The variant at rs1006737 in the L-type voltage-gated calcium channel (alpha 1C subunit) CACNA1C gene is reliably associated with both bipolar disorder and schizophrenia. We investigated whether this risk variant affects reward responsiveness because reward processing is one of the central cognitive-motivational domains implicated in both disorders. In a sample of 164 young, healthy individuals, we show a dose-dependent response, where the rs1006737 risk genotype was associated with blunted reward responsiveness, whereas discriminability did not significantly differ between genotype groups. This finding suggests that the CACNA1C risk locus may have a role in neural pathways that facilitate value representation for rewarding stimuli. Impaired reward processing may be a transdiagnostic phenotype of variation in CACNA1C that could contribute to anhedonia and other clinical features common to both affective and psychotic disorders.

Translational Psychiatry (2014) 4, e461; doi:10.1038/tp.2014.100; published online 7 October 2014

INTRODUCTION

Although the heritability of psychiatric illness is high, the genetic mechanisms that confer susceptibility remain relatively unknown.1,2 Recent genome-wide association studies (GWAS) have repeatedly identified a risk variant in the CACNA1C gene, which encodes an L-type voltage-gated calcium channel (alpha 1C subunit). The risk variant (rs1006737: A allele) is significantly associated with bipolar disorder3,4 and schizophrenia5–8 supporting the hypothesis that CACNA1C contributes to the genetic overlap between these psychiatric disorders.

The rs1006737 risk variant has also been associated with several intermediate phenotypes such as neural activity during episodic9–12 and working memory,13 emotional regulation,14–16 and verbal fluency.17,18 Numerous studies also suggest the rs1006737 variant may affect components of cognition, such as logical/working memory19,20 and clinical symptomology.21,22 Furthermore, emerging evidence supports a role for rs1006737 in the neural processing of reward23 and learning.24 Considering that the CACNA1C variant appears to transcend diagnostic boundaries, we hypothesize that the risk variant may affect intermediate phenotypes that are associated with several psychiatric illnesses.

A growing body of research suggests that the neural circuitry supporting reward processing may be a suitable platform of study, as impaired reward function is repeatedly observed as a component of neuropsychiatric disorders.25–30 One promising candidate intermediate phenotype for several neuropsychiatric disorders is response bias, as measured by the probabilistic reward-learning task.31 The paradigm measures the development of response bias on the basis of a differential reinforcement schedule and indicates an individual’s propensity to respond to reward. Reward responsiveness initially predicted an anhedonic phenotype,31 but has since been shown to be diminished in patients with bipolar disorder32 and more general depressive phenotypes.33–35

Reward responsiveness may also be modulated by dopaminergic innervation36,37 and interactions between stress and genes that influence the stress-axis.38–40 Additional evidence supports a role for gene variants that influence dopaminergic regulation.41,42 These associations are supported by findings that reward responsiveness during the task is moderately heritable.43 However, no studies have looked at the potential association between GWAS-identified risk variants and reward responsiveness. We consider CACNA1C rs1006737 as a candidate variant to probe for effects in reward responsiveness considering previous literature suggests (a) CACNA1C is associated putative effects on reward/learning;23,24 (b) CACNA1C is associated with mood disorders at genome-wide level21,44 and (c) reward responsiveness is diminished as a component of these psychiatric illnesses.32–35 As the A allele at rs1006737 is overrepresented in neuropsychiatric illness, we anticipate that the genotype group with the A risk allele will show blunted reward responsiveness compared with individuals who do not carry a copy of the risk allele.

MATERIALS AND METHODS

Participants

Bangor site: 131 subjects were recruited from Bangor University and genotyped for the CACNA1C variant (rs1006737). Participants in this panel were recruited by advertisement, from among the University community (for example, students, employees) on the basis of the following self-reported criteria: western European descent; no experience of psychiatric/ neurological symptoms or diagnoses in either themselves or first-degree relatives; no illegal (or recreational) substance use/dependence (excluding nicotine) and no alcohol abuse/dependence. Cardiff site: 34 Caucasian volunteers were genotyped for the CACNA1C variant (rs1006737). No participants reported any current mental illness44 or use of psychotropic medication. The study was approved by the ethics committee of each University and written, informed consent was given by all participants.

1Neuroscience and Mental Health Research Institute and MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK; 2School of Psychology, Cardiff University, Cardiff, UK and 3School of Psychology, Bangor University, Bangor, UK. Correspondence: Dr TM Lancaster, Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Maindy Road, Cardiff University, Cardiff CF24 4HQ, UK.
E-mail: LancasterTM@cardiff.ac.uk
Received 23 May 2014; revised 1 August 2014; accepted 21 August 2014
Table 1. Descriptive statistics for CACNA1C rs1006737

CACNA1C rs1006737	AA	AG	GG	P
Bangor site				
Genotype frequency	N = 16	N = 50	N = 64	0.475
Age (y)	22.06 (±3.907)	21.72 (±4.257)	21.61 (±3.736)	0.914
Gender (M/F)	N = 8/N = 8	N = 27/N = 23	N = 22/N = 42	0.097
Cardiff site				
Genotype frequency	N = 7	N = 12	N = 15	0.475
Age (y)	24.14 (±2.911)	24.50 (±4.056)	25.13 (±7.100)	0.919
Gender (M/F)	N = 2/N = 5	N = 6/N = 6	N = 7/N = 8	0.639
Combined sample				
Genotype frequency	N = 23	N = 62	N = 79	0.217
Age (y)	22.70 (±3.698)	22.21 (±4.315)	22.23 (±4.717)	0.899
Gender (M/F)	N = 10/N = 13	N = 33/N = 30	N = 29/N = 50	0.174

rs1006737 SNP genotyping

Bangor site: genomic DNA was obtained from saliva using Oragene OG-500 saliva kits for 136 participants. Genotype frequencies of rs1006737 were compared across the study sample with rs1006737 genotype frequencies did not significantly differ between sites ($\chi^2 = 1.488$, $P = 0.475$; Table 1). Genotype frequencies for rs1006737 did not deviate from Hardy–Weinberg equilibrium ($\chi^2 = 1.51$, $P = 0.217$; Table 1). On the basis of the effect size from a previous candidate gene-response bias study with a similar sample size,88 we anticipate to see a small effect size (Cohen’s $d = 0.38$). A power calculation89 suggested that we had 78% power to detect an effect of this size for rs1006737 on response bias ($\alpha = 0.05$, one-sided).

cardiff site: genomic DNA was obtained from saliva using Oragene OG-500 saliva kits for 37 participants. CACNA1C rs1006737 was genotyped using custom SNP genotyping arrays from Illumina (Illumina). Individuals were excluded for ambiguous sex, cryptic relatedness up to third-degree relatives by identity of descent, genotyping completeness < 97%, and non-European ethnicity admixture detected as outliers in iterative EIGENSTRAT analyses of an LD-pruned data set.46 Thirty four of the 37 individuals included in the sample had genotype data available for rs1006737.

Experimental Procedure

To measure reward responsiveness, we used a line discrimination task with asymmetric reinforcement, closely modelled after that described in Pizzagalli et al.41 and Heer et al.42 Asymmetric reinforcement, in which correct responses to one stimulus receive more frequent rewards than correct responses to another, leads to the development of response bias by increasing participants’ likelihood of reporting the more frequently reinforced stimulus.46 It is hypothesized that individuals who develop greater levels of response bias are more responsive to rewards.31 Trials began with a fixation cross (500 ms), followed by the presentation of a cartoon face with no mouth. After 500 ms, either a short (22 mm) or long (24 mm) mouth appeared on the face. It was visible for 100 ms before disappearing. The face remained on screen until the participant responded with a button press indicating the presence of either the short or long mouth. Following the response, participants saw a screen that either displayed feedback (‘correct ±5 pence’) or remained blank (no-feedback trials) for 1750 ms. Participants completed three blocks of 100 trials. Both versions of the mouth appeared equally often in pseudo-random order such that there were no more than four successive trials of the same mouth. Participants received reward feedback on 40 correct responses per block. To induce a reward-related response bias in the task, we distributed the rewards asymmetrically across the mouths. The more frequently reinforced mouth received 30 rewards per block and the remaining 10 rewards occurred after responses to the other mouth. We used a pseudo-random reward schedule such that no more than three correct trials in a row received reinforcements. Participants never received feedback on incorrect trials. When positive feedback was scheduled for a trial and the participant answered incorrectly, the reinforcement was postponed until a later unreinforced, correct trial (of the same mouth length) occurred. The length (short or long) of the more frequently reinforced mouth was counterbalanced across participants. All trials where reaction times faster than 200 ms and slower than 3000 ms were removed from the analysis as previously described.43 We measured the frequency of each participant’s reward feedback schedule on the basis of the number of positive rewards (‘correct ± 5 pence’) they received. The maximum bonus was £6 and individuals who earned £5 were excluded from the analysis (n = 1). The reward feedback schedule received did not significantly differ between gender (F1,163 = 1.580, $P = 0.210$); rs1006737 genotype group (F2,163 = 0.180, $P = 0.836$); across sample site (F1,163 = 0.525, $P = 0.47$) and did not correlate with age (r = 0.084, $P = 0.285$).

A post-task debriefing interview confirmed that no participants were aware of the reinforcement asymmetry. We used a standard signal detection analysis to calculate $d’$, a measure of discrimination accuracy [$d’ = z(H) – z[F]$] and ‘criterion’, the degree to which participants showed a bias towards the more frequently reinforced mouth ($c = 1-2(z[H] – z[F])$). Please note that we reversed the values for criterion in the analysis (positive values represent a higher propensity for developing response bias), for ease of interpretation.

RESULTS

Effects of demographic factors

There were no site specific differences in participants’ ability to discriminate between the mouths (F1,163 = 1.999, $P = 0.159$) or in the degree to which they developed response biases (F1,164 = 1.095, $P = 0.297$). Therefore, data from the two sites were combined. Moreover, data from men and women were analysed together, as there were no significant differences between gender groups in either discriminability ($d’$) or criterion across the whole group (both P-values > 0.354) or within CACNA1C rs1006737 genotype groups (all P-values > 0.111). There was a significant positive association between age and discriminability at block 1 ($r = 0.155$, $P = 0.048$). Therefore age was entered as a covariate into a mixed-model analysis of covariance to assess the potential
effects of CACNA1C rs1006737 on discriminability (d'). There were no associations between age and criterion within genotype groups (all P-values > 0.306). One additional individual’s discrimination ability was above the expected frequency (GG rs1006737 genotype); however, removing this individual did not significantly affect any demographic or genetic analysis. There were no significant outliers for the criterion measure. We therefore used mixed-model analyses of variance to compare criterion across task blocks (1–3) and genotype groups (AA = 23; AG = 62; GG = 79). We also ran the same mixed-model analyses of variance for criterion using a dominant genetic model (AA/AG = 85; GG = 79) as previously described.

CACNA1C genotype effects

Participants performed the line discrimination task equally well, regardless of genotype group (additive genetic model: F2,160 = 0.006, P = 0.994; dominant genetic model; F2,162 = 0.000, P = 0.995; see Figure 1a). However, we observed CACNA1C genotype dependent differences in reward responsiveness, such that the risk allele was associated with diminished reward responsiveness (additive genetic model: F2,162 = 3.374, P = 0.037, n2P = 0.040; dominant model: F1,161 = 5.656, P = 0.019, n2P = 0.034; see Figure 1b). Furthermore, in the additive genetic model, there was a significant task block x genotype interaction (F2,161 = 2.417, P = 0.05, n2P = 0.029), suggesting that genotype differences in reward responsiveness were larger toward the end of the task (see Figure 2). One-way analysis of variance confirmed that the largest between group difference occurred in task block 3 (F2,163 = 3.810, P = 0.024, n2P = 0.045). Post hoc independent-sample t-tests also revealed a dose-dependent response, in which the largest differences in mean response bias occurred between the AA and GG groups (pairwise comparison; pcorrected = 0.011; Cohen’s d = 0.66). Independent samples t-test using the dominant genetic model suggested that A risk allele carriers (AA/AG) also had pronounced deficits in reward responsiveness compared with the nonrisk (GG) genotype group (P = 0.019; Cohen’s d = 0.37). On the basis of our smallest effect size (Cohen’s d = 0.37), we estimate we had 76% power to detect a significant main effect of rs1006737 on mean criterion (one-sided; a = 0.05).

CACNA1C genotype X task block effects

To explore the block x rs1006737 genotype interaction, we explored variations in response bias for each genotype group at each level. We calculated the change in criterion over the task (∆criterion = block 3 – block 1). A one-way analysis of variance suggested that rs1006737 genotype related to an individual’s propensity to develop response bias (additive mode; F2,163 = 2.950, P = 0.05, which was driven by a difference between the AA and AG genotype pcorrected = 0.05). We additionally performed post hoc one-sample t-tests to test whether the rs1006737 genotype groups (AA/AG/GG) response bias significantly differed from 0 at each block (1–3). The AA homozygous risk group did not begin with or develop any response bias at any block (P > 0.2 in all cases). The AG heterozygous risk group showed a trend towards developing response bias (block 1: NS; block 2: t = 1.807, P = 0.076; block 3: t = 2.643, P = 0.010), but these results were not significant after correction for multiple comparisons. However, the GG homozygous group showed significant response bias during all three blocks (block 1: t = 4.446, P < 0.001; block 2: t = 3.996, P < 0.001 and block 3: t = 4.675, P < 0.001). This analysis indicates that the GG genotype showed response bias early in the task, the AG genotype group started to show a
Δresponse bias in later trials, but in comparison, the AA risk group showed no evidence of developing response bias at any point throughout the paradigm (see Figure 2).

DISCUSSION

Previous research suggests that the CACNA1C rs1006737 risk variant is associated with heritable neuropsychiatric disorders. Reward responsiveness is potentially heritable and has been shown to be disrupted in patients with bipolar and unipolar depression. Response bias is also blunted in remitted patients, suggesting that reward responsiveness may serve as a trait marker. We demonstrate for the first time that the CACNA1C risk variant (rs1006737: A allele) modulates an individual’s propensity to respond to reward, without disrupting general task discrimination ability. It is an attractive feature of the reward-responsiveness paradigm that it allows for the investigation of cognitive biases in situations of normal discriminability, which makes it a particularly sensitive trait marker for healthy at-risk populations.

This finding adds to a growing body of literature suggesting that the CACNA1C variant may affect the neural mechanisms underlying reward processing and learning. Blunted reward responsiveness was seen across the whole task for AA genotype, the rs1006736 AG genotype group showed response bias towards the end of the task, whereas the GG nonrisk group showed reward responsiveness throughout the task. We suggest that rs1006737 ‘A’ risk allele dose may contribute to psychopathology by affecting the rate of reinforcement-based learning, although this would need to be formally tested in extended versions of the paradigm. This finding is comparable to previous reports where impairment in learning was most pronounced in rs1006737 A carriers at the beginning of the task. These results offer novel insight into how CACNA1C may confer susceptibility to the neuropsychiatric illness characterized by reduced reward responsiveness and impairments in reward-based learning. The association between CACNA1C rs1006737 A allele and blunted response bias may point to a genetic basis for anhedonia, which is a symptom common to affective and psychotic disorders.

Although evidence suggests that anhedonia is a residual trait underlying euthymic bipolar disorder, it is less straightforward to align our findings with bipolar phenotypes associated with the hypothymic state, as it is speculated that manic states could be associated with a potentiated rather than blunted response bias.

Although the genetic architecture of reward-related deficits and related clinical symptoms (such as anhedonia) remains unknown, reward responsiveness may be a promising neurobiological process that links novel risk loci (such as SNPs identified via genome-wide association studies) with core clinical symptoms. It could also emerge as a promising surrogate marker for treatment effects. A limitation of the present study was that we did not screen for nicotine use, which may have an interactive effect on reward responsiveness. We suggest that the effect of the rs1006737 (and any other common variant) on reward responsiveness is likely to be small and thus, our sample may have been underpowered. We therefore recommend that our results should be treated with caution until replicated in larger,

Figure 2. Data represent the criterion (response bias) for each of the three CACNA1C rs1006737 genotype groups (as Figure 1b), but split across the three experimental trial blocks. Horizontal lines represent median and represent 25th and 75th percentile. Note: positive values for criterion reflect an increase in response bias.
independent samples. Additional studies could further help to verify how much variance in response bias associated with rs1006737 genotype. Furthermore, we cannot be sure whether rs1006737 is responsible for these effects or rather SNPs that are in linkage disequilibrium with the variant. Nevertheless, recent GWAS implicate CACNA1C as a suitable candidate for probing intermediate traits associated with multiple neuropsychiatric illness. It is possible that additive variations within CACNA1C or interactions with other genes could further modulate reward responsiveness and explain larger proportions of variance.

In conclusion, our results suggest that the genome-wide identified psychiatric risk locus on CACNA1C (rs1006737) may affect an individual’s ability to respond to reward. An attractive feature of the rs1006737 ‘A’ risk allele is its association with increased CACNA1C mRNA expression in cortical tissue, which offers putative mechanistic insight into how the variant may affect neural circuitry. A growing body of knowledge implicates the CACNA1C gene product in animal models of reward processing, therefore translational animal models homologous to reward responsiveness may also give further insight into the molecular mechanisms underlying the association between CACNA1C and reward responsiveness. Future studies could also explore the neural dynamics that support reward responsiveness to understand how CACNA1C may exert these effects.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

This work was supported by the National Centre for Mental Health at Cardiff University with funds from the National Institute for Social Care and Health Research (NISCHR). We are grateful to all professionals, patients and volunteers involved with the National Centre for Mental Health (NCMH). NCMH is funded by the National Institute for Social Care and Health Research (NISCHR), Welsh Government, Wales (Grant No. BR09). This work was also supported by a Wellcome Trust Strategic Award (Grant No. BR09). This work was also supported by a Wellcome Trust Strategic Award (Grant No. BR09). This work was also supported by a Wellcome Trust Strategic Award (Grant No. BR09).

REFERENCES

1 International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.
2 Muglia P, Tozzi F, Galvay NW, Franccks C, Umapanyu R, Korg XQ et al. Genome-wide association study of recurrent major depressive disorder in two European case-control samples. Mol Psychiatry 2010; 15: 589–601.
3 Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.
4 Green EK, Hamshere M, Forty L, Gordon-Smith K, Fraser C, Russell E et al. Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case-control sample. Mol Psychiatry 2013; 18: 1302–1307.
5 Lett TA, Zai CC, Tiwari AK, Shahk SA, Likhodi O, Kennedy JL et al. ANK3, CACNA1C and ZNF804A gene variants in bipolar disorders and psychosis subphenotype. World J Biol Psychiatry 2011; 12: 392–397.
6 Nygaard M, Demontis D, Foldager L, Hedemand A, Flint TJ, Sørensen KM et al. CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatry 2010; 15: 119–121.
7 Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 2010; 15: 1016–1022.
8 Casamassima F, Huang J, Fava M, Sachs GS, Smoller JW, Cassano GB et al. Phenotypic effects of a bipolar liability gene among individuals with major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 303–309.
9 Krug A, Witt SH, Backes H, Dietche B, Nieratschker V, Shah NJ et al. A genome-wide supported variant in CACNA1C influences hippocampal activation during episodic memory encoding and retrieval. Eur Arch Psychiatry Clin Neurosci 2014; 264: 103–110.

10 Krug A, Meyer-Lindenberg A, Schmierer P, Mohnke S, Grimm O, Garbusow M et al. Hippocampal and frontolimbic function as intermediate phenotype for psychosis: evidence from healthy relatives and a common risk variant in CACNA1C. Biol Psychiatry 2014; 76: 466–475.
11 Krug A, Meyer-Lindenberg A, Schneider K, Opitz von Boverfeld C, Esslinger C, Kirsch P et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry 2010; 67: 803–811.
12 Krug A, Meyer-Lindenberg A, Linden D, Lancaster T, Mohnke S, Grimm O et al. Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects. Neuroimage 2014; 94: 147–154.
13 Paulus FM, Bedenbender J, Krach S, Pyka M, Krug A, Sommer J et al. Association of rs1006737 in CACNA1C with alterations in prefrontal activation and fronto-hippocampal connectivity. Hum Brain Mapp 2014; 35: 1190–1200.
14 Tesli M, Skatun KC, Ousdal OT, Brown AA, Thoresen C, Agartz I et al. CACNA1C variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS One 2013; 8: e65970.
15 Wang F, McIntosh AM, He Y, Gellernter J, Blumberg HP. The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. Bipolar Disord 2011; 13: 606–607.
16 Bigos KL, Mattay VS, Callcott JH, Straube RE, Vakkalanka R, Kolanchana B et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 2010; 67: 939–945.
17 Backes H, Dietche B, Nagels A, Konrad C, Witt SH, Rietschel M et al. Genetic variation in CACNA1C affects neural processing in major depression. J Psychiatr Res 2014; 53: 38–46.
18 Krug A, Nieratschker V, Markov K, Krach S, Jansen A, Zeres K et al. Effect of CACNA1C rs1006737 on neural correlates of verbal fluency in healthy individuals. Neuroimage 2010; 49: 1831–1836.
19 Hori H, Yamamoto N, Fujii T, Teraishi T, Sasayama D, Matsujo S et al. Effects of the CACNA1C risk allele on neurocognition in patients with schizophrenia and healthy individuals. Sci Rep 2012; 2: 634.
20 Zhang Q, Shen Q, Xu Z, Chen M, Cheng L, Zhai J et al. The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. Neuropsychopharmacology 2012; 37: 677–684.
21 Strohmaier J, Amelang M, Höthorn LA, Witt SH, Nieratschker V, Gerhard D et al. The psychiatric vulnerability gene CACNA1C and its sex-specific relationship with personality traits, resilience factors and depressive symptoms in the general population. Mol Psychiatry 2013; 18: 607–613.
22 Roussos P, Bitsios P, Giakoumakis SG, McClure MM, Hazlett EA, New AS et al. CACNA1C as a risk factor for schizotypal personality disorder and schizotypy in healthy individuals. Psychiatry Res 2013; 206: 122–123.
23 Wessa M, Linke J, Witt SH, Nieratschker V, Esslinger C, Kirsch P et al. The CACNA1C risk variant for bipolar disorder influences limbic activity. Mol Psychiatry 2010; 15: 1126–1127.
24 Dietche B, Backes H, Laneri D, Weikert T, Witt SH, Rietschel M et al. The impact of a CACNA1C gene polymorphism on learning and hippocampal formation in healthy individuals: a diffusion tensor imaging study. Neuroimage 2014; 89: 256–261.
25 Bogdan R, Pizzarelli DA. Acute stress reduces reward responsiveness: implications for depression. Biol Psychiatry 2006; 60: 1147–1154.
26 Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 2012; 35: 68–77.
27 Huys QJ, Pizzarelli DA, Bogdan R, Dayan P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord 2013; 3: 12.
28 Strauss GP, Gold JM. A new perspective on anhedonia in schizophrenia. Am J Psychiatry 2012; 169: 364–373.
29 Hasler G. Can the neuroeconomics revolution revolutionize psychiatry? Neurosci Biobehav Rev 2012; 36: 64–78.
30 Sharp C, Monterosso J, Montague PR. Neuroeconomics: a bridge for translational research. Biol Psychiatry 2012; 72: 87–92.
31 Pizzarelli DA, Jahn AL, O’Shea JP. Toward an objective characterization of an anhedonic phenotype: a signal-detection approach. Biol Psychiatry 2005; 57: 319–327.
32 Pizzarelli DA, Goetz E, Ostacher M, Josipescu DV, Perlis RH. Euthymic patients with bipolar disorder show decreased reward learning in a probabilistic reward task. Biol Psychiatry 2008; 64: 162–168.
33 Pechtel P, Dutra SJ, Goetz EL, Pizzarelli DA. Blunted reward responsiveness in remitted depression. J Psychiatr Res 2013; 47: 1864–1869.
34 Vrieze E, Pizzarelli DA, Demyttenaere K, Hompes T, Sienaat P, de Boer P et al. Reduced reward learning predicts outcome in major depressive disorder. Biol Psychiatry 2013; 73: 639–645.
35 Pizzagalli DA, LosiEscu D, Hallett LA, Ratner KG, Fava M. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J Psychiatr Res 2008; 43: 76–77.

36 Pizzagalli DA, Evins AE, Schetter EC, Frank MJ, Pajtas PE, Santesso DL et al. Single dose of a dopamine agonist impairs reinforcement learning in humans: behavioral evidence from a laboratory-based measure of reward responsiveness. Psychopharmacology 2008; 196: 221–232.

37 Santesso DL, Evins AE, Frank MJ, Schetter EC, Bogdan R, Pizzagalli DA. Single dose of a dopamine agonist impairs reinforcement learning in humans: evidence from event-related potentials and computational modeling of striatal-cortical function. Hum Brain Mapp 2009; 30: 1963–1976.

38 Bogdan R, Perlis RH, Fagerness J, Pizzagalli DA. The impact of mineralocorticoid receptor ISO/VAL genotype (rs5522) and stress on reward learning. Genes Brain Behav 2010; 9: 658–667.

39 Bogdan R, Santesso DL, Fagerness J, Perlis RH, Pizzagalli DA. Corticotropin-releasing hormone receptor type 1 (CRHR1) genetic variation and stress interact to influence reward learning. J Neurosci 2011; 31: 13246–13254.

40 Nikolaiova Y, Bogdan R, Pizzagalli DA. Perception of a naturalistic stressor interacts with 5-HTTLPR/rs25531 genotype and gender to impact reward responsiveness. Neuropsychobiology 2012; 65: 45–54.

41 Goetz EL, Harih AR, Pizzagalli DA, Strauman TJ. Genetic moderation of the association between regulatory focus and reward responsiveness: a proof-of-concept study. Biol Mood Anxiety Disord 2013; 3: 3.

42 Lancaster TM, Linden DE, Heerey EA. COMT val158met predicts reward responsiveness in a twin study evaluation of candidate depressive phenotypes. Transl Psychiatry 2012; 2: e904.

43 Bogdan R, Pizzagalli DA. The heritability of hedonic capacity and perceived stress: a twin study evaluation of candidate depressive phenotypes. Psychol Med 2009; 39: 211–218.

44 Goldberg D, Williams P. A User’s Guide to the General Health Questionnaire. NFER-Nelson: Slough, UK, 1988.

45 Champley S. pwr: Basic functions for power analysis. R package version 1.1.1.

46 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

47 Heerey EA, Bell-Warren KR, Gold JM. Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biol Psychiatry 2008; 64: 62–69.

48 Macmillan NA, Creelman CD. Detection Theory: A User’s Guide. 2 edn, Lawrence Erlbaum Associates: Mahwah/London, UK, 2005.

49 Hoaglin DC, Iglewicz B. Fine-tuning some resistant rules for outlier labeling. J Am Stat Assoc 1987; 82: 1147–1149.

50 Wray NR, Pergadia ML, Blackwood DH, Penninx BW, Gordon SD, Nyholt DR et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry 2012; 17: 36–48.

51 Bhat S, Dao DT, Terrillon CE, Arad M, Smith RJ, Soldatov NM et al. CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol 2012; 99: 1–14.

52 Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annu Rev Clin Psychol 2014; 10: 393–423.

53 Pizzagalli DA. The “anhedonia paradox” in schizophrenia: insights from affective neuroscience. Biol Psychiatry 2010; 67: 899–901.

54 Di Nicola M, De Risio L, Battaglia C, Camardese G, Tedeschi D, Mazza M et al. Reduced hedonic capacity in euthymic bipolar subjects: a trait-like feature? J Affect Disord 2013; 147: 446–450.

55 Barr RS, Pizzagalli DA, Culhane MA, Goff DC, Evins AE. A single dose of nicotine enhances reward responsiveness in nonsmokers: implications for development of dependence. Biol Psychiatry 2008; 63: 1061–1065.

56 Barnett JT, Sciorelli M, Munafò MR. Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry 2008; 64: 137–144.

57 Munafò MR, Clark TG, Flint J. Assessing publication bias in genetic association studies: evidence from a recent meta-analysis. Psychiatry Res 2004; 129: 39–44.

58 Wardle MC, de Wit H, Penton-Voak I, Lewis G, Munafò MR. Lack of association between COMT and working memory in a population-based cohort of healthy young adults. Neuropsychopharmacology 2013; 38: 1253–1263.

59 Smoller JW, Cradock N, Kendler K, Lee PH, Neale BM, Nurnberger JJ et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

60 Schott BH, Assmann A, Schmierer P, Soch J, Erik S, Garbusow M et al. Epistatic interaction of genetic depression risk variants in the human subgenual cingulate cortex during memory encoding. Transl Psychiatry 2014; 4: e372.

61 Rajadhysaka A, Hussin I, Saptute SS, Kuppenbender KD, Ren QJ, Guerriero RM et al. L-type Ca2+ channels mediate adaptation of extracellular signal-regulated kinase 1/2 phosphorylation in the ventral tegmental area after chronic amphetamine treatment. J Neurosci 2004; 24: 7464–7476.

62 Dao DT, Mahon PB, Cai X, Kovacsics CE, Blackwell RA, Arad M et al. Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatry 2010; 68: 801–810.

63 Licata SC, Freeman AFY, Pierce-Bancroft AF, Pierce RC. Repeated stimulation of L-type calcium channels in the rat ventral tegmental area mimics the initiation of behavioral sensitization to cocaine. Psychopharmacology 2000; 152: 110–118.

64 Der-Avakian A, D’Souza MS, Pizzagalli DA, Markou A. Assessment of reward responsiveness in the response bias probabilistic reward task in rats: implications for cross-species translational research. Transl Psychiatry 2013; 3: e297.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/