Ab initio investigation of CaO-ZnO alloys under high pressure

Xiaojing Sha, Fubo Tian, Da Li, Defang Duan, Binhua Chu, Yunxian Liu, Bingbing Liu & Tian Cui

Ca$_x$Zn$_{1-x}$O alloys are potential candidates to achieve wide band-gap, which might significantly promote the band gap engineering and heterojunction design. We performed a crystal structure search for CaO-ZnO system under pressure, using an ab initio evolutionary algorithm implemented in the USPEX code. Four stable ordered Ca$_x$Zn$_{1-x}$O structures are found in the pressure range of 8.7–60 GPa. We further constructed the pressure vs. composition phase diagram of CaO-ZnO alloys based on the detailed enthalpy calculations. With the increase in Ca concentration, the CaO-ZnO alloy first undergoes a hexagonal to monoclinic transition, and then transforms back to a hexagonal phase. At Above 9 GPa, there is no cubic structure in the alloys, in contrast to the insosctructural components (B1-B1). The band gap of the Ca$_x$Zn$_{1-x}$O alloy shows an almost linear increase as a function of the Ca concentration. We also investigated the variation regularity of the band gap under pressure.

In the past several years, ZnO has been considered as an attractive material, given its unique physical properties, such as a wide direct band gap of 3.37 eV and high exciton binding energy (60 meV) at room temperature. These properties make it suitable for a wide variety of applications, such as ultraviolet (UV) emission and detection, surface acoustic wave (SAW) devices, gas sensors and transparent conducting electrodes. In these desired applications, high-efficient ZnO-based light-emitting devices are particularly important. Mixing ZnO-based semiconductor alloys with other materials which possess even wider band gaps, allows for the fabrication of quantum wells and superlattices. Alloying is an effective approach to fine-tune the band gap in the range of blue-green and ultraviolet wavelengths, which greatly promotes the band-gap engineering and heterojunction design. For different desired band gaps, there are several candidates, such as MgO, BeO, and CaO. The MgZnO alloy, which has high solubility, has been widely investigated. However, phase segregation between ZnO and MgO was observed for Mg concentrations $x \geq 0.36$ due to the different crystal structures and large lattice mismatch between ZnO and MgO. Specifically, MgO is cubic and ZnO is hexagonal. BeO ($E_g = 10.6$ eV) is another good alternative, and it has the same crystal structure as ZnO. However, at increased pressures, the BeO remains in the hexagonal wurtzite structure, and ZnO transforms into cubic structure at ~9 GPa. In the past years, some theoretical researches have been done to seek a stable BeZnO alloy, yet not fully successful because the large difference in the ionic radii of Be and Zn usually causes the structure of BeZnO thermodynamically unstable.

CaO is an Ila-IVa compound with a rock-salt structure and a wide band-gap of 7.2 eV, and Ca$_x$Zn$_{1-x}$O alloys are also candidates for wider band-gap materials. A number of first-principle calculations on Ca$_x$Zn$_{1-x}$O with wurtzite structures have been performed, however, no stable structure has yet been found. Previous theoretical studies focused on creating alloys in a wurtzite structure by replacing Zn with Ca. For instance, the existence of metastable states at Ca concentrations of $x = 0.25$, 0.50 and 0.75 has been shown, however, these kinds of consequences are not stable. Bulk ZnO prefers the hexagonal wurtzite structure (B4) under ambient pressure and transforms into a cubic rocksalt structure (B1) at 9 GPa, while CaO is in a rocksalt structure under 60 GPa. Generally, there is a large difference in the crystal structure between wurtzite hexagonal ZnO (B4) and rock salt cubic CaO (B1) that can cause unstable phase-mixing, as shown by Nazir’s et al. In this paper, we investigate the stable structures of Ca$_x$Zn$_{1-x}$O alloys under high pressure.
Ca\(_{x}\)Zn\(_{1-x}\)O alloy under high pressure using first principles calculations. We examine the stability, structural and electronic properties of the Ca\(_{x}\)Zn\(_{1-x}\)O alloys with different Ca concentrations. These structural and electronic properties are crucial for hetero-structural design and optimized growth of the related quantum wells and superlattices.

Results and discussion

In this work, we report four stable ground state structures of Ca\(_{x}\)Zn\(_{1-x}\)O. The formation enthalpy of Ca\(_{x}\)Zn\(_{1-x}\)O alloy is calculated using a fractional representation of Ca\(_{x}\)Zn\(_{1-x}\)O (0 \(\leq x \leq 1\)) with respect to its decomposition into CaO and ZnO, as

\[
\Delta H = H(Ca_Zn_{1-x}O) - (xH(CaO) + (1-x)H(ZnO))
\]

where \(x\) is the concentration of CaO. B1-CaO transits to B2 at 58 GPa in our calculation, similar to previous results\(^{24,29}\). In the condition of ZnO, the transition from B4 to B1 takes place at 9 GPa in our calculation, consistent with the experimental findings \(P_t \approx 8.7\) GPa\(^{30}\), \(P_t \approx 9.1\) GPa\(^{31}\), or \(P_t \approx 10\) GPa\(^{32}\) and first-principles calculations \(P_t = 8.8\) GPa\(^{12}\). Thus, when pressure is below 9 GPa, B4 phases are considered, and above 9 GPa B1-ZnO is considered for the lowest energy. Similarly in the case of CaO, B1 phases below 58 GPa, and above 58 GPa, B2 phases are considered. The relative energetics of CaO-ZnO alloys from 10 to 60 GPa are summarized in the convex hull plots shown in Fig. 1. The formation enthalpies were evaluated as the difference in the enthalpy of the predicted CaO-ZnO alloys with respect to CaO and ZnO at the selected pressures. Structures lying on the convex hull are either thermodynamically stable or metastable, and can be synthesized in principle. Figure 1 reveals that Ca\(_{x}\)Zn\(_{6-x}\)O is the first stable alloy below 10 GPa, which has the most negative enthalpy of formation. In Fig. 2 we show the calculated enthalpy difference of Ca\(_{x}\)Zn\(_{6-x}\)O as a function of pressure, calculated against the decomposition into the constituent oxides (B1-CaO, B1-ZnO, or B4-ZnO). As shown in Fig. 2, the structure of Ca\(_{x}\)Zn\(_{6-x}\)O becomes stable above 8.7 GPa. The space group of this high-pressure phase is R-3. In the case of B4-ZnO and B1-CaO, the formation enthalpies of all Ca\(_{x}\)Zn\(_{1-x}\)O alloys are positive before 8.7 GPa, indicating the tendency for the segregation into CaO and ZnO.

At above 8.7 GPa, more stable Ca\(_{x}\)Zn\(_{6-x}\)O structures appear. As depicted in Supplementary Fig. S1, enthalpy calculations reveal that Ca\(_{x}\)Zn\(_{4-x}\)O alloys exist above 12 GPa. At higher pressure, Ca\(_{x}\)Zn\(_{4-x}\)O and Ca\(_{x}\)Zn\(_{5-x}\)O become stable at 32.6 GPa and 36.8 GPa, respectively. The thermodynamic results show that the formation enthalpy of Ca\(_{x}\)Zn\(_{4-x}\)O is always slight in the pressure range of 36.8–65 GPa. The Ca\(_{x}\)Zn\(_{4-x}\)O structure will become unstable completely when pressure reaches 65 GPa, with a tendency to segregate into Ca\(_{x}\)Zn\(_{4-x}\)O and Ca\(_{x}\)Zn\(_{5-x}\)O. All of the expected stable alloys of Ca\(_{x}\)Zn\(_{4-x}\)O (R-3), Ca\(_{x}\)Zn\(_{4-x}\)O (C2/M), Ca\(_{x}\)Zn\(_{4-x}\)O (P2/C), and Ca\(_{x}\)Zn\(_{4-x}\)O (R-3M) are depicted in Fig. 3. More alloy structures with higher Ca-concentration appear with further increase in pressure. However, the structures can only be stable when the Ca-concentration is no more than 50%, even if pressure is increased over 60 GPa.

These detailed calculations for stable structures allow us to construct a P-x phase diagram of CaO-ZnO alloys, as shown in Fig. 3. There is a tendency for the number of Ca\(_{x}\)Zn\(_{1-x}\)O alloys to increase with pressure, similar to Mg\(_{x}\)Zn\(_{1-x}\)O alloys\(^{12}\). However, with pressure increasing, more Mg-rich structures appeared in the MgO-ZnO case, but more Zn-rich structures appear in our study. CaO, ZnO, and MgO

![Figure 1. Convex hull diagram for CaO-ZnO alloys.](image-url)
all exhibit cubic structures under pressure; and the ionic radii of Ca, Zn and Mg is 1, 0.74, and 0.72 Å, respectively. In this case, the element with the smaller ionic radius trend to turn into higher component in the alloys.

For all the predicted structures shown in Fig. 4, the corresponding structural information is listed in Table 1. We calculated the phonon dispersions under pressure, and found them to be dynamically stable (Supplementary Fig. S2). We also calculated the phonon dispersions and elastic constants of the four predicted structures under 0 GPa, as shown in Supplementary Fig. S3 and Table S1, which show the structures are mechanically and dynamically stable at 0 GPa. So we think our predicted alloys can be synthesized at high pressure and reserved at ambient conditions.
Previous studies suggest that the symmetry of component structures is important in alloys of ZnO with other group-II metal oxides. Most of these structures were created using the substitution method, where Zn was replaced with Ca in the wurtzite supercell or Ca was replaced with Zn in the rocksalt supercell. However, our current study shows that the stable CaO-ZnO alloys undergo a transition from hexagonal to monoclinic, and back to hexagonal structure, with the increase in the Ca concentration. At 8.7 to 9 GPa, the CaZn$_6$O$_7$ alloy made from the nonisostructural components (wurtzite + rocksalt) is stable through both dynamics and thermodynamic analysis. At above 9 GPa, more structure became stable, however, none of the alloys have the rocksalt structure, without even the cubic symmetry adopted, although they were made from the isostructural components (rocksalt + rocksalt). In our previous study, we found similar results in the MgO-ZnO alloys, where the alloys have a hexagonal structure.

Figure 3. Pressure-composition phase diagram of the Ca$_x$Zn$_{1-x}$O alloys.

Figure 4. Crystal structures of the predicted Ca$_x$Zn$_{1-x}$O at the selected pressures. (a) R-3$_m$ CaZn$_6$O$_7$ at 40 GPa, (b) C2/m CaZn$_5$O$_6$ at 60 GPa, (c) P2$_1$/c CaZn$_3$O$_4$ at 40 GPa and (d) R-3$_m$ CaZnO$_2$ at 40 GPa. The large purple, medium-sized gray and small red spheres represent Ca, Zn and O atoms, respectively. More structural details are listed in Table 1.
with a high Mg-concentration, while both ZnO and MgO have a similar cubic structure under pressure. In BeO-ZnO alloys, the solubility of Be$_2$Zn$_{1-x}$O in the Zn-rich region is low, although ZnO and BeO have the same wurtzite structure\(^7\). In addition, no BeO-ZnO alloy structures with thermodynamic stability

Figure 5. The electronic band structures of CaO-ZnO alloys. (a) Depicts the electronic band structures of Ca$_{Zn_6}$O$_7$, Ca$_{Zn_5}$O$_6$, Ca$_{Zn_3}$O$_4$, CaZnO$_2$ at 60 GPa. (b) Depicts the band gaps as the function of pressure at selected pressures.

Figure 6. The electronic band structures of CaZnO$_2$. At pressure of (a) 45 GPa, (b) 65 GPa, respectively. And (c) the band gap at the Γ and M points as the function of pressure are depicted by black and red lines, respectively.
were found using our USPEX calculations. In contrast to previous views, the symmetry of component structure shows little impacts on the alloy structure here.

Band gap (E_g), which denotes the required energy of an electron from valence band maximum (VBM) to conduction band minimum (CBM), is an important parameter to determine the optoelectronic properties of semiconductors. The band gap of ZnO increases with pressure, and that of CaO decreases with pressure, as shown in Supplementary Fig. S3. Therefore, it is interesting to observe the pressure effects on band gaps of CaO-ZnO alloys. These band gaps are graphed in Fig 5(b) as a function of Ca composition for ground-state Ca$_x$Zn$_{1-x}$O structures under high pressure. The band gap increases with pressure and also increases in an almost linear fashion with Ca concentration, when the pressure increases from 10 to 60 GPa. The more CaO mixing with ZnO, the wider band gap of alloy will be formed. In our previous theoretical study12, we also found the band gap linearly increases with Mg content in the Mg$_x$Zn$_{1-x}$O alloys, which is consistent with the experimental results35.

As shown in Fig. 5(b), band gaps of all alloys increase with pressure except CaZnO$_2$, whose band gaps have different variation rules for pressure. Calculated electronic band structures are graphed in Fig. 5(a) at selected pressures. The CBMs of CaZn$_6$O$_7$, CaZn$_5$O$_6$, and CaZn$_3$O$_4$ are all located at the Γ point (0,0,0), and the CBM of CaZnO$_2$ is located at the M point (0,1/2,0). The CBM transforms from the Γ point to the M point as the Ca concentration increases.

We further analyze whether the different concentrations of alloys lead to a variation in the electronic band structures. Firstly, when Ca concentration is less than 0.5, the band gap increases with pressure, and the CBM is always located at the Γ point. Band gaps are plotted as a function of pressure in Supplementary Fig. S4. However, CaZnO$_2$ displays some extraordinary properties. The band gap of CaZnO$_2$ first increases and then decreases with pressure, as shown in Fig. 6. The CBM of CaZnO$_2$ under 40 GPa is located at the Γ point (0, 0, 0), and the band gap at Γ point increases with pressure, similar to the behavior in B1-ZnO. Meanwhile, the CBM of CaZnO$_2$ from 40 to 60 GPa is located at the M point (0, 1/2, 0), and the gap at the M point reduces slowly with pressure, same to CaO at the X point (1/2, 0, 1/2). Using qualitative analysis, we keep the lattice constants unchanged, remove Ca or Zn atoms, respectively, and analyze the band structures of the broken crystal. The CBM of CaZnO$_2$ without Ca atoms located at the Γ point, and without Zn locates at the M point, which reveals that the conduction band at the Γ point basically comes from ZnO, and at the M point comes from CaO. Thus, with the increase in pressure, the CaO band-gap is more significant than the ZnO one.

Furthermore, other than the above-mentioned four stable structures, we find a metastable structure when Ca concentration is 0.75, as shown in Fig. 7(a). There is no imaginary frequency in Fig. 7(c), so the Ca$_3$ZnO$_4$ structure is dynamically stable. Although the formation enthalpy (with respect to ZnO and CaO) is negative as shown in Fig. 1 above 40 GPa, the enthalpy respect to CaZnO$_2$ and CaO is always positive, which indicates a tendency to segregate into CaZnO$_2$ and CaO. From the calculated electronic band structures in Fig. 7(b), the CBM of Ca$_3$ZnO$_4$ alloy is located at M the point. The band gap of this metastable structure is represented by the purple dotted line in Supplementary Fig. S4. The band gap of those large Ca-concentration structure decreases with pressure, while the low Ca-concentration structure exhibit the opposite behavior. In view of the band structure of all of these alloys, and considering the

Figure 7. The metastable phase of Ca$_3$ZnO$_4$. (a) the crystal structure, (b) the electronic band structures and (c) the phonon dispersion curve.
effects of pressure on band gap, the effect of Ca-concentration is also significant. In summary, the band gap of CaO-ZnO alloy depends on a fine interplay between concentration and pressure.

Conclusion

We investigate the composition and structure of the CaO-ZnO alloys at high pressure using USPEX codes. In a range of 0–60 GPa, four stable alloy structures with different Ca concentrations have been found. With increasing pressure, more alloys with higher Ca concentrations appear. However, the structure can only be stable when the Ca-concentration is no more than 50%, with pressure up to 60 GPa. When the Ca concentration increases, the stable structures of CaZnO₂, CaZn₂O₆, CaZn₃O₄ and CaZnO₂ undergo a hexagonal to monoclinic transition, and then transforms back to a hexagonal phase. We find that ground-state structures of the alloys do not share the cubic nature of ZnO and CaO, indicating the symmetry of component structures has little impact on the alloy structure. Through detailed analysis of band structure, we note an almost linear increase in band gap as a function of Ca-concentration at the selected pressure. When the concentration is below 50% the band gap increases with pressure. The band gap of CaZnO₂ first increases with pressure up to 40 GPa, and then starts to decrease with pressure.

Methods

To search for the stable and low-enthalpy structures of CaO-ZnO alloy, an ab initio evolutionary algorithm (EA), which has been designed to find the most stable structure for a given chemical composition range at given external conditions as implemented in the USPEX code, is employed. In this work, evolutionary crystal structure prediction calculations were performed at 0, 20, 40 and 60 GPa for (CaO)n–(ZnO)n system (m + n ≤ 20), all at zero temperature. We performed ab initio calculations with the Local Density Approximation (LDA) as implemented in the Vienna ab initio simulation package (VASP) code, which is based on density functional theory. The electron-ion interaction was described by the projector augmented wave (PAW) scheme. The electron configurations were treated as valence for Zn, Ca, and O, respectively. During structural relaxation, a tested energy cut off of 550 eV was used for the plane wave basis sets, and a k-point resolution of 0.03 Å⁻¹ in the reciprocal space was used for all structures to minimize error from the k-point meshes. The atomic positions, lattice parameters, and cell volume were fully relaxed until the force on each atom was less than 1 meV/Å. Phonons were calculated with the supercell method implemented in the PHONOPY program.

References

1. Reynolds, D. et al. Valence-band ordering in ZnO. *Phys. Rev. B* **60**, 2340 (1999).
2. Gupta, T. K. Application of zinc oxide varistors. *J. Am. Ceram. Soc.***73,** 1817–1840 (1990).
3. Pu, C., Tang, X. & Zhang, Q. First principles study on the structural and optical properties of the high-pressure ZnO phases. *Solid State Commun.***151,** 1533–1536 (2011).
4. Tsukazaki, A. et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. *Nat. Mater.* **4**, 42–46 (2004).
5. Misra, K. P., Shukla, R., Srivastava, A. & Srivastava, A. Blueshift in optical band gap in nanocrystalline Zn₁₋ₓCaₓO films deposited by sol-gel method. *Appl. Phys. Lett.* **95**, 031901–031903 (2009).
6. Li, K., Kang, C. & Xue, D. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys. *Mater. Res. Bull.* **47**, 2902–2905 (2012).
7. Li, K., Ding, Z. & Xue, D. Composition dependence of bulk modulus and band length of MgₓZn₁₋ₓO (x = 0.0–1.0) alloy semiconductors. *Funct. Mater. Lett.* **3**, 241–244 (2010).
8. Zhao, Y. et al. Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys. *Phys. Rev. B***77,** 245209 (2008).
9. Shi, H.-L. & Duan, Y. Band-gap bowing and p-type doping of (Zn, Mg, Be) O wide-gap semiconductor alloys: a first-principles study. *Eur. Phys. J. B***66,** 439–444 (2008).
10. Schleife, A. et al. Ab initio description of heterostructural alloys: Thermodynamic and structural properties of MgₓZn₁₋ₓO and CdₓZn₀₋ₓO. *Phys. Rev. B***81,** 245210 (2010).
11. Belogorokhov, A. I. et al. Lattice vibrational properties of ZnMgO grown by pulsed laser deposition. *Appl. Phys. Lett.* **90**, 192110 (2007).
12. Tian, F. et al. Miscibility and ordered structures of MgO-ZnO alloys under high pressure. *Sci. Rep.* **4**, 5759 (2014).
13. Sanati, M., Hart, G. L. & Zunger, A. Ordering tendencies in octahedral MgO-ZnO alloys. *Phys. Rev. B***68,** 155210 (2003).
14. Seko, A., Oba, F., Kuwabara, A. & Kato, H. Nonlinear characteristics of structural properties and spontaneous polarization in wurtzite MgₓZn₁₋ₓO: A first-principles study. *Phys. Rev. B***88,** 075203 (2013).
15. Mazzoleni, L. et al. Structural phase transitions and fundamental band gaps of MgₓZn₁₋ₓO alloys from first principles. *Phys. Rev. B***80,** 144101 (2009).
16. Pan, X. et al. A direct first principles study of the electronic properties and structural electronic of BeₓZn₁₋ₓO. *Appl. Phys. Lett.* **91**, 121121 (2007).
17. Chen, M. et al. Formation behavior of BeₓZn₁₋ₓO alloys grown by plasma-assisted molecular beam epitaxy. *Appl. Phys. Lett.* **102**, 202103 (2013).
18. Fan, X. et al. A first principles investigation of the crystal structure, band-gap energy, polarization, and piezoelectric properties of ZnO-BeO solid solutions. *Phys. Rev. B***84,** 035315 (2011).
24. Richet, P., Mao, H. K. & Bell, P. M. Static compression and equation of state of CaO to 1.35 Mbar. J. Geophys. Res. 93, 15279–15288 (1988).
25. Jeanloz, R. & Ahrens, T. J. Equations of state of FeO and CaO. Geophys. J. International 62, 505–528 (1980).
26. Nazir, S. et al. Structural, electronic and optical calculations of Ca\x26sub-x\x26sub-Zn\x26sub-x\x26sub-O alloys: A first principles study. J. Phys. Chem. Solids 70, 874–880 (2009).
27. Fan, X., Sun, H., Shen, Z., Kuo, J.-L. & Lu, Y. A first-principle analysis on the phase stabilities, chemical bonds and band gaps of wurtzite structure A\x26sub-x\x26sub-Zn\x26sub-x\x26sub-O alloys (A = Ca, Cd, Mg). J. Phys.-Condens. Mat. 20, 235221 (2008).
28. Miloua, R., Kebbab, Z., Miloua, F. & Benramdane, N. Ab initio investigation of phase separation in Ca\x26sub-x\x26sub-Zn\x26sub-x\x26sub-O alloys. Phys. Lett. A 372, 1910–1914 (2008).
29. Catti, M. Ab initio predicted metastable TlI-like phase in the B 1 to B 2 high-pressure transition of CaO. Phys. Rev. B 68, 100101 (2003).
30. Karzel, H. et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys. Rev. B 53, 11425–11438 (1996).
31. Desgreniers, S. High-density phases of ZnO:Structural and compressive parameters. Phys. Rev. B 58, 14102–14105 (1998).
32. Bates, C. H., White, W. B. & Roy, R. New high-pressure polymorph of zinc oxide. Science 137, 993–993 (1962).
33. Shannon, R. T. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976).
34. Schleife, A., Rödl, C., Furthmüller, J. & Bechstedt, F. Electronic and optical properties of Mg\x26sub-Zn\x26sub-O and Cd\x26sub-Zn\x26sub-O from ab initio calculations. New J. Phys. 13, 085012 (2011).
35. Chiou, I., Tsai, H., Pao, C. & Pong, W. Mg-induced increase of band gap in Zn\x26sub-x\x26sub-Mg\x26sub-O nanorods revealed by x-ray absorption and emission spectroscopy. J. Appl. Phys. 104, 013709 (2008).
36. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 124, 244704 (2006).
37. Oganov, A. R., Lyakhov, A. O. & Vallee, M. How evolutionary crystal structure prediction works and why. Accounts Chem. Res. 44, 227–237 (2011).
38. Lyakhov, A. O., Oganov, A. R., Stokes, H. T. & Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 184, 1172–1182 (2013).
39. Ceperley, D. M. & Alder, B. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).
40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
41. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

Acknowledgements
This work was supported by the National Basic Research Program of China (No. 2011CB808200), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1132), National Natural Science Foundation of China (No. 51032001, 11074090, 11104102, 10979001, 51025206, 11404134, 11204100), and National Fund for Fostering Talents of basic Science (No. J1103202). Parts of the calculations were performed at the High Performance Computing Center (HPCC) of Jilin University.

Author Contributions
T.C. initiated the project. X.S. performed the first principle calculations and prepared all figures. X.S., F.T. and T.C. analyzed the data and wrote the manuscript text. D.L., D.D., B.C., Y.L. and B.L. reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Sha, X. et al. Ab initio investigation of CaO-ZnO alloys under high pressure. Sci. Rep. 5, 11003; doi: 10.1038/srep11003 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/