On \mathbb{Q}-factorial terminalizations of nilpotent orbits

Baohua Fu

November 24, 2008

1 Introduction

Let \mathfrak{g} be a complex simple Lie algebra and G its adjoint group. For a parabolic subgroup $Q \subset G$, we denote by \mathfrak{q} its Lie algebra and $\mathfrak{q} = n(\mathfrak{q}) + l(\mathfrak{q})$ its Levi decomposition. For a nilpotent orbit O_t in $l(\mathfrak{q})$, Lusztig and Spaltenstein \cite{L-S} showed that $G \cdot (n(\mathfrak{q}) + \overline{O}_t)$ is a nilpotent orbit closure, say \overline{O}, which depends only on the G-orbit of the pair $(l(\mathfrak{q}), O_t)$. The variety $n(\mathfrak{q}) + \overline{O}_t$ is Q-invariant and the surjective map

$$\pi : G \times^Q (n(\mathfrak{q}) + \overline{O}_t) \to \overline{O}$$

is generically finite and projective, which will be called a generalized Springer map. When $O_t = 0$ and π is birational, we call π a Springer resolution. An induced orbit is a nilpotent orbit whose closure is the image of a generalized Springer map. An orbit is called rigid if it is not induced.

Recall that for a variety X with rational Gorenstein singularities, a \mathbb{Q}-factorial terminalization of X is a birational projective morphism $p : Y \to X$ such that Y has only \mathbb{Q}-factorial terminal singularities and $p^*K_X = K_Y$. When Y is furthermore smooth, we call p a crepant resolution. In \cite{F1}, the author proved that for nilpotent orbit closures in a semi-simple Lie algebra, crepant resolutions are Springer resolutions. In a recent preprint \cite{N3}, Y. Namikawa proposed the following conjecture on \mathbb{Q}-factorial terminalizations of nilpotent orbit closures.

Conjecture 1. Let O be a nilpotent orbit in a complex simple Lie algebra \mathfrak{g} and \mathcal{O} the normalization of its closure \mathcal{O}. Then one of the following holds:
1 INTRODUCTION

(1) \(\tilde{O}\) is \(\mathbb{Q}\)-factorial terminal;
(2) every \(\mathbb{Q}\)-factorial terminalization of \(\tilde{O}\) is given by a generalized Springer map. Furthermore, two such terminalizations are connected by Mukai flops (cf. [N1], p. 91).

In [N3], Y. Namikawa proved his conjecture in the case when \(\mathfrak{g}\) is classical. In this paper, we shall prove that Conjecture [1] holds for \(\mathfrak{g}\) exceptional (Theorem 5.1 and Theorem 6.1). Two interesting results are also obtained: one is the classification of nilpotent orbits with \(\mathbb{Q}\)-factorial normalization \(\tilde{O}\) (Proposition 4.4) and the other is the classification of nilpotent orbits with terminal \(\tilde{O}\) (Proposition 6.8).

Here is the organization of this paper. After recalling results from [B-M], we first give a classification of induced orbits which are images of birational generalized Springer maps (Proposition 3.1). Using this result, we completely settle the problem of \(\mathbb{Q}\)-factoriality of the normalization of a nilpotent orbit closure in exceptional Lie algebras (Proposition 4.4), which shows the surprising result that only in \(E_6\), \(\tilde{O}\) could be non-\(\mathbb{Q}\)-factorial. We then prove that for rigid orbits the normalization of its closure is \(\mathbb{Q}\)-factorial and terminal (see Theorem 5.1). For induced orbits whose closure does not admit a Springer resolution, we shall first prove that except four orbits (which have \(\mathbb{Q}\)-factorial terminal normalizations), there exists a generalized Springer map which gives a \(\mathbb{Q}\)-factorial terminalization of \(\tilde{O}\). For the birational geometry, unlike the classical case proven by Y. Namikawa, two new types of flops appear here, which we call Mukai flops of type \(E_{6,I}^l\) and \(E_{6,I}^u\) (for the definition see section 6.1). We shall prove in a similar way as in [P2] that any two \(\mathbb{Q}\)-factorial terminalizations given by generalized Springer maps of \(\tilde{O}\) are connected by Mukai flops of type \(E_{6,I}^l\) or \(E_{6,I}^u\) (Corollary 6.5). Then using a similar argument as in [N3], we prove that every \(\mathbb{Q}\)-factorial terminalization of \(\tilde{O}\) is given by a generalized Springer map. An interesting corollary is a classification of nilpotent orbits in a simple exceptional Lie algebra such that \(\tilde{O}\) has terminal singularities (Proposition 6.8).

Acknowledgements: The author would like to thank Y. Namikawa for his corrections and helpful correspondences to this paper. I thank W. de Graaf for his help on computing in GAP4. I am grateful to M. Brion, S. Goodwin, H. Kraft, G. Röhrle, E. Sommers for their helpful correspondences.
2 Preliminaries

In this section, we shall recall some results from [B-M]. Let W be the Weyl group of G. The Springer correspondence ([S2]) assigns to any irreducible W-module a unique pair (\mathcal{O}, ϕ) consisting of a nilpotent orbit \mathcal{O} in \mathfrak{g} and an irreducible representation ϕ of the component group $A(\mathcal{O}) := G_x/(G_x)^0$ of \mathcal{O}, where x is any point in \mathcal{O} and $(G_x)^0$ is the identity component of G_x. The corresponding irreducible W-module will be denoted by $\rho(x, \phi)$. This correspondence is not surjective onto the set of all pairs (\mathcal{O}, ϕ). A pair will be called relevant if it corresponds to an irreducible W-module, then the Springer correspondence establishes a bijection between irreducible W-modules and relevant pairs in \mathfrak{g}. For G exceptional, the Springer correspondence has been completely worked out in [S1] for G_2, in [S] for F_4 and in [A-L] for E_n ($n = 6, 7, 8$). We will use the tables in [C] (Section 13.3).

Consider a parabolic sub-group Q in G. Let L be a Levi sub-group of Q and T a maximal torus in L. The Weyl group of L is $W(L) := N_L(T)/T$, where $N_L(T)$ is the normalizer of T in L. It is a sub-group of the Weyl group W of G. For a representation ρ of $W(L)$, we denote by $\text{Ind}_{W}^{W(L)}(\rho)$ the induced representation of ρ to W.

Proposition 2.1 ([B-M], proof of Corollary 3.9). Let $\pi : G \times Q (n(q) + \bar{O}_t) \to \bar{O}_x$ be the generalized Springer map associated to the parabolic sub-group Q and the nilpotent orbit \mathcal{O}_t. Then

$$\deg(\pi) = \sum_{\phi} \text{mtp}(\rho(x, \phi), \text{Ind}_{W(L)}^{W}((\rho(t,1))) \deg \phi,$$

where the sum is over all irreducible representations ϕ of $A(\mathcal{O}_x)$ such that (\mathcal{O}_x, ϕ) is a relevant pair, $\text{mtp}(\rho(x, \phi), \text{Ind}_{W(L)}^{W}((\rho(t,1)))$ is the multiplicity of $\rho(x, \phi)$ in $\text{Ind}_{W(L)}^{W}((\rho(t,1))$ and $\deg \phi$ is the dimension of the irreducible representation ϕ.

The multiplicity $\text{mtp}(\rho(x, \phi), \text{Ind}_{W_0}^{W}((\rho))$ has been worked out in [A], for any irreducible representation ρ of any maximal parabolic sub-group W_0 of W. Note that $\text{Ind}_{W(L)}^{W}((\rho) = \text{Ind}_{W_0}^{W}((\text{Ind}_{W(L)}^{W_0}((\rho)))$ for any sub-group W_0 of W containing $W(L)$ and $\text{Ind}_{W_0}^{W}((\rho)$ can be determined by the Littlewood-Richardson rules when W_0 is classical and by [A] when W_0 is exceptional.

By the remark in section 3.8 [B-M], $\text{mtp}(\rho(x,1), \text{Ind}_{W(L)}^{W}((\rho(t,1))) = 1$, which gives the following useful corollary.
Corollary 2.2. If \mathcal{O} is an induced orbit with $A(\mathcal{O}) = \{1\}$, then every generalized Springer map is birational.

Recall that a complex variety Z of dimension n is called rationally smooth at a point $z \in Z$ if

$$H_i(Z, Z \setminus \{z\}; \mathbb{Q}) = \begin{cases} \mathbb{Q} & \text{if } i = 2n, \\ 0 & \text{otherwise}. \end{cases}$$

For a generalized Springer map $\pi : Z := G \times^Q (n(q) + \bar{O}_t) \rightarrow \bar{O}_x$, an orbit $\mathcal{O}_{x'} \subset \bar{O}_x$ is called π-relevant if $2 \dim \pi^{-1}(x') = \dim \mathcal{O}_x - \dim \mathcal{O}_{x'}$.

Proposition 2.3 ([B-M], Proposition 3.6). Assume that Z is rationally smooth at points in $\pi^{-1}(x')$. Then $\mathcal{O}_{x'}$ is π-relevant if and only if

$$\text{mtp}(\rho(x',1), \text{Ind}^W_{\text{W}(L)} \rho(t,1)) \neq 0.$$ When $t = 0$, $Z \simeq T^*(G/P)$ is smooth, π is the moment map and \mathcal{O}_x is the Richardson orbit associated to P. In this case, $\rho(t,1) = \varepsilon_W(L)$ is the sign representation and we have a geometric interpretation of the multiplicity.

Proposition 2.4 ([B-M], Corollary 3.5). For the map $\pi : T^*(G/P) \rightarrow \bar{O}_x$, the multiplicity $\text{mtp}(\rho(x',1), \text{Ind}^W_{\text{W}(L)} \varepsilon_W(L))$ is the number of irreducible components of $\pi^{-1}(\mathcal{O}_{x'})$ of dimension $\dim \mathcal{O}_x + (\dim G/P - 1/2 \dim \mathcal{O}_x)$.

3 Birational generalized Springer maps

Throughout the paper, we will use notations in [M] (section 5.7) for nilpotent orbits. In this section, we classify nilpotent orbits in a simple exceptional Lie algebra which is the image of a birational generalized Springer map. More precisely, we prove the following proposition.

Proposition 3.1. Let \mathcal{O} be an induced nilpotent orbit in a simple complex exceptional Lie algebra. The closure $\bar{\mathcal{O}}$ is the image of a birational generalized Springer map if and only if \mathcal{O} is not one of the following orbits: $A_2 + A_1, A_4 + A_1$ in E_7, $A_4 + A_1, A_4 + 2A_1$ in E_8.

By Corollary 2.2, to prove Proposition 3.1, we just need to consider induced orbits with non-trivial $A(\mathcal{O})$ but having no Springer resolutions. The
classification of induced/rigid orbits in exceptional Lie algebras can be found for example in [M] (section 5.7). We will use the tables therein to do a case-by-case check. Note that the G therein is simply-connected, thus $A(x)$ in these tables is $\pi_1(O_x)$. On can get $A(O)$ by just omitting the copies of $\mathbb{Z}/d\mathbb{Z}$, $d = 2, 3$ when it presents. When $A(O)$ is S_2 (resp. S_3), we will denote by ϵ (resp. ϵ_1, ϵ_2) its non-trivial irreducible representations.

3.1 F_4

There are two orbits to be considered: B_2 and $C_3(a_1)$. The orbit B_2 is induced from $(C_3, 21^4)$. We have $\rho(t,1) = [1^3 : -]$ and $\rho(x,\epsilon) = \phi_{4,8} = \chi_{4,1}$. By [A] (p. 143), we get $\text{mtp}(\rho(x,\epsilon), \text{Ind}_W^{W(C_3A_1)}(\rho(t,1))) = 0$, thus the degree of the associated generalized Springer map is one. The orbit $C_3(a_1)$ is induced from $(B_3, 2^21^3)$. We have $\rho(t,1) = [- : 21]$ and $\rho(x,\epsilon) = \phi_{4,7} = \chi_{4,4}$. By [A] (p. 147), the degree of π is one.

3.2 E_6

When $g = E_6$, every induced orbit either has $A(O) = \{1\}$ or admits a Springer resolution.

3.3 E_7

We have four orbits to be considered: $A_3 + A_2, D_5(a_1), A_2 + A_1$ and $A_4 + A_1$.

The orbit $A_3 + A_2$ is induced from $(D_6, 32^21^5)$. A calculus shows that the associated generalized Springer map has degree 2. By a dimension counting, it is also induced from $(D_5 + A_1, [21^6] \times [1^2])$. For this induction, one has $\rho(t,1) = [1 : 4^1 \times 1^2]$ and $\rho(x,\epsilon) = \phi_{84,15} = 84^*$. By [A] (p. 49), one gets $\text{mtp}(84^*, \text{Ind}_W^{W(D_5A_1)}[1 : 4^1 \times 1^2]) = \text{mtp}(84^*, \text{Ind}_W^{W(D_5A_1)}[4 : 1] \times [2]) = 0$, thus the induced generalized Springer map is birational. The orbit $D_5(a_1)$ is a Richardson orbit but its closure has no Springer resolutions ([F2]). By Thm. 5.3 [M], it is induced from $(D_6, 3^22^21^2)$. One finds $\rho(t,1) = [1^2 : 21^2]$ and $\rho(x,\epsilon) = \phi_{336,11} = 336^*$. Now by [M] (p. 43), the degree is one.

The orbit $A_2 + A_1$ has a unique induction (by dimension counting) given by (E_6, A_1). We have $\rho(t,1) = 6^*_{\mu}$ and $\rho(x,\epsilon) = \phi_{105,26} = 105_{\mu}$. By [A] (p. 51), the degree is 2. The orbit $A_4 + A_1$ is a Richardson orbit with no symplectic resolutions ([F2]), i.e. the degree given by the induction $(A_2 + 2A_1, 0)$ is of degree 2. It has three other inductions, given by $(E_6, A_2 + 2A_1), (A_6, 2^21^3)$ and
$(A_5 + A_1, 24^12 + 0)$. One shows that every such induction gives a generalized Springer map of degree 2.

3.4 E_8

We need to consider the following orbits: $A_3 + A_2, D_5(a_1), D_6(a_2), E_6(a_3) + A_1, E_7(a_5), E_7(a_4), E_6(a_1) + A_1, E_7(a_3), A_4 + A_1$ and $A_4 + 2A_1$. The orbit $A_3 + A_2$ is induced from $(D_7, 2^3 10^2)$. We have $\rho_{(t, 1)} = [1 : 16]$ and $\rho(x, e) = \phi_{972.32} = 972^*$. By \mathbb{A} (p. 105), we get $\deg = 1$. The orbit $D_5(a_1)$ is induced from $(E_7, A_2 + A_1)$ by Thm. 5.3 \mathbb{A}. We have $\rho_{(t, 1)} = 120^*$ and $\rho(x, e) = \phi_{2100.28} = 2100^*$. By \mathbb{A} (p. 140), we get $\deg = 1$. The induction from (E_6, A_1) gives a map of degree 2. The orbit $D_6(a_2)$ is induced from $(D_7, 3^2 1^3)$. We have $\rho_{(t, 1)} = [- : 2^3 1]$ and $\rho(x, e) = \phi_{2688, 20} = 2688^*_y$. By \mathbb{A} (p. 106), we get $\deg = 1$. The orbit $E_6(a_3) + A_1$ is induced from $(E_7, 2A_2 + A_1)$.

We have $\rho_{(t, 1)} = \phi_{70, 18} = 70^a$ and $\rho(x, e) = \phi_{1134, 20} = 1134^*_y$. By \mathbb{A} (p. 139), we get $\deg = 1$. The orbit $E_7(a_5)$ has $A(\mathcal{O}) = S_3$ and is induced from $(E_6 + A_1, 3A_1 + 0)$. We have $\rho_{(t, 1)} = \phi_{15, 16} \times [1^2] = 15^*_2 \times [1^2], \rho(x, e_1) = \phi_{5600, 19} = 5600_w, \rho(x, e_2) = \phi_{448, 25} = 448_w$. By \mathbb{A} (p. 136), we get $\deg = 1$. The orbit $E_7(a_4)$ is induced from $(E_7, A_3 + A_2)$. We have $\rho_{(t, 1)} = \phi_{378, 14} = 378^a$ and $\rho(x, e) = \phi_{700, 16} = 700_{xx}$. By \mathbb{A} (p. 139), we get $\deg = 1$. The orbit $E_6(a_1) + A_1$ is induced from $(E_7, A_2 + A_1)$. We have $\rho_{(t, 1)} = \phi_{512, 11} = 512^a$ and $\rho(x, e) = \phi_{4096, 12} = 4096_x$. By \mathbb{A} (p. 141), we get $\deg = 1$. The orbit $E_7(a_3)$ is induced from $(D_6, 3^3 2^2 1^2)$. We have $\rho_{(t, 1)} = [2^2 : 21^2]$ and $\rho(x, e) = \phi_{1296, 13} = 1296^*_x$. By \mathbb{A} (p. 43), we get $\Ind_{W(D_6)}^{W(E_7)}([2^2 : 21^2] = 189_b + 189_e + 315_a + 280_a + 336_a + 216_a + 512_a + 378_a + 420_a$. Now by \mathbb{A} (p. 138, p. 140), we get $\deg = 1$.

The orbit $A_4 + A_1$ has a unique induction given by $(E_6 + A_1, A_1 + 0)$, which gives a generalized Springer map of degree 2. The orbit $A_4 + 2A_1$ has a unique induction, given by $(D_7, 24^16)$. This gives a map of degree 2.

This concludes the proof of Proposition 3.1.

4 \mathbb{Q}-factoriality

In this section, we study the problem of \mathbb{Q}-factoriality of the normalization of a nilpotent orbit closure.

Lemma 4.1. Let \mathcal{O}_x be a nilpotent orbit in a complex simple Lie algebra and $(G_x)^c$ the identity component of the stabilizer G_x in G. Assume that
the character group \(\chi((G_x)^\circ) \) is finite, then \(\text{Pic}(\mathcal{O}_x) \) is finite and \(\bar{\mathcal{O}}_x \) is \(\mathbb{Q} \)-factorial.

Proof. The exact sequence \(1 \to (G_x)^\circ \xrightarrow{i} G_x \to A(\mathcal{O}_x) := G_x/(G_x)^\circ \to 1 \) induces an exact sequence: \(1 \to \chi(A(\mathcal{O}_x)) \to \chi(G_x) \to \text{Im}(i^*) \to 1. \) By assumption, \(\chi((G_x)^\circ) \) is finite, so is \(\text{Im}(i^*) \). On the other hand, \(A(\mathcal{O}_x) \) is a finite group, thus \(\chi(A(\mathcal{O}_x)) \) is also finite. This gives the finiteness of \(\chi(G_x) \).

The exact sequence \(1 \to G_x \to G \xrightarrow{q} \mathcal{O}_x \to 1 \) induces an exact sequence \(1 \to \chi(G_x) \to \text{Pic}(\mathcal{O}_x) \to \text{Im}(q^*) \to 1 \). As \(\text{Pic}(G) \) is finite, so is \(\text{Im}(q^*) \). This proves that \(\text{Pic}(\mathcal{O}_x) \) is finite. The last claim follows from \(\text{codim}(\bar{\mathcal{O}}_x \setminus \mathcal{O}_x) \geq 2. \)

Remark 4.2. It is a subtle problem to work out explicitly the group \(\text{Pic}(\mathcal{O}_x) \), since in general \(q^* \), \(i^* \) are not surjective.

Lemma 4.3. Let \(\pi : T^*(G/P) \to \bar{\mathcal{O}} \) be a resolution. Then \(\bar{\mathcal{O}} \) is \(\mathbb{Q} \)-factorial if and only if the number of irreducible exceptional divisors of \(\pi \) equals to \(b_2(G/P) \).

Proof. As \(\bar{\mathcal{O}} \) admits a positive weighted \(\mathbb{C}^* \)-action with a unique fixed point, \(\text{Pic}(\bar{\mathcal{O}}) \) is trivial. As a consequence, \(\bar{\mathcal{O}} \) is \(\mathbb{Q} \)-factorial if and only if \(\text{Pic}(\mathcal{O}) \) is finite. Let \(E_i, i = 1, \ldots, k \) be the irreducible exceptional divisors of \(\pi \). We have the following exact sequence:

\[
\bigoplus_{i=1}^k \mathbb{Q}[E_i] \to \text{Pic}(T^*(G/P)) \otimes \mathbb{Q} \to \text{Pic}(\mathcal{O}) \otimes \mathbb{Q} \to 0.
\]

By [N3] (Lemma 1.1.1), the first map is injective. Now it is clear that \(\text{Pic}(\mathcal{O}) \) is finite if and only if \(k = b_2(G/P) \).

Proposition 4.4. Let \(\mathcal{O} \) be a nilpotent orbit in a simple exceptional Lie algebra and \(\bar{\mathcal{O}} \) the normalization of its closure \(\mathcal{O} \). Then \(\bar{\mathcal{O}} \) is \(\mathbb{Q} \)-factorial if and only if \(\mathcal{O} \) is not one of the following orbits in \(E_6 \): \(2A_1, A_2 + A_1, A_2 + 2A_1, A_3, A_3 + A_1, A_4, A_4 + A_1, D_5(a_1), D_5 \).

Proof. By Lemma [L1], we just need to check orbits whose type of \(C \) contains a factor of \(T_i \) in the tables of [C] (Chap. 13, p.401-407). This gives that nilpotent orbit closures in \(G_2 \) and \(F_4 \) are \(\mathbb{Q} \)-factorial.

In \(E_6 \), there are in total ten orbits to be considered. The orbit closures of \(2A_1, A_2 + 2A_1 \) have small resolutions by [N1], thus \(\bar{\mathcal{O}} \) is not \(\mathbb{Q} \)-factorial. As
we will see in section 6.1, the orbit closures of $A_2 + A_1, A_3 + A_1$ have small \mathbb{Q}-factorial terminalizations, thus \tilde{O} is not \mathbb{Q}-factorial. The six left orbit closures have symplectic resolutions. We will now use Proposition 2.4 to calculate the numbers of irreducible exceptional divisors and then apply Lemma 4.3.

When $\mathcal{O} = A_3$, a symplectic resolution is given by the induction $(A_4, 0)$. The boundary $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{A_2 + 2A_1}$ has codimension 2 and $\rho_{(A_2 + 2A_1, 1)} = \phi_{60, 11} = 60^*_p$.

By $[A]$ (p. 31), we get $mtp = 1$ while $b_2(G/P) = 2$, thus \tilde{O} is not \mathbb{Q}-factorial. When $\mathcal{O} = D_4(a_1)$, it is an even orbit and a symplectic resolution is given by the induction $(2A_2 + A_1, 0)$. The boundary $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{A_4 + A_1}$ has codimension 2.

By $[A]$ (p. 33), we get $mtp = 1 = b_2(G/P)$. This implies that \tilde{O} is \mathbb{Q}-factorial. For $\mathcal{O} = A_4$, a symplectic resolution is given by the induction $(A_3, 0)$ and $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{D_4(a_1)}$ has codimension 2. We find that $mtp = 2$ while $b_2(G/P) = 3$, thus \tilde{O} is not \mathbb{Q}-factorial. For $\mathcal{O} = A_4 + A_1$, a symplectic resolution is given by the induction $(A_2 + 2A_1, 0)$ and $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{A_4 + A_1}$ has codimension 2. By $[A]$, we find $mtp = 1$ while $b_2(G/P) = 2$, thus \tilde{O} is not \mathbb{Q}-factorial. For $\mathcal{O} = D_5(a_1)$, a symplectic resolution is given by the induction $(A_2 + A_1, 0)$ and $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{A_4 + A_1} \cup \tilde{\mathcal{O}}_{D_4}$. Only $\tilde{\mathcal{O}}_{A_4 + A_1}$ has codimension 2. By $[A]$, we find $mtp = 2$ while $b_2(G/P) = 3$, thus \tilde{O} is not \mathbb{Q}-factorial. For $\mathcal{O} = D_5$, a symplectic resolution is given by the induction $(2A_1, 0)$ and $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{E_6(a_3)}$ has codimension 2. By $[A]$, we find $mtp = 1$ while $b_2(G/P) = 4$, thus \tilde{O} is not \mathbb{Q}-factorial.

In E_7, there are six orbits to be considered. For $\mathcal{O} = A_4$, a symplectic resolution is given by the induction $(A_1 + D_4, 0)$ and $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{A_3 + A_2}$ is of codimension 2. Using $[A]$, we find $mtp = 2 = b_2(G/P)$, thus \tilde{O} is \mathbb{Q}-factorial. For $\mathcal{O} = E_6(a_1)$, a symplectic resolution is given by the induction $(4A_1, 0)$ and $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{E_7(a_4)}$ is of codimension 2. Using $[A]$, we find $mtp = 3 = b_2(G/P)$, thus \tilde{O} is \mathbb{Q}-factorial.

In E_8, there are seven orbits to be considered. For $\mathcal{O} = D_5 + A_2$, a symplectic resolution is given by the induction $(A_2 + A_4, 0)$ and $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{E_7(a_4)} \cup \tilde{\mathcal{O}}_{A_6 + A_1}$ is of codimension 2. As both orbits are special, they are relevant, so we get $mtp = 2 = b_2(G/P)$, thus \tilde{O} is \mathbb{Q}-factorial. For $\mathcal{O} = D_7(a_2)$, a symplectic resolution is given by the induction $(2A_3, 0)$ and $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{D_5 + A_3}$ is of codimension 2. Using $[A]$, we find $mtp = 2 = b_2(G/P)$, thus \tilde{O} is \mathbb{Q}-factorial. For $\mathcal{O} = D_7(a_1)$, a symplectic resolution is given by the induction $(A_2 + A_3, 0)$ and $\tilde{\mathcal{O}} \setminus \mathcal{O} = \tilde{\mathcal{O}}_{E_7(a_3)} \cup \tilde{\mathcal{O}}_{E_6(a_6)}$ is of pure codimension 2. Using $[A]$, we find $mtp = 3 = b_2(G/P)$, thus \tilde{O} is \mathbb{Q}-factorial.

Now we consider the following orbits: $A_3 + A_2, D_5(a_1)$ in E_7 and $A_3 + A_2$ in
E_8. By the proof of Proposition 3.1, \tilde{O} admits a \mathbb{Q}-factorial terminalization given by a generalized Springer map $\pi : Z := G \times^P (n(p) + \tilde{O}_t) \to \tilde{O}$ with $b_2(G/P) = 1$ and $\text{Pic}(\tilde{O}_t) \otimes \mathbb{Q} = 0$. One checks easily that for such \mathcal{O}, $\tilde{O} \setminus \mathcal{O}$ contains a unique codimension 2 orbit $\mathcal{O}_{x'}$. We then use [A] to check that $\text{mtp}(\rho_{(x',0)}, \text{Ind}_{W(L)}(\rho_{(x',0)})) \neq 0$. As the variety Z is smooth along $G \times^P (n(p) + \tilde{O}_t)$, one checks that Z is smooth in codimension 3. We can now apply Prop. 2.3 to deduce that the pre-image of $\mathcal{O}_{x'}$ under the generalized Springer map is of codimension 1, thus the map is divisorial. As $b_2(Z) = 1$, this implies that \tilde{O} is \mathbb{Q}-factorial.

Now we consider the orbit: $A_2 + A_1$ in E_7. By the proof of Proposition 3.1, the induction $(E_7, A_2 + A_1)$ of $\mathcal{O} := \mathcal{O}_{D_8(a_1)}$ in E_8 gives a birational map $Z := G \times^P (n(p) + \tilde{O}_{A_2 + A_1}) \to \tilde{O}$. We have $\tilde{O} \setminus \mathcal{O} = \tilde{O}_{D_8(a_1)} \cup \tilde{O}_{A_2 + A_1}$. Only the component $\tilde{O}_{A_2 + A_1}$ is of codimension 2 and one shows that π is smooth over points in $\mathcal{O}_{A_2 + A_1}$. By applying the proof of Proposition 2.4, we can show that the number of irreducible exceptional divisors of π is equal to the multiplicity $\text{mtp}(\rho_{(A_2 + A_1, 0)}, \text{Ind}_{W(E_7)}(\rho_{(A_2 + A_1, 0)}))$, which is 1 by [A]. On the other hand, $\text{Pic}(\mathcal{O})$ is finite by Lemma 4.1. Applying the arguments in the proof of Lemma 4.3, we get that $\text{Pic}(Z) \otimes \mathbb{Q} = \mathbb{Q}$, which implies that $\text{Pic}(\mathcal{O}_{A_2 + A_1}) \otimes \mathbb{Q} = 0$, thus $\tilde{O}_{A_2 + A_1}$ is \mathbb{Q}-factorial.

The claim for the remaining four orbits $(A_4 + A_1$ in E_7, $A_4 + A_1, A_4 + 2A_1, E_0(a_1) + A_1$ in E_8) is proved by the following Lemma.

For a nilpotent element $x \in \mathfrak{g}$, the Jacobson-Morozov theorem gives an \mathfrak{sl}_2-triplet (x, y, h), i.e. $[h, x] = 2x, [h, y] = -2y, [x, y] = h$. This triplet makes \mathfrak{g} an \mathfrak{sl}_2-module, so we have a decomposition $\mathfrak{g} = \oplus_{i \in \mathbb{Z}} \mathfrak{g}_i$, where $\mathfrak{g}_i = \{z \in \mathfrak{g} | [h, z] = iz\}$. The Jacobson-Morozov parabolic sub-algebra of this triplet is $\mathfrak{p} := \oplus_{i \geq 0} \mathfrak{g}_i$. Let P be the parabolic subgroup of G determined by \mathfrak{p}, whose marked Dynkin diagram is given by marking the non-zero nodes in the weighted Dynkin diagram of x. The Jacobson-Morozov resolution of \tilde{O}_x is given by $\mu : Z := G \times^P \mathfrak{n}_2 \to \tilde{O}_x$, where $\mathfrak{n}_2 := \oplus_{i \geq 2} \mathfrak{g}_i$ is a nilpotent ideal of \mathfrak{p}.

Lemma 4.5. Let \tilde{O} be one of the following orbits: $A_4 + A_1$ in E_7, $A_4 + A_1, A_4 + 2A_1, E_0(a_1) + A_1$ in E_8. Then \tilde{O} is \mathbb{Q}-factorial.

Proof. We will consider the Jacobson-Morozov resolution $\mu : G \times^P \mathfrak{n}_2 \to \tilde{O}$. By [N3] (Lemma 1.1.1), \tilde{O} is \mathbb{Q}-factorial if the number of μ-exceptional divisors is equal to $b_2(G/P)$. To find μ-exceptional divisors, we will use the computer algebra system GAP4 to compute the dimension of the orbit $P \cdot z$.

for $z \in n_2$ (which is the same as $\dim[p, z]$). We denote by β_j the root vector corresponding to the j-th positive root of g as present in GAP4 (see [dG] Appendix B).

Consider first the orbit $O := O_{A_4 + A_1}$ in E_7. Its Jacobson-Morozov parabolic subgroup P is given by marking the nodes $\alpha_1, \alpha_4, \alpha_6$ (in Bourbaki’s ordering). Let Q_1 (resp. Q_2) be the parabolic subgroup given by marking the nodes α_1, α_6 (resp. α_6). We have $P \subset Q_1 \subset Q_2$. Let $Z_i := G \times Q_i(Q_1, n_2)$ and \tilde{Z}_i its normalization. The Jacobson-Morozov resolution μ factorizes through three contractions:

$$Z \overset{\mu_1}{\rightarrow} \tilde{Z}_1 \overset{\mu_2}{\rightarrow} \tilde{Z}_2 \overset{\mu_3}{\rightarrow} \tilde{O}.$$

We consider the following three elements in n_2: $x_1 := \beta_{20} + \beta_{21} + \beta_{25} + \beta_{29}$, $x_2 := \beta_{21} + \beta_{25} + \beta_{26} + \beta_{27} + \beta_{28} + \beta_{29} + \beta_{47}$, $x_3 := \beta_{20} + \beta_{21} + \beta_{28} + \beta_{29} + \beta_{30} + \beta_{31}$. Let $E_i := G \times P \cdot x_i$. Using GAP4, we find $\dim(E_i) = \dim(G/P) + \dim(P \cdot x_i) = 103$, thus E_i are irreducible divisors in Z. By calculating the dimensions of $Q_i \cdot x_j$ using GAP4, we get that μ_1 contracts E_1 while $\mu_1(E_2)$ and $\mu_1(E_3)$ are again divisors. The divisor $\mu_1(E_2)$ is contracted by μ_2 while $\mu_2(\mu_1(E_3))$ is again a divisor, which is contracted by μ_3. This shows that the three μ-exceptional divisors $E_i, i = 1, 2, 3$ are distinct, thus \tilde{O} is Q-factorial. Using the program in [dG], we find $\mu(E_1) = \tilde{O}_{A_4}$ and $\mu(E_2) = \mu(E_3) = \tilde{O}_{A_3 + A_2 + A_1}$.

For the orbit $A_4 + A_1$ in E_8, its Jacobson-Morozov parabolic subgroup P is given by marking the nodes $\alpha_1, \alpha_6, \alpha_8$. Let Q_1 (resp. Q_2) be the parabolic subgroup given by marking the nodes α_1, α_8 (resp. α_8). As before, we define \tilde{Z}_i and μ_i. We consider the following three elements in n_2: $x_1 := \beta_{42} + \beta_{57} + \beta_{33} + \beta_{43}$, $x_2 := \beta_{29} + \beta_{45} + \beta_{56} + \beta_{57} + \beta_{58} + \beta_{59}$, $x_3 := \beta_{57} + \beta_{56} + \beta_{59} + \beta_{61} + \beta_{45} + \beta_{58}$. We define E_i as before and by using GAP4 we find that $E_i, i = 1, 2, 3$ are divisors in Z. The map μ_1 contracts E_1, the map μ_2 contracts the divisor $\mu_1(E_2)$ and the map μ_3 contracts the divisor $\mu_2(\mu_1(E_3))$. This shows that $E_i, i = 1, 2, 3$ are distinct, thus \tilde{O} is Q-factorial. We have furthermore $\mu(E_1) = \mu(E_2) = \tilde{O}_{A_4}$ and $\mu(E_3) = \tilde{O}_{D_4(a_1) + A_2}$.

For the orbit $A_4 + 2A_1$ in E_8, its Jacobson-Morozov parabolic subgroup P is given by marking the nodes α_4, α_8. Let Q_1 be the parabolic subgroup given by marking the nodes α_8. We define similarly μ_i, \tilde{Z}_1. We consider the following elements in n_2: $x_1 := \beta_{42} + \beta_{57} + \beta_{33} + \beta_{43} + \beta_{61}$, $x_2 := \beta_{32} + \beta_{42} + \beta_{47} + \beta_{53} + \beta_{57} + \beta_{51}$. As before, we define $E_i, i = 1, 2$, which are divisors by calculating in GAP4. The map μ_1 contracts E_1 and the map μ_2 contracts the divisor $\mu_1(E_2)$, thus $E_1 \neq E_2$ and \tilde{O} is Q-factorial. We have furthermore $\mu(E_1) = \tilde{O}_{A_4 + A_1}$ and $\mu(E_2) = \tilde{O}_{2A_3}$.
The orbit $\mathcal{O} := E_6(a_1) + A_1$ is induced from $(E_7, A_4 + A_1)$. The generalized Springer map $Z := G \times P (n(p)) + \mathcal{O}_{A_4 + A_1}$ is birational. We have $\mathcal{O} \setminus \mathcal{O} = \mathcal{O}_{E_6(a_1)} \cup \mathcal{O}_{D_7(a_2)}$. Only the component $\mathcal{O}_{D_7(a_2)}$ is of codimension 2 and one shows that π is smooth over points in $\mathcal{O}_{D_7(a_2)}$. By applying the proof of Proposition 2.4, we can show that the number of irreducible exceptional divisors of π is equal to the multiplicity $\text{mtp}(\rho(A_4 + A_1, 1), \text{Ind}_W(E_8) W(E_7) \rho(A_2 + A_1, 1))$, which is 1 by [A]. On the other hand, we have just proved the \mathbb{Q}-factoriality of $\tilde{\mathcal{O}}_{A_4 + A_1}$, thus $\text{Pic}(\mathcal{O}_{A_4 + A_1})$ is finite. This gives that $b_2(G \times P (n(p) + \mathcal{O}_{A_4 + A_1})) = 1$ and π contains an exceptional divisor, thus $\tilde{\mathcal{O}}$ is \mathbb{Q}-factorial.

5 Rigid orbits

The aim of this section is to prove Conjecture 1 for rigid orbits. The classification of rigid orbits can be found for example in [M] (Section 5.7).

Theorem 5.1. Let \mathcal{O} be a rigid nilpotent orbit in a complex simple Lie algebra \mathfrak{g}. Then $\tilde{\mathcal{O}}$ is \mathbb{Q}-factorial terminal.

Proof. When \mathfrak{g} is classical, this is proven in [N3]. From now on, we assume that \mathfrak{g} is exceptional. The \mathbb{Q}-factoriality of $\tilde{\mathcal{O}}$ is a direct consequence of Proposition 4.4. As $\tilde{\mathcal{O}}$ is symplectic, it has terminal singularities if $\text{codim}_\mathcal{O}(\mathcal{O} \setminus \mathcal{O}) \geq 4$. Using the tables in [M] (section 5.7, 6.4), we calculate the codimension of $\mathcal{O} \setminus \mathcal{O}$ and it follows that every rigid orbit satisfies $\text{codim}_\mathcal{O}(\mathcal{O} \setminus \mathcal{O}) \geq 4$ except the following orbits: $\tilde{\mathcal{A}}_1$ in G_2, $\tilde{\mathcal{A}}_2 + A_1$ in F_4, $(A_3 + A_1)'$ in E_7, $A_3 + A_1, A_5 + A_1, D_5(a_1) + A_2$ in E_8.

Consider first the orbit $\mathcal{O} := \tilde{A}_1$ in G_2. Its Jacobson-Morozov parabolic subgroup is given by marking the node α_1 (in Bourbaki’s ordering). Consider the Jacobson-Morozov resolution $Z := G \times P n_2 \xrightarrow{\mu} \tilde{\mathcal{O}}$. By [F1], $\tilde{\mathcal{O}}$ has no crepant resolution, thus μ is not small. As $b_2(G/P) = 1$, there exists one unique μ-exceptional irreducible divisor E. The canonical divisor K_Z is then given by $K_Z = aE$ with $a > 0$. This implies that $\tilde{\mathcal{O}}$ has terminal singularities. This fact is already known in [K] by a different method.

We now consider the three orbits in E_8. Let $Z := G \times P n_2 \xrightarrow{\mu} \tilde{\mathcal{O}}$ be the Jacobson-Morozov resolution and $p : Z \to G/P$ the natural projection. Let $\omega_1, \cdots, \omega_8$ be the fundamental weights of E_8. The Picard group $\text{Pic}(G/P)$ is generated by ω_i s.t. α_i is a marked node. The canonical bundle of Z is given by $K_Z = p^*(K_{G/P} \otimes \text{det}(G \times P n_2^*)$. Let $\cup_j E_j$ be the exceptional
locus of μ, which is of pure codimension 1 since $\tilde{\mathcal{O}}$ is \mathbb{Q}-factorial. We have $K_Z = \sum_j a_j E_j$ with $a_j \geq 0$. Note that if we can show $K_{G/P}^{-1} \otimes \text{det}(G \times P \mathfrak{n}_2)$ is ample on G/P, then $a_j > 0$ for all j (since p does not contract any μ-exceptional curve), which will prove that $\tilde{\mathcal{O}}$ has terminal singularities. As $T^*(G/P) \simeq G \times P (\oplus_{k \leq -1} \mathfrak{g}_k)$, the line bundle $K_{G/P}^{-1} \otimes \text{det}(G \times P \mathfrak{n}_2)$ corresponds to the character $\wedge^{\text{top}} (\oplus_{k \leq -1} \mathfrak{g}_k) \otimes \wedge^{\text{top}} (\oplus_{k \geq 2} \mathfrak{g}_k) \simeq \wedge^{\text{top}} \mathfrak{g}_{-1}$ of P. An explicit basis of \mathfrak{g}_{-1} and the action of a Cartan subalgebra \mathfrak{h} on it can be computed using GAP4. For the orbit $A_3 + A_1$, we get that $K_Z = p^*(-13\omega_6 - 3\omega_8)$. For the orbit $A_2 + A_1$, we get $K_Z = p^*(-3\omega_1 - 7\omega_4 - 5\omega_8)$. For the orbit $D_5(a_1) + A_2$, we get $K_Z = p^*(-7\omega_3 - 6\omega_6 - 3\omega_8)$. This proves the claim for these three orbits.

In a similar way, for the orbit $\tilde{A}_2 + A_1$ in F_4, we find that $K_Z = p^*(3\omega_4 - 2\omega_2)$ and for the orbit $(A_3 + A_1)'$ in E_7, we obtain $K_Z = p^*(5\omega_1 - 3\omega_4)$, thus the precedent argument does not apply here. Instead we will use another approach. Recall (\cite{P}) that there exists a 2-form Ω on G/P which is defined at a point $(g, x) \in G \times \mathfrak{n}_2$ by: $\Omega((g, (x, m), (u, u')) = \kappa([u, u'], x) + \kappa(m', u) - \kappa(m, u'))$, where $\kappa(\cdot, \cdot)$ is the Killing form. The tangent space of Z at the point (g, x) is identified with the quotient

$$\mathfrak{g} \times \mathfrak{n}_2/\{(u, [x, u])|u \in \oplus_{i \geq 0} \mathfrak{g}_i\}.$$

By Lemma 4.3 in \cite{B}, The kernel of $\Omega_{(g, x)}$ consists of images of elements $(u, [x, u])$ with $u \in \oplus_{i \geq -1} \mathfrak{g}_i$, such that $[x, u] \in \mathfrak{n}_2$. This shows that $\Omega_{(g, x)}$ is non-degenerate if and only if the set $\mathfrak{K}_{x} := \{u \in \mathfrak{g}_{-1}|[x, u] \in \mathfrak{n}_2\}$ is reduced to $\{0\}$. Let $s := \wedge^{\text{top}} \Omega$, then $K_Z = \text{div}(s)$ and $s((g, x)) \neq 0$ if and only if $\mathfrak{K}_{x} = \{0\}$. To prove our claim, we just need to show that for a generic point x in every μ-exceptional divisor, the section s vanishes at x, i.e. to show that $\mathfrak{K}_{x} \neq \{0\}$.

For the orbit $\tilde{A}_2 + A_1$ in F_4, we consider the two elements in \mathfrak{n}_2: $x_1 := \beta_{11} + \beta_{12}$ and $x_2 := \beta_{14} + \beta_{15} + \beta_{16}$. Define $E_i := G \times P \mathfrak{x}_i$, $i = 1, 2$. Using GAP4, we find that E_1 and E_2 are of codimension 1 in Z. We have $\mu(E_1) = \mathcal{O}_{\tilde{A}_2}$ and $\mu(E_2) = \mathcal{O}_{A_2 + A_1}$, which shows that the two divisors are distinct. As $b_2(G/P) = 2$, we get $\text{Exc}(\mu) = E_1 \cup E_2$. Consider the two elements in \mathfrak{g}_{-1}: $u_1 := \beta_{28}$ and $u_2 := \beta_{25} - 2\beta_{28}$. Then we have $[x_1, u_1] = 0$ and $[x_2, u_2] = \beta_{12} \in \mathfrak{n}_2$, which proves that $u_1 \in \mathfrak{K}_{x_1}$ and $u_2 \in \mathfrak{K}_{x_2}$. From this we get that $K_Z = a_1 E_1 + a_2 E_2$ with $a_i > 0, i = 1, 2$.

For the orbit $(A_3 + A_1)'$ in E_7, we consider the two elements in \mathfrak{n}_2: $x_1 := \beta_{20} + \beta_{21} + \beta_{29}$ and $x_2 := \beta_{20} + \beta_{34} + \beta_{35} + \beta_{37} + \beta_{43} + \beta_{45}$. We define in
a similar way E_1, E_2 which are divisors by a calculus in GAP4. We have
$\mu(E_1) = \bar{O}_{A_3}$ and $\mu(E_2) = \bar{O}_{2A_2 + A_1}$, thus $\text{Exc}(\mu) = E_1 \cup E_2$. Consider the
two elements in g_{-1}: $u_1 := \beta_{67}$ and $u_2 := \beta_{64} - \beta_{79} - \beta_{81}$. Then we have
$[x_1, u_1] = 0$ and $[x_2, u_2] = -\beta_{26} - \beta_{27} + \beta_{40} \in n_2$, which proves that $u_1 \in Kn_{x_1}$
and $u_2 \in Kn_{x_2}$. We deduce that $K_Z = a_1E_1 + a_2E_2$ with $a_i > 0, i = 1, 2$, which concludes the proof.

Remark 5.2. The three orbits in E_8 can also be dealt with in the same way. Thus in this paper, the essential point where we used GAP4 is to compute
the dimension of $[p, x]$ (surely we have used it in a crucial way to find the elements x_i in n_2 and u_i in g_{-1}).

Corollary 5.3. The normalization \bar{O} is smooth in codimension 3 for the
following orbits: A_1 in G_2, $A_2 + A_1$ in F_4, $(A_3 + A_1)'$ in E_7, $A_3 + A_1, A_5 + A_1, D_5(a_1) + A_2$ in E_8. In particular, the closure \bar{O} of these orbits is non-
normal.

Although the complete classification of O with normal closure is unknown
in E_7 and E_8, E. Sommers communicated to the author that the orbits in
the corollary are known to have non-normal closures.

6 Induced orbits

Recall ([F1], [F2]) that a nilpotent orbit closure in a simple Lie algebra
adopts a crepant resolution if and only if it is a Richardson orbit but not in
the following list: $A_4 + A_1, D_5(a_1)$ in E_7, $E_6(a_1) + A_1, E_7(a_3)$ in E_8. On
the other hand, by [N2], if \bar{O} admits a crepant resolution, then any Q-
factorial terminalizations of \bar{O} is in fact a crepant resolution. Furthermore
the birational geometry between their crepant resolutions are well-understood
([N1], [F2]). Thus to prove Conjecture [], we will only consider induced orbits
whose closure does not admit any crepant resolution.

Theorem 6.1. Let O be an induced nilpotent orbit in a complex simple
exceptional Lie algebra g. Assume that \bar{O} admits no crepant resolution. Then
(i) The variety \bar{O} has Q-factorial terminal singularities for the following
induced orbits: $A_2 + A_1, A_4 + A_1$ in E_7 and $A_4 + A_1, A_4 + 2A_1$ in E_8.

(ii) If O is not in the list of (i), then any Q-factorial terminalization of
\bar{O} is given by a generalized Springer map. Two Q-factorial terminalizations
of \bar{O} are connected by Mukai flops of type $E_{6,1}^I$ or $E_{6,1}^{II}$ (defined in section
6.1).
Remark 6.2. Unlike the classical case proved in [N3], for an orbit O such that \bar{O} has no Springer resolution, the Mukai flops of type $A-D-E_6$ defined in [N1] (p. 91) do not appear here. See Corollary 6.3 and Corollary 6.7.

6.1 Mukai flops

Let P be one of the maximal parabolics in $G := E_6$ corresponding to the following marked Dynkin diagrams:

```
• — — — — — — —
   |   |   |
   o   o   o
```

The Levi part of P is isomorphic to D_5. We denote by O_I (resp. O_{II}) the nilpotent orbit in $l(p)$ corresponding to the partition 2^21^6 (resp. $3^22^11^3$). Then we have two generalized Springer maps π_I, π_{II} with image being the closures of orbits $A_2 + A_1, A_3 + A_1$ respectively. As the component group $A(O_{A_2+A_1}) = A(O_{A_3+A_1}) = \{1\}$, both maps are birational. By [N3], \bar{O}_I, \bar{O}_{II} are \mathbb{Q}-factorial terminal, thus π_I, π_{II} give \mathbb{Q}-factorial terminalizations.

Lemma 6.3. The two maps π_I, π_{II} are small, i.e. the exceptional locus has codimension at least 2.

Proof. For π_I, we have $\text{codim}(O_{A_2+A_1} \setminus O_{A_2+A_1}) = 4$. As π_I is semi-small, this implies the claim. For π_{II}, the orbit closure $\bar{O}_{A_3+A_1} = O_{A_3+A_1} \cup \bar{O}_{A_3} \cup \bar{O}_{2A_2+A_1}$. The codimension of \bar{O}_{A_3} in \bar{O} is 4, so its pre-image has codimension at least 2. The codimension of $\bar{O}_{2A_2+A_1}$ in \bar{O} is 2. As one sees easily, $G \times P (n(p) + O_I)$ is smooth over points in $O_{2A_2+A_1}$. By Proposition 2.3, we need to check $mtp(\rho(2A_2+A_1,1), \text{Ind}_{W(D_5)}^{W(E_6)}(\rho(O_{II},1))) = 0$. By [C], we have $\rho(2A_2+A_1,1) = 10$, and $\rho(O_{II},1) = [- : 2^21]$. By [A] (p. 31), we get the claim. □

When P changes from one parabolic to the other, we get two \mathbb{Q}-factorial terminations of the same orbit. The birational map between them is then a flop, which we will call Mukai flop of type $E_{6,I}$ and $E_{6,II}$ respectively.

6.2 Proof of the theorem

For an orbit O in list (i) of the theorem, the variety \bar{O} is \mathbb{Q}-factorial by Proposition 4.3. One checks using tables in Section 5.7 and 6.4 [M] that
codim(\(\mathcal{O} \setminus \mathcal{O}\)) \(\geq 4\), thus \(\tilde{\mathcal{O}}\) has only terminal singularities. This proves claim (i) in the theorem.

Let now \(\mathcal{O}\) be an induced orbit not in list (i). By Proposition 3.1 we have a birational generalized Springer map

\[\pi : G \times \mathbb{Q} (n(q) + \tilde{\mathcal{O}}_t) \to \tilde{\mathcal{O}}.\]

For orbits listed in the proof of Proposition 3.1 we check from the above and from Theorem 5.1 that for our choice of \(\mathcal{O}_t\), the variety \(\tilde{\mathcal{O}}_t\) is either \(\mathbb{Q}\)-factorial terminal or it admits a \(\mathbb{Q}\)-factorial terminalization given by a generalized Springer map. For orbits with \(A(\mathcal{O}) = \{1\}\), i.e. those not listed above, we can check this using the induction tables in [M] (Section 5.7). This shows that \(\tilde{\mathcal{O}}\) admits a generalized Springer map which gives a \(\mathbb{Q}\)-factorial terminalization.

Lemma 6.4. For any orbit \(\mathcal{O}\) not listed in (i), there exists a unique pair \((l(q), \mathcal{O}_t)\) which induces \(\mathcal{O}\) such that the associated generalized Springer gives a \(\mathbb{Q}\)-factorial terminalization of \(\tilde{\mathcal{O}}\).

Proof. Note that if the normalization of \(G \times \mathbb{Q} (n(q) + \tilde{\mathcal{O}}_t)\) gives a \(\mathbb{Q}\)-factorial terminalization of \(\tilde{\mathcal{O}}\), then \(\tilde{\mathcal{O}}_t\) is \(\mathbb{Q}\)-factorial terminal. As \(\tilde{\mathcal{O}}\) has no Springer resolution, we have \(\mathcal{O}_t \neq 0\). When \(l(q)\) is of classical type, by the proof of Proposition (2.1.1) [N3], the partition \(d := [d_1, \ldots, d_k]\) of \(\mathcal{O}_t\) has full members, i.e. every integer between 1 and \(d_1\) appears in \(d\). When \(l(q)\) is exceptional, we need to consider \(\mathcal{O}_t\) such that \(\mathcal{O}_t\) is not the image of a birational generalized Springer map. By Proposition 3.1 we may assume \(\mathcal{O}_t\) is rigid or \(\mathcal{O}_t\) is the orbit \(A_2 + A_1\) in \(E_7\).

In [Sp] (Appendix in Chap. II), Spaltenstein reproduced the tables of Elashvili which gives all inductions with \(\mathcal{O}_t\) rigid. For our purpose, when \(l(q)\) is of classical type, there are only two additional cases (both in \(E_8\)) not contained therein: the induction \((D_7, 3^22^31^4)\) for \(E_8(a_7)\) and \((D_6, 3^22^21^2)\) for \(E_7(a_3)\). When \(l(q)\) is of exceptional type, we need to consider the induction \((E_7, A_2 + A_1)\) of \(D_5(a_1)\) in \(E_8\). A case-by-case check gives that we have only a few orbits (only in \(E_7, E_8\)) which admit two inductions from either a rigid orbit or from an orbit listed above.

In \(E_7\), the orbit \(A_3 + A_2\) admits two such inductions from \((D_6, 3^22^31^5)\) and \((D_5 + A_1, 2^16 + 0)\). By section 3.3 only the second gives a birational generalized Springer map.

In \(E_8\), the orbit \(A_3 + A_2\) is induced from \((E_7, (3A_1)')\) and from \((D_7, 2^21^10)\). For the degree of the first, we have \(\rho_{(1,1)} = \phi_{35,31} = 35^*_b\) and \(\rho_{x,e} = 972^*_x\). By
2. \[\text{(A)} \] only the second induction gives a birational generalized Springer map. The orbit \(E_7(a_5) \) is induced from \((E_7, A_3 + A_1') \) and from \((E_6 + A_1, 3A_1 + 0) \). For the degree of the first, we have \(\rho(l, 1) = \phi_2^{501.17} = 280w \) and \(\rho_{x, e_2} = 5600w, \rho_{x, e_1} = 448w \). By \[\text{(A)} \] (p. 142), we get the degree is 2, thus it is not birational. The orbit \(E_7(a_4) \) is induced from \((D_6, 32^{213}) \) and from \((D_5 + A_1, 32^{213} + 0) \). One shows that only the first one gives a birational map.

3.1. only the second induction gives a birational generalized Springer map. The orbit \(E_7(a_5) \) is induced from \((E_7, (A_3 + A_1') \) and from \((E_6 + A_1, 3A_1 + 0) \). For the degree of the first, we have \(\rho(l, 1) = \phi_2^{501.17} = 280w \) and \(\rho_{x, e_2} = 5600w, \rho_{x, e_1} = 448w \). By \[\text{(A)} \] (p. 142), we get the degree is 2, thus it is not birational. The orbit \(E_7(a_4) \) is induced from \((D_6, 32^{213}) \) and from \((D_5 + A_1, 32^{213} + 0) \). One shows that only the first one gives a birational map.

Corollary 6.5. For an orbit \(\mathcal{O} \) in the theorem but not in the list (i), any two \(\mathbb{Q} \)-factorial terminalizations of \(\tilde{\mathcal{O}} \) given by generalized Springer maps are connected by Mukai flops of type \(E_{6, I}^I \) or \(E_{6, I}^{II} \).

Proof. Consider a \(\mathbb{Q} \)-factorial terminalization given by the generalized Springer map associated to \((P, \mathcal{O}) \) with \(\mathcal{O} \neq 0 \). Note that if \(l(p) \) is of type \(A \), then \(\tilde{\mathcal{O}} \) admits a Springer resolution, which contradicts our assumption. This allows us to consider only the following situations (for the other cases, there exists a unique conjugacy class of parabolic subgroups with Levi part being \(l(p) \)):

i) \(l(p) \) is \(D_5 \) in \(E_n, n = 6, 7, 8 \).

Consider case i). In \(E_6 \), this is given by the definition of Mukai flops. In \(E_7 \), the induction \((D_5, 32^{213}) \) gives two \(\mathbb{Q} \)-factorial terminalization of the orbit closure \(\tilde{\mathcal{O}}_{D_6(a_2)} \), which are connected by a Mukai flop of type \(E_{6, I}^{II} \). The induction \((D_5, 2^{216}) \) gives the even orbit \(A_4 \). In \(E_8 \), the induction \((D_5, 32^{213}) \) gives two \(\mathbb{Q} \)-factorial terminalization of the orbit closure \(\tilde{\mathcal{O}}_{E_7(a_2)} \), which are connected by a Mukai flop of type \(E_{6, I}^{II} \), while the induction \((D_5, 2^{216}) \) gives the even orbit \(E_6(a_1) \).

Consider case ii). The induction \((D_4 + A_1, 32^{21} + 1^2) \) (resp. \((D_4 + A_1, 2^{21} + 1^2) \)) gives the even orbit \(E_6(b_4) \) (resp. \(E_8(a_6) \)). The induction \((D_5 + A_1, 32^{213} + 1^2) \) gives the even orbit \(D_7(a_1) \), while the induction \((D_5 + A_1, 2^{216} + 1^2) \) of \(E_7(a_4) \) gives a generalized Springer map of degree 2.

Now we prove that every \(\mathbb{Q} \)-factorial terminalization of \(\mathcal{O} \) not in (i) is given by a generalized Springer map. The following proposition is analogous to Proposition (2.2.1) in [N3].

Proposition 6.6. Let \(\mathcal{O} \) be a nilpotent orbit in a simple exceptional Lie algebra such that \(\tilde{\mathcal{O}} \) does not admit a Springer resolution. Suppose that a \(\mathbb{Q} \)-factorial terminalization of \(\tilde{\mathcal{O}} \) is given by the normalization of \(G \times \mathbb{Q} \) (n(q) +
for some parabolic Q and some nilpotent orbit O_t in $l(q)$. Assume that $b_2(G/Q) = 1$ and the Q-factorial terminalization is small. Then this generalized Springer map is one of those in Section 6.1.

Proof. Assume that O is neither the orbit $A_2 + A_1$ nor $A_3 + A_1$ in E_6. As we only consider O such that \bar{O} has no Springer resolutions, by Proposition 4.3, \bar{O} is Q-factorial. This implies that every Q-factorial terminalization of \bar{O} is divisorial, which concludes the proof.

Now one can argue as in the proof of Theorem (2.2.2) in [N3] to show that every Q-factorial terminalization of O not in (i) is actually given by a generalized Springer map. This concludes the proof of our theorem.

The following corollary is immediate from Theorem 6.1 and the proof of Corollary 6.5.

Corollary 6.7. Let O be an induced nilpotent orbit. Assume that \bar{O} has no Springer resolution. Then \bar{O} admits a unique Q-factorial terminalization unless O is one of the following orbits: $A_2 + A_1, A_3 + A_1$ in E_6, $D_6(a_2)$ in E_7, $E_7(a_2)$ in E_8, in which case \bar{O} admits exactly two different Q-factorial terminalizations.

To conclude this paper, we give the following classification of nilpotent orbits such that \bar{O} has terminal singularities.

Proposition 6.8. Let O be a nilpotent orbit in a simple complex exceptional Lie algebra. Then \bar{O} has terminal singularities if and only if O is one of the following orbits:

1. rigid orbits;
2. $2A_1, A_2 + A_1, A_2 + 2A_1$ in E_6, $A_2 + A_1, A_4 + A_1$ in E_7, $A_4 + A_1, A_4 + 2A_1$ in E_8.

Proof. By using tables in Section 5.7 and 6.4 of [M], we get that for the three orbits in E_6 of (2), we have $\text{codim}(\bar{O} \setminus O) \geq 4$, thus \bar{O} has terminal singularities. By Theorem 5.1 and Theorem 6.1, this implies that the variety \bar{O} has terminal singularities for orbits in (1) and (2).

Assume now O is not in the list, then by Theorem 6.1, \bar{O} admits a Q-factorial terminalization given by a generalized Springer map. This implies that if \bar{O} is Q-factorial, then \bar{O} is not terminal. By Proposition 4.3, we may assume that O is one of the following orbits in E_6: $A_3, A_3 + A_1, A_4, A_4 +$
$A_1, D_5(a_1)$ and D_5. As for these orbits except $A_3 + A_1$, the closure \mathcal{O} admits a symplectic resolution, thus $\tilde{\mathcal{O}}$ is not terminal.

We consider the orbit $\mathcal{O} := A_3 + A_1$ in E_6. We will use the method in the proof of Theorem 5.1 to show that $\tilde{\mathcal{O}}$ is not terminal. Consider the Jacobson-Morozov resolution $Z := G \times^P \mathfrak{n}_2 \overset{\mu}{\rightarrow} \bar{\mathcal{O}}$, where P is given by marking the nodes $\alpha_2, \alpha_3, \alpha_5$. We have $\bar{\mathcal{O}} \setminus \mathcal{O} = \bar{\mathcal{O}}_{A_3} \cup \bar{\mathcal{O}}_{2A_2+A_1}$. We consider the following two elements in \mathfrak{n}_2: $x_1 := \beta_{17} + \beta_{15} + \beta_{20}$ and $x_2 := \beta_{17} + \beta_{18} + \beta_{20} + \beta_{21} + \beta_{24}$. We define $E_i := G \times^P \mathfrak{P} \cdot x_i, i = 1, 2$, which are irreducible divisors by a calculus in GAP4. We have furthermore $\mu(E_1) = \bar{\mathcal{O}}_{A_3}$ and $\mu(E_2) = \bar{\mathcal{O}}_{2A_2+A_1}$, thus the two divisors are distinct. As $b_2(G/P) = 3$ and $\bar{\mathcal{O}}$ is non-\mathbb{Q}-factorial, E_1, E_2 are the only two μ-exceptional divisors. Using a calculus in GAP4, we can show that $K_{x_1} := \{ u \in \mathfrak{g}_{-1} | [x_1, u] \in \mathfrak{n}_2 \}$ is reduced to $\{0\}$ and $K_{x_2} \neq \{0\}$. This implies that $K_Z = aE_2$ for some $a > 0$, which proves that $\tilde{\mathcal{O}}$ is not terminal.

References

[A] D. Alvis, Induce/restrict matrices for exceptional Weyl groups, [math.RT/0506377]

[A-L] D. Alvis, G. Lusztig, On Springer's correspondence for simple groups of type E_n ($n = 6, 7, 8$), Math. Proc. Cambridge Philos. Soc. 92 (1) (1982) 65–78, with an appendix by N. Spaltenstein.

[B] A. Beauville, Fano contact manifolds and nilpotent orbits, Comment. Math. Helv 73 (1998), 566–583

[B-L] W.M. Beynon, G. Lusztig, Some numerical results on the characters of exceptional Weyl groups, Math. Proc. Cambridge Philos. Soc. 84 (3) (1978) 417–426.

[B-M] W. Borho, R. MacPherson, Partial resolutions of nilpotent varieties, in: Analysis and Topology on Singular Spaces, II, III, Luminy, 1981, Astérisque 101–102 (1983) 23–74, Soc. Math. France, Paris.

[C] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1985
REFERENCES

[dG] W. A. de Graaf, Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math. 11 (2008), 280–297.

[F1] B. Fu, Symplectic resolutions for nilpotent orbits, Invent. Math. 151 (2003), no. 1, 167–186

[F2] B. Fu, Extremal contractions, stratified Mukai flops and Springer maps. Adv. Math. 213 (2007), no. 1, 165–182.

[K] H. Kraft, Closures of conjugacy classes in G_2, J. Algebra 126 (1989), no. 2, 454–465

[L-S] G. Lusztig; N. Spaltenstein, Induced unipotent classes. J. London Math. Soc. (2) 19 (1979), no. 1, 41–52

[M] W. M. McGovern, The adjoint representation and the adjoint action, in Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action 159–238, Encyclopaedia Math. Sci., 131, Springer, Berlin, 2002

[N1] Y. Namikawa, Birational geometry of symplectic resolutions of nilpotent orbits, Advances Studies in Pure Mathematics 45, (2006), Moduli Spaces and Arithmetic Geometry (Kyoto, 2004), pp. 75–116

[N2] Y. Namikawa, Flops and Poisson deformations of symplectic varieties, Publ. RIMS 44. No 2. (2008), 259-314

[N3] Y. Namikawa, Induced nilpotent orbits and birational geometry, arXiv:0809.2320

[P] D. Panyushev, Rationality of singularities and the Gorenstein property for nilpotent orbits, Funct. Anal. Appl. 25 (1991), 225-226

[S] T. Shoji, On the Springer representations of Chevalley groups of type F_4, Comm. Algebra 8 (5) (1980) 409–440.

[Sp] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, 946. Springer-Verlag, Berlin-New York, 1982. ix+259 pp

[S1] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207
[S2] T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293