Bounds on the volume fractions of two materials in a three-dimensional body from boundary measurements by the translation method

Hyeonbae Kang
Department of Mathematics, Inha University, Incheon 402-751, Korea
(hbkang@inha.ac.kr)

Graeme W. Milton
Department of Mathematics, University of Utah, Salt Lake City UT 84112, USA
(milton@math.utah.edu)

Abstract
Using the translation method of Tartar, Murat, Lurie, and Cherkaev bounds are derived on the volume occupied by an inclusion in a three-dimensional conducting body. They assume electrical impedance tomography measurements have been made for three sets of pairs of current flux and voltage measurements around the boundary. Additionally the conductivity of the inclusion and surrounding medium are assumed to be known. If the boundary data (Dirichlet or Neumann) is special, i.e. such that the fields inside the body would be uniform were the body homogeneous, then the bounds reduce to those of Milton and thus when the volume fraction is small to those of Capdeboscq and Vogelius.

Keywords: inverse problems, size estimation, electrical impedance tomography

1 Introduction
One of the most basic problems in electrical impedance tomography is to estimate the volume fraction of an inclusion in a conducting body from one or more sets of electrical measurements of current pairs and voltage pairs around the boundary. If the boundary data (Dirichlet or Neumann) is special, i.e. such that the fields inside the body would be uniform were the body homogeneous, then sharp bounds on the volume fraction were derived by Nemat-Nasser and Hori [21, 9] (they did not present their universal bounds as bounds on the volume fraction, but such bounds can be easily derived from their results) and by Milton [18]. These reduce to the asymptotic bounds of Capdeboscq and Vogelius [5, 6] in the important case when the volume fraction is small. They are the natural generalization of the well-known Hashin-Shtrikman-Tartar-Murat-Lurie-Cherkaev bounds [7, 8, 20, 24, 14, 15] for composites extended to two-phase bodies of arbitrary shape.

For other boundary conditions bounds, using the information from one measurement pair, were derived by Kang, Seo and Sheen [13], Ikehata [10], and Alessandrini, Morassi, Rosset, and Seo [2, 8, 1]. These other bounds involve constants which are not easy to determine. Another approach was taken by Kang, Kim and Milton [11] who recognized that the translation method approach of Tartar, Murat, Lurie, and Cherkaev [23, 20, 24, 14, 16] could be directly applied to bound the volume fraction using several measurement pairs, with arbitrary boundary conditions. The constants in the resulting bounds can be easily evaluated from the boundary
data. Furthermore the bounds were sharp if the boundary conditions and inclusion were such that the fields were uniform in the inclusion, and shapes of inclusions having this property were found. For special boundary conditions they recovered the bounds of [18] and also provided new bounds, even for this case. Those new bounds also reduced to the bounds of Capdeboscq and Vogelius [5, 6] for asymptotically small volume fractions. The same approach was applied to bound the size of an inclusion in a body for two-dimensional elasticity [19] (where another method, the method of splitting, was introduced) and for the shallow shell equations [12].

In this paper we extend the translation method approach to three-dimensional, two-phase, conducting bodies. This is relatively straightforward for one of the bounds, as there is a null-Lagrangian associated with the electric fields, but requires additional care in the case of the other bound as there is no null-Lagrangian associated with three-dimensional current fields and instead one uses quasiconvex functions [23].

2 Upper bounds

2.1 Derivation of the upper bounds

Consider three potentials V_1, V_2, V_3 which satisfy $\nabla \cdot \sigma \nabla V_i = 0$ in Ω, $i = 1, 2, 3,$ and $V_i = V_i^0$, and define $e_i = -\nabla V_i$ and $j_i = \sigma e_i$. We rewrite this as

$$\nabla \cdot \sigma \nabla V = 0 \quad \text{in} \quad \Omega, \quad V = V^0 \quad \text{on} \quad \partial \Omega,$$

where $V = (V_1, V_2, V_3)$ is a vector potential, and following Tartar [23] we define matrix valued fields

$$E = -\nabla V, \quad J = \sigma E,$$

where the notation is followed that E has e_1, e_2, e_3 as columns (not rows) and J has j_1, j_2, j_3 as columns.

We desire to use information about $q_1 = -j_1 \cdot n$, $q_2 = -j_2 \cdot n$, $q_3 = -j_3 \cdot n$ and V_1, V_2, V_3 on $\partial \Omega$ to generate an upper bound on f_1 (the volume fraction of the phase with the highest conductivity). The upper bound is expressed in terms of the response (or measurement) matrix A defined by

$$A := \langle E^T \sigma E \rangle,$$

which is computable from the boundary data:

$$A = \frac{1}{|\Omega|} \int_{\Omega} (-\nabla V)^T J = \frac{1}{|\Omega|} \int_{\partial \Omega} -V^T (nJ).$$

We suppose that

$$\langle E \rangle = I.$$

We emphasize that this condition is achieved by taking a linear combination of the boundary data since

$$\langle E \rangle = \frac{1}{|\Omega|} \int_{\partial \Omega} -V^T n.$$

We further assume that the response matrix A is diagonal, namely,

$$A = \text{diag} [\lambda_1, \lambda_2, \lambda_3],$$

by rotating the body Ω and taking a further linear combination of V^0. In fact, since A is symmetric, there is an orthogonal matrix R such that $R^T AR$ is diagonal. We then take
\(\mathbf{R}^T \mathbf{V}^0(\mathbf{R} \mathbf{x}) \) as the new Dirichlet data. We emphasize that the condition (2.5) still holds, since \(\langle \mathbf{E} \rangle \) transforms to \(\mathbf{R}^T \langle \mathbf{E} \rangle \mathbf{R} = \mathbf{I} \).

We introduce the 4th order tensor \(\mathbf{T} = (T_{ijkl}) \) such that

\[
\mathbf{T} \mathbf{P} = \text{Tr}(\mathbf{P}) \mathbf{I} - \mathbf{P}^T,
\]

where \(\mathbf{P} \) is a \(3 \times 3 \) matrix, i.e.,

\[
T_{ijkl} = \delta_{ij} \delta_{kl} - \delta_{il} \delta_{jk}.
\]

The tensor \(\mathbf{T} \) is associated with a null-Lagrangian and has the property that \(\mathbf{T}(\nabla \mathbf{V}) \) is divergence free, \(\nabla \cdot \mathbf{T}(\nabla \mathbf{V}) = 0 \). In fact, since

\[
\mathbf{T}(\nabla \mathbf{V})_{ij} = \delta_{ij} \frac{\partial V_k}{\partial x_i} - \frac{\partial V_i}{\partial x_j},
\]

we have

\[
\frac{\partial}{\partial x_i} \mathbf{T}(\nabla \mathbf{V})_{ij} = \frac{\partial^2 V_k}{\partial x_k \partial x_i} - \frac{\partial^2 V_i}{\partial x_j \partial x_i} = 0.
\]

Note that the Einstein convention for summation is being used. If \(\mathbf{V}^{(1)} \) and \(\mathbf{V}^{(2)} \) are two solution vectors, then the matrix

\[
\frac{1}{|\Omega|} \int_{\Omega} (\nabla \mathbf{V}^{(1)})^T \mathbf{T}(\nabla \mathbf{V}^{(2)}) = \frac{1}{|\Omega|} \int_{\partial\Omega} (\mathbf{V}^{(1)})^T \mathbf{n} \mathbf{T}(\nabla \mathbf{V}^{(2)})
\]

(2.12)

can be computed from the boundary data as \(\mathbf{n} \mathbf{T}(\nabla \mathbf{V}^{(2)}) \) only depends on the tangential derivatives of \(\mathbf{V}^{(2)} \) on \(\partial\Omega \) (\(\mathbf{V}^{(2)} \) and \(\mathbf{n} \) are row vectors). To see this it is enough to notice that the \(i \)-th component of the row vector \(\mathbf{n} \mathbf{T}(\nabla \mathbf{V}) \) is

\[
n_i(\nabla \cdot \mathbf{V}) - \sum_j n_j \frac{\partial V_j}{\partial x_i} = \sum_j \left(n_i \frac{\partial}{\partial x_j} - n_j \frac{\partial}{\partial x_i} \right) V_j.
\]

(2.13)

We also note that

\[
\frac{1}{|\Omega|} \int_{\Omega} (\nabla \mathbf{V}^{(1)})^T \mathbf{T}(\nabla \mathbf{V}^{(2)}) = \frac{1}{|\Omega|} \int_{\Omega} (\nabla \mathbf{V}^{(2)})^T \mathbf{T}(\nabla \mathbf{V}^{(1)}),
\]

(2.14)

since \(\mathbf{T} \) is symmetric in the sense that \(T_{ijkl} = T_{klji} \) for all \(i, j, k, l \).

Consider the quadratic form \(\text{Tr}(\mathbf{K}^T \mathbf{E}^T \mathbf{T}(\mathbf{E} \mathbf{k})) \) on \(3 \times 3 \) matrices \(\mathbf{K} \). There is a unique symmetric 4th order tensor, say \(\mathbf{M} = (M_{ijkl}) \), such that

\[
\text{Tr}(\mathbf{K}^T \mathbf{E}^T \mathbf{T}(\mathbf{E} \mathbf{k})) = \mathbf{K} : \mathbf{M} \mathbf{K},
\]

(2.15)

where \(\mathbf{A} : \mathbf{B} = \sum_{ij} A_{ij} B_{ij} \). \(\mathbf{M} \) being symmetric means \(M_{ijkl} = M_{klji} \) for all \(i, j, k, l \). Note that \(M_{ijkl} \) is given by

\[
M_{ijkl} = \text{Tr}(\mathbf{E} \mathbf{I}^{(j)} \mathbf{T}(\mathbf{E} \mathbf{I}^{(kl)})),
\]

(2.16)

where \(\mathbf{I}^{(j)} \) is the elementary matrix whose \((i, j) \) entry is 1 and other entries are 0. We emphasize that \(M_{ijkl} \) can be computed by the boundary data as was seen in (2.12). In fact, if we let \(\mathbf{V}^{ij} \) be the vector such that its \(j \)-th component is \(V_i \) and other components are 0, then \((\nabla \mathbf{V}) \mathbf{I}^{ij} = \nabla \mathbf{V}^{ij} \). Thus we have from (2.12) and (2.13) that

\[
\frac{1}{|\Omega|} \int_{\Omega} (\nabla \mathbf{V})^{(ij)} \mathbf{T}(\nabla \mathbf{V})^{kl} = \frac{1}{|\Omega|} \int_{\Omega} (\nabla \mathbf{V}^{ij})^T \mathbf{T}(\nabla \mathbf{V})^{kl}
\]

\[
= \frac{1}{|\Omega|} \int_{\partial\Omega} \frac{\partial V_k}{\partial x_l} (\nabla \mathbf{V})^{ij} \mathbf{n} - (\nabla \mathbf{V})^{ij} \mathbf{n}(\nabla \mathbf{V})^{kl}. \]
Therefore we get
\[M_{ijkl} = \frac{1}{|\Omega|} \int_{\partial\Omega} V_i \left[n_j \frac{\partial V_k}{\partial x_l} - n_l \frac{\partial V_k}{\partial x_j} \right]. \tag{2.17} \]

We may rewrite this in a symmetric form:
\[M_{ijkl} = \frac{1}{|\Omega|} \int_{\Omega} \left[\frac{\partial u_i}{\partial x_j} \frac{\partial u_k}{\partial x_l} - \frac{\partial u_i}{\partial x_l} \frac{\partial u_k}{\partial x_j} \right], \tag{2.18} \]

where \(u_i \) is the solution to \(\Delta u_i = 0 \) in \(\Omega \) and \(u_i = V_i^0 \) on \(\partial\Omega \), \(i = 1, 2, 3 \). From this one can immediately see that \(M \) is symmetric,
\[M_{ijkl} = 0 \text{ if } i = k \text{ or } j = l, \tag{2.19} \]
and
\[M_{ijkl} = -M_{ilkj}. \tag{2.20} \]

If affine boundary data are used, namely, \(V_i^0 = x_i \) for \(i = 1, 2, 3 \), then one can easily see that \(M_{1122} = M_{1133} = M_{2233} = 1 \) and hence that \(M = T \).

For each \(3 \times 3 \) matrix \(K \) and constant \(c \) let
\[W_c := \text{Tr}(K^T E^T (\sigma I + c T) (EK)) = \text{Tr}(K^T AK) + c \text{Tr}(K^T E^T T (EK)), \tag{2.21} \]
where \(I \) is the 4th order identity tensor. Throughout this paper we identify \(3 \times 3 \) matrices with 9 dimensional vectors and 4th order tensors with \(9 \times 9 \) matrices following the usual convention:
\[
(1,1) \rightarrow 1, \quad (2,1) \rightarrow 2, \quad (3,1) \rightarrow 3, \quad (1,2) \rightarrow 4, \quad (2,2) \rightarrow 5, \\
(3,2) \rightarrow 6, \quad (1,3) \rightarrow 7, \quad (2,3) \rightarrow 8, \quad (3,3) \rightarrow 9.
\]

If we let \(A \) be the \(9 \times 9 \) matrix (4th order tensor) defined by
\[A := \begin{bmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & A \end{bmatrix}, \tag{2.22} \]
then \(W_c \) can be written as
\[
W_c = \begin{bmatrix} k_{11} \\ k_{21} \\ k_{31} \\ k_{12} \\ k_{22} \\ k_{32} \\ k_{13} \\ k_{23} \\ k_{33} \end{bmatrix} \cdot (A + cM) = \begin{bmatrix} k_{11} \\ k_{21} \\ k_{31} \\ k_{12} \\ k_{22} \\ k_{32} \\ k_{13} \\ k_{23} \\ k_{33} \end{bmatrix}. \tag{2.23} \]

On the other hand, \(W_c \) can be written as
\[W_c = \text{Tr}(K^T E^T L c (EK)), \tag{2.24} \]
where $L_c(x)$ is the 4th order tensor $\sigma \mathbb{I} + c T$ and the constant c is chosen so that $L_c(x)$ is positive definite for all x. Since in the vector basis T takes the form

$$
T = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{bmatrix},
$$

(2.25)

we have (in the vector basis)

$$
L_c = \begin{bmatrix}
\sigma & 0 & 0 & c & 0 & 0 & 0 & c \\
0 & \sigma & -c & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma & 0 & 0 & -c & 0 & 0 \\
0 & -c & 0 & \sigma & 0 & 0 & 0 & 0 \\
c & 0 & 0 & 0 & \sigma & 0 & 0 & c \\
0 & 0 & 0 & 0 & \sigma & 0 & \sigma & 0 \\
0 & 0 & -c & 0 & 0 & \sigma & 0 & 0 \\
0 & 0 & 0 & 0 & -c & 0 & \sigma & 0 \\
c & 0 & 0 & 0 & c & 0 & 0 & \sigma
\end{bmatrix}.
$$

(2.26)

Since $\text{Tr}(K^T E^T \mathbb{T}(EK))$ is determined by the boundary data, the standard variational principle yields

$$
W_c = \min_{E, V} \langle \text{Tr}(K^T E^T \sigma(EK)) + c \text{Tr}(K^T E^T T(EK)) \rangle \\
\text{subject to } V = V^0 \text{ on } \partial \Omega
$$

(2.27)

We may rewrite this variational principle as

$$
W_c = \min_{E, V} \langle \text{Tr}(E^T L_c E) \rangle.
$$

(2.28)

The constraints that $\langle E \rangle = I$ and $V = K^T V^0$ on $\partial \Omega$ imply $\langle E \rangle = \langle EK \rangle = K$, and so we have

$$
W_c \geq \min_{E} \langle \text{Tr}(E^T L_c E) \rangle,
$$

(2.29)

by relaxing the constraints.

One can easily see that the minimum of the right hand side of (2.29) occurs when

$$
L_c E = \mu \text{ (a constant matrix)},
$$

(2.30)

and the minimum is

$$
\langle \text{Tr}(E^T L_c E) \rangle = \text{Tr}(K^T \langle \mathbb{I}_c^{-1} \rangle^{-1} K).
$$

(2.31)
Note that

$$\text{Tr}(K^T (L_c^{-1})^{-1} K) = \sum_{i,j,k,l} k_{ij} (\langle L_c^{-1} \rangle)^{-1}_{ijkl}.$$ \hfill (2.32)

So in the vector (rather than matrix) basis we get from (2.23) and (2.29)

$$A + cM \geq \langle L_c^{-1} \rangle^{-1}.$$ \hfill (2.33)

By permuting rows and columns L_c can be transformed to

$$L_c = \begin{bmatrix}
\sigma & c & c \\
 c & \sigma & c \\
 c & c & \sigma \\
 -c & \sigma & -c \\
-\sigma & c & -\sigma \\
 -c & \sigma & -c \\
-\sigma & c & -\sigma
\end{bmatrix}. \hfill (2.34)$$

According to (2.20), $A + cM$ takes (in that basis) the form

$$\begin{bmatrix}
\lambda_1 & cM_{1122} & cM_{1133} \\
 cM_{1122} & \lambda_2 & cM_{2233} \\
 cM_{1133} & cM_{2233} & \lambda_3 \\
 * & * & * \\
 -cM_{1122} & \lambda_1 & * \\
-\lambda_2 & -cM_{1122} & * \\
* & -cM_{1133} & \lambda_1 \\
* & * & * \\
* & * & * \\
-\lambda_3 & -cM_{2233} & \lambda_2
\end{bmatrix}. \hfill (2.35)$$

It is worth emphasizing that L_c^{-1} takes the same block form as L_c. By comparing 3×3 blocks on the left upper corner, (2.33) yields

$$\begin{bmatrix}
\lambda_1 & cM_{1122} & cM_{1133} \\
 cM_{1122} & \lambda_2 & cM_{2233} \\
 cM_{1133} & cM_{2233} & \lambda_3 \\
\end{bmatrix} \geq \begin{bmatrix}
\sigma & c & c \\
 c & \sigma & c \\
 c & c & \sigma
\end{bmatrix}^{-1}.$$ \hfill (2.36)

Note that the inverse of

$$\begin{bmatrix}
\sigma & c & c \\
 c & \sigma & c \\
 c & c & \sigma
\end{bmatrix}$$
is of the form

$$\begin{bmatrix}
a & b & b \\
b & a & b \\
b & b & a
\end{bmatrix}$$

where

$$a = -\frac{b(\sigma + c)}{c} \quad \text{and} \quad b = \frac{c}{(c-\sigma)(2c+\sigma)},$$

satisfy

$$a + 2b = \frac{1}{\sigma + 2c}. \hfill (2.38)$$

Thus we have

$$\begin{bmatrix}
\sigma & c & c \\
 c & \sigma & c \\
 c & c & \sigma
\end{bmatrix}^{-1} = \begin{bmatrix}
\alpha & \beta & \beta \\
 \beta & \alpha & \beta \\
 \beta & \beta & \alpha
\end{bmatrix},$$

(2.39)
where
\[\alpha = -\frac{\beta(\langle a \rangle + \langle b \rangle)}{\langle b \rangle} \quad \text{and} \quad \beta = \frac{\langle b \rangle}{(\langle b \rangle - \langle a \rangle)(2\langle b \rangle + \langle a \rangle)} \quad (2.40) \]

One can then see that as \(c \) is increasing and approaching \(\sigma_2 \), \(\left[\begin{array}{c} \sigma c c \\ c \sigma c \\ c c \sigma \end{array} \right]^{-1} \) is decreasing (in terms of eigenvalues) and approaching \(\left[\begin{array}{ccc} d & d & d \\ d & d & d \end{array} \right] \), where \(d = \left(\frac{f_2}{\sigma_2} + \frac{3f_1}{2\sigma_2 + \sigma_1} \right)^{-1} > \sigma_2. \quad (2.41) \)

This shows in particular that \(\left[\begin{array}{c} \sigma c c \\ c \sigma c \\ c c \sigma \end{array} \right]^{-1} \) is positive-definite if \(c < \sigma_2 \) regardless of the volume fraction \(f_1 \). It then follows from (2.36) that
\[\left[\begin{array}{ccc} \lambda_1 & cM_{1122} & cM_{1133} \\ cM_{1122} & \lambda_2 & cM_{2233} \\ cM_{1133} & cM_{2233} & \lambda_3 \end{array} \right] - \sigma_2 \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right] \geq \left[\begin{array}{c} \sigma c c \\ c \sigma c \\ c c \sigma \end{array} \right]^{-1} \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] - \sigma_2 \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right], \quad (2.42) \]

or
\[\mathbf{v} \cdot \left[\begin{array}{ccc} \lambda_1 & cM_{1122} & cM_{1133} \\ cM_{1122} & \lambda_2 & cM_{2233} \\ cM_{1133} & cM_{2233} & \lambda_3 \end{array} \right] - \sigma_2 \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right] \geq \mathbf{v} \cdot \left[\begin{array}{c} \sigma c c \\ c \sigma c \\ c c \sigma \end{array} \right]^{-1} \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] - \sigma_2 \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] \quad \mathbf{v}. \quad (2.43) \]

Note that
\[\left(\begin{array}{c} \sigma c c \\ c \sigma c \\ c c \sigma \end{array} \right)^{-1} - \sigma_2 \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]^{-1} = \left[\begin{array}{ccc} \alpha \beta \beta & \beta \alpha & \beta \beta \\ \beta \alpha & \beta \beta & \beta \alpha \\ \beta \beta & \beta \alpha & \beta \beta \end{array} \right] - \sigma_2 \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right] \quad = \left[\begin{array}{ccc} \gamma & \delta & \delta \\ \delta & \gamma & \delta \\ \delta & \delta & \gamma \end{array} \right], \quad (2.44) \]

where
\[\gamma = -\frac{\delta(\alpha - \sigma_2 + \beta - \sigma_2)}{\beta - \sigma_2}, \quad \delta = \frac{\beta - \sigma_2}{(\beta - \alpha)(2\beta - 2\sigma_2 + \sigma - \sigma_2)}. \quad (2.45) \]

Note that \(\delta \) blows up as \(c \) approaches \(\sigma_2 \), in phase 2. Thus to get a non-trivial bound we take \(\mathbf{v} = [1 \ 1 \ 1]^T \) and we have
\[\left[\begin{array}{ccc} 1 & \gamma & \delta \\ \delta & \gamma & \delta \\ \delta & \delta & \gamma \end{array} \right] \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] = 3(\gamma + 2\delta) = \frac{3}{\langle \sigma_2 + 2\sigma \rangle - 3\sigma_2} \to \frac{1}{d - \sigma_2}, \quad (2.46) \]

as \(c \to \sigma_2 \) where \(d \) is given by (2.41).

The left hand side of (2.43) approaches \(T \) as \(c \to \sigma_2 \) where
\[T := \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] \cdot \left[\begin{array}{ccc} \lambda_1 - \sigma_2 & 0 & 0 \\ 0 & \lambda_2 - \sigma_2 & 0 \\ 0 & 0 & \lambda_3 - \sigma_2 \end{array} \right] - \sigma_2 \left[\begin{array}{ccc} 0 & M_{1122} - 1 & M_{1133} - 1 \\ M_{1122} - 1 & 0 & M_{2233} - 1 \\ M_{1133} - 1 & M_{2233} - 1 & 0 \end{array} \right] \quad (2.47) \]
Thus we have the following upper bound:

\[f_1 \leq \frac{\sigma_1 + 2\sigma_2}{\sigma_1 - \sigma_2} \frac{1}{1 + \sigma_2 T}. \]

(2.48)

This is generally not the tightest bound that can be obtained from (2.33) as we have ignored the off-diagonal elements marked * in (2.35). A tighter bound (but one which is not so easily solved as an inequality on \(f_1 \)) is provided by the appropriate interval of volume fractions \(f_1 \) given by the inequality (implied by (2.33))

\[\det[A + \sigma_2 M - \langle L^{-1} \sigma_2 \rangle^{-1}] \geq 0, \]

(2.49)

in which, because \(L_{\sigma_2} \) is singular, \(\langle L_{\sigma_2}^{-1} \rangle^{-1} \) is defined as \(\lim_{c \to \sigma_2} \langle L^{-1} \rangle^{-1} \). In fact, one can show by tedious computations that in the basis in which \(L \sigma_3 \) is given by (2.34)

\[
\langle L^{-1} \sigma_2 \rangle = \begin{bmatrix}
 a & a & a \\
 a & a & a \\
 a & a & a \\
 \end{bmatrix}
\]

where

\[
a = \left(\frac{f_2}{\sigma_2} + \frac{3f_1}{2\sigma_2 + \sigma_1} \right)^{-1}, \quad b = \frac{\sigma_2}{f_1}. \]

(2.50)

Note also that the translation tensor \(T \) is not the most general one: we could have taken \(T \) to be any symmetric fourth-order tensor satisfying the symmetries \(T_{ijkl} = -T_{kjid} \). We have not explored this freedom in the choice \(T \), which could lead to even tighter bounds.

2.2 Special boundary conditions

If the affine Dirichlet boundary conditions are prescribed, namely, \(V^0 = x \) on \(\partial \Omega \), then \(\langle E \rangle = I \), and hence

\[A = \langle E^T \sigma E \rangle = \langle E^T \rangle \langle \sigma E \rangle = I \sigma_D \langle E \rangle = \sigma_D, \]

(2.52)

where \(\sigma_D \) is the Dirichlet tensor. Since \(M_{1122} = M_{1133} = M_{2233} = 1 \) in this case, we have

\[T = \text{Tr}[(\sigma_D - \sigma_2 I)^{-1}], \]

(2.53)

and hence

\[f_1 \leq \frac{\sigma_1 + 2\sigma_2}{\sigma_1 - \sigma_2} \frac{1}{1 + \sigma_2 \text{Tr}[(\sigma_D - \sigma_2 I)^{-1}]} . \]

(2.54)

This upper bound is exactly the same as the one obtained in [18].

The inequality (2.33) yields not only (2.36) but also

\[
\begin{bmatrix}
 \lambda_2 & -cM_{1122} \\
 -cM_{1122} & \lambda_1 \\
 \end{bmatrix} \geq \left\langle \begin{bmatrix}
 \sigma & -c \\
 -c & \sigma \\
 \end{bmatrix}^{-1} \right\rangle^{-1}, \]

(2.55)

\[
\begin{bmatrix}
 \lambda_3 & -cM_{1133} \\
 -cM_{1133} & \lambda_1 \\
 \end{bmatrix} \geq \left\langle \begin{bmatrix}
 \sigma & -c \\
 -c & \sigma \\
 \end{bmatrix}^{-1} \right\rangle^{-1}, \]

(2.56)
\[
\begin{bmatrix}
\lambda_3 & -cM_{2233} \\
-cM_{2233} & \lambda_2
\end{bmatrix} \geq \left(\begin{bmatrix}
\sigma & -c \\
-c & \sigma
\end{bmatrix}^{-1}
\right)^{-1}.
\tag{2.57}
\]

When \(V^0 = x \) on \(\partial\Omega \) these inequalities do not yield a better bound than (2.48). To see this, observe that with these boundary conditions (2.55) becomes
\[
\begin{bmatrix}
\lambda_2 - c \\
-c & \lambda_1
\end{bmatrix} \geq \left(\begin{bmatrix}
\sigma & -c \\
-c & \sigma
\end{bmatrix}^{-1}
\right)^{-1},
\tag{2.58}
\]
and hence
\[
\left(\begin{bmatrix}
\lambda_2 - c \\
-c & \lambda_1
\end{bmatrix} - \sigma_2 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \right)^{-1} \geq \left(\begin{bmatrix}
\sigma & -c \\
-c & \sigma
\end{bmatrix}^{-1} - \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \right)^{-1}.
\tag{2.59}
\]

We then obtain
\[
\frac{1}{\lambda_1 - \sigma_2} + \frac{1}{\lambda_2 - \sigma_2} \leq \frac{1}{e - \sigma_2},
\tag{2.60}
\]
where
\[
e = \left(\frac{f_2}{2\sigma_2} + \frac{f_1}{\sigma_2 + \sigma_1} \right)^{-1}.
\tag{2.61}
\]

So far we have shown that (2.55), (2.60) and (2.57) yield
\[
\frac{1}{\lambda_1 - \sigma_2} + \frac{1}{\lambda_2 - \sigma_2} + \frac{1}{\lambda_3 - \sigma_2} \leq \frac{3}{e - \sigma_2},
\tag{2.62}
\]
which in turn yields
\[
f_1 \leq \frac{\sigma_1 + \sigma_2}{\sigma_1 - \sigma_2} \frac{1}{1 + \frac{2}{\sigma_2} \text{Tr}[(\sigma_D - \sigma_2 I)^{-1}]}.
\tag{2.63}
\]

Note that
\[
\text{Tr}[(\sigma_D - \sigma_2 I)^{-1}] \geq \frac{3}{\sigma_1 - \sigma_2}.
\tag{2.64}
\]

Using this fact, one can easily show that
\[
\frac{\sigma_1 + 2\sigma_2}{1 + \frac{\sigma_2}{\text{Tr}[(\sigma_D - \sigma_2 I)^{-1}]} \frac{2}{3\sigma_2} \text{Tr}[(\sigma_D - \sigma_2 I)^{-1}]} \leq \frac{\sigma_1 + \sigma_2}{1 + \frac{2}{\sigma_2} \text{Tr}[(\sigma_D - \sigma_2 I)^{-1}]}.
\tag{2.65}
\]
Thus the bound in (2.54) is better than the one in (2.63). They are the same bounds only when \(f_1 = 1 \).

3 Attainability of the determinant bound (2.49)

Suppose that the bound in (2.29) is attained for a field \(E \). Then one can show (see [11] for more details in the analogous two-dimensional case) that
\[
\mathbb{L}_{\sigma_2} E = \langle \mathbb{L}_{\sigma_2}^{-1} \rangle^{-1} \langle E \rangle,
\tag{3.1}
\]
where \(\langle \mathbb{L}_{\sigma_2}^{-1} \rangle^{-1} \), given by (2.50), is defined as \(\lim_{c \to \sigma_2} \langle \mathbb{L}_c^{-1} \rangle^{-1} \). We now show that the attainability condition (3.2) holds if and only if
\[
\mathbb{L}_{\sigma_2} E = U,
\tag{3.2}
\]

\[
\text{Tr}[\mathbb{L}_{\sigma_2}^{-1} U] \geq 3 \frac{\sigma_1 + \sigma_2}{\sigma_1 - \sigma_2}.
\tag{3.3}
\]

This is the same as (3.4).

\[
\text{Tr}[\mathbb{L}_{\sigma_2}^{-1} U] = \text{Tr}[\mathbb{L}_{\sigma_2}^{-1} U] \geq 3 \frac{\sigma_1 + \sigma_2}{\sigma_1 - \sigma_2}.
\tag{3.5}
\]

Thus the bound in (2.54) is better than the one in (2.63). They are the same bounds only when \(f_1 = 1 \).
for some constant matrix U. The only if part is trivial. The converse is clear heuristically: Since $E = L_{\sigma_2}^{-1} U$ and U is constant, $\langle E \rangle = (L_{\sigma_2}^{-1})^{-1} U$ and hence $U = (L_{\sigma_2}^{-1})^{-1} \langle E \rangle$, therefore (3.1) holds. To show the converse rigorously, we use the basis in which L_c is given by (2.34). In that basis,

$$E = \begin{bmatrix} E_{11} & E_{22} & E_{33} & E_{21} & E_{12} & E_{31} & E_{13} & E_{23} \end{bmatrix}^T. \quad (3.3)$$

Let $L_{\sigma_2}^{(1)}$ and $L_{\sigma_2}^{(2)}$ denote L_{σ_2} in phase 1 and 2, respectively, and likewise $E^{(1)}$ and $E^{(2)}$. Since U is in the image of $L_{\sigma_2}^{(2)}$, U takes the form

$$U = \begin{bmatrix} \alpha & \alpha & \alpha & \beta_1 & -\beta_1 & \beta_2 & -\beta_2 & \beta_3 & -\beta_3 \end{bmatrix}^T. \quad (3.4)$$

Thus $E^{(2)}$ takes the form

$$E^{(2)} = E_0 + E_\perp, \quad (3.5)$$

where

$$E_0 = \begin{bmatrix} \frac{\alpha}{\sigma_2} & \frac{\alpha}{\sigma_2} & \frac{\alpha}{\sigma_2} & \frac{\beta_1}{\sigma_2} & \frac{-\beta_1}{\sigma_2} & \frac{\beta_2}{\sigma_2} & \frac{\beta_3}{\sigma_2} & \frac{-\beta_3}{\sigma_2} \end{bmatrix}^T; \quad (3.6)$$

and E_\perp is in the kernel of $L_{\sigma_2}^{(2)}$, i.e., E_\perp is symmetric and $\text{Tr} E_\perp = 0$. Since $\int_{\text{phase 2}} E_\perp$ is also symmetric and of trace 0, we can see from the form (2.50) of $(L_{\sigma_2}^{-1})^{-1}$ that

$$\langle L_{\sigma_2}^{-1} \rangle^{-1} \int_{\text{phase 2}} E_\perp = 0. \quad (3.7)$$

Thus we obtain

$$\langle L_{\sigma_2}^{-1} \rangle^{-1} \langle E \rangle = \langle L_{\sigma_2}^{-1} \rangle^{-1} (f_1(L_{\sigma_2}^{(1)})^{-1} U + f_2 E_0) = U, \quad (3.8)$$

where the last equality can be shown by an elementary but tedious computation.

The condition (3.2) implies in particular that E is constant in phase 1. We now show that this condition alone guarantees that the upper bound is attained.

Suppose that E is constant in phase 1. After coordinate changes and taking linear combinations of potentials if necessary, we may assume that

$$E = \nabla V = I \quad \text{in phase 1.} \quad (3.9)$$

We claim that if (3.9) holds, then there exists a potential ψ in phase 2 such that

$$V = \nabla \psi \quad \text{and} \quad \Delta \psi = \frac{\sigma_1 + 2\sigma_2}{\sigma_2} \quad \text{in phase 2.} \quad (3.10)$$

To show (3.10) let D be a connected component of phase 1 and Ω_0 an open subset of Ω containing D such that $\Omega_0 \setminus D$ is phase 2 and connected. It is known (see section 2.5 of [4]) that for $j = 1, 2, 3$, there is a harmonic function H_j and a potential φ_j such that

$$V_j(x) = H_j(x) + \int_{\partial D} \frac{\varphi_j(y)}{4\pi |x - y|} d\sigma(y), \quad x \in \Omega_0. \quad (3.11)$$

Furthermore, we have

$$\varphi_j = \frac{\sigma_1 - \sigma_2}{\sigma_2} \frac{\partial V_j}{\partial n} \quad \text{on } \partial D. \quad (3.12)$$

If (3.9) holds, then

$$\varphi_j = \frac{\sigma_1 - \sigma_2}{\sigma_2} n_j \quad \text{on } \partial D, \quad (3.13)$$

10
and hence
\[V_j(x) = H_j(x) - \frac{\sigma_1 - \sigma_2}{\sigma_2} \frac{\partial}{\partial x_j} \int_D \frac{1}{4\pi|x-y|} dy, \quad x \in \Omega_0. \] (3.14)

Thus we have
\[H_j(x) = x_j + c_j + \frac{\sigma_1 - \sigma_2}{\sigma_2} \frac{\partial}{\partial x_j} \int_D \frac{1}{4\pi|x-y|} dy, \quad x \in D, \] (3.15)
for a constant \(c_j \). Let \(H = (H_1, H_2, H_3) \) and \(c = (c_1, c_2, c_3) \). Then,
\[H(x) = \nabla \left(\frac{1}{2} |x|^2 + c \cdot x + \frac{\sigma_1 - \sigma_2}{\sigma_2} \int_D \frac{1}{4\pi|x-y|} dy \right), \quad x \in D. \] (3.16)

In particular, we have \(\nabla \times H = 0 \) in \(D \). Further we have \(\nabla \cdot H = \frac{\sigma_1 + 2\sigma_2}{\sigma_2} \) in \(D \). Since all components of \(\nabla \times H \) and \(\nabla \cdot H \) are harmonic in \(\Omega_0 \), we have \(\nabla \times H = 0 \) and \(\nabla \cdot H = \frac{\sigma_1}{\sigma_2} \) in \(\Omega_0 \). It then follows from (3.14) that \(\nabla \times V = 0 \) and \(\nabla \cdot V = \frac{\sigma_1}{\sigma_2} \) in \(\Omega_0 \setminus \overline{D} \), and hence in phase 2 since the phase 2 is connected.

This does not quite guarantee existence of a potential \(\psi \) such that \(V = \nabla \psi \) since phase 2 is not simply connected. But, \(V \) can be written as \(V = H + S \) where \(H \) is harmonic in \(\Omega \) and \(S \) is harmonic in \(\mathbb{R}^3 \setminus \{ \text{phase 1} \} \) and \(S(x) \to 0 \) as \(|x| \to \infty \). What we have shown above is that \(\nabla \times H = 0 \) in \(\Omega \) and \(\nabla \times S = 0 \) in \(\mathbb{R}^3 \setminus \{ \text{phase 1} \} \). It implies that there are potentials \(\psi_1 \) and \(\psi_2 \) such that \(H = \nabla \psi_1 \) in \(\Omega \) and \(S = \nabla \psi_2 \) in \(\mathbb{R}^3 \setminus \{ \text{phase 1} \} \). Thus we have (3.10).

The relation (3.10) implies that \(E \) is symmetric and \(\text{Tr} E \) is constant in phase 2. Therefore \(L_{\sigma_2} E \) is constant in phase 2. Because of the continuity of \(\sigma E \) along the interface, it follows that \(L_{\sigma_2} E \) is constant in \(\Omega \) and hence the determinant bound (2.49) is attained.

4 Lower bounds

In this section we derive lower bounds for \(f_1 \). We still use the translation method. But as there is no null-Lagrangian for current fields (see below) we use a quasiconvex quadratic form, namely the extremal one discussed on page 546 of [17].

Let \(\Lambda_h, \Lambda_s \) and \(\Lambda_a \) be orthogonal projections onto the space of 3 \(\times \) 3 matrices proportional to \(I \), symmetric and trace free, and antisymmetric, respectively, namely
\[\Lambda_h P = \frac{1}{3} \text{Tr}(P) I, \]
\[\Lambda_s P = \frac{1}{2} (P + P^T) - \Lambda_h P, \]
\[\Lambda_a P = \frac{1}{2} (P - P^T), \]
for any 3 \(\times \) 3 matrix \(P \). Define a 4th order tensor \(T' \) by
\[T' := 2\Lambda_a - \Lambda_h, \quad \text{so that} \quad T' P = P + P^T - \text{Tr}(P) I. \] (4.1)

This tensor is positive semidefinite on the set of 3 \(\times \) 3 rank two matrix valued fields, and isotropic in the sense that
\[T'(R^T P R) = R^T (T' P) R, \] (4.2)
for any unitary transform \(R \). Due to this isotropy it suffices, to check for positive semidefiniteness on rank two matrices, to consider matrices of the form
\[P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ 0 & 0 & 0 \end{bmatrix}, \] (4.3)
and in that case
\[\text{Tr}(P^T T' P) = (p_{11} - p_{22})^2 + (p_{12} + p_{21})^2 + p_{13}^2 + p_{23}^2 \]
(4.4)
is clearly non-negative and zero only when \(p_{11} = p_{22}, p_{12} = -p_{21}, \) and \(p_{13} = p_{23} = 0. \) More generally, \(\text{Tr}(P^T T' P) \) will be zero if and only if the rank two matrix \(P \) is of the form
\[P_{ij} = \alpha_0 (k_i k_j - \delta_{ij} \mathbf{k} \cdot \mathbf{k}) + \beta_0 \epsilon_{ijm} k_m, \]
(4.5)
for some constants \(\alpha_0 \) and \(\beta_0, \) and for some vector \(\mathbf{k} \) which is a vector such that \(P \mathbf{k} = 0. \) Here \(\epsilon_{klm} \) is the completely antisymmetric Levi-Civita symbol, taking value 1 if \(klm \) is an even permutation of 123, \(-1 \) if it is an odd permutation, and zero otherwise.

If \(\mathbf{J}(x) \) is periodic, with unit cell \(\Upsilon, \) and has zero divergence then its Fourier components \(\mathbf{J}(k) \) satisfy \(\mathbf{k} \cdot \mathbf{J}(k) = 0 \) and hence for \(\mathbf{k} \neq 0 \) are matrices of rank two or less. As observed by Murat and Tartar \[22, 20, 24\], it then follows by a straightforward application of Plancherel’s theorem that the quadratic form associated with \(T' \) is quasiconvex on divergence free periodic fields:
\[\langle \text{Tr}((\mathbf{J}^T T' \mathbf{J}))_\Upsilon \rangle \geq \text{Tr}((\mathbf{J}^T T' \mathbf{J}))_\Upsilon, \]
(4.6)
(where the angular brackets \(\langle \cdot \rangle_\Upsilon \) denote volume averages over \(\Upsilon \)) with equality if and only if the Fourier components of \(\mathbf{J} \) have the form (4.5), i.e.
\[J_{kl} = J^0_{kl} + \frac{\partial^2 \alpha}{\partial x_k \partial x_l} - \delta_{kl} \Delta \alpha + \epsilon_{klm} \frac{\partial \beta}{\partial x_m} \]
(4.7)
for some scalar potentials \(\alpha(x) \) and \(\beta(x), \) where the \(J^0_{kl} \) are the elements of a constant matrix \(\mathbf{J}^0. \) Note that \(\mathbf{J} \) given by (4.7) is divergence free, has \(\mathbf{J}^0 \) as its average over \(\Upsilon, \) and
\[T' \mathbf{J} = T' \mathbf{J}^0 + 2 \nabla \nabla \alpha \]
(4.8)
is the gradient of a potential.

Incidentally, there is no symmetric fourth order tensor \(T', \) with elements \(T'_{ijkl}, \) such that \(T' \) is a null Lagrangian for currents. If there were the quadratic form \(\text{Tr}(P^T T' P) \) would be zero for all \(3 \times 3 \) rank two matrix valued fields. In particular, being zero for all matrices of the form (1.3) implies \(T'_{ijkl} = 0 \) unless \(i = 3 \) or \(k = 3. \) Similarly, by considering matrices where the first or second row of \(P \) is zero we deduce that \(T'_{ijkl} = 0 \) unless \(i = 1 \) or \(k = 1, \) and \(T'_{ijkl} = 0 \) unless \(i = 2 \) or \(k = 2. \) It then follows that all elements of \(T' \) must be zero.

Let \(\mathbf{j}_1, \mathbf{j}_2 \) and \(\mathbf{j}_3 \) be the currents corresponding to the measurements \(\mathbf{j}_1 \cdot \mathbf{n} = q_1, \mathbf{j}_2 \cdot \mathbf{n} = q_2 \) and \(\mathbf{j}_3 \cdot \mathbf{n} = q_3 \) on \(\partial \Omega. \) Let \(\mathbf{J} = [\mathbf{j}_1 \mathbf{j}_2 \mathbf{j}_3] \) and suppose that
\[\langle \mathbf{J} \rangle = \mathbf{I}. \]
(4.9)

Define the response matrix \(\mathbf{A}' \) by
\[\mathbf{A}' := \langle \mathbf{J}^T \sigma^{-1} \mathbf{J} \rangle, \]
(4.10)
which is computable from the boundary data:
\[\mathbf{A}' = \frac{1}{|\Omega|} \int_{\Omega} \mathbf{J}^T (-\nabla \mathbf{V}) = \frac{1}{|\Omega|} \int_{\partial \Omega} -\langle \mathbf{n} \mathbf{J} \rangle^T \mathbf{V}. \]
(4.11)

For a positive constant \(c, \) define
\[\mathbb{L}'_c := \sigma^{-1} \mathbb{I} - c T' = (\sigma^{-1} + c) \Lambda_h + (\sigma^{-1} - 2c) \Lambda_s + \sigma^{-1} \Lambda_a. \]
(4.12)
We assume that
\[c < \sigma_1^{-1}/2, \]
(4.13)
so that \(L_c' \) is positive definite. It is helpful to recall that \(\sigma_2 < \sigma_1 \).

Define

\[
W_c' := \min_{\nabla J = 0, \frac{\partial}{\partial n} = 1} \langle T' L'_c J \rangle,
\]

where \(q = [q_1, q_2, q_3] \). Let

\[
g := \min_{\nabla J = 0, \frac{\partial}{\partial n} = 1} \langle T' T' J \rangle.
\]

Then we have

\[
W_c' \leq \min_{\nabla J = 0, \frac{\partial}{\partial n} = 1} \langle T' \sigma^{-1} J \rangle - \min_{\nabla J = 0, \frac{\partial}{\partial n} = 1} c \langle T' T' J \rangle = \langle T' A' - cg \rangle \leq \langle T' A' - cg^- \rangle,
\]

where \(g^- \) is a lower bound on \(g \). Lower bounds on \(g \) are easily obtained. Choose a cube \(\Upsilon \) which contains \(\Omega \) and construct a divergence free field \(J \) in \(\Upsilon \setminus \Omega \) such that \(J \) satisfies periodic boundary conditions on \(\partial \Upsilon \) and \(nJ = -q \) on \(\partial \Omega \). Then from (4.6) the inequality \(g^- \leq g \) holds with

\[
g^- = \frac{1}{p} \left\{ \langle pI + (1 - p)(J)_{\Upsilon \setminus \Omega} \rangle T' pI + (1 - p)(J)_{\Upsilon \setminus \Omega} \rangle - (1 - p) \langle (J)_{\Upsilon \setminus \Omega} \rangle \right\},
\]

where \(p \) is the volume fraction the body \(\Omega \) occupies within the cube \(\Upsilon \) (and the angular brackets \(\langle \cdot \rangle_{\Upsilon \setminus \Omega} \) denote volume averages over \(\Upsilon \setminus \Omega \)). This bound is not necessarily useful unless \(J \) is close to being of the form (4.7). There is a wide variety of fluxes \(q \) for which \(g \) is exactly computable. Let smooth potentials \(\alpha \) and \(\beta \) be chosen in the neighborhood of the boundary of \(\Omega \) and set

\[
q_l = -n_k \left(J_{kl}^0 + \frac{\partial^2 \alpha}{\partial x_k \partial x_l} - \delta_{kl} \Delta \alpha + \epsilon_{klm} \frac{\partial \beta}{\partial x_m} \right).
\]

Then we can extend \(\alpha \) and \(\beta \) to all of \(\Upsilon \) with periodic boundary conditions on \(\partial \Upsilon \), and thus obtain a field \(J \) given by (4.7) satisfying \(nJ = -q \) on \(\partial \Omega \). This field attains equality in (4.6):

\[
p \langle (J)_{\Upsilon \setminus \Omega} \rangle + (1 - p) \langle (J)_{\Upsilon \setminus \Omega} \rangle = \langle (J^0)T' J^0 \rangle.
\]

The first term in this equation cannot be reduced, while maintaining the inequality (4.16), by varying \(J \) inside \(\Omega \) while keeping \(nJ = -q \) on \(\partial \Omega \) (which ensures \(J \) remains equal to \(I \)). Using (4.18) and integration by parts this establishes that

\[
g = \langle (J)_{\Upsilon \setminus \Omega} \rangle = \frac{1}{|\Omega|} \int_{\partial \Omega} \left[xT' J^0 + 2 \nabla \alpha \right] \cdot q.
\]

In particular, if we take special Neumann conditions \(q = -n \) on \(\partial \Omega \), then (4.18) is satisfied with \(J^0 = I \) and \(\alpha = \beta = 0 \), and the first equality in (4.20) implies \(g = -3 \). It is an open question as to whether given any fluxes \(q_1, q_2 \) and \(q_3 \) (with no net flux through \(\partial \Omega \)) one can find \(\alpha, \beta \) and \(J^0 \) such that (4.18) holds, however the following calculation suggests it might be possible. Suppose that there is a portion of \(\partial \Omega \) which is flat with normal \(n = (0, 0, 1) \). Then on this flat section (4.18) implies

\[
q_1 = -J^0_{31} \frac{\partial \alpha_3}{\partial x_1} - \frac{\partial \beta}{\partial x_2}, \quad q_2 = -J^0_{32} \frac{\partial \alpha_3}{\partial x_2} + \frac{\partial \beta}{\partial x_1}, \quad q_3 = -J^0_{33} + \frac{\partial^2 \alpha}{\partial x_1^2} + \frac{\partial^2 \alpha}{\partial x_2^2},
\]

where \(\alpha_3 = \partial \alpha_3 / \partial x_3 \). Thus possible values of \(\alpha, \alpha_3, \) and \(\beta \) on this flat interface may be found by solving Poisson’s equations

\[
\frac{\partial^2 \alpha}{\partial x_1^2} + \frac{\partial^2 \alpha}{\partial x_2^2} = q_3 + J^0_{33}, \quad \frac{\partial^2 \alpha_3}{\partial x_1^2} + \frac{\partial^2 \alpha_3}{\partial x_2^2} = -\frac{\partial q_1}{\partial x_1} - \frac{\partial q_2}{\partial x_2}, \quad \frac{\partial^2 \beta}{\partial x_1^2} + \frac{\partial^2 \beta}{\partial x_2^2} = \frac{\partial q_2}{\partial x_1} - \frac{\partial q_1}{\partial x_2}.
\]
Now we have from (4.12)

\[W'_c \geq \min_{\langle J \rangle = 1} \text{Tr}(J^T[(\sigma^{-1} + c)\Lambda_h + (\sigma^{-1} - 2c)\Lambda_s + \sigma^{-1}\Lambda_a]J) \]

\[\geq \min_{\langle J \rangle = 1} \text{Tr}(J^T[(\sigma^{-1} + c)\Lambda_h]J), \]

(4.23)

by relaxing constraints. Observe that

\[\langle J^T[(\sigma^{-1} + c)\Lambda_h]J \rangle = \frac{1}{3}\langle(\sigma^{-1} + c)(\text{Tr} J)^2 \rangle = \frac{\sigma_1^{-1} + c}{3|\Omega|} \int_{\text{phase1}} \langle \text{Tr} J \rangle^2 + \frac{\sigma_2^{-1} + c}{3|\Omega|} \int_{\text{phase2}} \langle \text{Tr} J \rangle^2. \]

It thus follows from Jensen’s inequality that

\[\langle J^T[(\sigma^{-1} + c)\Lambda_h]J \rangle \geq \frac{\sigma_1^{-1} + c}{3f_1} \left(\frac{1}{|\Omega|} \int_{\text{phase1}} \text{Tr} J \right)^2 + \frac{\sigma_2^{-1} + c}{3f_2} \left(\frac{1}{|\Omega|} \int_{\text{phase2}} \text{Tr} J \right)^2. \]

(4.24)

We also have from the constraint \(\langle J \rangle = I \) that

\[\frac{1}{|\Omega|} \int_{\text{phase1}} \text{Tr} J + \frac{1}{|\Omega|} \int_{\text{phase2}} \text{Tr} J = 3. \]

(4.25)

By minimizing the righthand side of (4.24) under the constraint (4.25) we get

\[W'_c \geq \min_{\langle J \rangle = 1} \text{Tr}(J^T[(\sigma^{-1} + c)\Lambda_h]J) = \frac{3}{f_1 + \frac{f_2}{(\sigma_1^{-1}+c)}}, \]

(4.26)

for all \(c < \sigma_1^{-1}/2 \). Letting \(c \to \sigma_1^{-1}/2 \), we have from (4.13) that

\[\text{Tr} A' - \sigma_1^{-1}g^-/2 \geq \frac{3}{2f_1} + \frac{2f_2}{2\sigma_2 + \sigma_1}, \]

(4.27)

which yields

\[f_1 = 1 - f_2 \geq 1 - \frac{2\sigma_1 + \sigma_2}{2(\sigma_1 - \sigma_2)} \left[1 - \frac{9}{2\sigma_1 \text{Tr} A' - g^-} \right]. \]

(4.28)

With the special Neumann conditions \(q = -n \) on \(\partial\Omega \), we have \(\langle J \rangle = I \) and

\[A' = \langle J^T\sigma^{-1}J \rangle = \langle J^T \rangle \langle \sigma^{-1}J \rangle = I\sigma_N^{-1} \langle J \rangle = \sigma_N^{-1}, \]

(4.29)

where \(\sigma_N \) is the Neumann tensor. Since \(g = -3 \) in this case, we can take \(g^- = -3 \) giving

\[f_1 \geq 1 - \frac{2\sigma_1 + \sigma_2}{2(\sigma_1 - \sigma_2)} \left[1 - \frac{9}{2\sigma_1 \text{Tr}(\sigma_N^{-1}) + 3} \right]. \]

(4.30)

As for the upper bound, a lower bound was obtained in [18]:

\[f_1 \geq 1 - \frac{2\sigma_1 + \sigma_2}{\sigma_1 - \sigma_2} \frac{1}{\sigma_1 \text{Tr}((\sigma_1 I - \sigma_N)^{-1}) - 1}. \]

(4.31)

The bound in (4.30) coincides with that in (4.31) when \(\sigma_N = \sigma_N I \). We could have recovered the bound (4.31), if we had defined

\[W'_c := \min_{\forall J \neq 0, \langle J \rangle = 1, n_J = -q \text{ on } \partial\Omega} \text{Tr}(K^T J^T \nu_c(JK)), \quad g := \min_{\forall J \neq 0, \langle J \rangle = 1, n_J = -q \text{ on } \partial\Omega} \text{Tr}(K^T J^T \nu_c(JK)), \]

(4.32)

14
and then optimized over the choice of K, in a similar manner as was done for the upper bound. This optimization is straightforward with the Neumann conditions $q = -n$ on $\partial\Omega$, but in general might be difficult as it is not clear if the dependence of g on K is quadratic. A way around this difficulty is to fix (independent of K) a J in $\Upsilon \setminus \Omega$ such that J satisfies periodic boundary conditions on $\partial\Upsilon$ and $nJ = -q$ on $\partial\Omega$ and to take

$$g^− = \frac{1}{p} \{ \text{Tr}[(pK + (1 - p)\langle J\rangle_{\Upsilon \setminus \Omega}K)^T T'(pK + (1 - p)\langle J\rangle_{\Upsilon \setminus \Omega}K)] - (1 - p) \text{Tr}[\langle (JK)^T T'(JK) \rangle_{\Upsilon \setminus \Omega}] \},$$

(4.33)

which then depends quadratically on K. However in the end one is still faced with the problem of choosing J in $\Upsilon \setminus \Omega$ to optimize the bound. The treatment given here can be generalized in other ways too, notably by allowing for translations T' which are not isotropic.

Acknowledgements

HK is grateful for support from Ministry of Education, Sciences and Technology of Korea through NRF grants No. 2009-0085987 and 2010-0017532. GWM is grateful for support from the Mathematical Sciences Research Institute and from National Science Foundation through grants DMS-070978 and DMS-***.

References

[1] G. Alessandrini, A. Morassi, and E. Rosset, Detecting cavities by electrostatic boundary measurements, Inverse Problems, 18 (2002), pp. 1333–1353.

[2] G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, SIAM Journal on Applied Mathematics, 58 (1998), pp. 1060–1071.

[3] G. Alessandrini, E. Rosset, and J. K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement, Proceedings of the American Mathematical Society, 128 (2000), pp. 53–64.

[4] H. Ammari and H. Kang, Reconstruction of small inhomogeneities from boundary measurements, vol. 1846 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2004.

[5] Y. Capdeboscq and M. S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, Mathematical Modelling and Numerical Analysis = Modelisation mathématique et analyse numérique: M²AN, 37 (2003), pp. 227–240.

[6] ———, A review of some recent work on impedance imaging for inhomogeneities of low volume fraction, in Partial differential equations and inverse problems, C. Conca, R. Manásevich, G. Uhlmann, and M. S. Vogelius, eds., vol. 362 of Contemporary Mathematics, Providence, RI, 2004, American Mathematical Society, pp. 69–87.

[7] Z. Hashin and S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, Journal of Applied Physics, 33 (1962), pp. 3125–3131.

[8] ———, A variational approach to the theory of the elastic behavior of multiphase materials, Journal of the Mechanics and Physics of Solids, 11 (1963), pp. 127–140.
[9] M. Hori and S. Nemat-Nasser, Universal bounds for overall properties of linear and nonlinear heterogeneous solids, ASME Journal of Engineering Materials and Technology, 117 (1995), pp. 412–432.

[10] M. Ikehata, Size estimation of inclusion, Journal of Inverse and Ill-Posed Problems, 6 (1998), pp. 127–140.

[11] H. Kang, E. Kim, and G. W. Milton, Sharp bounds on the volume fractions of two materials in a two-dimensional body from electrical boundary measurements: the translation method, Calculus of Variations and Partial Differential Equations, (2011). To appear, DOI: 10.1007/s00526-011-0462-3, see also arXiv:1105.0949.

[12] H. Kang, G. W. Milton, and J.-N. Wang, Bounds on the volume fraction of the two-phase shallow shell using one measurement, (2012). Submitted, see arXiv:1204.4962v1 [math.AP].

[13] H. Kang, J. K. Seo, and D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size, SIAM Journal on Mathematical Analysis, 28 (1997), pp. 1389–1405.

[14] K. A. Lurie and A. V. Cherkaev, Accurate estimates of the conductivity of mixtures formed of two materials in a given proportion (two-dimensional problem), Doklady Akademii Nauk SSSR, 264 (1982), pp. 1128–1130. English translation in Soviet Phys. Dokl. 27:461–462 (1982).

[15] ——, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proceedings of the Royal Society of Edinburgh. Section A, Mathematical and Physical Sciences, 99 (1984), pp. 71–87.

[16] G. W. Milton, On characterizing the set of possible effective tensors of composites: The variational method and the translation method, Communications on Pure and Applied Mathematics (New York), 43 (1990), pp. 63–125.

[17] ——, The Theory of Composites, vol. 6 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, United Kingdom, 2002.

[18] ——, Universal bounds on the electrical and elastic response of two-phase bodies and their application to bounding the volume fraction from boundary measurements, Journal of the Mechanics and Physics of Solids, 60 (2012), pp. 139–155.

[19] G. W. Milton and L. H. Nguyen, Bounds on the volume fraction of 2-phase, 2-dimensional elastic bodies and on (stress, strain) pairs in composites, Comptes Rendus Mécanique, (2012). To appear, see also arXiv:1108.5764.

[20] F. Murat and L. Tartar, Calcul des variations et homogénéisation. (French) [Calculus of variation and homogenization], in Les méthodes de l’homogénéisation: théorie et applications en physique, vol. 57 of Collection de la Direction des études et recherches d’Électricité de France, Paris, 1985, Eyrolles, pp. 319–369. English translation in Topics in the Mathematical Modelling of Composite Materials, pp. 139–173, ed. by A. Cherkaev and R. Kohn, ISBN 0-8176-3662-5.

[21] S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, vol. 37 of North-Holland Series in Applied Mathematics and Mechanics, North-Holland Publishing Co., Amsterdam, first ed., 1993.
[22] L. Tartar, *Compensated compactness and applications to partial differential equations*, in Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Volume IV, R. J. Knops, ed., vol. 39 of Research Notes in Mathematics, London, 1979, Pitman Publishing Ltd., pp. 136–212.

[23] ———, *Estimation de coefficients homogénéisés. (French) [Estimation of homogenization coefficients]*, in Computing Methods in Applied Sciences and Engineering: Third International Symposium, Versailles, France, December 5–9, 1977, R. Glowinski and J.-L. Lions, eds., vol. 704 of Lecture Notes in Mathematics, Berlin / Heidelberg / London / etc., 1979, Springer-Verlag, pp. 364–373. English translation in *Topics in the Mathematical Modelling of Composite Materials*, pp. 9–20, ed. by A. Cherkaev and R. Kohn. ISBN 0-8176-3662-5.

[24] ———, *Estimations fines des coefficients homogénéisés. (French) [Fine estimations of homogenized coefficients]*, in Ennio de Giorgi Colloquium: Papers Presented at a Colloquium Held at the H. Poincaré Institute in November 1983, P. Krée, ed., vol. 125 of Pitman Research Notes in Mathematics, London, 1985, Pitman Publishing Ltd., pp. 168–187.