Superconductivity enhanced by d-band filling in $\text{La}Tr_2\text{Al}_{20}$ with $Tr = \text{Mo}$ and W

Rumika Miyawaki, Naoki Nakamura, Ryuji Higashinaka, Tatsuma D. Matsuda, and Yuji Aoki

Department of Physics,
Tokyo Metropolitan University,
Hachioji, Tokyo 192-0397, Japan

(Dated: September 30, 2020)

Abstract

Electrical resistivity, magnetic susceptibility, and specific heat measurements on single crystals of $\text{La}Tr_2\text{Al}_{20}$ with $Tr = \text{Mo}$ and W revealed that these compounds exhibit superconductivity with transition temperatures $T_c = 3.22$ and 1.81 K, respectively, achieving the highest values in the reported $\text{La}Tr_2\text{Al}_{20}$ compounds. There appears a positive correlation between T_c and the electronic specific heat coefficient, which increases with increasing the number of 4d- and 5d-electrons. This finding indicates that filling of the upper e_g orbitals in the 4d and 5d bands plays an essential role for the significant enhancement of the superconducting condensation energy. Possible roles played by the d electrons in the strongly correlated electron phenomena appearing in $RTr_2\text{Al}_{20}$ are discussed.
I. INTRODUCTION

Ternary intermetallic compounds containing rare-earth ions are the subject of continuous interest in the fields of strongly correlated electron physics. Among them, a family of RTr_2X_{20} (R: rare earths, Tr: transition metals, X: Al, Zn, and Cd), which crystallize in the cubic CeCr$_2$Al$_{20}$-type structure ($Fd\bar{3}m$, #227), have attracted considerable attention in recent years, because a wide variety of exotic electron states caused by strong hybridization of f-electrons with non-f-ligands have been observed. A heavy fermion (HF) behavior appears in YbCo$_2$Zn$_{20}$ with an electronic specific heat coefficient of 8 J/(mol K2), which is the largest among Yb compounds [1–3]. In a HF state of YbIr$_2$Zn$_{20}$, a metamagnetic anomaly occurs at around 10 T [4]. SmTr_2Al$_{20}$ (Tr = Ti, V, Nb, and Ta) exhibit rare Sm-based HF behaviors, which are anomalously field-insensitive [5–8]. Many of PrTr_2X_{20} compounds have a non-Kramers Γ_3 doublet crystalline-electric-field ground state of Pr ions, and exhibit quadrupole Kondo lattice behaviors [9–14]. Therefore, the superconductivity (SC) appearing in the PrTr_2X_{20} compounds is presumed to be induced by quadrupolar fluctuations [15–19]. In Ce- and U-based compounds, strongly correlated electron behaviors have also been reported [20–22].

The SC appearing in RTr_2X_{20} with nonmagnetic R ions has been discussed in terms of the cage structure, which is one of the characteristic features of the CeCr$_2$Al$_{20}$-type crystal structure. The R ions at the $8a$ site with cubic T_d symmetry are located at the center of an X_{16} cage. In RV$_2$Al$_{20}$ with R = Al and Ga (the SC transition temperatures T_c are 1.49 and 1.66 K, respectively), the cage-center R ions show anharmonic large-amplitude oscillations as observed in filled skutterudites [23], which are considered to enhance T_c through the electron-phonon coupling [24–27]. Superconductors of R = Sc, Y, and Lu seems to have similar features [28]. For recently-found superconductors of LaTr_2Al$_{20}$ with Tr = Ti, V, Nb, and Ta (T_c ranging from 0.15 to 1.05 K) [29], however, the cage does not have enough space for such anharmonic large-amplitude oscillations and the reason for the largely distributed T_c remains to be clarified.

In this paper, we study LaTr_2Al$_{20}$ with Tr = Mo and W using single crystals. The results reveal that these compounds are new superconductors with the highest T_c values among LaTr_2Al$_{20}$ compounds. Comparison among all these compounds suggests that the d-band filling plays an essential role for determining the superconducting properties in LaTr_2Al$_{20}$.
TABLE I. Crystallographic parameters of LaTr$_2$Al$_{20}$ ($Tr = \text{Mo and W}$) at room temperature. R and wR are reliability factors. B_{eq} is the equivalent isotropic atomic displacement parameter. Occ. is the site occupancy. Standard deviations in the positions of the least significant digits are given in parentheses.

Atom	Site	x	y	z	B_{eq}(Å2)	Occ.
La	8a	1/8	1/8	1/8	0.738(17)	1
Mo	16d	1/2	1/2	1/2	0.54(2)	0.928(4)
Al(1)	96g	0.05870(5)	0.05870(5)	0.32549(7)	0.82(3)	1
Al(2)	48f	0.48694(10)	1/8	1/8	0.82(3)	1
Al(3)	16c	0	0	0	1.79(5)	1

LaMo$_2$Al$_{20}$ \[R = 1.94\%, \ wR = 3.67\% \quad Fd\overline{3}m \ (\#227) \ (\text{origin choice 2}) \ a = 14.6631(13) \ \text{Å}, \ V = 3152.7(5) \ \text{Å}^3 \]

Atom	Site	x	y	z	B_{eq}(Å2)	Occ.
La	8a	1/8	1/8	1/8	0.667(15)	1
W	16d	1/2	1/2	1/2	0.437(12)	0.848(2)
Al(1)	96g	0.05872(4)	0.05872(4)	0.32575(6)	0.89(2)	1
Al(2)	48f	0.48720(9)	1/8	1/8	0.91(2)	1
Al(3)	16c	0	0	0	1.74(5)	1

LaW$_2$Al$_{20}$ \[R = 1.04\%, \ wR = 2.76\% \quad Fd\overline{3}m \ (\#227) \ (\text{origin choice 2}) \ a = 14.6813(11) \ \text{Å}, \ V = 3164.4(4) \ \text{Å}^3 \]

II. EXPERIMENTAL DETAILS

Single crystals of LaTr$_2$Al$_{20}$ ($Tr = \text{Mo and W}$) were grown by the Al self-flux method. The starting materials were La chips (99.9%), Al grains (99.99%) and powders of Mo (99.99%) and W (99.99%). With an atomic ratio of La:Mo:Al = 1:2:50 and La:W:Al = 1:2:90, the starting materials were put in an alumina crucible and sealed in a quartz tube. The quartz tube was heated up to 1050
°C and then slowly cooled. Single crystals were obtained by spinning the ampoule in a centrifuge in order to remove the excess Al flux.

The electrical resistivity \(\rho \) and specific heat \(C \) were measured using a Quantum Design (QD) Physical Property Measurement System (PPMS) equipped with a Helium-3 cryostat. The magnetic susceptibility \(\chi \) was measured down to 2 K using a QD Magnetic Property Measurement System (MPMS).

III. RESULTS AND DISCUSSION

Single crystal X-ray diffraction analysis was performed using a Rigaku XtaLABmini with graphite monochromated Mo-K\(\alpha\) radiation. The structural parameters refined using the program SHELX-97 [30] are shown in Table I. The lattice parameters \(a \) are close to those in the previous report [33]. The equivalent isotropic atomic displacement parameter \(B_{eq} \) of Al(3) at the 16c site has relatively large values: \(B_{eq} = 1.74 - 1.79 \, \text{Å}^2 \). This feature is characteristic to \(RTr_2X_{20} \) compounds; see Refs. [29, 34, 35] for \(X = \text{Al} \) and Refs. [15, 31, 32] for \(X = \text{Zn} \). The cage-center La ions at the 8a site have normal values, in contrast to \(R_xV_2\text{Al}_{20} \) \((R = \text{Al} \text{ and Ga})\), in which the cage-center \(R \) ions are suggested to have anharmonic rattling modes [24-27]. The occupancy of Mo and W sites was found to be less than one. Similar feature was also observed for CeMo\(_2\)Al\(_{20}\) [33]. This could mean that these \(Tr \) sites are partially substituted by Al atoms because of the similarity in the metallic radii [36].

The temperature dependence of resistivity \(\rho(T) \) divided by \(\rho(300 \, \text{K}) \) is shown in Fig. 1. The residual resistivity ratio \(RRR \equiv \rho(300 \, \text{K})/\rho_{\text{res}} \) (\(\rho_{\text{res}} \): the residual resistivity) is 1.8 for W and 9.1 for Mo. Figures 2(a-d) show the low-temperature expansion of \(\rho(T, H) \) data. In zero field, both compounds show SC transitions with the onset at 3.4 K for Mo and 2.6 K for W. In the applied fields, the transition temperature shifts to lower temperatures. The details are discussed below.

The temperature dependence of specific heat \(C \) divided by temperature as a function of \(T^2 \) is shown in Fig. 3. The normal-state \(C/T \) data can be well described by \(C/T = \gamma + \beta T^2 \), where \(\gamma \) and \(\beta \) are the electronic and phonon specific heat coefficients, respectively. The Debye temperature \(\Theta_D \) is obtained from \(\Theta_D = \frac{3}{\sqrt{12/5}}\pi^4 n R / \beta \), where \(n = 23 \) is the number of atoms per formula unit and \(R \) is the gas constant. The obtained parameters are summarized in Table II.

The temperature dependence of the electronic contribution to the specific heat \(C_{el}/T \equiv C/T - \beta T^2 \) is shown in Fig. 4. A clear specific heat jump appears at 3.22 K (Mo) and 1.81 K (W), which
FIG. 1. (a) Temperature dependence of electrical resistivity ρ for La$\text{Tr}_2\text{Al}_{20}$ ($\text{Tr} = \text{Mo}$ and W) with the current along the $\langle 110 \rangle$ direction.

FIG. 2. Temperature and magnetic field dependences of electrical resistivity ρ for La$\text{Tr}_2\text{Al}_{20}$ ($\text{Tr} = \text{Mo}$ and W) measured at low temperatures with the current along the $[1\bar{1}0]$ direction in the fields along the $[111]$ direction.
FIG. 3. Temperature dependence of specific heat C divided by temperature as a function of T^2 for LaTr_2Al$_{20}$ ($Tr = Mo$ and W).

is referred to as the bulk SC transition temperature T_c hereinafter. The fitting of the $C_{el}(T)$ data by the α model [37, 38] is shown by the solid curve. The obtained α value is 1.74 and 1.75 for Mo and W, respectively, which is close to 1.764 expected from the BCS theory, suggesting that they are weak-coupling superconductors.

The bulk nature of the superconductivity in LaMo$_2$Al$_{20}$ has been confirmed by magnetic-susceptibility (χ) measurements. The temperature dependence of χ measured in 10 Oe is shown in Fig. 5. The diamagnetic signal develops below T_c. The $4\pi\chi$ values of the order of -1 far below T_c suggest that the SC volume fraction reaches approximately 100%.

The H-vs-T SC phase diagram constructed using the ρ, C_{el}, and χ data is shown in Fig. 6.
FIG. 4. Temperature dependence of the electronic contribution to the specific heat C_{el}/T (the upper panel) and $H_{c2}(0)$ (the lower panel) for LaT_2Al_{20} ($T = Mo$ and W). The solid curves represent the fitting by the α model [37, 38].

The values of $H_{c2}(0)$ are much lower than the Pauli-limiting field $H_P = (1.84 \times 10^4 \text{ Oe/K}) T_c$ [39], suggesting that $H_{c2}(0)$ is determined by the orbital depairing effect. The temperature dependence of H_{c2} can be well described by the Werthamer-Helfand-Hohenberg (WHH) clean-limit expression [40, 41], as shown by the solid curves in Fig. 6. In this model, $H_{c2}(0)$ can be expressed as

$$H_{c2}(0) = -0.73 \times \left. \frac{dH_{c2}}{dT} \right|_{T = T_c} T_c = \frac{\phi_0}{2\pi\xi_{GL}^2},$$

(1)

where ϕ_0 and ξ_{GL} are the quantum magnetic flux and the Ginzburg-Landau (GL) coherence length, respectively. The GL parameter κ_{GL}, which is equal to the Maki parameter [42] $\kappa_2(T \rightarrow T_c)$, is
FIG. 5. Temperature dependence of magnetic susceptibility χ for LaMo$_2$Al$_{20}$. The zero-field-cooled (ZFC) warming data and the field-cooled (FC) data for the applied magnetic field of 10 Oe are shown.

determined using the thermodynamic relation [43]:

$$\frac{\Delta C_{\text{vol}}}{T} \bigg|_{T=T_c} = \left(\frac{dH_c}{dT} \bigg|_{T=T_c} \right)^2 \frac{1}{4\pi(2\kappa^2 - 1)\beta_A},$$

where ΔC_{vol} is measured per unit volume [unit: erg/(K cm3)], and $\beta_A = 1.16$ for a triangular vortex lattice. The thermodynamic critical field $H_c(0) = \alpha \sqrt{6/\pi} \gamma_{\text{vol}} T_c$ [38], the London penetration depth $\lambda_L = \kappa_G \xi_G$, and the lower critical field $H_{c1} = H_c(0) \ln \kappa_G / (\sqrt{2}\kappa_G)$ are also calculated. The obtained characteristic parameters are summarized in Table II.

The electron-phonon coupling constant $\lambda_{\text{e-ph}}$ is obtained using McMillan’s formula

$$\lambda_{\text{e-ph}} = \frac{1.04 + \mu^* \ln(\frac{\theta_D}{1.45T_c})}{(1 - 0.62\mu^*) \ln(\frac{\theta_D}{1.45T_c}) - 1.04},$$

where the Coulomb coupling constant μ^* is assumed to be 0.13 [44]. The fact that $\lambda_{\text{e-ph}} = 0.48 - 0.50$ is consistent with the above-mentioned weak-coupling nature of the superconductivity.

In the crystal structure of RTr_2Al_{20}, the Al$_{16}$ cage includes a guest R ion at the center ($8a$ site) as shown in the inset of Fig. 7. In Ref. [29], we have introduced a parameter to quantify the “guest free space” as $d_{\text{GFS}} \equiv d_{R-Al} - (r_R + r_{Al})$, where $d_{R-Al} \equiv (12d_{R-Al}(96g) + 4d_{R-Al(16c)})/16$ is the average distance between R and Al in the cage, and r_R and r_{Al} are the covalent radii for R and Al ions, respectively [45]. d_{R-Al} is calculated using the results of the single-crystal X-ray diffraction
FIG. 6. H-T phase diagram of La$\mathrm{Tr}_2\mathrm{Al}_{20}$ with $\mathrm{Tr} = \mathrm{Mo}$ and W in comparison with $\mathrm{Tr} = \mathrm{Nb}$ and Ta [29]. Filled circles represent the bulk SC transition points obtained from the $C(T, H)$ data, which can be well described by the Werthamer-Helfand-Hohenberg (WHH) clean-limit model (solid curves) [40, 41]. The “cross” and “plus” symbols designate resistive transition points defined at 75% and 0% of the normal-state resistance, respectively. These points obtained from the $\rho(T, H)$ data provide higher values of T_c and H_{c2} compared to those from the $C(T, H)$ data, more significantly for $\mathrm{Tr} = \mathrm{W}$. This observation indicates that a minor part of the single crystal has higher T_c’s and H_{c2}’s, which are detected by the ρ measurements.

In Fig. 7, we show T_c vs. d_{GFS} for $R\mathrm{Tr}_2\mathrm{Al}_{20}$ with nonmagnetic R ions; this is a revised one of Fig. 5 in Ref. [29]. Nonmagnetic $R\mathrm{Tr}_2\mathrm{Al}_{20}$ superconductors are classified into two groups, i.e., (A) $d_{\mathrm{GFS}} \neq 0$ and T_c correlates with d_{GFS}, and (B) $d_{\mathrm{GFS}} \approx 0$ and T_c seems to be governed by other factors. For group (A), it is thought that T_c is enhanced by the “rattling” anharmonic vibration modes of Ga, Al, Sc, and Lu ions due to the coupling with conduction electrons [24–28]. In contrast, all the data points in group (B) fall almost into a vertical line with $d_{\mathrm{GFS}} \approx 0$, indicating that these La$\mathrm{Tr}_2\mathrm{Al}_{20}$ compounds do not have guest free space and the large T_c distribution is not associated with the La ion oscillations.

The distribution of T_c among La$\mathrm{Tr}_2\mathrm{Al}_{20}$ is remarkably large; $T_c(\mathrm{Tr} = \mathrm{Mo})/T_c(\mathrm{Tr} = \mathrm{V}) = 3.22/0.15 \approx 22$. Figure 8 shows T_c vs. the electronic specific heat coefficient γ for all La$\mathrm{Tr}_2\mathrm{Al}_{20}$ superconductors. This figure clearly demonstrates that there is a positive correlation between T_c and γ. Tr ions are located at sites with trigonal point symmetry D_{3d}. Due to the crystalline-electric field effect, the fivefold degenerate d orbitals of a Tr ion split into a low-energy singlet (a_{1g}) and
FIG. 7. T_c vs $d_{\text{GFS}} \equiv d_{R-\text{Al}} - (r_R + r_{\text{Al}})$ quantifying the “guest free space” of nonmagnetic cage-center R ions for $RTr_2\text{Al}_{20}$ (see text for details). The data except for LaMo$_2$Al$_{20}$ and LaW$_2$Al$_{20}$ are taken from Fig. 5 in Ref. [29]. This figure demonstrates that nonmagnetic $RTr_2\text{Al}_{20}$ superconductors are classified into two groups, i.e., (A) $d_{\text{GFS}} \neq 0$ and T_c correlates with d_{GFS}, and (B) $d_{\text{GFS}} \approx 0$ and T_c seems to be governed by other factors. Note that superconductors PrTi$_2$Al$_{20}$ [16] and PrV$_2$Al$_{20}$ [18], and field-insensitive HF compounds Sm$Tr_2\text{Al}_{20}$ ($Tr=\text{Ti, V, Cr, and Ta}$) [5–7] also have $d_{\text{GFS}} \approx 0$. The inset picture shows the structure of a $R(8a)$-$\text{Al}_{16}(96g, 16c)$ cage; Al_{16} forms a CN 16 Frank-Kasper polyhedron.

FIG. 8. T_c vs the electronic specific heat coefficient γ for La$Tr_2\text{Al}_{20}$.
TABLE II. Characteristic parameters of LaTr$_2$Al$_{20}$ superconductors (see text for definitions). The errors in the last significant digit(s) are indicated in parentheses.

compounds	LaMo$_2$Al$_{20}$	LaW$_2$Al$_{20}$	
T_c (K)	3.22	1.81	
γ (mJ/mol K2)	33.1	26.7	
α	1.74	1.75	
$\Delta C/\gamma T_c$	1.32	1.37	
Θ_D (K)	511	383	
λ_{e-ph}	0.504	0.476	
$H_c(0)$ (Oe)	219	111	
$dH_{c2}/dT	_{T=T_c}$ (Oe/K)	-3240	-2860
$H_{c2}(0)$ (Oe)	7620	3770	
ξ_{GL} (Å)	207	295	
$\kappa_{GL} = \kappa_2(T \rightarrow T_c)$	14.0	13.5	
$\lambda_L = \kappa_{GL} \xi_{GL}$ (Å)	2900	3980	
$H_{c1}(0)$ (Oe)	29	15	

Two high-energy doublets (e_g) \[46\]. Electronic band structure calculations for Tr = Ti, V, and Cr \[46\] suggest that there is a ferromagnetic instability, which becomes more dominant with 3d-electron filling into the upper e_g orbitals approaching Cr; the calculated Stoner factor of LaCr$_2$Al$_{20}$ is relatively high although no ferromagnetic ordering has been observed experimentally. This instability may be one of the possible reasons for the suppressed T_c values for those 3d compounds. On the contrary, for the 4d and 5d compounds, Fig. 8 demonstrates that the 4d(5d) electron filling with Nb→Mo (Ta→W) boosts up the T_c value. The increased γ values with the electron filling indicate enhancements in the density of states at the Fermi energy and/or in the effective mass of conduction electrons for Tr = Mo and W. Actually, as shown in Fig. 8 $dH_{c2}/dT |_{T=T_c}$ increases as Nb→Mo (Ta→W), providing evidence for the mass enhancement. With these features, we speculate that the filling of the upper e_g orbitals in the 4d(5d) bands significantly enhances the SC condensation energy.
IV. SUMMARY

We have studied the electrical resistivity, magnetic susceptibility, and specific heat of single crystalline LaMo$_2$Al$_{20}$ and LaW$_2$Al$_{20}$. It has been revealed that these compounds exhibit superconductivity with transition temperatures $T_c = 3.22$ and 1.81 K, respectively, achieving the highest values in the reported LaTr_2Al$_{20}$ compounds. The values of T_c exhibit a positive correlation with the electronic specific heat coefficient γ, which increases with the 4d and 5d electron filling. This finding indicates that the upper e_g orbitals in the 4d and 5d bands play an essential role for the significant enhancement of the SC condensation energy.

In the realization of the several types of strongly correlated electron phenomena in RTr_2Al$_{20}$, the roles played by d electrons have not been clarified yet. According to the calculated band structures \[46\], the Fermi surface structures change drastically with the d band filling. Therefore, the strength of hybridization with the f electrons of R ions is expected to change depending on the Tr elements. Further studies on the features of d electron orbitals in RTr_2Al$_{20}$ may help to understand the unsolved problems in Sm-based field-insensitive heavy-fermion behaviors and Pr-based quadrupole Kondo lattice behaviors accompanied by superconductivity induced by quadrupolar fluctuations.

ACKNOWLEDGMENTS

This work was supported by MEXT/JSPS KAKENHI Grant Numbers 15H03693, 15H05884, 15J07600, 15K05178, 19H01839 and Tokyo Metropolitan Government Advanced Research Grant Number (H31-1).

[1] M. S. Torikachvili, S. Jia, E. D. Mun, S. T. Hannahs, R. C. Black, W. K. Neils, D. Martien, S. L. Bud'ko, and P. C. Canfield, Proc. Natl. Acad. Sci. U.S.A. 104, 9960 (2007).
[2] F. Honda, Y. Taga, Y. Hirose, S. Yoshiuchi, Y. Tomooka, M. Ohya, J. Sakaguchi, T. Takeuchi, R. Settai, Y. Shimura, T. Sakakibara, I. Sheikin, T. Tanaka, Y. Kubo, and Y. Ōnuki, J. Phys. Soc. Jpn. 83, 044703 (2014).
[3] T. Kong, V. Taufour, S.L. Bud’ko, and P. Canfield, Phys. Rev. B 95, 155103 (2017).
[4] T. Takeuchi, S. Yasui, M. Toda, M. Matsushita, S. Yoshiuchi, M. Ohya, K. Katayama, Y. Hirose, N.
Yoshitani, F. Honda, K. Sugiyama, M. Hagiwara, K. Kindo, E. Yamamoto, Y. Haga, T. Tanaka, Y. Kubo, R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 79, 064609 (2010).

[5] R. Higashinaka, T. Maruyama, A. Nakama, R. Miyazaki, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. 80, 093703 (2011).

[6] A. Sakai and S. Nakatsuji, Phys. Rev. B 84, 201106(R) (2011).

[7] A. Yamada, R. Higashinaka, R. Miyazaki, K. Fushiya, T. D. Matsuda, Y. Aoki, W. Fujita, H. Harima, and H. Sato, J. Phys. Soc. Jpn. 82, 123710 (2013).

[8] R. Higashinaka, A. Yamada, T. D. Matsuda, Y. Aoki, AIP Advances 8, 125017 (2018).

[9] D. L. Cox, Phys. Rev. Lett. 59, 1240 (1987).

[10] A. Tsuruta and K. Miyake, J. Phys. Soc. Jpn. 84, 114714 (2015).

[11] A. Sakai and S. Nakatsuji, J. Phys. Soc. Jpn. 80, 063701 (2011).

[12] T. Onimaru and H. Kusunose, J. Phys. Soc. Jpn. 85, 082002 (2016).

[13] T. Yoshida, Y. Machida, K. Izawa, Y. Shimada, N. Nagasawa, T. Onimaru, T. Takabatake, A. Gourgout, A. Pourret, G. Knebel, and J.-P. Brison, J. Phys. Soc. Jpn. 86, 044711 (2017).

[14] R. Higashinaka, A. Nakama, R. Miyazaki, J. Yamaura, H. Sato, and Y. Aoki, J. Phys. Soc. Jpn. 86, 103703 (2017).

[15] T. Onimaru, K. T. Matsumoto, Y. F. Inoue, K. Umeo, T. Sakakibara, Y. Karaki, M. Kubota, and T. Takabatake, Phys. Rev. Lett. 106, 177001 (2011).

[16] A. Sakai, K. Kuga, and S. Nakatsuji, J. Phys. Soc. Jpn. 81, 083702 (2012).

[17] K. Matsubayashi, T. Tanaka, A. Sakai, S. Nakatsuji, Y. Kubo, and Y. Uwatoko, Phys. Rev. Lett. 109, 187004 (2012).

[18] M. Tsujimoto, Y. Matsumoto, T. Tomita, A. Sakai, and S. Nakatsuji, Phys. Rev. Lett. 113, 267001 (2014).

[19] K. Wakiya, T. Onimaru, K. Matsumoto, Y. Yamane, N. Nagasawa, K. Umeo, S. Kittaka, T. Sakakibara, Y. Matsushita, and T. Takabatake, J. Phys. Soc. Jpn. 86, 034707 (2017).

[20] B.D. White, D. Yazici, P.C. Ho, N. Kanchanavatee, N. Pouse, Y. Fang, A.J. Breindel, A.J. Friedman, and M.B. Maple, J. Phys.: Condens. Matter 27, 315602 (2015).

[21] Y. Hirose, T. Takeuchi, F. Honda, S. Yoshiuchi, M. Hagiwara, E. Yamamoto, Y. Haga, R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 84, 074704 (2015).

[22] E.D. Bauer, C. Wang, V.R. Fanelli1, J.M. Lawrence, E.A. Goremychkin, N.R. de Souza, F. Ronning, J.D. Thompson, A.V. Silhanek, V. Vildosola, A.M. Lobos, A.A. Aligia, S. Bobev, and J.L. Sarrao,
Phys. Rev. B 78, 115120 (2008).

[23] H. Sato, H. Sugawara, Y. Aoki, and H. Harima, Magnetic properties of filled skutterudites, in Handbook of Magnetic Materials, Vol. 18, edited by K.H.J. Buschow (Elsevier, Amsterdam, 2009) Chap. 1. pp. 1-110.

[24] Z. Hiroi, A. Onosaka, Y. Okamoto, J. Yamaura, and H. Harima, J. Phys. Soc. Jpn. 81, 124707 (2012).

[25] D. J. Safarik, T. Klimczuk, A. Llobet, D. D. Byler, J. C. Lashley, J. R. O’Brien, and N. R. Dilley, Phys. Rev. B 85, 014103 (2012).

[26] A. Onosaka, Y. Okamoto, J. Yamaura, and Z. Hiroi, J. Phys. Soc. Jpn. 81, 023703 (2012).

[27] M. M. Koza, A. Leithe-Jasper, E. Sischka, W. Schnelle, H. Borrmann, H. Mutka, and Y. Grin, Phys. Chem. Chem. Phys. 16, 27119 (2014).

[28] M. J. Winiarski, B. Wiendlocha, M. Sternik, P. Wiśniewski, J. R. O’Brien, D. Kaczorowski, and T. Klimczuk, Phys. Rev. B 93, 134507 (2016).

[29] A. Yamada, R. Higashinaka, T. D. Matsuda, and Y. Aoki, J. Phys. Soc. Jpn. 87, 033707 (2018).

[30] G. M. Sheldrick: SHELX-97: Program for the Solution for Crystal Structures, University of Göttingen, Germany, 1997.

[31] T. Hasegawa, N. Ogita, and M. Udagawa: J. Phys. Conf. Ser. 391 (2012) 012016.

[32] K. Wakiya, T. Onimaru, S. Tsutsui, T. Hasegawa, K. T. Matsumoto, N. Nagasawa, A. Q. R. Baron, N. Ogita, M. Udagawa, and T. Takabatake, Phys. Rev. B 93, 064105 (2016).

[33] S. Niemann and W. Jeitschko, J. Solid State Chem. 114, 337 (1995).

[34] T. Nasch, W. Jeitschko, and U. C. Rodewald, Z. Naturforsch. B 52, 1023 (1997).

[35] M. J. Kangas, D. C. Schmitt, A. Sakai, S. Nakatsuji, J. Y. Chan, J. Solid State Chem. 196, 274 (2012).

[36] A. Earnshaw and N. Greenwood, Chemistry of the Elements, Second ed., Butterworth-Heinemann (1997).

[37] H. Padamsee, J. E Neighbor, and C. A. Shiffman, J. Low Temp. Phys. 12, 387 (1973).

[38] D. C. Johnson, Supercond. Sci. Technol. 26, 115011 (2013).

[39] A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

[40] E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).

[41] N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).

[42] K. Maki, Physics (Long Island City, N.Y.) 1, 21 (1964).

[43] B. Serin: in Superconductivity, ed. R. D. Parks (Marcel Dekker, New York, 1969) Vol. 2, Chap. 15.

[44] W. L. McMillan, Phys. Rev. 167, 331 (1968).
[45] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, Dalton Trans. 21, 2832 (2008).

[46] P. Swatek, M. Kleinert, P. Wiśniewski, and D. Kaczorowski, Comput. Mater. Sci. 153, 461 (2018).