A Note on the Weak Dirac Conjecture

Zeye Han
Kunming, Yunnan, China
migaoyan@sina.com

Submitted: Dec 19, 2016; Accepted: Mar 21, 2017; Published: Mar 31, 2017
Mathematics Subject Classifications: 52C10, 52C30, 52C35

Abstract

We show that every set \(P \) of \(n \) non-collinear points in the plane contains a point incident to at least \(\lceil \frac{n}{3} \rceil + 1 \) of the lines determined by \(P \).

Keywords: Configurations of points; Incident-line-numbers; Weak Dirac Conjecture, Hirzebruch-type inequalities

In this note we denote by \(P \) a set of non-collinear points in the plane, and by \(\mathcal{L}(P) \) the set of lines determined by \(P \), where a line that passes through at least two points of \(P \) is said to be determined by \(P \). For a point \(P \in P \), we denote by \(d(P) \) the number of lines of \(\mathcal{L}(P) \) that are incident to \(P \), called the incident-line-number or multiplicity of \(P \); see [4] and [14]. Finally, we denote by \(l_r \) the number of lines that pass through precisely \(r \) points of \(P \).

Dirac’s conjecture is a well-known problem in combinatorial geometry. In 1951, Dirac [5] showed that:

Theorem 1. Every set \(P \) of \(n \) non-collinear points in the plane contains a point incident to at least \(\lceil \sqrt{n} + 1 \rceil \) lines of \(\mathcal{L}(P) \).

Dirac [5] made (and verified for \(n \leq 14 \)) the following conjecture.

Conjecture 2 (Dirac Conjecture). Every set \(P \) of \(n \) non-collinear points in the plane contains a point incident to at least \(\lceil \frac{n}{2} \rceil \) lines of \(\mathcal{L}(P) \).

The conjectured bound is tight, for instance, Dirac [5] constructed a set \(P \) of \(n \) non-collinear points with \((l_2, l_3, l_4) = \left(\frac{n^2}{4} - \frac{3n}{2} + 3, \frac{n}{2} - 1, 2 \right) \) for every even-integer \(n \geq 6 \). In 2011, Akiyama, Ito, Kobayashi, and Nakamura [1] proved there exists a set \(P \) of \(n \) non-collinear points for every integer \(n \geq 8 \) except \(n = 12k + 11(k \geq 4) \), satisfying \(d(P) \leq \lceil \frac{n}{2} \rceil \) for every point \(P \in P \). However, Dirac’s conjecture is false, some counter-examples were found in [1, 7–11].

The following natural conjecture arises [4].
Conjecture 3 (Strong Dirac Conjecture). Every set P of n non-collinear points in the plane contains a point incident to at least $\left\lfloor \frac{n}{2} \right\rfloor - c_0$ lines of $L(P)$ with $c_0 > 0$.

In 1961, Erdős [6] proposed the following weakened conjecture.

Conjecture 4 (Weak Dirac Conjecture). Every set P of n non-collinear points in the plane contains a point incident to at least $\left\lceil \frac{n}{c_1} \right\rceil$ lines of $L(P)$ with $c_1 > 0$.

In 1983, the Weak Dirac Conjecture was proved independently by Beck [2] and Szemerédi and Trotter [20] with c_1 unspecified or very large.

In 2012, based on Crossing Lemma, Szemerédi-Trotter Theorem, and Hirzebruch’s inequality, Payne and Wood [17] proved the following theorem,

Theorem 5. Every set P of n non-collinear points in the plane contains a point incident to at least $\left\lceil \frac{n^3}{37} \right\rceil$ lines of $L(P)$.

In 2016, Pham and Phi [18] refined the result of Payne and Wood to give:

Theorem 6. Every set P of n non-collinear points in the plane contains a point incident to at least $\left\lceil \frac{n}{26} \right\rceil + 2$ lines of $L(P)$.

There are some results in algebraic geometry providing constraints on line arrangements in the projective plane. In [12, 13], Hirzebruch studied algebraic surfaces constructed as abelian covers of the projective plane branched along line arrangements in the context of the so-called ball-quotients. It turned out that he obtained, as a by-product, the following result which is known as Hirzebruch’s inequality.

Theorem 7 (Hirzebruch’s Inequality). Let P be a set of n points in the plane with at most $n - 3$ collinear. Then

$$l_2 + \frac{3}{4}l_4 \geq n + \sum_{r \geq 5} (2r - 9)l_r.$$

In 2003, Langer [15] provided a variation on the classical Bogomolov-Miyaoka-Yau inequality [16] using the so-called orbifold Euler numbers.

Theorem 8 (Orbifold Langer-Miyaoka-Yau Inequality). Let (X, D) be a normal projective surface with a \mathbb{Q}-divisor $D = \sum_i a_i D_i$ with $0 \leq a_i \leq 1$. Assume that the pair (X, D) is log canonical and $K_X + D$ is \mathbb{Q}-effective. Then

$$(K_X + D)^2 \leq 3e_{orb}(X, D),$$

where $e_{orb}(X, D)$ denotes the global orbifold number for $(X, \sum a_i D_i)$. Moreover, if equality holds, then $K_X + D$ is nef.

Bojanowski in [3] provided the following Hirzebruch-type inequality for line arrangements in the projective plane, which is also a special case of a much stronger result from the same thesis [3, Theorem 2.3]. It is worth pointing out that following Langer’s ideas, Pokora [19] provided some Hirzebruch-type inequalities for curve configurations in the projective plane with transversal intersection points where Bojanowski’s result is a special case.
Theorem 9 (Bojanowski-Pokora Inequality). Let \mathcal{P} be a set of n points in the plane with at most $\left\lfloor \frac{2n}{3} \right\rfloor$ collinear. Then
\[
l_2 + \frac{3}{4}l_3 \geq n + \frac{1}{4} \sum_{r \geq 5} r(r - 4)l_r.
\]

Based on the Bojanowski-Pokora inequality, we show the following result.

Theorem 10. Every set \mathcal{P} of n non-collinear points in the plane contains a point incident to at least $\left\lceil \frac{n}{3} \right\rceil + 1$ lines of $\mathcal{L}(\mathcal{P})$.

Proof. Suppose some line L passes through $\left\lceil \frac{n}{3} \right\rceil + 1$ or more points of \mathcal{P}. Since \mathcal{P} is non-collinear, there exists a point $P \in \mathcal{P}$ such that $P \not\in L$. Consider the (distinct) lines determined by P and $\mathcal{P} \cap L$. Then P is incident to at least $\left\lceil \frac{n}{3} \right\rceil + 1$ lines of $\mathcal{L}(\mathcal{P})$, and the theorem holds. Now assume that \mathcal{P} does not contain $\left\lceil \frac{n}{3} \right\rceil + 1$ collinear points.

According to Theorem 9,
\[
l_2 + \frac{3}{4}l_3 \geq n + \frac{1}{4} \sum_{r \geq 5} r(r - 4)l_r = n + \frac{1}{2} \sum_{r \geq 5} \binom{r}{2}l_r - \frac{3}{4} \sum_{r \geq 5} rl_r.
\]

Since $\sum_{r \geq 2} \binom{r}{2}l_r = \binom{n}{2}$,
\[
l_2 + \frac{3}{4}l_3 \geq n + \frac{1}{2} \left(\binom{n}{2} - \frac{4}{2} \binom{r}{2}l_r \right) - \frac{3}{4} \sum_{r \geq 5} rl_r.
\]

That is,
\[
\sum_{r \geq 2} rl_r \geq \frac{n(n + 3)}{3}.
\]

Since $\sum_{P \in \mathcal{P}} d(P) = \sum_{r \geq 2} rl_r$,
\[
\sum_{P \in \mathcal{P}} d(P) \geq \frac{n(n + 3)}{3}.
\]

By the pigeonhole principle, \mathcal{P} contains a point incident to at least $\left\lceil \frac{n}{3} \right\rceil + 1$ lines of $\mathcal{L}(\mathcal{P})$.

Acknowledgements

I am very grateful to the editor and the referees for their suggestions about this note, which included grammar, historical comments about algebraic geometry, and references.
References

[1] Jin Akiyama, Hiro Ito, Midori Kobayashi, and Gisaku Nakamura. Arrangements of \(n \) points whose incident-line-numbers are at most \(n/2 \). *Graphs Combin.*, 27(3):321-326, 2011.

[2] József Beck. On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry. *Combinatorica*, 3(3-4):281-297, 1983.

[3] R. Bojanowski. Zastosowania uogólnionej nierówności Bogomolova-Miyaoka-Yau. *Master Thesis (in Polish)*, 2003. http://www.mimuw.edu.pl/~alan/postscript/bojanowski.ps.

[4] P. Brass, W. Moser, J. Pach. *Research Problems in Discrete Geometry*. Springer, 2005.

[5] Gabriel A. Dirac. Collinearity properties of sets of points. *Quart. J. Math., Oxford Ser. (2)*, 2:221-227, 1951.

[6] Paul Erdős. Some unsolved problems. *Magyar Tud. Akad. Mat. Kutató Int. Közl.*, 6:221-254, 1961.

[7] S. Felsner. *Geometric Graphs and Arrangements*. Vieweg, Wiesbaden, 2004.

[8] B. Grünbaum. A catalogue of simplicial arrangements in the real projective plane. *Ars Mathematica Contemporanea*, 2(1):1-25, 2009.

[9] B. Grünbaum. *Arrangements and Spreads*. CBMS Regional Conference Series in Mathematics, No. 10. AMS, Providence, RI, 1972.

[10] B. Grünbaum. *Arrangements of hyperplanes*. Proc. Second Louisiana Conf. on Combinatorics, Graph Theory and Computing, R. C. Mullin et al., eds., Louisiana State University, Baton Rouge, 1971.

[11] B. Grünbaum. Dirac’s conjecture concerning high-incidence elements in aggregates. *Geombinatorics*, 2:48-55, 2010.

[12] F. Hirzebruch. Arrangements of lines and algebraic surfaces. *Progress in Mathematics 36, Birkhäuser Boston*, 113-140, 1983.

[13] F. Hirzebruch. Singularities of algebraic surfaces and characteristic numbers. *Proc. Lefschetz Centennial Conf. (Mexico City, 1984), Part I, Contemporary Mathematics 58*, AMS, 141-155, 1986.

[14] V. Klee and S. Wagon. *Old and New Unsolved Problems in Plane Geometry and Number Theory*. The Mathematical Association of America, 1991.

[15] A. Langer. Logarithmic orbifold Euler numbers of surfaces with applications. *Proceedings of the London Mathematical Society*, 86(2), 358-396, 2003.

[16] Y. Miyaoka. On the Chern numbers of surfaces of general type. *Invent. Math.* 42(1):225-237, 1977.

[17] Michael S. Payne, David R. Wood. Progress on Dirac’s Conjecture. *The Electronic Journal of Combinatorics*, 21(2), #P2.12, 2014.
[18] H. H. Pham, and T. C. Phi. A new progress on Weak Dirac conjecture. http://arxiv.org/abs/1607.08398.

[19] P. Pokora. The orbifold Langer-Miyaoka-Yau inequality and Hirzebruch-type inequalities. http://arxiv.org/abs/1612.05141.

[20] Endre Szemerédi and William T. Trotter, Jr.. Extremal problems in discrete geometry. Combinatorica, 3(3-4):381-392, 1983.