Comparative Study of Three Achillea Essential Oils from Eastern Part of Turkey and their Biological Activities

Betül Demirci1*, K. Hüsnü Can Başer2, Zeki Aytaç3, Shabana I. Khan4,
Melissa R. Jacob4 and Nurhayat Tabanca4,5

1Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Türkiye
2Near East University, Faculty of Pharmacy, Department of Pharmacognosy, Lefkoşa (Nicosia), N. Cyprus
3Department of Biology, Faculty of Science, Gazi University, 06500 Ankara, Türkiye
4National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA
5USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 USA

(Received March 30, 2017; Revised July 24, 2017; Accepted July 26, 2017)

Abstract: Essential oils obtained by hydrodistillation were analyzed both by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The main constituents found in Achillea oil were as follows: A. filipendulina Lam.: 43.8% santolina alcohol, 14.5% 1,8-cineole and 12.5% cis-chrysanthényl acetate; A. magnifica Hiemerl ex Hub.-Mor.: 27.5% linalool, 5.8% spathulenol, 5.5% terpinen-4-ol, 4.7% α-terpineol and 4.7% β-eudesmol; A. tenuifolia Lam.: 12.4% artemisia ketone, 9.9% p-cymene, 7.1% camphor, 5.9% terpinen-4-ol, 4.7% caryophyllene oxide and 4.5% α-pinene. Furthermore, the Achillea essential oils were evaluated for antimalarial and antimicrobial activities. A. magnifica and A. filipendulina oils showed strong antimalarial activity against both chloroquine sensitive D6 (IC50 = 1.2 and 0.68 μg/mL) and chloroquine resistant W2 (IC50 = 1.1 and 0.9 μg/mL) strains of Plasmodium falciparum without any cytotoxicity to mammalian cells up to IC50=47.6 μg/mL against Vero cells. whereas A. tenuifolia oil showed no antimalarial activity up to a concentration of 20 mg/mL. All three Achillea oils showed no antibacterial activity against human pathogenic bacteria up to a concentration of 200 μg/mL. A. tenuifolia and A. magnifica oils demonstrated mild antifungal activity against Cryptococcus neoformans (IC50= 45, 20 and 15 μg/mL, respectively).

Keywords: Asteraceae; Achillea filipendulina; A. magnifica; A. tenuifolia; essential oil composition; antimalarial and antimicrobial. © 2018 ACG Publications. All rights reserved.

1. Plant Source

Achillea L. is a large genus belonging to the family Asteraceae. This genus is widely distributed in Anatolia and is represented by 59 species of which 31 are endemic for Turkey [1]. Achillea species comprise an important biological resource in folk medicine to treat various diseases and several of them are used for their pharmaceutical, cosmetic, and fragrance properties [3]. Achillea species are generally known as “Civanperçemi” and used for the treatment of gastrointestinal disorders in Anatolian folk medicine. In the present study, we investigated three Achillea species (A. filipendulina Lam., A. tenuifolia Lam., and A.

*Corresponding author: E-Mail: betuldemirci@gmail.com; Phone:+90 222 335 05 80-3717
magnifica Hiemerl ex Hub.-Mor. from eastern part of Turkey. Out of the three species, *A. magnifica*, an endemic species, is recognized by local names as “karcivanı” and its dried flowering parts are mixed with honey and consumed for stomach disorders [4].

The plant material was identified by Prof. Dr. Z. Aytąc. Voucher specimens were deposited at the Herbarium of Gazi University, Faculty of Science and Letters. Detailed information on the plant materials used are given in Table 1.

2. Previous Studies

Essential oils of *Achillea* species have been the subject of several investigations. *A. millefolium* L. has been the most widely studied species because of its economic value and therapeutic properties. Previous phytochemical investigations of *Achillea* species have revealed the presence of sesquiterpene lactones, proazulenes, sesquiterpenoids, flavonoids, triterpenes, coumarins, peroxides, phenolic and polyacetylene compounds [5].

Although the essential oil composition of *A. filipendulina*, *A. tenuifolia* and *A. magnifica* have been recently reported in the literature and the antibacterial activity of *A. filipendulina* has been studied [5-10], the antimalarial activity of *A. tenuifolia* and antimicrobial activity of *A. tenuifolia* and *A. magnifica* were investigated for the first time.

3. Present Studies

Isolation of the Essential Oil: Essential oils were hydrodistilled from dried aerial parts for 3 h using a Clevenger apparatus. The yields were calculated on a dry weight basis as given in Table 1.

GC-MS and GC-FID Analysis: The GC-MS and GC-FID analysis were carried out with an Agilent 5975 GC-MSD and Agilent 6890N GC systems, respectively. Analysis conditions and identification of the oil components are similar to our earlier studies [1].

Biological Activity: The *in vitro* antimalarial [11] and antimicrobial [12] activity was performed as previously described. Antimalarial standards chloroquine (Aldrich-Sigma, ST, Louis, MO) and artemisinin (Aldrich-Sigma, ST, Louis, MO) and antimicrobial standards ciprofloxacin (ICN Biomedicals, Ohio) for bacteria and amphotericin B (ICN Biomedicals, Ohio) for fungi were purchased from commercial sources.

Table 1. Information on the plant material and essential oils

Achillea sp.	Collection site	Altitude (m)	Collection period	Oil yield (%)	ZA²
A. filipendulina	Şırnak-Şenova-Hakkari 79. km	1950	15.07.2001	0.80	ZA8195
A. magnifica	Malatya: Pütürge, 17.km	1100	12.07.2001	0.09	ZA8135
A. tenuifolia	Ağrı-Doğubeyazıt-Igdır, 13. km	1600	19.07.2001	0.20	ZA8272

¹ Essential oil yields are given on moisture-free basis.
² Voucher specimens were deposited at the Herbarium of GAZI (Gazi University, Faculty of Science)

Air-dried aerial parts of three *Achillea* species, *A. filipendulina* Lam., *A. magnifica* Hiemerl ex Hub.-Mor., and *A. tenuifolia* Lam., were analyzed by GC and GC-MS and the individual identified components with their relative percentages are given in Table 2.

In the oil of the *A. filipendulina*, 53 components were characterized representing 93% of the total oil. This oil was characterized by a relatively high content of santolina alcohol (43.8%). 1,8-Cineole (14.5%) and cis-chrysanthenyl acetate (12.5%) were found as other main constituents.
A total of 70 compounds were characterized in *A. magnifica* essential oil, representing 91.7% of the total oil with linalool (27.5%), spathulenol (5.8%), terpinen-4-ol (5.5%), α-terpineol (4.7%) and β-eudesmol (4.7%) as main constituents.

Table 2. The composition of the essential oils of three *Achillea* species

RRIa	RRIb	Compound	Af (%)c	Am (%)c	At (%)c	IMd
1025f	1032	α-Pinene	1.3	0.1	4.5	tR, MS
1036g	1043	Santolinatriene	2.3		3.6	MS
1068g	1076	Camphene	0.9		1.6	tR, MS
1082g	1093	Hexanal			0.3	tR, MS
1117f	1118	β-Pinene	0.9	0.1	1.2	tR, MS
1122f	1132	Sabinene	0.2		0.4	tR, MS
1122g	1135	Thuj-2,4(10)-diene	-		0.1	MS
1160f	1174	Myrcene	-		0.3	tR, MS
	1185	Isobutyl 2-methyl butyrate	-		0.1	MS
1192g	1195	Dehydro-1,8-cineole	0.2		0.1	MS
1212f	1203	Limonene	-	0.3	0.6	tR, MS
1211g	1213	1,8-Cineole	14.5	1.9	2.3	tR, MS
1232f	1244	2-Pentyl furan	-		0.1	MS
1245f	1255	γ-Terpine	-		0.2	tR, MS
1281f	1280	p-Cymene	1.5	0.4	9.9	tR, MS
1285		Isoamyl isovalerate	0.1			MS
1282f	1290	Terpinolene	-		0.1	tR, MS
1296		Pentyl isovalerate	-	0.1	-	MS
1355		1,2,3-Trimethyl benzene	0.1		-	MS
1358		Artemisia ketone	-		12.4	MS
1386		Octenyl acetate	-		0.2	MS
1395g	1403	Yomogi alcohol	0.5		2.0	MS
1405		Santolina alcohol	43.8		0.1	MS
1429		Artemisylacetate	0.2		0.2	MS
1431		7α-(H)-Silphiperfol-5-ene	-		0.3	MS
1446f	1450	trans-Linalool oxide (Furanoid)	-	1.0	-	MS
1454		7β-(H)-silphiperfol-5-ene	-		0.1	MS
1548g	1474	trans-Sabinene hydrate	0.2	2.3	1.8	MS
1478		Linalool-7-oxide-3-one	-	0.2	-	MS
1487		Isomeroloxide-I	-		0.3	MS
1458f	1497	α-Copaene	-	t6	0.1	MS
1499		α-Campholene aldehyde	0.1	t	0.1	MS
1501		Silphiperfol-6-ene	-		tr	MS
1510g	1510	Artemisia alcohol	0.3		3.6	MS
1515h	1532	Camphor	0.6	1.3	7.1	tR, MS
1518g	1541	Benzaldehyde	-		0.3	tR, MS
1543h	1553	Linalool	0.1	27.5	0.1	tR, MS
1556		cis-Sabinene hydrate	0.2	1.1	1.0	MS
1562		Isopinocamphene	0.1		-	MS
1584g	1571	trans-p-Menth-2-en-1-ol	0.1	0.5	0.8	MS
1561g	1582	cis-Chrysanthenyl acetate	12.5		-	MS
1575h	1586	Pinocarvone	-	0.7	0.8	tR, MS
1579h	1591	Bornyl acetate	1.4		0.1	tR, MS
1590h	1600	β-Elemene	-		0.5	MS
1601h	1611	Norpinone	-	0.5	-	MS
1601h	1611	Terpinen-4-ol	0.8	5.5	5.9	tR, MS
1608h	1612	β-Caryophyllene	-		0.2	tR, MS
1602h	1616	Hotrienol	-	3.0	-	MS
1614g	1638	cis-p-Menth-2-en-1-ol	0.1	0.4	0.6	MS
1631h	1648	Myrtenal	0.1	1.4	-	MS
1651h	1651	Sabinaketone	0.2		-	MS
---	---	---	---	---		
1655	Isobornyl propionate	-	-	0.1	MS	
1656	Chrysanthenyl isobutyrate	-	-	0.2	MS	
1649s	Alloaromadendrene	-	0.1	-	MS	
1659s	cis-Verbenol	0.1	-	0.3	tR, MS	
1665	cis-Sabinyl acetate	-	0.1	-	MS	
1661h	trans-Pinocarveol	0.5	1.2	0.4	tR, MS	
1679s	δ-Terpineol	0.1	0.3	-	MS	
1682 (E)-Ocimeno	-	-	0.1	MS		
1680s	trans-Verbenol	0.3	-	1.6	MS	
1666s	α-Humulene	-	0.1	-	tR, MS	
1710s	trans-piperitol	0.1	0.2	-	MS	
1688	Selina-4,11-diene	-	0.3	-	MS	
1694s	α-Terpineol	0.2	4.7	0.8	tR, MS	
1719	Borneol	2.9	0.2	0.5	tR, MS	
1720s	Verbenone	t	-	0.1	tR, MS	
1708s	Germacrene D	-	0.6	-	MS	
1727s	β-Bisabolene	-	0.2	-	MS	
1725s	Geranial	-	0.4	-	tR, MS	
1729s	Piperitone	-	-	1.4	MS	
1733s	Carvone	-	-	t	tR, MS	
1758	cis-Piperitol	t	0.2	0.3	MS	
1760	Chrysanthenyl isovalerale II	-	-	0.1	MS	
1762s	cis-Chrysanthene	3.0	-	-	MS	
1754s	Decanol	-	0.5	-	tR, MS	
1770	Isobornyl isovalerale	-	-	0.1	MS	
1738s	trans-Linalool oxide (Pyranoid)	-	0.2	-	MS	
1773s	ar-Curcumene	-	-	0.2	MS	
1793	α-Camphene alcohol	-	-	0.2	MS	
1784s	Cumin aldehyde	-	-	0.2	tR, MS	
1790h	Myrtenol	0.3	3.0	0.1	MS	
1803s	trans-p-Mentha-1(7),8-dien-2-ol	-	-	0.1	MS	
1836s	trans-Cardolve	0.2	-	0.2	tR, MS	
1848s	p-Cymen-8-ol	0.1	0.2	0.4	tR, MS	
1889	Ascaridol	0.4	-	-	MS	
1902	Benzyl isovalerale	-	-	0.1	tR, MS	
1945	1,5-Epoxy-salvial(4)14-ene	-	0.6	-	MS	
1955s	cis-Jasmon	-	0.4	-	MS	
2001	Isoarylophene oxide	-	-	0.5	MS	
1962h	Caryophyllene oxide	0.1	0.9	4.7	tR, MS	
2006h	Perilla alcohol	0.1	0.6	-	MS	
2006h	Myrtenol	0.3	3.0	0.1	MS	
2001	Isoarylophene oxide	-	-	0.5	MS	
1962h	Caryophyllene oxide	0.1	0.9	4.7	tR, MS	
2006h	Perilla alcohol	0.1	0.6	-	MS	
2006h	Methyl eugenol	-	1.1	-	tR, MS	
2018	4α-Hydroxy chiphendol	0.2	-	-	MS	
2016h	Salvial-4(14)-en-1-one	-	0.5	0.2	MS	
2036h	(E)-Nerolidol	-	2.0	-	MS	
2056	13-Tetradecanolide	-	0.8	0.6	MS	
2061	trans-Bejarol	-	1.0	-	MS	
2047h	Humulene epoxide-II	-	-	0.4	MS	
2113	Cumin alcohol	0.2	-	0.1	tR, MS	
2118	α-trans-Bejarol	-	0.2	-	MS	
2122	cis-Bejarol	-	0.5	-	tR, MS	
2130	Salvadienol	-	0.3	-	MS	
2131	Silphiperfol-6-en-5-one	-	-	0.7	MS	
2126h	Spathulenol	0.2	5.8	3.4	MS	
2174	Fokienol	-	0.4	-	MS	
The main components of *A. tenuifolia* oil were determined as artemisia ketone (12.4%), *p*-cymene (9.9%), camphor (7.1%), terpinen-4-ol (5.9%), caryophyllene oxide (4.7%) and *α*-pinene (4.5%). 85 components were identified representing 85.9% of the total *A. tenuifolia* essential oil.

In the current study, these three *Achillea* essential oils were evaluated for their antimalarial and antimicrobial activities. *A. magnifica* and *A. filipendulina* oils showed strong antimalarial activity against both chloroquine-sensitive D6 (IC$_{50}$= 1.2 and 0.68 µg/mL) and chloroquine-resistant W2 (IC$_{50}$= 1.1 and 0.9 µg/mL) strains of *Plasmodium falciparum* when the comported to positive standards chloroquine (IC$_{50}$= 0.018 µg/mL for D6 and IC$_{50}$= 0.16 µg/mL for W2 clones) and artemisinin (IC$_{50}$= 0.0037 µg/mL for D6 and IC$_{50}$= 0.0035 µg/mL for W2 clones) without exhibiting any cytotoxicity at IC$_{50}$ values of 47.6, 15.867 and 5.288 µg/mL against Vero cells. however, *A. tenuifolia* did not show antimalarial activity. *Achillea* oils showed no antibacterial activity against human pathogenic bacteria up to a concentration of 200 µg/mL. *A. tenuifolia* and *A. magnifica* oils demonstrated mild antifungal activity against *Cryptococcus neoformans* (IC$_{50}$= 20 and 15 µg/mL, respectively) and *A. tenuifolia* oil demonstrated weak antimycobacterial activity against *Mycobacterium intracellulare* with an IC$_{50}$ value of 200 µg/mL. Bioassay-guided investigations are warranted out to identify active antimalarial compounds from *A. magnifica* and *A. filipendulina* essential oils.

To the best of our knowledge, this is the first report of chemical composition these three *Achillea* species from eastern (Malatya and Ağrı) and south-eastern (Şırnak) region of Turkey and their biological activities of *A. magnifica*, *A. tenuifolia* and *A. filipendulina* essential oils were evaluated.
Essential oil composition of Achillea species and their biological activities

Acknowledgments

The authors thank Mr. John Trott, Ms. Marsha Wright for excellent technical support in performing antimalarial and antimicrobial assays. This work was supported in part by the NIH, NIAID, Division of AIDS, Grant No. AI 27094 (antifungal) and the USDA Agricultural Research Service Specific Cooperative Agreement No. 58-6408-1-603.

ORCID
Betüл Demirci: 0000-0003-2343-746X
K. Hüsnü Can Başer: 0000-0003-2710-0231
Zeki Aytaç: 0000-0003-3244-3183
Shabana I. Khan: 0000-0001-6429-7219
Melissa R. Jacob: 0000-0003-4478-3345
Nurhayat Tabanca: 0000-0003-2802-8796

References

[1] N. Tabanca, B. Demirci, Z. Aytaç and K. H. C. Baser (2016). Chemical composition of Achillea schischkinii Sosn., an endemic species from Turkey, Nat. Volatiles Essent. Oils. 3, 24-28.
[2] K. H. C. Baser (2016). Essential oils of Achillea species of Turkey, Nat. Volatiles Essent. Oils 3, 1-14.
[3] K. H. C. Baser, B. Demirci and H. Duman (2001). Composition of the essential oils of two endemic species from Turkey: Achillea lycodonia and A. ketenoglu, Chem. Nat. Compd, 37, 245-252.
[4] E. Tuzlacı (2006). Türkiye’nin Bitkisel Halk İlaçları, Alfa Basım Yayın Dağıtım Şirketi, Istanbul, 17pp.
[5] M. Mohammadhosseini, S. D. Barker and A. Akrarzadeh (2017). Chemical composition of the essential oils and extract of Achillea species and their biological activities: A review, J. Ethnopharmacol. 199, 257-315.
[6] A. Ebadollahi (2017). Chemical composition, acaricidal and insecticidal effects of essential oil from Achillea filipendulina against two arthropod pests; Orzyaephilus surinamensis and Tetranychus urticae, Toxin Reviews 36, 132-137.
[7] M. Piryaei and H. Nazemiyeh (2016). Fast analysis of volatile components of Achillea tenuifolia Lam with microwave distillation followed by headspace single-drop microextraction coupled to gas chromatography-mass spectrometry (GC-MS), Nat. Prod. Res. 30, 991-994.
[8] S. Gharibi, B. E. S. Tabatabaei and G. Saeidi (2015). Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species, J. Essent. Oil-Bear. Plants 18, 1382-1394.
[9] K. Mohsen (2015). Chemical composition of the essential oil of Achillea tenufolia aerial parts, J. Essent. Oil-Bear. Plants 18, 261-263.
[10] O. Toncer, S. Basbag, S. Karaman, E. Diraz, M. Basbag (2010). Chemical composition of the essential oils of some Achillea Species growing wild in Turkey, Int. J. Agric. Biol. 12, 527-530.
[11] N. Tabanca, E. Bedir, N. Kirrmer, K.H.C. Baser, S. I. Khan, M. R. Jacob, I. A. Khan (2003). Antimicrobial compounds from Pimpinella species growing in Turkey, Planta Med. 69, 933-938.
[12] N. Tabanca, E. Bedir, D. Ferraira, D. Slade, D. E. Wedge, M. R. Jacob, S. I. Khan, N. Kirrmer, K. H. C. Baser and I. A. Khan (2005). Bioactive constituents from Turkish Pimpinella species, Chem. Biodiv. 2, 221-232.
[13] N. Tan, S. Yazıcı-Tütünis, Y. Yeşil, B. Demirci and E. Tan (2017). Antibacterial and antifungal activities of the essential oils of Salvia sericeo-tomentosa varieties, Rec. Nat. Prod. 11, 456-461.
[14] V. I. Babushok, P.J. Linstrom and I.G. Zenkevich (2011). Retention indices for frequently reported compounds of plant essential oils, J. Phys. Chem. Ref. Data, 40(4), doi:10.1063/1.3653552
[15] H. E. Temel, B. Demirci, F. Demirci, F. Celep, A. Kahraman, M. Doğan and K. H. C. Başer (2016). Chemical characterization and anticholinesterase effects of essential oils derived from Salvia species, J. Essent. Oil Res. 28, 322-331.

© 2018 ACG Publications