Semample and k-ample vector bundles

F. Laytimi and W. Nahm

aFaculté de Sciences et Technologie, Département de Mathématiques, Cité scientifique – Bâtiment, Université de Lille, Villeneuve d’Ascq Cedex, France; bDublin Institute for Advanced Studies, Dublin, Ireland

ABSTRACT
The main result of this paper is that tensor products of semample vector bundles over compact complex manifolds are semample. An easy proof yields the analogous result for direct sums. We also show that tensor products of semample vector bundles with k-ample vector bundles in the sense of Sommese are k-ample. On the other hand, we show that it is not generally true that tensor products of nef and k-ample vector bundles for positive k are still k-ample. Results of Sommese on k-ampleness are consequently strengthened. As an application of our main theorem we extend to k-ample the vanishing theorem of Ein-Lazarsfeld.

ARTICLE HISTORY
Received 25 June 2019
Revised 25 June 2019
Communicated by Lawrence Ein

KEYWORDS
Semampleness; vanishing theorems; vector bundles

1991 MATHEMATICS SUBJECT CLASSIFICATION
14F17

1. Introduction

Throughout this paper, X will denote a smooth compact variety of dimension n over the field of complex numbers, E is a vector bundle of rank e on X.

Definition 1.1. Let X be a complex space. A line bundle L on X is said to be semample if for some $r > 0$, L^r is generated by sections. A vector bundle E is semample if $O_{\mathbb{P}E}(1)$ is semample.

Notation 1.2. Since we often need to use the phrase “generated by sections,” we will abbreviate it by “gbs.”

The main result of this article is

Theorem 1.3. Direct sum and tensor product of semample vector bundles on a compact complex manifold X are semample.

The following definition was introduced by Sommese [10].

Definition 1.4. A line bundle L on a compact complex space X is k-ample if

1. L is semample
2. the fibers of the corresponding morphism

$$\phi : X \to \mathbb{P}H^0(X, L^r)^*$$

have dimensions less or equal to k.

CONTACT F. Laytimi fatima.laytimi@univ-lille.fr Faculté de Sciences et Technologie, Département de Mathématiques, Cité scientifique – Bâtiment M2, Université de Lille, 59650 Villeneuve d’Ascq Cedex, France.

© 2019 Taylor & Francis Group, LLC
A vector bundle E is said to be k-ample if $\mathcal{O}_{\mathbb{P}E}(1)$ is k-ample.

Note that 0-ample is the same as ample, and k-ample implies $(k+1)$-ample. Moreover $(\dim \mathbb{P}E)$-ample is the same as semiample.

Fujita proved in [3] that the tensor product of an ample line bundle and a nef line bundle is ample. We have generalized this fact to vector bundles in [4]. The natural idea already used in [1] and [8] is to generalize this fact to k-ample with $k>0$, but this does not work. We give a counterexample in Remark 4.7.

Theorem 1.5. Tensor products of k-ample and semiample vector bundles on a compact complex manifold are k-ample.

Sommese in [10] proved that if E and F are both k-ample and gbs then the tensor product is k-ample. We have reformulated some theorems in Sommese article with weaker hypotheses, see Proposition 3.8.

As an application of our main theorem we give a generalization of the Ein-Lazersfeld vanishing theorem to k-ample vector bundle see Theorem 3.9. We believe that this theorem will be very useful in studying the geometry of subvarieties of a smooth variety, which we intend to pursue in future.

2. **Tensor product of semiample vector bundles**

We start by giving several interpretations of the statement:

$\mathcal{O}_{\mathbb{P}E}(r)$ is gbs.

1. Let $\pi : \mathbb{P}E \to X$ be the projection. The fiber of π over a point $x \in X$ is given by the 1-codimensional subspaces V of E_x, where E_x is the fiber of E over x. Points of $\mathbb{P}E$ will be denoted by pairs (x, V). Let $V = v\perp$ for $v \in E_x^*$, and let \tilde{v} be the corresponding element of $(E_x/\mathbb{C})^*$. A section $s \in H^0(\mathbb{P}E, \mathcal{O}_{\mathbb{P}E}(r))$ generates the fiber of $\mathcal{O}_{\mathbb{P}E}(r)$ over (x, V) iff

$$\langle s(x, V), \tilde{v}\rangle \neq 0,$$

where \langle , \rangle denotes the pairing of dual vector spaces.

2. Equivalently, let \tilde{s} be the section in $H^0(X, S'E)$ which corresponds to s by the natural isomorphism

$$H^0(\mathbb{P}E, \mathcal{O}_{\mathbb{P}E}(r)) \simeq H^0(X, S'E).$$

Then s generates the fiber of $\mathcal{O}_{\mathbb{P}E}(r)$ over $(x, v\perp)$ iff

$$\langle \tilde{s}(x), v\perp \rangle \neq 0.$$

3. Given $x \in X$, the value $\tilde{s}(x)$ of each section $\tilde{s} \in H^0(X, S'E)$ can be regarded as a homogeneous polynomial map of degree r from E_x^* to \mathbb{C}.

If the fiber of $\mathcal{O}_{\mathbb{P}E}(r)$ over $v\perp$ is not generated by any global section, then these polynomials have a common zero at v. If $\mathcal{O}_{\mathbb{P}E}(r)$ is gbs, then 0 is the only common zero.

4. Since $v\otimes r$ annihilates the kernel of the natural map $E^{\otimes r} \to S'E$, the fiber of $\mathcal{O}_{\mathbb{P}E}(r)$ over $(x, v\perp)$ is generated by a section iff there is a section $\tilde{s} \in H^0(X, E^{\otimes r})$ such that

$$\langle \tilde{s}(x), v\otimes r \rangle \neq 0.$$
If $\mathcal{O}_P(r)$ is gbs, then $\mathcal{O}_P(kr)$ is gbs for every positive integer k. All these facts will be used in the following without reference.

Theorem 1.3 is implied by the following two lemmata.

Lemma 2.1. Let X be a complex space and E, F vector bundles on X. Suppose that $\mathcal{O}_P(r)$ and $\mathcal{O}_P(r)$ are gbs (see Notation 1.2) for some $r > 0$. Then $\mathcal{O}_P(E \otimes F)(r)$ is gbs.

Proof. For each $x \in X$ and each non-zero $u \in (E_x^* \oplus F_x^*)$ we have to find a section in $H^0(X, S(E \otimes F))$ which is not annihilated by $u^{\otimes r}$. Consider $u = u_E + u_F$, where u_E, u_F are the components in E_x^*, F_x^* respectively. We may assume that $u_E \neq 0$. Since $\mathcal{O}_P(r)$ is gbs, there is a section in $H^0(X, S'E)$ which is not annihilated by $u_E^{\otimes r}$. The image of this section under the natural injection $H^0(X, S'E) \to H^0(X, S(E \otimes F))$ is not annihilated by $u^{\otimes r}$.

Lemma 2.2. Let X be a complex space and E, F vector bundles on X. Suppose that $\mathcal{O}_P(r)$ and $\mathcal{O}_P(r)$ are gbs (see Notation 1.2) for some $r > 0$. Then there exists a positive integer n depending only on r and $e = rkE$ such that $\mathcal{O}_P(E \otimes F)(nr)$ is gbs.

The proof of this lemma needs some preparations. We will use the terminology of decorated oriented graphs (see Feynman diagrams in physics). Decoration means that to each vertex and to each arrow another object is associated. The set of arrows of a graph γ will be denoted by $A(\gamma)$. Any arrow a is said to have a head $h(a)$ and a tail $t(a)$. A vertex which is the head of exactly n arrows is said to have indegree n, a vertex which is the tail of exactly n arrows is said to have outdegree n. The bidegree of a vertex is written as (indegree, outdegree).

Definition 2.3. Let V, W be vector spaces. Let $i = 1, \ldots, n, \tilde{v}_i \in S'V, \tilde{w}_i \in S'W, u \in (V \otimes W)^\ast$. Then $\Gamma_{V, W}(n, r, \tilde{v}_1, \ldots, \tilde{v}_n, \tilde{w}_1, \ldots, \tilde{w}_n, u)$ is the set of all decorated oriented graphs with $2n$ fixed vertices x_i, β_i, such that for each i the vertex x_i has bidegree $(0, r)$ and is decorated by $\tilde{v}(x_i) = \tilde{v}_i$, the vertex β_i has bidegree $(r, 0)$ and is decorated by $\tilde{w}(\beta_i) = \tilde{w}_i$, and such that all rn arrows are decorated by u. We will omit the indices V, W of $\Gamma_{V, W}$, when no ambiguity arises.

Definition 2.4. Let $\gamma \in \Gamma(n, 1, v_1, \ldots, v_n, w_1, \ldots, w_n, u)$. The value $|\gamma|$ of γ is defined by

$$|\gamma| = \prod_{a \in A(\gamma)} u(v(h(a)) \otimes w(t(a))).$$

Definition 2.5. Let $\gamma \in \Gamma(n, 1, \tilde{v}_1, \ldots, \tilde{v}_n, \tilde{w}_1, \ldots, \tilde{w}_n, u)$. Then the value $|\gamma|$ of γ is defined by the following two conditions: Firstly, $|\gamma|$ depends linearly on all \tilde{v}_i and \tilde{w}_i. Second, if $\tilde{v}_i = \tilde{v}_i^{(r)}, \tilde{w}_i = \tilde{w}_i^{(r)}$ for $i = 1, \ldots, n$, $v_i \in V, w_i \in W$ let the expanded graph

$$\gamma_{ex} \in \Gamma(rn, 1, \underbrace{v_1, \ldots, v_1}_{r \text{ times}}, \ldots, \underbrace{v_n, \ldots, v_n}_{r \text{ times}}, \underbrace{w_1, \ldots, w_1}_{r \text{ times}}, \ldots, \underbrace{w_n, \ldots, w_n}_{r \text{ times}}, u)$$

be a decorated oriented graph with vertices α_i', β_i', $i = 1, \ldots, n, l = 1, \ldots, r$, such that there is a bijection $\xi : A(\gamma_{ex}) \to A(\gamma)$ with $h(a) = \alpha_i$ if $h(\xi(a)) = \alpha_i'$, $t(a) = \beta_i$ if $t(\xi(a)) = \beta_i'$. Moreover, let α_i' be decorated by v_i, β_i' by w_i for $i = 1, \ldots, n, l = 1, \ldots, r$. Then

$$|\gamma| = |\gamma_{ex}|.$$

For later use, note that γ_{ex} has a symmetry group of order $(r!)^{2n} s_{\gamma}^{-1}$, where s_{γ} is the order of the group of vertex preserving symmetries of γ.

Proposition 2.6. There is a function $\nu : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with the following property. Consider finite dimensional vector spaces V, W with $d = \dim V$ and subspaces $A \subset S'V, B \subset S'W$, such that the corresponding spaces of polynomial maps have 0 as only common zero. Let $n = \nu(r, d)$. Then for
any non-zero \(u \in (V \otimes W)^* \) there is a positive integer \(m \) with \(m \leq n \), elements \(\tilde{v}_i \in A, \tilde{w}_i \in B \) for \(i = 1, \ldots, m \) and a decorated directed graph \(\gamma \in \Gamma_\nu(W, (m, r, \nu_1, \ldots, \nu_m, \tilde{v}_1, \ldots, \tilde{v}_m, u)) \) such that \(|\gamma| \neq 0 \).

Proof. We will construct a function \(\nu \) which is far from optimal, but sufficient for our purpose.

We first show that it suffices to prove the proposition for the case that the map \(\hat{u} \in \text{Hom}(V, W^*) \) corresponding to \(u \) is bijective. Otherwise, let \(V' = V/\ker(\hat{u}), W' = W/\ker(\hat{u}^*), \) let \(\pi_V, \pi_W \) be the corresponding projections \(\pi_V : S'V \rightarrow S'V', \pi_W : S'W \rightarrow S'W' \) and let \(u' \) be the element of \((V' \otimes W')^* \) induced by \(u \). If

\[
\gamma \in \Gamma(m, r, V_1, \ldots, V_n, W_1, \ldots, W_n, u),
\gamma' \in \Gamma(m, r, \pi_V(V_1), \ldots, \pi_V(V_n), \pi_W(W_1), \ldots, \pi_W(W_n), u')
\]

have the same underlying undecorated graph, then \(|\gamma'| = |\gamma| \).

If \(u \) is bijective, we can identify \(W \) with \(V^* \) and write

\[
u(v \otimes w) = \langle v, w \rangle
\]

for \(v \in V, w \in W \). Let \(SV \) be the symmetric algebra over \(V \). There are natural multiplication maps

\[
m' : S'V \rightarrow \text{End}(SV),
\]

and contraction maps

\[
i' : S'W \rightarrow \text{End}(SV)
\]

which restrict to

\[
m'_N : S'V \rightarrow \text{Hom}(S^{N-r}V, S^V),
\]

\[
i'_N : S'W \rightarrow \text{Hom}(S^N V, S^{N-r}V),
\]

with \(S^N V = 0 \) for negative \(N \). For \(r = 1 \) the maps can be characterized by multilinearity and the properties \(m^1(v')v'^N = \pi_S(v' \otimes v'^N), i^1(w)v'^N = N(w, v)v'^{(N-1)} \) for \(v', v \in V, w \in W \), where \(\pi_S \) is the projection of the tensor algebra of \(V \) to the symmetric algebra \(SV \). For general \(r \) they are characterized by multilinearity and the properties \(m^r(v'^\otimes) = m^1(v'), i^r(w'^\otimes) = i^1(w)^r \).

For \(r = 1 \) let \(P \) be a product with the factors \(m^1(v_i), i^1(w_i) \), taken in any order, where \(v_i \in V, w_i \in W, i = 1, \ldots, m \). For any non-negative integer \(N \), the product \(P \) restricts to a map \(P_N \in \text{End}(S^NV) \). For the trace of \(P_N \) one finds

\[
\text{tr}(P_N) = \sum_{\gamma \in \Gamma_m} c_\gamma |\gamma|,
\]

where

\[
\Gamma_m = \Gamma_{V, W}(m, 1, \nu_1, \ldots, \nu_m, w_1, \ldots, w_m, \nu)
\]

and

\[
c_\gamma = \begin{pmatrix} d + \rho + N - 1 \\ d + m - 1 \end{pmatrix},
\]

where \(\rho \) is the cardinality of the set of arrows \(a \) of \(\gamma \) such that the factor \(m^1(v(h(a))) \) lies to the right of the factor \(i^1(w(t(a))) \) in \(P \). For \(\rho > 0 \) this follows by induction on \(\rho \) from \(i^1(w)m^1(v) = m^1(v)i^1(w) + \langle w, v \rangle \) and for \(\rho = 0 \) from cyclic invariance of the trace and induction on \(N \). For \(n = 0 \) and \(N = 0 \) the statement is obvious. The specific form of \(c_\gamma \) is not important in the following. We have given it because of its unexpected simplicity.

For arbitrary \(r \) the calculation can be reduced to the case \(r = 1 \) as in the definition of \(|\gamma| \). Let \(P \) be a product with the factors \(m^1(\tilde{v}_i), i(\tilde{w}_i) \), taken in any order, where \(\tilde{v}_i \in S'V, \tilde{w}_i \in S'W \),
\(\hat{w}_i \in S^i W, i = 1, ..., m. \) For any \(N, P \) restricts to a map \(P_N \in \text{End}(S^N V) \). To calculate the trace of \(P_N \) it is sufficient to consider the case \(\hat{v}_i = \nu_i^{\otimes r}, \hat{w}_i = w_i^{\otimes r} \) for \(i = 1, ..., n, \nu_i \in V, w_i \in W \). One finds

\[
\text{tr}(P_N) = \sum_{\gamma \in \Gamma_m} c_\gamma |\gamma|,
\]

where

\[
\Gamma_m = \Gamma_{V, W}(m, r, \hat{\nu}_1, ..., \hat{\nu}_n, \hat{w}_1, ..., \hat{w}_n, (,))
\]

and

\[
c_\gamma = (r!)^{2m-1} \left(\frac{d + \rho + N - 1}{d + rm - 1} \right).
\]

Here \(\rho \) is the cardinality of the set of arrows \(a \) of \(\gamma \) such that the factor \(m'(\hat{v}(h(a))) \) lies to the right of the factor \(\hat{f}'(\hat{w}(t(a))) \) in \(P \), and \(s_\gamma \) is the order of the group of vertex preserving symmetries of \(\gamma \).

Let \(L^N \) be the subalgebra of \(\text{End}(S^N V) \) generated by the elements \{\(m'_N(\hat{v})i'_N(\hat{w}) | \hat{v} \in A, \hat{w} \in B \}. \) This algebra is spanned by products \(P_N = m'_N(\hat{v}_1)i'_N(\hat{w}_1) \cdots m'_N(\hat{v}_n)i'_N(\hat{w}_m) \), where \(\hat{v}_i \in A, \hat{w}_i \in B \) for \(i = 1, ..., m \). We have seen that the trace of \(P_N \) is given by a linear combination of numbers \(|\gamma| \), where \(\gamma \in \Gamma_{m, r, \hat{v}_1, ..., \hat{v}_n, \hat{w}_1, ..., \hat{w}_m, (,)}. \) If those traces all vanish, then \(L^N \) is a nilalgebra. In particular, there is a non-trivial subspace \(V_0 \subset S^N V \) such that

\[
m'_N(\hat{v})i'_N(\hat{w})V_0 = 0
\]

for all \(\hat{v} \in A, \hat{w} \in B \). Since the kernel of \(m'_N(\hat{v}) \) vanishes for \(\hat{v} \neq 0 \), this means that \(i'_N(\hat{w})V_0 = 0 \) for all \(\hat{w} \in B \). Since the homogeneous polynomial maps in \(B \) have 0 as only common zero, one can apply a theorem of Macaulay ([7] Sec. 6, or [9] p. 85, Theorem 4.48). According to this theorem the ideal in \(S^N V \) generated by \(B \) contains \(S^{NW} \) if \(N \geq rd \), which implies \(i'_N(\hat{w})V_0 = 0 \) for all \(\hat{w} \in S^N W \) and yields a contradiction. Thus \(L^N \) is not nil for \(N \geq rd \).

Let \(L^N \) be the subspace of \(L^N \) generated by products of length \(\leq m \) of elements of the form \(m'_N(\hat{v})i'_N(\hat{w}) \). For each \(m \) one has either \(\dim(L^N) \geq \dim(L^N_{m+1}) \) or \(L^N_m = L^N_i \).

Let \(D(N) = (\dim S^N V)^2 \). Since \(D(N) \geq \dim L^N \), one has \(L^N_D = L^N \). In particular, \(L^N_{D(rd)} \) contains elements of non-vanishing trace. Thus it suffices to take for \(\nu(r, d) \) the least common multiple of all integers less or equal to \(D(rd) \).

\[\square \]

Proof of Lemma 2.2. For each \(x \in X \) and each non-zero \(u \in (E_x \otimes F_x)^* \) we have to find a section in \(H^0(X, (E \otimes F)^{\otimes nr}) \) which is not annihilated by \(u^{\otimes nr} \). Let

\[
I_E : H^0(X, S'E)^{\otimes n} \to H^0(X, E^{\otimes n}),
\]

\[
I_F : H^0(X, S'F)^{\otimes n} \to H^0(X, F^{\otimes n}),
\]

\[
J : H^0(X, E^{\otimes n}) \otimes H^0(X, F^{\otimes n}) \to H^0(X, (E \otimes F)^{\otimes n})
\]

be the canonical morphisms. The permutation group \(S(nr) \) acts on \(E^{\otimes m} \) in the standard way, which yields a map

\[
\Sigma : S(nr) \times H^0(X, E^{\otimes n}) \to H^0(X, E^{\otimes m}).
\]

Let

\[
\Phi : S(nr) \times H^0(X, S'E)^{\otimes n} \otimes H^0(X, S'F)^{\otimes n} \to H^0(X, (E \otimes F)^{\otimes nr})
\]

be defined by \(\Phi = J \circ (\Sigma \otimes Id) \circ (Id \times I_E \otimes I_F) \). Though \(\Phi \) factors through the coset map \(S(nr) \to S(nr)/S(r)^{\times n} \), it yields sufficiently many sections for our purpose. For \(x \in X, \sigma \in S(nr), \sigma_i \in H^0(X, S'E), \sigma_i \in H^0(X, S'F), \) there is an element
\[\gamma \in \Gamma_{E,F}(n,r,s_1(x),...,s_n(x),\tilde{t}_1(x),...,\tilde{t}_n(x),u), \]

such that
\[\langle \Phi(\sigma, s_1 \otimes \cdots \otimes s_n \otimes \tilde{t}_1 \otimes \cdots \otimes \tilde{t}_n), u^{\otimes nr} \rangle = |\gamma|. \] (2.1)

Conversely, for each \(\gamma \in \Gamma(n,r,s_1(x),...,s_n(x),\tilde{t}_1(x),...,\tilde{t}_n(x),u) \) one can find a permutation \(\sigma \in S(rn) \) satisfying the Equation (2.1).

By Proposition 2.6 there exist sections \(\tilde{s}, \tilde{t} \) such that \(|\gamma| \neq 0 \). The image of the corresponding section \(\Phi(\sigma, s_1 \otimes \cdots \otimes s_n \otimes \tilde{t}_1 \otimes \cdots \otimes \tilde{t}_n) \) in \(H^0(X, S^{\otimes nr}(E \otimes F)) \) yields a section in \(H^0(\mathbb{P}(E \otimes F), \mathcal{O}_{\mathbb{P}(E \otimes F)}(nr)) \) which generates the fiber over \((x,u^{\perp}) \).

Remark 2.8. The arguments in sections 1 and 2 remain valid when \(\mathbb{C} \) is replaced by any algebraically closed field of characteristic 0. Thus tensor products of semiample vector bundles on algebraic varieties over such a field are semiample, too.

3. Direct sum and tensor product of k-ample vector bundles

Sommese proved in ([10] p. 235, Corollary (1.10)) that direct sums and tensor products of \(k \)-ample vector bundles are \(k \)-ample, if these vector bundles are generated by sections. The aim of the present section is to remove the latter restriction, moreover for the tensor product it is sufficient that one factor is \(k \)-ample and the other is semiample.

Theorem 3.1. \(E \oplus F \) is \(k \)-ample if and only if \(E, F \) are \(k \)-ample.

Proof. Since the quotient bundle of a \(k \)-ample bundle is \(k \)-ample, the “only if” part is obvious. For the “if” part we use criterion (1.7.3) of proposition (1.7) of Sommese [10]. First note that \(\mathcal{O}_{PE}(r_1) \) gbs (see Notation 1.2) and \(\mathcal{O}_{PF}(r_2) \) gbs imply that \(\mathcal{O}_{PE}(r) \) and \(\mathcal{O}_{PF}(r) \) are gbs whenever \(r \) is a common multiple of \(r_1, r_2 \). By Lemma 2.1 this implies that \(\mathcal{O}_{PE}(E \otimes F)(r) \) gbs. Now assume that \(\mathcal{O}_{PE}(E \otimes F)(r) \) gbs. Hence there is a holomorphic finite to one map \(\phi : Z \rightarrow X \) of a compact analytic space \(Z \) to \(X \), such that \(\dim Z = k + 1 \) and that there is a surjective map \(\phi^*(E \oplus F) \rightarrow Q \) with a trivial bundle \(Q \).

In particular there is a non-trivial section of \(\phi^*(E \oplus F) \). We may assume that the component \(s : Z \rightarrow \phi^*E \) of this section is non-trivial. Since \(\mathcal{O}_{PE}(E \otimes F) \) gbs, for any \(z \in Z \) such that \(s(z) \neq 0 \) there is a section \(\sigma : X \rightarrow SE \) such that \(\langle \phi^*\sigma(z), s(z)^{\otimes r} \rangle \neq 0 \). In particular, \(\langle \phi^*\sigma, s \rangle \) yields a non-trivial section of the trivial line bundle over \(Z \). Such a section must be constant, which implies that \(s \) cannot vanish anywhere. Consequently it yields a trivial quotient bundle of \(\phi^*E \), contrary to the assumption that \(E \) is \(k \)-ample.

For the main theorem of this section we need two lemmata. We first reformulate criterion (1.7.4), proposition (1.7) of Sommese [10].

Lemma 3.2. Let \(E \) be semiample. Then \(E \) being \(k \)-ample is equivalent to the following condition: Given any coherent sheaf \(G \) on \(X \), there exists an integer \(N(G) \) such that for \(n > N(G) \) and \(j > k \) one has \(H^j(X, G \otimes E^{\otimes n}) = 0 \).

Proof. In its original form, criterion (1.7.4) uses the symmetric product \(S^E \) instead of \(E \otimes n \). Since the symmetric product is a direct summand of \(E \otimes n \), the new criterion implies the old. To show the converse, note that \(E \otimes n \) is isomorphic to a direct sum of direct summands of \(S^n(E \otimes kE) \). Moreover by Theorem 3.1 \(E \otimes kE \) being \(k \)-ample is equivalent to \(E \) being \(k \)-ample.

\(\square \)
Lemma 3.3. Let F be a semiample vector bundle on a smooth complex space X. Then there are positive integers r, L and n_l for $l = 0, 1, \ldots$, and graded locally free algebraic sheaves F_1, \ldots, F_L of finite rank with the following properties. The graded sheaf $SF = \bigoplus_{n \in \mathbb{N}} S^nF$ has a resolution
\[0 \to F_L \to \ldots \to F_0 \to SF \to 0, \]
where each F_i has a filtration
\[F_i = F_i^0 \supset F_i^1 \supset F_i^2 \supset \ldots \]
compatible with the grading such that for $l = 0, 1, \ldots$
\[F_i^l/F_i^{l+1} \simeq \hat{F}_i[-l]^{\otimes r_l}, \]
where $[s]$ denotes the shift in degree by s.

Proof. Choose r such that $O_{\mathbb{P}F}(r)$ is gbs. Let Γ be the (isomorphic) image of $H^0(\mathbb{P}F, O_{\mathbb{P}F}(r))$ in $H^0(X, SF)$. The elements of Γ act naturally on SF by multiplication, in particular on $1 \in SF$. Let \mathfrak{M} be the smallest subsheaf of SF which contains the subsheaf $H^0(X, SF)1$ of SF and admits the multiplicative action of SF. By Macaulay’s theorem we have $SF \subset \mathfrak{M}$ if $n > N, N = (r-1)rk(F)$. By induction on s one has $S^{s+n}F \subset S\Gamma S^nF$ for $s \in \mathbb{N}$ if $r + n > N$. The direct summands of SF can be written in the form $S^{s+n}F$ with $n \leq N$. Thus the multiplication map
\[\mathfrak{M} \otimes \left(\bigoplus_{n=0}^N S^nF \right) \to SF \]
is surjective. This implies that SF is a sheaf of finitely generated $(\mathfrak{M} \otimes O_X)$-modules. Since $\mathfrak{M} \otimes O_X$ is a sheaf of regular local rings, SF has local minimal resolutions of finite length L which are unique up to isomorphism. Gluing the corresponding free $(\Gamma \otimes O_U)$-modules over open sets $U \subset X$ by these isomorphisms, one obtains a resolution of SF by sheaves of locally free $(\mathfrak{M} \otimes O_X)$-modules F_i of finite rank. Let
\[F_i^l = S\Gamma F_i \]
for $i = 0, \ldots, L$, and $\hat{F}_i = F_i/F_i^1$. This implies
\[F_i^l/F_i^{l+1} \simeq S\Gamma \otimes \hat{F}_i \]
for $l = 0, 1, \ldots$. Thus the statement of the proposition is true when n_i is the dimension of the vector space $S\Gamma$.

Theorem 3.4. If E is a k-ample and F a semiample vector bundle on a compact complex manifold X, then $E \otimes F$ is k-ample.

Proof. The sheaf $(E \otimes F)^{\otimes n}$ is isomorphic to a direct sum of direct summands of $E^{\otimes n} \otimes SF'$, where $F' = F^{\otimes rkF}$. Thus it suffices to show that $H^j(X, G \otimes SF' \otimes E^{\otimes n})$ vanishes for $j > k$ and sufficiently large n. The notations of lemmata 3.2 and 3.3 will be adapted to F' instead of F by adding primes. Let $n > N(G \otimes \hat{F}_i')$ for $i = 1, \ldots, L'$. Then $H^j(X, G \otimes F'_i/F'_i^{l+1} \otimes E^{\otimes n}) = 0$ for each l and $j > k$. Since the filtration of F'_i is finite at each degree this implies $H^j(X, G \otimes F'_i \otimes E^{\otimes n}) = 0$ for $j > k$, $i = 1, \ldots, L'$, and consequently $H^j(X, G \otimes SF' \otimes E^{\otimes n}) = 0$.

We give a consequence to Theorems 3.1 and 1.3:

Corollary 3.5. If E is a k_1-ample vector bundle and F is k_2-ample vector bundle on a complex manifold, then $E \oplus F$ is $\max\{k_1, k_2\}$-ample and $E \otimes F$ is $\min\{k_1, k_2\}$-ample.

Remark 3.6. It is not generally true that a tensor product of a nef and a k-ample vector bundle with $k > 0$ is still k-ample. Indeed if C is smooth projective curve of genus ≥ 1, O_C is 1-ample,
but if L is a line bundle of degree zero which is not torsion, then L is nef but not 1-ample. This erroneous claim was made in [1] at the top of the p. 195 (see also the erratum corresponding to [1] in Debarre’s homepage) and used in [8], Remark p.422.

Lemma (1.11.4) of Sommese now can be formulated without restrictions.

Lemma 3.7. Let E be a k-ample vector bundle on a compact complex manifold X, dim$X = n$, $Gr(s, E)$ be the bundle of s-codimensional subspaces of the fibers of E and $\zeta(s, E)$ the tautological line bundle of $Gr(s, E)$. Then $\zeta(s, E)$ is k-ample.

The proof is the one given by Sommese, except that the last sentence mentioning gbs has to be omitted. Note also for $k = 0$ that ampleness of $\Lambda s E$ is equivalent to ampleness of $\zeta(s, E)$, as we showed in [6].

Proposition 3.8. Let E_i, $i = 1, \ldots, m$ be vector bundles of rank r_i on a projective manifold X, dim$X = n$, such that $\Lambda s E_1 \otimes \cdots \otimes \Lambda s E_m$ is k-ample. Then

$$H^p(X, \Omega_X^s \otimes \Lambda E_1 \otimes \cdots \otimes \Lambda E_m) = 0$$

if $p + q > n + \sum s_i(r_i - s_i) + k$.

As an application of our main theorem we have in the case $p = n$ in Proposition 3.8 this following generalization of Ein-Lazarsfeld vanishing theorem (proposition 1.7 in [2]) to k-ample,

Theorem 3.9. Let E_i, $i = 1, \ldots, m$ be vector bundles on a projective manifold such that E_i are semiaample and one of them is k-ample. Then

$$H^q(X, K_X \otimes \Lambda E_1 \otimes \cdots \otimes \Lambda E_m) = 0$$

if $q > \sum (r_i - s_i) + k$.

Proof. Let $\pi_i : Y = \mathbb{P}(E_1) \times \cdots \times \mathbb{P}(E_m) \rightarrow \mathbb{P}(E_i)$.

For $s_i \geq 1$, $L = \otimes_i \pi_i^* O_{\mathbb{P}(E_i)}(s_i)$ is k-ample. Indeed $O_{\mathbb{P}(E_i)}(s_i - 1)$ is semiaample, Therefore by Lemma 1.5 it is enough to prove that $\otimes_i \pi_i^* O_{\mathbb{P}(E_i)}(1)$ is k-ample

But this is true thanks to the Segre embedding and the fact that $E_1 \otimes \cdots \otimes E_m$ is k-ample by Lemma 1.5:

$$O_{\mathbb{P}(E_1) \otimes \cdots \otimes E_m}(1)|_Y \simeq \otimes_i \pi_i^* O_{\mathbb{P}(E_i)}(1).$$

This gives

$$\otimes_i \pi_i^* E_ik\text{-ample} \Rightarrow \otimes_i \pi_i^* O_{\mathbb{P}(E_i)}(s_i)k\text{-ample}.$$

Bott’s Formula yields

$$(\sigma_i)_* (\Omega^{k-1}_{\mathbb{P}E_i/X}(k)) = \Lambda^k E,$$

where $\sigma_i : \mathbb{P}(E_i) \rightarrow X$.

Now we use the Borel-Le Potier spectral sequence. For more details see page 37–38 of [5]. We use results of page 37–38 in [5] and obtain the isomorphism:

For $p = n + \Sigma_i (s_i - 1)$

$$H^{p,q}(Y, L) \simeq H^{n,q}(X, \otimes_i \Lambda E_i).$$

The left hand side vanishes by Sommese-Nakano-Kodaira-Akizuki vanishing theorem.

References

[1] Debarre, O. Fulton-Hansen and Barth-Lefschetz theorems for subvarieties of abelian varieties. *J. Reine Angew. Math.* 467(1995):187–197.
[2] Ein, L., Lazarsfeld, R. (1993). Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. *Invent. Math.* 111(1):51–67. DOI: 10.1007/BF01231279.

[3] Fujita, T. Semipositive line bundles. *J. Fac. Univ. Tokyo Sect.* 30(1983):353–378.

[4] Laytimi, F. (1996). On degeneracy loci. *Int. J. Math.* 07(06):745–754. DOI: 10.1142/S0129167X96000396.

[5] Laytimi, F., Nahm, W. (2005). A vanishing theorem. *Nagoya Math. J.* 180:35–43. DOI: 10.1017/S002776300000917X.

[6] Laytimi, F., Nahm, W. (2019). Ampleness equivalence and dominance for vector bundles. *Geom. Dedicata.* 200:77–84. DOI: 10.1007/s10711-018-0360-3.

[7] Macaulay, F. S. (1916). *The Algebraic Geometry of Modular Systems.* Cambridge: Cambridge University Press.

[8] Manivel, L. (1996). Théorèmes d’annulation sur certaines variétés projectives. *Comment. Math. Helv.* 71(1): 402–425.

[9] Shiffmann, B., Sommese, A. J. (1985). *Vanishing theorems on complex manifolds.* Progress in Mathematics, Vol. 56. Boston, MA: Birkhauser Boston Inc.

[10] Sommese, A. J. (1978). Submanifold of abelian varieties. *Math. Ann.* 233(3):229–256. DOI: 10.1007/BF01405353.