COVID19 Pandemic and Its Psychological Effects on Health Care Workers in a Socio-economically Challenged Environment; a Cross-sectional Analytical Study

Chinedu Anthony Iwu (iwuchinedu@yahoo.com)
Imo State University

Chinyere Aguocha
Imo State University

Pius Ositadinma
Rivers State University

Victor Chibiko
Imo State University Teaching Hospital

Kenechi Uwakwe
Imo State University

Research Article

Keywords: Psychological effects, Sociodemographic patterns, HCWs, COVID19, Nigeria

Posted Date: February 3rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1258521/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: COVID19 pandemic, an unprecedented global public health event, is a potential precipitating factor of psychological distress especially among Health Care Workers (HCWs) already operating under existing socioeconomic stress. The study aims to assess prevalence, sociodemographic patterns and predictors of stress, anxiety and depression during the COVID19 Pandemic among HCWs in a socio-economically challenged environment.

Methods: A cross-sectional analytical design used convenience and snowballing techniques to enrol 386 HCWs from public health institutions in Imo State, Nigeria from 2nd to 27th October 2021. A structured online questionnaire was used and Kruskal Wallis H test and Logistic Regression were performed with significance level, \(p \leq 0.05 \).

Results: Prevalence of stress, anxiety and depression among the HCWs were 76.7%, 32.6% and 33.4% respectively. The median stress levels in the following subcategories were above the sample median and were highest amongst their respective subcategories. Those aged 20-29 years, female, single and also, those on the job for less than 1 year, who usually take public transport and are without training in infection, prevention and control (IPC). Similarly, the median anxiety levels in females and those without IPC training were above the sample median and were highest amongst their respective subcategories and also, the median depression levels in females and single HCWs were above the sample median and were highest amongst their respective subcategories. However, singles compared to married HCWs were significantly more likely to experience anxiety (OR: 1.84; \(p=0.049 \)) and also, females compared to male HCWs were significantly more likely to experience either anxiety (OR: 1.76; \(p=0.013 \)) or depression (OR: 1.88; \(p=0.006 \)).

Conclusion: The prevalence of stress, anxiety and depression appear to be high among HCWs particularly in those that are young, female and single and therefore, the provision of mental and psychosocial health services should be timely, available and accessible to all HCW.

Introduction

COVID19 pandemic, an unprecedented global public health event has created an environment with significantly increased but varying levels of physical and psychological pressures affecting especially the health care systems across the globe [1]. Already, the health care services are generally recognized as demanding and stressful on the healthcare worker (HCW) particularly in socio-economically challenged environments with multiple stressors from the commencement of training to the provision of service as a trained HCW [2][3]. So, the risk of exposure to COVID19 or any infectious deadly disease within this environment is a potential precipitating factor of psychological distress. Therefore, HCWs especially doctors who are continually faced with increased pressure; professional and personal responsibilities could succumb to the psychological challenges of anxiety and depression as a result of stress; which is a processed response to pressure [2][4]. A study in Canada reported that HCWs suffered significant
psychological effects such as emotional and post-traumatic stress; anxiety and depression during and after an infectious disease outbreak [5].

Globally, despite the availability of vaccines and awareness of preventive protocols, the COVID19 virus is still spreading and having a significant impact on society. This may be as a result of the significant disparities in global vaccination coverage, the evolvement of mutations and vaccine hesitancy [6]. This unabating infection with the challenges of control, gives the impression that the infection is here with us for the long haul and as a consequence, the burden of a range of mental health outcomes including but not limited to stress, fear and anxiety, depression, anger, exhaustion and sleep dysfunction becomes an increasing concern [2][7]. Several studies have shown that multiple stressors as a result of the COVID-19 pandemic could induce this range of mental health outcomes [8]-[10]

Symptoms of Anxiety and depression appear to be the most common mental health outcomes which could occur either singly or together; and are influenced by organizational, socio-cultural and economic factors resulting in varying degrees of presentation that may interfere with the quality of patient care [7] [11][12].

Adverse psychological presentation could result when HCWs are plagued with such concerns as fear and uncertainty of infection, worrying about taking the virus home and infecting family, conflicting media information, inadequate and in some instances non-availability of personal protective equipment, the need to help others and at the same time protect self and also, not being supported or protected by the institution or Government [13].

In sub-Saharan Africa, the psychological impact of COVID19 could be devastating on HCWs due to the existing, poor socio-economic structures with associated weak mental health care systems and low service uptake. This is compounded by poor health care service availability and access, out of pocket payment for health services, poorly functioning or non-existent health insurance schemes for HCWs and the general doctors' attitude of reluctance in seeking medical attention [14][15]. A qualitative study of frontline HCWs during the earlier stages of the COVID19 pandemic in Nigeria gave insights such as the psychological trauma experienced as a result of exhaustion from long hours of work and wearing personal protective equipment; frustration from being quarantined or isolated and kept away from loved ones; fear of being infected as you see colleagues getting infected; lack of support from the Government with no health insurance to pay for care when infected; and stigmatization from colleagues, friends and family [16].

Currently in Nigeria, according to the Nigerian Centre for Disease Control as of 20th December 2021, the total confirmed, discharged and death cases were 225,255, 211,660, and 2,985 respectively. In Imo State, South-Eastern part of Nigeria, the total confirmed, discharged and death cases were 2,285, 1,999 and 41 respectively [17]. It would appear that the impact of the pandemic in Imo State is not as significant when compared to communities in parts of Southwestern Nigeria and more so, in a good number of developed countries. Probably, this could be due to inadequate testing, misclassification of deaths and levels of natural immunity and this could also explain why there is a general non-observance of the COVID19
protocols and relatively low uptake of the COVID vaccines in the State. This anecdotal evidence of non-
COVID19 protocol compliance in the communities could be an indication of the reduced levels of fear and
anxiety towards COVID19 infection and this could also be happening among the HCWs who are part of
these communities. In as much as fear is a driver for psychological effects, the presence of psychological
resilience may minimize the likelihood of its occurrence [18]. Imo State is a socioeconomically challenged
environment plagued with poor social amenities, health, social, economic and personal insecurities.
These constitute multiple stressors and their persistent effect over time could have resulted in the
development of individuals and communities that have a resilient mindset, attitude and behaviour. These
components of psychological resilience enhance adaptive stress reactions and invariably could affect
levels of anxiety and depression [19].

Therefore, this study’s objective was to assess the prevalence, sociodemographic patterns and predictors
of stress, anxiety and depression during the COVID19 Pandemic among Health Care Workers in a socio-
economically challenged environment.

Methods

Study Area

The study area is Imo State, located in the South-Eastern part of Nigeria which occupies a surface area of
5289 square kilometres with a total population of 3·93million (2·03 million males and 1·9million females)
according to the 2006 census and an annual growth rate of 3·2% [20]. The State is delineated into three
senatorial geopolitical zones; Owerri, Orlu and Okigwe. The study was carried out at Imo State University
Teaching Hospital located in Orlu geopolitical zone and in both the Federal Medical Centre and Specialist
Hospital Umuguma located in Owerri geopolitical zone. The State is multicultural at different levels of
social and economic development. According to the National Bureau of Statistics, Imo State has a
poverty headcount rate of 28.9% as of 2019 and a combined unemployment and underemployment rate
of 75%. as of 2020. The State’s index of Socioeconomic vulnerability to COVID19, risk of exposure to
COVID19 and the risk of limited access to COVID19 treatment were 38%, 80% and 20% respectively [21]-
[23].

Study Population/Study design/Selection Criteria

The Health Care Workers in Imo State University Teaching Hospital, Federal Medical Centre and Specialist
Hospital Umuguma constitute the study population. The study, a cross-sectional analytical design
included all Health Care Workers with no exclusion criteria.

Sample size estimation

The Cochrane formula was used to calculate the minimum sample size [24]. The prevalence of
psychological effects among HCWs was assumed to be 50% with a tolerable margin of error of 5% and a
standard normal deviate at a 5% level of 1.96. The minimum sample size (n) was calculated as 384 but
the questionnaire link was distributed to 386 participants.
Sampling technique

Imo State University Teaching Hospital, Federal Medical Centre and Specialist Hospital Umuguma were purposively selected for the study and the HCWs were selected using convenience and snowballing sampling techniques. The participants were individually met and after informed consent, they were enrolled and the questionnaire link was sent to their WhatsApp platform or email address.

Data collection tool and analysis

A structured, online self-administered questionnaire was developed using the Survey Heart online, questionnaire and poll platform. The Survey Heart online questionnaire link was distributed to participants and the data was collected from 2nd to 27th October 2021. The questionnaire comprises 4 sections. Section A; Sociodemographic Characteristics, Section B; Level of Stress adapted from the Perceived Stress Scale, Section C; Mental Wellbeing (Anxiety) adapted from Zung Self Rating Anxiety Scale and Section D; Mental Wellbeing (Depression) adapted from Zung Self Rating Depression Scale. See the questionnaire in the supplementary file.

Stress was assessed using the Perceived Stress Scale 10 (PSS-10) developed by S. Cohen et al [25]. The scale has been widely evaluated to have significant valid and acceptable psychometric properties [26].

The scale uses 10 Likert type questions scored on 5 levels, which measures the degree to which life situations during the last month are judged to be stressful through feelings and thoughts. The scores range from 0 for ‘never’ to 4 for ‘very often’. For questions with a positive outlook (4, 5, 7, 8), the scoring started from 0 for ‘very often’ to 4 for ‘never’. The score for each respondent was summed up and the levels of stress were assessed using the following scale; 0-13 = Low stress, 14-26 = Moderate Stress, 27-40 = High Stress.

Anxiety and depression were assessed using self-assessment scales developed by W. Zung in 1971 and 1965 respectively [27] [28]. These scales have been evaluated and established to have acceptable psychometric properties [29][30]. Each scale assesses the frequency of symptoms of anxiety and depression in the past week using 20 Likert type questions scored on 4 levels; 1 for a little bit of the time, 2 for some of the time, 3 for a good part of the time and 4 for most of the time. For positively connoted questions, the scoring started from 1 ‘for a little bit of the time’ to 4 ‘for most of the time’. For a negatively connoted question, the scoring started from 1 ‘for most of the time’ to 4 ‘for a little bit of the time’. In the Anxiety Scale, the following five questions are positively connoted 5, 9, 13, 17 and 19. In the Depression Scale, the following ten questions are positively connoted 2, 5, 6, 11, 12, 14, 16, 17, 18 and 20. The score for each respondent was summed up to get the total score which was translated to an index Score by multiplying by a factor of 1.25. The levels of anxiety were assessed using an index score scale. Less than 50= No Anxiety; 50-59= Mild Anxiety; 60-69= Moderate Anxiety; 70 and above= Severe Anxiety. The levels of depression were assessed using an index score scale. Less than 53= No Depression; 53-62= Mild Depression; 63-72= Moderate Depression; 73 and above= Severe Depression.
The database from the Survey Heart online questionnaire platform was downloaded in excel format. The data was validated and exported to the Software Package for Social Sciences (IBM-SPSS) version 22 and subsequently analysed. Frequency tables and summary indices were generated using the PSS scores and the index scores of anxiety and depression levels. Kruskal Wallis H test, posthoc pairwise comparisons with Bonferroni correction and Binary Logistic Regression analyses were done with the level of significance set at \(p \leq 0.05 \).

The regression model with the best data-model fit and a significant improvement from the null included the following sociodemographic variables; age, gender, marital status, educational level and status of infection prevention control training in predicting stress, anxiety and depression.

Study Limitation

The assessment of stress, anxiety and depression is based on perception and self-assessment, and therefore, subject to bias. The structured nature of the questionnaire limits expressive thoughts and the assessments by their respective scales are not diagnostic.

Ethical Consideration

Ethical clearance was given by the ethical committee of Imo State University Teaching Hospital and permission was sought from the management of the health care facilities participating in the study. Informed consent was given by the respondents. All authors hereby declare that the study was performed in accordance with international ethical standards.

Results

Three hundred and eighty-six participants received the questionnaire link and all returned a completely filled form with a response rate of 100%.
Table 1
Socio-demographic characteristics of HCWs in Imo State

Variable	Frequency (N=386)	Per cent
Age (Years)		
20-29	190	49.2
30-39	133	34.5
40 and above	63	16.3
Gender		
Male	227	58.8
Female	159	41.2
Marital Status		
Single	257	66.6
Married	129	33.4
Religion		
Catholic	177	45.9
Pentecostal	107	27.7
Anglican	90	23.3
*Other religion	12	3.1
Health Care Workers		
Doctor	166	43.0
Nurse/Midwife	67	17.4
Pharmacists	29	7.5
Lab Scientist	30	7.8
Other HCWs	94	24.4

**Environmental officer, Hygiene officer, Community Health officers, Technicians, Technologist

*Islam, Traditional Religion,
Variable	Frequency (N=386)	Per cent
Educational level		
Up to Diploma	26	6.7
First degree	260	67.4
Postgraduate	100	25.9
Years at present work		
Less than 1 year	134	34.7
1-5 years	158	40.9
More than 5 years	94	24.4
Mode of usual transport to work		
Public transport	213	55.2
Private transport	173	44.8
Training in Infection Prevention Control (IPC)		
Yes	291	75.4
No	95	24.6

Environmental officer, Hygiene officer, Community Health officers, Technicians, Technologist

Islam, Traditional Religion,

Table 1 shows that the majority of the respondents were male (58.8%), single (66.6%), within the ages of 20 to 29 years (49.2%), of the Catholic faith (45.9%) and with a first degree as the highest level of education (67.4%). More than three-quarters of the respondents had been trained in infection prevention and control (75.4%) with a majority on the present job for about 1 to 5 years (40.9%) and using public transportation to get to work (55.2%).
Table 2
Prevalence of Psychological Effects among HCWs in Imo State

Psychological Effects	Frequency (N=386)	Per cent
Levels of Stress Symptoms		
Low Stress	90	23.3
Moderate Stress	268	69.4
High Stress	28	7.3
Median (IQR) = 18.0(7.0)		
Levels of Anxiety Symptoms		
No Anxiety	260	67.4
Mild Anxiety	79	20.5
Moderate Anxiety	38	9.8
Severe Anxiety	9	2.3
Median (IQR)= 43.8(14.0)		
Levels of Depression Symptoms		
No Depression	257	66.6
Mild Depression	90	23.3
Moderate Depression	34	8.8
Severe Depression	5	1.3
Median (IQR)= 45.6(20.0)		

Table 2 shows that the prevalence of stress, anxiety and depression symptoms among the HCWs were 76.7%, 32.6% and 33.4% respectively. Furthermore, the sample median levels of stress, anxiety and depression symptoms in the study were 18.0, 43.8 and 45.6 respectively.

Figure 1 shows the distribution of the levels of stress symptoms across the sociodemographic categories. The distributions of stress levels within each category of age ($H_\chi^2[2] = 24.598, p=0.000$), gender ($H_\chi^2[1] = 15.601, p=0.000$), marital status ($H_\chi^2[1] = 15.535, p=0.000$), number of years at present job ($H_\chi^2[2] = 14.394, p=0.001$), mode of transport to work ($H_\chi^2[1] = 10.265, p=0.001$) and status of IPC training ($H_\chi^2[1] = 4.925, p=0.026$) appeared to be significantly different across their respective subcategories. Furthermore, the median stress levels of the subcategories; 20-29 years, female, single, less
than 1 year on the job, public transportation and no IPC training were above the sample median stress levels (>18.0). However, the distributions of stress levels within each category of religion, the cadre of HCWs and educational level did not appear to be significantly different across their respective sub-categories (p>0.05).

Within the age category, the distribution of stress levels appeared to be significantly different between respondents aged 20 to 29 years and 40 years and above ($H_{\chi^2}^2[1] = 70.329, *p=0.000$) and also between respondents aged 20 to 29 years and 30 to 39 years old ($H_{\chi^2}^2[1] = 46.094, *p=0.001$). Similarly, the distribution of stress levels for respondents who had been on their present job for more than 5 years also appeared to be significantly different from those who had been on the job for less than 1 year ($H_{\chi^2}^2[1] = 56.708, *p=0.000$). ($H_{\chi^2}^2$ = Kruskal Wallis H Statistic, *p= Bonferroni adjusted p-value).

Figure 2 shows the distribution of the levels of anxiety symptoms across the sociodemographic categories. The distributions of anxiety levels within each category of gender ($H_{\chi^2}^2[1] = 7.396, p=0.007$) and status of IPC training ($H_{\chi^2}^2[1] = 3.965, p=0.046$) appeared to be significantly different across the respective sub-categories. Furthermore, the median anxiety levels of the subcategories; female, and those with no IPC training were above the sample median anxiety levels (>43.8).

However, the distributions of anxiety levels within each category of age, marital status, religion, the cadre of HCWs, educational level, number of years at present job and mode of transport did not appear to be significantly different across their respective sub-categories (p>0.05).

Figure 3 shows the distribution of the levels of depression symptoms across the sociodemographic categories. The distributions of depression levels within each category of gender ($H_{\chi^2}^2[1] = 6.215, p=0.013$), marital status ($H_{\chi^2}^2[1] = 4.881, p=0.027$) and the cadre of HCWs ($H_{\chi^2}^2[4] = 10.204, p=0.037$) appeared to be significantly different across their respective sub-categories. Furthermore, the median depression levels of the subcategories; female, single, nurses, pharmacists and laboratory scientists were above the sample median depression levels (>45.6).

However, the distributions of depression levels within each category of age, religion, the status of IPC training, educational level, number of years at present job and mode of transport to work did not appear to be significantly different across any of their respective sub-categories (p>0.05). Furthermore, it appeared that there was a significant difference between Doctors and Nurses and similarly, between Doctors and Pharmacists, however, after pairwise comparison and Bonferroni correction, the differences between these sub-groups appeared not to be significant(p>0.05).
Variable	Perceived Stress	Anxiety	Depression						
	Odds Ratio	95% CI	p-value	Odds Ratio	95% CI	p-value	Odds Ratio	95% CI	p-value
Age (Yrs)									
20-29	2.770	1.163-6.600	0.021	0.546	0.238-1.249	0.152	0.544	0.239-1.236	0.146
30-39	1.382	0.680-2.808	0.371	0.744	0.359-1.543	0.427	0.552	0.269-1.135	0.106
40 and above	1.000	—	—	1.000	—	1.000	—	—	—
Gender									
Male	0.661	0.392-1.114	0.120	0.569	0.364-0.887	0.013	0.533	0.341-0.833	0.006
Female	1.000	—	—	1.000	—	1.000	—	—	—
Marital Status									
Married	0.572	0.304-1.077	0.084	0.544	0.297-0.998	0.049	0.555	0.300-1.026	0.060
Single	1.000	—	—	1.000	—	1.000	—	—	—
Educational level									
Up to Diploma	0.631	0.209-1.911	0.416	2.234	0.880-5.672	0.091	1.700	0.674-4.287	0.261
First degree	0.655	0.350-1.224	0.184	1.125	0.636-1.989	0.687	0.713	0.408-1.246	0.235
Postgraduate	1.000	—	—	1.000	—	1.000	—	—	—
IPC Trained									
Yes	0.575	0.301-1.099	0.094	0.767	0.462-1.273	0.304	0.687	0.414-1.139	0.146
No	1.000	—	—	1.000	—	1.000	—	—	—
Table 3 shows that respondents who were within the ages of 20 to 29 years compared to those who were aged 40 years and above were significantly more likely to experience stress symptoms (OR: 2.77; 1.163-6.600, p=0.021).

Respondents who were female compared to males were significantly more likely to experience anxiety (OR: 1.76; 1.127-2.744, p=0.013) and depression symptoms (OR: 1.88; 1.200-2.929, p=0.006). Similarly, respondents who were single compared to those who were married were significantly more likely to experience anxiety symptoms (OR: 1.84; 1.002-3.369, p=0.049).

Discussion

This study assessed the prevalence, sociodemographic patterns and predictors of stress, anxiety and depression symptoms during the COVID19 Pandemic among Health Care Workers in Imo State, Nigeria.

The prevalence of stress symptoms was 76.7%. with more than two-thirds of HCWs (69.4%) in this study experiencing moderate levels of stress and about 7.3% experiencing high levels of stress. This distribution of stress levels was similarly observed in a study done in Nepal among HCWs in a tertiary health care centre during the COVID19 pandemic using the Perceived Stress Scale. The study reported the prevalences of moderate and high-stress levels to be 67.8% and 7.4% respectively [31]. In the present study, young HCWs aged 20-29 years within the age category appeared to have the highest median level of stress and this was probably due to the fact that a majority of them (58%) had been on the job for less than one year and therefore, were still adjusting to the various challenges of a new job coupled with the strain of COVID19 on the health care system. Also, the study observed that HCWs who had been on the job for less than one year had a significantly higher median level of stress than those on the job for more than five years with about 80% of those that have been on the job for less than one year being within the ages of 20-29 years. Furthermore, the study revealed that HCWs within the ages of 20 to 29 years were significantly more likely than those aged 40 years and above to experience stress and about 68% of those with high-stress levels were within the ages of 20 to 29 years. This highlights the possible lack of effective coping strategies among this age group. Also, HCWs within this age group had the highest proportion of those without training in infection prevention and control (IPC), as the study further observed that those without training had a higher median level of stress. These observations could probably account for why our study reported a high prevalence of stress as a majority of our respondents (49%) were within the ages of 20-29 years. Nevertheless, early stress counselling programs and IPC training need to be targeted at the young newly employed HCW.

On the other hand, although HCWs that are female or single had higher median levels of stress than their male or married counterparts, gender and marital status were not predictors of stress. However, of those that had high levels of stress, 64% were females and 75% were single. A study, done in Poland similarly reported a higher level of stress among female physicians and attributed it to women’s empathic and self-responsible attitude [32]. This could also partly explain the high levels of stress among the female HCWs.
in our study. A study, done in Canada that focuses on stress coping strategies among physicians, observed that emotional exhaustion was positively correlated with keeping stress to oneself and that the more you talk to your spouse or partner, the fewer the episodes of emotional exhaustion [33]. This may partly explain why the single HCWs in our study had a higher median level of stress; as they may not have had a partner for dialogue of stressful events and emotional support.

In our environment, public transportation can be quite stressful, where in some cases you have to struggle to enter the vehicle and when you eventually enter, you are forced to sit uncomfortably in a very tight space. During the initial phase of the COVID19 pandemic, public transportation became even more stressful as complete and partial lockdowns created their own challenges; such as difficulty in getting public transportation to work with its associated exorbitant fares; and when you eventually get and board, the fear of getting infected in the crowded vehicle preoccupies your mind. All these, may also partly explain the higher median levels of stress among the HCWs that usually use public as opposed to private transportation to work. It was also observed that 61% of HCWs with high levels of stress in the present study usually use public transport to work, however, the mode of transport was not a predictor of stress.

The prevalence of anxiety was 32.6% with about one-fifth of HCWs (20.5%) in this study experiencing mild symptoms of anxiety and about 9.8% and 2.3% experiencing moderate and severe levels of anxiety symptoms respectively. A study by Xing et al using the same tool and scale for anxiety among HCWs during the COVID19 pandemic reported similar findings especially in the levels of mild and severe anxiety; 20.1% and 2.3% respectively [34]. Furthermore, Xing et al noticed a significant relationship between age and levels of anxiety which was not observed in our study as it was seen that the distribution of anxiety levels across the subcategories of age were not significantly different.

The present study observed higher median levels of anxiety among the female HCWs who were more than one and a half times more likely to experience anxiety than their male counterparts. This relationship between gender and anxiety has been well documented in psychiatric epidemiology and it has also been reported that anxiety symptoms are not only more prevalent but also, more disabling in women [35]. Furthermore, our study observed that there was a higher proportion of women that were single (45.3%) compared to those, that were married (28.3%) who had anxiety; so being a single woman probably may contribute to an increased risk of developing anxiety. Although the present study showed that single HCWs had a higher median level of anxiety compared to the married HCW, the difference in their distributions of anxiety levels was not statistically significant. However, the regression model predicted that single HCWs compared to their married counterparts were significantly more likely to experience anxiety.

Generally, adequate training in a particular task results in preparedness and confidence in the performance of that task. However, in an infectious work environment, there is apprehension and fear of contracting an infection which can lead to anxiety; so, preparedness and confidence are more so required through adequate training to invariably reduce anxiety. This may probably explain to some extent the
observation in our study where the median levels of anxiety were higher in HCWs without training compared to those with training in IPC and their distributions of anxiety levels were significantly different.

The prevalence of depression was 33.4% with close to one-fourth of HCWs in this study experiencing mild symptoms of depression and about 8.8% and 1.3% experiencing moderate and severe levels of depression respectively. Unlike with the levels of anxiety as reported earlier, the findings by Xing et al [34] with respect to levels of depression were not similar to our study. Also, Xing et al reported a high mean level of depression among HCWs and a significantly higher level of depression in nurses compared to doctors. In the present study, the median level of depression appeared to be higher in nurses compared to doctors but on further analysis, the difference in their distributions of depression levels was not significant. Also, the median levels of depression in our study were higher in female and single HCWs compared to their counterparts in their respective categories and furthermore, the differences in the distribution of depression levels between the subcategories within their respective categories were significantly different. Although marital status was not a predictor of depression, gender was; and it was observed that female HCWs were significantly more likely to experience depression.

Conclusion

During this COVID19 pandemic, it would appear that the prevalence of stress, anxiety and depression symptoms are high among HCWs in Imo State; with observed sociodemographic patterns in age, gender, marital status and IPC training status. Despite the fact that our HCWs are operating within a socioeconomically challenged environment, it would appear anecdotally, that the COVID19 pandemic still impacted the psychological well-being of our HCWs who are constantly working under socio-economic stress. Unfortunately, there were no studies prior to the COVID19 pandemic establishing the levels of stress, anxiety and depression among HCWs in Imo State. However, the levels of stress, anxiety and depression observed in this study are of critical concern and this impact on the psychological well-being could further significantly interfere with the quality of patient care. Therefore, the provision of mental and psychosocial health services is crucial and should in a timely manner be made available and accessible to all HCW and initially, particularly to those that are newly employed, young, female and single. Mental health care should be routine and also be part of the pandemic response. The importance of adequate, regular and mandatory training in infection, prevention and control for all HCWs cannot be overemphasized.

Abbreviations

COVID19: Corona Virus Disease 2019

HCWs: Health Care Workers

Hχ²: Kruskal Wallis H Statistic

IPC: Infection Prevention and Control
OR: Odds Ration

Declarations

Ethics approval and consent to participate

Ethical approval was obtained from the Ethics Committee of Imo State University Teaching Hospital, Orlu. Written informed consents were given by the participants. All authors hereby declare that the study was performed in accordance with the Declaration of Helsinki.

Consent for publication

Not Applicable

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Competing interests

The authors declare that we have no competing interests

Funding

There was no external funding

Authors Contributions

CAI contributed to the study design, literature review, data acquisition, analysis, research interpretation and write up of the first and final draft. CA, PO and KU contributed to study design, research interpretation, discussions and final draft. While VC contributed to Literature review, data acquisition and final draft. All authors read and approved the final article submitted.

Acknowledgements

We thank Mbakwe Lauren Chisom, Obasi Uzoma Austine, Nwachukwu Ifeanyi Aloysius and Ogbusu Chioma Darlyn who assisted in data collection.

References

1. World Health Organization (WHO). The impact of COVID-19 on health and care workers: a closer look at deaths. Health Workforce Department – Working Paper 1. Geneva: World Health Organization; September 2021 (WHO/HWF/Working Paper/2021.1). Online at https://apps.who.int/iris/bitstream/handle/10665/345300/WHO-HWF-WorkingPaper-2021.1-eng.pdf
2. Luo Y, Fei S, Gong B, Sun T, Meng R. Understanding the mediating role of anxiety and depression on the relationship between perceived stress and sleep quality among health care workers in the COVID-19 response. Nature and Science of Sleep. 2021; 13:1747–58. Online at https://doi.org/10.2147/NSS.S313258

3. Issa BA, Yussuf AD, Olanrewaju GT, Oyewole AO. Stress in residency training as perceived by resident doctors in a Nigerian university teaching hospital. European Journal of Scientific Research. 2009;30(2):253–9.

4. Gong, Y., Han, T., Chen, W., Dib, H.H., Yang, G., Zhuang, R., Chen, Y., Tong, X., Yin, X.,Lu, Z., 2014. Prevalence of anxiety and depressive symptoms and related risk factors among physicians in China: a cross-sectional study. PLoS One 2014; 9: e103242. Online at https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0103242&type=printable

5. Lancee WJ, Maunder RG, Goldbloom DS, Study S. Prevalence of psychiatric disorders among Toronto hospital workers one to two years after the SARS outbreak. Psychiatr Serv. 2008;59(1):91–5. Online at https://doi.org/10.1176/appi.ps.59.1.91

6. Petersen E, Ntoumi F, Hui DS et al. Emergence of new SARS-CoV-2 Variant of Concern Omicron (B.1.1.529) - highlights Africa's research capabilities, but exposes major knowledge gaps, inequities of vaccine distribution, inadequacies in global COVID-19 response and control efforts. Int J Infect Dis. 2022;114:268-272. Online at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634699/

7. Stuijfzand S, Deforges C, Sandoz V, Sajin CT, Jaques C, Elmers J, et al. Psychological impact of an epidemic/pandemic on the mental health of healthcare professionals: A rapid review. BMC Public Health. 2020;20:1230–47. Online at https://bmcpublichealth.biomedcentral.com/track/pdf/10.1186/s12889-020-09322-z.pdf

8. Mo Y, Deng L, Zhang L, et al. Work stress among Chinese nurses to support Wuhan in fighting against COVID-19 epidemic. J Nurs Manag. 2020;28(5):1002–1009. Online at https://pubmed.ncbi.nlm.nih.gov/32255222/

9. Vanhaecht K, Seys D, Bruyneel L, et al. COVID-19 is having a destructive impact on health-care workers’ mental well-being. Int J Qual Health Care. 2020;33(1):1-6. Online at https://europepmc.org/backend/ptpmcrender.fcg?accid=PMC7799030&blobtype=pdf

10. Magnavita N, Tripepi G, Di Prinzio RR. Symptoms in health care workers during the COVID-19 epidemic. A Cross-sectional survey. Int J Environ Res Public Health. 2020;17(14):5218–5232. Online at https://www.mdpi.com/1660-4601/17/14/5218

11. Russell GF, De Silva P. Observations on the relationship between anxiety and depressive symptoms during the course of depressive illnesses. British Journal of Clinical Pharmacology 1983;15:147S–153S. Online at https://europepmc.org/backend/ptpmcrender.fcg?accid=PMC1427883&blobtype=pdf

12. Amaddeo F, Jones J. What is the impact of socioeconomic inequalities on the use of mental health services? Epidemiologia e Psichiatria Sociale 2007; 16(1): 16–19. Online at https://doi.org/10.1017/S1121189X00004565
13. Patel AV, Kandre DD, Mehta P, Prajapati A, Patel B, Prajapati S. Multi-centric study of psychological disturbances among health care workers in tertiary care centers of Western India during the COVID-19 pandemic. Neuropsychiatria i Neuropsychologia. 2021;15(3):89–100. Online at https://doi.org/10.5114/nan.2020.101291

14. Adshead G. Healing ourselves: ethical issues in the care of sick doctors. Adv Psychiatr Treat 2005;11:330-337.

15. Oleribe OO, Momoh J, Uzochukwu BSC, Mbofana F, Adebiyi A, Barbera T, Williams R, Taylor-Robinson SD. Identifying Key Challenges Facing Healthcare Systems In Africa And Potential Solutions. Int J Gen Med. 2019;12:395-403. Online at https://doi.org/10.2147/IJGM.S223882

16. Kwaghe AV, Kwaghe VG, Habib ZG, Kwaghe GV, Ilesanmi OS, Ekele BA, et al. Stigmatization and psychological impact of COVID-19 pandemic on frontline healthcare Workers in Nigeria: a qualitative study. BMC Psychiatry. 2021;21:518–34. Online at https://pubmed.ncbi.nlm.nih.gov/34670530/

17. Nigerian Centre for Disease Control. COVID19 Pandemic Update 2021. Online at https://covid19.ncdc.gov.ng/

18. Mealer M, Jones J, Moss M. A qualitative study of resilience and posttraumatic stress disorder in United States ICU nurses. Intensive Care Med. 2012; 38 (9):1445-1451. Online at https://link.springer.com/article/10.1007/s00134-012-2600-6

19. Buheji M. Psychological Resilience and Poor Communities Coping with COVID-19 Pandemic. International Journal of Psychology and Behavioral Sciences 2020; 10(4): 100-108. Online at http://article.sapub.org/10.5923.j.ijpbs.20201004.03.html

20. The Federal Republic of Nigeria. National Population Commission Official Gazette. National Population Commission, Abuja. 2009. Online at https://nationalpopulation.gov.ng/

21. National Bureau of Statistics. COVID19 Risk Profiles in Nigeria by States 2021. Online at COVID-19 Risk Profiles in Nigeria by State | National Coronavirus Geospatial Data Hub (arcgis.com)

22. National Bureau of Statistics. Labor Force Statistics: Unemployment and Underemployment Report: Abridged Labour Force Survey Under COVID-19. August 2020 Online at https://nigerianstat.gov.ng/pdfuploads/Q2_2020_Unemployment_Report.pdf

23. National Bureau of Statistics. 2019 Poverty and Inequality Report in Nigeria. Online at https://taxaide.com.ng/wp-content/uploads/2020/05/2019-POVERTY-AND-INEQUALITY.pdf

24. Cochran WG. Sampling technique. 2nd ed. New York: John Wiley and Sons Inc. 1963

25. Cohen S, Kamarck T, Mermelstein R. A Global Measure of perceived stress. J Health Soc Behav. 1983;24(4):385–396. Online at https://webs.wofford.edu/steinmetzk/teaching/Psy150/Lecture%20PDFs/PSS.pdf

26. Lee Eun-Hyun. Review of the Psychometric Evidence of the Perceived Stress Scale. Asian Nursing Research. 2012; 6(4):121-127. Online at https://doi.org/10.1016/j.anr.2012.08.004.

27. Zung W. W. K. A rating instrument for anxiety disorders. Psychosomatics. 1971; 12: 371-79. Online at https://www.sciencedirect.com/science/article/pii/S0033318271714790?via%3Dihub
28. Zung W. W. K. A Self Rating Depression Scale. Archives of general psychiatry. 1965; 12:63-70.
 https://jamanetwork.com/journals/jamapsychiatry/article-abstract/488696
29. Dunstan DA, Scott N. Norms for Zung's Self-rating Anxiety Scale. BMC Psychiatry. 2020;20(1):90.
 Online at https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-019-2427-6
30. Dunstan, D.A., Scott, N, Todd, A.K. Screening for anxiety and depression: reassessing the utility of the
 Zung scales. BMC Psychiatry 2017; 17: 329 Online at https://doi.org/10.1186/s12888-017-1489-6
31. Kafle B, Bagale Y, Kafle S, Parajuli A, Pandey S. Depression, anxiety and stress among healthcare
 workers during covid-19 pandemic in a tertiary care Centre of Nepal: A descriptive cross-sectional
 study. Journal of the Nepal Medical Association. 2021;59(235):239-42. Online at
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369536/
32. Białek K, Sadowski M. Level of stress and strategies used to cope with stress by physicians working
 in intensive care units. Anaesthesiology Intensive Therapy [Internet]. 2019;51(5):361–9. Online at
 https://doi.org/10.5114/ait.2019.90473
33. Lemaire JB, Wallace JE. Not all coping strategies are created equal: A mixed methods study
 exploring physicians’ self-reported coping strategies. BMC Health Services Research. 2010;10:208.
 Online at https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-208
34. Xing LQ, Xu ML, Sun J, Wang QX, Ge DD, Jiang MM, et al. Anxiety and depression in frontline health
 care workers during the outbreak of Covid-19. International Journal of Social Psychiatry.
 2020;1(8):1–8. Online at https://journals.sagepub.com/doi/epub/10.1177/0020764020968119
35. Mclean CP, Asnaani A, Litz BT, Hofmann SG. Gender Differences in Anxiety Disorders: Prevalence,
 Course of Illness, Comorbidity and Burden of Illness. J Psychiatr Res. 2011;45(8):1027–35. Online at
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135672/

Figures
Figure 1

Patterns of Levels of Stress symptoms and Sociodemographic Characteristics of HCWS
Figure 2

Patterns of Levels of Anxiety symptoms and Sociodemographic Characteristics of HCWS
Figure 3

Patterns of Levels of Depression symptoms and Sociodemographic Characteristics of HCWS

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- DATABASECOVID19PandemicandPsychologicalEffectsonHCW.xlsx
- QUESTIONNAIREBMCPsychiatryCOVID19PandemicPsychologicalEffectsonHCW.pdf