Modulation of Collagen and MMP-1 Gene Expression in Fibroblasts by the Immunosuppressive Drug Rapamycin

A DIRECT ROLE AS AN ANTIFIBROTIC AGENT?*

Received for publication, July 5, 2006, and in revised form, August 11, 2006 Published, JBC Papers in Press, August 16, 2006, DOI 10.1074/jbc.M606366200

Nicolas Poulalhon‡, Dominique Farge‡§, Nina Roos‡, Charlotte Tacheau‡, Cindy Neuzillet‡, Laurence Michel‡, Alain Mauviel‡, and Franck Verrecchia‡†

From the ‡INSERM U697 and †Service de Médecine Interne, Hôpital Saint-Louis, 75010 Paris, France

We have examined whether rapamycin, an immunosuppressive drug, may exert part of its antifibrotic activity by directly targeting fibroblast extracellular matrix deposition. Incubation of human lung fibroblast (WI-26) cultures with rapamycin led to dose- and time-dependent reduction in the expression of types I and III collagens, both at the protein and mRNA levels. Rapamycin had no effect on collagen promoter activity but accelerated mRNA decay, indicating post-transcriptional control of collagen gene expression. In contrast, rapamycin significantly enhanced the expression of interstitial collagenase (MMP-1) at the protein and mRNA levels and transcriptionally. We determined that rapamycin efficiently activates AP-1-driven transcription by rapidly inducing c-jun/AP-1 phosphorylation with activation of the c-Jun N-terminal kinase (JNK) cascade, resulting in enhanced binding of AP-1-DNA complex formation and AP-1-dependent gene transactivation. Conversely, the JNK inhibitor SP600125 inhibited rapamycin-induced MMP-1 gene transactivation and AP-1/DNA interactions. A c-jun antisense expression vector efficiently prevented rapamycin-induced MMP-1 gene transcription. Pharmacological inhibition of either ERK or p38 MAPK pathways was without effect on rapamycin-induced MMP-1 gene expression. It thus appears that rapamycin may exert direct antifibrotic activities independent from its immunosuppressive action.

Fibrosis is a reactive process involving different pathophysiological events such as attraction of blood-born cells (e.g. leukocytes, platelets, activated lymphocytes), alteration of the microvasculature, and activation of resident mesenchymal cells (fibroblasts, endothelial cells, pericytes) leading to excessive extracellular matrix (ECM) deposition (1–4). Possible explanations for the excessive deposition of collagen observed during the fibrotic process include both an increased biosynthesis or reduced degradation of ECM components, particularly that of fibrillar collagens, by fibroblasts. An accumulation of collagen may originate from accelerated production of collagen resulting from enhanced collagen gene transcription and/or mRNA stabilization in response to soluble factors present in the microenvironment. Alternatively, reduced matrix metalloproteinase (MMP) expression and subsequent inhibition of collagen degradation may also contribute to the fibrotic process (1). Thus, identifying molecules that may either affect collagen production negatively or MMP expression positively is of utmost importance to define novel therapeutic means against fibrosis. In this context, rapamycin (sirolimus), a Streptomyces fungus macrolide antibiotic with potent immunosuppressive properties, is currently used for the prevention of graft rejection in kidney transplant recipients (5–7). Several experimental studies have shown that rapamycin is also effective in preventing liver or pulmonary fibrogenesis in animal models (8–10).

At the cell membrane, rapamycin binds to the immunophilin FK506-binding protein (FKBP12). This rapamycin-FKBP12 complex interacts with the rapamycin binding domain of mTOR, a serine-threonine kinase, and thus inactivates mTOR known to control proteins that regulate mRNA translation initiation and G1 progression in T cells (11). mTOR is a transducer that may be initiated by insulin, growth factors, and amino acids to activate downstream targets and regulate cell growth and proliferation as well as metabolic homeostasis (12, 13). It has been shown that ribosomal protein S6 kinases 1 and 2 (S6K-1 and S6K-2) and the eukaryotic initiation factor 4E-binding protein 4E-BP1 are downstream targets of mTOR. Rapamycin induces translational arrest by preventing phosphorylation of S6K-1 and 4E-BP1 by mTOR (14).

Investigations have demonstrated some anti-inflammatory effects of immunosuppressive drugs, including rapamycin, suggesting that they may be considered as antifibrogenic (15, 16). However, the molecular mechanisms underlying the effects of rapamycin on ECM gene expression remain poorly understood. Thus, the aim of this work was to investigate the direct effects of rapamycin on fibrosis-associated genes in fibroblasts and to elucidate the molecular mechanisms associated with the modulation of ECM gene expression by rapamycin. We identify distinct mechanisms by which rapamycin modulates both the expression of fibrillar collagen genes and that of interstitial collagenase/MMP-1.

* This work was supported by the Groupe Français de Recherche sur la Sclérodérminie (GFRS), the Association Française Contre la Sclérodérminie (ASF), and INSERM (PNR Derm). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom correspondence should be addressed: INSERM U697, Hôpital Saint-Louis, Pavillon Bazin, 1 avenue Claude Vellefaux, 75010 Paris, France. Tel.: 33-153722076; Fax: 33-153722051; E-mail: franck.verrecchia@stlouis.insERM.fr.

2 The abbreviations used are: ECM, extracellular matrix; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; CAT, chloramphenicol acetyltransferase; RT, reverse transcription; EMSA, electrophoretic mobility shift assay.
Rapamycin and Fibrosis-associated Gene Expression

EXPERIMENTAL PROCEDURES

Cell Cultures—Human lung fibroblasts (WI-26) were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% heat-inactivated fetal calf serum, 2 mM glutamine, and antibiotics (100 units/ml penicillin, 50 µg/ml streptomycin-G and 0.25 µg/ml fungizone™) in 5% CO₂ at 37 °C.

Cell Viability Assessment—Equal numbers of WI-26 fibroblasts were cultured in 96-well cell culture clusters and treated with various concentrations of rapamycin for 12, 24, and 48 h. Cell viability was measured using an MTS assay according to the manufacturer’s protocol (Promega, Madison, WI).

Reverse Transcription-PCR Analysis—Total RNA was extracted according to the manufacturer’s instructions using RNaseasy mini kit (Qiagen, Hilden, Germany). DNase I treatment (25 units, 15 min) of total RNA was performed to eliminate genomic contamination of the RNA samples. One microgram of total RNA was used for first strand cDNA synthesis using a RT-for-PCR-kit (Invitrogen) according to the manufacturer’s instructions. Real-time PCR was performed with an ABI PRISM 7700 instrument (Applied Biosystems, Foster City, CA) using SYBRGreen PCR core reagents (Applied Biosystems). Reaction mixtures were incubated for 2 min at 50 °C followed by 40 cycles of 15 s at 95 °C, 45 s at 60 °C, 1.5 min at 72 °C, and finally 15 s at 95 °C, 20 s at 63 °C, and 15 s at 95 °C. For each sample, gene expression was corrected against glyceraldehyde-3-phosphate dehydrogenase mRNA level. Primers used for PCR reactions are shown in Table 1.

Transient Cell Transfections and Reporter Assays—Transient cell transfections were performed with jetPEI™ according to the manufacturer’s protocol (Polyplus-transfection, Illkirch, France). pRSV-β-galactosidase was cotransfected in every experiment to monitor transfection efficiency. CAT activity was measured using [14C]chloramphenicol as substrate followed by thin layer chromatography and quantitation with a PhosphorImager (Amersham Biosciences). Luciferase activity was determined with a commercial assay kit (Promega). For high transfection efficiency of the pRSV-AS-c-jun expression vector, cells were electroporated with a Nucleofector™ (Amaxa GmbH, Köln, Germany) according to the manufacturer’s protocol. Transfection efficiency was estimated to be 80% by fluorescence-activated cell sorter analysis of a cotransfected green, fluorescent protein expression vector (data not shown).

Plasmid Constructs—−3500COL1A2/CAT (gift from Francesco Ramirez, Mount Sinai School of Medicine, New York, NY), −2300COL1A1/CAT (gift from John Varga, Northwestern University Feinberg School of Medicine, Chicago, IL), −400COL3A1/CAT (gift from Benoit de Crombrugghe, University of Texas M. D. Anderson Cancer Center, Houston, Texas), −517MMP-1-lux and corresponding AP-1 mutant

FIGURE 1. Rapamycin decreases type I collagen protein synthesis. A, serum-starved fibroblast cultures were treated with various concentrations of rapamycin (1, 0.1, or 0.01 µg/ml) for 24 (△) and 48 h (▲), as indicated. After incubations, type I collagen production was detected by Western blot analysis of whole cell lysates (upper panel). Specificity of the modulation was confirmed with an anti-collagen antibody. The ratio of type I collagen to actin is plotted from the values of three independent experiments, each performed with triplicate samples.

TABLE 1

Name	Forward sequence	Reverse sequence
COL1A1	5′-AGGCCAAGACATGATTGAAATA-3′	5′-ACGCTCGAGCCGCAATTCCT-3′
COL1A2	5′-TCTCTCTACGTGGGAAGCTTCTGA-3′	5′-TCTCTCTACGTGGGAAGCTTCTGA-3′
COL3A1	5′-CGCTCTCTGTGATCCACTAAT-3′	5′-CGCTCTCTGTGATCCACTAAT-3′
MMP-1	5′-CCCCAAAAGCCTGATGACGAAT-3′	5′-GCTGACATCCGACTCCCTTCA-3′
TIMP-1	5′-GCTGACATCCGACTCCCTTCA-3′	5′-GCTGACATCCGACTCCCTTCA-3′
GAPDH	5′-ACCTTCCAGTGTCTCTAG-3′	5′-ACCTTCCAGTGTCTCTAG-3′

EXPERIMENTAL PROCEDURES

Cell Cultures—Human lung fibroblasts (WI-26) were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% heat-inactivated fetal calf serum, 2 mM glutamine, and antibiotics (100 units/ml penicillin, 50 µg/ml streptomycin-G and 0.25 µg/ml Fungizone™) in 5% CO₂ at 37 °C.

Cell Viability Assessment—Equal numbers of WI-26 fibroblasts were cultured in 96-well cell culture clusters and treated with various concentrations of rapamycin for 12, 24, and 48 h. Cell viability was measured using an MTS assay according to the manufacturer’s protocol (Promega, Madison, WI).

Reverse Transcription-PCR Analysis—Total RNA was extracted according to the manufacturer’s instructions using RNaseasy mini kit (Qiagen, Hilden, Germany). DNase I treatment (25 units, 15 min) of total RNA was performed to eliminate genomic contamination of the RNA samples. One microgram of total RNA was used for first strand cDNA synthesis using a RT-for-PCR-kit (Invitrogen) according to the manufacturer’s instructions. Real-time PCR was performed with an ABI PRISM 7700 instrument (Applied Biosystems, Foster City, CA) using SYBRGreen PCR core reagents (Applied Biosystems). Reaction mixtures were incubated for 2 min at 50 °C followed by 40 cycles of 15 s at 95 °C, 45 s at 60 °C, 1.5 min at 72 °C, and finally 15 s at 95 °C, 20 s at 63 °C, and 15 s at 95 °C. For each sample, gene expression was corrected against glyceraldehyde-3-phosphate dehydrogenase mRNA level. Primers used for PCR reactions are shown in Table 1.

Transient Cell Transfections and Reporter Assays—Transient cell transfections were performed with jetPEI™ according to the manufacturer’s protocol (Polyplus-transfection, Illkirch, France). pRSV-β-galactosidase was cotransfected in every experiment to monitor transfection efficiency. CAT activity was measured using [14C]chloramphenicol as substrate followed by thin layer chromatography and quantitation with a PhosphorImager (Amersham Biosciences). Luciferase activity was determined with a commercial assay kit (Promega). For high transfection efficiency of the pRSV-AS-c-jun expression vector, cells were electroporated with a Nucleofector™ (Amaxa GmbH, Köln, Germany) according to the manufacturer’s protocol. Transfection efficiency was estimated to be 80% by fluorescence-activated cell sorter analysis of a cotransfected green, fluorescent protein expression vector (data not shown).

Plasmid Constructs—−3500COL1A2/CAT (gift from Francesco Ramirez, Mount Sinai School of Medicine, New York, NY), −2300COL1A1/CAT (gift from John Varga, Northwestern University Feinberg School of Medicine, Chicago, IL), −400COL3A1/CAT (gift from Benoit de Crombrugghe, University of Texas M. D. Anderson Cancer Center, Houston, Texas), −517MMP-1-lux and corresponding AP-1 mutant

FIGURE 1. Rapamycin decreases type I collagen protein synthesis. A, serum-starved fibroblast cultures were treated with various concentrations of rapamycin (1, 0.1, or 0.01 µg/ml) for 24 (△) and 48 h (▲), as indicated. After incubations, type I collagen production was detected by Western blot analysis of whole cell lysates (upper panel). Specificity of the modulation was confirmed with an anti-collagen antibody. The ratio of type I collagen to actin is plotted from the values of three independent experiments, each performed with triplicate samples.

TABLE 1

Name	Forward sequence	Reverse sequence
COL1A1	5′-AGGCCAAGACATGATTGAAATA-3′	5′-ACGCTCGAGCCGCAATTCCT-3′
COL1A2	5′-TCTCTCTACGTGGGAAGCTTCTGA-3′	5′-TCTCTCTACGTGGGAAGCTTCTGA-3′
COL3A1	5′-CGCTCTCTGTGATCCACTAAT-3′	5′-CGCTCTCTGTGATCCACTAAT-3′
MMP-1	5′-CCCCAAAAGCCTGATGACGAAT-3′	5′-GCTGACATCCGACTCCCTTCA-3′
TIMP-1	5′-GCTGACATCCGACTCCCTTCA-3′	5′-GCTGACATCCGACTCCCTTCA-3′
GAPDH	5′-ACCTTCCAGTGTCTCTAG-3′	5′-ACCTTCCAGTGTCTCTAG-3′
construct (gifts from E. F. Wagner, Research Institute for Molecular Pathology, Vienna, Austria), and pRSV-AS-c-Jun have been described previously (17–20). pAP1-TA-lux (Mercury pathway profiling vector; BD Biosciences) was used to evaluate AP-1-driven transcription.

Western Blot Analyses—Total protein cell extract (30 μg) in Laemmli buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.5 mM phenylmethylsulfonyl fluoride) was denatured by heating at 95 °C for 3 min before resolution by SDS-polyacrylamide gel electrophoresis. After electrophoresis, proteins were transferred to Hybond enhanced chemiluminescence nitrocellulose filters (Amersham Biosciences), immunoblotted with either anti-type I collagen (Southern Biotech, Birmingham, AL), anti-phospho-c-Jun, -c-Jun, -phospho-JNK, -JNK, -phospho-ERK, -ERK, -phospho-p38, or -actin (Sigma) antibodies, all at a dilution of 1:1000 in phosphate-buffered saline/5% nonfat milk for 1 h. Anti-phospho-c-Jun, -phospho-JNK, -phospho-ERK, -phospho-p38, -ERK, and -p38 antibodies were purchased from Cell Signaling Technology (Beverly, MA). Anti-c-Jun and -JNK antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). After incubation, filters were washed and incubated with a horseradish peroxidase-conjugated goat anti-rabbit or anti-mouse secondary antibody (Santa Cruz Biotechnology) at a dilution of 1:5000 for 1 h. Filters were then washed, developed according to chemiluminescence protocols (ECL, Amersham Biosciences), and revealed with a PhosphorImager (Amersham Biosciences).

Quantitative Determination of MMP-1 Production—The MMP-1 production in cell supernates was determined using the Quantikine Human pro-MMP-1 Immunoassay kit from R&D Systems (Minneapolis, MN) according to the manufacturer’s instructions.

Electrophoretic Mobility Shift Assays (EMSA)—A consensus AP-1 binding oligonucleotide (Promega) was used as a probe to detect AP-1/DNA interactions. Nuclear extracts were isolated using a small-scale preparation (21). For supershift experiments, nuclear extracts (5–7 μg) were incubated overnight at 4 °C with an anti-c-Jun antibody (Santa Cruz Biotechnology). Binding mixtures were separated electrophoretically on native 4% acrylamide gels.

Reagents—Rapamycin was purchased from Sigma. The p38 and ERK inhibitors SB203580 and PD98059 were purchased from Tocris (Ellisville, MO). The JNK inhibitor SP600125 was from Calbiochem.

RESULTS

Rapamycin Inhibits Type I Collagen Production in Human Lung Fibroblasts—We first wanted to determine whether rapamycin had a direct effect on collagen production by fibroblasts. To address this point, WI-26 human lung fibroblast cultures were incubated with various concentrations of rapamycin, and type I collagen production was measured by Western blot analysis. As shown in Fig. 1A, total type I collagen production was reduced by rapamycin in a time- and dose-dependent manner. Specifically, a decrease of 10 and 45% with a rapamycin concentration of 0.1 μg/ml and a decrease of 37 and 60% with a concentration of 1 μg/ml were respectively observed after 24 h (upper panel) and 48 h (lower panel) of treatment. Interestingly, even the smallest concentration of rapamycin (0.01 μg/ml) had a significant inhibitory activity after 48 h of incubation, suppressing collagen production by as much as 30%.

To ensure that the inhibition of collagen production was not because of a cytotoxic effect of rapamycin, WI-26 fibroblasts were incubated for 6, 24, and 48 h with rapamycin concentrations ranging from 0.1 to 10 μg/ml, and cell viability was determined at various time points. As shown in Fig. 1B, no significant cell mortality was observed at any of the concentrations tested over a 48-h period.

Rapamycin Decreases COL1A1, COL1A2, and COL3A1 mRNA Steady-state Levels by Decreasing mRNA Stability and without Affecting Gene Transcription—To determine whether the reduction of fibrillar collagen production by rapamycin occurred via modulation of the corresponding genes, we first measured COL1A1, COL1A2, and COL3A1 mRNA steady-state levels following rapamycin treatment by quantitative RT-PCR. As shown in Fig. 2, rapamycin at a concentration of 1 μg/ml decreased COL1A1 (Fig. 2A), COL1A2 (Fig. 2B), and COL3A1...
Rapamycin Increases MMP-1 Gene Expression and Protein Synthesis—We first wanted to determine whether rapamycin had direct effect on MMP-1 synthesis. To address this point, MMP-1 protein production was measured using MMP-1 immunoassay approach. As shown in Fig. 4A, rapamycin treatment of WI-26 fibroblasts led to increase in MMP-1 protein production, up to 2.2- and 4.5-fold, respectively, after 48 and 72 h at the concentration of 1 μg/ml.

We next determined whether rapamycin modulates MMP-1 and/or TIMP-1 gene expression. To address this point, the effects of rapamycin on MMP-1 and TIMP-1 mRNA steady-state levels were studied by quantitative RT-PCR. Rapamycin treatment of WI-26 fibroblasts led to a time- and dose-dependent increase in MMP-1 mRNA levels, up to 3.5-fold after 48 h at the concentration of 1 μg/ml (Fig. 4, B and C). On the other hand, TIMP-1 gene expression remained unaltered over the same incubation period (not shown).

c-Jun Mediates Rapamycin-driven MMP-1 Gene Transcription—Most MMP genes exhibit promoter regions that are characterized by a functional AP-1 binding site around position −70 relative to the transcription initiation site that is critical for transcriptional regulation by a variety of stimuli, including cytokines (22). The effect of rapamycin on MMP-1 promoter transactivation was examined in parallel transient cell transfection experiments using either a wild-type MMP-1 reporter construct −517MMP-1-lux or an AP-1 mutant not able to bind AP-1 proteins (23). Results shown in Fig. 5A demonstrate that the effect of rapamycin on MMP-1 gene expression was transcriptional, as rapamycin induced a 2.5-fold transactivation of the MMP-1 promoter. Furthermore, we determined that the integrity of MMP-1 promoter AP-1 binding site is necessary for transactivation by rapamycin that fails to transactivate the AP-1 mutant construct.
Next, the effect of rapamycin on AP-1-driven transcription was examined in transient cell transfection experiments with either wild-type (w.t.) or AP-1 mutant (mutAP-1) MMP-1 promoter constructs. Six hours later, cells were treated or not with rapamycin (1 μg/ml) for 24 h. Bars indicate mean ± S.D. of three independent experiments performed, each with duplicate samples. B, serum-starved fibroblast cultures were transfected with pAP-1-lux in presence or absence of rapamycin (1 μg/ml, 24 h). Bars indicate mean ± S.D. of three independent experiments performed, each with duplicate samples.

C and D, EMSA experiments were performed using a consensus AP-1 oligonucleotide as a probe, together with nuclear extracts from control (C, lane 1; D, lanes 1 and 2) and rapamycin-treated (1 μg/ml for 30, 60, and 120 min, respectively (C, lanes 2, 3, and 4) and for 30 min (D, lanes 3 and 4)) fibroblast cultures. Supershift assay was carried out with an anti-c-Jun antibody (D, lanes 2 and 4).

FIGURE 5. Critical role for AP-1 in mediating rapamycin-driven transcription of MMP-1. A, serum-starved fibroblast cultures were transfected with either wild-type (w.t.) or AP-1 mutant (mutAP-1) MMP-1 promoter constructs. Six hours later, cells were treated or not with rapamycin (1 μg/ml) for 24 h. Bars indicate mean ± S.D. of three independent experiments performed, each with duplicate samples. B, serum-starved fibroblast cultures were transfected with pAP-1-lux in presence or absence of rapamycin (1 μg/ml, 24 h). Bars indicate mean ± S.D. of three independent experiments performed, each with duplicate samples. C and D, EMSA experiments were performed using a consensus AP-1 oligonucleotide as a probe, together with nuclear extracts from control (C, lane 1; D, lanes 1 and 2) and rapamycin-treated (1 μg/ml for 30, 60, and 120 min, respectively (C, lanes 2, 3, and 4) and for 30 min (D, lanes 3 and 4)) fibroblast cultures. Supershift assay was carried out with an anti-c-Jun antibody (D, lanes 2 and 4).
extracts from unstimulated control WI-26 fibroblast cultures (lane 1). Rapamycin induced a 1.5-, 4.2-, and 6.5-fold elevation of AP-1/DNA binding complexes after 30 min, 1 h, and 2 h of treatment, respectively (lanes 2–4).

To identify whether c-Jun, the main component of AP-1 complexes (24), was present in the protein/DNA complex identified with the AP-1 probe, supershift experiments were performed with an anti-c-Jun antibody. Results presented in Fig. 5D indicate that the retarded band obtained with nuclear extracts from control cultures (lane 1) and elevated in nuclear extracts from rapamycin-treated fibroblasts (lane 3) is significantly reduced by the anti-c-Jun antibody (lanes 2 and 4), attesting for the presence of c-Jun in the complexes.

To verify the implication of c-Jun in the activation of MMP-1 gene expression by rapamycin, an antisense c-Jun expression vector, which specifically targets c-Jun expression and no other Jun family member (19, 25), was transfected into WI-26 fibroblasts prior to rapamycin treatment. Inhibition of c-Jun expression in antisense-transfected cells, treated or not with rapamycin, was verified by Western blotting (Fig. 6, inset). Quantitative RT-PCR analysis of MMP-1 mRNA steady-state levels indicated a 95% reduction in rapamycin effect on MMP-1 gene expression when cells received the antisense c-Jun vector prior to incubation with rapamycin (Fig. 6). Taken together, these results demonstrate the critical role played by c-Jun in mediating rapamycin-dependent MMP-1 gene expression at the transcriptional level.

JNK Mediates Rapamycin-driven AP-1 Transcriptional Activity and Subsequent Modulation of MMP-1 Gene Expression—MAPKs act as signal transducers originating from numerous extracellular stimuli. MAPKs of the c-Jun N-terminal kinase family are critical determinants of the strength of AP-1-dependent transcription, as JNK phosphorylation of Jun protein members confers them maximal transcriptional potential (26, 27). Likewise, p38 and ERK contribute to potentiate Fos-mediated transcription (27). At present, little is known about their possible role downstream of rapamycin.

Given the effects of rapamycin on AP-1-dependent transcription and the implication of the MMP-1 promoter AP-1 binding site in mediating rapamycin effect on MMP-1 gene expression, we investigated the capacity of rapamycin to induce
c-Jun phosphorylation and JNK activation. As shown in Fig. 7A, rapamycin addition to WI-26 fibroblast cultures induced a rapid and prolonged phosphorylation of c-Jun on Ser-63, detectable as early as 15 min following stimulation and persisting at least 2 h. Likewise, rapamycin efficiently and rapidly induced JNK phosphorylation with a very similar kinetic (Fig. 7B). On the other hand, rapamycin had no effect on p38 MAPK activation (Fig. 7C), whereas ERK phosphorylation was stimulated as early as 15 min, peaked at 30 min, and slowly came down to basal level over the 2-h period following rapamycin addition (Fig. 7D).

To assess the role played by MAPKs in mediating rapamycin-driven induction of MMP-1 gene expression, we investigated the ability of specific inhibitors of the JNK, p38, and ERK pathways to alter rapamycin-driven MMP-1 gene expression. Results shown in Fig. 8A indicated that pretreatment of fibroblast cultures with the specific JNK inhibitor SP600125 totally inhibited the effect of rapamycin on MMP-1 mRNA level. In contrast, the ERK and p38 inhibitors PD98059 and SB203580 failed to suppress rapamycin effect.

Next, in a similar experimental approach, the JNK inhibitor SP600125 prevented rapamycin-driven AP-1 transcriptional activity, as measured in transient cell transfection experiments with pAP-1-TA-lux (Fig. 8B), whereas the ERK and p38 inhibitors PD98059 and SB203580 did not. Finally, EMSA experiments with a radiolabeled consensus AP-1 oligonucleotide demonstrated that a 1-h pretreatment with SP600125 abolished rapamycin-driven elevation of AP-1-DNA complexes (Fig. 8C, lane 4 versus lane 2). Together, these experiments demonstrate the critical and specific role played by the JNK pathway in mediating rapamycin effects on both AP-1-dependent transcription and MMP-1 gene expression in human lung fibroblasts.

DISCUSSION

In this report, we provide evidence that the immunosuppressive drug rapamycin, an inhibitor of mTOR, may exert direct antifibrotic activities both by down-regulating type I and type III collagen synthesis and by up-regulating MMP-1 synthesis. In accordance with a previous report showing that a mTOR-specific interfering RNA and a kinase dead mTOR decrease type I collagen steady-state mRNA levels (28), we demonstrate that rapamycin inhibits COL1A1, COL1A2, and COL3A1 gene expression by decreasing their mRNA stability.

Many reports demonstrated that collagen deposition is precisely controlled by collagen mRNA stabilization. For example, Krupsky et al. (29) demonstrated that COL1A1 mRNA stability is reduced by amino acid deprivation in lung fibroblasts. Furthermore, retinoic acid and prostaglandin E2, which decrease the uptake of amino acids transported, decrease the steady-state levels of COL1A1 mRNA by decreasing its stability (30, 31). In the context of mTOR inhibition, Peng et al. (32) have shown that deprivation of amino acids induces a cellular stress response similar to that elicited by rapamycin, supporting the conjecture that mTOR acts as a nutritional sensor, and that pharmacological inhibition of mTOR by rapamycin, in some respects, mimics the signal induced by amino acid deprivation. Interestingly, it was recently demonstrated that FK506 signifi-

![FIGURE 8. Critical role for JNK in mediating rapamycin effects on MMP-1 gene expression. A, serum-starved subconfluent fibroblast cultures were treated with rapamycin (1 μg/ml) for 48 h in presence or absence of SP600125 (10 μM), PD98059 (10 μM), or SB203580 (10 μM) as indicated. After incubations, MMP-1 mRNA levels were detected by quantitative RT-PCR. Bars indicate mean ± S.D. of three independent experiments performed with duplicate samples. B, serum-starved fibroblast cultures were transfected with pAP-1-lux construct. 6 h after, cells are treated with rapamycin (1 μg/ml, 24 h) in presence or absence of SP600125 (10 μM), PD98059 (10 μM), or SB203580 (10 μM) as indicated. Bars indicate mean ± S.D. of three independent experiments performed, each with duplicate samples. C, EMSA experiment was performed using the AP-1-specific oligonucleotide as a probe, together with nuclear extracts from control (lanes 1 and 3) and rapamycin-treated (1 μg/ml for 60 min; lanes 2 and 4) fibroblast cultures in presence of SP600125 (10 μM; lanes 3 and 4) or in absence of this inhibitor (lanes 1 and 2).](https://www.jbc.org/content/281/44/33051)
Rapamycin and Fibrosis-associated Gene Expression

cantly reduces the basal expression of the human COL1A2 mRNA levels in sclerodema fibroblasts by reducing their stability (33). Thus, our results suggest that rapamycin may be an interesting candidate drug for the treatment of fibrotic conditions because an increase in collagen mRNA stability contributes to elevated collagen levels in sclerodema fibroblasts (34).

We also demonstrated that rapamycin increases MMP-1 gene expression. We provide definitive evidence for a direct role for the JNK/c-Jun pathway in mediating rapamycin effect at the transcriptional level through enhanced AP-1-dependent gene expression. We provide definitive evidence for a direct role for the JNK/c-Jun pathway in mediating rapamycin effect.

With regard to JNK function in the context of antifibrotic properties, our findings are complementary to our recent works indicating that JNK, which is critical in conferring transcriptional activity to Jun proteins, is also instrumental in allowing these proteins to interfere with Smad-dependent gene transcription downstream of TGF-β, a major player in the development of tissue fibrosis (2, 3). We specifically demonstrated that activators of the JNK pathway, such as tumor necrosis factor-α (36–38) and 5-FU (39), antagonize TGF-β-induced collagen gene expression by preventing Smad/DNA interaction and related gene expression (2, 3). Thus, it may be speculated that JNK activation by rapamycin may have a similar inhibiting effect on TGF-β-driven collagen production. In conclusion, we have identified that rapamycin may exert direct antifibrotic activities by molecular mechanisms that affect both matrix production and degradation by fibroblasts.

REFERENCES

1. Uitto, J., and Kouba, D. (2000) J. Dermatol. Sci. 24, S60–S69
2. Verrecchia, F., and Mauviel, A. (2002) Curr. Rheumatol. Rep. 4, 143–149
3. Verrecchia, F., and Mauviel, A. (2002) J. Invest. Dermatol. 118, 211–215
4. Verrecchia, F., and Mauviel, A. (2004) Cell. Transplant. 13, 873–880
5. Kahan, B. D., Podbielski, J., Napoli, K. L., Katz, S. M., Meier-Kriesche, H. U., and Van Buren, C. T. (1998) Transplantation 66, 1040–1046
6. Pridohl, O., Heinemann, K., Hartwig, T., Witzgmann, H., Lamesch, P., Fangmann, J., Berr, F., Hauss, J., and Kohlhaw, K. (2001) Transplant. Proc. 33, 3229–3231
7. Webster, A. C., Lee, V. W., Chapman, J. R., and Craig, J. C. (2006) Transplantation 81, 1234–1248
8. Zhu, J., Wu, J., Frizzell, E., Liu, S. L., Bashey, R., Rubin, R., Norton, P., and Zern, M. A. (1999) Gastroenterology 117, 1198–1204
9. Simler, N. R., Howell, D. C., Marshall, R. P., Goldsack, N. R., Hasleton, P. S., Laurent, G. J., Chambers, R. C., and Egan, J. J. (2002) Eur. Respir. J. 19, 1124–1127
10. Biecker, E., Neef, M., Sagesser, H., Shaw, S., Koshy, A., and Reichen, J. (2004) Liver Int. 24, 345–353
11. Brown, E. J., Albers, M. W., Shih, T. B., Ichikawa, K., Keith, C. T., Lane, W. S., and Schreiber, S. L. (1994) Nature 370, 756–758
12. Hay, N., and Sonenberg, N. (2004) Genes Dev. 18, 1926–1945
13. Jaeschke, A., Dennis, P. B., and Thomas, G. (2004) Curr. Top. Microbiol. Immunol. 279, 283–298
14. Chung, J., Kuo, C. J., Crabtree, G. R., and Blenis, J. (1992) Cell 69, 1227–1236
15. Cardenas, M. E., Zhu, D., and Heitman, J. (1995) Curr. Opin. Nephrol. Hypertens. 4, 472–477
16. Sehgal, S. N., Camardo, J. S., Scarola, J. A., and Maida, B. T. (1995) Curr. Opin. Nephrol. Hypertens. 4, 482–487
17. Boast, S., Su, M. W., Ramirez, F., Sanchez, M., and Avvedimento, E. V. (1990) J. Biol. Chem. 265, 13351–13356
18. Chen, S. J., Artlett, C. M., Jimenez, S. A., and Varga, J. (1998) Gene 215, 101–110
19. Mauviel, A., Qiu Chen, Y., Dong, W., Evans, C. H., and Uitto, J. (1993) Curr. Biol. 3, 822–831
20. Mudryj, M., and de Crombrugge, B. (1988) Nucleic Acids Res. 16, 7513–7526
21. Andrews, N. C., and Faller, D. V. (1991) Nucleic Acids Res. 19, 2499
22. Mauviel, A. (1993) J. Cell. Biochem. 53, 288–295
23. Schorpp, M., Mattei, M. G., Herr, L., Gack, S., Schaper, J., and Angel, P. (1995) Biochem. J. 308, 211–217
24. Karin, M., Liu, Z., and Zandi, E. (1997) Curr. Opin. Cell Biol. 9, 240–246
25. Mauviel, A., Chung, K. Y., Agarwal, A., Tamai, K., and Uitto, J. (1996) J. Biol. Chem. 271, 10917–10923
26. Minden, A., and Karin, M. (1997) Biochim. Biophys. Acta 1333, F85–F104
27. Schuck, S., Suloaga, A., Schratt, G., Arthur, J. S., and Nordheim, A. (2003) BMC Mol. Biol. 4, 6–13
28. Shegogue, D., and Trojanowska, M. (2004) J. Biol. Chem. 279, 23166–23175
29. Krupsky, M., Kuang, P. P., and Goldstein, R. H. (1997) J. Biol. Chem. 272, 13864–13868
30. Krupsky, M., Fine, A., Berk, J. L., and Goldstein, R. H. (1994) Biochim. Biophys. Acta 1219, 335–341
31. Varga, J., Diaz-Perez, A., Rosenblom, J., and Jimenez, S. A. (1987) Biochem. Biophys. Res. Commun. 147, 1282–1288
32. Peng, T., Golub, T. R., and Sabatini, D. M. (2002) Mol. Cell. Biol. 22, 5575–5584
33. Asano, Y., Ihn, H., Yamane, K., Jinnin, M., Mimura, Y., and Tamaki, K. (2005) Arthritis. Rheum. 52, 1237–1247
34. Eckes, B., Mauch, C., Huppe, G., and Krieg, T. (1996) Biochem. J. 315, 549–554
35. Huang, S., Shu, L., Dilling, M. B., Easton, J., Harwood, F. C., Ichijo, H., and Houghton, P. J. (2003) Mol. Cell 11, 1491–1501
36. Verrecchia, F., Pessah, M., Atfi, A., and Mauviel, A. (2000) J. Biol. Chem. 275, 30226–30231
37. Verrecchia, F., Tacheau, C., Wagner, E. F., and Mauviel, A. (2003) J. Biol. Chem. 278, 1585–1593
38. Verrecchia, F., Wagner, E. F., and Mauviel, A. (2002) EMBO Rep. 3, 1069–1074
39. Wendling, J., Marchand, A., Mauviel, A., and Verrecchia, F. (2003) Mol. Pharmacol. 64, 707–713