Research Paper
A Stereological Study on Colon Tissue Layers of Type 1 Diabetic Rats Following Thiamine and Lead Acetate Use

*Rahmat Allah Fatahian Dehkordi, Soren Nooraie, Alborz Yadollahi

1. Department of Basic Sciences, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran.

ABSTRACT

Background and Aim Diabetes is a well-known disease with such complications, as retinopathy, nephropathy, and gastropathy. This study aimed to investigate the effects of thiamine and lead acetate on the colon of induced-alkoxan diabetic rats; the effects of which become obvious in the treatment or reduction of tissue complications caused by diabetes.

Methods & Material In this study, 63 rats weighing 200 g were divided into 9 groups, as follows: 1) Group of diabetes+pb acetate 200 ppm; 2) Group of thiamine+pb acetate 200 ppm; 3) Group of thiamine+pb acetate 1000 ppm; 4) Group of diabetes+thiamine+pb acetate 1000 ppm; 5) Diabetes group; 6) Group of diabetes+thiamine; 7) Group of diabetes+thiamine+acetate 200 ppm; 8) Group of diabetes+pb acetate 1000 ppm, and 9) the control group. After 20 days, the study samples were removed from the abdominal cavity and the slides were prepared by routine tissue method. Then, the slides were evaluated for stereological and histomorphometric studies.

Ethical Considerations This study was approved by the Faculty of Veterinary Medicine, Shahrekord University (Code: GRN1M1903). Moreover, all methods used in the present study, including facilitation, were conducted per the ethical principles of animal restraint.

Results The mean thickness of mucosa-sub-mucosa suggested significant differences in groups 6 and 7, compared to other treatment groups. There was a significant difference in the thickness of the muscle layer between the control and all treatment groups except for groups 2, 6, and 7. There was no significant difference in the mean thickness of adventitia layer in groups 1, 7, and 8, and the control group. The obtained results also indicated a significant difference concerning different layers of colon tissue between group 1 and controls.

Conclusion Based on the present research results, thiamine presented enhancing effects on muscle layer thickness and adventitia layer thickness. Furthermore, the area of the mucosal layer was not affected by the improving effects of thiamine.

Extended Abstract

1. Introduction

Diabetes is a well-known disease, i.e., generally caused by the disorder of insulin hormone metabolism, the disorder of hormone production, or the disruption of the production of membrane cell surface receptors on its target cells [4]. Diabetes has such complications as, retinopathy, nephropathy, and the involvement of the main peripheral arteries; it presents gastrointestinal motility disorders [5]. Thiamine is the first known B vitamin...
in energy supply, fat metabolism, and nucleotides. Besides, it plays an essential role as a coenzyme, especially in the formation and development of brain cells [8]. The accumulation of lead in the body can have destructive effects on the blood, bone marrow, kidney, and gastrointestinal blood cells [12]. In a report (Leff 2018), the injection of lead acetate in male mice with diabetes mellitus increased fasting blood glucose levels [15]. This study was designed to investigate the effects of thiamine and lead acetate on the colon of diabetic rats.

2. Materials and Methods

In all stages of this research, the ethical principles of working with laboratory animals in the laboratory of Shahrekord University were considered. This study was approved by the Research Ethics Committee of Shahrekord Veterinary School. In total, 63 rats with an average weight of 220-200 g were prepared from the animal house of Shahrekord University.

The examined rats were classified into 9 groups, as follows:

1) Diabetes+acetate group 200 ppm;
2) Thiamine+acetate group 200 ppm;
3) Thiamine group+lead acetate 1000 ppm;
4) Diabetes+thiamine+lead acetate 1000 ppm group;
5) Diabetes group;
6) Diabetes+thiamine group;
7) Diabetes+thiamine+acetate group 200 ppm;
8) Diabetes+acetate group 1000 ppm;
9) Control group.

After 20 days of treatment, the explored rats were anesthetized with ether anesthetic and facilitated by human methods. The abdominal cavity was opened and the large intestine came out of the cavity. Different layers of colon tissue, including mucosa, submucosa, muscle, and adventitia were examined under a microscope for histology and histometric. For stereological evaluation, using point grade, the area of different wall layers of the colonic tissue structure was examined.

3. Results

The morphometric findings revealed that the mean thickness of the mucosal-submucosal layer was the highest in treatment group 6 (diabetes+thiamine) and the lowest in group 7 (diabetes+thiamine+acetate 200 ppm) (Figures 1 A, B & C). These results also indicated that these differences were significant in groups 6 and 7, compared to other treatment groups and the controls, except for group 5 (diabetic group) concerning analysis at P<0.05. Morphometric results revealed a significant difference in the mean thickness of the smooth muscle layer of the colon wall in treatment groups 1 to 8, except for group 2 (thiamine+200 ppm lead acetate), compared to the control group (P<0.05). The obtained results presented no significant difference between the mean thickness of the muscle layer of group 2 and the control group (P<0.05). The average area of the mucosal-submucosal layer data suggested that in groups 1 and 8, there was a significant difference, compared to the control group (P<0.05); in both of them, a decrease was observed in this area. The results of the area parameter study in the muscle layer of the colon indicated that only in group 1, there was a significant difference, compared to the control group (P<0.05). Besides, this difference was in the direction of increasing the area.

Examining serous layer surface presented no significant difference, compared to the control group (P<0.05). There was only a significant difference between the groups of diabetes+lead 200 acetate and thiamine+lead 200 acetates in this respect.

4. Discussion and Conclusion

The present study investigated the histomorphometric changes of different layers of the colon in diabetic rats. As the present study revealed, the effects of thiamine and lead acetate in two different doses were well evident on the colon wall layers. The obtained data highlighted a significant decrease in the thickness of the mucosal-submucosal layer of groups 1, 7, and 8 (diabetes+acetate 1000 & 200 groups & diabetes + thiamine + lead acetate 200 groups), compared to the control group; this decreasing trend well reflects the damaging effects of lead acetate on the thickness of the mucosal-submucosal layer. The results of some studies suggested that free radicals are the main cause of many disorders in diabetes [21]. The collected results indicated that the thickness of the muscle layer, including decreasing changes in group 5 (diabetes) compared to the controls. However, Nowak et al. (1995) found that, in contrast to the data of the present study, induced experimental diabetes increased the thickness of the muscle layer [27]. Surface findings from the study of colonic tissue stereology
Presented that in group 1, the average area of different tissue layers was significantly different from the control group. These changes signified the effects of diabetes and lead acetate on colon tissue in the direction of increasing (mucosal layer area-submucosal) and decreasing (muscle layer area and adventitia). The results of another study revealed that diabetes caused a peripheral and longitudinal enlargement of the colon wall [29]. Considering the induction of experimental diabetes and subsequent administration of thiamine in the rats of the treatment group, thiamine, in some of the studied groups, has improved effects on muscle layer thickness and adventitia layer thickness. However, the mean area of the mucosal layer was not affected by the improving effects of thiamine.

Figure 1. Representative photomicrograph showing quantitative histomorphometric changes of colon tissues from rats.

Figure A. The micrograph of colonic tissue in the control group.

Note the regular tissue structure of the various layers of the colon wall. Mucous layer (yellow double-sided arrow) with submucosal layer (green double-sided arrow) and muscle layer (white double-sided arrow) (hematoxylin and eosin staining; Bar: 50 µm).

Figure B. The micrograph of colon tissue in the diabetic group.

Note the disjointed tissue structure of the various layers of the colon wall. The mucosal layer (green double-sided arrow) is well visible along with the submucosal layer (black double-sided arrow) and the muscle layer (yellow double-sided arrow) (hematoxylin and eosin staining; Bar: 15 µm).

Figure C. Colon tissue micrograph in the group of diabetes + thiamine + acetate 1000 ppm.

Note the tissue structure of the different layers of the colon wall. The mucosal layer (red bilateral arrow) is visible along with the submucosal layer (black bilateral arrow) and the muscular layer (yellow bilateral arrow) (hematoxylin and eosin staining; Bar: 15 µm).
Ethical Considerations

Compliance with ethical guidelines

This study was approved by the ethics code GRN1M1903 in the Faculty of Veterinary Medicine of Shahrekord University. Furthermore, all the methods used, including facilitation, were performed per the ethical principles of animal restraint.

Funding

The project was supported by Faculty of Veterinary Medicine, Vice Chancellor for Research, Shahrekord University.

Authors’ contributions

Conceptualization: Rahmat Allah Fatahian, Soren Nouroaei; Research: Rahm Atollah Fatahian, Alborz Yadalahi; Editors: Soren Nouraei, Alborz Yadalahi, Rahmat Allah Fatahian.

Conflicts of interest

The authors declared no conflicts of interest.

Acknowledgements

The authors want to thank all staff of the Physico-Pharmacology and Histopathology Laboratories, as well as the esteemed Vice Chancellor for Research of Shahrekord University and Faculty.
This Page Intentionally Left Blank
مقاله پژوهشی
بررسی استتروپوزیک لایمهای بافتی کولون موش‌های دیابتی نوع 1 به مصرف تیامین و استات سرب

*رهنماه فلاحیان دهکردی ۱ سوزن نورایی ۲، البرز یدالهی ۳
۱- گروه طول پایه مفاهمه، دانشکده هنرهای زیبایی، دانشگاه شرکت مهرکویر ایران.

آلفامتره
مقدمه
اختلال شایعی که به طور چشمگیر در بیشتر کشورهای ایران به وفور مشاهده می‌شود، افزایش قند خون (دیابت) است[۱]. بر اساس اطلاعات اپیدمیولوژیک در پیش‌گیری فردی، فردیت و حتی پیش‌گیری اجتماعی از تغییرات غذایی، کاهش مصرف توت و بادام و همچنین کاهش تصرف شیمی‌ای نشان می‌دهد که در ابعاد آماری اثراتی از دست می‌دهد[۲]. استات سرب به عنوان یکی از نواحی اصلی متابولیسم هورمون انسولین و اختلال در تولید هورمون و نیز ناهنجاری‌های سطح غشای سلول‌های هدف آن از جمله می‌تواند[۳]. عوامل متابولیک دیابت به خوبی شناخته شده است و از جمله مهم‌ترین آن‌ها ضرر سایینیک و پرگوپتیک استات سرب یا استات‌سرب[۴]. اختلالات حرکتی سطح‌گاهی کاراکتر بالا را از خود نشان می‌دهد[۵].

آزمایش‌های میکروسکوپی: از دستگاه کاراکتر بالا انجام شد. میکروسکوپ‌های الکترونیک و دیگر تجهیزات نوری برای کنترل نوری مورد نیاز بود. نتایج نشان داد که تیامین به دلیل نقص در سهی‌سازی مکانیک متابولیک، از دسته‌بندی پاتوژنیک شرکت مهرکویر ایران در شرکت مهرکویر ایران است.

میزان ضخامت لایه‌ها هر گروه در نهایت با استفاده از روش‌های معین شناخته شد. نتایج نشان داد که تیامین به طور قابل توجهی اثراتی در کاهش ضخامت لایه‌ها داشت. این نتایج با توجه به مطالعات پیش‌گیری از افراد انسانی بهترین بررسی‌ها در زمینه‌های مختلف تحقیقات و پژوهش‌های بیماری‌های متابولیک و دیابت بود.

کلیدواژه‌ها
تیامین، استات سرب، دیابت، موش، کولون
تیامین، اولین ویتامین همراه با استات سرب با غلظت 220 mg/1397/42 درجه در بهار (I، P، ن. 4: 2) از طریق انتخاب همراه با شرایط انتخابی باین در غلات پایین و از طریق انتخابات با باین در غلات پایین و از طریق انتخابی باین در غل
یافته های مربوط به ضخامت لایه های بافت کولون نتایج حاصل از یافته های مورفومتریک نشان داد که میانگین ضخامت لایه مخاطی زیرمخاطی در گروه تیمار شش (دیابت + تیامین) بیشترین و در گروه هفت (دیابت + تیامین + استات) کمترین مقدار را داشت. نتایج حاصل از بررسی پارامتر مساحت در لایه عضلانی کولون نشان داد که تنها در گروه یک اختلاف معنی داری نسبت به گروه کنترل در سطح P < 0.05 وجود داشت.

یافته های به دست آمده از آنالیز آماری میانگین مساحت لایه مخاط زیرمخاط نشان داد که در گروه های یک و هشت اختلاف معنی داری وجود داشت که P > 0.05 معناداری نسبت به گروه کنترل در سطح.

نتایج حاصل از تحقیق در مورد تیامین و استات سرب نشان داد که بررسی استریولوژی لایه های بافتی کولون موش های دیابتی نوع

یافته ها
در دو دوز مختلف به خوبی بر لایه‌های دیواره کولون مشهود بود. همچنان که مطالعه حاضر نشان داد اثرات تیامین و استات سرب تشکیل‌دهنده کولون در موش‌های دیابتی را بررسی می‌کند.

مطالعه حاضر تغییرات هیستومورفومتری لایه‌های مختلف میانگین فلاکاتور ایزوستاتیک و محله‌ای انوبات در گروه‌های مختلفی از موش‌های نر بالغ بعد از بیست روز تیمار مقایسه میانگین ضخامت لایه‌های مختلف مخاط زیرمخاط، عضله و ادوانتیس در گروه‌های مختلفی از موش‌های نر بالغ بعد از بیست روز تیمار

گروه‌ها	دیابت+استات سرب 200 ppm	تیامین+استات سرب 200 ppm	دیابت+استات سرب 1000 ppm	تیامین+استات سرب 1000 ppm	دیابت+استات سرب	تیامین+استات سرب	کنترل
گروه 1	1/110±4/9	1/112±4/8	1/113±4/7	1/114±4/6	1/113±4/9	1/112±4/8	1/111±4/7
گروه 2	1/114±4/6	1/115±5/7	1/116±4/9	1/117±4/8	1/116±4/7	1/115±5/7	1/114±4/6
گروه 3	1/112±4/8	1/113±4/7	1/114±4/6	1/115±4/5	1/114±4/7	1/113±4/6	1/112±4/8
گروه 4	1/114±4/7	1/115±4/6	1/116±4/5	1/117±4/4	1/116±4/6	1/115±4/5	1/114±4/7

پیشنهاد مساحت است. در بررسی سطح لایه‌های سرپرسبو مشخص مطالعه حاضر تغییرات هیستومورفومتری لایه‌های مختلف تشکیل‌دهنده کولون در موش‌های نر بالغ در حیподобیوبیوفیزیکی و علت دیگر می‌گیرد. همچنین مطالعه حاضر نشان می‌دهد اثرات تیامین و استات سرب در دو دوز مختلف به خوبی بر لایه‌های اپیپیتالی کولون مشهور است.

جدول 2. مقایسه میانگین سطح لایه‌های مختلف مخاط زیرمخاط، عضله و ادوانتیس در گروه‌های مختلفی از موش‌های نر بالغ بعد از بیست روز تیمار

گروه‌ها	دیابت+استات سرب 200 ppm	تیامین+استات سرب 200 ppm	دیابت+استات سرب 1000 ppm	تیامین+استات سرب 1000 ppm	دیابت+استات سرب	تیامین+استات سرب	کنترل
گروه 1	4/15±2/7	4/16±2/8	4/17±2/9	4/18±2/10	4/17±2/9	4/16±2/8	4/15±2/7
گروه 2	4/18±2/10	4/19±2/11	4/20±2/12	4/21±2/13	4/20±2/12	4/19±2/11	4/18±2/10
گروه 3	4/16±2/8	4/17±2/9	4/18±2/10	4/19±2/11	4/18±2/9	4/17±2/8	4/16±2/8
گروه 4	4/17±2/9	4/18±2/10	4/19±2/11	4/20±2/12	4/19±2/11	4/18±2/10	4/17±2/9
این اثرات به صورت افزایش و چه به صورت کاهش، نشانه‌هایی از علائم ترمیمی را به خصوص در گروه تیامین و علائم مخرب را در گروه استات سرب وقتی با گروه کنترل مورد مقایسه قرار گرفت، نشان داد. این نتایج به دست آمده نشان می‌دهد که تغییرات بافتی در یک مدل بیماری استریولوژیک با ترکیب ترمیمی و مخرب است.
نتایج مطالعه حاضر نشان دهنده کلیه معنی‌دار ضخامت لایه مخاط زیرمختار (گروه‌های دیابت+استات و دیابت+استات+تیامین) از مقایسه با گروه کنترل بود که این روند کاهشی برای طبقه‌بندی پایین‌رخ داشته و سرب حس و ارتباط آسیبی استات سرب بر ضخامت لایه مخاط زیرمختار است. نتایج بعضی مطالعات، عامل اصلی بسیاری از اختلالات در دیابت را رادیکال های آزاد تولید شده می‌دانند. اگرچه مطالعات بسیاری تأثیرات استات سرب را بر افزایش میزان رشد عصبی به خوبی آشکار می‌سازد، اما هنوز مستندات کمی درخصوص تغییرات ناشی از مواجه با استات سرب بر میزان شیوع بیماری‌های متابولیک همانند دیابت در دسترس است.

در مطالعات انجام شده روی اثرات سرب و مکانیسم‌های اثرگذاری این ماده سمی، نشان داده شده که به دلیل تمایل سرب به پروتئین و ظرفیت آن در تحریک کانال‌های کلسیم و آهن اکسیداتیو به ترکیبات سلولی آسیب وارد می‌کند. اکسیداتیو آنسیم و در منزل در مقابل اطلاعات مطالعه حاضر، دیابت القایی، افزایش ضخامت لایه عضله را به دنبال داشته. چنین به نظر می‌رسد که مدت زمان دوره تیمار بررسی نتایج حاصل از مقایسه گروه کنترل با گروه دیابت+تیامین (گروه شش) نشان دهنده روند افزایشی ضخامت لایه مخاط زیرمختار بوده که می‌توان آن را به اثرات ترمیمی مصرف تیامین بر ساختارهای سلولی این لایه به دنبال دیابت القایی نسبت داد. و همکاران با بررسی نتایج حاصل از مطالعه‌ای که توسط دراید روی موش‌های صحرایی ویستار انجام گرفت، به نظر می‌رسد آنزیم‌های ترشح شده از غدد شیری شتر می‌تواند در تنظیم سطح گلوکز خون و بهبود کارایی کبد، در موش‌های مسموم شده با سرب مؤثر است. یافته‌ها حاکی از آن است که ضخامت لایه عضله دستخوش تغییرات کاهشی در گروه پنج (دیابت) در مقایسه با گروه کنترل نشد. چنین به نظر می‌رسد که در مطالعه کریمی پور و همکاران مشخص شد که پودر زنجبیل توانسته است از اثرات دیابت بر روده جلوگیری کند، به طوری که ضخامت لایه عضله و طول پرزها در موش‌های صحرایی درمان شده، در مقایسه با موش‌های گروه کنترل تفاوت آماری معنا داری نداشته است. در مطالعه ما تزریق تیامین+استات دویست سبب کاهش ضخامت عضله شد، در حالی که در گروه‌های دیابت+استات و گروه دیابتی همراه با استات سرب 1000 ppm با دُز همکاران با بررسی نتایج حاصل از مطالعه کریمی پور و همکاران مشخص شد که پودر زنجبیل توانسته است از اثرات دیابت بر روده جلوگیری کند، به طوری که ضخامت لایه عضله و طول پرزها در موش‌های صحرایی درمان شده، در مقایسه با موش‌های گروه کنترل تفاوت آماری معنا داری نداشته است. در مطالعه ما تزریق تیامین+استات دویست سبب کاهش ضخامت عضله شد، در حالی که در گروه‌های دیابت+استات و گروه دیابتی همراه با استات سرب 1000 ppm با دُز همکاران با بررسی نتایج حاصل از مطالعه کریمی پور و همکاران مشخص شد که پودر زنجبیل توانسته است از اثرات دیابت بر روده جلوگیری کND
این یافته را به خوبی نشان می‌دهد. بنابراین تغییر میانگین ضخامت در لایه بافت‌های زیراخت مخاط با تغییر میانگین سطح محلول بی‌هویه و هم‌خودی این دو فاکتور کاملاً مشهود است.
نتایج مطالعه دیگری نشان داد که در آن در مطالعه حرکت در مناطق بافت اندام مویون و دوری از افزایش مساحت لایه مخاط مشاهده شد.
نتیجه‌گیری
چندان می‌توان توجه گرفت که با توجه به فاکتور دیابت تجاری و به طبیعت آن که تاثیر تبلیغات مویون و دستگاه‌های واکنش‌دهنده را در جامعه مخاط مشاهده شد، افزایش مساحت لایه عضلانی در گروه‌های دیابت+استات هزار و دویست افزایش مساحت لایه عضلانی مشاهده شد.
نتیجه‌گیری

ملاحظات اخلاقی
پیروی از اصول اخلاق پژوهش در دانشکده دامپزشکی دانشگاه شهرکرد تأیید شده و همه روش‌های به کارگرفته در پژوهش حاضر، ازجمله آسان‌کشی با رعایت کامل اصول اخلاقی مقید کردن حیوانان انجام پذیرفت.

حامی مالی
معاونت‌های محترم پژوهشی دانشکده و دانشگاه شهرکرد، تأمین مالی این پژوهش را بر عهده داشتند.

مشارکت نویسندگان
مفهوم سازی: رحمت الله فتاحیان و سورن نورایی؛ تحقیق و بررسی: رحمت الله فتاحیان و سورن نورایی؛ ویراستاری و نهایی‌سازی نوشته، سورن نورایی، البرز یدالهی و رحمت الله فتاحیان. مراجعین محترمی می‌تواند مواردی مشابه این موضوع را در مطالعه‌هایی از گروه‌های دیابت+استات به مطالعه پذیرفت. در بخش نهایی، نویسندگان به این موضوع حیوانات انگلیسی (ICMJE) بپایند.

تعارض منافع
طبق نظر نویسندگان هیچ گونه تغییرات منافع در پژوهش حاضر وجود ندارد.

تشکر و قدردانی
نویسندگان مقاله حاضر بر خود لازم می‌دانند که از کارشناسان و پرسنل آزمایشگاه فیزیو فارماکولوژی و هیستوپاتولوژی و همکاران خود تشکر بگیرند.
Reference

[1] Kassab E, McFarlane SJ, Sowers JR. Vascular complications in diabetes and their prevention. Vasc Med. 2001; 6(4):249-55. [DOI:10.1177/1358836X0100600409] [PMID]

[2] Mosayebi G, Ghanavirad E, Fani E, Moazeni S. [Frequency of Human Leukocyte Antigens (HLA) class I and II in arakian patients with insulin dependent diabetes mellitus (Persian)]. J Arak Univ Med Sci. 2006; 8(3):42-9. https://www.sid.ir/en/journal/ViewPaper.aspx?id=46344

[3] Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine. 2019; 47(1):22-7. [DOI:10.1016/j.mpmed.2018.10.004]

[4] Hayashi T, Nozawa M, Sohmiya K, Toko H, Nakao M, Okabe M, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14):977-86. [DOI:10.1056/NEJM199309303291403] [PMID]

[5] Camilleri MJE, Clinics M. Gastrointestinal problems in diabetes. Endocrinol Metab Clin. 1996; 25(2):361-78. [DOI:10.1016/1051-3813(95)00096-6] [PMID]

[6] Nathan D, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14):977-86. [DOI:10.1056/NEJM199309303291403] [PMID]

[7] Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: The hygiene hypothesis expanded? Diabetes care. 2010; 33(10):2277-84. [DOI:10.2337/dc10-0556] [PMID]

[8] Amiri A, Fatahian Dehkordi RA, Heidarnejad MS, Jafarian Dehkordi M. Effect of the zinc oxide nanoparticles and thiamine for the management of diabetes in alloxan-induced mice: A stereological and biochemical study. Biol Trace Elem Res. 2018; 181(2):258-64. [DOI:10.1007/s12011-017-1035-x] [PMID]

[9] Rindi G, Laforenza U. Thiamine intestinal transport and related isotypes. J Nutr Sci Vitaminol. 2016; 62(5):372-4. [DOI:10.3177/jnsv.62.372] [PMID]

[10] Frisone SV, et al. GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest. 2006; 116(2):344-56. [DOI:10.1172/JCI26295] [PMID]

[11] Maleki D, Locke 3rd Gr, Camilleri M, Zinsmeister AR, Yawn BP, Leibson C, et al. Gastrointestinal tract symptoms among persons with diabetes mellitus in the community. Arch Gen Intern Med. 2000; 160(18):2808-16. [DOI:10.1001/archinte.160.18.2808] [PMID]

[12] Baht RV, Moy GG. Monitoring and assessment of dietary exposure to chemical contaminants. World Health Stat Q. 1997; 50(1-2):132-49. [PMID]

[13] Jenkinson KM, Reid JJ. Effect of diabetes on relaxations to non-adrenergic, non-cholinergic nerve stimulation in longitudinal muscle of the rat gastric fundus. Br J Pharmacol. 1995; 116(2):344-56. [DOI:10.1111/j.1476-5381.1995.tb16372.x] [PMID]

[14] van der Meulen CL, Plokker HW, Rutten VJ, van der Sluijs J. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14):977-86. [DOI:10.1056/NEJM199309303291403] [PMID]

[15] Sugiura S. When Was B1, the first Vitamin, discovered?: An alternative perspective. Jpn J Pharmacol. 1995; 43:371-4. [PMID]

[16] Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes. 1999; 48(5):937-42. [DOI:10.2337/diabetes.48.5.937] [PMID]

[17] Chaikomin R, Rayner CK, Jones KL, Horowitz M. Upper gastrointestinal function and glycemic control in diabetes mellitus. World J Gastroenterol. 2006; 12(35):5611-21. [DOI:10.3748/wjg.v12.i35.5611] [PMID] [PMCID]

[18] Anitha M, Gondha C, Sutliff R, Parsadanian A, Mwangi S, Sitaraman SV, et al. GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest. 2006; 116(2):344-56. [DOI:10.1172/JCI26295] [PMID] [PMCID]

[19] Maleki D, Locke 3rd Gr, Camilleri M, Zinsmeister AR, Yawn BP, Leibson C, et al. Gastrointestinal tract symptoms among persons with diabetes mellitus in the community. Arch Gen Intern Med. 2000; 160(18):2808-16. [DOI:10.1001/archinte.160.18.2808] [PMID]

[20] Rayner CK, Horowitz M. Gastrointestinal motility and glycemic control in diabetes: The chicken and the egg revisited? J Clin Invest. 2006; 116(2):299-302. [DOI:10.1172/JCI27758] [PMID] [PMCID]

[21] Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J, Tirschler H, Rosen P, Hallwell B, et al. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia. 1997; 40(6):647-53. [DOI:10.1007/s001250050729] [PMID]

[22] Searle AK, Baghurst PA, Van Hoof M, Sawyer MG, Sim MR, Galletly C, et al. Tracing the long-term legacy of childhood lead exposure: A review of three decades of the port Pirie cohort study. Neurotoxicology. 2014; 43:46-56. [DOI:10.1016/j.neuro.2014.04.004] [PMID]

[23] Ayoubi A, Vaizadeh R, Omidi A, Abolfazli MD. Protective effects of vitamin C (ascorbic acid) in lead acetate exposed diabetic male rats: Evaluation of blood biochemical parameters and testicular histopathology. Istanbul Univ Vet Fak Derg. 2014; 41(1):84-91. [DOI:10.16988/uvfd.2015.90715]

[24] Hakim ZS, Patel BK, Goyal RK. Effects of chronic ramiplrid treatment in streptozotocin-induced diabetic rats. Indian J Physiol Pharmacol. 1997; 41(4):353-60. [PMID]

[25] Jenkinson KM, Reid JJ. Effect of diabetes on relaxations to non-adrenergic, non-cholinergic nerve stimulation in longitudinal muscle of the rat gastric fundus. Br J Pharmacol. 1995; 116(1):1551-6. [DOI:10.1011/j.1476-5381.1995.tb16372.x] [PMID]

[26] Draid MM, Bushurewe MB, Ramadan SG. Lead acetate toxicity on glucose level and liver enzymes ameliorated by camel’s milk in wistar albino rat. Int J Basic Clin Pharmacol. 2016; 5(3):1125-30. [DOI:10.18203/2319-2033.ijbcp20161580]

[27] Nowak TV, Chey WW, Chang T-M, Weisbruch JP, Fouquet G. Effect of streptozotocin-induced diabetes mellitus on release of vasoactive intestinal polypeptide from rodent small intestine. Dig Dis Sci. 1995;40(4):828-36. [DOI:10.1007/BF02064987] [PMID]

[28] Iervis EL, Levin RJ. Anatomical adaptation of the alimentary tract of the rat to the hyperphagia of chronic alloxan-diabetes. Nature. 1966; 210(5034):391-3. [DOI:10.1038/210391a0] [PMID]

[29] Ekundayo AA, Lee CY, Goodlad RA. Gastrin and the growth of the gastrointestinal tract. Gut. 1995; 43(4):353-60. [PMID]

[30] Afshari AT, Shirpoor A, Farshid A, Saadatian R, Rasmi Y, Saboory E, et al. Colon Tissue Layers of Type 1 Diabetic Rats Following Thiamine and Lead Acetate Use. JAMS. 2021; 24(1):36-49. [PMID] [PMCID]

[31] Fatahian Dehkordi RA, Habibi A. Stereological and electron microscopic study on the internal organization of the urinary secretory units in three species of birds. J Appl Animal Res. 2015; 43(1):118-24. [DOI:10.1080/09712119.2014.928625]
This Page Intentionally Left Blank