Fabrication of super-hydrophobic surface on aluminium substrate and a study of surface frosting behaviours

Z J Yu1,2, Y Y Zhou1 and S Wang1

1School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

E-mail: yuzhijia@dlut.edu.cn

\textbf{Abstract.} Frosting is common found natural phenomenon in late autumn or early spring, which sometimes brings unwanted effects or even disaster to human. With the development of science and technology, frosting may to some extend be mitigated by hydrophobic surfaces. Micro-Nanostructure was gained via chemical etching on aluminium surface. The surface was further modified by low surface energy polymer coating to form a very thin nano-layer on the surface. A kind of fluoroalkylsilane is used as the coating polymer. After fluorination treating, the aluminium surface become super hydrophobic with water contact angles more than 150°. The surface was observed to be configured with plateaus and caves of micro-Nanoscale. In subcooled environments, frosting experiment was carried out on the surface of aluminium rods and aluminium sheets using humidifier to supply the water droplets. The comparison of the quantity of frost formed on the super-hydrophobic and untreated aluminium surfaces was conducted in the present work. And the quantity of frost formed on aluminium surfaces of different contact angles was compared. The results show that super-hydrophobic aluminium surfaces have obvious advantages in inhibiting frost. Besides, the contact angle has evident influences on restraining frost. Therefore, super-hydrophobic surfaces may serve as an effective means in decreasing the accumulation of frost on outside solid surfaces.

1. Introduction
Wettability is one of fundamental properties of solid surface. Surfaces with strong water repellency were studied with great effort in the past two decades, such as the self-clean lotus leaves [1], the legs of water striders which walk and jump freely on water [2]. Researchers found hydrophobic surfaces may find great perspective utilizations in many fields [3-6]. Frosting is common found natural phenomena in late autumn or early spring, which sometimes bring unwanted effects or even disaster to human. Frost is commonly formed on home refrigerators resulting in further consideration for the convenience uses. Industry heat exchangers for cooling also face with the problem of frost layer on the cooling surface [7-9], which significantly decreases the heat transfer efficiency [10,11]. With the development of science and technology, frosting may to some extend be mitigated by hydrophobic surfaces owing to the strong water repellency of the surface.

In recent years, many works were done on the fabrication on water repellent surfaces [12-15] among which the method of chemical etching followed by polymer coating may be the feasible means for industry application. Ice inhibition was studied on hydrophobic surfaces [15-18] and ice forming process was analyzed [19,20]. Relatively few work was done on the mitigation of frost on hydrophobic surfaces [21,22]. Since the process of ice formation and frost formation are complex, further studies are necessary for the development for ice or frost resistant surfaces.
In present work, super hydrophobic surfaces (SHS) with micro-nano hierarchical roughness were fabricated via the two steps of chemical etching and organic polymer coating. The hydrophobicity of the surface was examined by means of water contact angle (WCA) measurement. Frosting experiments were carried out to study the anti-frosting effect of SHS.

2. Preparation of SHSs on aluminium substrate

The preparation of SHSs in the present work includes two procedures: chemical etching and surface fluorination.

2.1. Chemical etching

Hydrochloric acid is adopted as the etchant. Specimen cuts were immersed in hydrochloric acid of different concentrations from 1 to 5 M. Etching time was changed from 4 to 70 min. The specimens were immediately rinsed ultrasonically with water after etching, and dried at 50°C in air. A kind of hierarchical roughness of micro-nano scale was formed on the surface of the samples as shown in figure 1. In large micrometer caves stand nano-sized plateaus.

2.2. Surface coating

Naked aluminum surface is hydrophilic. When etched properly, it becomes super hydrophilic. The surface can be turned super hydrophobic further by low energy material coating. In present work, 1% (wt) tridecafluorocetyltriethoxysilane (FAS) ethanol solution was used as the coating agent. The etched aluminium substrates were put into the FAS solution for 1 hour, and then kept at 130°C heat treatment for about an hour. A thin film with low surface energy of was formed via the following chemical reaction:

2.3. Characterizations

The wettability of a solid surface is often characterized by water contact angle measurement. In the present study, WCA were measured with a CA meter. The Equilibrium contact angle values are averages.
of 5 measurements made on different sites of the surfaces. After fluorination, the surface exhibit super hydrophobicity with WCA up to 158°. Water droplet on the surface looks as a perfect sphere as shown in figure 2.

![Image](image1.jpg)

(a)

![Image](image2.jpg)

(b)

Figure 2. The image of a water droplet on SHS. (a) photograph and (b) WCA measurement image with WCA about 158°.

3. Frosting experiment

If the surface temperature of a solid material is below both the dew point of humid air and the freezing point of water, water vapour in humid air will form a frost layer on the surface. Frosting experiments were conducted in a closed cabinet in which temperature can be automatically controlled and kept constant with a refrigeration system. An ultrasonic humidifier was used to generate fog in the air. For comparison, untreated and super hydrophobic samples of aluminium in the shape of rods and sheets were tested for frosting behaviours which are depicted both visually and by means of mass increases of the tested samples. Figure 3 shows a typical visual comparison of the frost formed on an untreated aluminium surface and on an aluminium SHS.

![Image](image3.jpg)

(a)

![Image](image4.jpg)

(b)

Figure 3. visual comparison of the frost formed on an untreated aluminium surface and on an aluminium SHS (subcooling: 25 K, time: 30 min). (a) untreated aluminium surface and (b) aluminium SHS.

It can be seen from figure 3 that the frost on SHS is obviously less than on untreated surface. It can retard the starting time of frosting evidently. For longer frosting time, frost can also cover the whole area of SHS, being no sharp visual difference from that of untreated surface, but the amounts of frost (in grams) formed on the two kinds of surface are different as shown in figure 4.

The tested specimens can be etched under different conditions, say, different etchant concentrations and different etching time, resulting in different water repellence with different WCAs. The influence of WCA on frost formation is shown in figure 5, illustrating the frost mitigation effect of the hydrophobic surfaces.
4. Conclusion
Micro-Nanostructure was gained via chemical etching on aluminium surface. With fluorine treatment, the surface shows ultra-hydrophobic properties with a WCA of more than 150°. In the subcooled environments, frosting experiment was carried out on the surface of aluminium rods and aluminium sheets. The results show that aluminium SHSSs have obvious advantages in inhibiting frost. Therefore, SHSSs may serve as an effective means in decreasing the accumulation of frost on outside solid surfaces.

Acknowledgment
The authors are grateful for the financial support from the National Natural Science Foundation of China (grant No.: 20476014, 51376030).

References
[1] Barthlott N C 1997 Characterization and distribution of water-repellent, self-cleaning plant surfaces Ann. Bot-London 79 667-77
[2] Gao X and Jiang L 2004 Water-repellent legs of water strider Nature 432 36
[3] Kim K, Lichtenhan J D and Otaigbe J U 2019 Facile route to nature inspired hydrophobic surface modification of phosphate glass using polyhedral oligomeric silsesquioxane with improved properties Appl. Surf. Sci. 470 733-43
[4] Liu J, Wang Q, Shan H et al 2019 Surface hydrophobicity based heat and mass transfer mechanism in membrane distillation J.Membrane Sci. 580 275-88
[5] Jiang L 2005 Super-hydrophobic nanoscale interface material Sci. Tech. 23 4-8
[6] Guo Y, Zhao E, Guo X et al 2019 Fabrication of self-assembled hydrophobic fluorinated silica particulate film J. Fluorine Chem. 218 27-35
[7] Kim M H, Kim H, Lee K S et al 2017 Frosting characteristics on hydrophobic and superhydrophobic surfaces: A review Energ. Convers Manage 138 1-11
[8] Kim K, Kim M H, Kim D R et al 2014 Thermal performance of microchannel heat exchangers according to the design parameters under the frosting conditions Int. J. Heat Mass Transfer 71 626-32
[9] Kim M H, Kim H, Kim D R et al 2016 A novel louvered fin design to enhance thermal and drainage performances during periodic frosting/defrosting conditions Energ. Convers Manage 110 494-500
[10] Song M, Xia L, Mao N et al 2016 An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil Appl. Energy 164 36-44
[11] Wang F, Wang Z, Zheng Y et al 2015 Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification Appl. Energy 139 212-9
[12] Qian B and Shen Z 2005 Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates Langmuir 21 9007-9
[13] Fu X and He X 2008 Fabrication of super-hydrophobic surfaces on aluminum alloy substrates Appl. Surf. Sci. 255 1776-81
[14] Kwon M H, Shin H S and Chu C N 2014 Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition Appl. Surf. Sci. 288 222-8
[15] Liao R, Zuo Z, Guo C et al 2014 Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property Appl. Surf. Sci. 317 701-9
[16] Jung M, Kim T, Kim H et al 2015 Design and fabrication of a large-area superhydrophobic metal surface with anti-icing properties engineered using a top-down approach Appl. Surf. Sci. 351 920-6
[17] Rodič P and Milošev I 2019 One-step ultrasound fabrication of corrosion resistant, self-cleaning and anti-icing coatings on aluminium Surf. Coat. Tech. 369 175-85
[18] Liu Y, Li X, Yan Y et al 2017 Anti-icing performance of superhydrophobic aluminum alloy surface and its rebounding mechanism of droplet under super-cold conditions Surf. Coat. Tech. 331 7-14
[19] Zuo Z, Song X, Liao R et al 2019 Understanding the anti-icing property of nanostructured superhydrophobic aluminum surface during glaze ice accretion Int. J. Heat Mass Transfer 133 119-28
[20] Lei S, Wang F, Fang X et al 2019 Icing behavior of water droplets impinging on cold superhydrophobic surface Surf. Coat. Tech. 363 362-8
[21] Yang W, Yuan Y, Liu G et al 2018 The anti-icing/frosting aluminum surface with hydrangea-like micro/nano structure prepared by chemical etching Mater. Lett. 226 4-7
[22] Zuo Z, Liao R, Zhao X et al 2017 Anti-frosting performance of superhydrophobic surface with ZnO nanorods Appl. Ther. Eng. 110 39-48