A peer-reviewed version of this preprint was published in PeerJ on 7 September 2016.

View the peer-reviewed version (peerj.com/articles/2408), which is the preferred citable publication unless you specifically need to cite this preprint.

Tenaillon MI, Manicacci D, Nicolas SD, Tardieu F, Welcker C. 2016. Testing the link between genome size and growth rate in maize. PeerJ 4:e2408
https://doi.org/10.7717/peerj.2408
Testing the link between genome size and growth rate in maize

Maud I Tenaillon Corresp., 1, Domenica Manicacci 1, Stéphane Nicolas 1, François Tardieu 2, Claude Welcker 2

1 Génétique Quantitative et Evolution – Le Moulon, INRA - Université Paris-Sud - CNRS - AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
2 Ecophysiologie des Plantes sous Stress Environnementaux, INRA, Montpellier, France

Corresponding Author: Maud I Tenaillon
Email address: tenaillon@moulon.inra.fr

Little is known about the factors driving within species Genome Size (GS) variation. GS may be shaped indirectly by natural selection on development and adaptative traits. Because GS variation is particularly pronounced in maize, we have sampled 83 maize inbred lines from three well described genetic groups adapted to contrasted climate conditions: inbreds of tropical origin, Flint inbreds grown in temperate climates, and Dent inbreds distributed in the Corn Belt. As a proxy for growth rate, we measured the Leaf Elongation Rate maximum during nighttime (LER\textsubscript{max}) as well as GS in all inbred lines. In addition we combined available and new nucleotide polymorphism data at 29,090 sites to characterize the genetic structure of our panel. We found significant variation for both LER\textsubscript{max} and GS among groups defined by our genetic structuring. Tropicals displayed larger GS than Flints while Dents exhibited intermediate values. LER\textsubscript{max} followed the opposite trend with greater growth rate in Flints than in Tropicals. In other words, LER\textsubscript{max} and GS exhibited a significantly negative correlation (r=-0.27). However, this correlation was driven by among-group variation rather than within-group variation - it was no longer significant after controlling for structure and kinship among inbreds. Our results indicate that selection on GS may have accompanied ancient maize diffusion from its center of origin, with large DNA content excluded from temperate areas. Whether GS has been targeted by more intense selection during modern breeding within groups remains an open question.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2333v1 | CC BY 4.0 Open Access | rec: 2 Aug 2016, publ: 2 Aug 2016
Testing the link between genome size and growth rate in maize

Maud I. Tenaillon 1*, Domenica Manicacci 1, Stéphane Nicolas 1, François Tardieu 2, Claude Welcker 2

1 Génétique Quantitative et Evolution – Le Moulon, INRA - Université Paris-Sud - CNRS - AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190 Gif sur Yvette, France

2 INRA, Ecophysiologie des Plantes sous Stress Environnementaux, 2 Place Viala, 34060, Montpellier, France

* Corresponding author

Corresponding author’s e-mail address: tenaillon@moulon.inra.fr
ABSTRACT

Little is known about the factors driving within species Genome Size (GS) variation. GS may be shaped indirectly by natural selection on development and adaptative traits. Because GS variation is particularly pronounced in maize, we have sampled 83 maize inbred lines from three well described genetic groups adapted to contrasted climate conditions: inbreds of tropical origin, Flint inbreds grown in temperate climates, and Dent inbreds distributed in the Corn Belt. As a proxy for growth rate, we measured the Leaf Elongation Rate maximum during nighttime (LER_{max}) as well as GS in all inbred lines. In addition we combined available and new nucleotide polymorphism data at 29,090 sites to characterize the genetic structure of our panel. We found significant variation for both LER_{max} and GS among groups defined by our genetic structuring. Tropicals displayed larger GS than Flints while Dents exhibited intermediate values. LER$_{\text{max}}$ followed the opposite trend with greater growth rate in Flints than in Tropicals. In other words, LER$_{\text{max}}$ and GS exhibited a significantly negative correlation ($r = -0.27$). However, this correlation was driven by among-group variation rather than within-group variation – it was no longer significant after controlling for structure and kinship among inbreds. Our results indicate that selection on GS may have accompanied ancient maize diffusion from its center of origin, with large DNA content excluded from temperate areas. Whether GS has been targeted by more intense selection during modern breeding within groups remains an open question.

INTRODUCTION
It is well established that Genome Size (GS) varies greatly among species, and that much of this variation is caused by repeated sequences (Muñoz Diez et al. 2012, Grover and Wendel 2010). There is still however a surprising dearth of studies assessing within-species variation. Among plant populations, several investigations have reported GS stability (Ellul et al. 2002, Moscone et al. 2003) while there are a handful of well-documented examples of substantial GS variation (reviewed in Smarda and Bures (2010)). The extent of within-species GS variation as measured by the coefficient of variation ranges from less than 1% in *Hordeum lechleri* (Jakob et al. 2004), around 2% in *Arabidopsis thaliana* (Long et al. 2013), 3.4% in *Camellia sinensis* (Huang et al. 2013) and in *Festuca pallens* (Smarda et al. 2007), and up to 6% in maize (*Zea mays ssp. mays*) and its closest wild relatives (*ssp. parviglumis* and *mexicana*), the teosintes (Muñoz Diez et al. 2013).

The factors driving GS variation remain a largely controversial issue. Several competing models have been proposed to explain among-species variations in GS. Interestingly, at least two of these models involve population genetic processes that may drive GS variation within species among populations, and ultimately preside over among-species GS variation (Agren and Wright 2011, Petrov 2001). The “mutational hazard” hypothesis (Lynch et al. 2011) posits that selection to maintain a constant per-genome mutation rate indirectly impacts GS. Providing that selection overcomes drift, the per base-pair-per-generation mutation rate correlates negatively with GS (Sung et al. 2012). Under this model, one expects within-species GS variation to be driven by differences in effective population size that condition the efficiency of natural selection.
against genome expansion. An alternative hypothesis asserts that positive natural
selection may indirectly influence GS variation through developmental or adaptive
phenotypes (Knight and Beaulieu 2008). In plants, the latter hypothesis has been
sustained by a handful of empirical studies demonstrating that GS correlates negatively
with development traits such as seedling (Mowforth and Grime 1989), root meristem
growth rate (Gruner et al. 2010), and cell cycle length (Francis et al. 2008). Small
genomes indeed presumably facilitate faster cell division and therefore a higher growth
rate (Knight et al. 2005, Rayburn et al. 1994).

Improving our understanding of intra-species genome dynamics is essential for
elucidating the diversification of GS among related species. Maize is an attractive model
to test whether GS is fine-tuned by positive natural selection. Not only does it display
the largest within-species GS variation in plants and an exceptional genome fluidity
(Chia et al. 2012), but is also characterized by a large effective population size - with
estimates ranging from 33,000 (Vigouroux et al. 2002) to ~600,000 (Gossmann et al.
2010) and 993,000 individuals (Beissinger et al. 2016), and a worldwide distribution with
contrasted growing conditions. Actually, maize has a long-lasting history of research on
GS variation (for a review, see (Knight et al. 2005). The most recent and extensive
report on this question in maize landrace populations (Muñoz Diez et al. 2013) has
drawn several important conclusions: (1) GS varies primarily among landraces and
within-landrace variation is limited; (2) geographical coordinates (altitude, longitude,
latitude) are accurate predictors of GS; (3) GS correlates negatively with altitude. These
results corroborate significant GS difference between temperate and tropical inbred
lines in a sample of 17 improved inbred lines as reported by (Chia et al. 2012).
Altogether, these findings suggest that environmental-driven selection on life cycle length and growth rate could indirectly affect GS. To further validate this hypothesis, we measured GS and leaf elongation rate in 83 improved maize inbred lines of various origins in the purpose of establishing a link between GS and growth rate.

MATERIALS AND METHODS

We have sampled 83 maize inbred lines (inbreds) from the INRA Centre de Ressources Biologiques (Saint Martin de Hinx, France) and from the Maize gene bank at CIMMYT in Mexico (Table 1). In order to maximize GS and LER_{max} variation, we sampled inbred lines from three of the genetic groups previously defined by Camus-Kulandaivelu et al. (2006): tropical inbreds (Tropicals) characterized by a long life-cycle from sowing to flowering, flint inbreds (Flints) grown in temperate climates with a short life-cycle, and Dent inbreds (Dents) distributed in the Corn Belt with an intermediate life-cycle. Our panel encompassed 33 Tropicals, 12 Flints and 13 Dents.

Genotyping of the 83 inbreds with the Illumina MaizeSNP50 array was either available (Bouchet et al. 2013) or generated for a subset of 11 inbred lines (Data S1). We analyzed 29,090 SNPs contributed by the Panzea project (Zhao et al. 2006) that were developed on a discovery panel of 14 maize and 16 teosinte inbreds. Genotypes of 83 lines on 29,090 SNPs are available in Data S1. We utilized FastStructure v1.0 (Raj et al. 2014) to evaluate the genetic structure of our sample using K=2 and K=3 as the number of genetic groups. We determined the memberships of each inbred to the
groups at K=2 and K=3 (Table 1). Kinship was computed from Astle and Balding (2009) using GenABEL (http://www.genabel.org, Aulchenko et al. 2010).

Plants from each inbred line were characterized for LER$_{\text{max}}$ in the phenotyping facility Phenodyn (http://bioweb.supagro.inra.fr/phenodyn/) in two experiments (Data S2). The first experiment included all 83 inbred lines with 3 replicated measurements per inbred. The second experiment was a biological replicate for 58 out of the 83 inbred lines, with 3 replicated measurements. Plants were grown in a Klaszmann substrate (30% clay, 70% peat) according to the protocol reported in Sadok et al. (2007b). Briefly, the LER$_{\text{max}}$ (in mm per hour) of the 6th leaf was measured every 15 min during nighttime from 12 to 4am, time at which LER is maximum. Measurements took place in the 4 to 7 days during which the leaf elongation rate of leaf 6 has no temporal trend over successive nights (Sadok et al. 2007a). A single measure is therefore an average of LER during 4 to 7 nights. Meristem and air temperature, light intensity and air relative humidity, were measured every 15 min. Plants were grown in the greenhouse with naturally fluctuating conditions (200 to 1100 μmol m$^{-2}$ s$^{-1}$ at noon time) under well-watered conditions. During the measurement period, meristem temperature was 18.5°C ± 0.2°C and 20.0 ± 0.8°C in Experiment 1 and 2, respectively. Both soil water potential (-0.11 and -0.15 MPa) and vapour pressure deficit (0.93kPa ± 0.14kPa and 0.98kPa ± 0.14kPa) were in the range most favorable for growth during measurements.

In parallel, we measured the GS of 3 to 5 individuals per inbred line - from the same seed lots used for the LER$_{\text{max}}$ measurements (Data S2). Inbreds were grown in a greenhouse in Gif-sur-Yvette (France) and transferred after 3 weeks to the Imagif facility.
in Gif-sur-Yvette. The total nuclear DNA amount was assessed by flow cytometry according to Mary and Brown (1993). *Pisum sativum* L. ‘Long Express’ (2C=8.37 pg) was used as an internal standard. Leaves of the internal standard and maize lines were chopped using a razor blade in a plastic Petri dish with 1 ml of Gif nuclei-isolation buffer (45 mM MgCl$_2$, 30 mM sodium citrate, 60 mM MOPS, 1% (w/v) polyvinylpyrrolidone 10,000, pH 7.2) containing 0.1% (w/v) Triton X–100, supplemented with 5 mM sodium metabisulphite and RNAse (2.5 U/ml). The suspension was filtered through 50 μm nylon mesh. The nuclei were stained with 50 μg/ml propidium iodide and kept 5 min at 4°C. DNA content of 5,000–10,000 stained nuclei was determined for each sample using a flow cytometer (CyFlow SL3, Partec-Sysmex. Excitation 532 nm, 30 mW; emission through a 630/30 nm band-pass filter). The total 2C DNA value was calculated using the linear relationship between the fluorescent signals from stained nuclei of the maize and the internal standard. We performed 3 technical replicates per plant. In addition, we employed the inbred line B73 (maize reference genome) to verify the flow cytometer calibration at regular time intervals.

The LER$_{\text{max}}$ and GS values were averaged among technical replicates (Data S2). LER$_{\text{max}}$ of 58 inbred lines replicated over the two experiments were compared using the Bland and Altman’s method (1986). The replicates were highly concordant with differences between replicates that did not differ from 0 ($t = -1.3$, $df = 28$, $P = 0.20$), and no correlation between differences between replicates and inbred line mean values ($t = -1.6$; $df = 27$, $P = 0.13$). GS measurement was replicated on 3 to 5 plants per line, except for three that were replicated twice and B73 for which we had 14 replicates. Given the high and variable replicates number, the Bland and Altman’s method could
not be applied. Instead, we performed a one-way ANOVA and showed that GS variation was mainly owed to inbred line differences ($R^2 = 89.7\%$), with only 10.3% variation across biological replicates. Means and standard deviations for LER_{max} and GS across biological replicates for each inbred line are reported in Table 1, and mean values were used for further statistical analyses. All statistical analyses were performed using the R software.

The effect of genetic groups on LER_{max} and GS was first tested using linear regression on quantitative memberships obtained from FastStructure. We also employed a one-way ANOVA with a qualitative classification of inbreds as Flints, Dents or Tropicals. In this case, inbreds were assigned to a group based on its highest membership coefficient as determined by FastStructure at $K=3$. We computed pairwise differences between groups using Tukey-Kramer contrasts. We tested the correlation between LER_{max} and GS first by simple regression; second we corrected for genetic structure by adding qualitative or quantitative memberships obtained from FastStructure as covariates in the linear model; third, we used a mixed model declaring FastStructure quantitative membership as a fixed effect and kinship as a random effect (Yu et al. 2006).
RESULTS

We assembled a panel of 83 maize inbred lines to test the link between genome size (GS) and the leaf elongation rate (LER_{max}). We extracted genotyping data from 29,090 SNPs and assess genetic structuring of the panel. Our results revealed a clear separation between Tropicals and Flints, while Dents were found as admixed individuals when K=2. With K=3, the Dent inbreds form a distinct genetic group (Figure 1).

GS varied between 4.96 pg and 5.89 pg (Table 1) with a coefficient of variation of 3.6 %. LER_{max} ranged from 3.80 to 6.94 mm h^{-1} (Table 1) with a coefficient of variation of 13.7%. Figure 2 illustrates GS and LER_{max} variation within and among the 3 genetic groups, each inbred being assigned to the genetic groups of greater membership. For both traits, mean values significantly differed among groups (one-way ANOVA, GS : \(F_{(2;80)} = 52.7, P = 2.5 \times 10^{-15}\); LER : \(F_{(2;80)} = 4.47, P = 0.014\)). Confirming previous observations, Tropicals displayed a larger genome size than Flints (Chia et al. 2012) while Dents exhibited intermediate GS although non-significantly different from the Flints (Figure 2A). LER_{max} followed the opposite trend with Flints exhibiting higher values than Tropicals (Figure 2B). Consistently we found a significant effect of the degree of “Flintness” – membership to the Flint group for K=2 – on GS (Figure 2C) and LER_{max} (Figure 2D). The Pearson correlation coefficients were highly significant (\(r = -0.77, P = 2.1 \times 10^{-17}\) and \(r = 0.40, P = 2.0 \times 10^{-4}\) respectively for GS and LER_{max}).

To validate further this pattern, we investigated the correlation between LER_{max} and GS and found a significantly negative correlation (\(r = -0.29, F_{(1;81)} = 7.28, P = 0.008\), Figure 3). However, GS may correlate with relatedness among inbreds because measures of closely related inbreds, i.e. those that form a genetic group, are not
independent observations. In order to control this effect, we re-analysed the correlation between GS and LER\textsubscript{max} controlling for qualitatively (group assignation from the highest membership coefficient) or quantitatively (group membership coefficient) defined groups. We found that the group effect was significant ($F_{(2;77)} = 4.68, P = 0.012$).

However the correlation was no longer significant when controlling for either qualitative group origin ($F_{(1;77)} = 1.07, P = 0.31$, Figure 3) or quantitative group membership ($F_{(1;77)} = 0.003, P = 0.95$). As expected when kinship was added to the model, the effect of GS on LER\textsubscript{max} remained not significant ($P = 0.95$). The regression slope between GS and LER did not differ among groups as indicated by the non-significant group X GS interaction on the LER measurements ($F_{(2;77)} = 2.84, P = 0.065$).

Finally, we performed within-group analyses. Sample size was too limited (11 inbreds) to evaluate correlation within Dents. We found no correlation within Flints (24 inbreds). Tropicals (50 inbreds) however exhibited a negative trend, with small genome inbreds displaying a tendency towards faster growth rate than larger genome inbreds ($r = -0.26, F_{(1;48)} = 3.35, P = 0.073$).
DISCUSSION

That plants with smaller genomes may undergo more rapid replication time of their genome, which translates into faster growth rate than plants with larger genomes, is a prediction of the positive natural selection evolution model of genome size. This prediction is based on findings of positive correlation between GS and duration of the cell cycle in 110 angiosperm species (Francis et al. 2008). Maize originates from teosintes (Matsuoka et al. 2002) and are characterized by an important range of variation in DNA content (Muñoz Diez et al. 2013). Its genome is extremely fluid (Chia et al. 2012) and GS may evolve rapidly under selection (Rayburn et al. 1994). Realini et al. (2015) have recently reported a positive correlation between heterochromatin content and length of the vegetative cycle in 9 maize populations sampled from Northeastern Argentina. However a more direct effect of GS variation on growth rate has never been formally tested.

Here, we determined GS and leaf elongation rate (LER_{max}) in 83 improved maize inbred lines selected under contrasted climates. We measured LER_{max} in the developing 6th leaf during the linear phase of elongation, considered as a steady-state (Salah and Tardieu 1997). This state is commonly used for measuring cell division and/or tissue expansion (Tardieu et al. 2000). It therefore is a good proxy for growth rate in relation with the timing of cell cycle. Besides, the LER_{max} in maize is reproducible and independent of environmental conditions if corrected for temperature effect (Sadok et al. 2007b). It is also a highly heritable trait (Dignat et al. 2012).
Our sample contained inbred lines from three well-defined genetic groups, the Flints, the Dents and the Tropica... the recent history of admixture between Tropica... to form the Dent inbreds at the end of the 19th century (Labate et al. 2003).

Our sample corroborates previous observations from a restricted set of inbreds with temperate inbreds (Flints) exhibiting a significantly smaller GS than tropical (Tropicals) inbreds (Chia et al. 2012) (Figure 2A and 3A). Interestingly, LER_{max} followed the opposite trend with Flints exhibiting higher values than Tropicals whether inbred group membership was considered as qualitative (Figure 2B) or a quantitative trait (Figure 3B). Note that Dents exhibit intermediate values bot for GS and LER_{max} consistent with their admixed status.

At a first glimpse our results therefore support the hypothesis that smaller genomes exhibit a faster development rate. Because LER_{max} is a good indicator of growth ability of other organs including reproductive organs (Dignat et al. 2013), it is tempting to speculate that selection for a faster-life cycle in early flowering Flint inbreds has indirectly impacted genome size.

However the negative correlation between GS and LER_{max} was mainly driven by among-group variation (Figure 3), suggesting that the existing link between these variables at the origin of the groups was followed by uncorrelated changes during subsequent evolutionary history. Such a pattern has been reported among species, whereby accounting for the phylogenetic history of species altered the relationship between effective population size and GS (Whitney and Garland 2010). Noteworthy,
within Tropicals smaller genomes displayed a tendency towards faster growth rate than larger genomes. The coefficient of variation of GS was also greater in this group (26%) than in either Flints (22%) or Dents (19%). Tropicals are subjected to high variation in altitude that may exert selective pressure on GS. Additional sampling with limited structuring will be necessary to validate further this result.

Altogether, our results show that selection on GS may have accompanied ancient maize geographical diffusion from its center of origin, consistently with the idea that landraces/inbreds with large DNA content may be excluded from more extreme temperate climates.

ACKNOWLEDGEMENTS

We are grateful to Jessica Mélique and Spencer Brown for their help in performing the GS measurements and to Spencer Brown for sharing his expertise. We thank Mickaël Bourge and Béatrice Jeunemaitre at the Imagerie-Gif flow cytometry facility for their help in interpreting GS histograms. We also thank Stephane Berthezene and Benoit Suard for their technical support at the phenotyping facility. Jean-Tristan Brandenburg provided help with SNP data extraction. Jeff Ross-Ibarra provided helpful comments on the manuscript.
REFERENCES

Agren JA, Wright SI. 2011. Co-evolution between transposable elements and their hosts: a major factor in genome size evolution? Chromosome Research 19: 777-786.

Astle W, Balding DJ. 2009. Population structure and cryptic relatedness in genetic association studies. Statistical Science 24:451-471.

Aulchenko YS, Struchalin MV, van Duijn CM. 2010. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11:134-143.

Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, Ross-Ibarra J. 2016. Recent demography drives changes in linked selection across the maize genome. Nature Plants 2:16084.

Bland JM, Altman DG. 1986. Statistical method for assessing agreement between two methods of clinical measurements. Lancet 1: 307-310.

Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S. 2013. Adaptation of Maize to Temperate Climates: Mid-Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus. Plos One 8.

Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A. 2006. Maize adaptation to temperate climate: Relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172: 2449-2463.
Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhaejaervi T, Rong T, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang Z, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang G, Xu Y, Ware D. 2012. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics 44: 803-U238.

Dignat G, Welcker C, Sawkins M, Ribaut JM, Tardieu F. 2013. The growths of leaves, shoots, roots and reproductive organs partly share their genetic control in maize plants. Plant Cell and Environment 36: 1105-1119.

Ellul P, Boscaiu M, Vicente O, Moreno V, Rossello JA. 2002. Intra- and interspecific variation in DNA content in Cistus (Cistaceae). Annals of Botany 90: 345-351.

Francis D, Davies MS, Barlow PW. 2008. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Annals of Botany 101: 747-757.

Gossmann TI, Song B-H, Windsor AJ, Mitchell-Olds T, Dixon CJ, Kapralov MV, Filatov DA, Eyre-Walker A. 2010. Genome Wide Analyses Reveal Little Evidence for Adaptive Evolution in Many Plant Species. Molecular Biology and Evolution 27: 1822-1832.

Grover E, Wendel JF. 2010. Recent insights into mechanisms of genome size change in plants. Journal of Botany Doi: 0.1155/2010/382732.

Gruner A, Hoverter N, Smith T, Knight CA. 2010. Genome Size Is a Strong Predictor of Root Meristem Growth Rate. Journal of Botany 2010.
Huang H, Tong Y, Zhang Q-J, Gao L-Z. 2013. Genome Size Variation among and within Camellia Species by Using Flow Cytometric Analysis. Plos One 8.

Jakob SS, Meister A, Blattner FR. 2004. Considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Molecular Biology and Evolution 21: 860-869.

Knight CA, Beaulieu JM. 2008. Genome size scaling through phenotype space. Annals of Botany 101: 759-766.

Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: Evolution, ecology and phenotype. Annals of Botany 95: 177-190.

Labate JA, Lamkey KR, Mitchell SE, Kresovich S, Sullivan H, Smith JSC. 2003. Molecular and historical aspects of corn belt dent diversity. Crop Science 43: 80-91.

Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, Zhang Q, Vilhjalmsson BJ, Korte A, Nizhynska V, Voronin V, Korte P, Sedman L, Mandakova T, Lysak MA, Seren U, Hellmann I, Nordborg M. 2013. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nature Genetics 45: 884-U218.

Lynch M, Bobay L-M, Catania F, Gout J-F, Rho M. 2011. The Repatterning of Eukaryotic Genomes by Random Genetic Drift. In: Chakravarti A, Green E, eds. Annual Review of Genomics and Human Genetics, Vol 12.

Marie D, Brown SC. 1993. A cytometric exercise in plant DNA histograms, with 2C-values for 70 species Biology of the Cell 78: 41-51.
Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez G. J, Buckler E, Doebley J. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America 99: 6080-6084.

Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT. 2003. Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Annals of Botany 92: 21-29.

Mowforth MA, Grime JP. 1989. Intra-population variation in nuclear-DNA amount, cell-size and growth-rate in Poa annua L. Functional Ecology 3: 289-295.

Muñoz Diez C, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Eguiarte L, Tenaillon MI. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytologist 199: 264-276.

Muñoz Diez C, Vitte C, Ross-Ibarra J, Gaut BS, Tenaillon MI. 2012. Using nextgen sequencing to investigate genome size variation and transposable element content In: Casacuberta M-AGaJ, ed. Plant transposons (Topics in current genetics). Germany: Springer-Verlag.

Petrov DA. 2001. Evolution of genome size: new approaches to an old problem. Trends in Genetics 17: 23-28.

Raj A, Stephens M, Pritchard JK. 2014. fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics 197: 573-U207.

Rayburn AL, Dudley JW, Biradar DP. 1994. Selection for early flowering results in simultaneous selection for reduced nuclear-DNA content in maize Plant Breeding 112: 318-322.
Realini MF, Poggio L, Camara-Hernandez J, Gonzalez GE. 2015. Intra-specific variation in genome size in maize: cytological and phenotypic correlates. Annals of Botany PLANTS 8.

Sadok W, Boussuge B, Welckeir C, Tardieu F. 2007a. A modelling approach to genotype x environment interaction. Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations 21: 77-91.

Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F. 2007b. Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell and Environment 30: 135-146.

Salah HBH, Tardieu F. 1997. Control of leaf expansion rate of droughted maize plants under fluctuating evaporative demand - A superposition of hydraulic and chemical messages? Plant Physiology 114: 893-900.

Smarda P, Bures P. 2010. Understanding intraspecific variation in genome size in plants. Preslia 82: 41-61.

Smarda P, Bures P, Horova L. 2007. Random distribution pattern and non-adaptivity of genome size in a highly variable population of Festuca pallens. Annals of Botany 100: 141-150.

Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012. Drift-barrier hypothesis and mutation-rate evolution. Proceedings of the National Academy of Sciences of the United States of America 109: 18488-18492.

Tardieu F, Reymond M, Hamard P, Granier C, Muller B. 2000. Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the
effects of soil water status, evaporative demand and temperature. Journal of Experimental Botany 51: 1505-1514.

Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WF, Smith JSC, Doebley J. 2002. Rate and pattern of mutation at microsatellite loci in maize. Molecular Biology and Evolution 19: 1251-1260.

Whitney KD, Garland T, Jr. 2010. Did Genetic Drift Drive Increases in Genome Complexity? Plos Genetics 6.

Zhao W, Canaran P, Jurkuta R, Fulton T, Glaubitz J, Buckler E, Doebley J, Gaut B, Goodman M, Holland J, Kresovich S, McMullen M, Stein L, Ware D. 2006. Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Research 34: D752-D757.
Figure 1 (on next page)

Group membership of 83 maize inbred lines inferred using FastStructure v1.0 (Raj et al. 2014) from 29,090 SNPs with ancestral group number K=2 (A) or K=3 (B).

The 83 inbred lines are ordered as in Table 1. Group names were a posteriori defined from the inbred lines with greatest membership with Flints (blue), Dents (red), and Tropicals (green).
Mean and standard errors across inbred lines for genome size (1-A) and LERmax (1-B) measures, for each genetic group as defined as Flints, Dents or Tropicals following their greatest membership using FastStructure at K=3 (Table 1).

For both traits, mean values significantly differ among groups (one-way ANOVA, GS : $F_{(2;80)}=52.7, P=2.5 \times 10^{-15}$; LER : $F_{(2;80)}=4.47, P=0.014$). Pairs of groups with similar letters exhibit non-significant difference in mean values.
Figure 3 (on next page)

Relation between genome size (A) and LERmax (B) with Flintness as measured by the membership to the Flint group at K=2.

The Pearson correlation coefficients ($r=-0.77$ and $r=0.40$, respectively) are highly significant ($P=2.1 \ 10^{-17}$ and $P=2.0 \ 10^{-4}$, respectively).
Table 1 (on next page)

List of inbred lines with measures of Genome Size (GS), LERmax (LER) and membership at K=2 (Group 1, 2) and K=3 (Group 1, 2, 3).
Inbred line	GS (pg)	LER (mm/h)	K2_G1	K2_G2	K3_G1	K3_G2	K3_G3	K3_group		
CH10	5.05	6.77	1.000	0.000	1.000	0.000	0.000	Flint		
EP1	5.17	4.54 (0.149)	0.928	0.072	0.940	0.000	0.060	Flint		
F39	5.31	6.25 (0.610)	0.879	0.121	0.894	0.000	0.106	Flint		
F471	5.26	5.66 (0.113)	0.867	0.133	0.905	0.000	0.095	Flint		
FC16	5.27	6.83	0.670	0.330	0.675	0.000	0.325	Flint		
FC209	5.05	6.21 (0.047)	1.000	0.000	1.000	0.000	0.000	Flint		
FC24	5.41	5.99 (0.045)	1.000	0.000	1.000	0.000	0.000	Flint		
FV2	5.20	5.40 (0.251)	1.000	0.000	1.000	0.000	0.000	Flint		
FV65	5.21	6.65	0.868	0.132	0.876	0.000	0.124	Flint		
FV7	5.24	6.30 (0.514)	1.000	0.000	1.000	0.000	0.000	Flint		
FV71	5.10	5.14 (0.129)	0.923	0.077	0.976	0.000	0.024	Flint		
FV75	5.11	5.86 (0.575)	1.000	0.000	1.000	0.000	0.000	Flint		
FV76	5.27	5.21	0.821	0.179	0.840	0.000	0.160	Flint		
ND30	5.04	6.94	1.000	0.000	1.000	0.000	0.000	Flint		
NY302	4.96	5.23 (0.269)	1.000	0.000	0.796	0.204	0.000	Flint		
PB40R	5.28	5.04 (0.046)	0.770	0.230	0.725	0.087	0.187	Flint		
W85	5.19	5.24 (0.397)	1.000	0.000	1.000	0.000	0.000	Flint		
YUBR05	5.21	6.80	0.724	0.276	0.542	0.458	0.000	Flint		
B73	5.21	5.42 (0.369)	0.490	0.510	0.000	1.000	0.000	Dent		
CI1872U	5.26	4.73 (1.046)	0.305	0.695	0.000	0.729	0.271	Dent		
EA1433	5.24	4.21 (0.519)	0.416	0.584	0.206	0.420	0.373	Dent		
FC1852	5.33	6.12 (0.249)	0.494	0.506	0.000	1.000	0.000	Dent		
FC252	5.23	4.80 (0.108)	0.449	0.551	0.000	1.000	0.000	Dent		
K64R	5.24	5.68 (0.249)	0.313	0.687	0.052	0.538	0.410	Dent		
KY21	5.20	5.56 (0.885)	0.416	0.584	0.000	1.000	0.000	Dent		
LAN496	5.17	5.97 (0.009)	0.476	0.524	0.076	0.924	0.000	Dent		
MBS847	5.17	4.45 (0.519)	0.437	0.563	0.000	1.000	0.000	Dent		
MO17	5.16	4.78 (0.107)	0.448	0.552	0.000	1.000	0.000	Dent		
N25	5.31	4.72 (0.377)	0.466	0.534	0.000	1.000	0.000	Dent		
N6	5.22	6.28	0.520	0.480	0.110	0.890	0.000	Dent		
SC55	5.48	6.24 (0.244)	0.271	0.729	0.045	0.493	0.462	Dent		
SCMALAWI	5.45	6.44 (0.527)	0.263	0.737	0.000	0.609	0.391	Dent		
W117U	5.32	5.03	0.423	0.577	0.000	1.000	0.000	Dent		
A6	5.87	4.46 (0.490)	0.000	1.000	0.000	0.000	1.000	Tropical		
L256	5.32	5.63 (0.323)	0.460	0.540	0.465	0.000	0.535	Tropical		
BA90	5.41	5.54 (0.139)	0.366	0.634	0.201	0.356	0.443	Tropical		
CLA17	5.80	5.67 (0.137)	0.000	1.000	0.000	0.059	0.941	Tropical		
CML69	5.64	5.06 (0.416)	0.000	1.000	0.000	0.000	1.000	Tropical		
CML245	5.70	5.59 (1.009)	0.330	0.670	0.201	0.273	0.526	Tropical		
CML247	5.64	5.12 (0.804)	0.000	1.000	0.000	0.000	1.000	Tropical		
CML254	5.50	5.71 (0.814)	0.000	1.000	0.000	0.000	1.000	Tropical		
CML287	5.48	5.89 (0.660)	0.000	1.000	0.000	0.000	1.000	Tropical		
CML312	5.31	4.06	0.000	1.000	0.000	0.000	1.000	Tropical		
Code	Value	Mean	SD	Median	Min	Max	Location			
--------	--------	------	-----	--------	------	------	----------			
CML333	5.54	0.073	4.88	(0.640)	0.051	0.949	0.023	0.061	0.917	Tropical
CML340	5.51	0.068	5.27	-	0.000	1.000	0.000	0.000	1.000	Tropical
CML341	5.50	0.046	4.53	-	0.000	1.000	0.000	0.000	1.000	Tropical
CML344	5.58	0.092	3.80	-	0.000	1.000	0.000	0.000	1.000	Tropical
CML440	5.60	0.028	4.21	-	0.063	0.937	0.063	0.000	0.937	Tropical
CML91	5.44	0.053	4.60	(0.802)	0.109	0.891	0.032	0.149	0.819	Tropical
CMLP1	5.60	0.087	4.83	(0.020)	0.000	1.000	0.000	0.000	1.000	Tropical
CMLP2	5.59	0.080	5.21	(0.457)	0.000	1.000	0.000	0.000	1.000	Tropical
CZL04006	5.51	0.142	6.33	-	0.090	0.910	0.000	0.260	0.740	Tropical
CZL0617	5.55	0.097	5.27	-	0.000	1.000	0.000	0.000	1.000	Tropical
CZL071	5.30	0.054	6.52	-	0.089	0.911	0.028	0.119	0.853	Tropical
EA1197	5.55	0.124	5.90	(0.268)	0.234	0.766	0.246	0.000	0.754	Tropical
EA1201	5.56	0.164	5.74	(0.492)	0.152	0.848	0.152	0.000	0.848	Tropical
EA1866	5.44	0.078	6.47	(0.536)	0.234	0.766	0.237	0.000	0.763	Tropical
EA1712	5.34	0.012	6.25	(0.486)	0.199	0.801	0.208	0.000	0.792	Tropical
F2834T	5.44	0.060	5.14	(0.431)	0.245	0.755	0.136	0.224	0.640	Tropical
G37	5.65	0.096	4.70	(0.010)	0.000	1.000	0.000	0.000	1.000	Tropical
DTPWC9-F115	5.55	0.072	5.35	-	0.000	1.000	0.000	0.000	1.000	Tropical
DTPWC9-F104	5.52	0.030	4.59	-	0.000	1.000	0.000	0.062	0.938	Tropical
DTPWC9-F31	5.65	0.068	4.09	-	0.000	1.000	0.000	0.000	1.000	Tropical
DTPYC9-F74	5.46	0.092	5.37	-	0.000	1.000	0.000	0.000	1.000	Tropical
DTPYC9-F46	5.49	0.105	5.89	-	0.000	1.000	0.000	0.018	0.982	Tropical
LPSC7-F64	5.45	0.004	4.84	-	0.000	1.000	0.000	0.000	1.000	Tropical
LPSC7-F71	5.41	0.044	5.49	-	0.000	1.000	0.000	0.000	1.000	Tropical
LPSC7-F103	5.45	0.019	4.14	-	0.000	1.000	0.000	0.000	1.000	Tropical
LPSC7-F86	5.49	0.084	4.45	-	0.000	1.000	0.000	0.000	1.000	Tropical
H16	5.37	0.029	4.36	(0.150)	0.000	1.000	0.000	0.000	1.000	Tropical
KUI44	5.26	0.101	4.63	(0.823)	0.050	0.950	0.041	0.016	0.942	Tropical
KUI11	5.54	0.050	5.58	(0.073)	0.000	1.000	0.000	0.042	0.958	Tropical
KUI3	5.64	0.052	4.17	(0.265)	0.000	1.000	0.000	0.000	1.000	Tropical
LP1037	5.30	0.037	6.21	(0.678)	0.340	0.660	0.249	0.175	0.576	Tropical
LP1233	5.39	0.054	5.97	(0.458)	0.240	0.760	0.243	0.000	0.757	Tropical
LP35	5.40	0.158	5.69	(0.168)	0.243	0.757	0.242	0.008	0.750	Tropical
MO22	5.45	0.097	5.40	(0.117)	0.069	0.931	0.065	0.000	0.935	Tropical
NC298	5.75	0.107	4.77	(0.815)	0.000	1.000	0.000	0.000	1.000	Tropical
NC304	5.48	0.026	5.02	(0.124)	0.000	1.000	0.000	0.000	1.000	Tropical
NC320	5.40	0.099	5.61	(0.750)	0.210	0.790	0.000	0.465	0.535	Tropical
NC338	5.78	0.107	4.98	(0.145)	0.000	1.000	0.000	0.000	1.000	Tropical
TZI18	5.89	0.044	5.39	(0.112)	0.000	1.000	0.000	0.000	1.000	Tropical
ZN6	5.42	0.036	5.61	(0.527)	0.249	0.751	0.252	0.000	0.748	Tropical