Abstract: Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes. Autophagy may have evolved as a nutrient-providing homeostatic pathway induced upon starvation, but with the acquisition of cargo receptors, autophagy has become an important cellular defence mechanism as well as a generator of antigenic peptides for major histocompatibility complex (MHC) presentation. We propose that autophagy efficiently protects against microbes encountering the cytosolic environment accidentally, for example, upon phagosomal damage, whereas pathogens routinely accessing the host cytosol have evolved to avoid or even benefit from autophagy.

DOI: https://doi.org/10.1016/j.it.2012.06.003

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-70124
Journal Article

Originally published at:
Randow, Felix; Münz, Christian (2012). Autophagy in the regulation of pathogen replication and adaptive immunity. Trends in Immunology, 33(10):475-87.
DOI: https://doi.org/10.1016/j.it.2012.06.003
Autophagy in the regulation of pathogen replication and adaptive immunity

Felix Randow1 and Christian Münz2

1MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
2Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

To whom correspondence should be addressed: randow@mrc-lmb.cam.ac.uk or christian.muenz@uzh.ch
Abstract

Autophagy is an evolutionary conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes. Autophagy may have evolved as a nutrient-providing homeostatic pathway induced upon starvation, but with the acquisition of cargo-receptors autophagy has become an important cellular defence mechanism as well as a generator of antigenic peptides for MHC presentation. We propose that autophagy efficiently protects against microbes encountering the cytosolic environment accidentally, for example upon phagosomal damage, while pathogens routinely accessing the host cytosol have evolved to avoid or even benefit from autophagy.
Selective autophagy for innate and adaptive immunity

Autophagy comprises a set of evolutionary conserved cytoplasmic degradation pathways that deliver cytosolic constituents to lysosomes [1, 2]. These include chaperone-mediated autophagy, micro- and macroautophagy. While chaperone-mediated autophagy and microautophagy import substrates directly into lysosomes, macroautophagy engulfs its substrates into double-membrane vesicles, called autophagosomes. These autophagosomes fuse subsequently with lysosomes or late endosomes for degradation of their cargo. Macroautophagy is the only known mechanism for cells to dispose of cytosolic components too large for proteasomal degradation. Originally thought a non-selective process, autophagosomes are now recognised to also selectively engulf substrates, including damaged organelles and protein aggregates but also bacteria, parasites and virions. Pathogens that invade the cytosolic compartment as part of their regular life cycle must therefore avoid, or at least inhibit, selective autophagy to establish infection. In contrast, pathogens that encounter autophagy sporadically, for example vesicle-dwelling pathogens released into the cytosol from accidentally damaged vesicles, are more likely to be restricted by autophagy in their ability to colonize the cytosol. However, as is true for most evolutionary conserved defence mechanisms, certain pathogens have evolved the ability to overcome autophagy or even take advantage of this pathway, for example to gain access to specific cellular compartments. Recently, some of the mechanisms that target pathogens for autophagy have been revealed [3-5]. Since selective macroautophagy targets cytosolic pathogens for lysosomal destruction, it also contributes to the ability of cells to present pathogen-derived peptides to T cells. Autophagy is therefore an important contributor to both innate and adaptive immunity.

In this review we will discuss the mechanisms of selective macroautophagy of pathogens and its contribution to innate and adaptive immunity. We will also provide several examples how certain bacteria and viruses are restricted by macroautophagy, while others escape autophagy and sometimes even use this pathway for their propagation. It therefore appears that pathogens not adapted to life in the cytosol are efficiently restricted by macroautophagy, while those with a cytosolic life style have evolved to avert autophagy or even subvert it for their benefit.

Molecular mechanisms of autophagosome formation

Before discussing selective macroautophagy of pathogens, we will introduce some aspects of the molecular machinery underlying this process. 35 genes have been identified as essential for macroautophagy in yeast [6], which are called autophagy-related genes or atgs. During autophagosome formation in either yeast or mammals a membrane is marked with phosphatidylinositol-3-phosphate (PtdIns(3)P; PI3P) by a complex of the type III PI3 kinase
Vps34, Vps15, ATG6/BECLIN-1 and ATG14L. At the PI3P marked site membrane elongation results in the formation of an isolation membrane (also known as a phagophore), which eventually closes around the substrate into a completely sealed autophagosome (Figure 1). Autophagosome formation in all eukaryotes requires two ubiquitin-like systems that act sequentially. The first system comprises the conjugation of the ubiquitin-fold protein ATG12 to ATG5, catalyzed by the E1- and E2-like enzymes ATG7 and ATG10. ATG5-ATG12 associates with ATG16L1 into an E3-like enzyme that mediates the covalent attachment of ATG8 (LC3B being the primarily studied mammalian homologue) to phosphatidylethanolamine (PE) in the isolation membrane. Prior to this coupling event ATG8 requires C-terminally processing by the protease ATG4 and activation by the E1- and E2-like enzymes ATG7 and ATG3, respectively. Lipidated ATG8 facilitates tethering and fusion of vesicular membranes and, therefore, could promote elongation of the isolation membrane [7-9]. In addition, ATG8/LC3 is involved in anchoring substrates to the inside of the emerging autophagosome. Once the autophagosome is completed it rapidly fuses with lysosomes in a Rab7-dependent fashion (half-life of 10-25min in hepatocytes). This fusion is also facilitated by a PI3 kinase-containing ATG6/BECLIN-1 complex, possibly in conjunction with UVRAG and negatively regulated by Rubicon. The de novo formation of autophagosomes enables macroautophagy to engulf structures of variable sizes, e.g. protein aggregates, cell organelles or whole pathogens, and accordingly autophagosomes can range from 0.5-10µm in diameter.

The membrane source for autophagosome formation is still heavily debated. Isolation membranes have been visualized by electron tomography on the rough endoplasmic reticulum (rER) [10, 11], but membranes of autophagosomes were also found to originate from the Golgi apparatus, the plasma membrane or mitochondria [12]. For selective autophagy, particularly if involving pathogens occurring in unforeseen places, the substrate might determine the location where phagophores must form. The above-described molecular machinery may therefore deploy membranes already existing in close proximity to the pathogen to initiate the formation of the isolation membrane. This flexibility of autophagosome formation, both in size and location, is used by the immune system to engulf invading pathogens for degradation and antigen presentation, as well as by pathogens to generate membrane structures that are useful to them. In addition to the capture of pathogens by canonical autophagy, ATG proteins are also deployed, either individually or in small modules, to fight intracellular pathogens in alternative pathways that do not involve the formation of autophagosomes (discussed later in the review).

Macroautophagy in innate immunity

Pathogen restriction by macroautophagy
Bacteria enter cells either passively by phagocytosis or actively by inducing their uptake into normally non-phagocytic cells, for example through specialized secretion apparatuses that inject bacterial effector proteins directly into the host cytosol. While most phagocytosed bacteria are safely killed upon delivery into lysosomes, many intracellular pathogens have evolved the ability to manipulate vesicle maturation, allowing them to either proliferate inside the vesicular compartment or to escape into the cytosol. In an attempt to prevent infection, cells deploy macroautophagy and LC3-associated phagocytosis (LAP; discussed in detail later on) to capture bacteria during their inwards journey, followed by delivery into lysosomes for destruction (Figure 2). In contrast to LAP, which modifies the limiting membrane of pathogen-containing vesicles, macroautophagy engulfs pathogens with additional autophagosome-derived membranes. The principal targets of antibacterial autophagy are bacteria-containing vesicles, bacteria associated with remnants of damaged vesicles, and bacteria that have already escaped into the cytosol. Once caught safely inside an autophagosome, the autophagosomal double membrane restricts pathogen dispersal and provides an additional barrier against potential attempts of pathogens to manipulate cellular processes. The autophagosomal membranes furthermore separate pathogens from cytosolic resources and promote their lysosomal delivery. The ability of macroautophagy to restrict bacteria from colonizing the host cytosol has been demonstrated for *Streptococcus pyogenes* [13] and *Salmonella enterica* serovar Typhimurium [14].

Bacteria-engulfing autophagosomes are created by the core autophagy machinery and have features similar to conventional autophagosomes [15]. Certain differences nevertheless exist, for example the ability to engulf very large cargo such as chains of *Streptococcus pyogenes*. Formation of such giant autophagosomes requires the involvement of Rab7 at early steps of autophagosome formation [16], which contrasts its role in canonical macroautophagy where Rab7 primarily participates in the fusion of autophagosomes with lysosomes [17]. Antibacterial autophagosomes also have the tendency to enwrap their cargo into onion-like membrane layers [16, 18, 19], although the origin and functional importance of these structures remain uncertain.

Selective autophagy of cellular cargo and invading pathogens are related processes and, unsurprisingly, follow similar principles. Selective autophagy relies on the tagging of the prospective cargo with specific ‘eat-me’ signals, which often comprise poly-ubiquitin chains. Similar to protein aggregates that become ubiquitylated before being engulfed by autophagosomes, bacteria that have damaged their vesicular compartments and are exposed to the cytosol, can attract a dense poly-ubiquitin coat [20]. Little is known about the nature of this ubiquitin coat. For example, it remains unknown which bacterial surface protein(s) and / or host protein(s) in the bacterial proximity are ubiquitylated. Of particular interest is the identity of the
E3 ubiquitin ligase(s) that creating the bacterial ubiquitin coat. These ligases likely represent novel pattern recognition or danger receptors. Their identification would enable a rigorous genetic assessment of the importance of the ubiquitin coat for the cell-autonomous antimicrobial defence. The strongest candidate so far is LRSAM1, a RING domain E3 ubiquitin ligase with leucine-rich repeats required for the autophagy of S. Typhimurium [21], but whose role in generating the ubiquitin coat has not been established. Additional pattern recognition receptors with proposed or established affinity for peptidoglycan also contribute to anti-bacterial autophagy. PGRP-LE restricts the growth of *Listeria monocytogenes* in *Drosophila*, while NOD1 and NOD2 attack Gram-negative and -positive bacteria in human cells, possibly by recruiting ATG16L1 to the site of bacterial entry [22, 23]. Mutant NOD2 alleles, found in some patients with Crohn’s disease, fail to antagonize the cytosolic growth of several bacteria, including adherent-invasive *Escherichia coli* (AIEC), a bacterium associated with ileal Crohn’s disease [24, 25].

An alternative ‘eat-me’ signal was recently identified, when the recruitment of galectin-8 to damaged bacteria-containing vesicles was found to restrict the intracellular growth of S. Typhimurium by triggering autophagy [5]. Galectins are β-galactoside-binding lectins that accumulate in the cytosol before being secreted in a leader peptide-independent manner [26]. Although galectins bind carbohydrates of certain pathogens with high specificity [27], S. Typhimurium does not display ligands for galectin-8 [5]. The recruitment of galectin-8 to S. Typhimurium rather depends on the rupture of *Salmonella*-containing vesicles (SCVs), which exposes host glycans previously hidden inside the vesicles as ligands for galectin-8. Sterile damage to endosomes or lysosomes also recruits galectin-8 to vesicle remnants, as does damage caused by *Listeria monocytogenes* or *Shigella flexneri*, two bacteria that actively invade the cytosol as part of their life cycle. Galectin-8 is therefore a danger receptor that, by surveying the integrity of the endo-lysosomal compartment, serves as a versatile sentinel for vesicle-damaging pathogens. The human genome encodes about a dozen galectins, of which galectin-1, galectin-3 and galectin-9 are also recruited to damaged vesicles [5, 28, 29]. The functional consequences of their recruitment to membrane remnants remain to be identified.

The ubiquitin- and galectin-8-dependent ‘eat-me’ signals for selective autophagy are detected by adaptor proteins, also known as autophagy or cargo receptors. These receptors deploy LC3-interacting regions (LIRs) to direct cargo to nascent LC3-positive phagophores. LIRs are short β-strands, often preceded by a stretch of acidic amino acids, that via a W/FxxL/I consensus motif bind to LC3 / GABARAP family members [30]. P62 (SQSTM1), the best-studied autophagy receptor, selects a variety of ubiquitylated cargos, including protein aggregates, damaged mitochondria, midbody rings and also ubiquitin-coated bacteria for autophagy [18, 30]. In contrast, the p62 paralog NBR1 is not required to restrict the growth of S. Typhimurium [18],
but may contribute to the autophagy attack against \textit{S. flexneri} [31]. NDP52 was identified in a search for the ubiquitin-binding adaptor of TBK1 [32], a major immunoregulatory kinase that restricts the intracellular growth of \textit{S. Typhimurium} and \textit{S. pyogenes} [33]. NDP52 recruits TBK1 in complex with SINTBAD or NAP1 to cytosol-exposed bacteria by detecting either a galectin-8 or a poly-ubiquitin ‘eat-me’ signal [5, 32, 34, 35]. Binding of NDP52 to ubiquitin and galectin-8 is mediated by its C-terminal zinc finger and an adjacent short peptide, respectively, which distinguishes NDP52 as the first autophagy receptor that responds to two types of ‘eat-me’ signals [5]. A third cargo receptor, optineurin, that also detects ubiquitin-coated \textit{S. Typhimurium}, binds LC3 with high affinity only if phosphorylated by TBK1 because it lacks the negatively charged residues preceding the LIR motif in other autophagy receptors [3].

Understanding the non-redundant contributions of NDP52, p62 and Optineurin to antibacterial autophagy will be an interesting objective for future research. The three receptors clearly differ in their ability to detect unique ‘eat-me’ signals associated with \textit{S. Typhimurium}, such as galectin-8 and possibly distinct linkage types in the bacterial ubiquitin coat [3]. Differential interactions with ‘eat-me’ signals are likely to cause the occurrence of NDP52, p62 and Optineurin in microdomains around \textit{S. Typhimurium}, populated by either NDP52 or p62 [36], NDP52 and Optineurin but not p62 [3], or NDP52 and galectin-8 but not p62 [5]. However, care must be taken when analyzing microdomains, since these are dynamic structures as suggested by the recruitment of NDP52 to \textit{S. Typhimurium} via galectin-8 and ubiquitin at early and later time points post infection, respectively [5].

Another feature distinguishing NDP52, p62 and Optineurin from each other might be their ability to selectively recruit different effector molecules for the restriction of bacterial growth. Such evidence has already been obtained for TBK1, which is bound by optineurin and (indirectly) by NDP52 but not by p62 [32, 37]. A specific function of p62 might be the delivery of ubiquitylated cytosolic proteins to autolysosomes, where they are proteolytically converted into anti-microbial peptides [38, 39]. None of the many other p62 binding partners has an established role in anti-bacterial autophagy. However, for the selective autophagy of ubiquitylated protein aggregates p62 recruits ALFY, a 400kDa protein that binds ATG12-ATG5-ATG16L1 complexes and PtdIns(3)P-containing membranes. ALFY may therefore be also required for anti-bacterial autophagy [40]. The potential recruitment of ATG proteins other than LC3 and its paralogs by the cargo receptors might explain how \textit{atg5}^- or \textit{atg7}^- cells form autophagosome-like structure around \textit{S. Typhimurium} despite not being able to conjugate LC3 onto membranes [15, 18]. These LC3-negative structures are not restricting bacterial growth, possibly because the closure of anti-bacterial autophagosomes requires ATG8 paralog-dependent hemifusion activity [7, 41]. In contrast to cells deficient in the LC3-conjugation machinery, cells lacking ATG9 or FIP200 fail
to enclose S. Typhimurium in autophagosomal membranes. However, despite the absence of such membranes, atg9[−] or fip200[−] cells still accumulate LC3 around the bacteria, probably by conjugating LC3 to the damaged SCV membrane [15]. The current model of anti-bacterial autophagy, in which NDP52, p62 and Optineurin link bacteria to LC3-positive phagophores, is therefore simplistic and further work is required to understand how distinct autophagy proteins are independently recruited to cytosol-exposed bacteria.

Pathogen restriction by LC3-associated phagocytosis and other non-canonical functions of ATG proteins

LC3 conjugated to PE, an invariant feature of canonical macroautophagy, can also occur on single-membrane vesicles. In a process called LC3-associated phagocytosis (LAP), LC3 is recruited to certain phagosomes, for example those containing bacteria, where it promotes phagosome maturation and fusion with lysosomes to enhance the anti-microbial potential of phagocytosis [42]. LAP requires several proteins that are also involved in canonical autophagy (BECLIN-1, VPS34, ATG5, ATG7) but not others, such as for example FIP200, a component of the ULK1 kinase complex necessary for macroautophagy [42, 43]. Canonical macroautophagy and LAP are therefore distinct processes, both morphologically and mechanistically, that nevertheless result in the accumulation of LC3 on vesicles. The two pathways may even operate simultaneously and electron microscopy is therefore required to distinguish them with confidence. For example, upon treatment with rapamycin or IFNγ mycobacterial phagosomes acquire LC3 and mature into phagolysosomes, consistent with LAP [44]. However, electron microscopy revealed the simultaneous presence of additional onion-like multilamellar structures typical for canonical macroautophagy against bacterial targets.

Consistent with autophagy overcoming the maturation block of mycobacterial autophagosomes and leading to enhanced bacterial killing [44], experimental interference with the delivery of LC3 to phagosomes may prevent the killing of phagocytosed microbes, as demonstrated for yeast in atg7[−] macrophages [42]. A similar strategy is used by Burkholderia pseudomallei, a Gram-negative bacterium causing melioidosis, which suppresses LAP by secreting BopA and BpsnN into the macrophage cytosol via its type III secretion apparatuses [45-47]. How BopA and BpsnN interfere with LAP remains unknown. Recruitment of LC3 to microbe-containing phagosomes requires TLR signalling from within the vesicle, rather than from the cell surface, as evidenced by the lack of LC3 conjugation to phagocytosed latex beads if cells are exposed to LPS subsequent to the phagocytic event [42]. Opsonization can replace TLR signalling and reactive oxygen species produced by NADPH oxidases appear required for the targeting of LC3 to phagosomes [48], which could result from autophagosome fusion with
phagosomes or from direct coupling of LC3 to the phagosomal membrane. The generation of diacylglycerol on *Salmonella*-containing vacuoles also triggers recruitment of LC3, most likely during LAP, although macroautophagy has not been formally excluded [49].

The ability of cells to distinguish phagosomes with ‘innocent’ and ‘infectious’ content may allow the preferential handling of infectious vesicles. In striking contrast to the skill of macrophages to ignore phagocytosed latex beads, macropinosomes and also whole cells in entotic vesicles can be targeted by LC3 [43]. How the engulfment of non-infectious cargo triggers LAP requires further investigations, although cells in entotic vacuoles may expose phosphatidylserine before showing morphological signs of cell death. The phosphatidylserine receptor TIM4, which triggers LAP in response to dead cells, may therefore be involved [43].

Experimentally curtailing the degradative potential of phagosomes containing dead cells, for example by preventing LAP in *atg7*−/− macrophages, leads to prolonged macrophage activation and sustained production of pro-inflammatory cytokines [43]. Therefore, in addition to its antimicrobial importance, LAP also contributes to the anti-inflammatory potential of macrophages.

Another autophagosome-independent defence pathway requiring at least one autophagy gene, *atg5*, occurs in *Toxoplasma gondii*-infected macrophages stimulated with IFNγ, where upon ATG5-mediated recruitment of the immunity-related p47 GTPase IIQPI the parasitophorous vacuole is destroyed and the parasite killed [50].

These studies suggest that the autophagy machinery contributes to the defence against pathogens in a variety of ways, either by conventional macroautophagy or by deploying subsets of autophagy genes to accomplish the subcellular trafficking of proteins or the maturation of organelles.

Escape mechanisms of pathogenes from autophagy-mediated restriction

The ability of cells to defend themselves against invading pathogens represents an ancient form of immunity preceding the origin of multicellularity. In mammals, in which ironically cell-autonomous immunity is best studied, several lines of defence provide synergistic protection against incoming pathogens. With respect to macroautophagy and LAP, at least three classes of receptors detect invaders and ensure their delivery to the lysosome: i) extracellular and endosomal pattern recognition receptors such as toll-like receptors (TLRs), ii) danger receptors surveying the integrity of the endo-lysosomal pathway such as galectin-8, and iii) cytosolic pattern recognition receptors such as NOD-like receptors (NLRs). While non-invasive bacteria, for example environmental bacteria phagocytosed by lung macrophages will be safely destroyed, it is obvious how defects in certain defence mechanisms can favour opportunistic pathogens. Pathogens that invade the cytosol as part of their normal life cycle, however, have to
slip through all the nets. Much can therefore be learnt from studying how professional cytosol-
dwelling pathogens avoid and inhibit cell-autonomous defence.

Listeria monocytogenes, a Gram-positive food-born pathogen that causes meningitis in immunocompromised individuals and abortion in pregnant woman, is internalized by many cell types. Using a pore-forming toxin and two lipolytic enzymes, *L. monocytogenes* escapes from its vacuole into the cytosol with high efficiency. Vacuolar damage by *L. monocytogenes* is detected by Galectin-3, -8, and -9, which may trigger autophagy as bacteria transiently colocalize with LC3 during invasion [5, 28, 29, 51]. However, since autophagy merely delays the onset of proliferation, *L. monocytogenes* appears to actively escape the autophagic attack [52]. Once in the cytosol *L. monocytogenes* deploys ActA, a cell surface protein and functional analog of host WASP proteins, for the recruitment of the actin-nucleating complex Arp2/3. Actin-driven mobility, a feature of many cytosol-dwelling bacteria, favours the spreading of bacteria into neighbouring host cells without exposure to extracellular immune effectors. ActA prevents the coating of *L. monocytogenes* with ubiquitin and thereby interferes with cargo receptor-mediated selective autophagy, possibly because ActA-recruited host proteins disguise the bacterial surface [20, 53]. InlK, an internalin family member expressed mainly *in vivo*, similarly conceals the presence of *L. monocytogenes* from autophagy by coating the bacterial surface with MVP, the major component of large cytosolic ribonucleoprotein complexes called vaults [54]. In contrast to mammals, where *L. monocytogenes* colonizes the cytosol with the help of ActA and InlK, in Drosophila *L. monocytogenes* falls prey to autophagy due to the presence of PGRP-LE, a cytosolic peptidoglycan receptor [22]. How PGRP-LE triggers autophagy and whether it is a LIR motif-containing autophagy receptor remains unknown. The vertebrate PGRP orthologs, called PGLYRPs, are unlikely to be involved in autophagy since they function extracellularly as peptidoglycan amidases and antimicrobial proteins. Nevertheless, recognition of peptidoglycan fragments still contributes to autophagy induction in mammalian cells since NOD1 and NOD2, the founding members of the NLR family, recruit ATG16L1 to bacterial entry sites [55].

In addition to its cytosolic life style associated with extensive proliferation, *L. monocytogenes* also occupies a vesicular compartment, termed spacious *Listeria*-containing phagosomes (SLAPs). Bacteria in SLAPs proliferate at a much lower pace, which may be associated with persistent infections [14]. SLAPs are single membrane vesicles positive for LC3 that are formed in a listeriolyisin O-dependent manner, preferentially if toxin levels are suboptimal for bacterial escape into the cytosol. Although the contribution of autophagy to SLAP formation, possibly via the LAP pathway, is not fully understood, SLAPs clearly represent a stalemate between autophagic attack and bacterial countermeasures since bacterial hyperproliferation occurs in *atg5*−/− cells.
Shigella flexneri is a Gram-negative, entero-invasive bacterium that can cause severe colonic inflammation. *Shigella* enforces its uptake into non-phagocytic cells with the help of a type III secretion system, before escaping from its vacuole into the cytosol. NOD1 and ATG16L1 are recruited to the bacterial entry site [55], while the membrane remnants of *Shigella* vacuoles are detected by galectins-3, -8, and -9, similar to the situation in Listeria-infected cells [5, 28, 29]. The membrane remnants furthermore co-distribute with ubiquitin-, p62- and LC3-positive structures, suggesting that they are targeted by selective autophagy [28]. Once in the cytosol, *Shigella* deploys the autotransporter IcsA to recruit N-WASP and Arp2/3, which provide the bacterium with actin-dependent cytosolic mobility and the ability to spread from cell to cell. However, IcsA and its biochemical activity are also targets of cell-autonomous defence mechanisms. IcsA is directly recognized by ATG5, which, unless outcompeted by IcsB, restricts bacterial growth by targeting bacteria into autophagosomes [19]. Septins, a family of GTP-binding cytoskeletal components, prevent actin-dependent mobility and cell-to-cell spread by forming cages around *Shigella* in an IcsA- and actin polymerization-dependent manner [56]. Septin-encaged *Shigella* colocalize with NDP52, p62 and LC3, suggesting they are targeted by selective autophagy. A positive feedback between septin cage formation and autophagy exists, because depletion of SEPT2 or SEPT9 prevents p62 recruitment, while depletion of p62 or core autophagy genes (*atg5, atg6/beclin-1, atg7*) interferes with the entrapment of *Shigella* in septin cages. The ability of *S. flexneri* and *L. monocytogenes* to proliferate in the mammalian cytosol, despite facing a multipronged immune attack, suggests the existence of potent bacterial countermeasures that deserve to be elucidated.

Macroautophagy assisting bacterial and viral replication

Vesicular compartments for bacterial replication and release

Contrary to the mere avoidance of autophagy practiced by *L. monocytogenes* and *S. flexneri*, other bacteria take actively advantage of the unique opportunities autophagy offers to pathogens able to co-opt the pathway. These possibilities include the generation of vesicular compartments to sustain bacterial replication and to allow unorthodox trafficking.

Rather than being restricted by autophagy, a phylogenetically heterogeneous group of bacteria proliferate in double- or multilamellar LC3⁺ vesicles, which most likely represent canonical autophagosomes failing to acidify and mature. Examples include *Staphylococcus aureus* [57, 58], *Yersinia pseudotuberculosis* [59], *Yersinia pestis* [60] and *Anaplasma phagocytophilum* [61]. Except for *Y. pestis*, which is impervious to the effects of autophagy, these species fail to grow in *atg5⁻* cells, while autophagy induction by rapamycin enhances their proliferation. How
these bacteria co-opt autophagy and how autophagy contributes to bacterial growth remains unknown.

Brucella abortus and *Francisella tularensis* deploy autophagy not to foster their proliferation but to travel in an unorthodox manner within and out of their host cells. *B. abortus* resides in the endosomal pathway for several hours post infection before acquiring ER markers including membrane-bound ribosomes. Proliferation begins once the ER-derived *Brucella*-containing vacuole (BCV) is established. Bacterial spreading from cell-to-cell requires conversion of the replicative BCV into an autophagosome-like structure comprising multiple membranes but lacking LC3 [62]. Consistent with these features, formation of multi-lamellar BCVs is independent of *atg4, atg7, atg5* and *atg16l1* but requires upstream autophagy genes, namely *ulk1, beclin-1* and *atg14l*. LC3 negative double-membrane structures, formed in an ATG5-independent fashion, also engulf *Mycobacterium marinum*, an actin-polymerizing and therefore professionally cytosol-dwelling species [63]. Conceivably, LC3 negative autophagosomes can be formed if bacteria selectively engage only a subset of autophagy genes and they may represent a physiological pendant to ‘alternative’ autophagy in *atg5−/−* or *atg7−/−* cells [64].

F. tularensis, a highly infectious bacterium that was once included in biological warfare programs, replicates in the cytoplasm of mammalian cells, suggesting it avoids autophagy. Following replication, however, *F. tularensis* is taken up into large double-membrane vacuoles, which measure up to 15µm in diameter, are positive for LC3 and contain multiple bacteria [65]. While the replication of *F. tularensis* is not dependent on autophagy, exposure to the low pH of autolysosomes may trigger the expression of genes required for egress, re-infection or extracellular life. Understanding how *F. tularensis* switches from a state in which it avoids autophagy to a state in which it induces autophagy could give important insights into the mechanisms of antibacterial autophagy.

Membrane structures for viral replication

Shortly after the discovery of autophagosomes by electron microscopy [66], autophagosome-like vesicles were noticed in poliovirus infected cells [67]. Infection with this picornavirus leads to the accumulation of small double-membrane surrounded vesicles in the perinuclear area of infected cells, on which the virus assembles its replication machinery. These vesicles contain cytosol, the lysosome associated membrane protein 1 (LAMP1) and ATG8/LC3 [68]. While the two poliovirus proteins 2BC and 3A induce this vesicle accumulation, only 2BC is required to lipidate ATG8/LC3. This extensive membrane reorganization seems to be required for virus production, because down-regulation of macroautophagy via siRNA mediated silencing of either of the two
ubiquitin-like molecules of macroautophagy, ATG12 or ATG8/LC3A and B, results in diminished virus replication [69]. Thus, poliovirus seems to use at least parts of the macroautophagy machinery to assemble membrane structures for its replication.

In addition to poliovirus, many other RNA viruses have been suggested to interfere with membrane trafficking via the molecular machinery of macroautophagy [70]. However, for most of these viruses the relevance of this regulation for their replication is still unresolved and in the case of coronaviruses even controversial [71, 72]. Thus we focus in this section on one other virus, which induces significant membrane remodelling for its replication and uses macroautophagy to do so. This is the hepatitis C (HCV) flavivirus. The autophagic vesicles that accumulate in HCV-infected hepatocytes fuse with each other and do not accumulate as a multitude of small autophagosomes as observed in poliovirus infected cells [73]. Both ATG5 and ATG8/LC3 accumulate at the stabilized membrane structures, which was suggested to result from a virus-induced unfolded protein response (UPR) [74]. This hypothesis is consistent with macroautophagy induction by UPRs in yeast, which is thought to degrade expanded ER to return affected cells to the physiological equilibrium [75]. In addition, the HCV NS3 protein interacts with the immunity-associated GTPase family M (IRGM), which in turn interacts with ATG5, ATG10, ATG8/LC3 and endophilin-1 (SH3GLB1) [76]. RNA silencing of several essential atg products, namely ATG4, ATG5, ATG6/BECN1, ATG7, ATG8/LC3 and ATG12, as well as IRGM, suppressed HCV replication [74, 76, 77]. Primarily, translation of HCV RNA, shortly after infection seemed to depend on functional macroautophagy machinery [77]. Therefore, HCV also prevents fusion of autophagic membranes with lysosomes to promote its own replication.

In addition to this membrane remodelling for viral replication another flavivirus, Dengue virus, generates energy for its replication via macroautophagy [78]. This catabolic activity leads to the turnover of lipid droplets and triglycerides via autophagosomes, generating free fatty acids, from which ATP can be generated to benefit viral replication. Thus, autophagy does not only generate membrane compartments for viral replication, but also in part the energy necessary to carry out virus production.

Viral release via macroautophagy

In addition to viral replication on autophagic membranes, macroautophagy is involved in the generation of vesicular structures, from which viruses are exported. This was hypothesized initially for poliovirus [69]. Indeed, release of this virus is increased if tethering of these autophagic vesicles to the cytoskeleton was inhibited [79]. In this respect we will discuss two other viruses of interest to human health, namely the human immunodeficiency virus (HIV) and influenza virus. Both block autophagosome maturation in infected cells [80, 81]. In addition, HIV
down-regulates autophagosome formation [82, 83], while influenza boosts autophagic flux under certain circumstances [84, 85]. HIV tat and IL-10, produced by infected cells, have both been implicated in auto- and paracrine inhibition of autophagosome formation [83], whereas HIV nef is involved in blocking autophagosome fusion with lysosomes [80]. Interestingly, it achieves this through interaction with ATG6/Beclin-1 and IRGM [76, 80]. This stabilization of autophagic vesicles, autophagosomes themselves or multivesicular bodies (MVBs) that receive input from autophagosomes, augments virus production and release of infectious particles [76, 80]. RNA silencing of ATG6/BECLIN-1, ATG7 or IRGM inhibits HIV particle release [76, 80]. These studies suggest that HIV inhibits autophagosome degradation in order to efficiently replicate in myeloid cells.

While influenza A virus also causes autophagosome accumulation [76, 81], it remains unclear how this affects virus replication. While one study observed inhibition of influenza A virus replication upon RNA silencing of ATG6/BECLIN-1 and ATG8/LC3 [84], two other studies reported no effect of silencing or deficiency of ATG5 on macroautophagy [76, 81]. However, the influenza A virus protein matrix protein 2 (M2) blocks autophagosome fusion with lysosomes and interacts with ATG6/BECLIN-1 [81]. This block of autophagosome maturation causes more cell death in infected cells, which could facilitate influenza A virus infection in vivo. Thus, HIV and influenza A virus both block autophagosome fusion with lysosomes, but one virus seems to benefit from this block for its own replication, while the other regulates host cell death via this manipulation.

Irrespective of the underlying mechanism, macroautophagy plays a crucial role for viral replication and protection from viral pathogenesis in vivo for a number of RNA and DNA viruses. The RNA virus vesicular stomatitis virus (VSV) replicates better in flies in the absence of macroautophagy [86]. In addition, the RNA virus Sindbis virus replicates to similar levels in macroautophagy deficient neurons, but causes more pathology in ATG5 negative brains [87], suggesting that macroautophagy ensures survival of infected host cells in vivo. Furthermore, the two DNA viruses of the herpesvirus family herpes simplex (HSV) and mouse herpesvirus (MHV) 68 encode inhibitors of macroautophagy, without which their infection in mice is compromised [88, 89]. Along these lines HSV carries with ICP34.5 a viral gene product that binds ATG6/Beclin-1 and prevents thereby autophagosome formation [88]. Furthermore, MHV blocks ATG3 and ATG6/Beclin-1 with its viral FLIP and Bcl-2 gene products, respectively [89, 90]. Interestingly, especially the neurovirulence of both Sindbis virus and HSV is compromised by macroautophagy. For these two viruses p62/sequestosome and possibly its recruitment via SMURF1 have been implicated in the recruitment of these pathogens to autophagosomes [4, 87]. These studies suggest that macroautophagy can target viral particles and proteins.
However, as with bacterial pathogens successful viruses that cause disease have developed immune escape mechanisms from macroautophagy in their respective hosts. Since all viruses have a cytosolic stage of their replication cycle, most of them manipulate autophagosome formation or degradation. Because these escape mechanisms are host species adapted the strongest protective effects of macroautophagy can be observed in experimental hosts like for example in the case of the bird and mosquito adapted Sindbis virus in mice.

Regulation of innate cytokine production by macroautophagy

Besides this direct role of macroautophagy in pathogen restriction, macroautophagy was also shown to influence innate cytokine production, although so far the contribution of this regulation to resistance or susceptibility to pathogens has not been firmly established. Along these lines macroautophagy can transport viral replication intermediates into endosomes that carry TLRs [91]. TLR mediated type I interferon production of Sendai virus or VSV infected plasmacytoid dendritic cells (DCs) depended on macroautophagy. In contrast, parts of the molecular macroautophagy machinery seem to inhibit type I interferon production following cytosolic RNA sensor stimulation [92, 93]. Increased reactive oxygen species production or the ATG5-ATG12 complex itself seemed to inhibit RIG-I activation. In addition to type I interferon, IL-1 production is also influenced by macroautophagy. Macrophages deficient in this pathway secrete much more of this proinflammatory cytokine upon stimulation [94]. In part this enhanced IL-1 production results from inflammasome activation by damaged mitochondria, which are no longer degraded by this pathway [95], and decreased inflammasome degradation via autophagosomes [96]. These studies suggest that macroautophagy regulates at least some inflammatory cytokines, which restrict pathogens by innate immune responses and shape adaptive immune responses.

Macroautophagy during adaptive immune responses

Antigen processing via macroautophagy

Both humoral and cell-mediated adaptive immune responses hinge on the efficient induction of helper T cell responses, which play an essential role in antibody affinity maturation and cytotoxic T cell maintenance. Helper T cells recognize antigen fragments presented on major histocompatibility complex (MHC) class II molecules, which are predominantly generated by lysosomal hydrolysis. Around 20-30% of the MHC class II presented ligands are derived from cytosolic and nuclear antigens [97], suggesting an intracellular antigen processing pathway for MHC class II loading. Among these ligands, self-protein derived peptides can be found, some of which originate from the mammalian ATG8 homologues LC3 and GABARAP [97, 98]. Further
Randow and Münz

Evidence that macroautophagy contributes to MHC class II loading of cytosolic and nuclear antigens was provided by the characterization of the MHC class II derived natural ligand repertoire of starved Epstein Barr virus (EBV) transformed B cells (LCLs) [97]. LCLs up-regulate macroautophagy after starvation, and under these conditions MHC class II presentation of cytosolic and nuclear antigens was up-regulated by 50%, while presentation of membrane-bound protein fragments was not affected. Furthermore, autophagosomes have been found to frequently fuse with late endosomal MHC class II containing compartments (MIICs), in which antigen is loaded onto MHC class II molecules [99, 100] (Figure 3). Moreover, targeting of antigens to autophagosomes via fusion to the N-terminus of ATG8/LC3 enhances their presentation on MHC class II molecules to CD4+ T cells [85, 99]. These studies suggest that autophagosomes deliver intracellular substrates for MHC class II loading in a wide variety of cell types, including DCs, B cells and epithelial cells.

In addition to self-proteins, this antigen processing pathway has been suggested to deliver pathogen-derived antigens for MHC class II loading. Two of these have been investigated in more detail in several studies. The first is the nuclear antigen 1 of EBV (EBNA1). This protein ensures replication of the viral genome in the nucleus prior to host cell division and anchors EBV DNA to mitotic chromosomes during mitosis to ensure viral maintenance in replicating cells. It carries a glycine-alanine repeat domain that protects it from proteasomal degradation [101, 102], and accumulates upon lysosomal inhibition [103]. In addition, it is presented to CD4+ T cells after intracellular processing [104]. This processing is mediated by macroautophagy, because EBNA1 accumulates in autophagosomes after lysosomal inhibition, and RNA silencing of macroautophagy decreases CD4+ T cell recognition of EBV-infected B cells [103, 105]. This intracellular antigen processing of EBNA1 for MHC class II presentation via macroautophagy is enhanced, when the nuclear import of EBNA1 is compromised [105]. These studies suggest that a cytosolic pool of EBNA1, either prior to import into the nucleus or liberated after dissociation of the nuclear envelope during mitosis gains access to intracellular MHC class II antigen processing by macroautophagy. A second antigen for macroautophagic processing towards MHC class II presentation to CD4+ T cells is the bacterial transposon-derived neomycin phosphotransferase II (NeoR) [85, 106]. MHC class II presentation of this antigen by transfected cells to a specific CD4+ T cell clone is sensitive to macroautophagy inhibition [106], and antigens fused to NeoR are more efficiently presented on MHC class II molecules [85]. In contrast to EBNA1, however, nuclear localization of NeoR after insertion of a nuclear import sequence does not compromise macroautophagy dependent antigen processing, and was even found to slightly improve MHC class II presentation [107]. Thus, it is not nuclear localization in general, but
maybe subcompartimentalization in this organelle that determines accessibility of antigens to macroautophagic antigen processing for MHC class II presentation.

In addition to intracellular antigen processing, macroautophagy might also play a role in extracellular antigen processing for MHC class II presentation. This suggestion is based on a study in mice with macroautophagy deficiency after \textit{atg5} knock-out in CD11c positive cells, (mostly DCs) [108]. In addition to diminished CD4\(^+\) T cell responses after herpes simplex virus (HSV) infection in these mice, addition of soluble ovalbumin (OVA) or OVA coated splenocytes resulted in decreased MHC class II, but unaffected MHC class I presentation to specific TCR transgenic T cells. Thus the authors suggested that in addition to intracellular antigen processing for MHC class II presentation after HSV or recombinant listeria virus infection, macroautophagy also contributes to extracellular antigen processing for CD4\(^+\) T cell stimulation. This correlated with diminished maturation of phagosomes, possibly resulting from slower fusion with lysosomes. This phenotype would fit with three studies showing a role for parts of the macroautophagy machinery in phagosome fusion with lysosomes (LAP), suggesting ATG8/LC3 dependent facilitation of this fusion event [42, 43, 109]. Alternatively, autophagosome cargo could render phagosomes more processive by delivering hydrolases to these vesicles through fusion. Along these lines it was recently shown that citrullination, a post-translational modification detected on some autoantigens and facilitating their immune recognition, for example during rheumatoid arthritis, depends on macroautophagy [110]. More specifically, the peptidylarginine deiminase (PAD) responsible for citrullination of endocytosed proteins, was only able to reach phagosomes via autophagosomes. Therefore, fusion of phagosomes with lysosomes and composition of phagosomal content could be modified by macroautophagy to result in more efficient extracellular antigen processing onto MHC class II molecules.

Lymphocyte education via macroautophagy

Another physiological setting, in which antigen processing via macroautophagy might be particularly important is T cell education in the thymus. In order to shape a useful and self-tolerant T cell repertoire, developing T cells are educated to recognize self-MHC molecules in the thymic cortex in a process called positive selection. In addition, self-reactive T cell specificities are eliminated in the thymic medulla via negative selection [111]. Thymic epithelial cells (TECs) interact with the developing T cells in these two processes and express both MHC class I and II molecules for this purpose. In order to display peptides not just derived from thymic proteins during these processes, TECS also express at low levels peripheral organ specific proteins with the help of the transcription factor autoimmune regulator (AIRE) [112]. However, for processing of these proteins towards MHC class II presentation it was suggested that TECs
require intracellular pathways, because they are poorly endocytic [113]. Along these lines a role for macroautophagy in both of these processes was then defined [114]. During positive selection of T cell receptor (TCR) transgenic T cells in \textit{atg5}-deficient thymii, some CD4$^+$ T cell specificities were efficiently selected, while positive selection of others was compromised, probably due to insufficient MHC class II presentation of the positively selecting peptide ligands. In contrast, positive CD8$^+$ T cell selection was unaffected. In contrast, negative selection of a wild-type precursor repertoire through \textit{atg5}-negative thymic transplants in thymus-deficient nude mice resulted in autoreactive T cells, causing autoimmune colitis and lymphocyte infiltration in other organs, including Hardarian glands, uterus, liver and lung. In agreement with these findings, autophagosomes were found to frequently fuse with MIICs in TECs [115]. These findings suggest that intracellular proteins are presented on MHC class II molecules of TECs after macroautophagy, and that the T cell repertoire is altered in the absence of this process. Of particular interest is the fact that such an altered T cell repertoire contains specificities that mediate autoimmune colitis, reminiscent in its manifestation of Crohn’s disease. Indeed mutations have been found associated with the familial form of this autoimmune disease of the digestive tract in two proteins linked to macroautophagy, namely ATG16L1 and IRGM [116-119]. Furthermore, the Crohn’s disease associated ATG16L1 variants were shown to compromise MHC class II restricted antigen presentation of DCs matured with NOD2 ligands [24], and NOD2 is another risk locus for this disease [120, 121]. Therefore, it is tempting to speculate that also in humans compromised macroautophagy in the thymus might allow the development of an autoimmune T cell repertoire that could contribute to Crohn’s disease.

\textbf{Lymphocyte survival via macroautophagy}

In addition to this antigen processing function of macroautophagy that shapes lymphocyte repertoires, this pathway plays also a role during lymphocyte development and responses. Hematopoietic progenitor cells (HPCs) rely on this process for their maintenance [122, 123]. In its absence myeloproliferation develops, seemingly because both T and B cell lineage development is compromised. In contrast, plasmacytoid and conventional DC development is unaffected by loss of macroautophagy [91, 108]. Both T cell development and proliferation during an immune responses are compromised in the absence of macroautophagy [124]. Several mechanisms are responsible for these T cell defects in the absence of macroautophagy. For one, mature T cells need to decrease their mitochondria content during transition from the thymus to the periphery. Macroautophagy deficiency prevents this due to loss of mitochondria degradation. This leads to increased levels of reactive oxygen species, which compromises the survival of T cells without macroautophagy [125]. In addition, macroautophagy-deficient T cells
cannot efficiently mobilize Ca2+ upon T cell receptor stimulation, resulting in impaired activation [126]. Therefore, macroautophagy is required for T cell development and function. A less severe, but also detectable dependency of B cell development and maintenance on macroautophagy was identified. B cell precursor survival in the bone marrow is affected by loss of macroautophagy, particularly at the pro- to pre-B cell transition [127, 128]. Mature B cells, in contrast, are mostly unaffected by macroautophagy loss for their survival. Only the innate B-1a subset is compromised in its maintenance by macroautophagy deficiency [128]. Therefore, lymphocytes, but not leucocytes in general, need macroautophagy for their development and survival. Selective lymphocyte lineages are more affected than others by macroautophagy deficiency, and the role of macroautophagy in cell organelle homeostasis, primarily mitochondria and ER turnover, is required during lymphocyte development and their immune responses.

Concluding remarks

Autophagy, particularly macroautophagy, has emerged as an important cellular pathway for pathogen restriction and replication as well as antigen processing. Recent studies show how pathogens that escape endosomes are imported into autophagosomes and how pathogens adapted to life in the cytosol have evolved escape mechanisms from macroautophagic degradation. In its co-evolution with pathogens, the adaptive immune system of higher eukaryotes has also learned to utilize macroautophagy. Autophagy provides peptides for presentation on MHC molecules from self-antigens and pathogens during thymic selection and during peripheral immune responses, respectively. Therefore, as with classical phagocytosis, macroautophagy has evolved from a nutrient-providing pathway to fulfil additional effector mechanisms of innate, cell-intrinsic and adaptive immunity in higher eukaryotes.

The role of the molecular macroautophagy machinery during infection and immune responses may extend even further. At least some ATG proteins are involved in phagocytosis by modulating phagosome maturation and in exocytosis of signal-peptide lacking substrates [129-131], possibly even whole virions and exosomes [132, 133]. This alternative use of macroautophagy modules needs to be better understood in order to harness pathogen restriction by macroautophagy therapeutically without boosting pathogen replication.

Furthermore, macroautophagy plays a role in MHC class II ligand generation for T cell education and intracellular antigen processing for CD4+ T cell recognition. In addition, this pathway might also influence the compartimentalization of antigen to vesicles or protein aggregates, which allow processing towards MHC class I presentation for CD8+ T cell responses [134-136]. The nature of these MHC class I antigen compartments and how macroautophagy
regulates them needs to be more clearly defined in order to use them for efficient induction of immune responses after vaccination.

The importance of canonical macroautophagy in pathogen infection and immune responses is now well established. Alternative deployment of parts of the macroautophagy machinery seems to impact on an even wider spectrum of cell biological processes for the benefit or restriction of invading microbes. These later areas, in particular, constitute a fruitful field of investigation for the near future.
Acknowledgements

Research in the laboratory of C.M. is supported by grants from the National Cancer Institute (R01CA108609), the Sassella Foundation (10/02), Cancer Research Switzerland (KFS-02652-08-2010), the Association for International Cancer Research (11-0516), the Vontobel Foundation, the Baugarten Foundation, Novartis and the Swiss National Science Foundation (310030_126995). Work in the laboratory of F.R. is supported by the Medical Research Council (U105170648) and The National Association for Colitis and Crohn's Disease (M/11/3).
References

1 Mizushima, N., et al. (2011) The role of atg proteins in autophagosome formation. *Annu Rev Cell Dev Biol* 27, 107-132

2 Mizushima, N. and Komatsu, M. (2011) Autophagy: renovation of cells and tissues. *Cell* 147, 728-741

3 Wild, P., et al. (2011) Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth. *Science* 333, 228-233

4 Orvedahl, A., et al. (2011) Image-based genome-wide siRNA screen identifies selective autophagy factors. *Nature* 480, 113-117

5 Thurston, T.L., et al. (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. *Nature* 482, 414-418

6 Klionsky, D.J., et al. (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). *Autophagy* 7, 1273-1294

7 Nakatogawa, H., et al. (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. *Cell* 130, 165-178

8 Weidberg, H., et al. (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. *Embo J* 29, 1792-1802

9 Weidberg, H., et al. (2011) LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. *Dev Cell* 20, 444-454

10 Hayashi-Nishino, M., et al. (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. *Nat Cell Biol* 11, 1433-1437

11 Yla-Anttila, P., et al. (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. *Autophagy* 5, 1180-1185

12 Tooze, S.A. and Yoshimori, T. (2010) The origin of the autophagosomal membrane. *Nat Cell Biol* 12, 831-835

13 Nakagawa, I., et al. (2004) Autophagy defends cells against invading group A Streptococcus. *Science* 306, 1037-1040

14 Birmingham, C.L., et al. (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. *Nature* 451, 350-354

15 Kageyama, S., et al. (2011) The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. *Mol Biol Cell* 22, 2290-2300

16 Yamaguchi, H., et al. (2009) An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. *PLoS Pathog* 5, e1000670
17 Kimura, S., et al. (2007) Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3. *Autophagy* 3

18 Zheng, Y.T., et al. (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. *J Immunol* 183, 5909-5916

19 Ogawa, M., et al. (2005) Escape of Intracellular Shigella from Autophagy. *Science* 307, 727-731

20 Perrin, A.J., et al. (2004) Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. *Curr Biol* 14, 806-811

21 Ng, A.C., et al. (2011) Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. *Proc Natl Acad Sci U S A* 108 Suppl 1, 4631-4638

22 Yano, T., et al. (2008) Autphagic control of listeria through intracellular innate immune recognition in drosophila. *Nat Immunol* 9, 908-916

23 Travassos, L.H., et al. (2010) Nod proteins link bacterial sensing and autophagy. *Autophagy* 6, 409-411

24 Cooney, R., et al. (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. *Nat Med* 16, 90-97

25 Lapaquette, P., et al. (2010) Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. *Cell Microbiol* 12, 99-113

26 Rabinovich, G.A. and Toscano, M.A. (2009) Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. *Nat Rev Immunol* 9, 338-352

27 Vasta, G.R. (2009) Roles of galectins in infection. *Nat Rev Microbiol* 7, 424-438

28 Dupont, N., et al. (2009) Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. *Cell Host Microbe* 6, 137-149

29 Paz, I., et al. (2010) Galectin-3, a marker for vacuole lysis by invasive pathogens. *Cell Microbiol* 12, 530-544

30 Johansen, T. and Lamark, T. (2011) Selective autophagy mediated by autophagic adapter proteins. *Autophagy* 7, 279-296

31 Mostowy, S., et al. (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. *J Biol Chem* 286, 26987-26995

32 Thurston, T.L., et al. (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. *Nat Immunol* 10, 1215-1221

33 Radtke, A.L., et al. (2007) TBK1 protects vacuolar integrity during intracellular bacterial infection. *PLoS Pathog* 3, e29
34 Fujita, F., et al. (2003) Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling. Mol Cell Biol 23, 7780-7793

35 Ryzhakov, G. and Randow, F. (2007) SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. Embo J 26, 3180-3190

36 Cemma, M., et al. (2011) The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 7, 341-345

37 Morton, S., et al. (2008) Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett 582, 997-1002

38 Alonso, S., et al. (2007) Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci U S A 104, 6031-6036

39 Ponpuak, M., et al. (2010) Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32, 329-341

40 Filimonenko, M., et al. (2010) The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Atg. Mol Cell 38, 265-279

41 Noda, T., et al. (2009) The late stages of autophagy: how does the end begin? Cell Death Differ 16, 984-990

42 Sanjuan, M.A., et al. (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253-1257

43 Martinez, J., et al. (2011) Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A 108, 17396-17401

44 Gutierrez, M.G., et al. (2004) Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages. Cell 119, 753-766

45 Gong, L., et al. (2011) The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS ONE 6, e17852

46 Cullinane, M., et al. (2008) Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 4, 744-753

47 D’Cruze, T., et al. (2011) Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence. Infect Immun 79, 3659-3664

48 Huang, J., et al. (2009) Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci U S A 106, 6226-6231

49 Shahnazari, S., et al. (2010) A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 8, 137-146
50 Zhao, Z., et al. (2008) Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. *Cell Host Microbe* 4, 458-469

51 Birmingham, C.L., et al. (2007) Listeria monocytogenes evades killing by autophagy during colonization of host cells. *Autophagy* 3, 442-451

52 Py, B.F., et al. (2007) Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. *Autophagy* 3, 117-125

53 Yoshikawa, Y., et al. (2009) Listeria monocytogenes ActA-mediated escape from autophagic recognition. *Nat Cell Biol* 11, 1233-1240

54 Dortet, L., et al. (2011) Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. *PLoS Pathog* 7, e1002168

55 Travassos, L.H., et al. (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. *Nat Immunol* 11, 55-62

56 Mostowy, S., et al. (2010) Entrapment of intracytosolic bacteria by septin cage-like structures. *Cell Host Microbe* 8, 433-444

57 Mestre, M.B., et al. (2010) Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells. *Autophagy* 6, 110-125

58 Schnaith, A., et al. (2007) Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. *J Biol Chem* 282, 2695-2706

59 Moreau, K., et al. (2010) Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. *Cell Microbiol* 12, 1108-1123

60 Pujol, C., et al. (2009) Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. *Infect Immun* 77, 2251-2261

61 Niu, H., et al. (2008) Subversion of cellular autophagy by Anaplasma phagocytophilum. *Cell Microbiol* 10, 593-605

62 Starr, T., et al. (2012) Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. *Cell Host Microbe* 11, 33-45

63 Collins, C.A., et al. (2009) Atg5-independent sequestration of ubiquitinated mycobacteria. *PLoS Pathog* 5, e1000430

64 Nishida, Y., et al. (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. *Nature* 461, 654-658

65 Checroun, C., et al. (2006) Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. *Proc Natl Acad Sci U S A* 103, 14578-14583
66 Ashford, T.P. and Porter, K.R. (1962) Cytoplasmic components in hepatic cell lysosomes. *J Cell Biol* 12, 198-202

67 Dales, S., *et al.* (1965) Electron Microscopic Study of the Formation of Poliovirus. *Virology* 26, 379-389

68 Taylor, M.P. and Kirkegaard, K. (2007) Modification of cellular autophagy protein LC3 by poliovirus. *J Virol* 81, 12543-12553

69 Jackson, W.T., *et al.* (2005) Subversion of cellular autophagosomal machinery by RNA viruses. *PLoS Biol* 3, e156

70 Lin, L.T., *et al.* (2010) Viral interactions with macroautophagy: a double-edged sword. *Virology* 402, 1-10

71 Prentice, E., *et al.* (2004) Coronavirus replication complex formation utilizes components of cellular autophagy. *J Biol Chem* 279, 10136-10141

72 Zhao, Z., *et al.* (2007) Coronavirus replication does not require the autophagy gene ATG5. *Autophagy* 3, 581-585

73 Ait-Goughoulte, M., *et al.* (2008) Hepatitis C virus genotype 1a growth and induction of autophagy. *J Virol* 82, 2241-2249

74 Sir, D., *et al.* (2008) Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. *Hepatology* 48, 1054-1061

75 Bernales, S., *et al.* (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. *PLoS Biol* 4, e423

76 Gregoire, I.P., *et al.* (2011) IRGM is a common target of RNA viruses that subvert the autophagy network. *PLoS Pathog* 7, e1002422

77 Dreux, M., *et al.* (2009) The autophagy machinery is required to initiate hepatitis C virus replication. *Proc Natl Acad Sci U S A* 106, 14046-14051

78 Heaton, N.S. and Randall, G. (2010) Dengue virus-induced autophagy regulates lipid metabolism. *Cell Host Microbe* 8, 422-432

79 Taylor, M.P., *et al.* (2009) Role of microtubules in extracellular release of poliovirus. *J Virol* 83, 6599-6609

80 Kyei, G.B., *et al.* (2009) Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. *J Cell Biol* 186, 255-268

81 Gannage, M., *et al.* (2009) Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. *Cell Host Microbe* 6, 367-380

82 Blanchet, F.P., *et al.* (2010) Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. *Immunity* 32, 654-669
83 Van Grol, J., et al. (2010) HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PLoS ONE 5, e11733

84 Zhou, Z., et al. (2009) Autophagy is involved in influenza A virus replication. Autophagy 5, 321-328

85 Comber, J.D., et al. (2011) Functional Macroautophagy Induction by Influenza A Virus Without a Contribution to MHC-Class II Restricted Presentation. J Virol 482, 414-418

86 Shelly, S., et al. (2009) Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30, 588-598

87 Orvedahl, A., et al. (2010) Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115-127

88 Orvedahl, A., et al. (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host & Microbe 1, 23-35

89 E, X., et al. (2009) Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68. PLoS Pathog 5, e1000609

90 Lee, J.S., et al. (2009) FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 11, 1355-1362

91 Lee, H.K., et al. (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398-1401

92 Tal, M.C., et al. (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A 106, 2770-2775

93 Jounai, N., et al. (2007) The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A 104, 14050-14055

94 Saitoh, T., et al. (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-268

95 Zhou, R., et al. (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225

96 Shi, C.S., et al. (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13, 255-263

97 Dengjel, J., et al. (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 102, 7922-7927

98 Suri, A., et al. (2008) First Signature of Islet {beta}-Cell-Derived Naturally Processed Peptides Selected by Diabetogenic Class II MHC Molecules. J Immunol 180, 3849-3856

99 Schmid, D., et al. (2007) MHC class II antigen loading compartments continuously receive input from autophagosomes. Immunity 26, 79-92
100 van den Boorn, J.G., et al. (2011) Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy. *J Invest Dermatol* 131, 1240-1251

101 Levitskaya, J., et al. (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. *Nature* 375, 685-688

102 Levitskaya, J., et al. (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. *Proc Natl Acad Sci U S A* 94, 12616-12621

103 Paludan, C., et al. (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. *Science* 307, 593-596

104 Münz, C., et al. (2000) Human CD4+ T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. *J Exp Med* 191, 1649-1660

105 Leung, C.S., et al. (2010) Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display. *Proc Natl Acad Sci U S A* 107, 2165-2170

106 Nimmerjahn, F., et al. (2003) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. *Eur J Immunol* 33, 1250-1259

107 Riedel, A., et al. (2008) Endogenous presentation of a nuclear antigen on MHC class II by autophagy in the absence of CRM1-mediated nuclear export. *Eur J Immunol* 38, 2090-2095

108 Lee, H.K., et al. (2010) In vivo requirement for Atg5 in antigen presentation by dendritic cells. *Immunity* 32, 227-239

109 Florey, O., et al. (2011) Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. *Nat Cell Biol* 13, 1335-1343

110 Ireland, J.M. and Unanue, E.R. (2011) Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. *J Exp Med* 208, 2625-2632

111 Kyewski, B. and Klein, L. (2006) A central role for central tolerance. *Annu Rev Immunol* 24, 571-606

112 Anderson, M.S., et al. (2002) Projection of an immunological self shadow within the thymus by the aire protein. *Science* 298, 1395-1401

113 Klein, L. and Kyewski, B. (2000) Self-antigen presentation by thymic stromal cells: a subtle division of labor. *Curr Opin Immunol* 12, 179-186

114 Nedjic, J., et al. (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. *Nature* 455, 396-400

115 Kasai, M., et al. (2009) Autophagic compartments gain access to the MHC class II compartments in thymic epithelium. *J Immunol* 183, 7278-7285
116 Hampe, J., et al. (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39, 207-211

117 Rioux, J.D., et al. (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39, 596-604

118 Parkes, M., et al. (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet

119 McCarroll, S.A., et al. (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat Genet 40, 1107-1112

120 Hugot, J.P., et al. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599-603

121 Ogura, Y., et al. (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603-606

122 Mortensen, M., et al. (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208, 455-467

123 Salemi, S., et al. (2012) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22, 432-435

124 Pua, H.H., et al. (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204, 25-31

125 Pua, H.H., et al. (2009) Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol 182, 4046-4055

126 Jia, W., et al. (2011) Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 186, 1564-1574

127 Miller, B.C., et al. (2008) The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309-314

128 Arsov, I., et al. (2011) A role for autophagic protein Beclin 1 early in lymphocyte development. J Immunol 186, 2201-2209

129 Manjithaya, R., et al. (2010) Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosomes formation. J Cell Biol 188, 537-546

130 Duran, J.M., et al. (2010) Unconventional secretion of Acb1 is mediated by autophagosomes. J Cell Biol 188, 527-536

131 Dupont, N., et al. (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. Embo J 30, 4701-4711

132 Uhl, M., et al. (2009) Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16, 991-1005
133 Li, Y., et al. (2008) Efficient cross-presentation depends on autophagy in tumor cells. *Cancer Res* 68, 6889-6895.

134 English, L., et al. (2009) Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. *Nat Immunol* 10, 480-487.

135 Wenger, T., et al. (2012) Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHC-I-restricted presentation. *Autophagy* 8.

136 Luca, A.D., et al. (2012) CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. *J Clin Invest* 122, 1816-1831.
Figure legends

Figure 1: Restriction of pathogens by macroautophagy and their escape. Autophagosomes are formed with the help of two ubiquitin-like systems (ATG8/LC3 and ATG12) and their formation and degradation is guided by phosphatidylinositol-3 (PI3) kinase complexes. The ATG8/LC3 ligase complex ATG5-ATG12-ATG16L1 conjugates ATG8/LC3 to the isolation membrane or phagophore and is then recycled from the outer autophagosomal membrane with ATG8/LC3. Upon fusion with lysosomes the inner autophagosomal membrane and its content, including pathogens, is degraded. Viruses interfere with this process and either block autophagosome formation or degradation by interacting with ATG6/Beclin-1, which is contained in autophagosome forming PI3 kinase complexes (VPS34 as PI3 kinase, VPS15, ATG6/BECLIN-1 and ATG14L) and autophagosome degrading (VPS34, VPS15, ATG6/BECLIN-1 and UVRAG) or degradation blocking (VPS34, VPS15, ATG6/BECLIN-1, UVRAG and Rubicon) PI3 kinase complexes.

Figure 2: How autophagy and LC3-assisted phagocytosis defend cells against infection. Synergistic lines of defence prevent the entry of pathogens into the cytosol of host cells. A) LC3-assisted phagocytosis is triggered by TLRs and potentially other PRRs in response to microorganisms that were taken up by phagocytosis or that have actively invaded non-phagocytic cells. LC3-assisted phagocytosis requires a subset of autophagy genes for the labelling of phagosomes with ATG8/LC3, which promotes their lysosomal delivery and the efficient killing of vesicular pathogens. B) Damage to the limiting membrane of the pathogen-containing vesicle, either accidental or caused by pathogens attempting to escape from the vesicle, exposes the cytosol to glycans previously hidden inside the vesicle. C) Cytosol-accessible glycans are detected by the danger receptor galectin-8, which, by recruiting the cargo receptor NDP52, triggers autophagy. D) Pathogens having escaped galectin-8-induced autophagy are met by yet another layer of pattern recognition receptors in the cytosol. E) A yet-to-be-identified E3 ubiquitin ligase causes the ubiquitin-coating of invading bacteria. It remains to be established whether this ligase only targets membrane-associated or also free-floating bacteria, whether it is a pattern-recognition receptor, and also whether its substrate is of bacterial or host origin. F) Ubiquitin-coated bacteria are targeted for autophagy by three apparently non-redundant cargo receptors, i.e. NDP52, p62, and Optineurin.

Figure 3: Antigen for MHC class II presentation can be provided by phagocytosis or macroautophagy. Cytosolic pathogens are delivered to MHC class II containing compartments (MIICs) via macroautophagy for antigen loading. Extracellular pathogens reach this MHC class II
loading compartment via endocytosis, which might be in some instances facilitated by ATG8/LC3 coupled to the phagosome.
Figure 1

ATG8/LC3

GMKLSV

ATG4 protease

MKLSV

Endosome/Lysosome

ATG8/LC3

G₁₂₀

ATG12

ATG5

ATG16L1

ATG14L

PI3kinase

ATG6/Beclin-1

VPS15

PI3kinase

ATG6/Beclin-1

VPS15

UVRAG

+/- Rubicon

Auto-phagosome
Figure 3

Phagosome

MIIC

MHC class II

Auto-phagosome

?