Search for decays of the 125 GeV Higgs boson into a Z boson and a ρ or ϕ meson

The CMS Collaboration

Abstract

The decays of the 125 GeV Higgs boson into a Z boson and a $\rho^0(770)$ or $\phi(1020)$ meson are searched for using proton-proton collision data collected by the CMS experiment at the LHC from 2016 to 2018 at $\sqrt{s} = 13$ TeV. The analysed data set corresponds to an integrated luminosity of 137 fb$^{-1}$. Events are selected in which the Z boson decays into a pair of electrons or a pair of muons, and the ρ and ϕ mesons decay into pairs of pions and kaons, respectively. No significant excess above the background model is observed. As different polarization states are possible for the decay products of the Z boson and ρ or ϕ mesons, affecting the signal acceptance, scenarios in which the decays are longitudinally or transversely polarized are considered. Upper limits at the 95% confidence level on the Higgs boson branching fractions into $Z\rho$ and $Z\phi$ are determined to be $1.21 \pm 1.89\%$ and $0.36 \pm 0.58\%$, respectively, where the ranges reflect the considered polarization scenarios; these values are $860 - 1350$ and $860 - 1380$ times larger than the respective standard model expectations. These results constitute the first experimental limits on these two decay channels.
1 Introduction

In 2012 a boson with a mass near 125 GeV was discovered by the ATLAS and CMS Collaborations at the CERN LHC [1–3]. Following this it was rapidly established that the properties of this particle are, within uncertainties, in agreement with those of the Higgs boson (H) in the standard model (SM) [4–9]. Decays of the Higgs boson into $\gamma\gamma$, ZZ^*, $W^\pm W^{\mp*}$, $\tau^+\tau^-$, and $b\bar{b}$, as well as the production of a Higgs boson via gluon-gluon fusion (ggH), vector boson fusion (VBF), in association with a vector boson, and in association with a top quark-antiquark pair, have all been observed [10–23]. While many of the couplings between the Higgs boson and other particles have already been measured, the required sensitivity for measuring Yukawa couplings to second- and first-generation fermions has not yet been reached. Yukawa couplings to second-generation fermions are accessible via searches for the decay of the Higgs boson into $\mu^+\mu^-$ or $c\bar{c}$, both of which have been performed at the LHC [24–28]. For the decay into $\mu^+\mu^-$ ($c\bar{c}$) the upper limit at the 95% confidence level (CL) is approximately 2 (70) times the SM expectation. In addition, Yukawa couplings to lighter fermions are also accessible via rare exclusive decays of the Higgs boson. One class of such decays is the decay of the Higgs boson into a photon and a vector meson. Thus far, the $\gamma J/\psi$, $\gamma \psi(2S)$, $\gamma \Upsilon(nS)$, $\gamma \rho$, and $\gamma \phi$ decays have been searched for [29–31]. The 95% CL upper limits on the branching fractions of the Higgs boson into $\gamma J/\psi$, $\gamma \rho$, and $\gamma \phi$ are 2 orders of magnitude larger than their expected values in the SM. For the $\gamma \psi(2S)$ and $\gamma \Upsilon(nS)$ decays, the corresponding upper limits are, respectively, 3 and 5 orders of magnitude larger than the SM expectation.

A related class of rare decays is that of the Higgs boson into a heavy vector boson and a vector meson (V) [32, 33]. Up to now only the decays of the Higgs boson into ZJ/ψ and $Z\eta_c$ have been studied experimentally [34]. As indicated in Fig. 1, several processes contribute to the decay of the Higgs boson into a vector boson and a meson. The formation of a vector boson and a meson via $H \rightarrow ZZ^*$, $H \rightarrow WW^*$, and $H \rightarrow Z\gamma^*$ decays (Fig. 1 left and middle) constitute indirect contributions to this process. We refer to the decay of the Higgs boson into light quarks that radiate a vector boson and form a bound meson state (Fig. 1 right) as the direct process. In the SM the indirect processes contribute the most to the decay of the Higgs boson into a heavy vector boson and a vector meson. Studies of such events probe a different phase space from conventional $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$ measurements, and therefore provide complementary information.

![Feynman diagrams](image-url)

Figure 1: Feynman diagrams that contribute to the decay of a Higgs boson into a heavy vector boson and a vector meson. The grey oval shape represents the meson. The two indirect processes (left and middle), where the meson originates from an off-shell Z boson or γ^*, contribute the most to the total branching fraction in the SM.

The direct process is negligible in the SM as it is suppressed by a factor of up to m_q^2/m_H^2 relative to the indirect contributions [35]. In that expression m_q and m_H denote the masses of the quark and the Higgs boson, respectively. However, in scenarios beyond the SM where the Yukawa couplings to light fermions are enhanced, this direct process could contribute significantly to
the Higgs boson branching fraction into a vector boson plus a meson [32]. An example of a model beyond the SM with enhanced Yukawa couplings to light fermions is a version of the Giudice–Lebedev model of quark masses [36] that is modified to have two Higgs doublets. In this scenario Yukawa couplings to light quarks could be enhanced by up to a factor of 7 [37]. Other scenarios in which light-quark Yukawa couplings can be larger than predicted in the SM include a single Higgs doublet model with Froggatt–Nielsen mechanism [38, 39] and Randall–Sundrum models of warped extra dimensions [40].

This note describes a search for the decays of the 125 GeV Higgs boson into a Z boson and a $\rho(770)^0$ meson ($H \to Z\rho$) or into a Z boson and a $\phi(1020)$ meson ($H \to Z\phi$). The branching fractions of these processes in the SM are small: $B(H \to Z\rho) = (1.4 \pm 0.1) \times 10^{-5}$ and $B(H \to Z\phi) = (4.2 \pm 0.3) \times 10^{-6}$ [32]. The search uses a sample of proton-proton (pp) collisions collected by the CMS experiment at $\sqrt{s} = 13$ TeV from 2016 to 2018. The data set corresponds to an integrated luminosity of 137 fb$^{-1}$, or 35.9 fb$^{-1}$, 41.5 fb$^{-1}$, and 59.7 fb$^{-1}$ collected in 2016, 2017, and 2018, respectively. In this search we select the dimuon and dielectron final states of the Z boson. For the ρ and ϕ mesons, we select decays containing exactly two charged hadrons to target the signal. This corresponds to the $\pi^+\pi^-$ final state for the ρ meson and the K^+K^- final state for the ϕ meson, although in the event reconstruction π^\pm and K^\pm are not explicitly distinguished. The main source of background events in this analysis is from Drell–Yan production of a Z boson in association with a genuine or misidentified meson candidate. For brevity we do not distinguish between particles and antiparticles in our notations of decay processes in the remainder of this note.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.

The silicon tracker measures charged particles within the pseudorapidity range $|\eta| < 2.5$. It consists of 1856 silicon pixel and 15148 silicon strip detector modules. The silicon pixel detector modules are arranged in four layers. In 2016, data were taken with a different detector configuration; at that time there were 1440 silicon pixel detector modules arranged in three layers. For nonisolated particles with transverse momentum (p_T) in the range $1 < p_T < 10$ GeV and $|\eta| < 1.4$, the track resolution is typically 1.5% in p_T [41].

Muons are measured in the pseudorapidity range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. The single-muon trigger efficiency exceeds 90% over the full η range, and the efficiency to reconstruct and identify muons is greater than 96%. Matching muons to tracks measured in the silicon tracker results in a relative transverse momentum resolution, for muons with p_T up to 100 GeV, of 1% in the barrel and 3% in the endcaps [42].

The electron momentum is estimated by combining the energy measurement in the ECAL with the momentum measurement in the tracker. The momentum resolution for electrons with $p_T \approx 45$ GeV from $Z \to ee$ decays ranges from 1.7% to 4.5%. It is generally better in the barrel region than in the endcaps, and also depends on the bremsstrahlung energy emitted by the
electron as it traverses the material in front of the ECAL [43].

Events of interest are selected using a two-tiered trigger system [44]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a time interval of less than 4 µs. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [45].

3 Event reconstruction

The products of pp collisions are reconstructed based on a particle-flow algorithm [46], which combines information from all subdetectors to reconstruct individual particle candidates. These particle candidates are classified as muons, electrons, photons, and charged and neutral hadrons.

The primary pp interaction vertex (PV) is taken as the reconstructed vertex with the largest value of summed physics-object p_T^2. For this purpose the physics objects are jets and the missing transverse momentum. The jets are clustered using the jet finding algorithm described in Refs. [47, 48] with the charged particle tracks associated to the vertex as inputs. The missing transverse momentum is taken as the negative vector sum of the p_T of those jets. Other collision vertices in the event are considered to have originated from additional inelastic pp collisions in each bunch crossing, referred to as pileup (PU). The average number of PU interactions during the 2016 data-taking period was 23, rising to 32 during the 2017 and 2018 data-taking periods. The muons, electrons, and charged hadron tracks used in the search presented in this note are all required to originate from the PV.

Muons are reconstructed through a simultaneous track fit to hits in the tracker and in the muon chambers [42]. To suppress particles misidentified as muons, additional requirements are applied on the track fit quality and compatibility of individual track segments with the fitted track. After these are imposed, prompt muons are identified with an efficiency of $\approx 99\%$. Contamination from muons produced within jets is reduced further by requiring the muon to be isolated from hadronic activity in the detector. A relative isolation variable is defined as

$$I_\mu^{rel} = \frac{\sum_{\text{charged}} p_T + \max \left(0, \sum_{\text{neutral}} p_T - 0.5 \sum_{\text{charged}} p_T^{PU} \right)}{p_T^{\mu}},$$

(1)

where $\sum_{\text{charged}} p_T$ refers to the scalar sum of the transverse momenta of all charged particles and $\sum_{\text{neutral}} p_T$ is the sum of the p_T of neutral hadrons and photons. These two sums are calculated within an isolation cone of radius $\Delta R = 0.4$, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ around the direction of the muon, and $\Delta \eta$ and $\Delta \phi$ are differences in pseudorapidity and azimuthal angle, respectively. The transverse momentum of the muon is excluded from these sums. To reduce the effects from PU, charged particles are only considered in the isolation sum if they are associated with the PV. The term $0.5 \sum_{\text{charged}} p_T^{PU}$ estimates the contributions from neutral particles in PU by summing the p_T of charged particles that are within the isolation cone but are not associated with the PV. The factor 0.5 accounts for the ratio of neutral to charged hadron production. Muons selected in the analysis must satisfy $I_\mu^{rel} < 0.15$. A looser selection, where the isolation requirement is removed, is also used in the analysis to reject events with additional muons.
Electrons are reconstructed by combining clusters of energy deposits in the ECAL with hits in the tracker [43]. To reduce contamination from particles incorrectly identified as electrons, reconstructed electrons are required to pass a multivariate electron identification discriminant. This discriminant, based on the one described in Ref. [43], combines information about the quality of the tracks, the shower shape, kinematic quantities, and hadronic activity in the vicinity of the reconstructed electron. Isolation sums similar to those in Equation 1 are also included among the discriminant inputs. Therefore no additional isolation requirements are applied. Using the requirements placed on the discriminant in this analysis, the electron identification efficiency is 80%. The rate at which other particles are misidentified as electrons is $\approx 1\%$. As for muons, looser requirements are used to reject events with additional electrons. Using this looser selection on the multivariate identification discriminant, the electron identification efficiency is 90% and other particles are misidentified as electrons at a rate of 2–5%.

The ρ and ϕ meson decay products are reconstructed using charged particle tracks measured in the tracker. The tracks are required to originate from the PV and to pass 'high purity' reconstruction requirements. These requirements are based on the number of tracker layers with hits, the track fit quality, and the values of the impact parameters relative to their uncertainties. The algorithm is described in more detail in Ref. [41]. In the event reconstruction only the momenta of charged particle tracks are determined. In the event selection, described in Section 5, we exploit the known masses of pions and kaons to calculate and restrict the invariant mass of the ρ and ϕ candidates.

4 Simulated samples

Samples of simulated Higgs boson events, produced via the ggH, VBF, W-associated (WH), and Z-associated (ZH) modes, are generated at next-to-leading order (NLO) in quantum chromodynamics using POWHEG 2.0 [49–54]. The subsequent decay $H \to Z\rho$ or $H \to Z\phi$, as well as parton showering and hadronization, is modelled using PYTHIA 8.212 [55]. In some of the figures in this note, and for the evaluation of corrections that account for differences between data and simulation, samples of simulated Drell–Yan $Z \to \ell\ell$ events are used. These samples are generated at leading order using MadGraph5_aMC@NLO 2.2.2 (2.4.2) [56] for the 2016 (2017 and 2018) data-taking periods. Showering and hadronization are modelled using PYTHIA 8.212. The NNPDF3.0 parton distribution functions (PDFs) [57] are used for the 2016 data-taking period. For the samples of signal events NLO PDFs are used, while for the Drell–Yan events leading order PDFs are used. For the 2017 and 2018 data-taking periods the NNPDF3.1 PDFs [58] at next-to-next-to-leading order are used for all samples. The description of the underlying event is provided by the CUETP8M1 tune [59] for the 2016 data-taking period and by the CP5 tune [60] for the 2017 and 2018 data-taking periods. Additional PU interactions, generated with PYTHIA, are added to all simulated events in accordance with the expected PU distribution. All generated events are passed through a GEANT4-based [61] simulation of the CMS detector before being reconstructed in the same version of the CMS event reconstruction software as used for data.

5 Event selection

The final states considered in the selection are the $\mu\mu\pi\pi$ and $ee\pi\pi$ decays of the $Z\rho$ system, and the $\mu\mu KK$ and $ee KK$ decays of the $Z\phi$ system. The selection of the $\mu\mu$ and ee pairs, referred to as the dilepton system in what follows, is independent of the meson candidate under consideration. The trigger selection for the $\mu\mu$ final states is based on the presence of at least
5. Event selection

one isolated muon with $p_T > 24$ GeV in the 2016 and 2018 data-taking periods, and at least one isolated muon with $p_T > 27$ GeV in the 2017 data-taking period. For the ee final states the trigger selection requires the presence of at least one isolated electron with $p_T > 27$ GeV in the 2016 data-taking period. In the 2017 (2018) data-taking period this threshold is $p_T > 35$ (32) GeV.

After imposing the trigger requirements, events in the $\mu\mu$ channel are selected by requiring the presence of two oppositely charged muons passing the identification and isolation criteria described in Section 3. At least one of these muons must pass the trigger selection. Both muons must have $p_T > 20$ GeV and $|\eta| < 2.4$, while the p_T of the muon that satisfies the trigger requirements must be at least 3 GeV above the p_T threshold at the trigger level. The ee channel selects events containing two oppositely charged electrons passing the identification criteria described in Section 3. At least one of the electrons must pass the trigger selection. Both electrons must have $p_T > 20$ GeV and $|\eta| < 2.1$. The p_T of the electron satisfying the trigger requirement must be at least 3 GeV above the trigger-level threshold. The requirement that the p_T of the lepton passing the trigger selection is at least 3 GeV above the threshold in the trigger ensures we avoid the fast-increasing part of the trigger turn-on. In both the $\mu\mu$ and ee channels, events that contain additional leptons with $p_T > 5$ GeV that pass the loose identification criteria described in Section 3 are rejected. The invariant mass of the dilepton system is required to be in the range $60 < m_{\ell\ell} < 120$ GeV, where ℓ refers to e or μ.

The ρ (ϕ) candidate is reconstructed from its decay into $\pi^+\pi^-$ (K^+K^-). As the ρ and ϕ mesons are both light compared with the energy released in the decay, the two charged particles produced in the decay are emitted with small angular separation ΔR, as illustrated in Fig. 2. The events shown in this figure are required to pass the selection criteria described so far. The small separation between the two tracks is exploited in the selection of the ρ and ϕ candidates. The meson candidate is selected as a pair of oppositely charged particle tracks, both with $p_T > 1$ GeV and separated by $\Delta R < 0.1$. In what follows a pair of oppositely charged particle tracks is also referred to as a ditrack system. The charged particle tracks are required to be separated from each of the Z boson decay products by $\Delta R > 0.3$. In addition at least one of the tracks must have $p_T > 10$ GeV. Figure 3 shows the distribution of the track p_T in the $H \rightarrow Z\rho$ and $H \rightarrow Z\phi$ signal events and in the background from Drell–Yan events, illustrating how this requirement helps to reduce the background. If multiple track pairs pass these requirements, we calculate the four-momentum of each ditrack system and select the pair of tracks with the highest p_T. This choice maximizes the proportion of signal events in which the correct meson candidate is selected. In all channels, the meson candidate is correctly identified in 98–99% of the signal events.

Furthermore, we require the ditrack system to be isolated. An isolation sum I^{trk} is calculated as

$$ I^{\text{trk}} = \sum p_{\text{trk}}^{\text{trk}}, \quad (2) $$

in a cone of radius $\Delta R = 0.3$ around the direction of the ditrack system. Only tracks with $p_T > 0.5$ GeV that are associated with the PV are considered, and the tracks forming the ρ or ϕ candidate are excluded from the sum. Events are selected if $I^{\text{trk}} < 0.5$ GeV, thus with no track around the direction of the ditrack system, as explained previously. Figure 4 shows the distributions of the isolation sum for the data and for the simulated signal, after applying all selection criteria except for the ditrack isolation requirement. This figure illustrates the reduction in background events due to the isolation requirements. Only events in which the dilepton and ditrack four-body mass is in the range 120–130 GeV are shown. This range is expected to contain 95% of the simulated signal.
The angular distance ΔR between the two tracks from the meson decay in $H \rightarrow Z\rho$ events (dashed red) and in $H \rightarrow Z\phi$ events (dotted blue). The separation is calculated between reconstructed tracks that are matched to the generator-level pions (kaons) to ensure that the tracks originate from the ρ (ϕ) decay. Both contributions are normalized to the same area.

Figure 3: The transverse momentum distribution for the track that has the larger p_T out of the two tracks selected as the ρ or ϕ candidate. The distribution is shown for events that pass the meson candidate selection described in the text, but not the requirement that one of the tracks must have $p_T > 10$ GeV. This distribution is shown for the $H \rightarrow Z\rho$ decay (dashed red), the $H \rightarrow Z\phi$ decay (dotted blue) and the background from Drell–Yan events (solid black). All contributions are normalized to the same area.

The invariant mass of the ditrack system is also used to reduce the contamination from background events. Events with a ρ candidate are selected if the invariant mass of the ditrack system is within $0.6 < m_{\pi\pi} < 1$ GeV, calculated assuming the mass of each particle equals $m_{\pi\pm} = 139.6$ MeV [62]. The full width at half the maximum of the $m_{\pi\pi}$ distribution is approximately 120 MeV in the simulated signal. Figure 5 (left) shows this invariant mass distribution in simulated $H \rightarrow Z\rho$ events. The ϕ meson has a smaller natural width than the ρ meson,
6. Corrections applied to simulated samples

A correction is applied to the simulated events such that the PU distribution in simulation reproduces this distribution in data [63]. Corrections are also applied to the simulation to account for differences in the efficiency of the trigger selection; the efficiency of the ditrack isolation requirement; and the efficiencies of lepton reconstruction, identification, and isolation between simulated events and data. These corrections, deviating from unity by a few percent, are mea-

Figure 4: The ditrack isolation sum in the $\ell\ell\pi\pi$ (left) and $\ell\ell\text{KK}$ (right) channels, combining the $\mu\mu$ and ee channels for all the data-taking years. The distribution in data, as well as in the simulated $H \to Z\rho$ and $H \to Z\phi$ signals, assuming a branching fraction of 10% (5%) for the $H \to Z\rho$ ($H \to Z\phi$) signal, is shown. The isolation sum is shown after applying all selection criteria apart from the ditrack isolation requirement. Only events in which the dilepton plus ditrack invariant mass is in the range 120–130 GeV are considered. The dashed line indicates the boundary of the region used in the analysis, for which the isolation sum is required to be smaller than 0.5 GeV.

therefore it is possible to use a narrower mass window. This is also reflected in the mass resolution; the full width at half the maximum of the m_{KK} distribution in simulated signal samples is approximately 5 MeV. To select events with a ϕ candidate, the mass of each particle is taken as $m_{K^\pm} = 493.7$ MeV [62] and we require $1.005 < m_{KK} < 1.035$ GeV. Figure 5 (right) shows this invariant mass distribution in simulated $H \to Z\phi$ events.

After these requirements the contributions from $H \to Z\phi$ events in the $\ell\ell\pi\pi$ channel, and from $H \to Z\rho$ events in the $\ell\ell\text{KK}$ channel, are smaller than 1% of the total signal when the SM branching fractions are considered. After all selection criteria including the ditrack invariant mass requirements are applied, there are no events that are selected by both the $\ell\ell\pi\pi$ and the $\ell\ell\text{KK}$ channels.

The product of signal selection efficiency and acceptance (ϵ_A) corresponds to the fraction of simulated signal events that pass the selection. To calculate these values we use the nominal simulated sample, in which the decays of the H and Z boson are modelled isotropically. On average over the three data-taking years, the ϵ_A in the $\mu\mu\pi\pi$ ($\mu\mu\text{KK}$) channel is 15% (18%). For the ee$\pi\pi$ (eeKK) channel the average ϵ_A is 8% (10%).
The ditrack isolation efficiency correction is determined in $Z \rightarrow \mu\mu$ events. An uncertainty, described in Section 8, is applied to account for the difference between the phase space where the correction is measured and where it is applied. Energy scale corrections, which are smaller than 1%, are applied to the muons and electrons [42, 43].

The event simulations model the decays of the H and Z bosons isotropically, and so do not take into account the impact of particle helicities. However, as there are only a few possibilities for polarizations in the final decay products, we calculate the angular distributions for extreme polarizations and reweight the signal events accordingly following the method described in Ref. [65]. The Z boson and the ρ or ϕ meson can either both be transversely polarized or both be longitudinally polarized. The polarization of the Z boson fixes the lepton helicities as they have the same helicity if the Z boson is longitudinally polarized (the spin of the Z boson is perpendicular to its momentum), and opposite helicity if the Z boson is transversely polarized (the spin of the Z boson is parallel to its momentum). For each possibility the distribution of the polar angle between one of the pions or kaons and the meson, and between one of the leptons and the Z boson, is evaluated analytically. The signal templates are weighted to both of these distributions simultaneously. We ensure that the total normalization of the signal, before event selection, is preserved by the reweighting. However, the reweighting modifies the distribution of the kinematic variables, in particular by reducing the lepton p_T. Therefore the reweighting reduces the fraction of signal events that pass the selection criteria and so this affects the final results. The change of the signal yield in the two extreme polarizations, relative to the scenario with isotropic decays, is given in Table 1.
Table 1: The effect on the signal yields of reweighting to the extreme polarization scenarios, described in more detail in the text, relative to the scenario with isotropic decays. The reduction in the fraction of signal events that pass the selection criteria affects the final results of the analysis.

Polarization state	$\mu\mu\pi\pi$	$\mu\mu\pi\pi$	$ee\pi\pi$	eeKK
Longitudinally polarized	-36%	-35%	-44%	-44%
Transversely polarized	-8%	-9%	-11%	-11%

7 Signal and background modelling

The dilepton and ditrack four-body mass distribution, corresponding to the reconstructed Higgs boson mass and denoted $m_{\ell\ell hh}$ where h refers to π or K, is used in the statistical inference. The signal and background are therefore modelled as a function of this observable in the range $118 < m_{\ell\ell hh} < 168$ GeV. More than 95% of the expected signal is contained in the range $120 < m_{\ell\ell hh} < 130$ GeV; the large sideband used at higher masses helps to improve the stability of the background parameterization. As a result of the kinematic selection on the leptons and the meson candidates the four-body mass distribution for the background peaks between $115 < m_{\ell\ell hh} < 118$ GeV. For this reason the lower bound of the sideband is taken as $m_{\ell\ell hh} = 118$ GeV. The full width at half the maximum of the $m_{\ell\ell hh}$ distribution in samples of simulated signal events amounts to 2–3 GeV, depending on the channel considered. The signal is described through a binned template, built from simulated events. Each bin has a width of 1 GeV in the four-body mass, which matches the binning used for the data.

The background to this search, consisting mainly of Drell–Yan events, is modelled using analytic functions. The functional forms that parameterize the background in the different channels and data-taking years are determined in sidebands, $118 < m_{\ell\ell hh} < 120$ GeV and $130 < m_{\ell\ell hh} < 168$ GeV. In addition we verify that these functional forms also describe the background in a control region where we require $1 < t_{\ell\ell h} < 2$ GeV. The fitted values of the parameters of the analytic functions in the control region are not required to be the same as those in the analysis phase space. In the control region the full four-body mass range $118 < m_{\ell\ell hh} < 168$ GeV is considered.

Chebyshev polynomials are used to describe the backgrounds. The order used depends on the channel and data-taking period, and ranges from 2–5. These orders are determined in the sidebands and the control regions described above using an F-test [66]. The results of the fit are shown in Section 9.

Alternative functions can be used to estimate the bias from the choice of a particular background parameterization. As alternatives we choose exponential functions, as well as a function of the form

$$f(x) = (1 - x)^{p_1} \times (x)^{-p_2 - p_3 \times \ln x},$$

where p_i are freely floating fit parameters and $x = m/\sqrt{s}$. Here, m represents the four-body mass and $\sqrt{s} = 13$ TeV. Such a function has also been used in searches for dijet resonances [67].

The possible bias from the choice of background parameterization is estimated by fitting the alternative function to the four-body mass sidebands. Pseudo-experiments are then drawn from this parameterization, and a signal expectation is added to each pseudo-data set. A maximum
likelihood fit of the signal and background models to each pseudo-data set is performed using the nominal background model. This test is performed three times with branching fractions of 0%, 2.5%, and 5% for H → Z\(\rho\) or H → Z\(\phi\). The difference between the extracted and injected branching fraction is found to be independent of the injected branching fraction. This difference is considered as the uncertainty due to possible bias in the choice of background parameterization. The bias is found to be small and is included in the analysis as a systematic uncertainty.

8 Systematic uncertainties and signal extraction

The results of this analysis are upper limits on \(B(H \rightarrow Z\rho)\) and on \(B(H \rightarrow Z\phi)\). All limits quoted in what follows are set at the 95% CL. Limits are set using the modified frequentist CL\(_s\) criterion [68, 69], in which the profile likelihood ratio modified for upper limits [70] is used as the test statistic. In the limit setting procedure we make use of the asymptotic approximation [71].

Several systematic uncertainties are incorporated in the likelihood as nuisance parameters. They are described in this section and summarized in Table 2.

Most of the systematic uncertainties affect only the normalization of the simulated signal templates:

i The uncertainties in the integrated luminosity measurements are, respectively, 2.5%, 2.3%, and 2.5% for the 2016, 2017, and 2018 data-taking periods [72–74].

ii Uncertainties in the muon identification, isolation, and trigger efficiency measurements arise from the method used to measure the efficiency, from the kinematic phase space in which the measurement is performed, and from the limited size of the simulated samples used for the measurement in simulation [42]. These uncertainties affect the normalisation of the simulated processes by \(\approx 1\%\) for all the data-taking periods.

iii Uncertainties in the electron reconstruction, identification, and trigger efficiency measurements range from 2 to 3%, depending on the data-taking period. These uncertainties mainly arise from the method used for the efficiency measurement [43].

iv The uncertainty in the tracking efficiency amounts to 4.6–4.8% (corresponding to 2.3–2.4% per track), depending on the data-taking period. This uncertainty is determined by comparing ratios of D\(^+\) meson decay chains in data and simulation. The dominant components of the uncertainty come from limited sample sizes and the uncertainty in the SM prediction of these ratios.

v The uncertainty in the ditrack isolation efficiency measurement is 2% for all three data-taking periods. This uncertainty mainly arises from the method used to measure the efficiency.

vi Theoretical uncertainties in the ggH production cross section amount to 3.9%, with uncertainties in the VBF, WH, and ZH production cross sections being, respectively, 0.4%, 0.7%, and 3.8% [32].

vii Uncertainties from the choice of PDF and the value of the strong force coupling constant depend on the Higgs boson production mode and range from 1.6 to 3.2% [32].
Four systematic uncertainties affect both the shape and normalization of the simulated signal templates:

i. Uncertainties in the lepton energy scales are typically less than 0.3% for both muons and electrons [42, 43].

ii. An additional uncertainty in the ditrack isolation efficiency measurement is applied. This uncertainty is taken as the difference between the ditrack isolation efficiency in the phase space where the correction is measured, and the efficiency as evaluated in the simulated signal templates. This uncertainty is in the range 1–6%, depending on the data-taking period.

iii. The uncertainty in the total inelastic cross section, used for correcting the PU profile in simulation to the profile in data, is 4.6% [63]. The overall effect on the normalisation of the simulated signal templates ranges from 0.5 to 1.5%, depending on the data-taking period and the channel considered.

iv. Uncertainties due to the limited number of simulated events are taken into account by allowing each bin of the signal template to vary within its statistical uncertainty, independently from the other bins.

Table 2: Effect of systematic uncertainties on the simulated signal. The ranges reflect differences between channels and data-taking periods.

Uncertainty source	Type	Effect on simulated signal yield
Tracking efficiency	Normalization	4.6–4.8%
Ditrack isolation efficiency	Normalization	2%
Ditrack isolation efficiency extrapolation	Shape	1–6%
Muon efficiency	Normalization	1%
Muon energy scale	Shape	< 0.3%
Electron efficiency	Normalization	2–3%
Electron energy scale	Shape	< 0.3%
Integrated luminosity	Normalization	2.3–2.5%
Inelastic cross section	Shape	0.5–1.5%
Production cross section	Normalization	0.4–3.9%
Choice of PDF and α_s	Normalization	1.6–3.2%
Limited size of simulated samples	Shape	Bin-dependent

The largest possible bias from the choice of background function is included in the likelihood as a modification of the number of expected events. The number of expected events in a given bin i is obtained as $(B + \Delta_{\text{bias}}) s_i + b_i$, where s_i is the number of signal events and b_i is the number of background events. The parameter B is the branching fraction of the Higgs boson and the parameter on which we set limits. The parameter for the bias from the choice of background function is Δ_{bias}. It is subject to a Gaussian constraint with a mean of 0 and a width equal to the largest possible bias due to the choice of background function, which ranges from 0.01% to 0.20% as discussed in Section 7.

Theoretical uncertainties in the production cross sections, and the uncertainties due to the choice of PDF and the value of α_s are treated as correlated between the different data-taking periods. The uncertainty in the integrated luminosity measurement is treated as partially correlated between the different data-taking periods. The other experimental uncertainties are treated as uncorrelated between the different data-taking periods.
9 Results

To present results in terms of $B(H \rightarrow Z\rho)$ and $B(H \rightarrow Z\phi)$, the signal templates are normalized by taking into account the ggH, VBF, WH, and ZH production cross sections. The ggH cross section is calculated at next-to-next-to-leading order as 48.58 pb [32]. The cross sections for the other production modes are calculated at next-to-next-to-leading order in quantum chromodynamics and next-to-leading order in electroweak accuracy, and amount, respectively, to 3.78 pb, 1.37 pb, and 0.88 pb [32]. In addition, SM branching fractions of 3.37% are assumed for each of the $Z \rightarrow \ell\ell$ decays [62].

In the limit setting procedure we do not take into account potential contributions of Higgs boson decays into a Z boson and other vector mesons.

Fitted distributions of the four-body mass for the background model and the data are shown in Fig. 6. The expected $H \rightarrow Z\rho$ ($H \rightarrow Z\phi$) signal, in the isotropic-decay scenario, at a branching fraction of 3.0 (0.7)% is also shown. In this figure the $\mu\mu$ and dielectron channels, as well as all three data-taking periods, are combined for visualization. In the statistical inference these channels are considered separately in a simultaneous fit. No significant excess above the background expectation is observed in either of the two searches.

The observed upper limits on $B(H \rightarrow Z\rho)$ and $B(H \rightarrow Z\phi)$ are 1.21–1.89% and 0.36–0.58%, respectively, depending on the polarization scenario considered. These values correspond to 860–1350 times the SM expectation for the $H \rightarrow Z\rho$ decay and 860–1380 times the SM expectation for the $H \rightarrow Z\phi$ decay. These limits can be compared with the expected upper limits, which are 0.73–1.18% or 520–840 times the SM expectation for $B(H \rightarrow Z\rho)$ and 0.33–0.52% or 770–1230 times the SM expectation for $B(H \rightarrow Z\phi)$. These ranges also reflect the considered polarization scenarios. The observed and expected upper limits are shown in Table 3 for $B(H \rightarrow Z\rho)$ and in Table 4 for $B(H \rightarrow Z\phi)$. Recall that while these limits are set on the total branching ratios $B(H \rightarrow Z\rho)$ and $B(H \rightarrow Z\phi)$, the results mainly probe the indirect process via the $H \rightarrow ZZ^*$ decay as the direct decay process (Fig. 1, right) is greatly suppressed in the
SM.

Table 3: Observed and expected 95% CL upper limits on $B(H \rightarrow Z\rho)$, for different polarizations.

Isotropic decay	Observed	Median expected	±68% expected	±95% expected
	0.0121	0.0073	0.0052–0.0104	0.0038–0.0141
Z and ρ longitudinally polarized	0.0189	0.0118	0.0083–0.0167	0.0061–0.0228
Z and ρ transversely polarized	0.0131	0.0080	0.0057–0.0114	0.0041–0.0154

Table 4: Observed and expected 95% CL upper limits on $B(H \rightarrow Z\phi)$, for different polarizations.

Isotropic decay	Observed	Median expected	±68% expected	±95% expected
	0.0036	0.0033	0.0023–0.0046	0.0018–0.0061
Z and ϕ longitudinally polarized	0.0058	0.0052	0.0037–0.0073	0.0028–0.0098
Z and ϕ transversely polarized	0.0040	0.0036	0.0026–0.0050	0.0019–0.0068

10 Summary

A search has been presented for the rare decay of the Higgs boson (H) into a Z boson and a ρ or a ϕ meson in the dilepton-$\pi^+\pi^-$ final states of the $H \rightarrow Z\rho$ decay, and in the dilepton-K^+K^- final states of the $H \rightarrow Z\phi$ decay. The search used a sample of proton-proton collisions, collected by the CMS experiment at a centre-of-mass energy of 13 TeV from 2016 to 2018 and corresponding to an integrated luminosity of 137 fb$^{-1}$. Upper limits on the branching fractions $B(H \rightarrow Z\rho)$ and $B(H \rightarrow Z\phi)$ have been set at the 95% confidence level for various polarization scenarios. The upper limits on $B(H \rightarrow Z\rho)$ are in the range 1.21–1.89%, or 860–1350 times the standard model expectation, while the upper limits on $B(H \rightarrow Z\phi)$ range from 0.36 to 0.58%, or 860–1380 times the standard model expectation. These results constitute the first experimental limits on these two decay channels.

References

[1] ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

[2] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[3] CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV”, JHEP 06 (2013) 081, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.

[4] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett. 13 (1964) 321, doi:10.1103/PhysRevLett.13.321.

[5] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett. 12 (1964) 132, doi:10.1016/0031-9163(64)91136-9.
[6] P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, *Phys. Rev. Lett.* **13** (1964) 508, doi:10.1103/PhysRevLett.13.508.

[7] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”, *Phys. Rev. Lett.* **13** (1964) 585, doi:10.1103/PhysRevLett.13.585.

[8] P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, *Phys. Rev.* **145** (1966) 1156, doi:10.1103/PhysRev.145.1156.

[9] T. W. B. Kibble, “Symmetry breaking in nonabelian gauge theories”, *Phys. Rev.* **155** (1967) 1554, doi:10.1103/PhysRev.155.1554.

[10] ATLAS Collaboration, “Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector”, *Phys. Rev. D* **90** (2014) 112015, doi:10.1103/PhysRevD.90.112015, arXiv:1408.7084.

[11] CMS Collaboration, “Observation of the diphoton decay of the Higgs boson and measurement of its properties”, *Eur. Phys. J. C* **74** (2014) 3076, doi:10.1140/epjc/s10052-014-3076-z, arXiv:1407.0558.

[12] ATLAS Collaboration, “Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector”, *Phys. Rev. D* **91** (2015) 012006, doi:10.1103/PhysRevD.91.012006, arXiv:1408.5191.

[13] CMS Collaboration, “Measurement of the properties of a Higgs boson in the four-lepton final state”, *Phys. Rev. D* **89** (2014) 092007, doi:10.1103/PhysRevD.89.092007, arXiv:1312.5353.

[14] ATLAS Collaboration, “Observation and measurement of Higgs boson decays to WW* with the ATLAS detector”, *Phys. Rev. D* **92** (2015) 012006, doi:10.1103/PhysRevD.92.012006, arXiv:1412.2641.

[15] ATLAS Collaboration, “Study of (W/Z)H production and Higgs boson couplings using H → WW* decays with the ATLAS detector”, *JHEP* **08** (2015) 137, doi:10.1007/JHEP08(2015)137, arXiv:1506.06641.

[16] CMS Collaboration, “Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states”, *JHEP* **01** (2014) 096, doi:10.1007/JHEP01(2014)096, arXiv:1312.1129.

[17] ATLAS and CMS Collaborations, “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV”, *JHEP* **08** (2016) 045, doi:10.1007/JHEP08(2016)045, arXiv:1606.02266.

[18] ATLAS Collaboration, “Cross-section measurements of the Higgs boson decaying into a pair of τ-leptons in proton-proton collisions at √s = 13 TeV with the ATLAS detector”, *Phys. Rev. D* **99** (2019) 072001, doi:10.1103/PhysRevD.99.072001, arXiv:1811.08856.

[19] CMS Collaboration, “Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector”, *Phys. Lett. B* **779** (2018) 283, doi:10.1016/j.physletb.2018.02.004, arXiv:1708.00373.
[20] ATLAS Collaboration, “Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector”, *Phys. Lett. B* **784** (2018) 173, doi:10.1016/j.physletb.2018.07.035, arXiv:1806.00425.

[21] CMS Collaboration, “Observation of t\(\bar{t}\)H production”, *Phys. Rev. Lett.* **120** (2018), no. 23, 231801, doi:10.1103/PhysRevLett.120.231801, arXiv:1804.02610.

[22] ATLAS Collaboration, “Observation of \(H \to b\bar{b}\) decays and VH production with the ATLAS detector”, *Phys. Lett. B* **786** (2018) 59, doi:10.1016/j.physletb.2018.09.013, arXiv:1808.08238.

[23] CMS Collaboration, “Observation of Higgs boson decay to bottom quarks”, *Phys. Rev. Lett.* **121** (2018), no. 12, 121801, doi:10.1103/PhysRevLett.121.121801, arXiv:1808.08242.

[24] ATLAS Collaboration, “Search for the dimuon decay of the Higgs boson in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector”, *Phys. Rev. Lett.* **119** (2017) 051802, doi:10.1103/PhysRevLett.119.051802, arXiv:1705.04582.

[25] CMS Collaboration, “Search for the Higgs boson decaying to two muons in proton-proton collisions at \(\sqrt{s} = 13\) TeV”, *Phys. Rev. Lett.* **122** (2019) 021801, doi:10.1103/PhysRevLett.122.021801, arXiv:1807.06325.

[26] ATLAS Collaboration, “Search for the decay of the Higgs boson to charm quarks with the ATLAS experiment”, *Phys. Rev. Lett.* **120** (2018) 211802, doi:10.1103/PhysRevLett.120.211802, arXiv:1802.04329.

[27] CMS Collaboration, “A search for the standard model Higgs boson decaying to charm quarks”, (2019). arXiv:1912.01662. Submitted to *JHEP*.

[28] ATLAS Collaboration, “Search for the dimuon decay of the standard model Higgs boson in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector”, ATLAS Conference Note ATLAS-CONF-2019-028, 2019.

[29] CMS Collaboration, “Search for rare decays of Z and Higgs bosons to \(J/\psi\) and a photon in proton-proton collisions at \(\sqrt{s} = 13\) TeV”, *Eur. Phys. J. C* **79** (2019) 94, doi:10.1140/epjc/s10052-019-6562-5, arXiv:1810.10056.

[30] ATLAS Collaboration, “Searches for exclusive Higgs and Z boson decays into \(J/\psi\gamma\), \(\psi(2S)\gamma\), and \(Y(nS)\gamma\) at \(\sqrt{s} = 13\) TeV with the ATLAS detector”, *Phys. Lett. B* **786** (2018) 134, doi:10.1016/j.physletb.2018.09.024, arXiv:1807.00802.

[31] ATLAS Collaboration, “Search for exclusive Higgs and Z boson decays to \(\phi\gamma\) and \(\rho\gamma\) with the ATLAS detector”, *JHEP* **07** (2018) 127, doi:10.1007/JHEP07(2018)127, arXiv:1712.02758.

[32] LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector”, doi:10.23731/CYRM-2017-002, arXiv:1610.07922.

[33] G. Isidori, A. V. Manohar, and M. Trott, “Probing the nature of the Higgs-like boson via \(h \to vF\) decays”, *Phys. Lett. B* **728** (2014) 131, doi:10.1016/j.physletb.2013.11.054, arXiv:1305.0663.
[34] ATLAS Collaboration, “Search for Higgs boson decays into a τ boson and a light hadronically decaying resonance using 13 tev pp collision data from the ATLAS detector”, (4, 2020). arXiv:2004.01678.

[35] S. Alte, M. König, and M. Neubert, “Exclusive weak radiative Higgs decays in the standard model and beyond”, JHEP 12 (2016) 037, doi:10.1007/JHEP12(2016)037, arXiv:1609.06310.

[36] G. F. Giudice and O. Lebedev, “Higgs-dependent Yukawa couplings”, Phys. Lett. B 665 (2008) 79, doi:10.1016/j.physletb.2008.05.062, arXiv:0804.1753.

[37] F. Bishara, J. Brod, P. Uttayarat, and J. Zupan, “Nonstandard Yukawa couplings and Higgs portal dark matter”, JHEP 01 (2016) 010, doi:10.1007/JHEP01(2016)010, arXiv:1504.04022.

[38] C. D. Froggatt and H. B. Nielsen, “Hierarchy of quark masses, Cabibbo angles and CP violation”, Nucl. Phys. B 147 (1979) 277, doi:10.1016/0550-3213(79)90316-X.

[39] M. Leurer, Y. Nir, and N. Seiberg, “Mass matrix models: The sequel”, Nucl. Phys. B 420 (1994) 468, doi:10.1016/0550-3213(94)90074-4, arXiv:hep-ph/9310320.

[40] L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension”, Phys. Rev. Lett. 83 (1999) 3370, doi:10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221.

[41] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[42] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s}=13$ TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.

[43] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s}=8$ TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[44] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[45] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[46] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.

[47] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[48] M. Cacciari, G. P. Salam, and G. Soyez, “Fastjet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[49] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
[50] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, *JHEP* **11** (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.

[51] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO Higgs boson production via gluon fusion matched with shower in POWHEG”, *JHEP* **04** (2009) 002, doi:10.1088/1126-6708/2009/04/002, arXiv:0812.0578.

[52] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, *JHEP* **06** (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[53] P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG”, *JHEP* **02** (2010) 037, doi:10.1007/JHEP02(2010)037, arXiv:0911.5299.

[54] G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, “HW\pm/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO”, *JHEP* **10** (2013) 083, doi:10.1007/JHEP10(2013)083, arXiv:1306.2542.

[55] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* **191** (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[56] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* **07** (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[57] NNPDF Collaboration, “Parton distributions for the LHC run II”, *JHEP* **04** (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.

[58] NNPDF Collaboration, “Parton distributions from high-precision collider data”, *Eur. Phys. J. C* **77** (2017) 663, doi:10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.

[59] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* **76** (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.

[60] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, *Eur. Phys. J. C* **80** (2020) 4, doi:10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.

[61] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[62] Particle Data Group, M. Tanabashi et al., “Review of particle physics”, *Phys. Rev. D* **98** (2018) 030001, doi:10.1103/PhysRevD.98.030001.

[63] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 13$ TeV”, *JHEP* **07** (2018) 161, doi:10.1007/JHEP07(2018)161, arXiv:1802.02613.

[64] CMS Collaboration, “Measurements of inclusive W and Z cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* **01** (2011) 080, doi:10.1007/JHEP01(2011)080, arXiv:1012.2466.
[65] J. H. Broughton, “Searches for Rare Exclusive Higgs Boson Decays to a Meson and an Associated Photon with the ATLAS Detector”. PhD thesis, Birmingham U., 2018.

[66] R. D. Fisher, “On the interpretation of \(\chi^2\) from contingency tables, and the calculation of \(P\)”, *J. Royal Stat. Soc.* **85** (1922) 87, doi:10.2307/2340521.

[67] CMS Collaboration, “Search for narrow and broad dijet resonances in proton-proton collisions at \(\sqrt{s} = 13\) TeV and constraints on dark matter mediators and other new particles”, *JHEP* **08** (2018) 130, doi:10.1007/JHEP08(2018)130, arXiv:1806.00843.

[68] T. Junk, “Confidence level computation for combining searches with small statistics”, *Nucl. Instrum. Meth. A* **434** (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[69] A. L. Read, “Presentation of search results: The CL(s) technique”, *J. Phys. G* **28** (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[70] The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.

[71] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* **71** (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: doi:10.1140/epjc/s10052-013-2501-z].

[72] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[73] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at \(\sqrt{s} = 13\) TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.

[74] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at \(\sqrt{s} = 13\) TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.