Antiparasitic treatment using herbs and spices: A review of the literature of the phytotherapy

Tratamento antiparasitário utilizando plantas condimentares e aromáticas: Uma revisão de literatura

Adriane Leites Strothmann1, M. Maria Elisabeth Aires Berne2, Gabriela de Almeida Capella3, Micaele Quintana de Moura4, Wesley Douglas da Silva Terto4, Caroline Maciel da Costa5 & Natália Berne Pinheiro6

1 Undergraduate in Biological Sciences, Instituto de Biologia (IB), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, RS, Brazil.
2 Veterinarian, DSc. Departamento de Microbiologia e Parasitologia (DMP), IB, UFPel, Campus Capão do Leão, RS, Brazil.
3 Veterinarian, MSc. Programa de Pós-Graduação em Parasitologia (PPGPar), IB, UFPel, Campus Capão do Leão, RS, Brazil.
4 Biologist, MSc. PPGPar, IB, UFPel, Campus Capão do Leão, RS, Brazil.
5 Undergraduate in Zootechnics, Faculdade de Veterinária (FaVet), UFPel, Campus Capão do Leão, RS, Brazil.
6 Veterinarian, MSc. PPGPar, IB, UFPel, Campus Capão do Leão, RS, Brazil.

Abstract

This study sought to make a literature review of the medicinal plants *Origanum majorana*, *Origanum vulgare* L., *Thymus vulgaris* L., *Cuminum cyminum* L., and *Rosmarinus officinalis* L. with antiparasitic potential. Articles and theses were selected from the LILACS, PubMed, and Google Scholar databases, which comprised the period from 2000 to 2021 (22 years). In all, 49 studies were selected, and the majority were with the plant *Origanum vulgare* L. (oregano), followed by *Thymus vulgaris* L. (thyme). Twenty-five genera of parasites were detected, which were described being tested with phytotherapeutic. The nematode *Haemonchus* spp. was the most evaluated in these studies, followed by the parasite genera *Leishmania*, *Trichostrongylus*, and *Toxocara*. All plants showed antiparasitic effects, with more or less action, therefore with the potential to continue research in the search for biomolecules to control these parasites.

Keywords: phytotherapy, endoparasites, alternative control.

Resumo

O presente trabalho faz uma revisão bibliográfica das plantas medicinais *Origanum majorana*, *Origanum vulgare* L., *Thymus vulgaris* L., *Cuminum cyminum* L. e *Rosmarinus officinalis* L. com potencial antiparasitário. Foram selecionados artigos e teses nos bancos de dados LILACS, PubMed e Google Acadêmico que compreendiam o período de publicação de 2000 a 2021 (22 anos). Ao todo, foram selecionados 49 estudos, sendo que na maioria constava a planta *Origanum vulgare* L. (órgano), seguido de *Thymus vulgaris* L. (tomilho). Foram detectados 25 gêneros de parasitos, os quais foram descritos sendo testados frente a algum fitoterápico. O nematodo *Haemonchus* spp. foi o mais avaliado nestes estudos, seguido dos gêneros dos parasitos *Leishmania*, *Trichostrongylus* e *Toxocara*. Todas as plantas apresentaram efeitos antiparasitários, com maior ou menos ação, portanto com potencial para dar continuidade aos estudos em busca de biomoléculas para controle destes parasitos.

Palavras-chave: fitoterapia, endoparasitos, controle alternativo.

Introduction

Man’s relationship with natural resources to improve his living conditions and increase his chances of survival is ancient (Taufner et al., 2006). Medicines derived from plants (i.e., herbal medicines) present a wide spectrum of use, especially by groups of people in vulnerable situations and those concerned about consuming a more naturally produced food (Nery et al., 2009; Silva et al., 2017). When used correctly, these molecules present fewer side effects (Andrade et al., 2018). It is esteemed that at least 80% of the world population uses traditional medicine, and of these, 85% utilize medicinal plants (Barata, 2003; Fenalti et al., 2016; Gadelha et al., 2013).

In Brazil, phytotherapy was included as a practice in the public health network in 2006 (Brasil, 2006). In 2011, ANVISA created a manual with instructions for using medicinal plants with...
therapeutic potential, which had been described and scientifically accepted (Brasil, 2010). The intention was to guide the proper use, especially for users of the Unified Health System (SUS), because the population uses many plants without any guidance, which may bring risks since there are various toxic species (Giordani et al., 2016).

Diseases caused by parasites are a major public health problem (Estancial & Marini, 2014). Evidence has shown that roughly 300 helminth species and 70 protozoa species have already been diagnosed infecting humans, being the cause of death of about 200,000 people per year (Melo et al., 2017). Given that it affects the neediest population, since the mid-twentieth century, the pharmacopoeia used to control neglected tropical diseases remains unchanged (Hotez et al., 2006).

Only the use of drugs to treat diseases transmitted by parasites is not enough since the environment, water, and food are important sources of infection (Andrade et al., 2010). In addition, with the indiscriminate use of drugs, parasite resistance to available drugs emerges, especially among production animals (Fortes & Molento, 2013).

Thus, medicinal plants have been described with importance in research because they constitute an alternative treatment for parasitic diseases. Given this context, this study sought to perform a literature review of research that used the medicinal plants *Cuminum cyminum* (cumin), *Origanum vulgare* (oregano), *Origanum majorana* (marjoram), *Rosmarinus officinalis* (rosemary), and *Thymus vulgaris* (thyme) and the evaluation of these molecules in parasites of medical and veterinary importance.

Methodology

This review selected papers in the LILACS, PubMed, and Google Scholar databases that comprised the publication period between 2000 and 2021. The descriptors chosen to find the selection of studies were “anti-helminthic medicinal plants,” “*Rosmarinus officinalis* L.,” “*Origanum majorana*,” “*Origanum vulgare* L.,” “*Thymus vulgaris* L.,” and “*Cuminum cyminum* L.” and their correspondents in English: “medicinal plants” and “anthelmintic,” and in Spanish: “plantas medicinales” and “antihelmíntico” for the LILACS and PubMed databases. As for Google Scholar, the words used were “anti-helminthic medicinal plants” and the name of each species; in Portuguese, English and Spanish.

Results and discussion

Brazil has a plethora of different plant species (approximately 55,000 species). Among the species that compose the registered herbal medicines, 25% originate from South America, estimating that less than 15% of the species have been studied for medicinal purposes (Zago, 2018). Thus, research pointing to their biological proof is necessary as the population routinely uses some of these plants as medicine and because they may be important sources for discovering new therapeutic options (Marinho et al., 2007; Zago, 2018).

In this review, 49 papers were selected, in which *Rosmarinus officinalis* L., *Origanum majorana*, *Origanum vulgare* L., *Thymus vulgaris* L., and *Cuminum cyminum* L. were tested against parasites of medical or veterinary importance. Of the 49 studies selected for review, 34 consisted of experimental work, and of these, 28 were only *in vitro* studies and 6 were *in vitro* and *in vivo* or just *in vivo* experimental studies.

Oregano was the most commonly studied plant (n = 15), followed by thyme (n = 14), rosemary (n = 7), marjoram (n = 4), and cumin (n = 2) (Figure 1). Six studies tested more than one plant: Santoro et al. (2007b) investigated oregano and thyme, Sanchez-Suarez et al. (2013) analyzed thyme, oregano, and rosemary, Castro (2018) used cumin and dill, and Štrbac et al. (2021) and Pensel et al. (2014) evaluated thyme and oregano.

The list of plants tested *in vitro* or *in vivo* and their effects on different parasite stages are listed in Tables 1–5. Some papers appear duplicated in the tables because the authors used two plants for the study or more than one parasite for the same plant.

Multiple biological activities have already been attributed to these plants in research. In a literature review of cumin by Al-Snafi (2016), the authors reported various activities, such as antimicrobial, insecticide, anti-inflammatory, analgesic, hypotensive, bronchodilator, antioxidant, anticancer, and antidiabetic activities, among others. Its anthelmintic activity seems to be little studied.
Antiparasitic treatment using herbs and spices: A review of the literature of the phytotherapy

Since few studies were found in this review. For marjoram, its biological activities documented by science include antioxidant, anxiolytic, anticonvulsant, anti-diabetic, anti-drop, antimutagenic activity, anti-ulcer, antibacterial, antifungal, and antiprotozoal activities (Prerna & Vasudeva, 2015). Documented properties of oregano include antimicrobial, antioxidant, hepatoprotective (Oniga et al., 2018), anticancer (Elshafie et al., 2017), and antiparasitic properties, as reported in this study. Rosemary has been reported to have antibacterial, anti-diabetic, anti-inflammatory, antitumor, antioxidant, antinociceptive, and analgesic properties, among others. In contrast, thyme has anti-septic, anti-spasmodic, anti-tussive, antimicrobial, antifungal, antioxidant, antiviral, and antiparasitic properties (Dauqan & Abdullah, 2017).

In this review, a total of 25 genera of parasites were found that have been tested with these plants (Figure 2). Of the 25 genera found, 20 were classified at the species level. The species belonging to the genus Haemonchus were the most tested, followed by Leishmania, Trichostrongylus, and Toxocara. Most of the parasite species found in this review can infect humans.

The large number of studies observed is justified by the important role of medicinal plants in modern medicine, which is an economically viable alternative for the population. In addition, they have natural compounds that, with the advancement in research, present an easy method of
Table 2. Relationship of *Origanum majorana* with parasites that have already been studied in *in vitro* and/or *in vivo* tests.

Parasite	Product	Concentration	Activity	Reference
Toxoplasma gondii	Essential oil	50 µg/mL	Growth inhibition rate: 63.36 ± 6.66;	Elazab et al. (2021)
			Embryo inhibition: 0.18 to 6 mg/mL: 92.32% to 100%;	
			Larvicidal activity: 1.5 to 6 mg/mL: 100%;	
Toxocara spp.	Essential oil	6, 3, 1.5, 0.75, 0.37, 0.18 mg/mL; Embryo & Larvicidal activity: 1.5 to 6 mg/mL: 100%;	Capella (2017)	
Haemonchus contortus	Essential oil	Essential oil (eggs): 8, 4, 2, 1 mg/mL; Essential oil (adult nematodes): 0.5, 0.25, 0.125 mg/mL; Adult nematode mortality: 0.5 mg/mL: 50% after 8 h	Abidi et al. (2020)	
Haemonchus polygyrus	Essential oil in mice diet	5000 and 4000 mg/kg	Total worm reduction: 76.33 to 62.59%; Reduction of the number of eggs in the feces: 5000 mg/kg: 74%;	Abidi et al. (2020)

Figure 2. Genera of endoparasites most frequently found in *in vitro* and/or *in vitro* studies in the LILACS, PubMed, and Google Scholar databases from 2000 to 2021.

manipulation so that they are less toxic and more efficient and also because they have biological activities similar to allopathic medicines (Gadelha et al., 2013).
Table 3. Relationship of *Origanum vulgare* with parasites that have already been studied in *in vitro* and/or *in vivo* tests.

Parasite	Product	Concentration	Activity	Reference
Trypanosoma cruzi	Essential oil	For epimastigotes: 25 to 250 μg/mL	Inhibition of epimastigotes growth: 200 μg/mL: 50% and 200 μg/mL: 95%	Santoro et al. (2007a)
		For trypomastigotes: 25 to 400 μg/mL	Trypomastigote cell lysis: 200 μg/mL: ± 95%	
Cryptosporidium parvum	Essential oil	60 μg/mL	*In vitro* growth reduction: 55.6 ± 10.4%	Gaur et al. (2018)
Eimeria spp.	Essential oil in chicken diets	500 ppm	Fewer intestinal lesions and more weight gain	Mohiti-Asl & Ghanaatpanast-Rashki (2015)
Giardia lamblia	Hydroalcoholic extract	100 and 200 mg/mL per 120 min	Cyst viability: 100 mg/mL: 20% and 200 mg/mL: ± 5%	Davoodi & Abbasi-Maleki (2018)
Leishmania major	Essential oil	640 to 10 μg/mL	Increased leishmanicidal effects on *L. panamensis*	Sanchez-Suarez et al. (2013)
Leishmania braziliensis				
Leishmaniasis panamensis				
Haemonchus spp.	Dye	80 to 0.62 mg/mL	Hatchability inhibition: tincture of 80 to 20 mg/mL: 100%	Dias de Castro et al. (2013)
Trichostrongylus spp.	Hydroalcoholic extract (HAE)		HAE: 80 mg/mL: 96.7 ± 1.5% and 40 mg/mL: 80 ± 14.4%	
Oesophagostomum	Aqueous extract (AQE)	80 mg/mL: 49.8 ± 2.24%		
Toxocara spp.	Essential oil	6, 3.15, 0.75, 0.37, 0.18 mg/mL	Embryo inhibition: 6 to 0.18 mg/mL: 100 to 88.15%	
Haemonchus spp.	Essential oil	50, 12.5, 3.125, 0.195, 0.049 mg/mL	Embryo inhibition: 50 to 0.049 mg/mL: 100%	Štrbac et al. (2021)
Trichostrongylus spp.				
Teladorsagia spp.				
Chabertia spp.	Essential oil	10 μg/mL	Scholex viability: 22.3 ± 1.2% after 60 d	Persel et al. (2014)
Echinococcus granulosus				
Eimeria spp.	Supplementation in sheep and lamb diet	4 g/day sheep 2 g/day lambs	Oocyst reduction and helps with weight gain	Dudiko et al. (2018)
Ascaridia galli	Ethanol extract	50 mg/mL	% infectile eggs from day 10 to day 21: 100 to 61%	Villanueva et al. (2015)
Cooperia spp.	Essential oil	10000, 5000, 1000, 100, 10, and 1 ppm	Surviving larvae: 0% at 1000 ppm/day to 1.3 ± 1.3% at 1 ppm/day28	Galuppi et al. (2009)
Trichostrongylus spp.				
Ostertagia spp.				
Oesophagostomum spp.				
Haemonchus spp.				
Bunostomum spp.				
Nematodirus spp.				
Haemonchus contortus	Aqueous suspension in sheep diet	260 mg/kg	Reduction in parasite load: 64.9%	Munguía- Xóchichua et al. (2013)
Giardia lamblia	supplementation canine dog diet	100 g/animal/day	82.33% reduction in symptoms and parasite load	Mosquera Rodriguez (2016)
Echinococcus spp.	Microemulsion (MAE)	MAE: 10%	Protostrongylosis mortality rate: 100% after 15 min in all three concentrations	Soleimani et al. (2021)
	Microemulsion (MIE)	MIE: 0.6 to 1%		

Brazilian Journal of Veterinary Medicine, 44, e004722. DOI: 10.29374/2527-2179.bjvm004722
Antiparasitic treatment using herbs and spices: A review of the literature of the phytotherapy

Table 4. Relationship of *Rosmarinus officinalis* with parasites that have already been studied in *in vitro* and/or *in vivo* tests.

Parasite	Product	Concentration	Activity	Reference
Trypanosoma cruzi	Essential oil	50 and 100 μL/mL	Epimastigote inviability: OE 50 μL/mL 96.2% and 100 μL/mL 100%.	Rojas et al. (2010)
Acanthamoeba polyphaga	Essential oil	1, 2, and 4 mg/mL	Cell death: 2 and 4 mg/mL 100% in 144 h. 1 mg/mL 86% after 144 h. Change in trophozoite morphology	Anacarso et al. (2019)
Leishmania major	Essential oil	0.875, 1.75, 2.5, 5, and 10 μg/mL	Cellular alteration causing infeasibility.	Bouyahya et al. (2017)
Leishmania infantum	Essential oil	0.0625, 0.125, 0.25, 0.5, and 1 μg/mL	Mean macrophage infection rate: OE 0.125 μg/mL: 39.33 ± 6.02%.	Shokri et al. (2017)
Leishmania tropica	Essential oil	NE 0.0625 μg/mL	Embryo inhibition: 6 to 0.18 mg/mL: 70.52 to 68.45%. Larvicidal activity: 6 to 3 mg/mL: 97.97 to 95.13%.	Pinto et al. (2019)
Toxocara spp.	Essential oil	6, 3, 1.5, 0.75, 0.37, and 0.18 mg/mL	Embryo inhibition: 227.5 to 71 mg/mL: 100 to 97.4%.	
Haemonchus spp.	Essential oil	227.5, 113.7, 56.8, 28.4, 14.2, and 7.1 mg/mL	Inhibition of larval migration: 227.5 and 113.7 mg/mL: 74 and 70.1%.	
Ostertagia spp.	Essential oil	56.8 to 71 mg/mL	Embryo viability: 71% on day 7	Albani et al. (2014)
Trichostrongylus spp.	Essential oil	56.8 to 71 mg/mL	Reduced cell viability: 71% on day 7	Albani et al. (2014)
Echinococcus granulosus	Essential oil	10 μg/mL	Reduced cell viability: 71% on day 7	Albani et al. (2014)
Antiparasitic treatment using herbs and spices: A review of the literature of the phytotherapy

Table 5. Relationship of *Thymus vulgaris* with parasites that have already been studied in *in vitro* and/or *in vivo* tests.

Parasite	Product	Concentration	Activity	Reference
Trypanosoma cruzi	Essential oil	For epimastigotes: 25 to 250 μg/mL For trypomastigotes: 25 to 400 μg/mL	Growth inhibition: 200 μg/mL: 100%. Cell lysis: 100 μg/mL: 100%	Santoro et al. (2007a)
Trichinella spiralis	Alcoholic extract mice diet	500 and 1000 mg/kg	500 mg/kg: Decrease of adult worm in the intestine: 79.4%.	Attia et al. (2015)
Haemonchus contortus	Essential oil (EO)	EO (hatchability and motility): 50, 25, 12.5, 6.25, 3.125, 1.562, 0.781 mg/mL	Hatchability inhibition: 50 to 0.78 mg/mL: >94%. L3 larval motility inhibition: 50 to 0.78 mg/mL: >84%	Ferreira et al. (2016)
Caenorhabditis elegans	Essential oil	2, 3, and 4%	Dead adult nematodes: 2%, 80% in 48 h. Larval hatching: 2, 3, and 4%: >10%. Decreased adult motility at the concentrations tested.	
Haemonchus contortus	Essential oil	9.4, 4.7, 2.35, 1.17, 0.58, and 0.29 mg/mL	Embryo inhibition: 94 to 0.29 mg/mL: 100 to 77.6%. Developmental inhibition: 94 to 2.3 mg/mL: 100 to 65.68%. Larval migration inhibition: 9.4 to 0.117 mg/mL: 95.3 to 69.6%.	Castro et al. (2021a); Castro et al. (2021b)
Haemonchus spp.	Essential oil	50, 12.5, 3.125, 0.195, and 0.049 mg/mL	Embryo inhibition: 50 to 0.049 mg/mL: 100 to 98.5 ± 0.58%.	Štrbac et al. (2021)
Trichostrongylus spp.	Ethanol extract	4, 2, 1, and 0.5 mg/mL	Scolex viability: 35.3 ± 2.8% after 60 d	El-Sayed (2009)
Blastocystis hominis	Ethanolic extract	2500, 1500, 1000, and 500 μg/mL	Scox death: 2500 μg/mL: 100% after 6 days. Other concentrations: 100% after 7 days	Yones et al. (2011)
Toxocara vitulorum	Essential oil in rats’ diet	42.5 mg/kg	Decreased number of larvae in the organs of infected rats.	Amin & El-Kabany (2013)
Trichostrongylus spp.	Diluted in water with nor in lambs’ diets	0.3 g/kg	Decreased number of eggs in the feces of 37.5% of the animals on day 14	Cruz et al. (2017)
Eimeria stiedae	Essential oil in rabbits’ diet	500 mg/kg	Decrease in stool oocysts: 0% day 34	Abu El Ezz et al. (2020)
Giardia lamblia	Methanolic extract	300 μg/mL	In vitro growth inhibition: 95.86%	
Trichomonas vaginalis	Methanolic extract	300 μg/mL	In vitro growth inhibition: 95.42%	
Conclusions

All the plants investigated in this review have antiparasitic activity against the endoparasites tested, with *Origanum vulgare* L. (oregano) and *Thymus vulgaris* L. (thyme) standing out as the plants that have been studied the most. *Cuminum cyminum* L. (cumin) was the plant with the least number of evaluations in studies regarding antiparasitic action. The endoparasite genera most studied were *Haemonchus*, *Leishmania*, *Trichostrongylus*, and *Toxocara*, respectively. The plants evaluated in the identified studies showed action at different stages of parasite development, indicating the potential of these molecules for their use as phytotherapy.

Acknowledgements

Universidade Federal de Pelotas

Ethics statement

Not apply

Financial support

ALS and CMC - Received scholarship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

GAC, MQM, WDST and NBP - Received scholarship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

MEAB - none.

Conflict of interests

ALS, MEAB, GAC, MQM, WDST, CMC and NBP - No conflict of interest

Authors' contributions

ALS - Development of methodology; preparation and writing the initial draft. MEAB, GAC, MQM, WDST, CMC and NBP - Writing, Review and Editing manuscript.

Availability of complementary results

The study was carried out at Laboratório de Helmintologia, Departamento de Microbiologia e Parasitologia do Instituto de Ciências Biológicas, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil.

References

Abidi, A., Sebai, E., Dhibi, M., Darghouth, M. A., & Akkari, H. (2020). Chemical analyses and evaluation of the anthelmintic effects of *Origanum majorana* essential oil, *in vitro* and *in vivo* studies. *Veterinarni Medicina*, 65(11), 495-505. http://dx.doi.org/10.17221/115/2019-VETMED.

Abu El Ezz, N. M. T., Aboelsoued, D., Hassan, S. E., Abdel Megeed, K. N., & El-Metenawy, T. M. (2020). Therapeutic effect of *Moringa oleifera* and *Thymus vulgaris* oils against hepatic coccidiosis in experimentally infected rabbits. *Tropical Biomedicine*, 37(4), 1018-1028. http://dx.doi.org/10.47665/tb.37.4.1018. PMid:33612754.

Albani, C. M., Denegri, G. M., Elissondo, M. C. (2014). Effect of different terpene-containing essential oils on the proliferation of *Echinococcus granulosus* larval cells. *Interdisciplinary Perspectives on Infectious Diseases*, 2014, 746931. https://doi.org/10.1155/2014/746931.

Al-Snafi, A. E. (2016). The pharmacological activities of *Cuminum cyminum* - A review. *Journal of Pharmaceutics*, 6(6), 46-65.

Amin, M. M., & El-Kabany, H. (2013). Evaluation of protective and treatment of Thyme (*Thymus vulgaris*) oil on *Toxocara vitulorum* infected rats. *Journal of Radiation Research and Applied Sciences*, 6(1), 209-232.

Anacarso, I., Sabia, C., Niederhäusern, S., Iseppi, R., Condò, C., Bondi, M., & Messi, P. (2019). *In vitro* evaluation of the amoebicidal activity of rosemary (*Rosmarinus officinalis* L.) and cloves (*Syzygium aromaticum* L. Merr. & Perry) essential oils against *Acanthamoeba polyphaga* trophozoites. *Natural Product Research*, 33(4), 606-611. http://dx.doi.org/10.1080/14786419.2017.1399390. PMid: 29117746.
Antiparasitic treatment using herbs and spices: A review of the literature of the phytotherapy

Andrade, E. C., Leite, I. C. G., Rodrigues, V. O., & Cesca, M. G. (2010). Parasitoses intestinais: Uma revisão sobre seus aspectos sociais, epidemiológicos, clínicos e terapêuticos. Revista de Atenção Primária da Saúde, 12(2), 231-240.

Andrade, I. G. C., Alexandre, L. D. C., Oliveira, A. F. B., Carmo, I. F., & Bieski, I. G. C. (2018). Etnofarmacologia e etnobotânica de plantas medicinais com ação antiparasitária. Revista Saúde Viva Multidisciplinar da AJES, 11(1), 48-71.

Atta, R. A., Mahmoud, A. E., Farrag, H. M., Makhoul, R., Mohamed, M. E., & Ibraheim, Z. (2015). Effect of myrrh and thyme on Trichinella spiralis enteral and parenteral phases with inducible nitric oxide expression in mice. Memorias do Instituto Oswaldo Cruz, 110(8), 1035-1041. http://dx.doi.org/10.1590/0074-02760150295. PMid:26676322.

Barata, G. (2003). Medicina popular obtém reconhecimento científico. Ciência Cultura, 55(1), 12.

Bouyahya, A., Et-Touys, A., Balri, Y., Talbaui, A., Fellah, H., Abrini, J., & Dakka, N. (2017). Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antibacterial and antioxidant activities. Microbial Pathogenesis, 111, 41-49. http://dx.doi.org/10.1016/j.micpath.2017.08.015. PMid:28821401.

Brasil. Ministério da Saúde. (2006). Política Nacional de Plantas Medicinais e Fitoterápicos. Brasília: Ministério da Saúde.

Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. (2010). Dispõe sobre a notificação de drogas vegetais junto à Agência Nacional de Vigilância Sanitária (ANVISA) e dá outras providências (Resolução - RDC nº 10, de 9 de março de 2010). Diário Oficial da República Federativa do Brasil.

Castro, L. M., Pinto, N. B., Moura, M. Q., Villela, M. M., Capella, G. A., Freitag, R. A., & Berne, M. E. A. (2021a). Antihelminthic action of the Anethum graveolens essential oil on Haemonchus contortus eggs and larvae. Brazilian Journal of Biology = Revista Brasileira de Biologia, 81(1), 183-188. http://dx.doi.org/10.1590/1519-6984.225856. PMid:32074174.

Castro, L. M., Pinto, N. B., de Moura, M. Q., Freitag, R. A., de Almeida Capella, G., Motta, T. O., Villela, M. M., & Berne, M. E. A. (2021b). Atividade in vitro do óleo essencial de Cuminum cyminum contra Haemonchus contortus de ovinos. Brazilian Journal of Development Voluntariosa, 7(5), 44079-44091. https://doi.org/10.34117/bjdov7.5.29188.

Cruz, C. A., Hortúa, L. C. L., Moreno, G. F., & González, A. C. P. (2017). Evaluación del efecto de Azadirachta indica y Thymus vulgaris sobre el recuento de huevos de helmintos y coccidias en cordeiros. Revista Electrônica da Saúde, 18(9), 1-13.

Daugan, E. M. A., & Abdelrahman, A. (2017). Medicinal and Functional Values of Thyme (Thymus vulgaris L.) Herb. Journal of Applied Biology and Biotechnology, 5(2), 17-22.

Davoodi, J., & Abbasi-Maleki, S. (2018). Effect of Origanum vulgare hydroalcoholic extract on Giardia lamblia cysts compared with metronidazole in vitro. Iranian Journal of Parasitology, 13(3), 486-492. PMid:30483342.

Dias de Castro, L., Luciana, L., Madrid, I. M., Aguier, C. L. G., Castro, L. M., Cleff, M. B., Berne, M. E. A., & Leite, F. P. L. (2013). Potencial ovicida de orégano (Origanum vulgare L.) em nematódeos gastrintestinais de bovinos. Ciência Animal Brasileira (Online), 14(4), 508-513. https://doi.org/10.5216/cabv14i4.22080.

Dudko, P., Junkuszew, A., Bojar, W., Miłerski, M., Szczepaniak, K., Le Scouarne, J., Schmidová, J., Tomczuk, K., & Grzybek, M. (2018). Effect of dietary supplementation with preparation containing the blend of essential oil from Origanum vulgare (Lamiaceae) and Citrus spp. Italian Journal of Animal Science, 17(1), 57-65. http://dx.doi.org/10.1080/182805X.2017.1346695.

Elazab, S. T., Soliman, A. F., & Nishikawa, Y. (2021). Effect of some plant extracts from Egyptian herbal plants against Toxoplasma gondii tachyzoites in vitro. The Journal of Veterinary Medical Science, 83(1), 100-107. http://dx.doi.org/10.1292/jvms.20-0458. PMid:33268605.

El-Sayed, N. M. (2009). Evaluation of the in vitro effects of ethanol extracts of Ocimum basilicum (sweet basil) and Thymus vulgaris (thyme) for anti-Blastocystis hominis activity. Egyptian Journal of Veterinary Medicine, 30(2), 1229-1243.

Elshafie, H. S., Armentano, M. F., Carmosino, M., Bufo, S. A., De Feo, V., & Camele, I. (2017). Cytotoxic activity of Origanum Vulgare L. on Hepatocellular Carcinoma Cell Line HepG2 and evaluation of its biological activity. Molecules (Basel, Switzerland), 22(9), 1435. http://dx.doi.org/10.3390/molecules22091435. PMid:28867805.

Estancial, C. S., & Marini, D. C. (2014). Avaliação da frequência de parasitoide intestinal em indivíduos atendidos em um laboratório de análises clínicas na região central de Mogi Guaçu. Foco, 5(7), 31-40. https://www.revistafo.com.br/index.php/RevistaFico/article/view/55/53.

Fenalti, J. M., Baceceaga, B., Santos, T. M., Santos, P. C., & Scaini, C. J. (2016). Diversidade das plantas brasileiras com potencial anti-helmíntico. Vittalle, 28(1), 39-48. https://periodicos.furg.br/vittalle/article/view/6188.

Ferreira, L. E., Benincasa, B. I., Fachin, A. L., França, S. C., Contini, S. S. H. T., Chagas, A. C. S., & Beleboni, R. O. (2016). Thymus vulgaris L. essential oil and its main component thymol: Anthelmintic effects against Haemonchus contortus from sheep. Veterinary parasitology, 228, 70-76. http://dx.doi.org/10.1016/j.vetpar.2016.08.011. PMid:27692335.

Fortes, F. S., & Molento, M. B. (2013). Resistência anti-helmíntica em nematóides gastrintestinais de pequenos ruminantes: Avanços e limitações para seu diagnóstico. Pesquisa Veterinária Brasileira, 33(12), 1391-1402. http://dx.doi.org/10.1590/S0100-736X2013001200001.
Gadela, C. S., Pinto Junior, V. M., Bezerra, K. K. S., Pereira, B. B. M., & Mracajá, P. B. (2013). Estudo bibliográfico sobre o uso das plantas medicinais e fitoterápicos no Brasil. Revista Verde, 8(5), 208-212. https://www.gvaa.com.br/revista/index.php/RVADS/article/view/3577/3199

Galuppi, R., Valente, M., & Tampieri, M. P. (2009). Development of an in vitro test to compare natural and chemical products effectiveness against L3 gastrointestinal strongylids of sheep. Parasitologia, 51, 47-56.

Gaur, S., Kuhlenschmidt, T. B., Kuhlenschmidt, M. S., & Andrade, J. E. (2018). Effect of oregano essential oil and carvacrol on Cryptosporidium parvum infectivity in HCT-8 cells. Parasitology international, 67(2), 170-175. http://dx.doi.org/10.1016/j.parint.2017.01.001. PMid:29155281.

Giordani, C., Matos, C. B., Gutterres, K. A., Silva, C. C., Santin, R., Schuch, L. F. D., & Cleff, M. B. (2016). Plantas com potencial medicinal e tóxico em comunidade atendida pelo Ambulatório Veterinário-UFPel. Revista Brasileira de Ciência Veterinária, 23(4), 124-132. http://dx.doi.org/10.4322/rbcv.2016.043.

Hotez, P. J., Molyneux, D. H., Fenwick, A., Ottesen, E., Ehrlich Sachs, S., & Sachs, J. D. (2006). Incorporating a rapid-impact package for neglected tropical diseases with Programs for HIV/AIDS, Tuberculosis, and Malaria. PLoS Medicine, 3(5), e102. http://dx.doi.org/10.1371/journal.pmed.0030102. PMid:16435908.

Marinho, M. L., Alves, M. S., Rodrigues, M. L. C., Rotondano, T. E. F., Vidal, I. F., Silva, W. W., & Athayde, A. C. R. (2007). A utilização de plantas medicinais em medicina veterinária: Um resgate do saber popular. Revista Brasileira de Plantas Medicinais, 9(3), 64-69. https://www.ibb.unesp.br/Home/Departamentos/Botanica/RBPM-RevistaBrasileiradePlantasMedicinais/artigo9_v9_pn3.pdf.

Melo, C. R., Lira, A. B., Alves, M. F., & Lima, C. M. B. L. (2017). O uso de plantas medicinais para doenças parasitárias. Acta Brasiliensis, 4(1), 28-32. http://dx.doi.org/10.22571/Actabra120177.

Mohiti-Asli, M., & Ghanbar-Parast-Rashti, M. (2015). Dietary oregano essential oil alleviates experimentally induced coccidiosis in broilers. Preventive Veterinary Medicine, 120(2), 195-202. http://dx.doi.org/10.1016/j.prevetmed.2015.03.014. PMid:25864115.

Mosquera Rodríguez, A. S. (2016). Aplicación de métodos alternativos para el control de Giardia spp. en caninos (Canis familiaris) [Proyecto final de curso]. Universidad Técnica de Ambato. https://repositorio.uta.edu.ec/handle/123456789/23410.

Munguía-Xochichua, J. A., Valenzuela-Medrano, W., Leyva-Corona, J. C., Morales-Pablos, M. I., & Figueroa-Castillo, J. A. (2013). Potential of the Oregano as natural alternative to control Haemonchus contortus in hair ovinos. Revista Latino-Americana de Recursos Naturales, 9(1), 150-154. https://itson.mx/publicaciones/rlnr/Documents/v9-n1-18-potencial-del-oregano-como-alternativa-natural-para-controlar-haemonchus-contortus-en-ovinos-de-pelo.pdf.

Nery, P. S., Duarte, E. R., & Martins, E. R. (2009). Eficácia de plantas para o controle de nematóides gastrintestinais de pequenos ruminantes: Revisão de estudos publicados. Revista Brasileira de Plantas Medicinais, 11(3), 330-338. http://dx.doi.org/10.1590/S1516-057220090003000016.

Oniga, I., Pușcaș, C., Slăghi-Dumitrescu, R., Olah, N. K., Sevastre, B., Marica, R., Marcus, I., Sevastre-Bergan, A. C., Benedic, D., Pop, C. E., & Hangaru, D. (2018). Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Molecules (Basel, Switzerland), 23(8), E2077. http://dx.doi.org/10.3390/molecules23082077. PMid:31026246.

Pensel, P. E., Maggiore, M. A., Gende, L. B., Eguras, M. J., Denegri, M. G., & Elissondo, M. C. (2014). Eficácia de óleos essenciais de Thymus vulgaris e Origanum vulgare em Echinococcus granulosus. Interdisciplinary Perspectives on Infectious Diseases, 2014, 693289. http://dx.doi.org/10.1155/2014/693289. PMid:25180033.

Pinto, N. B., Castro, L. M., Azambuja, R. H. M., Capella, G. A., Moura, M. Q., Terto, W. D., Freitag, R. A., Keske, S. T., Villela, M. M., Cleff, M. B., & Leite, F. P. L. (2019). Ovicidal and larvicidal potential of Rosmarinus officinalis to control gastrointestinal nematodes of sheep. Revista Brasileira de Parasitologia Veterinaria = Brazilian Journal of Veterinary Parasitology: Órgano Oficial do Colegio Brasileiro de Parasitologia Veterinaria, 28(4), 807-811. http://dx.doi.org/10.1590/s1984-2961201778. PMid:31483032.

Prerna, & Vasudeva, N. (2015). Origanum majorana L.- Phyto-pharmacological review. Indian Journal of Natural Products and Resources, 6(4), 261-267.

Rojas, J., Solís, H., & Palacios, O. (2010). Evaluación in vitro de la actividad anti Trypanosoma cruzi de aceites esenciales de diez plantas medicinales. Anales de la Facultad de Medicina, 71(3), 161165. http://www.scielo.org.pe/scielo.php?script=sci_artid&pid=S1025-5583201000000004&lng=es&nrm=iso

Sanchez-Suarez, J., Riveros, I., & Delgado, G. (2013). Evaluation of the leishmanicidal and cytotoxic potential of essential oils derived from ten colombian plants. Iranian Journal of Parasitology, 8(1), 129-136. PMid:23682270.

Santoro, G. F., Cardoso, M. G., Guimarães, L. G., Mendonça, L. Z., & Soares, M. J. (2007a). Trypanosoma cruzi: activity of essential oils from Achillea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on epimastigotes and trypomastigotes. Experimental Parasitology, 116(3), 283-290. http://dx.doi.org/10.1016/j.exppara.2007.01.018. PMid:17349626.

Santoro, G. F., das Graças Cardoso, M., Guimarães, L. G., Salgado, A. P., Menna-Barreto, R. F., & Soares, M. J. (2007b). Effect of oregano (Origanum vulgare L) and thyme (Thymus vulgaris L) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitology Research, 100(4), 783-790. http://dx.doi.org/10.1007/s00436-006-0326-5. PMid:17024354.
Antiparasitic treatment using herbs and spices: A review of the literature of the phytotherapy

Shokri, A., Saeedi, M., Fakhar, M., Morteza-Semnani, K., Keighobadi, M., Hosseini Teshnizi, S., Kelidari, H. R., & Sadjadi, S. (2017). Antileishmanial Activity of Lavandula angustifolia and Rosmarinus Officinalis Essential Oils and Nano-emulsions on Leishmania major (MRHO/IR/75/ER). *Iranian journal of parasitology*, 12(4), 622-631. PMid:29317888.

Silva, M. A. M. P., Zehetmeyr, F. K., Pereira, K. M., Pacheco, B. S., Freitag, R. A., Pinto, N. B., Machado, R. H., Villarreal, J. P. V., Hubner, S. O., Berne, M. E. A., & Nascente, P. S. (2020). Ovicidal in vitro activity of the fixed oil of Helianthus annuus L. and the essential oil of Cuminum cyminum L. against Fasciola hepatica (Linnaeus, 1758). *Experimental Parasitology*, 218, 107984. http://dx.doi.org/10.1016/j.exppara.2020.107984. PMID: 32871143.

Silva, N. C. S., Vitor, A. M., Bessa, D. H. S., & Barros, R. M. S. (2017). A utilização de plantas medicinais e fitoterápicos em prol da saúde. *Unica Cadernos Acadêmicos*, 3(3), 1-5. http://co.unicaen.com.br:89/periodicos/index.php/UNICA/article/view/56

Soleimani, E., Sarmadian, H., Arjomand Zadegan, M., Ghasemikhah, R., & Taher Ahmadi, H. (2021). Toxicity and antiparasitic efficacy of essential oils: Analyses of the biochemical compositions and potencies. *Iranian Journal of Toxicology*, 15(1), 1-8. http://dx.doi.org/10.32598/IJT.15.1.7271.

Štrbac, F., Bosco, A., Amadesi, A., Rinaldi, L., Stojanovic, D., Simin, N., Orcic, D., Pusic, I., Krnjajic, S., & Ratajac, R. (2021). Ovicidal potential of five different essential oils to control gastrointestinal nematodes of sheep. *Pakistan Veterinary Journal*, 41(3), 353-358. http://dx.doi.org/10.29261/pakveti/2021.026.

Taufner, C. F., Ferraço, E. B., Ribeiro, L. F. (2006). Uso de plantas medicinais como alternativa fitoterápica nas unidades de saúde pública de Santa Teresa e Marilândia, ES. *Natureza on-line*, 4(1), 30-39. http://www.naturezaonline.com.br/natureza/conteudo/pdf/medicinais_s_t_mari.pdf

Villanueva, A. G. P., Hurtada, J. M. U. P. A., & Magpanty, V. A. (2015). Efficacy of garlic (*Allium sativum* L.), oregano (*Origanum vulgare* L.) and turmeric (*Curcuma longa* L.) against larval development of Ascaridia galli eggs isolated from Philippine native chicken. *Philippine Journal of Veterinary and Animal Science*, 41(1), 57-64. https://ejournals.ph/article.php?id=9784.

Yones, D. A., Taher, G. A., & Ibrahim, Z. Z. (2011). In vitro effects of some herbs used in Egyptian traditional medicine on viability of protoscolices of hydatid cysts. *The Korean journal of parasitology*, 49(3), 255-263. http://dx.doi.org/10.3347/kjp.2011.49.3.255. PMid:22072825.

Zago, L. M. S. (2018). Vinte e dois anos de pesquisa sobre plantas medicinais. Uma análise cienciométrica. *Revista Técnica*, 3(1), 157-173.