Folkestad, Å., Akiba, K., Beuzekom, M. V., Buchanan, E., Collins, P., Dall’Occo, E., ... Williams, M. (2017). Development of a silicon bulk radiation damage model for Sentaurus TCAD. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 874, 94-102. https://doi.org/10.1016/j.nima.2017.08.042

Publisher's PDF, also known as Version of record

License (if available): CC BY

Link to published version (if available): 10.1016/j.nima.2017.08.042

Link to publication record in Explore Bristol Research

PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at http://dx.doi.org/10.1016/j.nima.2017.08.042. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Development of a silicon bulk radiation damage model for Sentaurus TCAD

Å. Folkestad a,*, K. Akiba b, M. van Beuzekom c, E. Buchanan e, P. Collins a, E. Dall’Occo c, A. Di Canto a, T. Evans d, V. Franco Lima f, J. García Pardiñas g, H. Schindler a, M. Vicente b, M. Vieites Diaz g, M. Williams a

a European Organisation for Nuclear Research (CERN), Geneva, Switzerland
b Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
c Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
d Department of Physics, University of Oxford, Oxford, United Kingdom
e H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
f Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
g Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain

ARTICLE INFO

Keywords:
Silicon sensor
Silicon pixel detector
Radiation damage
TCAD
Device simulation

ABSTRACT

This article presents a new bulk radiation damage model for p-type silicon for use in Synopsys Sentaurus TCAD. The model is shown to provide agreement between experiment and simulation for the voltage dependence of the leakage current and the charge collection efficiency, for fluences up to \(8 \times 10^{15} \text{ MeV}_n \text{eq/cm}^2\). © 2017 CERN for the benefit of the Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In particle physics experiments, silicon detectors are often operated in harsh radiation environments, and understanding the impact of radiation damage on the detector performance is key to their successful operation. Device simulations using Technology Computer Aided Design (TCAD) software packages are useful tools for investigating the effects of radiation damage, in particular for linking macroscopic observables to what is happening on small scales inside the sensor bulk.

In the following a radiation damage model for p-type silicon, implemented in Synopsys Sentaurus Device TCAD, is presented. The model has been developed in the context of the R&D programme for the upgraded LHCb Vertex Locator (VELO), which will be installed in the LHCb experiment at CERN in 2019/2020 [1]. The model aims to reproduce charge collection efficiencies (CCE) and current–voltage (I–V) curves up to a fluence \(\Phi\) of \(8 \times 10^{15} \text{ MeV}_n \text{eq/cm}^2\), the expected maximum fluence after an integrated luminosity of 50 fb^{-1}. The model is validated using measurements on irradiated n-on-p pixel sensors from Hamamatsu Photonics K.K. [3]. These sensors have a thickness of 200 \(\mu\)m and a pixel cell size of 55 \(\times\) 55 \(\mu\)m^2, and feature p-stop isolation between pixels.

Radiation damage models for Synopsys Sentaurus TCAD, of varying scope, have been developed in the past by different groups [2–6]. Differences between the present model and other models with similar range of validity in terms of fluence, in particular the Perugia model [3], are discussed in Section 2.4.

2. Simulations

The Sentaurus Device program allows for solving the Poisson and carrier continuity equations on two-dimensional (2D) and three-dimensional (3D) discretised semiconductor structures using finite element methods. In this work, two types of simulations were performed:

- steady-state simulations, where leakage current and electric field as function of voltage were simulated by solving the stationary Poisson and charge transport equations,
- transient simulations, where the time dependent Poisson and charge transport equations are solved for a given initial charge distribution.
the resulting leakage currents were then scaled to match the periodicity of the pixel matrix. For simulating the bulk leakage current and CCE, order of magnitude estimates were used. The doping profile is visualised in Fig. 1 and the main parameters of the doping profile, which are less critical for simulating bulk leakage current and CCE, order of magnitude estimates were used. The doping profile is visualised in Fig. 1 and the main parameters are listed in Table 1.

Table 1
Physical and meshing parameters used in the simulations. N_p and N_n are concentrations of phosphorus and boron, respectively.

Parameter	Value
Bulk doping concentration	$4.7 \times 10^{12} \text{ cm}^{-3}$
Implant doping profile	Gaussian
Implant width	$39 \mu\text{m}$
Implant peak concentration	$1 \times 10^{19} \text{ cm}^{-3}$
Implant depth (distance at which $N_p = 1 \times 10^{17} \text{ cm}^{-3}$)	$2.4 \mu\text{m}$
ρ-stop profile	Gaussian
ρ-stop peak concentration	$1 \times 10^{19} \text{ cm}^{-3}$
ρ-stop depth (distance at which $N_p = 1 \times 10^{17} \text{ cm}^{-3}$)	$1.5 \mu\text{m}$
Oxide thickness	500 nm
Minimum triangle dimension	$0.2 \mu\text{m}$
Maximum triangle dimension	$5 \mu\text{m}$
Number of grid points (2D, stationary)	≈ 4000
Number of mesh elements (2D, stationary)	≈ 7500
Number of grid points (2D, transient simulation)	≈ 29000
Number of mesh elements (2D, transient simulation)	≈ 57000
Number of grid points (3D, transient simulation)	≈ 500000
Number of mesh elements (3D, transient simulation)	$\approx 3 \times 10^6$

2.1. Geometry

2.1.1. Doping profile

The sensors simulated in this work consist of a boron-doped bulk in (100) orientation with phosphorus-doped $39 \mu\text{m}$ wide pixel implants and ρ-stop regions (with a higher concentration of boron) between the implants. A layer of SiO$_2$ is placed on top of the bulk, and a positive surface charge with a density of $1 \times 10^{12} \text{cm}^{-2}$ is applied on the Si–SiO$_2$ interfaces. Measurements reported in the literature show that the oxide charge saturates at around this value [7]. The doping profile is not known in detail from the manufacturer. The bulk doping concentration used in the simulation was tuned to reproduce the depletion voltage of the sensors to which the simulations are compared, $V_{FD} = 140 \text{V}$. For the other parameters of the doping profile, which are less critical for simulating bulk leakage current and CCE, order of magnitude estimates were used. The doping profile is visualised in Fig. 1 and the main parameters are listed in Table 1.

2.1.2. Meshing

The number of grid points was chosen as a compromise between computing time and precision. Finer meshes were tried in several cases without significant changes in the results. Table 1 lists the number of mesh points.

2.1.3. Symmetries and boundary conditions

Boundary conditions are imposed on the electrode-silicon and electrode-oxide interfaces, whereas Neumann boundary conditions are applied at all other mesh boundaries.

A stationary solution of the Poisson and drift-diffusion equations will reflect the periodicity of the pixel matrix. For simulating the bulk leakage current, it is therefore sufficient to simulate a single pixel and scale the result to the active area of the sensor. In order to simulate the leakage current of a sensor after exposure to the non-uniform irradiation profile discussed in Section 3.2, separate simulations were performed for every fluence level; the resulting leakage currents were then scaled to match the surface area that had been exposed to the respective fluence, and the I-V curves of all regions were summed.

2.2. Primary ionisation

The ionisation pattern produced by a charged particle crossing the detector is modelled in terms of a cylindrically symmetric, continuous...
charge distribution with a constant density (80 electron–hole pairs per μm) along the direction of the track, and a Gaussian distribution (1 μm standard deviation) in the transverse direction. The collected charge is given by the integrated current (after subtracting the leakage current) and the standard deviation in the transverse direction. The collected charge is simply the fluence, while for non-uniform profiles it corresponds to the fluence in the area 0 mm < y < 5 mm.

Only perpendicular tracks passing through the pixel centre were simulated in both 2D and 3D. For tracks passing through the inter-pixel region, the charge collection properties are more sensitive to the modelling of surface damage, which is outside the scope of this work.

2.3. Physics models

In this work, the drift-diffusion model has been used, which implies that the temperature of the whole device remains constant. The continuity equations contain one source term for every defect level, and an additional source term for avalanche generation. The defect source terms are given by the Shockley–Read–Hall generation–recombination expression [8,9]. Sentaurus TCAD allows for the use of neutral trap levels for current generation, but these have not been used. Other physics models taken into account include Fermi-statistics, avalanche multiplication (Van Overstraeten–De Man model [10]), band gap narrowing (Slotboom model [11]), high field mobility saturation and trap assisted tunnelling (Hurkx model [12]). Detailed descriptions of these models can be found in the Sentaurus Device User Guide [13] and the references therein.

2.4. Radiation damage modelling

Developing a TCAD radiation damage model consists in defining a set of defect states, characterised by their location (energy level) in the band gap, electron and hole capture cross-sections (σ_e, σ_h), concentration and type (i.e. whether they are a donor or an acceptor). In theory, one could implement all defect levels that have been measured experimentally, but this approach is at present computationally prohibitive. Alternatively, one can define a few effective defect states and tune their parameters so that the model reproduces experimental observations. In this work the latter approach is used.

The two energy levels (defects 1 and 2 in Table 2) proposed by Eremin et al. [14] were used as a starting point. These levels, sometimes called the EVL levels, comprise one donor and one acceptor and are known to reproduce the double junction electric field effect [14–16]. Eremin has further shown that agreement with measured I–V curves, and to some extent CCE (up to 1 × 10^15 1 MeV n_{eq}/cm^2), can be achieved by using only these two energy levels [5]. These levels have also been combined with surface defects to model surface effects by Peltola et al. [6].

In addition to the EVL levels, a third defect was introduced. The procedure used to tune these three defects is outlined below.

- The defect state concentrations are assumed to scale linearly with 1 MeV neutron equivalent fluence with a proportionality factor (introduction rate) η.
- One of the irradiated sensors (assembly S4 in Table 3, uniformly irradiated to a fluence of 4 × 10^15 1 MeV n_{eq}/cm^2), was selected as a reference.
- The cross-sections and introduction rates of the two EVL levels were tuned to reproduce the measured I–V curve of the reference sensor.
- A second acceptor close to the conduction band, corresponding roughly to the position of the A-centre defect state [17], was then introduced. This “shallow” acceptor (only 0.2 eV from E_c) has only a minor influence on the current generation and surface charge, so that it allows for tuning the CCE independently of the behaviour of the I–V curves.
- The parameters of the second acceptor (defect 3 in Table 2) were tuned so that at one given voltage the simulated CCE agrees with the measured CCE of the reference sensor. Varying the hole capture cross-section σ_h within reasonable limits has a negligible effect on the CCE since the probability of hole capture is already very low due to the large distance from the valence band. To limit the number of degrees of freedom when scanning the parameter space, σ_h was chosen to have the same value as the electron capture cross-section σ_e. In addition, as a check, a least square fit of the simulated CCE curve with respect to the measured CCE curve of the reference sensor was performed using the introduction rate of the shallow acceptor as a fit parameter. In doing this, the introduction rate came out only 2% higher than with the method of tuning at one voltage.

Table 2 summarises the parameters of the model used in this work. The cross-sections of the deep defects can be seen to be larger than the values used by Eremin et al. [14] (1 × 10^{-13} cm^2).

The most recent Perugia model [3] aims to be valid up to fluences of 2 × 10^{16} 1 MeV n_{eq}/cm^2 and is a natural basis for comparison. Both the model presented here and the Perugia model contain three bulk defect levels and are tuned for p-type silicon. The model used in this paper differs from the Perugia model in that it aims only to reproduce bulk effects, while the Perugia model also includes surface effects. Furthermore, our proposed model is compared to different types of measurements, namely the voltage dependence of both the current and charge collection efficiency. It is furthermore based on the trap levels from the EVL-model that are also used by Eber and CMS, which differs from the traps used in the Perugia model. Both models use two acceptors and one donor, but their parameters are different. While the Perugia model contains two deep acceptors, our model contains one shallow and one deep acceptor.

2.5. Sensitivity analysis

The parameters of the “deep” defects (i.e. the traps with energy levels close to the middle of the band gap) are highly correlated and the effects of different trap states are not simply additive. In order to estimate the sensitivity of the CCE and I–V curves to uncertainties in the
(a) Deep donor (DD), defect 1.

(b) Deep acceptor (DA), defect 2.

Fig. 3. Simulated I-V curves with parameter deviations from the baseline model. The curve with higher current at −1000 V corresponds to higher σ (or η).

model parameters, it is nevertheless instructive to scan an individual parameter while keeping the others at their nominal values. Fig. 3 shows the effect of varying the cross-sections and introduction rates of the deep traps on the IV curves (at $T = -31 \, ^\circ C$ and $4 \times 10^{15} \, 1 \, \text{MeV} \, n_{eq}/\text{cm}^2$). Most of the deep level parameters can be seen to have a significant effect on the current when they are changed by ±20%. The shallow trap does not have a significant effect on the current and is not shown.

As can be seen from Figs. 4 and 5, which shows the effect of varying the trap level parameters on the charge collection efficiency, σ_{DA} and σ_{SA} are particularly important for the CCE. It is clear from Fig. 5 that changing σ_{SA} and σ_{SA} approximately causes an offset in the CCE curve. Changing σ_b has no effect and was set equal to σ_{SA} in the tuning procedure.

3. Measurements

3.1. Measured sensors

All measurements reported in this work were carried out with 200 μm thick n-on-p sensors, bump-bonded to Timepix3 readout ASICs [18]. Two types of sensors were tested:

- sensors with 256×256 pixels (“singles”), covering one Timepix3 ASIC, and
- sensors with $3 \times 256 \times 256$ pixels (“triples”), covering a row of three Timepix3 ASICs.

3.2. Irradiations

Both sensors irradiated with neutrons and sensors irradiated with protons have been used in this work. Proton-irradiated sensors were irradiated at the KIT cyclotron4 with ~23 MeV protons. Most of the

4 https://www.ekp.kit.edu/english/264.php,
proton-irradiated sensors were exposed to a non-uniform, piece-wise constant fluence profile intended to mimic the profile expected in the upgraded Velo. The fluence increases in seven steps up to either 4×10^{15} or 8×10^{15} MeV\cdotnm$^{-2}$, depending on the sample. The uncertainty in the fluence calibration is estimated to be $\pm 20\%$ [19]. Fig. 6 shows the profile for a sensor with a maximum fluence of 4×10^{15} MeV\cdotnm$^{-2}$, all values are doubled.

The neutron irradiated sensor were irradiated at JSI Ljubljana to a uniform fluence of 8×10^{15} MeV\cdotnm$^{-2}$. The uncertainty in the fluence has been estimated to be $\pm 10\%$ [20].

The annealing times of the proton sensors are estimated to between one and two days in room temperature, while the neutron sensor is estimated to have annealed about five days in room temperature.

A list of tested sensor assemblies and their irradiation profiles is shown in Table 3.

3.3. Leakage current measurements

The laboratory setup used for measuring the I-V curves comprises a vacuum tank where the sensors were mounted on a Peltier-cooled copper support plate. The heat generated by the Peltier cooler was removed using a chiller circulating a water/glycol fluid underneath the hot side of the Peltier. The temperature was monitored by a PT100 sensor glued on the copper block. In order to determine a relation between the temperature of the copper block and the temperature of the silicon itself, a PT100 was glued on top of a test sensor. A linear relationship between sensor temperature and copper temperature was found, with the temperature difference increasing towards lower temperatures.

3.4. Charge collection efficiency measurements

The CCE was measured in test beams at the H8 secondary beam line of the CERN Super Proton Synchrotron (SPS), using a beam of charged hadrons with a momentum of 180 GeV/c. The device under test was placed in the centre of the Timepix3 telescope and oriented perpendicularly with respect to the beam. In order to be able to compare the measured charge collection efficiency with the simulated scenario discussed in Section 2.2, only clusters associated to telescope tracks passing through a window of $\pm 5\mu$m around the pixel centre were used in the analysis. In addition, the arrival time of the clusters was required to be within $\pm 200\text{ns}$ of the time of the corresponding telescope track.

To convert the time-over-threshold (ToT) measurements provided by the Timepix3 ASIC to collected charge, calibration curves obtained from testpulses was used. These curves were determined for each pixel by injecting delta pulses of known amplitude 100 times into the ASIC front-end, and fitting the average ToT as a function of the injected charge q to a function

$$\text{ToT}(q) = p_0 + p_1 q - \frac{c}{q - t},$$

where p_0, p_1, c, t are fit parameters. A typical example of a ToT calibration curve for a single pixel is shown in Fig. 7. The uncertainty in the testpulse calibration constitutes the dominating contribution to the systematic error of the charge collection measurements. The error was determined by comparing the testpulse calibration curves to calibration measurements using a 241Am source [21], and was found to be $\lesssim 5\%$.

The most probable value (MPV) of the collected charge was found by fitting the charge spectrum with a Landau distribution convoluted with a Gaussian. One of the sensors discussed in this work (assembly S6 in Table 3) was characterised in beam tests before and after irradiation, and the pre-irradiation MPV at overdepletion, $15.8 \times 10^3 e^-$, was used for normalising the CCE of all irradiated sensors.

4. Results

4.1. Leakage current

The simulated I-V curves presented below were obtained using a 2D geometry, as the results from 2D and 3D simulations were found to be virtually identical.
The measured I-V curve used for tuning the model ($\Phi = 4 \times 10^{15}$ 1 MeV n$_{eq}$/cm2, $T = -31.1^\circ$C) is shown in Fig. 8, together with the simulated I-V curve. Simulation and experiment agree (except at low bias voltage), which is expected since this curve was used for tuning the model. Fig. 9 compares predicted I-V curves at $\Phi = 8 \times 10^{15}$ 1 MeV n$_{eq}$/cm2 with measurements from a neutron-irradiated sensor, at two different temperatures. The simulated curves show more structure above ~ 200 V than the measured ones, but the magnitudes of the current and the approximate slopes are in agreement. The level of agreement is better at -31.8°C (which is approximately where the model was tuned) than at -37.9°C, where the simulated current at 1000 V bias is \sim25% lower than the measured one.

Fig. 10 compares measurements and predictions for non-uniformly irradiated sensors, at temperatures $\sim 6 - 7^\circ$C lower than the temperature at which the model was tuned. The measurements for the three sensors with a maximum fluence of 4×10^{15} 1 MeV n$_{eq}$/cm2 agree with simulation. For the sensor irradiated to a maximum fluence of 8×10^{15} 1 MeV n$_{eq}$/cm2, the simulated curve exhibits some features that are not present in the measurement, but the order of magnitude of the current is reproduced. The breakdown visible in the measured I-V curves

Fig. 8. Measured and simulated I-V curves (at $T = -31.1^\circ$C) for a sensor after uniform proton irradiation to $\Phi = 4 \times 10^{15}$ 1 MeV n$_{eq}$/cm2. The dashed lines represent simulation results with the fluence at the upper and lower bound of the estimated uncertainty.

Fig. 9. Measured and simulated I-V curves at two different temperatures for a sensor after uniform neutron irradiation to $\Phi = 8 \times 10^{15}$ 1 MeV n$_{eq}$/cm2. The dashed lines show simulation results with the fluence at the upper and lower bound of the fluence uncertainty.

Fig. 10. Measured and simulated I-V curves for non-uniformly irradiated sensors in vacuum. The dashed lines show simulation result with the fluence at the upper and lower bound of the uncertainty.
is not expected to be reproduced since surface damage and edge effects were not included in the simulation.

As can be seen from Fig. 11, the simulated I-V curve shows a transition from saturating to non-saturating behaviour as the fluence increases. For the I-V curves that do exhibit saturating behaviour, the damage parameter

\[a = \frac{\Delta I}{\Delta V} \]

can be calculated, where \(\Delta I = I(\Phi) - I(\Phi = 0) \) is the increase in leakage current after irradiation and \(V \) is the depleted volume (which is identical to the physical bulk volume in the low-fluence regime). Fig. 12 shows the simulated saturation current per volume as a function of fluence at \(-1000\, \text{V}\) (scaled to \(21^\circ\, \text{C}\)).

\[I(\Phi) = \frac{T_2}{T_1} \exp \left(\frac{E_{g,\text{eff}}}{2k_B} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \right) \]

where \(E_{g,\text{eff}} = 1.214\, \text{eV} \) [23] is the effective band gap after irradiation and \(k_B \) is the Boltzmann constant. The damage parameter at \(21^\circ\, \text{C}\) is found to be \(a_{\text{sim}} = (4.329 \pm 0.001) \times 10^{-17} \, \text{A} \, \text{cm}^{-2} \). Literature values for \(a \) at \(21^\circ\, \text{C}\) after 0.3 and ten days of annealing at room temperature are \((6.40 \pm 0.43) \times 10^{-17} \, \text{A} \, \text{cm}^{-2}\) and \((4.32 \pm 0.29) \times 10^{-17} \, \text{A} \, \text{cm}^{-2}\), respectively [24]. The damage parameter predicted by the model can thus be considered in agreement with what is expected for a sensor after around ten days of annealing at room-temperature.

4.2. Collected charge

Fig. 13 shows that for estimating the collected charge at \(\Phi = 4 \times 10^{15} \, 1\, \text{MeV} \, \text{n}_\text{eq}/\text{cm}^2 \) a 2D strip-like model represents a close approximation of the full 3D pixel geometry, given that one is considering a particle passing through the centre of a pixel. The deviation is largest at \(400\, \text{V}\) where \(\sim 380\) more electrons are collected in 2D, while the average deviation is \(\sim 260\, \text{e}^-\). The 2D model can be seen to consistently collect more charge, which may be attributed to the fact that fewer neighbouring pixels are included in the 3D model. It is generally seen that including nearest and next to nearest neighbours in 2D will cause an increase in collected charge on the central pixel and thus the CCE. In 3D, the neighbouring pixels are only partly included, and next to nearest neighbours are not included at all.

The measured charge collection efficiency for the reference sensor (\(\Phi = 4 \times 10^{15} \, 1\, \text{MeV} \, \text{n}_\text{eq}/\text{cm}^2 \)) used for tuning the model is shown in Fig. 14(a) together with the simulated CCE (at \(T = 32.1^\circ\, \text{C}\)). As discussed in Section 2.4, only one CCE measurement (the point at \(700\, \text{V}\) bias) was used for tuning the model; the voltage dependence is predicted by the model and is found to be in agreement with the data.

Fig. 14(b) shows simulated and measured CCE as a function of bias voltage at a fluence of \(8 \times 10^{15} \, 1\, \text{MeV} \, \text{n}_\text{eq}/\text{cm}^2\). The measured CCE is close to the upper end of the fluence error band of the simulation (i.e. the simulated CCE for a fluence at the lower bound of the estimated uncertainty). It should be noted that in Fig. 14(a), the simulated CCE is compared to a proton-irradiated sensor, whereas at \(8 \times 10^{15} \, 1\, \text{MeV} \, \text{n}_\text{eq}/\text{cm}^2\) it is compared to a neutron-irradiated sensor.

The temperature of the sensors in test beam was known to within \(\pm 3^\circ\, \text{C}\), and the variation in the simulated CCE resulting from varying the temperature within this range was factored into the simulation error bars. At \(4 \times 10^{15} \, 1\, \text{MeV} \, \text{n}_\text{eq}/\text{cm}^2\), the contribution of the temperature uncertainty to the error bars is negligible, while at \(8 \times 10^{15} \, 1\, \text{MeV} \, \text{n}_\text{eq}/\text{cm}^2\) it becomes significant at bias voltages > \(500\, \text{V}\). In other words, the temperature dependence of the simulated CCE increases with increasing fluence and bias voltage. An explanation for this observation is given in Section 5.

5. Discussion

Fig. 15 shows the absolute value of the electric field in the pixel centre as a function of the depth in the sensor for fluences between \(1 \times 10^{15} \, 1\, \text{MeV} \, \text{n}_\text{eq}/\text{cm}^2\) and \(8 \times 10^{15} \, 1\, \text{MeV} \, \text{n}_\text{eq}/\text{cm}^2\). Comparing Figs. 11 and 15, one can see that the double junction develops in the same fluence range where the leakage current exhibits a transition from saturating to non-saturating behaviour. As can be seen from Fig. 15, at the fluence levels characterised by a double junction field, there are regions in the sensor where the electric field exceeds \(1 \times 10^5 \, \text{V} \, \text{cm}^{-2}\), which is the order of magnitude at which avalanche multiplication starts.
to occur [22]. As the bias voltage increases, the regions with a field high enough to cause significant impact ionisation extend further into the device, and the overall field strength increases; and consequently the current caused by avalanche generation will increase. This is shown in Fig. 16(a). Fig. 16(b) shows a comparison of simulations with and without avalanche generation, confirming that the non-saturating behaviour of the I-V curve is caused by avalanche generation.

Avalanche multiplication also explains why the temperature sensitivity of the charge collection efficiency increases with fluence and bias voltage, as the avalanche generation rate is temperature dependent. If charge multiplication is turned off in the simulation, the error bars due to the uncertainty in temperature are reduced by a factor of two.

6. Conclusions

The proposed radiation damage model for Sentaurus TCAD is able to reproduce the I-V curves of p-type silicon sensors up to a fluence of 8×10^{15} 1 MeV n_{eq}/cm^2. The model has been tested for temperatures between -38 °C and -31 °C on a range of sensors with different irradiation types and profiles. The model captures the transition from a linear electric field and saturating I-V curve to a double junction electric field and a non-saturating I-V curve. The latter is shown to be a consequence of avalanche generation in the high-field regions of the double junction profile.

Furthermore, it is shown that a two-dimensional approximation of a pixel detector for CCE simulations is acceptable if the simulated particle passes close to the centre of the pixel. The CCE calculated using the proposed model is in agreement (within the estimated range of uncertainty) with experimental data at fluences of 4×10^{15} 1 MeV n_{eq}/cm^2 and 8×10^{15} 1 MeV n_{eq}/cm^2.

It is the hope of the authors that the proposed model contributes towards obtaining a comprehensive TCAD model of radiation damage in silicon sensors. It seems clear that avalanche multiplication becomes increasingly important at high fluences, and that it must be carefully included in order to obtain a complete model.

Acknowledgements

We extend our thanks to Mathieu Benoit for helpful discussions about TCAD, and Joern Schwandt for useful discussions on doping profiles. We are grateful to Raphael Dumps, Jan Buytaert and the entire VELO upgrade crew for their efforts in the test beam and laboratory.
This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

References

[1] LHCb Collaboration. LHCb VELO Upgrade Technical Design Report. CERN-LHCC-2013-021. LHCB-TDR-013, (Nov 2013). URL https://cds.cern.ch/record/1624070.

[2] M. Petasecca, F. Moscatelli, D. Passeri, G.U. Pignatel, Numerical simulation of radiation damage effects in p-Type and n-Type FZ silicon detectors, IEEE Trans. Nucl. Sci. 53 (5) (2006) 2971–2976. http://dx.doi.org/10.1109/TNS.2006.881910.

[3] T. Peltola, A. Bhardwaj, R. Dalal, R. Eber, T. Eichhorn, K. Lalwani, A. Messineo, M. Printz, K. Ranjan, A method to simulate the observed surface properties of proton irradiated silicon strip sensors, J. Instrum. 10 (04) (2015) C04025–C04025. http://dx.doi.org/10.1088/1748-0221/10/04/C04025.

[4] V. Cindro, Transnational access to TRIGA Mark III reactor at Jof Stefan Institute, Ljubljana, (December 2014). URL https://indico.cern.ch/event/342026/contributions/2103519/attachments/1080676/1541436/Irradiations_Ka.pdf.

[5] A. Dierlamm, Irradiations in Karlruhe, (December 2014). URL http://indico.cern.ch/event/866262/contributions/2103519/attachments/1080676/1541436/Irradiations_Ka.pdf.

[6] G. Lutz, Semiconductor radiation detectors, in: Device Physics Science, Springer, 1999, pp. 1–353.

[7] W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons, Phys. Rev. 87 (1952) 835.

[8] R.V. Overstraeten, H.D. Man, Measurement of the ionization rates in diffused silicon p-n junctions, Solid-State Electron. 13 (5) (1970) 583–608. http://dx.doi.org/10.1016/0038-1101(70)90139-5. URL http://www.sciencedirect.com/science/article/pii/0038110170901395.

[9] R.N. Hall, Electron-hole recombination in Germanium, Phys. Rev. 87 (1952) 397.

[10] R.V. Overstraeten, H.D. Man, Measurement of the ionization rates in diffused silicon p-n junctions, Solid-State Electron. 13 (5) (1970) 583–608. http://dx.doi.org/10.1016/0038-1101(70)90139-5. URL http://www.sciencedirect.com/science/article/pii/0038110170901395.

[11] J. Slotboom, H. de Graaff, Measurements of bandgap narrowing in Si Bipolar transistors, Solid-State Electron. 19 (1976) 857.

[12] G.A.M. Hurkx, D.B.M. Klaassen, M.P.G. Knovers, A new recombination model for device simulation including tunneling, IEEE Trans. Electron Devices 39 (1992) 331.

[13] Sentaurus Device User Guide, J-2014.96. Synopsys, 2014.

[14] V. Eremin, Z. Li, S. Roe, G. Ruggiero, E. Verbitskaya, Double peak electric field distortion in heavily irradiated silicon strip detectors, Nucl. Instrum. Methods A 535 (3) (2004) 622–631. http://dx.doi.org/10.1016/j.nima.2004.06.143. URL http://www.sciencedirect.com/science/.../piii/0168900204014627.

[15] V. Eremin, E. Verbitskaya, Z. Li, The origin of double peak electric field distribution in heavily irradiated silicon detectors, Nucl. Instrum. Methods Phys. Res. Sect. A 476 (3) (2002) 556–564. http://dx.doi.org/10.1016/S0168-9002(01)01642-4. URL http://www.sciencedirect.com/science/article/pii/S0168900201016424.

[16] V. Eremin, Z. Li, I. Iljashenko, Trapping induced Neff and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors, Nucl. Instrum. Methods A 260 (1–2) (1995) 458–462. http://dx.doi.org/10.1016/0168-9002(95)00112-3. URL http://linkinghub.elsevier.com/retrieve/pii/0168900295001123.

[17] G. Lutz, Semiconductor radiation detectors, in: Device Physics Science, Springer, 1999, pp. 1–353.

[18] T. Poikela, J. Plosila, T. Westerlund, M. Campbell, M.D. Gaspari, X. Llopart, V. Cindro, Transnational access to TRIGA Mark III reactor at Jof Stefan Institute, Ljubljana, (December 2014). URL https://indico.cern.ch/event/342026/contributions/2103519/attachments/1080676/1541436/Irradiations_Ka.pdf.

[19] A. Dierlamm, Irradiations in Karlruhe, (December 2014). URL http://indi...