We report the calculation results of specific heat (c_v) and thermal conductivity (κ) by using Einstein, and Debye models about rock salt (NaCl), oxides: Na$_2$CoO$_3$, SrTiO$_3$, and LiNbO$_3$. In calculation, the longitudinal (L), and transverse (T) sound velocities (ν_L, ν_T) were estimated from acoustic phonons’ dispersions (νK) of above materials, and the average sound velocities (ν_b) were input into Debye model for κ equation, and results were compared with that of Einstein model. In some oxides, ν_b is relatively reduced at slight high ν_L (ν_L/ν_T=0.3-0.5).

The relation of κ, ν_b, and T were plotted as the contour images about realizing low κ value to application of thermoelectric properties.

(Dated: 1 July 2018)

Keywords: specific heat, thermal conductivity, rock salt, oxides, Einstein model, sound velocity, Debye model

1. Introduction

Nowadays, various thermoelectric (TE) materials are reported about their variety of thermal transport properties of metallic (Bi$_2$Te$_3$) [1], semiconducting (Si$_6$Ge$_{30}$), and oxides. Recently, oxide TE materials are showing the favorable non-dimensional figure of merit (ZT). Particularly, Na$_2$CoO$_3$ (NCO) shows p-type, reported as ZT=0.8 at 800K [2], and SrTiO$_3$ (STO) shows n-type, and reported as ZT=0.3 at 1100K.[3] The favorable n-type TE oxide materials are demanded to develop for realizing high performance p-n pairs of TE module use.[1-5] In theoretical thermal dynamics, specific heat (c_v) is well known by Einstein and Debye models. At first, Einstein represented about equivalent gas kinetic equation about thermal conductivity (κ), as $\kappa=(1/3)c_v\theta$, where I is mean free path, and ν is sound velocity.[6] Einstein developed for c_v model. Debye represented for c_v, and κ donated as κ_{Einstein}.[7-9] Heat capacity (C_m=mc_v) is transferred to κ by $\kappa=(1/\nu)\int D(\omega)C(\omega)\nu(\omega)(\omega)d\omega$, where V, and D are volume, and density, respectively, [10] and κ is represented in eq.(2,4).

κ of nano-ordered grain and its boundaries is discussed. [11,12] In silicon clusters, weak phonon vibrations (“rattling”) for lowering κ is accounted by Einstein and/or Debye models.[13] In material, phonon vibrations’ modes are important for thermal transport properties: for example, low κ in Bi$_2$Te$_3$ caused because of averaged ν and heavy-Te phonon motions. κ in Na$_2$CoO$_3$ also shows relatively low value because of ν_b. On the other hand, κ in SrTiO$_3$ is slight high value because of symmetric light-Ti phonon motions.

In this paper, calculation results about c_v and κ by using Einstein and Debye models about rock solute (NaCl), NCO, STO, and LiNbO$_3$ (LNO) are reported.

2. Calculation

The specific heat (c_v) and thermal conductivity (κ) representations are known by Einstein, and Debye models.[8] In Einstein model, c_v and κ cannot be affected for phonon properties of materials because of calculated by the Einstein frequency (ω_b). Eventually, c_v and κ are not shown correctly at low temperature.

$$c_v\text{Einstein}=3nk_B(\theta_b/T)^2\nu^4(e^{\theta_b/T}−1)^2,$$ (1)

$$\kappa\text{Einstein}=(3/2nk_B^3T^3n)^{1/3}e^{\theta_b}e^\nu(e^{\theta_b}−1)^2,$$ (2)

where n is the number of density of atoms, $x=h
\nu/k_BT$, and θ_b is the Einstein temperature.

To select not ω_b but phonon frequencies of materials, above mentioned Einstein's result is possible to be modified Debye model. The average sound velocity (ν_b) of longitudinal (ν_L) and transverse (ν_T) modes is written as $\nu_b^i=\nu_{bi}^i=(1/3)(1/\nu_L^i+2/\nu_T^i)^{1/3}$, and c_v and κ of Debye model are indicated as

$$c_v\text{Debye}=9nk_B(T/\theta_b)^2\int_0^\infty x^4e^\nu(e^{\theta_b}−1)^2,$$ (3)

$$\kappa\text{Debye}=(\pi/6)^{1/3}k_B^{2/3}n^{2/3}T\theta_b^2\int x^4e^\nu(e^{\theta_b}−1)^2,$$ (4)

where $x=h\nu/k_BT$, and θ_b is the Debye temperature ($\theta_b=(h\nu/k_BT)(6\pi^2 n^3)^{1/3}$).[8]

Table 1 lists n, sound of velocity (ν_L, ν_T, ν_b), ν_T, γ, E, θ_b, and θ_b of materials.[14]
3. Result and discussion

Figure 1 shows sound (phonon) velocity of selected materials as listed in Table I. The average velocity ($v_\bar{a}$) is calculated from longitudinal velocity ($v_\| = \omega_\ell / K$), transverse velocity ($v_\perp = \omega_\perp / K$), and Einstein frequency ($\omega_E = 3 \times 10^{13} \text{rad/s}$) at 300K), and Debye frequency ($\omega_D, \omega_\text{max} = 6 \pi^2 \nu_0 / V$) are depicted in Figs.1. In Einstein model, 3N harmonic oscillators are considered. The Einstein temperature (Θ_E) is an adjustable parameter in eq.(1,2), and frequency (ω_E) is constant ($\omega_E > \omega_D$). In Debye model, 3N-6 harmonic oscillator is considered. In Fig.1(a), phonon dispersion of rock solute: NaCl, and $v_\| \text{estimated}$, and listed in Table I. In Fig.1(b), $v_\|$ of NCO is calculated to be 2,113 m/s from v_ℓ and v_ℓ by using ω / K.\[15,16\] In Fig.1(b), $v_\|$ of NCO is calculated to be 2,113 m/s from v_ℓ and v_ℓ by using ω / K.\[17\] In Fig.1(c), $v_\|$ of STO is also calculated to be 5,270 m/s from v_ℓ and v_ℓ by using ω / K.\[18\] In Fig.1(d), $v_\|$ of LNO is calculated to be 3,558 m/s.\[19\] From above results, Poisson’s ratio (γ), Grüneisen parameter (γ), and Young modulus (E) are estimated, and listed in Table I.\[14\]

![FIG. 1](image)

FIG. 1 The phonon dispersion: LA, TA versus wavenumber ($\omega, \omega_{\text{max}} \leq 10^6 \text{cm}^{-1}$). (dots: reported, solid line: fitting), and density of the state of phonon versus Einstein, and Debye frequencies of (a) rock salt: NaCl, (b) Na$_2$CoO$_2$, (c) SrTiO$_3$, and (d) LiNbO$_3$.

κ and c_v are calculated by using eq.(1-4) with inputting n, $\nu_\|$, and Θ_E or Θ_D in Table I.

Figure 2 shows κ and c_v as the functions of $\nu_\|$, and T. In Fig.2(a), κ_{Ein}, κ_{Debye}, c_v^{Ein}, and c_v^{Debye} of NaCl are showed to be 5.6 W/mK, 4.6 W/mK, 49.9 J/molK, and 45.4 J/molK at 100K, respectively.\[20\] Although high κ of Na (83.6 W/mK) caused by Na ion displacement is known, here low κ is estimated for NaCl caused by phonon vibration of $\nu_\|$. In Fig.2(b), κ_{Ein}, κ_{Debye}, c_v^{Ein}, and c_v^{Debye} of Na are calculated for NCO to be 4.4 W/mK, 3.8 W/mK, 96.6 J/molK, and 89.4 J/molK at 1000K, respectively.\[17\] In Fig.2(c), κ_{Ein}, κ_{Debye}, c_v^{Ein}, and c_v^{Debye} of STO are calculated for NCO to be 11.9 W/mK, 10.6 W/mK, 124 J/molK, and 122 J/molK at 1000K, respectively.\[21\] In Fig.2(d), κ_{Ein}, κ_{Debye}, c_v^{Ein}, and c_v^{Debye} of LNO are calculated for NCO to be 5 W/mK, 4.3 W/mK, 98.5 J/molK, and 85 J/molK at 1000K, respectively.\[21\]

Estimated above results are correct for $c_v \approx$ at 0K, and Dulong-Petit value ($c_v/n=3R=24.4\text{J/molK}$, R: gas constant) up to 1000K. In addition, $\kappa_{\text{Debye}}/\kappa_{\text{Ein}}=0.82-0.89$, and $c_v^{\text{Debye}}/c_v^{\text{Ein}}=0.83-0.98$ are estimated.

![FIG. 2](image)

FIG. 2 Thermal conductivity (solid line) and specific heat (dashed line) calculated by Einstein (“blue”), and Debye models (“purple”) for (a) rock salt: NaCl, (b) Na$_2$CoO$_2$, (c) SrTiO$_3$, and (d) LiNbO$_3$ as a function of T.

Table I Materials, carrier density, sound velocities, material constants, Einstein, and Debye temperature.

Material	N (10^{19}/cm3)	$\nu_\|$	$\nu_\|$	$\nu_\|$	γ	E (GPa)	Θ_E (K)	Θ_D (K)	
rock salt: NaCl	4,460	5,500	2,050	2,327	0.42	2.87	36.1	270.3	265.8
diamond		17,500	1,1640	12,729					
Na									
Na$_2$CoO$_2$	1,000	3,768	1,884	2,113	0.33	2.00	820	793	
SrTiO$_3$	< 1.0	7,850	4,770	5,270	0.21	1.31	30	30	
LiNbO$_3$	< 1.0	7,963	3,141	3,558	0.41	2.72	201	500	500
Figure 3 (a) shows ν_a versus ν_t, and ν_a/ν_t, and Fig.3 (b) shows ν_a versus ν_t, and ν_t/ν_a. As shown in Fig.3 (a), ν_a and ν_t/ν_a are increased with increasing ν_t. In Fig.3 (b), ν_a is increased with increasing ν_t, but ν_t/ν_a is decreased with increasing ν_t. Here, ν_t is a key-factor for reducing κ: ν_t of NCO and LNO is relatively reduced by slight high ν_t ($\nu_t/\nu_a=0.5$ for NCO, $=0.9$ for LNO), as follows $\nu_a=(1/3)\nu_t/(\nu_a^3+2/\nu_a^5)$. κ_{min} of several materials is usually estimated by Debye model using ν_a and T in eq.(4). κ should not be decided high displacement atom such as Na, but phonon dispersion in crystal, particularly, low k is possible to be reduced by above mentioned ν_t.

Figure 3 (c) shows the contour image of κ (κ_{min}) as the functions of ν_a ($1,500\text{m/s}<\nu_a<6,500\text{m/s}$) and T, and Fig.3 (d) also shows the contour image of κ_{min} ($T=30\text{K}$) as the functions of ν_a ($1,500\text{m/s}<\nu_a<6,500\text{m/s}$, $\nu_t=5,000\text{m/s}$) and T. In Fig.3 (c), κ_{min} shows high value in region of $\nu_a=2,000-6,500\text{m/s}$, on the other hand, in Fig.3(d), κ_{min} is reduced in region of $\nu_a=2,000-6,500\text{m/s}$.

![Figure 3](image-url)

FIG. 3 The average sound velocity (ν_a) versus (a) ν_t, ν_a/ν_t, (b) ν_a, ν_t/ν_a, (c) contour image about κ_{min}, (changed ν_a, fixed ν_t) and (d) contour image about κ_{min}, (changed ν_t, fixed ν_a) as the functions of ν_t and T.

4. Conclusion

The average sound of velocities (ν_v) of TE materials are calculated by using sound velocities (ν_t, ν_a) from reported phonons’ dispersions ($\sim\alpha K$). The thermal conductivity (κ) is possible to be estimated by $\kappa=(1/\nu)\int D(\omega)C(\omega)\nu(\omega)\nu(\omega)d\omega$ as follows Debye model. For TE material, particularly, k and c_v were compared Einstein and Debye models input by sound velocity of materials. ν_v is reduced by slight high ν_t, and κ donated as κ_{min} is decreased with decreasing ν_v. Estimated κ_{min} can be considered as κ_{ph} of $\kappa_{\text{min}}=\kappa_{\text{ph}}+\kappa_{\text{el}}$.

In future study, the investigation of κ about n-type Nb related TE oxide will be carried out by using Harman method (experiment) and Debye model (calculation).

Acknowledgment

This work was partly supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research(C) Number JP25410238.

*Present address: 1-15-11, Sakura-cho, Tsuchiura, Ibaraki, 300-0037, Japan, Techno Pro R&D company (Tsunbaka branch), Techno Pro Inc.

e mail: hkkemoto@yananashi.ac.jp

Reference

[1] L.D. Hicks, and M.S. Dresselhaus, Phys. Rev. B47 12727 (1993).
[2] I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B56 R12685 (1997).
[3] S. Ohta, T. Nomura, H. Ohta, and K. Kourmo, J. Appl. Phys. 97 034106 (2005).
[4] H. Kakemoto, arXiv:cond-mat/ 1712.09840 [cond-mat.mtrl-sci] 28 Dec 2017.
[5] H. Kakemoto, arXiv:cond-mat/ 1801.07361 [cond-mat.mtrl-sci] 23 Jan 2018.
[6] D.G. Cahill and R.O. Pohl, Solid State Commn 70 927-930 (1991); D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B 46 pp.6131-6140 (1992).
[7] P. Jood, M Ohta, O. I. Lebedev, and D. Berthebaud, Chem. Mater. 27 pp.7719-7728 27 (2015).
[8] H.J. Goldsmid, “Introduction to Thermoelectricity”, Springer series in material science. Springer, (2016).
[9] J. Shiomi, K. Esfarjani, and G. Chen, Phys. Rev. B84 104302 (2011).
[10] Priyanka Jood, and Rutvik J. Mehta, Nano Lett. 11 4337 (2011).
[11] T. Rachi et al., Phys. Rev. B72 144504 (2005).
[12] Poisson's ratio is written as $\nu_p=\nu_t^2+\nu_a^2/(\nu_t^2+\nu_a^2)$, and Young’s modulus is written as, $E=\nu_t(1+\nu)(1-2\nu)/(1-\nu)$, where d is density.
[13] H. Bilz, W. Kress, Phonon Dispersion Relations in Insulators, Springer Series in Solid State Sciences 10, Springer-Verlag Berlin Heidelberg New York.
[14] G. Ramuio, and S. Rolandson, Phys. Rev. B2, 2098 (1970).
[15] P.K. Jha et al., Physica B366 153-161 (2005); Z. Li et al., PRB70 144518 (2004).
[16] G.W. Stirling, J. Phys. C5, 2711 (1972). J.D. Huang et al., Appl. Phys. 94 7341 (2003).
[17] M.R. Chowdhury et al., C7, L99 (1974).
[18] M.W. Jr. Chase, J. Phys. Chem. Ref. Data, Monograph 9, 1-1951 (1998).
[19] S. Yao et al., J of Alloy and Compounds 455, 501-505 (2008).