Спектр мутаций и их фенотипическая реализация у детей и взрослых с синдромом удлиненного интервала QT

Чакова Н. Н.1, Комиссарова С. М.2, Засим Е. В.3, Долматович Т. В.1, Ребеко Е. С.2, Ниязова С. С.1, Заклязьминская Е. В.4, Плащинская Л. И.2, Дудко М. В.1

Цель. Изучить спектр мутаций в генах, ответственных за синдром удлиненно- го интервала QT (LQTS), а также проанализировать их фенотипические проявления у пациентов с LQT5 в разных возрастных группах.

Материалы и методы. Группа из 35 неродственных пробандов со клиническим диагнозом LQT5: 23 взрослых (8 мужчин) и 12 детей (9 мальчиков). Клинические особенности включали синкопальные состояния (54%), внезапную сердечную смерть (BCC) в семье (29%), 16 пациентам (48%) были имплантированы кардиовертер-дефибрилляторы (ИКД). Клинико-инструментальное исследование включало регистрацию электрокардиограммы в покое и под нагрузкой в 12 отведениях, 24-часовое холтеровское мониторирование, генеалогический анализ, эхокардиографию и магнитно-резонансную томографию сердца. Генетическое исследование проводили методом высокоскоростного секвенирования (NGS) на приборе MiSeq (Illumina). Сравнение двух не связанных между собой групп по количественным признакам осуществлялось с использованием непараметрического критерия Манна-Уитни. Статистически значимыми считали различия при р<0,05.

Результаты. В обследованной группе из 35 пробандов были выявлены 23 генетических варианта в IV и V классах патологии (далее — мутации). Молекулярно-генетический вариант заболевания был верифицирован у 66% пробандов. При этом выявляемость мутаций была у пациентов с ранней манифестацией (до 18 лет), чем у взрослых: 83% (10 из 12 детей) vs 57% (13 из 23). У 4 из 35 пробандов (11%) были выявлены редкие генетические варианты неопределенной значимости (VUS, III класс патологии). В группах детей и взрослых с LQT1, LQT2 и LQT3 распределение по полу отклонялось от соотношения 1:1. Среди детей две трети составляли девочки, средних возрастов — женщины. Наблюдалась зависимость срока манифестации заболевания, продолжительности QTс и риска неблагоприятных событий от генетического типа LQT5, внутригенных локализаций мутаций и пола. У детей все 4 миссийная мутация в гене KCNQ1 были локализованы в области трансмембранного домена, а у взрослых 4 мутации — в трансмембранном домене и три — в C-концевом домене белка. LQT1 у мальчиков характеризовался ранней манифестацией, при этом QTc превышал 500 мс, не было неблагоприятных исходов. У двух женщин с LQT1 с мутациями в трансмембранном домене был имплантирован ИКД (QTc >520 мс). У всех пациентов с LQT2 (4 детей, 4 взрослых) мутации QTс >500 мс; при этом 2 детям и 3 женщинам был имплантирован ИКД. LQT3 был диагностирован только в детской подгруппе (2 мальчика, с QTc 510 мс и QTc 610 мс), одним из них умер внезапно, несмотря на терапию бета-блокаторами. Четверо взрослых пациентов, носителей варианта III класса патологии, имели QTc <500 мс и более позднюю манифестацию заболевания (после 30 лет). У троих из них зарегистрированы эпизоды клинической смерти с успешными реанимационными мероприятиями и последующей имплантацией ИКД.

Заключение. Диагностическая эффективность поиска мутаций методом NGS у больных с клинически манифестным LQTS составила 66%, при этом выявле- мость мутаций в детской группе была значительно выше. У генотип-позитивных пробандов риск неблагоприятных исходов коррелирует с полом, возрастом и генетическим вариантом заболевания. Наибольшее число неблагоприятных исходов наблюдалось в носителях мутаций в генах KCNQ2 (LQT2) и SCN5A (LQT3). У 4 пробандов (11%) были выявлены варианты с неизвестным клиниче- ским значением, что потенциально открывает возможность для подтверждения диагноза после получения результатов функциональных исследований.

Ключевые слова: синдром удлиненного интервала QT, спектр мутаций, гены KCNK1, KCNH2, SCN5A, SCN4A, SCN5B, стратификация риска.

Оние и действие: нет.

1Институт генетики и цитологии НАН Беларуси, Минск, Республика Беларусь; 2Республиканский научно-практический центр "Кардиология", Минск, Республика Беларусь; 3Республиканский научно-практический центр "Детской хирургии", Минск, Республика Беларусь; 4ФГБНУ Российский науч- ный центр хирургии им. акад. Б. В. Петровского, Москва, Россия.

Чакова Н. Н. — к.б.н., в.н.с. лаборатории генетики животных, ORCID: 0000-0002-4721-9109, Комиссарова С. М. — д.м.н., г.н.с. лаборатории хронической сердечной недостаточности, ORCID: 0000-0001-8917-5932, Засим Е. В. — к.м.н., зав. консультативно-поликлиническим отделением, ORCID: 0000-0003-0778-6512, Долматович Т. В. — к.б.н., в.н.с. лаборатории генетики животных, ORCID: 0000-0001-7562-131X, Ребеко Е. С. — к.м.н., в.н.с. лаборатории нарушений сердечного ритма, ORCID: 0000-0002-8131-0849, Ниязова С. С. — м.н.с. лаборатории генетики животных, ORCID: 0000-0002-3566-7644, Заклязьминская Е. В. — д.м.н., зав. лабораторией медицинской генетики, ORCID: 0000-0002-6244-9546, Плащинская Л. И. — к.м.н., в.н.с. лаборатории нарушений сердечного ритма, ORCID: 0000-0001-8815-5403, Дудко М. В. — м.н.с. лаборатории генетики животных, ORCID: 0000-0003-3794-194X.

*Автор, ответственный за переписку (Corresponding author): n.chakova@igc.by

BCC — внезапная сердечная смерть, ИКД — имплантируемый кардиовертер-дефибриллятор, ЖТ — желудочковая тахикардия, НКТ — неустойчивая желудочковая тахикардия, ФЖ — фибрилляция желудочков, ЭКГ — электрокардиограмма, LQTS — синдром удлиненного интервала QT, LQT1 — LQT1-го типа, LQT2 — LQT2-го типа, LQT3 — LQT3-го типа, NGS — (Next-generation sequencing) высокоомпаративное таргетное секвенирование, VUS — вариант неопределенного значения III класса.

Рукопись получена 28.09.2021
Рецензия получена 11.10.2021
Принята к публикации 16.10.2021

Список литературы:
1. Чакова Н. Н., Комиссарова С. М., Засим Е. В., Долматович Т. В., Ребеко Е. С., Ниязова С. С., Заклязьминская Е. В., Плащинская Л. И., Дудко М. В. Спектр мутаций и их фенотипическая реализация у детей и взрослых с синдромом удлиненного интервала QT. Российский кардиологический журнал. 2021;26(10):4704.
2. Чакова Н. Н., Комиссарова С. М., Засим Е. В., Долматович Т. В., Ребеко Е. С., Ниязова С. С., Заклязьминская Е. В., Плащинская Л. И., Дудко М. В. Спектр мутаций и их фенотипическая реализация у детей и взрослых с синдромом удлиненного интервала QT. Российский кардиологический журнал. 2021;26(10):4704.

Spectrum of mutations and their phenotypic manifestations in children and adults with long QT syndrome

Chakova N. N.1, Komissarova S. M.2, Zasim E. V.3, Dolmatovich T. V.1, Rebeko E. S.2, Niyazova S. S.1, Zaklyazminskaya E. V.4, Plashchinskaya L. I.2, Dudko M. V.1

Aim. To determine the spectrum of mutations in the genes responsible for the long QT syndrome (LQTS) and study their phenotypic manifestations in patients with LQTS in different age groups.

Materials and methods. The study included 35 unrelated probands with a clinical diagnosis of LQTS: 23 adults (8 men) and 12 children (9 boys). There were following clinical features: syncope — 54%, positive family history for SCD — 29%,
Синдром удлиненного интервала QT (LQTS) представляет собой генетически обусловленное заболевание, характеризующееся увеличением интервала QT на электрокардиограмме (ЭКГ), высоким риском развития жизнеугрожающих желудочковых тахиаритмий, синкопальных состояний и внезапной сердечной смерти (ВСС) в молодом возрасте. Причиной LQTS преимущественно являются функциональные изменения калиевых, натриевых и кальциевого ионных каналов, которые чаще всего вызваны дефектами генов, кодирующих пороюобращающие α-субъединицы и регулярные β-субъединицы ионных каналов, а также некоторые другие белки. Распространённость клинически выраженного LQTS составляет по крайней мере 1 на 2 тыс. человек [1].

Современные подходы к диагностике LQTS, оценке риска ВСС и выбору тактики лечения у пациентов с такой патологией в значительной степени базируются на информации о молекулярно-генетической природе заболевания. Определение генетической причины позволяет минимизировать генотип-специфические триггеры жизнеугрожающих аритмий [2], исключить препараты, удаляющие интервал QT, а также индивидуализировать лечение и назначить оптимальные антиаритмические препараты при определенном типе LQTS [1]. Клиническая значимость генетического тестирования у пациентов с LQTS подтверждается и тем, что у бессимптомных носителей мутации без проведения профилактических мероприятий и соответствующей терапии риск серьезных сердечных событий к возрасту 40 лет существенно повышается [3]. К настоящему времени предложены алгоритмы стратификации риска и ведения пациентов с различными генетическими вариантами LQTS, которые существенно помогают в клинической практике [2-5]. Наряду с этим, показано, что прогноз заболевания зависит от пола пациента и меняется с возрастом: наиболее злокачественное течение синдрома и повышенный риск ВСС чаще отмечается у взрослых женщин, а среди детей — у мальчиков [6, 7]. Однако мало внимания, на наш взгляд, уделено вопросу модулирующего действия половых и возрастных характеристик на фенотипические проявления мутаций у пациентов с LQTS разных возрастных групп.

Материал и методы

В исследование включены 35 неродственных пробандов с диагнозом LQTS, установленном на осно-
ниторирование ЭКГ, сбор генеалогического анамнеза с оценкой ЭКГ всех членов семьи и выявлением случаев ВСС. Для исключения структурных нарушений миокарда проводили эхокардиографическое исследование согласно действующим рекомендациям. Поиск мутаций в кодирующих последовательностях генов, ассоциированных с развитием каналопатий и других наследственных нарушений сердечного ритма, проводили методом высокопроизводительного секвенирования (NGS) на генетическом анализаторе MiSeq (Illumina). Пробоподготовку образцов осуществляли с использованием набора "TruSight™ Cardio Sequencing Panel" (Illumina), включающего 174 гена, ассоциированных с заболеваниями сердечно-сосудистой системы. Верификация выявленных мутаций выполнена методом прямого секвенирования по Сенгеру. Аннотирование результатов секвенирования Рекомендаций ESC 2015 [8] и модифицированной шкалы Schwartz PJ, et al. (2011) [9]. В группу взрослых вошли 23 пациента в возрасте старше 18 лет (медиана 31 [21; 35]; 8 мужчин), наблюдавшихся в РНПЦ "Кардиология". Группа детей представлена 12 пробандами (медиана возраста 7 [5; 9] лет, 9 мальчиков), проходивших лечение в РНПЦ "Детской хирургии". До включения в исследование у всех взрослых участников исследования и родителей/опекунов пробандов из детской группы было получено письменное информированное согласие.

Исследование было выполнено в соответствии со стандартами надлежащей клинической практики (Good Clinical Practice) и принципами Хельсинкской Декларации.

Клинико-инструментальное исследование включало регистрацию ЭКГ в 12 отведениях, суточное мониторирование ЭКГ, сбор генеалогического анамнеза с оценкой ЭКГ всех членов семьи и выявлением случаев ВСС. Для исключения структурных нарушений миокарда проводили эхокардиографическое исследование согласно действующим рекомендациям. Поиск мутаций в кодирующих последовательностях генов, ассоциированных с развитием каналопатий и других наследственных нарушений сердечного ритма, проводили методом высокопроизводительного секвенирования (NGS) на генетическом анализаторе MiSeq (Illumina). Пробоподготовку образцов осуществляли с использованием набора "TruSight™ Cardio Sequencing Panel" (Illumina), включающего 174 гена, ассоциированных с заболеваниями сердечно-сосудистой системы. Верификация выявленных мутаций выполнена методом прямого секвенирования по Сенгеру. Аннотирование результатов секвенирования Рекомендаций ESC 2015 [8] и модифицированной шкалы Schwartz PJ, et al. (2011) [9]. В группу взрослых вошли 23 пациента в возрасте старше 18 лет (медиана 31 [21; 35]; 8 мужчин), наблюдавшихся в РНПЦ "Кардиология". Группа детей представлена 12 пробандами (медиана возраста 7 [5; 9] лет, 9 мальчиков), проходивших лечение в РНПЦ "Детской хирургии". До включения в исследование у всех взрослых участников исследования и родителей/опекунов пробандов из детской группы было получено письменное информированное согласие.

Исследование было выполнено в соответствии со стандартами надлежащей клинической практики (Good Clinical Practice) и принципами Хельсинкской Декларации.

Клинико-инструментальное исследование включало регистрацию ЭКГ в 12 отведениях, суточное мо

Таблица 1

Код	Пол	Возраст, лет	Ген (экзон)	Замена в ДНК, rs	Замена в белке	Класс патогенности	Критические события
566	Ж	24	KCNQ1 (5)	c.379G>A rs120074179	p.Val127Met	V	Синcope, ВСС в семье, ЖТ/ИКД
609	Ж	12	KCNQ1 (6)	c.535G>C rs120074181	p.Gly179Arg	V	Синcope, ВСС в семье, ЖТ/ИКД
656	Ж	35	KCNQ1 (7)	c.592G>A rs199472756	p.Gly198Arg	V	Синcope, ВСС в семье, ЖТ/ИКД
713	М	21	KCNQ1 (7)	c.641C>T rs12720459	p.Ala214Val	V	Синcope
639	Ж	25	KCNQ1 (12)	c.1555G>T rs199472787	p.Arg519Cys	V	Синcope
640	М	18	KCNQ1 (13)	c.1621G>A rs199472796	p.Val541Ile	V	Синcope
635	М	19	KCNQ1 (16)	c.1999G>A rs776119582	p.Val667Met	V	Синcope
564	Ж	24	KCNH2 (3)	c.371T>A	p.Met124Lys	V	Синcope, ВСС в семье, ЖТ/ИКД
655	Ж	34	KCNH2 (6)	c.1424A>G rs199472907	p.Tyr475Cys	V	Синcope, ВСС в семье, ЖТ/ИКД
589	Ж	35	KCNH2 (8)	c.2131A>G rs199473532	p.Ile71Val	IV	Синcope
720	Ж	43	KCNH2 (12)	c.2775dupG rs794728455	p.Pro926AlafsX14	V	Синcope, ВСС в семье, ЖТ/ИКД
628	Ж	14	CACNA1C (14)	c.2053C>T	p.Arg685Trp	IV*	–
610	Ж	31	CACNA1C (19)	c.2573G>A rs786205753	p.Arg685His	V	ЖТ/ИКД

Примечание: а — возраст манифестации; * — новая, ранее не описанная мутация; ** — мутация de novo; м — мужской пол, ж — женский пол; IV и V — класс патогенности генетического варианта согласно ACMG2015 критериям.

Сокращения: ВСС — внезапная сердечная смерть, ДНК — дезоксирибонуклеиновая кислота, ИКД — имплантируемый кардиовертер-дефибриллятор, ЖТ — желудочковая тахикардия, ФЖ — фибрилляция желудочков.
Варианты с неустановленным клиническим значением
(III класс патогенности согласно критериям ACMG2015), выявленные в группе взрослых пациентов

Код	Пол	Возраст, лет	Ген (экзон)	Замена в ДНК, rs	Замена в белке	Дополнительный вариант (III класс)	Критические события
613	Ж	39	CACNA1C (8)	c.1186G>A, rs762756712	p.Val396Ile	KCNH2: c.49A>T (p.Arg17Trp)*	ЖТ/ФХ/ИКД
607	М	33	CACNA1C (40)	c.4942G>A, rs70433285	p.Ala1648Thr	SCN3B: c.260C>G (p.Pro87Arg), rs371050389	ЖТ/ЖЭ/РЧА
543	М	45	ANK2 (14)	c.1397C>T, rs786205722	p.Thr468Met	SNTA1: c.787G>T (p.Ala263Ser), rs15057653	ЖТ/ФП, ИКД
586	М	33	ANK2 (38)	c. 9161C>G, rs139007578	p.Ala3054Gly	KCNE1: c.253G>A (p.Asp85Asn), rs1805128	ЖТ/ЖК, ИКД, штормы

Примечание: * — возраст манифестации; Ж — женский пол, ж — мужской пол.

Сокращения: ДНК — дезоксирибонуклеиновая кислота, ИКД — имплантируемый кардиовертер-дефибриллятор, ЖТ — желудочковая тахикардия, ЖЭ — желудочковая экстрасистолия, РЧА — радиочастотная аблация, ФЖ — фибрилляция желудочков, ФП — фибрилляция предсердий.

Результаты и обсуждение

В работе представлен сравнительный анализ спектра мутаций между группами взрослых и детей с диагнозом LQTS, а также изучение некоторых клинических показателей, включая неблагоприятные спектры мутаций между группами взрослых и детей.

Среди обследованных пробандов доля генотипических вариантов IV и V классов составила 66% (23 из 35). Сравнительный анализ этого показатора между группами детей (10 из 12) и взрослых (13 из 23) показал, что выявляемость диагностически значимых мутаций в группе с ранней манифестацией (дети) была выше (83%), чем у взрослых (57%), причем в отношении мажорных генов KCNQ1, KCNH2, SCN5A разница была статистически значимой (83% vs 48%, р<0,05). У 4 пациентов (11%) выявлено сочетание нескольких VUS в генах, ассоциированных с наследственными нарушениями ритма [12]. У этих пациентов выявлены также дополнительные генетические варианты VUS в генах, ассоциированных с нарушением ритма и кодирующих субъединицы кальцевого канала, и некоторые другие белики SNTA1, DSG2 (табл. 2).

Среди обследованных пробандов доля генотипических вариантов IV и V классов составила 66% (23 из 35). Сравнительный анализ этого показателя между группами детей (10 из 12) и взрослых (13 из 23) показал, что выявляемость диагностически значимых мутаций в группе с ранней манифестацией (дети) была выше (83%), чем у взрослых (57%), причем в отношении мажорных генов KCNQ1, KCNH2, SCN5A разница была статистически значимой (83% vs 48%, р<0,05). У 4 пациентов (11%) выявлено сочетание нескольких VUS в генах, ассоциированных с LQTS и другими наследственными аритмогенными заболеваниями.

Распределение 27 генетических вариантов III-V классов (табл. 1, 2), выявленных в общей группе пробандов, представлено на рисунке 1. В гене KCNQ1 (LQT1) находились 11 (41%) патогенные мутации, в гене KCNH2 (LQT2) — 8 (30%), в гене SCN5A
(LQT3) — 2 (7%). 4 (15%) нуклеотидных варианта (VUS III класса патогенности), 2 из которых локализовались в гене CACNA1C и 2 — в гене ANK2, сочетались с VUS в других генах.

Сравнительный анализ распределения мутаций в зависимости от возраста пациентов показал существенные различия между группами детей и взрослых. У пациентов детского возраста все 10 выявленных мутаций были сосредоточены в трех мажорных генах (KCNQ1, KCNH2 и SCN5A), тогда как у взрослых доля мутаций в этих генах составила только 65% (11 из 17). Доля мутаций в гене KCNH2 в группе детей была в 2 раза больше (40%), чем у взрослых пробандов (22%), тогда как доля мутаций в гене KCNQ1 была одинаковой в обеих выборках (рис. 2).

Мутации в гене SCN5A обнаружены исключительно в группе детей: у 2 из 10 пациентов (табл. 1, рис. 2). У 2 взрослых пробандов найдены 2 патогенные мутации IV и V классов в гене CACNA1C, одна из которых ранее не описана. В группе взрослых пациентов выявлено также сочетание нескольких VUS в разных генах (24%) (табл. 1, рис. 2).

Изучение распределения по полу в разных возрастных группах пациентов с генетически подтвержденным диагнозом LQT1-LQT3 выявило следующие различия: среди взрослых пробандов преобладали женщины — 82% (9 из 11 пациентов), а в группе детей 80% (8 из 10 пациентов) составляли мальчики. Следует отметить, что распределение по полу в общей группе было 1:1 (рис. 3).

Обнаруженные сдвиги в распределении по полу указывают на то, что данный признак оказывает существенное влияние на возраст манифестации клинических проявлений LQTS первых трех типов. Полученные нами данные подтверждают результаты других исследований, в которых также отмечено преобладание мужского пола среди пациентов младшей возрастной группы и доминирование женщин в старшей возрастной группе [6].

Ген KCNQ1 (LQT1)
В таблице 1 и на рисунке 4 представлены уточненные у белорусских пациентов мутации в гене KCNQ1, кодирующим α-субъединицу потенциал-за-
висимого калиевого канала (Kv7.1), ответственного за медленный ток положительно заряженных ионов калия из клеток.

82% мутаций в общей группе были миссенс-мутациями, при этом у всех взрослых наблюдался такой тип мутаций, а у детей — только в половине случаев. Остальные же генетические варианты в группе детей были представлены мутацией IVS96+1G>A во втором интроне, приводящей к нарушению процесса сплайсинга, и новой делецией c.1233delA (p.Lys411Asnfs*8) в 9 экзоне со сдвигом рамки считывания и образованием преждевременного стоп-кодона.

57% миссенс-мутаций в гене KCNQ1 у взрослых и все миссенс-мутации у детей концентрировались в 5-7 экзонах гена KCNQ1, что соответствует 1-ому (S1) и 3-ему (S3) сегментам трансмембранным домена α-субъединицы. 43% мутаций у взрослых пациентов были сосредоточены в 12, 13, 16 экзонах, кодирующих C-концевую область белка (табл. 1, рис. 4).

Значение QTc у детей с LQT1 варьировало от 447 до 528 мс, клиническое течение характеризовалось отсутствием синкопальных состояний, но у всех пробандов имелись случаи заболевания в семье, при этом у родственников женского пола. Продолжительность интервала QTc у взрослых с LQT1 изменялась в пределах 450-630 мс. Тяжелая форма заболевания наблюдалась только у 2 женщин (29%) с патогенными мутациями в 5-ом (p.Val127Met) и 6-ом экзонах (p.Gly179Arg) гена KCNQ1. У этих пациенток значение QTc было >520 мс, имелись рецидивирующие синкопальные состояния, а также желудочковая тахикардия (ЖТ)/фибрилляция желудочков (ФЖ) с последующими успешными реанимационными мероприятиями и имплантацией ИКД. Следует отметить, что значение QTc >500 мс наблюдалось у всех взрослых с мутациями в 5-7 экзоне гена KCNQ1 независимо от пола, однако ко неблагоприятные события наблюдались у женщин старше 24 лет с QTc >520 и мутациями в 5 и 6 экзонах.

Все мутации были уникальными, за исключением p.Ala214Val, локализованной в S3, которая обнаружена у 2 неродственных пробандов (у мужчины 30 лет с манифестацией в 6-летнем возрасте, рецидивирующими синкопальными состояниями, неустойчивой желудочковой тахикардией (ЖТ) и QTc =630 мс, а также у девочки 3 лет с QTc =505 мс).

Ген KCNH2 (LQT2)
Мутации в гене KCNH2 (LQT2), кодирующим α-субъединицу быстро активирующегося потенциал-зависимого калиевого канала (Kv11.1), представлены в таблице 1 и на рисунке 5. Мутации в этом гене, как и в гене KCNQ1, приводят к снижению реполяризующего тока из клетки и увеличению продолжительности потенциала действия за счет удлинения QT.

7 из 8 (88%) генетических вариантов были миссенс-мутациями, также выявлена дупликация, приводящая к возникновению преждевременного стоп-кодона.
Все мутации были уникальными и в 75% случаев концентрировались в 6-8 экзонах. 23% мутаций располагались в N и C-концевых областях и выявлены в группе взрослых (рис. 5).

Все 4 пациента детского возраста с LQT2 имели мутации в 7 экзоне, который соответствует 5-6 сегментам трансмембранных домена, образующим неоспоримую область поры канала. Трое из пробандов были мальчиками, что косвенно указывает на раннее фенотипическое проявление этих мутаций (до 11 лет) в первую очередь у лиц мужского пола. QTc >500 мс наблюдался у всех детей и взрослых с LQT2 независимо от локализации мутации. Для 50% детей и 75% взрослых потребовалась имплантация ИКД. У 50% детей и взрослых зафиксирована ВСС родственников в анамнезе. Факторами риска неблагоприятных событий среди детей с LQT2 являлась локализация мутации в 7 экзоне гена KCNH2, у взрослых пациентов — женский пол и возраст старше 28 лет.

Ген SCN5A (LQT3)
Мутации в гене SCN5A, кодирующим α-субъединицу потенциал-зависимого натриевого канала (NaV1.5) и отвечающим за развитие LQTS третье-
го типа (LQT3), обнаружены только в группе детей — у 2 пробандов (табл. 1). Наиболее опасной из выявленных генетических вариантов оказалась возникшая de novo патогенная мутация c.1231G>A в гене SCN5A, приводящая к замене аминокислоты в трансмембранной области DI-S6 натриевого канала (p.Val411Met, rs72549410) (рис. 6). У мальчика заболевание проявлялось синкопальными состояниями продолжительностью 5–7 сек, первое из которых произошло в 3 года, и величиной QTc = 595 мс (макс. QTc = 616 мс). Несмотря на терапию бета-блокаторами, в 9 лет у мальчика произошла ВСС во сне на фоне вирусной инфекции.

Мутация p.Val411Met описана ранее как возникшая de novo в трех не связанных случаях, что указывает на ее особую злокачественность и “горячую точку” мутаций. Функциональные исследования показали, что она приводит к гиперактивации натриевого канала и длительной реполяризации потенциала действия.

У второго пациента с LQT3 патогенная мутация c.4931G>A затрагивала область DIV-S4 белка натриевого канала (p.Arg1644His, rs28937316) (рис. 6) и фенотипически проявилась в возрасте 12 лет незначительным удлинением QTc (до 490 мс). Об этом варианте сообщалось ранее у нескольких пациентов с LQT3. При p.Arg1644His показан устойчивый внутриклеточный ток ионов Na, однако этот нуклеотидный вариант может быть менее серьезным, чем другие изменения в этом гене. Диагноз LQTS выставлен отцу матери мальчика в 34-летнем двойцеродном браке, у матери пациента наличие мутации p.Arg1644His не сопровождалось фенотипическими проявлениями, ВСС в семье не было.

Сравнительный анализ клинических показателей между пациентами с разными генетическими типами LQTS показал, что величина QTc не зависит от пола и возраста и в основном определялась генетическим типом LQTS, а также внутригенных локализаций мутации у пациентов с LQT1. Так, у всех пробандов с LQT2 и LQT3 наблюдалось увеличение QTc > 500 мс, а у пациентов с LQT1 значение QTc > 500 мс — только у носителей мутаций в 5-7 экзоне. Вероятность неблагоприятных исходов коррелировала с величиной QTc и была выше у пациентов LQT2 и LQT3 по сравнению с пациентами LQT1. При этом у взрослых пациентов с LQT1 факторами риска являлись женский пол, QTc > 520 и локализация мутации в 5 и 6 экзонах. Все взрослые пациенты с LQT2, нуждавшиеся в установке ИКД, также были женского пола, а в детской группе пациентов с LQT2 и LQT3 события, требующие имплантации ИКД, чаще регистрировались у мальчиков.

4 взрослых пациентов обнаружено сочетание нескольких VUS, при этом у 2 пробандов один из вариантов III класса патогенности находился в гене CACNA1C (рис. 7), у 2 — в гене ANK2. У всех пациентов с несколькими генетическими вариантами в генах, ассоциированных с данной патологией, наблюдалось тяжелое течение заболевания.

Ген CACNA1C
Ген CACNA1C кодирует α-субъединицу потенциал-зависимого кальциевого канала (CaV 1.2), генерирующего кальциевые токи L-типа. Этот ген ранее ассоциирован преимущественно с синдромом Тимоти, который проявляется полиорганной дисфункцией, включая перепончатость пальцев рук и ног, врожденные пороки сердца, иммунодефицит, гипогликемию, когнитивные нарушения и аутизм [13]. В последних исследованиях обнаруживается все больше фактов его значимости в развитии изолированного аутосомно-доминантного LQTS без экстракардиальных особенностей [14], SQTS [15], а также судорожных состояниях, включая эпилепсию [16].

Наиболее тяжелая картина заболевания с удлинением интервала QTc до 500 мс, эпизодами синкопальных состояний, развитием ИЖДФЖ с успешной реализацией и имплантацией ИКД наблюдалась у пациентов с LQT3.
ентки с заменой p.Val396Ile в 8 экзоне гена CACNA1C (табл. 2, рис. 7) в сочетании с новой заменой p.Arg17Trp (c.49A>T) в гене ANK2 [17]. Ген ANK2 кодирует адаптерный белок из семейства анкиринов, участвующий в локализации и стабилизации мембранных переносчиков ионов и ионных каналов. Не так давно установлено, что мутации в генах ANK2 и ANK1 выявлены у 2 неродственных пробандов мужского пола (табл. 2) [17]. Ген ANK2 подтверждает существенное модулирующее влияние генетических вариантов и у 3 из 4 пациентов с LQT2 зарегистрированы ЖТ/ФЖ с имплантацией ИКД, тогда как у пациентов с LQT1 только в 25,0% случаев, как уже упоминалось выше, имелись жизнеугрожающие аритмические события.

Ограничение исследования. Результаты этого исследования следует рассматривать в свете некоторых ограничений, основным из которых является относительно небольшая выборка пациентов ввиду низкой распространенности LQTS. Увеличение численности рассматриваемых групп позволило бы получить более точные результаты. Тем не менее представленные данные хорошо согласуются с уже опубликованными в литературе. Второе ограничение касается предположений о диагностической значимости сочетания нескольких VUS в генах, ассоциированных с злокачественными аритмиями, у пациентов с LQT3. Проведение семейного каскадного скрининга членов первой степени родства таких пробандов в дальнейшем поможет оценить диагностическую достоверность выявленных вариантов.

Заключение

К настоящему времени, несмотря на огромный скачок в понимании патогенеза LQTS благодаря выявлению молекулярно-генетических причин, существуют еще пробелы в знаниях о фенотипических проявлениях генетических дефектов, в т.ч. до конца не понятна роль возрастного и полового факторов в клинической манифестации синдромов LQTS. Прогноз заболевания и стратификация риска БСС у пациентов с LQTS основывается, главным образом, на удлинении интервала QT на ЭКГ, наличии в анамнезе синкопальных эпизодов, обусловленных ЖТ типа пируэт (torsade de pointes) или остановкой сердца, а также случаях БСС у кровных родственников. Независимым прогностическим фактором развития неблагоприятных исходов является наличие патогенных мутаций в генах, ассоциированных с данной патологией.

Сравнительный анализ предикторов БСС (возраст манифестации, синкопе, остановка сердца, тип и локализация мутации) в группах детей и взрослых белорусских пациентов с LQTS трех возрастных групп подтверждает существенное модулирующее влияние возраста и пола на фенотипическую реализацию заболевания. В ходе исследования установлено, что в группах пробандов младшего и старшего возраста рас-
предложение по полу отклонялось от соотношения 1:1 и было прямо противоположным — среди детей две трети составляли мальчики, среди взрослых — женщины. Исходя из этого факта, можно предположить, что возраст манифестации клинических проявлений LQTS первых трех типов существенно зависит от пола пациента. У лиц мужского пола признаки заболевания проявляются в детском возрасте чаще, чем у женщин.

Результаты нашего исследования показали, что спектр мутаций также имеет возрастные особенности. В группе детей с LQTS все выявленные мутации были сосредоточены в трех мажорных генах: по 40% в генах KCNQ1, KCNH2 и 20% в гене SCN5A. У взрослых про- бандов доля мутаций в этих генах составила только 65%: 41% в гене KCNQ1 и 24% в гене KCNH2. Мутации в гене SCN5A в этой группе не выявлены. У 4 взрослых пациентов установлено сочетание нескольких US V в генах, ассоциированных с нарушениями ритма, при этом у 2 пробандов один из вариантов находился в гене CACNA1C и у 2 других пробандов — в гене ANK2.

В ходе изучения ассоциации возраста манифестации от внутригенной локализации мутаций выяснилось, что у детей все миссенс-мутации в гене KCNQ1 концентрировались в 5-7 экзонах, соответствующих области транспермированного домена α-субъединицы, а у взрослых практически половина мутаций приводила к заменам аминокислот в С-концевую область белка. На основании этих данных можно предположить, что мутации в гене KCNQ1, затрагивающие C-концевую область белка, имеют более позднее фенотипическое проявление. Что касается LQT2, то в этой группе представлены только мутации в генах SCN5A и KCNH2, а в гене KCNQ1 мутаций не выявлено. У 4 взрослых пациентов установлено сочетание нескольких US V в генах, ассоциированных с нарушениями ритма, при этом у 2 пробандов один из вариантов находился в гене KCNQ1, а у 2 других пробандов — в гене ANK2.

в этой группе не выявлено. У 4 взрослых пациентов установлено сочетание нескольких US V в генах, ассоциированных с нарушениями ритма, при этом у 2 пробандов один из вариантов находился в гене KCNQ1, а у 2 других пробандов — в гене ANK2.

Литература/References
1. Schwartz PJ, Ackerman MJ, Antzelevitch C, et al. Inherited cardiac arrhythmias. Nat Rev Dis Primers. 2020;6(1):58. doi:10.1038/s41572-020-0188-7.
2. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the dominant long QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103(1):89-95. doi:10.1016/S0009-7322(01)00195-9.
3. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866-74. doi:10.1056/NEJMoai22147.
4. Sugrue A, Van Zyl M, Einger N, et al. Electrocardiography-Guided Risk Stratification for Long QT Syndrome. J Am Coll Cardiol. 2020;76(24):2834-43. doi:10.1016/j.jacc.2020.07.004.
5. Zareba W, Moss AJ, Locati EH, et al. International Long QT Syndrome Registry. Modulating effects of age and gender on the clinical course of long-QT syndrome by genotype. J Am Coll Cardiol. 2003;42(10):103-9. doi:10.1016/s0735-1097(03)00554-0.
6. Kutyifa V, Daimee UA, McNitt S, et al. Clinical aspects of the three major genetic forms of long QT syndrome (LQT1, LQT2, LQT3). Ann Noninvasive Electrocardiol. Ann Noninvasive Electrocardiol. 2018;23(3):e1257. doi:10.1111/anec.12537.
7. Shlikovnikova MA, Chuprov SA. Clinical and genetic polymorphism of hereditary Long QT Syndrome, risk factors syncope and sudden death. Bulletin of arrhythmology. 2002;26:35-42. (In Russ.)
8. Bozarth X, Dines JN, Locati EH, et al. Expanding clinical phenotype in CACNA1C related dominant long QT syndrome. Circ. Cardiovasc. Genet. 2013;6(3):279-89. doi:10.1161/CIRCGENETICS.113.001038.
9. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442-9. doi:10.1161/CIRCULATIONAHA.106.668392.
10. Bozarth X, Dines JN, Corngold C, et al. Expanding clinical phenotype in CACNA1C related disorders. From neonatal onset severe epileptic encephalopathy to late-onset epilepsy. Am J Med Genet A. 2018;176(12):2737-9. doi:10.1002/ajmg.a.40657.
11. Ichikawa M, Aiba T, Ohno S, et al. Phenotypic Variability of ANK2 Mutations in Patients With Inherited Primary Arrhythmia Syndromes. Circ. J. 2016;80(12):47-55. doi:10.1253/circj.CJ-16-0486.