TOPOLOGICAL COMPUTATION OF THE STOKES MATRICES OF
THE WEIGHTED PROJECTIVE LINE \(\mathbb{P}(1,3) \)

ANNA-LAURA SATTELBERGER

Abstract. The localized Fourier–Laplace transform of the Gauß–Manin system
of \(f : \mathbb{G}_m \to \mathbb{A}^1, x \mapsto x + x^{-3} \) is a \(\mathcal{D}_{\mathbb{G}_m} \)-module, having a regular singularity
at 0 and an irregular one at \(\infty \). By mirror symmetry it is closely related to
the quantum connection of the weighted projective line \(\mathbb{P}(1,3) \). Following [6] we
compute its Stokes multipliers at \(\infty \) by purely topological methods. We compare
it to the Gram matrix of the Euler–Poincaré pairing on \(D^b(\text{Coh}(\mathbb{P}(1,3))) \).

Contents

Introduction 1
1. Gauß–Manin system and its Fourier–Laplace transform 2
2. Topological computation of the Stokes matrices 3
3. Quantum connection and Dubrovin’s conjecture 10
References 12

Introduction

In [6], A. D’Agnolo, M. Hien, G. Morando and C. Sabbah describe how to compute
the Stokes multipliers of the enhanced Fourier–Sato transform of a perverse sheaf on
the affine line by purely topological methods. To a regular holonomic \(\mathcal{D} \)-module
\(M \in \text{Mod}_{rh}(\mathcal{D}_{\mathbb{A}^1}) \) on the affine line one associates a perverse sheaf via the regular
Riemann–Hilbert correspondence
\[
\text{RHom}(\bullet, \mathcal{O}^{an})[1] : \text{Mod}_{rh}(\mathcal{D}_{\mathbb{A}^1}) \xrightarrow{\sim} \text{Perv}(\mathcal{C}_{\mathbb{A}^1}).
\]
Let \(\Sigma \subset \mathbb{A}^1 \) denote the set of singularities of \(M \). Following [6, Section 4.2], after
suitably choosing a total order on \(\Sigma \), the resulting perverse sheaf \(F \in \text{Perv}_\Sigma(\mathcal{C}_{\mathbb{A}^1}) \)
can be described by linear algebra data, namely the quiver
\[
(\Psi(F), \Phi_\sigma(F), u_\sigma, v_\sigma)_{\sigma \in \Sigma},
\]
where \(\Psi(F) \) and \(\Phi_\sigma(F) \) are finite dimensional \(\mathbb{C} \)-vector spaces and \(v_\sigma : \Psi(F) \to \Phi_\sigma(F) \)
and \(v_\sigma : \Phi_\sigma(F) \to \Psi(F) \) are linear maps s.t. \(1 - u_\sigma v_\sigma \) is invertible for any \(\sigma \). The main
result in [6] is a determination of the Stokes multipliers of the enhanced Fourier–Sato
transform of \(F \) and therefore of the Fourier–Laplace transform of \(M \) in terms of the
quiver of \(F \).

Mirror symmetry connects the weighted projective line \(\mathbb{P}(1,3) \) with the Landau–
Ginzburg model
\[
\left(\mathbb{G}_m, f = x + \frac{1}{x^3} \right).
\]
The quantum connection of $\mathbb{P}(1,3)$ is closely related to the Fourier–Laplace transform of the Gauß–Manin system $H^0(\mathcal{f}_f \mathcal{O})$ of f. We compute that

$$F = Rf_* \mathbb{C}[1] \in \text{Perv}_\Sigma(\mathbb{C}_h),$$

where Σ denotes the set of singular values of f, is the perverse sheaf associated to $H^0(\mathcal{f}_f \mathcal{O})$ by the Riemann–Hilbert correspondence. In section 1 we compute the localized Fourier–Laplace transform of f. In section 2, analogous to the examples in [6, Section 7], we carry out the topological computation of the Stokes multipliers of the Fourier–Laplace transform of $H^0(\mathcal{f}_f \mathcal{O})$. In section 3 we compare the Stokes matrix $S_\mathcal{O}$ that we obtained from our topological computations to the Gram matrix of the Euler–Poincaré pairing on $D^b(\text{Coh}(\mathbb{P}(1,3)))$ w.r.t. a suitable full exceptional collection. Following Dubrovin’s conjecture about the Stokes matrix of the quantum connection, proven for the weighted projective space $\mathbb{P}(\omega_0, \ldots, \omega_n)$ in [16] by S. Tanabé and K. Ueda and in [5] by J. A. Cruz Morales and M. van der Put, they are known to be equivalent after appropriate modifications. We give the explicit braid of the braid group B_4 that deforms the Gram matrix into the Stokes matrix $S_\mathcal{O}$.

1. Gauß–Manin system and its Fourier–Laplace transform

Let X be affine and f a regular function $f : X \to \mathbb{A}^1$ on X. Denote by \mathcal{f}_f the direct image in the category of \mathcal{D}-modules and by $M := H^0(\mathcal{f}_f \mathcal{O}_X) \in \text{Mod}_{\text{rh}}(\mathcal{D}_{\mathbb{A}^1})$ the zeroth cohomology of the Gauß–Manin system of f. Following [8, Section 2.c] it is given by

$$M = \mathcal{O}^n(X)[\partial_\theta]/(d - \partial_\theta d f \wedge) \mathcal{O}^{n-1}(X)[\partial_\theta].$$

Denote by $G := \mathcal{M}[\tau^{-1}]$ the Fourier–Laplace transform of M localized at $\tau = 0$. It is given by

$$G = \mathcal{O}^n(X)[\tau, \tau^{-1}]/(d - \tau d f \wedge) \mathcal{O}^{n-1}(X)[\tau, \tau^{-1}].$$

If f fulfills some tameness condition, G is a free $\mathcal{C}[\tau, \tau^{-1}]$-module of finite rank. Rewriting in the variable $\theta = \tau^{-1}$ gives the $\mathcal{C}[\theta, \theta^{-1}]$-module

$$G = \mathcal{O}^n(X)[\theta, \theta^{-1}]/(\theta d - df \wedge) \mathcal{O}^{n-1}(X)[\theta, \theta^{-1}].$$

G is endowed with a flat connection given as follows. For $\gamma = \left[\sum_{k \in \mathbb{Z}} \omega_k \theta^k\right] \in G$, where $\mathcal{O}^n(X) \ni \omega_k = 0$ for a.a. k, the connection is given by (cf. [11, Def. 2.3.1]):

$$\theta^2 \nabla \frac{\partial}{\partial \theta}(\gamma) = \left[\sum_k f \omega_k \theta^k + \sum_k k \omega_k \theta^{k+1}\right].$$

It is known that (G, ∇) has a regular singularity at $\theta = \infty$ and possibly an irregular singularity at $\theta = 0$. Rewriting in $\tau = \theta^{-1}$ yields the irregular singularity at $\tau = \infty$.

We now consider the Laurent polynomial $f = x + x^{-3} \in \mathbb{C}[x, x^{-1}]$, being a regular function on the multiplicative group \mathbb{G}_m. Since f is convenient and nondegenerate w.r.t. its Newton polytope Δ_∞ at ∞, f is cohomologically tame (cf. [15, Part 2]). The localized Fourier–Laplace transform of the Gauß–Manin module $H^0(\mathcal{f}_f \mathcal{O})$ is therefore free of finite rank over $\mathcal{C}[\tau, \tau^{-1}]$. Since f is of relative dimension 0, $\mathcal{f}_f \mathcal{O}$ is concentrated in degree 0, i.e., $\mathcal{f}_f \mathcal{O} \simeq H^0(\mathcal{f}_f \mathcal{O}) \in \text{Mod}_{\text{rh}}(\mathcal{D}_{\mathbb{A}^1})$. For our computations we pass to the variable $\theta = \tau^{-1}$. We compute that for the given f, G is given by the free $\mathcal{C}[\theta, \theta^{-1}]$-module

$$G = \mathcal{C}[x, x^{-1}]dx[\theta, \theta^{-1}]/\left(\theta d - \left(dx - \frac{3}{\tau^3}dx\right) \wedge\right) \mathcal{C}[x, x^{-1}][\theta, \theta^{-1}].$$
with basis over \(\mathbb{C}[\theta, \theta^{-1}] \) given by \(\frac{dx}{x}, \frac{dx}{x^2}, \frac{dx}{x^3}, \frac{dx}{x^4} \). In this basis, the connection is given by

\[
\theta \nabla_{\bar{\theta}} = \theta \partial_{\theta} + \begin{pmatrix}
0 & 4 & 0 & 0 \\
0 & \frac{1}{4} & \frac{4}{3} & 0 \\
0 & 0 & \frac{1}{3} & \frac{4}{9} \\
\frac{1}{4} & 0 & 0 & 1
\end{pmatrix}.
\]

(1)

Via the cyclic vector \(m = (1, 0, 0, 0) \) we compute the relation

\[
\nabla_{\theta}^4 \theta \partial_{\theta} m + 4 \nabla_{\theta}^3 \theta \partial_{\theta} m + \frac{32}{9} \nabla_{\theta}^2 \theta \partial_{\theta} m - \frac{256}{27 \theta^2} m = 0
\]

and therefore associate the differential operator

\[
P = (\theta \partial_{\theta})^4 + 4(\theta \partial_{\theta})^3 + \frac{32}{9} (\theta \partial_{\theta})^2 - \frac{256}{27 \theta^2} \in \mathbb{C}[\theta, \theta^{-1}] \langle \partial_{\theta} \rangle = \mathcal{D}_{\mathbb{C}_m}.
\]

The Newton polygon in figure 1 confirms that \(P \) – and therefore system (1) – has the nonzero slope 1 and therefore is irregular singular at \(\theta = 0 \) and regular singular at \(\theta = \infty \).

2. Topological computation of the Stokes matrices

We consider the Laurent polynomial \(f = x + \frac{1}{x} : \mathbb{C}_m \to \mathbb{A}^1 \). Its critical points are given by \(\{ \pm \sqrt{3}, \pm i \sqrt{3} \} \). The critical values of \(f \) are given by

\[
\Sigma = \left\{ \pm \frac{4}{\sqrt{27}}, \pm \frac{4i}{\sqrt{27}} \right\} \subset \mathbb{A}^1.
\]

The preimages of

- \(\frac{4}{\sqrt{27}} \) are \(\sqrt{3} \) (double), \(\frac{1-\sqrt{3}i}{\sqrt{27}} \) and \(\frac{1+i\sqrt{3}i}{\sqrt{27}} \),
- \(-\frac{4}{\sqrt{27}} \) are \(-\sqrt{3} \) (double), \(\frac{1+i\sqrt{3}i}{\sqrt{27}} \) and \(\frac{1-\sqrt{3}i}{\sqrt{27}} \),
- \(\frac{i}{\sqrt{27}} \) are \(i \sqrt{3} \) (double), \(\frac{-i-\sqrt{3}i}{\sqrt{27}} \) and \(\frac{-i+i\sqrt{3}i}{\sqrt{27}} \),
- \(-\frac{i}{\sqrt{27}} \) are \(-i \sqrt{3} \) (double), \(\frac{i+i\sqrt{3}i}{\sqrt{27}} \) and \(\frac{-i-\sqrt{3}i}{\sqrt{27}} \).

Since \(f \) is proper we compute by the adjunction formula that

\[
\text{RHom}_{\mathcal{D}^{an}} \left(\left(\int_f \mathcal{O} \right)^{an}, \mathcal{O}^{an} \right) \simeq Rf^{an}_* \text{RHom}_{\mathcal{D}^{an}}(\mathcal{O}^{an}, f^! \mathcal{O}^{an}) \simeq Rf^{an}_* \mathbb{C}.
\]
Since f is semismall, $Rf_!\mathbb{C}[1] \in \text{Perv}(\mathbb{C}A_1)$ is a perverse sheaf (cf. [7]). Outside of Σ, f is a covering of degree 4, therefore $Rf_!\mathbb{C}[1] \in \text{Perv}_\Sigma(\mathbb{C}A_1)$. By the regular Riemann–Hilbert correspondence

$$\text{Sol}(\bullet)[\dim X] := \text{RHom}_{\mathcal{D}_X^{an}}((\bullet)^{an}, \mathcal{O}_X^{an})[\dim X]: \text{Mod}_{\text{rh}}(\mathcal{D}_X) \xrightarrow{\simeq} \text{Perv}(\mathbb{C}_X),$$

we associate to $\mathcal{H}^0(f_!\mathcal{O})$ the perverse sheaf $F := Rf_!\mathbb{C}[1]$.

We fix $\alpha = e^{\frac{2\pi i}{8}} \in \mathbb{A}^1, \beta = e^{\frac{3\pi i}{8}} \in (\mathbb{A}^1)^\vee$, s.t. $\Re(\langle \alpha, \beta \rangle) = 0, \Im(\langle \alpha, \beta \rangle) = 1$. This induces the following ordering on Σ (cf. [6, Section 4]):

$$\sigma_1 = \frac{4i}{\sqrt{27}} <_\beta \sigma_2 = -\frac{4}{\sqrt{27}} <_\beta \sigma_3 = \frac{4}{\sqrt{27}} <_\beta \sigma_4 = -\frac{4i}{\sqrt{27}}.$$

In figure 5 the σ_i are depicted in the following colors:

- σ_1: green,
- σ_2: red,
- σ_3: purple,
- σ_4: orange.

Figure 2. LHS: $\{x | \Re(f(x)) \geq 0\}$, RHS: $\{x | \Im(f(x)) \geq 0\}$

Figure 3. Preimages of imaginary (blue) and real (red) axis
The blue area in figure 2 depicts where f has real resp. imaginary part greater than or equal to 0. In figure 3 the preimages of the imaginary (blue) and real (red) axis under f are plotted. We consider lines passing through the singular values with phase $\frac{\pi}{8}$, as depicted in figure 5. The preimages of these lines are plotted in figure 4. We fix a base point e with $\Re(e) > \Re(\sigma_i)$ and denote its preimages by e_1, e_2, e_3, e_4 as depicted in figure 6. In the following we adopt the notation of [6, Section 4]. The nearby and global nearby cycles of F are given by

$$\Psi_{\sigma_i}(F) := R\Gamma_c(\mathbb{A}^1; \mathcal{E}_{\sigma_i} \otimes F) \simeq H^0 R\Gamma_c(\mathcal{E}_{\sigma_i}^*; F) \cong \bigoplus_{e_j \in f^{-1}(e)} \mathbb{C}_{e_j} \cong \mathbb{C}^4,$$

$$\Psi(F) := R\Gamma_c(\mathbb{A}^1; \mathcal{C}_{\mathbb{A}^1 \setminus \ell_5} \otimes F)[1] \simeq \Psi_{\sigma_i}(F) \cong \mathbb{C}^4.$$

Furthermore we fix an isomorphism $i_{\sigma_i}^{-1} F[-1] \cong \bigoplus_{e_j \in f^{-1}(\sigma_i)} \mathbb{C}_{e_j} \cong \mathbb{C}^3$.

Figure 4. Preimages under f

Figure 5. Lines passing through σ_i with phase $\frac{\pi}{8}$
The exponential components at \(\infty \) of the Fourier–Laplace transform of \(H^0(f_O) \) are known to be of linear type with coefficients given by the \(\sigma_i \). The Stokes rays are therefore given by
\[
\left\{ 0, \pm \frac{\pi}{4}, \pm \frac{\pi}{2}, \pm \frac{3\pi}{4}, \pi \right\}.
\]

We consider loops \(\gamma_{i}, i=1,2,3,4 \), starting at \(e_j \) and running around the singular value \(\sigma_i \) in counterclockwise orientation\(^1\) as depicted in figure 6. We denote by \(\gamma^j_{i} \) the preimage of \(\gamma_{i} \), starting at \(e_j \), \(j=1,2,3,4 \).

From figure 6 we read, in the basis \(e_1, e_2, e_3, e_4 \), the monodromies \(b_{\sigma_i} \), encode which lift of \(\ell_{\sigma_i} \) starts at which preimage of \(\sigma_i \), induced from the corresponding boundary map in homology. More explicitly from figure 7 we read the following:

\(\sigma_1: \ell^1_{\sigma_1} \mapsto \sigma^1_1, \ell^2_{\sigma_1} \mapsto \sigma^1_1, \ell^3_{\sigma_1} \mapsto \sigma^1_1, \ell^4_{\sigma_1} \mapsto \sigma^3_1. \)

Therefore \(b_{\sigma_1} \) is the transpose of \(\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \).

\(\sigma_2: \ell^1_{\sigma_2} \mapsto \sigma^3_2, \ell^2_{\sigma_2} \mapsto \sigma^1_2, \ell^3_{\sigma_2} \mapsto \sigma^2_2, \ell^4_{\sigma_2} \mapsto \sigma^2_2. \)

Therefore \(b_{\sigma_2} \) is the transpose of \(\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \).

\(\sigma_3: \ell^1_{\sigma_3} \mapsto \sigma^1_3, \ell^2_{\sigma_3} \mapsto \sigma^2_3, \ell^3_{\sigma_3} \mapsto \sigma^3_3, \ell^4_{\sigma_3} \mapsto \sigma^3_3. \)

Therefore \(b_{\sigma_3} \) is the transpose of \(\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \).

\(\sigma_4: \ell^1_{\sigma_4} \mapsto \sigma^1_4, \ell^2_{\sigma_4} \mapsto \sigma^3_4, \ell^3_{\sigma_4} \mapsto \sigma^4_4, \ell^4_{\sigma_4} \mapsto \sigma^2_4. \)

Therefore \(b_{\sigma_4} \) is the transpose of \(\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \).

We obtain, in the ordered bases \(\sigma_i^1, \sigma_i^2, \sigma_i^3 \) and \(\ell^1_{\sigma_i}, \ell^2_{\sigma_i}, \ell^3_{\sigma_i}, \ell^4_{\sigma_i} \) each:

\(b_{\sigma_1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad b_{\sigma_2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \)

\(b_{\sigma_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad b_{\sigma_4} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}. \)

\(^1\) counterclockwise orientation since the imaginary part of \(\langle \alpha, \beta \rangle \) is positive
Denote by $u_i := u_{v_i}$, $v_i := v_{t_i}$, $T_i := T_{v_i}$ and $\Phi_i := \Phi_{v_i}$. We obtain $\Phi_i(F) \xrightarrow{v_i} \Psi(F)$ as the cokernels of the diagrams

$$i_{\sigma_i}^{-1}F[-1] \xrightarrow{b_{\sigma_i}} \Psi(F)$$

We identify the cokernels of b_{σ_i} in the following way:

- $\text{coker } b_{\sigma_1} \simeq \mathbb{C}$ via $\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & v_2 & v_3 & v_4 \\ v_1 & v_2 & v_3 & v_4 \end{bmatrix} = \begin{bmatrix} v_1 - v_2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,

- $\text{coker } b_{\sigma_2} \simeq \mathbb{C}$ via $\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & v_2 & v_3 & v_4 \\ v_1 & v_2 & v_3 & v_4 \end{bmatrix} = \begin{bmatrix} v_2 - v_3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,

- $\text{coker } b_{\sigma_3} \simeq \mathbb{C}$ via $\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & v_2 & v_3 & v_4 \\ v_1 & v_2 & v_3 & v_4 \end{bmatrix} = \begin{bmatrix} v_1 - v_3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,

- $\text{coker } b_{\sigma_4} \simeq \mathbb{C}$ via $\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & v_2 & v_3 & v_4 \\ v_1 & v_2 & v_3 & v_4 \end{bmatrix} = \begin{bmatrix} v_1 - v_4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

We obtain that $(\Phi_i(F) \xrightarrow{v_i} \Psi(F)) \simeq (\mathbb{C} \xrightarrow{v_i} \mathbb{C}^4)$, where

$$u_1 = (1, -1, 0, 0), \quad u_2 = (0, 1, -1, 0), \quad u_3 = (1, 0, 0, -1), \quad u_4 = (1, 0, -1, 0),$$

and $v_i = u_i^*$.

Remembering carefully all the choices, by [6, Theorem 5.2.2] we obtain the following Stokes multipliers of the Fourier–Laplace transform of $H^0(\mathcal{F})$ at ∞:

$$S_\beta = \begin{pmatrix} 1 & u_1 v_2 & u_1 v_3 & u_1 v_4 \\ 0 & 1 & u_2 v_3 & u_2 v_4 \\ 0 & 0 & 1 & u_3 v_4 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$S_{-\beta} = \begin{pmatrix} T_1 & 0 & 0 & 0 \\ -u_2 v_1 & T_2 & 0 & 0 \\ -u_3 v_1 & -u_3 v_2 & T_3 & 0 \\ -u_4 v_1 & -u_4 v_2 & -u_4 v_3 & T_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ -1 & -1 & -1 & -1 \end{pmatrix} = -S_\beta^T,$$

where $T_i := 1 - u_i v_i$. $S_{-\beta}$ describes crossing $h_{\pm \beta}$ from H_α to $H_{-\alpha}$, where

$$H_\alpha = \left\{ r e^{i \varphi} \in (\mathbb{A}^1)^\vee \mid r > 0, \varphi \in \left[\frac{-5 \pi}{8}, \frac{3 \pi}{8}\right] \right\},$$

$$H_{-\alpha} = \left\{ r e^{i \varphi} \in (\mathbb{A}^1)^\vee \mid r > 0, \varphi \in \left[\frac{3 \pi}{8}, \frac{11 \pi}{8}\right] \right\},$$

denote the closed sectors at ∞ and $h_{\pm \beta} = \pm \mathbb{R}_{>0} \beta \subset (\mathbb{A}^1)^\vee$, s.t. $H_\alpha \cap H_{-\alpha} = h_\beta \cup h_{-\beta}$.

Figure 6. γ_{σ_1} and its preimages under f
Figure 7. ℓ_{σ_i} and its preimages under f
3. Quantum connection and Dubrovin’s conjecture

3.1. Quantum connection. The quantum connection of a Fano variety (resp. an orbifold) X is a connection on the trivial vector bundle over \mathbb{P}^1 with fiber $H^*(X, \mathbb{C})$ (resp. $H^*_\text{orb}(X, \mathbb{C})$), the standard inhomogenous coordinate on \mathbb{P}^1 being denoted by z.

By [10, (2.2.1)] the quantum connection is the connection given by

$$\nabla_{z\partial_z} = z \frac{\partial}{\partial z} - \frac{1}{z} (-K_X^{\circ}) + \mu,$$

where the first term on the right hand side is ordinary differentiation, the second is pointwise quantum multiplication by $(-K_X)$, and the third term is the grading operator

$$\mu(a) := \left(\frac{i}{2} - \frac{\dim X}{2} \right) a \text{ for } a \in H^1(X, \mathbb{C}).$$

The quantum connection is regular singular at $z = 0$ and irregular singular at $z = \infty$. For the weighted projective line $\mathbb{P}(a, b)$, the orbifold cohomology ring is given by (cf. [13, Example 3.20])

$$H^*_\text{orb}(\mathbb{P}(a, b), \mathbb{C}) = \mathbb{C}[x, y, \xi]/(xy, ax^{\frac{a}{2}} - by^{\frac{b}{2}}\xi^{a-m}, \xi^d - 1),$$

where $d = \gcd(a, b)$ and $m, n \in \mathbb{Z}$ s.t. $am + bn = d$. The grading is given as follows (cf. [2, Section 9]): $\deg x = \frac{1}{a}$, $\deg y = \frac{1}{b}$, $\deg \xi = 0$, where $A = \frac{a}{2}$, $B = \frac{b}{2}$. Quantum multiplication2 is computed in

$$QH^*_\text{orb} = \mathbb{C}[x, y, \xi]/(xy - 1, ax^{\frac{a}{2}} - by^{\frac{b}{2}}\xi^{a-m}, \xi^d - 1).$$

For $\gcd(a, b) = 1$, $-K_{\mathbb{P}(a, b)}$ is given by the element $[x^a + y^b] \in H^1$. Here the grading is scaled by 2, s.t. the grading operator is defined by $\mu(a) = (i - \dim X)a$ for $a \in H^1$.

We obtain the quantum connection of $\mathbb{P}(1, 3)$ as follows.

$$H^*_\text{orb}(\mathbb{P}(1, 3), \mathbb{C}) = \mathbb{C}[x, y]/(xy, x - 3y^3)$$

with grading given by $\deg x = 1, \deg y = \frac{1}{3}$. A basis over \mathbb{C} is given by $1, y, y^2, y^3$. Quantum multiplication by $-K_{\mathbb{P}(1, 3)} = [x + y^3] = [4y^3]$ in this basis is given by the matrix

$$\begin{pmatrix}
0 & \frac{4}{3} & 0 & 0 \\
0 & 0 & \frac{4}{3} & 0 \\
0 & 0 & 0 & \frac{4}{3} \\
4 & 0 & 0 & 0
\end{pmatrix}.$$

The grading μ is given by the matrix

$$\begin{pmatrix}
-\frac{1}{2} & 0 & 0 & 0 \\
0 & -\frac{1}{6} & 0 & 0 \\
0 & 0 & \frac{1}{6} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{pmatrix}.$$

Therefore the quantum connection of $\mathbb{P}(1, 3)$ is given by

$$\nabla_{z\partial_z} = z\partial_z - \frac{1}{z} \begin{pmatrix}
0 & \frac{4}{3} & 0 & 0 \\
0 & 0 & \frac{4}{3} & 0 \\
0 & 0 & 0 & \frac{4}{3} \\
4 & 0 & 0 & 0
\end{pmatrix} + \begin{pmatrix}
-\frac{1}{2} & 0 & 0 & 0 \\
0 & -\frac{1}{6} & 0 & 0 \\
0 & 0 & \frac{1}{6} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{pmatrix}.$$

It is irregular singular at $z = 0$ and regular singular at $z = \infty$. Rewriting in z^{-1} yields the irregular singularity at ∞.

2for $q = 1$
Observation. By the gauge transformation $h = \text{diag}(\theta^{-\frac{1}{2}}, \theta^{-\frac{1}{2}}, \theta^{-\frac{1}{2}}, \theta^{-\frac{1}{2}})$ which substracts $\frac{1}{2}$ on the diagonal entries and passing to $-\theta$, connection (1) coming from the Landau–Ginzburg model is exactly the quantum connection (2) of $\mathbb{P}(1,3)$, as predicted by mirror symmetry.

3.2. Dubrovin’s conjecture.

Let X be a Fano variety (or an orbifold), s.t. the bounded derived category $D^b(\text{Coh}(X))$ of coherent sheaves on X admits a full exceptional collection $\{E_1, \ldots, E_n\}$, where the collection $\{E_1, \ldots, E_n\}$ is called

- exceptional if $\text{RHom}(E_i, E_i) = \mathbb{C}$ for all i and $\text{RHom}(E_i, E_j) = 0$ for $i > j$,
- full if $D^b(\text{Coh}(X))$ is the smallest full triangulated subcategory of $D^b(\text{Coh}(X))$ containing E_1, \ldots, E_n.

In [9], B. Dubrovin conjectured that, under appropriate choices, the Stokes matrix of the quantum connection of X equals the Gram matrix of the Euler–Poincaré pairing w.r.t. some f.e.c. – modulo some action of the braid group, sign changes and permutations (cf. [4, Section 2.3]). The second Stokes matrix then is the transpose of the first one. The Euler–Poincaré pairing is given by the bilinear form

$$\chi(E, F) := \sum_k (-1)^k \dim \mathbb{C} \text{Ext}^k(E, F), \quad E, F \in D^b(\text{Coh}(X)).$$

The Gram matrix of χ w.r.t. to a f.e.c. is upper triangular with ones on the diagonal.

For $\mathbb{P}(a, b)$, $\langle O, O(1), \ldots, O(a + b - 1) \rangle$ is a f.e.c. of $D^b(\text{Coh}(\mathbb{P}(a, b)))$ (cf. [1, Theorem 2.12]). Following [3, Theorem 4.1], the cohomology of the twisting sheaves for $k \in \mathbb{Z}$ is given by

- $H^0(\mathbb{P}(a, b), O(k)) = \bigoplus_{(m, n) \in I_0} \mathbb{C} x^m y^n$, where $I_0 = \{(m, n) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} | am + bn = k\}$,
- $H^1(\mathbb{P}(a, b), O(k)) = \bigoplus_{(m, n) \in I_1} \mathbb{C} x^m y^n$, where $I_1 = \{(m, n) \in \mathbb{Z}_{< 0} \times \mathbb{Z}_{< 0} | am + bn = k\}$,
- $H^i(\mathbb{P}(a, b), O(k)) = 0$ for all $i \geq 2$.

We only need to compute $\text{Ext}^i(O(i), O(j))$ for $i < j$ which is given by $H^i(O(j - i))$ (cf. [14, Lemma 4.5]). Therefore the zeroth cohomologies of the twisting sheaves $O(j - i)$ are the only ones that contribute to the Gram matrix of χ. For $\mathbb{P}(1, 3)$ we obtain the cohomology groups

$$H^0(O(1)) \cong \mathbb{C}, \quad H^0(O(2)) \cong \mathbb{C}, \quad H^0(O(3)) \cong \mathbb{C}^2$$

and therefore the Gram matrix of the Euler–Poincaré pairing w.r.t. the f.e.c.

$$E : = \langle O, O(1), O(2), O(3) \rangle$$

is given by

$$S_{\text{Gram}} = \begin{pmatrix}
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$

\[3\text{from now on abbreviated to f.e.c.} \]
3.3. Comparison of the Gram and Stokes matrix. Mirror symmetry relates the Laurent polynomial \(f = x + \frac{1}{x^3} \) to the weighted projective line \(\mathbb{P}(1,3) \). The pair \((\mathbb{G}_m, f = x + \frac{1}{x^3})\) is a Landau–Ginzburg model of the weighted projective line \(\mathbb{P}(1,3) \). According to Dubrovin’s conjecture, the Stokes matrix of the quantum connection of \(\mathbb{P}(1,3) \) is given by the Gram matrix of the Euler–Poincaré pairing w.r.t. some f.e.c. of \(D^b(\text{Coh}(\mathbb{P}(1,3))) \). Note that there is a natural action of the braid group on the Stokes matrix reflecting variations in the choices involved to determine the Stokes matrix (cf. [12]). In our case we have to consider the braid group

\[
B_4 = \langle \beta_1, \beta_2, \beta_3 \mid \beta_1 \beta_2 \beta_1 = \beta_2 \beta_1 \beta_2, \beta_2 \beta_3 \beta_2 = \beta_3 \beta_2 \beta_3 \rangle.
\]

We computed that the Gram matrix of \(\chi \) w.r.t. the f.e.c. \(E \) is given by (3). Via the action of the braid \(\beta_1 \in B_4 \), we find that it is equivalent to \(S_\beta \). Following [12, Section 6] the braid \(\beta_1 \) acts on the Gram matrix as

\[
S_{\text{Gram}} \mapsto S_{\text{Gram}}^{\beta_1} := A^{\beta_1}(S_{\text{Gram}}) \cdot S_{\text{Gram}} \cdot (A^{\beta_1}(S_{\text{Gram}}))^t,
\]

where \(A^{\beta_1}(S_{\text{Gram}}) \) is given by

\[
A^{\beta_1}(S_{\text{Gram}}) = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

We obtain that

\[
S_{\text{Gram}}^{\beta_1} = \begin{pmatrix}
1 & -1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix} = S_\beta.
\]

Remark. \(S_{\text{Gram}}^{\beta_1} = S_\beta \) is the Gram matrix of the Euler–Poincaré pairing w.r.t. the right mutation \(\mathbb{R}_1E \) of the f.e.c. \(E \) (cf. [4, Proposition 13.1]). The action of the braid \(\beta_1 \in B_4 \) should correspond to a counterclockwise rotation of \(\beta \). Therefore, we could expect to have the braid \(\beta_1 \) acting on our Stokes matrix a priori.

References

[1] D. Auroux, L. Katzarkov, D. Orlov. Mirror symmetry for weighted projective planes and their noncommutative deformations. Annals of Mathematics (2) 167 (2008), no. 3, 867–943.
[2] D. Abramovich, T. Graber, A. Vistoli. Gromov–Witten theory of Deligne–Mumford stacks. American Journal of Mathematics 130 (2008), no. 5, 1337–1398.
[3] L. Candelori, C. Franc. Vector valued modular forms and the modular orbifold of elliptic curves. International Journal of Number Theory 13 (2017), no. 1, 39–63.
[4] G. Cotti. Geometry and Analytic Theory of Semisimple Coalescent Frobenius Structures. An Isomonodromic approach to Quantum Cohomology and Helix structures in Derived Categories. Doctoral Thesis, Scuola Internazionale Superiore di Studi Avanzati - Trieste, academic year 2016–2017.
[5] J. A. Cruz Morales, M. van der Put. Stokes matrices for the quantum differential equations of some Fano varieties. European Journal of Mathematics 1 (2015), issue 1, 138–153.
[6] A. D’Agnolo, M. Hien, G. Morando, C. Sabbah. Topological computation of some Stokes phenomena on the affine line. arXiv:1705.07610 [math.AG], 2017.
[7] M. A. de Cataldo, L. Migliorini. The Hard Lefschetz Theorem and the topology of semismall maps. Annales Scientifiques de l’École Normale Supérieure 35 (2002), issue 4, 759–772.
[8] A. Douai, C. Sabbah. Gauß–Manin systems, Brieskorn lattices and Frobenius structures (I). Annales de l’Institut Fourier 53 (2003), no. 4, 1055–1116.
[9] B. Dubrovin. Geometry and Analytic Theory of Frobenius Manifolds. Proceedings of ICM98 (1998), Vol. II, 315–326.
[10] S. Galkin, V. Golyshev, H. Iritani. Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures. Duke Mathematical Journal 165 (2016), no. 11, 2005–2077.
[11] V. Gorbounov, M. Smirnov. Some remarks on Landau–Ginzburg potentials for odd-dimensional quadrics. arXiv:1304.0142 [math.AG], 2013.
[12] D. Guzzetti. Stokes matrices and monodromy of the quantum cohomology of projective spaces. Comm. Math. Phys. 207 (1999), no. 2, 341–383.
[13] E. Mann. Orbifold quantum cohomology of weighted projective spaces. Journal of Algebraic Geometry 17 (2008), 137–166.
[14] L. Meier. Vector Bundles on the Moduli Stack of Elliptic Curves. J. Algebra 428 (2015), 425–456.
[15] C. Sabbah. Hypergeometric periods for a tame polynomial. Portugal. Math. 63 (2006), no. 2, 173–226.
[16] S. Tanah, K. Ueda. Invariants of hypergeometric groups for Calabi–Yau complete intersections in weighted projective spaces. Communications in Number Theory and Physics 7 (2013), no. 2, 327–359.

(A.-L. Sattelberger) Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany
E-mail address: anna-laura.sattelberger@math.uni-augsburg.de