A retraction theorem for topological fundamental groups with application to the Hawaiian earring

Paul Fabel
Department of Mathematics & Statistics
Mississippi State University

Abstract

A characterization of regular topological fundamental groups yields a ‘no retraction theorem’ for spaces constructed in similar fashion to the Hawaiian earring.

1 Introduction

Analysis of algebraic properties of fundamental groups \(\pi_1(X) \) and \(\pi_1(Y) \) often leads to the conclusion that \(X \) cannot be embedded as a retract of \(Y \). This paper illustrates the possibility to reach the same conclusion by analyzing topological properties of these groups.

Theorem 2 offers a characterization of those spaces \(Y \), whose fundamental group \(\pi_1(Y) \), topologized in a natural way, is a \(T_1 \) space: The space \(\pi_1(Y) \) is \(T_1 \) if and only if each retraction of \(Y \) induces an embedding between topological fundamental groups.

Recent work of the author [2] shows that the topological fundamental group of a space \(X \) constructed in similar fashion to the Hawaiian earring is not a Baire space.

Consequently (Theorem 5), \(X \) cannot be embedded as a retract of a space \(Y \) whose topological fundamental group is completely metrizable. For example \(X \) cannot be embedded as a retract of the countable product of locally simply connected spaces.
2 Definitions and preliminaries

Suppose X is a metrizable space and $p \in X$. Let $C_p(X) = \{f : [0, 1] \to X \mid f \text{ is continuous and } f(0) = f(1) = p\}$. Endow $C_p(X)$ with the topology of uniform convergence.

The topological fundamental group $\pi_1(X, p)$ is the set of path components of $C_p(X)$ endowed with the quotient topology under the canonical surjection $q : C_p(X) \to \pi_1(X, p)$ satisfying $q(f) = q(g)$ if and only if f and g belong to the same path component of $C_p(X)$.

Thus a set $U \subset \pi_1(X, p)$ is open in $\pi_1(X, p)$ if and only if $q^{-1}(U)$ is open in $\pi_1(X, p)$.

Remark 1 The space $\pi_1(X, p)$ is a topological group under concatenation of paths. (Proposition 3.1[1]). A map $f : X \to Y$ determines a continuous homomorphism $f^* : \pi_1(X, p) \to \pi_1(Y, f(p))$ via $f^*([\alpha]) = [f(\alpha)]$ (Proposition 3.3[1]).

Let $[p] \in \pi_1(X, p)$ denote the trivial element. Thus $[p]$ is the path component of the constant path in $C_p(X)$.

If $X \subset Y$ then X is a retract of Y if there exists a map $f : Y \to X$ such that $f_X = id_X$. The space X is T_1 if each one point subset of X is closed. The T_1 space X is completely regular if for each closed set A and each point $x^* \notin A$ there exists a map $f : X \to [0, 1]$ such that $f(A) = 0$ and $f(x^*) = 1$. The topological space X is completely metrizable if X admits a complete metric compatible with its topology.

A metric space (X, d) is similar to the Hawaiian earring provided all of the following hold. Suppose $p \in X$ and $X = \cup_{n=1}^{\infty} Y_n$ with $Y_n \cap Y_m = \{p\}$ whenever $n \neq m$. Assume the space Y_n is path connected, locally simply connected at p, and Y_n is not simply connected. Assume also that $\lim_{n \to \infty} diam(Y_n) = 0$. For example if Y_n is a simple closed curve then X is the familiar Hawaiian earring.

3 A characterization of T_1 topological fundamental groups

The metrizable spaces with T_1 topological fundamental groups are precisely the spaces whose retracts induce embeddings between fundamental groups.
Theorem 2 Suppose Y is a metrizable space. The following are equivalent.

1. The trivial element of $\pi_1(Y, p)$ is closed in $\pi_1(Y, p)$.
2. $\pi_1(Y, p)$ is a T_1 space.
3. $\pi_1(Y, p)$ is completely regular.
4. Whenever X is a retract of Y and $j^* : \pi_1(X, p) \to \pi_1(Y, p)$ is the monomorphism induced by inclusion, then j^* is an embedding onto a closed subgroup of $\pi_1(Y, p)$.

Proof. The equivalence of 1 2 and 3 follows from elementary facts about topological groups (ex. 6 p. 145, ex. 5 p237[3]).

1 \Rightarrow 4. Suppose $r : Y \to X$ is a retraction. Let $q : C_p(X) \to \pi_1(X, p)$ and $Q : C_p(Y) \to \pi_1(Y, p)$ denote the canonical quotient maps. Suppose $A \subset \pi_1(X, p)$ is closed. Let $B = \phi(A) \subset \pi_1(Y, p)$. To prove B is closed it suffices to prove $Q^{-1}(B)$ is closed in $C_p(Y)$. Suppose $g \in Q^{-1}(B)$. Let $g = \lim g_n$ with $Q(g_n) \in B$. Note $r(g_n) \to r(g)$. Since $Q(g_n) \in B$ there exists $f_n \in C_p(X)$ path homotopic in Y to g_n such that $f_n \in q^{-1}(A)$. Thus $r(g_n)$ and $r(f_n) = f_n$ are path homotopic in X. Thus $r(g_n) \in q^{-1}(A)$. Since X is closed in Y, $C_p(X)$ is closed in $C_p(Y)$. Since $q^{-1}(A)$ is closed in $C_p(X)$, and since $C_p(X)$ is closed in $C_p(Y)$ it must be that $r(g) \in q^{-1}(A)$. Note $g_n * r(g_n)$ is homotopically trivial and converges to $g * r(g)$. Since $[p]$ is closed in $\pi_1(Y, p)$ it follows that the path component of the constant map is a closed subspace of $C_p(Y)$. Thus $g * r(g)$ must be homotopically trivial in Y. Hence g and $r(g)$ are path homotopic in Y. Thus $g \in Q^{-1}(B)$. Hence B is closed. Therefore ϕ is a closed map and hence an embedding.

4 \Rightarrow 1. Note the one point space $X = \{p\}$ is a retract of Y. Thus $j^*(\pi_1(X, p))$ is a closed subspace of $\pi_1(Y, p)$.

Remark 3 Theorem[2] does not apply to all spaces Y. The harmonic archipalego, explored in detail in [3], provides an example of a compact path connected metric space Y such that $\pi_1(Y, p)$ is not a T_1 space.

4 Application: A “no retraction” theorem for the Hawaiian earring

Corollary 4 Suppose each of Z and Y are metrizable. Suppose $\pi_1(Z, p)$ is not completely metrizable, and suppose $\pi_1(Y, p)$ is completely metrizable.
Then Z cannot be embedded as a retract of Y.

Proof. Since $\pi_1(Y, p)$ is metrizable, the one point subsets of $\pi_1(Y, p)$ are closed subspaces. In particular if X is a retract of Y then by Theorem 2 $\pi_1(X, p)$ is homeomorphic to a closed subspace of $\pi_1(Y, p)$. Thus $\pi_1(X, p)$ completely metrizable. Hence Z cannot be a retract of Y. ■

Theorem 5 Suppose X is similar to the Hawaiian earring, suppose Y is metrizable and suppose $\pi_1(Y, p)$ is completely metrizable. Then X cannot be embedded as a retract of Y.

Proof. The main result of [2] is that $\pi_1(X, p)$ is not a Baire space. Hence $\pi_1(X, p)$ is not completely metrizable. ■

Example 6 Suppose $Y = Z_1 \times Z_2 \times \ldots$ where each Z_n has the homotopy type of a bouquet of n loops. Then Y shares some properties with the Hawaiian earring. For example Y is not locally contractible, for each Z_n is a retract of Y, and $\pi_1(Y)$ is uncountable. However, (Proposition 5.2 [4]) $\pi_1(Y)$ is canonically isomorphic and homeomorphic to the product $\pi_1(Z_1) \times \pi_1(Z_2)\ldots$ and hence completely metrizable (since each factor has the discrete topology.) Thus Y has no retract similar to the Hawaiian earring.

References

[1] Biss, Daniel K. The topological fundamental group and generalized covering spaces. Topology Appl. 124 (2002), no. 3, 355–371.

[2] Fabel, Paul. The fundamental group of the harmonic archipelago. Preprint. http://front.math.ucdavis.edu/math.AT/0501426

[3] Fabel, Paul The Hawaiian earring group is topologically incomplete. Preprint. http://front.math.ucdavis.edu/math.GN/0502148

[4] Munkres, James R., Topology: a first course. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.