Two New Spirostanol Glycosides from the Roots and Rhizomes of

Helleborus thibetanus Franch.

Yuze Li 1, Zilong Zhang 1, Wenli Huang 1, Huawei Zhang 1, Yi Jiang 1, Jianli Liu 2, Xiaomei Song 1*

and Dongdong Zhang 1*

1 School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
2 Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China

(Received July 20, 2022; Revised October 06, 2022; Accepted October 07, 2022)

Abstract: Two new spirostanol glycosides, thibetanosides J and K (1 and 2), along with three known ones (3-5) were isolated from the roots and rhizomes of *Helleborus thibetanus*. Their structures were elucidated by extensive use of spectroscopic techniques and chemical evidence. In this study, compounds 1-5 were evaluated for their cytotoxic activity against HCT116, A549 and HepG2 tumor cell lines. Among them, compound 1 exhibited moderate cytotoxicity against A549 cells (IC$_{50}$ 7.69 ± 1.1 μM) and HepG2 cells (IC$_{50}$ 8.32 ± 2.63 μM). Compound 2 exhibited moderate cytotoxicity against HCT116 cells (IC$_{50}$ 20.67 ± 1.06 μM).

Keywords: *Helleborus thibetanus*; spirostanol glycosides; cytotoxic activity. ©2022 ACG Publications. All right reserved.

1. Introduction

Helleborus thibetanus Franch., a plant endemic to China, known as “Tigenceao” or “Xiao-tao-er-qi”, is mainly distributed in Gansu, Sichuan and Shaanxi Provinces [1]. Its dried rhizomes have been used as Chinese folk medicine for the treatment of cystitis, urethritis and traumatic injury [2-3]. Several bufadienolides, ecdysteroids, furostanol saponins, spirostanol saponins and flavonoids have been isolated from *H. thibetanus* [4-5]. Modern pharmacology studies revealed that the extracts and chemical components of *H. thibetanus* possess immune-regulation, anticancer, antibacterial and cytotoxic properties [6-7]. As part of an ongoing search for bioactive constituents

*Corresponding author: E-Mail: songxiaom@126.com (X. Song), zhangnatprod@163.com (D. Zhang).
from the medicinal herbs around Qinba Mountains [8-10], two new spirostanol saponins (23S,24S)-24-\([\{O-\beta-D\text{-glucopyranosyl}\}(1 \rightarrow 4)\beta-D-fucopyranosyl\text{oxy}\}3\beta,23\text{-dihydroxyspirosta-5,25(27)}\text{-dien}-1\beta\text{-yl}O-\beta-D\text{-apoifuranosyl}\}-(1 \rightarrow 3)\text{-}O-(\alpha-L\text{-rhamnopyranosyl})-(1 \rightarrow 2)\text{-}O-\alpha-L\text{-arabinopyranoside} (1), \text{and} (23S,24S)-24-\([\{O-\beta-D\text{-glucopyranosyl}\} (1 \rightarrow 4)\beta-D\text{-fucopyranosyl} \text{oxy}\}3\beta,23\text{-dihydroxyspirosta-5,25(27)}\text{-dien}-1\beta\text{-yl}O-\beta-D\text{-apoifuranosyl}-(1 \rightarrow 3)\text{-}O-(4\text{-}O\text{-acetyl}\alpha-L\text{-rhamno-pyranosyl})-(1 \rightarrow 2)\text{-}O-\alpha-L\text{-arabinopyranoside} (2), \text{and three known saponins} (23S,24S)-24-\([\{O-\beta-D\text{-glucopyranosyl}\} (1 \rightarrow 4)\beta-D\text{-fucopyranosyl} \text{oxy}\}3\beta,23\text{-dihydroxyspirosta-5,25(27)}\text{-dien}-1\beta\text{-yl}O-\beta-D\text{-apoifuranosyl}-(1 \rightarrow 3)\text{-}O-(4\text{-}O\text{-acetyl}\alpha-L\text{-rhamnopyranosyl})-(1 \rightarrow 2)\text{-}O-\alpha-L\text{-arabinopyranoside} (3) [5], (23S,24S)-24-\([\{O-\beta-D\text{-glucopyranosyl} \text{oxy}\}3\beta,23\text{-dihydroxyspirosta-5,25(27)}\text{-dien}-1\beta\text{-yl}O-\beta-D\text{-apoifuranosyl}-(1 \rightarrow 3)\text{-}O-(4\text{-}O\text{-acetyl}\alpha-L\text{-rhamnopyranosyl})-(1 \rightarrow 2)\text{-}O-\beta-D\text{-xylopyranosyl}-(1 \rightarrow 3)\text{-}\alpha-L\text{-arabinopyranoside} (4) [11], (23S,24S)-21\text{-acetoxy}3\beta,23,24\text{-trihydroxyspirosta-5,25(27)}\text{-dien}-1\beta\text{-yl}O-\beta-D\text{-apoifuranosyl}-(1 \rightarrow 3)\text{-}O-(4\text{-}O\text{-acetyl}\alpha-L\text{-rhamnopyranosyl})-(1 \rightarrow 2)\text{-}O-\beta-D\text{-xylopyranosyl}-(1 \rightarrow 3)\text{-}\alpha-L\text{-arabinopyranoside} (5) [12] (Figure 1), \text{were isolated from the roots and rhizomes of} \text{H. thibetanus. Herein, the isolation and structure elucidation of the new compounds, and their anti-tumor evaluation against A549, HepG 2 and HCT116 tumor cells were described.}
an HP-5 capillary column (30 m × 0.32 mm, 0.5 µm) and an FID detector. Standards for D-glucose (D-Glc), D-fucose (D-Fuc), L-arabopyranose (L-Ara), L-rhamnose (L-Rha) and D-apiose (D-Api) was purchased from Herbest Bio-Tech Co. (Baoji, China). Silica gel was purchased from Qingdao Haiyang Chemical Group Corporation (Qingdao, China).

2.2. Plant Material

The roots and rhizomes of H. thibetanus Franch were collected in June 2016 from the Taibai region (height: 2276.6 m, longitude: 107°47′/28.4581°), of Qinba Mountains in Shaanxi Province, China, and were authenticated by senior experimentalist Jitao Wang. A voucher specimen (herbarium No. 20160915) has been deposited in the Medicinal Plants Herbarium (MPH), Shaanxi University of Chinese Medicine, Xianyang, China.

2.3. Extraction and Isolation

The air-dried underground parts (1.5 kg) of H. thibetanus Franch were powdered and extracted three times with 60% EtOH under reflux at 80 °C. After removing the solvent, the concentrated residue was successively partitioned with petroleum ether (PE) and n-BuOH. The n-BuOH extract (200 g) was chromatographed on silica gel column, eluted with gradient solvent system (CHCl3-MeOH-H2O, 100:0:65:35:1) to yield ten fractions (Fr.1 - 10). Fr.5 (40 g) was separated on silica gel column, eluting with gradient solvent system (CHCl3-MeOH, 100:0:50:50) to yield six fractions (Fr.5.1-Fr.5.6). Fr.5-2 (150 mg) was further purified by HPLC (Ultimate XB-C18, 10 mm × 250 mm, 5 µm particles, flow rate: 1.0 mL/min) with CH3CN-H2O (32:68) to afford compounds 1 (13 mg; τr = 27.6 min) and 2 (20 mg; τr = 35.2 min). Fr.8 (150 g) was subjected to a silica column chromatography, eluting with gradient solvent system (CHCl3-MeOH, 100:0:80:10) to yield five fractions (Fr.8-1-Fr.8-5). Fr. 8-3 (0.7 g) was purified by HPLC (Ultimate XB-C18, 10 mm × 250 mm, 5 µm particles, flow rate: 1.0 mL/min) with CH3CN-H2O (20:80) to get compounds 3 (9 mg; τr = 24.7 min), 4 (7 mg; τr = 32.1 min) and 5 (14 mg; τr = 49.3 min).

2.4. Spectroscopic Data

Thibetanoside J (1): A white amorphous powder, [α]D -56.8 (c 1.4, MeOH); IR (KBr) νmax: 3383, 2932, 1450, 1377, 1250, 1050, 837 and 782 cm⁻¹; 1H-NMR (400 MHz, pyridine-d5) and 13C-NMR (100 MHz, pyridine-d5) spectral data, see Table 1; HR-ESI-MS: m/z 1177.5253 [M - H]⁻ (calcd. for C₅₅H₆₅O₃₇ 1177.5278).

Thibetanoside K (2): A white amorphous powder, [α]D +69.5 (c 1.1, MeOH); IR (KBr) νmax: 3384, 2935, 1732, 1452, 1374, 1243, 1040, 835 and 783 cm⁻¹; 1H-NMR (400 MHz, pyridine-d5) and 13C-NMR (100 MHz, pyridine-d5) spectral data, see Table 1; HR-ESI-MS: m/z 1087.4911 [M - H]⁻ (calcd. for C₅₂H₇₉O₃₄ 1087.4961).

3. Results and Discussion

3.1. Structure Elucidation

Thibetanoside J (1) was isolated as a white amorphous powder, which showed positive reactions in the Liebermann-Burchard and Molisch tests. Its molecular formula was determined as C₅₅H₆₅O₃₇ from the HR-ESI-MS at m/z 1177.5253 [M - H]⁻ (calcd. C₅₅H₆₅O₃₇ 1177.5278). In the 1H-
NMR and HSQC spectra, five anomic protons at δ_H 5.16 (1H, d, $J = 7.8$ Hz, H-Glc-1), 5.16 (1H, d, $J = 7.8$ Hz, H-Fuc-1), 4.68 (1H, d, $J = 7.9$ Hz, H-Ara-1), 6.33 (1H, br s, H-Rha-1), 6.21 (1H, d, $J = 2.5$ Hz, H-Api-1) as well as two methyl protons at δ_H 1.71 (3H, d, $J = 6.1$ Hz, H-Rha-6) and 1.54 (3H, d, $J = 6.3$ Hz, H-Fuc-6) were observed, which were correlated with five anomic carbon signals at δ_C 107.4 (C-Glc-1), 106.6 (C-Fuc-1), 101.0 (C-Ara-1), 102.0 (C-Rha-1), 112.3 (C-Api-1), 19.5 (C-Rha-6) and 18.0 (C-Fuc-6), respectively. Acid hydrolysis of I resulted in the production of apiose (Api), arabinose (Ara), rhamnose (Rha), fucose (Fuc) and glucose (Glc), which were confirmed by GC analysis of the trimethylsilyl-L-cysteine derivatives of the hydrolysate of I and the authentic sugars. Coupling constants of the anomic proton signals suggested β-configuration of D-glucose, D-fucose and D-apiose, and α-configuration of L-arabinose, respectively. The α-configuration of the rhamnose unit was deduced from the absence of intraresidual NOESY correlations between H-1$_{\text{rha}}$ and H-3$_{\text{rha}}$/H-5$_{\text{rha}}$[12]. Furthermore, the 13C NMR spectra exhibited 55 carbon signals, of which the distinctive quaternary carbon signal at δ_C 112.3 (C-22) led to the hypothesis that I was a spirostanol saponin [13].

For the aglycone of I, the 1H NMR spectrum (Table 1) showed three methyl protons at δ_H 0.96 (3H, s, Me-18), 1.43 (3H, s, Me-19) and 1.09 (3H, d, $J = 6.9$ Hz, Me-21), and two exomethylene protons at δ_H 5.22 (1H, br s, H-27a) and 5.11 (1H, br s, H-27b), as well as one olefinic proton at δ_H 5.57 (1H, d, $J = 5.4$ Hz, H-6). In addition, three methyl groups at δ_C 17.3 (C-18), 15.6 (C-19), and 15.3 (C-21) were observed in the 13C NMR spectra (Table 1). The presence of a terminal olefinic bond was deduced by a quaternary carbon signal at δ_C 144.4 (C-25), as well as a methylene carbon signal at δ_C 114.3, which exhibited correlations with two olefinic proton signals at δ_H 5.22 (H-27a) and 5.11 (H-27b) in the HSQC spectrum. HSQC spectrum also displayed the correlation from the olefinic proton at δ_H 5.57 (1H, d, $J = 5.4$ Hz, H-6) to δ_C 125.1 (C-6). 1H-1H COSY correlations from H-1/H$_2$-2/H-3/H$_2$-4, from H-6/H$_2$-7/H-8/H$_2$-9/H$_2$-11/H$_2$-12, from H-8/H-14/H$_2$-15/H-16/H-17/H-20/H$_2$-21, and from H-23/H-24, accompanied with HMBC correlations (Figure 2) from H-3/C-2, C-4, and C-5, from H-19/C-1, C-5, C-9 and C-10, from H-6/C-4, C-7, C-8 and C-10, from H$_2$-21/C-17, C-20 and C-22, from H$_2$-18/C-12, C-13, C-14 and C-17, from H-16/C-13, C-14, C-17, C-20 and C-22, from H-24/C-22, C-23, C-25 and C-26, from H$_2$-27/C-24, C-25 and C-26, and from H$_2$-26/C-22, C-24, C-25 and C-27 demonstrated a planar structure of the aglycone moiety as 1,3,23,24-tetraol-spirost-5,25(27)-diene. In addition, in the NOESY spectrum (Figure 2) of I, the NOE correlations of H-1/H-3/H-9 and Me-19/H-2a/H-4a/H-8/Me-18, indicated α-axial configurations of H-1 and H-3, and β-orientation of Me-19, 1-OH and 3-OH; Furthermore, the configurations of C-23 and C-24 were determined to be S by a small coupling constant between H-23 and H-24 ($J = 3.5$ Hz) and the NOESY correlations of H-23/H-20, H-23/Me-21/H$_{27\beta}$, and H-24/H$_{27\alpha}$[15-18]. Comparison of the 1H and 13C NMR spectroscopic data of the aglycone moiety of I with those of 3, along with the above analysis, the structure of the aglycone of I was elucidated as (23S,24S)-1/β, 3/β,23,24-tetrahydroxy-spirosta-5,25(27)-diene.

Moreover, HMBC correlations of H-Api-1/C-Rha-3, H-Rha-1/C-Ara-2 and H-Ara-1/C-1 disclosed that the D-apiose unit was linked at C-3 of the L-rhamnose, L-rhamnose unit was linked at C-2 of the inner L-arabinose unit, then the L-arabinose unit was linked at C-1 of the aglycone. In addition, correlations of H-Glc-1/C-Fuc-4 and H-Fuc-1/C-24 disclosed that the terminal D-glucose unit was linked at C-4 of the inner D-fucose unit, then the D-fucose unit was linked at C-24 of the aglycone. Therefore, the structure of I was characterized as (23S,24S)-24-{β-D-glucopyranosyl-
Thibetanoside K \((2) \) was obtained as a white amorphous powder. A [M - H] peak at \(m/z \) 1087.4911 in the HR-ESI-MS indicated that the molecular formula was \(C_{52}H_{80}O_{24} \). Comparison of the NMR data of \(2 \) and \(1 \) (Table 1), indicated almost similar NMR spectroscopic features, except an increase of the acetyl linked at C-4 of Rha and an absence of the terminal apiose unit in compound \(2 \). The proton and carbon NMR signals of \(\delta H \) 4.68 (1H, m, H-Rha-3) and \(\delta C \) 80.6 (C-Rha-3) and \(\delta H \) 4.42 (1H, m, H-Rha-4) and \(\delta C \) 73.0 (C-Rha-4) in \(1 \), were replaced by \(\delta H \) 4.76 (1H, m, H-3), \(\delta C \) 70.5 (C-Rha-3) and \(\delta H \) 5.83 (1H, \(J = 9.6 \) Hz, H-Rha-4) and \(\delta C \) 76.9 (C-Rha-4) in \(2 \), which was supported by HSQC, HMBC and NOESY spectrums. The presence of an acetyl group in \(2 \) was shown by the signals at \(\delta H \) 2.03 (3H, s) and \(\delta C \) 171.3 (C=O) and 21.5 (methyl). Moreover, HMBC correlations of H-Rha-1/C-Ara-2 and H-Ara-1/C-1 disclosed that the L-rhamnose unit was linked at C-2 of the inner L-arabinose unit, then the L-arabinose unit was linked at C-1 of the aglycone. In addition, correlations of H-Glc-1/C-Fuc-4 and H-Fuc-1/C-24 disclosed that the terminal D-glucose unit was linked at C-4 of the inner D-fucose unit, then the D-fucose unit was linked at C-24 of the aglycone. Similarly as compound \(1 \), the results of the acid hydrolysis procedure and subsequent GC analysis of the hydrolysates and showed the structure of \(2 \) was defined as (23S,24S)-24-\{[O-\beta-D-glucopyranosyl(1\rightarrow4)-\beta-D-fucopyranosyl]oxy\}-3ß,23-dihydroxyspirosta-5,25(27)-diene-1ß-ylo-(4-O-acetyl-\alpha-L-rhamnopyranosyl)-(1\rightarrow2)-O-\alpha-L-arabinopyranoside.

Figure 2. Key \(^1\)H-\(^1\)H COSY, HMBC and NOESY correlations of compound \(1 \)
Two new spirostanol glycosides from *Helleborus thibetanus* Franch.

Table 1. 1H-NMR (400 MHz, in pyr-d_5) and 13C-NMR (100 MHz, in pyr-d_5) spectral data of compounds 1 and 2

No.	1	2		
	δ_c	$\delta_H (J \text{ in Hz})$	δ_c	$\delta_H (J \text{ in Hz})$
1	84.3	3.78 (dd, 11.8, 3.5)	84.1	3.80 (dd, 12.0, 4.6)
	2.71 (m, H-2a)		2.73 (m, H-2a)	
2	37.9	2.37 (dd, 12.0, 12.0, H-2b)	38.0	2.32 (dd, 13.4, 11.7, H-2b)
	2.72 (m, H-4a)		2.75 (m, H-4a)	
	2.58 (m, H-4b)		2.67 (m, H-4b)	
3	68.7	3.87, m	68.5	3.90, m
4	44.3	2.71 (m, H-2a)	44.5	2.32 (dd, 13.4, 11.7, H-2b)
	2.75 (m, H-4a)		2.67 (m, H-4b)	
	2.67 (m, H-4b)		2.67 (m, H-4b)	
5	140.2	—	140.1	—
6	125.1	5.57 (d, 5.4)	125.3	5.64 (d, 4.7)
	1.82 (m, H-7a)		1.84 (m, H-7a)	
7	32.4	1.48 (m, H-7b)	32.5	1.53 (m, H-7b)
8	33.4	1.46, m	33.5	1.53, m
9	50.9	1.47, m	50.8	1.54, m
10	43.4	—	43.4	—
11	24.4	2.96 (m, H-11a)	24.4	2.92 (m, H-11a)
	1.60 (m, H-11b)		1.57 (m, H-11b)	
12	40.9	1.51 (m, H-12a)	40.9	1.54 (m, H-12a)
	1.27 (m, H-12b)		1.26 (m, H-12b)	
13	41.3	—	41.3	—
14	57.2	1.06, m	57.2	1.09, m
15	32.8	1.81 (m, H-15a)	32.9	1.82 (m, H-15a)
	1.37 (m, H-15b)		1.37 (m, H-15b)	
16	83.5	4.62, m	83.5	4.65, m
17	62.0	1.74, m	62.1	1.72 (dd, 7.2, 7.5)
18	17.3	0.96, s	17.3	1.02, s
19	15.6	1.43, s	15.4	1.41, s
20	37.9	2.89, m	38.0	2.92, m
21	15.3	1.09 (d, 6.9)	15.3	1.1 (d, 6.6)
22	112.3	—	112.3	—
23	70.8	3.98 (d, 3.5)	70.8	3.98 (d, 2.8)
24	82.8	4.79 (d, 3.5)	82.8	4.82 (d, 2.8)
25	144.4	—	144.4	—
26	62.0	4.83 (d, 10.9, H-26a)	62.0	4.87 (d, 11.7, H-26a)
	4.01 (m, H-26b)		4.06 (m, H-26b)	
27	114.3	5.22 (s, H-27a)	114.3	5.23 (s, H-27a)
	5.11 (s, H-27b)		5.12 (s, H-27b)	
1-O-Ara				
1	101.0	4.68 (d, 7.9)	100.9	4.7 (d, 7.9)
2	75.8	4.58, m	74.7	4.57, m
3.2. Cytotoxicity Assay

The cytotoxic activity assay toward three human tumor cell lines (HCT116, A549 and HepG2) were measured following the procedures that we reported previously [18-20], the details were listed in the Supporting Information.
Two new spirostanol glycosides from *Helleborus thibetanus* Franch.

Table 2. Cytotoxicity of compounds 1-5 (IC$_{50}$ values expressed in µM)

Compounds	HCT116 (µM)	A549 (µM)	HepG2 (µM)
1	>100	7.69 ± 1.13	8.32 ± 2.63
2	20.67 ± 1.06	>100	>100
3	>100	>100	>100
4	>100	>100	80.54 ± 1.62
5	>100	>100	>100
5-FUa	24.13 ± 2.44	18.92 ± 2.79	41.68 ± 1.58

a 5-fluorouracil (5-Fu) as positive control.

3.3. **Sugar Analysis of Compounds 1 and 2**

Sugar moieties of compounds 1 and 2 were confirmed by using the t_R of D-Glc (45.2 min), D-Fuc (35.2 min), D-Api (11.2 min), L-Ara (12.2 min), and L-Rha (14.5 min), following the procedures that we reported previously [21-23], the details were listed in the Supporting information file of the article.

Acknowledgments

This work is supported by Program project for Shaanxi Administration of Traditional Chinese Medicine (grant number 2021-02-22-017); Program project for Shaanxi University of Chinese Medicine (grant number 2021GP27); Project for Subject Innovation Team of Shaanxi University of Chinese Medicine (grant number 2019-YL12) and Department of Education of Shaanxi Province (grant number 22JK0344).

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/journal/records-of-natural-products.

ORCID

Yuze Li: [0000-0001-7571-3214](https://orcid.org/0000-0001-7571-3214)
Zilong Zhang: [0000-0002-3287-0436](https://orcid.org/0000-0002-3287-0436)
Wenli Huang: [0000-0003-2767-7831](https://orcid.org/0000-0003-2767-7831)
Huawei Zhang: [0000-0003-4970-3818](https://orcid.org/0000-0003-4970-3818)
Yi Jiang: [0000-0003-1200-1441](https://orcid.org/0000-0003-1200-1441)
Jianli Liu: [0000-0003-0530-8904](https://orcid.org/0000-0003-0530-8904)
Xiaomei Song: [0000-0003-1906-1578](https://orcid.org/0000-0003-1906-1578)
Dongdong Zhang: [0000-0003-0956-1261](https://orcid.org/0000-0003-0956-1261)

References

[1] X. M. Song and H. J. Liu (2011). Research and application of "Qi-Medicines" in Taibai Mountains, *People's Medical Publishing House*.

[2] J. Cakar, A. Haveric and S. Haveric (2014). Cytotoxic and genotoxic activity of some *Helleborus* species, *Nat. Prod. Res.* **28**, 883-887.
[3] Q. An, N. W. Lu and Y. M. Dong (2013). Chromatographic fingerprint coupled with hierarchical clustering analysis and principal component analysis for quality evaluation and original discrimination of rhizomes of Helleborus thibetanus Franch by HPLC-DAD, Anal. Meth. UK. 5, 5775–5784.

[4] Z. Liu, Y. Liu, B. Xue, W. Chen and R. W. Jiang (2020). The co-occurrence of bufadienolides and podophyllotoxins from Helleborus thibetanus, Biochem. Syst. Ecol. 90, 104042-104047.

[5] H. Zhang, Y. F. Su, F. Y. Yang, Z. Q. Zhao and X. M. Gao (2014). Six new steroidal saponins from Helleborus thibetanus, Helv. Chim. Acta. 97, 1652-1665.

[6] W. Cheng, Y. F. Tan, H. Y. Tian, X. W. Gong, K. L. Chen and R. W. Jiang (2014). Two new bufadienolides from the rhizomes of Helleborus thibetanus with inhibitory activities against prostate cancer cells, Nat. Prod. Res. 28, 901-908.

[7] H. Zhang, Y. F. Su and F. Y. Yang (2016). Four new minor spirostanol glycosides from Helleborus thibetanus, Phytochem. Lett. 18, 213-219.

[8] Y. Z. Li, H. W. Zhang, H. Fan, X. F. Liang, B. Song, H. Chen, W. L. Huang, Z. G. Yue, X. M. Song and J. L. Liu (2019). Steroidal constituents from Helleborus thibetanus Franch and their cytotoxicities, Chin. J. Nat. Med. 17, 778-784.

[9] D. D. Zhang, Z. L. Zhang, G. Q. Wu, Y. Sun, Y. Jiang, H. W. Zhang, W. Wang, X. M. Song and Y. Z. Li (2022). Iridoids and lignans from Valeriana officinalis L. and their cytotoxic activities, Phytochem. Lett. 2022, 49, 125-130.

[10] Y. Z. Li, W. L. Huang, H. W. Zhang, Y. Jiang, C. Deng, W. Wang, J. L. Liu, X. M. Song and D. D. Zhang (2022). Steroidal components from the roots and rhizomes of Helleborus thibetanus, Phytochem. Lett. 50, 31-35.

[11] H. Zhang, Y. F. Su, F. Y. Yang and X. M. Gao (2016). New minor spirostanol glycosides from Helleborus thibetanus, Nat. Prod. Res. 31, 925-931.

[12] C. Bassarello, T. Muzashvili, A. Skhirtladze, E. Kemertelidze, C. Pizza and S. Piacente (2008). Steroidal glycosides from the underground parts of Helleborus caucasicus, Phytochemistry 69, 1227-1233.

[13] Y. Mimaki, T. Inoue, M. Kuroda and Y. Sashida (1996). Steroidal saponins from sansevieria trifasciata, Phytochemistry 43, 1325-1331.

[14] K. Watanabe, Y. Mimaki, H. Sakagami and Y. Sashida (2003). Bufadienolide and spirostanol glycosides from the rhizomes of Helleborus orientalis, J. Nat. Prod. 66, 236-241.

[15] P. Y. Hayes, R. L. Ehmann, K. Penman, W. Kitching and J. J. Devoss (2009). Steroidal saponins from the roots of Trillium erectum (Beth root), Phytochemistry 70, 105-113.

[16] Y. Mimaki and K. Watanabe (2008). Clintoniosides A-C, new polyhydroxylated spirostanol glycosides from the rhizomes of Clintonia udensis, Helv. Chim. Acta. 91, 2097-2106.

[17] Y. Mimaki, K. Watanabe, C. Sakuma, H. Sakagami and Y. Sashida (2003). Novel polyoxygenated spirostanol glycosides from the rhizomes of Helleborus orientalis, Helv. Chim. Acta. 86, 398-407.

[18] Y. Z. Li, H. W. Zhang, X. F. Liang, B. Song, X. D. Zheng, R. Wang, L. Liu, X. M. Song and J. L. Liu (2020). New cytotoxic bufadienolides from the roots and rhizomes of Helleborus thibetanus Franch, Nat. Prod. Res. 34, 950–957.

[19] X. Liang, Y. Li, Y. Cui, Z. Liang, W. Huang, Y. Jiang, H. Zhang 1 and X. Song (2020). A new lignan glycoside from the roots of Silene tatarinowii Regel, Rec. Nat. Prod. 14(6), 405-409.

[20] G. Wu, Z. Zhang, H. Fan, D. Zhang, W. Huang, H. Zhang, Y. Li and X. Song (2022). A new iridoid glycoside isolated from Valeriana officinalis L. Rec. Nat. Prod. 16(5), 393-397.
Two new spirostanol glycosides from *Helleborus thibetanus* Franch.

[21] D. D. Zhang, D. Q. Ruan, J. Y. Li, Z. Q. Chen, W. L. Zhu, F. J. Guo, K. X. Chen, Y. M. Li and R. Wang (2020). Four undescribed sulfur-containing indole alkaloids with nitric oxide inhibitory activities from *Isatis tinctoria* L. roots, *Phytochemistry* **174**, 11237.

[22] Z. Chen, X. Xue, S. Zhang, R. Zhang, X. Zhang, Z. Guo and X. Zhang (2020). Steroidal components from the roots and rhizomes of *Smilacina henryi* and their cytotoxic activities, *Rec. Nat. Prod.* **14**(3), 225-230.

[23] D. D. Zhang, J. Y. Li, D. Q. Ruan, Z. Q. Chen, W. L. Zhu, Y. H. Shi, K. X. Chen, Y. M. Li and R. Wang (2019). Lignans from *Isatis* indigotica roots and their inhibitory effects on nitric oxide production, *Fitoterapia* **137**, 104189.

© 2022 ACG Publications