Preparation of Zinc Oxide Nanoparticles using *Azima tetracantha* Lam. Leaf Extract and Its Potential for the Removal of Contaminants from Water

E. Sirumbayee¹, S. Anusuya¹,²,*

¹Department of Botany, Bishop Heber College, Tiruchirappalli – 620 017, Tamilnadu, India.
²Department of Botany, St. Joseph’s College, Tiruchirappalli – 620 002, Tamilnadu, India.

ABSTRACT

Biologically synthesized metal oxide nanoparticles are gaining considerable interest in the removal of contaminants from surface water. In the present work, zinc oxide nanoparticles (ZnO NPs) were prepared using the biocomponents of *Azima tetracantha* Lam. leaves and evaluated for their photocatalytic and antifungal activity. Physico-chemical characterization of developed nanoparticles was carried out by UV–Vis spec, FTIR, DLS and TEM. The nanoparticles were characterized by a peak at 360 nm in the UV–Vis spectrum. FTIR spectra confirmed the presence of functional groups of leaf extract and nanoparticles. The size of nanoparticles as analyzed by DLS was 167 nm with a zeta potential of -19 mV which highlighted the colloidal stability of nanoparticles. TEM analysis revealed the spherical shape of the nanoparticles with a size range of 18-25 nm. In view of photocatalytic activity, the results showed that nanoparticles potentially degraded the organic dyes (methylene blue, methyl violet, methyl red, safranin and eosin) depending upon the time exposure to solar irradiation. Further, ZnO NPs strongly inhibited the germination of *Aspergillus niger* and *Candida albicans* spores in vitro. Our results suggest that biogenic ZnO NPs could be exploited as nanostructured catalysts and opens up the possibility of ZnO NPs application in water treatment plants and textile industries as it is fast, clean and environment friendly.

1. Introduction

Clean potable water is a requirement worldwide for healthy life, but is often limited. The discharge of heavy metals, pesticides and organic dyes in water bodies leads to eutrophication and reduces reoxygenation capacity. It causes severe damage to aquatic organisms by hindering the infiltration of sunlight and pose a serious threat to environment and human health [1]. Existing water treatment technologies demand a high maintenance cost and large area. Thus, there is an urgent need to develop a technology to afford clean water. Environmental nanotechnology has stimulated the development of novel and cost-effective technologies for remediation, pollution detection, catalysis and removal of contaminants from water [2]. Accordingly, nanocatalysts are effective in the removal of contaminants from water due to their remarkable physico-chemical properties. For instance, CNTs [3], and several metal and metal oxide nanoparticles including TiO₂ [4-7], ZnO and zirconium oxide [8], Ag nanocatalyst [9] has been demonstrated for its effective degradation of organic dyes and elimination of biological contaminants from water owing to its minimal environmental impact and no secondary pollution. The bioactive nanoparticles, in particular ZnO NPs have immense potential in treatment of water due to its eco-friendly nature and extensive antimicrobial activity [10, 11].

Plants contain natural compounds and novel secondary metabolites which act as a potential precursor for the synthesis of nanoparticles in a non-hazardous way. They act as reducing and stabilizing agents for the bioradation reaction to synthesize nanoparticles [12]. Different parts of the plant promote the synthesis of metallic nanoparticles at room temperature with fast reaction kinetics [13]. Leaves of *Centella asiatica*, *Murraya koenigii*, *Alternanthera sessilis* and *Piper nigrum* were known to contain bioactive compounds which are involved in the synthesis of nanoparticles by eco-friendly method [14]. The synthesis of ZnO NPs using orange juice was reported by Jha et al. [15]. The advantage of using ZnO nanoparticles is that they strongly inhibit the action of pathogenic microbes when used in small concentration [16]. Gunalan et al. [10] showed that the green synthesized ZnO NPs exhibited a stronger inhibitory effect against fungal strains: *Aspergillus flavus*, *Aspergillus nidulans*, *Trichoderma harzianum*, and *Rhzizopus stolonifer*. Lonnent et al. [6] reported the use of TiO₂ nanoparticles to inactivate bacteria (*E. coli*, *Pseudomonas aeruginosa*) and fungi (*Candida albicans*, *Fusarium solani*) under solar light irradiation. The fungicidal mechanism of biosynthesized metallic nanoparticles has more inhibitory potential than commercially available antibiotics such as fluconazole.

Azima tetracantha Lam. belonging to salvadoreae is an ornamental plant. It is well known for its medicinal value due to the presence of alkaloids (azimine, azcarpine and carpine) and terpenoids in their leaves. In our present work, the accurate principles of green chemistry were applied for the synthesis of zinc oxide nanoparticles using the leaf extract of *A. tetracantha* Lam. as a capping agent. It is aimed to explore the photocatalytic degradation of organic dyes such as methyl violet, safranin, eosin methylene blue and methyl orange. Furthermore, inhibitory effect of biogenic ZnO NPs was evaluated against the tested fungal strains in contaminated water.

2. Experimental Methods

2.1 Biological Material

The healthy plant samples of *A. tetracantha* Lam. were collected from Cauvery river bank and authenticated at Rapanat Herbarium, Tiruchirappalli, Tamilnadu. The fungus *Aspergillus niger* and *Candida albicans* was obtained from MTCC (Microbial Type Culture Collection and Gene Bank), Chandigarh, India and was maintained on Potato Destrone Agar.

2.2 Extraction and Qualitative Phytochemical Analysis

The leaves of *A. tetracantha* Lam. was thoroughly washed with running tap water followed by double distilled water, dried at room temperature for two weeks and made into powder for further analysis. Leaf powder (10 g/100 mL) was extracted with double distilled water in a water bath at 80 °C for 4 hr. The aqueous extract was dried using a rotary evaporator
2.3 Biological Synthesis of ZnO Nanoparticles

ZnO NPs were synthesized by direct precipitation method using zinc sulphate and sodium hydroxide as precursors. To the azeous zinc sulphate (0.2 M) sodium hydioxide (0.4 M) was added drop-wise at room temperature under vigorous stirring. The white suspension obtained was centrifuged at 5000 rpm for 20 min and washed three times with sterile double distilled water. The obtained product was calcined at 500 °C in the atmosphere for 3 hr. To 30 mL (0.2%, w/v) aqueous leaf extract, 30 mL (0.5 M) ZnO NPs was added and stirred at 90 °C for 4 hr. The suspension was continuously stirred for 24 hr at 30 °C centrifuged and freeze dried for further studies.

2.4 Characterization of Zinc Oxide NPs

The bioreduction of ZnO metal ions in the mixture solution was monitored by UV-VIS spectrum (Model 220Z, Systronics Ltd.) at room temperature ranging from 200 nm to 500 nm for the confirmation of nanoparticle formation. Infrared spectra of biologically synthesized ZnO NPs were recorded on a Nicolet-670 FTIR spectrophotometer using KBr pellet technique in the range of 400–4000 cm⁻¹. The particle size, size distribution [polydispersity index (PDI)] and zeta potential of ZnO NPs were measured by Zetasizer (Malvern Instruments, UK), based on the dynamic light scattering (DLS) technique. All DLS experiments were carried out at a temperature of 25.0 ± 0.2 °C and repeated several times to check the reproducibility. The morphological characteristics of ZnO NPs were investigated by transmission electron microscope (HRTEM JEOl model 1200 EX). The freeze-dried nanoparticles were placed on a carbon coated copper grid and then examined using a TEM without any further modification or coating.

2.5 Photocatalytic Activity of ZnO Nanoparticles

The photocatalytic (in presence of sun light) activities of ZnO NPs were studied for the degradation of organic dyes such as methyl violet, safranin, eosin, methylene blue and methyl red under solar radiation. The solution (0.01%, v/v) prepared using organic dyes was added to ZnO NPs suspension (0.01%, w/v), mixed thoroughly in a vortex and kept under solar radiation for 3 hr. The degradation of the organic dyes by nano-suspension was visualized by the gradual change in dye colour and detected through UV-VIS spectrophotometer. The dye degradation (%) was calculated using the following equation,

\[
\text{Dye degradation} (%) = \left(\frac{C_i - C_f}{C_i} \right) \times 100
\]

where \(C_i\) is the initial concentration of dye solution; \(C_f\) is the concentration of the dye solution after “t” hours in the sun light irradiation.

2.6 Antifungal Activity

For the preparation of conidial suspension, Aspergillus niger and Candida albicans was grown in a conical flask containing Potato Dextrose Agar for 15 days. To this, 10 mL sterile double distilled water was added to the flask, scraped gently with sterile loop and filtered through sterile Buchner funnel. Initial concentration of conidial suspension was adjusted to 1×10⁶ spores mL⁻¹ using half strength Czapek’s Dox Broth.

To study the antifungal activity of ZnO NPs, the growth of A. niger and C. albicans was assayed as described by Broekaert et al. [18] with some modifications. To 1 mL of the conidial suspension (1×10⁶ spores mL⁻¹), 1 mL of ZnO NPs was added and incubated at 28 °C for 60 hr. Conidial suspension without the addition of ZnO NPs was used as control. Optical readings were taken at 600 nm at every 4-hr interval up to 60 hr. Experiments were replicated thrice and the data was subjected to one-way analysis of variance to determine the significance of individual differences at p < 0.01 and 0.05 levels using SPSS 16 software support.

3. Result and Discussion

Bisynthesized metal and metal oxide nanoparticles from plant derivatives have application in medical and commercial sectors including waste water treatment, cosmetics and food industry. The aqueous leaf extract of A. tetracantha Lam. revealed the presence of alkaloids, saponins, flavonoids, proteins, amino acids, diterpenes and triterpenes (Table 1). These novel metabolites and the available functional groups promote the fabrication of nanoparticle as capping and stabilizing agent at ambient conditions [14, 19]. Several studies showed the synthesis of ZnO nanoparticles using milky latex of Calotropis procera, Aloe vera extract

[Cite this Article as: E. Srumbyaye and S. Amusuya, Preparation of zinc oxide nanoparticles using Azima tetracantha Lam. leaf extract and its potential for the removal of contaminants from water, J. Nanosci. Tech. 6(1) (2020) 862–865.]
revealed the distribution of spherical shaped ZnO NPs with the size range from 18-25 nm (Fig. 4). Similar size range and shape of ZnO NPs was reported by Yedurkar et al. [28] and Agarwal et al. [29]. The size difference between TEM and DLS analyses might be due to the state of nanoparticles [30].

Fig. 5 Photocatalytic activity of biosynthesized ZnO NPs against methylene blue (MB), methyl violet (MV), methyl red (MR), safranin (S) and eosin (E) during degradation.

Methyl violet (MV) is a mixture of methylene blue and dilute alkalins that are mainly used as dyes for textiles to give deep violet. The relative absorbance of MV was observed at 608 nm (Fig. 5b). The characteristic absorption peak at 430 nm of eosin (E) was used for monitoring the catalytic degradation activity. The main peak at 430 nm decreased gradually with the exposure time, indicating the photocatalytic degradation of eosin dye (Fig. 5c).

To test the photodegradation of safranin by ZnO NPs, a solution containing dye and ZnO NPs was photo irradiated by sunlight. The absorption spectrum of safranin was recorded at 520 nm. Fig. 5e showed the degradation efficiency of NPs against safranin. It is important to note that degradation of the safranin dye in the absence of NPs resulted in no significant change in the absorption spectra. The characteristic absorption peak of methyl red (MR) was observed at 580 nm (Fig. 5d). Degradation of methyl red (MR) was visualized by decrease in the peak intensity. Visible light was found to be faster in decolorizing dyes in the presence of metal catalyst [33]. The decrease in absorbance indicates the ability of photocatalytic capped ZnO NPs to degrade the organic dyes. Photocatalysis, using nanostructures of metal oxide semiconductors like zinc oxide (ZnO), titania (TiO₂), tungsten oxide (WO₃), zinc stannate (ZnSnO₃), etc. plays a role in water purification as it is capable of removing chemical as well as biological contaminants [34, 35]. During degradation, the catalysis occurs on the surface region of nanoparticles, therefore increasing the surface area availability which will significantly improve the efficiency of the catalyst [36]. Metal nanoparticles support the electron (e⁻) relay from the donor to the acceptor and act as a substrate for the e⁻ transfer reaction. During e⁻ transfer reaction, the reactants are adsorbed on the surface of metal and consequently, the reactants gain an e⁻ and are reduced. Thus, biogenic ZnO NPs act as an efficient catalyst through the electron transfer process in all the above catalytic reactions [37].

In the absence of a photocatalyst, the degradation of dyes under solar light irradiation was very slow, and almost no degradation was observed even after 3 h. This revealed the strong dye degradation activity (%) of ZnO NPs against the organic dyes tested (Fig. 6).

Fig. 6 Dye degradation activity (%) of biogenic ZnO NPs against methylene blue (MB), methyl violet (MV), methyl red (MR), safranin (S) and eosin (E) during degradation.

Fig. 7 Inhibitory effect of biogenic ZnO NPs against (a) A. niger and (b) C. albicans.

In case of C. albicans, ZnO NPs strongly inhibited spore germination endorsing the interaction with NPs. Even after 48 h, ZnO NPs continued to inhibit the spore germination (Fig. 7b). The inhibitory effect of ZnO NPs could be attributed to the damage of the cell wall, cell membrane and the extrusion of the cytoplasmic contents resulting in death of the fungi [40-42]. The ZnO NPs might generate reactive oxygen species (ROS) and decrease the production of hydroxyl radicals due to the capping of phytoconstituents. Further, it was observed that excitation of ZnO NPs with light improved the antimycotic effects [43], as it can break up complex long chained organic molecules (normally toxic) into simpler fragments as well as distort cell walls of microbes thereby immobilizing them [34]. Hence the synthesized biogenic ZnO NPs could be used as a potent sanitizing agent for disinfecting the contaminated water.

4. Conclusion

ZnO NPs synthesized by green method is a cost effective and most promising technique for degradation of toxic organic dyes into harmless fragments thereby minimize the impact of industrial wastes in environment. The synthesized ZnO NPs using biological material degraded the organic dyes such as methyl violet, safranin, eosin, methylene blue and...
methyl orange under sunlight. Moreover, the biosynthesised ZnO NPs strongly inhibited the fungal growth which is present in contaminated water.

Acknowledgement

We are grateful to the authorities and HOD, Department of Botany, Bishop Heber College for their support to carry out the work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

[1] M. Faisal, M.A. Tarig, M. Muneer, Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania, Dyes Pigm. 72 (2007) 233–239.

[2] EPA, US Environmental Protection Agency Report EPA 100/B-07/001, Environmental Protection Agency, Washington DC, 2007.

[3] N. Savage, M.S. Diazio, Nanomaterials and water purification: opportunities and challenges, J. Nano. Res. 7 (2005) 331–342.

[4] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.

[5] S.O. Ghare, G.J. Meyer, Nanostructured materials for environmental remediation of organic contaminants in water, J. Env. Sci. Health A 39 (2004) 2549-2592.

[6] J. Lomken, S. Klebington, S.C.F. Kehoe, Al-Tonati, K.G. McGuiar, Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water, Water Res. 39 (2005) 877–883.

[7] M. El-Kemary, Y. Abdel-Moneam, M. Maitkour, I. El-Mehasheb, Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications, J. Lamin. 131 (2014) 579–576.

[8] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194–200.

[9] S. Chaturvedi, P.N. Dave, N.K. Shah, Applications of nano-catalyst in new era, J. Saudi Chem. Soc. 16 (2012) 307-325.

[10] S. Gunalan, R. Sivara, V. Rajendran, Green synthesised ZnO nanoparticles against bacterial and fungal pathogens, Prog. Nat. Sci. Mater. Int. 22 (2012) 693–700.

[11] H.S. Samanta, R. Das, C. Bhattachajee, Influence of nanoparticles for wastewater treatment- A short review, Austin Chem. Eng. 3 (2016) 1-6.

[12] S.A. Aron, D. Philip, Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size dependent catalytic activity, Spectroch. Acta A 97 (2012) 1–5.

[13] A.M. Awwad, N.M. Salem, A.D. Abdeen, Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity, Int. J. Indust. Chem. 4 (2013) 29–35.

[14] P. Kuppusamy, M.M. Yusof, G.P. Maniam, N. Govindan, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmaceutical applications – An updated report, Saudi Pharm. J. 24 (2016) 473–484.

[15] A.K. Iha, V. Kumar, K. Prasad, Biosynthesis of metal and oxide nanoparticles using orange juice, J. Biobiosens. 5 (2011) 162–166.

[16] Appoloret, E. Wilberg, A.F. Holleman, Inorganic Chemistry, Academic Press, Berlin, New York, 2001.

[17] G.E. Treat, W.C. Evans, Pharmacognosy 13th Edn., Balire Tindall, London, 1989.

[18] W.F. Broekaert, F.R.G. Terras, B.P.A. Cammue, J. Vanderleyden, An automated quantitative assay for fungal growth inhibition, FEMS Lett. 69 (1990) 55–59.

[19] K.S. Siddiqi, A. Husen, Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects, Nanoscale Res. Lett. 11 (2016) 1-7.

[20] A.H. Salam, R. Sivaraj, R. Vencatkesh, Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L var. purpurascens Benth-Lamiaceae leaf extract, Mater. Lett. 131 (2014) 16–18.

[21] P. Rajiv, S. Rajeshwari, R. Vencatkesh, Rambutan peels promoted biomimetic synthesis of biospired zinc oxide nanoparticles for biomedical applications, Spectroch. Acta A 112 (2013) 384–387.

[22] N.A. Samat, R.M. Nor, Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurutifolia extracts, Ceram. Int. 39 (2013) 545–548.

[23] S. Vijayalakumar, G. Vinoj, B. Malakozhundan, S. Shanthis, B. Vaseehehan, Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larva, Spectroch. Acta A 137 (2015) 886–891.

[24] R. Yuvalkumar, J. Suresh, B. Saravanaakumar, A.J. Nathanseld, S.J. Honga, Rajendran, Rambutan peels promoted biomimetic synthesis of biospired zinc oxide nanoparticles for biomedical applications, Spectroch. Acta Part A 137 (2015) 250–258.

[25] A. Gupta, P. Srivastava, L. Bahadur, D.P. Amalnerkar, R. Chauhan, Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes, Appl. Nanosci. 5 (2015) 787–794.

[26] R.H. Muller, C. Jacobs, O. Kayser, Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future, Adv. Drug Delivery Rev. 47 (2001) 3–19.

[27] V. Saharan, G. Sharma, M. Yadav, M.K. Choudhary, S.S. Sharma, et al., Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato, Int. J. Biol. Macromol. 75 (2014) 346–353.

[28] S. Yedurkar, C. Muraya, P. Mahanwar, Biosynthesis of zinc oxide nanoparticles using Ixora Coccinea leaf extract—A green approach, Open J. Synth. Theor. Appl. 5 (2016) 1–14.

[29] H. Agarwal, S.V. Kumar, S. Rajbhusam, A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach, Res. Efficient Technol. 3 (2017) 406-413.

[30] S. Anusuya, M. Sathiyabarmma, Preparation of β-glucan nanoparticles and its antifungal activity, Int. J. Biol. Macromol. 70 (2014) 440–443.

[31] M. Abe, A. Kubo, S. Yamamoto, Y. Hato, M. Murai, et al., Dynamic function of the spacer region of acetogenins in the inhibition of bovine mitochondrial NADH-ubiquinone oxidoreductase (complex I), Biochem. 47 (2008) 6260–6266.

[32] D.S. Aald, Zinc coordination sphere in biochemical zinc sites, Biometals 14 (2001) 271–313.

[33] L. Ge, C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO4 composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B 108 (2011) 100-107.

[34] S. Barah, J. Dutta, Nanotechnology applications in pollution sensing and degradation in agriculture: a review, Environ. Chem. Lett. 7 (2009) 1-14.

[35] J. Kim, K. Yong, A facile, coverage-controlled deposition of Au nanoparticles on ZnO nanorods by sonoochemical reaction for enhancement of photocatalytic activity, J. Nanopart. Res. 14 (2012) 1-10.

[36] C. Grogger, S.G. Fattakhov, V.V. Jouikov, M.M. Shulaeva, V.S. Reznik, Primary steps of oxidation and electronic interactions in anodic cleavage of α, ω-dioscyranurate substituted dialkyldiulfoxides, Electrochim. Acta 49 (2004) 3185–3194.

[37] P. Christopher, H. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanoparticles, Nat. Chem. 3 (2011) 467-472.

[38] C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity, Bioenviron. Bioprocess. 2 (2007) 17–71.

[39] N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study, Sci. Technol. Adv. Mat. 9 (2008) 1–7.

[40] H. Garea-Torreley, J.G. Parsons, J. Paralta-Vide, H.E. Treiani, P. Santiago, M.J. Yacaman, Formation and growth of Au nanoparticles inside live alfalfa plants, Nano Lett. 2 (2002) 397–401.

[41] P. Logeswari, S. Silambarasan, J. Abraham, Synthesis of silver nanoparticles using plant extracts and analysis of their antimicrobial activity, J. Saud. Chem. Soc. 4 (2012) 23–45.

[42] S. Divya, S. Sovmia, S. Sankskila, Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murraya koenigii, World J. Pharm. Sci. 3 (2014) 1635–1645.

[43] A. Lipovský, Y. Nitzan, A. Gedanken, R. Lubart, Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury, Nanotech. 22 (2011) 105101:1-5.