1. Introduction

Nuclear systems that involve the nuclear fission process often require very high accuracy of both prompt and delayed neutron multiplicity data, \(\bar{\nu}_p \) and \(\bar{\nu}_d \), albeit model predictions for these quantities are not yet at the satisfactory level. For major fissioning systems, such as the neutron-induced reaction on \(^{235}\text{U} \), more than 99% neutrons are the prompt fission neutrons, which are emitted from highly excited two fission fragments formed just after fission. Typically there are more than 1,000 fission fragments, and 2–3 prompt neutrons per fission are emitted. A small fraction (~1%) of the total neutron yield is produced during the \(\beta \)-decay chain of fission products, and approximately 270 nuclides have been identified as precursors for the delayed neutron emission [1,2]. Ideally, we can calculate \(\bar{\nu}_p \) and \(\bar{\nu}_d \) by summing up all the decaying compound nuclei weighted by the fission yields, which is the so-called summation calculation (e.g., Ref [3]). This method, however, requires a lot of well-tuned model inputs. This was partly done in our previous study [4] for the prompt neutron emission.

Since the discovery of the delayed neutron by Roberts et al. [5] shortly after the discovery of nuclear fission in 1939, despite its tiny fraction, the delayed neutron has attracted people in various scientific communities, due to its quite important role in keeping the thermal reactors critical, in reactor systems containing high burn-up fuel, and in the transmutation of minor actinides. The delayed neutron yield has been measured [6-9] and repeatedly evaluated [1,10-12] for various fissioning systems at several incident neutron energies. Some models for predicting the time-dependent delayed neutron yield have been proposed [13-15], and these studies pointed out the importance of fission yield data to perform these model calculations.

When an incident neutron energy goes higher, it is natural that \(\bar{\nu}_p \) also increases monotonously, since the formed compound nucleus has larger available total energy. However, in contrast to \(\bar{\nu}_p \), \(\bar{\nu}_d \) shows totally different behavior, depending on how the delayed neutron precursors are produced. There still exists challenges to understand the peculiar energy-dependence of \(\bar{\nu}_d \), i.e. a slight increase in the yield from thermal to 3 MeV and a steep decrease above 4 MeV as seen in \(^{235}\text{U} \) and \(^{238}\text{U} \). To account for the abrupt changes, the evaluated \(\bar{\nu}_d \) data in nuclear data libraries, JENDL-4.0 [16] and ENDF/B-VIII [17], include a very crude piecewise linear function to represent experimental data.

As such, the energy-dependent behavior has not yet been explained theoretically. Alexander et al. [18] first interpreted the energy dependence in \(\bar{\nu}_d \) by taking into account the odd-even effect of fission products.
Ohsawa et al. [19,20] introduced the multimodal random neck-rupture model [21] and fission mode fluctuations [22] to explain the energy dependence. Minato [23] proposed a model to reproduce the energy-dependence of τ_d based on the fission yield using Katakur’a’s systematics [24]. Although an explicit statistical decay calculation was not performed in Minato’s model – hence the calculated τ_p and τ_d are independent of one another – it also supports Alexander’s observation: the odd-even effect in the charge distribution is important. Recently, the odd-even effect was explained by applying the microscopic number projection method [25].

By extending the Hauser-Feshbach Fission Fragment Decay (HF3D) model [4] to the β-decay process, consistency among the independent and cumulative fission yields $Y_f(Z,A)$ and $Y_c(Z,A)$, and neutron multiplicities τ_p and τ_d is automatically guaranteed. In this model, we start with the fission fragment distribution $Y(Z,A,E_{ex},J,\Pi)$ characterized by the distributions of mass and charge, excitation energy, and spin/parity. We perform the Hauser-Feshbach statistical decay calculation for the excited fission fragments to calculate the independent fission yields $Y_f(Z,A)$ and τ_p. A successive β-decay calculation gives the cumulative fission yields $Y_c(Z,A)$ and τ_d. The model parameters are adjusted to reproduce experimental data at thermal by applying the Bayesian technique, and we extrapolate the calculation to the second chance fission threshold. In this paper, we limit ourselves mainly to first-chance fission, because more uncertain parameters will be involved in the multi-chance fission case. Although we study the multi-chance fission case elsewhere [26], here, we briefly explore a possible impact of the second-chance opening with a particular focus on τ_d.

2. Methods

2.1. Hauser-feshbach statistical decay and β-decay calculations

2.1.1. Sources of energy dependency

The energy dependence of the independent and cumulative yields arises from the properties of some model parameters in our modeling for the fission process. The primary fission fragment distribution $Y_f(Z,A)$, often approximated by a few Gaussian forms, gradually changes the shape as the incident neutron energy increases.

The energy dependence of total kinetic energy (TKE) is also one of the related physical observables of predicting energy-dependent independent and cumulative yield. We often see that the experimental data of TKE decrease monotonously for some major fissioning nuclides such as 235,238U and 239Pu [27–29], except at very low energies [30,31].

The anisothermal parameter R_T, which changes the number of prompt neutrons removed from the fission fragments, often needs to be larger than unity to reproduce the neutron multiplicity distribution as a function of fragment mass number, $\nu(A)$. The reason for this is still unclear. It might be natural to assume $R_T = 1$ by the phase-space argument, where the total excitation energy would be shared by the two fragments according to the number of available states. The odd-even effect in the charge distribution of Wahl’s Z_p model [32,33] might decrease at higher excitation energies, where a particular nuclear structure effect no longer persists. Since the original Whal systematics does not consider any energy dependence of the odd-even effect, we incorporate the energy dependencies of these parameters, yet phenomenological parameterization is applied.

2.1.2. Generation of the fission fragment distribution

The primary fission fragment distributions are the key ingredient in the prompt neutron emission calculation. While this is a complicated multi-dimensional distribution, including energy, spin, parity, etc., we demonstrated that the numerical integration over all these distributions is feasible by the Hauser-Feshbach Fission Fragment Decay (HF3D) model. The model produces various fission observables simultaneously, e.g., the prompt neutron multiplicity τ_p, the independent yields $Y_f(Z,A)$, and isomeric ratio (IR) [4]. Since the method and relevant equations are explained elsewhere [4], a brief description as well as newly developed components will be given here.

The primary fission fragment yield $Y_f(Z,A)$ is constructed by five (or seven if needed) Gaussians fitted to experimental primary fission fragment mass distributions of neutron-induced reaction on 235U, 238U, and 239Pu. A charge distribution for a given mass number is generated by the Z_p model [33] of Wahl’s systematics [32] implemented in the HF3D model.

TKE as a function of primary fission fragment mass TKE(A) is also generated based on the experimental data, which yields the average excitation energy of each fragment. An A-average of TKE(A) gives a TKE value at a given neutron incident energy TKE(E), and the variance of TKE(A) gives the excitation energy distribution. By combining this with the distributions of excitation energy E_{ex}, spin J, and parity Π described in the previous work [4], an initial configuration of fission fragment compound nucleus $Y_f(Z,A,E_{ex},J,\Pi)$ is fully characterized. The Hauser-Feshbach theory is applied to the statistical decay of generated $Y_f(Z,A,E_{ex},J,\Pi)$. The experimental data sets used in this study are listed in Tables 1, 2, and 3.

The functional forms for TKE(A) and TKE(E) are given in our former work [4], and the parameters of these functions for 235U are the same as before. Those
Table 1. Experimental data of the fission fragment mass distributions included in the parameter fitting of \(Y_p(A,E) \).

Nuclide	Energy (MeV)	Author & Reference
\(^{238}\text{U} \)	\(2.53 \times 10^{-8} \)	\([58]\)
\(2.53 \times 10^{-8} \)	Hambisch \([59]\)	
\(2.53 \times 10^{-8} \)	Pleasonton et al. \([60]\)	
\(2.53 \times 10^{-8} \)	Simon et al. \([61]\)	
\(2.53 \times 10^{-8} \)	Straede et al. \([62]\)	
\(2.53 \times 10^{-8} \)	Zeynalov et al. \([63]\)	
\(2.53 \times 10^{-8} \)	D'yachenko et al. \([64]\)	
\(1.11, 1.25 \)	Goverdovskiy et al. \([51]\)	
\(1.2-5.8 \)	Vives et al. \([52]\)	

Table 2. Experimental data included in the parameter fitting of TKE(\(A\)).

Nuclide	Energy (MeV)	Author & Reference
\(^{235}\text{U} \)	\(2.53 \times 10^{-8} \)	\([58]\)
\(2.53 \times 10^{-8} \)	Hambisch \([59]\)	
\(2.53 \times 10^{-8} \)	Simon et al. \([61]\)	
\(2.53 \times 10^{-8} \)	Zeynalov et al. \([63]\)	
\(2.53 \times 10^{-8} \)	D'yachenko et al. \([64]\)	
\(1.2 \)	Vives et al. \([52]\)	
\(^{239}\text{Pu} \)	\(2.53 \times 10^{-8} \)	\([58]\)
\(2.53 \times 10^{-8} \)	Surin et al. \([66]\)	
\(2.53 \times 10^{-8} \)	Wagemans et al. \([67]\)	
\(2.53 \times 10^{-8} \)	Schillebeeckx et al. \([68]\)	
\(2.53 \times 10^{-8} \)	Nishio et al. \([69]\)	
\(2.53 \times 10^{-8} \)	Tsuchiya et al. \([70]\)	

Table 3. Experimental data included in the parameter fitting of TKE(\(E\)).

Nuclide	Energy (MeV)	Author & Reference
\(^{235}\text{U} \)	\(0.18-8.83 \)	Meadows and Budtz-Jørgensen \([27]\)
\(2.53 \times 10^{-8} \)	\(35.5 \)	Duke \([30]\)
\(1.5-400.0 \)	Zäler et al. \([29]\)	
\(1.4-28.3 \)	Duke et al. \([71]\)	
\(0.05-5.3 \)	Akimov et al. \([65]\)	
\(2.53 \times 10^{-8} \)	\(3.55 \)	Vorobeva et al. \([72]\)
\(0.5-50 \)	Meierbach et al. \([73]\)	

for \(^{239}\text{Pu} \) were taken from the CGMF code \([34]\). Because there is no primary fission fragment data for \(^{238}\text{U} \) at thermal, the parameters in \(Y_p(Z,A) \) and TKE(\(A\)) are determined in the 1.1–1.3 MeV region. The obtained \(Y_p(Z,A) \) is given later, and TKE(\(A\)) is

\[
\text{TKE}(A) = (348.371 - 1.274A) \left(1 - 0.1800 \exp \left(-\frac{(A - A_m)^2}{59.199} \right) \right) \text{ MeV},
\]

and TKE(\(E\)) is

\[
\text{TKE}(E) = 171.11 - 0.320E_n \text{ MeV},
\]

where the incident energy \(E_n \) is in MeV.

2.1.3. Model parameters

The Gaussian terms for \(Y_p(A) \) are parameterized as

\[
Y_p(A) = \sum_{i=1}^{5} \frac{F_i}{\sqrt{2\pi} \sigma_i} \exp \left\{ -\frac{(A - A_m + \Delta_i)^2}{2\sigma_i^2} \right\},
\]

where \(\sigma_i \) and \(\Delta_i \) are the Gaussian parameters, the index \(i \) runs from the low mass side, and the component of \(i = 3 \) is for the symmetric distribution (\(\Delta_i = 0 \)). \(A_m = A_{CN}/2 \) is the mid-point of the mass distribution, \(A_{CN} \) is the mass number of fissioning compound nucleus, and \(F_i \) is the fraction of each Gaussian component. The symmetric shape of \(Y_p(A) \) ensures implicit relations of \(F_1 = F_5, F_2 = F_4, \) etc.

We assume that the energy sharing between the complementary light and heavy fragments is followed by the anisothermal model \([35,36]\), which is defined by the ratio of effective temperature \(T_L \) and \(T_H \) in the light and heavy fission fragments,

\[
\frac{R_T}{T_H} = \frac{T_L}{T_H} = \frac{\alpha E}{\alpha L U_L},
\]

where \(U \) is the excitation energy corrected by the pairing energy \([37]\), and \(\alpha \) is the level density parameter including the shell correction energy.

There are several estimates of \(R_T \) for different fissioning systems. In the case of thermal neutron-induced fission on \(^{235}\text{U} \), a constant \(R_T \) reasonably reproduces the experimental \(\nu(A) \) data \([4,38]\), and \(\text{Talou et al.} [38,39] \) showed the cases of \(^{239}\text{Pu}(n_{th},f) \), and \(^{252}\text{Cf} \) spontaneous fission. However, it has been reported that better reproduction of experimental data is achieved by mass-dependent \(R_T \) parameters \([40-43]\). In the present work, we do not explore all possible functional forms of \(R_T \). Instead, simple energy dependence is introduced as

\[
R_T = \begin{cases}
R_{T0} + E_n R_{T1}, & R_{T0} + E_n R_{T1} \geq 1 \\
1, & \text{otherwise}
\end{cases}
\]

where \(R_{T0} \) and \(R_{T1} \) are model parameters. As some experimental data imply \([44]\), \(R_T \) decreases as the incident energy increases, \(R_{T1} < 0 \).

In Wahl's Zp model the even-odd effect in the Z-distribution is given as

\[
f = \begin{cases}
F_Z F_N \text{ Even,} & \text{Neven} \\
F_Z/F_N \text{ Even,} & \text{Nodd} \\
F_N/F_Z \text{ Zodd,} & \text{Neven} \\
1/(F_Z F_N) \text{ Zodd,} & \text{Nodd}
\end{cases}
\]

where \(F_Z \geq 1 \) and \(F_N \geq 1 \) are parameterized and tabulated by Wahl. This equation gives higher yields when \(Z \) and/or \(N \) are even. We expect such even-odd staggering will be mitigated when a fissioning system has higher excitation energy. We model the reduction in the even-odd effect by

\[
F_Z = 1.0 + (F_Z^W - 1.0) f_Z,
\]

\[
F_N = 1.0 + (F_N^W - 1.0) f_N,
\]

where \(F_Z^W \) and \(F_N^W \) are the parameters in Wahl's systematics, and \(f_Z \) and \(f_N \) are the scaling factors as inputs. These scaling factors are also linear functions of incident neutron energy, \(f_i = f_0 + E_{dfi}, \) \(i = Z, N.\)
2.2. β-decay calculation

The HF3D model produces the independent yields $Y_j(Z, A)$, as well as the meta-stable state production when the nuclear structure data indicate that the level half-life is long enough (typically more than 1 ms.). Here, we add a meta-state index M to specify the isomers explicitly, $Y_j(Z, A, M)$ and $Y_C(Z, A, M)$. The cumulative fission yields are calculated in a time-independent manner, hence $Y_j(Z, A, M)$ and $Y_C(Z, A, M)$ are simply connected by the decay branching ratios [45]. The decay data included are the half-lives $T_{1/2}$, the decay mode (α-decay, β−-decay, delayed neutron emission, etc.), and the branching ratios to each decay mode. They are taken from ENDF/B-VIII decay data library. We also considered JENDL-4.0 decay data library, however, the result is not so different. For example, in the 235U(n^5,f) case, the differences in the calculated cumulative yields caused by the ENDF and JENDL decay data libraries are at most 0.02%, except for 77Ge, 83Se, 96Rb, and 102Nb, for which these libraries give very different branching ratios to the ground and metastable states. We confirmed that the sum of the cumulative yields to these states is still consistent.

When a decay branch includes a neutron emission mode, this nuclide is identified as a β-delayed neutron precursor. The delayed neutron yield from this i-th precursor is calculated as $v_d(i) = Y_C(i) b_i N_d$, where b_i is the branching ratio to the neutron-decay mode, and N_d is usually one unless multiple neutron emission is allowed. The total delayed neutron yield v_d is $\sum_i v_d(i)$.

2.3. Adjustment of calculation parameters by bayesian technique

Although the model parameters have been already tuned to some experimental data, these parameters often do not reproduce other fission observables simultaneously. For example, the Gaussian parameters reported by Katakura [46] do not necessarily reproduce the experimental cumulative yields, since they depend on the statistical decay calculation.

An optimization procedure of the HF3D model parameters is a non-linear multi-dimensional least-squares problem. Although such a complex problem might be solved by modern technology, this will be a hefty computation and beyond our scope. Instead, we perform a relatively small-scale adjustment of the model parameters to reproduce some of the cumulative yield data by applying the Bayesian technique with the KALMAN code [47]. The model parameters are first estimated by comparing with the most sensitive quantities. They are our prior parameters. Then, the prior parameters are adjusted simultaneously by fitting to the experimental data. Although it is always ideal to use raw experimental data, we use the evaluated values that should be representative of available experimental data. However, it should be noted that we are not trying to reproduce the evaluation, but to find a consistent solution among different observable.

The model parameters to be included in the KALMAN calculation are the first and second Gaussian parameters (fraction F_i, width σ_i, and mass shift Δ_i for $i = 1 \text{ and } 2$). We fix the symmetric Gaussian, because it does not have any sensitivities to the experimental data included in this study, and its fraction is too small anyway. We also include the anisothermal R_T parameter, the spin factor f_i, and the scaling factor in Eqs. (7) and (8). The adjustment is performed at the thermal energy (or at relatively low energy for 238U), and the energy-dependent parts in these model parameters are fixed.

The sensitivity matrix C is defined as

$$\left(\frac{\partial c_i}{\partial p_j} \right)_{1 \leq i \leq N, \quad 1 \leq j \leq M},$$

where $P = (p_1, p_2, \ldots)$ is the model parameter vector, and $D = (d_1, d_2, \ldots)$ is the data vector containing the calculated values. The partial derivatives are calculated numerically. The KALMAN code linearizes the model calculation as

$$D = F(P) \cong F(P_0) + C(P - P_0),$$

where $F(P)$ stands for a model calculation with a given parameter P, and P_0 is the prior parameter vector.

It is not so easy to impose a constraint $2F_1 + 2F_2 + F_3 = 2$ on the Gaussian fractions during the adjustment process, e.g. when the F_1 parameter is perturbed as $F_1 + \delta$, the sum exceeds 2; $2(F_1 + \delta) + 2F_2 + F_3 = 2 + 2\delta$. However, we renormalize the fractions internally

$$F'_j = F_j - \frac{2\delta}{2 + 2\delta}F_j = F_j \left(1 - \frac{\delta}{1 + \delta} \right)$$

to assure the sum to be 2. F'_j is the actual fraction inside the calculations, and F_j is not necessarily normalized but represents a model input.

3. Results

3.1. Adjusted model parameters of the HF3D calculation

3.1.1. Parameter adjustment for 235U

The prior Gaussian parameters, R_{TH}, f_i, and TKE for 235U at the thermal energy are taken from our previous study [4]. As aforementioned, the adjustment is performed only for the energy-independent terms of the model parameters. Energy-dependent parameters are not adjusted. The same procedure of parameterization is introduced. When we modify TKE, TKE(A) is automatically shifted to make sure the A-average coincides with the given TKE value.
The original Wahl’s Z_p model is also employed as the prior parameter, which means $f_{Z0} = f_{N0} = 1$ for all energy ranges. They are shown in the second column of Table 4. These parameters are adjusted to reproduce the cumulative yields of 95Zr, 97Zr, 99Mo, 132Te, 140Ba, and 147Nd at thermal, as well as σ_p and σ_d.

Now, we have 11 parameters ($M = 11$) and 8 data ($N = 8$). With the prior parameters, the calculated σ_p of 2.38 is slightly lower than the evaluated values of 2.41 (ENDF/B-VIII) and 2.42 (JENDL-4.0), while the prior σ_d of 0.0195 is 23% larger than the value found in both libraries, 0.0159. The adjustment reconciles these discrepancies with the better known values, and the posterior parameters yield $\sigma_p = 2.415$ and $\sigma_d = 0.0169$. The reduction in σ_d is primarily due to the largely increased f_{Z0} in Wahl’s Z_p model. The odd-even staggering in the charge number of the primary fission fragments not so sensitive to the chain yields, which are the cumulative yields of the stable or long-lived fission product at a specific isobaric mass chain [48], but it directly modifies the yields of β-delayed neutron precursors. The posterior parameters with their uncertainties and correlation matrix are given in Table 4. Since the actual changes in $Y_p(A)$ are very modest, and the posterior parameters equally reproduce the experimental data of mass distribution, we do not include the comparison plot here. Figure 1 (a) shows the chain yields calculated with the prior and posterior parameters. This figure also shows some cumulative yields of major β-delayed neutron emitters from the ENDF/B-VIII evaluated values for comparison. The reduction in σ_d is, in part, caused by the smaller posterior yields of $A = 137$ and 94, which include 137I and 94Rb. While these masses were not included in the adjustment, the sensitivity of σ_d to these masses implicitly demands the reduction of these mass-chains.

When the prior R_f and f_p parameters are determined, we compare the neutron multiplicity distribution $P(\nu)$ with the experimental data. The posterior parameters modify the calculated $P(\nu)$ but not so significantly. The calculated $P(\nu)$ still agrees fairly well with the data. We also calculated the prompt fission neutron spectra (PFNS) with the prior and posterior parameters and compared them with available experimental data. We confirmed that the posterior parameters better fit the data than the prior, albeit the PFNS data were not included in the data fitting. This result will be further investigated in a separate paper [49].

3.1.2. Parameter adjustment for 239Pu

The Gaussian parameters obtained by fitting to the experimental $Y_p(A)$ for 239Pu are

$$\Delta_1 = -\Delta_5 = 20.80 + 0.2940E_n \, ,$$

$$\Delta_2 = -\Delta_4 = 14.90 + 0.0994E_n \, ,$$

$$\sigma_1 = \sigma_5 = 6.06 + 0.1969E_n \, ,$$

$$\sigma_2 = \sigma_4 = 3.51 + 0.2000E_n \, ,$$

$$\sigma_3 = 10.0 \, ,$$

where E_n is in MeV. The fractions of each Gaussian are given by

$$F_1 = F_5 = 0.765 - 0.0075E_n \, ,$$

$$F_2 = F_4 = 0.234 + 0.0074E_n \, ,$$

$$F_3 = 0.003 + 0.003E_n \, .$$

Equation (17) shows that the asymmetric distribution increases as the incident energy increases, which is against our intuition. This is because the increase of $F_{1,5}$ is really modest, and this is also compensated by the increasing width as in Eq. (12).

The adjustment procedure for 239Pu at the thermal incident energy includes the same parameters as those in the 235U case. These parameters are fitted to σ_p, σ_d, and cumulative yield of 85Kr, 85Rb, 86Kr, 87Sr, 131Xe, 132Xe, 133Xe, 134Xe, 135Ba, 142Ce, 143Pr, 144Nd, 146Nd, 147Nd, 148Nd, 150Nd. They were chosen from the chain yields evaluation by England and Rider [50], where relatively small uncertainties are assigned. The prior and posterior model parameters are given in Table 5, and the comparison of chain yields is in Figure 1 (b). Similar to the 235U case, the prior parameter set produces $\sigma_d = 0.00848$, which is too large compared to the evaluated value of 0.00645.

Table 4. Prior and posterior model parameters for 235U defined in Eqs. (3), (5), (7), and (8) and its covariance matrix, as well as the spin salting factor f_s. These parameters are dimensionless quantities, except TKE is in MeV.

pri.	post.	Uncertainty[$\%$] and correlation []												
f_1	0.793	0.824	4.3	100										
σ_1	4.83	5.05	1.4	41	100									
Δ_1	23.00	23.1	0.5	36	56	100								
F_2	0.205	0.197	4.7	22	40	36	100							
σ_2	2.73	2.92	3.1	33	1	28	34	100						
Δ_2	15.63	15.2	0.7	14	0	39	11	100						
f_3	1.00	1.78	6.6	0	7	48	0	1	41	100				
f_0	1.00	0.97	20.6	0	2	0	0	0	3	1	2	100		
R_f	1.20	1.29	3.8	3	10	64	3	13	49	51	0	100		
f_s	3.00	2.96	4.9	6	30	16	6	9	23	7	0	0	100	
TKE	170.5	170.1	0.1	7	25	27	6	11	1	5	1	13	82	100
3.1.3. Parameter adjustment for ^{238}U

Because fission observable data for ^{238}U are only available in the fast energy range and above, the procedure is slightly different from the ^{235}U and ^{239}Pu cases. The adjusted Gaussian parameters were obtained at 1.1 and 1.25 MeV by Goverdovskiy [51] and 1.2 MeV [52] by Vives. The adjusted Gaussian parameters are

$$\Delta_1 = -\Delta_5 = 22.879 - 0.1929E_n,$$

$$\Delta_2 = -\Delta_4 = 15.515 - 0.0679E_n,$$

$$\sigma_1 = \sigma_5 = 5.405 - 0.1267E_n,$$

$$\sigma_2 = \sigma_4 = 3.459 + 0.0159E_n,$$

$$\sigma_3 = 4.50 + 0.267100E_n. \quad (24)$$

The fractions of each Gaussian are given by

$$F_1 = F_5 = 0.587 + 0.032E_n, \quad (25)$$

$$F_2 = F_4 = 0.413 - 0.034E_n, \quad (26)$$

$$F_3 = 0.0006 + 0.001E_n, \quad (27)$$

and the covariance matrix is given in Table 6. These parameters are fitted to $\bar{\nu}_p, \bar{\nu}_d$, and cumulative yield of $^{92}\text{Zr}, ^{133}\text{I}, ^{135}\text{Xe}, ^{137}\text{Cs}, ^{140}\text{Ba}, ^{143}\text{Ce}, ^{144}\text{Ce}, ^{145}\text{Pr}, ^{147}\text{Nd}$, and ^{148}Nd.

3.2. Energy dependence of $\bar{\nu}_p$ and $\bar{\nu}_d$

3.2.1. Energy-dependent inputs and pivots

Some of the Gaussian parameters are weakly energy-dependent, and often expressed by a linear function of the incident energy as in Eqs. (17) – (19). The energy-dependent terms are obtained by fitting to the experimental $Y_p(A)$ data, and we do not attempt to tune these parameters. We consider other parameters, $R_T, f_{2}, f_{0},$ and TKE, to be energy-dependent, and simple linear functions are assumed as in Eqs. (5), (7) and (8). Since the energy dependence of TKE is rather well known experimentally, we study the energy dependence of the independent and cumulative yields, $\bar{\nu}_{d}$ and $\bar{\nu}_{p}$ by assuming a simple form for the model inputs for ^{235}U and ^{239}Pu first. We exclude ^{238}U for now, as it is a threshold fissioner. The R_{T1} parameter in Eq. (5) is roughly $-(R_{T}(0) - 1)/6.0$ MeV$^{-1}$ to make $R_{T} = 1$ at the opening of second chance fission, hence $R_{T1} = -0.0476$ and -0.0507 for ^{235}U and ^{238}Pu. Similarly, f_{21} and f_{01} are estimated to be $f_{21} = -0.296$ MeV$^{-1}$ and $f_{01} = -0.161$ MeV$^{-1}$ for ^{235}U, and $f_{21} = -0.430$ MeV$^{-1}$ and $f_{01} = -0.156$ MeV$^{-1}$ for ^{239}Pu, which ensures that the even-odd effect disappears at $E_n = 6$ MeV. This is a very rough estimate of even-odd effect damping, which should be better quantified by theories in the future [26]. Here, we selected 6 MeV by just an anzatz, and roughly determined by the energy dependence of $\bar{\nu}_{d}$ as shown later.
First, we consider four cases; (1) both R_T and $f_{Z,N}$ are constant, (2) constant R_T and energy-dependent $f_{Z,N}$, (3) energy-dependent R_T and constant $f_{Z,N}$, and (4) both energy-dependent. By comparing the calculated $\overline{\nu_p}$ and $\overline{\nu_d}$ with experimental data, we found that the energy dependence of R_T modestly impacts on the results, and probably the modeling uncertainty conceals the importance of R_T. Whereas we also noticed that the energy dependence of $f_{Z,N}$ is crucial for $\overline{\nu_d}$. Hereafter, we assume R_T is constant, while $f_{Z,N}$ is energy-dependent.

When an independent or cumulative yields is almost energy-independent,

$$\frac{dY_{1,C}(Z, A, E)}{dE} \approx 0\,.$$

(28)

It is easier to see the mass region where this condition happens by calculating the derivative of the independent or cumulative yield at a particular mass number,

$$\frac{dY_{1,C}(A, E)}{dE} = \sum_{Z} \frac{dY_{1,C}(Z, A, E)}{dE} \approx 0\,.$$

(29)

We approximate the derivative by coarse numerical derivative \((Y_{1,C}(A, 2\,[\text{MeV}]) - Y_{1,C}(A, 0\,[\text{MeV}]))/2\), which is shown in Figure 2. We took this large energy interval to avoid numerical errors due to local fluctuations. The general shape of dY_1/dE does not change too much in the energy range below the second chance fission. This implies the cumulative yields vary monotonously with the incident neutron energy.

The derivative plot for 235U indicates the chain yield near $A = 85, 100$, and 135 vary slowly with the energy, while near $A = 90, 104, 129$, and 143 should have steeper energy dependence. These energy-independent regions, or the pivots, appear due to complicated interplay among the energy-dependent model parameters. In the case of 239Pu, the pivots locate near $A = 92, 109, 129$, and 142, and the chain yield in the peak regions ($A = 103$ and 133) may show the largest reduction rate.

In Figure 3, we compare some of our calculated $Y_{1,C}(Z, A, E)$ with the experimental data of Gooden et al. [53], measurements at LANL in the critical assemblies [54], as well as other published data. From the derivative plot in Figure 2, we expect $Y_{1,C}$ of 235U

Table 5. Prior and posterior model parameters for 239Pu. See Table 4 for parameter descriptions.

f_1	0.765	0.718	4.1	100									
σ_1	6.06	6.58	5.2	20	100								
Δ_1	20.80	20.1	1.8	41	66	100							
F_2	0.234	0.248	4.6	31	2	3	100						
σ_2	3.51	3.26	0.5	20	21	17	2	100					
Δ_2	14.90	14.1	0.5	40	20	9	2	18	100				
t_{F_0}	1.00	2.58	4.4	1	21	42	1	0	69	100			
r_{t_0}	1.00	0.93	3.0	1	1	0	1	0	2	4	100		
R_T	1.00	2.00	2.4	1	6	29	6	22	10	9	31	2	100
t_{F_0}	2.50	1.58	5.7	31	10	24	31	10	24	14	1	31	100

Table 6. Prior and posterior model parameters for 238U at ≈ 1 MeV. See Table 4 for parameter descriptions.

f_1	0.587	0.625	3.6	100								
σ_1	5.405	5.580	1.4	16	100							
Δ_1	22.879	23.128	0.5	43	18	100						
F_2	0.413	0.380	4.4	33	10	55	100					
σ_2	3.459	3.326	2.6	40	8	42	100					
Δ_2	15.515	15.584	0.7	11	27	43	30	13	100			
t_{F_0}	1.00	2.396	5.3	0	16	25	20	14	48	100		
r_{t_0}	1.00	0.736	52.8	0	8	2	0	2	3	13	100	
R_T	1.30	1.327	1.0	1	1	6	2	0	9	22	0	100
t_{F_0}	3.00	8.06	1.0	6	6	3	1	0	1	4	100	
TKE	171.4	170.5	0.1	5	29	9	28	0	100	100		

Figure 2. Energy dependence of the cumulative yields, $\partial Y(A, E)/\partial E$, approximated by $(Y(A, 2\,[\text{MeV}]) - Y(A, 0\,[\text{MeV}]))/2$.

Figure 3. Meaning of the term ‘energy-independent’, $Y_{1,C}(A, E)$ for 235U and 239Pu is compared with experimental data from Gooden et al. [53], critical assembly measurements [54], and LANL data [55].
3.2.2. Energy dependence of ν_p and ν_d

The calculated ν_p and ν_d for 235U, 238U, and 239Pu are compared with experimental data in Figures 5 and 6. The evaluated ν_p and ν_d in ENDF/B-VIII and JENDL-4.0, which are evaluated by least-squares fitting to the available experimental data, are also compared. In general, ν_p increases as the incident neutron energy goes higher, simply because of the energy conservation. However, its slope $d\nu_p/dE$ strongly depends on the behavior of TKE. Although the mechanism for the incident-energy dependence of TKE is still unclear, we take the energy dependence of TKE from experimental data, and it enables us to reproduce ν_p by our model. Other parameters, the Gaussian shape and f_{EA}, also change the slope of ν_p, but they have a much more modest impact on the calculated result.

The energy dependence of ν_d is caused mainly by changing the yields of the delayed neutron precursors. Interestingly the calculated and experimental ν_d's reveal very weak energy-dependency for these isotopes. As we noted large fractions of delayed neutron emission are from the mass regions of $A = 137$ and 94, and according to Figure 2, we expect ν_d to decrease.

Figure 3. Energy dependence of cumulative yields of 91Sr, 97Zr, 99Mo, and 103Ru for the neutron-induced fission on 235U (left), 239Pu (middle), and 238U (right) of calculated data (solid line) compared with the experimental data of Gooden et al. [53], as well as other published data obtained from the EXFOR database [56,57].

decreases in the $A \approx 90$ region, while Y_C of 239Pu increases. For the both isotopes, the pivot will be seen in $A = 95 - 100$. The comparisons of 91Sr, 97Zr, and 99Mo clearly show these behaviors, and 103Ru now shows an opposite tendency as the incident neutron energy.

On the heavier mass side, the slope of $Y_C(Z, A, E)$ changes the sign from positive to negative around $A = 134$ for 235U, with one exception of the $A = 137$ case that has a positive slope. For 239Pu, the sign change happens twice, near $A = 130$ and 145. This is shown in Figure 4: 132Te, 137Cs, 140Ba, and 147Nd. Our model calculation also reproduces other isotopes with a similar quality.

Although we didn’t include the 238U case in Figure 2 as the cumulative yields at thermal are only given by extrapolation, Figures 3 and 4 include 238U too.
As it is not so convenient to survey the delayed neutron precursors individually, we lump the precursors into the well-known six groups according to their half-lives \(T_{1/2} \), and calculate the energy dependence of the six-group yields. The group structure is usually defined by the isotopes included in each group. This is convenient for the longer \(T_{1/2} \) groups, but it is ambiguous for the shorter groups. For the sake of convenience, we define the six-group structure as (1) \(T_{1/2} = 40 \), (2) \(8 < T_{1/2} \leq 40 \), (3) \(3 < T_{1/2} \leq 8 \), (4) \(1 < T_{1/2} \leq 3 \), (5) \(0.5 < T_{1/2} \leq 1 \), and (6) \(T_{1/2} \leq 0.3 \). The fractions of each group are shown in Figure 7. In the case of \(^{235}\text{U}\), the largest contribution is from Group 4, which slightly decreases as the incident neutron energy. This is compensated for the increasing Group 2, resulting in the flat behavior of \(\nu_d \). The energy variation of each group is more visible for the \(^{239}\text{Pu}\) case. Obviously, the energy dependence of \(\nu_d \) does not originate from specific fission products but is a consequence of their competition.

As noted before, the overestimation of calculated \(\nu_d \) with the prior parameters is resolved by the adjustment procedure. However, the changes in each group are not so uniform. In the case of \(^{235}\text{U}\), the changes are; +2.8% (Group 1), −9.1(3), −15% (4), −16% (5), and 19% (6). Because Group 4 has the largest fraction to the total \(\nu_d \), this group is responsible for the reduction in \(\nu_d \).

We studied sensitivities of the model parameters to \(d\nu_d/dE \), and found that the \(f_{22} \) and \(f_{23} \) terms change the slope. When \(f_{22} = f_{23} = 0 \), or a constant odd-even effect, \(\nu_d \) decreases for both \(^{235}\text{U}\) and \(^{239}\text{Pu}\) cases. We briefly estimated the energy dependence of the odd-even term so that this effect fades away toward the second chance fission. Nonetheless, this ansatz was not so unrealistic. Better reproduction of the experimental data can be achieved by adjusting the \(f_{22} \) and \(f_{23} \) parameters, yet the currently available data have rather
large uncertainties to estimate these parameters precisely.

3.3. Extrapolating to the second chance fission

The experimental data of ν_d for ^{235}U drop sharply near 5 MeV [8,10], and the evaluated data often include a curious kink to reproduce this behavior. As we demonstrated that ν_d is weakly energy-dependent up to the second chance fission, the kink could be hypothetically the evidence of the second-chance contribution, namely transition of major fissioning system from ^{236}U to ^{235}U. The full-extension of our fission yield calculation model by including the multi-chance
This exercise is done for the \(^{235}\text{U}\) second-chance fission calculation case only. The fission probabilities \(P_f(E)\) for the first and second chances are calculated with the CoH3 code [55]. The fission parameters, such as the fission barrier, curvature, and level density, are adjusted to reproduce the evaluated fission cross section of \(^{235}\text{U}\). We use the same \(Y_f(A)\) for the second chance, but shifted the midpoint by 1/2 mass unit to the lower mass side. \(f_f, TKE, \) and \(f_{Z,N}\) for both \(^{236}\text{U}\) and \(^{235}\text{U}\) are the same.

The calculated \(\bar{\nu}_d\) is shown in Figure 8. Although the calculated \(\bar{\nu}_d\) drops at the energy that is about 1.5 MeV higher than the experimental data, the shape is well reproduced. This supports our hypothesis of the transition of fissioning systems from the first compound nucleus to the second one. At 8 MeV the probability of second chance fission reaches 80%, and a new set of delayed neutron emitters again forms a new plateau above that energy. The step-function-like behavior of \(\bar{\nu}_d\) is thus understood.

The calculated transition energy, which is basically the second-chance fission threshold, is higher than the experimental data, and this is still an open question. Despite the fact that our fission barrier parameters could have some uncertainties, the 1.5-MeV change in the fission barriers makes a significant suppression of the fission cross section above 5 MeV. At this moment, we don’t have a simple solution of matching the kink point in the experimental data and theoretical calculation.

4. Conclusion

The Hauser–Feshbach Fission Fragment Decay (HF3D) model was extended to calculate \(\beta\)-delayed quantities.
such as the cumulative yields and the delayed neutron yield ν_d, where consistency of prompt products is retained. The model parameters for ^{235}U, ^{239}Pu, and ^{238}U – the Gaussian functions to characterize the primary fission fragment yields, the anisothermal parameter R_T, the spin parameter f_s, TKE, and the odd-even term of Wahl’s Z_p model – were estimated by employing the Bayesian technique with the KALMAN code at the thermal energy for ^{235}U, ^{239}Pu and 1.2 MeV for ^{238}U. The result implies that a stronger odd-even effect is required to reproduce the experimental ν_d at thermal and low incident energies, which is also important for the energy-dependent calculation that was reported by Minato [23].

Anchoring the statistical decay calculations to experimental data available at the thermal energy for ^{235}U, ^{239}Pu, and 1.2 MeV for ^{238}U, we extrapolated the HF^3D model to the second chance fission threshold energy, and demonstrated that the calculated cumulative yields fairly reproduced the experimental data, as well as ν_p and ν_d simultaneously. The flat behavior of ν_d along the neutron-incident energy seen in the experimental data of ^{235}U and ^{239}Pu was attributed to a coincidentional compensation of increasing and decreasing delayed neutron precursors.

To examine the sudden change in ν_d near 5 MeV, we extrapolated our calculations beyond the second-chance fission by assuming the same parameters as the first chance. Indeed this is a crude assumption, nevertheless, we could reproduce the step-function-like variation of ν_d. This is promising, and our HF^3D model calculation for the independent and cumulative fission yields should be the most advanced tool for evaluating the fission yield data, because it produces many fission observable quantities in a consistent manner. Unfortunately, our calculation drops at around 5.5 MeV, despite the kink in the experimental data is seen near 4 MeV. This discrepancy should be explained by further investigation in both the theory and experimental data. Having said that the HF^3D model qualitatively explains that the variation seen in ν_d is a result of different precursors produced by fission at each fission-chance.

Acknowledgments

We thank Dr. Minato for valuable discussions on the delayed neutron emission calculation. TK thanks P. Talou, M.B. Chadwick, T. Bredeweg, and M. Gooden of LANL and A. Tonchev of LLNL for encouraging and continuous support of this work. TK and AL were partially support by the Office of Defense Nuclear Nonproliferation Research & Development (DNN R&D), National Nuclear Security Administration, U.S. Department of Energy, and they performed this work under the auspice of the U.S. Department of Energy by Los Alamos National Laboratory under Contract 89233218CNA000001.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Los Alamos National Laboratory [89233218CNA000001].

ORCID

Shin Okumura http://orcid.org/0000-0001-5964-3615
Toshihiko Kawano http://orcid.org/0000-0001-7463-4899
Amy Elizabeth Lovell http://orcid.org/0000-0001-5757-5233

References

[1] Brady MC, England TR. Delayed neutron data and group parameters for 43 fissioning systems. Nucl Sci Eng. 1989;102(2):129–149.
[2] Brady MC. Evaluation and application of delayed neutron precursor data. Los Alamos National Laboratory; 1989. LA-11534-T.
[3] Yoshida T, Tachibana T, Storrer F, et al. Possible origin of the gamma-ray discrepancy in the summation calculations of fission product decay heat. J Nucl Sci Technol. 1999;36(2):135–142.
[4] Okumura S, Kawano T, Jaffke P, et al. $^{235}\text{U}(n,f)$ independent fission product yield and isomeric ratio calculated with the statistical Hauser-Feshbach theory. J Nucl Sci Technol. 2018;55(9):1009–1023.
[5] Robertis RB, Hafstad LR, Meyer RC, et al. The delayed neutron emission which accompanies fission of Uranium and Thorium. Phys Rev. 1939 Apr;55(7):664.
[6] Keepin GR, Wimett TF, Zeigler RK, et al. Delayed neutrons from fissionable isotopes of uranium, plutonium and thorium. J Nucl Energy. 1957;6(1):1N2–21.
[7] Masters CF, Thorpe MM, Smith DB, et al. The measurement of absolute delayed-neutron yields from 3.1- and 14.9-MeV fission. Nucl Sci Eng. 1969;36(2):202–208.
[8] Krick MS, Evans AE. The measurement of total delayed-neutron yields as a function of the energy of the neutron inducing fission. Nucl Sci Eng. 1971;47(3):311–318.
[9] Piksaikin VM, Kazakov LE, Roschchenko VA, et al. Experimental studies of the absolute total delayed neutron yields from neutron induced fission of ^{238}U in the energy range 1–5 MeV. Prog Nucl Energy. 2002;41(1-4):135–144.
[10] Evans AE, Thorpe MM, Krick MS, et al. Revised delayed-neutron yield data. Nucl Sci Eng. 1999;50(1):80–82.
[11] Tuttle RJ. Delayed-neutron data for reactor-physics analysis. Nucl Sci Eng. 1975;56(1):37–71.
[12] Yoshida T, Okajima S, Sakurai T, et al. Evaluation of delayed neutron data for JENDL-3.3. J Nucl Sci Technol. 2002;39(sup2):136–139.
[13] Sikora DJ. Dependence of total and reduced delayed neutron yields on the parameter (nZ–A). Neutron physics. Materials of the Sixth All-Union, Conference.
[50] England TR, Rider BF. Evaluation and compilation of fission product yields. Los Alamos National Laboratory; 1994. ENDF-349, LA-UR-94-3106.

[51] Goverdovskiy AA, Mitrofanov VF, Keterov VV, et al. Variations of fission fragment mass distributions in 238U(n,f) reaction around vibrational resonances. Proc. Int. Seminar ISINN-8. 2000;298.

[52] Vivès F, Hambsch FJ, Bax H, et al. Investigation of the fission fragment properties of the reaction 238U(n,f) at incident neutron energies up to 5.8 MeV. Nucl Phys A. 2000;662(1–2):63–92.

[53] Gooden ME, Arnold CW, Becker IA, et al. Energy dependence of fission product yields from 235U, 238U and 239Pu for incident neutron energies between 0.5 and 14.8 MeV. Nucl Data Sheets. 2016;131:319–356. Special Issue on Nuclear Reaction Data.

[54] Chadwick MB, Kawano T, Barr DW, et al. Fission product yields from fission spectrum n-235Pu for ENDF/B-VII.1. Nucl Data Sheets. 2010;111(12):2923–2964.

[55] Kawano T. CoH3: The coupled-channels and Hauser-Feshbach code. Springer Proceedings in Physics. 2021;254:28–34. CNR2018: International Workshop on Compound Nucleus and Related Topics, Berkeley, CA, USA: LBNL, 2018 Sept 24 – 28. In Escher J, Alhassid Y, Bernstein LA, et al. (Eds.).

[56] Otuka N, Dupont E, Semkova V, et al. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nucl Data Sheets. 2014;120:272–276.

[57] Zerkin VV, Pritychchenko B. The experimental nuclear reaction data (EXFOR): extended computer database and web retrieval system. Nucl Instrum Methods Phys Res A. 2018;888:31–43.

[58] Baba H, Saito T, Takahashi N, et al. Role of effective distance in the fission mechanism study by the double-energy measurement for Uranium isotopes. J Nucl Sci Technol. 1997;34(9):871–881.

[59] Hambsch FJ (personal communication).

[60] Pleasonton F, Ferguson RL, Schmitt HW, et al. Prompt gamma rays emitted in the thermal-neutron-induced fission of 235U. Phys Rev C. 1972 Sep;6(3):1023–1039.

[61] Simon G, Trochon J, Briasard F, et al. Pulse height defect in an ionization chamber investigated by cold fission measurements. Nucl Instrum Methods Phys Res A. 1990;286(1–2):220–229.

[62] Straede C, Budtz-Jørgensen C, Knitter HH, et al. 235U(n,f) fragment mass-, kinetic energy- and angular distributions for incident neutron energies between thermal and 6 MeV. Nucl Phys A. 1987;462(1):85–108.

[63] Zeynalov S, Furman W, Hambsch FJ, et al. Investigation of mass-TKE distributions of fission fragments from the U-235(n,f)- reaction in resonances. Proc. Int. Seminar ISINN-13. 2006.

[64] D’yachenko PP, Kuzminov BD, Tarasko MZ, et al. Energy and mass distribution of fragments from fission of U-235 by monoenergetic neutrons from 0 to 15.5 MeV. Soviet Journal of Nuclear Physics. 1969; 8.

[65] Akimov NI, Vorobyeva VG, Kabenin VN, et al. Effect of excitation energy on yields and kinetic energies of fragments at the fission of Pu-239 by neutrons. Yadernaya Fizika. 1971;13:484.

[66] Surin VM, Sergeachev AI, Kuzminov BD IRN, et al. Yields and kinetic energies of fragments in the fission of 233U and 239Pu by 5.5- and 15-MeV neutrons. Yadernaya Fizika. 1971;14:935.

[67] Wagemans C, Allaert E, Deruytter A, et al. Comparison of the energy and mass characteristics of the 239Pu(n, f) and the 240Pu(sf) fragments. Phys Rev C. 1984 Jul;30(1):218–223.

[68] Schillebeeckx P, Wagemans C, Deruytter AJ, et al. Comparative study of the fragments’ mass and energy characteristics in the spontaneous fission of 238Pu. 239Pu and 240Pu and in the thermal-neutron-induced fission of 239Pu. Nucl Phys A. 1992;545(3):623–645.

[69] Nishio K, Nakagome Y, Kanno I, et al. Measurement of fragment mass dependent kinetic energy and neutron multiplicity for thermal neutron induced fission of Plutonium-239. J Nucl Sci Technol. 1995;32(5):404–414.

[70] Tsuchiya C, Nakagome Y, Yamana H, et al. Simultaneous measurement of prompt neutrons and fission fragments for 239Pu(n,f). J Nucl Sci Technol. 2000;37(11):941–948.

[71] Duke DL, Tovesson F, Laptev AB, et al. Fission-fragment properties in U-238 (n, f) between 1 and 30 MeV. Phys Rev C. 2016 Nov;94(5):054604.

[72] Vorobyeva VG, Dyachenko NP, Kolosov NP, et al. Effect of nucleonic composition of fissioning nuclei on mean kinetic-energy of fragments. Yadernaya Fizika. 1974;19(5):954.

[73] Meierbachtl K, Tovesson F, Duke DL, et al. Total kinetic energy release in 238Pu (n, f) post-neutron emission from 0.5 to 50 MeV incident neutron energy. Phys Rev C. 2016 Sep;94(3):034611.