Two New Cholestanol Glycosides from the Roots and Rhizomes of *Smilacina henryi*

Xin Zhang1,2,#, Jing Sun2,2,#,* Shuo Zhang3, Yafeng Yan2, Rongxin Zhang2, Xuanji Xue1,4 and Zengjun Guo1,4*

1School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
2School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
3School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
4Shaanxi key laboratory of “Qiyao” resources and anti-tumor activities, Xi’an 710061, China

(Received April 15, 2019; Revised May 07, 2019; Accepted May 08, 2019)

Abstract: Two new cholestanol glycosides (1 and 2) were obtained from the roots and rhizomes of *Smilacina henryi*. Their structures were determined as 5α-cholest-9(11)-ene-3β, 26-dihydroxy-16, 22-dione 3-O-β-D-glucopyranosyl-(1→2)-β-D-galactopyranoside (1), 5α-cholest-9(11)-ene-3β, 26-dihydroxy-16, 22-dione 3-O-β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-galactopyranoside (2), by physicochemical properties and spectroscopic methods. In addition, the isolated glycosides were tested for their cytotoxic activity against human HepG2 tumor cells and compound 2 showed moderate activity with IC50 value of 59.32 μM.

Keywords: *Smilacina henryi*; cholestanol glycosides; structure determination; cytotoxicity. © 2019 ACG Publications. All rights reserved.

1. Introduction

Smilacina henryi (bekev) Wang et Tang, mainly distributed in Asia, Europe and north America, is a perennial herb in the genus *Smilacina* (Liliaceae) [1, 2]. As one of about 16 species grown in China, *S. henryi* is widely distributed in Shaanxi, Hebei, and Yunnan province. Its roots, named Pian Tou Qi in the region of Qinba Mountains of Shaanxi province, are usually used as traditional Chinese medicines (TCMs) for the treatment of rheumatism, traumatic injury and impotence [3-7]. Some chemical constituents have been isolated from *S. henryi* such as steroidal saponins and flavoids [3, 8]. In our research project of searching for the bioactive constituents from TCMs [9, 10], an investigation

*These authors contribute equally to this paper
*Corresponding authors: E-Mail: guozj@mail.xjtu.edu.cn (Prof. Guo); ph.175@163.com (Prof. Sun); Phone: +86(029)82655133 (Prof. Guo); +86(029)38184958 (Prof. Sun)

http://www.acgpubs.org/journal/records-of-natural-products November-December 2019 EISSN:1307-6167
DOI: http://doi.org/10.25135/mp.19.03.1248
Two new cholestanol glycosides of secondary metabolites of \textit{S. henryi} was carried out and two new cholestanol glycosides were obtained. Additionally, their cytotoxic activities against human HepG2 tumor cells were also studied. The isolation, structural elucidation and cytotoxic evaluation for the glycosides were reported in this paper.

2. Materials and Methods

2.1. General Experimental Procedures

Optical rotation was measured using a Rudolph Autopol VI polarimeter (Rudolph, USA); IR spectra were recorded on a Nicolet iS10 instrument (Thermo Fisher Scientific, USA); 1D and 2D NMR spectra were recorded on a Bruker Avance 400 instrument (Bruker Corp. Karlsruhe, Germany); Semipreparative HPLC was performed on Agilent infinity II system equipped with a UV detector and a YMC-Pack-ODS-A (10 mm × 250 mm, 5μm particles) column. The HR-ESI-MS spectra were taken on an Agilent Technologies 6650 Q-TOF (Agilent Technologies). Sephadex LH-20 gel and ODS C18 (5 μm) silica gel was purchased from GE Healthcare Bio-Sciences AB (Uppsala, Sweden). Silica gel was purchased from Qingdao Haiyang Chemical Group Corporation (Qingdao, China).

2.2. Plant Material

The roots and rhizomes of \textit{Smilacina henryi} (bekev) Wang et Tang were collected on August in 2017 from Qinba Mountains in Shaanxi Province of China, and were authenticated by one of our co-authors Prof. Jing Sun (Shaanxi University of Chinese Medicine). A voucher specimen (herbarium No. SH-201708) is deposited in School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China.

2.3 Extraction and Isolation

The air-dried roots and rhizomes of \textit{S. henryi} (6.6 kg) were extracted with 80% EtOH under reflux for three times (2h, 2h, 1h, successively). The concentrated residue was partitioned with petroleum ether (PE) and \textit{n}-BuOH successively. The \textit{n}-BuOH extract (130.2 g) was subjected to column chromatography (CC) on silica gel (1 kg), eluting with gradient solvent system (CH$_2$Cl$_2$-MeOH-H$_2$O, 100:0:0 − 60:40:10) to give six fractions (Fr.1 − Fr.6). Fr.4 (19.1 g) was subjected to CC on silica gel (200 g), eluting with (CH$_2$Cl$_2$-MeOH-H$_2$O, 100:10:0 − 80:20:5) to give six subfractions (Fr.4-1 − Fr.4-6). Fr.4-3 (3.1 g) subjected to CC on Sephadex LH-20 gel (100 g) eluting with (CH$_2$Cl$_2$-MeOH 100:100) to give ten subfractions (Fr.4-3-1 − Fr.4-3-10). Fr.4-3-2 (55.7 mg) was purified by HPLC (YMC-Pack-ODS-A, 10 mm × 250 mm, 5 μm particles, flow rate: 1.5 mL/min) with MeCN-H$_2$O (70:30) as mobile phase to afford compound 2 (16.9 mg; $t_R = 19.7$ min), Fr.4-3-4 (31.1 mg) was purified by HPLC (YMC-Pack-ODS-A, 10 mm × 250 mm, 5 μm particles, flow rate: 1.5 mL/min) with MeCN-H$_2$O (72:28) as mobile phase to afford compound 1 (10.4 mg; $t_R = 28.4$ min).
2.4. Spectroscopic Data

5α-cholest-9(11)-ene-3β, 26-dihydroxy-16, 22-dione 3-O-β-D-glucopyranosyl-(1→2)-β-D-galactopyranoside (1): A white amorphous powder; [α]_D^20 −49.4° (c 0.18, MeOH); IR (KBr) ν_max: 3419, 2926, 1736, 1614, 1455, 1067, 890, 770 cm⁻¹; m/z 777.4025 [M + Na]⁺ (calcd for 777.4037 CₙH₂₉O₁₄Na⁺). ¹H-NMR and ¹³C-NMR data (400 MHz and 100 MHz in pyridine-d₅) see Table 1.

5α-cholest-9(11)-ene-3β, 26-dihydroxy-16, 22-dione 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)-β-D-galactopyranoside (2): A white amorphous powder; [α]_D^20 −20.0° (c 0.1, MeOH); IR (KBr) ν_max: 3417, 2926, 1736, 1704, 1603, 1456, 1068, 688 cm⁻¹; m/z 939.4532 [M + Na]⁺ (calcd for 939.4565 C₄₆H₇₂O₁₀Na⁺). ¹H-NMR and ¹³C-NMR data (400 MHz and 100 MHz in pyridine-d₅) see Table 1.

2.5. Acid Hydrolysis

Solutions of 1 and 2 (5 mg each) were hydrolyzed in 2 M hydrochloric acid (5 mL) at 80 °C for 2 h. After cooling, each solution was concentrated under vacuum, dissolved with water, and extracted twice with dichloromethane (CH₂Cl₂). The aqueous parts were subjected to CC on ODS C₁₈ silica gel (10 g), eluting with (MeCN-H₂O, 5:95) to give two products. The D configurations of the galactose and the glucose moieties in 1 and 2 were confirmed through their optical rotation data (Gal: [α]_D^20 +29.0°, MeOH and Glc: [α]_D^20 +48.8°, MeOH) and Rf values (BuOH-AcOH-H₂O, 4:1:5 upper layer, Gal: 0.39 and Glc: 0.36) with the authentic sugar samples [11].

2.6. Cytotoxic Activity Assay

The cytotoxic activity assay toward the human HepG2 cell lines was measured by the MTT method (positive control: 5-fluorouracil, IC₅₀ 12.07 μM). Briefly, 1 × 10⁴/mL cells were seeded into 96-well plates and allowed to adhere for 24 h. Compounds 1 and 2 were dissolved in DMSO and diluted with complete medium to 6 degrees of concentration for inhibition rate determination. After incubation at 37.8 °C for 4 h, the supernatant was removed before adding DMSO (100 μL) to each well [8].

3. Results and Discussion

Compound 1, white amorphous powder, with [α]_D^20 −49.4° (c 0.18, MeOH), has a molecular formula of C₉₉H₂₉O₁₄ which was deduced from the HR-ESI-MS positive molecular ion peak at m/z 777.4025 [M + Na]⁺ (calcd for 777.4037 [M + Na]⁺). Four steroid methyl groups at δ_H 0.66 (s, H-18), 0.85 (s, H-19), 1.14 (d, J = 6.7 Hz, H-21) and 1.07 (d, J = 6.8 Hz, H-27) along with an olefinic proton 5.29 (d, J = 5.3 Hz, H-11) and two anomic protons at δ_H 4.88 (d, J = 7.8 Hz, Gal-H1) and 5.33 (d, J = 7.8 Hz, Glc-H1) were observed in the ¹H-NMR spectrum of 1. The ¹³C-NMR spectrum displayed 39 carbon signals, in which a double bond carbons at δ_C 147.3 (C-9), 115.3 (C-11), and two carbonyl carbon at δ_C 217.1 (C-16) and 213.1 (C-22) and two oxygen-carbon signals at δ_C 76.7 (C-3) and 67.3 (C-26) were observed. These data compared with the literature [8] supported the
Two new cholestanol glycosides

5α-cholest-9(11)-ene-3β, 26-dihydroxy-16, 22-dione aglycone of 1. This inference was deduced from 2D-NMR data analysis including HSQC, HMBC, NOESY and 1H-1H COSY experiments (Figure 1). Detailed considering the 1H and 13C-NMR spectra showed a galactose moiety with anomeric proton at δH 4.88 and carbon signals (102.4, 79.9, 75.3, 73.2, 75.7, 60.8) and a glucose with anomeric proton at δH 5.33 and carbon signals (106.9, 75.0, 78.5, 72.1, 78.3, 62.9) in 1, respectively [3]. The sugar sequence and its linkage site to the aglycone moiety were determined from the HMBC spectra. HMBC correlations observed between Gal-H1 (δH 4.88) and C-3 (δC 76.7), and between Glc-H1 (δH 5.33) and Gal-C2 (δC 79.9), which disclosed that the D-galactose unit was linked at C-3 of aglycone, the D-glucose unit was linked at C-2 of the D-galactose. Acid hydrolysis of 1 resulted in the products of D-galactose and D-glucose which were confirmed by their optical rotation data (Gal: [α]20D+29.0°, MeOH and Glc: [α]20D+48.8°, MeOH) and Rf values (BuOH-AcOH-H2O, 4:1:5 upper layer, Gal: 0.39 and Glc: 0.36) with the authentic sugar samples [9]. Coupling constants of the anomeric proton signals (7.8 Hz each) suggested the β-configurations for the D-galactose and D-glucose, respectively [12-13]. Then the structure of 1 was deduced as 5α-cholest-9(11)-ene-3β, 26-dihydroxy-16, 22-dione 3-O-β-D-glucopyranosyl-(1→2)-β-D-galactopyranoside (1, Figure 1).

Figure 1. Structures and key 1H-1H COSY, HMBC and NOESY correlations of 1 and 2.
Table 1. ¹H and ¹³C-NMR data (δ in ppm, J in Hz) of 1 and 2

NO	¹H	¹³C	¹H	¹³C	NO	¹H	¹³C	¹H	¹³C
1	1.31 m	35.4	1.31 m	35.4	Gal-1	4.88, d (7.8)	102.4	4.91, d (7.8)	102.3
2	1.63 m	1.62 m	1.73 m	29.8	2	4.73 m	79.9	4.58 ov	80.8
3	1.73 m	1.72 m	2.19 m	2.17 m	3	4.11 ov	75.3	4.13 ov	85.9
4	2.19 m	2.17 m	3.93 m	76.7	4	4.42, d (9.2)	73.2	4.50, d (9.2)	73.1
5	1.77 m	1.74 m	1.77 m	38.0	5	4.28 ov	75.7	3.97 ov	77.4
6	2.22 m	2.23 m	4.42 ov	79.9	6	4.31 ov	60.8	4.29 ov	60.3
7	1.08 ov	42.8	1.08 ov	42.8	Glc-1	5.33, d (7.8)	106.9	5.16 ov	105.0
8	1.21 m	1.22 m	1.25 m	28.3	2	4.09 ov	75.0	4.08 ov	75.4
9	0.97 m	0.96 m	0.97 m	33.0	3	4.25 ov	78.5	4.26 ov	78.7
10	1.65 m	1.64 m	1.98 m	34.7	4	4.05 ov	78.3	4.07 ov	76.5
11	1.47 m	34.7	1.98 m	34.7	5	4.22 ov	62.9	4.38, d (10.8)	61.3
12	38.0	38.0	147.3	147.3	6	4.64, d (10.8)	4.59 ov	4.65 ov	63.0
13	5.29, d (5.3)	115.3	5.29, d (5.3)	115.2	5.23, d (7.8)	106.7			
14	1.63 ov	35.3	1.63 ov	35.3	5.29, d (5.3)	115.3	5.29, d (5.3)	115.2	
15	1.88 ov	1.88 ov	1.88 ov	39.6	2	4.09 ov	75.0	4.09 ov	75.0
16	1.61 ov	47.8	1.61 ov	47.8	3.96 ov	78.2	3.96 ov	78.2	
17	2.91, dd (11.2, 8.9)	40.3	2.92, dd (11.2, 8.9)	40.3	4.23 ov	70.1			
18	——	——	2.78, dd (10.9, 6.7)	43.3	4.12 ov	78.0	4.12 ov	78.0	
19	1.14, d (6.7)	15.3	1.14, d (6.7)	15.3	41.1 ov	63.0			
20	2.78, dd (11.2, 8.9)	40.3	2.96, dd (11.2, 8.9)	40.3	41.1 ov	63.0			
21	——	——	2.78, dd (10.9, 6.7)	43.3	41.1 ov	63.0			
22	1.47, d (5.3)	115.3	5.29, d (5.3)	115.2	41.1 ov	63.0			
23	1.63 ov	35.3	1.63 ov	35.3	4.23 ov	70.1			
24	1.88 ov	1.88 ov	1.88 ov	39.6	4.12 ov	78.0	4.12 ov	78.0	
25	1.61 ov	47.8	1.61 ov	47.8	41.1 ov	63.0			
26	2.91, dd (11.2, 8.9)	40.3	2.92, dd (11.2, 8.9)	40.3	41.1 ov	63.0			
27	1.14, d (6.7)	15.3	1.14, d (6.7)	15.3	41.1 ov	63.0			

¹H-NMR and ¹³C-NMR were measured at 400 MHz and 100 MHz in pyridine-`d₅`, and the assignments were based on the HSQC, HMBC, NOESY and ¹H-¹H COSY experiments; ov: overlap signals.
Compound 2, was obtained as white amorphous powder, with \([\alpha]_D^{20} = -20.0^\circ\ (c\ 0.10,\ MeOH)\), which has the molecular formula of \(C_{44}H_{72}O_{19}\) supporting by the HR-ESI-MS positive molecular ion peak at \(m/z\ \, 939.4532\) \([M + Na]^+\) (calcd for \(939.4565\) \([M + Na]^+\)). When comparing the NMR data of 2 and 1, they showed almost the similar NMR spectroscopic features of the aglycone. Therefore, the aglycone of 2 was deduced as 5α-cholest-9(11)-ene-3β, 26-dihydroxy-16, 22-dione [8] which was further supported by 2D-NMR data analysis (Figure 1). The difference between 2 and 1 was the sugar moiety in 1 (3-O-β-D-glucopyranosyl-(1→2)-β-D-galactopyranoside) which was replaced by 3-O-β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-galactopyranoside in 2 [3, 4]. This inference was determined from the HMBC correlations from 4.91 (Gal-H1) to 76.5 (C-3), from 5.16 (Glc-H1) to 80.8 (Gal-C2) and from 5.23 (Glc’-H1) to 85.9 (Gal-H3). The β-configurations for the D-galactose and D-glucose in 2 were identified as the same method as 1. Compound 2 was thus deduced as 5α-cholest-9(11)-ene-3β, 26-dihydroxy-16, 22-dione 3-O-β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-galactopyranoside (2, Figure 1).

Steroidal glycosides, possessing various cytotoxic activities, have been isolated from the genus *Smilacina* [2, 4-8]. In this paper, the cytotoxic activity against human HepG2 tumor cells of compounds 1 and 2 were evaluated by the MTT method. The results showed that only compound 2 exhibited moderate effect with IC\(_{50}\) value of 59.32 μM.

Acknowledgements

This study was financially supported by the Key Laboratory Project of Shaanxi Education Department (Study on the antitumor pharmacodynamic substance basis of *Smilacina henryi*).

Supporting Information

Supporting information accompanies this paper on http://www.acgpubs.org/journal/records-of-natural-products.

ORCID

Xin Zhang: 0000-0003-0124-099X
Jing Sun: 0000-0002-8267-2067
Shuo Zhang: 0000-0001-9064-1722
Yafeng Yan: 0000-0002-7391-0166
Rongxin Zhang: 0000-0002-5222-911X
Xuanji Xue: 0000-0003-2487-9702
Zengjun Guo: 0000-0003-3266-6280

References

[1] X. M. Song and H. J. Liu (2011). *Research and Application of "Qi-Medicines" in Taibai Mountains*, People's Medical Publishing House, Beijing.

[2] X. Liu, H. Zhang, X. F. Niu, W. Xin and L. Qi (2012). Steroidal saponins from *Smilacina japonica*, *Fitoterapia* **83**, 812-816.
Zhang et al., Rec. Nat. Prod. (2019) 13:6 499-505

[3] J. Lin, G. Q. Wang, L. Bai and L. Z. Yu (2018). Steroidal components from rhizome of Smilacina henryi. Chin. Tradit. Herbal. Drugs. 49, 3987-3991.

[4] Y. W. Cui, X. J. Yang, D. D. Zhang, Y. Z. Li, L. Zhang, B. Song, Z. G. Yue, X. M. Song and H. F. Tang (2018). Steroidal constituents from roots and rhizomes of Smilacina japonica, Molecules 23, 798-806.

[5] S. L. Yang, X. K. Liu, H. Wu, H. Wang and C. Qing (2009). Steroidal saponins and cytotoxicity of the wild edible vegetable—Smilacina atropurpurea, Steroids 74, 7-12.

[6] X. Zhang, Y. F. Su, L. Chen, X. Huang, S. L. Yan, X. Chai and X. M. Gao (2013). Steroidal saponins from the rhizomes of Smilacina henryi, Helv. Chim. Acta 96, 478-487.

[7] Y. Zhang, H. Z. Li, Y. J. Zhang, M. R. Jacob, S. I. Khan, X. C. Li and C. R. Yang (2006). Atropurosides A–G, new steroidal saponins from Smilacina atropurpurea. Steroids 71, 712-719.

[8] F. Qiao, J. Yang, J. Lin and S. Yao (2019). Four new steroidal components from Smilacina henryi and their cytotoxic activities, Phytochem. Lett. 29, 173-177.

[9] H. Zhang, Z. J. Guo, N. Wu, W. M. Xu, L. Han, N. Li and Y. X. Han (2012). Two novel naphthalene glucosides and an anthraquinone isolated from Rumex dentatus and their antiproliferation activities in four cell lines, Molecules 17, 843-850.

[10] S. K. Xu, A. X. Zou, Z. J. Guo and C. P. Wan (2017). Ethyl caffeate ameliorates collagen-induced arthritis by suppressing Th1 immune response, J. Immu. Res. 2017,1-11.

[11] J. Chai, X. M. Song, X. Wang, Q. B. Mei, Z. Li, J. C. Cui, Z. S. Tang and Z. G. Yue (2014). Two new compounds from the roots and rhizomes of Trillium tschonoskii, Phytochem. Lett. 10, 113-117.

[12] X. M. Song, D. D. Zhang, H. He, Y. Z. Li, X. J. Yang, C. Deng, Z. S. Tang, J. C. Cui and Z. G. Yue (2015). Steroidal glycosides from Reineckia carnea, Fitoterapia 105, 240-245.

[13] D. D. Zhang, W. Wang, Y. Z. Li, Z. Li, Y. Jiang, Z. S. Tang, X. M. Song and Z. G. Yue (2016). Two new pregnane glycosides from Reineckia carnea, Phytochem. Lett. 15, 142-146.