Semi-clathratic impact of tetrabutylammonium hydroxide on the carbon dioxide hydrates

To cite this article: Khor Siak Foo et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 458 012060

View the article online for updates and enhancements.
Semi-clathratic impact of tetrabutylammonium hydroxide on the carbon dioxide hydrates

Khor Siak Foo1,2, Muhammad Saad Khan2,3, Bhajan Lal2,3, Suriati Sufian2

1Murphy Sarawak Oil Co., Ltd., Tower 2, Petronas Twin Towers, Kuala Lumpur City Centre, 50088, Kuala Lumpur.
2Chemical Engineering Department, Universiti Teknologi of PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
3CO\textsubscript{2} Research Centre (CO\textsubscript{2}RES), Bandar Seri Iskandar, 32610, Perak, Malaysia.

*khor_siak_foo@murphyoilcorp.com; 2khansaaad@gmail.com; 3bhajan.lal@utp.edu.my

Abstract. In the present experimental study, the phase behaviour of Tetrabutylammonium hydroxide (TBAOH) on Carbon dioxide (CO\textsubscript{2}) hydrates is evaluated via the T-cycle method. All the experiments performed in high-pressure hydrate reactor for various concentrations of TBAOH (1, 5 and 10 wt\%) at moderate pressure and temperature ranges of 2.0-4.50 MPa and 276.0-285.0 K, respectively. The hydrate dissociation enthalpy (\(\Delta H_{\text{diss}}\)) is also calculated for all the studied systems via Clausius Clapeyron equation. Results revealed that the TBAOH able to shift the hydrate liquid vapour equilibrium (HL\textsubscript{w}VE) curve towards higher temperature and lower pressure regions hence provide the promotional impact on all the studied concentrations. 10 wt\% TBAOH able to heighten hydrate promotional impact (\(\Delta T\)) up to 1.15 K. Additionally, enthalpy (\(\Delta H_{\text{diss}}\)) data revealed that the promotional impact of TBAOH attributed due to the semi-clathratic nature of TBAOH. Thus, it can be concluded that the studied TBAOH in the present work has the immense potential for the industrial applications like natural gas separation and gas storage.

1. Introduction

Gas hydrates are non-stoichiometric crystal-like inclusion compounds formed under thermodynamically favourable conditions and stabilized via hydrogen bonding network of water. In gas hydrates, the water molecules are acted as host molecule while smaller molecules gases like methane (CH\textsubscript{4}), ethane (C\textsubscript{2}H\textsubscript{6}), Carbon dioxide (CO\textsubscript{2}) and others are entrapped (as a guest molecule) within the hydrate structures. Usually, there are three types of hydrate structures are often found which known as structure I (sI), structure II (sII) and structure H (sH) hydrates [1]. The type of hydrate structure mainly depends upon the presence of guest molecules together with thermodynamic condition accounted for hydrate formation.

Earlier, gas hydrate often saw as a perennial problem in flow assurance. The mitigation of gas hydrates accounted for almost 70 percent of all the flow assurance problems which leads towards the spending of 100s of Million dollars ($) without any permanent solutions [2]. Therefore, much research on gas hydrates focused on mitigation of gas hydrate via conventional [3] and unconventional inhibitors [2,4–6]. The conventional thermodynamic hydrate inhibitors include alcohols like methanol, ethylene...
glycol together with conventional salts for instance sodium chloride (NaCl) and potassium chloride (KCl) [7]. The unconventional inhibitors include various novel chemicals that possess relatively superior environmentally friendly properties especially lower vapour pressure. The prime examples are amino acids [4] and ionic liquids [4,8–10].

Recently, researchers receiving more attraction on developing novel hydrate based technologies, applicable to the energy and environmental fields. Since hydrate formation is the tedious process, which involves high pressure, low temperature alongside lower rate of hydrate formations that causes hindrances for their potential applications. Therefore, for the numerous applications of gas hydrates, thermodynamic gas hydrate promoters (THP) are inserted to decrease the equilibrium hydrate formation pressure and to increase the hydrate formation temperatures [11]. Shahnazar and Hasan [12] intensely reviewed the formation studies of gas hydrate promoters to evaluate the emergence of the novel applications of gas hydrate. Energy recovery, gas separation gas storage and transportation alongside seawater desalination are the potentials applications which triggered gas hydrate to be in the continual research during recent years.

Ammonium based hydrate promoters take up an essential part of the formation of clathrate and semi-clathrate hydrate, for instance, tetra-n-alkyl ammonium salts formed some unusual hydrate structures even at atmospheric pressure. Contrasting from clathrate hydrates where water atoms form hydrate cages, and small guest molecules like CH₄ or CO₂ entrapped inside the hydrate lattice structure. In semi-clathrate hydrates, the anion of halide uproots the water particle in the system, shaping Hydrogen bond with water molecules, then the tetra-n-alkylammonium cation also participated in hydrate crystalline structure [13].

Initially, Karimi et al. [14] thermodynamically evaluated the tetrabutylammonium hydroxide (TBAOH) as hydrogen (H₂) hydrate promoter for the storage of hydrogen gas. Results revealed that TBAOH could shift HLₜVE boundary towards higher temperature and pressure regions around 0-40 MPa pressures. They further reported that the promotional impact of TBAOH found to be pressure dependent as the pressure increased the promotional impact also found higher due to more hydrate enthalpation. Similar hydrate promotional behaviour was also observed by the Su et al. [15] with CH₄ gas. TBAOH was able to promote CH₄ hydrate at higher-pressure conditions (4.46–16.05 MPa).

Previously, Nashed et al. [16] reported the physical-chemical properties of TBAOH; they further reported that in the presence of the TBAOH, the gas uptake of CO₂ gas significantly enhanced compared to deionized water. Recently, Khan et al. [17,18], evaluated the impact of alkyl chain on the AILs and reported that TBAOH able to promote hydrate formation in CO₂ and CH₄ enrich hydrate systems.

Therefore, the focus of this study is to report the impact of TBAOH on the HLₜVE boundaries of CO₂ hydrates at different concentrations (1, 5 and 10 wt%) for the first time. The experiments are performed at the moderate pressure and temperature range of 277 K-286 K and 2.0 MPa - 4.5 K respectively. The average hydrate promotional temperature (∆T) values of all the studied systems are also reported. The Clausius Clapeyron equation is employed to determine the enthalpy of hydrate dissociation (∆Hₜ₅₀) for all the studied systems. Also, an attempt is also made to define the hydrate promotional mechanism of TBAOH in the presence of CO₂ hydrates.

2. Methodology

2.1. Materials
The table 1 provide the details of the materials used in this work. The all chemicals are employed without any further purification. The gravimetrically analytical balance is used for all the sample preparations.

2.2. Details of the Experimental Apparatus and Method
The high-pressure hydrate reactor is used in this study. The details of the experimental setup and methods can be found elsewhere [19,20]. The HLₜVE data of pure CO₂ + H₂O and CO₂ + TBAOH + H₂O hydrate systems are measured via the isochoric T-cycle with step heating method. The complete details of the experimental method can also be found in others places [1,4,21,22].
Table 1. Materials used for this gas hydrates study.

No	Chemical Name	Symbol	Purity	Chemical Structure
1	Carbon dioxide	CO₂	99.95 mole %	O=C=O
2	Water	H₂O	Deionized	
3	Tetrabutylammonium hydroxide	TBAOH	40 wt% aqueous solution	![Chemical Structure](image)

2.3. HLwVE data and Enthalpy (ΔH_{diss}) Analysis

In this study, the average promotional temperature (ΔT) is calculated via Equation 1 determined by Xia and co-workers [23].

\[
\Delta T = \frac{1}{n} \sum_{i=1}^{n} \left(T_{0,p_i} - T_{1,p_i} \right)
\]

where, \(T_{0,p_i} \) and \(T_{1,p_i} \) represents the hydrate equilibrium temperatures of CO₂ gas for deionized water and an aqueous solution of TBAOH respectively. The values of both dissociation temperatures attained at the uniform pressure \(p_i \), and \(n \) denotes the number of considered pressure points. The dissociation enthalpies (ΔH_{diss}), of gas hydrates, are obtained through the Clausius Clapeyron equation (see Equation 2) which also used in preceding studies [4,24–26].

\[
\frac{\partial \ln P}{\partial \frac{1}{T}} = -\frac{\Delta H_{diss}}{R}
\]

where \(T \) and \(P \) are the equilibrium temperature and pressure, \(R \) denotes the universal gas constant, \(z \) represents the compressibility factor of CO₂ gas (calculated via Peng Robinson Equation of state), and \(\Delta H_{diss} \) represents the enthalpy of CO₂ hydrates for all the studied systems.

3. Results and Discussions

The experimental characterization and analysis of CO₂ hydrate in the presence of TBAOH is presented in this section.

3.1. HLwVE Analysis of CO₂+TBAOH+H₂O hydrates

As mentioned afores very inadequate data offered on the thermodynamic promotional impact of ILs on CO₂ hydrate systems[5]; most of the system dealt with hydrate inhibition impacts [5,27]. The phase behaviour of the various concentrations (1, 5 and 10 wt%) of CO₂ + TBAOH + H₂O system is presented in figure 1.

The acquired results expose that all the studied concentrations of TBAOH can enhance the CO₂ hydrate equilibrium curves to a higher temperature and lower pressure regions, which reveals the thermodynamic promotional impact. It can be evident from the results that the hydrate promotional influence is composition-dependent. As the quantity of TBAOH increasing from 1 – 10 wt%, the promotional impact is also increased (see figure 1). The prior ILs studies revealed that shorter alkyl chain ILs (like TMAOH, TMACl, TEAOH, TEAI and TPrAOH) were performed as hydrate inhibitors [20,21,24]. The hydrate promotional behaviour of TBAOH is observed perhaps attributed due to the longer chain of AIL. It should be noted that this promotional impact might cause due to the
semiclathratic nature of TBAOH, which is evaluated in next section (see section 3.2). For further quantifying the hydrate promotional impact, the ΔT values of different concentrations of TBAOH are depicted in figure 2. For different concentrations of CO$_2$ + TBAOH + H$_2$O systems; 1 wt% showed the very less ΔT value of 0.04 K, while higher concentrations of 5 and 10 wt% are found to be enhanced the ΔT values up to 0.37 K and 1.15 K, respectively.

Figure 1. HL$_w$VE data for 1 wt%, 5 wt% and 10 wt% concentrations of TBAOH.

![Figure 1](image1.jpg)

Figure 2. Average promotional temperature (ΔT) for different concentrations (1, 5 and 10 wt%) of CO$_2$ + TBAOH + H$_2$O systems.

![Figure 2](image2.jpg)

3.2. Enthalpy of dissociation (ΔH_{diss}) of CO$_2$+TBAOH+H$_2$O hydrates

To investigate the semi-clathratric influence of TBAOH on the cage occupancy, the Clausius Clapeyron equation is used to calculate the ΔH_{diss} of CO$_2$ hydrates in the presence and absence of TBAOH. The calculated ΔH_{diss} of CO$_2$+TBAOH + H$_2$O systems are presented in table 2.

The average ΔH_{diss} of H$_2$O + CO$_2$ is 64.73 kJ/mol lies within the range of CO$_2$ hydrate enthalpy data which means structure I hydrate formed [3]. Referring to the table 2, it can be observed that the enthalpies of all the studied TBAOH + CO$_2$ + H$_2$O systems appear very different to the pure CO$_2$ hydrate. This behaviour proposes that the presence of TBAOH have a substantial impact on the ΔH_{diss} of the system and therefore participate in the CO$_2$ hydrate structure and cages occupancy. Hence, semiclathrate impact of TBAOH found on CO$_2$ hydrate structure which is in line with the preliminary data.
The enthalpy results further rationalize the promotional influence of TBAOH, which predominantly comes owing to higher alkyl chain together with its semi-clathrate effect. The probable mechanism of semi-clathrate nature of TBAOH further underpinning via the structural representation of TBAOH as observed in figure 3.

Table 2. Calculated molar enthalpies of hydrate dissociation, ΔH_{diss} (kJ/mol) of CO$_2$ hydrate in the presence of CO$_2$ + TBAOH + H$_2$O solutions

Pressure (MPa)	TBAOH concentration in the solution			
	0 wt%	1 wt%	5 wt%	10 wt%
4.0	57.481	59.664	62.538	63.648
3.5	61.071	63.647	66.521	68.078
3.0	65.052	66.807	70.390	71.842
2.5	67.655	70.527	74.226	75.516
2.0	72.435	74.575	77.902	79.131
Overall	64.739	67.044	70.315	71.643

Figure 3. The graphical representation of TBAOH molecule in the semi-clathrate structure.

4. Conclusions
In this work, the HL$_w$VE measurement for CO$_2$ + TBAOH + H$_2$O is reported for different concentrations (1, 5 and 10 wt%). The attained results revealed that the occurrence of TBAOH increases the HL$_w$VE phase boundary towards higher temperature and lower pressure regions. The promotional impact of TBAOH seems to be concentration dependent since 10 wt% can shift the ΔF value up to 1.15K. The hydrate promotional impact of TBAOH found perhaps attributed due to the presence of large cation (TBA$^+$) which induce semi-cathartic behaviour. Furthermore, the molar enthalpies of dissociation for the CO$_2$ + TBAOH + H$_2$O hydrate systems suggested that TBAOH actively participated in the hydrate crystalline structure and its impacts on the hydrate promotion caused due to its semi-clathrate nature. Therefore, the outcome of this study would highlight the importance of TBAOH for designing the hydrate based technological applications such as hydrate-based desalination of saline water, storage of natural gas and designing of separation processes for gas phase separations.

Acknowledgments
Authors wishing to acknowledge the chemical engineering department, Universiti Teknologi PETRONAS for providing laboratory facilities throughout the study. Authors also would like to thanks, Universiti Teknologi PETRONAS for providing financial support during this project.
References

[1] Khan M S, Lal B, Partoon B, Keong L K, Bustam M A and Mellon N B 2016 Experimental Evaluation of a Novel Thermodynamic Inhibitor for CH$_4$ and CO$_2$ Hydrates Procedia Eng. 148 pp 932–40

[2] Xiao C and Adidharma H 2009 Dual function inhibitors for methane hydrate Chem. Eng. Sci. 64 pp 1522–27

[3] Sloan E D and Koh C A 2008 Clathrate Hydrates of Natural Gases vol 87, ed Third (Boca Raton; London; New york: CRC Press Taylor & Francis)

[4] Bavoh C B, Nashed O, Saad Khan M, Partoon B, Lal B and Sharif A M 2018 The Impact of Amino Acids on Methane Hydrate Phase Boundary and Formation kinetics J. Chem. Thermodyn. 117 pp 48–53

[5] Tariq M, Rooney D, Othman E, Aparicio S, Attilhan M and Khraisheh M 2014 Gas hydrate inhibition: A review of the role of ionic liquids Ind. Eng. Chem. Res. 53 pp 17855–68

[6] Bavoh C B, Lal B, Nashed O, Khan M S, Lau K K and Bustam M A 2016 COSMO-RS: An ionic liquid prescreening tool for gas hydrate mitigation Chinese J. Chem. Eng. 24 pp 1619–24

[7] Sakhivel S, Chhotaray P K, Velusamy S, Gardas R L and Sangwai J S 2015 Synergistic effect of lactam, ammonium and hydroxyl ammonium based ionic liquids with and without NaCl on the surface phenomena of crude oil/water system Fluid Phase Equilib. 398 pp 80–97

[8] Idris A, Ballo O and Dalmazzone D 2014 Hydrate phase equilibria data and hydrogen storage capacity measurement of the system H$_2$+tetrabutylammonium hydroxide+H$_2$O Fluid Phase Equilib. 361 pp 175–80

[9] Su Y, Searles D J and Wang L 2017 Semiclathrate hydrates of methane + tetraalkylammonium hydroxides Fuel 203 pp 618–26

[10] Khan M S, Lal B, Keong L K and Sabil K M 2018 Experimental evaluation and thermodynamic modelling of AILs alkyl chain elongation on methane riched gas hydrate system Fluid Phase Equilib. 473 pp 300–309

[11] Khan M S, Surin C B, Partoon B, Nashed O, Lal B and Mellon N B 2018 Impacts of ammonium based ionic liquids alkyl chain on thermodynamic hydrate inhibition for carbon dioxide rich binary gas J. Mol. Liq. 261 pp 283–90

[12] Khan M S, Partoon B, Bavoh C B, Lal B and Mellon N B 2017 Influence of
tetramethylammonium hydroxide on methane and carbon dioxide gas hydrate phase equilibrium conditions \textit{Fluid Phase Equilib.} 440 pp 1–8

[21] Khan M S, Bavoh C B, Partoon B, Lal B, Bustam M A and Shariff A M 2017 Thermodynamic effect of ammonium based ionic liquids on CO$_2$ hydrates phase boundary \textit{J. Mol. Liq.} 238 pp 533–39

[22] Muhammad Saad Khan, Yaqub S, Manner N, Karthwathi N A, Qasim A, Mellon N B and Bhajan Lal 2018 Experimental Equipment Validation for Methane (CH$_4$) and Carbon Dioxide (CO$_2$) Hydrates \textit{IOP Conf. Ser. Mater. Sci. Eng.} 344 pp 1–10

[23] Xiao C, Wibisono N and Adidharma H 2010 Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate \textit{Chem. Eng. Sci.} 65 pp 3080–87

[24] Nashed O, Dadebayev D, Khan M S, Bavoh C B, Lal B and Shariff A M 2018 Experimental and modelling studies on thermodynamic methane hydrate inhibition in the presence of ionic liquids \textit{J. Mol. Liq.} 249 pp 886–91

[25] Yusof Z A M, Ahmed I, Khan M S, Hussain S A, Hussain A, Mutalib I bin A, Balkhair K S and Albeirutty M H 2015 Thermal Evaluation of Diesel/Hydrogen Peroxide Fuel Blend \textit{Chem. Eng. Technol.} 38 pp 2170–80

[26] Khan M S, Ahmed I, Lal B, Idris A-A, Albeirutty M H, Ayoub M and Sufian S binti 2018 Physicochemical and FTIR Study of Diesel-Hydrogen Peroxide Fuel Blend \textit{IOP Conf. Ser. Mater. Sci. Eng.} 344 012026 pp 1-9

[27] Khan M S, Lal B, Bavoh C B, Keong I. K and Bustam A 2017 Influence of Ammonium based Compounds for Gas Hydrate Mitigation : A Short Review \textit{Indian J. Sci. Technol.} 10 pp 1–6