LiSi3As6 and Li2SiAs2 with flexible SiAs2 polyanions: synthesis, structure, bonding, and ionic conductivity

Justin Mark
Iowa State University

Kathleen Lee
University of California, Davis

Maxwell A. T. Marple
University of California, Davis

Shannon Lee
Iowa State University and Ames Laboratory, shelee@iastate.edu

Sabyasachi Sen
University of California, Davis

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_manuscripts

Part of the [Materials Chemistry Commons](https://lib.dr.iastate.edu/ameslab_manuscripts)

Recommended Citation
Mark, Justin; Lee, Kathleen; Marple, Maxwell A. T.; Lee, Shannon; Sen, Sabyasachi; and Kovnir, Kirill, "LiSi3As6 and Li2SiAs2 with flexible SiAs2 polyanions: synthesis, structure, bonding, and ionic conductivity" (2020). *Ames Laboratory Accepted Manuscripts*. 599.
https://lib.dr.iastate.edu/ameslab_manuscripts/599

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
LiSi₃As₆ and Li₂SiAs₂ with flexible SiAs₂ polyanions: synthesis, structure, bonding, and ionic conductivity

Abstract

Two novel ternary phases, LiSi₃As₆ and Li₂SiAs₂, have been synthesized and characterized. Both phases have an identical Si : As ratio of 1 : 2 providing insight on how layers of the parent phase SiAs₂ accommodate excess electrons from Li cations to form Si–As anionic frameworks. LiSi₃As₆ exhibits a variety of bonding schemes involving Si–Si and As–As bonds, as well as corner-sharing SiAs₄ tetrahedra, while Li₂SiAs₂ is isostructural to the previously reported Li₂SiP₂, with adamantane-like Si₄As₁₀ units connected into 3D framework. LiSi₃As₆ and Li₂SiAs₂ are predicted to be indirect semiconductors which was experimentally confirmed by optical properties characterization. Li₂SiAs₂ exhibits low thermal conductivity of 1.20 W m⁻¹ K⁻¹ at 300 K in combination with a room temperature ionic conductivity of 7 × 10⁻⁶ S cm⁻¹, an order of magnitude greater than that of the phosphide and nitride analogues, indicating its potential as a solid-state Li-ion conductor.

Disciplines

Materials Chemistry

Authors

Justin Mark, Kathleen Lee, Maxwell A. T. Marple, Shannon Lee, Sabyasachi Sen, and Kirill Kovnir

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ameslab_manuscripts/599
LiSi₃As₆ and Li₂SiAs₂ with flexible SiAs₂ polyanions: synthesis, structure, bonding, and ionic conductivity†

Justin Mark,ab Kathleen Lee,b‡ Maxwell A. T. Marple,d Shannon Lee,ab Sabyasachi Senab and Kirill Kovniridab

Two novel ternary phases, LiSi₃As₆ and Li₂SiAs₂, have been synthesized and characterized. Both phases have an identical Si : As ratio of 1 : 2 providing insight on how layers of the parent phase SiAs₂ accommodate excess electrons from Li cations to form Si–As anionic frameworks. LiSi₃As₆ exhibits a variety of bonding schemes involving Si–Si and As–As bonds, as well as corner-sharing SiAs₄ tetrahedra, while Li₂SiAs₂ is isostructural to the previously reported Li₅SiP₃, with adamantane-like Si₄As₆ units connected into 3D framework. LiSi₃As₆ and Li₂SiAs₂ are predicted to be indirect semiconductors which was experimentally confirmed by optical properties characterization. Li₂SiAs₂ exhibits low thermal conductivity of 1.20 W m⁻¹ K⁻¹ at 300 K in combination with a room temperature ionic conductivity of \(7 \times 10^{-6}\) S cm⁻¹, an order of magnitude greater than that of the phosphate and nitride analogues, indicating its potential as a solid-state Li-ion conductor.

Introduction

Ionic conductivity is one of the fundamental properties of matter which is highly demanded for various applications from membranes and sensors to fuel cells and batteries. Discovery of novel compounds containing the desired ions and understanding of basic structure–properties relationships is crucial for the development of novel ion conductors. For example, in batteries, oxide and nitride materials were traditionally considered as potential Li and Na solid ion conductors, such as NASICON, LISICON, garnet, and perovskite type conductors.¹—⁵ Recent discovery of the novel crystalline phase Li₁₀Ge₃P₆S₁₂ with extraordinary ionic conductivity pointed out the potential of non-oxide systems.⁶—¹³ Indeed, a reduction of the ionicity of the Li–X bonds (where Li is surrounded by X atoms) should result in easier Li transport, as shown through comparing oxides vs. phosphides.¹⁴ This pointed to the necessity to study complex Li pnictides, which led to the recent discovery of several promising Li–Si–P phases, such as Li₁₄Si₆P₈, Li₁₀Si₃P₆, Li₆SiP₄, Li₅SiP₃, Li₅SiP₄, and Li₇SiP₄.¹⁵—¹⁸ These recent works revealed that the Li–Si–P system was poorly investigated with the only previously reported compound, Li₅SiP₃, having been identified in 1954.¹⁸ In the same article by Juza and Schulz, the first Li–Si–As compound Li₅SiAs₃ was also reported.¹⁹

Given the many similarities in phosphide and arsenide chemistry, we explored the Li–Si–As system for new phases to investigate further reduction of the ionicity of Li–X bonds and changes in Li conductivity. Upon our exploration of Li intercalation into the binary layered SiAs we reported a novel layered compound, Li₅Si₃As₆, which was only the second phase ever reported in this ternary phase space.²⁰ Based on the existence of another binary silicon arsenide, SiAs₂, we kept the Si : As ratio as 1 : 2 and studied how the Si–As anionic framework would react to different concentrations of Li cations (Fig. 1). This has resulted in the discovery of two new phases, Li₅Si₃As₆ (=Li₀.₃₃Si₃As₆) and Li₇Si₃As₆, with the latter being isostructural to previously reported Li₅SiP₃.²¹—²⁴ Li₅Si₃As₆ exhibits an intricate structure and bonding demonstrating that the complex bonding motifs frequently exhibited by silicon-phosphides are also available to the arsenide counterparts. Si–As frameworks in both reported crystal structures differ from that in the Li-free SiAs₂ due to the extra electrons provided by Li cations causing Si–As bonding rearrangements. In this work we report on the syntheses and crystal structures of the title phases and detailed characterization of heat transport properties and Li- conductivity of Li₅Si₃As₆.
Experimental

Warning

At high temperatures the As vapor pressure may be sufficient to damage the reaction ampoule. Another possible reason for ampoule failure is the reaction of silica with Li. In either case, the release of toxic As vapor will occur. The concentration of As should be kept to a minimum. Use of the secondary larger size ampoule and placing the furnace in a well-ventilated space like a fumehood is highly recommended.

Synthesis

All materials were handled in an Ar-filled glovebox with O2 levels < 1 ppm. The starting materials, Si (Alfa Aesar, 99.999%) and gray As (Alfa Aesar, 99.99999%) were used as received. The surface of the Li granules (Alfa Aesar, 99%) was scraped off to remove any surface oxidation.

A single crystal of LiSi₃As₆ was first obtained by loading elemental Li, Si, and As into a carbonized silica ampoule (9/11 mm inner/outer diameter) in a 0.8 : 3 : 3 ratio, respectively. The ampoule was then flame sealed under vacuum. The initial ampoule was then placed into a larger silica ampoule and flame sealed under vacuum to create a protective outer jacket. The ampoule was placed in a muffle furnace and heated to 923 K over 48 h. The sample was annealed at this temperature for 240 h and then slowly cooled to room temperature over 48 h. It was subsequently found that LiSi₃As₆ could be synthesized by a stoichiometric mixture of the elements, under the same conditions, however the sample was still contaminated with significant amounts of SiAs₂, Si, and As admixtures. Reducing the reaction temperature to 823 K prevents SiAs₂ formation, however unreacted Si and As remain. Further attempts to synthesize single phase samples by varying the temperature profile were unsuccessful.

Li₂SiAs₂ was first synthesized by loading elemental Li, Si, and As in a 0.5 : 1 : 2 ratio into a Nb ampoule, which resulted in a mixture of Li₂SiAs₂ as well as SiAs, Si, and As. Single phase samples of Li₂SiAs₂ were prepared using a stoichiometric ratio of the elements sealed in a Nb ampoule under Ar atmosphere. The Nb ampoule was then sealed inside a silica ampoule under vacuum to prevent Nb oxidation during annealing. The ampoule was placed in a muffle furnace and heated to 523 K over 24 h, annealed at this temperature for 24 h, and heated to 923 K over 24 h, and annealed at this temperature for 96 h. The furnace was then turned off and the furnace was cooled to room temperature. The product is a red powder that degrades after several minutes of exposure to ambient conditions.

X-ray diffraction

Powder X-ray diffraction (XRD) was performed using a Rigaku Miniflex 600 with Cu-Kα radiation and a Ni-Kβ filter using sample holders with a zero-background silicon plate insert (Fig. 2).

Single crystal XRD was performed using a Bruker AXS SMART diffractometer and Bruker D8 Venture diffractometer, both utilizing Mo-Kα radiation. Datasets were collected at 90 K under a N₂ stream and under ambient conditions with ω-scans.

Fig. 1 Ternary phase diagram for the Li–Si–As system. SiAs₂, LiSi₃As₆, and Li₂SiAs₂ are shown as stars connected with a red line, while Li₅SiAs₃ and Li₃Si₇As₈ are shown as circles. The labels of the compounds correspond to the stoichiometric ratios of Li : Si : As.

Fig. 2 Powder X-ray diffraction patterns of as-synthesized LiSi₃As₆ (top) and Li₂SiAs₂ (bottom). Below each experimental pattern (black) is a calculated pattern based on the crystal structure for LiSi₃As₆ (red) and Li₂SiAs₂ (blue). The admixture peaks are indicated in the legend. While LiSi₃As₆ is not single phase, the Li₂SiAs₂ contain minimum amounts of admixture which may also be generated during XRD experiment due to exposure to air.
recorded with a 0.3° step width and integrated with the Bruker SAINT software. Structure determination and refinement of the crystal structures were carried out using the SHELX suite of programs.21 Further details of the crystal structure determination may be found through Cambridge Crystallographic Data Centre by using CCDC-1954349 (Li$_2$SiAs$_2$) and CCDC-1954350 (Li$_3$Si$_3$As$_6$).†

Scanning electron microscopy energy-dispersive X-ray spectroscopy (SEM-EDXS)

Elemental analyses of selected crystals of for LiSi$_3$As$_6$ were performed using a FEI Quanta 250 field emission-SEM with EDXS detection (Oxford X-Max 80) and Aztec software (Fig. S3†). Samples were mounted in epoxy, polished to a level surface, coated with a conductive layer of carbon, and then mounted onto carbon tape. The average Si : As ratio was determined to be 1 : 2.1(4) based on scans of 12 sites, confirming the 1 : 2 Si : As ratio for Li$_3$Si$_3$As$_6$.

Diffuse reflectance spectroscopy

UV-vis diffuse reflectance spectrum of Li$_2$SiAs$_2$ was recorded using a Thermo Scientific Evolution 220 Spectrometer equipped with an integrating sphere. The reflectance data were converted to the Kubelka-Munk function, \(f(R) = \frac{(1-R)^2}{2R} \). Samples were cold-pressed into an 8 mm diameter pellet in an Ar-filled glovebox. The pellet was sealed inside a polypropylene bag to ensure the sample would not oxidize during the measurement. An empty polypropylene bag was used for the background scans.

Differential scanning calorimetry (DSC)

Differential scanning calorimetry was performed on a Netzsch STA 449 F3 Jupiter and Netzsch DSC 404 F3 Pegasus Differential Scanning Calorimeters. Approximately 30–50 mg of sample were sealed inside evacuated silica ampoules. LiSi$_3$As$_6$ was heated at a rate of 10 K min$^{-1}$ with a max temperature of 1073 K and cooled to room temperature at the same rate. Li$_2$SiAs$_2$ was heated to 1273 K and cooled to room temperature at a rate of 10 K min$^{-1}$. XRD patterns were collected after DSC experiments (Fig. S2†).

Quantum chemical calculations

Electronic structure calculations including the band structure, density of states (DOS), and electron localization function (ELF) analyses, were carried out using the tight-binding linear muffin-tin orbital atomic sphere approximation (TB-LMTO-ASA) package.22 The Barth Hedin exchange potential was used for the LDA calculations.23 A basis set of As(4s, 4p), Si(3s, 3p), and Li(2s) orbitals was used with downfolded As(4d), Si(3d), Li(2p, 3d) orbitals. The DOS and band structures for LiSi$_3$As$_6$ were calculated after converging the total energy on a k-mesh of 8 x 8 x 8 points with 105 irreducible k-points, while Li$_2$SiAs$_2$ was computed with a k-mesh of 8 x 8 x 8 points with 59 irreducible k-points. The ELF (\(\eta \))24–27 was evaluated with modules implemented within the TB-LMTO-ASA program package. The ParaView program was used for visualization of ELF.28,29

Spark plasma sintering (SPS)

All manipulation and handling of Li$_2$SiAs$_2$ samples and SPS dies were performed in an Ar-filled glovebox. Finely ground powder was loaded into a 5 mm diameter graphite die between two sheets of graphite foil and WC plungers. This assembly was loaded into a protective outer graphite die with graphite plungers. The sample was quickly transferred to the SPS (Dr Sinter Lab Jr SPS-211Lx, Sumitomo Coal Mining Co., Ltd.) to limit the exposure to air. A uniaxial pressure of 50 MPa was applied while the sample was heated to 648 K over 4 minutes, then heated to 748 K over 5 minutes. The sample was annealed at this temperature for 10 minutes while the pressure was increased to 127 MPa. The pressure was then released, and the sample was cooled to room temperature. The assembly was quickly transferred to an Ar-filled glovebox where the surfaces were polished to remove any traces of graphite.

Li-conductivity

Electrical conductivity was measured by ac impedance methods using a HP 4192A impedance analyzer with a frequency range of 30 Hz to 13 MHz (Fig. S4 and S5†). Colloidal silver paste (Ted Pella) was applied to pellets sintered via SPS and cured to form the electrodes. The sample was measured within an Ar filled glovebox through a temperature range of 300–369 K. Measurements were carried out after the sample’s temperature reached equilibrium. ZView software was used to analyze the impedance spectra through simulation with a series of parallel resistor and constant phase elements for bulk and grain boundary responses.

Determination of the ionic transference number was accomplished by using the dc polarization technique on a cell of Ag/Li$_2$SiAs$_2$/Li. A Keithley 230 voltage source in series with a Keithley 617 electrometer was used to simultaneously apply 5 mV and measure the current response with time. The polarity of the cell (+)Ag/Li$_2$SiAs$_2$/Li(−) results in depletion of Li ions at the Ag electrode/Li$_2$SiAs$_2$ interface allowing only electronic charge carriers as the source of electrical current. Comparing the initial current when the voltage was activated to the current after reaching steady state provides the electronic contribution to conductivity and consequently the ionic transference number through, \(t_{\text{ion}} + t_{\text{elec}} = 1 \).

Thermal transport

Temperature-dependent thermal conductivity was measured on a Li$_2$SiAs$_2$ pellet of greater than 85% geometrical density in the temperature range of 2–300 K on a commercial multipurpose Physical Properties Measurement System (PPMS, Quantum Design) using the Thermal Transport Option.

Results/discussion

Both compounds can be synthesized using elements as precursors. The high Li content in Li$_2$SiAs$_2$ requires the use of
Nb crucibles to avoid Li losses through reactions with silica. This compound was synthesized as almost single-phase sample. In the case of LiSi$_3$As$_6$, samples with significant amounts of the target phase were produced, but single-phase samples were not achieved despite multiple efforts. LiSi$_3$As$_6$ appears very stable, demonstrating long term air stability, as well as stability in H$_2$O and 6 M HCl washes for at least 30 minutes. On the other hand, Li$_2$SiAs$_2$ is more air-sensitive, showing significant signs of degradation after a couple minutes of exposure to ambient conditions. This drastic disparity in stability may stem from the large difference in the Li contents. The decrease of the stability with the increase of the formal negative charge on the pnictide polyanion was observed in the Cs–Si–As system. For example, Cs$_{0.146}$SiAs$_2$ is water stable, while Cs$_2$SiAs$_2$ is moisture sensitive and Cs$_3$SiAs$_3$ is air sensitive.$^{10-32}$ Similarly, Li$_1$Si$_7$As$_8$ with a Li content between LiSi$_3$As$_6$ and Li$_2$SiAs$_2$ was reported to be mildly air-sensitive and moisture sensitive.20

Differential scanning calorimetry (DSC) was used to investigate the thermal stabilities of the title phases. DSC of LiSi$_3$As$_6$ exhibits two peaks upon heating, the first at 801 K is attributed to the sublimation of elemental arsenic impurities in the sample, while the peak at 995 K is the melting/decomposition of LiSi$_3$As$_6$; however no sharp peaks corresponding to recrystallization were observed upon cooling (Fig. S1† top). PXRD of the sample after the DSC measurement shows the major phase to be SiAs$_2$, with a Si impurity which was in the initial sample (Fig. S2†). DSC experiment indicates that upon heating a peritectic decomposition of LiSi$_3$As$_6$ into SiAs$_2$ took place. The DSC experiment was performed in a silica container and the released Li may have reacted with silica at high temperature. The melting point of SiAs$_2$ is 1250 K which is higher than the maximum temperature used in the DSC experiment. Thus, SiAs$_2$ was not melted and no sharp crystallization peaks were observed upon cooling. For Li$_2$SiAs$_2$, DSC shows the onset of melting at 1167 K with a sharp crystallization peak beginning at 740 K (Fig. S1†.

Fig. 3 Crystal structure of Li$_3$Si$_7$As$_8$. (A) and (B) general views along [001] and [010]; (C) view of the SiAs$_2$ antiprism slab omitting the tetrahedra; (D) view of the SiAs$_4$ tetrahedral slab. Unit cell shown as black lines, Li: pink, Si: black, As: blue, SiAs$_4$: gray, Si$_2$As$_4$: teal.
The melting temperature was higher than the synthesis temperature of 923 K. PXRD of the products after the DSC measurement shows that the sample contains mainly Li$_2$SiAs$_2$ with SiAs impurities, most likely due to the Li reacting with the silica ampoule during heating.

Li$_2$Si$_3$As$_6$ crystallizes in the orthorhombic Cmce space group (No. 64), Pearson symbol o\bar{s}-80. Similar to a number of complex ternary silicon phosphides, Li$_2$Si$_3$As$_6$ exhibits several different bonding schemes including corner sharing SiAs$_4$ tetrahedra, Si–Si dumbbells, and As–As bonds. The structure is composed of alternating planes of SiAs$_4$ tetrahedra and Si$_3$As$_6$ antiprisms along the b-direction (Fig. 3A and B). The SiAs$_4$ tetrahedra have Si–As distances of 2.316(2)–2.405(2) Å, similar to distances reported in compounds such as Cs$_5$SiAs$_3$, Li$_3$Si$_7$As$_8$, and CeSiAs$_3$, among others. These tetrahedra are interconnected through three different bonding arrangements to form a slab, shown in Fig. 3D. Along [100] direction, chains of corner sharing tetrahedra are further linked through alternating As–As bonds which are 2.512(2) Å in length. These chains are combined into a slab by perpendicular As–As bonds of 2.445(1) Å along the [001] direction between neighboring chains (Fig. 3D). Both As–As distances are within reported lengths observed for As–As bonds.

The plane of Si$_3$As$_6$ antiprisms is formed through isolated Si$_3$As$_6$ units, which are surrounded by 6 Li atoms in the ab-plane, shown in Fig. 3C. The Si–Si distance in these antiprisms is 2.341(6) Å, while the Si–As distances measure 2.367(2)–2.387(3) Å, all within typical reported distances taking into account covalent radii for Si (1.17 Å) and As (1.22 Å). The Li atoms within this plane have distorted octahedral coordination with Li–As distances of 2.83(2)–2.95(2) Å, which fall within reported values. All As atoms in the Si$_3$As$_6$ units are corner shared with SiAs$_4$ tetrahedra from neighboring slabs along the b-direction, creating the complex 3D structural arrangement.

Fig. 4 Crystal structure of Li$_2$SiAs$_2$. (A) and (B) general views; (C) Si$_4$As$_{10}$ adamantane-like fragment; (D) Li coordination. Unit cell shown as black lines, Li: pink, Si: black, As: blue, Li@As$_4$: pink, Si$_4$As$_{10}$: teal.
LiSi₃As₆ has a Wyckoff sequence of $g^3f^2e^d$. Other compounds with this Wyckoff sequence include Ta₆Br₁₄, Ta₆I₁₄, Cu₃P₄Se₄I, and Mn₆T₁₂As₂Se₂. Ta₆Br₁₄ and Ta₆I₁₄ contain isolated clusters forming 1D structures, while Cu₃P₄Se₄I crystallizes in a 2D layered structure. Previously Mn₆T₁₂As₂Se₂ was the only 3D phase reported with this Wyckoff sequence, however this structure lacks homoatomic bonds like the Si–Si bonds found in LiSi₃As₆.

Li₂SiAs₂ crystallizes in the tetragonal space group $I4_1/acd$ (No. 142) in the same structure type as Na₂SnAs₂ and Li₂SiP₂. Adamantane-like Si₄As₁₀ units are connected to each other through shared As atoms (Fig. 4). In the structure, each Si atom is coordinated by four As atoms forming a tetrahedron while each As is coordinated by two Si atoms (Fig. 4C). Li atoms are tetrahedrally coordinated by four As atoms (Fig. 4D). The Si–As bond distances found in Li₂SiAs₂ are in a much narrower range compared to LiSi₃As₆, falling between 2.3424(8)–2.3778(7) Å. These bond lengths fall in the mid-range of those found in LiSi₃As₆, matching common lengths in other compounds. The Li–As distances range from 2.516(3)–2.853(1) Å and are shorter than those found in LiSi₃As₆; however, they span distances found for other reported Li–As containing compounds and are not nearly as short as distances found in Li₃Si₇As₈.

Larger alkali metals, A = K, Rb, and Cs, form 2–1–2 compounds, A₂SiAs₂. In the crystal structure of these compounds one-dimensional anionic [SiAs₂]₂⁻ chains composed of edge-sharing...

Fig. 5 Density of states and band structures for LiSi₃As₆ (top) and Li₂SiAs₂ (bottom).
SiAs$_4$ tetrahedra are present. A reduction of the cation size leads to rearrangements of the same building units, SiAs$_4$ tetrahedra, into a three-dimensional framework.

We have previously shown that the parent SiAs$_2$ binary compound is able to accommodate ~0.16 cations as large as Cs per formula unit in the interlayer space forming Cs$_{0.16}$SiAs$_2$. Further increase of the cation content leads to the structural reconstruction in the Si–As framework. Doubling the cation content in the case of LiSi$_3$As$_6$ (Li$_{0.33}$SiAs$_2$) results in a collapse of the layered structure of SiAs$_2$ into a 3D framework with the formation of Si–Si bonds. However, LiSi$_3$As$_6$ maintains the SiAs$_4$ corner-sharing and As–As bonding within a “layer,” similar to the Si–As layers found in SiAs$_2$. The Li$_2$SiAs$_2$ stoichiometry results in more drastic structural rearrangements due to the excess electrons added to the Si–As network. This results in the removal of homoatomic bonds, as the Li$_2$SiAs$_2$ no longer contains any Si–Si or As–As bonds. Partial removal of homoatomic bonds was also observed for the Li incorporation into SiAs to form Li$_3$Si$_7$As$_8$. Considering a polar bonding scheme for LiSi$_3$As$_6$, each tetrahedral Si can be considered as Si$^{4+}$, while each Si in the antiprism can be considered as Si$^{3+}$. Similarly, As coordinated to three or two Si atoms is As$^{3-}$, while As atoms forming one or two bonds to As atoms are As$^{2-}$ and As$^-$, respectively. This bonding scheme results in the electron balanced composition of (Li$^+$(Si$^{4+})_2$(Si$^{3+})_2$(As$^{3-})_2$(As$^{2-})_2$(As$^-$)$_2$. Alternatively, the Si–As bonds can be considered as covalent bonds where the electron pair is shared between As and Si. In such a description four-coordinated Si atoms and three-coordinated As atoms have without significant modification of the 2D SiAs$_2$ layers, given that the extra electrons are compensated either by As vacancy formation or by aliovalent M/Si substitutions (M = Ga, Zn, Cu). Further increase of the cation content leads to the structural reconstruction in the Si–As framework. Doubling the cation content in the case of LiSi$_3$As$_6$ (Li$_{0.33}$SiAs$_2$) results in a collapse of the layered structure of SiAs$_2$ into a 3D framework with the formation of Si–Si bonds. However, LiSi$_3$As$_6$ maintains the SiAs$_4$ corner-sharing and As–As bonding within a “layer,” similar to the Si–As layers found in SiAs$_2$. The Li$_2$SiAs$_2$ stoichiometry results in more drastic structural rearrangements due to the excess electrons added to the Si–As network. This results in the removal of homoatomic bonds, as the Li$_2$SiAs$_2$ no longer contains any Si–Si or As–As bonds. Partial removal of homoatomic bonds was also observed for the Li incorporation into SiAs to form Li$_3$Si$_7$As$_8$. Considering a polar bonding scheme for LiSi$_3$As$_6$, each tetrahedral Si can be considered as Si$^{4+}$, while each Si in the antiprism can be considered as Si$^{3+}$. Similarly, As coordinated to three or two Si atoms is As$^{3-}$, while As atoms forming one or two bonds to As atoms are As$^{2-}$ and As$^-$, respectively. This bonding scheme results in the electron balanced composition of (Li$^+$(Si$^{4+})_2$(Si$^{3+})_2$(As$^{3-})_2$(As$^{2-})_2$(As$^-$)$_2$. Alternatively, the Si–As bonds can be considered as covalent bonds where the electron pair is shared between As and Si. In such a description four-coordinated Si atoms and three-coordinated As atoms have
oxidation states of 0, while two-coordinated As atoms have formal oxidation states of -1, leading to the electron-balanced formula $(\text{Li}^+)[\text{Si}^4\text{As}^3]^2(\text{As}^-)$. For Li_2SiAs_2, both polar and covalent assignments of the oxidation states result in charge balanced compositions of $(\text{Li}^+)_2(\text{Si}^4\text{As}^3)^2$ and $(\text{Li}^+)_2(\text{Si}^0)(\text{As}^-)^2$, respectively.

To gain a better understanding of the bonding in these phases electronic structure calculations were performed using the TB-LMTO-ASA program. From the band structures and DOS, LiSi_3As_6 and Li_2SiAs_2 were found to be indirect semiconductors with bandgaps of 0.97 eV and 1.43 eV, respectively (Fig. 5). For Li_2SiAs_2 both direct transitions at the Z and Γ points have larger energy of 1.67 eV, while for LiSi_3As_6 the direct transition at the Γ point is 1.31 eV. The density of states for both phases exhibit significant contributions from Si and As in the conduction and valence bands, suggesting strong covalent bonding in the Si–As frameworks. For Li_2SiAs_2 electron localization function analysis shows the expected covalent bonding between Si and As with two electron lone pairs on each As atom (Fig. 6). This is expected because each As is coordinated to two silicon atoms. This result favors the covalent description of the chemical bonding in Li_2SiAs_2 as $(\text{Li}^+)_2(\text{Si}^0)(\text{As}^-)^2$.

Analysis of the chemical bonding in LiSi_3As_6 also supports the covalent nature of the Si–As interactions. Si1 atoms are engaged in the three covalent Si–As bonds in addition to the Si1–Si1 covalent bond, while Si2 atoms form four Si–As bonds similar to Si atoms in Li_2SiAs_2 (Fig. 7A). As4 forms three As–Si bonds and has an electron lone pair (Fig. 7B). Every As atom in the SiAs$_5$ pentagonal ring fragment has one electron lone pair in addition to two As–Si + one As–As bonds (for As1) or two As–As + one As–Si bonds (for As3) (Fig. 7C). Finally, two coordinated As2 is an analogue of the As atoms in Li_2SiAs_2, possessing two-electron lone pairs in addition to two As–Si bonds, which supports its description as As$^-$ (Fig. 7B). Li atoms are not engaged in the covalent bonding and have spherical distribution of ELF corresponding to core 2s electrons (Fig. 7D).

To confirm the theoretical bandgap of Li_2SiAs_2 diffuse reflectance spectroscopy was utilized to determine the experimental bandgap. Measurements were performed on pellets sealed under argon inside polypropylene bags to prevent sample oxidation during data collection. Tauc plots of Li_2SiAs_2 show that it has an indirect transition of less than the instrument limit of 1.1 eV and a direct transition of 1.40 eV (Fig. 8). The large bandgaps are supported by quantum chemical calculations and by the red-brown color of the crystals. Due to the black color of LiSi_3As_6 and Si impurities in samples the experimental band gap was not measured for LiSi_3As_6.

Presence of significant amounts of Si and As impurities in the samples of LiSi_3As_6 prevented property characterization for this silicon-arsenide. However, Li_2SiAs_2 was synthesized near single-phase and its thermal, charge, and ion conductivities

Fig. 8 Solid-state UV-vis Kubelka–Munk diffuse reflectance spectrum of Li_2SiAs_2 (left). Tauc plots for allowed direct and indirect transitions (right).

Fig. 9 Temperature-dependent thermal conductivity of Li_2SiAs_2.
were studied in detail. Li$_2$SiAs$_2$ is expected to have a low thermal conductivity due to the large number of atoms in the unit cell and overall complexity of the crystal structure which should result in complex phonon structure. The measured temperature-dependent thermal conductivity has a typical trend for crystalline compounds with a peak at 50 K and decreasing thermal conductivity as a function of increasing temperature at higher temperatures due to Umklapp phonon–phonon scattering (Fig. 9). At 300 K the thermal conductivity reaches a value of 1.20 W m$^{-1}$ K$^{-1}$. The electrical resistivity of Li$_2$SiAs$_2$ was too high to be measured using the Physical Property Measurement System. We estimated the electrical resistivity to be above 10 kΩ m at room temperature based on our previous experience with highly resistive compounds and PPMS.65,66 The impedance measurements confirmed high dc electrical resistivity of the Li$_2$SiAs$_2$ to be over 70 kΩ m.

Given the isostructural nature of Li$_2$SiAs$_2$ to Li$_2$SiP$_2$ and the promising Li-ion conductivity observed in the latter,17,18 the Li-conductivity of a pressed pellet of Li$_2$SiAs$_2$ was characterized. Fig. 10 shows the temperature-dependence of the bulk electrical conductivity for Li$_2$SiAs$_2$ with a room temperature conductivity of 1.20 W m$^{-1}$ S cm$^{-1}$. The impedance curves are provided in the Fig. S4 and S5.6 This conductivity is over an order of magnitude greater than that of the analogous phosphide (4 × 10$^{-7}$ S cm$^{-1}$) and nitride (8 × 10$^{-8}$ S cm$^{-1}$) phases,17,18 indicating the potential of Li$_2$SiAs$_2$ as a solid-state Li-ion conductor. This conductivity may be further enhanced through trivalent doping, as predicted for Li$_2$SiP$_3$ by Yeandel et al.48 or even by increasing the Li content as seen by enhanced performance when going from Li$_2$SiP$_4$ to the related Li$_4$SiP$_6$.15 The activation energy for conduction is calculated from the slope of conductivity using an Arrhenius expression of $\sigma(T) = \sigma_0 \exp(-E_a/kT)$ and found to be $E_a = 0.53$ eV. DC polarization experiments reveal the ionic transference number is 0.98, indicating the conductivity is almost entirely ionic in character, which is a prerequisite for solid ionic conductor applications in Li-ion batteries.

A combination of high Li-ionic conductivity with low electrical conductivity suggests Li$_2$SiAs$_2$ is a promising solid-state Li-ion conductor.

Conclusions

Two new phases in the Li–Si–As ternary system have been synthesized and characterized. LiSi$_3$As$_6$ crystallizes in a new structure type and its structural complexity demonstrates that the various bonding schemes often observed in tetrel-phosphides can also be displayed in the less studied tetrel-arsenides. Li$_2$SiAs$_2$ is isostructural to previously reported Li$_2$SiP$_2$ and exhibits ionic conductivity that is an order of magnitude greater than that of the phosphide and nitride analogues, in line with the increase of size and decrease in electronegativity of As compared to P and N. These two new phases add to the recently growing Li–Si–As phase space and indicate there is much to be explored in this system in terms of phase identification and property characterization.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Prof. F. Osterloh (UC Davis) for access to the UV-vis spectrometer, Ben Nail (UC Davis) for assistance with the diffuse reflectance measurements, and Prof. S. M. Kauzlarich (UC Davis) for access to the SPS and DSC. This work was supported by the Laboratory Research and Development Program of the Ames Laboratory under the U.S. Department of Energy Contract No. DE-AC02-07CH11358.

References

1. P. Knauth, *Solid State Ionics*, 2009, **180**, 911–916.
2. Y. Meesala, A. Jena, H. Chang and R.-S. Liu, *ACS Energy Lett.*, 2017, 2, 2734–2751.
3. S.-C. Li, J.-Y. Cai and Z.-X. Lin, *Solid State Ionics*, 1988, **28–30**, 1265–1270.
4. Y. Deng, C. Eames, B. Fleutot, R. David, J. N. Chotard, E. Suard, C. Masquelier and M. S. Islam, *ACS Appl. Mater. Interfaces*, 2017, 9, 7050–7058.
5. S. Narayanan, F. Ramezanipour and V. Thangadurai, *J. Phys. Chem. C*, 2012, **116**, 20154–20162.
6. A. Bhandari and J. Bhattacharya, *J. Phys. Chem. C*, 2016, **120**, 29002–29010.
7. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui, *Nat. Mater.*, 2011, **10**, 682–686.
8. A. Kuhn, J. Kohler and B. V. Lotsch, *Phys. Chem. Chem. Phys.*, 2013, **15**, 11620–11622.
9. P. Bron, S. Johansson, K. Zick, J. Schmedt auf der Gunne, S. Dehnen and B. Roling, *J. Am. Chem. Soc.*, 2013, **135**, 15694–15697.
10 A. Kuhn, O. Gerbig, C. Zhu, F. Falkenberg, J. Maier and B. V. Lotsch, Phys. Chem. Chem. Phys., 2014, 16, 14669–14674.
11 Y. Kato, R. Saito, M. Sakano, A. Mitsui, M. Hirayama and R. Kanno, J. Power Sources, 2014, 271, 60–64.
12 S. P. Ong, Y. Mo, W. D. Richards, L. Miara, H. S. Lee and G. Ceder, Energy Environ. Sci., 2013, 6, 148–156.
13 I. Tarhouchi, V. Viallet, P. Vinatier and M. Ménétrier, Solid State Ionics, 2016, 296, 18–25.
14 P. G. Bruce, B. Scrosati and J. M. Tarascon, Angew. Chem., Int. Ed., 2008, 47, 2930–2946.
15 S. Strangmuller, H. Eickhoff, D. Muller, W. Klein, G. Raudaschl-Sieber, H. Kirchhain, C. Sedlmeier, V. Baran, A. Senshyun, V. L. Deriinger, L. van Wullen, H. A. Gasteiger and T. F. Fässler, J. Am. Chem. Soc., 2019, 141, 14200–14209.
16 H. Eickhoff, I. Toffoletti, W. Klein, G. Raudaschl-Sieber and T. F. Fässler, Inorg. Chem., 2017, 56, 6688–6694.
17 L. Toffoletti, H. Kirchhain, J. Landesfeind, W. Klein, L. van Wullen, H. A. Gasteiger and T. F. Fässler, Chem.—Eur. J., 2016, 22, 17635–17645.
18 A. Haffner, T. Bräuniger and D. Johrendt, Angew. Chem., Int. Ed., 2016, 55, 13585–13588.
19 R. Juza and W. Schulz, Z. Anorg. Allg. Chem., 1954, 275, 65–78.
20 J. Mark, M. P. Hanrahah, K. E. Woo, S. Lee, A. J. Rossini and K. Kovnir, Chem.—Eur. J., 2019, 25, 6392–6401.
21 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
22 O. Jepsen, A. Burkhardt and O. K. Andersen, The Program TB-LMTO-ASA, Version 4.7, Max-Planck-Institut fur Festkorperforschung, Stuttgart, Germany, 1999.
23 U. von Barth and L. Hedin, J. Phys. C: Solid State Phys., 1972, 5, 1629–1642.
24 A. D. Becke and K. E. Edgcombe, J. Chem. Phys., 1990, 92, 5397.
25 A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss and H. G. von Schnering, Angew. Chem., Int. Ed. Engl., 1992, 31, 187–188.
26 A. Savin, R. Nesper, S. Wengert and T. F. Fässler, Angew. Chem., Int. Ed. Engl., 1997, 36, 1808–1832.
27 Y. Grin, A. Savin and B. Silvi, in The Chemical Bond: Fundamental Aspects of Chemical Bonding, ed. G. Frenking and S. Shaik, Wiley-VCH, Weinheim, 2014, vol. 10, pp. 345–382.
28 Sandia National Labs, Kitware Inc, Los Alamos National Labs, Paraview: Parallel visualization application, version 4.1.0 64-bit, USA, http://paraview.org.
29 A. I. Baranov, Visualization plugin for ParaView, 2012.
30 K. E. Woo, J. A. Dolyniuk and K. Kovnir, Inorg. Chem., 2019, 58, 4997–5005.
31 B. Eisenmann and J. Klein, J. Less-Common Met., 1991, 175, 109–117.
32 B. Eisenmann, J. Klein and M. Somer, Angew. Chem., Int. Ed. Engl., 1990, 29, 87–88.
33 A. Haffner and D. Johrendt, Z. Anorg. Allg. Chem., 2017, 643, 1717–1720.
34 J. Mark, J.-A. Dolyniuk, N. Tran and K. Kovnir, Z. Anorg. Allg. Chem., 2019, 645, 242–247.
35 J. Mark, J. Wang, K. Wu, J. G. Lo, S. Lee and K. Kovnir, J. Am. Chem. Soc., 2019, 141, 11976–11983.
36 X. Zhang, T. Yu, C. Li, S. Wang and X. Tao, Z. Anorg. Allg. Chem., 2015, 641, 1545–1549.
37 S. Ono, H. Hayakawa and K. Nomura, Nippon Kagaku Kaishi, 1976, 11, 1700–1709.
38 P. Kaiser and W. Jeitschko, J. Solid State Chem., 1996, 124, 346–352.
39 P. Kaiser and W. Jeitschko, Z. Anorg. Allg. Chem., 1996, 622, 53–56.
40 H. G. V. Schniering and G. Menge, J. Solid State Chem., 1979, 28, 13–19.
41 H. Hayakawa and S. Ono, J. Less-Common Met., 1988, 144, 177–194.
42 T. Wadsten, Acta Chem. Scand., 1967, 21, 593–594.
43 T. Wadsten, Acta Chem. Scand., 1965, 19, 1232–1238.
44 J. Wolf, D. Weber and H.-G. V. Schniering, Z. Naturforschung B, 1986, 41, 731–735.
45 W. M. Hurng, J. D. Corbett, S. L. Wang and R. A. Jacobson, Inorg. Chem., 1987, 26, 2392–2395.
46 B. Eisenmann and H. Schäfer, Angew. Chem., Int. Ed. Engl., 1980, 19, 490–491.
47 K. E. Woo, J. Wang, K. Wu, K. Lee, J.-A. Dolyniuk, S. Pan and K. Kovnir, Adv. Funct. Mater., 2018, 28, 1801589.
48 K. A. Kovnir, A. V. Sobolev, O. I. Lebedev, G. V. Tendeloo, W. Schnelle, Y. Grin and A. V. Shevelkov, Inorg. Chem., 2005, 44, 8786–8793.
49 K. Ayouz, M. Kars, A. Rebbah and H. Rebbah, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, 65, i15.
50 J. V. Zaikina, K. A. Kovnir, A. V. Sobolev, O. I. Lebedev, Y. Prots, M. Baitinger, W. Schnelle, A. V. Olenev, O. I. Lebedev, G. Van Tendeloo, Y. Grin and A. V. Shevelkov, Chem.—Eur. J., 2007, 13, 5090–5099.
51 B. Saparov and A. S. Sefat, J. Solid State Chem., 2012, 191, 213–219.
52 T. Wadsten, Chem. Scr., 1975, 8, 63–69.
53 J. V. Zaikina, K. A. Kovnir, F. Haarmann, W. Schnelle, U. Burkhardt, H. Borrmann, U. Schwarz, Y. Grin and A. V. Shevelkov, Chem.—Eur. J., 2008, 14, 5414–5422.
54 J. V. Zaikina, K. A. Kovnir, U. Burkhardt, W. Schnelle, F. Haarmann, U. Schwarz, Y. Grin and A. V. Shevelkov, Inorg. Chem., 2009, 48, 3720–3730.
55 G. Brauer and E. Zintl, Z. Phys. Chem. B, 1937, 37, 323–352.
56 D. T. Cromer, Acta Crystallogr., 1959, 12, 36–41.
57 K. Lee, D. Kaseman, S. Sen, I. Hung, Z. Gan, B. Gerke, R. Pottgen, M. Feygenson, J. Neufeind, O. I. Lebedev and K. Kovnir, J. Am. Chem. Soc., 2015, 137, 3622–3630.
58 W. Hönle, J. Buresch, K. Peters, J. H. Chang and H. G. von Schnering, Z. Kristallogr.—New Cryst. Struct., 2002, 217, 485–486.
59 B. Bajan and H.-J. Meyer, Z. Kristallogr.—Cryst. Mater., 1995, 210, 607.
60 H. M. Arrelt and G. Meyer, Z. Kristallogr.—Cryst. Mater., 1993, 206, 306–307.
61 A. Pfitzner, S. Reiser and H.-J. Deiseroth, Z. Anorg. Allg. Chem., 1999, 625, 2196–2201.
62 M. Gostojić, A. Edenharter, W. Nowacki and P. Engel, Z. Kristallogr. - Cryst. Mater., 1982, 158, 43–52.
63 M. Asbrand and B. Eisenmann, Z. Naturforschung B, 1993, 48, 452–456.
64 W.-M. Hurng, E. S. Peterson and J. D. Corbett, Inorg. Chem., 1989, 28, 4177–4180.
65 J. Wang, K. Lee and K. Kovnir, J. Mater. Chem. C, 2015, 3, 9811–9818.
66 J. Wang, J. T. Greenfield and K. Kovnir, J. Solid State Chem., 2016, 242, 22–27.
67 H. Yamane, S. Kikkawa and M. Koizumi, Solid State Ionics, 1987, 25, 183–191.
68 S. R. Yeandel, D. O. Scanlon and P. Goddard, J. Mater. Chem. A, 2019, 7, 3953–3961.