Commutators of weighted Hardy operator on weighted
λ-central Morrey space

Huihui Zhang1 Yan Lin1 Xiao Yu2

Abstract. In this paper, the authors prove the boundedness of commutators generated by the weighted Hardy operator on weighted λ-central Morrey space with the weight \(\omega \) satisfying the doubling condition. Moreover, the authors give the characterization for the weighted λ-central Campanato space by introducing a new kind of operator which is related to the commutator of weighted Hardy operator.

\section{Introduction}

To study the local behavior of solutions to second order elliptical partial differential equations, Morrey [12] introduced Morrey space, which is defined as

\[M^{p,\lambda}(\mathbb{R}^n) = \left\{ f \in M^{p,\lambda}(\mathbb{R}^n) : \|f\|_{M^{p,\lambda}(\mathbb{R}^n)} := \sup_B \frac{1}{|B|^\lambda} \left(\frac{1}{|B|} \int_B |f(x)|^p \, dx \right)^{1/p} < \infty \right\} \]

with the exponents \(p \) and \(\lambda \) satisfying \(p \geq 1 \) and \(-\frac{1}{p} < \lambda < 0 \).

For the extension of Morrey space \(M^{p,\lambda}(\mathbb{R}^n) \), the classical Campanato space \(C^{p,\lambda}(\mathbb{R}^n) \) is defined by

\[C^{p,\lambda}(\mathbb{R}^n) = \left\{ f \in C^{p,\lambda}(\mathbb{R}^n) : \|f\|_{C^{p,\lambda}(\mathbb{R}^n)} := \sup_B \frac{1}{|B|^\lambda} \left(\frac{1}{|B|} \int_B |f(x) - f_B|^p \, dx \right)^{1/p} < \infty \right\}, \]

where \(p \in [1, \infty) \), \(\lambda \in (-\frac{1}{p}, \frac{1}{n}) \), \(f_B = \frac{1}{|B|} \int_B f(x) \, dx \) and \(B \subset \mathbb{R}^n \) denotes any ball in \(\mathbb{R}^n \).

It is well known that \(M^{p,\lambda}(\mathbb{R}^n) \subset C^{p,\lambda}(\mathbb{R}^n) \). For the studies of such two function spaces and the action of various operators on them, one may see [14-16] et al. for more details.

MR Subject Classification: 42B20, 42B25.

Keywords: weighted central-Morrey space, weighted central-Campanato space, weighted Hardy operator, commutator.

Supported by the National Natural Science Foundation of China (11961056, 11561057), the Jiangxi Natural Science Foundation of China (20192BAB2101004), the Science Foundation of Jiangxi Education Department (GJJ190890).

1 Department of Mathematics, China University of Mining Technology (Beijing), Beijing 100083, P.R.China.
2 Department of Mathematics, Shangrao Normal University, Shangrao 334001, P.R.China.

Email address: zhanghuihuinb@163.com (H.Zhang);linyan@cumtb.edu.cn(Y.Lin); yx2000b@163.com(X.Yu).
In [10, 11], Lu and Yang studied a new kind of homogeneous Hardy type space HA_q with $q > 1$ and they found that the dual space of HA_q can be defined by the following norm.

$$\| f \|_{CBMO^q} := \sup_{R > 0} \left(\frac{1}{|B(0, R)|} \int_{B(0, R)} |f(x) - f_{B(0, R)}|^q \, dx \right)^{1/q} < \infty.$$

Obviously, $CBMO^q$ is the homogeneous central bounded mean oscillation depending on q. Moreover, the famous John-Nirenberg inequality no longer holds in such space. Thus, it can be regarded as an extension of the classical BMO space.

In 2000, Alvarez, Lakey and Guzmán-Partida [1] introduced the λ-central Campanato space and λ-central Morrey space respectively.

Definition 1.1. ([1]) Let $-\frac{1}{p} < \lambda < \frac{1}{n}$ with $1 < p < \infty$. Then, a function $f \in L^p_{loc}(\mathbb{R}^n)$ is said to belonged to the λ-central Campanato space $C^{p,\lambda}(\mathbb{R}^n)$ if

$$\| f \|_{C^{p,\lambda}(\mathbb{R}^n)} := \sup_{R > 0} \left(\frac{1}{|B(0, R)|^{1 + \lambda p}} \int_{B(0, R)} |f(x) - f_{B(0, R)}|^p \, dx \right)^{1/p} < \infty.$$

Definition 1.2. ([1]) Let $-\frac{1}{p} < \lambda < \frac{1}{n}$ and $1 < p < \infty$. Then, the λ-central Morrey space $M^{p,\lambda}(\mathbb{R}^n)$ is defined by

$$M^{p,\lambda}(\mathbb{R}^n) = \left\{ f \mid \| f \|_{M^{p,\lambda}(\mathbb{R}^n)} = \sup_{R > 0} \left(\frac{1}{|B(0, R)|^{1 + \lambda p}} \int_{B(0, R)} |f(x)|^p \, dx \right)^{1/p} < \infty \right\}.$$

If $0 < \lambda < 1/p$, the λ-central-Campanato space becomes the λ-central bounded mean oscillation space $CBMO^{p,\lambda}(\mathbb{R}^n)$. Moreover, it is easy to check that $C^{p,\lambda}(\mathbb{R}^n) \subset \dot{C}^{p,\lambda}(\mathbb{R}^n)$ and $\dot{C}^{p,0}(\mathbb{R}^n) = CBMO^{p}(\mathbb{R}^n)$. For the case $-1/p < \lambda < 0$, there is $M^{p,\lambda}(\mathbb{R}^n) \subset \dot{C}^{p,\lambda}(\mathbb{R}^n)$.

Suppose that T is an integral operator and b is a local integrable function. Then, the commutator of T is defined by

$$T_b(f)(x) = b(x)T(f)(x) - T(b)(x).$$

For the actions of commutators on $M^{p,\lambda}(\mathbb{R}^n)$, one may see [4,8,17] et al. to find more details with $b \in \dot{C}^{p,\lambda}(\mathbb{R}^n)$ and $0 < \lambda < \frac{1}{n}$. For the case $b \in \dot{C}^{p,\lambda}(\mathbb{R}^n)$ with $-\frac{1}{p} < \lambda < 0$, Shi and Lu [16] studied the boundedness of commutators generated by the Hardy operators.

Next, we give some definitions about Hardy operators.

For $f \in L^p(\mathbb{R}^+) \setminus [0, \infty)$ with $1 < p < \infty$, the classical Hardy operator is defined by

$$Hf(x) = \frac{1}{x} \int_0^x f(t) \, dt, \quad x \neq 0.$$

In 1920, Hardy [7] proved the $L^p(\mathbb{R}^+)$ boundedness of H and showed the constant $\frac{p}{p-1}$ of (1) is the best possible.

$$\| Hf \|_{L^p(\mathbb{R}^+)} \leq \frac{p}{p-1} \| f \|_{L^p(\mathbb{R}^+)}. \quad (1)$$

In 1995, Christ and Grafakos [2] introduced the following n-dimensional Hardy operator \mathcal{H} defined by

$$\mathcal{H}f(x) = \frac{1}{|x|^n} \int_{|y| < |x|} f(y) \, dy, \quad x \in \mathbb{R}^n \setminus \{0\},$$
Christ and Grafakos [2] also showed the operator \mathcal{H} satisfies the analogue results of (1).

The dual operator of \mathcal{H} is \mathcal{H}^*, which is defined by

$$\mathcal{H}^* f(x) = \int_{|y| \geq |x|} \frac{f(y)}{|y|^n} dy, \quad x \in \mathbb{R}^n \setminus \{0\}.$$

It is easy to check that

$$\int_{\mathbb{R}^n} g(x) \mathcal{H} f(x) dx = \int_{\mathbb{R}^n} f(x) \mathcal{H}^* g(x) dx.$$

Thus, the commutator of Hardy type operator is defined as

$$\mathcal{H}_b f(x) = b(x) \mathcal{H} f(x) - \mathcal{H}(fb)(x) \quad \text{and} \quad \mathcal{H}_b^* f(x) = b(x) \mathcal{H}^* f(x) - \mathcal{H}^*(fb)(x).$$

The operators \mathcal{H}_b and \mathcal{H}_b^* were first studied in [5] where Fu et al. gave the characterization of $\mathcal{C}BM\Omega^p(\mathbb{R}^n)$ with $1 < p < \infty$ via the boundedness of \mathcal{H}_b and \mathcal{H}_b^* on $L^p(\mathbb{R}^n)$. For more studies about the operator \mathcal{H}_b and \mathcal{H}_b^*, one may see [16,19] to find more details about \mathcal{H}_b and \mathcal{H}_b^* with $b \in \mathcal{C}^{p,\lambda}(\mathbb{R}^n)$.

On the other hand, the weighted norm inequalities for integral operators was first studied in the last 70s and one may see [3,13] et. al. for more details. In 2009, Komori and Shirai [9] defined the weighted Morrey space and they showed the boundedness of some classical integral operators and their commutators on the weighted Morrey spaces.

Next, we introduce the weighted central-Campanato space $\dot{C}^{p,\lambda}_w(\mathbb{R}^n)$ and weighted λ-central Morrey space $\dot{M}^{p,\lambda}_w(\mathbb{R}^n)$ respectively by the following norms.

$$\|f\|_{\dot{M}^{p,\lambda}_w(\mathbb{R}^n)} := \sup_{R > 0} \left(\frac{1}{\omega(B(0,R))^{1+\lambda p}} \int_{B(0,R)} |f(x)|^p \omega(x) dx \right)^{1/p}$$

and

$$\|f\|_{\dot{C}^{p,\lambda}_w(\mathbb{R}^n)} := \sup_{R > 0} \left(\frac{1}{\omega(B(0,R))^{1+\lambda p}} \int_{B(0,R)} |f(x) - f_{B,\omega(B(0,R))}|^p \omega(x) dx \right)^{1/p},$$

where the definition of $f_{B,\omega}$ is $f_{B,\omega} = \frac{1}{|B|} \int_B f(x) \omega(x) dx$ and the exponents of p, λ are the same as in the definition of $\mathcal{C}^{p,\lambda}(\mathbb{R}^n)$ and $\dot{M}^{p,\lambda}(\mathbb{R}^n)$.

For the boundedness of integral operators on $\dot{M}^{p,\lambda}_w(\mathbb{R}^n)$ with $\lambda < 0$, one may see [18] et al. for more details.

Suppose that ω is a non-negative and locally integrable function. If for every cube Q, there exists a constant D independent of Q, such that $\omega(2Q) \leq D \omega(Q)$. Then, we say ω satisfy the doubling condition and we simply denote $\omega \in \Delta_2$.

We would like to mention that in [18], the restriction of ω is $\omega \in A_p$ where A_p denotes the Muckenhoupt weight classes (see [13]). From [6], we know that if $\omega \in A_p$, then ω satisfies the doubling condition (i.e. $\omega \in \Delta_2$). However, the converse is not true. Throughout this paper, we only assume that $\omega \in \Delta_2$.

Now, we are interested in the following weighted Hardy operator \mathcal{H}_ω with the weight $\omega \in \Delta_2$.

$$\mathcal{H}_\omega(f)(x) = \frac{1}{\omega(B(0,|x|))} \int_{|y| < |x|} f(y) \omega(y) dy.$$
For any $g \in L^1_{\text{loc}}(\omega)$ with $\omega \in \Delta_2$, we have

$$\langle \mathcal{H}_\omega(f)(x), g \rangle_{\omega} = \int_{\mathbb{R}^n} \frac{1}{\omega(B(0, |x|))} \int_{|y| < |x|} f(y) \omega(y) dy g(x) \omega(x) dx$$

$$= \int_{\mathbb{R}^n} \int_{|y| > |x|} \frac{g(x) \omega(x)}{\omega(B(0, |y|))} dx f(y) \omega(y) dy.$$

Thus, we can define the dual operator of \mathcal{H}_ω as

$$\mathcal{H}^*_\omega(g)(x) = \int_{|y| \geq |x|} \frac{g(y) \omega(y)}{\omega(B(0, |y|))} dy.$$

Then, the commutators of $\mathcal{H}_{\omega,b}$ and $\mathcal{H}^*_{\omega,b}$ can be stated as follows.

$$\mathcal{H}_{\omega,b}(f)(x) = b(x)\mathcal{H}_\omega(f)(x) - \mathcal{H}_\omega(fb)(x)$$

and

$$\mathcal{H}^*_{\omega,b}(f)(x) = b(x)\mathcal{H}^*_\omega(f)(x) - \mathcal{H}^*_\omega(fb)(x).$$

In this paper, we will give the boundedness of $\mathcal{H}_{\omega,b}$ and $\mathcal{H}^*_{\omega,b}$ on $\dot{\mathcal{M}}^{p,\lambda}(\mathbb{R}^n)$ with $\dot{C}^{p,\lambda}(\mathbb{R}^n)$ and $\lambda < 0$.

Theorem 1.1. Let $1 < p < \infty$, $-\frac{1}{p} < \lambda < 0$, $-\frac{1}{p_i} < \lambda_i < 0$ with $i = 1, 2$, $\frac{1}{p} = \sum_{i=1}^{2} \frac{1}{p_i}$ and $\lambda = \sum_{i=1}^{2} \lambda_i$. Then, both $\mathcal{H}_{\omega,b}$ and $\mathcal{H}^*_{\omega,b}$ are bounded from $\dot{\mathcal{M}}^{p,\lambda}_\omega(\mathbb{R}^n)$ to $\dot{\mathcal{M}}^{p,\lambda}_\omega(\mathbb{R}^n)$ with $b \in \dot{C}^{p,\lambda}(\mathbb{R}^n)$.

Moreover, we have

Theorem 1.2. Let $2 < p < \infty$ and $-\frac{1}{2p} < \lambda < 0$. Then, Both $\mathcal{H}_{\omega,b}$ and $\mathcal{H}^*_{\omega,b}$ are bounded from $\mathcal{M}^{p,\lambda}_\omega(\mathbb{R}^n)$ to $\mathcal{M}^{p,2\lambda}_\omega(\mathbb{R}^n)$ with $b \in \dot{C}^{p,\lambda}(\mathbb{R}^n)$.

In order to give the characterization of $\dot{C}^{p,\lambda}(\mathbb{R}^n)$, we introduce the operators $\mathcal{H}_{\omega,|b|}$ and $\mathcal{H}^*_{\omega,|b|}$ as follows.

$$\mathcal{H}_{\omega,|b|} = \frac{1}{\omega(B(0, |x|))} \int_{|y| < |x|} f(y)|b(x) - b(y)| \omega(y) dy$$

and

$$\mathcal{H}^*_{\omega,|b|}(f)(x) = \int_{|y| > |x|} \frac{f(y) \omega(y)}{\omega(B(0, |y|))} |b(x) - b(y)| dy.$$

By checking the proofs of Theorems 1.1 and 1.2, we know that the above two theorems still hold if we replace $\mathcal{H}_{\omega,b}$ by $\mathcal{H}_{\omega,|b|}$ and $\mathcal{H}^*_{\omega,b}$ by $\mathcal{H}^*_{\omega,|b|}$. Moreover, we have the following theorems.

Theorem 1.3. Let $1 < p < \infty$, $-\frac{1}{p} < \lambda < 0$, $-\frac{1}{p_i} < \lambda_i < 0$ with $i = 1, 2$, $\frac{1}{p} = \sum_{i=1}^{2} \frac{1}{p_i}$ and $\lambda = \sum_{i=1}^{2} \lambda_i$. Moreover, we assume that b satisfies

$$\sup_{B(0,R) \ni x} |b(x) - b_{B,\omega}(B(0,R))| \leq \frac{C}{\omega(B(0,R))} \int_{B(0,R)} |b(x) - b_{B,\omega}(B(0,R))| \omega(x) dx,$$

for some constant $C > 0$. Then, the following two conditions are equivalent.

(a) Both $\mathcal{H}_{\omega,|b|}$ and $\mathcal{H}^*_{\omega,|b|}$ are bounded from $\dot{\mathcal{M}}^{p,\lambda}_\omega(\mathbb{R}^n)$ to $\dot{\mathcal{M}}^{p,\lambda}_\omega(\mathbb{R}^n)$.

(b) Both $\mathcal{H}_{\omega,|b|}$ and $\mathcal{H}^*_{\omega,|b|}$ are bounded from $\mathcal{M}^{p,\lambda}_\omega(\mathbb{R}^n)$ to $\mathcal{M}^{p,2\lambda}_\omega(\mathbb{R}^n)$.
(b₄) \(b \in \mathcal{C}_w^{p,\lambda}(\mathbb{R}^n) \).

In order to give up the condition (2), we have

Theorem 1.4. Let \(2 < p < \infty \) and \(-\frac{1}{p} < \lambda < 0 \). Then, the following two conditions are equivalent.

(a₄) Both \(\mathcal{H}_{\omega,b} \) and \(\mathcal{H}^*_{\omega,b} \) are bounded from \(\mathcal{M}^p_{\omega,\lambda}(\mathbb{R}^n) \) to \(\mathcal{M}^p_{\omega,2\lambda}(\mathbb{R}^n) \).

(b₄) \(b \in \mathcal{C}_w^{p,\lambda}(\mathbb{R}^n) \).

§2 Some useful lemmas.

In this section, we give some lemmas that will be used throughout this paper. For simplicity, we denote \(B = B(0,R) \), \(B_i = \{ x \in \mathbb{R}^n : |x| \leq 2^i \} \), \(C_i = B_i \setminus B_{i-1} \) with \(i \in \mathbb{Z} \) and \(C \) may represents different constants in different places.

Lemma 2.1. ([6]) If \(\omega \in \Delta_2 \), then there exists a constant \(D_1 : D_1 > 1 \) independent of \(Q \) such that \(\omega(2Q) \leq D_1 \omega(Q) \), for any cube \(Q \).

Lemma 2.2. ([9, Lemma 4.1]) If \(\omega \in \Delta_2 \), then there exists a constant \(D_2 : D_2 > 1 \) independent of \(Q \) such that \(\omega(2Q) \geq D_2 \omega(Q) \).

Remark 2.1. By checking the proof of [9, Lemma 4.1], we know that the constant \(D_2 \) is strictly less than 2. Moreover, there exists a constant \(r > 1 \) independent of \(Q \), such that \(r \leq D_2 < 2 \).

Lemma 2.3. For \(\forall i, j \in \mathbb{Z} \) and \(\forall \omega \in \Delta_2 \), we have the following inequalities.

(i) If \(i \geq j \), there is \(D_2^{i-j} \omega(B_j) \leq \omega(B_i) \leq D_1^{i-j} \omega(B_j) \).

(ii) For the case \(i \leq j \), we have \(D_1^{i-j} \omega(B_j) \leq \omega(B_i) \leq D_2^{i-j} \omega(B_j) \).

Proof. Lemma 2.3 is a simple derivation of Lemmas 2.1 and 2.2 and we omit the proof process.

Lemma 2.4. For \(\forall \omega \in \Delta_2 \) and \(x \in C_i \) with \(i \in \mathbb{Z}^+ \), there is \(\frac{1}{D_1} \omega(B_i) \leq \omega(B(0,|x|)) \leq \omega(B_i) \).

Proof. As \(i \in \mathbb{Z} \) and \(x \in C_i \), it is easy to see \(\omega(B_{i-1}) \leq \omega(B(0,|x|)) \leq \omega(B_i) \). Since \(\omega \in \Delta_2 \), we get \(\frac{1}{D_1} \omega(B_i) \leq \omega(B_{i-1}) \).

Thus, we obtain

\[
\frac{1}{D_1} \omega(B_i) \leq \omega(B(0,|x|)) \leq \omega(B_i).
\]

Lemma 2.5. Let \(1 < p < \infty \), \(-\frac{1}{p} < \lambda < 0 \) and \(b \in \mathcal{C}_w^{p,\lambda}(\mathbb{R}^n) \). Then, for any \(i, j \in \mathbb{Z} \) with \(i < j \) and \(\forall \omega \in \Delta_2 \), we have

\[
|b_{B_i,\omega} - b_{B_j,\omega}| \leq C \|b\|_{\mathcal{C}_w^{p,\lambda}(\mathbb{R}^n)} \omega(B_i)^\lambda.
\]
Proof. As \(i < j \), using Lemma 2.3 and the Hölder inequality with \(1 < p < \infty \) and \(-\frac{1}{p} < \lambda < 0\), we obtain

\[
|b_{B_i, \omega} - b_{B_j, \omega}| \leq \sum_{k=i}^{j-1} |b_{B_k, \omega} - b_{B_{k+1}, \omega}|
\]

\[
\leq \sum_{k=i}^{j-1} \frac{1}{\omega(B_k)} \int_{B_k} |b(x) - b_{B_{k+1}, \omega}| \omega(x) dx
\]

\[
\leq \sum_{k=i}^{j-1} \frac{1}{\omega(B_k)} \left(\int_{B_{k+1}} |b(x) - b_{B_{k+1}, \omega}|^p \omega(x) dx \right)^{\frac{1}{p}} \left(\int_{B_{k+1}} \omega(x) dx \right)^{\frac{1}{p}}
\]

\[
\leq C \sum_{k=i}^{j-1} \frac{1}{\omega(B_k)} (\omega(B_{k+1}))^{\lambda + \frac{1}{p}} ||b||_{\mathcal{M}^p_\lambda(\mathbb{R}^n)} (\omega(B_{k+1}))^{\frac{1}{p}}
\]

\[
\leq CD_1 ||b||_{\mathcal{M}^p_\lambda(\mathbb{R}^n)} \omega(B_i)^{\lambda} \sum_{k=i}^{j-1} D_2^{(k+1-i)\lambda}
\]

\[
\leq CD_1 ||b||_{\mathcal{M}^p_\lambda(\mathbb{R}^n)} \omega(B_i)^\lambda,
\]

here \(C \) is a positive constant independent of \(j \) and \(i \).

Lemma 2.6. Let \(1 < p < \infty, -\frac{1}{p} < \lambda < 0 \) and \(f \in L^p_{\omega}(\mathbb{R}^n) \) with \(\omega \in \Delta_2 \). If \(\int_{B_k} |f(x)|^p \omega(x) dx \leq C \omega(B_k)^{1+\lambda p} \) holds for any \(k \in \mathbb{Z} \), then for any \(R > 0 \), we have

\[
\int_{B(0, R)} |f(x)|^p \omega(x) dx \leq C \omega(B(0, R))^{\lambda p + 1}.
\]

Proof. For any \(R > 0 \), there exists a \(k \in \mathbb{Z} \), such that \(2^{k-1} < R \leq 2^k \). Thus, we get \(B_{k-1} \subset B(0, R) \subset B_k \) and \(\omega(B_{k-1}) \leq \omega(B(0, R)) \leq \omega(B_k) \). Then, using Lemmas 2.3-2.4, we get

\[
\int_{B(0, R)} |f(x)|^p \omega(x) dx \leq \int_{B_k} |f(x)|^p \omega(x) dx
\]

\[
\leq C \omega(B_k)^{1+\lambda p} \leq C (D_1 \omega(B_{k-1}))^{\lambda p + 1}
\]

\[
\leq C \omega(B(0, R))^{\lambda p + 1}.
\]

Lemma 2.7. Let \(1 < p < \infty \) and \(-\frac{1}{p} < \lambda < 0\). Then for \(\forall R > 0 \) and \(\forall \omega \in \Delta_2 \), there is

\[
||\chi_B||_{\mathcal{M}^p_\lambda(\mathbb{R}^n)} \leq \omega(B)^{-\lambda}.
\]

Proof. By the definition of \(\mathcal{M}^p_\lambda(\mathbb{R}^n) \), we have

\[
||\chi_B||_{\mathcal{M}^p_\lambda(\mathbb{R}^n)} = \sup_{r > 0} \left(\frac{1}{(\omega(B(0, r)))^{1+\lambda p}} \int_{B(0, r)} |\chi_B(x)|^p \omega(x) dx \right)^{1/p}
\]

\[
= \sup_{r > 0} \left(\frac{1}{(\omega(B(0, r)))^{1+\lambda p}} \int_{B(0, r) \cap B(0, r)} \omega(x) dx \right)^{1/p},
\]
For the case $r \leq R$, as since $1 < p < \infty$ and $-\frac{1}{p} < \lambda < 0$, there is
\[
\left(\frac{1}{(\omega(B(0, r))^{1+\lambda p}} \int_{B(0,r) \cap B(0,R)} \omega(x)dx \right)^{1/p} = \left(\frac{1}{(\omega(B(0, r))^{1+\lambda p}} \int_{B(0,r)} \omega(x)dx \right)^{1/p}
\]
\[
= \left(\frac{1}{\omega(B(0, r))^{1}} \right)^{1/p} \leq \left(\frac{1}{\omega(B(0, R))^{1}} \right)^{1/p} = \omega(B)^{-\lambda},
\]

For the case $r > R$, we get
\[
\left(\frac{1}{(\omega(B(0, r))^{1+\lambda p}} \int_{B(0,r) \cap B(0,R)} \omega(x)dx \right)^{1/p} = \left(\frac{1}{(\omega(B(0, r))^{1+\lambda p}} \int_{B(0,R)} \omega(x)dx \right)^{1/p}
\]
\[
\leq \left(\frac{1}{\omega(B(0, R))^{1+\lambda p}} \int_{B(0,R)} \omega(x)dx \right)^{1/p} = \left(\frac{1}{\omega(B(0, R))^{1}} \right)^{1/p} = \omega(B)^{-\lambda},
\]

Thus, for any $r > 0$, we have
\[
\sup_{r > 0} \left(\frac{1}{(\omega(B(0, r))^{1+\lambda p}} \int_{B(0,r) \cap B(0,R)} \omega(x)dx \right)^{1/p} \leq \omega^{-\lambda}(B),
\]
which finishes the proof of Lemma 2.7.

§3 Proof of Theorem 1.1.

By the definitions of $\hat{M}_\omega^{p,\lambda}(\mathbb{R}^n)$ and Lemma 2.6, it suffices to show the following estimates with $k \in \mathbb{Z}$.

\[
\int_{B_k} |\mathcal{H}_{\omega,b}(f)(x)|^p \omega(x)dx \leq C\omega(B_k)^{1+\lambda p} ||b||_{C^{p+1,1}(\mathbb{R}^n)}^p ||f||_{\hat{M}_\omega^{p,\lambda}(\mathbb{R}^n)}^p
\tag{3}
\]
\[
\int_{B_k} |\mathcal{H}_{\omega,b}^*(f)(x)|^p \omega(x)dx \leq C\omega(B_k)^{1+\lambda p} ||b||_{C^{p+1,1}(\mathbb{R}^n)}^p ||f||_{\hat{M}_\omega^{p,\lambda}(\mathbb{R}^n)}^p.
\tag{4}
\]

We begin with the proof of (3). Using Lemma 2.4, we get
\[
\int_{B_k} (\mathcal{H}_{\omega,b}(f)(x))^p \omega(x)dx
\]
\[
\leq \sum_{j=-\infty}^k \int_{C_j} \left(\frac{1}{\omega(B(0,|x|))} \int_{B(0,|x|)} |b(x) - b(y)||f(y)|\omega(y)dy \right)^p \omega(x)dx
\]
\[
\leq \sum_{j=-\infty}^k \frac{1}{\omega(B_j)^p} \int_{B_j} \left(\int_{B_j} |b(x) - b(y)||f(y)|\omega(y)dy \right)^p \omega(x)dx
\]
\[
\leq \sum_{j=-\infty}^k \frac{1}{\omega(B_j)^p} \int_{B_j} \left(\sum_{i=-\infty}^j \int_{B_i} |b(x) - b(y)||f(y)|\omega(y)dy \right)^p \omega(x)dx
\]
\[
\leq \sum_{j=-\infty}^k \frac{1}{\omega(B_j)^p} \int_{B_j} \left(\sum_{i=-\infty}^j \int_{B_i} |b(x) - b_{B_j,B_i}||f(y)|\omega(y)dy \right)^p \omega(x)dx
\]
\[
+ \sum_{j=-\infty}^k \frac{1}{\omega(B_j)^p} \int_{B_j} \left(\sum_{i=-\infty}^j \int_{B_i} |b(y) - b_{B_j,B_i}||f(y)|\omega(y)dy \right)^p \omega(x)dx
\]
\[
=: I_1 + I_2.
\]

For \(I_1\), we prove the fact.
\[
\sum_{i=-\infty}^j \int_{B_i} |f(y)|\omega(y)dy \leq C\|f\|_{M^{p_2,\lambda_2}(\mathbb{R}^n)} (\omega(B_j))^{\lambda_2+1}
\]
with \(1 < p_2 < \infty\) and \(-1 < \lambda_2 < 0\).

By Lemma 2.3 and the Hölder inequality, there is
\[
\sum_{i=-\infty}^j \int_{B_i} |f(y)|\omega(y)dy
\]
\[
\leq C \sum_{i=-\infty}^j \left(\int_{B_i} (|f(y)|\omega^{p_2}(y))^{p_2} dy \right)^{\frac{1}{p_2}} \left(\int_{B_i} (\omega(y))^{(1-\frac{1}{p_2})p_2} dy \right)^{1/(\frac{1}{p_2})}
\]
\[
\leq C\|f\|_{M^{p_2,\lambda_2}(\mathbb{R}^n)} \sum_{i=-\infty}^j (\omega(B_i))^{\lambda_2+\frac{1}{p_2}} (\omega(B_i))^{(1-\frac{1}{p_2})}
\]
\[
\leq C\|f\|_{M^{p_2,\lambda_2}(\mathbb{R}^n)} \sum_{i=-\infty}^j (\omega(B_i))^{\lambda_2+1}
\]
\[
\leq C\|f\|_{M^{p_2,\lambda_2}(\mathbb{R}^n)} \sum_{i=-\infty}^j (D_2(i-j)\omega(B_j))^{\lambda_2+1}
\]
\[
\leq C\|f\|_{M^{p_2,\lambda_2}(\mathbb{R}^n)} (\omega(B_j))^{\lambda_2+1}
\]
and we finish the proof of (5).

Then, using Lemma 2.3, the Hölder inequality and the conditions of Theorem 1.1, we get
where \(x \) and we finish the proof of (6). For \(s \) Denote \[\sum_{j=-\infty}^\infty |b(y) - b_{B_j, \omega}| \omega(y) dy \leq C \|b\|_{\mathcal{C}^{p_1, 1}}(\mathbb{R}^n) \|f\|_{\mathcal{M}^{p_2, 2}}(\mathbb{R}^n) \omega(B_j)^{1+\lambda}. \] where \(x \in C_j, 1 < p_1 < \infty, -\frac{1}{p_1} < \lambda_i < 0 \) with \(i = 1, 2 \) and \(\lambda = \sum_{i=1}^2 \lambda_i. \)

Denote \(s \) by \(1/s = 1 - 1/p_1 - 1/p_2. \) Using Lemma 2.3 and the Hölder inequality, we get

\[
\sum_{i=-\infty}^j \int_{B_i} |b(y) - b_{B_i, \omega}| |f(y)| \omega(y) dy \leq C \|b\|_{\mathcal{C}^{p_1, 1}}(\mathbb{R}^n) \|f\|_{\mathcal{M}^{p_2, 2}}(\mathbb{R}^n) \omega(B_j)^{1+\lambda}. \tag{6}
\]
Thus, we obtain

\[
I_2 \leq C \sum_{j=-\infty}^{k} \int_{B_j} \frac{1}{\omega(B_j)^p} \left(\sum_{i=-\infty}^{j} \int_{B_i} |b(y) - b_{B_j, \omega}| |f(y)| \omega(y)dy \right)^p \omega(x)dx
\]

\[
\leq C \|b\|_{L_p, \lambda_1(\mathbb{R}^n)}^p \|f\|_{M^{p, \lambda_2}(\mathbb{R}^n)}^p \sum_{j=-\infty}^{k} \int_{B_j} \frac{1}{\omega(B_j)^{1+\lambda p}} \omega(B_j)^{1+\lambda p} \omega(x)dx
\]

\[
\leq \|b\|_{L_p, \lambda_1(\mathbb{R}^n)}^p \|f\|_{M^{p, \lambda_2}(\mathbb{R}^n)}^p \omega(B_k)^{1+\lambda p} \sum_{j=-\infty}^{k} D_2(b, \lambda)^{(1+\lambda p)}
\]

\[
\leq C \|b\|_{L_p, \lambda_1(\mathbb{R}^n)}^p \|f\|_{M^{p, \lambda_2}(\mathbb{R}^n)}^p \omega(B_k)^{1+\lambda p}.
\]

Combing the estimates of \(I_1 \) and \(I_2 \), we finish the proof of (3).

Next, we will prove (4). First, we can decompose \(\int_{B_k} |\mathcal{H}_{\omega, b}(f)(x)|^p \omega(x)dx \) as follows.

\[
\int_{B_k} |\mathcal{H}_{\omega, b}(f)(x)|^p \omega(x)dx = \int_{B_k} \left(\int_{|y| \geq |x|} \frac{|b(x) - b(y)|}{\omega(B(0, |y|))} |f(y)| \omega(y)dy \right)^p \omega(x)dx
\]

\[
\leq \int_{B_k} \left(\int_{2^k \geq |y| \geq |x|} \frac{|b(x) - b(y)|}{\omega(B(0, |y|))} |f(y)| \omega(y)dy \right)^p \omega(x)dx
\]

\[
+ \int_{B_k} \left(\int_{|y| > 2^k} \frac{|b(x) - b(y)|}{\omega(B(0, |y|))} |f(y)| \omega(y)dy \right)^p \omega(x)dx
\]

\[
= J_1 + J_2.
\]

Similar to the estimates of \(\mathcal{H}_{\omega, b} \), we have

\[
J_1 \leq \int_{B_k} \left(\int_{|y| \leq 2^k} \frac{|b(x) - b(y)|}{\omega(B(0, |y|))} |f(y)| \omega(y)dy \right)^p \omega(x)dx
\]

\[
\leq \int_{B_k} \left(\sum_{i=-\infty}^{k} \int_{B_i} \frac{|b(x) - b(y)|}{\omega(B(0, |y|))} |f(y)| \omega(y)dy \right)^p \omega(x)dx
\]

\[
\leq \int_{B_k} \left(\sum_{i=-\infty}^{k} \frac{1}{\omega(B_i)} \int_{B_i} |b(x) - b(y)| |f(y)| \omega(y)dy \right)^p \omega(x)dx
\]

\[
\leq \|b\|_{L_p, \lambda_1(\mathbb{R}^n)}^p \|f\|_{M^{p, \lambda_2}(\mathbb{R}^n)}^p \omega(B_k)^{1+\lambda p}.
\]
Thus, it remains to give the estimates of J_2. By Lemma 2.4, we can decompose J_2 as

$$J_2 \leq C \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{C_i} |b(x) - b(y)||f(y)| \omega(y) dy \right)^p \omega(x) dx$$

$$\leq C \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(x) - b(B_k, \omega)||f(y)| \omega(y) dy \right)^p \omega(x) dx$$

$$+ C \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(y) - b(B_i, \omega)||f(y)| \omega(y) dy \right)^p \omega(x) dx$$

$$+ C \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(B_i, \omega) - b(B_k, \omega)||f(y)| \omega(y) dy \right)^p \omega(x) dx$$

$$=: CJ_{21} + CJ_{22} + CJ_{23}.$$

For J_{21}, we show the following fact.

$$\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |f(y)| \omega(y) dy \leq C \| f \|_{\mathcal{M}^p_{\lambda_2}(\mathbb{R}^n)} (\omega(B_k))^{\lambda_2}$$

(7)

with $y \in B_k$, $1 < p_2 < \infty$ and $\lambda_2 < 0$.

Then, using Lemma 2.3 and the Hölder inequality, we get

$$\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |f(y)| \omega(y) dy \leq C \| f \|_{\mathcal{M}^p_{\lambda_2}(\mathbb{R}^n)} \sum_{i=k}^{\infty} \omega(B_i)^{\lambda_2}$$

$$\leq C \| f \|_{\mathcal{M}^p_{\lambda_2}(\mathbb{R}^n)} \sum_{i=k}^{\infty} \left(D_2^{i-k} \omega(B_k) \right)^{\lambda_2}$$

$$\leq C \| f \|_{\mathcal{M}^p_{\lambda_2}(\mathbb{R}^n)} (\omega(B_k))^{\lambda_2}$$

and we finish the proof of (7).

Using Lemma 2.3, the Hölder inequality and the conditions of Theorem 1.1, we have
\[J_{21} \leq \int_{B_k} |b(x) - b_{B_k, \omega}|^p \omega(x) dx \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} \omega(y) |f(y)| dy \right)^{\frac{1}{p}} \]
\[\leq C \left(\int_{B_k} |b(x) - b_{B_k, \omega}|^p \omega(x) dx \right)^{\frac{p}{p_1}} \left(\int_{B_k} \omega(x) (1 - \frac{1}{p}) \left(\frac{\omega(y)}{\omega(B_k)} \right)^{\frac{1}{1+p}} dx \right)^{\frac{1}{p_1}} \]
\[\times \left(\| f \|_{M^{\mathcal{P}_1, \mathcal{L}_2}(\mathbb{R}^n)} (\omega(B_k))^\lambda \right)^p \]
\[\leq C \| b \|_{c^{P_1, \lambda_1}(\mathbb{R}^n)}^p \| f \|_{M^{\mathcal{P}_1, \mathcal{L}_2}(\mathbb{R}^n)} \omega(B_k)^{1+\lambda_1} \left(\omega(B_k) \right)^\lambda \]
\[\leq C \| b \|_{c^{P_1, \lambda_1}(\mathbb{R}^n)}^p \| f \|_{M^{\mathcal{P}_1, \mathcal{L}_2}(\mathbb{R}^n)} \omega(B_k)^{1+\lambda}. \]

For \(J_{22} \), we need to show the following inequality.
\[\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(y) - b_{B_i, \omega}| |f(y)| \omega(y) dy \leq C \| b \|_{c^{P_1, \lambda_1}(\mathbb{R}^n)} \| f \|_{M^{\mathcal{P}_1, \mathcal{L}_2}(\mathbb{R}^n)} (\omega(B_k))^\lambda. \]

with \(x \in B_k, 1 < p_i < \infty, -\frac{1}{p_i} < \lambda_i < 0 \) and \(\lambda = \sum_{i=1}^{n} \lambda_i \).

Denote \(s \) by \(1/s = 1 - 1/p_1 - 1/p_2 \). Then, using Lemma 2.3 and the Hölder inequality, we get

\[\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(y) - b_{B_i, \omega}| |f(y)| \omega(y) dy \]
\[\leq C \sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \left(\int_{B_i} |b(y) - b_{B_i, \omega}|^p \omega(y) dy \right)^{1/p_1} \left(\int_{B_i} |f(y)|^p \omega(y) dy \right)^{1/p_2} \left(\int_{B_i} \omega(y)^{\frac{1}{s}} dy \right)^{1/s} \]
\[\leq C \| b \|_{c^{P_1, \lambda_1}(\mathbb{R}^n)} \| f \|_{M^{\mathcal{P}_1, \mathcal{L}_2}(\mathbb{R}^n)} \sum_{i=k}^{\infty} \omega(B_i)^\lambda \]
\[\leq C \| b \|_{c^{P_1, \lambda_1}(\mathbb{R}^n)} \| f \|_{M^{\mathcal{P}_1, \mathcal{L}_2}(\mathbb{R}^n)} \sum_{i=k}^{\infty} \left(D_2 (1 - k) \omega(B_k) \right)^\lambda \]
\[\leq C \| b \|_{c^{P_1, \lambda_1}(\mathbb{R}^n)} \| f \|_{M^{\mathcal{P}_1, \mathcal{L}_2}(\mathbb{R}^n)} \omega(B_k)^\lambda \]

and we finish the proof of (8).

Thus, we obtain
\[J_{22} = \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(y) - b_{B_i, \omega}| |f(y)| \omega(y) dy \right)^p \omega(x) dx \]
\[\leq C \int_{B_k} \left(\| b \|_{c^{P_1, \lambda_1}(\mathbb{R}^n)} \| f \|_{M^{\mathcal{P}_1, \mathcal{L}_2}(\mathbb{R}^n)} \omega(B_k)^\lambda \right)^p \omega(x) dx \]
\[\leq C \| b \|_{c^{P_1, \lambda_1}(\mathbb{R}^n)}^p \| f \|_{M^{\mathcal{P}_1, \mathcal{L}_2}(\mathbb{R}^n)} (\omega(B_k))^{1+\lambda}. \]
To estimate J_{23}, using the conditions of Theorem 1.1, Lemmas 2.3 and 2.5, we get

$$J_{23} \leq C\|b\|_{p, \lambda_1}^{p} \int_{B_k} \left(\sum_{i=k}^{\infty} \omega(B_i)^{-1} \int_{B_i} \omega(B_k)^{\lambda_1} |f(y)| |\omega(y)| dy \right)^{p} \omega(x) dx$$

$$\leq C\|b\|_{p, \lambda_1}^{p} \int_{B_k} \left(\sum_{i=k}^{\infty} \omega(B_i)^{-1} \omega(B_k)^{\lambda_1} \left(\int_{B_i} |f(y)|^{p_2} \omega(y) dy \right)^{1/p_2} \right)^{p} \omega(x) dx$$

$$\times \left(\int_{B_k} \omega(y)^{\left(1-\frac{1}{p_2}\right)\frac{p_2}{p_2-1}} dy \right)^{\frac{p_2}{p_2-1}}$$

$$\leq C\|b\|_{p, \lambda_1}^{p} \int_{B_k} \left(\sum_{i=k}^{\infty} \omega(B_i)^{-1} \omega(B_k)^{\lambda_1} \|f\|_{M_{p, 2}^{\lambda_2}(\mathbb{R}^n)} \omega(B_k)^{1+\lambda_2} \right)^{p} \omega(x) dx$$

$$\leq C\|b\|_{p, \lambda_1}^{p} \|f\|_{M_{p, 2}^{\lambda_2}(\mathbb{R}^n)} \int_{B_k} \omega(B_k)^{\lambda_1 p} \left(\sum_{i=k}^{\infty} \omega(B_i)^{\lambda_2} \right)^{p} \omega(x) dx$$

$$\leq C\|b\|_{p, \lambda_1}^{p} \|f\|_{M_{p, 2}^{\lambda_2}(\mathbb{R}^n)} \int_{B_k} \omega(B_k)^{\lambda_1 p} \left(\sum_{i=k}^{\infty} D_{p, 2}^{(i-k)\lambda_2} \omega(B_k)^{\lambda_2} \right)^{p} \omega(x) dx$$

$$\leq C\|b\|_{p, \lambda_1}^{p} \|f\|_{M_{p, 2}^{\lambda_2}(\mathbb{R}^n)} \omega(B_k)^{1+\lambda_2} \int_{B_k} \left(\sum_{i=k}^{\infty} D_{p, 2}^{(i-k)\lambda_2} \right)^{p} \omega(x) dx$$

$$\leq \|b\|_{p, \lambda_1}^{p} \|f\|_{M_{p, 2}^{\lambda_2}(\mathbb{R}^n)} \omega(B_k)^{1+\lambda_2}.$$

Combining the estimates of J_{1}, J_{21}, J_{22} and J_{23}, we get (4) and finish the proof of Theorem 1.1.

§4 Proof of Theorem 1.2

By Lemma 2.6, it suffices to show that for any $k \in \mathbb{Z}$, the following estimates hold.

$$\int_{B_k} |\mathcal{H}_{\omega, b}(f)(x)|^{p} \omega(x) dx \leq C\omega(B_k)^{1+2\lambda p} \|b\|_{p, \lambda_1}^{p} \|f\|_{M_{p, 2}^{\lambda_2}(\mathbb{R}^n)}^{p},$$

$$\int_{B_k} |\mathcal{H}_{\omega, b}^{*}(f)(x)|^{p} \omega(x) dx \leq C\omega(B_k)^{1+2\lambda p} \|b\|_{p, \lambda_1}^{p} \|f\|_{M_{p, 2}^{\lambda_2}(\mathbb{R}^n)}^{p}.$$
To prove (9), using Lemma 2.4, we get
\[\int_{B_k} |\mathcal{H}_{\omega,b} f(x)|^p \omega(x) dx \leq \int_{B_k} \left(\frac{1}{\omega(\{0,|x|\})} \int_{|y|<|x|} |b(x) - b(y)||f(y)|\omega(y) dy \right)^p \omega(x) dx \]
\[
\leq C \sum_{j=-\infty}^k \int_{C_j} \left(\frac{1}{\omega(\{0,|x|\})} \sum_{i=-\infty}^j \int_{B_i} |b(x) - b_{B_j}\omega||f(y)|\omega(y) dy \right)^p \omega(x) dx \]
\[+ C \sum_{j=-\infty}^k \int_{C_j} \left(\frac{1}{\omega(\{0,|x|\})} \sum_{i=-\infty}^j \int_{B_i} |b(y) - b_{B_j}\omega||f(y)|\omega(y) dy \right)^p \omega(x) dx \]
\[\leq C \sum_{j=-\infty}^k \int_{C_j} \frac{1}{\omega(B_j)^p} \left(\sum_{i=-\infty}^j \int_{B_i} |b(x) - b_{B_j}\omega||f(y)|\omega(y) dy \right) \omega(x) dx \]
\[+ C \sum_{j=-\infty}^k \int_{C_j} \frac{1}{\omega(B_j)^p} \left(\sum_{i=-\infty}^j \int_{B_i} |b(y) - b_{B_j}\omega||f(y)|\omega(y) dy \right) \omega(x) dx \]
\[=: CL_1 + CL_2. \]

For \(L_1\), recall that \(2 < p < \infty\) and \(-\frac{1}{2p} < \lambda < 0\). Moreover, in this case, \(p_2 = p\), \(\lambda_2 = \lambda\). Then, using (5) in Section 3, we have \(1 < p < \infty\) and \(-1 < \lambda < 0\). Thus, we obtain
\[\sum_{i=-\infty}^j \int_{B_i} |f(y)|\omega(y) dy \leq C \|f\|_{\mathcal{H}_{\omega,b}^p,\lambda,R^n}(\omega(B_j))^{\lambda+1}, \]

From Lemma 2.3 and the Hölder inequality, there is
\[L_1 \leq C \sum_{j=-\infty}^k \frac{1}{\omega(B_j)^p} \int_{B_j} |b(x) - b_{B_j}\omega|^p \omega(x) dx \left(\sum_{i=-\infty}^j \int_{B_i} |f(y)|\omega(y) dy \right)^p \]
\[\leq C \sum_{j=-\infty}^k \frac{1}{\omega(B_j)^p} \left(\omega(B_j)^{1+\lambda} \|b\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n} \|f\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n}(\omega(B_j))^{\lambda+1} \right)^p \]
\[\leq C \|b\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n}^p \|f\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n}^p \sum_{j=-\infty}^k (\omega(B_j))^{(1+2\lambda p)} \]
\[\leq C \|b\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n}^p \|f\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n}^p \sum_{j=-\infty}^k \left(D_2(j-k) \omega(B_k) \right)^{(1+2\lambda p)} \]
\[\leq C \|b\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n}^p \|f\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n}^p \omega(B_k)^{(1+2\lambda p)} \]

For \(L_2\), using (6) in Section 3 and it is easy to see
\[\sum_{i=-\infty}^j \int_{B_i} |b(y) - b_{B_j}\omega||f(y)|\omega(y) dy \leq C \|b\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n} \|f\|_{\mathcal{H}_{\omega,b}^{p,\lambda},R^n}(\omega(B_j))^{1+2\lambda}. \]

Then, using Lemma 2.3, the Hölder inequality and the conditions of Theorem 1.2, we have
\[L_2 = \sum_{j = -\infty}^{k} \int_{C_j} \frac{1}{\omega(B_j)^p} \left(\sum_{i = -\infty}^{j} \int_{B_i} |b(y) - b_{B_j, \omega}||f(y)||\omega(y)dy \right)^p \omega(x)dx \]

\[\leq C\|b\|_{L_2}^p \|f\|_{L_2}^p \sum_{j = -\infty}^{k} \int_{C_j} \frac{1}{\omega(B_j)^p} (\omega(B_j)^{1+2\lambda})^p \omega(x)dx \]

\[\leq C\|b\|_{L_2}^p \|f\|_{L_2}^p \sum_{j = -\infty}^{k} \omega(B_j)^{1+2\lambda_p} \]

\[\leq C\|b\|_{L_2}^p \|f\|_{L_2}^p \omega(B_k)^{1+2\lambda_p} \]

Combining the estimates of \(L_1, L_2 \), we find that (9) is true.

Now, let us focus on the proof of (10). First, we decompose \(\int_{B_k} \|H_{\omega,b}(f)(x)\|_p \omega(x)dx \) as follows.

\[\int_{B_k} \|H_{\omega,b}(f)(x)\|_p \omega(x)dx = \int_{B_k} \left(\int_{|y| \geq |x|} \frac{|b(x) - b(y)|}{\omega(B(0,|y|))} f(y) \omega(y)dy \right)^p \omega(x)dx \]

\[\leq \int_{B_k} \left(\int_{2^k \geq |y| \geq |x|} \frac{|b(x) - b(y)|}{\omega(B(0,|y|))} f(y) \omega(y)dy \right)^p \omega(x)dx \]

\[+ \int_{B_k} \left(\int_{|y| > 2^k} \frac{|b(x) - b(y)|}{\omega(B(0,|y|))} f(y) \omega(y)dy \right)^p \omega(x)dx \]

\[=: M_1 + M_2. \]

Similar to the estimates of \(H_{\omega,b} \), we have

\[M_1 \leq \int_{B_k} \left(\int_{|y| \leq 2^k} \frac{|b(x) - b(y)|}{\omega(B(0,|y|))} f(y) \omega(y)dy \right)^p \omega(x)dx \]

\[\leq \int_{B_k} \left(\sum_{i = -\infty}^{k} \int_{C_i} \frac{|b(x) - b(y)|}{\omega(B(0,|y|))} f(y) \omega(y)dy \right)^p \omega(x)dx \]

\[\leq C \int_{B_k} \left(\sum_{i = -\infty}^{k} \frac{1}{\omega(B_i)} \int_{C_i} |b(x) - b(y)||f(y)||\omega(y)dy \right)^p \omega(x)dx \]

\[\leq C\|b\|_{L_2}^p \|f\|_{L_2}^p \omega(B_k)^{1+2\lambda_p}. \]
Thus, it remains to give the estimates of M_2. Using Lemma 2.4, we can decompose M_2 as

$$M_2 \leq C \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(x) - b(y)| |f(y)| \omega(y)dy \right)^p \omega(x)dx$$

$$\leq C \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(x) - b_{B_k, \omega}| |f(y)| \omega(y)dy \right)^p \omega(x)dx$$

$$+ C \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(y) - b_{B_k, \omega}| |f(y)| \omega(y)dy \right)^p \omega(x)dx$$

$$+ C \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b_{B_k, \omega} - b_{B_i, \omega}| |f(y)| \omega(y)dy \right)^p \omega(x)dx$$

$$=: CM_{21} + CM_{22} + CM_{23}.$$

For M_{21}, using (7) in Section 3 and the conditions of Theorem 1.2, we may easily get

$$\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |f(y)| \omega(y)dy \leq \|f\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} (\omega(B_k))^\lambda.$$

Then, from Lemma 2.3 and the Hölder inequality, we obtain

$$M_{21} \leq \int_{B_k} |b(x) - b_{B_k, \omega}| \omega(x)dx \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |f(y)| \omega(y)dy \right)^p$$

$$\leq \left(\omega(B_k)^{(\lambda + \frac{1}{p})} \|b\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} \right)^p \left(\|f\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} (\omega(B_k))^\lambda \right)^p$$

$$\leq C \|b\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} \|f\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} \omega(B_k)^{1+2\lambda p}.$$

For M_{22}, using (8) in Section 3 and we can easily obtain

$$\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |b(y) - b_{B_i, \omega}| |f(y)| \omega(y)dy \leq C \|b\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} \|f\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} (\omega(B_k))^2\lambda.$$

Then, applying Lemma 2.3 and the Hölder inequality, there is

$$M_{22} \leq C \int_{B_k} \left(\|b\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} \|f\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} (\omega(B_k))^{2\lambda} \right)^p \omega(x)dx$$

$$\leq C \|b\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)}^p \|f\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)}^p \omega(B_k)^{1+2\lambda p}.$$

Finally, we give the estimates of M_{23}. Using Lemma 2.5, the fact $i \geq k$ and $\lambda < 0$, there is

$$|b_{B_k, \omega} - b_{B_i, \omega}| \leq C \|b\|_{\mathcal{M}_{\omega}^{p, \lambda}(\mathbb{R}^n)} \omega(B_k)^\lambda.$$
Thus, we have
\[
M_{23} \leq C \|b\|_{L^p_1(\mathbb{R}^n)}^p \omega(B_k)^{\lambda p} \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \int_{B_i} |f(y)| \omega(y) dy \right)^p \omega(x) dx \\
\leq C \|b\|_{L^p_1(\mathbb{R}^n)}^p \omega(B_k)^{\lambda p} \times \int_{B_k} \left(\sum_{i=k}^{\infty} \frac{1}{\omega(B_i)} \left(\int_{B_i} |f(y)|^p \omega(y) dy \right)^{1/p} \left(\int_{B_i} \omega(y)^{(1-\frac{1}{p'})} dy \right)^{1/p'} \right)^p \omega(x) dx \\
\leq C \|b\|_{L^p_1(\mathbb{R}^n)}^p \|f\|_{L^p_1(\mathbb{R}^n)}^p \omega(B_k)^{\lambda p} \int_{B_k} \left(\sum_{i=k}^{\infty} \omega(B_i)^{1} \right)^p \omega(x) dx \\
\leq C \|b\|_{L^p_1(\mathbb{R}^n)}^p \|f\|_{L^p_1(\mathbb{R}^n)}^p \omega(B_k)^{2\lambda p} \left(\sum_{i=k}^{\infty} D_2(i-k)^{\lambda} \right)^p \int_{B_k} \omega(x) dx \\
\leq C \|b\|_{L^p_1(\mathbb{R}^n)}^p \|f\|_{L^p_1(\mathbb{R}^n)}^p \omega(B_k)^{1+2\lambda p}.
\]

Combing the estimates of $M_1, M_{21}, M_{22}, M_{23}$, we complete the proof of (10) and the proof of Theorem 1.2 has been finished.

\section{Proof of Theorem 1.3.}

We just give the proof of $(a_3) \Rightarrow (b_3)$. From (2) and the Hölder inequality, we have
\[
\frac{1}{\omega(B)^{1+p_1 \lambda_1}} \int_B |b(y) - b_{B, \omega}|^{p_1} \omega(y) dy \leq \frac{C}{\omega(B)^{p_1 \lambda_1}} \sup_{y \in B} |b(y) - b_{B, \omega}|^{p_1} \\
\leq \frac{C}{\omega(B)^{p_1 \lambda_1}} \left(\frac{1}{\omega(B)} \int_B |b(y) - b_{B, \omega}| \omega(y) dy \right)^{p_1} \\
\leq \frac{C}{\omega(B)^{p_1 \lambda_1}} \left[\frac{1}{\omega(B)} \left(\int_B |b(y) - b_{B, \omega}|^{p_1} \omega(y) dy \right)^{1/p} \left(\int_B \omega(y)^{(1-\frac{1}{p'})} dy \right)^{1/p'} \right]^{p_1} \\
\leq \frac{C}{\omega(B)^{p_1 \lambda_1}} \left[\frac{1}{\omega(B)} \left(\int_B |b(y) - b_{B, \omega}|^{p_1} \omega(y) dy \omega(B)^{1/p'} \right)^{1/p} \right]^{p_1} \\
= \frac{C}{\omega(B)^{p_1 \lambda_1}} \left(\frac{1}{\omega(B)} \int_B |b(y) - b_{B, \omega}|^{p_1} \omega(y) dy \right)^{p_1/p}.
\]
As
\[
\int_B |b(y) - b_{B, \omega}|^p \omega(y)dy \\
= \int_B \left| b(y) - \frac{1}{\omega(B)} \int_B b(z) \omega(z) dz \right|^p \omega(y)dy \\
= \int_B \left| \frac{1}{\omega(y)} \int_B (b(y) - b(z)) \omega(z) dz \right|^p \omega(y)dy \\
\leq \frac{1}{\omega(B)^p} \int_B \left[\int_B |b(y) - b(z)| \omega(z) dz \right]^p \omega(y)dy \\
\leq \frac{1}{\omega(B)^p} \int_B \left[\int_{|z \in B : |z| < |y|} \chi_B(z)|b(y) - b(z)| \omega(z) dz \right]^p \omega(y)dy \\
+ \frac{1}{\omega(B)^p} \int_B \left[\int_{|z \in B : |z| \geq |y|} \chi_B(z)|b(y) - b(z)| \omega(z) dz \right]^p \omega(y)dy \\
=: A + B.
\]

For \(A\), as \(y \in B\) implies \(\omega(B(0, |y|)) \leq \omega(B(0, r)) =: \omega(B)\), there is
\[
A = \frac{1}{\omega(B)^p} \int_B \omega(B(0, |y|))^p \left| \frac{1}{\omega(B(0, |y|))} \int_{|z \in B : |z| < |y|} \chi_B(z)|b(y) - b(z)| \omega(z) dz \right|^p \omega(y)dy \\
= \frac{1}{\omega(B)^p} \int_B \omega(B(0, |y|))^p |\mathcal{H}_{\omega, |b|}(\chi_B)(y)|^p \omega(y)dy \\
\leq \int_B |\mathcal{H}_{\omega, |b|}(\chi_B)(y)|^p \omega(y)dy \\
\leq \omega(B)^{1+\lambda p} \|\mathcal{H}_{\omega, |b|}(\chi_B)\|_{\mathcal{M}_{\omega}^{p, \lambda}}^p \\
\leq \omega(B)^{1+\lambda p} \|\chi_B\|_{\mathcal{M}_{\omega}^{p, \lambda}}^p \leq \omega(B)^{1+\lambda p}.
\]

For \(B\), as \(z \in B\) implies \(\omega(B(0, |z|)) \leq \omega(B(0, r)) =: \omega(B)\), we obtain
\[
B = \frac{1}{\omega(B)^p} \int_B \left[\int_{z \in B : |z| \geq |y|} \chi_B(z)|b(y) - b(z)| \omega(z) \frac{\omega(B(0, |z|))}{\omega(B(0, |y|))} \omega(B(0, |z|)) dz \right]^p \omega(y)dy \\
\leq \int_B |\mathcal{H}_{\omega, |b|}^*(\chi_B)(y)|^p \omega(y)dy \\
\leq \omega(B)^{1+\lambda p} \|\mathcal{H}_{\omega, |b|}^*(\chi_B)\|_{\mathcal{M}_{\omega}^{p, \lambda}}^p \\
\leq \omega(B)^{1+\lambda p} \|\chi_B\|_{\mathcal{M}_{\omega}^{p, \lambda}}^p \leq \omega(B)^{1+\lambda p}.
\]

Combining the estimates of \(A\) and \(B\), it is easy to see
\[
\frac{1}{\omega(B)^{1+p_1 \lambda_1}} \int_B |b(y) - b_{B, \omega}|^p \omega(y)dy \leq C,
\]
which implies \(b \in \hat{C}^{p_1, \lambda_1}(\mathbb{R}^n)\).
§6 Proof of Theorem 1.4.

We just give the proof of (a_4) ⇒ (b_4). For any ball $B = B(0, R)$, we have
\[
\frac{1}{\omega(B)^{1+\lambda p}} \int_B |b(y) - b_B, \omega|^p \omega(y) dy
\]
\[
= \frac{1}{\omega(B)^{1+\lambda p}} \int_B \left| \frac{1}{\omega(B)} \int_B (b(y) - b(z)) \omega(z) dz \right|^p \omega(y) dy
\]
\[
\leq \frac{1}{\omega(B)^{1+\lambda p}} \int_B \left| \int_{B: |z| < |y|} (b(y) - b(z)) \omega(z) dz \right|^p \omega(y) dy
\]
\[
+ \frac{1}{\omega(B)^{1+\lambda p}} \int_B \left| \int_{B: |z| \geq |y|} (b(y) - b(z)) \omega(z) dz \right|^p \omega(y) dy =: G + H.
\]

For G, by the boundedness of $\mathcal{H}_{\omega, |B|}$ from $\dot{M}^{p, \lambda}_\omega(\mathbb{R}^n)$ to $\dot{M}^{p, 2\lambda}_\omega(\mathbb{R}^n)$, there is
\[
G \leq \frac{1}{\omega(B)^{1+\lambda p}} \int_B \omega(B(0, |y|))^p |\mathcal{H}_{\omega, |B|}(\chi_B)(z)|^p \omega(y) dy
\]
\[
\leq \frac{C}{\omega(B)^{1+\lambda p}} \int_B |\mathcal{H}_{\omega, |B|}(\chi_B)(z)|^p \omega(y) dy
\]
\[
\leq \frac{C}{\omega(B)^{1+\lambda p}} \|\mathcal{H}_{\omega, |B|}(\chi_B)(\cdot)\|_{\dot{M}^{p, 2\lambda}_\omega(\mathbb{R}^n)}^p \omega(B)^{p(1+2\lambda)}
\]
\[
\leq \omega(B)^{p\lambda} \|\chi_B\|_{\dot{M}^{p, \lambda}_\omega(\mathbb{R}^n)}^p \leq C.
\]

For H, using the fact $\mathcal{H}_{\omega, |B|}^*$ is from $\dot{M}^{p, \lambda}_\omega(\mathbb{R}^n)$ to $\dot{M}^{p, 2\lambda}_\omega(\mathbb{R}^n)$, we obtain
\[
H \leq \frac{1}{\omega(B)^{1+\lambda p}} \int_B \left| \int_{B: |z| \geq |y|} \omega(B(0, |z|)) \frac{|b(y) - b(z) \omega(z)|}{\omega(B(0, |z|))} dz \right|^p \omega(y) dy
\]
\[
\leq \frac{1}{\omega(B)^{1+\lambda p}} \int_B |\mathcal{H}_{\omega, |B|}^*(\chi_B)(z)|^p \omega(y) dy
\]
\[
\leq \frac{1}{\omega(B)^{1+\lambda p}} \|\mathcal{H}_{\omega, |B|}^*(\chi_B)(\cdot)\|_{\dot{M}^{p, 2\lambda}_\omega(\mathbb{R}^n)}^p \omega(B)^{p(1+2\lambda)}
\]
\[
\leq \omega(B)^{p\lambda} \|\chi_B\|_{\dot{M}^{p, \lambda}_\omega(\mathbb{R}^n)}^p \leq C.
\]

Consequently, the proof of Theorem 1.4 has been finished.

References

[1] J. Alvarez, J. Lakey and M. Guzmán-Partida, *Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures*, Collect. Math., 51 (2000), 1-47.

[2] M. Christ, L. Grafakos, *Best constants for two nonconvolution inequalities*, Proc. Amer. Math. Soc., 123 (1995), 1687-1693.

[3] R. Coifman and C. Fefferman, *Weighted norm inequalities for maximal functions and singular integrals*, Studia Math., 51 (1974), 241-250.
[4] Z.W. Fu, Y. Lin and S.Z. Lu, λ-central BMO estimates for commutators of singular integrals with rough kernels, Acta Math. Sinica, English Ser., 24 (2008), 373-386.

[5] Z.W. Fu, Z. G. Liu, S.Z. Lu and H.B. Wang, Characterization for commutators of n-dimensional fractional Hardy operators, Sci. China, Ser. A, 50 (2007), 418-426.

[6] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, New Jersey, 2004.

[7] G. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314-317.

[8] Y. Komori, Notes on singular integrals on some inhomogeneous herz spaces, Taiwan. J. Math., 8 (2004), 547-556.

[9] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2009), 219-231.

[10] S.Z. Lu and D.C. Yang, The Littlewood-Paley function and φ-transform characterization of a new Hardy space HK_2 associated with Herz space. Studia Math., 101 (1992), 285-298.

[11] S.Z. Lu and D.C. Yang, The central BMO space and Littlewood operators. Approx. Theory Appl., 11 (1995), 72-94.

[12] C.B. Morrey, On the solution of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.

[13] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.

[14] S.G. Shao, S.Z. Lu, Some characterizations of Campanato spaces via commutators on Morrey spaces, Pacific J. Math., 264 (2013), 221-234.

[15] S.G. Shao, S.Z. Lu, A characterization of Campanato space via commutator of fractional integral, J. Math. Anal. Appl., 419 (2014), no.1, 123-137.

[16] S.G. Shao, S.Z. Lu, Characterization of the central Campanato space via the commutator operator of Hardy type, J. Math. Anal. Appl., 429 (2015), 713-732.

[17] X. Yu and X.X. Tao, Boundedness for a class of generalized commutators on λ-central Morrey space, Acta Math. Sin. (Engl. Ser.), 29 (2013), 1917-1926.

[18] X. Yu, H.H. Zhang and G.P. Zhao, Weighted boundedness of some integral operators on weighted λ-central Morrey space, Appl. Math., J. Chinese Univ., Ser. B, 31 (2016), 331-342.

[19] F.Y. Zhao, S.Z. Lu, A characterization of λ-central BMO space, Front. Math. China, 8 (2013), 229-238.