LGI1 governs neuritin-mediated resilience to chronic stress

Seung Hoon Leea,\textdagger,\textdaggerdbl, Nam-Shik Kimc,\textdagger,\textdaggerdbl, Miyeon Choie, Seung Yeon Koe, Sung Eun Wangf, Hye-Ryeong Joe, Jae Young Seoa, Yong-Seok Kima,\textdagger,\textdaggerdbl, Hyun Jin Kimc,\textdagger, Hyun-Yong Leec, Joung-Hun Kimc,\textdagger,\textdaggerdbl, Hyeon Sona,\textdagger,\textdaggerdbl,\textsterling\footnote{a Corresponding author. College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea}

a Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
b Department of Neuroscience, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
c Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Namgu, 37673, Pohang, Republic of Korea
d Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 37414, Daejeon, Republic of Korea
e Hanyang Biomedical Research Institute, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
f Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA

A R T I C L E I N F O

Keywords:
LGI1
Neuritin
Depression
HDAC5
MEF2D
Hippocampus

A B S T R A C T

Depression is accompanied by neuronal atrophy and decreased neuroplasticity. Leucine-rich glioma-inactivated protein 1 (LGI1), a metastasis suppressor, plays an important role in the development of CNS synapses. We found that LGI1 expression was reduced in the hippocampi of mice that underwent chronic unpredictable stress (CUS), and could be rescued by the antidepressant, fluoxetine. Recombinant soluble neuritin, an endogenous protein previously implicated in antidepressant-like behaviors, elevated hippocampal LGI1 expression in a manner dependent on histone deacetylase 5 (HDAC5) phosphorylation. Accordingly, Nrn1flo x/flo xPomc-cre (Nrn1 cOE) mice, which conditionally overexpress neuritin, displayed increases in hippocampal LGI1 level under CUS and exhibited resilience to CUS that were blocked by hippocampal depletion of LGI1. Interestingly, neuritin-mediated LGI1 expression was inhibited by HNMPA-(AM)\textsubscript{3}, an insulin receptor inhibitor, as was neuritin-mediated HDAC5 phosphorylation. We thus establish hippocampal LGI1 as an effector of neurite outgrowth and stress resilience, and suggest that HDAC5-LGI1 plays a critical role in ameliorating pathological depression.

1. Introduction

Stress is linked to depression and has been connected with multiple neuronal changes in key brain regions involved in depression. Exposure to chronic stress is often used to elicit depressive-like behaviors in animal models (Stepanichev et al., 2014). Mice subjected to chronic unpredictable stress (CUS) exhibit neuronal and behavioral deficits such as cellular and synaptic atrophy of neuronal populations in various brain regions including the hippocampi (Nestler and Hyman, 2010). However, the molecular and cellular mechanisms underlying the elimination of synapses and neurites remain unclear.

Leucine-rich glioma-inactivated protein 1 (LGI1) is a secreted protein that is a Nogo receptor 1 (NgR1) ligand. LGI1 is expressed in neurons throughout the brain, but is enriched in the hippocampus (Kegel et al., 2013). At the cellular level, it is present in presynaptic boutons (Boillot et al., 2016), and NgR1 and its coreceptor, tumor necrosis factor receptor orphan Y (TROY), are also expressed in the dendrites of hippocampal neurons (Thomas et al., 2018). Incubation of cultured neurons with LGI1 increases the formation of synapses and mushroom-type spines (Thomas et al., 2018). LGI1 also regulates post synaptic density 95 protein (PSD95) and glutamate receptor (GluR) channels, and enhances neurite outgrowth in vitro and in vivo (Lovero et al., 2015; Owusu et al., 2009).

Neuritin (Nrn1), otherwise known as candidate plasticity gene 15 (CPG15), promotes neurite outgrowth (Fujino et al., 2008; Lee et al., 2005; Naeve et al., 1997), neuronal migration (Zito et al., 2018), spine
Cre recombinase, the Rosa promoter drives conditional expression of Flag-tagged neuritin. The targeting vector was electroporated into mouse embryonic stem cells, which conditionally overexpress neuritin, exhibited antidepressant-like behaviors when neuritin was expressed that were abolished by blockade of LGI1 expression.

2. Materials and methods

2.1. Generation of mice conditionally overexpressing Rosa26-Flag-neuritin

A targeting vector was designed to knock in a cassette that permits conditional expression of Flag-tagged Nrn1 cDNA into the Rosa26 locus of the mouse genome, and constructed as described (Srinivas et al., 2001). Once the floxed tPA (transcriptional stop) has been removed by Cre recombinase, the Rosa promoter drives Nrn1 cDNA transcription. The targeting vector was electroporated into mouse embryonic stem cells, and targeted clones were selected by PCR and injected into C57BL/6J blastocysts. Confirmation of germ-line transmission of the floxed allele and future genotyping were performed by PCR from tail genomic DNA with two genotyping primers. The mice were backcrossed to C57BL/6J mice to generate neuritin overexpressing male mice (Nrn1 flox/flox; Pomc-cre (Nrn1 cOE)) male mice. FVB-Pomc-cre mice [B6. FVB-Tg (Pomc-cre)1Stl/J (#010714)] were obtained from the Jackson Laboratory (Bar Harbor, ME, USA). They were backcrossed to C57BL/6J mice for more than 12 generations (https://www.jax.org/strain/010714). Nrn1 flox/flx female mice were crossed with FVB-Pomc-cre male mice to generate neuritin overexpressing male mice (Nrn1 flox/flx; Pomc-cre, Nrn1 cOE), and genotypes were confirmed by PCR analysis. All animals were maintained in a humidity-controlled environment (12 h light/dark cycle) with access to food and water ad libitum. All animal experiments were approved by the Institutional Animal Care and Use Committee of the Hanyang University (Seoul, Korea) and were performed in accordance with relevant guidelines and regulations.

2.2. Mice

All experiments were conducted with 8–12 week male C57BL/6 mice (Koatech, Pyeongtaek, Korea), Nrn1 flox/flox (control) male mice and Nrn1 flox/flx; Pomc-cre (Nrn1 cOE) male mice. FVB-Pomc-cre mice were obtained from the Jackson Laboratory (Bar Harbor, ME, USA). They were backcrossed to C57BL/6J mice for more than 12 generations (https://www.jax.org/strain/010714). Nrn1 flox/flx female mice were crossed with FVB-Pomc-cre male mice to generate neuritin overexpressing male mice (Nrn1 flox/flx; Pomc-cre, Nrn1 cOE), and genotypes were confirmed by PCR analysis. All animals were maintained in a humidity-controlled environment (12 h light/dark cycle) with access to food and water ad libitum. All animal experiments were approved by the Institutional Animal Care and Use Committee of the Hanyang University (Seoul, Korea) and were performed in accordance with relevant guidelines and regulations.

2.3. Culture of primary hippocampal neurons

Hippocampi from E14.5 C57BL/6 mice embryos were rapidly and aseptically dissected into ice-cold Ca²⁺/Mg²⁺-free Hanks balanced salt solution (HBSS; Gibco, Carlsbad, CA, USA), followed by removal of meninges and mincing into small pieces. The hippocampal tissue was then digested with 0.05% Trypsin-EDTA (Weltgen, Daegu, Korea) for 5 min at 37 °C, and digestion was stopped with neurobasal (NB) medium (Gibco) with 10% fetal bovine serum (FBS, Gibco), 0.5 mM L-glutamine (Sigma Aldrich, St Louis, MO, USA) and 100X penicillin/streptomycin (Weltgen). After centrifugation at 200xg for 1 min, the pelletted cells were gently resuspended in NB medium with 10% fetal bovine serum, and plated at 50,000–60,000 cells per cm² on culture dishes coated with 25 μg/ml poly-L-lysine (Sigma Aldrich) in PBS and 10 μg/ml laminin (Invitrogen, Carlsbad, CA, USA) in PBS. Hippocampal primary neuronal cells were grown for 1 day in NB medium with 10% FBS, 0.5 mM L-glutamine, and 1% 100X penicillin-streptomycin. The next day, the medium was replaced with NB medium containing 2% B27 serum-free supplement (Gibco), 0.5 mM L-glutamine, and 1% 100X penicillin/streptomycin. Cultures were maintained for 7–12 d at 37 °C in an incubator with 5% CO₂.

2.4. Drug treatment

On days-in-vitro (DIV) 7, cells were treated with recombinant neuritin (Abcam, Cambridge, UK; 200 ng/ml, dissolved in ddH₂O) or insulin (Sigma Aldrich; 100 nM, dissolved in acidic H₂O). For the kinase- and IR-dependency of neuritin, hippocampal neurons were pretreated with 30 μM KN-62 (Sigma Aldrich), 1 μM G6976 (Calbiochem, La Jolla, CA, USA), 100 μM HNMPA-(AM)₁ (Merek Millipore, MA, USA) or DMSO for 30 min on DIV7 and stimulated with recombinant neuritin for 30 min, or 30 mM KCl for 6 h.

2.5. Preparation of lysates of cultured neurons and hippocampal dentate gyrus (DG) tissue for western blot analysis

Hippocampal cultured neurons and brains were processed as described previously (Ko et al., 2019). Mice were decapitated and hippocampi were collected for Western blotting 12 h after the final behavioral task or the last stressor of the CUS paradigm. Hippocampal cultured neurons and microdissected hippocampal DG tissue were incubated in 1X lysis buffer (Cell Signaling, Danvers, MA, USA) with protease inhibitor cocktail and phosphatase inhibitor cocktail (Sigma Aldrich). Protein was determined with the Bradford Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA). Nuclear and cytosolic extracts were prepared with nuclear extraction buffer [1% Triton X-100, 50 mM Tris-HCl (pH 8.0), 0.4 M NaCl] and cytosolic extraction buffer [0.5% Triton X-100, 50 mM Tris-HCl (pH 8.0)]. Protein extracts were subjected to SDS-PAGE, transferred to PVDF membranes and incubated with antibodies. Primary antibodies were diluted in 1X TBS with 0.1% Tween-20. The antibodies used are given in Table S2. Secondary antibodies were diluted in 1X TBS with 0.1% Tween-20 containing 5% non-fat dry milk, as follows: anti-rabbit IgG conjugated with HRP, anti-mouse IgG conjugated with HRP (Jackson Immunoresearch, West Grove, PA, USA). Bands were visualized with an ECL detection kit (ECL STAR; Dyne Bio, Seongnam, Korea). The total densitometric value of each band was quantified with ImageJ software (http://rsbweb.nih.gov/ij/), normalized to the corresponding β-actin level, and expressed as fold change relative to the control value.

2.6. Quantitative real-time RT-PCR

Twelve hours after the last stressor of the CUS paradigm or the final behavioral task, mice were rapidly decapitated and tissue was collected for quantitative PCR. RNA was extracted from hippocampal neurons and DG with Trizol reagent (Invitrogen). Reverse transcription was performed with Improm-II (Promega, Madison, WI, USA), 1 μg of total RNA and oligonucleotide-dT primer. Quantitative real-time PCR (qPCR) was performed on a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories, Madison, CA, USA). Primers used are described in Table S1. DNAs were PCR amplified in triplicate in SensiFAST™ SYBR No-Rox mix (BioIone, London, UK). Ct values for each sample were obtained using CFX Manager Software version 3.0 (Bio-Rad Laboratories). The expression of each gene was normalized to β-actin expression. Normalized expression values were averaged, and average fold changes were calculated.

2.7. Luciferase reporter assays

The pCl-neo-HDAC5-WT and pCl-neo-HDAC5-S/A expression plasmids were used as described previously (Choi et al., 2015). The Dual-Luciferase® Reporter Assay System (Promega) was used.
2.8. Immunocytochemistry

Hippocampal neurons grown on glass coverslips were transfected with a GFP-HDAC5 fusion construct (GFP-HDAC5-WT; Addgene plasmid #32211) using lipofectamine 2000. To assess neurite outgrowth, hippocampal neurons grown on glass coverslips were infected with lentivirus-shNC-GFP or lentivirus-shLgi1-GFP virus. For the rescue experiment, hippocampal neurons were transfected with pGLV3-H1-shNC-GFP + Puro (shNC-GFP) in combination with pLVX-mCherry-N1 (mCherry) or pGLV3-H1-shLgi1-GFP + Puro (shLgi1-GFP) in combination with mCherry or pLVX-Lgi1-mut-mCherry (Lgi1-mut-mCherry). The cells were fixed with 4% (w/v) parafomaldehyde (PFA) for 20 min, washed three times with PBS for 5 min and incubated with 10% (w/v) normal goat serum and alexa488-conjugated secondary antibody (Roche Applied Science, Mannheim, Germany) or anti-FLAG-neuritin was immunoprecipitated from Flag-Lgi1 (shRNA-resistant Lgi1) expression vectors

2.12. Generation of the Lgi1 (Lgi1-WT) and shRNA-resistant Lgi1 (Lgi1-mut) expression vectors

The mouse Lgi1 coding sequence was amplified by PCR from the cDNA of E18.5 mouse brains with the following primers (F, 5′-GATCCAGCTCAAGGCGCCACGCACTGAGTTGCTGGCACCTACGTATGTCATGTCACGAGATTAGTGGTGACACACAGTGAGC-3′; R, 5′-GCCGGTGACCTGACTCGAGGCTGAATATTGAAGTAAGCAT-3′), was changed to 5′-GTGACTGCTGACTGAGGCTGAATATTGAAGTAAGCAT-3′, and subcloned into pLVX-mCherry-N1 vector. For the rescue experiment, shRNA-resistant Lgi1 (Lgi1-mut) was generated by site-directed mutagenesis with the following primers (F, 5′-GTGACTGCTGACTGAGGCTGAATATTGAAGTAAGCAT-3′; R, 5′-ATAGACCTGGTGGTCAAACAGATTAGTGGTGACACACAGTGAGC-3′), and the sequenced was confirmed by Sanger sequencing. The target sequence of shLgi1 was 5′-GGTGTGACACCGCATGATGTCATGTCACGAGATTAGTGGTGACACACAGTGAGC-3′, and the sequence was amplified with the packaging vectors pPAX2 and pMD2.G into HEK293T cells to produce the lentivirus.

2.13. Virus-mediated gene transfer

Mice were anesthetized with a mixture of Rompun (8.5 mg/kg) and Zoletil (17 mg/kg). Stereotaxic surgery was conducted as previously described (Ko et al., 2019). Three microliters of lentivirus were injected unilaterally into each DG of the dorsal hippocampus at a rate of 0.15 μl/min (stereotaxic coordinates in millimeters with reference to the bregma: anteroposterior, −2.0; mediolateral, ±1.5; dorsoventral, −2.4) using a 26s gauge syringe (Hamilton).

2.14. Chromatin immunoprecipitation (ChIP) assays

Hippocampal primary neurons (DIV4) were transfected with Myc-HDAC5 using lipofectamine 2000 reagent (Invitrogen). Neurons and tissues were fixed with 18.5% (w/v) parafomaldehyde in PBS and sonicated. The sonicated samples were rotated with protein A agarose (ThermoFisher, MA, USA) in PBS with 10% (w/v) normal goat serum overnight. Next day, the cells were incubated in PBS containing 1% normal goat serum and alexa488-conjugated secondary antibody in 1% (w/v) normal goat serum in PBS for 2 h. The cells were washed twice with PBS for 15 min and mounted in Vectashield mounting medium containing DAPI. Images were captured with a fluorescence microscope (Nikon).

2.15. Immunoprecipitation (IP)

IP was performed as described previously (Ko et al., 2019). To confirm binding of HDAC5 to the MEF2D, hippocampal primary neurons (DIV4) were transfected with Myc-HDAC5 using lipofectamine 2000. Myc-HDAC5 was immunoprecipitated from Myc-HDAC5-transfected neurons using anti-Myc monoclonal antibody (Abcam, BC, Canada). To confirm binding of neuritin to the IR, hippocampal primary neurons (DIV4) were transfected with pRES-EGFP or pRES-Flag-Nrn1-EGFP (Flag-Nrn1) using lipofectamine 2000. pRES-EGFP and Flag-Nrn1 plasmids have been described previously (An et al., 2014). Flag-neuritin was immunoprecipitated from Flag-Nrn1-transfected neurons using anti-FLAG monoclonal antibody (Sigma Aldrich).
2.16. Mef2d siRNA

Control siRNA (SC-37007, Santa Cruz, TX, USA) and Mef2d siRNA (SC-38065, Santa Cruz) were solubilized in RNase-free water. Hippocampal primary neurons were transfected with control siRNA or Mef2d siRNA using lipofectamine RNAiMAX reagent (Invitrogen).

2.17. Drug administration

Fluoxetine (Tocris Bioscience, Bristol, UK) was solubilized in saline and administered intraperitoneally (i.p.) to mice at 10 mg/kg/d for 3 wks. For fluoxetine treatment, animals were first exposed to CUS (7 days) and then administered fluoxetine or saline for 21 days with continued CUS, starting on day 8 of CUS. Serum fluoxetine levels for the 10 mg/kg/day (i.p.) dose in rodents are towards the middle range of plasma levels (100–700 ng/ml) found in patients taking 20–80 mg/day Prozac (Koran et al., 1996; Perrone et al., 2004).

2.18. Chronic unpredictable stress (CUS) procedure

CUS experiments were performed as described previously (Koo et al., 2010). Mice were exposed to two or three stressors per day for 28 days. The CUS procedure is summarized in Table S3.

2.19. Behavioral experiments

Behavioral experiments were performed according to the previously published protocol (Ko et al., 2019; Rudyk et al., 2019) with minor modifications. They were conducted in the following order, from least stressful to most stressful, starting on day 27 after CUS: LMA, SCT, NSFT, FST, and LHT. Mice were tested for home cage locomotor activity, as well as sucrose consumption behavior on days 27–28 of the CUS procedure. At the termination of stress, behavioral tests as described below were conducted to evaluate signs of behavioral despair (using NSFT, FST, and LHT) starting on post-stress days 29–31. Animals were tested in random order during the dark cycle. Mice were transferred to the testing room 2 h before testing, and acclimated to room conditions. After each test session, the apparatus was cleaned with 70% alcohol to remove any odor and trace of the previously tested mouse.

2.19.1. Locomotor activity test (LMA)

Mice were placed in a white box (50 × 50 × 20 cm) and their distances moved in 5 min were recorded by web camera (HD310, Logitech, Switzerland). Recorded data were analyzed with an ANY-maze video tracking system (Stoelting Co., Wood Dale, IL, USA).

2.19.2. Sucrose consumption test (SCT)

The SCT was performed in the home cage. Mice were exposed to 2% (w/v) sucrose solution for 48 h and the sucrose was removed for 12 h. After 12 h, the mice were again exposed to sucrose solution for 1 h and the amount of sucrose solution consumed was measured.

2.19.3. Novelty suppressed feeding test (NSFT)

Mice were deprived of food for 1 d before the test. The amount of time that the mice spent eating was measured after placing three feeds in the center of a white box (50 × 50 × 20 cm) in a lightless space.

2.19.4. Forced swimming test (FST)

Mice were placed in a 24 °C water-filled transparent acryl cylinder (height 30 cm, diameter 15 cm) and recorded for 6 min with a video camera recorder (HDR-PJ230, Sony, Japan). Immobility time was scored during the last 4 min.

2.19.5. Learned helplessness test (LHT)

LHT was conducted as previously described (Duman et al., 2007). LHT consists of inescapable shock training (day 1) and active avoidance testing (day 2). On the first day (day 1), mice were exposed to inescapable shock (180 footshocks, 0.3 mA, shock amplitude, 4-sec duration, 30-sec average interval) in one side of the shuttle box. On the second day (day 2), they were exposed to 30 escape trials (0.3 mA footshocks, 25-sec duration, 30-sec average interval). The shuttle box’s door was then opened for 25-sec and the mice were free to run to the other side of the shuttle box before the door closed. Latency to escape was recorded with Gemini avoidance system software. Latencies to escape over first 10 escape trials or total escape trials were analyzed.

2.20. Statistical analysis

Student’s t-test was used for comparing pairs of groups when measuring biochemical parameters. Statistical differences between sets of four groups in behavioral experiments were analyzed by one-way or two-way ANOVA, followed by multiple comparison analysis including Bonferroni, Newman-Keuls or LSD tests (GraphPad Prism 7.04, GraphPad software). Unpaired two-tailed Student’s t-test was used for multiple comparisons between groups when assessing the effects of genotype and the effects of lenti-shRNA infusion. When the measurement variable is not normally distributed, results were analyzed by Kruskal Wallis test, a non-parametric equivalent of two-way ANOVA and followed by Dunn’s test. Kolmogorov-Smirnov (K–S) test was used to compare the cumulative mEPSC frequency and amplitude between groups. All experiments were carried out at least three times. The results are presented as mean ± SEM. Statistical significance was set at p < 0.05 in two-tailed tests. Related statistical parameters are specified in Table S4.

3. Results

3.1. LGI1 expression inhibited by exposure to CUS, but promoted by neuritin

To probe the molecular mechanisms by which neuritin prevents the atrophy of neurites in mice being exposed to CUS, we identified potential target genes that are affected in common by neuritin treatment and CUS. Of the various transcription factors, the myocyte-enhancer factor 2 family (MEF2) seems to be important for neurite outgrowth and synaptic remodeling (Flavell et al., 2006; Lin et al., 1996; Potthoff and Olson, 2007). We first examined the effects of CUS involving prolonged exposure to either physical or psychological stressors on several possible downstream targets of MEF2, including Arc, Klf4, Klf6, Klf9, C-fos, Nr4a1, Egr1 and Lgi1 (Fig. 1A and S1A), which have been previously reported to be involved in neurite outgrowth- and neuroplasticity-related synaptic alterations (Flavell et al., 2008). LGI1 has almost the same localization pattern across pre- and post-synaptic neurons in the hippocampus; it has similar functions to neuritin, and both regulate neuronal excitability through expression of the outward potassium current (I\textsubscript{k}) subunit (Carrasquillo et al., 2012; Yao et al., 2016), and glutamatergic transmission (Boillot et al., 2016). CUS reduced the mRNA and protein levels of LGI1 in the hippocampal DG of mice (Fig. 1A and B), a subregion that is reduced in volume in major depressive disorder (MDD) (Malykhin and Coupland, 2015). The downregulation of LGI1 after CUS was rescued by fluoxetine treatment for 3 weeks, suggesting that LGI1 is responsible at least in part for the antidepressant effects (Fig. 1B). This is in line with our previous findings that neuritin mRNA levels were reduced in subregions of the dorsal hippocampus of chronically stressed mice including the DG granule cell layers, and reversed by chronic administration of fluoxetine (Son et al., 2012). Given the similarity of localization and function, these results suggest that the extent of neuritin induction in the hippocampus may be linked to LGI1 expression.

Since LGI1 is required for maturation of the synapses of postsynaptic neurons (Lovero et al., 2015), we surmised that it might be required for neuritin-dependent neurite outgrowth and axonal branch formation. We found that soluble neuritin induced levels of Arc, Klf4, C-fos, Nr4a1, Egr1...
Fig. 1. CUS downregulates LGI1 expression, while soluble recombinant neuritin induces it. (A) Mice were exposed to CUS for 28 d and decapitated 5 min after the last stressor. Lgi1 mRNA levels in the hippocampal DG (n = 12 per group). (B) Mice exposed to CUS were injected with fluoxetine (10 mg/kg) or saline daily for 21 d starting on day 8. Immunoblots of LGI1 using protein extracts of the hippocampal DG (n = 6 per group). (C) Hippocampal neurons (DIV7) were treated with soluble neuritin at 200 ng/ml for 6 h and Lgi1 mRNA levels were measured by real-time PCR (n = 3 per group). (D) Representative immunoblots of hippocampal neurons treated with soluble neuritin (200 ng/ml) for 6 h. Quantitative data for LGI1 expression (n = 4). (E) Representative images of GFP(+) hippocampal neurons. After confirming effective knockdown by lenti-shLgi1-GFP (Fig. S2), neurons (DIV4) were pretreated with lenti-shNC-GFP or lenti-shLgi1-GFP and stimulated with soluble neuritin (200 ng/ml) for 3 d (Scale bar, 50 μm). (F) Sholl analysis of all orders of branching. (n = 33–34 neurons per conditions from four independent cultures). (G) Length of neurites. (n = 33–37 neurons per conditions from four independent cultures). (H, I) Transfection of neurons with shLgi1-GFP and Lgi1-mut-mCherry constructs. (n = 28–30 neurons per conditions from four independent cultures; Scale bar, 100 μm). Data were obtained from four independent cultures, each of which consisted of neurons derived from a separate pregnant mouse (E–J). White arrow: soma; yellow arrowhead: end point of neurites. In (A)–(H), Data are represented as mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001 compared with home cage (A) or CTL (C and D) or lenti-shNC-GFP (F), ###p < 0.001 compared with lenti-shNC-GFP + neuritin. Immunoblots were normalized to the level of β-actin which was used as home cage-saline (B) or CTL (D). Statistics: Unpaired two-tailed t-test (A). Student’s t-test (C and D). One-way ANOVA (B and J) or two-way ANOVA (F and G) followed by Bonferroni posttest. Statistics are detailed in Table S4. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
and Lgi1 mRNAs in hippocampal neuronal cultures (Fig. 1C and S1B). An increase in Lgi1 mRNA became obvious after 1 h treatment of neuritin, and was maximal (~2-fold) after 24 h (Fig. S1C). An increase of LGI1 protein became apparent after 6 h of treatment (Fig. 1D). We next investigated the effects of LGI1 on neuritin-induced neuritogenesis by delivering lentiviral vector-mediated constructs encoding short-hairpin Lgi1 RNA (lenti-shLgi1) along with recombinant neuritin. The efficacies of three shRNA sequences were compared in vitro (Fig. S2) and shRNA#3 was used in subsequent experiments. Infusion of neurons with GFP-tagged lenti-shLgi1 (lenti-shLgi1-GFP) stably knocked down Lgi1 expression by ~50% in mouse hippocampal neurons (Fig. S2) and dramatically decreased the number of distal branches and the length of neurites measured by Sholl analysis (Fig. 1E, F and G). Soluble neuritin significantly increased the number of distal branches at 50–80 μm distance from the soma (Fig. 1E and F), as well as the length of primary dendrites (Fig. 1E and G). These neuritin-induced effects were blocked by prior introduction of lenti-shLgi1-GFP (Fig. 1E-G). To confirm the specificity of the shRNA-mediated knockdown, we introduced shLgi1-GFP cells empty vector (lenti-mCherry) and shRNA-resistant mutant Lgi1 (lenti-Lgi1-mut-mCherry), which has silent mutations that make it resistant to the shRNA sequence. Western blots of these cells showed that while the endogenous Lgi1 was silenced by the lenti-shLgi1-GFP, the co-expressed shRNA-resistant mutant Lgi1 was robustly expressed in the lenti-shLgi1-GFP-transduced cells (Fig. 1H). As observed in the neurite length assays, introduction of the shRNA-resistant Lgi1-mCherry reversed the inhibition of neurite outgrowth in neurons expressing shLgi1-GFP, thus excluding possible off-target effects of the shRNA (Fig. 1I and J). These results are in agreement with our previous work showing that neuritin induces neurite outgrowth (Son et al., 2012), and indicates that LGI1 is implicated in the neuritin-mediated alteration of neuronal morphology.

3.2. Neuritin-induced expression of LGI1 through HDAC5 phosphorylation and MEF2D-mediated transcription

To identify the molecular mechanisms by which neuritin induces LGI1, we investigated potential signaling pathways for LGI1 expression. MEF2 transcriptional activity is repressed by interaction with histone deacetylase 5 (HDAC5) in the nucleus. Phosphorylated HDAC5 is exported to the cytoplasm, leading to activation of MEF2 target genes (Guise et al., 2014; McKinsey et al., 2000a), which may generate behavioral plasticity (Barbosa et al., 2008). Therefore, we investigated whether neuritin could elicit HDAC5 phosphorylation, using antibodies to phospho-Ser259 and Ser498 HDAC5, respectively. Incubation of hippocampal neurons with recombinant neuritin stimulated phosphorylation of HDAC5 at Ser259/498, which reached peak levels at 200 ng/ml (Fig. 2A). The effect of neuritin (200 ng/ml) on HDAC5 phospho-Ser259 became obvious after 1 h treatment of neuritin, the indicated times (Fig. 3A). In (A)–(D), Data are represented as mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001 compared with CTL, **p < 0.05, **p < 0.001 compared with recombinant soluble neuritin treatment. Statistics: Student’s t-test (A, C, F and G), One-way ANOVA (B) or two-way ANOVA (D) followed by LSD posttest. Two-way ANOVA followed by Newman-Keuls posttest (E) or Bonferroni posttest (H). Statistics detailed in Table S4.
inhibitor. Indeed, neuritin-induced HDAC5 phosphorylation was attenuated by Go6976, but not by KN-62 (Fig. 2B), indicating that neuritin induces HDAC5 phosphorylation mainly via PKD. In line with this, neuritin, like HDAC5, induced progressive phosphorylation of PKD (Fig. S3B). Nuclear export of HDAC5 is dependent on phosphorylation of Ser259/498 (Chang et al., 2013). As expected, neuritin increased HDAC5 phosphorylation in cytoplasmic fractions and reduced nuclear HDAC5 (Figs. S4A and S4B). Neuritin-induced cytoplasmic translocation of HDAC5 was time-dependent, reaching a maximum after 30 min, and was maintained for 24 h (Figs. S4C and S4D). These results suggest that neuritin reduces HDAC5 repression of MEF2-driven Lgi1 transcription.

Given the capability of neuritin to phosphorylate HDAC5, neuritin would induce LGI1 expression through increased MEF2 binding to a sequence located approximately 180 bp upstream of the transcription start site of Lgi1 (Andres et al., 1995; Lyons et al., 1995). We observed in MEF2 luciferase reporter assays that MEF2-luciferase activity was significantly elevated after 1 h of treatment with neuritin and remained elevated for 24 h (Fig. 2C). Neuritin-induced MEF2-luciferase activity was suppressed by Go6976, but not by KN-62 (Fig. 2D), supporting that neuritin-mediated HDAC5 phosphorylation is PKD-dependent. MEF2 activity completely failed to be activated by pCl-HDAC5-S/A, a mutant form of HDAC5 in which Ser259/498 are mutated to alanines (Fig. 2E), indicating that neuritin-induced phosphorylation of HDAC5 is a prerequisite for neuritin-induced MEF2 transcriptional activity.

To directly assess whether neuritin-induced MEF2 activity plays a role in Lgi1 expression, binding of myc-HDAC5 to the putative binding site of MEF2 in the promoter region of Lgi1 was analyzed by chromatin immunoprecipitation (ChIP) assays. Recombinant neuritin significantly reduced the amount of HDAC5 protein in the promoter region of Lgi1 (Fig. 2F), thus confirming that neuritin increases expression of Lgi1 by reducing HDAC5 repression. Notably, recombinant neuritin markedly increased Mef2d mRNA, whereas it only increased expression of Mef2a and c mRNAs to a moderate extent (Fig. S4E), suggesting that MEF2D plays a critical role in inducing Lgi1 expression. Neuritin also decreased HDAC5-MEF2D protein complexes, as demonstrated by co-immunoprecipitation, suggesting that neuritin derepresses MEF2D
transcriptional activity (Fig. 2G). Consistently, Mef2d siRNA completely blocked neuritin-induced expression of LGI1, indicating that MEF2D was responsible for neuritin-induced LGI1 expression (Fig. 2H).

3.3. Increases in LGI1 expression and resilience to stress in neuritin cOE (conditionally overexpressing) mice

The finding that addition of exogenous neuritin to cultured hippocampal neurons led to a two-fold increase in LGI1 expression (Fig. 1D) prompted us to investigate whether neuritin expression in vivo resulted in HDAC5 phosphorylation and MEF2-driven stimulation of LGI1 expression comparable to that caused by soluble neuritin. To further determine the role of neuritin in the hippocampus, and to extend our previous study, we generated Nrn1^{flox/flox} mice and crossed them with Pomc-cre mice generating Nrn1^{flox/flox} Pomc-cre (Nrn1 cOE) progeny in which expression of Nrn1 mRNA in the granule cells of the DG was 2–4 fold higher than in littermate controls (control; Nrn1^{flox/flox}) (Fig. 3D). Neuritin protein levels were also strongly increased in hippocampal DG neurons (Fig. 3E). Initially, we employed biochemical approaches to examine the cellular and molecular consequences of neuritin overexpression in vivo (Fig. 3). Western blot analysis revealed no significant effects on either the proportion of p-HDAC5 relative to total HDAC5 or on LGI1 expression in the hippocampal DGs of Nrn1 cOE mice compared to the Nrn1^{flox/flox} control mice in the home caged (control) group (Fig. 3B and C). CUS reduced the proportion of p-HDAC5 in the control mice, in agreement with previous results (Choi et al., 2017). The CUS-mediated reductions in p-HDAC5 were rescued in the Nrn1 cOE mice (Fig. 3B). In addition, the LGI1 levels induced by CUS were reversed in the Nrn1 cOE mice (Fig. 3C), and fewer HDAC5-MEF2 protein complexes were bound to the Lgi1 promoter in the hippocampi of Nrn1 cOE mice under CUS (Fig. 3D). These results indicate that neuritin exerts its action via HDAC5-LGI1 signaling.

We previously reported that virus-mediated overexpression of neuritin in the hippocampal DG has antidepressant-like effects while stimulating neurite outgrowth. The antidepressant-like effects of neuritin are prominent under CUS (Son et al., 2012). As we had detected MEF2-driven LGI1 expression in the granule neurons of Nrn1 cOE mice, we asked if neuritin-mediated LGI1 expression in hippocampal cells contributed to its antidepressant-like effects. We first investigated whether the stress-induced behaviors were affected in Nrn1 cOE mice, as indicated by responsiveness in the novelty-suppressed-feeding test (NSFT), forced swim test (FST) and learned helplessness test (LHT), which have been widely used to assess behavioral despair (Fig. 3G–I). Under non-stress conditions, no differences were observed between Nrn1 cOE and littermate controls in any of the behavioral tests for depression-like behaviors (Fig. 3G–I). However, littermate controls exposed to CUS exhibited significantly more immobility in the FST than Nrn1 cOE mice, which had similar immobility times to those of mice tested under “non-stress” conditions. This behavior is interpreted as decreased depression-like behavior or increased coping-like behavior (Fig. 3H). In agreement with this, only the control mice had an increase in latency to feed in the NSFT, and to escape in the LHT (Fig. 3I). No difference between Nrn1 cOE and controls was observed in the locomotor activity test (LMA) and in sucrose consumption, indicative of stress-induced anhedonia (Fig. 3E and F). Taken together our observations indicate that Nrn1 cOE mice are normal in the absence of stress and are resilient to CUS-induced behavioral deficits.

Since both neuritin and LGI1 are implicated in synaptic transmission (An et al., 2014; Fukata et al., 2006, 2010), we examined spontaneous miniature excitatory postsynaptic currents (mEPSCs) and found that the amplitudes and frequencies of mEPSCs were comparable between genotypes in the home caged group. However, the frequencies, but not amplitudes, of mEPSCs were significantly higher in neurons from Nrn1 cOE mice than in those from control mice in CUS (Fig. 5E), indicative of enhanced synaptic transmission, and supporting the view that neuritin produces stress resilience. The mEPSC amplitudes were significantly higher in neurons from the CUS group than in those from home caged group both in control and Nrn1 cOE mice (Fig. 5E), in line with that corticosterone enhances mEPSC amplitudes (Martin et al., 2009; Yuen et al., 2009).

To assess whether virus-mediated overexpression of neuritin also has comparable effects to those seen in the Nrn1 cOE mice, we infused lenti-Nrn1-ires-mCherry (lenti-Nrn1-mCherry) into the DG of WT mice (Fig. 4A). mCherry expression was evident in the DG, and Nrn1 expression was markedly enhanced at the mRNA level at 5 wks post-infusion (Fig. 4B and C). Mice infused with lenti-Nrn1-mCherry had lower immobility in non-stressed, home-caged conditions than those infused with lenti-mCherry, suggesting that neuritin has a protective role against stress in the FST (Fig. 4G). Using the CUS approach, we assessed the role of neuritin in chronic stress-induced behaviors. In control mice infused with lenti-mCherry, CUS caused the expected increase in immobility in the FST, and in latency to escape in the LHT, and these effects were prevented by lenti-Nrn1-mCherry (Fig. 4G and H). Latency to feed in the NSFT was also lower in those infused with lenti-Nrn1-mCherry than in control mice under CUS (Fig. 4F). Together, these results demonstrate that neuritin reduces depression-like behaviors. Under CUS, in mice infused with lenti-Nrn1-mCherry the p-HDAC5 and LGI1 levels induced were the reverse of those in mice infused with lenti-mCherry (Fig. 4I–K), consistent with the results seen in the Nrn1 cOE mice (Fig. 4F–H). These results demonstrate that neuritin overexpression in vivo, like exposure to soluble neuritin, increased HDAC5 phosphorylation and LGI1 expression.

3.4. Resilience to CUS in Nrn1 cOE mice is abolished by depleting LGI1

The observation that Nrn1 cOE mice underwent a reversal of the decrease in LGI1 level induced by CUS led us to examine whether Nrn1 cOE mice rescued the behavioral responses to stress observed in Lgi1 knockout mice (Fig. 5A). To determine the importance of endogenous LGI1 levels in mediating depression-like behaviors and the response to CUS, we established a lentiviral-based system to specifically knock down endogenous Lgi1 in the DG. When lenti-shLgi1-GFP was injected into the DG of control and Nrn1 cOE mice, Lgi1 expression was markedly reduced at the mRNA level at 5 wks post-infusion (Fig. 5B). Behavioral analysis in the absence of CUS showed that infusion of lenti-shLgi1-GFP into littermate controls and Nrn1 cOE mice produced at best a tendency towards anhedonic responses in the sucrose consumption test compared with those infused with lenti-shNC-GFP (Fig. 5C). Infusion of lenti-shLgi1-GFP into control and Nrn1 cOE mice also did not have significant effects on behaviors in the NSFT and LHT (Figs. 5D and 5F). However, control mice infused with lenti-shLgi1-GFP were significantly more immobile compared to lenti-shNC-GFP-infected mice (Fig. 5E), suggesting that endogenous LGI1 levels play a role in mediating depression-like behaviors. Infusion of lenti-shLgi1-GFP in the DG of Nrn1 cOE mice, to a lesser extent, increased the immobility. Next, experiments were conducted to determine if knocking down Lgi1 influenced responses to CUS. Lenti-shLgi1-GFP infusion did not affect sucrose consumption in either littermate controls or Nrn1 cOE mice (Fig. 5D). Depletion of LGI1 did not further affect behaviors in the littermate control mice (Fig. 5E-G). In contrast, the stress resilience observed in Nrn1 cOE mice in the NSFT, FST and LHT was prevented by Lgi1 knockdown (Fig. 5E-G). No behavioral changes were observed in the LMA (Fig. 5C). Together, these results indicate that LGI1 is required at least in part for the behavioral resilience seen in stressed Nrn1 cOE mice, and suggest that LGI1 plays a role in protection against stress-induced behavioral responses in a neuritin-mediated signaling pathway.

3.5. Neuritin-mediated expression of LGI1 dependent on insulin receptors

We attempted to identify the upstream signals involved in LGI1 expression. Previous studies have reported that neuritin acts on insulin receptors (Yao et al., 2016), which are tyrosine kinase-coupled receptors
substrate-1 (IRS-1), a downstream effector of IR signaling in response to phosphorylation of the IR. p-IRS1 expression (Fig. 6A), we examined whether blockade of the IRs. Indeed, pretreatment with HNMPA-(AM) abolished the neuritin-induced phosphorylation of IRS and HDAC5. (Shimada et al., 2016). To ascertain the effect of neuritin on tyrosine staining (scale bar, 200 μm). (C) Nrn1 mRNA measured by real-time PCR (n = 4). (D) LMA. Total distance (n = 15–17 per group). (E) SCT. Total sucrose consumption (n = 16–17 per group). (F) NSFT. Lenti-Nrn1-mCherry-injected mice displayed a decrease in latency to feed compared with lenti-mCherry-injected mice under CUS (n = 9–15 per group). (G) FST. Lenti-Nrn1-mCherry-injected mice displayed a decrease in immobility compared with lenti-mCherry-injected mice under CUS (n = 11–13 per group). (H) LHT. Lenti-Nrn1-mCherry-injected mice showed a decrease in latency to escape compared with lenti-mCherry-injected mice under CUS (n = 14–15 per group). (I and J) Immunoblots of p-HDAC5 using protein extracts of hippocampal DG (S259; n = 6–7 per group, S498; n = 7–8 per group). (I and K) Immunoblots of LGI1 (n = 9 per group). In (C)–(K), Data are represented as mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001. Statistics: Unpaired two-tailed t-test (C, E and G). Two-way ANOVA followed by Newman-Keuls posttest (F and H) or Bonferroni posttest (J and K). Statistics detailed in Table S4.

4. Discussion

In the light of the previous reports showing that neuronal atrophy accompanies depression (Gradin and Pomi, 2008) and that neuritin increases spine density and neurite length (Son et al., 2012), we sought to identify effector molecules that control and trigger synapse formation. LGI1 was studied as a downstream target signal since it shares the following properties with neuritin: (1) predominant localization at the synapses of the hippocampal DG (Kegel et al., 2013; Naeve et al., 1997); (2) functional significance in relation to neural excitability through expression of the potassium outward current (I_K) subunit and (3) a causal relation to neurite outgrowth (Ouwuro et al., 2009; Son et al., 2012). We have shown, for the first time, that LGI1 expression is dependent on neuritin-mediated phosphorylation of HDAC5, and that the resulting LGI1 expression rescues the depression-like behaviors in the FST, NSFT and LHT. These results suggest that LGI1 may play a role in relaying the resilience to stress.

To further support a role for neuritin as an endogenous antidepressant, we manipulated neuritin levels in vivo by two approaches: creating Nrn1 conditional-transgenic mice by crossing Nrn1Flx/Flx mice with Pomc-cre transgenic mice (Fig. S5), and overexpressing lentivirus-transduced Nrn1 (Fig. 4). Mice infused with lent-Nrn1-mCherry into DG had reduced depression-like behaviors after CUS in four behavioral tests sensitive to antidepressants. These results resembled the effects observed in the Nrn1-COE mice, revealing protection from the adverse behavioral effects of CUS in the NSFT, FST and LHT. According to this view, sucrose consumption should be enhanced in Nrn1-COE mice, but we failed to detect any difference in sucrose consumption between...
littermate controls \((\text{Nrn1}^{\text{floxed/flox}} \text{ and } \text{Nrn1}^{\text{floxed/flox}; \text{Pomc-cre}}) \) mouse exposed to CUS. In line with this, exposure of \(\text{Nrn1} \text{ cOE} \) mice infected with \(\text{lenti-shLgi1-GFP} \) to CUS did not decrease sucrose consumption. This suggests a somewhat different underlying genetic substrate of the SCT, consistent with some of the strain-dependent sucrose/glucose/saccharin preferences and the high inter-individual variability of mice discussed previously (Pothion et al., 2004). Using a complementary approach, we knocked down \(\text{Lgi1} \) specifically in the DG using lentiviruses and assessed the effects on mouse behaviors. In the absence of CUS, \(\text{lenti-shLgi1-GFP} \) significantly increased behavioral measures (immobility) in both littermate controls and \(\text{Nrn1} \text{ cOE} \) mice in the MST (Fig. S7E), suggesting a potential role for \(\text{Lgi1} \) in maintaining mood-related responses. Depletion of \(\text{Lgi1} \) in the DG did not itself cause further depression but could oppose the antidepressant effects of \(\text{neuritin} \) in CUS (Fig. 5E-G), thus supporting a potential role for \(\text{neuritin} \)-induced \(\text{Lgi1} \) levels in maintaining behavioral resilience to challenge under CUS, and their essential role in the presumed antidepressant actions of \(\text{neuritin} \). Further investigation is needed to evaluate the physiological and pathological relevance of \(\text{Lgi1} \) in stress-induced behavioral defects.

It was recently shown that human autoantibodies against \(\text{Lgi1} \) (patient-derived IgG), when infused into mice, reduced the synaptic level of \(\text{K}_{\text{v}} \text{1.1} \), and produced an impairment of long-term potentiation in the

Fig. 5. Stress resilience in \(\text{Nrn1} \text{ cOE} \) mice is abolished by \(\text{Lgi1} \) depletion. (A) Timeline of experimental procedures. Mice were injected with \(\text{lenti-shNC-GFP} \) and \(\text{lenti-shLgi1-GFP} \) and exposed to CUS for 28 d. (B) Localization of lentivirus in the hippocampal DG by GFP staining (Scale bar, 100 \(\mu \)m). (C) LMA. Total distance \((n=15-17 \text{ per group}) \). (D) SCT. Total sucrose consumption \((n=15-17 \text{ per group}) \). (E) NSFT. Latency to feed was increased in \(\text{lenti-shLgi1-GFP} \)-infused \(\text{Nrn1} \text{ cOE} \) mice compared with \(\text{lenti-shNC-GFP} \)-infused \(\text{Nrn1} \text{ cOE} \) mice \((n=12-15 \text{ per group}) \). (F) MST. \(\text{lenti-shNC-GFP} \)-infused \(\text{Nrn1} \text{ cOE} \) mice displayed a decrease in immobility compared with \(\text{lenti-shNC-GFP} \)-infused control mice, which was blocked by \(\text{lenti-shLgi1-GFP} \) infusion \((n=11-16 \text{ per group}) \). (G) LHT. \(\text{lenti-shNC-GFP} \)-infused \(\text{Nrn1} \text{ cOE} \) mice displayed a decrease in latency to escape compared with \(\text{lenti-shNC-GFP} \)-infused control mice, which was blocked by \(\text{lenti-shLgi1-GFP} \) infusion \((n=9-10 \text{ per group}) \). In (B)-(G), Data are represented as mean \(\pm \) SEM; \(* \text{p}<0.05, ** \text{p}<0.01, *** \text{p}<0.001 \). Statistics: Two-way ANOVA followed by Bonferroni posttest (B and F) or Newman-Keuls posttest (E and G). Statistics detailed in Table S4.
Fig. 6. Neuritin mediates LGI1 expression through insulin receptors. (A) Representative immunoblots of neurons (DIV7) treated with 200 ng/ml recombinant soluble neuritin for various times, or 30 mM KCl for 6 h. Quantitative data for p-IRβ Y1135/1136 or p-IRS1 Y608 expression ($n = 3$). (B and C) Representative immunoblots of neurons pretreated with 100 μM HNMPA-(AM)$_3$ for 30 min and stimulated with recombinant soluble neuritin for 30 min. Quantitative data of HDAC5 phosphorylation expression ($n = 3$). (B and D) Representative immunoblots of neurons pretreated with 100 μM HNMPA-(AM)$_3$ for 30 min and stimulated with recombinant soluble neuritin for 10 min. Quantitative data for p-IRS1 Y608 expression ($n = 3$). (B and E) Representative immunoblots of neurons pretreated with 100 μM HNMPA-(AM)$_3$ for 30 min and stimulated with recombinant soluble neuritin for 6 h. Quantitative data for LGI1 expression ($n = 4$). (F) Co-immunoprecipitation of neuritin-IR complexes. HEK293T cells expressing the Flag-Nrn1 construct were subjected to IP using anti-FLAG antibody. Both inputs and co-IP fractions (IP α-FLAG) were immunoblotted with anti-IRβ or anti-FLAG antibodies (black arrow: IRβ). IRβ was co-immunoprecipitated with anti-FLAG antibody. In (A)–(E), Data are represented as mean ± SEM; *$p < 0.05$, **$p < 0.01$, ***$p < 0.001$ compared with CTL, #$p < 0.05$, ##$p < 0.01$, ###$p < 0.001$ compared with recombinant soluble neuritin treatment. Statistics: Student’s t-test (A). One-way ANOVA followed by Newman-Keuls posttest test (C, D and E). Statistics detailed in Table S4.

Fig. 7. A schematic of proposed mechanisms for the antidepressant-like effects of neuritin acting via LGI1. Chronic stress reduces neuritin expression and HDAC5 phosphorylation. Normally MEF2 associates with HDAC5 and blocks its nuclear export, which results in repression of MEF2 transcriptional activity. Neuritin stimulates phosphorylation of IR and IRS-1, leading to PKD activation. HDAC5 is phosphorylated in a PKD-dependent pathway, which is followed by nuclear export of p-HDAC5. This leads to reduced binding of HDAC5 to the Lgi1 promoter, thereby derepressing LGI1 expression. LGI1 increases neurite outgrowth and may restore other neuronal signaling. As a result, the depressive behaviors induced by chronic stress are rescued.
CA1 region of the hippocampus and a memory deficit (Petit-Pedrol et al., 2018). LGI1, as an extracellular factor, increases neurite outgrowth (Fukata et al., 2006; Ouwor et al., 2009) and determines the precise location of PSD-95 in the synapse, and, in turn, reinforces receptor clustering in the synapse (Fukata et al., 2021). According to Sholl analysis in the present study, Lgi1 knockdown reduces neurite complexity over the entire proximal to distal area of the soma. Soluble neuritin rescued neurite outgrowth at ≥50 μm away from the soma, where the perforant path forms synapses with GCs (Fig. 1F). We speculate that CUS (or Lgi1 knockdown in GCs) results in reduced release of LGI1 into synaptic clefts. As a result, transsynaptic protein networks, including Kv1.1 and glutamate receptors, are altered at the synapse, resulting in the decreased frequency of mEPSCs recorded in GCs (Fig. S6). Since LGI1 is predominantly expressed in the outer and middle molecular layers of the GC, the CUS-induced decrease in LGI1 may exacerbate the deleterious effects of stress on GCs.

Deficiencies in IR activation and downstream IR-related mechanisms may result in aberrant IR-mediated functions and lead to a broad range of brain disorders, including neuropsychiatric disorders such as depression (Pomytkin et al., 2018). In view of this, it is of particular importance that neuritin-induced IR activation, the resulting HDAC5 phosphorylation and LGI1 expression contributed to the antidepressant-like effects of neuritin. This is substantiated by the observation that neuritin-induced LGI1 activation is blocked by HNMPA-(AM)₃, an antagonist of the IR (Fig. 6B and E), and that both neuritin and insulin similarly activate insulin receptor signaling pathways (Fig. 6A, S8A and S8B). Indeed, insulin also increases PKD and HDAC5 phosphorylation and LGI1 expression (Figs. S8C–S8E). Although neuritin and insulin both elicit the immediate effects of IR activation, neuritin might interact with IR in a way that differs from insulin. The co-IP of neuritin with IR could depend on the formation of a multi-protein complex rather than a direct, interaction with IR (Fig. 6F). Conceivably, neuritin, by affecting the tyrosine kinase receptor, contributes to the brain pathology underlying depression associated with diabetes. This idea is supported by the prevalence of depression in diabetic patients (Gendelman et al., 2009) and, conversely, the high incidence of diabetes in depressed patients (Reus et al., 2017), who lack fibroblast growth factor (FGF). With regard to metabolic processes, neuritin may cooperate with insulin to control or alleviate depression by regulating activation of tyrosine kinase receptors and ultimately controlling gene expression via HDAC5. In line with this, it is noticeable that insulin receptor sensitizers are reported to be effective in treating MDD that is refractory to standard antidepressant treatment and accompanied by insulin resistance (Pomytkin et al., 2018). Based on this and our observations, further studies are warranted of the following points: (1) whether IR-A, which is exclusively expressed in neurons, and IR-B, the predominant form in peripheral tissues, are differentially involved during CUS and in stress-related neuropsychiatric disorders including MDD; (2) the effect of primary IR autophosphorylation on LGI1 expression during CUS; (3) and, of great interest, whether insulin receptor sensitizers induce LGI1 in the hippocampus. In addition, identification of the neuritin interactor should greatly benefit our understanding of how neuronal activity is modified, and help develop further effective interventions for MDD.

Our study has several limitations. First, in order to determine whether the transgene produces an “antidepressant-like” reversal of a pre-existing deficit, the lenti-transgene ought to be administered after CUS, following by observation of the behavioral defects induced by CUS. However, this was difficult to achieve given the need for lentivirus infusion to be performed under anesthetic surgery, since the latter requires a recovery period of several days, whereas the behavioral consequences should be observed without delay, at the time of maximal expression of the lenti-transgene. Therefore, we infused lentivirus into the hippocampus 1–2 wks prior to CUS rather than after CUS. This protocol, involving expressing the transgene before the start of CUS and coincident with the period of CUS, essentially enables us to observe the effect of the transgene on resilience to CUS. Second, we investigated the consequences of overexpressing neuritin in the hippocampus by two approaches: examining Nrn1-conditional Tg mice by crossing floxed Nrn1 mice with Pomc-cre transgenic mice and overexpressing virus-transduced Nrn1. Because Pomc-cre-mediated recombination during embryonic development results in Nrn1 overexpression throughout adulthood, Nrn1 may be overexpressed in off-target sites that could confound the analysis of the contribution of neuritin overexpression to the resulting phenotypes. Viral-mediated Nrn1 overexpression allowed us to specifically assess Nrn1 function in the postnatal forebrain without interfering with its contribution to early CNS development. Third, we focused on LGI1’s activity in the hippocampal DG region where it is predominantly expressed in the outer and middle molecular layers (OML and MML) (Schulle et al., 2006). The localization of LGI1 is of particular importance because of previous findings that the MML, which is located 50 μm from the granule cell body in the DG, shows dynamic behavior following stress and antidepressant treatment (Kitahara et al., 2016). Lastly, the present study was confined to male mice since it appears that only males suffer behavioral impairments accompanied by morphological deficits in neurons after 28 days of CUS (Woodburn et al., 2021). Based on the higher incidence of depression in women, further investigations of gender differences in the regulatory functions of neuritin, including IR activation in the MDD, are warranted.

Overall, neuritin-mediated LGI1 expression plays a critical role in ameliorating pathological depression. The mechanisms of action by which LGI1, as a downstream target of neuritin signaling, mediates mood-related behaviors and hippocampal synaptic efficacy warrant further investigation.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.

References

An, K., Jung, J.H., Jeong, A.Y., Jung, S.Y., Lee, K.J., Kim, Y.S., Son, H., 2017. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats. Biochem. Biophys. Res. Commun. 489, 420–425. https://doi.org/10.1016/j.

Belloit, M., Lee, C.Y., Allene, C., Leguem, E., Bauduc, S., Rouach, N., 2016. LGI1 acts presynaptically to regulate excitatory synaptic transmission during early postnatal development. Sci. Rep. 6, 21769. https://doi.org/10.1038/srep21769.

Carranquillo, Y., Burkhalter, A., Nebenmueller, J.M., 2012. A type-K+ channels encoded by Kv4.2, Kv4.3 and Kv1.4 differentially regulate intrinsic excitability of cortical pyramidal neurons. J. Physiol. 590, 3877–3890. https://doi.org/10.1113/j.

Chang, C.W., Lee, L., Yu, D., Dao, K., Bossuyt, J., Bers, D.M., 2013. Acute beta-adrenergic activation triggers nuclear import of histone deacetylase 5 and delays G(0)-induced transcriptional activation. J. Biol. Chem. 288, 192–204. https://doi.org/10.1074/j.

Choi, M., Lee, S.H., Park, M.H., Kim, Y.S., Son, H., 2017. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats. Biochem. Biophys. Res. Commun. 489, 420–425. https://doi.org/10.1016/j.

Duric, V., Banasr, M., Licznerski, P., Schmidt, H.D., Stockmeier, C.A., Simen, A.A., Duman, C.H., Schlesinger, L., Kodama, M., Russell, D.S., Duman, R.S., 2007. A role for MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuroreport 18, 1008–1012. https://doi.org/10.1097.wnr.0b013e3181422f8a.

Fukata, Y., Kim, T.K., Gray, J.M., Harmin, D.A., Hemberg, M., Hong, E.J., Markenscoff-Papadimitriou, E., Bear, D.M., Greenberg, M.E., 2008. Genome-wide analysis of MEF2 transcription factors suppresses excitatory synaptic number. Science 311, 1792–1795. https://doi.org/10.1126/science.1124979.

Fukata, Y., Chen, X., Chiken, S., Hirano, Y., Yamagata, A., Inahashi, H., Sanbo, M., Sano, H., Goto, T., Hiramatsu, K., Kornau, H.C., Pruss, H., Nambu, A., Fukai, S., Nickol, R.A., Fukata, M., 2006. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313, 1792–1795. https://doi.org/10.1126/science.1124979.

Fukata, Y., Chen, X., Chiken, S., Hirano, Y., Yamagata, A., Inahashi, H., Sanbo, M., Sano, H., Goto, T., Hiramatsu, K., Kornau, H.C., Pruss, H., Nambu, A., Fukai, S., Nickol, R.A., Fukata, M., 2006. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313, 1792–1795. https://doi.org/10.1126/science.1124979.

Fukata, Y., Koshihara, K., Takahashi, K., Uchida, Y., Fujii, S., Nose, K., Kuzuhara, S., 2015. Neurogenesis in the conditional knockout of mouse ADAM22 is impaired in adult SVZ. Proc. Natl. Acad. Sci. U. S. A. 112, 5738–5743. https://doi.org/10.1073/pnas.1512510112.

Guise, A.J., Mathias, R.A., Rowland, E.A., Yu, F., Crisere, L.M., 2014. Probing phosphorylation-dependent protein interactions within functional domains of histone deacetylase 5 (HDAC5). Proteomics 14, 2156–2166. https://doi.org/10.1002/pmic.201400499.

Henderson, G., 2002. The role of the hippocampus in the regulation of paraffin-palmitate granule cell synapses in the mouse dentate gyrus. PloS One 11, e0147307. https://doi.org/10.1371/journal.pone.0147307.

Huang, L., Huang, J., Lee, H.K., Kim, J., Lee, S.H., Choi, M., Ho, J.R., Sung, J.J., Sun, H., 2019. Transient receptor potential melastatin 2 governs stress-induced depressive-like behaviors. Proc. Natl. Acad. Sci. U. S. A. 116, 1770–1775. https://doi.org/10.1073/pnas.1813511116.

Jung, S.J., Son, H., 2019. Transient receptor potential melastatin 2 governs stress-induced depressive-like behaviors. Proc. Natl. Acad. Sci. U. S. A. 116, 1770–1775. https://doi.org/10.1073/pnas.1813511116.

Ko, S.Y., Wang, S.E., Lee, H.K., Jo, S., Han, J., Lee, S.H., Choi, M., Jo, H.R., Seo, J.Y., Jung, S.J., Sun, H., 2019. Transient receptor potential melastatin 2 governs stress-induced depressive-like behaviors. Proc. Natl. Acad. Sci. U. S. A. 116, 1770–1775. https://doi.org/10.1073/pnas.1813511116.

Korijn, A.H., van Spronsen, M., Joels, M., 2015. Hippocampal neuroplasticity in major depressive disorder. Neuroscience 300, 209–213. https://doi.org/10.1016/j.

Lyons, G.E., Micales, B.K., Schwarz, J., Martin, J.F., Olson, E.N., 1995. Expression of MEF2 genes in the mouse central nervous system suggests a role in neuronal differentiation. J. Neurosci. 15, 5727–5739.

Malykhin, N.V., Coupland, N.J., 2015. Hippocampal neuroplasticity in major depressive disorder. Neuroscience 300, 209–213. https://doi.org/10.1016/j.

Martin, S., Henley, M.J., Holman, D., Zhou, M., Wiegert, O., van Sprongen, M., Joels, M., Hoogenraad, C.C., Krugers, H.J., 2009. Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity. PloS One 4, e7412. https://doi.org/10.1371/journal.pone.0007412.

McEwen, B.S., Bolster, N.P., Gray, J.D., Hill, M.N., Hunter, R.G., Karatsoreos, I.N., Nestler, E.J., Hyman, S.E., 2010. Mechanisms of stress in the brain. Nat. Neurosci. 13, 1533–1536. https://doi.org/10.1038/nn.2670.

McEwen, B.S., Bolster, N.P., Gray, J.D., Hill, M.N., Hunter, R.G., Karatsoreos, I.N., Nestler, E.J., Hyman, S.E., 2010. Mechanisms of stress in the brain. Nat. Neurosci. 13, 1533–1536. https://doi.org/10.1038/nn.2670.
and major depressive disorder. Life Sci. 183, 78–82. https://doi.org/10.1016/j.lfs.2017.06.025.

Rudyk, C., Dwyer, Z., McNeill, J., Salmaso, N., Farmer, K., Prowse, N., Hayley, S., 2019. Chronic unpredictable stress influenced the behavioral but not the neurodegenerative impact of paraquat. Neurobiol. Stress 11, 100179. https://doi.org/10.1016/j.neustr.2019.100179.

Schulte, U., Thumfart, J.O., Klocker, N., Sailer, C.A., Bildl, W., Binionsek, M., Dehn, D., Deller, T., Eble, S., Abbass, K., Wangler, T., Knaus, H.G., Fakler, B., 2006. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1. Neuron 49, 697–706. https://doi.org/10.1016/j.neuron.2006.01.033.

Shimada, T., Yoshida, T., Yamagata, K., 2016. Neuritin mediates activity-dependent axonal branch formation in part via FGF signaling. J. Neurosci. 36, 4534–4548. https://doi.org/10.1523/JNEUROSCI.1715-15.2016.

Son, H., Banar, M., Choi, M., Chae, S.Y., Licznerski, P., Lee, B., Voleti, B., Li, N., Lepack, A., Fournier, N.M., Lee, K.R., Lee, I.Y., Kim, J., Kim, J.H., Kim, Y.H., Jung, S.J., Duman, R.S., 2012. Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress. Proc. Natl. Acad. Sci. U. S. A. 109, 11378–11383. https://doi.org/10.1073/pnas.1201191109.

Srinivas, S., Watanabe, T., Lin, C.S., William, C.M., Tanabe, Y., Jessell, T.M., Costantini, F., 2001. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4. https://doi.org/10.1186/1471-213x-1-4.

Stepanichev, M., Dygalo, N.N., Grigoryan, G., Shishkina, G.T., Gulyaeva, N., 2014. Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BioMed Res. Int. 2014, 932757. https://doi.org/10.1155/2014/932757.

Thomas, R.A., Gibon, J., Chen, C.X.Q., Chierzi, S., Soubhani, V.G., Baulac, S., Seguela, P., Murni, K., Barker, P.A., 2018. The Nogo receptor ligand LGI1 regulates synapse number and synaptic activity in hippocampal and cortical neurons. eNeuro 5. https://doi.org/10.1523/ENEURO.0185-18.2018.

Tsankova, N.M., Berton, O., Renthal, W., Kumar, A., Neve, R.L., Nestler, E.J., 2006. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519–525. https://doi.org/10.1038/nn1659.

Vega, R.B., Harrison, B.C., Meadows, E., Roberts, C.R., Papst, P.J., Olson, E.N., McKinsey, T.A., 2004. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell Biol. 24, 8374–8385. https://doi.org/10.1128/MCB.24.19.8374-8385.2004.

Woodburn, S.C., Bollinger, J.L., Woehle, E.S., 2021. Synaptic and behavioral effects of chronic stress are linked to dynamic and sex-specific changes in microglia function and astrocyte dystrophy. Neurobiol. Stress 14, 100312. https://doi.org/10.1016/j.ynstr.2021.100312.

Yao, J.J., Zhao, Q.R., Liu, D.D., Chow, C.W., Mei, Y.A., 2016. Neuritin up-regulates Kv4.2 alpha-subunit of potassium channel expression and affects neuronal excitability by regulating the calcium-calcineurin-NFATc4 signaling pathway. J. Biol. Chem. 291, 17369–17381. https://doi.org/10.1074/jbc.M115.708883.

Yuen, E.Y., Liu, W., Karatsoreos, I.N., Feng, J., McEwen, B.S., Yan, Z., 2009. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc. Natl. Acad. Sci. U. S. A. 106, 14075–14079. https://doi.org/10.1073/pnas.0906791106.

Zito, A., Cartelli, D., Cappelletti, G., Cariboni, A., Andrews, W., Parnavelas, J., Poletti, A., Galbiati, M., 2014. Neuritin 1 promotes neuronal migration. Brain Struct. Funct. 219, 105–118. https://doi.org/10.1007/s00429-012-0487-1.