NOISY FIGHTER-BOMBER DUEL

L. N. Positselskaya

Abstract

We discuss a duel-type game in which Player I uses his resource continuously and Player II distributes it by discrete portions. Each player knows how much resources he and his opponent have at every moment of time. The solution of the game is given in an explicit form.

Keywords: noisy duel, payoff, strategy, the value of a game, consumption of resource.

1 Introduction

The classical duel is a zero-sum game of two players of the following type. The players have certain resources and use them during a given time interval with the goal of achieving success. Use of the resource γ at the moment t leads to success with the probability depending on the amount of resource γ and the time t only (it is usually assumed that the probability of success increases with time). As soon as one player reaches the goal he receives his profit, which is equal to his opponent’s loss, and the game ends. Various assumptions about the ways the players use their resources and about the players receiving information about the opponent’s behavior during the game define various kinds of duels [1, 2]. Models were considered where the players’ resources were discrete (discrete firing duels), infinitely divisible (continuous firing duels), continuous for one of the players and discrete for the other one (mixed duels, or fighter-bomber duels) [3, 4]. Researchers studied noisy duels [3, 5], where every player at a given moment of time had complete information about his opponent’s behavior up to that moment, and silent duels, where no such information was available. At the present time, duels are considered as classical models of competition [1, 6].

The author is grateful to Leonid Positselski for his help in editing this paper and translating it into English.
2 Posing the problem

We consider a zero-sum two-person game of the following structure. The players have resources $a \geq 0$ and $m \geq 0$ ($m \in \mathbb{Z}$), respectively. The players use their resources during the time interval $[0,1]$ with the goal of achieving success. Player I has an infinitely divisible resource $a \in \mathbb{R}; a > 0$, which he uses continuously. Player II has a discrete resource $m \in \mathbb{N}$ and uses it by units. The effectiveness of the j-th player using his resource is described by the function $P_j(t)$ ($j = 1,2$), which defines the probability of achieving success when using the unit of resource at the moment t. The functions $P_j(t)$ are called the effectiveness functions, they are continuously differentiable and increasing, $P_j(0) = 0$, $P_j(1) = 1$, $P_j(t) < 1$ for $t < 1$.

Put $p(t) = 1 - P_1(t)$, $q(t) = 1 - P_2(t)$, $P(t) = (P_1(t), P_2(t))$. The vector-function $P(t)$ is called the effectiveness vector-function. The probability $G(t, \Delta \gamma)$ of achieving success when using the amount of resource $\Delta \gamma \geq 0$ at the moment t with the effectiveness function $P_j(t)$ is described by the formula [7, 8]:

$$G(t, \Delta \gamma) = 1 - (1 - P_j(t))^{\Delta \gamma}, \quad \Delta \gamma > 0; \quad G(t, 0) = 0. \quad (1)$$

If one of the players achieves success, the game stops. The profit of the j-th player in the case of his success is equal to A_j. Denote by A the pair (A_1, A_2). The players’ profits are equal to 0 if none of them has achieved success or if success has been achieved by both of them simultaneously.

Let $\alpha(t)$, $n(t)$ be the players’ remaining resources at the moment t. Let us call the functions $\alpha(t)$, $n(t)$ the consumption functions of the players. They are nonincreasing, and $n(t)$ is a step-function continuous from the left. The pair $(\alpha(t), n(t))$ is called a play of the game. Assume that the function $\alpha(t)$ is continuous in $[0,1]$ and piecewise continuously differentiable in $(0,1)$.

Put $\xi(t) = -\alpha'(t)$ and name $\xi(t)$ the intensity function.

A time moment when a player uses his resource is called an action moment of this player. It is a decreasing point of Player I’s consumption function ($\xi(t + 0) > 0$) or it is a jump point of Player II’s consumption function. Let η_i, $i = 1,2,\ldots,m$ ($0 \leq \eta_m \leq \eta_{m-1} \leq \ldots \leq \eta_1 \leq 1$) be Player II’s action moments. The vector $\eta = (\eta_1, \eta_2,\ldots,\eta_m)$ is called the vector of action moments.

Let us compute the probability $\varphi(\alpha, t_1, t_2)$ of Player I achieving success when using his infinitely divisible resource according to the consumption function $\alpha(t)$ at the time interval $[t_1, t_2]$, assuming that Player II does not
act during that period of time. By (1) we have:

\[
\varphi(\xi, t_1, t_2) = \lim_{N \to \infty} \left(1 - \prod_{i=1}^{N} (1 - P_1(\tau_i))^{\xi(\tau_i)\Delta \tau_i} \right) = 1 - \exp \int_{t_1}^{t_2} \xi(\tau) \log(1 - P_1(\tau)) \, d\tau,
\]

(2)

where \(\xi(t) = -\alpha'(t) \). The probability \(\varphi(\alpha, t_1, t_2) \) of Player I achieving success in the segment \([t_1, t_2]\) can be expressed in terms of the consumption function \(\alpha(t) \) as follows:

\[
\varphi(\alpha, t_1, t_2) = 1 - \exp \left(- \int_{t_1}^{t_2} \log(1 - P_1(\tau)) \, d\alpha(\tau) \right).
\]

(3)

Let \(K(\alpha, \eta) \) be the mathematical expectation of the profit received by Player I in the case when Player I uses his resource according to the consumption function \(\alpha(t) \) and Player II uses his resource at the moments of time \(\eta_k \) \((1 \leq k \leq m) \). It is computed in the following way. For \(m = 0 \) we have \(K = 0 \) if \(a = 0 \) and \(K = A_1 \) if \(a > 0 \). For \(m \geq 1 \) we obtain \(K(\alpha, \eta) \) from the recursive formula

\[
K(\alpha; \eta_1, \eta_2, \ldots, \eta_m) = A_1 \varphi(\alpha, 0, \eta_m) - A_2 (1 - \varphi(\alpha, 0, \eta_m)) P_2(\eta_m) + (1 - P_2(\eta_m))(1 - \varphi(\alpha, 0, \eta_m)) K(\alpha_m; \eta_1, \eta_2, \ldots, \eta_{m-1}),
\]

(4)

where

\[
\alpha_m(t) = \begin{cases}
\alpha(\eta_m), & t \in [0, \eta_m); \\
\alpha(t), & t \in [\eta_m, 1].
\end{cases}
\]

The game under consideration is called the noisy fighter-bomber duel. It is a model of competition in the condition of complete information. In this game every player at a given moment of time has information about both player’s resources up to that moment and continuously corrects his behavior on the basis of the received information about the present amount of his opponent’s remaining resource. Player I’s strategy is a function \(\xi = u(t, \alpha, n) \) which determines the intensity of resource consuming \(\xi \) at a moment \(t \) in dependence of the current values of players’ resources \(\alpha \) and \(n \). Player II’s strategy is a function \(\eta_n = v(\alpha, n) \) assigning the moment of next action to a pair of players’ current resources \(\alpha \) and \(n \). We will define the players’ strategies in the segment where \(\alpha(t)n(t) > 0 \) only and assume that if one of the players has not exhausted his resource then he consumes it so that the probability of his success is equal to 1. By the condition \(P_j(1) = 1 \) and
formula (3), this is always possible. The payoff function of the game is the function $K(\xi, \eta)$ defined by the formula (4), where ξ and η are the intensity function of Player I and the action moment vector of Player II realized during the game. Let us denote the game so described by $G_{am}(P, A)$.

3 T-plays and T-strategies

Let us denote by T the set of all sequences of functions

$$T(x) = (T_1(x), T_2(x), \ldots, T_k(x), \ldots),$$

satisfying the following conditions:

1. The functions $T_k(x)$ ($k \in \mathbb{N}$) are defined and continuous in the half-line $[0, +\infty)$, and continuously differentiable in $(0, +\infty)$.

2. $0 < T_k(x) \leq 1$ ($x \geq 0$, $k \in \mathbb{N}$).

3. $T_k(x) < 0$, $T_{k+1}(x) < T_k(x)$ ($x > 0$, $k \in \mathbb{N}$).

4. $T_k(0) = 1$ ($k \in \mathbb{N}$).

Let $T \in T$. A pair (α, n) is called a T-play if whenever $\alpha(t)n(t) > 0$ the inequality

$$t \leq T_n(t)(\alpha(t))$$

holds and for the action moments the inequality holds as an equality.

Any sequence $T \in T$ determines the set of all T-plays, which differ from each other in who of the players uses his resource at every action moment prescribed by the sequence T (simultaneous actions are possible). The T-plays (α_j, n_j) ($j = 1, 2$) in which the j-th player begins to use his resource after his opponents’s resource has been exhausted are called the simplest T-plays. The consumption functions of the simplest T-plays have the form

\begin{align*}
\alpha_1(t) &= \begin{cases}
a, & \text{for } t \in [0, T_1(a)]; \\
\text{makes the integral } \int_{T_1(a)}^{1} \log(1 - P_1(t)) \, d\alpha_1(t) \text{ divergent,}
\end{cases} \\
n_1(t) &= \begin{cases}
m, & \text{for } t \in [0, T_m(a)]; \\
i, & \text{for } t \in (T_{i+1}(a), T_i(a)], 1 \leq i \leq m - 1; \\
0, & \text{for } t \in (T_1(a), 1],
\end{cases}
\end{align*}
\[\alpha_2(t) = \begin{cases} a, & \text{for } t \in [0, T_m(a)]; \\ T_m^{-1}(t), & \text{for } t \in (T_m(a), 1], \end{cases} \]

\(n_2(t) = m, \) for \(t \in [0, 1] \) \((\eta_1 = \eta_2 = \ldots = \eta_m = 1)\).

\[\alpha_2(t) = \begin{cases} a, & \text{for } t \in [0, T_m(a)]; \\ T_m^{-1}(t), & \text{for } t \in (T_m(a), 1], \end{cases} \]

\(n_2(t) = m, \) for \(t \in [0, 1] \) \((\eta_1 = \eta_2 = \ldots = \eta_m = 1)\).

Lemma 1. Let \(T \in T \). The values of the payoff functions in all \(T \)-plays of the duel \(G_{am}(P,A) \) coincide if and only if the following equations hold:

\[
\exp \left(\int_0^x \log(1 - P_1(T_k(\alpha))) \, d\alpha \right) + \prod_{i=1}^k (1 - P_2(T_i(x))) = 1 \] (10)

for all \(0 < x \leq a, \ 1 \leq k \leq m \).

In this case the common value of the payoff function in all \(T \)-plays of the game is equal to

\[
v_m(a) = A_1 - (A_1 + A_2) \exp \left(\int_0^a \log(1 - P_1(T_m(\alpha))) \, d\alpha \right) = (A_1 + A_2) \prod_{i=1}^m (1 - P_2(T_i(a)) - A_2. \] (11)

Proof. Necessity. Suppose that the values of the payoff functions in all \(T \)-plays of the duel coincide for a certain \(T \in T \). Fix \(x \) \((0 < x \leq a), \ k \) \((1 \leq k \leq m)\), and put \(t^* = T_k(x) \). Denote the simplest \(T \)-plays of the game \(G_{sk}(P,A) \) by \((\overline{\alpha}_j, \overline{n}_j) \) \((j = 1, 2)\) and consider two \(T \)-plays \((\alpha_j, n_j) \) \((j = 1, 2)\) of the game \(G_{am}(P,A) \) satisfying the following conditions:

\[
\alpha_1(t) = \alpha_2(t); \ n_1(t) = n_2(t) \text{ for } t \in [0, t^*]; \] (12)

\[
\alpha_j(t^*) = x; \ n_j(t^*) = k; \ j = 1, 2; \] (13)

\[
\alpha_j(t) = \overline{\alpha}_j(t); \ n_j(t) = \overline{n}_j(t) \text{ for } t \in (t^*, 1], \ j = 1, 2. \] (14)

We denote the action moment vectors of the plays \((\overline{\alpha}_j, \overline{n}_j)\) of the game \(G_{sk}(P,A) \) by \(\overline{\eta}_j \) \((j = 1, 2)\). Let us compute the values of the payoff function in these plays:

\[
K(\overline{\alpha}_1, \overline{\eta}_1) = -A_2 \left(1 - \prod_{i=1}^k (1 - P_2(T_i(x))) \right) + A_1 \prod_{i=1}^k (1 - P_2(T_i(x))) = (A_1 + A_2) \prod_{i=1}^k (1 - P_2(T_i(x))) - A_2; \] (15)
\[K(\alpha_2, \eta_2) = A_1 \left(1 - \exp \left(\int_0^x \log(1 - P_1(T_k(\alpha))) \, d\alpha \right) \right) - \\
- A_2 \exp \left(\int_0^x \log(1 - P_1(T_k(\alpha))) \, d\alpha \right) = \\
= A_1 - (A_1 + A_2) \exp \left(\int_0^x \log(1 - P_1(T_k(\alpha))) \, d\alpha \right). \quad (16) \]

By the assumption of Lemma the values of the payoff function of the game \(G_{am}(P, A) \) in the plays \((\alpha_1, n_1)\) and \((\alpha_2, n_2)\) coincide. Hence the conditions \((12)–(14)\) imply that the values of the payoff function of the game \(G_{ak}(P, A) \) in the plays \((\alpha_1, \pi_1)\) and \((\alpha_2, \pi_2)\) are equal. Equating \((15)\) and \((16)\), we get \((10)\).

Sufficiency. Suppose that for a given \(T \in T \) the equation \((10)\) holds for all \(0 < x \leq a, \ 1 \leq k \leq m \). Let \((\alpha, n)\) be an arbitrary \(T \)-play. We need to show that \(K(\alpha, n) = v_m(a) \). Proceed by induction in the number of units in Player II’s resource. For \(m = 0 \) the statement of Lemma is true, as \(K = A_1 \). Suppose that the equation holds for \(n \leq k - 1 \) and prove it for \(n = k \). Let \(\eta \) be the action moment vector of Player II in the play \((\alpha, n)\). Set

\[\alpha_k = \alpha(\eta_k), \quad \alpha^k(t) = \min\{\alpha_k, \alpha(t)\}. \]

Then

\[K(\alpha, \eta_1, \ldots, \eta_k) = A_1 \varphi(\alpha, 0, \eta_k) - A_2 P_2(\eta_k) (1 - \varphi(\alpha, 0, \eta_k)) + \\
+ (1 - P_2(\eta_k)) (1 - \varphi(\alpha, 0, \eta_k)) K(\alpha^k, \eta_1, \ldots, \eta_{k-1}), \quad (17) \]

where \(\varphi(\alpha, 0, \eta_k) \) is the probability of Player I achieving success in the time interval \([0, \eta_k]\). By the formula \((3)\) we have

\[\varphi(\alpha, 0, \eta_k) = 1 - \exp \left(\int_{\alpha_k}^a \log(1 - P_1(T_k(\alpha))) \, d\alpha \right). \quad (18) \]

It follows from the inductive assumption that

\[K(\alpha^k, \eta_1, \ldots, \eta_{k-1}) = (A_1 + A_2) \prod_{i=1}^{k-1} (1 - P_2(T_i(\alpha_k))) - A_2. \quad (19) \]

Substituting \((18)\) and \((19)\) into \((17)\), we get

\[K(\alpha, \eta_1, \ldots, \eta_k) = A_1 + \\
+ (A_1 + A_2) \exp \left(\int_{\alpha_k}^a \log(1 - P_1(T_k(\alpha))) \, d\alpha \right) \left(\prod_{i=1}^k (1 - P_2(T_i(\alpha_k))) - 1 \right). \quad (20) \]
According to (10) we have

\[1 - \prod_{i=1}^{k} (1 - P_2(T_i(\alpha_k))) = \exp \int_0^{\alpha_k} \log(1 - P_1(T_k(\alpha))) \, d\alpha. \]

(21)

Taking into account (21), we finally conclude from (20) that

\[K(\alpha, \eta_1, \ldots, \eta_k) = A_1 - (A_1 + A_2) \exp \int_0^{\alpha} \log(1 - P_1(T_k(\alpha))) \, d\alpha = v_k(a). \]

So the statement of Lemma has been proven by induction.

Let \(\{T_k(x)\} \in T \). The players’ strategies having the form

\[\xi^T(t) = \begin{cases}
0, & t < T_n(\alpha), \\
-1/T_n(\alpha), & t = T_n(\alpha); \end{cases} \eta^T = T_n(\alpha), \]

where \(\alpha, n \) are the players’ remaining resources at a moment \(t \), are called \(T \)-strategies.

Theorem 2. If a sequence \(\{T_k(x)\} \in T \) satisfies the relations (10) for all \(0 < x \leq a, \ 1 \leq k \leq m \), then any pair of \(T \)-strategies forms an equilibrium situation (saddle point) in the game \(G_{am}(P, A) \). The value of the game is given by the formula (11).

Proof. Let \(\eta \) be an arbitrary action moment vector of Player II. Suppose that Player I acts according to a \(T \)-strategy. His consumption function corresponding to \(\eta \) has the form

\[\alpha^T(t) = \begin{cases}
\alpha_{k+1}, & t \in (\eta_{k+1}, T_k(\alpha_{k+1})); \\
\alpha_{k}^T(\eta_k), & t \in [T_k(\alpha_{k+1}), \eta_k], \text{ for } \eta_k > T_k(\alpha_{k+1}). \end{cases} \]

(22)

where \(\alpha_{k}^T(t) \) is the function defined in the segment \([T_k(\alpha_{k+1}), 1]\) and inverse to \(T_k(x) \), extended to the segment \([0, T_k(\alpha_{k+1})]\) as the constant \(\alpha_{k+1} \), \(\alpha_k = \alpha_{k}^T(\eta_k) \ (k = 1, 2, \ldots, m), \eta_{m+1} = 0, \alpha_{m+1} = a \).

We will show that if \(T_k(x) \) satisfies (10) for all \(0 < x \leq a, \ 1 \leq k \leq m \) then the inequality \(K(\alpha^T; \eta) \geq v_m(a) \) holds.

First let us notice that if Player I uses a \(T \)-strategy then the inequality \(\eta_k > T_k(\alpha_k) \) is impossible, because starting from the moment \(T_k(\alpha_{k+1}) \) Player I spends his resource according to the function \(\alpha_{k}^T(t) \) making the identity \(t = T_k(\alpha^T(t)) \) hold. In the result the next action moment of Player II prescribed by a \(T \)-strategy is being postponed.
If for all $1 \leq k \leq m$ one has $\eta_k = T_k(\alpha_k)$ then we are dealing with the simplest T-play (6), and according to Lemma 1 the equation $K(\alpha^T; \eta) = v_m(a)$ holds.

If Player II spends his resource before the next action moment $T_k(\alpha^T(t))$ comes, then there exist two integers k and l ($1 \leq l \leq k \leq m$) such that

\begin{align*}
\eta_i &= T_i(\alpha_i) \text{ for } k + 1 \leq i \leq m; \quad \eta_{l-1} = T_{l-1}(\alpha_{l-1}); \\
\eta_i &< T_i(\alpha_i) \text{ for } l \leq i \leq k.
\end{align*}

(23) \quad (24)

In this case, by the definition of a T-strategy, Player I’s resource is not being consumed in the interval $(\eta_{k+1}, T_{l}(\alpha_{k+1}))$, that is $\alpha^T(t) = \alpha_{k+1}$. Define the vector η^1 as follows:

\begin{align*}
\eta^1_i = \begin{cases}
\eta_i, & i = 1, 2, \ldots, l - 1, k + 1, k + 2, \ldots, m; \\
T_i(\alpha_{k+1}), & i = l, l + 1, \ldots, k.
\end{cases}
\end{align*}

Let us compute $K(\alpha^T; \eta)$ and $K(\alpha^T; \eta^1)$ by presenting the payoff function as the sum of three summands corresponding to the intervals $[0, \eta_k)$, $[\eta_k, T_i(\alpha_{k+1}))$, $[T_i(\alpha_{k+1}), 1]$. We get:

\begin{align*}
K(\alpha^T, \eta) &= K_{[0,\eta_k)} - A_2 \Psi(\eta_k) + \Psi(\eta_k) \prod_{i=l}^{k} q(\eta_i)(A_2 + K_{[T_i,1]}); \quad (25) \\
K(\alpha^T, \eta^1) &= K_{[0,\eta_k)} - A_2 \Psi(\eta_k) + \Psi(\eta_k) \prod_{i=l}^{k} q(T_i(\alpha_{k+1}))(A_2 + K_{[T_i,1]}), \quad (26)
\end{align*}

where $K_{[0,\eta_k)}$ and $K_{[T_i,1]}$ are the mathematical expectations of Player I’s profit in the intervals $[0, \eta_k)$ and $[T_i(\alpha_{k+1}), 1]$ when Player I’s consumption function is α^T and Player II’s action moment vector is η, while $\Psi(\eta_k)$ is the probability that for these consumption function of Player I and action moment vector of Player II both players did not achieve success up to the moment η_k. Since the function $q(t)$ decreases, comparing (25) with (26) and taking into account (23), (24) we get the inequality

$$K(\alpha^T, \eta) \geq K(\alpha^T, \eta^1).$$

Repeating the described procedure, we construct r vectors $\eta^1, \eta^2, \ldots, \eta^r$ ($r < m$) such that

$$K(\alpha^T, \eta) \geq K(\alpha^T, \eta^1) \geq K(\alpha^T, \eta^2) \geq \ldots \geq K(\alpha^T, \eta^r)$$

and $\eta^*_i = T_i(\alpha_i)$ for all $1 \leq i \leq m$.

8
According to Lemma 1, we have $K(\alpha^T; \eta^T) = v_m(a)$, and consequently $K(\alpha^T; \eta) \geq v_m(a)$.

Now let $\alpha(t)$ be an arbitrary consumption function of Player I and η^T be the realization of Player II’s action moment vector corresponding to $\alpha(t)$ for a T-strategy of Player II. Let us show that $K(\alpha; \eta^T) \leq v_m(a)$. Denote the realization of Player I’s consumption function corresponding to η^T for a T-strategy of Player I by α^T (it is given by the formula (22)). If for all $t \in [0, 1]$ such that $\alpha(t) n(t) > 0$ the function $\alpha(t)$ coincides with $\alpha^T(t)$, then we are dealing with a T-play, and by Lemma 1 we have $K(\alpha; \eta^T) = v_m(a)$. Otherwise there exists $t_0 \in [0, 1]$ for which $\alpha(t_0) = \alpha^T(t_0)$ and there exists $\varepsilon > 0$ such that for all $t \in (t_0, t_0 + \varepsilon)$ the inequality $\alpha(t) < \alpha^T(t)$ holds. The inverse inequality is impossible because Player II uses a T-strategy. Set

$$t^* = \sup\{t : \alpha(t') < \alpha^T(t') \text{ for all } t' \in (t_0, t)\}.$$

The segment $[0, 1]$ contains at most a countable set of segments of the form $[t_0, t^*]$. Let us enumerate such segments, and let $[t_1, t_1']$ be the first of them. Define $\alpha_1(t)$ as follows:

$$\alpha_1(t) = \begin{cases}
\alpha^T(t), & \text{for } t \in (t_1, t_1'); \\
\alpha(t), & \text{for } t \notin (t_1, t_1').
\end{cases}$$

Let $t_1 \in [\eta^T_k, \eta^T_{k-1}]$; then by the definition of Player I’s T-strategy we have $t_1' \in [\eta^T_k, \eta^T_{k-1}]$. Let us compute $K(\alpha; \eta^T)$ and $K(\alpha_1; \eta^T)$ by presenting the payoff function as the sum of three summands corresponding to the intervals $[0, t_1)$, $[t_1, t_1')$, $[t_1', 1]$. We get:

$$K(\alpha, \eta^T) = K_{[0, t_1)} + A_1 \Psi(t_1) - \Psi(t_1)(A_1 - K_{[t_1', 1]}) \exp \int_{t_1}^{t_1'} \mu(t) \, d\alpha(t); \quad (27)$$

$$K(\alpha_1, \eta^T) = K_{[0, t_1)} + A_1 \Psi(t_1) - \Psi(t_1)(A_1 - K_{[t_1', 1]}) \exp \int_{t_1}^{t_1'} \mu(t) \, d\alpha^T(t), \quad (28)$$

where $K_{[0, t_1)}$ and $K_{[t_1', 1]}$ are the mathematical expectations of Player I’s profit in the intervals $[0, t_1)$ and $[t_1', 1]$ when Player I’s consumption function is $\alpha(t)$ and Player II’s action moment vector is η^T, while $\Psi(t_1)$ is the probability that for these consumption function of Player I and action moment vector of Player II both players did not achieve success up to the
moment \(t_1 \), and \(\mu(t) = -\log p(t) \). Note that
\[
\int_{t_1}^{t'_1} \mu(t) \, d\alpha(t) > \int_{t_1}^{t'_1} \mu(t) \, d\alpha^T(t).
\] (29)

Indeed, integrating by parts we get
\[
\int_{t_1}^{t'_1} \mu(t) \, d\alpha(t) = \mu(t'_1) \int_{t_1}^{t'_1} \, d\alpha(t) - \int_{t_1}^{t'_1} \left(\int_{t_1}^{t} \, d\alpha(t) \right) d\mu_1(t),
\] (30)

\[
\int_{t_1}^{t'_1} \mu(t) \, d\alpha^T(t) = \mu(t'_1) \int_{t_1}^{t'_1} \, d\alpha^T(t) - \int_{t_1}^{t'_1} \left(\int_{t_1}^{t} \, d\alpha^T(t) \right) d\mu_1(t).
\] (31)

By the definition of the segment \([t_1, t'_1]\), for all \(t \in [t_1, t'_1] \) the following inequality holds:
\[
\int_{t_1}^{t} \, d\alpha(t) \leq \int_{t_1}^{t} \, d\alpha^T(t); \tag{32}
\]

moreover, the inequality turns into an equality for \(t = t'_1 \) only. Using (32), one deduces (29) from (30) and (31). Comparing \(K(\alpha; \eta^T) \) with \(K(\alpha_1; \eta^T) \) (the formulas (27), (28)) and taking (29) into account, we get:
\[
K(\alpha, \eta^T) \leq K(\alpha_1, \eta^T).
\]

Repeating the described procedure, we construct a sequence of functions \(\alpha_k \) such that
\[
K(\alpha_k, \eta^T) \leq K(\alpha_{k+1}, \eta^T), \quad k \in \mathbb{N}.
\]

So
\[
K(\alpha, \eta^T) \leq K(\alpha_k, \eta^T) \quad \text{for any} \quad k \in \mathbb{N}. \tag{33}
\]

Let \(\alpha^*(t) = \lim_{k \to \infty} \alpha_k(t) \). Passing to the limit for \(k \to \infty \) in the inequality (33) and using Helly’s convergence theorem [9] we conclude that
\[
K(\alpha, \eta^T) \leq K(\alpha^*, \eta^T).
\]

Since \(\alpha^*(t) = \alpha^T(t) \) for all \(t \in \{ t : n(t) > 0 \} \), by Lemma \(\Box \) we have
\[
K(\alpha^*; \eta^T) = v_m(a) \quad \text{and thus} \quad K(\alpha; \eta^T) \leq v_m(a).
\] \(\Box \)
Corollary 3. If the function $P_2(t)$ strictly increases in the segment $[0,1]$, then there exists at most one sequence $\{T_k(x)\} \in T$ satisfying (10) for all $x \geq 0, \ k \in \mathbb{N}$.

Proof. Suppose there exist two sequences $T^1, T^2 \in T$ satisfying (10) for all $x \geq 0, \ k \in \mathbb{N}$. Let

$$l = \min\{k : T^1_k \neq T^2_k\} \quad \text{and} \quad T^1_l(a) \neq T^2_l(a), \ a > 0.$$ \hfill (34)

By Theorem 2 the game $G_{al}(P,A)$ has the value equal to the value of the payoff function in the T^1- and T^2-plays, that is the following equation holds:

$$(A_1 + A_2) \prod_{i=1}^{l} (1 - P_2(T^1_i(a))) - A_2 = (A_1 + A_2) \prod_{i=1}^{l} (1 - P_2(T^2_i(a))) - A_2.$$ \hfill (35)

But by the definition of l for all $i < l$ one has $T^1_i(a) = T^2_i(a)$, hence using (35) and taking into account the strict monotonicity of the function $P_2(t)$ we conclude that $T^1_l(a) = T^2_l(a)$. We have come to a contradiction which proves uniqueness of the sequence $\{T_k(x)\}$.

Let $\{T_k(x)\} \in T$ be a sequence satisfying the relation (10) for all $a \geq 0$ and $k \in \mathbb{N}$. Introduce the notation

$$\pi_0(x) = 1; \ \pi_k(x) = q(T_k(x))\pi_{k-1}(x) \ (k \in \mathbb{N}).$$ \hfill (36)

Then

$$\exp\left(\int_0^x \log(p(T_k(\alpha))) \, d\alpha\right) = 1 - \pi_k(x).$$ \hfill (37)

Differentiating (37) in x, we get

$$\log(p(T_k(x))) = -\frac{\pi'_k(x)}{1 - \pi_k(x)}.$$ \hfill (38)

Let us write down the recurrence relation for $\pi'_k(x)$:

$$\pi'_k(x) = q'(T_k(x))T'_k(x)\pi_{k-1}(x) + q(T_k(x))\pi'_{k-1}(x).$$ \hfill (39)

It follows from (38) and (39) that the sequence $\{T_k(x)\}$ satisfies the system of ordinary differential equations

$$\frac{dT_k}{dx} = \phi(T_1, T_2, \ldots, T_k), \quad x \geq 0; \ k \in \mathbb{N},$$ \hfill (40)
where

$$\phi(T_1, T_2, \ldots, T_k) = -\left(1 - \prod_{i=1}^{k} q(T_i)\right) \log p(T_k) - q(T_k) \left(1 - \prod_{i=1}^{k-1} q(T_i)\right) \log p(T_{k-1})$$

$$q'(T_k) \prod_{i=1}^{k-1} q(T_i)$$

Lemma 4. Assume that $p(t)$ and $q(t)$ are continuously differentiable in $(0, 1]$, $p(0) = q(0) = 1$; $p(1) = q(1) = 0$; $p(t) > 0$ for $t < 1$; $p'(t) \leq 0$; $q'(t) < 0$. Then the system of ordinary differential equations (40) under the initial conditions

$$T_k(0) = 1 \quad (k \in \mathbb{N})$$

has a solution in the half-line $x > 0$; moreover, $\{T_k(x)\} \in \mathcal{T}$.

Proof. Let us prove Lemma by induction in the number of action moments of Player II. The first equation of the system (40) has the form:

$$\frac{dT_1}{dx} = -\frac{(1 - q(T_1)) \log p(T_1)}{q'(T_1)}.$$ \hspace{1cm} (42)

Integrating (42) under the initial condition $T_1(0) = 1$, we get:

$$x(T_1) = \int_{T_1}^{1} \frac{q'(\tau) d\tau}{(1 - q(\tau)) \log p(\tau)}.$$ \hspace{1cm} (43)

The function $T_1(x)$ is the inverse function to $x(T_1)$. Let us check that it satisfies the conditions 1–4.

First we have to show that $T_1(x)$ is defined in the half-line $[0, +\infty)$. Choose $\delta > 0$ such that $-\log p(\delta) < 1$. Then

$$x(t) \geq \int_{t}^{\delta} \frac{(1 - q(\tau))' d\tau}{(1 - q(\tau))} + x(\delta) = \log(1 - q(\delta)) - \log(1 - q(t)) + x(\delta).$$

Since the right hand side of the inequality tends to $+\infty$ as $t \to +0$, we have $T_1 \to +0$ as $x \to +\infty$ and therefore the function $T_1(x)$ is defined for all $x > 0$. According to the initial condition, $T_1(0) = 1$.

12
By (42), one has \(T'_1(x) < 0 \). So \(T_1(x) \) decreases from 1 for \(x = 0 \) to 0 as \(x \to +\infty \). Hence \(0 < T_1(x) \leq 1 \).

Suppose that for \(1 \leq i \leq k - 1 \) a solution sequence \(T_i(x) \) of the system (40), (41) exists and satisfies the conditions 1–4. Substituting it into the \(k \)-th equation of the system (40), we get:

\[
\frac{dT_k}{dx} = \Phi_k(T_k, x),
\]

where

\[
\Phi_k(t, x) = \phi_k(T_1(x), T_2(x), \ldots, T_{k-1}(x), t).
\]

Let us show that the equation (44) under the initial condition

\[
T_k(0) = 1
\]

has a solution \(T_k(x) \), which satisfies the monotonicity condition

\[
T'_k(x) < 0, \quad T_k(x) < T_{k-1}(x) \text{ for all } x > 0.
\]

Note that the following inequalities holds for all \(x > 0 \):

\[
\Phi_k(T_{k-1}(x), x) \leq \frac{T'_{k-1}(x)}{q(T_{k-1}(x))} < T'_{k-1}(x) < 0.
\]

Indeed,

\[
\Phi_k(T_{k-1}(x), x) = -\frac{(1 - q(T_{k-1}(x))) \log p(T_{k-1}(x))}{q'(T_{k-1}(x))\pi_{k-1}(x)},
\]

where \(\pi_k(x) \) are the functions defined by the formulas (36). On the other hand, by the inductive assumption

\[
T_{k-1}(x) < T_{k-2}(x),
\]

therefore (40) implies the inequality

\[
T'_{k-1}(x) \geq -\frac{(1 - q(T_{k-1}(x))) \log p(T_{k-1}(x))}{q'(T_{k-1}(x))\pi_{k-2}(x)}.
\]

Comparing (49) and (50), we obtain (48). Denote the numerator of the fraction in the right hand side of the equation (40) by \(F_k(t, x) \), that is

\[
F_k(t, x) = (1 - \pi_{k-1}(x)q(t)) \log p(t) - (1 - \pi_{k-1}(x))q(t) \log p(T_{k-1}(x)).
\]

Next we will show that the equation

\[
F_k(t, x) = 0, \quad x > 0,
\]

determines an implicit function \(t = f_k(x) \), which has the following properties:
1. The function \(f_k(x) \) \((k \in \mathbb{N})\) is defined and continuously differentiable in the half-line \((0, +\infty)\);

2. \(f_k(x) \to 1 \) as \(x \to +0 \);

3. \(f'_k(x) < 0 \) \((x > 0)\);

4. \(f_k(x) < T_{k-1}(x) \) \((x > 0, k \geq 2)\).

It follows from (48) that

\[F_k(T_{k-1}(x), x) < 0 \text{ for all } x > 0. \]

On the other hand, for any \(x > 0 \)

\[\lim_{t \to +0} F_k(t, x) = -(1 - \pi_{k-1}(x)) \log p(T_{k-1}(x)) > 0. \]

Therefore, for any \(x > 0 \) the equation (51) has a solution

\[t = f_k(x) \in (0, T_{k-1}(x)). \]

To prove that the solution is unique let us check that

\[\frac{\partial F_k}{\partial t} < 0 \text{ for all } x > 0, t \in (0, 1). \]

Indeed,

\[
\frac{\partial F_k}{\partial t} = \frac{p'(t)}{p(t)}(1 - \pi_{k-1}(x)q(t)) - q'(t)\pi_{k-1}(x) \log p(t) - \\
- q'(t)\pi_{k-1}(x) \log p(T_{k-1}(x)) < 0.
\]

It follows from the implicit function theorem that the equation (51) determines an implicit function \(t = f_k(x) \), which is differentiable in the half-line \(x > 0 \). Let us check that \(f'_k(x) < 0 \). We have shown that \(F'_k(t) < 0 \), so in view of the relation

\[(f_k)'_x = -\frac{(F_k)_t'}{(F_k)_x'} \]

it suffices to check that

\[(F_k)'_x < 0 \text{ for all } x > 0, t < T_{k-1}(x). \]

Taking into account the fact that, according to (38),

\[\pi'_{k-1}(x) = -(1 - \pi_{k-1}(x)) \log p(T_{k-1}(x)), \]

\[(F_k)'_x < 0 \text{ for all } x > 0, t < T_{k-1}(x). \]
we have
\[
(F_k)'_x = -(1 - \pi_{k-1}(x)) \log(p(T_{k-1}(x)) (\log p(t) - \log(p(T_{k-1}(x)))) - \\
- \frac{p'(T_{k-1}(x))}{p(T_{k-1}(x))} T_{k-1}'(1 - \pi_{k-1}(x)) q(t).
\]
Since \(t < T_{k-1}(x) \) and \(T_{k-1}'(x) < 0 \), it follows that \((F_k)'_x < 0 \).

It remains to check that \(f_k(x) \to 1 \) as \(x \to +0 \). It was proven above that \(f_k(x) \) decreases monotonically in the half-line \(x > 0 \). Taking into account the inequalities
\[
f_k(x) < T_{k-1}(x) < 1,
\]
we conclude that there exists a limit of \(f_k(x) \) as \(x \to +0 \) and
\[
\lim_{x \to +0} f_k(x) = c \leq 1.
\]

Suppose that \(c < 1 \). Substituting \(t = f_k(x) \) into (51), we get:
\[
(1 - \pi_{k-1}(x)) q(f_k(x))) \log(p(f_k(x)) = (1 - \pi_{k-1}(x)) q(f_k(x)) \log p(T_{k-1}(x)),
\]
(52)
As \(x \to +0 \), the right hand side of the equation (52) tends to \(-\infty\), and the limit of the left hand side is equal to \(\log p(c) > -\infty \). It follows from this contradiction that
\[
\lim_{x \to +0} f_k(x) = 1.
\]

Now we are ready to proceed with the construction of the function \(T_k(x) \).

Associate with any \(a > 0 \) the solutions \(y_a(x) \) and \(z_a(x) \) of the equation (44) in the half-line \(x \geq a \) satisfying the initial conditions
\[
y_a(a) = T_{k-1}(a); \quad z_a(a) = f_k(a).
\]
This equation in the domain \(x > 0, \, 0 < t < 1 \) satisfies the conditions of the theorem on the existence and uniqueness of solutions. By the inequalities (48) and \(f_{k-1}'(x) < 0 \), the curves \(y_a(x) \) and \(z_a(x) \) for \(x > a \) are situated between the curves
\[
t = f_k(x) \quad \text{and} \quad t = T_{k-1}(x).
\]
Take \(c > 0 \) and denote \(\inf_{a>0} y_a(c) \) by \(b \). Let \(\bar{y}(x) \) be a solution of the equation (44) satisfying the initial condition \(\bar{y}(c) = b \). By the uniqueness theorem, for any \(a > 0 \) the integral curve \(\bar{y}(x) \) is situated strictly between curves \(y_a(x) \) and \(z_a(x) \) for all \(x > 0 \). Hence \(\bar{y}(x) \) can be extended to the half-line \(x \geq 0 \); moreover, \(\bar{y}(0) = 1 \) and
\[
f_k(x) < \bar{y}(x) < T_{k-1}(x) \quad \text{for all} \quad x > 0.
\]
Since $F_k(t,x)$ decreases in t for any $x > 0$, one has

$$F_k(\tilde{y}(x), x) < F_k(f_k(x), x) = 0,$$

and therefore $\tilde{y}'(x) < 0$. Thus $\tilde{y}(x)$ satisfies all the conditions imposed on the function $T_k(x)$, and so the existence of this function is proven. Put $T_k(x) = \tilde{y}(x)$.

\[\square \]

Lemma 5. Assume that $p(t)$ and $q(t)$ are continuously differentiable in $(0,1]$, $p(0) = q(0) = 1$; $p(1) = q(1) = 1$; $p(t) > 0$ for $t < 1$; $p'(t) \leq 0$; $q'(t) < 0$. Then a solution of the system of differential equations (40), (41) is unique.

Proof. Let us proceed by induction. For $k = 1$ the function $T_1(x)$ is inverse to the function $x(T_1)$, which is determined uniquely by the formula (43). Suppose that for $1 \leq i \leq k - 1$ the system (40), (41) has a unique solution $T_i(x)$. Let us show that the problem (44), (46) has a unique solution. Let $T_k(x)$ be the solution of this problem constructed in Lemma 4 and $y(x)$ be an arbitrary solution of this problem. We will show that

$$y(x) \equiv T_k(x).$$

Consider two cases.

1. The integral curve $y(x)$ of the equation (44) for all $x > 0$ is situated strictly between the graphs of the functions

$$y = f_k(x) \text{ and } y = T_{k-1}(x).$$

Then, according to the above, $y(x)$ satisfies the conditions (46), (47), and by Corollary 3

$$y(x) \equiv T_k(x).$$

2. For some $x > 0$ one of the inequalities

$$f_k(x) < y(x) < T_{k-1}(x)$$

is false. We will show that in this case the curve $y(x)$ does not go through the point $(0,1)$, i.e., in this case the initial condition (46) is not satisfied.

(a) Suppose there exists $x_0 > 0$ such that $y(x_0) < f_k(x_0)$. Then $y'(x) > 0$ for all $x \in (0,x_0)$, and therefore $y(x) < f_k(x_0)$ for all $0 < x < x_0$, so in particular $y(0) < 1$.

16
(b) Suppose there exists $x_1 > 0$ such that $y(x_1) > T_{k-1}(x_1)$. Then by the inequality (48) one has $y(x) > T_{k-1}(x)$ for all $0 < x < x_1$. Since $q'(t)$ is continuous and $q'(t) < 0$ for $t \in (0,1]$, there exist two numbers c_1 and c_2 such that

$$c_1 \leq -q'(t) \leq c_2 \text{ for } t \in [T_{k-1}(x_1), 1].$$

It follows from the function $F_k(t, x)$ being monotonically decreasing in t together with the inequality (48) that for $t > T_{k-1}(x)$ one has

$$\Phi_k(t, x) = \frac{-F_k(t, x)}{q'(t)\pi_{k-1}(x)} < \frac{-F_k(T_{k-1}(x), x)}{q'(t)\pi_{k-1}(x)} < \frac{T'_{k-1}(x)q'(T_{k-1}(x))}{q'(t)q(T_{k-1}(x))}.$$ (53)

We find $\delta > 0$ such that $q(T_{k-1}(\delta)) < c_1/c_2$ and put $\delta_1 = \min(x_1, \delta)$. Then for $x \in (0, \delta_1)$, $t > T_{k-1}(x)$ the inequality

$$\Phi_k(t, x) < T'_{k-1}(x)$$

holds, hence there exists $\varepsilon > 0$ such that for $x \in (0, \delta_1)$ the inequality $y(x) - T_{k-1}(x) > \varepsilon$ is satisfied. Thus $y(x)$ does not go through the point $(0, 1)$.

\square

Remark 6. Suppose $P_2(t) = t$; and let $y(x), z(x)$ be the solutions of the equation (44) in the half-line $[a, +\infty)$ under the initial conditions $y(a) = y_0$, $z(a) = z_0$, where

$$f_k(a) \leq z_0 < y_0 \leq T_{k-1}(a).$$

Then the difference $e(x) = y(x) - z(x)$ decreases in x.

Proof. Consider the derivative of the difference:

$$e'(x) = \Phi_k(y(x), x) - \Phi_k(z(x), x).$$

From the relation

$$(\Phi_k(t, x))' = (F_k(t, x))' / \pi_{k-1}(x),$$

taking into account the inequality $(F'_k) < 0$ obtained in the proof of Lemma 4, we get $(\Phi_k)' < 0$ for all $x > 0$. Hence $\Phi_k(t, x)$ decreases in t for any $x > 0$. Since $y(x) > z(x)$, we have $e'(x) < 0$ and therefore the difference $y(x) - z(x)$ decreases in x. \square

The next Theorem follows from Theorem 2 and Lemma 4.
Theorem 7. If in the noisy fighter-bomber duel the players’ accuracy functions $P_j(t)$ $(j = 1, 2)$ are continuously differentiable in the segment $(0, 1]$, $P_j(0) = 0, P_j(1) = 1, P_j(t) < 1$ for $t < 1$, $P'_1(t) \geq 0$, $P'_2(t) > 0$, then the game has an equilibrium situation (saddle point) in pure strategies. The value and the optimal strategies have the form:

$$v_m(a) = (A_1 + A_2) \prod_{i=1}^{m} (1 - P_2(T_i(a))) - A_2; \quad (54)$$

$$\xi^T(t) = \begin{cases} 0, & t < T_n(\alpha), \\ -1/T'_n(\alpha), & t = T_n(\alpha); \end{cases} \quad \eta^T = T_n(\alpha), \quad (55)$$

where α, n are the players’ remaining resources at the moment t, and $\{T_k(x)\}$ is a solution of the system of equations $(III),(IV)$.

4 Conclusions

1. The optimal strategies ξ^T, η^T prescribe the players to refrain from using their resources until the moment $T_m(a)$ (let us call it the good start-consume moment).

2. The good start-consume moment is a function $T(\alpha, \beta)$ of the current values α and β of the player’s resources; it does not depend on the development of the game up to the current moment and is common for both players.

3. The more resources the players have, the earlier the good start-consume moment comes, because $T_k(x)$ decreases in x and k.

4. The optimally behaving players begin using their resources at the good start-consume moment (one of the players or both of them).

5. If at the good start-consume moment Player I starts to act according to the optimal consumption function, then he continues to act until the next Player II’s action moment and during the whole of this period of time the following equation holds:

$$t = T_m(t)(\alpha(t)). \quad (56)$$

6. If at the good start-consume moment Player II acts, then his resource decreases by one unit and the players stop using their resources until the good start-consume moment corresponding to the current values of resources.
7. If Player I behaves optimally, the optimal strategy of Player II pre-
scribes him to act at any moment when the equation (56) holds (possi-
ibly simultaneously with Player I, interrupting his actions), or to refrain
from using his resource until the end of the game (moment \(t = 1 \)),
which does not affect the payoff.

8. If one of players uses a \(T \)-strategy, then a play is realized satisfying
the condition \(t \leq T_{m(t)}(\alpha(t)) \) for all \(t \in [0, 1] \) such that \(\alpha(t)m(t) > 0 \).

9. If both players act according to \(T \)-strategies, then they consume their
resources only at those moments of time for which the equa-
tion (56) holds. In this case one of the \(T \)-plays is realized. The payoff function
takes the same values at all of these plays.

Note that the sequence of functions \(T_k(x) \) is a continuous analogue of
the infinite matrix \(\{t_{mn}\} \) (\(m \in \mathbb{N}, n \in \mathbb{N} \)) of “good first-shot times” of
the noisy duel with discrete resources of both players [5].

5 Appendix. Numerical solution of the game

We will consider the case when \(P_2(t) = t \), which does not restrict the
generality. Indeed, let \(P_2(t) \neq t \), \(P_2'(t) > 0 \) and \(P_2(t) > 0 \) for \(t \in (0, 1] \). Let us make the change of variables \(\tau = P_2(t) \) and solve the game
\(G_{am}(\tilde{P}, A) \), where \(\tilde{P} = (P_1(P_2^{-1}(\tau)), \tau) \). Obviously the values of the games
\(G_{am}(P, A) \) and \(G_{am}(\tilde{P}, A) \) are equal and the optimal \(T \)-strategies of the
game \(G_{am}(P, A) \) are determined by the sequence \(T_k(x) = P_2^{-1}(\tilde{T}_k(x)) \), where
\(\tilde{T}_k(x) \) is the solution of the problem (40), (41) for the game \(G_{am}(\tilde{P}, A) \).

By (42) \(T'_1(x) \to -\infty \) as \(x \to +0 \), so it follows from the inequality
(47) and the initial conditions (41) that \(\lim_{x \to +0} T'_k(x) = -\infty \) for all \(k \in \mathbb{N} \).
Hence the system of equations (40) has a singularity at the point \(x = 0 \), and
therefore it is impossible to solve the Cauchy problem for this system with
the initial conditions at the point \(x = 0 \). We will integrate the system (40)
using the method described in the proof of Lemma 4, that is we will find
solutions \(y_k(x) \) and \(z_k(x) \) of the equation (44) in the segment \([\delta_k, a]\) under
the initial conditions
\[
y_k(\delta_k) = T_{k-1}(\delta_k), \quad z_k(\delta_k) = f_k(\delta_k),
\]
where \(\delta_k > 0 \) is a small number and \(f_k(x) \) is the implicit function determined
by the equation (51). The curves \(y_k(x) \) and \(z_k(x) \) (we call will them the \(k \)-th upper and the \(k \)-th lower solutions) bound the desired curve from above.
and from below:

\[z_k(x) < T_k(x) < y_k(x). \]

By Remark 6, the difference \(y_k(x) - z_k(x) \) decreases in \(x \) and therefore the following estimate holds:

\[\Delta_k = \max_{x \geq \delta_k} |y_k(x) - z_k(x)| = |y_k(\delta_k) - z_k(\delta_k)| = T_{k-1}(\delta_k) - f_k(\delta_k). \quad (58) \]

From the continuity of the functions \(T_{k-1}(x) \), \(f_k(x) \) and the equations \(T_{k-1}(0) = f_k(0) = 1 \) it follows that \(T_{k-1}(\delta_k) - f_k(\delta_k) \to 0 \) as \(\delta_k \to 0 \).

To find the function \(T_1(x) \) one needs to tabulate the function

\[x(T_1) = -\int_{T_1}^{1} \frac{dt}{t \log(1 - P_1(t))}, \]

and find the inverse function. Using the tabulated approximate values of the function \(T_1(x) \) in the subsequent computations is undesirable, since in the computation of \(T_1(x) \) in a neighborhood of the point \(x = 0 \) we lose precision. The right hand side of the system (40) does not depend on \(x \) explicitly. It depends on \(T_k(x) \) only, so the change of variables \(u = T_1(x) \) allows to solve the further equations of the system \((k \geq 2)\) without using \(T_1(x) \). Set

\[\tilde{T}_k(u) = T_{k+1}(T_1^{-1}(u)), \quad k = 1, 2, \ldots, m-1, \]

then

\[\tilde{T}_k'(u) = T_{k+1}'(T_1^{-1}(u))/T_1'(T_1^{-1}(u)), \]

Since \(T_1'(x) \to -\infty \) as \(x \to +0 \), passing to the variable \(u = T_1(x) \) decreases the absolute values of derivatives of the functions we are looking for, which increases the precision of the computations. After the change of variables we get a system of differential equations in the segment \([T_1(a), 1] \):

\[\frac{d\tilde{T}_k}{du} = \frac{\tilde{\phi}_k(u, \tilde{T}_1, \tilde{T}_2, \ldots, \tilde{T}_k)}{u \log p(u)} \]

under the initial conditions

\[\tilde{T}_k(1) = 1, \quad k = 1, 2, \ldots, m-1. \]

Suppose that the first \(k - 1 \) functions

\[\tilde{T}_i(u), \quad i = 1, 2, \ldots, k - 1 \]
have been found. Then $\tilde{T}_k(u)$ is the solution of the problem

$$
\frac{d\tilde{T}_k}{du} = \tilde{\Phi}_k(\tilde{T}_k, u) \tag{59}
$$

$$
\tilde{\Phi}_k(t, u) = \frac{\tilde{\phi}_k(u, \tilde{T}_1, \tilde{T}_2, \ldots, \tilde{T}_{k-1}, t)}{u \log p(u)} \tag{60}
$$

under the initial condition

$$
\tilde{T}_k(1) = 1.
$$

After the change of variables, the initial conditions for the upper and lower curves take the form:

$$
\tilde{y}_k(u_k) = \tilde{T}_{k-1}(u_k); \quad \tilde{z}_k(u_k) = \tilde{f}_k(u_k);
$$

$$
\tilde{T}_0(u_k) = u_k; \quad k = 1, 2, \ldots, n;
$$

where $u_k = 1 - \delta_k$, $\delta_k > 0$, and $\tilde{f}_k(u_k)$ is the solution of the equation $\tilde{\Phi}_k(t, u_k) = 0$ with respect to t. In view of the strict monotonicity of the function $T_1(x)$, it follows from (58) that

$$
\max_{u \in [T_1(a), u_k]} |\tilde{y}_k(u) - \tilde{z}_k(u)| = \tilde{T}_{k-1}(u_k) - \tilde{f}_k(u_k) \to 0 \text{ as } u_k \to 1 - 0 \ (k \geq 1).
$$

Let us briefly describe a numerical algorithm for solving the game. The purpose of the algorithm is to compute the value of the game $G_{ak}(P, A)$ where $P(t) = (P_1(t), t)$, $k = 1, 2, \ldots, m$ and tabulate the functions $T_k(x)$ in the segment $[a_0, a]$, $a_0 > 0$ with a given step h. The algorithm’s work consists of two stages.

Stage 1. Compute the values of the function $T_1(x)$ in the segment $[a_0, a]$ with the step h by solving the equation

$$
x(T_1) = a_0 + (i - 1)h; \quad i = 1, 2 \ldots, M_a, \quad M_a = \left\lceil \frac{a - a_0}{h} \right\rceil + 1,
$$

where $x(t)$ is the function defined by the formula

$$
x(t) = -\int_{\tau}^{1} \frac{d\tau}{\tau \log p(\tau)} \tag{61}
$$

Stage 2. Compute the values of the function $T_k(x)$ in the segment $[a_0, a]$ with the step h ($k = 2, \ldots, m$). At the level k for tabulating the function $T_k(x)$ one performs the following computations:
1. Tabulate the \(k \)-th upper solution \(\tilde{y}_k(u) \) of the equation (59) in the segment \([T_1(a), u_0]\) \((u_0 < 1)\) under initial condition \(\tilde{y}_k(u_0) = \tilde{T}_{k-1}(u_0) \).

2. Find an approximate solution of the equation \(\tilde{\Phi}_k(t, u_0) = 0 \) with respect to \(t \) in the segment \([0, u_0]\). Denote the solution of this equation by \(\tilde{f}_k \).

3. Tabulate the \(k \)-th lower solution \(\tilde{z}_k(u) \) of the equation (59) in the segment \([T_1(a), u_0]\) under the initial condition \(\tilde{z}_k(u_0) = \tilde{f}_k \).

4. Tabulate the function \(\tilde{T}_k(u) \) by the formula

\[
\tilde{T}_k(u) = \frac{\tilde{y}_k(u) + \tilde{z}_k(u)}{2}
\]

in the segment \([T_1(a), u^*]\), where

\[
u^* = \max\{u < u_0 : \tilde{y}_k(u) - \tilde{z}_k(u) < \varepsilon\}, \varepsilon \text{ is the given precision.}\]

5. Returning to original variable \(x \), tabulate the function \(T_k(x) \) in the segment \([a_0, a]\).

6. Compute the value of the game \(v_k(a) \) by the formula (54).

References

[1] S. Karlin. Mathematical methods and theory in games, programming, and economics. Power Publicastions, 2003, 848 p.

[2] G. Kimeldorf. Duels: an overview // Mathematics of conflict. North-Holland, 1983. P. 55–71. P. 131–132.

[3] E. G. Davydov, L. N. Positselskaya. Noisy duels (Russian) // Moscow: Computing Center of the USSR Academy of Sciences, 1982. (preprint)

[4] L. N. Positselskaya. About one problem of resource distribution // Dinam. Neodnor. Sist. (Russian). Moscow, VNIISI, 1983. P. 260–266.

[5] M. Fox, G. S. Kimeldorf. Noisy duels // SIAM J. Appl. Math. vol. 17 – 1969. – P. 353–361.

[6] L. N. Positselskaya. Duel as a model of competition and catastrophe. //Proceedings of the IV International Conference of women mathematicians (Russian). V. 4, part 1. Nizhnij Novgorod, 1997. P. 111–119.

[7] L. N. Positselskaya. The silent two-machine-gun duel with step accuracy functions // Izv. AN SSSR. Techn. kibernetika (Russian). N4 – 1982. – P. 190–194.
[8] J. P. Lang, G. S. Kimeldorf. *Silent duels with nondiscrete firing* // SIAM J. Appl. Math. vol. 31, – 1976. – P. 99–109.

[9] A. N. Kolmogorov, S. V. Fomin. Introductory real analysis. Revised English edition. // Dover Publications, New York, 1975.
ШУМНАЯ ДУЭЛЬ ПУЛЕМЕТЧИКА СО СНАЙПЕРОМ

Посицельская Л.Н.

Аннотация

Рассматривается игра типа дуэли, в которой первый игрок расходует свой ресурс непрерывно, а второй — дискретными порциями. Каждому игроку известны текущие значения ресурсов обоих игроков. Дано решение игры в явном виде.

Ключевые слова: шумная дуэль, платежная функция, стратегия, цена игры, расход ресурса.

1 Введение

Классическая дуэль есть игра двух лиц с нулевой суммой следующего вида. Игроки располагают определенными ресурсами и используют их в течение заданного промежутка времени с целью достижения успеха. Применение в момент t ресурса γ приводит к успеху с вероятностью, зависящей только от времени t (обычно предполагается, что вероятность успеха возрастает по времени) и величины ресурса γ. Как только один из игроков достигает целей, он получает выигрыш, равный проигрышу соперника, и игра прекращается. Различные предположения о способе использования игроками своего ресурса и о поступлении информации о поведении противника в ходе игры порождают разнообразные виды дуэлей [1, 2]. Исследованы модели, в которых ресурсы игроков являются дискретными (дуэли снайперов), бесконечно делимыми (дуэли пулеметчиков), дуэли с непрерывным расходом ресурса у одного из игроков и дискретным у другого, называемые смешанными дуэлями, или дуэлями пулеметчика со снайпером [3, 4]. Изучались шумные дуэли [5, 6], в которых каждый из игроков в данный момент времени располагает информацией о поведении противника до этого момента, и бесшумные дуэли, в которых не предполагается поступление такой информации. В настоящее время дуэли считаются классическими моделями конкурентной борьбы [7, 8].
Автор благодарит Леонида Посицельского за помощь в редактировании статьи.

2 Постановка задачи

Рассматривается игра двух лиц с нулевой суммой следующего вида. Игроки обладают ресурсами $a \geq 0$ и $m \geq 0$ ($m \in \mathbb{Z}$), которые используют в промежутке времени $[0, 1]$. Первый игрок расходует свой ресурс непрерывным образом, а второй — единичными порциями. Эффективность использования ресурса j-м игроком характеризуется функцией $P_j(t)$, $j = 1, 2$, равной вероятности достижения успеха при использовании в момент t единичного ресурса. Функции $P_j(t)$ называются функциями меткости. Они непрерывно дифференцируемы, возрастают, $P_j(0) = 0$, $P_j(1) = 1$, $P_j(t) < 1$ при $t < 1$. Положим $p(t) = 1 - P_1(t)$, $q(t) = 1 - P_2(t)$, $P(t) = (P_1(t), P_2(t))$. Вектор-функция $P(t)$ называется вектор-функцией эффективности. Вероятность $G(t, \Delta \gamma)$ достижения успеха при использовании в момент t ресурса $\Delta \gamma \geq 0$ с функцией эффективности $P_j(t)$ вычисляется по формуле [7, 8]:

$$G(t, \Delta \gamma) = 1 - (1 - P_j(t))^{\Delta \gamma}, \quad \Delta \gamma > 0; \quad G(t, 0) = 0. \quad (1)$$

Выигрыш j-го игрока в случае его успеха составляет A_j. Пару (A_1, A_2) обозначим A. Выигрыш игроков равен 0, если ни один из них не добился успеха или они добились успеха одновременно.

Пусть $\alpha(t), n(t)$ — ресурсы игроков, оставшиеся к моменту t. Функции $\alpha(t), n(t)$ назовем функциями расхода ресурса. Они не возрастают, функция $n(t)$ кусочно-постоянная и непрерывна слева. Пара функций $(\alpha(t), n(t))$ называется партией. Будем предполагать, что функция $\alpha(t)$ непрерывна на $[0, 1]$ и кусочно-непрерывно дифференцируема на $(0, 1)$. Положим $\xi(t) = -\alpha'(t)$ и назовем функцию $\xi(t)$ интенсивностью расхода ресурса.

Моментом действия игрока называется момент времени, когда игрок использует свой ресурс. У пулететчика это точка убывания его функции расхода ресурса ($\xi(t+0) > 0$), у снайпера — точка скачка этой функции. Пусть $\eta_i, i = 1, 2, \ldots, m$ ($0 \leq \eta_m \leq \eta_{m-1} \leq \ldots \leq \eta_1 \leq 1$) — моменты действия 2-го игрока. Вектор $\eta = (\eta_1, \eta_2, \ldots, \eta_m)$ назовем вектором моментов действия второго игрока.

Предположим, что на отрезке $[t_1, t_2]$ второй игрок не использует свой ресурс. Вычислим вероятность того, что первый игрок достигнет успеха

{|2|
на этом отрезке при интенсивности расхода $\xi(t)$. В силу (1) имеем:

$$\varphi(\xi, t_1, t_2) = \lim_{N \to \infty} \left(1 - \prod_{i=1}^{N} (1 - P_1(\tau_i))^{\xi(\tau_i)\Delta \tau_i} \right) =$$

$$= 1 - \exp \int_{t_1}^{t_2} \xi(\tau) \ln(1 - P_1(\tau)) d\tau,$$

где $\xi(t) = -\alpha'(t)$. Вероятность успеха первого игрока на отрезке $[t_1, t_2]$ выражается через функцию расхода ресурса $\alpha(t)$ следующим образом

$$\varphi(\alpha, t_1, t_2) = 1 - \exp \left(- \int_{t_1}^{t_2} \ln(1 - P_1(\tau)) d\alpha(\tau) \right).$$

Обозначим $K(\alpha; \eta_1, \eta_2, \ldots, \eta_m)$ математическое ожидание выигрыша, получаемого 1-м игроком, если он расходует ресурс в соответствии с функцией расхода ресурса $\alpha(t)$ в то время как 2-й действует в моменты времени η_k ($1 \leq k \leq m$). Тогда $K = 0$ при $m = 0$, $a = 0$ и $K = A_1$ при $m = 0$, $a > 0$. При $m \geq 1$ значение функции K вычисляется по рекурентной формуле:

$$K(\alpha; \eta_1, \eta_2, \ldots, \eta_m) = A_1 \varphi(\alpha, 0, \eta_m) - A_2 (1 - \varphi(\alpha, 0, \eta_m)) P_2(\eta_m) + \ldots + (1 - P_2(\eta_m))(1 - \varphi(\alpha, 0, \eta_m)) K(\alpha(m; \eta_1, \eta_2, \ldots, \eta_{m-1}),$$

где

$$\alpha_m(t) = \begin{cases} \alpha(\eta_m), & t \in [0, \eta_m) \\ \alpha(t), & t \in [\eta_m, 1]. \end{cases}$$

Рассматриваемая игра, называемая шумной дуэлью, представляет собой модель конкурентной борьбы в условиях полной информации. В этой игре каждому игроку известны ресурсы обоих соперников в каждый момент времени, и игроки непрерывно корректируют свое поведение на основании поступающей информации о значении ресурса противника. Стратегия первого игрока есть функция $\xi = u(t, \alpha, n)$, определяющая интенсивность ξ расхода ресурса в момент t в зависимости от текущих значений α и n ресурсов игроков. Стратегия 2-го игрока есть функция $\eta = v(\alpha, n)$, определяющая очередной момент его действия по значениям α и n ресурсов. Мы будем задавать стратегии игроков только на том промежутке времени, где $\alpha(t)n(t) > 0$, предполагая что если один из игроков еще не исчерпал свой ресурс, то он использует его так, чтобы обеспечить единичную вероятность успеха. В силу условия $P_j(1) = 1$ и формулы (3) это всегда возможно. Платежная функция этой игры есть функция $K(\xi, \eta)$, определенная формулой (4), где ξ и η — реализованные в ходе игры интенсивность расхода ресурса 1-го игрока и вектор моментов действия 2-го. Описанную дуэль обозначим $G_{am}(P, A)$.

3
3 \(T \)-партии и \(T \)-стратегии

Обозначим через \(T \) множество функциональных последовательностей
\[
T(x) = (T_1(x), T_2(x), \ldots, T_k(x), \ldots),
\]
удовлетворяющих следующим условиям:

1. Функции \(T_k(x) \ (k \in \mathbb{N}) \) определены и непрерывны на полуинтервале \([0, +\infty)\), непрерывно дифференцируемы на \((0, +\infty)\).
2. \(0 < T_k(x) \leq 1 \ (x \geq 0, k \in \mathbb{N}) \).
3. \(T_k'(x) < 0, T_{k+1}(x) < T_k(x) \ (x > 0, k \in \mathbb{N}) \).
4. \(T_1(0) = 1 \ (k \in \mathbb{N}) \).

Пусть \(T \in T \). Партию \((\alpha, n) \) называем \(T \)-партией, если при \(\alpha(t)n(t) > 0 \) выполняется неравенство
\[
t \leq T_n(t)(\alpha(t)),
\]
причем в тех точках, которые являются моментами действия, неравенство выполняется как равенство.

Каждая последовательность \(T \in T \) определяет множество \(T \)-партий, отличающихся тем, кто из игроков использует ресурс в момент действия, предписываемый последовательностью \(T \) (возможны и одновременные действия игроков). Простейшими \(T \)-партиями называем \(T \)-партии \((\alpha_j, n_j) \ (j = 1, 2) \), в которых \(j \)-й игрок приступает к использованию своего ресурса после того, как ресурс противника исчерпался. Функции расхода ресурса, составляющие простейшие \(T \)-партии, имеют следующий вид:

\[
\alpha_1(t) = \begin{cases}
 a, & \text{при } t \in [0, T_1(a)]; \\
 \text{обеспечивает расходимость } & \int_{T_1(a)}^{1} \ln(1 - P_1(t)) \, d\alpha_1(t),
\end{cases}
\]

\[
\alpha_2(t) = \begin{cases}
 a, & \text{при } t \in [0, T_m(a)]; \\
 T_m^{-1}(t), & \text{при } t \in (T_m(a), 1],
\end{cases}
\]

\[
n_1(t) = \begin{cases}
 m, & \text{при } t \in [0, T_m(a)]; \\
 i, & \text{при } t \in (T_{i+1}(a), T_i(a)], 1 \leq i \leq m - 1; \\
 0, & \text{при } t \in (T_1(a), 1],
\end{cases}
\]

\[
n_2(t) = m, \text{ при } t \in [0, 1] \ (\eta_1 = \eta_2 = \cdots = \eta_m = 1).
\]
Лемма 1. Пусть $T \in T$. Значения платежной функции во всех T-партиях дуэли $G_{am}(P, A)$ совпадают в том и только том случае, когда выполнено равенство

$$
\exp \left(\int_0^a \ln(1 - P_1(T_k(\alpha))) d\alpha \right) + \prod_{i=1}^k (1 - P_2(T_i(x))) = 1
$$

при любых $0 < x \leq a$, $1 \leq k \leq m$.

При этом общее значение платежной функции во всех T-партиях игры равно

$$
v_m(a) = A_1 - (A_1 + A_2) \exp \left(\int_0^a \ln(1 - P_1(T_m(\alpha))) d\alpha \right) = (A_1 + A_2) \prod_{i=1}^m (1 - P_2(T_i(a))) - A_2.
$$

Доказательство. Необходимость. Пусть $T \in T$ и значения платежной функции во всех T-партиях дуэли $G_{am}(P, A)$ совпадают. Зафиксируем x ($0 < x \leq a$), k ($1 \leq k \leq m$) и положим $t^* = T_k(x)$. Обозначим через $(\bar{\alpha}_j, \bar{n}_j)$ ($j = 1, 2$) простейшие T-партии игры $G_{zk}(P, A)$ и рассмотрим две T-партии (α_j, n_j) ($j = 1, 2$) игры $G_{am}(P, A)$, удовлетворяющие следующим условиям:

$$
\alpha_1(t) = \alpha_2(t); \ n_1(t) = n_2(t) \text{ при } t \in [0, t^*);
$$

$$
\alpha_j(t^*) = x; \ n_j(t^*) = k, \ j = 1, 2;
$$

$$
\alpha_j(t) = \bar{\alpha}_j(t); \ n_j(t) = \bar{n}_j(t) \text{ при } t \in (t^*, 1], \ j = 1, 2.
$$

Обозначим $\bar{\eta}^j$ — векторы моментов действия снайпера в партиях $(\bar{\alpha}_j, \bar{n}_j)$ игры $G_{zk}(P, A)$ при $j = 1, 2$. Вычислим значения платежной функции в этих партиях:

$$
K(\bar{\alpha}_1, \bar{n}_1) = -A_2 \left(1 - \prod_{i=1}^k (1 - P_2(T_i(x))) \right) + A_1 \prod_{i=1}^k (1 - P_2(T_i(x))) =
$$

$$
= (A_1 + A_2) \prod_{i=1}^k (1 - P_2(T_i(x))) - A_2;
$$

$$
K(\bar{\alpha}_2, \bar{n}_2) = A_1 \left(1 - \exp \left(\int_0^a \ln(1 - P_1(T_k(\alpha))) d\alpha \right) \right) -
$$

$$
- A_2 \exp \left(\int_0^a \ln(1 - P_1(T_k(\alpha))) d\alpha \right) =
$$

$$
= A_1 - (A_1 + A_2) \exp \left(\int_0^a \ln(1 - P_1(T_k(\alpha))) d\alpha \right).
$$
По условию теоремы значения платежной функции игры \(G_{am}(P, A) \) в партиях \((\alpha_1, n_1)\) и \((\alpha_2, n_2)\) совпадают. Поэтому из условий (12)–(14) следует равенство значений платежной функции игры \(G_{xk}(P, A) \) в партиях \((\overline{\alpha}_1, \overline{n}_1)\) и \((\overline{\alpha}_2, \overline{n}_2)\). Приравнивая (15) и (16), получим (10).

Достаточность. Пусть \(T \in T \), равенство (10) выполнено при всех \(0 < x \leq a, 1 \leq k \leq m \) и \((\alpha, n)\) — произвольная \(T \)-партия. Покажем, что \(K(\alpha, n) = v_m(a) \). Доказательство проведем индукцией по числу единиц ресурса снайпера. При \(m = 0 \) утверждение леммы выполнено, так как \(K = A_1 \). Предположим, что равенство выполнено при \(n \leq k - 1 \) и докажем его для \(n = k \). Пусть \(\eta \) — вектор моментов действия снайпера в партии \((\alpha, n)\). Положим

\[
\alpha_k = \alpha(\eta_k), \quad \alpha^k(t) = \min\{\alpha_k, \alpha(t)\}.
\]

Тогда

\[
K(\alpha, \eta_1, \ldots, \eta_k) = A_1 \varphi(\alpha, 0, \eta_k) - A_2 P_2(\eta_k) (1 - \varphi(\alpha, 0, \eta_k)) + (1 - P_2(\eta_k)) (1 - \varphi(\alpha, 0, \eta_k)) K(\alpha^k, \eta_1, \ldots, \eta_{k-1}),
\]

где \(\varphi(\alpha, 0, \eta_k) \) — вероятность того, что пулеметчик достиг успеха на промежутке \([0, \eta_k]\). Согласно формуле (3) имеем:

\[
\varphi(\alpha, 0, \eta_k) = 1 - \exp \left(\int_{\alpha_k}^{\alpha} \ln(1 - P_1(T_k(\alpha))) \, d\alpha \right).
\]

По индукционному предположению

\[
K(\alpha^k, \eta_1, \ldots, \eta_{k-1}) = (A_1 + A_2) \prod_{i=1}^{k-1} (1 - P_2(T_i(\alpha_k))) - A_2.
\]

Подставляя (18) и (19) в (17), получаем

\[
K(\alpha, \eta_1, \ldots, \eta_k) = A_1 +\]

\[
+ (A_1 + A_2) \exp \left(\int_{\alpha_k}^{\alpha} \ln(1 - P_1(T_k(\alpha))) \, d\alpha \right) \left(\prod_{i=1}^{k} (1 - P_2(T_i(\alpha_k))) - 1 \right).
\]

В силу (10) имеем:

\[
1 - \prod_{i=1}^{k} (1 - P_2(T_i(\alpha_k))) = \exp \int_{0}^{\alpha_k} \ln(1 - P_1(T_k(\alpha))) \, d\alpha.
\]

6
Из (20) с учетом (21) окончательно получаем:

\[K(\alpha, \eta_1, \ldots, \eta_k) = A_1 - (A_1 + A_2) \exp \int_0^\alpha \ln(1 - P_1(T_k(\alpha))) \, d\alpha = v_k(\alpha). \]

Утверждение леммы по индукции доказано. \(\square \)

Пусть \(\{T_k(x)\} \in T \). \(T \)-стратегией игроков назовем стратегию вида

\[\xi_T(t) = \begin{cases} 0, & t < T_n(\alpha), \\ -1/T_n'(\alpha), & t = T_n(\alpha); \end{cases} \quad \eta_T = T_n(\alpha), \]

где \(\alpha, n \) — ресурсы игроков, оставшиеся к моменту \(t \).

Теорема 2. Если последовательность \(\{T_k(x)\} \in T \) удовлетворяет соотношению (10) при всех \(0 < x \leq a, \ 1 \leq k \leq m \), то пара \(T \)-стратегий образует ситуацию равновесия игры \(G_{am}(P, A) \). Цену игры вычисляет по формуле (11).

Доказательство. Пусть \(\eta \) — произвольный вектор моментов действия снайпера. Предположим, что пулеметчик действует в соответствии с \(T \)-стратегией. Его функция расхода ресурса, соответствующая \(\eta \) при \(T \)-стратегии имеет вид:

\[\alpha_T(t) = \begin{cases} \alpha_{k+1}^T, & t \in (\eta_{k+1}, T_k(\alpha_{k+1})), \\ \alpha_k^T(t), & t \in [T_k(\alpha_{k+1}), \eta_k], \text{ если } \eta_k > T_k(\alpha_{k+1}), \end{cases} \]

где \(\alpha_k^T(t) \) — функция, определенная на отрезке \([T_k(\alpha_{k+1}), 1] \) и обратная к \(T_k(x) \), продолженная на отрезок \([0, T_k(\alpha_{k+1})] \) как константа \(\alpha_{k+1}^T, \alpha_k = \alpha_k^T(\eta_k) \ (k = 1, 2, \ldots, m), \eta_{m+1} = 0, \alpha_{m+1} = a \).

Покажем, что если \(T_k(x) \) удовлетворяет (10) при всех \(0 < x \leq a, \ 1 \leq k \leq m \), то выполняется неравенство

\[K(\alpha_T; \eta) \geq v_m(a). \]

Прежде всего отметим, что при использовании пулеметчиком \(T \)-стратегии неравенство \(\eta_k > T_k(\alpha_k) \) невозможно, так как, начиная с момента \(T_k(\alpha_{k+1}) \), пулеметчик начинает расходовать ресурс в соответствии с функцией \(\alpha_k^T(t) \), обеспечивающей равенство \(t = T_k(\alpha_T(t)) \), и, в результате этого, очередной момент действия снайпера, предписывающий \(T \)-страгени, отодвигается.
Если при всех $1 \leq k \leq m$ $\eta_k = T_k(\alpha)$, то реализуется простейшая T-партия (6) и, согласно лемме 1 выполняется равенство $K(\alpha^T; \eta) = v_m(a)$.

Если снайпер расходует ресурс, не дожидаясь наступления момента действия $T_k(\alpha^T(t))$, то найдутся два таких номера k и l ($1 \leq l \leq k \leq m$), что

$$\eta_i = T_i(\alpha_i) \text{ при } k + 1 \leq i \leq m; \quad \eta_{l-1} = T_{l-1}(\alpha_{l-1}); \quad (23)$$

$$\eta_i < T_i(\alpha_i) \text{ при } l \leq i \leq k. \quad (24)$$

Тогда по определению T-стратегию ресурс пулеметчика на промежутке $(\eta_{k+1}, T_l(\alpha_{k+1}))$ не расходуется: $\alpha^T(t) = \alpha_{k+1}$. Определим вектор η^l следующим образом:

$$\eta^l_i = \begin{cases}
\eta_i, & i = 1, 2, \ldots, l-1, k+1, k+2, \ldots, m; \\
T_i(\alpha_{k+1}), & i = l, l+1, \ldots, k.
\end{cases}$$

Вычислим $K(\alpha^T; \eta)$ и $K(\alpha^T; \eta^l)$, представив платежную функцию в виде суммы трех слагаемых, соответствующих промежуткам $[0, \eta_k)$, $[\eta_k, T_l(\alpha_{k+1}))$, $[T_l(\alpha_{k+1}), 1]$. Получим:

$$K(\alpha^T, \eta) = K_{[0, \eta_k)} - A_2 \Psi(\eta_k) + \Psi(\eta_k) \prod_{i=l}^k q(\eta_i)(A_2 + K_{[T_l, 1]}); \quad (25)$$

$$K(\alpha^T, \eta^l) = K_{[0, \eta_k)} - A_2 \Psi(\eta_k) + \Psi(\eta_k) \prod_{i=l}^k q(T_i(\alpha_{k+1}))(A_2 + K_{[T_l, 1]}), \quad (26)$$

где $K_{[0, \eta_k)}$ и $K_{[T_l, 1]}$ — математические ожидания выигрыша первого игрока на промежутках $[0, \eta_k)$ и $[T_l(\alpha_{k+1}), 1]$ при функции расхода ресурса пулеметчика α^T и векторе η моментов действия снайпера, а $\Psi(\eta_k)$ — вероятность того, что при указанных функции расхода ресурса пулеметчика и векторе моментов действия снайпера игроки не достигли успеха к моменту η_k. Поскольку функция $q(t)$ убывает, то сравнивая (25) с (26) и учитывая (23), (24), получаем неравенство

$$K(\alpha^T, \eta) \geq K(\alpha^T, \eta^l).$$

Повторяя описанную процедуру, построим r векторов $\eta^1, \eta^2, \ldots, \eta^r$ ($r < m$) таких, что

$$K(\alpha^T, \eta) \geq K(\alpha^T, \eta^1) \geq K(\alpha^T, \eta^2) \geq \ldots \geq K(\alpha^T, \eta^r)$$

и $\eta^r_i = T_i(\alpha_i)$ при всех $1 \leq i \leq m$.

8
По лемме \[K(\alpha^T; \eta^T) = v_m(a) \] и, следовательно, \(K(\alpha^T; \eta) \geq v_m(a) \).

Пусть теперь \(\alpha(t) \) — произвольная функция расхода ресурса пулеметчика, а \(\eta^T \) — реализация вектора моментов действия снайпера, соответствующая \(\alpha(t) \) при \(T \)-стратегии. Покажем, что \(K(\alpha; \eta^T) \leq v_m(a) \).

Обозначим через \(\alpha^T \) реализацию функции расхода ресурса пулеметчика, соответствующую \(\eta^T \) при \(T \)-стратегии (\(\alpha^T \) находится по формуле (22)). Если при всех \(t \in [0, 1] \) таких, что \(\alpha(t)n(t) > 0 \), функция \(\alpha(t) \) совпадает с \(\alpha^T(t) \), то реализуется \(T \)-партия, и в силу леммы \[K(\alpha; \eta^T) = v_m(a) \]. В противном случае найдется \(t_* \in [0, 1] \) такое, что \(\alpha(t_*) = \alpha^T(t_*) \) и для некоторого \(\varepsilon > 0 \) при всех \(t \in (t_*, t_* + \varepsilon) \) выполнено неравенство \(\alpha(t) < \alpha^T(t) \). Противоположное неравенство невозможно, поскольку снайпер использует \(T \)-стратегию. Положим

\[t^* = \sup \{ t : \alpha(t') < \alpha^T(t') \text{ при всех } t' \in (t_*, t) \}. \]

На отрезке \([0, 1] \) содержится не более, чем счетное множество отрезков вида \([t_*, t^*] \). Перенумеруем их, и пусть \([t_1, t'_1] \) — первый такой отрезок. Определим \(\alpha_1(t) \) следующим образом:

\[\alpha_1(t) = \begin{cases} \alpha^T(t), & \text{при } t \in (t_1, t'_1); \\ \alpha(t), & \text{при } t \notin (t_1, t'_1). \end{cases} \]

Пусть \(t_1 \in [\eta^T_k, \eta^T_{k-1}] \), тогда по определению \(T \)-стратегии снайпера \(t'_1 \in [\eta^T_k, \eta^T_{k-1}] \). Вычислим \(K(\alpha; \eta^T) \) и \(K(\alpha_1; \eta^T) \), представив платежную функцию в виде суммы трех слагаемых, соответствующих промежуткам \([0, t_1), \ [t_1, t'_1), \ [t'_1, 1] \). Получим:

\[K(\alpha, \eta^T) = K_{[0, t_1)} + A_1 \Psi(t_1) - \Psi(t_1)(A_1 - K_{[t'_1, 1]}) \exp \int_{t_1}^{t'_1} \mu(t) \, d\alpha(t); \quad (27) \]

\[K(\alpha_1, \eta^T) = K_{[0, t_1)} + A_1 \Psi(t_1) - \Psi(t_1)(A_1 - K_{[t'_1, 1]}) \exp \int_{t_1}^{t'_1} \mu(t) \, d\alpha^T(t); \quad (28) \]

где \(K_{[0, t_1)} \) и \(K_{[t'_1, 1]} \) — математические ожидания выигрыша первого игрока на промежутках \([0, t_1) \) и \([t'_1, 1] \) при функции расхода ресурса пулеметчика \(\alpha(t) \) и векторе \(\eta^T \) момента действия снайпера, \(\Psi(t_1) \) — вероятность того, что при указанных функция расхода ресурса пулеметчика и векторе моментов действия снайпера игроки не достигли успеха к мо
менту t_1, $\mu(t) = -\ln p(t)$. Заметим, что

$$
\int_{t_1}^{t_1'} \mu(t) \, d\alpha(t) > \int_{t_1}^{t_1'} \mu(t) \, d\alpha^T(t)
$$

(29)

Действительно, интегрируя по частям, получим

$$
\int_{t_1}^{t_1'} \mu(t) \, d\alpha(t) = \mu(t_1') \int_{t_1}^{t_1'} d\alpha(t) - \int_{t_1}^{t_1'} \left(\int_{t_1}^{t} d\alpha(\tau) \right) d\mu_1(t), \quad (30)
$$

$$
\int_{t_1}^{t_1'} \mu(t) \, d\alpha^T(t) = \mu(t_1') \int_{t_1}^{t_1'} d\alpha^T(t) - \int_{t_1}^{t_1'} \left(\int_{t_1}^{t} d\alpha^T(\tau) \right) d\mu_1(t). \quad (31)
$$

По построению отрезка $[t_1, t_1']$, при всех $t \in [t_1, t_1']$ выполняется неравенство

$$
\int_{t_1}^{t} d\alpha(\tau) \leq \int_{t_1}^{t} d\alpha^T(\tau),
$$

(32)

причем равенство достигается только при $t = t_1'$. Из (30) и (31) в силу (32) вытекает (29). Сравнивая $K(\alpha; \eta^T)$ с $K(\alpha_1; \eta^T)$ (формулы (27), (28)) и учитывая (29), получаем, что

$$
K(\alpha, \eta^T) \leq K(\alpha_1, \eta^T).
$$

Повторяя описанную процедуру, строим последовательность функций α_k такую, что

$$
K(\alpha_k, \eta^T) \leq K(\alpha_{k+1}, \eta^T), \quad k \in \mathbb{N}.
$$

Таким образом,

$$
K(\alpha, \eta^T) \leq K(\alpha_k, \eta^T), \quad \text{при каждом } k \in \mathbb{N}. \quad (33)
$$

Положим $\alpha^*(t) = \lim_{k \to \infty} \alpha_k(t)$. Переходя к пределу при $k \to \infty$ в неравенстве (33) в силу 1-й теоремы Хелли [9] заключаем, что

$$
K(\alpha, \eta^T) \leq K(\alpha^*, \eta^T).
$$

Поскольку $\alpha^*(t) = \alpha^T(t)$ при всех $t \in \{ t : n(t) > 0 \}$, то согласно лемме [1] $K(\alpha^*; \eta^T) = v_m(a)$ и, следовательно, $K(\alpha; \eta^T) \leq v_m(a)$. \hfill \Box
Следствие 3. Если функция $P_2(t)$ строго возрастает на отрезке $[0, 1]$, то существует не более одной последовательности $\{T_k(x)\} \in T$, удовлетворяющей (10) при всех $x \geq 0$, $k \in \mathbb{N}$.

Доказательство. Предположим, существуют две последовательности $T^1, T^2 \in T$, удовлетворяющие (10) при всех $x \geq 0$, $k \in \mathbb{N}$. Пусть

$$l = \min\{k : T^1_k \neq T^2_k\} \quad \text{и} \quad T^1_k(a) \neq T^2_k(a), \quad a > 0.$$ \hspace{1cm} (34)

В силу теоремы 2 игра $G_{al}(P, A)$ имеет цену, равную значению платежной функции в T^1- и T^2-партиях, т. е. выполнено равенство

$$(A_1 + A_2) \prod_{i=1}^{l} (1 - P_2(T^1_i(a))) - A_2 = (A_1 + A_2) \prod_{i=1}^{l} (1 - P_2(T^2_i(a))) - A_2.$$ \hspace{1cm} (35)

Но по определению l при всех $i < l$ выполнено равенство $T^1_i(a) = T^2_i(a)$, поэтому из (35) с учетом строгой монотонности функции $P_2(t)$ заключаем, что $T^1_k(a) = T^2_k(a)$. Полученное противоречие доказывает единственность последовательности $\{T_k(x)\}$. \hspace{1cm} \square

Пусть последовательность $\{T_k(x)\} \in T$ удовлетворяет соотношению (10) при всех $a \geq 0$ и $k \in \mathbb{N}$. Введем обозначения:

$$\pi_0(x) = 1; \quad \pi_k(x) = q(T_k(x))\pi_{k-1}(x) \quad (k \in \mathbb{N}).$$ \hspace{1cm} (36)

Тогда

$$\exp\left(\int_0^x \ln(p(T_k(\alpha))) \, d\alpha\right) = 1 - \pi_k(x)$$ \hspace{1cm} (37)

Дифференцируя (37) по x, получим

$$\ln(p(T_k(x))) = -\frac{\pi_k'(x)}{1 - \pi_k(x)}$$ \hspace{1cm} (38)

Напишем рекуррентную формулу для $\pi_k'(x)$:

$$\pi_k'(x) = q'(T_k(x))T_k'(x)\pi_{k-1}(x) + q(T_k(x))\pi_{k-1}'(x).$$ \hspace{1cm} (39)

Из (38) и (39) следует, что последовательность $\{T_k(x)\}$ удовлетворяет системе обыкновенных дифференциальных уравнений

$$\frac{dT_k}{dx} = \phi(T_1, T_2, \ldots, T_k), \quad x \geq 0; \quad k \in \mathbb{N},$$ \hspace{1cm} (40)
где

\[
\phi(T_1, T_2, \ldots, T_k) = \\
= - \left(1 - \prod_{i=1}^{k} q(T_i) \right) \ln p(T_k) - q(T_k) \left(1 - \prod_{i=1}^{k-1} q(T_i) \right) \ln p(T_{k-1}) \\
- q'(T_k) \prod_{i=1}^{k-1} q(T_i)
\]

Лемма 4. Пусть \(p(t) \), \(q(t) \) непрерывно дифференцируемы на \((0, 1] \), \(p(0) = q(0) = 1; p(1) = q(1) = 0; p(t) > 0 \) при \(t < 1; p'(t) \leq 0; q'(t) < 0 \). Тогда система обыкновенных дифференциальных уравнений с начальными условиями

\[T_k(0) = 1 \quad (k \in \mathbb{N}) \] (41)

имеет решение на полупрямой \(x > 0 \), причем \(\{T_k(x)\} \in T \).

Доказательство. Доказательство проведем по индукции. Первое уравнение системы (10) имеет вид:

\[
\frac{dT_1}{dx} = - \frac{(1 - q(T_1)) \ln p(T_1)}{q'(T_1)}.
\] (42)

Интегрируем (12) с начальным условием \(T_1(0) = 1 \). Получаем

\[
x(T_1) = \int_{T_1}^{1} \frac{q'(\tau) d\tau}{(1 - q(\tau)) \ln p(\tau)}.
\] (43)

Функция \(T_1(x) \) является обратной к \(x(T_1) \). Проверим, что она удовлетворяет условиям 1–4.

Покажем, что \(T_1(x) \) определена на полупрямой \([0, +\infty) \). Выберем \(\delta > 0 \) такое, что \(-\ln p(\delta) < 1 \). Тогда

\[
x(t) \geq \int_{t}^{\delta} \frac{(1 - q(\tau))' d\tau}{(1 - q(\tau))} + x(\delta) = \ln(1 - q(\delta)) - \ln(1 - q(t)) + x(\delta).
\]

Поскольку правая часть неравенства стремится к \(+\infty\) при \(t \to +0 \), то при \(x \to +\infty \) \(T_1 \to +0 \) и, следовательно, функция \(T_1(x) \) определена при всех \(x > 0 \) и, согласно начальному условию, \(T_1(0) = 1 \).
В силу (42) $T_i'(x) < 0$. Таким образом, $T_i(x)$ убывает от 1 при $x = 0$ к 0 при $x \to +\infty$. Следовательно, $0 < T_i(x) \leq 1$.

Предположим, что при $1 \leq i \leq k - 1$ решения $T_i(x)$ системы (40), (41) существуют и удовлетворяют условиям 1–4. Подставив их в k-е уравнение системы (40), получим

$$\frac{dT_k}{dx} = \Phi_k(T_k, x),$$

где

$$\Phi_k(t, x) = \phi_k(T_1(x), T_2(x), \ldots, T_{k-1}(x), t).$$

Покажем, что уравнение (44) с начальным условием

$$T_k(0) = 1$$

имеет решение $T_k(x)$ и для него выполняются условия монотонности

$$T_k'(x) < 0, \quad T_k(x) < T_{k-1}(x) \quad \text{при всех } x > 0.$$ (47)

Заметим, что при всех $x > 0$ справедливо неравенство:

$$\Phi_k(T_{k-1}(x), x) \leq \frac{T_{k-1}'(x)}{q(T_{k-1}(x))} < T_{k-1}'(x) < 0.$$ (48)

Действительно,

$$\Phi_k(T_{k-1}(x), x) = -\left(1 - q(T_{k-1}(x))\right)\ln p(T_{k-1}(x)) \frac{q(T_{k-1}(x))}{q'(T_{k-1}(x)) \pi_{k-1}(x)},$$

где $\pi_k(x)$ — функции, определенные формулами (36). С другой стороны, по предположению индукции

$$T_{k-1}(x) < T_{k-2}(x),$$

поэтому из (40) вытекает неравенство

$$T_{k-1}'(x) \geq -\left(1 - q(T_{k-1}(x))\right)\ln p(T_{k-1}(x)) \frac{q(T_{k-1}(x))}{q'(T_{k-1}(x)) \pi_{k-2}(x)}.$$ (50)

Сравнивая (49) и (50), получаем (48). Обозначим числитель дроби, стоящей в правой части уравнения (40) $F_k(t, x)$, т. е.

$$F_k(t, x) = (1 - \pi_{k-1}(x) q(t)) \ln p(t) - (1 - \pi_{k-1}(x)) q(t) \ln p(T_{k-1}(x)).$$

Покажем, что уравнение

$$F_k(t, x) = 0, \quad x > 0,$$ (51)

задает неявную функцию $t = f_k(x)$, обладающую следующими свойствами:
1) функция $f_k(x)$ ($k \in \mathbb{N}$) определена и непрерывно дифференцируема на полупрямой $(0, +\infty)$;

2) $f_k(x) \to 1$ при $x \to +0$;

3) $f'_k(x) < 0$ ($x > 0$);

4) $f_k(x) < T_{k-1}(x)$ ($x > 0$, $k \geq 2$).

Из (48) вытекает, что

$$F_k(T_{k-1}(x), x) < 0 \text{ при всех } x > 0.$$

С другой стороны, для любого $x > 0$

$$\lim_{t \to +0} F_k(t, x) = -(1 - \pi_{k-1}(x)) \ln p(T_{k-1}(x)) > 0.$$

Таким образом, при любом $x > 0$ уравнение (51) имеет корень

$$t = f_k(x) \in (0, T_{k-1}(x)).$$

Для доказательства единственности корня проверим, что

$$\frac{\partial F_k}{\partial t} > 0 \text{ при всех } x > 0, t \in (0, 1).$$

Действительно,

$$\frac{\partial F_k}{\partial t} = \frac{p'(t)}{p(t)}(1 - \pi_{k-1}(x)q(t)) - q'(t)\pi_{k-1}(x) \ln p(t) -$$

$$- q'(t)\pi_{k-1}(x) \ln p(T_{k-1}(x)) < 0.$$

Из теоремы о неявной функции следует, что уравнение (51) определяет неявную функцию $t = f_k(x)$, дифференцируемую на полуси $x > 0$. Покажем, что $f'_k(x) < 0$. Поскольку по доказанному $F'_k(t) < 0$, то, в силу соотношения

$$(f_k)'_x = -\frac{(F_k)'_t}{(F_k)'_x},$$

dостаточно установить, что

$$(F_k)'_x < 0 \text{ при всех } x > 0, t < T_{k-1}(x).$$

Учитывая, что в силу (38)

$$\pi'_{k-1}(x) = -(1 - \pi_{k-1}(x)) \ln p(T_{k-1}(x)),$$
имеем

\[
(F_k)_x' = -(1 - \pi_{k-1}(x)) \ln(p(T_{k-1}(x))) (\ln p(t) - \ln(p(T_{k-1}(x))) -
- \frac{p'(T_{k-1}(x))}{p(T_{k-1}(x))} T_{k-1}'(x)(1 - \pi_{k-1}(x))q(t).
\]

Поскольку \(t < T_{k-1}(x) \) и \(T_{k-1}'(x) < 0 \), то \((F_k)_x' < 0\).

Покажем теперь, что \(f_k(x) \rightarrow 1 \) при \(x \rightarrow +0 \). По доказанному \(f_k(x) \)
монотонно убывает на полуоси \(x > 0 \). Учитывая, что

\[f_k(x) < T_{k-1}(x) < 1, \]

заключаем, что существует предел \(f_k(x) \) при \(x \rightarrow +0 \) и

\[\lim_{x \rightarrow +0} f_k(x) = c \leq 1. \]

Предположим, что \(c < 1 \). Подставляя \(t = f_k(x) \) в (51), получаем:

\[
(1 - \pi_{k-1}(x))q(f_k(x)) \ln p(f_k(x)) = (1 - \pi_{k-1}(x))q(f_k(x)) \ln p(T_{k-1}(x)),
\]

При \(x \rightarrow +0 \) правая часть равенства (52) стремится к \(-\infty \), а предел левой части равен \(\ln p(c) > -\infty \). Из полученного противоречия следует, что

\[\lim_{x \rightarrow +0} f_k(x) = 1. \]

Перейдем к построению функции \(T_k(x) \). Сопоставим каждому \(a > 0 \) решения \(y_a(x) \) и \(z_a(x) \) уравнения (44) на полуоси \(x \geq a \), удовлетворяющие начальным условиям

\[y_a(a) = T_{k-1}(a); \quad z_a(a) = f_k(a). \]

Для этого уравнения в области \(x > 0 \), \(0 < t < 1 \) выполнены условия теоремы существования и единственности решения. В силу неравенств (48) и \(f_{k-1}'(x) < 0 \), кривые \(y_a(x) \) и \(z_a(x) \) при \(x > a \) лежат между кривыми

\[t = f_k(x) \quad \text{и} \quad t = T_{k-1}(x). \]

Возьмем \(c > 0 \) и положим \(\inf_{a>0} y_a(c) = b \). Пусть \(\bar{y}(x) \) — решение уравнения (44), удовлетворяющее начальному условию \(\bar{y}(c) = b \). В силу теоремы единственности интегральная кривая \(\bar{y}(x) \) при любом \(a > 0 \) лежит строго между кривыми \(y_a(x) \) и \(z_a(x) \) при всех \(x > 0 \). Отсюда следует, что \(\bar{y}(x) \) можно продолжить на полуось \(x \geq 0 \), причем \(\bar{y}(0) = 1 \) и

\[f_k(x) < \bar{y}(x) < T_{k-1}(x) \text{ при всех } x > 0. \]
Поскольку $F_k(t, x)$ убывает по t при каждом $x > 0$, то

$$F_k(\tilde{y}(x), x) < F_k(f_k(x), x) = 0$$

и, следовательно, $\tilde{y}'(x) < 0$. Таким образом, $\tilde{y}(x)$ удовлетворяет всем условиям, наложенным на функцию $T_k(x)$ и, следовательно, существование этой функции доказано. Полагаем $T_k(x) = \tilde{y}(x)$. □

Лемма 5. Пусть $p(t), q(t)$ непрерывно дифференцируемы на $(0, 1]$, $p(0) = q(0) = 1; p(1) = q(1) = 1; p(t) > 0$ при $t < 1; p'(t) \leq 0; q'(t) < 0$. Тогда решение системы дифференциальных уравнений (10), (11) является единственным.

Доказательство. Доказательство проведем по индукции. При $k = 1$ функция $T_1(x)$ есть обратная к $x(T_1)$, однозначно определяемой формулой (13). Предположим, что при $1 \leq i < k-1$ система (10), (11) имеет единственное решение $T_i(x)$. Докажем, что задача (11), (16) имеет единственное решение. Пусть $T_k(x) = $ решение этой задачи, построенное в лемме 4, а $y(x) -$ произвольное решение этой задачи. Докажем, что

$$y(x) \equiv T_k(x).$$

Рассмотрим 2 случая.

1. Интегральная кривая $y(x)$ уравнения (11) при всех $x > 0$ лежит строго между графиками функций

$$y = f_k(x) \text{ и } y = T_{k-1}(x).$$

Тогда, по доказанному, $y(x)$ удовлетворяет условиям (16), (17) и, в силу следствия 3,

$$y(x) \equiv T_k(x).$$

2. При некотором $x > 0$ одно из неравенств

$$f_k(x) < y(x) < T_{k-1}(x)$$

нарушается. Покажем, что в этом случае кривая $y(x)$ не проходит через точку $(0, 1)$, т. е. в этом случае начальное условие (16) не выполняется.

а) Пусть существует $x_0 > 0$ такое, что $y(x_0) < f_k(x_0)$. Тогда $y'(x) > 0$ при всех $x \in (0, x_0)$ и, следовательно, $y(x) < f_k(x_0)$ при всех $0 < x < x_0$, т. е. $y(0) < 1$. 16
б) Пусть существует \(x_1 > 0 \) такое, что \(y(x_1) > T_{k-1}(x_1) \). Тогда согласно неравенству (43) \(y(x) > T_{k-1}(x) \) при всех \(0 < x < x_1 \). Поскольку \(q'(t) \) непрерывна и \(q'(t) < 0 \) при \(t \in (0, 1] \), то существуют числа \(c_1 \) и \(c_2 \) такие, что

\[
c_1 \leq -q'(t) \leq c_2 \text{ при } t \in [T_{k-1}(x_1), 1].
\]

Из монотонного убывания функции \(F_k(t, x) \) по \(t \) и неравенства (43) следует, что при \(t > T_{k-1}(x) \)

\[
\Phi_k(t, x) = -\frac{F_k(t, x)}{q'(t)\pi_{k-1}(x)} < -\frac{F_k(T_{k-1}(x), x)}{q'(t)\pi_{k-1}(x)} < \frac{T_{k-1}'(x)q'(T_{k-1}(x))}{q'(t)q(T_{k-1}(x))}. \tag{53}
\]

Подберем такое \(\delta > 0 \), что \(q(T_{k-1}(\delta)) < c_1/c_2 \) и положим \(\delta_1 = \min(x_1, \delta) \). Тогда при \(x \in (0, \delta) \), \(t > T_{k-1}(x) \) имеет место неравенство

\[
\Phi_k(t, x) < T_{k-1}'(x),
\]

поэтому существует \(\varepsilon > 0 \) такое, что при \(x \in (0, \delta_1) \) выполняется неравенство \(y(x) - T_{k-1}(x) > \varepsilon \), откуда следует, что \(y(x) \) не проходит через точку \((0, 1)\).

Замечание 6. Пусть \(P_2(t) = t \), \(a \), \(y(x) \) и \(z(x) \) — решения уравнения (44) на полуоси \([a, +\infty)\) с начальными условиями \(y(a) = y_0, \ z(a) = z_0 \), причем

\[
f_k(a) \leq z_0 < y_0 \leq T_{k-1}(a).
\]

Тогда разность \(e(x) = y(x) - z(x) \) убывает по \(x \).

Доказательство. Рассмотрим производную разности:

\[
e'(x) = \Phi_k(y(x), x) - \Phi_k(z(x), x).
\]

Из соотношения

\[
(\Phi_k(t, x))' = \frac{(F_k(t, x))'}{\pi_{k-1}(x)},
\]

учитывая неравенство \((F_k)'t < 0\), установленное при доказательстве леммы [4] получаем, что \((\Phi_k)'t < 0\) при всех \(x > 0 \). Следовательно, \(\Phi_k(t, x) \) убывает по \(t \) при каждом \(x > 0 \). Поскольку \(y(x) > z(x) \), то \(e'(x) < 0 \) и, следовательно, разность \(y(x) - z(x) \) убывает по \(x \).

Из теоремы [2] и леммы [4] следует
Теорема 7. Если в шумной дуэли пулеметчика со снайпером функции меткости игроков $P_j(t)$ ($j = 1, 2$) непрерывно дифференцируемы на $(0, 1]$, $P_j(0) = 0$, $P_j(1) = 1$, $P_j(t) < 1$ при $t < 1$, $P'_1(t) > 0$, $P'_2(t) > 0$, то игра имеет ситуацию равновесия в чистых стратегиях. Цену и оптимальные стратегии игры имеют вид:

$$v_m(a) = (A_1 + A_2) \prod_{i=1}^{m} (1 - P_2(T_i(a)) - A_2);$$

$$\xi^T(t) = \begin{cases}
0, & t < T_n(\alpha), \\
-1/T'_n(\alpha), & t = T_n(\alpha);
\end{cases} \quad \eta^T = T_n(\alpha),$$

где α, n — ресурсы игроков, оставшиеся к моменту t, а $\{T_k(x)\}$ — решение системы уравнений (10), (11).

4 Выводы

1. Оптимальные стратегии ξ^T, η^T предписывают игрокам не использовать свои ресурсы до момента времени $T_m(a)$ (назовем его моментом начала расхода).

2. Момент начала расхода есть функция $T(\alpha, \beta)$ от текущих значений α и β ресурсов игроков, не зависит от хода игры до текущего момента и является общим для обоих игроков.

3. Чем больше ресурсы игроков, тем раньше наступает момент начала расхода, так как $T_k(x)$ убывает по x и k.

4. При оптимальном поведении в момент начала расхода один из игроков (или оба) начинают действовать.

5. Если в момент начала расхода 1-й игрок начинает действовать в соответствии с оптимальной функцией расхода, то он продолжает действовать вплоть до очередного момента действия снайпера и в течение всего этого времени выполняется равенство

$$t = T_m(t)(\alpha(t)) .$$

6. Если в момент начала расхода 2-й игрок действует, то его ресурс уменьшается на единицу и игроки прекращают действовать до момента начала расхода, соответствующего текущим значениям ресурсов.
7. Если пулеметчик придерживается оптимальной стратегии, то оптимальная стратегия снайпера предписывает ему действовать в любой момент, когда равенство выполняется (возможно, одновременно с пулеметчиком, прерывая его действия), или отложить свой действия до момента окончания игры \(t = 1 \), что не влияет на значение платежной функции.

8. Если один из игроков использует \(T \)-стратегию, то реализуется партия, удовлетворяющая условию \(t \leq T_{m(t)}(\alpha(t)) \) при всех \(t \in [0,1] \), таких что \(\alpha(t)m(t) > 0 \).

9. Если оба игрока действуют согласно \(T \)-стратегиям, то они расходуют ресурсы только в те моменты времени, когда выполнено равенство (56). При этом реализуется одна из \(T \)-партей. Во всех таких партиях платежная функция принимает постоянное значение.

Отметим, что последовательность функций \(T_k(x) \) есть непрерывный аналог бесконечной матрицы \(\{t_{mn}\} \ (m \in \mathbb{N}, n \in \mathbb{N}) \) «моментов наилучшего действия» шумной дуэли с дискретным расходом ресурса у обоих игроков [5].

5 Приложение. Численное решение игры

Мы будем рассматривать случай \(P_2(t) = t \), что не ограничивает общности. Действительно, пусть \(P_2(t) \neq t \), \(P_2'(t) > 0 \) и \(P_2(t) > 0 \) при \(t \in (0,1) \). Тогда сделаем замену переменных \(\tau = P_2(t) \) и будем решать игру \(G_{am}(\bar{P}, A) \), где \(\bar{P} = (P_1(P_2^{-1}(\tau)), \tau) \). Очевидно, цены игр \(G_{am}(P, A) \) и \(G_{am}(\bar{P}, A) \) совпадают, а оптимальные \(T \)-стратегии игры \(G_{am}(P, A) \) определяются последовательностью \(T_k(x) = P_2^{-1}(T_{k}(x)) \), где \(T_k(x) \) — решение задачи (40), (41) для игры \(G_{am}(\bar{P}, A) \).

В силу (42) \(T_k'(x) \to -\infty \) при \(x \to +0 \), поэтому из неравенств (47) и начальных условий (41) следует, что \(\lim_{x \to +0} T_k(x) = -\infty \) при всех \(k \in \mathbb{N} \).

Таким образом, система уравнений (41) имеет особенность в точке \(x = 0 \), и поэтому непосредственно решать задачу Коши для данной системы с начальными условиями в точке \(x = 0 \) невозможно. Для интегрирования системы (41) мы используем прием, описанный в доказательстве леммы [1], а именно: мы найдем решения \(y_k(x) \) и \(z_k(x) \) уравнения (41) на отрезке \([\delta_k, a]\) с начальными условиями

\[y_k(\delta_k) = T_{k-1}(\delta_k), \quad z_k(\delta_k) = f_k(\delta_k), \] (57)
где $\delta_k > 0$ — малое число, $f_k(x)$ — неявная функция, определяемая уравнением [61]. Кривые $y_k(x)$ и $z_k(x)$, которые мы будем называть соответственно k-м верхним и k-м нижним решениями, ограничивают искомую кривую сверху и снизу:

$$z_k(x) < T_k(x) < y_k(x).$$

В силу замечания, разность $y_k(x) - z_k(x)$ убывает по x и, следовательно, имеет место оценка:

$$\Delta_k = \max_{x \geq \delta_k} |y_k(x) - z_k(x)| = |y_k(\delta_k) - z_k(\delta_k)| = T_{k-1}(\delta_k) - f_k(\delta_k). \quad (58)$$

Из непрерывности функций $T_{k-1}(x)$, $f_k(x)$ и соотношения $T_{k-1}(0) = f_k(0) = 1$ вытекает, что $T_{k-1}(\delta_k) - f_k(\delta_k) \to 0$ при $\delta_k \to 0$.

Для нахождения функции $T_1(x)$ необходимо притабулировать функцию:

$$x(T_1) = -\int_{T_1}^{1} \frac{dt}{t \ln(1 - P_1(t))},$$

и найти обратную к ней. Использование табличных значений функции $T_1(x)$ в дальнейших вычислениях нежелательно, так как при вычислении $T_1(x)$ в окрестности точки $x = 0$ происходит потеря точности. Правая часть системы [10] явно от x не зависит, а зависит лишь от $T_k(x)$, поэтому замена переменных $u = T_1(x)$ позволяет решать последующие уравнения системы ($k \geq 2$), не используя $T_1(x)$. Полагая

$$\tilde{T}_k(u) = T_{k+1}(T_1^{-1}(u)), \quad k = 1, 2 \ldots, m - 1,$$

имеем

$$\tilde{T}'_k(u) = T'_{k+1}(x)/T'_1(x) \bigg|_{x = T_1^{-1}(u)}.$$

Поскольку $T'_1(x) \to -\infty$ при $x \to +0$, то переход к переменной $u = T_1(x)$ приводит к уменьшению абсолютных величин производных искомых функций, что положительно влияет на точность вычислений. Указанная замена переменных приводит к системе дифференциальных уравнений на отрезке $[T_1(a), 1]$:

$$\frac{d\tilde{T}_k}{du} = \frac{\tilde{\phi}_k(u, \tilde{T}_1, \tilde{T}_2, \ldots, \tilde{T}_k)}{u \ln p(u)}$$

с начальными условиями

$$\tilde{T}_k(1) = 1, \quad k = 1, 2 \ldots, m - 1.$$
Пусть первые \(k - 1 \) функций

\[
T_i(u), \quad i = 1, 2, \ldots, k - 1
\]

найдены. Тогда \(T_k(u) \) есть решение задачи

\[
\frac{dT_k}{du} = \Phi_k(T_k, u), \quad \Phi_k(t, u) = \frac{\phi_k(u, T_1, T_2, \ldots, T_{k-1}, t)}{u \ln p(u)}
\]

с начальным условием

\[
T_k(1) = 1.
\]

Начальные условия для верхних и нижних кривых после замены переменных прямут вид:

\[
\gamma_k(u_k) = \tilde{T}_{k-1}(u_k); \quad \tilde{z}_k(u_k) = \tilde{f}_k(u_k);
\]

\[
\tilde{T}_0(u_k) = u_k; \quad k = 1, 2, \ldots, n;
\]

где \(u_k = 1 - \delta_k, \delta_k > 0, \) а \(\tilde{f}_k(u_k) \) есть решение уравнения \(\Phi_k(t, u_k) = 0 \) относительно \(t \). Из (58) в силу строгой монотонности функции \(T_1(x) \) следует:

\[
\max_{u \in [T_1(u), u_k]} |\gamma_k(u) - \tilde{z}_k(u)| = \tilde{T}_{k-1}(u_k) - \tilde{f}_k(u_k) \to 0 \text{ при } u_k \to 1 - 0 \ (k \geq 1).
\]

Опишем кратко численный алгоритм решения игры. Назначение алгоритма: вычисление цены игры \(G_{ak}(P, A) \), где \(P(t) = (P_1(t), t) \), при \(k = 1, 2, \ldots, m \) и табулирование функций \(T_k(x) \) на отрезке \([a_0, a]\), \(a_0 > 0 \) с данными шагом \(h \). Работа алгоритма состоит из 2-х этапов.

1-й этап. Производится вычисление значений функции \(T_1(x) \) на отрезке \([a_0, a]\) с шагом \(h \) путем решения уравнения

\[
x(T_1) = a_0 + (i - 1)h; \quad i = 1, 2, \ldots, M_a, \quad M_a = \left[\frac{a - a_0}{h} \right] + 1,
\]

где \(x(t) \) — функция, определенная формулой

\[
x(t) = -\int_1^t \frac{d\tau}{\tau \ln p(\tau)}.
\]

2-й этап. Производится последовательное вычисление значений функции \(T_k(x) \) на отрезке \([a_0, a]\) с шагом \(h \) \((k = 2, \ldots, m) \). На \(k \)-м шаге алгоритма при табулировании функции \(T_k(x) \) производятся следующие вычисления:
1. Табулирование \(k \)-го верхнего решения \(\tilde{y}_k(u) \) уравнения (59) на отрезке \([T_1(a), u_0]\) \((u_0 < 1) \) с начальным условием \(\tilde{y}_k(u_0) = \tilde{T}_{k-1}(u_0) \).

2. Приближенное решение уравнения \(\Phi_k(t, u_0) = 0 \) относительно \(t \) на отрезке \([0, u_0]\). Найденный корень уравнения обозначим \(\tilde{f}_k \).

3. Табулирование \(k \)-го нижнего решения \(\tilde{z}_k(u) \) уравнения (59) на отрезке \([T_1(a), u_0]\) с начальным условием \(\tilde{z}_k(u_0) = \tilde{f}_k \).

4. Табулирование функции \(\tilde{T}_k(u) \) по формуле

\[
\tilde{T}_k(u) = (\tilde{y}_k(u) + \tilde{z}_k(u))/2
\]

на отрезке \([T_1(a), u^*] \), где

\[
u^* = \max\{u < u_0 : \tilde{y}_k(u) - \tilde{z}_k(u) < \varepsilon\},
\]

\(\varepsilon \) — заданная точность.

5. Возвращение к исходной переменной \(x \), табулирование функции \(T_k(x) \) на отрезке \([a_0, a]\).

6. Вычисление цены игры \(v_k(a) \) по формуле (54).

Список литературы

[1] Карлин С. Математические методы в теории игр, программировании и экономике. М.: Мир, 1964. — 838 с.

[2] G. Kimeldorf. Duels: an overview // Mathematics of conflict. North-Holland, 1983. P. 55–71.

[3] Давыдов Э. Г., Посидельская Л. Н. Шумные дуэли // Москва, Изд-во ВЦ АН СССР. — 1982. — 48 с. (препринт).

[4] Посидельская Л. Н. Об одной задаче распределения ресурсов // Динамика неоднородных систем. Москва, Изд-во ВНИИСИ. — 1983. — С. 260–266.

[5] M. Fox, G. S. Kimeldorf. Noisy duels // SIAM J. Appl. Math. vol. 17 — 1969. — P. 353–361.

[6] Посидельская Л. Н. Дуэль как модель конкуренции и катастрофы // Математика. Моделирование. Экология. Труды IV Международной конференции женщин-математиков. Том 4, вып. 1. Нижний Новгород, 1997. С. 111–119.
[7] Пономарева Л. Н. Бесшумная дуэль двух пулетчиков со ступенчатыми функциями меткости // Изв. АН СССР. Техн. кибернетика. №4 — 1982. — С. 190–194.

[8] J. P. Lang, G. S. Kimeldorf. Silent duels with nondiscrete firing // SIAM J. Appl. Math. vol. 31, — 1976. — С. 99–109.

[9] Кокорев А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1989. — 623 с.