Abstract. In this paper, we introduce the concept of f-ideals and discuss its algebraic properties. In particular, we give the characterization of all the f-ideals of degree 2.

Key words : simplicial complex, height of an ideal, Primary Decomposition, f-vector.

2000 Mathematics Subject Classification: Primary 13P10, Secondary 13H10, 13F20, 13C14.

1. Introduction

The aim of this paper is to explore the algebraic and combinatorial properties of simplicial complexes. Let $S = k[x_1, ..., x_n]$ be a polynomial ring over an infinite field k. There is a natural bijection between a square-free monomial ideal and a simplicial complex:

$$\Delta \leftrightarrow I_N$$

Where I_N is known as the Stanley Reisner ideal or non-face ideal of Δ. This one to one correspondence has been discussed widely in the literature for instance in [1], [4], [5] and [7].

In [2], Faridi introduced another correspondence:

$$\Delta \leftrightarrow I_F$$

Where I_F is the facet ideal of a given simplicial complex Δ. In [2] and [3] Faridi has discussed and investigated some algebraic compatibilities of these two ideals for a given simplicial complex Δ. Also when the simplicial complex is a tree (defined in [2]), its facet ideal posseses interesting algebraic and combinatorial properties discussed in [2] and [3].

Given a square free monomial ideal I, one can consider it as the facet ideal of a simplicial complex $\delta_F(I)$, and the Stanley-Reisner ideal of another $\delta_N(I)$. So for a square free monomial ideal I, one can explore some invariants of $\delta_F(I)$ and $\delta_N(I)$.

In this paper, We introduce the f-ideals and in Theorem 3.5 we give the characteriztion of all the f-ideals of degree 2. A monomial ideal is called f-ideal if both the simplicial complexes $\delta_F(I)$ and $\delta_N(I)$ have the same f-vector, where f-vector of
a d dimensional simplicial complex Δ is the $(d+1)$-tuple:

$$f(\Delta) = (f_0, f_1, \ldots, f_d),$$

where f_i is the number of faces of dimension i of Δ.

2. Basic combinatorics and algebra of simplicial complexes

This section is a review on the combinatorics and algebra associated to simplicial complexes discussed in [2] - [4] and [7].

Definition 2.1. A simplicial complex Δ over a set of vertices $V = \{x_1, x_2, \ldots, x_n\}$ is a collection of subsets of V, with the property that $\{x_i\} \in \Delta$ for all i, and if $F \in \Delta$ then all subsets of F are also in Δ (including the empty set). An element of Δ is called a face of Δ, and the dimension of a face F of Δ is defined as $|F| - 1$, where $|F|$ is the number of vertices of F. The faces of dimension 0 and 1 are called vertices and edges, respectively, and $\dim \emptyset = -1$. The maximal faces of Δ under inclusion are called facets.

We denote simplicial complex Δ by a generating set of its facets F_1, \ldots, F_q as

$$\Delta = \langle F_1, \ldots, F_q \rangle$$

Also, we denote the facet set by $\mathcal{F} = \{F_1, \ldots, F_q\}$. A simplicial complex with only one facet is called a simplex.

The following definitions lay the foundation of the dictionary between the combinatorial and algebraic properties of the simplicial complexes over the finite set of vertices $[n]$.

Definition 2.2. Let Δ be a simplicial complex over n vertices $\{v_1, \ldots, v_n\}$. Let k be a field, x_1, \ldots, x_n be indeterminates, and S be the polynomial ring $k[x_1, \ldots, x_n]$. Let \mathcal{F} be the set of facets of Δ.

- (a) We define $I_{\mathcal{F}}$ to be the ideal of S generated by square-free monomials $x_i^{m_1} \cdots x_i^{m_s}$, where $\{v_i^{m_1}, \ldots, v_i^{m_s}\}$ is a facet of Δ. We call $I_{\mathcal{F}}$ the facet ideal of Δ.
- (b) We define I_N to be the ideal of S generated by square-free monomials $x_i^{m_1} \cdots x_i^{m_s}$, where $\{v_i^{m_1}, \ldots, v_i^{m_s}\}$ is not a face of Δ. We call I_N the non-face ideal or the Stanley-Reisner ideal of Δ.

Definition 2.3. Let $I = (M_1, \ldots, M_q)$ be an ideal in a polynomial ring $k[x_1, \ldots, x_n]$, where k is a field and M_1, \ldots, M_q are square-free monomials in x_1, \ldots, x_n that form a minimal set of generators for I.

- (a) We define $\delta_{\mathcal{F}}(I)$ to be the simplicial complex over a set of vertices v_1, \ldots, v_n with facets F_1, \ldots, F_q, where for each i, $F_i = \{v_j \mid x_j^{m_i}, 1 \leq j \leq n\}$. We call $\delta_{\mathcal{F}}(I)$ the facet complex of I.
- (b) We define $\delta_N(I)$ to be the simplicial complex over a set of vertices v_1, \ldots, v_n, where $\{v_i^{m_1}, \ldots, v_i^{m_s}\}$ is a face of $\delta_N(I)$ if and only if $x_i^{m_1} \cdots x_i^{m_s} \notin I$. We call $\delta_N(I)$ the non-face complex or the Stanley-Reisner complex of I.

Remark 2.4. For given a square free monomial ideal I, one can construct $\delta_{\mathcal{F}}(I)$ by using the above definition (a). Where Faridi in [2], has given the construction of $\delta_N(I)$ by using the minimal vertex cover of $\delta_{\mathcal{F}}(I)$.
Example 2.5. Let \(I = (xy, yz) \subset k[x, y, z] \), then following are non-face complex and facet complex.

![Figure 1. Non-face and facet complex](image)

Definition 2.6. Let \(S = k[x_1, \ldots, x_n] \) be a polynomial ring, the Support of a monomial \(x^a = x_1^{a_1} \cdots x_n^{a_n} \) in \(S \) is given by \(\text{Supp}(x^a) = \{ x_i | a_i > 0 \} \). Similarly, let \(I = (g_1, \ldots, g_m) \subset S \) be a square-free monomial ideal then

\[
\text{Supp}(I) = \bigcup_{i=1}^{m} \text{Supp}(g_i)
\]

Remark 2.7. It is worth noting that for any square-free monomial ideal \(I \subset S \) the \(\delta_F(I) \) will be a simplicial complex on the vertex set \([s]\), where \(s = |\text{Supp}(I)| \). But \(\delta_N(I) \) will be a simplicial complex on \([n]\). So both \(\delta_F(I) \) and \(\delta_N(I) \) will have the same vertex set if and only if \(\text{Supp}(I) = \{x_1, \ldots, x_n\} \).

For example, for the ideal \(I = (x_2x_3, x_2x_4, x_3x_4) \) in \(S = k[x_1, x_2, x_3, x_4] \),

\[
\delta_F(I) = \langle \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\} \rangle
\]

is a simplicial complex on the vertex set \(\{v_2, v_3, v_4\} \). Whereas,

\[
\delta_N(I) = \langle \{v_1, v_4\}, \{v_1, v_3\}, \{v_1, v_2\} \rangle
\]

is the simplicial complex on the vertex set \(\{v_1, v_2, v_3, v_4\} \).

![Figure 2. facet and non-face complex](image)

Definition 2.8. Let \(I = (g_1, \ldots, g_m) \subset S \) be a square-free monomial ideal, the \(\text{deg}(I) \) is defined as:

\[
\text{deg}(I) = \text{Sup}\{\text{deg}(g_i)|i \in \{1, \ldots, m\}\}
\]
3. **f-ideals and classification of f-ideals of degree 2.**

Consider a polynomial ring $S = k[x_1, \ldots, x_n]$ over a field k. We say that a monomial ideal $I = (g_1, \ldots, g_m) \subset S$ where g_1, \ldots, g_m are square-free monomials in x_1, \ldots, x_n that form a minimal set of generators for I is a pure square-free monomial ideal of degree d if $\text{Supp}(I) = \{x_1, \ldots, x_n\}$ and all the monomials $g_i \in S_d$ for some $d > 0$, where S_d is the graded component of S, or in other words all the m_i’s are of the same degree.

Definition 3.1. A square-free monomial ideal $I \subset S$ is said to be an f-ideal if and only if both $\delta_F(I)$ and $\delta_N(I)$ have the same f-vector.

There is a natural question to ask: characterize all the f-ideals in S. Here, we precisely give the characterization of f-ideals of degree 2. So it is still open to characterize all the f-ideals of degree ≥ 3.

Lemma 3.2. For a pure square-free monomial ideal $I = (g_1, \ldots, g_m)$ in $S = k[x_1, \ldots, x_n]$ of degree d, the following equality holds:

$$\binom{n}{d} = f_{d-1}(\delta_F(I)) + f_{d-1}(\delta_N(I))$$

Proof. Let us take $I = (g_1, \ldots, g_m) \subset S$ be a square free monomial ideal of degree d, where $\{g_1, \ldots, g_m\}$ is the minimal set of generators for I and $\text{deg}(g_i) = d$ for all $i \in \{1, \ldots, m\}$. So, corresponding to I its facet simplicial complex $\delta_F(I)$ has

$$f_{d-1}(\delta_F(I)) = m.$$

As non-face complex $\delta_N(I)$ will have the $d-1$ dimensional face $\{v_{i1}, \ldots, v_{id}\}$ if and only if $x_{i1} \ldots x_{id} \notin I$ clear from the definition of $\delta_N(I)$. So $\delta_N(I)$ will have those $d-1$ dimensional faces which are not appearing in $\delta_F(I)$ because I is a pure square-free monomial ideal of degree d. Also, for a simplicial complex on n vertices the possible $d-1$ dimensional faces are $\binom{n}{d}$. Therefore, $f_{d-1}(\delta_N(I)) = \binom{n}{d} - f_{d-1}(\delta_F(I))$. □

Remark 3.3. For instance, in example 2.5 one can see that $I = (xy, yz) \subset k[x, y, z]$ is a pure square-free monomial ideal and;

$$\binom{3}{2} = f_1(\delta_N(I)) + f_1(\delta_F(I))$$

$$\binom{3}{2} = 1 + 2.$$

Lemma 3.4. Let I be a square-free monomial ideal in S, $\dim(\delta_F(I)) = \dim(\delta_N(I))$

if and only if $\text{ht}(I) + \text{deg}(I) = n$.

Proof. From definition 2.3(a) it is clear that

$$\dim(\delta_F(I)) = \text{deg}(I) - 1.$$
Also, from Proposition 5.3.10 of [7] it is clear that,
\[\dim(\delta_N(I)) = n - \text{ht}(I) - 1. \]
Which concludes the proof. \(\square \)

One dimensional simplicial complexes on the vertex set \([n]\) are the simple graphs. Also for a one dimensional simplicial complex the ideal \(I_F\) is same as the edge ideal of a graph, for details see [7].

Our main theorem is as follows:

Theorem 3.5. A pure square-free monomial ideal \(I = (g_1, \ldots, g_m) \subset S\) of degree 2 will be an \(f\)-ideal if and only if:

(i) \(I\) is unmixed with \(\text{ht}(I) = n - 2\),

(ii) \(\binom{n}{2} \equiv 0 \pmod{2}\) and

(iii) \(m = \frac{1}{2} \binom{n}{2}\)

Proof. Suppose \(I = (g_1, \ldots, g_m) \subset S\) is a pure square-free monomial ideal of degree 2 and let \(I\) be an \(f\)-ideal. So we have \(\dim(\delta_N(I)) = 1 = \dim(\delta_F(I))\) which by Lemma 3.4 implies \(\text{ht}(I) = n - 2\). As \(I\) is a pure square-free monomial ideal of degree 2, \(\delta_F(I)\) is a graph on the vertex set \([n]\) with no isolated vertex. So, since \(f(\delta_F(I)) = f(\delta_N(I))\), \(\delta_N(I)\) needs to be a graph on the same vertex set \([n]\) with no isolated vertex. As \(I_N = \cap F\) where the intersection is over all facets \(F\) of \(\delta_N(I)\) by [7] 5.3.10, which implies \(I\) is unmixed of height \(n - 2\).

As \(f_i\) denotes the number of \(i\)-dimensional faces, so
\[f_1(\delta_F(I)) = m \]
where \(m\) is the number of monomial generators of \(I\). Also from Lemma 3.2
\[f_1(\delta_N(I)) = \left(\binom{n}{2} \right) - m \]
As \(I\) is an \(f\)-ideal, so we have \(\binom{n}{2} = 2m \equiv 0 \pmod{2}\). Conversely, let us take the pure square-free monomial ideal \(I = (g_1, \ldots, g_m) \subset S\) of degree 2 satisfying the conditions (i), (ii) and (iii). The simplicial complexes \(\delta_F(I)\) and \(\delta_N(I)\) will have the same \(f\)-vector follows immediately from Lemma 3.2 and Corollary 3.4. \(\square \)

We conclude this paper with the following example.

Example 3.6. Let \(I = (x_1x_2, x_2x_3, x_3x_4) \subset S = k[x_1, x_2, x_3, x_4]\) be a pure square-free monomial ideal satisfying the conditions given in the above theorem, and \(\delta_N(I)\) and \(\delta_F(I)\) are as follows:

Clearly, both the simplicial complexes have the same \(f\)-vector \((4, 3)\). Hence \(I\) is an \(f\)-ideal of degree 2.
Figure 3. Non-face and facet complex

References

[1] W. Bruns, J. Herzog, *Cohen Macaulay rings*, Vol.39, Cambridge studies in advanced mathematics, revised edition, 1998.

[2] S. Faridi, *The facet ideal of a simplicial complex*, Manuscripta Mathematica, 109, (2002), 159-174.

[3] S. Faridi, *Simplicial Tree are sequentially Cohen-Macaulay*, Arxiv:math.AC/0702569.

[4] E. Miller, B. Sturmfels, *Combinatorial Commutative Algebra*, Springer-Verlag New York Inc. 2005.

[5] R. P. Stanley, *Combinatorics and commutative algebra*, Second edition. Progress in Mathematics, 41. Birkhuser Boston, MA, 1996, x+164 pp. ISBN: 0-8176-3836-9.

[6] R. P. Stanley, *Cohen-Macaulay Rings and constructible polytopes*, Bull. Amer. Math. Soc. 81(1975), 133-142.

[7] R. H. Villarreal, *Monomial algebras*, Dekker, New York, 2001.

* COMSATS Institute of Information Technology, Lahore, Pakistan.

E-mail address: qanberabbasi@ciitlahore.edu.pk, sarfraz11@gmail.com, iimrananwar@gmail.com, waqqasbaig82@gmail.com.