On global bifurcation for the nonlinear Steklov problems

T. V. Anoop*, Nirjan Biswas

Abstract

For $p \in (1, \infty)$, for an integer $N \geq 2$ and for a bounded Lipschitz domain Ω, we consider the following nonlinear Steklov bifurcation problem

\[-\Delta_p \phi = 0 \text{ in } \Omega, \quad |\nabla \phi|^{p-2} \frac{\partial \phi}{\partial \nu} = \lambda \left(g|\phi|^{p-2} \phi + fr(\phi) \right) \text{ on } \partial \Omega,\]

where Δ_p is the p-Laplace operator, $g, f \in L^1(\partial \Omega)$ are indefinite weight functions and $r \in C(\mathbb{R})$ satisfies $r(0) = 0$ and certain growth conditions near zero and at infinity. For f, g in some appropriate Lorentz-Zygmund spaces, we establish the existence of a continuum that bifurcates from $(\lambda_1, 0)$, where λ_1 is the first eigenvalue of the following nonlinear Steklov eigenvalue problem

\[-\Delta_p \phi = 0 \text{ in } \Omega, \quad |\nabla \phi|^{p-2} \frac{\partial \phi}{\partial \nu} = \lambda g|\phi|^{p-2} \phi \text{ on } \partial \Omega.\]

Mathematics Subject Classification (2020): 35B32, 46E30, 35J50, 35J66.

Keywords: bifurcation, Steklov eigenvalue problem, weighted trace inequalities, Lorentz and Lorentz-Zygmund spaces.

1 Introduction

Let Ω be a bounded Lipschitz domain in $\mathbb{R}^N (N \geq 2)$ with the boundary $\partial \Omega$. For $p \in (1, \infty)$, we consider the following nonlinear Steklov bifurcation problem:

\[-\Delta_p \phi = 0 \text{ in } \Omega, \quad |\nabla \phi|^{p-2} \frac{\partial \phi}{\partial \nu} = \lambda \left(g|\phi|^{p-2} \phi + fr(\phi) \right) \text{ on } \partial \Omega,\] \hfill (1.1)

where Δ_p is the p-Laplace operator defined as $\Delta_p(\phi) = \text{div}(|\nabla \phi|^{p-2} \nabla \phi)$, $f, g \in L^1(\partial \Omega)$ are indefinite weights functions and $r \in C(\mathbb{R})$ satisfying $r(0) = 0$. A function $\phi \in W^{1,p}(\Omega)$ is said to be a solution of (1.1), if

\[\int_{\Omega} |\nabla \phi|^{p-2} \nabla v \cdot v \, dx = \lambda \int_{\partial \Omega} (g|\phi|^{p-2} \phi v + fr(\phi)v) \, ds, \quad \forall v \in W^{1,p}(\Omega). \]

*corresponding author and also supported by the INSPIRE Research Grant DST/INSPIRE/04/2014/001865.
Since \(r(0) = 0 \), the set \(\{ (\lambda, 0) : \lambda \in \mathbb{R} \} \) is always a trivial branch of solutions of (1.1). We say a real number \(\lambda \) is a bifurcation point of (1.1), if there exists a sequence \(\{ (\lambda_n, \phi_n) \} \) of nontrivial weak solutions of (1.1) such that \(\lambda_n \to \lambda \) and \(\phi_n \to 0 \) in \(W^{1,p}(\Omega) \) as \(n \to \infty \).

The bifurcation problem arises in numerous contexts in mathematical and engineering applications. For example, in reaction diffusion [30], elasticity theory [9, 47], population genetics [13], water wave theory [33], stability problems in engineering [49, 50]. Many authors considered the following nonlinear bifurcation problem with different boundary conditions

\[
-\Delta_p \phi = \lambda g|\phi|^{p-2}\phi + h(\lambda, x, \phi) \quad \text{in } \Omega,
\]

where \(h \) is assumed to be a Carathéodory function satisfying \(h(\lambda, x, 0) = 0 \). There are various sufficient conditions available on \(g \) for the existence of a bifurcation point of (1.3). For Dirichlet boundary condition, \(g = 1 \) [19, 28, 37], \(g \in L^r(\Omega) \) with \(r > \frac{N}{2} \) [8], \(g \in L^\infty(\mathbb{R}^N) \) [20]. There are few works that deal with \(h \) of the form \(\lambda f(x)r(\phi) \) with continuous \(r \) satisfying \(r(0) = 0 \) and certain growth condition at zero and at infinity, see for \(g, f \) in Hölder continuous spaces [43], in certain Lebesgue spaces [27], in Lorentz spaces [7, 36]. The bifurcation problem (1.3) with Neumann boundary condition is considered for \(g = 1 \) in [19], for smooth \(f, g \) in [12].

For \(p = 2 \), (1.1) is considered in [15, 16, 46] for \(g = 1 \) and continuous \(f \), and in [40] for \(f, g \in L^\infty(\partial \Omega) \). Indeed, there are many singular weights (not belonging to any of the Lebesgue spaces) that appear in problems in quantum mechanics, molecular physics, see [24, 25, 26]. In this article, we enlarge the class of weight functions beyond the classical Lebesgue spaces. More precisely, we consider \(f, g \) in certain Lorentz-Zygmund spaces, and study the existence of bifurcation point for (1.1).

Using the weak formulation, it is easy to see that (1.3) is equivalent to the following operator equation:

\[
A(\phi) = \lambda G(\phi) + H(\lambda, \phi), \quad \phi \in X,
\]

where \(X \) is the Banach space \(W^{1,p}(\Omega) \) or \(W^{1,p}_0(\Omega) \) depending on the boundary conditions, \(A, G, H(\lambda, \cdot) : X \to X' \) defined as \(\langle A(\phi), v \rangle = \int_\Omega \nabla \phi |\phi|^{p-2} \nabla \phi \nabla v \, dx; \langle G(\phi), v \rangle = \int_\Omega g|\phi|^{p-2}\phi v \, dx; \langle H(\lambda, \phi), v \rangle = \int_\Omega h(\lambda, x, \phi) v \, dx \). For \(p = 2 \), \(A \) is an invertible map. Using the Leray-Schauder degree [32], Krasnosel’skii in [31] gave sufficient conditions on \(L = A^{-1}G, K = A^{-1}H \) so that, for any eigenvalue \(\mu = \lambda^{-1} \) of \(L \) with odd multiplicity, \(\lambda, 0 \) is a bifurcation point of (1.4). Later, Rabinowitz [41, Theorem 1.3], extended this result by exhibiting a continuum of nontrivial solutions of (1.4) bifurcating from \((\lambda, 0) \) which is either unbounded in \(\mathbb{R} \times X \) or meets at \((\lambda^*, 0) \), where \(\mu = \lambda^{*-1} \) is an eigenvalue of \(L \). Further, if \(\mu \) has multiplicity one, then this continuum decompose into two subcontinua of nontrivial solutions of (1.4), see [3, 17, 18, 41, 42]. For \(p = 2 \), the Leray-Schauder degree is extended for certain maps between \(X \) to \(X' \) [11, 44] and then an analogue of Rabinowitz result is proved for the first eigenvalue of \(A = \lambda G \), see [19, 20, 28, 37].

To study the bifurcation problem (1.1), we consider the following nonlinear eigenvalue prob-
lem: $$-\Delta_p \phi = 0 \text{ in } \Omega,$$

$$|\nabla \phi|^{p-2} \frac{\partial \phi}{\partial \nu} = \lambda g |\phi|^{p-2} \phi \text{ on } \partial \Omega.$$ (1.5)

For $$N = 2, p = 2$$ and $$g = 1$$, the problem (1.5) is first considered by Steklov in [45]. A real number $$\lambda$$ is said to be an eigenvalue of (1.5), if there exists $$\phi \in W^{1,p}(\Omega) \setminus \{0\}$$ satisfying the following weak formulation

$$\int_\Omega |\nabla \phi|^{p-2} \nabla \phi \cdot \nabla v \, dx = \lambda \int_{\partial \Omega} g |\phi|^{p-2} \phi v \, d\sigma, \quad \forall v \in W^{1,p}(\Omega).$$ (1.6)

For $$N > p$$, the classical trace embeddings ([38, Theorem 4.2 and Theorem 6.2]) gives

$$W^{1,p}(\Omega) \hookrightarrow L^q(\partial \Omega), \text{ where } q \in \left[1, \frac{p(N-1)}{N-p}\right],$$

and for $$q \leq \frac{p(N-1)}{N-p}$$ the above embedding is compact. Thus, by the Hölder inequality the right hand side of (1.6) is finite for $$g \in L^r(\partial \Omega)$$ with $$r \in \left[\frac{N-1}{p-1}, \infty\right]$$ and for any $$\phi, v \in W^{1,p}(\Omega)$$. We say an eigenvalue $$\lambda$$ is principal, if there exists an eigenfunction of (1.5) corresponding to $$\lambda$$ that does not change it’s sign in $$\Omega$$. Notice that, zero is always a principal eigenvalue of (1.5) and if $$\int_{\partial \Omega} g \geq 0$$, then zero is the only principal eigenvalue. Thus for the existence of a positive principal eigenvalue of (1.5), it is necessary to have a $$g$$ satisfying $$\int_{\partial \Omega} g < 0$$ and the $$(N - 1)$$-dimensional Hausdorff measure of $$\text{supp}(g^+)$$ is nonzero. In [48], for $$g \in L^r(\partial \Omega)$$ with $$r \in \left(\frac{N-1}{p-1}, \infty\right]$$ satisfying the above necessary conditions, with the help of the above compact embedding, the authors proved the existence of a positive principal eigenvalue of (1.5). For $$N = p$$, $$W^{1,p}(\Omega)$$ is embedded compactly in $$L^q(\partial \Omega)$$ for $$q \in [1, \infty)$$. Thus for $$g \in L^r(\partial \Omega)$$ with $$r \in (1, \infty]$$ satisfying the above necessary condition, (1.5) admits a positive principal eigenvalue, as obtained in [48].

In order to enlarge the class of weight functions beyond $$L^r$$, we use the trace embeddings due to Cianchi-Kerman-Pick. In [14], the authors improved the classical trace embeddings by providing finer trace embeddings as below:

(i) For $$N > p$$: $$W^{1,p}(\Omega) \hookrightarrow L^{\frac{p(N-1)}{N-p}}(\partial \Omega) \subseteq L^{\frac{p(N-1)}{N-p}}(\partial \Omega).$$

(ii) For $$N = p$$: $$W^{1,p}(\Omega) \hookrightarrow L^{\infty,N-1}(\partial \Omega) \subseteq L^q(\partial \Omega), \quad \forall q \in [1, \infty).$$

Nevertheless, none of these embeddings are compact. In this article, we use the above trace embeddings and prove the existence of a positive principal eigenvalue of (1.5) for weight functions in certain Lorentz-Zygmund spaces. More precisely, for $$1 \leq d < \infty$$, we consider the following closed subspaces:

$$\mathcal{F}_d := \text{closure of } C^1(\partial \Omega) \text{ in the Lorentz space } L^{d,\infty}(\partial \Omega),$$

$$\mathcal{G}_d := \text{closure of } C^1(\partial \Omega) \text{ in the Lorentz-Zygmund space } L^{d,\infty;N}(\partial \Omega).$$

Theorem 1.1. Let $$p \in (1, \infty)$$ and $$N \geq p$$. Let $$g^+ \neq 0$$, $$\int_{\partial \Omega} g < 0$$ and

$$g \in \begin{cases} \mathcal{F}^{N-1}_{p-1} & \text{for } N > p, \\ \mathcal{G}_1 & \text{for } N = p. \end{cases}$$

Then
\[\lambda_1 = \inf \left\{ \int_\Omega |\nabla \phi|^p : \phi \in W^{1,p}(\Omega), \int_{\partial \Omega} g |\phi|^p = 1 \right\} \]
is the unique positive principal eigenvalue of (1.5). Furthermore, \(\lambda_1 \) is simple and isolated.

Indeed, \(L^{N-1}(\partial \Omega) \) is contained in \(\mathcal{F}_{N-1}^{-1} \) (for \(N > p \)) and \(L^q(\partial \Omega) \) (for \(q > 1 \)) is contained in \(\mathcal{G}_1 \) (for \(N = p \)) (see Remark 4.1). Thus the above theorem extends the result of [48].

Having obtained the right candidate for bifurcation point, we can study (1.1) for weights in appropriate Lorentz-Zygmund spaces. For this, let us consider the following set:
\[S = \{ (\lambda, \phi) \in \mathbb{R} \times W^{1,p}(\Omega) : (\lambda, \phi) \text{ is a solution of (1.1) and } \phi \not\equiv 0 \} \]
We say \(\mathcal{C} \subset S \) is a continuum of nontrivial solutions of (1.1) if it is connected in \(\mathbb{R} \times W^{1,p}(\Omega) \).

In this article, we prove the existence of a continuum \(\mathcal{C} \) of nontrivial solutions of (1.1) that bifurcates from \((\lambda_1, 0) \).

For \(p \in (1, \infty) \) and \(g \) as in Theorem 1.1, depending on the dimension we make the following assumptions on \(r \) and \(f \):

\[
\begin{align*}
(\text{H1}) & \quad \left\{ \begin{array}{ll}
(a) & \lim_{|s| \to 0} \frac{|r(s)|}{|s|^{p-1}} = 0 \quad \text{and} \quad |r(s)| \leq C|s|^\gamma - 1 \text{ for some } \gamma \in \left(1, \frac{p(N-1)}{N-p} \right), \\
(b) & \quad g \in \mathcal{F}_{N-1}^{\gamma-1}, \quad f \in \left\{ \begin{array}{ll}
\mathcal{F}_{\frac{N}{p-1}}, & \text{if } \gamma \geq p, \text{ where } \frac{1}{p} + \gamma(N-p) = 1; \\
\mathcal{F}_{p-1}^{N-1}, & \text{if } \gamma < p.
\end{array} \right.
\end{array} \right.
\end{align*}
\]

\[
(\text{H2}) \quad \left\{ \begin{array}{ll}
(a) & \lim_{|s| \to 0} \frac{|r(s)|}{|s|^{N-1}} = 0 \quad \text{and} \quad |r(s)| \leq C|s|^\gamma - 1 \text{ for some } \gamma \in (1, \infty), \\
(b) & \quad g \in \mathcal{G}_1, \quad f \in \mathcal{G}_d \text{ with } d > 1.
\end{array} \right.
\]

Theorem 1.2. Let \(p \in (1, \infty) \). Assume that \(r, g \) and \(f \) satisfy (H1) for \(N > p \) and satisfy (H2) for \(N = p \). Then \(\lambda_1 \) is a bifurcation point of (1.1). Moreover, there exists a continuum of nontrivial solutions \(\mathcal{C} \) of (1.1) such that \((\lambda_1, 0) \in \mathcal{C} \) and either

(i) \(\mathcal{C} \) is unbounded, or

(ii) \(\mathcal{C} \) contains the point \((\lambda, 0) \), where \(\lambda \) is an eigenvalue of (1.5) and \(\lambda \neq \lambda_1 \).

The rest of the article is organized as follows. In Section 2, we give the definition and list some properties of symmetrization and Lorentz-Zygmund spaces. We also state the classical trace embedding theorems and their refinements. The definition and some of the properties of degree of a certain class of nonlinear maps between \(W^{1,p}(\Omega) \) and \((W^{1,p}(\Omega))^\prime \) are also given in this section. In Section 3, we develop a functional framework associated with our problem and prove many results that we needed to prove our main theorems. Section 4 contains the proofs of Theorem 1.1 and Theorem 1.2.
2 Preliminaries

In this section, we briefly describe the one-dimensional decreasing rearrangement with respect to \((N-1)\)-dimensional Hausdorff measure. Using this, we define Lorentz-Zygmund spaces over the boundary and give examples of functions in these spaces. Further, we state the classical trace embeddings of \(W^{1,p}(\Omega)\), and its refinements due to Cianchi et al. We also define the degree for a certain class of nonlinear maps and list some of the results that we use in this article.

2.1 Symmetrization

Let \(\Omega \subset \mathbb{R}^N\) be a bounded Lipschitz domain. Let \(\mathcal{M}(\partial \Omega)\) be the collection of all real valued \((N-1)\)-dimensional Hausdorff measurable functions defined on \(\partial \Omega\). Given a function \(f \in \mathcal{M}(\partial \Omega)\), and for \(s > 0\), we define \(E_f(s) = \{x \in \partial \Omega : |f(x)| > s\}\). The distribution function \(\alpha_f\) of \(f\) is defined as \(\alpha_f(s) = \mathcal{H}^{N-1}(E_f(s))\) for \(s > 0\). We define the \(one\ dimensional\ decreasing\ rearrangement\ \(f^*\) of \(f\) as

\[
f^*(t) = \inf \{s > 0 : \alpha_f(s) < t\}, \quad \text{for } t > 0.
\]

The map \(f \mapsto f^*\) is not sub-additive. However, we obtain a sub-additive function from \(f^*\), namely the maximal function \(f^{**}\) of \(f^*\), defined by

\[
f^{**}(t) = \frac{1}{t} \int_0^t f^*(\tau) \, d\tau, \quad t > 0.
\]

Next we state one important inequality concerning the symmetrization [22, Theorem 3.2.10].

Proposition 2.1. \((Hardy-Littlewood\ inequality)\) Let \(N \geq 2\) and let \(\Omega\) be a bounded Lipschitz domain in \(\mathbb{R}^N\). Let \(f\) and \(g\) be nonnegative measurable functions defined on \(\partial \Omega\). Then

\[
\int_{\partial \Omega} fg \, d\sigma \leq \int_0^{\mathcal{H}^{N-1}(\partial \Omega)} f^*(t)g^*(t) \, dt.
\]

2.2 Lorentz-Zygmund space

The Lorentz-Zygmund spaces are three parameter family of function spaces that refine the classical Lebesgue spaces. For more details on Lorentz-Zygmund spaces, we refer to [10, 23]. Here we consider the Lorentz-Zygmund spaces over \(\partial \Omega\) of a bounded domain \(\Omega\).

Let \(\Omega \subset \mathbb{R}^N\) be a bounded Lipschitz domain. Let \(f \in \mathcal{M}(\partial \Omega)\) and let \(l_1(t) = 1 + |\log(t)|\). For \((p, q, \alpha) \in [1, \infty] \times [1, \infty] \times \mathbb{R}\), consider the following quantity:

\[
|f|_{(p,q,\alpha)} := \left\| \frac{1}{t^\frac{1}{q}} l_1(t)^\alpha f^*(t) \right\|_{L^p((0,\mathcal{H}^{N-1}(\partial \Omega)))}^{\frac{1}{q}}.
\]

\[
= \begin{cases} \left(\int_0^{\mathcal{H}^{N-1}(\partial \Omega)} \left[\frac{1}{t^\frac{1}{q}} l_1(t)^\alpha f^*(t) \right]^q \frac{dt}{t} \right)^\frac{1}{q}, & 1 \leq q < \infty; \\
\sup_{0<t<\mathcal{H}^{N-1}(\partial \Omega)} t^{\frac{1}{q}} l_1(t)^\alpha f^*(t), & q = \infty. \end{cases}
\]
The Lorentz-Zygmund space \(L^{p,q,\alpha}(\partial \Omega) \) is defined as
\[
L^{p,q,\alpha}(\partial \Omega) := \{ f \in \mathcal{M}(\partial \Omega) : |f|_{(p,q,\alpha)} < \infty \},
\]
where \(|f|_{(p,q,\alpha)}\) is a complete quasi norm on \(L^{p,q,\alpha}(\partial \Omega) \). For \(p > 1 \),
\[
\|f\|_{(p,q,\alpha)} = \left\| \frac{1}{|t|^{\frac{1}{p}} - \frac{1}{q} \mu_1(t)} f_\ast(t) \right\|_{L^p(\mathcal{H}_{10,1}(\partial \Omega))}
\]
is a norm in \(L^{p,q,\alpha}(\partial \Omega) \) which is equivalent to \(|f|_{(p,q,\alpha)} \) \cite{10, Corollary 8.2}. In particular, \(L^{p,q,\alpha}(\partial \Omega) \) coincides with the Lorentz space \(L^{p,q}(\partial \Omega) \) introduced by Lorentz in \cite{35}. In the following proposition we discuss some important properties of the Lorentz-Zygmund spaces that we will use in this article.

Proposition 2.2. Let \(p, q, r, s \in [1, \infty] \) and \(\alpha, \beta \in (-\infty, \infty) \).

(i) Let \(p \in (1, \infty) \). If \(f \in L^{\infty,p,-1}(\partial \Omega) \), then \(|f|^p \in L^{\infty,1;p}(\partial \Omega)\). Moreover, there exists \(C > 0 \) such that
\[
\|f|^p\|_{(\infty,1;p)} \leq C\|f\|_{(\infty,p,-1)}^p.
\]

(ii) Let \(p \in (1, \infty) \). Then the space \(L^{1,\infty;p}(\partial \Omega) \) is contained in the dual space of \(L^{\infty,1;p}(\partial \Omega) \).

(iii) If \(r > p \), then \(L^{r,s;\beta}(\partial \Omega) \rightarrow L^{p,q,\alpha}(\partial \Omega) \), i.e., there exists a constant \(C > 0 \) such that
\[
\|f\|_{(p,q,\alpha)} \leq C\|f\|_{(r,s,\beta)}, \quad \forall f \in L^{r,s;\beta}(\partial \Omega).
\]

(iv) If either \(q \leq s \) and \(\alpha \geq \beta \) or, \(q > s \) and \(\alpha + \frac{1}{q} > \beta + \frac{1}{s} \), then \(L^{p,q,\alpha}(\partial \Omega) \hookrightarrow L^{p,s;\beta}(\partial \Omega) \), i.e., there exists \(C > 0 \) such that
\[
\|f\|_{(p,s;\beta)} \leq C\|f\|_{(p,q,\alpha)}, \quad \forall f \in L^{p,q,\alpha}(\partial \Omega).
\]

(v) For \(p \in (1, \infty) \), \(L^p(\partial \Omega) \hookrightarrow L^{1,\infty;\alpha}(\partial \Omega) \).

Proof. (i) If \(f \in L^{\infty,p,-1}(\partial \Omega) \), then \(|f|_{(\infty,p,-1)} < \infty \). Hence using \((|f|^p)^* = (f^*)^p\), we get
\[
\|f|^p\|_{(\infty,1;p)} = \int_0^{H^{1,-1}(\partial \Omega)} \left(\frac{\|f|^p\|}{\mu_1(t)} \right)^\frac{1}{p} \frac{dt}{t} = \left(\frac{1}{\int_0^{H^{1,-1}(\partial \Omega)} \frac{f^*(t)}{\mu_1(t)} \frac{dt}{t}} \right) \cdot \int_0^{H^{1,-1}(\partial \Omega)} \left(\frac{f^*(t)}{\mu_1(t)} \right)^\frac{1}{s} \frac{dt}{t} \cdot \|f|^p\|_{(\infty,1;p)}^p = \|f\|_{(\infty,p,-1)}^p.
\]

Therefore, \(|f|^p \in L^{\infty,1;p}(\partial \Omega)\). Now by the equivalence of norms, there exists \(C_1, C_2 > 0 \) such that
\[
\|f|^p\|_{(\infty,1;p)} \leq C_1\|f\|_{(\infty,p,-1)}^p \leq C_1 C_2\|f\|_{(\infty,p,-1)}^p.
\]

Thus there exists \(C > 0 \) such that \(\|f|^p\|_{(\infty,1;p)} \leq C\|f\|_{(\infty,p,-1)}^p \).

(ii) Let \(f \in L^{\infty,1;p}(\partial \Omega) \) and \(g \in L^{1,\infty;p}(\partial \Omega) \). Then using the Hardy-Littlewood inequality (Proposition 2.1),
\[
\int_{\partial \Omega} fg \, d\sigma \leq \int_0^{H^{1,-1}(\partial \Omega)} f^*(t)g^*(t) \, dt
\]
\[\sup_{0 \leq t < H^{N-1}(\partial \Omega)} t g^*(t)(l_1(t))^p \left(\int_0^{H^{N-1}(\partial \Omega)} \frac{f^*(t)}{l_1(t))^p}{dt} \right) \]
\[= \|g\|_{(1,\infty;p)} \|f\|_{(\infty;1,-p)} \].

Thus \(f \) is in the dual space of \(L^{1,\infty;p}(\partial \Omega) \).

(iii) Follows from [10, Theorem 9.1]. (iv) Follows from [10, Theorem 9.3].

(v) Let \(f \in L^p(\partial \Omega) \). Since \(p > 1 \), using (2.1) there exists \(C > 0 \) such that
\[\|f\|_{(1,\infty;\alpha)} \leq C \|f\|_{L^p(\partial \Omega)}. \]

Therefore, \(L^p(\partial \Omega) \) is continuously embedded into \(L^{1,\infty;\alpha}(\partial \Omega) \). \qed

The following characterization of the function space \(G_d \) follows by similar arguments as in the proof of [5, Theroem 16].

Proposition 2.3. Let \(N \geq 2 \) and \(d \in [1, \infty) \). Then \(f \in G_d \) if and only if
\[\lim_{t \to 0} t^{\frac{1}{d} f^*(l_1(t))^N} = 0. \]

Next we list some properties of the Lorentz spaces. For more details on Lorentz spaces, we refer to [1, 22, 29].

Proposition 2.4. Let \(p, q, r \in [1, \infty] \).

(i) Generalized Hölder inequality: Let \(f \in L^{p_1, q_1}(\partial \Omega) \) and \(g \in L^{p_2, q_2}(\partial \Omega) \), where \((p_i, q_i) \in (1, \infty) \times [1, \infty] \) for \(i = 1, 2 \). If \((p, q) \) be such that \(\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} \) and \(\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2} \), then
\[\|fg\|_{(p,q)} \leq C \|f\|_{(p_1,q_1)} \|g\|_{(p_2,q_2)}, \]

where \(C = C(p) > 0 \) is a constant such that \(C = 1 \), if \(p = 1 \) and \(C = p' \), if \(p > 1 \).

(ii) For \(r > 0 \), \(\|\|f\|^r\|_{(\frac{r}{1-r}, \frac{r}{1-r})} = \|f\|_{(p,q)} \).

Proof. Proof of (i) follows from [29, Theorem 4.5]. For \(\alpha = 0 \), proof of (ii) directly follows from the definition of the Lorentz-Zygmund space. \qed

In the following we list some properties of the function space \(F_d \).

Proposition 2.5. Let \(d, q \in (1, \infty) \). Then

(i) \(L^{d,q}(\partial \Omega) \subset F_d \).

(ii) Let \(h \in L^{d,\infty}(\partial \Omega) \) and \(h > 0 \). Let \(f \in L^1(\partial \Omega) \). If \(\int_{\partial \Omega} h^{d-q}|f|^q < \infty \) for \(q \geq d \), then \(f \in L^{d,q}(\partial \Omega) \) and hence \(f \in F_d \).

(iii) \(f \in F_d \) if and only if
\[\lim_{t \to 0} t^{\frac{1}{d} f^*(t)} = 0 = \lim_{t \to H^{N-1}(\partial \Omega)} t^{\frac{1}{d} f^*(t)}. \]
Proof. (i) Using (2.2) for \(\alpha = \beta = 0 \) and by the density arguments, we get \(L^{d,q}(\partial \Omega) \subset F_d \).

(ii) The result is obvious for \(q = d \). For \(q > d \), set \(g = h^{\frac{d}{q} - 1} |f| \). Then \(g \in L^q(\partial \Omega) \). Using Proposition 2.4, \(h^{\frac{d}{q}} \in L^{\frac{dq}{d+q}}(\partial \Omega) \). Therefore, by the generalized Hölder inequality (Proposition 2.4), \(f \in L^{d,q}(\partial \Omega) \).

(iii) Follows by the similar arguments as in [7, Theorem 3.3].

2.3 Examples

Now we give some examples of functions in the Lorentz-Zygmund spaces that are defined on \(\partial \Omega \) of a Lipschitz bounded domain \(\Omega \).

Example 2.6. For \(\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \} \), we consider

\[
g_1(x, y) = |y|^{-\frac{1}{2}}, \quad \forall (x, y) \in \partial \Omega.
\]

For \(s > 0 \), we can compute

\[
\alpha_{g_1}(s) = \begin{cases}
2\pi, & \text{for } 0 < s < 1, \\
4 \sin^{-1}(\frac{1}{s^2}), & \text{for } s \geq 1.
\end{cases}
\]

Thus \(g_1^*(t) = (\csc(\frac{t}{4}))^\frac{1}{4} \). Therefore,

\[
\sup_{0 < t < 2\pi} t^\frac{1}{2} \left(\csc \left(\frac{t}{4} \right) \right)^\frac{1}{4} < \infty; \quad \sup_{0 < t < 2\pi} t(l_1(t))^2 \left(\csc \left(\frac{t}{4} \right) \right)^\frac{1}{4} < \infty.
\]

Hence \(g_1 \in L^{2,\infty}(\partial \Omega) \) and \(g_1 \in L^{1,\infty;2}(\partial \Omega) \). Furthermore,

\[
\lim_{t \to 0} t^\frac{1}{2} \left(\csc \left(\frac{t}{4} \right) \right)^\frac{1}{4} > 0; \quad \lim_{t \to 0} t(l_1(t))^2 \left(\csc \left(\frac{t}{4} \right) \right)^\frac{1}{4} > 0.
\]

Hence \(g_1 \notin F_2 \) (by Proposition 2.5) and \(g_1 \notin G_1 \) (by Proposition 2.3).

Example 2.7. Let \(p \in (1, \infty) \) and \(N > p \). For \(0 < R < \frac{1}{2} \), let

\[
\Omega = \{(x_1, x_2, \ldots, x_N) \in \mathbb{R}^N : |x_i| < R \text{ (for } i = 1, \ldots, N - 1), 0 < x_N < 2R \}
\]

and \(A = \{(x_1, x_2, \ldots, x_{N-1}, 0) : |x_i| < R \} \). Now consider

\[
g_2(x) = \begin{cases}
|x_1 \log(|x_1|)|^{-\frac{N-1}{N-1}}, & \text{for } x \in A, \\
0, & \text{for } x \in \partial \Omega \setminus A.
\end{cases}
\]

Clearly \(g_2 \in L^1(\partial \Omega) \) and \(g_2 \notin L^{r}(\partial \Omega) \) for \(r \in \left[\frac{N-1}{p-1}, \infty \right) \). Let

\[
h(x) = \begin{cases}
|x_1|^{-\frac{N-1}{N-1}}, & \text{for } x \in A, \\
0, & \text{for } x \in \partial \Omega \setminus A.
\end{cases}
\]
We calculate $\alpha_h(s) = 2^{N-1}R^{N-2}s^{\frac{N-1}{p-1}}$ and $h^*(t) = (2^{N-1}R^{N-2})^{\frac{N-1}{p-1}}t^{-\frac{N-1}{p-1}}$. Therefore, $h \in L^{\frac{N-1}{p-1}}(\partial \Omega)$. For $q = \frac{N}{p-1}$,

$$h^{\frac{N-1}{p-1}-q}(x) = \begin{cases} \frac{|x_1|^{\frac{N-1}{p-1}}}{N-1}, & \text{for } x \in A, \\ 0, & \text{for } x \in \partial \Omega \setminus A. \end{cases}$$

Further,

$$\int_{\partial \Omega} h^{\frac{N-1}{p-1}-q}g_2^q \, d\sigma = 2^{N-1}R^{N-2} \int_0^R t^{-\frac{1}{q}} \frac{1}{N-1} \log(t)^{-\frac{N}{p-1}} \, dt < \infty.$$

Therefore, by Proposition 2.5, $g_2 \in L^{\frac{N-1}{p-1}-q}(\partial \Omega)$ and hence $g_2 \in \mathcal{F}_{\frac{N-1}{p-1}}$.

Example 2.8. For $0 < R < 1$, let Ω and A be given as in the above example. For $q \in (1, \infty)$, we consider

$$g_3(x) = \begin{cases} \frac{|x_1|^{\frac{N-1}{4}}}{N-1}, & \text{for } x \in A, \\ 0, & \text{for } x \in \partial \Omega \setminus A. \end{cases}$$

Clearly $g_3 \notin L^q(\partial \Omega)$ for $q \in (1, \infty)$. Further, we calculate $\alpha_{g_3}(s) = 2^{N-1}R^{N-2}s^{-q}$ and $g_3^*(t) = (2^{N-1}R^{N-2})^{\frac{1}{q}} t^{-\frac{q}{4}}$. Moreover,

$$\lim_{t \to 0} t^{\frac{q-1}{q}} (1 + |\log(t)|)^N = 0$$

and hence $g_3 \in \mathcal{G}_{1}$ (by Proposition 2.3).

2.4 Trace embeddings

Now we state the trace embeddings that play a vital role in this article. First, we state the classical trace embeddings to the Lebesgue spaces [38, Theorem 4.2, Theorem 4.6, Theorem 6.2].

Proposition 2.9 (Classical trace embeddings). Let $N \geq 2$ and let Ω be a Lipschitz bounded domain in \mathbb{R}^N. Let $p \in (1, \infty)$. Then the following embeddings hold:

(i) If $N > p$ and $q \in \left[1, \frac{p(N-1)}{N-p}\right]$, then $W^{1,p}(\Omega) \hookrightarrow L^q(\partial \Omega)$, i.e., there exists $C = C(N,p) > 0$ satisfying

$$\|\phi\|_{L^q(\partial \Omega)} \leq C\|\phi\|_{W^{1,p}(\Omega)}, \quad \forall \phi \in W^{1,p}(\Omega).$$

If $q \neq \frac{p(N-1)}{N-p}$, then the above embedding is compact.

(ii) If $N = p$ and $q \in [1, \infty)$, then $W^{1,p}(\Omega) \hookrightarrow L^q(\partial \Omega)$, i.e., there exists $C = C(N) > 0$ satisfying

$$\|\phi\|_{L^q(\partial \Omega)} \leq C\|\phi\|_{W^{1,p}(\Omega)}, \quad \forall \phi \in W^{1,p}(\Omega),$$

and the above embedding is compact.
The following embeddings are due to Cianchi et al. [14, Theorem 1.3] that extends the classical trace embeddings to the Lebesgue spaces with the finer embeddings to the Lorentz-Zygmund spaces.

Proposition 2.10 (Finer trace embeddings). Let $N \geq 2$ and let Ω be a Lipschitz bounded domain in \mathbb{R}^N. Let $p \in (1, \infty)$. Then the following embeddings hold:

(i) If $N > p$, then $W^{1,p}(\Omega) \hookrightarrow L^{\frac{p(N-1)}{N-p}}(\partial \Omega)$, i.e., there exists $C = C(N, p) > 0$ such that

$$\|\phi\|_{L^{\frac{p(N-1)}{N-p}}(\partial \Omega)} \leq C\|\phi\|_{W^{1,p}(\Omega)}, \quad \forall \phi \in W^{1,p}(\Omega).$$

(ii) Let $N = p$ and $g \in L^{\frac{N-1}{N-1}}(\partial \Omega)$. Then there exists a constant $C = C(N) > 0$ such that

$$\|\phi\|_{(\infty, N; 1)} \leq C\|\phi\|_{W^{1,p}(\Omega)}, \quad \forall \phi \in W^{1,p}(\Omega).$$

The above finer trace embeddings help us to get the weighted trace inequality for a class of weight functions defined on the boundary.

Proposition 2.11. (i) Let $N > p$ and $g \in L^{\frac{N-1}{N-1}}(\partial \Omega)$. Then there exists a constant $C = C(N, p) > 0$ satisfying

$$\int_{\partial \Omega} |g|\|\phi\|^p \leq C\|g\|_{(\frac{N-1}{N-1}, \infty)}\|\phi\|^p_{W^{1,p}(\Omega)}, \quad \forall \phi \in W^{1,p}(\Omega). \quad (2.3)$$

(ii) Let $N = p$ and $g \in L^{1,\infty}(\partial \Omega)$. Then there exists a constant $C = C(N) > 0$ satisfying

$$\int_{\partial \Omega} |g|\|\phi\|^p \leq C\|g\|_{(1,\infty; N)}\|\phi\|^p_{W^{1,p}(\Omega)}, \quad \forall \phi \in W^{1,p}(\Omega). \quad (2.4)$$

Proof. (i) For $\phi \in W^{1,p}(\Omega)$, by the generalized Hölder inequality (Proposition 2.4) and Proposition 2.4, we obtain

$$\int_{\partial \Omega} |g|\|\phi\|^p \leq \|g\|_{(\frac{N-1}{N-1}, \infty)}\|\phi\|^p_{W^{1,p}(\Omega)} = \|g\|_{(\frac{N-1}{N-1}, \infty)}\|\phi\|^p_{(\frac{p(N-1)}{N-p}, p)}.$$

Now using the finer trace embeddings (Proposition 2.10), we get

$$\int_{\partial \Omega} |g|\|\phi\|^p \leq C\|g\|_{(\frac{N-1}{N-1}, \infty)}\|\phi\|^p_{W^{1,p}(\Omega)}, \quad \forall \phi \in W^{1,p}(\Omega),$$

where $C = C(N, p)$ is the embedding constant.

(ii) For $\phi \in W^{1,N}(\Omega)$, using Proposition 2.2, we obtain

$$\int_{\partial \Omega} |g|\|\phi\|^N \leq \|g\|_{(1,\infty; N)}\|\phi\|^N_{(\infty, 1; -N)} \leq C\|g\|_{(1,\infty; N)}\|\phi\|^N_{(\infty, N; -1)}.$$

Again using the finer trace embeddings,

$$\int_{\partial \Omega} |g|\|\phi\|^N \leq C\|g\|_{(1,\infty; N)}\|\phi\|^N_{W^{1,N}(\Omega)}, \quad \forall \phi \in W^{1,N}(\Omega),$$

where $C = C(N) > 0$ is the embedding constant given in Proposition 2.10. \qed
2.5 Degree

We define the degree for certain class of maps from $W^{1,p} (\Omega)$ to it’s dual $(W^{1,p} (\Omega))'$. For more details on this topic, we refer to [11, 44].

Definition 2.12. Let $D \subset W^{1,p} (\Omega)$ be a set and let $F : D \to (W^{1,p} (\Omega))'$ be a map.

(i) **Demicontinuous**: F is said to be demicontinuous on D, if for any sequence $(\phi_n) \subset D$ such that $\phi_n \to \phi_0$, then $\lim_{n \to \infty} \langle F(\phi_n), v \rangle = \langle F(\phi_0), v \rangle$, $\forall v \in W^{1,p} (\Omega)$.

(ii) **Class $\alpha (D)$**: F is said to be in class $\alpha (D)$, if every sequence (ϕ_n) in D satisfying $\phi_n \to \phi_0$ and $\lim_{n \to \infty} \langle F(\phi_n), \phi_n - \phi_0 \rangle \leq 0$, converges to some ϕ_0 in D.

(iii) For $F \subset D$, $A (D, F)$ denotes the set of all bounded, demicontinuous map defined on D that satisfies the class $\alpha (F)$.

(iv) **Isolated zero**: A point $\phi_0 \in D$ is called an isolated zero of F, if $F(\phi_0) = 0$ and there exists $r > 0$ such that the ball $B_r(\phi_0)$ (where $B_r(\phi_0) \subset D$) does not contain any other zeros of F.

(v) **Degree**: Let $F \in A (D, \partial D)$ satisfying $F(\phi) \neq 0$ for every $\phi \in \partial D$. Let (v_i) be a Schauder basis for $W^{1,p} (\Omega)$ and let $V_n = \text{span} \{v_1, ..., v_n\}$. A finite-dimensional approximation F_n of F with respect to V_n is defined as:

$$F_n(\phi) = \sum_{i=1}^{n} \langle F(\phi), v_i \rangle v_i$$

where $D_n = D \cap V_n$.

From [44, Theorem 2.1], $F_n(\phi) \neq 0$ for every $\phi \in \partial D_n$, the degree $\text{deg}(F_n, \overline{D_n}, 0)$ of F_n with respect to $0 \in V_n$ is well defined and independent of n. Further from [44, Theorem 2.2], $\lim_{n \to \infty} \text{deg}(F_n, \overline{D_n}, 0)$ is independent of basis (v_i). Now the degree of F with respect to $0 \in (W^{1,p} (\Omega))'$ is defined as

$$\text{deg}(F, \overline{D}, 0) = \lim_{n \to \infty} \text{deg}(F_n, \overline{D_n}, 0).$$

(vi) **Homotopy**: Let $F, G \in A (D, \partial D)$ satisfying $F(\phi), G(\phi) \neq 0$ for every $\phi \in \partial D$. The mapping F and G is said to be homotopic on \overline{D}, if there exists a sequence of one parameter family $H_t : \overline{D} \to (W^{1,p} (\Omega))'$, $t \in [0, 1]$ such that $H_0 = F$ and $H_1 = G$ and H_t satisfies the following:

(a) For $t \in [0, 1]$, $H_t \in A (D, \partial D)$ and $H_t(\phi) \neq 0$ for every $\phi \in \partial D$.

(b) For a sequence $t_n \in [0, 1]$ satisfying $t_n \to t$ and a sequence $\phi_n \in \overline{D}$ satisfying $\phi_n \to \phi_0$, $H_{t_n} \phi_n \to H_t \phi_0$ as $n \to \infty$.

(vii) **Index**: Let $F \in A (D, \overline{D})$ and let ϕ_0 be an isolated zero of F. Then the index of a map F is defined as $\text{ind}(F, \phi_0) = \lim_{r \to 0} \text{deg}(F, \overline{B_r(\phi_0)}, 0)$.

(viii) **Potential operator**: A map $F \in A (D, (W^{1,p} (\Omega))')$ is called a potential operator, if there exists a functional $f : W^{1,p} (\Omega) \to \mathbb{R}$ such that $f'(\phi) = F(\phi)$, for all $\phi \in W^{1,p} (\Omega)$.
The following Proposition is proved in [44] (Theorem 4.1, Theorem 4.4, Theorem 5.1, and Theorem 6.1).

Proposition 2.13. (i) Let \(F, G \in A(D, \partial D) \) satisfying \(F(\phi), G(\phi) \neq 0 \) for every \(\phi \in \partial D \). If \(F \) and \(G \) are homotopic in \(\overline{D} \), then \(\deg(H_t, \overline{D}, 0) = C, \forall t \in [0,1] \). In particular, \(\deg(F, \overline{D}, 0) = \deg(G, \overline{D}, 0) \).

(ii) Let \(F \in A(D, \partial D) \). Suppose that \(0 \in \overline{D} \setminus \partial D \) and \(\langle F(\phi), \phi \rangle \geq 0, F(\phi) \neq 0 \) for \(\phi \in \partial D \). Then \(\deg(F, \overline{D}, 0) = 1 \).

(iii) Let \(F \in A(D, \overline{D}) \) satisfying \(F(\phi) \neq 0 \), for every \(\phi \in \partial D \). If \(F \) has only finite number of isolated zeros in \(\overline{D} \), then
\[
\deg(F, \overline{D}, 0) = \sum_{i=1}^{n} \text{ind}(F, \phi_i),
\]
where \(\phi_i (i = 1, \ldots, n) \) are all zeros of \(F \) in \(D \).

(iv) Let \(F \in A(D, (W^{1,p}(\Omega))') \) be a potential operator. Suppose that the point \(\phi_0 \) is a local minimum of \(f \) and it is an isolated zero of \(F \). Then \(\text{ind}(F, \phi_0) = 1 \).

3 Functional framework

In this section, we set up a suitable functional framework for our problem. We consider the following functional on \(W^{1,p}(\Omega) \):
\[
G(\phi) = \int_{\partial\Omega} |g|\phi|^p, \quad \forall \phi \in W^{1,p}(\Omega).
\]

For \(g \in L^{\frac{N-p}{p-1}}(\partial\Omega) \) (if \(N > p \)) and \(g \in L^{1,\infty:N}(\partial\Omega) \) (if \(N = p \)), Proposition 2.11 ensures that \(G \) is well defined. Now we study the continuity, compactness and differentiability of \(G \).

Proposition 3.1. Let
\[
g \in \begin{cases}
L^{\frac{N-p}{p-1}}(\partial\Omega) & \text{for } N > p, \\
L^{1,\infty:N}(\partial\Omega) & \text{for } N = p.
\end{cases}
\]

Then \(G \) is continuous.

Proof. We only consider the case \(N > p \). For \(N = p \), the proof will follow using similar arguments. Let \(\phi_n \to \phi \) in \(W^{1,p}(\Omega) \) and let \(\epsilon > 0 \) be given. Clearly,
\[
|G(\phi_n) - G(\phi)| \leq \int_{\partial\Omega} |g||(|\phi_n|^p - |\phi|^p)|.
\]

Using the inequality due to Lieb and Loss [34, Page 22], there exists \(C = C(\epsilon, p) > 0 \) such that
\[
(|\phi_n|^p - |\phi|^p) \leq \epsilon |\phi|^p + C|\phi_n - \phi|^p \quad \text{a.e. on } \partial\Omega.
\]
Hence
\[
\int_{\partial \Omega} |g||(|\phi_n|^p - |\phi|^p)| \leq \epsilon \int_{\partial \Omega} |g||\phi|^p + C \int_{\partial \Omega} |g||\phi_n - \phi|^p. \tag{3.1}
\]

Now using (2.3), we obtain
\[
\int_{\partial \Omega} |g||\phi_n - \phi|^p \leq C||g|| \left(\frac{\lambda}{p-1} \right) ||\phi_n - \phi||_{W^{1,p}(\Omega)}^p, \tag{3.2}
\]

where \(C = C(N, p) > 0 \) is the embedding constant and \(p' \) is the conjugate exponent of \(p \). Now from (3.1) and (3.2), we easily conclude that \(G(\phi_n) \to G(\phi) \) as \(n \to \infty \).

Proposition 3.2. Let
\[
g \in \begin{cases}
F_{N, \frac{1}{p-1}} & \text{for } N > p, \\
G_1 & \text{for } N = p.
\end{cases}
\]

Then \(G \) is compact.

Proof. As before, we only consider the case \(N > p \). Let \(\phi_n \to \phi \) in \(W^{1,p}(\Omega) \) and let \(\epsilon > 0 \) be given. Set \(L = \sup \{||\phi_n||_{W^{1,p}(\Omega)} + ||\phi||_{W^{1,p}(\Omega)} \} \). For \(g \in F_{N, \frac{1}{p-1}} \), we split \(g = g_\epsilon + (g - g_\epsilon) \) where \(g_\epsilon \in C^1(\partial \Omega) \) such that \(\|g - g_\epsilon\|_{(\frac{N}{p-1}, \infty)} < \frac{\epsilon}{2} \). Then
\[
\int_{\partial \Omega} |g||(|\phi_n|^p - |\phi|^p)| \leq \int_{\partial \Omega} |g_\epsilon||(|\phi_n|^p - |\phi|^p)| + \int_{\partial \Omega} |g - g_\epsilon||(|\phi_n|^p - |\phi|^p)|. \tag{3.3}
\]

We estimate the second integral of (3.3) using (2.3) as,
\[
\int_{\partial \Omega} |g - g_\epsilon||(|\phi_n|^p - |\phi|^p)| \leq C\|g - g_\epsilon\|_{(\frac{N}{p-1}, \infty)} \left(\|\phi_n\|_{W^{1,p}(\Omega)}^p + \|\phi\|_{W^{1,p}(\Omega)}^p \right). \tag{3.4}
\]

Since \(W^{1,p}(\Omega) \) is compactly embedded into \(L^p(\partial \Omega) \) (Proposition 2.9), there exists \(n_1 \in \mathbb{N} \) such that \(\int_{\partial \Omega} \|g_\epsilon||(|\phi_n|^p - |\phi|^p)| < \epsilon, \; \forall n \geq n_1 \). Now from (3.3) and (3.4), we obtain
\[
\int_{\partial \Omega} |g||(|\phi_n|^p - |\phi|^p)| < (C + 1)\epsilon, \quad \forall n \geq n_1.
\]

Thus \(G(\phi_n) \) converges to \(G(\phi) \) as \(n \to \infty \).

Proposition 3.3. Let \(p \in (1, \infty) \). Let \(N, g \) be given as in Proposition 3.2. Then \(G \) is differentiable at every \(\phi \in W^{1,p}(\Omega) \) and
\[
\langle G'(\phi), v \rangle = p \int_{\partial \Omega} g|\phi|^{p-2}\phi v, \quad \forall v \in W^{1,p}(\Omega).
\]

Moreover, the map \(G' \) is compact.

Proof. For \(\phi, v \in W^{1,p}(\Omega) \), let \(f : \partial \Omega \times [-1, 1] \to \mathbb{R} \) defined by \(f(y, t) = g(y)|(\phi + tv)(y)|^p \). Then \(\frac{\partial f}{\partial t}(\cdot, t) = pg|\phi + tv|^{p-2}(\phi + tv)v \) and
\[
\frac{\partial f}{\partial t}(\cdot, t) \leq p2^{p-1}|g|||(|\phi|^{p-1} + |v|^{p-1})|v|.
\]
Set \(h = p^{2p-1} |g| (|\phi|^{p-1} + |v|^{p-1}) |v| \) and for each \(n \in \mathbb{N} \), set
\[
h_n(y) = n \left(f(y, \frac{1}{n}) - f(y, 0) \right).
\]
Clearly, \(h_n(y) \to \frac{\partial f}{\partial t}(y, 0) \) a.e. on \(\partial \Omega \) and by mean value theorem, we also have
\[
|h_n(y)| \leq \sup_{t \in [-1,1]} \left| \frac{\partial f}{\partial t}(y, t) \right| \leq h(y).
\]
Furthermore, using a similar set of arguments as given in the proof of Proposition 2.11, one can show that \(h_n, h \in L^1(\partial \Omega) \), for each \(n \in \mathbb{N} \). Therefore, by the dominated convergence theorem,
\[
\lim_{n \to \infty} \int_{\partial \Omega} n \left(f(y, \frac{1}{n}) - f(y, 0) \right) \, dy = \int_{\partial \Omega} \frac{\partial f}{\partial t}(y, 0) \, dy = p \int_{\partial \Omega} g|\phi|^{p-2} \phi v.
\]
Thus
\[
\langle G'(\phi), v \rangle = \frac{d}{dt} G(\phi + tv) \bigg|_{t=0} = p \int_{\partial \Omega} g|\phi|^{p-2} \phi v.
\]
The proof of compactness is quite similar to that of Proposition 3.2. \(\Box \)

For \(p \in (1, \infty) \), consider the following functional
\[
J(\phi) = \int_{\Omega} |\nabla \phi|^p, \quad \forall \phi \in W^{1,p}(\Omega).
\]
Then \(J \) is differentiable on \(W^{1,p}(\Omega) \), and the derivative is given by
\[
\langle J'(\phi), u \rangle = p \int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \cdot \nabla u, \quad \forall u \in W^{1,p}(\Omega).
\]

Proposition 3.4. Let \(p \in (1, \infty) \). Then

(i) \(J' \) is continuous.

(ii) \(J' \) is of class \(\alpha(W^{1,p}(\Omega)) \).

Proof. (i) Let \(\phi_n \to \phi \) in \(W^{1,p}(\Omega) \). For \(v \in W^{1,p}(\Omega) \),
\[
|\langle J'(\phi_n) - J'(\phi), v \rangle | \leq \int_{\Omega} |(|\nabla \phi_n|^{p-2} \nabla \phi_n - |\nabla \phi|^{p-2} \nabla \phi)| |\nabla v|
\leq \left(\int_{\Omega} \left(|(|\nabla \phi_n|^{p-2} \nabla \phi_n - |\nabla \phi|^{p-2} \nabla \phi)|^p \right)^{\frac{1}{p}} \right)^{\frac{1}{p}} \left(\int_{\Omega} |\nabla v|^p \right)^{\frac{1}{p}}.
\]
Therefore,
\[
\|J'(\phi_n) - J'(\phi)\| \leq \left(\int_{\Omega} \left(|(|\nabla \phi_n|^{p-2} \nabla \phi_n - |\nabla \phi|^{p-2} \nabla \phi)|^p \right)^{\frac{1}{p}} \right)^{\frac{1}{p}}.
\]
Now consider the map J_1 defined as $J_1(\phi) = |\nabla \phi|^{p-2}\nabla \phi$. Clearly J_1 maps $W^{1,p}(\Omega)$ into $L^p(\Omega)$ and J_1 is continuous. Hence we conclude $\|J'(\phi_n) - J'(\phi)\| \to 0$ as $n \to \infty$.

(ii) Let $\phi_n \to \phi$ in $W^{1,p}(\Omega)$ and let $\lim_{n \to \infty} \langle J'(\phi_n), \phi_n - \phi \rangle = 0$. Then

$$\lim_{n \to \infty} \langle J'(\phi_n) - J'(\phi), \phi_n - \phi \rangle = \lim_{n \to \infty} \langle J'(\phi_n), \phi_n - \phi \rangle - \lim_{n \to \infty} \langle J'(\phi), \phi_n - \phi \rangle \leq 0. \quad (3.5)$$

Now for each $n \in \mathbb{N}$,

$$\langle J'(\phi_n) - J'(\phi), \phi_n - \phi \rangle \geq p (\|\nabla \phi_n\|^{p-1} - \|\nabla \phi\|^{p-1}) (\|\nabla \phi_n\| - \|\nabla \phi\|) \geq 0.$$

Hence from (3.5), we get

$$\lim_{n \to \infty} \langle J'(\phi_n) - J'(\phi), \phi_n - \phi \rangle = 0.$$

Therefore, $\|\nabla \phi_n\|_p \to \|\nabla \phi\|_p$ as $n \to \infty$. Hence by uniform convexity of $(L^p(\Omega))^N$, we obtain $\nabla \phi_n \to \nabla \phi$ in $(L^p(\Omega))^N$. Further, since $W^{1,p}(\Omega)$ is compactly embedded into $L^p(\Omega)$, we get $\phi_n \to \phi$ in $L^p(\Omega)$. Therefore, $\phi_n \to \phi$ in $W^{1,p}(\Omega)$. Thus the map J is of class $\alpha(W^{1,p}(\Omega))$. \qed

Proposition 3.5. Let $p \in (1, \infty)$ and let N, r and f satisfy (H1) or (H2). Then the map F defined by

$$\langle F(\phi), v \rangle = \int_{\Omega} f r(\phi)v$$

is a well-defined map from $W^{1,p}(\Omega) \to (W^{1,p}(\Omega))'$. Moreover, F is continuous and compact.

Proof. First, we assume that N, r and f satisfy (H1). In this case $\gamma \in (1, \frac{\gamma^*}{N-1})$ and we use different arguments for $\gamma \in (1, p)$ and $\gamma \in [\frac{\gamma^*}{N-1}, \frac{\gamma^*}{N-p}]$. For $\gamma \in (1, p)$, there exists $C > 0$ such that $|r(s)| \leq C|s|^{p-1}$ for $s \in \mathbb{R}$. Therefore, using the finer trace embeddings (Proposition 2.10), for $\phi, v \in W^{1,p}(\Omega)$, clearly we have

$$|\langle F(\phi), v \rangle| \leq C\|f\|_{(\frac{\gamma^*}{N-1})} \|\phi\|_{W^{1,p}(\Omega)}^{p-1} \|v\|_{W^{1,p}(\Omega)} \quad (3.6)$$

For $\gamma \in [p, \frac{\gamma^*}{N-p})$, using Proposition 2.4 and the finer trace embeddings (Proposition 2.10), we have

$$W^{1,p}(\Omega) \hookrightarrow L^{\frac{\gamma^*}{N-p}}(\partial \Omega). \quad (3.7)$$

Since $\frac{1}{p} + \frac{(\gamma-1)(N-p)}{p(N-1)} + \frac{N-p}{p(N-1)} = 1$, for $\phi, v \in W^{1,p}(\Omega)$, using the generalized Hölder inequality (Proposition 2.4), we obtain

$$\int_{\partial \Omega} |f| |r(\phi)v| \leq C\bar{p} \|f\|_{(\bar{\gamma}, \infty)} \|\phi\|_{W^{1,p}(\Omega)}^{\gamma-1} \|v\|_{L^{\frac{\gamma^*}{N-p}}(\partial \Omega)} \gamma.$$

Therefore, from (3.7),

$$|\langle F(\phi), v \rangle| \leq C\|f\|_{(\bar{\gamma}, \infty)} \|\phi\|_{W^{1,p}(\Omega)}^{\gamma-1} \|v\|_{W^{1,p}(\Omega)}, \quad \forall \phi, v \in W^{1,p}(\Omega), \quad (3.8)$$
where \(C = C(N, p) > 0 \).

Now assume that \(N, r \) and \(f \) satisfy (H2). For \(d \in (1, \infty) \), choose \(a_i, b_i \in (1, \infty) \) (for \(i = 1, 2 \)) such that

\[
a_1, b_1 > \frac{1}{\gamma - 1}, \quad \frac{1}{d} + \frac{1}{a_1} + \frac{1}{a_2} = 1 = \frac{1}{N} + \frac{1}{b_1} + \frac{1}{b_2}.
\]

For \(\phi, v \in W^{1,p}(\Omega) \), using the generalized Hölder inequality (Proposition 2.4), we obtain

\[
\int_{\partial\Omega} |f||r(\phi)v| \leq Cd||f||_{(d,N)}\|\phi\|_{(a_1(\gamma-1), b_1(\gamma-1))}^\gamma \|v\|_{(a_2, b_2)}.
\]

Now by Proposition 2.2 and using the trace embeddings (Proposition 2.9 and Proposition 2.10), we have

\[
L^{d,\infty;N}(\partial\Omega) \hookrightarrow L^{d,N}(\partial\Omega),
\]

\[
W^{1,N}(\Omega) \hookrightarrow L^{\infty,N;1}(\partial\Omega) \hookrightarrow L^{a_1(\gamma-1),b_1(\gamma-1)}(\partial\Omega),
\]

\[
W^{1,N}(\Omega) \hookrightarrow L^q(\partial\Omega) \hookrightarrow L^{a_2,b_2}(\partial\Omega), \quad q > a_2.
\]

Therefore, from (3.9) we get

\[
|\langle F(\phi), v \rangle| \leq C\|f\|_{(d,\infty;N)}\|\phi\|_{W^{1,N}(\Omega)}^\gamma \|v\|_{W^{1,N}(\Omega)}, \quad \forall \phi, v \in W^{1,N}(\Omega),
\]

where \(C = C(N) \) > 0. Thus the map \(F \) is well defined in both the cases. The continuity and the compactness of \(F \) will follow from the similar set of arguments as given in the proof of Proposition 3.2. So we omit the proof.

Proposition 3.6. Let \(p \in (1, \infty) \). Let \(N, r \) and \(f \) be given as in Proposition 3.5. Then

\[
\frac{\|F(\phi)\|_{(W^{1,p}(\Omega))^\prime}}{\|\phi\|_{W^{1,p}(\Omega)^\prime}} \to 0, \quad \text{as} \quad \|\phi\|_{W^{1,p}(\Omega)} \to 0.
\]

Proof. Let \(\epsilon > 0 \) be given. We only prove the case when \(N, r \) and \(f \) satisfy (H1). For (H2), the proof is similar. For \(\gamma \in [p, \frac{p(N-1)}{N-p}] \), using (3.8) we have,

\[
\|F(\phi)\| \leq C\|f\|_{(\tilde{p}, \infty)}\|\phi\|_{W^{1,p}(\Omega)}^\gamma, \quad \forall \phi \in W^{1,p}(\Omega).
\]

Therefore,

\[
\frac{\|F(\phi)\|_{(W^{1,p}(\Omega))^\prime}}{\|\phi\|_{W^{1,p}(\Omega)^\prime}} \leq C\|f\|_{(\tilde{p}, \infty)}\|\phi\|_{W^{1,p}(\Omega)}^\gamma.
\]

If \(\gamma \in (1, p) \), then from (H1) there exists \(s_0 > 0 \) and \(C = C(s_0) > 0 \) such that

\[
|r(s)| < \frac{\epsilon}{\|f\|_{\left(\frac{N-1}{p-1}, \infty\right)}} |s|^{p-1}, \quad \text{for} \quad |s| < s_0,
\]

\[
|r(s)| \leq C|s|^{p-1} \quad \text{and} \quad |r(s)| \leq C|s|^\frac{p(N-1)}{N-p-1}, \quad \text{for} \quad |s| \geq s_0.
\]
For \(\phi \in W^{1,p}(\Omega) \), set \(A = \{ y \in \partial \Omega : |\phi(y)| < s_0 \} \) and \(B = \partial \Omega \setminus A \). For \(v \in W^{1,p}(\Omega) \), using (3.10) and (3.6), we get

\[
\int_A |f||r(\phi)||v| < \frac{\epsilon}{\|f\|(\frac{N-1}{p-1},\infty)} \int_A |f||\phi|^{p-1}|v| \leq C\epsilon\|\phi\|_{W^{1,p}(\Omega)}^{p-1}\|v\|_{W^{1,p}(\Omega)}. \tag{3.11}
\]

To estimate the above integral on \(B \), we split \(f = f_\epsilon + (f - f_\epsilon) \) where \(f_\epsilon \in C^1(\partial \Omega) \) with \(\|f - f_\epsilon\|(\frac{N-1}{p-1},\infty) < \epsilon \). Now (3.10) and (3.6) yield

\[
\int_B |f - f_\epsilon||r(\phi)||v| \leq C \int_B |f - f_\epsilon||\phi|^{p-1}|v| < C\epsilon\|\phi\|_{W^{1,p}(\Omega)}^{p-1}\|v\|_{W^{1,p}(\Omega)}, \tag{3.12}
\]

where \(C = C(s_0, N, p) > 0 \). On the other hand using (3.10), Hölder inequality (Proposition 2.2) and the classical trace embeddings (Proposition 2.9), we obtain

\[
\int_B |f_\epsilon||r(\phi)||v| \leq C \int_B |f_\epsilon||\phi|^{\frac{N(p-1)}{N-p}}|v| \\
\leq C\|f_\epsilon\|_{L^\infty(\partial \Omega)}\|\phi\|_{L^{\frac{N(p-1)}{N-p}}(\partial \Omega)} \|v\|_{L^{\frac{N(p-1)}{N-p}}(\partial \Omega)},
\]

where \(C = C(N, p) > 0 \). Now using (3.12) we conclude

\[
\int_B |f||r(\phi)||v| \leq C \left(\epsilon\|\phi\|_{W^{1,p}(\Omega)}^{p-1} + \|f_\epsilon\|_{L^\infty(\partial \Omega)}\|\phi\|_{W^{1,p}(\Omega)}^{\frac{N(p-1)}{N-p}} \right) \|v\|_{W^{1,p}(\Omega)},
\]

where \(C = C(s_0, N, p) > 0 \). Thus (3.11) and the above inequality yield:

\[
\|F(\phi)\|_{(W^{1,p}(\Omega))'} \leq C \left(\epsilon\|\phi\|_{W^{1,p}(\Omega)}^{p-1} + \|f_\epsilon\|_{L^\infty(\partial \Omega)}\|\phi\|_{W^{1,p}(\Omega)}^{\frac{N(p-1)}{N-p}} \right).
\]

Therefore,

\[
\frac{\|F(\phi)\|_{(W^{1,p}(\Omega))'}}{\|\phi\|_{W^{1,p}(\Omega)}^{p-1}} \leq C \left(\epsilon + \|f_\epsilon\|_{L^\infty(\partial \Omega)}\|\phi\|_{W^{1,p}(\Omega)}^{\frac{N(p-1)}{N-p}} \right) \to 0.
\]

as \(\|\phi\|_{W^{1,p}(\Omega)} \to 0 \). \(\square \)

For \(g \) as given in Theorem 1.1, we consider the set

\[
M_g = \left\{ \phi \in W^{1,p}(\Omega) : \int_{\partial \Omega} |\phi|^p > 0 \right\}.
\]

Since \(g^+ \neq 0 \), we can show that the set \(M_g \) is nonempty. The functional \(J \) is not coercive on \(W^{1,p}(\Omega) \). However, using a Poincaré type inequality on \(M_g \) we show that \(J \) is coercive on \(M_g \).

Lemma 3.7. Let \(g^+ \neq 0 \), \(\int_{\partial \Omega} g < 0 \), and

\[
g \in \begin{cases} F_{\frac{N}{p-1}} & \text{for } N > p, \\ G_1 & \text{for } N = p. \end{cases}
\]

Then there exists \(m \in (0, 1) \) such that

\[
\int_{\Omega} |\nabla \phi|^p \geq m \int_{\Omega} |\phi|^p, \quad \forall \phi \in M_g. \tag{3.13}
\]
Proof. On the contrary, assume that (3.13) does not hold for any \(m \in (0,1) \). Thus for each \(n \in \mathbb{N} \), there exists \(\phi_n \in M_g \) such that

\[
\int_{\Omega} |\nabla \phi_n|^p < \frac{1}{n} \int_{\Omega} |\phi_n|^p.
\]

If we set \(w_n = \|\phi_n\|^{-1} \phi_n \), then \(\|w_n\|_p = 1 \) and \(\int_{\Omega} |\nabla w_n|^p < \frac{1}{n} \). Thus \((w_n) \) is bounded and hence there exists a subsequence \((w_{n_k}) \) of \((w_n) \) such that \(w_{n_k} \rightharpoonup w \) in \(W^{1,p}(\Omega) \). By weak lowersemicontinuity of \(\|\nabla \|_p \) we have \(\|\nabla w\|_p = 0 \). Hence the connectedness yields \(w = c \) a.e. in \(\Omega \). By the compactness of the embedding of \(W^{1,p}(\Omega) \) into \(L^p(\Omega) \), we get \(\|w\|_p = 1 \) and hence \(|c||\Omega|^{\frac{1}{p}} = 1 \). Therefore, \(\int_{\partial \Omega} |g|^p = \frac{1}{|\Omega|} \int_{\partial \Omega} g < 0 \). On the other hand, \(\int_{\partial \Omega} |w_{n_k}|^p = \|\phi_{n_k}\|_p^p \int_{\partial \Omega} g|\phi_{n_k}|^p > 0 \). Thus by the compactness of \(G \) (Proposition 3.2), we get \(\int_{\partial \Omega} |g|^p = \lim_{k \to \infty} \int_{\partial \Omega} g|w_{n_k}|^p \geq 0 \), a contradiction. Thus there must exists \(m \in (0,1) \) satisfying (3.13). \(\square \)

Remark 3.8. For \(g \) as given in Lemma 3.7, consider the set

\[
N_g = \left\{ \phi \in W^{1,p}(\Omega) : \int_{\partial \Omega} |g|^p = 1 \right\} = G^{-}(1).
\]

For \(\phi \in N_g \), \(\langle G'(\phi), \phi \rangle \neq 0 \). Thus 1 is a regular point of \(G \) and \(N_g \) is a \(C^1 \) manifold. Moreover (see [21, Proposition 6.4.35]),

\[
\|dJ(\phi)\| = \min_{\lambda \in \mathbb{R}} \| (J' - \lambda G') (\phi) \|, \quad \forall \phi \in N_g.
\]

Definition 3.9. A map \(f \in C^1(Y, \mathbb{R}) \) is said to satisfy **Palais-Smale (P. S.)** condition on a \(C^1 \) manifold \(M \subset Y \), if \((\phi_n) \) is a sequence in \(M \) such that \(f(\phi_n) \to c \in \mathbb{R} \) and \(\|df(\phi_n)\| \to 0 \), then \((\phi_n) \) has a subsequence that converges in \(M \).

Lemma 3.10. Let \(g \) be as given in Lemma 3.7. Then \(J \) satisfies the P. S. condition on \(N_g \).

Proof. Let \((\phi_n) \) be a sequence in \(N_g \) and \(\lambda \in \mathbb{R} \) such that \(J(\phi_n) \to \lambda \) and \(\|dJ(\phi_n)\| \to 0 \). By Remark 3.8, there exists a sequence \((\lambda_n) \) such that \((J' - \lambda_n G')(\phi_n) \to 0 \) as \(n \to \infty \). By Lemma 3.7, the sequence \((\phi_n) \) is also bounded in \(W^{1,p}(\Omega) \). Now using the reflexivity of \(W^{1,p}(\Omega) \), we get a subsequence \((\phi_{n_k}) \) such that \(\phi_{n_k} \rightharpoonup \phi \) in \(W^{1,p}(\Omega) \). Since \(N_g \) is weakly closed, \(\phi \in N_g \). Also \(\lambda_{n_k} \to \lambda \) as \(k \to \infty \), since

\[
\langle (J' - \lambda_{n_k} G')(\phi_{n_k}), \phi_{n_k} \rangle = p(J(\phi_{n_k}) - \lambda_{n_k}).
\]

Furthermore,

\[
\langle J'(\phi_{n_k}), \phi_{n_k} - \phi \rangle = \langle (J' - \lambda_{n_k} G')(\phi_{n_k}), \phi_{n_k} - \phi \rangle + \lambda_{n_k} \langle G'(\phi_{n_k}), \phi_{n_k} - \phi \rangle.
\]

Now using the compactness of \(G' \), we get \(\langle J'(\phi_{n_k}), \phi_{n_k} - \phi \rangle \to 0 \). Moreover, as \(J' \) is of class \(\alpha(W^{1,p}(\Omega)) \) (Proposition 3.4), the sequence \((\phi_{n_k}) \) converges to \(\phi \) in \(W^{1,p}(\Omega) \). Therefore, \(J \) satisfies the P. S. condition on \(N_g \). \(\square \)
4 Proof of main theorems

In this section, we prove all our main theorems.

4.1 The existence and some of the properties of the first eigenvalue

Proof of Theorem 1.1:

First, recall that

\[\lambda_1 = \inf_{\phi \in N_g} \int_{\Omega} |\nabla \phi|^p. \]

From Lemma 3.7, we clearly have \(\lambda_1 > 0 \). Since the functional \(J \) is coercive on \(N_g \), a sequence that minimizes \(J \) over \(N_g \) will be bounded and hence admits a weakly convergent subsequence that converges to say \(\phi_1 \). As \(N_g \) is weakly closed, \(\phi_1 \in N_g \) and \(J(\phi_1) = \lambda_1 \). Thus \(\lambda_1 \) is the minimum of \(J \) on \(N_g \) and hence \(\|dJ(\phi_1)\| = 0 \).

Now from Remark 3.8, we obtain

\[\int_{\Omega} |\nabla \phi_1|^{p-2} \nabla \phi_1 \cdot \nabla v \, dx = \lambda_1 \int_{\partial \Omega} g|\phi_1|^{p-2} \phi_1 v \, d\sigma, \quad \forall v \in W^{1,p}(\Omega). \] (4.1)

\(\lambda_1 \) is a principal eigenvalue: Clearly \(|\phi_1| \) is also an eigenfunction of (1.5) corresponding to \(\lambda_1 \). Moreover, as \(|\phi_1| \) is \(p \)-harmonic, \(|\phi_1| \in C^{1,\alpha}(\Omega) \). Since \(|\phi_1| \geq 0 \), by the maximum principle in [51, Theorem 5], \(|\phi_1| > 0 \) in \(\Omega \). Without loss of generality we may assume \(\phi_1 > 0 \) in \(\Omega \). We show that \(\phi_1 \) is positive also on \(\partial \Omega \).

For \(\epsilon > 0 \), consider the function \(\frac{\phi_1}{\phi_1 + \epsilon} + \epsilon \). It is easy to verify that \(\frac{\phi_1}{\phi_1 + \epsilon} + \epsilon \in W^{1,p}(\Omega) \) and \(\frac{\phi_1}{\phi_1 + \epsilon} + \epsilon \to 1 \) in \(L^p(\Omega) \). We show that \(\frac{\phi_1}{\phi_1 + \epsilon} + \epsilon \to 1 \) in \(W^{1,p}(\Omega) \) as well. This together with trace embedding will ensure that \(\phi_1 > 0 \) in \(\Omega \). Thus it is enough to prove \(\nabla \frac{\phi_1}{\phi_1 + \epsilon} + \epsilon \to 0 \) in \(L^p(\Omega) \) as \(\epsilon \to 0 \). Notice that,

\[\left| \nabla \frac{\phi_1}{\phi_1 + \epsilon} \right|^p = \left(\frac{\epsilon}{\phi_1 + \epsilon} \right)^p \frac{|\nabla \phi_1|^p}{(\phi_1 + \epsilon)^p} \leq \frac{|\nabla \phi_1|^p}{\phi_1^p}. \] (4.2)

Furthermore, by taking \(\frac{1}{(\phi_1 + \epsilon)^{p-1}} \in W^{1,p}(\Omega) \) as a test function in (4.1), we obtain

\[(p-1) \int_{\Omega \setminus \{0\}} \frac{|\nabla \phi_1|^p}{(\phi_1 + \epsilon)^p} = \lambda_1 \int_{\partial \Omega} g \left(\frac{\phi_1}{\phi_1 + \epsilon} \right)^{p-1} \leq \lambda_1 \int_{\partial \Omega} |g|. \]

We apply Fatou’s lemma and let \(\epsilon \to 0 \) in the above inequality to get

\[(p-1) \int_{\Omega} \frac{|\nabla \phi_1|^p}{\phi_1^p} \leq \lambda_1 \int_{\partial \Omega} |g|. \]

Now (4.2) together with the dominated convergence theorem ensures that \(\nabla \frac{\phi_1}{\phi_1 + \epsilon} \to 0 \) in \(L^p(\Omega) \).

The uniqueness and the simplicity: The usual arguments (for example, see [48, Lemma 3.1] for a proof) using the Picone’s identity [2, Theorem 1.1] gives the uniqueness of the positive principal eigenvalue and the simplicity of \(\lambda_1 \).
\[\lambda_1 \text{ is an isolated eigenvalue: } \text{We adapt the proof of [6, Proposition 2.12]. On the contrary, we suppose that there exists a sequence \((\lambda_n)\) of eigenvalues of (1.5) converging to } \lambda_1. \text{ For each } n \in \mathbb{N}, \text{ let } \psi_n \in N_g \text{ be an eigenfunction corresponding to } \lambda_n. \text{ Then } J(\psi_n) = \lambda_n \to \lambda_1 \text{ and} \]

\[\langle (J' - \lambda_n G')(\psi_n), \psi_n \rangle = (J - \lambda_n G)(\psi_n) = 0, \]

i.e., \(\|dJ(\psi_n)\| = 0\). Hence using Lemma 3.10 and the continuity of \(J'\) and \(G'\), we get \(\psi_n \to \psi\), an eigenfunction corresponding to \(\lambda_1\). Since \(\lambda_1\) is simple, \(\psi = \pm \phi_1\), where \(\phi_1\) is a first eigenfunction such that \(\phi_1 > 0\) on \(\Omega\). If we let \(\psi = \phi_1\), then by Egorov’s theorem there exists \(E \subset \Omega\) and \(n_1 \in \mathbb{N}\) such that \(|E| < \epsilon\) and \(\psi_n = 0\) a.e. in \(E^c\) for \(n \geq n_1\). Also from (1.5) we have

\[\int_{\Omega} |\nabla \psi_n|^p = \lambda_n \int_{\partial \Omega} g|\psi_n|^p. \]

Notice that \(\int_{\Omega} |\nabla \psi_n|^p \neq 0\), since \(\psi_n\) changes sign on \(\Omega\). Now by setting \(v_n = (\int_{\partial \Omega} g|\psi_n|^p)^{-\frac{1}{p}} \psi_n\), we have \(v_n \in N_g\) and \(\int_{\Omega} |\nabla v_n|^p = \lambda_n \to \lambda_1\). Therefore, \(v_n\) must converge to \(\phi_1\), a contradiction as \(v_n = 0\) a.e. in \(E^c\) for \(n \geq n_1\). Thus \(\lambda_1\) must be an isolated eigenvalue. \(\square\)

Remark 4.1. (a) Let

\[g \in \begin{cases} L^{\frac{N-1}{p-1}}(\partial \Omega) & \text{for } N > p, \\ L^{1,\infty;N}(\partial \Omega) & \text{for } N = p. \end{cases} \]

Then \(\frac{1}{\lambda_1}\) is the best constant in the following weighted trace inequality:

\[\int_{\partial \Omega} |g||\phi|^p \leq C \int_{\Omega} |\nabla \phi|^p, \quad \forall \phi \in W^{1,p}(\Omega). \]

In addition, if \(g\) satisfy all the assumptions of Theorem 1.1, then this best constant is also attained.

(b) Since \(\Omega\) is bounded, we have

\[L^q(\partial \Omega) \subset L^{\frac{N-1}{p-1}}(\partial \Omega), \forall q > \frac{N-1}{p-1}, \quad \text{and} \quad L^q(\partial \Omega) \subset G_1, \forall q \in (1, \infty). \]

Thus, Theorem 1.2 of [48] follows from Theorem 1.1. Furthermore, Example 2.7 and Example 2.8 give examples of weight functions for which Theorem 1.2 of [48] is not applicable, however admits a positive principal eigenvalue by our Theorem 1.1.

Remark 4.2. For \(g\) as given in Theorem 1.1, the functional \(J\) and the set \(N_g\) satisfy all the properties of [39, Theorem 5.3]. Therefore, by [39, Theorem 5.3], there exists a sequence of eigenvalues \((\lambda_n)\) of (1.5) and the sequence \((\lambda_n)\) is unbounded.

4.2 Bifurcation

For proving Theorem 1.2, we adapt the degree theory arguments given in [20], also see [4]. We split our proof into several lemmas and propositions.
Lemma 4.3. Let \(g^+ \neq 0 \), \(\int_{\partial \Omega} g < 0 \), and
\[
g \in \begin{cases} \mathcal{F}_{N-1}^\frac{2}{N-1} & \text{for } N > p, \\ G_1 & \text{for } N = p. \end{cases}
\]

Let \((\phi_n)\) be a sequence in \(W^{1,p}(\Omega) \) such that
\[
\int_{\Omega} |\nabla \phi_n|^p - \lambda \int_{\partial \Omega} g|\phi_n|^p < C
\]
for some \(C > 0 \) and \(\lambda > 0 \). If \((||\nabla \phi_n||_p)\) is bounded, then \((||\phi_n||_p)\) is bounded.

Proof. Our proof is by method of contradiction. Suppose that the sequence \((||\nabla \phi_n||_p)\) is bounded and \(||\phi_n||_p \to \infty\) as \(n \to \infty \). By setting \(w_n = \frac{1}{n} \phi_n \), we obtain \(||w_n||_p = 1 \) and \(||\nabla w_n||_p \to 0 \) as \(n \to \infty \). Thus there exists a subsequence \((w_{n_k})\) of \((w_n)\) such that \(w_{n_k} \to w \) in \(W^{1,p}(\Omega) \). Now the weak lowersemicontinuity of \(||\nabla||_p \) gives \(||\nabla w||_p = 0 \). Since \(\Omega \) is connected, we get \(w = c \) a.e. in \(\Omega \) and from the compactness of the embedding of \(W^{1,p}(\Omega) \) into \(L^p(\Omega) \), \(||\psi||_p = 1 \). Thus \(\int_{\partial \Omega} g|w|^p = \frac{1}{p} \int_{\Omega} g < 0 \). On the other hand from (4.3) we also have
\[
\int_{\Omega} |\nabla w_{n_k}|^p - \lambda \int_{\partial \Omega} g|w_{n_k}|^p \leq C ||\phi_{n_k}||_p^p.
\]
Now we let \(k \to \infty \) so that the compactness of \(G \) gives \(-\lambda \int_{\partial \Omega} g|w|^p \leq 0 \). A contradiction to \(\int_{\partial \Omega} g|w|^p < 0 \).

In the next proposition, for \(\lambda \in (0, \lambda_1 + \delta) \), we find a lower estimate of the functional \(J - \lambda G \).

Proposition 4.4. Let \(\delta > 0 \) and let \(\lambda \in (0, \lambda_1 + \delta) \setminus \lambda_1 \). Then for \(\phi \in W^{1,p}(\Omega) \setminus \{0\}, \)
\[
J(\phi) - \lambda G(\phi) > \begin{cases} 0, & \text{if } \lambda \in (0, \lambda_1); \\ \frac{\delta}{\lambda_1} J(\phi), & \text{if } \lambda \in (\lambda_1, \lambda_1 + \delta). \end{cases}
\]

Proof. Firstly, for any \(\lambda > 0 \) and \(\phi \in W^{1,p}(\Omega) \setminus \{0\} \), we consider the following cases:

(i) \(G(\phi) \leq 0 \) and \(J(\phi) > 0 \) : clearly \(J(\phi) - \lambda G(\phi) > 0 \).

(ii) \(G(\phi) = 0 \) and \(J(\phi) = 0 \) : using the connectedness of \(\Omega \) and the fact that \(\int_{\partial \Omega} g < 0 \), we get \(\phi = 0 \). So this case does not arise, since \(\phi \neq 0 \).

(iii) \(G(\phi) > 0 \) : in this case \(\lambda_1 \leq \frac{J(\phi)}{G(\phi)} \). Thus for \(\lambda \in (0, \lambda_1) \), we get \(J(\phi) - \lambda G(\phi) > 0 \).

Secondly, for \(\lambda \in (\lambda_1, \lambda_1 + \delta) \) and \(\phi \in W^{1,p}(\Omega) \), we have
\[
J(\phi) - \lambda G(\phi) = J(\phi) - \lambda_1 G(\phi) + (\lambda_1 - \lambda) G(\phi) \\
\geq (\lambda_1 - \lambda) G(\phi) > \frac{\lambda_1 - \lambda}{\lambda_1} J(\phi) > -\frac{\delta}{\lambda_1} J(\phi),
\]
where the inequalities follow from the facts \(J(\phi) - \lambda_1 G(\phi) \geq 0 \) and \(\lambda \in (\lambda_1, \lambda_1 + \delta) \).
For $\lambda \in (\lambda_1, \lambda_1 + \delta)$, we consider a differentiable function $\eta(t)$ such that

$$
\eta(t) = \begin{cases}
0, & 0 \leq t \leq 1, \\
\text{strictly convex}, & 1 < t < 2, \\
\frac{2\delta}{\lambda_1}(t - 1), & t \geq 2.
\end{cases}
$$

Therefore,

$$
\eta'(t) = \begin{cases}
0, & 0 \leq t < 1; \\
\frac{2\delta}{\lambda_1}, & t \geq 2,
\end{cases}
$$

and $\eta'(t) \geq 0$, $1 \leq t \leq 2$.

(4.7)

A similar function (with an additional parameter k) is considered in the proof of [20, Theorem 4.1]. We would like to point out that, their proof also works by fixing a value for k. Since, the functional $J - \lambda G$ is not bounded below for $\lambda \in (\lambda_1, \lambda_1 + \delta)$, we add a non-negative term to it. The following result is proved as a part of the proof of [20, Theorem 4.1].

Lemma 4.5. Let $\lambda \in (\lambda_1, \lambda_1 + \delta)$ and let η be given as above. Then the functional $\eta_\lambda(\phi) = J(\phi) - \lambda G(\phi) + \eta(J(\phi))$ satisfies the following:

(a) η_λ is weakly lower semicontinuous.

(b) η_λ is coercive.

(c) η_λ is bounded below.

(d) there exists $R_0 > 0$ such that the map $\eta'_\lambda : W^{1,p}(\Omega) \to (W^{1,p}(\Omega))'$ does not vanish on $\partial B_R(0)$ for all $R \geq R_0$.

Proof. (a) Let $\phi_n \rightharpoonup \phi$ in $W^{1,p}(\Omega)$. Since J is weakly lower semicontinuous, G is compact and η is increasing and continuous, we get

$$
\lim_{n \to \infty} \eta_\lambda(\phi_n) = \lim_{n \to \infty} J(\phi_n) - \lambda \lim_{n \to \infty} G(\phi_n) + \eta(\lim_{n \to \infty} (J(\phi_n)))
\geq J(\phi) - \lambda G(\phi) + \eta(J(\phi)) = \eta_\lambda(\phi).
$$

Therefore, η_λ is weakly lower semicontinuous.

(b) Let (ϕ_n) be a sequence in $W^{1,p}(\Omega)$ such that $\eta_\lambda(\phi_n) \leq C$, $\forall n \in \mathbb{N}$. We show that the sequence (ϕ_n) is bounded in $W^{1,p}(\Omega)$. From (4.4), we have

$$
C \geq \eta_\lambda(\phi_n) > -\frac{\delta}{\lambda_1} J(\phi_n) + \eta(J(\phi_n)), \quad \forall n \in \mathbb{N}.
$$

(4.8)

Thus, for ϕ_n with $J(\phi_n) \geq 2$, using the definition of η, we have

$$
C \geq \eta_\lambda(\phi_n) > -\frac{\delta}{\lambda_1} J(\phi_n) + \frac{2\delta}{\lambda_1}(J(\phi_n) - 1) = \frac{\delta}{\lambda_1} J(\phi_n) - \frac{2\delta}{\lambda_1}.
$$

Hence, $J(\phi_n) \leq \max\left\{2, \frac{\lambda_1 C}{\delta} + 2\right\}$. Now, we can use Lemma 4.3 to obtain $C_1 > 0$ so that $\|\phi_n\|_p \leq C_1$. Therefore, the sequence (ϕ_n) is bounded in $W^{1,p}(\Omega)$.

22
(c) From (4.4), we have \(\eta_\lambda(\phi) > -\frac{\phi}{\lambda_1} J(\phi) + \eta(J(\phi)), \ \forall \phi \in W^{1,p}(\Omega) \). Therefore,
\[
\eta_\lambda(\phi) > \begin{cases}
\frac{\delta}{\lambda_1} J(\phi) - \frac{2\delta}{\lambda_1} > 0, & \text{if } J(\phi) > 2; \\
-\frac{\phi}{\lambda_1} J(\phi) + \eta(J(\phi)) \geq -\frac{2\delta}{\lambda_1}, & \text{if } J(\phi) \leq 2.
\end{cases}
\]
Thus \(\eta_\lambda \) bounded below.

(d) By Lemma 3.7, there exists \(m > 0 \) such that
\[
J(\phi) \geq m\|\phi\|_p^p, \ \forall \phi \in W^{1,p}(\Omega) \text{ with } G(\phi) > 0.
\]
We choose \(R_0 = 2(1 + \frac{1}{m}) \). Thus, for \(\phi \in \partial B_R(0) \) with \(R > R_0 \), either \(J(\phi) > 2 \) or \(\|\phi\|_p > \frac{2}{m} \). Notice that,
\[
\langle \eta'_\lambda(\phi), \phi \rangle = p \left(J(\phi) - \lambda G(\phi) + \eta'(J(\phi))J(\phi) \right).
\]
Thus, using (4.4), we obtain
\[
\frac{1}{p} \langle \eta'_\lambda(\phi), \phi \rangle \geq -\frac{\delta}{\lambda_1} J(\phi) + \eta'(J(\phi))J(\phi).
\]
In particular, for \(J(\phi) > 2 \), we have
\[
\frac{1}{p} \langle \eta'_\lambda(\phi), \phi \rangle \geq \frac{\delta}{\lambda_1} J(\phi).
\]
On the other hand, for \(J(\phi) \leq 2 \), we have \(\|\phi\|_p > \frac{2}{m} \). Hence from (4.9), we conclude that \(G(\phi) \leq 0 \). Now from the part (i) and (ii) of proof of Proposition 4.4, we get \(\langle \eta'_\lambda(\phi), \phi \rangle > 0 \). Therefore, \(\eta'_\lambda(\phi) \neq 0 \) for \(\phi \in \partial B_R(0) \) for any \(R > R_0 \).

Recall that a function \(\phi \in W^{1,p}(\Omega) \) is a weak solution of (1.1), if it satisfies the following weak formulation:
\[
\int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \cdot \nabla v - \lambda \int_{\partial \Omega} (g|\phi|^{p-2}v + f(\phi)v) = 0, \ \forall v \in W^{1,p}(\Omega).
\]
Therefore, \(\phi \) is a solution of (1.1) if and only if
\[
\langle (J' - \lambda(G' + F))\phi, v \rangle = 0, \ \forall v \in W^{1,p}(\Omega).
\]

Proposition 4.6. The maps \(J' - \lambda(G' + F) \) and \(J' - \lambda G' \) are well-defined maps from \(W^{1,p}(\Omega) \) to its dual \((W^{1,p}(\Omega))^\prime \). Moreover, these maps are bounded, demicontinuous and of class \(\alpha(W^{1,p}(\Omega)) \).

Proof. From Proposition 3.3, Proposition 3.4, and Proposition 3.5, we obtain \(J' - \lambda(G' + F) \) and \(J' - \lambda G' \) are well defined, bounded and demicontinuous. Since \(J' \) is of class \(\alpha(W^{1,p}(\Omega)) \) and \(G', F \) are compact, the maps \(J' - \lambda(G' + F) \) and \(J' - \lambda G' \) are of class \(\alpha(W^{1,p}(\Omega)) \).

Proposition 4.7. Let \(q, \lambda_1 \) be as given in Theorem 1.1. Then there exists \(\delta > 0 \) such that for each \(\lambda \in (0, \lambda_1 + \delta) \setminus \{\lambda_1\}, \ \text{ind}(J' - \lambda G', 0) \) is well defined. Furthermore,
\[
(a) \ \text{ind}(J' - \lambda G', 0) = 1 \text{ for } \lambda \in (0, \lambda_1),
\]

(b) \(\text{ind}(J' - \lambda G', 0) = -1 \) for \(\lambda \in (\lambda_1, \lambda_1 + \delta) \).

Proof. Since \(\lambda_1 \) is an isolated eigenvalue of (1.5), there exists \(\delta > 0 \) such that \(\lambda \in (0, \lambda_1 + \delta) \setminus \{\lambda_1\} \) is not an eigenvalue of (1.5). Thus for \(\lambda \in (0, \lambda_1 + \delta) \setminus \{\lambda_1\} \), 0 is the only solution of \(J' - \lambda G' \) and hence \(\text{ind}(J' - \lambda G', 0) \) is well defined.

(a) For \(\lambda \in (0, \lambda_1) \), from (4.4), we have
\[
\langle (J' - \lambda G')(\phi), \phi \rangle = p(J(\phi) - \lambda G(\phi)) > 0, \quad \forall \phi \in W^{1,p}(\Omega) \setminus \{0\}.
\]
Therefore, by Proposition 2.13, \(\text{deg}(J' - \lambda G', B_r(0), 0) = 1 \) for every \(r > 0 \). Thus
\[
\text{ind}(J' - \lambda G', 0) = \lim_{r \to 0} \text{deg}(J' - \lambda G', B_r(0), 0) = 1.
\]

(b) In this case, we adapt a technique used in the proof of [20, Theorem 4.1]. First, we compute \(\text{ind}(\eta'_\lambda, 0) \). Clearly, 0 is a zero of \(\eta'_\lambda \). If \(\phi_0 \neq 0 \) is a zero of \(\eta'_\lambda \), then \(\lambda = \frac{\lambda_1}{1 + \eta'(\phi_0)} \) is an eigenvalue of (1.5) and \(\phi_0 \) is a corresponding eigenfunction. Since \(0 < \frac{\lambda_1}{1 + \eta'(\phi_0)} < \lambda_1 + \delta \), we must have \(\lambda = \lambda_1 \) and \(\phi_0 = c\phi_1 \) for some \(c \in \mathbb{R} \), where \(\phi_1 \) is the first eigenfunction of (1.5) normalized as \(\int_{\partial \Omega} g\phi_1^2 = 1 \) and \(\phi_1 > 0 \) in \(\Omega \). Notice that,
\[
\eta'(J(\phi_0)) = \frac{\lambda}{\lambda_1} - 1 \in \left(0, \frac{\delta}{\lambda_1} \right).
\]
Thus from (4.7), we assert that \(J(\phi_0) \in (1, 2) \). Moreover, since \(\eta' \) is strictly increasing in (1, 2) and the functional \(J \) is even, there exists a unique \(c > 0 \) such that \(\phi_0 = \pm c\phi_1 \). Conversely, if we choose \(c > 0 \) such that \(\eta'(J(c\phi_1)) = \frac{\lambda}{\lambda_1} - 1 \), then \(\pm c\phi_1 \) is a zero of \(\eta'_\lambda \). Therefore, the map \(\eta'_\lambda \) has precisely three zeros \(-c\phi_1, 0, c\phi_1 \). Now we will show that \(\text{ind}(\eta'_\lambda, \pm c\phi_1) = 1 \). It is enough to prove \(\pm c\phi_1 \) are the minimizers for \(\eta_\lambda \). From Lemma 4.5, the functional \(\eta_\lambda \) is coercive, weak lowersemicontinuous and bounded below. Thus \(\eta_\lambda \) admits a minimizer. Notice that, \(\eta_\lambda(t\phi_1) = (\lambda_1 - \lambda)t^p G(\phi_1) + \eta(p^t J(\phi_1)) \) and hence \(\eta_\lambda(t\phi_1) < 0 \) for sufficiently small \(t > 0 \). Thus 0 is not a minimizer and hence \(\pm c\phi_1 \) are the only minimizers of \(\eta_\lambda \). Therefore, by Proposition 2.13, we get
\[
\text{ind}(\eta'_\lambda, \pm c\phi_1) = 1. \tag{4.10}
\]
For \(R_0 \) as given in Lemma 4.5, we choose \(R > R_0 \), so that \(\pm c\phi_1 \in B_R(0) \) and \(\langle \eta'_\lambda(\phi), \phi \rangle > 0 \) for \(\phi \in \partial B_R(0) \). By Proposition 2.13, \(\text{deg}(\eta'_\lambda, \overline{B_R(0)}, 0) = 1. \) Thus by the additivity of degree (Proposition 2.13) and from (4.10), we obtain \(\text{deg}(\eta'_\lambda, \overline{B_r(0)}, 0) = -1 \) for sufficiently small \(r > 0 \). Since \(\eta'_\lambda = J' - \lambda G' \) on \(B_r(0) \) for \(r < 1 \), we conclude that \(\text{ind}(J' - \lambda G', 0) = -1 \). \(\square \)

Lemma 4.8. Let \(\lambda_1 \) be given as in Theorem 1.1. Then for \(\lambda \in (0, \lambda_1 + \delta) \setminus \{\lambda_1\} \), \(\text{ind}(J' - \lambda(G' + F), 0) = \text{ind}(J' - \lambda G', 0) \).

Proof. For \(\lambda \in (0, \lambda_1 + \delta) \setminus \{\lambda_1\} \), define \(H_\lambda : W^{1,p}(\Omega) \times [0, 1] \to (W^{1,p}(\Omega))' \) as
\[
H_\lambda(\phi, t) = J'(\phi) - \lambda G'(\phi) - \lambda t F(\phi).
\]
Clearly, $H_\lambda(.,0) = J' - \lambda G'$ and $H_\lambda(.,1) = J' - \lambda(G' + F)$. From Proposition 4.6, for each $t \in [0,1]$, $H_\lambda(.,t)$ is bounded, demicontinuous and of class $\alpha(W^{1,p}(\Omega))$. We prove the existence of a sufficiently small $r > 0$ such that for each $t \in [0,1]$, $H_\lambda(.,t)$ does not vanish in $\overline{B_r(0)} \setminus \{0\}$. On the contrary, assume that no such r exists. Then for any $r > 0$, there exists $t_r \in [0,1]$ and $\phi_r \in W^{1,p}(\Omega) \setminus \{0\}$ such that $\|\phi_r\|_{W^{1,p}(\Omega)} \leq r$ and $H_\lambda(\phi_r, t_r) = 0$. In particular, for a sequence of positive numbers (r_n) converging to 0, there exist a sequence $t_n \in [0,1]$ and a sequence $\phi_n \in W^{1,p}(\Omega) \setminus \{0\}$ such that $\|\phi_n\|_{W^{1,p}(\Omega)} \leq r_n$ and

$$J'(\phi_n) - \lambda G'(\phi_n) - \lambda t_n F(\phi_n) = 0. \quad (4.11)$$

If we set $v_n = \phi_n\|\phi_n\|_{W^{1,p}(\Omega)}^{-1}$, then $\|v_n\|_{W^{1,p}(\Omega)} = 1$ and hence admits a subsequence (v_{n_k}) such that $v_{n_k} \to v$ in $W^{1,p}(\Omega)$. From (4.11) we also have

$$\langle J'(v_{n_k}) - \lambda G'(v_{n_k}), v_{n_k} - v \rangle = \lambda t_{n_k} \left\langle \frac{F(\phi_{n_k})}{\|\phi_{n_k}\|_{W^{1,p}(\Omega)}^{p-1}}, v_{n_k} - v \right\rangle.$$

By Proposition 3.6, the right hand side of the above inequality goes to zero as $k \to \infty$. Therefore,

$$\lim_{k \to \infty} \langle J'(v_{n_k}) - \lambda G'(v_{n_k}), v_{n_k} - v \rangle = 0.$$

Now, since $J' - \lambda G'$ is of class $\alpha(W^{1,p}(\Omega))$ (Proposition 4.6), we get $v_{n_k} \to v$ as $k \to \infty$. Thus using (4.11), we deduce that $J'(v) - \lambda G'(v) = 0$ and $\|v\|_{W^{1,p}(\Omega)} = 1$. A contradiction, as $\lambda \in (0,\lambda_1 + \delta) \setminus \{\lambda_1\}$ is not an eigenvalue of (1.5). Therefore, there exists $R > 0$ such that $H_\lambda(.,t)$ does not vanish in $\overline{B_R(0)} \setminus \{0\}$. Thus 0 is an isolated zero of $H(.,t)$ for any $t \in [0,1]$. Hence by homotopy invariance of degree (Proposition 2.13), we obtain

$$\text{ind}(J' - \lambda(G' + F), 0) = \text{ind}(J' - \lambda G', 0) = \begin{cases} 1, & \text{for } \lambda \in (0,\lambda_1); \\ -1, & \text{for } \lambda \in (\lambda_1,\lambda_1 + \delta). \end{cases} \quad (4.12)$$

The following theorem gives a sufficient condition [44, Theorem 7.5, Page-61] under which λ_1 is a bifurcation point of (1.1).

Theorem 4.9. Let λ_1 be given as in Theorem 1.1 and g, r, f be given as in Theorem 1.2. Let

$$\bar{\lambda}_\pm = \lim_{\lambda \to \lambda_1 \pm 0} \text{ind}(J' - \lambda(G' + F), 0); \quad \hat{\lambda}_\pm = \lim_{\lambda \to \lambda_1 \pm 0} \text{ind}(J' - \lambda(G' + F), 0).$$

If at least two of the numbers $\bar{\lambda}_+, \hat{\lambda}_+, \bar{\lambda}_-, \hat{\lambda}_-$, $\text{ind}(J' - \lambda(G' + F), 0)$ are distinct, then λ_1 is a bifurcation point of (1.1).

Theorem 4.10. Let λ_1 be given as in Theorem 1.1 and g, r, f be given as in Theorem 1.2. Then λ_1 is a bifurcation point of (1.1).

Proof. From Proposition 4.7 and Lemma 4.8, we have

$$\text{ind}(J' - \lambda(G' + F), 0) = \begin{cases} 1, & \text{for } \lambda \in (0,\lambda_1); \\ -1, & \text{for } \lambda \in (\lambda_1,\lambda_1 + \delta). \end{cases}$$
Thus, by Theorem 4.11, \(\lambda_1 \) is a bifurcation point of (1.1).

The following lemma is proved as a part of [41, Theorem 1.3].

Lemma 4.11. Let \(r, g \) and \(f \) be given as in Theorem 1.2. For \(\lambda \in \mathbb{R} \), define

\[
 r(\lambda) = \inf \left\{ \| \phi \|_{W^1,p(\Omega)} > 0 : (J' - \lambda(G' + F))(\phi) = 0 \right\}.
\]

Then \(r \) is lower semicontinuous. Further more, if \(\lambda \) is not an eigenvalue of (1.5), then \(r(\lambda) > 0 \).

Proof. \(r \) is lower semicontinuous: Let \((\lambda_n) \) be a sequence in \(\mathbb{R}^+ \) such that \(\lambda_n \to \lambda \). Without loss of generality we assume that \(r(\lambda_n) \) is finite. Now by definition of \(r \), there exists \(\phi_n \in W^{1,p}(\Omega) \setminus \{0\} \) such that \(\|\phi_n\|_{W^1,p(\Omega)} < r(\lambda_n) + \frac{1}{n} \) and \((J' - \lambda_n(G' + F))(\phi_n) = 0 \). Since \((\phi_n) \) is bounded, up to a subsequence \(\phi_n \to \phi \) in \(W^{1,p}(\Omega) \). Now by writing

\[
 (J' - \lambda(G' + F))(\phi_n) = (J' - \lambda_n(G' + F))(\phi_n) + (\lambda_n - \lambda)(G' + F)(\phi_n),
\]

we observe that \(\lim_{n \to \infty} (J' - \lambda(G' + F))(\phi_n, \phi_n - \phi) = 0 \). As \(J' - \lambda(G' + F) \) is of class \(\alpha(W^{1,p}(\Omega)) \) (Proposition 4.6), we get \(\phi_n \to \phi \) in \(W^{1,p}(\Omega) \). Therefore,

\[
 (J' - \lambda(G' + F))(\phi) = 0 \tag{4.13}
\]

We claim that \(\phi \neq 0 \). If not, then \(\|\phi_n\|_{W^1,p(\Omega)} \to 0 \), as \(n \to \infty \). Set \(v_n = \phi_n ||\phi_n||_{W^1,p(\Omega)}^{-1} \). Then \(v_n \to v \) in \(W^{1,p}(\Omega) \) and (by the similar arguments as in the proof of Lemma 4.8) \(v \) must be an eigenfunction corresponding to \(\lambda \). A contradiction and hence \(\phi \neq 0 \). Thus,

\[
 r(\lambda) \leq \|\phi\|_{W^1,p(\Omega)} = \lim_{n \to \infty} \|\phi_n\|_{W^1,p(\Omega)} \leq \lim_{n \to \infty} \left(r(\lambda_n) + \frac{1}{n} \right) = \lim_{n \to \infty} r(\lambda_n).
\]

\(r \) is positive: Suppose \(r(\lambda) = 0 \) for some \(\lambda \). Then there exists a sequence \((\phi_n) \in W^{1,p}(\Omega) \setminus \{0\} \) such that \(\|\phi_n\|_{W^1,p(\Omega)} < \frac{1}{n} \) and \((J' - \lambda(G' + F))(\phi_n) = 0 \). Set \(v_n = \phi_n ||\phi_n||_{W^1,p(\Omega)}^{-1} \). Then \(\|v_n\|_{W^1,p(\Omega)} = 1 \) and \(v_n \to v \) in \(W^{1,p}(\Omega) \). Now using the similar arguments as in Lemma 4.8, we obtain

\[
 J'(v) - \lambda G'(v) = 0, \quad \text{where } \|v\|_{W^1,p(\Omega)} = 1.
\]

Thus \(\lambda \) must be an eigenvalue of (1.5). Therefore, \(r(\lambda) > 0 \), if \(\lambda \) is not an eigenvalue of (1.5). \(\square \)

Remark 4.12. If \((\lambda, 0) \) is a bifurcation point of (1.1), then \(r(\lambda) = 0 \) and hence from Lemma 4.11, \(\lambda \) must be an eigenvalue of (1.5). Thus for the existence of a bifurcation point \((\lambda, 0) \) of (1.1), it is necessary that \(\lambda \) is an eigenvalue of (1.5).

In the next proposition we prove a generalized homotopy invariance property for the maps \(J' - \lambda(G' + F) \). A similar result for Leray-Schauder degree is obtained in [32]. For a set \(U \) in \([a, b] \times W^{1,p}(\Omega)\), let \(U_\lambda = \{ \phi \in W^{1,p}(\Omega) : (\lambda, \phi) \in U \} \) and \(\partial U_\lambda = \{ \phi \in W^{1,p}(\Omega) : (\lambda, \phi) \in \partial U \} \).
Proposition 4.13. Let U be a bounded open set in $[a, b] \times W^{1,p}(\Omega)$. If $(J' - \lambda(G' + F))(\phi) \neq 0$ for every $\phi \in \partial U_\lambda$, then $\deg(J' - \lambda(G' + F), U_\lambda, 0) = C$, $\forall \lambda \in [a, b]$.

Proof. It is enough to show that $\deg(J' - \lambda(G' + F), U_\lambda, 0)$ is locally constant on $[a, b]$. Then the proof will follow from the connectedness of $[a, b]$ and the continuity of the degree. For each $\lambda \in [a, b]$, consider the set $N_\lambda = \{\phi \in U_\lambda : (J' - \lambda(G' + F))(\phi) = 0\}$. For $\lambda_0 \in [a, b]$, let $I_0 \subset [a, b]$ be a neighbourhood of λ_0 and let V_0 be an open set such that $N_{\lambda_0} \subset V_0 \subset \overline{V_0} \subset U_{\lambda_0}$ and $I_0 \times V_0 \subset U$. We claim that there exists

$$I_1 \subset I_0 \text{ such that } \lambda_0 \in I_1 \text{ and } N_\lambda \subset V_0, \forall \lambda \in I_1.$$

If not, then there exists a sequence (λ_n, ϕ_n) in U such that $\phi_n \in N_{\lambda_n} \setminus V_0$ and $\lambda_n \to \lambda_0$. As (ϕ_n) is bounded in $W^{1,p}(\Omega)$, $\phi_n \to \phi$ for some $\phi \in W^{1,p}(\Omega)$. Now following the steps that yield (4.13), we get $\phi_n \to \phi$ in $W^{1,p}(\Omega)$ and $(J' - \lambda_0(G' + F))(\phi) = 0$. Since $\phi \in \overline{U_{\lambda_0}}$ and $J' - \lambda_0(G' + F)$ is not vanishing on ∂U_{λ_0}, we conclude $\phi \in U_{\lambda_0}$. Thus $\phi \in N_{\lambda_0}$, a contradiction since $\phi \notin V_0$. Therefore, our claim must be true. Now consider the homotopy, $H : I_1 \times V_0 \to (W^{1,p}(\Omega))'$ defined as $H(\lambda, \phi) = (J' - \lambda(G' + F))(\phi)$. By construction, for every $\lambda \in I_1$, $H(\lambda, \cdot)$ does not vanish on ∂V_0. Thus by the classical homotopy invariance of degree (Proposition 2.13), $\deg(H(\lambda, \cdot), V_0, 0) = C$, $\forall \lambda \in I_1$. Since $H(\lambda, \cdot) \neq 0$ in $U_{\lambda_0} \setminus V_0$, by the additivity of degree, we obtain $\deg(H(\lambda, \cdot), U_{\lambda_0}, 0) = C$, $\forall \lambda \in I_1$. \hfill \square

Proof of Theorem 1.2: We adapt the technique used in the proof of [41, Theorem 1.3]. Recall that $S \subset \mathbb{R} \times W^{1,p}(\Omega)$ is the set of all nontrivial solutions of $(J' - \lambda(G' + F))(\phi) = 0$. Suppose there does not exist any continuum $C \subset S$ such that $(\lambda_1, 0) \in C$ and C is either unbounded, or meets at $(\lambda, 0)$ where λ is an eigenvalue of (1.5) and $\lambda \neq \lambda_1$. Then by [41, Lemma 1.2], there exists a bounded open set $U \subset \mathbb{R} \times W^{1,p}(\Omega)$ containing $(\lambda_1, 0)$ such that $\partial U \cap S = \emptyset$ and $\overline{U} \cap \mathbb{R} \times \{0\} = \overline{T} \times \{0\}$, where $I = (\lambda_1 - \delta, \lambda_1 + \delta)$ with $0 < \delta < \min\{\lambda_1, \lambda_2 - \lambda_1\}$. Thus $(\lambda \times \partial U_\lambda) \cap S = \emptyset$ for every $\lambda \in \mathbb{R}$ and $(\lambda, 0) \notin \partial U$ for $\lambda \in I$. In particular, $J' - \lambda(G' + F)$ does not vanish on ∂U_λ for every λ in I. Hence $\deg((J' - \lambda(G' + F), U_{\lambda}, 0)$ is well defined and by homotopy invariance of degree (Proposition 4.13), we have

$$\deg(J' - \lambda(G' + F), U_{\lambda}, 0) = C,$$

for $\lambda \in I$. \hfill (4.14)

Next we compute $\text{ind}(J' - \lambda(G' + F), 0)$ for $\lambda \in I$. Let

$$d := \text{dist}((-\infty, 0] \cup [\lambda_2, \infty), \overline{U}).$$

Since $\overline{U} \cap \mathbb{R} \times \{0\} = \overline{T} \times \{0\}$, we observe that $d > 0$. Now set

$$\rho(\lambda) = \begin{cases} \frac{d}{2}, & \text{for } \lambda \in (-\infty, 0] \cup [\lambda_2, \infty), \\ \min\{1, \frac{d}{2}\rho(\lambda), & \text{for } \lambda \in (0, \lambda_2) \setminus \{\lambda_1\}. \end{cases}$$

Thus using 4.11 we easily conclude that $\rho(\lambda) > 0$ for each $\lambda \neq \lambda_1$ and $\overline{B_{\rho(\lambda)}} \setminus \{0\}$ does not contain any solution of $J' - \lambda(G' + F)$. Let

$$I^* := \{\lambda : (\lambda, \phi) \in U \text{ for some } \phi\}, \quad \lambda^* := \sup\{\lambda : \lambda \in I^*\}, \quad \lambda_* := \inf\{\lambda : \lambda \in I^*\}$$

27
For $\lambda \in (\lambda_1, \lambda^*)$, let $\rho = \inf \{ \rho(\mu) : \mu \in [\lambda, \lambda^*] \}$. By Lemma (4.11), we have $\rho > 0$. Now consider the set $V = U \setminus [\lambda, \lambda^*] \times \overline{B_\rho}$. Observe that, V is bounded and open in $[\lambda, \lambda^*] \times W^{1,p}(\Omega)$. Furthermore, for each $\mu \in [\lambda, \lambda^*]$, $V_\mu = U_\mu \setminus \overline{B_\rho}$ and $(J' - \mu(G' + F))$ does not vanish on $\partial V_\mu = \partial (U_\mu \setminus \overline{B_\rho})$. Therefore, by the homotopy invariance of degree (Proposition 4.13) and noting that $U_{\lambda^*} = \emptyset$, we get

$$\deg(J' - \lambda(G' + F), U_\lambda \setminus \overline{B_\rho}, 0) = \deg(J' - \lambda(G' + F), U_{\lambda^*} \setminus \overline{B_\rho}, 0) = 0.$$

Similarly, for $\lambda \in [\lambda_*, \lambda^*)$ we get $\deg(J' - \lambda(G' + F), U_\lambda \setminus \overline{B_\rho}, 0) = 0$. Since $(J' - \lambda(G' + F))(\phi) \neq 0$ for $\phi \in B_{\rho(\lambda)} \setminus \overline{B_\rho}$, by the additivity of the degree we get

$$\deg(J' - \lambda(G' + F), U_\lambda \setminus \overline{B_{\rho(\lambda)}}, 0) = 0, \quad \lambda \in [\lambda_*, \lambda^*) \setminus \{\lambda_1\}.$$

Again using the additivity of the degree, we conclude that

$$\deg(J' - \lambda(G' + F), U_\lambda, 0) = \deg(J' - \lambda(G' + F), B_{\rho(\lambda)}, 0), \quad \forall \lambda \in I \setminus \{\lambda_1\}.$$

Thus from (4.14) we obtain

$$\text{ind}(J' - \lambda(G' + F), 0) = C, \quad \text{for } \lambda \in I \setminus \{\lambda_1\}.$$

A contradiction to (4.12). Thus there must exist a continuous branch of non-trivial solutions from $(\lambda_1, 0)$ and is either unbounded, or meets at $(\lambda, 0)$ where λ is an eigenvalue of (1.5).

References

[1] D. R. Adams. A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. (2), 128(2):385–398, 1988. doi:10.2307/1971445.

[2] W. Allegretto and Y. X. Huang. A Picone’s identity for the p-Laplacian and applications. Nonlinear Anal., 32(7):819–830, 1998. doi:10.1016/S0362-546X(97)00530-0.

[3] A. Ambrosetti and A. Malchiodi. Nonlinear analysis and semilinear elliptic problems, volume 104. Cambridge University Press, Cambridge, 2007. doi:10.1017/CBO9780511618260.

[4] T. V. Anoop. On Weighted Eigenvalue Problems and Applications. PhD thesis, The Institute of Mathematical Sciences, Chennai, 2011.

[5] T. V. Anoop. A note on generalized Hardy-Sobolev inequalities. Int. J. Anal., pages Art. ID 784398, 9, 2013. doi:10.1155/2013/784398.

[6] T. V. Anoop, P. Drábek, L. Sankar, and S. Sasi. Antimaximum principle in exterior domains. Nonlinear Anal., 130:241–254, 2016. doi:10.1016/j.na.2015.10.010.

[7] T. V. Anoop, M. Lucia, and M. Ramaswamy. Eigenvalue problems with weights in Lorentz spaces. Calc. Var. Partial Differential Equations, 36(3):355–376, 2009. doi:10.1007/s00526-009-0232-7.
[8] David Arcoya and José L. Gámez. Bifurcation theory and related problems: anti-maximum principle and resonance. *Comm. Partial Differential Equations*, 26(9-10):1879–1911, 2001. doi:10.1081/PDE-100107462.

[9] L. Bauer, E. L. Reiss, and H. B. Keller. Axisymmetric buckling of hollow spheres and hemispheres. *Comm. Pure Appl. Math.*, 23:529–568, 1970. doi:10.1002/cpa.3160230402.

[10] C. Bennett and K. Rudnick. On Lorentz-Zygmund spaces. *Dissertationes Math. (Rozprawy Mat.)*, 175:67, 1980.

[11] F. E. Browder. Nonlinear elliptic boundary value problems and the generalized topological degree. *Bull. Amer. Math. Soc.*, 76:999–1005, 1970. doi:10.1090/S0002-9904-1970-12530-7.

[12] K. J. Brown. Local and global bifurcation results for a semilinear boundary value problem. *J. Differential Equations*, 239(2):296–310, 2007. doi:10.1016/j.jde.2007.05.013.

[13] K. J. Brown and A. Tertikas. On the bifurcation of radially symmetric steady-state solutions arising in population genetics. *SIAM J. Math. Anal.*, 22(2):400–413, 1991. doi:10.1137/0522026.

[14] A. Cianchi, R. Kerman, and L. Pick. Boundary trace inequalities and rearrangements. *J. Anal. Math.*, 105:241–265, 2008. doi:10.1007/s11854-008-0036-2.

[15] J. M. Cushing. Some existence theorems for nonlinear eigenvalue problems associated with elliptic equations. *Arch. Rational Mech. Anal.*, 42:63–76, 1971. doi:10.1007/BF00282318.

[16] J. M. Cushing. Nonlinear Steklov problems on the unit circle. II. And a hydrodynamical application. *J. Math. Anal. Appl.*, 39:267–278; errata, ibid. 41 (1973), 536–537, 1972. doi:10.1016/0022-247X(72)90199-0.

[17] E. N. Dancer. On the structure of solutions of non-linear eigenvalue problems. *Indiana Univ. Math. J.*, 23:1069–1076, 1973/74. doi:10.1512/iumj.1974.23.23087.

[18] E. N. Dancer. Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one. *Bull. London Math. Soc.*, 34(5):533–538, 2002. doi:10.1112/S002460930200108X.

[19] P. Drábek. On the global bifurcation for a class of degenerate equations. *Ann. Mat. Pura Appl. (4)*, 159:1–16, 1991. doi:10.1007/BF01766290.

[20] P. Drábek and Y. X. Huang. Bifurcation problems for the p-Laplacian in \mathbb{R}^N. *Trans. Amer. Math. Soc.*, 349(1):171–188, 1997. doi:10.1090/S0002-9947-97-01788-1.

[21] P. Drábek and J. Milota. *Methods of nonlinear analysis*. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, second edition, 2013. doi:10.1007/978-3-0348-0387-8.
[22] D. E. Edmunds and W. D. Evans. *Hardy operators, function spaces and embeddings*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2004. doi:10.1007/978-3-662-07731-3. 5, 7

[23] D. E. Edmunds and H. Triebel. Sharp Sobolev embeddings and related Hardy inequalities: the critical case. *Math. Nachr.*, 207:79–92, 1999. doi:10.1002/mana.19993212070105. 5

[24] V. Felli, E. M. Marchini, and S. Terracini. On Schrödinger operators with multisingular inverse-square anisotropic potentials. *Indiana Univ. Math. J.*, 58(2):617–676, 2009. doi:10.1512/iiumj.2009.58.3471. 2

[25] L. C. F. Ferreira and S. L. N. Neves. On elliptic equations with singular potentials and nonlinear boundary conditions. *Quart. Appl. Math.*, 76(4):699–711, 2018. doi:10.1090/qam/1506. 2

[26] W. M. Frank, D. J. Land, and R. M. Spector. Singular potentials. *Rev. Modern Phys.*, 43(1):36–98, 1971. doi:10.1103/RevModPhys.43.36. 2

[27] J. Giacomoni, M. Lucia, and M. Ramaswamy. Some elliptic semilinear indefinite problems on \mathbb{R}^N. *Proc. Roy. Soc. Edinburgh Sect. A*, 134(2):333–361, 2004. doi:10.1017/S0308210500003243. 2

[28] P. Girg and P. Takáč. Bifurcations of positive and negative continua in quasilinear elliptic eigenvalue problems. *Ann. Henri Poincaré*, 9(2):275–327, 2008. doi:10.1007/s00023-008-0356-x. 2

[29] R. A. Hunt. On $L(p, q)$ spaces. *Enseign. Math. (2)*, 12:249–276, 1966. 7

[30] J. B. Keller and S. Antman (Editors). *Bifurcation theory and nonlinear eigenvalue problems*. W. A. Benjamin, Inc., New York-Amsterdam, 1969. 2

[31] M. A. Krasnosel’skii. *Topological methods in the theory of nonlinear integral equations*. The Macmillan Co., New York, 1964. 2

[32] J. Leray and J. Schauder. Topologie et équations fonctionnelles. *Ann. Sci. École Norm. Sup. (3)*, 51:45–78, 1934. 2, 26

[33] C. T. Levi. Détermination rigoureuse des ondes permanentes d’ampleur finie. *Mathematische Annalen*, 93:264–314, 1925. doi:10.1007/BF01520356. 2

[34] E. H. Lieb and M. Loss. *Analysis*, volume 14 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, second edition, 2001. doi:10.1090/gsm/014. 12

[35] G. G. Lorentz. Some new functional spaces. *Ann. of Math. (2)*, 51:37–55, 1950. doi:10.2307/1969496. 6

[36] M. Lucia and M. Ramaswamy. Global bifurcation for semilinear elliptic problems. In *Recent advances in nonlinear analysis*, pages 197–216. World Sci. Publ., Hackensack, NJ, 2008. doi:10.1142/9789812709257_0013. 2
[37] D. P. Manuel and R. F. Manásevich. Global bifurcation from the eigenvalues of the p-Laplacian. *J. Differential Equations*, 92(2):226–251, 1991. doi:10.1016/0022-0396(91)90048-E.

[38] J. Nečas. *Direct methods in the theory of elliptic equations*. Springer Monographs in Mathematics. Springer, Heidelberg, 2012. doi:10.1007/978-3-642-10455-8.

[39] K. Otared. *Introduction à la théorie des points critiques et applications aux problèmes elliptiques*, volume 13. Springer-Verlag, Paris, 1993.

[40] C. D. Pagani and D. Pierotti. Multiple variational solutions to nonlinear Steklov problems. *NoDEA Nonlinear Differential Equations Appl.*, 19(4):417–436, 2012. doi:10.1007/s00030-011-0136-z.

[41] P. H. Rabinowitz. Some global results for nonlinear eigenvalue problems. *J. Functional Analysis*, 7:487–513, 1971. doi:10.1016/0022-1236(71)90030-9.

[42] Paul H. Rabinowitz. Some aspects of nonlinear eigenvalue problems. *Rocky Mountain J. Math.*, 3:161–202, 1973. doi:10.1216/RMJ-1973-3-2-161.

[43] A. J. Rumbos and A. L. Edelson. Bifurcation properties of semilinear elliptic equations in \mathbb{R}^n. *Differential Integral Equations*, 7(2):399–410, 1994.

[44] I. V. Skrypnik. *Methods for analysis of nonlinear elliptic boundary value problems*, volume 139 of *Translations of Mathematical Monographs*. American Mathematical Society, Providence, RI, 1994.

[45] W. Stekloff. Sur les problèmes fondamentaux de la physique mathématique (suite et fin). *Ann. Sci. École Norm. Sup. (3)*, 19:455–490, 1902.

[46] C. A. Stuart and J. F. Toland. A global result applicable to nonlinear Steklov problems. *J. Differential Equations*, 15:247–268, 1974. doi:10.1016/0022-0396(74)90078-3.

[47] M. Tian and S. Wang. *Bifurcation theory and applications*, volume 53. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. doi:10.1142/9789812701152.

[48] O. Torné. Steklov problem with an indefinite weight for the p-Laplacian. *Electron. J. Differential Equations*, pages No. 87, 2005.

[49] H. Troger. Application of bifurcation theory to the solution of nonlinear stability problems in mechanical engineering. In *Numerical methods for bifurcation problems*, volume 70, pages 525–546. Birkhäuser, Basel, 1984. doi:10.1007/978-3-0348-6256-1_37.

[50] H. Troger and K. Zeman. Application of bifurcation diagrams to the modelling of stability problems. In *Mathematical modelling in science and technology*, pages 119–124. Pergamon, Oxford, 1984. doi:10.1016/B978-0-08-030156-3.50027-8.

[51] J. L. Vázquez. A strong maximum principle for some quasilinear elliptic equations. *Appl. Math. Optim.*, 12(3):191–202, 1984. doi:10.1007/BF01449041.
T. V. Anoop
Department of Mathematics,
Indian Institute of Technology Madras,
Chennai, 600036, India.
Email: anoop@iitm.ac.in

Nirjan Biswas
Department of Mathematics,
Indian Institute of Technology Madras,
Chennai, 600036, India.
Email: nirjaniitm@gmail.com