Genetic Studies in Human Prion Diseases

Byung-Hoon Jeong¹ and Yong-Sun Kim²*¹

¹Korea Zoonosis Research Institute, Chonbuk National University, Jeonju; ²Ilsong Institute of Life Science, Hallym University, Anyang, Korea

Received: 4 February 2014
Accepted: 20 March 2014

Address for Correspondence:
Yong-Sun Kim, MD
Ilsong Institute of Life Science, Hallym University, Ilsong Building 15 Gwanyeong-ro, 170 beon-gil, Dongan-gu, Anyang 431-060, Korea
Tel: +82.31-380-1986, Fax: +82.31-388-3427
E-mail: yskim@hallym.ac.kr

This research was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-619-E0001) and by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2003686).

INTRODUCTION

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that affect humans and animals. These diseases are characterized by spongiform changes, astrogliosis, and the accumulation of an abnormal prion protein (PrP) in the central nervous system (CNS). The key mechanism in the pathogenesis of prion diseases is the conversion of the cellular prion protein (PrPC) into PrPSc (1). The human prion diseases include kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and familial insomnia (2). The majority of human prion diseases are sporadic (85%). Approximately 10%-15% of human prion diseases are inherited, i.e., caused by mutations in the prion protein gene (PRNP), and less than 1% are acquired (3, 4).

PRNP is located on chromosome 20p12 in humans. The human PRNP gene contains two exons, and the 253 amino acid prion protein (PrP) is encoded by the larger second exon (5). PrP is an N-linked glycosylated protein that is posttranslationally processed to remove a 22 amino acid signal peptide and is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. The N-terminal domain of human PrP comprises a five octapeptide repeat, and the C-terminal domain contains two N-glycosylation sites and an intermolecular disulfide bond (6).

To date, more than 30 mutations of PRNP have been found in the open reading frame (ORF) of this gene (3, 6-30). These mutations are the only cause of familial prion diseases, which include familial CJD, GSS, and FFI (31-33). In addition to these mutations, many polymorphisms have also been observed in the ORF of PRNP (3, 34). In particular, single nucleotide polymorphisms (SNPs) at codons 129 or 219 of PRNP represent susceptibility factors for human prion diseases (35-37). Candidate gene studies and genome-wide association studies (GWAS) have been conducted to identify genetic susceptibility factors for human prion diseases (38-40).

In this review, we summarize the genetics of familial human prion diseases and current studies of the genetic factors in sporadic human prion diseases.

PRNP MUTATIONS

Genetic CJD

Familial CJD is caused by inherited autosomal dominant point mutations and insertion/deletion mutations of octapeptide repeats (OPRI/OPRD) (41). Among these mutations, many have been identified in patients without a family history of prion disease, known as genetic CJD. Genetic CJD accounts for 5%-15% of all CJD cases. Genetic CJD may be caused by point mutations at codons 114 (GGT→GTT), 178 (GAC→AAC), 180 (GTC→ATC),...
Table 1. PRNP pathogenic point mutations

Phenotype	Mutations (codon)	DNA sequence change	Amino acid change	Reference
gCJD	114	GGT→GTT	Gly→Val	8
	178-129V	GAC→AAC	Asp→Asn	9
	180	GTC→ATC	Val→Ile	10
	183	ACA→AAG	Thr→Ala	11
	188	AGG→AAG	Thr→Lys	12
	196	GAG→AAG	Glu→Lys	13
	200	GAG→AAG	Glu→Lys	14
	203	GGT→ATT	Val→Ile	13
	208	CSG→CAC	Arg→His	15
	210	GTT→ATT	Val→Ile	16
	211	GAG→AGA	Glu→Gln	13
	232	AGT→AGG	Met→Arg	17
	238	CCA→TCA	Pro→Ser	18
GSS	102	CGG→CTG	Pro→Leu	19
		CCA→CTA	Pro→Leu	20
	105	CCA→ACA	Pro→Thr	21
		CCA→TCA	Pro→Ser	22
	117	GOA→GTG	Ala→Val	23
	131	GGA→GTA	Gly→Val	24
	145	TAT→TAG	Tyr→Stop	25
	160	CAA→TAA	Gin→Stop	12
	187	CAC→CGC	His→Arg	26
	198	TTC→TCC	Phe→Ser	27
	202	GAC→AAC	Asp→Asn	28
	211	GAG→GAC	Glu→Gln	13
	212	GAG→CCG	Glu→Pro	28
	217	GAG→CAG	Gin→Arg	27
	226	TAC→TAA	Tyr→Stop	29
	227	CAG→TAG	Gin→Stop	29
FFI	117-120M	GAC→AAC	Asp→Asn	30

gCJD, genetic Creutzfeldt-Jakob disease; GSS, Gerstmann-Sträussler-Scheinker syndrome; FFI, fatal familial insomnia.

Fig. 1. Mutations in that PRNP gene cause the genetic Creutzfeldt-Jakob disease (CJD) or FFI in humans. D178N* is associated with familial CJD or fatal familial insomnia (FFI), depending on the allele present at codon 129 (Met, M = FFI, Val, V = familial CJD). The single-letter designations for the amino acids are as follows: D = aspartic acid, E = glutamic acid, G = glycine, H = histidine, I = isoleucine, K = lysine, M = methionine, N = asparagine, P = proline, Q = glutamine, R = arginine, S = serine, T = threonine, and V = valine. OPRI and OPRD indicate octapeptide repeat insertion and octapeptide repeat deletion, respectively. CHO, Asn-linked glycosylation sites; GPI, glycosylphosphatidylinositol.
GSS

GSS has been associated with point mutations at codons 102 (CCG→CTG), 105 (CCA→CTA, ACA, TCA), 117 (GCA→GTG), 131 (GGA→GTA), 145 (TAT→TAG), 160 (CAA→TAA), 188 (GAG→GAC), 202 (GAC→AAC), 211 (GAG→GAC), 212 (CAG→CCG), 217 (CAG→CGG), 226 (TAC→TAA), and 227 (CAG→TAG), and insertional mutations of 8 and 9 octapeptide repeat segments (Table 1 and Fig. 2) (2, 3, 7, 19-29).

The distribution and frequency of PRNP mutations in GSS were also clearly distinct between Europeans and East Asians (Table 2). The most common PRNP mutation in GSS patients in European countries and East Asia is in codon 102. The PRNP mutation at codon 105 is observed in East Asian, but not European populations. In contrast, the mutation in codon 117 is found in European, but not East Asian populations (42, 43). There were significant differences in the frequencies of three mutations (codon 102, P < 0.001; codon 105, P = 0.018; codon 117, P = 0.019) between European and East Asian GSS patients. In Korea, a mutation at codon 102 of PRNP has been reported in two GSS patients (44, 51).

The onset of GSS mainly occurs between 40 to 60 yr of age. The clinical symptoms of GSS include cerebellar dysfunction, gait disturbance, dementia, and mild dysarthria. All GSS cases exhibit PrP plaque deposits (50). The hallmark of GSS is the extensive PrP-amyloid deposits with minimal spongiform change. In addition, neurofibrillary tangles have been detected in the GSS patients with PRNP mutations at codon 105, 145, and 217 (52-54).

FFI

FFI is caused by a mutation at codon 178 (GAC→AAC) of PRNP in combination with a polymorphism that generates a Met at
codon 129 (Table 1 and Fig. 1) (2, 3, 7, 34). The frequency of the PRNP mutation at codon 178 in conjunction with M129 is more prevalent in European than East Asian countries (P < 0.001) (Table 2) (42, 43). In Korea, a mutation at codon 178 accompanied by M129 has been reported in one FFI patient (46).

FFI typically presents between 20 and 72 yr of age, with an average age of onset of approximately 50 yr. The duration of FFI ranges from 6 months to 33 months with an average of 18.4 months. The major clinical symptom of FFI is insomnia (50). Ataxia, dysarthria, myoclonus, dysphagia and pyramidal signs can also be observed.

PRNP POLYMORPHISMS

In addition to the mutations described above, many polymorphisms have been observed in the ORF of PRNP. PRNP polymorphisms are observed at codons 129 (ATG→GTG), 142 (GGC→AGC), 171 (AAC→AGC), 188 (ACG→AAG), and 219 (GAG→AAG), and the deletion of 1 octapeptide repeat segments is also considered a polymorphism (2, 3, 55).

Codon 129 SNP

The PRNP codon 129 SNP introduces an amino acid substitution of Val for Met. The SNP at codon 129 of PRNP has been considered a genetic risk factor for human prion diseases (34, 37). This SNP was strongly associated with sporadic CJD in Korean, Japanese, Dutch, British, Spanish, French and German populations (Table 3) (37, 38, 43, 55-62). Heterozygosity at codon 129 is protective against sporadic, iatrogenic or variant CJD in Europeans and East Asians (35, 37, 38, 58-65). In particular, all cases of variant CJD are homozygous for Met at this SNP (65).

The frequency of Met homozygosity at codon 129 of PRNP is considerably different between Europeans (32%-45%) and East Asians (92%-94%) normal populations (Table 3).

Codon 219 SNP

The PRNP codon 219 SNP introduces an amino acid substitution of lysine (Lys) for glutamic acid (Glu) (36). The SNP at codon 219 has been reported in Asian but not Caucasian populations (36, 37, 43, 55, 66). This SNP was linked to the development of sporadic CJD in the Korean and Japanese populations (36, 37).

Other PRNP polymorphisms

The deletion of the PRNP octapeptide repeat was not associated with sporadic CJD in the British population (67). Several SNPs outside the coding region of PRNP have also been investigated. The PRNP1368 polymorphism was associated with sporadic CJD in the British and German populations (68, 69). However, this finding could not be confirmed in the Korean population (70). Case-control studies in a Dutch population have shown contradictory results (71, 72). The PRNP -101, 310 and 385 SNPs showed a significant association with an increased risk of developing sporadic CJD after adjusting for the PRNP codon 129 genotype (73-75).

POLYMORPHISMS IN OTHER CANDIDATE GENES

Previous association studies of several genes other than PRNP have been performed in Europeans and East Asians (Table 4). For example, the prion-like protein gene (PRND), shadow of PrP (SPRN), cathepsin D (CTSD), HECTD2, tau protein gene (MAPT), apolipoprotein E (APOE), alpha-1-antichymotrypsin (ACT), a disintegrin and metalloprotease 10 (ADAM10), ribosomal protein SA (RPSA), 14-3-3 eta (YWHAH), 14-3-3 beta (YWHAH), beta site APP cleaving enzyme 1 (BACE1), and calcium homeostasis modulator 1-3 (CALHM1-3) have all been investigated for relationships with human prion diseases.

PRND

PRND, the gene encoding the downstream prion-like protein (doppel or Dpl), is located downstream of human PRNP (76). Two SNPs in PRND, T26M and/or P56L, were not associated with sporadic CJD (68, 71, 77, 78). The T174M polymorphism has been inconsistently linked with sporadic CJD (68, 71, 77-79).

Table 3. Genotype distribution of PRNP codon 129 SNP in various populations between sporadic CJD patients and controls

Countries	Control	Sporadic CJD	P value*	References					
	Met/Met	Met/Val	Val/Val	P value*	Met/Met	Met/Val	Val/Val	P value*	
Korea	499	29	1	0.001	150	0	0	0.001	37, 55
Japan	164	15	0	n.s.	552	14	4	0.002	43, 56
Netherlands	435	440	90	<0.001	98	32	10	<0.001	57, 58
UK	294	324	81	<0.001	307	98	101	<0.001	38
Spain	129	165	41	<0.001	112	36	27	<0.001	59
France	38	45	9	<0.001	260	57	75	<0.001	60, 61
Germany	15	27	4	<0.001	39	6	5	<0.001	62

*Based on the comparison of frequencies between Korea and other countries in the controls by the chi-square test or Fisher’s exact test; †Based on the comparison of frequencies between the controls and sporadic CJD patients of the same nationality by the chi-square test or Fisher’s exact test. CJD, Creutzfeldt-Jakob disease; Met, Methionine; Val, Valine; n.s., not significant.
80). An association between sporadic CJD and a polymorphism in the 3' untranslated region (UTR) +28 position of PRND has been reported in the Korean population (81).

SPRN

SPRN encodes the shadow of PrP (Shadoo or Sho), which exhibits homology to PrP (82). The SPRN/TM7 SNP was linked to the development of sporadic and variant CJD in the British population (83).

CTSD

CTSD, the gene encoding cathepsin D, is located on chromosome 11 (84). Cathepsin D co-localizes with PrPSc (85). CTSD C224T was associated with an increased risk of the development of sporadic and variant CJD in the British population (86). However, this polymorphism was not associated with increased risk of sporadic CJD in Korean or European populations (87, 88).

HECTD2

HECTD2, an E3 ubiquitin ligase, is located on chromosome 10. SNPs in HECTD2 have been associated with variant and sporadic CJD in the British population (89). However, the -247G > A and +16066T > A polymorphisms were not associated with genetic susceptibility to sporadic CJD in a Korean population (90).

MAPT

MAPT is located on chromosome 17 (91) and plays a key role in the pathogenesis of several neurodegenerative disorders (92, 93). Six analyzed SNPs (rs212559, rs424577, rs3785883, rs2471738, H1/H2, and rs7521) in MAPT were not related to sporadic CJD development in the European population (94).

APOE

APOE is located on chromosome 19, and the APOE ε4 allele is a major risk factor for Alzheimer’s disease (AD) (95, 96). Studies of the relationship between the APOE ε4 allele and the risk of sporadic CJD have produced divergent findings (59, 97-100).

ACT

ACT is located on chromosome 14 and is one of the factors that may enhance amyloid formation (101). The signal peptide polymorphism in ACT was determined to be unlikely confer genetic susceptibility to sporadic CJD in the Italian population (102).

ADAM10

ADAM10 is located on chromosome 15 (103) and is involved in the cleavage of PrPSc in cells (104). The rs972801 SNP in ADAM10 was not associated with sporadic CJD in a French population (105).

RPSA

Ribosomal protein SA (RPSA), also known as 37 kDa laminin receptor precursor (LRP)/67 kDa laminin receptor (LR), is located on chromosome 3. LRP/LR acts as a receptor for PrPSc and PrPSc (106, 107). Four RPSA SNPs (5' UTR-8T > C, 134-32C > T, 519G > A, and 793+58C > T) were not linked to sporadic CJD susceptibility (108).

YWHAA

YWHAA, the gene encoding 14-3-3 eta, is located on chromosome 2 (109). The 14-3-3-3 protein is detected in the cerebrospinal fluid (CSF) for the diagnosis of sporadic CJD (110). The YWHAH 14-3-3 eta; YWHAH 14-3-3 beta; YWHAH beta site APP cleaving enzyme 1.

YWHAB

YWHAB, the gene encoding 14-3-3 beta, is located on chromosome 20 (112). The 14-3-3 beta protein interacts with PrP (113). Six SNPs (c.60A > C, c.685-120G > A, c.685-89G > A, c.719T > A, and c.87A > G) in YWHAB were not correlated with

Table 4. The association results of SNPs of other genes excepting PRNP between sporadic or variant CJD and controls

Results	Sporadic CJD	Variant CJD	References
Association	PRND 3' UTR +28; SPRN/TM7; CALHM1 rs41287502 & rs4918016	SPRN/A466G (frame shift); STTM2 rs1460163; RARB rs6794719; HECTD2 rs12249864 & rs7081363; CTSD C224T; MTMR7 rs4921542; NPAS2 rs7565981; ZBTB38-RASA2 rs295301; CHN2 rs1016726	38-40, 59, 81, 83, 86, 89, 118
Controversial results	PRND T174M; APOE; HECTD2 rs12249865 & rs7081363; ZBTB38-RASA2 rs268301	No association	40, 59, 68, 71, 77-80, 89, 90, 97-99

CJD, Creutzfeldt-Jakob disease; PRND, prion-like protein gene; UTR, untranslated region; SPRN, shadow of PrP; CALHM1-3, calcium homeostasis modulator 1-3; APOE, apolipoprotein E; ADAM10, a disintegrin and metalloprotease 10; ACT, alpha1-antichymotrypsin; MAPT, tau protein gene; UTR, untranslated region; PRNP, prion-like protein gene; UTR, untranslated region; APOE, apolipoprotein E; C224T, C224T; RPSA, ribosomal protein SA; YWHAH, 14-3-3 eta; YWHAH, 14-3-3 beta; RARB, retinoic acid receptor β; STTM2, the SG510 protein; CTSD, cathepsin D; MTMR7, myotubularin-related protein 7 gene; NPAS2, neuronal PAS (per-ARNT-sim) domain-containing protein 2 gene; BACE1, beta site APP cleaving enzyme 1.
been reported in only the Europeans, these studies in the East Asians will be necessary to confirm and identify candidate genes for human prion diseases. In the future, the identification of new candidate gene in human prion diseases will contribute to understand numerous questions and potential therapeutic targets in prion diseases.

DISCLOSURE

The authors declare no conflict of interest.

ORCID

Byung-Hoon Jeong http://orcid.org/0000-0002-4525-9994
Yong-Sun Kim http://orcid.org/0000-0002-9591-7262

REFERENCES

1. Prusiner SB, Scott MR, DeArmond SJ, Cohen FE. Prion protein biology. Cell 1998; 93: 337-48.
2. Brown K, Mastrianni JA. The prion diseases. J Geriatr Psychiatry Neurol 2010; 23: 277-98.
3. Mastrianni JA. The genetics of prion diseases. Genet Med 2010; 12: 187-95.
4. Kim HL, Do JY, Cho HI, Jeon YJ, Song HJ, Lee Y, Choi H, Choi KC, et al. Dura mater graft-associated Creutzfeldt-Jakob disease: the first case in Korea. J Korean Med Sci 2011; 26: 1515-7.
5. Liao YC, Lebo RV, Clawson GA, Smuckler EA. Human prion protein cDNA: molecular cloning, chromosomal mapping, and biological implications. Science 1986; 233: 364-7.
6. Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987; 51: 229-40.
7. Mead S. Prion disease genetics. Eur J Hum Genet 2006; 14: 273-81.
8. Rodriguez MM, Peoc'h K, Haïk S, Bouchet C, Vernengo L, Mañana G, Salaman R, Carrasco L, Lenne M, Beaudry P, et al. A novel mutation (G114V) in the prion protein gene in a family with inherited prion disease. Neurology 2005; 64: 1455-7.
9. Nieto A, Goldfarb LG, Brown P, McCombie WR, Trapp S, Asher DM, Gajdusek DC. Codon 178 mutation in ethnically diverse Creutzfeldt-Jakob disease families. Lancet 1991; 337: 622-3.
10. Kitamoto T, Ohta M, Doh-ura K, Hitoshi S, Terao Y, Tateishi J. Novel missense variants of prion protein in Creutzfeldt-Jakob disease or Gerstmann-Sträussler syndrome. Biochem Biophys Res Commun 1993; 191: 709-14.
11. Nitrini R, Rosenberg SB, Passos-Bueno MR, da Silva LS, Iughetti P, Papadopoulos M, Carrilho PM, Caramelli P, Albrecht S, Zatz M, et al. Familial spongiform encephalopathy associated with a novel prion protein gene mutation. Ann Neurol 1997; 42: 138-46.
12. Finchk U, Müller-Thomsen T, Mann U, Eggens C, Marksteiner J, Meins W, Binetti G, Alberici A, Hock C, Nitsch RM, et al. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am J Hum Genet 2000; 66: 110-7.
13. Peoc’h K, Manivet P, Beaudry P, Attane F, Besson G, Hannequin D, Delasnerie-Lauprêtre N, Laplanche JL. Identification of three novel mutations (E196K, V203I, E211Q) in the prion protein gene (PRNP) in inherited prion diseases with Creutzfeldt-Jakob disease phenotype. Hum Mutat 2000; 15: 482.

14. Goldfarb LG, Korczyn AD, Brown P, Chapman J, Gajdusek DC. Mutation in codon 200 of scrapie amyloid precursor gene linked to Creutzfeldt-Jakob disease in Sephardic Jews of Libyan and non-Libyan origin. Lancet 1990; 336: 637-8.

15. Mastrianni JA, Iannicola C, Myers RM, DeArmond S, Prusiner SB. Mutation of the prion protein gene at codon 208 in familial Creutzfeldt-Jakob disease. Neurology 1996; 47: 1305-12.

16. Pocchiari M, Salvatore M, Cutruzzolà F, Genuardi M, Allocatelli CT, Bodemer M, Poser S, Kretzschmar HA. Molecular genetics of human prion diseases in Germany. Hum Genet 1999; 105: 244-52.

17. Hsiao K, Baker HF, Crow TJ, Poulter M, Owen E, Torwiller JD, Westaway D, Ott J, Prusiner SB. Linkage of a prion protein missense variant to Gerstmann-Sträussler syndrome. Nature 1990; 343: 342-5.

18. Kitamoto T, Amano N, Terao Y, Nakazato Y, Isshiki T, Mizutani T, Tateishi J. Identification of three novel mutations in PRNP codons 129 and 219 in the Korean population. Neurogenetics 2009; 10: 229-32.

19. Nozaki I, Hamaguchi T, Sanjo N, Noguchi-Shinohara M, Sakai K, Naiki DW, Vinters HV, Zimmerman TR, Mackenzie IR, et al. Phenotypic variability of Gerstmann-Sträussler-Scheinker disease is associated with prion protein heterogeneity. J Neuropathol Exp Neurol 1998; 57: 979-88.

20. Jansen C, Voet W, Head MW, Parchi P, Yull H, Verrips A, Wesseling P, Meulstee J, Baas F, van Gool WA, et al. A novel seven-octapeptide repeat insertion in the prion protein gene (PRNP) in a Dutch pedigree with Gerstmann-Sträussler-Scheinker disease phenotype: comparison with similar cases from the literature. Acta Neuropathol 2011; 121: 59-68.

21. Moriya R, Tittschler HJ, LeBlanc A, Villare F, Manetto V, Chen HY, Xue R, Leal S, Montagna P, Cortelli P, et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N Engl J Med 1992; 326: 444-9.

22. Tunnell E, Wollman R, Mallik S, Cortes CJ, Dearmond SJ, Mastrianni JA, Rogaeva E, Zadikoff C, Ponesse J, Schmitt-Ulms G, Kawarai T, Sato C, Kitamoto T, Amano N, Terao Y, Nakazato Y, Isshiki T, Mizutani T, Tateishi J. A new inherited prion disease with neurofibrillary tangles. Nat Genet 1992; 102: 1899-902.

23. Giese A, Schulz-Schaeffer W, Zerr I, Skworc K, Arendt S, Oberdieck C, Bodemer M, Poser S, Kretzschmar HA. Molecular genetics of familial Creutzfeldt-Jakob disease. Biochem Biophys Res Commun 1993; 193: 525-31.

24. Shibuya S, Higuchi J, Shin RW, Tateishi J, Kitamoto T. Codon 219 Lys allele of PRNP is not found in sporadic Creutzfeldt-Jakob disease. Nature 1991; 352: 340-2.

25. Goldfarb LG. Pro- leu change at position 102 of prion protein is the most common but not the sole mutation related to Gerstmann-Sträussler syndrome. Acta Neuropathol Commun 1899; 163: 974-9.

26. Pocchiari M, Salvatore M, Cutruzzolà F, Genuardi M, Allocatelli CT, Bodemer M, Poser S, Kretzschmar HA. Molecular genetics of human prion diseases in Germany. Hum Genet 1999; 105: 244-52.

27. Hsiao K, Baker HF, Crow TJ, Poulter M, Owen E, Torwiller JD, Westaway D, Ott J, Prusiner SB. Linkage of a prion protein missense variant to Gerstmann-Sträussler syndrome. Nature 1990; 343: 342-5.

28. Kitamoto T, Amano N, Terao Y, Nakazato Y, Isshiki T, Mizutani T, Tateishi J. A new inherited prion disease (PrP-P105L mutation) showing spastic paraparesis. Ann Neurol 1993; 34: 808-13.

29. Windl O, Giese A, Schulz-Schaeffer W, Zerr I, Skvorc K, Arendt S, Oberdieck C, Bodemer M, Poser S, Kretzschmar HA. Molecular genetics of human prion diseases in Germany. Hum Genet 1999; 105: 244-52.

30. Mead S, Poulter M, Uphill J, Beck J, Whitefield T, Campbell T, Adamson G, Derziotiis P, Tabrizi SJ, et al. Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol 2009; 8: 57-66.

31. Sanchez-Juan P, Bishop MT, Aulchenko YS, Brandel JP, Rivadeneira F, Struchalin M, Lambert JC, Amouyel P, Combarros O, Sainz J, et al. Genome-wide study links MTMR7 gene to variant Creutzfeldt-Jakob risk. Neurobiol Aging 2012; 33: e214-e218.

32. Mead S, Poulter M, Uphill J, Beck J, Whitefield T, Campbell T, Adamson G, Hummerich H, Klopp N, Bucett K, et al. Genome-wide association study in multiple human prion diseases suggests genetic risk factors additional to PRNP. Hum Mol Genet 2012; 21: 1897-906.

33. Capellari S, Strammielli R, Saverioni D, Kretzschmar H, Parchi P. Genetic Creutzfeldt-Jakob disease and fatal familial insomnia: insights into phenotypic variability and disease pathogenesis. Acta Neuropathol 2011; 121: 21-37.

34. Kovácí G, Puopolo M, Ladogana A, Pocchiari M, Budka H, van Duijn C, Collins SJ, Boyd A, Giulivi A, Coulthart M, et al. Genetic prion disease: the EUROCDJ experience. Hum Genet 2005; 118: 186-74.

35. Nozaki I, Hamaguchi T, Sanjo N, Noguchi-Shinohara M, Sakai K, Nakamura Y, Tateishi J, Kitamoto T, Mizutani T, Mizusawa H, Moriwaka E, et al. Prospective 10-year surveillance of human prion diseases in Japan. Brain 2010; 133: 3043-57.

36. Moon S, Lee J, Cho CH, Wook Hyeon J, Sun Park J, Kyeong Kim C, et al. Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol 2009; 8: 57-66.
Yeon Kim S. Genotype patterns and characteristics of PRNP in the Korean population. Prion 2012; 6: 375-82.
45. Jeong BH, Jeon YC, Lee YJ, Cho HJ, Park SJ, Chung DI, Kim I, Kim SH, Kim HT, Choi EK, et al. Creutzfeldt-Jakob disease with the V203I mutation and M129V polymorphism of the prion protein gene (PRNP) and a 17 kDa prion protein fragment. Neuropathol Appl Neurobiol 2010; 36: 558-63.
46. Choi BY, Kim SY, Seo SY, An SS, Kim S, Park SE, Lee SH, Choi YI, Kim SJ, Kim CK, et al. Mutations at codons 178, 200-129, and 232 contributed to the inherited prion diseases in Korean patients. BMC Infect Dis 2009; 9: 132.
47. Yang TI, Jung DS, Ahn BY, Jeong BH, Cho HJ, Kim YS, Na DL, Geschwind MD, Kim EI. Familial Creutzfeldt-Jakob disease with V180I mutation. J Korean Med Sci 2010; 25: 1097-100.
48. Yeo MJ, Lee SH, Lee YJ, Jeon YC, Park SJ, Cho HJ, Choi KC, Kim YS, Kim SH. Familial Creutzfeldt-Jakob disease with a mutation at codon 180 presenting with an atypical phenotype. J Clin Neurosci 2013; 20: 180-2.
49. Jeong BH, Ju WK, Huh K, Lee EA, Choi IS, Im JH, Choi EK, Kim YS. Molecular analysis of prion protein gene (PRNP) in Korean patients with Creutzfeldt-Jakob disease. J Korean Med Sci 1998; 13: 234-40.
50. Imran M, Mahmoon S. Overview of human prion diseases. Virol J 2011; 8: 559.
51. Park MJ, Jo HY, Cheon SM, Choi SS, Kim YS, Kim JW. A case of gerstmann-strassler-scheinker disease. J Clin Neurol 2010; 6: 46-50.
52. Giaccone G, Tagliavini F, Verga L, Frangione B, Farlow MR, Bugiani O, Ghetti B. Neurofibrillary tangles of the Indiana kindred of Gerstmann-Straussler-Scheinker disease share antigenic determinants with those of Alzheimer disease. Brain Res 1990; 530: 325-9.
53. Ghetti B, Piccardo P, Spillantini MG, Ichimiya Y, Porrino L, Perini F, Kita Giaccone G, Tagliavini F, Verga L, Frangione B, et al. Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc Natl Acad Sci U S A 1996; 93: 744-8.
54. Yamada M, Itoh Y, Inaba A, Wada Y, Takashima S, Sato H, Kamata T, Okeda K, Kayano T, Suematsu N, et al. An inherited prion disease with a PrP P105L mutation: clinicopathologic and PrP heterogeneity. Neurolology 1993; 55: 181-8.
55. Jeong BH, Nam JH, Lee YJ, Choi YI, Jang MK, Park KY, Lee HD, Ju YB, Ahn Jo S, Park KY, et al. Polymorphisms of the prion protein gene (PRNP) in a Korean population. J Hum Genet 2004; 49: 319-24.
56. Doh-ura K, Kitamoto T, Sakaki Y, Tateishi J. CJD discrepancy. Nature 1991; 353: 801-2.
57. Dermaut B, Croes EA, Rademakers R, Van den Broeck M, Cruts M, Hofman A, van Duijn CM, Van Broeckhoven C. PRNP Val129 homozgyosity increases risk for early-onset Alzheimer’s disease. Ann Neurol 2003; 50: 409-12.
58. Jansen JC, Bickeböller H, Illig T; KORA group, Kretzschmar HA. Significant association of an M129V independent polymorphism in the 5’ UTR of the PRNP gene with sporadic Creutzfeldt-Jakob disease in a large German case-control study. J Med Genet 2006; 43: e53.
59. Vollmert C, Windl O, Xiang W, Rosenberger A, Zerr I, Wichmann HE, Bickeböller H, Illig T; KORA group, Kretzschmar HA. Significant association of an M129V independent polymorphism in the 5’ UTR of the PRNP gene with sporadic Creutzfeldt-Jakob disease. J Med Genet 2006; 43: e53.
60. Jeong BH, Lee KH, Lee YJ, Kim YH, Cho YS, Carp RI, Kim YS. PRNP 1368 polymorphism is not associated with sporadic Creutzfeldt-Jakob disease in the Korean population. Eur J Neurology 2008; 15: 846-50.
61. Croes EA, Alizadeh BZ, Bertoli-Avella AM, Rademakers T, Vergeer-Drop J, Dermaut B, Houbiing-Diusterman J, Wijmrens DP, Hofman A, Van Broeckhoven C, et al. Polymorphisms in the prion protein gene and in the doppel gene increase susceptibility for Creutzfeldt-Jakob disease. Eur J Hum Genet 2004; 12: 389-94.
62. Bratosiewicz-Wasik J, Smoleń-Dziriba J, Roszemuller AJ, Jansen C, Spriet W, Jansen GH, Wasik TJ, Liberski PP. Association between the PRNP 1368 polymorphism and the occurrence of sporadic Creutzfeldt-Jakob disease. Prion 2012; 6: 413-6.
63. Sanchez-Juan P, Bishop MT, Croes EA, Knight RS, Will RG, van Duijn CM, Manson JC. A polymorphism in the regulatory region of PRNP is associated with increased risk of sporadic Creutzfeldt-Jakob disease. BMC Med Genet 2011; 12: 73.
64. Bratosiewicz-Wasik J, Liberski PP, Golanska E, Jansen GH, Wasik TJ. Regulatory sequences of the PRNP gene influence susceptibility of sporadic Creutzfeldt-Jakob disease. Neurosci Lett 2007; 411: 163-7.
65. McCormack JE, Baybutt HN, Everington D, Will RG, Ironside JW, Manson JC. PRNP contains both intrinsic and upstream regulatory regions that may influence susceptibility to Creutzfeldt-Jakob Disease. Gene 2002; 288: 139-46.
76. Lu K, Wang W, Xie Z, Wong BS, Li R, Petersen RB, Sy MS, Chen SG. Expression and structural characterization of the recombinant human doppel protein. Biochemistry 2000; 39: 13575-83.
77. Mead S, Beck J, Dickinson A, Fisher EM, Collinge J. Examination of the human prion protein-like gene doppel for genetic susceptibility to sporadic and variant Creutzfeldt-Jakob disease. Neurosci Lett 2000; 290: 117-20.
78. Peoc’h K, Guérin C, Brandel JP, Launay JM, Laplanche JL. First report of polymorphisms in the prion-like protein gene (PRND): implications for human prion diseases. Neurosci Lett 2000; 286: 144-8.
79. Schröder B, Franz B, Hempfling P, Selbert M, Jürgens T, Kretzschmar HA, Bodemer M, Poser S, Zerr I. Polymorphisms within the prion-like protein gene (Prnp) and their implications in human prion diseases, Alzheimer’s disease and other neurological disorders. Hum Genet 2001; 109: 319-25.
80. Jeong BH, Kim NH, Kim JI, Carp RI, Kim YS. Polymorphisms at codons 56 and 174 of the prion-like protein gene (PRND) are not associated with sporadic Creutzfeldt-Jakob disease. J Hum Genet 2005; 50: 311-4.
81. Jeong BH, Kim NH, Choi EK, Lee C, Song YH, Kim JI, Carp RI, Kim YS. Polymorphism at 3’ UTR +28 of the prion-like protein gene is associated with sporadic Creutzfeldt-Jakob disease. Eur J Hum Genet 2005; 13: 1094-7.
82. Premzl M, Sangiorio L, Strumbo B, Marshall Graves JA, Simonic T, Gready JD. Shado, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene 2003; 314: 89-102.
83. Beck JA, Campbell TA, Adamson G, Poulter M, Uphill JB, Molou E, Collinge J, Mead S. Association of a null allele of SPRN with variant Creutzfeldt-Jakob disease. J Med Genet 2006; 43: 813-7.
84. Augereau P, Garcia M, Matei MG, Cavailles V, Depavada F, Deroq D, Capony E, Ferrara P, Rochefort H. Cloning and sequencing of the 52K cathepsin D complementary deoxyribonucleic acid of MCF7 breast cancer cells and mapping on chromosome 11. Mol Endocrinol 1988; 2: 186-92.
85. Kovács GG, Gelpi E, Ströbel T, Ricken G, Nyengaard JR, Bernheimer H, Budka H. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 2007; 66: 628-36.
86. Bishop MT, Kovacs GG, Sanchez-Juan P, Knight RS. Cathepsin D SNP associated with increased risk of variant Creutzfeldt-Jakob disease. BMC Med Genet 2008; 9: 31.
87. Jeong BH, Lee KH, Lee YJ, Yun I, Park YJ, Bae Y, Kim YH, Cho YS, Choi EK, Carp RI, et al. Genetic association of a cathepsin D polymorphism and sporadic Creutzfeldt-Jakob disease. Dement Geriatr Cogn Disord 2009; 28: 302-6.
88. Kovacs GG, Sanchez-Juan P, Ströbel T, Schuur M, Poleggi A, Nocentini S, Giannattasio C, Arias-Vasquez A, Poleggi A, Knight RS, van Duijn CM. No evidence for association between tau gene haplotype variants and susceptibility to Creutzfeldt-Jakob disease. BMC Med Genet 2007; 8: 77.
89. Das HK, McPherson J, Bruns GA, Karathanasis SK, Breslow JL. Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene. J Biol Chem 1985; 260: 6240-7.
90. Martin ER, Lai EH, Gilbert JR, Rogala AR, Afshari AJ, Riley J, Finch KL, Stevens JP, Livak KJ, Slotterbeck BD, et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000; 67: 383-94.
91. Nakagawa Y, Kitamoto T, Fukuwaka H, Ogomori K, Tateishi J. The apolipoprotein E alleles as major susceptibility factors for Creutzfeldt-Jakob disease: the French Research Group on Epidemiology of Human Spongiform Encephalopathies. Lancet 1994; 344: 1315-8.
92. Van Everbroeck B, Croes EA, Pals P, Dermaut B, Jansen G, van Duijn CM, Cruts M, Van Broeckhoven C, Martin JJ, Cras P. Influence of the prion protein and the apolipoprotein E genotype on the Creutzfeldt-Jakob Disease phenotype. Neurosci Lett 2001; 313: 69-72.
93. Iqbal K, Vidal O, Laplanche J, The apolipoprotein E alleles as major susceptibility factors for Creutzfeldt-Jakob disease. Neurosci Lett 2001; 313: 69-72.
94. Van Everbroeck B, Croes EA, Pals P, Dermaut B, Jansen G, van Duijn CM, Cruts M, Van Broeckhoven C, Martin JJ, Cras P. Influence of the prion protein and the apolipoprotein E genotype on the Creutzfeldt-Jakob Disease phenotype. Neurosci Lett 2001; 313: 69-72.
95. Nakagawa Y, Kitamoto T, Fukuwaka H, Ogomori K, Tateishi J. The apolipoprotein E alleles as major susceptibility factors for Creutzfeldt-Jakob disease: the French Research Group on Epidemiology of Human Spongiform Encephalopathies. Lancet 1994; 344: 1315-8.
96. Picking-Brown SM, Mann DM, Owen E, Ironside JW, de Silva R, Roberts DA, Balderson DI, Cooper PN. Allelic variations in apolipoprotein E and prion protein genotype related to plaque formation and age of onset in sporadic Creutzfeldt-Jakob disease. Neurosci Lett 1995; 187: 209-11.
97. Amouyel P, Vidal O, Launay JM, Laplanche JL. The apolipoprotein E alleles as major susceptibility factors for Creutzfeldt-Jakob disease: the French Research Group on Epidemiology of Human Spongiform Encephalopathies. Lancet 1994; 344: 1315-8.
98. Van Everbroeck B, Croes EA, Pals P, Dermaut B, Jansen G, van Duijn CM, Cruts M, Van Broeckhoven C, Martin JJ, Cras P. Influence of the prion protein and the apolipoprotein E genotype on the Creutzfeldt-Jakob Disease phenotype. Neurosci Lett 2001; 313: 69-72.
99. Nakagawa Y, Kitamoto T, Fukuwaka H, Ogomori K, Tateishi J. The apolipoprotein E alleles as major susceptibility factors for Creutzfeldt-Jakob disease: the French Research Group on Epidemiology of Human Spongiform Encephalopathies. Lancet 1994; 344: 1315-8.
100. Pickering-Brown SM, Mann DM, Owen E, Ironside JW, de Silva R, Roberts DA, Balderson DI, Cooper PN. Allelic variations in apolipoprotein E and prion protein genotype related to plaque formation and age of onset in sporadic Creutzfeldt-Jakob disease. Neurosci Lett 1995; 187: 209-11.
101. Mullan M, Houlden H, Windelspecht M, Fidani L, Lombardi C, Diaz P, Rossor M, Crook R, Hardy J, Duff K, et al. A locus for familial early-onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the alpha 1-antichymotrypsin gene. Nat Genet 1992; 2: 340-2.
102. Salvatore M, Seeber AC, Nacmias B, Petraroli R, Sorbi S, Pacchiarri M. Apolipoprotein E and prion protein genotype related to plaque formation and age of onset in sporadic Creutzfeldt-Jakob disease. Neurosci Lett 1995; 187: 209-11.
103. Yamazaki K, Mizui Y, Tanaka I. Radiation hybrid mapping of human ADAM10 gene to chromosome 15. Genomics 1997; 45: 457-9.
104. Laffont-Proust I, Faucheux BA, Hässig R, Deslys JP, Dormont D, Lasmézas CI, et al. Cloning and sequencing of the 52K cathepsin D complementary deoxyribonucleic acid of MCF7 breast cancer cells and mapping on chromosome 11. Mol Endocrinol 1988; 2: 186-92.
105. Plamont MA, Chasseigneaux S, Delasnerie-Lauprêtre N, Beaudry P, Yamazaki K, Mizui Y, Tanaka I. Radiation hybrid mapping of human ADAM10 gene to chromosome 15. Genomics 1997; 45: 457-9.
106. Bishop MT, Kovacs GG, Sanchez-Juan P, Knight RS. Cathepsin D SNP associated with increased risk of variant Creutzfeldt-Jakob disease. BMC Med Genet 2008; 9: 31.
107. Jeong BH, Lee KH, Lee YJ, Yun I, Park YJ, Bae Y, Kim YH, Cho YS, Choi EK, Carp RI, et al. Genetic association of a cathepsin D polymorphism and sporadic Creutzfeldt-Jakob disease. Dement Geriatr Cogn Disord 2009; 28: 302-6.
108. Kovacs GG, Sanchez-Juan P, Ströbel T, Schuur M, Poleggi A, Nocentini S, Giannattasio C, Arias-Vasquez A, Poleggi A, Knight RS, van Duijn CM. No evidence for association between tau gene haplotype variants and susceptibility to Creutzfeldt-Jakob disease. BMC Med Genet 2007; 8: 77.
109. Jeong BH, Lee KH, Lee YJ, Yun I, Park YJ, Cho HJ, Kim YH, Cho YS, Choi EK, Carp RI, et al. Absence of association between two HECTD2 polymorphisms and sporadic Creutzfeldt-Jakob disease. Dement Geriatr Cogn Disord 2011; 31: 146-51.
inin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 1997; 3: 1383-8.

108. Yun J, Jin HT, Lee YJ, Choi EK, Carp RI, Jeong BH, Kim YS. The first report of RPSA polymorphisms, also called 37/67 kDa LRP/LR gene, in sporadic Creutzfeldt-Jakob disease (CJD). BMC Med Genet 2011; 12: 108.

109. Muratake T, Hayashi S, Ichikawa T, Kumanishi T, Ichimura Y, Kiwano R, Isobe T, Wang Y, Minoshima S, Shimizu N, et al. Structural organization and chromosomal assignment of the human 14-3-3 eta chain gene (YWHAH). Genomics 1996; 36: 63-9.

110. Stoeck K, Sanchez-Juan P, Gawinecka J, Green A, Ladogana A, Pocchiari M, Sanchez-Valle R, Mitrova E, Sklaviadis T, Kulczycki J, et al. Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt-Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain 2012; 135: 3051-61.

111. Yun J, Jeong BH, Kim HI, Park YJ, Lee YJ, Choi EK, Carp RI, Kim YS. A polymorphism in the YWHAH gene encoding 14-3-3 eta that is not associated with sporadic Creutzfeldt-Jakob disease (CJD). Mol Biol Rep 2012; 39: 3619-25.

112. TOMMERUP N, Leffers H. Assignment of the human genes encoding 14, 3-3 Eta (YWHAH) to 22q12, 14-3-3 zeta (YWHAZ) to 2p25.1-p25.2, and 14-3-3 beta (YWHAH) to 20q13.1 by in situ hybridization. Genomics 1996; 33: 149-50.

113. Mei GY, Li Y, Wang GR, Zhang BY, Tian C, Chen C, Zhou RM, Wang X, Li XL, Wang KX, et al. Molecular interaction between PrP protein and the signal protein 14-3-3 beta. Bing Du Xue Bao 2009; 25: 208-12.

114. Jeong BH, Jin HT, Choi EK, Carp RI, Kim YS. Lack of association between 14-3-3 beta gene (YWHAH) polymorphisms and sporadic Creutzfeldt-Jakob disease (CJD). Mol Biol Rep 2012; 39: 10647-53.

115. Sambamurti K, Kinsey R, Maloney B, Ge YW, Lahiri DK. Gene structure and organization of the human beta-secretase (BACE) promoter. FASEB J 2004; 18: 1034-6.

116. Calero O, Bullido MJ, Clarimón J, Frank-García A, Martínez-Martín P, Lleó A, Rey MJ, Sastre I, Rábano A, de Pedro-Cuesta I, et al. A common BACE1 polymorphism is a risk factor for sporadic Creutzfeldt-Jakob disease. PLoS One 2012; 7: e43926.

117. Dresses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, Bovelet-Lecrux A, Hannequin D, et al. A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer’s disease risk. Cell 2008; 133: 1149-61.

118. Calero O, Bullido MJ, Clarimón J, Hortigüela R, Frank-García A, Martínez-Martín P, Lleó A, Rey MJ, Sastre I, Rábano A, et al. Genetic variability of the gene cluster CALHM 1-3 in sporadic Creutzfeldt-Jakob disease. Prion 2012; 6: 407-12.

119. Jeong BH, Kim YS. Creutzfeldt-Jakob disease susceptibility: an approach to discovering multiple candidate genes for human prion diseases. Adv Genet Eng Biotechnol 2012; 1: 2.

120. Jeong BH, Kim HI, Lee KH, Carp RI, Kim YS. RARB and STMN2 polymorphisms are not associated with sporadic Creutzfeldt-Jakob disease (CJD) in the Korean population. Mol Biol Rep 2014; 41: 2389-95.