A PROOF OF A CONJECTURE OF SHKLYAROV

MICHAEL K. BROWN AND MARK E. WALKER

ABSTRACT. We prove a conjecture of Shklyarov concerning the relationship between K. Saito’s higher residue pairing and a certain pairing on the periodic cyclic homology of matrix factorization categories. Along the way, we give new proofs of a result of Shklyarov ([Shk16, Corollary 2]) and Polishchuk-Vaintrob’s Hirzebruch-Riemann-Roch formula for matrix factorizations ([PV12, Theorem 4.1.4(i)]).

CONTENTS

1. Introduction 1
 1.1. Background on Shklyarov’s conjecture 2
 1.2. Outline of the proof of Conjecture 1.4 3
2. Generalities on Hochschild homology for curved dg-categories 4
 2.1. Hochschild homology of curved dg-categories 4
 2.2. The Künneth map for Hochschild homology of cdga’s 5
 2.3. Functoriality of HH using the shuffle product 6
 2.4. The Künneth map for Hochschild homology of cdg-categories 7
 2.5. Naturality of the Künneth map 8
3. Hochschild homology of matrix factorization categories 8
 3.1. Matrix factorizations 9
 3.2. The HKR map 10
 3.3. Relationship between the HKR map and the map $I_f(0)$ 13
 3.4. Compatibility of the HKR map with taking duals 14
 3.5. Multiplicativity of the HKR map 16
4. Proof of Shklyarov’s conjecture 18
 4.1. Computing $HH(mf^n(Q, 0))$ 18
 4.2. The trace map 19
 4.3. The canonical pairing on Hochschild homology 20
 4.4. The residue map 21
 4.5. The residue pairing 28
 4.6. Relating the trace and residue maps 28
 4.7. Proof of the conjecture 30
5. Recovering Polishchuk-Vaintrob’s Hirzebruch-Riemann-Roch formula for matrix factorizations 31

References 33

1. Introduction

Let $Q = \mathbb{C}[x_1, \ldots, x_n]$, and let m denote the maximal ideal $(x_1, \ldots, x_n) \subseteq Q$. Fix $f \in m$, and assume the only singular point of the associated morphism $f : \text{Spec}(Q) \to \mathbb{A}^1_\mathbb{C}$ is m. Let $mf(Q, f)$

MB gratefully acknowledges support from the National Science Foundation (award DMS-1502553), and MW gratefully acknowledges support from the Simons Foundation (grant #318705) and the National Science Foundation (award DMS-1901848).
denote the differential \(\mathbb{Z}/2 \)-graded category of matrix factorizations of \(f \); see Section \(\S 1 \) for the definition of \(mf(Q, f) \). Shklyarov proves in [Shk16, Theorem 1] that a certain pairing on the periodic cyclic homology of \(mf(Q, f) \) coincides, up to a constant factor \(c_f \) (which possibly depends on \(f \)), with K. Saito’s higher residue pairing, via the Hochschild-Kostant-Rosenberg (HKR) isomorphism. Shklyarov conjectures in [Shk16, Conjecture 3] that \(c_f = (-1)^{\frac{m(m+1)}{2}} \). The main goal of this paper is to prove this conjecture.

We begin by discussing Shklyarov’s conjecture in more detail.

1.1. Background on Shklyarov’s conjecture. Let \(HN(mf(Q, f)) \) denote the negative cyclic complex of \(mf(Q, f) \), and let \(HN_*(mf(Q, f)) \) denote its homology. See, for instance, [BW19a, Section 3] for the definition of the negative cyclic complex of a dg-category. The dg-category \(mf(Q, f) \) is proper, i.e. each cohomology group of the (Z/2-graded) morphism complex of any two objects is a finite dimensional \(\mathbb{C} \)-vector space. As with any such dg-category, there is a canonical pairing of \(\mathbb{Z}/2 \)-graded \(\mathbb{C} \)-vector spaces

\[
K_{mf} : HN_*(mf(Q, f)) \times HN_*(mf(Q, f)) \to \mathbb{C}[[u]],
\]

where \(u \) is an even degree variable. The pairing \(K_{mf} \) is defined exactly as in [Shk16, page 184], but with periodic cyclic homology \(HP \) replaced with \(HN_\ast \) and \(\mathbb{C}((u)) \) replaced with \(\mathbb{C}[[u]] \). We note that \(K_{mf} \) is \(\mathbb{C}[[u]] \)-sesquilinear; that is, for any \(\alpha, \beta \in HN_\ast(mf(Q, f)) \) and \(g \in \mathbb{C}[[u]] \), we have

\[
K_{mf}(g(u) \cdot \alpha, \beta) = g(u)K_{mf}(\alpha, \beta) = K_{mf}(\alpha, g(-u) \cdot \beta).
\]

It follows from work of Segal [Seg13, Corollary 3.4] and Polishchuk-Positselski [PPT12, Section 4.8] that there is a quasi-isomorphism

\[
I_f : HN(mf(Q, f)) \xrightarrow{\cong} (\Omega^\bullet_{Q/\mathbb{C}}[[u]], ud - df),
\]

which generalizes the classical Hochschild-Kostant-Rosenberg (HKR) theorem. The target of \(I_f \) is called the twisted de Rham complex, and it is a \(\mathbb{Z}/2 \)-graded complex indexed by setting \(\Omega^m_{Q/\mathbb{C}} \) to have (homological) degree \(m \) and \(u \) to have degree \(-2\). (Since the twisted de Rham complex is \(\mathbb{Z}/2 \)-graded, we could just as well say \(\Omega^m \) has degree \(-m\) and \(u \) has degree \(2 \). Note that the map \(ud \) has degree \(-1\) whereas \(df \) has degree \(1\), but since this is regarded as a \(\mathbb{Z}/2 \)-graded complex, there is no problem.) In particular, we have an isomorphism

\[
I_f : HN_\ast(mf(Q, f)) \xrightarrow{\cong} H_f^{(0)}(0),
\]

where

\[
H_f^{(0)} := H_\ast(\Omega^\bullet_{Q/\mathbb{C}}[[u]], ud - df) = \frac{\Omega^\bullet_{Q/\mathbb{C}}[[u]]}{(ud - df) \cdot \Omega^{\bullet - 1}_{Q/\mathbb{C}}[[u]]}.
\]

In [Sai83], K. Saito equips the \(\mathbb{C}[[u]] \)-module \(H_f^{(0)} \) with a pairing

\[
K_f : H_f^{(0)} \times H_f^{(0)} \to \mathbb{C}[[u]]
\]

known as the higher residue pairing. Shklyarov has proven the following result concerning the relationship between the canonical pairing and the higher residue pairing under the HKR isomorphism:

Theorem 1.2 ([Shk16, Theorem 1]). For each polynomial \(f \) as above, there is a constant \(c_f \in \mathbb{C} \) (possibly depending on \(f \)) such that the diagram

\[
\begin{array}{ccc}
HN_\ast(mf(Q, f)) & \xrightarrow{I_f \times I_f} & (H_f^{(0)})^{\times 2} \\
\downarrow c_f \cdot u^n \cdot K_{mf} & & \downarrow K_f \\
\mathbb{C}[[u]] & \xrightarrow{K_{mf}} & \mathbb{C}[[u]]
\end{array}
\]

commutes.

Moreover, Shklyarov makes the following prediction:
Conjecture 1.4 (Shk16, Conjecture 3). For any f, $c_f = (-1)^{n(n+1)/2}$.

1.2. Outline of the proof of Conjecture 1.4 The constant c_f can be determined from a related, but simpler, pairing on $HH_n(mf(Q, f))$, the Hochschild homology of $mf(Q, f)$. We recall that, for any dg-category C, there is a short exact sequence

$$0 \to HN(C) \to HN(C) \to HH(C) \to 0$$

(1.5) of complexes. It follows, for instance from (1.1), that $HN_*(mf(Q, f))$ and $HH_*(mf(Q, f))$ are concentrated in degree $n \pmod{2}$. The long exact sequence in homology induced by (1.5) therefore induces an isomorphism

$$HN_*(mf(Q, f))/u \cdot HN_*(mf(Q, f)) \cong HH_*(mf(Q, f)).$$

(1.6)

The pairing K_{mf} determines a well-defined pairing modulo u, which we write, via (1.6), as

$$\eta_{mf} : HH_*(mf(Q, f)) \times HH_*(mf(Q, f)) \to \mathbb{C}.$$

The isomorphism I_f is $\mathbb{C}[u]$-linear and, upon setting $u = 0$, it induces an isomorphism

$$I_f(0) : HH_n(mf(Q, f)) \cong H_n(\Omega^\bullet_{Q/\mathbb{C}}, -df).$$

The higher residue pairing K_f has the form

$$K_f \left(\omega + \sum_{j \geq 1} \omega_j u^j, \omega' + \sum_{j \geq 1} \omega'_j u^j \right) = \langle \omega, \omega' \rangle_{\text{res}} u^n + \text{higher order terms},$$

where $\langle \omega, \omega' \rangle_{\text{res}}$ is the classical residue pairing determined by the partial derivatives of f. It is defined algebraically as

$$\langle g \cdot dx_1 \cdots dx_n, h \cdot dx_1 \cdots dx_n \rangle_{\text{res}} = \text{res} \left[\frac{gh}{\partial f} \frac{dx_1}{\partial x_1}, \ldots, \frac{gh}{\partial f} \frac{dx_n}{\partial x_n} \right],$$

where the right-hand side is Grothendieck’s residue symbol.

Thus, upon dividing the maps in diagram (1.3) by u^n and setting $u = 0$, we obtain the commutative triangle

$$\begin{array}{ccc}
HH_n(mf(Q, f)) & \xrightarrow{I_f(0) \times I_f(0)} & \Omega_{Q/\mathbb{C}}^n \\
\downarrow_{c_f \eta_{mf}} & & \downarrow_{\frac{d}{df} \Omega_{Q/\mathbb{C}}^n} \\
\mathbb{C}. & \xrightarrow{(-,-)_{\text{res}}} & \mathbb{C}.
\end{array}$$

Since $I_f(0)$ is an isomorphism, and the residue pairing is non-zero, the value of c_f is uniquely determined by the commutativity of (1.7). Note that a result closely related to the commutativity of (1.7) was also proven by Polischuk-Vaintrob ([PV12, Corollary 4.1.3]).

In this paper, we re-establish the commutativity of diagram (1.7) using techniques that differ from those used by Shklyarov. Our method results in an explicit calculation of c_f:

Theorem 1.8. Shklyarov’s Conjecture holds: that is, for any f as above,

$$c_f = (-1)^{n(n+1)/2}.$$
The general outline of our proof is summarized by the diagram

\[
\begin{array}{c}
\text{HH}_n(m_f(Q, f)) \times \text{HH}_n(m_f(Q, f)) \\
\downarrow \text{id} \times \Psi \\
\text{HH}_n(m_f(Q, f)) \times \text{HH}_n(m_f(Q, -f)) \\
\downarrow \text{id} \times (-1)^n \\
\text{HH}_{2n}(m_f^m(Q_m, 0)) \\
\downarrow (-1)^{n(n+1)/2} \text{trace} \\
\text{HH}_{2n} \Gamma_m(\Omega^\bullet_{Q_m/k}) \\
\end{array}
\]

The map \(\Psi\) is induced by taking \(Q\)-linear duals; \(*\) is induced by a K"unneth map followed by the tensor product of matrix factorizations; trace is defined in Section\(\ref{trace}\); \(\text{res}\) is Grothendieck’s residue map; \(\wedge\) is induced by exterior multiplication of differential forms, using that the complexes \((\Omega^\bullet_{Q/k}, df)\) are supported on \(\{m\}\); and the map \(\varepsilon\) is an HKR-type map. We prove:

1. the diagram commutes (Lemma\(\ref{commutes}\) Lemma\(\ref{diagram}\) Corollary\(\ref{corollary}\) and Theorem\(\ref{theore}\))
2. the composition along the left side of this diagram is the canonical pairing \(\eta_{m_f}\) (Lemma\(\ref{lemma}\)), and
3. the composition along the right side of this diagram is the residue pairing \(\langle -,-\rangle_{\text{res}}\) (Proposition\(\ref{proposition}\)).

Finally, in Section\(\ref{section}\) we use some of our results to give a new proof Polishchuk-Vaintrob’s Hirzebruch-Riemann-Roch theorem for matrix factorizations ([PV12 Theorem 4.1.4(i)])

Acknowledgements. We thank Srikanth Iyengar for helpful remarks concerning the proof of Lemma\(\ref{lemma}\).

2. Generalities on Hochschild homology for curved dg-categories

We review some background on Hochschild homology of curved dg-categories and establish some new results concerning pairings of such. Throughout this section, \(k\) is a field, and “graded” means \(\Gamma\)-graded for \(\Gamma \in \{\mathbb{Z}, \mathbb{Z}/2\}\). We will eventually focus on the case \(\Gamma = \mathbb{Z}/2\).

2.1. Hochschild homology of curved dg-categories. We refer the reader to [BW19a Section 2.1] for the definition of a curved differential \(\Gamma\)-graded category (henceforth referred to as a cdg-category).

Recall that a cdg-category with just one object is a curved differential \(\Gamma\)-graded algebra (cdga).

For a cdg-category \(C\) whose objects form a set, define \(HH(C)\) to be the \(\Gamma\)-graded \(k\)-vector space given by the direct sum totalization of the \(\mathbb{Z} - \Gamma\)-bicomplex which, in \(\mathbb{Z}\)-degree \(n\), is the \(\Gamma\)-graded \(k\)-vector space

\[
\bigoplus_{X_0,...,X_n \in C} \text{Hom}(X_1, X_0) \otimes_k \Sigma \text{Hom}(X_2, X_1) \otimes_k \cdots \otimes_k \Sigma \text{Hom}(X_n, X_{n-1}) \otimes_k \Sigma \text{Hom}(X_0, X_n).
\]

When \(C\) is essentially small, so that the isomorphism classes of objects in the \(\Gamma\)-graded category underlying \(C\) form a set (see [PP12 Section 2.6]), we define \(HH(C)\) by first replacing \(C\) with a full subcategory consisting of a single object from each isomorphism class. From now on, we will tacitly assume all of our cdg-categories are essentially small. Given \(\alpha_i \in \text{Hom}(X_{i+1}, X_i)\) for \(i = 0, \ldots, n\) (with \(X_{n+1} = X_0\), we write \(\alpha_0^{[0]} \cdots \alpha_n^{[n]}\) for the element \(\alpha_0 \otimes \cdots \otimes \alpha_n\) of \(HH(C)\).

The Hochschild complex of \(C\), denoted \(HH(C)\), is the above graded \(k\)-vector space equipped with the differential \(b := b_2 + b_1 + b_0\), where \(b_2, b_1, b_0\) are defined as in [BW19a Section 3.1]. Roughly, \(b_2\) is the classical Hochschild differential induced by the composition law in \(C\), \(b_1\) is induced by the differentials of \(C\), and \(b_0\) is induced by the curvature elements of \(C\). When \(C\) has just one object with
trivial curvature, then C is a dga, and the maps b_2 and b_1 are the classical ones (and $b_0 = 0$ in this case).

We will also need “Hochschild homology of the second kind”, as introduced by Polishchuk-Positselski in [PP12]. Define $HH^I(C)^{\mathbb{I}}$ to be the \mathbb{I}-graded k-vector space given as the direct product totalization of the above bicomplex. Equivalently, $HH^I(C)^{\mathbb{I}}$ is the completion of $HH(C)^{\mathbb{I}}$ under the topology determined by the evident filtration. Since b is continuous for this topology, it induces a differential on $HH^I(C)^{\mathbb{I}}$, which we also write as b, and we write $HH^I(C)$ for the resulting chain complex.

2.2. The Künneth map for Hochschild homology of cdga’s. For a cdga $A = (A, d_A, h_A)$, we have

$$HH(A)^{\sharp} = A \otimes_k T(\Sigma A),$$

where, for any graded k-vector space V, $T(V) = \bigoplus_{n \geq 0} V^{\otimes n}$. Recall that $T(V)$ is a commutative k-algebra under the shuffle product:

$$(v_1 \otimes \cdots \otimes v_p) \cdot (v_{p+1} \otimes \cdots \otimes v_{p+q}) = \sum_{\sigma} \pm v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(p+q)},$$

where σ ranges over all (p, q)-shuffles. The sign is given by the usual rule for permuting homogeneous elements in a product.

Since A is also an algebra, $HH(A)^{\sharp}$ has an algebra structure, whose multiplication rule will be written as

$$\ast : HH(A)^{\sharp} \otimes_k HH(A)^{\sharp} \to HH(A)^{\sharp}.$$

It is given explicitly as

$$x[a_1|\cdots|a_p] \ast y[a_{p+1}|\cdots|a_{p+q}] = \sum_{\sigma} \pm xy[a_{\sigma(1)}|\cdots|a_{\sigma(p+q)}].$$

Note that the canonical inclusion $T(\Sigma A) \hookrightarrow HH(A)^{\sharp}$ lands in the center of $HH(A)^{\sharp}$ for the \ast multiplication.

If $B = (B, d_B, h_B)$ is another cdga, the tensor product of A and B is defined to be

$$A \otimes_k B = (A \otimes_k B, d_A \otimes 1 + 1 \otimes d_B, h_A \otimes 1 + 1 \otimes h_B).$$

We define the Künneth map

$$\tilde{\ast} : HH(A)^{\sharp} \otimes_k HH(B)^{\sharp} \to HH(A \otimes_k B)^{\sharp}$$

to be the composition of the tensor product of the maps induced by the canonical inclusions $HH(A)^{\sharp} \to HH(A \otimes B)^{\sharp}$ and $HH(B)^{\sharp} \to HH(A \otimes B)^{\sharp}$ with the \ast product for $A \otimes_k B$. The \ast product on $HH(A)^{\sharp}$ can be recovered from the Künneth map by setting $B = A$: the \ast product coincides with the composition

$$HH(A)^{\sharp} \otimes_k HH(A)^{\sharp} \xrightarrow{\tilde{\ast}} HH(A \otimes_k A)^{\sharp} \xrightarrow{\mu} HH(A)^{\sharp},$$

where

$$\mu : (A \otimes_k A) \otimes_k T(\Sigma(A \otimes A)) \to A \otimes_k T(\Sigma A)$$

is induced by the multiplication map $\mu : A \otimes A \to A$.

It is important to note that, for an algebra A, the \ast product does not, in general, make $HH(A)$ into a dga, since b_2 is not a derivation for the \ast multiplication unless A is commutative. But, b_2 is a derivation for the Künneth map; see Lemma 2.3.

The \ast product does behave well with respect to b_1. In detail, recall that the tensor algebra functor $T(_)$ sends Γ-graded complexes of k-vector spaces to differential Γ-graded algebras under the shuffle product. Let dT denote the differential on $T(\Sigma A)$ induced from the differential Σd on ΣA. Then $(T(\Sigma A), \cdot, d_T)$ is a dga, where \cdot is the shuffle product. By examining the explicit formula for b_1, we see that

$$b_1 = d_A \otimes 1 + 1 \otimes d_T.$$

In other words, $(HH(A)^{\sharp}, \ast, b_1)$ is a dga, and it is given as a tensor product of dga’s:

$$(HH(A)^{\sharp}, \ast, b_1) = (A, \cdot, d_A) \otimes (T(\Sigma A), \cdot, d_T),$$
A non-strict morphism given by sending \(\phi \) induces maps
\[
\phi_* : HH(A) \to HH(B) \quad \text{and} \quad \phi_* : HH^{II}(A) \to HH^{II}(B)
\]
given by
\[
\phi_*(a_0[a_1| \ldots |a_n]) = \rho(a_0)[\rho(a_1)| \ldots |\rho(a_n)].
\]
A non-strict morphism \(\phi \) does not, in general, induce a map on Hochschild homology, but it does induce a map
\[
\phi_* : HH^{II}(A) \to HH^{II}(B)
\]
given by sending \(a_0[a_1| \ldots |a_n] \) to
\[
\sum_{i_0, \ldots, i_n \geq 0} (-1)^{i_0+\cdots+i_n} \rho(a_0)(\underbrace{\beta| \ldots |\beta}_i \rho(a_1)(\underbrace{\beta| \ldots |\beta}_j \rho(a_2)(\underbrace{\beta| \ldots |\beta}_n \rho(a_n))).
\]

We next show how \(\phi_* \) may also be defined using the \(\ast \) product. Suppose \(b \in B \) is a degree 1 element, and let \(\exp(1|b]) \) denote the degree 0, central element of the algebra \((HH^{II}(B)^{\ast}, \ast)\) given by evaluating the power series for the exponential function at 1|b]
\[
\exp(1|b]) = 1 + 1|b] + \frac{1}{2!}(1|b] * 1|b]) + \frac{1}{3!}(1|b] * 1|b] * 1|b]) + \cdots
\]
\[
= 1 + 1|b] + 1|b|b] + 1|b|b|b] + \cdots.
\]
The signs are correct, since \(s(b) \in T(\Sigma B) \) has even degree. We have:
\[
\exp(1|b]) * (b_0|b_1| \ldots |b_n]) = (b_0|b_1| \ldots |b_n]) * \exp(1|b])
\]
\[
= \sum_{i_0, \ldots, i_n \geq 0} \rho(a_0)(\underbrace{b_0|b_1| \ldots |b_n}) \ast \exp(1|b])
\]

By comparing formulas, we see that
\[
\phi_* = \exp(1|b]) \ast \rho_*.
\]
That is,
\[
\phi_*(a_0[a_1| \ldots |a_n]) = \exp(1|b]) \ast \rho(a_0)[\rho(a_1)| \ldots |\rho(a_n)] = \rho(a_0)[\rho(a_1)| \ldots |\rho(a_n)] \ast \exp(1|b])
\]
2.4. The Künneth map for Hochschild homology of cdg-categories. For a pair of cdg-categories \(C \) and \(D \), we write \(C \otimes_k D \) for the cdg-category whose objects are ordered pairs \((C, D)\) with \(C \in C \) and \(D \in D \) and such that

\[
\text{Hom}((C, D), (C', D')) = \text{Hom}_C(C, C') \otimes_k \text{Hom}_D(D, D'),
\]

with differentials given in the standard way for a tensor product. The composition rules are the evident ones, and the curvature elements are defined by

\[
h_{(C,D)} = h_C \otimes \text{id}_D + \text{id}_C \otimes h_D.
\]

Note that, if \(\mathcal{A} = (A, d_A, h_A) \) and \(\mathcal{B} = (B, d_B, h_B) \) are cdga’s, then this construction specializes to the construction given above:

\[
\mathcal{A} \otimes_k \mathcal{B} = (A \otimes_k B, d_A \otimes \text{id}_B + \text{id}_A \otimes d_B, h_A \otimes \text{id}_B + \text{id}_A \otimes h_B).
\]

We define the Künneth map for the cdg-categories \(C \) and \(D \) to be the map

\[
-\tilde{\star}: \mathcal{H} \mathcal{H}(C) \otimes_k \mathcal{H} \mathcal{H}(D) \rightarrow \mathcal{H} \mathcal{H}(C \otimes_k D)
\]

given by

\[
c_0[c_1|\cdots|c_m] \tilde{d} d_0[d_1|\cdots|d_n] = \sum_{\sigma} \pm c_0 \otimes d_0[e_{\sigma(1)}|\cdots|e_{\sigma(m+n)}],
\]

where \(\sigma \) ranges over all \((m,n)\)-shuffles, and

\[
e_i := \begin{cases} c_i \otimes \text{id}, & \text{if } 1 \leq i \leq m, \\ \text{id} \otimes d_i - m, & \text{if } m + 1 \leq i \leq m + n. \end{cases}
\]

This map extends to \(\mathcal{H} \mathcal{H}^I(-) \):

\[
-\tilde{\star}: \mathcal{H} \mathcal{H}^I(C) \otimes_k \mathcal{H} \mathcal{H}^I(D) \rightarrow \mathcal{H} \mathcal{H}^I(C \otimes_k D).
\]

Remark 2.5. There does not seem to be an analogue of the \(\star \) product for a general cdg-category. The issue is that, in general, there is no “diagonal map”

\[
\mathcal{A} \otimes_k \mathcal{A} \rightarrow \mathcal{A}.
\]

Lemma 2.6. For any two cdg-categories \(C \) and \(D \), the diagram

\[
\begin{array}{ccc}
\mathcal{H} \mathcal{H}(C) \otimes_k \mathcal{H} \mathcal{H}(D) & \xrightarrow{-\tilde{\star}} & \mathcal{H} \mathcal{H}(C \otimes_k D) \\
\downarrow b_i \otimes \text{id} + \text{id} \otimes b_i & & \downarrow b_i \\
\mathcal{H} \mathcal{H}^I(C) \otimes_k \mathcal{H} \mathcal{H}^I(D) & \xrightarrow{-\tilde{\star}} & \mathcal{H} \mathcal{H}^I(C \otimes_k D)
\end{array}
\]

commutes for \(i = 0, 1, \) and \(2 \), and similarly for \(\mathcal{H} \mathcal{H}^I(-) \). In particular,

\[
-\tilde{\star}: \mathcal{H} \mathcal{H}(C) \otimes_k \mathcal{H} \mathcal{H}(D) \rightarrow \mathcal{H} \mathcal{H}(C \otimes_k D)
\]

and

\[
-\tilde{\star}: \mathcal{H} \mathcal{H}^I(C) \otimes_k \mathcal{H} \mathcal{H}^I(D) \rightarrow \mathcal{H} \mathcal{H}^I(C \otimes_k D)
\]

are chain maps.

Proof. This follows from the definitions by a routine check. \(\square \)
2.5. Naturality of the Künneth map. We recall that a morphism $A \to B$ of cdg-categories is a pair $\phi = (F, \beta)$, where $F : A \to B$ is a morphism of categories enriched in Γ-graded k-vector spaces, and β is an assignment to each object X of A a degree 1 element $\beta_X \in \text{End}_B(F(X))$. The pair (F, β) is required to satisfy:

- For all $X, Y \in \text{Ob}(A)$ and $f \in \text{Hom}_A(X, Y)$,
 \[F(\delta(f)) = \delta(F(f)) + \beta_Y \circ F(f) - (-1)^{|f|} F(f) \circ \beta_X, \]
 where δ is the differential on $\text{Hom}_A(X, Y)$; and
- for all $X \in \text{Ob}(A)$,
 \[F(h_X) = h_{F(X)} + \delta(\beta_X) + \beta_X^2. \]

ϕ is called strict if $\beta_X = 0$ for all X.

Lemma 2.7. Suppose A, A', B, B' are curved differential Γ-graded categories, and $\phi = (F, \beta) : A \to B$, $\phi' = (F', \beta') : A' \to B'$ are morphisms of such. Then

1. $\phi \otimes \phi' := (F \otimes F', \beta \otimes 1 + 1 \otimes \beta')$ is a morphism from $A \otimes_k A'$ to $B \otimes_k B'$, and, if ϕ and ϕ' are strict morphisms, then so is $\phi \otimes \phi'$;
2. the diagram

\[
\begin{array}{ccc}
HH^{11}(A) \otimes_k HH^{11}(A') & \xrightarrow{(\phi)_* \otimes (\phi')_*} & HH^{11}(B) \otimes_k HH^{11}(B') \\
\downarrow \phi & & \downarrow \phi' \\
HH^{11}(A \otimes_k A') & \xrightarrow{\phi \otimes \phi'} & HH^{11}(B \otimes_k B')
\end{array}
\]

commutes; and
3. if ϕ and ϕ' are strict morphisms, the corresponding diagram involving ordinary Hochschild homology commutes.

Proof. The proof of (1) is a routine check, and (3) is an immediate consequence of (2). For (2), to simplify the notation, we assume the cdg-categories involved are cdg-algebras; the proof of the general claim is notationally more complicated but essentially the same. Write $\phi = (\rho, \beta)$, $\phi' = (\rho', \beta')$, so that, by (2.4),

\[\phi_* = \exp(1[-\beta]) \ast \rho_* \quad \text{and} \quad \phi'_* = \exp(1[-\beta']) \ast \rho'_*. \]

Let $\iota : HH^{11}(A) \hookrightarrow HH^{11}(A \otimes_k A')$ and $\iota' : HH^{11}(A') \hookrightarrow HH^{11}(A \otimes_k A')$ be the canonical inclusions. We have

\[\exp(1[-\beta]) \ast \iota(1[-\beta]) = \exp(1[-\beta]) \ast \exp(1[-\beta']) = \exp(1[-\beta \otimes 1 - 1 \otimes \beta']). \]

the second equation holds since $\iota(1[-\beta])$ and $\iota'(1[-\beta'])$ commute. Therefore, for elements $\alpha \in HH^{11}(A)$ and $\alpha' \in HH^{11}(A')$, using also the associativity of \ast, we get

\[(\phi)_* (\alpha) \ast (\phi')_* (\alpha') = (\exp(1[-\beta]) \ast \rho(\alpha)) \ast (\exp(1[-\beta']) \ast \rho'(\alpha')) \]
\[= (\exp(1[-\beta]) \ast \exp(1[-\beta'])) \ast (\rho(\alpha) \ast \rho'(\alpha')) \]
\[= \exp(1[-\beta \otimes 1 - 1 \otimes \beta']) \ast (\rho \otimes \rho')(\alpha \ast \alpha') \]
\[= (\phi \otimes \phi')_* (\alpha \ast \alpha'). \]

\[\square \]

3. Hochschild homology of matrix factorization categories

Let k be a field, and let Q be an essentially smooth k-algebra. Fix $f \in Q$.
3.1. Matrix factorizations. The dg-category $mf(Q, f)$ of matrix factorizations of f over Q is defined as follows:

- Objects are pairs (P, δ_P), where P is a finitely generated $\mathbb{Z}/2$-graded projective Q-module, and δ_P is an odd degree endomorphism of P such that $\delta_P^2 = f \text{id}_P$.
- $\text{Hom}_{mf(Q, f)}((P, \delta_P), (P', \delta_{P'}))$ is the $\mathbb{Z}/2$-graded complex $\text{Hom}_Q(P, P')$ with differential ∂ given by
 $$\partial(\alpha) = \delta_P \alpha - (-1)^{|\alpha|} \alpha \delta_P$$
 for α homogeneous. From now on, we will omit the subscript on Hom.

We emphasize that f is allowed to be 0. The homotopy category of $mf(Q, f)$, denoted $[mf(Q, f)]$, is the Q-linear category with the same objects as $mf(Q, f)$ and morphisms given by $\text{Hom}_{[mf(Q, f)]}(-, -) := H^0 \text{Hom}(-, -)$.

Let $X, Y \in mf(Q, f)$, and let $\alpha_0, \alpha_1 \in \text{Hom}(X, Y)$ be cocycles. We recall that α_0, α_1 are homotopic if there is an odd degree Q-linear map $h : X \to Y$ such that
$$\text{hd}_X + d_Y h = \alpha_0 - \alpha_1.$$ This is just the usual notion of a homotopy between morphisms of a $\mathbb{Z}/2$-graded complex, adapted verbatim to the setting of matrix factorizations. An object $X \in mf(Q, f)$ is contractible if id_X is null-homotopic. Morphisms in $mf(Q, f)$ that are cocycles are homotopic if and only if they are equal in $[mf(Q, f)]$.

Definition 3.1. Given $X \in mf(Q, f)$, the support of X is the set
$$\text{supp}(X) = \{p \in \text{Spec}(Q) \mid X_p \text{ is not a contractible object of } mf(Q_p, f)\}.$$ For a closed subset Z of $\text{Spec}(Q)$, let $mf_Z(Q, f)$ denote the full dg-subcategory of $mf(Q, f)$ consisting of those X with $\text{supp}(X) \subseteq Z$.

We record the following:

Proposition 3.2. Let $X \in mf(Q, f)$.

1. When $f = 0$, supp(X) is the set of points at which the $\mathbb{Z}/2$-complex X is not exact. Therefore, when $f = 0$, the notion of support defined above agrees with the usual notion of support for a $\mathbb{Z}/2$-graded complex.
2. We have $\text{supp}(X) \subseteq \text{Spec}(Q/f)$. When f is a non-zero-divisor, $\text{supp}(X) \subseteq \text{Sing}(Q/f)$.

Proof. (1) This is [BMT17] Lemma 2.3. (2) It is easy to check that any matrix factorization of a unit is contractible. Suppose f is a non-zero-divisor. By [Orl03] Theorem 3.9, the homotopy category $[mf(Q, f)]$ is equivalent to the singularity category of Q/f, and the singularity category is trivial when Q/f is regular.

Remark 3.3. If f is a non-zero-divisor, so that the morphism of schemes $f : \text{Spec}(Q) \to \mathbb{A}^1_k$ is flat, then
$$\text{Spec}(Q/f) \cap \text{Sing}(f) = \text{Sing}(Q/f),$$
where $\text{Sing}(f)$ denotes the set of points of $\text{Spec}(Q)$ at which the morphism $f : \text{Spec}(Q) \to \mathbb{A}^1_k$ is not smooth.

Let R be another essentially smooth k-algebra, and let $g \in R$. Given $X \in mf(Q, f)$ and $Y \in mf(R, g)$, we form the tensor product
$$X \otimes Y \in mf(Q \otimes_k R, f \otimes 1 + 1 \otimes g)$$
by adapting the notion of tensor product of $\mathbb{Z}/2$-graded complexes to matrix factorizations. The tensor product gives a dg-functor
$$mf(Q, f) \otimes_{k} mf(R, g) \to mf(Q \otimes_k R, f \otimes 1 + 1 \otimes g).$$
If Z and W are closed subsets of $\text{Spec}(Q)$ and $\text{Spec}(R)$, respectively, one has an induced functor
$$mf_Z(Q, f) \otimes_{k} mf^W(R, g) \to mf^{Z\times W}(Q \otimes_k R, f \otimes 1 + 1 \otimes g).$$
If $Q = R$, composing with multiplication in Q gives a functor

$$mf^Z(Q, f) \otimes_k mf^W(Q, g) \to mf^{Z \cap W}(Q, f + g).$$

We also have a duality functor D which determines an isomorphism of dg-categories

$$D : mf(Q, f)^{op} \cong mf(Q, -f).$$

The functor D sends an object $P = (P, \delta_P)$ of $mf(Q, f)$ to the object $P^* = (P^*, -\delta_P^*)$ of $mf(Q, -f)$, and it sends an element α of $\text{Hom}(P_1, P_2)^{op} = \text{Hom}(P_1, P_2)$ to the element α^* of $\text{Hom}(P_1^*, P_2^*)$. Note that $\alpha^*(\gamma) = (-1)^{|\alpha||\gamma|}\gamma \circ \alpha$. If $X \in mf^Z(X, -f)^{op}$ for some closed $Z \subseteq \text{Spec}(Q)$, then $D(X) \in mf^Z(X, f)$.

In particular, if $X \in mf^Z(Q, f)$ and $Y \in mf^W(Q, f)$, we have

$$\text{Hom}(X, Y) \cong D(X) \otimes Y.$$ \hspace{1cm} (3.4)

3.2. The HKR map

Assume for the rest of Section 3 that char(k) = 0. Given a \mathbb{Z}-graded complex (C^\bullet, d) of k-vector spaces, its $\mathbb{Z}/2$-folding is the $\mathbb{Z}/2$-graded complex whose even (resp. odd) component is $\bigoplus_{i \in \mathbb{Z}} C^{2i}$ (resp. $\bigoplus_{i \in \mathbb{Z}} C^{2i+1}$) and whose differential is given by d.

Let $\Omega^*_{Q/k}$ denote the $\mathbb{Z}/2$-graded commutative Q-algebra given by the $\mathbb{Z}/2$-folding of the exterior algebra over $\Omega^1_{Q/k}$. That is, $\Omega^\text{even}_{Q/k} = \bigoplus_j \Omega^{2j}_{Q/k}$, and $\Omega^\text{odd}_{Q/k} = \bigoplus_j \Omega^{2j+1}_{Q/k}$. We write $\Omega^*_{Q/k}(-df)$ for the $\mathbb{Z}/2$-graded complex of Q-modules with underlying graded Q-module $\Omega^*_{Q/k}$ and with differential given by left multiplication by $-df \in \Omega^1_{Q/k}$.

Let Z be a closed subset of $\text{Spec}(Q/f)$. The goal of the rest of this section is to study, for each triple (Q, f, Z), a Hochschild-Kostant-Rosenberg (HKR)-type map

$$\varepsilon_{Q, f, Z} : HH(mf^Z(Q, f)) \to \text{RG}_Z(\Omega^*_Q; -df).$$

Here, RG_Z is the right adjoint of the inclusion functor $D^Z_{\mathbb{Z}/2}(Q) \subseteq D_{\mathbb{Z}/2}(Q)$, where $D_{\mathbb{Z}/2}(Q)$ denotes the derived category of $\mathbb{Z}/2$-graded Q-modules, and $D^Z_{\mathbb{Z}/2}(Q) \subseteq D_{\mathbb{Z}/2}(Q)$ the subcategory spanned by complexes with support contained in Z. It will be convenient for us to use the following Čech model for RG_Z. Choose $g_1, \ldots, g_m \in Q$ such that $Z = V(g_1, \ldots, g_m)$, and let

$$C = C(g_1, \ldots, g_m) = \bigotimes_j (Q \to Q[1/g_i])$$

be the ($\mathbb{Z}/2$-folding of the) augmented Čech complex. It is well-known that $C \otimes_Q M$ models $\text{RG}_Z(M)$ for any $M \in D_{\mathbb{Z}/2}(Q)$; i.e., the functor

$$C \otimes_Q - : D_{\mathbb{Z}/2}(Q) \to D^Z_{\mathbb{Z}/2}(Q)$$

is right adjoint to the inclusion. From now on, given $g_1, \ldots, g_m \in Q$ such that $V(g_1, \ldots, g_m) = Z$, we will tacitly identify $\text{RG}_Z(M)$ with $C \otimes_Q M$. Note that, for any $\mathbb{Z}/2$-graded complex M of Q-modules that is supported in Z, the natural morphism of complexes

$$C \otimes_Q M \to M$$ \hspace{1cm} (3.6)

given by the tensor product of the augmentation map $C \to Q$ with id_M is a quasi-isomorphism.

HHR maps for matrix factorization categories have been widely studied. Segal gives such an HHR map, involving Hochschild homology of the second kind and without a support condition, in Segal Corollary 3.4; Efimov generalizes Segal’s result to the non-affine setting in Proposition 3.21; and Peregý gives a map just as in (3.3) (but also in the not-necessarily-affine setting), and proves it is a quasi-isomorphism, in Preygel Theorem 8.2.6(iv)). But Preygel doesn’t contain a concrete formula for where the HKR map sends an element of the bar complex computing $HH(mf^Z(Q, f))$, and we will need such a formula later on. So, we develop our own version of (3.3).
3.2.1. Quasi-matrix factorizations. Define a curved dg-category $qmf(Q,f)$, the category of quasi-matrix factorizations, in the following way.

- Objects (P,δ_P) are defined in the same way as those of $mf(Q,f)$, except we remove the requirement that δ^2_P is given by multiplication by f.
- Morphisms are defined in the same way as in $mf(Q,f)$.
- The curvature element of $\text{End}_{qmf(Q,f)}(P,\delta_P)$ is $\delta^2_P - f$.

$mf(Q,f)$ is precisely the full subcategory of $qmf(Q,f)$ spanned by objects with trivial curvature. Let $qmf(Q,f)^0$ denote the full subcategory of $qmf(Q,f)$ spanned by those objects (P,δ_P) such that $\delta^2_P = 0$. Note that the curvature element of an object in $qmf(Q,f)^0$ is $-f$. The pair $(Q,0)$ determines an object of $qmf(Q,f)^0$, and its endomorphisms form the curved differential $\mathbb{Z}/2$-graded algebra $(Q,0,-f)$. That is, we have inclusions

$$mf(Q,f) \hookrightarrow qmf(Q,f) \hookrightarrow qmf(Q,f)^0 \hookrightarrow (Q,0,-f).$$

These functors are all pseudo-equivalences, in the language of [PP12, Section 1.5], and so, by [PP12, Lemma A, page 5319], the induced maps

$$HH^{II}(mf(Q,f)) \to HH^{II}(qmf(Q,f)) \leftarrow HH^{II}(qmf(Q,f)^0) \leftarrow HH^{II}(Q,0,-f)$$

are all quasi-isomorphisms.

A key point is that there is a (non-strict) cdg-functor

$$(F,\beta) : qmf(Q,f) \to qmf(Q,f)^0$$

given by $F(P,\delta_P) = (P,0)$ and $\beta_{(P,\delta_P)} = \delta_P$. The induced map

$$(F,\beta)_* : HH^{II}(qmf(Q,f)) \to HH^{II}(qmf(Q,f)^0)$$

sends $\alpha_0[\alpha_1|\cdots|\alpha_n]$, where $\alpha_i \in \text{Hom}((P_{i+1},\delta_{i+1}),(P_i,\delta_i))$, to

$$\sum_{i_0,\ldots,i_n \geq 0} (-1)^{i_0+\cdots+i_n} \alpha_0[i_0|\cdots|\alpha_1|i_1|\cdots|i_n|\cdots|\alpha_n|i_n].$$

3.2.2. The supertrace. Given a $\mathbb{Z}/2$-graded finitely generated projective Q-module P, define the supertrace map

$$\text{str} : \text{End}_Q(P) \to Q$$

as the composition

$$\text{End}_Q(P) \cong P^* \otimes Q P \xrightarrow{\gamma \otimes p + \gamma(p)} Q$$

for homogeneous elements γ, p. Equivalently, for $\alpha \in \text{End}_Q(P)$ we have

$$\text{str}(\alpha) = \begin{cases} \text{tr}(\alpha_0 : P_0 \to P_0) - \text{tr}(\alpha_1 : P_1 \to P_1), & \text{if } \alpha \text{ has degree } 0, \\ 0, & \text{if } \alpha \text{ has degree } 1. \end{cases}$$

Here, tr is the classical trace of an endomorphism of a projective module. We extend str to a map

$$\text{End}_{Q/k}^*(P \otimes Q \Omega^*_{Q/k}) \cong \text{End}_Q(P) \otimes Q \Omega^*_{Q/k} \xrightarrow{\text{str} \otimes \text{id}} \Omega^*_{Q/k},$$

which we also write as str.

3.2.3. The HKR map without supports.

Definition 3.7. A connection on an object $(P,\delta_P) \in qmf(Q,f)$ is a k-linear map

$$\nabla : P \to \Omega^1_{Q/k} \otimes Q P$$

of odd degree such that $\nabla(qp) = dq \otimes p + q \nabla(p)$, i.e. a superconnection, in the language of [Qui85]. Notice that the definition does not involve δ_P.

Choose a connection ∇_P on each object $(P, 0) \in qmf(Q, f)^0$; we stipulate that the connection chosen for $Q \in qmf(Q, f)^0$ is the canonical one given by the de Rham differential, $d : Q \to \Omega^1_{Q/k}$. Define
\[
\varepsilon^0 : HH^{II}(qmf(Q, f)^0)^\bullet \to \Omega^\bullet_{Q/k}
\]
by
\[
\varepsilon^0(\alpha_0|\alpha_1|\ldots|\alpha_m) = \frac{1}{m!} \text{str}(\alpha_0\alpha_1'\cdots\alpha_m'),
\]
where, for $\alpha : (P_1, 0) \to (P_2, 0)$, we set $\alpha' = \nabla_{P_2} \circ \alpha - (-1)^{[\alpha]_j} \alpha \circ \nabla_{P_1}$. By [BW19a, Theorem 5.18], ε^0 gives a chain map
\[
HH^{II}(qmf(Q, f)^0) \to (\Omega^\bullet_{Q/k}, -df).
\]
Then the composition
\[
\varepsilon^Q : HH^{II}(Q, 0, -f) \Rightarrow HH^{II}(qmf(Q, f)^0) \Rightarrow (\Omega^\bullet_{Q/k}, -df),
\]
where the first map is induced by inclusion, is given by the classical HKR map
\[
\varepsilon^Q(q_0[q_1|\ldots|q_n]) = \frac{q_0 dq_1 \cdots dq_n}{n!} \in \Omega^n_{Q/k}.
\]
In particular, ε^0 is a quasi-isomorphism. $(F, \beta)_* \circ \varepsilon^Q$ is also a quasi-isomorphism, since
\[
qmf(Q, f)^0 \Rightarrow qmf(Q, f)^0 \xrightarrow{(F, \beta)} qmf(Q, f)^0
\]
is the identity.

We define the HKR map
\[
\varepsilon_{Q,f} : HH(mf(Q, f)) \to (\Omega^\bullet_{Q/k}, -df)
\]
to be the composition
\[
HH(mf(Q, f)) \xrightarrow{\text{can}} HH^{II}(mf(Q, f)) \Rightarrow HH^{II}(qmf(Q, f)^0) \xrightarrow{(F, \beta)_*} HH^{II}(qmf(Q, f)^0) \Rightarrow (\Omega^\bullet_{Q/k}, -df),
\]
where “can” denotes the canonical map. A more explicit formula for $\varepsilon_{Q,f}$ is given as follows. Given objects $(P_0, \delta_0), \ldots, (P_n, \delta_n)$ of $mf(Q, f)$ and maps
\[
P_0 \xleftarrow{\alpha_0} P_1 \xleftarrow{\alpha_1} \cdots \xleftarrow{\alpha_{n-1}} P_n \xleftarrow{\alpha_n} P_0,
\]
set $\nabla_i = \nabla_{P_i}$. Then
\[
\varepsilon_{Q,f}(\alpha_0|\alpha_1|\ldots|\alpha_n) = \sum_{i_0, \ldots, i_n \geq 0} \frac{(-1)^{i_0+\cdots+i_n}}{(n+i_0+\cdots+i_n)!} \text{str} \left(\alpha_0(\delta_1')^{i_0} \alpha_1' \cdots (\delta_n')^{i_n} \alpha_n'(\delta_0')^{i_0} \right),
\]
where, just as above,
\[
\alpha_j' = \nabla_j \circ \alpha_j - (-1)^{[\alpha_j]} \alpha_j \circ \nabla_{j+1} \quad (\text{with } \nabla_{n+1} = \nabla_0),
\]
and
\[
\delta_j' = [\nabla_j, \delta_i] = \nabla_j \circ \delta_j + \delta_j \circ \nabla_j.
\]
Note that the sum in this formula is finite, since $\Omega^j_{Q/k} = 0$ for $j > \text{dim}(Q)$.

Summarizing, we have a commutative diagram
\[
\begin{array}{c}
\xymatrix{
HH(mf(Q,f)) \ar[r]^-{\simeq} & HH^{II}(mf(Q,f)) \ar[r]^-{\simeq} & HH^{II}(qmf(Q,f)) \\
& (F,\partial) \ar[ru]^-{(F,\partial)} & \\
& HH^{II}(qmf(Q,f))^{0} \ar[r]^-{\simeq} & HH^{II}(Q,0,-f) \\
& (\Omega_{Q/k},-df) \ar[ru]^-{\varepsilon^{Q,f}} & \\
\varepsilon_{Q,f} \ar[ru] & & \\
\end{array}
\]

Notice that this implies \(\varepsilon_{Q,f}\) is independent, up to natural isomorphism in the derived category, of the choices of connections. In particular, the map on homology induced by \(\varepsilon_{Q,f}\) is independent of such choices.

We include the following result, although it will not be needed in this paper:

Proposition 3.9. If the only critical value of \(f : \text{Spec}(Q) \to A^{1}\) is 0, \(\varepsilon_{Q,f}\) is a quasi-isomorphism.

Proof. By [PPT12, Section 4.8, Corollary A], the canonical map
\[
HH(mf(Q,f)) \to HH^{II}(mf(Q,f))
\]
is a quasi-isomorphism. The statement therefore follows from the commutativity of diagram (3.8). \(\square\)

3.2.4. The HKR map with supports.
We now define the HKR map for a general closed subset \(Z\) of \(\text{Spec}(Q)\). Composing \(\varepsilon_{Q,f}\) with the natural map induced by the inclusion \(mf^{Z}(Q,f) \subseteq mf(Q,f)\) gives a map
\[
(3.10) \quad HH(mf^{Z}(Q,f)) \to (\Omega_{Q/k}^{\bullet},-df).
\]
By Proposition 3.2 (1) and 3.4, if \(X,Y \in mf^{Z}(Q,f)\), \(\text{Hom}(X,Y)\) is a complex of \(Q\)-modules whose support is contained in \(Z\). (When \(f\) is a non-zero-divisor, this complex is in fact supported on \(Z \cap \text{Sing}(Q/f)\).) It follows that each row of the bicomplex used to define \(HH(mf^{Z}(Q,f))\) is supported on \(Z\). Since \(HH(mf^{Z}(Q,f))\) is the direct sum totalization of this bicomplex, we have that \(HH(mf^{Z}(Q,f))\) is supported on \(Z\). Adjointness thus gives a canonical isomorphism
\[
\varepsilon_{Q,f,Z} : HH(mf^{Z}(Q,f)) \to R\Gamma_{Z}(\Omega_{Q/k}^{\bullet},-df)
\]
in \(D(Q)\). In other words, \(\varepsilon_{Q,f,Z}\) is represented in \(D(Q)\) by the diagram
\[
HH(mf^{Z}(Q,f)) \cong R\Gamma_{Z}HH(mf^{Z}(Q,f)) \to R\Gamma_{Z}(\Omega_{Q/k}^{\bullet},-df).
\]
We will sometimes refer to \(\varepsilon_{Q,f,Z}\) as just \(\varepsilon\), if no confusion can arise.

3.3. Relationship between the HKR map and the map \(I_{f}(0)\).
When \(Q = \mathbb{C}[x_{1},\ldots,x_{n}]\) and \(m = (x_{1},\ldots,x_{n})\) is the only singular point of the map \(f : A^{n}_{k} \to A^{1}_{k}\), Shklyarov defines in [Shk16, Section 4.1] an isomorphism
\[
(3.9) \quad I_{f}(0) : HH_{\ast}(mf(Q,f)) \to H_{\ast}(\Omega_{Q/k}^{\bullet},-df)
\]
as follows. Let \(A_{f}\) be the endomorphism dga of the following matrix factorization \((P,\delta_{P})\) which represents the residue field \(Q/m\) in the singularity category of \(Q/f\): choose polynomials \(y_{1},\ldots,y_{n} \in Q\) so that \(f = \sum x_{i}y_{i}\), let \(P\) be the \(\mathbb{Z}/2\)-graded exterior algebra over \(Q\) on generators \(e_{1},\ldots,e_{n}\), and define a differential on \(P\) given by
\[
\delta_{P} = \sum_{i} x_{i}e_{i} + y_{i}e_{i}.
\]
Here, \(e_{i}^{*}\) is the \(Q\)-linear derivation of \(P\) determined by \(e_{i}^{*}(e_{j}) = \delta_{ij}\). By a theorem of Dyckerhoff ([Dyc11, Theorem 5.2 (3)]), the inclusion
\[
i : A_{f} \hookrightarrow mf(Q,f)
\]
is a Morita equivalence. Since Hochschild homology is Morita invariant, the induced map

\[\iota_* : HH_*(\mathcal{A}_f) \overset{\simeq}{\to} HH_*(mf(Q, f)) \]

is an isomorphism.

From now on, we identify \(P \) with \(Q \otimes \Lambda \), where \(\Lambda = \Lambda_{\mathbb{C}}(e_1, \ldots, e_n) \), and \(\mathcal{A}_f \) with \(Q \otimes \text{End}_{\mathbb{C}}(\Lambda) \).

Shklyarov defines a quasi-isomorphism

\[\alpha : HH(A_f) \overset{\simeq}{\to} (\Omega_{Q/k}^\bullet, -df) \]

as the composition

\[HH(A_f) \overset{\exp(-1[dp])}{\to} HH(A_f) \overset{\varepsilon'}{\to} (\Omega_{Q/k}^\bullet, -df), \]

where

\[\varepsilon'(\sum_{i=0} q_i \otimes \alpha_i) = \frac{\sum_{\text{odd } |\alpha_i|} \text{str}(\alpha_0 \cdots \alpha_n) q_0 dq_1 \cdots dq_n}{n!}. \]

Finally, \(I_f(0) \) is the composition

\[HH(N(Q, f)) \overset{\iota_f^{-1}}{\to} HH(A_f) \overset{\alpha}{\to} HH(P, f). \]

Lemma 3.11. The map \(\varepsilon' \) coincides with the map \(\varepsilon_{Q,f} \) restricted to \(HH(\text{End}(P)) \) for the choice of connection \(\nabla_P \) defined as \(\nabla_P(q \otimes \alpha) = dq \otimes \alpha \). Thus, \(I_f(0) = \varepsilon_{Q,f} \).

Proof. We have

\[\varepsilon_{Q,f}(\sum_{i=0} q_i \otimes \alpha_i) = \frac{1}{n!} \text{str}(\sum_{\text{odd } |\alpha_i|} \text{str}(\alpha_0 \cdots \alpha_n) q_0 dq_1 \cdots dq_n). \]

\[= \frac{(-1)^{\sum_{\text{odd } |\alpha_i|}} \text{str}(\alpha_0 \cdots \alpha_n) q_0 dq_1 \cdots dq_n}{n!}. \]

\[= \frac{(-1)^{\sum_{\text{odd } |\alpha_i|}} \text{str}(\alpha_0 \cdots \alpha_n) q_0 dq_1 \cdots dq_n}{n!}. \]

\[\square \]

3.4. Compatibility of the HKR map with taking duals

Shklyarov proves in [Shk14 Proposition 3.2] that, for any differential \(\mathbb{Z}/2 \)-graded algebra \(\mathcal{A} \), there is a canonical isomorphism of complexes

\[\Phi : HH(\mathcal{A}) \overset{\simeq}{\to} HH(\mathcal{A}^{\text{op}}) \]

given by

\[a_0[a_1 \cdots |a_n] \mapsto (-1)^{n + \sum_{1 \leq i < j \leq n} (|a_i| - 1)(|a_j| - 1)} a_0^{op}[a_1^{op} \cdots |a_n^{op}], \]

where, for \(a \in \mathcal{A} \), \(a^{op} \) denotes \(a \) regarded as an element of \(\mathcal{A}^{op} \). The same formula gives an isomorphism

\[HH(C) \overset{\simeq}{\to} HH(C^{op}) \]

for any curved differential \(\Gamma \)-graded category \(C \), where \(\Gamma \in \{ \mathbb{Z}, \mathbb{Z}/2 \} \).

Composing \(\Phi \) and \(D \), where \(D \) is the dualization functor defined in Section 3.1, we obtain the isomorphism of complexes

\[\Psi : HH(mf^Z(Q, f)) \overset{\simeq}{\to} HH(mf^Z(Q, f)) \]

given explicitly by

\[\Psi(a_0[a_1 \cdots |a_n]) = (-1)^{n + \sum_{1 \leq i < j \leq n} (|a_i| - 1)(|a_j| - 1)} a_0^{op}[a_1^{op} \cdots |a_n^{op}]. \]

Lemma 3.14. The diagram

\[\begin{array}{ccc}
HH(mf^Z(Q, f)) & \overset{\varepsilon_{Q,f,Z}}{\longrightarrow} & \mathbb{R}\Gamma_Z(\Omega_{Q/k}^\bullet, -df) \\
\downarrow \Psi & & \downarrow \gamma \\
HH(mf^Z(Q, f)) & \overset{\varepsilon_{Q,f,Z}}{\longrightarrow} & \mathbb{R}\Gamma_Z(\Omega_{Q/k}^\bullet, df)
\end{array} \]
commutes in $D(Q)$, where γ is $\mathbb{R}\Gamma_Z$ applied to the map whose restriction to $\Omega^2_{Q/k}$ is multiplication by $(-1)^j$ for all j.

Proof. The map $\varepsilon_{Q,f,Z}$ factors as

$$HH(mf^Z(Q, f)) \to \mathbb{R}\Gamma_Z HH(mf(Q, f)) \xrightarrow{\varepsilon_{Q,f}} (\Omega^*_Z)^{cf}(Q, f, -df),$$

where the first map is the canonical one. $\varepsilon_{Q,-f,Z}$ factors similarly. Since the diagram

$$\begin{array}{ccc}
HH(mf^Z(Q, f)) & \xrightarrow{\theta} & HH^{II}(qmf(Q, f)^0) \\
\downarrow \Psi & & \downarrow \varepsilon^0 \\
HH(mf^Z(Q, f)) & \xrightarrow{\varepsilon_{Q,f}} & HH^{II}(Q, 0, -f)
\end{array}$$

evidently commutes, we may assume $Z = \text{Spec}(Q)$.

Recall from (3.8) that $\varepsilon_{Q,f}$ fits into a commutative diagram

\begin{equation}
(3.15) \quad \begin{array}{ccc}
HH(mf(Q, f)) & \xrightarrow{\theta} & HH^{II}(qmf(Q, f)^0) \\
\downarrow \varepsilon_{Q,f} & & \downarrow \varepsilon^0 \\
(Q^*_Z)^{cf}(Q, f, -df), & & \xrightarrow{\varepsilon_Q} HH^{II}(Q, 0, -f)
\end{array}
\end{equation}

where

$$\theta(\alpha_0[\alpha_1|\cdots|\alpha_n]) = \sum_{i_0, \ldots, i_n \geq 0} (-1)^{i_0 + \cdots + i_n} \alpha_0[\hat{\delta}_1^{|\delta|}n|\alpha_1[|\delta|_2] \cdots |\alpha_n[|\delta|_n].$$

Here, δ^i stands for $\overline{\delta} \cdots |\delta$.

The map Ψ extends to a map

$$\Psi : HH^{II}(qmf(Q, f)^0) \to HH^{II}(qmf(Q, f)^0)$$

using the same formula, and this map in turn restricts to a map

$$\Psi : HH^{II}(Q, 0, -f) \to HH^{II}(Q, 0, f)$$

given by

$$\Psi(q_0[q_1|\cdots|q_n] = (-1)^{n+\binom{n}{2}} q_0[q_1|\cdots|q_1].$$

We claim that the diagram

\begin{equation}
(3.16) \quad \begin{array}{ccc}
HH(mf(Q, f)) & \xrightarrow{\theta} & HH^{II}(qmf(Q, f)^0) \\
\downarrow \Psi & & \downarrow \Phi \\
HH(mf(Q, f)) & \xrightarrow{\varepsilon_{Q,f}} & HH^{II}(Q, 0, -f)
\end{array}
\end{equation}

commutes. This is evident for the right square. As for the left, the element $\alpha_0[\alpha_1|\cdots|\alpha_n]$ is mapped via $\Psi \circ \theta$ to

$$\sum_{i_0, \ldots, i_n \geq 0} (-1)^{I} (-1)^{n+I+\sum_{1 \leq i < j \leq n}(|\alpha_i|-1)(|\alpha_j|-1)\alpha_0[|\delta|_0]^i|\alpha_1[|\delta|_2]| \cdots |\alpha_n[|\delta|_n]},$$

where $I = i_0 + \cdots + i_n$. The sign is correct since $|\delta_i| - 1$ is even for all i. The map $\theta \circ \Psi$ sends $\alpha_0[\alpha_1|\cdots|\alpha_n]$ to

$$\sum_{j_0, \ldots, j_n \geq 0} (-1)^{I} (-1)^{n+\sum_{1 \leq i < j \leq n}(|\alpha_i|-1)(|\alpha_j|-1)\alpha_0[|\delta|_0]^j|\alpha_1[|\delta|_2]^1| \cdots |\alpha_n[|\delta|_n]^n],$$

where $J = j_0 + \cdots + j_n$. The reason for the minus sign in $(-\delta_j^i)$ is that the differential of $(P, d)^*$ is $-d^*$. Since these two expressions are equal, the left square commutes.
Proposition 3.19. The source of this map is supported on the closed subset
\(\Omega_{Q/k}^{\bullet} \text{essentially smooth} \) algebra. The tensor product of matrix factorizations (Section 3.1), along with the Künneth map for

\[
\gamma \in \mathcal{O}(q_0[q_1] \cdots [q_n]) = \frac{(-1)^n}{n!} q_0 dq_1 \cdots dq_n
\]

commutes. This holds since \(\Omega_{Q/k}^{\bullet} \) is graded commutative, so that

\[
\gamma \in \mathcal{O}(q_0[q_1] \cdots [q_n]) = \frac{(-1)^n}{n!} q_0 dq_1 \cdots dq_n
\]

3.5. Multiplicativity of the HKR map. Let \((Q, f, Z)\) and \((R, g, W)\) be triples consisting of an essentially smooth \(k \)-algebra, an element of the algebra, and a closed subset of the spectrum of the algebra. The tensor product of matrix factorizations (Section 3.1), along with the Künneth map for Hochschild homology of dg-categories (Section 2.4), gives a pairing

\[
(\tilde{\tau}) : HH(mf^Z(Q, f)) \otimes_k HH(mf^W(R, g)) \to HH(mf^{Z \times W}(Q \otimes_k R, f \otimes 1 + 1 \otimes g)).
\]

Write \(f + g \) for the element \(f \otimes 1 + 1 \otimes g \in Q \otimes_k R \). Multiplication in \(\Omega^{\bullet}_{Q \otimes_k R/k} \) defines a pairing of complexes of \(Q \otimes_k R \)-modules

\[
- \wedge - : (\Omega^{\bullet}_{Q/k}, -df) \otimes_k (\Omega^{\bullet}_{R/k}, -dg) \to (\Omega^{\bullet}_{Q \otimes_k R/k}, -df - dg).
\]

We compose this with the canonical maps \(\Gamma_Z(\Omega^{\bullet}_{Q/k}, -df) \to (\Omega^{\bullet}_{Q/k}, -df) \) and \(\Gamma_W(\Omega^{\bullet}_{R/k}, -dg) \to (\Omega^{\bullet}_{Q \otimes_k R/k}, -dg) \) to obtain the map

\[
\Gamma_Z(\Omega^{\bullet}_{Q/k}, -df) \otimes_k \Gamma_W(\Omega^{\bullet}_{R/k}, -dg) \to (\Omega^{\bullet}_{Q \otimes_k R/k}, -df - dg).
\]

The source of this map is supported on the closed subset \(Z \times W \) of Spec\((Q \otimes_k R) = \text{Spec}(Q) \times_k \text{Spec}(R) \). Thus, by adjointness, we obtain a pairing

\[
(\tilde{\tau}) : \Gamma_Z(\Omega^{\bullet}_{Q/k}, -df) \otimes_Q \Gamma_W(\Omega^{\bullet}_{R/k}, -dg) \to \Gamma_Z \times W(\Omega^{\bullet}_{Q \otimes_k R/k}, -df - dg).
\]

A key fact is that the pairings (3.17) and (3.18) are compatible via the HKR maps:

Proposition 3.19. The diagram

\[
\begin{array}{c}
HH(mf^Z(Q, f)) \otimes_k HH(mf^W(R, g)) \\
\downarrow \tau \\
HH(mf^{Z \times W}(Q \otimes_k R, f + g))
\end{array}
\]

\[
\begin{array}{c}
\tau \downarrow \\
\tau \downarrow
\end{array}
\]

in \(D(Q \otimes_k R) \) commutes.

Proof. It is enough to show the diagrams

\[
\begin{array}{c}
HH(mf^Z(Q, f)) \otimes_k HH(mf^W(R, g)) \\
\downarrow \tau \\
HH(mf^{Z \times W}(Q \otimes_k R, f + g))
\end{array}
\]

\[
\begin{array}{c}
\tau \downarrow \\
\tau \downarrow
\end{array}
\]

\[
\begin{array}{c}
\Gamma_Z HH(mf^Z(Q, f)) \otimes_k \Gamma_W HH(mf^W(R, g)) \\
\downarrow \tau \\
\Gamma_Z \times W HH(mf^{Z \times W}(Q \otimes_k R, f + g))
\end{array}
\]

\[
\begin{array}{c}
\tau \downarrow \\
\tau \downarrow
\end{array}
\]

\[
\begin{array}{c}
\Gamma_Z(\Omega^{\bullet}_{Q/k}, -df) \otimes_k \Gamma_W(\Omega^{\bullet}_{R/k}, -dg) \\
\downarrow \tau \\
\Gamma_Z \times W(\Omega^{\bullet}_{Q \otimes_k R/k}, -df - dg)
\end{array}
\]

\[
\begin{array}{c}
\tau \downarrow \\
\tau \downarrow
\end{array}
\]
and
\[
\begin{align*}
(3.21) \quad & \mathbb{R}\Gamma_Z \text{HH}(mf(Q,f)) \otimes_k \mathbb{R}\Gamma_W \text{HH}(mf(R,g)) \\
& \mathbb{R}\Gamma_Z (\Omega^*_{Q/k}, -df) \otimes_k \mathbb{R}\Gamma_W (\Omega^*_{R/k}, -dg) \\
& \cong \\
\end{align*}
\]
commute. Here, the right-most vertical map in (3.20) (which coincides with the left-most vertical map in (3.21)) is defined in a manner similar to the map (3.18), and the horizontal maps in (3.20) are the canonical ones. The commutativity of (3.20) is clear. As for (3.21), it suffices to show the diagram in (3.20) is defined in a manner similar to the map (3.18), and the horizontal maps in (3.20) are the commutes. Here, the right-most vertical map in (3.20) (which coincides with the left-most vertical map in (3.21)) is defined in a manner similar to the map (3.18), and the horizontal maps in (3.20) are the canonical ones. The commutativity of (3.20) is clear. As for (3.21), it suffices to show the diagram
\[
\begin{align*}
HH(mf(Q,f)) \otimes_k HH(mf(R,g)) & \xrightarrow{\varepsilon_{Q,f} \otimes \varepsilon_{R,g}} (\Omega^*_{Q/k}, -df) \otimes_k (\Omega^*_{R/k}, -dg) \\
& \xrightarrow{g + f} (\Omega^*_{Q/k}, -df - dg) \\
\end{align*}
\]
in \(D(Q \otimes_k R)\) commutes. Factoring the HKR maps as in diagram (3.22), it suffices to show the squares
\[
\begin{align*}
(3.22) \quad & HH(mf(Q,f)) \otimes_k HH(mf(R,g)) \\
& \xrightarrow{\varepsilon_{Q,f} \otimes \varepsilon_{R,g}} (\Omega^*_{Q/k}, -df) \otimes_k (\Omega^*_{R/k}, -dg) \\
& \xrightarrow{g + f} (\Omega^*_{Q/k}, -df - dg) \\
\end{align*}
\]
and
\[
\begin{align*}
(3.23) \quad & HH^I(qmf(Q,f)) \otimes_k HH^I(qmf(R,g)) \\
& \xrightarrow{\varepsilon_{Q,f} \otimes \varepsilon_{R,g}} (\Omega^*_{Q/k}, -df) \otimes_k (\Omega^*_{R/k}, -dg) \\
& \xrightarrow{g + f} (\Omega^*_{Q/k}, -df - dg) \\
\end{align*}
\]
commute. It follows immediately from Lemma 5.1 that (3.22) commutes. The square
\[
\begin{align*}
(3.24) \quad & HH^I(Q, f) \otimes_k HH^I(R, -g) \\
& \xrightarrow{\varepsilon_{Q,f} \otimes \varepsilon_{R,g}} HH^I(qmf(Q,f)) \otimes_k HH^I(qmf(R,g)) \\
& \xrightarrow{g + f} (\Omega^*_{Q/k}, -df - dg) \\
\end{align*}
\]
evidently commutes, and concatenating this diagram with (3.22) gives a commutative diagram. It follows that (3.23) commutes. □

For an essentially smooth \(k\)-algebra \(Q\), any element \(f \in Q\), and any pair of closed subsets \(Z\) and \(W\) of Spec\((Q)\), there is a pairing
\[
(3.25) \quad HH(mf^Z(Q,f)) \times HH(mf^W(Q,-f)) \xrightarrow{\varepsilon} HH(mf^{Z\cap W}(Q,0))
\]
defined by composing the Künneth map
\[
HH(mf^Z(Q,f)) \times HH(mf^W(Q,-f)) \xrightarrow{\varepsilon} HH(mf^{Z\times W}(Q \otimes_k Q, f \otimes 1 - 1 \otimes f))
\]
with the map
\[
HH(mf^{Z\times W}(Q \otimes_k Q, f \otimes 1 - 1 \otimes f)) \rightarrow HH(mf^{Z\cap W}(Q,0))
\]
induced by the multiplication map \(Q \otimes Q \rightarrow Q\). The previous result, along with the functoriality of the HKR map, yields:
Corollary 3.26. The diagram

\[HH(mf^Z(Q, f)) \otimes_k HH(mf^W(Q, -f)) \xrightarrow{\varepsilon_{Q, f, Z} \otimes \varepsilon_{Q, -f, Z}} \mathbb{R} \Gamma Z(\Omega^*_Q/k, -df) \otimes_k \mathbb{R} \Gamma W(\Omega^*_Q/k, df) \]

\[HH(mf^{Z \cap W}(Q, 0)) \xrightarrow{\varepsilon_{Q, 0, Z \cap W}} \mathbb{R} \Gamma Z(\Omega^*_Q/k) \]

in \(D(Q \otimes_k Q) \) commutes.

We will be especially interested in the case where \(Z \cap W = \{ m \} \).

4. Proof of Shklyarov’s conjecture

Throughout this section, we assume

- \(k \) is a field,
- \(Q \) is a regular \(k \)-algebra, and
- \(m \) is a \(k \)-rational maximal ideal of \(Q \); i.e. the canonical map \(k \to Q/\mathfrak{m} \) is an isomorphism.

Let us review our progress on the proof of Conjecture 1.4. Recall from the introduction that, to prove the conjecture, it suffices to show that diagram (1.9) commutes, the composition along the left side of this diagram computes the pairing \(\eta_{mf} \) and the composition along the right side computes the residue pairing. So far, we have shown the two interior squares of (1.9) commute: this follows from Lemma 4.23, the right side of the diagram gives the residue pairing \(\mathrm{Proposition\ 4.34} \), and the bottom triangle commutes (Theorem 4.36). In this section, we show the left side of the diagram gives the canonical pairing \(\eta_{mf} \) (Lemma 1.223), and the right side of the diagram gives the residue pairing (Proposition 4.34), and the bottom triangle commutes (Theorem 4.36).

4.1. Computing \(HH(mf^m(Q, 0)) \). We carry out a calculation of the Hochschild homology of the dg-category \(mf^m(Q, 0) \) that we will use repeatedly throughout the rest of the paper. Let \(n \) denote the Krull dimension of \(Q_m \). We recall that a sequence \(x_1, \ldots, x_n \in \mathfrak{m} \) is called a system of parameters if \(x_1, \ldots, x_n \) generate an \(\mathfrak{m} \)-primary ideal, and a system of parameters is called regular if the elements generate \(\mathfrak{m} \).

Fix a regular system of parameters \(x_1, \ldots, x_n \) for \(Q_m \), and set \(K = \text{Kos}_{Q_m}(x_1, \ldots, x_n) \in mf^m(Q_m, 0) \), the \(\mathbb{Z}/2 \)-folded Koszul complex on the \(x_i \)'s. Explicitly, \(K \) is the differential \(\mathbb{Z}/2 \)-graded algebra whose underlying algebra is the exterior algebra over \(Q_m \) generated by \(e_1, \ldots, e_n \) with \(d^K(e_i) = x_i \). The differential \(\mathbb{Z}/2 \)-graded \(Q_m \)-algebra \(\mathcal{E} := \text{End}_{mf^m(Q_m, 0)}(K) \) is generated by odd degree elements \(e_1, \ldots, e_n, e_1^*, \ldots, e_n^* \) satisfying \(e_i^2 = 0 = (e_i^*)^2 \), \([e_i, e_j] = 0 = [e_i^*, e_j^*] \), and \([e_i, e_j^*] = \delta_{ij} \); and the differential \(d^\mathcal{E} \) is determined by the equations \(d^\mathcal{E}(e_i) = x_i \) and \(d^\mathcal{E}(e_i^*) = 0 \). Let \(\Lambda \) be the dg-\(k \)-subalgebra of \(\mathcal{E} \) generated by the \(e_i^* \). So, \(\Lambda \) is an exterior algebra over \(k \) on \(n \) generators, with trivial differential. The inclusion \(\Lambda \subseteq \mathcal{E} \) is a quasi-isomorphism of differential \(\mathbb{Z}/2 \)-graded \(k \)-algebras. Since \(\Lambda \) is graded commutative, \(HH_*(\Lambda) \) is a \(k \)-algebra under the shuffle product, and, by a standard calculation, there is an isomorphism

\[\Lambda \otimes_k k[y_1, \ldots, y_n] \xrightarrow{\sim} HH_*(\Lambda), \]

for \(k \)-algebras, where \(e_i^* \otimes 1 \mapsto e_i^*[], \) and \(1 \otimes y_i \mapsto 1[e_i^*] \). Here, and throughout the paper, we use the notation \(\alpha_0[] \) to denote an element of a Hochschild complex of the form \(\alpha_0[\alpha_1] \cdots [\alpha_n] \) with \(n = 0 \).

Lemma 4.2. The canonical morphisms

\[\mathcal{E} \hookrightarrow mf^m(Q_m, 0) \]

\[mf^m(Q, 0) \to mf^m(Q_m, 0) \]

of dg-categories are Morita equivalences. In particular, we have canonical quasi-isomorphisms

\[HH(\Lambda) \xrightarrow{\sim} HH(mf^m(Q_m, 0)) \xrightarrow{\sim} HH(mf^m(Q, 0)). \]
Proof. To prove (4.3) is a Morita equivalence, we prove the thick closure of K in the homotopy category $[mf^m(Q_m, 0)]$ is all of $[mf^m(Q_m, 0)]$. Let \mathcal{D} denote the derived category of all $\mathbb{Z}/2$-complexes of finitely generated Q_m-modules whose homology groups are finite dimensional over k. Since Q_m is regular, it follows from [BMTW17, Proposition 3.4] that the canonical functor

$$[mf^m(Q_m, 0)] \to \mathcal{D}$$

is an equivalence. It therefore suffices to show $\text{Thick}(K) = \mathcal{D}$; in fact, we need only show every object in \mathcal{D} with free components is in $\text{Thick}(K)$.

Let X be an object of \mathcal{D} with free components. We may assume that X is minimal, i.e. that $k \otimes_{Q_m} X$ is a direct sum of copies of k and Σk. The isomorphism $K \xrightarrow{\cong} k$ in \mathcal{D} induces an isomorphism

$$K \otimes_{Q_m} X \xrightarrow{\cong} k \otimes_{Q_m} X,$$

and therefore $K \otimes_{Q_m} X \in \text{Thick}(K)$. It thus suffices to prove $X \in \text{Thick}(K \otimes_{Q_m} X)$. Since $K \otimes_{Q_m} X \cong \text{Kos}_{Q_m}(x_1) \otimes_{Q_m} \cdots \otimes_{Q_m} \text{Kos}_{Q_m}(x_n) \otimes_{Q_m} X$, it suffices to show that, for every $Y \in \mathcal{D}$ whose components are free Q_m-modules, and every $x \in m \setminus \{0\}$, $Y \in \text{Thick}(Y/xY)$. Using induction and the exact sequence

$$0 \to Y/x^nY \xrightarrow{\partial} Y/x^nY \to Y/xY \to 0,$$

we get $Y/x^nY \in \text{Thick}(Y/xY)$ for all n. Observing that $\text{End}_D(Y)[1/x] = 0$, choose $n \gg 0$ such that multiplication by x^n on Y determines the zero map in \mathcal{D}. The distinguished triangle

$$Y \xrightarrow{x} Y \to Y/x^n \to \Sigma Y$$

in \mathcal{D} therefore splits, implying that Y is a summand of Y/x^n. Thus, $Y \in \text{Thick}(Y/x^n) \subseteq \text{Thick}(Y/xY)$.

As for (4.4), the functor $[mf^m(Q, 0)] \to [mf^m(Q_m, 0)]$ is fully faithful, since $\text{Hom}_{[mf^m(Q, 0)]}(X, Y)$ is supported in $\{m\}$ for any X, Y. It follows that the induced map

(4.6) $$[mf^m(Q, 0)]^\text{idem} \to [mf^m(Q_m, 0)]^\text{idem}$$

on idempotent completions is fully faithful, so we need only show (4.6) is essentially surjective. By the above argument, it suffices to show K is in the essential image of (4.6). Choose a Q-free resolution F of k: F_m is homotopy equivalent to the Koszul complex on the x_i’s, and so the $\mathbb{Z}/2$-folding of F_m is isomorphic to K in $[mf^m(Q_m, 0)]$.

Remark 4.7. Let \hat{Q} denote the m-adic completion of Q. Letting \hat{Q} play the role of Q in Lemma 4.2 implies that the inclusion

$$\text{End}_{mf^m(\hat{Q}, 0)}(K \otimes_{Q_m} \hat{Q}) \to mf^m(\hat{Q}, 0)$$

is a Morita equivalence. The same proof that shows the map (4.4) in Lemma 4.2 is a Morita equivalence shows the canonical map

$$mf^m(Q, 0) \to mf^m(\hat{Q}, 0)$$

is a Morita equivalence.

4.2. The trace map. We define an even degree map

$$\text{trace} : HH_*(mf^m(Q, 0)) \to k$$

of $\mathbb{Z}/2$-graded k-vector spaces, with k concentrated in even degree, as follows. Let $\text{Perf}_{\mathbb{Z}/2}(k)$ denote the dg-category of $\mathbb{Z}/2$-graded complexes of (not necessarily finitely dimensional) k-vector spaces having finite dimensional homology. There is a dg-functor $mf^m(Q, 0) \to \text{Perf}_{\mathbb{Z}/2}(k)$ induced by restriction of scalars along the structural map $k \to Q$ that induces a map

$$u : HH_*(mf^m(Q, 0)) \to HH_*(\text{Perf}_{\mathbb{Z}/2}(k)),$$

and there is a canonical isomorphism

$$v : k \xrightarrow{\cong} HH_*(\text{Perf}_{\mathbb{Z}/2}(k))$$
given by $a \mapsto a[]$. Here, k is considered as a $\mathbb{Z}/2$-graded complex concentrated in even degree, and, on the right, a is regarded as an endomorphism of this complex. We define
\[
\text{trace} := u^{-1}u.
\]
In the rest of this subsection, we establish several technical properties of the trace map that we will need later on.

Given an object $(P, \delta_P) \in mf^m(Q, 0)$, there is a canonical map of complexes $\text{End}(P) \to HH(mf^m(Q, 0))$ given by $\alpha \mapsto \alpha[]$ and hence an induced map
\[
H_*(\text{End}(P)) \to HH_*(mf^m(Q, 0)).
\]

Proposition 4.9. If $(P, \delta_P) \in mf^m(Q, 0)$, and α is an even degree endomorphism of P, the composition
\[
H_0(\text{End}(P)) \xrightarrow{\text{(4.8)}} HH_0(mf^m(Q, 0)) \xrightarrow{\text{trace}} k
\]
sends α to the supertrace of the endomorphism of $H_*(P)$ induced by α:
\[
\text{trace}(\alpha[]) = \text{str}(H_*(\alpha) : H_*(P) \to H_*(P))
= \text{tr}(H_0(\alpha) : H_0(P) \to H_0(P)) - \text{tr}(H_1(\alpha) : H_1(P) \to H_1(P)).
\]
In particular,
\[
\text{trace}(\text{id}_P[]) = \dim_k H_0(P) - \dim_k H_1(P).
\]

Proof. Let $\text{Vect}_{\mathbb{Z}/2}(k)$ denote the subcategory of $\text{Perf}_{\mathbb{Z}/2}(k)$ spanned by finite-dimensional $\mathbb{Z}/2$-graded vector spaces with trivial differential. It is well-known that the inclusion $\text{Vect}_{\mathbb{Z}/2}(k) \hookrightarrow \text{Perf}_{\mathbb{Z}/2}(k)$ induces a quasi-isomorphism on Hochschild homology. Composing the map $H_*(\text{End}(P)) \to HH_*(\text{Vect}_{\mathbb{Z}/2}(k))$ given by $\alpha \mapsto \alpha[]$ with the canonical map $H_*(\text{End}(P)) \to \text{End}(H_*(P))$ gives a map
\[
H_*(\text{End}(P)) \to HH_*(\text{Vect}_{\mathbb{Z}/2}(k)).
\]

We first show that the square
\[
\begin{array}{ccc}
H_*(&\text{End}(P)) & \xrightarrow{\text{(4.8)}} & HH_*(mf^m(Q, 0)) \\
& \downarrow{\text{(4.10)}} & \downarrow{u} \\
& HH_*(\text{Vect}_{\mathbb{Z}/2}(k)) & \xrightarrow{\pi} & HH_*(\text{Perf}_{\mathbb{Z}/2}(k))
\end{array}
\]
commutes. Let β be an even degree cycle in $\text{End}(P)$, and let $H_*(\beta)$ denote the induced endomorphism of $H_*(P)$. We must show the cycles $\beta[]$ and $H_*(\beta[])$ coincide in $HH_*(\text{Perf}_{\mathbb{Z}/2}(k))$. To see this, choose even degree k-linear chain maps
\[
\iota : H_*(P) \to P, \quad \pi : P \to H_*(P)
\]
such that
\[
\begin{itemize}
\item $\pi \circ \iota = \text{id}_{H_*(P)}$, and
\item $\iota \circ \pi$ is homotopic to id_P via a ($\mathbb{Z}/2$-graded) homotopy h, i.e.
$$\iota \circ \pi - \text{id}_P = \delta_P \circ h + h \circ \delta_P.$$\end{itemize}

Applying the Hochschild differential b to
\[
\pi[\beta \circ \iota] \in \text{Hom}(P, H_*(P)) \otimes \text{Hom}(H_*(P), P) \subseteq HH(\text{Perf}_{\mathbb{Z}/2}(k)),
\]
we get
\[
b(\pi[\beta \circ \iota]) = (b_2 + b_1)(\pi[\beta \circ \iota]) = b_2(\pi[\beta \circ \iota]) + (\pi \circ \beta \circ \iota[]) = (\pi \circ \beta \circ \iota[]) - (\iota \circ \pi \circ \beta[]) = H_*(\beta[]) - (\iota \circ \pi \circ \beta[]).
\]
Next, observe that
\[
(b_2 + b_1)((h \circ \beta[])) = b_1((h \circ \beta[])) = (\iota \circ \pi \circ \beta - \beta[]).
\]
It follows that diagram (4.11) commutes.
The isomorphism
\[v : k \xrightarrow{\cong} HH_* (\text{Perf}_{\mathbb{Z}/2}(k)) \]
factors as
\[k \xrightarrow{\cong} HH_* (k) \xrightarrow{\cong} HH_* (\text{Vec}_{\mathbb{Z}/2}(k)) \xrightarrow{\cong} HH_* (\text{Perf}_{\mathbb{Z}/2}(k)), \]
where each map is the evident canonical one. There is a chain map \(HH (\text{Vec}_{\mathbb{Z}/2}(k)) \to HH (k) \) given by the generalized trace map described in [Seg13 Section 2.3.1] and an evident isomorphism \(HH_* (k) \xrightarrow{\cong} k \). It follows from [Seg13 Lemma 2.12] that composing these maps gives the inverse of
\[k \xrightarrow{\cong} HH_* (k) \xrightarrow{\cong} HH_* (\text{Vec}_{\mathbb{Z}/2}(k)). \]

As discussed in [Seg13 Page 872], the generalized trace sends a class of the form \(\alpha_0 \) to \(\text{str}(\alpha_0) \). The statement now follows from the commutativity of (4.11).

Remark 4.12. If \(Z \) and \(W \) are closed subsets of \(\text{Sing}(Q/f) \) that satisfy \(Z \cap W = \{m\} \), then, from (3.25), we obtain the pairing
\[HH_*(mf_Z^*(Q,f)) \times HH_*(mf_W^*(Q,f)) \xrightarrow{\theta} HH_*(mf^m(Q,0)). \]
By Proposition 4.10 given \(X \in mf_Z^*(Q,f) \) and \(Y \in mf_W^*(Q,f) \), the composition
\[H_* (\text{End}(X)) \times H_* (\text{End}(Y)) \to HH_*(mf_Z^*(Q,f)) \times HH_*(mf_W^*(Q,f)) \xrightarrow{\theta} HH_*(mf^m(Q,0)) \]

\[\xrightarrow{\text{trace}} k \]

sends a pair of endomorphisms \((\alpha, \beta)\) to \(\text{tr}(H_0(\alpha \otimes \beta) - \text{tr}(H_1(\alpha \otimes \beta)). \] In particular, it sends \((\text{id}_X, \text{id}_Y)\) to
\[\theta(X,Y) := \dim_k H_0(X \otimes Y) - \dim_k H_1(X \otimes Y). \]

Recall from Subsection 4.1 the folded Koszul complex \(K \) and the exterior algebra \(\Lambda \subseteq \text{End}_{mf^m(Q_m,0)}(K). \)
Denote by \(\eta : \Lambda \to k \) the augmentation map that sends \(e^*_1 \) to 0.

Proposition 4.13. The composition
\[HH_* (\Lambda) \xrightarrow{\text{Id}} HH_* (mf^m(Q_m,0)) \xrightarrow{\text{trace}} k \]

coincides with
\[HH_* (\Lambda) \xrightarrow{HH_*(\eta)} HH_* (k) \xrightarrow{\cong} k, \]
where the second map in (4.11) is the canonical isomorphism. In particular, if \(\alpha_0 | \alpha_1 | \ldots | \alpha_n \) is a cycle in \(HH_*(\Lambda) \), where \(n > 0 \), the map (4.14) sends \(\alpha_0 | \alpha_1 | \ldots | \alpha_n \) to 0.

Proof. If \(C \) is a \(\mathbb{Z} \)-graded complex, denote its \(\mathbb{Z}/2 \)-folding by \(\text{Fold}(C) \). Similarly, given a differential \(\mathbb{Z} \)-graded category \(\mathcal{C} \), define a differential \(\mathbb{Z}/2 \)-graded category \(\text{Fold}(\mathcal{C}) \) with the same objects as \(\mathcal{C} \) and morphism complexes given by taking the \(\mathbb{Z}/2 \)-foldings of the morphism complexes of \(\mathcal{C} \). In this proof, we use the notation \(HH^Z(-) \) (resp. \(HH^Z/2(-) \)) to denote the Hochschild complex of a differential \(\mathbb{Z} \)-graded (resp. \(\mathbb{Z}/2 \)-graded) category. We observe that, if \(C \) is a differential \(\mathbb{Z} \)-graded category,
\[\text{Fold}(HH^Z(C)) = HH^Z/2(\text{Fold}(C)). \]

Let \(\text{Perf}^m(Q) \) denote the dg-category of perfect complexes of \(Q \)-modules with support in \(\{m\} \), and let \(\text{Perf}_{\mathbb{Z}}(k) \) denote the differential \(\mathbb{Z} \)-graded category of complexes of (not necessarily finite dimensional) \(k \)-vector spaces with finite dimensional total homology. As in the \(\mathbb{Z}/2 \)-graded case, there is an isomorphism
\[\widetilde{v} : k \xrightarrow{\cong} HH^Z_* (\text{Perf}_{\mathbb{Z}}(k)), \]
where \(k \) is concentrated in degree 0, given by \(a \mapsto a^m). \]

Let \(\tilde{K} \) denote the \(\mathbb{Z} \)-graded Koszul complex on the regular system of parameters \(x_1, \ldots, x_n \) for \(Q_m \) chosen in Subsection 4.1 so that the \(\mathbb{Z}/2 \)-folding of \(\tilde{K} \) is \(K \). Similarly, denote by \(\tilde{\Lambda} \) the subalgebra...
(with trivial differential) of \(\text{End}(\overline{K}) \), defined in the same way as \(\Lambda \), so that the \(\mathbb{Z}/2 \)-folding of \(\overline{\Lambda} \) is \(\Lambda \). Notice that every \(\alpha_i \) appearing in our cycle \(\alpha_0[\alpha_1| \ldots |\alpha_n] \) can be considered as an element of \(\overline{\Lambda} \).

We consider the composition

\[
HH^Z_\ast(\overline{\Lambda}) \to HH^Z_\ast(\text{End}(\overline{K})) \to HH^Z_\ast(\text{Perf}^m(Q)) \to HH^Z_\ast(\text{Perf}_ \mathbb{Z}(k)) \xrightarrow{(\overline{\delta})^{-1}} k
\]

of maps of \(\mathbb{Z} \)-graded \(k \)-vector spaces. We claim (4.17) coincides with the composition

\[
HH^Z_\ast(\overline{\Lambda}) \to HH^Z_\ast(k) \xrightarrow{\approx} k,
\]

where the first map is induced by the augmentation map \(\overline{\Lambda} \to k \). We need only check this in degree 0. \(HH^Z_\ast(\overline{\Lambda}) \) is a 1-dimensional \(k \)-vector space generated by \(\text{id}_k \). The map (4.18) sends \(\text{id}_k \) to 1, and, by (the \(\mathbb{Z} \)-graded version of) Lemma 4.9, the map (4.17) does as well.

Applying \(\text{Fold}(\cdot) \) to (4.17), and using (4.19), we arrive at a composition

\[
HH^Z_{2/2}(\Lambda) \to HH^Z_{2/2}(\text{Fold}(\text{Perf}^m(Q))) \to k
\]

of maps of \(\mathbb{Z}/2 \)-graded complexes of \(k \)-vector spaces, which may be augmented to a commutative diagram

\[
\begin{array}{ccc}
HH^Z_{2/2}(\Lambda) & \xrightarrow{4.15} & HH^Z_{2/2}(\text{Fold}(\text{Perf}^m(Q))) \\
& & \xrightarrow{4.16} \text{trace} \\
& & HH^Z_{2/2}(mf^m(Q,0)).
\end{array}
\]

On the other hand, applying \(\text{Fold}(\cdot) \) to (4.18), and once again applying (4.16), we get the map (4.19). \(\square \)

Lemma 4.20. Suppose \(Q \) and \(Q' \) are regular \(k \)-algebras, and \(m \subseteq Q, m' \subseteq Q' \) are \(k \)-rational maximal ideals. Let \(g : Q \to Q' \) be a \(k \)-algebra map such that \(g^{-1}(m') = m \), the induced map \(Q_m \to Q'_m \) is flat, and \(g(m)Q'_m = m'Q'_m \). Then \(g \) induces a quasi-isomorphism

\[
g_* : HH(mf^m(Q_m,0)) \xrightarrow{\approx} HH(mf^m(Q'_m,0)),
\]

and

\[
\text{trace}_{Q'_m} \circ g_* = \text{trace}_{Q_m}.
\]

Proof. Let \(\hat{Q} \) (resp. \(\hat{Q}' \)) denote the \(m \)-adic (resp. \(m' \)-adic) completion of \(Q \) (resp. \(Q' \)). The assumptions on \(g \) imply it induces an isomorphism \(\hat{Q} \xrightarrow{\approx} \hat{Q}' \). The first assertion follows since the canonical maps

\[
HH_\ast(mf^m(Q_m,0)) \to HH_\ast(mf^m(\hat{Q},0))
\]

and

\[
HH_\ast(mf^m(Q'_m,0)) \to HH_\ast(mf^m(\hat{Q}',0))
\]

are isomorphisms by Remark 4.17.

As for the second assertion, let \(n = \dim(Q_m) \), choose a regular system of parameters \(x_1, \ldots, x_n \) of \(Q_m \), and construct the exterior algebra \(\Lambda \) using this system of parameters, as in Subsection 4.1. The hypotheses ensure that \(g(x_1), \ldots, g(x_n) \) form a regular system of parameters for \(Q'_m \), and we let \(\Lambda' \) be the associated exterior algebra. We have a commutative diagram

\[
\begin{array}{ccc}
HH_\ast(\Lambda) & \xrightarrow{\approx} & HH_\ast(\Lambda') \\
\cong & & \cong \\
HH_\ast(mf^m(Q_m,0)) & \xrightarrow{\approx} & HH_\ast(mf^m(Q'_m,0)).
\end{array}
\]
where the vertical isomorphisms are as in Lemma \ref{lem:trace-map}. By Proposition \ref{prop:trace-map}, it now suffices to observe that the composition

\[HH_*(\Lambda) \xrightarrow{\cong} HH_*(\Lambda') \to k, \]

where the second map is induced by the augmentation \(\Lambda' \to k \), coincides with the map induced by the augmentation \(\Lambda \to k \). \(\square \)

Lemma 4.21. Suppose \(Q, Q' \) are essentially smooth \(k \)-algebras and \(m' \subseteq Q', m'' \subseteq Q'' \) are \(k \)-rational maximal ideals. Set \(Q = Q' \otimes_k Q'' \) and \(m = m' \otimes_k Q'' + Q' \otimes_k m'' \). Then \(Q \) is an essentially smooth \(k \)-algebra, \(m \) is a \(k \)-rational maximal ideal of \(Q \), and the diagram

\[
\begin{array}{ccc}
HH_*(mf^{m'}(Q'_m, 0)) \otimes_k HH_*(mf^{m''}(Q''_{m''}, 0)) & \xrightarrow{\tilde{\imath}} & HH_*(mf^m(Q_m, 0)) \\
\text{trace} \otimes \text{trace} & \cong & \text{trace} \\
k \otimes_k k & \xrightarrow{k} & k
\end{array}
\]

commutes.

Proof. The first two assertions are standard facts. As for the final one, let \(n' \) and \(n'' \) denote the dimensions of \(Q'_m \) and \(Q''_{m''} \), resp. Choose regular systems of parameters \(x_1, \ldots, x_{n'} \) and \(y_1, \ldots, y_{n''} \) of \(Q'_m \) and \(Q''_{m''} \), resp., so that \(x_1, \ldots, x_{n'}, y_1, \ldots, y_{n''} \) form a regular system of parameters of \(Q_m \). As in the proof of Lemma \ref{lem:trace-map} and \ref{lem:trace-map-m}, let \(\Lambda, \Lambda' \), and \(\Lambda'' \) be exterior algebras associated to these systems of parameters, as constructed in Subsection \ref{subsec:trace-map}. By Lemma \ref{lem:trace-map-m} we have a commutative square

\[
\begin{array}{ccc}
HH_*(\Lambda') \otimes_k HH_*(\Lambda'') & \xrightarrow{\cong} & HH_*(mf^{m'}(Q'_m, 0)) \otimes_k HH_*(mf^{m''}(Q''_{m''}, 0)) \\
\tilde{\imath} & \cong & \tilde{\imath} \\
HH_*(\Lambda) & \xrightarrow{k} & HH_*(mf^m(Q_m, 0)),
\end{array}
\]

where the horizontal isomorphisms are as in Lemma \ref{lem:trace-map} and \ref{prop:trace-map}, it now suffices to observe that the composition

\[\Lambda \xrightarrow{\cong} \Lambda' \otimes_k \Lambda'' \to k, \]

where the second map is the tensor product of the augmentations, coincides with the augmentation \(\Lambda \to k \). \(\square \)

4.3. The canonical pairing on Hochschild homology. A \(k \)-linear differential \(\mathbb{Z}/2 \)-graded category \(C \) is called *proper* if, for all pairs of objects \((X, Y)\), \(\dim_{H_1} \text{Hom}_C(X, Y) < \infty \) for \(i = 0, 1 \).

Definition 4.22. For a proper differential \(\mathbb{Z}/2 \)-graded category \(C \), the *canonical pairing for Hochschild homology* is the map

\[\eta_\mathcal{C}(-, -) : HH_*(\mathcal{C}) \otimes_k HH_*(\mathcal{C}) \to k \]

given by the composition

\[
HH_*(\mathcal{C}) \otimes_k HH_*(\mathcal{C}) \xrightarrow{\text{id} \otimes \Phi} HH_*(\mathcal{C}) \otimes_k HH_*(\mathcal{C}^{\text{op}}) \xrightarrow{\tilde{\imath}} HH_*(\mathcal{C} \otimes_k \mathcal{C}^{\text{op}}) \xrightarrow{\text{HH}(\text{perf}_2(k))} \text{HH}_*(\text{perf}_2(k)) \xrightarrow{\cong} k
\]

where \(\Phi \) is the map defined in \ref{def:trace-map}. When \(\text{Sing}(Q/f) = \{m\} \), \(mf(Q, f) \) is proper, so we have the canonical pairing

\[\eta_{mf} : HH_*(mf(Q, f)) \otimes_k HH_*(mf(Q, f)) \to k. \]
Lemma 4.23. When \(\text{Sing}(Q/f) = \{ m \} \), \(\eta_{mf} \) coincides with the pairing given by the composition

\[
\begin{align*}
HH_* (mf(Q,f)) \otimes_k HH_* (mf(Q,f)) & \xrightarrow{id \otimes \Psi} HH_* (mf(Q,f)) \otimes_k HH_* (mf(Q,-f)) \\
& \xrightarrow{\sim} HH_* (mf^m(Q,0)) \\
& \xrightarrow{\text{trace}} k,
\end{align*}
\]

where \(\Psi \) is defined in \ref{sec:app-iso}.

Proof. By Lemma 2.7, there is a commutative square

\[
\begin{array}{ccc}
HH_* (mf(Q,f)) \otimes_k HH_* (mf(Q,f)^{op}) & \xrightarrow{HH(id) \otimes HH(D)} & HH_* (mf(Q,f)) \otimes_k HH_* (mf(Q,-f)) \\
\downarrow \sim \downarrow & & \downarrow \sim \downarrow \\
HH_* (mf(Q,f) \otimes_k mf(Q,f)^{op}) & \xrightarrow{HH(id) \otimes D} & HH_* (mf(Q,f) \otimes_k mf(Q,-f)),
\end{array}
\]

where \(D \) is the dg-functor defined in Subsection 3.3. Therefore, it suffices to show the composition

\[
HH_* (mf(Q,f) \otimes_k mf(Q,f)^{op}) \xrightarrow{1 \otimes D} HH_* (mf(Q,f) \otimes_k mf(Q,-f))
\]

\[
\xrightarrow{\text{can}} HH_* (mf^m(Q,0))
\]

\[
\xrightarrow{\text{Forget}} HH_* (\text{Perf}_{Z/2}(k))
\]

coincides with the map induced by the dg-functor

\[
mf(Q,f) \otimes_k mf(Q,f)^{op} \to \text{Perf}_{Z/2}(k)
\]

given by \((X,Y) \mapsto \text{Hom}_{mf}(Y,X) \), and this is clear. \(\square \)

4.4. The residue map. Assume that \(Q \) is an essentially smooth \(k \)-algebra and \(m \) is a \(k \)-rational maximal ideal of \(Q \). Let \(n \) be the Krull dimension of \(Q_m \). In this subsection, we recall the definition of Grothendieck’s residue map

\[
\text{res}^G : H^*_m(\Omega^n_{Q_m/k}) \to k
\]

and some of its properties. Recall from Subsection 3.2 that for any system of parameters \(x_1, \ldots, x_n \) of \(Q_m \), we have a canonical isomorphism

\[
H^*_m(\Omega^n_{Q_m/k}) \cong H^n(\mathcal{C}(x_1, \ldots, x_n) \otimes Q_m \Omega^n_{Q_m/k}). \tag{4.24}
\]

We will temporarily use \(Z \)-gradings and index things cohomologically, using superscripts. In particular, \(\Omega^n_{Q_m/k} \) is a graded \(Q_m \)-module with \(\Omega^n_{Q_m/k} \) declared to have cohomological degree \(j \).

We introduce some notation that will be convenient when computing with the augmented Čech complex. First form the exterior algebra over \(Q_m[1/x_1, \ldots, 1/x_n] \) on (cohomological) degree 1 generators \(\alpha_1, \ldots, \alpha_n \), and make it a complex with differential given as left multiplication by the degree 1 element \(\sum_i \alpha_i \). We identify \(\mathcal{C}(x_1, \ldots, x_n) \) as the subcomplex whose degree \(j \) component is

\[
\bigoplus_{i_1 < \cdots < i_j} Q_m \left[\frac{1}{x_{i_1} \cdots x_{i_j}} \right] \alpha_{i_1} \cdots \alpha_{i_j}.
\]

Define

\[
E(x_1, \ldots, x_n) := \frac{Q_m[1/x_1, \ldots, 1/x_n]}{\sum_j Q_m[1/x_1, \ldots, 1/x_{j-1}, 1/x_j, \ldots, 1/x_n]}.
\]

Since \(x_1, \ldots, x_n \) is a regular sequence, there is an isomorphism

\[
E(x_1, \ldots, x_n) \cong H^n(\mathcal{C}(x_1, \ldots, x_n))
\]

sending \(g \) to \(g x_1 \cdots x_n \) for \(g \in Q_m[1/x_1, \ldots, 1/x_n] \). Using that \(\Omega^n_{Q_m/k} \) is a flat \(Q_m \)-module, we obtain the isomorphism

\[
H^n(\mathcal{C}(x_1, \ldots, x_n) \otimes Q_m \Omega^n_{Q_m/k}) \cong E(x_1, \ldots, x_n) \otimes Q_m \Omega^n_{Q_m/k}. \tag{4.25}
\]
Every element of $E(x_1, \ldots, x_n) \otimes_{Q_m} \Omega^n_{Q_m/k}$ is a sum of terms of the form
\[
\frac{1}{x_1^{\alpha_1} \cdots x_n^{\alpha_n}} \otimes \omega
\]
with $a_i \geq 1$ and $\omega \in \Omega^n_{Q_m/k}$, and this element corresponds to
\[
\alpha_1 \cdots \alpha_n \frac{x_1^{\alpha_1} \cdots x_n^{\alpha_n}}{x_1^{\alpha_n} \cdots x_n^{\alpha_n}} \otimes \omega \in H^n(C(x_1, \ldots, x_n) \otimes_{Q_m} \Omega^n_{Q_m/k})
\]
under the isomorphism (4.24).

Definition 4.27. Given a system of parameters x_1, \ldots, x_n for Q_m, integers $a_i \geq 1$ for each $1 \leq i \leq n$, and an n-form $\omega \in \Omega^n_{Q_m/k}$, the generalized fraction
\[
\left[\frac{\omega}{x_1^{a_1} \cdots x_n^{a_n}} \right] \in H^n_m(\Omega^n_{Q_m/k})
\]
is the class corresponding to the element in (4.26) under the canonical isomorphism (4.24).

To define Grothendieck’s residue map, we now assume x_1, \ldots, x_n is a regular system of parameters. Since m is k-rational, the m-adic completion \hat{Q} of Q is isomorphic to the ring of formal power series $k[[x_1, \ldots, x_n]]$, and a basis for $E(x_1, \ldots, x_n)$ as a k-vector space is given by the set $\{ \frac{1}{x_1^{a_1} \cdots x_n^{a_n}} | a_i \geq 1 \}$.

We also have that $\Omega^n_{Q_m/k}$ is a free Q_m-module of rank one spanned by $dx_1 \cdots dx_n$. It follows that the set
\[
\left\{ \frac{dx_1 \cdots dx_n}{x_1^{a_1} \cdots x_n^{a_n}} \right\}_{a_i \geq 1}
\]
is a k-basis of $H^n_m(\Omega^n_{Q_m/k})$.

Definition 4.28. Grothendieck’s residue map $\text{res}^G : H^n_m(\Omega^n_{Q_m/k}) \rightarrow k$ is the unique k-linear map such that, if x_1, \ldots, x_n is a regular system of parameters of Q_m, then
\[
\text{res}^G \left(\frac{dx_1 \cdots dx_n}{x_1^{a_1} \cdots x_n^{a_n}} \right) = \begin{cases} 1 & \text{if } a_i = 1 \text{ for all } i, \\ 0 & \text{otherwise}. \end{cases}
\]

See [KCD08, Theorem 5.2] for a proof that this definition is independent of the choice of x_1, \ldots, x_n.

We now revert to the $\mathbb{Z}/2$-grading used throughout most of this paper. In particular, we regard $\Omega^n_{Q_m/k}$ as a $\mathbb{Z}/2$-graded Q_m-module with $\Omega^n_{Q_m/k}$ located in degree $j \pmod{2}$, and we use subscripts to indicate degrees.

Definition 4.30. The residue map for the $\mathbb{Z}/2$-graded Q_m-module $\Omega^n_{Q_m/k}$ is the map
\[
\text{res} = \text{res}_Q, m : H_{2n} \otimes \Gamma_m(\Omega^n_{Q_m/k}) \rightarrow k,
\]
defined as the composition
\[
H_{2n} \otimes \Gamma_m(\Omega^n_{Q_m/k}) \rightarrow H_{2n} \otimes \Gamma_m(\Sigma^{-n} \Omega^n_{Q_m/k}) \cong H_{2n} \otimes \Gamma_m(\Omega^n_{Q_m/k}) \text{ res}^G \rightarrow k;
\]
where the first map is induced by the canonical projection $\Omega^n_{Q_m/k} \rightarrow \Sigma^{-n} \Omega^n_{Q_m/k}$.

We will need the following two properties of the residue map:

Lemma 4.31. Suppose Q and Q' are essentially smooth k-algebras and $m \subseteq Q$, $m' \subseteq Q'$ are k-rational maximal ideals. Let $g : Q \rightarrow Q'$ be a k-algebra map such that $g^{-1}(m') = m$, the induced map $Q_m \rightarrow Q'_m$ is flat, and $g(m)Q'_m = m'Q'_m$. Then Q_m and Q'_m have the same Krull dimension, say n; g induces an isomorphism
\[
g_* : H_{2n} \otimes \Gamma_m(\Omega^n_{Q_m/k}) \cong H_{2n} \otimes \Gamma_m(\Omega^n_{Q'_m/k})
\]
of k-vector spaces; and we have
\[
\text{res}_{Q', m'} \circ g_* = \text{res}_Q, m.
\]
Proof. Let \(x_1, \ldots, x_n \) be a regular system of parameters for \(Q_m \), and set \(x_i' = g(x_i) \). The assumptions on \(g \) give that \(x_1', \ldots, x_n' \) form a regular system of parameters for \(Q'_m \), and hence the induced map on completions is an isomorphism. The first two assertions follow.

The map \(E(x_1, \ldots, x_n) \otimes_{Q_m} Q'_m \otimes_{Q_m/k} E(x_1', \ldots, x_n') \otimes_{Q'_m/k} \) induced by \(g \) sends \(x_1 \cdots x_n \) to the expression obtained by substituting \(x_i' \) for \(x_i \), and thus

\[
g_* \left[\frac{dx_1 \cdots dx_n}{x_1^m, \ldots, x_n^m} \right] = \left[\frac{dx_1' \cdots dx_n'}{(x_1')^m, \ldots, (x_n')^m} \right].
\]

The equation \(\text{res}_{Q'_m} \circ g_* = \text{res}_{Q_m} \) follows from (4.29).

\[\Box\]

Lemma 4.32. Let \((Q', m')\), \((Q'', m'')\), and \((Q, m) = (Q' \otimes_k Q'', m' \otimes_k Q'' + Q' \otimes_k m'')\) be as in Lemma 4.27. Set \(m = \dim(Q') \) and \(n = \dim(Q'') \). The diagram

\[
\begin{array}{ccc}
H_{2m} \Gamma_{Q_m}^m(\Omega^m Q_{m/k}) & \overset{\text{res}_{Q_m}}{\longrightarrow} & H_{2m+2n} \Gamma_{Q_m}^m(\Omega^m Q_{m/k}) \\
\downarrow \text{res}_{Q'_m} \otimes \text{res}_{Q''_m} & = & \downarrow \text{res}_{Q_m} \\
k \otimes_k k & \longrightarrow & k
\end{array}
\]

commutes up to the sign \((-1)^{mn}\).

Proof. It suffices to prove the analogous diagram given by replacing \(\Omega^m Q_{m/k} \) and \(\Omega^m Q_{m'/k} \) with \(\Omega^m Q'_{m'/k} \) and \(\Omega^m Q''_{m'/k} \) commutes. Let \(x_1', \ldots, x_m' \) and \(x_1'', \ldots, x_m'' \) be regular systems of parameters for \(Q'_m \) and \(Q''_m \). Then, upon identifying \(x_i' \) and \(x_i'' \) with the elements \(x_i' \otimes 1 \) and \(1 \otimes x_i'' \) of \(Q_m \), the sequence \(x_1', \ldots, x_m', x_1'', \ldots, x_m'' \) forms a regular system of parameters for \(Q_m \). We use these three regular systems of a parameters to identify \(H_{2m} \Gamma_{Q_m}(\Omega^m Q_{m'/k}) \) with \(H_{2m}(\mathcal{C}(x_1', \ldots, x_m') \otimes_{Q'_m} \Omega^m Q_{m'/k}) \) and similarly for \(Q'' \) and \(Q \). Under these identifications, the map labelled \(\cdot \) in the diagram sends

\[
\frac{\alpha_1' \cdots \alpha_m' \otimes dx_1' \cdots dx_m'}{x_1' \cdots x_m'} \otimes \frac{\alpha_1'' \cdots \alpha_m'' \otimes dx_1'' \cdots dx_m''}{x_1'' \cdots x_m''}
\]

to

\[
(-1)^{mn} \frac{\alpha_1' \cdots \alpha_m' \alpha_1'' \cdots \alpha_m'' \otimes dx_1' \cdots dx_m' dx_1'' \cdots dx_m''}{x_1' \cdots x_m' x_1'' \cdots x_m''},
\]

with the sign arising since the \(dx_i' \)'s and \(\alpha_i'' \)'s have odd degree. The result now follows from Definition 4.27 and (4.29).

\[\Box\]

4.5. The residue pairing. We assume \(Q, k \) and \(m \) are as in Subsection 4.4. All gradings in this section are \(\mathbb{Z}/2 \)-gradings. Fix \(f \in Q \), and assume \(\text{Sing}(f : \text{Spec}(Q) \to \mathbb{A}^1_k) = \{m\} \). Then the canonical map

\[
(\Omega^1_{Q/k}, -df) \to (\Omega^m_{Q_m/k}, -df)
\]

is a quasi-isomorphism, and the only non-zero homology module is

\[
\frac{\Omega^n_{Q/k}}{df \wedge \Omega^n_{Q/k}} \cong \frac{\Omega^n_{Q_m/k}}{df \wedge \Omega^n_{Q_m/k}},
\]

located in degree \(n := \dim(Q_m) \). Choose a regular system of parameters \(x_1, \ldots, x_n \in mQ_m \).

Then \(dx_1, \ldots, dx_n \) forms a \(Q_m \)-basis for \(\Omega^1_{Q_m/k} \), and we write

\[
\partial_1, \ldots, \partial_n \in \text{Det}_k(Q_m) = \text{Hom}_{Q_m}(\Omega^1_{Q_m/k}, Q_m)
\]

for the associated dual basis. Set \(f_i = \partial_i(f) \). The sequence \(f_1, \ldots, f_n \) forms a system of parameters for \(Q_m \). For example, when \(Q_m = k[x_1, \ldots, x_n]/(x_1, \ldots, x_n) \), we have \(\partial_i = \partial/\partial x_i \), so that \(f_i = \partial f/\partial x_i \).
Definition 4.33. With the notation of the previous paragraph, the residue pairing is the map
\[
\langle -, - \rangle_{\text{res}} : \frac{\Omega^n_{Q/k}}{df \wedge \Omega^{n-1}_{Q/k}} \times \frac{\Omega^n_{Q/k}}{df \wedge \Omega^{n-1}_{Q/k}} \to k
\]
that sends a pair \((gdx_1 \cdots dx_n, hdx_1 \cdots dx_n)\) to \(\text{res}^G \left[\frac{ghdx_1 \cdots dx_n}{f_1, \ldots, f_n}\right].\)

Proposition 4.34. The residue pairing coincides with the composition
\[
\frac{\Omega^n_{Q/k}}{df \wedge \Omega^{n-1}_{Q/k}} \times \frac{\Omega^n_{Q/k}}{df \wedge \Omega^{n-1}_{Q/k}} = H_n(\Omega^*_{Q/k}, -df) \times H_n(\Omega^*_{Q/k}, -df)
\]
\[
\cong H_n(\Omega^*_{Q_m/k}, -df) \times H_n(\Omega^*_{Q_m/k}, -df)
\]
\[
\xrightarrow{id \times (-1)^n} H^n(\Omega^*_{Q_m/k}, -df) \times H^n(\Omega^*_{Q_m/k}, df)
\]
\[
\cong H_n(\mathcal{C} \otimes_{Q_m} (\Omega^*_{Q_m/k}, -df)) \times H_n(\Omega^*_{Q_m/k}, df)
\]
\[
\xrightarrow{\text{K"unneth}} H_{2n}(\mathcal{C} \otimes_{Q_m} (\Omega^*_{Q_m/k}, -df) \otimes_{Q_m} (\Omega^*_{Q_m/k}, df))
\]

In particular, it is well-defined and independent of the choice of regular system of parameters.

Proof. We need a formula for the inverse of the canonical isomorphism
\[
(4.35) \quad H_n(\mathcal{C} \otimes_{Q_m} (\Omega^*_{Q_m/k}, -df) \xrightarrow{\cong} H_n(\Omega^*_{Q_m/k}, -df)).
\]
Since the isomorphism is \(Q_m\)-linear, we just need to know where the inverse sends \(dx_1 \wedge \cdots \wedge dx_n.\)
Note that \(\mathcal{C}(x_1, \ldots, x_n) \otimes_{Q_m} \Omega^*_{Q_m/k}\) is a graded-commutative \(Q_m\)-algebra (but not a dga), and the differential is left multiplication by \(\sum_i \alpha_i - f_i dx_i.\) Observe that the element
\[
\omega := (-\frac{1}{f_1} \alpha_1 + dx_1)(-\frac{1}{f_2} \alpha_2 + dx_2) \cdots (-\frac{1}{f_n} \alpha_n + dx_n)
\]
\[
= (-1)^n \frac{1}{f_1 \cdots f_n} (\alpha_1 - f_1 dx_1)(\alpha_2 - f_2 dx_2) \cdots (\alpha_n - f_n dx_n) \in \mathcal{C} \otimes_{Q_m} (\Omega^*_{Q_m/k}, -df)
\]
is a cocycle, and it maps to \(dx_1 \wedge \cdots \wedge dx_n \in H_n(\Omega^*_{Q_m/k}, -df)\) via \((4.35).\) Therefore, the composition
\[
\frac{\Omega^n_{Q/k}}{df \wedge \Omega^{n-1}_{Q/k}} \times \frac{\Omega^n_{Q/k}}{df \wedge \Omega^{n-1}_{Q/k}} \xrightarrow{\cong} H_n(\Omega^*_{Q_m/k}, -df) \times H_n(\Omega^*_{Q_m/k}, -df)
\]
\[
\xrightarrow{id \times (-1)^n} H_n(\Omega^*_{Q_m/k}, -df) \times H_n(\Omega^*_{Q_m/k}, df)
\]
\[
\xrightarrow{\cong} H_n(\mathcal{C} \otimes_{Q_m} (\Omega^*_{Q_m/k}, -df)) \times H_n(\Omega^*_{Q_m/k}, df)
\]
\[
\xrightarrow{\text{K"unneth}} H_{2n}(\mathcal{C} \otimes_{Q_m} (\Omega^*_{Q_m/k}, -df) \otimes_{Q_m} (\Omega^*_{Q_m/k}, df))
\]
sends \((gdx_1 \cdots dx_n, hdx_1 \cdots dx_n)\) to
\[
g \prod_i (-\frac{1}{f_i} \alpha_i + dx_i) \otimes (-1)^n hdx_1 \wedge \cdots \wedge dx_n.
\]
Under the composition
\[
H_{2n}(\mathcal{C} \otimes_{Q_m} (\Omega^*_{Q_m/k}, -df) \otimes_{Q_m} (\Omega^*_{Q_m/k}, df)) \xrightarrow{\cong} H_{2n}(\mathcal{C} \otimes_{Q_m} (\Omega^*_{Q_m/k}, 0)) \xrightarrow{\cong} E \otimes_{Q_m} \Omega^n_{Q_m/k},
\]
this element maps to
\[\frac{gh}{f_1 \cdots f_n} \otimes dx_1 \wedge \cdots \wedge dx_n, \]
which is sent to \(\text{res}^G\left[\frac{ghdx_1 \wedge \cdots \wedge dx_n}{f_1 \cdots f_n} \right] \in k \) by the residue map. \qed

4.6. Relating the trace and residue maps. Our goal in this subsection is to prove the following theorem:

Theorem 4.36. Let \(k \) be a field of characteristic 0, \(Q \) an essentially smooth \(k \)-algebra, and \(\mathfrak{m} \) a \(k \)-rational maximal ideal of \(Q \). Then the diagram
\[
\begin{array}{ccc}
HH_0 mf(Q,0) & \xrightarrow{\varepsilon} & H_{2n} R\Gamma_m(\Omega_{Q_m/k}) \\
\downarrow \text{trace} & & \downarrow \text{res} \\
(1) & & \\
(1) & & \\
\end{array}
\]
commutes, where \(n = \dim(Q_m) \).

Our strategy for proving this theorem is to reduce it to the very special case when \(Q = k[x] \) and \(\mathfrak{m} = (x) \) and then to prove it in that case via an explicit calculation.

Lemma 4.37. Given a pair \((Q, \mathfrak{m})\) and \((Q', \mathfrak{m}')\) satisfying the hypotheses of Theorem 4.36, suppose there is a \(k \)-algebra map \(g : Q \to Q' \) such that \(g^{-1}(\mathfrak{m}') = \mathfrak{m} \), the induced map \(Q_m \to Q_m' \) is flat, and \(mQ_{m'} = m'Q_{m'} \). Then

1. Theorem 4.36 holds for \((Q, \mathfrak{m})\) if and only if it holds for \((Q', \mathfrak{m}')\).
2. Theorem 4.36 holds provided it holds in the special case where \(Q = k[t_1, \ldots, t_n] \) and \(\mathfrak{m} = (t_1, \ldots, t_n) \).

Proof. (1) follows from Lemmas 4.20 and 4.31 and the naturality of the HKR map \(\varepsilon \). As for (2), for \((Q, \mathfrak{m})\) as in Theorem 4.36, applying (1) to the map \(g : Q \to Q_m \) allows us to reduce to the case when \(Q \) is local. In this case, let \(x_1, \ldots, x_n \) be a regular system of parameters for \(Q \), define \(g : k[t_1, \ldots, t_n] \to Q \) to be the \(k \)-algebra map sending \(t_i \) to \(x_i \), and apply (1) to \(g \). \qed

Lemma 4.38. Suppose \(Q', Q'' \) are essentially smooth \(k \)-algebras, and \(\mathfrak{m}' \subseteq Q', \mathfrak{m}'' \subseteq Q'' \) are \(k \)-rational maximal ideals. Let \(Q = Q' \otimes_k Q'' \) and \(\mathfrak{m} = \mathfrak{m}' \otimes_k Q'' + Q' \otimes_k \mathfrak{m}'' \). If Theorem 4.36 holds for each of \((Q', \mathfrak{m}')\) and \((Q'', \mathfrak{m}'')\), then it also holds for \((Q, \mathfrak{m})\). In particular, the Theorem holds in general if it holds for the special case \(Q = k[x], \mathfrak{m} = (x) \).

Proof. For brevity, let \(HH' = HH_0 mf(Q_m',0) \), \(HH'' = HH_0 mf(Q_m'',0) \), and \(HH_0 = HH_0 mf(Q_m,0) \), and similarly \(R\Gamma' = H_{\dim(Q_m')} R\Gamma_m(\Omega_{Q_m'/k}) \), etc. We consider the diagram

where the diagonal maps are the appropriate trace or residue maps. The left and right trapezoids commute by Lemmas 4.21 and 4.32, the middle square commutes by Proposition 3.19, the top trapezoid commutes by assumption, and the outer square obviously commutes. It follows from (4.1) and Lemma...
With this notation, the quasi-isomorphism $HH' \otimes_k HH'' \xrightarrow{\sim} HH$ is an isomorphism. A diagram chase now shows that the bottom trapezoid commutes, which gives the first assertion. The second assertion is an immediate consequence of the first assertion and Lemma 4.37.

Proof of Theorem 4.36. By Lemma 4.38, we need only show

$$\text{res} \circ \varepsilon = - \text{trace}$$

in the case where $Q = k[x]$ and $m = (x)$. Let K be the Koszul complex on x, considered as a differential $\mathbb{Z}/2$-graded algebra, as in Section 4.1 and let $E = \text{End}_m f(x)(k[x]_{(x)}, 0)(K_{(x)})$. Recall from Section 4.1 that E is the differential $\mathbb{Z}/2$-graded Q-algebra generated by odd degree elements e, e^* satisfying the relations $e^2 = 0 = (e^*)^2$ and $[e, e^*] = 1$, and the differential d^E is given by $d^E(e) = x$ and $d^E(e^*) = 0$. By Lemma 4.39, we have an isomorphism

$$k[y] \xrightarrow{\sim} HH_0(m f(x)(k[x]_{(x)}, 0)),$$

where

$$y \mapsto \text{id}_K[e^*] \in HH(E) \subseteq HH(m f(x)(k[x]_{(x)}, 0)),$$

and, more generally,

$$y^j \mapsto j!\text{id}_K[e^*] \cdots [e^*], \text{ for } j \geq 0.$$

As usual, we identify $H_2 \Gamma(x)(\Omega^1_{k[x]_{(x)}/k})$ with $k[x]_{(x)}^{[−1]} \cdot \alpha \otimes k[x]_{(x)} \Omega^1_{k[x]_{(x)}/k}$, where $|\alpha| = 1$. Theorem 4.39 follows from the calculations

1. $\text{res}(\frac{\partial}{\partial x} \otimes dx) = 1$,
2. $\text{res}(\frac{\partial}{\partial x} \otimes dx) = 0$ for all $i > 1$,
3. $\text{trace}(y^0) = 1$,
4. $\text{trace}(y^j) = 0$ for all $j \geq 1$, and
5. $\varepsilon(y^j) = -j!(\frac{\partial}{\partial x} \otimes dx)$ for all $j \geq 0$.

In fact, (1) and (2) follow from the definition of the residue map, and (3) and (4) follow from Propositions 4.9 and 4.13 so it remains only to establish (5).

Recall that the map ε is induced by the diagram

$$k[y] \xrightarrow{\varepsilon} HH_0(E) \xrightarrow{e^*} H_2 \Gamma(x)HH(E) \xrightarrow{\Gamma(x)e^*} H_2 \Gamma(x)(\Omega^1_{k[x]_{(x)}/k}),$$

where e^* denotes the composition

$$HH(E) \xrightarrow{(\text{id}, d_K)} HH^{II}(E^0) \xrightarrow{e^*} \Omega^1_{k[x]_{(x)}/k}.$$

Here, E^0 is the same as E, but with trivial differential, (id, d_K) is a morphism $E \rightarrow E^0$ of curved dga’s (with trivial curvature), and e^0 is as defined in 4.2.3.

We need to calculate the inverse of the isomorphism $H_2 \Gamma(x)HH(E) \xrightarrow{\varepsilon} HH_0(E)$ occurring in (4.39). As usual, we make the identification

$$\Gamma(x)HH(E) = HH(E) \oplus HH(E)[1/x] \cdot \alpha.$$

The differential on the right is $\partial := b + \alpha$, where α denotes left multiplication by α; note that $\alpha^2 = 0$. So, for a class $\gamma + \gamma' \alpha$, we have

$$\partial(\gamma + \gamma' \alpha) = b(\gamma) - b(\gamma') \alpha + \gamma \alpha.$$

With this notation, the quasi-isomorphism $\Gamma(x)HH(E) \xrightarrow{\sim} HH(E)$ is given by setting $\alpha = 0$.

For $j \geq 0$, we define

$$y^{(j)} = \frac{1}{j!} y^j = \text{id}_K[e^*] [e^*] \cdots [e^*]$$
and
\[
\omega_j = e^{x e^* | e^* | \cdots | e^*} \in HH(\mathcal{E})[1/x].
\]

Then, for \(j \geq 0 \), we have
\[
b(\omega_j) = xy^{(j)} - y^{(j-1)},
\]
where \(y^{(-1)} := 0 \), from which we get
\[
b \left(\frac{1}{x} \omega_j + \frac{1}{x^2} \omega_{j-1} + \cdots + \frac{1}{x^{j+1}} \omega_0 \right) = y^{(j)}.
\]

It follows that, for each \(j \geq 0 \), the class
\[
y^{(j)} + \alpha \left(\frac{1}{x} \omega_j + \frac{1}{x^2} \omega_{j-1} + \cdots + \frac{1}{x^{j+1}} \omega_0 \right)
\]
is a cycle in \(\mathbb{R} \Gamma_{(x)}HH(\mathcal{E}) \) that maps to \(y^{(j)} \in HH(\mathcal{E}) \) under the canonical map \(\mathbb{R} \Gamma_{(x)}(HH(\mathcal{E})) \to HH(\mathcal{E}) \). We conclude that the inverse of
\[
H_2 \mathbb{R} \Gamma_{(x)}HH(\mathcal{E}) \xrightarrow{\sim} H_0(\mathcal{E}) = k[y]
\]
maps \(y^j \) to the class of
\[
\eta_j := y^j + j! \alpha \left(\frac{1}{x} \omega_j + \frac{1}{x^2} \omega_{j-1} + \cdots + \frac{1}{x^{j+1}} \omega_0 \right)
\]
for each \(j \geq 0 \), and hence
\[
\varepsilon(y^j) = \mathbb{R} \Gamma_{(x)}\varepsilon'(\eta_j).
\]

Recall that \(\varepsilon' \) sends \(\theta_0[\theta_1| \cdots |\theta_n] \in HH(\mathcal{E}) \) to
\[
\sum (-1)^{j_0+\cdots+j_n} \frac{1}{(n+j)!} \text{str}(\theta_0(d'_{K})^{j_0} \theta'_1 \cdots \theta'_n(d'_{K})^{j_n}),
\]
where the derivatives are computed relative to any specified flat connection on \(K \). Using the Levi-Civita connection associated to the basis \(\{1, e\} \) of \(K \), we get \(e' = 0 \), \((e^*)' = 0 \) and hence \(d'_{K} = -e^*dx \). It follows that
\[
\varepsilon'(\omega_j) = 0 \text{ for } j \geq 1,
\]
\[
\varepsilon'(\omega_0) = \text{str}(e) + \text{str}(ee^*dx),
\]
\[
\varepsilon'(y^{(j)}) = 0 \text{ for } j \geq 1, \text{ and}
\]
\[
\varepsilon'(y^{(0)}) = \text{str}(id_K) + \text{str}(e^*dx).
\]

It is easy to see that \(\text{str}(ee^*) = -1 \), \(\text{str}(e^*) = 0 \), \(\text{str}(e) = 0 \), and \(\text{str}(id_K) = 0 \), so that \(\varepsilon'(\omega_0) = -dx \), \(\varepsilon'(\omega_j) = 0 \) for all \(j \geq 0 \), and \(\varepsilon'(y^j) = 0 \) for all \(j \). We obtain
\[
\varepsilon(y^j) = \mathbb{R} \Gamma_{(x)}\varepsilon'(\eta_j) = -j! \left(\frac{\alpha}{x^{j+1}} \otimes dx \right)
\]
for all \(j \geq 0 \), as needed. \(\square \)

4.7. Proof of the conjecture. Let \(Q = \mathbb{C}[x_1, \ldots, x_n] \) and \(f \in \mathfrak{m} = (x_1, \ldots, x_n) \subseteq Q \), and assume \(\mathfrak{m} \) is the only singular point of the morphism \(f : \text{Spec}(Q) \to \mathbb{A}^1 \). As discussed in the introduction, a result of Shklyarov (Shk16 Corollary 2) states that there is a commutative diagram

\[
(4.40)
\begin{array}{ccc}
HH_n(mf(Q,f)) \times 2 & \xrightarrow{I_{f(0)} \times I_{f(0)}} & \Omega^n_{Q/k}(df \wedge \Omega^n_{Q/k}) \times 2 \\
\downarrow & & \downarrow \\
\mathbb{C} & \xrightarrow{c_f \eta_{mf}} & \mathbb{C}
\end{array}
\]

for some constant \(c_f \) which possibly depends on \(f \).
Theorem 4.41. Let k be a field of characteristic 0, Q an essentially smooth k-algebra, m a k-rational maximal ideal, and f an element of m such that m is the only singularity of the morphism $f : \text{Spec}(Q) \to \mathbb{A}^1_k$. Then the diagram

$$HH_n(mf(Q,f)) \times HH_n(mf(Q,f)) \xrightarrow{\varepsilon \times \varepsilon} H_n(\Omega^\bullet_Q, -df) \times H_n(\Omega^\bullet_Q, -df)$$

$$HH_n(mf(Q,f)) \times HH_n(mf(Q,f)) \xrightarrow{\varepsilon \times \varepsilon} H_n(\Omega^\bullet_Q, -df) \times H_n(\Omega^\bullet_Q, -df)$$

$$HH_n(mf(Q,f)) \times HH_n(mf(Q,f)) \xrightarrow{\varepsilon \times \varepsilon} H_n(\Omega^\bullet_Q, -df) \times H_n(\Omega^\bullet_Q, -df)$$

commutes.

Proof. Consider the diagram

$$(4.42) \quad HH_n(mf(Q,f)) \times HH_n(mf(Q,f)) \xrightarrow{\varepsilon \times \varepsilon} H_n(\Omega^\bullet_Q, -df) \times H_n(\Omega^\bullet_Q, -df)$$

$$(4.42) \quad HH_n(mf(Q,f)) \times HH_n(mf(Q,f)) \xrightarrow{\varepsilon \times \varepsilon} H_n(\Omega^\bullet_Q, -df) \times H_n(\Omega^\bullet_Q, -df)$$

$$(4.42) \quad HH_n(mf(Q,f)) \times HH_n(mf(Q,f)) \xrightarrow{\varepsilon \times \varepsilon} H_n(\Omega^\bullet_Q, -df) \times H_n(\Omega^\bullet_Q, -df)$$

obtained by composing the maps along the left edge of $$(4.42)$$ is $(-1)^{n(n+1)/2} \eta mf$. By Proposition 4.34 the map

$$H_n(\Omega^\bullet_Q, -df) \times H_n(\Omega^\bullet_Q, -df) \rightarrow k$$

obtained by composing the maps along the right edge of $$(4.42)$$ is $(-\cdot, -)_\text{res}$.

Corollary 4.43. Conjecture 4.4 holds. That is, for $f \in m = (x_1, \ldots, x_n) \subseteq Q = \mathbb{C}[x_1, \ldots, x_n]$ such that m is the only singularity of the morphism $f : \text{Spec}(Q) \to \mathbb{A}^1_k$, the unique constant c_f that makes diagram 4.4 commute is $(-1)^{n(n+1)/2}$, as predicted by Shklyarov.

Proof. Under these assumptions, $\varepsilon = I_f(0)$ by Lemma 3.11. Theorem 4.41 thus implies that the value $c_f = (-1)^{n(n+1)/2}$ causes the diagram 4.40 to commute. As discussed in the introduction, this uniquely determines the value of c_f, and the unique constant c_f which makes diagram 4.40 commute is the same as that which makes diagram 4.3 commute. □

5. Recovering Polishchuk-Vaintrob’s Hirzebruch-Riemann-Roch Formula for Matrix Factorizations

Assume k, Q, m, and f are as in the statement of Theorem 4.41. We recall that, given objects $X, Y \in mf(Q,f)$, the Euler pairing applied to the pair (X,Y) is given by

$$\chi(X,Y) = \dim_k H_0 \text{Hom}(X,Y) - \dim_k H_1 \text{Hom}(X,Y).$$

In this final section, we give a new proof of a theorem due to Polishchuk-Vaintrob that relates the Euler pairing to the residue pairing via the Chern character map.

The following is an immediate consequence of the commutativity of diagram 4.42 in the proof of Theorem 4.41.
Corollary 5.1. Let k, Q, m, and f be as in the statement of Theorem 4.41 and assume $n = \dim(Q_m)$ is even. Then the triangle

$$HH_0(mf(Q,f)) \otimes_k HH_0(mf(Q,-f)) \xrightarrow{\epsilon \otimes_X \tau} \Omega_{Q/k}^n \otimes_k \Omega_{Q/k}^{n-1}$$

commutes, where the left diagonal map is $(-1)^{n(n+1)/2} \text{trace}(\star \tau)$, and ϵ denotes the composition of the HKR map and the isomorphism $H_n(\Omega_{Q/k}^\bullet, \pm df) \xrightarrow{\cong} \Omega_{Q/k}^n \otimes_{\Omega_{Q/k}}^{\mathcal{L}} \Omega_{Q/k}^{n-1}$.

Let $X \in mf(Q,f)$. We recall that the Chern character of X

$$ch(X) = HH_0(mf(Q,f))$$

is the class represented by

$$\text{id}_X \in \text{End}(X) \subseteq HH(mf(Q,f)).$$

Assume now that n is even. The isomorphism

$$\epsilon : HH_0(mf(Q,f)) \cong \Omega_{Q/k}^n \otimes_{\Omega_{Q/k}}^{\mathcal{L}} \Omega_{Q/k}^{n-1}$$

sends $ch(X)$ to the class

$$\frac{1}{n!} \text{str}(\delta_X^n),$$

where $\delta_X = [\nabla, \delta_X]$ for any choice of connection ∇ on X. Abusing notation, we also denote this element of $\Omega_{Q/k}^n \otimes_{\Omega_{Q/k}}^{\mathcal{L}} \Omega_{Q/k}^{n-1}$ as $ch(X)$.

For example, if the components of X are free, then, upon choosing bases, we may represent δ_X as a pair of square matrices (A, B) satisfying $AB = fI_r = BA$. Using the Levi-Cevita connection associated to this choice of basis, we have

$$ch(X) = \frac{2}{n!} \text{tr}(dAdB \cdots dAdB).$$

Recall from Remark 4.12 that, for $X \in mf(Q,f)$ and $Y \in mf(Q,-f)$, $\theta(X,Y)$ is given by

$$\dim_k H_0(X \otimes Y) - \dim_k H_1(X \otimes Y),$$

and we have

$$\theta(X,Y) = \text{trace}(ch(X) \star ch(Y)) \text{.}$$

Corollary 5.4. Under the assumptions of Corollary 5.1

1. If $X \in mf(Q,f)$ and $Y \in mf(Q,-f)$,

$$\theta(X,Y) = (-1)^{(\frac{n}{2})}\langle ch(X), ch(Y) \rangle_{\text{res}}.$$

2. If $X, Y \in mf(Q,f)$,

$$\chi(X,Y) = (-1)^{(\frac{n}{2})}\langle ch(X), ch(Y) \rangle_{\text{res}}.$$

Remark 5.5. Corollary 5.4(2) is Polishchuk-Vaintrob’s Hirzebruch-Riemann-Roch formula for matrix factorizations ([PY12, Theorem 4.1.4(i)])

Proof. (1) is immediate from Corollary 5.1 and (5.3). We now prove (2). Without loss of generality, we may assume Q is local, so that the underlying $\mathbb{Z}/2$-graded Q-modules of X and Y are free. Given a matrix factorization $(P, \delta_P) \in mf(Q,f)$ written in terms of its $\mathbb{Z}/2$-graded components as

$$(\delta_1 : P_1 \to P_0, \delta_0 : P_0 \to P_1),$$
we define a matrix factorization $N(P, \delta_P) \in mf(Q, -f)$ with components

$$(\delta_1 : P_1 \to P_0, -\delta_0 : P_0 \to P_1).$$

We have

$$\langle ch(X), ch(N(Y)) \rangle_{res} = (-1)^{\frac{n}{2}} \theta(X, N(Y)) = \chi(X, Y).$$

The first equality follows from (1), and the second equality follows from [BW19a, Corollary 8.5] and [BMTW17, Proposition 3.18]; note that $(-1)^{\frac{n}{2}} = (-1)^{\frac{\hat{n}}{2}}$, since n is even, and also that the notation χ in [BMTW17, Proposition 3.18] has a different meaning than it does here. It suffices to show $ch(N(Y)) = (-1)^{\frac{n}{2}} ch(Y)$, and this is clear by (5.2). \hfill \Box

References

[BMTW17] Michael K. Brown, Claudia Miller, Peder Thompson, and Mark E. Walker, Adams operations on matrix factorizations, Algebra & Number Theory 11 (2017), no. 9, 2165–2192.

[BW19a] Michael K. Brown and Mark E. Walker, A Chern-Weil formula for the Chern character of a perfect curved module, to appear in the Journal of Noncommutative Geometry (2019).

[BW19b] Standard Conjecture D for matrix factorizations, arXiv preprint arXiv:1905.04626 (2019).

[Dyc11] Tobias Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Mathematical Journal 159 (2011), no. 2, 223–274.

[Efi17] Alexander I. Efimov, Cyclic homology of categories of matrix factorizations, International Mathematics Research Notices 2018 (2017), no. 12, 3834–3869.

[KCD08] Ernst Kunz, David A Cox, and Alicia Dickenstein, Residues and duality for projective algebraic varieties, vol. 47, American Mathematical Soc., 2008.

[Orl03] Dmitri Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, arXiv preprint math/0302304 (2003).

[PP12] Alexander Polishchuk and Leonid Positselski, Hochschild (co) homology of the second kind I, Transactions of the American Mathematical Society 364 (2012), no. 10, 5311–5368.

[Pre11] Anatoly Preygel, Thom-Sebastiani & duality for matrix factorizations, arXiv preprint arXiv:1101.5834 (2011).

[PV12] Alexander Polishchuk and Arkady Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, Duke Mathematical Journal 161 (2012), no. 10, 1863–1926.

[Qui85] Daniel Quillen, Superconnections and the Chern character, Topology 24 (1985), no. 1, 89–95.

[Sai83] Kyoji Saito, The higher residue pairings $K^{(k)}_i$ for a family of hypersurface singular points, Proceedings of Symposia in pure mathematics, vol. 40, 1983, pp. 441–463.

[Seg13] Ed Segal, The closed state space of affine Landau-Ginzburg B-models, Journal of Noncommutative Geometry 7 (2013), no. 3, 857–883.

[Shk14] Dmytro Shklyarov, Non-commutative Hodge structures: Towards matching categorical and geometric examples, Transactions of the American Mathematical Society 366 (2014), no. 6, 2923–2974.

[Shk16] Matrix factorizations and higher residue pairings, Advances in Mathematics 292 (2016), 181–209.

Department of Mathematics, University of Wisconsin-Madison, WI 53706-1388, USA
E-mail address: mkbrown5@wisc.edu

Department of Mathematics, University of Nebraska-Lincoln, NE 68588-0130, USA
E-mail address: mark.walker@unl.edu