Hope for CKD-MBD Patients: New Diagnostic Approaches for Better Treatment of CKD-MBD

Berthold Hocher a–d Andreas Pasch e

a Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, and b IFLb, Institut für Labormedizin Berlin, Berlin, Germany; c Department of Embryology, Medical School of Jinan University, and d Department of Nephrology, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China; e Department of Clinical Research, University Hospital Bern, University of Bern, Bern, Switzerland

Keywords
Biomarker · Calcification propensity · Chronic kidney disease-mineral and bone disorder · Nonoxidized parathyroid hormone · Morbidity · Mortality · T 50 test

Abstract
Background: Chronic kidney disease-mineral and bone disorder (CKD-MBD) patients have a high morbidity and mortality that resembles the morbidity and mortality of patients with cancer. For certain cancer entities, big progress was made in the past decades with regards to the likelihood of improving outcome with new therapeutic strategies. Such progress is unfortunately missing in patients with CKD. This is at least partially due to a lack of adequate diagnostic tools for CKD-mineral and bone disorder (CKD-MBD) patients [1]. Without precise diagnostic tools a personalized therapy is not possible. This, however, was part of the success story in oncology. However, there is hope; in this review we describe recent progress in the diagnosis of disturbances of the calcium and phosphate metabolism in patients with CKD-MBD. Summary: In this review we describe recent progress in the diagnosis of disturbances of calcium and phosphate metabolism in patients with CKD-MBD, measuring biological active nonoxidized parathyroid hormone as well as the overall likelihood of a patient to get calcified. Key Message: There is hope. The new tools have the potential of allowing personalized therapy for the treatment of CKD-MBD and hence improving outcome.
Fig. 1. Currently used assays only give a signal when antibodies have bound to two regions of the parathyroid hormone (PTH) molecule. This ensures that most of the degradation products of the entire PTH molecule are not measured. These assays are thus called intact PTH (iPTH) assays. However, they are not able to distinguish between oxidized and nonoxidized PTH. Mid/C-PTH, mid/carboxyl terminus of PTH; N-PTH, amino terminus of PTH; RIA, radioimmunoassay. Adapted from Moorthi and Moe [70].

- 1st- to 3rd-generation assays target different regions of the protein
- 84 amino acids in iPTH molecule
- 1st- to 3rd-generation assays target different regions of the protein

The poor performance of current PTH assays is due to the posttranslational modification of PTH, in particular oxidation at Met8 and Met18 of the PTH molecule [1, 13] (Fig. 2), since patients with CKD have a huge burden of oxidative stress [14–17]. About two to three decades ago, it was convincingly demonstrated by independent leading research teams worldwide that oxidized PTH (oxPTH) and nonoxidized PTH (n-oxPTH) have completely different biological properties [18–47]. Only n-oxPTH is a full PTH receptor ligand, whereas oxPTH does not stimulate the PTH receptor. PTH oxidation, however, has not been considered in the development of PTH assays so far. Therefore, we recently developed an assay system separating oxPTH from n-oxPTH [1, 48–50]. Children with stage 2–4 CKD had the highest mean n-oxPTH concentrations compared with adult patients (adults on dialysis as well as kidney transplant recipients) [48–50]. Analysis of the subgroup of children with intact PTH (iPTH) >250 ng/L demonstrated a close to linear correlation between iPTH and oxPTH ($r^2 = 0.997; p < 0.001$), but a much weaker correlation between iPTH and n-oxPTH ($r^2 = 0.718; p < 0.05$) [1]. An observational study showed that the predictive power of n-oxPTH and iPTH on the mortality of hemodialysis patients differs substantially. Multivariable-adjusted Cox regression showed that higher age increased the odds for death, whereas higher n-oxPTH reduced the odds for death [49].

Analysis of iPTH, oxPTH, and n-oxPTH in a second independent cohort (2,867 participants of the EVOLVE trial at study entry) [51] revealed that n-oxPTH, but not oxPTH nor iPTH, had a predictive value for cardiovascular events and all-cause mortality. The patients were followed for up to 64 months. The primary composite end point was the time until death, myocardial infarction, hospitalization for unstable angina, heart failure, or a peripheral vascular event [51]. Pearson correlation analyses showed a very strong relationship between iPTH and oxPTH ($r = 0.996; p < 0.001$) and a weaker relationship between iPTH and n-oxPTH ($r = 0.82; p < 0.001$) (Fig. 3); see also Hocher et al. [52]. A multivariate Cox regression model adjusted for patient characteristics, cardiovascular comorbidities, and baseline characteristics revealed that n-oxPTH, but not oxPTH nor iPTH, was associated with the EVOLVE primary end point (time until death, myocardial infarction, hospitalization for unstable angina, heart failure, or a peripheral vascular event [51], cardiovascular mortality, and all-cause mortality [52]).

The linear correlation [1, 50, 52] between oxPTH and iPTH seen in patients with secondary hypertension – adults (Fig. 3, [52]) and children [1, 50] – indicates that the currently used iPTH assays primarily describe oxidative stress in CKD patients, but not PTH bioactivity.
hPTH (1–84) PTH receptor-binding domain: two methionine residues at positions 8 and 18

Fig. 2. a Under conditions of oxidative stress, the methionine residues at positions 8 and 18 may be oxidized to methionine sulfoxide and methionine sulfone. Oxidation to methionine sulfoxide is reversible, whereas the second oxidation step to methionine sulfone is irreversible. Oxidized parathyroid hormone (PTH) changes its three-dimensional structure. This blocks the interaction of PTH with its receptor. b Schematic diagram of the full length PTH (1–84) molecule (“bioactive” intact PTH). Oxidation at position Met8 and/or Met18 (red) alters the receptor binding site of PTH. Oxidized PTH does not bind the PTH receptor anymore and is thus biologically inactive. Adapted from Hocher and Yin [1]. hPTH, human parathyroid hormone.

Fig. 3. Pearson correlation analyses of 2,867 participants of the EVOLVE trial at study entry showed a very strong relationship between intact parathyroid hormone (iPTH) and oxidized parathyroid hormone (oxPTH) \((r = 0.996; p < 0.001) \) – suggesting that iPTH is a measure of oxidative stress rather than PTH bioactivity – and a weaker relationship between iPTH and nonoxidized parathyroid hormone (n-oxPTH) \((r = 0.82; p < 0.001) \) [52]. A multivariate Cox regression model adjusted for patient characteristics, cardiovascular comorbidities, and baseline characteristics revealed that n-oxPTH, but not oxPTH or iPTH, was associated with the EVOLVE primary end point (time until death, myocardial infarction, hospitalization for unstable angina, heart failure, or a peripheral vascular event) [51].
The iPTH measures describe very well protein oxidative stress in patients with renal failure (Fig. 3), but not PTH bioactivity. Guidelines and hence patient treatment for CKD-MBD can only be improved by measuring real bioactive n-oxPTH, but not a surrogate of oxidative stress, i.e., iPTH, since PTH bioactivity and oxidative stress will require different treatment approaches [1].

We need, however, to keep in mind that also n-oxPTH assays might have limitations. Potential other posttranslational PTH modifications such as phosphorylation of certain amino acids of the PTH molecule [53] will not be detected by this type of assay system [48–50]. What we really need is a true PTH bioassay suitable for routine testing – a challenge for scientists working in the field of assay development.

CKD-MBD patients are characterized by high mortality and the propensity to calcify [54]. Both these problems have been related to disturbances in mineral metabolism. Classically, phosphate, calcium, and PTH have been assessed to characterize mineral metabolism in individual patients. The broad range of treatment aims provided in current clinical guidelines for these blood values are reflective of considerable uncertainty about the optimal state of this system. Given this problem, the calcium-phosphate product has been used in a first attempt to integrate single values into a functional system of a higher order [55]. Extending on this conceptual consideration, a novel blood test has recently been developed [56]. Blood is physiologically close to supersaturation with regard to the formation of hydroxyapatite crystals from calcium and phosphate. However, the crystallization cascade from calcium phosphate prenucleation clusters to amorphous calcium phosphate, octacalcium phosphate, to the final product hydroxyapatite is biologically controlled in serum [57]. The main inhibitors fetuin-A and albumin are functionally complemented by long-known small molecules and ions such as pyrophosphate and magnesium into a functional mineralization-regulating physiological system, which is able to keep in a soluble state (i.e., prevent from precipitation) surplus amounts of calcium and phosphate.

A recently developed new blood test, the T50 test, measures the integrated functional status of this systemic calcium phosphate-buffering system by measuring the transformation time from primary calciprotein particles (CPPs) to secondary CPPs (Fig. 4).

When uremic serum is challenged with high amounts of calcium and phosphate in vitro, the spontaneous formation of primary CPPs occurs. These particles are globular (diameter approximately 50 nm) and contain amorphous calcium phosphate. Upon incubation at 37°C, they undergo spontaneous transformation towards spindle-shaped particles (diameter >100 nm), called secondary CPPs, which contain crystalline calcium phosphate (i.e., hydroxyapatite) [58]. The transformation time point reflects the ability of a given serum to delay the crystallization cascade and is specific for individual patient sera.
Excitingly, the transformation time point has to date been shown to correlate with prognosis many years in advance in various large cohorts \[59–62\] including more than 5,000 patients. This indicates a considerable intraindividual and technical stability of the test result.

In more detail, the \(T_{50} \) test has been related to all-cause mortality, cardiovascular mortality, and also to specific cardiovascular events (myocardial infarctions and peripheral vascular events) in renal patients (Table 1). Furthermore, a number of intermediate and physiologically relevant clinical links have been related to the \(T_{50} \) test, lending plausibility to the concept of crystallization inhibition and its importance for clinical end points and events (Table 1).

Overall, the \(T_{50} \) test measures the individual systemic mineralization setpoint in patients. This setpoint determines the overall propensity in the body to form calcium phosphate nanocrystals. While the precise mechanistic link between test result and outcome has not been firmly elucidated in detail yet, it appears reasonable that they might be based at least in part on the development of vascular calcification/soft tissue calcification, oxidative stress, and inflammatory events, which may all be triggered alone or in combination by circulating nanocrystals. The occurrence of naturally occurring CPPs in the circulation has of note been demonstrated both indirectly (by measuring sedimentable fetuin-A) \[59, 63\] and directly (using cryo-TEM imaging) \[64\].

Primary CPPs are nontoxic when exposed to vascular smooth muscle cells in vitro, whereas the secondary type is highly toxic to vascular smooth muscle cells \[65, 66\]. The exposure of these cells to secondary CPPs results in the aforementioned triad of calcification, oxidative stress, and the release of inflammatory cytokines, a combination which is also commonly encountered in renal patients. Furthermore, macrophages exhibit a strong inflammatory response when exposed to secondary CPPs \[67\].

Given that the \(T_{50} \) test measures the functional performance of a physiological system, the link between test result and outcome may well be of causal nature.

First pilot studies with CKD and hemodialysis patients have demonstrated that the \(T_{50} \) value is amenable to improvements by therapeutic interventions. Specifically, interventions such as hemodialysis \[67–69\], increasing bicarbonate and magnesium, and lowering phosphate serum concentrations improve the \(T_{50} \) value \[56, 68\]. Uniform interventions, even of moderate intensity, have been shown to improve the \(T_{50} \) value by approximately 40 min in hemodialysis and CKD patients \[69\].

References

1 Hocher B, Yin L: Why current PTH assays mislead clinical decision making in patients with secondary hyperparathyroidism. Nephron 2017;136:137–142.
2 Zehger-Gong H, Müller D, Diercke M, Haffner D, Hocher B, Verberckmoes S, Schmidt S, D’Haese PC, Querfeld U: 1,25-Dihydroxyvitamin D3-induced aortic calcifications in experimental uremia: up-regulation of osteoblast markers, calcium-transporting proteins and osterix. J Hypertens 2011;29:339–348.
3 Haffner D, Hocher B, Müller D, Simon K, König K, Richter CM, Eggert B, Schwarz J, Godes M, Nissel R, Querfeld U: Systemic cardiovascular disease in uremic rats induced by 1,25(OH)2D3. J Hypertens 2005;23:1067–1075.

Conflict of Interest Statement

B. Hocher submitted a patent on an n-oxPTH assay system. A. Pasch is an inventor and holds a patent of the \(T_{50} \) test; he is co-founder, stockholder, and current CEO of CALCISCON AG, which develops the \(T_{50} \) test for commercialization.
A role of parathyroid hormone for the activation of cardiac fibroblasts in uremia. J Am Soc Nephrol 1994;4:1814–1819.

Merle E, Roth H, London GM, Jean G, Hannedouche T, Barrot J-L, Druette T, Fouque D, Baugue E, French Calcium and Phosphate Observatory: Low parathyroid hormone status induced by high dialysate calcium is an independent risk factor for cardiovascular death in hemodialysis patients. Kidney Int 2016;89:666–674.

Fernández-Martín JL, Martínez-Camblor P, Dionisi MP, Floque J, Ketelbe M, London G, Locatelli F, Gorriti JL, Runkowski B, Ferreira A, Bos WJ, Covic A, Rodriguez-García M, Sánchez JE, Rodriguez-Puyol D, Cannata-Andia JB; COSMOS Group: Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: the COSMOS study. Nephrol Dial Transplant 2015;30:1542–1551.

Fouce TB, Massy ZA: Changing bone patterns with progression of chronic kidney disease. Kidney Int 2016;89:289–302.

Froge J, Kim J, Ireland E, Chazot C, Druette T, de Francisco A, Kronenberg F, Marcelli D, Sánchez JE, Rodríguez-García M, Sánchez JE, Rodríguez-Puyol D, Cannata-Andia JB; COSMOS Group: Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: the COSMOS study. Nephrol Dial Transplant 2015;30:1542–1551.

Fouce D, Roth H, Pelletier S, London GM, Hannedouche T, Jean G, Bouchet JL, Druette T: Control of mineral metabolism and bone disease in haemodialysis patients: which optimal targets? Nephrol Dial Transplant 2013;28:360–367.

Bellaroni-Fort E, Ambrosioni P, Carlini RG, Carvalho AB, Correa-Rotter R, Cetto-Manzano A, Jara A, Jorgetto V, Negri AL, Olaizola I, Salusky I, Slapolsky E, Weisinger JR; Comité de Metabolismo Mineral y Oseo; Sociedad Latinoamericana de Nefrologia e Hipertensión (SLANH): Clinical practice guidelines for the prevention, diagnosis, evaluation and treatment of mineral and bone disorders in chronic kidney disease (CKD-MBD) in adults. Nefrologia 2013;33(suppl 1):1–28.

Forssmann WG, Willmann HC, Hock D, Forssmann K, Bernasconi C, Forssmann U, Richter R, Hoher C, Pfützner A: Pharmaco-kinetic and pharmacodynamic characteristics of subcutaneously applied PTH–1–37. Kidney Blood Press Res 2016;41:507–518.

Cavalier E, Delanaye P, Nyssen L, Soubrier JC: Problems with the PTH assays. Ann Endocrinol (Paris) 2015;76:128–133.
41. Pang PK, Yang MC, Tenner TE Jr, Kenny AD, Cooper CW: Cyclic AMP and the vascular action of parathyroid hormone. Can J Physiol Pharmacol 1986;64:1543–1547.

42. Levy J, Gavin JR 3rd, Morimoto S, Hammer-Pandzic P, Pang PK, Yang MC, Tenner TE Jr, Kenny AD, Armbruster FP, Stoeva S, Reichetzeder C, Grön HJ, Lieker I, Khadzhynov D, Chaykovska L, Tsuprykov O, Hocher B, Godes M, Reichetzeder C, Tsypurykov O, Chertow GM, Parfrey PS, Floege J, Goodman WG, Herzog CA, Kubo Y, London GM, Mahafley KW, Mix TC, Moe SM, Trotman ML, Wheeler DC, Parfrey PS: Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med 2012;367:2482–2494.

43. Martin KJ, Finch JL, Hruska K, Slatopolsky E: Effect of biological activity of PTH on its peripheral metabolism in the rat. Kidney Int 1987;31:937–940.

44. Helwig JJ, Yang MC, Bolllack C, Jades C, Pang PK: Structure-activity relationship of parathyroid hormone: relative sensitivity of rabbit renal microvessel and tubule adenylate cyclase to oxidized PTH and PTH inhibitors. J Biol Chem 1987;262:14795–14800.

45. Brennan DP, Levine MA: Characterization of soluble and particulate parathyroid hormone receptors using a biotinylated bioactive hormone analog. Endocrinology 1986;119:2405–2411.

46. Asoh Y, Ushio H: Oxidation of recombinant human parathyroid hormone: effect of oxidized position on the biological activity. Atherosclerosis 1987;64:1543–1547.

47. Cooper CW: Cyclic AMP and the vascular action of parathyroid hormone. Can J Physiol Pharmacol 1986;64:1543–1547.

48. Pasch A, Block GA, Bachtler M, Smith ER, Jahnen-Dechent W, Arampatzis S, Chertow GM, Parfrey P, Ma X, Floege J: Blood calcification propensity, cardiovascular events, and survival in patients receiving hemodialysis in the EVOLVE trial. Clin J Am Soc Nephrol 2017;12:315–322.

49. Hamano T, Matsu I, Mikami S, Tomida K, Fujii N, Imai E, Rakugi H, Isaka Y: Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J Am Soc Nephrol 2010;21:1998–2007.

50. Dekker M, Pasch A, van der Sande F, Konings C, Bachtler M, Dionisi M, Meier M, Kooman J, Canaud B: High-flux hemodialysis and high-volume hemodiafiltration improve serum calcification propensity. PLoS One 2016;11:e0151508.

51. Bresendorff I, Hansen D, Schou M, Silver B, Pasch A, Boucelouche P, Pedersen L, Rasmussen LM, Brandi L: Oral magnesium supplementation in chronic kidney disease stages 3 and 4: efficacy, safety, and effect on serum calcification propensity – a prospective randomized double-blinded placebo-controlled clinical trial. Kidney Int Rep 2017;2:380–389.

52. Pasch A, Block GA, Chertow GM, Parfrey P, Ma X, Floege J: Blood calcification propensity, cardiovascular events, and survival in patients receiving hemodialysis in the EVOLVE trial. Clin J Am Soc Nephrol 2017;12:315–322.

53. Fischman DL, Bresnan JE, Lameire N, Block GA, Hulbert-Shearon TE, Levin NW, Smith ER, Ford ML, Tomlinson LA, Bodenham E, McMahon LP, Farese S, Rajkumar C, Holt SG, Pasch A: Serum calcification propensity predicts all-cause mortality in patients with secondary hyperparathyroidism undergoing hemodialysis who participated in the EVOLVE trial. J Am Soc Nephrol 2014;25:874A.

54. Smith ER, Ford ML, Tomlinson LA, Bodenham E, McMahon LP, Farese S, Rajkumar C, Holt SG, Pasch A: Serum calcification propensity predicts all-cause mortality in predialysis CKD. J Am Soc Nephrol 2014;25:339–348.

55. Keyzer CA, de Borst MH, van den Berg E, Jahnen-Dechent W, Arampatzis S, Farese S, Bergmann IP, Floege J, Navis G, Bakker SJ, van Goor H, Eisenberger U, Pasch A: Calcification propensity and survival among renal transplant recipients. J Am Soc Nephrol 2016;27:239–248.

56. Bresendorff I, Hansen D, Schou M, Silver B, Pasch A, Boucelouche P, Pedersen L, Rasmussen LM, Brandi L: Oral magnesium supplementation in chronic kidney disease stages 3 and 4: efficacy, safety, and effect on serum calcification propensity – a prospective randomized double-blinded placebo-controlled clinical trial. Kidney Int Rep 2017;2:380–389.