Title: Semi-Analytical and Finite Element Investigations of the Vibration of a Stepped Beam on an Elastic Foundation

Authors: Hakan ERDOĞAN, Safa Bozkurt COŞKUN
Received: 2020-03-23 02:16:08
Accepted: 2020-10-07 14:01:49
Article Type: Research Article

Volume: 24
Issue: 6
Month: December
Year: 2020
Pages: 1321-1328

How to cite
Hakan ERDOĞAN, Safa Bozkurt COŞKUN; (2020), Semi-Analytical and Finite Element Investigations of the Vibration of a Stepped Beam on an Elastic Foundation. Sakarya University Journal of Science, 24(6), 1321-1328, DOI: https://doi.org/10.16984/saufenbilder.707631
Access link
http://www.saujs.sakarya.edu.tr/en/pub/issue/57766/707631

New submission to SAUJS
http://dergipark.org.tr/en/journal/1115/submission/step/manuscript/new
Semi-Analytical and Finite Element Investigations of the Vibration of a Stepped Beam on an Elastic Foundation

Hakan ERDOĞAN*, Safa Bozkurt COŞKUN

Abstract

In this study free vibration behavior of a stepped beam on an elastic foundation is considered. The vibration of uniform beams on an elastic foundation has been previously studied extensively and various solutions are available in the literature. However, the problem considered in current study appears not to have been widely covered in the literature and analytical solutions are strictly limited. To this aim, semi-analytical solutions are obtained first by using Adomian decomposition method, then finite element solutions are computed via structural finite element analysis software (SAP 2000). The free vibration analysis of stepped beam considering the combinations of different support conditions at each end are performed employing semi-analytical and finite element methods. The findings of the analysis are compared and discussed in detail.

Keywords: segmented beam, elastic foundation, vibration, Adomian decomposition method

1. INTRODUCTION

Beam on elastic foundation problems are of great interest for researchers in the fields of civil, mechanical and aeronautical engineering related to the design of structural members of buildings, aircrafts, pipes, railroads, etc.

In the literature, numerous studies were conducted on the vibration analysis of beams [1-3]. Researchers also focused on the special cases such as stepped beams [4] and beams on elastic foundations [5]. Wang [6], Kukla [7] and Belles et al. [8] are three interesting contributions to the technical studies about the subject. Thambiratnam and Zhuge [9] developed a simple finite element method and applied to treat the free vibration of
In order to find the eigenfrequencies ω of the beam one may assume

$$y(x, t) = w(x) \ e^{i\omega t}$$ \hspace{1cm} (2)$$

Substituting Eq.(2) in Eq.(1) yields

$$EI \frac{d^4w(x)}{dx^4} - \rho A \omega^2 w(x) + kw(x) = 0$$ \hspace{1cm} (3)$$

Eq.(3) can be rearranged as

$$\frac{d^4w(x)}{dx^4} - \left(\lambda^4 - \frac{k}{EI} \right) w(x) = 0$$ \hspace{1cm} (4)$$

where $\lambda^4 = \omega^2 \rho A/EI$. Introducing the parameter β, such that, $\beta^4 = \lambda^4 - \frac{k}{EI}$ solution to Eq.(4) is

$$w(x) = C_1 \sin(\beta x) + C_2 \cos(\beta x) + C_3 \sinh(\beta x) + C_4 \cosh(\beta x)$$ \hspace{1cm} (5)$$

when $\beta^4 \geq 0$ which describes that foundation stiffness has no effect in the solution. However, if the vibration frequency of the beam is relatively low, i.e., $\beta^4 < 0$ the solution of Eq.(4) becomes

$$w(x) = C_1 \sin \left(\frac{\beta x}{\sqrt{2}} \right) \sin \left(\frac{\beta x}{\sqrt{2}} \right) + C_2 \sinh \left(\frac{\beta x}{\sqrt{2}} \right) \cos \left(\frac{\beta x}{\sqrt{2}} \right) + C_3 \cos \left(\frac{\beta x}{\sqrt{2}} \right) \sinh \left(\frac{\beta x}{\sqrt{2}} \right) + C_4 \cos \left(\frac{\beta x}{\sqrt{2}} \right) \cosh \left(\frac{\beta x}{\sqrt{2}} \right)$$ \hspace{1cm} (6)$$

which is a different solution when compared to Eq.(5). The coefficients C_1, C_2, C_3, and C_4 in both solutions can be evaluated according to boundary conditions at the supports. These conditions are given as follows:

- For free end $w''(x) = 0$ and $w'''(x) = 0$
- For hinged end $w(x) = 0$ and $w''(x) = 0$
- For clamped end $w(x) = 0$ and $w'(x) = 0$

There are also four boundary conditions due to continuity at the junction of two segments of the stepped beam. These conditions impose the equality of the displacement, the slope, the moment and the shear force at the junction and given as follows:

- $w_1(x) = w_2(x)$
\begin{itemize}
 \item \(w_1'(x) = w_2'(x)\)
 \item \(w_2''(x) = \alpha w_2'(x)\)
 \item \(w_1'''(x) = \alpha w_2''(x)\)
\end{itemize}

where \(\alpha = I_2/I_1\).

3. ADOMIAN DECOMPOSITION METHOD

In Adomian decomposition method (ADM) a general form of the following differential equation is assumed.

\[Lu + Nu + Ru = g(x) \quad (7) \]

where \(u(x)\) is the unknown solution, \(g(x)\) is the source term, \(L\) is the linear operator, \(N\) is the nonlinear operator and \(R\) is the operator for remainder terms. The solution to Eq.(7) is

\[u(x) = f(x) - L^{-1}(Nu) - L^{-1}(Ru) \quad (8) \]

where \(L^{-1}\) is the inverse linear operator and \(f(x) = L^{-1}(g(x))\). The solution is constructed with an infinite series in the following form

\[u(x) = \sum_{n=0}^{\infty} u_n(x) \quad (9) \]

The nonlinear term \(Nu\) is represented by so-called Adomian polynomials given below.

\[Nu = \sum_{n=0}^{\infty} A_n(s_0, s_1, \cdots, s_n) \quad (10) \]

where \(A_n\) is the \(n^{th}\) Adomian polynomial defined as the following term.

\[A_n = \frac{1}{n!} \frac{d^n}{d \lambda^n} N(\sum_{k=0}^{\infty} \lambda^k u_k) \quad (11) \]

The method leads to successive approximations as follows:

\[u_0(x) = f(x) \quad (12) \]

\[u_n(x) = -L^{-1}(Ru_{n-1} - A_{n-1}) \quad (13) \]

Finally, the solution is calculated by adding the successive approximations given in Eqs.(12-13). An \(N^{th}\) order analytical approximation includes the terms up to \(u_N\) as given below

\[u(x) = \sum_{n=0}^{N} u_n(x) \quad (14) \]

For further details of the method, the reader may refer to [11].

4. ADM SOLUTION OF THE PROBLEM

An initial approximation based on Eq.(12) may be obtained as

\[w_0(x) = Ax^3 + Bx^2 + Cx + D \quad (15) \]

where \(A = y''(0)/6, B = y''(0)/2, C = y'(0)\) and \(D = y(0)\). Successive approximations for an \(N^{th}\) order solution may be computed according to Eq.(13) as

\[w_n(x) = L^{-1}(\beta^4 y_{n-1}) \quad , \quad n > 0 \quad (16) \]

Since there are two segments in the stepped beam, an initial approximation of the form given in Eq.(15) is assumed for both segments of the beam.

\[w_0^{(1)}(x) = A_1 x^3 + B_1 x^2 + C_1 x + D_1 \quad (17) \]

\[w_0^{(2)}(x) = A_2 x^3 + B_2 x^2 + C_2 x + D_2 \quad (18) \]

Eight boundary conditions are required to determine eight unknowns introduced in Eqs.(17) and (18). These conditions are four boundary conditions at the supports and four continuity conditions. Hence eight equations in eight unknowns are produced can be represented in the following matrix form.

\[[K]_{8x8} \{\Lambda\}_{8x1} = \{0\}_{8x1} \quad (19) \]

where \([K]\) includes the term \(\beta\) which is the function of vibration frequency \(\omega\) and the unknown vector \(\{\Lambda\}\) includes unknown coefficients in the initial approximations in Eqs.(17) and (18). The trivial solution of Eq.(19) corresponds the undeformed beam. Hence, a nontrivial solution to the problem can be obtained by equating the determinant of coefficient matrix to zero that lead to free vibration frequencies of the stepped beam on elastic foundation considered.

5. NUMERICAL APPLICATION

Wang [6] calculated analytical solutions for natural frequencies of two stepped beams on...
elastische fundamente, eine einfach befestigte und eine mit freien Enden. Es gibt keine analytischen Lösungen für den Balken mit beiden Enden befestigt, den Balken mit einem Ende befestigt und eine Enden befestigt und ein Ende freies. Für die Einfachheit folgende Abkürzungen werden für verschiedene Kombinationen von Randbedingungen.

- FF Frei – Frei
- SS Beide Enden einfach befestigten
- CC Befestigte – Befestigte
- CS Befestigte – einfach befestigen

Wang [6] durchgeführt die Analyse für die folgende Daten: \(E = 6.50 \times 10^{11} \text{ Pa}, \rho = 213.60 \text{ kg/m}^2, H_1 = 0.10 \text{ m}, H_2 = 0.15 \text{ m}, B = 0.08 \text{ m}, L = 5.00 \text{ m}. \) Zwei verschiedene Fundamentmodul wurden verwendet in den Berechnungen, \(\nu = 1/100 \) und \(\nu = 1/200 \) wo \(\nu \) definiert als \(k/EI. \) \(\mu \) ist die Ratio of the length of thinner segment having depth of \(H_1 \) to total length \(L \).

SAP2000 [12] wurde verwendet für die Ermittlung von endlichen Element (FE) Lösungen. Line Springs, die in einer beliebigen lokalen Richtung eines Rahmenobjekts in vertikale Richtung definiert wird, simulieren das elastische Fundament. SAP2000 [12] verteilt die Springs an allen Knoten (Abbildung 2).

Abbildung 2 FE Modell für einfach befestigte Stepped Balken auf elastischem Fundament (50 Balkenelementen)

Tabelle 1 vergleicht die vorherigen Ergebnisse (analytische [6], HPM [10]) mit den Ergebnissen der aktuellen Studie (ADM, FE Lösung) für natürliche Frequenzen des Stepped FF Balken auf elastischem Fundament. ADM Lösungen werden konzipiert für 12. Ordnung und Computations sind identisch zu den analytischen [6] und HPM [10] Lösungen. FE Lösungen sind auch in ausgezeichneten Übereinstimmung für die ersten zwei Frequenzwerte.

In Tabelle 2 nur die ersten zwei natürliche Frequenzen sind verfügbar für SS Balken [6, 10] und verwendet für die Vergleich. Jedoch, die ersten drei Frequenzen werden für Stepped SS Balken auf elastischem Fundament mit ADM und FEM. ADM Ergebnisse sind in ausgezeichneten Übereinstimmung mit den vorherigen Ergebnissen, während FE Lösungen in sehr gute Übereinstimmung mit den gleichen Ergebnissen für welche erste zwei Frequenzen haben die gleiche Genauigkeit von analytischer Lösung.

Analytische Lösungen für die ersten drei Frequenzen für Stepped CC und CS Balken auf elastischem Fundament sind nicht verfügbar in der Literatur. Nur HPM Lösungen [10] existieren und die Ergebnisse dieses Studien für diese Fälle sind mit den nur HPM Ergebnissen verglichen.

In Tabelle 3 und Tabelle 4 scheint, dass ADM Lösungen in sehr gute Übereinstimmung mit HPM Ergebnissen [10]. FE Lösungen sind in sehr gute Übereinstimmung mit beiden Ergebnissen in vorherigen Fällen.

Table 1
Natural frequencies of FF stepped beam on elastic foundation
\(\nu = 1/100 \)
\(H_1 \) & \(H_2 \) & \(F_1 \) & \(F_2 \) & \(F_3 \) & \(F_1 \) & \(F_2 \) & \(F_3 \) & \(F_1 \) & \(F_2 \) & \(F_3 \)
0 & 5.8531 & 5.8531 & 96.4081 & 5.8531 & 5.8531 & 96.4081 & 5.8531 & 5.8531 & 96.2888 & 5.8531 & 5.8531 & 96.3783
0.1 & 5.8534 & 6.2201 & 101.0194 & 5.8534 & 6.2201 & 101.0194 & 5.8534 & 6.2201 & 100.8885 & 5.8534 & 6.2201 & 100.9867
0.2 & 5.8557 & 6.5291 & 100.7912 & 5.8557 & 6.5291 & 100.7912 & 5.8557 & 6.5291 & 100.6555 & 5.8557 & 6.5290 & 100.7573
0.3 & 5.8635 & 6.7692 & 93.4247 & 5.8635 & 6.7692 & 93.4247 & 5.8635 & 6.7692 & 93.2962 & 5.8635 & 6.7691 & 93.3926
0.4 & 5.8821 & 6.9403 & 82.1686 & 5.8821 & 6.9403 & 82.1686 & 5.8821 & 6.9403 & 82.1676 & 5.8821 & 6.9402 & 82.1895
0.5 & 5.9194 & 7.0513 & 72.8477 & 5.9194 & 7.0513 & 72.8477 & 5.9194 & 7.0513 & 72.7549 & 5.9194 & 7.0512 & 72.8245
0.6 & 5.9876 & 7.1161 & 66.7402 & 5.9876 & 7.1161 & 66.7402 & 5.9876 & 7.1161 & 66.6565 & 5.9876 & 7.1160 & 66.7193
0.7 & 6.1046 & 7.1494 & 63.2525 & 6.1046 & 7.1494 & 63.2525 & 6.1046 & 7.1494 & 63.1733 & 6.1047 & 7.1494 & 63.2327
0.8 & 6.2993 & 7.1637 & 61.5574 & 6.2993 & 7.1637 & 61.5574 & 6.2993 & 7.1637 & 61.4814 & 6.2994 & 7.1637 & 61.5384
0.9 & 6.6214 & 7.1800 & 61.4321 & 6.6214 & 7.1800 & 61.4321 & 6.6214 & 7.1800 & 61.3585 & 6.6214 & 7.1800 & 61.4137
1.0 & 7.1685 & 7.1685 & 64.5528 & 7.1685 & 7.1685 & 64.5528 & 7.1685 & 7.1685 & 64.4735 & 7.1685 & 7.1685 & 64.5330
Table 2
Natural frequencies of SS stepped beam on elastic foundation

µ	f_1 (Hz)	f_2 (Hz)	f_3 (Hz)	f_4 (Hz)	f_5 (Hz)	f_6 (Hz)	f_7 (Hz)
0	38.6517	169.8519	42.6517	169.8519	382.0578	42.6515	169.8511
0.1	42.3838	166.0034	42.3838	166.0034	366.1278	42.3825	166.0136
0.2	40.8661	152.2257	40.8663	152.2257	341.8615	40.8074	152.2212
0.3	37.9155	143.6983	37.9155	143.6983	324.0765	37.9161	143.6809
0.4	34.7788	134.3927	34.7788	134.3927	323.7259	34.7785	134.3800
0.5	32.1732	124.3627	32.1732	124.3629	300.8481	32.1611	124.5659
0.6	30.4553	114.6785	30.4553	114.6785	299.3743	30.4537	114.6389
0.7	29.1741	104.1574	29.1741	104.1574	291.5020	29.4157	104.1546
0.8	28.5141	94.1947	28.5141	94.1947	281.3500	28.5147	94.1947
0.9	28.8769	84.8769	28.8769	84.8769	265.8024	28.8765	84.8765
1.0	28.7056	74.3144	28.7056	74.3144	254.7527	28.7052	74.3143

µ	f_1 (Hz)	f_2 (Hz)	f_3 (Hz)	f_4 (Hz)	f_5 (Hz)	f_6 (Hz)	f_7 (Hz)
0	38.6517	169.8519	42.6517	169.8519	382.0578	42.6515	169.8511
0.1	42.3838	166.0034	42.3838	166.0034	366.1278	42.3825	166.0136
0.2	40.8661	152.2257	40.8663	152.2257	341.8615	40.8074	152.2212
0.3	37.9155	143.6983	37.9155	143.6983	324.0765	37.9161	143.6809
0.4	34.7788	134.3927	34.7788	134.3927	323.7259	34.7785	134.3800
0.5	32.1732	124.3627	32.1732	124.3629	300.8481	32.1611	124.5659
0.6	30.4553	114.6785	30.4553	114.6785	299.3743	30.4537	114.6389
0.7	29.1741	104.1574	29.1741	104.1574	291.5020	29.4157	104.1546
0.8	28.5141	94.1947	28.5141	94.1947	281.3500	28.5147	94.1947
0.9	28.8769	84.8769	28.8769	84.8769	265.8024	28.8765	84.8765
1.0	28.7056	74.3144	28.7056	74.3144	254.7527	28.7052	74.3143

Table 3
Natural frequencies of CC stepped beam on elastic foundation

µ	f_1 (Hz)	f_2 (Hz)	f_3 (Hz)	f_4 (Hz)	f_5 (Hz)	f_6 (Hz)	f_7 (Hz)
0	96.4081	265.3269	502.0532	96.4081	265.3269	502.0532	96.4080
0.1	83.6134	244.1429	489.1152	83.6134	244.1429	489.1152	83.6146
0.2	83.6454	237.3657	463.9575	83.6454	237.3657	463.9575	83.6402
0.3	83.6227	224.3318	461.3383	83.6227	224.3318	461.3383	83.6227
0.4	78.6661	222.4427	442.1322	78.6661	222.4427	442.1322	78.6661
0.5	76.2090	221.3049	410.8388	76.2090	221.3049	410.8388	76.2090
0.6	76.4158	208.0189	409.6846	76.4158	208.0189	409.6846	76.4158
0.7	78.2861	196.9283	391.5603	78.2861	196.9283	391.5603	78.2861
0.8	77.9781	198.5024	373.5053	77.9781	198.5024	373.5053	77.9781
0.9	78.2944	196.4500	377.8517	78.2944	196.4500	377.8517	78.2944
1.0	64.5528	176.9686	346.7543	64.5528	176.9686	346.7543	64.5527
Table 4
Natural frequencies of CS stepped beam on elastic foundation

\[
\begin{array}{cccccccccccc}
\mu & f_1 (Hz) & f_2 (Hz) & f_3 (Hz) & f_1 (Hz) & f_2 (Hz) & f_3 (Hz) & f_1 (Hz) & f_2 (Hz) & f_3 (Hz) \\
0 & 66.5734 & 244.1077 & 489.0976 & 38.5108 & 244.1077 & 489.0976 & 38.5123 & 244.1219 & 489.1513 \\
0.1 & 56.5407 & 195.8263 & 420.3049 & 56.5407 & 195.8263 & 420.3049 & 56.5407 & 195.8263 & 420.3049 \\
0.2 & 56.2305 & 192.4146 & 399.6111 & 56.2305 & 192.4146 & 399.6111 & 56.2305 & 192.4146 & 399.6111 \\
0.3 & 55.8497 & 181.3330 & 393.1700 & 55.8497 & 181.3330 & 393.1700 & 55.8497 & 181.3330 & 393.1700 \\
0.4 & 53.7662 & 176.7855 & 346.3749 & 53.7662 & 176.7855 & 346.3749 & 53.7662 & 176.7855 & 346.3749 \\
0.5 & 50.7342 & 172.4997 & 319.2751 & 50.7342 & 172.4997 & 319.2751 & 50.7342 & 172.4997 & 319.2751 \\
0.6 & 47.9739 & 159.6724 & 319.2751 & 47.9739 & 159.6724 & 319.2751 & 47.9739 & 159.6724 & 319.2751 \\
0.7 & 45.1264 & 148.8735 & 319.2751 & 45.1264 & 148.8735 & 319.2751 & 45.1264 & 148.8735 & 319.2751 \\
0.8 & 42.8322 & 144.0672 & 319.2751 & 42.8322 & 144.0672 & 319.2751 & 42.8322 & 144.0672 & 319.2751 \\
0.9 & 40.7878 & 143.4492 & 319.2751 & 40.7878 & 143.4492 & 319.2751 & 40.7878 & 143.4492 & 319.2751 \\
1.0 & 40.7878 & 143.4492 & 319.2751 & 40.7878 & 143.4492 & 319.2751 & 40.7878 & 143.4492 & 319.2751 \\
\end{array}
\]

Figure 3 Effect of foundation stiffness on natural frequencies of stepped FF beam

![Figure 3](image-url)
Effect of foundation stiffness on first two frequencies is clearly illustrated in Fig.3. However, foundation effect for the third natural frequency is indistinguishable.

For stepped SS, CC and CS beams there are no significant difference in the natural frequencies for $\nu = 1/100$ and $\nu = 1/200$. Hence, between Figs. 4 and 6 only the variation of first three frequencies is plotted for $\nu = 1/100$.

Figure 4 Variation of natural frequencies of stepped SS beam

Figure 5 Variation of natural frequencies of stepped CC beam

It can be mentioned that natural frequencies of the stepped SS, CC and SS beams decreases with increasing μ values considering the variations shown in figures 4-6.

6. CONCLUSIONS

In this study, natural frequencies of stepped beams on elastic foundations are investigated via ADM and FEM. Analytical solutions for this problem are available for the beam with free ends and for simply supported beam. There are no other available analytical solutions for the beam with both ends clamped and for the beam with one end clamped and one end simply supported. All four cases previously were solved using HPM. ADM solutions of this study are in perfect agreement with analytical and HPM solutions. FE solutions are computed employing SAP 2000 software by using 50-element and 100-element models. Both FE models produced reliable results when compared ADM and previously available solutions.

Effect of foundation modulus is found to be distinguishable only for stepped FF beam considering the two different foundation modulus investigated in the scope of study. Variation of frequencies with the position of the intersection point of the two segments is also depicted graphically for stepped SS, CC and CS beams for which it is observed that natural frequencies decreases while μ increases. This result makes sense; As μ value increases, the frequency is...
mostly dominated with segment one that is having relatively low moment of inertia.

Funding

The authors received no financial support for this work.

The Declaration of Conflict of Interest/Common Interest

No conflict of interest or common interest has been declared by the authors.

Authors' Contribution

In this study, the contributions of the authors during the research, analysis, submission, review and editing stages are equal.

The Declaration of Ethics Committee Approval

The authors declare that this document does not require an ethics committee approval or any special permission.

The Declaration of Research and Publication Ethics

The authors of the paper declare that they comply with the scientific, ethical and quotation rules of SAUJS in all processes of the paper and that they do not make any falsification on the data collected. In addition, they declare that Sakarya University Journal of Science and its editorial board have no responsibility for any ethical violations that may be encountered, and that this study has not been evaluated in any academic publication environment other than Sakarya University Journal of Science.

REFERENCES

[1] J.P. Den Hartog, Advanced Strength of Materials, Dover Publications Inc., New York, pp. 286–290, 1952.

[2] S.P. Timoshenko D.H. Young and W. Weaver, Vibration Problems in Engineering, John Wiley, New York, 1974.

[3] R.D. Blevins, Formulas for Natural Frequency and Mode Shape, New York, 1979.

[4] S.K. Jang and C.W. Bert, “Free Vibration of Stepped Beams: Exact and Numerical Solutions”, Journal of Sound and Vibration, vol. 130, pp. 342-346, 1989.

[5] Y.C. Lai, B.Y. Ting, W.S. Lee and W.R. Becker, “Dynamic Response of Beams on Elastic Foundations”, J. Struct. Engng. ASCE, vol. 118, pp. 853-858, 1992.

[6] J. Wang, “Vibration of Stepped Beams on Elastic Foundations”, Journal of Sound and Vibration, vol. 149, no. 2, pp. 315-322, 1991.

[7] S. Kukla, “Free vibration of a beam supported on a stepped elastic foundation”, Journal of Sound and Vibration, vol. 149, no. 2, pp. 259-265, 1991.

[8] P.M. Belles, M.J. Maurizi, and D.H. Di Luca, “Vibration of stepped beams on non-uniform elastic foundations”, Journal of Sound and Vibration, vol. 169, no. 1, pp. 127-128, 1994.

[8] D. Thambiratnam and Y.Zhuge, “Free vibration analysis of beams on elastic foundation”, Computers and Structures, vol. 60, pp. 971-980, 1996.

[10] O.F. Durgun, “Elastik Zemin Uzerindeki Kademeli Kirişin Homotopi Pertürbasyon Yönetimi ile Serbest Titreşim Analizi”, M.Sc. Thesis, in Turkish, 2015.

[11] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Springer, Netherlands, 1994.

[12] CSI, SAP 2000, Ver. 21.02, integrated software for structural analysis and design. Computers and Structures Inc., Berkeley, CA, USA, 2019.