How Can Transformative Sustainability Research Benefit From Integrating Insights From Psychology?

Thomas Bruhn*

Institute for Advanced Sustainability Studies (IASS), Potsdam, Germany

Keywords: transformative research, transdisciplinarity, relationality, mental model, leverage points

INTRODUCTION—ESSENTIAL TRENDS IN SUSTAINABILITY RESEARCH

Over the last decades, the field of sustainability science has experienced trends toward (1) a transdisciplinary (Hirsch Hadorn et al., 2006; Jahn et al., 2012) and (2) systemic, relationship-based understanding of transformation (Clark and Harley, 2020) and (3) transformative research (Schneidewind et al., 2016; Fazey et al., 2018; Clark and Harley, 2020). A key feature of these trends is that they emphasize the roles of human subjectivity and agency in transformation processes (Manuel-Navarrete, 2001, 2015; Lang et al., 2017). In the following I would like to briefly introduce these trends as basis for later discussion on how psychology could help address specific challenges in this context.

From Environmental Science to Transdisciplinary Transformation Research

First, sustainability science has moved from focusing on the analysis of environmental issues toward a research field that aims at a transdisciplinary understanding of transformation (Kates, 2011). Discussions about sustainability were initially driven by environmental sciences and led to substantial research on resource efficiency, technological solutions, and their respective governance (Kates and Saito, 2001; Clark et al., 2005). Discussions on sufficiency and lifestyle changes originally attracted much less attention. Recently, this situation has shifted significantly. Many industrialized societies are facing challenges related to psychological health and well-being, stimulating the search for sustainable and mindful lifestyles (Kasser, 2003; Brown and Kasser, 2005). Today, there is broad agreement that human behavior patterns and lifestyles play crucial roles in the current crisis and influence future transformation pathways (Botkin et al., 2014; Lang et al., 2017). In light of this, integrating knowledge from various academic and non-academic sources has become a key feature of sustainability science.

From “Top-Down vs. Bottom-Up” to a Systems-Based Theory of Change

Second, the discourse on sustainability has seen the emergence of new theories of change that are based particularly on an understanding of complex, adaptive systems (Clark and Harley, 2020), integrating insights from various research fields based on relational ontologies (Oberlack et al., 2019). Originally having an emphasis on environmental (i.e., Earth-system) changes, the discourse
on sustainability used to have a certain bias toward “top-down” analyses and “solutions” to preserve the stability of global ecosystems (Lövbrand et al., 2009). In parallel, bottom-up activities have driven local change processes, leading, for example, to the transition movement and other initiatives. Only in the last decade, these perspectives have become increasingly integrated into what several authors call a “systems view” (Capra and Luisi, 2014) or “relational paradigm” (Walsh et al., 2020; West et al., 2020) of sustainability research and transformation.

From Descriptive Science to Transformative Research

Third, the role of science in society has been shifting toward so-called transformative research that not only provides knowledge from a seemingly objective observer’s point of view, but also actively engages with stakeholders to integrate academic understanding into processes of taking action (Lang et al., 2012). Not long ago, scientific discourse and organizations were largely focusing on research about sustainability phenomena, providing results as advice to decision-makers and preserving the “independence” of academia (Mobjörk, 2010). The boundaries of these roles have increasingly become blurred and scientists and research institutions are exploring how to contextualize research processes in multi-stakeholder processes that are normatively oriented toward the common good (Schneidewind et al., 2016; Fazey et al., 2018).

DISCUSSION—WHY AND HOW THESE TRENDS CALL FOR AN INTEGRATION OF PSYCHOLOGY

All these trends are encountering challenges that create opportunities for psychology to contribute to sustainability-related research processes.

Transdisciplinarity—On the Challenge of Overcoming Knowledge Hegemonies

In the context of developing a transdisciplinary understanding of transformation, psychology can contribute a lot of knowledge on how to integrate aspects of human behavior into transformation processes and how to understand the generation and representation of knowledge in transdisciplinary research processes.

A key issue of a transdisciplinary understanding of sustainability lies in the field of behavioral change and lifestyles. A lot of scientific advice for decision-makers is being provided based on so-called integrated assessment models (IAMs) that (implicitly or explicitly) include assumptions about collective behavior and behavioral change (van Vuuren et al., 2011; Béatrice et al., 2019). Undoubtedly, psychology can offer important insights and tools to understand the aspects and mechanisms shaping lifestyle choices and collective behavioral changes. Here, psychology scholars should be actively involved in the design of these models, e.g., to examine how the assumptions of these highly influential models are consistent with the latest psychological findings. For example, it seems crucial to me that sustainability-related discussions go beyond an individualistic understanding of the human being and its health and well-being. This could help create political incentive structures for behavior change that are not based on outdated understandings of the human being, like e.g., notions of a homo economicus which is still widespread in fields outside psychology, but widely criticized as inadequate in today’s psychology and sociology literature (Urbina and Ruiz-Villaverde, 2019). While there have already been substantial efforts in the field of psychology to contribute to sustainability, I see a great need for sustainability-related research institutions and programs to integrate psychological perspectives more pro-actively into transdisciplinary research processes to account adequately for the role of human behavior.

Another important contribution could lie in helping to understand the factors that shape processes of effective knowledge integration (Wiek, 2007). Transdisciplinarity aims at integrating various forms of knowledge (i.e., systems knowledge, orientation knowledge, transformation knowledge and process knowledge). In practice, this includes non-academic knowledge and experiential or tacit knowledge, and many research processes are struggling with this ambition because they are lacking expertise on how to examine the factors that “lie behind” the ways different knowledge is being represented. Thus, it is highly relevant to understand the motivations, aspirations, and drivers that shape knowledge representations in these processes. Psychological perspectives can provide valuable expertise on how knowledge is generated and processed, for example through the integration of reflexive practices such as mindfulness in the research process (Lang et al., 2017).

The Systems View—On the Challenge of Integrating Human Subjectivity

In the context of developing a systems-based theory of change, psychology can contribute a rich spectrum of empirical methods for investigating deeper systemic leverage points.

In a systems view, transformation processes are understood to be shaped by changing relationship patterns across systems and different leverage points for systemic change. Here, mental models, i.e., values, paradigms and belief systems, are considered as so-called deep-leverage points (Meadows, 1997; Abson et al., 2017).

Hence, as sustainability researchers are exploring the roles of subjectivity and mental models in transformation processes, they need methods that allow for an examination of these aspects. Psychology can either contribute its own, or help enhance existing non-psychological methods to integrate deeper and more complex understandings of human beings and their interactions in social contexts. As an example for this kind of synergetic work, I see the emerging community of so-called “psycho-social research” (Clarke, 2002, 2006; Clarke et al., 2018) that has integrated insights from psychoanalysis in the design of qualitative social science methods. Psycho-social research aims at reaching beyond narratives of a rational human being and tapping into the messy, contradictory, ambiguous “lived life,” e.g.,
by conducting life history interviews or by working with free
associations and dreams (Hoggett, 2013).

Other exciting developments can be observed, for instance,
in the context of adapting methods for systems constellations
in contexts outside their origins in group or family psychology
(Müller-Christ, 2018, 2019; Müller-Christ and Pijetlovic, 2018).
Revealing patterns within human subjectivity and
how they are reflected and manifested in inter-personal,
social and even ecological relationships may play a key role
in developing context-specific transformation strategies and
practices. Researchers and organizations active in the context of
sustainability should be open to the integration of these methods
and the inclusion of related experts from psychology.

Transformative Research—On the Challenge of Engaging Meaningfully

In the context of transformative research, I see that psychology
has expertise in a broad range of practice-oriented tools that could
contribute to integrating and improving reflexive elements for
engaging stakeholders in research processes.

In transformative research, academics go beyond the notion
of a seemingly independent scientific observer and actively engage
with relevant stakeholders to co-design responses to
present challenges. Specific challenges arise from the fact that
the knowledge of the different stakeholders involved may
be grounded in very different normative and ontological or
epistemological assumptions. This means that the research
process may only partly be about generating and evaluating
knowledge. Rather, it may likely involve dynamics triggered,
e.g., from interpersonal conflicts between different normative
notions, values and worldviews or cultural and historical
backgrounds. For handling such dynamics and conflicts, it is
recommended to include reflexive or diffractive practices that
invite all participants to reflect upon the normative implications
of their own activities and examine their own subjective biases
and how they might influence their notions and actions (Lang
et al., 2017; Fazey et al., 2018).

Here, the insights and experiences from psychotherapy and
psychodynamics can offer resources for designing formats
of interaction and engagement. Often, I have experienced
how transformative research processes became dysfunctional
not because of lacking or inappropriate knowledge, but
because of subtle (often implicit) power and oppression
dynamics and subsequent emotional distress on the part
of the participants. Sustainability researchers may be largely
unaware of these dimensions of their work and scientific
institutions often may not have the capacities to include
professional facilitators that are trained to handle more profound
conflicts and vulnerabilities. My experience is that sustainability-
related conflicts—such as experience of injustice, colonialization,
oppression, or marginalization—are influencing transformative
research processes more than the responsible researchers are
aware of. Fostering an understanding for the occurrence and
careful handling of these dynamics seems crucial for successful
transformative research in the future. Psychological schools have
a successful history and solid evidence base to provide the
expertise for addressing this gap.

As final outlook I would like to mention the idea of creating and
holding specific spaces in which change agents can explore
and transform their own behavior patterns and even institutional
settings as part of transformation processes. For example, I have
been very inspired by learning about the “carbon conversations”
co-initiated by the psychotherapist Rosemary Randell in which
citizens can collectively explore the psychological roots of and
obstacles to their behavior and learn climate-friendly behavior
patterns together (Randell, 2009). Also, in the context of
organizational leadership, containment (Bion, 1985) is essential
and well-established as a way to navigate change processes. I am
wondering to what extent it might be possible to establish such
spaces and routines of containment strategically for enabling
transformation processes with stakeholder groups. It may seem
a farfetched notion now, but in the face of the dawning ecological
crises, the exhaustion and distress of the relevant stakeholders
and institutions seems obvious to me, and it is becoming essential
to open new pathways for working through existing conflicts.
Psychological and psychotherapeutic approaches have gained
significant expertise in how to design and conduct such processes
to support personal health and well-being. For the sake of
planetary health (Horton et al., 2014), maybe one day we will
witness a kind of “planetary containment initiative.”

SUMMARY

I have reflected upon current trends in sustainability science
and how psychology-based insights can contribute to addressing
specific challenges arising as part of these trends. In the context of
moving toward a transdisciplinary and systemic understanding
of transformation and toward transformative research,
psychology can contribute to a more holistic conceptualization
of socio-ecological transformation. In particular, it can offer
insights into the nature of human behavior and its interaction
with social context dynamics. Moreover, psychology can offer
methods to describe patterns of human subjectivity and how they
are entangled in larger systems dynamics. On the practical side,
psychological practices can provide expertise on how to design
and facilitate co-creative learning and meaning-making spaces
that go beyond creative practice: by allowing for the exploration
and transformation of deeper root causes of conflicts that are
often inherent to stakeholder engagement.

AUTHOR CONTRIBUTIONS

TB has conceptualized and written the manuscript.

FUNDING

The IASS Potsdam is funded by the German Federal Ministry
for Research and Education and the Brandenburg Ministry for
Science, Research and the Arts. My research and all related costs
are entirely funded from the core budget of the IASS Potsdam.
ACKNOWLEDGMENTS

I would like to acknowledge helpful discussions with Man Fang and the participants of the dialogues of the WorkFace Berlin community. Also, I am grateful for the continuous inspiration through discussions with the members and lecturers of the executive master program Leadership and Consulting at the International Psychoanalytic University of Berlin.

REFERENCES

Abson, D. J., Fischer, J., Leventon, J., Newig, J., Schommer, T., Vilsmaier, U., et al. (2017). Leverage points for sustainability transformation. Ambio 46, 30–39. doi: 10.1007/s13280-016-0800-y

Bénard, C., Christophe, C., and Alain, N. (2010). Organising policy-relevant knowledge for climate action: integrated assessment modelling, the IPCC, and the emergence of a collective expertise on socioeconomic emission scenarios. Sci. Technol. Stud. 12:65031. doi: 10.23987/sts.65031

Bion, W. R. (1985). Container and contained. Group Relat. Reader 2, 127–133.

Botkin, J. W., El Mansari, M., and Malizia, M. (2014). No Limits to Learning: Bridging the Human Gap: The Report to The Club of Rome. Rome: Elsevier.

Brown, K. W., and Kasser, T. (2005). Are psychological and ecological well-being compatible? The role of values, mindfulness, and lifestyle. Soc. Indicat. Res. 74, 349–368. doi: 10.1007/s11205-004-8207-8

Capra, F., and Luisi, P. L. (2014). The Systems View of Life: A Unifying Vision. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511895355

Clark, W. C., Crutzen, P. J., and Schellnhuber, H. J. (2005). Science for global sustainability: toward a new paradigm. Cambridge: Center for International Development, Harvard University. doi: 10.2139/ssrn.702501

Clark, W. C., and Harley, A. G. (2020). Sustainability science: toward a synthesis. Ann. Rev. Environ. Res. 45, 331–386. doi: 10.1146/annurev-environ-012420-043621

Clarke, S. (2006). Theory and Practice: Psychoanalytic sociology as psycho-social studies. Sociology 40, 1153–1169. doi: 10.1177/0038038506069855

Clarke, S., Hahn, H., and Hoggett, P. (2018). Object Relations and Social Relations: The Implications of the Relational Turn in Psychoanalysis. London: Routledge. doi: 10.4324/97804294977669

Fazey, I., Schäpke, N., Caniglia, G., Patterson, J., Hultman, J., van Mierlo, B., et al. (2018). Ten essentials for action-oriented and second order energy transitions, transformations and climate change research. Energy Res. Soc. Sci. 40, 54–70. doi: 10.1016/j.jres.2017.10.026

Hirsch Hadorn, G., Bradley, D., Pohl, C., Rist, S., and Wiesmann, U. (2006). Implications of transdisciplinarity for sustainability research. Ecol. Econ. 60, 119–128. doi: 10.1016/j.ecolecon.2005.12.002

Hoggett, P. (2013). “Doing psycho-social research,” in Métodos Socioanalíticos Para la Gestión y el Cambio en Organizaciones, eds E. Acuña and M. Sanfuentes (Santiago de Chile: Editorial Universitaria de Chile).

Horton, R., Beaghehole, R., Bonita, R., Raeburn, J., McKee, M., and Wall, S. (2014). From public to planetary health: a manifesto. Lancet 383:847. doi: 10.1016/S0140-6736(14)60409-8

Jahn, T., Bergmann, M., and Keil, F. (2012). Transdisciplinarity: between mainstreaming and marginalization. Ecol. Econ. 79, 1–10. doi: 10.1016/j.ecolecon.2012.04.017

Kasser, T. (2003). The High Price of Materialism. Cambridge: MIT press. doi: 10.7551/mitpress/3501.001.0001

Kates, R. W. (2011). What kind of a science is sustainability science? Proc. Natl. Acad. Sci. U.S.A. 108, 19449–19450. doi: 10.1073/pnas.1116097108

Kates, R. W., and Saito, O. (2001). Sustainability science. Science 292, 641–642. doi: 10.1126/science.1059386

Lang, D. J., Wiek, A., Bergmann, M., Staffaicher, M., Martens, P., Moll, P., et al. (2012). Transdisciplinary research in sustainability science: principles, and challenges. Sustainability 7, 23–43. doi: 10.3390/su41011101-01149-x

Lang, D. J., Wiek, A., and von Wehrden, H. (2017). Bridging divides in sustainability science. Sustainability 12, 875–879. doi: 10.3390/su11020170497-2

Lovbrand, E., Stripple, J., and Wiman, B. (2009). Earth system governmentality. Reflections on science in the anthropocene. Glob. Environ. Change 19, 7–13. doi: 10.1016/j.gloenvcha.2008.10.002

Manuel-Navarrete, D. (2001). Approaches and Implications of Using Complexity Theory for Dealing With Social Systems. New Haven, CT: Yale University.

Manuel-Navarrete, D. (2015). Double coupling: modeling subjectivity and asymmetric organization in social-ecological systems. Ecol. Soc. 20:26. doi: 10.5751/ES-07720-200326

Meadows, D. (1997). Places to intervene in a system. Whole Earth 91, 78–84. doi: 10.2307/2265925

Mobjør, K. (2010). Consulting versus participatory transdisciplinarity: a refined classification of transdisciplinary research. Futures 42, 866–873. doi: 10.1016/j.futures.2010.03.003

Müller-Christ, G. (2018). Komplexe Systeme erkunden: Antworten ohne zu fragen durch Systemaufstellungen. Munich: Zwischen Ohnmacht und Zuvorsicht.

Müller-Christ, G. (2019). “Aufstellungsarbeit in der Wissenschaft und Konturen einer Aufsteller/innen-Wissenschaft,” in Praxishandbuch Aufstellungsarbeit: Grundlagen, Methodik und Anwendungsgebiete, eds C. Stadler and B. Kress (Wiesbaden: Springer Fachmedien Wiesbaden). doi: 10.978/3-658-181529_4-1

Müller-Christ, G., and Pietilovic, D. (2018). Komplexe Systeme Lesen - Aufstellungen in Wissenschaft und Praxis. Heidelberg: Springer Gabler. doi: 10.978-3-662-56796-8_2

Oberlack, C., Thomas, B., Markus, G., Nicole, H., and Karl, H. (2019). Theories of change in sustainability science: understanding how change happens. GAI1A 28, 106–111. doi: 10.14512/gai1a.28.2.8

Randall, R. (2009). Loss and climate change: the cost of parallel narratives. Ecopsychology 1, 118–129. doi: 10.1089/eco.2009.0034

Schneidewind, U., Singer-Brodowski, M., and Augustein, K. (2016). “Transformative science for sustainability transitions,” in Handbook on Sustainability Transition and Sustainable Peace (Heidelberg: Springer). doi: 10.978-3-319-43884-9_5

Urbina, D. A., and Ruiz-Villaverde, A. (2019). A critical review of homo economics from five approaches. Am. J. Econ. Soc. 78, 63–93. doi: 10.1111/ajes.12258

van Vuuren, D. P., Lowe, J., Stehfest, E., Gohar, L., Hof, A. F., Hope, C., et al. (2011). How well do integrated assessment models simulate climate change? Clim. Change 104, 255–285. doi: 10.1007/s10584-009-9764-2

Walsh, Z., Bohn, J., and Wamsler, C. (2020). Towards a relational paradigm in sustainability research, practice, and education. Ambio 2020, 1–11. doi: 10.13280-020-01322-y

West, S., Haider, L. J., Stallhammar, S., and Woroniecki, S. (2020). A relational turn for sustainability science? Relational thinking, leverage points and transformations. Ecosyst. People 16, 304–325. doi: 10.1080/26395916.2020.1814117

Wiek, A. (2007). Challenges of transdisciplinary research as interactive knowledge generation—experiences from transdisciplinary case study research. GAI1A Ecol. Persect. Sci. Soc 16, 52–57. doi: 10.14512/gai1a.16.1.14

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Bruhn. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.