Recent mass ejection from AGB star W Hya

Do T. Hoai,1 Pham T. Nhung,1 Pierre Darriulat,1 Pham N. Diep,1 Nguyen B. Ngoc,1 Tran T. Thai,1 and Pham Tuan-Anh1

1Department of Astrophysics, Vietnam National Space Center, Vietnam Academy of Science and Technology,
18, Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Vietnam

ABSTRACT

We analyse archival ALMA (Atacama Large Millimeter/submillimeter Array) observations of two molecular line emissions, 12CO(3-2) and 29SiO(8-7), from oxygen-rich AGB (Asymptotic Giant Branch) star W Hya. Together with results of earlier VLT observations at visible and infrared wavelengths, our results suggest a two-component picture of the morpho-kinematics of the circumstellar envelope (CSE), one stable over time, at the scale of centuries, and the other variable, at the scale of years. The stable component consists of an approximately spherical shell of gas and dust expanding radially to a terminal velocity of $\sim 5\ \text{km s}^{-1}$ at a distance of $\sim 30\ \text{au}$ from the star. It is found to display comparable features as seen in the CSE of R Dor, a star similar to W Hya. The variable component projects on the plane of the sky over a region confined to the neighbourhood of the star and elongated toward the north. Its very high density and sudden acceleration suggest an interpretation in terms of mass ejection initiated a few years ago. We discuss its properties in relation with earlier observations of dust formation in the same region. Our results offer a picture of the wind of W Hya that differs significantly from the picture that could be suggested by earlier analyses, giving evidence for

Corresponding author: Do T. Hoai
dthoai@vnsc.org.vn
pttnhungs@vnsc.org.vn
a mass ejection that had been previously overlooked and underscoring new relations between the dust and gas emissions. They have an impact on the evidence published earlier for the presence of CO masers. They favour an interpretation in terms of convective cell ejections playing the main role in the generation of the nascent wind, the stable component of the CSE being seen as the result of many successive such events occurring in different directions at short time intervals.

Keywords: stars: AGB and post-AGB, circumstellar matter, stars: individual: W Hya, radio lines: stars

1. INTRODUCTION

W Hya is an oxygen-rich Asymptotic Giant Branch (AGB) star at a distance of only 104^{+14}_{-11} pc from the Sun (van Leeuwen 2007); a shorter distance of 78 ± 6 pc (Knapp et al. 2003) is often used in the published literature. It is a semi-regular variable with a period of ~ 361 days (Samus’ et al. 2017), often quoted as a Mira (Lebzelter et al. 2005) belonging to spectral class M7.5e-M9ep. Single dish observations suggest a mass-loss rate at the level of $\sim 10^{-7} M_\odot$ yr$^{-1}$ (Maercker et al. 2008; Khouri et al. 2014a) and a main sequence mass between 1 and 1.5 M_\odot (Khoury et al. 2014b; Danilovich et al. 2017).

The close neighbourhood of the star has been recently observed with the Very Large Telescope (VLT) at wavelengths covering from visible to near-infrared, using NACO (Norris et al. 2012), SPHERE /ZIMPOL (Ohnaka et al. 2016, 2017; Khouri et al. 2020), AMBER/VLTI (Ohnaka et al. 2016, 2017; Hadjara et al. 2019) and MIDI/VLTI (Zhao-Geisler et al. 2015). These observations have given evidence for a clumpy and dusty layer, displaying important variability at short time scale. Dust grains, mostly aluminium composites, are found to have sizes ranging between 0.1 and 0.5 μm. Vlemmings et al. (2017, 2019) using the Atacama Large Millimeter/submillimeter Array (ALMA) to observe continuum and CO($v=1,J=3-2$) emissions close to the star have given evidence for shocks induced by pulsations and convective cell ejections, producing an effective line broadening of the molecular emission observed on lines of sight close to the centre of the star (Hoai et al. 2021).
Some of the most relevant observations are displayed in the Appendix (Table 6). These observations have made it possible to refine and improve our earlier understanding of the morpho-kinematics of the CSE of W Hya, which Khouri et al. (2015) had summarized in a model based on a large number of earlier observations over a broad range of wavelengths, including from Herschel and other single-dish telescopes (Khouri et al. 2014a,b). In particular, the analysis of Ohnaka et al. (2016, 2017) suggests the presence of a shell of large transparent grains, such as of Al$_2$O$_3$, with a 550 nm optical depth of 0.6±0.2 and inner and outer radii of 1.3 R_\ast ($R_\ast=25$ mas) and 10±2 R_\ast, respectively; it gives evidence for time variability, with predominance of small (0.1 μm) grains at minimum light and larger (0.5 μm) grains at pre-maximum light; it gives also evidence for anisotropy with a dust density enhancement of a factor ~4 in the north, over a cone of ~45° half-opening angle. These results have been confirmed by ALMA millimetre observations of the emission of AlO lines (Takigawa et al. 2017), found to be confined within ~3 R_\ast from the centre of the star, in contrast with the emission of the 29SiO(8-7) line, observed to extend to much larger radii. Together with Takigawa et al. (2019), these authors suggest that the dust shell near the star (2 to 3 R_\ast) is dominated by alumina-rich dust grains, and that the overall wind acceleration, up to some 5.5 km s$^{-1}$, occurs beyond this shell where silicate dust does not form efficiently, SiO molecules remaining mostly in the gas phase; such inefficient silicate formation is claimed to be consistent with the SiO/AlO ratio estimated from mid-infrared dust emission, where only ~6% of the Si atoms should condense as silicate dust if all Al atoms are bound in aluminium oxide.

Finally, Vlemmings et al. (2021) have recently observed CO masers at a Doppler velocity of 5.5 km s$^{-1}$ using ALMA millimetre observations of the 12CO(3-2) line emission.

The present article revisits earlier analyses of archival ALMA observations of the 29SiO(8-7) and 12CO(3-2) molecular emissions in order to draw a significantly improved picture of the morpho-kinematics of the CSE of the star. Section 2 gives a brief summary of observations and data reduction. Section 3 describes the observed morpho-kinematics of the CSE. Section 4 uses simple radiative transfer considerations to shed light on these observations. Section 5 comments on continuum emission. Section 6 is an attempt at drawing a global picture that accounts for as many as possible observations reported both here and in the earlier
literature. Section 7 discusses the implications in terms of the dynamics at stake in the W Hya CSE and concludes.

2. OBSERVATIONS AND DATA REDUCTION

The present work uses archival observations of W Hya from project ADS/JAO.ALMA #2015.1.01446.S (PI: A. Takigawa), which were carried out for a total of \(\sim 2 \) hours on source between 30 November and 5 December 2015 (stellar pulsation phase \(\varphi=0.3 \)) with ALMA in Cycle 3. The antennas, respectively 33 and 41 in number, were configured in such a way that the baseline lengths were distributed in two groups, one covering between \(\sim 15 \) m and \(\sim 200 \) m, the other between \(\sim 400 \) m and \(\sim 8 \) km; the former group included 10 antennas in a circle of 100 m radius providing insufficient uv coverage for addressing properly the short spacing problem. As a result, reliable imaging is limited to projected angular distances smaller than 0.15-0.20 arcsec from the star (Hoai et al. 2021). The emissions of the \(^{29}\text{SiO}(8-7) \) line, with a frequency of 342.9808 GHz, and of the \(^{12}\text{CO}(3-2) \) line, with a frequency of 345.7960 GHz, were observed in different spectral windows, with channel spacing of 0.854 km s\(^{-1} \) and 0.4236 km s\(^{-1} \), respectively. The data have been calibrated with CASA\(^1 \) using standard scripts provided by ALMA without continuum subtraction. Imaging, using GILDAS\(^2 \)/IMAGER\(^3 \) with robust weighting parameter of 1, produces beams of 52\(\times \)38 mas\(^2 \) (PA=99°) and 50\(\times \)42 mas\(^2 \) (PA=101°) for the SiO and CO lines respectively. Noise levels (\(\sigma \)) are of \(\sim 2 \) and \(\sim 3 \) mJy beam\(^{-1} \), respectively.

The observations of the CO line have been analysed earlier by Vlemmings et al. (2017, 2019, 2021) who used the data in conjunction with observations of a second epoch (project 2016.A.00029.S) on 25 Nov 2017 with an on-source observing time of \(\sim 35 \) min. The observations of the SiO line have been analysed earlier by Takigawa et al. (2017), Danilovich et al. (2019) and Hoai et al. (2021). Details related to the observations, calibration and reduction of the data have been presented in these publications.

We use coordinates centred on the peak of continuum emission, \(x \) pointing east, \(y \) pointing north and \(z \) pointing away from Earth. The projected distance to the star is calculated as \(R=\sqrt{x^2+y^2} \). Position angles,

1 https://casa.nrao.edu/
2 https://www.iram.fr/IRAMFR/GILDAS/
3 https://imager.oasu.u-bordeaux.fr
Figure 1. Doppler velocity spectra integrated over the circle $R<0.2$ arcsec for the CO(3-2) (left) and 29SiO (8-7) (centre-left) line emissions of W Hya. The red lines show the interpolation over the peak range of the emission observed on the sides of the peak (see Section 3.3). The right panels show the same line emissions for R Dor, integrated over a circle $R<0.35$ arcsec and divided by a factor 3.1, accounting for the different distances (104 pc for W Hya vs 59 pc for R Dor). Vertical lines are shown at $V_z=\pm5$ km s$^{-1}$ for W Hya and ±4 km s$^{-1}$ for R Dor.

The Doppler velocity, V_z, spectra are referred to a systemic velocity of 40.4 km s$^{-1}$.

3. MORPHO-KINEMATICS OF THE CSE

3.1. A radially expanding shell

Doppler velocity spectra integrated over the circle $R<0.2$ arcsec are displayed in the left panels of Figure 1. Contrasting with the small angular range being covered, these spectra probe the CSE along the line of sight over large distances where temperature and density conditions allow for emission of the observed lines. Both spectra show a clear peak at $V_z\sim-5$ km s$^{-1}$, SiO in absorption and CO in emission. This suggests the presence of a gas layer between star and observer, optically thin for CO and thick for SiO emissions, over which the wind has reached a terminal velocity of ~5 km s$^{-1}$: a similar situation is observed in several other AGB stars as illustrated in the right panels of Figure 1 by the case of R Dor (Nhung et al. 2021) where the terminal velocity is ~4 km s$^{-1}$. In both stars, the CO spectrum shows a small emission peak at terminal velocity on the red-shifted side, suggesting that the expanding layer is in fact part of a spherical shell surrounding the star.

However, in the case of W Hya, such interpretation raises a few questions: a) the Doppler velocity of ~5 km s$^{-1}$ is the same as the velocity where Vlemmings et al. (2021) observe a CO maser; b) the wind terminal
Figure 2. Comparing the spectral distributions of the central brightness in W Hya (left) and R Dor (right). The difference in distances is taken into account by proper scaling and the difference in beam sizes (53×40 mas² for W Hya and 41×35 mas² for R Dor) is taken into account by averaging over 30×30 mas² for W Hya and over both 45×45 mas² (black) and 55×55 mas² (red) for R Dor, providing an estimate of the attached uncertainty.

velocity evaluated by Khouri et al. (2014a,b) is 7.5 km s⁻¹ rather than 5 km s⁻¹; c) while similar, the spectra of the two stars display small but significant differences; in particular the CO emission peak of W Hya is narrower than that of R Dor and the SiO absorption peak is shallower. We address these questions in the remaining of the present section.

Spectral maps of both lines in a square |x, y|<75 mas centred on the star are displayed in Figure 14 of the Appendix. Significant continuum contribution is seen to extend to R~50 mas, in agreement with earlier analyses (Vlemmings et al. 2017, 2019). In all panels, the distributions show a peak between ~−4 and ~−6 km s⁻¹, in emission for the CO line and in absorption for the SiO line. Under the peak, the CO spectra display a broad distribution, covering between Vₚ~−10 and +10 km s⁻¹; red-shifted absorption is seen over the stellar disc, particularly strong for the SiO line, suggesting the presence of in-falling gas. Also shown in this figure is a same set of spectral maps for the ²⁹SiO(8-7) emission of R Dor (Nhung et al. 2021), scaled to account for the difference in distances. It displays remarkable similarity with the W Hya set as illustrated in Figure 2 for the spectra covering the stellar discs. Yet, significant differences are visible: the absorption peak associated with the terminal velocity is broader for R Dor than for W Hya and the broad absorption spectrum underneath the peak is more red-shifted for W Hya than for R Dor.

3.2. Terminal velocity
The absence of evidence for a terminal velocity exceeding ≈ 5 km s$^{-1}$ may cast doubt on the evaluation of 7.5 km s$^{-1}$ proposed by Khouri et al. (2014a). These authors fit single dish infrared to sub-millimetre observations of CO line profiles (Herschel, APEX, SMT and SEST) using simple non-LTE radiative transfer modelling with an initial CO/H$_2$ abundance of 4×10^{-4}. The best fit gives a terminal velocity of 7.5 ± 0.5 km s$^{-1}$, a turbulent velocity of 1.4 ± 0.1 km s$^{-1}$ and a radial dependence of the temperature of the form $T[K]=2500\times(23/r[\text{mas}])^{0.65\pm0.05}$. It requires a photo-dissociation radius of the CO molecules 2.5 times smaller than expected from the Mamon et al. (1988) modelling and a slow start of the wind acceleration for expansion velocities below 5.5-6.0 km s$^{-1}$, followed by a fast injection of momentum to reach the terminal velocity. These results contrast with those obtained by Takigawa et al. (2017), who suggest that acceleration takes place beyond an AlO-rich dust shell that covers between 50 and 70 mas from the centre of the star and reaches quickly a terminal velocity of 5.5 km s$^{-1}$. Also, Vlemmings et al. (2021) find it difficult to adopt the radial dependence of the expansion velocity proposed by Khouri et al. (2014a) when modelling the CO masers: their model requires a larger velocity at the inner envelope, ≈ 4.2 km s$^{-1}$, a steeper acceleration and a larger turbulent velocity component. In summary, large uncertainties are attached to the results obtained by Khouri et al. (2014a) using single dish line profiles: the Doppler velocity spectra of the 12CO(3-2) and 29SiO(8-7) ALMA observations presented here can reasonably be interpreted as evidence for a terminal velocity of 5-6 km s$^{-1}$ rather than 7.5 km s$^{-1}$. In this context, we remark that the escape velocity from a solar mass star is ≈ 20 km s$^{-1}$ beyond the dust shell and reaches 5 km s$^{-1}$ at only ≈ 700 mas: the precise form of the radial dependence of the velocity in this interval depends on the details of the forces acting on the dust grains and of their collisions with the gas molecules, in a way which is far from being well understood. We also note that the observation of narrow peaks at terminal velocity implies that this velocity has been reached early enough to dominate much of the explored regions of the line of sight. We remark that an OH maser observed in 1986 at Nançay (Etoka et al. 2001) is at this same velocity of 5-6 km s$^{-1}$.

Of course, we cannot exclude that further acceleration, beyond 5 km s$^{-1}$, takes place at distances from the star where the emission of the CO line has become too weak to be detected, because of the density or/and the temperature have become too low. This however would be irrelevant to the arguments made in the present article, the expansion velocity of ≈ 5 km s$^{-1}$ being effectively terminal over the explored radial range.
3.3. Peak emission of the CO line

Between \(\sim -6 \) and \(\sim -4 \) km s\(^{-1}\), CO emission and SiO emission (Figure 1) show an emission and an absorption peak, respectively. In order to obtain an approximate evaluation of what they correspond to, we evaluate their contribution by subtracting the linear interpolation over the peak range of the emission observed on the sides of the peak (Figure 1). The result is mapped in Figure 3, giving evidence for very similar morphologies, the CO intensity being positive and the SiO intensity negative. The right panel of Figure 3 gives indeed evidence for a clear correlation between the peak emissions of the two lines. This is a surprising result in relation with the maser interpretation proposed by Vlemmings et al. (2021) for the emission of the CO line: it is not clear why the morphology observed for the CO maser emission should match the region of SiO absorption.

The peak emission displayed in Figure 3 shows clear anisotropy, with enhancement in a wedge covering approximately from \(305^\circ \) to \(35^\circ \) counter-clockwise in position angle. We refer to this region of enhanced emission as “region C”; concretely, for convenience, we define it as the region where the intensity of the emission of the CO peak exceeds 50 mJy beam\(^{-1}\) km s\(^{-1}\). It qualitatively matches the anisotropy of the dust distribution observed by Ohnaka et al. (2016, 2017) at two epochs bracketing the observation of the molecular lines (July 8th 2015 and March 23rd 2016 compared with end of November 2015). Moreover, it also matches the observation of a blue-shifted blob of SiO emission by Hoai et al. (2021) at Doppler velocities around 10 km s\(^{-1}\), for which these authors failed to find a sensible interpretation. As illustrated in Figure 4, which displays channel maps of both the CO and SiO lines in the range of relevant Doppler velocities, a similar blob is observed in the CO emission, however at less negative Doppler velocities.

3.4. Overall view

In order to shed light on these observations, we consider separately 8 regions covering the environment of the star within 150 mas (6 \(R_\star \)) projected distance from its centre: four quadrants covering \(0 < R < 75 \) mas and four others covering \(75 < R < 150 \) mas. The quadrants, shown in Figure 3, are numbered in increasing order from north counter-clockwise, from 1 to 4 for the inner quadrants and from 5 to 8 for the outer quadrants. Quadrants 1 and 5 cover the wedge \(|\omega - 350^\circ| < 45^\circ \). Figure 5 displays, for each quadrant and for each of
Figure 3. Left: W Hya CO intensity map of the peak integrated between -4 and -6 km s$^{-1}$ with linearly interpolated background subtracted. Colour scale is Jy beam$^{-1}$ km s$^{-1}$. Centre: same as left but for SiO; the contour of the CO line at 50 mJy beam$^{-1}$ km s$^{-1}$ is shown on both the left and central panels and defines region C. Right: correlation between the intensities mapped in the left and central panels. For each pixel, we plot the CO intensity in abscissa and the SiO intensity in ordinate. The colour scale is in number of pixels per bin. The red line shows the intensity associated with the CO contour displayed in the left and central panels.

Figure 4. Blue blob emission: channel maps of the 29SiO(8-7) emission around -10.4 km s$^{-1}$ and of the CO emission around -8.6 km s$^{-1}$. The colour scales are in Jy beam$^{-1}$.

the CO and SiO lines, the observed Doppler velocity spectrum. Together with the inner quadrants, outer quadrant 5 covers region C where the CO peak emission is enhanced (Figure 3) and where the blue-shifted blobs are observed (Figure 4). The inner quadrants cover the range where dust is being formed and starts
Figure 5. Doppler velocity spectra integrated in each of 8 quadrants for the 12CO(3–2) emission (left) and 29SiO(8–7) emission (right) of W Hya. The quadrants cover the projected radial ranges 0<$R<$75 mas (upper row of each pair) and 75<$R<$150 mas (lower row of each pair), respectively. In each row the quadrants are numbered in increasing order starting from north counter-clockwise, from 1 to 4 for the inner quadrants and from 5 to 8 for the outer quadrants. Quadrants 1 and 5 cover position angles $|\omega - 350^\circ|<$45°.

accelerating the gas (Ohnaka et al. 2017; Takigawa et al. 2017) and where shocks anticorrelated with the dust clouds are seen to heat the extended atmosphere of the star (Vlemmings et al. 2017). Tables 1 and 2 list a number of parameters that describe the spectra displayed in Figure 5. They are described as the sum of three components: a flat continuum emission averaged over 15<$|V_z|<$26 km s$^{-1}$, a broad component and a peak, positive for CO and negative for SiO. To separate the contribution of the peak from that of the broad component we define a peak interval as 4<$|V_z|<$6 km s$^{-1}$ over which we evaluate the contribution of the broad component by linear interpolation from the sides of the peak interval. The peak is then redefined as the difference between the observed distribution and this linearly interpolated distribution, the broad component being defined accordingly. Tables 1 and 2 list the continuum level and, for the broad component, its value at maximum, its FWHM and its central velocity; for the peak, Table 1 lists the peak emission at maximum and Table 2 the emission at maximal absorption. Uncertainties are typically ±1 km s$^{-1}$ on Doppler velocities and ±10 mJy on flux densities.
Table 1. Parameters describing the 12CO(3-2) spectra of quadrants 1 to 8 (see text).

Quadrant	Continuum	Peak height	Broad emission		
	(Jy)	(Jy)	Maximum (Jy)		
			FWHM (km s$^{-1}$)		
			Central velocity (km s$^{-1}$)		
1	0.11	0.25	0.18	10	−2
2	0.12	0.19	0.16	11	+1
3	0.07	0.11	0.18	10	−1
4	0.08	0.18	0.19	11	−2
5	0	0.28	0.37	10	−2
6	0	0.12	0.40	9	0
7	0	0.09	0.35	6	0
8	0	0.15	0.40	6	−2

Table 2. Parameters describing the 29SiO(8-7) spectra of quadrants 1 to 8 (see text).

Quadrant	Continuum	Flux at maximal absorption	Broad emission		
	(Jy)	(mJy)	Maximum (Jy)		
			FWHM (km s$^{-1}$)		
			Central velocity (km s$^{-1}$)		
1	0.12	25	0.24	14	−1
2	0.14	25	0.23	13	0
3	0.08	25	0.24	12	0
4	0.10	25	0.25	12	−1
5	0	50	0.58	13	0
6	0	50	0.62	11	1
7	0	50	0.62	8	0
8	0	50	0.82	9	0
The same exercise using sextants rather than quadrants is reported in the Appendix (Figure 15, Table 7 and 8) where a parameterized description of the spectra, in the form of a flat continuum and a Gaussian for each of the peak and broad component, is presented. We used it to cross-check the results obtained from the quadrant analysis. These results call for a number of comments.

a) Continuum is seen to contribute to the inner quadrants exclusively and the levels observed in the SiO and CO bands agree to a precision of ± 7 mJy km s$^{-1}$ arcsec$^{-2}$. They display anisotropy comparable with the dust distribution observed by Ohnaka et al. (2017), namely a depression in the south-western direction: the ratio between the average emission in sextants 4 and 5 and that in the other four sextants (see Appendix) is 58% and the ratio between the average emission in quadrants 3 and 4 and that in quadrants 1 and 2 is 67%. This seems to contradict the detailed analysis of Vlemmings et al. (2017) which gives evidence for a south-western hot spot dominating the asymmetry of the continuum emission. We discuss it further in Section 5.

b) The emission peaks of the CO spectra are at -5.1 ± 0.2 km s$^{-1}$ and the absorption peaks of the SiO spectra at -4.7 ± 0.2 km s$^{-1}$. The difference is 0.4 ± 0.2 km s$^{-1}$, barely significant and possibly associated with an extra acceleration in the region probed by the CO line emission compared with that probed by the SiO line emission. The rms deviation from the peak mean velocity is 1.0 ± 0.4 km s$^{-1}$ for CO and 0.8 ± 0.2 km s$^{-1}$ for SiO. The red-shifted peak of CO emission is precisely at $+5$ km s$^{-1}$, supporting the shell picture.

c) The amplitude of the CO emission peak is 3 times larger in quadrants 1 and 5 than in the opposite quadrants, 3 and 7. The quadrants in-between have intermediate peak heights: at the level of 3/4 of quadrant 1 in the inner circle and at the level of 1/2 of quadrant 5 in the outer ring. Accounting for the factor 3 difference in area between the inner circle and the outer ring, the mean brightness of the peak is 4.5 times larger in the inner quadrants than in outer quadrants 6 to 8. These asymmetries quantify the anisotropy illustrated in the left panel of Figure 3. They suggest an enhancement of density and/or an anticipated reach of the terminal velocity in region C. We discuss this further in Section 4.
d) The minima of the absorption peaks of the SiO spectra are at the approximate level of \(\sim 25\) mJy in the inner circle and \(\sim 50\) mJy in the outer ring, independently from the position angle. They reveal the important optical thickness and provide information on temperature that is further discussed in Section 4.

e) The emission above continuum and outside of the terminal velocity interval, between \(\sim -6\) and \(\sim -4\) km s\(^{-1}\), is centred at \(\sim -1\) km s\(^{-1}\) for the CO line and at \(\sim 0\) for the SiO line, with a precision (rms) of \(\pm 1\) km s\(^{-1}\). In quadrants 1 to 6, it has a FWHM of \(10\pm 1\) km s\(^{-1}\) for the CO line and of \(12.5\pm 1.0\) km s\(^{-1}\) for the SiO line. In quadrants 7 and 8, the FWHM is only 2/3 of these values. The flux density at maximum displays little dependence on position angle. In the inner circle, it is \(\sim 0.18\) and \(\sim 0.24\) Jy for the CO and SiO lines, respectively and in the outer ring, \(\sim 0.38\) and \(\sim 0.66\) Jy. In terms of brightness, on average, the outer ring brightness is \(\sim 83\%\) of that of the inner circle. Altogether, this emission displays less anisotropy and less inhomogeneity than in the terminal velocity interval, the main deviations from uniformity being a broader spectrum for SiO emission than for CO emission and for the C region than opposite to it. Broader SiO than CO spectra are commonly observed in other oxygen-rich AGB stars, the difference being caused by shorter distances to the star (where the line-width is larger) being probed by SiO emission than by CO emission.

f) The high \(V_z\) wings of the CO and SiO emissions are illustrated in Figure 6. They show an important excess of flux density on the blue-shifted side of quadrant 5. The contribution of the blue blob in this region is shown in Figure 7, which displays the difference between the Doppler velocity spectrum integrated over the blob region \((75 < R < 150\) mas, \(|\omega| < 30^\circ\)) and that integrated over the rest of the \(75 < R < 150\) arcsec ring and divided by 5 to account for the broader \(\omega\) interval. The blob is seen as a blue-shifted source of intense emission centred on the terminal velocity and covering some \(\sim 10\) km s\(^{-1}\). The CO emission shows a narrow peak at terminal velocity over a broader distribution, each reaching \(\sim 0.1\) Jy at maximum. The SiO emission is more difficult to interpret. The persistence of an absorption peak at terminal velocity implies that the SiO line is much more opaque over the blob than on the rest of the ring. The structure seen at Doppler velocities exceeding \(\sim -3\) km s\(^{-1}\) results from the different shapes displayed by the spectra (Figure 5).

4. TEMPERATURE DEPENDENCE AND RADIATIVE TRANSFER MODELLING OF THE OBSERVED LINE EMISSIONS
Figure 6. Continuum-subtracted blue-shifted parts (upper panels) and red-shifted parts (lower panels) of the spectra (Jy) displayed in Figure 5.

Figure 7. Difference between the Doppler velocity spectrum integrated over the blob region (75<R<150 mas, |ω|<30°) and that integrated over the rest of the 75<R<150 mas ring and divided by 5 to account for the broader ω interval. Left panel is for the CO line and right panel for the SiO line.

4.1. Formalism

In the LTE approximation, for a given velocity \(V_z \) and a brightness \(I_0 \) [Jy arcsec\(^{-2}\)] on the entrance side of a thin slab of column density \(N \) [molecules cm\(^{-3}\) arcsec] and temperature \(T \) [K], the brightness \(I \) [Jy arcsec\(^{-2}\)] at the exit side, reads

\[
I = I_0 e^{-\tau} + S (1 - e^{-\tau}) = S + (I_0 - S) e^{-\tau}
\]
where S is the source function defined as $S = \varepsilon/\tau$ with ε [Jy arcsec$^{-2}$] describing the unabsorbed emission of the slab and τ being its optical thickness. In the LTE approximation, S is the Planck function: $S = \varepsilon/\tau = (2hf^3)/(c^2)(e^{\Delta E/T} - 1)^{-1} = f[\text{GHz}]^3/(2.9 \times 10^7)(e^{\Delta E/T} - 1)^{-1}$ Jy arcsec$^{-2}$. The frequency f and the energy ΔE of the transition take similar values for the CO and SiO lines: 345.80 and 342.98 GHz, and 16.7 and 16.6 K, respectively.

When the column density increases, I varies from I_0 to ε/τ. In case of absorption, $I_0 > \varepsilon/\tau$, I is always larger than ε/τ, a lower limit to the emission of an optically thick shell: however large absorption may be, the outer part of the layer cannot be prevented from shining. When the energy of the transition is much smaller than the temperature T, one can approximate

$$\varepsilon/\tau \sim f^3 T/(2.910^7 \Delta E) \sim T[K]/11.8.$$

Figure 2 shows that the minimal brightness observed in a 30×30 mas2 region is ~ 0.5 mJy au$^{-2}$=5.5 Jy arcsec$^{-2}$, which must therefore exceed $T[K]/11.8$, implying $T < 65$ K (75 K using the exact relation). The same result is obtained with the minimal flux density of ~ 25 mJy observed in each of the 4.4×10^{-3} arcsec2 inner quadrants. This result is independent from the value of ε, namely of the column density. At $r=1$ arcsec, this temperature is only one third of that obtained from the law used by Khouri et al. (2014a) and Takigawa et al. (2017) close to the star: $T[K] = 2500 \times (23/r[\text{mas}])^{0.65}$, suggesting a steeper radial decrease of the temperature than commonly assumed in the published literature.

The emission parameter ε [Jy arcsec$^{-2}$] is obtained from Relation 2 below:

$$\varepsilon = hf/(4\pi \Delta f)(ndz)A_{ji}f_{pop} = hc/(4\pi \Delta V)(ndz)A_{ji}f_{pop}$$

$$= 5.5 \times 10^3 \Delta V^{-1} \frac{d}{c} N A_{ji} f_{pop}, f_{pop} = k(2J + 1)e^{-E_u/T}/T$$

(2)

where $d[\text{pc}]$ is the distance from the Sun to the star, J and $E_u[K]$ the spin and energy of the upper level, $A_{ji}[\text{s}^{-1}]$ the Einstein coefficient, $k[K]$ the ratio between the temperature and the partition function, $N[\text{molecules cm}^{-3} \text{ arcsec}]$ the column density, Δf and ΔV the line widths in frequency and velocity respectively and $T[K]$ the temperature. The parameters for the CO and SiO lines are given in Table 3. The values of ε_0 and τ_0 for $\Delta V=1$ km s$^{-1}$ listed in the last columns are defined from the expressions $\varepsilon = \varepsilon_0 Ne^{E_u/T}/T$ and $\tau = \tau_0 Ne^{-E_u/T}/T(e^{\Delta E/T} - 1)$. The dependence on temperature of ε/N and τ/N is illustrated in Figure 8.
Figure 8. Dependence on temperature of ε/N (left), τ/N (centre) and ε/τ (right) for the 12CO(3-2) (upper panels) and 29SiO(8-7) (lower panels), respectively. Units are Jy arcsec$^{-2}$ for ε and mol cm$^{-3}$ arcsec for N.

4.2. Comparing W Hya and R Dor outside region C

Figure 9 compares the CO and SiO spectra in quadrants 3 and 7, opposite to region C, of W Hya to the equivalent for R Dor (Nhung et al. 2021), divided by 3.1 and integrated over a circle $R<0.13$ arcsec and a ring $0.13<R<0.26$ arcsec, to account for the different distances from the Earth and divided by 4 to compare with a quadrant. In the outer ring, which is free of region C, the SiO R Dor spectra are seen to be lower (0.25 compared to 0.62 Jy) than the W Hya spectra and broader (width at 1/5 maximum ~ 15 km s$^{-1}$ compared to ~ 10 km s$^{-1}$). Qualitatively, however, the similarity between the two spectra suggests that a same dynamics is at stake in both stars. The broader line-width of the R Dor spectra, as noted earlier by Hoai et al. (2021), suggests a stronger impact of shocks induced by pulsations and convective cell ejections in R Dor than in W Hya away from region C. The difference in intensity (~ 3.7 vs ~ 6.2 Jy km s$^{-1}$) suggests a higher density for W Hya than for R Dor. In the inner circle, the difference between W Hya and R Dor spectra is qualitatively the same as in the outer ring.

The CO emission spectra are smeared by the broader beam size in the R Dor case (180×140 mas2 instead of 52×40 mas2), making the comparison with W Hya difficult.
Figure 9. Comparison between W Hya and R Dor, $^{29}\text{SiO}(8-7)$ and CO(3-2) lines, in quadrants 3 and 7, opposite to region C, as specified on top of the upper panels. The R Dor data have been scaled down for the different distance from the Earth (see text). The upper row is for the inner circle (quadrant 3), the lower row for the outer ring (quadrant 7).

Table 3. Parameters related to the emissions of the CO and SiO lines. The values of frequency f (GHz), transition energy ΔE (K), upper level energy E_u (K), emission coefficient A_{ji} (s$^{-1}$) and partition function are taken from CDMS (Müller et al. 2005).

Line	f (GHz)	ΔE (K)	E_u (K)	$2J+1$	A_{ji} (s$^{-1}$)	k (K)	d (pc)	φ_0	τ_0
$^{12}\text{CO}(3-2)$	345.80	16.7	33.19	7	2.50×10$^{-6}$	2.77	104	27.7	19.4
$^{29}\text{SiO}(8-7)$	342.98	16.6	74.08	17	21.0×10$^{-4}$	1.03	104	21.0×103	16.0×103

In the remaining of this section, we use a very simple LTE model to compare the CSE of R Dor with that of W Hya in quadrant 7, away from region C. We restrict the analysis to the SiO data for R Dor, the beam size being too large for a reliable comparison with the CO data. The R Dor data have been scaled to correct for the different distances from the Earth and to account for the solid angle coverage of quadrant 7. The model assumes that the wind velocity V is radial and increases linearly from $r=50$ mas (~ 5 au or $\sim 2 R_\odot$) to a terminal velocity V_{term} at $r=r_{\text{term}}$. The radial decrease of the temperature is taken of the form
$T=T_0/(r/0.05)^p$ where T_0 is the temperature at $r=50$ mas. The CO density takes a value d_0 at $r=1$ arcsec and scales in inverse proportion to Vr^2. The SiO density is taken as ρ times the CO density. Its depletion is approximately accounted for by limiting the layer radius to 1.5 arcsec instead of 3 arcsec for CO. The line width is described in an ad hoc and very approximate way with Gaussian forms of different σ values, as one would do for turbulence, although it is expected to result from shocks induced by pulsations and convective cell ejections in the innermost layers. In particular, the presence of in-falling gas is simply ignored. Beyond a distance $r=r_{turb}$, we assume a constant $\sigma=V_{turb2}$. Below this distance, we assume a radial dependence of σ of the form $\sigma=V_{turb1}\exp[-0.5(3r/r_{turb})^2]$. Moreover, even closer to the star, at distances smaller than r_{turb}/q_r, we assume a broader value of $\sigma=q\sigma_{turb1}$.

The main results are illustrated in Figure 10 and summarised in Table 4 together with the rms differences Δ between the model flux densities and those observed. We stress that a reliable evaluation of the model parameters would require data cubes covering a larger solid angle and the observation of at least another line of each of the two molecular species; in particular the numbers quoted after the \pm sign should not be understood as uncertainties but simply as measures of the sensitivity of the best fit to the values taken by each parameter when the others are kept fixed. The quality of the fits is satisfactory. The main differences between the SiO emissions of the two stars are a steeper radial dependence of the temperature ($p=1.44\pm0.04$ instead of 0.74 ± 0.05) and a larger region of line broadening ($r_{turb}=0.84\pm0.03$ instead of 0.31 ± 0.07) for R Dor than for W Hya. The value of ρ obtained for W Hya, $(10\pm3)\times10^{-3}$, corresponds to an abundance ratio $^{28}\text{SiO}/^{12}\text{CO}\sim13\%$, consistent with values commonly adopted in the published literature (e.g. Van de Sande et al. (2018) quote $\sim30\%$ for R Dor). In both cases, the terminal velocity is reached close to the star.

The fit to the R Dor SiO spectrum, although of apparently better quality than that to the W Hya spectrum, is actually less reliable, being unconstrained by the CO data. In particular, the value obtained for V_{turb2} is unreasonably low. Moreover, the values of ρ and d_0 are correlated, only their product matters (0.79 mol cm$^{-3}$ for W Hya and 0.40 mol cm$^{-3}$ for R Dor). The CO spectrum predicted for R Dor using the parameters of the best fit to the SiO spectrum is compared with observation in the rightmost panel of Figure 10. In order to account approximately for the larger beam size, we have subtracted from the observed quadrant 7
spectrum a fraction of the observed quadrant 3 spectrum such that the resulting continuum level cancels. The high V_z wings are well described but the bulk emission is slightly red-shifted in the model instead of blue-shifted in the data. Moreover the model predicts a sharp absorption near $V_z=4$ km s$^{-1}$, which is absent from the data. This is caused by the low V_{turb2} value obtained from the best fit to the SiO spectrum and by the known difference of V_{term} for the SiO and CO emissions, interpreted by Nhung et al. (2021) as evidence for persistence of some acceleration at large distances. Yet, these are small differences considering the crudeness of the exercise, the overall properties of the spectrum (mean and rms values of V_z, total flux density) being well predicted.

In summary, while very crude, this exercise has reliably shown that the morpho-kinematics of the CSE of W Hya, when observed outside region C, is qualitatively similar to that of R Dor and can be described by a model accounting for the main features usually displayed by oxygen-rich AGB stars.

4.3. W Hya inside the C region

In order to shed some light on the morpho-kinematics at stake in region C of W Hya, we show in the left panel of Figure 11, for both CO and SiO emissions, the difference between the Doppler velocity spectra observed in quadrants 7 and 5. Both are in the outer ring, the former outside of region C and the latter inside. The result is very similar to that obtained in Figure 7 for the blob region, defined as $|\omega|<30^\circ$ instead of $|\omega−350^\circ|<45^\circ$. It gives evidence for intense blue-shifted emission accompanied by strong line broadening. With the idea that this is the effect of a source confined to short distances from the star in the blue-shifted hemisphere, we modify the model used to produce the spectra illustrated in Figure 10 by keeping all parameters unchanged except for a narrow layer defined as $0>z>−0.25$ arcsec ($0>z>−25$ au) where we adjust density, temperature and velocity in order to reproduce the CO and SiO spectra observed in quadrant 5. The results are displayed in the right panels of Figure 11 and Table 5. The quality of the fits is again satisfactory given the extreme crudeness of the model: the rms differences Δ between the model flux densities and those observed are 39 mJy for the CO spectrum and 47 mJy for the SiO spectrum. The main outstanding parameter value is the CO density, $d_0=930±160$ mol cm$^{-3}$, an order of magnitude larger than outside region C. Also remarkably different is the line width, $V_{turb1}=3.75±0.50$ km s$^{-1}$ instead of $1.9±0.3$ km s$^{-1}$ outside region C. The velocity of the layer is $6.5±0.5$ km s$^{-1}$, and the other parameters take similar
Figure 10. Comparison between CO and SiO spectra observed in quadrant 7 with best fit model predictions (see text). The pair of left panels is for W Hya and the pair of right panels for R Dor (properly scaled to quadrant 7, see text). In the three leftmost panels the red curve shows the result of the best fit. In the rightmost panel, the red curve is the model prediction for the CO spectrum using the parameters obtained for the best fit to the SiO spectrum (see text).

Figure 11. Left: difference between the Doppler velocity spectra observed in quadrants 7 and 5 of W Hya for 12CO(3-2) (black) and 29SiO(8-7) (red) emissions. Middle and right: Quadrant 5 observed spectra (black histograms, CO middle and SiO right) are compared with the results of the fit described in the text (red lines).

values as outside region C. Because of the high value of the density, the SiO layer is extremely opaque and the value of ρ is largely undefined: its best value is 37×10^{-3} but any value larger than 20×10^{-3} gives an acceptable fit.

5. CONTINUUM EMISSION

Two sources contribute to continuum emission: the star itself and hot dust surrounding it. Observations by Ohnaka et al. (2016, 2017) using SPHERE/ZIMPOL on the VLT and bracketing the ALMA observations analysed in the present article have given evidence for anisotropic dust formation, with an enhancement in the northern hemisphere and a depression in the south-western quadrant. Observation of Hα emission has
Table 4. Parameters of the radiative transfer fits in quadrant 7 for W Hya and R Dor, the latter being scaled as described in the text. The values quoted after the ± sign measure the sensitivity of the fit to the particular parameter: they correspond to a 10% increase of the χ^2 per degree of freedom, the other parameters being kept at their best fit values. They should not be interpreted as uncertainties.

	T_0	p	V_{term}	r_{term}	d_0	r_{turb}	V_{turb1}	q_V	q_r	V_{turb2}	ρ	Δ
	[K]	[km s$^{-1}$]	[arcsec]	[cm$^{-3}$]	[arcsec]	[km s$^{-1}$]	[km s$^{-1}$]	[10$^{-3}$]	[mJy]			
W Hya	1970	0.74	5.0	0.32	79	0.31	1.9	2.2	3.15	0.92	10	CO:12
	±120	±0.05	±0.3	±0.02	±4	±0.07	±0.3	±0.7	±0.30	±0.20	±3	SiO:33
R Dor	1730	1.44	4.15	0.19	47	0.84	1.83	2.47	6.3	<0.2	8.5	9
	±75	±0.04	±0.10	±0.02	±6	±0.03	±0.09	±0.15	±0.4	±1.1		

given evidence for shocks anti-correlated with dust formation. Moreover, the polarisation pattern observed using SPHERE/ZIMPOL displays the circular symmetry characteristic of light scattered from a spherical shell and the polarised intensity gives further evidence for a south-western depression of the dust density.

Table 5. Parameters of the radiative transfer fits in quadrants 5 and 7 of W Hya (same format as Table 4)

	V_{layer}	d_0	r_{turb}	V_{turb1}	T_0	p	ρ
	[km s$^{-1}$]	[cm$^{-3}$]	[arcsec]	[km s$^{-1}$]	[K]	[10$^{-3}$]	
Quarant 5	6.5	930	3.75	0.38	1970	0.71	>20
(inside C)	±0.5	±60	±0.5	±0.05	±200	±0.09	
Quadrant 7	nolayer	79	1.9	0.31	1970	0.74	10
(outside C)	±4	±0.3	±0.07	±120	±0.05	±3	
The level of continuum emission obtained from the analyses of SiO and CO line emissions presented in the present article, confined within ~50 mas from the centre of the star, is similar to that of R Dor (after correction for the difference in distances) in agreement with earlier evaluations of the star temperatures, ~2700 K for W Hya (Vlemmings et al. 2019) and ~3000 K (Dumm & Schild 1998) for R Dor. As the continuum emission of W Hya has been studied in detail by Vlemmings et al. (2017), we did not attempt to add new contributions to their results. However, our results seem to be partly inconsistent with theirs and we find it useful to explain this apparent inconsistency. As illustrated in the right panel of Figure 12, these authors show the presence of a very hot and compact spot on the south-western quadrant of the stellar disc, within 20 mas from the centre of the star, and interpret it as evidence for a shock produced by a convective cell ejection; the spot temperature is at the level of 50000 K, compared with 2500 K for the temperature of the photosphere and 2900 K for that of the heated molecular gas layer surrounding it. As illustrated in Figure 12, we find no evidence for such a hot spot; on the contrary, as mentioned in Section 3.4, we observe a small depression of continuum emission in the south-western quadrant.

We recall that W Hya was observed on three days December 05th, December 03rd and November 30th, 2015. The data are stored in three sets 1, 2, 3 respectively. They are calibrated using the script provided by the ALMA staff. The maximal baseline is 7.7 km for set 1, 6.3 km for set 2 and 10.8 km for set 3. There are three spectral windows, two of 937.5 MHz and 960 channels were centred on 330.85 (spw0) and 342.85 GHz (spw1), and a window of 1.875 GHz and 3840 channels was centred on 344.95 GHz (spw2). The continuum emission displayed in the left panel of Figure 12 uses the most extended array and is averaged over spw2, excluding lines identified by using task uv_prev in GILDAS/IMAGER. The image has been produced with CASA using uniform weighting. The beam is 28×20 mas2 (FWHM) and the map is produced with a circular restoring beam of 28 mas.

The right panel of Figure 12 shows the image obtained by Vlemmings et al. (2017). In addition to the flagged antennas indicated in the standard script, they flagged one additional antenna which had a high system temperature. They performed two rounds of phase self-calibration and one round of phase and amplitude self-calibration on the continuum. They obtained a beam with uniform weighting of 17×24 mas2 and the final image is restored with a circular beam of 17 mas, smaller than the major axis.
Figure 12. Continuum emission of W Hya. Left: image obtained from data set 3. The yellow circle, centred on the origin of coordinates at RA=13h49m01.9386s and Dec=−28d22m04.489s, is centred at the maximum of the emission. The red circle is instead centred (black cross) on the boundary of the emission, as is the red circle in the right panel. It is shifted ∼5 mas north and ∼5 mas east. The right panel shows the image obtained by Vlemmings et al. (2017). In both panels the beams are shown in the lower left corners. The colour scales are in Jy beam$^{-1}$ for the left panel and in Kelvin for the right panel, the conversion factor between these being 13,600 K per Jy beam$^{-1}$.

However, the apparent contradiction between the two results boils down to what is taken as precise star location. In our case, we assume that it is the maximum of the emission, which is slightly shifted south-west with respect to the centre of the boundary of the emission, approximately by 5 mas west and 5 mas south. In such a case, we conclude that the emission is slightly depressed in the south-western quadrant. Vlemmings et al. (2017), who use a smaller beam than we do, obtain an image, which strongly suggests that the maximum of the emission corresponds to a hot spot, and that the star location is instead at the centre of the boundary of the emission. It is therefore essentially the use of a smaller beam, possibly together with two successive self-calibrations, that makes the difference of interpretation. We note that a same comment applies to the interpretation of the images obtained by Ohnaka et al. (2016, 2017).

6. A GLOBAL VIEW

Accounting for the observations made in the previous sections, the present section is an attempt at drawing a consistent picture of the morpho-kinematics of the CSE of W Hya.

a) The star is surrounded by an expanding layer of gas and dust, which, to first order, is optically thick for 29SiO(8-7) emission and optically thin for 12CO(3-2) emission. In contradiction with earlier estimates
(Khouri et al. 2014a), the terminal velocity is \(\sim 5 \text{ km s}^{-1} \) instead of \(7.5 \text{ km s}^{-1} \). It has been reached early, at probably some \(\sim 12 \ R_* \) (0.3 arcsec) from the centre of the star, where the escape velocity is still 7.7 km s\(^{-1}\): this implies that the acceleration of the gas by collisions with dust grains manages to keep the velocity approximately constant over a broad radial range. Such early acceleration to the terminal velocity is consistent with the conclusion reached by Takigawa et al. (2017), who claim that aluminium-rich grains have formed within some \(3 \ R_* \) (75 mas) from the centre of the star and are efficient at boosting rapidly the gas to radial velocities at the 5 km s\(^{-1}\) scale. It is supported by the narrow width of the peaks observed in emission for CO and in absorption for SiO in Figures 2 and 5: if acceleration were progressive these peaks would tend to trail in the red-shifted direction. Note that masers can be invoked to explain the narrow CO emission peak, but they would not explain the narrow SiO absorption peaks. Moreover, the observation of a peak at \(+5 \text{ km s}^{-1} \) in some panels of Figures 2 and 5 supports the picture of a spherical shell. For such narrow peaks to be present, this layer must have been stable for many years, a century at least. Comparison with R Dor has shown remarkable similarities and has given evidence for the validity of a picture accounting for the main features usually displayed by oxygen-rich AGB stars to properly describe the morpho-kinematics of the CSE of W Hya outside region C.

b) The intense blue-shifted emission observed in region C displays features of a mass ejection that occurred recently, at the scale of a few years, and is associated with the blue blob. Figure 13 shows a simplified schematic of a possible geometry: based on the confinement of region C on the sky plane and on the crude radiative transfer considerations made in Section 4.3, it assumes that the impact of the mass ejection covers a broad cone with an axis making an angle of some 30° with the line of sight, implying that the source associated with the blue blob is located some 0.2 arcsec (20 au) above the plane of the sky. At a velocity of \(\sim 10 \text{ km s}^{-1} \), such distance is covered in \(\sim 10 \) years. Within the cone, and within radial distances confined to less than 25 au from the centre of the star, the number density is increased by an order of magnitude, with a SiO/CO ratio larger by at least a factor 2, and the effective line width is also about twice as large. The mean radial velocity inside the cone is 6-7 km s\(^{-1}\). The cone geometry matches the dust distribution observed by Ohnaka et al. (2017). However, it evolves at a time scale of a few years while the variability observed by
these authors is at the scale of a few months. Such a picture impacts significantly the evidence for CO maser emission claimed by Vlemmings et al. (2021) but does not exclude some possible contribution.

c) Within the spectral interval of terminal velocity, \(-6\) to \(-4\) km s\(^{-1}\), both over region C and outside, the expanding spherical layer discussed under a) is essentially optically thick for the SiO line and the observed emission probes exclusively its external shell: it makes therefore no difference whether one looks over region C or out of it. What makes the difference in the depth of the absorption peak illustrated in the central panel of Figure 3 is instead the emission outside the spectral interval of terminal velocity. There, the opacity of the SiO line is much less and the emission over region C is enhanced by the additional contribution of the emission of region C. It is this enhancement, rather than the intensity of the absorption, that explains the correlation illustrated in the right panel of Figure 3.

d) Outside the spectral interval of terminal velocity, we observe the emissions of the CO and SiO lines from gas having not yet reached the terminal velocity and/or from gas expanding in a direction significantly different from the line of sight. Such gas is confined within at most 30 au from the centre of the star (at such a distance, gas having deviated from the line of sight by a projected distance \(R=150\) mas makes an angle of 30° with the line of sight and its Doppler velocity is 87% of its radial velocity). It is seen in emission for both the CO and SiO lines with the exception of some red-shifted absorption of SiO line emission over the inner quadrants, which we interpret as evidence for in-falling gas. Important line broadening is observed in this component of the CSE, witness of the turbulent regime induced by shocks from pulsations and cell ejections. It reaches typically \(\pm10\) km s\(^{-1}\), however covering a smaller radial distance in W Hya than it does in R Dor as had been already noted by Hoai et al. (2021) and has been confirmed by the analysis presented in Section 4.3. The spectra are significantly narrower outside region C, where a depression of dust formation has been reported byOhnaka et al. (2017).

7. CONCLUSION

In summary, the picture that emerges from all above observations is made of two components, one stable over time, at the scale of at least a century, the other variable, at the scale of months and years. It differs significantly from the picture that was suggested by earlier analyses. In particular, it gives evidence for a
recent mass ejection, which had been overlooked by all former studies and it underscores relations between the dust emission observed at the VLT and the gas emission observed at ALMA.

The stable component consists of an approximately spherical envelope of gas and dust expanding radially and reaching rapidly, at a radius of \(\sim 0.3 \text{ arcsec} = 30 \text{ au} = 12R_\star \), a terminal velocity of \(\sim 5 \text{ km s}^{-1} \). The close environment of the star hosts a complex chemistry of gas and dust, displaying both stable and variable features. In particular, Vlemmings et al. (2017) have given evidence for gas having to stay close to the star photosphere for at least \(10^3 \) years and Ohnaka et al. (2017) have demonstrated the variability of dust formation.

The variable component covers a broad cone that projects on the plane of the sky over region C, elongated and shifted with respect to the star in the NNW direction (\(\sim 10^\circ \) west of north). It is characterized by a high density and displays features of a mass ejection that started a few years ago. It is somehow related to the variable features observed earlier: dust formation enhanced in the same region (Ohnaka et al. 2017; Takigawa et al. 2017) and evidence for shocks in the south-western quadrant (Vlemmings et al. 2017; Ohnaka et al. 2017). The details of this relation are still in need of being clarified.

While consistent with, and inspired by many of the conclusions reached by earlier authors from studies of the close vicinity of the star, in particular Vlemmings et al. (2017), Ohnaka et al. (2017) and Takigawa et al.
(2017), this picture contradicts the model proposed by Khouri et al. (2014a) that implies a progressive acceleration to a terminal velocity of 7.5 km s\(^{-1}\). It also impacts significantly the evidence for CO maser obtained by Vlemmings et al. (2021) and provides useful clarifications on the presence of a hot spot southwest of the stellar disc discovered by Vlemmings et al. (2017).

As first argued by Vlemmings et al. (2017) this picture favours convective cell ejections as playing a major role in the generation of the nascent wind, the stable component of the CSE being seen as the result of many successive such events occurring in different directions at short time intervals. Major progress in modelling the relevant dynamics has been recently reported (Höfner & Freytag 2019). If confirmed by future studies, such a picture raises several questions; in particular, the detailed relation between the features observed by Vlemmings et al. (2017) and Ohnaka et al. (2017), including the observed anti-correlation between shocks and dust formation, needs to be clarified. Moreover, the nearly exact compensation of the star gravity by the acceleration produced by the stellar light on dust grains, required to make the gas velocity stay constant well before having escaped the star gravity, needs to be understood.

While making use of many observations and analyses reported earlier, the present article offers a new and significantly improved description of the morpho-kinematics of the wind of W Hya. We failed to think of another sensible interpretation than presented here; in particular, invoking the presence of an evaporating planet in relation with the blue blob and the high Doppler velocity wings, as described in a recent publication (Gottlieb et al. 2022), cannot be seriously pursued in the present case. Most of our knowledge of the morphokinematics of the CSE of W Hya is based on observations confined to the very close neighbourhood of the star, less than 0.2 arcsec projected distance. To confirm the validity of the picture inferred from these observations, it is essential to observe the molecular line emission of several lines, such as CO, SiO, SO, SO\(_2\), HCN and some of their isotopologues, over angular distances at the scale of a few arcsec. Each individual star has its own specific identity and progress in understanding the dynamics at stake in the generation of the nascent wind requires a detailed exploration of its properties. Moreover, new observations of the close neighbourhood of the star, of a same quality as those made at or near the end of 2015, and possibly including line emissions probing higher temperatures, such as SO\(_2\)(34\(_3\)\(_{31}\) – 34\(_2\)\(_{32}\)), would secure and refine our understanding of the variable dynamics.
We thank Pr. Wouter Vlemmings and Pr. Aki Takigawa for useful discussions. We are grateful to Drs Jan Martin Winters and Pierre Leasaffre, for very careful reading of the manuscript and for pertinent comments that helped improving the presentation of the results. This paper uses ALMA data ADS/JAO.ALMA#2015.1.01446.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The data are retrieved from the JVO/NAOJ portal. We are deeply indebted to the ALMA partnership, whose open access policy means invaluable support and encouragement for Vietnamese astrophysics. Financial support from the World Laboratory, the Odon Vallet Foundation and the Vietnam National Space Center is gratefully acknowledged. This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.99-2019.368.

REFERENCES

Danilovich, T., Lombaert, R., Decin, L., et al. 2017, A&A, 602, A14, doi: 10.1051/0004-6361/201630055

Danilovich, T., Richards, A. M. S., Karakas, A. I., et al. 2019, MNRAS, 484, 494, doi: 10.1093/mnras/stz002

Dumm, T., & Schild, H. 1998, NewA, 3, 137, doi: 10.1016/S1384-1076(98)00003-7

Etoka, S., Błaszkiewicz, L., Szymczak, M., & Le Squeren, A. M. 2001, A&A, 378, 522, doi: 10.1051/0004-6361:20011184

Gottlieb, C. A., Decin, L., Richards, A. M. S., et al. 2022, A&A, 660, A94, doi: 10.1051/0004-6361/202140431

Hadjara, M., Cruzalèbes, P., Nitschelm, C., et al. 2019, MNRAS, 489, 2595, doi: 10.1093/mnras/stz2240

Hoai, D. T., Anh, P. T., Tuyet Nhung, P., et al. 2021, Journal of Korean Astronomical Society, 54, 171. https://arxiv.org/abs/2109.10624

Höfner, S., & Freytag, B. 2019, A&A, 623, A158, doi: 10.1051/0004-6361/201834799

Khoury, T., Waters, L. B. F. M., de Koter, A., et al. 2015, A&A, 577, A114, doi: 10.1051/0004-6361/201425092

Khoury, T., de Koter, A., Decin, L., et al. 2014a, A&A, 561, A5, doi: 10.1051/0004-6361/201322578

—. 2014b, A&A, 570, A67, doi: 10.1051/0004-6361/201424298

Khoury, T., Vlemmings, W. H. T., Paladini, C., et al. 2020, A&A, 635, A200, doi: 10.1051/0004-6361/201834618
Knapp, G. R., Pourbaix, D., Platais, I., & Jorissen, A. 2003, A&A, 403, 993,
doi: 10.1051/0004-6361:20030429

Lebzelter, T., Hinkle, K. H., Wood, P. R., Joyce, R. R., & Fekel, F. C. 2005, A&A, 431, 623,
doi: 10.1051/0004-6361:20041575

Maercker, M., Schöier, F. L., Olofsson, H., Bergman, P., & Ramstedt, S. 2008, A&A, 479, 779,
doi: 10.1051/0004-6361:20078680

Mamon, G. A., Glassgold, A. E., & Huggins, P. J. 1988, ApJ, 328, 797, doi: 10.1086/166338

Müller, H. S. P., Schläder, F., Stutzki, J., & Winnewisser, G. 2005, Journal of Molecular Structure, 742, 215,
doi: 10.1016/j.molstruc.2005.01.027

Nhung, P. T., Hoai, D. T., Tuan-Anh, P., et al. 2021, MNRAS, 504, 2687, doi: 10.1093/mnras/stab954

Norris, B. R. M., Tuthill, P. G., Ireland, M. J., et al. 2012, Nature, 484, 220, doi: 10.1038/nature10935

Ohnaka, K., Weigelt, G., & Hofmann, K. H. 2016, A&A, 589, A91,
doi: 10.1051/0004-6361/201628229

—. 2017, A&A, 597, A20,
doi: 10.1051/0004-6361/201629761

Samus`, N. N., Kazarovets, E. V., Durlevich, O. V., Kireeva, N. N., & Pastukhova, E. N. 2017,
Astronomy Reports, 61, 80,
doi: 10.1134/S1063772917010085

Takigawa, A., Kamizuka, T., Tachibana, S., & Yamamura, I. 2017, Science Advances, 3, eaao2149,
doi: 10.1126/sciadv.aao2149

Takigawa, A., Kim, T.-H., Igami, Y., et al. 2019, ApJL, 878, L7, doi: 10.3847/2041-8213/ab1f80

Van de Sande, M., Decin, L., Lombaert, R., et al. 2018, A&A, 609, A63,
doi: 10.1051/0004-6361/201731298

van Leeuwen, F. 2007, A&A, 474, 653,
doi: 10.1051/0004-6361:20078357

Vlemmings, W., Khouri, T., O’Gorman, E., et al. 2017, Nature Astronomy, 1, 848,
doi: 10.1038/s41550-017-0288-9

Vlemmings, W. H. T., Khouri, T., & Olofsson, H. 2019, A&A, 626, A81,
doi: 10.1051/0004-6361/201935329

Vlemmings, W. H. T., Khouri, T., & Tafoya, D. 2021, A&A, 654, A18,
doi: 10.1051/0004-6361/202141656

Zhao-Geisler, R., Köhler, R., Kemper, F., et al. 2015, PASP, 127, 732, doi: 10.1086/682261
APPENDIX

Table 6 lists some of the most relevant observations and analyses of the close neighbourhood of the star available in the published literature and Figure 14 displays spectral maps for $^{12}\text{CO}(3-2)$ and $^{29}\text{SiO}(8-7)$ emissions in both W Hya and R Dor. Figure 15 displays Doppler velocity spectra of the $^{12}\text{CO}(3-2)$ and $^{29}\text{SiO}(8-7)$ emissions within 150 mas projected distance from the centre of W Hya, separated in twelve sextants. Tables 7 and 8 list the parameters describing these spectra, as defined in the caption of Figure 15.
Figure 14. Spectral maps of W Hya and R Dor molecular line emissions. The first set of 5×5 maps is for the 12CO(3-2) emission of W Hya. The second and third sets are for the 29SiO(8-7) emissions of W Hya and R Dor, respectively. Each spectrum is averaged over a square aperture of 30×30 mas2 for W Hya and of 45×45 mas2 for R Dor centred at (x, y) position indicated in the inserts (in mas) of each panel. The beam (FWHM) is 52×40 mas2 for W Hya and 41×35 mas2 for R Dor. The R Dor spectra have been divided by a factor 3.1 to account for the different distances (104 pc for W Hya and 59 pc for R Dor).
Table 6. Some of the most relevant observations and analyses of the close neighbourhood of the star available in the published literature.

$R[R_\odot]$	~1	1-2	2-3	3-6
Hoai et al. (2021)				
$^{29}\text{SiO}(8-7)$	Inner quadrants (sextants)		Outer quadrants (sextants)	
$^{12}\text{CO}(3-2)$	Broad linewidth			Blue blob
Vlemmings et al. (2017)				
Continuum ALMA	Photosphere 2500 K			
	Hot spot SW			
CO $v=1$ ALMA	Warm molecular gas layer		Cool gas	
	2900 K		in-fall and outflow 900 K	
Ohnaka et al. (2017)				
VLT/SPHERE/ZIMPOL				
	Clumpy dust clouds	Polarization on dust		
	Depressed SW	Shell structure		
	Hα: shocks anti-correlated	Weaker Hα		
	with dust clouds			
	TiO emission			
VLTI/AMBER	CO lines			
Takigawa et al. (2017)				
AlO ALMA				
	Depletion AlO gas			
	Formation AlO dust			
	SW depressed			
^{29}SiO ALMA				
	Blob revealing acceleration			
	Progressive depletion			
Figure 15. Doppler velocity spectra observed in 12 sextants for the 12CO(3-2) emission (upper pair of rows) and 29SiO(8-7) emission (lower pair of rows) of W Hya. The sextants cover the projected radial ranges $0 < R < 75$ mas (upper row of each pair) and $75 < R < 150$ mas (lower row of each pair), respectively. In each row the sextants are numbered in increasing order starting from north counter-clockwise, from 1 to 6 for the inner sextants and from 7 to 12 for the outer sextants. Sextants 1 and 7 cover position angles $|\omega| < 30^\circ$. The red lines show the results of fits of the form: $f = a + b \exp\left(-\frac{1}{2}V_z^2/c^2\right) + d \exp\left[-\frac{1}{2}(V_z - e)^2/f^2\right]$. The best fit values of the parameters are listed in Tables 7 and 8.
Table 7. Parameters describing the Doppler velocity spectra observed in the CO sextants, as described in the caption of Figure 15.

Sextant	1	2	3	4	5	6	7	8	9	10	11	12
a (mJy)	74	60	82	47	35	70	0	0	−4	2	1	1
b (mJy)	110	100	120	110	120	210	230	280	190	220	130	
c	3.71	4.63	4.15	3.61	2.93	2.52	4.13	4.44	2.69	2.80	3.08	4.13
d (mJy)	170	110	120	79	69	190	220	77	70	89	210	
e	−5.23	−5.20	−5.05	−5.00	−4.89	−4.88	−5.10	−5.03	−5.43	−5.01	−4.90	−3.38
f	1.18	0.74	0.84	0.79	1.43	1.65	1.48	0.39	0.78	0.52	0.60	2.40

Table 8. Parameters describing the Doppler velocity spectra observed in the SiO sextants, as described in the caption of Figure 15.

Sextant	1	2	3	4	5	6	7	8	9	10	11	12
a (mJy)	79	66	93	52	39	76	−7	−7	1	−3	−9	−3
b (mJy)	81	76	86	112	124	109	420	430	440	420	540	510
c	4.17	4.85	4.38	3.58	3.25	3.26	4.96	4.74	3.86	3.43	3.27	3.96
d (mJy)	−110	−110	−140	−90	−74	−112	−247	−220	−200	−150	−160	−250
e	−4.93	−4.84	−4.82	−4.75	−4.76	−4.88	−4.91	−4.82	−4.59	−4.33	−4.40	−4.80
f	0.76	0.90	0.88	0.91	0.92	0.66	0.60	0.97	1.03	1.11	1.00	0.58