IRREDUCIBLE CHARACTERS FOR
ALGEBRAIC GROUPS IN
CHARACTERISTIC THREE. II

Jiachen Ye* and Zhongguo Zhou†

Department of Applied Mathematics,
Tongji University, Shanghai 200092,
People’s Republic of China

ABSTRACT

In this note, we determine the irreducible characters for the simple algebraic groups of type A_4 and D_4 over an algebraically closed field K of characteristic 3, by using a theorem of Xi Nanhua [1] and the MATLAB software.

The determination of all irreducible characters is a big theme in the modular representations of algebraic groups and related finite groups of Lie type. But so far only a little is known concerning it in the case when the characteristic of the base field is less than the Coxeter number. Carter and Lusztig described certain constructions, the raising and lowering operators, for $\mathfrak{sl}(n, \mathbb{C})$ in [2] and further developed in [3] in order to determine nonzero homomorphisms between certain Weyl modules, and to obtain bases for

*Corresponding author. E-mail: jcyed@online.sh.cn
†Current address: Department of Mathematics and Physics, Shandong Institute of Building Materials, Jinan 250022, People’s Republic of China.
certain Verma modules and all finite-dimensional irreducible $\mathfrak{sl}(n, \mathbb{C})$-modules. Gilkey-Seitz gave an algorithm to compute part of characters of $L(\lambda)$’s with $\lambda \in X_1(T)$ for G being of type G_2, F_4, E_6, E_7 and E_8 in characteristic 2 and even in larger primes in [4]. Dowd and Sin gave all characters of $L(\lambda)$’s with $\lambda \in X_1(T)$ for all groups of rank less than or equal to 4 in characteristic 2 in [5]. They got their results by using the “standard” Gilkey-Seitz algorithm and computer. An element $e_{(p^n - 1)p - \lambda} \in u^-_n$ for each irreducible module $L(\lambda)$ with $\lambda \in X_n(T)$ was defined in [6, §39.1, p. 304] and [1, p. 239]. This element could be used in constructing a certain basis for $L(\lambda)$, computing dim $L(\lambda)$, and determining ch $(L(\lambda))$. In this way, we determined all irreducible characters for the special linear groups $SL(5, K)$, $SL(6, K)$ and $SL(7, K)$, the special orthogonal group $SO(7, K)$ and the symplectic group $Sp(6, K)$ over an algebraically closed field K of characteristic 2 in [7], [8] and [9] and for the special orthogonal group $SO(7, K)$ and the symplectic group $Sp(6, K)$ over an algebraically closed field K of characteristic 3 in [10]. In the present note, we shall work out all irreducible characters for the simple algebraic groups of type A_4 and D_4 over an algebraically closed field K of characteristic 3. We shall freely use the notations in [9] without further comments.

1. PRELIMINARIES

Let G be the simple algebraic group of type A_4 or D_4 over an algebraically closed field K of characteristic 3. Take a Borel subgroup B and a maximal torus T of G with $T \subset B$. Let $X(T)$ be the character group of T, which is also called the weight lattice of G with respect to T. Let $R \subset X(T)$ be the root system associated to (G, T), and choose a positive root system R_+ in such a way that $-R_+$ corresponds to B. Let $S = \{ x_1, x_2, x_3, x_4 \}$ be the set of simple roots of G such that

$$R_+ = \{ x_1, x_2, x_3, x_4, x_{12} = x_1 + x_2, x_{23} = x_2 + x_3, x_{34} = x_3 + x_4, x_{123} = x_1 + x_2 + x_3, x_{234} = x_2 + x_3 + x_4, x_{1234} = x_1 + x_2 + x_3 + x_4 \}$$

for G being the simple algebraic group of type A_4, and

$$R_+ = \{ x_1, x_2, x_3, x_4, x_{12} = x_1 + x_2, x_{23} = x_2 + x_3, x_{24} = x_2 + x_4, x_{123} = x_1 + x_2 + x_3, x_{124} = x_1 + x_2 + x_4, x_{134} = x_1 + x_3 + x_4, x_{234} = x_2 + x_3 + x_4, x_{1234} = x_1 + x_2 + x_3 + x_4 \}$$
IRREDUCIBLE CHARACTERS. II

for G being the simple algebraic group of type D_4. Let $\omega_i (1 \leq i \leq 4)$ be the fundamental weights of G such that $\langle \omega_i, \omega_j^\vee \rangle = \delta_{ij}$, the Kronecker delta, and denote by $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)$ the weight $\lambda = \lambda_1 \omega_1 + \lambda_2 \omega_2 + \lambda_3 \omega_3 + \lambda_4 \omega_4$ with $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{Z}_+$, the integer ring. Then the dominant weight set is as follows:

$$X(T)_+ = \{ (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in X(T) \mid \lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0 \}.$$

Let $W = N_G(T)/T$ be the Weyl group and let W_3 be the affine Weyl group of G. It is well-known that for $\lambda \in X(T)_+$, $H^0(\lambda)$ is the induced G-module from the 1-dimensional B-module K_i which contains a unique irreducible G-submodule $L(\lambda)$ of the highest weight λ. In this way, $X(T)_+$ parameterizes the finite-dimensional irreducible G-modules. We set $\text{ch}(\lambda) = \text{ch}(H^0(\lambda))$ and $\text{ch}_1(\lambda) = \text{ch}(L(\lambda))$ for all $\lambda \in X(T)_+$. Moreover, $\text{ch}(\lambda)$ is given by the Weyl character formula, and for $\lambda \in X(T)_+$, we have

$$\text{ch}(\lambda) = \frac{\sum_{w \in W} \text{det}(w)e(\lambda + \rho))}{\sum_{w \in W} \text{det}(w)e(\rho)}.$$

For $\lambda = (a, b, c, d) \in X_1(T)$, when G is the simple algebraic group of type A_4 we have

$$\dim H^0(a, b, c, d) = \frac{1}{252} (a + 1)(b + 1)(c + 1)(d + 1)(a + b + 2) \times (b + c + 2)(c + d + 2)(a + b + c + 3) \times (b + c + d + 3)(a + b + c + d + 4),$$

and when G is the simple algebraic group of type D_4 we have

$$\dim H^0(a, b, c, d) = \frac{1}{252} (a + 1)(b + 1)(c + 1)(d + 1)(a + b + 2) \times (b + c + 2)(b + d + 2)(a + b + c + 3) \times (b + c + d + 3)(a + b + d + 3) \times (a + b + c + d + 4)(a + 2b + c + d + 5).$$

Let F^n be the n-th Frobenius morphism of G with $G_n \subset G$ the scheme-theoretic kernel of F^n. Let $V^{[n]}$ be the Frobenius twist for any G-module V. It is well-known that $V^{[n]}$ is trivial regarding as a G_n-module. Moreover, any G-module M has such a form if the action of G_n on M is trivial. Let

$$X_n(T) = \{ (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in X(T)_+ \mid \lambda_1, \lambda_2, \lambda_3, \lambda_4 < 3^n \}.$$
Then the irreducible G-modules $L(\lambda)$'s with $\lambda \in X_\mu(T)$ remain irreducible regarded as the G_μ-modules. On the other hand, any irreducible G_μ-module is isomorphic to exactly one of them.

For $\lambda \in X(T)_+$, we have the unique decomposition

$$\lambda = \lambda^0 + 3^n \lambda^1 \quad \text{with} \quad \lambda^0 \in X_\mu(T), \lambda^1 \in X(T)_+.$$

Then the Steinberg tensor product theorem tells us that

$$L(\lambda) \cong L(\lambda^0) \otimes L(\lambda^1)^{|\mu|}.$$

Therefore we can determine all the characters $\text{ch}_3(\lambda)$ with $\lambda \in X(T)_+$ by using the Steinberg tensor product theorem, provided that all the characters $\text{ch}_3(\lambda)$ with $\lambda \in X_1(T)$ are known.

Recall the strong linkage principle in [11]. We define a strong linkage relation $\mu \uparrow \lambda$ in $X_\mu(T)$ if $L(\mu)$ occurs as a composition factor in $H^0(\lambda)$. Then $H^0(\lambda)$ is irreducible when λ is a minimal weight in $X(T)_+$ with respect to the partial ordering determined by the strong linkage relations.

Let \mathfrak{g} be the simple Lie algebra over \mathbb{C} which has the same type as G, and \mathfrak{h} the universal enveloping algebra of \mathfrak{g}. Let $e_\alpha, f_\alpha, h_\alpha(\alpha \in R_+, i = 1, 2, 3, 4)$ be a Chevalley basis of \mathfrak{g}. We also denote $e_{s_\alpha}, f_{s_\alpha}$ by e_i, f_i, respectively, where $I \in A = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1324\}$ for G being the simple algebraic group of type A_4, and $I \in D = \{1, 2, 3, 4, 12, 23, 24, 123, 124, 234, 1324\}$ for G being the simple algebraic group of type D_4, respectively. The Kostant \mathbb{Z}-form $\mathfrak{h}_\mathbb{Z}$ of \mathfrak{h} is the \mathbb{Z}-subalgebra of \mathfrak{h} generated by the elements $e_2^{(k)} := e_2^k / k!$, $f_2^{(k)} := f_2^k / k!$ for $\alpha \in R_+$ and $k \in \mathbb{Z}_+$. Set

$$\binom{h_\alpha + c}{k} := \frac{(h_\alpha + c)(h_\alpha + c - 1) \cdots (h_\alpha + c - k + 1)}{k!}.$$

Then $\binom{h_\alpha + c}{k}$ is a \mathbb{Z}_+ for $i = 1, 2, 3, 4$, $c \in \mathbb{Z}$, $k \in \mathbb{Z}_+$. Define $\mathfrak{u}_k := \mathfrak{h}_\mathbb{Z} \otimes K$ and call \mathfrak{u}_k the hyperalgebra over K associated to \mathfrak{g}. Let $\mathfrak{u}^+, \mathfrak{u}^0, \mathfrak{u}^-$ be the positive part, negative part, zero part of \mathfrak{u}_k, respectively. They are generated by $e_2^{(k)}, f_2^{(k)}$, and $\binom{h_\alpha}{k}$, respectively. By abuse of notations, the images in \mathfrak{u}_k of $e_2^{(k)}, f_2^{(k)}, \binom{h_\alpha}{k}$, etc. will be denoted by the same notations, respectively. The algebra \mathfrak{u}_k is a Hopf algebra, and \mathfrak{u}_k has a triangular decomposition $\mathfrak{u}_k = \mathfrak{u}_k^+ \mathfrak{u}_k^0 \mathfrak{u}_k^-$. Given a positive integer n, let \mathfrak{u}_n be the subalgebra of \mathfrak{u}_k generated by the elements $e_2^{(k)}, f_2^{(k)}, \binom{h_\alpha}{k}$ for $\alpha \in R_+, i = 1, 2, 3, 4$ and $0 \leq k < 3^n$. In particular, $\mathfrak{u}_1 = \mathfrak{u}_1^+$ is precisely the restricted enveloping algebra of \mathfrak{g}. Denote by $\mathfrak{u}_n^+, \mathfrak{u}_n^-, \mathfrak{u}_n^0$ the positive part, negative part, zero part
of u_n, respectively. Then we have also a triangular decomposition $u_n = u_{n-1} u_n^{1} u_n^{2}$. Given an ordering in R_+, it is known that the PBW-type bases for Π_K resp. for u_n have the form of

$$\prod_{\alpha \in R_+} f^{(\alpha)}_1 \prod_{i=1}^{s} \left(\frac{h_i}{b_i} \right) \prod_{\alpha \in R_+} e^{(\alpha)}_2$$

with $a_1, h_i, b_i \in \mathbb{Z}_+$ resp. with $0 \leq a_1, b_i, c_2 < 3^g$.

Let $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in X_n(T)$. We set $\lambda_I = \sum_{I \in I} \lambda_i$ for $I \in A$ or D, here each element I is also viewed as a certain set of simple roots. Following [6] and [1], we define an element ξ_2 in u_n by

$$\xi_2 = f_1^{(\lambda_1)} f_2^{(\lambda_2)} f_3^{(\lambda_3)} f_4^{(\lambda_4)} f_2^{(\lambda_2)} f_3^{(\lambda_3)} f_4^{(\lambda_4)} f_2^{(\lambda_2)} f_3^{(\lambda_3)} f_4^{(\lambda_4)}$$

for G being the simple algebraic group of type A_4, and

$$\xi_2 = f_1^{(\lambda_1)} f_2^{(\lambda_2)} f_3^{(\lambda_3)} f_4^{(\lambda_4)} f_2^{(\lambda_2)} f_3^{(\lambda_3)} f_4^{(\lambda_4)} f_2^{(\lambda_2)} f_3^{(\lambda_3)} f_4^{(\lambda_4)}$$

for G being the simple algebraic group of type D_4. As a special case of [1, Theorems 6.5 and 6.7], we have

Theorem 1. Assume that g is a simple Lie algebra of the simple algebraic group of type either A_4 or D_4 over an algebraically closed field K of characteristic 3. Let $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in X_n(T)$.

(i) The element ξ_2 lies in u_n.

(ii) Let \mathcal{H} be the left ideal of Π_K generated by the elements $e_i^{(k)}$ and $(b_i)_{k} = \binom{(\lambda_i, \alpha)}{k} f_i^{(k)}$ ($i = 1, 2, 3, 4$, $k \geq 1$, $k_i \geq 3^g$) and the elements $f \in u_n$ with $f_{\mathcal{H}}(3^{g-1}) = 0$. Then $\Pi_K/\mathcal{H} \cong L(\lambda)$ (Note that $L(\lambda)$ has a Π_K-module structure, which is irreducible).

(iii) As a u_n-module, $L(\lambda)$ is isomorphic to $u_n \xi_2^{(3^{g-1})}$.

By abuse of notations, the images in $\Pi_K/\mathcal{H} \cong L(\lambda)$ of $f_i^{(k_i)}$ and $f_i^{(k_i)}$ will be denoted by the same notations. We shall use this theorem to compute the multiplicities of the weight spaces for all the dominant weight of $L(\lambda)$, to compute $\dim L(\lambda)$, and to determine $\text{ch} (L(\lambda)) = \text{ch}_3 (\lambda)$ ($\lambda \in X_1(T)$) in this note, when G is the simple algebraic group of type either A_4 or D_4.

Copyright © Marcel Dekker, Inc. All rights reserved.
2. CHARACTERS OF THE IRREDUCIBLE MODULES OF G

From now on we shall assume that \(n = 1 \). Denote by \(V^* \) the dual module of \(V \), then we have by the duality that \(\text{ch} \mathcal{H}^\lambda = \text{ch}(\omega_0 \lambda) \) and \(\text{ch} L(\lambda) \) is also known that the graph automorphism group for \(G \) being the simple algebraic group of type \(D_4 \) is isomorphic to \(S_5 \), the symmetric group on 3 letters. For each \(\sigma \in S_5 \), it defines an automorphism \(\sigma \) of the Dynkin graph of type \(D_4 \), which permutes elements of the set \(\{ x_1, x_3, x_4 \} \). In the same way, \(\sigma \) defines a permutation of the set \(\{ \omega_1, \omega_3, \omega_4 \} \), which induces an automorphism \(\sigma \) of \(X(T) \). Then we get the bijections \(\sigma \) of the sets \(\{ \text{ch}(\lambda) | \lambda \in X(T)^+ \} \), \(\{ \text{ch}_3(\lambda) | \lambda \in X(T)^+ \} \) and \(\{ e(\lambda) | \lambda \in X(T)^+ \} \), respectively. It says that

\[
\text{ch}(\sigma(\lambda)) = \sigma(\text{ch}(\lambda)) \quad \text{and} \quad \text{ch}_3(\sigma(\lambda)) = \sigma(\text{ch}_3(\lambda)) \quad \text{and} \quad e(\sigma(\lambda)) = \sigma(e(\lambda)).
\]

So we list all main results only for part of the highest weights in this note.

First of all, an easy calculation shows the following lemmas:

Lemma 2. There are 33 strong linkage classes in \(X(T)^+ \) for the simple algebraic group of type \(A_4 \). Their representatives are \((0,0,0,0),(1,0,0,1),(0,1,0,2),(2,0,1,0),(1,0,2,2),(1,0,0,0),(0,0,0,1),(0,0,1,2),(2,1,0,0),(2,2,0,0),(0,0,2,2),(1,2,2,2),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,2,0),(2,0,0,0),(0,1,2,0),(0,1,0,0),(1,2,0,0),(1,2,0,0),(0,2,0,0),(0,1,0,0),(0,0,1,0),(0,0,2,0),(2,1,0,0),(2,0,1,0),(2,2,0,0),(1,2,0,0),(2,0,0,0),(1,2,0,0),(1,2,0,0),(2,2,0,0),(0,2,2,2),(2,2,2,2). Moreover, one has

\[
\text{ch}(\lambda) = \sigma(\text{ch}(\lambda)) \quad \text{and} \quad \text{ch}_3(\lambda) = \sigma(\text{ch}_3(\lambda)) \quad \text{and} \quad e(\lambda) = \sigma(e(\lambda)).
\]

Lemma 3. There are 23 strong linkage classes in \(X(T)^+ \) for the simple algebraic group of type \(D_4 \). Their representatives are \((0,0,0,0),(2,0,0,0),(0,0,2,0),(0,0,0,2),(1,0,0,0),(0,0,1,0),(0,0,0,1),(0,0,1,1),(1,0,1,0),(2,1,0,0),(0,1,2,0),(0,1,0,2),(2,0,1,1),(1,0,2,1),(0,1,0,0),(0,0,0,2),(0,0,1,3),(0,0,0,3),(2,0,0,2),(1,2,1,1),(2,0,2,0),(1,0,2,0),(0,1,2,1),(1,0,1,3),(0,0,3,2),(1,1,2,2),(0,2,1,0),(4,0,1,0),(2,2,1,2),(1,0,1,2),(2,0,2,1).
IRREDUCIBLE CHARACTERS. II

Moreover, one has

\begin{align*}
(0, 0, 0, 0) & \mapsto (0, 1, 0, 0) \mapsto (1, 0, 0, 1) \mapsto (2, 0, 2, 0) \mapsto (1, 0, 1, 1) \mapsto (1, 0, 1, 3) \mapsto (2, 1, 2, 2) \mapsto (2, 0, 0, 0) \mapsto (0, 2, 0, 0) \mapsto (2, 0, 0, 0) \mapsto (1, 0, 2, 2, 2) \mapsto (1, 0, 0, 0) \mapsto (1, 0, 0, 2) \mapsto (0, 1, 1, 1) \mapsto (1, 1, 2, 0) \mapsto (3, 0, 2, 0) \mapsto (2, 1, 1, 1) \mapsto (1, 3, 0, 0) \mapsto (3, 2, 0, 0) \mapsto (2, 2, 1, 1) \mapsto (2, 0, 1, 0) \mapsto (3, 0, 0, 0) \mapsto (1, 2, 0, 0) \mapsto (0, 2, 1, 1) \mapsto (0, 1, 1, 3) \mapsto (0, 0, 3, 3) \mapsto (1, 1, 2, 2).
\end{align*}

Furthermore, the elements \(f_I (I \in A \text{ or } I \in D) \) satisfy the following commutator relations:

\begin{align*}
f_1 f_2 &= f_2 f_1 + f_{12}, \quad f_2 f_3 = f_3 f_2 + f_{23}, \\
f_3 f_4 &= f_4 f_3 + f_{34}, \quad f_{12} f_3 = f_3 f_{12} + f_{123}, \\
f_{23} f_4 &= f_4 f_{23} + f_{234}, \quad f_{13} f_3 = f_3 f_{13} + f_{132}, \\
f_{23} f_4 &= f_4 f_{23} + f_{234}, \quad f_1 f_2 = f_2 f_1 + f_{1234}, \\
f_{12} f_3 &= f_3 f_{12} + f_{1234}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{13} f_4 &= f_4 f_{13} + f_{1324}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{12} f_3 &= f_3 f_{12} + f_{1234}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{13} f_4 &= f_4 f_{13} + f_{1324}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{13} f_4 &= f_4 f_{13} + f_{1324}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{13} f_4 &= f_4 f_{13} + f_{1324}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{13} f_4 &= f_4 f_{13} + f_{1324}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{13} f_4 &= f_4 f_{13} + f_{1324}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{13} f_4 &= f_4 f_{13} + f_{1324}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{13} f_4 &= f_4 f_{13} + f_{1324}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
f_{13} f_4 &= f_4 f_{13} + f_{1324}, \quad f_{12} f_4 = f_4 f_{12} + f_{1234}, \\
& \quad \text{for all the other } I, I' \in A,
\end{align*}

for \(G \) being the simple algebraic group of type \(A_4 \), and

\begin{align*}
f_2 f_1 &= f_1 f_2 + f_{12}, \quad f_3 f_2 = f_2 f_3 + f_{23}, \\
f_3 f_4 &= f_4 f_3 + f_{34}, \quad f_{12} f_3 = f_3 f_{12} + f_{123}, \\
f_2 f_3 &= f_3 f_2 + f_{234}, \quad f_1 f_3 = f_3 f_1 + f_{132}, \\
f_2 f_3 &= f_3 f_2 + f_{234}, \quad f_1 f_3 = f_3 f_1 + f_{132}, \\
f_2 f_3 &= f_3 f_2 + f_{234}, \quad f_1 f_3 = f_3 f_1 + f_{132}, \\
f_2 f_3 &= f_3 f_2 + f_{234}, \quad f_1 f_3 = f_3 f_1 + f_{132}, \\
f_2 f_3 &= f_3 f_2 + f_{234}, \quad f_1 f_3 = f_3 f_1 + f_{132}, \\
f_2 f_3 &= f_3 f_2 + f_{234}, \quad f_1 f_3 = f_3 f_1 + f_{132}, \\
f_2 f_3 &= f_3 f_2 + f_{234}, \quad f_1 f_3 = f_3 f_1 + f_{132}, \\
f_2 f_3 &= f_3 f_2 + f_{234}, \quad f_1 f_3 = f_3 f_1 + f_{132}, \\
f_2 f_3 &= f_3 f_2 + f_{234}, \quad f_1 f_3 = f_3 f_1 + f_{132}, \\
& \quad \text{for all the other } I, I' \in D,
\end{align*}

for \(G \) being the simple algebraic group of type \(D_4 \).

Now we can prove our main theorems. Let \(e(v) = \sum_{w \in W} w(v) \) be the sum of weights of the \(W \)-orbit of \(v \) for all \(v \in X(T)_+ \). It is well-known that \(\{ \text{ch}(v) \mid v \in X(T)_+ \} \), \(\{ \text{ch}_3(v) \mid v \in X(T)_+ \} \) and \(\{ e(v) \mid v \in X(T)_+ \} \) form bases of \(\mathbb{Z}[X(T)]^W \), the \(W \)-invariant subring of \(\mathbb{Z}[X(T)] \), respectively. According to the Weyl character formula and the Freudenthal multiplicity formula, we
get a change of basis matrix $A = (a_{i \ell})_{\ell, v \in X(T)_+}$ from \(\{ e(v) | v \in X(T)_+ \} \) to \(\{ ch(v) | v \in X(T)_+ \} \), which is a triangular matrix with 1 on its diagonal, i.e.,

$$ch(\lambda) = \sum_{v < \lambda, v \in X(T)_+} a_{i \ell} e(v)$$

with \(a_{i \ell} = 1 \) (cf. [12]). Based on our computation, we get another change of basis matrix $B = (b_{i \ell})_{\ell, v \in X(T)_+}$ from \(\{ e(v) | v \in X(T)_+ \} \) to \(\{ ch_3(v) | v \in X(T)_+ \} \), which is also a triangular matrix with 1 on its diagonal.

Let us mention our computation of B more detailed. First of all, we compute \(\xi_{2p-\lambda} \) for any \(\lambda \in X_1(T) \). It is well known that for each dominant weight \(v \) of \(H^0(\lambda) \), \(\beta = \lambda - v \) can be expressed in terms of sum of positive roots, and there exist many ways to do so. Each way corresponds to an element \(f_{\beta} \xi_{2p-\lambda} \) in \(u_n \). Then we compute various \(f_{\beta} \xi_{2p-\lambda} \)'s generate the weight space \(L(\lambda)_v \) of the irreducible submodule \(L(\lambda) \) of \(H^0(\lambda) \). Therefore, we can easily determine the dimension of \(L(\lambda)_v \), provided that we compute the rank of the set of all these non-zero \(f_{\beta} \xi_{2p-\lambda} \)'s. It can be reduced to compute the rank of a corresponding matrix. Finally, we obtain the formal character of \(L(\lambda) \), which can be written as a linear combination of \(e(v)'s \) with non-negative integer coefficients. That is

$$ch_3(\lambda) = \sum_{v < \lambda, v \in X(T)_+} b_{i \ell} e(v)$$

with \(b_{i \ell} = 1 \). In this way, we get the second matrix B.

For example, we assume that G is the simple algebraic group of type A_4 and \(\lambda = (0, 1, 1, 0) \). Then we have by the table in [12, p. 76]

$$ch(0, 1, 1, 0) = e(0, 1, 1, 0) + 2e(1, 0, 0, 1) + 5e(0, 0, 0, 0).$$

It is easy to see that

$$\xi = \xi_{2p-\lambda} = \xi_{2(2112)} = f_1^{(2)} f_2^{(3)} f_3^{(4)} f_4^{(6)} f_5^{(2)} f_6^{(2)} f_7^{(3)} f_8^{(2)}.$$

For \(v = (1, 0, 0, 1) \), we have \(\lambda - v = (-1, 1, 1, -1) = \xi_2 + \xi_3 \). First we compute each of the set \(S_\sigma = \{ f_2 f_3 \xi, f_2 f_3 \xi \} \). Then we compute the rank of the set \(S_\sigma \), which is equal to 1. So we have \(dim L(0, 1, 1, 0, 0, 0, 0, 1) = 1 \). For \(\mu = (0, 0, 0, 0, 0) \), we have \(\lambda - \mu = (0, 1, 1, 0) = 2\xi_2 + 2\xi_3 + 2\xi_4 \). We compute each of the set \(S_\mu = \{ f_1 f_2 f_3 f_4 \xi, f_1 f_2 f_3 f_4 \xi \} \).
IRREDUCIBLE CHARACTERS. II

$f_{1234}f_{2}f_{3}f_{4}$, and then we compute the rank of the set S_{μ}, which is equal to 1. So we have $\dim L(0, 1, 1, 0)_{(0, 0, 0, 0)} = 1$. Finally, we obtain

\[\text{ch}_3(0, 1, 1, 0) = e(0, 1, 1, 0) + e(1, 0, 0, 1) + e(0, 0, 0, 0), \]

and

\[\text{ch}(0, 1, 1, 0) = \text{ch}_3(0, 1, 1, 0) + \text{ch}_3(1, 0, 0, 1). \]

When λ lies in $X(T)_+$ but not in $X_1(T)$, we can also compute the formal character $\text{ch}_3(\lambda)$ by using the Steinberg tensor product theorem. For $\lambda \in X(T)_+$, we have the unique decomposition

\[\lambda = \lambda^0 + 3\lambda^1 \quad \text{with } \lambda^0 \in X_1(T), \lambda^1 \in X(T)_+. \]

Then the Steinberg tensor product theorem tells us that

\[\text{ch}_3(\lambda) = \text{ch}_3(\lambda^0) \cdot \text{ch}_3(3\lambda^1). \]

Therefore, we can determine all characters $\text{ch}_3(\lambda)$ with $\lambda \in X(T)_+$, provided that all characters $\text{ch}_3(\lambda)$ with $\lambda \in X_1(T)$ are known. For example, when G being the simple algebraic group of type D_4 and $\lambda = (1, 0, 3, 1)$, we have

\[\text{ch}_3(1, 0, 3, 1) = \text{ch}_3(1, 0, 0, 1) \cdot \text{ch}_3(0, 0, 3, 0) \\
= e(1, 0, 0, 1) + 3e(0, 0, 1, 0) \cdot e(0, 0, 3, 0) \\
= e(1, 0, 3, 1) + e(1, 0, 0, 1) + e(2, 0, 2, 0) + e(0, 0, 2, 2) + 3e(0, 0, 4, 0) + 3e(0, 1, 2, 0) + 3e(0, 0, 2, 0). \]

We list the two matrices A and B in the attached tables. When G is the simple algebraic group of type A_4, these matrices can be found in Table 1, 2 and 3. When G is the simple algebraic group of type D_4, these matrices can be found in Table 4 and 5. One should read these tables in such a way that

\[\text{TABLE 1} = \begin{pmatrix} a_1 & 0 \\ a_2 & a_3 \end{pmatrix}, \quad \text{TABLE 2} = \begin{pmatrix} b_1 & 0 \\ b_2 & b_3 \end{pmatrix}, \]

\[\text{TABLE 3} = \begin{pmatrix} c_1 & 0 \\ c_2 & c_3 \end{pmatrix}; \]
and

\[
\begin{align*}
\text{TABLE 4} &= \begin{pmatrix} d_1 & 0 & 0 \\ d_2 & d_3 & 0 \\ d_4 & d_5 & d_6 \end{pmatrix}, \\
\text{TABLE 5} &= \begin{pmatrix} e_1 & 0 & 0 \\ e_2 & e_3 & 0 \\ e_4 & e_5 & e_6 \end{pmatrix}.
\end{align*}
\]

Table 1.

\(a_1\)	0000	1	1		
	1001	4	1	1	
	0110	1	1	1	1
	0102	4	1	1	1
	1200	4	1	1	1
	0021	4	1	1	1
	2002	4	1	1	1
	3100	4	1	1	1
	1003	4	1	1	1
	1111	4	1	1	1
	1030	4	1	1	1
	0301	4	1	1	1
	3011	4	1	1	1
	1103	4	1	1	1
	0220	4	1	1	1
	2201	4	1	1	1
	1022	4	1	1	1

282 YE AND ZHOU
Table 1. Continued

3003	4	1	1	1	1	1	1	1	1
	20	10	4	4	4	4	1	1	1
	2120	24	18	13	10	8	6	6	6
	30	21	14	10	9	6	6	6	3
	0212	24	18	13	8	10	6	6	6
	30	21	14	9	10	6	6	6	3

a_2

1310	1	3	1	1	1	1	1	1	1
	24	18	14	10	8	9	6	6	3
	0131	1	1	3	1	1	1	1	1
	2112	29	24	18	12	12	9	9	4
	65	44	29	20	20	12	12	14	6
	2031	1	1	2	3	1	1	1	1
	1302	1	1	1	3	1	1	1	1
	1221	64	49	37	28	28	21	21	9
	80	59	44	32	32	24	24	24	9

a_3

1310	1	
	1	
	0131	1
	2112	1
	2031	1
	1302	1
	1221	1

IRREDUCIBLE CHARACTERS. II 283
Table 2.

\[
\begin{array}{ccccccccccc}
\hline
b_1 \\
1000 & 1 \\
0101 & 3 & 1 \\
0020 & 1 & 1 & 1 \\
2001 & 3 & 1 & . & 1 \\
0012 & 3 & 2 & 1 & . & 1 \\
1110 & 3 & 2 & 1 & 1 & . & 1 \\
0004 & . & . & . & . & . & 1 \\
0300 & . & . & . & . & . & . & 1 \\
3010 & . & . & 1 & . & . & . & . & 1 \\
1102 & 9 & 4 & 1 & 3 & 1 & 1 & . & 1 \\
2200 & 6 & 4 & 3 & 3 & . & 2 & . & 1 & 1 & . & 1 \\
1021 & 12 & 8 & 6 & 3 & 3 & 2 & . & . & . & 1 & . & 1 \\
3002 & 1 & . & . & . & . & . & . & 1 & . & . & . & 1 \\
4100 & . & . & 1 & 1 & . & . & . & . & 1 & . & . & . & 1 \\
0211 & 9 & 6 & 4 & 4 & 3 & 3 & . & 1 & . & . & . & 1 \\
1013 & 16 & 10 & 6 & 6 & 3 & 4 & . & 2 & . & . & . & 1 & . & 1 \\
0130 & 12 & 9 & 6 & 3 & 6 & 2 & 3 & . & 2 & . & . & . & 1 & . & 1 \\
2111 & 10 & 7 & 6 & 4 & 3 & 3 & . & 1 & . & 2 & . & . & 1 & . & 1 \\
0203 & 14 & 9 & 5 & 6 & 5 & 3 & 2 & 1 & . & . & . & . & . & . & 1 \\
2030 & 16 & 12 & 9 & 7 & 6 & 5 & . & 1 & 2 & 3 & 1 & 3 & 1 & . & 1 & 1 & 1 & 1 \\
1301 & 19 & 14 & 10 & 10 & 4 & 8 & . & 6 & 3 & 3 & 3 & 2 & 1 & . & . & 1 & . & 1 \\
\hline
\end{array}
\]

YE AND ZHOU
Table 2. Continued

| h_2 | 3 | 2 | 4 | 1 | 4 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 4011 | 20 | 12 | 6 | 12 | 3 | 6 | 2 | 6 | 3 | 2 | 1 | 3 | 2 | 1 | 3 | 2 |
| 0122 | 21 | 16 | 12 | 9 | 9 | 7 | 3 | 3 | 5 | 4 | 2 | 2 | 1 | 1 | 1 | 1 |
| 2103 | 4 | 2 | 1 | 3 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 |
| 1220 | 30 | 21 | 15 | 15 | 9 | 11 | 6 | 4 | 7 | 3 | 5 | 3 | 4 | 2 | 2 | 1 |
| 3201 | 1 | 1 | 3 | 4 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
| 2022 | 24 | 18 | 14 | 15 | 5 | 11 | 6 | 8 | 4 | 6 | 3 | 3 | 3 | 2 | 2 | 1 |
| 0041 | . | 1 | . | 1 | . | 1 | . | 1 | . | 1 | . | 1 | . | 1 | . | 1 |
| 2417 | 9 | 7 | 6 | 5 | 4 | 4 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 |
| 0410 | 20 | 10 | 4 | 10 | 4 | 4 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 | 1 | 1 |
| 3120 | 14 | 11 | 8 | 8 | 5 | 7 | 6 | 3 | 4 | 3 | 3 | 2 | 3 | 1 | 2 | 1 |
| 1212 | 36 | 26 | 18 | 21 | 12 | 14 | 6 | 10 | 9 | 6 | 6 | 6 | 3 | 4 | 2 | 4 |
| 2310 | 63 | 45 | 31 | 33 | 22 | 23 | 7 | 12 | 9 | 16 | 6 | 10 | 6 | 8 | 5 | 2 |
| 1131 | 23 | 01 | . | 3 | 1 | . | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0402 | 56 | 44 | 36 | 30 | 26 | 24 | 8 | 12 | 8 | 18 | 6 | 16 | 6 | 10 | 6 | 8 |
| 3112 | 8 | 8 | 6 | 6 | 3 | 4 | 6 | 3 | 4 | 2 | 4 | 4 | 1 | 1 | 1 | 1 |
| 0321 | 80 | 56 | 38 | 44 | 26 | 29 | 8 | 12 | 20 | 20 | 12 | 12 | 14 | 6 | 8 | 6 |
| 3031 | 50 | 38 | 29 | 29 | 29 | 21 | 23 | 6 | 15 | 11 | 17 | 9 | 13 | 9 | 11 | 5 |
| 2302 | 58 | 46 | 36 | 37 | 21 | 30 | 6 | 21 | 18 | 17 | 15 | 13 | 10 | 6 | 11 | 5 |
| 2221 | 117| 90 | 69 | 72 | 51 | 55 | 15 | 33 | 32 | 41 | 24 | 31 | 24 | 9 | 25 | 12 |
| | 117| 90 | 69 | 72 | 51 | 55 | 15 | 33 | 32 | 41 | 24 | 31 | 24 | 9 | 25 | 12 |

(continued)
Table 2. Continued

1	0	0	2	0	1	0	0	3	1	2	1	3	4	0	1	0	2	0
0	1	0	0	0	1	0	3	0	1	2	0	0	1	2	0	1	1	2
0	0	2	0	1	1	0	0	1	0	0	2	0	0	1	1	3	1	0
0	1	0	1	2	0	4	0	0	2	0	1	2	0	1	3	0	1	3

\[b_3 \]

4011	.	.	1																	
.	.	.	1																	
0122	.	.	.	1																
.	.	.	1																	
2103	.	.	.	1																
.	.	.	1																	
1220	1	1	.	.	1															
1	1	.	.	1																
3201	.	1	.	.	1															
.	1	.	.	1																
0041	.	.	1	.	.	1														
.	.	.	1	.	.	1														
2022	1	.	1	.	.	1														
1	.	1	.	.	1															
4003	.	.	.	1	.	.	.	1												
.	.	1	.	.	.	1														
0410	.	1	.	.	1	.	.	.	1											
1	2	.	.	.	1	.	.	.	1											
3120	1	.	2	.	.	1	.	.	.	1										
2	1	2	.	.	1	1	.	.	.	1										
1212	1	2	2	2	1	.	1	.	.	1										
1	2	2	2	1	.	1	.	.	1											
2310	.	3	.	.	1	1	.	.	.	1										
2	4	2	.	2	2	.	.	1	1											
1131	3	.	1	.	1	.	1	.	.	.	1									
4	2	.	4	2	2	.	2	2	.	1	1									
0402	.	3	.	.	1	.	.	.	1	.	.	.	1							
1	3	.	1	1	1	.	1	.	1	.	.	.	1							
3112	1	.	3	.	1	2	.	1	1	.	1	.	.	.	1					
2	2	4	2	4	1	2	2	.	2	2	.	1	1	.	1					
0321	.	3	.	1	2	.	.	.	2	.	1	.	1	.	1					
4	5	.	3	3	4	.	1	2	.	2	2	.	1	1	.	1				
3031	1	1	1		
6	2	3	3	3	2	2	1	3	1	.	2	1	.	1	.	1				
2302	.	4	.	1	.	1	1	.	.	1	.	1	1	1		
2	6	3	3	3	3	2	3	.	2	1	1	1	2	1	.	1	.	1		
2221	10	10	7	7	7	8	5	3	5	3	2	4	4	2	2	1	2	1	1	1
10	10	7	7	7	8	5	3	5	3	2	4	4	2	2	1	2	1	1	1	

YE AND ZHOU
Table 2. Continued

2	1	4	0	2	1	3	0	2	4	0	3	2	0	2	4	0	3	2		
0	3	0	1	1	2	2	0	0	0	4	1	2	3	1	4	1	3	0	3	2
3	0	1	2	0	2	0	4	2	0	1	2	1	3	0	1	2	3	0	2	
0	1	1	2	3	0	1	1	2	3	0	0	2	0	1	2	2	1	1	2	1

Table 3.

C	1						
0100	1						
2000	1	1					
1011	1	1					
0011	2	1					
0003	1						
1101	4	3	1	1			
1020	4	1	3	1	1		
3001	1	1					
0210	6	3	3	2	1	1	
1012	9	3	6	3	2	1	
2110	6	4	4	3	2	1	1
0202	4	3	3	2	1	1	
1004	1	1					
1300	1						
4010	1	1					
0121	9	6	6	3	4	3	
2102	18	12	9	3	6	2	
3200	1						
0040	4	3	3	1	2	2	
2021	12	9	9	3	6	5	

(continued)
Table 3. Continued

4002	2	3 . .	1 . 3 . .	1 . . .	1	1 .
10	10	4 1	4 1 1 1 1	1 1 .	1	1 .
0113	.	1 1 1 . . .	1 . 1 1	1	1 .
14	8 11	8 6 4	. 2 4	. 2 . 2	. 1	1 .
0	2 0	0 1	1 3 0	1 2 0 1	1 4 0 2 3 0 2 4 0		
1	0 0 0	0 1 0 0 2 0	1 2 0	3 0 1 1 2 0 0 0 1			
0	0 1	0 0 2 0 1	1 1 0 0 0 1 2 0 0 4 2 0 1				
0	0 1 3	1 0 1	0 2 0 2 4 0 0 1 2 0 0 1 2 3				
1211	19	13	13	6 10	7 4	5 4	3 3 . 1 . 2 2 . . 1 .
34	24 22	7 16	10 6 8 5 4 4	. 2 . 2 . 2	. 1 .		
0032 1	. 1	1 . 1 .		
0993	6 7	4 5	4 . 3 3 . 2 1	. 2 1 .			
2013	3 3 6	1 . . .	3 1 3 .	1 . .			
24	12 18	12 9 6 3	2 6 2 2 3	. 1 2 .			
1130	. .	1 . . 1	. . .	1 . 1 .			
24	16 18	8 12	10 4 6 6 3 4	1 . 4 2 .			
0401 1 . . 3	1 1 . 3			
12	9 9	3 7 5 3 5 2	3 2 . 3	1 1 . 1 .			
3111	2 3 3 .	2 1 3	1 2 . . 2	1 1 . 1 1			
40	32 26	8 20	12 14 8 6 8 4	. 2 4 2 4 2	. 2 2		
1203	3 4 3	4 2	1 . 3	2 3 . . 1			
32	24	21	12 15 8 6 6	8 3 6 3 1	2 3 .		
0320	1 . .	1 . . 1	1 1 . 1 .				
20	14 14	6 11	8 5 7 5 4 4	. 3 . 3 3	1 2		
3030	. . 3 1 . . . 1					
23	16	18	10 12 9 7 5 6 5 3	1 2 3 3 1 1 3 1			
2301 1 2 . 3	1 1 . 3	1 1 1 .			
28	22 21	6 17 13	10 11 5 8 4	. 6 3 3 3 3 2 1			
1122	40	28 31	16 22 17 9 11	12 7 8 4 3	. 6 5 . 1 4		
54	36 42	24 28 22 9	14 16 7 10 6 3	. 8 5 . 2 4			
3103	4 1 .					
40	30 24	12 18 9 12	6 9 6 6 3 1 3	2 6 1	. 2 3		
2220	45 36	33 15 26 19	15 15 12 11 10	. 6 4 7 7 3 3 3 5 3			
45	36 33	15 26 19	15 15 12 11 10	. 6 4 7 7 3 3 3 5 3			
0312	1 4 .	2 . 3 3	2 2 . 3	. 1 . .			
42	33 31	16 24 17	12 14 12 9 10 4 6	. 6 6 . 1 4			
3022	9 6 7	4 4 3 6	. 2 4 . 1 . 4	. 3 3 2 3			
54	36 42	24 27 21 15	11 15 11 8 6 3 4 6 8 3 1 6 3				
2212	93 72	69 36 54	39 30 31 28 22	22 29 12 8 12 14 16 6 3 10 6			
99	78 72	36 57	40 33	32 28 23 22 9 12 9 14 16 6 3 10 6			
Table 3. Continued

0	2	0	0	1	1	3	0	1	2	0	1
1	0	0	0	1	0	0	2	0	1	2	0
0	0	1	0	0	2	0	1	1	1	0	0
0	0	1	3	1	0	1	0	2	0	2	4
0	0	1	3	1	0	1	0	2	0	2	4

\[c^3\]

1211	.	1									
.	1										
0032	.	1									
1 .	1										
2013	1 .	1									
1 .	1										
1130	. .	1									
. 1 .	1										
0401	. 1 .	1									
. 1 .	1										
3111	. . .	1									
. 1 .	1										
1203	2 . 1 .	1									
2 1 . 1	1										
0320	. 1 . 1 1	1									
. 2 . 1 1	1										
3030 1										
. 1 . 1 . 1	1										
2301	. 1 . 1 1	1									
. 2 . 1 1	1										
1122	3 2 1 2 1 . 1	1									
4 2 2 2 1 . 1	1										
3103	. . 1 1										
2 1 . 2 . 1 1	1										
2220	. 4 . 2 1 2 . 1 1 1	1									
. 4 . 2 1 2 . 1 1 1	1										
0312	. 2 . 2 . 1 1	1									
3 4 1 2 1 2 . 2 1 . 1	1										
3022	. . 1 . 2 . 1 . 1 . 1	1									
3 2 1 3 1 . 2 1 . 1 1 1	1										
2212	7 8 3 5 2 2 4 4 1 1 2 2 2 1 1 1 1										
7 8 3 5 2 2 4 4 1 1 2 2 2 1 1 1 1											

\[c^3\]

0	1	0	2	1	0	3	1	0	3	2	1
1	2	0	0	1	4	1	2	3	0	3	1
1	1	3	1	3	0	1	0	2	3	0	2
3	1	2	3	0	1	1	3	0	1	2	3

IRREDUCIBLE CHARACTERS. II 289
Table 4.

\(d_i \)	0000	1	1
0100	4	1	
2000	3	1	
0020	3	1	
0002	3	1	
1011	10	6	
0200	3	2	
2100	15	8	
0120	15	8	
0102	15	8	
4000	6		
2020	6		
0040	6		
1111	17		
0300	4		
3011	29		
1031	43		
1013	43		

Yes and Zhou
\begin{table}
\begin{tabular}{cccccccccccc}
\toprule
\multicolumn{14}{c}{Table 4. Continued} \\
\midrule
\multicolumn{14}{c}{} \\
\addlinespace[1.5ex]\end{tabular}
\end{table}

\begin{table}
\begin{tabular}{cccccccccccc}
\toprule
d_2 & 36 & 26 & 21 & 16 & 16 & 12 & 8 & 6 & 4 & 4 & 4 & 3 & 3 & 2 \\
\addlinespace[1.5ex]\midrule
\multicolumn{14}{c}{IRREDUCIBLE CHARACTERS. II} \\
\addlinespace[1.5ex]\end{tabular}
\end{table}

\begin{table}
\begin{tabular}{cccccccccccc}
\toprule
\multicolumn{14}{c}{} \\
\addlinespace[1.5ex]\end{tabular}
\end{table}
Table 4. Continued

1131	.	4	4	4	4	5	4	2	4	2	.	3	4	3	3	.	2
192	144	104	112	104	78	56	36	48	36	8	30	24	24	30	8	19	
1113	.	4	4	4	4	5	4	2	2	4	.	3	3	4	2		
192	144	104	104	112	78	56	36	36	48	8	24	8	30	30	24	19	
2300	12	4	4	.	.	1	1	1
120	87	70	60	60	47	36	29	23	23	12	18	6	18	18	6	14	

\[
\begin{array}{cccccccccccccccc}
\begin{array}{cccccccccccccccc}
0 & 0 & 2 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 4 & 2 & 0 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 & 0 & 1 & 0 & 0 & 2 & 0 & 2 & 4 & 0 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 2 & 4 & 1 & 1
\end{array}
\end{array}
\]

\[d_h\]

2200	1	1	.	.	1													
1	1	.	.	1														
0220	1	.	1	.	.	1												
1	1	.	.	1														
0202	1	.	.	1	.	1												
1	1	.	1	.	1													
4100	1	.	1	.	.	1												
2	2	.	1	.	.	1												
2120	1	2	2	.	1	1	.	.	1									
1	2	2	.	1	1	.	.	1										
0140	.	.	1	.	.	1	1	.	.	1								
1	.	2	.	1	.	.	1											
2102	1	2	.	2	1	1	.	.	1									
1	2	.	2	1	1	.	.	1										
0122	1	.	2	2	.	1	1	.	.	1								
1	.	2	2	.	1	1	.	.	1									
0104	.	.	1	.	.	1	1							
1	.	2	.	1	.	.	1											
4020	.	3	.	1	.	1	1	.	.	.	1							
1	3	1	.	1	1	.	.	1	.	.	.	1						
2040	.	3	.	1	.	1	1	1						
1	1	3	.	1	1	.	.	1	.	.	.	1						
4002	.	3	.	1	.	1	.	.	1	1	1		
1	3	.	1	1	.	1	1	.	.	1	1		
2022	1	2	2	2	1	1	1	1	1					
1	3	3	3	1	1	1	1	1	1					
0042	.	3	.	1	.	1	1	1	1					
1	.	3	1	1	1	.	.	1	1					
2004	.	.	3	.	1	.	1	1	1	1	
1	1	3	.	1	1	.	.	1	1	1	
0024	.	.	3	.	1	.	1	1	1	1
1	.	1	3	.	1	1	.	.	1	1	1
Table 4. Continued

| 1211 5 4 4 4 3 3 3 . 2 . 2 2 1 . . . 1 |
| 8 5 5 5 4 4 4 . 2 . 2 2 1 . . . 1 |
| 0400 4 1 1 1 1 |
| 5 2 2 2 2 2 2 . 1 . 1 1 1 . 1 |
| 3111 . 3 1 1 2 . . 2 1 . 1 1 1 |
| 8 14 6 6 8 4 4 4 4 . 4 2 . 2 . 2 . 2 . . . 1 |
| 1131 . 1 3 1 . 2 . . 1 2 . 1 . 1 . 1 1 . . . 1 |
| 1113 . 1 1 3 . . 2 . . 1 1 2 . . 1 1 1 . . . 1 |
| 8 6 6 4 4 8 4 . 4 4 2 4 . . 2 . 2 2 . . . 1 |
| 2300 3 . . . 1 1 1 1 1 1 1 1 |
| 9 8 5 5 7 4 4 2 3 . 3 3 . 1 . 1 2 . . 2 1 |
| 0 3 1 1 2 0 0 4 2 0 2 0 0 4 2 4 2 0 2 0 1 0 |
| 3 0 0 0 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 2 4 |
| 0 1 3 1 0 2 0 0 2 4 0 2 0 2 4 0 2 4 0 2 1 0 |
| 0 1 1 3 0 0 2 0 0 0 2 2 4 0 0 2 2 4 4 1 0 |

d4

| 0320 12 4 . 4 . 1 . 1 1 |
| 120 87 60 70 60 47 36 23 29 23 6 18 12 18 18 6 14 |
| 0302 12 4 . . 4 . 1 . . 1 1 |
| 120 87 60 60 70 47 36 23 23 29 6 18 6 18 18 12 14 |
| 3031 . . . 3 . . . 3 . . . 3 . . . 3 . . . 3 |
| 156 122 94 94 94 71 52 40 40 37 18 30 18 27 27 10 19 |
| 3013 . . . 3 . . . 3 . . . 3 . . . 3 . . . 3 |
| 156 122 94 94 94 71 52 40 37 40 18 27 10 30 27 18 19 |
| 1033 . . . 3 . . . 3 . . . 3 . . . 3 . . . 3 |
| 156 122 94 94 94 71 52 37 40 40 10 27 18 27 30 18 19 |
| 0222 174 136 108 105 105 82 63 47 49 49 15 36 21 36 39 21 28 |
| 237 184 141 141 141 106 78 55 61 61 15 42 24 42 48 24 32 |
| 2202 174 136 105 105 105 82 63 49 47 49 21 36 15 39 36 21 28 |
| 237 184 141 141 141 106 78 61 55 61 24 42 15 48 42 24 32 |
| 2220 174 136 105 105 108 82 63 49 49 47 21 39 21 36 36 15 28 |
| 237 184 141 141 141 108 78 61 61 55 24 48 24 42 42 15 32 |
| 2122 347 280 225 225 225 178 137 107 107 107 45 82 82 82 45 61 |
| 472 370 288 288 288 223 172 129 129 129 54 96 54 96 96 54 71 |
| 0 0 2 0 0 1 0 2 0 0 4 2 0 2 0 0 1 |
| 0 1 0 0 0 0 2 1 1 1 0 0 0 0 0 0 1 |
| 0 0 0 2 0 1 0 0 2 0 0 2 4 0 2 0 1 |
| 0 0 0 0 2 1 0 0 0 2 0 0 0 2 2 4 1 |

(continued)
Table 4. Continued

\[
\begin{array}{cccccccccccccccc}
\text{0320} & 3 & . & . & 1 & 1 & 1 & . & . & . & 1 & . & . & . & . & . & 1 & 1 \\
& 9 & 5 & 8 & 5 & 4 & 7 & 4 & . & 3 & 2 & 3 & 3 & . & 1 & . & 2 & 1 & . & 2 & 1 \\
\text{0302} & 3 & . & . & 1 & 1 & 1 & . & 1 & . & . & . & . & . & . & . & . & 1 & 1 \\
& 9 & 5 & 5 & 8 & 4 & 4 & 7 & . & 3 & 3 & 3 & 2 & . & 2 & 1 & 1 & 2 & 1 \\
\text{3031} & . & . & . & . & . & . & . & . & . & . & . & . & . & . & 1 & . & . & 1 & . & 1 & . \\
& 7 & 12 & 12 & 6 & 7 & 7 & 3 & 3 & 7 & 3 & 3 & 3 & . & 3 & 3 & 1 & 3 & 1 & . & 1 \\
\text{3013} & . & . & . & . & . & . & . & . & . & . & . & . & . & . & 1 & . & . & 1 & . & 1 & . \\
& 7 & 12 & 6 & 12 & 7 & 3 & 7 & 3 & 3 & 7 & 3 & 3 & 3 & . & 3 & 3 & 3 & 1 & 1 & . \\
\text{1033} & . & . & . & . & . & . & . & . & . & . & . & . & . & . & 1 & . & . & 1 & . & 1 & . \\
& 7 & 6 & 12 & 12 & 3 & 7 & 7 & . & 3 & 3 & 7 & 3 & . & 1 & . & 3 & 3 & 1 & 3 & 1 & . \\
\text{0222} & 16 & 12 & 16 & 16 & 10 & 12 & 12 & . & 7 & 4 & 7 & 9 & 4 & . & 3 & . & 5 & 3 & 3 & 4 & 1 \\
& 17 & 12 & 18 & 18 & 10 & 13 & 13 & . & 7 & 4 & 7 & 10 & 4 & . & 3 & . & 5 & 3 & 3 & 4 & 1 \\
\text{2202} & 16 & 16 & 12 & 16 & 12 & 10 & 12 & 4 & 7 & . & 9 & 7 & 4 & 3 & . & 3 & 5 & 3 & 3 & 4 & 1 \\
& 17 & 18 & 12 & 18 & 13 & 10 & 13 & 4 & 7 & . & 10 & 7 & 4 & 3 & . & 3 & 5 & 3 & 3 & 4 & 1 \\
\text{2220} & 16 & 16 & 16 & 12 & 12 & 12 & 10 & . & 4 & 9 & 4 & 7 & 7 & . & 3 & 3 & 3 & 3 & . & . & . & . & 4 & 1 \\
& 17 & 18 & 18 & 12 & 13 & 13 & 10 & 4 & 10 & 4 & 7 & 7 & . & 3 & 3 & 3 & 3 & . & . & . & . & 4 & 1 \\
\text{2122} & 33 & 34 & 34 & 34 & 24 & 24 & 24 & 24 & 8 & 18 & 8 & 18 & 18 & 8 & 8 & 6 & 6 & 6 & 13 & 6 & 6 & 8 & 1 \\
& 36 & 38 & 38 & 38 & 26 & 26 & 26 & 26 & 9 & 19 & 9 & 19 & 19 & 9 & 9 & 6 & 6 & 6 & 14 & 6 & 6 & 8 & 1 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
\text{d}_5 & 0 & 3 & 1 & 1 & 2 & 0 & 0 & 4 & 2 & 0 & 2 & 0 & 0 & 4 & 2 & 4 & 2 & 0 & 2 & 0 & 1 & 0 \\
& 3 & 0 & 0 & 0 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 4 \\
& 0 & 1 & 3 & 1 & 0 & 2 & 0 & 0 & 2 & 4 & 0 & 2 & 0 & 2 & 4 & 0 & 2 & 4 & 0 & 2 & 1 & 0 \\
& 0 & 1 & 1 & 3 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 2 & 4 & 0 & 0 & 2 & 2 & 4 & 4 & 1 & 0 \\
\hline
\text{d}_6 & 3111 & 1 & 1 \\
& 1131 & . & 1 \\
& 1113 & . & . & 1 \\
& 2300 & . & . & 1 \\
& 1 & . & 1 \\
\hline
\text{0320} & . & . & . & 1 \\
& . & 1 & . & 1 \\
\hline
\text{0302} & . & . & . & 1 \\
& . & 1 & . & 1 \\
\text{3031} & . & . & . & . & 1 \\
& 1 & 1 & . & . & 1 \\
\text{3013} & . & . & . & . & 1 \\
& 1 & 1 & . & . & 1 \\
\text{1033} & . & . & . & . & 1 \\
& 1 & 1 & . & . & 1 \\
\text{0222} & 2 & 2 & . & 1 & 1 & . & . & 1 & 1 \\
\end{array}
\]
Table 4. Continued

. 2 2 . 1 1 . . 1 1
2202 2 . 2 1 . 1 . 1 . . 1
2 . 2 1 . 1 . 1 . . 1
2220 2 2 . 1 1 . 1 1
2 2 . 1 1 . 1 1
2122 4 4 4 1 1 1 2 2 2 1 1 1 1
4 4 4 1 1 1 2 2 2 1 1 1 1
3 1 1 2 0 0 3 3 1 0 2 2 2
1 1 1 3 3 3 0 0 0 2 2 2 1
1 3 1 0 2 0 3 1 3 2 0 2 2
1 1 3 0 0 2 1 3 3 2 2 0 2

Table 5.

e_1
1000
1
1
0011
. 3 1
. 3 1
. 3 1 1
1100
. 3 1 1
. 1 1 1 1 1
3000
. . 1
. 3 1 1 1
. 6 2 1
1020
. 6 3 1 1
. 6 3 1 1
. 6 3 1 1
1002
. 6 3 1 1
. 6 3 1 1
. 6 3 1 1
0111
. 4 3 2 1 1 1
17 9 4 2 2 1
2011
. 2 1 2 3 3 3 1 1
21 12 7 3 3 3 1 1
21 12 7 3 3 3 1 1
0031
. . 1 1 1 1
10 6 3 3 1 1 1
0013
. . 1 1 1 1
. 10 6 3 1 3 1 1
1200
. 12 8 6 1 3 3 2 1 1 1
21 11 7 2 3 3 2 1 1
3100
. 1 4 1 1 1 1
18 10 6 6 3 3 2 2 2 1 1
1120
. 16 12 8 3 6 4 3 3 2 1 1
33 21 12 3 9 6 4 2 2 1 1
1102
. 16 12 8 3 4 6 4 3 3 2 1 1
33 21 12 3 6 9 4 2 2 1 1

(continued)
Table 5. Continued

5000	1 . 1 3 . . . 1 . . . 1 . 1 . 1
6	3 3 3 3 1 1 1 1 . . 1 1 . 1 1
3020	. . 1 3 . 1 . 1 . . . 1 . . . 1
22	15 10 6 6 6 3 3 3 . 1 . 1 1 . 1
1040	. . 1 . . 3 . 1 . 3 . . . 1 . . . 1
3002	. . 1 3 1 . . 1 . . . 1 . . . 1
1022	24 18 12 3 9 9 6 2 3 3 3 1 . 1 . 1
1004	. . 1 . . 3 1 . . 3 . . . 1 . . . 1
0211	36 26 16 6 12 12 8 4 3 3 3 . 2 2 . . 1 . 1
	1 . 0 1 3 1 1 0 2 0 0 1 . . 1 1 5 1 3 1 1 0
	0 0 1 0 0 0 0 0 0 0 2 . 1 1 . 1 0 0 0 0 0 2
	0 1 0 0 2 0 1 1 3 1 0 0 0 2 0 0 2 4 0 2 0 1
	0 1 0 0 3 2 1 1 1 0 0 0 2 0 0 0 2 4 1 1

\(e_2\)

2111	50 36 26 12 16 16 12 8 4 4 6 2 3 3 . 1 . 1 2
101	69 48 24 30 30 19 14 6 6 8 4 4 4 . 2 2 2
0131	. 1 2 . 3 . 1 1 3 . . 1 . . . 1 . 1
54	38 25 8 21 15 12 6 9 3 4 . 4 2 . 2 2
0113	. 1 2 . . 3 1 1 . 3 . . . 1 . . . 1
54	38 25 8 15 21 12 6 3 9 4 . 4 2 . 2 2
1300	4 1 . . .
56	36 26 12 16 16 12 8 4 4 7 2 3 3 . 1 . 1 2
4011	3 3 6 10 3 3 2 6 . . 3 6 1 1 3 3 . 3
54	38 29 21 18 18 12 12 3 3 7 7 3 3 3 3 . 3 1
2031	3 2 . 6 3 3 3 1 6 1 . . 3 . . 1 3 . 1
78	57 40 18 30 27 19 12 6 7 3 7 3 . 3 3 1 3
0051	4 3 2 . 6 . 3 1 6 . 2 . 3 . . 3 3 1 3
2115	10 3 10 6 6 3 6 1 3 . 3 1 . . 3 1
2013	3 2 . 3 6 3 3 1 1 6 . . 3 . . 1 1 1
78	57 40 18 27 30 19 12 6 7 3 3 3 . 1 . 3 3
0033	3 . 3
39	29 21 10 15 15 10 6 6 6 3 . 3 3 . . 1 . 3
0015	4 3 2 . . 6 3 1 . 6 2 . 3 . . . 3
2115	10 3 6 10 6 3 1 6 3 . 1 3 . . 1 3
3200	1 3 3 3 1 1 2 2 . . 1 2 1 1 1 1 . 1
62	42 34 24 20 20 15 13 5 5 9 7 4 4 2 3 . 3 3
1220	108 78 54 24 42 36 27 18 15 9 13 4 10 7 . 3 3 3 5
108	78 54 24 42 36 27 18 15 9 13 4 10 7 . 3 3 3 5
Table 5. Continued

| | 1202 | 108 | 78 | 54 | 24 | 36 | 42 | 27 | 18 | 9 | 15 | 13 | 4 | 7 | 10 | . | . |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | | | | | | | |
| 1140| 4 | 6 | 4 | | | | | | | | | | | | | |
| 3102| 3 | 6 | 9 | 15 | 9 | 3 | 4 | 8 | 3 | | | | | | | |
| 1712| 99 | 66 | 31 | 45 | 45 | 34 | 25 | 18 | 18 | 8 | 13 | | | | |
| 204 | 152 | 111 | 54 | 81 | 81 | 45 | 31 | 26 | 12 | 15 | 16 | 12 | | | |
| 100 | 4 | 6 | 4 | | | | | | | | | | | | | |
| 0311| 12 | 4 | | | | | | | | | | | | | | |
| 147 | 107 | 77 | 37 | 57 | 57 | 43 | 29 | 21 | 21 | 24 | 8 | 16 | 16 | | |
| 3022| 3 | 6 | 5 | 6 | 6 | 5 | 4 | 3 | 3 | 4 | 2 | 2 | 3 | 1 | 3 |
| 174 | 133 | 102 | 60 | 75 | 75 | 55 | 42 | 27 | 27 | 29 | 19 | 19 | 19 | 19 |

\[e_3\]

	2111		1	1
0131				1
0113	1			1
1300	1			1
4011				1
2031				1
0051	1	1		1
2013	3			1
0033				1
0015	3	1		1

(continued)
Table 5. Continued

3200 . . 1 . . . 1 1
.2 1 . .1 1 1
1220 . 4 2 2 . 1 . 1 1
.4 2 2 . 1 . 1 . . 1
1202 3 4 2 . 2 1 . . . 1 1
.4 2 2 . 1 . 1 . . 1
3120 . . 2 . . . 2 1 1
.4 4 2 . 1 2 2 . . 1 1 . 1
1140 . 1 1 2 . . . 1 1 1
.4 2 4 . 1 . 2 2 . . 1 1 . 1
3102 . . 2 . . . 2 . . 1 . . 1 1
.4 4 2 . 1 2 2 . . 1 1 . 1
1122 4 6 4 3 3 1 . 2 . 2 1 . . 1 1 . . 1
.6 8 4 4 4 4 1 . 2 . 2 2 . . 1 1 . 1
1104 3 1 1 . 2 . . . 1 . 1 . . 1 . . 1
.9 4 2 . 4 1 . . 2 2 . . 1 1 . 1
3040 1 1
.3 3 3 . 1 1 3 1 . . 1 1 . 1 1 . 1
0311 . 3 1 . . 3 1
.4 4 5 3 3 4 . 2 . 2 1 . . 2 2 . . 1 1 . 1
3022 1 . 2 . . . 2 1 . . 1 . . 1 . . 1 . . 1
.6 7 7 3 3 1 1 3 . 3 1 . 1 1 1 1 . 1 .

\(e_d\)

1042 12 15 16 12 21 9 13 9 21 3 6 2 12 2 3
129 93 70 36 57 51 40 27 30 18 19 6 19 12 . 6
3004

1024 12 15 16 12 9 21 13 9 3 21 6 2 2 12 2 .
129 93 70 36 51 57 40 27 18 30 19 6 12 19 . 3
2211 217 168 130 78 100 100 76 59 42 42 45 25 32 32 6 18
306 231 177 110 129 129 96 75 48 48 55 31 37 37 7
213 12 14 14 4 9 15 10 8 3 12 6 2 4 8 . 3
174 134 100 50 72 84 59 40 27 42 31 11 21 27 . 9
2031 12 14 4 14 4 15 9 10 8 12 3 6 2 8 4 . 3
174 134 100 50 84 72 59 40 42 27 31 11 27 21 . 9
0133
189 151 119 70 93 93 71 52 45 45 37 16 31 31 . 12
2131 16 21 20 12 19 19 17 12 16 9 8 4 12 7 . 6
342 270 209 120 167 159 124 92 81 63 68 36 58 46 8 30
IRREDUCIBLE CHARACTERS. II

Table 5. Continued

2113	16	21	20	12	19	19	17	12	9	16	8	4	7	12	.	3
342	270	209	120	159	167	124	92	63	81	68	36	46	58	8	24	
1400	12	4	5	.	.	1	2	.	3	1	1
126	91	71	41	51	51	41	31	21	21	17	17	3	9	.	.	
2033	3	3	9	.	.	3	.	3
310	249	198	120	157	157	123	93	75	75	71	37	55	55	10	27	
1302	24	12	5	.	.	7	3	2	.	3	6	1	3	3	.	
273	213	163	93	123	133	99	75	51	63	60	30	42	48	6	24	
1320	24	12	5	.	7	3	2	3	.	6	1	3	3	.	.	
273	213	163	93	133	123	99	75	63	51	60	30	48	42	6	24	
1222	570	456	363	222	288	288	175	141	141	138	73	108	108	15	57	
594	474	375	225	297	297	234	177	144	144	139	73	109	109	15	57	

(continued)

\(e_3 \)

1042	12	.	7	.	3	1	7	1	.	.	3	3	.	.	1	1
1204	.	1	1
1024	.	3	7	12	3	1	1	7	.	.	3	3	3	.	1	
3004	.	6	6	6	3	3	3	1	1	.	3	.	1	1	1	
1024	.	3	7	12	3	1	1	7	.	.	3	3	3	.	1	
2211	9	18	23	9	18	13	7	7	7	4	5	.	3	3	4	2
9	21	26	9	20	15	7	7	8	5	5	5	.	4	4	2	
1302	24	12	5	.	7	3	2	3	6	1	3	3	3	.	1	
1222	570	456	363	222	288	288	175	141	141	138	73	108	108	15	57	
1024	.	3	7	12	3	1	1	7	.	.	3	3	3	.	1	
1222	570	456	363	222	288	288	175	141	141	138	73	108	108	15	57	

(continued)
Table 5. Continued

	48	57	85	48	65	45	37	37	27	12	26	9	26	21	9	10	20	20	7
22	1	3	1	1	0	2	0	0	1	4	2	0	2	0	0	3	1	1	3
23	0	0	0	2	1	1	1	3	0	0	0	0	0	0	2	2	2	1	
24	4	0	2	0	1	1	3	1	0	1	3	5	1	3	1	0	2	0	2
25	0	2	2	4	1	1	3	0	1	1	3	3	5	0	0	2	0	0	2

References

Ye and Zhou
In all these tables, the left column indicates $\chi(\lambda)$’s or $\chi_3(\lambda)$’s, and the bottom row indicates $e(\nu)$’s. For each weight $\lambda \in X(T)_+$, we can find two rows in tables. The upper row corresponds to all integers $b_{i\nu}$ and the lower row corresponds to all integers $a_{i\nu}$. Therefore, we can easily get the third change of basis matrix $D = AB^{-1}$ from $\{\chi_3(\nu) \mid \nu \in X(T)_+\}$ to $\{\chi(\nu) \mid \nu \in X(T)_+\}$, which is still a triangular matrix with 1 on its diagonal. The matrix D gives the decomposition patterns of various $H^0(\lambda)$ with $\lambda \in X(T)_+$. In this way, we obtain the following theorems.

Theorem 4. When G is the simple algebraic group of type A_4, let $\Lambda = \{(2,0,0,2), (1,2,0,0), (0,0,2,1), (1,1,1,1), (2,1,1,2), (2,1,2,0), (2,2,1,0), (0,1,1,0), (0,2,2,0), (1,2,2,1), (2,0,2,0), (2,0,0,1), (2,0,0,0), (1,0,0,2), (1,1,1,1), (0,0,1,1), (2,1,2,0), (1,2,1,2), (1,1,2,1), (1,0,2,0), (2,0,1,1), (2,1,1,2), (2,2,2,0), (0,0,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (2,1,1,0), (0,1,1,2), (2,0,2,0), (2,0,1,0), (2,1,1,1), (2,0,2,1), (1,1,2,0), (1,0,0,0), (2,2,1,2), (2,2,1,1), (2,2,2,2), (2,1,2,2) \in X_1(T)\). Then $H^0(\lambda)$ is an irreducible G-module for all $\lambda \in X_1(T) \setminus \Lambda$, and

\[
\begin{align*}
\chi(2,0,0,2) &= \chi_3(2,0,0,2) + \chi_3(0,0,0,0), \\
\chi(1,2,0,0) &= \chi_3(1,2,0,0) + \chi_3(0,0,0,0), \\
\chi(1,1,1,1) &= \chi_3(1,1,1,1) + \chi_3(2,0,0,2) + \chi_3(1,2,0,0) + \chi_3(0,0,2,1) + \chi_3(0,0,0,0), \\
\chi(2,1,1,2) &= \chi_3(2,1,1,2) + \chi_3(3,0,0,3) + \chi_3(3,0,1,1) + \chi_3(1,1,0,3) + 2\chi_3(1,1,1,1) + \chi_3(3,1,0,0) + \chi_3(0,0,1,3) + \chi_3(1,2,0,0) + \chi_3(0,0,2,1) + \chi_3(2,0,0,2) + 3\chi_3(0,0,0,0), \\
\chi(2,1,2,0) &= \chi_3(2,1,2,0) + \chi_3(0,1,0,2), \\
\chi(0,1,1,0) &= \chi_3(0,1,1,0) + \chi_3(1,0,0,1), \\
\chi(0,2,2,0) &= \chi_3(0,2,2,0) + \chi_3(0,1,1,0), \\
\chi(1,2,2,1) &= \chi_3(1,2,2,1) + \chi_3(0,2,2,0) + \chi_3(0,1,1,0), \\
\chi(0,0,2,0) &= \chi_3(0,0,2,0) + \chi_3(1,0,0,0), \\
\chi(2,0,0,1) &= \chi_3(2,0,0,1) + \chi_3(1,0,0,0), \\
\chi(1,1,1,0) &= \chi_3(1,1,1,0) + \chi_3(2,0,0,1) + \chi_3(0,0,2,0) + \chi_3(1,0,0,0), \\
\chi(0,2,1,1) &= \chi_3(0,2,1,1) + \chi_3(0,3,0,0) + \chi_3(1,1,1,0) + \chi_3(2,0,0,1) + \chi_3(0,0,2,0), \\
\chi(0,2,1,0) &= \chi_3(0,2,1,0) + \chi_3(0,3,0,0) + \chi_3(1,1,1,0) + \chi_3(2,0,0,1) + \chi_3(0,0,2,0), \\
\chi(2,2,1,0) &= \chi_3(2,2,1,0) + \chi_3(0,3,0,0) + \chi_3(1,1,1,0) + \chi_3(2,0,0,1) + \chi_3(0,0,2,0), \\
\chi(2,2,2,0) &= \chi_3(2,2,2,0) + \chi_3(0,3,0,0) + \chi_3(1,1,1,0) + \chi_3(2,0,0,1) + \chi_3(0,0,2,0).
\end{align*}
\]
\[
\begin{align*}
\text{ch}(1, 2, 1, 2) &= \text{ch}_3(1, 2, 1, 2) + \text{ch}_3(0, 2, 0, 3) + \text{ch}_3(3, 0, 1, 0) \\
&\quad + \text{ch}_3(0, 2, 1, 1) + \text{ch}_3(0, 3, 0, 0) + \text{ch}_3(1, 1, 1, 0) \\
&\quad + \text{ch}_3(2, 0, 0, 1) + \text{ch}_3(0, 0, 2, 0) + \text{ch}_3(1, 0, 0, 0), \\
\text{ch}(1, 1, 0, 2) &= \text{ch}_3(1, 1, 0, 2) + \text{ch}_3(0, 0, 1, 2), \\
\text{ch}(2, 1, 1, 1) &= \text{ch}_3(2, 1, 1, 1) + \text{ch}_3(2, 2, 0, 0) + \text{ch}_3(3, 0, 0, 2) \\
&\quad + \text{ch}_3(1, 1, 0, 2) + \text{ch}_3(0, 0, 1, 2) \\
\text{ch}(2, 0, 2, 2) &= \text{ch}_3(2, 0, 2, 2) + \text{ch}_3(1, 0, 1, 3) + \text{ch}_3(1, 0, 2, 1), \\
\text{ch}(0, 0, 1, 1) &= \text{ch}_3(0, 0, 1, 1) + \text{ch}_3(0, 1, 0, 0), \\
\text{ch}(1, 1, 0, 1) &= \text{ch}_3(1, 1, 0, 1) + \text{ch}_3(0, 0, 1, 1) + \text{ch}_3(0, 1, 0, 0), \\
\text{ch}(2, 1, 1, 0) &= \text{ch}_3(2, 1, 1, 0) + \text{ch}_3(3, 0, 0, 1) + \text{ch}_3(1, 1, 0, 1) \\
&\quad + \text{ch}_3(0, 0, 1, 1), \\
\text{ch}(0, 2, 0, 2) &= \text{ch}_3(0, 2, 0, 2) + \text{ch}_3(1, 1, 0, 1) + \text{ch}_3(0, 0, 0, 3) \\
&\quad + \text{ch}_3(0, 0, 1, 1), \\
\text{ch}(1, 2, 1, 1) &= \text{ch}_3(1, 2, 1, 1) + \text{ch}_3(1, 3, 0, 0) + \text{ch}_3(0, 2, 0, 2) \\
&\quad + \text{ch}_3(2, 1, 1, 0) + \text{ch}_3(3, 0, 0, 1) \\
&\quad + \text{ch}_3(1, 1, 0, 1) + \text{ch}_3(0, 0, 1, 1), \\
\text{ch}(1, 0, 2, 0) &= \text{ch}_3(1, 0, 2, 0) + \text{ch}_3(2, 0, 0, 0), \\
\text{ch}(0, 1, 2, 1) &= \text{ch}_3(0, 1, 2, 1) + \text{ch}_3(1, 0, 2, 0), \\
\text{ch}(1, 1, 2, 2) &= \text{ch}_3(1, 1, 2, 2) + \text{ch}_3(0, 0, 3, 2) + \text{ch}_3(0, 1, 1, 3) \\
&\quad + \text{ch}_3(0, 1, 2, 1) + \text{ch}_3(1, 0, 0, 4) + \text{ch}_3(1, 0, 2, 0) \\
&\quad + \text{ch}_3(2, 0, 0, 0), \\
\text{ch}(2, 0, 2, 1) &= \text{ch}_3(2, 0, 2, 1) + \text{ch}_3(1, 0, 1, 2), \\
\text{ch}(2, 2, 1, 2) &= \text{ch}_3(2, 2, 1, 2) + \text{ch}_3(4, 0, 1, 0) + \text{ch}_3(2, 1, 1, 0).
\end{align*}
\]
IRREDUCIBLE CHARACTERS. II

\[
\begin{align*}
\dim L(0, 0, 1, 1) &= 30, & \dim L(2, 1, 0, 2) &= 1215, & \dim L(2, 2, 2, 0) &= 8505, \\
\dim L(2, 0, 0, 0) &= 15, & \dim L(1, 0, 2, 0) &= 195, & \dim L(2, 2, 1, 2) &= 19260, \\
\dim L(0, 1, 2, 1) &= 855, & \dim L(1, 1, 2, 2) &= 6810, & \dim L(2, 2, 2, 2) &= 59049.
\end{align*}
\]

Theorem 5. When \(G \) is the simple algebraic group of type \(D_4 \), let \(\Lambda = \{1, 0, 1, 1\}, (2, 0, 2, 0), (2, 0, 0, 2), (0, 0, 2, 2), (1, 1, 1, 1), (2, 0, 2, 2), (2, 1, 2, 2), (0, 2, 0, 0), (2, 2, 0, 0), (0, 2, 2, 2), (1, 2, 0, 2), (1, 1, 0, 0), (1, 1, 2, 0), (1, 1, 0, 2), (0, 1, 0, 2), (0, 1, 2, 1), (2, 1, 0, 1), (2, 1, 1, 0), (2, 1, 1, 1), (1, 1, 2, 1), (1, 1, 0, 2), (1, 2, 0, 0), (0, 2, 0, 2), (0, 2, 1, 1), (0, 2, 1, 0), (1, 2, 1, 0), (1, 2, 2, 0), (1, 2, 1, 2), (2, 1, 2, 0), (2, 1, 2, 0), (2, 0, 0, 2), (2, 0, 2, 0), (1, 0, 2, 2), (2, 0, 1, 0), (2, 0, 2, 0), (1, 2, 2, 2), (2, 2, 1, 2), (2, 2, 2, 0), \} \subset X_1(T). \) Then \(H^0(\lambda) \) is an irreducible \(G \)-module for all \(\lambda \in X_1(T) \setminus \Lambda \), and

\[
\begin{align*}
\text{ch}(1, 0, 1, 1) &= \text{ch}_3(1, 0, 1, 1) + \text{ch}_3(0, 1, 0, 0), \\
\text{ch}(2, 0, 2, 0) &= \text{ch}_3(2, 0, 2, 0) + \text{ch}_3(1, 0, 1, 1), \\
\text{ch}(1, 1, 1, 1) &= \text{ch}_3(1, 1, 1, 1) + \text{ch}_3(2, 0, 0, 2) + \text{ch}_3(2, 0, 2, 0) \\
&\quad + \text{ch}_3(0, 0, 2, 2) + 2\text{ch}_3(1, 0, 1, 1) + 2\text{ch}_3(0, 1, 0, 0) \\
&\quad + \text{ch}_3(0, 0, 0, 0), \\
\text{ch}(2, 0, 2, 2) &= \text{ch}_3(2, 0, 2, 2) + \text{ch}_3(3, 0, 1, 1) + \text{ch}_3(1, 0, 3, 1) \\
&\quad + \text{ch}_3(1, 0, 1, 3) + 2\text{ch}_3(1, 1, 1, 1) + \text{ch}_3(2, 0, 0, 2) \\
&\quad + \text{ch}_3(2, 0, 2, 0) + \text{ch}_3(0, 0, 2, 2) + \text{ch}_3(1, 0, 1, 1) \\
&\quad + 2\text{ch}_3(0, 1, 0, 0) + 2\text{ch}_3(0, 0, 0, 0), \\
\text{ch}(2, 1, 2, 2) &= \text{ch}_3(2, 1, 2, 2) + \text{ch}_3(2, 0, 2, 2) + \text{ch}_3(0, 1, 4, 0) \\
&\quad + \text{ch}_3(0, 1, 0, 4) + \text{ch}_3(4, 1, 0, 0) + \text{ch}_3(3, 0, 1, 1) \\
&\quad + \text{ch}_3(1, 0, 3, 1) + \text{ch}_3(1, 0, 1, 3) + 2\text{ch}_3(0, 3, 0, 0) \\
&\quad + \text{ch}_3(0, 0, 2, 2) + \text{ch}_3(1, 0, 1, 1) + 2\text{ch}_3(0, 1, 0, 0) \\
&\quad + 3\text{ch}_3(0, 0, 0, 0), \\
\text{ch}(0, 2, 0, 0) &= \text{ch}_3(0, 2, 0, 0) + \text{ch}_3(2, 0, 0, 0) + \text{ch}_3(0, 0, 2, 0) \\
&\quad + \text{ch}_3(0, 0, 0, 2), \\
\text{ch}(2, 2, 0, 0) &= \text{ch}_3(2, 2, 0, 0) + \text{ch}_3(4, 0, 0, 0) + \text{ch}_3(0, 2, 0, 0) \\
&\quad + \text{ch}_3(2, 0, 0, 0) + \text{ch}_3(0, 0, 2, 0) + \text{ch}_3(0, 0, 0, 2), \\
\text{ch}(1, 2, 1, 1) &= \text{ch}_3(1, 2, 1, 1) + \text{ch}_3(2, 2, 0, 0) + \text{ch}_3(0, 2, 2, 0) \\
&\quad + \text{ch}_3(0, 2, 0, 2) + \text{ch}_3(2, 0, 0, 0) + \text{ch}_3(0, 0, 2, 0) \\
&\quad + \text{ch}_3(0, 0, 0, 2),
\end{align*}
\]
\[\text{ch}(0, 1, 2, 2) = \text{ch}_3(0, 1, 2, 2) + \text{ch}_3(2, 1, 0, 0), \]
\[\text{ch}(0, 2, 2, 2) = \text{ch}_3(0, 2, 2, 2) + \text{ch}_3(0, 1, 2, 2), \]
\[\text{ch}(1, 0, 2, 2) = \text{ch}_3(1, 0, 2, 2) + \text{ch}_3(2, 0, 1, 1), \]
\[\text{ch}(1, 2, 2, 2) = \text{ch}_3(1, 2, 2, 2) + \text{ch}_3(1, 0, 2, 2), \]
\[\text{ch}(1, 1, 0, 0) = \text{ch}_3(1, 1, 0, 0) + \text{ch}_3(0, 0, 1, 1), \]
\[\text{ch}(1, 2, 0, 0) = \text{ch}_3(1, 2, 0, 0) + \text{ch}_3(3, 0, 0, 0) + \text{ch}_3(1, 1, 0, 0) + 2\text{ch}_3(0, 0, 1, 1), \]
\[\text{ch}(0, 2, 1, 1) = \text{ch}_3(0, 2, 1, 1) + \text{ch}_3(1, 2, 0, 0) + \text{ch}_3(1, 1, 0, 0) + 2\text{ch}_3(0, 0, 1, 1), \]
\[\text{ch}(1, 1, 2, 2) = \text{ch}_3(1, 1, 2, 2) + \text{ch}_3(0, 0, 3, 3) + \text{ch}_3(0, 1, 1, 3) + \text{ch}_3(0, 1, 3, 1) + 2\text{ch}_3(0, 2, 1, 1) + \text{ch}_3(1, 0, 0, 4) + \text{ch}_3(1, 0, 4, 0) + 2\text{ch}_3(1, 2, 0, 0) + \text{ch}_3(3, 1, 0, 0) + 2\text{ch}_3(3, 0, 0, 0) + \text{ch}_3(1, 1, 0, 0) + 2\text{ch}_3(0, 0, 1, 1), \]
\[\text{ch}(0, 1, 1, 1) = \text{ch}_3(0, 1, 1, 1) + \text{ch}_3(1, 0, 0, 2) + \text{ch}_3(1, 0, 2, 0) + \text{ch}_3(1, 0, 0, 0), \]
\[\text{ch}(1, 1, 2, 0) = \text{ch}_3(1, 1, 2, 0) + \text{ch}_3(0, 0, 3, 1) + \text{ch}_3(0, 1, 1, 1) + \text{ch}_3(1, 0, 0, 2) + \text{ch}_3(1, 0, 2, 0) + \text{ch}_3(1, 0, 0, 0), \]
\[\text{ch}(2, 1, 1, 1) = \text{ch}_3(2, 1, 1, 1) + \text{ch}_3(3, 0, 0, 2) + \text{ch}_3(3, 0, 2, 0) + \text{ch}_3(0, 0, 3, 1) + \text{ch}_3(0, 0, 1, 3) + \text{ch}_3(1, 1, 2, 0) + \text{ch}_3(1, 1, 0, 2) + \text{ch}_3(0, 1, 1, 1) + \text{ch}_3(1, 0, 0, 2) + \text{ch}_3(1, 0, 2, 0) + 3\text{ch}_3(1, 0, 0, 0), \text{ch}(2, 2, 1, 1) + \text{ch}_3(2, 1, 1, 1) + \text{ch}_3(3, 0, 0, 2) + \text{ch}_3(3, 0, 2, 0) + \text{ch}_3(1, 1, 0, 2) + \text{ch}_3(1, 1, 0, 2) + \text{ch}_3(0, 0, 3, 1) + \text{ch}_3(0, 0, 1, 3) + 2\text{ch}_3(1, 0, 0, 0), \]

\[
\begin{align*}
\dim L(0, 0, 0, 0) &= 1, & \dim L(1, 0, 1, 1) &= 322, & \dim L(1, 1, 1, 1) &= 1841, \\
\dim L(0, 1, 0, 0) &= 28, & \dim L(2, 0, 2, 0) &= 518, & \dim L(2, 0, 2, 2) &= 8132, \\
\dim L(2, 0, 0, 0) &= 35, & \dim L(2, 2, 0, 0) &= 3948, & \dim L(2, 1, 2, 2) &= 96755, \\
\dim L(0, 2, 0, 0) &= 195, & \dim L(0, 1, 2, 2) &= 8343, & \dim L(1, 2, 1, 1) &= 13776, \\
\dim L(1, 0, 0, 0) &= 8, & \dim L(1, 1, 2, 0) &= 1896, & \dim L(1, 1, 2, 2) &= 24240, \\
\dim L(0, 0, 1, 1) &= 56, & \dim L(2, 0, 1, 1) &= 1296, & \dim L(0, 2, 2, 2) &= 43254, \\
\dim L(1, 1, 0, 0) &= 104, & \dim L(1, 2, 0, 0) &= 1176, & \dim L(2, 2, 1, 1) &= 58920.
\end{align*}
\]
IRREDUCIBLE CHARACTERS. II

\[\dim L(1,0,2,0) = 224, \quad \dim L(0,2,1,1) = 4768, \quad \dim L(1,2,2,2) = 196344, \]
\[\dim L(0,1,1,1) = 384, \quad \dim L(1,0,2,2) = 3240, \quad \dim L(1,2,2,0) = 18144, \]
\[\dim L(2,1,0,0) = 567, \quad \dim L(2,1,1,1) = 7600, \quad \dim L(2,2,2,2) = 531441, \]

Remark. There are other computer programs available to compute the characters such as Scott in Virginia and Laurantzen in Aarhus.

ACKNOWLEDGMENTS

Supported by the NNSFC.

REFERENCES

1. Xi, Nanhua; Irreducible Modules of Quantized Enveloping Algebras at Roots of 1 Publ. RIMS, Kyoto Univ. 1996, 32, 235–276.
2. Carter, R.W.; Lusztig, G. On the Modular Representations of the General Linear and Symmetric Groups. Math. Z. 1974, 136, 193–242.
3. Carter, R.W. Raising and Lowering Operators for \(\mathfrak{sl}_n \) with Applications to Orthogonal Bases of \(\mathfrak{sl}_n \)-Modules in The Arcata Conference on Representations of Finite Groups. Sympos. Pure Math. 1987, 47 (II), 351–366.
4. Gilkey, P.B.; Seitz, G.M. Some Representations of Exceptional Lie Algebras. Geometriae Dedicata 1988, 25, 407–416.
5. Dowd, M.; Sin, P. On Representations of Algebraic Groups in Characteristic Two. Commun. Algebra 1996, 24(8), 2597–2686.
6. Lusztig, G. *Introduction to Quantum Groups*; Progress in Mathematics 110, Birkhäuser, Boston · Basel · Berlin, 1993.
7. Xu, Baoxing; Ye, Jiachen. Irreducible Characters of Algebraic Groups in Characteristic Two (I). Algebra Colloquium 1997, 4(3), 281–290.
8. Ye, Jiachen; Zhou, Zhongguo. Irreducible Characters of Algebraic Groups in Characteristic Two (II). Algebra Colloquium 1999, 6(4), 401–411.
9. Ye, Jiachen; Zhou, Zhongguo. Irreducible Characters of Algebraic Groups in Characteristic Two (III). Commun. Algebra 2000, 28(9), 4227–4247.
10. Ye, Jiachen; Zhou, Zhongguo; Irreducible Characters of Algebraic Groups in Characteristic Three, To appear in Commun. Algebra.
11. Andersen, H.H. The Strong Linkage Principle. J. Reine Angew. Math. 1980, 315, 53–59.
12. Bremner, M.R.; Moody, R.V.; Patera, J. *Tables of Dominant Weight Multiplicities for Representations of Simple Lie Algebras*; Marcel Dekker, Inc.: New York–Basel 1985.

13. Jantzen, J.C. *Representations of Algebraic Groups*; Academic Press: Orlando 1987.

14. Xi, Nanhua. *Irreducible Modules of Quantized Enveloping Algebras at Roots of I (II)* Preprint.

15. Xi, Nanhua. *Irreducible Modules of Quantized Enveloping Algebras at Roots of I (III)* Preprint.

Received July 2000

Revised October 2000
Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article’s rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the U.S. Copyright Office for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers’ (AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our Website User Agreement for more details.

Order now!

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081AGB120006491