra A, Agarwal G, Agarwal A et al. Prospective evaluation of intra-operative quick parathyroid hormone assay as an early predictor of post thyroidectomy hypocalcaemia. Int J Surg 2016;34:103–108
130. Payne RJ, Tewfik MA, Hier MP, Tamila M, Namara EM, Young J et al. Benefits resulting from 1-and 6-h parathyroid hormone and calcium levels after thyroidectomy. Otolaryngol Head Neck Surg 2005;133:386–390
131. Al-Dhahri SF, Al-Ghonaim YA, Terkawi AS. Accuracy of postthyroidectomy parathyroid hormone and corrected calcium levels as early predictors of clinical hypocalcemia. J Otolaryngol Head Neck Surg 2010;39:342–348
132. Al-Dhahri SF, Al-Ghonaim YA, Terkawi AS. Accuracy of postthyroidectomy parathyroid hormone and corrected calcium levels as early predictors of clinical hypocalcemia. J Otolaryngol Head Neck Surg 2010;39:342–348
133. Lecerf P, Orry D, Perrodeau E, Lhommet C, Charretier C, Mor C et al. Parathyroid hormone decline 4 h after total thyroidectomy accurately predicts hypocalcaemia. Surgery 2012;152:863–868
134. Higgins KM, Mandell DL, Govindaraj S, Genden EM, Mechanick JI, Bergman DA et al. The role of intraoperative rapid parathyroid hormone monitoring for predicting thyroidectomy-related hypocalcemia. Arch Otolaryngol Head Neck Surg 2004;130:63–67
135. Soon PS, Magarey CJ, Campbell P, Jalaludin B. Serum intact parathyroid hormone as a predictor of hypocalcaemia after total thyroidectomy. ANZ J Surg 2005;75:977–980
136. Asari R, Passler C, Kaczirek K, Scheuba C, Niederle B. Hypoparathyroidism after total thyroidectomy: a prospective study. Arch Surg 2008;143:152–157
137. Cranshaw IM, Moss D, Whineray-Kelly E, Harman CR. Intraoperative parathormone measurement from the internal jugular vein predicts post-thyroidectomy hypocalcaemia. Langenbecks Arch Surg 2007;392:699–702
138. Di Fabio F, Casella C, Bugari G, Iacobello C, Salerni B. Identification of patients at low risk for thyroidectomy-related hypocalcaemia by intraoperative quick PTH. World J Surg 2006;30:1428–1433
139. Nahas ZS, Farrag TY, Lin FR, Belin RM, Tufano RP. A safe and cost-effective short hospital stay protocol to identify patients at low risk for the development of significant hypocalcaemia after total thyroidectomy. Laryngoscope 2006;116:906–910
140. Lindblom P, Westerdahl J, Bergenfelz A. Low parathyroid hormone levels after thyroid surgery: a feasible predictor of hypocalcemia. Surgery 2002;131:515–520
141. Payne RJ, Hier MP, Tamila M, Mac Namara E, Young J, Black MJ. Same-day discharge after total thyroidectomy: the value of 6-h serum parathyroid hormone and calcium levels. Head Neck 2005;27:1–7
142. Lazard DS, Godiris-Petit G, Wagner I, Sarfati E, Chabolle E. Early detection of hypocalcaemia after total/completion thyroidectomy: routinely usable algorithm based on serum calcium level. World J Surg 2012;36:2590–2597
143. Kara M, Tellioglu G, Krand O, Fersahoglu T, Berber I, Abdurrahman S et al. Predictors of hypocalcaemia occurring after a total/near total thyroidectomy. Surg Today 2009;39:752–757
144. Pfleiderer AG, Ahmad N, Draper MR, Vrotsou K, Smith WK. The timing of calcium measurements in helping to predict temporary and permanent hypocalcaemia in patients having completion and total thyroidectomies. Ann R Coll Surg Engl 2009;91:140–146
145. Gulluoglu BM, Manukyan MN, Cingi A, Yegen C, Yalin R, Aktan JI, Bergman DA. Predicting calcium status post thyroidectomy with early calcium levels. World J Surg 2005;29:1288–1293
146. Husein M, Hier MP, Al-Abdulhadi K, Black M. Predicting calcium status post thyroidectomy with early calcium levels. Otolaryngol Head Neck Surg 2002;127:289–293
147. Houette A, Massouobre J, Pereira B, Puechmaille M, Dissard A, Gilain L et al. Early corrected serum calcium value can predict definitive calcium serum level after total thyroidectomy in asymptomatic patients. Eur Arch Otolo-rhino-laryngol 2018;275:2373–2378
148. Abdel-Halim CN, Rejnmark L, Nielsen VE. Post-operative parathyroid hormone can be used as a predictor of normocalcaemia after total thyroidectomy. Dan Med J 2015;62:A5157
149. Islam S, Al Maqbali T, Howe D, Campbell J. Hypocalcaemia following total thyroidectomy: early post-operative parathyroid hormone assay as a risk stratification and management tool. J Laryngol Otol 2014;128:274–278

150. Le TN, Kerr PD, Sutherland DE, Lambert P. Validation of 1-h post-thyroidectomy parathyroid hormone level in predicting hypocalcaemia. J Otolaryngol 2014;43:5

151. Graciano AJ, Chone CT, Fischer CA. Applicability of immediate, late or serial intact parathyroid hormone measurement following total thyroidectomy. Braz J Otorhinolaryngol 2012;78:78–82

152. Bentrem DJ, Rademaker A, Angelos P. Evaluation of serum calcium levels in predicting hypoparathyroidism after total/near-total thyroidectomy or parathyroidectomy. Am Surg 2001;67:249–251

153. Osborne J, Papachristos A, Skandarajah A, Gorelik A, Hng D, Miller J. Selective prophylactic calcium supplementation reduces length of stay after total thyroidectomy. World J Endocr Surg 2017;9:88–95

154. Wang J, Gu J, Han Q, Wang W, Shang J. Value of intraoperative parathyroid hormone monitoring in papillary thyroid cancer surgery: can it be used to choose the kind of operation methods? Int J Clin Exp Med 2015;8:7778–7785

155. Algarni M, Alzahrani R, Dionigi G, Hadi AH, AlSubayea H. Parathyroid hormone and serum calcium levels measurements as predictors of postoperative hypocalcaemia in total thyroidectomy. Gland Surg 2017;6:428–432

156. Wu SD, Gao L. Is routine calcium supplementation necessary in patients undergoing total thyroidectomy plus neck dissection? Surgery Today 2011;41:183–188

157. Moore C, Lampe H, Agrawal S. Predictability of hypocalcemia using early postoperative serum calcium levels. J Otolaryngol 2001;30:266–270

158. Ma LWY, Wong KP, Lang B. Determining the optimal time to obtain parathyroid hormone after thyroidectomy. Surg Practice 2018;22

159. Abo Elwafa WA, Nahawi AS, Al Wagh HF, Fayad MH. Delta calcium as a reliable predictor of early post thyroidectomy hypocalcaemia for early safe discharge. Langenbecks Arch Surg 2017;402:362

160. Graziani JG, Guerin CG, Paladino NCP, Slotema ES, Rochette CR, Romain FR et al. Predicting postoperative hypocalcaemia after total thyroidectomy: reducing hospital stay, keeping the patient safe. Langenbecks Arch Surg 2017;402:391–392

161. Pomeranz CL, Al-Quarayshi Z, Mohamed H, Aslam R, Friedlander P, Kandel I. Intraoperative PTH levels are predictive of post-operative hypocalcemia. Thyroid 2015;25:211

162. Bove A, Bongarzoni G, Di renzo R, Corradetti L, Deli santi I, Mattei PA et al. Optimal timing for PTH measurement as a predictor of hypocalcaemia after total thyroidectomy. Thyroid 2009;19:586

163. Chang JW, Park KW, Jung SN, Liu L, Kim SM, Koo BS. The most reliable time point for intact parathyroid hormone measurement to predict hypoparathyroidism after total thyroidectomy with central neck dissection to treat papillary thyroid carcinoma: a prospective cohort study. Eur Arch Otorhinolaryngol. 2020;277:549–558

164. Al-Dhahr SF, Mubasher M, Al-Muhawas F, Alesa M, Terkawi BS, Terkawi AS. Early prediction of oral calcium and vitamin D requirements in post-thyroidectomy hypocalcaemia. Otolaryngol Head Neck Surg 2014;151:407–414

165. Lim JP, Irvine R, Bugis S, Holmes D, Wiseman SM. Intact parathyroid hormone measurement 1 h after thyroid surgery identifies individuals at high risk for the development of symptomatic hypocalcaemia. Am J Surg 2009;197:648–654

166. Youngwirth L, Benavidez J, Sippel R, Chen H. Postoperative parathyroid hormone testing decreases symptomatic hypocalcaemia and associated emergency room visits after total thyroidectomy. Surgery 2010;148:841–846

167. Moriyama T, Yamashita H, Noguchi S, Takamatsu Y, Ogawa T, Watanabe S et al. Intraoperative parathyroid hormone assay in patients with Graves’ disease for prediction of postoperative tetany. World J Surg 2005;29:1282–1287

168. Kala F, Sarici IS, Ulutas KT, Sevim Y, Dogu A, Sarigoz T et al. Intact parathormone measurement 1 h after total thyroidectomy as a predictor of symptomatic hypocalcaemia. Int J Clin Exp Med 2015;8:18813–18818

169. Lee JW, Kim JK, Kwon H, Lim W, Moon BI, Paik NS. Routine low-dose calcium supplementation after thyroidectomy does not reduce the rate of symptomatic hypocalcaemia: a prospective randomized trial. Am Surg Treat Res 2019;96:177–184

170. Mo K, Shang J, Wang K, Gu J, Wang P, Nie X et al. Parathyroid hormone reduction predicts transient hypocalcaemia after total thyroidectomy: a single-center prospective study. Int J Endocrinol 2020;2020:7189857

171. Mazotas IG, Wang TS. The role and timing of parathyroid hormone determination after total thyroidectomy. Gland Surg 2017;6:538–548

172. Jr BC S, Bimston DN, Bodenner DL, Brett EM, Dralle H, Orloff LA et al. American association of clinical endocrinologists and American college of endocrinology disease state clinical review: postoperative hypoparathyroidism: definitions and management. Endocr Pract 2015;21:674–685

173. Grodski S, Serpell J. Evidence for the role of perioperative PTH measurement after total thyroidectomy as a predictor of hypocalcaemia. World J Surg 2008;32:1367–1373

174. Paladino NC, Guéron C, Graziani J, Morange I, Loundou A, Taieb D et al. Predicting risk factors of postoperative hypocalcaemia after total thyroidectomy: is safe discharge without supplementation possible? A large cohort study. Langenbecks Arch Surg 2021;406:2425–2431

175. Bilezikian JP, Khan A, Potts JT Jr, Brandi ML, Clarke BI, Shoback D et al. Hypoparathyroidism in the adult: epidemiology, diagnosis, pathophysiology, target-organ involvement, treatment, and challenges for future research. J Bone Miner Res 2011;26:2317–2337

176. Croix CL, Potard G, Valette G, Marianowski R. Interest of the parathyroid hormone assay: an early predictor of post-thyroidectomy hypocalcaemia. Otolaryngol Head Neck Surg 2014;151:P171

177. Payne RJ, Hier MP, Tamila M, Young J, MacNamara E, Black MJ. Postoperative parathyroid hormone level as a predictor of post-thyroidectomy hypocalcaemia. J Otolaryngol 2003;32:362–367

178. Brandi ML, Bilezikian JP, Shoback D, Bouillon R, Clarke BI, Thakker RV et al. Management of hypoparathyroidism: summary statement and guidelines. J Clin Endocrinol Metab 2016;101:2273–2283

179. Pelizzo MR, Piotto A, Toniato A, Pagetta C. PTH assay in the first postoperative day after thyroidectomy early predictor of postoperative hypocalcaemia. Ann Ital Chir 2003;74:511–515

180. Mazotas IG, Yen TWF, Park J, Liu Y, Eastwood DC, Carr AA et al. A postoperative parathyroid hormone-based algorithm to
reduce symptomatic hypocalcemia following completion/total thyroidectomy: a retrospective analysis of 591 patients. Surgery U S 2018;164:746–753

181. Quiros RM, Pesce CE, Wilhelm SM, Djuricin G, Prinz RA. Intraoperative parathyroid hormone levels in thyroid surgery are predictive of postoperative hypoparathyroidism and need for vitamin D supplementation. Am J Surg 2005;189:306–309

182. Riaz U, Shah SA, Zahoor I, Riaz A, Zubair M. Validity of early parathyroid hormone assay as a diagnostic tool for sub-total thyroidectomy related hypocalcaemia. J Coll Physicians Surg Pak 2014;24:459–462

183. Kovacevic B, Ignjatovic M, Cuk V, Zivaljevic V, Paunovic I. Early prediction of symptomatic hypocalcaemia after total thyroidectomy. Acta Chir Belg 2011;111:303–307

184. Kim DS, Wang RC. 92.

185. Rubin SJ, Park JH, Pearce EN, Holick MF, McAneny D, Noordzij JP. Vitamin D status as a predictor of postoperative hypocalcemia after total thyroidectomy. J Laryngol Otol 2017;131:925–929

186. Wang X, Zhu J, Liu F, Gong Y, Li Z. Preoperative vitamin D deficiency and postoperative hypocalcaemia in thyroid cancer patients. World J Surg 2011;35:324–330

187. Al-Khatib T, Althubaiti AM, Althubaiti A, Mosli HH, Alwasiah S, Badawood LM. Severe vitamin D deficiency: a significant predictor of early hypocalcaemia after total thyroidectomy. Langenbecks Arch Surg 2015;439–446

188. Erbil Y, Barbaros U, Temel B, Turkoglu U, Ilsever H, Bozbora A et al. The impact of age, vitamin D(3) level, and incidental parathyroidectomy on postoperative hypocalcaemia after total or near total thyroidectomy. Am J Surg 2009;197:439–446

189. Al-Khatib T, Althubaiti AM, Althubaiti A, Mosli HH, Alwasiah RO, Badawood LM. Severe vitamin D deficiency: a significant predictor of early hypocalcaemia after total thyroidectomy. Otolaryngol Head Neck Surg 2015;152:424–431

190. Diez M, Vera C, Ratia T, Diego L, Mendoza F, Guillamat P et al. [Effect of vitamin D deficiency on hypocalcaemia after total thyroidectomy due to benign goitre]. Cirugia Espanola 2013;91:250–256

191. Kirkby-Bott J, Markogiannakis H, Skandarajah A, Cowan M, Fleming B, Palazzo F. Preoperative vitamin D deficiency predicts postoperative hypocalcaemia after total thyroidectomy. World J Surg 2011;35:324–330

192. Zhang S. The application value of parathyroid hormone level in predicting post-operative hypocalcaemia after total thyroidectomy. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2016;30:39–41