Blind phoneme segmentation with temporal prediction errors

Paul Michel\(^1\) \quad Okko Rasanen\(^2\) \quad Roland Thiolière\(^3\) \quad Emmanuel Dupoux\(^3\)
\(^1\)Carnegie Mellon University, \(^2\)Aalto University, \(^3\)LSCP / ENS / EHESS / CNRS

pmichell@cs.cmu.edu

Abstract

Phonemic segmentation of speech is a critical step of speech recognition systems. We propose a novel unsupervised algorithm based on sequence prediction models such as Markov chains and recurrent neural networks. Our approach consists in analyzing the error profile of a model trained to predict speech features frame-by-frame. Specifically, we try to learn the dynamics of speech in the MFCC space and hypothesize boundaries from local maxima in the prediction error. We evaluate our system on the TIMIT dataset, with improvements over similar methods.

1 Introduction

One of the main difficulty of speech processing as opposed to text processing is the continuous, time-dependent nature of the signal. As a consequence, pre-segmentation of the speech signal into words or sub-words units such as phonemes, syllables or words is an essential first step of a variety of speech recognition tasks.

Segmentation in phonemes is useful for a number of applications (annotation of speech for the purpose of phonetic analysis, computation of speech rate, keyword spotting, etc), and can be done in two ways. Supervised methods are based on an existing phoneme or word recognition system, which is used to decode the incoming speech into phonemes. Phonemes boundaries can then be extracted as a by-product of the alignment of the phoneme models with the speech. Unsupervised methods (also called blind segmentation) consist in finding phonemes boundaries using the acoustic signals only. Supervised methods depend on the training of acoustic and language models, which requires access to large amounts of linguistic resources (annotated speech, phonetic dictionary, text). Unsupervised methods do not require these resources and are therefore appropriate for so-called under-resourced languages, such as endangered languages, or languages without consistent orthographies.

We propose a blind phoneme segmentation method based on short term statistical properties of the speech signal. We designate peaks in the error curve of a model trained to predict speech frame by frame as potential boundaries. Three different models are tested. The first is an approximated Markov model of the transition probabilities between categorical speech features. We then replace it by a recurrent neural network operating on the same categorical features. Finally, a recurrent neural network is directly trained to predict the raw speech features. This last model is especially interesting in that it couples our statistical approach with more common spectral transition based methods (Dusan and Rabiner (2006) for instance).

We first describe the various models used and the pre- and post-processing procedures, before presenting and discussing our results in the light of previous work.

2 Related work

Most previous work on blind phoneme segmentation (Esposito and Aversano, 2005; Estevan et al., 2007; Almpanidis and Kotropoulos, 2008; Rasanen et al., 2011; Khanagha et al., 2014; Hoang and Wang, 2015) has focused on the analysis of the rate of change in the spectral domain. The idea is to design robust acoustic features that are supposed to remain stable within a phoneme, and change when transitioning from one phoneme to
the next. The algorithm then define a measure of change, which is then used to detect phoneme boundaries.

Apart from this line of research, three main approaches have been explored. The first idea is to use short term statistical dependencies. In Räsänen (2014), the idea was to first discretize the signal using a clustering algorithm and then compute discrete sequence statistics, over which a threshold can be defined. This is the idea that we follow in the current paper. The second approach is to use dynamic programming methods inspired by text segmentation (Wilber, 1988), in order to derive optimal segmentation (Qiao et al., 2008). In this line of research, however, the number of segments is assumed to be known in advance, so this cannot count as blind segmentation. The third approach consists in jointly segmenting and learning the acoustic models for phonemes (Kamper et al., 2015; Glass, 2003; Siu et al., 2013). These models are much more computationally involved than the other methods. Interestingly they all use a simpler, blind segmentation as an initialization phase. Therefore, improving on pure blind segmentation could be useful for joint models as well.

The principal source of inspiration for our work comes from previous work by Elman (1990) and Christiansen et al. (1998) published in the 90s. In the former, the author uses recurrent neural networks to train character-based language models on text and notices that “The error provides a good clue as to what the recurring sequences in the input are, and these correlate highly with words.” (Elman, 1990). More precisely, the error tends to be higher at the beginning of new words than in the middle. In the latter, the author uses Elman recurrent neural networks to predict boundaries between words given the character sequence and phonological cues.

Our work uses the same idea, using prediction error as a cue for segmentation, but with two important changes: we apply it to speech instead of text, and we use it to segment in terms of phoneme units instead of word units.

3 System

3.1 Pre-processing

We used two kinds of speech features: 13 dimensional MFCCs (Davis and Mermelstein, 1980) (with 12 mel-cepstrum coefficients and 1 energy coefficient) and categorical one-hot vectors derived from MFCCs inspired by Räsänen (2014).

![Figure 1: Visual representation of the various features on 100 frames from the TIMIT corpus. From top to bottom are the waveform, the 13-dimensional MFCCs and the 8-dimensional one hot encoded categorical features.](image)

The latter are computed according to Räsänen (2014): K-means clustering is performed on a random subset of the MFCCs (10,000 frames were selected at random), with a target number of clusters of 8, then each MFCC is identified to the closest centroid. Each frame is then represented by a cluster number \(c \in \{1, \ldots, 8\} \), or alternatively by the corresponding one-hot vector of dimension 8.

These hyper-parameters were chosen according to Räsänen (2014).

Figure 1 allows for a visual comparison of the three signals (waveform, MFCC, categorical).

The entire dataset is split between a training and a testing subset. A randomly selected subset of the training part is used as validation data to prevent overfitting.

3.2 Training phase

A frame-by-frame prediction model is then learned on the training set. The three different models used are described below:

Pseudo-markov model When trying to predict the frame \(x_t \) given the previous frames \(x_{t-1}, \ldots, x_0 \), a simplifying assumption is to model the transition probabilities with a Markov
chain of higher order K, i.e. $p(x_t|x_0^{t-1}) = p(x_t | x_0^{t-K})$. Provided each frame is part of a finite alphabet, a finite (albeit exponential in K) number of transition probabilities must be learned.

However, as the order rises, the ratio between the size of the data and the number of transition probability being learned makes the exact calculation more difficult and less relevant.

In order to circumvent this issue, we approximate the K-order Markov chain with the mean of 1-order markov chain of the lag-transition probabilities $p(x_t|x_{t-i})$ for $1 \leq i \leq K$, so that

$$p(x_t|x_0^{t-1}) = \frac{1}{K} \sum_{i=1}^{K} p(x_t|x_{t-i})$$

with $p(x_t|x_{t-i}) = \frac{f(x_t,x_{t-i})}{f(x_{t-i})}$.

In practice, we chose $K = 6$, thus ensuring that the markov model’s attention is of the same order of magnitude than the length of a phoneme.

Compared to Räsänen (2014), this model only uses information from previous frames and as such is completely online.

Recurrent neural network on categorical features Alternatively to Markov chains, the transition probability $p(x_t|x_0^{t-1})$ can be modeled by a recurrent neural network (RNN). RNN can theoretically model indefinite order temporal dependencies, hence their advantage over Markov chains for long sequence modeling.

Given a set of examples $\{(x_t,(x_0^{t-1})) | t \in \{0, \ldots, t_{\text{max}}\}\}$, the networks parameters are learned so that the error $E(x_t, \text{RNN}(x_0^{t-1}))$ is minimized using back propagation through time (Werbos, 1990) and stochastic gradient descent or a variant thereof (we have found RMSProp (Tieleman and Hinton, 2012) to give the best results).

In our case, the network itself consists of two LSTM layers (Hochreiter and Schmidhuber, 1997) stacked on one another followed by a linear layer and a softmax. The input and output units have both dimension 8, whereas all other layers have the same hidden dimension 40. Dropout (Srivastava et al., 2014) with probability 0.2 was used after each LSTM layer to prevent overfitting.

A pitfall of this method is the tendency of the network to predict the last frame it is fed. This is due to the fact that the sequences of categorical features extracted from speech contain a lot of constant sub-sequences length ≥ 2.

As a consequence, around 80% of the data fed to the network consists of sub-sequences where $x_t = x_{t-1}$. Despite the fact that phone boundaries are somewhat correlated with changes of categories (around 65% of the time), this leads the network to a local minimum where it only tries to predict the same characters.

To mitigate this effect, examples where $x_t = x_{t-1}$ were removed with probability 0.8, so that the number of transitions was slightly skewed towards category transitions. The model still passed over all frames during training but the error was back-propagated for only 46% of them. This change lead to substantial improvement.

Recurrent neural network on raw MFCCs The recurrent neural network model can be adapted to raw speech features simply by changing the loss function from categorical cross-entropy to mean squared error, which is the direct translation from a categorical distribution to a Gaussian density $(2|\mathbf{x} - \mathbf{y}|^2 + d$ is the Kullback-Leibler divergence of two d-dimensional normal distributions centered in \mathbf{x} and \mathbf{y} with the same scalar covariance matrix).

We used the same architecture than in the categorical case, simply removing the softmax layer and decreasing the hidden dimension size to 20. In this case, no selection of the samples is needed since the sequences vary continuously.

3.3 Test phase

Each model is run on the test set and the prediction error is calculated at each time step according to the formula:

$$E_{\text{markov}}(t) = -\log \left(\sum_{i=1}^{K} p(x_t|x_{t-i}) \right)$$

$$E_{\text{RNN-cat}}(t) = -\sum_{i=1}^{d} \mathbb{1}_{x_t = i} \log(\text{RNN}(x_0^{t-1}))$$

$$E_{\text{RNN-MFCC}}(t) = \frac{1}{d} \| \mathbf{x}_t - \text{RNN}(x_0^{t-1}) \|_2^2$$

In each case this corresponds, up to a scaling factor constant across the dataset, to the Kullback-Leibler divergence between the predicted and actual probability distribution for x_t in the feature space.

Since all three systems predict probabilities conditioned by the preceding frames, they cannot be expected to give meaningful results for the first
Algorithm	P	R	F	R-val
Periodic | 57.5| 91.0| 70.5| 46.9 |
Rasanen (2014) | 68.4| 70.6| 69.5| 73.7 |
Markov | 70.7| 77.3| 73.9| 76.4 |
RNN (Cat.) | 68.7| 77.1| 72.7| 74.6 |
RNN (Cont.)| 70.3| 72.4| 71.3| 75.3 |

Table 1: Final results (in%) evaluated with cropped tolerance windows

Table 2: Final results (in%) evaluated with overlapping tolerance windows. The scores reported for Rasanen (2014) are the paper results.

Determining whether gold boundary is detected or not is a crucial part of the evaluation procedure. On our test set for instance, which contains 65,825 gold boundaries partitioned into 1,680 files, adding or removing one correctly detected boundary per utterance leads to a change of ±2.5% in precision. This means that minor changes in the evaluation process (such as removing the trailing silence parts of each file, removing the opening and closing boundary) yield non-trivial variations in the end result.

A common condition for a gold boundary to be considered as 'correctly detected' is to have a proposed boundary within a 20 ms distance on either side. Without any other specification, this means that a proposed boundary may be matched to several gold boundaries, provided these are within 40 ms from each other, leading to an increase of up to 4% F-score in some of our results (74%—78%). Unfortunately this point is seldom detailed in the literature.

We decided to use the procedure described in Räsänen et al. (2009) to match gold boundaries and hypothesized boundaries: overlapping tolerance windows are cropped in the middle of the two boundaries.

4.3 Results

The current state of the art in blind phoneme segmentation on the TIMIT corpus is provided by Hoang and Wang (2015). It evaluates to 78.16% F-score and 81.11 R-value on the training part of the dataset, using an evaluation method similar to our own.

In Tables 1 and 2 we compare our best results to the previous statistical approach evoked in Räsänen (2014) and the naïve periodic boundaries segmentation (one boundary each 5 ms). Since Räsänen (2014) used an evaluation method allowing for tolerance windows to overlap, we provide
our results with both evaluation methods (full windows and cropped windows) for the sake of consistency.

Another main difference with Räsänen (2014) is that its results are given on the core test set of TIMIT, whereas our results are given on the full test set.

In particular, it is interesting to notice that the neural network based model trained on the raw MFCCs gave very good results in the low recall, high precision domain. Indeed, the precision can reach 90% with a recall of 40%. Such a regime could be useful, for instance, if blind phoneme segmentation is used to help with word segmentation.

The reason of the higher precision of neural networks may be that it combines the sensitivity of this model to sequential statistical regularities of the signal, but also to the spectral variations, i.e. the error is also correlated to the spectral changes, meaning that some peaks are associated with a high error because the euclidean distance $\|x_{t+1} - x_t\|_2$ itself is big. This is why the height difference is much more significant in this case.

Although we only reported the best results, we also tested our model on two other neural network architectures: a single vanilla RNN and a single LSTM cell. Both architecture did not yield significantly different results ($\sim 1-2\%$ F-score, mainly dropping precision). Similarly, different hidden dimension were tested. In the extreme cases (very low - 8 - or high - 128 - dimension), the output signal proved too noisy to be of any significance, yielding results comparable to naive periodic segmentation.

It is worth mentioning that our approach doesn’t make any language specific assumption, and as such similar results are to be expected on other languages. We leave the confirmation of this assumption to future work.
6 Conclusions

We have presented a lightweight blind phoneme segmentation method predicting boundaries at peaks of the prediction loss of transition probabilities models. The different models we tested produced satisfying results while remaining computationally tractable, requiring only one pass over the data at test time.

Our recurrent neural network trained on speech features in particular hints at a way of combining both the statistical and spectral information into a single model.

On a machine learning point of view, we highlighted the use that can be made of side channel information (in this case the test error) in order to extract structure from raw data in an unsupervised setting.

Future work may involve exploring different RNN models, assessing the stability of these methods on simpler features such as raw spectrograms or waveforms, or exploring the representation of each frame in the hidden layers of the networks.

7 Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful and constructive comments which helped shape the final version of this paper.

This project is supported by the European Research Council (ERC-2011-AdG-295810 BOOTPHON), the Agence Nationale pour la Recherche (ANR-10-LABX-0087 IEC, ANR-10-IDEX-0001-02 PSL*), the Fondation de France, the Ecole de Neurosciences de Paris, the Region Ile de France (DIM cerveau et pensée), and an AWS in Education Research Grant award.

References

George Almpanidis and Constantine Kotropoulos. 2008. Phonemic segmentation using the generalised gamma distribution and small sample bayesian information criterion. *Speech Communication* 50(1):38–55.

David Arthur and Sergei Vassilvitskii. 2007. k-means++. The advantages of careful seeding. In *Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms*. Society for Industrial and Applied Mathematics, pages 1027–1035.

Morten H Christiansen, Joseph Allen, and Mark S Seidenberg. 1998. Learning to segment speech using multiple cues: A connectionist model. *Language and cognitive processes* 13(2-3):221–268.

Steven Davis and Paul Mermelstein. 1980. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. *IEEE transactions on acoustics, speech, and signal processing* 28(4):357–366.

Sorin Dusan and Lawrence R Rabiner. 2006. On the relation between maximum spectral transition positions and phone boundaries. In *Proceedings of Interspeech*. Citeseer.

Jeffrey L Elman. 1990. Finding structure in time. *Cognitive Science* 14(2):179–211.

Anna Esposito and Guido Aversano. 2005. Text independent methods for speech segmentation. In *Nonlinear Speech Modeling and Applications*, Springer, pages 261–290.

Yago Pereiro Estevan, Vincent Wan, and Odette Scharenborg. 2007. Finding maximum margin segments in speech. In 2007 *IEEE International Conference on Acoustics, Speech and Signal Processing*. ICASSP’07. IEEE, volume 4, pages IV–937.

William M. Fischer, George R. Doddington, and Kathleen M Goudie-Marshall. 1986. The darpa speech recognition research database: Specifications and status. In *Proceedings of DARPA Workshop on Speech Recognition*. pages 93–99.

James R Glass. 2003. A probabilistic framework for segment-based speech recognition. *Computer Speech & Language* 17(2):137–152.

Dac-Thang Hoang and Hsiao-Chuan Wang. 2015. Blind phone segmentation based on spectral change detection using legendre polynomial approximation. *The Journal of the Acoustical Society of America* 137(2):797–805.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. *Neural computation* 9(8):1735–1780.

Herman Kamper, Aren Jansen, and Sharon Goldwater. 2015. Fully unsupervised small-vocabulary speech recognition using a segmental bayesian model. In *Proceedings of Interspeech*.

Vahid Khanagha, Khalid Daoudi, Oriol Pont, and Hussein Yahia. 2014. Phonetic segmentation of speech signal using local singularity analysis. *Digital Signal Processing* 35:86–94.

Yu Qiao, Naoya Shimomura, and Nobuaki Minematsu. 2008. Unsupervised optimal phoneme segmentation: Objectives, algorithm and comparisons. In 2008 *IEEE International Conference on Acoustics, Speech and Signal Processing*. IEEE, pages 3989–3992.
Okko Räsanen. 2014. Basic cuts revisited: Temporal segmentation of speech into phone-like units with statistical learning at a pre-linguistic level. In Proceedings of the 36th Annual Conference of the Cognitive Science Society. Quebec, Canada.

Okko Rasanen, Toomas Altosaar, and Unto Laine. 2011. Blind segmentation of speech using nonlinear filtering methods. INTECH Open Access Publisher.

Okko Räsanen, Unto Kalervo Laine, and Toomas Altosaar. 2009. An improved speech segmentation quality measure: the r-value. In Proceedings of Interspeech.

Man-hung Siu, Herbert Gish, Arthur Chan, William Bellfield, and Steve Lowe. 2013. Unsupervised training of an HMM-based self-organizing recognizer with applications to topic classification and keyword discovery. Computer Speech & Language preprint.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15(1):1929–1958.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning 4(2).

Paul J Werbos. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10):1550–1560.

Robert Wilber. 1988. The concave least-weight subsequence problem revisited. Journal of Algorithms 9(3):418–425.