Elsevier has created a Monkeypox Information Center in response to the declared public health emergency of international concern, with free information in English on the monkeypox virus. The Monkeypox Information Center is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its monkeypox related research that is available on the Monkeypox Information Center - including this research content - immediately available in publicly funded repositories, with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the Monkeypox Information Center remains active.
Research paper

Traditional medicinal plants used for treating emerging and re-emerging viral diseases in northern Nigeria

Ibrahim Babangida Abubakar a,*, Sulaiman Sani Kankara b, Ibrahim Malami c, Jamilu Bala Danjuma d, Yusuf Zaharadeen Muhammad e, Hafsat Yahaya c, Dharmendra Singh f, Umar Jaji Usman a, Angela Nnenna Ukwuani-Kwaja a, Aliyu Muhammad g, Sanusi Jega Ahmed a, Sulaimon Olayiwola Folami a, Mansurat Bolanle Falana e, Quadri Olaide Nurudeen e

a Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
b Department of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University, PMB 2218 Katsina State, Nigeria
c Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usman Danfodio University Sokoto, Nigeria
d Department of Biochemistry, Faculty of Science, Federal University Birnin Kebbi, Kebbi State, Nigeria
e Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
f Department of Plant Science and Biotechnology, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
g Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, B10271, Nigeria

ARTICLE INFO

Keywords: Medicinal plants, COVID-19, Meningitis, Lassa fever, Virus, Nigeria

ABSTRACT

Introduction: For decades, viral diseases have been treated using medicinal plants and herbal practices in the northern part of Nigeria. Though scarcely investigated, these medicinal plants could serve as potential sources for novel antiviral drugs against emerging and re-emerging viral diseases. Therefore, this study is aimed at investigating the medicinal practices and plants used to treat emerging and re-emerging viral diseases including hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19 in some northern states; Katsina, Kebbi, Kwara and Sokoto states.

Method: Administered questionnaires and oral interviews were used to collect information on medicinal plants, method of preparation of herbal formulations, diagnosis, and treatment of viral diseases. Medicinal plants were collected, botanically identified, and assigned voucher numbers. The plant names were verified using www.thepiantlist.org, www.worldfloraonline.org and the international plant names index.

Result: A total of 280 participating herbal medicine practitioners (HMPs) mentioned 131 plants belonging to 65 families. Plant parts such as roots, bark, leaf, seed, and fruit were prepared as a decoction, concoction, infusion, or ointment for oral and topical treatment of viral diseases. *Moringa oleifera* (75.3%), *Elaeis guineensis Jacq.* (80%), and *Acacia nilotica* (70%) were the most frequently mentioned plants in Kebbi, Kwara and Sokoto states, respectively.

Conclusion: The study revealed scarcely investigated and uninvestigated medicinal plants used to treat hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19 in some northern states; Katsina, Kebbi, Kwara and Sokoto states. Future studies should be conducted to determine the antiviral potency and isolate novel bioactive agents from these plants against viral diseases.

1. Introduction

Outbreaks of viral and infectious diseases have continuously affected the global population causing a high rate of morbidity and mortality. In some instances, the high rate of morbidity and mortality occurs in developing and underdeveloped countries. This can be attributed to a lack of access to affordable healthcare, vaccination programs, and apathy towards vaccination. Indeed, emerging viral diseases such as COVID-19 pose serious health concerns to Nigeria and the global population. For instance, as of 27th June 2021, the Nigeria Center for Disease Control (NCDC) reported a total of 167, 467 COVID-19 cases and 2119 COVID-19 deaths in Nigeria [1]. Similarly, a total of 1031 Lassa
fever cases with 214 deaths were recorded in 2020 [2]. Whereas, there were 65 deaths and 110 confirmed cases of meningitis [3].

For decades, medicinal plants and herbal practices have been used to treat infectious and other non-infectious diseases through the traditional practice of herbal medicine practitioners (HMPs) in Nigeria. In fact, several studies have reported the ethnomedical application of plants in treating diseases such as cancer, malaria, bacterial infections, etc. [4–7]. However, medicinal plants and practices used in treating viral diseases have been scarcely investigated especially in the northern part of Nigeria. Hence, an ethnomedical study could reveal unidentified plants from the northern part of Nigeria that could serve as sources of novel antiviral drugs. Besides, natural products and natural products mimic and constitute a lot of drugs used or being investigated in clinical trials [8].

Therefore, the present study was aimed at investigating and documenting the herbal practices and medicinal plants used for treating emerging and re-emerging viral diseases including hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19 in some northern Nigerian states; Katsina, Kebbi, Kwarar and Sokoto. The selection of the three northwestern states of Kebbi, Katsina, and Sokoto was strategic considering the strong skepticism towards vaccination as evident during the polio vaccination and thus residents would seek alternative medicine that would include herbal medicine for treatment. Undoubtedly, the present study would be of interest to phytochemists, pharmacologists, and virologists and could contribute immensely towards the potential discovery of novel antiviral agents against viral diseases.

2. Methods

2.1. Ethnobotanical survey

A structured questionnaire along with an oral interview was administered to willing and consented traditional medicine practitioners to previously described protocols [9]. Ethical approval was granted by Kebbi State University of Science and Technology (KSUSTA/FLS/UREC/20–02) and thereafter, leading herbal practitioners in the study areas were contacted to provide links and contact of other known herbal practitioners. Oral consent was obtained from willing herbalists who provided information relating to traditional medicinal practices against viral diseases including hepatitis, smallpox, monkeypox, COVID-19, meningitis, yellow fever, and Lassa fever.

The study was conducted in the three northwestern states namely Katsina (12.3797° N, 7.6300° E), Kebbi (11.49420 N, 4.333° E), Sokoto (10.0533° N, 4.3223° E), and Kwarar State located in the Northcentral part of Nigeria (8.9669° N, 4.3874° E). A total of 50 and 35 herbal practitioners were interviewed in the Sokoto metropolis in Sokoto state and the Ilorin metropolis of Kwarar state, respectively. Similarly, 50 herbal practitioners were interviewed in the Katsina metropolis in Katsina State. Whereas, a total of 73 herbal practitioners were interviewed from the Yauri and Zuru emirates of Kebbi state. The survey was conducted from January to May 2021. Accordingly, the Nigerian center for disease control (NCDC), COVID-19 safety guidelines that included the use of face masks, hand sanitizers, and social distancing were strictly observed.

2.2. Plant collection and identification

All plants listed in the questionnaires were collected and botanically identified assigned voucher numbers and deposited at the herbarium of Umaru Musa Yaradua University Katsina and Kebbi State University of Science and Technology, Aliero, Nigeria. Furthermore, the plant names were authenticated using www.theplantlist.org, www.worldfloraonline.com, and international plant names index.

2.3. Frequency of citation

The frequency of citation (FC) for each plant was determined according to the previously described protocol [9]. FC = NC/NI * 100. Where NC is the total number of citations for each plant and TI is the total number of informants.

2.4. Informant consensus factor

The informant consensus factor (ICF) was determined according to the previously described protocol [10]. ICF = Nur-Nt/Nur. Where Nur is the reported number of taxa used for a disease category whereas, Nt is the total number of taxa used for the disease category. This determines the similarity in terms of medicinal plants used to treat any disease category by the herbal practitioners. An ICF value close to 1 or 0 is indicative of the agreement or random choice of medicinal plants used to treat a disease category by traditional medicine practitioners, respectively.

3. Results

3.1. Demographic profile and citation frequency of plants

A total of 208 herbal medicine practitioners across Katsina (50), Kebbi (73), Kwarar (35), and Sokoto (50) states responded to the questionnaires and oral interviews. Demographic data showed that 50% of HMPs were women in Kwarar state in contrast to 12%, 22%, and 12.4% in Sokoto, Katsina, and Kebbi State, respectively (Table 1). An analysis of the age distribution showed that 60%, 70%, 57.6%, and 20.4% of HMPs in Sokoto, Katsina, Kebbi, and Kwarar States, respectively were within the age range of 41 years and above. Medicinal plants used for treating various viral diseases are listed in Tables 2, 3, 4, and 5 for Katsina (Table 2), Kebbi (Table 3), Kwarar (Table 4), and Sokoto (Table 5) states. Whereas, a total of 41 medicinal plants were identified in two or more states. The plants Asadirachta indica A.Juss, Eucalyptus globulus Labill, and Syzygium aromaticum (L.) Merr. & L.M.Perry were the most frequently mentioned plants in Katsina state, each with a citation frequency of 30% (Table 2). In Kebbi state, Moringa oleifera Lam. (75.3%), Mangifera indica (71.2%), and A. indica (68.5%) were the most frequently cited medicinal plants (Table 3). Whereas, Elaeis guineensis Jacq. (80%), Nymphaea lotus L. (57.1), Piper guineense Schumach. &Thonn. (57.1%) and Euphorbia hirta (51.4%) were the most frequently mentioned plants in Kwarar state (Table 4). Similarly, Acacia nilotica (L.) Delile (70%), Combretum micranthum G. Don. (60%) and Pilostigma reticulatum (DC.) Hochst. (58%) were the frequently mentioned plants in

Table 1

s/no	Data	Sokoto	Katsina	Kebbi	Kwarar
1	Age (years%)				
1	18–30	10	12.4	55.8	
2	31–40	20	30.0	23.5	
3	41 and above	70	57.6	20.4	
2	Educational status (%)				
	No formal education	24	84	68.5	17.6
	Formal education	76	16	31.5	82.4
3	Gender distribution (%)				
	Male	88	78	87.6	50
	Female	12	22	12.4	50
and is often diagnosed by the yellowish coloration of the eye, palms, and swelling of the stomach. Meningitis is referred to as ‘ciwon kabin bau’ and is diagnosed by HMPs through detection of high body fever, persistent headache, and stiffness of muscles. Other infectious diseases such as monkeypox ‘karin bau’ and smallpox ‘karin bau’ are diagnosed using the same method by HMPs which include detection of high body fever, skin rash, and general body itch. COVID-19 is referred to as ‘Korona’ and is diagnosed by HMPs through observation of high body fever, persistent cough, and running nose. However, it is important to note that there may be an incidence of misdiagnosis considering that COVID-19 infection is better confirmed through laboratory tests than simply relying on

Table 2:
Medicinal plants used for treating viral diseases in Katsina state.

Scientific name	Family name	Local name	Common name	Voucher number	CF (%)	Diseases treated	Part used	Mode of Preparation	Route
Acacia Senegal (L.) Wild	Fabaceae	Dakwara	Gum Arabic tree	UMYUH 988	12	Smallpox	Leaves	Decoction	Oral
Azadirachta indica A.Juss.	Meliaceae	Darbejiya	Neem	UMYUH 712	30	COVID-19	Leaves	Concoction	Steaming
Boscia salicifolia Oliv.	Capparaceae	Zure	Willow leaved shepherd tree	UMYUH 707	16	COVID-19	Leaves	Decoction	Oral
Carica papaya L.	Caricaceae	Gwanda	Pawpaw	UMYUH 2263	16	Hepatitis	Leaves	Decoction	Oral
Cassia occidentalis L.	Fabaceae	Tafasar masar	Coffee senna	UMYUH 2242	16	Yellow fever	Whole plant	Decoction	Oral
Cassia tora L.	Fabaceae	Tafasa	Sickle senna	UMYUH 763	14	Yellow fever	Whole plant	Decoction	Oral
Centaurea praecox Oliv. & Hiern	Compositae	Dayi	Thistle	UMYUH 645	16	COVID-19	Whole plant	Maceration	Oral
Combretum micranthum G. Don	Combretaceae	Geza		UMYUH 2217	16	Yellow fever	Leaves	Decoction	Oral
Diospyros mespiliformis Hochst.	Ebenaceae	Kanya	Jackalberry	UMYUH 124	14	Yellow fever	Leaves	Decoction	Oral
Eucalyptus globulus Labill	Myrtaceae	Turare	Blue gum	UMYUH 666	30	Yellow fever	Leaves	Concoction	Steaming
Ficus polius Vahl	Moraceae	Durumi	Heart leaved fig	UMYUH 1890	8	COVID-19	Leaves	Decoction	Oral
Ficus sycomorus L.	Moraceae	Baure	Fig mulberry	UMYUH 1830	8	Yellow fever	Leaves/bark	Decoction	Oral
Guiera senegalensis J.F. Gmel	Combretaceae	Sabara		UMYUH 49	18	Yellow fever	Leaves	Decoction	Oral
Lapidium sativum L.	Brassicaeae	Zamantarore	Garden cress	UMYUH 2075	8	Meningitis	Leaves	Decoction	Oral
Ludwigia octovalvis (Jacq.)	Onagraceae	Shashatou	Mexican primose willow	UMYUH 2536	8	Meningitis	Leaves	Decoction	Oral
Mangifera indica L.	Anacardiaceae	Mangwaro	Mango	UMYUH 1921	14	Yellow fever	Leaves	Decoction	Oral
Moringa oleifer Lam.	Moringaceae	Zogale	Drumstick tree	UMYUH 1858	12	Yellow fever	Leaves	Decoction	Oral
Musa sapientum L.	Musaceae	Ayabsa	Banana	UMYUH 2293	10	Hepatitis	Leaves	Decoction	Oral
Parkia biglobosa (Jacq.) G. Don	Fabaceae	Dorawa	African locus bean	UMYUH 1274	10	Yellow fever	Leaves	Decoction	Oral
Phyllanthus amarus Schumach. & Thonn.	Phyllanthaceae	Geron	Stone breaker	UMYUH 2524	8	Hepatitis	Leaves	Decoction	Oral
Philosigma thomningii (Schum.)	Fabaceae	Tsuntsaie		UMYUH 27	12	Hepatitis	Leaves	Decoction	Oral
Piper guineense Schumach. & Thonn.	Piperaceae	Masoro	Black pepper	UMYUH 2507	10	COVID-19	Seed	Concoction	Oral
Prospis africana (Guill. & Perr.) Taub.	Fabaceae	Kiriya	Iron tree	UMYUH 63	18	Yellow fever	Leaves	Decoction	Oral
Sag屁um guaramii (Stapf) Prain	Euphorbiaceae	Yazawa		UMYUH 12	12	Yellow fever	Bark	Decoction	Oral
Sclerocarya birrea (A. Rich.) Hochst.	Anacardiaceae	Danya	Marula	UMYUH 2256	10	Yellow fever	Leaves	Decoction	Oral
Stereospermum kunthianum Cham.	Bignoniaceae	Sansami	Tulip tree	UMYUH 675	8	Yellow fever	Leaves	Decoction	Oral
Syzygium aromaticum (L.) Merr. & L.M.Perry	Myrtaceae	Kananfari	Clove	UMYUH 681	30	COVID-19	Seeds	Decoction	Oral
Tephrosia linearis	Fabaceae	Tsintsiyar mahalba		UMYUH 1880	10	Smallpox	Leaves	Maceration	Topical
Terminalia arvencisoides Guill. & Perr.	Combretaceae	Baunhe		UMYUH 669	16	Yellow fever	Bark	Decoction	Oral
Trianechus pentandra L.	Aizoaceae	Gadon Maciji		UMYUH 1916	10	Yellow fever	Leaves	Maceration	Oral

Sokoto state (Table 5).

3.2. Diagnosis of viral diseases by HMPs

The diagnosis of the viral diseases is similar for the northwestern states of Sokoto, Kebbi, and Katsina. Hepatitis is referred to as ‘ciwon anta’ and the majority of patients know through voluntary screening for blood donations before approaching HMPs for treatment or through observation of yellowish eyes. Yellow fever is referred to as ‘shawara’ and is often diagnosed by the yellowish coloration of the eye, palms, and swelling of the stomach. Meningitis is referred to as ‘sankarau’ and is diagnosed by HMPs through detection of high body fever, persistent headache, and stiffness of muscles. Poliomyelitis referred to as ‘ciwon shaninna’ is diagnosed by HMPs through high body fever, persistent headache and stiffness of muscles. Other infectious diseases such as monkeypox ‘karin bau’ and smallpox ‘karin bau’ are diagnosed using the same method by HMPs which include detection of high body fever, skin rash, and general body itch. COVID-19 is referred to as ‘Korona’ and is diagnosed by HMPs through observation of high body fever, persistent cough, and running nose. However, it is important to note that there may be an incidence of misdiagnosis considering that COVID-19 infection is better confirmed through laboratory tests than simply relying on
s/no	Plant name	Family	Local name	Common Name	Voucher no	CF (%)	Disease treated	Parts used	Mode of preparation	Route	
1.	*Acacia nilotica* (L.) Delile	Mimosaceae	Bagaaruwa	Scented thorn	Kustua/psb/h/voucher no:294	15.1	Hepatitis, monkey pox, meningitis, smallpox, poliomyelitis, COVID-19	Leaf/stem	Decoction/ prepared with pap	Orally	
2.	*Adansonia digitata* L.	Bombacaceae	Kuka	Baobab	Kustua/psb/h/voucher no:266	38.4	Poliomyelitis, smallpox, yellow fever, meningitis, monkey pox, hepatitis	Stem bark	Decoction	Orally	
3.	*Aframomum melegueta* K. Schum.	Zingiberaceae	Ciita	Alligator pepper/ grains of paradise	Kustua/psb/h/voucher no: s.n	38.4	Hepatitis, monkey pox, COVID-19, poliomyelitis, yellow fever	Whole plant	Decoction	Orally	
4.	*Allium cepa* L.	Liliaceae	Albasa	Onion	Kustua/psb/h/voucher no: s.n	12.3	Poliomyelitis, meningitis, COVID-19, smallpox, meningitis	Bulb	Poultice/ the bulb is cut into pieces and added to a burning charcoal	Inhalation	
5.	*Allium sativum* L.	Amaryllidaceae	Tafarnuwa	Garlic	Kustua/psb/h/voucher no: 356	36.9	Poliomyelitis, COVID-19, monkey pox, meningitis, hepatitis	Whole plant	Concoction/ crushed and mixed with masoro the powder a half spoon of the powder is added in raw milk and	Orally before breakfast	
6.	*Aloe vera* (L.) Burm.f.	Liliaceae	Aloe vera	Aloe vera	Kustua/psb/h/voucher no: s.n	1.36	Meningitis	Whole plant	Decoction	Orally	
7.	*Ananas comosus* (L.) Merr.	Bromeliaceae	Abarba	Pineapple	Kustua/psb/h/voucher no: s.n	1.4	Meningitis	Bark peel	Concoction/ boiled with banana	Oral	
8.	*Annona senegalensis* Pers.	Annonaceae	Gwanda daji	Wild custard apple	Kustua/psb/h/voucher no: 504	1.4	Poliomyelitis	Leaf and stem	Concoction	Orally	
9.	*Angenum leiopterum* (DC.) Guill. & Perr.	Combretaceae	Marke	African Birch	Kustua/psb/h/voucher no: s.n	2.7	Monkey pox, poliomyelitis	Stem bark	Concoction/ boil with red potash and the	Orally	
10.	*Azadirachta indica* A. Juss.	Meliaceae	Dogonyaro	Neem	Kustua/psb/h/voucher no: 61	68.5	Smallpox, monkey pox, COVID-19, poliomyelitis, yellow fever, meningitis	Leaf	Decoction	Orally	
11.	*Balanites aegyptica* (L.) Delile	Balanitaceae	Aduwa	Desert date	Kustua/psb/h/voucher no: 291	41.1	Hepatitis, monkey pox, meningitis, smallpox, poliomyelitis	Stem bark	Decoction	Orally	
12.	*Boscia senegalensis* (Pers.) Lam. ex Pior.	Combretaceae	Anza	Aizen	Kustua/psb/h/voucher no: s.n	1.4	Monkey pox	Root	Ointment/ root powder is mixed with salt and petroleum jelly (vasline)	Topically	
13.	*Boswellia dalzielii* Hutch.	Burseraceae	Hanno	Frankincense tree	Kustua/psb/h/voucher no: s.n	1.4	Poliomyelitis, smallpox	Stem bark	Decoction	Orally	
14.	*Bridelia ferruginea* Benth.	Phyllanthaceae	Kizni		Kustua/psb/h/voucher no: s.n	1.4	Poliomyelitis	Leaf	Decoction	Orally	
15.	*Calotropis procera* (Aiton) Dryand	Apocynaceae	Tumfaiya	Sodom apple	Kustua/psb/h/voucher no: s.n	17.8	Smallpox, COVID-19, monkey pox	leaf	Concoction/ also mixed with powdered stem bark of hanno	Orally for one week and a portion of it is used in bathing, Orally twice daily for ten days.	
16.	*Carica papaya* L.	Caricaceae	Gwanda	Pawpaw	Kustua/psb/h/voucher no: s.n	49.3	Hepatitis, meningitis, COVID-19, poliomyelitis, smallpox, yellow fever, monkey pox	Leaf	Concoction/ the leaf is mixed lemon leaves, small portion of red potash and boil, concocted	Decoction	Orally
17.	*Cassia occidentalis* L.	Fabaceae	Sanga sanga	Coffee senna	Kustua/psb/h/voucher no: s.n	41.1	Hepatitis, meningitis, COVID-19, yellow fever, poliomyelitis	Leaf	Concoction	Orally	
18.	*Cassia singueana* Delile	Fabaceae	Runhu	Sticky pod	Kustua/psb/h/voucher no: s.n	1.4	Monkey pox	Leaf	Decoction	Orally	

(continued on next page)
No.	Scientific Name	Family	Common Name	Description	Use	Administration	Dosage
19.	*Cassia tora* L	Fabaceae	Tafasa	Sickle senna	Ksusta/pb/	h/voucher no: s.n	4.1
					Leaf	Decoction	Orally
20.	*Cissus populnea* Guill. & Perr.	Vitaceae	Loda		Ksusta/pb/	h/voucher no: 307	8.2
					Stem bark	Decoction	Orally
21.	*Citrus aurantiifolia* (Christm.) Swingle	Rutaceae	Lemun tsami	Lemon	Ksusta/pb/	h/voucher no: 285	1.4
					Leaf	Decoction	Orally
22.	*Citrullus lanatus* (Thunb.) Matsum. & Nakai	Cucurbitaceae	Kankana	Water melon	Ksusta/pb/	h/voucher no: 285 a	20.5
					Seed	Decoction	Orally
23.	*Citrus sinensis*	Rutaceae	Lemun zaki	Orange	Ksusta/pb/	h/voucher no: 284	32.9
					Leaves	Decoction	Orally
24.	*Combretum glutinosum* Perr.	Combretaceae	Tarauniya		Ksusta/pb/	h/voucher no: s.n	1.4
					Stem bark	Decoction	Orally
25.	*Combretum nigricans* Lepr. Ex Guill. & Perr.	Combretaceae	Tsiriri		Ksusta/pb/	h/voucher no: s.n	1.4
					Root	Powder	Orally
26.	*Cucurbita maxima* Duchesne	Cucurbitaceae	Kabewa	Pumpkin	Ksusta/pb/	h/voucher no: s.n	19.2
					Leaf and seed	Decoction	Orally
27.	*Detarium senegalense* J. F. Gmel.	Fabaceae	Taura	Tallow tree	Ksusta/pb/	h/voucher no: s.n	10.9
					Stem bark	Decoction	Orally
28.	*Diospyros mespiliformis* Hochst. ex A.DC.	Ebenaceae	Kanya	Jackalberry	Ksusta/pb/	h/voucher no: 182	46.6
					Stem bark	Concocion or powdered stem bark is mixed with powder of tamarind and *Adansonia digitata* and shea butter to make as ointment	Orally or ointment is applied topically
29.	*Evolvulus alsinoides* Linn.	Convolvulaceae	Kabiliikita	Dwarf morning-glory	Ksusta/pb/	h/voucher no: 523	2.7
					Leaf	Decoction	Orally
30.	*Ficus platyphylla* Delile	Moraceae	Gamji	Broad leaf Fig	Ksusta/pb/	h/voucher no: s.n	20.5
					Stem bark powder	Decoction	Orally and or bathing
31.	*Ficus polita* Vahl	Moraceae	Durumi	Heart leaved fig	Ksusta/pb/	h/voucher no: s.n	13.7
					Leaf	Decoction	Orally
32.	*Ficus sycomorus*	Moraceae	Baure	Fig mulberry	Ksusta/pb/	h/voucher no: s.n	8.2
					Leaf and stem bark	Decoction	Orally
33.	*Ficus thonningii* Blume	Moraceae	Chediya	Common wild fig	Ksusta/pb/	h/voucher no: s.n	2.7
					Leaf/stem bark	Decoction	Orally
34.	*Gardenia erubescens* Stapf. & Hutch	Rubiaceae	Gaude		Ksusta/pb/	h/voucher no: s.n	2.7
					Leaf	Decoction	Orally
35.	*Guiera senegalensis* J.F. Gmel.	Combretaceae	Sabara	Moshi medicine	Ksusta/pb/	h/voucher no: s.n	42.5
					Leaf	Decoction/ prepared with pap	Orally
36.	*Lannea microcarpa* Engl. & K. Krause	Anacardiaceae	Faru	African grape	Ksusta/pb/	h/voucher no: s.n	15.1
					Stem bark	Decoction	Orally for four days.

(continued on next page)
No.	Plant Name	Family	Common Name	GenBank Accession	Leaves	Decoction	Uses
37	Lawsonia inermis L.	Lythraceae	Lalle			Decoction	Monkey pox, meningitis, COVID-19, yellow fever, hepatitis
38	Lepademia hastate Vatke	Apocynaceae	Yadiya			Decoction	Monkey pox, meningitis, COVID-19, smallpox
39	Mangifera indica L.	Anacardiaceae	Mangwaro	Mango		Decoction	Monkey pox, meningitis, COVID-19, yellow fever, poliomyelitis, smallpox
40	Maytenus senegalensis (Lam.) Exell	Celastraceae	Namijin tsada	Spike thorn		Powder	Monkey pox
41	Momordica charantia L.	Cucurbitaceae	Garahuni	Balsam pear		Decoction	Monkey pox, meningitis, COVID-19, yellow fever, hepatitis
42	Moringa oleifera Lam.	Moringaceae	Zogala	Moringa		Powder	Monkey pox, meningitis, COVID-19, yellow fever, poliomyelitis
43	Musa sapientum L.	Musaceae	Ayaba	Banana		Powder	Can be boiled with pineapple bark peel
44	Nicotiana tabacum L.	Euphorbiaceae	Tinya			Decoction	Meningitis
45	Nigella sativa L.	Ransunculaceae	Habbatu	sauda	Black cumin	Pigment use	Monkey pox, smallpox, hepatitis
46	Olea europea L.	Oleaceae	Zaitun	Olive		Decoction	Smallpox, yellow fever, COVID-19, monkey pox
47	Parkia biglobosa (Jacq.) G.Don	Mimosaceae	Dorawa	African locust		Decoction	Monkey pox, meningitis, COVID-19, yellow fever, poliomyelitis
48	Parinari macrophylla Sabine	Chrysobalanaceae	Gwasa			Decoction	Poliomyelitis, monkey pox
49	Pilosigma thonningii (Schum.) Milne-Redh.	Fabaceae	Kalgo	Wild bauhinia		Pigment use	Poliomyelitis, smallpox, meningitis
50	Piper guineense Schumach. & Thonn.	Piperaceae	Masoro	Ashanti pepper		Powder	Poliomyelitis, yellow fever, hepatitis
51	Prosopis africana (Guill. & Perr.) Taub.	Fabaceae	Kirya	Iron tree		Decoction	Meningitis
52	Psidium guajava L.	Myrtaceae	Gwaiba	Guava		Powder	Monkey pox
53	Securidaca longipedunculata Fresen	Polygalaceae	Uwa	magunguna	Violet tree	Decoction	Monkey pox
54	Sterculia setigeru Delile	Malvaceae	Kukkuki	Karaya gum tree		Powder	Monkey pox

(continued on next page)
On the other hand, in Kwara state, hepatitis is known as ‘Arun Jedojedo or Aisan Jedojedo’ and is diagnosed by HMPs through observation of the yellowish nature of the eye which is mostly confirmed through laboratory tests. Similar yellowish eye, physical appearance, and laboratory tests are used for the diagnosis of yellow fever known as ‘Iba pupa or Iba ponju’. The symptoms for monkeypox known as ‘Pox Obo’ and smallpox known as ‘Sopona or Shapona or Igbona’ are the same which include the physical appearance of rashes/blisters all over the body, high temperature, headache, and laboratory tests. Poliomyelitis is known as ‘Arun Aromolapa romolese’ is diagnosed via paralysis of one side of the body mostly starting with the left leg and arm and hospital diagnosis. Whereas, COVID-19 ‘Kofid 19’ and Lassa fever ‘Iba Oterè’ are diagnosed by HMPs in Kwaras state via hospital diagnosis.

3.3. Informant consensus factor

The informant consensus factor was determined for each disease in each of the states studied as shown in Table 6. The ICF value for the diseases ranged from 0.86 - 0.91, 0.66 - 0.78, 0.22 - 0.71 and 0.79 - 0.89 for Katsina, Kebbi, Kwara, and Sokoto States, respectively. Whereas, there were no ICF values for poliomyelitis, monkey pox, and Lassa fever in Katsina state and Lassa fever in Kebbi state as no response was recorded on potential medicinal plants used to treat these diseases.

4. Discussion

Medicinal plants serve as a huge reservoir for potential novel bioactive agents against viral diseases and non-viral diseases. Therefore, the ethnomedicinal study provides an opportunity to reveal new and uninvestigated medicinal plants and herbal formulations as potential sources for antiviral agents against old and emerging viral diseases. Located in the northwestern part of Nigeria, the residents of Katsina, Kebbi, and Sokoto states are predominantly Hausa and Fulani although, there are other smaller tribes such as Dakarkari and Kamarawa amongst others and different dialects [11]. In contrast, Kwara state is located in the North-central part of Nigeria with Yoruba as the predominant tribe [9]. Evidently, the present study revealed plants that were common in all the states although in some instances these plants were used to treat different diseases with different modes of preparation. This could be attributed to the slight cultural differences among the northwestern states as well as the different geographical, climatic, and cultural differences with the north-central Kwara state. Interestingly, the informant Consensus factor for northwestern states indicated the HMPs agreed on the medicinal plants used to treat various categories of viral diseases studies in contrast to ICF values for Kwara state that suggested HMPs didn’t fully agree or the choice of medicinal plants for certain diseases such as COVID-19, smallpox, and monkeypox were random. Nonetheless, the study revealed plants that could be used to combat these viral diseases affect the populace with fatal consequences.

The hepatitis B and C virus frequently cause inflammation of the liver which can result in liver cirrhosis and cancer. Besides vaccination, Nigerians in rural areas have for decades used herbal plants to treat hepatitis and other liver-related diseases. Herein, Carica papaya, Psidium guajava, M. indica, and Ficus glumosa were the more frequently mentioned plants used for treating hepatitis in Katsina, Kebbi, Kwara, and Sokoto states, respectively. Similarly, C. papaya, Guiera senegalensis, M. indica, Musa sapientum, P. guineense were reported by at least two or all of the states as plants used for treating hepatitis. Medicinal plants cited for treatment of hepatitis in the present study including Phyllanthus amarus Senna occidentals and Garcinia kola have also been reportedly used to treat hepatitis and liver diseases in the southern part of Nigeria [12-14]. Likewise, Acacia nilotica Guiera senegalensis and Leptadenia hastate among others cited herein for treatment of hepatitis are also used to treat the same viral disease in Burkina Faso (Table 7) with pharmacological study validating the anti-hepatitis C activity of A. nilotica [15].

On the other hand, in Kwara state, hepatitis is known as ‘Arun Jedojedo or Aisan Jedojedo’ and is diagnosed by HMPs through observation of the yellowish nature of the eye which is mostly confirmed through laboratory tests. Similar yellowish eye, physical appearance, and laboratory tests are used for the diagnosis of yellow fever known as ‘Iba pupa or Iba ponju’. The symptoms for monkeypox known as ‘Pox Obo’ and smallpox known as ‘Sopona or Shapona or Igbona’ are the same which include the physical appearance of rashes/blisters all over the body, high temperature, headache, and laboratory tests. Poliomyelitis is known as ‘Arun Aromolapa romolese’ is diagnosed via paralysis of one side of the body mostly starting with the left leg and arm and hospital diagnosis. Whereas, COVID-19 ‘Kofid 19’ and Lassa fever ‘Iba Oterè’ are diagnosed by HMPs in Kwaras state via hospital diagnosis.

3.3. Informant consensus factor

The informant consensus factor was determined for each disease in each of the states studied as shown in Table 6. The ICF value for the diseases ranged from 0.86 - 0.91, 0.66 - 0.78, 0.22 - 0.71 and 0.79 - 0.89 for Katsina, Kebbi, Kwara, and Sokoto States, respectively. Whereas, there were no ICF values for poliomyelitis, monkey pox, and Lassa fever in Katsina state and Lassa fever in Kebbi state as no response was recorded on potential medicinal plants used to treat these diseases.

4. Discussion

Medicinal plants serve as a huge reservoir for potential novel bioactive agents against viral diseases and non-viral diseases. Therefore, the ethnomedicinal study provides an opportunity to reveal new and uninvestigated medicinal plants and herbal formulations as potential sources for antiviral agents against old and emerging viral diseases. Located in the northwestern part of Nigeria, the residents of Katsina, Kebbi, and Sokoto states are predominantly Hausa and Fulani although, there are other smaller tribes such as Dakarkari and Kamarawa amongst others and different dialects [11]. In contrast, Kwara state is located in the North-central part of Nigeria with Yoruba as the predominant tribe [9]. Evidently, the present study revealed plants that were common in all the states although in some instances these plants were used to treat different diseases with different modes of preparation. This could be attributed to the slight cultural differences among the northwestern states as well as the different geographical, climatic, and cultural differences with the north-central Kwara state. Interestingly, the informant Consensus factor for northwestern states indicated the HMPs agreed on the medicinal plants used to treat various categories of viral diseases studies in contrast to ICF values for Kwara state that suggested HMPs didn’t fully agree or the choice of medicinal plants for certain diseases such as COVID-19, smallpox, and monkeypox were random. Nonetheless, the study revealed plants that could be used to combat these viral diseases affect the populace with fatal consequences.

The hepatitis B and C virus frequently cause inflammation of the liver which can result in liver cirrhosis and cancer. Besides vaccination, Nigerians in rural areas have for decades used herbal plants to treat hepatitis and other liver-related diseases. Herein, Carica papaya, Psidium guajava, M. indica, and Ficus glumosa were the more frequently mentioned plants used for treating hepatitis in Katsina, Kebbi, Kwara, and Sokoto states, respectively. Similarly, C. papaya, Guiera senegalensis, M. indica, Musa sapientum, P. guineense were reported by at least two or all of the states as plants used for treating hepatitis. Medicinal plants cited for treatment of hepatitis in the present study including Phyllanthus amarus Senna occidentals and Garcinia kola have also been reportedly used to treat hepatitis and liver diseases in the southern part of Nigeria [12-14]. Likewise, Acacia nilotica Guiera senegalensis and Leptadenia hastate among others cited herein for treatment of hepatitis are also used to treat the same viral disease in Burkina Faso (Table 7) with pharmacological study validating the anti-hepatitis C activity of A. nilotica [15].

On the other hand, in Kwara state, hepatitis is known as ‘Arun Jedojedo or Aisan Jedojedo’ and is diagnosed by HMPs through observation of the yellowish nature of the eye which is mostly confirmed through laboratory tests. Similar yellowish eye, physical appearance, and laboratory tests are used for the diagnosis of yellow fever known as ‘Iba pupa or Iba ponju’. The symptoms for monkeypox known as ‘Pox Obo’ and smallpox known as ‘Sopona or Shapona or Igbona’ are the same which include the physical appearance of rashes/blisters all over the body, high temperature, headache, and laboratory tests. Poliomyelitis is known as ‘Arun Aromolapa romolese’ is diagnosed via paralysis of one side of the body mostly starting with the left leg and arm and hospital diagnosis. Whereas, COVID-19 ‘Kofid 19’ and Lassa fever ‘Iba Oterè’ are diagnosed by HMPs in Kwaras state via hospital diagnosis.

3.3. Informant consensus factor

The informant consensus factor was determined for each disease in each of the states studied as shown in Table 6. The ICF value for the diseases ranged from 0.86 - 0.91, 0.66 - 0.78, 0.22 - 0.71 and 0.79 - 0.89 for Katsina, Kebbi, Kwara, and Sokoto States, respectively. Whereas, there were no ICF values for poliomyelitis, monkey pox, and Lassa fever in Katsina state and Lassa fever in Kebbi state as no response was recorded on potential medicinal plants used to treat these diseases.

4. Discussion

Medicinal plants serve as a huge reservoir for potential novel bioactive agents against viral diseases and non-viral diseases. Therefore, the ethnomedicinal study provides an opportunity to reveal new and uninvestigated medicinal plants and herbal formulations as potential sources for antiviral agents against old and emerging viral diseases. Located in the northwestern part of Nigeria, the residents of Katsina, Kebbi, and Sokoto states are predominantly Hausa and Fulani although, there are other smaller tribes such as Dakarkari and Kamarawa amongst others and different dialects [11]. In contrast, Kwara state is located in the North-central part of Nigeria with Yoruba as the predominant tribe [9]. Evidently, the present study revealed plants that were common in all the states although in some instances these plants were used to treat different diseases with different modes of preparation. This could be attributed to the slight cultural differences among the northwestern states as well as the different geographical, climatic, and cultural differences with the north-central Kwara state. Interestingly, the informant Consensus factor for northwestern states indicated the HMPs agreed on the medicinal plants used to treat various categories of viral diseases studies in contrast to ICF values for Kwara state that suggested HMPs didn’t fully agree or the choice of medicinal plants for certain diseases such as COVID-19, smallpox, and monkeypox were random. Nonetheless, the study revealed plants that could be used to combat these viral diseases affect the populace with fatal consequences.

The hepatitis B and C virus frequently cause inflammation of the liver which can result in liver cirrhosis and cancer. Besides vaccination, Nigerians in rural areas have for decades used herbal plants to treat hepatitis and other liver-related diseases. Herein, Carica papaya, Psidium guajava, M. indica, and Ficus glumosa were the more frequently mentioned plants used for treating hepatitis in Katsina, Kebbi, Kwara, and Sokoto states, respectively. Similarly, C. papaya, Guiera senegalensis, M. indica, Musa sapientum, P. guineense were reported by at least two or all of the states as plants used for treating hepatitis. Medicinal plants cited for treatment of hepatitis in the present study including Phyllanthus amarus Senna occidentals and Garcinia kola have also been reportedly used to treat hepatitis and liver diseases in the southern part of Nigeria [12-14]. Likewise, Acacia nilotica Guiera senegalensis and Leptadenia hastate among others cited herein for treatment of hepatitis are also used to treat the same viral disease in Burkina Faso (Table 7) with pharmacological study validating the anti-hepatitis C activity of A. nilotica [15].
s/no	Plant name	Family	Local name	Common Name	Voucher no	CF (%)	Disease treated	Parts used	Mode of preparation	Route
1.	*Aframomum melegueta* K. Schum.	Zingiberaceae	Ewe atare	alligator pepper	Ksusta/psb/h/voucher no: sn	11.4	Monkey pox, smallpox	Leaves	Soaking in cold water	Topically, water extract is used to wash the affected body part.
2.	*Ageratum conyzoides* (L.) L.	Compositae	Imi-esu	billygoat weed,	Ksusta/psb/h/voucher no: sn	14.3	Hepatitis, lassa fever, poliomyelitis	Stem bark	Powder	Two spoon daily
3.	*Alafia barteri* Oliv.	Apocynaceae	Agbari-etu		Ksusta/psb/h/voucher no: sn	8.6	Meningitis, lassa fever	Leaf	Decoction	Orally
4.	*Aloe vera* (L.) Burm.f.	Xanthorrhoeaceae	Ewe erin	Aloe vera	Ksusta/psb/h/voucher no: 356	8.6	Meningitis, lassa fever	Leaf	Decoction. Powder is mixed with shea butter and used ointment	Topical
5.	*Aloe barteri* (Baker)	Xanthorrhoeaceae	Eti irin		Ksusta/psb/h/voucher no: sn	14.3	Yellow fever, lassa fever	Leaf	Powdered leaf is mixed with little quantity of shear butter	Orally
6.	*Alstonia boonei* De Wild	Apocynaceae	Ahun	Stool wood	Ksusta/psb/h/voucher no: sn	37.1	Lassa fever, Yellow fever, monkey pox, smallpox	Stem bark	Decoction	Orally
7.	*Anacardium occidentale* L	Anacardiaceae	ewe kasu	Cashew	Ksusta/psb/h/voucher no: 63	17.1	Lassa fever, yellow fever	Leaf	Decoction	Orally
8.	*Ananas comosus* (L.) Merr.	Bromeliaceae	Ope oynbo	Pineapple	Ksusta/psb/h/voucher no: sn	28.6	Lassa fever, yellow fever, COVID-19	Bark peel	Decoction	Orally
9.	*Anogeissus leiocarpus* (DC.) Guill. & Perr	Combretaceae	Ayin		Ksusta/psb/h/voucher no: sn	11.4	COVID-19	Roots	Decoction	Orally
10.	*Aristolochia ringens*	Aristolochiaceae	Akogun	Dutchman’s pipe	Ksusta/psb/h/voucher no: 61	5.7	Yellow fever, lassa fever	Leaves	Decoction	Orally
11.	*Azadirachta indica* A. Juss.	Meliaceae	Ewe dogayaro	Neem tree	Ksusta/psb/h/voucher no: sn	5.7	Lassa fever, COVID-19	Leaf	Concoction with guava leaf	Orally
12.	*Bidens pilosa* L.	Compositae	Abeere	Black Jack seed	Ksusta/psb/h/voucher no: sn	2.9	COVID-19	Seed	Decoction	Orally
13.	*Bridelia exulata* F. Muell.	Phyllanthaceae	Ira	Scrub ironbark, brush ironbark	Ksusta/psb/h/voucher no: sn	8.6	Lassa fever	Stem bark	Decoction	Orally
14.	*Byrsocarpus coccinus* Schumach & Thonn.	Conaraceae	Amuje weve	Huntsman’s pepper	Ksusta/psb/h/voucher no: sn	34.3	Hepatitis, meningitis, lassa fever, yellow fever, smallpox, poliomyelitis	Leaves	Decoction	Orally
15.	*Catalpa procera* (Aiton) Dryand	Apocynaceae	Bomobom	Sodom apple, rubber bush	Ksusta/psb/h/voucher no: 03	8.6	Poliomyelitis	Leaf	Decoction	Orally
16.	*Carica papaya* L.	Caricaceae	Ewe ibepe	Pawpaw	Ksusta/psb/h/voucher no: sn	5.7	Hepatitis	Leaf	Decoction	Orally
17.	*Celastrus indica*	Celastraceae	Ponju-owiwi	Bittersweet	Ksusta/psb/h/voucher no: sn	17.1	Hepatitis, meningitis, yellow fever	Root	Decoction	Orally twice daily.
18.	*Chasmaphyllum dependens* Hochst.	Menispermaceae	Attoo		Ksusta/psb/h/voucher no: sn	14.3	Poliomyelitis, meningitis	Leaves	Decoction	Orally

continued on next page
No.	Species Name	Family	Common Name	Preparation Method	Effects	Parts Used	Treatment Duration
19.	*Chenopodium ambrosioides* L.	Amaranthaceae	Mexican tea	Kuasta/psh/ h/voucher no: sn	17.1	Poliomyelitis, Meningitis	Root Decoction Orally
20.	*Chloris pilosa* Schumach. & Thonn.	Poaceae	Ewe gbegi	Kuasta/psh/ h/voucher no: sn	20	Poliomyelitis, lassa fever	Roots To be soaked in water for 24 h Orally for three (3) days
21.	*Citrus aurantifolia* (Christm.) Swingle	Rutaceae	Citrus lemon	Kuasta/psh/ h/voucher no: 285	5.7	Yellow Fever	Leaf Decoction Orally
22.	*Cymbopogon citratus* (DC.) Stapf	Poaceae	Lemon grass	Kuasta/psh/ h/voucher no: sn	17.1	Lassa fever, Yellow fever	Leaves Concoction, mixed with leaf of ewuro and leaf of laali. Orally, three (3) times daily.
23.	*Elaeis guineensis* Jacq.	Arecaceae	African oil palm	Kuasta/psh/ h/voucher no: sn	80	Hepatitis, meningitis, lassa fever, yellow fever, poliomyelitis	Roots Decoction Orally
24.	*Enantia chlorantha* Oliv.	Annonaceae	Africa yellow wood	Kuasta/psh/ h/voucher no: sn	48.6	Poliomyelitis, meningitis, lassa fever, yellow fever	Stem bark Decoction Orally
25.	*Entandrophragma utile* (Dawe & Sprague) Sprague	Meliaceae	Ewe tea Lemon grass	Kuasta/psh/ h/voucher no: sn	5.7	Poliomyelitis, yellow fever	Leaf/bark Decoction Orally and use for bathing
26.	*Euphorbia hirta* L	Euphorbiaceae	Asthma weeds	Kuasta/psh/ h/voucher no: sn	51.4	Hepatitis, meningitis, lassa fever, yellow fever, poliomyelitis, monkey pox, smallpox, COVID-19	Stem bark Decoction Orally
27.	*Euphorbia lateriflora* Schumach.	Euphorbiaceae	Enusopiye	Kuasta/psh/ h/voucher no: sn	5.7	Smallpox	Stem bark Decoction Orally and use for bathing One teaspoon to be taken orally every morning. Orally
28.	*Euphorbia unispina* NE Br.	Euphorbiaceae	Oro adete	Kuasta/psh/ h/voucher no: sn	22.9	Hepatitis, meningitis, yellow fever, poliomyelitis	Leaves Decoction Orally
29.	*Garcinia kola* Heckel	Clusiaceae	Bitter kola	Kuasta/psh/ h/voucher no: sn	31.4	Hepatitis, meningitis, lassa fever, yellow fever, poliomyelitis	Roots Decoction Orally
30.	*Harungana madagascariensis* Lam. ex Poiz Jatropha curcas L.	Hypericaceae	Aroje	Kuasta/psh/ h/voucher no: sn	11.4	Hepatitis, meningitis, poliomyelitis	Leaves Decoction Orally
31.	*Jatropha curcas* L.	Euphorbiaceae	Lapalapa	Kuasta/psh/ h/voucher no: sn	8.6	Meningitis, lassa fever	Leaf Decoction Orally, one cup daily
32.	*Kigelia africana* (Lam.) Benth	Bignoniaceae	Sussage tree	Kuasta/psh/ h/voucher no: sn	14.3	Hepatitis, yellow fever, poliomyelitis	Leaves Decoction Orally, two (2) tea spoon to be taken twice daily. Orally
33.	*Lagenaria breviflora* (Benth.) Roberty	Cucurbitaceae	Wild colocynth	Kuasta/psh/ h/voucher no: sn	22.9	Monkey pox, smallpox	Leaf Decoction Orally
34.	*Launaea microcarpa* Engl. & K.Krause	Anacardiaceae	Ekuadan	Kuasta/psh/ h/voucher no: sn	11.4	Hepatitis, meningitis, lassa fever	root Decoction Orally
35.	*Lawsonia inermis* L.	Lythraceae	Henna, Egyptian privet, cypress, shrub	Kuasta/psh/ h/voucher no: 41	5.7	Lassa fever	Leaf Decoction Orally
36.	*Mangifera indica* L.	Anacardiaceae	Mango	Kuasta/psh/ h/voucher no: 63	31.4	Meningitis, lassa fever, monkey pox, smallpox, COVID-19, hepatitis	Stem bark Decoction. It is mixed with stem bark of awopa, ahun and egbesi. The juice is used to prepare pap Orally
37.	*Momordica charantia* L.	Cucurbitaceae	Balsam pear	Kuasta/psh/ h/voucher no: sn	48.6	Meningitis, lassa fever, yellow fever, poliomyelitis	Leaves Decoction Orally
No.	Species	Family	Common Names	Part Used	Plants/Herbal Component(s) Used	Therapies	
-----	--------------------------	------------	-------------------------------------	------------------	---------------------------------	--	
38	Morinda lucida Benth.	Rubiaceae	Ewe oruwo Brimestone tree	Roots	Concoction, mixed with dokita	Juice to be taken twice daily.	
					epo cocoa(stb) and amuje(stb)		
39	Musa sapientum L.	Musaceae	Ogede wewe Banana	Roots	Hepatitis, meningitis, lassa	Orally	
					fever, poliomyelitis		
40	Neeaulea latifolia Sm.	Rubiaceae	Koro Egbesi	Roots	Hepatitis, lassa fever,	Orally for three (3) days.	
					poliomyelitis		
41	Nicotiana tabacum L.	Solanaceae	Taba juku Tobacco	Roots	Crude	Orally	
42	Nymphaea lotus L.	Nymphaeaceae	Ewe osibata White lotus	Roots	Hepatitis, meningitis, lassa	Orally	
					fever, poliomyelitis		
43	Ocimum basilicum L.	Lamiaceae	Ewe Efiran Sweet Basil	Roots	Hepatitis, meningitis,	Orally	
					hepatitis, poliomyelitis		
44	Phyllanthus amarus Schumach. & Thonn.	Phyllanthaceae	Eyiin olome	Roots	COVID-19, hepatitis	Orally	
					Stems		
45	Piper guineense Schumach. & Thonn.	Piperaceae	Koko lyere Ashanti pepper	Roots	Hepatitis, meningitis, lassa	Orally	
					fever, poliomyelitis		
46	Plumbago zeylanica L.	Plumbaginaceae	Ewe inahiri Ceylon leadwort	Roots	Meningitis, yellow fever,	Orally	
					lassa fever, poliomyelitis		
47	Psidium guajava L.	Myrtaceae	Gurofa Guava	Roots	COVID-19, lassa fever	Orally	
					Stems		
48	Pycnanthus angolensis (Welw.) Warb.	Myristicaceae	Akomu African nutmeg	Roots	Poliomyelitis, yellow fever	Orally	
					Stems		
49	Ricinus communis L.	Euphorboraceae	Ewe lara Castor oil meg	Roots	Yellow fever, poliomyelitis	Orally	
50	Saccharum officinarum L.	Poaceae	Ireke Sugar cane	Whole plant	Yellow fever, poliomyelitis	Orally	
51	Secamone afzelii (Roem. & Schult.) K.Schum.	Apocynaceae	Ewe Arilu	Roots	Poliomyelitis, yellow fever	Orally	
					Stems		
52	Securidaca longipedunculata Fresen	Polygalaceae	Egbo ipeta Violet tree	Roots	Poliomyelitis	Orally	
					Leaf/stem		
53	Securinega virosa (Roxb. ex Willd.) Baill.	Phyllanthaceae	Iranje	Roots	Hepatitis, lassa fever,	Orally	
					poliomyelitis		
54	Spondias mombin L.	Anacardiaceae	Iyeye Yellow mombin	Seeds	Yellow fever	Orally	
55	Syzygium aromaticum (L.) Merr. & L.M.Perry	Myrtaceae	Kanafuru Clove	Seeds	COVID-19	Orally	
56	Tamarindus indica L.	Caesalpinaceae	Ajagbon Tamarind tree	Seeds	Monkey pox, smallpox	Orally and use for bathing	

(continued on next page)
An ethnomedicinal study identified *M. indica*, *Aloë vera*, *Vernonia amygdalina*, *Z. officinale* as medicinal used by patients diagnosed with viral and non-viral hepatitis in Uganda [16]. This is consistent with the present study although herein, *Z. officinale* was only used to treat yellow fever and COVID-19. Furthermore, *O. basilicum* and *Bidens pilosa* were reportedly used to treat hepatitis in Taiwan although *B. pilosa* [17] was used for the treatment of COVID-19 in the present study. Likewise, *C. papaya* and *Jatropha curcas* were reportedly used to treat hepatitis and hepatic disease in Peruvian Amazon [18].

Recent pharmacological studies have demonstrated the antiviral and anti-hepatitis effects of these plants. For instance, extracts of *G. senegalensis* induced anti-hepatitis B virus activity with an IC$_{50}$ value of 10.65 - 7.67 µg/ml [19], and further isolation studies produced myricetin-3-O-rhamnoside and quercetin that demonstrated anti-hepatitis B virus activity [20]. Similarly, potent anti-hepatitis C viral activity with over 70% inhibition at 100 µg/ml was reported for *A. nilotica*, *Syzygium aromaticum*, and *Zingiber officinale*. Conversely, weaker anti-hepatitis C virus activity was reported for *Tamarindus indica* (15%) *Adansonia digitata* (36.5%), *A. indica* (42%), *Balantrea aegyptiaca* (8.4%), *Cymbopogon citratus* (54.3%), *Lepidium sativum* (45.1%), *Nutmeg latifolia* (58.5%), *Nigella sativa* (42.7%), *Ocimum basilicum* (59.8%) [21]. In addition, anti-hepatitis virus activity of some of the plants cited herein including *Allium sativum* (hepatitis A), *Citrus limon* (hepatitis A), *Moringa oleifera* (hepatitis B), *Phyllanthus amarus* (hepatitis C) and *Combretum glutinosum* (hepatitis B) have also been reported [13,22-24].

On the other hand, meningitis is an acute inflammatory of protective membranes in the brain that can be caused by bacteria or viruses. For decades, medicinal plants have been used to treat meningitis, and herein, *A. digitata*, *A. vera*, and *A. nilotica* were the most cited plants used to treat meningitis in Kebbi, Kwara, and Sokoto States, respectively. Whereas, *L. sativum* and *Ludwigia octovalvis* were used to treat meningitis in Katsina State. An infusion of roots of *Combretum micranthum* and *Tamarindus indica* were used to treat meningitis in Kano State located in the Northwestern part of Nigeria [25]. Interestingly, *C. micranthum* (Sokoto and Kebbi state) and *T. indica* (Kebbi State) are also used to treat meningitis. Similarly, *A. indica* is used to treat meningitis in the North-central Nasarawa state [26] which is in agreement with the present study that cited *A. indica* for treatment of meningitis in Kebbi and Sokoto state. Similarly, *M. olfera* was reportedly used to treat meningitis in Ayurveda in agreement with its use for the treatment of meningitis in Kebbi State [27]. Contrarily, *A. senegalensis* was reportedly used to treat meningitis in Namibia [28] whereas, herein it is used to treat hepatitis, yellow fever, and poliomyelitis.

The poliovirus had a significant negative impact in Nigeria especially in the Northern part of Nigeria due to vaccine refusal. For instance, rumors and skepticism led to the suspension of polio vaccination in the northern state of Kano in 2003 resulting in a 2006 outbreak in 20 polio-free communities. Indeed, as an alternative to vaccination, the majority of the population in the North relies on herbal medicine and herbal medicinal practices for the treatment of polio. The present study identified *Terminalia aveneoides*, *M. indica*, and *C. micranthum* and the most frequently used plants to treat poliomyelitis. Whereas, *Anogeissus leiocarpus*, *Momordica charantia*, *Musa sapientum*, *Pilostigma thonningii*, and *T. indica* were cited by HMPs from at least two states as plants used for treating poliomyelitis. As shown in Table 7, medicinal plants cited in the present study for the treatment of poliomyelitis have already been validated for antiviral activity against the polio virus. For instance, *A. digitata*, *A. indica*, *Boswellia dalzielii*, *Garcinia kola*, and *Guiera senegalensis* have demonstrated potent activity against the polio virus [29–32]. In contrast, although *Annona senegalensis* and *Aframomum melegueta* are also cited for treatment against poliomyelitis, the plants did not induce antiviral activity against the polio virus [31,33]. Furthermore, pharmacological studies have demonstrated the anti-polio virus activity of medicinal plants including *Anacardium occidentale*, *Ananas comosus*, *Detarium senegalense*, *Lawsonia inermis*, and *Sterculia setigera* that were cited for treatment of other viral diseases in the present

Table 4 (continued)

No.	Family	Genus, Species	Common Name	Part	Month	Origin	Standard Preparation	Mode of Administration
58.	Fabaceae	*Adansonia digitata* (L.) J. J. de Wilde	Dwarf baobab	Seed	any	Kebbi, Sokoto	Decoction	Oral
59.	Fabaceae	*Azadirachta indica* A. Juss.	Neem	Leaf	dry	Kebbi	Decoction	Oral
60.	Compositae	*Bidens pilosa* L.	Burundi	Leaf	all	Kebbi, Sokoto, Katsina	Decoction	Oral
61.	Compositae	*Cynara cardunculus* L.	Artichoke	Leaf	any	Kebbi, Sokoto, Katsina	Decoction	Oral

Note: The table continues with additional entries, each corresponding to a specific medicinal plant, its common name, part used, month of use, origin, standard preparation, and mode of administration.
s/no	Plant name	Family	Local name	Common Name	Voucher no	CF (%)	Disease treated	Parts used	Mode of preparation	Route
1.	*Acacia nilotica* (L.) Delile	Mimosaceae	Bagaruwa	Scented thorn	Kusta/pbh/h/ voucher no:284	70	Hepatitis, poliomyelitis, meningitis, monkey pox, smallpox, yellow fever	Leaf, bark	Boil in water then sieve	2-3 cup full to be taken orally 2-3 times daily
2.	*Allium sativum* L.	Amaryllidaceae	Tafarnuwa	Garlic	Kusta/pbh/h/ voucher no: s.n	10	Meningitis, COVID-19	Seed	Grind and pour into water then boil	2 cup full to be taken orally twice daily 2-3 times daily
3.	*Aloe vera* (L.) Burm.f.	Liliaceae	Aloe vera	Aloe vera	Kusta/pbh/h/ voucher no: 356	6	Hepatitis	Jell	Slice aloe leave and remove the jell. Grind until smooth	2-3 cup full to be taken orally twice daily
4.	*Anacardium occidentale* L.	Anacardiaceae	Cashew		Kusta/pbh/h/ voucher no: 63	2	Smallpox	Root	Boil in water	2-3 cup full to be taken orally 2-3 times daily
5.	*Anogeissus leiocarpus* (DC.) Guill. & Perr.	Combretaceae	Marke	African birch	Kusta/pbh/h/ voucher no: s.n	56	Meningitis, poliomyelitis, yellow fever, COVID-19	Bark, leaf, root	Boil in water and add red potassium, boil together then sieve	2-3 cup full to be taken orally twice daily
6.	*Annona senegalensis* Pers.	Annonaceae	Gwanda daji	Wild custard apple	Kusta/pbh/h/ voucher no: 504	24	Hepatitis, yellow fever	Leaf, seed	Boil in water and add red potassium, boil together then sieve	2-3 cup full to be taken orally twice daily
7.	*Asadirachta indica* A. Juss.	Meliaceae	Darbejiya	Neem	Kusta/pbh/h/ voucher no: 61	24	Yellow fever, meningitis	Leaf, bark	Boil in water	2-3 cups to be taken orally 2-3 times daily
8.	*Bosica senegalensis* (Pers.) Lam. ex Fior.	Capparaceae	Anza	Aizen	Kusta/pbh/h/ voucher no: s.n	36	Smallpox, lassa fever	Root, leaf, bark	Boil in water together with lime juice then sieve	2-3 cups to be taken orally 2-3 times daily
9.	*Cassia occidentale* L.	Fabaceae	Tafasar	Coffee senna	Kusta/pbh/h/ voucher no: 71	2	Meningitis	Leaf	Infusion	To be applied to the affected part of the body
10.	*Cassia singueana* Delile	Fabaceae	Runhu	Sticky pod	Kusta/pbh/h/ voucher no: s.n	52	Hepatitis, meningitis	Flower, leaf, bark	Boil in water with some red potassium	To be taken orally / to be applied to the affected part of the body
11.	*Carica papaya* L.	Caricaceae	Gwanda	Pawpaw	Kusta/pbh/h/ voucher no: s.n	20	Hepatitis, yellow fever	Seed, leaf	Boil in hot water for 2-5 min then sieve	One cup full to be taken orally 2 times daily
12.	*Cinnamomum verum* J. Presl	Lauraceae	Cinnamon tree		Kusta/pbh/h/ voucher no: s.n	2	Yellow fever	Stem	Boil in water	To be taken orally
13.	*Cirtus limon* (L.) Osbeck	Rutaceae	Lemon		Kusta/pbh/h/ voucher no: s.n	30	Meningitis, COVID-19	Fruit, Leaf	Pour into water and allow to infuse	2-3 cups to be taken orally 2-3 times daily
14.	*Cochlospermum tinctorum* Perrier ex A. Rich.	Bixaceae	Rawaya		Kusta/pbh/h/ voucher no: s.n	30	Yellow fever Hepatitis	Root, bark, leaf	Boil in water	To be taken orally
15.	*Combretum micranthum* G. Don.	Combretaceae	Geza		Kusta/pbh/h/ voucher no: 311	60	Hepatitis, poliomyelitis, meningitis, monkey pox	Leaf, bark	Boil in hot water for 2-5 min then sieve	To be applied to the affected part of the body/2 cup full to be taken orally twice daily
16.	*Cordia africana* Lam.	Boraginaceae			Kusta/pbh/h/ voucher no: s.n	52	Hepatitis, yellow fever	Root, leaf, seed, bark	Boil in water	To be taken orally
17.	*Cymbopogon cirratus* (DC.) Stapf	Poaceae	Lemon grass		Kusta/pbh/h/ voucher no: s.n	4	Hepatitis	Leaf	Boil in water	2 cup full to be taken orally twice daily
18.	*Detarium senegalense* J.F. Gmel	Fabaceae	Taura	Detar/tallow tree	Kusta/pbh/h/ voucher no: s.n	4	Monkey pox, smallpox	Root, leaf, bark	Boil in water	2 cup full to be taken orally twice daily
19.	*Eleusine coracana* (L.) Gaertn.	Poaceae	Finger millet		Kusta/pbh/h/ voucher no: s.n	40	Monkey pox	Seed	Grind seed then pour into hot water and allow to infuse	2-3 cup full to be taken orally twice daily
20.	*Erythrina senegalensis* DC.	Fabaceae	Coral tree		Kusta/pbh/h/ voucher no: s.n	54	Poliomyelitis, lassa fever, yellow fever	Leaf, bark	Boil in water	2-3 cup full to be taken orally twice daily
21.	*Eucalyptus globulus* Labill	Myrtaceae	Blue gum		Kusta/pbh/h/ voucher no: s.n	2	COVID-19	Leaf	Boil in water	2-3 cup full to be taken orally twice daily
22.	*Ficus glomosa* Delile	Moraceae	Kawari	Rock fig	Kusta/pbh/h/ voucher no: s.n	50	Hepatitis, smallpox	Leaf, bark	Place in lukewarm water for 2-5 min then sieve	2 cup full to be taken orally twice or thrice daily
23.	*Ficus sycomorus* L.	Moraceae	Baure	Sycamore fig	Kusta/pbh/h/ voucher no: s.n	16	Hepatitis, meningitis	Leaf	Boil in water	2-3 cup full to be taken orally 2-3 times daily

(continued on next page)
No.	Scientific Name	Family	Common Name	Method of Use	Part of Plant	Storage Method			
24.	*Guiera senegalensis* J.F. Gmel.	Combretaceae	Sabara	Moshi Medicine	Kuwta/psh/h/ voucher no: 48	44	Hepatitis, poliomyelitis	Leaf, bark, root	Boil in water then sieve 3 cup full to be taken orally twice daily
25.	*Heeria insignis* (Delile) Kuntze	Anacardiaceae	Kasheshe		Kuwta/psh/h/ voucher no: s.n	24	Hepatitis	Leaf	Boil in water then sieve out leaves 2-3 cup full to be taken orally twice daily
26.	*Hygropha asculata* (Schumach.) Heine	Acanthaceae			Kuwta/psh/h/ voucher no: s.n	16	Hepatitis, yellow fever	Leaf	Pour into water and boil for 5-10 min, infusion To be taken by mouth
27.	*Lannea microcarpa* Engl. & K. Krause	Anacardiaceae	Faru	African grape	Kuwta/psh/h/ voucher no: s.n	26	Hepatitis, poliomyelitis	Bark, stem, leaf	Boil in water then sieve 2 cup full to be taken orally twice daily
28.	*Mangifera indica* L.	Anacardiaceae	Mango		Kuwta/psh/h/ voucher no: s.n	16	Hepatitis, meningitis	Bark, leaf	Boil in water then sieve out leaves 3 cup full to be taken orally 3 times daily
29.	*Mentha piperita* L.	Lamiaceae	Peppermint		Kuwta/psh/h/ voucher no: s.n	2	COVID-19	Leaf	Boil in water then sieve out leaves 3 cup full to be taken orally 3 times daily
30.	*Moringa oleifera* Lam.	Moringaceae	Zogale		Kuwta/psh/h/ voucher no: 121	10	Yellow fever	Leaf	Boil leaves in water and sieve out 3 cup full to be taken orally 3 times daily. Leaves can also be eaten 2-3 cup full to be taken orally twice daily
31.	*Nauclea diderrichii* (De Wild.) Merr.	Rubiaceae	Habbatu sauda		Kuwta/psh/h/ voucher no: s.n	30	Hepatitis, yellow fever	Stem bark, leaf	Boil in water 3 cup full to be taken orally twice daily
32.	*Nigella sativa* L.	Ranunculaceae	Black cumin		Kuwta/psh/h/ voucher no: s.n	6	Meningitis, COVID-19	Leaf, seed	Boil in water then sieve out 2 cup full to be taken orally twice daily. Oil can also be used 2 cup full to be taken orally twice daily
33.	*Pilocarpus reticulatum* (DC.) Hochst.	Fabaceae	Camel’s foot		Kuwta/psh/h/ voucher no: s.n	58	Hepatitis, poliomyelitis, smallpox	Leaf	Boil in water 2 cup full to be taken orally twice daily
34.	*Petrosigynus rainierae* Poit.	Fabaceae	Madobiya	African rosewood	Kuwta/psh/h/ voucher no: s.n	4	Poliomyelitis	Root	Boil in water then sieve 2 cup full to be taken orally twice daily
35.	*Psidium guajava* L.	Myrtaceae	Guava		Kuwta/psh/h/ voucher no: 67	10	Meningitis	Leaf	Boil in water then sieve 2-3 cup full to be taken orally 2-3 times daily
36.	*Securidaca longipedunculata* Fresen.	Polygalaceae	Violet tree		Kuwta/psh/h/ voucher no: 207	12	Hepatitis, meningitis	Leaf	Boil in water then sieve out To be applied to the affected part of the body/2 cup full to be taken orally 2 times daily To be taken orally
37.	*Strychnos madagascariensis* Desv.	Fabaceae	Snake bean		Kuwta/psh/h/ voucher no: s.n	20	Smallpox	Leaf, bark	Pour into water and boil for 5-10 min To be taken orally
38.	*Syzygium aromaticum* (L.) Merr. & L.M.Perry	Myrtaceae	Glove		Kuwta/psh/h/ voucher no: s.n	22	Yellow fever, COVID-19	Fruit, Seed	Pour into water and boil for 5-10 min To be taken orally
39.	*Terminalia avicennioides* Guill. & Perr.	Combretaceae	Baushe		Kuwta/psh/h/ voucher no: 315 b	2	Yellow fever	Leaf	Pour into water and boil for 5-10 min To be taken orally
40.	*Vernonia amygdalina* Del.	Compositae	Bitter leaf		Kuwta/psh/h/ voucher no: s.n	28	Hepatitis, yellow fever, meningitis	Leaf, seed, bark	Boil in water and sieve 2-3 cup full To be taken orally 2-3 times daily
41.	*Vaccinium album* L.	Santalaceae	Mistletoe		Kuwta/psh/h/ voucher no: s.n	6	Monkey pox, hepatitis	Seed, whole plant	Boil in water 2 cup full To be taken orally twice daily
42.	*Zingiber officinale* Roscoe	Zingiberaceae	Garden ginger		Kuwta/psh/h/ voucher no: s.n	20	Yellow fever, COVID-19	Seed, bark	Grind then pour into water and boil, sieve out and drink as tea 2-3 cup full to be taken orally 2-3 times daily
43.	*Ziziphus mauritiana* Lam.	Rhamnaceae	Magarya		Kuwta/psh/h/ voucher no: 258 a	28	Poliomyelitis	Root, leaf	Boil in water and add some lime juice, sieve and drink as tea 2-3 cup full to be taken orally 2-3 times daily
Furthermore, the yellow fever virus causes acute viral hemorrhage that continues to cause morbidity and mortality in Africa. For over 21 years cases of yellow fever were not reported in Nigeria until its resurgent case was confirmed in Meludan Local Government Area, Kwarar State in September 2017 [37]. Besides a successful vaccination campaign, Nigerians especially residents of rural areas also rely on herbal medicine for the treatment of yellow fever. Herein, Eucalyptus globulus, M. indica, and Cochlodpermum tinctorium, and M. sapientum were cited as the most frequently used plants used for the treatment of yellow fever by HMPs in Katsina, Kebbi, Sokoto, and Kwarar states. Previous studies have reported the use of medicinal plants in Nigeria for the treatment of yellow fever and other fevers. For instance, an infusion of fruit of M. sapientum was prepared with Citrus paradisi to treat yellow fever. Similarly, the leaf and bark of M. indica were prepared with other plants as infusion or decoction to treat yellow fever by HMPs in Ogun State of Nigeria [38]. Furthermore, several plants used for the treatment of yellow fever as mentioned in the present study including A. indica, C. papaya, Z. officinalis, Citrus aurantifolia, Senna occidentalis, Atelis boa nei, Anacardium occidentale among others were also reportedly used to treat yellow fever in Ogun State in agreement with the present study [38]. In addition, A. indica, Erythrina senegalensis, and A. senegalensis mentioned in the present study were also reportedly used to treat febrile illnesses including yellow fever HCPs in Gboko and Kastina-Ala communities in Benue state of Nigeria [39]. Pharmacological studies have also demonstrated the potent effect of different cultivars of Musa spp. (banana) against yellow fever virus with EC50 of 6.27–46.2 μg/ml [40]. Interestingly, M. Sapientum was mentioned as the most frequently used plant to treat yellow fever in Kwarar State. Furthermore, following 48 h treatment, M. indica, and Enantia chlorantha induced potent larvicidal effects against Aedes aegypti, a primary vector for yellow fever [41]. Similarly, Psidium guajava and A. nilotica induced a larvicidal effect against A. aegypti [42].

On the other hand, Lassa fever was discovered in Nigeria in 1969 and there have been regular episodes of outbreaks. A total of 963 confirmed laboratory cases of lass fever and 188 mortality were recorded as of April 2020 with the majority of the cases reported in Edo (32%), Ebonyi (8%), and Ondo (32%) states of Nigeria [43]. However, in contrast to yellow fever, studies on the treatment of Lassa fever by HMPs or the pharmacological effect of medicinal plants on Lassa fever have not been reported. The present study reported decoctions Plamagago seylanica and E. chlorantha as the most frequently used plants to treat Lassa fever by HMPs in Kwarar State. Interestingly, no response was recorded for Lassa fever treatment in Sokoto, Kebbi and Kastina states. This could be attributed to the fact that outbreaks are fewer in the northwestern states compared to the southern states of Nigeria. Although geographically, Kwarar state is in the Northwestern part of Nigeria, it is however a western state with predominantly Yoruba tribe and other minority tribes such as Fulani, nupe, etc.

COVID-19 has negatively affected millions of people globally with high mortality since it was declared a pandemic by the World Health Organization. Besides, the conventional medicine used to combat COVID-19, medicinal plants, and herbal medicine offer an alternative and have been used to treat COVID-19. Herein, Aframomum melegueta, A. leiocephalus, and A. indica, were the most frequently mentioned plants for the treatment of COVID-19 in Kebbi and Kwarar States, respectively. Whereas, S. aromaticum was the frequently mentioned plant for Katsina and Sokoto States. Interestingly, HMPs from all the states mentioned S. aromaticum for the treatment of COVID-19.

Ethnomedicinal studies on the use of plants for COVID-19 treatment are listed in comparison to other viral diseases. To the best of our knowledge, this is the first study investigating the use of medicinal plants to treat COVID-19 in Nigeria. Nevertheless, a recent survey reported S. aromaticum, Z. officinalis, P. guajava, and A. indica, as medicinal plants used by Nepalese during COVID-19 all of which have been mentioned in the present study as a remedy for COVID-19 [44]. Interestingly, as shown in Table 7, most of the medicinal plants cited herein for COVID-19 treatment have been reportedly used to at least treat cold, flu, whooping cough, bronchitis, and other respiratory diseases and problems. For instance, P. guajava is used to treat cold and cough in African countries [45]. Whereas, Angiogisis leiocephalus is used to treat cold, fever, and acute respiratory infection in Africa [46]. Unlike other viral diseases, in vitro pharmacological studies and ethnomedicinal studies on the potency of medicinal plants against COVID-19 have been scarcely conducted. However, an in silico study suggested that C. papaya mentioned herein for COVID-19 treatment in Kebbi state could induce an in vitro antiviral effect against COVID-19 [47].

Over 40 years ago, the World health assembly accepted a report concluding the eradication of smallpox disease [48]. Besides the vaccination programs, rural areas also depended on herbal medicine for the treatment of smallpox, and thus it is important to document and possibly harness this knowledge. For instance, the ripe grapes of Vitus vulpina were reportedly used for the treatment of smallpox and other diseases [49]. In the present study, Acacia senegal, Gwillma senegalensis, Lagerania breviflora, P. reticulatum, L. inemis, and E. coracana, were cited as the most frequently mentioned plants used to treat smallpox in Katsina, Kebbi, Sokoto, and Kwarar states, respectively. On the other hand, there has been a reemergence of monkeypox in Nigeria in 2017 since the last human monkeypox was reported in 1978 with a total of 146 cases reported across 22 states [50]. In the present study, B. breviflora A. egypiticus, and E. coracana, were cited as the most frequently used plants to treat monkey pox in Kwarar, Kebbi, and Sokoto States, respectively. Interestingly, B. breviflora was mentioned as the most frequently used plant to treat both smallpox and monkeypox by HMPs in Kwarar State. Whereas, no response was recorded for medicinal plants used for treating the monkey virus in Katsina state. Ethnomedicinal studies have reported the use of medicinal plants cited herein for the treatment of smallpox, boils, itch, and other skin diseases. For instance, A. nilotica is reportedly used to treat smallpox in West African countries [51]. Similarly, A. indica is used to treat chickpox, smallpox in Ayurveda, and infectious diseases in Nigeria [52,53]. Furthermore, L. inemis is mentioned as a treatment for smallpox in Islamic medicine and treatment of measles in Nigeria in contrast to its reported use for the treatment of monkeypox as shown in the present study [36,54]. Besides, medicinal plants cited herein for treatment of small and monkey pox have also been reportedly used to treat other skin diseases. This includes C. procera and D. senegalense that are used for treating boils and skin infections in Nigeria [31,55]. Likewise, S. setigera (measles and chicken pox), V. vergaund (fever and boils), and V. paradoxus (chicken pox and skin diseases) are used for treating skin diseases in Nigeria (Table 7) [15,56]. In contrast, Agaratum conyzoides and Ricinus communis are also reportedly used to treat crack-craw in Africa although the plants were not cited for treatment of smallpox or monkey pox in the present study [57–59].

However, the antiviral activities of the aforementioned plants against smallpox and monkeypox virus have not been reported in vitro. Nonetheless, in vitro antiviral activity against the smallpox virus has
Table 7

Plant name	Ethnomedicinal uses in literature	Antiviral activity	Toxicity/ poisonous effect	Disease treated in present study
Acacia nilotica (L.) Delile	Woods are used to treat smallpox in west Africa [51]. Bark decoction is used to treat hepatitis in Burkina Faso [15].	Antiviral activity against HIV-1 protease [63], hepatitis C [64].	No significant in vivo and in vitro toxicity on rat and Vero cell lines [65].	Hepatitis, monkey pox, meningitis, smallpox, poliomyelitis, COVID-19, Yellow fever
Acacia Senegal (L.) Wild	Leaves are used to treat typhoid fever in west Africa [66].	Antiviral effect against polio virus, hepatitis C and Herpes simplex virus [21,29].	No toxicity was observed in vivo on F344 rats [67].	Smallpox
Adansonia digitata L.	Leaves are used to treat fever in Africa [68]. Bark is used to treat hepatitis in Burkina Faso [15].		Nontoxic in acute toxicity study [69].	Poliomyelitis, smallpox, yellow fever, meningitis, monkey pox, hepatitis
Aframomum melegueta K. Schum.	Used to treat body pain, rheumatism, diarrhoea, cataract, congestion in Nigeria [70].	Inhibited measles and yellow fever virus. No activity against polio virus-1 [33,70].	Included in FDA of botanicals considered safe [71].	Hepatitis, monkey pox, smallpox, COVID-19, poliomyelitis, yellow fever
Ageratum conyzoides (L.) L.	Used to treat fever in Togo and HIV in Nigeria. Used to treat infectious diseases, headache, febrile, crustacean, and burns in African countries [57,58].		No mortality or severe toxicity in acute 28 days sub-chronic study [57].	Hepatitis, lassa fever, poliomyelitis
Alafia barteri Oliv.	Used to treat malaria, fever and rheumatic pain in southwest Nigeria [72].	Patent for the use of the extract for treatment of AIDS [74].	Induced moderate toxicity on crustacean A. salina larvae [72].	Meningitis, lassa fever
Allium cepa	Used to treat cold and fever in Asia, hypertension in Nigeria and flu, cough and cold in Europe and south/north America [73].	Virucidal effect against HSV, vaccinia, influenza, HIV and hepatitis A virus [82].	Generally poses little safety concerns [75].	Poliomyelitis, COVID-19, meningitis, hepatitis
Allium sativum L.	Used to treat fevers and cold in India, Pakistan and middle east and as antibiotic in Africa [75].		No report of adverse effect from clinical trials [76].	Meningitis, Hepatitis, lassa fever
Aloe vera (L.) Burm.f.	Used by Arabs to treat fever and burns in Africa, hepatitis in Uganda [16,76].	Induced antiviral activity against HSV1, HSV2, varicella- zoster virus, influenza virus, and pseudorabies virus, [77].		
Alostia boomei De Wild	Used to treat malaria and fever in Nigeria and West Africa [78].			
Anacardium occidentale L.	Used to treat infectious and enteric conditions such as typhoid in Nigeria [80], and yellow fever in Benin and Malaysia [81].	Induced total inhibition of poliovirus, astrovirus, HSV1 [31].	Higher doses of hexane leaf extract at 6 g/kg caused anorexia, diarrhea, and syncope with LD₅₀ at 16 g/kg [82]. Ingestion of seeds can cause burns/death [62].	Smallpox, Lassa fever, yellow fever
Ananas comosus (L.) Merr.	Used to treat intestinal worm, contraceptive, diuretic, jaundice, diarrhoea, diabetes and bronchitis. Used to treat typhoid fever in southwest Nigeria [83].	Antiviral activity against polio virus-1 [34].	The leaf extract is not toxic [84]. Consumption of the peel can cause itching [62].	Meningitis, lassa fever, yellow fever, COVID-19
Annona senegalensis Pers.	The leaf is used to treat cough, yellow fever, tuberculosis, chicken pox and smallpox in Nigeria [85,86]. Used to treat chicken pox, measles, fever, malaria and headache in Benin [87]. Leaf is used to treat hepatitis in Burkina Faso [15]. Used to treat meningitis in Namibia [28].	No antiviral activity detected against poliovirus, astrovirus, HSV1 [31].	Oral LD₅₀ of 1296 g/kg [85].	Poliomyelitis, Hepatitis, yellow fever
Anogeissus leiocarpus (DC.) Guill. & Perr.	Used to treat hepatitis, fever, jaundice, cold, typhoid, yellow fever, tuberculosis, cough, acute respiratory infection in Africa [46]. Used to treat hepatitis in Burkina Faso [15].	LD₅₀ was 1400 mg/kg in rats [46].	Monkey pox, poliomyelitis, Meningitis, yellow fever, COVID-19	
Aristolochia ringens	Used to treat typhoid and fever in Nigeria and south America, respectively [88].	Isolated polysaccharides induced antiviral effect against poliovirus, anti- hepatitis C activity [21,30].	The LD₅₀ of the aqueous root extract is greater than 10 g/kg [89].	Yellow fever, lassa fever
Asandra indica A. Juss.	Leaves are used in Ayurveda to treat viral infections, cold, influenza, herpes, chicken pox and fever [52]. Used as deterrent for small pox and infectious diseases in India. Malaria and meningitis treatment in Nigeria [26,53].	The LD₅₀ of oil was 31.95 g/kg [90]. Whereas, 50-300 mg/kg of stem bark extract induced alteration in biochemical parameters [91].		Smallpox, monkey pox, COVID-19, poliomyelitis, yellow fever, Meningitis, Lassa fever
Balanites aegyptiaca (L.) Delile	Root is used to treat malaria whereas, seed oil is used to treat jaundice, yellow fever and syphilis in Nigeria [92].	Antiviral activity against hepatitis C [21] and antiviral activity against HIV [93].	The seed oil did not induce any toxicity in male Wister rats [94].	Hepatitis, monkey pox, meningitis, smallpox, poliomyelitis COVID-19
Bidens pilosa L.	Used to treat fever, malaria in South Africa, all types of infection in Brazil, cold, flu and hepatitis in India [95], Yellow fever, influenza in Uganda,	Antiviral activity against influenza, anti-HIV, antihypertensive, antiinflammatory, antidiabetic, antiviral and antifulvus activities [97].	An oral dose of 10 g/kg did not cause any mortality or changes in rats [96].	
Plant Name	Uses	Toxicity Studies	Notes	
---	---	---	---	---
Boswellia dalzielii	Used to treat typhoid in Kenya, tuberculosis in Tanzania, HIV/AIDS in Zambia, cough in Sudan and fever in Nigeria, Kenya and Sudan [98]	Induced total inhibition of poliovirus, astrovirus and 75% inhibition of HIV-1 and equine HIV [31]	Toxicity studies on brine shrimp and Vero cells revealed LC₅₀ of 22.8 µg/ml and EC₅₀ of 304.9 µg/ml [98]	COVID-19
Cassia occidentals	Used to treat diarrhea and fever [31]. Bark is used to treat malaria and yellow fever in Africa [99]	The LD₉₀ of aqueous stem bark extract was > 3000 mg/kg [100]	Poliomyelitis, yellow fever	
Carica papaya	Used to treat diarrhea, fever, headache, stiffness and boils in Africa [101,102]	Acute and sub-chronic toxicity study at 5000 mg/kg did not induce any death or significant alteration of biochemical and histological parameters [101]	Poliomyelitis	
Byrsocarpus coccineus	Used to treat measles, jaundice, anemia, and skin disorders [105]	Ethanol root extract acute toxicity at 5000 mg/kg and subchronic toxicity at 800 mg/kg did not cause mortality or biochemical and hematological abnormalities [104]	Hepatitis, meningitis, lassa fever, yellow fever, smallpox, poliomyelitis	
Citrus aurantifolia	Used to treat cough, fever, jaundice, anemia, and skin disorders in India affected the hepatic, skeletal, brain system and resulting in fatal coma [14]	It is a toxic plant and induced dose dependent toxicity and nephropathy in vivo [55]. Consumption of leaf can cause death [62]	Smallpox, COVID-19, monkey pox, poliomyelitis	
Citrullus lanatus	Used to treat boils, malaria, fever, pain, respiratory disease, cough, skin infection, cold and pneumonia, eczema in Ghana, Nigeria, Burkina Faso, India, Yemen and Saudi Arabia [55]	Induced antiviral effect against HIV, white spot syndrome virus and foot and mouth disease virus [55]	Subchronic toxicity including hepatopatia, hyperlipidemia and hepatotoxicity, hyperuricemia have been reported for aqueous and ethanol leaf extract [107]	
Cordia africana	Used to treat infection, jaundice, hepatitis, cirrhosis in Nigeria [85] and fever in Jamaica as well as whooping cough and skin diseases [108]. Leaves are used to treat hepatitis in Burkina Faso [15].	Induced inhibitory activity against Dengue virus [105,106]	Hepatitis, meningitis, COVID-19, poliomyelitis, smallpox, yellow fever, monkey pox	
Cassia tora	Leaves and seeds are used as a liver tonic, antimicrobial, skin diseases, fever, and cardiotonic in Ayurveda [110,111]	Dried seed extract inhibited replication SARS-CoV replication [112]	Hepatitis, meningitis, yellow fever	
Chamaemelurus dependens Hochst.	Used to treat infectious diseases, pain, malaria, epilepsy, convulsions and fractures in Nigeria and West Africa [114]	The ethanol seed extracts did not induce subchronic toxicity effect on biochemical parameters of rat [113]	Poliomyelitis, meningitis	
Chenopodium ambrosioides L.	Used to treat fever in Morocco and as treatment for lung and fungal infection in West Africa [116,117]. Leaf powder is used to treat malaria, cough, skin rash, chest pain, jaundice, toothache and stomatchache in Ethiopia [119,120]	Induced antiviral activity against HIV-1 [118]	Poliomyelitis, meningitis	
Cordia africana	Used to treat cough, fever, jaundice, hepatitis, cirrhosis in Nigeria [85] and fever in Jamaica as well as whooping cough and skin diseases [108]. Leaves are used to treat hepatitis in Burkina Faso [15].	Induced inhibitory activity against Dengue virus [105,106]	Hepatitis, meningitis, COVID-19, poliomyelitis, smallpox, yellow fever, monkey pox	
Cinnamomum verum	Used for treating indigestion, aching joints and respiratory and urinary troubles in India and Sri Lanka [122]	Essential oil induced antiviral activity against influenza, H1N1, HSV-1 [123,124]	No significant subchronic toxicity with LD₅₀ greater than 1600 mg/kg in rabbits [125]	Yellow fever
Claus populea Guill. & Perr.	Root bark is used to manage pain in Mali and infected wound and boils in Cote d’livoire [126,127]	Long term effect of aqueous stem bark extract at 600 g/kg did not induce any significant changes in biochemical parameters [128]	Poliomyelitis, meningitis, monkey pox	
Citrus limon (L.) Osbeck	Used to treat cold, scurry, fever, chest pain in Romania, and used to treat fever, cough and high blood pressure in Trinidad [129]	Essential oil significantly reduced titer of hepatitis A virus on soft fruits surfaces [23], inhibition of HSV, anti-inflammatory, antimicrobial and effect on the nervous, cardiovascular and respiratory system [129]	Juice did not induce any acute and subacute toxicity in mice at 2000 mg/kg [121]	Meningitis, COVID-19
Citrullus lanatus	Fruits are used to treat diarrhea and goniomelaria in Nigeria. Used to treat fever, yellowish urine, nephritis and diabetes in Islamic text and medicine [131,132]	Essential oil induced antiviral activity against influenza, H1N1, HSV-1 [123,124]	Ethanol seed extract did was not toxic at 1000 mg/kg [134]	Hepatitis, monkey pox, COVID-19, yellow fever, smallpox, poliomyelitis
Citrus aurantifolia (Christm.) Swingle	Fruits are used to treat fever, jaundice, headache, cough and malaria in Nigeria [135]. Fruit infusion is used to treat hepatitis in Burkina Faso [15]	Juice inhibited the entry and propagation of influenza virus in vitro and in vivo [133]	Water extract did not show sign of toxicity however, 3.5 g/kg dose of fruit showed toxicity in rats [135]	Yellow fever, poliomyelitis
Calotropis procera (Aiton) Dryand	Used to treat boils, malaria, fever, pain, respiratory disease, cough, skin infection, cold and pneumonia, eczema in Ghana, Nigeria, Burkina Faso, India, Yemen and Saudi Arabia [55]	Induced antiviral effect against HIV, white spot syndrome virus and foot and mouth disease virus [55]	Subchronic toxicity including hepatopatia, hyperlipidemia and hepatotoxicity, hyperuricemia have been reported for aqueous and ethanol leaf extract [107]	
Carica papaya	Used to treat infection, jaundice, hepatitis, cirrhosis in Nigeria [85] and fever in Jamaica as well as whooping cough and skin diseases [108]. Leaves are used to treat hepatitis in Burkina Faso [15].	Induced inhibitory activity against Dengue virus [105,106]	Hepatitis, meningitis, COVID-19, poliomyelitis, smallpox, yellow fever, monkey pox	
Cassia occidentalis L.	Used to treat infection, jaundice, hepatitis, cirrhosis in Nigeria [85] and fever in Jamaica as well as whooping cough and skin diseases [108]. Leaves are used to treat hepatitis in Burkina Faso [15].	Induced inhibitory activity against Dengue virus [105,106]	Hepatitis, meningitis, COVID-19, poliomyelitis, smallpox, yellow fever, monkey pox	
Chamaemelurus dependens Hochst.	Used to treat infectious diseases, pain, malaria, epilepsy, convulsions and fractures in Nigeria and West Africa [114]	Induced antiviral activity against HIV-1 [118]	High doses of 12.31–31.89 g/kg caused lung congestion and necrosis of the kidney tubules [117]	
Cordia africana Lam.	Used to treat fever in Morocco and as treatment for lung and fungal infection in West Africa [116,117]. Leaf powder is used to treat malaria, cough, skin rash, chest pain, jaundice, toothache and stomatchache in Ethiopia [119,120]	Induced antiviral activity against HIV-1 [118]	Seed extract did not cause toxicity to mice at 2000 mg/kg [121]	
Cinnamomum verum	Used for treating indigestion, aching joints and respiratory and urinary troubles in India and Sri Lanka [122]	Essential oil induced antiviral activity against influenza, H1N1, HSV-1 [123,124]	No significant subchronic toxicity with LD₅₀ greater than 1600 mg/kg in rabbits [125]	Yellow fever
Claus populea Guill. & Perr.	Root bark is used to manage pain in Mali and infected wound and boils in Cote d’livoire [126,127]	Long term effect of aqueous stem bark extract at 600 g/kg did not induce any significant changes in biochemical parameters [128]	Poliomyelitis, meningitis, monkey pox	
Citrus limon (L.) Osbeck	Used to treat cold, scurry, fever, chest pain in Romania, and used to treat fever, cough and high blood pressure in Trinidad [129]	Essential oil significantly reduced titer of hepatitis A virus on soft fruits surfaces [23], inhibition of HSV, anti-inflammatory, antimicrobial and effect on the nervous, cardiovascular and respiratory system [129]	Juice did not induce any acute and subacute toxicity in mice at 130	Meningitis, COVID-19
Citrullus lanatus	Fruits are used to treat diarrhea and goniomelaria in Nigeria. Used to treat fever, yellowish urine, nephritis and diabetes in Islamic text and medicine [131,132]	Essential oil induced antiviral activity against influenza, H1N1, HSV-1 [123,124]	Ethanol seed extract did was not toxic at 1000 mg/kg [134]	Hepatitis, monkey pox, COVID-19, yellow fever, smallpox, poliomyelitis
Citrus aurantifolia (Christm.) Swingle	Fruits are used to treat fever, jaundice, headache, cough and malaria in Nigeria [135]. Fruit infusion is used to treat hepatitis in Burkina Faso [15]	Juice inhibited the entry and propagation of influenza virus in vitro and in vivo [133]	Water extract did not show sign of toxicity however, 3.5 g/kg dose of fruit showed toxicity in rats [135]	Yellow fever, poliomyelitis

(continued on next page)
Table 7 (continued)

Plant Name	Description	Antiviral Activity	Toxicity
Citrus sinensis	Used to treat cold, cough, and respiratory disorder in Chinese medicine, tuberculosis in Mexican medicine and angina, hypertension and diarrhea in France [136]	No adverse effect from consumption of orange juice [136]	Hepatitis, COVID-19, yellow fever, poliomyelitis
Cochlospermum tinctorium Perrier ex A.Rich.	Used to treat malaria in Mali. Used to treat liver disease, syphilis, measles, yellow fever, boils, fever and abdominal pain [137]. Decoction and powder of root are used to treat hepatitis in Burkina Faso [135]	Acute oral administration of root extract at 500 mg/kg did not induce toxic effect [135]	Yellow fever
Combretum glutinosum Perr.	Used to treat hepatic disease in Africa [24] and malaria in Senegal [138]. Whole plant powder is used to treat hepatitis in Burkina Faso [135]	Aqueous extract inhibited ACE and Hepatitis B surface antigen [24]	Meningitis
Combretum micranthum Glutinosum ex A.Rich.	Used for diuretic, digestion and gastrointestinal problem in Senegal and west Africa. The fresh leaves are also used to treat malaria and fistulas in skin and other wounds in Ghana [139]	Oral dose of aqueous leaf extract at 2000 mg/kg did not induce acute toxicity [139]	Meningitis
Don. Cymbopogon citratus (DC.) Stapf	Used to treat fever, analgesic and antiplasmocid and antiinflammatory in Africa, Asia and south America. Used to treat stomachache, toothache, bacterial and fungal infection in Algeria [145], headache and fever in India [146], malaria in Nigeria and Ghana [147]	Extract induced antiviral activity against HSV-1 and HSV-2 [134]	Hepatitis, poliomyelitis, meningitis, monkey pox, yellow fever
Elaeis guineensis J.F. Gmel.	Used to treat boils, fever, skin disease and dysentery in Nigeria [31]	Induced 75% of poliovirus, astrovirus and HSV [31]	Hepatitis, lassa fever, yellow fever
Detarium senegalense J.J. Don.	Used to treat fever, cancer, boils, diarrhea, convulsion and gastrointestinal disorder in southern Nigeria. Used to treat gonorhhea, skin infection, bronchitis, and wound healing in Cameroun and Ghana [133]	The seed oil did not induce toxicity on liver and kidney of rats [149]	Smallpox, yellow fever, COVID-19, meningitis, lassa fever, yellow fever, smallpox, poliomyelitis
Diocurus mespiliformis Hochst. ex A.DC.	Used to treat syphilis, pneumonia, malaria and skin infections in Namibia [136]. Used to treat stomach, vomiting and diarrhea in South Africa [131]	Methanol leaf extract did not induce acute oral toxicity at 5 g/kg [154]. Consumption of leaf can cause discomfort [62]	Hepatitis, meningitis, lassa fever, yellow fever, poliomyelitis
Elaeis coracana (L.) Gaertn.	Used to treat diabetes, ulcer, osteoporosis and anemia [155]	Isolated probiotic strains did at 5000 mg/kg and 1000 mg/kg did not induce acute or subchronic toxicity in rats [136]	Monkey pox
Enantia chlorantha Oliv.	Used to treat malaria, boils, yellow fever, hepatitis, jaundice, typhoid fever, tuberculosis in Africa [137]	Induced antiviral and larvicidal effect against yellow fever virus and vector, anticonvulsion and antimicrobial activity [24,157,158]	Poliomyelitis, meningitis, lassa fever, yellow fever
Frythira senegalensis DC.	Used to treat malaria, fever, infections, pneumonia, neutralic malaria, jaundice, pain, diarrhea and typhoid fever in Mali [140]. Used to treat fever and malaria in middle belt and northern Nigeria [161]	Anti-HIV activity [160]	Poliomyelitis, lassa fever, yellow fever
Eucalyptus globulus Labill.	Used to treat wound, fever and fungal infection by aboriginal Australians. Used to treat bronchitis, congestion of airways, sinus, asthma, toothache and headache [163,164]	The LD_{50} of chloroform stem bark extract is 526 mg/kg with significant histopathological changes [162]	Poliomyelitis, lassa fever, yellow fever
Euphorbia hirta L.	Used to treat gastrointestinal disorder, fever, skin diseases, bronchial and respiratory diseases in South Africa [167,168], cough, gonorrhea and tuberculosis [169]	Ethanol stem bark extract induced toxicity at high dose [159]	Poliomyelitis, meningitis, lassa fever, yellow fever
Euphorbia lateriflora Schumach.	Used to treat parasitic infection, blood disorder and urinary tract infection [171]	The LD_{50} of whole plant ethanol extract > 5000 mg/kg [172]. Consumption of the sap and root may cause death [62]	Smallpox, COVID-19, yellow fever

(continued on next page)
Plant Name	Use	Antiviral Activity	Toxicity
Evolvulus alpinus Linn.	Used to treat dysentery, fever, strengthen the brain and memory, bronchitis, asthma and hemorrhages. Used to treat mental problems, epilepsy, insanity and nervous debility in India. Used to treat bronchitis, stomach ache and asthma in Nigeria, as love potion in Ghana and antimalarial, fever in India [173-175].	Antiviral activity against HIV [199] Exhibited toxicity to different species including human, animals and microorganisms [199].	Meningitis, lassa fever
Ficus pertyphylla Delile	Used to treat insomnia, psychosis, depression, epilepsy, pain and as an analgesic in Northern Nigeria [176]. Used to treat malaria and tuberculosis in Africa [177].	Induced antimalarial activity, behavioral and anticonvulsant effect, sedative effect, decreased cerebral ischemia, antimalarial and anti-inflammatory [177-180].	Intraperitoneal and oral LD₅₀ were greater than 2000 mg/kg and 5000 mg/kg, respectively [176]. Poliomelitis, smallpox, yellow fever, meningitis, monkey pox
Ficus polina Vahl	Used to treat infectious diseases, abdominal pain, dyspepsia and diarrhea [181].	The LD₅₀ of aqueous stem bark was > 5000 mg/kg [182].	Poliomelitis, smallpox, yellow fever, meningitis, monkey pox COVID-19
Ficus sycomorus L.	Used to treat cough, skin infection, liver disease, diabetes mellitus, bronchitis, urinary tract infection in India. Extract and fractions induced antiviral activity against measles virus, poliovirus, yellow fever virus and HSV-1 [32].	The LD₅₀ of oral aqueous leaf extract was > 3000 mg/kg [185].	Meningitis, smallpox
Ficus thornigii Blume	Used to treat diarrhea, gonorrhea and diabetes mellitus, bronchitis, urinary tract infection in Africa. Used to treat jaundice, ulcers, inflammation and respiratory and chest disease [183,184].	The aqueous stem bark is safe up to 5000 mg/kg with no significant side effects [196].	The LD₅₀ of methanol extract is 550 mg/kg [190]. Poliomylitis
Garcinia kola Heckel	Used to treat headache, cure cough, dysentery, chest colds, liver disorders, diarrhea, laryngitis, bronchitis, and gonorrhea, fever, malaria in Benin [187-189].	Extract and fractions induced antiviral activity against measles virus, poliovirus, yellow fever virus and HSV-1 [32].	The LD₅₀ for seeds is > 5000 mg/kg [186]. Hepatitis, meningitis, lassa fever, yellow fever, poliomyelitis
Gardenia erubescens Stapf. & Hutch	Used to treat headache, sore nerve, navel pain, muscle ache in Burkina Faso. Used to treat malaria, anemia in Benin [187-189].	The aqueous stem bark is safe up to 5000 mg/kg with no significant side effects [196].	The LD₅₀ of methanol extract is 550 mg/kg [190]. Poliomylitis
Guiera senegalensis J. F. Gmel.	Used to treat enteric problems and worms in Nigeria [31]. Powdered infusion of root is used to treat hepatitis in Burkina Faso [15].	Induced 75% inhibition of poliovirus, astrovirus and HSV [31].	Plant is nontoxic at moderate doses but could be toxic at high dose over prolonged time [191]. Poliomylitis, yellow fever, smallpox COVID-19, meningitis, hepatitis, monkey pox
Harungana madagascariensis Lam. ex Poir	Used to treat typhoid, diarrhea, anemia in Cameroun, skin diseases in Ghana, analgesic and treatment of toothache in Guinea, Chronic diarrhea in Tanzania and Rwanda. Used to treat asthma, tuberculosis and fever [192,193].	Induced anti-HIV activity [194].	The LD₅₀ of fruits was > 5000 mg/kg and long term use at high dose could induce toxicity [195]. Hepatitis, meningitis, poliomyelitis
Hygrophila auriculata (Schumach.)	Used to treat jaundice and other hepatic obstruction, malaria. Inflammation, gout, rheumatism, anemia, cough and pain.	The plant does not pose any toxic or side effects [196].	The LD₅₀ of ethanolic fruit extract was > 5000 mg/kg with hepatotoxicity at higher dose [204]. Monkey pox, smallpox
Jatropha curcas L.	Used to treat diabetes in Nigeria, fever, malaria and convulsion in west Africa, headache and jaundice in India, and skin infection in Mali [199].	Antiviral activity against HIV [199].	Exhibited toxicity to different species including human, animals and microorganisms [199]. Meningitis, lassa fever
Kigelia africana (Lam.) (Benth)	Used to treat cancer, inflammation, skin infections, and diarrhea in Nigeria, boils, malaria, measles and STDs in Africa [200].	The aqueous stem bark is safe up to 5 g/kg [206].	The aqueous stem bark is safe up to 5 g/kg [200]. Hepatitis, yellow fever, poliomylitis
Lagenaria breviflora (Benth.) Roberty	Used as an abortifacient and to treat appendicitis, cancer and rheumatism in southern Nigeria [201-203].	LD₅₀ of aqueous trunk bark extract was 5000 mg/kg with no significant subchronic toxicity in rats [207].	LD₅₀ greater than 1600 mg/kg [85]. Monkey pox, meningitis, COVID-19, yellow fever, lassa fever
Lannea microcarpa Engl. & K. Krause	Bark decoction used to treat hepatitis in Burkina Faso, wound healing and schizophrenia spectrum disorder in Mali [15,205,206].	Induced antiviral activity against Sindbis virus, HSV and polio virus [35].	LD₅₀ greater than 1600 mg/kg [85]. Monkey pox, meningitis, COVID-19, yellow fever, lassa fever
Lawsonia inermis L.	Used to treat ring worm, infection and skin disease in South India. Mentioned as medicine for smallpox, chicken pox, ulcers, tumors in Islamic medical text. Used to treat fever, jaundice, cough, bronchitis and inflammation. Used to treat poliomyelitis and measles in southwest Nigeria [50,54].	Induced antiviral activity against Sindbis virus, HSV and polio virus [35].	LD₅₀ greater than 1600 mg/kg [85]. Monkey pox, meningitis, COVID-19, yellow fever, lassa fever

(continued on next page)
Table 7 (continued)

Plant Name	Uses and Activities
Leptadenia hastate (Vatke)	Leaf ad root decoction are used to treat hepatitis in Burkina Faso. Used to treat catarrh, hypertension and skin disease in Nigeria [15,208]
Ludwigia octovalvis (Jacq.) P.H. Raven	Used to treat nervous diseases, edema, dysentery, nephritis, diarrhea, headache and orchitis [209]
Mangifera indica (Lam.) Exell	Leaf decoction is used to treat hepatitis in Burkina Faso and Uganda. Used to treat gastrointestinal, respiratory and genitourinary diseases, burn, itch, fever, cough, scurvy and throat/mouth infection [15,16,210,211]
Mentha piperita L.	Stem bark extract inhibited HIV-1 replication and HIV-1 protease [63]
Morinda lucida Benth.	The plant was toxic to mice at 1200 mg/kg [212]
Moringa oleifera Lam.	Can deprive the human body iron and cause anemia when consumed excessively in combination with spearmint [216]
Musanga cecropioides (De Wild.) Kuntze	The LD₅₀ of hydroethanol leaf extract was > 3000 mg/kg [217].
Nauclea diderrichii (De Wild.) Merr.	Inhibited Epstein Barr Virus, foot and mouth disease virus, Newcastle disease virus, hepatitis B virus, herpes simplex virus, influenza A and HIV [226, 227]
Nauclea latifolia Sm.	Ethanol leaf extract at 500 mg/kg induced toxic effect on gestational rat models [221]
Nicotiana tabacum L.	LD₅₀ of aqueous extract of unripe fruit is > 5000 mg/kg [223]
Nigella sativa L.	The acute toxicity of the major constituent thymoquinone is very low and well tolerated [237]
Nympheaea lotus L.	The LD₅₀ of aqueous leaf extract is > 5000 mg/kg [239]
Ocimum basilicum L.	Anti-hepatitis C activity [237]

(continued on next page)
Table 7 (continued)

Plant Name	Use	LD$_{50}$ Effect	Toxic Effect
Olea europea L.	Used to treat malaria, febrifuge, bronchial asthma, inflammation, hypertension, diarrhea, respiratory, and urinary tract infection [242]	The LD$_{50}$ of methanol leaf extract is 3475 mg/kg [244]	Smallpox, yellow fever, COVID-19, monkey pox
Parkia biglobosa (Jacq.) G.Don	Bark infusion is used to treat hepatitis in Burkina Faso, malaria, headache, cough, pain, skin infection, hepatitis, hypertension and skin diseases in Nigeria and other West African countries [15,245]	The LD$_{50}$ for methanol and water and methanol extract is > 5000 mg/kg [246]	Poliomyelitis, smallpox, yellow fever, meningitis
Parinari macrophylla Schumach. & Thonn.	Decoction and powder of whole plants are used to treat hepatitis in Burkina Faso. Used to treat malaria, chronic stomach pain, alcoholic and liver disease in Nigeria. Used to treat cough, bronchitis, hepatitis, tuberculosis, jaundice and fevers in India [13,15]	The LD$_{50}$ of aqueous stem bark is more than 5000 mg/kg [248]	Poliomyelitis, monkey pox
Pilostigma thonningii (Schum.) Milne-Redh.	Used to treat cough, inflammation and as an analgesic in Tanzania and Zimbabwe. Used to treat malaria, wound, ulcer, cough, bronchitis, leprosy, skin disease and fever in African countries [249]	Antiviral activity against HIV-1, hepatitis C virus [13]	Hepatitis, COVID-19
Piper guineense Schumach. & Thonn.	Used for treating neurodegenerative disease in West Africa. Used to treat malaria, convulsion, epilepsy, cough, boils, catarrh, bronchitis, and intestinal disease [254,255]	Oral dose of leaf extract ≤ 8000 mg/kg did not cause any death in rats [256]. Consumption of the root can cause stomachache and ulcer [62]	Poliomyelitis, yellow fever, COVID-19, monkey pox, hepatitis, meningitis, lassa fever, smallpox
Plumbago zeylanica L.	Used to treat diarrhea, skin disease, pain, intestinal parasite and inflammation, chronic cough/cold, itchy skin and chronic disease of the nervous system in India [257]	The root is reportedly a poison when administered orally to ovine uteri, although limited toxicity was observed in rabbits [257]	Meningitis, yellow fever, lassa fever, poliomyelitis
Prosopis africana (Guill. & Perr.) Tzub.	Used to treat hepatitis, infectious diarrhea, dermatosis, ulcer and gonorrhoea in Burkina Faso. Used for wound healing and relieve sore throat in southeast Nigeria [15,258]	The LD$_{50}$ of L.p. methanol stem bark extract is 774 mg/kg [259]. Consumption of seed can cause death [62]	Hepatitis, meningitis, poliomyelitis, yellow fever
Psidium guajava L.	Inhibited the H1N1 viruses, larvicidal effect against yellow fever vector [41, 260]	The LD$_{50}$ of leaf extract is > 5 g/kg [45]	Hepatitis, meningitis, COVID-19, smallpox, yellow fever, lassa fever
Prerocarpus erinaceus Poir.	Used to treat fever, headache, skin infection, typhoid fever, malaria, measles, cough, leprosy and anemia in Benin republic. Used as abortifacient in Northern Nigeria and for fever in Ghana [261,262]	The LD$_{50}$ of hydroethanolic stem bark extract is > 5 g/kg [263]	Poliomyelitis, Heparitis, meningitis
Ricinus communis L.	Used as mosquito repellent, relieve stomatibache, jaundice and toothbache, convulsions, cold, catarrh, boils itching skin disease such as crow-crow [59]	Contains toxic compounds such as ricin and ricinine and has shown toxicity at 3 g/kg of oral administration [264]	Yellow fever, poliomyelitis
Saccharum officinarum L.	Used to treat liver related diseases, jaundice, hemorrhoid and dysentery in Nigeria [265]	Contains some polycyclic aromatic hydrocarbons (PAHs) [266]	Yellow fever, poliomyelitis
Sclerocarya birrea (A. Rich.) Hochst.	Bark decoction is used to treat hepatitis in Burkina Faso. Used to treat malaria, fever, headaches diarrhea, stomach ache, diabetes, cough and tuberculosis in Benin republic [15,267]	The LD$_{50}$ of peel extract is > 3000 mg/kg [268]	Yellow fever
Securidaca longipedunculata Frensen	Used to treat epilepsy and convulsions in tropical Africa. Used to headache, skin infection, cough, fever, pneumonia, tuberculosis, malaria, typhoid, stomatibache, nervous and circulatory system infection in Nigeria [269,270]	The LD$_{50}$ of aqueous root bark extract is 3.16 g/kg [270]	Meningitis, poliomyelitis
Securinga virus (Roxb. ex Willd.) Baill.	Anti-HIV, anticonvulsant activity [271]	The LD$_{50}$ of n-butanol root bark is 1257 mg/kg [272]	Hepatitis, lassa fever, yellow fever, poliomyelitis
been reported for the medicinal plant *Sarracenia purpurea* and botanical preparations from the plant were proclaimed as a successful therapy against smallpox in the nineteenth century [60,61]. Undoubtedly, this demonstrated the significant role of medicinal plants in treating smallpox.

Plants and natural products are generally considered safe although some plants may be toxic or poisonous. The sap of *Euphorbia unispina* cited herein for treatment of hepatitis, meningitis, yellow fever, and poliomyelitis is poisonous and may cause death. Whereas, ingesting the seed of *A. occidentale* may cause burn and death [62]. However, the majority of the plants is nontoxic or may cause mild toxicity. For instance, the consumption of leaf of *E. guineensis* and *A. conyzoides* may cause gastrointestinal discomfort and stomach upset respectively [62].

Table 7 (continued)

Sterculia setigera	Used to treat fever and STDs, boils, whitlow, chickenpox, measles, jaundice, malaria and dysentery in Nigeria [31]. Leaves are used to treat hepatits in Burkina Faso [15].	Induced total inhibition of poliovirus, astrovirus and HSV [31]	Relatively safe in vivo except at high dose such as 600 mg/kg over prolonged time of 28 days [273]
Syzygium aromaticum (L.) Merr. & L.M. Perry	Used to treat burns, wound. Used to treat liver, bowel, and stomach disorders in India and China. Used to treat cholerla, malaria and scabies [274]	Anti-HSV-1, anti-hepatitis C activity [21,275]	Recognized as safe at 1500 mg/kg [275]
Tamarindus indica	Roots are used to treat hepatitis in Burkina Faso. Used to treat respiratory problems, malaria, fever, parasitic infection, abdominal infection, diarrhea and wound healing in African countries. Used to treat meningitis in Kano state, Northwestern Nigeria [15,25,276]	Antiviral activity against hepatitis C [21, 276]	There was side effect on animals fed with seed extract in a two year study [276]
Terminalia ivorensis Guill. & Perr.	Bark decoction and infusion are used to treat hepatitis in Burkina Faso, gastrointestinal disorder, syphilis, bloody sputum, cough and skin diseases in Nigeria [15,277]		The LD₅₀ of bark fraction is > 5000 mg/kg [278]
Tetrapleura tetraptera (Schum. & Thonn.) Taub	Used to treat leprosy, convulsion, inflammation, rheumatic pains, malaria, asthma [279]		Poliomyelitis, meningitis, monkey pox, yellow fever
Trianta h pentandra L.	Used to treat fevers, skin diseases, wound and toothache is Africa [281]		
Vernonio amygdalina	Used to treat malaria, yellow fever, hypertension, measles, boils, burns, stomach ache and vaginal itching in Nigeria, hepatitis in Uganda [16,56]	Aqueous leaf extract was non-lethal to mice at 5000 mg/kg [56]. Consumption of root can cause itching on the tongue [62].	Yellow fever, smallpox, COVID-19, meningitis, monkey pox, hepatitis, lassa fever
Viscum album L.	Used to treat hypertension, epilepsy, and asthma [282]	Antiviral activity against parainfluenza virus 2 [282]	The LD₅₀ of leaf extract (i.p) is 420.70 mg/kg [283]
Vitellaria paradoxa C. F. Gaertn.	Leaves are used to treat hepatitis, malaria, fever, lung disorders, and mental disorders in Burkina Faso, skin disease, typhoid fever, rheumatism and microfilaria in Cameroun, chicken pox, tuberculosis, cough, skin diseases, rash, rheumatism and headache in Nigeria [15,284,285]		The LD₅₀ of aqueous leaf extract is 12 g/kg [284]
Xylopia aethiopica (Dunnal)A.Rich.	Used to treat diarrhea, cancer in Nigeria, as an emetic in Gabon. Used to treat bronchitis, asthma, stomachache, headache, neuralgia, malaria, cough, epilepsy, anemia and dysentry [31, 286]	Did not inhibit poliovirus, astrovirus and HSV, antiviral activity against measles virus [31,287]	The LD₅₀ of ethanol fruit extract is 3464 mg/kg [288]
Zingiber officinale Roscoe	Used to treat nervous diseases, asthma, catarrh, stroke and airways infection in Chinese medicine, hepatitis in Uganda [16,289]	Antiviral activity against hepatitis C, human respiratory syncytial virus and chikungunya virus [21,290,291]	It is generally considered a safe herbal medicine [289]
Ziziphus mauritiana Lam.	Used to treat tumor in India, used to treat fever, respiratory diseases, diarrhea, liver disease and epilepsy. Used to treat diarrhea in northern Nigeria [292]	Anti-dengue virus activity [293,294]	Administration of 2000 mg/kg of ethanol fruit extract did not cause toxicity [295]

4.1. Limitation of the research

The study did not test (in vitro and in vivo) to validate the claims on the potency of the plants mentioned against the respective viruses which underline the limitation of the present study.

5. Conclusion

The present study revealed a total of 131 medicinal plants used to treat emerging and re-emerging viral diseases in northern Nigerian states of Katsina, Kebbi, Kwarar, and Sokoto. Pharmacological studies suggested the antiviral activity of some of the plants mentioned herein for specific viral diseases studied. However, the majority of the plants...
have not been studied for antiviral activities against the viral diseases they are reportedly used to treat. Therefore, these plants could serve as sources for novel antiviral agents and thus effort should be intensified towards unraveling the bioactivity as well as isolating the potent bioactive agents.

Author contributions

IBA, SK and IM were involved in the conceptual design. JBD, SAJ and UJ were involved in data collection and analysis of data from Kebbi state. IM and HY, were involved in data collection and analysis of data from Sokoto state. SSK collected and analyzed data from Katsina state. YZM, QON, MBF, and SOF collected and analyzed data from Kwara state. AM, IBA and ANUK analyzed the collective data and prepared the manuscript. DS did botanical identification and proof read the manuscript.

Financial support

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors wish to acknowledge the support of herbarium staff.

Data availability

Any additional information can be obtained from the author on request.

References

[1] NCDC, COVID-19 Situation report: situation report 37, 2020.
[2] NCDC, Coronavirus disease (COVID-19) situation report, 24th June, 2020.
[3] NCDC, COVID-19 Situation report: situation report 37, 2020.
[4] NCDC, 2018/2019 Cerebro-spinal outbreak in Nigeria, 2019.
[5] U.E. Odoh, P.F. Uzor, C.L. Eze, T.C. Akunne, C.M. Onyegbulam, P.O. Osadebe, T. Hennelbeile, Viral hepatitis in the Peruvian Amazon: ethnomedical context and phytomedical resource, J. Ethnopharmacol. (2020) 255, https://doi.org/10.1016/j.jep.2020.112735.
[6] D. Lawal, Medicinal, pharmacological and phytochemical potentials of Annona muricata L., J. Nat. Prod. 83 (2020) 770–787, https://doi.org/10.1021/acs.jnatprod.9b01285.
[7] I.B. Abubakar, A.N. Ukwuani-Kwaja, A.D. Garba, D. Singh, I. Malami, T.S. Salihu, A. Malumaad, Y. Yahaya, S.M. Sule, S.I. Ahmed, Ethnobotanical study of medicinal plants used for treatment in Kebbi state, North-west Nigeria, Acta Ecol. Sin. 40 (2020) 306–314, https://doi.org/10.1016/j.acts.2020.02.007.
[8] N. EE, F.O. Earnest, Garciaia Kola: a review of its ethnomedicinal, chemical and pharmacological properties, Int. J. Cur Res Rev 06 (2014) 1–8.
[9] J.R. Patel, P. Tripathi, V. Sharma, N.S. Chauhan, V.K. Dixit, Phyllanthus amarus: ethnomedicinal uses, phytochemistry and pharmacology: a review, J. Ethnopharmacol. 138 (2011) 286–313, https://doi.org/10.1016/j.jep.2011.09.040.
[10] A. Lum Nde, C.I. Chukwuma, O.L. Erukainure, M.S. Chukwuma, M.G. Matabisa, Ethnobotanical, phytochemical, toxicology and anti-diabetic potential of Senecio occidentalis (L.) link, a review, J. Ethnopharmacol. (2022) 283, https://doi.org/10.1016/j.jep.2021.11.6663.
I.B. Abubakar et al.

[231] R. Haudecoeur, M.E. Balogun, E.E. Besong, D.C. Obu, Nauclea latifolia: a medicinal, economic and pharmacological review, Int. J. Plant Res. 6 (2000) 34–52, https://doi.org/10.1016/S1041-2909(00)00023-8.

[232] S.Z. Shang, W. Zhao, J.G. Tang, X.M. Xu, H.D. Sun, J.X. Pu, Z.H. Liu, M.M. Miao, R. Haudecoeur, M. Peuchmaur, B. Pilo-Balerek, Toxicity study and phytochemical screening of extracts of Nicosia tabacum, a review, Indian J. Pharm. Biol. Res. 1 (2013) 74–82, https://doi.org/10.30757/jipbr.1.2.9.

[233] S. Binorkar, D. Jani, Traditional medicinal usage of tobacco—a review, Spat. DD 2 (2016) 1–6, https://doi.org/10.9734/jpam/2016/17950.

[234] J. Yakubu, O. Sodipo, F. Abdulrahaman, V. Balami, Toxicity study and anticonvulsant effect of ethanolic leaf extract of Piliostigma thonningii milne-redhead (Fabaceae), Nig. J. Pharm. Res. 17 (2021) 65–72, https://doi.org/10.4314/njpr.v17i1.1.

[235] A.Y. Kabiru, A.M. Adewuyi, Y.T. Akangbe, D.A. Animasahun, F.A. Durodola, O.B. Bello, Toxicity study of aqueous extract of tobacco leaves (Nicotiana tabacum L.), a review, J. Ethnopharmacol. 14 (2010) 101–6, 479, https://doi.org/10.5897/MEJ10.005.

[236] K. Ganesan, S. Gani, Ethnomedical and Pharmacological potentials of Plumbago zeylanica LA. Am. J. Phytomedicine Clin. Ther. 1 (2013) 313–337, https://www.researchgate.net/publication/240505326.

[237] H.R. Juliani, A.R. Koroch, L. Giordano, A. Lamekue, S. Koffa, J. Asante-Dartey, J.E. Simon, Piper guineense (Piperaeae): chemistry, traditional uses, and functional properties of west african pepper, ACS Symp. Ser. 1197 (2013) 33–49, https://doi.org/10.1021/bk-2013-1197.ch005.

[238] A.A. Tays, S. Munsumi, I.S. Obi, Pharmacognostic and toxicological evaluation of the leaves of Piper guineense Schum. and Thonn. (Piperaeae), African J. Pharm. Pharmacol. 6 (2012) 505–509, https://doi.org/10.5897/AJPP2012.30221.

[239] M. Builders, C. Isichie, J. Aguiyi, Toxicity studies of the extracts of Parkia biglobosa stem bark in rats, Br. J. Pharm. Res. 2 (2012) 1–6, https://doi.org/10.9734/bjpr/2012/17950.

[240] A.C. Ezike, P.A. Akah, C.O. Emekwue, N. Okeke, O. Iloani, Medicinal plants used in wound care: a study of Prunus africana (Fabaceae) stem bark in Nigeria, Indian J. Pharm. Sci. 72 (2020) 334–339, https://doi.org/10.1016/j.indjpharmsci.2020.06.026.

[241] N. Srivilajiaoren, S. Fukumoto, K. Kagamui, H. Hiramoto, T. Odagiri, M. Tashiro, Y. Suzuki, Toxicity effects of Parkia biglobosa leaves (Nicotiana tabacum L.) in rat, Toxicology 208 (2005) 85–92, https://doi.org/10.1016/j.tox.2004.09.003.

[242] D.S., M.E. Balogun, E.E. Besong, D.C. Obu, Toxicity study and phytochemical antimicrobial pharmacology and toxicology of Nigella sativa L., Biomed. Pharmacother. 4 (2014) 676–681, https://doi.org/10.12980/ajb2015.14877.

[243] G.N. Gouwakinnou, A.M. Lykke, A.E. Assogbadjo, B. Sinsin, Local knowledge, pharmacological review, Pharmacogn. Rev. 1 (2007) 114–118, https://doi.org/10.4314/pjpr.v1i1.555572.

[244] G.E.S. Batiha, L.M. Alkazmi, L.G. Wasef, A.M. Beshbishy, E.H. Nadwa, E. Alzahrani, K. Rashwan, Antiviral effects of the ethanolic stem bark extract of Prunus africana (Fabaceae) on Lassa fever, African J. Ann. Infec. Dis. 2 (2021), https://doi.org/10.3389/fphar.2021.740305.

[245] M. Afolayan, R. Srivedavyasasri, O.T. Asekun, O. Familoni, A. Orishadipe, S. O. Chukwurah, O.M. Ojonugwa, F.F. Hinmikaiye, A.I. Onwurah, Sub-acute oral toxicity study of aqueous extract of tobacco leaves (Nicotiana tabacum L.) in albino mice, Scientifica (Cairo) (2016) 2016, https://doi.org/10.1155/2016/1365209.

[246] M. Afolayan, R. Srivedavyasasri, O.T. Asekun, O. Familoni, A. Orishadipe, J. YAkubu, O. Sodipo, F. Abdulrahaman, V. Balami, Toxicity study and anticonvulsant effect of ethanolic leaf extract of Piliostigma thonningii milne-redhead (Fabaceae), Nig. J. Pharm. Res. 17 (2021) 65–72, https://doi.org/10.4314/njpr.v17i1.1.

[247] H.R. Juliani, A.R. Koroch, L. Giordano, A. Lamekue, S. Koffa, J. Asante-Dartey, J.E. Simon, Piper guineense (Piperaeae): chemistry, traditional uses, and functional properties of west african pepper, ACS Symp. Ser. 1197 (2013) 33–49, https://doi.org/10.1021/bk-2013-1197.ch005.

[248] M. Falsowski, M.A. Ibrahim, A. Samir, Antimicrobial properties of west african black pepper, ACS Symp. Ser. 1197 (2013) 33–49, https://doi.org/10.1021/bk-2013-1197.ch005.

[249] G.N. Gouwakinnou, A.M. Lykke, A.E. Assogbadjo, B. Sinsin, Local knowledge, pharmacological review, Pharmacogn. Rev. 1 (2007) 114–118, https://doi.org/10.4314/pjpr.v1i1.555572.

[250] M. Afolayan, R. Srivedavyasasri, O.T. Asekun, O. Familoni, A. Orishadipe, J. YAkubu, O. Sodipo, F. Abdulrahaman, V. Balami, Toxicity study and anticonvulsant effect of ethanolic leaf extract of Piliostigma thonningii milne-redhead (Fabaceae), Nig. J. Pharm. Res. 17 (2021) 65–72, https://doi.org/10.4314/njpr.v17i1.1.

[251] A.Y. Kabiru, A.M. Adewuyi, Y.T. Akangbe, D.A. Animasahun, F.A. Durodola, O.B. Bello, Toxicity study and anticonvulsant effect of ethanolic leaf extract of Piliostigma thonningii milne-redhead (Fabaceae), Nig. J. Pharm. Res. 17 (2021) 65–72, https://doi.org/10.4314/njpr.v17i1.1.

[252] M. Afolayan, R. Srivedavyasasri, O.T. Asekun, O. Familoni, A. Orishadipe, J. YAkubu, O. Sodipo, F. Abdulrahaman, V. Balami, Toxicity study and anticonvulsant effect of ethanolic leaf extract of Piliostigma thonningii milne-redhead (Fabaceae), Nig. J. Pharm. Res. 17 (2021) 65–72, https://doi.org/10.4314/njpr.v17i1.1.

[253] J. YAkubu, O. Sodipo, F. Abdulrahaman, V. Balami, Toxicity study and anticonvulsant effect of ethanolic leaf extract of Piliostigma thonningii milne-redhead (Fabaceae), Nig. J. Pharm. Res. 17 (2021) 65–72, https://doi.org/10.4314/njpr.v17i1.1.

[254] A.Y. Kabiru, A.M. Adewuyi, Y.T. Akangbe, D.A. Animasahun, F.A. Durodola, O.B. Bello, Terminalia avicennioides as a potential candidate for pharmacological industry: a review, Res. Pharm. Biol. Chem. Sci. 6 (2015) 748–754, https://doi.org/10.4314/rpbchsci.v6i6.06.

[255] M.M. Saleiman, B.B. Oyelowo, A. Abubakar, M. Mamman, K. deen T. Bello, A controlled study to test the efficacy and medicinal use of the stem bark fractions of Terminalia avicennioides in laboratory animal models, Int. J. Vet. Sci. Med. 5 (2017) 14–22, https://doi.org/10.4314/tjvms.2017.04.002.
European Journal of Integrative Medicine 49 (2022) 102094

28

[279] S. Adusei, J.K. Otchere, P. Oteng, R.Q. Mensah, E. Tei-Mensah, Phytochemical analysis, antioxidant and metal chelating capacity of *Tetrapleura tetraptera*, Heliotrop 5 (2019) e02762, https://doi.org/10.1016/j.heliotrop.2019.e02762.

[280] B.K. Noamesi, J.F. Mensah, M. Bogale, E. Dagne, J. Adotey, Antioxidant properties and acute toxicity profile of some African medicinal plant extracts, J. Ethnopharmacol. 42 (1994) 13–18, https://doi.org/10.1016/0378-8741(94)90017-5.

[281] R. Geethalakshmi, B.V.L. Sarada, K. Ramasamy, *Trianthema decandra* L.: a review on its phytochemical and pharmacological profile, Int. J. Eng. Sci. Technol. 2 (2010) 976–979.

[282] A. Karagöz, E. Önyay, N. Arda, A. Kuru, Antiviral potency of mistletoe (*Viscum album* ssp. album) extracts against human parainfluenza virus type 2 in Vero cells, Phyther. Res. 17 (2003) 560–562, https://doi.org/10.1002/prt.1165.

[283] O.E. Ofem, A.E. Eno, J. Imoru, E. Nkanu, F. Unoh, J.O. Ibu, Effect of crude aqueous leaf extract of *Viscum album* (mistletoe) in hypertensive rats, Indian J. Pharmacol. 39 (2007) 15–19, https://doi.org/10.4103/0253-7613.30756.

[284] S.P.C. Fodouop, S.D. Tala, L.P. Keilah, N. Kodjio, M.D. Yemele, A.H. Nwabo, B. Nji-kah, J. Tchoumboue, D. Gatsing, Effects of *Vitellaria paradoxa* (C.F. Gaertn.) aqueous leaf extract administration on *Salmonella typhimurium*-infected rats, BMC Complement. Altern. Med. 17 (2017) 1–11, https://doi.org/10.1186/s12906-017-1643-1.

[285] O. Ojo, M.H.K. Kengne, M.C. Fotsing, E.M. Mmutlane, D.T. Ndinteh, Traditional uses, phytochemistry, pharmacology and other potential applications of *Vitellaria paradoxa* Gaertn. (Sapotaceae): a review, Arab. J. Chem. 14 (2021), 103213, https://doi.org/10.1016/j.arabjc.2021.103213.

[286] X. Yin, M.A.S.C. Chavez Leon, R. Osae, L.O. Linus, L. Qi, R.N. Akolga, *Xylopia aethiopica* Fruit Ethanol Extract, J. Anal. Tech. Res. 01 (2019) 33–36, https://doi.org/10.26502/jatri.005.

[287] B.H. Ali, G. Blunden, M.O. Tanira, A. Nemmar, Some phytochemical, pharmacological and toxicological properties of ginger (*Zingiber officinale* Roscoe): a review of recent research, Food Chem. Toxicol. 46 (2008) 409–420, https://doi.org/10.1016/j.ftctox.2007.09.085.

[288] P. Ayodele, A. Ore, O. Akinyoye, Median Lethality Dose of *Xylopia aethiopica* Fruit Ethanol Extract, J. Anal. Tech. Res. 01 (2019) 33–36, https://doi.org/10.26502/jatri.005.

[289] B.H. Ali, G. Blunden, M.O. Tanira, A. Nemmar, Some phytochemical, pharmacological and toxicological properties of ginger (*Zingiber officinale* Roscoe): a review of recent research, Food Chem. Toxicol. 46 (2008) 409–420, https://doi.org/10.1016/j.ftctox.2007.09.085.

[290] J.S. Chang, K.C. Wang, C.F. Yeh, D.E. Shieh, L.C. Chiang, Fresh ginger (*Zingiber officinale*) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines, J. Ethnopharmacol. 145 (2013) 146–151, https://doi.org/10.1016/j.jep.2012.10.042.

[291] S. Kaushik, G. Jangra, V. Kundu, J.P. Yadav, S. Kaushik, Anti-viral activity of *Zingiber officinale* (Ginger) ingredients against the Chikungunya virus, Viruses 31 (2020) 270–276, https://doi.org/10.1007/s12265-020-00584-0.

[292] E. El Maaiden, Y. El Kharrassi, N.A.S. Qarah, A.K. Essamadi, K. Moustaid, B. Nasser, Genus Ziziphus: a comprehensive review on ethnopharmacological, phytochemical and pharmacological properties, J. Ethnopharmacol. 259 (2020), 112950, https://doi.org/10.1016/j.jep.2020.112950.

[293] O. Prakash, S. Usmani, R. Singh, N. Singh, A. Gupta, A. Ved, A panoramic view on phytochemical, nutritional, and therapeutic attributes of Ziziphus mauritiana Lam.: a comprehensive review, Phyther. Res. 35 (2021) 63–77, https://doi.org/10.1002/ptr.6769.

[294] R. Batool, E. Aziz, T. Mahmood, B. Tan, V. Chow, Inhibitory activities of extracts of *Rumex dentatus*, *Commelina benghalensis*, *Ajuga bracteosa*, *Ziziphus mauritiana* as well as their compounds of gallic acid and emodin against dengue virus, Asian Pac. J. Trop. Med. 11 (2018) 265–271, https://doi.org/10.4103/1995-7645.231466.

[295] M. Suriyavadhana, T. Pakutharivu, Evaluation of acute and sub acute toxicity of ethanol extracts of *Entada pursaetha*, *Toddalia aculeata*, and *Ziziphus mauritiana*, World J. Life Sci. Med. Res. 1 (2011) 43–47, 2011.