研究分野：機能性高分子

キーワード：バイオミネラリゼーション 液晶キチン ヒドロキシアパタイト 酸化亜鉛
1. 研究開始当初の背景
低エネルギー消費型の材料開発のために、生体硬組織：バイオミネラルが注目されてきている。これまでに「バイオミネラルに学んだ炭酸カルシウム／高分子複合体」は多数報告されてきたが、その結晶成長の複雑さから、リン酸カルシウムの結晶成長を制御した複合体の開発例は限られている。本研究は高分子テンプレートを用いるリン酸カルシウムの結晶成長の制御と新しい有機／無機複合体の作製手法の確立を目指した。

2. 研究の目的
骨・歯の構成化合物である、ヒドロキシアパタイトは再生医療の分野だけでなく、様々な応用が期待されている機能材料といえる。本研究の目的は、バイオミネラリゼーションを模倣した手法を用いて、人工的にヒドロキシアパタイトの結晶成長を制御することである。さらに、高分子の自己組織性を利用して無機結晶の配列・配向制御を目的とした。

3. 研究の方法
炭酸カルシウム薄膜の合成手法になり、リン酸カルシウム結晶前駆体を安定化するための高分子およびテンプレート高分子の設計と重合を行った。具体的には、合成高分子・半合成天然高分子・高分子ブレンドを用いたマトリクスを合成した。高分子ブレンドとしてはポリビニルアルコールとポリヒドロキシエチレンメタクリレートの混合物を調整し、海島相分離構造をもつテンプレートを作製し、複合化を行った。半合成天然高分子は、糖の官能基化を行ない、ファイバー状集合体を作成し、それをマトリクスとして用いた。また、結晶成長溶液内部で形成する前駆体のサイズによって動的光散乱測定を用いて調べ、制御分子としての最適な高分子をしほべた。具体的にはポリアクリル酸などの酸性高分子と塩基性高分子であるポリビニルアミンを試す。pHの異なる条件で結晶前駆体が安定化されるため、制御分子の違いによってヒドロキシアパタイトの核形成が期待される。

さらに、規則的なパターン構造を持つ薄膜結晶の作製を試みる。ポリビニルアルコールをマトリクスに用いると、平滑な表面を有する薄膜が得られる。これは膨潤度と親水性が高いマトリクスで有るため、結晶成長の速度が抑えられ、振動によるパターン構造が形成するのではないかと期待される。また、そのパターンピッチ幅、高さについて、マトリクスの作製条件、又は結晶成長条件を制御することによりコントロールを試みる。

4. 研究成果
1）配向キチンマトリクスを用いた無機結晶配列制御：リン酸カルシウム薄膜の一次元配向構造を達成するために、配向キチンマトリクスの特性を調べるため、炭酸ストロンチウムの結晶成長を行った。配向キチンマトリクス上に、大きさ200 μm、厚み1 μmの薄膜結晶が形を揃えて析出した（図1）。六角形の薄膜状結晶は2種類のドメインから形成しており、それぞれが偏光顕微鏡で観察すると45度おきに明暗を繰り返した。薄膜状結晶をマトリクスから単離し、電子線回折を用いて結晶軸の配向性を調べたところ、マトリクスの配向方向に対して垂直方向に結晶c軸を向けて結晶成長していた。この結果は配向キチンマトリクスの構造をテンプレートにすれば2次元、3次元構造の有機／無機複合体を構築することが可能となることを示す。

Figure 1. Polarizing optical microscopic image of oriented SrCO₃ thin-films formed on an ordered chitin matrix.
タリン酸カルシウム（OCP）であり、ヒドロキシアパタイトの前駆体となる準安定な結晶が基板上に成長した。このOCP 薄膜結晶を温水（80℃）に1時間浸漬することで、ヒドロキシアパタイトに転位する事も見出しました。

3）パターン構造をもつリン酸カルシウム薄膜の作製：PHEMA をマトリックスとし、結晶成長溶液のポリアクリル酸硝酸塩液中で pH を変化させることにより、リン酸カルシウムの薄膜結晶を形成した。得られる薄膜結晶の X 線回折測定を行ったところ、OCP の結晶構造に由来するピークが確認された。一方、回収した結晶成長溶液中のコロイドからはプロードなチャートが得られ、結晶に由来するピークは観察されなかった。このことは水溶性高分子が OCP の核形成を阻害し溶液中でアモルファスを安定化していることを示唆している。すなわち、リン酸カルシウムは溶液中で水溶性高分子の働きによりアモルファス状に安定化され、それが薄膜結晶へと転化していると考えられる。動的光散乱測定によって、溶液内に得られるコロイドのサイズを調えたところ、おおよそ 500 nm 程度の粒子が形成しており、それらのサイズは水溶性高分子の濃度によって、変化する事が分かった。得られる薄膜結晶の表面モルホロジーを走査型電子顕微鏡で観察したところ、用いる水溶性高分子の濃度によって、表面モルホロジーが変化している様子が観察された。特に条件によっては、同心円状の凹凸パターンが誘起され、ピッチ数マイクロ、凹凸の高さ 500 nm であり、規則構造に由来する光回折特性も確認された。これらのことは、結晶成長溶液内に生成するアモルファスの安定性が薄膜結晶の表面モルホロジーに影響を与えることを示唆している。さらに得られる OCP の薄膜結晶を熟処理することにより、表面モルホロジーを保持したまま、ヒドロキシアパタイトに変換することを確認した。

5. 主な発表論文等（研究代表者、研究分担者及び連携研究者には下線）
【雑誌論文】（計9件）
(1) Haruka Sukegawa, Tatsuya Nishimura, Masafumi Yoshio, Satoshi Kajiyama, and Takashi Kato
One-Dimensional Supramolecular Hybrids: Self-Assembled Nanofibrous Materials Based on a Sugar Gelator and Calacite Developed along an Unusual Axis
CrystEngComm, 2017, 19, 1580-1584, doi: 10.1039/C7CE00140A. (査読有)

(2) Bram Cantaert, David Kuo, Shunichi Matsumura, Tatsuya Nishimura, Takeshi Sakamoto, and Takashi Kato
Use of Amorphous Calcium Carbonate for the Design of New Materials
ChemPlusChem, 2017, 82, 107-120, doi: 10.1002/cplu.201600457. (査読有)

(3) 梶谷, 木村, 伴野達也, 小村健, 加藤隆史, アモルファス炭酸カルシウムの構造とそこから核形成する結晶構造との関係: 分子動力学シミュレーション研究
日本結晶成長学会誌, 2017, 44, in press. (査読有)

(4) Satoshi Kajiyama, Takeshi Sakamoto, Moe Inoue, Tatsuya Nishimura, Taishi Yokoi, Chikara Ohtsuki, and Takashi Kato,
Rapid and Topotactic Transformation from Octacalcium Phosphate to Hydroxyapatite (HAP): A New Approach to Self-Organization of Free-Standing Thin-Film HAP-Based Nanohybrids
CrystEngComm, 2016, 18, 8388-8395, doi: 10.1039/C6CE01336H. (査読有)

(5) Hiroyuki Nada, Tatsuya Nishimura, Takeshi Sakamoto, and Takashi Kato,
Heterogeneous Growth of Calcite at Aragonite {001} and Vaterite {001}: Melt Interfaces: A MolecularDynamics Simulation Study
J. Cryst. Growth, 2016, 450, 148-159, doi:10.1016/j.jcrysgro.2016.06.042. (査読有)

(6) Shunichi Matsumura, Yoshimasa Horiguchi, Tatsuya Nishimura, Hideki Sakai, and Takashi Kato
Biomimeralization-Inspired Preparation of Zinc Hydroxide Carbonate/Polymer Hybrids and Their Conversion into Zinc Oxide Thin-Film Photocatalysts
Chem. Eur. J., 2016, 22, doi: 10.1002/chem.201600141. (査読有)

(7) Masanari Nakayama, Satoshi Kajiyama, Tatsuya Nishimura and Takashi Kato
Liquid-Crystalline Calcium Carbonate: Biomimetic Synthesis and Alignment of Nanorod Calcite
Chem. Sci., 2015, 6, 6230-6234, doi: 10.1039/c5sc01820j. (査読有)

(8) Shunichi Matsumura, Satoshi Kajiyama, Tatsuya Nishimura, and Takashi Kato
Formation of Helically Structured Chitin/CaCO3 Hybrids through an Approach Inspired by the Biomimeralization Processes of Crustacean Cuticles
Small, 2015, 11, 5127–5133, doi: 10.1002/smll.201501083. (査読有)

(9) Tatsuya Nishimura, Ken Toyoda, Takahiro Ito, Yuya Oaki, Yukiko Namatame, and Takashi Kato
Liquid-Crystalline Biomacromolecular Templates for the Formation of Oriented Thin-Film Hybrids Composed of Ordered Chitin and Alkaline-Earth Carbonate
Chem. Asian J., 2015, 10, 2256–2360, doi: 10.1002/asia.201500462. (査読有)
西村達也，飯村美慧，坂本健，加藤隆史，バイオミネラリゼーションに倣うパターン構造を有するヒドロキシアパタイト／高分子複合薄膜の作製
第97回日本化学会春年会, 2017年03月16日, 慶應義塾大学日吉キャンパス, 神奈川県, 横浜市

Tatsuya Nishimura, S. Minami, K. Ishibashi, B. Soberats, M. Yoshio and T. Kato
Development of organic/inorganic hybrid materials by using self-organization of liquid crystals
Polymer Society, Korea, 2016 Spring Meeting (招待講演)（国際学会）, 2016年04月07日, Daejeon Conference Center, Daejeon, Korea

Tatsuya Nishimura, Takashi Kato,
Development of organic/inorganic fusion materials using oriented chitin matrices as templates
Pacificchem2015, Hawaii（国際学会）, 2015年12月19日, Hawaii, USA

Masanari Nakayama, Satoshi Kajiyama, Tatsuya Nishimura and Takashi Kato,
Anisotropic calcium carbonate nanocrystals formation using acidic macromolecules
Pacificchem2015, Hawaii（国際学会）, 2015年12月19日, Hawaii, USA

Matsumura, S. Horiguchi, Y. Sakai, H. Nishimura, T. Kato, T.,
Biominalerization-Inspired Approach to the Development of Zinc Oxide Thin Films Based on Organic Templates
IFOC-8, Tokyo（国際学会）, 2015年11月08日, The University of Tokyo, Tokyo

Nakayama, M. Kajiyama, S. Nishimura, T. Kato, T.,
Formation of Anisotropic Calcium Carbonate Nanocrystals through an Approach Inspired by Biominalerization
IFOC-8, Tokyo（国際学会）, 2015年11月08日, The University of Tokyo, Tokyo

Oishi, R. Matsumura, S. Nishimura, T. Kato, T.,
Development and Functionalization of Helically Structured Cellulose/CaCO3 Hybrid Materials Inspired by Biominalerization of Crustacean Cuticles
IFOC-8, Tokyo（国際学会）, 2015年11月08日, The University of Tokyo, Tokyo

Kuo, D. Saito, T. Isogai, A. Nishimura, T., Kato, T.,
Development of Composite Materials Based on Amorphous Calcium Carbonate and Polysaccharides
APME 2015, Yokohama（国際学会）, 2015年10月15日, Pacifico Yokohama, Yokohama

Matsumura, S. Kajiyama, S. Nishimura, T., Kato, T.,
Development of Organic/Inorganic Hybrids Inspired by Crustacean Biominalerization
GSC-7 and 4th JACI/GSC Symposium, Tokyo（国際学会）, 2015年07月25日, Hitotsubashi University, Tokyo

Nishimura, T. and Kato, T.,
Development of Organic/Inorganic Fusion Materials Using Oriented Polymer Templates
Institute for Integrated Cell-Material Sciences International Symposium Hierarchical Dynamics in Soft Materials and Biological Matter（国際学会）, 2015年09月25日, Kyoto University, Kyoto

Nishimura, T.,
バイオミネラリゼーションに学ぶ材料開発：有機高分子と無機化合物との融合

(学会発表)（計19件）
ナノファイバー学会第6回年次大会（招待講演）, 2015年07月06日, 東京大学、東京

〔図書〕 (計1件)
(1) 飯村美慧 中山真成 西村達也 加藤隆史, 月刊地球バイオミネラルに倣いそれを超える融合マテリアルの構築, 海洋出版株式会社, 39巻（通巻448号）, pp.57-68 (2017年1月)

〔産業財産権] なし

〔その他〕 ホームページ等：なし

6．研究組織
(1)研究代表者
西村達也（NISHIMURA Tatsuya）
金沢大学・理工研究域物質化学系・准教授
研究者番号：00436528
(2)研究分担者：なし
(3)連携研究者：なし
(4)研究協力者：なし