Bioinformatics analyses and biological function of lncRNA ZFPM2-AS1 and ZFPM2 gene in hepatocellular carcinoma

YI LUO1*, XIAOJUN WANG2*, LING MA3*, ZHIHUA MA4, SHEN LI5, XIAOYU FANG6 and XIANGYU MA1

1Department of Epidemiology, College of Preventive Medicine, Army Military Medical University; 2Department of Hepatobiliary Surgery, The First Affiliated Hospital of Army Military Medical University, Chongqing 400038; 3Department of Pediatrics, Banan People's Hospital of Chongqing, Chongqing 401320; 4Department of Anesthesia, The First Affiliated Hospital of Army Military Medical University, Chongqing 400038; 5The Second Clinical College, Chongqing Medical University, Chongqing 400010; 6College of Preventive Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China

Received August 6, 2019; Accepted November 14, 2020

DOI: 10.3892/ol.2020.11485

Correspondence to: Professor Xiangyu Ma, Department of Epidemiology, College of Preventive Medicine, Army Military Medical University, 30 Gaotanyan Street, Shapingba, Chongqing 400038, P.R. China
E-mail: xymacq@hotmail.com

*Contributed equally

Key words: hepatocellular carcinoma, ZFPM2-AS1, ZFPM2, bioinformatics analysis, prognosis

Abstract. Hepatocellular carcinoma (HCC) remains one of the most lethal malignant tumors worldwide; however, the etiology of HCC still remains poorly understood. In the present study, cancer-omics databases, including The Cancer Genome Atlas, GTEx and Gene Expression Omnibus, were systematically analyzed in order to investigate the role of the long non-coding RNA (lncRNA) zinc finger protein, FOG family member 2-antisense 1 (ZFPM2-AS1) and the zinc finger protein, FOG family member 2 (ZFPM2) gene in the occurrence and progression of HCC. It was identified that the expression levels of lncRNA ZFPM2-AS1 were significantly increased in HCC tissues, whereas expression levels of the ZFPM2 gene were significantly decreased in HCC tissues compared with normal liver tissues. Higher expression levels of ZFPM2-AS1 were significantly associated with a less favorable prognosis of HCC, whereas higher expression levels of the ZFPM2 gene were associated with a more favorable prognosis of HCC. Genetic alterations in the ZFPM2 gene may contribute to a worse prognosis of HCC. Validation of the GSE14520 dataset also demon stared that ZFPM2 gene expression levels were significantly decreased in HCC tissues (P<0.001). The receiver operating characteristic (ROC) analysis of the ZFPM2 gene indicated high accuracy of this gene in distinguishing between HCC tissues and non-tumor tissues. The areas under the ROC curves were >0.8. Using integrated strategies, the present study demonstrated that lncRNA ZFPM2-AS1 and the ZFPM2 gene may contribute to the occurrence and prognosis of HCC. These findings may provide a novel understanding of the molecular mechanisms underlying the occurrence and prognosis of HCC.

Introduction

Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide, with an incidence rate of 40.0% in men and 15.3% in women per 100,000 population in China (1,2). According to the Global Burden of Disease Study 2017, ~820,000 individuals succumbed to HCC worldwide (3). Among them, the number of HCC-associated mortalities in China (~422,000) accounted for 51.5% of global HCC-associated mortalities (4).

Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs >200 nucleotides in length (5). Previous studies have shown that lncRNAs serve a regulatory role in tumor development and prognosis and can be potential tumor biomarkers and therapeutic targets (6,7). Meanwhile, lncRNAs have been found to serve a role in chromatin modification, transcription and post-transcriptional processing in HCC (8-11). Notably, overexpression of lncRNA HOTAIR, which was previously reported in breast cancer, was first identified to predict tumor recurrence in patients with HCC following liver transplantation (12,13). Subsequent studies have reported that lncRNAs: MALAT1, HULC, GAS5, NEAT1, PCNA-AS1, PVT1, TUG1 and HOTTIP are associated with the development of HCC (11,14-17). lncRNA zinc finger protein, FOG family member 2-antisense 1 (ZFPM2-AS1), located on the 8q23 chromosome and next to the zinc finger protein, FOG family member 2 (ZFPM2) gene, serves a role in carcinogenesis and tumor progression in HCC and gastric cancer (18,19). The ZFPM2 gene modulates the activity of GATA family proteins and serves a role in heart morphogenesis and development of coronary vessels (20,21). Previous studies also revealed that ZFPM2 could cooperate with GATA factors and contribute to the occurrence of ovarian tumors, neuroblastoma, testicular carcinoma, germ cell tumors, Wilms'
tumor, gliomas, glioblastoma, lung cancer, breast cancer and osteosarcoma (22-31). The chromosome 8q23 region is a high susceptibility locus for several types of cancer and genome-wide association studies (GWAS) have identified a number of cancer-associated single nucleotide polymorphisms that are adjacent to the ZFPM2-AS1 and ZFPM2 gene in this region (32-37).

Considering the promising role of the IncRNA ZFPM2-AS1 and the ZFPM2 gene in carcinogenesis and prognosis of several types of cancer, it was hypothesized that IncRNA ZFPM2-AS1 and the ZFPM2 gene also contribute to the development and prognosis of HCC. In present study, a series of bioinformatic and clinical analyses were performed to investigate the potential functions of IncRNA ZFPM2-AS1 and the ZFPM2 gene in the process of carcinogenesis and progression of HCC.

Materials and methods

Expression of ZFPM2-AS1 and ZFPM2 gene in the cancer genome atlas (TCGA) and GTEx tissues. The comparison of the expression levels of ZFPM2-AS1 and ZFPM2 genes in HCC and non-tumor tissues was performed using GEPIA version 2.0 (37), during which TCGA (https://portal.gdc.cancer.gov) HCC samples were compared with GTEx (https://www.gtexportal.org/home) samples, which were used as controls. The associations of expression levels of ZFPM2-AS1 and the ZFPM2 gene with the prognosis of HCC and other digestive system tumors were evaluated using the Kaplan Meier plotter (http://kmplot.com/analysis), which presents overall survival, disease free survival, relapse free and progression free survival (38), and GEPIA.

Validation of expression of ZFPM2-AS1 and ZFPM2 gene in clinical tissues. The present study was approved by the Ethics Committee of the Army Medical University (Chongqing, China) and written informed consent was provided by all participants prior to the study start. A total of 53 HCC and paired adjacent normal tissues (≥2 cm from tumor tissues) 45 men and 8 women; age range, 30-74 years; median age, 53 years) were collected from the Department of Hepatobiliary Surgery (Chongqing, China) between November 2017 and May 2019, following surgical resection. All diagnoses were blindly confirmed by at least two pathologists at The First Affiliated Hospital of Army Medical University, and patients who received radiofrequency ablation, chemoradiotherapy or other treatments prior to surgery were excluded from the present study. Samples were subsequently stored at -80°C, prior to subsequent experimentation.

Reverse transcription-quantitative (RT-q)PCR. Total RNA was extracted from HCC tissues using TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.). cDNA was synthesized using the PrimeScript RT reagent kit with gDNA Eraser (Takara Bio, Inc.), and qPCR was performed using TB Green Premix Ex Taq II (Takara Bio, Inc.). The following primer sequences were used for qPCR: ZFPM2-AS1 forward, 5'-GCT TCT ATG CTT CTT CTT CTT CTT C-3'; and reverse, 5'-GTA GAT CTT CTT CTT CTT CTT CTT C-3'; ZFPM2 forward, 5'-GCT ACC CTC CCG TCATT T-3'; and reverse, 5'-TGT GAC CAT TCG TGC CAT-3'; and β-actin forward, 5'-CCACGAA ACT ACCT TCA ACT C-3; and reverse, 5'-GTG ATC TCC TTC TGC ATC CTG T-3'. The following thermocycling conditions were used for qPCR: Initial denaturation at 95°C for 30 sec; 40 cycles of denaturation at 95°C for 5 sec, annealing and elongation at 60°C for 30 sec; and a final extension at 72°C for 30 sec. Relative ZFPM2-AS1 and ZFPM2 mRNA levels were measured using the 2-ΔΔCq method (39) and normalized to the internal reference gene β-actin.

Interaction network and functional enrichment analyses. To investigate the biological functions and pathways of ZFPM2-AS1 and the ZFPM2 gene, gene-gene and protein-protein interaction (PPI) network analysis of the ZFPM2 gene was conducted using the GeneMANIA (http://genemania.org) and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database version 11.0 (40). Genes associated with ZFPM2 and ZFPM2-AS1 were initially identified using the COXPRESdb database (version 7.3; https://coexpresdb.jp). Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses of ZFPM2-AS1 and ZFPM2-associated genes were performed using Database for Annotation, Visualization and Integrated Discovery (DAVID) version 6.8 (david.ncicrf.gov/home.jsp).

Determination of genetic mutation status of the ZFPM2-AS1 IncRNA and ZFPM2 gene. To investigate the underlying mechanisms relevant to mutation status of ZFPM2-AS1 and ZFPM2 gene, the cBioPortal database (cbioportal.org/) was utilized. Kaplan-Meier survival estimates for overall survival of HCC patients, with or without mutations of the ZFPM2 gene was also analyzed, using the log-rank test.

Validation of the GEO dataset. The validation of the expression levels of the ZFPM2 gene in HCC tissues and adjacent normal tissues was further conducted with the GEO dataset GSE14520 (41). The receiver operating curve (ROC) with the area under the curve (AUC) value for assessing the predictive accuracy and discriminative ability of ROC was drawn to identify the diagnostic significance of expression level of the ZFPM2 gene.

Statistical analysis. SPSS version 22.0 (IMB Corp.) and GraphPad Prism version 7.0 (GraphPad Software, Inc.) were used for statistical analyses. P<0.05 was considered to indicate a statistically significant difference. All results are presented as mean ± standard deviation (unless otherwise shown). One-way ANOVA tests were used to evaluate the differences in ZFPM2-AS1 and ZFPM2 expression in clinical stages of HCC, while Wilcoxon's test was used for paired continuous variables. The χ² test was used to evaluate differences in categorical variables. All expression data were log transformed for differential analysis.

Results

Associations between expression levels of IncRNA ZFPM2-AS1 and the ZFPM2 gene with clinical significance
of HCC. First the associations between the expression levels of ZFPM2-AS1 and the ZFPM2 gene and the clinical characteristics of HCC in TCGA and GTEx samples were analyzed. Table I presents the clinical characteristics of the patients from TCGA and GTEx databases (only sex available for GTEx), including sex, age at diagnosis, Child-Pugh score (42), creatinine value, HCC risk factor, family cancer history (data for 326 samples available), neoplasm histological grade (43) (data for 372 samples available) and metastasis status. The expression levels of lncRNA ZFPM2-AS1 were higher in HCC tissues compared with normal liver tissues (Fig. 1A), whereas the expression levels of the ZFPM2 gene were significantly lower in HCC tissues compared with normal liver tissues (Fig. 1C). No significant difference between the clinical stages of HCC and ZFPM2-AS1 (Fig. 1B; P=0.136) and ZFPM2 (Fig. 1D; P=0.935) expression levels were observed. For the survival of patients with HCC it was observed that higher expression levels of ZFPM2-AS1 were significantly associated with a less favorable prognosis (Fig. 2A), whereas higher expression levels of the ZFPM2 gene were significantly associated with better prognosis of HCC (Fig. 3). These bioinformatic results were also verified using clinical samples. The expression levels of lncRNA ZFPM2-AS1 were significantly higher in HCC tissues compared with adjacent normal tissues (Fig. 4B; P<0.001), whereas the expression levels of the ZFPM2 gene were significantly lower in HCC tissues compared with adjacent normal tissues (Fig. 4A; P<0.001).

Gene-gene and PPI network of the lncRNA ZFPM2-AS1 and ZFPM2 gene. According to the results obtained from COXPRESdb, lncRNA ZFPM2-AS1 was associated with the ZFPM2 gene. Thus, gene-gene and PPI network analysis of the ZFPM2 gene were conducted using the GeneMANIA and STRING tools and it was demonstrated that ZFPM2 primarily associated with GATA factors, including GATA1, GATA3 and GATA4 (Figs. 5 and 6).

Clinical significance of genetic alterations of the lncRNA ZFPM2-AS1 and ZFPM2 gene. Using the cBioPortal database, 9% (93/1,052) of samples were identified as harboring a mutated ZFPM2 gene. From Kaplan-Meier survival analysis, the overall survival rate demonstrated statistical differences, which means patients with HCC with ZFPM2 mutations had a less favorable prognosis compared with those without ZFPM2 mutations (P=0.0331; Fig. 7).

Table I. Characteristics of patients with HCC from TCGA and GTEx datasets.

Variables	HCC cases (TCGA), n	Controls (GTEx), n	P-value
Sex			0.799
Male	255	123	
Female	122	56	
Age at diagnosis, years (mean ± standard deviation)	59.5±13.5		
Child-Pugh score			
A	223		
B	21		
C	1		
Unknown	132		
Creatinine value, mg/dl	2.76±11.7		
HCC risk factor			
Alcoholism	76		
Hepatitis B infection	98		
Hepatitis C infection	52		
Family cancer history			
Yes	114		
No	212		
Neoplasm histological grade			
G1	55		
G2	180		
G3	124		
G4	13		
Metastasis			
No	272		
Yes	105		

The publicly available GTEX data only provided data on sex. HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas.
Figure 1. Comparisons of expression levels of lncRNA ZFPM2-AS1 and the ZFPM2 gene. Red represents HCC tissues, grey represents normal liver tissues and black dots represent individual cases. (A) Expression level of lncRNA ZFPM2-AS1 in HCC (369) and normal liver (160) tissues. (B) Expression level of lncRNA ZFPM2-AS1 in tissues of patients with HCC of different clinical stages. (C) Expression level of the ZFPM2 gene in HCC (n=369) and normal liver (n=160) tissues. (D) Expression levels of the ZFPM2 gene in patients with HCC of different clinical stages. lncRNA, long non-coding RNA; AS1, antisense RNA 1; ZFPM2, zinc finger protein, FOG family member 2; HCC, hepatocellular carcinoma; LIHC, liver hepatocellular carcinoma.

Figure 2. Kaplan-Meier survival curves of patients with HCC based on lncRNA ZFPM2-AS1 expression levels. (A) Overall survival rate of patients with HCC based on lncRNA ZFPM2-AS1 expression levels. (B) Disease-free survival rate of patients with HCC based on lncRNA ZFPM2-AS1 expression levels. lncRNA, long non-coding RNA; AS1, antisense RNA 1; ZFPM2, zinc finger protein, FOG family member 2; HCC, hepatocellular carcinoma; HR, hazard ratio.
Figure 4. Expression levels of lncRNA ZFPM2-AS1 and the ZFPM2 gene. (A) Expression levels of ZFPM2 in HCC and adjacent tissues. (B) Expression levels of ZFPM2-AS1 in HCC and adjacent tissues. lncRNA, long non-coding RNA; AS1, antisense RNA 1; ZFPM2, zinc finger protein, FOG family member 2; HCC, hepatocellular carcinoma.

Figure 3. Kaplan-Meier survival curves of patients with HCC based on ZFPM2 gene expression levels. (A) Overall survival rate of patients with HCC based on ZFPM2 gene expression levels. (B) Relapse free survival rate of patients with HCC based on ZFPM2 gene expression levels. (C) Disease specific survival rate of patients with HCC based on ZFPM2 gene expression levels. (D) Progress free survival rate of patients with HCC based on ZFPM2 gene expression levels. lncRNA, long non-coding RNA; AS1, antisense RNA 1; ZFPM2, zinc finger protein, FOG family member 2; HCC, hepatocellular carcinoma; HR, hazard ratio.

Figure 4. Expression levels of lncRNA ZFPM2-AS1 and the ZFPM2 gene. (A) Expression levels of ZFPM2 in HCC and adjacent tissues. (B) Expression levels of ZFPM2-AS1 in HCC and adjacent tissues. lncRNA, long non-coding RNA; AS1, antisense RNA 1; ZFPM2, zinc finger protein, FOG family member 2; HCC, hepatocellular carcinoma.
KEGG pathway and GO term analyses. The top 200 ZFPM2 and ZFPM2-AS1 associated genes are presented in Table SI, which were identified using the COXPRESdb database. KEGG pathway and GO term analysis of the ZFPM2 associated genes were performed using DAVID. The GO term results demonstrated that these genes may be involved in the ‘integral component of plasma membrane’, ‘protein binding’ and ‘plasma membrane’ (Fig. 8).

Validation of the ZFPM2 expression profiling in the GSE14520 dataset. As shown in Fig. 9, the expression levels of the ZFPM2 gene in HCC and non-tumor tissues were consistent in the GSE14520 dataset, in stages I and II. Consistent with TCGA data, ZFPM2 gene expression were significantly decreased in HCC tissues compared with the non-tumor tissues in both stage I and II (P<0.001; Fig. 9A and C). The ROC analysis of the ZFPM2 gene demonstrated a high accuracy of ZFPM2 in distinguishing between HCC tissues and non-tumor tissues (AUCs, >0.8; Fig. 9B and D)

Discussion

At present, the etiology of HCC remains poorly understood. In the present study, datasets from the cancer-omics databases TCGA, GTEX and GEO were analyzed in order to confirm the role of lncRNA ZFPM2-AS1 and the ZFPM2 gene in HCC, which are located at the cancer susceptibility locus 8q23 implicated in the carcinogenesis and prognosis of HCC (44). In the present study, it was observed that the expression levels of lncRNA ZFPM2-AS1 and the ZFPM2 gene were significantly different between HCC tissues and normal liver tissues and that these expression levels were also associated with prognosis of HCC. Patients with HCC with ZFPM2 gene alterations had a less favorable prognosis compared with those without ZFPM2 gene alterations. Functional enrichment analysis demonstrated that the ZFPM2 associated genes were primarily involved in the formation of integral component of membrane, protein binding and plasma membrane. To the best of our knowledge, the present study is the first report that aimed to investigate the association between lncRNA ZFPM2-AS1, the ZFPM2 gene and the occurrence and progression of HCC.
In the present study, expression levels of lncRNA ZFPM2-AS1 and the ZFPM2 gene were associated with both the occurrence and prognosis of HCC and mutations of the ZFPM2 gene were associated with a less favorable prognosis of HCC. These results further confirmed the role of lncRNA ZFPM2-AS1 and the ZFPM2 gene in HCC carcinogenesis.
In the present study, gene-gene and PPI analyses revealed that ZFPM2-AS1 and ZFPM2 were primarily co-expressed and interacted with the GATA factors, including GATA1, GATA3 and GATA4. The GATA family, which controls the development of diverse tissues by activating or repressing transcription, widely participate in carcinogenesis, differentiation of several types of cancer (51,52). Furthermore, studies have shown that aberrant GATA-3 expression contributes to the occurrence of breast, prostate and pancreatic cancer (53-58). GATA1, GATA4 and GATA6 are also associated with different types of cancer, including colorectal and breast cancer (59,60). The results of the present study demonstrated that ZFPM2 was significantly associated with GATA factors, suggesting its potential role in the development of different types of cancer.

Conclusively, the present study demonstrated that lncRNA ZFPM2-AS1 and ZFPM2 gene may contribute to the occurrence and progression of HCC. These findings may provide a novel perspective on the underlying molecular mechanisms of HCC and suggest valuable biomarkers and therapeutic targets for patients with HCC. However, further validations with experimental evidence and clinical research are needed to confirm the functions of IncRNA ZFPM2-AS1 and ZFPM2 gene in HCC carcinogenesis.

Acknowledgements
Not applicable.

Funding
The present study was funded by the Science Foundation for Outstanding Young People of the Army Military Medical University (Chongqing, China; grant. no. 20170113).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Authors' contributions

XM and YL designed the study. YL, XW, LM, SL, ZM and XF performed the statistical analyses. YL, XW and LM drafted the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The present study was approved by the Ethics Committee of the Army Military Medical University (Chongqing, China) and written informed consent was provided by all participants prior to the study start (approval no. 20170307).

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Forner A, Gilabert M, Bruix J and Raoul JL: Treatment of intermediate-stage hepatocellular carcinoma. Nat Rev Clin Oncol 11: 525-535, 2014.
2. Zou RX, Seto WK, Lai CL and Yuen MF: Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. Gut Liver 10: 332-339, 2016.
3. GBD 2017 Causes of Death Collaborators: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the global burden of disease study 2017. Lancet 392: 1736-1788, 2018.
4. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu QX and He J: Cancer statistics in China, 2015. CA Cancer J Clin 66: 115-132, 2016.
5. Fatica A and Bozzoni I: Long non-coding RNAs: New players in cell differentiation and development. Nat Rev Genet 15: 7-21, 2014.
6. Beermann J, Piccoli MT, Viercek J and Thum T: Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev 96: 1297-1325, 2016.
7. Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell 29: 452-463, 2016.
8. Mai H, Zhou B, Liu L, Yang F, Conran C, Ji Y, Hou J and Jiang D: Molecular pattern of IncRNAs in hepatocellular carcinoma. J Exp Clin Cancer Res 38: 198, 2019.
9. Yao J, Wu L, Meng X, Yang H, Ni S, Wang Q, Zhou J, Zhang Q, Su K, Shao L, et al: Profiling, clinicopathological correlation and functional validation of specific long non-coding RNAs for hepatocellular carcinoma. Mol Cancer 16: 164, 2017.
10. Yang Y, Chen L, Gu J, Zhang H, Yuan J, Lian Q, Lv G, Wang S, Wu Y, Yang YT, et al: Recurrently deregulated IncRNAs in hepatocellular carcinoma. Nat Commun 8: 14421, 2017.
11. Yu FL, Zheng JJ, Dong PH and Fan XM: Long non-coding RNAs and hepatocellular carcinoma. Mol Clin Oncol 3: 13-17, 2015.
12. Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F and Zheng SS: Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18: 1243-1250, 2011.
13. Xu S, Kong D, Chen Q, Ping Y and Pang D: Oncogenic long noncoding RNA landscape in breast cancer. Mol Cancer 16: 129, 2017.
14. Liu Y, Pan S, Liu L, Zhai X, Liu J, Wen J, Zhang Y, Chen J, Shen H and Hu Z: A genetic variant in long non-coding RNA HULC contributes to risk of HBV-related hepatocellular carcinoma in a Chinese population. PLoS One 7: e55145, 2012.
15. Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY, Zhang F, Wu LM, Chen LM and Zheng SS: Long non-coding RNA MALAT1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol 29: 1810-1816, 2012.
16. Guo S, Chen W, Luo Y, Ren F, Zhong T, Rong M, Dang Y, Feng Z and Chen G: Clinical implication of long non-coding RNA NEAT1 expression in hepatocellular carcinoma patients. Int J Clin Exp Pathol 8: 5396-5403, 2015.
17. Tu ZQ, Li RJ, Mei JZ and Li XH: Down-regulation of long non-coding RNA GAS5 is associated with the prognosis of hepatocellular carcinoma. Int J Clin Exp Pathol 7: 4303-4309, 2014.
18. Yan J, Zhou C, Guo K, Li Q and Wang Z: A novel seven-IncRNA signature for prognosis prediction in hepatocellular carcinoma. IJ Cell Biomed 120: 213-223, 2019.
19. Kong F, Deng X, Kong X, Du Y, Li L, Zhu H, Wang Y, Xie D, Guha S, Li Z, et al: ZFPFM2-AS1, a novel IncRNA, attenuates the p53 pathway and promotes gastric carcinogenesis by stabilizing MIF. Oncogene 37: 5982-5996, 2018.
20. Szegezdi EC, Tufts RL, Polik CE and Leaderen JM: Molecular cloning of FOGER-2: A modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci USA 96: 956-961, 1999.
21. Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovshy SV, Izumo S, Fujiwara Y and Orshin KH: FOGER-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101: 729-739, 2000.
22. Guo L, Wang J, Yang P, Lu Q, Zhang T and Yang Y: MicroRNA-200 promotes lung cancer cell growth through FOGER2-independent AKT activation. JUBMB Life Sci 67: 720-725, 2015.
23. Auturowa P, Khan SI, Khan UA, Ali Z, Avula B, Walker LA, Shariat-Madar Z, Helferich WG, Katzenellenbogen BS and Dasmahapatra AK: The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro. Arch Biochem Biophys 591: 98-110, 2016.
24. Tsang SY, Mei L, Wan W, Li J, Li Y, Zhao C, Ding X, Pun FW, Hu X, Wang J, et al: Glomia association and balancing selection of ZFPM2. PLoS One 10: e0133005, 2015.
25. Hoene V, Fischer M, Ivanova A, Wallach T, Berthold F and Dame C: GATA factors in human neuroblastoma: Distinctive expression patterns in clinical subtypes. Br J Cancer 101: 1481-1489, 2009.
26. Lairinen MP, Anttonen M, Ketola I, Wilson DB, Ritvos O, Butzow R and Heikinmio M: Transcription factors GATA-4 and GATA-6 and a GATA family cofactor, FOGER-2, are expressed in human ovary and sex cord-derived ovarian tumors. J Clin Endocrinol Metab 85: 3476-3483, 2000.
27. Salonen J, Rajpert-De Meyts E, Mannisto S, Nielsen JE, Graem N, Toppari J and Heikinmio M: Differential developmental expression of transcription factors GATA-4 and GATA-6, their cofactor FOGER-2 and downstream target genes in testicular carcinoma in situ and germ cell tumors. Eur J Endocrinol 162: 625-631, 2010.
28. Karlsson J, Holmquist Mengelbier L, Elfving P and Gisselsson D: High-resolution genomic profiling of an adult Wilms’ tumor: Evidence for a pathogenesis distinct from corresponding pediatric tumors. Virchows Arch 459: 547-553, 2011.
29. Virgone C, Cecchetto G, Ferrari A, Bisogno G, Donofrio V, Boldrini R, Collini P, Dall’Igna P and Alaggio R: GATA-4 and FOGER-2 expression in pediatric ovarian sex cord-stromal tumors replicates embryonal gonadal phenotype: Results from the TREP project. PLoS One 7: e45914, 2012.
30. Guan D and Tian H: Integrated network analysis to explore the key genes regulated by parathyroid hormone receptor 1 in osteosarcoma. World J Surg Oncol 15: 177, 2017.
31. Vastrad B, Vastrad C, Godavarthi A and Chandrashekar R: Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data. Med Oncol 34: 182, 2017.
32. Li L, Lv L, Liang Y, Shen X, Zhou S, Zhu J and Ma R: Association of SqC23-24 region (SqC23.3 loci and SqC24.21 loci) with susceptibility to colorectal cancer: A systematic and updated meta-analysis. Int J Clin Exp Med 8: 21001-21013, 2015.
33. Selenti N, Tzetis M, Braoudaki M, Gianikou K, Kitsiou-Tzeli S and Fryssira H: An interstitial deletion at 8q23.1-q24.12 associated with langer-Giedion syndrome type II due to a novel 8q23.3-q24.12 deletion associated with imperforate hymen and vaginal stenosis. Br J Dermatol 171: 1581-1583, 2014.
35. Win AK and Jenkins MA: Is the reported modifying effect of 8q23.3 and 11q23.1 on colorectal cancer risk for MLHI mutation carriers valid? Int J Cancer 133: 1762-1763, 2013.

36. Perez G, Severinski S, Ostojic S, Volk M, Mauer A, Dekanic KB, Kapovic M and Peterlin B: Third case of 8q23.3-q24.13 deletion in a patient with langer-giedion syndrome phenotype without TRPS1 gene deletion. Am J Med Genet A 158A: 659-663, 2012.

37. Carvalho-Carmona LG, Cazier JB, Jones AM, Howarth K, Broderick P, Pittman A, Dobbins T, Tenesa A, Farrington S, Prendergast J, et al: Fine-mapping of colorectal cancer susceptibility loci at 8q23.3, 16q22.1 and 19q13.11: Refinement of association signals and use of in silico analysis to suggest functional variation and unexpected candidate target genes. Hum Mol Genet 20: 2879-2888, 2011.

38. Menyhart O, Nagy A and Gyorffy B: Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R Soc Open Sci 5: 181006, 2018.

39. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408, 2001.

40. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47 (D1): D607-D613, 2019.

41. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgerisson SS, Sun Z, Tang ZY, Qin LX and Wang XW: A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res 70: 10202-10212, 2010.

42. Seimiya M, Ohno S, Yamamoto H, Kawasaki T, Fujiwara K, Yoshida T, Sawabe Y, Sagawa K, Matsushita K, Yokosuka O and Nomura F: EIF3S3 genes may be amplification targets at 8q23‑q24 and are associated with large hepatocellular carcinomas. Hepatology 63: 1242-1249, 2003.

43. Perea N, Severinski S, Ostojic S, Volk M, Mauer A, Dekanic KB, Kapovic M and Peterlin B: Third case of 8q23.3-q24.13 deletion in a patient with langer-giedion syndrome phenotype without TRPS1 gene deletion. Am J Med Genet A 158A: 659-663, 2012.

44. Ghorbanoghli Z, Nieuwenhuis MH, Houwing-Duistermaat JJ, van Loo P, Kornaros M, Hennis P, Verhaeghe A, Cats A, Verhoeven P, et al: Combined analysis of three Lynch syndrome susceptibility loci on chromosomes 1p14 and 8q23.3. Nat Genet 40: 623-630, 2008.

45. Okamoto H, Yasui K, Zhao C, Arii S and Inazawa J: PTK2 and E1F3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas. Hepatology 38: 1242-1249, 2003.

46. Welti D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L and Parkinsson H: The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42 (Database Issue): D1001-D1004, 2016.

47. Zheng R and Blobel GA: GATA transcription factors and cancer. Genes Cancer 1: 1178-1188, 2010.

48. Chou J, Provot S and Werb Z: GATA3 in development and cancer differentiation: Cells GATA have it! J Cell Physiol 222: 42-49, 2010.

49. Albergaria A, Paredes J, Sousa B, Milanesi F, Carneiro V, Bastos J, Costa S, Vieira D, Lopes N, Lam EW, et al: Expression of FOXA1 and GATA-3 in breast cancer: The prognostic significance in hormone receptor-negative tumours. Breast Cancer Res 11: R40, 2009.

50. Voduc D, Cheang M and Nielsen T: GATA3 expression in breast cancer has a strong association with estrogen receptor but lacks independent prognostic value. Cancer Epidemiol Biomarkers Prev 17: 365-373, 2008.

51. Kourosw-Mehr H, Bechis SK, Slorach LE, Pageel IP, Egelblad M, Ewald AJ, Pai SY, Ho IC and Werb Z: GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13: 141-152, 2008.

52. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS and Brown M: Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 67: 6477-6483, 2007.

53. Gulbinas A, Berberat PO, Dambruossas Z, Giese T, Giese N, Autschbach F, Kleeff J, Meier S, Büchler MW and Friess H: Aberrant gata-3 expression in human pancreatic cancer. J Histochem Cytochem 54: 161-169, 2006.

54. Parikh P, Palazzo JP, Rose LJ, Daskalakis C and Weigel RJ: GATA-3 expression as a predictor of hormone response in breast cancer. J Am Coll Surg 200: 705-710, 2005.

55. Gong X, Liu W, Wu L, Wu F, Wu W, Li M and Gu Y: Quantitative assessment of the influence of common variation rs16892766 at 8q23.3 with colorectal adenoma and cancer risk. PLoS ONE 13: e0196241, 2018.

56. Parikh P, Palazzo JP, Rose LJ, Daskalakis C and Weigel RJ: GATA-3 expression as a predictor of hormone response in breast cancer. J Am Coll Surg 200: 705-710, 2005.

57. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS and Brown M: Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 67: 6477-6483, 2007.

58. Gulbinas A, Berberat PO, Dambruossas Z, Giese T, Giese N, Autschbach F, Kleeff J, Meier S, Büchler MW and Friess H: Aberrant gata-3 expression in human pancreatic cancer. J Histochem Cytochem 54: 161-169, 2006.

59. Parikh P, Palazzo JP, Rose LJ, Daskalakis C and Weigel RJ: GATA-3 expression as a predictor of hormone response in breast cancer. J Am Coll Surg 200: 705-710, 2005.

60. Gong X, Liu W, Wu L, Wu F, Wu W, Li M and Gu Y: Quantitative assessment of the influence of common variation rs16892766 at 8q23.3 with colorectal adenoma and cancer risk. PLoS ONE 13: e0196241, 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.