Genomic assessment of *Stenotrophomonas indicatrix* for improved sunflower plant

Bartholomew Saanu Adeleke1 · Ayansina Segun Ayangbenro1 · Olubukola Oluranti Babalola1

Received: 1 May 2021 / Revised: 21 June 2021 / Accepted: 21 June 2021 / Published online: 30 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Diverse agriculturally important microbes have been studied with known potential in plant growth promotion. Providing several opportunities, *Stenotrophomonas* species are characterized as promising plant enhancers, inducers, and protectors against environmental stressors. The *S. indicatrix* BOVIS40 isolated from the sunflower root endosphere possessed unique features, as genome insights into the *Stenotrophomonas* species isolated from oilseed crops in Southern Africa have not been reported. Plant growth-promotion screening and genome analysis of *S. indicatrix* BOVIS40 were presented in this study. The genomic information reveals various genes underlining plant growth promotion and resistance to environmental stressors. The genome of *S. indicatrix* BOVIS40 harbors genes involved in the degradation and biotransformation of organic molecules. Also, other genes involved in biofilm production, chemotaxis, and flagellation that facilitate bacterial colonization in the root endosphere and phytohormone genes that modulate root development and stress response in plants were detected in strain BOVIS40. IAA activity of the bacterial strain may be a factor responsible for root formation. A measurable approach to the *S. indicatrix* BOVIS40 lifestyle can strategically provide several opportunities in their use as bioinoculants in developing environmentally friendly agriculture sustainably. The findings presented here provide insights into the genomic functions of *S. indicatrix* BOVIS40, which has set a foundation for future comparative studies for a better understanding of the synergism among microbes inhabiting plant endosphere. Hence, highlighting the potential of *S. indicatrix* BOVIS40 upon inoculation under greenhouse experiment, thus suggesting its application in enhancing plant and soil health sustainably.

Keywords Agricultural sustainability · Bacterial endophytes · Crop improvement · Plant growth-promoting genes · Whole-genome sequencing

Introduction
In recent years, initiatives to increase agricultural food production for the global population by utilizing bioincentives derived from endophytic microorganisms rather than agrochemicals is on the increase (Singh et al. 2011; Mahanty et al. 2017; Adeleke and Babalola 2021). The indiscriminate use of agrochemicals on farmlands has affected biodiversity and human health (Adeleke and Babalola 2020). Nevertheless, using microbial bioincentives to boost crop production is a viable way to achieve a desirable sustainable food supply (Babalola et al. 2021). The application of bioinoculants has been linked to improve plant development and protection, increase nutrient bioavailability to plants and induce systemic resistance in plants against environmental stresses (Mashiane et al. 2017). Importantly, microbes associated with economic crops have demonstrated multifunctional characteristics in stimulating plant growth through solubilization of soil minerals (phosphorus, potassium, and zinc), nitrogen fixation, enzyme, and siderophore production (Glick 2020; Nascimento et al. 2020a).

Plant growth promotion depends on natural bioactive compounds, which are inherent or produced by its associated microorganisms (Palanichamy et al. 2018). Their enormous contributions in the formation of ecological balance between plants and microbes, whether from microorganisms or plants, remain fundamental (Fadiji et al. 2021). The importance of plant growth-promoting (PGP) genes and secondary...
metabolites from microorganisms are not only applicable in agriculture or restricted to plant improvement, but with wider therapeutic importance (Manganyi et al. 2019; Adeniji et al. 2021).

The necessity for their separation, characterization, and analysis using bioinformatics techniques became critical to understand the genetic makeup of bacteria (Mamphogoro et al. 2020). Endophytic investigations utilizing various bioinformatics methods have recently uncovered various PGP genes and secondary metabolites in bacteria, thanks to current advances in biotechnological findings (Mohotti et al. 2020; Nascimento et al. 2020a). Each of these gene clusters codes for different metabolic compounds, such as siderophore, aryl polyprene, and lanthipeptide-class-II with specific functions. The siderophore genes found in the genomes of bacteria, such as Burkholderia, Bacillus, Pseudomonas, and Rhizobium associated with the plant, provide a powerful arsenal for suppressing pathogens and plant growth promotion (Ludwig-Müller 2015; Bhattacharyya et al. 2017). Similarly, the detection of several other secondary metabolite gene clusters from endophytic bacteria colonizing medicinal plants has been documented (Ludwig-Müller 2015; Dinesh et al. 2017).

The survival and adaptive mechanism of bacteria in extreme environments can be linked to their ability to produce vital PGP genes and the synthesis of secondary metabolites, thus making them suitable candidates for biotechnological, agricultural, and industrial applications (Nascimento et al. 2020a; Chukwuneme et al. 2021). The genomic analysis of sequenced bacterial genome revealing conservative and functional genes have been reported (Mitter et al. 2013; Zeng et al. 2018; Akinola et al. 2021), but information regarding novel plant-growth-promoting and secondary metabolite genes of S. indicatrix isolated from sunflower root endosphere has not been documented, thus necessitating this study. S. indicatrix is a Gram-negative, non-spore-forming, rod-like bacterium belonging to the Stenotrophomonas genus. Recent findings have shown the identification and characterization of S. indicatrix from the root nodules and rhizosphere soils (Malisorn et al. 2020). Other species, such as S. maltophilia isolated from the rhizosphere soil of peanut (Arachis hypogaea) and maize (Zea mays) have significantly aided plant growth in nitrogen-deficient soil (Alexander et al. 2019; Perez-Perez et al. 2020). Few species of the genus Stenotrophomonas, however, are known to be found in soils and plants, and they play a variety of roles in plant physiology and metabolism (Kumar and Audipudi 2015; Singh and Jha 2017). For example, S. rhizophilia strains have been isolated from the soil, rhizosphere, and endosphere of many plants with active participation in plant defense against phytopathogens due to their ability to secrete osmoprotective substances and degradation of lignocellulose compounds (Wolff et al. 2002; Berg et al. 2010; de Lima Brossi et al. 2016). In addition, Maela and Serepa-Dlamini (2020) had reported a draft genome sequence of endophytic bacteria S. pavanii strain MHSD12 associated with fever bush (Dicoma anomala). Despite this, evidence on the S. indicatrix from the oilseed crop is uncommon, hence suggesting its promising application in agricultural biotechnology.

The detection of important genes in the genome of Stenotrophomonas spp can significantly enhance their functions in the establishment of root–soil, soil–bacterial, and root–bacterial interactions for improved plant adaptation mechanisms to soil stressors (Vurukonda et al. 2018). These genes can affect the lifestyle and bacterial functions in the host plants. For instance, the detection of chemotaxis and biofilm production genes can contribute to root colonization and plant defense mechanisms. S. indicatrix can be a potential biological tool in the formulation of bioinoculants for improved crop productivity based on these functional premises. In this study, the genomic insights into endophytic S. indicatrix BOVIS40 were obtained from the sunflower root endosphere with significant effects on sunflower yield. Whole-genome sequencing (WGS) analysis unraveled vital genes involved in various biological functions and plant growth promotion. To the best of our knowledge, this is the first report on the WGS of S. indicatrix BOVIS40 sourced from sunflower root in Southern Africa. Hence, this study provides insights into S. indicatrix BOVIS40 about (i) plant growth-promoting activities, (ii) whole-genome sequencing, (iii) functional and secondary metabolite genes, and (iv) sunflower improvement under greenhouse experiment.

Materials and methods

Source of plant growth-promoting endophytic bacterium S. indicatrix BOVIS40

The healthy sunflower roots used in this study were sourced from Lichtenburg, South Africa (26°4′31.266°S, 25°58′44.442°E). The plant surface-cleaning, isolation, and characterization of the bacterial isolates were performed according to the modified methods of Shishido et al. (1995). Bacterial isolates were screened for various PGP traits. Phosphate solubilization (PS) assay was performed according to the methods described by Pikovskaya (1948) with little modifications, while indole acetic acid synthesis by bacterial strains was conducted following the methods described by Bric et al. (1991). Similarly, methods described by Sun et al. (2006) and Schwyn and Neilands (1987) were employed for exopolysaccharide test and siderophore screening on chrome azurol S (CAS) medium, respectively.
Molecular identification and whole-genome sequencing

The genomic content of strain BOVIS40 was extracted using a commercial Quick-DNA™ Miniprep Kit specific for fungi or bacteria (Zymo Research, Irvine, CA, USA; Cat. No. D6005), as stipulated in the manufacturer’s guide. Determination of quantity and quantity of the extracted DNA was achieved using a NanoDrop spectrophotometer (Thermo Fischer Scientific, CA, USA). The molecular identification of bacterial isolate as S. indicatrix based on 16S rDNA sequence data analysis was according to the method described by Araújo et al. (2002). The WGS of strain BOVIS40 was performed at Inqaba Biotechnical Industries (Pty) Ltd, Pretoria, South Africa.

The WGS of endophytic bacterial strain BOVIS40 was performed according to the standard Illumina method. Succinctly, fragmentation of bacterial genomic DNA was performed using the NEB Ultra II FS kit enzymatic approach. AMPure XP beads were employed for the selection from the resulting DNA fragments based on size range (200–700 bp). Subsequently, DNA end-repaired were achieved by fragmentation, and each fragment was ligated to Illumina-specific adapter sequences. Furthermore, the indexing of each sample and selection based on the size in the second step was performed. The quantity of samples at dilution of standard concentration to 4 nM was determined using a fluorometric method. After that, sequencing was performed using a NextSeq mid-out kit (300 cycles) on Illumina’s NextSeq platform, following a guideline as described by the manufacturer. The resulting 400 Mb of data (2 × 150 bp long paired-end reads) were obtained for each sample.

For WGS analysis, each sequence (FASTQ file) was uploaded to the KBase (https://kbase.us/) (Arkin et al. 2018). The quality assessment of the sequence reads was evaluated by FastQC (version 0.11.5) (Bioinformatics 2011), while the removal of sequence adaptor and low-quality bases was processed with trimmomatic (version 0.36) (Bolger et al. 2014). Furthermore, sequence reads were assembled by SPAdes (version 3.13.0) (Nurk et al. 2013), then annotated by employing RASTTk (Rapid Annotations using Subsystems Technology toolkit—version 1.073) and SEED online server to categorize the distribution and functions of the predicted genes into subsystems (https://rast.nmpdr.org). The prediction of functional protein-coding genes (PCG) was obtained from the genomic protein output after processing in NCBI (https://www.ncbi.nlm.nih.gov/). All analyses were performed using default parameters unless otherwise specified. Secondary metabolites were determined by antiSMASH (version 6.0.0) (Weber et al. 2015). The circular genome visualization with the well-informed genomic feature was generated on KBase by uploading the genome assembly fasta file (Arkin et al. 2018), while the phylogeny analysis was performed using MrBayes (http://www.phylogeny.fr/one_task.cgi?task_type=mrbayes) (version 3.2.6) (Huelsenbeck and Ronquist 2001).

Inoculum preparation and seed treatment

A seed inoculation assay was used to facilitate bacterial adherence to the disinfected sunflower seeds. The effectiveness of sunflower seed inoculation was performed following the methods of Gholami et al. (2009). The bacterial inoculum size in LB broth at 24-h incubation was standardized to 0.5 (10^6 CFU/ml) at OD_600. Cleaning of the seeds was performed by washing in sterile distilled water to remove floating-unhealthy seeds and dirt, and disinfected in 70% ethanol for 3 min, followed by 3% hypochlorite for 1 min, then immersed in 70% alcohol for 2 min with final washing with sterile distilled water (5 times). Bacterial inoculated in LB broth was incubated on a rotary incubator machine at 180 rpm for 24 h. Broth culture was centrifuged to obtain the pelleted cells after washing in 0.85% normal saline and re-suspended in the same solution. The sterilized seeds were suspended in LB bacterial culture containing 1% (v/w) carboxymethyl cellulose (CMC) as an adhesive in a 250 ml flask for 60 min. The seeds suspended in sterile distilled water without bacterial inoculum serve as the control.

Greenhouse experimental study

The soil used for planting in the greenhouse was sourced from agricultural farmlands in North-West University, Mafikeng Campus (Fig. 1). Soil debris and other plant materials were removed, air dry, and sieved with a 2 mm micro stainless steel mesh sieve. Equal weight of soil, approximately 5 kg, was put inside autoclavable plastic bags and sterilized at 121 °C for 15 min. This step was repeated three times to ascertain all spore formers, vegetative cells, and forms of life were eliminated.

The inoculated and non-inoculated pots were randomly arranged by employing a complete randomized design (CRD) approach with 8 replicates for each treatment at a 10 cm distance apart in a greenhouse under natural light. Bacterial strains inoculated in 1 L LB broth were incubated in a rotary shaker (SI-600, LAB Companion, Korea) at 180 rpm for 2 days for optimal growth density. The broth was centrifuged (8000g for 10 min) and pelleted bacterial cells obtained were suspended in saline solution (0.85%). The centrifugation and washing of the pellets were performed under sterile experimental conditions.

The plastic pots measurement of 34 cm in diameter and 29 cm tall were washed with sterile water and sterilized with 15% sodium hypochlorite solution before filling with 15 kg dry-sterilized loamy soil. The surface-sterilized sunflower seeds were inoculated with 150 ml standardized bacterial
inoculum, agitated in a shaker incubator at 120 rpm at 30 °C for 2 h. Then, the filtrate suspension was gently poured out by decanting. Seeds were placed on a foil paper under sterile laminar flow (Filta Matix Laminar Flow Cabinet) and air-dried before taken to the greenhouse. Air-drying was performed to ensure the sticking of the bacterial inoculum to the surface of the seeds. The sterile plastic pots containing 15 kg sterile autoclaved soil were moistened with 500 ml sterilized water before sowing. Ten seeds maximum were sown per pot (at 1.5 cm deep). After seed emergence, i.e., at 8 days, thinning was performed, leaving one seedling in a pot. Growing seedlings were maintained at a temperature of 30 ± 2 °C, a day–night cycle of approximately 14 h under natural light, and relative humidity of 85%. The pots were moistened with an equal amount of water and maintained daily. Pots containing seedlings without inoculation serve as the control. The plants were harvested at maturity after 132 days of planting.

Sunflower morphological parameters below-and-above-ground level

The data collected based on sunflower morphological parameters after harvesting include the root weight (dry), number of lateral roots, root number, shoot weight (dry), tap root length, root weight (fresh), etc. These parameters were considered following the methods described by Igiehon et al. (2019). After harvesting from a greenhouse, sunflower plants were taken to the research laboratory. The soil adhering to sunflower roots was thoroughly cleansed/washed under running sterile water. The roots and shoot weight were weighed for fresh weight determination on a weighing balance (Wagi Elektroniczne, Poland). Also, lateral roots and root numbers were determined. Furthermore, plant roots and shoots were packed/wrapped in foil paper and oven-dry at 60 °C for 24 h and re-weighed on a weighing machine for the determination of roots and shoot dry weights.

Determination of sunflower yield parameters

The sunflower yield parameters such as seed weight (fresh and dry), and total seed weight (dry) were determined. After drying, sunflower seeds were manually separated from the sunflower head containing seeds. Seeds were oven-dried at 60 °C for 24 h, and seed weight (dry) was measured on a weighing balance. The plant samples were kept in plastic bags for further analysis. The whole experiment was repeated for each treatment.
Soil variable analysis

Approximately 0.5 kg of sieved soil used in the greenhouse experiment was used for soil physical and chemical parameters determination (Ali et al. 2009). The chemical parameters such as silt, clay, and sand, and chemical parameters such as organic matter, magnesium, iron, pH, manganese, potassium, phosphorus, total nitrogen, and organic carbon were evaluated.

Results

Biochemical and cultural features

The biochemical and cultural characterization and PGP features of *S. indicatrix* BOVIS40 from the sunflower root endosphere are shown in Table 1. The results revealed that strain BOVIS40 is rod-like, catalase-positive, and Gram-negative. Also, strain BOVIS40 utilizes all the sugars tested and grows between pH ranging from 4 to 10, temperature from 25 to 40 °C, and 3.5% normal saline. Plant growth-promoting screening showed a significant difference in siderophore value of 77.54%, phosphate content of 32.93 µg/ml, and IAA of 16.15 µg/ml, respectively (Table 1). Bacterial endophytes exhibited significant reactions to cellulase, xylanase, and protease compared to amylase and protease production with no significant difference from the plate assay experiment (Table 1).

Whole-genome sequence information of bacterial strain BOVIS40

The WGS analysis of strain BOVIS40 yielded a sequence read count of 7,301,524, the genome size is 4,427,090 bp, and the G + C content of 66.4% (Table 2). The read length mean was 151 bp while N_{50} and L_{50} values were 29,344 and 44 bp respectively and 252 contigs. The genome analysis revealed 4160 coding sequences, 2 rRNA, and 62 tRNA. The circular genome visualization of *S. indicatrix* strain BOVIS40 is presented in Fig. 2. The subsystem statistics show 27 subsystem feature counts of the coding protein into functional groups based on the annotated genome classification by SEED in RAST. The functional basis of 3957 protein-coding genes (PCG) was assessed from the KEGG database and RAST online server. The 1476 genes annotated by the SEED viewer were grouped into molecular function, cellular components, and biological

Characteristics	Result	Plant growth-promoting tests			
			Isolate screening	Qualitative	Quantitative
Gram reaction	−	IAA (µg/mL)	+	16.15 ± 0.15^a	
Shape	Rod	Siderophore (%)	+ +	77.54 ± 0.42^c	
Catalase	+	Phosphate (µg/mL)	+	32.93 ± 0.08^b	
Starch hydrolysis	+	Exopolysaccharide	+	−	
Nitrate	+	Enzyme assay		ZOC (mm)	
Oxidase	+	Amylase	+	33.97 ± 0.06^c	
Citrate	+	Cellulase	+	41.00 ± 0.01^d	
Casein hydrolysis	+	Xylanase	+	20.00 ± 0.01^b	
Salt tolerance (% v/v) (max.)	3.5	Mannanase	+	34.00 ± 0.01^c	
Temperature range (°C)	25–40	Protease	+	3.00 ± 0.01^a	
pH range	4–10				
Glucose	+ A				
Fructose	+ A				
Galactose	+ A				
Sucrose	+ A				
Mannitol	+ A				
Xylose	+ A				
Raffinose	+ A				
Maltose	+ A				
Arabinose	+ A				

ZOC zone of clearance measurement
− negative reaction; + positive reaction; + A positive reaction (acid production)

Values are represented as means ± standard deviation of triplicate readings. Mean ± standard deviation values with different superscripts (small letters) within the same column represent a significant difference.
processes. The topmost five groups were protein metabolism (177 genes), amino acids and derivatives (258 genes), cofactor vitamins, prosthetic groups, pigments (128 genes), carbohydrates (165 genes), and membrane transport (136 genes) (Fig. 3). The phylogeny analysis of the strain BOVIS40 is presented in Fig. 4.

Table 2 Genome characteristics and annotation information

Genome annotation features	*S. indicatrix* strain BOVIS40
Domain	Bacteria
Taxonomy	Bacteria, Proteobacteria, Gammaproteobacteria, Lysobacterales, Lysobacteraceae, *Stenotrophomonas*
Size (bp)	4,427,090
G+C content (%)	66.4
N_s	29,344
L_s	44
Number of contigs (with PEGs)	525
Number of subsystems	304
Number of coding sequences	4160
Number of RNAs	62

Fig. 2 Circular genome visualization of whole-genome *S. indicatrix* strain BOVIS40. Each color from the external to internal circle depicts, green (ORF), red (stop codon), and blue (start codon). The ring black coloration (GC content) at the peak indicated higher or lower values than average GC content. The GC Skew (−/+), in purple/green peaks inside the circle indicated values greater or smaller than 1.

Functional genes annotation information of *S. indicatrix* BOVIS40

Various metabolic genes were detected in the bacterial genome (Tables 3, 4 and 5, Tables S1–S3, S4, S5–S13, S14–S16). Notable secretion systems genes found in strain BOVIS40 are presented in Table S1. The expression of
genes involved in carbohydrates such as trehalose, glucose, hexose, xylose, galactose, mannose, and fructose degradation pathways is presented in Table S2. The carbohydrate metabolism pathways include the pentose phosphate pathway, glycolysis—Embden-Meyerhof pathway, and Leloir pathway. Other genes responsible for organic phosphate solubilization, sulfur metabolism, and nitrogen fixation and transport were detected in the genome (Table 3, Tables S3 and S4). Similarly, functional genes involved in iron transport, enterobactin, and siderophore production were also found (Table 4). Bacterial colonization in the root endosphere mediated by several genes involved in chemotaxis, flagella, pilus, and fimbriae biosynthesis is presented in Table S5. The signaling molecules that aid bacterial

Fig. 3 Subsystem category distribution of key PCG of *S. indicatrix* strain BOVIS40 annotated in the RAST SEED Viewer annotation online server. The green/blue bar shows the subsystem coverage in percentage. Blue bar correlates to the percentage (%) of proteins present

Fig. 4 Phylogeny analysis of strain BOVIS40
biofilm production and genes responsible for their attachment were also detected (Table S6). Genes, such as cyaA, gcvA, pslJ, lldR, and betL, coding for quorum-sensing in the N-acyl-homoserine-lactone pathway were detected in the genome of strain BOVIS40 and presented in Table S7. Plant protection against oxidative stress based on gene expression ability in strain BOVIS40 is presented in Table S8. Genes involved in organic acids metabolism, GABA, amino acid metabolism and transport, and phenolic gene, pheA coding for catechol metabolism were found in the strain BOVIS40 (Tables S9–S12). The detection of genes involved in lignin degradation and degradation against toxic peroxides and plant growth hormones was profound in strain BOVIS40 (Table 5, Table S13). Notable biocontrol, stress tolerance, and temperature resistance genes that stimulate an internal response in plants were presented in Tables S14–S16.
Predicted secondary metabolite cluster genes by antiSMASH

The predicted secondary metabolite gene clusters from antiSMASH analysis of strain BOVIS40 are presented in Table 6. The biosynthetic gene clusters identified include bacillibactin type non-ribosomal peptide siderophore and APE Vf type arylpolyene. Three (3) notable secondary metabolite gene clusters detected include transport-related genes, resistance, regulatory genes, additional biosynthetic genes, core biosynthetic genes, other genes, and TTA codons (Fig. 5a, b). The genes cluster exhibiting 35% and 60% similarity for gene type arylpolyene and NRPS with the most similar known cluster for other and NRP: siderophore at node region 11.1 and 15.1 were further analyzed (Table 6).

Node Rg	Type	From	To	MSKC	Similarity	
Rg 11.1	Arypolyene	1	38,874	APE Vf	Other	35%
Rg 15.1	NRPS	1	13,311	Bacillibactin	NRP:NRP	60%
Rg 87.1	RiPP-like	2929	13,774			
Rg 156.1	RiPP-like	30,429	40,343			

MSKC most similar known cluster; **Rg** region

Growth parameters

The yield parameters of inoculated and non-inoculated sunflower from the greenhouse experiment are presented in Table 7. Except for taproot width, the aboveground parameters of inoculated plants compared to non-inoculated were statistically different. In terms of seed wet and dry weight, there was no significant difference compared to other belowground parameters. Inoculated plant yielded 348.04 g plant wet weight compared to un-inoculated with 332.04 g wet weight. Similar results were obtained on the shoot dry weight 57.28 g (un-inoculated) and 76.88 g (inoculated), un-inoculated head fresh and dry weight of 153.76 g and 41.55 g, and inoculated head fresh and dry weight of 182.83 and 50.48 g respectively. The soil variables tested recorded high magnesium content of 642 mg/kg, potassium content of 399 mg/kg, nitrogen content of 0.10% and pH 7.4 (Table S17). The percentages of clay, sand, and silt were 22.20, 68.30, and 7.92 respectively.
functions, such that, the host plant houses, protect, and importance. The coevolution of endophytic microbes with in vivo assay in this study, confirm their agricultural endosphere inhabitants with PGP traits, as demonstrated colonized by endophytic microbes with utmost beneficial biotechnology.

Many studies have isolated and characterized bacterial strains from the endosphere of economic plants, and their presence within plant tissue has revealed mutual or antagonistic interactions with the host plants (Annapurna et al. 2018; Shastry et al. 2020; Singh et al. 2021). Diverse endophytic microbial domains associated with sunflower have been reported in many countries (Forchetti et al. 2007; Majeed et al. 2018), nevertheless, insights into sunflower-associated bacterial endophytes from Southern Africa has not been studied. Hence, we present the first report on the genomic information on S. indicatrix isolated from sunflower roots.

Stenotrophomonas strain BOVIS40 was isolated on Luria Bertani medium, screened on growth-promoting media, and then sequenced. From the annotation results, it was revealed that the type of genes detected in strain BOVIS40 corroborate the in vitro screening. Nevertheless, other genes found aside from those screen in vitro were also detected. The results from plant growth-promoting tests showed that strain BOVIS40 could modulate plant growth in diverse ways. For instance, in phosphate solubilization, exopolysaccharide production, IAA, and siderophore biosynthesis. The results obtained corroborate with earlier documentation on plant growth-promoting attributes of *Stenotrophomonas* strains and other root-associated endophytic bacteria (Ngoma et al. 2013; Mukherjee and Roy 2016; Perez-Perez et al. 2020).

The ability of microbes to fix atmospheric nitrogen for plant use depends on certain genes and enzymes produced by them (Valentine et al. 2018). The protein nature of enzyme coding genes such as *nifH* and *nifDK* involved in nitrogenase production in a bacterial cell has contributed to their functions in the biotransformation of bound nitrogen in the soil into absorbable form (Guerrieri et al. 2021). The enzyme cysteine desulfurase coding for gene *nifs* involving in the nitrogen fixation pathway was identified in strain BOVIS40. Other genes involved in nitrogen regulatory protein NR (I) (*ntrC*) and flavodoxin production (*nifF*), together with the ammonia transport gene *amt* identified, could contribute to an increase in nitrogen level in the soil. The presence of nitrogen fixation genes such as *nifABDEHJKLMNSTUVWXYZ* in the genome of *Klebsiella* species function in the formation of complex membrane structure and transport of molecules in the presence of nitrogenase have been employed as a model in the nitrogen fixation ability of *Rhodobacter capsulatus* (Jeong and Jouanneau 2000). The detection of *nifF* in the genome of rhizobacterium *Azospirillum brasiliense* Sp7 and *K. variicola* supply nutrients to microbes. In return, these microorganisms enhance plant growth and survival (Omomowo and Babalola 2019).

The design of the study was to isolate and characterize endophytic bacteria strains from the sunflower root with PGP potentiality. Generally, many strains of *Stenotrophomonas* species from environmental sources formerly identified as opportunistic pathogens are assigned to closely related species without pathogenic potential. In recent times, their potential in plant growth promotion has significantly widened the research scope of this species, thus providing knowledge based on their environmental and agricultural importance (Alexander et al. 2019). So far, whole-genome analysis for detecting diverse genes involved in cellular metabolism and phytohormone production from *S. indicatrix* has not been studied. In the Discussion, we present the first report on the genomic information on *S. indicatrix* isolated from sunflower roots.

Table 7 Sunflower yield parameters

Growth parameter	Non-inoculated	Inoculated with *S. indicatrix* BOVIS40
Aboveground		
Tap root length (cm)	146.67 ± 58.33a	177.33 ± 28.31b
Tap root width (cm)	5.33 ± 0.58a	5.33 ± 1.15a
Root length (cm)	217 ± 81.22a	257.33 ± 48.44b
Lateral root number	25.67 ± 1.53a	26.00 ± 4.58b
Root wet weight (g)	44.09 ± 16.12a	49.50 ± 3.97b
Root dry weight (g)	8.41 ± 1.55a	12.49 ± 2.80b
Number of roots	935 ± 11.30a	1236.00 ± 616.83b
Belowground		
Seed wet weight (g)	0.05 ± 0.01a	0.06 ± 0.00a
Seed dry weight (g)	0.03 ± 0.01a	0.03 ± 0.01a
Head fresh weight (g)	153.76 ± 13.94a	182.83 ± 23.76b
Head dry weight (g)	41.55 ± 4.27a	50.48 ± 10.04b
Plant wet weight (g)	331.04 ± 20.16a	348.04 ± 30.28b
Shoot wet weight (g)	165.82 ± 5.16a	216.44 ± 57.21b
Shoot dry weight (g)	57.28 ± 7.04a	76.88 ± 29.91b

Values are represented as means ± standard deviation of triplicate readings. Mean ± standard deviation values with different superscripts (small letters) across the row represent a significant difference.
UC4115, contributing to their nitrogen fixation ability for yield improvement in tomato, has been identified with success in recent findings (Guerrieri et al. 2021). A similar gene identified in this study could contribute to bacterial functions in improving sunflower yield. Also, the expression of fix genes such as fixABCX in the genome of Azorhizobium caulinodans and Bradyrhizobium japonicum with alternate nifIF and their functions in the electron transport chain system have contributed to the transfer of proteins in rhizobia (Tsou et al. 2016). Also, identification of flavodoxin and ammonia transport gene (amnB) in the genome of strain MSR2 has been reported (Nascimento et al. 2020a), with similar results documented in this study.

The number of nif genes produced by the bacterial cell may be due to their physiological nature and source of isolation. However, unidentified genes as reported in other literature might be responsible for the replacement of these genes with other nif products (Shen et al. 2013). Interestingly, information relating to the nitrogen fixation potential of S. indicatrix isolated from the root of oilseed sunflower based on their genome studies has not been documented.

Phosphate solubilizing potential of strain BOVIS40 under in vitro assay on tricalcium medium was validated by identification of copious genes involved in phosphate solubilization and transport. Gluconic acid (GA) is known as a precursor that facilitates phosphate solubilization in diverse bacterial phyla. The synthesis of GA due to the catalytic actions of enzyme glucose-1-dehydrogenase and its non-protein chemical compound pyrroloquinolone quinine (pqq) have contributed to microbial functions and applications (Ramachandran et al. 2006). Despite non-detection of pqq genes in strain BOVIS40, reports have shown the expression of heterologous pqq genes (pqqABCDEF) that confer phosphate solubilization potential in diazotroph endophytic bacterium Herbaspirillum seropedicae Z67 associated with economic plants (Baldotto et al. 2011; Wagh et al. 2014). Similarly, the absence of pqq genes has been reported in the genome of Klebsiella sp. D5A (Guerrieri et al. 2021).

Phosphate uptake by strain BOVIS40 may be enhanced due to their high affinity and presence of phosphate transport genes, pstABCGS, which corroborate the findings earlier documented by Guerrieri et al. (2021) and Shariati et al. (2017) on the expression of phosphate transport genes, pstABCS on the whole-genome analysis of K. variicola UC4115 and Pantoea agglomerans P5. The presence of pst genes may enhance phosphate bioavailability in the soil and uptake by plants. The detection of phoA gene coding for enzyme alkaline phosphatase involved in various phosphorus metabolism has been identified in Burkholderia multivorans WS-FJ9 (Liu et al. 2020). Furthermore, the detection of pgl, ppd, and ppa in the genome of BOVIS40 that code for 6-phosphogluconolactonase, exoprophosphatase, and inorganic pyrophosphatase for the synthesis of d-glucuronic and degradation of inorganic pyrophosphatase could contribute to the ability of the bacterial strain to solubilize phosphate in the soil. Interestingly, our results corroborate the findings of Nascimento et al. (2020b), who reported phoAB genes, coding for alkaline phosphatase in the genome of Bacillus megaterium STB1, that enhance phosphate solubilization ability in the bacterial strain.

In line with the previous studies on the PGP properties of endophytic bacteria colonizing plant root (Stoltzfus et al. 1997; Tariq et al. 2014; Eida et al. 2021), expression of genes involved in secretion system, siderophore, IAA synthesis, acetoin, and 2,3-butanediol was detected in endophytic bacterial strain BOVIS40. The synthesis of IAA in plants and microorganisms has been postulated through multidimensional pathways, which include, indole-3-acetonitrile (IAN), tryptamine, indole-3-pyruvate (IPA), and indole-3-acetamide (Spaepen and Vanderleyden 2011). IAA, a major occurring auxin in plants can signal mediate gene expression and biosynthesis in microorganisms. Thus, plant stimuli against natural pathogenic microbes may be linked to the synthesis of auxin signal molecules by the microorganisms (Spaepen and Vanderleyden 2011). To this premise, two major pathways, namely IPA and IAN were identified in the genome of BOVIS40 as previously reported in the genome of K. variicola UC4115 (Guerrieri et al. 2021). The biotransformation of IPyA—tryptophan to indole pyruvic acid in the presence of aminotransferases that convert IPyA to IAAl—indole acetaldehyde and gene ipdC encoding indole pyruvate decarboxylase in Pantoea spp has been documented (Nascimento et al. 2020a). Also, the presence of ipdC gene in Enterobacter cloacae with similar functions has been identified (Koga et al. 1991). Furthermore, the presence of aldehyde dehydrogenase in the genome of strain BOVIS40 has been identified to facilitate the conversion of intermediate IAAlid to IAA (Koga et al. 1991).

Interestingly, strain BOVIS40 harbors tryptophan synthase that reversibly catalyzes indole-3-glycerol phosphate to form glyceraldehyde-3-phosphate and irreversibly involved in the pyridoxal phosphate pathway to form tryptophan through the condensation of serine and indole (Ireland et al. 2008). The presence of amidase enzymes could contribute to bacterial functions in the production of IAA along the IAN pathway. Additionally, the involvement of strain BOVIS40 in two different IAA metabolic pathways significantly revealed their IAA production ability to play a vital role in plant root formation and development.

Subsequently, miaAB genes involving cytokinin biosynthesis and transformation were detected in the genome of BOVIS40. Enzyme coding for tRNA dimethylallyltransferase genes in the bacterial genome could enhance iPR—N6-(dimethylallyl) adenosine production. The expression of other cytokinin genes such as miaBE that convert iPR to 2-methylthio-N6-(dimethylallyl) adenosine and further
to 2-methylthio-cis-riboszeatin has been identified in the genome of *P. phytobeneficialis* MSR2 (Nascimento et al. 2020a). The direct effects of these genes in plant growth enhancement suggest that cytokinin synthesis can play a vital role in plant growth promotion and plant health (Wani et al. 2016). Nevertheless, further comparative research into agriculturally important *S. indicatrix* strains will help provide information on their novel genes, as reports on cytokinin genes from this endophytic bacterium strain BOVIS40 have not been documented.

The detection of siderophore genes in *Stenotrophomonas* strain BOVIS40 can enhance plant accessibility to soil mineral nutrients and contribute to their growth. Genes coding for iron transport found in strain BOVIS40 could play a vital role in the mineralization of insoluble iron and bioavailability for plant use. Furthermore, the synthesis of 2,3-butenediol by endophytic bacteria has been linked to their biocontrol ability, induction of systemic resistance, and improve plant tolerance to drought (Samaras et al. 2020). Reports on the biocontrol activity of endophytic bacterial bacteria such as *Pseudomonas* spp against *Phytophthora capsici* that cause rot and blight disease in pepper (Aravind et al. 2009), *Bacillus* spp against wilt disease in chili (Dowarah et al. 2021), *Burkholderia cenocepacia* against *Fusarium* wilt in banana (Ho et al. 2015), and *Stenotrophomonas* spp against *Sclerotium rolfsii* that cause collar rot in tomato (Sahu et al. 2019) have been studied.

Endophytic microbes have employed indirect mechanisms in the production of metabolic compounds in the control of phytopathogens, and their pathogen suppressive actions rely on their ability to produce biocontrol agents (Santoyo et al. 2016). The biocontrol ability of strain BOVIS40 may be due to siderophore synthesis that enhances their antibiotic activity against plant pathogens (Maheshwari et al. 2019). Notably, strain BOVIS40 harbors the siderophore gene *flu*. Siderophore catecholate found in the bacterial genome has been recognized to play an important role in bacterial adherence to the receptor surfaces, iron chelation, and transport (Pedraza et al. 2010). Conversely, other related genes such as *entABCDGHS* and *fepABCDG* are involved in siderophore production and transport that function in the conversion process of chorismate into enterobactin that was not detected in this study have been documented (Tortora et al. 2011; Hubrich et al. 2021).

Additionally, based on the beneficial effects on plant growth promotion, strain BOVIS40 harboring biocontrol genes could contribute to disease suppression promote plant growth. Also, detection of genes modulating the biological activity of strain BOVIS40 can stimulate the secretion of antimicrobial compounds such as g-aminobutyric acid (GABA) and 4-hydroxybenzoate, thus revealing their genome response in plant health and exploration as bioinoculants for the control of microbial infections.

The survival of endophytic microbes in the root endosphere is affected by the number of exudates released from the plant roots. Majorly, root exudate is composed of amino acids, sugars, phenolics, organic acids, etc. (Baudoin et al. 2003). Various organic compounds such as sugars serve as an energy source for microbial metabolism. The release of carbon-containing compounds from the rhizo-compartment as exudate could supply endo-rhizobiome with the required energy for various cellular activities (Zhalnina et al. 2018). The sugar assimilation potential of strain BOVIS40, as reported in Table 1 was validated based on the detection of various genes involved in carbohydrate metabolism and transport. Carbohydrate utilization response of strain BOVIS40 can enhance their biofilm production and colonization in the host plants. Several genes involved in the degradative pathway of organic compounds such as carbohydrates may contribute to the biotransformation of various organic substrates (Nascimento et al. 2020a). Aside from carbohydrates, the expression of genes participating in organic acid metabolism may contribute to bacterial affinity with the host plant. Also, various genes involved in the degradation and transport of amino acids and their derivatives contributing to amino acid metabolism and bacterial colonization with the host plants have been documented (Mavrodi et al. 2021).

Prephenate hydratase gene (*phe*) involved in catechol metabolism was found in strain BOVIS40. Genes involved in gallate catabolism were also detected in strain BOVIS40. The presence of these genes could suggest their ability to modulate phenolic degradation, which plays a major role in endophytic lifestyle. Phenolics are classified as vital compounds that regulate plant growth and stimulate resistance stimuli in plants (Nascimento et al. 2020a). Furthermore, phenolic metabolism can enhance the colonization efficiency of strain BOVIS40 in plants. The ability of bacteria to degrade lignin due to their inherent lignin-degrading enzymes is known to functionally contribute to bacterial infiltration and colonization in the host endosphere compartment (Shi et al. 2015).

Bacterial colonization within the plant endosphere to form biofilm can be engineered based on certain bacterial traits and the synthesis of biofilm production genes. Genes involved in bacterial attachment to plant surfaces such as *bcsABCFGZ* and *yhjQ* as expressed in the genome of strain BOVIS40 have been identified in the genome of *Ghats1* (Shastry et al. 2020). The expression of colonization genes in the genome of endophytic bacteria may enhance their colonization potential, host selection, and the establishment of plant–bacterial interactions in a symbiotic manner (Eida et al. 2021). Furthermore, the presence of cellulose biosynthetic genes in strain BOVIS40 may help configure endophytic lifestyle for host-bacterium mutual dependence.

The presence of exopolysaccharide genes could enhance bacterial colonization to form a biofilm, mucilaginous
active substances, and boost stress tolerance in plants (Santaealla et al. 2008; Meneses et al. 2011). This suggests that bacterial strain BOVIS40 could form synergistic cooperation by colonizing the plant endosphere, thus benefiting the host plants. Endophytes can infiltrate the host plant either by tissue damage, natural opening, or through enzyme action (Omomowo and Babalola 2019; Yadav et al. 2020). Hence, the ability of bacterial strain BOVIS40 to produce enzymes, and genes coding for exopolysaccharides and cellulose biosynthesis may mediate bacterial colonization and attachment for biofilm production in the root endosphere (Meneses et al. 2011).

Cellular organelles such as fimbriae, flagella, and pili play a vital role in bacterial attachment, movement, and response to chemicals (Zheng et al. 2015). The detection of chemotaxis and motility genes can mediate bacterial ability to infiltrate plant roots and establish a bacterial community for plant benefits. The results obtained from this study corroborate the findings of Shastry et al. (2020), who reported chemotaxis functional genes (cheAVY) and other genes involved in flagella biosynthesis in E. cloacae Ghat51. Similarly, identification of motAB and other genes responsible for chemotaxis actions such as cheABYWR in P. phyto beneficialis MSR2 have been reported (Nascimento et al. 2020a).

Plant–microbe interactions stimulating a lot of chemical reactions in the production of antioxidative and antimicrobial compounds such as phytoalexins, nitric oxide, and reactive oxygen species (ROS) have boost plant defense against osmotic stress (Gaber et al. 2006; Samaras et al. 2020). The expression of oxidative and osmotic stress genes in the bacterial genome could reveal their strong resistance tendencies to ROS, a chemical compound produced by bacteria in a stress environment (Scott et al. 2007; Nascimento et al. 2020b). Also, the expression of osmotic genes is known to boost host immune responses. The colonization and survival of endophytic bacteria in plants growing in an environment exposed to oxidative stress can be modulated by the synthesis of antioxidant lytic enzymes such as glutathione reductase, monodehydroascorbate reductase, superoxide dismutase, ascorbate peroxidase, and catalase. The function of these enzymes is paramount in scavenging free radicals in the plant endosphere and other regulators such as reduced glutathione and ascorbic acid (Das et al. 2015). Similar functional genes coding for catalase, superoxide dismutase, peroxiredoxin, glutathione peroxidase, alkyl hydroperoxide reductase, glutaredoxin 3, glutathione monothiol glutaredoxin, and glutathione-disulfide reductase were detected in strain BOVIS40. The detection of a catalase-peroxidase gene (katE) and catalase gene (katG) responsible for the degradation of toxic peroxide corroborates the findings of Nascimento et al. (2020a), who reported similar genes from Pantoea phyto beneficialis MSR2. Hence, their ability to stimulate defense against oxidative and osmotic stress in plants could be promising in the formulation of bioinoculants for plant benefit.

The presence of osmotic stress regulatory genes could enhance plant response to heat or cold shock. Similarly, the protein-coding genes that modulate cold and heat stressors can function through multiple gene families and differential regulation (Wani et al. 2016). Plant response to cold or heat stress has been attributed based on the expression of notable genes such as csp, hsp, and a gene coding for the chaperone (Phadtare 2004). As presented in this study, these genes could contribute to the resistance and survival of sunflower in temperate environments. The presence of csp in the bacterial genome contributing to RNA and DNA stabilization for improved translational and transcriptional efficiency of plants under cold or heat conditions has been documented (Nascimento et al. 2020b). However, the expression of these genes in strain BOVIS40 corroborates the findings of Nascimento, et al. (2020b), who had earlier reported chaperones and other heat stress genes such as groEL, groES, dnaK, dnaJ, and hsp in the genome of Bacillus megaterium STBI.

Transcriptional regulator and amino acid transporter genes were found in train BOVIS40. These genes can mediate mechanisms involved in quorum-sensing and dynamics in the lifestyle and ecology of endophytic microbes. Various antimicrobial compounds secreted by bacterial strains can exert beneficial effects in sustaining plant health. For example, the role of bacteriocin produced by endophytic bacteria as a source of new antibacterial compounds have synergistically been employed to upsurge antibiotic resistance (Lopes et al. 2017; Oliveira et al. 2018). Organic compounds synthesized by bacteria naturally play a vital role in the adaptation and survival of the host plant. Although, Stenotrophomonas species are regarded as opportunistic pathogens that affect humans and plants, and in recent times, their biocontrol efficacy due to the ability to secrete vital secondary metabolite is promising. However, documentation on secondary metabolite gene clusters from S. indicatrix is rare. Interestingly, two prominent gene clusters such as aryloypolyene (APE Vf) and bacillibactin NRP: siderophore with type aryloypolyene and non-ribosomal peptides (NRPS) detected in the genome of strain BOVIS40 could contribute to plant protection against oxidative stress and other biological functions. For instance, the siderophore gene cluster detected in the genome of copious endophytic Streptomyces kebangaensis contributes to their biocontrol activity against pathogenic fungi Fusarium oxysporum and enhances plant survival (Remali et al. 2017; Siupka et al. 2020). The attribute of siderophore synthesis by bacterial strains can provide information on their ecological functions as biocontrol agents against plant pathogens. Hence, screening secondary metabolites in the genome of strain BOVIS40 can enable researchers to understand their application in the control of phytopathogens.
Under greenhouse experimental conditions, an increase in yield parameters of inoculated sunflower compared to uninoculated was observed. This can be linked to the phenotypic attribute of endophytic bacteria to solubilize phosphate, synthesize IAA and siderophore, and detection of possible biocontrol genes in the bacterial genome, and this may contribute to bacterial activity in the improvement of below-and-aboveground crop yield. The presence of IAA genes seemed evident in the root formation in sunflower. Hence, results obtained as demonstrated, significantly reveal the agricultural importance of S. indicatrix BOVIS40 upon inoculation and also shown their genetic capacity in the root ecosystem for plant growth and sustainable food production.

Conclusion

Detailed information on the notable genes with multiple functions of S. indicatrix BOVIS40 and evaluated sunflower yield parameters were documented in this study. The genome analysis highlighting important regulatory genes confirms some in vitro screening results. The plant growth-promoting genes exhibited by S. indicatrix BOVIS40 can be linked to their underlined promise in agriculture. The multiple genes identified that revealed their biotechnological significance in plant–microbe interactions, plant resistance to environmental stressors (such as temperature, oxidative and osmotic stress), degradation of organic substrate (carbohydrate), and organic compounds could enhance plant growth, soil health, and crop improvement. Importantly, the presence of these genes has provided insights into the genomic functions of S. indicatrix BOVIS40, with a promising outlook in developing sustainable agriculture. Also, based on the limited study on endophytic bacterium S. indicatrix BOVIS40, the information provided in this study will help harness their potential as a suitable candidate in the formulation of bioinoculants towards addressing agricultural problems.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00294-021-01199-8.

Acknowledgements BSA thanked the National Research Foundation of South Africa and The World Academy of Science (TWAS) for NRF-TWAS African Renaissance Doctoral scholarship (Grant UID: 116100). ASA is grateful to North-West University for a postdoctoral fellowship award. OOB acknowledges the National Research Foundation of South Africa for the grants (Grant numbers: 123634; 132595), supporting research in her laboratory.

Author contribution BSA managed the literature searches, carried out the laboratory work, interpreted the results, and wrote the manuscript’s first draft. ASA assisted in genome analysis, reviewed the drafts, and proofread the manuscript while OOB, the principal investigator, provided academic input, thoroughly critiqued the manuscript, proofread the draft, and secured funds for the research. All authors approved the article for publication.

Funding This study was funded by the National Research Foundation of South Africa (Grant numbers: 123634; 132595).

Availability of data and materials From the NCBI database output, the Bioproject number is PRJNA706595, BioSample number is SAMN18138830, while the whole genome accession number is JAGENA00000000.

Code availability Not applicable.

Declarations

Conflict of interest The authors have no conflicts of interest or competing interests regarding this work.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

Adeleke BS, Babalola OO (2020) The endosphere microbial communities, a great promise in agriculture. Int Microbiol 24:1–17. https://doi.org/10.1007/s10123-020-00140-2

Adeleke BS, Babalola OO (2021) Biotechnological overview of agriculturally important endophytic fungi. Hortic Environ Biotechnol 63:1–14

Adeniji AA, Ayangbenro AS, Babalola OO (2021) Genomic exploration of Bacillus thuringiensis MORWBS1. 1-candidate biocontrol agent, predicts genes for biosynthesis of zwitermicin, 4, 5-DOPA dioxygenase extradiol, and quercetin 2, 3-dioxygenase. Mol Plant-Microbe Interac https://doi.org/10.1094/MPMI-10-20-0272-SC.

Akinola SA, Ayangbenro AS, Babalola OO (2021) The immense functional attributes of maize rhizosphere microbiome: a shotgun sequencing approach. Agric 11:118

Alexander A, Singh VK, Mishra A, Jha B (2019) Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiological and biochemical activities of Arachis hypogea. Plos One 14:e0222405

Ali Q, Ashraf M, Anwar F (2009) Physico-chemical attributes of seed oil from drought stressed sunflower (Helianthus annuus L.) plants. Grasas Aceites 60:477–483

Annapurna K, Govindasamy V, Sharma M, Ghosh A, Chikara SK (2018) Whole genome shotgun sequence of Bacillus paralicheniformis strain KMS 80, a rhizobacterial endophyte isolated from rice (Oryza sativa L.). 3 Biotech 8:223

Aratiju WL, Marcon J, Maccheroni W, Van Elsas JD, Van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

Aravind R, Kumar A, Eapen S, Ramana K (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64

Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D, Perez F, Canon S (2018) KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 36:566–569

 Springer
Asaf S, Khan MA, Khan AL, Waqas M, Shahzad R, Kim A-Y, Kang S-M, Lee I-J (2017) Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J Plant Interac 12:31–38

Audipudi A, Chakicherla B, Bhore S (2017) Bacterial endophytes as biofertilizers and biocontrol agents for sustainable agriculture. Biotechnol Sustain 1:223–247

Babalola OO, Emmanuel OC, Odelade KA, Nwa-chukwu BC, Ayiti OE, Adebowale OA, Igboho NO (2021) Rhizosphere microbiome cooperations: strategies for sustainable crop production. Curr Microbiol 78:1069–1085

Baldotto LEB, Olivares FL, Bressan-Smith R (2011) Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets’ Vitória. Braz J Microbiol 42:114–125

Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

Berg G, Egamberdieva D, Lugtenberg B, Hagemann M (2010) Symbiotic plant–microbe interactions: stress protection, plant growth promotion, and biocontrol by Stenotrophomonas symbiosis and stress. Springer, New York, pp 445–460

Bhattacharyya C, Bakshi U, Mukherji S, Bera B, Ghosh A (2017) Genome-guided insights into the plant growth promotion capabilities of the physiologically versatile Bacillus aryabhattai strain AB211. Front Microbiol 8:411

Bioinformatics B (2011) FastQC: a quality control tool for high throughput sequence data. Babraham Institute, Cambridge. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

Chukwuneme CF, Ayangbenro AS, Babalola OO, Kutu FR (2021) Functional diversity of microbial communities in two contrasting maize rhizosphere soils. Rhizosphere 17:100282

Das P, Nutan KK, Singla-Parwik SL, Pareek A (2015) Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci 2:70

de Lima Brossi ML, Jiménez DJ, Cortes-Tolalpa L, van Elsas JD (2016) Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microbiol Ecol 71:616–627

Dinesh R, Srinivasan V, Sheeja TE, Anandaraj M, Srambikkal H (2017) Endophytic actinobacteria: diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Crit Rev Microbiol 43:546–566

Dowarah B, Agarwal H, Krishnatreya DB, Sharma PL, Kalita N, Agarwala N (2021) Evaluation of seed associated endophytic Bacillus toyonensis as a potentially novel agent for biocontrol of plant pathogens. World J Microbiol Biotechnol 37:1325–1334

Fadiji AE, Ayangbenro AS, Babalola OO (2021) Unveiling the putative functional genes present in root-associated endophytic microbe from maize plant using the shotgun approach. J Appl Gen 62:339–351

Forchetti G, Masiarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y, Shigeoka S (2006) Glutathione peroxidase-like protein of Synecocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128:251–262

Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 1:35–40

Glick BR (2020) Beneficial plant-bacterial interactions, 2nd edn. Springer, Germany

Guerritzi MC, Fiorini A, Fanfoni E, Tabaglio V, Cocconcelli PS, Trevisan M, Puglisi E (2021) Integrated genomic and greenhouse assessment of a novel plant growth-promoting rhizobacterium for tomato plant. Front Plant Sci 12:60620

Ho Y-N, Chiang H-M, Chao C-P, Su C-C, Hsu H-F, Guo C-T, Hsieh J-L, Huang C-C (2015) In planta biocontrol of soilborne Fusarium wilt of banana through a plant endophytic bacterium, Burkholderia cenocepacia 869T2. Plant Soil 387:295–306

Hubrich F, Müller M, Andexer JN (2021) Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chem Comm 57:2441–2463

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

Igiehon NO, Babalola OO, Aremu BR (2019) Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol 19:159

Ireland C, Peekhaus N, Lu P, Sangari R, Zhang A, Masurekar P, An Z (2008) The tryptophan synthetase gene TRP1 of nodulisporium sp.: molecular characterization and its relation to nodulisporic acid A production. Appl Microbiol Biotechnol 79:451–459

Jeong H-S, Jouanneau Y (2000) Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol 182:1208–1214

Koga J, Adachi T, Hidaka H (1991) IAA biosynthetic pathway from tryptophan via indole-3-pyruvic acid in Enterobacter cloacae. Agric Biol Chem 55:701–706

Kumar NP, Audipudi V (2015) Exploration of a novel plant growth-promoting bacteria Stenotrophomonas maltophilia AVP27 isolated from the chilli rhizosphere soil. Int J Engin Res General Sci 3:265–273

Liu Y-Q, Wang Y-H, Kong W-L, Liu W-H, Xie X-L, Wu X-Q (2020) Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels. AMB Expr 10:108

Lopes R, Cerdeira L, Tavares GS, Ruiz JC, Blom J, Horácio EC, Mantovani HC, de Queiroz MV (2017) Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World J Microbiol Biotechnol 33:1–15

Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334

Macla MP, Serepa-Dlamini MH (2020) Draft genome sequence of Stenotrophomonas pavani strain MHSID12, a bacterial endophyte associated with Dicoma anomala. Microbiol Res Ann 9:e00550-e1520

Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Poll Res 24:3315–3335

Maheshwari R, Bhatuni N, Suneja P (2019) Screening and characterization of siderophore producing endophytic bacteria from Cicer aritinum and Pisum sativum plants. J Appl Biol Biotechnol 7:7–14
Majeed A, Abbasi MK, Hameed S, Imran A, Naqash T, Hanif MK (2018) Isolation and characterization of sunflower associated bacterial strain with broad spectrum plant growth promoting traits. Int J Biosci 13:110–123

Malisorn K, Chanchampa S, Kanchanasin P, Tanasupawat S (2020) Identification and plant growth-promoting activities of proteobacteria isolated from root nodules and rhizospheric soils. Curr Appl Sci Technol 20:479–493

Mamphogoro TP, Maboko MM, Babalola OO, Aiyegoro OA (2020) Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol. Sci Rep 10:8560

Manganyi MC, Tchatchouang C-DK, Regnier T, Bezuidenhout CC, Ateba CN (2019) Bioactive compound produced by endophytic fungi isolated from Pelargonium sidoides against selected bacteria of clinical importance. Mycobiology 47:335–339

Mashiane RA, Ezekoli OT, Adeleke RA, Bezuidenhout CC (2017) Metagenomic analyses of bacterial endophytes associated with the phyllosphere of a Bt maize cultivar and its isogenic parental line from South Africa. World J Microbiol Biotechnol 33:80

Mavrodi OV, McWilliams JR, Peter JO, Berim A, Hassan KA, Mashiane RA, Ezeokoli OT, Adeleke RA, Bezuidenhout CC, Malisorn K, Chanchampa S, Kanchanasin P, Tanasupawat S (2020) Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol. Sci Rep 10:8560

Mavrodi OV, McWilliams JR, Peter JO, Berim A, Hassan KA, ELbourne LD, LeTourneau MK, Gang DR, Paulsen IT, Weller DM (2021) Root exudates alter the expression of diverse metabolic, transport, regulatory, and stress response genes in rhizosphere Pseudomonas. Front Microbiol 12:651282

Meneses CH, Rouws LF, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Inter 24:1448–1458

Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120

Mohotti S, Rajendran S, Muhammad T, Strömstedt AA, Adhikari A, Burman R, de Silva ED, Göransson U, Hettiarachchi CM, Mohotti S, Rajendran S, Muhammad T, Strömstedt AA, Adhikari A, Burman R, de Silva ED, Göransson U, Hettiarachchi CM, Gunasekera S (2020) Screening for bioactive secondary metabolites from fungi isolated from Pelargonium sidoides against selected bacterial strains. World J Microbiol Biotechnol 36:1–9

Molteni P, Roy P (2016) Genomic potential of Stenotrophomonas maltophilia in bioremediation with an assessment of its multifaceted role in our environment. Front Microbiol 7:967

Nascimento FX, Hernandez AG, Glick BR, Rossi MJ (2020a) The extreme plant-growth-promoting properties of Pantoea phytophyllosaerica MSR2 revealed by functional and genomic analysis. Environ Microbiol 22:1341–1355

Nascimento FX, Hernández AG, Glick BR, Rossi MJ (2020b) Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol Rep 25:e00406

Ngoma L, Esau B, Babalola OO (2013) Isolation and characterization of beneficid indigenous endophytic bacteria for plant growth promoting activity in Moelewane Farm, Mafikeng, South Africa. Afr J Biotechnol 12:4104–4114

Nurk S, Bankevich A, Antipov D, Gurevich AA, Kiryutin B, Ovcharenko I, Poliyanovsky A, Pyshkin A, Sirotkin A, Sirotkin K, Shariati V, Malboobi MA, Tabrizi Z, Tavakol E, Safari M (2017) Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5. Sci Rep 7:15610

Omowomo OI, Babalola OO (2019) Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 7:481

Panicamphy P, Krishnamoorthy G, Kannan S, Marudhamuthu M (2018) Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egypt J Basic Appl Sci 5:303–312

Pedraza RO, Motok J, Salazar SM, Ragout AL, Mentel ML, Tortora ML, Guerrero-Molina MF, Winik BC, Diaz-Ricci JC (2010) Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J Microbiol Biotechnol 26:265–272

Perez-Perez R, Oudot M, Hernandez I, Napolos MC, Perez-Martinez S, Sosa-De Castillo D, Postal G, J6, San J, de las Lajas M, (2020) Isolation and characterization of Stenotrophomonas associated to maize (Zea Mays L.) rhizosphere. Cultivos Tropicais 41:e03

Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136

Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–370

Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Glucanic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195

Remali J, Sarmin NM, Ng CL, Tiong JJ, Aizat WM, Keong LK, Zin NM (2017) Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production. PeerJ 5:e3738

Sahu PK, Singh S, Gupta A, Singh UB, Brahmaparakash G, Saxena AK (2019) Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol Control 137:104014

Santalla C, Schue M, Borge O, Heulin T, Achouak W (2008) The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 10:2150–2163

Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

Scott B, Takemoto D, Tanaka A (2007) Fungal endophyte productivity of reactive oxygen species is critical for maintaining the mutualistic symbiotic interaction between Epichloë festucae and perennial ryegrass. Plant Signal Behav 2:171–173

Shariati V, Malboobi MA, Tabrizi Z, Tavakol E, Owlia P, Safari M (2017) Isolation and characterization of sunflower associated to Pirillum brasilense sp. YAS34 is not necessary for exopolysaccharide of Rhizobium. Genes Genom 11:600393

Shin X, Hu H, Peng H, Wang W, Zhang X (2013) Comparative genome analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14:1–20

Shi X, Liu Q, Ma J, Liao H, Xiong X, Zhang K, Wang T, Liu X, Xu T, Yuan S (2015) An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol Lett 37:2279–2288
Shishido M, Loeb B, Chanway C (1995) External and internal root colonisation of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713

Singh RP, Jha PN (2017) The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8:1945

Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353. https://doi.org/10.1016/j.agee.2011.01.017

Singh P, Singh RK, Guo D-J, Sharma A, Singh RN, Li D-P, Malviya MK, Song X-P, Lakshmanan P, Yang L-T (2021) Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18—a plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Front Microbiol 12:104

Siupka P, Piński A, Babicka D, Piotrowska-Seget Z (2020) Genome mining revealed a high biosynthetic potential for antifungal Streptomyces sp. S-2 isolated from black soot. Int J Mol Sci 21:2558

Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harbor Perspect Biol 3:a001438

Stoltzfus J, So R, Malarvithi P, Ladha J, De Bruijn F (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

Sun L-j, Lu Z-x, Liu J, Lu F-x, Bie X-m, Yang S-y (2006) Isolation and identification of an endophytic strain EJS-3 producing exopolysaccharide. Food Sci 27:65–68

Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30:719–725

Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286

Tsyr OV, Ravcheev DA, Čuklina J, Gelfand MS (2016) Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria. Front Microbiol 7:1343

Valentine AJ, Benedicto VA, Kang Y (2018) Legume nitrogen fixation and soil abiotic stress: from physiology to genomes and beyond. Ann Plant Rev 42:207–248

Vurukonda SSKP, Giovannardi D, Stefani E (2018) Plant growth-promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952

Wagh J, Shah S, Bhandari P, Archana G, Kumar GN (2014) Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Appl Microbiol Biotechnol 98:5117–5129

Wani SH, Kumar V, Shiriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176. https://doi.org/10.1016/j.cj.2016.01.010

Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohleben W (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:237–243

Wolf A, Fritzze A, Hagemann M, Berg G (2002) Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with anti-fungal properties. Int J Syst Evol Microbiol 52:1937–1944

Yadav A, Singh J, Singh C, Yadav N, Ghosh S, Bhagwat T, Webster T (2020) Endophytic microbiomes and their plant growth-promoting attributes for plant health. Curr Trends Microbial Biotechnol Sustain Agric 11:245–278

Zeng Q, Xie J, Li Y, Gao T, Xu C, Wang Q (2018) Comparative genomic and functional analyses of four sequenced Bacillus cereus genomes genomes reveal conservation of genes relevant to plant-growth-promoting traits. Sci Rep 8:17009

Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480

Zheng H, Mao Y, Teng J, Zhu Q, Ling J, Zhong Z (2015) Flagellar-dependent motility in Mesorhizobium tianshanense is involved in the early stage of plant host interaction: study of an flgE mutant. Curr Microbiol 70:219–227

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.