Aniline is used extensively for producing organic compounds, such as rubber, azo dyes, fuel additives, antioxidants, corrosion inhibitors, pharmaceuticals, antiseptics and pesticides. Aniline is considered one of the most toxic aromatic compounds. Pharmaceutical and dye industry wastewater containing aniline harms aquatic ecosystems due to its incalcitrant structure and high toxicity. The International Agency for Research on Cancer (IARC) categorizes aniline as a group 2B carcinogenic compound due to its mutagenic and carcinogenic potential. Two important aniline derivatives are 2-methoxyaniline and 4-methoxyaniline. 2-methoxyaniline, also known as O-anisidine, is a colorless liquid which becomes brownish with air contact and can be absorbed by skin contact, oral ingestion and inhalation. It is an important intermediate in the manufacture of numerous azo and triphenylmethane dyes and pigments, as well as some pharmaceuticals. Its corrosion inhibiting and antioxidant properties make it suitable for use in steel and polymeric resins, respectively. 4-methoxyaniline (or p-anisidine) is a white solid at room temperature with a density of 1.07 g/cm³. It is useful in determining food quality, and as dyestuff and pigment intermediates. The principal physical and chemical properties of 2-methoxyaniline and 4-methoxyaniline are given in Table 1.

Blood and nerve cells can be damaged by 2-methoxyaniline, leading to cyanosis and suffocation. The chemical has been used experimentally in carcinogenicity investigation and is thought to cause cancer in humans. 4-methoxyaniline is the most toxic of the three methoxyaniline isomers, releasing nitrogen oxide vapors when heated strongly. The harmful effects of aniline and its derivatives makes these compounds an important target for elimination from waste streams through biological, physical and chemical processes. In recent studies, advanced oxidation processes (AOPs) have emerged as promising technologies to degrade various pharmaceutical and dye intermediates in wastewaters and reduce their toxicity and refractory.
nature. Most AOPs are based on the hydroxyl radical (HO•), which has a very high oxidation potential – 2.8 electron volt (eV) (Table 2). It can degrade many organic compounds and substantially limit toxicity to aquatic species. Advanced oxidation processes provide several possible ways of generating HO•, which increase their versatility and suit them to the requirements of specific treatments. Advanced oxidation processes include Fenton oxidation, photo-Fenton oxidation (solar/ultraviolet (UV)) and Fenton-like oxidation.

In the present study, various available remedial technologies presented in the literature were investigated to determine the most suitable technology for the elimination of aniline and aniline derivatives from waste streams.

Methods

Literature was collected from ScienceDirect, Google Scholar, SpringerLink, ResearchGate, Wiley Online Library, Web of Science, IARC, National Toxicology Programs (NTP) and the website (www.alfa.com, which provided information on P-anisidine). Search terms included 'aniline', 'aniline degradation', 'AOPs', 'aniline derivatives', 2-methoxyaniline, 4-methoxyaniline and 'Fenton's reagent'. A total of 228 articles were collected. One hundred and thirty-four (134) articles were further determined to contain studies explicitly addressing removal of aniline and its derivatives. Articles containing physical methods, biological methods and AOPs for the treatment of aniline derivatives were filtered with special focus on AOPs. Subsequently, articles irrelevant to the present study were eliminated and only 70 articles were included finally and cited in this review. Collection and selection procedures are shown in Figure 1. All 70 articles were reviewed and used in this study to determine the most suitable technique for the degradation of aniline and its derivatives from waste streams. The articles were screened for quality based on the quality of materials used, the use of standard instrumentation and the use of a reference laboratory. The Supplemental Material presents the checklist used for screening the articles for the literature review. Only articles which satisfied at least two parameters (columns) were included for the review. The remainder of the articles were used to collect and present reliable information on anilines, aniline derivatives and AOPs.

Abbreviations

Abbreviation	Definition
AOPs	Advanced oxidation processes
IARC	International Agency for Research on Cancer
eV	Electron volt
NTP	National Toxicology Programs
UV	Ultraviolet

2-Methoxyaniline and 4-Methoxyaniline Properties

Property	2-Methoxyaniline	4-Methoxyaniline
Structure	![Structure Image]	![Structure Image]
Synonyms	O-anisidine, 2-aminoanisole	P-anisidine, 4-aminoanisole
Physical state	Clear, white liquid – yellow or red-brown when oxidized	White solid, gray or gray-brown when oxidized
Formula	C₇H₆NO	C₇H₆NO
Melting point (°C)	6.2	57.2
Boiling point (°C)	224	243
Solubility in water	1.5 g/100 ml	less than 1 mg/mL
Density (g/cm³)	1.09	1.07

Table 1 — Principal Physical and Chemical Properties of 2- and 4-Methoxyaniline
The data gathering, screening and extraction revealed three categories of technologies available for treatment of wastewater containing aniline and its derivatives: physical, biological and AOPs. The seventy articles included in the present review are summarized in Table 3.

Physical technologies

Several physical treatment technologies, such as adsorption, thermal incineration and membrane filtration have been used to eliminate aniline and aniline derivatives from wastewater. Multi-walled carbon nanotubes have been efficiently used to adsorb aniline and its derivatives from aqueous solution.13,14 Thermal incineration of aniline was also carried out in some studies, but incineration involves heavy fuel consumption and incomplete combustion can lead to air pollution.15 Some studies used a mixed bed reactor with a liquid emulsion membrane and were able to remove 98.53% of the aniline present in wastewater.16 Aqueous solutions containing aniline have reportedly been treated by chemical desorption and permeation using a silicone membrane.17,18

Biological technologies

A variety of microorganisms have been applied to remove aniline from wastewater via biological treatment methods. Aniline can be successfully removed by microorganisms such as \textit{Dietzia natronolimnaea}, \textit{Pseudomonas sp.}, \textit{Delftia sp.} and \textit{Pigmentiphaga daeguensis}.19-23 Biological methods are efficient and ecofriendly, as they use natural pathways to achieve the required wastewater quality, but in the case of incalcitrant organic compounds, like aniline and its derivatives which can be toxic to microorganisms, they are impractical.24,25 Pharmaceutical wastewater contains a variety of harmful compounds and treatment to the required effluent standards is difficult. The main problem with biological treatment is that it is difficult to grow cultures, taking up to a year, and to maintain them in pure form on a large scale. In addition, it takes 15 to 20 days to oxidize the organic contaminants. Daily monitoring is required to maintain good environmental conditions for microorganism growth.

Advanced oxidation processes

Advanced oxidation processes exploit the high oxidative power of HO• to remove organic contaminants and have been successfully used to eliminate refractory organic pollutants from wastewater. They can degrade organic contaminants by oxidation via chemical and photo-chemical processes in the presence of a catalyst.26,27 Advanced oxidation processes depend on the generation of powerful oxidants to remove organic species.28-30 Most available AOPs are HO• based, but some are based on oxidizing agents like chlorine or sulfate radicals.30 Hydroxyl radical’s oxidation potential is 2.80 eV, which exceeds most other chemical agents (Table 1), and its rate constants are higher than those of other processes like ozonation. Hydroxyl radical is highly reactive and unstable in nature and must be produced constantly in situ by chemical reaction.31-33 Advanced oxidation processes include a wide variety of treatment processes, such as Fenton’s oxidation, Fenton-like oxidation, photo-Fenton oxidation, solar photo-Fenton’s oxidation, titanium dioxide-assisted photolysis and electro-Fenton oxidation. The mechanism and reaction kinetics of Fenton’s (ferrous ion (Fe2+)/hydrogen peroxide (H\textsubscript{2}O\textsubscript{2})) and Fenton-like oxidation (ferric ion (Fe3+)/H\textsubscript{2}O\textsubscript{2}) have been widely researched and will be discussed later in this study.34-36 Several aniline derivatives have been treated and degraded successfully using AOPs. Degradation of p-nitroaniline, p-aminophenol and acetanilide has been studied using solar photo-Fenton and UV photo-Fenton treatment.

Oxidizing agent	Oxidation potential (eV)
Molecular oxygen	1.23
Chlorine dioxide	1.27
Chlorine	1.36
Hypochlorite	1.49
Hydrogen peroxide (H\textsubscript{2}O\textsubscript{2})	1.78
Ozone	2.08
Atomic oxygen	2.42
Hydroxyl radical (HO•)	2.80

Abbreviation: eV, electron volt
Google search keywords: aniline, aniline degradation, AOPs, aniline derivatives and Fenton’s reagent

Sources
- Science Direct - 86
- Springer Link - 57
- Web of Science - 35
- Google Scholar - 47

Total relevant articles - 228

Articles screened to include only those addressing removal of aniline and derivatives

Articles excluded at this stage - 94

Articles included at this stage - 134

Articles screened to include only those that mention physical methods, biological methods or AOPs

Articles excluded at this stage - 64

Total articles included for systematic review - 70

Figure 1 — PRISMA flow chart showing the collection, screening, inclusions and exclusions of articles
review

establishing that both methods were more beneficial than the basic Fenton process due to their greater oxidation ability, wider pH tolerance and low Fe^{2+} requirement.37,38

In other work, aniline wastewater was treated by both biological and photo-Fenton oxidation separately and then conjointly with biological and photo-Fenton degradation.39 The effective pH range was 3-4 and photo-Fenton oxidation successfully enhanced the biodegradation of aniline. The maximum aniline degradation attained was 94% with the combined biological and photo-Fenton processes. Aniline was oxidized and 2-nitroaniline degraded using the photo-Fenton process, and the Fenton and photo-Fenton processes, where aniline removal efficiency was 84.14% and 93.8%, respectively.40,41

Technologies	Sub-category (number of articles)	Target compounds (number of articles)	Total articles
Physical	• Membrane-based (4)	• Aniline (5)	8
	• Thermal (1)	• Other organic compounds (3)	
	• Adsorption-based (3)		
Biological	• Aerobic (6)	• Aniline (4)	6
		• Other organic compounds (2)	
AOPs	• Fenton (11)	• Aniline (9)	35
	• Solar/UV-photo Fenton (6)	• Other organic compounds (26)	
	• Others: Fenton-like, ultrasound/ozone (US/O3), wet air oxidation, electro-Fenton etc. (18)		
Combined	• Fenton + biological (2)	• Aniline/ mixture of other compounds (10)	10
Technologies	• Fenton + photo-Fenton (3)		
	• Other combinations (photo-Fenton + biological, Fenton like, electro-Fenton + fluidized bed Fenton, electro-Fenton + peroxi-coagulation, photo-catalysis + ozonation) (5)		

Other included articles

- 2-methoxyaniline (4)
- 4-methoxyaniline (2)
- IARC and NTP 2016 (2)
- Others relevant articles providing information on AOP reactions (3)

Total Number of Articles 70
Many studies have demonstrated the effectiveness of Fenton’s reagent (Fe$^{2+}$/H$_2$O$_2$) in degrading toxic organic compounds in wastewater.

Aniline removal efficiency by Fenton’s reagent in a fluidized bed increased until H$_2$O$_2$ concentration reached a threshold value, above which no further removal was observed. Although the electro-Fenton process is more efficient than the fluidized bed version, H$_2$O$_2$ depletion is much higher in the former, making the fluidized bed more economic.

Aniline oxidation by ozonation and titanium dioxide-assisted photocatalysis showed increased total organic carbon removal when aniline was pretreated with ozone.

Remedial technologies for aniline and its derivatives are summarized in Table 4.

The most cost-effective, promising and easily operable AOP is Fenton’s reagent in a fluidized bed.

Technologies	Process/microorganism	Elimination achieved	Merits	Demerits
Physical	Micellar enhanced ultrafiltration46	70% removal of aniline	Physical processes are fast and efficient in removal of aniline from wastewater	Membrane fouling
	Adsorption on cobalt-supported pumice47	Process found to be efficient		Heavy fuel consumption
	Liquid emulsion membrane16	98.53% removal of aniline		High energy demand
	Thermal incineration15	Complete removal of aniline		Secondary pollution
Biological	Delfia sp.19	Complete removal of aniline in 22 hours	Biological processes are efficient and ecofriendly in eliminating specific organic compounds by specific microorganisms	Difficulty degrading toxic organic compounds
	Dietzia natronolimnaea20	87% removal in 120 hours		Slow process and high maintenance
	Pseudomonas sp.22	Complete removal in 24 hours		Bad odor and fly nuisance
	Pigmentiphaga daeguensis23	Complete removal of aniline in 15 hours		pH dependence
AOPs	Photo-Fenton oxidation and biological oxidation39	94% removal of aniline by combined process	Easy to operate	Sludge formation
	Reaction with ozone in presence of zero valent zinc38	Complete aniline removal in 25 minutes	Economical and ecofriendly process with faster rate of degradation	Complex reaction chemistry
	Removal by ultrasound/ozone combination48	Near complete removal of aniline after 30 minutes	Can degrade non-selectively almost all organic compounds	
	Photo-Fenton and Fenton oxidation54	90% and 82% removal of 3-aminopyridine with iron(III) sulfate and laterite soil extract, respectively	Variety of process available	

Table 4 — Remedial Technologies for Aniline and Aniline Derivative
oxidation. It has been applied to treat harmful organic compounds since the 1960s.53-57 Fenton’s reagents are comprised of H\text{2}O\text{2} and Fe\text{2+}. They have been used to eliminate organic and inorganic species including hypochlorite, sulfate, nitrite, chlorine and cyanide.53,54

The key oxidizing agent in Fenton’s oxidation is HO•, which arises from the reaction of Fe\text{3+} and H\text{2}O\text{2} in an acidic medium and is shown in Equation 1:

\text{Equation 1}

\text{H}_2\text{O}_2 + \text{Fe}^{3+} \rightarrow \text{Fe}^{2+} + \text{OH}^{-} + \text{HO}•

where, OH• is hydroxyl ion. Hydroxyl radical can oxidize organic compounds due to its 2.8 eV oxidation potential.53,55,56

\text{Equation 2}

\text{HO}^{•+} + \text{RH} \rightarrow \text{R}• + \text{H}_2\text{O}

where, RH is the organic compound, R• is an organic radical, and H\text{2}O is water.

The simplified reaction during Fenton’s treatment is represented by Equation 3.34

\text{Equation 3}

\text{H}_2\text{O}_2 + 2\text{Fe}^{3+} + 2\text{H}^{+} \rightarrow 2 \text{Fe}^{2+} + 2\text{H}_2\text{O}

where, H+ indicates hydrogen ions and H\text{2}O is water.

Equation 3 demonstrates that an acidic environment is crucial during Fenton’s oxidation, to increase the HO• concentration to obtain maximum degradation of target organic species. A pH level close to 3.0 is optimum in Fenton’s oxidation.57

Fenton’s reactions using catalysts other than Fe\text{2+} are called Fenton-like reactions, and are shown in Equation 4.58

\text{Equation 4}

\text{H}_2\text{O}_2 + \text{Fe}^{2+} + \text{HO}• \rightarrow \text{Fe-OOH}^{2+} + \text{H}^{+}

where, Fe-OOH\text{2+} is ferrous hydroxide (in aqueous medium) and H+ represents hydrogen ions. As Fe\text{3+} react with H\text{2}O\text{2} in place of Fe\text{2+} (Equation 4) the Fe-OOH\text{2+} dissociates into peroxide radicals (HO•) and ferrous ions, shown in Equation 5:

\text{Equation 5}

\text{Fe-OOH}^{2+} \rightarrow \text{HO}• + \text{Fe}^{2+}

where, Fe-OOH\text{2+} is ferrous hydroxide (in aqueous medium) and HO• indicates peroxide radicals.

Fe\text{3+} produced in this way (Equation 5) reacts again with H\text{2}O\text{2}, yielding HO•, which degrades organic compounds present in the water following Equations 6 and 7.

\text{Equation 6}

\text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{HO}• + \text{Fe}^{2+} + \text{OH}^{-}

\text{Equation 7}

\text{R}• + \text{HO}• + \text{H}_2\text{O} \rightarrow \text{RH} + \text{H}_2\text{O}

where, OH• is hydroxyl ions, RH is the organic compound and R• is an organic radical.

Fenton oxidation in the presence of light, e.g., solar or UV radiation, is termed photo-Fenton oxidation.59 The illumination increases the amount of HO• generated expressed in Equations 8 and 9.60

\text{Equation 8}

\text{Photo reduction}

\text{Fe-OOH}^{2+} + \text{hv} \rightarrow \text{HO}• + \text{Fe}^{2+}

\text{Equation 9}

\text{Photolysis}

\text{H}_2\text{O}_2 + \text{hv} \rightarrow 2 \text{HO}•

where, hv is radiation and Fe-OOH\text{2+} is ferrous hydroxide (aqueous medium).

There are several key parameters which influence the effectiveness of AOPs. Wastewater pH can significantly enhance AOP effectiveness.61 Oxidation by AOPs is slower in alkaline conditions, while acidic media can be effective in making degradation faster.62-65 The concentration ratio of H\text{2}O\text{2} to Fe\text{2+} is key to pollutant removal in AOPs based on Fenton’s reagent. Increasing the Fe\text{2+} concentration results in increased HO• concentration, which improves the degradation efficiency.66 If the Fe\text{2+} concentration exceeds the optimum, pollutant and chemical oxygen demand degradation is inhibited, as the Fe\text{2+} starts to absorb the free HO•.67 The higher the initial pollutant concentration, the higher the consumption of H\text{2}O\text{2}, while the catalytic reaction between Fe\text{2+} and H\text{2}O\text{2} is also hindered, thereby reducing the reaction efficiency.68

\textbf{Discussion}

Aniline and its derivatives have been treated and eliminated by various technologies including physical, biological and AOPs. Although all of these technologies were capable of eliminating aniline and its derivatives from waste streams, they have several limitations. The physical treatment processes were found to be efficient and fast, but their disadvantages include creation of secondary pollution in case of thermal incineration and high maintenance costs due to energy. In membrane filtration processes the regular cleaning of the membrane by backwashing requires energy, thereby
increasing costs. In addition, fouling of membranes over time is a significant disadvantage of this technology. Biological processes are the most eco-friendly techniques and were found to be effective in the elimination of several organic compounds. However, the effectiveness of biological processes depends on the type of substrate available to be acted upon by microbes. Therefore, in the case of incalcitrant and toxic compounds like aniline and its derivatives, biological processes are impracticable. In addition, biological process limitations include slower elimination, and difficulties with maintenance and culture growth in pure form. Because of these and several other problems, chemical pretreatment by AOPs should be considered. This may enhance biodegradability as toxins are removed from wastewater prior to biological treatment.\(^ \text{59,76}\) The AOPs were capable of converting organic compounds, irrespective of their origin, into simpler molecules and sometimes complete elimination into carbon dioxide and water. Advanced oxidation processes range from simple processes like classic Fenton’s oxidation to complex processes like electro-Fenton and UV/titanium dioxide-based photolysis. Hydroxyl radicals are the key species applied in almost all AOPs to degrade organic contaminants in wastewater. Advanced oxidation processes are the fastest, most economical and effective treatment technologies available in the literature, but have limitations, including sludge formation, pH dependence and maintenance and complex reaction chemistry.

Conclusions

The present review demonstrated that aniline and its derivatives, including 2-methoxyaniline and 4-methoxyaniline, are commonly produced and discharged in waste streams. Due to their toxicity, carcinogenicity and adverse effects on human and aquatic species, wastewater containing these compounds must be treated prior to disposal. Several treatment technologies were identified in the literature to eliminate these compounds from wastewater. Physical and biological treatment processes were found to be effective, but have many limitations such as high energy demands, secondary pollution, slower elimination rate, cleaning and maintenance. These limitations can be easily overcome by AOPs as they have been proven to be more cost effective and efficient in removing aniline and other organic compounds from wastewater. Almost all AOPs involving HO\(^*\) as the oxidizing agent work best in a pH range of 3-4 for organic contaminant removal. Hydroxyl radicals non-selectively degrade almost all organic contaminants to carbon dioxide and water, or into biodegradable forms on occasion. In some cases, AOPs were engaged conjointly with biological processes resulting in faster and efficient degradation than standalone processes, thereby making them a successful pre-treatment option for incalcitrant and toxic organic compounds to be subsequently treated by biological processes. Advanced oxidation processes like photo-Fenton oxidation with UV degrades organic contaminants more efficiently than Fenton or solar-Fenton oxidation. In addition, the solar-Fenton process has higher oxidation ability across a wider pH range with lower Fe\(^{2+}\) usage than the classic Fenton process. Finally, the study suggested that AOPs are the most suitable remedial measure to eliminate organic compounds and can be applied to wastewater containing aniline and aniline derivatives (2-methoxyaniline and 4-methoxyaniline).

Acknowledgements

The authors would like to thank the Centre for Energy and Environmental Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India for providing valuable support to carry out this study in their Environmental Engineering laboratory. The authors are also sincerely thankful to all the editors and reviewers for their suggestions for refining the quality of this study. This study was funded as part of employment.

Copyright Policy

This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).

References

1. Anotai J, Su CC, TsaiYC, Lu MC. Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. J Hazard Mater [Internet]. 2010 Nov 15 [cited 2019 Oct 30];183(1-3):888-93. Available from: https://doi.org/10.1016/j.jhazmat.2010.07.112 Subscription required to view.
2. Brillas E, Casado J. Aniline degradation by Electro-Fenton\(^*\) and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere [Internet]. 2002 Apr [cited 2019 Oct 30];47(3):241-8. Available from: https://doi.org/10.1016/S0045-6535(01)00221-1 Subscription required to view.
3. Jagtap N, Ramaswamy V. Oxidation of aniline over titanias pillared montmorillonite clays. Appl Clay Sci [Internet]. 2006 Jul [cited 2019 Oct 30];33(2):89-98. Available from: https://doi.org/10.1016/j. clay.2006.04.001 Subscription required to view.
4. SunJH, Sun SP, Fan MH, Guo HQ, LeeYF, SunRX. Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process. J Hazard Mater [Internet]. 2008 May 1[cited 2019 Oct 30];153(1-2):187-93. Available from: https://
31. De Laat J, Gallard H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol [Internet]. 1999 [cited 2019 Oct 31];33(16):2726-32. Available from: https://doi.org/10.1021/es981171v Subscription required to view.

32. Espiglas S, Gimenez J, Contreras S, Pascual E, Rodriguez M. Comparison of different advanced oxidation processes for phenol degradation. Water Res [Internet]. 2002 Feb [cited 2019 Oct 31];36(4):1034-42. Available from: https://doi.org/10.1016/S0043-1354(01)00301-3 Subscription required to view.

33. Zhu N, Gu L, Yuan H, Lou Z, Wang L, Zhang X. Degradation pathway of the naphthalene azo dye intermediate I - diaozo-2-naphthol-4-sulfonic acid using Fenton's reagent. Water Res [Internet]. 2012 Aug [cited 2019 Oct 31];46(2):3859-67. Available from: https://doi.org/10.1016/j.watres.2012.04.038 Subscription required to view.

34. Walling C. Fenton's reagent revisited. Acc Chem Res [Internet]. 1975 [cited 2019 Oct 31];8(4):125-31. Available from: https://doi.org/10.1021/ar50088a003 Subscription required to view.

35. Safarzadeh-Amiri A, Bolton JR, Cater SR. The use of iron in advanced oxidation processes. J Adv Oxid Technol [Internet]. 1996 Jun 1 [cited 2019 Oct 31];1(1):18-26. Available from: https://doi.org/10.1515/jaoxt.1996-0105 Subscription required to view.

36. De Laat J, Le GT, Legube B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere [Internet]. 2004 May [cited 2019 Oct 31];55(5):715-23. Available from: https://doi.org/10.1016/j.chemosphere.2003.11.021 Subscription required to view.

37. Sun JH, Sun SP, Fan MH, Guo HQ, Qiao LP, Sun RX. A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J Hazard Mater [Internet]. 2007 Sep 5[cited 2019 Oct 31];148(1-2):172-7. Available from: https://doi.org/10.1016/j.jhazmat.2007.02.022 Subscription required to view.

38. Sheikh MA, Kumar A, Pailwal M, Ameta R, Khandelwal RC. Degradation of organic effluents containing wastewater by photo-Fenton oxidation process. Indian J Chem section A. 2008;47A(11):1681-4.

39. Liu QY, Liu YX, Lu XJ. Combined photo-Fenton and biological oxidation for the treatment of aniline wastewater. Procedia Environ Sci [Internet]. 2012 [cited 2019 Oct 31];12(Pt A):341-8. Available from: https://doi.org/10.1016/j.proenv.2012.01.287

40. Azizi E, Ghasemzadeh M, Behnikohammadi M, Sharafi K, Pirzadeh M. Oxidation of aniline with photo-Fenton advanced oxidation process from aqueous solutions in batch reactor. Tech J Eng Appl Sci. 2015;5(2):12-6.

41. Amritha AS, Manu B. Fenton and photo Fenton oxidation of 2-nitroaniline. Int J Res Eng Technol. 2016 Sep;5(18):102-4.

42. Andreozzi R, Caprio V, Insona A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catal Today [Internet]. 1999 Oct 15 [cited 2019 Oct 31];53(1):51-9. Available from: https://doi.org/10.1016/S0920-5861(99)00102-9 Subscription required to view.

43. Mingyu L, Kunkun W, Yilin T, Gang R, Lin S. Effect of inorganic ions on Fenton's reagent catalytic degradation of phenol in water. International Conference on Computer Distributed Control and Intelligent Environmental Monitoring; 2011 Feb 19-26; Changsha, China. New York, NY: IEEE; 2011 Apr 11. p. 1144-47.

44. Sanchez I, Peral J, Domenech X. Aniline degradation by combined photocatalysis and ozonation. Appl Catal B Environ [Internet]. 1998 Oct 26 [cited 2019 Nov 1];19(1):59-65. Available from: https://doi.org/10.1016/S0926-3373(98)00058-7 Subscription required to view.

45. Orge CA, Faria JL, Pereira MF. Photocatalytic ozonation of aniline with TiO2 carbon composite materials. J Environ Manag [Internet]. 2017 Jun 15 [cited 2019 Nov 1];195(PT 2):208-15. Available from: https://doi.org/10.1016/j.jenvman.2016.07.091 Subscription required to view.

46. Tanhaei B, Chenar MP, Saghatoleslami N, Hesampour M, Lalkuso T, Kallioinen M, Sillanpaa M, Manttari M. Simultaneous removal of aniline and nickel from water by micellar-enhanced ultrafiltration with different molecular weight cut-off membranes. Sep Purif Technol [Internet]. 2014 Mar 18; [cited 2019 Nov 1];124:26-35. Available from: https://doi.org/10.1016/j.seppur.2014.01.009 Subscription required to view.

47. Bardakci B, Kaya N, Kalayci T. Anisidine adsorption on Co-supported pumice. Environ Earth Sci [Internet]. 2013 Sep [cited 2019 Nov 1];70(2):849-56. Available from: https://doi.org/10.1007/s12651-012-1713-2 Subscription required to view.

48. Zhang J, Wu Y, Qin C, Liu L, Lan Y. Rapid degradation of aniline in aqueous solution by ozone in the presence of zero-valent zinc. Chemosphere [Internet]. 2015 Dec [cited 2019 Nov 1];141:258-64. Available from: https://doi.org/10.1016/j.chemosphere.2015.07.066 Subscription required to view.

49. Song S, He Z, Chen J. US/O3 combination degradation of aniline in aqueous solution. Ultrason Sonochem [Internet]. 2007 Jan [cited 2019 Nov 1];14(1):84-8. Available from: https://doi.org/10.1016/j.ultsonch.2005.11.010 Subscription required to view.

50. Karase RS, Manu B, Shrihari S. Fenton and photo-Fenton oxidation processes for degradation of 3-aminopyridine from water. APCBEE Procedia [Internet]. 2014 [cited 2019 Nov 1];9:25-9. Available from: https://doi.org/10.1016/j.apcbee.2014.01.005

51. Huang CP, Dong C, Tang Z. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag [Internet]. 1993 [cited 2019 Nov 1];13(5-7):361-77. Available from: https://doi.org/10.1016/0956-053X(93)90070-D Subscription required to view.

52. Matavos-Aramyan S, Moussavi M. Advances in Fenton and Fenton based oxidation processes for industrial effluent contaminants control- a review. Int J Environ Sci Nat Resour. 2017 Jun 24;Article 555594 [8 p.]

53. Venkatadri R, Peters RW. Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis. Hazard Waste Hazard Mater [Internet]. 1993 [cited 2019 Nov 1];10(2):107-49. Available from: https://doi.org/10.1089/hwm.1993.10.107 Subscription required to view.

54. Philippopoulos CJ, Nikolaki MD. Photocatalytic processes on the oxidation of organic compounds in water. In: Sraznova B, editor. New trends in technologies. London, UK: IntechOpen Limited; 2010 Jan 1. Chapter 6.

55. Walling C, Kato S. Oxidation of alcohols by Fenton's reagent. Effect of copper ion. J Am Chem Soc. 1971 Aug 25;93(17):4275-81.

56. Lin SH, Lo CC. Fenton process for treatment of desiring wastewater. Water Res [Internet]. 1997 Aug [cited 2019 Nov 1];31(8):2050-6. Available from: https://doi.org/10.1016/S0043-1354(97)00024-9 Subscription required to view.

57. Arnold SM, Hickey WJ, Harris RF. Degradation of atrazine by Fenton's reagent: condition optimization and product quantification. Environ Sci Technol [Internet]. 1995 Aug 1 [cited 2019 Nov 1];29(8):2083-9. Available from: https://doi.org/10.1021/es00008a030 Subscription required to view.
58. Fu F, Wang Q, Tang B. Fenton and Fenton-like reaction followed by hydroxide precipitation in the removal of Ni(II) from NiEDTA wastewater: a comparative study. Chem Eng J [Internet]. 2009 Dec 15 [cited 2019 Nov 1];155(3):769-74. Available from: https://doi.org/10.1016/j.cej.2009.09.021 Subscription required to view.

59. Pouran SR, Aziz AR, Daud WM. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem [Internet]. 2015 Jan 25 [cited 2019 Nov 1];21:53-69. Available from: https://doi.org/10.1016/j.jiec.2014.05.005 Subscription required to view.

60. Oancea F, Meltzer V. Photo-Fenton process for the degradation of Tartrazine (E102) in aqueous medium. J Taiwan Inst Chem Eng [Internet]. 2013 Nov [cited 2019 Nov 1];44(6):990-4. Available from: https://doi.org/10.1016/j.jtice.2013.03.014 Subscription required to view.

61. Catalayc EC, Kargi F. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: a comparative study. J Hazard Mater [Internet]. 2007 Jan 10 [cited 2019 Nov 1];139(2):244-53. Available from: https://doi.org/10.1016/j.jhazmat.2006.06.023 Subscription required to view.

62. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ [Internet]. 2004 Feb 20 [cited 2019 Nov 1];47(4):219-56. Available from: https://doi.org/10.1016/j.apcatb.2003.09.010 Subscription required to view.

63. Azbar N, Yonar T, Kestiglu K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere [Internet]. 2004 Apr [cited 2019 Nov 1];55(1):35-43. Available from: https://doi.org/10.1016/j.chemosphere.2003.10.046 Subscription required to view.

64. Burbano AA, Dionysiou DD, Suidan MT, Richardson TL. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Res [Internet]. 2005 Jan [cited 2019 Nov 1];39(1):107-18. Available from: https://doi.org/10.1016/j.watres.2004.09.008 Subscription required to view.

65. Li R, Gao Y, Jin X, Chen Z, Megharaj M, Naidu R. Fenton-like oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst. J Colloid Interface Sci [Internet]. 2015 Jan 15 [cited 2019 Nov 1];438:87-93. Available from: https://doi.org/10.1016/j.jcis.2014.09.082 Subscription required to view.

66. Yilmaz T, Aygun A, Berktay A, Nas B. Removal of COD and colour from young municipal landfill leachate by Fenton process. Environ Technol [Internet]. 2010 [cited 2019 Nov 1];31(14):1635-40. Available from: https://doi.org/10.1080/09593330.2010.494692 Subscription required to view.

67. Manu B, Mahamood S. Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation. Water Sci Technol [Internet]. 2011 Dec 1 [cited 2019 Nov 1];64(12):2433-8. Available from: https://doi.org/10.2166/wst.2011.804

68. Manu B, Mahamood S, Vittal H, Shrihari S. A novel catalytic route to degrade paracetamol by Fenton process. Int J Res Chem Environ. 2011 Jul;1(1):157-64.

69. Gotvajn AZ, Zagorc-Koncan J, Tisler T. Pretreatment of highly polluted pharmaceutical waste broth by wet air oxidation. J Environ Eng [Internet]. 2007 Jan [cited 2019 Oct 31];133(1):89-94. Available from: https://doi.org/10.1061/(ASCE)0733-9372(2007)133:6(89) Subscription required to view.

70. Padoley KV, Mudliar SN, Banerjee SK, Deshmukh SC, Pandey RA. Fenton oxidation: a pretreatment option for improved biological treatment of pyridine and 3-cyanoypyridine plant wastewater. Chem Eng J [Internet]. 2011 Jan 1 [cited 2019 Oct 31];166(1):1-9. Available from: https://doi.org/10.1016/j.cej.2010.06.041 Subscription required to view.