ON THE INTEGRAL D’ALEMBERT’S AND WILSON’S FUNCTIONAL EQUATIONS

BOUIKHALENE BELAID AND ELQORACHI ELHOUCIEN

Abstract. Let G be a locally compact group, and let K be a compact subgroup of G. Let $\mu : G \to \mathbb{C}\{0\}$ be a character of G. In this paper, we deal with the integral equations

\begin{align*}
W_\mu(K) : \int_K f(xkyk^{-1})dk + \mu(y) \int_K f(xky^{-1}k^{-1})dk &= 2f(x)g(y), \\
D_\mu(K) : \int_K f(xkyk^{-1})dk + \mu(y) \int_K f(xky^{-1}k^{-1})dk &= 2f(x)f(y)
\end{align*}

for all $x, y \in G$ where $f, g : G \to \mathbb{C}$, to be determined, are complex continuous functions on G. When $K \subset Z(G)$, the center of G, $D_\mu(K)$ reduces to the new version of d’Almbert’s functional equation $f(xy) + \mu(y)f(xy^{-1}) = 2f(x)f(y)$, recently studied by Davison [18] and Stetkær [35]. We derive the following link between the solutions of $W_\mu(K)$ and $D_\mu(K)$ in the following way: If (f, g) is a solution of equation $W_\mu(K)$ such that $C_Kf = \int_K f(xkyk^{-1})d\omega_K(k) \neq 0$ then g is a solution of $D_\mu(K)$. This result is used to establish the superstability problem of $W_\mu(K)$. In the case where (G, K) is a central pair, we show that the solutions are expressed by means of K-spherical functions and related functions. Also we give explicit formulas of solutions of $D_\mu(K)$ in terms of irreducible representations of G. These formulas generalize Euler’s formula $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$ on $G = \mathbb{R}$.

1. Introduction and Preliminaries

1.1. Throughout this paper, G will be a locally compact group, K be a compact subgroup of G and dk the normalized Haar measure of the compact group K. The unit element of G is denoted by e. The center of G is denoted by $Z(G)$. For any function f on G we define the function $f(x) = f(x^{-1})$ for any $x \in G$. The space of all complex continuous functions on G having compact support is designed by $C_c(G)$. We denote by $\mathcal{C}(G)$ the space of all complex continuous functions on G. For each fixed $x \in G$, we define the left translation operator by $(L_x f)(y) = f(x^{-1}y)$ for all $y \in G$.

For a given character $\mu : G \to \mathbb{C}\{0\}$ we consider the following integral equation

\begin{equation}
\int_K f(xkyk^{-1})dk + \mu(y) \int_K f(xky^{-1}k^{-1})dk = 2f(x)g(y), \quad x, y \in G.
\end{equation}

This equation is a generalization of the following functional equations :

\begin{equation}
\int_K f(xkyk^{-1})dk + \mu(y) \int_K f(xky^{-1}k^{-1})dk = 2f(x)f(y), \quad x, y \in G,
\end{equation}

which was studied in [7] when $\mu = 1$ and (G, K) is a central pair.

If $K \subset Z(G)$ the subgroup center of G and $f = g$, (1.1) becomes d’Alembert’s
functional equation

\[(1.3)\quad f(xy) + \mu(y)f(xy^{-1}) = 2f(x)f(y), \quad x, y \in G.\]

In the case where \(\mu = 1\), many authors studied the functional equation (1.3) (see [3], [15], [16], [17], [26], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [49]).

When \(f(kxh) = f(x)\) for any \(x \in G\) and \(k, h \in K\), we obtain the functional equation

\[(1.4)\quad \int_K f(xky)dk + \int_K f(xky^{-1})dk = 2f(x)g(y), \quad x, y \in G.\]

If \(K \subset Z(G)\), (1.1) reduces to the following version of Wilson’s functional equation

\[(1.5)\quad f(xy) + \mu(y)f(xy^{-1}) = 2f(x)g(y), \quad x, y \in G.\]

If \(K \subset Z(G)\) and \(\mu = 1\), (1.1) becomes the Wilson’s functional equation

\[(1.6)\quad f(xy) + f(xy^{-1}) = 2f(x)g(y), \quad x, y \in G.\]

If \(f(xk) = \overline{\chi(k)f(x)}\), where \(x \in G\), \(k \in K\) and \(\chi\) is a unitary character of \(K\) we obtain the functional equation

\[(1.7)\quad \int_K f(xky)\overline{\chi(k)}k + \mu(y)\int_K f(xky^{-1})\overline{\chi(k)}dk = 2f(x)g(y), \quad x, y \in G.\]

If \(G\) is compact we can take \(K = G\) and consider the functional equation

\[(1.8)\quad \int_G f(xyt^{-1})dt + \mu(y)\int_G f(xty^{-1}t^{-1})dt = 2f(x)f(y), \quad x, y \in G.\]

The equations (1.4), (1.7) and (1.8) were studied in [1], [7], [9], [10] and [21]. The functional equation (1.6) appeared in several works by H. Steketee, see for example [31], [32] and [33]. For equation (1.3), we refer to the recent studies by Davison [18] and Steketee [36].

1.2. Recall on the central pairs. For a function \(f\) on \(G\), we say that the function \(f\) is \(K\)-central if \(f(kx) = f(xk)\) for all \(k \in K\) and for all \(x \in G\). We put \(\mathcal{K}_K(G) = \{f \in \mathcal{K}(G) : f(kx) = f(xk), x \in G, k \in K\}\). Under convolution, denoted \(\ast\), \(\mathcal{K}_K(G)\) is a subalgebra of the algebra \(\mathcal{K}(G)\). We recall (see [7]) that the pair \((G, K)\) is said to be a central pair if the algebra \((\mathcal{K}_K(G), \ast)\) is commutative.

A non-zero continuous function \(\varphi\) on \(G\) is called \(K\)-spherical function, if

\[(1.9)\quad \int_K \varphi(xkyk^{-1})dk = \varphi(x)\varphi(y), \quad x, y \in G.\]

for all \(x, y \in G\). We will say that a function \(f \in \mathcal{C}(G)\) satisfying

\[(1.10)\quad \int_K f(xkyk^{-1})dk = f(x)\varphi(y) + f(y)\varphi(x), \quad x, y \in G.\]

is associated with the \(K\)-spherical function \(\varphi\). Let \(C_K : \mathcal{C}(G) \rightarrow \mathcal{C}(G)\) be the operator given by

\[(C_K f)(x) = \int_K f(kxk^{-1})dk, \quad x \in G.\]

By easy computations we show that \(f\) is \(K\)-central if and only if \(C_K f = f\). For more results on the operator \(C_K\) we refer to [7, Propositions 2.1, Proposition 2.2].

We say that \(f \in \mathcal{C}(G)\) satisfies the Kannappan type condition if

\[
\int_K \int_K f(zkxk^{-1}hyh^{-1})dkdh = \int_K \int_K f(zkyk^{-1}hxh^{-1})dkdh, \quad x, y \in G \quad (*)
\]
When $K \subset Z(G)$, ($*$) reduces to Kannappan condition $f(xyz) = f(yxz)$ for all $x, y, z \in G$ (see [27]).

The results of the present paper are organised as follows: In section 2 we establish relationship between functional equation (1.1) and (1.2). In Theorem 2.3 we show that if (f, g) is a solution of (1.1) such that $f \neq 0$ and $C_K f \neq 0$, without the assumption that f satisfies ($*$), then g is a solution of (1.2). In section 4 we show that if (G, K) is a central pair and f is a solution of (1.2), then f has the form $f = \frac{\mu + \phi}{2}$ where ϕ is a K-spherical function. Furthermore we give a complete description of the solutions of equations of (1.1) and (1.2) in the case where (G, K) is a central pair. The solutions are expressed by means of K-spherical functions and solutions of the functional equation

\begin{equation}
(1.11) \quad \int_K f(xky^{-1})dk = f(x)\varphi(y) + f(y)\varphi(x), \quad x, y \in G
\end{equation}

in which φ is a K-spherical function. In Corollaries 4.3 and 4.4 we give explicit formulas of solutions of (1.2) and (1.8) in terms of irreducible representations of G. These formulas generalize Euler’s formula $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$ on $G = \mathbb{R}$. In the last section we study stability [48] and Baker’s superstability (see [5] and [6]) of the functional equations (1.1), (1.2), (1.3), (1.4), (1.5), (1.6) and (1.7). For more information concerning the stability problem we refer to [3], [5], [6], [11], [12], [22], [40],[41], [42], [43], [44], [45], [46], [47] and [48]. The results of the last sections generalize the ones obtained in [12] and [21].

2. General properties of equations $W_\mu(K)$

In this section we deal with the integral Wilson’s functional equation (1.1) on a locally compact group G. We prove, without the assumption that f satisfies ($*$), that if (f, g) is a solution of Wilson’s functional equation (1.1) then g is a solution of d’Alembert’s functional equation (1.2).

For later use we need the following proposition

Proposition 2.1. Let G be a locally compact group. Let $\mu : G \rightarrow \mathbb{C}\setminus\{0\}$ be a continuous character of G and let $\varphi \in C(G)$ be a K-spherical function. Then

i) $\mu \varphi$ is a K-spherical function.

ii) $\frac{\mu \varphi}{\mu \varphi}$ is a solution of (1.2).

iii) Assuming (f, g) is a solution of (1.1) we have: (1) the pair $(L_x f, g)$ for all $x \in G$ is a solution of (1.1), and (2) the pair $(C_K f, g)$ is a solution of (1.1).

Proof. We get i) and ii) by easy computations

iii) Let $x \in G$. For all $y, z \in G$ we have

\begin{align*}
\int_K C_K(L_{x^{-1}} f)(ykz^{-1})dk + \mu(z) \int_K C_K(L_{x^{-1}} f)(yk^{-1}z^{-1})dk \\
= \int_K \int_K (L_{x^{-1}} f)(hykz^{-1}h^{-1})dkdh + \mu(z) \int_K \int_K (L_{x^{-1}} f)(hykz^{-1}h^{-1})dkdh \\
= \int_K \int_K f(xhykz^{-1}h^{-1})dkdh + \mu(z) \int_K \int_K f(xhykz^{-1}h^{-1})dkdh \\
= \int_K \int_K f(xhk^{-1}yhz^{-1})dkdh + \mu(z) \int_K \int_K f(xhk^{-1}yhz^{-1})dkdh
\end{align*}
\[
\begin{align*}
&= \int_K \int_K f(xhk^{-1}ykhz^{-1})dkdh + \mu(z) \int_K \int_K f(xhk^{-1}ykhz^{-1}h^{-1})dkdh \\
&= \int_K \int_K f(xk^{-1}ykhz^{-1})dkdh + \mu(z) \int_K \int_K f(xk^{-1}ykhz^{-1}h^{-1})dkdh \\
&= \int_K \int_K f(xkyk^{-1}hzh^{-1})dkdh + \mu(z) \int_K \int_K f(xkyk^{-1}hzh^{-1}h^{-1})dkdh \\
&= 2 \int_K f(xkyk^{-1})d\omega_K(k)g(z) \\
&= 2 \int_K (L_{e^{-1}}f)(kyk^{-1})dkg(z) \\
&= 2C_K(L_{e^{-1}}f)(y)g(z).
\end{align*}
\]

\textbf{Proposition 2.2.} Let \(G \) be a locally compact group. Let \(\mu : G \rightarrow \mathbb{C}\setminus\{0\} \) be a character of \(G \) and let \(f, g \in C(G) \) such that \(f \neq 0 \) be a solution of (1.1). Then

i) \(g(x) = \mu(x)g(x^{-1}) \) for all \(x \in G \).

ii) If \(f \) is \(K \)-central with \(f(e) = 0 \), then \(f(x) = -\mu(x)f(x^{-1}) \) for all \(x \in G \).

iii) \(g(e) = 1 \).

\textbf{Proof.} i) by easy computations.

ii) let \(a \in G \) such that \(f(a) \neq 0 \), then for any \(y \in G \) we have

\begin{equation}
\int_K f(aky^{-1}k^{-1})dk + \mu(y^{-1}) \int_K f(aky^{-1}k^{-1})dk = 2f(a)g(y^{-1}).
\end{equation}

Multiplying (2.1) by \(\mu(y) \) and using the fact that \(\mu(yy^{-1}) = 1 \) we get for all \(y \in G \)

\[
2f(a)\mu(y)g(y^{-1}) = \int_K f(aky^{-1}k^{-1})k + \mu(y) \int_K f(aky^{-1}k^{-1})dk = 2f(a)g(y)
\]

which implies that \(g(y) = \mu(y)g(y^{-1}) \) for any \(y \in G \).

iii) since \(f \) is a solution of (1.1) we get by setting \(x = e \) in (1.1) that

\[
\int_K f(kyk^{-1})dk + \mu(y) \int_K f(ky^{-1}k^{-1})dk = 2f(e)g(y).
\]

Since \(f \) is \(K \)-central and \(f(e) = 0 \) we get for all \(y \in G \) that \(f(y) + \mu(y)f(y^{-1}) = 0 \).

By easy computations we get the remainder.

The next theorem is the main result of this section. We establish a relation between Wilson’s functional equation (1.1) and d’Alembert’s functional equation (1.2) on a locally compact group \(G \), without the assumption that \(f \) satisfies \((*)\).

\textbf{Theorem 2.3.} Let \(G \) be a locally compact group. Let \(f, g \in C(G) \) be a solution of Wilson’s functional equation (1.1) such that \(C_K f \neq 0 \). Then \(g \) is a solution of d’Alembert’s functional equation (1.2).
Proof. By getting ideas from [13] and [36], and [19] we discuss the following possibilities:

The first possibility is \(f(x) = -\mu(x)f(x^{-1}) \) for all \(x \in G \). We let \(x \in G \) and we put

\[
\Phi_x(y) = \int_K g(xky^{-1})dk + \mu(y) \int_K g(y^{-1}kx^{-1})dk - 2g(x)g(y), \ y \in G.
\]

According to Proposition 2.1 and the fact that \((f, g)\) is a solution of (1.1) we get for any \(x, y, z \in G \) that

\[
2f(z)\Phi_x(y) + 2f(y)\Phi_x(z) = 2f(z)\left[\int_K g(xky^{-1})dk + \mu(y) \int_K g(y^{-1}kx^{-1})dk - 2g(x)g(y) \right] - \mu(y) \int_K f(zkx^{-1}y^{-1}h^{-1})dkdh
\]

\[
+ \mu(y) \int_K f(zkh^{-1}x^{-1}y^{-1}h^{-1})dkdh + \mu(x) \int_K f(zh^{-1}x^{-1}ky^{-1}h^{-1})dkdh + \mu(z) \int_K f(yhxz^{-1}k^{-1}h^{-1})dkdh = 0.
\]
Then for any \(C \subset C \) that

\[\text{This completes the proof in the first possibility.} \]

If \(f \neq 0 \), then there exists \(a \in G \) such that \(f(a) = 0 \). According to (2.2) we get that

\[f(a) \Phi_x(y) + f(y) \Phi_x(a) = 0 \]

and then \(\Phi_x(y) = 0 \) for any \(y \in G \). By setting \(y = a \) in (2.2) we get that \(c_x f(a)^2 = 0 \). This implies that \(c_x = 0 \) and then \(\Phi_x = 0 \) for any \(x \in G \). According to Proposition 2.2 we get we get by using the fact that \(\Phi_x(y) = 0 \) for any \(x, y \in G \) that

\[2g(x)g(y) = \int_K g(xky^{-1}k^{-1})dk + \mu(y) \int_K g(y^{-1}kxk^{-1})dk \]

\[= \mu(x)\mu(y) \int_K g(y^{-1}kx^{-1}k^{-1})dk + \mu(y) \int_K g(y^{-1}kxk^{-1})dk \]

\[= \mu(y) \int_K g(y^{-1}kxk^{-1})dk + \mu(x) \int_K g(y^{-1}kx^{-1}k^{-1})dk. \]

This implies that

\[\int_K g(y^{-1}kxk^{-1})dk + \mu(x) \int_K g(y^{-1}kx^{-1}k^{-1})dk = 2g(x)\mu(y^{-1})g(y) = 2g(y^{-1})g(x). \]

This completes the proof in the first possibility.

Now we fix \(g \) and we consider

\[W_g = \{ f \in C(G) : f \text{ is } K \text{- central, satisfies (1.1) and } f(e) = 0 \}. \]

If \(W_g \neq \{0\} \), then by using the above computations we get the desired result, so we may assume \(W_g = \{0\} \). Let \(f \in C(G) \setminus \{0\} \) be a solution of (1.1) such that \(C_K f \neq 0 \). According to Proposition 2.1 it follows that \(C_K f \) is a solution of (1.1). Since \(W_g = \{0\} \) and \(C_K(C_K f) = C_K f \) then \(C_K f(e) = f(e) \neq 0 \). Replacing \(C_K f \) by \(\frac{C_K f}{C_K f(e)} \), we may assume that \(C_K f(e) = 1 \). Let \(h \) be a solution of (1.1), then \(C_K h - (C_K h)(e)C_K f \in W_g = \{0\} \). So \(C_K h = (C_K h)(e)C_K f \).

According to Proposition 2.1 we have for any \(x \in G \) that \(C_K(L_{x^{-1}}C_K f)(y) = \int_K f(xkyk^{-1})dk \) for any \(y \in G \) is a solution of (1.1) and that \(C_K(C_K(L_{x^{-1}}C_K f)) = C_K(L_{x^{-1}}C_K f) \). So that \(C_K(L_{x^{-1}}C_K f) = C_K(L_{x^{-1}}C_K f)(e)C_K f = C_K f(x)C_K f \).

Then \(\int_K C_K f(xkyk^{-1})dk = C_K(L_{x^{-1}}C_K f)(y) = C_K f(x)C_K f(y) \), which show that
$C_K f$ is a K-spherical function i.e. $\int_K C_K f(xkyk^{-1}) dk = C_K f(x)C_K f(y)$ for all $x, y \in G$. Substituting this result into

$$\int_K C_K f(xkyk^{-1}) dk + \mu(y) \int_K C_K f(xky^{-1}k^{-1}) dk = 2C_K f(x)g(y), \ x, y \in G$$

we get $g(y) = \frac{C_K f(y) + \mu(y)C_K f(y^{-1})}{2}$. According to Proposition 2.1 ii) we get that g satisfies equation (2.1). This finishes the proof of theorem. □

3. STUDY OF INTEGRAL WILSON’S FUNCTIONAL EQUATION $W_{\mu}(K)$ ON A CENTRAL PAIR

Let $f : G \rightarrow \mathbb{C}$. For $x \in G$ we define

$$(3.1) \quad f_x(y) = \int_K f(xkyk^{-1}) dk - f(x)f(y), \ y \in G.$$

When f is K-spherical, then $f_x \equiv 0$. A generalized symmetrized sine addition law is given by

$$(3.2) \quad \int_K \omega(xkyk^{-1}) dk + \int_K \omega(ykxk^{-1}) dk = 2\omega(x)f(y) + 2\omega(y)f(x), \ x, y \in G$$

For later use we need the following results:

Proposition 3.1. ([7]) Let (G, K) be a central pair and let $f \in C(G)$. Then we have

i) f satisfies the Kannappan type condition (\ast).

ii) If f is K-central, then

$$\int_K f(xkyk^{-1}) dk = \int_K f(ykxk^{-1}) dk, \ x, y \in G.$$

As an immediate consequence we get the following corollary

Corollary 3.2. Let (G, K) be a central pair and let $\omega \in C(G)$. If ω is K-central then (3.2) reduces to the generalized sine addition formula

$$(3.3) \quad \int_K \omega(xkyk^{-1}) dk = \omega(x)f(y) + \omega(y)f(x), \ x, y \in G.$$

Proposition 3.3. Let $f \in C \setminus \{0\}$ be a solution of the functional equation (1.2). Then

i) $f(e) = 1$,

ii) f is K-central,

iii) $f(x) = \mu(x)f(x^{-1})$ for all $x \in G$,

iv) $\int_K f(xkyk^{-1}) dk = \int_K f(ykxk^{-1}) dk, \ x, y \in G$.

v) For any $x \in G$, (f_x, f) is a solution of (3.2).

Proof. i) By setting $y = e$ in (1.2) and by using the fact that $f \neq 0$ we get that $f(e) = 1$.
ii) For any $x, y \in G$ we have
\[
2f(x) \int_K f(kyk^{-1})dk = 2 \int_K f(x) f(kyk^{-1})dk = \int_K (\int_K f(xkkyk^{-1}h^{-1})dh) dk + \mu(y) \int_K f(xkkyk^{-1}h^{-1})dh = \int_K f(xhyk^{-1})dh + \mu(y) \int_K f(xhyk^{-1}h^{-1})dh
\]
So that $f(y) = \int_K f(kyk^{-1})dk$ for all $y \in G$, from which we get that f is K-central.

iii) Since f is K-central we get by putting $x = e$ in (1.2) that $f(y) + \mu(y)f(y^{-1}) = 2f(y)$ for all $y \in G$. Hence $f(y) = \mu(y)f(y^{-1})$ for all $y \in G$.

iv) In view of iii) we have for all $x, y \in G$ that
\[
\int_K f(xkyk^{-1})dk + \mu(y) \int_K f(xky^{-1}k^{-1}k)dk = 2f(x)f(y) = 2f(y)f(x) = \int_K f(ykzk^{-1})dk + \mu(x) \int_K f(ykzk^{-1}k^{-1})dk
\]
So that we get $\int_K f(ykzk^{-1})dk = \int_K f(xkyk^{-1})dk$ for all $x, y \in G$.

v) In the next we adapt the method used in [35]. According to (1.2) we get for any $x, y, z \in G$ that
\[
(3.4) \quad \mu(z) \int_K \int_K f(xkyk^{-1}hzh^{-1})dkdh +
\]
\[
= \mu(z) \int_K \int_K f(xkyk^{-1}hzh^{-1}1)dkdh = 2 \int_K f(xkyk^{-1})dkf(z),
\]

\[
(3.5) \quad \int_K \int_K f(xhykz^{-1}k^{-1}h^{-1})dkdh +
\]
\[
= \mu(yz^{-1}) \int_K \int_K f(xhykz^{-1}k^{-1}1h^{-1})dkdh = 2f(x) \int_K f(ykzk^{-1}1)dk,
\]

\[
(3.6) \quad \int_K \int_K f(xkzk^{-1}hy^{-1}h^{-1})dkdh +
\]
\[
= \mu(y^{-1}) \int_K \int_K f(xkzk^{-1}hgy^{-1}h^{-1})dkdh = 2f(x) \int_K f(kzk^{-1}1y)dkf(y^{-1})
\]
from which we get by multiplying (3.5) by $\mu(z)$ and (3.6) by $\mu(y)$
\[
\int_K \int_K f(xkyk^{-1}hzh^{-1})dkdh + \mu(z) \int_K \int_K f(xkyk^{-1}hzh^{-1}1)dkdh
\]
\[
= 2 \int_K f(xkyk^{-1})dkf(z),
\]
\[
\mu(z) \int_K \int_K f(xhkyz^{-1}h^{-1})dhd + \mu(y) \int_K \int_K f(xhkyz^{-1}y^{-1}h^{-1})dhd
\]
\[
= 2\mu(z)f(x) \int_K f(ykz^{-1}k^{-1})dk,
\]
\[
\mu(y) \int_K \int_K f(xkz^{-1}hy^{-1}h^{-1})dhd + \int_K \int_K f(xkz^{-1}hyh^{-1})dhd
\]
\[
= 2\mu(y) \int_K f(xkz^{-1})dkf(y^{-1}).
\]
By subtracting the middle one from the sum of the two others we get
\[
\int_K \int_K f(xkyk^{-1}hzh^{-1})dhd + \int_K \int_K f(xkz^{-1}hyh^{-1})dhd
\]
\[
= 2 \int_K f(xkyk^{-1})dkf(z) + 2\mu(y) \int_K f(xkz^{-1})dkf(y^{-1})
\]
\[
- 2\mu(z)f(x) \int_K f(ykz^{-1}k^{-1})dk.
\]
Using the fact that \(f(y) = \mu(y)f(y^{-1}) \) for any \(y \in G \) we get
\[
\int_K \int_K f(xkyk^{-1}hzh^{-1})dhd - f(x) \int_K f(ykz^{-1}k^{-1})dk
\]
\[
+ \int_K \int_K f(xkz^{-1}hyh^{-1})dhd - f(x) \int_K f(zkyk^{-1})dk
\]
\[
= 2 \int_K f(xkyk^{-1})dkf(z) - 2f(x) \int_K f(yhzk^{-1})dh
\]
\[
+ 2 \int_K f(xkz^{-1})dkf(y) - 2f(x)[f(y)f(z) - \int_K f(yhzk^{-1})dh]
\]
\[
= 2 \int_K f(xkyk^{-1})dkf(z) - 2f(x)f(y)f(z)
\]
\[
+ 2 \int_K f(xkz^{-1})dkf(y) - 2f(x)f(y)f(z).
\]
So we have for any \(x, y, z \in G \) that
\[
\int_K f_x(ykz^{-1})dk + \int_K f_x(zkyk^{-1})dk = 2f_x(y)f(z) + 2f_x(z)f(y).
\]
Hence for all \(x \in G \), the pair \((f_x, f)\) is a solution of (3.2). \(\square \)

Theorem 3.4. Let \(f, g \in C(G) \) be a solution of the functional equation

\[
\int_K f(xkyk^{-1})dk = f(x)g(y) + g(x)f(y), \quad x, y \in G.
\]

Then one of the following statements hold

i) \(f = 0 \) and \(g \) arbitrary in \(C(G) \).

ii) There exists a \(K \)-spherical function \(\varphi \) and a non-zero constant \(c \in C^* \) such that

\[
g = \frac{\varphi}{2}, \quad f = c\varphi.
\]

iii) There exist two \(K \)-spherical functions \(\varphi, \psi \) for which \(\varphi \neq \psi \) and a non-zero constant \(c \in C^* \) such that

\[
g = \frac{\varphi + \psi}{2}, \quad f = c(\varphi - \psi).
\]
iv) \(g \) is a \(K \)-spherical function and \(f \) is associated to \(g \).

Proof. The proof is similar to one used in [20]. \(\square \)

4. Solution of equation \(W_\mu(K) \) on a central pair

In this section we obtain solution of equation (1.1) in the case where \((G, K)\) is a central pair.

In the next theorem we solve the functional equation (1.2). We will adapt the method used in [35].

Theorem 4.1. Let \((G, K)\) be a central pair. Let \(\mu : G \rightarrow \mathbb{C}^* \) be a character on \(G \) and let \(f : G \rightarrow \mathbb{C} \) be a non-zero solution of the functional equation (2.1). Then there exists a \(K \)-spherical function \(\varphi : G \rightarrow \mathbb{C} \) such that \(f = \frac{\varphi + \mu \varphi}{2} \).

Proof. By using 5i) in Proposition 3.3 we get for all \(x \in G \) that the pair \((x f, f)\) is a solution of (3.2).

First case : There exists \(x \in G \) such that \(f_x \neq 0 \). According to iii) in Theorem 3.4, there exist two \(K \)-spherical functions \(\varphi \) and \(\psi \) such that \(\varphi \neq \psi \) and that \(f = \frac{\varphi + \psi}{2} \).

By substituting this in (1.2) we get for all \(x, y \in G \) that

\[
\varphi(x)[\mu(y)\varphi(y^{-1}) - \psi(y)] + \psi(x)[\mu(y)\psi(y^{-1}) - \varphi(y)] = 0.
\]

Since \(\varphi \neq \psi \), according to [19] we get that \(\varphi \) and \(\psi \) are linearly independent. Hence \(\psi(y) = \mu(y)\varphi(y^{-1}) \) for any \(y \in G \).

By iv) of Theorem 3.4 we get by a small computation the desired result.

Second case : if \(f_x = 0 \), for all \(x \in G \) then \(\int_K f(xkyk^{-1})d\omega_K(k) = f(x)f(y) \) for all \(x, y \in G \). Then by subsisting \(f \) in (1.2) we get that \(f(x) = \mu(x)f(x^{-1}) \) for all \(x \in G \). Hence \(f = \varphi = \frac{\varphi + \mu \varphi}{2} \) where \(\varphi \) is \(K \)-spherical function. \(\square \)

In the next theorem we solve the functional equation (1.1).

Theorem 4.2. Let \((G, K)\) be a central pair. If \((f, g)\) is a solution of (1.1) such that \(C_K f \neq 0 \), then there exists a \(K \)-spherical function \(\varphi \) such that

1) \[
g = \frac{\varphi + \mu \varphi}{2}.
\]

2) i) When \(\varphi \neq \mu \varphi \), then there exist \(\alpha, \beta \in \mathbb{C} \) such that

\[
f = \alpha \frac{\varphi + \mu \varphi}{2} + \beta \frac{\varphi - \mu \varphi}{2}.
\]

ii) When \(\varphi = \mu \varphi \), then \(f = \alpha \varphi + l \) where \(\alpha \in \mathbb{C} \) and \(l \) is a solution of the functional equation

\[
(4.1) \int_K l(xkyk^{-1})dk = l(x)\varphi(y) + \varphi(x)l(y), \ x, y \in G.
\]

Proof. Let \(f, g \in C(G) \setminus \{0\} \) be a solution of (1.2), then by Theorem 2.3 we get that \(g \) is a solution of (1.2). According to Theorem 4.1 there exists a \(K \)-spherical
function such that \(g(x) = \frac{\varphi(x) + \mu(x)x^{-1}}{2} \) for any \(x \in G \). By decomposing \(f \) in the following way we get for any \(x \in G \) that
\[
 f(x) = \frac{f(x) + \mu(x)f(x^{-1})}{2} + \frac{f(x) - \mu(x)f(x^{-1})}{2} = f_1(x) + f_2(x)
\]
where \(f_1(x) = \frac{f(x) + \mu(x)f(x^{-1})}{2} \) and \(f_2(x) = \frac{f(x) - \mu(x)f(x^{-1})}{2} \) for all \(x \in G \). By easy computations we get that \(f_1(x) = \mu(x)f_1(x^{-1}) \) and \(f_2(x) = -\mu(x)f_2(x^{-1}) \) for all \(x \in G \). By using the fact that \(\int_K f(xkyk^{-1})dk = \int_K f(ykxk^{-1})dk \) for all \(x,y \in G \) we get that
\[
(4.2) \quad \int_K f_1(xkyk^{-1})dk + \mu(y)\int_K f_2(xkyk^{-1})dk = 2f_1(x)g(y), \quad x,y \in G.
\]
By setting \(x = e \) in (4.3) we get that \(f_1(y) = f_1(e)g(y) = \alpha g(y) \) for any \(y \in G \). On the other hand by small computations we show that \(f_2 \) is a solution of the functional equation
\[
(4.3) \quad \int_K f_2(xkyk^{-1})dk = f_2(x)g(y) + f_2(y)g(x), \quad x,y \in G.
\]
According to iii) and iv) in Theorem 3.4 we get the remainder. \(\square \)

In the next corollary we use R. Godement’s spherical functions theory [27] to give explicit formulas in terms of irreducible representations of \(G \): Let \((\pi, \mathcal{H})\) be a completely irreducible representation of \(G \), \(\delta \) be an irreducible representation of \(K \) and \(\chi_\delta \) the normalized character of \(\delta \). The set of vectors in \(\mathcal{H} \) which under \(k \rightarrow \pi(k) \) transform according to \(\delta \) is denoted by \(\mathcal{H}_\delta \). The operator \(E(\delta) = \int_K \pi(k)\overline{\chi_\delta(k)}dk \) is a continuous projection of \(\mathcal{H} \) onto \(\mathcal{H}_\delta \).

We will say that a function \(f \) is quasi-bounded if there exists a semi-norm \(\rho(x) \) such that \(\sup_{x \in G} \frac{|f(x)|}{\rho(x)} < +\infty \) (see [27]). According to [7, Theorem 4.1, Theorem 6.2] we have the following corollary

Corollary 4.3. Let \((G,K)\) be a central pair. Let \(f \) be a non-zero quasi-bounded continuous function on \(G \) satisfying \(\chi_\delta \ast f = f \). Then \(f \) is a solution of (1.2) if and only if there exists a completely irreducible representation \((\pi, \mathcal{H})\) of \(G \) such that
\[
f(x) = \frac{1}{2\dim(\delta)}(\text{tr}(E(\delta)\pi(x)) + \mu(x)\text{tr}(E(\delta)\pi(x^{-1}))), \quad x \in G
\]
where \(\text{tr} \) is the trace on \(\mathcal{H} \) and \(\dim(\delta) \) is the dimension of \(\delta \).

In the next corollary we assume that \(G \) is a compact. Then \((G,G)\) is a central pair (see [7] and [9]).

Corollary 4.4. Let \(G \) be a compact group and let \(f \) be a continuous function on \(G \). Then \(f \) is a solution of (1.8) if and only if there exists a continuous irreducible representation \((\pi, \mathcal{H})\) such that
\[
f(x) = \frac{\chi_\pi(x) + \mu(x)\chi_\pi(x^{-1})}{2d(\pi)}, \quad x \in G
\]
where \(\chi_\pi \) and \(d(\pi) \) are respectively the character and the dimension of \(\pi \).
5. Superstability of $W_\mu(K)$ on a Locally Compact Group

In this section, by using Theorem 2.4, we study the superstability problem of equations $W_\mu(K)$ and $D_\mu(K)$ on non abelian case.

Lemma 5.1. Let $\delta > 0$. Let $\mu : G \to \mathbb{C}$ be a unitary character of G. Let $f, g \in C(G)$ such that f is unbounded and (f, g) is a solution of the inequality

$$|\int_K f(xky^{-1}k^{-1})dk + \mu(y)\int_K f(xky^{-1}k^{-1})dk - 2f(x)g(y)| \leq \delta, \ x, y \in G. \quad (5.1)$$

Then

i) For all $x \in G$, $(C_K(L_x^{-1}f), g)$ is a solution of the inequality (5.1).

ii) $g(y) = \mu(y)g(y^{-1})$ for all $y \in G$.

iii) g is K central.

Proof. i) and iii) by easy computation.

ii) Since (f, g) is a solution of (5.1), then we get for any $x, y \in G$

$$|\int_K f(xky^{-1}k^{-1})dk + \mu(y)\int_K f(xky^{-1}k^{-1})dk - 2f(x)g(y)| \leq \delta$$

and

$$|\int_K f(xky^{-1}k^{-1})dk + \mu(y^{-1})\int_K f(xky^{-1}k^{-1})dk - 2f(x)g(y^{-1})| \leq \delta.$$

By multiplying the last inequality by $\mu(y)$ we get that

$$|\mu(y)\int_K f(xky^{-1}k^{-1})dk + \int_K f(xky^{-1}k^{-1})dk - 2f(x)\mu(y)g(y^{-1})| \leq \delta.$$

By triangle inequality we get

$$|2f(x)||g(y) - \mu(y)g(y^{-1})| \leq 2\delta$$

for all $y \in G$. Since f is unbounded we get that $g(y) = \mu(y)g(y^{-1})$ for all $y \in G$. □

Lemma 5.2. Let $\delta > 0$. Let $\mu : G \to \mathbb{C}^*$ be a unitary character of G. Let $f, g \in C(G)$ such that g is unbounded solution of inequality (5.1). Then g is a solution of d’Alembert’s functional equation (1.2).

Proof. By using the same method as in [14, Corollary 2.7 iii] we get that g is a solution of (1.2). □

Lemma 5.3. Let $\delta > 0$. Let $\mu : G \to \mathbb{C}^*$ be a unitary character of G. Let $f, g \in C(G)$ such that f is unbounded solution of inequality (5.1) and that the function $x \to f(x) + \mu(x)f(x^{-1})$ is bounded and $C_K f \neq 0$. Then g is a solution of d’Alembert’s functional equation (1.2).

Proof. First case: g is bounded. Let

$$\psi(x, y) = \int_K g(xky^{-1}k^{-1})dk + \mu(y)\int_K g(y^{-1}k^{-1}z^{-1}k)dk - 2g(x)g(y), \ x, y \in G.$$

Then according to the proof of Theorem 2.4 we get for all $x, y, z \in G$ that

$$2f(z)\psi(x, y) + 2f(y)\psi(x, z) = 2g(x)[\int_K f(zky^{-1}k^{-1})dk + \int_K f(ykz^{-1}k^{-1})dk]$$

$$-\mu(z)\int_K \int_K f(yhxz^{-1}k^{-1}h^{-1}k^{-1}h)dkdh - \mu(x)\mu(y)\int_K \int_K f(zhx^{-1}ky^{-1}k^{-1}h^{-1}k^{-1}h)dkdh$$

$$- \mu(z)\int_K \int_K f(yhxz^{-1}k^{-1}h^{-1}k^{-1}h)dkdh - \mu(x)\mu(y)\int_K \int_K f(zhx^{-1}ky^{-1}k^{-1}h^{-1}k^{-1}h)dkdh.$$
As in the proof of Theorem 2.4, we get that $g + \psi f$.

Lemma 5.4. Let $\psi(x, y) = 2f(z)\psi(x, y) + 2f(y)\psi(x, z)$, $-\infty < \beta < +\infty$. By using the inequality (5.2), it follows that there exists $c_\beta \in \mathbb{C}$ such that $\psi(x, y) = c_\beta f(y)$ for all $x, y \in G$. So that the function $(x, y, z) \rightarrow 2f(z)c_\beta f(y) + 2f(y)c_\beta f(z)$ is bounded. Since f is unbounded it follows that $c_\beta = 0$ for all $x \in G$.

As in the proof of Theorem 2.4, we get that g is a solution of functional equation (1.2).

Second case: g is unbounded. According to lemma 5.2 we get that g is a solution of (1.2).

Lemma 5.4. Let $\delta > 0$. Let $\mu : G \rightarrow \mathbb{C}^*$ be a unitary character of G. Let $f, g \in C(G)$ such that f is an unbounded solution of inequality (5.1). Then g is a solution of d’Alembert’s long functional equation

$$\int_K g(xky^{-1}k^{-1}h^{-1})dk + \mu(y)\int_K g(xky^{-1}k^{-1}h^{-1})dk + \int_K g(ykx^{-1}k^{-1}h^{-1})dk + \mu(y)\int_K g(ykx^{-1}k^{-1}h^{-1})dk = 4g(x)g(y)$$

for all $x, y \in G$.

Proof. For all $x, y, z \in G$ we have

$$2|f(z)|\int_K g(xky^{-1}k^{-1}h^{-1})dk + \mu(y)\int_K g(xky^{-1}k^{-1}h^{-1})dk + \int_K g(ykx^{-1}k^{-1}h^{-1})dk + \mu(y)\int_K g(ykx^{-1}k^{-1}h^{-1})dk = 4g(x)g(y)$$

$$+ \mu(y)\int_K g(ykx^{-1}k^{-1}h^{-1})dk - 4g(x)g(y)$$

$$\leq |\int_K f(zhxky^{-1}k^{-1}h^{-1})dkdh + \mu(xy)\int_K f(zy^{-1}kx^{-1}k^{-1}h^{-1})dkdh$$

$$- 2f(z)\int_K g(xky^{-1}k^{-1}h^{-1})dk|$$

$$+ |\mu(y)\int_K f(zhx^{-1}kky^{-1}k^{-1}h^{-1})dkdh + \mu(x)\int_K f(zyx^{-1}k^{-1}k^{-1}h^{-1})dkdh$$

$$- 2\mu(y)f(z)\int_K g(xky^{-1}k^{-1}h^{-1})dk|$$

$$+ |\int_K f(zyx^{-1}k^{-1}k^{-1}k^{-1}h^{-1})dkdh + \mu(yx)\int_K f(zhx^{-1}k^{-1}k^{-1}h^{-1})dkdh$$

$$- 2f(z)\int_K g(ykx^{-1}k^{-1}h^{-1})dk|$$

$$+ |\mu(y)\int_K f(zhyx^{-1}kxx^{-1}k^{-1}h^{-1})dkdh + \mu(x)\int_K f(zhx^{-1}kkyx^{-1}h^{-1})dkdh$$

$$- 2\mu(y)f(z)\int_K g(y^{-1}kx^{-1}k^{-1}h^{-1})dk|$$
If \(f \) is a solution of d'Alembert's functional equation (1.2). According to Lemma 5.3 we have that \(g \) is a solution of d'Alembert's functional equation (5.3).

Proof. Since \((f, g)\) is a solution of the inequality (5.1) we get according to lemma 5.1 that \((C_K f, g)\) is also a solution of (5.1). By setting \(x = e \) in (5.1) and by the fact that \(C_K f \) is \(K \)-central it follows that

\[
|C_K f(y) + \mu(y)C_K f(y^{-1}) - 2f(e)g(y)| \leq \delta, \quad y \in G.
\]

If \(f(e) = 0 \) we get that the function \(y \mapsto C_K f(y) + \mu(y)C_K f(y^{-1}) \) is bounded. According to Lemma 5.3 we have that \(g \) is a solution of d'Alembert's functional equation (1.2).

If \(f(e) \neq 0 \). Replacing \(C_K f \) by \(\frac{C_K f}{f(e)} \) we may assume that \(f(e) = 1 \). Consider the function \(C_K(L_n f)(x) = \int_K f(ax_kk^{-1})d\omega_K(k) \) for all \(x \in G \). According to lemma 5.1 we get that \((C_K(L_n f), g)\) is a solution of (5.1). Let \(a \in G \) such that

\[
h = C_K(L_n f) - C_K(L_n f)(e)C_K f.
\]

If there exists \(a \in G \) such that \(h \) is unbounded on \(G \). Since \(h(e) = 0 \) and \(C_K h = h \) and that the function \(h \) is a solution of the inequality (5.1) it follows that \(x \mapsto h(x) + \mu(x)h(x^{-1}) \) is bounded. According to lemma 5.3 we get that \(g \) is a solution of d'Alembert's functional equation (1.2).

Now assume that \(h \) is bounded, that is there exists \(M(x) > 0 \) such that

\[
|\int_K f(xk_xk^{-1})dk - f(x)C_K f(y)| \leq M(x)
\]
ON THE INTEGRAL FUNCTIONAL EQUATIONS

for all \(x, y \in G \). Since \(f \) is \(K \)-central we get for all \(x, y \in G \) that

\[
| \int_K f(xkyk^{-1})dk - f(x)f(y) | \leq M(x).
\]

By using triangle inequality we get for all \(x, y, z \in G \) that

\[
| f(z)|| \int_K f(xkyk^{-1})dk - f(x)f(y) |
\]

\[
\leq | - \int_K \int_K f(xkyk^{-1}hz^{-1})kdh + \int_K f(xkyk^{-1})dkf(z) | \\
+ | \int_K \int_K f(xkyk^{-1}hz^{-1})dkdh - f(x) \int_K f(ykzk^{-1})dk | \\
+ | f(x)|| \int_K f(ykzk^{-1})dk - f(y)f(z) |
\]

\[
\leq \int_K M(xkyk^{-1})dk + M(x) + |f(x)|M(y).
\]

Since \(f \) is unbounded it follows that \(\int_K f(xkyk^{-1})dk - f(x)f(y) \) for all \(x, y \in G \). Substituting this result into inequality (5.1) it follows that

\[
|f(x)||f(y) + \mu(y)f(y^{-1}) - 2g(y)| \leq \delta
\]

for all \(x, y \in G \). Since \(f \) is unbounded we get that \(g(y) = \frac{f(y) + \mu(y)f(y^{-1})}{2} \) for all \(y \in G \). According to Proposition 2.1 we get that \(g \) is a solution of d’Alembert’s functional equation (1.2). \(\square \)

The next theorem is the main result of this section

Theorem 5.6. Let \(\delta > 0 \) be fixed, \(\mu \) be a unitary character of \(G \) and let \(f, g : G \to \mathbb{C} \) such that \((f, g)\) satisfies (5.1) and \(f \) is \(K \)-central. Then

1) \(f, g \) are bounded or
2) \(f \) is unbounded and \(g \) satisfies d’Alembert’s functional equation (1.2) or
3) \(g \) is unbounded and \(f \) satisfies the functional equation (1.1) (if \(f \neq 0 \) such that \(C_Kf \neq 0 \), then \(g \) satisfies the d’Alembert’s functional equation (1.2)).

Proof. We get 1) by easy computations.
2) Assume that \(f \) is unbounded. According to Lemmas 5.1, 5.3 and 5.5 we get the proof.
3) Assume that \(g \) is unbounded, then for \(f = 0 \) the pair \((f, g)\) is a solution of equation (5.1). Afterward we suppose that \(f \neq 0 \). By using (5.1) and the following
decomposition

\[
2|g(z)||f(xkyk^{-1})dk + \mu(y)f(xky^{-1}k^{-1})dk - 2f(x)g(y)k| \\
= | - 2g(z)f(xkyk^{-1})dk - 2g(z)\mu(y)f(xky^{-1}k^{-1})dk - 4g(z)f(x)g(y)k| \\
\leq | \int_{\mathbb{K}} f(xkyk^{-1}hz^{-1})dkdh + \mu(z)\int_{\mathbb{K}} f(xkyk^{-1}hz^{-1})dkdh | \\
- 2f(x) \int_{\mathbb{K}} g(yzk^{-1}k^{-1})dk \\
+ | \mu(z)\int_{\mathbb{K}} f(xkyk^{-1}z^{-1}h^{-1})dkdh + \mu(z)\mu(yz^{-1})\int_{\mathbb{K}} f(xzk^{-1}hy^{-1}h^{-1})dkdh | \\
- 2\mu(z) \int_{\mathbb{K}} f(x)g(yzk^{-1}k^{-1})dk \\
+ | \mu(z)\int_{\mathbb{K}} f(xhz^{-1}kyk^{-1}z^{-1}h^{-1})dkdh + \mu(z)\mu(z^{-1})\int_{\mathbb{K}} f(xkyk^{-1}z^{-1}hy^{-1}h^{-1})dkdh | \\
- 2\mu(z) \int_{\mathbb{K}} f(x)g(z^{-1}kyk^{-1})dk \\
+ | \int_{\mathbb{K}} f(xh^zg^{-1}h^{-1}z^{-1}h^{-1})dkdh + \mu(z)\int_{\mathbb{K}} f(xkyk^{-1}z^{-1}h^{-1})dkdh | \\
- 2f(x) \int_{\mathbb{K}} g(zkyk^{-1})dk \\
+ | \mu(z)\int_{\mathbb{K}} f(xh^{-1}kyk^{-1}z^{-1}h^{-1})dkdh + \mu(z)\mu(y)\int_{\mathbb{K}} f(xzk^{-1}hy^{-1}h^{-1})dkdh | \\
- 2\mu(z) \int_{\mathbb{K}} f(xzk^{-1}g(y)dk \\
+ | \int_{\mathbb{K}} f(xzk^{-1}hyk^{-1}z^{-1}h^{-1}h^{-1})dkdh + \mu(y)\int_{\mathbb{K}} f(xzk^{-1}hy^{-1}h^{-1})dkdh | \\
- 2f(x) \int_{\mathbb{K}} g(xzk^{-1})g(y)dk \\
+ 2|f(x)|| \int_{\mathbb{K}} f(yzk^{-1}k^{-1})dk + \mu(z)\int_{\mathbb{K}} g(yzk^{-1}k^{-1})dk + \int_{\mathbb{K}} g(yzk^{-1})dk \\
+ \mu(z) \int_{\mathbb{K}} g(yzk^{-1}k^{-1})dk - 4g(yg(z)) | \\
+ 2|g(y)|| \int_{\mathbb{K}} f(xzk^{-1}k^{-1})dk + \mu(z)\int_{\mathbb{K}} f(xzk^{-1}k^{-1})dk - 2f(x)g(z) | \\
\leq \delta + |\mu(y)\delta + \delta + 2|\mu(z)|\delta + \delta + |\mu(z)|\delta + \delta + 2|f(x)| \times 0 + 2|g(y)|\delta \\
= \delta(8 + 2|g(y)|).
\]

Since \(g \) is unbounded it follows that \(f, g \) satisfy the functional equation (1.1). According to Theorem 2.4 we get the remainder \(\square \).
As a consequence we get the superstability of the functional equations (1.2), (1.3), (1.4) and (1.7)

Corollary 5.7. Let $\delta > 0$ be fixed, μ be a unitary character of G. Let $f : G \rightarrow \mathbb{C}$ such that

\[(5.4) \quad \left| \int_K f(xkyk^{-1})dk + \mu(y) \int_K f(xky^{-1}k^{-1})dk - 2f(x)f(y) \right| \leq \delta, \quad x, y \in G. \]

Then either f is bounded or f is a solution of the functional equation (1.2).

Let $f(kzh) = \chi(k)f(x)\chi(h), \quad k, h \in K \text{ and } x \in G$. Then we have the following corollary

Corollary 5.8. Let $\delta > 0$ be fixed, μ be a bounded character of G. Let $f : G \rightarrow \mathbb{C}$ such that

\[(5.5) \quad \left| \int_K f(xky)\overline{\chi(k)}dk + \mu(y) \int_K f(xky^{-1})\overline{\chi(k)}dk - 2f(x)f(y) \right| \leq \delta, \quad x, y \in G. \]

Then either f is bounded or f is a solution of the functional equation (1.7).

In the next corollary we assume that $K \subset Z(G)$. Then we get

Corollary 5.9. Let $\delta > 0$ be fixed, μ be a unitary character of G. Let $f : G \rightarrow \mathbb{C}$ such that

\[(5.6) \quad \left| f(xy) + \mu(y)f(xy^{-1}) - 2f(x)f(y) \right| \leq \delta, \quad x, y \in G. \]

Then either f is bounded or f is a solution of the functional equation (1.3).

References

[1] Akkouchi, M., Bakali, A., El Qorachi, E.: D’Alembert’s functional equation on compact Gel’fand pairs. Maghreb Math. Rev. 8 (1999), no. 1-2.

[2] Aczél, J., Chung, J. K., Ng, Che Tat: Symmetric second differences in product form on groups. In: Th. M. Rassias (ed.), Topics in mathematical analysis, 1-22, Ser. Pure Math. 11, World Sci. Publ., Teaneck, NJ, 1989.

[3] Badora, R.: On a joint generalization of Cauchy’s and d’Alembert’s functional equations. Aequationes Math. 43 (1992), 72-89.

[4] Badora, R.: On Hyers-Ulam stability of Wilson’s functional equation. Aequationes Math. 60 (2000), 211-218.

[5] Baker, J.A.: The stability of the cosine equation. Proc. Am. Math. Soc. 80 (1980), 411-416.

[6] Baker, J.A., Lawrence, J., Zorzitto, F.: The stability of the equation $f(x + y) = f(x)f(y)$. Proc. Am. Math. Soc. 74 (1979), 242-246.

[7] Bakali, A.; Bouikhalene, B.: On the generalized d’Alembert functional equation. Aequationes Math. 71 (2006), no. 3, 209-227.

[8] Bouikhalene, B.; Elqorachi, E.: On Stetkaer type functional equations and Hyers-Ulam stability. (English summary) Publ. Math. Debrecen 69 (2006), no. 1-2, 95-120.

[9] Bouikhalene, B.: On the generalized d’Alembert’s and Wilson’s functional equations on a compact group. Canad. Math. Bull. 48 (2005), no. 4, 505-522.

[10] Bouikhalene, B.; Kabbaj, S.: Gelfand pairs and generalized D’Alembert’s and Cauchy’s functional equations. Georgian Math. J. 12 (2005), no. 2, 207-216.

[11] Bouikhalene, B.: On the stability of a class of functional equations. JIPAM 4 no. 5 Article 104 (2003).

[12] Bouikhalene, B.: On the Hyers-Ulam stability of generalized Wilson’s equation. JIPAM 5 no. 5 Article 100 (2004).

[13] Bouikhalene, B. and Elqorachi, E.: Stability of a generalization Wilson’s equation, (2015). pp 1-9, Aequationes Math. DOI 10.1007/s00010-015-0356-0

[14] Bouikhalene, B. and Elqorachi, E.: Stability of the spherical functions, arXiv preprint [arXiv:1404:4109] 2014 - arxiv.org. Georgian Math. J. (Accepted for publication).
[15] Chojnacki, W.: On some functional equation generalizing Cauchy’s and d’Alembert’s functional equations. Colloq. Math. 55 (1988), 169-178.
[16] Corovei, I., The cosine functional equation for nilpotent groups. Aequationes Math. 15 (1977), 99-106.
[17] Davison, T. M. K.: D’Alembert’s functional equation on topological groups. Aequationes Math. 76 (2008), 33-53.
[18] Davison, T. M. K.: D’Alembert’s functional equation on topological monoids. Publ. Math. Debrecen 75 1/2 (2009), 41-66.
[19] Ebanks, B. R., Stetkær, H.: On Wilson’s functional equations. Aequationes Math. 89 no. 2 (2015), 339-354. DOI 10.1007/s00010-014-0287-1.
[20] Elqorachi, E.; Akkouchi, M.: On generalized d’Alembert and Wilson functional equations. Aequationes Math. 66 (2003), 241-256.
[21] Elqorachi, E.; Akkouchi, M.: Functional equations and Gelfand measures. Publ. Math. Debrecen 63 (2003), 643-666.
[22] Elqorachi, E., Akkouchi, M.: On Hyers-Ulam stability of Cauchy and Wilson equations. Georgian Math. J. 11(1) (2004), 69-82.
[23] Friis, Peter de Place, d’Alembert’s and Wilson’s functional equations on Lie groups. Aequationes Math. 67 (2004), 1225.
[24] Godement, R.: A theory of spherical functions I, Trans. Amer. Math. Soc. 73 (1952), 496-536.
[25] Kannappan, P.: The functional equation \(f(xy) + f(xy^{-1}) = 2f(x)f(y) \) for groups. Proc. Amer. Math. Soc. 19 (1968), 69-74.
[26] Sinopoulos, P.: Functional equations on semigroups. Aequationes Math. 59 (2000), 255-261.
[27] Stetkær, H.: Properties of d’Alembert functions. Aequationes Math. 77 (2009), 281-301.
[28] Stetkær, H.: A link between Wilsons and dAlemberts functional equations. Aequationes Math. (2015). DOI 10.1007/s00010-015-0336-4.
[29] Szkelyhidi, L.: D’Alembert’s functional equation on compact groups. Banach J. Math. Anal. 1 (2007), no. 2, 221-226.
[30] Yang, D.: Factorization of cosine functions on compact connected groups. Math. Z. 254 (2006), no. 4, 655-674.
[31] Yang, D.: Cosine functions revisited. Banach J. Math. Anal. 5 (2011), 126-130.
[32] Gavruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184 (1994), 431-436.
[33] D. H. Hyers: On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 222-224.
[34] D. H. Hyers, G. Isac and Th. M. Rassias: On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc., 126 (1998), 425-430.
[35] D. H. Hyers, G. I. Isac and Th. M. Rassias: Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[36] S. M. Jung: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
[46] J.M. Rassias: On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130.
[47] Th. M. Rassias: On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[48] S. M. Ulam: A Collection of Mathematical Problems, Interscience Publ. New York, 1961. Problems in Modern Mathematics, Wiley, New York 1964.
[49] Yang, D.: Functional equations and Fourier analysis. Canad. Math. Bull. 56 (2013), no. 1, 218-224.

Belaid Bouikhalene
Departement of Mathematics and Informatics
Polydisciplinary Faculty, Sultan Moulay Slimane university, Beni Mellal, Morocco.
E-mail: bbouikhalene@yahoo.fr.

Elhoucien Elqorachi,
Department of Mathematics,
Faculty of Sciences, Ibn Zohr University, Agadir, Morocco,
E-mail: elqorachi@hotmail.com