Determination of compact Lie groups with the Borsuk-Ulam property

Ikumitsu Nagasaki

July 28, 2021

Abstract

A compact Lie group G is said to have the Borsuk-Ulam property if the Borsuk-Ulam theorem holds for G-maps between representation spheres. It is well-known that an elementary abelian p-group C_p^n (p any prime) and an n-torus T^n, $n \geq 0$, have the Borsuk-Ulam property. In this paper, we shall discuss the classical question of which compact Lie groups have the Borsuk-Ulam property and in particular we shall show that every extension group of an n-torus by a cyclic group of prime order does not have the Borsuk-Ulam property. This leads us that the only compact Lie groups with the Borsuk-Ulam property are C_p^n and T^n, which is a final answer to the question.

1 Introduction

The classical Borsuk-Ulam theorem [3] has been generalised from various aspects. From the viewpoint of equivariant topology or transformation group theory, the following theorem is well-known as a generalisation of the Borsuk-Ulam theorem, see for example [2], [8], [11], etc.

Theorem (Borsuk-Ulam type theorem). Let Γ be an elementary abelian p-group C_p^n (p any prime) or an n-torus T^n. For any fixed-point-free orthogonal Γ-representations V and W, i.e., $V^\Gamma = W^\Gamma = 0$, if there exists a Γ-map $f : S(V) \to S(W)$ between representation spheres, then the inequality $\dim V \leq \dim W$ holds.

We say that a compact Lie group G has the Borsuk-Ulam property if such a Borsuk-Ulam type result holds, and such G is called a **BU-group of type I** according to [12], that is, we call G a BU-group of type I if the following property is satisfied: for any fixed-point-free orthogonal G-representations V and W, if there exists a G-map $f : S(V) \to S(W)$ between representation spheres, then the inequality $\dim V \leq \dim W$ holds. We also call G a **BU-group of type II** if the following property is satisfied: for any fixed-point-free orthogonal G-representations V and W with the same dimension, if there exists a G-map $f : S(V) \to S(W)$, then the degree of f is $\deg f \neq 0$. It is also known that tori and elementary abelian p-groups are BU-groups of type II, see [9, Theorems 1 and 2]. It is natural and interesting to ask the following question:
Question. Which compact Lie groups have the Borsuk-Ulam property?

In previous studies of G-maps between spheres, several counterexamples of the Borsuk-Ulam property were sporadically found out; for example, C_{pq}, where p, q are relatively prime positive integers, is not a BU-group of type II by [5, p.60] and not of type I by a result of [14]. As is observed in [10], $S^3 = S(\mathbb{H})$, \mathbb{H} the skew field of quaternions, is not a BU-group of type I; in fact, the Hopf map $\pi: S^3 \to S^3/S^1 \cong S^2$ is considered as an S^3-map.

In the early 1990s, this question and related topics were systematically studied in [1] and [10]. Consequently, it has been shown that almost compact Lie groups are neither BU-groups of type I nor of type II. However, some unsolved cases were left until recently. In [12], we studied the remaining cases of finite groups and provided an answer to the above question in finite group case. In fact, we showed that the only finite BU-groups of type I [resp. II] are the elementary abelian p-groups (including the trivial group).

In this paper, we shall discuss the question in general compact Lie groups and provide a final answer to the question. As will be seen in the following sections, the question is reduced to the case of an extension of an n-torus by a cyclic group C_p of prime order p, and then the following result will be shown.

Proposition 1.1. Let G be any extension of an n-torus T^n by a cyclic group C_p of order p:
\[1 \to T^n \to G \to C_p \to 1, \quad n \geq 1. \]

Then G is neither a BU-group of type I nor of type II.

As a consequence, we obtain a final answer to the question as follows:

Theorem 1.2. The following statements are equivalent.

1. A compact Lie group G is a BU-group of type I.

2. A compact Lie group G is a BU-group of type II.

3. A compact Lie group G is isomorphic to an elementary abelian p-group C_p^n or an n-torus T^n, $n \geq 0$.

This theorem is deeply related to some results of [10]. In [10], a compact Lie group G is said to have the Borsuk-Ulam property in the strong sense A (or the property IIA) if the following property is satisfied: for any G-map $f: S(V) \to S(W)$ with $\dim V = \dim W$ and $\dim V^G = \dim W^G$, if the degree $\deg f^G$ is prime to $|G/G_0|$, then $\deg f \neq 0$. Theorem 1.2 improves a result of [10] as follows:

Corollary 1.3. A compact Lie group G has the Borsuk-Ulam property in the strong sense A if and only if G is isomorphic to an elementary abelian p-group C_p^n or an n-torus T^n, $n \geq 0$.

Indeed, if G has the Borsuk-Ulam property in the strong sense A, then G is a BU-group of type II, since $\deg f^G = 1$ when $S(V)^G = S(W)^G = \emptyset$. Therefore G is isomorphic to an elementary abelian p-group C_p^n or an n-torus T^n, $n \geq 0$. On the other hand, the converse is already shown by [9, Theorems 1 and 2].

2
Remark 1. Theorem 2 (b) of [10] is unfortunately incorrect. In particular, Lemma 1.2 of [10] does not hold for compact Lie groups with the property of type II A. Theorem [12] also gives a negative answer to the conjecture of [4] that \(G \) has the Borsuk-Ulam property if and only if \(G \cong T^n \times C_p^m \).

2 The property of BU-groups and reduction of cases

Since the main focus of this paper is to construct counterexamples of the Borsuk-Ulam property, we give the following definition.

Definition. A compact Lie group \(G \) is called an anti-BU-group of type I [resp. II] if \(G \) is not a BU-group of type I [resp. II].

In [12], we showed the fundamental property of BU-groups of each type. We restate it as follows:

Proposition 2.1 (([12])). Let \(G \) be a compact Lie group.

(1) If there exists a quotient group \(Q \) of \(G \) being an anti-BU-group of type I [resp. II], then \(G \) is an anti-BU-group of type I [resp. II].

(2) If there exists a closed subgroup \(H \) of finite index being an anti-BU-group of type I [resp. II], then \(G \) is an anti-BU-group of type I [resp. II].

Let \(G_0 \) denote the identity component of a compact Lie group \(G \) and set \(F = G/G_0 \) a finite group. By [1, Theorem 2 and Proposition 2.2], connected compact Lie groups other than tori are anti-BU-groups of both types I and II. On the other hand, by [12], finite groups other than \(C_p^m \) are anti-BU-groups of both types I and II. Thus if \(G_0 \) is not a torus or if \(F \) is not an elementary abelian \(p \)-group, then \(G \) is an anti-BU-group of both types I and II by Proposition 2.1. Therefore it suffices to consider the following type of extension

\[
1 \to T^n \to G \to C_p^m \to 1 \quad (n \geq 1, m \geq 1).
\]

Furthermore, there exists a closed subgroup of index \(p^{m-1} \) of such \(G \); indeed, one can take \(\pi^{-1}(C_p) \) for some \(C_p^m \leq C_p^m \), where \(\pi : G \to C_p^m \) is the projection. Thus, by Proposition 2.1 \(G \) is reduced to the case of an extension

\[
1 \to T^n \to G \xrightarrow{\pi} C_p \to 1. \tag{2.1}
\]

In order to prove Proposition 2.1 a further reduction is needed. Here an \(n \)-torus \(T^n \) is described by

\[
T^n = \{t = (t_1, \ldots, t_n) \in \mathbb{C}^n \mid |t_i| = 1 \ (1 \leq i \leq n)\}.
\]

Let \(a \in C_p \) denote a (fixed) generator of \(C_p \). We here introduce a semi-direct product:

\[
\Gamma_p = T^p \rtimes C_p,
\]
where \(\rho : C_p = \langle a \rangle \to \text{Aut}(T^{p-1}) \) is the homomorphism defined by

\[
\rho(a)(t) = (t_{p-1}^{-1}, t_1 t_{p-1}^{-1}, \ldots, t_{p-2} t_{p-1}^{-1}) \tag{2.2}
\]

for \(t = (t_1, \ldots, t_{p-1}) \in T^{p-1} \). In fact, one can easily check that the \(p \)-fold composition of \(\rho(a) \) with itself is \(\text{id} \) and then \(\rho \) defines the conjugate action of \(C_p \) on \(T^n \):

\[ata^{-1} = \rho(a)(t). \]

In particular, \(\Gamma_2 \) is isomorphic to \(\text{O}(2) \) the orthogonal group in dimension 2. The group \(\Gamma_p \) is a split extension of \(T^{p-1} \) by \(C_p \):

\[1 \to T^{p-1} \to \Gamma_p \to C_p \to 1, \]

and plays an important role in the proof of Proposition 1.1. The remainder of this section will be devoted to showing the following:

Proposition 2.2. For any extension (2.1), there exists a closed normal subgroup \(N \) such that \(G/N \) is isomorphic to \(S^1 \times C_p \) or \(\Gamma_p \).

We begin by observing the following fact.

Lemma 2.3. If \(C_p \) acts trivially on \(T^n \) for extension (2.1), then \(G \) is abelian.

Proof. Let \(\pi : G \to C_p \) be the projection and \(\alpha \in G \) an element such that \(\pi(\alpha) = a \). Let

\[G = \coprod_{i=0}^{p-1} \alpha^i T^n \]

be a coset decomposition. Since the \(C_p \)-action on \(T^n \) is trivial, it follows that \(\alpha^i t \alpha^{-i} = t \) for any \(t \in T^n \) and \(0 \leq i \leq p - 1 \). Thus, for any \(g = \alpha^i t, h = \alpha^j s \in G \), where \(t, s \in T^n \),

\[gh = \alpha^i t \alpha^j s = \alpha^{i+j} ts = \alpha^j s \alpha^i t = hg. \]

Thus \(G \) is abelian. \(\square \)

By the following lemma, any extension (2.1) is reduced to a split extension.

Lemma 2.4. For any extension (2.1), there exists a closed normal subgroup \(N \) of \(G \) such that \(G/N \) is a split extension of \(T^l \) by \(C_p \):

\[1 \to T^l \to G/N \to C_p \to 1 \]

for some \(1 \leq l \leq n \).
Proof. If G is abelian, then $G \cong T^n \times C_p$ and G itself is a split extension. Assume that G is non-abelian. Then the C_p-action on T^n is non-trivial by Lemma 2.3 and hence one can see that the fixed-point subgroup $(T^n)^{C_p}$ of T^n coincides with the centre $Z(G)$ of G. Clearly for $\alpha \in G$ with $\pi(\alpha) = a$, it follows that $\alpha^p \in (T^n)^{C_p} = Z(G)$. Consider an extension

$$1 \to T^n/Z(G) \to G/Z(G) \xrightarrow{\pi} C_p \to 1.$$

Note that $T^n/Z(G) \cong T_1^l$ for some $1 \leq l \leq n$ since the C_p-action on T^n is non-trivial. This extension splits, indeed, a splitting $s : C_p \to G/Z(G)$ is given by $s(a) = \overline{\alpha} \in G/Z(G)$, since $\overline{\alpha}^p = 1 \in G/Z(G)$ and $\overline{\alpha}(\overline{\alpha}) = a$. \hfill \square

By Lemma 2.3 it suffices to consider a semi-direct product

$$G_\sigma := T^n \rtimes_\sigma C_p,$$

where $\sigma : C_p \to \text{Aut}(T^n)$ is a homomorphism which gives the conjugate C_p-action on T^n. We introduce the following terminology. An n-torus T^n with a homomorphism $\sigma : C_p \to \text{Aut}(T^n)$ is called a C_p-torus, denoted by T^n_{σ}. If a closed subgroup H of T^n_{σ} is C_p-invariant, then H is called a C_p-subgroup. Clearly a C_p-subgroup H is a closed normal subgroup of G_σ. In particular, if a subtorus T of T^n_{σ} is C_p-invariant, then T is called a C_p-subtorus and denoted by T_σ.

As is well-known, $\text{Aut}(T^n)$ is naturally identified with $GL_n(\mathbb{Z})$. In fact, an automorphism $\phi \in \text{Aut}(T^n) = \text{Aut}(\mathbb{R}^n / \mathbb{Z}^n)$ corresponds to an isomorphism $\tilde{\phi} : \mathbb{R}^n \to \mathbb{R}^n$ such that $\tilde{\phi}(\mathbb{Z}^n) = \mathbb{Z}^n$, and this corresponds to an isomorphism $\tilde{\phi} := \tilde{\phi}|_{\mathbb{Z}^n} : \mathbb{Z}^n \to \mathbb{Z}^n$. For example, consider $\Gamma_p = T^{p-1} \rtimes_\rho C_p$ introduced before. Identifying T^{p-1} with $\mathbb{R}^{p-1} / \mathbb{Z}^{p-1}$ by the exponential map

$$\exp([x_1, \ldots, x_{p-1}]) = (e^{2\pi \sqrt{-1} x_1}, \ldots, e^{2\pi \sqrt{-1} x_{p-1}}) \in T^{p-1}, \quad [x_1, \ldots, x_{p-1}] \in \mathbb{R}^{p-1} / \mathbb{Z}^{p-1},$$

one sees that $\rho(a) \in \text{Aut}(T^{p-1})$ is represented by the $(p-1) \times (p-1)$ matrix

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & -1 \\ 1 & 0 & \cdots & 0 & -1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -1 \\ 0 & \cdots & 0 & 1 & -1 \end{pmatrix} \quad (2.3)$$

under the standard basis of \mathbb{Z}^{p-1}. Thus a C_p-torus T^n_{σ} induces a $\mathbb{Z}[C_p]$-module M_σ whose underling \mathbb{Z}-module is \mathbb{Z}^n such that the action of C_p on M_σ is given by $a \cdot x = \sigma(a)x$ for $x \in M_\sigma$.

Conversely, a $\mathbb{Z}[C_p]$-module M whose underling \mathbb{Z}-module is \mathbb{Z}^n provides a homomorphism $\psi : C_p \to GL_n(\mathbb{Z})$ induced by the C_p-action on M. Then ψ induces a homomorphism $\sigma : C_p \to \text{Aut}(T^n)$ via the exponential map. This provides a C_p-torus $T_M := T^n_{\sigma}$ and a semi-direct product $G_M := G_\sigma = T^n \rtimes_\sigma C_p$. Furthermore, a $\mathbb{Z}[C_p]$-submodule L of
n provides a C_p-subtorus T_L which is a closed normal subgroups of G_M. Note that, if rank$_\mathbb{Z}L = l$, then dim $T_L = l$ and G_L is a split extension of T_L by C_p:

$$1 \to T_L \to G_L \to C_p \to 1.$$

By integral representation theory, any $\mathbb{Z}[C_p]$-module M whose underling \mathbb{Z}-module is \mathbb{Z}^n decomposes into a direct sum of some indecomposable $\mathbb{Z}[C_p]$-modules (although the decomposition is not unique). The indecomposable $\mathbb{Z}[C_p]$-module is isomorphic to one of following three types, see [6, §74] for details.

1) \mathbb{Z}: the trivial $\mathbb{Z}[C_p]$-module.

2) I: a fractional ideal I of the cyclotomic field $\mathbb{Q}(\xi_p)$, where $\xi_p = e^{2\pi \sqrt{-1}/p}$ a primitive p-th root of unity. Note that I is regarded as a $\mathbb{Z}[C_p]$-module whose underling \mathbb{Z}-module is \mathbb{Z}^{p-1} via the natural ring homomorphism $\mathbb{Z}[C_p] \to \mathbb{Z}[\xi_p]$. Furthermore, fractional ideals I and J are isomorphic as $\mathbb{Z}[C_p]$-modules if and only if these are in the same ideal class of $\mathbb{Q}(\xi_p)$. For example, the ideal class group of $\mathbb{Q}(\xi_{23})$ is of order 3, see [15], and so there are three isomorphism classes.

3) $(I, \nu) := I \oplus \mathbb{Z}y$ (rank$_\mathbb{Z}(I, \nu) = p$), where I is a fractional ideal I of $\mathbb{Q}(\xi_p)$ and ν is an element of I such that $\nu \notin (\xi_p - 1)I$. The action of a on y is given by $ay = \nu + y \in (I, \nu)$. Note that the isomorphism class of (I, ν) depends only on the ideal class of I and does not depend on the choice of ν.

Proof of Proposition 2.2. Suppose that $G = G_\sigma$ for some $\sigma : C_p \to \text{Aut}(T^n)$. Let M_σ be the $\mathbb{Z}[C_p]$-module corresponding to $T^n_\sigma \leq G_\sigma$. By the indecomposable decomposition of M_σ, one sees that there exists a $\mathbb{Z}[C_p]$-submodule L such that $M_\sigma / L \cong \mathbb{Z}, I$ or (I, ν). A $\mathbb{Z}[C_p]$-module I is a $\mathbb{Z}[C_p]$-submodule of (I, ν) and $(I, \nu)/I \cong \mathbb{Z}$ with the trivial C_p-action. Consequently, there exists a $\mathbb{Z}[C_p]$-submodule L such that $M_\sigma / L \cong \mathbb{Z}$ or I and such L provides a C_p-subtorus T_L which is a closed normal subgroup of G_σ. If $M_\sigma / L \cong \mathbb{Z}$, then it follows that $G_\sigma / T_L \cong G_Z \cong S^1 \times C_p$. Next suppose that $M_\sigma / L \cong I$. It then follows that $G_\sigma / T_L \cong G_I$. Let $I_0 = \mathbb{Z}[\xi_p]$ with \mathbb{Z}-basis

$$\{\xi_p, \xi_p^2, \ldots, \xi_p^{p-1}\}.$$

Since the action of the generator $a \in C_p$ on I_0 is given by the multiplication of ξ_p, the automorphism induced by the action of a on I_0 is represented by the matrix (2.3). Hence it follows that G_{I_0} is isomorphic to Γ_p. Since any ideal class is represented by an integral ideal of $\mathbb{Z}[\xi_p]$, one may assume that $I \subset I_0$ and I is a $\mathbb{Z}[C_p]$-submodule of I_0, and I and I_0 have the same \mathbb{Z}-rank $p - 1$. Therefore the inclusion $i : I \to I_0$ induces an $\mathbb{R}[C_p]$-isomorphism

$$\varphi := \mathbb{R} \otimes_\mathbb{Z} i : \mathbb{R} \otimes_\mathbb{Z} I \to \mathbb{R} \otimes_\mathbb{Z} I_0$$

such that $\varphi(I) \subset I_0$. Note that $\mathbb{R} \otimes_\mathbb{Z} I \cong \mathbb{R} \otimes_\mathbb{Z} I_0 \cong \mathbb{R}^{p-1}$ as \mathbb{R}-vector spaces. Then φ induces a surjective C_p-homomorphism

$$\overline{\varphi} : T_I = \mathbb{R} \otimes_\mathbb{Z} I / I \cong T^{p-1} \to T_{I_0} = \mathbb{R} \otimes_\mathbb{Z} I_0 / I_0 \cong T^{p-1}$$
between C_p-tori. This also induces a surjective homomorphism $f : G_I \to G_{I_0}$ by setting $f(ta^k) = \varphi(t)a^k$ for $t \in T^{p-1}$ and $0 \leq k \leq p-1$. Since the kernel $\ker f = \ker \varphi$ is a finite C_p-subgroup, it follows that $\ker f$ is a finite normal subgroup of G_I. This implies that $G_I/\ker f \cong G_{I_0} \cong \Gamma_p$. Thus the proof of Proposition 2.2 is completed.

\[\square\]

3 The case of Γ_p

So far we have shown that Proposition 1.1 is reduced to the cases of Γ_p and $S^1 \times C_p$. In this section, we shall show that Γ_p for any prime p is an anti-BU-group of both types I and II. First observe the following:

Proposition 3.1. If a compact Lie group G is an anti-BU-group of type I, then G is an anti-BU-group of type II.

Proof. Suppose that there exists a G-map $f : S(V) \to S(W)$ with

$$v := \dim V > w := \dim W$$

for some fixed-point-free representations. Then one can define a G-map

$$h : S(wV) \xrightarrow{\ast f} S(wW) \xrightarrow{\text{incl.}} S(vW),$$

where $\ast f$ denote the w-fold join of $f : S(V) \to S(W)$. Since

$$\dim wV = \dim vW = vw > \dim wW = w^2,$$

it follows that $\deg h = 0$ for dimensional reason. Thus G is an anti-BU-group of type II.

In order to construct a Γ_p-map $f : S(V) \to S(W)$ for some representations V, W with $\dim V > \dim W$, we use the following fact from equivariant obstruction theory.

Proposition 3.2. Let G be a compact Lie group and W a G-representation. Let X be a finite G-CW complex and A a G-subcomplex of X (possibly empty). Suppose that there exists a G-map $f_A : A \to S(W)$. Let $Y = X \setminus A$. If

$$\dim Y^H/W_G(H) \leq \dim S(W)^H$$

(3.1)

for any isotropy subgroup H of Y, then there exists a G-map $f : X \to S(W)$ extending f_A. Here $W_G(H)$ denotes $N_G(H)/H$, and $N_G(H)$ is the normaliser of H in G.

Proof. This is a consequence of equivariant obstruction theory [7, Chapter II, 3]. indeed, since $S(W)^H$ is $(\dim S(W)^H - 1)$-connected, there are no obstructions to an extension of the G-map f_A.

\[\square\]
We first consider the case of $p = 2$. Then Γ_2 is isomorphic to the orthogonal group $O(2)$ in dimension 2. The orthogonal group $O(2)$ has the orthogonal 2-dimensional irreducible $O(2)$-representations U_k^t, $k \in \mathbb{Z}$, whose underlying space is $\mathbb{R}^2 \cong \mathbb{C}$ and $t \in S^1$ acts by $t \cdot z = t^k z$, $z \in \mathbb{C}$, and the generator $a \in C_2$ acts by $a \cdot z = \bar{z}$ the complex conjugate. There are 1-dimensional $O(2)$-representations \mathbb{R} and V_1^t, where \mathbb{R} is the trivial representation and V_1^t is given by the lift of the non-trivial 1-dimensional C_2-representation, i.e., S^1 acts trivially on V_1^t and $a = -1$ acts by $a \cdot x = -x$, $x \in V_1^t$. The following shows that Γ_2 is an anti-BU-group of type I, and hence of type II.

Lemma 3.3. There exists a Γ_2-map $f : S(U_1^t \oplus U_1^t) \to S(U_2^t \oplus V_1^t)$.

Proof. Set $V = U_1^t \oplus U_1^t$ and $W = U_2^t \oplus V_1^t$. Then $S(V)$ has two isotropy types (1) and (C2). In fact, the set $\text{Iso}(S(U_1^t))$ of isotropy subgroups of U_1^t consists of the subgroups $\langle ta \rangle$, $t \in S^1$. Note that $\langle ta \rangle$ is conjugate to C_2. For any $x = (z, w) \in S(U_1^t \oplus U_1^t)$, the isotropy subgroup G_x of x is equal to $G_z \cap G_w$ for $z, w \in U_1^t$. This deduces that the set of conjugacy classes of isotropy subgroups of $S(V)$ is

$$\text{Iso}(S(V))/\Gamma_2 = \{(1), (C_2)\}.$$

Let $K = W_{\Gamma_2}(C_2)$. Since the normaliser $N_{\Gamma_2}(C_2)$ is $Z \times C_2$, where $Z = \{ \pm 1 \}$ is the centre of Γ_2, hence $K \cong Z$. Then $S(V)^{C_2}$ is a free K-sphere of dimension 1. Indeed, $V^{C_2} \cong \mathbb{R}^2$ and K acts antipodally on $S(V)^{C_2}$. On the other hand, $S(W)^{C_2} = S(U_2^t)^{C_2} \cong S^0$ has the trivial K-action. Take a constant map

$$f_{C_2} : S(V)^{C_2} \to S(W)^{C_2},$$

which is K-equivariant. Taking the Γ_2-orbits of $S(V)^{C_2}$ and $S(W)^{C_2}$, one obtains a (well-defined) Γ_2-map

$$f_{(C_2)} : \Gamma_2 S(V)^{C_2} \to \Gamma_2 S(W)^{C_2}$$

which is defined by $f_{(C_2)}(gx) = gf_{C_2}(x)$ for $g \in \Gamma_2$, $x \in S(V)^{C_2}$.

One sees that $S(V) \times \Gamma_2 S(V)^{C_2}$ is a free Γ_2-space and $\dim S(V)/\Gamma_2 = 2 = \dim S(W)$. By Proposition 3.2, there exists a Γ_2-map $f : S(V) \to S(W)$. \qed

A similar argument is valid for Γ_p, where p is an odd prime. We shall summarise facts on Γ_p here.

Lemma 3.4. Let $\Gamma_p = T^{p-1} \rtimes_p C_p$ as before.

1. For any $t \in T^{p-1}$, the order of ta is p and $\langle ta \rangle$ is conjugate to $C_p = \langle a \rangle$.

2. The centre $Z(\Gamma_p)$ of Γ_p is

$$Z(\Gamma_p) = \langle (\xi_p, \xi_p^2, \ldots, \xi_p^{p-1}) \rangle \leq T^{p-1}.$$

3. The normaliser of C_p is $N_{\Gamma_p}(C_p) = Z(\Gamma_p) \times C_p$.

8
More generally, \(\rho T \) is given by the induced representations of non-trivial irreducible \(\rho \)-representations and the lifts of irreducible \(\rho \)-representations. In the following, we prove this statement.

Proof. (1) The automorphism \(\rho(a) \in \text{Aut}(T^{p-1}) \) is represented by the matrix \(A \) in (2.1). More generally, \(\rho(a^i), 1 \leq i \leq p-1 \), is represented by

\[
A^i = \begin{pmatrix}
0 & \cdots & 0 & -1 & 1 & 0 \\
\vdots & \ddots & \ddots & & \ddots & \ddots \\
0 & \cdots & 0 & -1 & 0 & 1 \\
0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\
1 & 0 & -1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 1 & -1 & 0 & \cdots & 0
\end{pmatrix}
\]

(3.2)

where the \((p-i)\)-th column is \(t(-1, \ldots, -1) \), and \(A^p = I \).

Let \(X \in \text{GL}_{p-1}(\mathbb{Z}) \) and \(\phi \in \text{Aut}(T^{p-1}) \) the automorphism induced by \(X \). Set \(t^X = \phi(t) \) for \(t \in T^{p-1} \). When \(X = (x_{ij}) \), one sees that

\[
t^X = \left(t^{x_{11}}_1 x_1, \ldots, t^{x_{11}}_{p-1} x_{p-1}, \ldots, t^{x_{11}}_1 x_1, \ldots, t^{x_{11}}_{p-1} x_{p-1} \right),
\]

and \(t^X + Y = t^X t^Y \) for matrices \(X, Y \in \text{GL}_{p-1}(\mathbb{Z}) \).

For any \(t \in T^{p-1} \), since \(at = \rho(a)(t)a = t^A a \), it follows that

\[
(ta)^p = t^{I + A + \cdots + A^{p-1}} a^p = t^O = 1.
\]

Therefore the order of \(ta \) is \(p \). Next we show that \(\langle ta \rangle \) is conjugate to \(C_p \). Indeed, we set

\[
s_k = t^{(p-k)/p}_1 \cdots t_k^{(p-k)/p} t_{k+1}^{(p-k)/p} \cdots t_{p-1}^{(p-k)/p} \in S^1
\]

for \(1 \leq k \leq p-1 \), and \(s = (s_1, \ldots, s_{p-1}) \in T^{p-1} \). Then \(s a s^{-1} = s(s^A)^{-1} a \), and

\[
s(s^A)^{-1} = (s_1 s_{p-1}, s_2 s_{p-1}^{-1} s_{p-1}, \ldots, s_{p-1} s_{p-2} s_{p-1}).
\]

By a direct computation, one can see that \(s(s^A)^{-1} = t \) and \(s a s^{-1} = ta \). Thus \(\langle ta \rangle \) is conjugate to \(C_p \).

(2) Since \(ata^{-1} = t \) if and only if \(t^A = t \), it follows that

\[
t_{p-1}^{-1} = t_1, \quad t_1 t_{p-1}^{-1} = t_2, \ldots, t_{p-2} t_{p-1}^{-1} = t_{p-1}.
\]

These equations imply that \(t_k = t_k^i, 1 \leq k \leq p-1 \), and \(t_1^p = 1 \). Thus

\[
Z(\Gamma_p) = \langle (\xi_p, \xi_p^2, \ldots, \xi_p^{p-1}) \rangle.
\]

(3) Clearly \(C_p \leq N_{\Gamma_p}(C_p) \). If \(t \in N_{\Gamma_p}(C_p) \) for \(t \in T^{p-1} \), then \(t^{-1} at = a^k \) for some \(1 \leq k \leq p-1 \), and this implies that \(t^{-1} ata^{-1} = t^{-1} t^A = a^{k-1} \in T^{p-1} \cap C_p = \{1\} \), and so \(k = 1 \) and \(t^{-1} t^A = 1 \). Therefore \(t \in Z(\Gamma_p) \). Thus the desired result holds.

The irreducible unitary \(\Gamma_p \)-representations are obtained from the argument of (13). Consequently, these are given by the induced representations of non-trivial irreducible \(T^{p-1} \)-representations and the lifts of irreducible \(C_p \)-representations. In the following, we
only consider specific representations below. For any \(k \in \mathbb{Z} \setminus \{0\} \), an irreducible unitary \(\Gamma_p \)-representation \(U_k \) is given by

\[
U_k = \text{Ind}_{\Gamma_p}^{\Gamma_p} \overline{U}_k,
\]

where \(\overline{U}_k \) is a 1-dimensional unitary \(T^{p-1} \)-representation on which \(t = (t_1, \ldots, t_{p-1}) \in T^{p-1} \) acts by \(t \cdot z = t_1^i z \) for \(z \in \overline{U}_k \). Regarding \(U_k \) as a direct sum \(\oplus_{i=0}^{p-1} a^i \overline{U}_k \), one sees that \(a \) acts by permutation of components: \(a \cdot a^i \overline{U}_k = a^{i+1} \overline{U}_k \), and \(t \) acts on \(a^i \overline{U}_k \) by

\[
t \cdot w_i = a^i (t^{A^{-i}}) z_i \in a^i \overline{U}_k
\]

for \(w_i = a^i z_i \in a^i \overline{U}_k \), \(z_i \in \overline{U}_k \), where \((t^{A^{-i}})_1 \) denotes the first component of \(t^{A^{-i}} \in T^{p-1} \).

More concretely, it follows from the matrix \((3.2)\) that, for any \(w = (w_0, w_1, \ldots, w_{p-1}) \in \oplus_{i=0}^{p-1} a^i \overline{U}_k \),

\[
t \cdot w = (t^k z_0, at_1^{-k} z_1, \ldots, a^{p-2} t_2^{-k} z_{p-2}, a^{p-1} t_{p-1}^{-k} z_{p-1}).
\] \hspace{1cm} (3.3)

For any \(k \in \mathbb{Z}/p \), an irreducible unitary \(\Gamma_p \)-representation \(V_k \) is given by the lift of a 1-dimensional unitary \(C_p \)-representation \(\overline{V}_k \) on which \(a \) acts by \(a \cdot z = \xi^k z \) for \(z \in \overline{V}_k \). In particular, \(T^{p-1} \) acts trivially on \(V_k \) and also \(V_0 \) is the trivial \(\Gamma_p \)-representation.

In general, for an arbitrary unitary \(G \)-representation \(V \), the kernel \(\text{Ker} V \) of \(V \) is defined by the kernel of the representation homomorphism \(\varphi : G \to \text{U}(n) \) of \(V \), or equivalently, \(\text{Ker} V \) is the closed subgroup consisting of elements \(g \in G \) trivially acting on \(V \). We note the following:

Lemma 3.5. (1) For any \(k \geq 1 \), \(\text{Ker} U_k = \text{Ker} U_{-k} = \mathbb{Z}_k^{p-1} \leq T^{p-1} \), where \(\mathbb{Z}_k = \langle \xi_k \rangle \leq S^1 \) and for any \(k \in \mathbb{Z}/p \setminus \{0\} \), \(\text{Ker} V_k = T^{p-1} \).

(2) The centre \(Z(\Gamma_p) \) is a subgroup of \(\text{Ker} U_p \).

Proof. (1) By formula \((3.3)\), the first result is verified. The second result is trivial by definition of \(V_k \).

(2) Since \(Z(\Gamma_p) = \langle (\xi_p, \ldots, \xi_{p-1}) \rangle \) by Lemma 3.4, this is clear by (1). \(\square \)

Remark 2. The \(C_p \)-homomorphism \(\varphi : T^{p-1} \to T^{p-1} \), \(f(t) = t^k \) induces the isomorphism \(\Gamma_p/\mathbb{Z}_k^{p-1} \cong \Gamma_p \). Since \(\text{Ker} U_k = \mathbb{Z}_k^{p-1} \), the fixed-point representation \(U_k^{Z_k^{p-1}} \) is regarded as a \(\Gamma_p \)-representation and then \(U_k^{Z_k^{p-1}} \cong U_1 \) as \(\Gamma_p \)-representations. Conversely, \(U_k \) is regarded as the lift of \(U_1 \) by the projection \(q : \Gamma_p \to \Gamma_p/\mathbb{Z}_k^{p-1} \cong \Gamma_p \).

Next we summarise some facts on the isotropy subgroups of \(S(U_1) \) and \(S(V_1) \).

Lemma 3.6. (1) Any subgroup \(K \) conjugate to \(C_p \) is a maximal isotropy subgroup of \(S(U_1) \).

(2) Any isotropy subgroup \(K \) of \(S(U_1) \) not conjugate to \(C_p \) is a subgroup of \(T^{p-1} \).

(3) For any \(x \in S(V_k) \), \(k \in \mathbb{Z}_p \setminus \{0\} \), the isotropy subgroup \((\Gamma_p)_x \) is \(T^{p-1} \).
Proof. (1) We may assume that \(K = C_p \), since the set \(\text{Iso}(S(U_1)) \) of isotropy subgroups is closed under conjugation. By definition of the \(C_p \)-action on \(U_1 \), we have

\[
U_1^{C_p} = \{(z, a z \ldots, a^{p-1} z) \in \oplus_{i=0}^{p-1} a \overline{U}_k | z \in \mathbb{C} \} \cong \mathbb{C}.
\]

Let \(H = (\Gamma_p)_{u} \) be the isotropy subgroup at \(u \in S(U_1)^{C_p} \). Clearly \(H \geq C_p \) and \(H \) forms an extension

\[
1 \rightarrow H \cap T^{p-1} \rightarrow H \rightarrow C_p \rightarrow 1.
\]

Since \(S(U_1)^H \neq \emptyset \) and \(S(U_1)^H \subset S(U_1)^{C_p} \), it follows that \(S(U_1)^H = S(U_1)^{C_p} \cong S(\mathbb{C}) \). For any \(t \in H \cap T^{p-1} \) and \(u = (z, a z \ldots, a^{p-1} z) \in S(U_1)^H \), one sees

\[
t \cdot u = (t_1 z, a_1 t_2 z, \ldots, a^{p-2} t_{p-2} t_{p-1} z, a^{p-1} t_{p-1}^{-1} z) \in S(U_1)^H
\]

by formula (3.3). Since \(t \cdot u = u \) and \(z \neq 0 \), it follows that \(t = 1 \) and hence \(H \cap T^{p-1} = 1 \). Thus \(H = C_p \) and \(C_p \) is a maximal isotropy subgroup.

(2) Suppose that \(H \) is an isotropy subgroup of \(S(U_1) \). If \(\pi(H) = C_p \), where \(\pi : \Gamma_p \rightarrow C_p \) is the projection, then there exists an element \(t a \in H \) for some \(t \in T^{p-1} \). Since \(C'_p = \langle t a \rangle \leq H \) is is a maximal isotropy subgroup by Lemma 3.4. The maximality implies that \(H = C'_p \) and \(H \) must be conjugate to \(C_p \). This contradicts that \(H \) is not conjugate to \(C_p \) by assumption. It thus follows that \(\pi(H) = 1 \) and so \(H \) is a subgroup of \(T^{p-1} \).

(3) Since \(\text{Ker} V_k = T^{p-1} \) and \(C_p \) acts freely on \(S(V_k) \), it follows that \((\Gamma_p)_x = T^{p-1} \). \(\square \)

Remark 3. Any isotropy subgroup of \(S(U_1) \) included in \(T^{p-1} \) is isomorphic to an \(m \)-torus \(T^m \) for some \(0 \leq m < p - 1 \).

The proof of Proposition 3.1 is finished by the next lemma.

Lemma 3.7. For any odd prime \(p \), there exists a \(\Gamma_p \)-map

\[
f : S(U_1 \oplus U_1) \rightarrow S(U_p \oplus (p - 1)V_1).
\]

Proof. Set \(V = U_1 \oplus U_1 \) and \(W = U_p \oplus (p - 1)V_1 \). Observing that the isotropy subgroup of \((u_1, u_2) \in V\) is

\[
(\Gamma_p)_{(u_1, u_2)} = (\Gamma_p)_{u_1} \cap (\Gamma_p)_{u_2},
\]

one can see that any subgroup \(K \) conjugate to \(C_p \) is a maximal isotropy subgroup of \(S(V) \) by Lemma 3.4. Set \(K := W_{\Gamma_p}(C_p) \), which is isomorphic to \(Z(\Gamma_p) \) by Lemma 3.4. By formula (3.3), it follows that \(S(V)^{C_p} \cong S^3 \) is a free \(K \)-sphere of dimension 3, and also \(S(W)^{C_p} \cong S^1 \) has the trivial \(K \)-action, since \(Z(\Gamma_p) \leq \text{Ker} W \). Take a constant map \(f_{C_p} : S(V)^{C_p} \rightarrow S(W)^{C_p} \). Then \(f_{C_p} \) is \(K \)-equivariant and so one can obtain a \(\Gamma_p \)-map

\[
f_{(\Gamma_p)} : \Gamma_p S(V)^{C_p} \rightarrow \Gamma_p S(W)^{C_p}.
\]

Since any isotropy subgroup \(H \) of \(Y := S(V) \setminus \Gamma_p S(V)^{C_p} \) is not conjugate to \(C_p \), it follows from Lemma 3.4 that \(H \) is a closed subgroup of \(T^{p-1} \). Then for any \(H \in \text{Iso}(Y) \), we shall verify the condition of Proposition 3.2.

\[
\text{dim } Y^H / W_{\Gamma_p}(H) \leq \text{dim } S(W)^H.
\]
Assertion 1. It holds that $\dim_{\mathbb{R}} U_1^H \leq \dim_{\mathbb{R}} U_p^H$ for any non-trivial closed subgroup $H \leq T^{p-1}$.

Indeed, by the isomorphism $\varphi : \Gamma_p/\mathbb{Z}_{p-1} \to \Gamma_p$ defined by $\varphi(ta^i) = t^p a^i$, it follows that $U_p^{\mathbb{Z}_{p-1}}$ is isomorphic to U_1, see Remark 2. Then one sees

$$\dim_{\mathbb{R}} U_p^H = \dim_{\mathbb{R}} U_p^{\mathbb{Z}_{p-1}} = \dim_{\mathbb{R}}(U_p^{\mathbb{Z}_{p-1}}/\mathbb{Z}_{p-1}) = \dim_{\mathbb{R}} U_1^H \geq \dim_{\mathbb{R}} U_1^H,$$

where $H^p = \{t^p \in H \mid t \in H\} \leq H$. Thus Assertion 1 holds.

Remark 4. If H is a subtorus of T^{p-1}, then $H^p = H$ and $\dim_{\mathbb{R}} U_1^H = \dim_{\mathbb{R}} U_p^H$, see Remark 2.

Since $\dim_{\mathbb{R}} U_1^H \leq 2p - 2$ for $H \neq 1$, one sees that

$$\dim_{\mathbb{R}} V^H \leq \dim_{\mathbb{R}} U_1^H + \dim_{\mathbb{R}} U_1^H \leq 2p - 2 + \dim_{\mathbb{R}} U_p^H = \dim_{\mathbb{R}} W^H.$$

This inequality shows that the inequality (3.3) holds for $H \neq 1$. When $H = 1$, it follows that

$$\dim Y/\Gamma_p = \dim S(V)/\Gamma_p = 3p \leq \dim S(W) = 4p - 3,$$

since $p \geq 3$. Thus there exists a Γ_p-map f extending $f_{(C_p)}$ by Proposition 3.2.

Remark 5. In case of $p = 2$, it still follows that there exists a Γ_2-map

$$f : S(U_1 \oplus U_1) \to S(U_2 \oplus V_1).$$

Indeed, by Lemma 3.3, there exits a Γ_2-map $f : S(U_1' \oplus U_1') \to S(U_2' \oplus V_1')$ between orthogonal representation spheres. By complexification, one sees that $U_k = \mathbb{C} \otimes U_k'$ and $V_k = \mathbb{C} \otimes V_k'$, and f induces a Γ_2-map $f_{\mathbb{C}} : S(U_1' \oplus U_1') \to S(U_2' \oplus V_1')$.

4 The case of $S^1 \times C_p$

In this section, we shall show that $G = S^1 \times C_p$ is an anti-BU-group of types I and II, and complete the proof of Proposition 2.1. In this case, since the obstruction to extension of a G-map may appear, the proof is more complicated. As the first step, using an argument similar to that in [12], we shall show the following result.

Proposition 4.1. The group $G = S^1 \times C_p$ is an anti-BU-group of type II. Namely, there exists a G-map $f : S(V) \to S(W)$ with $\deg f = 0$ for some fixed-point-free G-representations V and W with the same dimension.

Let $G = S^1 \times C_p$ and $a \in C_p$ be a generator of C_p as before. The irreducible unitary G-representations are given as follows. Let $V_{1,0}$ denote the lift of the 1-dimensional unitary S^1-representation U^t_1 on which $t \in S^1$ acts by $t \cdot z = tz$ for $z \in V_{1,0}$. Let $V_{0,1}$ denote the lift of the 1-dimensional unitary C_p-representation U_1 on which a acts by $a \cdot z = \xi_p z$ for $z \in V_{0,1}$. Every irreducible unitary G-representation is given by $V_{k,l} := V_{1,0}^k \otimes V_{0,1}^l$, $k \in \mathbb{Z}$, $l \in \mathbb{Z}/p$. We consider G-representations $V_{1,0} \oplus V_{1,1}$ and $V_{0,0} \oplus V_{0,1}$.
Lemma 4.2. For $V = V_{1,0} \oplus V_{1,1}$ and $W = V_{p,0} \oplus V_{0,1}$, there exists a G-map $h : S(V) \to S(W)$.

Proof. Note that $\text{Ker} V_{1,0} = C_p = \langle a \rangle$ and $\text{Ker} V_{1,1} = C_p' := \langle \xi_p^{-1}a \rangle$. Therefore $\text{Iso}(S(V))$ consists of C_p, C_p' and 1. Similarly, $\text{Ker} V_{p,0} = \mathbb{Z}_p \times C_p$, where $\mathbb{Z}_p = \langle \xi_p \rangle \leq S^1$ and $\text{Ker} V_{0,1} = S^1$, and $\text{Iso}(S(W))$ consists of $\mathbb{Z}_p \times C_p$, S^1 and \mathbb{Z}_p. A G-map

$$h_{C_p} : S(V)^{C_p} = S(V_{1,0}) \to S(W)$$

is defined by $h_{C_p}(z) = (z^p, 0)$ for $z \in S(V_{1,0})$, and also a G-map

$$h_{C_p'} : S(V)^{C_p'} = S(V_{1,1}) \to S(W)$$

is defined by $h_{C_p'}(w) = (w^p, 0)$ for $w \in S(V_{1,1})$. Using these maps, we obtain a G-map

$$h^{>1} : S(V)^{>1} \to S(W),$$

where $S(V)^{>1}$ is the singular set:

$$S(V)^{>1} := \{ x \in S(V) \mid G_x \neq 1 \} = S(V)^C \coprod S(V)^{C_p'}.$$

Since G acts freely on $S(V) \setminus S(V)^{>1}$ and $\dim(S(V) \setminus S(V)^{>1})/G = 2 < \dim S(W) = 3$, there exists a G-map $h : S(V) \to S(W)$ extending $h^{>1}$ by Proposition 3.2.

Next we shall show $\deg h = 0$ for any G-map h as above and finish the proof of Proposition 4.1. To do that, we use the Euler classes of an oriented orthogonal representation V, i.e., the G-action on V is orientation preserving under a given orientation on V. A unitary G-representation V has a canonical orientation given by the complex structure of V and oriented as an orthogonal G-representation. Generally, the Euler class

$$e_G(V) \in H^n(BG, R)$$

of an oriented orthogonal representation V of dimension n is defined to be the Euler class of the associated vector bundle $\pi : EG \times_G V \to BG$ over the classifying space BG. In case of a unitary G-representation V, the Euler class $e_G(V)$ coincides with the top Chern class of the associated complex vector bundle. Although the coefficient ring R can be taken to be \mathbb{F}_p, \mathbb{Z} or \mathbb{Q}, etc, we here take $R = \mathbb{Q}$ as coefficients, because the cohomology ring of BG becomes simpler and it is sufficient for our purpose. A key result is the following special case of the result of [11], see also [12].

Proposition 4.3 ([11], [12]). Let G be a compact Lie group and V, W fixed-point-free, oriented orthogonal G-representations with the same dimension n. Suppose that there exists a G-map $h : S(V) \to S(W)$. Then

$$e_G(W) = (\deg h)e_G(V) \in H^n(BG; R).$$

In particular, under $R = \mathbb{Q}$, if $e_G(V) \neq 0$ and $e_G(W) = 0$, then $\deg h = 0$.

13
Now we return to the case of $G = S^1 \times C_p$. The next lemma shows Proposition 4.4.

Lemma 4.4. Let $V = V_{10} \oplus V_{11}$ and $W = V_{p,0} \oplus V_{0,1}$. For any G-map $h : S(V) \to S(W)$, it follows that $\deg h = 0$.

Proof. Since $BG \cong BS^1 \times BC_p$ and BC_p is \mathbb{Q}-acyclic, it follows that

$$\Res_{S^1} = i^* : H^*(BG; \mathbb{Q}) \to H^*(BS^1; \mathbb{Q})$$

is a graded ring isomorphism, where $i : S^1 \to G$ is the natural inclusion. Since $H^*(BS^1; \mathbb{Q}) \cong \mathbb{Q}[c]$ as graded rings, where c is the first Chern class of the canonical complex line bundle over $BS^1 \cong \mathbb{C}P^\infty$, one obtains $H^*(BG; \mathbb{Q}) \cong \mathbb{Q}[c]$ as graded rings. Clearly $\Res_{S^1} V_{1,0}$ and $\Res_{S^1} V_{1,1}$ are isomorphic to the standard S^1-representation $\overline{\mathbb{U}}$ whose associated complex vector bundle is isomorphic to the canonical one over BS^1, hence $e_G(V) = e_G(V_{1,0})e_G(V_{1,1}) = c^2 \neq 0$. On the other hand, $\Res_{S^1} V_{0,1}$ is the trivial S^1-representation, hence $e_G(V_{0,1}) = 0$. This implies that $e_G(W) = e_G(V_{p,0})e_G(V_{0,1}) = 0$. Thus $\deg h = 0$ by Proposition 4.3. \square

The second step is to construct a G-map $f : S(V) \to S(W)$ for some fixed-point-free representations V, W with $\dim V > \dim W$. We shall prove this using a G-map h of degree 0. The goal is to prove the following result.

Proposition 4.5. The group $G = S^1 \times C_p$ is an anti-BU-group of type I. Namely, there exists a G-map $f : S(V) \to S(W)$ for some fixed-point-free representations V, W with $\dim V > \dim W$.

In order to prove this, we again use equivariant obstruction theory [7, Chapter II, 3]. In this case the obstruction may appear; however, the computation of the obstruction class is not easy in general. In order to avoid this difficulty, we use the existence of a G-map of degree 0. This idea is based on an argument of [14].

First recall the equivariant primary obstruction class. Let G be a compact Lie group. Let X a finite G-CW complex and Y an n-simple and $(n - 1)$-connected G-space, $n \geq 1$. Let $X^{>1}$ be the singular set of X and suppose that there exists a G-map $g : X^{>1} \to Y$. Let $X_{(m)}$ be an m-skeleton relative to $X^{>1}$, i.e., $X_{(m)}$ is the union of free i-cells $G \times e^i$ of $X \smallsetminus X^{>1}$ for $i \leq m$ with $X^{>1}$. Since Y is $(n - 1)$-connected, there exists a G-map $f_n : X_{(m)} \to Y$ extending g, since the obstructions to extension vanish. In this situation, the equivariant primary obstruction $\gamma(g)$ is defined in the equivariant cohomology group $\mathcal{H}_G^{n+1}(X, X^{>1}; \pi_n(Y))$ and there exists a G-map $f_n : X_{(n+1)} \to Y$ extending g if and only if $\gamma(g) = 0$.

Lemma 4.6. Let Z be another n-simple and $(n - 1)$-connected G-space.

1. For any G-map $h : Y \to Z$, it follows that $\gamma(h \circ g) = h_\#(\gamma(g))$, where

 $$h_\# : \mathcal{H}_G^{n+1}(X, X^{>1}; \pi_n(Y)) \to \mathcal{H}_G^{n+1}(X, X^{>1}; \pi_n(Z))$$

 is the homomorphism induced by h.

14
(2) If there exists a G-map $h : Y \to Z$ such that $h_* = 0 : \pi_n(Y) \to \pi_n(Z)$, then there exists a G-map $f_{n+1} : X_{(n+1)} \to Z$ extending $h \circ g$.

Proof. (1) From [7] Chapter II, 3], the equivariant primary obstruction $\gamma(f)$ is represented by a cocycle

$$c^{n+1}(g) : C_{n+1}(X_{(n+1)}, X_n) \xleftarrow{\partial} \pi_{n+1}(X_{(n+1)}, X_n) \xrightarrow{\delta} \pi_n(X_n) \xrightarrow{f_*} \pi_n(Y),$$

where ρ is the Hurewicz homomorphism

$$\rho : \pi_{n+1}(X_{(n+1)}, X_n) \to H_{n+1}(X_{(n+1)}, X_n; \mathbb{Z}) = C_{n+1}(X_{(n+1)}, X_n).$$

Since an extension $f'_n : X_n \to Z$ of $h \circ g$ is given by $f'_n = h \circ f_n$, the obstruction class $\gamma(h \circ g)$ is represented by

$$c^{n+1}(h \circ g) : C^{n+1}(X_{(n+1)}, X_n) \xleftarrow{\partial} \pi_{n+1}(X_{(n+1)}, X_n) \xrightarrow{\delta} \pi_n(X_n) \xrightarrow{(h \circ f_n)_*} \pi_n(Z).$$

Clearly $c^{n+1}(h \circ g) = h_*(c^{n+1}(g))$ and thus $\gamma(h \circ g) = h_\#(\gamma(g))$.

(2) Since $h_* = 0$, the obstruction class $\gamma(h \circ g) = h_\#(\gamma(g))$ vanishes. Therefore there exists a G-map $f_{n+1} : X_{(n+1)} \to Z$ extending $h \circ g$. \qed

Proof of Proposition 4.3. Consider G-representations

$$V = 2V_{1,0} \oplus 2V_{1,1}, \quad U = V_{1,0} \oplus V_{p,0} \oplus V_{1,1}, \quad W = 2V_{p,0} \oplus V_{0,1}.$$

Observing that

$$V^{C_p} = 2V_{1,0}, \quad U^{C_p} = V_{1,0} \oplus V_{p,0}, \quad V^{C_p} = 2V_{1,1}, \quad U^{C_p} = V_{p,0} \oplus V_{1,1},$$

one can define G-maps

$$f^{C_p} : S(V)^{C_p} \to S(U)^{C_p}, (z, w) \mapsto (z, w^p)/\|z, w^p\|$$

and

$$f^{C_p} : S(V)^{C_p} \to S(U)^{C_p}, (z, w) \mapsto (z^p, w)/\|z^p, w\|.$$

Therefore, there exists a G-map $g : S(V)^{>1} \to S(U)$, where $S(V)^{>1} = S(V)^{C_p} \coprod S(V)^{C_p}$. By Lemmas 4.2 and 4.4, there exists a G-map

$$h : S(V_{1,0} \oplus V_{1,1}) \to S(V_{p,0} \oplus V_{0,1})$$

of degree 0. We define a G-map $\tilde{h} : S(U) \to S(W)$ by

$$\tilde{h} = h \ast id : S(U) \cong S(V_{1,0} \oplus V_{1,1}) \ast S(V_{p,0}) \to S(V_{p,0} \oplus V_{0,1}) \ast S(V_{p,0}) \cong S(W)$$

where \ast means join. Then $\tilde{h}_* = 0$ on $\pi_5(S(U))$, since $\deg(h \ast id) = 0$. Since $S(U)$ and $S(W)$ are 4-connected, it follows from Lemma 1.6 that there exists a G-map $f : S(V)^{0} \to S(W)$ extending $\tilde{h} \circ g$. Since $\dim S(V)/G = 6$, it follows that $S(V)^{0}$ coincides with the whole space $S(V)$. Thus there exists a G-map $f : S(V) \to S(W)$. \qed
Remark 6. In case of \(p = 2 \), by an argument similar to that in Lemma 3.3, one can see that there exists an \(S^1 \times C_2 \)-map between orthogonal representation spheres as a counterexample of the Borsuk-Ulam property of type I.

Proof of Theorem 1.2. It is already known that statement (3) implies (2), see for example [9]. Statement (2) implies (1) by Proposition 3.1. The discussion so far shows that if \(G \) is neither \(C'_p \) nor \(T^n \), then \(G \) is an anti-BU-group of both types I and II. In particular, statement (1) implies (3).

References

[1] T. Bartsch, *On the existence of Borsuk-Ulam theorems*, Topology 31 (1992) 533–543.
[2] C. Biasi and D. de Mattos, *A Borsuk-Ulam Theorem for compact Lie group actions*, Bull. Braz. Math. Soc. 37 (2006) 127–137.
[3] K. Borsuk, *Drei Sätze über die n-dimensionale Sphäre*, Fund. Math. 20 (1933) 177–190.
[4] Z. Blaszczyk, W. Marzantowicz and M. Singh, *Equivariant maps between representation spheres*, Bull. Belg. Math. Soc. Simon Stevin 24 (2017) 621–630.
[5] G. E. Bredon, *Introduction to compact transformation groups*, Academic Press, New York and London, 1972.
[6] C. W. Curtis I. Reiner, *Representation theory of finite groups and associative algebras*, AMS Chelsea publ., 2006.
[7] T. tom Dieck, *Transformation Groups*, Walter de Gruyter, Berlin, New York, 1987.
[8] E. Fadell and S. Husseini, *An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems*, Ergod. Th. and Dynam. Sys. 8 (1988), 73-85.
[9] W. Marzantowicz, *A Borsuk-Ulam theorem for an orthogonal action of the torus \(T^k \) and the \(p \)-torus \(Z'_p \) and applications*, J. Math. Anal. Appl. 1 (1989), 99–121.
[10] W. Marzantowicz, *An almost classification of compact Lie groups with Borsuk-Ulam properties*, J. Lond. Math. Soc., II. Ser. 49 (1990), 299–311.
[11] W. Marzantowicz, *Borsuk-Ulam theorem for any compact Lie group*, Pacific. J. Math. 144 (1994) 195–208.
[12] I. Nagasaki, *Elementary abelian \(p \)-groups are the only finite groups with the Borsuk-Ulam property*, J. Fixed Point Theory Appl. 21 (2019) Article 16.
[13] J. P. Serre, *Linear representations of finite groups*, Graduate Texts in Mathematics 42, Springer, 1977.
[14] S. Waner, *A note on the existence of \(G \)-maps between spheres*, Proc. Amer. Math. Soc. 99 (1987) 179–181.

[15] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.

Ikumitsu Nagasaki
Department of Mathematics
Kyoto Prefectural University of Medicine
1-5 Shimogamo Hangi-cho
Sakyo-ku 606-0823, Kyoto
Japan
email : nagasaki@koto.kpu-m.ac.jp