Bovine Colostrum Contains Immunoglobulin G Antibodies against Intimin, EspA, and EspB and Inhibits Hemolytic Activity Mediated by the Type Three Secretion System of Attaching and Effacing *Escherichia coli*

Daniel A. Vílte, 1‡ Mariano Larzábal, 2‡ Ángel A. Cataldi, 2 and Elsa C. Mercado 1*

Instituto de Patobiología 1 and Instituto de Biotecnología 2, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Las Cabañas, 1712 Castelar, Prov. Buenos Aires, Argentina

Received 22 January 2008/Returned for modification 6 March 2008/Accepted 9 June 2008

Enterohemorrhagic *Escherichia coli* (EHEC) is the main cause of hemolytic-uremic syndrome, an endemic disease in Argentina which had an incidence in 2005 of 13.9 cases per 100,000 children younger than 5 years old. Cattle appear to be a major reservoir of EHEC, and a serological response to EHEC antigens has been demonstrated in natural and experimental infections. In the current study, antibodies against proteins implicated in EHEC’s ability to form attaching and effacing lesions, some of which are exported to the host cell via a type three secretion system (TTSS), were identified in bovine colostrum by Western blot analysis. Twenty-seven (77.0%) of the 35 samples examined contained immunoglobulin G (IgG) antibodies against the three proteins assayed in this study: EspA, EspB, and the carboxy-terminal 280 amino acids of γ-intimin, an intimin subtype associated mainly with O157:H7 and O145:H- serotypes. Every colostrum sample was able to inhibit, in a range between 45.9 and 96.7%, the TTSS-mediated hemolytic activity of attaching and effacing *E. coli*. The inhibitory effect was partially mediated by IgG and lactoferrin. In conclusion, we found that early colostrum from cows contains antibodies, lactoferrin, and other unidentified substances that impair TTSS function in attaching and effacing *E. coli* strains. Bovine colostrum might act by reducing EHEC colonization in newborn calves and could be used as a prophylactic measure to protect non-breast-fed children against EHEC infection in an area of endemicity.
that colostrum from EPEC-vaccinated or nonvaccinated animals recognizes proteins with molecular weights that are consistent with that of intimin (32).

The aim of this work was to analyze the presence of antibodies against EHEC virulence factors in bovine colostrum. This knowledge may contribute to the ability to obtain stronger responses through vaccination with the purpose of producing nutraceutic colostrum or milk. The present study reports that immunoglobulin G (IgG) antibodies against EspA, EspB, and the highly specific C-terminal portion of the O157-associated γ-intimin, as well as other substances inhibiting the TTSS of E. coli, are present in the colostrum of cows in Argentina.

MATERIALS AND METHODS

Colostrum samples. Thirty-five colostrum samples were obtained from healthy dairy (n = 8) or beef (n = 27) cows within the first 24 to 72 h postpartum from four farms in Buenos Aires province, Argentina. All the farms were located in one of the most important dairy regions in the Central Pampas, an area endemic for HUS in children. Samples were obtained by random selection from cows with more than two labors. Colostrum samples were kept at −20°C until use. Before the assays, the samples were thawed and centrifuged at 13,000 × g to remove lipids. A pool of 15 randomly chosen colostrum samples was IgG depleted by affinity chromatography to remove lactoferrin according to Wolman et al. (44). Briefly, 1 ml of colostrum was incubated with the red HE-3B dye to them. Ninety-three percent of the lactoferrin from the sample was adsorbed, as determined by an enzyme-linked immunosorbent assay. The samples were then adsorbed by affinity membrane chromatography to remove lactoferrin. A pool of 15 randomly chosen colostrum samples was IgG depleted by affinity chromatography to remove lactoferrin. The assays, the samples were thawed and centrifuged at 13,000 × g for H11003

Preparation of His-tagged γ-intimin1–280, EspA, and EspB. Expression of the His-tagged proteins was performed as recommended by the manufacturers. Brieﬂy, transformed E. coli BL21(D3)/pLyS cells carrying the plasmid pRSET-A containing the EspA, EspB, or γ-intimin1–280 fragment genes were grown overnight at 37°C with shaking in LB broth supplemented with ampicillin (100 µg/ml) and chloramphenicol (34 µg/ml). The overnight culture was diluted and grown under the same conditions in LB broth until an optical density at 600 nm (OD600) of 0.6 was reached. Recombinant gene expression was then induced by the addition of IPTG (isopropyl-β-D-thiogalactopyranoside) at a final concentration of 0.5 mM. After 4 h of incubation at 37°C, the cells were washed, lysed by 6 M guanidine HCl, and sonicated. The His-tagged proteins were purified from the clarified lysates by affinity chromatography in a column of ProBond nickel-chelating resin (Invitrogen, Carlsbad, CA). The proteins were eluted by washing with buffers of decreasing pH (8 M urea, 20 mM sodium phosphate, 500 mM NaCl), including binding buffer (pH 7.8), wash buffer (pH 6.3), and elution buffer (pH 4.5), under denaturing conditions.

SDS-PAGE. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out in a 12.0% polyacrylamide gel as described by Laemmli (16), with 1.5 µg protein loaded per lane. Protein samples were diluted in an equal volume of 2× sample buffer (2% SDS, 2% 2-mercaptoethanol, 20% glycerol, and 0.01% bromophenol blue in 0.006 M Tris [pH 6.8]) and boiled for 5 min before being loaded onto gels. Molecular weights were estimated, and molecular markers (Bio-Rad, Hercules, CA) were included in each gel. Protein bands were revealed by Coomassie blue staining. The observed molecular masses in the SDS-PAGE gel were 35 kDa, 25 kDa, and 38 kDa for γ-intimin1–280, EspA, and EspB, respectively, which were in good agreement with the theoretical masses for γ-intimin1–280 (30 kDa), EspA (20.5 kDa), and EspB (33 kDa), if the addition of the polyhistidine trait was considered.

Immunoblotting. Proteins were electrophoretically transferred from the gel onto nitrocellulose sheets (0.45 µm) (Amersham Pharmacia) for immunoblotting as described by Towbin et al. (40). Nitrocellulose strips were blocked with 5% nonfat dry milk in phosphate-buffered saline (PBS), pH 7.2, for 2 h under agitation, washed three times with PBS containing 0.2% Tween 20, and incubated for 2 h with either pure or 1:10, 1:50, or 1:100 diluted colostrum samples or with specific rabbit polyclonal antisera raised against EspA, EspB, and γ-intimin1–280. Following the three washes with PBS containing 0.2% Tween 20, the membranes were incubated for 2 h with horseradish peroxidase-conjugated rabbit anti-bovine IgG (Bioyeda, Rehovot, Israel) diluted 1:8,000 in PBS or with horseradish peroxidase-conjugated goat anti-rabbit IgG (Sigma Chemical Co., St. Louis, MO) diluted 1:10,000. The blots were revealed with 4-C1-naphthol (Pierce, Rockford, IL). A pool of colostrum samples did not react when it was

Gene or gene fragment	GenBank accession no.	Primer	Oligonucleotide sequence (5’-3’)	Positions	Amplification conditions
EspB	U65681	espBup2	GGATTCCATGAATACATTTTGATATTAC	1–945	94°C, 2 min (1 cycle); 94°C, 1 min; 50°C, 1 min; 72°C, 1 min (30 cycles)
		espBrev	AAGCITTTTAAACCGTAAGGGAAGCC		
EspA	AY223511	espAfor	GGATTCCATGTGATACATCTGAAACATC	1–579	94°C, 2 min (1 cycle); 94°C, 1 min; 55°C, 1 min; 72°C, 1 min (30 cycles)
		espArev	AAGCITTTTATTTACCAAGGGATATTGCTT		
γ-Intimin1–280	Z11541	cterecup	GGATCCCCAAAACGAGCGACAGTAC	1962–2804	94°C, 1 min; 53°C, 1 min; 72°C, 1 min (30 cycles)
		Grev	AGACITTTTATTTACCAACAGGCAATAGA		

VOL. 15, 2008 TTSS-INHIBITORY ACTIVITY OF BOVINE COLOSTRUM 1209
assayed against a nonrelated His-tagged protein, MPB64 from Mycobacterium bovis (data not shown).

Generation of specific rabbit antisera. Female pathogen-free rabbits were immunized by subcutaneous and intramuscular routes on days 1, 14, and 28 with recombinant proteins (100 μg/dose) emulsified in Freund’s incomplete adjuvant (Sigma Chemical Co., St. Louis, MO). Sera were collected on days 0, 13, 27, and 48. Sera were evaluated by Western blotting and pooled.

RBC lysis assay. The possible inhibitory effect of colostrum on the hemolytic activity exhibited by TTSS-encoding *E. coli* strains (41) was evaluated. The *EPEC* E2348/69 strain was grown overnight in LB broth at 37°C without shaking and then diluted 1:100 in Dulbecco’s modified Eagle medium (lacking phenol red; Gibco-BRL). A mixture of different quantities of colostrum and 2 ml of the diluted bacterial suspension was incubated for 1 h at 37°C. In turn, red blood cells (RBC) were separated by centrifugation from fresh, defibrinated sheep blood, washed three times with 10 mM PBS (pH 7.4), and resuspended at 5% in PBS. Then, 2 ml of the *EPEC* E2348/69 suspension preincubated with colostrum was mixed with 2 ml of the 5% suspension of RBC in PBS and incubated for 3 h at 37°C under a 5% CO₂ atmosphere in 12-well plates. The suspension was removed from the plates and centrifuged at 12,000 x g for 1 min. Supernatants were monitored for the presence of released hemoglobin by measuring the OD₅₄₃. The *E. coli* EPEC E2348/69 ΔescN strain, a mutant that does not synthesize the TTSS and does not produce lysis, was used as a negative control. The positive control consisted of the same incubation process but without the addition of colostrum. The percentage of inhibition was calculated as 100 – [(OD₅₄₃ with colostrum/OD₅₄₃ without colostrum) × 100].

Statistical analysis. Data are expressed as means ± standard deviations. Statistical analysis of paired data was carried out using Student’s *t* test, with a 95% confidence limit; a probability value (*P*) of <0.05 was considered significant.

RESULTS

Reactivity of colostrum with γ-intimin₁₋₂₈₀, EspA, and EspB. Twenty-seven (77.0%) of 35 individually examined colostrum samples contained IgG antibodies against the three proteins assayed, γ-intimin₁₋₂₈₀, EspA, and EspB, as determined by immunoblotting with the respective His-tagged antigens. The reacting colostrum samples belonged to three of the four farms sampled. Five of eight negative samples were taken 24 h after birth, when the antibody titer begins to fall drastically (Fig. 1) (15, 27).

Most of the samples showed a strong reactivity with the EspB band in the 1:10 dilution. Antibodies against EspA and γ-intimin₁₋₂₈₀ were present at a lower level than those against EspB and were detected only when the samples were undiluted. No reactivity against the three proteins was detected with dilutions of 1:50 and 1:100. Figure 2 shows an example of the recognition of EspA, EspB, and γ-intimin₁₋₂₈₀ by a representative colostrum sample (sample 283). Western blotting of bovine samples developed with anti-bovine IgA conjugates did not show visible bands (data not shown).

Colostrum inhibition of TTSS-induced hemolysis. A colostrum sample positive for antibodies against γ-intimin₁₋₂₈₀, EspA, and EspB was selected to analyze the effect of colostrum on the TTSS-mediated RBC lysis. Colostrum sample 283 inhibited the RBC hemolysis in a dose-dependent manner, with a maximum of 77.3% inhibition when the *EPEC* strain was preincubated with a 1:40 colostrum dilution (Fig. 3). This dilution was chosen for further inhibition assays with individual or pooled samples. All the individually assayed colostrum samples reduced hemolysis by 45.9% to 96.7% (data not shown). No significant differences were observed between samples pos-

FIG. 1. Farm distribution of colostrum samples with positive reactions in the immunoblotting assay for recombinant EspA, EspB, and γ-intimin₁₋₂₈₀ proteins.

FIG. 2. Immunoblotting recognition of EspA, EspB, and γ-intimin₁₋₂₈₀ by colostrum sample 283. The binding of colostrum to EspA, EspB, and γ-intimin₁₋₂₈₀ (lanes 1, 3, and 5, respectively) and the binding of rabbit polyclonal anti-EspA, anti-EspB, and anti-γ-intimin₁₋₂₈₀ antisera to the corresponding proteins (lanes 2, 4, and 6, respectively) are shown.
We observed a high frequency of colostrum antibodies against EspA-, EspB-, and \(\gamma \)-intimin\(_{1-280} \)-specific antibodies (77.1% \(\pm \) 13.7% inhibition; \(n = 28 \)) and negative samples (66.3% \(\pm \) 12.0% inhibition; \(n = 7 \)) \((P < 0.065) \), thus suggesting the presence of TTSS-inhibitory substances other than anti-EspA, -EspB, and -intimin IgG antibodies in bovine colostrum.

Contribution of IgG and bovine lactoferrin to the inhibition of TTSS-induced hemolysis. When a pool of 15 randomly chosen colostrum samples was depleted of IgG through passage across a protein G-Sepharose column, a reduction from 93.4% \(\pm \) 0.9% to 87.9% \(\pm \) 1.7% \((P < 0.01) \) in the TTSS-mediated hemolysis was observed (Fig. 4). In some individual samples, the contribution of IgG to the inhibitory activity observed reached 40% (data not shown). The subsequent absorption of lactoferrin from IgG-depleted colostrum by affinity membrane chromatography produced an additional level of reduction in hemolysis, with an inhibitory effect of 78.3% \(\pm \) 2.6% \((P < 0.01) \) in hemolysis. In accordance with these results, purified bovine lactoferrin \((44) \) produced a reduction of 76.9% \(\pm \) 1.6% in RBC lysis at a concentration of 1 mg/ml.

DISCUSSION

Our research indicates that bovine colostrum contains antibodies and other substances that recognize proteins involved in the intestinal adherence and damage produced by EHEC, in accordance with previous studies which have found antilipopolysaccharide or anti-Stx antibodies in bovine colostrum \((19, 34, 42) \). We observed a high frequency of colostrum antibodies against \(\gamma \)-intimin\(_{1-280} \)-EspA, and EspB proteins among dairy cows from Argentinian herds. Recently, Bretschneider et al. \((1) \) have demonstrated that cattle respond serologically to *E. coli* O157:H7 intimin and EspB during the course of an experimental infection. The immunogenicity of the LEE-encoded proteins studied here was also observed in patients infected with *E. coli* producing *O* \(157:H7 \) intimin and EspB on RBC in a dose-dependent manner. This effect was partially related to anti-EHEC IgG antibodies, since a significant reduction in the inhibitory activity was obtained with IgG-depleted colostrum. However, colostrum retained a high level of hemolysis inhibition, thus suggesting that it contains other active substances.

Lactoferrin, an iron-binding glycoprotein present in colostrum, milk, and other body fluids, has antimicrobial, anti-inflammatory, and immunomodulatory functions \((2) \). Recently, Ochoa et al. \((31) \) have demonstrated that the lactoferrin present in human milk inhibits TTSS-mediated EPEC adherence to mammalian cells. Based on this report, we looked at the possibility that bovine lactoferrin might also impair TTSS function. The significant reduction in the TTSS-inhibitory activity observed when colostrum was depleted of lactoferrin by affinity membrane chromatography confirmed this hypothesis. This is in agreement with the observation that inhibition of EPEC adherence by bovine colostrum is mediated by a high-molecular-weight fraction \((32) \). On the other hand, low concentrations of other specific immunoglobulin isotypes or unknown substances could be responsible for the remaining inhibitory activity observed with IgG- and lactoferrin-depleted colostrum.

Earlier studies have clearly shown that different Shiga toxin-producing *E. coli* serotypes colonize healthy cattle and that only a small percentage of these isolates possess intimin \((8, 25) \). The presence of antibodies against \(\gamma \)-intimin\(_{1-280} \) seems to indicate previous or current exposure to and the colonization of cattle with either EHEC O157:H7 or O145:H-; two of the most virulent EHEC strains for humans and the serotypes prevalent in human cases of HUS in Argentina \((35) \).

Bovine colostrum may play a role in preventing EHEC colonization in humans. Clinical studies have shown that immunoglobulin preparations from healthy cows ameliorate diarrheal disease in children infected with diarrheagenic *Escherichia coli* \((9, (4, 29, 38) \). The strong reactivity of colostrum samples with EspB can also be attributed to a higher persistence of EspB-specific antibodies in bovine sera, as demonstrated in an *E. coli* O157:H7 experimental infection \((1) \).
39). It has also been demonstrated that bovine colostrum contains immunoglobulins that neutralize Shiga toxins and EHEC hemolysin of E. coli O157:H7 in vitro (19) and protects mice against an oral challenge with EHEC O157:H7 (6). Moreover, Zhao et al. (45) have reported that EHEC fecal shedding in calves increases after weaning; this observation strongly suggests that colostrum protects calves from early EHEC infection. In the current work, we showed that bovine colostrum contains IgG antibodies against proteins involved in the colonization of attaching and effacing E. coli and blocks the TTSS function of these strains by means of IgG antibodies, lactoferrin, and other unidentified substances.

In conclusion, we found that early bovine colostrum impairs TTSS function in attaching and effacing E. coli strains by different mechanisms. Thus, bovine colostrum could naturally reduce EHEC colonization in newborn calves. These results encourage us to think that bovine colostrum could be used as a prophylactic measure to prevent non-breast-fed children against EHEC infection in an area of endemicity.

ACKNOWLEDGMENTS

We are grateful to Osvaldo Cascone and Federico J. Wolman (Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires) for the lactoferrin depletion assay and Viviana Parreno, Gisella Marcopido, E. coli TTSS function in attaching and effacing E. coli and blocks the TTSS function of these strains by means of IgG antibodies, lactoferrin, and other unidentified substances.

In conclusion, we found that early bovine colostrum impairs TTSS function in attaching and effacing E. coli strains by different mechanisms. Thus, bovine colostrum could naturally reduce EHEC colonization in newborn calves. These results encourage us to think that bovine colostrum could be used as a prophylactic measure to prevent non-breast-fed children against EHEC infection in an area of endemicity.

ACKNOWLEDGMENTS

We are grateful to Osvaldo Cascone and Federico J. Wolman (Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires) for the lactoferrin depletion assay and Viviana Parreno, Gisella Marcopido, E. coli TTSS function in attaching and effacing E. coli and blocks the TTSS function of these strains by means of IgG antibodies, lactoferrin, and other unidentified substances.

In conclusion, we found that early bovine colostrum impairs TTSS function in attaching and effacing E. coli strains by different mechanisms. Thus, bovine colostrum could naturally reduce EHEC colonization in newborn calves. These results encourage us to think that bovine colostrum could be used as a prophylactic measure to prevent non-breast-fed children against EHEC infection in an area of endemicity.

ACKNOWLEDGMENTS

We are grateful to Osvaldo Cascone and Federico J. Wolman (Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires) for the lactoferrin depletion assay and Viviana Parreno, Gisella Marcopido, E. coli TTSS function in attaching and effacing E. coli and blocks the TTSS function of these strains by means of IgG antibodies, lactoferrin, and other unidentified substances.

In conclusion, we found that early bovine colostrum impairs TTSS function in attaching and effacing E. coli strains by different mechanisms. Thus, bovine colostrum could naturally reduce EHEC colonization in newborn calves. These results encourage us to think that bovine colostrum could be used as a prophylactic measure to prevent non-breast-fed children against EHEC infection in an area of endemicity.

ACKNOWLEDGMENTS

We are grateful to Osvaldo Cascone and Federico J. Wolman (Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires) for the lactoferrin depletion assay and Viviana Parreno, Gisella Marcopido, E. coli TTSS function in attaching and effacing E. coli and blocks the TTSS function of these strains by means of IgG antibodies, lactoferrin, and other unidentified substances.

In conclusion, we found that early bovine colostrum impairs TTSS function in attaching and effacing E. coli strains by different mechanisms. Thus, bovine colostrum could naturally reduce EHEC colonization in newborn calves. These results encourage us to think that bovine colostrum could be used as a prophylactic measure to prevent non-breast-fed children against EHEC infection in an area of endemicity.

ACKNOWLEDGMENTS

We are grateful to Osvaldo Cascone and Federico J. Wolman (Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires) for the lactoferrin depletion assay and Viviana Parreno, Gisella Marcopido, E. coli TTSS function in attaching and effacing E. coli and blocks the TTSS function of these strains by means of IgG antibodies, lactoferrin, and other unidentified substances.

In conclusion, we found that early bovine colostrum impairs TTSS function in attaching and effacing E. coli strains by different mechanisms. Thus, bovine colostrum could naturally reduce EHEC colonization in newborn calves. These results encourage us to think that bovine colostrum could be used as a prophylactic measure to prevent non-breast-fed children against EHEC infection in an area of endemicity.
Escherichia coli strains isolated from hemolytic uremic syndrome and diarrhea cases in Argentina. Foodborne Pathog. Dis. 3:88–96.

37. Rivas, M., E. Miliwebsky, I. Chinen, N. Deza, and G. A. Leotta. 2006. The epidemiology of hemolytic uremic syndrome in Argentina. Diagnosis of the etiologic agent, reservoirs and routes of transmission. Medicina (Buenos Aires) 66(Suppl. 3):27–32. (In Spanish.)

38. Son, W.-G., T. A. Graham, and V. P. J. Gannon. 2002. Immunological characterization of Escherichia coli O157:H7 intimin γ1. Clin. Diagn. Lab. Immunol. 9:46–53.

39. Tawfeek, H. I., N. H. Najim, and S. Al-Mashikhi. 2003. Efficacy of an infant formula containing anti-Escherichia coli colostral antibodies from hyperimmunized cows in preventing diarrhea in infants and children: a field trial. Int. J. Infect. Dis. 7:120–128.

40. Towbin, H., T. Stachelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.

41. Warawa, J., B. B. Finlay, and B. Kenny. 1999. Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infect. Immun. 67:5538–5540.

42. Widiasih, D. A., I. Matsuda, K. Omoe, D. L. Hu, S. Sugii, and K. Shinagawa. 2004. Passive transfer of antibodies to Shiga toxin-producing Escherichia coli O26, O111 and O157 antigens in neonatal calves by feeding colostrum. J. Vet. Med. Sci. 66:213–215.

43. Wieler, L. H., T. K. McDaniel, T. S. Whittam, and J. B. Kaper. 1997. Insertion site of the locus of enterocyte effacement in enteropathogenic and enterohemorrhagic Escherichia coli differs in relation to the clonal phylogeny of the strains. FEMS Microbiol. Lett. 156:49–53.

44. Wolman, F. J., D. Gonzalez Maglio, M. Grasselli, and O. Cascone. 2007. One-step lactoferrin purification from bovine whey and colostrum by affinity chromatography. J. Membr. Sci. 288:132–138.

45. Zhao, T., M. P. Doyle, J. Shere, and L. Garber. 1995. Prevalence of enterohemorrhagic Escherichia coli O157:H7 in a survey of dairy herds. Appl. Environ. Microbiol. 61:1290–1293.