Heterobimetallic Dy-Cu coordination compound as a classical-quantum ferrimagnetic chain of regularly alternating Ising and Heisenberg spins

J. Torrico
Universidade Federal de Alagoas

J. Strecka
P. J. Safárik University

M. Hagiwara
Osaka University

O. Rojas
Universidade Federal de Lavras

S. M. de Souza
Universidade Federal de Lavras

Y. Han
Huazhong University of Science and Technology

Z. Honda
Saitama University

M. L. Lyra
Universidade Federal de Alagoas

A classical-quantum chain composed of regularly alternating Ising and Heisenberg spins is rigorously solved by considering two distinct local anisotropy axes of the Ising spins. The ground-state phase diagram and magnetization curves are examined depending on a spatial orientation of the applied magnetic field. The phase diagram totally consists of four distinct phases and a few macroscopically degenerate points, where an outstanding coexistence of perfect order and complete disorder occurs within the so-called 'half-fire, half-ice' state. The zero-temperature magnetization curves generally exhibit a smooth dependence on a magnetic field owing to a canting angle between two coplanar anisotropy axes of the Ising spins, which enforces a misalignment of the magnetization vector from a direction of the applied magnetic field. It is evidenced that the investigated spin-chain model reproduces magnetic features of the heterobimetallic coordination compound Dy(NO)$_3$(DMSO)$_2$Cu(opba)(DMSO)$_2$. The heterobimetallic polymeric complex Dy(NO)$_3$(DMSO)$_2$Cu(opba)(DMSO)$_2$, which will be hereafter referred to as Dy-Cu, involves 1D chain of exchange-coupled Dy$^{3+}$ and Cu$^{2+}$ ions as a magnetic backbone. Consequently, the polymeric compound Dy-Cu can be regarded as an experimental realization of the spin-1/2 Ising-Heisenberg chain with regularly alternating Ising and Heisenberg spins, which capture a magnetic behavior of highly anisotropic Dy$^{3+}$ and almost isotropic Cu$^{2+}$ magnetic ions, respectively. The high-field magnetization data reported for the powder sample of this polymeric coordination compound generally display a substantial smoothing on account of a powder averaging.