Inhibition of DNA Topoisomerase II by ICRF-193 Induces Polyploidization by Uncoupling Chromosome Dynamics from Other Cell Cycle Events

Ryoji Ishida,* Makoto Sato,** Toshiharu Narita,*** Kazuhiko R. Utsumi,§ Takeharu Nishimoto,† Takashi Morita,† Hiroshi Nagata,** and Toshiwo Andoh*

*Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464; ‡Research Laboratory, Zenyaku Kogyo Co., Ltd., Nerima-ku, Tokyo 178; §Laboratory of Ultrastructure Research, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464; †Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812; ‡Department of Hygienic Chemistry, Meiji College of Pharmacy, Tanashi, Tokyo 188; * Central Research Laboratories, Yakult Honsha Co. Ltd., Kunitachi, Tokyo 186

Abstract. ICRF-193, a novel noncleavable, complex-stabilizing type topoisomerase (topo) II inhibitor, has been shown to target topo II in mammalian cells (Ishida, R., T. Miki, T. Narita, R. Yui, S. Sato, K. R. Utsumi, K. Tanabe, and T. Andoh. 1991. Cancer Res. 51:4909-4916). With the aim of elucidating the roles of topo II in mammalian cells, we examined the effects of ICRF-193 on the transition through the S phase, when the genome is replicated, and through the M phase, when the replicated genome is condensed and segregated. Replication of the genome did not appear to be affected by the drug because the scheduled synthesis of DNA and activation ofcdc2 kinase followed by increase in mitotic index occurred normally, while VP-16, a cleavable, complex-stabilizing type topo II inhibitor, inhibited all these processes. In the M phase, however, late stages of chromosome condensation and segregation were clearly blocked by ICRF-193. Inhibition at the stage of compaction of 300-nm diameter chromatin fibers to 600-nm diameter chromatids was demonstrated using the drug during premature chromosome condensation (PCC) induced in tsBN2 baby hamster kidney cells in early S and G2 phases. In spite of interference with M phase chromosome dynamics, other mitotic events such as activation ofcdc2 kinase, spindle apparatus reorganization and disassembly and reassembly of nuclear envelopes occurred, and the cells traversed an unusual M phase termed “absence of chromosome segregation” (ACS)-M phase. Cells then continued through further cell cycle rounds, becoming polyploid and losing viability. This effect of ICRF-193 on the cell cycle was shown to parallel that of inactivation of topo II on the cell cycle of the ts top2 mutant yeast. The results strongly suggest that the essential roles of topo II are confined to the M phase, when the enzyme decatenates intertwined replicated chromosomes. In other phases of the cycle, including the S phase, topo II may thus play a complementary role with topo I in controlling the torsional strain accumulated in various genetic processes.

DNA topoisomerases (topo) have been implicated in the maintenance of genetic processes such as replication, transcription, and recombination by controlling the higher order chromosomal structure through the cell cycle (for review, see Wang, 1985, 1987; Cozzarelli and Wang, 1990; Vosberg, 1985). Topo I and II catalyze topological changes of DNA by transiently introducing single- and double-strand breaks, respectively. While both topo I and II relax supercoiled DNA, topo II uniquely catalyzes knotting/unknotting and catenation/decatenation. In both Saccharomyces cerevisiae and Schizosaccharomyces pombe, species of yeast, topo I, and topo II play complementary roles in controlling the topological state of DNA during all the cell cycles, except metaphase, when topo II is essential for chromosome condensation and segregation (DiNardo et al., 1984; Uemura and Yanagida, 1984, 1986; Uemura et al., 1987; Holm et al., 1985).

In mammalian cells, however, the biological function of topo II has not been as clearly identified as in yeasts because of the lack of topo II mutants. For this purpose, specific topo
II inhibitors such as antitumor epipodophyllotoxins, 4'-de-methylepipodophyllotoxin-9-[4,6-(0-ethylidene)-b-D-glycopyranoside] (VP-16) and 4'-demethylepipodophyllotoxin-9-[4,6-(0-thienylidene)-b-D-glycopyranoside](VM-26), have been applied to various biological systems. These agents induce DNA single- and double-strand breaks in mammalian cells via topo II-mediated cleavable complex formation. The treated cells are arrested in G2 of the cell cycle, as generally observed for proliferating eukaryotic cells exposed to a variety of DNA damaging agents (Krishan et al., 1975; Tobey, 1975). The G2 arrest is brought about by a cellular mechanism ensuring the order of cell cycle events, "check point control" (Hartwell and Weinert, 1989), which allows cells to repair damage before entering mitosis. The onset of mitosis is determined by activation of the master switch cdc2 protein kinase, which requires dephosphorylation and association with B-type cyclin (Nurse, 1990). Treatment of Chinese hamster cells in the G2 phase with an epipodophyllotoxin prevented their entering mitosis and also the cdc2 kinase activation, suggesting that inhibition of topo II through cleavable complex formation somehow interferes with the activation of the cdc2 kinase and the entry into mitosis (Lock and Ross, 1990; Lock, 1992; Roberge et al., 1990).

Biochemical studies in vitro with higher eukaryotic cells have suggested the involvement of topo II in condensation and segregation of chromosomes. Newport and Spann (1987) showed that in Xenopus mitotic extracts, novobiocin, and VM-26 prevented chromosome condensation. Downes et al. (1991) showed that in mitotic HeLa or PtK2 cells, VP-16 inhibited the segregation of metaphase chromosomes. Shamu and Murray (1992) used an elegant Xenopus in vitro system, in which all the mitotic events take place synchronously and sequentially, i.e., condensation and segregation of chromosomes followed by reassembly of nuclear envelope to form daughter nuclei. They demonstrated that VM-26 inhibited the chromosome segregation. While Sumner (1992) showed that not all topo II inhibitors block the passage of human lymphocytes through mitosis, the available data do lend support to the hypothesis that topo II plays an important role in chromosome dynamics in mitosis. However, this point remains controversial because of the problem of determining whether the inhibition of chromosome dynamics by these inhibitors results from a specific inhibition of topo II activity or a nonspecific effect of the drug-induced protein-linked DNA cleavage. Thus the arrest of metaphase progression by these inhibitors is in apparent conflict with observations in yeasts, where inactivation of topo II activity in top2 temperature-sensitive (ts) mutants at a nonpermissive temperature does not result in cessation of cell cycle progression, but allows cells to traverse mitosis, without chromosome segregation, to the next cell cycle, when DNA is replicated (Uemura and Yanagida, 1984, 1986; Uemura et al., 1987). It is relevant to refer here to the work done using cell-free extracts (Wood and Earnshaw, 1990; Adachi et al., 1991; Hirano and Mitchison, 1993), which obviated the complication caused by the use of drugs. They showed that chromosome condensation was prevented by immunodepletion of topo II from the extract, and the activity was restored by replenishment of purified topo II.

Bis(dioxopiperazines) were originally synthesized as potential intracellular chelating agents, and their biochemical and pharmacological properties, including antitumor activity, have been studied extensively over the past decades (for review, see Herman et al., 1982). The problem of inadequate bioavailability limiting clinical application (Hellman et al., 1969) has been approached by synthesis of various masked compounds showing improved bioavailability and higher antitumor activity than the parental compound ICRF-154 (Cai et al., 1989). MST-16, one of these compounds, has shown considerable therapeutic activity against a number of experimental tumors such as P388 and L1210 leukemias, B-16 melanoma, colon 26, etc. (Narita et al., 1990), and a cell cycle phase-specific mode of cytotoxicity (Narita et al., 1991), in line with the previous demonstration of toxic action specific for G2/M (Sharpe et al., 1970). We have previously reported that one of the potent derivatives of ICRF-154, ICRF-193, inhibits topo II in such a manner that, unlike VP-16, it does not stabilize the cleavable complex (Tanabe et al., 1991), but it does stabilize the enzyme in the form of a closed protein clamp by inhibiting its ATPase activity (Roca and Wang, 1992; Roca et al., 1994). We also showed that ICRF-193 in fact targets topo II in vivo, as shown by competition with the DNA cleavage and cytotoxicity caused by VP-16 (Ishida et al., 1991). In the present study, we show that the compound exhibits biological effects in mammalian cells analogous to those observed in top2-ts mutants of yeast at nonpermissive temperature. Thus, in the presence of the drug, cells traverse many rounds of the cell cycle with their genome replicated but not segregated, resulting in polyplody. Other cell cycle events associated with transition through S phase and M phase take place normally.

Materials and Methods

Drugs

The following drugs were gifts from companies: ICRF-193, Zenyaku Kagyo Co. Ltd. (Tokyo); VP-16, Bristol Meyers-Squibb (Brea, CA); camptothecin (CPT), Yakult Honsha Co. Ltd. (Tokyo); neocarzinostatin, Kayaku Antibiotics Research Co. Ltd. (Tokyo). The following drugs were purchased: TN-16 from Wako Pure Chemical Industries Ltd. (Osaka); 3,3'-dihexylxocar-bocyanine iodide (DECC) from Kodak Laboratory Chemicals (Rochester, NY); colcemid from GIBCO BRL (Gaithersburg, MD).

Cell Culture

CHO strain A8R, HeLa S3, and tsBN2 cells were grown in Dulbecco's modified Eagle's medium containing 10% calf serum under a humidified atmosphere of 5% CO2 in air. tsBN2 cells, a temperature-sensitive mutant of BHK21 cells, were cultured at 32.5°C (permissive temperature) or 41°C (nonpermissive temperature). Cell numbers were counted with a Coulter counter (Industrial D; Coulter Electronics Ltd., Luton Bedfordshire, United Kingdom). For clonogenic assay, cells were treated with the drugs indicated in Fig. 8 for 30 min, washed with Tris-buffered saline two times, and suspended by trypsinization. Cells were seeded at 3 x 102 cells/60-mm dish, cultured for 1 wk, fixed with 10% formalin in 0.9% NaCl, and stained with 0.1% crystal violet for counting colonies. Survival fractions of the drug-treated cells were expressed as percent of control cells treated with solvent alone.

Cell Synchronization

Early S phase synchronization: HeLa S3 and CHO cells seeded at 1 x 104 cells/100-mm dish were cultured for 24 h in the presence of 1 mM thymidine, then for 9 h in the absence of thymidine, and then again for 16 h in the presence of 2 mM thymidine. Upon removal of thymidine, cells traverse synchronously from early S phase to G2 phase. tsBN2 cells seeded on the previous day at 1 x 105 cells/60-mm dish were cultured in isoleucine-deprived medium for 40 h, and transferred to and cultured in complete medium containing 2 mM hydroxyurea for 16 h.
2,4-dione, an inhibitor of microtubule assembly (Hashimoto et al., 1972).

Tolmach (1963), and washed with Tris-buffered saline.

After 4-h incubation, round mitotic cells were collected from monolayer culture by selective mechanical detachment, as described by Terashima and Tonomach (1963), and washed with Tris-buffered saline.

Mitotic Figures

Cell samples were suspended in 1 ml of 75 mM KCl and stood at 0°C for 20 min. 1 ml of methanol-acetic acid (3:1) was slowly added to the suspension under constant mild agitation, and the cells were centrifuged down. After washing with 1 ml of the fixative, cells were resuspended in 30-100 µl of the fixative and dispensed onto glass slides. After drying, the samples were stained with Giemsa solution. Mitotic cells and premature chromosome condensation (PCC) cells were identified and counted under the microscope.

Immunofluorescence Microscopy

Formalin-fixed cells were permeabilized with 0.5 % Triton X-100 in PBS for 10 min and washed twice with PBS. For tubulin immunofluorescence, cells were attached to poly-L-lysine-coated coverslips and then incubated with tubulin-specific monoclonal antibody (Oncogene Science, Inc., Manhasset, NY) for 2 h at room temperature. After washing three times with PBS, the samples were further incubated with FITC-conjugated anti-mouse IgG (Kirkegaard & Perry Laboratories Inc., Gaithersburg, MD), and stained with 1 µg/ml Hoechst 33342 in PBS. Coverslips were mounted in 50% glycerol solution with 2.5% 1,4-diazobicyclo-[2,2,2]octane as antibleaching agent. For membrane staining, HeLa cells were fixed with methanol-acetic acid (3:1) as described above in the "Mitotic Figures" section. Fixed cells were stained with 1 µg/ml of DECC for 5 min, and washed with PBS.

Assay of cdc2 Kinase Activity and Its Immunoblotting

Frozen cells were suspended in hypotonic buffer (10 mM Tris-HCl, pH 7.4, 3 mM MgCl₂, 1 mM PMSF) at 0°C for 30 min. Nonidet P-40 was added to a final concentration of 0.1%, and the cells were vortexed and centrifuged. The precipitate was washed twice with the hypotonic buffer without NP-40, then extracted with 0.4 M NaCl for 30 min, the resultant samples being centrifuged at 105,000 g for 1 h. The supernatant was used as a nuclear fraction. Cdc2 kinase activity was assayed using histone H1 or SI peptides of 13 amino acid residues, the specific recognition sequence for cdc2 kinase, as a substrate by the method of Yasuda et al. (1990). For immunoblotting, cell extracts were electrophoresed in 12.5 % SDS-PAGE and transferred to Immobilon membranes (Millipore Corp., Bedford, MA). Filters were blocked with 5% skim milk and incubated with anti-cdc2 kinase (Yasuda et al., 1990). After washing with PBS, the filters were treated with 125I-protein A. Dried filters were exposed to x-ray film. To determine H1 histone phosphorylation, reaction products were electrophoresed in 12.5 % SDS-PAGE, and the gels were dried and subjected to autoradiography.

Results

ICRF-193 Does Not Inhibit Transition of Cells from S Phase to M Phase

We have previously shown that when randomly growing cells are treated with ICRF-193, the cells are not arrested in the G2 phase, but they appear to continue further through cell cycle and they become polyploid (Ishida et al., 1991). This is unlike the inhibition observed with most other cleavable complex-stabilizing type topo II inhibitors.

In the present study, we examined more closely the effect of ICRF-193 on cell cycle transition. First, the transition from early S to M phases and the activation of cdc2 kinase were studied in HeLa and CHO cells synchronized in early S phase with a double thymidine block. After removal of the block, HeLa cells traversed through S, G2, and M phases during 12 h (Fig. 1A; Ishida et al., 1991). Cdc2 kinase activity increased gradually and peaked at 8 h slightly before the M phase (Fig. 1B). The kinase activity is modulated by de-
ICRF-193 Inhibits Cell Division but Does not Affect the Traverse from M to G1 and S Phases

Next, we examined the effect of ICRF-193 on cell cycle progression from M to G1 phases. Mitotic HeLa cells were collected using the microtubule inhibitor TN-16, and were released for traverse to the G1 phase in the presence of ICRF-193. In control culture, mitotic cells exited from mitosis and progressed into the G1 phase within 2 h, as revealed by reassembly of the nuclear envelope, and the cell number almost doubled (Fig. 2, A and B). ICRF-193 delayed the exit from M phase by 2 h, and the cell division was inhibited (Fig. 2, A and B). At 5 h, all the cells were in interphase, although the cell number did not increase. Essentially the same results were obtained with CHO cells, although the exit from metaphase was faster and the rate was not affected by ICRF-193 (Fig. 2, C and D). The cdc2 kinase activity decreased as the cells exited from mitosis in the presence or absence of the drug (Fig. 2 E).

ICRF-193 Inhibits Segregation and Retards Decondensation of Chromosomes

Since ICRF-193 inhibits cell division, but does not affect the exit from the M phase, the question of how the drug influences the dynamic change of chromosomes and spindle formation in the M phase was addressed. As shown in Fig. 3, after release from metaphase, control untreated HeLa cells underwent mitosis through metaphase (Fig. 3 D), anaphase, and telophase (Fig. 3, E–H), and the chromosomes were separated. At 120 min, most of the cells had progressed to G1 phase. In contrast, however, in the presence of ICRF-193, cells in anaphase and telophase were seldom observed at any time after release from the M phase block (Fig. 3, J, L, and N), the result being consistent with the recent report of Clarke et al. (1993). Furthermore, the decondensation of unsegregated chromosomes was delayed, as it was not complete at 180 min, the cells having only slightly decondensed chromosomes like those of prophase, rarely seen in control cells because of the rapid progression through the phases.
ICRF-193 inhibition of segregation and decondensation of chromosomes, but not spindle formation in mitotic HeLa cells. After removal of TN-16 as described in Fig. 2, cells were incubated in the presence (I-N) or in the absence (C-H) of 5 μM ICRF-193. At the indicated times, cells were fixed and stained sequentially with monoclonal antitubulin antibody (A, C, E, G, I, K, and M), and Hoechst 33258 (B, D, F, H, J, L, and N).

Since the failure of chromosome segregation in the presence of ICRF-193 may result from an inability to form spindles, we tested the effect of ICRF-193 on the formation of the spindle apparatus. After 20–60 min in the presence of the drug, spindles were formed and appeared to be connected with chromosomes (Fig. 3, I, K, and M). Thus, ICRF-193 does not appear to affect spindle dynamics.

ICRF-193 affected chromosome dynamics in CHO cells as in HeLa cells (Fig. 4), progression through mitosis being much the same, but at a faster rate. It is of particular interest to note that in telophase, in the presence of the drugs, spindle structures were transformed into midbodies at 40 min, as in untreated cells (Fig. 4, E, F, K, and L, arrowheads), showing cytokinesis taking place. The chromosomes, however, were not separated and appeared to be unequally separated to daughter cells (Fig. 4, K and L).

ICRF-193 Does Not Block Nuclear Envelope Reassembly

As described above, cells enter an abnormal mitotic phase in the presence of ICRF-193. In normal cells, concomitant with the entry into M phase, nuclear envelope breaks down and disappears, and then upon exit from mitosis, the nuclear envelope reassembles to form the nucleus. This is illustrated in Fig. 5, mitotic HeLa cells, after release from metaphase, progressing into G1 phase during 75 min (Fig. 5, B, D, and F). Membrane vesicles first attach themselves to individual chromosomes and finally fuse to form the nuclear envelope (Fig. 5, A, C, and E). In the presence of ICRF-193, decondensation of chromosomes was delayed, and even after 120 min, the chromosomes did not completely decondense (Fig. 5, H, J, and L). However, nuclear envelopes form around the periphery of fused chromosomes (Fig. 5, G, I, and K).

ICRF-193 Does Not Inhibit Transition from Metaphase to the Next S Phase

Cell cycle traverse from G1 to S phases was also examined by [3H]thymidine incorporation monitoring the onset of DNA synthesis. Mitotic CHO cells were plated in the presence or absence of ICRF-193, VP-16, and CPT, and they were allowed to proceed to G1 and S phases. DNA synthesis was initiated as scheduled in the presence of ICRF-193 and CPT, whereas it was not in the presence of VP-16 (data not shown). Thus, the transition from G1 to S phases was not affected by ICRF-193 or CPT, but it was inhibited by VP-16. The results clearly show that ICRF-193 inhibits cell division but does not affect progression from M to G1 and further to the S phase, suggesting that topo I activity is sufficient for these transitions, and that topo II–mediated double-strand breakage induced by VP-16 blocks entry into the S phase.

ICRF-193 Partially Inhibits Premature Chromosome Condensation in S and G2 Phases

In a previous paper (Ishida et al., 1991) we documented that
when RPMI8402 leukemic cells were treated with ICRF-193, the mitotic index did not increase, but abnormal mitotic figures were observed, e.g., early prophase-like figures and clumps of long entangled chromatid fibrils. It was suggested that the drug inhibits chromosome condensation at some early stage.

To confirm this, we turned to the tsBN2 mutant of BHK21 cells, which exhibit PCC at a nonpermissive temperature (Nishimoto et al., 1978). PCC mimics normal chromosome condensation, as evidenced by the activation of cdc2 kinase and association of mitosis-specific antigen recognized by monoclonal antibody MPM-2 with PCC chromosomes.
Figure 6. S-PCC figures in tsBN2 cells treated with ICRF-193. Cells were synchronized at early S phase by isoleucine deprivation followed by 2 mM hydroxyurea treatment (Nishimoto et al., 1981). Cells were shifted up to 41°C for 2 h in the presence of hydroxyurea. S-PCC preparations obtained from control (A and B) and ICRF-193–treated cells (C and D) were examined under the microscope and photographed. Bars, 5 μm.

Figure 7. G2-PCC figures in tsBN2 cells treated with ICRF-193. tsBN2 cells were synchronized at G2 phase by isoleucine deprivation followed by neocarzinostatin treatment as described previously (Ishida et al., 1985). Cells were shifted up to 41°C for 2 h in the presence of neocarzinostatin. Control (A and B) and 10 μM ICRF-193–treated cells were examined for PCC. Bar, 5 μm; the magnification of all panels is the same.
ICRF-193 Kills Cells Most Effectively at Metaphase

Finally, we examined the effects of ICRF-193 on cell survival. Metaphase-synchronized CHO cells were treated with ICRF-193 or camptothecin as a control for 30 min at 2-h intervals, and were plated for survival by colony formation. As shown in Fig. 8, cells appeared to be most sensitive to ICRF-193 in metaphase and least sensitive in the S phase, whereas cells were least sensitive to camptothecin in metaphase and most sensitive in the S phase, as previously described (Li et al., 1972; Horwitz et al., 1973).

Discussion

Investigation of the roles of topo II in higher eukaryotes has been hampered by the lack of established mutants. In lower eukaryote yeast, however, studies using single top2 and double top1top2 mutants (DiNardo et al., 1984; Uemura and Yanagida, 1985, 1986; Uemura et al., 1987; Holm et al., 1985) have revealed a major role of topo II in the resolution of catenated replicated daughter DNAs, facilitating both the condensation and segregation of chromosomes. Thus, single top2 mutants were found to show cell cycle-dependent arrest at metaphase at the nonpermissive temperature: nuclear division did not take place normally, but the cell plate was formed, cutting across the nucleus, presenting a "cut" phenotype. When the top2 mutant was combined with a septum-defective, cold-sensitive mutation, cdc11, large cells with single nuclei containing several-fold higher levels of DNA, RNA, and protein accumulated at the nonpermissive temperature, strongly suggesting that the mutant cells traverse many rounds of cell cycle with their genome replicated but unsegregated (Uemura et al., 1987). The function of topo I is considered to be the maintenance of chromatin organization throughout the cell cycle, i.e., continuous removal of torsional strain accumulating in DNA molecules during genetic processes such as replication and transcription, and defects in topo I can be complemented with topo II. These observations point to the essential role of topo II in the cell cycle being the decatenation and/or unknotting of the catenated DNA necessary for chromosome dynamics in mitosis; upon inactivation of the enzyme, however, all the other cellular processes associated with cell cycle transition proceed normally, resulting in the accumulation of polyploid cells.

Induction of Polyploidy by ICRF-193

In a previous paper, we showed that cells accumulate with a high DNA content, multilobed nuclei, and abnormal mitotic figures in the presence of ICRF-193 (Ishida et al., 1991, 1993; Andoh et al., 1993). In the present study, examination of how ICRF-193 induces polyploidy using synchronized cells demonstrated unusual mitoses with entry into G1 without cell division, and continuation to S phase replication of DNA, resulting in the accumulation of cells with high DNA content and multilobed nuclei. Cells in mitosis have less condensed chromosomes that appear to be similar to those in prophase. These chromosomes were unable to segregate, and thus cells in anaphase and telophase were not observed.

From these results, we propose a model for the influence of ICRF-193 on cell cycle progression. In the presence of ICRF-193, cells continue to traverse the cell cycle and go through an unusual M phase, which we tentatively name the
“absence of chromosome segregation” (ACS-M) phase. In this ACS-M phase, late stage chromosome condensation and its segregation are inhibited, but decondensation of chromosomes does occur at reduced rates. Other mitotic events such as disassembly and assembly of nuclear envelopes, spindle formation, and cytokinesis, etc., triggered by activation of cdc2 kinase, proceed almost normally in CHO cells and are slightly delayed in HeLa cells. Thus, the other mitotic events are uncoupled from chromosome dynamics. These results differ in part from those obtained with the epipodophyllotoxins VP-16 or VM-26, where cell cycle progression was found to be inhibited and cells were arrested in G2 (Tobey et al., 1975; Krishan et al., 1975; Roberge et al., 1990). Since VP-16 and VM-26 cause DNA strand breaks in vivo as protein-concealed breakage or cleavable complexes (D'Arpa and Liu, 1989; Liu, 1989), G2 arrest is thought to be brought about by these rather than by inhibition of topo II activity per se (Lock and Ross, 1990; Lock, 1992). Our present observation that cells can traverse the cell cycle without cell division does not correlate with the effect of VP-16, but it agrees essentially with the behavior of top2 ts mutants of yeast at nonpermissive temperature. This suggests that the functions of mammalian and yeast topo II in the cell cycle are essentially the same.

Polyplodization has been shown to be induced by various agents such as trichostatins (Yoshida and Beppu, 1988), K-252a, a staurosporine derivative (Usui et al., 1991), and spindle assembly inhibitors (Kung et al., 1990). However, unlike ICRF-193, trichostatins and K-252a, inhibitors of histone deacetylase and protein kinases, respectively, induce polyploidy, not by passage through mitosis, but rather by causing traverse from G2 directly to G1 without nuclear envelope breakdown. In the presence of inhibitors of microtubule assembly such as colcemid and nocodazole, CHO but not HeLa cells traverse into the next cell cycle without cell division (Kung et al., 1990). Even topoisomerase II inhibitors such as VM-26 and 4-(9-acridinylamino)methanesulfon-m-anisidine (m-AMSA) were found to induce polyploidization under certain conditions (Zucker et al., 1991). Thus, the induction of polyploidy by chemical agents is a widely observed phenomenon, but it differs mechanistically according to the drug and cell line. ICRF-193 is apparently unique in induction of polyploidy by allowing cells to traverse from a mitotic, prophase-like state to the G1 phase through the ACS-M phase.

Topoisomerase II is Required for Chromosome Condensation at a Late Stage, and for Segregation at Anaphase

Topoisomerase II is localized in interphase nuclei and on metaphase chromosomes (Berrios et al., 1985; Earnshaw et al., 1985; Earnshaw and Heck, 1985; Gasser et al., 1986). In budding and fission yeasts, temperature-sensitive top2 mutants have demonstrated that topo II is required for full condensation of chromosomes, as well as for the proper segregation of sister chromatids at mitosis (DiNardo et al., 1984; Uemura and Yanagida, 1986; Uemura et al., 1987; Holm et al., 1989). In higher eukaryotes, the enzyme has also been implicated in chromosome condensation and segregation (Earnshaw, 1988; Wood and Earnshaw, 1990; Wright and Schatten, 1990; Roberge et al., 1990; Adachi et al., 1991; Hirano and Mitchison, 1991; Downes et al., 1991; Shamu and Murray, 1992; Sumner, 1992; Buchenau et al., 1993). However, this point remains controversial, because many studies have used topoisomerase II inhibitors such as the epipodophyllotoxins VP-16 and VM-26, as well as m-AMSA, which stabilize enzyme-mediated cleavage of DNA, which itself may cause the arrest of chromosome condensation and segregation.

The problem was obviated, however, by approaches using immunological depletion of topo II from nuclear extracts, whereby chromosome condensation was prevented, and replenishment of the enzyme restored the activity (Wood and Earnshaw, 1990; Adachi et al., 1991; Hirano and Mitchison, 1993). In the present study, we applied the specific topo II inhibitor ICRF-193 to establish the role of the enzyme in chromosome dynamics. tsBN2 cells, when shifted up to a nonpermissive temperature, undergo PCC synchronously, associated with a series of mitotic events including activation of cdc2 kinase, and association of MPF-2 antigen with chromosomes (Nishitani et al., 1991). ICRF-193 added to this system did not inhibit PCC in S phase or G2 phase, but interestingly appeared to prevent the final stage of condensation, i.e., compaction of 300-nm fibrils to 600-nm chromatids (Figs. 6 and 7). In S-PCC, 300-nm fibrils of various lengths appeared, and in G2-PCC, more extensively tangled 300-nm fibrils were observed in the presence of the drug. However, how this step of folding is brought about remains unclear.

Uemura et al. (1987) elegantly demonstrated that topo II is required for chromosome segmentation in anaphase using the double mutant tsstop2-csnda3, in which spindle formation is cold sensitive. Our experimental conditions are in principle the same as for the yeast mutant: cells were arrested in metaphase by the microtubule inhibitor TN-16 (corresponding to cold-sensitive nda3 at 20°C), followed by inhibition of topo II activity by ICRF-193 (corresponding to ts top2 at 36°C). The results shown in Figs. 2-4 clearly demonstrate that mammalian topo II is also required for chromosome segregation. Clarke et al. (1993) recently reported similar ICRF-193 inhibition of chromosome segregation in HeLa and PtK2 rat kangaroo cells. However, in their study, they failed to observe any inhibition of chromosome condensation. This difference may have stemmed from the difference in the mode of treatment: they treated randomly growing cells for a short period of time, whereas we treated tsBN2 cells long enough before reaching PCC for topo II to become fully inactivated. Chen and Beck (1993) made a similar observation of inhibition of chromosome condensation and induction of polyploidization of human leukemic CEM/VM-1 cells exposed to merbarone, a noncleavable complex stabilizing type topo II inhibitor.

Extensive Catenation of the Genome Escapes Checkpoint Controls

In eukaryotic cells, the initiation of mitosis is dependent on the completion of S phase, and this dependence is ensured by a surveillance mechanism, termed a checkpoint control (Hartwell and Weinert, 1989; Enoch and Nurse, 1990), which inhibits entry into the M phase until replication or the repair of damage to DNA has been completed. Premature M phase entry without completion of replication or repair of...
DNA has been observed in some mutants of yeast, e.g., rad9 in fission yeast (Hartwell and Weinert, 1989) and tsBN2 of baby hamster BHK21 cells (Nishimoto et al., 1978). Activation of cdc2 kinase by dephosphorylation has been found to play an important role in coupling the M and S phases (Nurse, 1990; Smythe and Newport, 1992).

A consistent finding is that cdc2 kinase is not activated in the presence of the epipodophyllotoxin VP-16, and cells were arrested in G2 phase (Lock and Ross, 1990; Lock, 1992; Roberge et al., 1990). In contrast, checkpoint control is not turned on, even if topoisomerase II function is inhibited by ICRF-193. However, the effects of ICRF-193 on activation of cdc2 kinase and on cell cycle transition differed slightly between the two cell lines HeLa and CHO, with delay of kinase increase only occurring in the former. The delayed activation of the kinase observed in HeLa cells appeared to parallel delayed dephosphorylation of p34\(^{cd2}\) and a significant increase in the total amount of p34\(^{cd2}\) (Fig. 1 C). This anomalous pattern may be ascribed to a behavior of cyclin B, a partner and the activator of p34\(^{cd2}\). Steinmann et al. (1991) reported that okadaic acid, a protein phosphatase inhibitor, induces premature chromosome condensation in rodent cells, but not in HeLa cells in S phase, with this cell-type specific difference being ascribed to the much increased accumulation of cyclin B only in the rodent cell. Kung et al. (1990) showed that spindle assembly is more stringently coupled with certain karyokinetic events in HeLa than CHO cells in terms of cdc2 kinase activation by cyclin B. The difference in the response to ICRF-193 of the two cell lines used in the present study may thus be a reflection of this difference in cyclin B metabolism.

We recently reported that ICRF-193 does not inhibit chain elongation during SV-40 DNA replication in vitro, but that it blocks decatenation of replicated daughter molecules (Ishimi et al., 1992). If this same situation prevails in genomic DNA in vivo, it would appear that in the presence of ICRF-193, the extensively catenated genome escapes the cellular surveillance mechanism because the cells proceed to M phase. However, as we show in Fig. 8, entry into mitosis without active topo II is lethal, even though the cells are capable of traversing further rounds of G1 and S phases.

The authors wish to thank Dr. Hideyo Yasuda for providing us with anti-cdc2 kinase antibody, Dr. Masao Oguro for critical discussion throughout the work, Masako Adachi for her excellent technical assistance, and Mitsuko Andoh for the preparation of the manuscript. This work was supported in part by Grants-in-Aid for cancer research from the Ministry of Education, Science and Culture, and in the Ministry of Health and Welfare of Japan. Part of this work was presented in the Proceedings of Conferences (Ishida et al., 1993; Andoh et al., 1993).

Received for publication 19 October 1993 and in revised form 9 June 1994.
topoisomerase II inhibitor, on simian virus 40 DNA and chromosome replication in vitro. Mol. Cell. Biol. 12:4007–4014.

Krishan, A., K. Paika, and E. Frei III. 1975. Cytofluorometric studies on the action of podophyllotoxin and epipodophyllotoxins (VM-26, VP-16-213) on the cell cycle traverse of human lymphoblasts. J. Cell. Biol. 66:521–530.

Kung, A. L., S. W. Sherwood, and R. T. Shinkle. 1990. Cell line-specific differences in the control of cycle progression in the absence of mitosis. Proc. Natl. Acad. Sci. USA. 87:9553–9557.

Li, L. H., T. J. Fraser, E. T. Olin, and B. K. Bhuyan. 1972. Action of camptothecin on mammalian cells in culture. Cancer Res. 32:2643–2650.

Liu, L. F. 1989. DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem. 58:351–375.

Lock, R. B., and W. E. Ross. 1990. Inhibition of p34cdc2 kinase activity by etoposide or irradiation as mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res. 50:3761–3766.

Lock, R. B. 1992. Inhibition of p34cdc2 kinase activation, p34cdc2 tyrosine dephosphorylation, and mitotic progression in Chinese hamster ovary cells exposed to etoposide. Cancer Res. 52:1817–1822.

Morla, A. O., G. Draetta, D. Beach, and J. Y. J. Wang. 1989. Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell. 58:193–203.

Narita, T., S. Yaguchi, T. Komatsu, M. Takase, A. Hoshino, M. Inaba, and S. Tsukagoshi. 1990. Antitumor activity of M5T-16, a novel derivative of bis(2,6-dioxopiperazine), in murine models. Cancer Chemistry. Pharmacol. 26:193–197.

Narita, T., Y. Koide, S. Yaguchi, S. Kimura, Y. Iizumisawa, M. Takase, M. Inaba, and S. Tsukagoshi. 1991. Antitumor activities and schedule dependence of orally administered M5T-16, a novel derivative of bis(2,6-dioxopiperazine). Cancer Chemistry. Pharmacol. 26:235–240.

Newport, J., and T. Spann. 1987. Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes. Cell. 48:219–230.

Nishimoto, T., E. Ellen, C. Basilio. 1978. Premature chromosome condensation in a tsDNA-mutant of BHK cells. Cell. 15:475–483.

Nishimoto, T., R. Ishida, K. Ajiro, S. Yamamoto, and T. Takahashi. 1981. The synthesis of protein(s) for chromosome condensation should be regulated by the post-transcriptional mechanism. J. Cell Physiol. 109:299–308.

Nishitani, H., M. Ohmato, K. Yamashita, H. Iida, J. Pines, J. Yasuda, Y. Shibata, T. Hunter, and T. Nishimoto. 1990. Loss of RCC1, a nuclear DNA-binding protein, uncouples the completion of DNA replication from the activation of cdc2 protein kinase and mitosis. EMBO (Eur. Mol. Biol. Organ.) J. 9:1055–1064.

Nurse, P. 1990. Universal control mechanism regulating onset of M-phase. Nature (Lond.). 344:503–508.

Roberge, M., J. Th'ng, J. Hamaguchi, and E. M. Bradbury. 1990. The topoisomerase II inhibitor VM-26 induces marked changes in histone H1 kinase activity, histone H1 and H3 phosphorylation and chromosome condensation in G2 phase and mitotic BHK cells. J. Cell. Biol. 111:1753–1762.

Roca, J., and J. C. Wang. 1992. The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell. 71:833–840.

Roca, J., R. Ishida, J. M. Berger, T. Andoh, and J. C. Wang. 1994. Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc. Natl. Acad. Sci. USA. 91:1781–1785.

Shamu, C. E., and A. W. Murray. 1992. Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J. Cell Biol. 117:921–934.

Sharpe, H. B. A., E. O. Field, and K. Hellmann. 1970. Mode of action of the cytostatic agent "ICRF 159." Nature (Lond.). 226:524–526.

Smythe, C., and J. W. Newport. 1992. Coupling of mitosis to the completion of S-Phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorolysis p34cdc2. Cell. 68:787–791.

Steinmann, K. E., G. S. Belinsky, D. Lee, and R. Schlegel. 1991. Chemically induced premature mitosis: differential response in rodent and human cells and the relationship to cyclin B synthesis and p34cdc2/cyclin B complex formation. Proc. Natl. Acad. Sci. USA. 88:6843–6847.

Summer, A. T. 1992. Inhibitors of topoisomerases do not block the passage of human lymphocyte chromosomes through mitosis. J. Cell Sci. 103:105–115.

Tanabe, K., Y. Iegami, R. Ishida, and T. Andoh. 1991. Inhibition of topoisomerase II by antitumor agents bis(2,6-dioxopiperazine) derivatives. Cancer Res. 51:4903–4908.

Teraumara, T., and J. L. Tilmach. 1963. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp. Cell Res. 30:344–362.

Tobey, R. A. 1975. Different drugs arrest cells at a number of distinct stages in G2. Nature (Lond.). 254:245–247.

Uemura, T., and M. Yanagida. 1984. Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO (Eur. Mol. Biol. Organ.) J. 3:1737–1744.

Uemura, T., and M. Yanagida. 1985. Mitotic spindle pulls but fails to separate chromosomes in type I DNA topoisomerase mutants: uncoordinated mitosis. EMBO (Eur. Mol. Biol. Organ.) J. 5:1003–1010.

Uemura, T., H. Okhtara, Y. Adachi, K. Morino, K. Shiraki, and M. Yanagida. 1987. DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell. 50:917–925.

Usui, T., M. Yoshida, K. Abe, H. Osada, K. Isozo, and T. Beppu. 1991. Uncoupled cell cycle without mitosis induced by a protein kinase inhibitor, K-252a. J. Cell. Biol. 115:1275–1282.

Vosberg, H.-P. 1985. DNA topoisomerases: enzymes that control DNA conformation. Curr. Topics Microbiol. Immunol. 114:19–102.

Wang, J. C. 1985. DNA topoisomerases. Annu. Rev. Biochem. 54:665–697.

Wang, J. C. 1987. Recent studies of DNA topoisomerases. Biochim. Biophys. Acta. 909:1–9.

Wood, E. R., and W. C. Earnshaw. 1990. Mitotic chromatin condensation in vitro using somatic cell extracts and nuclei with variable levels of endogenous topoisomerase II. J. Cell Biol. 111:2839–2850.

Wright, S. J., and G. Schatten. 1990. Teniposide, a topoisomerase II inhibitor, prevents chromosome condensation and separation but not decondensation in fertilized surf clam (Spisula solidissima) oocytes. Devol. Biol. 142:224–232.

Yasuda, H., M. Kamijo, R. Honda, M. Nagahara, and Y. Oba. 1990. The difference in murine cdc2 kinase activity between cytoplasmic and nuclear fractions during the cell cycle. Biochem. Biophys. Res. Commun. 172:371–376.

Yoshida, M., and T. Beppu. 1988. Reversible arrest of proliferation of rat 3Y 1 fibroblasts in both G1 and G2 phases by trichostatin A. Exp. Cell Res. 177:122–131.

Zucker, R. M., and K. H. Eliston. 1991. A new action for topoisomerase inhibitors. Chem. Biol. Interact. 79:31–40.