Predictors of Intravesical Recurrence After Radical Nephroureterectomy for Upper Urinary Tract Urothelial Carcinoma: An Inflammation-Based Prognostic Score

Yang Hyun Cho, Young Ho Seo, Seung Jun Chung, Insang Hwang, Ho Song Yu, Sun-Ouck Kim, Seung Il Jung, Taek Won Kang, Dong Deuk Kwon, Kwangsung Park, Jun Eul Hwang, Geun Soo Kim, Eu Chang Hwang

Departments of Urology, Hematology-Oncology, and Radiology, Chonnam National University Medical School, Gwangju, Korea

Purpose: Systemic inflammatory responses, which are defined in terms of the Glasgow prognostic score (GPS), have been reported to be independent predictors of unfavorable outcomes in various human cancers. We assessed the utility of the GPS as a predictor of intravesical recurrence after radical nephroureterectomy (RNU) in upper urinary tract carcinoma (UTUC).

Materials and Methods: We collected data for 147 UTUC patients with no previous history of bladder cancer who underwent RNU from 2004 to 2012. Associations between perioperative clinicopathological variables and intravesical recurrence were analyzed by using univariate and multivariate Cox regression models.

Results: Overall, 71 of 147 patients (48%) developed intravesical recurrence, including 21 patients (30%) diagnosed with synchronous bladder tumor. In the univariate analysis, performance status, diabetes mellitus (DM), serum albumin, C-reactive protein, GPS, and synchronous bladder tumor were associated with intravesical recurrence. In the multivariate analysis, performance status (hazard ratio [HR], 2.33; 95% confidence interval [CI], 1.41–3.85; p=0.001), DM (HR, 2.04; 95% CI, 1.21–3.41; p=0.007), cortical thinning (HR, 2.01; 95% CI, 1.08–3.71; p=0.026), and GPS (score of 1: HR, 6.86; 95% CI, 3.69–12.7; p=0.001; score of 2: HR, 5.96; 95% CI, 3.10–11.4; p=0.001) were independent predictors of intravesical recurrence.

Conclusions: Our results suggest that the GPS as well as performance status, DM, and cortical thinning are associated with intravesical recurrence after RNU. Thus, more careful follow-up, coupled with postoperative intravesical therapy to avoid bladder recurrence, should be considered in these patients.

Keywords: Inflammation; Recurrence; Risk factors; Transitional cell carcinoma

INTRODUCTION

Upper urinary tract urothelial carcinoma (UTUC) is relatively uncommon, accounting for only approximately 5% to 7% of all urothelial cancers [1-9]. The current standard treatment for UTUC remains radical nephroureterectomy (RNU) with bladder cuff excision. However, because urothelial cancer develops at multiple foci throughout the entire urinary tract, synchronously or metachronously, 15% to 50% of the patients who undergo surgical treatment for UTUC develop intravesical recurrence during the follow-up period [3-5]. Moreover, up to 80% to 90% of bladder recurrences occur within the first 2 to 3 years after RNU.

To date, several studies have identified possible risk fac-
tors for subsequent intravesical recurrence in patients treated surgically for UTUC [3-24]. Proposed risk factors include tumor configuration, tumor multifocality, tumor stage and grade, tumor location, tumor size, lymphovascular invasion (LVI), patient gender, adjuvant chemotherapy, preoperative urine cytology, synchronous bladder cancer, diagnostic ureteroscopy (DURS), hydronephrosis, and diabetes mellitus (DM). However, the results have been controversial with limited evidence to establish surveillance strategies. Thus, knowledge of potential predictive factors for bladder recurrence in UTUC would allow better prognostic evaluations and promote optimal surveillance strategies.

Systemic inflammation-based scores, including the Glasgow prognostic score (GPS), are considered to have prognostic value, independently of stage, performance status, and weight loss, in various advanced cancers and primary operable cancers [25-28]. However, no reported studies have investigated the value of the GPS to predict intravesical recurrence after RNU. Thus, in this study, we assessed the predictors of intravesical recurrence of UTUC, including previously reported risk factors and GPS. In addition, we also evaluated the predictors of overall survival of UTUC after RNU.

MATERIALS AND METHODS

1. Patients

Between 2004 and 2012, 172 patients with UTUC underwent RNU at our institution. We excluded 9 patients with local recurrence and 16 with distant metastasis. In total, 147 patients were reviewed retrospectively. No patient had received preoperative chemotherapy or radiotherapy. No patient included in this study had a previous history of bladder cancer. All patients underwent RNU with excision of the bladder cuff without regional lymph node dissection. All patients were followed similarly every ~3 to 4 months the first year after RNU, every 6 months from the second through the fifth year, and annually thereafter. At each follow-up, the patient’s symptoms, history, performance status, and physical examination were evaluated by physicians, and blood samples for serum chemistry and hematological testing and bladder urine washing for cytology were obtained. If a bladder tumor was suspected, transurethral resection was also performed. Intravesical recurrence and distant metastasis were investigated by cystoscopically evaluating the urinary bladder, by a chest radiograph, and by radiographic evaluation of the contralateral upper urinary tract by computed tomography annually as indicated clinically. Bladder cancer occurrences that were demonstrated histologically were defined as intravesical recurrence.

2. Pathological analysis

All surgical specimens were processed according to standardized pathological procedures and were reviewed by pathologists. The histological grade was classified according to previously established criteria. Tumor staging was assessed according to the 2002 American Joint Committee on Cancer TNM staging system. The tumor grade was assessed according to the 1998 World Health Organization/International Society of Urologic Pathology consensus classification.

3. Eastern Cooperative Oncology Group Performance Status and GPS

Eastern Cooperative Oncology Group Performance Status (ECOG-PS) was recorded at the time of diagnosis. The GPS was determined as described previously [25-27]. Patients with both elevated C-reactive protein (CRP) and hypoalbuminemia were assigned a score of 2. Patients with only one of these biochemical abnormalities were assigned a score of 1. Patients without either abnormality were assigned a score of 0. Routine laboratory testing for CRP and albumin was performed perioperatively. Serum CRP was measured by latex turbidimetric immunoassay by use of a Hitachi 7600 analyzer (Hitachi, Tokyo, Japan). The CRP limit of detection was 0.03 mg/dL, and 1.0 mg/dL was the upper limit of the normal range. Coefficients of variation over the range of measurements were 5% in routine quality control.

4. Classification of hydronephrosis

The hydronephrosis grade was assessed by preoperative imaging, CT, excretory urography, and renal ultrasonography. Cases without caliceal or pelvic dilation were classified as grade 0 hydronephrosis, cases with pelvic dilation only were classified as grade 1, and cases with accompanying mild calix dilation were classified as grade 2. Severe calix dilation was grade 3, and calix dilation accompanied by renal parenchyma atrophy was classified as grade 4. Mild, moderate, and severe hydronephrosis were defined as grade 1, grade 2, and grades 3-4, respectively.

5. Adjuvant chemotherapy

Adjuvant chemotherapy was usually given for patients above pathologic T2 stage. Patients were administered 1,000 mg/m² gemcitabine on days 1, 8, and 15, and 70 mg/m² cisplatin on day 2 for the GC regimen on 3 cycles. The dose of cisplatin was reduced from 50% to 70% of the normal dose when the estimated glomerular filtration rate was under 70 mL/min, and none of the UTUC patients received postoperative intravesical chemotherapy.

6. Statistics

Statistical analyses were performed by using SPSS ver. 17.0 (SPSS Inc., Chicago, IL, USA). Differences in clinicopathological variables according to bladder recurrence after RNU were analyzed by using the chi-square test. Univariate and multivariate analyses (stepwise forward procedure) were performed by using the Cox proportional hazard analysis to identify risk factors affecting intravesical recurrence-free survival and overall survival after RNU. The factors included in the model were age, gender, ECOG-PS, DM, preoperative hemoglobin, albumin, CRP,
TABLE 1. Baseline characteristics of the enrolled patients

Characteristic	Bladder recurrence	p-value*
	Negative	Positive
Age (y)	41 (53.9)	31 (43.7)
< 70	35 (46.1)	40 (56.3)
≥ 70	26 (34.2)	15 (21.1)
Gender	50 (65.8)	56 (78.9)
Male	53 (69.7)	41 (57.7)
Female	23 (30.3)	30 (42.3)
Diabetes mellitus	63 (82.9)	35 (49.3)
Negative	13 (17.1)	36 (50.7)
Positive	52 (68.4)	46 (64.8)
Hemoglobin (g/dL)	72 (94.7)	40 (56.3)
> 12	4 (5.3)	31 (43.7)
≤ 12	74 (97.4)	24 (33.8)
C-reactive protein (mg/dL)		
≤ 1.0	2 (2.6)	47 (66.2)
> 1.0	70 (92.1)	17 (23.9)
Glasgow prognostic score		
0	6 (7.9)	30 (42.3)
1	2 (0.0)	24 (33.8)
2	7 (9.9)	18 (25.4)
Diagnostic ureteroscopy		
Performed	52 (68.4)	53 (74.6)
Not performed	24 (31.6)	18 (25.4)
Adjuvant chemotherapy		
Performed	51 (67.1)	44 (62.0)
Not performed	25 (32.9)	27 (38.0)
Synchronous bladder tumor		
Negative	65 (85.5)	50 (70.4)
Positive	11 (14.5)	21 (29.6)
T stage		
Non-muscle-invasive	40 (52.6)	36 (50.7)
Muscle-invasive	19 (25.0)	17 (23.9)
Non-organ-confined	17 (22.4)	18 (25.4)
Grade		
Low	24 (31.6)	23 (32.4)
High	52 (68.4)	48 (67.6)
Location		
Renal pelvis	37 (48.7)	37 (52.1)
Upper ureter	13 (17.1)	10 (14.1)
Mid ureter	14 (18.4)	7 (9.9)
Lower ureter	12 (15.8)	17 (23.9)
Hydronephrosis		
None, mild	48 (63.2)	47 (66.2)
Moderately severe	28 (36.8)	24 (33.8)
Cortical thinning		
Negative	59 (77.6)	55 (77.5)
Positive	17 (22.4)	16 (22.5)
Operative method		
Open	18 (23.7)	33 (46.5)
Laparoscopy	58 (76.3)	38 (53.5)

*Chi-square test.

TABLE 1. Continued

Characteristic	Bladder recurrence	p-value*
	Negative	Positive
Lymphovascular invasion		
Negative	69 (90.8)	65 (91.5)
Positive	7 (9.2)	6 (8.5)
Tumor size (cm)		
< 3	38 (50.0)	29 (40.8)
≥ 3	38 (50.0)	42 (59.2)

Values are presented as number (%).

ECOG-Ps: Eastern Cooperative Oncology Group Performance Status.

RESULTS

1. Clinicopathological characteristics

The clinicopathological characteristics of the 147 patients with UTUC are summarized in Table 1. There were 41 males and 106 females, with a median age of 70 years (range, 44–84 years). The primary tumor location was the renal pelvis in 74 patients (50%) and the ureter in 73 patients (50%). Of the patients, 42 (29%) underwent preoperative DURS, and 32 (21%) were diagnosed with synchronous bladder tumors. Open RNU was performed in 51 patients (34.6%) and laparoscopic RNU was performed in 96 patients (65%). The median tumor size was 3.0 cm (range, 0.4–14 cm). The pathological stage was divided into three groups: non-muscle-invasive (pTis/pTa/pT1), muscle-invasive (pT2), and non-organ-confined (pT3), which were identified in 76 (51.7%), 36 (24.5%), and 35 (23.8%) cases, respectively.

The median follow-up period was 33 months (range, 1–191 months). Intravesical recurrence occurred in 71 of 147 patients (48%). The median time to intravesical recurrence was 13 months (range, 0.4–91 months).

Comparing clinicopathological variables between the intravesical recurrence categories, there was no significant difference between the groups in terms of age, gender, histological grade, tumor stage, tumor size, LVI, hydronephrosis, cortical thinning, and operative method. Statistical significance was set at p < 0.05 for all analyses.

2. Predictors of intravesical recurrence-free survival

In the univariate analysis, performance status (hazard ratio [HR], 1.88; 95% confidence interval [CI], 1.16–3.03; p = 0.009), DM (HR, 2.52; 95% CI, 1.58–4.03; p = 0.001), se-
TABLE 2. Results of univariate and multivariate analysis of variables affecting intravesical recurrence-free survival after radical nephroureterectomy

Variable	Univariate analysis	Multivariate analysis
	HR (95% CI)	p-value
Age, ≥70 y	1.59 (0.99-2.55)	0.051
Male gender	1.38 (0.77-2.45)	0.268
ECOG-PS, ≥1	1.88 (1.16-3.03)	0.009
Diabetes mellitus	2.52 (1.58-4.03)	0.001
Hemoglobin, ≤12 g/dL	1.38 (0.85-2.26)	0.189
Albumin, <3.5 g/dL	2.88 (1.80-4.62)	0.001
C-reactive protein, >1.0 mg/dL	5.73 (3.47-9.45)	0.001
Glasgow prognostic score 1	7.73 (4.22-14.1)	0.001
T stage	6.36 (3.40-11.9)	0.001
Muscle-invasive	0.87 (0.51-1.49)	0.615
Non-organ-confined	0.85 (0.52-1.38)	0.507
1	1.69 (1.01-2.82)	0.045
Grade, high	0.93 (0.56-1.53)	0.776
Location		
Upper ureter	1.05 (0.52-2.13)	0.872
Mid ureter	0.62 (0.27-1.39)	0.247
Lower ureter	1.22 (0.69-2.18)	0.485
Hydronephrosis, moderate, severe	1.44 (0.87-2.37)	0.149
Cortical thinning	1.56 (0.89-2.73)	0.120
Operative method, laparoscopy	0.72 (0.45-1.16)	0.181
Lymphovascular invasion	1.57 (0.66-3.72)	0.301
Tumor size, ≥3 cm	1.43 (0.88-2.30)	0.140

HR, hazard ratio; CI, confidence interval; ECOG-PS, Eastern Cooperative Oncology Group Performance Status.

Despite definitive surgery such as RNU with bladder cuff excision, a high potential for local and distant recurrence of UTUC has been reported. Previous studies have estimated the intravesical recurrence rate after RNU to range from 13% to 49% [3-5]. Similar to other reports, we found that 48% of UTUC patients who underwent RNU experienced bladder recurrence. Although numerous studies have attempted to delineate clinicopathological criteria for predicting such recurrences, none of the reported studies involved more than 300 cases, and the results were inconsistent.

Koda et al. [18] showed that intravesical recurrence was not associated with the mode of operation; in that study, a previous history of bladder cancer was the only independent prognostic factor for intravesical recurrence. Additionally, several clinicopathological parameters were considered as prognostic factors, including patient age, tumor size, tumor stage, LVI, histological grade, and synchronous bladder cancer. In a series of 196 patients, bladder recurrence was lower in those who received mitomycin

Korean J Urol 2014;55:453-459
Bladder Recurrence After Nephroureterectomy

TABLE 3. Results of univariate and multivariate analysis of variables affecting overall survival after radical nephroureterectomy

Variable	Univariate analysis	Multivariate analysis		
	HR (95% CI)	p-value	HR (95% CI)	p-value
Age, ≥70 y	1.95 (0.89-4.07)	0.097	3.81 (1.76-8.26)	0.001
Male gender	1.04 (0.36-2.76)	0.933		
ECOG-PS, ≥1	3.99 (1.86-8.57)	0.001		
Diabetes mellitus	0.54 (0.24-1.21)	0.134		
Hemoglobin, ≤12 g/dL	1.38 (0.64-2.96)	0.401		
Albumin, <3.5 g/dL	0.60 (0.26-1.39)	0.239		
C-reactive protein, >1.0 mg/dL	0.97 (0.43-2.16)	0.944		
Glasgow prognostic score				
1	1.51 (0.63-3.61)	0.346		
2	0.64 (0.22-1.80)	0.399		
Diagnostic ureteroscopy	1.69 (0.74-3.90)	0.211		
Adjuvant chemotherapy	1.88 (0.87-4.04)	0.105		
Synchronous bladder tumor	1.22 (0.53-2.78)	0.637		
T stage				
Muscle-invasive	0.64 (0.20-2.04)	0.458		
Non-organ-confined	2.22 (0.99-4.98)	0.051		
Grade, high	2.77 (1.09-7.03)	0.031	2.58 (1.02-6.67)	0.040
Location				
Upper ureter	2.12 (0.87-5.17)	0.096		
Mid ureter	1.01 (0.28-3.55)	0.990		
Lower ureter	0.79 (0.25-2.43)	0.683		
Hydronephrosis, moderate, severe	1.01 (0.44-2.30)	0.978		
Cortical thinning	1.67 (0.73-3.83)	0.223		
Operative method, laparoscopy	1.09 (0.50-2.35)	0.825		
Lymphovascular invasion	1.54 (0.46-5.13)	0.476		
Tumor size, ≥3 cm	2.69 (1.14-6.37)	0.024		
Intravesical recurrence	1.01 (0.42-2.36)	0.990		

HR, hazard ratio; CI, confidence interval; ECOG-PS, Eastern Cooperative Oncology Group Performance Status.

C or epirubicin compared with those who received neither [22]. Likewise, several retrospective studies have identified prognostic parameters for predicting outcomes after RNU, including intravesical recurrence and cancer-specific survival. However, this remains a matter of debate. In our results, the previously considered prognostic factors of DURS [17], tumor stage, grade, size [23], LVI [24], location [4,5,13], adjuvant chemotherapy [14], and synchronous bladder cancer [16] were not associated significantly with bladder recurrence. However, the presence of DM, cortical thinning, GPS, and performance status were suggested to be independent prognostic parameters for bladder recurrence.

Regarding perioperative DURS, ureteroscopy may increase tumor shedding with subsequent intraluminal seeding during irrigation or manipulation. Several studies have found that DURS was associated with intravesical recurrence. However, our results did not show this. The difference may be due to the small numbers of DURS patients.

Several previous studies reported that tumor extent and pathological stage were significant, independent factors for intravesical recurrence. Hisatani et al. [11] suggested that pathological stage influenced bladder recurrence significantly and that the bladder recurrence-free rate of low-
Espiritu et al. [23] suggested that tumor size \(\geq 3.0 \) cm was considered a significant risk factor for poor recurrence-free survival outcomes after RNU. In the current study, tumor size was only associated with shorter overall survival in the univariate analysis. In a previous study, LVI was the significant predictor for intravesical recurrence [24]. However, our results were not in accord with previous reports. This may have been influenced by the relatively smaller portion of our UTUC cases with LVI (9%) than seen in previous studies (21%). Hwang et al. [29] suggested that DM was an independent prognostic factor for bladder recurrence and prognosis in patients with non-muscle-invasive bladder cancer. Another study, performed in the same center, evaluated the association between DM and UTUC; those authors suggested that DM was a poor predictor of prognosis in UTUC. In this regard, DM may influence bladder recurrence or prognosis in non-muscle-invasive bladder cancer and UTUC [30]. Our results are consistent with those previous reports. In UTUC patients with RNU, underlying DM was suggested to be an independent prognostic parameter for bladder recurrence-free survival but not to be associated with overall survival. Also, a previous report suggested that hydro-nephrosis was a poor prognosis-predicting factor in UTUC [30]. However, we did not find any relationship between hydronephrosis and intravesical recurrence-free survival or overall survival. Cortical thinning was another independent prognostic factor for intravesical recurrence-free survival of UTUC in our study. It may be associated with long-term exposure of urothelial cells to nephrotoxicity and carcinogens, leading to bladder recurrence. However, no other reported study has considered cortical thinning as a risk factor. Thus, further studies are needed.

Recently, systemic inflammation-based scores have been suggested to be of prognostic value, independent of stage, performance status, and weight loss, in advanced cancers [25]. Among such scores, the GPS (including albumin and CRP values) is superior to leukocyte or lymphocyte counts and the Eastern Cooperative Oncology Group score [27,28]. Furthermore, there has also been some work in primary operable cancers showing that systemic inflammatory responses have prognostic value in GI cancer, lung cancer, RCC, and bladder cancer and were independently associated with survival in patients with primary operable cancer [25]. In the present study, we evaluated the GPS as a prognostic factor for postoperative intravesical recurrence-free survival of UTUC. We found that the GPS was strongly associated with bladder recurrence and was more useful for predicting intravesical recurrence than were other prognostic parameters, including DM, cortical thinning, and ECOG score (GPS 1: HR, 6.86; 95% CI, 3.69–12.7; p=0.001; GPS 2: HR, 5.96; 95% CI, 3.10–11.4; p=0.001).

In the prediction of overall survival, ECOG-PS and high-grade tumor showed a significant association with overall survival, but the GPS was not correlated with survival. Therefore, more research is necessary to establish the association between the GPS and overall survival in UTUC patients. To our knowledge, this has not been reported previously.

Our study had several limitations. First, it was a retrospective study of a single center’s experience with a relatively uncommon disease. Thus, the size of the study was quite small versus previously reported multicenter studies. Second, the follow-up period might not have been long enough. Finally, we did not evaluate the duration of DM, which may have affected our results; there may also have been selection bias due to the probability of undiagnosed DM. Thus, further randomized clinical studies are needed to identify possible risk factors for subsequent intravesical recurrence after RNU.

CONCLUSIONS

Our results suggest that the GPS and performance status, DM, and cortical thinning are associated with intravesical recurrence after RNU. For overall survival, ECOG-PS and high grade are independently associated with poor outcome. Thus, in such patients, more careful follow-up coupled with postoperative intravesical therapy should be considered to avoid bladder recurrence.

CONFLICTS OF INTEREST

The authors have nothing to disclose.

REFERENCES

1. Margulis V, Shariat SF, Matin SF, Kamat AM, Zigeuner R, Kikuchi E, et al. Outcomes of radical nephroureterectomy: a series from the Upper Tract Urothelial Carcinoma Collaboration. Cancer 2009;115:1224-33.
2. Roupret M, Zigeuner R, Palou J, Boehrle A, Kaasinen E, Sylvester R, et al. European guidelines for the diagnosis and management of upper urinary tract urothelial cell carcinomas: 2011 update. Eur Urol 2011;59:584-94.
3. Raman JD, Ng CK, Boorjian SA, Vaughan ED Jr, Sosa RE, Scherr DS. Bladder cancer after managing upper urinary tract transitional cell carcinoma: predictive factors and pathology. BJU Int 2005;96:1031-5.
4. Zigeuner RE, Hutterer G, Chromekti T, Rehak P, Langner C. Bladder tumour development after urothelial carcinoma of the upper urinary tract is related to primary tumour location. BJU Int 2006;98:1181-6.
5. Novara G, De Marco V, Dalpiaz O, Gottardo F, Bouygues V, Guliano A, et al. Independent predictors of metachronous bladder transitional cell carcinoma (TCC) after nephroureterectomy for TCC of the upper urinary tract. BJU Int 2008;101:1568-74.
6. Wheat JC, Weizer AZ, Wolf JS Jr, Lotan Y, Remzi M, Margulis V, et al. Concomitant carcinoma in situ is a feature of aggressive disease in patients with organ confined urothelial carcinoma following radical nephroureterectomy. Urol Oncol 2012;30:252-8.
7. Pieras E, Frontera G, Ruiz X, Vicens A, Ozonas M, Piza P. Concomitant carcinoma in situ and tumour size are prognostic factors for bladder recurrence after nephroureterectomy for upper tract transitional cell carcinoma. BJU Int 2010;106:1319-23.
8. Fang D, Xiong GY, Li XS, Chen XP, Zhang L, Yao L, et al. Pattern...
and risk factors of intravesical recurrence after nephroureterectomy for upper tract urothelial carcinoma: a large Chinese center experience. J Formos Med Assoc 2013;13:400-2.

9. Mullerad M, Russo P, Golijanin D, Chen HN, Tsai HH, Donat SM, et al. Bladder cancer as a prognostic factor for upper tract transitional cell carcinoma. J Urol 2004;172(6 Pt 1):2177-81.

10. Xylinas E, Colin P, Audenet F, Phe V, Cormier L, Cussenot O, et al. Intravesical recurrence after radical nephroureterectomy for upper tract urothelial carcinomas: predictors and impact on subsequent oncological outcomes from a national multicenter study. World J Urol 2013;31:61-8.

11. Hisataka T, Miyao N, Masumori N, Takahashi A, Sasai M, Yanase M, et al. Risk factors for the development of bladder cancer after upper tract urothelial cancer. Urology 2000;55:663-7.

12. Terakawa T, Miyake H, Muramaki M, Takenaka A, Hara I, Fujisawa M. Risk factors for intravesical recurrence after surgical management of transitional cell carcinoma of the upper urinary tract. Urology 2008;71:123-7.

13. Li WM, Wu WJ, Li CC, Ke HL, Wei YC, Yeh HC, et al. The effect of tumor location on prognosis in patients with primary upper urethral urothelial carcinoma. Urol Oncol 2013;31:1670-5.

14. Fang D, Li XS, Xiong GY, Yao L, He ZS, Zhou LQ. Prophylactic intravesical chemotherapy to prevent bladder tumors after nephroureterectomy for primary upper urinary tract urothelial carcinomas: a systematic review and meta-analysis. Urol Int 2013;91:291-6.

15. Cho DS, Kim SI, Ahn HS, Kim SJ. Predictive factors for bladder recurrence after radical nephroureterectomy for upper urinary tract urothelial carcinoma. Urol Int 2013;91:153-9.

16. Pignot G, Colin P, Zerhib M, Audenet F, Soulie M, Hurel S, et al. Influence of previous or synchronous bladder cancer on oncologic outcomes after radical nephroureterectomy for upper urinary tract urothelial carcinoma. Urol Oncol 2014;32:23:e1-8.

17. Luo HL, Kang CH, Chen YT, Chuang YC, Lee WC, Cheng YT, et al. Diagnostic ureteroscopy independently correlates with intravesical recurrence after nephroureterectomy for upper urinary tract urothelial carcinoma. Ann Surg Oncol 2013;20:3121-6.

18. Koda S, Mita K, Shigeta M, Usui T. Risk factors for intravesical recurrence following urothelial carcinoma of the upper urinary tract: no relationship to the mode of surgery. Jpn J Clin Oncol 2007;37:296-301.

19. Kikuchi E, Margulis V, Karakiewicz PI, Roscigno M, Mikami S, Lotan Y, et al. Lymphovascular invasion predicts clinical outcomes in patients with node-negative upper tract urothelial carcinoma. J Clin Oncol 2009;27:612-8.

20. Remzi M, Haitel A, Margulis V, Karakiewicz P, Montorsi F, Kikuchi E, et al. Tumour architecture is an independent predictor of outcomes after nephroureterectomy: a multi-institutional analysis of 1363 patients. BJU Int 2009;103:307-11.

21. Otto W, Shariat SF, Fritsche HM, Gupta A, Matsumoto K, Kassouf W, et al. Concomitant carcinoma in situ as an independent prognostic parameter for recurrence and survival in upper tract urothelial carcinoma: a multicenter analysis of 772 patients. World J Urol 2011;29:487-94.

22. Wu WJ, Ke HL, Yang YH, Li CC, Chou YH, Huang CH. Should patients with primary upper urinary tract cancer receive prophylactic intravesical chemotherapy after nephroureterectomy? J Urol 2010;183:56-61.

23. Espiritu PN, Sverrisson EF, Sexton JW, Pow-Sang JM, Poch MA, Dhillion J, et al. Effect of tumor size on recurrence-free survival of upper tract urothelial carcinoma following surgical resection. Urol Oncol 2014;32:619-24.

24. Ha SH, Park J, Hong JH, Kim CS, Ahn H. Predictors of bladder tumor recurrence after curative surgery for upper urinary tract transitional cell carcinoma. Korean J Urol 2009;50:635-41.

25. McMillan DC. An inflammation-based prognostic score and its role in the nutrition-based management of patients with cancer. Proc Nutr Soc 2008;67:257-62.

26. Forrest LM, McMillan DC, McArdle CS, Angerson WJ, Dunlop DJ. Comparison of an inflammation-based prognostic score (GPS) with performance status (ECOG) in patients receiving platinum-based chemotherapy for inoperable non-small-cell lung cancer. Br J Cancer 2004;90:1704-6.

27. Crumley AB, Stuart RC, McKernan M, McDonald AC, McMillan DC. Comparison of an inflammation-based prognostic score (GPS) with performance status (ECOG) in patients receiving palliative chemotherapy for gastroesophageal cancer. J Gastroenterol Hepatol 2008;23(8 Pt 2):e325-9.

28. Leitch EF, Chakrabarti M, Crozier JE, McKee RF, Anderson JH, Horgan PG, et al. Comparison of the prognostic value of selected markers of the systemic inflammatory response in patients with colorectal cancer. Br J Cancer 2007;97:1266-70.

29. Hwang EC, Kim YJ, Hwang IS, Hwang JE, Jung SI, Kwon DD, et al. Impact of diabetes mellitus on recurrence and progression in patients with non-muscle invasive bladder carcinoma: a retrospective cohort study. Int J Urol 2011;18:769-76.

30. Hwang I, Jung SI, Nam DH, Hwang EC, Kang TW, Kwon DD, et al. Preoperative hydronephrosis and diabetes mellitus predict poor prognosis in upper urinary tract urothelial carcinoma. Can Urol Assoc J 2013;7:E215-20.