π K atom lifetime and π K scattering length measurements

V. Yazkov on behalf of the DIRAC collaboration

Published online: 25 March 2015
© Springer International Publishing Switzerland 2015

Abstract Theory, using Low Energy QCD, calculated with high precision the ππ and πK scattering length. To check the theoretical calculations for processes, including s-quarks, we must measure the πK atom lifetime, that is connected to the πK scattering lengths by a precise relation. Evidence for πK atoms production is reported on a base of a number of produced πK atoms found to be $N_A = 653 \pm 42$ together with the value of the πK pairs from atoms that breakup in the same target $n_A = 178 \pm 49$. Using these results the analysis yields to a first value for the πK atom lifetime of $\tau = 2.5^{+3.0}_{-1.8} \text{ fs}$ and a first model-independent measurement of the S-wave isospin-odd πK scattering length $|a_0^-| = 1/3|a_0^{1/2} - a_0^{3/2}| = 0.11^{+0.09}_{-0.04} \pi M^{-1}$ (the I and L in a_L^I stands for isospin and orbital momentum).

Keywords DIRAC experiment · Pion kaon scattering length · Hadronic atoms

1 Introduction

Chiral Perturbation Theory (ChPT) describes QCD processes at low energies. ChPT in 1-loop approximation predicts S—wave scattering lengths to be [1, 2]:

$$a_0^{1/2} = 0.19 \pm 0.2, a_0^{3/2} = -0.05 \pm 0.02, a_0^{1/2} - a_0^{3/2} = 0.23 \pm 0.01.$$ (1)

Proceedings of the International Conference on Exotic Atoms and Related Topics (EXA 2014), Vienna, Austria, 15–19 September 2014.

✉ V. Yazkov
valeri.yazkov@cern.ch

1 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
ChPT with $L^{(2)}, L^{(4)}, L^{(6)}$ in 2-loop approximation predicts S–wave scattering length difference to be [3]:

$$a_{0}^{1/2} - a_{0}^{3/2} = 0.267.$$ \hfill (2)

Another prediction for scattering length difference have been obtained, using Roy-Steiner equations [4]:

$$a_{0}^{1/2} - a_{0}^{3/2} = 0.269 \pm 0.015.$$ \hfill (3)

In the framework of lattice QCD predictions for πK scattering length [5] and their combination a_0^- [6] have been obtained:

$$a_0^{1/2} = 0.183 \pm 0.039, \quad a_0^{3/2} = -0.0602 \pm 0.0040,$$

$$a_0^- = \frac{1}{3} \left(a_0^{1/2} - a_0^{3/2} \right) = 0.0811 \pm 0.0143.$$ \hfill (4)

(5)

The measurement of the s-wave πK scattering lengths would test our understanding of the chiral $SU(3)_L \times SU(3)_R$ symmetry breaking of QCD (u, d and s quarks), while the measurement of $\pi \pi$ scattering lengths checks only the $SU(2)_L \times SU(2)_R$ symmetry breaking (u,d quarks). This is the principal difference between $\pi \pi$ and πK scattering.

Experimental data on the πK low-energy phases are absent.

2 Method of πK atom observation and investigation

πK-atom ($A_{\pi K}$) is a hydrogen-like atom consisting of K^+ (K^-) and π^- (π^+) mesons. The πK-atom lifetime (ground state 1S), $\tau = \frac{1}{\Gamma}$ is dominated by the annihilation process into $\pi^0 K^0$. There is a relation between the width of $A_{\pi K}$ decay and S–wave πK scattering lengths for isospin 1/2 and 3/2 [7]:

$$\Gamma_{1S,\pi^0 K^0} = 8\alpha^3 \mu^2 p^*(a_0^-)^2 (1 + \delta_K).$$ \hfill (6)

Here α is the fine structure constant, μ is the reduced mass of the $\pi^\pm K^\mp$ system, p^* is the outgoing π^0 momentum in the πK atom system, and δ_K accounts for corrections, due to isospin breaking, at order α and quark mass difference $(m_u - m_d)$.

With prediction of scattering length difference from (3), lifetime of $A_{\pi K}$ in ground state is estimated to be:

$$\tau = (3.5 \pm 0.4) \times 10^{-15}.$$ \hfill (7)

A method of investigation for $\pi^+ \pi^-$, πK and other atoms, consisting from two oppositely charged mesons, has been proposed in [8]. Pairs of K^+ (K^-) and π^- (π^+) mesons are producing in proton-target interactions. Pairs, which are generated from fragmentation and strong decay (“short-lived” sources), are affected by Coulomb interaction in the final state. Some of them form Coulomb bound states — atoms, other are generated as free pairs (“Coulomb pairs”). Number of produced atoms (N_A) is proportional to a number of “Coulomb pairs” (N_C) with low relative momentum Q in a pair C.M. system: $N_A = K \cdot N_C$. The coefficient K is calculated with an accuracy better than 1 %.

If at least one meson is generated from long-lived sources (electromagnetically or weakly decaying mesons or baryons: $\eta, \eta', K^0_s, \ldots$), then such pairs (“non-Coulomb pairs”) are not affected by interaction in the final states.
After production, $A_{\pi K}$ travel through the target and could to annihilate into $\pi^0 K^0$, or to be ionised due to interaction with the target matter, producing specific “atomic pairs”. These pairs have small relative momentum ($Q < 3$ MeV/c) and a number of such pairs n_A could be measured experimentally. Ratio of “atomic pair” number to a number of atom produced is a breakup probability: $P_{br}(\tau) = n_A/N_A = n_A/(K \cdot N_C)$ [9, 10]. In Fig. 1 dependence of $A_{\pi K}$ breakup probability is shown for two nickel target are used in experiment DIRAC for pair laboratory momentum range $4.8 \div 7.6$ GeV/c. Value is averaged, using experimentally measured spectrum of atoms.
Fig. 3 Distribution of $\pi^+ K^- \ (\text{left})$ and $K^+ \pi^- \ (\text{right})$ pairs over Q_L (upper pictures), shown by points with error bars, is fitted by a sum of simulated distributions of “atomic” (red dotted-dashed), “Coulomb” (blue dashed) and “non-Coulomb” (magenta dotted) distributions, using parameters of fit for two-dimensional distribution over Q_L, Q_T. A sum of background distributions (“Coulomb” and “non-Coulomb”) is shown by a solid black line. Differences of experimental and background distributions are shown on lower pictures together with simulated distributions of “atomic pairs”.

3 DIRAC setup

DIRAC setup was created to detect $\pi^+ \pi^-$ with small relative momenta [11]. In 2004-2006 it has been modified in order to detect both $\pi^+ \pi^-$ and πK pairs. New detectors for particle identification have been added: Cherenkov counters with heavy gas and aerogel for identification of K-mesons among background of pions and protons. Taking into account kinematic of πK “atomic pairs”, new detectors cover only internal parts of each arm (see Fig. 2).

4 Investigation of $\pi^+ K^-$ and $K^+ \pi^-$ atoms

Distributions of experimental data over longitudinal (Q_L) and transverse (Q_T) projections of relative momentum Q have been fitted by a sum of simulated distributions of “atomic”,...
Table 1 Number of produced atoms (N_A), “atomic pairs” (n_A) and estimation of breakup probability for π^+K^- and $K^+\pi^-$ pairs, collected in 2008–2010

Year	$K^+\pi^-$ over Q_T, Q_L	π^+K^- over Q_T, Q_L				
	N_A	n_A	P_{br}	N_A	n_A	P_{br}
2008	132 ± 16	14 ± 19	0.11 ± 0.15	51 ± 11	21 ± 13	0.41 ± 0.33
2009	169 ± 24	33 ± 26	0.20 ± 0.17	78 ± 13	26 ± 16	0.34 ± 0.24
2010	164 ± 23	49 ± 26	0.30 ± 0.19	60 ± 12	35 ± 16	0.58 ± 0.36
All	465 ± 37	96 ± 41	0.21 ± 0.10	188 ± 21	82 ± 26	0.44 ± 0.18

“Coulomb” and “non-Coulomb” pairs. Contributions of simulated distributions are free parameters of fit. Procedure, which creates simulated distributions, takes into account resolution of the setup detectors, and multiple scattering in a nickel target, detector planes and partitions, in order to reproduce distribution of experimental pairs over relative momentum Q and its projections.

Results are presented in Fig. 3.

Statistic of produced atoms (N_A), “atomic pairs” (n_A), and breakup probability estimations are presented in Table 1

Overall number of π^+K^- and $K^+\pi^-$ “atomic pairs is found to be:

$$n_A^{\pi^+K^-} + n_A^{K^+\pi^-} = 178 \pm 49$$

(8)

5 Systematic errors

Sources of systematic errors have been analysed. Most of them are induced by imperfections in the simulation of the “atomic”, “Coulomb”, “non-Coulomb” πK pairs and misidentified pairs. Effects of finite size of production region and uncertainty in a dependence $P_{br}(\tau)$ also have been taken into account. Estimation [12] of systematic errors for breakup probabilities of $K^+\pi^-$ and π^+K^- atoms are found to be essentially less than values of statistical errors.

6 πK scattering length estimation

Dependence of breakup probability on πK atom lifetime (see Section 2), experimental measurements of breakup probability (Table 1) and investigation of systematic errors (see Section 5) allow to obtain estimation of πK atom lifetime [13]:

$$\tau = \left(2.5^{+3.0}_{-1.8}\right)_{\text{stat}}^{+0.3}_{-0.1}\text{stat}_{\text{yyst}}$$

$$fs = \left(2.5^{+3.0}_{-1.8}\right)_{\text{tot}}$$

(9)

The estimated ground state lifetime (9) corresponds to the πK scattering length difference [12, 13]:

$$|a_0^{\pi}| M_\pi = 0.107^{+0.093}_{-0.035} = 0.11^{+0.09}_{-0.04}$$

(10)
7 Summary

Analysis of πK pairs statistic with low and medium background (2/3 of total statistic), collected from 2008 to 2010, allows to evaluate a number of atomic πK pairs (178 ± 49) as well as a number of produced πK atoms (653 ± 42) and thus the breakup (ionisation) probability.

Value of πK atom lifetime has been extracted to be $\tau = \left(2.5^{+3.0}_{-1.8}\right) \text{fs}$. It provides a measurement of the S-wave isospin-odd πK scattering length: $|a_0^-| = \left(0.11^{+0.09}_{-0.04}\right) \cdot M_{\pi}^{-1}$.

Analysis of statistic with higher background (1/3 of total statistic) collected in 2008-2010 and data collected with Pt target in 2007 gives possibility for further improvement of accuracy.

Acknowledgments We are grateful to CERN for continuous support and the PS team for the excellent performance of the accelerator. This work was funded by CERN, INFN (Italy), INCITE and MICINN (Spain), IFIN-HH (Romania), the Ministry of Education and Science and RFBR grant 01-02-17756-a (Russia), the Grant-in-Aid from JSPS and Sentanken-grant from Kyoto Sangyo University (Japan).

References

1. Bernard, V., Kaiser, N., Meissner, U.: Threshold parameters of πK scattering in QCD. Phys. Rev. D43, 2757 (1991)
2. Roessl, A.: Pion-Kaon scattering near the threshold in chiral SU(2) perturbation theory. Nucl. Phys. B555, 507 (1999)
3. Bijnens, J., et al.: πK scattering in three flavour ChPT. JHEP 0405, 036 (2004)
4. Buttiker, P., Descotes-Genon, S., Moussallam, B.: A new analysis of piK scattering from Roy and Steiner type equations. Eur. Phys. J. C33, 409 (2004)
5. Lang, C.B., et al.: $K\pi$ scattering for isospin 1/2 and 3/2 in lattice QCD. Phys. Rev. D86, 054508 (2012)
6. Sasaki, K., et al.: Scattering lengths for two pseudoscalar meson systems. Phys. Rev. D89, 054502 (2014)
7. Schweizer, J.: Decay widths and energy shifts of $\pi\pi$ and πK atoms. Phys. Lett. B 587, 33 (2004)
8. Nemenov, L.: Elementary relativistic atoms. Sov. J. Nucl. Phys. 41, 629 (1985)
9. Afanasyev, L., Tarasov, A.: Phys. At. Nucl. 59, 2130 (1996)
10. Zhabitsky, M.: Direct calculation of the probability of pionium ionization in the target. Phys. At. Nucl. 71, 1040 (2008)
11. Adeva, B., et al.: DIRAC: A high resolution spectrometer for pionium detection. Nucl. Instrum. Methods A 515, 467 (2003)
12. Yazkov, V., Zhabitsky, M.: Investigation of systematic errors and estimation of K atom lifetime, DN-2013-06, http://cds.cern.ch/record/1628544
13. Adeva, B., et al.: First πK atom lifetime and πK scattering length measurements. Phys. Lett. B 735, 288 (2014)