The Influence of Thermocycling on the Flexural Strength of a Polyamide Denture Base Material

Introduction

Despite the increasing popularity of dental implants for full mouth rehabilitation, complete and partial dentures remain a useful treatment modality for the restoration of edentulous patients. The proper selection of the base resin denture polymer is a significant factor for the long term success of removable restorations. Polymethyl methacrylate (PMMA) has been the material of choice for denture base constructions for decades. Alternatives to PMMA include materials which have been introduced in dental market in the past decades, such as high impact polymers, polycarbonates and polyamides (1-3).

Polyamides (NH(CH₂)mCON) are known in everyday life as nylon. In their molecule bonds produced by an amine group (NH) and a terminal carbonyl component of a functional group (COOH) react to produce a carbon-nitrogen bond (amide). The amine group and the carboxylic acid group may either be on the same monomer, or the polymer

Uvod

Unatoč sve većoj popularnosti dentalnih implantata za potpunu rehabilitaciju usta, opskrba bezubih pacijenata potpunom i djelomičnom protezom i dalje je korisna metoda liječenja. Pritom je pravilan odabir polimera smole za bazu proteza važan čimbenik za dugoročni uspjeh mobilnih nadojmjesta. Polimetilni metakrilat (PMMA) desetljećima je bio materijal izbora za konstrukcije baze proteza. Alternative su uključivale materijale kao što su polimeri visokog udara, polikarbonati i poliamidi koji su posljednjih desetljeća uvedeni na dentalno tržište (1 – 3). Poliamidi [NH(CH₂)mCON] poznati su u svakodnevnom životu kao nylon. U svojoj molekuli, veze dobivene aminskom skupinom (NH) i krajnjom carbonilnom komponentom funkcionalne skupine (COOH), reagiraju kako bi se dobila veza ugljik – dušik (amid). Aminska skupina i skupina karbonske kiseline mogu biti ili na istome monomeru, ili se polimer može sastojati od dvaju različitih bifunkcionalnih

Zaprimljen: 1. svibnja 2017.
Prihvaćen: 5. srpnja 2017.

Adresa za dopisivanje
Nick Polychronakis, Assistant Professor
National and Kapodistrian University of Athens
Dental School
Removable Prosthodontics
Thivon 2 Athens 115 27
tel. 00302107461182
nicpolis@dent.uoa.gr

Ključne riječi
zubna proteza, baza; čvr stoća na savijanje; smole, sintetičke; poliamid; nylon; materijali, testiranje
Materijali i metoda

Ispitivana su dva smolasta materijala za bazu proteze – PMMA (Vertex Rapid Simplified, Vertex-Dental B.V., Nizozemska) i poliamid (Valplast, Valplast Int Corp., Long Island City, NY, SAD). Uzorci od nehrđajućeg čelika upotrebili su za izradu ukupno 60 šipki (30 za svaki materijal), uključujući veliku fleksibilnost, nisku gustoću, visok modul elastičnosti, visoku poroznost na udarce, nisku apsorpciju vode i topljivost, materijal su izbor za bazu proteze (4, 5). Glavni nedostaci poliamida kao materijala za bazu proteze odnose se na njegov nizak modul elastičnosti, savijanja i vlačne čvrstoće (9, 10), nisko prianjanje na podložnu masu proteze (11), nepostojanje kemijske veze s akilinskim zubima i nemogućnost popravka (12). Iako su u mnogim studijama (7, 9, 13, 14) objavljeni podatci u vezi s čvrstoćom savijanja PMMA-e (19), nedostaju dokazi o ponašanju fleksibilnosti poliamida (1, 3, 15).

Krajnja čvrstoća na savijanje materijala pokazuje svoj potencijal tako da se odupire katastrofalnom neuspjehu pod opterećenjem na savijanje. Visok anhidrostična veza na savijanju osnovnog materijala za proteze nužna je za klinički uspjeh mobilnih djelomičnih nadomjestaka s obzirom na činjenicu da je alveolarna resorpcija postupan i nepravilan proces koji može rezultirati neravnim nosačem proteze na tkivu. Potrebna je visoka proporcionalna granica da bi se osnovni materijal mogao odupriti plastičnoj deformaciji te povećati otpornost na zamor koja je nužna da bi se podnijelo ponavljano žvakanje s visokom flexural strength (9, 10), njihov privremeni opterećenje i povećanje postojanja pomjene temperature na svojstva savijanja poliamida kada se konzumira vruća i hladna hrana, nije temeljito istražen.

Cilj ove studije bio je ispitati čvrstoću na savijanje poliamidnog materijala za bazu proteze u usporedbi s konvencionalnim materijalom PMMA nakon izloženosti različitim broju termičkih ciklusa. Nutla hipoteza bila je da ne postoji značajna razlika u čvrstoći savijanja prije termocikliranja i poslije toga postupka, te da broj ciklusa ne utječe značajno na čvrstoću savijanja materijala.

May be constituted of two different bifunctional monomers, one with two amine groups and the other with two carboxylic acid or acid chloride groups (4–6). Nylon is synthetically produced and polymerized by condensation reaction and must specifically include a straight chain (aliphatic) monomer (5, 6).

The first attempts to use polymides as denture base materials were made in the 1950s, but they have been used extensively for this purpose after the introduction of new generations of nylon materials (4–6). Physical and mechanical properties favor the use of polymides as denture base materials since they exhibit high flexibility, low density, high impact resistance and low water sorption and solubility (4). They are non-toxic materials with a low possibility of allergic reactions. They offer relatively good color stability (4, 7, 8).

One of the disadvantages of polymides as denture base materials is their low modulus of elasticity, flexural and tensile strength (9, 10), their low adherence to denture liners (11), the absence of chemical bond with acrylic teeth and the inability of repair (12). Although a large number of studies (7, 9, 13, 14) have been published on the flexural strength of PMMA under different experimental conditions, there is a lack of evidence concerning the flexural behavior of polymides (1, 3, 15).

The ultimate flexure strength of a material reflects its potential to resist catastrophic failure under a flexural load. The high flexural strength of the denture base material is essential for the clinical success of removable partial restorations, given the fact that the alveolar resorption is a gradual, irregular process that may result in uneven support of tissue-borne prostheses. A high proportional limit is necessary in order for the base material to resist plastic deformation and enhanced fatigue resistance is essential to withstand repeated masticatory loading (16–18). The high flexibility of polymides is necessary for the function of metal-free removable partial denture (RPD) clasps (2). The effect of the presence of water, and consequently saliva, and the effect of temperature changes when hot and cold foods are consumed on the flexural properties of the polymides have not been thoroughly investigated.

The aim of the present study was to investigate the flexural strength of a polyamide denture base material in comparison to a conventional PMMA denture base material after they had been submitted to a large number of thermal cycles. The null hypothesis was that there would be no significant difference in the flexural strength before and after thermocycling and that the number of cycles would not significantly affect the flexural strength of the materials.

Materials and Method

Two denture base resin material, a PMMA (Vertex Rapid Simplified, Vertex-Dental B.V., The Netherlands) and a polyamide (Valplast, Valplast Int. Corp, Long Island City, NY, USA) were tested. Stainless steel patterns were used to fabricate a total of 60 bars (30 of each material), measuring 64 mm×10 mm×2.5 mm, according to the ISO 1567 specification (19).
Specimen preparation

The specimen number was estimated before testing. For this purpose, G*Power software (G*Power v 3.1.5, Franz Faul, University of Kiel, Germany) were used.

Three metal patterns were invested in a flask with ISO type III dental stone (Microstone, Whip-Mix, USA). Before investing, a wax sprue (3 mm in diameter) was positioned on every pattern. The patterns were removed after boil-out and the mold cavities were filled with the respective material for specimen fabrication.

Before injection into the mold cavities, the polyamide material was plasticized in a digital melting Valplast furnace at 280°C for 11 min. The flask was pressed for 3 min in a Valplast injection press and then allowed to bench cool before opening.

The Vertex acrylic resin was fabricated according to the manufacturer's recommendation by mixing of 1 ml of liquid (monomer) to 2.3 g of powder (polymer). When it reached the dough stage, the acrylic mass was inserted in the mold cavities and polymerized at 100°C for 20 min. After curing, the flasks were bench-cooled at room temperature for 30 min.

All specimens were removed from the molds and the excess margins were trimmed with tungsten carbide burs. Subsequently, the specimens were polished up to 600 grits in a polishing unit (Ecomet III Buehler Ltd, Evanston, Ill., USA). The specimens were then stored in water at 37°C for 48 hours, according to ISO 1567.

According to the material used, the specimens were divided in two groups of 30 (Group 1/Vertex, Group 2/Valplast). The specimens of each material were further divided into three equal subgroups (n=10) (Table 1). Subgroups A1 and B1 were submitted to flexural test immediately after storage in distilled water for 48 hours at 37°C. Subgroups A2 and B2 were further submitted to thermocycling for 3000 cycles, while groups A3 and B3 were submitted to thermocycling for 5000 cycles (5°C and 55°C, 2 cycles/min) (Table 1). The three point flexural testing was accomplished in a universal testing machine (Tensometer 10; Monsanto, Akron, Ohio) at a force applied with a crosshead speed of 5 mm/min. Specimens were placed in a rig with incorporated supports displaced at 50 mm.

The fracture force (F) was recorded in Newtons (N) and the flexural strength (F) was calculated in MPa following the formula

\[
F_s = \frac{3PL}{2bd^2}
\]

\(P = \text{maximum load}, \ L = \text{specimen length}, \ b = \text{specimen width}, \ d = \text{specimen thickness}\). The Valplast failure load values (N) were derived from the stress-strain curve at the point of proportional limit.

Table 1. Grupe i podgrupe testiranih materijala

A	B	C
48 sati • 48 hours (voda 37°C • water 37°C)	3000 ciklusa • 3000 cycles (TC*)	5000 ciklusa • 5000 cycles (TC*)
Grupe • Groups	Podgrupe • Subgroups	Grupe • Groups
1 (Vertex)	A1	1 (Vertex)
2 (Valplast)	B1	2 (Valplast)
A2	B2	C1
A1	C2	

*TC = Termocikliranje • Thermocycling
prema rangiranim podatcima, dvosmjerna ANOVA s pomoću Tukeyjeva post hoc testa. Svi su testovi imali razinu statističke značajnosti .05. Za analizu podataka korišten je statistički softver (Sigma Plot, Verzija 12.0, SSI, Jandel CA, SAD).

Rezultati

Rezultati ispitivanja čvrstoće savijanja pokazali su statistički značajnu razliku između ispitivanih materijala u jednokim eksperimentalnim uvjetima (p < 0.05). Postojala je statistički značajna interakcija između materijala i termocikliranja (p < 0.05). Općenito, oba materijala pokazala su smanjenje vrijednosti čvrstoće savijanja kada je povećan broj ciklusa. Statistička procjena među svim uvjetima hidro-termocikliranja bila je značajna za sve podskupine i za oba materijala, osim za podskupinu od 48 sati i 3000 ciklusa za Valplast. Vrijednosti čvrstoće savijanja Vertexa, nakon što je 48 sati bio uručen u vodu, bile su gotovo dvostruke u usporedbi s vrijednostima Valplasta (119,13 do 60,31 MPa).

Rezultati ispitivanja čvrstoće na savijanje nalaze se u tablici 2. Statistički značajno smanjenje čvrstoće savijanja materijala PMMA (Vertex) zabilježeno je nakon 3000 i 5000 termičkih ciklusa (119,13 MPa u usporedbi s 99,82 MPa i 94,80 MPa) (p < 0,05). Nije zabilježena statistički značajna razlika u otpornosti na savijanje poslije 3000 termičkih ciklusa kada je ispitivan poliamidni materijal (Valplast) (60,31 MPa u usporedbi s 56,34 MPa). Ali, termocikliranje od 5000 ciklusa rezultiralo je statistički značajnim smanjenjem vrijednosti čvrstoće na savijanja za Valplast (60,31 MPa u usporedbi s 35,39 MPa).

![Table 2](image)

Grupa	Vrijednost s Madrid devijacija			
A1	119,13 ±7,28	60,31 ±2,34	99,82 ±14,02	56,34 ±3,1
B1	94,80 ±13,06	35,39 ±2,67		

Jednako potencirana slova znače nepostojanje statističke značajnosti. • Same superscript letters mean no statistical differences.

Vrijednosti čvrstoće na savijanje dvaju testiranih materijala pokazale su statistički značajnu razliku za sve testirane eksperimentalne uvjete: nakon 48 sati skladištenja u vodi vrijednosti Vertexa bile su gotovo dvaput veće od vrijednosti Valplasta (119,13 do 60,31 MPa). Statistički značajna razlika između dvaju materijala pronađena je nakon što su bili 3000 puta izloženi termocikliranju. Nakon 5000 termičkih ciklusa zabilježena je statistički značajna razlika u vrijednostima čvrstoće na savijanje između dvaju materijala.

Rasprava

Nulta hipoteza nije potvrđena jer su među testiranim skupinama zabilježene značajne razlike u čvrstoći savijanja. Iz rezultata ove studije može se zaključiti da promjene temperature i uranjanje u vodu tijekom termocikliranja smanjuju čvrstoću na savijanje i PMMA-e i poliamidnih materijala za bazu proteze.

A two-way ANOVA to the ranked data was done to test the effect of material, number of thermal cycles and their interactions on the flexural strength using the post hoc Tukey’s test. All tests used a .05 level of statistical significance. Statistical software (Sigma Plot, Version 12.0, SSI, Jandel CA) was used for data analysis.

Results

The results of the flexural strength test revealed a statistically significant difference between the tested materials under the same experimental conditions (p<0.05). There was a statistically significant interaction between materials and thermocycling (p<0.05). Generally, both materials showed a decrease in flexural strength values when the number of cycles was increased. The statistical estimation among all hydro-thermocycling conditions was significant for all subgroups for both materials except for the subgroup of 48 hours to 3000 cycles for Valplast. Vertex flexural strength values after 48 hours storage in water were almost double compared to the ones of Valplast (119,13 to 60,31 MPa).

The results of the flexural strength testing are presented in Table 2. A statistically significant decrease in the flexural strength of the PMMA material (Vertex) was recorded both after 3000 and 5000 thermal cycles (119,13 MPa compared to 99,82 MPa and 94,80 MPa respectively) (p<0.05). No statistically significant difference in flexural strength was recorded for 3000 thermal cycles when the polyamide material (Valplast) was examined (60,31 MPa compared to 56,34 MPa). However, thermocycling for 5000 cycles resulted in a statistically significant decrease in flexural strength values for Valplast (60,31 MPa compared to 35,39 MPa).

Grupa	Vrijednost s Madrid devijacija			
A1	119,13 ±7,28	60,31 ±2,34	99,82 ±14,02	56,34 ±3,1
B1	94,80 ±13,06	35,39 ±2,67		

Flexural strength values of the two materials tested revealed a statistically significant difference for all the experimental conditions tested: after 48 hours of water storage the Vertex values were almost double than the ones of Valplast (119,13 to 60,31 MPa). A statistically significant difference between the two materials was found after submission to 3000 thermal cycles. After 5000 thermal cycles a statistically significant difference in flexural strength values between the two materials was also recorded.

Discussion

The null hypothesis was not verified because significant differences in flexural strength were recorded among the test groups.

From the results of the present study it may be concluded that temperature fluctuations and immersion in water during thermocycling decrease the flexural strength of both PMMA...
U ovom radu PMMA je pokazala znatno veću čvrstoću na savijanje u odnosu na poliamid. Velik problem bio je utvrđivanje točke neuspjeha fleksibilnih poliamidnih materijala tijekom ispitivanja savijanja. U ovoj studiji pretpostavlja se da je točka neuspjeha vrijednost koja odgovara proporcionalnoj granici materijala u krivulji stres – naprezanje. Kliničko značenje čvrstoće na savijanje u proporcionalnom ograničenju jest da odražava otpornost materijala na plastičnu deformaciju.

U nizu studija (3, 9, 15, 20 – 22) ispitivala se čvrstoća na savijanje poliamidnih materijala u odnosu na PMMA-u u različitim eksperimentalnim uvjetima. Vrijednosti čvrstoće na savijanje poliamida dobivene u ovoj studiji su rezultatima drugih autora koji su testirali slične materijale nakon jednako izračuna točke neuspjeha (10, 15). Razlike u vrijednostima čvrstoće savijanja poliamida koje su prijavili drugi autori mogu se pripisati različitoj mikrostrukturi ispitivanih specifičnih zaštićenih materijala (engl. trademark) ili razlikama u izračunu točke neuspjeha (3, 9). Visoke vrijednosti čvrstoće na savijanje (163,62 MPa) koje je objavio Abhay et al. (1) vjerojatno mogu biti posljedica različitog načina izračuna.

Žbog njihove velike fleksibilnosti, poliamidni materijali za baze proteze ne lome se u kliničkim situacijama čak ni u slučaju ekstremnih žvačnih sila. Oni se ne mogu smatrati klinički učinkovitima ako plastična deformacija prekorači proporcionalnu granicu jer rezultiraju dimenzijalnim nepravilnostima nadomjestaka (23). U tom slučaju, materijali baze proteza mogu rezultirati slabijim žvačnim svojstvom i alveolarnom resorpcijom. Žvačne sile odraslih muškaraca s kompletnom mudaricom s kompletom dentijicom kreću se od 60 do 305 N, s prosečnom vrijednošću od 137 N i 150 N (24, 25). Srednja vrijednost točke neuspjeha fleksibilnih poliamidnih materijala u proporcionalnom ograničenju jest točka neuspjeha vrijednost koja odgovara proporcionalnoj granici materijala u krivulji stres – naprezanje. Kliničko značenje točke neuspjeha fleksibilnih poliamidnih materijala u proporcionalnom ograničenju jest da odražava otpornost materijala na plastičnu deformaciju.

In the present study, PMMA presented significantly higher flexural strength in relation to polyamide. Determining the failure point of the flexible polyamide materials during flexural testing has been a substantial problem. In the present study, the value corresponding to the proportional limit of the material in the stress–strain curve was presumed to be the failure point. The clinical importance of the flexural strength at the proportional limit is that it reflects the resistance of a material to plastic deformation.

In a number of studies (3, 9, 15, 20-22), the flexural strength of polyamide materials in comparison to PMMA under a variety of experimental conditions has been examined. The values of the flexural strength of polyamide reported in the present study are in agreement with the results of other authors, who tested similar materials following the same calculation of the failure point (10, 15). The differences in the polyamide flexural strength values reported by other authors may be attributed to different microstructures of specific trademark materials tested or to the differences in the calculation of the failure point (3, 9). The high flexural strength values (163.62 MPa) recorded by Abhay et al. (1) may probably be due to different ways of calculating.

Due to their high flexibility, polyamide denture base materials do not fracture in clinical situations even under extreme bite forces. They cannot be considered clinically efficient if plastic deformation exceeds the proportional limit, due to the resulting dimensional inaccuracies in the restoration (23). In this case, denture base materials may lead to inferior masticatory ability and alveolar resorption. Masticatory bite forces which are exerted by adult men with full dentition range between 60 N and 305 N, with a mean value of 137 N and 150 N (24, 25). The mean value of the proportional point of Valplast in the present study was about 220 N after 3000 hydro-thermocycling as it can be seen in Figure 1, which means that a full denture constructed by Valplast polyamide material can withstand the usual masticatory forces successfully. Nevertheless, there will be a permanent deformation in extreme loads. In all cases, the recorded values of tested materials exceeded the minimum accepted force values (55 N) proposed by ISO 1567.

![Slika 1. Dijagramatska ilustracija krivulje savijanja Valplasta nakon 3000 hydro-thermocikliranja](https://example.com/figure1.png)
savijanje materijala za bazu proteze. U većini ispitivanja materijal PMMA pokazuju veće vrijednosti apsorpcije vode od poliamidnih. Kada je PMMA uronjena u vodenu otopinu, otapala i druge topljive komponente mogu se dulje izlijevati, a voda ili slina se apsorbiraju. Apsorbiranje voda štetno utječe na fizikalna i mehanička svojstva smolastoga materijala za bazu proteze (33). Tijekom vremena, uglavnom zbog polarnih svojstava molekula smole, voda može omekšati akrilnu smolu koja djeluje kao otapalo i smanjuje čvrstoću materijala (34).

S druge strane, niska apsorpcija vode i topljivost poliamida pripisuju se amidnim skupinama (28) – što je viša koncentracija amidne skupine, to je veća apsorpcija vode. Predloženo je da se koncentracija amidne skupine poliamidnih materijala za bazu proteze postavi na nisku razinu kao kod najčešće korištenih industrijskih materijala, poput najlona 6 ili 66 (27).

Rezultati ovog istraživanja u skladu su sa zaključcima Machada i suradnika (30) koji su istaknuli značajno smanjenje čvrstoće na savijanje PMMA-e. Termocikliranje u 5000 ciklusa između 5 i 55 °C. Autori su to pripisali porastu temperature, što je uzrokovalo bržu difuziju molekula vode između polimernih lanaca, djelujući kao otapalo i omogućujući da se lanci lakše sklope jedni na druge pod opterećenjem. U drugoj studiji su Takahashi i suradnici (22) pripisali smanjenje otpornosti poliamida na savijanje termičkim promjenama koje uzrokuju kontinuiranu ekspanziju i kontrakcije te rezultiraju statičkim zamaorom materijala. Može se zaključiti da je u ovom istraživanju produljeno uvanjanje u vodu tijekom termocikliranja značajno smanjilo čvrstoću na savijanje materijala PMMA, a smanjenje čvrstoće na savijanje poliamida uglavnom je posljedica temperaturnih promjena.

Conclusions

Within the limitations of this in vitro study, the following conclusions may be drawn:

Thermocycling adversely affected the flexural strength of polyamide and PMMA denture base materials. Thermocycling at 3000 cycles significantly reduced the flexural strength of PMMA denture base material. Thermocycling at 5000 cycles significantly reduced the flexural strength of both PMMA and polyamide denture base material.

The polyamide denture base material exhibited significantly lower flexural strength values than PMMA for all the experimental conditions tested.

Both materials presented flexural strength values within the relative ISO 1567 specification.
Abstract
Objective: The aim of the present study was to evaluate the influence of thermocycling on the flexural strength of a polyamide base denture material. Methods and materials: A polyamide denture base material (Valplast) was tested, whereas a PMMA material (Vertex) was used as a control. Thirty specimens of each material were fabricated for flexural strength testing according to ISO 1567. They were prepared and stored in water at 37°C for 48 hours. The specimens of each material were divided into three equal groups (n=10). Flexural strength testing was performed immediately after water storage and after thermocycling (5°C / 55°C, 2 c/min) for 3000 and 5000 cycles. A three point flexural test was performed on a universal testing machine at a crosshead speed of 1mm/min. The final flexural strength was calculated using the formula: F = 3PL/2bd. A two-way ANOVA with post-hoc analysis using Tukey’s procedure was applied at .05 level of statistical significance. Results: A statistically significant reduction in flexural strength was recorded after thermocycling at 3000 cycles for PMMA and at 5000 cycles for both materials. The flexural strength of PMMA was significantly higher compared to polyamide for all the conditions tested (p<0.05). Conclusion: Thermocycling had a significant adverse effect on the flexural strength of polyamide and PMMA denture base materials.

References

1. Abhay PN, Karishma S. Comparative evaluation of impact and flexural strength of four commercially available flexible denture base materials: an in vitro study. J Indian Prosthodont Soc. 2013 Dec;13(4):499-508.
2. Ucar Y, Akova T, Aysan I. Mechanical properties of polyamide versus different PMMA denture base materials. J Prostodont. 2012 Apr;21(3):173-6.
3. Yunus N, Rashid AA, Asmi LL, Abu-Hassan MM. Some flexural properties of a nylon denture base polymer. J Oral Rehabil. 2005 Jan;32(1):65-71.
4. Polychronakis NC, Polyzois GL, Papadopoulos Tr. Effects of cleansing methods on 3-D surface roughness, gloss and color of a polyamide denture base material. Acta Odontol Scand. 2015 Jul;73(5):533-43.
5. Vojdani M, Giti R. Polyamide as a Denture Base Material: A Literature Review. J Dent (Shiraz). 2015 Mar;16(1 Suppl):1-9.
6. Sharma A, Shashidhara HS. A review: Flexible removable partial dentures. J Dent Med Sci. 2014 Dec;13(12):58-62.
7. Pfeiffer P, Rolleke C, Sherif L. Flexural strength and modulus of hypoallergenic denture base materials. J Prosthett Dent. 2005 Apr;93(4):372-7.
8. Wieckiewicz M, Opitz V, Richter G, Boening KW. Physical properties of polyamide-12 versus PMMA denture base material. Biomed Res Int. 2014;2014:150298. doi: 10.1155/2014/150298. Epub 2014 Jun 2.
9. Hamanaka I, Takahashi Y, Shimizu H. Mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand. 2011 Mar;69(2):75-9.
10. Soygun K1, Bolayar G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Prosthodont. 2013 May;5(2):153-60.
11. Hamanaka I, Shimizu H, Takahashi Y. Bond strength of a chairside autopolymerizing reline resin to injection-molded thermoplastic denture base resins. J Prosthodont Res. 2017 Jan;61(1):67-72.
12. Katsumata Y, Hojo S, Hamano N, Watanabe T, Yamaguchi H, Okada S, et al. Bonding strength of autopolymerizing resin to nylon denture base polymer. Dent Mater. 2009 Jul;26(4):409-18.
13. Diaz-Arnold AM, Vargas MA, Shaull KL, Laffoon JE, Qian F. Flexural and fatigue strengths of denture base resins. J Prosthodont. 2008 Jul;17(4):47-51.
14. Machado C, Sanchez E, Azor SS Uribé JM. Comparative study of the transverse strength of three denture base materials. J Dent. 2007 Dec;35(12):930-3.
15. Al-Muthaffer AMR, Al-Amee SS. Effect of thermocycling on some mechanical properties of polyamide hypoallergenic denture base material (comparative study). J Bagh College Dent. 2012;24(2):25-30.
16. Kelly E. Fatigue failure in denture base polymers. J Prosthodont Dent. 1969 Mar;21(3):257-66.
17. Johnston EP, Nicholls JJ, Smith DE. Flexure fatigue of 10 commonly used denture base resins. J Prosthodont. 1981 Nov;46(5):478-83.
18. Zappini G, Kammann A, Wachter W. Comparison of fracture tests of denture base materials. J Prosthodont Dent. 2003 Dec;90(6):578-85.
19. International Standards Organization. ISO 1567:1999. Dentistry – denture base materials. Geneve, Switzerland.
20. Sasaki H, Hamanaka I, Takahashi Y, Kawaguchi T. Effect of reinforcement on the flexural properties of injection-molded thermoplastic denture base resins. J Prosthodont. 2015 Dec 18. doi: 10.1111/jopr.12419. [Epub ahead of print].
21. Kohil S, Bhatia S. Flexural properties of polyamide versus injection-molded poly-methylmethacrylate denture base materials. Eur J Prosthodont. 2013 Sep-Dec;13(3):56-60.
22. Takahashi Y, Hamanaka I, Shimizu H. Effect of thermal shock on mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand. 2012 Jul;70(4):297-302.
23. Reis JM, Vergani CE, Pavarina AC, Giampaolo ET, Machado AL. Effect of reline, water storage and cyclic loading on the flexural strength of a denture base acrylic resin. J Dent. 2006 Aug;34(7):420-6.
24. Gecilli O, Bilhan H, Mumcu E, Tuncer N. The influence of maximum bite force on patient satisfaction and quality of life of patients wearing mandibular implant overdentures. J Oral Implant. 2012 Jun;38(3):271-7.
25. Rismanchian M, Bjoighi F, Mostajeran Z, Fazel A, Eshevari P. Effect of implants on maximum bite force in edentulous patients. J Oral Implant. 2009;35(4):196-200.
26. Al-Mulla MA, Murphy WM, Huggett R, Brooks SC. Effect of water and artificial saliva on some mechanical properties of some denture base materials. Dent Mater. 1989 Nov;5(6):399-402.
27. Takabayashi Y. Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dent Mater J. 2010 Aug;29(4):353-61.
28. Shah J, BulBule N, Kulkarni S, Shah H, Kakade D. Comparative evaluation of sorption, solubility and microhardness of heat cure poly-methylmethacrylate denture base resin & flexible denture base resin. J Clin Diagn Res. 2014 Aug;8(8):ZF01-ZF04.
29. Hamanaka I, Iwamoto M, Lassila L, Vallittu P, Shimizu H, Takahashi Y. Influence of water sorption on mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand. 2014 Nov;72(8):859-65.
30. Machado AL, Puckett AD, Breeding LC, Wady AF, Vergani CE. Effect of thermocycling on the flexural and impact strength of urethane-based and high-impact denture base resins. Gerodontology. 2012 Jun;29(2):e318-23.
31. Silva Cde S, Machado AL, Chaves Cde A, Pavarina AC, Vergani CE. Effect of thermal cycling on denture base and autopolymerizing reline resins. J Appl Oral Sci. 2013;21(3):219-24.
32. Seo RS, Murata H, Hong G, Vergani CE, Hamada T. Influence of thermal and mechanical stresses on the strength of intact and re-lined denture bases. J Prosthodont. 2006 Jul;9(1):59-67.
33. Barsby MJ, A denture base resin with low water absorption. J Dent. 1992 Aug;20(4):240-4.
34. Tuna SH, Keyf Y, Gumus HO, Uzun C. The evaluation of water sorption/solubility on various acrylic resins. Eur J Dent. 2008 Jul;2(3):191-7.