A Simulation Based Screening on Different Coloring Agents used in Cosmetics and Pharmaceutical Industry for their Safety Profile

Tanya Mehra, Ashwani Mishra, Nidhi Pateria Mishra

ABSTRACT

Coloring agents are inseparable part of cosmetic, pharmaceutical Industry and food industry. A study conducted by Food Dyes Health Effects Assessment OEHHA in 2020 reported The percentage of US children and adolescents diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) increased from an estimated 6.1% to 10.2% in the past 20 years. Several studies revealed that Attention Deficit Hyperactivity Disorder could be caused by Artificial Food dyes. In this study an attempt was made to perform the in silico safety analysis of Ferric ferrocyanide, caramel, Carmine, Betanine, Erythrosine, Tartrazine, Indigotine, Allura red, sunset yellow, Brilliant blue, Curcumin, lawsone and Juglone coded in Python 2.7. The properties generated by the software were analyzed where molecular Weight (MW), Volume, TPSA, LogS, LogP, LogD, Caco-2 permeability, HIA, Protein binding, BBB permeability, skin sensitivity, carcinogenicity, eye irritation, respiratory toxicity, genotoxicity, non biodegradability and aquatic toxicity. The result of this study revealed a totally new dimension of the safety of these dyes and pigment which are widely used in the cosmetic, Food and Pharmaceutical Industry.

Key words: in silico, prediction, Pigment, toxicity

1. INTRODUCTION

Colorants provide the desired color and thus make it possible to obtain satisfying products for consumers in a wide variety of domains, such as the textile, food or cosmetic industries. 1

Colouring agents can be classified in two main groups: colorants (or dyes) and pigments. Colorants are generally soluble synthetic organic colouring agents. They are majorly used to colour cosmetic products, Pigments are insoluble colouring agents, which when utilized, remain in crystals or particles form. They are mineral and organic pigments, Make-up Toothpaste, soaps and beauty masks are the products which majorly have mineral and organic pigments and important as coloring agents.

There are wide variety of coloring agents used in Cosmetic and pharmaceutical Industry minority of them are Ferric ferrocyanide 3 which is a dark blue pigment and produced by oxidation of ferrous ferrocyanide salts. Another is Caramel4 is a dark-orange color product. It is made by heating a variety of sugars, Carmine 6 or cochineal or carmine a cochineal extract, which is natural bright-red color.
Betaine or phytol accamin a water soluble red pigment occurs in present in the roots of beet root, Beta vulgaris L7, Erythrosine is a pink dye, an organiodione compound, and a derivative of fluorone8, Tartrazine is a synthetic azo dye which is lemon yellow in color and used in cosmetic9. Indigotine is an blue color dye, soluble in water .It is organic salt derived from indigo by aromatic sulfonation. Allura red is a red azo water soluble dye11. Sunset yellow is used as an orange or yellow-orange dye12. Brilliant blue is blue color synthetic organic compound 13, Curcumin is a yellow chemical produced by plants Curcuma longa.14 Lawson hennotannic acid, is a red-orange dye present in the leaves of the henna plant (Lawsonianermis)15, Jugloneor 5-hydroxy-1,4-naphthalenedione (IUPAC) is an organic compound also known as C.I. Natural Brown 7 and C.I. 7550016.

The latest software-based methods are powerful tools for scanning and predicting new agents17 depends on their potential and properties and this led to screen the best and safe coloring agent by using Biopharmaceutical attributes, Drug likeliness properties, Skin sensitivity and toxicity study.

2. METHODS

The screening of the best and safe coloring agent was done in different steps Initially majorly used pigments and dye were selected from literature in cosmetic and pharmaceutical Industry .Then their structure were generated in desired format using software. These agents were then subjected for the in silico screening on the basis of Biopharmaceutical properties like molecular weight, polarity, solubility, TPSA, Log S, LogP, Permeability, Drug likeliness property by utilizing Lipinski rule of 5 and Pfizer rule and Toxicity study using BBB permeability, skin sensitivity, carcinogenicity, Eye irritation, Respiratory toxicity, genotoxicity, non biodegrability and aquatic toxicity. This study was conducted using online open accessible software. The software used for the in-silico study was mainly coded in Python 2.7.

2.1 Screening for Biopharmaceutical attributes

In the screening of pigments and dye biopharmaceutical attributes were generated with the help of open access software then they were analyzed on the basis of their safety and permeability profile. In the screening of pigment and dye the parameters which were analyzed were Molecular Weight (MW) Volume, Total Polar surface area, LogS, LogP, LogD, Caco-2 Permeability, Pgp-inhibitor, Pgp-substrate, Human intestinal Absorption, Protein binding, Volume of distribution. Blood brain barrier permeability, half-life and clearance. On the basis of these properties different radar plots were generated for the analysis of best agent.

2.2 Drug likeliness property

The vital potential of these pigments and dyeing agent were analyzed by Lipinski Rule and Pfizer Rule. The violation counts were analyzed for individual agents in order to find best agent . the criteria for Lipinski rule of 5 :<5 hydrogen bond donors, <10 hydrogen bond acceptors, molecular weight < 500, AlogP < 5.18

2.3 Prediction of Toxicity study

This study was also conducted in silico in which the toxicity prediction was done using Toxicophore rule like Genotoxic Carcinogenicity Rule, Non-Genotoxic Carcinogenicity Rule, Skin Sensitization Rule, Aquatic Toxicity Rule and NonBiodegradable Rule. The main toxicity analyzed were sensitivity which were analyzed were Skin Sensitization, Carcinogenicity, Eye Corrosion, Eye Irritation.

3. RESULT AND DISCUSSION

Prussian blue, Caramel, Tartrazine and Juglone were observed as best coloring agents as per the biopharmaceutical properties indicated in table - 1 out of Prussian blue, Carmine, Betanine, Erythrosine, Indigotine, Allura red, sunset yellow, brilliant blue, lawsone Curcumin.

Least molecular weight was exhibited by the Prussian blue among Caramel, Carmine, Betanine, Erythrosine. Highest polarity was exhibited by Betanine. Two coloring agent were showed no violation from drug likeness property Lipinski rule and Pfizer rule. Carmine, Betanine and Erythrosine showed higher human intestinal absorption. Least protein drug binding was exhibited by Prussian blue and that’s why it had high volume of distribution. Skin sensitization was exhibited by Prussian blue, Carmine, Betanine and Erythrosine. Notoxicophore rules was violated by Prussian blue but rest of the coloring agent Caramel, Carmine, Betanine, Erythrosine showed violation in toxicophore rules as shown in table-2.

The least molecular weight was exhibited by the sunset yellow as compared to Tartrazine, Indigotine and Allura red. Highest polarity was revealed by the Tartrazine. All these coloring agent accepted Lipinski Rule and Pfizer rule. The maximum human intestinal absorption and minimum protein binding exhibited by the Indigotine. Sunset yellow only showed skin sensitivity but Eye Corrosion and Eye Irritation showed by almost all of them.
Table 1: Different coloring agents along with structure and vital properties

Ferric ferrocyanide (Prussian blue)	caramel	Carmine	Betanine	Erythrosine
![Structure](image1.png)	![Structure](image2.png)	![Structure](image3.png)	![Structure](image4.png)	![Structure](image5.png)
![Radar Chart](image6.png)	![Radar Chart](image7.png)	![Radar Chart](image8.png)	![Radar Chart](image9.png)	![Radar Chart](image10.png)
Tartrazine	Indigotine	Allura red	sunset yellow	brilliant blue
![Structure](image11.png)	![Structure](image12.png)	![Structure](image13.png)	![Structure](image14.png)	![Structure](image15.png)
![Radar Chart](image16.png)	![Radar Chart](image17.png)	![Radar Chart](image18.png)	![Radar Chart](image19.png)	![Radar Chart](image20.png)
Curcumin	lawsone	Juglone		
![Structure](image21.png)	![Structure](image22.png)	![Structure](image23.png)		
![Radar Chart](image24.png)	![Radar Chart](image25.png)	![Radar Chart](image26.png)		
Table 2: Different properties of coloring agents

Parameters	Prussian blue	Caramel	Carmine	Betanine	Erythrosine
Molecular Weight (MW)	26.000	30.258	23.310	23.940	24.570
Volume	126.070	133.379	492.090	501.140	833.640
TPSA	-	0.945	1.105	1.096	1.949
LogS	0.859	34.140	245.670	246.550	81.650
LogP	-2.919	-1.542	-1.401	-0.543	-3.129
LogD	0.241	0.746	1.121	-2.144	5.583

Medicinal Chemistry					
Lipinski Rule	Accepted	Accepted	Rejected	Accepted	Rejected
Pfizer Rule	Accepted	Accepted	Rejected	Accepted	Rejected

Absorption					
Caco-2 Permeability	-4.312	-4.425	-6.487	-6.737	-5.035
Pgp-inhibitor	---	---	---	---	---
Pgp-substrate	---	---	---	+++	---
HIA	---	---	+++	+++	+

Distribution					
PPB	13.495%	81.850%	92.879%	21.953%	100.402%
VD	0.969	0.509	0.747	0.485	0.390
BBB	+++	++	---	--	--

Excretion					
CL	5.320	9.108	1.683	1.617	2.767
T1/2	0.880	0.644	0.916	0.835	0.836

Toxicity					
Skin Sensitization	+	--	++	++	+++
Carcinogenicity	+++	-	---	---	---
Eye Corrosion	+++	++	---	---	---
Eye Irritation	+++	+++	-	---	+++
Respiratory Toxicity	+++	++	---	+++	+++

Toxicophore rules					
Acute Toxicity Rule	0 alert(s)	0 alert(s)	0 alert(s)	0 alert(s)	0 alert(s)
Genotoxic Carcinogenicity	0 alert(s)	0 alert(s)	4 alert(s)	1 alert(s)	0 alert(s)
NonGenotoxic Carcinogenicity Rule	0 alert(s)	4 alert(s)	4 alert(s)	0 alert(s)	0 alert(s)
Skin Sensitization Rule	0 alert(s)	0 alert(s)	1 alert(s)	0 alert(s)	0 alert(s)
Aquatic Toxicity Rule	0 alert(s)	2 alert(s)	3 alert(s)	0 alert(s)	0 alert(s)
NonBiodegradable Rule	0 alert(s)	0 alert(s)	3 alert(s)	0 alert(s)	2 alert(s)
Table 3: Different properties of coloring agents

Parameter	Tartrazine	Indigotine	Allura red	sunset yellow
Molecular Weight	464.980	421.990	-50.020	405.990
TPSA	217.040	174.190	168.580	159.350
LogS	-1.287	-0.255	-2.854	-2.493
LogP	-1.069	-0.620	1.563	0.576
LogD	-1.034	0.045	0.200	-0.071

Medicinal Chemistry

Pfizer Rule	Accepted	Accepted	Accepted	Accepted

Absorption

Parameter	Tartrazine	Indigotine	Allura red	sunset yellow
Caco-2 Permeability	-5.211	-6.403	-4.655	-4.760
Pgp-inhibitor	-	---	---	---
Pgp-substrate	---	---	---	---
HIA	--	++	---	---

Distribution

Parameter	Tartrazine	Indigotine	Allura red	sunset yellow
PPB	100.047%	98.064%	100.044%	100.096%
VD	0.169	0.351	0.378	0.460
BBB Penetration	---	---	---	---

Excretion

Parameter	Tartrazine	Indigotine	Allura red	sunset yellow
CL	0.817	0.924	0.819	0.456
t1/2	0.087	0.046	0.056	0.026

Toxicity

Parameter	Tartrazine	Indigotine	Allura red	sunset yellow
Skin Sensitization	---	---	-	+++
Carcinogenicity	---	---	---	---
Eye Corrosion	---	++	+	+
Eye Irritation	++	+++	+	+

Toxicophore Rules

Parameter	Tartrazine	Indigotine	Allura red	sunset yellow
Acute Toxicity Rule	0 alert(s)	0 alert(s)	0 alert(s)	0 alert(s)
Genotoxic Carcinogenicity	5 alert(s)	0 alert(s)	6 alert(s)	6 alert(s)
Rule				
NonGenotoxic	0 alert(s)	0 alert(s)	0 alert(s)	0 alert(s)
Carcinogenicity Rule	0 alert(s)	0 alert(s)	0 alert(s)	0 alert(s)
Skin Sensitization Rule	0 alert(s)	0 alert(s)	2 alert(s)	2 alert(s)
Aquatic Toxicity Rule	1 alert(s)	0 alert(s)	1 alert(s)	1 alert(s)
NonBiodegradable Rule	2 alert(s)	1 alert(s)	2 alert(s)	2 alert(s)
Table 4: Different properties of coloring agents

Parameters	Brilliant blue	Curcumin	lawsone	Juglone
Molecular Weight (MW)	830.290	368.130	174.030	174.030
Volume	850.258	381.036	174.955	174.955
Density	0.977	0.966	0.995	0.995
TPSA	141.910	93.060	51.210	54.370
LogS	-7.856	-3.921	-3.604	-2.823
LogP	6.573	2.742	0.959	1.839
LogD	2.696	2.820	1.076	1.679
Medicinal Chemistry				
Lipinski Rule	Rejected	Accepted	Accepted	Accepted
Pfizer Rule	Accepted	Accepted	Accepted	Accepted
Absorption				
Caco-2 Permeability	-5.776	-4.834	-4.527	-4.637
Pgp-inhibitor	+++	--	---	---
Pgp-substrate	---	---	---	---
HIA	---	---	---	---
Distribution				
PPB	104.109%	99.799%	72.261%	94.329%
VD	0.586	0.369	0.405	0.484
BBB Penetration	---	++	++	++
Excretion				
CL	1.042	13.839	6.788	6.497
T_{1/2}	0.003	0.948	0.339	0.694
Toxicity				
Skin Sensitization	+	+++	---	++
Carcinogenicity	+++	++	++	+++
Eye Corrosion	---	---	+	++
Eye Irritation	---	++	+	+
Respiratory Toxicity	+++	+++	+++	+++
Toxicophore Rules				
Acute Toxicity Rule	0 alert(s)	0 alert(s)	0 alert(s)	0 alert(s)
Genotoxic Carcinogenicity Rule	1 alert(s)	1 alert(s)	0 alert(s)	2 alert(s)
NonGenotoxic Carcinogenicity Rule	0 alert(s)	1 alert(s)	0 alert(s)	2 alert(s)
Skin Sensitization Rule	3 alert(s)	8 alert(s)	4 alert(s)	3 alert(s)
Aquatic Toxicity Rule	0 alert(s)	2 alert(s)	0 alert(s)	3 alert(s)
NonBiodegradable Rule	2 alert(s)	1 alert(s)	1 alert(s)	0 alert(s)
There was no single coloring agent which revealed no violation from toxicophore rules but Indigotine showed least violation as compared to Tartrazine, Allura red and sunset yellow as shown in table-3.

In table-4, the lowest molecular weight is exhibited by lawsone and Juglone as compared to Brilliant blue and Curcumin. Highest polarity as well as highest protein drug binding was showed by Brilliant blue. Curcumin, lawsone and Juglone revealed no violation from drug likeliness properties like Lipinski Rule and Pfizer rule. lawsone also indicated BBB permeability. In case of skin sensitization three coloring agents Brilliant blue. Curcumin, and Juglone showed sensitivity. Carcinogenicity was revealed by all four Brilliant blue. Curcumin, lawsone and Juglone coloring agents. Except Brilliant blue all three revealed the predictability of Eye Corrosion and Eye Irritation. There was no single coloring agent which revealed no violation from toxicophore rules but lawsone exhibited least violation as compared to Brilliant blue. Curcumin, and Juglone.

4. CONCLUSION

Prussian blue revealed least molecular weight as compared to Caramel, Tartrazine and Juglone but Juglone exhibited bit higher molecular weight then Prussian blue. Though all the four selected coloring agent showed accepted drug likeliness properties but only two coloring agents Caramel, Tartrazine showed no skin sensitivity. Carcinogenetic was exhibited by Prussian blue and Juglone. Eye Corrosion and Eye Irritation both were exhibited by Prussian blue Caramel and Juglone excluding Tartrazine which showed only eye irritation. The toxicophore properties violation was zero in case of Prussian blue as compared to Caramel, Tartrazine and Juglone. On the basis of low molecular weight, zero violation from Toxicophore properties and drug likeliness Prussian blue can be selected as best coloring agent, but its carcinogenicity, Eye Corrosion and Eye Irritation predictability must be consider and clinically analyzed. Then only its safety profile may be accepted.

REFERENCES

1. Patrycja Brudzynska,*Alina Sionkowska Michel Grisel, Plant-Derived Colorants for Food, Cosmetic and Textile Industries: A Review, Materials 2021, 14, 3484.
2. Valet B, Mayer M, Fitoussi F, Capellier R, Dormoy M, Ginestar J. Colouring Agents in Cosmetic Products (Excluding Hair Dyes): Types of Decorative Cosmetic Products, Analysis of Cosmetic Products 2007, Pages 141-152.
3. https://www.cosmeticsinfo.org/ingredients/color-additives/
4. St. Clair, Kassia (2016). The Secret Lives of Colour. London: John Murray. pp. 189–191.
5. New Oxford American Dictionary (3rd ed.). New York: Oxford University Press. 2010. p. 260. The American Heritage Dictionary of the English Language (5th ed.). Boston: Houghton Mifflin Harcourt. 2011. p. 278.
6. J. Müller-Maatsch, C. Gras, The “Carmine Problem” and Potential Handbook Alternatives 1 on Natural Pigments in Food and Beverages Industrial Applications for Improving Food Color. Woodhead Publishing Series in Food Science, Technology and Nutrition, 2016, Pages 385-428
7. MPedreño MA, Escribano J. Correlation between antiradical activity and stability of betanine from Beta vulgaris L roots under different pH, temperature and light conditions. Journal of the Science of Food and Agriculture. 81(7):627-631.
8. https://dbpedia.org/page/Erythrosine
9. Takeuchi K, Ibusuki T. Quantitative determination of aqueous-phase ozone by chemiluminescence using indigo-5,5'-disulfonate. Anal. Chem. 1989; 61 (6): 619–23.
10. Zvi Rapportor, ed. (2004). The Chemistry of Phenols. Chichester: John Wiley & Sons. ISBN 9780470869451.
11. Abbey J (2013). Yasmine Motarjemi; Gerald Moy; Ewen Todd (eds.). Colorants. Encyclopedia of Food Safety. Vol. 2: Hazards and Diseases. Academic Press. pp. 459–465. ISBN 9780123786135.
12. Newsome, Andrew G, Culver, Catherine A; van Bremmen, Richard B. (2014-07-16). "Nature's Palette: The Search for Natural Blue Colorants". Journal of Agricultural and Food Chemistry. 62 (28): 6498–6511
13. Prasad S, Aggarwal BB. Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine. In: Benzie IFF, Wachtel-Galor S, editors.
Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Chapter 13. Available from: https://www.ncbi.nlm.nih.gov/books/NBK92752

14. Dweck AC, (2002). "Natural ingredients for colouring and styling". International Journal of Cosmetic Science. 24 (5): 287–302

15. Soderquist, Charles J. Juglone and allelopathy. Journal of Chemical Education. 1973; 50 (11): 782–3.

16. Jasem Saki, Farnoush Shadnoush, Reza Arjmand, Fakher Rahim. In-Silico Identification of the Best Compound Against Leishmania infantum: High Throughput Screening of All FDA Approved Drugs. Turkiye Parazitol Derg 2019 Dec 23;43(4):158-164.

17. Yang Y Shi, C.-Y. Xie, J Dai, J-H, He, S-L, Tian, Y. Identification of Potential Dipeptidyl Peptidase (DPP)-IV Inhibitors among Moringa oleifera Phytochemicals by Virtual Screening, Molecular Docking Analysis, ADME/T-Based Prediction, and In Vitro Analyses. Molecules 2020.

18. https://oehha.ca.gov/media/downloads/risk assessment/report/ food dyes assessment draft.