A new projection technique for developing a Liu-Storey method to solve nonlinear systems of monotone equations

M M Mahdi¹ and M A K Shiker¹,²

¹Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Babil-Iraq.
E-mail: ¹mohmath44@gmail.com, ²mmtmmlhh@yahoo.com
²Corresponding Author.

Abstract. The projection technique is a very important method and efficient for solving unconstraint optimization and nonlinear equations. In this study, we developed a Liu-Storey (LS) algorithm for solving monotone equations of nonlinear systems. The new algorithm satisfies the sufficient descent condition and it’s a suitable method of large scale equations for its limited memory. We established a global convergence of suggest method under the mild conditions. Numerical results proved that the new algorithm works well and promising.

Keywords: Projection Algorithm, Monotone Equations, Nonlinear Systems and Conjugate Gradient Method.

1. Introduction

As we know, the projection approach is a very simple iterative method to find a solution vector \(\mathbf{x}^* \) of nonlinear systems:

\[
F(x) = 0, \quad x \in \mathbb{R}^n,
\]

s.t. \(F: \mathbb{R}^n \rightarrow \mathbb{R}^n \) is continuous mapping and monotonicity condition hold, i.e. \(\langle F(x) - F(y), x - y \rangle \geq 0, \forall x, y \in \mathbb{R}^n \). This problem arises in various applications in applied mathematics, power engineering, economics and chemical systems. For example, the variational inequality [1], the problems in proximal algorithm with Bregman distances [2], the problems of economic equilibrium [3] can be reformulated as (1.1). For solving systems of equation, there are many numerical methods including the Newton method [4], derivative-free method [5] and projection technique based gradient direction [6]. Many from that approaches are iterative process begin with \(x_k \), the next iterate is \(x_{k+1} = x_k + \alpha_k d_k \), \(k \in \mathbb{N} \), where \(d_k \) is called search direction while \(\alpha_k \) denote step length. We mixed the conjugate gradient method with projection algorithm to be a suitable to deal with large-scale equations. In 1964 Goldstein [7] introduced the first projection technique for convex problems in Hilbert spaces. It was then Solodov and Svaiters [8] extended Goldstein method and constructed a hyperplane \(\mathcal{H}_k \) that strictly separates \(x_k \) from the solution set of (1.1) i.e.

\[
\mathcal{H}_k = \{ x \in \mathbb{R}^n | F(z_k)^T(x - z_k) = 0 \}
\]

s.t. \(z_k = x_k + \alpha_k d_k \) is created by employing a line search condition with the direction \(d_k \) s.t. \(F(z_k)^T(x_k - z_k) > 0 \). With the monotonicity of \(F \), we own that for each \(x^* \) s.t. \(F(x^*) = 0 \),

\[
F(z_k)^T(x^* - z_k) \leq 0.
\]

Yet, by Solodov and Svaiters [8] the following approximation \(x_{k+1} \) is constructed by projecting \(x_k \) onto \(\mathcal{H}_k \) i.e.

\[
x_{k+1} = P_{\mathcal{H}_k}[x_k - \delta F(z_k)],
\]

[1] Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
\[\mathcal{S}_k = \frac{F(z_k)^T(x_k - z_k)}{\|F(z_k)\|^2}, \]

Where \(\Omega \subseteq \mathbb{R}^n \), be a closed convex.

Recently, the Liu-Storey (LS) conjugate gradient formula \([9]\) is

\[d_{k+1} = \begin{cases} -F_{k+1} + \frac{\alpha_k F_k d_k}{\|F_k d_k\|^2} & k \geq 1 \\ -F_{k+1} & k = 0 \end{cases} \]

Where \(y_k = F_k - F_{k-1} \). Depending on the last method, we will suggest the developed (LS) form for solving nonlinear systems \((1.1)\) such that

\[d_{k+1} = \begin{cases} \lambda_k F_k + \frac{F_k^T w_k d_k - d_k^T F_k w_k}{\max\{\|d_k\|, \|w_k\|, \|d_k w_k\|, -d_k^T F_k\}} & k \geq 1 \\ -F_k & k = 0 \end{cases} \] \hspace{1cm} (1.3)

where \(y_k = F_k - F_{k-1} + r \times s_k \), \(s_k = z_k - x_k \), \(r > 0 \), \(\lambda, \theta > 0 \) is fixed. It is simply to offer that our formula can be reduced to a criterion Liu-Storey technique if applied exact line search. The new line search of the proposed algorithm:

\[-F(x_k + \alpha_k d_k)^T d_k \geq \frac{\tau}{2} \gamma \alpha_k \|d_k\|^2, \quad \text{s.t.} \quad \alpha_k = \rho \Omega \] \hspace{1cm} (1.4)

where \(\rho, \tau, \Omega \) and \(\gamma \in (0, \infty) \). We will adopt the projection based technique to present a developed (LS) gradient method with projection approach to solve monotone equations of nonlinear systems.

In our work, we discuss a developed (LS) projection algorithm for nonlinear systems \((1.1)\). In the next section, we introduce the new algorithm with some assumptions and analysis it's the global convergence. Finally, some numerical experiments and conclusion are presented in the last section.

2. Projection Based Method

Now, projection gradient technique is another efficient algorithm to solve large scale unconstrained minimization problem:

\[\min_{x \in \mathbb{R}^n} f(x), \] \hspace{1cm} (2.1)

where \(f : \mathbb{R}^n \to \mathbb{R} \) is smooth nonlinear function because of its simplicity and low storage requirements. The steps of a new algorithm are stated as follows:

2.1. New projection algorithm (MOH2):

1. Given initial point \(x_0 \in \mathbb{R}^n \), and parameters \(s, \theta > 0 \) and \(\rho, \tau, \epsilon, \gamma, \Omega \in (0, 1) \).
2. If \(\|F(x_k)\| \leq \varepsilon \) break, Otherwise find \(d_k \) by \((2.5)\).
3. Determine \(\alpha_k = \rho \Omega \), such that

\[-F(x_k + \alpha_k d_k)^T d_k \geq \frac{\tau}{2} \gamma \alpha_k \|d_k\|^2 \]

4. Let \(z_k = x_k + \alpha_k d_k \).
5. If \(\|F(z_k)\| \leq \varepsilon \) break and set \(x_{k+1} = z_k \). Otherwise compute \(x_{k+1} \) by \((6)\).
6. Let \(k = k + 1 \), and return to stage (2).

3. Global Convergence Test

In this part, we investigate the global convergence of the offer approach and we need some necessary assumptions:

- B1. The solution set of nonlinear equations \((1.1)\) is nonempty.
- B2. The mapping \(F(x) \) is monotone and Lipschitz continuous of \(\mathbb{R}^n \), i.e., \(\exists L > 0 \), s.t.

\[\|F(x) - F(y)\| \leq L \|x - y\|, \quad \text{for all} \quad x, y \in \mathbb{R}^n. \] \hspace{1cm} (3.1)

In the next lemma we display that the new algorithm (MOH2) has a sufficient descent condition.
3.1. **Lemma:** For each \(k \geq 0 \), we have
\[
F(x_k)^T d_k = -\lambda_k \| F_k \|^2
\]
(3.2)
And
\[
\| d_k \| \leq \left(\lambda + \frac{2}{\theta} \right) \| F_k \|
\]
(3.3)

Proof: When \(k = 0 \), then (3.2) and (3.3) holds, since \(d_0 = -F(x_0) \), from the definition of \(d_k \) in (1.3), we have
\[
d_{k+1}^T F_k(x_k) = -\lambda \| F(x_{k+1}) \|^2 + \left[\frac{F_k^T w_k d_k - d_k^T F_{k+1} w_k}{\max \{ \theta \| d_k \| \| w_k \|, \| d_k^T w_k \| - d_k^T F_k \}} \right] F_{k+1} = -\lambda \| F(x_{k+1}) \|^2.
\]
Thus (3.2) hold for all \(k \geq 1 \), and
\[
\| d_{k+1} \| = \left\| -d_k^T w_k \theta \| w_k \| \right\| \leq \lambda \| F(x_{k+1}) \| + \left[\| w_k \| \| d_k \| \| F_{k+1} \| + \| w_k \| \| d_k \| \| F_{k+1} \| \| d_k \| \right] \max \{ \theta \| d_k \| \| w_k \|, \| d_k^T w_k \| - d_k^T F_k \}
\]
\[
\| d_{k+1} \| \leq \left(\lambda + \frac{2}{\theta} \right) \| F(x_{k+1}) \|.
\]
And the inequality follows form
\[
\max \{ \theta \| d_k \| \| w_k \|, \| d_k^T w_k \| - d_k^T F_k \} \geq \theta \| d_k \| \| w_k \|.
\]
Then (3.3) is hold.

Now, we derive some properties of algorithm (2.1) and show that the line search is well defined.

3.2. **Lemma:** Let assumptions (B1, B2) satisfied, impels that algorithm (2.1) will produce an approximation \(x_k = x_k + \alpha_k d_k \) in a limited number of backtracking procedure.

Proof: Assume \(\| F(x_k) \| \rightarrow 0 \) not satisfy, or algorithm (2.1) breaks. Then \(\exists \epsilon > 0 \) satisfying \(\| F(x_k) \| > \epsilon \) for all \(k \geq 0 \).

We use a contradiction to establish this lemma, assume that the property (1.4) not satisfy for several iteration indexes \(k_\ast \).

Set \(\alpha_k = \rho \geq 0 \). It can be concluded
\[
- F(x_k + \alpha_k, d_k, x_k) d_k, x_k < \frac{1}{2} \gamma \alpha_k \| (x_k) \|^2.
\]
By assumptions B1,B2 and (3.2) in Lemma (3.1), we have
\[
\| F(x_k) \|^2 = - F(x_k)^T d_k = [F(x_k^k + \alpha_k, d_k - F(x_k)^T d_k - F(x_k^k + \alpha_k, d_k^k)]^T d_k
\]
\[
= L \alpha_k \| (d_k) \|^2 + \lambda \frac{\gamma}{2} \| (d_k) \|^2 + \lambda \frac{\gamma}{2} \| (d_k) \|^2
\]
\[
\| F(x_k) \|^2 = \alpha_k \| (d_k) \|^2 \left[L + \frac{\gamma}{2} \right]
\]
by assumption B2, we conclude that \(\exists M > n \) s.t.
\[
\| F(x_k) \|^2 \leq M.
\]
Thus, we have
\[
\alpha_k > \left[\frac{\| F(x_k) \|^2}{L + \frac{\gamma}{2} \| (d_k) \|^2} \right] > \frac{\epsilon^2}{\left[L + \frac{\gamma}{2} \right] \left[\lambda M + \frac{\gamma}{2} \right] ^2} > 0.
\]
This impels contradicts with definition of \(\alpha_k \). So the line search (3.4) can hold a nonnegative step length \(\alpha_k \) in a limited number of backtracking steps its well defined.

Now, the next lemma like to Lemma (3.1) in Solodov and Svaiter [8], so we omit the proof.

3.3. **Lemma:** Suppose that assumptions (B1, B2) satisfied and the sequence \(\{ x_k, z_k \} \) is produced by algorithm (2.1), for all \(x^\ast \) is s solution of (1.1) s.t. \(F(x^\ast) = 0 \), then
And, the sequences \(\{x_k, z_k\} \) are bounded, and
\[
\begin{align*}
\lim_{k \to \infty} \|x_k - z_k\| &= 0 \\
\lim_{k \to \infty} \|x_{k+1} - x_k\| &= 0.
\end{align*}
\]

3.4. Theorem: Suppose that assumptions (B1, B2) satisfied and the sequence \(\{x_k\} \) be produced by algorithm (2.1), then
\[
\lim_{k \to \infty} \inf \|F_k\| = 0.
\]

Proof: Assume that (3.8) is not hold. Set a fixed \(\epsilon > 0 \) s.t. \(\|F_k\| \geq \epsilon \) this with (3.2) implies that
\[
\|d_k\| \geq \lambda \|F_k\| \geq \lambda \epsilon, \quad \forall k \geq 0.
\]

From relations (3.5), (3.6) and (3.7), we obtain
\[
\|d_{k+1}\| \leq \left(1 + \frac{2}{\theta}\right)\|F_{k+1}\| \leq \left(1 + \frac{2}{\theta}\right)\lambda \epsilon, \forall k \geq 0.
\]

This mean a sequence \(\{d_k\} \) is bounded. Then \(\exists N_1 \) infinite index and an a limit point \(d \) holds
\[
\lim_{k \to \infty} \|d_k\| = d, \quad k \in N_1.
\]

Via the boundedness of \(\{x_k\} \) in lemma (3.3), we conclude that \(\exists \) there exists a limit point \(\bar{x} \) and there is set \(N_2 \subset N_1 \) be infinite index holds
\[
\lim_{k \to \infty} x_k = \bar{x}, \quad k \in N_2.
\]

From lemma (3.2) and lemma (3.3), w.e have
\[
\alpha_k \|d_k\| \to 0, \quad k \to \infty.
\]

this together with (3.10), we get
\[
\lim_{k \to \infty} a_k = 0.
\]

From (1.4) we have
\[
-F(x_k + a_k d_k) d_k \leq \frac{\tau}{2} \gamma \alpha_k \|d_k\|^2.
\]

Where \(\alpha_k = \frac{d_k}{\rho} \)

Therefore, taking the limit as \(k \to \infty \) in both sides of (3.11) for all \(k \in N_2 \) generates \(F(\bar{x})^T \bar{d} > 0 \).

In the other term, by making the limit as \(k \to \infty \) in both terms of (3.2) for all \(k \in N_2 \), such that \(F(\bar{x})^T \bar{d} \leq 0 \). Which generates a contradiction. \(\square \)

4. Numerical Experiments

In the present section, we shown the our results of numerical experiments to analyze the performance of (MOH2) and compare it with the three famous methods, a scaled derivative-free projection method (UU)[10], a modified Liu-Story conjugate projection method (LS)[11] and a projection based technique (DFBP)[12].

In the suggested algorithm, we used the parameters: \(\rho = 0.7, \sigma = 0.1, \tau = 0.4, \theta = 2, \beta = 0.5 \) and \(\epsilon = 10^{-4} \). The parameters in the LS, PDFB and UU come from [10], [11] and [12] respectively. We take on the similar finish condition for each the forth algorithms i.e. we break them when the upper number of approximation override 500000 or the inequality \(\|F(x_k)\| \leq 10^{-4} \) is satisfied. All algorithms written in MATLAB program R2014a and turn on a PC (win8) CPU 2.30 GHz and 4 GB RAM where all these method applied in the same computer.

We solved 7 constraint test problem see Awwal et al. [3] by using 8 initial different starting point similar to the problems in [13, 14, 15], such that
\[
\begin{align*}
x_0 &= (10,10,...,10)^T, \quad x_1 = (-10,-10,...,-10)^T, \quad x_2 = (1,1,...,1)^T, \quad x_3 = (-1,-1,...,-1)^T \\
x_4 &= (1,\frac{1}{2},...,\frac{1}{n})^T, \quad x_5 = (0,1,0,1,...,1)^T, \quad x_6 = (\frac{1}{n},\frac{1}{n},...,\frac{1}{n})^T, \quad x_7 = (1,\frac{1}{n},...,\frac{1}{n},0)^T.
\end{align*}
\]

The preliminary numerical experiments are reported in tables (4.1) and (4.2) for number of iteration (Ni), number of function evaluations (Nf), CPU time (CPU), probability (Prob) and dimension (Dim).
It can be observed from the tables that our proposed MOH2 method wins higher percentage of the numerical experiments. Numerical results listed in tables (4.1) and (4.2) show that the new method is efficient for solving problem (1.1).

The present performance profile of number of iteration in figure (1), performance number of evolutions in figure (2) and performance of CPU time in figure (3). The performance of suggested method (MOH2) it is obvious from these figures much best than LS, DFBP and UU methods, whenever, the introduced methods are efficiently and promising.

Table 4.1: Numerical Results

P. Dim.	S.P.	New	LS	DFBP	UU			
x₀ 20000	74	150	30	322	56	171	261	523
x₁ 20000	74	150	30	322	56	171	261	523
x₂ 20000	62	126	5	22	33	94	269	539
x₃ 20000	62	126	5	22	33	94	269	539
x₄ 20000	40	82	43	175	10	22	170	341
x₅ 20000	52	106	3	12	7	16	228	457
x₆ 20000	60	122	70	283	31	85	260	521
x₇ 20000	60	122	70	283	31	85	260	521
x₀ 50000	74	150	30	322	29	60	304	611
x₁ 50000	72	146	33	368	135	412	89	180
x₂ 50000	62	126	5	22	28	58	208	538
x₃ 50000	63	128	13	101	123	372	92	187
x₄ 50000	40	82	58	239	18	38	196	340
x₅ 50000	52	106	3	12	24	50	207	456
x₆ 50000	60	122	92	374	27	56	259	520
x₇ 50000	60	122	92	374	27	56	259	520
x₀ 10000	1122083	964783	140299	1199292	50582	140852	80563	161129
x₁ 10000	1135515	1073878	152995	1309110	55873	156143	89469	178941
x₂ 10000	99605	789574	118372	1009956	41605	115103	65675	131353
x₃ 10000	117988	935984	136851	1168990	49004	135936	77670	155343
x₄ 10000	1101372	806584	120253	1025846	42163	116584	66492	132987
x₅ 10000	98007	780850	116540	993990	40850	112790	64229	128461
x₆ 10000	41822	326437	50627	42438	21682	42438	28215	56433
x₇ 10000	42438	334940	50627	42438	21682	42438	28215	56433
Table 4.1: Numerical Results – continued

P. Dim.	S.P	New	LS	DFBP	UU				
10000	x₀	161	641	1218	21600	386	1057	753	1509
	x₁	151	561	1255	21712	385	1055	754	1511
	x₂	150	558	1220	21610	387	1059	753	1509
	x₃	146	533	1218	21598	385	1055	753	1509
	x₄	156	599	1218	21600	387	1059	753	1509
	x₅	147	534	1218	21599	385	1055	753	1509
	x₆	160	636	1218	21599	388	1061	753	1509
	x₇	158	617	1218	21599	390	1065	753	1509
5000	x₀	70	142	21	178	58	169	311	624
	x₁	72	146	36	359	64	187	322	646
	x₂	64	130	6	30	40	115	283	568
	x₃	67	136	12	80	50	145	298	598
	x₄	66	134	9	55	46	133	292	586
	x₅	66	134	9	53	45	130	291	584
	x₆	65	132	8	45	43	124	288	578
	x₇	65	132	8	45	43	124	288	578
50000	x₀	493	3130	11113	22417	19422	38854	310748	621498
	x₁	64	132	30	289	408	1685	174	350
	x₂	487	3120	11089	22180	19411	38824	310670	621342
	x₃	63	128	6	38	224	825	122	246
	x₄	49	130	636	1274	1119	2240	17977	35956
	x₅	453	3045	10880	21762	19042	38086	304721	609444
	x₆	475	3052	10938	21878	19147	38296	306459	612920
	x₇	475	3052	10938	21878	19147	38296	306457	612916

Figure 1. Performance of the iterations number.
Figure 2. Performance of the function evaluations.
Table 4.2: Numerical results (CPU time)

P. Dim.	S. P	CPU time			
		New	LS	DFBP	UU
20000	x_0	0.64065	4.78125	0.75000	3.81250
20000	x_1	0.65625	3.31250	0.79687	2.75000
20000	x_2	0.51562	0.07812	0.37500	2.40620
20000	x_3	0.60937	0.12500	0.35937	1.87500
20000	x_4	0.35937	0.87500	0.14062	1.07812
20000	x_5	0.45312	0.09375	0.07812	1.43750
20000	x_6	0.50000	1.50000	0.40625	1.79687
20000	x_7	0.42187	1.26562	0.48437	1.67187
50000	x_0	0.68750	4.48437	0.31250	4.37500
50000	x_1	0.57812	3.46875	1.73437	0.93750
50000	x_2	0.56250	0.06250	0.18750	2.48437
50000	x_3	0.51562	0.46875	1.40600	0.76562
50000	x_4	0.39062	1.17187	0.14062	1.10937
50000	x_5	0.45312	0.0312	0.25000	1.54687
50000	x_6	0.48437	1.60937	0.26562	1.7187
50000	x_7	0.50000	1.43750	0.21875	1.87500
50000	x_0	3081.03125	4109.140625	458.90625	579.59375
50000	x_1	3416.42187	4762.203125	501.84375	649.46875
50000	x_2	2751.17187	3138.265625	365.04687	470.57812
50000	x_3	3071.59375	3663.25000	432.87500	556.98437
50000	x_4	2537.18750	4082.46875	378.15625	473.28125
50000	x_5	2453.28125	3673.75000	366.93750	461.01562
50000	x_6	1028.90625	1352.04687	155.93750	200.20312
50000	x_7	1054.93750	1644.07812	154.65625	201.29687
10000	x_0	0.20312	1.51562	0.81250	0.60937
10000	x_1	0.35937	5.18750	1.23437	0.73437
10000	x_2	0.20312	0.95312	0.43750	0.32812
10000	x_3	0.23437	3.10937	0.85937	0.43750
10000	x_4	0.15625	2.90625	0.85937	0.32812
10000	x_5	0.20312	2.65625	0.73437	0.29687
10000	x_6	0.23437	1.35937	0.87500	0.23437
10000	x_7	0.26562	1.90625	0.64060	0.25000
Table 4.2: Numerical results (CPU time) - continued

P. Dim.	S.P	CPU time	New	LS	DFBP	UU
10000	x₀	0.28120	11.25000	1.45312	2.45312	
10000	x₁	0.21875	9.04687	1.06250	1.50000	
10000	x₂	0.21875	8.46870	0.85937	1.37500	
10000	x₃	0.18750	5.84370	0.79687	1.20312	
10000	x₄	0.21875	5.76562	0.78125	1.00010	
10000	x₅	0.18750	5.84370	0.73437	0.85937	
10000	x₆	0.25000	5.71870	0.76562	0.78125	
10000	x₇	0.21875	5.73437	0.73437	0.78125	
5000	x₀	1.07812	3.35937	3.18750	8.87500	
5000	x₁	1.07812	4.82812	2.35937	5.07812	
5000	x₂	0.92187	0.32812	1.48437	4.18750	
5000	x₃	1.03125	0.82812	1.64062	4.18750	
5000	x₄	0.79687	0.50000	1.60937	4.09375	
5000	x₅	0.93750	0.53125	1.59375	4.09375	
5000	x₆	0.98437	0.43750	1.39062	4.09375	
5000	x₇	0.87500	0.34375	1.32812	4.03125	
50000	x₀	8.15625	92.17187	142.21875	1802.67180	
50000	x₁	0.54687	1.51562	6.45312	1.12500	
50000	x₂	8.03125	84.0468	136.01562	1627.96870	
50000	x₃	0.50000	0.09375	2.53125	0.67187	
50000	x₄	0.43750	4.98437	7.48437	93.81250	
50000	x₅	7.64062	82.20312	131.87500	1588.15620	
50000	x₆	7.73437	82.43750	133.81250	1661.25000	
50000	x₇	7.53125	82.26560	134.34375	1887.56250	

Figure 3. Performance of the CPU time
5. Conclusions
In the present paper, we introduce a developed Liu-Story (LS) projection type based gradient algorithm to solve the nonlinear systems of monotone equations. The new algorithm is a suitable method of large scale equations due to its low memory requirements. The proposed method satisfies the sufficient descent condition and the global convergence with some suitable assumptions. The numerical experiments indicate that the proposed technique is efficient and very competitive to solve nonlinear systems of monotone equations.

References

[1] Zhang L and Zhou W J 2006 Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196, p. 478–484.
[2] Iusem A N and Solodov M V 1977 Newton-type methods with generalized distances for constrained optimization, Optim., 41, 257-278.
[3] Awwal A M, Kumam P, Abubakar A B and Wakili A 2018 A projection Hestenes-Stiefel like method for monotone nonlinear equations with convex constraints, Thai Journal of Mathematics, 16 p.181-199.
[4] Shiker M A K and Sahib Z 2018 A modified technique for solving unconstrained optimization, J. Eng. Applied Sci., 13 9667-9671.
[5] Li Q N and Li D H 2011 A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal. 31 1625–1635.
[6] Dreeb N K, Hashim K H, Mahdi M M, Wasi H A, Dwail H H, Shiker M A K and Hussein H A 2019 Solving a large-scale nonlinear system of monotone equations by using a projection technique, Journal of Engineering and Applied Sciences, 14 10102-10108.
[7] Goldstein A A 1964 Convex programming in Hilbert space, Amer. Math. Soc. 70, 709–710.
[8] Solodov M V and Svaiter B F 1998 A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima L Qi (Eds.), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, 355-369.
[9] Liu Y and Storey C 1991 Efficient generalized conjugate gradient algorithms, Part I: Theory, J. Optim. Theory Appl., 69 129-137.
[10] Koorapetse M, Kaelo1 P and Offen1 E R 2019 A Scaled Derivative-Free Projection Method for Solving Nonlinear Monotone Equations, Bulletin of the Iranian Mathematical Society, Vol. 45, p755-770.
[11] Hu Y and Wei Z 2014 A Modified Liu-Storey Conjugate Gradient Projection Algorithm for Nonlinear Monotone Equations, International Mathematical Forum, Vol. 9 no. 36 1767-1777.
[12] Shiker M A K and Amini K 2018 A new projection-based algorithm for solving a large scale nonlinear system of monotone equations, Croatian operational research review, corrr, 9, 63-73.
[13] Hashim K H, Dreeb, N K, Dwail, H H, Mahdi M M, Wasi, H A, Shiker, M A K and Hussein H A 2019 A new line search method to solve the nonlinear systems of monotone equations, Journal of Engineering and Applied Sciences, 14 10080-10086.
[14] Amini K, Shiker M A K and Kimiae M 2016 A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations. 4 OR- Journal of operation research, 14 (2) 133-152.
[15] Hassan Z A H and Shiker M A K 2018 Using of generalized baye’s theorem to evaluate the reliability of aircraft systems. Journal of Engineering and Applied Sciences, (Special Issue13), 10797–10801.