Occurence of ArmA and RmtB Aminoglycoside Resistance 16S rRNA Methylases in Extended-Spectrum β-Lactamases Producing Escherichia coli in Algerian Hospitals

Amel Ayad, Mourad Drissi, Claire de Curraize, Chloé Dupont, Alain Hartmann, Sébastien Solanas, Eliane Siebor, Lucie Amoureux, Catherine Neuwirth

To cite this version:

Amel Ayad, Mourad Drissi, Claire de Curraize, Chloé Dupont, Alain Hartmann, et al.. Occurence of ArmA and RmtB Aminoglycoside Resistance 16S rRNA Methylases in Extended-Spectrum β-Lactamases Producing Escherichia coli in Algerian Hospitals. Frontiers in Microbiology, Frontiers Media, 2016, 7, 10.3389/fmicb.2016.01409 . hal-01602430

HAL Id: hal-01602430
https://hal.archives-ouvertes.fr/hal-01602430
Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Occurrence of ArmA and RmtB Aminoglycoside Resistance 16S rRNA Methylases in Extended-Spectrum β-Lactamases Producing Escherichia coli in Algerian Hospitals

Amel Ayad1,2,3, Mourad Drissi4, Claire de Curraize1, Chloé Dupont5, Alain Hartmann6, Sébastien Solanas5, Eliane Siebor1, Lucie Amoureux1 and Catherine Neuwirth1,*

1 Laboratoire de Bactériologie Médicale, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France, 2 Laboratoire Antibiotiques, Antifongiques: Physico-chimie, Synthèse et Activité Biologique, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l’Univers, Université Abou Bekr Belkaid, Tiemcen, Algérie, 3 Département de Biologie, Faculté des Sciences de la Nature et de la Vie, Université Hassiba Benbouali, Chlef, Algérie, 4 Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l’Univers, Université Abou Bekr Belkaid, Tiemcen, Algérie, 5 UMR 5569, Equipe “Pathogènes hydriques, Santé, Environnements” PHySE, Université de Montpellier, France, 6 INRA, UMR 1347 Agroécologie, Dijon, France

The aim of this study, was to characterize the extended-spectrum-β-lactamases (ESBLs) producing clinical strains of Escherichia coli isolated between January 2009 and June 2012 from Algerian hospitals and to determine the prevalence of 16S rRNA methylase among them. Sixty-seven ESBL-producers were detected among the 239 isolates included: 52 CTX-M-15-producers, 5 CTX-M-3-producers, 5 CTX-M-1-producers, 2 CTX-M-14-producers, 2 SHV-12-producers and one TEM-167-producer. Among the ESBL–producing strains twelve harbored 16S rRNA methylase genes: 8 rmtB and 4 armA. rmtB was located on a IncFIA plasmid and armA was located either on a IncL/M or a IncFIA plasmid. RmtB-producing isolates were genotypically related and belonged to the sequence type ST 405 whereas ArmA-producing isolates belonged to ST10, ST 167, and ST 117. This first description of 16S rRNA methylases among E. coli in Algerian hospitals pointed out the necessity to establish control measures to avoid their dissemination.

Keywords: Escherichia coli, extended-spectrum β-lactamase, 16S rRNA methylase, armA, rmtB, Algeria

INTRODUCTION

The emergence of β-lactam resistance in Escherichia coli which is the most common cause of Gram-negative infections has become a significant health concern, mainly due to the production of extended-spectrum beta-lactamases (ESBLs) (Pitout and Laupland, 2008). Indeed, CTX-M ESBLs (more than 150 enzymes) have increased significantly in Enterobacteriaceae, particularly
in *E. coli*, in most regions of the world (Cantón and Coque, 2006). Another worrisome feature is the emergence of isolates resistant to all clinically important aminoglycosides related to the production of 16S rRNA methylases. In 2003, the first 16S rRNA methylase gene, *armA*, was identified (Galimand et al., 2003). To date eleven 16S rRNA methylases genes (*rmtA, rmtB, rmtC, rmtD, rmtE, rmtF, rmtG, rmtH, armA, and npmA*) have been identified, *armA* and *rmtB* being the most frequently described in *Enterobacteriaceae* (Galimand et al., 2003; Bogaerts et al., 2007; Tamane et al., 2007; Fritsche et al., 2008). As these genes are usually located on plasmids they can easily transfer to other bacteria (Nagasawa et al., 2014).

In Algeria, the first CTX-M enzymes have been described in 2005 in clinical strains of *Salmonella enterica* from Constantine, East of Algeria (Naas et al., 2005). Since then, several surveys in the north of Algeria have reported the presence of CTX-M type enzyme and associated resistance to non-β-lactam markers in various species of *Enterobacteriaceae* (Baba Ahmed-Kazi Tani and Arlet, 2014). Concerning 16S rRNA methylases only ArmA has been detected to date. It was identified for the first time in *Enterobacteriaceae* strains isolated from an Algerian patient transferred to Belgium (Bogaerts et al., 2007). It was subsequently identified in clinical isolates of *S. enterica* in Constantine associated with CTX-M-3 or CTX-M-15 (Naas et al., 2009, 2011) and in clinical strains of *Salmonella* non-Typhi in Annaba associated with CTX-M-15 and CMY-2 (Bouzidi et al., 2011). Recently, it was also described in clinical isolates of *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Enterobacter cloacae*, and *Serratia marcescens* (Bakour et al., 2014; Belbel et al., 2014; Batah et al., 2015; Khennouchi et al., 2015).

In this study, we have characterized the ESBL-producing clinical strains of *E. coli* isolated between October 2008 and June 2012 in three hospitals in Western Algeria and determined the prevalence of 16S rRNA methylase genes among them.

MATERIALS AND METHODS

Bacterial Strains

Two hundred and thirty-nine isolates of *E. coli* collected between October 2008 and June 2012 from three different hospitals located in North-Western Algeria (Tlemcen, Sidi Bel Abbes and Oran) were included. Two hundred and thirty-seven strains were isolated from patients admitted to the intensive care unit (ICU), surgery and neurosurgery wards. Two isolates have been recovered from hospital environment. Identification was performed using the API 20E system (BioMerieux) and/or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

Antibiotic Susceptibility Testing

Twenty three antibiotics (Bio-Rad) were tested (Table 1). Antibiotic susceptibility testing was determined by disk diffusion method and the minimum inhibitory concentration (MICs) of colistin was determined by a dilution method in Mueller-Hinton (MH) broth (Bio-Rad) as described by the European Committee on Antimicrobial Susceptibility Testing. Detection of ESBL production was performed by double disk synergy test (Jarlier et al., 1988).

Bacterial DNA Preparation, Gene Amplification, and Sequencing

Bacterial DNA preparation, gene amplification, sequencing, and nucleotide sequence analysis were performed as previously described (Siebor and Neuwirth, 2011). The primers used for the PCRs are listed in Table 2. All the isolates were analyzed for the presence of *blaCTX-M*, *blaTEM*, and *blaSHV*. The resistant strains to all aminoglycosides tested were further analyzed for the presence of *armA* and *rmtB*.

Genotyping of the Isolates Producing 16S rRNA Methylase

The strains were submitted to genotypic analysis by Pulsed-Field Gel Electrophoresis (PFGE) and Multilocus sequence typing (MLST). PFGE was performed following DNA digestion by *XbaI* as already described (Neuwirth et al., 1996). Restriction patterns were interpreted according to Tenover’s criteria (Tenover et al., 1995), and the isolates have been classified into different pulsotypes. Pulsotypes were compared by calculation of the Dice correlation coefficient with DendroUPGMA software and were clustered into a dendrogram by UPGMA. Strains were defined as having a clonal relationship at a criterion of 85% similarity (Ejrnaes et al., 2006). MLST was performed using seven conserved housekeeping genes of *E. coli* (*adh, fumC, gyrB, icd, mdh, purA*, and *recA*) as previously described (Wirth et al., 2006). The sequences types were determined by referring to the opensource software freely available at MLST Databases at the ERI, University College Cork website.

Mating Experiments and Plasmids Analysis

Mating experiments to attempt to transfer resistance genes were carried out using rifampicin resistant *E. coli* K-12 C600 recipient strain as described previously (Chen et al., 2007). Transconjugants were selected on Drigalski agar plates containing amikacin (4 mg/L), gentamicin (4 mg/L), and rifampicin (200 mg/L). All the isolates were analyzed for the presence of *blaCTX-M, blaTEM* and *blaSHV*. The resistant strains to all aminoglycosides tested were further analyzed for the presence of *armA* and *rmtB*.

1. www.eucast.org
2. http://genomes.urv.cat/UPGMA/
3. http://mlst.ucc.ie/mlst/dbs/Ecoli
TABLE 1 | Antimicrobial resistance of extended-spectrum-β-lactamases producing Escherichia coli isolated from three hospitals in Algeria.

Antimicrobial agents	Tlemcen (n = 35)	Sidi Bel Abbes (n = 13)	Oran (n = 19)	Total (n = 67)
Amoxicillin	100	100	100	100
Amoxicillin-clavulanic acid	82.8	92.3	82.8	88.1
Ticarcillin	100	100	100	100
Ticarcillin-clavulanic acid	97.1	100	97.1	98.5
Piperacillin	100	100	100	100
Piperacillin-tazobactam	40	15.4	0	13.3
Ertapenem	0	0	0	0
Imipenem	0	0	0	0
Cefoxitin	40	35.8	7	35.8
Cefotaxime	100	100	94.7	96.5
Cefazidime	91.4	92.3	84.2	88.9
Cefepime	100	92.3	89.5	91.3
Aztreonam	100	100	100	100
Kanamycin	60	48.1	57.9	58.6
Gentamicin	77.1	76.9	63.2	73.1
Tobramycin	77.1	76.9	63.2	73.1
Amikacin	25.71	7.7	15.8	16.4
Nitrofurantoin	48.6	61.5	57.9	56.1
Nalidixic acid	68.6	53.8	89.5	75.5
Ofloxacin	68.6	61.5	89.5	77.1
Ciprofloxacin	68.6	61.5	84.2	76.0
Colistin	0	0	0	0
Trimethoprim–Sulfamethoxazole	80	84.6	57.9	74.6

Antimicrobial agents

Resistence rate (%)

Amoxicillin	100	100	100	100
Amoxicillin-clavulanic acid	82.8	92.3	82.8	88.1
Ticarcillin	100	100	100	100
Ticarcillin-clavulanic acid	97.1	100	97.1	98.5
Piperacillin	100	100	100	100
Piperacillin-tazobactam	40	15.4	0	13.3
Ertapenem	0	0	0	0
Imipenem	0	0	0	0
Cefoxitin	40	38.5	7	35.8
Cefotaxime	100	100	94.7	96.5
Cefazidime	91.4	92.3	84.2	88.9
Cefepime	100	92.3	89.5	91.3
Aztreonam	100	100	100	100
Kanamycin	60	48.1	57.9	58.6
Gentamicin	77.1	76.9	63.2	73.1
Tobramycin	77.1	76.9	63.2	73.1
Amikacin	25.71	7.7	15.8	16.4
Nitrofurantoin	48.6	61.5	57.9	56.1
Nalidixic acid	68.6	53.8	89.5	75.5
Ofloxacin	68.6	61.5	89.5	77.1
Ciprofloxacin	68.6	61.5	84.2	76.0
Colistin	0	0	0	0
Trimethoprim–Sulfamethoxazole	80	84.6	57.9	74.6

TABLE 2 | Primers used for PCRs.

Amplified DNA	Primer	Oligonucleotide sequence (5’–3’)
blaTEM	TEM–F	ATAAAATCTCGAAGACGAAAA
	TEM–F	CTATACCCCTTTTGGCG
	TEM–R	GGCTGAGCATTAAGTCAGTC
	SHV–F	GGTTATCTATTGTCG
	SHV–R	GTAGCGGTGCAAGTCGTC
blaCTX−M	CTX−M–F	ATGTCTTCTCAAG
	CTX−M–R	GCCGTACAGCTTATTA
	CTX−M gr1–F	TCGTCTTCTCAAG
	CTX−M gr1–R	CCGTTTCCGATATA
	CTX−M gr9–F	ATGTGACAAGAGAGTCA
	CTX−M gr9–R	ACAGCCTCTCGCGAGTGATTT
armA	armA–F	GTCGCCAAACAGCTGTA
	armA–R	GAAGTCAGGATACACCAG
rmtB	rmtB–F	GAGACACCGTAGAACATC
	rmtB–R	CTTCTGATTGGGCTTATC

probes [blaCTX−M group 1, blaTEM, armA, rmtB, and replicon groups (IncL/M, IncFIA, IncFIB, and IncN)] (Barton et al., 1995).

RESULTS

ESBL Producers

Sixty-seven ESBL-producing isolates have been detected: 35 from Tlemcen hospital, 13 from Sidi Bel Abbes hospital and 19 from Oran hospital. Isolates were mainly recovered from ICU (58.2%), followed by 26.9% from surgery department. Eighteen strains (26.9%) were isolated from wound pus, 17 (25.4%) from tracheal aspirate, 17 (25.4%) from urine and urinary catheters, 7 (10.4%) from rectal swabs, 4 (6%) from bedside, 1 (1.5%) from catheter, 1 (1.5%) from gastric tube, and 2 (3%) from hospital environment. Among these strains 64 isolates (95.5%) carried blaCTX−M (52 blaCTX−M−15, 5 blaCTX−M−3, 5 blaCTX−M−14), while 2 carried blaSHV−12 and 1 blaTEM−167. All the ESBL-producing isolates remained susceptible to imipenem, ertapenem, and colistin and most of them to pipercillin-tazobactam (76%), cefoxitin (64.2%), and amikacin (80.6%). However, most of the strains were resistant to all other antibiotics tested (≥53%) (Table 1).

Characterization of 16S rRNA MethyIase-Producers (Table 3; Supplementary Figure S1)

Twelve isolates were resistant to all aminoglycosides tested of which four strains harbored armA and 8 rmtB. ArmA was detected among CTX-M-15, CTX-M-1, and TEM-167-producers whereas rmtB was detected only among CTX-M-15-producers (Table 3). The eight RmtB-producing strains all originated from Tlemcen hospital belonged to pulsotype A and to ST 405. A wider diversity was observed among the four ArmA-producers that belonged to three different pulsotypes (B, C, and D) and three different ST: ST10 (one isolate from Sidi Bel Abbes hospital), ST167 (one isolate from Tlemcen hospital), and ST117 (two isolates from Oran hospital).

In the eight isolates, rmtB was located on an IncFIA plasmid. In four cases blaCTX−M−15 was located on the same plasmid while it was located on a Inc11 plasmid in the other four cases. IncFIA was transferred only in the presence of Inc11. armA was located either on a transferable IncL/M plasmid (with blaCTX−M−15) or on a IncFIA plasmid (in these two cases blaCTX−M−1 or blaTEM−167 were located on a IncN plasmid).

DISCUSSION

Our results are in accord with previous studies and confirm that CTX-M-15 is the predominant ESBL encountered among E. coli in Algerian hospitals (Ramdani-Bouguessa et al., 2006; Baba Ahmed-Kazi Tani et al., 2013). The same situation is also observed in Tunisia (Mamlouk et al., 2006) and Morocco (Girlich et al., 2014) illustrating the large spread of CTX-M-15-producing E. coli in the north African countries.
16S rRNA methylase enzymes among ESBL-producing E. coli strains in the west of Algeria. Among our collection, the prevalence rate of 16S rRNA methylase determinants was 18%, which is very high compared to those reported in Japan (0.03%) (Yamane et al., 2007), in Turkey (0.7%) (Bercot et al., 2010), in France (1.3%) (Bercot et al., 2008), and in China (10%) (Wu et al., 2009). The detection of RmtB-producing E. coli is an interesting finding of our study. Indeed the RmtB enzyme has never been reported in Algeria. The eight isolates producing RmtB were genotypically related and belonged to ST405. Interestingly ST405 associated or not with production of CTX-M-15 ESBL is increasingly reported worldwide and belongs to the high-risk clones in the dissemination of antibiotic resistance (Woodford et al., 2011). The association of bla_{CTX-M-15} and rmtB on a conjugative plasmid (also carrying the plasmid-mediated fluoroquinolone efflux pump gene <i>qepA</i>) in one ST405 <i>E. coli</i> isolate has been reported in the United States (Tian et al., 2011) but the plasmid was not typed by PCR-based replicon.

All RmtB-producers have been recovered in Tlemcen Hospital and seven of them were collected in ICU suggesting patient cross contamination in this ward.

Therefore there is a need to reinforce the compliance of health-care workers with the infection control measures. The epidemiological results concerning ArmA-producers is quite different: the four isolates recovered in three hospitals in Western Algeria belonged to three different pulsotypes suggesting horizontal spread of the resistance determinants among <i>E. coli</i>. There are several reports of ArmA-producers among different species of <i>Enterobacteriaceae</i> and also A. baumannii from Algerian Hospitals (Bogaerts et al., 2007; Naas et al., 2009, 2011; Bouzidi et al., 2011; Bakour et al., 2014; Belbel et al., 2014; Batah et al., 2015; Khennouchi et al., 2015). The production of 16S rRNA methylase together with the production of ESBL observed in our study (RmtB plus CTX-M-15 or ArmA plus CTX-M-15) corresponds to an emerging and threatening combination reported worldwide (Bogaerts et al., 2007; Khennouchi et al., 2015). To our best knowledge two combinations detected in our study were not reported before: ArmA plus CTX-M-1 and ArmA plus TEM-167 in two isolates clonally related (OE11 and OE13) recovered simultaneously from Oran’s hospital.

Our data indicated that the diversity of ESBL among <i>E. coli</i> is growing in Algerian hospitals (CTX-M-1, CTX-M-14, CTX-M-15, TEM-167, and SHV-12) and that new mechanisms are emerging (16S rRNA methylases). In our study 11 out

Table 3: Characteristics of the 16S rRNA methylase producing <i>E. coli</i> strains isolated in Tlemcen, Sidi Bel Abbes, and Oran hospitals, Algeria.

Strain	Hospital	Ward	Isolation date	Sample	ESBL (plasmid)	16S rRNA methylase (plasmid)	PFGE pulsotypes	MLST	MLST
T E62	Tlemcen	Neurosurgery	19/10/2008	Bedsore	bla_{TEM-167}	ArmA [same Inc L/M 55 kb (T+)]	C	ST167 (CC ST10)	M15
S E23	Sidi Bel Abbes	Neurosurgery	18/03/2010	Pus	ArmA [same Inc L/M 55 kb (T+)]	D	ST117	-	
0 E11	Oran	ICU	01/04/2010	Tracheal aspirate	ArmA [same Inc L/M 55 kb (T+)]	B	ST117	B	
O E13	Oran	ICU	02/05/2010	Rectal swab	ArmA [Inc FIA About 100 kb (T-)]	A	ST405	B	
T E114	Tlemcen	ICU	21/04/2011	Tracheal aspirate	ArmA [Inc FIA About 100 kb (T-)]	A	ST405	B	
T E116	Tlemcen	ICU	06/01/2011	Tracheal aspirate	ArmA [Inc FIA About 100 kb (T-)]	A	ST405	B	
T E117	Tlemcen	ICU	27/02/2011	Tracheal aspirate	ArmA [Inc FIA About 100 kb (T-)]	A	ST405	B	
T E118	Tlemcen	ENT2	23/03/2011	Tracheal aspirate	ArmA [Inc FIA About 100 kb (T-)]	A	ST405	B	
T E120	Tlemcen	ICU	20/05/2011	Rectal swab	ArmA [Inc FIA About 100 kb (T-)]	A	ST405	B	

Note: PFGE, pulsed-field gel electrophoresis. MLST, multilocus sequence typing.
of 12 isolates that co-produced ESBL and methylase were resistant to all antibiotics tested except carbapenems and colistin, making of them the only available therapeutic option for these strains. Therefore the public health impact is potentially important.

CONCLUSION

There is a need for implementation of antimicrobial stewardship programs in Algerian hospitals to make the best use of the available antibiotics and to avoid as much as possible the unreasonable use of broad-spectrum molecules leading to the emergence of resistant isolates. Also strict control measures have to be elaborated to avoid the spread of multiresistant organisms such as those described here that co-produced ESBL and 16S rRNA methylase.

REFERENCES

Baba Ahmed-Kazi Tani, Z., and Arlet, G. (2014). News of antibiotic resistance among Gram-negative bacilli in Algeria. Pathol. Biol. 62, 169–178. doi: 10.1016/j.patbio.2014.01.005

Baba Ahmed-Kazi Tani, Z., Decré, D., Genel, N., Boucherit-Ottmani, Z., Arlet, G., and Drissi, M. (2013). Molecular and epidemiological characterization of enterobacterial multidrug resistant strains in Tlemcen Hospital (Algeria) (2008–2010). Microb. Drug Resist. 19, 185–190. doi: 10.1089/mdr.2012.0161

Bakour, S., Touati, A., Bachiri, T., Sahli, F., Toutou, D., Naim, M., et al. (2014). First report of 16S rRNA methylase ArmA-producing Acinetobacter baumannii and rapid spread of metallo-β-lactamase ND-1 in Algerian hospitals. J. Infect. Chemother. 20, 696–701. doi: 10.1016/j.jiac.2014.07.010

Barton, B. M., Harding, G. P., and Zuccarelli, A. J. (1995). A general method for detecting and sizing large plasmids. Anal. Biochem. 226, 235–240. doi: 10.1006/abio.1995.1220

Batah, R., Loucif, L., Oulata, A. O., Boutefnouchet, N., Allag, H., and Rolain, J. M. (2015). Outbreak of Serratia marcescens coproducing ArmA and CTX-M-15 mediated high levels of resistance to aminoglycoside and extended-spectrum beta-lactamases, Algeria. Microb. Drug Resist. 21, 470–476. doi: 10.1089/mdr.2014.0240

Belbel, Z., Chettibi, H., Dekhil, M., Ladjama, A., Nedjai, S., and Rolain, J. M. (2014). Outbreak of an armA methyltransferase-producing ST39 Klebsiella pneumoniae clone in a pediatric Algerian Hospital. Microb. Drug Resist. 20, 310–315. doi: 10.1089/mdr.2013.0193

Bercot, B., Poirel, L., and Nordmann, P. (2008). Plasmid-mediated highlevel resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob. Agents Chemother. 47, 2565–2571. doi: 10.1128/AAC.01477-07

Bercot, B., Poirel, L., and Nordmann, P. (2010). Low prevalence of 16S methylases among extended-spectrum β-lactamase-producing Enterobacteriaceae isolates. Antimicrob. Agents Chemother. 52, 4526–4527. doi: 10.1128/AAC.00882-08

Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K. L., and Threlfall, E. J. (2005). Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63, 219–228. doi: 10.1016/j.mimet.2005.03.018

Chen, L., Chen, Z. L., Liu, J. H., Zeng, Z. L., Ma, J. Y., and Jiang, H. X. (2007). Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J. Antimicrob. Chemother. 59, 880–885. doi: 10.1093/jac/dkn005

Ejnaes, K., Sandvang, D., Lundgren, B., Ferry, S., Holm, S., Monsen, T., et al. (2006). Pulsed-field gel electrophoresis typing of Escherichia coli strains from samples collected before and after pvmecillinam or placebo treatment of uncomplicated community-acquired urinary tract infection in women. J. Clin. Microbiol. 44, 1776–1781. doi: 10.1128/JCM.44.5.1776-1781.2006

Fritsche, T. R., Castanheira, M., Miller, G. H., Jones, R. N., and Armstrong, E. S. (2008). Detection of methyltransferases conferring high-level resistance to aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America. Antimicrob. Agents Chemother. 52, 1843–1845. doi: 10.1128/AAC.01477-07

Galimand, M., Courvalin, P., and Lambert, T. (2003). Plasmid-mediated highlevel resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob. Agents Chemother. 47, 2565–2571. doi: 10.1128/AAC.47.8.2565-2571.2003

Gilric, D., Bouihat, N., Poirel, L., Benouda, A., and Nordmann, P. (2014). High rate of faecal carriage of extended-spectrum b-lactamase and OXA-48 carbapenemase-producing Enterobacteriaceae at a University hospital in Morocco. Clin. Microbiol. Infect. 20, 350–354. doi: 10.1016/j.cmi.2013.11.028

Irache, V., Kroes, R., Messai, Y., Da Costa, A., and Arlet, G. (2009). Detection of blaCTX-M-14 and aac(3)-II genes in Salmonella enterica serotype Kedougou in Algeria. Med. Mal. Infect. 39, 806–807. doi: 10.1016/j.medmal.2009.04.003

Joel, C., Carlier, M., Fournier, G., and Philippon, A. (1988). Extended broad-spectrum β-lactamases conferring transferrable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 10, 867–878. doi: 10.1093/clinids/10.4.867

Khoumouchi, N. C., Loucif, L., Boutefnouchet, N., Allag, H., and Rolain, J. M. (2015). MALDI-TOF MS as a tool to detect a nosocomial outbreak of extended-spectrum beta-lactamase- and ArmA methyltransferase-producing Enterobacter cloacae clinical isolates in Algeria. Antimicrob. Agents Chemother. 59, 6477–6483. doi: 10.1128/AAC.00615-15

Mannouk, K., Bouiba-Ben Bakour, I., Guitie, V., Vimont, S., Picard, B., Redjeb, S. B., et al. (2006). Emergence and outbreaks of CTX-M extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae strains in a Tunisian hospital. J. Clin. Microbiol. 44, 4049–4056. doi: 10.1128/JCM.01076-06

Naas, T., Bentchouala, C., Cuzon, G., Yaou, S., Lezzar, A., Smati, F., et al. (2011). Outbreak of Salmonella enterica serotype Infantis producing ArmA 16S RNA methylase and CTX-M-15 extended-spectrum β-lactamase in a neonatology ward in Constantine, Algeria. Int. J. Antimicrob. Agents 38, 135–139. doi: 10.1016/j.ijantimicag.2011.04.012

AUTHOR CONTRIBUTIONS

AA: Selected the isolates, performed the characterization of the ESBL, of the methylase, the analysis by PFGE, the MLST analysis and manuscript preparation. MD: Designed the study. CdC and LA: Participated to genotyping and interpretation. ES: Sequence analysis and manuscript preparation. AH and SS: Performed plasmid analysis. CD: Performed PFGE analysis (dendrogram). CN: Choice of the isolates, choice of the tools, interpretation of the results and manuscript preparation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2016.01409
Naas, T., Bentchouala, C., Lima, S., Lezzar, A., Smati, F., Scheftel, J. M., et al. (2009). Plasmid-mediated 16S rRNA methylases among extended-spectrum-beta-lactamase-producing Salmonella enterica Senftenberg isolates from Algeria. J. Antimicrob. Chemother. 64, 866–868. doi: 10.1093/jac/dkp312

Naas, T., Lezzar, A., Bentchouala, C., Smati, F., Scheftel, J. M., Monteil, H., et al. (2005). Multidrug-resistant Salmonella enterica serotype Senftenberg isolates producing CTX-M beta-lactamases from Constantine, Algeria. J. Antimicrob. Chemother. 56, 439–440. doi: 10.1093/jac/dki216

Nagasawa, M., Kaku, M., Kamachi, K., Shibayama, K., Arakawa, Y., Yamaguchi, K., et al. (2014). Loop-mediated isothermal amplification assay for 16S rRNA methylases genes in Gram-negative bacteria. J. Infect. Chemother. 20, 635–638. doi: 10.1016/j.jiac.2014.08.013

Neuwirth, C., Siebor, E., Lopez, J., Pechinot, A., and Kazmierczak, A. (1996). Outbreak of TEM-24-Producing Enterobacter aerogenes in an intensive care unit and dissemination of the extended-spectrum β-lactamase to other members of the family Enterobacteriaceae. J. Clin. Microbiol. 34, 76–79.

Pitout, J. D. D., and Laupland, K. B. (2008). Extended-spectrum-beta-lactamases producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8, 159–166. doi: 10.1016/S1473-3099(08)70041-0

Ramdani-Bouguessa, N., Mendonça, N., Leitao, J., Ferreira, E., Tazir, M., and Caniça, M. (2006). CTX-M-3 and CTXM-15 extended-spectrum β-lactamases in isolates of Escherichia coli from a hospital in Algiers, Algeria. J. Clin. Microbiol. 44, 4584–4586. doi: 10.1128/JCM.01445-06

Siebor, E., and Neuwirth, C. (2011). The new variant of Salmonella genomic island 1 (SGI-I-V) from a Proteus mirabilis French clinical isolate harbouring blaVEB-6 and qnrA1 in the multiple antibiotic resistance region. J. Antimicrob. Chemother. 66, 2513–2520. doi: 10.1093/jac/dkr335

Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H., et al. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33, 2233–2239.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Ayad, Drissi, de Curraize, Dupont, Hartmann, Solanas, Siebor, Amoureux and Neuwirth. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.