Converting of CO\textsubscript{2} into low-molecular-weight organic compounds with the TiO\textsubscript{2}/ZrO\textsubscript{2} composites under solar irradiation

Ichiro Moriya

The preparation of a specially modified titanium dioxide/zirconium oxide (TiO\textsubscript{2}/ZrO\textsubscript{2}) composite and its subsequent application using a unique method are described. Specifically, after the whole surface of the composite was covered with a very thin layer of water, solar light was irradiated onto it. This method is unique because the reduction of CO\textsubscript{2} was performed in air (gas phase). The light source was real solar light. In this study, novel composites comprising nanometre-sized TiO\textsubscript{2} and micrometre-sized zirconium oxide (ZrO\textsubscript{2}) increased the amount of reduced CO\textsubscript{2}. And, suitable weight ratio of TiO\textsubscript{2}/ZrO\textsubscript{2} was 6/4-5/5. Thin water layer on the composite offered catalytic-reaction medium, and, catalytic-reaction cite existed at interface of TiO\textsubscript{2} and ZrO\textsubscript{2} particles, and, this reaction was catalytic reaction enhanced by photocatalytic effect. A large amount of reduced products (maximum: approximately 300 \(\mu\)mol/ (g·300 s) of formaldehyde and methanol) was obtained under only 300 s of irradiation of solar light.

The CO\textsubscript{2} concentration in the atmosphere is gradually increasing. Temperature of atmosphere is rising continuously1. Research into methods for converting CO\textsubscript{2} into low-molecular-weight organic compounds is extremely important because this research can not only reduce the concentration of CO\textsubscript{2} in the atmosphere but also can convert the CO\textsubscript{2} into useful organic compounds. Reported methods for reducing CO\textsubscript{2} include the use of photo-catalysts or photo-electrodes23. Sato et al. succeeded in converting CO\textsubscript{2} into organic compound (formic acid (HCOOH)) under irradiation of solar simulated light4. This report was probably most advanced one in this field on that time (2011). But, the reduced product was small(approximately 1 \(\mu\)mole/4 h cm2 under irradiation intensity 1 sun (AM 1.5)). In recent times, many reports in regard to converting CO\textsubscript{2} into organic compounds with special photo-catalysts under solar light or visible light irradiation have been proposed5-9. However, their reduced products were small, too. Moreover, there are excellent review literatures10-12. With regard to large reaction products, Zhao et al. reported that total organic carbon (TOC) yield of N-TNT(Nitrogen-doped TiO\textsubscript{2} nanotube) 500 (post-heating 500°C) was 1453.0 \(\mu\)mol/g-cat. in 100 ml 0.1 N NaOH aqueous solution with a visible-light of 500 W tungsten-halogen lamp13.

And, Wang et al. reported Pt-TiO\textsubscript{2} nanostructured films via versatile gas-phase deposition method (unique one-dimensional structure of TiO\textsubscript{2} single crystals coated with ultrafine Pt nanoparticles (0.5–2 nm)) and maximum Methane (CH\textsubscript{4}) yield of 1361 \(\mu\)mol/g-cat./h with 400 W- Xe lamp (accumulated intensity of 19.6 mW/cm2 in the effective UV range (250–388 nm))14.

On the other hand, in catalytic field, commercial methanol producing process have established, the process is commercially in operation with Cu/ZnO/Al\textsubscript{2}O\textsubscript{3} or Cu/ZnO/Cr\textsubscript{2}O\textsubscript{3} catalyst by using of CO\textsubscript{2}-H\textsubscript{2} system under high temperature and high pressure. CO\textsubscript{2} and H\textsubscript{2} are those obtained by another industrial processes.

Millar et al. reported importance regarding to interface of particles that constructed catalyst15,16. However, on the catalytic fields, there are no ideas of using CO\textsubscript{2} in the air and of using solar light as energy source.

Therefore, no report in which a very large amount of organic compounds has been generated by reducing CO\textsubscript{2} with inexpensive catalyst in air under irradiation of solar light at room temperature and atmospheric pressure in both photocatalytic and catalytic fields is founded.

The aim of this research is obtaining large amount of low-molecular- weight organic compounds by the original method under irradiation of real solar light.

South wing 101, Maebara-nishi 3-6-3, Funabashi, Chiba, Japan. Correspondence and requests for materials should be addressed to I.M. (email: moriya260109@yahoo.co.jp)
In relation to this research, Fujishima et al. reported the photo-catalyst effect of TiO₂. Specifically, irradiation with UV light generates electrons (e⁻) and holes (h⁺) in TiO₂. The electrons provide the reduction driving force, and the holes provide the oxidation driving force. In 1979, Inoue and Fujishima et al. reported the reduction of CO₂ to formaldehyde (HCHO) and methanol (CH₃OH) under irradiation with high-energy UV light using a TiO₂ photocatalyst. Later, Sato et al. reported the generation of H₂ and O₂ using wet Pt/TiO₂ under irradiation by light with energy equal to the band-gap energy of TiO₂ (1980). Moreover, they demonstrated that H₂ and O₂ were generated by the splitting of H₂O added. Author also started this study to obtain desirable result by the photocatalytic reaction.

In this report, following items were studied.

First: Ascertaining whether the thin water layer on the surface of composites is essential.

Second: Consideration of preparing method (Effect of press on preparing method of composites)

Third: Dependence of quantity of reduced products on TiO₂/ZrO₂ ratios. (TiO₂/ZrO₂ ratios were changed between 10/0 and 0/10).

Forth: Measurements of quantity of reduced products under irradiation of real solar light (at TiO₂/ZrO₂ = 1/1).

Fifth: Proving the water layer on the surface of composites.

Sixth: Discussion regarding with macro mechanism (hypothesis) through which the large quantity reduced product can be obtained.

Experiments

The author devised composites consisting of nanometre-sized TiO₂ particles and micrometre-sized zirconium oxide (ZrO₂) particles and applied them using an original method. First, particles or molecules adsorbed onto the composite surface were removed by the elimination of static electricity using an ion blower. Next, after the composites were cooled in a refrigerator for more than 20 h, they were placed into a transparent gas-barrier plastic bag with high-temperature and high-humidity room air.

Cooling in a refrigerator enabled the whole surface of the composite to be covered with a very thin layer of water via the condensation of water vapour in the air to reproduce Sato’s condition (wet condition). The reduction of CO₂ did not occur until the thin water layer condensed onto the composite’s surface. This method is unique because the reduction of CO₂ is performed in air (or more precisely, in the air phase via a very thin water layer). Moreover, this method increases the efficiency of the light irradiation because real solar light is directly irradiated onto the composites.

In this study, the TiO₂/ZrO₂ composites greatly increased the amount of reduced CO₂ product. The composite exhibited a particulate morphology. In this report, CO₂ was reduced under real solar light without the use of platinum as a co-catalyst.

The new photo-catalyst composites are composed of two types of inorganic compounds (a,b) that were combined and pressed together. The first inorganic compound (a) is characterized by nanometre-sized anatase TiO₂ photo-catalyst particles, and the other inorganic compound (b) is composed of micrometre-sized ZrO₂ particles. The weight ratio (TiO₂/ZrO₂) of the composites is mainly 1:1. The use of such a large amount of additive (ZrO₂) is unique. After (a) and (b) were pressed to form the composites (c), the composites (c) were scattered onto an electric conducting material such as a copper plate. The copper plate can facilitate the transfer of electrons and holes from one composite to the other. Then, the composites and Cu plate were held in a glass laboratory dish (the glass laboratory dish containing the composites and Cu plate is hereafter referred to as the test unit).

Figure 1 shows SEM image of the composite with water vapour condensed on its surface and with the thin water layer evaporated away (SEM: JAPAN ELECTRONIC Co. Ltd., JSM-5310LV). Image “a” shows that numerous nanometre-sized TiO₂ particles are present on the top layer of the composite, and the core of the composite is composed of micrometre-sized ZrO₂ particle. Image “b” shows a higher-magnification (20,000×) SEM...
image of the surface of the composites shown in image “a” of Fig. 1. Pores of various sizes are present in the nanometre-sized TiO$_2$ layer. The CO$_2$ in the air can penetrate the pores and reach the water layer existing at the surface of the ZrO$_2$ particles.

Figure 2 shows a photograph of the experiment under irradiation by real solar light. Experiments were performed during the Japanese summer season, which provides high temperatures and high humidity. During irradiation, the test unit was placed into a transparent gas-barrier plastic bag with 1000 ml of air. The bag transfers solar light and contains the produced organic compounds. The bag allows both the concentration of organic compounds and the inner volume to be measured after solar-light irradiation. After irradiation, the concentration of formaldehyde and methanol in the bag was measured using gas-detecting tubes.

A gas-barrier plastic bag through which CO$_2$ molecules can penetrate but not oxygen (O$_2$) or nitrogen molecules (N$_2$) was used. When the amount of CO$_2$ in the bag is decreased by the reduction of CO$_2$, the CO$_2$ in the air outside of the bag diffuses into the bag because of the concentration gradient. Therefore, the concentration (in ppm) of the total reduced products exceeding the CO$_2$ concentration in the atmosphere (approximately 400 ppm) is not contradictory.

The experiments were conducted in Funabashi in the Chiba prefecture of Japan (lat. 35° 70′ N and long. 140° 02′ E).

Additionally, the author performed several weight measurements 5–8 min after removing the test unit from the refrigerator. The weight of the test unit increased by 70–110 mg because of the condensation of water vapour (ambient air conditions: 30.9 °C in temperature and 65% in humidity).

Results
In the subsequent description, the term "dry conditions" refers to experiments in which the test unit was not cooled in a refrigerator, whereas the term "wet conditions" refers to experiments in which the test unit was cooled in a refrigerator, resulting in the formation of a thin water layer on the composites. The term "the dry conditions" refers to condition that the formation of a thin water layer on the composites was not generated.

Table 1 show the experimental conditions and Table 2 show the experimental results of experimental No. 1-7. And, Table 3 show the experimental conditions and Table 4 show the experimental results of experimental No. 8-25. Hence, Tables 1 and 2 make a pair, and, Tables 3 and 4 also make a pair.

(a) Group A of Tables 1 and 2

- The results in Group A of Tables 1 and 2 show that no reduced product was obtained under dry conditions. By contrast, reduced products were obtained under wet conditions. Therefore, wet conditions are essential. Moreover, Group A shows the following results
- Under dry conditions with TiO$_2$ only, no products reduced by the photo-catalyst were detected (Tables 1 and 2, No. 1).
- That is, reduction driving force of TiO$_2$ photo-catalyst is not enough to reduce the CO$_2$.
- Under wet conditions with TiO$_2$ only, reduced products were probably obtained by a catalytic- reaction (Tables 1 and 2, No. 2).
- Under dark (no light irradiation) and wet conditions, the TiO$_2$/ZrO$_2$ composite produced methanol, which is clearly a catalytic- reaction (Tables 1 and 2, No. 4).
- Tables 1 and 2, No. 5 shows result of blank test, that is, formaldehyde and methanol were not generated from the plastic bag under irradiation of solar light.
On the amount of reduction products, very large deference was showed between No. 6 and No. 7. No. 6 was prepared with strong press during mixing, whereas, No. 7 was prepared with no press (only mixing). On the surface of composites with press during mixing, large amount of interface between TiO₂ particles and ZrO₂ ones are formed, whereas, in the case of no press, the interface exist at only contact point between TiO₂ particles and ZrO₂ ones. Therefore, possible explanation is that reaction cites exist at the interface. And, this result supports that reaction of this research is catalytic one.

Incidentally, standard method of this report is strong press during mixing.

(c) Dependence of quantity of reduced products on TiO₂/ZrO₂ ratios

Figure 3 shows plots of formaldehyde and methanol products (μmol/(g·300 s)) against ZrO₂ weight % in the TiO₂/ZrO₂ composite that correspond to the results in Group C of Tables 3 and 4. Figure 3 shows volcano plots, and, peak was at TiO₂/ZrO₂ = 6/4 − 5/5. In left side of the peak, reduced products increased with increasing of ZrO₂, and, in right side of the peak, decreased with decreasing of TiO₂. This shows that activating effect of ZrO₂ increased in left side of the peak, by contrast, photocatalytic effort of TiO₂ decreased in right side of the peak. (Band gap of ZrO₂ is 5.0 eV, whereas, maximum energy of solar light is equal to 4.1 eV (1240/300 nm in wavelength). Band gap of ZrO₂ is larger than maximum energy of solar light. Therefore, photocatalytic effect of ZrO₂ does not occur).

Moreover, interface of TiO₂ particle and ZrO₂ one increases with increasing of ZrO₂. Increasing of interface increased the reaction products.

This result agrees with the description of b) in this section

(d) Group D of Tables 3 and 4

Group D of Tables 3 and 4 show the results obtained when the composites were used. The results indicate that CO₂ was reduced under real solar light and that formaldehyde and methanol were obtained in every experiment. A large amount of reduced products (maximum: approximately 300 μmol/(g·300 s) of formaldehyde and methanol) was obtained. These reaction also is catalytic one at the interface of TiO₂ particle and ZrO₂ one, because composites were prepared with author’s standard method (mix and press). And, Turnover number (reduction products (mole/h)/catalyst (mole)) was equal to 1.7.

Figure 4 shows plots of formaldehyde and methanol products (μmol/(g·300 s)) as a function of the irradiation intensity of solar light (mW/cm²). These plots reveal that the formaldehyde yield increased rapidly.
with increasing irradiation energy of solar light. By contrast, the amount of methanol gradually increased with increasing irradiation intensity of solar light. This shows that CO$_2$ reducing reaction was enhanced strongly by the photocatalytic effort.

(e) Evidence of the generation of the thin water layer

In this report, thin water layer on the surface of composites is most important. As this water layer is very thin, transparent, liquid and not-flat, visualization of water layer was difficult. Thus, below mentioned considerations were performed.

• As described at the end part of the Experiments section, the weight of the test unit increased 70–110 mg, 5–8 min after being removed from the refrigerator. This weight gain certainly includes water-vapour condensation on the surfaces of the composites, the Cu plate and the glass laboratory dish. However, this weight gain also provides indirect evidence of the formation of a thin condensed water layer on the composites because the surface area of the composites is markedly larger than the surface areas of the other materials; i.e., this weight gain would be dominated by the weight gain on the composite surface.

• Electric conductivities of two kinds of composites were measured under dry and wet conditions. The composites were TiO$_2$/ZrO$_2$/NaCl (weight ratio) = 4.5/4.5/1 and 4/4/2. In the case of wet condition, each composite (0.2 g) was scattered in glass laboratory dish, held in the refrigerator for 20–24 h. They were measured in atmosphere 5 min after being removed from refrigerator. Atmosphere conditions were 26–28 °C in temperature and 73–77% in humidity, respectively. They were measured by HORIBA COMPACT CONDUCTIVITY METER B-771. The measuring results were

Group No.	Date	Sample composition	Irradiation time	Weather	Irradiation intensity (mW/cm2)	Sample condition	
C	8	2016/8/1	TiO$_2$ only	10:55–11:00(300 s)	Clear	1.31	wet
9	2016/8/16	8/2	11:00–11:05(300 s)	Clear	1.36	wet	
10	2016/7/29	8/2	12:55–13:00(300 s)	Clear	1.40	wet	
11	2016/8/17	6/4	11:55–12:00(300 s)	Clear	1.24	wet	
12	2016/9/6	6/4	10:55–11:00(300 s)	Clear	1.16	wet	
13	2016/7/28	4/6	10:55–11:00(300 s)	Clear	1.24	wet	
14	2016/7/29	4/6	11:00–11:05(300 s)	Clear	1.40	wet	
15	2016/7/29	2/8	11:55–12:00(300 s)	Clear	1.49	wet	
16	2016/9/10	ZrO$_2$ only	11:00–11:05(300 s)	Clear	1.19	wet	
D	17	2015/8/7	1/1	11:55–12:00(300 s)	Thin clouds	0.88	wet
18	2015/8/2	1/1	11:55–12:00(300 s)	Clear	1.03	wet	
19	2015/8/3	1/1	11:50–11:55(300 s)	Clear	1.06	wet	
20	2015/8/4	1/1	11:55–12:00(300 s)	Thin clouds	0.90	wet	
21	2015/8/5	1/1	11:55–12:00(300 s)	Clear	1.48	wet	
22	2015/8/6	1/1	11:55–12:00(300 s)	Clear	1.33	wet	
23	2015/8/12	1/1	11:58–12:03(300 s)	Clear	1.04	wet	
24	2016/7/20	1/1	14:50–14:55(300 s)	Clouds	0.45	wet	
25	2016/7/29	1/1	14:00–14:05(300 s)	—	Dark(0)	wet	

Table 3. Experimental conditions.

The composites were TiO$_2$/ZrO$_2$/NaCl (weight ratio) = 4.5/4.5/1 and 4/4/2. In the case of wet condition, each composite (0.2 g) was scattered in glass laboratory dish, held in the refrigerator for 20–24 h. They were measured in atmosphere 5 min after being removed from refrigerator.

The measuring results were

• TiO$_2$/ZrO$_2$/NaCl = 4.5/4.5/1: conductivity 80 μS (atmosphere: 27.9 °C 73%)
• TiO$_2$/ZrO$_2$/NaCl = 4.5/4.5/1: conductivity 95 μS (atmosphere: 27.8 °C 74%)
• TiO$_2$/ZrO$_2$/NaCl = 4/4/2: conductivity 160 μS (atmosphere: 26.1 °C 76%)
• TiO$_2$/ZrO$_2$/NaCl = 4/4/2: conductivity 250 μS (atmosphere: 27.8 °C 77%)

In contrast to these, in the dry condition, no conductivities of two kinds of composites were detected (electric conductivities were 0 μS).

Therefore, in the case of wet condition, surface of composites were covered with continuous water layer by condensation of water vapour, NaCl dissolved and dissociated in the water layer. Then, the conductivity was generated. This result shows existence of the water layer on the surface of composites.

• If the water layer is not formed, the TiO$_2$/ZrO$_2$ composite’s surface is dry. As dry TiO$_2$ photo-catalyst particles exhibit only strong oxidation activity, no reduced products are produced under UV light irradiation. (Author dispose gas in the bag after the formaldehyde and methanol were returned to CO$_2$ by the oxidation effect of dry TiO$_2$ particles.) But large amount of reduced products actually generated. This also evidences the existing of water layer on the surface of the composites by the condensation of water vapour.
(f) The role of ZrO$_2$

ZrO$_2$ have affinity to both acid and base21. Further, ZrO$_2$ strongly support for hydrogenation of CO and CO$_2$ as a carrier$^{22-25}$. Therefore, ZrO$_2$ provably have moderate adsorption force with carbonyl group. And, ZrO$_2$ probably adsorbs carbonyl group on the surface physically and transport adsorbing species to the interface of TiO$_2$ particle and ZrO$_2$ one.

It was shown from Fig. 3 that adding of ZrO$_2$ largely increased the reduced products. From these results, the use of ZrO$_2$ was essential for obtaining large amounts of reduced products.

Group	No.	Holding in refrigerator	Tempe- rature	Humidity	Irradiation time	Product/t formaldelyde	methanol	Volume of air(after irradiation)3
C	8	32 30.2 66 5 259 58 80 18 1000	9 21 30.7 59 5 374 83 120 27 1000	10 21 30.3 55 5 432 96 96 21 1000	11 23 30.6 71 5 432 96 144 32 1000	12 48 30.4 67 5 518 116 272 61 1000	13 39 29.1 62 5 315 70 80 18 1000	14 21 29.7 57 5 288 64 195 44 1000
D	17 20 31.8 61 5 324 72 80 18 1000	18 20 31.9 64 5 576 129 216 48 1000	19 20 31.7 62 5 518 116 265 59 1000	20 20 31.4 66 5 720 161 104 23 1000	21 20 31.5 67 5 1008 225 265 59 1000	22 20 31.2 68 5 1152 257 375 84 1000	23 20 30.4 68 5 585 131 96 21 1000	24 48 30.1 59 5 115 26 88 20 1000

Table 4. Experimental results1. Samples of 0.2 g were irradiated with only real solar light. And, sign “—” shows that color change of gas-detecting-tube was not detected (reduced product is equal to almost 0). 3There is inaccuracy from 30 ml to $+10$ ml.

Figure 3. Plots of products against ZrO$_2$ weight % in TiO$_2$/ZrO$_2$ composite. Plots in this figure correspond to the results in the Group C of Tables 3 and 4.

(f) The role of ZrO$_2$

ZrO$_2$ have affinity to both acid and base21. Further, ZrO$_2$ strongly support for hydrogenation of CO and CO$_2$ as a carrier$^{22-25}$. Therefore, ZrO$_2$ provably have moderate adsorption force with carbonyl group. And, ZrO$_2$ probably adsorbs carbonyl group on the surface physically and transport adsorbing species to the interface of TiO$_2$ particle and ZrO$_2$ one.

It was shown from Fig. 3 that adding of ZrO$_2$ largely increased the reduced products. From these results, the use of ZrO$_2$ was essential for obtaining large amounts of reduced products.
The measuring results were. Discussion
CO₂ molecules dissolve in the thin layer of water on the composites. Part of the dissolved CO₂ in the thin water layer generates carbonic acid²⁶ (equation (1)):

\[
 \text{CO}_2(aq) + H_2O = H_2CO_3
\]

(1)

The equilibrium constant (Kₜₐₜ) for this reaction is small (1.7 \times 10^{-3} at 25 °C). Furthermore, H₂CO₃ dissociates, as described by equations (2) and (3)²⁷,²⁸:

\[
 H_2CO_3(aq) = HCO_3^-(aq) + H^+(aq) \quad pK_{a1} = 6.35
\]

(2)

\[
 HCO_3^- = CO_3^{2-} + (aq) \quad pK_{a2} = 10.33
\]

(3)

where pK⁺_1 and pK₋₂ are the apparent acid-dissociation constant and acid-dissociation constant, respectively. The reaction formulas that include CO₃^{2−}, HCHO and CH₃OH are shown as equations (4) and (5); the standard electrode potentials E⁰ are also shown for these equations²⁹:

\[
 \text{CO}_3^{2-} + 6H^+ + 4e^- = HCHO(aq) + 2H_2O \quad E^0(25 °C)/V = 0.197V
\]

(4)

\[
 \text{CO}_3^{2-} + 8H^+ + 6e^- = CH_3OH(aq) + 2H_2O \quad E^0(25 °C)/V = 0.209V
\]

(5)

The standard electrode potential E⁰ is related to the standard Gibbs energy transition by following equation:

\[
 E^0 = -\Delta G^0/nF \quad (F: \text{Faraday constant})
\]

(6)

In equation (6), E⁰ is positive; therefore, \(\Delta G^0\) is negative because nF is positive. As \(\Delta G^0\) is negative, the reactions in equations (4) and (5) proceed towards the right to achieve equilibrium if the energy exceeds the activation energy. Catalysts are known to remarkably decrease the activation energy. Thus, equations (4) and (5) through which carbonic ions are reduced are not photocatalytic but catalytic reaction.

CO₃^{2−} is converted into HCHO and CH₃OH; then, HCHO and CH₃OH volatilize from the thin water layer. As the equilibrium (equations (4) and (5)) is disrupted, equations (4) and (5) proceed towards the right to maintain equilibrium, thereby decreasing the concentration of CO₃^{2−}. To maintain the equilibria of equations (1), (2) and (3), CO₂ dissolves and dissociates and new CO₃^{2−} is generated. The generation of HCHO and CH₃OH therefore continues.

These reactions together form a chain reaction, and the reaction from volatilization to the next volatilization is cyclic. Moreover, the thin water layer accelerates this cycle by the facile volatilization of HCHO and CH₃OH. After the cycle completes, the next cycle continues until the water layer disappears. A large amount of reduced products are obtained. In equation (3), the CO₃^{2−} (aq) concentration is extremely small. However, the aforementioned cyclic reaction can compensate for the low concentration of CO₃^{2−}. **Figure 4.** Plots of products as a function of irradiation energy (intensity). The plots in this figure correspond to the results in Group D of Tables 3 and 4.
Author calculated vapour pressure \((p)\) of formaldehyde and methanol by Antoine’s formula.

\[
\begin{align*}
\text{Formaldehyde:} & \quad p = 2358.0 \text{ Torr at } 10 \degree C \\
& \quad p = 3284.0 \text{ Torr at } 20 \degree C \\
\text{Methanol:} & \quad p = 55.4 \text{ Torr at } 10 \degree C \\
& \quad p = 97.3 \text{ Torr at } 20 \degree C
\end{align*}
\]

(Vapour pressure of water: \(p = 9.2 \text{ Torr at } 10 \degree C \text{ and } 17.5 \text{ Torr at } 20 \degree C\)30

These results show a relation of formaldehyde > methanol > water.

This result (formaldehyde > ethanol) was in agreement with order of the quantity of reduced products (formaldehyde > ethanol).

The solar light that reaches ground is greater than 300 nm in wavelength. The TiO\(_2\) photo-catalyst absorbs light less than 380 nm in wavelength. Therefore, the available wavelength range is only 300–380 nm. The energy of the light in this range is estimated to be approximately 3–4% of the entire solar energy.

However, solar energy of 3–4% is useful. Both \(e^-\) and \(h^+\) are generated by the TiO\(_2\) photo-catalyst.

In this report, the author used only TiO\(_2\), not Pt/TiO\(_2\). Therefore, the reaction schemes are based on the report of Fujishima \textit{et al.}17:

\[
\text{TiO}_2 + 2 \text{photons(hv)} \rightarrow 2e^- + 2h^+
\]

At oxidation sites on the TiO\(_2\) surface: \(H_2O + 2h^+ \rightarrow 1/2 O_2 + 2H^+\)

At reduction sites on the TiO\(_2\) surface: \(2 e^-\) generate the reduction driving force \(H^+\) and \(e^-\) can be used as those in equation (4) and (5).

Reduction driving force of electron generated by TiO\(_2\) photo-catalyst is not enough to reduce the CO\(_2\) directly. However, as the reduction driving force \((-0.52\text{ eV with respect to SHE}31,32)\) is stronger than that of normal electrons, and, high energy \(e^-\) ions can move to the interface of TiO\(_2\) particle and ZrO\(_2\) one.

And, the catalytic reducing reaction can be enhanced by the strong reduction driving force of \(e^-\) ions at the interface. Figure 4 showed that products yield of formaldehyde and methanol largely increased with increasing irradiation intensity of solar light. Increasing of irradiation intensity offers increasing numbers of high energy electron, thus, catalytic reducing reaction was enhanced.

From results and discussion, possible macro mechanism is following

1. Dissolve and dissociate of CO\(_2\) in air into the thin water layer on the surface of composite, and generation of CO\(_2^2^-\) ions in the thin water layer.
2. Physical adsorbing of CO\(_2^2^-\) ion to the ZrO\(_2\) surface.
3. Movement of adsorbing species to the interface of TiO\(_2\) particle and ZrO\(_2\) one.
4. Catalytic reducing reaction of adsorbing species at the interface.
 - High energy \(e^-\) generated by TiO\(_2\) photocatalytic effect strongly accelerates the catalytic reducing reaction.
5. Desorption of reduced products (low-molecular-weight organic compounds) from the interface into thin water layer.
6. Evaporation of reduced products (low-molecular-weight organic compounds) from the water thin layer into air.
7. Repeating of 1–6.

Conclusion

In this study, the thin water layer noted by Sato \textit{et al.} splits to provide H\(^+\) ions because of the TiO\(_2\) photo-catalyst and provides a reaction medium for the catalytic reduction of CO\(_2\).

Thin water layer on the composite surface (wet condition) is essential, and, author’s method is catalytic reaction enhanced by the TiO\(_2\) photo-catalyst. This method is new approach upon which nobody could hit. Moreover, the fact that a large amount of reduced products was obtained from CO\(_2\) and H\(_2\)O in air under irradiation of only real solar light at room temperature and atmosphere pressure is a novel and important finding.

Methods

Preparation of the composites (c). In the case of TiO\(_2\)/ZrO\(_2\) = 1/1, procedure is following.

First, 0.5 g of nanometre-sized anatase TiO\(_2\) particles (a) (TAYKA Co. Ltd., AMT100, nominal particle size: 6 nm) and 0.5 g of special-grade ZrO\(_2\) particles (b) (KANTO KAGAKU Co. Ltd., purity: 99.9%, particle size: 10–15 \(\mu\)m) were placed into a small ceramic pot and mixed uniformly. They were then forcefully pressed and agglomerated at room temperature to form the composites (c).

Experimental procedure. Next, 0.2 g of the composites (c) was scattered uniformly onto a copper plate, which was placed in a glass laboratory dish (inner diameter: 56 mm). The assembly with (c) scattered on the Cu plate in a glass laboratory dish is referred to as the test unit.

Initially, particles or molecules adsorbed onto the composites surface were removed by eliminating static electricity using an ion blower (AZ ONE Co. Ltd., Ion Blower AS-18). The blowing time was 1 h in the strong-wind mode. (Without the use of the ion blower, the test unit must be kept in a refrigerator for 2–3 days).

After the test unit was kept for more than 20 h in a refrigerator (inner temperature of the refrigerator: 1–5 \(\degree\)C), it was removed and placed into a transparent gas-barrier plastic bag (OKURA KOGYO Co. Ltd., OE-4, 200 \(\times\) 300
mm²). The bag was heat-sealed at its entrance. Urethane tape (1 × 1 cm²) was adhered to the outside surface of the bag. After the air in the bag was removed using a plastic syringe, new air was injected into the bag. The needle of the syringe was inserted though the urethane tape to avoid leaving a small hole after the needle was removed. The inner volume of the bag was 1000 ml. The bag was then placed on the ground facing the sun.

The injected air was at a sufficient temperature and humidity. With the using of 0.2 g of the composites (c), the desired temperature and humidity were approximately 30 °C and 60–80%, respectively. Too much quantity of water layer by condensation of water vapour considerably decreased the reduced products, for instance, in the case of 95–100% in humidity.

After irradiation by real solar light through the bag for 0.5 h or 10 min or 300 s, the concentrations (ppm) of formaldehyde and methanol were measured by a gas-detecting tube (GASTEC Co. Ltd., tube No. 91 M (measuring range: 8–20 ppm, 20–2000 ppm, and 2000–6400 ppm; three measuring ranges were available by altering the suction volume) and Tube No. 111L (measuring range: 20–40 ppm and 40–1000 ppm; two measuring ranges are available by altering the suction volume)). The tubes were inserted one by one thorough the plastic tape adhered to the outside surface of the bag, and the concentrations were measured; after the tubes were removed, the remaining hole was immediately sealed with another piece of tape. The inner volume of the bag was measured by extracting the gas with the plastic syringe. The measured concentrations (ppm) of both formaldehyde and methanol were then corrected for temperature and expressed in terms of μmol/g:

\[
\text{Micromole/g} = \frac{cV}{(22, \ 400 \times g)}
\]

where, \(c\) is the gas concentration (ppm), \(V\) is the inner volume after irradiation (ml), and \(g\) is the mass of composite (c) used (g).

The intensity of the UV light (mW/cm²) with a wavelength of 365 nm was measured using a UNIMETER (USHIO Co. Ltd., UIT-201 and UVD-365PD) during the irradiation of solar light during each experiment; the measurements were performed near the point where the composites were placed in the bag. The intensity was measured every 5 min (Experiment Nos 1–4 and Nos 17–25) or every 1 min (Experiment Nos 5–16). In the case of experiment Nos 17–25, the intensity was measured at the start and the end of irradiation. And, average of each experiment was calculated.

References
1. Medhau, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 545, 41–47 (2017).
2. Iizuka, K., Wato, T., Miseki, Y., Saito, K. & Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-lorded ALa₂TiO₅ₓ (A = Ca, Sr and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 133, 20863–20868 (2011).
3. Deguchi, M., Yotsubashi, S., Hashiba, H., Yamada, Y. & Ohkawa, K. Enhanced capability of photoelectrochemical CO₂ conversion system using an AlGaN/ GaN photoelectrode. Jpn. J. Appl. Phys. 52, 08G007-1–5 (2013).
4. Sato, S. et al. Selective CO₂ conversion to formate conjugated with H₂O oxidation utilizing semiconductor/complex hybrid photocatalysts. J. Am. Chem. Soc. 133, 15240–15243 (2011).
5. Li, X. et al. Adsorption of CO₂ on heterostructure CdS(Bi₂S₃)/TiO₂ nanotube photocatalysts and their photocatalytic activities in the photocatalytic reduction of to methanol under visible light irradiation. Catal. Today 180, 151–158 (2012).
6. Tahir, M., Tahir, B. & Amin, N. A. S. Gold- nanoparticle-modified TiO₂ nanowires for plasmon- enhanced photocatalytic CO₂ reduction with H₂ under visible light irradiation. Appl. Surf. Sci. 356, 1289–1299 (2015).
7. Sim, L. C., Leong, K. H., Saravanan, P. & Ibrahim, S. Rapid thermal reduced graphene oxide/Pt-TiO₂ nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO₂. Appl. Surf. Sci. 358, 122–129 (2015).
8. Ong, W.-L., Tan, L.-L., Chai, S.-P. & Yong, S.-T. Heterojunction engineering of graphitic carbon nitride (g-C₃N₄) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 44, 1249–1257 (2015).
9. Wang, W., Xu, D., Cheng, B., Yu, J. & Jiang, C. Hybrid carbon/TiO₂ hollow spheres with enhanced photocatalytic CO₂ reduction activity. J. Mater. Chem. A. 5, 5020–5029 (2017).
10. Low, J., Cheng, B. & Yu, J. Surface modification and enhanced photocatalytic CO₂ reduction performance of TiO₂: a review. Appl. Surf. Sci. 392, 658–685 (2017).
11. Nikokavoura, A. & Trapalis, C. Alternative photocatalysts to TiO₂ for the photocatalytic reduction of CO₂. Appl. Surf. Sci. 391, 149–174 (2017).
12. Yuan, L. & Xu, Y.-J. Photocatalytic conversion of CO₂ into value-added and renewable fuels. Appl. Surf. Sci. 342, 154–167 (2015).
13. Zhao, Z., Fan, J., Wang, J. & Li, R. Effect of heating temperature on photocatalytic reduction of CO₂ by N-TiO₂ nanotube catalyst. Catalysis Communications. 21, 32–37 (2012).
14. Wang, W.-N. et al. Size and Structure Matter: Enhanced CO₂ protoreduction efficiency by size-resolved ultrathin Pt nanoparticles on TiO₂ single crystals. J. Am. Chem. Soc. 134, 11276–11281 (2012).
15. Graeme, J., Millar, G. L., Colin, H. & Rochester, C. H. Evidence for the Adsorption of Molecules at Special Sites located at Copper/Zink Oxide Interfaces Part2.-A fourier-transform infrared spectroscopy study of Methanol adsorption on reduced and oxidised Cu/ZnO/SiO₂ catalysts. J. Chem. Soc. Faraday Trans. 88(15), 2257–2261 (1992).
16. Millar, G. J. & Rochester, C. H. A combined temperature-programmed reaction spectroscopy and fourier-transform infrared spectroscopy study of CO₂ H₂ and CO₂+H₂ interactions with mixed ZnO/SiO₂ Cu/FeO and Cu/ZnO/SiO₂ Methanol synthesis catalysts. J. Chem. Soc. Faraday Trans. 88(14), 2085–2093 (1992).
17. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).
18. Inoue, T., Fujishima, A., Komish, S. & Honda, K. Photocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 657–658 (1979).
19. Sato, S. & White, J. M. Photodecomposition of water over Pt/TiO₂ catalysts. Chem. Phys. Lett. 72, 83–86 (1980).
20. Ohtani, B. Revisiting the original works related to titania photocatalysis: A review of papers in the early stage of photocatalysis studies. Electrochemistry 82(6), 14–42 (2014).
21. Xu, B.-Q., Yamaguti, T. & Tanabe, K. Acid-base bifunctional behaviour of ZnO, in dual adsorption of CO₂ and NH₃. Chem. Lett., 1663–1666 (1988).
22. Iizuka, T., Tanaka, Y. & Tanabe, K. Hydrogenation of CO and CO₂ over Rhodium catalysts supported on various metal oxides. J.Catal. 76, 1–8 (1982).
23. Tsunoda, T., Ogawara, H., Komiyama, M., Ozawa, S. & Ogino, Y. Alcohol formation in CO hydrogenation over supported Rhodium. Chem. Lett., 819–822 (1981).
24. Ichikawa, M. Catalysis by supported metal crystallites from carbonyl clusters. Catalytic ethanol synthesis from CO and H₂ under atmospheric pressure over supported Rhodium crystallites prepared from Rh carbonyl clusters deposited on TiO₂, ZrO₂, and La₂O₃. Bull. Chem. Soc. Jpn. 51(8), 2273–2277 (1978).
25. Lisitsyn, A. S., Kuznetsov, V. L. & Yermakov, Y. I. Hydrogenation of carbon monoxide, Catalysis prepared by pyrolysis of Co₂(CO₈) on various oxide supports. React. Kinet. Catal. Lett. 14(4), 445–450 (1980).
26. Welch, M. J., Lipton, J. F. & Seck, J. A. Tracer studies with radioactive oxygen-15. Exchange between carbon dioxide and water. J. Phys. Chem. 73, 3351–3356 (1969).
27. IWANAMI RIKAGAKU JITEN (Iwanami Dictionary of physical sciences) 5th edn Vol.2 (ed. M. Nagakura et al.) Item: carbonic acid, 813 (Iwatani bookshop, 1998).
28. Lower, S. K. Carbonate equilibria in nature waters. A Chem1 Reference Text of Simon Fraser University. Chem1 Environmental Chemistry. Tables 3, 4 (1999) Available at: www.chem.1.com/acad/webtext/pdf/c3carb.pdf (Accessed: 26th September 2017).
29. KAGAKU BINRAN fundamental II (Chemical comprehensive reference guide Fundamental II) 5th edn Vol.1 (ed. Japan Chemical Institute) Ch. 13, II-581 (Maruzen Co. Ltd., 2004).
30. KAGAKU BINRAN fundamental II (Chemical comprehensive reference guide Fundamental II) 5th edn Vol.1 (ed. Japan Chemical Institute) Ch. 9, Table 9.55I-182 (Maruzen Co. Ltd., 2004).
31. Fujishima, A., Rao, T. N. & Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochemistry Reviews 1, 1–21 (2000).
32. Phattalung, S., Limpijumnong, S. & Yu, J. Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity. Appl. Cat. B: Environmental 200, 1–9 (2017).

Acknowledgements
The author thanks TAYKA Co., Ltd for providing the nanometre-sized TiO₂ particles approximately 15 years ago. Furthermore, the author acknowledges Wikipedia for information on dissolving and dissociating CO₂ with water.

Author Contributions
I.M. performed all work.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017