HPDL mutations identified by exome sequencing are associated with infant neurodevelopmental disorders

Yanhong Wang1,2 | Xuan Zheng1 | Chao Feng1 | Xiaoge Fan3 | Lei Liu1 | Pengbo Guo1 | Zhi Lei1 | Shiyue Mei1,2

1Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children’s Hospital, Zhengzhou Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
2Department of Rehabilitation Medicine, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
3Department of Medical Imaging, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China

Correspondence
Shiyue Mei, Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Henan Children’s Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China, No-33, Longhu Waihuan East road, Zhengzhou 450018, China. Email: xiaomay2008@163.com

Funding information
National Population Health Data Center Project, Grant/Award Number: SJPT-03-01; National Natural Science Foundation of China, Grant/Award Number: 81701125

Abstract

Background: Recent research found that biallelic HPDL variants can cause neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), with only a few reports. Clinical phenotypic information on individuals with damaging HPDL variants may also be incomplete. The phenotype of NEDSWMA is characterized by severe neurodevelopmental delay, brain atrophy, and spasticity in infancy.

Methods: Exome sequencing was used in the proband and his parents to identify the underlying genetic cause. Candidate mutations were validated by classic Sanger sequencing. The clinical presentation of the infant who carried HPDL variants was summarized.

Results: We identified a novel compound heterozygous variants in HPDL, c.995delC (p.T332Mfs) and c.1051C>T (p.Q351*) in the patient a 6-month-old boy presenting with global developmental delay, seizures, hypertonia, and limb spasticity. Brain magnetic resonance imaging (MRI) showed thin corpus callosum, ventriculomegaly, white matter volume reduction, bilateral frontotemporal subarachnoid widening, and sulcus deepening.

Conclusion: Our results provided important information for the associations of variants in HPDL with the neurodevelopmental disorder in infants, and broaden the genetic spectrum of HPDL-related disease. This is the second report of the HPDL mutation causing infant neurodevelopmental disorders in a Chinese population.

KEYWORDS
HPDL gene, infant, neurodevelopmental disorders, spastic movement disorders
1 | INTRODUCTION

Neurodevelopmental disabilities are a group of chronic diseases caused by abnormal development of the central nervous system and have complex pathogenesis of which environmental and genetic are important factors (Duncan & Matthews, 2018; Parenti et al., 2020). Recent research found that biallelic HPDL (OMIM:#618994) variants can cause neurodevelopmental disorders (Husain et al., 2020). The gene encodes the 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), a critical enzyme in the 4-hydroxymandelate CoQ10 synthesis pathway and widely expressed in most organs with high levels in the central and peripheral nervous system (Banh et al., 2021; Ghosh et al., 2021).

The HPDL-related neurodegenerative disorder is clinically characterized by two main phenotypes: a neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), and Spastic paraplegia 83 (SPG83). NEDSWMA presents usually with severe neurodevelopmental delay, brain atrophy, and spasticity in infancy, while SPG83 is characterized by spastic paraplegia in juveniles (Husain et al., 2020; Wiessner et al., 2021).

So far, clinical reports of individuals with damaging HPDL variants were limited, and clinical phenotypic information may also be incomplete (Ghosh et al., 2021; Husain et al., 2020; Morgan et al., 2021; Sun et al., 2021; Wiessner et al., 2021). Here, we report one patient from a Chinese family presenting with global developmental delay, hypertonia, and limb spasticity, and summarized the clinical presentation of the infant who carried HPDL variants.

2 | MATERIALS AND METHODS

2.1 | Exome sequencing

Samples of the proband and their parents were subjected to the exome sequencing. The detailed methodology has been described previously (Zhao et al., 2020). The variants interpretation rules according to the American College of Medical Genetics and Genomics (ACMG) guidelines for the interpretation of genetics (Richards et al., 2015). Sanger sequencing was performed for validation.

3 | RESULT

3.1 | Clinical case report

The proband II-1, a 6-month boy with a head circumference of 41 cm, was born after cesarean section at 39 weeks of gestational age. The parents had a non-consanguineous marriage without a family history of genetic diseases. The patient was not capable of controlling his head, gaze fixation or visual tracking, recognizing his parents, and unable to roll, crawl or sit independently. Physical examination detected nystagmus, insensitive to light reflection, hands clenched, lower limbs hypertonia, and forward sitting position. The levels of lactate was 3.15 mmol/L (normal range: 0.5–2.0) and pyruvate was 21.7 μmol/L (normal range: 20–100) (Table 1). Brain magnetic resonance imaging (MRI) showed thin corpus callosum, ventriculomegaly, white matter volume reduction, bilateral frontotemporal subarachnoid widening, and sulcus deeping (Figure 1a). The electroencephalogram (EEG) shows epileptic waves. The patient was initially diagnosed with cerebral palsy (CP) and developmental delay.

3.2 | Genetic results

By exome sequencing, in the proband: II-1, the compound heterozygous variants c.995delC (p.T332Mfs) and c.1051C>T (p.Q351*) in HPDL gene were revealed, of which the mutation c.1051C>T (p.Q351*) has not been reported previously. The father and mother of the proband carry the variant c.1051C>T (p.Q351*) and c.995delC (p.T332Mfs) respectively (Figure 1B,C).

4 | DISCUSSION

The HPDL gene, consisting of a single exon, encodes the 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL) belonging to the vicinal oxygen chelate (VOC) superfamily of metalloenzymes. It is located in mitochondrial intermembrane space with the predicted N-terminal mitochondrial localization signal and 2 predicted VOC domains, which are related to mitochondrial respiratory function (Sun et al., 2021).

Biallelic HPDL variants are associated with infant neurodevelopmental disorders, and the affected individuals usually show cognitive impairment and motor disability, with variable features including seizures, ocular disturbances, and respiratory failure. The first patients with this disease were reported by Husain in 2020, and a number of cases have been reported at present. The clinical presentations in these patients are summarized in Table 1.

Bi-allelic HPDL variants are related to a broad range of human phenotypes. The most common symptom is global developmental delay (GDD) and hypertonia, which are present after birth or in the first months of life. The available MRI suggested that all patients are abnormal, with a reduction of white matter volume, thin corpus callosum,
Patient	Age of onset/current age	Family history	Clinical presentation	cDNA variant(s)	Protein variant(s)	Reference			
P1/M	Birth/5 years	−	+ + + + +	c.324-343insTGC	p.A115fsX82(bom.)	Husain et al. (2020)			
P2/M	6 months/34 years	+	+ + + + −	c.779G>A (hom.)	p.G260E (hom.)	Husain et al. (2020)			
P3/M	6 months/11 years	+	+ + + + +	c.720C>T (hom.)	p.Q241* (hom.)	Husain et al. (2020)			
P4/M	1 week/22 years	−	+ + + + +	N/D	N/D	Husain et al. (2020)			
P5/M	3 weeks/5 years	+	+ + + + +	c.503G>A (hom.)	p.L164P (hom.)	Husain et al. (2020)			
P6/M	6 weeks/5 years	−	+ + + + +	c.469T>C (hom.)	p.W157D (hom.)	Husain et al. (2020)			
P7/M	5 months/2 years	+	+ + + + +	c.233G>A (hom.)	p.A78T (hom.)	Ghosh et al. (2021)			
P8/M	Birth/13 years*	+	+ + + + +	c.1013T>C (hom.)	p.G319RfsX15(bom.)	Ghosh et al. (2021)			
P9/M	4 months/11 years*	+	+ + + + +	c.954dup (hom.)	p.L338P/p.Q257fs	Ghosh et al. (2021)			
P10/M	6 months/8 years	+	+ + + + +	c.491T>C (hom.)	p.L164P (hom.)	Ghosh et al. (2021)			
P11/F	4 months/4 years	+	+ + + + +	c.1013T>C (hom.)	p.G319RfsX15(bom.)	Ghosh et al. (2021)			
P12/M	8 months/11 months	+	+ + + + +	c.491T>C (hom.)	p.L164P (hom.)	Ghosh et al. (2021)			
P13/F	4 months/4 years	+	+ + + + +	c.954dup (hom.)	p.L338P/p.Q257fs	Ghosh et al. (2021)			
P14/F	10 months/11 months	+	+ + + + +	c.954dup (hom.)	p.L338P/p.Q257fs	Ghosh et al. (2021)			
P15/F	12 months/1 months	+	+ + + + +	c.954dup (hom.)	p.L338P/p.Q257fs	Ghosh et al. (2021)			
P17/M	1 year	−	+ + + + +	c.954dup (hom.)	p.L338P/p.Q257fs	Ghosh et al. (2021)			
P18/M	7 months/19 months	+	+ + + + +	c.954dup (hom.)	p.L338P/p.Q257fs	Ghosh et al. (2021)			
Patient	Age of onset/ current age	Family History	Seizures/ epilepsy	Hypertonia	Ocular Facial	MRI	cDNA variant(s)	Protein variant(s)	Reference
---------	--------------------------	----------------	-------------------	-----------	---------------	-----	----------------	-------------------	-----------
P21/M	11 months/ 3 years	−	−	+	+	−	N/D	N/D	Wiessner et al. (2021)
P22/M	6 months/ 12 months	−	+	+	+	+	N/D c.788C	p.T263M (hom.)	Wiessner et al. (2021)
P23/F	12 months/ 11 months	−	+	+	+	+	N/D c.537A	p.L199P fs*15/ p.R72L fs*60	Numata-Uematsu et al. (2021)
P24/M	6 months/ 12 months	+	+	+	N/D	N/D	N/D c.995del/c.1051C	p.T332Mfs/p.Q351*	This study
P25/M	6 months/ 12 months	+	+	+	−	N/D	N/D c.232G	p.A356V fs*45/ p.Q44L	Sun et al. (2021)
P26/M	Birth/ 6 months	−	+	+	+	−	N/D c.995del/c.1051C	p.T332Mfs/p.Q351*	This study

Abbreviations: F, female; M, male; n, normal; N/D, not described; +, present; −, absent; MRI, magnetic resonance imaging.
deficient myelination, and other abnormalities. Most patients had seizures or epilepsy (21/27), and ocular disturbances were found in more than one-third of patients (19/27), which included nystagmus, cortical blindness, poor tracking, and strabismus. Ghosh et al. noticed few patients had nonspecific facial dysmorphic features. The patient, in this case, showed cognitive impairment, motor disability, epilepsy symptoms, and no facial dysmorphic features. In addition to the thin corpus callosum, ventriculomegaly, and white matter volume reduction, MRI also showed bilateral frontotemporal subarachnoid widening, sulcus deeping.

We identified novel compound heterozygous variants, c.995delC (p.T332Mfs) and c.1051C>T (p.Q351*) in the HPDL gene (NM_032756.4). An open square or circle denotes an unaffected member who carried a single heterozygous mutation. (c) Sequencing chromatograms of HPDL variants.

Clinical phenotypic information on individuals with damaging HPDL variants may also be incomplete. The proband was initially diagnosed with cerebral palsy (CP) and developmental delay in our hospital and eventually was diagnosed with NEDSWMA after genetic sequencing. The study provides important clinical phenotypic information for the NEDSWMA in infants and enriches our knowledge of HPDL mutations.

AUTHOR CONTRIBUTIONS
Yanhong Wang and Shiyue Mei designed the study, Xuan Zheng and Chao Feng undertook the molecular work, Xiaoge Fan and Lei Liu collected and analyzed the data, Yanhong Wang, Pengbo Guo, and Zhi Lei wrote the manuscript. All authors discussed the results and contributed to the final manuscript.

ACKNOWLEDGMENTS
The authors wish to thank the subjects and families for participating in the study. This work was supported by the National Natural Science Foundation of China [grant number 81701125] and the National Population Health Data Center Project (sub-project: SJPT-03-01).
CONFLICT OF INTEREST
The authors report no relevant conflicts of interests related to the manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ETHICS STATEMENT
All subjects provided signed informed consent forms for participation in the present study. The present study was approved by the Institutional Review Board of Children’s hospital affiliated with Zhengzhou University (Zhengzhou, China).

ORCID
Shiyue Mei https://orcid.org/0000-0002-3092-5915

REFERENCES
Banh, R. S., Kim, E. S., Spillier, Q., Biancur, D. E., Yamamoto, K., Sohn, A. W., Shi, G., Jones, D. R., Kimmelman, A. C., & Pacold, M. E. (2021). The polar oxy-metabolome reveals the 4-hydroxymandelate CoQ10 synthesis pathway. *Nature*, 597(7876), 420–425. https://doi.org/10.1038/s41586-021-03865-w

Duncan, A. F., & Matthews, M. A. (2018). Neurodevelopmental outcomes in early childhood. *Clinics in Perinatology*, 45(3), 377–392. https://doi.org/10.1016/j.clp.2018.05.001

Ghosh, S. G., Lee, S., Fabunan, R., Chai, G., Zaki, M. S., Abdel-Salam, G., Sultan, T., Ben- Omar, T., Alvi, J. R., McEvoy-Venneri, J., Stanley, V., Patel, A., Ross, D., Ding, J., Jain, M., Pan, D., Lübbert, P., Kamerer, B., Wiedemann, N., ... Gleeson, J. G. (2021). Biallelic variants in HPDL, encoding 4-hydroxyphenylpyruvate dioxygenase-like protein, lead to an infantile neurodegenerative condition. *Genetics in Medicine*, 23(3), 524–533. https://doi.org/10.1038/s41436-020-01010-y

Husain, R. A., Grimmel, M., Wagner, M., Hennings, J. C., Marx, C., Feichtinger, R. G., Saadi, A., Rostásy, K., Radelfahr, F., Bevot, A., Döbler-Neumann, M., Hartmann, H., Colleaux, L., Cordts, I., Kobeleva, X., Darvish, H., Bakhtiari, S., Krueer, M. C., Besse, A., ... Haack, T. B. (2020). Bi-allelic HPDL variants cause a neurodegenerative disease ranging from neonatal encephalopathy to adolescent-onset spastic paraplegia. *American Journal of Human Genetics*, 107(2), 364–373. https://doi.org/10.1016/j.ajhg.2020.06.015

Morgan, N. V., Yngvadottir, B., O’Driscoll, M., Clark, G. R., Walsh, D., Martin, E., Tee, L., Reid, E., Titheradge, H. L., & Maher, E. R. (2021). Evidence that autosomal recessive spastic cerebral palsy-1 (CPSQ1) is caused by a missense variant in HPDL. *Brain Communications*, 3(1), fcab002. https://doi.org/10.1093/braincomms/fcab002

Numata-Uematsu, Y., Uematsu, M., Yamamoto, T., Saitsu, H., Katata, Y., Oikawa, Y., Saijyo, N., Inui, T., Murayama, K., Ohtake, A., Osaka, H., Takanashi, J. I., Kure, S., & Inoue, K. (2021). Leigh syndrome-like MRI changes in a patient with biallelic HPDL variants treated with ketogenic diet. *Molecular Genetics and Metabolism Reports*, 29, 100800. https://doi.org/10.1016/j.mgmr.2021.100800

Parenti, I., Rabaneda, L. G., Schoen, V., & Novarino, G. (2020). Neurodevelopmental disorders: From genetics to functional pathways. *Trends in Neurosciences*, 43(8), 608–621. https://doi.org/10.1016/j.tins.2020.05.004

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H. L., & ACMG Laboratory Quality Assurance Committee. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genetics in Medicine*, 17(5), 405–424. https://doi.org/10.1038/gim.2015.30

Sun, Y., Wei, X., Fang, F., Shen, Y., Wei, H., Li, J., Ye, X., Zhan, Y., Ye, X., Liu, X., Yang, W., Li, Y., Geng, X., Huang, X., Ruan, Y., Qin, Z., Yi, S., Lyu, J., Fang, H., & Yu, Y. (2021). HPDL deficiency causes a neuromuscular disease by impairing the mitochondrial respiration. *Journal of Genetics and Genomics*, 48(8), 727–736. https://doi.org/10.1016/j.jgg.2021.01.009

Wiessner, M., Maroofian, R., Ni, M. Y., Pedroni, A., Müller, J. S., Stucka, R., Beetz, C., Efthymiou, S., Santorelli, F. M., Alfares, A. A., Zhu, C., Uhrova Meszarosova, A., Alehabib, E., Bakhtiari, S., Janecke, A. R., Otero, M. G., Shen, Y., Wei, H., Li, J., Ye, X., Zhan, Y., Ye, X., Liu, X., Yang, W., Li, Y., Geng, X., Huang, X., Ruan, Y., Qin, Z., Yi, S., Lyu, J., Fang, H., & Yu, Y. (2021). HPDL deficiency causes a neuromuscular disease by impairing the mitochondrial respiration. *Journal of Genetics and Genomics*, 48(8), 727–736. https://doi.org/10.1016/j.jgg.2021.01.009

Zhao, X., Wang, Y., Mei, S., & Kong, X. (2020). A novel PCDH19 missense mutation, c.812G > A (p.Gly271Asp), identified using whole-exome sequencing in a Chinese family with epilepsy and female restricted mental retardation syndrome. *Molecular Genetics & Genomic Medicine*, 8(6), e1234. https://doi.org/10.1002/mgg3.1234

How to cite this article: Wang, Y., Zheng, X., Feng, C., Fan, X., Liu, L., Guo, P., Lei, Z., & Mei, S. (2022). HPDL mutations identified by exome sequencing are associated with infant neurodevelopmental disorders. *Molecular Genetics & Genomic Medicine*, 10, e2025. https://doi.org/10.1002/mgg3.2025