Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy

Emily V Fletcher1,2, Christian M Simon1,2, John G Pagiazitis1,2, Joshua I Chalif1,2, Aleksandra Vukojicic1,2, Estelle Drobac1,2, Xiaojian Wang1,2 & George Z Mentis1–3

Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

Movement is an essential behavior that is controlled by motor circuits. The intricate assembly of motor circuits is established by genetic programs1 and is subsequently refined by synaptic activity2. Within spinal motor circuits, motor neurons (MNs) bridge the central and peripheral nervous systems by conveying central commands to the skeletal muscles. MNs receive synapses from sensory neurons3, spinal interneurons4 and supraspinal pathways5. However, the underlying mechanisms of how neurotransmission shapes MN output are undefined. Furthermore, genetic perturbations causing neurodegenerative diseases may lead to synaptic and circuit dysfunction and initiate the demise of normal behavior.

In neurodegenerative diseases, behavioral impairment is attributed to the dysfunction of a specific neuronal type that is distinctly vulnerable to a ubiquitous gene mutation6. Dysfunction of select neurons acting as the primary targets of disease-causing mutations may precipitate secondary changes in their synaptic partners and exacerbate the disease7. Whether and how neuronal dysfunction in principally affected neurons may cause dysfunction of their synaptic partners and influence pathogenesis has not been established.

Here we used a mouse model of SMA, an inherited neurodegenerative disease, to investigate the impact of non-cell-autonomous mechanisms in the pathogenesis of disease. SMA is characterized by MN death, muscle atrophy and motor impairment8. Patients have homozygous mutations in the ubiquitously expressed gene survival motor neuron 1 (SMN1), but retain copies of a nearly identical hypomorphic gene SMN2 (refs. 9,10), causing SMN protein deficiency10. SMN dysfunction in neurons, but not in muscles, underlies motor impairment in mouse11 and fly12 SMA models. We have shown that synaptic dysfunction occurs simultaneously with MN hyperexcitability, preceding MN death13. Whether synaptic dysfunction is responsible for the MN hyperexcitability or synaptic loss occurs in response to MN dysfunction is unresolved. The primary neuronal target(s) affected by SMN deficiency leading to SMA motor circuit dysfunction remain elusive.

We report that SMA MNs increase their input resistance but exhibit decreased firing as a result of sensory–motor synapse dysfunction. Strikingly, both characteristics of MN dysfunction are rescued by selective SMN restoration in proprioceptive neurons. Further, synaptic dysfunction is characterized by impaired glutamate release, accompanied by a reduction of Kv2.1 channel expression in SMA MNs. The reduction of Kv2.1 is reversed by SMN restoration in proprioceptive neurons or by pharmacologically induced increase in network activity. Our findings elucidate cellular and network mechanisms responsible for SMA pathology and identify sensory excitatory synaptic drive as a major determinant in regulating MN output.

RESULTS
MN dysfunction onset correlates with proprioceptive synaptic impairment in SMA
SMA MNs exhibit selective vulnerability depending on the muscles they innervate, with proximal muscles more affected than distal muscles in mice14 and humans15. We previously reported that SMA MNs in the first lumbar segment (L1) exhibit an increase in input resistance early in the disease13. Whether vulnerable SMN-deficient MNs become dysfunctional as a result of synaptic impairment or due to MN-autonomous mechanisms is unknown. To study vulnerable MNs, we focused on those that innervate the iliopsoas (IL) and quadratus lumborum (QL) muscles13,14. These muscles are involved in posture

1Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA. 2Department of Pathology and Cell Biology, Columbia University, New York, New York, USA. 3Department of Neurology, Columbia University, New York, New York, USA. Correspondence should be addressed to G.Z.M. (gzmentis@columbia.edu).

Received 27 June 2016; accepted 4 April 2017; published online 15 May 2017; doi:10.1038/nn.4561
and locomotion15 and in the righting reflex, which is impaired in SMA mouse models.13 The IL/QL MNs reside within the L1 to L3 spinal segments16. Tracing experiments from muscle together with ventral root L2 dye fill13 indicated that most IL/QL MNs lie laterally within the L2 spinal segment (Supplementary Fig. 1).

The excitability of a neuron is defined by its ability to generate action potentials in response to injected currents or synaptic inputs and is regulated by its intrinsic membrane properties. To study the intrinsic passive and active membrane properties and monosynaptic sensory-induced synaptic potentials of L2 MNs, we made whole-cell current clamp recordings in an intact mouse spinal cord ex vivo preparation13 at postnatal day (P) 2 (Supplementary Fig. 2a). Analysis of the intrinsic membrane properties of SMA MNs revealed two populations (Supplementary Fig. 2b). 57% were similar to wild-type (WT) MNs ("SMA-unaffected"), while 43% exhibited signs of dysfunction ("SMA-affected"), evidenced by increased input resistance and time constant and reduced rheobase (Fig. 1a–e). To investigate whether resistant SMA MNs were also affected, we studied L5 lateral MNs, which innervate the gastrocnemius and tibialis anterior, distal hindlimb muscles, at P4. We found no difference in the intrinsic membrane properties of WT and SMA L5 MNs even at this later stage of the disease (Supplementary Fig. 2c–e). Thus, ubiquitous SMN deficiency in MNs does not cause dysfunction in all spinal MNs, further highlighting the selective vulnerability of specific MN pools.

To determine the basis of MN dysfunction in L2 SMA-affected MNs, we first quantified the number of proprioceptive synapses on
Figure 2 Selective upregulation of SMN in proprioceptive neurons alone normalizes MN membrane hyperexcitability and VGluT1 synapses. (a) Membrane responses (top) following current injection (bottom) in WT, SMA, SMA+PvCre and SMA+ChATCre L2 MNs at P4. (b) The average input resistance (R_{in}), membrane time constant (τ) and capacitance in WT ($n = 11$), SMA ($n = 6$), SMA+PvCre ($n = 6$) and SMA+ChATCre ($n = 8$) L2 MNs. One-way ANOVA, Tukey’s post hoc analysis ($* P = 0.0159$, $** P < 0.01$). (c) Intracellular responses of monosynaptic EPSPs following supramaximal stimulation of the L2 dorsal root in homonymous MNs for the same groups shown in a. Arrows indicate the peak EPSP amplitude measured at 3 ms after the onset of response and arrowheads the stimulus artifact. (d) The average peak EPSP amplitude in MNs for the groups shown in c. One-way ANOVA, Tukey’s post hoc analysis ($* P = 0.0060$, $** P = 0.0006$). (e) Relationship between peak EPSP amplitude and input resistance of L2 MNs for the groups shown in a. (f) First (black) and second (red) EPSP responses elicited in MNs after 1-Hz dorsal root stimulation in the groups shown in a. Arrows indicate the peak EPSP amplitude measured at 3 ms after the onset of response. (g) Average percentage of second EPSP response, normalized to first response, by MNs in the groups shown in f. One-way ANOVA, Tukey’s post hoc analysis (** $P < 0.01$, *** $P < 0.001$). (h) Z-stack projection of confocal images from retrogradely labeled L2 MNs (blue) and VGluT1 synaptic boutons (green) in a WT, SMA, SMA+PvCre and SMA+ChATCre mouse at P4. Insets show VGluT1 synaptic appositions on dendrites at higher magnification. The total distance in the z axis for all main panels was 7 µm (20 optical planes at 0.35-µm intervals) and for the insets 1.5 µm. (i) The average number of VGluT1 boutons on somata of L2 WT ($n = 17$), SMA ($n = 14$), SMA+PvCre ($n = 13$) and SMA+ChATCre ($n = 15$) MNs. One-way ANOVA, Tukey’s post hoc analysis (*** $P < 0.0001$, ** $P = 0.002$ and $* P = 0.021$). (j) VGluT1 synaptic density on 50 µm dendritic compartments from the soma, for the same groups shown in h. One-way ANOVA, Tukey’s post hoc analysis (0–50 µm: *** $P < 0.0001$, WT versus SMA; ** $P = 0.001$, WT versus SMA+ChATCre and *** $P = 0.008$, SMA versus SMA+PvCre; 50–100 µm: *** $P = 0.0007$, WT versus SMA; ** $P = 0.005$, WT versus SMA+ChATCre). All data are represented as mean ± s.e.m. For details, see Supplementary Methods Checklist.
their somata and proximal dendrites. We employed retrograde tracing to label the somatodendritic tree of MNs together with immunohistochemistry against vesicular glutamate transporter 1 (VGLuT1) (Fig. 1f), a marker of proprioceptive synapses. We found a modest overall reduction in VGLuT1 synapses on the SMA MNs, and there was no synaptic loss on dendrites (Fig. 1g), where over 90% of the proprioceptive synapses make contact with MNs. Furthermore, analysis of the number of VGLuT1 synapses, plotted against the transverse surface area of the MN soma, revealed that all SMA L2 MNs were equally affected (Supplementary Fig. 2h). Thus, the loss of proprioceptive synapses on the soma is unlikely to be the main contributor to increased input resistance in SMA MNs.

Next we analyzed the monosynaptically induced excitatory postsynaptic potential (EPSP) following proprioceptive fiber stimulation. While SMA-unaffected MNs exhibited comparable EPSP amplitudes to WT MNs, SMA-affected hyperexcitable MNs exhibited reduced EPSPs (Fig. 1h,i). Resistant L5 SMA MNs exhibited similar EPSP amplitudes to WT (Supplementary Fig. 2f,g). These results highlight a strong relationship between synaptic function and intrinsic membrane properties of MNs, suggesting that synaptic dysfunction precedes synaptic loss and induces an increase in MN input resistance early in disease.

Loss of SMN from proprioceptive neurons weakens sensory–motor synapses and causes MN dysfunction

To define the cellular basis of sensory–motor circuit dysfunction in SMA, we restored SMN specifically in proprioceptive neurons, specifically in MNs, or in both neuronal classes in SMA mice. We used a mouse model of SMA harboring a single targeted mutation and two transgenic allelic, resulting in the genotype Smn^{Res}+/Smn2^m/+, SmnA⁷+/+ (where Smn is used for the mouse Smn1 gene and SMN for the human SMN2 gene) (ref. 19). The allele carrying the targeted mutation (Smn^{Res}) is engineered to revert to a fully functional Smn allele upon Cre-mediated recombination (Cre^{+/−}−Smn^{Res}+/Smn2^m/+, SmnA⁷+/+). SMN2 is the human gene and SMN7 corresponds to the human SMN cDNA lacking exon 7. In the absence of the Cre recombinase (Cre^{−/−}/Smn^{Res}+/Smn2^m/+, SmnA⁷+/+) the phenotype of these mice is similar to that of the SMN2 SMA mice, and this approach has been validated in several studies.

Number of L2 MNs

Age (d)	WT	SMA	Smn^{Res}	Smn^{Res}+PvCre
2	400	200	100	50
4	400	200	100	50
6	400	200	100	50
8	400	200	100	50
10	400	200	100	50
12	400	200	100	50

While SMA-unaffected MNs exhibited comparable EPSP amplitudes to WT MNs, SMA-affected hyperexcitable MNs exhibited reduced EPSP amplitudes following proprioceptive fiber stimulation. While SMA-unaffected MNs exhibited comparable EPSP amplitudes to WT MNs, SMA-affected hyperexcitable MNs exhibited reduced EPSP amplitudes following proprioceptive fiber stimulation.
Next we measured the EPSP amplitude in L2 MNs following proprioceptive fiber stimulation at P4. We did not observe any significant changes in the MN resting membrane potential for any of the experimental groups at P4 (mean ± s.e.m.; one-way ANOVA, \(P = 0.539 \) (F-test). Notably, the reduction of the EPSP amplitude in SMA MNs was restored in SMA+PvCre and SMA+ChATCre MNs (Fig. 2d). Furthermore, analysis of the EPSP amplitude and input resistance (Fig. 2e) demonstrated that MNs exhibiting large EPSPs possessed low input resistances. This relationship was similar in WT and SMA+PvCre MNs (Fig. 2e). To address whether the reduction in EPSP amplitude is due to impaired glutamate release, we performed paired-pulse stimulation of the dorsal root at 1 Hz. Proprioceptive stimulus-induced EPSPs in WT mice were mildly depressed at P4, as previously reported. However, EPSPs in SMA mice were significantly more depressed than those in WT (Fig. 2f). This depression was corrected in SMA+PvCre mice, but not in SMA+ChATCre mice (Fig. 2f). Thus, the reduction of EPSPs in SMA is due to impairment of glutamate release.

To address whether the improved EPSP amplitude in SMA+PvCre MNs was due to a rescue of proprioceptive synapses or enhanced presynaptic function of the remaining synapses, we analyzed the number of VGluT1+ synapses on retrogradely filled MNs. There was a significant rescue of VGluT1+ synapses both on the somata and dendrites of MNs in SMA+PvCre mice at P4 (Fig. 2h–j), whereas SMA+ChATCre MNs showed no rescue (Fig. 2h–j). Furthermore, we found that VGluT1+ synapse numbers in SMA+PvCre mice remained comparable to WT synaptic numbers at P11, a late stage of disease (Supplementary Fig. 8a–c), demonstrating that proprioceptive synapses continue to develop. Thus, restoration of SMN in proprioceptive neurons rescues synaptic loss. Collectively, our results demonstrate that MN dysfunction is a non-cell-autonomous consequence of SMN-dependent deficits in proprioceptive neurons.

Dysfunction and death of MNs are two independent events in SMA

MN death is a hallmark of SMA, MN hyperexcitability has been implicated in neuronal death following axotomy of facial MNs and in amyotrophic lateral sclerosis. We therefore asked whether selective SMN upregulation in proprioceptive neurons would affect the survival of SMA MNs. We demarcated the L2 rostrocaudal extent as we previously described and counted all L2 MNs identified by ChAT staining at P2, P4 and P11. There was no significant MN loss at P2, but 34% of MNs were lost at P4 and 42% at P11 (Fig. 3a,b). SMN restoration in proprioceptive neurons only (SMA+PvCre) did not result in any...
significant rescue \((P = 0.68, \text{SMA versus SMA+PvCre}) \), whereas selective restoration in MNs \((\text{SMA+ChATCre}) \) resulted in rescue of MNs both at P4 and at P11, which was not ameliorated any further by SMN upregulation in both proprioceptive neurons and MNs \((\text{SMA+(Pv+ChAT)Cre}) \) (Fig. 3a,b). These results demonstrate that SMN deficiency in sensory neurons does not induce the death of MNs. Thus, dysfunction and death of MNs are distinct and independent events, likely governed by different mechanisms.

Figure 5 Improvement of NMJ function, innervation and behavioral benefits following selective restoration of SMN in proprioceptive neurons and MNs. (a) Confocal images of NMJs from the QL muscle labeled by the presynaptic markers synaptophysin (Syn, green) and neurofilament (NF, blue) and the postsynaptic marker bungarotoxin (BTX, red) in WT, SMA, SMA+PvCre and SMA+ChATCre mice at P4. Arrows indicate denervated NMJs. (b) Percentage extent of innervation of the QL muscle in WT \((n = 4) \), SMA \((n = 4) \), SMA+PvCre \((n = 3) \), SMA+ChATCre \((n = 3) \) and SMA+(Pv+ChAT)Cre \((n = 3) \). One-way ANOVA, Tukey’s post hoc analysis, *** \(P < 0.001 \). (c) CMAP recorded from the QL muscle following stimulation of the L2 ventral root in WT, SMA, SMA+PvCre and SMA+ChATCre mice at P4. Arrows indicate the peak CMAP amplitude and arrowheads the stimulus artifact. (d) Average of peak CMAP amplitude for the groups shown in c. One-way ANOVA, Tukey’s post hoc analysis \((* P = 0.018, ** P < 0.0001) \). (e) CMAP recorded from the QL muscle following 20-Hz stimulation of the L2 ventral root in WT, SMA, SMA+PvCre and SMA+ChATCre mice at P4. The 1st (black) and 20th (red) CMAP are shown superimposed. Horizontal arrows indicate the peak CMAP amplitude and arrowheads the stimulus artifact. (f) Percentage change of CMAP amplitude expressed as a ratio of the 20th to the 1st response in WT, SMA, SMA+PvCre, SMA+ChATCre and SMA+(Pv+ChAT)Cre mice at P4. One-way ANOVA, Tukey’s post hoc analysis \((* P = 0.025, \text{WT versus SMA and SMA+PvCre}) \). (g) Righting times for WT (black), SMA (red) and SMA mice in which SMN was restored in proprioceptive neurons only \((\text{SMA+PvCre}) \). *** \(P < 0.001 \), ** \(P < 0.01 \), t-test (SMA+PvCre versus SMA) for the individual ages. (h) Righting times for WT mice (black), SMA mice (red), SMA mice in which SMN was restored in MNs only \((\text{SMA+ChATCre}) \) and SMA mice in which SMN was restored in both proprioceptive neurons and MNs \((\text{SMA+(Pv+ChAT)Cre}) \). All data are represented as mean ± s.e.m.

For details, see Supplementary Methods Checklist.
Dysfunction of proprioceptive synapses causes reduction in MN firing in SMA

The effects of increased input resistance on neuronal firing in neurodegenerative diseases are poorly understood. To address this, we analyzed the firing frequency in L2 MNs following current injection. The current injection required to induce repetitive firing in WT and SMA P2 MNs was variable (Supplementary Fig. 9a–c). Thus, we compared among the groups the MN firing frequency induced by increments of current above the minimum current required for repetitive firing. The firing frequency of SMA-unaffected MNs was indistinguishable from that of control MNs (Fig. 4a,b). However, SMA-affected MNs, despite exhibiting increased input resistance (Fig. 1a–e), paradoxically displayed reduced firing rates compared to controls at P2 (Fig. 4a,b). Notably, SMA-resistant L5 MNs, which did not exhibit increased input resistance, did not display any significant changes in firing frequency (P ≥ 0.57; Supplementary Fig. 9d,e).

At P4, when nearly all SMA L2 MNs exhibit increased input resistance, all SMA MNs fired at significantly lower frequencies (Fig. 4c,d). Remarkably, SMA+PvCre MNs exhibited a significant correction in firing frequency (Fig. 4c,e), whereas SMA+ChATCre MNs fired at similar frequencies to SMA MNs (Fig. 4c,f). Although SMA MNs exhibited a reduction in the voltage threshold compared to WT (WT: −26.6 ± 1.7 mV; SMA: −39.7 ± 2.4 mV; P = 0.0011, Mann–Whitney), in agreement with our previous report13, SMA+PvCre and SMA+ChATCre MNs had similar voltage threshold values to SMA MNs. Thus, SMA MNs fire at reduced frequencies and this reduction may be triggered by the dysfunction of sensory–motor synapses.

SMN upregulation in proprioceptive neurons in SMA mice improves NMJ function and motor behavior

We next investigated the effects of selective restoration of SMN in proprioceptive neurons at the neuromuscular junction (NMJ) by examining the functional and morphological properties of NMJs in the vulnerable QL muscles of SMA mice, at P4. We found that the QL exhibited 37% denervation in SMA mice and 38% in SMA+PvCre mice (Fig. 5a,b). In contrast, we observed a complete rescue of NMJ denervation when SMN was restored in MNs only (SMA+ChATCre) or in both neuronal classes [SMA+(Pv+ChAT)Cre] (Fig. 5a,b). Next we
developed an assay that measures NMJ function by stimulating MN axons in the L2 ventral root and recording the resultant compound muscle action potential (CMAP) in the QL muscle (Supplementary Fig. 10a). This assay is uncontaminated by electrical activity from motor axons, as exposure to pancuronium resulted in complete abolition of the CMAP (Supplementary Fig. 10c).

We found that the CMAP amplitude was significantly reduced in SMA mice (Fig. 5c,d). Strikingly, selective upregulation of SMN in SMA+PvCre mice resulted in a significant improvement (2.3-fold increase) in CMAP amplitude, while SMA+ChATCre mice exhibited a more robust (3.8-fold increase) improvement (Fig. 5c,d). Restoration of SMN in both neuronal types resulted in recovery to WT levels (Fig. 5c,d). To assess CMAP reliability, we applied a train of stimuli at 20 Hz (Supplementary Fig. 10b). WT, SMA+ChATCre and SMA+(Pv+ChAT)Cre mice showed reliable CMAP responses (Fig. 5c,f). In contrast, SMA and SMA+PvCre exhibited a ~35% decline by the end of the stimulus train. Thus, SMN restoration in proprioceptive neurons moderately improves NMJ function, but not denervation.

To assess the behavioral benefits of selective SMN restoration in proprioceptive neurons, MNs, or both neuronal populations, we analyzed the righting time of SMA mice. We found that SMA+PvCre mice exhibited improved righting time as early as P3 (Fig. 5g) and modestly increased lifespan (Supplementary Fig. 10d). Furthermore, while selective restoration of SMN in MNs improved the righting time (Fig. 5h) and increased lifespan (Supplementary Fig. 10c), as previously reported, combinatorial SMN upregulation in both proprioceptive neurons and MNs in SMA+(Pv+ChAT)Cre mice yielded a synergistic improvement of motor behavior beyond that in SMA+ChATCre mice (Fig. 5h). These results demonstrate that SMN deficiency in proprioceptive neurons contributes to the motor deficits in SMA.

Block of neurotransmitter release from proprioceptive synapses causes MN dysfunction during early development

To tease out the synaptic mechanisms responsible for MN dysfunction, we investigated whether impaired glutamate release from proprioceptive synapses is responsible for the increased input resistance and reduced firing frequency of MNs. We blocked neurotransmission at proprioceptive synapses through expression of the tetanus toxin light chain subunit (TeNT), which inhibits neurotransmitter release. A PvCre driver mouse line was crossed to a ROSA26 lsl-TeNT mouse strain to generate PvTeNT mice. PvTeNT mice have a short lifespan, surviving on average until P18, and exhibit severe deficits in motor coordination, including a nearly complete inability to right during the first 4 postnatal days (Fig. 6a). As we reported recently, these mice display nearly complete (~97%) block of neurotransmission from proprioceptive synapses on MNs. PvTeNT mice showed no loss of VGluT1 synapses from the somata and proximal dendrites of L2 MNs (Fig. 6b–d). However, PvTeNT L2 MNs exhibited a significantly increased input resistance and time constant and reduced rheobase (Fig. 6e–i). These changes were not due to a reduction in MN size.
since the capacitance did not change (Fig. 6h). L5 PtTeNT MNs also increased their input resistance (Supplementary Fig. 11f–h), suggesting that glutamatergic block from proprioceptive synapses causes input resistance changes in all MNs and is not specific to certain MN pools. Furthermore, frequency–current plots from L2 PtTeNT MNs at P4 revealed a significant reduction in firing frequency (Fig. 6j,k), indicating that neurotransmission block at sensory–motor synapses affects MN firing frequency. There was no significant loss of L2 MNs (P = 0.39; Supplementary Fig. 11a), NMJ denervation in the QL muscle (Supplementary Fig. 11b,c) or significant changes in CMAP amplitude (P = 0.23; Supplementary Fig. 11d,e).

To test the possibility that signaling from brain-derived neurotrophic factor (BDNF)—known to be released by proprioceptive neurons31,32—may also be responsible for MN dysfunction, we overexpressed BDNF in SMA mice by transducing proprioceptive neurons with an AAV9-GFP-mBDNF adeno-associated virus pseudotype 9, injected intracerebroventricularly at birth, and examined the function of SMA MNs at P5 (see Online Methods and Supplementary Fig. 12). Approximately 85% of proprioceptive neurons and 50% of MNs were transduced (Supplementary Fig. 12a–d). BDNF release from SMA proprioceptive synapses was confirmed by an increase of GAD65— but not GAD67—in GABApre (inhibitory neurons responsible for presynaptic inhibition) synapses (Supplementary Fig. 12e–h), as we reported for VGluT1−/− (Slc17a7−/−) mice32. To avoid the effects of direct BDNF overexpression in SMA MNs, we analyzed untransduced SMA MNs only (Supplementary Fig. 12i). Thus, any possible changes would be due to overexpression of BDNF in proprioceptive neurons. We found that untransduced SMA MNs exhibited similar increases in input resistance and reduced firing frequency compared to control MNs from SMA mice that did not receive AAV9-BDNF (Supplementary Fig. 12j–l). Taken together, these results suggest that changes in SMA MN function are unlikely to be mediated by BDNF release from proprioceptive neurons.

Collectively, these results demonstrate that block of glutamate release at sensory–motor synapses results in increased MN input resistance and a concomitant reduction in firing frequency, but not MN death, phenocopying aspects of SMA. Thus, presynaptic function impairment is likely to be responsible for MN dysfunction in SMA.

Sensory–motor synaptic dysfunction in SMA leads to a widening of the MN spike waveform

We sought to decipher the molecular mechanisms of MN dysfunction, causally linking the reduction in firing frequency with decreased sensory–motor excitatory synaptic drive, by comparing the orthodromically induced action potential profiles of SMA and WT MNs during steady-state repetitive firing induced by current injection. The afterhyperpolarization (AHP) is unlikely to contribute to the reduction in spiking frequency in SMA MNs, because there was no significant difference in either AHP amplitude or duration (P = 0.20; Supplementary Fig. 13a,b). Examination of the action potential duration revealed significantly prolonged action potentials in SMA MNs compared to WT controls as illustrated by the increase of the action potential half-width (Fig. 7a,b). Notably, SMA+PtCre MNs exhibited action potentials similar to those observed in WT, while action potentials in SMA+ChATCre MNs were similar to those in SMA MNs (Fig. 7a,b). Furthermore, PtTeNT MNs exhibited prolonged action...
potentials akin to those in SMA MNs (Fig. 7c,d). Although the rate of depolarization in action potentials was similar among the four experimental groups (WT: 36.7 ± 3.1; SMA: 34.8 ± 4.0; SMA + P_{v\text{Cre}}: 29.4 ± 1.2; SMA + ChAT_{Cre} + P_{v\text{Cre}}: 33.8 ± 6.6 mV/ms (one-way ANOVA, P = 0.649 (F-test)), the rate of repolarization was significantly slower in SMA and SMA + ChAT_{Cre} MNs and it was corrected in SMA + P_{v\text{Cre}} MNs (WT: 18.9 ± 2.0; SMA: 10.5 ± 1.1; SMA + P_{v\text{Cre}}: 14.3 ± 0.9; SMA + ChAT_{Cre} + P_{v\text{Cre}}: 1.7 ± 1.7 mV/ms; P = 0.004 in WT versus SMA and P = 0.002 in WT versus SMA + ChAT_{Cre}, one-way ANOVA, Tukey’s post hoc test). Thus, widening of the spike waveform is likely responsible for the reduced output seen in SMA MNs.

Loss of SMN from proprioceptors reduces the surface expression of Kv2.1 in MNs

The slower repolarization of the action potential raised the possibility that changes in potassium channels may be responsible for spiking frequency reduction. The delayed rectifier Kv2.1 channel plays an important role in action potential repolarization in MNs35. We therefore investigated the contribution of Kv2.1 channels to SMA MN dysfunction. We compared the half-width of action potentials and MN firing frequency following acute exposure to a specific blocker of Kv2 channels, guangxitoxin-1E (GxTx-1E)34,35. GxTx-1E specifically blocks Kv2.1 and Kv2.2 at 100 nM and Kv4.3 at higher concentrations34. Exposure to 100 nM GxTx-1E did not alter the input resistance of WT and SMA MNs (Supplementary Fig. 13c–e). The action potential half-width was significantly increased in WT but only marginally increased in SMA MNs (Fig. 7e–g). Notably, the firing frequency following current injection was significantly reduced in WT MNs, and less affected in SMA MNs (Fig. 7h–j). An insight into how the reduction in Kv2 current reduces the firing ability is revealed by measurements of the trough voltage, defined as the most negative potential between two spikes during repetitive firing (Supplementary Fig. 13f). We found a significant increase in the trough voltage, with a shift to more depolarized potentials, in SMA MNs compared to WT when the firing frequency doubled (P = 0.002; Supplementary Fig. 13g). This depolarization may result in a reduced recovery of voltage-gated sodium channels from inactivation, ultimately limiting sodium channel availability for the initiation of subsequent spikes and thereby reducing firing frequency. Collectively, these results indicate that the reduction in spiking frequency in SMA MNs is likely to be due to a reduction in Kv2 potassium channels.

To focus on channel expression in MNs, we performed immunohistochemistry with antibodies against Kv2.1, Kv2.2 and Kv4.3. Kv2.1 in MNs was associated with proprioceptive synapses (Supplementary Fig. 14a). Analysis of Kv2.1 surface coverage on L2 MN somata (Supplementary Fig. 14b,c) revealed a significant reduction of Kv2.1 in SMA (Fig. 8a,b). Moreover, western blot analysis revealed no appreciable difference in the overall expression of Kv2.1 in L1–L3 ventral horns from WT and SMA mice (Fig. 7i), indicative of a specific reduction in MNs. The effects are specific to Kv2.1, since Kv2.2 coverage was similar in WT and SMA MNs (Supplementary Fig. 14f) and Kv4.3 was not expressed in MNs at this age (Supplementary Fig. 14g). L5 SMA-resistant MNs, which do not exhibit any reduction in firing frequency, did not display changes in Kv2.1 coverage (Supplementary Fig. 14d,e). In addition, P_{v\text{Ten}} and SMA + ChAT_{Cre} L2 MNs exhibited a similar reduction to SMA MNs in Kv2.1 somatic coverage (Fig. 8a,b). Similarly, L5 MNs in P_{v\text{Ten}} mice exhibited a significant reduction in Kv2.1 expression (P < 0.0001; Supplementary Fig. 14d,e). In striking contrast, SMA + P_{v\text{Cre}} and SMA + (P_{v\text{Cre}} + ChAT_{Cre}) MNs displayed a robust restoration of Kv2.1 coverage to normal levels (Fig. 8a,b). These results demonstrate that reduction of Kv2.1 expression in SMA MNs is a non-cell-autonomous consequence of proprioceptive neuron dysfunction.

Chronic postnatal kainate treatment restores normal Kv2.1 surface expression and improves motor function in SMA mice

To test the possibility that Kv2.1 coverage is regulated by excitatory synaptic transmission, we treated SMA mice daily in vivo (starting at P0) with kainate, a glutamate receptor agonist. Although kainate has been widely used to induce seizures36, subconvulsive daily doses of 1.5 mg/kg were tolerated for the first postnatal week. Kainate treatment has been shown to increase neuronal activity36. Remarkably, P4 SMA MNs treated with kainate displayed a significant increase in Kv2.1 coverage (Fig. 8a,b), whereas kainate-treated WT MNs did not show any difference in Kv2.1 surface coverage compared to untreated controls (Fig. 8a,b). Additionally, the righting times of SMA mice treated with kainate significantly improved (Fig. 8c). Thus, an increase in global neuronal activity restores Kv2.1 channel expression and improves motor function in SMA mice.

DISCUSSION

Our study reveals non-cell-autonomous mechanisms that shape MN output during development and identifies a functional cascade of synaptic deficits that likely underlie muscle paralysis in SMA. We show that SMN deficiency causes sensory-derived dysfunction via the reduction of presynaptic glutamate transmission onto MNs, resulting in two opposing effects on their excitability. SMA MNs increase their input resistance but, paradoxically, reduce their firing ability. This reduction in MN spiking ability is a non-cell-autonomous consequence of the decrease in excitatory synaptic drive from proprioceptive neurons, most likely due to the reduction of Kv2.1 channel expression in MNs. Selective restoration of SMN in proprioceptive neurons reverses the changes in the membrane properties and spiking frequency of SMA MNs. Accordingly, selective blockade of sensory-motor neurotransmission in the presence of normal SMN levels phenocopied the effects of synaptic dysfunction in SMA. Kainate treatment in vivo restored normal Kv2.1 expression and improved motor function, presumably by increasing the excitatory drive onto MNs, and may represent a viable therapeutic approach complementary to SMN upregulation (Supplementary Fig. 15).

Non-cell-autonomous mechanisms of SMA MN dysfunction

Neuronal dysfunction is often determined by changes in physiologi- cal properties of disease-vulnerable neurons13,37. Intrinsinc membrane properties determine neuronal excitability and govern how converging premotor synaptic drive is translated into the generation of action potentials38. We demonstrate that MN increased input resistance is a non-cell-autonomous response induced by SMN deficiency, ensuing after birth and progressively accumulating in vulnerable SMA MNs, which paradoxically impairs their functional output. First, vulnerable but not resistant SMA MNs exhibit signs of increased input resistance. Second, specific restoration of SMN in MNs does not correct their neuronal membrane properties, whereas restoration of SMN in proprioceptive neurons restores the MN input resistance to normal levels. Lastly, neurotransmission block at proprioceptive synapses (P_{v\text{Ten}}) phenocopied the changes in the MN membrane properties observed in SMA. Increased input resistance in vulnerable SMA MNs correlates with lower proprioceptive stimulus-induced EPSP amplitude, both of which are normalized following restoration of SMN in proprioceptive neurons. Thus, SMN deficiency in proprioceptive neurons decreases synaptic release and ultimately precipitates secondary changes in MNs.
Synaptic dysfunction may be caused by compromised presynaptic neurotransmitter release, a loss of synaptic boutons, or both. Early in SMA, the asymmetric reduction in EPSP amplitude (87%) compared to synaptic loss (49%) and the reduction in the paired-pulse stimulation study suggest that the impairment of glutamate release from sensory–motor synapses is the initiating event in SMA. Dysfunction at later stages is further exacerbated by the progressive loss of synapses from dendrites, which comprise ~90% of the total number of synapses and are largely responsible for MN activation.

Increase in input resistance does not cause cell death

Common events in neurodegenerative diseases are death and dysfunction of vulnerable neurons. Deciphering the mechanisms responsible for these events is key in determining their contributions to the disease process. Increases in the input resistance of MNs are thought to be linked to neuronal death, as anatomy of developing MN axons causes substantial cell death, with subpopulations of MNs exhibiting abnormal increases in input resistance considered to represent a 'pre-lethal' stage. Changes in MN excitability are also associated with neuronal death in amyotrophic lateral sclerosis. However, a cause–effect relationship between increases in input resistance and death of MNs has not been established. Here we provide direct evidence that an increase in input resistance and death of MNs are independent, causally unrelated events induced by SMN deficiency in motor circuits. First, restoration of SMN in proprioceptive neurons restores the functional changes in MNs without rescuing the number of SMA MNs. Second, restoration of SMN in MNs rescues cell death, consistent with previous studies, but does not correct the changes in input resistance. Finally, neurotransmission block by PVTeNT increases the MN input resistance, but does not cause MN death. Thus, our work reveals that an abnormal increase in input resistance is not a trigger of MN death.

Impairment of glutamate transmission causes decline in MN output through reduction of Kv2.1 channels

What is the functional relationship between the intrinsic membrane properties and MN output? Changes in firing frequency can be governed by the AHP and persistent inward currents (PICs). However, the reduction of spike firing in SMA is not due to changes in AHP because SMA MNs showed no abnormalities. Similarly, PICs are unlikely to contribute appreciably since PICs are cell-autonomously increased in SMA MNs. An increase in PICs would be expected to increase the MN firing frequency, but our results in SMA+ChAT-Cre mice demonstrate that SMN restoration in MNs did not increase their firing frequency compared to controls. However, GxTx-1E caused a ~10% global reduction in the peak of the action potential and a ~10% global reduction in the maximum rate is reached. Since smaller muscles recruit their motor units within 0 to 50% of maximum voluntary contraction (MVC), they rely exclusively on firing rate increase to augment their force output between 50 and 100% MVC. Larger muscles recruit human motor units at least to 90% MVC. Thus, smaller muscles rely primarily on firing rate and larger muscles on recruitment order to modulate their force. Here, we show that vulnerable SMA mouse MNs and MNs in PVTeNT cannot fire at high frequencies suggesting that the reduced spiking ability greatly contributes to impairment of normal muscle contractions.

In summary, our study demonstrates that a reduction of glutamatergically mediated neurotransmission from proprioceptive synapses in SMA is a major determinant in shaping MN output. Furthermore, our observations suggest that in SMA patients, although motor units may be recruited more easily, resulting in weak twitches of affected muscles, their activation would not reach fused tetanic contractions, likely leading to total muscle paralysis as the disease progresses. Therapeutically, our experiments with in vivo kainate treatment suggest that an increase in gross synaptic activity could alleviate the severe neurological deficits observed in SMA.

METHODS

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We thank M. Goulding (Salk Institute) for generously providing the R26floxedstopTeNT mice. We also thank S. Morton and T. Jessell (Columbia University) for help with VGluT1 antibody production and a kind gift of GAD65 and GAD67 antibodies. We would like to thank C. Kellendonk (Columbia University) for his kind gift of the custom-made Cre antibody. We are also grateful to J. Trimmer.
G.Z.M. conceived the project. E.V.F. and G.Z.M. designed the experiments. E.V.F. performed all intracellular experiments and data analysis. E.V.F., J.G.P., C.M.S., A.V. and E.D. performed immunohistochemical experiments, MN retrograde labeling, synaptic analysis, NMJ analysis, and NMJ counts. E.V.F., C.M.S., E.D. and J.G.P. performed behavioral analysis. C.M.S. performed western blot experiments. E.V.F., J.G.P., I.C.G., E.D. and G.Z.M. performed in vivo experiments. X.W. and J.G.P. performed genotyping and assisted in synaptic analysis. G.Z.M. performed NMJ functional studies. G.Z.M. wrote the manuscript with input from all authors.

AUTHOR CONTRIBUTIONS

G.Z.M. conceived the project. E.V.F. and G.Z.M. designed the experiments. E.V.F. performed all intracellular experiments and data analysis. E.V.F., J.G.P., C.M.S., A.V. and E.D. performed immunohistochemical experiments, MN retrograde labeling, synaptic analysis, NMJ analysis, and NMJ counts. E.V.F., C.M.S., E.D. and J.G.P. performed behavioral analysis. C.M.S. performed western blot experiments. E.V.F., J.G.P., I.C.G., E.D. and G.Z.M. performed in vivo experiments. X.W. and J.G.P. performed genotyping and assisted in synaptic analysis. G.Z.M. performed NMJ functional studies. G.Z.M. wrote the manuscript with input from all authors.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).
2. Bleckert, A. & Wong, R.O. Identifying roles for neurotransmission in circuit assembly: insights gained from multiple model systems and experimental approaches. Bioessays 33, 67–72 (2011).
3. Chen, H.H., Hippienmeyer, S., Arber, S. & Frank, E. Development of the monosynaptic stretch reflex circuit. Curr. Opin. Neurobiol. 13, 96–102 (2003).
4. Garcia-Campmany, L., Stam, F.J. & Goulding, M. From circuits to behaviour: motor networks in vertebrates. Curr. Opin. Neurobiol. 20, 116–125 (2010).
5. Glover, J.C. Development of specific connectivity between premotor neurons and motoneurons in the brain stem and spinal cord. Physiol. Rev. 80, 615–647 (2000).
6. Rademakers, R., Neuenschwander, M. & Mannen, J.R. Advances in understanding the molecular basis of frontotemporal dementia. Nat. Rev. Neurol. 8, 423–434 (2012).
7. Palop, J.J. & Mucke, L. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 (2010).
8. Montes, J., Gordon, A.M., Parodi, S., De Vivo, D.C. & Kaufmann, P. Clinical outcome measures in spinal muscular atrophy. J. Child Neurol. 24, 968–978 (2009).
9. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).
10. Tisdale, S. & Pellizzoni, L. Disease mechanisms and therapeutic approaches in spinal muscular atrophy. J. Neurosci. 35, 8691–8700 (2015).
11. Gavlirina, T.O. et al. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Hum. Mol. Genet. 17, 1063–1075 (2008).
12. Lotti, F. et al. An SMN-dependent U12 splicing event essential for motor circuit function. Cell 151, 440–454 (2012).
13. Mentis, G.Z. et al. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuroph. 99, 453–467 (2011).
14. Ling, K.K., Gibbs, R.M., Fung, Z. & Ko, C.P. Severe neuromuscular derervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Hum. Mol. Genet. 21, 185–195 (2012).
15. Zwamborg, D.P., Ricketts, T.A. & Brown, S.H. Sarcomere length organization as a design for cooperative function amongst all lumbar spine muscles. J. Biomech. 47, 3087–3093 (2014).
16. Bácskai, T., Rusznák, Z., Paxinos, G. & Watson, C. Musculotropic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing. Brain Struct. Function. 219, 303–321 (2014).
17. Alvarez, F.J., Villalba, R.M., Zerda, R. & Schneider, S.P. Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J. Comp. Neurol. 472, 257–280 (2004).
18. Rottmann, T.M., Nardelli, P., Cope, T.C. & Alvarez, F.J. Normal distribution of VGLUT1 synapses on spinal motoneuron dendrites and their reorganization after nerve injury. J. Neurosci. 34, 3475–3492 (2014).
19. Lutz, C.M. et al. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J. Clin. Invest. 121, 3029–3041 (2011).
20. Martinez, T.L. et al. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J. Neurosci. 32, 8703–8715 (2012).
ONLINE METHODS

Animals. All surgical procedures were performed on postnatal mice in accordance with the National Institutes of Health Guidelines on the Care and Use of Animals and approved by the Columbia Animal Care and Use Committee (IACUC). Animals of both sexes were used in this study.

The original breeding pairs for the SMA mice used in our study (Smn^{−/−};SMN2^{+/+};SMN∆^{7/7}) were purchased from Jackson Laboratory (Jax stock #005025; FVB background), as were PV Cre (Jax stock #008069) and ChAT Cre (Jax stock #006410) mice. PV Cre and ChAT Cre mice (C57Bl6 background) were bred to generate PV Cre^{+/+};SMN2^{+/+};SMN∆^{7/7};ChatCre[−]/−;SMN^{−/−};SMN∆^{7/7} and PV Cre^{+/+};ChatCre[−]/−;SMN2^{+/+};SMN∆^{7/7} mice. These strains were bred with SMA mice expressing a Smn Cre-inducible allele¹⁸ (Smn^{Rex}; Jax stock #007951). Cre⁺ SMA mice were null for the Smn allele, Cre-absent and carrying the Smn^{Rex} allele (Smn^{Rex}+/−;SMN2^{+/+};SMN∆^{7/7}). Cre⁺ SMA animals carried one allele of the Smn^{Rex} allele, lacked endogenous mouse Smn and were heterozygous for either both of PV Cre and ChAT Cre (PV Cre^{+/+};SMN2^{+/+};SMN∆^{7/7};ChatCre[−]/−;SMN^{−/−};SMN∆^{7/7} and PV Cre^{+/−};ChatCre[−]/−;SMN2^{+/−};SMN∆^{+/−};SMN∆^{+/−}) WT mice were homozygous for Smn and in the absence of Cre (Smn^{+/−};SMN2^{+/−};SMN∆^{+/−};SMN∆^{+/−}) and PV Cre^{+/−};ChatCre[−]/−;SMN2^{−/−};SMN∆^{−/−}). WT mice were generated with patch electrodes advanced through the lateral aspect of the spinal cord (see Supplementary Fig. 2a). Patch electrodes were filled from thin-walled borosilicate glass capillaries with filaments (Sutter Instruments) using a P-1000 puller (Sutter Instruments) to resistances between 5 and 8 MΩ. The electrodes were filled with intracellular solution containing (in mM) 10 NaCl, 130 potassium gluconate, 10 HEPES, 11 EGTA, 1 MgCl₂, 0.1 CaCl₂, Na₂ATP, 0.1 Cascade Blue hydrazide (Life Technologies), and in some experiments with 0.5 mg/ml neomycin (Vector Labs). pH was adjusted to 7.2–7.3 with KOH; the final osmolality of the intracellular solution was 295–305 mOsm. Motor neurons were targeted blindly or, in some experiments, from the fluorescence signal following in vivo injections of cholera toxin B subunit (CTb) conjugated to a fluorochrome in the IL/QL muscles at birth, after removal of the dura and pia mater from the lateral aspect of the cord over the L2 spinal segments. The identity of recorded neurons as motor neurons was confirmed by evoking an antidromic action potential by stimulation of the cut ventral root (Supplementary Fig. 2a). Motor neurons were accepted for further analysis only if the following three criteria were met: (i) stable resting membrane potential of ~50 mV or more negative, (ii) an overshooting antidromically evoked action potential and (iii) at least 30 min of recording. The number of animals used for electrophysiology experiments at P2 were 12 WT and 13 SMA animals; at P4, 16 WT, 10 SMA, 8 SMA+PV Cre⁺, 8 SMA+ChatCre and 5 PV_{Glut} and TnT animals.

For the measurements of passive membrane properties, motor neurons were injected with sequential steps of negative and positive currents for 100 ms in 10-pA steps at ~60 mV membrane potential. The input resistance (MΩ) was calculated from the slope of the current/voltage plot within the linear range. Membrane time constants (ms) were calculated as 63% of the maximal negative amplitude during the application of the current pulse²⁵. The membrane capacitance (MΩ/ms) of each cell was calculated by dividing the input resistance by the time constant. Measurements were taken from an average of three sweeps. We also determined, for a small number of motor neurons, that the input resistance did not change across the different SMA mouse lines (SMA versus SMA+ChatCre⁺ or SMA+PV^{Cre}).

Synaptic potentials were recorded from individual motor neurons (DC to 3 kHz, MultiClamp 700B, Molecular Devices) in response to a brief (0.2 ms) orthodromic stimulation (A365, current stimulus isolator, WPI, Sarasota, FL) of a dorsal root (L2 or L5). The stimulus strength was defined as the current at which the minimal evoked response was recorded in 3 out of 5 trials. The nerve was Stimulated at different multiples of threshold. Recordings were fed to an A/D interface (Digidata 1440A, Molecular Devices) and acquired with Clampex (v10.2, Molecular Devices) at a sampling rate of 10 kHz. Data were analyzed offline using Clampfit (v10.2, Molecular Devices). The monosynaptic component of the EPSP amplitude was measured from the onset of response to 3 ms (ref. 53). Measurements were taken from averaged traces of 5 trials elicited at 0.1 Hz. Bridge balance was applied to all recordings. The liquid junction potential was calculated as −5 mV but was not corrected. Measurements were made on averaged traces (3–5 trials).

Paired-pulse stimulation experiments were performed and analyzed for all experimental groups at P4. The dorsal root was stimulated at 1 Hz for two stimuli and the resulting motor neuron EPSPs were recorded and analyzed off-line. The amplitude of the second EPSP was expressed as a percentage of the first EPSP amplitude. Recording contaminated by spontaneous events or motor neuron depolarizations were discarded.

γ motor neurons were not included in our analysis. γ motor neurons were identified by the presence of an antidromic action potential but lack of direct monosynaptic activation from propriocceptive sensory fibers.

Motor neurons from all experimental groups exhibited a wide range of current required to elicit repetitive firing. To compare statistically the firing frequency in

 doi:10.1038/n.4561

NATURE NEUROSCIENCE
all experimental groups, we used steps of current (10 pA) above the minimum current required to elicit repetitive firing for 1 s. The firing frequency (Hz) was calculated using the event detection function in Clampfit. The last 3–5 action potentials during repetitive firing (at the end of the spike train), elicited at 90 pA current injection above the current required to elicit repetitive firing, were isolated and averaged using the “event viewer” function in pClamp. Action potential half-width duration (ms) was measured at the half-maximal spike amplitude. The trough voltage of consecutive action potentials was measured at the most negative voltage between two spikes. 1 mM stock solutions of guangxitoxin-1E (GxTX-1E; Alomone) were prepared in ddH2O and stored at −20 °C. Before electrophysiological recording, 100 nM GxTX-1E was prepared in extracellular solution and administered via the gravity perfusion system for 10 min before recording. We also performed experiments using 200 nM GxTx-1E, but at this concentration we found that GxTX-1E had indirect effects on the input resistance, since subsequent exposure to TTX (1 µM) reversed the increase in the input resistance (data not shown). We did not include in this study any experiments performed with 200 nM GxTx-1E.

The amplitude of the antidromically elicited action potential following ventral root stimulation revealed a significant increase in L2 SMA motor neurons compared to their WT counterparts at P4 (mean ± s.e.m., WT: 75.4 ± 3.0 mV, SMA: 86.4 ± 3.9 mV; P = 0.02, Mann–Whitney), consistent with our previous report in L1 SMA motor neurons. In contrast, there was no significant difference in the amplitude of the antidromic action potential between WT and SMA L5 motor neurons (mean ± s.e.m., WT: 76.9 ± 3.8 mV, SMA: 74.1 ± 3.2 mV; P = 0.85, unpaired t-test).

After the recording session, in some experiments, the spinal cord was fixed in 4% PFA overnight and subsequently transferred to PBS and processed for immunohistochemistry. In several experiments, intracellularly filled motor neurons from P4 WT and SMA were recovered and detected by means of avidin-biotin complex formation as previously described to measure the somatic area. At P2, we observed two populations of motor neurons with respect to changes in input resistance and time constant. We divided these two groups by applying the following criteria and termed them as “affected” and “unaffected” SMA motor neurons. Unaffected SMA motor neurons were defined as those SMA motor neurons that exhibited similar correlation between input resistance and time constant to those observed in WT motor neurons. Conversely, affected SMA motor neurons were those motor neurons exhibiting higher values of input resistance and time constant (Supplementary Fig. 2b).

Relationship between EPSP amplitude and input resistance. This relationship was investigated in our previous study. Computer modeling studies have been used to examine the effect of input resistance on the amplitude of monosynaptic EPSP’s recorded in adult cat motor neurons in response to stimulation of muscle spindle afferents. The EPSP amplitude is almost linearly proportional to the motor neuron input resistance, so that a 3-fold increase in input resistance leads to a 2.8-fold increase in the EPSP amplitude. The input resistance of SMA motor neurons examined in this study is ~3 times that of WT motor neurons, which will amplify the synaptic potential for a given synaptic current by ~3.7 fold according to the model described by Lev-Tov et al. Therefore, the ~5 fold reduction in the amplitude of primary afferent-evoked synaptic potentials in SMA motor neurons actually reflects a much greater reduction (~18 fold; i.e., 5 × 3.7) in the amplitude of the synaptic currents, which is in agreement with our previous study.

Functional assessment of the NMJ. To functionally assess neuromuscular junctions of the QL muscle at P4, we developed a technique by which motor neuron axons in the ventral root L2 supplying the QL muscle were stimulated by drawing the ventral root into a suction electrode, having removed the spinal cord, and recorded the compound muscle action potential (CMAP) from the muscle using a concentric bipolar electrode. L2 motor neuron axons were stimulated with a single stimulus at 0.1 Hz or at 20 Hz to emulate the physiological range of neonatal motor neuron firing. The maximum CMAP amplitude (baseline-to-peak) was measured from 3–5 averages.

Somatodendritic labeling of motor neurons. Experimental protocols used in this study have been described elsewhere. 101 mice 0–11 old were used in tracing and immunohistochemistry experiments (24 WT, 21 SMA, 21 SMA+PvCre, 17 SMA+ChATCre, 12 SMA+(Pv+ChAT)Cre, 6 PVTdnNT). The spinal cord was transferred to a dissection chamber and the L2 or L5 ventral root was placed inside a suction electrode and backfilled with a fluorescent dextran to label the motor neurons (Supplementary Table 2). Spinal cords from P0–P5 animals were intact while P11 spinal cords were hemisected to improve oxygenation. The cord was perfused with cold (~10 °C), oxygenated (95% O2, 5% CO2) aCSF (containing, in mM, 128.35 NaCl, 4 KCl, 0.58 NaH2PO4, 21 NaHCO3, 30 d-glucose, 0.1 CaCl2 and 2 MgSO4). After ~12–18 h the cord was immersion-fixed in 4% PFA and washed in 0.1 M phosphate-buffered saline (PBS). Sections were subsequently processed for immunohistochemistry as described below and in Supplementary Table 2.

Retrograde labeling of muscle-identified motor neurons. Motor neurons supplying the IL and QL muscles were retrogradely labeled in vivo by intramuscular injection of CTb conjugated to Alexa 488. Newborn (P0) mice were anesthetized by isoflurane inhalation. A small incision in the left iliac (inguinal) area was made to allow the IL/QL muscles, taking care not to puncture the peritoneum. The muscles were injected with ~1 µl of 1% CTb-Alexa 488 in PBS using a finely pulled glass micropipette. The CTb was delivered by pressure to an adapted microsyringe. The incision was closed with sutures. The spinal cord was taken at P4 following verification by fluorescence of accurate injection of CTb in the muscles and processed for immunohistochemistry.

Overexpression of BDNF in SMA mice. SMA mutant mice at P0 were anesthetized by isoflurane (by inhalation) and injected intracerebroventricularly with 10 µl of 7.5 × 1011 GC/ml AAV2/9-CMV-GFP-2A-mBDNF virus (Vector BioLabs) at birth (P0), using a modified Hamilton syringe. Pups were allowed to recover from anesthesia for 30 min before being returned to the cage. Mice were sacrificed at P5 for physiological or morphological experiments. For morphological experiments, the spinal cord and lumbar dorsal root ganglia (DRGs) were immersion-fixed in 4% PFA overnight. The L2 spinal segments and L2 DRGs were cut in 70-µm-thick sections using a vibratome. GAD65 and GAD67 antibodies (kind gift from the T. Jessell laboratory) were used, together with the VGlut1 antibody, to visualize GABAþ pre synapses on VGluT1þ synapses in SMA mice injected with AAV9-BDNF and SMA controls, as in ref. 32. GFP was amplified using chicken anti-GFP (Aves Labs; Supplementary Table 3) at a 1:1,000 concentration following overnight incubation. The anti-GFP was visualized with donkey anti-chicken Alexa-488 secondary antibody (Supplementary Table 3) for 3 h. The sections were scanned at the confocal microscope. Details and the effectiveness of the method are included in our previous study.

Immunohistochemistry. Some immunohistochemical protocols used in this study have been previously described. Details for new fixatives and immunohistochemical protocols used in this study are included in Supplementary Tables 2 and 3. All antibodies except the VGlut1 one are commercially available. Antibody to mouse VGlut1 was produced in guinea pig by Covance against the epitope (CIGAHTSTVQPRRPPP), which lies within the N terminus of mouse VGlut1. The antibody was validated in VGlut1−/− mouse tissue. Spinal cords were embedded in warm 5% agar and serial transverse sections were cut on a vibratome (75 µm thickness). Sections were blocked with 10% normal donkey serum in 0.01 M PBS with 0.1% Triton X-100 (PBS-T; pH 7.4) and incubated overnight at room temperature in different combinations of antiseras in PBS-T (Supplementary Table 2). For experiments involving anti-mouse antibodies, sections were preincubated for 1 h in M.O.M blocker (Vector Laboratories) in PBS-T to block endogenous antigens. The following day, sections were washed in PBS-T and secondary antibody incubations were performed for 3 h with the appropriate species-specific antiserum diluted in PBS-T. Sections were subsequently washed in PBS and mounted on glass slides using Vectashield (Vector Laboratories).

For the Kv2.1 immunoreactivity experiments, we used the K89/34 mouse IgG1 antibody (NeuroMab; mAb binds within aa 837–853; cat #73-014 RRID:AB_2315869). Both antibodies have been verified to be specific for Kv2.1 knockout mouse spinal cord (kind gift from J. Trimmer).
Neuromuscular junctions (NMJs) were analyzed in the QL muscle (Supplementary Table 2). Muscles from P4 mice from each genotype were fixed with 4% PFA for 20 min and transferred to PBS. Single fibers were teased out using fine forceps and washed for 30 min in PBS supplemented with 0.1 M glycine. Fibers were incubated with α-bungarotoxin-555 antibody (Supplementary Table 3) for 20 min and washed in PBS before permeabilization with ice-cold methanol at −20 °C for 2 min. Fibers were washed in PBS and incubated in a blocking solution containing 10% donkey serum in 0.3% PBS-T for 1 h before treatment with anti-neurofilament and anti-synaptophysin (Supplementary Table 3) at 4 °C overnight. Samples were washed with PBS before incubation with the appropriate secondary antibodies for 1 h (Supplementary Table 2). Fibers were washed and mounted in Vectashield.

The sources and catalog numbers for all primary and secondary antibodies are shown in Supplementary Table 3.

Imaging and analysis. Sections were imaged using an SP5 Leica confocal microscope and analyzed using LASAF software (Leica). For all immunohistochemical analysis, at least three animals were used for each genotype. For SMN quantification, the number of motor and proprioseptive neurons with either present or absent nuclear Gems from L1–L3 spinal segments were counted using a ×40 objective from z-stack (0.5-µm step) scans. At least 30 motor and proprioseptive neurons were included from each animal for each genotype. For motor neuron counts, we analyzed z-stacks images (at 3-µm intervals) collected for each section that contained a fluorescent signal from L2 retrogradely labeled motor neurons as previously described for L1 motor neurons. Sections were scanned using a ×20 objective. Only motor neurons (ChAT+) that contained the nucleus were counted in order to avoid double counting of adjoining sections.

Quantitative analysis of VGluT1-immunoreactive synaptic densities on motor neurons at P4 and P11 were performed on stacks of optical sections scanned using a ×40 objective throughout the whole section thickness at 0.35-µm z-steps to include the whole cell body and dendrites of retrogradely labeled and ChAT+ motor neurons. To obtain density estimates, we measured all VGluT1+ contacts on dendritic segments at 50-µm sequential distances (0–50, 50–100 and 100–150 µm) from the cell body and divided this number by the total linear length of all dendritic segments in each compartment as described previously. For VGluT1 motor neuron soma counts, only motor neurons with a whole cell body present in the z-stack were included.

To determine the extent of NMJ innervation, NMJ synapses were acquired using a ×20 objective and z-stack images were scanned at 2-µm intervals. Images were analyzed off-line using LASAF software. NMJ were only considered innervated if the presynaptic nerve terminal completely colocalized with the postsynaptic endplate.

Analysis of Kv2.1 and Kv2.2 channels were performed from single-optical-plane images acquired with a ×63 oil objective at 4.096 × 4.096 dpi resolution using an SP5 Leica confocal microscope. Only motor neuron somata (identified by ChAT immunoreactivity) in which the nucleus was present were included in the analysis. To calculate the coverage by Kv channel on motor neuron soma, a line was drawn along the soma perimeter to acquire the fluorescence intensity (expressed in arbitrary units), avoiding the area in which primary dendrites were present using LAS X software (Leica). A baseline fluorescence intensity measurement was achieved by drawing a straight line in the cytoplasm. The fluorescence intensity measurements were exported into Excel as x-y coordinates (x: distance in µm; y: fluorescence intensity in arbitrary units). Fluorescence signal more than 3 s.d. above the baseline intensity measurement was considered expression of Kv immunoreactivity along the soma perimeter (Supplementary Fig. 14c), whereas the signal below was considered as background. The distance with fluorescence intensity above 3 s.d. was calculated for each motor neuron and Kv channel coverage was expressed as a percentage of the total perimeter of the motor neuron soma.

Staining intensity measurements. Images of synaptic terminals were acquired on a Leica SP8 confocal microscope using a 40x objective with 5× digital zoom at a 2.048 × 2.048 optical resolution. Acquisition settings for excitation and fluorescence detection parameters were identical for each genotype, SMA controls and SMA-AAV9-BDNE. The GAD65 and GAD67 terminals were analyzed within a 10-µm confocal z-stack at 300-nm step intervals. Surface area and staining intensities were determined using Leica LAS AF imaging software. Relative synaptiic protein levels were quantified by assessing the mean gray values, defined as the sum of the gray values of all the pixels in a region of interest (pixel sum) divided by the number of pixels in that region (pixel count), as we reported recently. Regions of interest were defined as the outline of positively stained terminals. To quantify the relative levels of GABAergic synaptic proteins (GAD65 and GAD67), only varicosities directly juxtaposed to proprioseptive afferent terminals (VGluT1+) were considered.

Western blot analysis. The ventral horns from L1–L3 spinal cords of WT and SMA mice (n = 2) at P4 were removed under the microscope. Tissue was homogenized in lysis buffer (150 mM NaCl, 1% Triton, 2 mM EDTA, 50 mM Tris, pH 7.4). Protein extract (20 µg) was electrophoresed on a 12% SDS–PAGE gel and blotted for 40 min to a PVDF membrane. The membranes were blocked for 1 h with 5% skim milk and then probed with mouse anti-SMN (1:10,000, BD), mouse anti-tubulin (1:50,000, clone DM1A, Sigma) and mouse anti-Kv2.1 (1:5, NeuroMab; Supplementary Table 3) in blocking buffer overnight at 4 °C. Subsequently, the membranes were washed 3 times with PBS and incubated with appropriate HRP-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories; Supplementary Table 3) in PBS-T for 1 h at room temperature. After three sequential 10-min washes, enhanced chemiluminescence (GE Healthcare, Lifesciences) was used to for visualization.

Statistics. Results are expressed as means ± s.e.m. Statistical analysis was performed using GraphPad Prism 6. Comparison was performed by either Student’s t-test or one-way ANOVA (post hoc comparison methods are indicated in the Results and figure legends when necessary). Results were considered statistically significant if P < 0.05. The D’Agostino and Pearson omnibus normality test was used to assess the normality for all data. If violated, non-parametric tests were used. No statistical methods were used to predetermine sample sizes, but our sample sizes are similar to those reported in previous publications. No randomization was used. Data collection and analysis were not performed blind to the conditions of the experiments. A Supplementary Methods Checklist is available.

Data availability. The data that support the findings of this study are available from the corresponding author upon reasonable request.