Single-particle cryo-EM structures from iDPC–STEM at near-atomic resolution

Ivan Lazić✉, Maarten Wirix1, Max Leo Leidl2,3,4,5, Felix de Haas1, Daniel Mann2,5, Maximilian Beckers2,6, Evgeniya V. Pechnikova1, Knut Müller-Caspary3,4, Ricardo Egoavil1, Eric G. T. Bosch1 and Carsten Sachse2,5,7

In electron cryomicroscopy (cryo-EM), molecular images of vitrified biological samples are obtained by conventional transmission microscopy (CTEM) using large underfocuses and subsequently computationally combined into a high-resolution three-dimensional structure. Here, we apply scanning transmission electron microscopy (STEM) using the integrated differential phase contrast mode also known as iDPC–STEM to two cryo-EM test specimens, keyhole limpet hemocyanin (KLH) and tobacco mosaic virus (TMV). The micrographs show complete contrast transfer to high resolution and enable the cryo-EM structure determination for KLH at 6.5 Å resolution, as well as for TMV at 3.5 Å resolution using single-particle reconstruction methods, which share identical features with maps obtained by CTEM of a previously acquired same-sized TMV data set. These data show that STEM imaging in general, and in particular the iDPC–STEM approach, can be applied to vitrified single-particle specimens to determine near-atomic resolution cryo-EM structures of biological macromolecules.

Scanning transmission electron microscopy (STEM) is a well-established methodology in characterizing materials at micro, nano and atomic scales1–3. STEM methods and a derivative known as ptychography were shown to image dose-resistant specimens reaching resolutions better than 0.5 Å (refs. 4,5), the latter becoming the method of choice for obtaining the highest possible spatial resolutions. Among these STEM imaging modalities is integrated differential phase contrast–STEM (iDPC–STEM)6, which has been routinely applied to a variety of specimens such as GaN, NdGaO3–La0.67Sr0.33MnO3, Ni–YSZ interfaces and Bi2Sr2CaCu2O8 superconductors9–12. In the same manner, specimens such as metal hydrides were successfully visualized at subatomic resolution, including heavy elements alongside light elements such as hydrocarbons13. Moreover, iDPC–STEM was demonstrated to successfully image different crystalline as well as amorphous materials including beam-sensitive ones such as zeolites14–16. One of these samples included an individual aromatic hydrocarbon molecule trapped within a porous framework structure17. Other investigated materials are known as metal-organic frameworks that can only be imaged using electron doses smaller than 50 e/Å2 before damaging the structure18. By using iDPC–STEM with a low-dose exposure of as little as 40 e/Å2, a resolution of 1.8 Å was obtained successfully from a single micrograph for such materials19. Recently, large biological sections, including thick ones (~500 nm), have also been imaged20. For these dose-sensitive low-contrast specimens, iDPC–STEM enables direct interpretation of the image without the need of defocusing and a subsequent contrast-transfer function (CTF) correction of the images21.

One of the early STEM applications to freeze-dried biological samples was the molecular mass determination by annular dark field (ADF) scattering, as the number of atoms is directly related to the scattering intensity22. More recently, STEM tomography has been applied to thick vitrified cells23–25. Although low in resolution, it was shown that image contrast can be obtained even from micrometer-thick samples mainly by inelastically scattered electrons26. Furthermore, cryo-STEM was applied to single-particle specimens of Fe or Zn-loaded ferritin to precisely visualize and locate metals within the protein cage27. More recently, micrographs of rotavirus and HIV-1 virus-like particles were imaged using ptychography reporting the principal applicability to biological specimens albeit at low resolution28. Thus far, complete three-dimensional (3D) single-particle cryo-EM structures of biological macromolecules at close-to-atomic resolution, have not been determined by images of the STEM technique.

Electron cryomicroscopy (cryo-EM) has become a very successful structural biology technique that commonly produces near-atomic resolution 3D structures of ice-embedded biological macromolecules. Micrographs are obtained by conventional transmission electron microscopy (CTEM) at low fluences of 20–100 e/Å2 and imaged at micrometer-defocuses to enhance low-resolution contrast of the macromolecules. When images of proteins assembled in regular two-dimensional (2D) or helical arrays were available, they could be successfully determined at high resolution to enable atomic model building decades ago29–30. Due to the advent of improved hardware and software, also known as the resolution revolution31, single-particle structures are now routinely resolved at near-atomic resolution. Thus, hundreds to thousands of micrographs are acquired at varying underfocus to increase the contrast of the ice-embedded macromolecules. Subsequently, elaborate image processing workflows are used to process the molecular

1Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands. 2Ernst Ruska-Centre for Microscopy and Spectroscopy with Electron Microscopy (ER-C-3): Structural Biology, Jülich, Germany. 3Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany. 4Ernst Ruska-Centre for Microscopy and Spectroscopy with Electron Microscopy (ER-C-1): Physics of Nanoscale Systems, Jülich, Germany. 5Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany. 6Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. 7Department of Biology, Heinrich Heine University, Düsseldorf, Germany.

✉e-mail: ivan.lazic@thermofisher.com; c.sachse@fz-juelich.de
results are considered in comparison with CTEM defocus-based imaging. First, instead of flood-beam illumination of a large field of view (FOV), the convergent beam moves over the specimen in regular steps and illuminates the sample spot by spot to scan the region of interest (Fig. 1a,b). For each beam position of the scanning process, the resulting signal is recorded in the far field behind the sample using a center-of-mass detector; here approximated by means of a four-quadrant detector. Second, whereas in CTEM the optical resolution limit is caused by an inserted aperture and lens aberrations, in STEM the CSA of the focused beam controls the apparent resolution and the depth of focus (Fig. 1c). When aberrations are present, they will only affect the CTF shape but not the resolution. Third, unlike CTEM imaging methods that produce additional phase contrast by defocusing the specimen, STEM techniques such as ADF–STEM and iDPC–STEM reach the highest contrast of the image in focus. Therefore, focus and maximized contrast was obtained by examining the flatness of the convergence beam electron diffraction (CBED) pattern of the beam (Fig. 1d,e). For a typical experiment with an opening angle of 2.0 mrad CSA (Fig. 1f), a probe spot of 4.9 Å effective diameter of the beam intensity moves over the sample line by line scanning every 2.4 Å spot resulting in an overlap of 50% exposed area. Each spot exposure lasts a dwell time of 4 μs. The acquired spot signals are combined pixel by pixel to generate a complete 4,096 × 4,096 pixels micrograph over a total of 68 s time yielding a FOV of 983 nm. In analogy to existing cryo-EM low-dose acquisition protocols, we avoid additional exposures of the molecules and applied the focusing procedure next to the area of interest on the carbon foil.

To experimentally verify the optical resolution of the STEM approach, we analyzed a standard 50-nm-thick sample of gold deposited on a carbon film and confirmed the presence of the 2.3 Å gold ring in the power spectrum of the images obtained at 4.5 mrad CSA and electron dose of 350 e- /Å² (Fig. 1g and Supplementary Fig. 1). The first diffraction ring of the gold lattice was straightforward to detect and the obtained resolution was found very close to the theoretical resolution limit of 2.2 Å for the chosen CSA (Table 1 and Supplementary Table 1). In addition, we noted the absence of any typical Thon rings (Supplementary Fig. 2a,b) that are common for CTEM imaging. Instead, we observed a fourfold star pattern at the origin of the power spectrum, reflecting the CTF of iDPC–STEM. In the ideal case when center of mass is directly detected, the resulting CTF and power spectrum will be rotationally symmetric and decay toward higher frequencies. When a four-quadrant detector is used, the resulting 2D CTF has a fourfold pattern in addition to the resolution decay. The fourfold CTF pattern dominated the low spatial frequencies only and has a minor effect on the visual appearance of the image (Supplementary Fig. 2c,d). In comparison with an oscillating CTF of a CTEM image acquired in underfocus, the signal in iDPC–STEM further decays almost linearly toward higher spatial frequencies reaching zero at the theoretical limit of the given CSA (Supplementary Fig. 2e–g). Using the described imaging setup, an iDPC–STEM micrograph of ice-embedded keyhole limpet hemocyanin (KLH) was recorded at a CSA of 2.0 mrad (Fig. 1h), which exhibits for instance strong contrast of ice contamination as a prominent low-frequency transferred feature in addition to KLH particles. For consistent interpretation of iDPC–STEM images, we applied a high-pass filter at 251 Å full-width at half-maximum referring to them as preprocessed iDPC–STEM images. These iDPC–STEM micrographs resemble inverted CTEM images in appearance as CTEM images contain very few low spatial frequencies (Fig. 1i). In conclusion, iDPC–STEM micrographs provide the complete projections of the sample including low and high frequencies, which in appearance are comparable to in-focus CTEM images using a phase plate.

3D structure of vitrified KLH from iDPC–STEM micrographs. To quantitatively analyze larger numbers of KLH images, we collected a total of 760 micrographs at a CSA of 2.0 mrad. After extracting a total of 9,150 particles and performing routine 2D classification procedures, we identified a series of averaged characteristic side, top and tilted side views of KLH compatible with D5 symmetry
To improve resolution for a 3D reconstruction, we collected additional 687 micrographs using a larger CSA of 3.5 mrad, extracted 18,597 particles and determined the structure of KLH with D5 symmetry imposed at 6.5/6.8 Å (0.143 and false discovery rate–Fourier shell correlation (FDR–FSC) criterion) (Fig. 2b,c), which is beyond the latest reported resolution43. We docked the available structure Protein Data Bank (PDB) ID 4BED into the density and found good agreement with the expected secondary
Table 1 | Critical STEM imaging parameters for cryo-EM image acquisition at 300 keV electrons (wavelength $\lambda = 1.969$ pm)

CSA α (mrad)	Experimental STEM resolution based on Au measurement (Å)	Maximum theoretical STEM resolution $\lambda/\left(2\alpha\right)$ (Å)	Required pixel size for maximum STEM resolution (Å)	Depth of focus $2f$ (nm)
2.0	5.1	4.9	2.4	985
3.0	3.5	3.3	1.6	438
3.5	3.0	2.9	1.4	321
4.0	2.6	2.5	1.2	246
4.5	2.3	2.2	1.1	194

structural elements at the determined resolution (Fig. 2d). These data show that iDPC–STEM micrographs of a single-particle specimen can be used to determine the subnanometer molecular structure of KLH.

Further improvements in resolution of the 3D structure of KLH would require a data set size orders of magnitude larger. In the light of this consideration, we turned to the molecular specimen TMV, containing a high number of asymmetric units per unit length, which is ideally suited for efficient structural averaging using a smaller number of micrographs. The helical organization of TMV and resulting image repeats are used to assess information transfer of the micrographs. Initial images were acquired with a low CSA of 2.0 mrad at a pixel size of 1.70 Å (Fig. 2e) and STEM image size of 4,096 x 4,096 pixels. The corresponding FOV of 696 x 696 nm² is comparable to CTEM cryo-image acquisitions that record a part of a micrometer carbon hole. The iDPC–STEM micrograph reveals the presence of TMV rods densely packed in rafts close to the edge of the carbon hole. As the contrast results directly from the electrostatic potential, TMV’s protein density is white and not inverted as in CTEM. Closer inspection of the fine structure shows the distances of the 23 Å as well as the 11.5 Å repeats along the helical rod. Moreover, we acquired more images of densely formed TMV rafts using a CSA beam of 4.0 mrad (Fig. 2f). The corresponding Fourier transform shows a continuous information transfer, characteristic TMV layer lines and the absence of any CTF zero crossings (Fig. 2g). The noticeable vertical streak along the meridian of the image Fourier transform is a well-known scanning effect in STEM44.

In the Fourier transform, we were able to detect high-resolution information up to 1/7.7 and 1/4.6 Å⁻¹, which indicated further potential of cryo-iDPC–STEM imaging at high resolution.

3D structures of vitrified TMV at different CSAs. Next, we set out to establish imaging conditions of the TMV sample to obtain optimal high-resolution 3D image reconstructions. As two defocused-based CTEM reference data sets, we used TMV images deposited with accession IDs EMPIAR-10305 (ref. 45) and EMPIAR-10021 (ref. 45). Subsequently, we systematically compared iDPC–STEM data sets taken with beam CSAs of 2.0, 3.0, 3.5, 4.0 and 4.5 mrad respecting critical parameters given in Table 1, with the CTEM reference cryo-micrographs. For the detailed comparison of all data sets, we analyzed a typical micrograph including the corresponding Fourier transform (Fig. 3). Under all imaging conditions, iDPC–STEM images show strong low-frequency contrast in comparison with the defocused cryo-image. The respective Fourier transforms show the expected 1/23 and 1/11.5 Å⁻¹, first- and second-order layer lines, whose intensities are primarily determined by the number of TMV rods present in the FOV. For more quantitative analyses, we extracted 1,300–2,200 helical segments from several micrographs and computed a power spectrum average, displayed as a one-dimensional (1D) helical profile. Comparing the overall slope of the 1D helical profile revealed that the profiles derived from the iDPC–STEM images decay faster than from the defocused CTEM micrographs. The relative ratio of the second order first order layer-line profile peaks increases from 0.2 to 0.5 with a CSA beam increase from 2.0 to 4.5 mrad, respectively, which indicates improved signal transfer of the higher resolution layer line at higher CSA. The corresponding ratio of the latest defocused CTEM data set (EMPIAR-10305) is 1.9, surpassing the 0.5 of the 3.5, 4.0 and 4.5 mrad STEM data sets.

Finally, using the individual CTEM and iDPC–STEM micrographs, we processed approximately the same number of helical segments from the different data sets using the typical single-particle helical reconstruction workflow of RELION46 (Table 2). It should be noted, however, that for iDPC–STEM in the absence of defocusing, we used neither CTF determination nor any CTF correction options. Subsequently, we performed the 3D structure refinements using the 2.0, 3.0, 3.5, 4.0 and 4.5 mrad beam-STEM data sets and determined the TMV structures at 6.3, 4.3, 3.9, 3.5 and 3.7 Å resolution, respectively, based on the 0.143 FSC cutoff criterion.47,48 (Supplementary Fig. 3a). The trend of near-atomic resolution values of high CSA acquisitions at 3.5, 4.0 and 4.5 mrad could also be confirmed independently by a mask-less FDR–FSC determination approach49 at 3.4, 3.2 and 3.3 Å, respectively (Supplementary Fig. 3b). The latest CTEM data subset from 2019 (EMPIAR-10305) went to 2.2 Å. When compared with the best iDPC–STEM map (4.0 mrad CSA) at 3.5 Å resolution, the earlier 2015 CTEM data set (EMPIAR-10021) went to slightly poorer resolution of 3.7 Å. Local resolution assessment corroborates the better map quality of the 4.0 mrad CSA iDPC–STEM structure in comparison with the 2015 CTEM structure albeit worse than the 2019 CTEM structure (Supplementary Fig. 3c).

To validate the numerical resolution assessment, we inspected the CTEM and iDPC–STEM cryo-EM density maps in more detail (Fig. 4a,b). In the presence of a previously refined atomic model (PDB 4UDV)45, we find that secondary structures are well discernible for the 2.0 mrad map at 6.3 Å resolution (Fig. 4c). The density of the α-helical pitch can be well recognized for the 3.0 mrad map at 4.3 Å resolution (Fig. 4d). In addition, the maps also show clear density of the RNA and for ribose moieties that are tightly packed between the subunits. Qualitatively, the molecular features that are discernible in 3.5, 4.0 and 4.5 mrad maps at near-atomic resolution constitute larger side chains, that is aromatic and positively charged ones such as F35, R41, W52, F62, F87, R113 and R122, in addition to a well-defined polypeptide backbone (Fig. 4e–g). In analogy to the 2015 CTEM map (EMPIAR-10021) that received the same total electron dose of 35 e⁻/Å², density for negatively charged side chains D77, E106, D115, D116 and E131 is largely absent. The displayed cryo-EM densities were sharpened based on the Guinier plot analysis of the 3D reconstruction. The corresponding Guinier B factors were determined to 492, 155, 105, 132 and 126 Å² for the 2.0, 3.0, 3.5, 4.0 and 4.5 mrad maps, respectively. The smaller Guinier B factors correlate with the generally improved resolution and image quality for the 3.5–4.5 mrad data sets. B factor estimations that assess the data set quality as a whole involve the analysis of the particle number as a function of the obtained resolution.51 Using particle subsets of CTEM (EMPIAR-10021), CTEM (EMPIAR-10305), 3.5 mrad iDPC–STEM KLH and 4.0 mrad iDPC–STEM TMV micrographs, we determined B factors by logarithmic regression to 147, 62, 437 and 93 Å², respectively (Supplementary Fig. 3d). A global B factor of 93 Å² suggests that the present iDPC–STEM micrographs are of better quality than the CTEM acquisition from 2015 recorded using a Falcon II DED42, and of worse quality than the 2019 CTEM acquisition by a K2 DED CTEM acquisition in 2019 (ref. 45). Together, the cryo-EM density analysis of vitrified TMV confirms that in-focus iDPC–STEM images can be reliably used to resolve the detailed
The estimated resolutions of the determined iDPC cryo-EM structures confirm the basic optical considerations that increasing CSA leads to higher spatial resolution. To evaluate additional limiting parameters of the imaging setup, we simulated iDPC–STEM images of a hemoglobin molecule embedded in vitreous ice. First, on increasing the CSA beam, we observed a decrease in the signal-to-noise ratio (SNR) of the particle (Supplementary Fig. 4a). When the same number of electrons is used, smaller CSA beams will produce higher SNRs due to the reduced solid-angle volume of the electron-wave behind the sample. Therefore, for initial micrograph assessment, smaller beam CSAs are recommended for boosting SNR. The apparent SNR can also be matched by increasing the electron dose at the expense of radiation damage effects. Second, at high CSAs and large pixel sizes, aliasing may obstruct the image. To illustrate this effect in simulated images, we used a large CSA beam of 10 mrad at a pixel size larger than the resolution cutoff imposed by the CSA. Under these conditions, the discernible particle contrast weakened because higher resolution information is folded back to low frequencies (Supplementary Fig. 4b). To avoid aliasing, we paid attention that the scan interval, that is pixel size, fully samples the optical resolution provided by the beam CSA (Table 1). For example, the highest resolution iDPC–STEM TMV map at 3.5 Å resolution was achieved with the 4.0 mrad CSA beam and a pixel size of 0.98 Å using an electron dose of 35 e−/Å².

Discussion

Using iDPC–STEM, we imaged plunge-frozen KLH and TMV as biological test specimens to assess the image quality and analyzed the resulting 3D cryo-EM density maps. We demonstrated that iDPC–STEM produces high-contrast in-focus micrographs of ice-embedded molecular KLH particles and the regular helical image features of TMV. When we subjected multiple micrographs to the single-particle reconstruction workflow, we determined the subnanometer KLH structure at 6.5 Å and several near-atomic resolution TMV structures using different iDPC–STEM imaging conditions down to 3.5 Å. By using the appropriate combination of CSA beam and associated imaging parameters we demonstrated the capability of obtaining resolution within the expected theoretical limits (Tables 1 and 2). These data establish that iDPC–STEM imaging of cryo-vitrified biological samples generates micrographs of sufficiently high quality suitable for near-atomic resolution single-particle cryo-EM structure determination.

One of the apparent features of the recorded iDPC–STEM cryo-micrographs is that they show continuously transferred contrast over the complete frequency band. This favorable property is specific to the iDPC–STEM approach. For instance, annular bright-field (ABF)-STEM suffers from CTF shortcomings similar to CTEM. Due to the reciprocity theorem ABF-STEM also requires defocus to generate contrast and to enhance the low-frequency transfer. In addition, only part of the scattered electrons is collected by the detector and used to form an image. For ADF–STEM, imaging can be performed in focus resulting in an overall positive CTF. However, the total number of electrons collected in the dark field is several orders of magnitude smaller than in the bright field, making ADF detection very dose-inefficient. Moreover, for ADF–STEM the imaged object corresponds to the square of the electrostatic potential field of the sample, causing the light elements to practically disappear when imaged next to heavier ones. Based on these considerations, standard STEM techniques do not exhibit sufficient capabilities to be exploited for low-dose imaging of radiation-sensitive materials. Conversely, iDPC–STEM uses all signal-relevant electrons, suppresses noise in the integration step and has a favorable CTF devoid of any contrast reversal and CTF zero crossings. The imaged object is directly proportional to the electrostatic potential field of the sample. When imaging gold particles deposited on a carbon film using iDPC–STEM with a 4.5 mrad CSA beam, we resolved the details to 2.3 Å resolution, confirmed by the first gold-lattice diffraction ring in the power spectrum of the image (Fig. 1). Due to the detector architecture of four quadrants, we also observed a four-fold shaped 2D CTF. This CTF pattern can be compensated by a 2D CTF correction as the theory is well understood. However, we did not find this necessary in our analysis, as KLH particles or helical TMV segments with random orientations within the ice layer plane are averaged. The power spectra of the recorded iDPC–STEM cryo-micrographs, as expected, did not show any Thon rings that are common for defocused-based CTEM imaging. The resulting high-resolution signal transfer in iDPC–STEM is, therefore, very well suited for near-atomic cryo-EM structure determination.

The performance of iDPC–STEM depends on experimental parameters that must be controlled during imaging. The beam CSA critically determines the maximum possible resolution of the STEM image (Table 1). This resolution is exactly related to the beam width and the beam depth of focus, also referred to as depth resolution or beam-waist length, according to theoretical considerations. When increasing the CSA and the probe is aberration-free, higher resolution is obtained while the beam depth of focus becomes smaller. Consequently, when the sample thickness exceeds the decreasing beam-waist length, the images represent optical depth sections rather than projections. We estimate that the sample regions imaged here have thicknesses of 18 to 54 nm.
corresponding to a diameter of a single TMV rod and three TMV rods, respectively. When typical ice thicknesses of 10–60 nm, common for plunge-frozen specimens, are considered, only the beam CSAs larger than 9 mrad at 300 kV will not be sufficient for obtaining complete projections of the sample. With the maximum beam CSA of 4.5 mrad used in this study resulting in a depth of focus of 194 nm, complete projections are produced in all cases. This property of STEM imaging is substantially different to CTEM acquisitions when different particle z-positions within the ice layer give rise to different projections due to the associated change in CTF. For higher CSAs, for example larger than 7.0 mrad, in addition to decreasing the depth of focus, the spherical aberration of the probe deteriorates the image due to the introduction of CTF zero crossings (Supplementary Table 1). This property justifies the usage of probe aberration correctors when higher spatial resolutions are targeted. The discussed beam relationship of resolution versus depth of focus also opens up principal possibilities for high-resolution imaging of thicker cryo-frozen samples using optical sectioning STEM40,54,55.

To compare CTEM and STEM acquisitions, we emphasize their fundamental difference with respect to electron delivery and energy deposition. Unlike with flood-beam illumination in CTEM where electrons are delivered everywhere at once, the scanning mode deposits electrons sequentially one pixel position at a time. A potential benefit of the STEM approach may be that the energy transferred to the sample can spread and dissipate toward nonilluminated areas, presumably weakening the impact and the damage at the exposed spot. Due to the overlapping geometry of the scan, that is effective beam size is larger than a pixel, the sample spots are exposed multiple times and, consequently, the total dose per pixel is accumulating in STEM. In contrast, CTEM exposed areas are illuminated once and, in some cases, damage-free maps can even be extrapolated at zero electron exposure46. In analogy to STEM, spot scanning of 100 nm beams was implemented in CTEM and was shown to mitigate beam-induced motion and to improve contrast for vitrified specimens36. The STEM approach offers additional opportunities for evaluating different electron delivery strategies by, for example, changing the scan grid order. This scanning scheme may give rise to reduced radiation damage effects when compared with typical flood-beam illumination approaches. A series of studies investigating the damage mechanisms in STEM has been reported in 2D materials using alternative scan patterns, which indicate that they may further reduce beam damage44-46. The typical STEM exposure causes beam-induced motion and leads to ice-patch or particle movements and ultimately to image blur, which is now commonly compensated by motion correction36. In this paper, motion correction was also applied to the 2015 and 2019 TMV CTEM reference data sets. For STEM, the locally induced beam motion building up throughout the scan may result in image distortions and anisotropic magnifications in the reconstructed micrograph. Nevertheless, without the employment of any correction strategies, the present iDPC–STEM experiments show that a simple grid scanning scheme can be used to generate near-atomic resolution structures of TMV.

Reprocessing of a TMV CTEM data sets (EMPIAR-10021, ref. 45; EMPIAR-10305, ref. 46), limited to approximately 50,000 asymmetric units and resulted in a map of 3.7 and 2.2 Å resolution. The 4.0 mrad iDPC–STEM map at 3.5 Å resolution showed the expected cryo-EM density features at the given resolution (Fig. 4 and Supplementary Fig. 3). Associated map sharpening B factors determined by Guinier analysis of both the CTEM and 4.0 mrad iDPC–STEM maps are at around 130 Å2. For poorer resolutions of TMV data sets taken on film, higher B factors of 240 and 280 Å2 were reported22, whereas for TMV data sets taken on the Falcon III DED and K2 cameras, lower B factors of 100 and 40 Å2 have been determined14,34 (Supplementary Table 2). Further quantitative comparison of global B factors by estimating the resolution as a function of TMV particle subsets places the 4.0 mrad iDPC–STEM data set in quality between the 2015 and 2019 CTEM data sets. Therefore, it is remarkable that iDPC–STEM, in combination with a four-quadrant detector without any motion correction, shows an improved performance and B factor in comparison with CTEM imaging from 2015 using a second generation DED camera including motion correction. The map features indicate that the final iDPC–STEM map exhibits very similar radiation damage effects on the negatively charged side chains as other CTEM maps40,46,65. The iDPC–STEM spot-scanning approach appears not to suffer critically from beam-induced movement that used to be one of the critical resolution-deteriorating issues before the introduction of the movie mode in DED cameras46.

Working out appropriate iDPC–STEM parameters for imaging vitrified specimens was straightforward as TMV required relatively few micrographs for quantitative image analysis and 3D reconstruction. The scanning procedures used for the micrograph acquisition took approximately 20–80 seconds for the 5.0 and the 2.0 mrad CSA beams, respectively (Supplementary Table 3). This way, approximately 60 TMV micrographs were collected in each CSA session in the absence of any automation. Collecting large data sets up to 300 micrographs per hour, common for typical CTEM single-particle acquisitions45, would not be possible in this manner. Automation of the STEM acquisition procedures, however, will be straightforward to employ in the future. Detectors used for iDPC–STEM allow scan speeds of two orders of magnitude faster than the ones used in this work, which will ultimately reduce acquisition times to below

Table 2	Summary of 3D reconstruction results of reference CTEM and described cryo-iDPC–STEM data sets						
	CTEM/EMPIAR-10021	CTEM/EMPIAR-10305	iDPC–STEM 2.0 mrad	iDPC–STEM 3.0 mrad	iDPC–STEM 3.5 mrad	iDPC–STEM 4.0 mrad	iDPC–STEM 4.5 mrad
Pixel size (Å)	1.062	0.638	1.705	1.23	0.98	0.98	0.75
Number of micrographs	28	62	20	13	15	20	28
Number of segments	2,068	3,270	2,073	1,392	1,330	2,224	1,678
Number of asymmetric units	53,768	75,210	87,066	41,760	31,920	75,616	57,052
B factor (Å2)	126	38	492	155	105	126	
Maximum resolution target (Å)	NA	NA	5.1	3.5	3.0	2.6	2.3
Resolution expected range (Supplementary Table 1) (Å)	NA	NA	7.4–5.6	5.0–3.8	4.3–3.3	3.8–2.9	3.3–2.5
Resolution FSC (0.143, ref. 47) (Å)	3.8	2.2	6.3	4.3	3.9	3.5	3.7
Resolution FSC (FDR49) (Å)	3.6	2.1	5.9	4.1	3.4	3.2	3.3
one second. This way, when hardware improvement supported by software-based automation is further implemented, it will become possible to image equally large data sets of single-particle specimens in similar time frames as in CTEM. Additionally, recording individual frames in movie mode will reduce the effects of beam-induced motion and further improve the image quality of cryo-iDPC–STEM.

In this study, we demonstrated the principal applicability of STEM methods to cryo-vitrified biological specimens for 3D structure determination. Advanced STEM methods or derivatives have been used in materials science for resolving sub-50 pm spatial detail18. Some of these methods, such as iDPC–STEM19, have been shown to be very dose efficient and, therefore, have been applied successfully to dose-sensitive specimens20,21. Images can be obtained with highestparable to the inelastic mean free path68. Dynamic focusing across a plate. For STEM, the contrast will not be significantly deteriorated by incoherency and inelastic scattering. The problem remains critical even when in-focus images are taken with a phase plate. For STEM, the contrast will not be significantly deteriorated by inelastic scattering, also at lower voltages the image remains sharp and shows full contrast even when the object thickness becomes comparable to the inelastic mean free path22. Dynamic focusing across a scan field of a tilted specimen is possible and could provide benefits in single-particle analysis to overcome preferred particle orientations. Once iDPC–STEM imaging can be applied to tilt series of thicker biological specimens, cryo-electron tomographic reconstructions will benefit from the complete contrast transfer in STEM images devoid of any oscillating CTF while still preserving high-resolution information. Moreover, alternative STEM acquisition schemes23 and micrograph reconstruction approaches24, when further developed, should also prove beneficial for imaging biological samples. The STEM approach opens up additional opportunities for correlative sample characterization, for example spectroscopic mapping by energy dispersive X-ray spectroscopy or electron energy loss spectroscopy to analyze the element composition of a specimen. The results presented here, using iDPC–STEM to image vitrified KLH and TMV specimens, reveal that STEM approaches should be further explored for improved high-resolution cryo-EM structure determination.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41592-022-01586-0.

Received: 24 August 2021; Accepted: 19 July 2022; Published online: 5 September 2022

References

1. Hawkes, P. W. & Kasper, E. Wave Optics Vol. 3 (Academic Press Inc., 1994).
2. Spence, J. C. H. Experimental High-Resolution Electron Microscopy (Oxford Univ. Press, 1998).
3. Reimer, L. & Kohl, H. Transmission Electron Microscopy (Springer S+B Media LLC, 2008).
4. Erni, R., Rossell, M. D., Kisielowski, C. & Dahan, U. Atomic-resolution imaging with a sub-50-pm electron probe. *Phys. Rev. Lett.* 102, 096101 (2009).
5. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-Ångström resolution. *Nature 559*, 343–348 (2019).
6. Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. *Science 372*, 826–831 (2021).
7. Lazić, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. *Ultramicroscopy* 160, 265–280 (2016).
8. Lazić, I. & Bosch, E. G. T. Analytical review of direct STEM imaging techniques for thin samples. *Adv. Imaging Electron Phys.* 199, 75–184 (2017).
9. Yücelen, E., Lazić, I. & Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. *Sci. Rep.* 8, 2676 (2018).
10. Gauquelin, N. et al. Determining oxygen relaxations at an interface: a comparative study between transmission electron microscopy techniques. *Ultramicroscopy* 181, 178–190 (2017).
11. Nahor, H., Kaufmann, Y., Lazar, S., Shilo, D. & Kaplan, W. D. Discerning interface atomistic structure by phase contrast in STEM: the equilibrated Ni-Si-YSZ interface. *Acta Mater.* 154, 71–78 (2018).
12. Song, D. et al. Visualization of dopant oxygen atoms in a Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$ superconductor. *Adv. Funct. Mater.* 29, 1903843 (2019).
13. de Graaf, S., Momand, J., Mitterbauer, C., Lazar, S. & Kooi, B. J. Resolving hydrogen atoms at metal-metal hydride interfaces. *Sci. Adv.* 6, eaay4312 (2020).
14. Lazić, I., Bosch, E. G. T., Lazar, S., Wirix, M. & Yücelen, E. Integrated differential phase contrast (iDPC)–direct phase imaging in STEM for thin samples. *Microsc. Microanal.* 22, 36–37 (2016).
15. Liu, L. et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. *Angew. Chem. Int. Ed.* 59, 819–825 (2020).
16. Shen, B. et al. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks. *Adv. Mater.* 32, 1906103:1–1906103:7 (2020).
17. Shen, B. et al. Single-molecule van der Waals compass. *Nature 592*, 541–544 (2021).
18. Li, Y. et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. *Matter* 1, 428–438 (2019).
19. Shen, B., Chen, X., Shen, K., Xiong, H. & Wei, F. Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. *Nat. Commun.* 11, 2692:1–2692:8 (2020).
20. Li, X. et al. Imaging biological samples by integrated differential phase contrast (iDPC)–STEM technique. *J. Struct. Biol.* 214, 107837 (2022).
21. Liu, L., Zhang, D., Zhu, Y. & Han, Y. Bulk and local structures of metal–organic frameworks unraveled by high-resolution electron microscopy. *Commun. Chem.* 3, 99 (2020).
22. Wall, J. S. & Hainfeld, J. F. Mass mapping with the scanning transmission electron microscope. *Annu. Rev. Biophys. Biophys. Chem.* 15, 355–376 (1986).
23. Wolf, S. G., Houben, L. & Elbaum, M. Cryo-scanning transmission electron tomography of vitrified cells. *Nat. Methods* 11, 423–428 (2014).
24. Wolf, S. G. & Elbaum, M. C. (2010)–cryoSTEM tomography in biology. *Methods Cell Biol.* 152, 197–215 (2019).
25. Rez, P., Larsen, T. & Elbaum, M. Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens. *J. Struct. Biol.* 196, 466–478 (2016).
26. Elad, N., Bellapadrona, G., Houben, L., Sagi, I. & Elbaum, M. Detection of isolated protein-bound metal ions by single-particle cryo-STEM. *Proc. Natl Acad. Sci. USA* 114, 11139–11144 (2017).
27. Zhou, L. et al. Low-dose phase retrieval of biological specimens using cryo-electron ptychography. *Nat. Commun.* 11, 2773 (2020).
28. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990).

29. Urwin, N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346, 967–989 (2005).

30. Sachse, C. et al. High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J. Mol. Biol. 371, 812–835 (2007).

31. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

32. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. elife 4, e00980 (2015).

33. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

34. Weis, F., Beckers, M., von der Hocht, I. & Sachse, C. Elucidation of the viral particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

35. Nakane, T. et al. Single-particle cryo-EM study of high-resolution low-dose scanning transmission electron microscopy. Ultramicroscopy 147, 156–163 (2014).

36. Waddell, E. M. & Chapman, J. N. Linear imaging of strong phase objects using asymmetrical detectors in STEM. Optik 54, 83–96 (1979).

37. Müller, K. et al. Atomic electric fields revealed by a quantum mechanical calculation of the energy field. Ultramicroscopy 96, 117–125 (2003).

38. Waddell, E. M. & Chapman, J. N. Linear imaging of strong phase objects using asymmetrical detectors in STEM. Optik 54, 83–96 (1979).

39. Nakane, T. et al. Single-particle cryo-EM study of high-resolution low-dose scanning transmission electron microscopy. Ultramicroscopy 147, 156–163 (2014).

40. Bosch, E. G. T. & Lazić, I. Analysis of depth-sectioning STEM for thick specimen. J. Struct. Biol. 180, 204–212 (2012).

41. Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

42. Danov, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta and cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

43. Gatsogiannis, C. & Markl, J. Keyhole limpet hemocyanin (KLH): A cryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units. J. Mol. Biol. 385, 963 (2009).

44. Buban, J. P., Ramasse, Q., Gipson, B., Browning, N. D. & Stahlberg, H. High-resolution low-dose scanning transmission electron microscopy. J. Electron Microsc. 59, 103–112 (2010).

45. Fromm, S. A., Bharat, T. A. M., Jakobi, A. J., Hagen, W. J. H. & Sachse, C. Seeing tobacco mosaic virus through direct electron detectors. J. Struct. Biol. 189, 87–97 (2015).

46. He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).

47. Rosenthal, P. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

48. Chen, S. et al. High-resolution electron cryo-microscopy. Ultramicroscopy 135, 24–35 (2013).

49. Beckers, M. & Sachse, C. Permutation testing of Fourier shell correlation for resolution estimation of cryo-EM maps. J. Struct. Biol. 212, 107579 (2020).

50. Bosch, E. G. T. & Lazić, I. Analysis of HR-STEM theory for thin specimen. Ultramicroscopy 156, 59–72 (2015).

51. Intaraprasong, V., Xin, H. L. & Muller, D. A. Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108, 1454–1466 (2008).

52. Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer+SB Media LLC, 2010).

53. Lazić, I., Bosch, E. G. T., Yücelen, E., Imlau, R. & Lazar, S. Thick (3D) sample imaging using dIPPC-STEM at atomic scale. Microsc. Microanal. 24, 170–171 (2018).

54. Borisovich, A. Y., Lupini, A. R. & Pennycook, S. J. Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl Acad. Sci. USA 103, 3044–3048 (2006).

55. Ramachandra, R. & de Jonge, N. Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy. Microsc. Microanal. 18, 218–228 (2012).

56. Naydenova, K., Jia, P. & Russo, C. J. Cryo-EM with sub-Å resolution. Science 370, 223–226 (2020).

57. Downing, K. H. Spot-scan imaging in transmission electron microscopy. Science 251, 53–59 (1991).

58. de Graaf, S., Ahmadi, M., Lazić, I., Bosch, E. G. T. & Kooi, B. J. Imaging atomic motion of light elements in 2D materials with 30 kV electron microscopy. Nanoscale 13, 20683 (2021).

59. de Graaf, S. & Kooi, B. J. Radiation damage and defect dynamics in 2D WS2: a low-voltage scanning transmission electron microscopy study. 2D Mater. 9, 015009 (2022).

60. Velasco, A., Béché, A., Jannis, D. & Verbeek, J. Reducing electron beam damage through alternative STEM scanning strategies, part I: experimental findings. Ultramicroscopy 232, 113398 (2022).

61. Campbell, M. G. et al. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20, 1823–1828 (2012).

62. Ge, P. & Zhou, Z. H. Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches. Proc. Natl Acad. Sci. USA 108, 9637–9642 (2011).

63. Song, B. et al. Capabilities of the Falcon III detector for single-particle structure determination. Ultramicroscopy 203, 145–154 (2019).

64. Algergawy, M., Mills, D. J., McMullan, G., Kühlbrandt, W. & Vonck, J. Atomic model of the F402-reducing [NiFe] hydrogenase by cryo-electron microscopy using a direct electron detector. elife 3, e01963 (2014).

65. Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. & Subramaniam, S. Structure of β-galactosidase at 3.2 Å resolution obtained by cryo-electron microscopy. Proc. Natl Acad. Sci. USA 111, 11709–11714 (2014).

66. Brilot, A. F. et al. Beam-induced motion of vitrified specimen on holey carbon film. J. Mol. Biol. 365, 5659–5666 (2007).

67. Cheng, A. et al. High resolution single particle cryo-electron microscopy using beam-image shift. J. Struct. Biol. 204, 270–275 (2018).

68. Rose, H. Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251–267 (1976).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022
Methods

Specimen preparation. Quantifoil grids were rendered hydrophilic using a glow discharge applicator (GloQube Plus, Quorum) for a time of 45 s in air before specimen application to the grid. An aliquot of 3.5 nl stock solution of TMV at a concentration of approximately 90 mg/mL or 2.5 µg/mL was applied onto a 200 mesh Quantifoil grid with regular R2/2 holey carbon support. The excess of the applied droplet was blotted using a Vitrobot Mark IV (Thermo Fisher Scientific MSD).

Due to the high concentration, optimal results for obtaining thin ice across the 2µm holes were achieved using a high blot force of +10 and a duration for blotting of 10 s, before plunge freezing. Grids were prepared at 4°C and 100% humidity. To maximize occupancy of holes with rafts of TMV rods, application of TMV at a 10 µg/mL concentration or 2.5 µg/mL solution was plunged frozen using a blot force of −10 and 6 s blotting time.

STEM. STEM imaging was conducted using a Thermo Fisher Scientific Titan Krios G4, operated at 300 kV. The column was equipped with a standard high-brightness field emission gun (X-FEG), three-condenser lens system, C/TWIN objective lens with wide-gap pole piece (11 mm and C = 2.7 mm), Panther segmented STEM detector, a Ceta camera and Falcon 4 DED camera. A combination of different C2 apertures (20 and 50 µm) and C2/C3 lens current ratios were used to create different CSA of the beam. Before STEM imaging, beam shift, beam tilt pivot points and beam tilt in STEM mode were aligned for the different convergence angles. The Ceta camera was used to acquire and record the gold cross-grating and Ceta camera by first recording the radii of the gold diffraction rings for calibration and subsequently measuring the radius of the bright-field disc. The beam current was determined using the fluorescent (flu-) screen, calibrated by a Faraday-cup measurement. The total electron dose (TED) delivered per unit square area is given by

\[
TED = \frac{I \times t_{\text{scan}}}{\text{FOV}^2} = \frac{I \times N \times PS}{\text{FOV}^2},
\]

where \(I\) is the beam current (number of electrons per unit time) while \(t_{\text{scan}}\) is total scanning time required to scan the entire FOV frame area. Further, \(I_{\text{beam}}\) is the time that the beam spends per pixel, and PS is the pixel size. Note that \(t_{\text{scan}} = N \times \text{FOV}^2 / I_{\text{beam}}\), where \(N\) is the number of pixels for the image, while \(\text{FOV} = N \times PS\). Therefore, the number of pixels cancels and yields the right-hand side of the equation. The beam current was held at fixed 4 µA while the dwell time was used as a parameter to fine-tune the final total dose of 35 e/Å².

Low magnification atlas screening, searching for a suitable ice thickness area, was performed in TEM mode with the Falcon 4 DED and the MAPS software. Intermediate magnification ADF–STEM images were collected at 4,096 pixel-sized micrographs per field of view with a 0.75 Å pixel size and 67.9 s at 1.70 Å pixel size. Approximately 10 s rest-time of the stage was applied between acquisitions. Focusing was performed at the carbon film grid next to the area of interest (hole with ice and particles) by judging the flatness of the Ceta pattern (Ronchigram). For KLH, approximately 700 to 800 micrographs were acquired for each CSA session. For TMV, typically 50 to 70 micrographs were acquired per CSA session (Table 2). The micrographs with the highest resolving layer lines (approximately one-third) were selected and used for helix segmentation and 3D reconstruction. For data recording, the procedure was followed in MAPS v.3.16 software (Thermo Fisher Scientific) for optimal, accurate and safe stage navigation. The overview maps served to navigate and collect high-resolution iDPC–STEM images preventing multiple exposures.

Image processing and 3D single-particle reconstruction. The raw iDPC–STEM micrographs were preprocessed by applying a Gaussian high-pass filter with a full-width at half-maximum of 251 Å and imported without contrast inversion and no CTF information. For KLH a total of 760 and 687 iDPC–STEM micrographs were acquired for CSA of 2.0 and 3.5 mrad, respectively. The micrographs were subjected to single-particle analysis in CryoSPARC v.3.3 (ref. 47). For the CSA of 2.0 mrad data set, 9,795 particles were extracted, subjected to 2D classification and an ab initio 3D model was generated (batch size 1,000). For the CSA 3.5 mrad data set, 500 particles were manually picked to generate classes for template-based particle picking. Subsequently, a total of 120,727 putative particles were extracted with 18,597 particles remaining after 2D classification (batch size 200 with 900 iterations) and subjected to refinement using an initial low-pass filtered map of the CSA 2.0 mrad initial model (60 Å filter cutoff) with imposed D5 symmetry. The 3D reconstruction showed clear secondary structure information with a nominal resolution of 7.7 Å (FSC 0.143) and was followed by uniform local refinement, including D5 symmetry to yield a final map with a nominal resolution of 6.5 Å (FSC 0.143) and 6.8 Å (FSC–FDR). The 3D reconstruction was sharpened by 522.7 Å² based on Guinier B factor estimation. PDB 4BD2 (ref. 48) was docked inside the EM density using ChimeraX v.1.3 (ref. 47).

For the processing of TMV micrographs, helical coordinates were interactively picked using EMAN2 (ref. 49). The in-plane rotated segments were used to calculate the averaged power spectra. The power spectra sums were collapsed in the direction orthogonal to the helical axis into 1D spectra as described 50. Collapsed power spectra were used to calibrate the pixel size by matching the visible layers lines with the expected layer lines of \(\{n\} | n = 1, 2, 3, \ldots\). Further image processing was performed using Relion v.3.1 (ref. 47). Depending on the data sets, two or rounds of 2D classifications were performed after 2D classification. For the following steps, only particles from classes showing high-resolution details of TMV were included. Due to the absence of defocusing in iDPC–STEM and overall positive CTF, neither CTF determination nor any CTF correction option was used. Smaller subsets of EMPIAR-10305 and EMPIAR-10021 CTEM data were processed according to the standard single-particle helix extraction workflow. To ensure comparability with the iDPC–STEM data sets, motion correction was performed and in the case of EMPIAR-10021 limiting the included frames to a total dose of 35 e/Å² with the exposure/dose weighting option turned off. To generate a reference for the 3D refinement, 3D classification with one class and a featureless cylinder as a reference was performed. After refinement, a mask was created from one of the half maps, including the central 30 volume percentage in the z-direction. Subsequently, postprocessing and local resolution estimation were performed. The half maps were used for FSC calculation including mask deconvolution 51 and resolution taken at the 0.143 threshold. To validate the estimated resolutions with another criterion, the mask-free FDR–FSC approach was used, which was applied to the central 30 volume percentage in the z-direction. Cryo-EM density analysis was carried out using available TMV coordinates PDB 6SA9 (ref. 52) for EMPIAR-10305 and 4UDY (ref. 52) for EMPIAR-10021 and iDPC–STEM maps. The atomic models were rigid-body fitted in the map, displayed and Figures prepared using UCSF Chimera 72, UCSF ChimeraX 73 and Coot 74.

iDPC–STEM imaging simulations. All STEM image simulations (applied in Fig. 1d,e and in Supplementary Fig. 4) were produced using the multi-slice method 75, extended to support the iDPC–STEM as explained in the following refs. 76,77 on several applications. The parameters for simulations were chosen to accommodate conditions given in Supplementary Fig. 4. Noise was added at the quadrant detection level based on electron dose used in the experiments and varied to illustrate the effect on the image.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.
Data availability
All data needed to evaluate the conclusions in the paper are presented in the paper and/or the Supplementary Materials. KLH iDPC–STEM (3.5 mrad) and TMV iDPC–STEM (4.0 mrad) micrographs are publicly available as EMPIAR-11034 and EMPIAR-11042 data sets, respectively. KLH iDPC–STEM map was deposited at the Electron Microscopy Data Bank (EMDB) (EMD-14407). The EMDB accession numbers for the reconstructed TMV cryo-EM maps including fitted PDB coordinates are EMD-13778/PDB 7Q22 (CSA 2.0), EMD-13779/PDB 7Q23 (CSA 3.0), EMD-13780/PDB 7Q2A (CSA 3.5), EMD-13781/PDB 7Q2R (CSA 4.0) and EMD-13782/PDB 7Q2S (CSA 4.5).

References
69. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).
70. Pettersen, E. F. et al. UCSF Chimera X: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
71. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).
72. Desfosses, A., Ciuffa, R., Gutsche, I. & Sachse, C. SPRING – an image processing package for single-particle based helical reconstruction from electron cryomicrographs. J. Struct. Biol. 185, 15–26 (2014).
73. Živanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
74. Pettersen, E. F. et al. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
75. Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).
76. Krause, D. JUWELS: modular tier-0/1 supercomputer at the Jülich Supercomputing Centre. J. Large-Scale Res. Facilities 5, A135 (2019).

Acknowledgements
We thank the following people for their support during various stages: T. Hoffmann, A. Meingast, E. Yücelen, O.F. Raschdorf, S. Lazar, Y. Deng, R. Jonkers, B. Groen, B. de Vries, S. Vespucci and M. Veenis. We gratefully acknowledge the computing time granted through Jülich Aachen Research Alliance (JARA) on the supercomputer JURECA at Forschungszentrum Jülich\(^7\). K.M.-C. and M.-L.L. acknowledge funding from the Helmholtz Association under contracts VH-NG-1317 (moreSTEM) and ZT-1-0025 (Ptychography 4.0).

Author contributions
LL initiated cryo-iDPC–STEM concept. LL and C.S. designed the research. M.W. optimized the STEM column alignment, adjusted imaging conditions for low-dose imaging and designed the acquisition workflow. M.W. and LL operated electron microscope in iDPC–STEM mode under these conditions. Ed.H. prepared TMV cryo-specimens and designed acquisition workflow. E.V.P. prepared KLH cryo-specimens. Initial data evaluation was performed by LL, E.G.T.B., R.E., Ed.H. and E.V.P. Supporting simulations and related analysis were performed by E.G.T.B. Single-particle reconstruction of KLH was performed by D.M. and C.S. Image processing and TMV single-particle helical reconstruction was done by M.B., M.L.L., K.M.-C. and C.S. The paper, including figure preparation, was written by LL, M.L.L., D.M and C.S. with input from all the authors.

Funding
Open access funding provided by Forschungszentrum Jülich GmbH.

Competing interests
IL, MW, ED, E.V.P, RE and E.G.TB are employees of Thermo Fisher Scientific. The other authors declare no competing interests. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors received no specific funding for this work.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41592-022-01586-0.
Correspondence and requests for materials should be addressed to Ivan Lazić or Carsten Sachse.

Peer review information Nature Methods thanks Henning Stahlberg, Radostin Danev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Arunima Singh, in collaboration with the Nature Methods team. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection	Velox (ThermoFisher)v3.2, MAPS (ThermoFisher)v3.16
Data analysis	EMAN2 2.91, SPRING 0.86.1661, RELION 3.1, CryoSPARC 3.2, UCSF Chimera 1.15, UCSF Chimera X 1.2, Coot

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The following publicly available data were used in the manuscript: for TMV, 2015/2019 CTEM data sets (EMPIAR-10021 and EMPIAR-10305) and PDB coordinates of (PDB-ID 4UDV and 6SAG); for KLH, we docked the available structure PDB-ID 4BED into the iDPC-STEM map.

All data needed to evaluate the conclusions in the paper are presented in the paper and/or the Supplementary Materials. KLH iDPC-STEM (3.5 mrad) and TMV iDPC-STEM (4.0 mrad) are available as EMPIAR-11034 and EMPIAR-11042 data sets, respectively. KLH iDPC-STEM map was deposited at the EMDB (EMD-14407). The EMDB accession numbers for the reconstructed TMV cryo-EM maps including fitted PDB coordinates are EMD-13778/PDB-ID 7Q22 (CSA:2.0), EMD-13779/PDB-ID 7Q23 (CSA: 3.0), EMD-13780/PDB-ID 7Q2A (CSA: 3.5), EMD-13781/PDB-ID 7Q2R (CSA: 4.0) and EMD-13782/PDB-ID 7Q2S (CSA: 4.5).
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Two different biological specimens were imaged, KLH and TMV. For KLH, two data sets of 760 and 687 micrographs (2.0 and 3.5 mrad) and for TMV, a total of 5 different data sets were acquired at convergence semi-angles (CSA) of 2.0, 3.0, 3.5, 4.0 and 4.5 with a total of 20, 13, 15, 20 and 28 micrographs. The number of micrographs was determined by the number of extractable particles for KLH or segments for TMV for further image processing.
Data exclusions	Micrographs of poor particle coverage and ice quality were discarded.
Replication	Due to the time-consuming nature of image acquisition and the limited access to this specialized microscope equipment (Krios and STEM unit), exact replicates were not performed.
Randomization	Randomization was not applicable in the current study because of the time-consuming nature of image acquisition and the limited access to this specialized microscope equipment (Krios and STEM unit).
Blinding	Blinding experiments were not applicable to the current study because of the time-consuming nature of image acquisition and the limited access to this specialized microscope equipment (Krios and STEM unit).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

| Materials & experimental systems | Methods |
n/a	Involved in the study
	Antibodies
	Eukaryotic cell lines
	Palaeontology and archaeology
	Animals and other organisms
	Human research participants
	Clinical data
	Dual use research of concern
n/a	Involved in the study
	ChIP-seq
	Flow cytometry
	MRI-based neuroimaging