Breast Feeding, Parity and Breast Cancer Subtypes in a Spanish Cohort

Carmen M. Redondo1*, Manuela Gago-Dominguez2*, Sara Miranda Ponte1, Manuel Enguix Castelo3, Xuejuan Jiang4, Ana Alonso García5, Maite Peña Fernández6, María Ausencia Tomé7, Máximo Fraga8, Francisco Gude9, Maria Elena Martínez10, Víctor Muñoz Garzón3, Ángel Carracedo2, J. Esteban Castelao1

Introduction

In the US, breast cancer impacts each racial group differently [1–4]. Compared with non-Hispanic White (NHW) women, Hispanic women have a lower incidence rate of breast cancer, however, once diagnosed with this disease they are more likely to die from it [5]. Studies [6,7] have found that despite equal access to health care services, differences persist in the presentation of Hispanic women with breast cancer compared with NHW women, suggesting a biologic basis for the racial/ethnic differences. The potential biological differences among breast cancers may result from racial/ethnic differences in genetic composition, lifestyles or environmental exposures [7].

It has been reported that women diagnosed with estrogen receptor-positive (ER+)/progesterone receptor-positive (PR+) tumors are more responsive to hormonal treatment and have a better prognosis than those diagnosed with estrogen receptor-negative (ER−)/progesterone receptor negative (PR−) tumors, suggesting etiologic heterogeneity of hormone-receptor defined subtypes of breast cancer [8,9]. Consistently, disparate risk factor profiles for breast cancer according to ER and PR status have been reported [1,10]. In general, Hispanic patients with breast cancer.
tend to have ER- tumors more disproportionately than NHW women although the difference was not as great as that seen between black and NHW women [11,12].

In this study, we describe the characteristics of breast cancer subtypes defined by ER, PR and HER2 receptor status and assessed the associations between reproductive factors and breastfeeding and tumor subtypes in a case series of female breast cancer patients from Galicia, a region located in the northwest part of Spain, whose history has been defined by mass emigration to Latin America [13]. Because this region has been the European state with one of the highest emigration to Latin America in the 1800s and 1900s, its population could be, at least partially, a contributor of the European ancestry to Hispanics in the US. In addition, the Galician population could provide a contrast group to Hispanics from regions in the U.S. such as the San Luis Valley, Colorado in the US, many of whom self-identify as being of “Spanish origin” [14].

To our knowledge, this is in one of the first studies to explore these relationships in this population.

Materials and Methods

Study Population

A population-based study, which is part of the Breast Oncology Galician Network (BREOGAN) Study, was conducted in the city of Vigo, Spain within a geographically defined health region that covers approximately 437,000 inhabitants. The study involved 510 women with operable invasive breast cancer diagnosed and treated between 1997 and 2010 at the Clinical University Hospital of Vigo (Vigo, Spain). Ethics approval for this study was obtained from the Galician Ethics and Research Committee (CEIC, Comité Ético de Investigación Clínica de Galicia) associated with the Complejo Hospitalario Universitario de Vigo from where all participants were recruited. Written informed consent was obtained for this study, which was conducted according to the Spanish law including adherence to the Helsinki Principles of 1975, as revised in 1983.

Data Collection

Risk factor information was collected through a risk factor questionnaire adapted from the Elisa Binational Breast Cancer Study [15]. Clinical and histopathological information was abstracted from computerized medical records by trained physicians. The following variables were recorded: lifetime breastfeeding (categorized as no breastfeeding, < mean lifetime breastfeeding duration (7 months), ≥ mean lifetime breastfeeding duration (7 months)), age at menarche (categorized as ≤13 years, 14 years, ≥15 years), age at first full-term pregnancy (categorized as ≤22 years, 23–27 years, ≥28 years), parity (categorized as never vs. ever pregnant), age at diagnosis (categorized when being the main variable of the analysis as <50 years, ≥50 years, otherwise treated as a continuous variable), age at menopause (categorized as <50 years, ≥50 years), menopausal status at diagnosis (categorized as pre, peri and postmenopausal), number of pregnancies (categorized as none, 1–2, ≥3), family history (categorized as none vs. one or more first degree relatives with breast and/or ovarian cancer), ER, PR and HER2 status (categorized as positive and negative), grade (categorized as I – well differentiated, II – moderately differentiated and III – poorly differentiated or undifferentiated), histology type (categorized as invasive ductal carcinoma, invasive lobular carcinoma and medullar carcinoma), and tumor size (categorized as ≤1 cm, >1 - <2 cm, ≥2 cm). Of the 510 women who participated in the study, 1 had unknown ER status, 8 had unknown PR status, 9 had unknown ER and PR status and 105 had unknown joint ER, PR and HER2 status. Thirty eight women had unknown grade, one had unknown histological type and 21 had unknown tumor size. Two women had unknown age at menarche and two (out of 423 parous women) had unknown lifetime breastfeeding.

Clinico-pathological data. Histopathological information was abstracted from computerized medical records by trained physicians. Immunohistochemistry (IHC) analyses on paraffin-embedded material have been previously performed following standard procedures in Galician hospitals to determine the status of ER and PR. In every tumor, 4-μm histological sections were cut and stained with hematoxylin and eosin for histopathological examination according to the criteria of the World Health Organization [16]. Histological grading was evaluated using the Nottingham modification of the Bloom-Richardson system [17]. IHC analysis on paraffin-embedded material was performed using a universal second antibody kit that used a peroxidase-conjugated labeleddextran polymer (EnVision®, Peroxidase/DAB, Dako, Glostrup, Denmark), with antibodies for ER (clone 6F11, dilution 1:50, water bath; Novocastra, Newcastle-upon- Tyne, UK), PR (clone PgR 636, dilution 1:50, water bath; Dako, Glostrup, Denmark). Negative and positive controls were concurrently run for all antibodies with satisfactory results. Cells were considered immunopositive when diffuse or dot-like nuclear staining was observed regardless of the intensity of the staining; only nuclear immunoreactivity was considered specific. The number of positive cells was counted by two different observers independently. Whenever necessary, a consensus was reached using a double-headed microscope. ER and PR were considered positive when the percent of immunostained nuclei was ≥10%.

Immunohistochemistry (IHC) analyses were performed to determine HER2 status (Dako). No immunostaining (0) or weak membrane immunostaining (1+) was considered low HER2 expression (HER2-). Strong membrane immunostaining (3+) was considered HER2 overexpression (HER2+). Moderate membrane staining (2+) samples were further analyzed using fluorescent in situ hybridization techniques; they were considered to be HER2+ if the ratio of c erb-B2/centromere 17 copy number was >2.0.

Statistical Analyses

We classified breast tumors according to their expression of ER (n = 509), PR (n = 502) and joint status of both ER and PR expression (n = 501). For patients with data available on ER, PR, and HER2 (n = 405 case patients), we defined four tumor subtypes (ER+/HER2- or PR+/HER2- [luminal A], ER+/HER2+ or PR+/HER2+ [luminal B], ER− or PR− or HER2+ [non-luminal], and ER− or PR− or HER2-[triple negative]), shown in Table 1). Case-case analysis was conducted. Multivariate logistic regression was used to estimate odds ratios (ORs), 95% confidence intervals (CIs), and P values for associations between the different risk factors and breast cancer subtypes while simultaneously controlling for age at diagnosis, age at menarche, age at first full-term pregnancy (only in analyses restricted to parous women), menopausal status at diagnosis and family history of first degree relatives with breast and/or ovarian cancer. Outcome (dependent) variables were breast cancer subtypes defined by ER, PR, and HER2 status, and explanatory variable was the risk factor being studied at the time. P values were calculated using likelihood ratio tests.

All statistical analyses were performed using the R statistical software (R_2.13.0). All reported test significance levels (P values) were two-sided.
Results

A total of 501 breast cancer patients with known ER and PR and 405 with known ER, PR, and HER2 were identified. Among those with known ER and PR status, 85% were ER+/PR+ and 15% were ER-/PR- and among those with data for all three markers, 71% were ER+/PR+/HER2- (luminal A), 14% were ER+/PR+/HER2+ (luminal B), 10% were ER-/PR-/HER2- (TNBC), and 5% were ER-/PR-/HER2+ (non-luminal). The age of these patients ranged from 28 to 84 years, with a mean of 54.7 ± 12.7 years. Detailed characteristics of the study population are presented in Table 1.

Table 2 shows the associations between breast cancer risk factors and TNBC in comparison to luminal A breast cancer. TNBC phenotype was significantly associated with shorter duration of breastfeeding after adjustment for other breast cancer risk factors. A lifetime breastfeeding period equal or longer than 7 months was inversely associated with the odds of having a triple-negative tumor (versus a luminal A tumor) (OR = 0.25, 95% CI = 0.08–0.68). Parity was more frequent in case patients with TNBC compared to luminal A breast cancers (OR = 1.81, 95% CI = 0.67–3.22). No meaningful associations were found between other reproductive or menstrual factors and TNBC.

We further examined the joint effect of breastfeeding and parity with tumor subtype. Table 3 shows the association between the average lifetime duration of breastfeeding and odds of having TNBC versus luminal A breast cancer within case groups defined by parity. Among women with 2 or fewer full-term pregnancies, breastfeeding for 7 months or longer was inversely associated with the odds of having a triple-negative tumor versus a luminal A tumor (OR = 0.09, 95% CI = 0.005–0.54) after adjustment for age at diagnosis, age at menarche, age at first full-term pregnancy, menopausal status and family history; however, this finding is based on only 1 TNBC with number of full-term pregnancies 2 or more who breastfed for 7 months or longer. Among women with 3 or more pregnancies, breastfeeding duration of 7 months or longer was also inversely associated with the odds of having a triple-negative tumor (versus luminal A tumors) although the association lacked precision (OR = 0.37, 95% CI = 0.08–1.65). No statistically significant interaction between breastfeeding and parity and odds of TNBC vs. luminal A subtype was shown (P = 0.41).

No associations were shown between other breast cancer risk factors (age at menarche, age at first pregnancy, age at menopause, and family history) and the different tumor subtypes (Table S1).

Regarding tumor characteristics, high grade (OR = 47.38, 95% CI = 6.14–365.30, P < 0.001) and medullar type breast cancer (OR = 35.30, 95% CI = 6.84–182.10, P < 0.001), were more frequent in case patients with triple-negative tumors compared to luminal A tumors (Table S2).

Discussion

In a population-based study of breast cancer cases from Spain, we observed that the proportion of cases with TNBC versus luminal A breast cancer was lower in women who breastfed for 7 or more months than in those who did not breastfeed. Also, compared with luminal A breast cancers, TNBCs were more common in parous vs. non-parous women. Both a low (2 or fewer pregnancies) and a high (3–4 pregnancies) number of pregnancies combined with a long breastfeeding period were associated with reduced odds of TNBC compared with luminal A breast cancer; although the association seemed to be slightly more pronounced among women with a low number of pregnancies we lacked the statistical power to detect any difference. No other associations were detected between tumor subtypes and other reproductive/lifestyle breast cancer risk factors despite the accumulating evidence favoring distinct reproductive profiles among the differing tumor subtypes [18,19].

Several case-control and cohort studies have examined the association between parity and breastfeeding and the risk of TNBC. Although an inverse association of parity with risk of ER+ breast cancer has been found by many studies, studies of ER– breast cancer have been less consistent. A positive, risk-enhancing association with parity [18–21]. Studies including “intrinsic” breast cancer subtypes based on additional molecular markers such as the basal-like subtype also found high parity to be associated with an
increased risk [18,19]. In some of these studies, this association was present only among women who had never breastfed [19,21]. Several studies have reported a lower risk of TNBC in parous women who have ever breastfed a child [22], or who breastfed for a cumulative duration of at least 4 [19], 6 [23,24], or 12 months [25]. Only two case–case analyses have compared the TNBC subtype with the ER+/PR+/HER2+ tumors [27]. Both studies also observed a reduced odds of TNBC (compared to non-TNBC and to luminal A breast cancer) associated with breastfeeding [26,27], and, in one, the positive association of parity with TNBC was present only among women who had never breastfed [27]. We found some evidence in support of these findings in our study of Spanish women from Galicia. We observed reduced odds of TNBC compared to luminal A breast cancer associated with breastfeeding, and some

Table 2. Associations between breast cancer risk factors/tumor characteristics and triple-negative breast cancer.
Luminal A
Age at first full-term pregnancy
≤22
23–27
≥28
Age at menarche
≤13
14
≥15
Age at diagnosis
<50
≥50
Age at menopause
<50
≥50
Menopausal status
Pre-menopausal
Peri-menopausal
Post-menopausal
Family History
No
Yes
Lifetime duration of breastfeeding
<7 months
≥7 months
Parity
No
Yes
≥3

*Adjusted for age at diagnosis, age at menarche, menopausal status and family history except in models with any of these variables as main predictors.
**Further adjusted for age at first full-term pregnancy.

Table 3. Associations between parity and lifetime breastfeeding and luminal A and triple-negative breast cancer.
Luminal A (N = 162)
Parity ≥2
No Breastfeeding
Breastfeeding <7 months
Breastfeeding ≥7 months
Parity ≥3
No Breastfeeding
Breastfeeding <7 months
Breastfeeding ≥7 months

*Adjusted for age at diagnosis, age at menarche, age at first full-term pregnancy, menopausal status and family history.
BRCA1 population could be, at least partially, a contributor of the degree [34]. Because Galicia has been the European state with contribution usually being the highest, although this varies to a European, African, and Native American with the European culturally and genetically heterogeneous group [33]. Hispanics represent 12% of the US population [32]. Hispanic ethnicity represents a group in the northwest part of Spain, whose history has been defined by its interaction with the Moors in the 8th century and assimilated into the larger Hispanic society [44].

Although our results are mostly in agreement with those of other studies, limitations of our study should be discussed, notably its small sample size particularly in subset analyses stratified by hormonal receptor status ER, PR, or HER2. Sample sizes for the less common subtypes were limited. In addition, the breastfeeding data were based on self reported information collected years later. In general, breastfeeding history has been shown to be accurate and reliable [45,46]. However, other authors have shown misclassification [47], although it has been found to be non-differential, i.e., to attenuate the true strength of the association between breastfeeding and the health event under study [47]. Thus, even if there was misclassification in the present study, the true association between breastfeeding and TNBC would have possibly been stronger than the observed. Another limitation relates to the fact that since breast cancer receptor status had been determined from medical records in the present study, there could be the possibility of potential heterogeneity in reading stains and scoring of immunohistochemistry; however this limitation would be expected to bias the study results towards the null. Finally, the case-case study design has obvious limitations [9]. A study that does not include a disease-free population does not provide a traditional risk ratio and may not provide a valid estimate of the association between a risk factor and disease; thus, the case-case OR estimated in this study cannot be interpreted as a measure of risk for the specific subtype. Furthermore, the magnitude of the association is not the magnitude of risk, but rather an indicator of the general direction of the correlation between risk factor and subtype. Thus, results from case-case analyses like ours must be validated in traditional case-control and cohort studies to assess risk and estimate the magnitude of the effect.

Our case-case design study can be particularly useful in assessing the relative correlation of established risk factors and the different tumor subtypes. We have included in our study detailed tumor marker information, such as ER, PR and HER-2 receptor status, which is needed to identify etiologic heterogeneity for established breast cancer risk factors and disease subtypes [9].

In conclusion, this analysis shows that associations between breast cancer and reproductive factors or breastfeeding vary by breast cancer tumor subtypes defined by ER, PR, and HER2 status, particularly luminal A and TNBC. These results are in concordance with emerging evidence that relationships for genetic susceptibility loci also vary by expression levels of markers in tumors [48]. Our results support the view that there may be more than one type of breast cancer from an etiological perspective, and specifically support the hypothesis that hormone receptor negative tumors may have a different etiology than hormone receptor positive tumors. Given the proposed disease heterogeneity observed in breast cancer, future large epidemiological studies will be helpful in identifying etiologic heterogeneity for the established risk factors by disease subtype. Breastfeeding, for example, may be a potential modifiable factor that may be related to the development of a specific breast cancer tumor subtype, and not to all tumor subtypes. Knowledge gained from these studies is likely to produce important information on specific risk factors by tumor subtype which would help in risk prediction models and risk reduction strategies.
For more information, visit the original source: [Link](https://www.plosone.org/doi/10.1371/journal.pone.0040543)
46. Launer LJ, Forman MR, Hundt GL, Sarov B, Chang D, et al. (1992) Maternal recall of infant feeding events is accurate. J Epidemiol Community Health 46: 203–206.

47. Promislow JH, Gladen BC, Sandler DP (2005) Maternal recall of breastfeeding duration by elderly women. Am J Epidemiol 161: 289–296.

48. Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, et al. (2008) Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 4: e1000054.