The relationship between frontotemporal effective connectivity during picture naming, behavior, and preserved cortical tissue in chronic aphasia

Meier, Erin L.

Boston University

https://hdl.handle.net/2144/16371

Boston University
Introduction

- The integrated functioning of anatomically segregated anterior and posterior left-lateralized brain regions is vital for successful language processing (e.g., Friston, 2011; Price, 2012; Vigneau et al., 2006)
- Damage secondary to stroke forces neural reorganization of brain function and brain structure in persons with aphasia (PWA)
- In PWA, damage impacts the degree to which PWA recruit “classic” language regions such as LMTG and LlFG yet PWA recruit regions outside the traditional language network, such as LMFG, regardless of the extent of damage (Turkeltaub et al., 2011)
- Language is processed in a network but... very little is known about:
- The dynamic interactions between these regions for picture naming or how task-based connectivity relates to structural damage and naming abilities

Study Aims

1) To investigate the nature of task-specific left hemisphere cortical reorganization in PWA relative to intact language networks in healthy individuals by examining effective connectivity via Dynamic Causal Modeling (Friston, Harrison, & Penny, 2003)
2) To examine the relationship between connectivity parameters, cortical structural damage and behavioral performance

Participants

- 13 participants with chronic aphasia secondary to left hemisphere CVA and 10 neurologically-intact controls participated in the study
- PWA were administered a battery of tests assessing overall aphasia severity (Western Aphasia Battery-Revised, WAB-R) and naming skills (e.g., Boston Naming Test, BNT; picture naming screener)

ID	Age	Gender	Handedness	MPO	WAB-R	AQ	Picture Naming Screener (%avg)	BNT (%)
PWA1	56.28	M	R	17	87.2	47.22	81.67	
PWA2	50.62	F	L	33	25.2	1.54	1.67	
PWA3	78.39	M	R	13	74.1	65.12	86.67	
PWA4	67.88	M	R	10	30.8	7.41	6.67	
PWA5	55.32	F	L	138	48.0	14.81	10.00	
PWA6	46.92	F	R	59	82.8	68.21	85.00	
PWA7	72.01	F	R	39	95.2	46.60	75.00	
PWA8	53.25	F	R	14	80.4	57.10	61.67	
PWA9	42.75	F	R	19	92.7	46.60	71.67	
PWA10	71.35	F	R	75	87.2	41.05	71.67	
PWA11	50.00	F	R	71	33.6	0.93	1.67	
PWA12	61.40	F	R	155	74.3	45.99	1.67	
PWA13	79.39	F	R	12	26.9	6.48	n/a	

Mean 60.66 50.38 64.5 34.54 48.25
Stdev 11.95 48.38 27.2 24.72 37.66

Mean 61.53
Stdev 11.41

MRI Data Acquisition

- MR images were acquired on a Siemens Trio TIM with a 20-channel head+neck coil
- T1 images were acquired with the following parameters: TR = 2300ms, TE = 2.91ms, 176 sagittal slices, 1x1x1mm voxels
- Functional images were acquired with the following parameters: TR = 2570ms, TE = 30ms, 40 axial slices, interleaved with 2x2x3mm voxels
- All participants completed 2 runs of an overt picture-naming task including experimental stimuli from 3 of 5 categories (i.e., birds, vegetables, fruit, clothing, and furniture)
The relationship between frontotemporal effective connectivity during picture naming, behavior, and preserved cortical tissue in chronic aphasia

Erin L. Meier¹, Kushal J. Kapse², & Swathi Kiran¹

Boston University, Sargent College of Health and Rehabilitation Sciences¹; Children’s National Medical Center, Washington D.C.²

fMRI Data Analysis

- SPM8 was used for fMRI analysis; lesion masks were hand-drawn in MRICron

Preprocessing
- Slice timing correction
- Realignment with registration to mean
- Coregistration:
 - Structural to mean functional image
 - Lesion mask and lesion map coregistered to PWA’s structural image
- Segmentation
- Normalization
- ART Repair as needed

Statistical Analysis in SPM
- 1st level GLM analysis:
 - Modeled three conditions
 - Canonical HRF + TD
 - Contrast of interest: pictures – scrambled
- 2nd level analysis:
 - Within-group one-sample t-tests
 - Contrast of interest: pictures – scrambled

Spared Tissue Calculation
- Required preserved lesion via normalized lesion maps
- Percentage of spared tissue = (Anatomical AAL ROI volume – normalized lesion volume) / (Anatomical AAL ROI volume) in MarsBaR

Dynamic Causal Modeling (DCM)

- Bilinear, two-state, center input & non-stochastic
- All regions interconnected (A)
- Effect of pictures on regions (C) and connections (B)

MRI Results: Lesion Characteristics

- Across PWA, most spared tissue was in LMFG
- Least spared tissue was in LMTG yet the relative preservation of LMTG and LIFG different from PWA to PWA
- The values to the left reflect the amount of spared tissue in each cortical region of interest and were used in subsequent analyses

Table 2. %Spared Tissue per Region in PWA

Region	LIFG	LMFG	LMTG
PWA 1	96.60	100.00	79.36
PWA 2	65.51	96.26	68.09
PWA 3	99.05	100.00	33.51
PWA 4	80.25	100.00	14.16
PWA 5	92.47	96.44	70.38
PWA 6	89.59	100.00	78.15
PWA 7	99.98	100.00	93.91
PWA 8	100.00	100.00	91.80
PWA 9	99.98	100.00	97.09
PWA 10	80.77	73.95	99.66
PWA 11	49.15	51.04	12.55
PWA 12	58.68	98.66	46.11
PWA 13	53.89	98.75	99.92
TOTAL AVG	81.99	93.47	68.05

fMRI Results: Whole Brain Activation

- Results of group one-sample t-tests for pictures (experimental) > scrambled pictures (control) at an uncorrected for (A) PWA and (B) Controls
- Similar activation seen in bilateral frontal, temporal and parietal regions in each group
- Results of single-subject overlays for the same contrast in (C) PWA and (D) Controls → peak maxima per region used in DCM analysis

Table 2. %Spared Tissue per Region in PWA

- Across PWA, most spared tissue was in LMFG
- Least spared tissue was in LMTG yet the relative preservation of LMTG and LIFG different from PWA to PWA
- The values to the left reflect the amount of spared tissue in each cortical region of interest and were used in subsequent analyses

Table 2. %Spared Tissue per Region in PWA

Region	LIFG	LMFG	LMTG
PWA 1	96.60	100.00	79.36
PWA 2	65.51	96.26	68.09
PWA 3	99.05	100.00	33.51
PWA 4	80.25	100.00	14.16
PWA 5	92.47	96.44	70.38
PWA 6	89.59	100.00	78.15
PWA 7	99.98	100.00	93.91
PWA 8	100.00	100.00	91.80
PWA 9	99.98	100.00	97.09
PWA 10	80.77	73.95	99.66
PWA 11	49.15	51.04	12.55
PWA 12	58.68	98.66	46.11
PWA 13	53.89	98.75	99.92
TOTAL AVG	81.99	93.47	68.05
The relationship between frontotemporal effective connectivity during picture naming, behavior, and preserved cortical tissue in chronic aphasia

Erin L. Meier¹, Kushal J. Kapse², & Swathi Kiran¹

Boston University, Sargent College of Health and Rehabilitation Sciences¹; Children’s National Medical Center, Washington D.C.²

DCM Results

RQ1: Differences in effective connectivity between PWA and controls

- No significant differences between groups in perturbation strength (Ep.C)
 - Ep.C = .009Hz for PWA
 - Ep.C = .031Hz for Controls

- For connections, PWA had significantly less task-induced coupling from LMTG to LIFG (Ep.B) relative to controls (F(1,63) = 6.75, p < .05); this effect was observed across families

RQ2: Relationship between connection strength (Ep.B), spared tissue, & behavior in PWA

- Differences between groups in network connectivity
 - Controls: family #1 best-fit indicative of…
 - Greater demands on top-down control processes for healthy older adults (Meinzer et al., 2009, 2012; Park & Reuter-Lorenz, 2009) OR
 - The need to rely on LIFG to resolve competition between many active lexical representations (e.g., Thompson-Schill et al., 1997)
 - PWA: family #2 best-fit indicative of…
 - The functional role of LMFG
 - The relative preservation of LMFG compared to LIFG and LMTG

- Relationship between connectivity parameters, spared tissue & behavior
 1) > tissue in “classic” language regions related to > task-induced perturbation of these regions
 2) > task accuracy related to > task-induced perturbation of LIFG and LMFG
 3) > spared tissue significantly related to > modulatory effects for a connection that included the region
 4) > preserved tissue & > task performance, the more inhibitory the connections between regions

Conclusions

The relationship between frontotemporal effective connectivity during picture naming, behavior, and preserved cortical tissue in chronic aphasia

Erin L. Meier¹, Kushal J. Kapse², & Swathi Kiran¹

Boston University, Sargent College of Health and Rehabilitation Sciences¹; Children’s National Medical Center, Washington D.C.²

DCM Results

RQ1: Differences in effective connectivity between PWA and controls

- No significant differences between groups in perturbation strength (Ep.C)
 - Ep.C = .009Hz for PWA
 - Ep.C = .031Hz for Controls

- For connections, PWA had significantly less task-induced coupling from LMTG to LIFG (Ep.B) relative to controls (F(1,63) = 6.75, p < .05); this effect was observed across families

RQ2: Relationship between connection strength (Ep.B), spared tissue, & behavior in PWA

- Differences between groups in network connectivity
 - Controls: family #1 best-fit indicative of…
 - Greater demands on top-down control processes for healthy older adults (Meinzer et al., 2009, 2012; Park & Reuter-Lorenz, 2009) OR
 - The need to rely on LIFG to resolve competition between many active lexical representations (e.g., Thompson-Schill et al., 1997)
 - PWA: family #2 best-fit indicative of…
 - The functional role of LMFG
 - The relative preservation of LMFG compared to LIFG and LMTG

- Relationship between connectivity parameters, spared tissue & behavior
 1) > tissue in “classic” language regions related to > task-induced perturbation of these regions
 2) > task accuracy related to > task-induced perturbation of LIFG and LMFG
 3) > spared tissue significantly related to > modulatory effects for a connection that included the region
 4) > preserved tissue & > task performance, the more inhibitory the connections between regions

Conclusions

The relationship between frontotemporal effective connectivity during picture naming, behavior, and preserved cortical tissue in chronic aphasia

Erin L. Meier¹, Kushal J. Kapse², & Swathi Kiran¹

Boston University, Sargent College of Health and Rehabilitation Sciences¹; Children’s National Medical Center, Washington D.C.²

DCM Results

RQ1: Differences in effective connectivity between PWA and controls

- No significant differences between groups in perturbation strength (Ep.C)
 - Ep.C = .009Hz for PWA
 - Ep.C = .031Hz for Controls

- For connections, PWA had significantly less task-induced coupling from LMTG to LIFG (Ep.B) relative to controls (F(1,63) = 6.75, p < .05); this effect was observed across families

RQ2: Relationship between input strength (Ep.C), behavior, & spared tissue in PWA

- Differences between groups in network connectivity
 - Controls: family #1 best-fit indicative of…
 - Greater demands on top-down control processes for healthy older adults (Meinzer et al., 2009, 2012; Park & Reuter-Lorenz, 2009) OR
 - The need to rely on LIFG to resolve competition between many active lexical representations (e.g., Thompson-Schill et al., 1997)
 - PWA: family #2 best-fit indicative of…
 - The functional role of LMFG
 - The relative preservation of LMFG compared to LIFG and LMTG

- Relationship between connectivity parameters, spared tissue & behavior
 1) > tissue in “classic” language regions related to > task-induced perturbation of these regions
 2) > task accuracy related to > task-induced perturbation of LIFG and LMFG
 3) > spared tissue significantly related to > modulatory effects for a connection that included the region
 4) > preserved tissue & > task performance, the more inhibitory the connections between regions

Conclusions

The relationship between frontotemporal effective connectivity during picture naming, behavior, and preserved cortical tissue in chronic aphasia

Erin L. Meier¹, Kushal J. Kapse², & Swathi Kiran¹

Boston University, Sargent College of Health and Rehabilitation Sciences¹; Children’s National Medical Center, Washington D.C.²

DCM Results

RQ1: Differences in effective connectivity between PWA and controls

- No significant differences between groups in perturbation strength (Ep.C)
 - Ep.C = .009Hz for PWA
 - Ep.C = .031Hz for Controls

- For connections, PWA had significantly less task-induced coupling from LMTG to LIFG (Ep.B) relative to controls (F(1,63) = 6.75, p < .05); this effect was observed across families

RQ2: Relationship between connection strength (Ep.B), spared tissue, & behavior in PWA

- Differences between groups in network connectivity
 - Controls: family #1 best-fit indicative of…
 - Greater demands on top-down control processes for healthy older adults (Meinzer et al., 2009, 2012; Park & Reuter-Lorenz, 2009) OR
 - The need to rely on LIFG to resolve competition between many active lexical representations (e.g., Thompson-Schill et al., 1997)
 - PWA: family #2 best-fit indicative of…
 - The functional role of LMFG
 - The relative preservation of LMFG compared to LIFG and LMTG

- Relationship between connectivity parameters, spared tissue & behavior
 1) > tissue in “classic” language regions related to > task-induced perturbation of these regions
 2) > task accuracy related to > task-induced perturbation of LIFG and LMFG
 3) > spared tissue significantly related to > modulatory effects for a connection that included the region
 4) > preserved tissue & > task performance, the more inhibitory the connections between regions

Conclusions
The relationship between frontotemporal effective connectivity during picture naming, behavior, and preserved cortical tissue in chronic aphasia

Erin L. Meier¹, Kushal J. Kapse², & Swathi Kiran¹

Future Directions

Structure	Function?	Behavior?
Global Aphasia	✓	X
Broca’s Aphasia	✓	✓

Key

- Language-specific
- Traditional Activation Approach
- Revised Network Approach
- Domain-general

References

- Fedorenko, E., & Thompson-Schill, S. L. (2013). Reworking the language network. Trends in Cognitive Science, 19(3), 120-126.
- Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13-36.
- Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 1273-1302.
- Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101-144.
- Penny, W. D., Stephan, K. E., Daunizeau, J., Rosa, M. J., Friston, K. J., Schofield, T. M., & Leff, A. P. (2010). Comparing families of dynamic causal models. PLoS Computational Biology, 6(3), 1-14.
- Meiner, M., Flaisch, T., Seeds, L., Harnish, S., Antonenko, D., Witte, V., et al. (2012). Same modulation but different starting points: Performance modulates age differences in inferior frontal cortex activity during word-retrieval. PLoS One, 7(3), e33631.
- Meiner, M., Flaisch, T., Witser, L., Eulitz, C., Rockstroh, B., Conway, T., et al. (2009). Neural signatures of semantic and phonemic fluency in young and old adults. Journal of Cognitive Neuroscience, 21(10), 2007-2018.
- Murtha, S., Chertkow, H., Beauregard, M., Evans, A. (1999). The neural substrate of picture naming. Journal of Cognitive Neuroscience, 11(4), 399-423.
- Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173-196. doi:10.1146/annurev.psych.59.103006.093656 [doi]
- Price, C. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816-847.
- Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Neurobiology, 94, 14782-14797.
- Turkeltaub, P. E., Messing, S., Norise, C., & Hamilton, R. H. (2011). Are networks for residual language function and recovery consistent across aphasic patients? Neurology, 76, 1726-1734.
- Vigneau, M., Beaucousin, V., Hervé, P. Y., Duflau, H., Crivello, F., Houdé, O., Mazoyer, B., & Tzourio-Mazoyer, N. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. NeuroImage, 30, 1414-1432.
- Wagner, A. D., Paré-Blagoev, J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: Left prefrontal cortex guides controlled semantic retrieval. Neuron, 31, 329-338.

Acknowledgments

We would like to thank all the individuals who participated in this project. Additionally, we extend our thanks to members of the BU Aphasia Research Lab for their assistance with data collection and analysis. This study was supported by the National Institutes of Health/National Institute on Deafness and Other Communication Disorders through grant NIH/NIDCD 1P50DC012283.