SIMPLE AND EFFECTIVE ZERO-SHOT CROSS-LINGUAL PHONEME RECOGNITION

Qiantong Xu, Alexei Baevski, Michael Auli
Facebook AI Research

ABSTRACT

Recent progress in self-training, self-supervised pretraining and unsupervised learning enabled well performing speech recognition systems without any labeled data. However, in many cases there is labeled data available for related languages which is not utilized by these methods. This paper extends previous work on zero-shot cross-lingual transfer learning by fine-tuning a multilingually pretrained wav2vec 2.0 model to transcribe unseen languages. This is done by mapping phonemes of the training languages to the target language using articulatory features. Experiments show that this simple method significantly outperforms prior work which introduced task-specific architectures and used only part of a monolingually pretrained model.

Index Terms—zero-shot transfer learning, cross-lingual, phoneme recognition, multilingual ASR

1. INTRODUCTION

There is a large number of languages spoken around the world of which only a small fraction is served by speech technology. A large barrier to making speech technology more accessible is the requirement for large amounts of transcribed speech audio by current models which is simply not available for the vast majority of languages. Speech recognition accuracy has been steadily improving by recent advances in supervised multilingual modeling [1, 2], self-supervised learning [3, 4, 5, 6, 7], and semi-supervised learning [8, 9, 10, 11, 12], particularly for low-resource languages. This recently led to good speech recognition performance in settings where no labeled data exists at all [13, 14, 15]. One downside of these approaches is that they require training a separate unsupervised model for each language while ignoring the presence of labeled data in related languages.

Zero-shot transfer learning addresses this by training a single multilingual model on the labeled data of several languages to enable zero-shot transcription of unseen languages [16, 17, 18, 19, 17, 20]. Models usually have a common encoder that extracts acoustic information from speech audio and then predict either a shared phoneme vocabulary [17, 16] or language-specific phonemes [11, 20, 21]. The former requires either phonological units that are agnostic to any particular language such as articulatory features [20] or global phones [22, 17].

In this paper, we study a simple zero-shot transfer learning approach which builds a global phoneme recognizer by simply considering all possible phonemes of the training languages and then decodes the model with a language model to generate the final phoneme sequence. The lexicon is built from articulatory features to map the phonemes between the training and target vocabulary. Our method makes no assumption about the relation of training and testing languages, including attributes like phoneme distribution or coverage. We extend prior work by using unsupervised cross-lingually pretrained representations estimated on 53 languages [23] instead of monolingually trained representations [16] and our approach also uses the full pretrained model instead of only the feature-extractor [16].

We conduct experiments on 42 languages of Common-Voice [24], 19 languages of BABEL [25] and six languages of MLS [26]. Results show significant improvements on unseen languages over the approach of [16] and cross-lingual pretrained representations are more effective. Finally, zero-shot transfer learning performs comparably to unsupervised approaches with the benefit of being able to transcribe multiple unseen languages using a single model.

2. APPROACH

Our approach entails the use of self-supervised representations trained on data in many languages [23, §2.1]. Next we simultaneously fine-tune the model to perform phoneme recognition on data in multiple training languages. At inference time, we test the fine-tuned model on all unseen languages using a mapping of the phonemes from the training vocabulary to the ones in the target languages [22].

2.1. Self-supervised Model Training

We use XLSR-53, a wav2vec 2.0 model pretrained on data in 53 languages [23, 6]. This model contains a convolutional feature encoder \(f : \mathcal{X} \rightarrow \mathcal{Z} \) to map raw audio \(\mathcal{X} \) to latent speech representations \(z_1, \ldots, z_T \) which are input to a Transformer \(g : \mathcal{Z} \rightarrow \mathcal{C} \) to output context representations \(c_1, \ldots, c_T \) [27, 28]. Each \(z_t \) represents about 25ms of audio strided by 20ms and the Transformer architecture follows BERT [29, 27]. During training, feature encoder representa-
Articulatory vector contains 21 attributes using the hamming edit distance between the articulatory features. Each attribute can be either positive or negative. There are four groups of attributes: major class (syllabic, vocalic, approximant, sonorant), manner (continuant, lateral, nasal, strident), place (labial, coronal, dorsal, pharyngeal), and laryngeal (voiced, sonorant). We compute the distance between each pair of phonemes to describe any sound or phone.

We use phonemes as modeling units and in particular, the symbols of the standard International Phonetic Alphabet (IPA). However, the vocabulary estimated from the training languages may not cover the full vocabulary of the target languages which results in out-of-vocabulary (OOV) phonemes at test time. We address this by mapping between the training and target vocabularies based on articulatory/phonological features. Articulatory feature is a set of global attributes to describe any sound or phone. There are four groups of attributes: major class (syllabic, vocalic, approximant, sonorant), manner (continuant, lateral, nasal, strident), place (labial, coronal, dorsal, pharyngeal), and laryngeal (voiced, aspirated, glottalized). Each attribute can be either positive or negative.

We compute the distance between each pair of phonemes using the hamming edit distance between the articulatory feature vectors and then generate two types of simple many-to-one mapping lexicons:

- **tr2tgt lexicon** maps each phoneme in the training vocabulary to its closest one in the target vocabulary. Then for the remaining uncovered phonemes in the target vocabulary, it maps the closest ones in the training vocabulary to them.

- **tgt2tr lexicon** that maps for each phoneme in the target vocabulary, the phonemes in the training vocabulary that have 0 distance to it.

We compare both below (§4.3.2) and use tr2tgt unless otherwise mentioned.

3. EXPERIMENTAL SETUP

3.1. Datasets

We consider three multilingual corpora and a variety of languages to evaluate our approach. All the audios are up-/down-sampled to 16kHz. We include 21 languages from it (Table 1). We include Cantonese and Lao in the test set to compare with [16] and the remaining 19 languages in the training set. Italian serves for validation.

Table 1. Splits of CommonVoice (CV) and BABEL (BB). The 6 BABEL languages of [16] are bolded.

Split	Languages
CommonVoice (CV)	Esperanto(eo), Lithuanian(lt), Welsh(cy), Tamil(ta), Swedish(sv-SE), German(de), English(en), Oriya(or), Hindi(hi), Persian(fa), Japanese(ja), Assamese(as), Indonesian(id), Catalan(ca), Spanish(es), French(fr), Portuguese(pt), Arabic(ar), Chinese(zh-CN), Chinese(zh-TW), Turkish(tr), Estonian(et), Hungarian(hu), Russian(ru), Czech(cs)
Train	Italian(it)
	Basque(eu), Interlingua(ia), Latvian(lv), Georgian(ka), Irish(ga-ie), Dutch(nl), Greek(el), Punjabi(pa-in), Romanian(ro), Maltese(mt), Chinese(zh-HK), Tatar(tt), Finnish(fi), Slovenian(sl), Polish(pl), Kirghiz(ky)
Dev	Amharic(am), Bengali(bn), Cebuano(ceb), Igbo(ig), Haitian(ht), Javanese(jv), Mongolian(mn), Swahili(sw), Tamil(ta), Vietnamese(vi), Assamese(as), Dholuo(luo), Guarani(gn), Kazakh(kk), Pashto(ps), Georgian(ka), Tagalog(tl), Telugu(te), Turkish(tr), Zulu(zu)
Test	CV-Italian(it)
	Italian(it)
	Cantonese(yue), Lao(lo)

Multilingual LibriSpeech (MLS) is a large corpus of read audiobooks from Librivox and we experiment with the same six languages as [15]: Dutch (du), French (fr), German (de), Italian (it), Portuguese (pt), Spanish (es). We use the same split as [15] for validation and test.

CommonVoice (CV) is a multilingual corpus of read speech comprising more than two thousand hours of speech data in 76 languages. We use the December 2020 release (v6.1) for training and fine-tuning models. We select 42 languages in total that are supported by our phonemizer (see §3.2) as well as their official train, dev and test splits. Italian (it) serves as validation language for development, for training we use a total of 26 languages and the remaining 13 languages are for testing (Table 1). For each language in the test set, we also make sure that there is at least one language that belongs to the same language family as in the training set. Compared to other datasets such as BABEL or MLS, CommonVoice is well suited for zero-shot transfer learning, since it covers a larger number of languages.

BABEL is a multilingual corpus of conversational telephone speech from IARPA, which includes Asian and African language. We include 21 languages from it (Table 1). We use phonemes as modeling units and in particular, the symbols of the standard International Phonetic Alphabet (IPA). However, the vocabulary estimated from the training languages may not cover the full vocabulary of the target languages which results in out-of-vocabulary (OOV) phonemes at test time. We address this by mapping between the training and target vocabularies based on articulatory/phonological features. Articulatory feature is a set of global attributes to describe any sound or phone. There are four groups of attributes: major class (syllabic, vocalic, approximant, sonorant), manner (continuant, lateral, nasal, strident), place (labial, coronal, dorsal, pharyngeal), and laryngeal (voiced, aspirated, glottalized). Each attribute can be either positive or negative.

We compute the distance between each pair of phonemes using the hamming edit distance between the articulatory feature vectors and then generate two types of simple many-to-one mapping lexicons:

- **tr2tgt lexicon** maps each phoneme in the training vocabulary to its closest one in the target vocabulary. Then for the remaining uncovered phonemes in the target vocabulary, it maps the closest ones in the training vocabulary to them.

- **tgt2tr lexicon** that maps for each phoneme in the target vocabulary, the phonemes in the training vocabulary that have 0 distance to it.

We compare both below (§4.3.2) and use tr2tgt unless otherwise mentioned.

1. https://github.com/dmort27/panphon. In this repository, each feature articulatory vector contains 21 attributes.
3.2. Pre-processing and Phonemization

We first normalize all transcriptions for CommonVoice and BABEL by removing punctuation and rare characters. Rare characters are usually numbers or characters from other languages. We then obtain the phonemic annotations from the word transcriptions using ESpeak\(^2\) as well as \(^3\) based on Phonetisaurus\(^3\) to compare with [16]. Specifically, we use ESpeak on MLS, Phonetisaurus on BABEL.

3.3. Model Training

Models are implemented in fairseq \(^4\) and we use the pretrained XLSR-53 model \(^5\) which has 24 Transformer blocks, model dimension 1024, inner dimension 4096 and 16 attention heads. It is pretrained on the joint training set of MLS, CommonVoice and BABEL, which consists of about 56K hours of speech data.

To fine-tune the model we add a classifier representing the joint vocabulary of the training languages on top of the model and train on the labeled data with a Connectionist Temporal Classification (CTC) loss \(^6\). We determine the best transformer final dropout in \([0, 0.3]\) and the learning rate setting in \([5e-6, 5e-4]\). The learning rate schedule has three phases: warm up for the first 10% of updates, keep constant for 40% and then linearly decay for the remainder. The models were finetuned for 25k updates on 4 GPUs. The best checkpoints are selected by the validation error on the validations set for BABEL and CommonVoice; while for MLS, it is selected using the unsupervised cross validation metric of \([15]\) to enable a direct comparison.

3.4. Decoding

The wav2letter beam-search decoder \(^7\) is used to generate the final transcriptions with the lexicon and an external 6-gram language model trained on the phoneme annotations of the labeled training data. Beam size is set to 50 in all the inference experiments. The lexicons mentioned above limits the search space to only the valid phones in the training vocabulary and ensures the decoder predicts only phones in the target dictionary.

4. RESULTS

4.1. Comparison with unsupervised method

In our first experiment, we compare zero-shot transfer learning to wav2vec-U \([15]\), both of which use the same pretrained representations (XLSR-53). We use 10 hours of labeled data for each MLS language as prepared in \([23]\) and measure the phoneme error rate (PER) on MLS.

	de	nl	fr	es	it	pt	Avg
w2v-U \([15]\)	21.6	25.0	27.7	20.2	31.2	36.0	27.0
+ n-gram LM	16.2	17.8	26.5	18.1	28.6	30.6	23.0
This work	23.8	38.0	31.0	28.7	33.5	45.0	33.3
+ n-gram LM	14.8	26.0	26.4	12.3	21.7	36.5	22.9

Table 2. Unsupervised ASR (w2v-U) vs. zero-shot ASR (This work). Results are in terms of phoneme error rate (PER) on MLS.

Table 3 shows that finetuning on only 6 languages of BABEL and CommonVoice outperforms wav2vec-U \([15]\) by 13.6% in terms of phonetic token error rate (PTER) on the test sets of a subset of BABEL languages. Cantonese and Lao are the unseen languages. Models are trained on 6 or 19 languages of BABEL (BB-6/19), 21 languages of CommonVoice (CV-21), Globalphone (GP) and the Spoken Dutch Corpus (CGN).

4.2. Comparison to other zero-shot work

Next, we compare performance to the zero-shot transfer learning approach of \([16]\) which used only the feature extractor of a wav2vec 2.0 model trained on English. The training data on CommonVoice and BABEL is prepared in the same way as \([16]\) and we report the same phonetic token error rate (PTER) metric, in which each IPA token is treated as separate suprasegmentals (such as long vowels, and primary stress symbol), tones, diphthongs and affricates.

Table 3. Comparison to prior zero-shot work \([16]\) in terms of phonetic token error rate (PTER) on the test sets of a subset of BABEL languages. Cantonese and Lao are the unseen languages. Models are trained on 6 or 19 languages of BABEL (BB-6/19), 21 languages of CommonVoice (CV-21), Globalphone (GP) and the Spoken Dutch Corpus (CGN).

	Gao et al. \([16]\)	This work	
BB Data	BB-6	BB-6	BB-19
Other Data	CGN+GP	-	CV-21
# hours / lang	all	all	10
# hours total	1,492	317	298
Supervised			
Bengali	38.2	36.1	40.7
Vietnamese	32.0	40.7	63.3
Zulu	35.2	34.6	44.1
Amharic	38.0	35.5	42.8
Javanese	44.2	40.2	49.1
Georgian	38.6	27.6	43.2
Zero-shot			
Cantonese	73.1	73.6	63.6
Lao	69.3	70.3	63.7

Table 3 shows that the performance of zero-shot transfer learning is on par to wav2vec-U \([15]\) while using a simpler training and inference pipeline.
Table 4. Effect of no pretraining, monolingual pre-training (w2v LV-60K) and multilingual pretraining (XLSR-53) in terms of PER on the test languages of CommonVoice.

# hours / lang	No pretrain	w2v LV-60K	XLSR-53
# hours total	149	1156	149

Language	10	200	10	10	149
it	47.5	41.8	16.9	13.9	
eu	45.6	32.1	16.3	13.7	
ia	27.8	23.0	6.7	6.1	
lv	59.8	56.5	33.5	32.3	
ka	56.1	48.9	24.0	23.8	
nl	56.8	56.1	30.5	19.8	
el	40.6	33.7	10.7	10.4	
ro	34.7	36.9	15.0	14.8	
mt	60.2	56.0	36.1	35.9	
tt	63.9	60.8	34.7	37.4	
fi	55.6	48.3	29.9	29.0	
sl	56.0	54.6	29.0	26.1	
pl	59.3	56.0	27.3	25.7	
Avg	51.1	46.5	23.9	22.2	

BEL (BB-6) with our method can outperform [16] on the supervised languages while using 317 hours of labeled data compared to nearly 1.5K hours. This shows that using the full pretraining model is beneficial. Our approach can outperform [16] on the zero-shot directions when we add CommonVoice data while restricting the amount of labeled data to 10 hours for each language. This results in fewer than 300 hours of labeled data since some languages do not even have 10 hours.

4.3. Ablations

In this section, we analyze the importance of pretraining, cross-lingual pretraining, lexicon construction strategies as well as the impact of different phonemizers. We use the CommonVoice benchmark for these experiments (Table 1).

4.3.1. Effect of multilingual pretraining

Multilingual pretraining plays an important role for the model to perform well on unseen languages. Table 1 shows that accuracy without pretraining performs vastly less well than pretraining-based approaches, even when the amount of labeled data is increased by up to a factor of 20. This is inline with prior work on automatic speech recognition [6]. Furthermore, multilingual pre-training (XLSR-53) performs better than monolingual pretraining on English data (w2v LV-60K) on every single language.

Table 5. Effect of lexicon construction strategies (§2.2) and different phonemizers (§3.2) on CommonVoice in terms of PER: tr2tgt denotes a lexicon constructed by mapping training language phonemes to target language phonemes and tgt2tr denotes the reverse strategy. Average PER excludes “eu” and “ia” since they are not supported by Phonetisaurus.

Phonemizer	Espeak	Phonetisaurus
Lexicon	tr2tgt	tgt2tr
Avg	24.5	24.6
	31.7	32.4

4.3.2. Comparison of lexicon and phonemizers

Next, we compare the decoding performance with different lexicons. Table 5 shows that tr2tgt is slightly better than tgt2tr on average for different phonemizers. Different phonemizers can generate fairly different phoneme sequences given the same word transcriptions which may impact the final performance of our models. To better understand the impact of this, we use both Espeak and Phonetisaurus (§3.2) and evaluate them on both types of lexicon construction techniques. Table 5 indicates that both phonemizers show the same trend in performance for tr2tgt/tgt2tr.

5. Conclusions

In this work, we investigate zero-shot transfer learning on cross-lingual phoneme recognition using a cross-lingually pretrained self-supervised model. Pretraining vastly improves accuracy over no pretraining, even when a moderate amount of labeled data is used, and cross-lingual pretraining performs better than monolingual pretraining. Our simple approach of fine-tuning a large pretrained model performs better than prior work which only used the feature extractor of a monolingually pre-trained wav2vec 2.0 model and which relied on task-specific architectures such as language embeddings. We also show that our approach performs on par to the recently introduced unsupervised speech recognition work of [15] which does not use labeled data from related languages and requires training separate models for each target language.
6. REFERENCES

[1] S. Dalmia, R. Sanabria, F. Metze, and A. Black, “Sequence-based multi-lingual low resource speech recognition,” in Proc. of ICASSP. IEEE, 2018.

[2] V. Pratap, A. Sriram, et al., “Massively multilingual asr: 50 languages, 1 model, 1 billion parameters,” arXiv preprint arXiv:2007.03001, 2020.

[3] Aä. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” in Proc. of NeurIPS, 2018.

[4] Y.-A. Chung and J. Glass, “Speech2vec: A sequence-to-sequence framework for learning word embeddings from speech,” in Proc. of Interspeech, 2018.

[5] Y.-A. Chung, W.-N. Hsu, H. Tang, and J. Glass, “An unsupervised autoregressive model for speech representation learning,” in Proc. of Interspeech, 2019.

[6] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for self-supervised learning of speech representations,” arXiv preprint arXiv:2006.11477, 2020.

[7] W.-N. Hsu et al., “Hubert: Self-supervised speech representation learning by masked prediction of hidden units,” arXiv preprint arXiv:2106.07447, 2021.

[8] G. Synnaeve, Q. Xu, et al., “End-to-end ASR: from Supervised to Semi-Supervised Learning with Modern Architectures,” arXiv, vol. abs/1911.08460, 2019.

[9] Q. Xu, T. Likhomanenko, J. Kahn, A. Hannun, G. Synnaeve, and R. Collobert, “Iterative pseudo-labeling for speech recognition,” arXiv, 2020.

[10] T. Likhomanenko, Q. Xu, J. Kahn, G. Synnaeve, and R. Collobert, “slimipl: Language-model-free iterative pseudo-labeling,” arXiv preprint arXiv:2010.11524, 2020.

[11] Qiantong X., Alexei B., et al., “Self-training and pre-training are complementary for speech recognition,” in Proc. of ICASSP. IEEE, 2021.

[12] D. Park, Y. Zhang, Y. Jia, et al., “Improved noisy student training for automatic speech recognition,” arXiv preprint arXiv:2005.09629, 2020.

[13] D. Liu, K.-Y. Chen, H.-Y. Lee, and L. s. Lee, “Completely unsupervised phoneme recognition by adversarially learning mapping relationships from audio embeddings,” in Proc. of Interspeech, 2018.

[14] K.-Y. Chen, C.-P. Tsai, D.-R. Liu, et al., “Completely unsupervised speech recognition by a generative adversarial network harmonized with iteratively refined hidden markov models,” in Proc. of Interspeech, 2019.

[15] A. Baevski, W.-N. Hsu, A. Conneau, and M. Auli, “Unsupervised speech recognition,” arXiv preprint arXiv:2105.11084, 2021.

[16] H. Gao, J. Ni, Y. Zhang, K. Qian, et al., “Zero-shot cross-lingual phonetic recognition with external language embedding,” in Proc. of Interspeech, 2021.

[17] X. Li, S. Dalmia, J. Li, et al., “Universal phone recognition with a multilingual allophone system,” in Proc. of ICASSP. IEEE, 2020.

[18] C. Jacobs and H. Kamper, “Multilingual transfer of acoustic word embeddings improves when training on languages related to the target zero-resource language,” arXiv preprint arXiv:2106.12834, 2021.

[19] B. Yan, S. Dalmia, D. Mortensen, F. Metze, and S. Watanabe, “Differentiable allophone graphs for language-universal speech recognition,” arXiv preprint arXiv:2107.11628, 2021.

[20] X. Li, S. Dalmia, D. Mortensen, et al., “Towards zero-shot learning for automatic phonemic transcriptions,” in Proc. of AAAI, 2020.

[21] G. Winata, G. Wang, C. Xiong, and S. Hoi, “Adapt-and-adjust: Overcoming the long-tail problem of multilingual speech recognition,” arXiv preprint arXiv:2012.01687, 2020.

[22] T. Schultz, “Globalphone: a multilingual speech and text database developed at karlsruhe university,” in ICSLP, 2002.

[23] A. Conneau, A. Baevski, R. Collobert, A. Mohamed, and M. Auli, “Unsupervised cross-lingual representation learning for speech recognition,” arXiv preprint arXiv:2006.13979, 2020.

[24] R. Ardila et al., “Common voice: A massively-multilingual speech corpus,” arXiv preprint arXiv:1912.06670, 2019.

[25] M. Gales, K. M Knill, A. Ragni, and S. Rath, “Speech recognition and keyword spotting for low-resource languages: Babel project research at cued,” in SLTU, 2014.

[26] V. Pratap, Q. Xu, A. Sriram, G. Synnaeve, and R. Collobert, “Mls: A large-scale multilingual dataset for speech research,” arXiv preprint arXiv:2012.03411, 2020.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv, 2018.

[28] A. Baevski, S. Schneider, and M. Auli, “vq-wav2vec: Self-supervised learning of discrete speech representations,” in Proc. of ICLR, 2020.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, and et al., “Attention is all you need,” in Proc. of NIPS, 2017.

[30] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., 2011.

[31] Eric Jang, Shixiang Gu, and Ben Poole, “Categorical reparameterization with gumbel-softmax,” arxiv, 2016.

[32] David R. M., Patrick L., et al., “Panphon: A resource for mapping IPA segments to articulatory feature vectors,” in Proc. of COLING. 2016, ACL.

[33] M. Hasegawa-Johnson et al., “Grapheme-to-phoneme transduction for cross-language asr,” in SLSP. Springer, 2020.

[34] M. Ott, S. Edunov, A. Baevski, et al., “fairseq: A fast, extensible toolkit for sequence modeling,” arXiv preprint arXiv:1904.01038, 2019.

[35] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber, “Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks,” in Proc. of ICML, 2006.

[36] V. Pratap, A. Hannun, Q. Xu, et al., “Wav2letter+: A fast open-source speech recognition system,” in Proc. of ICASSP. IEEE, 2019.
Table 6. Statistics of languages from CommonVoice and the ones that are supported in Espeak and Phonetisaurus phonemizers. The languages denoted with * are potentially not well supported by Espeak phonemizer, so we manually removed them in either train or test set.

Dataset	Code	Lang	Family	Split	Hours	Phonemizer	
				train	valid	test	
	eo	esperanto	Constructed	train	34.0	13.3 14.3	eo espeak
	lt	lithuanian	Baltic	train	1.2	0.4 0.7	lt lithuanian
	cy	welsh	Celtic	train	9.1	6.8 7.0	cy
	ta	tamil	Dravidian	train	2.4	2.2 2.3	ta tamil
	sv-SE	swedish	North Germanic	train	2.1	1.7 1.8	sv-SE swedish
	de	german	West Germanic	train	392.7	25.0 25.5	de german
	en	english	West Germanic	train	893.5	27.2 26.0	en english
	as	assamese	Indic	train	0.4	0.2 0.2	as assamese
	hi	hindi	Indic	train	0.2	0.2 0.2	hi hindi
	or	oriya	Indic	train	0.6	0.2 0.2	or oriya
	fa	persian	Iranian	train	7.7	6.5 7.2	fa persian
	ja*	japanese	Japonic	train	0.9	0.8 0.9	ja japanese
	id	indonesian	Austronesian	train	2.1	1.9 2.0	id indonesian
	ca	catalan	Romance	train	441.5	24.0 24.9	ca
	es	spanish	Romance	train	235.1	25.0 25.7	es spanish
	fr	french	Romance	train	424.5	24.0 24.5	fr french
	pt	portuguese	Romance	train	7.8	5.6 6.1	pt portuguese
	ar	arabic	Semitic	train	16.0	8.8 9.1	ar arabic
	zh-CN	chinese	Sino-Tibetan	train	26.6	13.3 14.1	zh-CN mandarin
	zh-TW	chinese	Sino-Tibetan	train	3.0	2.4 2.6	zh-TW mandarin
	tr	turkish	Turkic	train	2.0	1.9 2.1	tr turkish
	ky	kirghiz	Turkic	train	2.6	2.1 1.9	ky kirghiz
	et	estonian	Uralic	train	5.5	4.7 4.6	et estonian
	hu	hungarian	Uralic	train	4.3	1.7 1.9	hu hungarian
	ru	russian	East Slavic	train	23.5	12.3 13.2	ru russian
	cs	czech	West Slavic	train	7.3	5.0 5.0	cs czech
	it	italian	Romance	dev	86.2	21.0 22.1	it italian
	eu	basque	Language isolate	test	10.9	7.8 8.2	eu
	ia	interlingua	Constructed	test	2.2	1.5 0.8	ia
	lv	latvian	Baltic	test	1.9	1.6 1.6	lv latvian
	ka	georgian	South Caucasian	test	1.6	0.9 1.0	ka georgian
	nl	dutch	West Germanic	test	11.5	6.4 7.0	nl dutch
	el	greek	Hellenic	test	2.8	1.5 1.8	el greek
	ro	romanian	Romance	test	3.6	1.0 2.0	ro romanian
	mt	maltese	Semitic	test	2.3	1.8 2.1	mt maltese
	tt	tatar	Turkic	test	11.5	2.0 4.4	tt tatar
	fi	finnish	Uralic	test	0.5	0.5 0.6	fi finnish
	sl	slovenian	South Slavic	test	1.9	0.5 0.7	sl slovenian
	pl	polish	West Slavic	test	9.3	6.6 7.0	pl polish
	ga-IE*	irish	Celtic	test	0.5	0.4 0.5	ga irish
	zh-HK*	chinese	Sino-Tibetan	test	3.9	3.1 3.6	zh-HK yue
	pa-IN*	punjabi	Indic	test	0.2	0.1 0.1	pa punjabi

CV
Table 7. Statistics of languages from Babel and the ones that are supported in Espeak and Phonetisaurus phonemizers.

Dataset	Code	Lang	Family	Hours	Phonemizer			
				train	valid	test	Espeak	Phonetisaurus
Babel	307	Amharic	Semitic	39.4	4.4	11.7	am	amharic.8_2.4.fst
	103	Bengali	Indic	56.4	6.3	10.0	bn	bengali.4_3_2.fst
	301	Cebuano		37.4	4.2	10.4	cebuano.4_3_2.fst	
	201	Haitian	Creole	61.0	6.7	10.8	ht	haitian.8_3_3.fst
	402	Javanese	Austronesian	41.1	4.6	11.4	javanese.4_2_2.fst	
	202	Swahili	Bantu	40.1	4.5	10.7	sw	swahili.4_2_2.fst
	204	Tamil	Dravidian	62.6	7.0	11.6	ta	tamil.2_3_3.fst
	107	Vietnamese	Austroasiatic	78.8	8.8	11.0	vi	vietnamese.2_2_2.fst
	102	Assamese	Indic	54.8	6.1	10.0	as	assamese.4_2_3.fst
	403	Dholuo		37.6	4.1	10.1	luo	luo.4_2_2.fst
	305	Guaraní	South American Indian	38.9	4.3	10.6	gn	guaraní.4_2_2.fst
	306	Igbo	Niger–Congo	39.7	4.4	10.9	igbo	igbo.4_3_4.fst
	302	Kazakh	Turkic	36.1	4.0	9.8	kk	kazakh.2_3_2.fst
	104	Pashto	Indo-European	70.7	7.8	10.0	pushto	pushto.8_3_2.fst
	106	Tagalog	Austronesian	76.2	8.6	10.7	tagalog	tagalog.4_2_3.fst
	303	Telugu	Dravidian	38.1	4.3	9.9	te	telugu.4_4_4.fst
	105	Turkish	Turkic	70.0	7.8	9.9	tr	turkish.download.fst
	206	Zulu	Niger–Congo	56.4	6.2	10.5	zulu	zulu.4_2_4.fst
	404	Georgian	South Caucasian	45.5	5.1	12.4	ka	georgian.4_2_3.fst
	101	Cantonese	Sino-Tibetan	120.3	13.5	17.0	yue	yue.2_2_4.fst
	203	Lao	Tai–Kadai	59.2	6.5	10.6	luo	luo.2_2_2.fst

Table 8. Comparison of PER on the test set of a subset of Common Voice languages. tr2tgt lexicon is used in beam-search decoding by default, while tgt2tr lexicon is used only for the columns denoted with *. The numbers in the parenthesis next to each pre-trained model is the maximum number of hours per language in the training set.

Pretrain Phonemizer	- (10)	- (200)	EN - LV (10)	XLSR - 53 (10)	XLSR - 53 (10)	
	Espeak	n-gram	Espeak	Espeak	Espeak	
	viterbi	n-gram	viterbi	viterbi	viterbi	
it	56.6	47.5	50.1	41.8	31.8	
eu	51.2	45.6	39.7	32.1	24.8	
ia	38.9	27.8	30.9	23.0	12.7	
lv	65.2	59.8	62.7	56.5	41.9	
ka	61.8	56.1	54.6	48.9	29.1	
nl	66.3	56.8	63.0	56.1	46.8	
el	49.5	40.6	42.1	33.7	18.9	
ro	45.7	34.7	46.7	36.9	21.3	
mt	66.3	60.2	62.0	56.0	47.4	
tt	68.2	63.9	65.1	60.8	46.2	
fi	58.8	55.6	53.8	48.3	36.8	
sl	62.9	56.0	60.5	54.6	43.5	
pl	62.3	59.3	60.2	56.0	36.1	
Avg	58.0	51.1	53.2	46.5	33.6	23.9
	31.4	22.2	22.3	39.5	31.7	32.4
A. DATASET DETAILS

In this section, we summarize the details of CommonVoice and BABEL datasets. Specifically we list the code and name of each language together with the family they belong to. We also show the duration in hours of each split of each language. The amount of training data varies a lot in CommonVoice dataset. We subsample the training data for high resource languages included in the training set. Cantonese and Lao are the unseen languages. BB and CV represents BABEL and CommonVoice dataset and the following numbers are the number of the languages and it is good for zero-shot transfer learning. Besides, Vietnamese (vi) and Chinese family (zh-CN, zh-TW, zh-HK) also scatter around the whole plot, meaning that IPA phoneme symbols are commonly shared across different languages and it is good for zero-shot transfer learning. Besides, Vietnamese (vi) and Chinese family (zh-CN, zh-TW, zh-HK) seems isolated to others, as their phoneme symbols include tones. Specifically, vowels like ‘ou’ can be denoted as one of the following: ‘ou1’, ‘ou2’, ‘ou3’, ‘ou4’, ‘ou5’ and ‘ou6’. They are intrinsically both hard to learn and hard to predict.

C. FULL COMPARISON ON COMMONVOICE

We summarize all the results on CommonVoice in Table 8. Apart from the analysis in the ablation section, we can also find that beam-search decoding consistently helps to improve the model performance for all languages in all the settings. The results in Table 8 shows that the trend of accuracy on unseen languages is similar across phonemizers.

D. FULL RESULTS ON BABEL

As shown in Table 9 with finetuning on only the BABEL subset of 16’s training data, our method performs better on the supervised languages already, indicating that the wav2vec Transformer blocks, that are not included in 16, benefit the model learning a lot. Additionally, models trained with mixed CommonVoice and BABEL data generalize better than the ones trained on either one of them on the unseen languages. It also surpasses 16 with using an extra learned language encoder.

Table 9. Comparison to prior zero-shot work [16] in terms of phonetic token error rate (PTER) on the test sets of a subset of BABEL languages. Cantonese and Lao are the unseen languages. BB and CV represents BABEL and CommonVoice dataset and the following numbers are the number of the languages included in the training set.

BB Data	BB-6[16]	BB-6	BB-19	-	BB-19
Other Data	CGN+GP	-	-	CV-21	CV-21
# hours / lang	all	all	all	10	10
# hours total	1,492	317	935	118	298
Bengali	38.2	36.1	35.4	53.2	40.7
Vietnamese	**32.0**	40.7	42.1	71.0	63.3
Zulu	35.2	**34.6**	34.8	61.0	44.1
Amharic	38.0	**35.5**	35.5	63.2	42.8
Javanese	44.2	**40.2**	40.8	57.4	49.1
Georgian	38.6	**27.6**	43.8	51.6	43.2
Cantonese	73.1	73.6	72.6	70.9	**63.6**
Lao	69.3	70.3	70.2	72.1	**63.7**

Fig. 1. Correlation between each pair of languages in CommonVoice dataset.

B. LANGUAGE CORRELATION

We simply denote the correlation between each pair of languages by \(\text{cor}(l_1, l_2) = \frac{|\text{vocab}(l_1) \cup \text{vocab}(l_2)|}{|\text{vocab}(l_1)|} \), where \(l_1 \) and \(l_2 \) are two languages and \(\text{vocab}() \) denotes the phoneme vocabulary of a given language. Figure 1 shows the correlations between pairs of CommonVoice languages. Since languages are ordered purely by family, it is reasonable to see high correlations on the diagonal blocks. However, this high correlation also scatter around the whole plot, meaning that IPA phoneme symbols are commonly shared across different languages and it is good for zero-shot transfer learning. Besides, Vietnamese (vi) and Chinese family (zh-CN, zh-TW, zh-HK) seems isolated to others, as their phoneme symbols include tones. Specifically, vowels like ‘ou’ can be denoted as one of the following: ‘ou1’, ‘ou2’, ‘ou3’, ‘ou4’, ‘ou5’ and ‘ou6’. They are intrinsically both hard to learn and hard to predict.

https://github.com/uiuc-sst/g2ps

4https://github.com/uiuc-sst/g2ps