GC-FID-MS and X-ray Diffraction for the Detailed Evaluation of the Volatiles From Senecio filaginoides

Catalina M. van Baren1, Silvia B. González2, Arnaldo L. Bandoni1, Paola Di Leo Lira1,3, María A. Bucio4, Angelina Hernández-Barragán4, and Pedro Joseph-Nathan4

Abstract
The medicinal aromatic plant Senecio filaginoides DC, which is very widespread in the Patagonia region, was harvested at the vegetative, flowering, and fructification stages. The materials were extracted by hydrodistillation, yielding in average 0.34% v/w of essential oils with a pleasant sweet and greenish scent. A total of 56 components were identified by gas chromatography using flame ionization detection and mass spectra measurements, representing 96.1%-97.6% of the total oil. The sesquiterpenoid 10α-furanoeremophil-1-one (I) appeared as a major constituent (16.2%-26.9%) of the oil. It could be isolated by cooling the oil at 4°C, thus yielding yellow crystalline solids. Its stereochemistry was assigned by single-crystal X-ray diffraction since previous studies identified the compound with different stereochemistries. The use of classical separation and analytical methodologies remains as a very useful strategy for the correct identification of compounds present in the volatile fraction of a plant and is a route for potential industrial applications.

Keywords
terpenoids, Senecio filaginoides, patagonia, essential oils, 10αH-Furanoeremophil-1-one, single-crystal X-ray diffraction

Received: August 28th, 2020; Accepted: September 29th, 2020.

Senecio (Asteraceae) is one of the largest genera worldwide, including about 3000 species, from which 270 species are reported in Argentina.1 Senecio filaginoides DC is an aromatic and medicinal plant endemic to the Patagonia region. It is popularly known as charcao,2 which is used in folk medicine for rheumatic pains, toothache, and in Mapuche birth ceremonies.3 Essential oils are the best-known and most-used products of an aromatic plant and their analyses have been improved since the introduction of gas chromatography (GC). GC with mass spectrometry (MS) allowed ecological analysis and plant systematics4 while the analytical evolution promoted strategies for the investigation of a plant volatile fraction, as mighty techniques have been introduced to allow the analyst to obtain valuable structural information of a compound in a short time period without prior isolation.5 Nevertheless, structures of main compounds present in the essential oils of some species still remain as incorrectly identified, with many of them with systematic value as eremophilane derivatives found in Senecio species.6 This shows that the need to have the pure compounds in hand is still a fact.7

Reports on the chemical composition of the essential oils of S. filaginoides are scarce and incomplete. Balzaretti et al8 identified only 9 components in the essential oil by GC-MS, with α-pinene and α-terpinene + β-cymene being the main constituents. Other studies were performed on nonpolar extracts providing a furanoeremipholine as the main compound, which was identified as 10βH-furanoeremophil-1-one by Bohlmann et al,9 who named it as senberginone, and later Arancibia et al10 identified the 10αH-furanoeremophil-9-one isomer by nuclear magnetic resonance (NMR) spectroscopy. Two other furanoeremophilane-type sesquiterpenoids, 6α-acetyloxy-10βH-furanoeremophil-1-one and 6α-tigloyloxy-10βH-furanoeremophil-1-one, were also isolated from this species11.
Table 1. Essential Oil Yields (mL/kg) of Senecio filaginoides Var. Filaginoides at 3 Plant Phenological Stages.

Phenological stage	Fresh plant material	Dried plant material*
Preflowering	6.3	10.2
Flowering	2.4	4.9
Postflowering	1.5	3.7
Average	3.4	6.3

*After moisture removal from the vegetal material.

Although Bohlman et al.\(^6\) suggested the 6β orientation for these molecules by nuclear overhauser effect differences spectroscopy.

Since a detailed knowledge of the essential oils composition of S. filaginoides is unavailable, and due to the ambiguities found in the configuration of the furanoeremophilane derivatives, the aim of this work was to analyze by GCMS the essential oils composition obtained by hydrodistillation at different plant phenological stages and to unambiguously define the structure of its main sesquiterpenoid constituent.

Results and Discussion

Hydrodistillation of the aerial parts of S. filaginoides at 3 plant phenological stages gave colorless oils with an aromatic pleasant odor, in average yield 0.34% v/w, as summarized in Table 1, which showed a relative density of 0.8707 g/mL and a refraction index of 1.4776 at 20°C. A gas chromatography flame ionization detection mass spectrometry (GC-FID-MS) with a special system configuration was used, which provided 3 identification parameters from a single GC run: linear retention indices (LRIs) in the polar and the nonpolar columns, as well as the mass spectrum of each compound. All experimental data were compared with those found in commercial libraries\(^14,15\) in the literature\(^16\) or with those of our own laboratory-developed mass spectra library built-up from constituents of known oils.

We were able to identify 56 constituents in the essential oils, as shown in Table 2, accounting for 96.1%-97.6% of the total oil composition according to the plant phenological stage. The analysis revealed a dominance of 1-nonene (2.0%-4.7%), α-pinene (28.3%-40.5%), sabine (1.5%-1.9%), β-pinene (4.7%-5.4%), δ-3-carene (1.8%-5.7%), (Z)-β-ocimene (3.5, 7.2%), limonene (1.1%-2.2%), β-phellandrene (1.2%-1.6%), and the sesquiterpenoid 10αH-furanoeremophil-1-one (1) (16.1%-27.9%) (Figure 1). Many of the herein reported compounds were not previously found in this species. Another constituent showing the same [M]+ value and almost an identical MS fragmentaoton pattern as 10αH-furanoeremophil-1-one (1) was detected in appreciable amounts (10.3%) during the flowering stage. It seems to be closely related to 1, perhaps a diastereomer, but this fact could not be confirmed.

Other authors have also detected a furanoeremophilane in the nonpolar extracts of this species\(^8,9\) using NMR for the identification, but different structures were proposed to this compound.

Although GC was not used in these studies, this is a quite volatile molecule having a high LRI, just in the range where the assignment of exact structures turns more erratic.

Salmeron et al.\(^11\) also isolated 2 furanoeremophilane-type sesquiterpenoids: 6α-acetyloxy-10βH-furanoeremophil-1-one and 6α-tigloyloxy-10βH-furanoeremophil-1-one after extracting the aerial parts of S. filaginoides with petroleum ether followed by CC fractionation with hexane-cyclohexane mixtures. Their structures were elucidated from spectroscopic data. Meanwhile, from the roots and aerial parts of S. pinnatus,\(^11\) 1a-hydroxy-6β-angeloyloxy-10αH-furanoeremophil-9-one was isolated and identified using the same methods.\(^11\) Thus, both Senecio species gave furanoeremophilane derivatives with different C-10 stereochemistry than that specified herein. In addition, Bisht et al.\(^21\) could confirm the 1,10β-epoxy-6-oxofuranoeremophilane configuration for the main Senecio myroleon constituent using X-ray diffraction (XRD) analysis. The furanoeremophil-1-one with the same C-10 stereochemistry as that herein determined was found by Bohlmann et al.\(^9\) in Senecio bergii and S. bracteolatus, and by Bohlmann and Zdero\(^12\) after extraction of the roots of Smyrnium olsatum (Apiaceae) with nonpolar solvents. Mölleker\(^20\) also isolated this compound from the essential oils obtained by hydrodistillation from the latter species. More recently, Pappaoanoun et al.\(^22\) reported furanoeremophil-1-one as a major component of the stem and leaf oils from Smyrnium olsatum (54.3% and 28.7%, respectively) without specifying its configuration.

Since 10αH-furanoeremophil-1-one (1) was obtained from a room temperature solvent extraction and by hydrodistillation from S. filaginoides this fact ruled out the possibility that it could be a breakdown product formed during the heating procedure involved in the hydrodistillation methodology.

As a definitive proposal of identification of the essential oil composition, we employed a specially built GC-FID-MS system having 2 columns of different polarity.\(^3\) In addition, simple separation and purification methods were used to obtain pure pale-yellow crystals of the main compound. Conventionally, isolation and purification of main compounds from plant extracts are performed by recrystallization, which is a low-cost and easy-to-handle strategy. Purified crystals were analyzed by single-crystal XRD to determine the tridimensional structure of the molecule. This allowed to ascertain the absolute stereochemistry of 10αH-furanoeremophil-1-one (1) (Figure 2). This conclusion is of great value because this metabolite is a main constituent of the oil and eremophilanes are of taxonomic importance for this genus.

Conclusions

The present study is a contribution to the knowledge of Senecio filaginoides, which is a very abundant aromatic plant in the Patagonia region. The results highlight the great specificity of biosynthetic processes in nature, generating different stereochemical structures according to the species. The use of classical separation and analytical methods remains as a very useful strategy for the correct
Compound	LRIb exp.	LRIb lit.	LRIc exp.	LRIc lit.	Percentage	References
Oct-1-ene	790	788	842		0.1	
Isovaleric acid	863	860	1667	1670	0.1	0.1
Non-1-ene	877	877	954	954	2.0	
α-Thujene	925	928	950	950	0.1	0.4
Camphene	932	936	1043	1025	4.1	28.4
α-Heptanol	946	950	1100	1069	-	0.1
Sabinene	970	975	1150	1161	7.3	3.4
α-Pinene	975	977	1133	1110	3.1	2.0
γ-Thujene	980	989	1134	1119	-	0.1
γ-Pinene	992	994	1135	1120	4.7	3.7
α-Thujene	1000	999	1136	1122	-	0.2
β-Phellandrene	1002	1002	1137	1123	1.5	1.2
δ-3-Carene	1009	1009	1138	1125	-	0.1
α-Terpinene	1014	1015	1139	1126	0.7	0.6
p-Cymene	1017	1017	1140	1127	0.7	0.3
1,8 Cineol	1020	1025	1141	1128	-	0.2
ε-Terpinene	1039	1045	1142	1129	0.2	0.2
β-Thujene	1048	1048	1143	1130	-	0.2
α-Mentha-1,5-dien-8-ol	1050	1050	1145	1131	0.5	0.5
β-Phellandrene	1058	1058	1147	1132	-	0.1
2-Methylbutyl isovalerate	1068	1073	1149	1133	0.2	0.2
α-Amyl cinnamate	1075	1075	1150	1134	-	0.1
α-Thujene	1084	1084	1151	1135	-	0.1
Hexyl isovalerate	1089	1089	1152	1136	-	0.1
α-Thujene	1095	1095	1153	1137	-	0.1
α-Mentha-2,4(8)-dien-1-ol	1096	1096	1154	1138	-	0.1
Carvone	1098	1098	1155	1139	-	0.1
α-Thujene	1103	1103	1160	1140	-	0.1
α-Mentha-2,4(8)-dien-1-ol	1104	1104	1161	1141	-	0.1
Carvone	1109	1109	1162	1142	-	0.1
α-Thujene	1110	1110	1163	1143	-	0.1
α-Mentha-2,4(8)-dien-1-ol	1115	1115	1164	1144	-	0.1
Carvone	1120	1120	1165	1145	0.7	0.7
α-Thujene	1125	1125	1166	1146	0.7	0.7
α-Mentha-2,4(8)-dien-1-ol	1130	1130	1167	1147	-	0.1
Carvone	1135	1135	1168	1148	0.7	0.7
α-Thujene	1140	1140	1169	1149	0.7	0.7
α-Mentha-2,4(8)-dien-1-ol	1145	1145	1170	1150	-	0.1
Carvone	1150	1150	1171	1151	0.7	0.7
α-Thujene	1155	1155	1172	1152	0.7	0.7
α-Mentha-2,4(8)-dien-1-ol	1160	1160	1173	1153	-	0.1
Carvone	1165	1165	1174	1154	0.7	0.7

(Continued)
Compound	LRI^a exp.	LRI^a lit.	LRI^b exp.	LRI^b lit.	LRI^c	LRI^c	LRI^c	LRI^c	References		
Methyl (Z)-4-decenoate	1320	1323	1620	1623	-	-	0.1	14,17			
β-Elemene	1387	1390	1603	1591	0.2	0.1	0.1	16			
Ethyl (E)-dec-4-enoate	1391	1395	1680	1672	-	-	0.1	14,16			
Methyl eugenol	1401	1402	2019	2006	0.3	0.1	0.1	14,15			
β-Isocome	1409	1407	1581	1571	0.2	0.2	0.2	17			
Selina-4,11-diene^d	-	-	1681	1688	0.2	0.2	0.2	14,15			
α-β-β-Aromadendrene	1455	1460	1658	1649	0.1	-	-	16			
β-Selinene	1490	1486	1732	1717	0.3	-	-	16			
Bicyclogermacrene	1512	1494	1742	1735	0.2	0.1	-	16			
Kessane^d	1538	1529	-	-	0.6	0.1	0.2	14			
Spathulenol	1574	1577	2125	2127	0.2	0.2	0.1	16			
Selina-3,11-dien-6α-ol	1641	1642	1649	1656	0.3	0.1	0.1	14,15			
Selin-11-en-4α-ol	1659	1655	2249	2252	0.1	-	0.2	16			
3,5,6,7,8,8a-Hexahydro-4,8a-dimethyl-6-(1-methylethenyl)-2(1H)-naphthalenone^d	1775	1772	-	-	1.3	-	0.6	15			
Furanoeremophil-1-one isomer^d	1776	1751	2374	-	-	-	10.3	0.2	-		
Dehydrofukinone^d	1819	1792	-	-	-	-	-	1.7	1.3	18	
Furanorremophil-1-one isomer^d	1875	-	-	-	-	-	2.6	2.1	0.6	-	
10α-H-Furanoeremophil-1-one^d	1890	-	2701	2706	20.7	27.9	16.2	19			
Istanbul B^d	2315	-	-	-	-	-	2.1	0.4	20		
Hydrocarbon monoterpines	-	-	-	-	-	-	-	-	63.2	47.4	66.5
Oxygenated monoterpines	-	-	-	-	-	-	-	-	2.4	1.3	2.2
Hydrocarbons sesquiterpines	-	-	-	-	-	-	1.3	0.5	0.5		
Oxygenated sesquiterpines	-	-	-	-	-	-	25.8	44.5	19.9		
Miscellaneous compounds	-	-	-	-	-	-	4.0	2.1	5.3		

Abbreviations: exp., experimental; lit., literature; LRI, linear retention index.

*Compounds listed in elution order from the nonpolar column.

1LRI DB-5 column.
2LRI DB-Wax column.
3Tentative identification.
4Mass spectrum in Supplemental Material.
identification of compounds present in the volatile fraction of a plant. The pleasant scent of the essential oil of this plant suggests its potential use in the fragrance industry.

Experimental Section

Plant Material

The aerial parts were collected from the neighboring areas of Gualjaina River, some 30 km NE of Esquel, Futaleufú Departament, Chubut Province, Argentina (42° 59' 46.5'' S, 70° 46' 29.5'' W) between October 2008 and February 2009. The plant material was identified as *Senecio filaginoides* DC var. *filaginoides* by Lic. María Elena Arce and a voucher specimen is in deposit at Herbario Regional Patagónico under number HRP 6761.

Essential Oils Extraction

Essential oils were extracted from the air-dried grounded materials by hydrodistillation using a Clevenger-type apparatus for 4 hours following the method described in the Farmacopea Argentina. After cooling, settling, and drying over anhydrous sodium sulfate, the oils were recovered and stored at 4°C until analysis. The yields are expressed as mL essential oil/kg plant material in Table 1.

Isolation of 10αH-Furanoeremophil-1-One (1)

After storing the essential oil at 4°C overnight, a pale-yellow crystalline residue separated. The solid was separated by filtration and washed with cold n-hexane. It was purified by slow recrystallization using a n-hexane/AcOEt (9:1) mixture. The crystals were insoluble in dichloromethane, petroleum ether (35°C-38°C), and n-hexane, although freely soluble in ethyl acetate and ethanol. Melting point: 75°C-76°C, The MS is shown in Supplemental Figure S1.

Gas Chromatography With Flame Ionization Detection and Mass Spectra Analysis

The essential oils were analyzed by GC-FID-MS using a Perkin-Elmer Clarus 500 instrument with a modified configuration, equipped with a single split/splitless injector connected by a flow splitter to 2 capillary columns: a polyethylene glycol MW ca. 20 000 Da column and a 5%-phenyl-95%-methyl silicone column, both 60 m × 0.25 mm id with 0.25 µm of fixed phase (J&W Scientific). The polar column was connected to an FID, whereas the nonpolar column was connected simultaneously to an FID and to a quadrupole mass detector (70 eV) by a MS-Vent system. Helium was used as the carrier gas (flow rate: 1.87 mL/min). The column temperature was programmed according to the gradient: 90°C for 5 minutes, increasing at a rate of 3°C/min-230°C and maintained for 13 minutes. The injector temperature was 255°C. Both FID temperatures were 240°C, and the temperatures for the transference line and the ionic source were set at 180 and 150°C, respectively. Mass range (m/z) and scan time were 40-350 Da and 1 second, respectively. The manual sample injection volume was 0.2 mL of the oils and the split ratio was 80:1. A mixture of aliphatic hydrocarbons (C6-C24, Sigma Aldrich) in n-hexane was co-injected to calculate the LRI using a generalized equation.

Compound identification was done comparing the LRI relative to C6-C24 n-alkanes, obtained in both columns, with those of reference compounds and from the literature. Additionally, each experimental MS was compared with those from commercial libraries and from our own data basis. The percentage composition of the essential oil components was calculated by peak area...
normalization of FID responses without considering corrections for response factors. The lowest response obtained from both columns for each component was considered.

Single-Crystal XRD Study of 10αH-Furanoeremophil-1-One (1)

A crystal measuring 0.42 × 0.24 x 0.22 mm was mounted on a glass fiber and data were collected on an Enraf Nonius Bruker CAD4 diffractometer. The crystal was orthorhombic, space group \(P2_1^12_1^12_1\), with cell dimensions \(a = 8.339(2) \text{ Å}, b = 10.956(1) \text{ Å}, c = 14.525(2) \text{ Å}\), \(V = 1326.9(4) \text{ Å}^3\), \(\rho_{\text{calc}} = 1.163 \text{ g/cm}^3\) for \(Z = 4\), \(C_{15}H_{20}O_2\), \(MW = 232.31\), and \(F(000) = 504\). A total of 1009 reflections were collected using graphite-monochromated Cu Kα radiation (\(\lambda = 1.54184 \text{ Å}\)) within the 6.09-59.88° \(\theta\) range for 0 ≤ h ≤ 9, 0 ≤ k ≤ 12, 2 ≤ l ≤ 16. The structure was solved by direct methods using the SIR2004 software. For the structure refinement, the non-hydrogen atoms were treated anisotropically, and the hydrogen atoms were refined isotropically. The unique reflections were 968, the observed reflections were 934, and final discrepancy indices, refining 166 parameters, were \(R_p = 5.3\%\) and \(R_w = 9.2\%\). The final difference Fourier map was essentially featureless, with the highest residual peak and hole having residual densities of 0.086 and −0.102 e/Å³, respectively. Crystallographic data, excluding structure factors, have been deposited at the Cambridge Crystallographic Data Centre under number 1414005. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: +44-(0)1223, 336033 or e-mail: deposit@ccdc.cam.ac.uk.

Acknowledgments

The authors thank Lic. María Elena Arce, UNP “SJB”, Comodoro Rivadavia, for the identification of the plant material.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID IDs

Catalina L. van Baren https://orcid.org/0000-0002-7180-6824
Arnaldo L. Bandoni https://orcid.org/0000-0003-4152-2668
Paola Di Leo Lira https://orcid.org/0000-0001-5368-0212
Pedro Joseph-Nathan https://orcid.org/0000-0003-3347-3990

Supplemental Material

Supplemental material for this article is available online.

References

1. Zuloaga FG, Morrone O. Catálogo de las plantas vasculares de la República Argentina II. 2010. Accessed January 22, 2020. http://www.darwin.edu.ar/Proyectos/FloraArgentina/DetalleEspesie.

2. Cabrera AL. Flora Patagónica VII: Compositae. Colección Científica del INTA; 1971.

3. González SB, Molares S. Plantas medicinales utilizadas en comunidades rurales del Chubut, Patagonia Argentina. BLACPMA. 2004;3:58-62.

4. Can Baser KH, Buchbauer G. Handbook of Essential Oils: Science, Technology, and Applications. CRC Press Taylor & Francis Group; 2010:949.

5. Cagliero C, Sgorbini B, Cordero C, Liberté E, Bicchi C, Rubiolo P. Analytical strategies for multipurpose studies of a plant volatile fraction. In: Hostettmann K, Suppner H, Marston A, Chen S, eds. Handbook of Chemical and Biological Plant Analytical Methods, 1st ed. John Wiley & Sons, Ltd; 2014:447-466.

6. Yang Y, Zhao I, Wang Y-F, et al. Chemical and pharmacological research on plants from the genus Senecio. Chem Biodivers. 2011;8(1):13-72. doi:10.1002/cbdv.201000027

7. Dar AA, Sangwan PL, Kumar A. Chromatography—An important tool for drug discovery. J Sep. Sci. 2020;43:2-37.

8. Balzaret G, Aranchia A, Marchia A, Arce M, Feijóo M. Variation in the composition of the essential oil of Senecio filaginoides DC. Molecules. 2009;15(12):459-461. doi:10.3390/molecules15120459

9. Bohlmann F, Jakupovic J, Warning U, et al. Sesquiterpenes from Argentinian Senecio species. Bull Soc Chim Belg. 1986;95(9-10):707-736. doi:10.1016/bshc19860950903

10. Aranchia I, Naspi C, Pucci G, Arce ME. Biological activity of a furanoeremophilane isolated from Senecio filaginoides var. filaginoides. BLACPMA. 2013;12:18-23.

11. de Salmeron MS, Kavka J, Giordano OS. Furanoeremophilanes in Senecio filaginoides and S. pinnatus. Planta Med. 1983;47(4):221-223. doi:10.1055/s-2007-969991

12. Bohlmann F, Zdero C. Polycetylverbindungen, 220. Über die Inhaltsstoffe vonSarsaparillae rhizoma L. Chem Ber. 1973;106(11):3614-3620. doi:10.1002/cber.19731061120

13. Retta D, Gattuso M, Gattuso S, et al. Essential oil composition of Achyrocline flaccida (Weinm.) DC. (Asteraceae) from different locations of Argentina. Biochem Syst Ecol. 2008;36(12):877-881. doi:10.1016/j.bse.2008.11.001

14. Adare RS. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectrometry. Allured Publ. Corp; 2007.

15. Wiley/NIST. The Wiley/NIST Registry of Mass Spectral Data. John Wiley & Sons, Ltd; 2008.

16. Babushok VI, Linstrom PJ, Zenkevich IG. Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data. 2011;40(4):043101-043101-47. doi:10.1063/1.3653552

17. González SB, Gasalti B, Catalán C, et al. Artemisia armillaris and A. arctica. Chemical composition of the essential oil from an unexplored endemic species of Patagonia. Chem Biodivers. 2019;16(7):e1900125. doi:10.1002/cbdv.201900125

18. De Pooter HL, De Buyck LF, Schamp NM, Aboutabl E, De Bruyn A, Husain SZ. The volatile fraction of Senecio glaucus subsp. Coronopifolius. Flavour Fragr J. 1986;1(4-5):159-163. doi:10.1002/ffj. 273001406
19. Mölleken U, Sinnwell V, Kubeczka KH. Essential oil composition of Smyrnium olusatrum. Phytochemistry. 1998;49(6):1709-1714. doi:10.1016/S0031-9422(98)00195-2

20. Buděšínský M, Holub M, Šaman D, Smítalová Z, Ulubelen A, Öksüz S. Structure of istanbulin A and istanbulin B- two sesquiterpenic lactones from Smyrnium olusatrum L. Collect Czechoslov Chem Commun. 1984;49(5):1311-1317. doi:10.1135/cccc19841311

21. Bisht CMS, Melkani AB, Dev V, Beauchamp PS. 1,10β-Epoxy-6-oxofuranoeremophilane and other terpenoids from the essential oil of Senecio royleanus DC. J Essent Oil Res. 2011;23(1):102-104. doi:10.1080/10412905.2011.970043

22. Papaioannou F, Koutsaviti A, Tzakou O. Volatile constituents of different parts of Smyrnium olusatrum from Greece. Nat Prod Commun. 2010;5(11):1809-1810. doi:10.1177/1934578X1000501124

23. Farmacopea Argentina. VII edition, ANMAT, Buenos Aires. 2003. November 11, 2019. http://www.anmat.gov.ar/webanmat/fna/fna_pdf.pdf