Clinical treatment of hospital-acquired pneumonia caused by extensively drug-resistant Acinetobacter baumannii: single-centre retrospective study

Changquan Fang
Huizhou Central People's Hospital

Limin Xu
Huizhou First People's Hospital

Junhong Lin
Huizhou Central People's Hospital

Yujun Li
Guangzhou First Municipal People's Hospital, South China University of Technology

Shuquan Wei
Guangzhou First Municipal People's Hospital, South China University of Technology

Zhuxiang Zhao
Guangzhou First Municipal People's Hospital, South China University of Technology

Ziwen Zhao (✉ zhaozw@yeah.net)
Guangzhou First Municipal People's Hospital, South China University of Technology

Research Article

Keywords: Acinetobacter baumannii, extensively drug-resistant, hospital-acquired pneumonia, treatment

DOI: https://doi.org/10.21203/rs.3.rs-441648/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Extensively drug-resistant Acinetobacter baumannii (XDRAB) has strong ability to acquire drug resistance genes, which are then rapidly cloned and transmitted, leading to worldwide spread posing a significant treatment challenge. Currently, limited drugs are available for the treatment of XDRAB infection, and their clinical effects are not clear; therefore, the specific factors that affect the treatment response and patient outcome require further exploration. The aim of this was to clarify effective treatment methods during XDRAB infection and the factors affecting patient prognosis according to a retrospective review of cases at our hospital.

Methods: Hospital-acquired XDRAB pneumonia cases clinically diagnosed at Guangzhou First Municipal People's Hospital from January 2016 to December 2017 were selected, and their clinical features, treatment, and prognosis were retrospectively analysed.

Results: Forty-eight patients met the diagnostic criteria of hospital-acquired pneumonia caused by XDRAB in the study period, 20 of whom survived and 28 of whom died for an overall mortality rate of 58.3%. There was no significant difference in anti-A. baumannii activity according to the type of antibiotic administered or their combinations between the patients that survived and those that died from the infection. The use of antibacterial drugs during infection did not effectively improve the clinical outcome. Advanced age, multiple organ failure, and disease severity (APACHE score) were significantly negatively correlated with bacterial clearance, whereas effective airway management (tracheotomy and sputum suction during infection) had a positive impact on bacterial clearance. In multivariate analysis, age [odds ratio (OR) 1.1, 95% confidence interval (CI) 1.0–1.3] and APACHE score (OR 1.5, 95% CI 1.1–2.0) were independent risk factors affecting prognosis. Tracheotomy during infection (OR 0.0, 95% CI 0.0–0.55) was a protective factor contributing to survival.

Conclusion: XDRAB hospital-acquired pneumonia has a high mortality rate. Advanced age and severe disease are independent risk factors that affect patient prognosis. The use and type of antibacterial drugs for treatment do not appear to substantially affect the prognosis during XDRAB infection. Overall, timely and effective airway management is the key to improving the prognosis of patients with hospital-acquired XDRAB infection.

Background

Acinetobacter baumannii is a type of gram-negative bacillus that does not ferment sugar. A. baumannii is considered to be a conditional pathogen, which is widely distributed in nature, hospital environments, and throughout the surface of the human body, with strong ability to acquire drug-resistant genes that are rapidly cloned and transmitted [1]. In recent years, due to the widespread use of broad-spectrum antibacterial drugs, the increase in interventional procedures, along with an increase in immunocompromised hosts and other factors, the proportion of multi-drug resistant strains, and
especially extensively drug-resistant *A. baumannii* (XDRAB), in hospital infections has been increasing annually [2, 3], posing a significant clinical challenge in anti-infective treatment.

XDRAB refers to strains that are resistant to current commonly used antibacterial drugs in clinical settings and are only sensitive to one to two drugs with potential anti-*Acinetobacter* activity [4]. Since the first XDRAB isolate was reported in Taiwan in 1998, these strains have broadly spread worldwide. XDRAB infections are particularly common in critically ill patients and in those with severe underlying diseases, resulting in a high mortality rate [5].

At present, the optimal treatment strategy for XDRAB infection remains controversial, and the drugs that are available for treating XDRAB are also extremely limited [6]. Once XDRAB infection occurs, especially lower respiratory tract infection, the prognosis of patients is often poor. Therefore, it is important to identify the clinical factors that contribute to infection and prognosis among patients with hospital-acquired XDRAB infections.

Toward this end, we performed a retrospective analysis of the clinical features and treatment outcomes of patients clinically diagnosed with XDRAB pneumonia at our hospital from January 2016 to December 2017.

Methods

Study subjects

This study was designed as a retrospective case analysis. Cases of hospital-acquired pneumonia caused by XDRAB clinically diagnosed at Guangzhou First Municipal People's Hospital from January 2016 to December 2017 were reviewed. Inclusion criteria were as follows: (1) XDRAB was isolated and cultured from sputum, fibreoptic bronchoscopy drainage fluid, lavage fluid, or venous blood; (2) typical manifestations of bacterial infection (e.g. fever, and increase in white blood cell count, C-reactive protein, and procalcitonin); (3) clinical symptoms and signs consistent with pneumonia; and (4) imaging manifestations of new, continuous, or worsened lung exudation, infiltration, or consolidation [7]. The exclusion criteria were: (1) aged < 18 years; (2) XDRAB was cultured not less than twice; (3) mixed infection; (4) non-pneumonia-related death; and (5) incomplete clinical data in medical records. This study was approved by the Ethics Committee of Guangzhou First Municipal People's Hospital.

Data collection

The following data were extracted for patients with a clinical diagnosis consistent with hospital-acquired pneumonia caused by XDRAB: (1) basic information, including age, gender, ward admitted to, underlying diseases, discharge status or death, and mechanical ventilation (method and time); (2) airway care during infection, including fibreoptic bronchoscopy, the number of daily sputum suctions, and the number of times of turning over; (3) disease severity according to the APACHE II score [8]; (4) Clinical Pulmonary Infection Score [9]; (4) use of antibiotics, albumin, and enteral nutrition during infection; (5) symptoms,
signs, white blood cells, C-reactive protein, procalcitonin, chest X-ray examination, and bacterial culture (including sputum, fibre bronchoscopy drainage fluid, bronchoalveolar lavage fluid, venous blood) during treatment; and (6) prognosis classified as a binary variable according to survival or death. The worst value measured within 24 h after entering the intensive care unit (ICU) or beginning treatment was recorded for each index.

Evaluation of clinical efficacy

According to the guidelines for clinical research on antimicrobial drugs formulated by the United States Food and Drug Administration in 1997 [10], the criteria for determining clinical efficacy were mainly based on the patient’s symptoms, physical signs, and laboratory tests, and were divided into four levels: recovery, significant response, disease progression, and no response. A clinical response was considered as the combination of recovery and significant response. The bacteriological curative effect was evaluated according to the following five levels: pathogenic bacteria clearance, partial clearance, no clearance, substitute, and reinfection.

Related definitions

XDRAB was defined according to confirmed resistance of the isolate to the following antibiotics assessed using the KB disc agar diffusion method: gentamicin, amikacin, piperacillin and tazobactam, ampicillin and sulbactam, cefepime, aztreonam, imipenem, meropenem, ciprofloxacine, and levofloxacine. Sensitivity to only polymyxin and/or tigecycline further confirmed the diagnosis [11].

Hospital-acquired pneumonia was defined as new or progressive flaky and patchy infiltrates observed on the chest X-ray film 48 h after admission, with or without the following symptoms: body temperature ≥ 38°C, white blood cell count >10 × 10⁹/L or <4 × 10⁹/L, and presence of purulent airway secretions [12].

Pathogen isolation and identification

According to the aetiology and drug sensitivity laboratory standards of Clinical and Laboratory Standards Institute. all strains were identified with the API 20NE identification board (bioMérieux, France). The susceptibility test was carried out using the KB disc agar diffusion method. The resulting judgement criteria were based on the clinical cut-off values of the Clinical Laboratory Standards Institutes 2011 guidelines so that the strains were classified to be sensitive, resistant, or intermediate sensitivity to a given drug [13].

Statistical analysis

Attributes data are expressed as frequency (number, percentage) and were compared between groups using the χ² test. Normally distributed data are expressed as mean ± standard deviation, which were compared using Student’s t-test, whereas non-normally distributed data were compared with Mann-Whitney U test. The factors affecting prognosis (survival or death) were identified in logistic multiple regression analysis. P < 0.05 was considered to indicate a statistically significant difference or
association with prognosis. All statistical analyses were performed with Statistical Package for the Social Sciences, Version 19.0 (SPSS 19.0).

Results

Patient characteristics

A. baumannii was isolated from a total of 547 patients in the 2 years, 143 of which were identified as XDRAB for a detection rate of 26.1%. After excluding records of duplicates (10 cases), non-respiratory infections (25 cases), colonisation [7] (40 cases), XDRAB cultured not less than two times (11 cases), and incomplete clinical data (5 cases), a total of 52 cases of clinically diagnosed XDRAB pneumonia were retained. In addition, cases of mixed infections (3 cases) and non-pneumonia-related death (1 case) were excluded, leaving a total of 48 cases that met the inclusion criteria. The flow chart for patient selection is shown in Figure 1.

The mean age of the included patients was 78 ± 15 years, including 41 men and 7 women. All 48 patients with XDRAB pneumonia were admitted to the ICU, all received invasive mechanical ventilation and deep venous catheterisation, eight patients had a tracheotomy, and six patients had haemodialysis. Most of the patients had multiple underlying diseases, including 32 cases of hypertension, 15 cases of coronary heart disease, 26 cases of chronic cardiac insufficiency, 23 cases of chronic obstructive pulmonary disease, 11 cases of chronic renal insufficiency, 9 cases of malignant tumour, and 9 cases of diabetes. The most common source of the specimen was bronchoscopy drainage fluid (26 cases), followed by sputum (14 cases) and venous blood (8 cases). Of the 48 patients, 20 (42%) survived and 28 died (58%).

Associations of antibacterial use during infection with clinical characteristics

Table 1 shows a comparison of the antibacterial drugs used during XDRAB infection in relation to the prognosis of patients (survival versus death). There was no significant difference between groups with respect to the commonly used antibacterial drugs with potential antibacterial activity against A. baumannii or their combinations. All 48 patients exhibited chest imaging progression during the infection period, which most commonly manifested as multiple pulmonary lobar infiltrates and patchy exudation. The time from the first isolation of the pathogen to the improvement of chest X-ray absorption in the survival group was shorter (8.3 ± 4.7 days) than that of the death group (12.4 ± 12.0 days) with the difference statistically significant. Thirty-five patients had fever during the infection, 16 of whom were in the survival group with a mean time from first isolation of the pathogen to fever abatement of 10.2 ± 9.8 days, whereas the mean time from first isolation to fever abatement or death for the 19 patients in the death group was 7.2 ± 7.4 days. There were no significant differences in the time of persistent fever between the two groups, although the frequency of patients with persistent fever for ≤3 days and for 4–7 days after infection was higher for the death group, whereas relatively more patients in the survival group had a persistent fever for >7 days (Table 2).
Table 1 Use of antibacterial drugs during infection.

Factor	Survival group/bacteria cleared (N = 20), n (%)	Death group/bacteria not cleared (N = 28), n (%)	P value
Monotherapy			
Cefoperazone and sulbactam	6 (30.0)	4 (14.2)	0.282
Carbapenems	3 (15.0)	8 (28.5)	0.319
Tigecycline	1 (5.0)	0 (0.0)	0.417
Two-drug combinations			
Cefoperazone and sulbactam	4 (20.0)	2 (7.1)	0.218
Carbapenem-based combination	2 (10.0)	4 (14.2)	1.0
Piperacillin and tazobactam combined with quinolones	3 (15.0)	3 (10.7)	0.683
Three-drug combinations			
Cefoperazone and sulbactam-based combinations	2 (10.0)	0 (0)	0.168
Doxycycline-based combinations	3 (15.0)	3 (10.7)	0.683

Factors affecting bacteria clearance

Bacteria were effectively cleared in 20 of the 48 cases. As shown in Table 2, advanced age, number of organ failures, severity of illness (APACHE II score), and airway care (tracheotomy, sputum suction) significantly affected bacterial clearance.

Table 2 Influence of patient factors on prognosis/bacteriological clearance.
Factor	Survival group/bacteria cleared (N = 20)	Death group/bacteria not cleared (N = 28)	P value
Age (years), mean ± SD	65.6±18.4	79.6±9.3	0.001
ICU stay (days), mean ± SD	29.4±19.2	25.1±21.5	0.488
Underlying disease, n (%)			
Hypertension	12(60.0)	20 (71.4)	0.537
Diabetes	4 (10.0)	5 (17.8)	1.0
Coronary heart disease	4 (20.0)	11 (39.2)	0.212
COPD	7 (35.0)	16 (57.1)	0.154
Malignant tumour	3 (15.0)	6 (21.4)	0.716
Chronic cardiac insufficiency	8 (40.0)	18 (64.2)	0.143
Chronic renal insufficiency	3 (15.0)	9 (32.1)	0.311
Number of organ failures, mean ± SD	1.6 ± 0.7	2.7 ± 0.08	0.000
APACHE II score, mean ± SD	20.8 ± 4.8	25.9 ± 5.4	0.012
APACHE II score ≥ 19, n (%)	14 (70.0)	26 (92.8)	0.053
APACHE II score ≥ 20, n (%)	12 (60.0)	25 (89.2)	0.034
APACHE II score ≥ 23, n (%)	7 (35.0)	20 (71.4)	0.019
APACHE II score ≥ 25, n (%)	5 (25.0)	17 (60.7)	0.02
CPIS, mean ± SD	5.3 ± 1.4	6.3 ± 1.0	0.067
Albumin (g/L), mean ± SD	28.0 ± 4.4	29.0 ± 4.9	0.480
Tracheal intubation, n (%)	20 (100.0)	28 (100.0)	1.0
Mechanical ventilation time (days), mean ± SD	19.7 ± 16.4	19.7 ± 21.3	0.998
Tracheal intubation time before infection (days), mean ± SD	7.3 ± 7.4	12.0 ± 16.2	0.234
Airway care during infection			
Tracheotom y, n (%)	7 (35.0)	1 (3.5)	0.006
Number of times per day of turning over and backslapping, mean ± SD	8.4 ± 2.4	7.3 ± 2.5	0.113
Number of sputum suctions by bronchoscope, mean ± SD	4.5 ± 2.5	2.6 ± 17.7	0.003
Number of sputum suctions per day, mean ± SD	9.3 ± 2.5	7.4 ± 2.6	0.013
Bacteraemia, n (%)	2 (10.0)	6 (21.4)	0.214
Albumin transfusion, n (%)	12 (60.0)	16 (57.1)	1.0
Duration of persistent fever during infection			
≤3 days	4 (25.0)	8 (50.0)	0.717
4–7 days	4 (25.0)	6 (31.5)	0.25
≥7 days	8 (50.0)	5 (26.3)	0.08

Abbreviations: ICU, intensive care unit; COPD: chronic obstructive pulmonary disease; CPIS, Clinical Pulmonary Infection Score.

Prognostic factors
XDRAB was cleared in all cases in the survival group and in no cases in the death group. As shown in Table 3, age and APACHE II score emerged as independent risk factors affecting prognosis in multiple logistic regression; tracheotomy during infection was a significant protective factor. There was no effect of various combinations of drugs with anti-Acinetobacter activity on survival.

Table 3. Multivariate analysis of the prognosis of patients with extremely drug-resistant *Acinetobacter baumannii* hospital-acquired pneumonia

Prognostic factor	Odds ratio (95% confidence interval)	P value
Age	1.1 (1.0–1.3)	0.004
APACHE II score	1.5 (1.1–2.0)	0.005
Tracheotomy during infection	0.0 (0.0–0.55)	0.026

Discussion

A. baumannii has become an important pathogen of nosocomial infections, which can easily cause epidemics, especially in the ICU, and XDRAB has received particular attention in this regard [14]. *A. baumannii* was previously considered to be a low-virulence opportunistic pathogen with no impact on the prognosis of hospitalized patients [15]; however, recent studies have shown that *A. baumannii*, especially multidrug-resistant strains, are commonly isolated in critically ill patients, and are associated with a high mortality rate ranging from 52% to 66% [16]. The mortality rate from XDRAB pneumonia in this study was 58.3%, which is similar to that reported by Boral et al. [17], confirming the high mortality rate of this pathogen. Therefore, it is particularly important to deepen the exploration of strategies for the treatment of XDRAB infection.

The first challenge is the selection of an appropriate antibacterial drug for the treatment of XDRAB infection, which requires an extensive evaluation of the role of various drugs with potential anti-Acinetobacter activity on the treatment outcome. Commonly used antibacterial drugs that are currently recommended for the treatment of *A. baumannii* infections include sulbactam and a compound preparation of sulbactam-containing β-lactam antibiotics, carbapenem antibiotics, polymyxin antibiotics, tigecycline, tetracycline, aminoglycoside, and quinolone [16, 18]. In cases of XDRAB infection, a two-drug or even a three-drug combination is often used. Although some studies have shown potential benefits of combined regimens, these results are mostly based on animal experiments, *in vitro* studies, and uncontrolled clinical studies with a small number of cases, and the conclusions are inconsistent [19]. The possibly effective two-drug combination regimens are (1) sulbactam or a compound preparation containing sulbactam as the basis in combination with one of carbapenems, minocycline (or doxycycline), polymyxin, or aminoglycoside antibiotics [20-22]; and (2) tigecycline as the basis combined with a compound preparation containing sulbactam, aminoglycoside antibiotics, or quinolone [23-26]. The three-drug combination regimens include a compound preparation containing sulbactam (or sulbactam) combined with doxycycline and carbapenem antibiotics [20].
All of the recommended drugs with anti-\textit{Acinetobacter} activity had been used on the patients included in this study with confirmed XDRAB infection, except for polymyxin antibiotics. This is because polymyxin has a limited effect due to its low blood concentration in the lung and cerebrospinal fluid. Kim et al. [27] reported that the clinical response rate of patients with XDRAB pneumonia who received polymyxin or tigecycline as the basis treatment was 48% and 47%, respectively, with no significant difference. Yilmaz et al. [28] reported that the clinical and microbial treatment response rates for the single use of polymyxin, polymyxin combined with sulbactam, and polymyxin combined with carbapenem in the treatment of multidrug-resistant or XDRAB pneumonia were 63.6%, 55%, and 60%, respectively, with no significant differences. In a meta-analysis, Jung et al. [19] found no significant difference in the clinical and microbial treatment response rates of polymyxin or tigecycline alone, or in combination with carbapenem and sulbactam. Liu et al. [29] also reported no significant difference in the prognosis of patients with multidrug-resistant \textit{A. baumannii} pneumonia who were treated with or without tigecycline. Consistently, in the present study, there was no significant difference in the use of various antibacterial drug combinations (including monotherapy, two-drug combinations, and three-drug combinations) during infection between the survival group and the death group.

Although the recommended anti-\textit{A. baumannii} antibacterial drug combinations were used at our hospital, following these guidelines did not significantly improve the prognosis or bacterial clearance rate. There are several potential reasons to explain these observations. First, \textit{A. baumannii} is a low-virulence pathogen. Therefore, even if extensive drug resistance appears, the toxicity would not necessarily be enhanced. Second, antimicrobial drugs cannot effectively clear XRDAB, and therefore other adjuvant treatments are required. Third, the prognosis may be mainly affected by factors other than treatment, such as the underlying condition.

Jung et al. [19] found that advanced age, multiple organ failure, and a severe disease condition had a negative effect on bacterial clearance; effective airway management (e.g. tracheostomy, sputum suction) was conducive to bacterial clearance; and the use of antibacterial drugs had no obvious effect on prognosis, which are all consistent with the present findings. Multivariate logistic analysis showed that age and APACHE II score were independent risk factors affecting prognosis, and that tracheotomy is a protective factor.

Patients with advanced age, multiple organ failure, and severe disease conditions are mostly bedridden, and may even be in a coma and confined to bed for a long time. This situation is typically accompanied by a decreased cough reflex, resulting in poor sputum-discharging and clearance ability of the respiratory tract [30]. Therefore, it is necessary to strengthen airway management, especially the body position and mechanical-assisted sputum discharge. For patients with thick sputum and weakness in expectoration, tracheotomy should be performed as soon as possible. It is currently believed that long-term tracheal intubation is more likely to cause airway damage, infection, and patient discomfort, and requires more doses of sedatives. Therefore, for patients who require long-term mechanical ventilation, tracheotomy should be performed as soon as possible to replace tracheal intubation [31-32], as tracheotomy results in a more stable artificial airway. This also allows patients to eat by mouth, and tracheotomy is further
conducive to the removal of pulmonary secretions, which can improve the overall prognosis [33-35]. Kimura [36] reported that mechanical ventilation with tracheotomy could effectively prolong the median survival of patients with lateral sclerosis. However, the optimal timing of tracheotomy remains controversial [35]. The National Association for Medical Direction of Respiratory Care recommends that patients who have been under tracheal intubation for more than 3 weeks should receive tracheotomy as a substitute [37]. At present, early tracheotomy is preferred. Timely tracheotomy can reduce the complications of long-term tracheal intubation (e.g. larynx injury, airway injury, bacterial growth) and reduce the rate of pulmonary infection, making the infection easier to be controlled, which is closely related to shorter hospital stays, lower treatment costs, and lower mortality [38-40].

Regarding the prognosis of drug-resistant *A. baumannii* infections, it has been reported that the virulence of the drug-resistant bacterium itself does not increase, and therefore neither would the mortality rate, and that it is instead the severity of the underlying disease that will ultimately affect the prognosis [1], in line with our results. At present, the APACHE II score is the most widely used and authoritative critical illness condition evaluation system in clinical ICU wards, which can provide an objective and scientific basis for the rational use of medical resources and prognostic judgements [7]. However, the APACHE II scale is mainly designed for ICU inpatients and is not specific to pneumonia, and few studies have directly assessed its prognostic value in patients with pneumonia. This study shows that an APACHE II score ≥20 can indicate a poor prognosis in patients with XDRAB hospital-acquired pneumonia, similar to the findings of Liu et al. [29].

This study also has some limitations, which should be mentioned. This was a retrospective study, we were lacking data on polymyxin treatment, and this was a single-centre study with a relatively small sample size. Therefore, further in-depth research using prospective multi-centre studies with a large sample size are needed.

Conclusions

XDRAB hospital-acquired pneumonia has a high mortality rate. Advanced age and a severe disease condition are independent risk factors for a poor prognosis. Although antibacterial drugs do not have a clear effect on improving prognosis during infection, XDRAB pneumonia is curable. In particular, effective airway management (tracheotomy, sputum suction) is the key to clearing XDRAB, thereby improving the prognosis of patients.

Abbreviations

AB: Acinetobacter baumannii; XDR: Extensively drug resistant; MDR: Multidrug resistant; APACHE II: Acute Physiology and chronic Health Evaluation II; CPIS: Clinical pulmonary infection score; ICU: Intensive care unit; COPD: Chronic obstructive pulmonary disease; CLSI: Clinical and Laboratory Standards Institute; FDA: Food and Drug Administration; CRP: C-reactive protein; PCT: Procalcitonin; WBC: Leukocyte
Declarations

Ethics approval and consent to participate

This study was approved by Ethics Review Committee, Guangzhou First Municipal People's Hospital and conducted in accordance with the provisions of the Declaration of Helsinki. Approval No.K-2021-015-01. The data used in our study was anonymized before its use. All the data were obtained from the medical records. All data generated or analyzed during this study are available from the corresponding author upon reasonable request. All patients and legally authorized representative/next of kin of deceased patients provided informed consent for this study.

Consent for publication

Not applicable.

Availability of data and materials

Our present study was a retrospective observational study. All the data were obtained from medical records of patients. The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request, but the identifying/confidential patient data would not be shared.

Competing interests

The authors have declared that no competing interests exist.

Funding

This study was supported by the Medical Science and Technology Research Foundation of Guangdong Province of China. The funders had no role in the study design, data collection or analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions

CQF designed the study and drafted the manuscript. LMX managed data and its quality. ZWZ contributed substantially to its revision, JHL, YJL performed the statistical analysis. SQW, ZXZ participated in the data interpretation. All authors read the manuscript carefully and approved the final version.

Acknowledgements

I would like to thank my family for their support to my work. and I wish my son Shuo Fang and my unborn child health, happiness and success.

Author details
References

1. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med 2008, 358(12):1271-1281.

2. Kuo SC, Chang SC, Wang HY, Lai JF, Chen PC, Shiau YR, Huang IW, Lauderdale TL. Emergence of extensively drug-resistant Acinetobacter baumannii complex over 10 years: nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. BMC Infect Dis 2012, 12:200.

3. Shi J, Sun T, Cui Y, Wang C, Wang F, Zhou Y, Miao H, Shan Y, Zhang Y. Multidrug resistant and extensively drug resistant Acinetobacter baumannii hospital infection associated with high mortality: a retrospective study in the pediatric intensive care unit. BMC Infect Dis. 2020 Aug 12;20(1):597.

4. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar;18(3):268-81.

5. Tseng YC, Wang JT, Wu FL, Chen YC, Chie WC, Chang SC: Prognosis of adult patients with bacteremia caused by extensively resistant Acinetobacter baumannii. Diagn Microbiol Infect Dis 2007, 59(2):181-190.

6. El Chakhtoura NG, Saade E, Iovleva A, Yasmin M, Wilson B, Perez F, Bonomo RA. Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward 'molecularly targeted' therapy. Expert Rev Anti Infect Ther. 2018 Feb;16(2):89-110.

7. Horan TC, Andrus M, Dudeck MA: CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008, 36(5):309-332.

8. Knaus WA, Draper EA, Wagner DP, Zimmerman JE: APACHE II: a severity of disease classification system. Crit Care Med 1985, 13(10):818-829.

9. Luna CM, Blanzaco D, Niederman MS, Matarucco W, Baredes NC, Desmery P, Palizas F, Menga G, Rios F, Apezteguia C: Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med 2003, 31(3):676-682.

10. Committee DA-IDPA: Guidance for Industry: Evaluating Clinical Studies of Antimicrobials in the Division of Anti-infective Drug Products. In.: Rockville, Md: US Dept of Health and Human Services, Office of Drug Evaluation and Research; 1997.
11. National Committee for Clinical and Laboratory Standards. Performance standards for antimicrobial disk diffusion susceptibility test [S]. Villanova, PA: NCCLS. 2000.

12. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005, 171(4):388-416.

13. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing [S]: Twenty-first informational supplement, 2011, M100-S21 Vol 31-329.

14. Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, Abello Vaamonde JA, Padró Alonzo LA, Rivera Reséndiz A, Muleiro Álvarez M, Vega López EN, Franyuti-Kelly G, Álvarez-Hernández DA, Moncaleano Guzmán V, Juárez Bañuelos JE, Marcos Felix J, González Barrios JA, Barrientos Fortes T. Acinetobacter baumannii Resistance: A Real Challenge for Clinicians. Antibiotics (Basel). 2020 Apr 23;9(4):205.

15. Weingarten CM, Rybak MJ, Jahns BE, Stevenson JG, Brown WJ, Levine DP: Evaluation of Acinetobacter baumannii infection and colonization, and antimicrobial treatment patterns in an urban teaching hospital. Pharmacotherapy 1999, 19(9):1080-1085.

16. Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics (Basel). 2020 Mar 12;9(3):119.

17. Boral B, Unaldi Ö, Ergin A, Durmaz R, Eser ÖK; Acinetobacter Study Group. A prospective multicenter study on the evaluation of antimicrobial resistance and molecular epidemiology of multidrug-resistant Acinetobacter baumannii infections in intensive care units with clinical and environmental features. Ann Clin Microbiol Antimicrob. 2019 Jul 2;18(1):19.

18. Fishbain J, Peleg AY: Treatment of Acinetobacter infections. Clin Infect Dis 2010, 51(1):79-84.

19. Jung SY, Lee SH, Lee SY, Yang S, Noh H, Chung EK, Lee JI. Antimicrobials for the treatment of drug-resistant Acinetobacter baumannii pneumonia in critically ill patients: a systemic review and Bayesian network meta-analysis. Crit Care. 2017 Dec 20;21(1):319.

20. Garnacho-Montero J, Amaya-Villar R: Multiresistant Acinetobacter baumannii infections: epidemiology and management. Curr Opin Infect Dis 2010, 23(4):332-339.

21. Lee NY, Wang CL, Chuang YC, Yu WL, Lee HC, Chang CM, Wang LR, Ko WC: Combination carbapenem-sulbactam therapy for critically ill patients with multidrug-resistant Acinetobacter baumannii bacteremia: four case reports and an in vitro combination synergy study. Pharmacotherapy 2007, 27(11):1506-1511.

22. Kiffer CR, Sampaio JL, Sinto S, Oplustil CP, Koga PC, Arruda AC, Turner PJ, Mendes C: In vitro synergy test of meropenem and sulbactam against clinical isolates of Acinetobacter baumannii. Diagn Microbiol Infect Dis 2005, 52(4):317-322.

23. Sopirala MM, Mangino JE, Gebreyes WA, Biller B, Bannerman T, Balada-Llasat JM, Pancholi P: Synergy testing by Etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2010, 54(11):4678-4683.
24. Entenza JM, Moreillon P: Tigecycline in combination with other antimicrobials: a review of in vitro, animal and case report studies. Int J Antimicrob Agents 2009, 34(1):8 e1-9.

25. Petersen PJ, Labthavikul P, Jones CH, Bradford PA: In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother 2006, 57(3):573-576.

26. Viehman JA, Nguyen MH, Doi Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs. 2014 Aug;74(12):1315-33.

27. Kim WY, Moon JY, Huh JW, Choi SH, Lim CM, Koh Y, Chong YP, Hong SB. Comparable Efficacy of Tigecycline versus Colistin Therapy for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Pneumonia in Critically Ill Patients. PLoS One. 2016 Mar 2;11(3):e0150642.

28. Yilmaz GR, Guven T, Guner R, Kocak Tufan Z, Izdes S, Tasyaran MA, Ackgoz ZC. Colistin alone or combined with sulbactam or carbapenem against A. baumannii in ventilator-associated pneumonia. J Infect Dev Ctries. 2015 May 18;9(5):476-85.

29. Liu B, Li S, Li HT, Wang X, Tan HY, Liu S, Pan PH, Li XG, Li XM. Outcomes and prognostic factors of tigecycline treatment for hospital-acquired pneumonia involving multidrug-resistant Acinetobacter baumannii. J Int Med Res. 2020 Apr;48(4):30060520910917.

30. Racca F, Vianello A, Mongini T, Ruggeri P, Versaci A, Vita GL, Vita G. Practical approach to respiratory emergencies in neurological diseases. Neurol Sci. 2020 Mar;41(3):497-508.

31. Raimonde AJ, Westhoven N, Winters R. Tracheostomy. 2020 Nov 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan–. PMID: 32644550.

32. Wang R, Pan C, Wang X, Xu F, Jiang S, Li M. The impact of tracheotomy timing in critically ill patients undergoing mechanical ventilation: A meta-analysis of randomized controlled clinical trials with trial sequential analysis. Heart Lung. 2019 Jan;48(1):46-54.

33. Nieszkowska A, Combes A, Luyt CE, Ksibi H, Trouillet JL, Gibert C, Chastre J: Impact of tracheotomy on sedative administration, sedation level, and comfort of mechanically ventilated intensive care unit patients. Crit Care Med 2005, 33(11):2527-2533.

34. Arcuri JF, Abarshi E, Preston NJ, Brine J, Pires Di Lorenzo VA. Benefits of interventions for respiratory secretion management in adult palliative care patients-a systematic review. BMC Palliat Care. 2016 Aug 9;15:74.

35. Wang R, Pan C, Wang X, Xu F, Jiang S, Li M. The impact of tracheotomy timing in critically ill patients undergoing mechanical ventilation: A meta-analysis of randomized controlled clinical trials with trial sequential analysis. Heart Lung. 2019 Jan;48(1):46-54.

36. Kimura F. Tracheostomy and invasive mechanical ventilation in amyotrophic lateral sclerosis: decision-making factors and survival analysis. Rinsho Shinkeigaku. 2016 Apr 28;56(4):241-7.

37. Sauthier M, Rose L, Jouvet P. Pediatric Prolonged Mechanical Ventilation: Considerations for Definitional Criteria. Respir Care. 2017 Jan;62(1):49-53.
38. Altman KW, Ha TN, Dorai VK, Mankidy BJ, Zhu H. Tracheotomy Timing and Outcomes in the Critically Ill: Complexity and Opportunities for Progress. Laryngoscope. 2021 Feb;131(2):282-287.

39. Herritt B, Chaudhuri D, Thavorn K, Kubelik D, Kyeremanteng K. Early vs. late tracheostomy in intensive care settings: Impact on ICU and hospital costs. J Crit Care. 2018 Apr;44:285-288.

40. Hosokawa K, Nishimura M, Egi M, Vincent JL. Timing of tracheotomy in ICU patients: a systematic review of randomized controlled trials. Crit Care. 2015 Dec 4;19:424.

Figures

Flow chart of selection of patients with extremely drug-resistant Acinetabacter baumanii (XDRAB) infection for this study.