Wolbachia Variants Induce Differential Protection to Viruses in Drosophila melanogaster: A Phenotypic and Phylogenomic Analysis

Ewa Chrostek¹, Marta S. P. Marialva¹, Sara S. Esteves¹, Lucy A. Weinert², Julien Martinez³, Francis M. Jiggins³, Luíz Teixeira¹*

¹Instituto Gulbenkian de Ciência, Oeiras, Portugal, ²Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, ³Department of Genetics, University of Cambridge, Cambridge, United Kingdom

Abstract

Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups — wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ~21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.

Introduction

Many arthropods are infected by bacterial secondary (facultative) symbionts [1]. These are vertically transmitted bacteria that are not essential for the host to survive or reproduce, but nonetheless can have important effects on their host’s biology. The fitness of these secondary symbionts is directly linked to their host’s fitness; their transmission through successive generations is dependent on the breeding success of their hosts. This close association and dependence is predicted to favor the evolution of mutualism [2]. Nonetheless, the presence of replicating bacteria in the host is bound to have a cost. This fitness cost and imperfect vertical transmission would theoretically lead to elimination of vertically transmitted symbionts from host populations [3,4]. Specific phenotypes associated with secondary symbionts explain their maintenance. Some secondary symbionts are parasitic and manipulate their host reproductive biology [3,5]. Others are mutualists and confer a fitness advantage to their hosts (e.g. resistance to environmental stress or pathogens) [6]. Genetic variability of the symbiont may impact all these associated phenotypes. Therefore, understanding this genotypic and phenotypic variability is essential to understand facultative symbionts population genetics.

In recent years it has become clear that symbionts can modulate the interactions between hosts and parasites in many taxa [6–20]. Insects are no exception to this pattern, and secondary symbionts can play a key role in protecting their hosts against infection or parasitism [6,7,9–12,14,17,19]. Protection to pathogens may be a consequence of the protection to nematode parasites conferred by these bacteria [10]. Also, the bacterium Hamiltonella defensa increases in frequency in aphid cage populations in the presence of parasitoid wasps, to which it provides protection, but decreases in the absence of it [21]. Presence of a protective symbiont can, therefore, be treated as an heritable, albeit non-Mendelian, condition-dependent beneficial genetic change [6].

The intracellular α-proteobacteria Wolbachia protects Drosophila melanogaster against viral infections [12,14]. Wolbachia are estimated to infect 40% of arthropod species [22] and are, therefore, some of the most common intracellular bacteria known. Its success may be
Author Summary

Wolbachia are bacterial symbionts that infect many arthropods and can protect insects from viral infection. Here we show that different variants of Wolbachia from Drosophila melanogaster (wMel) are phenotypically heterogeneous: they differ in the level of protection they confer and the titres they reach in their host. The Wolbachia with higher titres have higher antiviral protection but can also exert a cost on their host. Based on the observed phenotypes, we divided the wMel variants into two groups and demonstrated that the division is reflected in their phylogeny. Moreover, we discovered the genetic difference between two otherwise almost identical wMel variants, wMelPop and wMelCS, that may explain why one is highly pathogenic while the other produces benign infections. Our study helps to explain the prevalence of the different wMel variants in wild Drosophila populations and sheds light on the factors shaping it. In particular, the recent replacement of some wMel variants caused a decrease in anti-viral resistance and probably reduced the cost of the symbiont for the host. Finally, our work helps to understand the interaction of wMel with its natural host and inform Wolbachia use in the control of diseases transmitted by insects.

related to its anti-viral protective effect on natural hosts [12,14,23,24], although this protection is not always observed [23,25,26]. Other mechanisms, many involving manipulation of the host reproduction, can also maintain Wolbachia in natural populations [27,28]. The most common manipulation is cytoplasmic incompatibility (CI), which renders the crosses between Wolbachia infected males and uninfected females sterile or with low viability, giving a relative fitness advantage to infected females. Nonetheless, even when Wolbachia can cause CI, a beneficial effect, like protection to viruses, may contribute to the invasion of a new host [29].

Wolbachia-conferring protection against viruses is of particular interest because of potential applications in vector-borne disease control. Mosquitoes infected with Wolbachia can be more resistant to human arboviruses [24,25,30–33] and other human pathogens [30,34–36]. A large effort is being made to use Aedes aegypti mosquitoes trans-infected with Wolbachia variants from D. melanogaster in limiting dengue virus transmission [30,31]. Pilot releases of these trans-infected mosquitoes have already been conducted successfully [37] and intervention in dengue endemic areas is planned [38].

There can be a great deal of genetic variation in how symbionts modulate host-pathogen interactions. Different D. simulans lines infected with different Wolbachia strains, for instance, show variation in the protection to viruses [23]. The protection ranges from nearly complete to none, and the combinations showing higher protection have higher levels of the endosymbiont [23]. While these Wolbachia strains are distantly related, other studies have found variation within populations of closely related symbionts. For example, H. defensa protects aphids from parasitoid wasps only when it carries a lysogenic bacteriophage [39]. Understanding this genetic variation among symbionts may explain the frequency of different variants in natural populations and give insight into the mechanisms underlying the interactions.

In natural populations of D. melanogaster there has been a recent replacement of Wolbachia variants [40–42]. Wolbachia is present in most natural populations of D. melanogaster, although with variable frequencies of infection [41–50]. Only a single strain, wMel, is known to infect D. melanogaster, but several closely related genotypes of this strain - wMel, wMelCS, wMelCS and wMelCS2 - were defined on the basis of polymorphic genetic markers [40]. The frequencies of these genotypes in isolates from natural populations of D. melanogaster have changed during the 20th century. Early isolates have a high proportion of wMelCS type, while the wMel genotype is predominant in late 20th century isolates [40]. This W mel genotype replacement was supported by the analysis of Wolbachia genotype-associated mitochondrial DNA haplotypes [41]. More recently the genomes of 129 different wMel variants and 290 associated and non-associated mitochondria were assembled [42]. Their analysis showed that all wMel variants come from a single infection event and the most recent ancestor of all wMel and mitochondria dates to about 8,000 years ago [42]. The low genetic diversity and excessive rare variants in wMel, in the well sampled North American population of the Drosophila Genetic Reference Panel [51], are consistent with a recent sweep of wMel variants [42]. However, the wMelCS and wMel types diverged several thousand years ago [42] and the sweep is incomplete, since there are still wMelCS variants in natural populations [41,42,48,50].

Phenotypic differences associated with different wMel variants could explain why their frequencies have changed. CI, despite being weak in D. melanogaster, has been shown to vary in level in flies harbouring different wMel genotypes [52,53]. However, the contribution of host or symbiont genetic variation to these differences is not resolved in these studies. Overall clear phenotypic differences between natural wMel variants are not known.

A wMel variant that clearly induces a particular phenotype is wMelPop [54]. This variant was isolated from a laboratory stock and it is pathogenic: it overproliferates and shortens host lifespan [54–56]. In terms of genetic markers wMelPop is indistinguishable from wMelCS [57], however, no wMelCS variant with a similar phenotype has been isolated from the wild. Both wMelPop and wMel genotype have been introduced into Ae. aegypti as a strategy to block dengue [30,31] and they protect differently from viral infection [31,32]. Because of the potential field application and the pathogenicity of wMelPop it is also important to understand in more detail the phenotypic and genomic differences between wMelPop and other variants.

Here we compare the antiviral protection conferred by different wMel variants, in genetically identical D. melanogaster hosts. We show that wMelCS-like confer greater antiviral protection than wMel-like variants, but have higher bacterial densities and can reduce the survival of the flies. Through the assembly of their genomes and phylogenetic analysis we reconstruct the relationship of the strains. We also investigate in detail the phenotypic differences between the closely related wMelCS and wMelPop and propose a genomic basis for them. This analysis strengthens the notion that susceptibility to infectious disease can rapidly evolve due to changes in symbionts found in the host population.

Results

Phylogenomic Analysis of wMel Variants

To address the question of how genetic variability within the Wolbachia wMel strain affects resistance to viruses, we analysed the five genotypes described by Riegler et al. on the basis of a small number of genetic markers [40]. For the genotypes wMel and wMel3 we used one D. melanogaster line, while for wMel2, wMelCS and wMelCS2 we used two lines for each genotype (Table 1). We will refer to each wMel originating from a unique D. melanogaster line as a variant. In order to determine the phylogeny of these
variants sequenced and assembled their genomes and associated mitochondria. We sequenced 75 bp paired-end libraries and mapped the reads to the wMel reference genome (GenBank associated mitochondria. We sequenced 75 bp paired-end libraries of 179 produced a phylogenetic tree of the wMel variants together with the genomes of 179 mapping strategy was previously used to assemble and analyse (Figure 1 and Figure S1).

The wMel variant genome clusters together with the reference genome AE017196 in clade III. The only differences we found between them were five positions with an ambiguous call for the wMel nucleotide. This indicates a good quality of the sequencing and assembly, since the reference genome was sequenced from this variant [58]. wMel3 is also assigned to clade III and is the most closely related, out of all the genomes in the phylogenetic tree, to wMel and AE017196. This wMel3 variant is the only known variant with this genotype. The original D. melanogaster stock that had wMel3 was probably related to the laboratory stock used for Wolbachia wMel sequencing. The only genomic marker from Riegler et al. that distinguishes wMel3 from wMel is the absence of the IS5 (ISWip1) W0516/7 [40]. This seems to be a consequence of a very recent excision of this mobile element in the wMel3 variant since it is present in the closely related wMel variant and in Me2_a and wMel2_b. Sanger sequencing of this region shows that this would be a precise excision of the transposon (data not shown).

wMel2_a and wMel2_b variants form the new major clade VIII. We estimate that the most recent common ancestor of this clade and clade III dates to 37,537 fly generations before present. The original flies carrying these two variants were captured in the laboratory variant wMelPop is indistinguishable from wMelCS, based on genomic markers [57]. We have also sequenced and assembled its genome and found it to be closely related to wMelCS_b (Figure 1 and Figure S1).

wMel Variants Provide Differing Levels of Protection to Viruses

To compare the phenotypic effects of the wMel variants, we replaced the first, second and third chromosome of Drosophila lines carrying these variants with chromosomes of the DrosDel w1118 isogenic line [39], using balancer chromosomes. All lines were cleaned of possible chronic viral infections, as previously described [12,60]. The microbiota associated with these lines, as well as the control Wolbachia-free DrosDel w1118 isogenic line (w1118 iso), are expected to be diverse and, presumably, eliminated by the virus cleaning procedure. To homogenize the microbiota associated with these lines, surface sterilized embryos of each line were raised in fly food containing an inoculum of Drosophila-associated microbiota from a reference stock.

We tested the mortality after Drosophila C virus (DCV) infection in the lines harbouring different Wolbachia wMel variants (Figure 2A). DCV is a non-enveloped, positive sense single-stranded RNA virus of the Dicistroviridae family, that is a natural pathogen of D. melanogaster [60,61]. It has been shown before that Wolbachia gives strong resistance to this virus [12,14]. All lines with Wolbachia survive the DCV challenge better than the w1118 iso line without Wolbachia, demonstrating that all these wMel variants confer protection to DCV. We have analysed the survival data of these infected lines with a Cox proportional hazard mixed effect model [62]. This method determines the Cox hazard ratio for each line, which in this experiment is a measure of the risk of death of DCV-infected flies from each Wolbachia line relative to the risk of death of DCV-infected flies from the Wolbachia-free line (Figure 2B). A Tukey’s test on Cox hazard ratios allows the comparison between all the lines and shows that the Wolbachia variants segregate into two groups (Figure 2B). The Cox hazard ratios of the wMelCS-like lines (wMelCS_a, wMelCS_b, wMelCS2_a and wMelCS2_b) are not significantly different from each other but are lower and significantly different from wMel-like lines (wMel, wMel2_a, wMel2_b, and wMel3). Therefore, variants of clade VI (wMelCS-like) confer higher protection to DCV infection than variants of clades III and VIII (wMel-like). There are still some statistically significant differences in survival between lines of the wMel-like group (Figure 2B). However, the statistical analysis does not allow a clear subdivision. In the timeframe of this experiment there is no significant difference in survival between the lines pricked with buffer only (Figure 2E). Therefore, we conclude that the differences in survival upon viral challenge are due to variability in protection to viruses.

Wolbachia and mitochondria are both maternally inherited. Consequently, introducing Wolbachia variants into the same host genetic background implies co-inheritance of the mitochondria associated with them. To determine the influence mitochondria may have on the survival upon the viral infections we cured all the lines of Wolbachia by treating them with tetracycline and we re-homogenized the microbiota in the newly established lines. We have performed this infection with the same dose of DCV as for the Wolbachia lines and also with a lower dose in order to better

| Table 1. wMel variants used. |
Variant name	Wolbachia genotype	Stock name/number	Reference
wMel	wMel	yw PSC2	[40]
wMel3	wMel3	Umea 94/103466	[40]
wMel2_a	wMel2	Amamioshima/E-10032	[40]
wMel2_b	wMel2	Amamioshima/E-10030	[40]
wMelCS_a	wMelCS	Canton/S/C5	[40]
wMelCS_b	wMelCS	VF-0058-3	[12]
wMelCS2_a	wMelCS2	Kurdamir/103393	[40]
wMelCS2_b	wMelCS2	Anapa-79/103432	[40]
wMelPop	wMelPop	Popcorn/w1118	[40]

Wolbachia genotypes are based on the diagnostic PCR assays described in Riegler et al. [40]. Further information about origin of variant can be found in the indicated reference.
Figure 1. Phylogeny of wMel variants. Phylogenomic tree was reconstructed using the concatenated sequences of complete Wolbachia and mitochondrial genomes. The length of the branches reflects the estimated number of Drosophila generations, which was calibrated using the mitochondrial mutation rate. The node labels show posterior supports >0.5. The clades are named after Richardson et al. [42]. doi:10.1371/journal.pgen.1003896.g001

Fly generations before present
Figure 2. *Wolbachia* wMel variants confer different protection to *Drosophila C Virus*. (A) One hundred males of each wMel variant line and *w*^{1118* iso*} were pricked with DCV (10^7.5 TCID_50/ml) and survival was followed daily. Two more replicates were performed with similar results. (B) Cox hazard ratio of each wMel variant line compared to *w*^{1118* iso*} when infected with DCV (10^7.5 TCID_50/ml). The natural logarithm of the Cox hazard ratio is shown. Error bars represent standard error. Letters refer to compact letter display of Tukey’s test of all pairwise comparisons. Analysis is based on three independent replicates (doses: 10^7 TCID_50/ml, 10^7.5 TCID_50/ml and 10^9 TCID_50/ml), each with 100 flies per line, with 10 flies per vial. *w*^{1118 iso*} is assigned to group “d” in the compact letter display of Tukey’s test (not shown). (C) Eighty males of each tetracycline treated line, derived from the wMel variants lines and *w*^{1118* iso*}, were pricked with DCV (10^5.5 TCID_50/ml) and survival was followed daily. Two more replicates were performed with.
similar results. (D) Cox hazard ratio of each tetracycline treated line, derived from the wMel variants lines, compared to w¹¹¹⁸ iso tetracycline treated line, when infected with DCV. Analysis is based on three independent replicates, one with 80 flies per line (10^{6.5} TCID₅₀/ml) and two with 100 flies per line (one at 10^{6.5} TCID₅₀/ml and one at 10^{7.0} TCID₅₀/ml), with 10 flies per vial. w¹¹¹⁸ iso tetracycline treated line is assigned to group “a” in the compact letter display of Tukey’s test (not shown). (E) Thirty males of each wMel variant line and w¹¹¹⁸ iso were pricked with buffer and survival was followed daily. (F) 3–6 day old males of each wMel variant line and w¹¹¹⁸ iso were pricked with DCV (10^{7.5} TCID₅₀/ml) and collected 3 days later for RNA extraction and RT-qPCR. Relative amount of DCV was calculated using host Rpl32 gene expression as a reference and values are relative to median of line (one at 10⁷ TCID₅₀/ml and one at 10^{7.5} TCID₅₀/ml), with 10 flies per vial.

To test if there was also a difference in FHV titres between the two groups of wMel variants we measured the levels of this virus three days after infection by qRT-PCR. The comparison of the virus titres between the wMel-like and wMelCS-like groups shows no statistically significant difference (Figure 3E, linear mixed-effect model, p = 0.535). Therefore the differences in survival between the two groups are due to differences in tolerance to FHV, not resistance.

The above results show that all tested wMel variants confer protection to DCV and FHV. There is a differential protection that separates the wMel variants into two groups. The wMelCS-like group lines, compared with the wMel-like lines, have a better survival upon infection with both viruses, higher resistance to DCV, and higher tolerance to FHV.

Wolbachia Densities and Host Lifespan Are wMel Variant Dependent

In order to characterize better the differences between wMel variants and understand the basis of the differential protection, we analysed the titres of Wolbachia in the different lines. We determined by qPCR the levels of Wolbachia genomes relative to host genomes in males of two age groups: 3–4 and 6–7-day-old. (Figure 4A). We observe that, for each variant, the titre of Wolbachia is very similar between the two age groups and that there is no tendency for higher or lower titres at these two time points. However, lines with different wMel variants vary in Wolbachia titres and can, once more, be separated into wMelCS and wMel-like groups. A pairwise Wilcoxon rank sum test shows that wMelCS-like variants are not significantly different between them but different when compared to wMel-like variants. wMel-like variants show some differences between themselves but with no clear subgroups. The median Wolbachia titre of wMelCS-like lines is 2.55 times higher than wMel-like lines. These results show that wMel titres are, at least partially, controlled by the symbiont genotype.

To determine if these differences in Wolbachia titres have any long-term effect on the D. melanogaster, we followed the long-term survival of these lines in the absence of any viral challenge (Figures 4B and 4C). The three lines with the shortest average lifespan are all infected with wMelCS-like variants. Of these, the wMelCS_a line has a significantly greater mortality rate compared to all other variants and w¹¹¹⁸ iso, and wMelCS2_b has a statistically significant greater mortality rate than w¹¹¹⁸ iso and three of the wMel-like lines. Despite its shorter mean lifespan, when analysed as proportional hazards the wMelCS_a line is not significantly different from the control. Furthermore, when wMelCS and wMel-like group survivals are directly compared the difference is not significant (Tukey’s test on the mixed effects Cox model fit of the survival data, p = 0.073). Therefore we can only state that some wMelCS-like variants have a deleterious effect on longevity. Nonetheless, these results exclude the hypothesis that Drosophila lines with wMel-like Wolbachia succumb to viral infection faster due to a deleterious effect of the variants they are harbouring.

Prompted by these lifespan shortening effects, we investigated how the Wolbachia titres of wMelCS_a, wMelCS_b and wMel
change through the host life (Figure 4D). We observe that in these three variants Wolbachia levels increase with Drosophila age (this was not evident in the data set of Figure 4A due to the small interval between the two age groups analysed). Based on the comparison of linear and log-linear models, a linear growth explains better these increases than an exponential one (Table S1). The titres at eclosion are not significantly different between the three variants in a multiple linear regression analysis (intercept wMel: 0.722, intercept difference between wMelCS_a and wMel: 0.416, p = 0.090; intercept difference between wMelCS_b and wMel: 0.222, p = 0.328). However, while there is a significant increase in wMel titres with the host age (slope wMel: 0.017, p = 0.003), the wMelCS_a and wMelCS_b growth rate is 6.5–8 times faster than wMel (slope difference between wMelCS_a and wMel: 0.115, p<0.001; slope difference between wMelCS_b and wMel: 0.092, p<0.001). wMelCS_a also has a twenty percent faster growth than wMelCS_b (slope difference between wMelCS_a and wMelCS_b: 0.024, p = 0.010). These results show that the two tested wMelCS-like variants have a higher growth rate than the wMel-like variant tested. Moreover, wMelCS_a, the variant that shortens host lifespan, has the highest growth rate.

Finally, we analysed the lifespan of the tetracycline treated lines in order to assess the mitochondria contribution to the differences seen in the wMel variants lines survival (Figure 4E and 4F). Although we see small differences between the lines they do not match the differences seen in the wMel variant lines (e.g. the wMelCS_a line treated with tetracycline does not have the shortest lifespan) (Figure 4F). There is no difference in survival of wMel and wMelCS-group derived lines (Tukey’s test on the mixed effects Cox model fit of the survival data, p = 0.615). We do observe, however, a statistically significant difference between these groups and w1118 iso derived line (p<0.001 for wMel-group vs w1118 iso derived lines, p>0.001 for wMelCS-group vs w1118 iso derived lines). The w1118 iso line was subjected to the same tetracycline treatment and the difference in survival may be due to variation in mitochondria [67].

Since the wMelCS-like variants have higher titres of Wolbachia and better protection to viruses we tested the correlation between Wolbachia titres and the survival upon viral infections, viral titres and long-term survival (data in Table S2). We found significant correlations between Wolbachia titres and survival upon DCV and FHV infection (Pearson’s product moment correlation, p = 0.034 and p = 0.002 with Bonferroni correction, respectively), but not with the other phenotypes.

Given the recurrent phenotypic differences between the wMel-like group and the wMelCS-like group, we tested if, overall, our data led to the clustering of wMel variants into these two groups. To do this we analysed data of survival to viral infection, viral titres upon infections, long-term survival and Wolbachia titres together (Figure 5 and Table S2). A cluster analysis of the scaled values, based on Euclidian distances, shows that the wMel variants phenotypes cluster them into a wMel and a wMelCS-like group. This phenotypic clustering (Figure 5) has a phylogenetic basis (Figure 1) and the two groups correspond to the basal clade VI (wMelCS-like) and to variants of the more closely related clades III and VIII (wMel-like).

Wolbachia wMelPop Provides the Strongest Resistance against Viruses

The life shortening wMelPop Wolbachia strain is known to over-proliferate in its native D. melanogaster host [54] and it has been shown to confer protection to DCV [14]. Importantly, this variant has been transferred to Aedes aegypti where it also limits infection by several viruses, like dengue and Chikungunya, and the malaria parasite Plasmodium gallinaceum [30,68]. wMelPop is indistinguishable from wMelCS based on genomic markers [57], therefore we made a detailed comparison between wMelPop and wMelCS_b in the same conditions as for the other wMel variants. However, this set of experiments was performed with 1–2-day-old flies to minimize the variability due to different Wolbachia levels within the wMelPop sample or the wMelPop deleterious effect. Upon challenge with DCV, young flies carrying wMelPop have 235-times lower viral loads than the flies with wMelCS_b (over 3000-fold less than w1118 iso) (Figure 6A, Mann-Whitney test, p<0.001), wMelPop also has much lower titres of FHV three days post infection when compared with wMelCS_b (Figure 6B, Mann-Whitney test, p = 0.007). In most of the wMelPop samples FHV titres were below the limit of detection of the qRT-PCR. Therefore the difference between the medians of wMelCS_b and wMelPop is not quantifiable but it is over ten thousand fold (over one million-fold when compared with w1118 iso). These results show that wMelPop gives stronger resistance to viruses than the closely related wMelCS_b. This data also demonstrates that Wolbachia can confer strong resistance to FHV.

We tested wMelPop protection to viral infection in terms of survival upon infection with FHV (Figure 6C). Contrary to wMelCS_b, the presence of wMelPop does not increase survival of FHV infected flies (Tukey’s test on the mixed effects Cox model fit, wMelCS_b versus w1118 iso lines infected with FHV, p<0.001; wMelPop versus w1118 iso lines infected with FHV, p = 0.229). This is due to a very strong pathogenic effect of wMelPop, even in the absence of FHV; at 25°C all flies are dead by day 12 (wMelPop versus w1118 iso lines not infected with FHV, p<0.001). This pathogenic effect at 25°C has been reported before [54–56] but seems stronger in our experiment. Nonetheless, FHV does not cause any mortality in the wMelPop line (wMelPop line infected and not infected with FHV, p = 0.816), which is consistent with the strong resistance we observed. Therefore, although wMelPop confers strong resistance to FHV, it does not increase lifespan of an FHV infected host because it is very deleterious by itself.
Figure 4. *Wolbachia* densities and *Drosophila* longevity are variant dependent. (A) 3–4 and 6–7 day old males of each wMel variant line and *w1118 iso* were collected for DNA extraction and qPCR. Relative amount of *Wolbachia* genomic DNA was calculated using host Rpl32 as a reference gene and values are relative to median of 3–4 days-old wMelCS_b samples. Each point represents a replicate (ten males per replicate, four replicates per *Drosophila* line), and lines are medians of the replicates. The compact letters display of pairwise Wilcoxon rank sum tests between variants is shown on the top. (B) The survival of one hundred males of each wMel variant line and *w1118 iso* was checked every five days. One more replicate was performed with similar results. (C) Cox hazard ratio of each wMel variant line compared to *w1118 iso*. The natural logarithm of the Cox hazard ratio is shown. Error bars represent standard error. Letters refer to compact letter display of Tukey’s test of all pairwise comparisons. Analysis is based on two.
Given the strong anti-viral resistance and pathogenic effect we observe with wMelPop at 25°C, we decided to measure how Wolbachia titres change with age in flies infected with wMelPop and wMelCS_b (Figure 6D). wMelPop growth is better explained by an exponential model of growth than a linear model (Table S1) with an estimated doubling time of 3.4 days. Wolbachia titres and growth rate are significantly higher in wMelPop [log-linear model, intercept difference between wMelPop and wMelCS_b: 0.904, \(p < 0.001 \); slope difference: 0.224, \(p < 0.001 \)]. At the day of our viral infection (1–2 days) wMelPop titres are 3 to 5 times higher than wMelCS_b titres.

Once again we observe that the wMel variant with higher titres gives stronger protection to viruses. In wMelPop the exponential growth leads to a much stronger resistance to DCV and FHV but severely reduces the host lifespan.

Genetic Basis of the Phenotypic Differences between wMel Variants

Having identified phenotypic differences between wMel variants we asked what their genetic bases were. To answer that used the information from the sequence analysis and their assembled genomes. From the multiple alignments we extracted variant sites that were different between all wMel-like and all wMelCS-like variants, in order to focus on common differences. We detected 108 single nucleotide polymorphisms (SNPs) between these two groups of variants, a tandem duplication and seven insertion-deletion polymorphisms (indels) (Tables 2, S3 and S4). 83 of the SNPs map to annotated wMel genes [58], of which 59 are non-synonymous substitutions. The 55 genes that differ in these 59 SNPs encode proteins with a wide variety of functions, based on predicted conserved domains (Table 2). This set contains a high number of genes coding ankyrin-repeat containing (ANK) proteins: WD0073, WD0292, WD0514, WD0636, WD0754, and WD0766.

In order to understand the basis of the strong phenotypic differences between the closely related wMelCS_b and wMelPop variants we have investigated the differences between their genomes. Previous studies have not identified any genetic differences between wMelCS and wMelPop [57,69]. From the genome sequence analysis we found only two SNPs unique to wMelPop, and six positions where there was an ambiguous call for the wMelPop nucleotide. We Sanger sequenced these regions in wMelCS_b and wMelPop, and found that only two synonymous SNPs were true differences between these variants (position 943,443, G\(\rightarrow \)A, unique to wMelPop; position 858,287, T\(\rightarrow \)C, unique to wMelCS_b). In our analysis of split sequencing reads, there were no indel polymorphisms unique to wMelPop that met our filtering criteria. Therefore we cannot identify any SNPs or small indels that could be clearly related to the phenotypic differences.

To identify other possible differences between wMelPop and wMelCS_b we analysed copy number variation in their genomes. We mapped the sequence reads to the wMel reference genome and examined variation in the depth of coverage. In wMelPop there is a large increase in read depth in a ~21 kbp region. Using the mean shift approach implemented in CNVnator [70] we estimated that this region has been amplified approximately five times (Figure 7A and Figure S2; \(t \) test: \(p < 10^{-20} \); breakpoints: 486,601–507,800). Due to the extensive amplification, probable association with the over-proliferative phenotype, and containing eight predicted genes, we call it the Octomom region.

There are two repeated regions, with the same orientation, flanking the Octomom region (RT repeat in Figure 7A). The 5'
repeat region contains WD0506, which is annotated as a pseudogene in the reference genome (GenBank: AE017196 [58]), but it may encode a 329 aa protein with a reverse transcriptase (RT) with group II intron origin domain. In the wMel reference genome the 39 repeat region is split in two parts due to the insertion of an ISWpi1 (IS5) transposon (Figure 7A) (ISWpi1 is repeated 13 times in the wMel genome [58,71]). This ISWpi1 insertion, however, is absent in the wMelCS-like variants, including wMelPop. In fact presence/absence of this insertion is one of the genomic markers used to distinguish wMel variants (IS5 WD0516/7) [40]. Accordingly, in the coverage plot (Figure 7A) that there is no coverage at the interface between the ISWpi1 and the RT repeat regions in wMelPop. Therefore, this region in wMelPop is 100% identical to the 5’ RT repeat (confirmed, in the region of ISWpi1 insertion, by Sanger sequencing, data not shown). The amplified region in wMelPop contains eight predicted genes between the RT repeats, WD0507–WD0514 (Figure 7A, Table S5). WD0507–11 encode proteins potentially involved in DNA replication, repair, recombination, transposition or transcription. The genes WD0512–14 have previously been shown to
Table 2. Non-synonymous SNPs between wMel-like and wMelCS-like *Wolbachia* variants.

Gene name	Gene description	Nucleotide	Aminoacid	
WD0019	transcription antitermination protein NusG, putative	18552	A G	191 Q R
WD0024	rpoBC DNA-directed RNA polymerase, beta/beta' subunit	26870	G A	2060 E K
WD0033	PwI/Argonaute/Zwille siRNA-binding domain*	36114	C T	158 V I
WD0036	prsA ribose-phosphate pyrophosphokinase	39135	A C	99 K Q
WD0041	-	45207	A G	12 M T
WD0068	outer membrane protein TolC, putative	65076	A G	122 N S
WD0073	ankyrin repeat-containing protein	69287	A G	298 T A
WD0086	secD protein-export membrane protein SecD	79898	G A	91 T I
WD0115	transposase, IS4 family	109211	T G	STOP E
WD0129	membrane protein CvpA, putative	118051	C T	15 V I
WD0130	ribE riboflavin synthase, alpha subunit	118692	A G	19 F S
WD0131	-	119806	A G	285 L P
WD0190	mutS DNA mismatch repair protein MutS	173865	C T	50 G R
WD0223	Rossmann-fold NADP(+) binding proteins; Bacterial NAD-glutamate dehydrogenase*	203561	C T	1233 V I
WD0223	Rossmann-fold NADP(+) binding proteins; Bacterial NAD-glutamate dehydrogenase*	204413	T C	949 N D
WD0262	RuvC_resolvase*	248476	T C	949 N D
WD0292	prophage LambdaW1, ankyrin repeat domain protein	273138	A G	40 S P
WD0363	-	347096	C T	52 Q STOP
WD0400	ABC transporter, HlyB/MsbA family, putative	381187	T C	143 I T
WD0427	atpB ATP synthase F0F, A subunit	409057	A G	139 E G
WD0433	pccA propionyl-CoA carboxylase, alpha subunit	414527	G A	246 T M
WD0443	OTU-like cysteine protease*	427731	C T	119 R C
WD0469	cytidine and deoxyxycytidylate deaminase family protein	452129	C T	55 S L
WD0513	RHS repeat-associated core domain*	505589	G A	56 T I
WD0514	ankyrin repeat-containing protein	506438	C A	255 A S
WD0530	pyrH uridylate kinase	517457	C T	37 A T
WD0562	transposase, truncation	547769	C T	62 E K
WD0610	helicase, SNF2 family	591593	C G	126 Q H
WD0614	O-methyltransferase	598213	A G	483 D N
WD0636	ankyrin repeat-containing prophage LambdaW1	628654	G T	124 A E
WD0638	Phage tail protein*	630778	A G	112 L P
WD0639	prophage LambdaWS, baseplate assembly protein J	631303	T C	201 M V
WD0666	rpIF ribosomal protein L6	650962	C T	23 S N
WD0754	ankyrin repeat-containing protein	728880	T C	48 E G
WD0758	glutaredoxin family protein	732864	C G	18 G A
WD0766	ankyrin repeat-containing protein	739409	T G	139 L W
WD0766	ankyrin repeat-containing protein	739559	T C	189 I T
WD0813	proS prolyl-tRNA synthetase	780933	G C	196 G R
WD0814	acpS holo-(acyl-carrier-protein) synthase	781622	A G	4 S G
WD0838	-	803009	G A	41 V I
WD0838	-	805011	G A	709 C Y
WD0839	uvrB excinuclease ABC, subunit B	805888	G C	524 Q E
WD0867	purH phosphoribosylaminomimidazolecarboxamide formyltransferase/IMP cyclohydrolase	838894	A G	260 E G
WD0898	-	864943	C A	2 L F
be an operon [72]. WD0513 protein has an Rhs domain and WD0514 encodes a ANK repeat protein, but the function of any of the three proteins encoded in this operon is unknown.

The Octomom region was first noticed because of its presence in the strain wMel but absence in many other Wolbachia strains [72]. It has since been found that there are homologues of WD0512–14 in wPip [73,74] and of WD0514 in several strains of Wolbachia supergroup A [75]. We find orthologues of all the genes in the Octomom region, including the RT repeat, in the genome of wPip (GenBank: AM999887.1 [76]). It has since been found that there are homologues of WD0513 in the recently sequenced genome D. melanogaster (GenBank: EFX66732.1 [79]). DAPPUDRAFT_229333 and DAPPUDRAFT_300516 are 35% and 32% identical to this protein, respectively.

To confirm the depth of coverage results we performed qPCR to determine relative genomic copy numbers of the genes immediately adjacent and inside the Octomom region in wMel, wMelCS-a, wMelCS-b and wMelPop (Figure 7B). All genes tested showed the same relative amount in wMel, wMelCS-a, wMelCS-b. The genes immediately outside the Octomom region WD0505 and WD0519, as well as two other control genes located elsewhere in the genome, rpoD and gmk, show the same copy number in wMelPop and in the other wMel variants (between 0.86 and 1.09 relative to wMelCS-b) (Figure 7B and data not shown). In contrast, in wMelPop the eight genes inside Octomom, WD0507–14, have estimated copy numbers between 5.54 and 7.78 times the levels of wMelCS-b (with a median of 7.42 times). These results confirm the extensive amplification detected by the depth of coverage analysis and show a 7-fold amplification of this region.

The results for WD0506/WD0515 (the qPCR primers amplify both) show 1.77 fold difference between wMelPop and wMelCS-b (Figure 7B). There are 4 identical copies of the amplified region in wMel, wMelCS-a and wMelCS-b (in the 4 full RT repeats). If this region were also amplified 7 times in wMelPop we would expect 2.75 more copies in wMelPop than in wMelCS-b. The fold difference between the wMelPop and wMelCS-b is lower than expected but shows an amplification of this region and indicates that in wMelPop there are 3 more copies of this gene.

The only other large duplication in the wMel variants detected using CNVnator were in wMel2_a and wMel2_b, where a large region corresponding to the phage WO-B has been duplicated (Figure S2; t tests: p<0.001; breakpoints in both: 569,001–634,000). This is a stable duplication since the most recent common ancestor of these lines dates to an estimated 9,252 host generations ago (Figure 1). Independent WO-B prophage amplifications have been shown before in Wolbachia strains; it is present in two copies in wRi [80] and five copies in wPip [76].

Discussion

We have found that genetically closely related variants of *Wolbachia* from *D. melanogaster* vary in the degree to which they protect their hosts against viral infection. The *Wolbachia* variants that provide the greatest protection have higher titres and often shorten the lifespan of their hosts (Table S6). Previous work has shown that in natural populations these highly protective wMelCS-like variants were recently largely replaced by less protective wMel-like variants. The genome sequences of strains

Table 2.

Position	wMel-like	wMel CS-like	Position	wMel-like	wMel CS-like						
WD1029	aspC	aspartate aminotransferase		C	G	989918	C	G	24	A	G
WD1044	-	-		1006175	G	33	A	G			
WD1064	rpoH	heat shock sigma factor RpoH		1024202	A	42	N	D			
WD1090	rpsA	ribosomal protein 51, putative		1048656	T	451	D	G			
WD1137	PD-(D/E)XK nuclease family transposase		1089274	T	6	I	V				
WD1140	PD-(D/E)XK nuclease family transposase		1091606	T	34	D	G				
WD1200	priA	primosomal protein N		1147604	G	423	G	A			
WD1216	sensor histidine kinase/response regulator		1164424	C	391	H	Y				
WD1237	clpA	ATP-dependent Clp protease, ATP-binding subunit ClpA		1185021	G	667	A	T			
WD1278	-	-		1220566	A	244	Y	C			
WD1278	-	-		1220989	A	385	D	G			
WD1292	ribonuclease, BN family		1232581	C	124	A	V				
WD1297	lipolytic enzyme, GDSL family		1239247	C	181	R	H				
WD1312	DsbA-like disulfide oxidoreductase		1253148	C	217	G	E				
WD1318	infB	translation initiation factor IF-2		1260309	C	309	G	D			

Gene name, nucleotide and amino acid positions according to the reference genome AE017196 [58]. Gene description according to the reference genome except in (a), which is based on NCBI CD-search tool [125].

doi:10.1371/journal.pgen.1003896.t002
Phylogeny and Genomics of wMel Variants

Key adaptive traits of bacterial pathogens and symbionts are often controlled by genes that are frequently gained and lost through evolution, which are collectively known as the ‘accessory genome’. The Octomom region appears to fit this pattern as it is partially or totally absent in several Wolbachia strains [72,86,87]. WD0512–3 homologues have also been suggested to be amplified in wSim [86], although they are not present in its unassembled genome sequence [87]. Homologues of some Octomom genes in other strains have been described [73–75,86] and here we identify more in WOVitA1, WOVitB1, and WvlbB. Moreover, we detect orthologues of all the Octomom genes in wPip, although not as one syntenic block. As the number of sequenced genomes of different Wolbachia strains increases it will be interesting to understand the evolutionary history of this region. In particular if there is horizontal gene transfer between strains, as suggested before [72,74]. This would be compatible with our finding of some of these genes in prophage regions of WOVitA1 and WOVitB1.

The horizontal transfer of these genes may also occur between Wolbachia and their insect hosts, as two of the genes in the Octomom region, WD0512–3, are homologous to genes previously identified only in Culicidae mosquitoes [73,74,78]. The direction of the horizontal gene transfer between mosquitoes and Wolbachia is not clear [75,74,78]. In mosquitoes these homologues constitute a family of proteins termed salivary gland surface proteins (SGSs). There is evidence that An. gambiae aaSGS1 is a receptor for malaria sporozoite in salivary glands [78] and An. gambiae Sgs4 and Sgs5 are components of the saliva [88]. We have identified two other homologues of WD0513 in the crustacean Daphnia pulex. The number of sequenced crustaceans genomes is very low so we do not know how prevalent these genes are in crustaceans. However, the absence of homologues in any other sequenced insect opens the possibility that there was also horizontal gene transfer between Daphnia/Crustaceans and either mosquitoes or Wolbachia.

Phenotypes Associated with wMel Variants

Symbionts could protect their hosts against infection either by limiting pathogen titres (resistance) or by reducing the harmful effects of those pathogens (tolerance) [66]. We have previously reported that Wolbachia provides tolerance to FHV and resistance to DCV [12]. In this study we found similar FHV titres in lines with wMelCS-like and wMel-like variants, despite the former having far lower mortality rates. This indicates that natural wMel variants differ in how they modulate tolerance to FHV infection rather than resistance (although wMelPop confers strong resistance to FHV, see below). On the other hand, the levels of DCV change between the two groups, with wMelCS-like variants having a two-fold reduction in DCV titres when compared with wMel-like variants. This difference is small, especially when compared to the 5,000-fold reduction in titres in relation to the control without Wolbachia, but is reflected in a substantial change in survival. Therefore, it is possible that there is also a tolerance component in the variants differential protection to DCV. However, with our
data we cannot distinguish between these hypotheses since it is possible that even a small change in viral titre is sufficient to explain the better survival (see also discussion in [89]). Nonetheless, induced tolerance to DCV has been shown before for the Wolbachia strain wRi in D. simulans [23]. Therefore, the interaction of Wolbachia with different viruses may always have components of resistance and tolerance modulation.

The more protective wMelCS-like variants reach 2.5 higher titres than wMel-like variants in the first days after adult eclosion, and then continue to proliferate during the lifespan of their host. These results show that in D. melanogaster the control of Wolbachia levels is also dependent on the endosymbiont genotype. It has been shown before that the host genotype and Wolbachia strain can influence Wolbachia titres [56,90–95]. In Leptopilina heterotoma each strain’s titre is even independent of the presence of the other strains [93]. Different strains of Wolbachia also reach different levels in D. simulans, although the host nuclear genetic background has not been controlled in this study [23]. Our results show that these differences are also seen between Wolbachia variants that are very closely related to each other (their most recent common ancestor is estimated to date to only 8,000 years or 80,000 fly generations before the present).

The positive correlation between Wolbachia titres and protection against viral infection suggests that this may be the cause of the greater protection provided by the wMelCS-like variants. It is important to note that the strains are not phylogenetically independent, so the association between protection to viruses and titres might have arisen independently in the ancestors of the wMel-like and wMelCS-like groups. However, this seems unlikely, as a density effect has been previously reported in Wolbachia-mediated antiviral protection. Wolbachia-host combinations with higher titres of Wolbachia show higher protection [23,94,96] and decreasing levels of Wolbachia with antibiotic treatment lowers protection [94,97]. Correlations between titres and other Wolbachia-associated phenotypes have been shown before (e.g. with cytoplasmic incompatibility) [95,98–103]. Therefore, the simplest hypothesis is that the differential protection to viruses of the wMel variants is a consequence of their titres.

The localization of the protective symbionts and the pathogens could be an important factor to understand their interaction [23]. Wolbachia, DCV and FHV have been shown to infect several tissues of D. melanogaster [104–106], although the information on localizations is not necessarily exhaustive there are some tissues of overlap between Wolbachia and the two viruses where the interaction could occur. It will be important in the future to determine the tissue distribution of the different Wolbachia variants and how it contributes to the overall differences in titres. It will also be interesting to know if Wolbachia titres increase with host age is uniform between all the tissues. It has been previously shown that some Wolbachia strains grow at different rates in heads and ovaries [56].

We found that some of the most protective wMel variants reduce the survival of their hosts, suggesting that there may be a trade-off between symbiont-mediated protection and other components of fitness. This cost could be either due to the metabolic cost of their replication or damage caused by their presence. The difference between the wMel-like and wMelCS-like strains was less clear-cut for this trait. We observed that two wMelCS-like lines had significantly greater mortality rates. A third line infected with wMelCS_b has previously been shown to have a shorter lifespan than the control [12], although this is not significant in this report. The fourth wMelCS-like line did not show any detectable effect on lifespan. This variation could be due to the cost of Wolbachia infection being difficult to assess in normal laboratory conditions. This reduction in longevity may not directly affect the fitness of flies in the wild since probably not many flies live up to this late age and their fertility would be very low. However, the assay can be interpreted as a proxy for fitness costs associated with the Wolbachia variants, which are expressed in other unknown ways in the wild.

The phenotypes of the line carrying the laboratory variant wMelPop are consistent with the differences between natural variants. Our results are in agreement with previous reports that wMelPop can reach high titres and shorten lifespan [54–56], as well as to give strong protection to viruses [31,32]. Here we directly compare this variant with wMelCS_b, its closest related variant, in their natural host. wMelPop is the variant that reaches higher levels in D. melanogaster, gives the strongest resistance to viruses, and most severely shortens the host lifespan at 25°C. The pathogenic effect was described before at 25°C [54–56]. Yet, this phenotype at 25°C seems to be stronger in our experimental conditions. This is probably related with the wMelPop exponential growth that we detect. We also observed that flies with wMelPop have very strong resistance to DCV and FHV. The strong resistance to FHV induced by wMelPop may indicate that there is no qualitative differentiation between the interference of Wolbachia with DCV and FHV. Again, it may be only a question of different degrees of resistance and tolerance to different viruses.

Evolution and Dynamics of Wolbachia in Populations

Analysis of Drosophila lines collected from the early 20th century to the present has indicated that natural selection has driven a recent and fast replacement of wMelCS-like variants by wMel-like variants and their associated mitochondria [40,41]. A more recent phylogenomic analysis of Wolbachia and mitochondria is consistent with a wMel-like global replacement, although it indicates that this event is not complete and started before the 20th century [42]. Overall, it is clear that there was a relatively recent and rapid replacement of wMelCS with wMel-like variants at a worldwide level. Therefore, our results indicate that this has resulted in a recent and rapid decline in the level of anti-viral protection that Wolbachia provides D. melanogaster in the wild. Consequently, we can conclude that the driving force for this change in wMel frequencies was not an increase in viral protection. On the other hand, the wMelCS-like variants that have higher titres and can have a cost, have been replaced with variants with lower titres and, most probably, lower cost to their hosts.

Our data suggests that the balance between benefit (protection to viruses) and cost may have shifted recently, resulting in selection favouring lower levels of protection. In the simplest scenario, the rate at which this replacement has occurred would allow us to easily estimate the net benefit that the low protection strain has had. There are however several complexities that could affect the dynamics of this replacement. First, if the viruses are predominantly transmitted within D. melanogaster populations rather than among different fly species, then the spread of a low protection strain might increase the viral prevalence [29]. This might make the fitness of the low protection strain negatively frequency dependant, potentially stably maintaining both strains in the population. Second, the difference in the density of the high and low protection variants might affect other aspects of Wolbachia’s fitness, such as its vertical transmission efficiency or the strength of cytoplasmic incompatibility [95,103,109]. These parameters can be experimentally measured and their effects explored with simple extensions to standard models.

In order to block transmission of dengue, the wMel and wMelPop variants were recently introduced into the mosquito Ae. aegypti [30,31]. Our work in D. melanogaster is in agreement with the mosquito data showing that wMelPop confers both a higher
protection to viruses and a higher fitness cost when compared to wMel [31,32,110]. The deployment of these Wolbachia infected mosquitoes in the field has to take in consideration the trade-off between fitness costs which make it difficult to invade a population and protection to dengue. Our analysis indicates that wMelCS-like variants have an intermediate phenotype in terms of benefit and cost, and could be considered as an alternative.

Our data also indicate that if there is a strong selection for a mosquito-Wolbachia combination with lower fitness costs, this might result in lower protection to viruses. The dynamics of this selection may influence the success of this strategy to control dengue infection. In addition to the replacement of wMelCS-like variants with wMel-like variants in D. melanogaster, rapid evolution of Wolbachia has been observed in natural populations of D. simulans, resulting in an increase in fertility of Wolbachia infected flies [111]. Finally, if the Octomom region amplification is the basis of wMelPop higher titres and protection to viruses, it could have important consequences on its long-term maintenance in mosquito populations. Duplications in bacterial genomes can be very unstable due to homologous recombination [81]. If loss of the duplication is frequent in a wMelPop infected mosquito population, a rapid selection of a variant with low replication and low protection to viruses may be expected.

The differences in protection to viral infection with wMel variants demonstrate that in order to understand Wolbachia protection to viruses in D. melanogaster one has to consider not only presence or absence of Wolbachia but also the genetic variability of the symbiont. Our results provide another example of how bacterial symbionts can cause rapid evolution in natural populations and control important traits. Furthermore, they illustrate how the ease with which genomes can be sequenced can provide clues to the molecular basis of these traits.

Materials and Methods

Fly Strains and Husbandry

D. melanogaster lines with Wolbachia are described in Table 1. Lines with Wolbachia variants described in Riegler et al. [40] were kindly provided by Markus Riegler and Scott O’Neill. wMelCS_b source and DrosDel w1118 isoigenic background were described elsewhere [12,59]. wMel variants were introduced in the DrosDel w1118 iso isogenic background by chromosomes replacement using a first and a second double balancer line and a second chromosome balancer line. The crosses were performed with Wolbachia-infected females, ensuring endosymbiont transmission through the germ-line. The fourth chromosome was not isogenized. All the Wolbachia genotypes were confirmed by PCR, as described in Riegler et al. [40] (data not shown).

The lines were cleaned of possible chronic viral infections as described elsewhere [12,60]. In order to homogenize the gut microbiota, embryos from each line were sterilized with 2% sodium hypochlorite, followed by 70% ethanol and washed with sterile water. Embryos were placed in new food vials and 150 μl of a bacterial inoculum from a reference stock was added. The inoculum was prepared by mixing 5 ml of sterile water with 2 g of food from 10 days old vials containing YF-0050–3 flies [12], and filtering it to remove eggs and larvae.

Tetracycline-treated lines were cleaned of Wolbachia infection by raising them for two generations in ready-mix dried food (Philip Harris) with 0.05 mg/ml of tetracycline hydrochloride (Sigma). Experiments were performed on lines that were raised without antibiotics for at least 6 generations.

Drosophila lines were maintained on standard cornmeal diet at a constant temperature of 25°C. We focused the analysis on males in the assumption that Wolbachia levels would be more stable in these. Wolbachia is present in ovaries and the sizes of these vary greatly with mating status and physiology of the female.

Long-Term Survival Analysis

To measure the lifespan of different fly lines, 10 flies were placed per vial (without yeast) per replicate, at 25°C. Vials were checked for survival and changed every 5 days.

The analysis of survival data was performed with the Cox proportional hazard mixed effect model. Fixed effects include genotype and repeat of the experiment while replicate vials within the same experiment were considered as a random effect. This method accounts for variation between vials of the same line in the same experiment and variation between replicates of the experiment. Model fitting was done using the coxme package in R [112]. Tukey’s test was applied for pairwise comparisons of Cox hazard ratios between all wMel variants and DrosDel w1118 iso.

Virus Production and Infection

Viruses were produced and titrated as in Teixeira et al. [12], with minor changes. DCV was titrated in Schneider’s Line 2 (SL-2), while FHV was titrated in Schneider Drosophila line 2 (DL2).

For viral infections CO2 anesthetized flies were pricked in the thorax. The 0.13 mm diameter needles used for infection (Austerlitz Insect Pins) were dipped into a virus solution diluted to the desired concentration in 50 mM Tris-HCl, pH 7.5. After the infection flies were kept in vials without yeast, 10 flies per vial.

DCV infected flies were maintained at 18°C, while FHV infected flies were maintained at 25°C. Vials were checked for survival daily and changed every 5 days. Unless otherwise stated, infection was performed on 3 to 6 days-old flies.

Survival analysis was done as above.

RNA Extractions and cDNA Synthesis

For each sample 10 flies were pooled and homogenized with a plastic pestle in 1 ml of Trizol Reagent (Invitrogen). RNA was extracted according to manufacturer’s protocol and re-suspended in 50 μl of DEPC-treated water (Ambion). RNA concentrations were determined using NanoDrop ND-1000 Spectrophotometer. cDNA was prepared from 1 μg of total RNA using Random Primers and M-MLV Reverse Transcriptase (both Promega).

Primers were allowed to bind to the template RNA for 5 min at 70°C and the reaction proceeded to 25°C for 10 min, 37°C for 60 min and 80°C for 10 min.

DNA Extractions

For Wolbachia relative quantification, ten flies were used per replicate. DNA was extracted according to DrosDel protocol (http://www.drosdel.org.uk/molecular_methods.php) [59]. For wMel Octomom genes relative quantification, total DNA was extracted from replicates of ten flies using a standard phenol-chloroform protocol. The DNA concentrations were checked with NanoDrop ND-1000 Spectrophotometer.

Real-Time Quantitative PCR

The real-time qPCR reactions were carried out in 7900HT Fast Real-Time PCR System (Applied Biosystems) or CFX384 Real-Time PCR Detection System (BioRad). For each reaction in 384-well plate (Applied Biosystems or BioRad) we used 6 μl of IQ SYBR Green supermix (Bio Rad), 0.5 μl of each primer solution at 5.6 μM and 5 μl of diluted DNA. Each plate contained three technical replicates of every sample for each set of primers. Primers used are described in Table S7.
The thermal cycling protocol for the amplification of *Wolbachia* genes was as follows: initial 50°C for 2 min, denaturation for 10 min at 95°C followed by 40 cycles of 30 s at 95°C, 1 min at 59°C and 30 s at 72°C. Amplification of DCV and FHV was performed using the same conditions, except an annealing temperature of 56°C. Melting curves were analysed to confirm specificity of amplified products. We obtained Ct values for manual threshold of 10 using the program SDS 2.4 or with Bio-Rad CFX Manager with default threshold settings.

Relative amounts were calculated by the Pfaffl Method [113] using *Drosophila RpL32* as a reference gene for *wsp* and viruses and *wcp* as a reference for *Wolbachia* Octomom genes.

Kruskal-Wallis rank sum test (kruskal.test in R) was performed on *Wolbachia* and viruses quantification data to detect differences within all the lines. Pairwise comparison between all variants was performed with Wilcoxon rank sum test with Holm correction (pairwise.wilcox.test in R). Direct comparison between wMel-like and wMeiCS-like variants was performed with a linear mixed-effects model fit by maximizing the restricted log-likelihood on the log of the values (lm in R). Time course analysis of *Wolbachia* titres was performed with a linear model fit (lm in R).

Cluster Analysis and Correlations

The data in Table S2 was used for the cluster analysis of wMel variants (hclust in R). In each column the mean was subtracted from the data, for centering, and the result divided by the standard deviation, for scaling. Complete linkage hierarchical clustering was performed on Euclidian distances between wMel variants.

Correlations were calculated using Pearson’s product moment correlation (cor.test in R).

Sequencing and Genome Assembly

The genome assembly of the wMel variants was done with the invaluable help of Casey Bergman (University of Manchester).

For each fly line, 20 females were anaesthetized under CO₂ and washed in 50% bleach solution for 3 min. Females were then briefly washed in distilled water and dissected under a microscope. The two ovaries of the 20 females were pooled for DNA extraction. DNA was extracted using the Gentra Puregene DNA Purification kit according to the manufacturer’s protocol, including an RNase A treatment. Yields of purified DNA ranged from 1.1 and 4.2 μg. Library preparation and sequencing were performed at the Eastern Sequence and Informatics Hub (Cambridge, UK). 75 bp paired-end libraries were prepared with an insert size of 300 bp and sequenced in one lane of HiSeq2000 (Illumina). Base calling was performed using the Offline Basecaller (version 1.9.3) from Illumina, and demultiplexing was handled by bespoke Eastern Sequence and Informatics Hub software. The reads are submitted to the Sequence Read Archive (accession number: ERP002662).

Forward and reverse fastq sequences were mapped individually to single database containing a mitochondrial reference sequence extracted from the *D. melanogaster* Release 5 genome sequence (chrU:5288528–5305749) and the *D. melanogaster* Wolbachia endosymbiont reference genome (GenBank ID: AE017196) and converted to paired end alignments using BWA version 0.5.9-r16 [114]. BWA output was converted to SAM format and reads mapping to the mitochondria or *Wolbachia* reference sequences were extracted and sorted using SAMtools version 0.1.18. Sorted BAM files were used for variant base calling followed by a standard SAMTools version 0.1.16 pileup pipeline [115]. Individual strain consensus fastq sequences were generated using pileup2fq.pl with minimum and maximum read depths set to 10 and 100, respectively, and converted to fasta format using seqtk (https://github.com/lh3/seqtk). Individual reference-based fasta consensus sequence files were merged into multiple alignments from http://bergman.smith.man.ac.uk/data/wolbachia/DGRP_DPGP_Wolbachia_v1.tgz [42]. Alignment columns that had an N in any strain (which can represent either a fully ambiguous character or a deletion relative to the reference) were then removed.

Fasta file of assembled sequences of *Wolbachia* variants and associated mitochondria are in Dataset S1 and S2, respectively. Tables of variants for these *Wolbachia* and mitochondria together with data from *Wolbachia*-carrying strains described in Richardson et al. [42] are in Dataset S3 and S4, respectively.

Phylogeographic Analysis

We produced a dated evolutionary history of *Wolbachia* using BEAST v1.7.2 [116]. The *Wolbachia* and *Drosophila* mitochondrial phylogenies have been shown to be fully congruent [42], so they share the same evolutionary history. We therefore concatenated the *Wolbachia* variants alignments with their respective host *Drosophila* mitochondrial alignments, removing all indels. We included the *Wolbachia* reference strain AE017196, even though no host *Drosophila* mitochondrial alignment exists, after checking that its inclusion made no qualitative difference to either the dates or topology. This alignment was then partitioned into eight different groups representing different categories of sites; first and second codon positions, third codon positions, noncoding RNA genes and intergenic sites (for both the *Wolbachia* and *Drosophila* mitochondria). Each partition had its own HKY+Γ model of evolution [117,118] but linked to the same dated phylogeny and constant population size coalescent tree prior. In order to calibrate the molecular dating, we assigned a prior lognormal distribution of rate based on the *Drosophila* mutation rate [42,119] to third codon positions of the *Drosophila* mitochondria, sites that are less likely to be under purifying selection. Rates at all other site classes were given a prior of uniform distribution between 0 and 1, whereas priors on all other parameters were given default values as specified in BEAUti v1.7.2 [116].

Genetic Polymorphism and Predicted Genes Analyses

For single nucleotide polymorphism analysis a multiple alignment was built, with only the sequences of the wMel variants analysed in this report, and alignment columns that had an N in any strain were removed. Variant sites were then extracted and mapped back to reference coordinates using custom R and PERL scripts (Dataset S5). Variants that differ between all wMel-like and all wMeiCS-like variants were identified and mapped to predicted genes or non-coding regions with Galaxy [120]. Identification of synonymous or non-synonymous substitutions was performed with custom Python scripts.

To identify duplications and deletions that have led to copy number variation (CNVs), we examined depth of sequence coverage across the *Wolbachia* genome. To do this we partitioned the genome into non-overlapping 200 bp bins and used the mean shift approach implemented in CNVnator [70] to infer differences in copy number and identify break-points. The variants wMel, wMei3 and wMeiCS2_a were not analysed as they had highly variable coverage. Analysis of regions containing duplications was aided by UCSC Genome Browser http://genome.ucsc.edu/ [121,122].

We also used the program Pindel [123] to search for ‘split reads’, which map to two different positions in the *Wolbachia* genome. To reduce artefacts we only retained structural variants where at least one strain had 10 or more supporting reads and where at least one strain had no supporting reads. As we know the
phylogeny of these strains, we expect most true structural variants to be present in monophyletic clades (i.e., they have only arisen once). Out of 18 variants detected, 17 fulfilled this criterion, suggesting that our methods are robust.

Predicted protein domain analysis was based on the reference genome [58] or using NCBI CD-search [124]).

Supporting Information

Dataset S1 fna file of assembled genomes of wMel, wMel3, wMel2_a, wMel2_b, wMelCS_a, wMelCS_b, wMelCS2_a, wMelCS2_b, and wMelPop. (ZIP)

Dataset S2 fna file of assembled genomes of mitochondria associated with wMel, wMel3, wMel2_a, wMel2_b, wMelCS_a, wMelCS_b, wMelCS2_a, wMelCS2_b, and wMelPop. (ZIP)

Dataset S3 Table of variants for new wMel genomes plus Richardson et al. [42] wMel genomes. (TXT)

Dataset S4 Table of variants for new wMel associated mitochondria genomes plus Richardson et al. [42] mitochondria genomes associated with Wolbachia. (TXT)

Dataset S5 Table of variants for new wMel genomes only. (TXT)

Figure S1 Phylogenomic tree of wMel variants analysed. Phylogenomic tree was reconstructed using the concatenated sequences of complete Wolbachia and mitochondrial genomes. The length of the branches reflects the estimated number of Drosophila generations (shown in the x axis), which was calibrated using the mitochondrial mutation rate. The node labels show posterior supports. (TIF)

Figure S2 Copy number variation among wMel variants. The black bars represent the number of reads that have been mapped to 200 bp regions of the wMel reference genome. The green line is the estimated copy number relative to the wMel genome. The three large duplications in wMelPop, wMel2_a and wMel2_b were highly significant (t tests: *p* < 10^{-20}). A smaller duplication in wMelPop was less well supported (t test: *p* < 0.03), which is not significant after correcting for multiple tests. wMel, wMel3 and wMelCS2_a were not analysed as they had highly variable coverage. (TIF)

Table S1 Statistics of linear models based on wMel variants titres change over time. The data for wMel, wMelCS_a and wMelCS_b analysis are represented in figure 4D, wMelPop data are represented in figure 6D. (DOC)

Table S2 wMel variants phenotypic data for cluster analysis. Natural logarithm of Cox hazard ratios (CHR), relative to w^{iso} melanogaster, of survival to infection with DCV and FHV and long-term survival. Median of relative titres of DCV and FHV, three days after infection, and of Wolbachia, three and six days after eclosion. (DOC)

Table S3 Synonymous and non-coding SNPs between wMel- and wMelCS-like variants. Gene predictions according to annotation of AE017196 [58]. (a) Indicates common ambiguous nucleotide call in the sequence of all wMelCS-like variants (IUPAC nucleotide code). (DOC)

Table S4 Indels between wMel-like and wMelCS-like variants. (a) The type of polymorphism is defined relative to the reference genome AE017196. b) This insertion matches the IS5 insertion in WD1310 described in Riegler et al. [40]. (DOC)

Table S5 Predicted genes present in the wMel Octomom region. Gene predictions according to annotation of AE017196 [58]. Domains and predicted functions are based on NCBI CD-Search tool [125]. (a) gene is annotated as a pseudogene, however it contains a valid start site and open reading frame. (b) WD0515 in wMelCS-like variants, including wMelPop, is identical to WD0506. (DOC)

Table S6 Summary of comparisons between wMel variants phenotypes. (DOC)

Table S7 Oligonucleotide primers used in real-time quantitative PCR experiments. (a) published in Dédouche et al. [63], (b) published in Berry et al. [126]. (DOC)

Acknowledgments

We are thankful to Scott O’Neill and Markus Riegler for providing D. melanogaster lines with different wMel variants. We are also thankful to Yuri Ilinskyy for sharing the manuscript on wMel and mitochondria co-evolution before publication [50]. We are grateful to Nelson Martins and Jorge Carneiro for help in the statistical analysis, Inês Pais for help in homogenizing the gut microbiota, and Krzysztof Kus for scripts to analyse sequence, qPCR and survival data. We are indebted to Casey Bergman for mapping the reads to the Wolbachia and mitochondria genomes, generating consensus sequences, helpful discussions and comments on the manuscript. We also thank the three anonymous reviewers for comments on the manuscript.

Author Contributions

Conceived and designed the experiments: EC MSPM FMJ LT. Performed the experiments: EC MSPM SSE JM. Analyzed the data: EC LAW FMJ LT. Wrote the paper: EC FMJ LT.
13. Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria
12. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia
11. Xie J, Vilchez I, Mateos M (2010) Spiroplasma bacteria enhance survival of
10. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010)
35. Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL (2011) Wolbachia
33. Blagrove MSC, Arias-Goeta C, Failloux A-B, Sinkins SP (2012) Wolbachia
31. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, et al.
30. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, et al. (2009) A
28. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of
26. Longdon B, Fabian DK, Hurst GD, Jiggins FM (2012) Male-killing Wolbachia
24. Glaser RL, Meola MA (2010) The native Wolbachia endosymbionts of
23. Osborne SE, Leong YS, O'Neill SL, Johnson KN (2009) Variation in antiviral
21. Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of
17. Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from
116–118.
134–136. doi:10.1126/science.1177531.
661247.
63–702. doi:10.1126/sci-ence.116–118.
505–518. doi:10.1126/sci-ence.110356.
651–67. doi:10.1111/j.1570-748X.1988.tb02299.x.
73–152. doi:10.1016/j.cell.2009.11.042.
361–359. doi:10.1016/j.cell.2008.06.003.
254–262. doi:10.1134/S102279540707006X.
1353–1355.
1280–1281. doi:10.1002/cell.200610157.
207905971102031.
197–202. doi:10.1098/rspb.2007.1192.
1162418.
36–376. doi:10.1015/4-106543-genes.
855–858. doi:10.1126/science.1201618.
458–462. doi:10.1134/S2079059711020031.
499–507. doi:10.1134/S207905971102004X.
497–498. doi:10.1126/sci-ence.11774463.
51–61. doi:10.1371/journal.pone.0038544.
173–178. doi:10.1111/j.1003-1207.2011.00908.x.
51–61. doi:10.1111/j.1570-748X.1988.tb02299.x.
60–61. doi:10.1002/0075-8095.a01-001-i.
85–90. doi:10.1016/j.cell.200610157.
795–800. doi:10.1016/j.cell.200610157.
116–118.
173–178. doi:10.1111/j.1003-1207.2011.00908.x.
36–376. doi:10.1015/4-106543-genes.
254–262. doi:10.1134/S102279540707006X.
1353–1355.
1280–1281. doi:10.1002/cell.200610157.
207905971102031.
197–202. doi:10.1098/rspb.2007.1192.
855–858. doi:10.1126/science.1201618.
458–462. doi:10.1134/S2079059711020031.
499–507. doi:10.1134/S207905971102004X.
85–90. doi:10.1016/j.cell.200610157.
173–178. doi:10.1111/j.1003-1207.2011.00908.x.
51–61. doi:10.1111/j.1570-748X.1988.tb02299.x.
60–61. doi:10.1002/0075-8095.a01-001-i.
36–376. doi:10.1015/4-106543-genes.
254–262. doi:10.1134/S102279540707006X.
1353–1355.
1280–1281. doi:10.1002/cell.200610157.
207905971102031.
197–202. doi:10.1098/rspb.2007.1192.
855–858. doi:10.1126/science.1201618.
458–462. doi:10.1134/S2079059711020031.
499–507. doi:10.1134/S207905971102004X.
85–90. doi:10.1016/j.cell.200610157.
173–178. doi:10.1111/j.1003-1207.2011.00908.x.
51–61. doi:10.1111/j.1570-748X.1988.tb02299.x.
60–61. doi:10.1002/0075-8095.a01-001-i.
36–376. doi:10.1015/4-106543-genes.
254–262. doi:10.1134/S102279540707006X.
1353–1355.
1280–1281. doi:10.1002/cell.200610157.
207905971102031.
197–202. doi:10.1098/rspb.2007.1192.
855–858. doi:10.1126/science.1201618.
458–462. doi:10.1134/S2079059711020031.
499–507. doi:10.1134/S207905971102004X.
85–90. doi:10.1016/j.cell.200610157.
173–178. doi:10.1111/j.1003-1207.2011.00908.x.
51–61. doi:10.1111/j.1570-748X.1988.tb02299.x.
60–61. doi:10.1002/0075-8095.a01-001-i.
68. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, et al. (2009) Stable
66. Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance
88. King JG, Vernick KD, Hillyer JF (2011) Members of the Salivary Gland
86. Ishmael N, Dunning Hotopp JC, Ioannidis P, Biber S, Sakamoto J, et al. (2009)
85. Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS, et al. (2012)
79. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, et al. (2011)
76. Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, et al. (2008)
71. Cordaux R, Pichon S, Ling A, Perez P, Delaunay C, et al. (2008) Intense
84. Mavingui P, Laeremans T, Flores M, Romero D, Martínez-Romero E, et al.
83. Kroll JS, Loynds BM, Moxon ER (1991) The Haemophilus influenzae
82. Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio
81. Andersson DI, Hughes D (2009) Gene amplification and adaptive evolution in
75. Ishmael N, Dunning Hotopp JC, Ioannidis P, Biber S, Sakamoto J, et al. (2009)
71. Cordaux R, Pichon S, Ling A, Perez P, Delaunay C, et al. (2008) Intense
80. King JG, Vernick KD, Hillyer JF (2011) Members of the Salivary Gland
79. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, et al. (2011)
76. Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, et al. (2008)
71. Cordaux R, Pichon S, Ling A, Perez P, Delaunay C, et al. (2008) Intense
84. Mavingui P, Laeremans T, Flores M, Romero D, Martínez-Romero E, et al.
83. Kroll JS, Loynds BM, Moxon ER (1991) The Haemophilus influenzae
82. Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio
116. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973. doi:10.1093/molbev/mss075.

117. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174.

118. Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23: 7–9. doi:10.1093/molbev/msj021.

119. Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, et al. (2008) Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol 6: e204. doi:10.1371/journal.pbio.0060204.

120. Giardine B, Riemer C, Hardison RC, Birnbaum R, Elnitski L, et al. (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15: 1451–1455. doi:10.1101/gr.4086505.

121. Schneider KL, Pollard KS, Baertsch R, Pohl A, Lowe TM (2006) The UCSC Archaeal Genome Browser. Nucleic Acids Res 34: D407–D410. doi:10.1093/nar/gkj134.