DETERMINATION OF THE MASS OF IGR J17091–3624 FROM “SPECTRO-TEMPORAL” VARIATIONS DURING THE ONSET PHASE OF THE 2011 OUTBURST

N. Iyer1,2, A. Nandi1, and S. Mandal3

1 Space Astronomy Group, SSIF/ISI/TE Campus, ISRO Satellite Centre, Outer Ring Road, Marathahalli, Bangalore, 560037, India
2 Indian Institute of Science, Bangalore, 560012, India
3 Indian Institute of Space Science and Technology, Trivandrum, 695547, India; samir@iist.ac.in

Received 2014 October 9; accepted 2015 April 28; published 2015 July 6

ABSTRACT

The 2011 outburst of the black hole candidate IGR J17091–3624 followed the canonical track of state transitions along with the evolution of quasi-periodic oscillation (QPO) frequencies before it began exhibiting various variability classes similar to GRS 1915+105. We use this canonical evolution of spectral and temporal properties to determine the mass of IGR J17091–3624, using three different methods: photon index (Γ)–QPO frequency (ν) correlation, QPO frequency (ν)–time (day) evolution, and broadband spectral modeling based on two-component advective flow (TCAF). We provide a combined mass estimate for the source using a naive Bayes based joint likelihood approach. This gives a probable mass range of 11.8 M_{\odot}–13.7 M_{\odot}. Considering each individual estimate and taking the lowermost and uppermost bounds among all three methods, we get a mass range of 8.7 M_{\odot}–15.6 M_{\odot} with 90% confidence. We discuss the possible implications of our findings in the context of two-component accretion flow.

Key words: accretion, accretion disks – black hole physics – radiation mechanisms: non-thermal – X-rays: individual (IGR J17091–3624)

1. INTRODUCTION

The enigmatic Galactic black hole candidate IGR J17091–3624 underwent multiple outbursts in 1994, 2001, 2003, and 2007 before the recent one in 2011 (Revnivtsev et al. 2003; in’t Zand et al. 2003; Capitanio et al. 2006, 2012). During the 2011 outburst, the source displayed state transitions like other outbursting black hole sources (Remillard & McClintock 2006; Nandi et al. 2012) from the hard to intermediate states (Pahari et al. 2011; Rodriguez et al. 2011; Capitanio et al. 2012; Iyer & Nandi 2013). It also displayed the presence of a state with characteristics similar to a “canonical” soft state (Iyer & Nandi 2013) of other outbursting black hole sources. After evolving along the canonical track, it started to display a number of temporal variability classes similar to GRS 1915+105 (Altamirano et al. 2011). The presence of high-frequency quasi-periodic oscillation (QPO) (∼66 Hz) similar to GRS 1915+105 (Altamirano & Belloni 2012) and radio detections, albeit at the level of a few mJy (Rodriguez et al. 2011), in the hard and the intermediate states were also seen in this outburst.

The similarity to GRS 1915+105 triggered immense interest about the nature of this source. As of now, its precise location up to 5″ is known, and possible optical and infrared counterparts have been identified (Bodaghee et al. 2012) within the Chandra error circle. The distance to the source, mass, and orbital parameters of both objects in the binary are currently unknown. What is certainly known is that IGR J17091–3624 is only the second black hole candidate to display a wide range of temporal and spectral variations after GRS 1915+105, although at much lower (10–50 times) observed flux levels (Altamirano et al. 2011). More knowledge about IGR J17091–3624 should allow us then to make some meaningful comparisons between these two sources. Multiple attempts have been made before to determine the mass of IGR J17091–3624. These attempts have placed it anywhere from <3 M_{\odot} (Altamirano et al. 2011) to <15 M_{\odot} (Altamirano & Belloni 2012). Other attempts to estimate the mass are <5 M_{\odot} (Rao & Vadawale 2012), 9.13 ± 2.25 M_{\odot} (Pahari et al. 2011), and ~6 M_{\odot} (Rebusco et al. 2012). The wide range of these estimates does not enable us to even pin down whether the source is a massive black hole binary or an exceptionally low mass black hole candidate.

In this paper, we attempt to make an estimate of the mass with tighter constraints using X-ray observations made during the rising phase of its 2011 outburst. Here we discuss three different methods (two of which are independent of distance to the source) to estimate its mass. In the third approach, we study the broadband (0.5–100.0 keV) spectrum using the two-component advective flow (TCAF) model (Chakrabarti & Titarchuk 1995; Chakrabarti & Mandal 2006). We use these three estimates to put a limit on the mass of the central object. Finally, we also discuss the results obtained from our spectro-temporal analysis in the light of two different types of accretion flows, i.e., a Keplerian disk (Shakura & Sunyaev 1973) on the equatorial plane, sandwiched by a sub-Keplerian flow (Chakrabarti & Titarchuk 1995; Smith et al. 2001, 2002, 2007; Wu et al. 2002; Chakrabarti & Mandal 2006; Cambier & Smith 2013) on both sides of the Keplerian disk in the vicinity of an accreting black hole.

2. OBSERVATIONS AND ANALYSIS

We use archival data of observations made by the RXTE, Swift, and INTEGRAL satellites for the 2011 outburst (from February 06 (MJD 55,598.28) onward). We restrict ourselves to the rising phase of the outburst, before the source entered into its enigmatic and unpredictable variability phase. In all, we analyze ~40 days of data from these observatories.

2.1. Swift Data Reduction

We use the XRT data from the Swift suite of instruments. The XRT data consist of windowed timing mode observations,
which reduces pileup effects from the source. The maximum observed count rate is about 40 counts s$^{-1}$. This ensures that the XRT data are not piled up (Romano et al. 2006). We analyze these XRT data sets by following the steps as given in the XRT manual. For this purpose, we use HEASoft 6.15.1 and its associated ftools packages. We restrict ourselves to use events of grade 0–2, while extracting timing and spectral data. The source and background regions are extracted by selecting a circular region of diameter 40 pixels (~90") from the data images. While doing spectral modeling, we found that the low-energy spectrum (0.5–1.0 keV) of the Swift XRT data did not fit well and showed some excess in the soft state. This was due to uncertainty in position of the source in the binned pixels of WT mode. By using position-dependent redistribution matrix files (rmfs) made for different probable positions of the source on the detector Y pixel, we accounted for this apparent excess in the soft spectrum (K. Page 2014, private communication). We use such position-dependent rmfs for each of our Swift XRT data sets.

2.2. INTEGRAL Data Reduction

We use the IBIS/ISGRI instrument (Lebrun et al. 2003) from the INTEGRAL suite. We extract spectral information from ISGRI by following the steps as given in their data reduction manual. To obtain the spectrum, we use OSA v10.0 along with updated versions of the calibration and response files. The spectrum from ISGRI is rebinned in order to get more data points for modeling the spectrum (see Table 1). We extract spectral information from ISGRI only for those dates that have simultaneous Swift observations. This helps us to obtain broadband (0.5–100 keV) data for our spectral analysis. In all the data sets that we use, IGR J17091–3624 is visible in the ISGRI detector with significance greater than 7σ. However, owing to the low source flux, there is no-detection or very low significance detection in the JEM-X detector. Hence, we do not use any spectral data from JEM-X.

2.3. RXTE Data Reduction

We use the PCU2 and HEXTE detector data of the RXTE satellite. However, as noted (Pahari et al. 2011; Capitanio et al. 2012; Iyer & Nandi 2013), the observations made by RXTE before February 23 are contaminated due to the nearby low-mass X-ray binary (LMXB) NS source GX 349+2. We do use these contaminated observations for our timing analysis. Specifically, we use them to find the frequency of QPOs from the power density spectrum (PDS). The source GX 349+2 does not exhibit any QPO like features in its PDS. We investigated the observations carried out by the JEM-X payload on board INTEGRAL on 2011 February 11 to ascertain this. Also, as noted by O’Neill et al. (2002) and Agrawal & Bhattacharyya (2003), no QPOs have ever been found in GX 349+2, in spite of extensive searches carried out over all the spectral and temporal states of this LMXB. This leads us to believe that the QPO-like features in the PDS obtained from PCU2 data are indeed from IGR J17091–3624. We use only the non-contaminated data from the PCU2 and HEXTE detector for our spectral analysis.

2.4. Temporal Analysis

The PDS of all data sets is computed in the energy bands afforded by the observing instruments, viz., Swift XRT (0.5–10.0 keV) and RXTE PCA (3.0–30.0 keV). The PDSs are obtained using GHATS v1.1.8, a customized IDL-based timing package, which takes care of rebinning, Poisson noise subtraction, and dead-time correction (Zhang et al. 1995) of the FFT data. Each of the PDSs is made by using temporal data of bin size 3.52 ms (for Swift XRT data) and 0.244 ms (for RXTE PCA data). All observations are divided into segments of 128.0 s, and a PDS is computed individually for each such segment. We then obtain the final PDS for an entire observation by averaging the PDSs from each individual segment. Finally, we systematically search each averaged PDS for the presence of QPOs. A combination of Lorentzian features is used to model the PDS. We select only those QPO features that have a significance greater than 3σ for our analysis. The Q-factor (ν /FWHM) of these selected QPOs is found to vary between 3 and 10. The rms power under the QPO varies in between 8% and 17%, and the QPO frequencies are observed to increase with time from 0.055 to ~5 Hz (Pahari et al. 2011; Rodriguez et al. 2011; Shaposhnikov 2011; Iyer & Nandi 2013). We have modeled this evolution of QPO frequencies in Section 3.2. The error on QPO frequency is taken to be a 1σ deviation from its centroid frequency, which is obtained by scaling its FWHM.

2.5. Spectral Analysis

The spectral analysis is carried out using XSPEC v12.8.1 g. We do spectral modeling for individual observations of each instrument. Apart from this we also analyze broadband spectra (0.5–100.0 keV) as obtained by choosing simultaneous observations from Swift XRT and INTEGRAL IBIS. We rebin the spectrum obtained from each instrument and add systematic errors as mentioned in Table 1 before fitting the data sets. We model the energy spectrum by two different methods. The first method (see Capitanio et al. 2012; Iyer & Nandi 2013) is a phenomenological model fitting of the spectrum and consists of a diskbb and a power-law (or cutoffpl) component. In this phenomenological modeling, we find that the power-law photon index (\Gamma) increases with time and is positively correlated with the QPO frequencies obtained in Section 2.4. We model this correlation as presented in Section 3.1 to obtain the source mass. We use 1σ errors on fit parameters as estimated from the XSPEC error command for our model fitting routines. In the second method of spectral

Table 1

Reconditioning of Reduced Spectral Data Sets

Instrument	Binning	Systematic Error
Swift XRT	Minimum 20 counts per bin	3%
INTEGRAL IBIS/ISGRI	25 bins between 13 and 150 keV	5%
RXTE PCA	None	0.5%

Note.

1 IBIS/ISGRI has Gaussian-distributed errors and does not need rebinning for noise statistics. By default 11 bins are present between 13 and 150 keV.
modeling, we calculate a model spectrum for each broadband observation using TCAF. This is done by including radiative hydrodynamics of the accreting plasma self-consistently into the governing equations of the flow (Chakrabarti & Titarchuk 1995; Chakrabarti & Mandal 2006). We then use this calculated spectrum to fit the observed spectrum, which is presented in Section 3.3.

3. MODELS AND RESULTS

We consider three different approaches to estimate the mass of the central source. These methods are discussed in the following subsections: spectro-temporal correlation (Section 3.1), the evolution of QPO frequencies (Section 3.2), and broadband spectral modeling (Section 3.3). Then, we use these three different estimates to derive a single set of bounds for the mass. The estimates are made under the TCAF paradigm (Chakrabarti & Titarchuk 1995), which enables us to model both evolution of spectral and temporal features under a single paradigm, thereby ensuring consistency of the estimate. In this paper, we have used radial distance in units of Schwarzschild radius (r_g) and mass in units of solar mass (M_\odot).

3.1. Photon Index (Γ)–QPO Frequency (ν) Correlation

A model for the observed correlation between the spectral fitted photon index (Γ) and the observed QPO frequency (ν) for black hole candidates is presented in Titarchuk & Fiorito (2004). Shaposhnikov & Titarchuk (2007, hereafter ST07) have presented an implicit empirical scaling relation between the correlation curves of different black hole sources and used it to estimate the mass of a few such sources. The model uses a “Compton cloud” around the central source and a transition layer/region between this Compton cloud and the Keplerian disk. Any change in the size of the cloud leads to a change in both the QPO frequency (explained as the magneto-acoustic resonance oscillations of the bounded transition layer; Titarchuk & Wood 2002) and the photon index of the emitted spectrum (Γ) (due to varying optical depth of the hot electrons). We believe that the “Compton cloud” in this model is the same as the post-shock region of the accretion disk under the TCAF paradigm (Chakrabarti & Titarchuk 1995). The TCAF paradigm too demonstrates both the steepening of spectral index and the increase in QPO frequencies with time (Chakrabarti et al. 2008; Nandi et al. 2012; Deb Nath et al. 2014; Radhika & Nandi 2014). In addition, the accretion disk configuration used in Titarchuk & Wood (2002) and Titarchuk & Fiorito (2004) is similar to that under the TCAF paradigm. We thus expect that the empirical correlation of ST07 should hold under the TCAF paradigm as well.

The correlation is fitted using the empirical relation given in ST07:

$$\Gamma(\nu) = A - DB \ln \left(\exp \left(\frac{\nu_t - \nu}{D} \right) + 1 \right),$$

where A is the value at which the photon index saturates, ν_t is the threshold frequency above which the leveling off/saturation of Γ happens, and B is the slope of the correlation that scales with mass. The parameter D controls how fast (i.e., over what frequency range) the transition occurs. We note that this is an empirical scaling equation relating the shape of the correlation curve with the masses of different black hole systems. To find the mass of an unknown source requires comparison of its correlation curve with a reference curve of a source with known mass. An inherent assumption in this scaling equation is the similarity of the shape of the correlation curves between these two sources (see also Shaposhnikov & Titarchuk 2009). The slope of this correlation curve, as the source transits from low photon index and frequency values in the harder states to the higher saturated photon index and frequency values of the softer states, is related to the mass of the source. The empirical scaling relation estimates this slope, and a comparison of slopes from different sources gives a direct comparison of their masses.

We consider the rising phase of the 2005 outburst of GRO J1655–40 as the reference correlation curve for estimating the mass of IGR J17091–3624. This correlation was successfully used in ST07 to predict the mass of GRS 1915+105, a source with a very similar correlation curve to IGR J17091–3624. We keep the value of D fixed at 1.0 as done in ST07. We note, though, that changing the value of D changes the final value of mass by a small amount. The best-fitted curve (for $D = 1.0$) using Equation (1) is shown in Figure 1 along with the residuals (bottom panel). This fitting has been done using Craig Markwardt’s IDL-based routines9 (Markwardt 2009), suitably modified for accommodating errors in both variables, as is explained further in Appendix A. This fitting gives us values as $A = 2.38_{-0.09}^{+0.09}$, $B = 0.23_{-0.03}^{+0.02}$, and $\nu_t = 4.47_{-0.87}^{+0.64}$ day Hz. The best-fit mass (as obtained by scaling the B parameter with GRO J1655–40’s mass, which is taken to be $6.3 \pm 0.5 M_\odot$; Green et al. 2001) comes as $M_{bh} = 10.90_{-1.48}^{+1.67}$, with a fit statistic (Appendix A) of $\chi^2 = 16.964$ for 18 degrees of freedom.

3.2. QPO Frequency (ν)–Time (day) Evolution

We model the monotonic increase in QPO frequencies with time using the propagating oscillatory shock (POS) model (Chakrabarti & Manickam 2000; hereafter CM00; Chakrabarti et al. 2008). This model, which falls under the TCAF paradigm, explains formation of QPOs due to an oscillating

Figure 1. Photon index (Γ)–QPO frequency (ν) correlation plot. Diamond points (blue) are Swift XRT QPOs. The rest of the QPO frequencies are from RXTE PCA. The bottom panel shows the weighted residuals in each point. The weights are assigned as given in Appendix A. The best-fit curve (red solid line) using Equation (1) gives a mass of $10.90_{-1.48}^{+1.67} M_\odot$.

9 http://purl.com/net/mpfit
The shock front formed in the sub-Keplerian component of the flow. The shock front starts to oscillate at infall timescales, where the infall time is the time taken by material parcel to fall onto the central source from the shock location. The reasons for shock oscillation can be either resonance oscillations, when the infall timescale is comparable to the cooling timescale of the Comptonizing post-shock region (Molteni et al. 1996), or unstable perturbations occurring in the shocked flow due to its viscosity (Lee et al. 2011; Das et al. 2014). The frequency of the QPO, which is the rate at which the shock front oscillates (Chakrabarti & Manickam 2000; Chakrabarti et al. 2008, 2009; Nandi et al. 2012; Radhika & Nandi 2014), is given as

$$\nu(r_s) = \frac{\nu_0}{2\pi R \sqrt{r_s - 1.0}},$$

(2)

where \(r_s \) is the location of the drifting shock front, \(\nu_0 \) is the inverse of light-travel time across the black hole, given as \(\nu_0 = \frac{c}{r_0} \), and \(R \) is the compression ratio (i.e., ratio of post-shock to pre-shock densities of the flow). In Equation (2), we have introduced an additional \(2\pi \) factor in the denominator to ensure that the entire axisymmetric shock front region (\(2\pi r_s \)) is oscillating in-phase, and this is consistent with the hydrodynamic simulations of Molteni et al. (1996). The shock front drifts inward with a constant velocity \(v_0 \), giving

$$r_s(t) = r_{s0} \pm v_0 \left(\frac{t - t_0}{R} \right); \quad r_s > r_{s,\text{min}},$$

(3)

$$r_s(t) = r_{s,\text{min}}; \quad \text{otherwise,}$$

(4)

where \(r_{s0} \) is the initial shock location at \(t_0 \) (first day of the outburst). We think that the observed flattening/saturation of QPO frequencies (see Figure 2) may be due to the fact that the oscillating shock front stops drifting further inward. We account for this in the equation by using a minimum shock location \(r_{s,\text{min}} \).

We do the QPO evolution fitting by again using Markwardt’s IDL routines (see footnote 9). The difference between our attempt and previous studies of the POS model (Chakrabarti et al. 2008, 2009; Nandi et al. 2012) is that we have used mass as a free parameter. Most of the published work before this has dealt with establishing the POS model for sources of known mass by demonstrating that the QPO evolution can indeed be explained using the simple parametric expression in Equation (2). In our current implementation, the Schwarzschild radius \(r_s \), which is proportional to the mass of the source, is used in the fitting function (Equations (2)–(4)), as a free parameter. Hence, mass is calculated by determining \(r_s \). The other free parameters in the fitting are \(r_{s0} \) (the initial shock location) and \(r_{s,\text{min}} \). The first day of the outburst (\(t_0 \)) is set from observations at 2011 February 06 (MJD 55,598.28). \(R \) is held fixed at 3.0 and \(v_0 \) at 10 m s\(^{-1}\), which are typical values for these parameters. This is inferred from the fact that the shock front oscillates to give a detectable QPO for \(R \) between 2.0 and 4.0 (Nandi et al. 2012). The typical inward drift velocity of this front as obtained from previous studies lies between 5 and 15 m s\(^{-1}\) (Chakrabarti et al. 2008, 2009; Nandi et al. 2012; Radhika & Nandi 2014). We use the mean of these ranges in our fitting and investigate the effects of variation of \(R \) and \(v_0 \) in the discussion section.

The results of the POS model fitting are shown in Figure 2 along with residuals (bottom section of the left panel). The right panel shows the variation of the Comptonizing region (i.e., the size of the oscillating region), which decreases as the QPO frequency increases with time. The dot-dashed vertical line marks the transition of hard-intermediate (HIMS) to soft-intermediate (SIMS) state (Iyer & Nandi 2013), where photon index saturates over QPO frequency (see Figures 1 and 2). We obtain the fitted value of the mass to be \(M_{\text{bh}} = 14.37^{+0.67}_{-0.71} M_\odot \) with \(\chi^2_{\text{red}} = 1.03 \) (\(\chi^2/\text{dof} = 15.43/15 \)).

3.3. Spectral Modeling Based on TCAF

The spectral modeling is based on steady-state hydrodynamic solutions of the equations governing the flow of accreting material under the TCAF paradigm. The solution for a set of free parameters gives a model spectrum, which we use to compare and fit the observed spectrum. We have incorporated the TCAF model (Chakrabarti & Titarchuk 1995; Chakrabarti & Mandal 2006; Mandal & Chakrabarti 2010) in XSPEC as a local model (Arnaud 1996) to achieve this spectral fitting. In this model, we consider a sub-Keplerian flow of accretion rate \(\dot{m}_h \) on the top of a Keplerian flow of accretion rate \(\dot{m}_K \) at the equatorial plane. Both of the accretion rates are measured in units of the Eddington accretion rate (\(\dot{m}_{\text{Edd}} \)). The
other free parameters are the mass of the central object \(M_{bh}\), shock location \(r_s\), and the compression ratio \(R\). A similar implementation in validating the TCAF model for a few black hole sources has been carried out by Deb Nath et al. (2014). But these previous studies are limited within 3.0–30.0 keV, whereas in the current work we model the broadband spectrum between 0.5 and 100 keV.

To implement the local model in XSPEC, we use the HEASoft facility to create a table model by generating the model spectra for a large range of input parameters and saving them in an array. This table model can be run from XSPEC (XSPEC User’s Guide) to calculate the fitting parameters. However, the values of the fit parameters obtained may not be very accurate as XSPEC does an interpolation to fit the data. Hence, we have done the spectral modeling in two steps. First, we use the table model to constrain the parameters in a reasonably narrow interval, and then we run the actual hydrodynamic source code from XSPEC with the parameters’ previously obtained narrow interval to get the best fit.

During the 2011 outburst, the source evolved from hard to soft state via intermediate states. We have fitted the broadband spectra (0.5–100.0 keV) for all the observations where we could find simultaneous or quasi-simultaneous broadband observations. The found observations lie in each of these spectral states: hard state (HS) observed on February 08, HIMS on February 20, intermediate state near transition from HIMS to SIMS on February 22, SIMS on February 28, intermediate state near transition from SIMS to soft state (SS) on March 08, and SS on March 12 (see Iyer & Nandi 2013). We model these six spectra by using our local TCAF model along with the phabs model of XSPEC to account for the interstellar absorption. In the model spectrum computation, the soft photons are supplied by the Keplerian disk and are inverse-Comptonized by hot electrons in the post-shock region. Hence, the resultant spectrum is a combination of soft and hard components, and the relative normalization is determined by the fraction of photons intercepted by the post-shock region. Finally, we fit the resultant spectra with observed spectra as shown in Figure 3. The TCAF model fitted parameters are presented in Table 2. We have kept the compression ratio fixed \((R = 3)\) for all spectral fitting. We see that as the source moves to soft state, the shock front moves inward and \(m_d\) increases while \(m_k\) decreases, except for observations near the state transition boundaries (see Section 4 for details). This means that in the soft state, a lot more soft photons come from the Keplerian disk, and there exists lesser numbers of hot electrons to cool down. This is consistent with the physical picture of an accreting black hole source (Chakrabarti & Titarchuk 1995; Smith et al. 2001, 2002; Chakrabarti & Mandal 2006; Mandal & Chakrabarti 2010).

In our spectral fitting, we find that the column density \(n_H\) varies in the range \((0.97–1.7) \times 10^{22} \text{ cm}^{-2}\) while the source transits from the hard to the soft state. A higher value of \(n_H\) in the soft state may be due to enhanced disk winds (see King et al. 2012) or other sources of opacity. In our present work, we do not assume any distance to the source. We calculate the overall normalization parameter (fixed for all spectral fits) from our spectral modeling. For every data set, we calculate the normalization constant associated with the best fit and then take an average over all normalizations from individual data sets. Finally, we fit all the data sets again with this new averaged normalization constant. Also, we do check that the final estimation of mass from individual data sets with fixed overall normalization lies within the range of mass as determined by the individual normalization before taking the average. The overall normalization depends on the distance to the source and inclination angle of the system. The reported distance to the source and its inclination angle vary between 10 and 20 kpc (Altamirano et al. 2011; Rao & Vadawale 2012) and between 50° and 70° (King et al. 2012), respectively. Hence, for an inclination angle in the range 50°–70°, the final normalization constant translates into a distance range 10.6–14.6 kpc. For lower values of inclination angle, the distance to the source reduces even further. This suggests that the source flux is low, not due to the source being located at a very large distance. The spectral fitting gives a mass estimate as listed in the last column of Table 2, with \(\chi^2_{red} (\chi^2/\text{dof})\) for different states as 160.57/157 (HS), 132.85/158 (HIMS), 238.98/269 (HIMS-SIMS), 117.53/138 (SIMS), 341.85/283 (SIMS-SS), and 163.83/176 (SS), respectively.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have tried to constrain the mass of IGR J17091–3624 by attempting to explain the X-ray spectral and timing observations under the TCAF paradigm. We find that the source behavior can be consistently explained if the source mass is \(\geq 10 M_{\odot}\). To quantify this further, we first examine the limitations on each of our methods one by one. Finally, we attempt to put a single set of limits on the source mass from the different estimates presented in this paper. The summary of mass estimates by photon index \((\Gamma)\)–QPO frequency \((\nu)\) correlation, QPO frequency \((\nu)\)–time (day) evolution, and spectral modeling based on TCAF is given in Table 2.

In the \(\Gamma\)–QPO correlation model, we have noted that our inferred value of mass depends on the value of “D” parameter. In this method, we find that the range of frequency over which the transition (bottom left to top right) in the correlation curve (see Figure 1) occurs for the reference source of our choice, GRO J1655–40 (~0.1–15 Hz), is about three times the range for IGR J17091–3624 (~0.05–5 Hz). This would give us an estimate of \(D = 0.33\), obtained as a ratio of the frequency range of the two sources, as \(D\) controls the range of frequencies over which the correlation curve shows the above-mentioned transition. However, we also note that the value of \(D = 1.0\) is used to scale the mass of GRO J1655–40 to GRS 1915+105 (see ST07 for details). GRS 1915+105 has a similar span of QPO frequencies like IGR J17091–3624. To resolve this, we redo the fit for different values of parameter \(D\) from 0.33 to 1.0 and note the variation in mass as the uncertainty / limitation of this model. We find that the mass estimate shifts from a minimum at 9.50 \(M_{\odot}\) to a maximum of 10.90 \(M_{\odot}\). The value of 1.4 \(M_{\odot}\) (9.90 \(M_{\odot}\)) is the total uncertainty on the estimated mass using this method. To use this uncertainty in our final estimate, we take the 1σ uncertainty to be one-third of this value (i.e., we take 1.4 \(M_{\odot}\) to encompass 3σ (or 99%) of the total uncertainty of this method). The scaling law used to obtain the mass from this method is based on the model of Titarchuk & Fiorito (2004) and the empirical relation of ST07. If this empirical relation and the subsequent linear scaling mis-specify the actual physical relation involved, then that could introduce another source of uncertainty in this estimate (see Yang et al. 2012 to get an idea of model uncertainties due to mis-specified scaling assumptions). We do not explicitly account for this in our paper, as further investigation of this
model would require cross-validating the model against multiple black hole systems with a large sample of data (see Kessler et al. 2013 for an example of uncertainty estimation).

In the QPO evolution model, we see that the range of values over which R and v_0 can potentially vary adds a source of uncertainty to our quoted values of mass. As done above, we try to estimate this by redoing the QPO evolution fit for different R (from 2.0 to 4.0) and v_0 (from 5 to 15 m s$^{-1}$). We find that this gives an uncertainty in mass of 1.7 M_\odot from the mean value (i.e., the standard deviation σ in the final set of mass values is 1.7 M_\odot). Second, and more importantly, the data do not fit well if v_0 is less than 8 m s$^{-1}$ or greater than 12 m s$^{-1}$.

In a recent paper, Mondal et al. (2015) have mentioned that the velocity of propagation of the shock front can be calculated from spectral modeling by estimating the shock location. However, in the present paper we treat spectral modeling and QPO frequency modeling as two independent methods and hence do not use the results from one method in the other method.

The spectral fitting method under the TCAF paradigm also has a few limitations as listed below. Our spectral modeling includes blackbody and inverse-Comptonization components. These two components are good enough to fit the spectra of IGR J17091–3624. But there are other sources where these two components are not sufficient and we need to include components like a Gaussian emission line profile (e.g., GRS 1915+105) and absorption smear edges (e.g., XTE J1859+226). We need to include other physical processes in our model to generate such components. The hydrodynamic solutions used to calculate the model spectra are not self-consistent transonic solutions. The number of fit parameters can be reduced further if we use transonic solutions. To account for the shock transition from pre-shock to post-shock region, we fix the value of $R = 3.0$ (as done in Section 3.2). We find that

Figure 3. Broadband energy spectra fitted by the TCAF model for different states mentioned in the respective figures (residuals are shown in bottom panels). HS, HIMS, and SIMS spectra are taken by using simultaneous data from Swift XRT and INTEGRAL IBIS. The SS spectrum is taken by using simultaneous data from Swift XRT and RXTE PCA. The fit parameters along with the estimated mass are presented in Table 2.

Table 2
Results of the Fitting for Mass Estimation

Method	Details and Assumptions	Mass Estimate		
(A) Γ–ν correlation	See ST07	$10.90 \pm 1.31 M_\odot$		
(B) QPO evolution (POS model)	See CM00, Nandi et al. (2012)	$14.37 \pm 0.67 M_\odot$		
(C) Spectral modeling (TCAF)	State	Shock location	Accretion rate	Mass
	HS	314 ± 44	$0.66 \pm 0.04, 0.08 \pm 0.01$	12.7 ± 0.6
	HIMS	77.3 ± 9.3	$0.58 \pm 0.04, 0.12 \pm 0.02$	10.7 ± 0.5
	HIMS-SIMS	35.1 ± 11.3	$0.16 \pm 0.015, 0.21 \pm 0.14$	11.5 ± 1.5
	SIMS	28.2 ± 4.5	$0.28 \pm 0.05, 0.63 \pm 0.08$	12.9 ± 1.1
	SIMS-SS	24.0 ± 11.6	$0.12 \pm 0.02, 1.09 \pm 0.09$	13.1 ± 1.1
	SS	19.0 ± 3.7	$0.25 \pm 0.06, 0.64 \pm 0.12$	13.1 ± 1.6

Final bounded mass (Joint likelihood) $11.8 M_\odot$–13.7 M_\odot
spectral modeling is not very sensitive to R in our case and do not account for it separately. Second, an uncertainty in overall normalization (fixed for all data sets) may lead to the uncertainty in the estimated mass. Our spectral modeling constrains the system in such a manner that we address the spectral shape along with the overall luminosity simultaneously for multiple data sets. In principle, we do not expect the normalization to change across data sets. Hence, we expect this uncertainty to be small enough to not significantly affect the mass estimation.

Given these three estimates and considering the limitations of the methods, we try to combine the results to get the overall range of mass of the object. For combining the estimates, we calculate the probability distribution function (PDF) of the mass of the central object from the least-squares fit for each method (see Appendix B). We combine results from the independent methods only. Thus, we do not combine the results from the $\Gamma - \nu$ correlation and from QPO-day variation, since both these methods share the common variable ν (the QPO frequency). Instead, we combine results from Section 3.1 with results from Section 3.3, and results from Section 3.2 with results from Section 3.3 separately. Finally, we quote the lowermost and uppermost values from such a combination as the final mass bound. The approach that we take to combine the estimates is based on estimation of joint likelihood using the naive Bayes theorem from independent PDFs (see Appendix C for details). We present the combined estimate in Figure 4, where red, blue, and green lines are individual PDFs from Sections 3.1–3.3, respectively. The combined estimates are represented by shaded regions. The combined estimate using this approach for Sections 3.1–3.3 gives us a mass range of $11.8 M_\odot – 13.1 M_\odot$ and for Sections 3.2 and 3.3 gives us a mass range of $12.5 M_\odot – 13.7 M_\odot$. This gives us a limit on the black hole mass of $11.8 M_\odot – 13.7 M_\odot$. For a worst-case estimate, we find the 90% confidence value limits for each estimate from its respective PDF. The lowermost and uppermost of these limits place the mass between $8.7 M_\odot$ and $15.6 M_\odot$.

Whichever way we combine the estimates, we see that the mass is greater than $8.7 M_\odot$. This suggests that IGR J17091 also harbors a black hole with mass similar to the black hole of GRS 1915+105 (see Reid et al. 2014, for a recent mass estimate). The reason for any distinction between these two sources may then be the difference in mass accretion rates. For IGR J17091–3624, we obtain the total mass accretion rate to be in the range 0.4–1.1 times the Eddington accretion rate (see Table 2). We obtain a near-Eddington accretion rate close to the transition from SIMS to soft state and lowest accretion rate near the transition from HIMS to SIMS (Iyer & Nandi 2013). We note that the non-simultaneous nature of the spectra in these two observations with a gap of ~ 6 hr may have contributed to this. This may also be due to many other time-dependent nonlinear effects (e.g., flow viscosity, Mandal & Chakrabarti 2010; jet activity, Radhika & Nandi 2014) involved in the system during the state transitions. Our spectral fitting is done by using a steady-state model and does not account for these time-varying phenomena. We have attempted to apply our spectral modeling techniques on GRS 1915+105 as well for a relative comparison of flow accretion rate. While modeling the χ class spectrum of GRS 1915+105, we find evidence for super-Eddington accretion rates (~ 6.5 times the Eddington accretion rate) in the system. In the future, we would like to do a detailed broadband spectral modeling of different variability classes of GRS 1915+105 and IGR J17091–3624 to make a comparative study of the variation in accretion rate in both systems. However, it is suggestive to note that the difference in accretion rates could be the reason for the observed difference in X-ray flux.

If that indeed is the case, then it raises the question of how both sub- and super-Eddington accretion rates give rise to similar kinds of multiple variability classes as seen in these objects. It is possible that the complex variability classes observed in these sources (IGR J17091–3624 and GRS 1915+105) could be due to the interplay between the Keplerian and sub-Keplerian flows in the presence of outflows/winds in the soft-intermediate state (Chakrabarti & Titarchuk 1995; Chakrabarti & Nandi 2001; Mandal & Chakrabarti 2010). As seen from Table 2, the intermediate states have comparable values of sub-Keplerian (n_{i5}) and Keplerian (n_{i4}) accretion rates, which can be due to the conversion of one type of matter flow into the other type (Mandal & Chakrabarti 2010). Accordingly, a super-Eddington accretion rate may not be a prerequisite for these variability classes to occur. The interplay between the different accreting (Keplerian and sub-Keplerian) matter and the outflowing matter may itself cause such variabilities. It is possible that such an interplay between the accreting and outflowing streams is currently happening in GRS 1915+105 and that in the past this system too might have undergone an evolution from the hard to the intermediate states to its present phase like other such sources (see Nandi et al. 2012 for GX 339–4; Capitanio et al. 2012 for IGR J17091–3624).

Details of such similarities between the variability classes in GRS 1915+105 and those observed in other such sources will be explored later and presented elsewhere. Until we know a concrete explanation for the occurrence of such variability classes, concluding on the nature of sources showing such variabilities is difficult. However, our current work suggests the presence of a high-mass stellar black hole in the binary system IGR J17091–3624, which accretes at sub-Eddington rates and still shows such variability classes.

This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center (HEASARC) online service, provided by the NASA/Goddard Space Flight Center. We thank Prof. Belloni and Prof.
Markwardt for making their codes (GHATS and MPFIT) available. We thank Prof. A.R. Rao, TIFR, and Dr. Seetha, Space Science Office, ISRO-HQ, for useful suggestions. We thank Dr. Kim Page of the Swift team for prompt and continued help in the analysis of Swift XRT data. We thank Dr. Sankar, ISAC, Prof. T. Krishnan (retd.), and Prof. M. Delampady, ISI, for their help and suggestions with error analysis and statistics. We thank Dr. Anil Agarwal, GD, SAG, Mr. Vasantha E. D.D., C.D.A., and Dr. S.K. Shivakumar, Director, ISAC, for encouragement and continuous support to carry out this research. Finally, we would also like to thank the anonymous referees for their useful suggestions to improve the manuscript.

APPENDIX A
FITTING WITH ERRORS IN TWO VARIABLES

This gives a brief outline of the errors-in-variable method and the technique that we have used here. For further details, please refer to Macdonald & Thompson (1992) and Press et al. (1992, and references therein). One way to accommodate errors in the second variable is to alter the fit statistic used for minimization. Various formulations are discussed in Macdonald & Thompson (1992), but we use the one denoted here as σ and given as

$$\sigma^2 = \sum_{i=0}^{N} \left(\frac{y_i - f(x_i)}{\text{var}(y_i - f(x_i))} \right)^2 .$$

For estimating confidence intervals on the mass, we do Monte Carlo runs of the same fitting routine with the observations (x_i, y_i) randomly generated as per their error variance (see Press et al. 1992, for details). We then use a Gaussian kernel density estimator to find the probability density function of the obtained set of mass values. The errors on the final set of parameters are quoted as 1σ (68%) deviations from their central value.

APPENDIX B
PDF CALCULATION FOR THE METHODS MENTIONED IN SECTIONS 3.1–3.3

This section gives an outline of the methods used to construct a PDF from the results of the statistical fitting routines.

B.1. Construct PDF for Section 3.1.

The PDF is obtained by doing Monte Carlo simulation runs on the data. We simulate multiple data sets ($\sim 10^5$) from the assumed Gaussian error distributions on photon index (Γ) and QPO frequency (ν) (Appendix A). For each simulated data set we repeat the least-squares fitting routine and note the parameter and statistic value. Finally, we obtain a distribution of our parameter of interest (i.e., mass) by using a Gaussian kernel density estimator.

B.2. Construct PDF for Sections 3.2 and 3.3.

The PDF is obtained from the variation of the fit statistic (chi-square) about the parameter minima. This gives the confidence intervals (ν_1, ν_2) on a single parameter from the least-squares fit as seen in the following equation:

$$C_{\nu_i}^2 = \int_{\nu_1}^{\nu_2} p(\nu) d\nu = P(\chi_i^2 > \Delta_i).$$

Here χ_i^2 denotes the chi-squared distribution with 1 degree of freedom, $p(\nu)$ denotes the PDF of parameter ν, $C_{\nu_i}^2$ denotes the confidence level, and Δ_i is the level (corresponding to ν_1 and ν_2) of variation in the χ_i^2 statistic (see Figure 5 for details). These confidence levels are taken to be the representative areas under the PDF curve in the given interval (ν_1–ν_2). We find the half area (denoted as A) under the PDF curve from each side of the interval (ν_1 or ν_2) to the minimum value (ν_{min}) by

$$A_{\nu_1} = \frac{\nu_{max} - \nu_1}{\nu_2 - \nu_1} C_{\nu_1}^2; \quad A_{\nu_2} = \frac{\nu_2 - \nu_{min}}{\nu_2 - \nu_1} C_{\nu_2}^2.$$

This is applied to Δ_1, which is closest to ν_{min}. For subsequent Δ and ν, we find the corresponding half areas (A), by cumulatively adding to the previous estimate of half area (A). We bin the Δ values in small steps to estimate these half areas for many points. From these half areas (A), the cumulative density function (CDF) for each distribution can be found as

$$F(\nu) = \int_{-\infty}^{\nu} p(\nu) d\nu = \begin{cases} A_{\nu_{min}} - A_{\nu_{max}} & \nu < \nu_{min} \\ A_{\nu_{min}} + A_{\nu_{max}} & \nu > \nu_{min} \end{cases}.$$

Once we obtain the CDF, the PDF can be calculated by taking a derivative of this, which can be written as

$$p(\nu) = \frac{d}{d\nu} F(\nu).$$

APPENDIX C
COMBINING THE ESTIMATES

The combination of estimates can be done using the likelihood $P(M_i | X_i)$, which denotes the PDF of mass from observations X_i of method i (see Appendix B for details on estimation of the PDF). We follow the approach as explained below to find the combined/overall limits of the mass from the independent PDF only. Thereby, we combine the estimate in Section 3.1 with 3.3 and Section 3.2 with 3.3 separately.

Figure 5. Chi-square variation plot of parameter ν used to obtain the PDF. Plot shows different levels of χ_i^2 at which the confidence levels and the confidence intervals (ν_1, ν_2) are estimated. The PDF is calculated from these confidence levels.
C.1. Joint Likelihood Estimation Using the Naive Bayes Theorem.

The joint likelihood of the three methods for BH mass estimation can be obtained by using the simple procedure known as the "naive Bayes" algorithm, where

$$P(M) = K \prod P(M_i | X_i).$$

The naive Bayes approach has commonly been used for multivariate classification of objects like stars in catalogs (see Broos et al. 2013). We use it here for parameter confidence level estimation. Here $P(M)$ denotes the combined/final PDF of mass and K is the normalization constant to get unit area PDF.

This method, when applied to Gaussian distributions, gives the exact weighted average estimate, where the mean of the joint PDF will give the error on the weighted average.

Thus, in this method the width of the final PDF is always less than that of each individual PDF. However, this method can only be applied to PDFs that are independent of each other. In classification schemes, usage of the naive Bayes approach has shown to give acceptable results even if independence is violated, as is shown in Domingos & Pazzani (1997). In our case, if dependence among our mass estimation methods exists and is not accounted for, this leads to underestimation of the width of the final PDF. To overcome this, we do not combine the PDFs from the methods that may have some level of dependence. Another limitation of this method is that it gives an offset/biased PDF, if any of the individual PDFs have unaccounted biases/systematics. To calculate the joint PDF, we perform a multiplication of the individual PDFs for every value of mass in the range from $6 M_\odot$ to $20 M_\odot$.

Once we obtain the final PDF $P(M)$, we quote the confidence interval of the mass by finding the limits beyond which the PDF encompasses 5% of the distribution on each side, i.e., we compute M_1 and M_2 to give $P(M < M_1) = P(M > M_2) = 0.05$. Thus, we find the 90% confidence interval on the mass. We note that this interval may extend to a smaller level of confidence than 90% owing to an increase in the width of the combined PDF in the case of unaccounted dependence between the individual PDFs.

REFERENCES

Agrawal, V. K., & Bhattacharyya, S. 2003, A&A, 398, 223

Altamirano, D., & Belloni, T. 2012, ApJL, 747, L4

Altamirano, D., Belloni, T., Linares, M., et al. 2011, ApJL, 742, L17

Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis Software and Systems V, ed. G. Jacoby & J. Barnes (San Francisco, CA: ASP), 17

Bodaghee, A., Rahoui, F., Tomsovich, J. A., & Rodriguez, J. 2012, ApJ, 751, 113

Broos, P. S., Getman, K. V., Povich, M. S., et al. 2013, ApJS, 209, 32

Cambier, H. J., & Smith, D. M. 2013, ApJ, 767, 46

Capitani, F., Bazzano, A., Ubertini, P., et al. 2006, ApJ, 643, 376

Capitani, F., Del Santo, M., Bozzo, E., et al. 2012, MNRAS, 422, 3130

Chakrabarti, S., & Titarchuk, L. G. 1995, ApJ, 455, 623

Chakrabarti, S. K., Deb Nath, D., Nandi, A., & Pal, P. S. 2008, A&A, 489, L41

Chakrabarti, S. K., Dutta, B. G., & Pal, P. S. 2009, MNRAS, 394, 1463

Chakrabarti, S. K., & Mandal, S. 2006, ApJL, 642, L49

Chakrabarti, S. K., & Manickam, S. G. 2000, ApJL, 531, L41

Chakrabarti, S. K., & Nandi, A. 2001, InPhy, 75B, 1

Das, S., Chattopadhyay, I., Nandi, A., & Molteni, D. 2014, MNRAS, 442, 251

Debnath, D., Chakrabarti, S. K., & Mondal, S. 2014, MNRAS, 440, L121

Domingos, P., & Pazzani, M. 1997, Machine Learning, 209, 103

Green, J., Bailyn, C. D., & Orosz, J. A. 2001, ApJ, 554, 1290

in’t Zand, J. J. M., Heise, J., Lowes, P., & Ubertini, P. 2003, ATel, 160, 1

Iyer, N., & Nandi, A. 2013, in ASInC, Vol. 8, ed. S. Das, A. Nandi & I. Chattopadhyay (Bangalore: ASI), 79

Kessler, R., Guy, J., Marriner, J., et al. 2013, ApJ, 764, 48

King, A. L., Miller, J. M., Raymond, J., et al. 2012, ApJL, 746, L20

Lebrun, F., Leroy, J. P., Lavocat, P., et al. 2003, A&A, 411, 141

Lee, S.-J., Ryu, D., & Chattopadhyay, I. 2011, ApJ, 728, 142

Macdonald, J. R., & Thompson, W. J. 1992, AmJPh, 60, 66

Mandal, S., & Chakrabarti, S. K. 2010, ApJL, 710, L147

Markwardt, C. B. 2009, in ASP Conf. Ser. 411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohlender, D. Durand & P. Dowler (San Francisco, CA: ASP), 251

Molteni, D., Sphonholz, H., & Chakrabarti, S. K. 1996, ApJ, 457, 805

Mondal, S., Chakrabarti, S. K., & Debnath, D. 2015, ApJ, 798, 57

Nandi, A., Debnath, D., Mandal, S., & Chakrabarti, S. K. 2012, A&A, 542, A56

O’Neill, P. M., Kuulkers, E., Sood, R. K., & van der Klis, M. 2002, MNRAS, 336, 217

Pahari, M., Yadav, J. S., & Bhattacharyya, S. 2011, arXiv:1105.4694

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1992, Numerical Recipes in C (2nd ed.; Cambridge: Cambridge Univ. Press)

Radhika, D., & Nandi, A. 2014, AdSpR, 54, 1678

Rao, A., & Vadawale, S. V. 2012, ApJL, 757, L12

Rebusco, P., Molaskal, P., Kluźniak, W., & Abramowicz, M. A. 2012, A&A, 540, L4

Reid, M. J., McClintock, J. E., Steiner, J. F., et al. 2014, ApJ, 796, 2

Remillard, R. A., & McClintock, J. E. 2006, ARA&A, 44, 49

Revnivtsev, M., Gilfanov, M., Churazov, F., & Sunyaev, R. 2003, ATel, 150, 1

Rodriguez, J., Corbel, S., Caballero, I., et al. 2011, A&A, 533, L4

Romano, P., Campa, S., Chincarini, G., et al. 2006, A&A, 465, 917

Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337

Shaposhnikov, N. 2011, ATel, 3179, 1

Shaposhnikov, N., & Titarchuk, L. 2007, ApJ, 663, 445

Shaposhnikov, N., & Titarchuk, L. 2009, ApJ, 699, 453

Smith, D. M., Dawson, D. M., & Swank, J. H. 2007, ApJ, 669, 1138

Smith, D. M., Heindl, W. A., Markwardt, C. B., & Swank, J. H. 2001, ApJL, 554, L14

Smith, D. M., Heindl, W. A., & Swank, J. H. 2002, ApJL, 579, L14

Smith, D. M., Heindl, W. A., & Swank, J. H. 2002, ApJ, 569, 362

Titarchuk, L., & Fiorito, R. 2004, ApJ, 610, 988

Titarchuk, L., & Wood, K. 2002, ApJL, 577, L23

Wu, K., Soria, R., Campbell-Wilson, D., et al. 2002, ApJ, 565, 1161

Yang, H.-Y. K., Sutter, P. M., & Ricker, P. M. 2012, MNRAS, 427, 1614

Zhang, W., Jahoda, K., Swank, J. H., Morgan, E. H., & Giles, A. B. 1995, ApJ, 449, 930