Book Chapter

Uniform and Intense Cooling During Hardening Steel in Low Concentration of Water Polymer Solutions

Nikolai Kobasko*

Intensive Technologies Ltd, Ukraine

*Corresponding Author: Nikolai Kobasko, Intensive Technologies Ltd, 68/1 Peremohy Ave., Kyiv 03113, Ukraine

Published January 10, 2020

This Book Chapter is a republication of an article published by Nikolai Kobasko at American Journal of Modern Physics in November 2019. (Nikolai Kobasko, Uniform and Intense Cooling During Hardening Steel in Low Concentration of Water Polymer Solutions, American Journal of Modern Physics. Vol. 8, No. 6, 2019, pp. 76-85. doi: 10.11648/j.ajmp.20190806.11)

How to cite this book chapter: Nikolai Kobasko. Uniform and Intense Cooling During Hardening Steel in Low Concentration of Water Polymer Solutions. In: Ibtissem BELGACEM, editor. Prime Archives in Physics. Hyderabad, India: Vide Leaf. 2020.

© The Author(s) 2020. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The possibility of decreasing water polymer concentration, decreasing alloy elements in steel, decreasing distortion of steel parts, and increase service life of machine components and tools during quenching is widely discussed in this paper based on
achievements of modern physics. Instead of quenching alloy and high alloy steel in oils or high concentration of water polymer solutions, the quench of the optimal hardenability steel in low concentration of inverse solubility polymers in water is proposed. Physics of the new approach and new technologies is explained by author. It consists in creation of a thin polymeric insulating layer during quenching of steel parts in low concentration of inverse solubility polymers in water that decreases initial heat flux density below its critical value. Due to this fact, the film boiling during quenching is completely absent and it allows use of the optimal hardenability steel instead of alloy steels containing costly alloy elements. Accelerated cooling of the optimal hardenability steel in low concentration of water polymer solution results in creation of high surface compressive residual stresses and super strengthening of material that increases service life of machine components and tools. It is underlined in the paper that along with the use of a thin polymeric insulating layer, the resonance effect can be used for destroying the film boiling process based on implementation different kinds of hydrodynamic emitters. The proposed new technology saves materials, increases service life of steel parts and improves environment condition in heat treating industry. The patented technologies and processes can be used by engineers and scientists and can bring the great benefits if widely implemented in the practice.

Keywords

Insulating layer; Heat flux decrease; Film boiling elimination; Intense and uniform quenching; Optimal hardened layer; Alloying and concentration decrease; Benefits

Nomenclature

\(a \) : Thermal diffusivity of steel \(\left(m^2 s^{-1} \right) \); \(Bi_V \) : Generalized dimensionless Biot number; D: Diameter \((m) \); R: Radius \((m) \); DI: Ideal critical diameter \((m) \); K: Kondrat’ev form
coefficient \((m^2) \): Kn: Kondrat’ev dimensionless number; q:
Heat flux density \((Wm^{-2}) \): \(q_{cr1} \): The first critical heat flux density \((Wm^{-2}) \); \(q_{cr2} \): The second critical heat flux density \((Wm^{-2}) \); T: Temperature \((^{\circ}C) \); \(T_{sf} \): Average surface temperature \((^{\circ}C) \);
\(\overline{T}_V \): Average volume temperature \((^{\circ}C) \); \(T_o \): Initial austenizing temperature \((^{\circ}C) \); \(T_S \): Saturation temperature \((^{\circ}C) \); \(T_m \): Bath temperature \((^{\circ}C) \); S: Surface \((m^2) \); V: Volume \((m^3) \); V: Cooling rate \((^{\circ}C/s) \);
W: Water flow speed \((m/s) \); \(\alpha \): Heat transfer coefficient \((Wm^{-2}K^{-1}) \); \(\lambda \): Thermal conductivity \((Wm^{-1}K^{-1}) \); \(\delta \):
Thickness of insulating layer \((m) \); \(\tau \): Time \((sec) \); \(\Psi \);
Criterion of temperature non-smoothness through section of steel part

List of Subscriptions

Coat-Coating; eq-Equilibrium; nb-Nucleate boiling; FB-Film boiling; s-Saturation; m-Medium; max-Maximum; cr-Critical; Opt-Optimal; Sf-Surface

Introduction

For the wide implementation of intensive quenching processes into practice, two companies were established in 1999 and 2000 dealing with intensive quenching processes. The first company was established in 1999 in Akron, Ohio, USA and its name is IQ Technologies Inc (IQT). The second company was established in 2000 in Kyiv, Ukraine and its name is Intensive Technologies
A continuous cooperation between both companies has been lasting since 2000. The aim of IQT is design of equipment and commercialization of intensive quenching processes worldwide while ITL pays its main attention to academic investigations and designing appropriate software for controlling and governing intensive quenching processes in the practice. The IQT company made a great progress in hardening the small and average machine components and tools while ITL is developing new technologies for more larger steel components and tools which cannot be quenched in developed by IQT fixtures. Currently, there are several Ukrainian Patents which make a green pass for their implementation in the USA if properly developed and tested [1-3]. This paper discusses the physics of accelerated cooling in water solutions of low concentration polymers and provides possibilities for intense hardening of large wind gears, rollers, large shafts and rotors, made of optimal hardenability steel, to save energy, materials, increase their service life and improve environment condition.

Intense Quenching when Cooling in Low Concentration of Water Polymer Solutions

As known, the real heat transfer coefficient during transient nucleate boiling process is evaluated as a ratio of the heat flux density produced by bubbles to the overheat of the boundary layer [4,5], i.e.

\[
\alpha_{nb} = \frac{q}{T_{sf} - T_s}.
\]

Here \(\alpha_{nb} \) is real HTC during transient nucleate boiling process; \(\alpha_{ef} \) is effective HTC; \(q \) is heat flux density; \(T_{sf} \) is surface temperature; \(T_s \) is saturation temperature; \(T_m \) is bath temperature.

In heat treating industry, historically, the heat transfer coefficient (HTC) during transient nucleate boiling process is evaluated as:
According to author [4], the average heat flux density q during nucleate boiling is proportional to the cube of temperature difference $\Delta T_s = T_{sf} - T_s$:

$$ q \propto \Delta T_s^3 $$ \hspace{1cm} (3)

that is why overheat $\Delta T_s = T_{sf} - T_s$ is small from the very beginning of cooling.

Table 2 shows the real heat transfer coefficients in W/m2K which are responsible for developing temperature gradients during quenching of steel parts. Calculations of HTCs were made for maximal critical heat flux density of water salt solutions which was equal to 15 MW/m2 [4]. Dimensionless correlations of authors [4,6] were used for this purpose.

Table 1: Ratio of real HTC to effective HTC versus temperature of water.

Temperature, $^\circ$C	15	20	30	40	60	80	90	95
$\alpha_{real}/\alpha_{eff}$	7.07	6.71	6.00	5.29	3.86	2.43	1.71	1.26
$\alpha_{real}/\alpha_{eff}$, %	707	671	600	529	386	243	171	126
Table 2: Real HTCs in W/m²K during nucleate boiling process depending on the temperature of water solution when heat flux density is 15 MW/m².

Temperature of water solution	Tolubinsky	Shekriladze	Average
10	152248	176546	164397
20	193929	243641	218785
40	224989	241615	233302
60	271273	271323	271298

Results of calculations presented in Table 2 actually are experimental data because dimensionless equations of Tolubinsky and Shekriladze are based on thousand of accurate experiments [4,6].

As seen from Table 2, real HTCs are very large when heat flux density approaches the critical value 15 MW/m². It means that in the Inconel 600 standard probe 12.5 mm in diameter maximal temperature gradients are formed because Biot number Bi tends to infinity (see Table 3).

Table 3: Biot numbers and criterion of non-uniformity of cooling through section of steel parts versus heat transfer coefficients.

(W/m²K)	R(m)	Bi	Bi₂	ψ
1000	0.05	2.5	0.865	0.58
	0.25	12.5	4.325	0.195
	0.50	25	8.650	0.104
2000	0.05	5.0	1.730	0.39
	0.25	25	8.650	0.104
	0.50	50	17.30	0.055
3000	0.05	7.5	2.595	0.29
	0.25	37.5	12.97	0.073
	0.50	75	25.95	0.037
4000	0.05	10	3.460	0.24
	0.25	50	17.30	0.055
	0.50	100	34.60	0.028
10000	0.05	25	8.650	0.104
∞	0.05	∞	∞	0
It is very important to calculate temperature gradient during quenching small and large steel parts. As an example, let’s consider quenching truck semi-axle 40 mm (0.04 m) in diameter which is cooled in water flow of 8 m/s and large roller 1 m in diameter which is cooled in still water at 30°C where natural convection takes place. Cooling steel parts in water flow was discussed in previous published papers [7-9]. Heat transfer coefficients for quenching cylindrical steel parts in water flow in round fixture one can find in Ref. [7,10] (see Table 4).

Table 4: Average convective heat transfer coefficients depending on water flow speed and water temperature in channel [10].

w, (m/s)	20°C	30°C
0	802	1017
0.5	2890	3200
2	8770	9700
8	26580	29400

Heat transfer coefficients (HTCs) of natural convection during quenching large steel parts in still water were calculated using well known Eq. (4)[10]:

$$
\alpha_{conv} = 0.135 \lambda \left(\frac{g \beta \Delta T}{a v} \right)^{1/3}
$$

which provides 802 (W/m²K) and 1017 (W/m²K) values for water 20°C and 30°C (see Table 4). Having these accurately calculated data, we’ll investigate temperature gradients in semi-axle and roller during their hardening in water flow and still water. Since during quenching HTCs are a little bit variable, depending on size of semi-axle and water temperature, we’ll use 1000 (W/m²K) for quenching in still water and 25000 (W/m²K) for quenching in water flow of 8 m/s. For calculating temperature gradients in semi-axle and roller during quenching, one can use universal correlation (5) [11,12]:
Here

\[Bi_v = \frac{\alpha}{\lambda} \frac{S}{V} \]

Therefore, during quenching semi-axle in water flow with the intensity of cooling 25000 \(\left(\frac{W}{m^2 K} \right) \) and roller in still water with the intensity of cooling 1000 \(\left(\frac{W}{m^2 K} \right) \), the value

\[\frac{\bar{T}_{sf} - T_m}{T_v - T_m} = 0.105 \]

for both cases is the same because for semi-axle

\[Bi = \frac{25000W/m^2K \times 0.02m}{20W/mK} = 25 \]

and for large roller

\[Bi = \frac{1000W/m^2K \times 0.5m}{20W/mK} = 25 \].

For both steel parts surface temperature during immersion into quenchant drops immediately to the same value \(\bar{T}_{sf} \) if initial austenitizing temperature and bath temperature are the same. Assume that initial temperature is 840°C and bath temperature is 20°C, then average volume temperature is 410°C. According to Eq. (5), the average surface temperature is

\[T_{sf} \]

8 m/s provides very intensive quenching creating huge temperature gradient in semi-axle. The same huge temperature gradient is formed during quenching of large roller in still water. It means that for big roller during quenching in still water, the cooling process for it is also very intensive quenching. This conclusion is extremely important because customers don’t need very expensive and complicated equipment. The cooling process of large steel parts can be performed just in large quench water tanks without complicated and costly equipment. However, there is a trick here. During immersion large steel parts into liquid, developed film boiling starts immediately, making cooling process slow. One should eliminate film boiling process from the very beginning of cooling prior to provide intensive quenching for large steel parts in still water. Very cheap and simple method
of eliminating film boiling process during quenching is discussed below.

Elimination Film Boiling Process by Creation a Thin Surface Insulating Layer

The idea on elimination film boiling during quenching via creation artificial surface insulating layer before quenching was forwarded by authors in 1987 [13]. In 1996 authors [14] discovered that low concentration (1%) of inverse solubility polymer in water provides very intensive and uniform cooling even during testing of silver spherical probe 20 mm in diameter. In 2012 author [15] explained this unusual fact by considering Eq. (6):

$$q_{in} = \frac{q_o}{1 + 2 \left(\frac{\delta}{R} \frac{\lambda}{\lambda_{coat}} \right)}$$

$$\Delta = \left(1 + 2 \frac{\delta}{R} \frac{\lambda}{\lambda_{coat}} \right)$$

In the paper is considered an initial heat flux density during quenching of cylindrical specimen received by solving inverse problem (IP). Results of calculations are presented in Figure 1.
Let’s consider now how the thickness of insulating polymeric layer δ decreases initial heat flux density q_in. Table 5 provides the value Δ depending on thickness of insulating layer δ.

Table 5: The value of Δ depending on thickness of insulating layer δ in microns when quenching cylindrical steel probe 50 mm in diameter.

δ (microns)	25	50	75	100
Δ	1.2	1.4	1.6	1.8

Table 6 shows decrease of maximal initial heat flux density q_{max} depending on thickness of insulating layer δ. It was assumed that thermal conductivity of insulating layer was 0.2 W/mK.
Table 6: Initial maximal heat flux density \(q \) (MW/m\(^2\)) versus thickness of the insulating layer \(\delta \) during quenching of cylindrical steel probe 50 mm in diameter in cold liquid.

\(\delta \) in microns	0	25	50	75	100
\(q \) in MW/m\(^2\)	19	15.8	13.6	11.9	10.5

Tolubinsky studied extreme transient nucleate boiling processes and he came to conclusion that the well known ratio (7)

\[
\frac{q_{cr2}}{q_{cr1}} = 0.2
\]

is true during conventional processes. In extreme condition during shock boiling the well known ratio (7), depending on extreme cooling rate, can be [4]:

\[
\frac{q_{cr2}}{q_{cr1}} = 0.05
\]

For conventional processes, according to Tolubinsky and Kutateladze [4,5], the first critical heat flux densities for water depending on the underheat \(q_{uh} = T_s - T_m \) are provided in Table 7.

Table 7: The first critical heat flux density \(q_{cr1} \) (MW/m\(^2\)) versus underheating at normal atmosphere pressure for water [4, 5].

Underheat \(q_{uh} = T_s - T_m \)	0	20	40	60	80	100
Tolubinsky	1.27	2.40	3.57	4.72	5.90	7.06
Kutateladze	1.185	2.25	3.33	4.40	5.50	6.60

Assume that bath temperature in quench tank is 40\(^\circ\)C providing underheat 60\(^\circ\)C. If during quenching shock nucleate boiling takes place, then according to Eq. (8) and Table 5 the first critical heat flux density is approximately equal to

\[
q_{cr1} = 4.40 \text{MW/m}^2 \times 4 = 17.6 \text{MW/m}^2.
\]

Maximal initial heat
flux density during quenching the cylindrical probe 50 mm in diameter is 19 MW/m². During quenching in low concentration of inverse solubility polymers in water, providing insulating layer 25 micron, initial heat flux density reduces to 15.8 MW/m² that is below the critical value 17.6 MW/m². It means that film boiling is completely absent. In this case, uniform and intensive quenching starts from the very beginning of cooling. Here is explained why during quenching in water solutions of inverse solubility polymers film boiling is completely absent. Experimental data supporting this idea were published in 1996 in Ref. [14] (see Table 8).

Table 8: Experimental data on the influence of the PAG concentration on the duration of film- and nucleate boiling processes during quenching of silver spherical probe 20 mm in diameter in water and water solutions at 20°C [14].

Concentration, %	τ_{FB}, s	τ_{nb}, s	v_{max}, °C/s
Water	7	2	231
PAG, 1%	0.2	2.1	674
3	1.5	2.5	467
10	1.8	4	336
20	2.6	6	251

Authors [16] used the same idea for eliminating film boiling process during quenching steel parts in mineral oil adding to it low amount of PIB. Fig. 2 clearly shows decreasing duration of film boiling process when concentration of PIB in mineral oil increases and disappear completely at concentration 3% PIB in mineral I-20A oil.
Figure 2: Curves of temperature (T) and cooling rate (dT) of a cylindrical probe in PIB 2400 solutions in I-20A oil at 50°C, concentration, % weight [16]: 1- 0.0; 2-0.5; 3-1.0; 4-1.5; 5-2.0; 6-3.0.

It means that insulating layer is excellent tool for eliminating film boiling processes during quenching steel parts in different liquid quenchants.

Difference between IQ-2 and IQ – 3 Processes

From the point of practical use, it is very important to find out what is difference between IQ-2 and IQ – 3 processes when switching from one to another depending on their size and condition of cooling. As known, when initial austenitizing temperature is fixed at 850°C and bath temperature at 20°C, then duration of transient nucleate boiling process can be presented by simplified Eq. (7) [17,18]:

\[
\tau_{nb} = \Omega k_f \frac{D^2}{a}
\]

(7)
In this case, the value Ω is only a function of the convection Biot number Bi [19,20] and duration of transient nucleate boiling process can be formulated as follows. Duration of transient nucleate boiling is proportional to square of thickness of steel part, inversely proportional to thermal conductivity of steel, depends on configuration of steel part quenched and cooling characteristics of quenchant if austenitizing and bath temperatures are fixed. During transient nucleate boiling surface temperature of steel part maintains at the level of boiling point of a liquid insignificantly differs from it. The established new characteristics were used for developing austempering process via cold liquids [6] for reconstruction of surface temperature during nucleate boiling and for estimation the cooling difference between IQ-2 and IQ - 3 processes (see Figure 1 a), b)).

![Graph a) and b)](image)

Figure 3: Temperatures difference between IQ- 2 and IQ -3 process when quenching cylindrical steel probe 50 mm in diameter: a) is IQ – 2 process; b) is IQ – 3 process.
As one can see from Figure 3 a), b) and Table 9, temperature difference between IQ – 2 and IQ – 3 processes is insignificant.

Table 9: Core cooling time difference between IQ-2 and IQ-3 processes during quenching cylindrical steel probe 50 mm in diameter using IQ -2 and IQ -3 techniques when only transient nucleate boiling or direct convection occur during quenching.

Temperature interval	850°C – 500°C	850°C – 400°C	850°C – 300°C	700°C – 400°C
Cooling time for IQ – 3 process in sec	25.8	32.8	37	18
Cooling time for IQ – 2 process in sec	27.6	36	46.8	20.7

As is well known, the transient nucleate boiling process is intensive quenching by itself [4] due to acting of thousands of vapor bubbles. It should be noted here that essential effect has saturation temperature of a liquid since during transient nucleate process the surface temperature of steel can be above or below the martensite start temperature M_S, i.e. $T_{sf} < M_S$ or $T_{sf} > M_S$ (see Table 10) that significantly differs these two situation from each other.

Table 10: Martensite start temperature M_S and martensite finish temperature M_f depending on percentage of carbon in steel, C%, wt.

C%, wt	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
M_S, °C	460	430	360	350	320	295	265	250
M_f, °C	440	395	200	100	20	-10	-60	-85
When performing intensive quenching IQ – 2 or IQ – 3 processes, engineers every time must take into account martensite start temperature M_s.

Optimal Hardenability Steel

Optimal hardenability steel was invented to provide optimal hardened layer during quenching in any cooling condition. In early patented! Q – 3 technology optimal hardened layer in trough hardened steel was achieved by interruption intensive quenching at proper time using Eq. (10) [1,21-23]:

$$
\tau = \left[\frac{kBi_v}{2.095 + 3867Bi_v} + \ln \frac{T_0 - T_m}{T - T_m} \right] \frac{K}{aKn} \quad (10)
$$

$$
Bi_v = \frac{\alpha K S}{\lambda V}
$$

$$
Kn = \frac{Bi_v}{\left(Bi_v^2 + 1.437Bi_v + 1 \right)^{0.5}} \quad (11)
$$

or

$$
\tau_{eq} = E_{eq} \frac{K}{aKn} \quad (12)
$$

Author [24] proposed criterion which allows obtaining optimal hardened layer during cooling steel parts in any condition including cooling in low concentration of water polymer solution. Intensity of cooling in this case is provided by dimensionless Kondrat’ev number Kn. Optimal hardened layer is achieved if Eq. (13) is satisfied [24,25]:
Note that low hardenability steel of authors [26] can be used for intensive quenching of small steel parts and cannot be used for large steel parts. Moreover, technological process is expensive and complicated. Optimal hardenability steel makes technological process very simple, cheap and it can be used for any size and form of steel part. For this purpose the special software is used which was designed by Intensive Technologies Ltd. For designing such software a huge amount of experiments were carried out to calculate dimensionless number Kn which is presented in Eq. (13).

Difference between intensively quenched low hardenability steel and optimal hardenability steel quenched in any condition is shown in Figure 4 [27,28].

\[
\frac{DI \cdot Kn^{0.5}}{D_{opt}} = 0.35 \pm 0.095
\]

(13)

Figure 4: Optimal depth of hardened layer corresponding to the maximum surface compressive residual stresses [26, 28]: LH, low hardenability steel; OH, optimal hardenability; ThH, through hardening.

As one can see from Eq. (13) and Fig. 4, the thickness of hardened layer proportionally increases with increasing size of steel part. The critical diameter DI of steel is calculated using the well known Grossmann’s Eq. (14) [25]:
\[DI = 254 \times f_{Fe} \times f_{Mn} \times f_{Cr} \times f_{Ni} \times \ldots \] (14)

Effect the form of steel part on chemical composition of optimal hardenability steel is discussed in the Ukrainian Patent No. 114174 [2].

Benefits providing by Intensive Quenching in Low Concentration of Polymers

Currently, IQ – 3 technology is successfully used in the USA [7]. However, it is rather complicated and costly and it is a reason for headache when thin holes are present in steel parts which endorse quench crack formation, especially in hardened layer. Engineers try to plug holes or use some special tricks which eliminate crack formation during quenching. However, such operation makes technological process more costly and not enough convenient. Instead of costly and complicated process IQ – 3, the new technology is discussed in this paper which was developed by Intensive Technologies Ltd, Kyiv, Ukraine. It allows cardinally simplify technological process, make technology cardinally cheaper and repeatable. During quenching steel parts with thin holes in low concentration of water polymer solutions, the thin holes are partially plugged automatically due inverse solubility phenomenon. The simple and universal quench tank for performing such operation is shown in Figure 5.
Agitation of quenchant 2 in quench tank 1 is provided by hydrodynamic emitters that generate resonance frequency to eliminate effectively film boiling process during quenching steel parts in liquid media. Along with generating the resonance effect, pumping of liquid in quench tank creates turbulent that significantly increases convective heat transfer coefficients during quenching. Note that it can be used different kinds of hydrodynamic emitters which were discussed by authors [3, 27]. Agitation of liquid should be not enough strong to prevent dissolving of insulating polymeric layer that eliminates film boiling process during quenching. One of them is shown in Figure 6 [3].

Figure 5: Prinsipal scheme of performing IQ -2 and IQ - 3 processes with use of low concentration polymers: 1 is quench tank; 2 is level quenchant in a tank; 3 is steel parft (large gear or large bearing ring); 4 is surface polymeric layer; 5 is liquid stream; 6 is hydrodynamic emitter; 7 is holder; 8 is outlet tube; 9 is pump.

Figure 6: Schematic of the hydrodynamics emmitter generating waves in liquid with the frequency equal to the oscilating frequency of local film boiling: 1 – a water flow rate provided by the pump; 2 – a tube, 3 – a circulted water stream; 4 – a generator of waves in liquid; 5 – a regulator of the wave frequency; 6 – a water flow combined with the generated waves and directed to load being quenched [3,27].
Exploring the low concentration of water polymer solutions combined with the use of emitters, providing resonance waves for eliminating film boiling, it is possible to create high enough temperature gradients in quenched steel parts because transient nucleate boiling process. After such intensive cooling, if surface temperature of steel parts during self – regulated thermal process is below the martensite start temperature M_s, the high compressive residual stresses are formed and superstrengthening of material takes place. As known, very large wind gears (see Figure 7) are made of carburized high alloy steel [29]. It is possible to make wind gears (see Figure 7) exploring optimal hardenability steel containing 0.6% C,wt with the significantly reduced alloy elements in it. Benefits of intensive quenching processes are provided in Table 7 and Table 8 [7,26,30].

Figure 7: Typical wind mill station containing costly carburized large gears [28].
Table 7: Improvement of S5 steel punch sample properties [7].

Sample property	Oil quench	Intensive quench
Hardness (HRC)	As quenched	62 – 63
	As tempered	60 – 61
Impact strength (N.m)	at 70°F	1.36
	At 100°F	3.4
Residual Stresses (MPa)	200	-900

Table 8: Production application of intense –quenched limited hardenability steel [26].

Application	Former steel and process	New steel and process	Advantages
Gears, modulus 5 – 8 mm	18KhGT carburized	58(55PP) no carburizing	No carburizing steel and parts cost decreases, service life increases.
Large modulus gears, M = 10 – 14 mm	12KhN3A carburized	ShKh4 No carburizing	No carburizing, service life increases 2 times and cost decreases 1.5 times.
Truck leaf springs	60C2KhG	45S	Weight decreases 15 – 20%, durability increases 3 times.
Bearing rings thicker that 12 mm	ShKh15SG	ShKh4	No sudden brittle fracture in service; durability increases 2 times; high production rate

The accurate experimental results on essential benefits of intensively quenched steel parts made from low hardenability steel [26] (see Table 8) can be extended for larger steel parts if
Eq (13) is satisfied. In this case, surface hardened layer should be thicker to provide the same surface residual stresses and superstrengthening effect after intensive quenching of larger steel parts.

Table 9 shows the benefits of new technology.

Table 9: Comparison the new and old technologies and its benefits.

Name of steel part	Old technology	New technology	Benefits
Large carburized gears	Quenching in mineral oils	Interrupted quenching in low concentration of water polymer solutions	No costly 70 - 80 hr carburizing process, decrease corrosion and alloy elements
Large bearing rollers and balls	Quenching in mineral oils or high concentration of water polymer solutions	Interrupted quenching in low concentration of water polymer solutions	Increase service life and significant decrease of alloy elements in steel
Large axles and shafts made of alloy and high alloy steel	Quenching in mineral oils	Quenching in slowly agitated low concentration of water polymer solutions	Increase service life, decrease alloy elements
Rotors	Quenching in mineral oils	Quenching in slowly agitated low concentration of water polymer solutions	Decrease alloy elements, improvement environment condition

Discussion

The discussed in the paper new technology is based on early published and known to wide audience regularities of transient nucleate boiling process and regularities of phase transformation austenite into martensite [7,31,32]. For developing new technology three patents (US patent No 6, 364, 974 B1, UA Patent 114174, and UA Patent 109572) were used to create high surface compressive residual stresses during quenching steel components in low concentration of water polymer solutions [1-
3]. Transient nucleate boiling process during quenching of steel parts in water and water solutions is very intensive by itself due to intense acting of thousands vapor bubbles [4,5]. New characteristics of transient nucleate boiling process were discovered by author [17,18] which were also used for designing new technology. Engineers in heat treating industry, as a rule, considered effective heat transfer coefficients during nucleate boiling which can differ from real HTCs ten times showing always slow cooling [15]. It was widely shared a wrong opinion that nucleate boiling cannot provide enough intensive quenching that is why very powerful and costly pumps were used to agitate quenchants in quench tanks. It is shown in this paper that destroying film boiling process provides intensive quenching during hardening of steel parts. If so, the technological process become very simple and cheap that can make it widely used globally. One more thing is connected with the proposed new technology. Optimal hardenability steel provides optimal hardened layer and maximal surface compressive residual stresses even after complete cooling. It means that process of cooling can be interrupted at proper time to create nano-bainitic microstructure at the core of steel parts [31-34]. In this case additional strengthening of steel parts will be accumulated. This problem was discussed in the recently published paper [8]. ITL Co is developing software for governing new technological processes and is planning to organize small teams of engineers in different countries to start saving material, energy increasing service life of steel parts and decreasing cost of their production and simultaneously improving environment condition.

Conclusion

Large steel parts, beginning from thickness 50 mm (0.050 m) and larger, can be intensively and uniformity quenched in slowly agitated by hydrodynamic emitters of the low concentration of inverse solubility water solution polymer that eliminates completely film boiling making cooling process intensive. In this case the high surface compressive residual stresses and super strengthening effect in quenched steel parts are achieved due to use patented in Ukraine the optimal hardenability steel
tolerated to size and form of hardened component. The proposed new technology saves materials, due to low concentration water polymer solution and reduced percentage of alloy elements in steel, decreases corrosion due to elimination carburization process, increases service life (due to high surface compressive residual stresses and super strengthening effect) and improves environment condition. Along with the mentioned benefits the proposed technology and equipment is significantly cheaper as compared with the existing IQ processes and is rather simple in implementation in heat treating industry. Since the new technology can bring very huge benefits, it makes sense to start testing it in shops of big companies.

References

1. Kobasko NI. Patent US No. 6,364,974 B2, Quenching apparatus and method for hardening steel parts. Assignee: IQ Technologies, Inc Appl. 2002; 09/551,082. Filed 18.04.2000.
2. Ukrainian Patent UA 114174, C2. Alloyed Low Hardenability Steel and Method of its Composing, Filed on Sep.23, 2013, File number: a 2013 11311. 2017.
3. Kobasko NI. Intensive hardening method for metal components, UA Patent, No.109572. 2015.
4. Tolubinsky VI. Teploobmen pri kipenii. Heat transfer at boiling. Ukraine: Naukova Dumka Kyiv. 1980; 320.
5. Kutateladze SS. Fundamentals of Heat Transfer. New York: Academic Press. 1963.
6. Shekriladze IG. Boiling Heat Transfer: An Overview of Longstanding and New Chalanges. In: KN Prabhu, N Kobasko, editors. A Book Film and Nucleate Boiling Processes. Pennsylvania: ASTM International. 2012; 229 – 284.
7. Kobasko NI, Aronov MA, Powell JA, Totten GE. Intensive Quenching Systems: Engineering and Design. Pennsylvania: ASTM International. 2010; 234.
8. Kobasko NI. Optimized Steel Quenching Processes and Their New Modifications. SSRG International Journal of Applied Physics. 2019; 6: 79-86
9. Kobasko NI. Improvement of IQ - 3 processes to eliminate
crack formation, decrease distortion, and maximize material strength, and ductility. EUREKA: Physics and Engineering. 2016; 3-10.

10. Mikheev MA, Mikheeva IM. Basics of Heat Transfer. Moscow: Energy. 1977.

11. Kondrat’ev GM. Thermal Measurements. Moscow: Mashgiz. 1957.

12. Lykov AV. Theory of Heat Conductivity. Moscow: Vysshaya Shkola. 1967; 621.

13. Kovalenko GV, Kobasko NI, Khalatov AA. A Method of Hardening of Steel Components. USSR Certificate № 1355634. Bulletin of Inventions. 1987; 44.

14. Kobasko NI, Moskalenko AA. Intensification of steel quenching methods by use of water solutions of polymers. Promyshlennaya Teplotekhnika. 1996; 18: 55-60.

15. Kobasko NI. Real and Effective Heat Transfer Coefficients (HTCs) Used for Computer Simulation of Transient Nucleate Boiling Processes during Quenching. Materials Performance and Characterization. 2012; 1: 12.

16. Logvynenko PN, Moskalenko AA, Kobasko NI, OV Rasumtseva. Oligomeric mechanism of film boiling elimination (EFB effect) during metal quenching in solutions of polyisobutylene in mineral oil. International Journal of Current Research. 2019; 11: 7333-7339.

17. Kobasko NI. Transient Nucleate Boiling as a Law of Nature and a Basis for Designing of IQ Technologies. Proc. of the 7th IASME/WSEAS International Conference on Heat Transfer. Moscow: Thermal Engineering and Environment. 2009; 67-76.

18. Kobasko NI. Duration of the Transient Nucleate Boiling Process and Its Use for the Development of New Technologies, Film and Nucleate Boiling Processes. Pennsylvania: ASTM International. 2012; 103-125.

19. Kobasko NI. Austempering Processes: That are Performed via Cold Liquids. Germany: Lambert Academic Publishing. 2019; 16.

20. Kobasko N. High Quality Steel vs Surface Polymeric Layer Formed during Quenching. Germany: Lambert Academic Publishing. 2019; 102.

21. Kobasko NI. Intensive Steel Quenching Methods, Theory
22. Kobasko NI. Steel Quenching in Liquid Media under Pressure. Kyiv: Naukova Dumka. 1980; 206.
23. Kobasko NI. A Universal Correlation for the Calculation of Heating and Cooling Time of Any Steel. Materials Performance and Characterization. 2017; 6: 551-565.
24. Kobasko N. Optimal hardenability steel and method for its composing. Germany: Lambert Academic Publishing. 2017; 116.
25. Grossmann MA. Principles of Heat Treatment. Ohio: American Society for metals. 1964; 302.
26. Shepelyakovskii KZ, Ushakov BK. Production surface hardening – Progressive technology of XX and XXI centuries. Proc. of 7th International Congress on Heat Treatment and Technology of Surface Coatings, Moscow and Russian Patent No. 2158320 1999. Construction Steel of Low Hardenability, Application No. 99125102, Filed on Nov. 29. 1990; 2: 11-14.
27. Kobasko NI, Moskalenko AA, Dobryvechir VV. Research on use of low concentration inverse solubility polymers in water for hardening machine components and tools. EUREKA: Physics and Engineering. 2018; 63-71.
28. Kobasko NI. A method for optimizing chemical composition of steels to reduce radically their alloy elements and increase service life of machine components. EUREKA: Physics and Engineering. 2017; 3-12.
29. How do Wind Turbines Work. A New Era for Wind Power in the United States. Wind Energy Technologies Office. Available online at: https://www.energy.gov/eere/wind/how-do-wind-turbines-work
30. Kobasko NI, Morhuniuk WS, Ushakov BK. Design of Steel-Intensive Quench Processes. In: GE Totten, editors. The Steel Heat Treatment Handbook Steel Heat Treatment. New York: CRC Press. 1992; 193-237.
31. Liscic B, Tensi HM, Luty W, editors. Theory and Technology of Quenching. Berlin: Springer-Verlag. 1992; 484.
32. Liscic B, Tensi H, Canale L, Totten G, editors. Quenching
Prime Archives in Physics

Theory and Technology. 2nd edn. New York: CRC Press. 2010; 709.

33. Bhadeshia HKDH. Bainite in Steels: Theory and Practice. 3rd edn. New York: CRC Press Money Publishing. 2015; 616.

34. Moskalenko AA, Kobasko NI, Tolmacheva OV, Totten GE, Webster GM. Quechants Characterization by Acoustical Noise Analysis of Cooling Properties of Aqueous Poly (Alkylene Glycol) Polymer Quenchants. Proc. of the 2nd Int. Conf. on Quenching and Control of the Distortion. 1996; 117-122.