Locally Cold Flows from Large-Scale Structure

M.A. Aragon-Calvo1⋆, J. Silk2,1, A. S. Szalay1

1 The Johns Hopkins University, 3400 Charles St., Baltimore, MD, USA.
2 Oxford University, Oxford, OX1 3RH.

Submitted to MNRAS

ABSTRACT

We show that the “cold” Hubble flow observed for galaxies around the Milky Way does not represent a problem in cosmology but is due to the particular geometry and dynamics of our local wall. The behavior of the perturbed Hubble flow around the Milky Way is the result of two main factors: at small scales (R < 1 Mpc) the inflow is dominated by the gravitational influence of the Milky Way. At large scales (R > 1 Mpc) the outflow reflects the expansion of our local wall which “cools down” the peculiar velocities. This is an intrinsic property of walls and is independent of cosmology. We find the dispersion of the local Hubble flow (1 < R < 3 Mpc) around simulated “Milky Way” haloes located at the centre of low-density cosmological walls to be \(\sigma_H \sim 30 \text{ km s}^{-1} \), in excellent agreement with observations. The expansion of our local wall is also reflected in the value of the measured local Hubble constant. For “Milky Way” haloes inside walls, we find super-Hubble flows with \(h_{\text{local}} \approx 0.77 - 1.13 \).

The radius of equilibrium (\(R_0 \)) depends not only on the mass of the central halo and the Hubble expansion but also on the dynamics given by the local LSS geometry. The super-Hubble flow inside our local wall has the effect of reducing the radius at which the local expansion balances the gravitational influence of the Milky Way. By ignoring the dynamical effect of the local wall, the mass of the Milky Way estimated from \(R_0 \) can be underestimated by as much as \(\sim 30\% \).

Key words: Cosmology: large-scale structure of Universe; galaxies: kinematics and dynamics, Local Group; methods: data analysis, N-body simulations

1 INTRODUCTION

The mystery of the “Coldness of the Hubble Flow” (CHF) has remained largely unsolved despite many attempts to explain or reproduce it. Early measurements of the radial velocities of nearby galaxies found the perturbed Hubble flow dispersion to be \(\sigma_H \sim 60 \text{ km s}^{-1} \) (Sandage et al. 1972; Sandage 1986; Peebles 1988). Recent studies give an even lower value of \(\sigma_H \sim 30 \text{ km s}^{-1} \) (Ekholm et al. 2001; Karachentsev et al. 2002, 2003, 2009) This dispersion is significantly “colder” than theoretical expectations (Peebles 1980; Scoccimarro 2004) and observed pairwise velocity dispersions which are of the order of 300 – 500 km s\(^{-1}\) (Zehavi et al. 2002; Landy 2002; Hawkins et al. 2002).

1.1 Searching for the origin of the CHF

The scales involving the CHF suggest that it has a cosmological origin. Two main causes have been proposed to explain the CHF: background cosmology (in the form of a \(\Lambda \) term) and local environment. The influence of background cosmology was first studied in N-body simulations by Governato et al. (1997) who failed to detect low velocity dispersions in two models: \(\Omega = 1 \) (SCDM) and a \(\Omega = 0.3 \) (OCDM). A later paper (Baryshev et al. 2001) proposed the role of the cosmological constant in the CHF under the assumption that the accelerating effect of \(\Lambda \) or a dark energy term results in a decay in the velocity fluctuations, thereby giving a colder local environment (Baryshev et al. 2001; Teerikorpi et al. 2008; Peirani & de Freitas P. 2008; Maccio et al. 2003; Chernin et al. 2010). On the other hand, early constrained N-body simulations of the local group suggested that the observed low velocity dispersion somehow reflects our particular local environment (van de Weygaert & Hoffman 2003; Klypin et al. 2003). This possibility was also explored by Hoffman et al. (2008) and Martinez-Vaquero et al. (2009) who analyzed constrained simulations of the local group in several cosmologies and found the effect of the cosmological constant on local dynamics to be marginal. While these studies reproduced to some degree cold Hubble flows they

⋆ E-mail:miguel@pha.jhu.edu
were not able to identify its origin apart from being an intrinsic property of “local-group” environments.

2 MIMICKING Λ FROM LOCAL DYNAMICS

From the above discussion, a picture begins to appear: in order to cool the peculiar velocities, an accelerating Λ-like component is needed, yet there are strong indications that this does not come from the background cosmology. This accelerating factor is somehow related to the particular local environment of the Milky Way. One may ask under what circumstances one could have a local accelerated expansion without a Λ component. The most straightforward example is that of cosmological voids. Their low density makes them underdense island universes and their expansion adds to the drag coming from the global Hubble expansion as $H_{\text{void}} = 1.2H_0$ (Schaap 2007). This effect is independent of the background cosmology. It is purely the result of the particular dynamics of underdense regions and, as we will see in the following section, it is not unique to voids.

2.1 Local LSS geometry and dynamics

In order to describe the role of the local geometry in the LSS dynamics it is illustrative to take a somewhat different approach to the Zel’dovich collapse of an overdense region (Zel’dovich 1970) and focus on the draining and expansion of underdense valleys along similar lines as Icke (1984); Icke & van de Weygaert (1987). We start by generalizing the notion of a void as an n-dimensional valley with $n = 3, 2, 1$ corresponding to voids, walls and filaments respectively. In this inverse dynamical description, matter is drained out of three-dimensional valleys (voids) and accumulates in two-dimensional (void-intersecting) walls. These two-dimensional valleys expand and lose their matter fraction and draining of matter results in the observer is located. In the case of walls, the local expansion and draining of matter results in v_{nL} being on average positive. This extra component in the velocity is reflected in super-Hubble flows which further cool down the local velocity fluctuations, producing a cold dynamical environment.

3 ARE WE LIVING IN A WALL?

The Milky Way is the dominant member of the Local Group, a system of galaxies forming a relatively flat pancake (Hartwick 2000). Extending perpendicular to the plane of the Milky Way, we find a planar association of galaxies up to ~15 Mpc and at its edge the Virgo Cluster and its filamentary network (Tully & Fisher 1987). Perpendicular to the local wall, we find the local void extending up to ~ 40 Mpc (Tully et al. 2008). Our surrounding LSS geometry is consistent with the Milky Way being inside a wall of radius $r \sim 10$ Mpc. It is interesting to note that the disk of the MW and its neighbours within 10 Mpc lie perpendicular to the plane of the local wall in excellent agreement with predictions from tidal torque theory (Boyle 1993; White 1982; Navarro et al. 2004; Aragón-Calvo et al. 2007).

4 N-BODY SIMULATION AND DM HALOES

The analysis presented here is based on a dark matter N-body simulation with cosmological parameters $\Omega_m = 0.3, \Omega_\Lambda = 0.7, h = 0.73, \sigma_8 = 0.8$ and 200 Mpc/h per side. Initial conditions were generated for 512^3, 2563, 1283 and 643 particles. The simulation was run for all particle resolutions from $z = 49$ until the present time, $z = 0$ using the GADGET-2 N-body code (Springel 2005). From the final particle distribution of all resolutions we compute the density field inside a cubic grid of 512 voxels per dimension using the DTFE method (Schaap & van de Weygaert 2000).

We identify groups in the 5123 simulation at $z = 0$ using the Friends of Friends group finder with a linking parameter $b = 0.2$. We impose a particle count limit of 100 corresponding to a halo mass of $M > 5 \times 10^{11} M_\odot h^{-1}$. For each group, we compute its mass, radius, peculiar velocity, v_{max}, shape, etc. We then identify “Milky Way” (MW) haloes in the mass range $1 \times 10^{12} M_\odot < M_{\text{halo}} < 3 \times 10^{12} M_\odot$ and maximum circular velocity $v_{\text{max}} > 20$ km s$^{-1}$.

5 FINDING WALLS IN THE COSMIC WEB

In order to isolate individual walls from the computed density field we performed the hierarchical decomposition into voids, walls and filaments using the SpineWeb method (Aragón-Calvo et al. 2010a) extended to the hierarchical formalism described in Aragon-Calvo et al. 2010b). In the hierarchical SpineWeb framework, each hierarchical level is defined by a physical smoothing scale in the linear regime and contains the full network of voids and its complementary web of walls and filaments. The hierarchical SpineWeb provides a complete parameter-free characterization of the geometry of the Cosmic Web. In the present analysis, we computed three hierarchical levels for practical reasons since further levels of substructure tend to be noisy due to resolution effects. We generate catalogues of walls and filaments and for all pixels in walls we also compute the distance to its closest adjacent filament.

Figure 1 illustrates the close relation between LSS geometry and local dynamics. The left panel shows the network of structures found with the SpineWeb along a thick slice. A small region containing a face-on wall at its centre is highlighted by a white square and the corresponding density field is shown in the central panel. Note how the substructure inside the wall contrasts with its adjacent empty voids. Even when the density of the wall is very low ($\delta \sim 0.5 - 1.0$) it is denser than the interior of its adjacent voids which appear completely dark in the central panel. The right panel shows
the dynamics inside the central wall. We visualize the velocity field using the Line Integral Convolution (LIC) technique (Cabral and Leith 1993). The velocity field shown here corresponds to the residual velocity field at a scale \(\delta \approx 8 \text{ Mpc}/h \) visualized with the LIC technique (see text for details). The lines represent streams following the velocity field. The black filled areas correspond to filamentary regions with overdensity \(\delta > 2 \).

Figure 1. Local dynamics inside a cosmological wall. The three panels show different aspects of the geometry and dynamics of the Cosmic Web. Left panel: network of walls, filaments and voids from the SpineWeb method shown in a thick slice of 1.36 Mpc. Central panel: Density field inside the zoomed region highlighted in the left figure. Right panel: local dynamics from the residual velocity field at scales of 8 Mpc/h visualized with the LIC technique (see text for details). The lines represent streams following the velocity field. The black filled areas correspond to filamentary regions with overdensity \(\delta > 2 \).

6 THE HUBBLE FLOW IN WALLS

Having defined the halo catalog we proceed to select those haloes inside walls and filaments. Central MW halos in walls were restricted to be at least 3 Mpc away from their closest filament. No restriction was imposed on the neighbour haloes, except \(v_{\max} > 20 \text{ km s}^{-1}h^{-1} \). We also computed the local density fluctuation \((\delta = \rho/\bar{\rho}) \) around each halo from the dark matter density distribution using a Gaussian kernel with \(\sigma_G = 3 \text{ Mpc} \). We defined low \((\delta < 1.3)\) and high \((\delta > 2)\) density environments roughly corresponding to voids-walls and filaments-clusters respectively (see Fig. 4). For each MW halo we compute line-of-sight velocities as \(v_{\text{los}} = \mathbf{\hat{r}} \cdot \mathbf{v}_{\text{MW},\text{los}} \), where \(\mathbf{\hat{r}} \) is the unit vector between the central MW halo and its neighbour halo and \(\mathbf{v}_{\text{MW},\text{los}} \) is the relative velocity between the two haloes. The radial velocity is then used to compute the distance-velocity diagrams described in the following sections.

6.1 Cold and super-cold Hubble flows in walls

The Hubble flow for haloes in walls is shown in the distance-velocity diagrams of Fig. 2 for three increasingly cold and super-Hubble cases (compare to Fig. 3). The flow for haloes in walls (left panel) has a mean velocity dispersion of \(\sigma_H \approx 55 \text{ km s}^{-1} \) in the range \(1 < r < 3 \text{ Mpc} \) after which point we observe a broadening in the dispersion up to \(\sigma_H = 180 \text{ km s}^{-1} \) at \(r = 5 \text{ Mpc} \). The ratio between the simulated and observed mean dispersions is \(\sigma_{\text{sim}}/\sigma_{\text{obs}} = 1.63 \). When the low-density condition is included (central panel) the Hubble flow becomes significantly colder with \(\sigma_H \approx 30 \text{ km s}^{-1} \) at \(1 < r < 3 \text{ Mpc} \). The broadening in \(\sigma_H \) at larger distances is also smaller with \(\sigma_H = 114 \text{ km s}^{-1} \) at \(r = 5 \text{ Mpc} \) and the ratio between mean dispersions is \(\sigma_{\text{sim}}/\sigma_{\text{obs}} = 1.07 \). The agreement of this particular sample and the observed galaxy population is remarkable with very similar dispersion across the full range of the diagram and even showing the same broadening at \(r \sim 3 \text{ Mpc} \). Finally, if one further restricts the neighbour haloes to be located in the same parent wall as the central MW halo (right panel) we then have the extreme case of super-cold flows with mean velocity dispersion \(\sigma_H \approx 25 \text{ km s}^{-1} \) in the range \(1 < r < 3 \text{ Mpc} \). The low velocity dispersion is observed even at the boundaries of the largest walls in our sample with \(\sigma_H = 50.9 \text{ km s}^{-1} \) at \(r = 5 \text{ Mpc} \). The dispersion in this sample is significantly lower than the observed by almost a factor of two \((\sigma_{\text{sim}}/\sigma_{\text{obs}} = 0.63) \).

6.2 Super Hubble flows in walls

The internal expansion of the walls is also observed in the distance velocity diagrams of Fig. 2. The flow for haloes in all cases is sub-Hubble at small scales \(r < 2 \text{ Mpc} \) reflecting the decelerating influence of the central halo. For haloes in walls (left panel) the flow is marginally super-Hubble at \(r \sim 2.5 \text{ Mpc} \). Once we include the low-density condition (central panel) the super-Hubble character of the flow becomes more clear. At distances \(r > 2 \text{ Mpc} \) we have a local Hubble constant of \(h_{\text{local}} = 0.77 \). When we consider only neighbour haloes inside the same parent wall (right panel), then the effect of the local LSS geometry-dynamics dominates the distance-velocity diagram. The local Hubble constant is \(h_{\text{local}} = 1.13 \) at scales \(r > 2 \text{ Mpc} \), which is 150% larger than the global Hubble constant given by the back-
Figure 2. Cold and super-Hubble flows inside walls. We show the distance-velocity diagram for central “Milky Way” haloes inside walls considering three increasingly “cold” neighbourhoods: Top left panel shows the contribution from all haloes around central halos in walls and including only the contribution from neighbour haloes inside the same parent wall as the central halo. The distribution of neighbour haloes is binned and presented as grayscale in the background. Blue line corresponds to the mean in the corresponding bin computed from a Gaussian fit. Blue dashed lines indicate the standard deviation computed from the Gaussian fit. Filled circles correspond to galaxies given in Karachentsev et al. (2009) for a pure Hubble flow with corresponding ratios between the dispersion from N-body (σ_{sim}) and the observed one (σ_{obs}). Values larger than one (hot) are plotted in red and blue (cold) otherwise. The blue color in the top panels indicates that for these curves $\bar{\delta}$ values are also significantly larger than the expected for galaxies inside voids where $h_{\text{void}} = 1.2h = 0.88$ (Schaap 2007).

6.3 Radius of zero velocity (R_0)

We explored the effect of the local geometry-dynamics on the radius at which no recession velocity is measured (R_0). This radius depends to first order on the mass of the central halo as $R_0 \propto M^{1/3}$. The value of R_0 is basically independent of the local density (see Fig. 3 left and central panels) at $R_0 \approx 1$ Mpc. However, when one divides the MW halo sample in terms of their surrounding LSS geometry, the effect of the local LSS dynamics emerges. For MW haloes in walls $R_0 \approx 0.9$ Mpc (see Fig. 2). This reflects the fact that neighbour haloes recede faster than the global Hubble flow, thus making the central halo appear less massive. The difference in mass from no LSS-geometry distinction and haloes in walls is $M_{\text{wall}}/M_{\text{all}} \propto R_0^{3}/R_0^{3} \approx 1/0.9^3 = 0.73$. Without considering the local geometry for central halos in walls, one can underestimate its mass by as much as $\approx 27\%$.

An extreme example of the effect of local geometry-dynamics on the value of R_0 is shown in the right panel of Fig. 2 where we computed the distance-velocity diagram for central haloes located in filaments and high density regions and considering only neighbouring haloes located in walls. This case is the opposite dynamically to the one of haloes in walls. The infall of haloes in filaments along the adjacent walls is reflected in the extremely high value of R_0. This effect is independent of the mass of the central halo (compare to the central panel of Fig 3) and if used to estimate the mass of the central MW halo can overestimate its mass by a factor of $M_{\text{est}}/M_{\text{real}} = 337\%$ compared to the low and high density samples (left and central panels of Fig. 3) and $M_{\text{est}}/M_{\text{real}} = 462\%$ compared to haloes in walls.

6.4 Effect of density on the Hubble flow

Figure 3 shows the effect of local density on the distance-velocity diagram. Low density regions (left panel) have low velocity dispersions with $\sigma_H = 63.2$ km s$^{-1}$ in the range $1 < r < 3$ Mpc. The value of σ_H remains relatively constant for all distances. The mean velocity converges to the global Hubble flow at $r \approx 4$ Mpc. High density regions are sub-Hubble and significantly hotter with $\sigma_H = 153.8$ km s$^{-1}$ going as high as $\sigma_H = 212.1$ km/s at $r = 5$ Mpc.

7 CONCLUSIONS AND FUTURE WORK

The coldness of the local Hubble flow is a longstanding problem in ΛCDM cosmology. We have shown that by taking account of the void/wall/filament nature of large-scale structure, one can naturally reproduce the observed low dispersion in the local Hubble flow for galaxies located in local-group LSS configurations, corresponding to walls. The dispersion of the local Hubble flow ($1 < R < 3$ Mpc) around simulated “Milky Way” haloes which are located at the centre of low-density cosmological walls is found to be $\sigma_H \sim 30$ km s$^{-1}$ (Fig. 2 central panel), in excellent agreement with observations. The expansion inside walls is also reflected in the enhanced value of the measured local Hubble constant. For “Milky Way” haloes inside walls, we find super-Hubble
flows with $h_{\text{local}} \approx 0.77 - 1.13$. Ignoring the dynamical effects of the local wall, the mass of the Milky Way estimated from R_0 can be underestimated by as much as $\sim 30\%$. In a future paper we will extend our study to include voids and filaments.

The strong constraint on the LSS dynamics imposed by the complementary LSS geometry can also be exploited to improve current techniques of velocity field reconstruction. A full LSS morphological decomposition of the local supercluster can allow us to obtain a more complete characterization of our local velocity field.

8 ACKNOWLEDGEMENTS

This research was funded by the Gordon and Betty Moore foundation.

REFERENCES

Aragón-Calvo, M. A., van de Weygaert, R., Jones, B. J. T., & van der Hulst, J. M. 2007, ApJL, 655, L5

Aragón-Calvo, M. A., Platen, E., van de Weygaert, R., & Szalay, A. S. 2010, ApJ, 723, 364

Aragon-Calvo, M. A., van de Weygaert, R., Araya-Melo, P. A., Platen, E., & Szalay, A. S. 2010, MNRAS, 404, L89

Baryshev, Y. V., Chernin, A. D., & Teerikorpi, P. 2001, A&A, 378, 729

Cabrál, B., Leith, L., “Imaging Vector Fields Using Line Integral Convolution”, Proceedings of ACM SigGraph 93, Aug 2-6, Anaheim, California, pp. 263-270, 1993.

Chernin, A. D., Karachentsev, I. D., Nasonova, O. G., Teerikorpi, P., Valtonen, M. J., Dolgachev, V. P., Domozhilova, L. M., & Byrd, G. G. 2010, A&A, 520, A104

Ekholm, T., Baryshev, Y., Teerikorpi, P., Hanski, M. O., & Paturel, G. 2001, A& A, 368, L17

Governato, F., Moore, B., Cen, R., Stadel, J., Lake, G., & Quinn, T. 1997, New Astronomy, 2, 91

Hartwick, F. D. A. 2000, AJ, 119, 2248

Hawkins, E., et al. 2003, MNRAS, 346, 78

Hoffman, Y., Martinez-Vaquero, L. A., Yepes, G., & Gottlöber, S. 2008, MNRAS, 386, 390

Hoyle F., 1949, Problems of Cosmical Aerodynamics

Icke, V. 1984, MNRAS, 206, 1P

Icke, V., & van de Weygaert, R. 1987, A&A, 184, 16

Karachentsev, I. D., et al. 2003, A&A, 398, 479

Karachentsev, I. D., Khashibadze, O. G., Makarov, D. I., & Tully, R. B. 2009, MNRAS, 393, 1265

Karachentsev, I. D., et al. 2002, A&A, 389, 812

Klypin, A., Hoffman, Y., Kravtsov, A. V., & Gottlöber, S. 2003, ApJ, 596, 19

Landy, S., 2002, ApJ, 567, L1

Macciò, A. V., Governato, F., & Horellou, C. 2005, MNRAS, 359, 941

Martinez-Vaquero, L. A., Yepes, G., Hoffman, Y., Gottlöber, S., & Sivan, M. 2009, MNRAS, 397, 2070

Navarro J. F., Abadi M. G., Steinmetz M. 2004, ApJL, 613, L41

Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe (Princeton: Princeton University Press)

Peebles, P. J. E. 1988, ApJ, 332, 17

Peirani, S., & de Freitas P., J. A. 2008, A&A, 488, 845

Sandage, A., Tammann, G. A., & Hardy, E. 1972, ApJ, 172, 253

Sandage, A. 1986, ApJL, 307, 1

Schaap W. E., van de Weygaert R, 2000, A&A, 363, L29

Schaap W. E., 2007, PhD Thesis. University of Groningen.

Scoccimarro, R. 2004, Phys.Rev. D70, 083007

Springel, V. 2005, MNRAS, 364, 1105

Teerikorpi, P., Chernin, A. D., Karachentsev, I. D., & Valtonen, M. J. 2008, A&A, 483, 383

Tully, R. B., & Fisher, J. R. 1987, Journal of the British Astronomical Association, 98, 48

Tully, R. B., Shaya, E. J., Karachentsev, I. D., Courtois,
H. M., Kocevski, D. D., Rizzi, L., & Peel, A. 2008, ApJ, 676, 184
van de Weygaert, R., & Hoffman, Y. 2000, Cosmic Flows Workshop, 201, 169
White S. D. M. 1984, ApJ, 286, 38
Zehavi, I., et al. 2002, ApJ, 571, 172
Zel’dovich Ya. B., 1970, A&A, 5, 84