Learning Embeddings for Transitive Verb Disambiguation by Implicit Tensor Factorization

Kazuma Hashimoto
Yoshimasa Tsuruoka

University of Tokyo
Composition: Words \rightarrow Phrases

- Composition models
 - Word embeddings \rightarrow phrase embeddings
- Transitive verbs are good test beds
 - Interaction with their arguments is important!
 - i.e., transitive verb sense disambiguation

31/07/2015 CVSC2015 in Beijing, China
Embeddings of Transitive Verb Phrases

• Tensor-based approaches (Grefenstette et al., 2011; Van de Cruys et al., 2013; Milajevs et al., 2014)
 – Effective in transitive verb disambiguation
 – Composition functions
 • Not learned, but computed in postprocessing

• Joint learning approach (Hashimoto et al., 2014)
 – Word embeddings and composition functions
 • Jointly learned from scratch (w/o word2vec!)
 – Interaction between verbs and their arguments
 • Very weak
An Implicit Tensor Factorization Method

- Bridging the gap between tensor-based and joint learning approaches

Implicit factorization method (Levy and Goldberg, 2014)

Implicit tensor factorization (this work)

State-of-the-art result on a verb sense disambiguation task!
Today’s Agenda

1. Introduction

2. Related Work
 – Joint learning and tensor-based approaches

3. Learning Embeddings for Transitive Verb Phrases
 – The Role of Prepositional Adjuncts
 – Implicit Tensor Factorization

4. Experiments and Results

5. Summary
Approaches to Phrase Embeddings

- **Element-wise addition/multiplication** (Mitchell and Lapata, 2010)
 - $v(\text{sentence}) = \sum_i v(w_i)$

- **Recursive autoencoders**
 - Using parse trees (Socher et al., 2011; Hermann and Blunsom, 2013)
 - $v(\text{parent}) = f(v(\text{left child}), v(\text{right child}))$

- **Tensor/matrix-based methods**
 - $v(\text{adj noun}) = M(\text{adj})v(\text{noun})$ (Baroni and Zamparelli, 2010)
 - $M(\text{verb}) = \sum_{i,j} v(\text{subj}_i)^T v(\text{obj}_j)$ (Grefenstette and Sadrzadeh, 2011)
 - $M(\text{subj}, \text{verb}, \text{obj}) = \{v(\text{subj})^T v(\text{obj})\} \times M(\text{verb})$
 - $v(\text{subj}, \text{verb}, \text{obj}) = \{M(\text{verb})v(\text{obj})\} \times v(\text{subj})$ (Kartsaklis et al., 2012)
Which Word Embeddings are the Best?

- Co-occurrence matrix + SVD, NMF, etc.
- C&W (Collobert and Weston, 2011)
- RNNLM (Mikolov et al., 2013)
- SkipGram/CБOW (Mikolov et al., 2013)
- vLBL/ivLBL (Mnih and Kavukcuoglu, 2013)
- Dependency-based SkipGram (Levy and Goldberg, 2014)
- Glove (Pennington et al., 2014)

Which word embeddings should we use for which composition methods?

Joint leaning
Co-Occurrence Statistics of Phrases

- Word co-occurrence statistics \rightarrow word embeddings
- How about phrase embeddings?
 - Phrase co-occurrence statistics!

The importer **made payment** in his own domestic currency

The businessman **pays his monthly fee** in yen

Similar contexts

Similar meanings?
Today’s Agenda

1. Introduction
2. Related Work
 – Joint learning and tensor-based approaches
3. Learning Embeddings for Transitive Verb Phrases
 – The Role of Prepositional Adjuncts
 – Implicit Tensor Factorization
4. Experiments and Results
5. Summary
How to Identify Phrase-Word Relations?

- Using predicate-argument structures (Hashimoto et al., 2014)
 - *Enju* parser (Miyao et al., 2008)
 - Analyzes relations between phrases and words

```
The importer made payment in his own domestic currency
```

```markdown
Arguments

NP

The importer
made
payment

Verb

Prepositions

Prepositions

Adjunct
```
Training Data from Large Corpora

• Focusing on the role of **prepositional adjuncts**
 – Prepositional adjuncts **complement meanings** of verb phrases → should be useful

How to model the relationships between predicates and arguments?

Parse

English Wikipedia, BNC, etc.

Simplification

31/07/2015 CVSC2015 in Beijing, China
Today’s Agenda

1. Introduction
2. Related Work
 - Joint learning and tensor-based approaches
3. Learning Embeddings for Transitive Verb Phrases
 - The Role of Prepositional Adjuncts
 - Implicit Tensor Factorization
4. Experiments and Results
5. Summary
Tensor-Based Approaches

- Tensor/matrix-based approaches (Noun: vector)
 - Transitive verb: matrix

\[\text{PMI}((\text{importer, make, payment}) = 0.31 \]

(Grefenstette and Sadrzadeh, 2011; Van de Cruys et al., 2013)
Implicit Tensor Factorization (1)

- Parameterizing
 - **Predicate matrices** and argument embeddings
 - Similar to an implicit matrix factorization method for learning word embeddings (Levy and Goldberg, 2014)
Implicit Tensor Factorization (2)

- Calculating plausibility scores
 - Using predicate matrices & argument embeddings

\[T(p, a_1, a_2) = \]
Implicit Tensor Factorization (3)

- Learning model parameters
 - Using plausibility judgment task
- Observed tuple: \((p, a_1, a_2)\)
- Collapsed tuples: \((p', a_1, a_2), (p, a_1', a_2), (p, a_1, a_2')\)
 - Negative sampling (Mikolov et al., 2013)

Cost function

\[
\begin{align*}
\text{Larger} & \quad - \log \sigma(T(p, a_1, a_2)) - \log(1 - \sigma(T(p', a_1, a_2))) \\
\text{Smaller} & \quad - \log(1 - \sigma(T(p, a_1', a_2))) - \log(1 - \sigma(T(p, a_1, a_2')))
\end{align*}
\]
Example

- Discriminating between observed and collapsed ones

\[
(p, a_1, a_2) = (\text{in}, \text{importer make payment}, \text{currency})
\]
\[
(p', a_1, a_2) = (\text{on}, \text{importer make payment}, \text{currency})
\]
\[
(p, a_1', a_2) = (\text{in}, \text{child eat pizza}, \text{currency})
\]
\[
(p, a_1, a_2') = (\text{in}, \text{importer make payment}, \text{furniture})
\]
How to Compute SVO Embeddings?

- Two methods:
 - (a) assigning a vector to each SVO tuple
 - (b) composing SVO embeddings

- Parameterized matrices
- Parameterized vectors
- Composed vectors

[Kartsaklis et al., 2012]
Today’s Agenda

1. Introduction
2. Related Work
 – Joint learning and tensor-based approaches
3. Learning Embeddings for Transitive Verb Phrases
 – The Role of Prepositional Adjuncts
 – Implicit Tensor Factorization
4. Experiments and Results
5. Summary
Experimental Settings

- Training corpus (English Wikipedia)
 - SVO data: 23.6 million instances
 - SVO-preposition-noun data: 17.3 million instances
- Parameter initialization
 - Random values
- Optimization
 - Mini-batch *AdaGrad* (Duchi et al., 2011)
- Embedding dimensionality
 - 50

How do we tune the parameters?
For more details, please come to see the poster session!
Examples of Learned SVO Embeddings

- Composing SVO embeddings

	Nearest neighbor verb-object phrases
make money	make cash, make dollar, make profit, earn baht, earn pound, earn billion
make payment	make loan, make repayment, pay fine, pay amount, pay surcharge, pay reimbursement
make use (of)	use number, use concept, use approach, use method, use model, use one

Capturing the changes of the meaning of “make”
The learned verb matrices capture multiple meanings:

verb	nearest neighbors
run	
27th	operate, execute, insert, hold, grid, produce, add, assume, manage, render
col.	
34th	release, operate, create, override, govern, oversee, distribute, host, organize
row	
all	operate, start, manage, own, launch, continue, establish, open, maintain
encode	
28th	denature, transfect, phosphorylate, polymerize, subtend, acid
row	
39th	format, store, decode, embed, concatenate, encrypt, memorize
row	
all	concatenate, permute, phosphorylate, quantize, composite, transfect, transduce
Verb Sense Disambiguation Task

- Measuring semantic similarities of verb pairs taking the same subjects and objects \((\text{Grefenstette and Sadrzadeh, 2011})\)
 - Evaluation: Speaman’s rank correlation between similarity scores and human ratings

Verb pair with subj&obj	Human rating
student **write** name	7
student **spell** name	
child **show** sign	6
child **express** sign	
system **meet** criterion	
system **visit** criterion	
Results

- State-of-the-art results on the disambiguation task
 - Prepositional adjuncts improve the results

Method	Spearman’s rank correlation score
This work (only verb data)	0.480
This work (verb and preposition data)	0.614
Tensor-based approach (Milajevs et al., 2014)	0.456
Joint learning approach (Hashimoto et al., 2014)	0.422

For more details, please come to see the poster session!
Today’s Agenda

1. Introduction
2. Related Work
 – Joint learning and tensor-based approaches
3. Learning Embeddings for Transitive Verb Phrases
 – The Role of Prepositional Adjuncts
 – Implicit Tensor Factorization
4. Experiments and Results
5. Summary
Summary

• Word and phrase embeddings are jointly learned using large corpora parsed by syntactic parsers
 – Tensor-based method is suitable for verb sense disambiguation
 – Adjuncts are useful in learning verb phrases

• Future directions:
 – improving the embedding methods
 – applying them to real-world NLP applications
 • What kind of information should be captured?