We study the effect of torsional deformations on the electronic properties of single-walled transition metal dichalcogenide (TMD) nanotubes. In particular, considering forty-five select armchair and zigzag TMD nanotubes, we perform symmetry-adapted Kohn-Sham density functional theory calculations to determine the variation in bandgap and effective mass of charge carriers with twist. We find that metallic nanotubes remain so even after deformation, whereas semiconducting nanotubes experience a decrease in bandgap with twist — originally direct bandgaps become indirect — resulting in semiconductor to metal transitions. In addition, the effective mass of holes and electrons continuously decrease and increase with twist, respectively, resulting in n-type to p-type semiconductor transitions. We find that this behavior is likely due to rehybridization of orbitals in the metal and chalcogen atoms, rather than charge transfer between them. Overall, torsional deformations represent a powerful avenue to engineer the electronic properties of semiconducting TMD nanotubes, with applications to devices like sensors and semiconductor switches.
The synthesis of carbon nanotubes three decades ago\(^1\) represents a pioneering contribution that has played a pivotal role in the creation of the now ever-expanding field of nanoscience/nanotechnology. The significant progress in this field is epitomized by the nearly two dozen different nanotubes that have been synthesized to date\(^2-4\), with the potential for many more in the future, given that thousands of their two-dimensional analogues have been predicted to be stable from ab initio calculations\(^5-7\). Nanotubes have been extensively researched, inspired by the novel and magnified electronic, mechanical, thermal, and optical properties, relative to their bulk counterparts\(^2-4\). In particular, a number of strategies have been developed to tune/engineer these properties, including chirality/radius\(^8-17\), defects\(^18-20\), electric field\(^20-22\), and mechanical deformations\(^9,23-30\), highlighting the technological importance of nanotubes.

Among the various categories of nanotubes — classified based on the two-dimensional material from which they can be thought to arise based on a roll-up construction — the transition metal dichalcogenide (TMD) group, which has materials of the form MX\(_2\), where M and X represent a transition metal and chalcogen, respectively, is the most diverse, with the largest number of distinct nanotubes synthesized to date\(^2-4\). This manifests itself into varying electronic properties encompassing semiconducting\(^31,32\), metallic\(^33,34\), and superconducting\(^35,36\). Notably, a number of mechanisms have been found to tune/tailor these properties, including chirality/radius\(^31,32,37-45\), defects\(^46,47\), temperature\(^35,36\), electric field\(^48,49\), and mechanical deformation\(^50-56\). This makes TMD nanotubes ideally suited for a number of technological applications, including nanoelectromechanical (NEMS) devices\(^56-58\), photodetectors\(^50-61\), mechanical sensors\(^51,62,63\), biosensors\(^64\), and superconductive materials\(^35,36\).

Strain engineering represents an elegant and efficient way to control the electronic properties of TMD nanotubes, as shown experimentally\(^56\) as well as theoretically from ab initio Kohn-Sham density functional theory (DFT) calculations\(^50-55\). However, other than the experimental work referenced above, where the effect of both tensile and torsional deformations have been studied for the WS\(_2\) nanotube, research efforts have focused solely on tensile/compressive deformations, and that too for only a small fraction of the materials in the TMD nanotube group. Indeed, the study of torsional deformations at practically relevant twists and nanotube diameters requires large number of atoms when employing the standard
periodic boundary conditions65, which makes it intractable to first principles methods like Kohn-Sham DFT, given its cubic scaling with system size and large associated prefactor. Therefore, the electromechanical response of TMD nanotubes to torsional deformations has remained unexplored heretofore, providing the motivation for the current work.

In this work, utilizing a recently developed symmetry-adapted formulation and implementation for Kohn-Sham DFT65, we perform a comprehensive study of the electronic response of single-walled TMD nanotubes to torsional deformations. In particular, we determine the variation in bandgap and charge carriers’ effective mass at practically relevant twists and diameters for forty-five select armchair and zigzag TMD nanotubes. We also provide fundamental insights into the observed behavior.

We consider the following TMD nanotubes with 1T-o symmetry66,67: M=\{Ti, Zr, Hf, Mn, Ni, Pd, Pt\} and X=\{S, Se, Te\}; and the following ones with 2H-t symmetry66,67: M=\{V, Nb, Ta, Cr, Mo, W, Fe, Cu\} and X=\{S, Se, Te\}. The current list includes all materials that have been synthesized as single/multi-walled nanotubes66,68–75, and/or those that have stable two-dimensional monolayer counterparts, as predicted from ab initio calculations5,76,77. We choose the nanotube radii — values provided in Supplementary Information — to be commensurate with those that are synthesized, and in cases where this is yet to happen, the radii are chosen to be commensurate with synthesized nanotubes that are expected to have similar structure.

TMD nanotubes have cyclic and helical symmetry inherent to their structure, which remains the case even after the application of torsional deformations, as illustrated in Fig. 1. We exploit this feature using the recently developed Cyclix-DFT code65, which represents an implementation of the cyclic+helical symmetry-adapted formulation8,65,80 for the Kohn-Sham problem within the large-scale parallel real-space DFT code SPARC79,81,82. This allows the use of a fundamental domain containing only one metal and two chalcogen atoms, as illustrated in Fig. 1, thereby tremendously reducing the cost of the calculations. Indeed, such simulations are beyond the reach of even state-of-the-art DFT codes79,83,84 when employing the traditional periodic boundary conditions, e.g., a (60,60) TiS\textsubscript{2} nanotube with diameter \(\sim 10 \text{ nm}\) and an external twist of \(15 \times 10^{-4} \text{ rad/Bohr}\) has 194,760 atoms in the simulation domain, a system size that is intractable even on large-scale supercomputers. It is worth
noting that the Cyclix-DFT code has already proven to be an effective and reliable tool in a number of physical applications65,85–88, providing further evidence of the fidelity of the computations performed here.

FIG. 1: Illustration depicting the cyclic and helical symmetry inherent to a twisted (10,10) 1T-o TMD nanotube (structural model generated using VESTA78). In particular, all atoms can be considered to be cyclic and/or helical images of the metal and chalcogen atoms colored red and maroon, respectively. This symmetry is exploited while performing ab initio Kohn-Sham calculations using the Cyclix-DFT code65,79.

In all simulations, we employ the semilocal Perdew–Burke–Ernzerhof (PBE)89 exchange-correlation functional and optimized norm-conserving Vanderbilt (ONCV) pseudopotentials90 from the SG1591 collection. In addition to the developer tests91, the transferability of the pseudopotentials has been verified by comparisons with all-electron DFT code Elk92 for select bulk systems, and by the results obtained in recent work86–88. In particular, the equilibrium configuration for the nanotubes and their two-dimensional counterparts88 are in very good agreement with previous DFT results employing the same exchange-correlation functional5,6,52,53,77,93–96. Furthermore, the geometries are also in very good agreement with experimental measurements for both the nanotubes35,66,68,70 and their two-dimensional analogues97–101, justifying the choice of PBE exchange-correlation functional in this work. Indeed, PBE is known to under-predict the bandgap of TMD monolayers — expected to have similar band structure as the nanotubes, given that they have considerably large
diameters where curvature effects are minor — relative to hybrid functionals like HSE5. However, there is good agreement in the overall band structure and nature of bandgap5. In particular, we are interested in general trends, which are expected to be insensitive to the choice of exchange-correlation functional, particularly given the small twists considered here. Even quantitatively, hybrid functionals are not necessarily more accurate than PBE in predicting the band structure, e.g., bulk TMDs102. In view of this and the tremendously larger cost associated with hybrids, PBE has been the functional of choice for TMD nanotubes40,44,45,47–50,52–55. Note that the incorporation of spin-orbit coupling (SOC) causes relatively minor modifications to the band structure5, which is why it has been neglected here.

We perform the symmetry-adapted Kohn-Sham DFT calculations described above to determine the variation in bandgap and effective mass of charge carriers (i.e., electrons and holes) with shear strain for the forty-five select armchair and zigzag TMD nanotubes. The shear strain is defined to be the product of the nanotube radius and the applied twist per unit length. The values for shear strain are chosen to be commensurate with those found in experiments56,58,103. Additional details regarding the calculation of the bandgap and effective mass within the symmetry-adapted formulation can be found in previous work65. The numerical parameters in Cyclix-DFT, including real-space grid spacing, Brillouin zone integration grid spacing, vacuum in the radial direction, and structural relaxation tolerances (both cell and atom) are chosen such that the bandgap and effective mass are calculated to within an accuracy of 0.01 eV and 0.01 a.u., respectively. This translates to the requirement of the ground state energy being converged to within 10^{-4} Ha/atom, respectively. The simulation data for all the results presented below can be found in the Supplementary Information.

In Fig. 2, we present the variation of the bandgap with shear strain for the selected TMD nanotubes. We observe that the untwisted MoS\textsubscript{2}, MoSe\textsubscript{2}, MoTe\textsubscript{2}, WS\textsubscript{2}, WSe\textsubscript{2}, WTe\textsubscript{2}, CrS\textsubscript{2}, CrSe\textsubscript{2}, CrTe\textsubscript{2}, PdS\textsubscript{2}, PdSe\textsubscript{2}, PdTe\textsubscript{2}, PtS\textsubscript{2}, PtSe\textsubscript{2}, PtTe\textsubscript{2}, ZrS\textsubscript{2}, ZrSe\textsubscript{2}, HfS\textsubscript{2}, HfSe\textsubscript{2}, NiS\textsubscript{2}, NiSe\textsubscript{2}, and TiS\textsubscript{2} nanotubes are semiconducting, while the remaining are metallic. In addition, nanotubes that are metallic continue to be so even after the application of twist, whereas semiconducting nanotubes undergo a decrease in bandgap value with twist — bandgaps that are originally direct become indirect — resulting in a semiconductor to metal transition. In
particular, armchair HfSe$_2$, ZrSe$_2$, PtTe$_2$, NiS$_2$, TiS$_2$, NiSe$_2$, and PdTe$_2$; and zigzag ZrSe$_2$, PtTe$_2$, NiS$_2$, TiS$_2$, NiSe$_2$, and PdTe$_2$ nanotubes undergo a semiconductor to metal transition for the twists considered. The transition for TiS$_2$, NiSe$_2$, and PdTe$_2$ nanotubes occurs at substantially lower strains than the others, since the bandgaps in the untwisted state are smaller. Such transitions are also expected for the remaining semiconducting nanotubes, however the amount of twist required to achieve this can be significantly higher, at which point stability considerations become particularly important. Tunability of the bandgap and controlled semiconductor-metal transitions like those observed here have applications in devices such as mechanical sensors.51,62,63

![Image](image.png)

FIG. 2: Variation of bandgap with twist for the forty-five select armchair and zigzag TMD nanotubes.

In Fig. 3, we present the variation of the difference in effective mass between holes and electrons with twist for the nineteen semiconducting armchair and zigzag TMD nanotubes that were identified above. The effective mass of the holes and electrons relative to each
other can be used to identify whether the nanotubes are n-type or p-type semiconductors. Specifically, the effective mass of the holes being greater than electrons suggests that the electrons have higher mobility, resulting in n-type semiconductors, with the reverse being true for p-type semiconductors. It is clear from the figure that other than the zigzag ZrS$_2$ nanotube, all other nanotubes are n-type semiconductors in their untwisted state. Upon the application of twist, the effective mass of the holes continuously decreases while that of the electrons continuously increases, leading to a crossover in their values. In particular, armchair MoS$_2$, MoTe$_2$, WTe$_2$, ZrS$_2$, ZrSe$_2$, HfS$_2$, HfSe$_2$, CrS$_2$, and CrSe$_2$; and zigzag MoTe$_2$, WTe$_2$, ZrSe$_2$, HfS$_2$, HfSe$_2$, CrS$_2$, CrSe$_2$, and PtTe$_2$ nanotubes undergo a transition from n-type to p-type semiconducting behavior for the twists considered. Indeed, larger twists are likely to result in transitions for the other nanotubes as well, however, as mentioned above, stability considerations become particularly important in such scenarios. Controlled n-type to p-type semiconductor transitions like those observed here have applications in semiconductor switches$^{104–109}$.

![Graph](image)

FIG. 3: Variation of the difference in effective mass between holes and electrons (holes minus electrons) with twist for the nineteen semiconducting armchair and zigzag TMD nanotubes.

The results presented in this work are in good agreement with those available in literature. Specifically, in the untwisted state, the metallic nature predicted for TaS$_2$, NbSe$_2$, and NbS$_2$ nanotubes is in agreement with tight binding calculations33,34,110,111; the bandgap
values for MoS$_2$, MoSe$_2$, WS$_2$, WSe$_2$, and CrS$_2$ nanotubes are in good agreement with other DFT studies50,53; and the effective masses of electrons for MoS$_2$, WS$_2$, and CrS$_2$ nanotubes are in good agreement with other DFT results50,52,53. In addition, the bandgap variation upon twisting for WS$_2$ and MoS$_2$ nanotubes is in good qualitative agreement with previous experiments and tight binding calculations, respectively56. A quantitative comparison cannot be made due to availability of only electrical response in the experiments, and the diameters in both experiments and tight binding simulations being different to those chosen here. Indeed, we have found that the bandgap variation with shear strain is qualitatively similar for different diameters. In view of this, we note that the ratio of change in bandgap between 15% and 10% shear strains for WS$_2$ nanotube is 2.1 based on experiments56, which is in good agreement with the ratio of 1.9 obtained here for both armchair and zigzag variants. Furthermore, the ratio of bandgap between 15% and 0% strains for the armchair MoS$_2$ nanotube is 0.9 based on tight binding results56, which is in excellent agreement with the value of 0.9 obtained here. It is interesting to note that metallic TMD nanotubes continue to be so even after the application of torsional deformations, which is fundamentally different from the response of carbon nanotubes65.

To gain further insights into the results presented above, choosing representative TMD nanotubes that demonstrate semiconductor to metal and n-type to p-type transitions, we plot the contours of electron density difference between the twisted and untwisted nanotube configurations in Fig. 4. In addition, we compute the charge transfer due to torsional deformations using Bader analysis112,113. We observe that there is negligible change in the Bader charge, suggesting the lack of charge transfer between the metal and chalcogen atoms, indicating that the nature of bonding between them remains unchanged. It can therefore be inferred that electronic variations due to torsional deformations, as visible through the change in electron density contours, is likely due to the rehybridization of orbitals in the metal and chalcogen atoms.

In summary, we have studied the electronic response of single-walled TMD nanotubes to torsional deformations. In particular, using symmetry-adapted first principles DFT simulations, we have determined the variation in bandgap and effective mass of charge carriers with twist for forty-five select armchair and zigzag TMD nanotubes. We have found that
FIG. 4: Contours of electron density difference — integrated along the x_1 direction — between the twisted and untwisted armchair nanotube configurations (twisted minus untwisted). The twists chosen for a, b, c, and d correspond to the semiconductor–metal transition; and in e, f, g, and h they correspond to the transition from n-type to p-type semiconductors. The contours are plotted on the x_2x_3-plane in the corresponding monolayer flat sheet configuration. The charge transfer due to twisting, shown near the corresponding atoms in the lattice structure, is obtained from Bader analysis112,113.

whereas the nature of originally metallic nanotubes remains unaltered, there is a continuous decrease in bandgap — changes to indirect for systems that are originally direct — with increasing twist for semiconducting TMD nanotubes, culminating in semiconductor to metal transitions. In addition, we have found that the effective mass of holes and electrons continuously decrease and increase with twist, respectively, culminating in transitions from n-type
to p-type semiconducting behavior. We have found that these changes can be attributed to rehybridization of orbitals in the metal and chalcogen atoms, rather than charge transfer between them. Overall, we conclude that torsional deformations represent a powerful tool to tailor the electronic properties of semiconducting TMD nanotubes, with applications to devices such as sensors and semiconductor switches.

The current work suggests a number of interesting directions for future research. These include studying the electromechanical response of multi-walled TMD nanotubes, which are of significant practical relevance given their ease of synthesis; and extension of such studies to large twists, where unexpected nonlinear behavior can be observed.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the US National Science Foundation (CAREER–1553212).

* phanish.suryanarayana@ce.gatech.edu

1 S Iijima. Helical microtubules of graphitic carbon. *Nature*, 354(6348):56–58, 1991.

2 R Tenne. Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. *Angewandte Chemie International Edition*, 42(42):5124–5132, 2003.

3 C N R Rao and M Nath. Inorganic nanotubes. In *Advances In Chemistry: A Selection of CNR Rao’s Publications (1994–2003)*, pages 310–333. World Scientific, 2003.

4 M Serra, R Arenal, and R Tenne. An overview of the recent advances in inorganic nanotubes. *Nanoscale*, 11(17):8073–8090, 2019.

5 S Haastrup, M Strange, M Pandey, T Deilmann, P S Schmidt, N F Hinsche, M N Gjerding, D Torelli, P M Larsen, A C Riis-Jensen, et al. The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. *2D Materials*, 5(4):042002, 2018.
6 J Zhou, L Shen, M D Costa, K A Persson, Shyue P Ong, P Huck, Y Lu, X Ma, Y Chen, H Tang, et al. 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches. *Scientific Data*, 6(1):1–10, 2019.

7 M N Gjerding, A Taghizadeh, A Rasmussen, S Ali, F Bertoldo, T Deilmann, U P Holguin, N R Knøsgaard, M Kruse, S Manti, et al. Recent Progress of the Computational 2D Materials Database (C2DB). *arXiv preprint arXiv:2102.03029*, 2021.

8 S Ghosh, A S Banerjee, and P Suryanarayana. Symmetry-adapted real-space density functional theory for cylindrical geometries: Application to large group-IV nanotubes. *Physical Review B*, 100(12):125143, 2019.

9 A Maiti. Bandgap engineering with strain. *Nature Materials*, 2(7):440–442, 2003.

10 D-B Zhang, E Akatyeva, and T Dumitrićă. Helical bn and zn0 nanotubes with intrinsic twisting: An objective molecular dynamics study. *Physical Review B*, 84(11):115431, 2011.

11 GY Guo and JC Lin. Systematic ab initio study of the optical properties of bn nanotubes. *Physical Review B*, 71(16):165402, 2005.

12 Jian-Feng Jia, Hai-Shun Wu, and Haijun Jiao. The structure and electronic property of bn nanotube. *Physica B: Condensed Matter*, 381(1-2):90–95, 2006.

13 Xiaobao Yang and Jun Ni. Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes. *Physical Review B*, 72(19):195426, 2005.

14 JW Mintmire, DH Robertson, and CT White. Properties of fullerene nanotubules. *Journal of Physics and Chemistry of Solids*, 54(12):1835–1840, 1993.

15 Chongze Wang, Xiaonan Fu, Yangyang Guo, Zhengxiao Guo, Congxin Xia, and Yu Jia. Band gap scaling laws in group iv nanotubes. *Nanotechnology*, 28(11):115202, 2017.

16 JW Ding, XH Yan, and JX Cao. Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. *Physical Review B*, 66(7):073401, 2002.

17 M Ouyang, J-L Huang, and C M Lieber. Fundamental electronic properties and applications of single-walled carbon nanotubes. *Accounts of Chemical Research*, 35(12):1018–1025, 2002.

18 Huan Wang, Ning Ding, Ting Jiang, Xian Zhao, Wei Liu, and Fahmi Zaïri. Investigation on mechanical and electronic properties of graphene-doped boron nitride nanotubes. *Materials Research Express*, 6(11):1150c5, 2019.
V Parashar, C P Durand, B Hao, R G Amorim, R Pandey, B Tiwari, D Zhang, Y Liu, A-P Li, and Y K Yap. Switching behaviors of graphene-boron nitride nanotube heterojunctions. *Scientific Reports*, 5(1):1–6, 2015.

B Akdim and R Pachter. Bandgap Tuning of a (6, 6) Boron Nitride Nanotube by Analyte Physisorption and Application of a Transverse Electric Field: A DFT Study. *IEEE Transactions on Nanotechnology*, 10(5):1089–1092, 2011.

L-G Tien, C-H Tsai, F-Y Li, and M-H Lee. Band-gap modification of defective carbon nanotubes under a transverse electric field. *Physical Review B*, 72(24):245417, 2005.

Chun-Wei Chen, Ming-Hsien Lee, and SJ Clark. Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field. *Nanotechnology*, 15(12):1837, 2004.

L Yang and J Han. Electronic structure of deformed carbon nanotubes. *Physical Review Letters*, 85(1):154, 2000.

A Rochefort, P Avouris, F Lesage, and D R Salahub. Electrical and mechanical properties of distorted carbon nanotubes. *Physical Review B*, 60(19):13824, 1999.

T W Tombler, C Zhou, L Alexseyev, J Kong, H Dai, L Liu, C S Jayanthi, M Tang, and S-Y Wu. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. *Nature*, 405(6788):769–772, 2000.

L Yang, M P Anantram, J Han, and J P Lu. Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. *Physical Review B*, 60(19):13874, 1999.

Yong-Hyun Kim, Kee-Joo Chang, and SG Louie. Electronic structure of radially deformed boron nitride and boron carborane nanotubes. *Physical Review B*, 63(20):205408, 2001.

Yusuke Kinoshita and Nobutada Ohno. Electronic structures of boron nitride nanotubes subjected to tension, torsion, and flattening: A first-principles DFT study. *Physical Review B*, 82(8):085433, 2010.

SS Coutinho, V Lemos, and S Guerini. Band-gap tunability of a (6, 0) boron nitride nanotube bundle under pressure: Ab initio calculations. *Physical Review B*, 80(19):193408, 2009.

Hessam M Ghassemi, Chee Hui Lee, Yoke Khin Yap, and Reza S Yassar. Field emission and strain engineering of electronic properties in boron nitride nanotubes. *Nanotechnology*, 12
23(10):105702, 2012.

31 G Seifert, H Terrones, M Terrones, G Jungnickel, and T Frauenheim. Structure and electronic properties of MoS$_2$ nanotubes. *Physical Review Letters*, 85(1):146, 2000.

32 G Seifert, H Terrones, M Terrones, G Jungnickel, and T Frauenheim. On the electronic structure of WS$_2$ nanotubes. *Solid State Communications*, 114(5):245–248, 2000.

33 G Seifert, H Terrones, M Terrones, and T Frauenheim. Novel NbS$_2$ metallic nanotubes. *Solid State Communications*, 115(12):635–638, 2000.

34 A N Enyashin, I R Shein, N I Medvedeva, and A L Ivanovskii. Computational studies of 1T and 2H TaS$_2$ in crystalline and nanotubular forms: structural and electronic properties. *Internet Electronic Journal of Molecular Design*, 4:316–328, 2005.

35 M Nath, S Kar, A K Raychaudhuri, and C N R Rao. Superconducting NbSe$_2$ nanostructures. *Chemical Physics Letters*, 368(5-6):690–695, 2003.

36 T Tsuneta, T Toshima, K Inagaki, T Shibayama, S Tanda, S Uji, M Ahlskog, P Hakonen, and M Paalanen. Formation of metallic NbSe$_2$ nanotubes and nanofibers. *Current Applied Physics*, 3(6):473–476, 2003.

37 V V Ivanovskaya, A N Enyashin, N I Medvedeva, Y N Makurin, and A L Ivanovskii. Computational studies of electronic properties of ZrS$_2$ nanotubes. *Internet Electronic Journal of Molecular Design*, 2:499–510, 2003.

38 V V Ivanovskaya and G Seifert. Tubular structures of titanium disulfide TiS$_2$. *Solid State Communications*, 130(3-4):175–180, 2004.

39 B-L Gao, S-H Ke, G Song, J Zhang, L Zhou, G-N Li, F Liang, Y Wang, and C Dang. Structural and electronic properties of zigzag and armchair WSe$_2$ nanotubes. *Journal of Alloys and Compounds*, 695:2751–2756, 2017.

40 D Yin, M Wu, Y Yang, W Cen, and H Fang. Chiral vectors-tunable electronic property of MoS$_2$ nanotubes. *Physica E: Low-dimensional Systems and Nanostructures*, 84:196–201, 2016.

41 I Milošević, B Nikolić, E Dobardžić, M Damnjanović, I Popov, and G Seifert. Electronic properties and optical spectra of MoS$_2$ and WS$_2$ nanotubes. *Physical Review B*, 76(23):233414, 2007.
42 D Teich, T Lorenz, J-O Joswig, G Seifert, D-B Zhang, and T Dumitrica. Structural and electronic properties of helical TiS$_2$ nanotubes studied with objective molecular dynamics. *The Journal of Physical Chemistry C*, 115(14):6392–6396, 2011.

43 L Scheffer, R Rosentzeig, A Margolin, R Popovitz-Biro, G Seifert, S R Cohen, and R Tenne. Scanning tunneling microscopy study of WS$_2$ nanotubes. *Physical Chemistry Chemical Physics*, 4(11):2095–2098, 2002.

44 N Zibouche, A Kuc, and T Heine. From layers to nanotubes: Transition metal disulfides TMS$_2$. *The European Physical Journal B*, 85(1):49, 2012.

45 R Ansari, S Malakpour, M Faghihnasiri, and S Sahmani. An ab initio investigation into the elastic, structural and electronic properties of MoS$_2$ nanotubes. *Superlattices and Microstructures*, 82:188–200, 2015.

46 O Tal, M Remskar, R Tenne, and G Haase. The effect of substrate topography on the local electronic structure of WS$_2$ nanotubes. *Chemical Physics Letters*, 344(5-6):434–440, 2001.

47 N Li, G Lee, Y H Jeong, and K S Kim. Tailoring electronic and magnetic properties of MoS$_2$ nanotubes. *The Journal of Physical Chemistry C*, 119(11):6405–6413, 2015.

48 Y Z Wang, B L Wang, Q F Zhang, R Huang, B L Gao, F J Kong, and X Q Wang. Tuning structural and electronic properties of MoS$_2$ nanotubes by transverse electric field. *Chalcogenide Letters*, 11(10):493–502, 2014.

49 N Zibouche, P Philipsen, and A Kuc. Strong variation of electronic properties of MoS$_2$ and WS$_2$ nanotubes in the presence of external electric fields. *The Journal of Physical Chemistry C*, 123(6):3892–3899, 2019.

50 N Zibouche, M Ghorbani-Asl, T Heine, and A Kuc. Electromechanical properties of small transition-metal dichalcogenide nanotubes. *Inorganics*, 2(2):155–167, 2014.

51 S Oshima, M Toyoda, and S Saito. Geometrical and electronic properties of unstrained and strained transition metal dichalcogenide nanotubes. *Physical Review Materials*, 4(2):026004, 2020.

52 W Li, G Zhang, M Guo, and Y-W Zhang. Strain-tunable electronic and transport properties of MoS$_2$ nanotubes. *Nano Research*, 7(4):518–527, 2014.
Y Z Wang, R Huang, X Q Wang, Q F Zhang, B L Gao, L Zhou, and G Hua. Strain-tunable electronic properties of CrS$_2$ nanotubes. *Chalcogenide Letters*, 13(7):301–307, 2016.

M Ghorbani-Asl, N Zibouche, M Wahiduzzaman, A F Oliveira, A Kuc, and T Heine. Electromechanics in MoS$_2$ and WS$_2$: nanotubes vs. monolayers. *Scientific Reports*, 3:2961, 2013.

P Lu, X Wu, W Guo, and X C Zeng. Strain-dependent electronic and magnetic properties of MoS$_2$ monolayer, bilayer, nanoribbons and nanotubes. *Physical Chemistry Chemical Physics*, 14(37):13035–13040, 2012.

R Levi, J Garel, D Teich, G Seifert, R Tenne, and E Joselevich. Nanotube electromechanics beyond carbon: the case of WS$_2$. *ACS Nano*, 9(12):12224–12232, 2015.

D Yudilevich, R Levi, I Nevo, R Tenne, A Ya’akovovitz, and E Joselevich. Self-sensing torsional resonators based on inorganic nanotubes. *ICME*, pages 1–4, 2018.

Y Divon, R Levi, J Garel, D Golberg, R Tenne, A Ya’akovovitz, and E Joselevich. Torsional resonators based on inorganic nanotubes. *Nano Letters*, 17(1):28–35, 2017.

H E Unalan, Y Yang, Y Zhang, P Hiralal, D Kuo, S Dalal, T Butler, S N Cha, J E Jang, K Chremmou, et al. ZnO Nanowire and WS$_2$ nanotubes Electronics. *IEEE Transactions on Electron Devices*, 55(11):2988–3000, 2008.

C Zhang, S Wang, L Yang, Y Liu, T Xu, Z Ning, A Zak, Z Zhang, R Tenne, and Q Chen. High-performance photodetectors for visible and near-infrared lights based on individual WS$_2$ nanotubes. *Applied Physics Letters*, 100(24):243101, 2012.

Y J Zhang, T Ideue, M Onga, F Qin, R Suzuki, A Zak, R Tenne, J H Smet, and Y Iwasa. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. *Nature*, 570(7761):349–353, 2019.

B L Li, J Wang, H L Zou, S Garaj, C T Lim, J Xie, N B Li, and D T Leong. Low-dimensional transition metal dichalcogenide nanostructures based sensors. *Advanced Functional Materials*, 26(39):7034–7056, 2016.

V Sorkin, H Pan, H Shi, S Y Quek, and Y W Zhang. Nanoscale transition metal dichalcogenides: structures, properties, and applications. *Critical Reviews in Solid State and Materials Sciences*, 39(5):319–367, 2014.
S Barua, H S Dutta, R Gogoi, Sand Devi, and R Khan. Nanostructured MoS$_2$-based advanced biosensors: a review. *ACS Applied Nano Materials*, 1(1):2–25, 2017.

A Sharma and P Suryanarayana. Real-space density functional theory adapted to cyclic and helical symmetry: Application to torsional deformation of carbon nanotubes. *Physical Review B*, 103(3):035101, 2021.

M Nath and C N R Rao. Nanotubes of group 4 metal disulfides. *Angewandte Chemie International Edition*, 41(18):3451–3454, 2002.

A V Bandura and R A Evarestov. TiS$_2$ and ZrS$_2$ single- and double-wall nanotubes: First-principles study. *Journal of Computational Chemistry*, 35(5):395–405, 2014.

M Nath and C N R Rao. MoSe$_2$ and WSe$_2$ nanotubes and related structures. *Chemical Communications*, 1(21):2236–2237, 2001.

M Nath, A Govindaraj, and C N R Rao. Simple synthesis of MoS$_2$ and WS$_2$ nanotubes. *Advanced Materials*, 13(4):283–286, 2001.

J Chen, S-L Li, Z-L Tao, Y-T Shen, and C-X Cui. Titanium disulfide nanotubes as hydrogen-storage materials. *Journal of the American Chemical Society*, 125(18):5284–5285, 2003.

M Nath and C N R Rao. New metal disulfide nanotubes. *Journal of the American Chemical Society*, 123(20):4841–4842, 2001.

A R Tenne, L Margulis, M Genut, and G Hodes. Polyhedral and cylindrical structures of tungsten disulphide. *Nature*, 360(6403):444–446, 1992.

J M Gordon, E A Katz, D Feuermann, Ana Albu-Yaron, M Levy, and R Tenne. Singular MoS$_2$, SiO$_2$ and Si nanostructures—synthesis by solar ablation. *Journal of Materials Chemistry*, 18(4):458–462, 2008.

V Brüser, R Popovitz-Biro, A Albu-Yaron, T Lorenz, G Seifert, R Tenne, and A Zak. Single-to triple-wall WS$_2$ nanotubes obtained by high-power plasma ablation of WS$_2$ multiwall nanotubes. *Inorganics*, 2(2):177–190, 2014.

M Remskar, A Mrzel, Z Skraba, A Jesih, M Ceh, J Demšar, P Stadelmann, F Lévy, and D Mihailovic. Self-assembly of subnanometer-diameter single-wall MoS$_2$ nanotubes. *Science*, 292(5516):479–481, 2001.
76 T Heine. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. *Accounts of Chemical Research*, 48(1):65–72, 2015.

77 H Guo, N Lu, L Wang, X Wu, and X C Zeng. Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. *The Journal of Physical Chemistry C*, 118(13):7242–7249, 2014.

78 K Momma and F Izumi. VESTA: a three-dimensional visualization system for electronic and structural analysis. *Journal of Applied Crystallography*, 41(3):653–658, 2008.

79 Qimen Xu, Abhiraj Sharma, Benjamin Comer, Hua Huang, Edmond Chow, Andrew J Medford, John E Pask, and Phanish Suryanarayana. Sparc: Simulation package for ab-initio real-space calculations. *SoftwareX*, 15:100709, 2021.

80 A S Banerjee and P Suryanarayana. Cyclic density functional theory: A route to the first principles simulation of bending in nanostructures. *Journal of the Mechanics and Physics of Solids*, 96:605–631, 2016.

81 S Ghosh and P Suryanarayana. SPARC: Accurate and efficient finite-difference formulation and parallel implementation of density functional theory: Isolated clusters. *Computer Physics Communications*, 212:189–204, 2017.

82 S Ghosh and P Suryanarayana. SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Extended systems. *Computer Physics Communications*, 216:109–125, 2017.

83 A S Banerjee, L Lin, P Suryanarayana, C Yang, and J E Pask. Two-level Chebyshev filter based complementary subspace method: pushing the envelope of large-scale electronic structure calculations. *Journal of Chemical Theory and Computation*, 14(6):2930–2946, 2018.

84 P Motamarri, S Das, S Rudraraju, K Ghosh, D Davydov, and V Gavini. DFT-FE–A massively parallel adaptive finite-element code for large-scale density functional theory calculations. *Computer Physics Communications*, 246:106853, 2020.

85 D Codony, I Arias, and P Suryanarayana. Transversal flexoelectric coefficient for nanostructures at finite deformations from first principles. *Physical Review Materials*, 5(6):L030801, 2021.

86 S Kumar, D Codony, I Arias, and P Suryanarayana. Flexoelectricity in atomic monolayers from first principles. *Nanoscale*, 13(3):1600–1607, 2021.
S Kumar and P Suryanarayana. Bending moduli for forty-four select atomic monolayers from first principles. *Nanotechnology*, 31(43):43LT01, 2020.

A Bhardwaj, A Sharma, and P Suryanarayana. Torsional moduli of transition metal dichalcogenide nanotubes from first principles. *Nanotechnology*, 2021.

J P Perdew, K Burke, and M Ernzerhof. Generalized gradient approximation made simple. *Physical Review Letters*, 77(18):3865, 1996.

D R Hamann. Optimized norm-conserving Vanderbilt pseudopotentials. *Physical Review B*, 88(8):085117, 2013.

M Schlipf and F Gygi. Optimization algorithm for the generation of ONCV pseudopotentials. *Computer Physics Communications*, 196:36–44, 2015.

The Elk Code. http://elk.sourceforge.net/.

J Xiao, M Long, X Li, H Xu, H Huang, and Y Gao. Theoretical prediction of electronic structure and carrier mobility in single-walled MoS$_2$ nanotubes. *Scientific Reports*, 4(1):1–7, 2014.

C Ataca, H Sahin, and S Ciraci. Stable, single-layer MX$_2$ transition-metal oxides and dichalcogenides in a honeycomb-like structure. *The Journal of Physical Chemistry C*, 116(16):8983–8999, 2012.

C-H Chang, X Fan, S-H Lin, and J-L Kuo. Orbital analysis of electronic structure and phonon dispersion in MoS$_2$, MoSe$_2$, WS$_2$, and WSe$_2$ monolayers under strain. *Physical Review B*, 88(19):195420, 2013.

B Amin, T P Kaloni, and U Schwingenschl"ogl. Strain engineering of WS$_2$, WSe$_2$, and WTe$_2$. *RSC Advances*, 4(65):34561–34565, 2014.

A R Klots, A K M Newaz, B Wang, D Prasai, H Krzyzanowska, J Lin, D Caudel, N J Ghimire, J Yan, B L Ivanov, et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. *Scientific Reports*, 4(1):1–7, 2014.

M M Ugeda, A J Bradley, S-F Shi, H Felipe, Y Zhang, D Y Qiu, W Ruan, S-K Mo, Z Hussain, Z-X Shen, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. *Nature Materials*, 13(12):1091–1095, 2014.
99 H M Hill, A F Rigosi, K T Rim, G W Flynn, and T F Heinz. Band alignment in MoS$_2$/WS$_2$ transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. *Nano Letters*, 16(8):4831–4837, 2016.

100 Kostya S Novoselov, D Jiang, F Schedin, TJ Booth, VV Khotkevich, SV Morozov, and Andre K Geim. Two-dimensional atomic crystals. *Proceedings of the National Academy of Sciences*, 102(30):10451–10453, 2005.

101 Jonathan N Coleman, Mustafa Lotya, Arlene O'Neill, Shane D Bergin, Paul J King, Umar Khan, Karen Young, Alexandre Gaucher, Sukanta De, Ronan J Smith, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. *Science*, 331(6017):568–571, 2011.

102 A Kuc, N Zibouche, and T Heine. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS$_2$. *Physical Review B*, 83(24):245213, 2011.

103 K S Nagapriya, O Goldbart, I Kaplan-Ashiri, G Seifert, R Tenne, and E Joselevich. Torsional stick-slip behavior in WS$_2$ nanotubes. *Physical Review Letters*, 101(19):195501, 2008.

104 T Nilges, S Lange, M Bawohl, J M Deckwart, M Janssen, H-D Wiemhöfer, R Decourt, B Chevalier, J Vannahme, H Eckert, et al. Reversible switching between p- and n-type conduction in the semiconductor Ag$_{10}$Te$_4$Br$_3$. *Nature Materials*, 8(2):101–108, 2009.

105 J Zhang, P Gu, G Long, R Ganguly, Y Li, N Aratani, H Yamada, and Q Zhang. Switching charge-transfer characteristics from p-type to n-type through molecular “doping” (co-crystallization). *Chemical Science*, 7(6):3851–3856, 2016.

106 H Hiramatsu, K Ueda, H Ohta, M Hirano, M Kikuchi, H Yanagi, T Kamiya, and H Hosono. Heavy hole doping of epitaxial thin films of a wide gap p-type semiconductor, LaCuOSe, and analysis of the effective mass. *Applied Physics Letters*, 91(1):012104, 2007.

107 L Chen, J Yang, S Klaus, L J Lee, R Woods-Robinson, J Ma, Y Lum, J K Cooper, F M Toma, L-W Wang, et al. p-Type transparent conducting oxide/n-type semiconductor heterojunctions for efficient and stable solar water oxidation. *Journal of the American Chemical Society*, 137(30):9595–9603, 2015.

108 T Wen, Y Wang, N Li, Q Zhang, Y Zhao, W Yang, Y Zhao, and H-K Mao. Pressure-driven reversible switching between n- and p-Type conduction in chalcopyrite CuFeS$_2$. *Journal of the
B D Naab, S Himmelberger, Y Diao, K Vandewal, P Wei, B Lussem, A Salleo, and Z Bao. High mobility n-type transistors based on solution-sheared doped 6,13-Bis (triisopropylsilylethynyl) pentacene thin films. *Advanced Materials*, 25(33):4663–4667, 2013.

A N Enyashin, V V Ivanovskaya, I R Shein, Y N Makurin, N I Medvedeva, A A Sofronov, and A L Ivanovskii. Interatomic interactions and electronic structure of NbSe$_2$ and Nb$_{1.25}$Se$_2$ nanotubes. *Journal of Structural Chemistry*, 45(4):547–556, 2004.

V V Ivanovskaya, A N Enyashin, N I Medvedeva, and A L Ivanovskii. Electronic properties of superconducting NbSe$_2$ nanotubes. *Physica Status Solidi (B)*, 238(3):R1–R4, 2003.

R F W Bader and TT Nguyen-Dang. Quantum theory of atoms in molecules–Dalton revisited. In *Advances in Quantum Chemistry*, volume 14, pages 63–124. Elsevier, 1981.

W Tang, E Sanville, and G Henkelman. A grid-based bader analysis algorithm without lattice bias. *Journal of Physics: Condensed Matter*, 21(8):084204, 2009.