Electrically charged curvaton

Michela D’Onofrioa,b, Rose Lernera,b, Arttu Rajantiec

aUniversity of Helsinki, bHelsinki Institute of Physics, cImperial College London

\[\text{JCAP - astro-ph/1207.1063}\]

“8. Kosmologietag”

\textit{Bielefeld, 25 - 26 April 2013}
Introduction

- **Inflation** introduced to solve three problems of Standard Cosmology: flatness, horizon, unwanted relics.

- **Curvaton model:**
 - *inflaton* ϕ drives the expansion;
 - *curvaton* σ produces curvature perturbations.

- **During inflation:** σ is subdominant and light.

- **After inflation:** σ decays and perturbations affect the Universe.
Motivation

- connect curvature perturbation to Standard Model;
- give $U(1)$-charge to curvaton;
 - \rightarrow less free parameters!
 - \rightarrow large coupling $g' \approx 0.36$, interesting curvaton–photon interactions;
- when curvaton decays, significant contribution to curvature perturbation.
Model

We assume the curvaton carries one unit of $U(1)$ weak hypercharge $Y = 1$. The Lagrangian is:

$$\mathcal{L}_\phi = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi)$$ \hspace{1cm} (1)

$$\mathcal{L}_\sigma = -m^2 \sigma^\dagger \sigma - \lambda (\sigma^\dagger \sigma)^2 - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} + |(i \partial_\mu - g' A_\mu) \sigma|^2$$ \hspace{1cm} (2)

We obtain a curvaton e.o.m. which is exactly solvable only by non-perturbative methods.
Constraints on the Effective Potential

Due to the large value of $g' \approx 0.36$, the potential gains quantum corrections (Coleman-Weinberg)

$$V_{\text{eff}}(\sigma) = m^2 |\sigma|^2 + \frac{3 g'}{64 \pi^2} |\sigma|^4 \ln \frac{|\sigma|^2}{\mu^2}$$

which have impact on the parameter space.

A curvaton must satisfy:

- vacuum stability
- shallow potential
- linearity
Curvaton dynamics

The background curvaton has e.o.m.:

$$\ddot{\sigma} + 3H\dot{\sigma} + m^2\sigma = 0$$

with $H(t) = \frac{1}{2t}$ (radiation-dominated epoch).

The curvaton evolves in time as:

$$\sigma(t) \approx \frac{\sigma_*}{(mt)^{3/4}} \cos\left(mt - \frac{3\pi}{8}\right)$$
Possible evolution after Inflation

After the end of inflation, the curvaton is a **homogeneous condensate** that **oscillates** in its potential. Its evolution depends on interactions with other fields, which cause it to decay into curvaton particles.

- **Thermal bath** of photons

 \[T \ll m \quad \rightarrow \quad \text{late decay} \]

 \[T \gg m \quad \rightarrow \quad \sigma \text{ decays too quickly} \]

- **Parametric resonance**

 \[\text{linear} \]

 \[\text{nonlinear} \]

 \[\text{thermal bath} \]
Interaction with Thermal Bath

Curvaton–photon interaction: \textit{condensate} \rightarrow \textit{curvaton particles}.

\[
\Gamma_{\text{th}} \approx 0.03 \ g'^2 \ T
\]

\(T \ll m\): particles are non-relativistic and decay at a very late time.

\(T \gg m\): if inflaton decays into photons immediately after inflation \rightarrow curvaton decays too quickly, and ζ too small (if chemical equilibrium)

Viable model if: (i) ϕ decays to hidden sector;

(ii) ϕ decays late $\rightarrow \phi^4$-potential.
Non-perturbative Decay

– Provided NO interaction with thermal bath:

- Curvaton produces photons non-perturbatively: parametric resonance
- Gauge field in the curvaton background follows Mathieu equation
- Solutions are either oscillatory or growing
- Growing solution = energy transfer from curvaton to photon
- Type of solution given by instability plot
Gauge field dynamics

The evolution of the gauge field follows Mathieu equation:

\[B''(z, k) + \left(\Sigma_k(z) + 2q(z) \cos 2z \right) B(z, k) = 0 \]

where \(B(t, k) = a(t)^{1/2} A(t, k), \quad z = mt \) and coefficients:

\[q(z) \approx \frac{g^{'2} \sigma_*^2}{m^2 z^{3/2}} \]
\[\Sigma_k(z) \approx \frac{k^2}{2mH_\ast z} + \frac{3}{16z^2} + 2q(z) \]

\(k \) is the comoving momentum, and we have inserted the curvaton solution.
Instability plot of Mathieu equation

$q(z)$

$\Sigma(z)$
Amplification of gauge field

amplification of A_μ

Electrically charged curvaton
Constraints on Parameter Space

\[\frac{\sigma_*}{H_*} \]

\[m/H_* \]

\(H_* > 3 \times 10^9 \text{ GeV} \)
\(H_* > 1 \times 10^9 \text{ GeV} \)
\(H_* > 2 \times 10^8 \text{ GeV} \)
Conclusions

- We explored the possibility of having a $U(1)$-charged curvaton.
- We connected SM to inflation and reduced the number of free parameters.
- Two different decay modes: interaction with thermal bath and parametric resonance.
- The model is allowed, although parameter space is restricted by theoretical and observational constraints.
- Non-perturbative calculations are needed to further investigate the model.