Metastable states in the Blume-Emery-Griffiths spin glass model

Antonio de Candia
Dipartimento di Scienze Fisiche
INFM, Unità di Napoli
Monte Sant’Angelo, I-80126 Napoli, Italy

We study the Blume-Emery-Griffiths spin glass model in presence of an attractive coupling between real replicas, and evaluate the effective potential as a function of the density overlap. We find that there is a region, above the first order transition of the model, where metastable states with a large density overlap exist. The line where these metastable states appear should correspond to a purely dynamical transition, with a breaking of ergodicity. Differently from what happens in p-spin glasses, in this model the dynamical transition would not be the precursor of a 1-step RSB transition, but (probably) of a full RSB transition.

The Blume-Emery-Griffiths (BEG) spin glass model can be seen as a generalization of the Sherrington Kirkpatrick (SK) model, in which each site carries, beside to the spin variable \( S_i = \pm 1 \), a lattice gas variable \( n_i = 0, 1 \). Its Hamiltonian is given by

\[
\mathcal{H} = -\sum_{i<j} J_{ij} S_i S_j n_i n_j - \frac{K}{N} \sum_{i<j} n_i n_j - \mu \sum_i n_i
\]

where \( J_{ij} \) are quenched Gaussian variables with zero mean and variance \( J^2/N \). The case \( K/J = 0 \) goes also under the name of Ghatak Sherrington model. It has been found that in general, fixed the value \( K/J \), there exists a tricritical point in the phase space. For higher temperature or chemical potential the model presents a second order transition from a paramagnetic to a spin glass phase. For lower temperature or chemical potential the transition becomes first order also in the Ehrenfest sense, that is, with a jump in the mean energy and entropy. Moreover, while in p-spin models the first step of replica symmetry breaking (RSB) turns out to be exact, in the BEG spin glass the question of the order of RSB appears much more subtle. The question was studied by many authors in the case of the Ghatak Sherrington model. It was found that the replica symmetric solution is unstable against RSB in the whole spin glass region, with the appearance of complex eigenvalues in the stability matrix. Recently, it has been shown that this kind of instability persists also in the 1-step RSB solution. Therefore it seems reasonable that only a full replica symmetry breaking may probably give the correct solution, as it happens in the SK model.

In the last years, a version of the model called frustrated Ising lattice gas (FILG), has been extensively studied as a model of a structural glass. In this version of the model the disordered interactions are of the type \( J_{ij} = \pm J \). Indeed, the FILG can be interpreted as a model for a system of asymmetrical molecules, with the variables \( n_i \) representing the presence of a molecule on the site \( i \), and the variables \( S_i \) representing the spatial orientation of the molecule. Two neighbor particles feel a repulsion of intensity \( 2J \) if their relative orientation is “wrong”, that is \( J_{ij} S_i S_j < 0 \). Numerical simulations on finite dimensional lattices show that at low temperature the model develops a two step relaxation, as observed in supercooled liquids and predicted by the mode coupling theory (MCT) of the glass transition.

Given these links between the model and the glass transition in structural liquids, it would be interesting to study (at least in mean field) if the discontinuous transition of the model is preceded at a higher temperature by a purely dynamical transition, from an ergodic to a non-ergodic phase, as it happens for p-spin glasses. This would require the solution of the dynamical equations, as done for the p-spin, to see if they show a singularity, and of what kind, at some temperature greater than the static one. In this paper we address the problem from another point of view, exploiting the effective potential theory, introduced some time ago as a tool to identify the presence of metastable states, and a transition from an ergodic to a non-ergodic phase. We will refer to the so-called “annealed version” of the method. One considers two “real” replicas of the system (as opposed to the replicas generated by the replica trick), labeled 1 and 2, and defines a “degree of similarity”, that is an overlap \( q \), between them. Then one studies the system composed by the coupled replicas, with Hamiltonian \( \mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 - eq \). If \( F(q) \) is the free energy of the coupled system, then the Legendre transform \( V(q) = \max_\epsilon [F(\epsilon) + \epsilon q] \) will represent the “effective potential”.
as a function of the overlap $q$, that is the work needed to keep the two replicas, in the configuration space, at the distance $q$. What one finds in $p$-spin models [19–21] and in structural glasses in the HNC approximation [23–24], and expects generally whenever metastable states are present in the system, that is for temperatures between the static and dynamical transition, is that the potential $V(q)$ presents two minima. A lower minimum, for low values of $q$, corresponds to the “unbounded state”, in which the two replicas are in different “valleys” of the configuration space. A second higher minimum, for high values of $q$, corresponding to the “bounded state”, in which the two replicas are constrained to stay in the same valley. As the free energy of each single system is independent from which valley the system is in, the gap $\Delta V$ between the two minima can be interpreted as being equal to $T \Sigma$, where $\Sigma$ is the logarithm of the number of valleys, and is called complex or configurational entropy.

We apply the effective potential theory to the model defined by (6) with $K/J = 0$. The phase space is depicted in Fig. 2, where the continuous curve represents the line of second order transition, the black dot the tricritical point, and the dashed curve the line of first order transitions. We now introduce two real replicas, coupled in the density overlap $q_d = \frac{1}{\sqrt{2}} \sum_i n^a_i n^b_i$. The Hamiltonian of the system is

$$F = \frac{\beta J^2}{2} (d^2 + q_s^2) + \beta J^2 \sum_{\alpha < \beta} (q_{\alpha \beta}^2 + p_{\alpha \beta}^2) - T \log T \exp(-\mathcal{H}_{\text{eff}})$$

where $d = \langle n^{a} n^{a} \rangle$ is the mean density, $q_s = \langle S^{1a} S^{2a} n^{1a} n^{2a} \rangle$ is the spin overlap between two directly coupled replicas, $q_{\alpha \beta} = \langle S^{\alpha a} S^{\beta a} n^{\alpha a} n^{\beta a} \rangle$ and $p_{\alpha \beta} = \langle S^{1a} S^{2b} n^{1a} n^{2b} \rangle$ are respectively the overlap matrices between replicas with the same and with different “real label”, and $\mathcal{H}_{\text{eff}}$ is the effective single site Hamiltonian

$$\mathcal{H}_{\text{eff}} = - \left( \frac{\beta^2 J^2}{2} d + \beta \mu \right) \sum_{\alpha a} n^{\alpha a} - \beta^2 J^2 \sum_{\alpha < \beta} q_{\alpha \beta} \sum_{\alpha a} S^{\alpha a} S^{\alpha a} n^{\alpha a} n^{\alpha a}$$

$$- 2 \beta^2 J^2 \sum_{\alpha < \beta} p_{\alpha \beta} S^{1a} S^{2b} n^{1a} n^{2b} - \beta^2 J^2 q_s \sum_{\alpha} S^{1a} S^{2a} n^{1a} n^{2a} - \beta \epsilon \sum_{\alpha} n^{1a} n^{2a}$$

In the replica symmetric approximation $q_{\alpha \beta} = q$ and $p_{\alpha \beta} = p$. We make the further approximation $q = p$, and obtain for the free energy

$$F = -2T \log 2 + \frac{\beta J^2}{2} (d^2 + q_s^2 - 2q^2)$$

$$- T \int Dz \log \left\{ 1 + 2e^{\Xi} \cosh(\beta J \sqrt{q} z) + e^{2\Xi + \beta \epsilon} \left[ e^{\Omega} \cosh^2(\beta J \sqrt{q} z) - \sinh \Omega \right] \right\}$$

where $\Xi = \frac{\beta^2 J^2}{2} (d - q) + \beta \mu$, $\Omega = \beta^2 J^2 (q_s - q)$, and $Dz = \frac{dz}{\sqrt{2\pi}} e^{-z^2/2}$.

The physical states of the system will be given by the saddle points of the free energy, which are given by the equations

$$d = \int Dz \frac{e^{\Xi} \cosh(\beta J \sqrt{q} z) + e^{2\Xi + \beta \epsilon} \left[ e^{\Omega} \cosh^2(\beta J \sqrt{q} z) - \sinh \Omega \right]}{1 + 2e^{\Xi} \cosh(\beta J \sqrt{q} z) + e^{2\Xi + \beta \epsilon} \left[ e^{\Omega} \cosh^2(\beta J \sqrt{q} z) - \sinh \Omega \right]}$$

$$q_s = \int Dz \frac{e^{2\Xi + \beta \epsilon} \left[ e^{\Omega} \cosh^2(\beta J \sqrt{q} z) - \cosh \Omega \right]}{1 + 2e^{\Xi} \cosh(\beta J \sqrt{q} z) + e^{2\Xi + \beta \epsilon} \left[ e^{\Omega} \cosh^2(\beta J \sqrt{q} z) - \sinh \Omega \right]}$$

$$q = \int Dz \frac{e^{\Xi} \sinh(\beta J \sqrt{q} z) \left[ 1 + e^{\Xi + \beta \epsilon + \Omega} \cosh(\beta J \sqrt{q} z) \right]}{1 + 2e^{\Xi} \cosh(\beta J \sqrt{q} z) + e^{2\Xi + \beta \epsilon} \left[ e^{\Omega} \cosh^2(\beta J \sqrt{q} z) - \sinh \Omega \right]}$$

Notice that the saddle points are neither maxima nor minima of the free energy, because $F$ has to be minimized with respect to $d$ and $q_s$, and maximized with respect to $q$. If $\epsilon = 0$ then $q_s = q$, $\Omega = 0$, and one obtains the saddle point equations of the uncoupled system. Differentiating the free energy $F$ with respect to $\epsilon$, we can evaluate the density overlap $q_d = \langle n^{1a} n^{2a} \rangle$. 

2
In the above expression we can put \( \epsilon = \Omega = 0 \), and find the expression of the density overlap for a system without coupling, which cannot be obtained directly from the free energy of the uncoupled system.

Now we want to compute the effective potential as a function of the density overlap \( q_d \). The procedure to do so was previously sketched, and consists in evaluating \( V(q_d) = \max [F(\epsilon) + \epsilon q_d] \). We evaluate \( V(q_d) \) in three points of the phase space (marked by asterisks in Fig. [1]). One point at the edge of the region in which spin glass solutions of the saddle point equations exist, one on the line of first order transitions, and one in between. The result is shown in Fig. [2]. As soon as one enters in the region where spin glass solutions exist, a secondary minimum in the effective potential appears, signaling the existence of metastable states. We expect therefore that the dotted line of Fig. [1] will represent a line of purely dynamical transitions, below which ergodicity is broken and the relaxation function \( \langle \mathcal{N}_q \mathcal{N}_q \rangle \) will not decay to its equilibrium value, which in the paramagnetic phase is the density squared, but will stick at the value given by the secondary minimum of the potential.

The presence of metastable states, and of a dynamical transition at a temperature higher than the static transition, in a model in which the low temperature spin glass phase is characterized by a full RSB, seems rather peculiar. It is reasonable to think that the usual picture, valid for \( p \)-spin models, according to which at the dynamical transition the phase space is splitted into an extensive number of valleys having all the same “distance”, that is the same mutual overlap, is modified in this case. Here in fact the spin glass phase is characterized by a complex ultrametric structure, typical of the SK model. In particular one may ask if in this case the gap \( \Delta V \) in the effective potential can still be interpreted as a configurational entropy, that is the logarithm of the number of valleys in the configuration space. Finally, it would be interesting to understand how and to what extent this model can tell us something about real systems, that is structural glasses.

I thank A. Coniglio, M. Nicodemi, M. Sellitto and J.J. Arenzon for many interesting discussions. This work was partially supported by the European TMR Network-Fractals (Contract No. FMRXCT980183), MURST-PRIN-2000 and INFMPRA(HOP).

\[
q_d = -\frac{\partial F}{\partial \epsilon} = \int Dz \frac{e^{2\Xi + \beta \epsilon} \left[ \epsilon \Omega \cosh^2(\beta J \sqrt{q} \ z) - \sinh \Omega \right]}{1 + 2e^{\Xi} \cosh(\beta J \sqrt{q} \ z) + e^{2\Xi + \beta \epsilon} \left[ \epsilon \Omega \cosh^2(\beta J \sqrt{q} \ z) - \sinh \Omega \right]}
\]  

(7)
FIG. 1. Phase diagram of the model, for $K/J = 0$. The region P is the paramagnetic phase, while the region SG is the spin glass phase. The full curve is the line of second order transitions, terminating at the tricritical point (black dot). The dashed curve is the line of first order transitions, and the dotted one is the line where non-paramagnetic solutions of the saddle point equations first appear. The three asterisks are the points where we have calculated the effective potential (see Fig. 2).

FIG. 2. Effective potential as a function of the density overlap $q_d$, for chemical potential $\mu/J = -0.85$ and temperatures $T/J = 0.183, 0.119$ and $0.0538$ (points marked with an asterisk in Fig. 1). The potentials for different temperatures are shifted so that the paramagnetic minimum is at $V = 0$. The dotted lines join the potentials at the same temperature, and are only a guide to the eye.