Autoantibodies as biomarkers for breast cancer diagnosis and prognosis

Ruozhu Yang†, Yi Han†, Wenjun Yi and Qian Long*
Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China

Breast cancer is the most common cancer in women worldwide and is a substantial public health problem. Screening for breast cancer mainly relies on mammography, which leads to false positives and missed diagnoses and is especially non-sensitive for patients with small tumors and dense breasts. The prognosis of breast cancer is mainly classified by tumor, node, and metastasis (TNM) staging, but this method does not consider the molecular characteristics of the tumor. As the product of the immune response to tumor-associated antigens, autoantibodies can be detected in peripheral blood and can be used as noninvasive, presymptomatic, and low-cost biomarkers. Therefore, autoantibodies can provide a possible supplementary method for breast cancer screening and prognosis classification. This article introduces the methods used to detect peripheral blood autoantibodies and the research progress in the screening and prognosis of breast cancer made in recent years to provide a potential direction for the examination and treatment of breast cancer.

KEYWORDS
breast cancer, autoantibody, early diagnosis, prognosis, autoantibody detection

Introduction

Breast cancer is the most common cancer in women. There were approximately 2.3 million new cases and 685,000 deaths due to breast cancer worldwide in 2020 (1). In the United States, 290,560 new cases and 43,780 deaths have been estimated to occur in 2022 (2). Early diagnosis is vital to improve the survival rate of breast cancer. The five-year relative survival rate for breast cancer in the United States increased from 79% between 1984 and 1986 to 91% between 2008 and 2014, largely due to improvements in early diagnosis and treatment (3).

The most common method used to screen for breast cancer is mammography. Current guidelines all recommend annual or biennial mammography starting at age 40 (4–6). Several studies have shown significant decreases in mortality from breast cancer
among women who undergo mammography, with an average reduction of 40 to 46% (7–9). Mammography, however, has many drawbacks. Data from Vermont in the US and Norway yielded sensitivities of 88.2% and 90.7%, respectively (10). According to a study from the Netherlands, the sensitivity of mammography was 85% in individuals with 20 mm-sized breast tumors and was even lower in individuals with smaller breast tumors (11). Inadequate sensitivity can lead to a considerable number of missed diagnoses. Mammography can also lead to false positives or overdiagnosis, causing unnecessary treatment and psychological distress (12, 13). In the United States, 23.8% of women who receive regular mammography had at least one false positive over a 10-year period (14). A Canadian study found that annual mammography did not reduce the mortality rate due to breast cancer in women ages 40 to 59, and 0.24% of those who participated were overdiagnosed with invasive breast cancer (15). In addition, a high density of breast tissue is an independent risk factor for breast cancer, and mammography is less sensitive in high-density breast tissue (16–18). Younger women tend to have denser breasts, which also makes mammography less sensitive (19). These patients can undergo additional ultrasound or magnetic resonance imaging (MRI) to improve sensitivity, but the false positive rate also increases (20).

Tumor, node, and metastasis (TNM) staging is the most used method to determine the prognosis of breast cancer. This system includes an assessment of the characteristics of the primary tumor, regional lymph nodes, and distant metastasis (21). However, this method does not reflect the molecular characteristics of the tumor and does not enable a more accurate prognostic analysis based on the molecular heterogeneity of cancer cells (21). Breast cancer pathological types, molecular subtypes, and gene expression features, including risk alleles, methylation, and single nucleotide polymorphisms, also contribute to different outcomes (22–25). According to assessments of different molecular characteristics and prognoses, including assessments of recurrence risk and survival rate, individualized treatment methods that are more accurate can be adopted (26).

In cancer patients, tumor-associated antigens (TAAs) produced by tumor cells activate B cells that can produce autoantibodies to TAAs. Through the amplification effect of humoral immunity, autoantibodies in the peripheral blood of patients are far more abundant than TAAs, and autoantibodies also have longer half-life. Therefore, by detecting autoantibodies in peripheral blood, breast cancer patients can be screened in the early stage and their prognosis can be predicted. At present, this method is not as effective as mammography, but as a complementary examination, it can help improve the sensitivity and specificity of breast cancer screening and establish more accurate prognostic analysis method. Therefore, the detection of autoantibodies has a promising prospect in the future. This review includes a discussion of the advances in autoantibodies detected in peripheral blood in the diagnosis and prognosis of breast cancer.

Autoantibodies in breast cancer

The tumor microenvironment plays a decisive role in the occurrence, development, and treatment of tumors (27). Due to somatic mutations and genomic instability, the proteome of tumor cells is modified by phosphorylation, acetylation, and glycosylation, resulting in tumor-associated antigens (TAAs). The body produces autoantibodies when TAAs are recognized by the immune system (28). The BCR on B cells specifically binds to the TAAs to initiate an antigen stimulation signal, which is co-transmitted by BCR-Igα/Igβ and CD19/CD21/CD81. As antigen-presenting cells, B cells internalize and process BCR binding antigens through endocytosis. The antigenic peptide produced by antigen degradation binds to MHC class II molecules and is presented to specific Th cells. Activated Th cells express CD40L, which provides a second signal for B cell activation. Activated B cells then produce specific autoantibodies which are released into the peripheral blood. These autoantibodies can be used as new tumor detection indicators to predict the occurrence and prognosis of tumors (Figure 1). Detecting autoantibodies has many advantages. First, autoantibodies have higher stability than other serum proteins and are not easy to hydrolyze, with a half-life of 7-30 days. Second, autoantibodies can be detected when the tumor has developed but clinical symptoms have not yet appeared (28–30). Third, the detection of autoantibodies in peripheral blood is not affected by the density of breast tissue (31, 32); therefore, mammography defects can be prevented using this approach. Finally, peripheral blood autoantibodies can better reflect the molecular characteristics and heterogeneity of breast cancer. The analysis of most autoantibodies individually lacks sufficient sensitivity (33–35), so much research has focused on the analysis of autoantibody combinations. At present, autoantibodies can be used to predict the early occurrence and prognosis of breast cancer; however, this analysis is still in the early stage of development, and there have been no clinical trial reports. Most of the studies are in phase 1 (preclinical exploratory phase) or phase 2 (clinical testing and validation phase of biomarker development) (36–39).

Autoantibodies as biomarkers for breast cancer

Tables 1, 2 summarize the discovery and application of peripheral blood autoantibodies and autoantibody panels in the diagnosis and prognosis of breast cancer in recent years.
Autoantibodies such as p53, MUC1, and HER2/NEU were discovered many years ago and have been studied in detail.

p53 autoantibody

In 1979, Albert B. DeLeo et al. used Meth A antiserum to react with 35S methionine-labeled Meth A sarcoma and normal BALB/c lung fibroblasts. They found that Meth A sarcoma contained a protein with an apparent molecular weight (Mr) of approximately 53,000, while normal fibroblasts did not (67). This finding indicates that the Meth A antiserum contains specific antibodies against this protein. The protein is named p53. p53 can be detected in a variety of tumor cells, including breast cancer cells, in animals and humans, but not in normal cells (67–69). Therefore, p53 was initially thought to be an oncogene. However, S.J. Baker et al. subsequently found p53 mutations in the 17p region of colorectal cancer chromosomes that are not present in normal tissues (70). L.A. Donehower et al. found that p53 knockout mice developed normally but were prone to spontaneous tumors (71). Since then, p53 has been mainly studied as a tumor suppressor gene. p53 plays a role in cell cycle arrest, apoptosis, DNA repair, senescence, angiogenesis, cell metabolism, reactive oxygen species (ROS) generation, autophagy, and iron-mediated death. Its mutations can lead to the occurrence of a variety of cancers (72). In 1982, L.V. Crawford et al. detected p53 antibodies in the serum of breast cancer patients but not in healthy controls (73). In subsequent studies of p53 autoantibody detection in the peripheral blood of breast cancer patients that ended in 2016, the median sensitivity and specificity were 17.5% (4.8-100%) and 98.7% (95-100%), respectively. Meta-analysis showed that when the cutoff value was defined as the mean +2 or 3 standard deviations, the summary area under the curve (SAUC) was 0.78 (74). The analysis of p53 autoantibody levels is helpful for breast cancer screening, but because of the relatively low sensitivity, its efficacy is not ideal. However, in recent years there have been several studies using panels including p53 autoantibody, which have yielded high specificities as well as high sensitivities (53, 75). P53 and its autoantibody are widely detected to exist in tissues or serum of different kinds of cancer, and there are no studies on the specificity of p53 autoantibody in breast cancer patients so far. But combining p53 autoantibody with other autoantibodies or proteins is still helpful since p53 plays an important role in the tumorigenesis of breast cancer. Therefore, further research about p53 autoantibody is needed to develop more effective ways to screen for breast cancer. In addition, some studies have shown that the expression of serum p53 autoantibodies is associated with p53 accumulation in tissue (76). However, others speculated that there was no significant correlation between serum p53 autoantibody levels and p53 accumulation in cancer tissues, while the correlation between
Antibodies/Antigens	Source of study	Cohort	Methodology	Groups compared	Biomarkers analyzed	Diagnostic value	Reference Year						
FTH1 + hnRNPF + CA 15-3	R serum	BC	ELISA	BC vs. HC	FTH1 + hnRNPF + CA 15-3	0.931 89.3 93.8	(40) 2013						
		HC	NA	NA	Phage ELISA	K94p1	0.648 50 82.6	(41) 2013					
K94p1	R serum	BC	NA	NA	proteomic analysis	GAL3+RACK1	0.648 50 82.6	(42) 2013					
		HC	NA	NA	ELISA	GAL3+RACK1 +PAK2+PHB2+RUVBL1	0.81 66 87	(42) 2013					
GAL3+RACK1 +PAK2+PHB2+RUVBL1	R serum	DCIS	ELISA	HC vs. T1N0PBC	GAL3+RACK1 +PAK2+PHB2+RUVBL1	0.81 66 84	(42) 2013						
		T1N0PBC	ELISA	HC vs. DCIS	GAL3+RACK1 +PAK2+PHB2+RUVBL1	0.85 82 74	(42) 2013						
ALDH7A1 +ALDOA+ DLD + ENO1 + FBP1 + GAPDH + GPI + PKM2+ TP1 + EFTUD2 + HNRNPA1 + HNRNPA2B1 + HNRNPK + HSPA8+ PTBP1 + RALY + SAP18 + SF3A1 + SFRS1+ SFRS6 + SYNRIP+ U2AF1	P plasma	ER+/PR+BC	Protein Microarray	HC vs. ER+/PR+BC	ALDH7A1 +ALDOA+ DLD + ENO1 + FBP1 + GAPDH + GPI + PKM2+ TP1 + EFTUD2 + HNRNPA1 + HNRNPA2B1 + HNRNPK + HSPA8+ PTBP1 + RALY + SAP18 + SF3A1 + SFRS1+ SFRS6 + SYNRIP+ U2AF1	0.77 35 95	(43) 2013						
Sixteen models, each including age and four autoantibodies; or	R serum	BC	NA	NA	ELISA	ONBC&HC&LCIS vs. BC	Sixteen models, each including age and four autoantibodies	0.801 95.2 49.5	(44) 2013				
Antigens no.016 +080+095+115			201	Sixteen models, each including age and four autoantibodies; or									
c-myc+survivin +cyclin B1+cyclin	R serum	BC	NA	NA	ELISA	ONBC&HC&LCIS vs. BC	Antigens no.016 +080+095+115	0.845 94.7 61.8	(45) 2013				
		HC	NA	NA	ELISA	c-myc+survivin +cyclin B1+cyclin	NA	61 89	(45) 2013				
Antibodies/Antigens	Source	Cohort	Methodology	Diagnostic value	Reference Year								
---------------------	--------	--------	-------------	------------------	----------------								
Sample type	**Discovery set**	**Validation/test set**	**Discovery set**	**Validation/test set**	**Groups compared**	**Biomarkers analyzed**	**AUC (%)**	**Sensitivity (%)**	**Specificity (%)**				
D1 + p62 + p53 + p16 + CDK2	R plasma	BC	200	NA	ELISA	NA	BC vs. HC	D1 + p62 + p53 + p16 + CDK2	0.818	72.9	76		
		HC	160	NA	ELISA	NA	BC vs. HC	ANGPTL4 + DKK1 + GAL1 + GRN + LRRCL15 + MUC1 (+ age, BMI, race and current smoking status)	NA	90	42	2014	
HSP60 + FKBP52 + PRDX2 + PPIA + MUC1 + GAL3 + PAK2 + PHE2 + RACK1 + RUVBL1 + p53 + HER2 + CCNB1	R serum	DCIS	NA	87	NA	ELISA	NA	HSP60 + FKBP52 + PRDX2 + PPIA + MUC1 + GAL3 + PAK2 + PHE2 + RACK1 + RUVBL1 + p53 + HER2 + CCNB1	NA	90	51		
		HC	156	NA	ELISA	NA	BC vs. DCIS	ANGPTL4 + DKK1 + GAL1 + GRN + LRRCL15 + MUC1 (+ age, BMI, race and current smoking status)	NA	90	32		
Impl1 + p16 + Koc + survivin + cyclin B1 + c-myc	R serum	BC	NA	49	ELISA, WB	NA	BC vs. HC	Impl1 + p16 + Koc + survivin + cyclin B1 + c-myc	NA	67.3	92.2	2015	
IMP2/p62	R serum	BC	NA	49	NA	ELISA, WB, Indirect immunofluorescence	NA	IMP2/p62	NA	0.714	NA	NA	2015
		HC	38	NA	ELISA	NA	BC vs. HC	IMP2/p62	NA	0.615	NA	NA	2015
TP53	R serum	HRNBC	NA	43	NA	ELISA	NA	TP53	NA	0.677	34.9	90	2015
		HC	87	NA	ELISA	NA	TN vs. HC	TP53	NA	0.832	35.7	90	2015
CTAG1B + CTAG2 + TP53 + EN216 + PPIK42C + ZBTB16 + TAS2R8 + WBPDNL + DOK2 + PSRC1 + MN1 + TRIM21	R plasma	BLBC	45	145	Protein array	BLBC vs. HC	CTAG1B + CTAG2 + TP53 + EN216 + PPIK42C + ZBTB16 + TAS2R8 + WBPDNL + DOK2 + PSRC1 + MN1 + TRIM21	NA	0.68	33	98		
TYMS, PDLIM1	R plasma	BC	30	64	SERPA	ELISA	BC vs. HC + RA	TYMS, PDLIM1	0.804	57.8	95	2016	
		HC	30	50	ELISA	NA	BC vs. HC + RA	PDLIM1	0.711	73.4	58.3	2016	

(Continued)
Antibodies/Antigens	Source Cohort Methodology	Diagnostic value	Reference Year	
FRS3+RAC3+HOXD1+GPR157+ZMYM6+EIF3E+CSNK1E+ZNFX510+BMX+SFA1+SOX2	**BC vs. HC vs. BBD**	**AUC**		
HSPB1+HSPD1+HSP90+p53+HSP90+HSPA5+HSP90B1	**BC vs. HC**	**0.978**		
LGALS3+PHB2+MUC1+GR2+CA15-3	**BC vs. HC**	**0.872**		
RAD50+PARD3+PP1+APAP30BP+NY-BR-62+NY-CO-58	**BC vs. HC**	**0.808**		
p16+c-myc+TP53+ANXA-1	**BC vs. HC**	**0.916**		
Thioredoxin-Like 2 Autoantibody	**BC vs. HC**	**0.916**		
p53+cyclinB1+p16+p62+14-3-3	**BC vs. HC**	**0.849**		
TOPO48	**BC vs. HC**	**0.801**		
p53+RadA+p90+NY-ESO-1+HSP70+c-myc+galectin-1+Sui1	**BC vs. HC**	**0.916**		

Continued in the next table.
Antibodies/Antigens	Source Cohort Methodology	Diagnostic value	Reference Year	
+KN-HN-1 +HSP40+PrxV1 +p62+cyclin B1 +HCC-22-5 + annexinII +HCA25a+HER2	Discovery set Validation/test set Discovery set Validation/test set	Groups compared Biomarkers analyzed AUC Sensitivity (%) Specificity (%)	(61) 2021	
BRCA2+CEBPA +CEP55+FUBP1 +HRA5+RaA	R serum BC NA 279 NA ELISA BC+HC BBD BRCA2+CEBPA +CEP55+FUBP1 +HRA5+RaA	0.916 78.9 90.2	2021	
BMI-1+HSP70 +NY-ESO-1+p53	R serum BC NA 123 NA ELISA BC+HC	BBD BMI-1+HSP70 +NY-ESO-1+p53	0.819 63.4 90.2	(62) 2021
anti- KJ901215, -FAM49B, -HYI, -GARS+- CRLF3	R serum ES-BC 80 245 high-density HuProtTM array, low-density focused array ELISA ES-BC+BD+HC	anti- KJ901215, -FAM49B, -HYI, -GARS+- CRLF3	NA 38.78 85	(63) 2022

NA, Not available.
Antibodies/Antigens	Type of study	Source	Cohort	Methodology	Prognostic value	Reference Year
TPO, TG	P serum	BC	200	NA	NA TPO, TG	(64) 2015
					lower rate of axillary involvement (22% vs. 46%, p=0.007) and a lower rate of Ki-67 proliferation index (12.73% vs. 20.72%, p=0.025)	
					higher recurrence-free survival (P = 0.015)	(65) 2016
					higher recurrence and mortality (fully adjusted HR(95%CI) per log increase of 1.25 and 1.31)	(66) 2022
					higher recurrence (HR(95%CI) = 1.87)	

AUC, area under the curve; R, retrospective study; P, prospective study; NA, not available; ELISA, enzyme-linked immunosorbent assay; SEREX, serological analysis of recombinant cDNA expression libraries; SERPA, serological proteome analysis; WB, Western blot; BC, patients with breast cancer; HC, healthy controls; BBD, patients with benign breast disease; DCIS, ductal carcinoma in situ; ONBC, patients with other nonbreast cancers; RA, patients with rheumatoid arthritis; HRNBC, hormone receptor-negative; ER+ /PR+BC, breast cancer patients with estrogen receptor positive/progesterone receptor positive; BCS I & II, patients with breast cancer at stage I or II; BCS III & IV, patients with breast cancer at stage III or IV; BBT, patient with benign breast tumor; BLBC, patients with basal-like breast cancer; TNBCPBC, patients with primary breast cancer without lymph node metastasis at early stage; IBC, invasive breast cancer; LCIS, lobular carcinoma in situ; SLE, patients with systemic lupus erythematosus.
serum p53 protein levels and the accumulation of p53 in cancer tissues is better (77, 78). In terms of prognosis, recent studies all speculate that p53 autoantibody concentration is considerably associated with poor prognosis (79–81). Some studies have shown that p53 autoantibody concentration is significantly correlated with histological grading and other prognostic information (76, 81). However, some studies have found that p53 autoantibody concentration is not associated with the breast cancer stage (79). Moreover, the analysis of p53 autoantibodies is likely to provide little information about treatment response and tumor recurrence (82).

MUC1 autoantibody

MUC1 is a single channel type 1 transmembrane protein with a highly glycosylated extracellular domain, which extends 200-500 nm from the cell surface (83–85) and is located on the surface of epithelial cells in the breast, gastrointestinal tract, respiratory tract, urinary tract and reproductive tract (86). In healthy tissues, MUC1 protects epithelial cells and acts as a barrier against pathogen colonization (87, 88). Loss of miR-125b expression in breast cancer cells leads to overexpression of MUC1 (89). MUC1 is overexpressed in 91% of breast cancers and is often found in pancreatic cancer, colon cancer, and lung cancer (86, 90). Unlike the normally expressed MUC1, ta-muc1 mainly exhibits a core 1° glycan (91) and is highly sialylated (92). Abnormal glycosylation changes induce an immune response and lead to the production of MUC1 antibodies. Using a glycopeptide microarray containing a 60-mer MUC1 glycopeptide, Blixt et al. reported that the level of MUC1 autoantibodies in patients with early breast cancer (n=365) was significantly higher than that in women with benign breast disease (n=108) or healthy controls (n=99). Interestingly, the induction of autoantibodies to the core 3 and STN glycoforms of MUC1 is significantly associated with a reduction in the incidence of metastasis and an increase in the amount of time before metastasis occurs, which may suggest that different glycoforms of MUC1 may be involved in the progression of cancer (37). A study on a BRCA1/2 mutant female population (n=127) reported that the level of MUC1 autoantibody in mutation carriers was lower than that in the healthy control group. Moreover, contrary to previous studies on women with sporadic breast cancer, no increase in MUC1 IgG antibody levels was found in women at high genetic risk of breast cancer (93). However, Burford et al. applied the 60-mer MUC1 glycopeptide and a microarray platform of recombinant MUC1 containing 16 tandem repeats to screen serum samples and verify the expression of MUC1 autoantibodies and concluded that autoantibodies against the MUC1 glycopeptide cannot be used to distinguish cases and controls (94).

HER2/neu autoantibody

In 1984, A. L. Schechter et al. found that neuro/glioblastoma transformed with DNA from four rat neuro/glioblastoma cell lines all contained the same transforming gene, the NEU gene (95). The gene can be used to synthesize a kind of tumor antigen with a Mr of 185,000 (p185). The sequence of Neu is homologous to that of erb-B, which is the epidermal growth factor receptor (EGFR) gene, but the two are different genes (95, 96). In humans, the counterpart to neu was named HER2 (97). A subsequent study concluded that P185, a product of HER2, was found in 46% of primary breast cancers (98). In 1997, M. L. Disis et al. detected HER-2/neu antibody expression in 11% of breast cancer patients but not in normal controls using ELISA, and the presence of the HER-2/neu antibody was associated with the overexpression of HER-2/neu protein in tumors (99). Recent studies using HER2 autoantibodies to screen for breast cancer have yielded a median sensitivity and specificity of 17.4% and 94%, respectively (74). The analysis of HER2 expression alone is clearly not sufficient to screen for breast cancer. In terms of prognosis, studies have shown that high concentrations of anti-HER2 autoantibodies are associated with a good prognosis in patients with invasive breast cancer, possibly due to enhanced humoral immunity against breast cancer (100). Yukiko Tabuchi et al. also showed that the expression of HER2 autoantibodies was significantly associated with relapse-free survival of breast cancer (65).

Other important autoantibodies

Heat-shock protein (HSP) plays an important role in breast cancer (101). In 1991, A. Thor et al. evaluated the amount of HSP-27 expression in human breast cancer and breast cancer cell lines and showed a relationship between HSP-27 overexpression and breast cancer invasiveness (102). However, subsequent studies have shown that HSP-27 and its autoantibodies are not suitable to be used as biomarkers for breast cancer screening due to low sensitivity (103). In 1993, A. Jameel et al. isolated and characterized a clone homologous to HSP-90 and found that its high expression was associated with early recurrence and reduced overall survival of breast cancer patients (104). S. E. Conroy et al. showed that HSP-90 autoantibodies are associated with metastasis of breast cancer (105). HSP-60 autoantibodies also contribute to the early diagnosis of breast cancer, especially ductal carcinoma in situ (DCIS) (106).

NY-ESO-1 autoantibodies have also been used in several studies for screening for breast cancer (38, 62). However, its sensitivity is very low, since only about 7% of breast cancer patients have positive serum NY-ESO-1 autoantibodies (34,
Autoantibodies of c-myc, BRCA1, BRCA2, cyclin B1, and survivin also have been used in several panels for screening for breast cancer (38, 45).

Autoantibody panels

Most autoantibodies are not capable of screening for breast cancer alone, but combining multiple autoantibodies or autoantibodies with other tumor biomarkers into a panel can improve the sensitivity and specificity. In recent years, Xuejun Dong et al. combined the classic biomarker CA 15-3 with FTH1 and hnRNPF autoantibodies into a panel and yielded a sensitivity of 89.3% and a specificity of 93.8% (108). A combination of multiple HSP and p53 autoantibodies yielded a sensitivity of 86% and a specificity of 100% (53). Although it is hard to do accurate mathematical statistics, we can see from Table 1 that generally speaking, studies using panels have yielded a higher area under the ROC curve (AUC) and higher sensitivity, while the specificity does not seem to have been improved by panels (Table 1 and Figure 2). However, the combination of more kinds of autoantibodies or proteins does not necessarily guarantee a higher specificity or sensitivity. A study detecting TOP048 autoantibody alone has yielded a sensitivity of 100% and specificity of 76%, and the area under the AUC was 0.801, which is higher than that of many panels (59). To make good use of the advantages of panels, it is essential to select proper autoantibodies and proteins that make up the panels. However, there is no method recognized as the most effective for selecting the autoantibodies that comprise the panels.

Methods used to detect autoantibodies

Serological identification of antigens by recombinant expression cloning

Michael Pfreundschuh et al. first used this technique in 1995 to extract mRNA and construct cDNA libraries from several kinds of cancer tissues (109). Diluted patient serum was reacted with recombinant proteins expressed in E. coli transfected with...
Phage display

Phage display uses cDNA derived from tumor tissue to construct cDNA phage display libraries. The phages are then reacted with diluted patient serum. The eluted phages are then amplified and screened again with the patient’s serum. This process is repeated several times (120, 121). This multiple screening processes have a strong enrichment capacity and thus leads to better sensitivity and selectivity than SEREX. Phage display also requires a smaller amount of patient serum and enables the screening of numerous different phages in the same batch, making detection more efficient (120, 121). Thus, phage display has many advantages over the use of a single screening method, such as SEREX. However, similar to SEREX, phage display cannot be used to detect antigens derived from posttranslational modifications. In addition, some proteins cannot be expressed on the surface of phages. Phage display has been used to detect autoantibodies in the breast, prostate, colon, stomach, hepatocellular carcinoma, etc. (119, 121–125).

TABLE 3 Advantages and disadvantages of methods for detecting autoantibodies.

Method	Advantage(s)	Disadvantage(s)
SEREX	lack of need for in vitro cell culture, no MHC restriction, wide detection range	no need for in vitro cell culture, no MHC restriction, wide detection range
Phage display	enrichment capacity, higher sensitivity and selectivity, smaller sample amount, screening of different phages in the same batch	not suitable for posttranslational modification, not suitable for proteins cannot be expressed on the surface of phages
SERPA	separating mixed proteins, suitable for posttranscriptional modifications and protein isotypes	not suitable for mass screening
MAPPPing	suitable for low-abundance antigens	not suitable for mass screening
Protein Microarray	smaller sample amount, a direct platform for protein function analysis	difficulty of maintaining the tertiary structure of a protein
Biosensor (Nanobiosensors)	high selectivity, reproducibility, stability, sensitivity, and linearity	potential toxicities to the environment; miniaturization-induced unreliability; lack of automation; difficulty of integrating the nanostructured-based biosensors
Glycan Array	analyzing the interaction between biological macromolecules mediated by glycans quickly	not suitable for mass screening
SERPA has been used to detect serum autoantibodies in patients with gastric cancer, melanoma, gallbladder cancer, prostate cancer, thyroid cancer, lung cancer, etc. (128–133). Glucose-6-phosphate dehydrogenase (G6PD) was detected in breast cancer samples through SERPA (134). The detection range of SERPA is limited by its inability to be used to dissolve large, non-hydrophilic proteins, and it is difficult to detect low-abundance antigens with this method. As with SEREX, it is also difficult to assess a large number of samples with SERPA.

Multiple affinity protein profiling

Julie Hardouin et al. detected serum autoantibodies in colon cancer using MAPPing (135). MAPPing involves two-dimensional immunoaffinity chromatography, trypsin treatment, and MS/MS analysis. In 2-D immunoaffinity chromatography, proteins that do not bind to antibodies in serum obtained from healthy controls are isolated, and then the antigens that could bind to IgG isolated from the patient’s serum are eluted and collected. Therefore, the possible tumor-associated antigens can be isolated (135). Two-dimensional immunoaffinity can be used to exclude a variety of high-abundance proteins that can react with antibodies in healthy control sera and enrich for low-abundance proteins, thus facilitating the detection of low-abundance tumor-associated antigens from confounding proteins (136).

Protein microarray

The protein microarray can be used to present and assess hundreds of tumor antigens with low sample consumption. Anderson et al. applied a new protein chip technology, nucleic acid protein programmable array (NAPPA), with a three-phase sequential screening strategy. This approach involves printing the cDNA encoding the target gene on the substrate rather than the purified protein (137, 138). Within a few hours, the genes are transcribed and translated to produce the protein. This method minimizes protein degradation and preserves protein structure to the greatest extent possible, and the protein is prepared before the patient’s serum is tested. Finally, the specificity and sensitivity of 28 potential autoantibody biomarkers in the early detection of breast cancer were verified (139). Blixt et al. explored autoantibodies against abnormally glycosylated MUC1 and found that high levels of core3muc1 (glcnaclb1-3galnac-muc1) and stnmuc1 (neuaca2,6galnac-muc1) glycotpe autoantibody subsets were significantly related to a reduction in the incidence rate and an increase in metastasis time. The autoantibody response of patients with early breast cancer is highly correlated with age (37).
Biosensors

Biosensors are sensitive to biological substances and convert them into electrical signals for detection. Because nanomaterials make biosensors more sensitive and more suitable for high-throughput analysis, there have been more studies on biosensors in recent years. Masud et al. developed a gold-loaded nanoporous iron oxide nanocube (AU NPFE 2° 3 NC), which achieved good clinical adaptability in the detection of p53-specific autoantibodies (140). Feyzi Barnaji et al. generated an electrochemical biosensor with nanocomposites containing th/cs/ni(OH) 2 nps/ergo on the surface of a glassy carbon electrode and detected anti-p53 autoantibodies. The experimental results showed stability, reproducibility, and high sensitivity (141).

Glycan array

A glycan array is a high-throughput device that can be used to detect autoantibodies against abnormal glycans (142, 143). Decades of research suggested that abnormal glycosylation was a sign of cancer (144). Abnormal glycan structure can cause an immune response earlier than disease symptoms arise and lead to the production of anti-glycan antibodies (145). Some groups have manufactured high-throughput devices to fix the sugar chain structure onto a glass surface to screen for anti-sugar chain antibodies in patient samples (37, 145, 146). Blixt et al. used a sugar chain array to identify anti-sugar chain antibodies against mucin 1 (MUC1) glycopeptide and found higher levels of MUC1 and cancer-related glycotypes in patients with early breast cancer (37).

Validation methods

Single plex ELISAs are the most commonly used method to verify the presence of peripheral blood autoantibodies. Engvall, E. et al. were the first to use ELISA to measure IgG levels in rabbit serum (147). In 1985, Kostiala, A. A. et al. used ELISA to detect serum single-strand DNA (ssDNA) antibodies in patients with hematological malignancies who were followed up (148). In breast cancer, ELISA was first used to study serum p53 autoantibodies (76, 149). In addition to ELISA, Western blotting (WB) is also a commonly used assay.

Conclusion and future directions

The analyses of existing autoantibodies lack sufficient specificity and sensitivity, most of which are not higher than mammography, and there is no standard for detecting autoantibodies for early cancer diagnosis. In addition, most studies have been about the relationship between autoantibodies and early cancer diagnosis. Only a few researchers have studied the relationship between autoantibodies and prognosis, and different studies of the same antibody sometimes have opposite results. Additionally, it is recommended that future autoantibody studies strictly follow the five-phase model and prospective sample collection retrospective evaluation (PROBE) guidelines, which would enable autoantibody screening to be applied to clinical practice earlier (150, 151).

Although the analysis of peripheral blood autoantibodies is not sufficient when used alone to screen for breast cancer, this analysis can be used as a complement to mammography. The development and application of panels can improve the accuracy of screening for breast cancer with peripheral blood autoantibodies, and its effect is better than the effect of detecting a single autoantibody. Currently, most panels are limited to the combination of multiple autoantibodies. In the future, the combined analysis of autoantibodies and serum protein biomarkers or other components in peripheral blood can be studied, thus providing more possibilities for breast cancer screening (52). Some concerns remain about the analysis of peripheral blood autoantibodies. For example, the levels of some serum autoantibodies probably do not correlate well with the accumulation of corresponding antigens in cancer tissues, including p53 (77, 78). In addition, although many methods can detect peripheral blood autoantibodies, each method has limitations. More accurate and efficient detection methods are needed in the future. There are also studies examining the analysis of autoantibodies isolated from other body fluids, including saliva (152). Sample sources other than blood may be considered in the future.

In addition to being used for screening, peripheral blood autoantibodies can also contribute to the treatment and prognosis of breast cancer. Some autoantibodies have been linked to factors of prognosis, including survival rate, recurrence rate, and response to treatment. Testing for autoantibodies can help more accurately classify breast cancer, predict a patient’s risk, and determine how a patient is likely to respond to different treatment options so that the most effective option is selected. For example, the detection of serum anti-ER α autoantibodies is likely to help predict tamoxifen resistance in patients with ER-positive breast cancer, thus enabling appropriate treatment decisions (153). Recently, Rongrong Luo et al. identified five autoantibodies whose concentration differed in the serum of patients with different subtypes of breast cancer. The panel composed of the five autoantibodies can be used to discern triple-negative breast cancer from non-triple-negative breast cancer, and the AUC is 0.875 (63). At present, the specific mechanism of various autoantibodies and their corresponding antigens in the occurrence and development of breast cancer remains to be studied. Future research can focus on related proteins and their signaling pathways, thus providing new possibilities for the treatment of breast cancer.
Author contributions

WY and QL designed the study. RY and YH drafted the manuscript. QL revised the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This study was funded by the Science and Technology Innovation Program of Hunan Province (Grant No. 2021SK0262), Health and Family Planning Commission of Hunan Province (Grant No. 2022170143), and the National Natural Science Foundation of China (Grant No. 82270834 and 81873640).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun (London England). (2021) 41(11):1183–94. doi: 10.1080/cac2.12207
2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: Cancer J Clin (2022) 72(1):7–33. doi: 10.3332/caac.21708
3. Miller KD, Nagourney L, Mariotto AB, Rowland JH, Yabroff KR, Taylor PR, et al. Cancer treatment and survivorship statistics, 2019. CA: Cancer J Clin (2019) 69(5):363–85. doi: 10.3332/caac.21565
4. Bevers TB, Helvie M, Bonaccio E, Calhoun KE, Daly MB, Farrar WB, et al. Breast cancer screening and diagnosis, version 2018. J Natl Compr Cancer Netw (2018) 16(11):1362–89. doi: 10.6004/jncn.2018.0083
5. Oeffinger KC, Fontanot ET, Etzioni R, Herzog A, Michaelson IS, Shih YC, et al. Breast cancer screening for women at average risk: 2015 guideline update from the American cancer society. JAMA (2015) 314(15):1599–614. doi: 10.1001/ jama.2015.12783
6. Siu AL. Screening for breast cancer: U.S. preventive services task force recommendation statement. Ann Intern Med (2016) 164(4):279–96. doi: 10.7326/M14-2886
7. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. New Engl J Med (2005) 353(17):1784–92. doi: 10.1056/NEJMoa050518
8. Hofvind S, Ursin G, Treffil S, Sebuedegard S, Moller B. Breast cancer mortality in participants of the Norwegian breast cancer screening program. Cancer. (2013) 119(17):3106–12. doi: 10.1002/cncr.28174
9. Coleman A, Phillips N, Wilson C, Decker K, Chiarelli AM, Brisson J, et al. Pan-Canadian study of mammography screening and mortality from breast cancer. J Natl Cancer Institute (2014) 106(11):dju261. doi: 10.1093/jnci/dju261
10. Hofvind S, Geller BM, Skelly J, Vacek PM. Sensitivity and specificity of mammographic screening as practised in Vermont and Norway. Br J Radiol (2012) 85(1020):e1226–32. doi: 10.1259/brj/15164178
11. Wang J, Gottschal P, Ding L, Veldhuizen DAV, Lu W, Housami N, et al. Mammographic sensitivity as a function of tumor size: A novel estimation based on population-based screening data. Breast. (2021) 55:69–74. doi: 10.1016/j.breast.2020.12.003
12. Gatschke PC, Jergensen KJ. Screening for breast cancer with mammography. Cochrane Database Systematic Rev (2013) 2013(6):CD001877. doi: 10.1002/14651858.CD001877.pub5
13. Lobreg M, Lousdal ML, Bretthauer M, Kalager M. Benefits and harms of mammography screening. Breast Cancer Res Treat. (2015) 1(17):1–63. doi: 10.1007/s10545–015–2652–z
14. Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW. Ten-year risk of false positive screening mammograms and clinical breast examinations. New Engl J Med (1998) 338(16):1089–96. doi: 10.1056/NEJM199804163381601
15. Miller AB, Wall C, Raines CJ, Sun P, To T, Narod SA. Twenty five year follow-up for breast cancer incidence and mortality of the Canadian national breast cancer screening study: randomised screening trial. BMJ (2014) 348:g366. doi: 10.1136/bmj.g366
16. Nazeri SS, Mukherjee P. An overview of mammographic density and its association with breast cancer. Breast Cancer (Tokyo Japan). (2013) 20(3):259–67. doi: 10.1016/j.breast.2013.07.008
17. Boyd NF, Gao H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. New Engl J Med (2007) 356(3):327–36. doi: 10.1056/NEJMoa062790
18. Wanders JO, Holland K, Veldhuis WB, Mann RM, Pijnappel RM, Peeters PH, et al. Volumetric breast density affects performance of digital screening mammography. Breast Cancer Res Treat (2017) 162(1):95–103. doi: 10.1007/s10549–016–4090–7
19. Axelrod D, Smith J, Kornreich D, Grinsteen E, Singh B, Fangiulli J, et al. Breast cancer in young women. J Am Coll Surg. (2008) 206(6):1193–203. doi: 10.1016/j.jamcollsurg.2007.12.026
20. Berg WA, Zhang Z, Lehrer D, Jong RA, Pisuano ED, Barr RG, et al. Detection of breast cancer by addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA (2012) 307(13):1394–404. doi: 10.1001/jama.2012.388
21. Coersi G, Chiappiski E, Coersi B, Tot T. The new TBM-based staging of breast cancer. Virchows Archiv on Int J pathology. (2018) 472(5):697–703. doi: 10.1007/s00428–018-2301-9
22. Barddah M, Canzian F, Lindstrom S, Shi Y, Black A, Hoovers RN, et al. Association of breast cancer risk loci with breast cancer survival. Int J cancer. (2015) 137(12):2837–45. doi: 10.1002/ijc.29446
23. Houtsma D, de Groot S, Baak-Pablo R, Kranenbarg EM, Seynaeve CM, van de Velde CJH, et al. The variant T allele of PRM1 in ESR1 gene is a prognostic marker in early breast cancer survival. Sci Rep (2021) 11(1):3249. doi: 10.1038/s41598–021-80022-z
24. Györfy B, Bottai G, Feischier T, Munkácsy G, Budczies J, Paladini L, et al. Alterant DNA methylation impacts gene expression and prognosis in breast cancer subtypes. Int J cancer. (2016) 138(1):87–97. doi: 10.1002/ijc.29684
25. Prat A, Pineda E, Adamo B, Galvan P, Fernandez A, Gaba L, et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast (Edinburgh Scotland). (2015) 24 Suppl 2:S26–35. doi: 10.1016/j.breast.2015.07.008
26. Waks AG, Winen EP. Breast cancer treatment: A review. JAMA (2012) 307(13):1394–404. doi: 10.1001/jama.2012.388
27. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther (2021) 221:107753. doi: 10.1016/j.pharmthera.2020.107753
28. Suzuki H, Graziano DF, McKolans J, Finn OJ. T Cell-dependent antibody responses against aberrantly expressed cyclin B1 protein in patients with cancer and premalignant disease. Curr Clin Rheumatol (2005) 11(4):1521–6. doi: 10.1158/1078–0432.CCR-04–0538

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Signatures involving glycolysis and spliceosome proteins precede a diagnosis of breast cancer. *J Clin Cancer* (1978) 38(3):461–3. doi: 10.1975/20.738.230

Lu H, Ladd J, Feng Z, Wu M, Goodell V, Piteni SJ, et al. Evaluation of known oncoantibodies, HER2, p53, and cyclin B1, in prediagnostic breast cancer sera. *Cancer Prev Res* (Phila). (2012) 5(8):1036–43. doi: 10.1158/1940-6207.CAPR-11-0558

Henderson MC, Silver M, Tran Q, Letsios EE, Mulpuri R, Reese DE, et al. A noninvasive blood-based combinatorial proteomic biomarker assay to detect breast cancer in women over age 50. *PLoS One* (2017) 12(10):e0181698. doi: 10.1371/journal.pone.0181698

Jager D, Unkelbach M, Frei C, Bert F, Scanlan MJ, Jager E, et al. Identification of tumor-restricted antigens NY-RR-1, SPC-1, and a new cancer/testis-like antigen NW-BR-3 by serological screening of a testicular library with breast cancer serum. *Cancer Immun* (2002) 2:5.

Stockert E, Jager E, Chen YN, Scanlan MJ, Goyt I, Karbach J, et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. *J Exp Med* (1998) 187(8):1349–54. doi: 10.1084/jem.187.8.1349

Joos TO, Stoll D, Tillman MF. Miniaturised multiplexed immunoassays. *Curr Opin Chem Biol* (2002) 6(1):76–80. doi: 10.1016/S1289-4837(02)00289-7

Wang J, Figueroa JD, Wallstrom G, Barker K, Park JG, Demirkan G, et al. Plasma autoantibodies associated with basallike breast cancers. *Cancer Epidemiology Biomarkers Prev* Publ Am Assoc Cancer Research cosponsored by Am Soc Prev Oncol (2015) 24(9):1332–20. doi: 10.1158/1055-9965.EPI-15-0047

Bleakley C, Burbold P, Allen DJ, Julian S, Hollingworth M, et al. Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. *Breast Cancer Res* (2011) 13(2):R25. doi: 10.1186/bcr2841

Chapman C, Murray A, Chakrabarti J, Thorpe A, Woolston C, Sahin U, et al. Detection of autoantibodies to multiple tumor-associated antigens (TAAs) in the immunodiagnosis of breast cancer. *Oncol Off J Eur Soc Med Oncol* (2007) 38(3):461

Yu L, Liao Y, Xiang L, Jiang K, Li S, Huangfu M, et al. Autoantibodies as potential early diagnostic serum biomarkers in patients with breast cancer. *Int J Clin Oncol* (2017) 22(1):291–6. doi: 10.1111/ijco.13107

Chung JM, Jung Y, Kim YP, Song J, Kim S, Kim JY, et al. Identification of the thio-redox-like 2 autoantibody as a specific biomarker for triple-negative breast cancer. *J Breast Cancer* (2017) 20(2):128–37. doi: 10.1007/s12282-017-0352-9

Qu C, Wang P, Wang B, Shi J, Wang X, Li T, et al. Establishment and validation of an immunodiagnostic model for prediction of breast cancer. *Oncotarget* (2019) 9(19):168238. doi: 10.18632/oncotarget.26142

He X, Jiang XH, Yie KY, Chen J, Zhang JB, Yie SM. An autoantibody against a 48-kd fragment of human DNA topoisomerase I in breast cancer. *Implication for diagnosis and prognosis, and antibody-dependent cellular cytotoxicity in vitro*. *Cell Immunol* (2020) 347:104.1007. doi: 10.1016/j.cellimm.2019.10407

Sumazaki M, Ogata H, Nabeya Y, Kawaiima A, Hiasawa T, Shimada H. Multipanel assay of 17 tumor-associated antibodies for serological detection of stage 0/I breast cancer. *Cancer Sci* (2021) 112(5):1595–62. doi: 10.1111/cas.14860

Qu C, Wang B, Wang P, Wang X, Ma Y, Dai L, et al. Identification of novel autoantibody signatures and evaluation of a panel of autoantibodies in breast cancer. *Cancer Sci* (2021) 112(8):3388–400. doi: 10.1111/cas.15201

Hong CQ, Wang XF, Huang YC, Chu LY, Wei LF, Lin YW, et al. A panel of tumor-associated autoantibodies for the detection of early-stage breast cancer. *J Cancer* (2021) 12(9):2747–55. doi: 10.7150/jca.75019

Luo R, Zheng C, Song W, Tan Q, Shi Y, Han X. High-throughput and multi-phases identification of autoantibodies in diagnosing early-stage breast cancer and subtypes. *Cancer science*. (2022) 113(9):2770–83. doi: 10.1111/cas.15227

Ortzen G, Dulligio BU, Yegen C, Soran A. Autoimmune thyroid disease and breast cancer prognosis. *J Breast Health* (2015) 11(2):67–71. doi: 10.1155/2015/2462

Tabuchi T, Shimoda M, Kagara N, Naoi Y, Taneti S, Shimomura A, et al. Protective effect of naturally occurring anti-HER2 autoantibodies on breast cancer. *Redox Biol* (2022) 53:102346. doi: 10.1016/j.redox.2022.102346

DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. *Proc Natl Acad Sci United States America*. (1979) 76(5):2420–4. doi: 10.1073/pnas.76.5.2420

Jay G, Khoury G, DeLeo AR, Doppeld WG, Old LJ. p53 transformation-related protein: detection of an associated phosphotransferase activity. *Proc Natl Acad Sci United States America*. (1981) 78(5):2392–6. doi: 10.1073/pnas.78.5.2392

Crawford LV, Pinn DC, Gurney EG, Goodfellow P, Taylor-Papadimitriou J. Detection of a common feature in several human tumor cell lines—a 53,000-dalton protein. *Proc Natl Acad Sci United States America*. (1981) 78(1):41–5. doi: 10.1073/pnas.78.1.41

Baker SJ, Fearon ER, Nimro JG, Hamilton SR, Preisinger AC, Jessup MJ, et al. Chromosome 17 deletions and p53 gene mutations in colorectal cancers. *Sci New York.* (1998) 244(4901):213–27. doi: 10.1126/science.2649981

Donehower LA, Harvey M, Slagle BL, McCarthy M, Montgomery CAlR, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. *Nature.* (1992) 356(6366):215–21. doi: 10.1038/356215a0
Yang et al. 10.3389/_FRONTIERSINIMMUNOL.2022.1035402
72. Hernández Borrero LJ, El-Dery Ws. Tumor suppressor p53: Biology, signaling pathways and therapeutic targeting. Biochim. Biophys. Acts Rev. cancer. (2021) 1876(1):188556. doi: 10.1016/j.bcan.2021.188556.
73. Crawford LV, Pim DC, Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer. (1982) 30(4):403–8. doi:10.1002/ijc.2910300409.
74. Xia J, Shi W, Wang P, Song C, Wang K, Zhang J, et al. Tumor-associated autoantibodies as diagnostic biomarkers for breast cancer: A systematic review and meta-analysis. Scandinavian J Immunol. (2016) 83(6):393–408. doi: 10.1111/ sj.12430.
75. Qiu C, Wang P, Wang B, Shi J, Wang X, Li T, et al. Establishment and validation of an immunodiagnostic model for prediction of breast cancer. Oncoimmunology. (2020) 9(1):168238. doi:10.2147/onci.2019.168238.
76. Mudenda B, Green JA, Green B, Jenkins JR, Tarunina L, Timarova M, et al. The relationship between serum p53 autoantibodies and characteristics of human breast cancer. Br J Cancer. (1994) 70:1115–9. doi:10.1038/344199a1.
77. Balogh GA, Maile DA, Corte MM, Roncoroni P, Nadzi H, Vincent E, et al. Mutant p53 protein in serum could be used as a molecular marker in human breast cancer. Int J Oncol. (2006) 28(4):995–1002. doi: 10.3892/ijc.4.995.
78. Vrbanec D. Anti-p53 antibodies in serum: relationship to tumor biology and the protective function of mucins in the nonimmunoglobulin fraction. Immunogenetics. (1999) 51(5):313–6. doi:10.1007/s002510050315.
79. Blankenstein MA, et al. Humoral immune responses to MUC1 in women with a breast cancer. J Exp. Med Immun. (2011) 36:10277–83. doi:10.1080/2162402X.2019.1682382.
80. Archard CL, Blankenstein SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. (2008) 70:113006. doi:10.1146/annurev.physiol.70.040806.100659.
81. Nattal PG, Nicotra MB, Bigotti A, Venturo I, Samon DJ, Fendly BM, et al. Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer. (1990) (45):457–61. doi:10.1002/ijc.2910450314.
82. Duiis ML, Pupa SM, Gralow Jr, Dittadi R, Menard S, Cheever MA. High-titer HER2/Neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. (1997) 15(11):3363–7. doi:10.1001/jco.1997.15.11.3363.
83. Duiis ML, Pupa SM, Gralow Jr, Dittadi R, Menard S, Cheever MA. High-titer HER2/Neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. (1997) 15(11):3363–7. doi:10.1001/jco.1997.15.11.3363.
84. Hernández Borrero Lj, El-Dery Ws. Tumor suppressor p53: Biology, signaling pathways and therapeutic targeting. Biochim. Biophys. Acts Rev. cancer. (2021) 1876(1):188556. doi: 10.1016/j.bcan.2021.188556.
85. Crawford LV, Pim DC, Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer. (1982) 30(4):403–8. doi:10.1002/ijc.2910300409.
86. Xia J, Shi W, Wang P, Song C, Wang K, Zhang J, et al. Tumor-associated autoantibodies as diagnostic biomarkers for breast cancer: A systematic review and meta-analysis. Scandinavian J Immunol. (2016) 83(6):393–408. doi: 10.1111/ sj.12430.
87. Qiu C, Wang P, Wang B, Shi J, Wang X, Li T, et al. Establishment and validation of an immunodiagnostic model for prediction of breast cancer. Oncoimmunology. (2020) 9(1):168238. doi:10.2147/onci.2019.168238.
88. Mudenda B, Green JA, Green B, Jenkins JR, Tarunina L, Timarova M, et al. The relationship between serum p53 autoantibodies and characteristics of human breast cancer. Br J Cancer. (1994) 70:1115–9. doi:10.1038/344199a1.
89. Balogh GA, Maile DA, Corte MM, Roncoroni P, Nadzi H, Vincent E, et al. Mutant p53 protein in serum could be used as a molecular marker in human breast cancer. Int J Oncol. (2006) 28(4):995–1002. doi: 10.3892/ijc.4.995.
90. Vrbanec D. Anti-p53 antibodies in serum: relationship to tumor biology and the protective function of mucins in the nonimmunoglobulin fraction. Immunogenetics. (1999) 51(5):313–6. doi:10.1007/s002510050315.
91. Nattal PG, Nicotra MB, Bigotti A, Venturo I, Samon DJ, Fendly BM, et al. Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer. (1990) (45):457–61. doi:10.1002/ijc.2910450314.
92. Duiis ML, Pupa SM, Gralow Jr, Dittadi R, Menard S, Cheever MA. High-titer HER2/Neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. (1997) 15(11):3363–7. doi:10.1001/jco.1997.15.11.3363.
93. Duiis ML, Pupa SM, Gralow Jr, Dittadi R, Menard S, Cheever MA. High-titer HER2/Neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. (1997) 15(11):3363–7. doi:10.1001/jco.1997.15.11.3363.
94. Hernández Borrero Lj, El-Dery Ws. Tumor suppressor p53: Biology, signaling pathways and therapeutic targeting. Biochim. Biophys. Acts Rev. cancer. (2021) 1876(1):188556. doi: 10.1016/j.bcan.2021.188556.
95. Crawford LV, Pim DC, Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer. (1982) 30(4):403–8. doi:10.1002/ijc.2910300409.
96. Xia J, Shi W, Wang P, Song C, Wang K, Zhang J, et al. Tumor-associated autoantibodies as diagnostic biomarkers for breast cancer: A systematic review and meta-analysis. Scandinavian J Immunol. (2016) 83(6):393–408. doi: 10.1111/ sj.12430.
antibodies. Int J Cancer (1998) 76(5):652–8. doi: 10.1002/(SICI)1097-0215(19980505)76:5<652::AID-IJC7>3.0.CO;2-P
114. Greener J, Ringhofer M, Simkiopkinco O, Stamarawgouka A, Huebch S, Maurer U, et al., Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp hematol. (2000) 28(12):1413–22. doi: 10.1016/S0014-2999(00)01005-6
115. Stemmer Liewen F, Lu G, Sahin U, Tureci O, Koslovski M, Kautz J, et al. Definition of tumor-associated antigens in hepatocellular carcinoma. Cancer epidemiology biomarkersPrev Pub Am Assoc Cancer Research cosponsored by Am Soc Prev Oncol 2000 (9):335–59. Available at: https://acsjournals.org/doi/article-pdf/9/3/285/28307/1152121681/Frontiers-of-Tumor-associated-Antigens-in-
116. Obata Y, Takahashi T, Sakamoto J, Tamagoe T, Hamagusa T, Marumita H, et al. SEREX analysis of gastric cancer antigens. Cancer chemotheraphy Pharmacol 2000 (6):431-47. doi:10.1007/s00280-009-1509-9
117. Jager D, Stockert E, Scanlan MJ, Greu AO, Jager E, Knuth A, et al. Cancer-testis antigens and ING1 tumor suppressor gene product are breast cancer antigens: characterization of tissue-specific ING1 transcripts and a homologue gene. Cancer Research (1999) 59(24):1617–24. Available at: https://cancerjournal.org/cancer/article/59/24/1617/50752/Cancer-Testis-Antigens-AND-ING1-Tumor-Supressor.
118. Forii S, Scanlan MJ, Invernizzi A, Castiglioni F, Pupa S, Agresti R, et al. Identification of breast cancer restricted antigens by antibody screening of SKBR3 cDNA library using a pooled patient’s serum. Breast Cancer Res Treat (2002) 73(3):241–50. doi:10.1023/A:1015844157576
119. Minenкова O, Pucci A, Pavoni E, De Tomassi A, Fortugno P, Gargano N, et al. Identification of tumor-associated antigens by screening phage-display human cDNA libraries with sera from tumor patients. Int J Cancer. (2003) 106 (4):534–44. doi:10.1002/ijc.11269
120. Sioux M, Hansen M, Dybwad A. Profiling the immune response in patients with breast cancer by phage-display cDNA Libraries. Eur J Immunool (2003) 31 (3):716–25. doi:10.1002/eji.2001310313:7:316-7:321.EJIM-IMMUNOLOGY-7.3.CO;2-9
121. Wang X, Yu J, Sreekumar A, Varambally R, Shen R, Giacherio D, et al. Autoantibody signatures in prostate cancer. Nat Rev Cancer (2003) 3:352–8. doi:10.1038/nrc1050
122. Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, et al. Tracking tumor-associated antigens by multiple affinity protein profiling. J separation science. (2007) 30 (3):352–8. doi:10.1002/jssc.200600524
123. Yang et al. 10.3389/ Frontiers inImmunology frontiersin.org17
124. Ran Y, Hu H, Zhou Z, Yu L, Sun L, Pan J, et al. Proteomics. Nucleophosmin 1. Proteins. 2020 (1615):460763. doi:10.1021/acs.jproteome.0c00324
125. Suzuki A, Iizuka A, Komiyama M, Takikawa M, Kume A, Tai S, et al. Construction of a ternary nano-architecture based graphene oxide sheets, and medical applications. Expert Rev Proteomics. (2021) 18(8):871–90. doi:10.1097/01.epr.0000946907.84932.nx
126. Klade CS, Voss T, Krystek E, Ahorn H, Zatloukal K, Pummer K, et al. Identification of melatonin receptor positive breast cancer by phage-display cDNA libraries. J Mol Med (2000) 6(2):123–8. doi:10.1002/jm.1123
127. Lee PY, Saraygord-Afshari N, Low TY. The evolution of two-dimensional electrophoresis – from proteomics to emerging alternative applications. J Chromatogr A. (2020) 1615:460763. doi:10.1016/j.jchromat.2019.460763
128. Qin J, Yang Q, Ye H, Wang K, Zhang M, Zhu J, et al. Using serological proteome analysis to identify and evaluate anti-GRP78 autoantibody as biomarker of ING1 transcripts and a homologue (SERPA).
129. Arif S, Qudsia S, Urooj S, Chaudry N, Arshad A, Andleeb S. Blueprint of acute myeloid leukemia. Eur J Cancer (2019) 120. doi:10.1016/j.ejca.2019.02.029
130. Pepe MS, Feng Z, James H, Bossuyt PM, Potter JD. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst. (2008) 100(20):1452–8. doi:10.1093/jnci/djn336
131. Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thormaugh M, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 2001 (93):1410–6. doi:10.1093/jnci/93.14.1045
132. Arif S, Qudsia S, Urooj S, Chaudry N, Arshad A, Andleeb S. Blueprint of quart-squares crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1. Biosens bioelectron. (2015) 65:62-70. doi:10.1016/j.bios.2014.09.088
133. Maselli A, Bartolo S, Puglisi R, Raggi C, Spada M, Macchia D, et al. Autoantibodies specific to EBV are involved in tumourxenin resistance in hormone receptor positive breast cancer. Cels (2019) 8(7):750. doi:10.3930/cells0807750