Bacteria produce under stress conditions bacteriocins and microcins that display antibacterial activity against closely related species for survival. Bacteriocins and microcins exert their antibacterial activity by either disrupting the membrane or inhibiting essential intracellular processes of the bacterial target. To this end, they can lyse bacterial membranes and cause subsequent loss of their integrity or nutrients, or hijack membrane receptors for internalisation. Both bacteriocins and microcins are ribosomally synthesised and several are posttranslationally modified, whereas others are not. Such peptides are also toxic to the producing bacteria, which utilise immunity proteins or dedicated ATP-binding cassette (ABC) transporters to achieve self-immunity and peptide export. In this review, we discuss the structure and mechanism of self-protection that is conferred by these ABC transporters.

Keywords: ABC transporters; antibacterial peptides; bacteriocins; lantibiotics; mechanism; microcin; multidrug resistance; self-immunity; structure
Bacteriocins from Gram-positive bacteria

The AMP class of lanthipeptides is defined by two particular amino acid modifications being the bis-amino-bis-acids lanthionine (Lan) or 3-methyllanthionine (McLan) [5,6]. This PTM is catalysed by one or two specific enzymes in two steps. First, serine and threonine residues are dehydrated resulting in the unnatural α, β unsaturated amino acids 2,3-didehydroalanine (Dha) and 2,3-didehydrobutyrine (Dhb) [7,8], followed by a Michael-type condensation of these amino acids with cysteine residues yielding a thioether crosslink, so-called lanthionine rings (Lan or McLan rings). In general, the lanthipeptide is transcribed as a core peptide fused to an N-terminally located leader peptide. The modifications occur only in the core peptide and not in the N-terminal leader peptide, which is recognised by the modification enzymes and by the ATP-binding cassette (ABC) transporter which is used for secretion. After secretion, the leader peptide is cleaved off by either specific or nonspecific peptidases, as in the case of subtilin [9]. This cleavage represents the activation step of lanthipeptides.

Lanthipeptides are produced by specific biosynthetic clusters mainly in Gram-positive bacteria, but their occurrence is not restricted to this group; they are also found in Gram-negative bacteria [10] and cyanobacteria [11,12]. Lanthipeptides have been classified by their properties (e.g. their antimicrobial activity) or by their structural diversity in the past [13–16]. In 2013, a new and still commonly accepted classification was introduced based on the characteristics of the modification enzymes [1]. Recently, a new class was identified, which brings the number of different classes to five [17,18]. In class I, the enzymes needed for the modification are two single monofunctional enzymes where the dehydratase (LanB) and the cyclase (LanC) are forming a complex in the cell. In class II, these two activities are performed by a single, bifunctional large protein termed LanM containing both the dehydratase domain and a LanC-like cyclase domain. Class III and class IV contain trifunctional synthetases, including lyase, kinase and cyclase domains, LanKC and LanL, respectively, but with different cyclase domains [1]. Class V contains a triprotein synthetase (LanK, LanX and LanY) [17,18]. The different structures and mechanisms of the enzymes from class I-IV have been reviewed in detail in references [19,20].

Lanthipeptide operons are organised as biosynthetic gene clusters, which encode a precursor peptide (LanA) that is located with the enzymes for modification (class I: LanB and LanC or class II: LanM/LanKC), transport (LanT), processing (LanP), regulation (LanR and LanK), immunity for class I and class II (LanI, LanFEG) and in some cases accessory proteins found in class II (e.g. LanH; Fig. 1).

Some gene clusters are located on chromosomes (e.g. subtilin [21]), on mobile gene elements such as conjugative transposons (e.g. nisin [22,23]) or plasmids (e.g. epidermin [24] or Pep5 [25]). The mobile gene elements point to the possibility of horizontal gene transfer during evolution in Gram-positive bacteria [26,27].

In general, the biosynthesis of lanthipeptides starts at the ribosome, where the mRNA is translated into the corresponding amino acid sequence of the unmodified precursor peptide [28]. This is the target of the different modification enzymes (Fig. 1). The maturation starts by dehydration of Ser and Thr residues resulting in Dha or Dhb, which is catalysed by LanB, in the case of class I lanthipeptides, by a bifunctional enzyme termed LanM, for class II, the trifunctional LanKC, or LanL in class III and class IV or triprotein synthetases (LanK, LanX and LanY) in class V, respectively (Fig. 1) [20,29–32]. As a second step, the lanthionine rings are formed by a Michael-type addition with a cysteine side chain.

The modified lanthipeptide precursor peptides are set for either direct secretion or cytoplasmic maturation prior to the translocation process, which is mediated by specific ABC transporters (see section Lanthipeptide export by ABC transporters – structure and mechanism). After the final steps of lanthipeptide secretion and maturation, the lanthipeptide is released. The active and mature form of the lanthipeptide would not only target other Gram-positive bacteria but also the cellular membrane or specific receptors of the producer strain itself. This especially holds true for lanthipeptides, which display antimicrobial activity in the nanomolar range (termed lantibiotics). The simultaneous expression of specific immunity proteins confers immunity to the producing strain against its own lantibiotic and is therefore a prerequisite. The genes encoding these proteins are located adjacent on the same gene cluster as the genes coding for maturation, transport and activation proteins (Fig. 1).

Antimicrobial activity has been reported for class I and class II lanthipeptides, which are termed lantibiotics. Many of these are highly active against Gram-positive bacteria from the genera of Bacillus, Clostridium, Lactococcus, Micrococcus, Streptococcus and Staphylococcus [33–36]. Lantibiotics appear to have only a very limited effect on Gram-negative bacteria or yeasts [37,38]. Very likely, the additional outer membrane of Gram-negative bacteria or the cell wall of yeasts acts as a barrier and is generally not permeable to these peptides. Lantibiotics possess antimicrobial activity.
through several mechanisms including pore formation, inhibition of peptidoglycan synthesis or rather specific mode of action (e.g. targeting a certain receptor in the cell wall). Nisin, subtilin and mersacidin inhibit the peptidoglycan biosynthesis [39-41]. The mechanism of inhibition by nisin has been investigated in detail on the molecular level. Nisin interacts with the pyrophosphate of lipid II via its N terminus to form a complex at the membrane with a ratio of 1 : 1 [42]. As a consequence, the complex dissociates from the septum and the cell wall precursor lipid II is no longer available for cell wall synthesis [43]. Mersacidin [44], nukacin ISK-1 [45], plantaricin C [46], lacticin 3147 [47] and lichenicidin [48] also bind to lipid II or other peptidoglycan precursors. Additionally, nisin has a pore-forming mode of action, where the aforementioned membrane complex of nisin and lipid II subsequently forms a membrane pore of four nisin and eight lipid II molecules with a diameter of 2-2.5 nm [49-51]. These pore-forming complexes are responsible for cell lysis [49,52-56].

Although class III and class IV lanthipeptides are not associated with antimicrobial activity, some other bioactivities have been described for a small number of class III lanthipeptides. The lanthipeptide NAI-112 has low antimicrobial activity against staphylococci and streptococci, but more interestingly a highly antinociceptive activity has been determined [57]. The antiviral activity against HIV and HSV has been described for labyrinthopeptin A1 [58], where the lanthipeptides SapT and SapB have a morphogenic activity on the hyphae of streptomycetes [59,60].

Microcins from Gram-negative bacteria

Microcins are antibacterial peptides of low molecular weight, < 10 kDa, that are produced by Enterobacteriaceae. Like other AMPs, they are secreted under
conditions of nutrient exhaustion and exert potent antibacterial activity against closely related species. Microcins are ribosomally synthesised, and some of them are posttranslationally modified. Their biosynthetic cluster encodes a linear precursor peptide, the maturation enzymes that modify the peptide and immunity proteins that are either degrading enzymes, binding proteins or transporters (for an in-depth review on microcin biosynthesis see reference [61]; Fig. 2). The linear precursors have a leader sequence that is important for recognition by the synthetases and in a few cases by their ABC transporters, which display peptidase activity to remove it (see section Class II microcin export by ABC transporters – structure and mechanism). Microcins can be classified into class I and class II [1,61]. Class I microcins are usually plasmid-encoded and posttranslationally modified. Microcins that belong to the class I include MccB17, containing thiazole and oxazole rings [62], MccJ25, possessing a lasso topology [4], or MccC7/C51, containing a nucleotide [63]. Class II microcins can be subdivided into IIa and IIb; microcins of class IIa are plasmid-encoded but not modified (MccL, MccV, Mcc24), whereas microcins of class IIb are chromosomally encoded linear peptides with a C-terminal siderophore modification (MccE492, MccM, MccH47 and MccI47).

Microcins are targeting and inhibiting essential enzymes located in the cytoplasm such as DNA gyrase (MccB17 [64,65]) or RNA polymerase (MccJ25 [66]). Some microcins disrupt the bacterial inner membrane by pore formation like MccE492 [67]; its pore formation activity is dependent on the mannose transporter ManYZ, but the exact mechanism is unknown [68]. In order to reach their targets, they need to cross both, the outer and inner membrane of Gram-negative bacteria. Although these microcins are structurally very different, they all cross the outer membrane by hijacking outer membrane proteins [69], including siderophore receptors or porins (Fig. 2). Upon crossing the outer membrane, microcins that do not disrupt the inner membrane utilise secondary transporters such as SbmA [70] or ABC transporter (importer) YejABC [71] for reaching their targets in the cytoplasm.

Microcin J25 (MccJ25) is one of the best characterised microcins in terms of biosynthesis, export and mode of action. MccJ25 is a plasmid-encoded, ribosomally synthesised and posttranslationally modified 21-amino acid AMP that displays a unique lasso topology as a result of its C-terminal tail threading through an N-terminal eight-residue macrolactam ring. The macrolactam ring is formed by linkage of the N-terminal amino group of the Gly1 residue and the Glu8 side-chain carboxylate, and the loop stability is provided by locking it by steric hindrance from two bulky amino acid side chains, Phe19 and Tyr20, on either side of the macrolactam ring [4,72]. The biosynthetic

Fig. 2. Biosynthetic gene clusters of class I and IIa/b microcins. Representative examples for each class are shown. Genes encoding self-immunity proteins are included in the biosynthetic clusters and ensure efficient protection against the produced peptides. Colour code: precursor peptide (yellow); posttranslational modification enzymes (green); self-immunity by transporters (blue and purple); self-immunity proteins (excluding export) (red); unknown function (grey). The white arrows indicate known promoters. Protein names are written under the genes.
The role of ABC transporters in lantibiotic and microcin export

S. H. J. Smits et al.

cluster consists of four genes [73], mcjABCD, where mcjA encodes the 58-amino acid peptide precursor McjA that is posttranslationally modified by the maturation enzyme McjBC [74] (Fig. 2); McjB is an ATP-dependent cysteine protease, and McjC is an ATP-dependent asparagine synthetase [75]. Self-immunity is provided by the ABC transporter McjD [76] (see section Self-immunity to microcins conferred by ABC transporters).

In *Escherichia coli*, MccJ25 enters the target bacteria by hijacking the outer membrane siderophore receptor FhuA-TonB-dependent pathway [77,78] and inner membrane protein SbmA [70,79,80] (Fig. 3). Once inside the cell, MccJ25 inhibits the bacterial RNA polymerase [66,81] by binding to the secondary channel [82,83] (Fig. 3). Unlike other microcins, MccJ25 self-immunity does not require other immunity proteins.

General introduction on ABC transporters

Export of lantibiotics and microcins out of the producing cells is usually mediated by ABC transporters (Figs 1 and 2), which ensure that the toxic peptides are secreted out of the cells for both, self-immunity and release, into the medium to exert their killing activity against closely related species for survival. ABC transporters are one of the largest superfamilies and can be found in bacteria, archaea and eukaryotes [84]. They have multiple roles including nutrient uptake, exporting signalling molecules or toxic compounds such as xenobiotics and toxic metabolites, as well as conferring cells with multidrug resistance (MDR). Nutrient uptake is usually mediated by ABC importers (type I and type II; not discussed here) [85], whereas ABC exporters (type IV) mediate the export of toxic molecules out of the cells [86]. ATP binding and hydrolysis energise the ABC transporters for substrate export. The core architecture of ABC transporters consists of a transmembrane domain (TMD), homodimeric or heterodimeric, of twelve transmembrane (TM) helices and a dimeric nucleotide-binding domain (NBD) [85]. The TMD forms the translocation pathway across the membrane bilayer and contains the substrate recognition site, but it does not display any significant sequence conservation amongst different species, where the NBD contains several conserved motifs for ATP binding and hydrolysis (see ref [85] for a comprehensive review).

![Fig. 3. Mode of action of microcins. The lasso peptide MccJ25 hijacks the siderophore receptor FhuA at the outer membrane and triggers a transport event via the ExbBD-TonB-dependent pathway that results in its internalisation. The MccB17 is internalised by crossing the outer membrane through the OmpF porin. Inside the periplasm, both the MccJ25 and MccB17 hijack the SbmA transporter for transport across the inner membrane and subsequently inhibit the RNA polymerase and DNA gyrase, respectively.](image-url)
In this review, we have tried to capture the ‘diverse’ export systems associated with self-immunity against AMPs in both Gram-positive and Gram-negative bacteria. Although most of the export systems belong to the ABC transporter superfamily, in many cases these transporters also play an important role in the maturation process, which is distinct from multidrug transporters that just export structurally distinct molecules [87]. The self-immunity ABC transporters appear specific to their substrates.

Lantibiotics and ABC transporters

Lantibiotic secretion by ABC transporters

Class I lantipeptides are mainly secreted by a LanT-type (or NisT-type) ABC transporter; prominent members are NisT [88], SpaT [89] or PepT [90], and they export the precursor peptide directly into the extracellular space (Fig. 4 and Table 1). In the operons of these examples, genes encoding specific peptidases are also present. These leader peptide peptidases (LanP) remove the leader peptide in the final maturation step and thereby activate the lantipeptides. LanPs are either located in the cytoplasm (e.g. PepP [90], EciP [91], ElxP [92]) or anchored to the extracellular membrane (e.g. EpiP [93] and NisP [94]). In the latter, cleavage of the leader peptide takes place after secretion ensuring that the lantipeptide remains inactive in the cytosol and cannot exert its antibacterial activity.

In contrast to class I, many class II lantipeptides are secreted by ABC transporters, which combine the final maturation and secretion step (Table 1). The final maturation step is performed by an additional C39 peptidase domain (Fig. 1). The prototype of this family is SunT [20,95]. They are bifunctional, homodimeric transporters, whose secretion and proteolytic activity are
tightly coupled [96,97] (see also section Class II microcin export by ABC transporters – structure and mechanism). Examples include the exporter LctT [98], MrsT [99], BovT [100], LicT [101] and NukT [102]. Noteworthy, in the operon of LicT, there is an additional gene encoding a peptidase, LicP, which further trims the leader peptide of the precursor peptide, yielding the mature peptide after translocation [103].

Class III lanthipeptides are secreted by LanT-type ABC transporters (as in class I) after their final maturation step. It was first suggested that the proteolytic cleavage of the leader peptide is performed by prolyl oligopeptidases (POPs) [104]. They are, however, not always present in the biosynthetic gene clusters of class III lanthipeptides and are therefore not included in the general biosynthetic gene cluster scheme. The biosynthesis of NAI-112 requires a Zn$^{2+}$-dependent protease, AplP, that catalyses the cleavage of the leader peptide [105]. In class IV lanthipeptides, little is known about the transporter and no protease has been identified [10,106]. In these biosynthetic gene clusters, lanT and lanH encode two proteins, LanT and LanH, responsible for the translocation process. It is assumed that the heterodimeric transporter LanTH is bifunctional and can act as a peptide exporter and an immunity transporter [10,107].

Lanthipeptide export by ABC transporters – structure and mechanism

In the gene clusters of class I and class II lanthipeptides, at least one or two genes are encoding an immunity system (Fig. 1). These are termed LanI protein and LanFEG ABC transporter (Fig. 4). LanI is a lipoprotein located extracellularly, and it is anchored to the membrane by a fatty acid chain attachment to an N-terminal cysteine residue [108]. Deletion of lanI increases the sensitivity of the producer strain to its own lanthipeptide as shown for the nisin immunity protein NisI [109]. LanI proteins are also found in the biosynthetic gene clusters of Pep5 [91], epicidin 280 [91] and subtilin [111] and for the two-component lanthipeptides lacticin 3147a and b [112]. For NisI, which binds nisin, and SpaI, which binds subtilisin, the specific interaction between LanI and the lanthipeptide has been demonstrated [108,111,113,114]. The NMR structures of SpaI [115] and NisI [114], as well as the crystal structure of NisI [116], revealed a central six/seven-stranded β-sheet with a hydrophobic patch located in the C-terminal region (Fig. 4). NisI contains an N-terminal and a C-terminal domain, whereas SpaI possesses only one domain (Fig. 4). Although the sequence identity is low, both domains of NisI can be separately aligned to the SpaI structure. NMR titration experiments of NisI with nisin revealed that the main binding site is located in the C-terminal domain of NisI [116]. This finding supported former in vivo studies, in which the deletion of the C terminus of NisI decreased the immunity of Lactococcus lactis against nisin [117,118]. The LanI protein PepI also highlighted the importance of the C-terminal domain to confer full immunity [119]. The interaction of LanI with the lanthipeptides prevents

Lanthipeptide ABC transporters	LanT	SunT (fused NBD and TMD) + C39	LanFEG	BceAB
Sequence length (amino acids)	602	710	225 + 242 + 214	253 + 648
Predicted transmembrane helices	6	5 or 6	LanE: 6	BceE: 10
Stoichiometry	Homodimer	Homodimer	Heterodimer	BceAB: unknown (dimeric BceA)
Special sequence motif	–	N-terminal C39 peptidase domain	LanF: E-loop	BceA: Q-loop
Inactive transport mutant	H-loop	H-loop	H-loop	H-loop
Observed mechanism	Secretion of produced and or processing of lantibiotic	Leader processing and secretion	Expelling AMP	Expelling AMP/ shielding of membrane target
Substrate specificity	AMP (recognised by leader sequence)	AMP (recognised by leader sequence)	Immunity against produced AMP	Resistance against AMP and bacitracin

Nisin: recognition of C terminus Nisin: recognition of N terminus

Table 1. Characteristics and substrate specificity of ABC transporters involved in lanthipeptide immunity or resistance.
membrane insertion and oligomerisation, being the prerequisite for pore formation [117] by inhibiting the interaction of receptor/LanA, for example membrane/lipid II for nisin [114,116,120].

The second set of immunity proteins are the LanFEG proteins, which belong to LanFEG-type ABC transporters [95]. They confer immunity against their own, specific lanthipeptide by extrusion from the cytoplasmic membrane into the extracellular medium [113,121,122]. The LanFEG-type ABC transporters consist of the TMDs LanE and LanG, and the NBD LanF (Fig. 4 and Table 1). A fully functional LanFEG-type ABC transporter consists of a heterodimer of LanE and LanG together with a homodimer of LanF. Interestingly, immunity systems have been described, in which only LanI or LanFEG is expressed, which seems to correlate with the mode of action of the lanthipeptide [123].

For lantibiotics that display a dual antimicrobial activity (e.g. inhibition of cell wall biosynthesis and pore formation within in the membrane), LanI and LanFEG work in a cooperative manner to confer full immunity [111,113]. Both genes encoding for the LanFEG and LanI proteins are present in the biosynthetic cluster of nisin [125], epidermin [121], subtilin [126] and streptin [127]. However, if the lantibiotics only form pores, only lanI, but not lanFEG, is present in the cluster (e.g. Pep5 [110,128] epicidin 280 [91] and lactocin S [129]). The LanFEG-type ABC transporter is encoded in gene clusters of lantibiotics, whose mode of action is to (a) bind to a specific receptor (epidermin [121]), or (b) interfere with cell wall biosynthesis (mersacidin [99]) or (c) modify the lipid composition of the membranes (cinnamycin [130]).

The biosynthetic cluster of gallidermin and epidermin encodes an accessory protein termed LanH (or GslH and EpiH, respectively; Fig. 4), instead of a lipoprotein, which contributes to higher immunity towards its cognate lanthipeptide [131]. Similarly, in Staphylococcus warneri ISK-1 the membrane protein NukH is present, which acts together with the LanFEG-type ABC transporter NukFEG to confer full immunity against nukacin ISK-1 [132,133]. Another example of a biosynthetic cluster encoding a lipoprotein, an ABC transporter and an accessory protein is found in the NAI-107 producer Microbispora ATCC PTA-5042; MlbQ is the lipoprotein that confers immunity to NAI-107-like lanthipeptides analogously to LanI proteins [124]. Additionally, the ABC transporter MlbYZ and the accessory protein MlbJ (functioning as a LanH protein) also contribute to the immunity. Class II lanthipeptides contain two-component lanthipeptides (α- and β-mLanA), in which one variant has a pore-forming mode of action and the other inhibits peptidoglycan biosynthesis [47,134]. Consequently, in these operons genes encoding a LanI lipoprotein and a LanFEG-type ABC transporter are present, which when expressed can confer immunity against both lanthipeptide variants (e.g. lichenicidin BGC [135,136]). In these operons, however, an additional accessory protein, LanH, can be found. This appears to be an exception since in the biosynthetic gene cluster of lactacin 3147, only ltnI and ltnEF were identified and not ltnH [112]. In many cases, the components of the immunity system seem to have co-evolved to the activity of the lanthipeptide resulting in different strategies for immunity mechanisms.

In the biosynthetic gene cluster of class III and class IV lanthipeptides, lanI and lanFEG are absent (Fig. 1), which correlates with the lack of antimicrobial activity of these lanthipeptides. In class IV lanthipeptides, the ABC transporter LanTH appears to be important for immunity [10,107] (Fig. 1). The detailed mechanism of action by class IV lanthipeptides is not well-understood, and the exact nature of the immunity mediated by these ABC transporters also remains enigmatic. In the new class V, only a gene encoding a LanI protein is present, which function is, however, not resolved so far [17].

In many biosynthetic clusters of class I and class II lanthipeptides, the genes encoding LanFEG-type transporters can be found as secondary export systems besides the genes for LanT/LanC39PT-type transporters [121,126,131,137–140]. Throughout the lanthipeptide biosynthetic clusters, the encoded LanFEG-type transporters are homologous to each other and share the same domain organisation (Fig. 5).

In contrast to LanT-type ABC transporters, the subunits of the LanFEG-type ABC transporters are encoded on separate genes with a fully assembled transporter in a proposed stoichiometry of 2 : 1 : 1 (LanF2EG) [137] based on bioinformatic analysis (Fig. 5 and Table 1). The LanE and LanG are the TMDs, and they all contain six predicted TM helices [111]. The TMDs are functional heterodimers as shown for NisFEG and SpaFEG, in which deletion of one of the proteins resulted in loss of immunity, suggesting that they are important for substrate binding and translocation [111,113,141]. The LanF proteins are the NBDs and share the common conserved ABC motifs of the ABC protein superfamily. Within the conserved ATPase motifs, an E-loop instead of the Q-loop can be found, that is highly conserved in LanFEG-type ABC transporters and is apparently involved in the communication of the NBDs with the TMDs that is important for lantibiotic immunity [142].
The LanFEG-type ABC transporters belong to the ABC-2 subfamily of MDR proteins, which are involved in the efflux of macrolides, antibiotics, toxins or other compounds [143,144]. The LanFEG-type transporters are specific for their dedicated lantibiotic and confer immunity without any cross-reactivity [122]. Although the exact mechanism is still unknown, LanFEG-type transporters may function like other ABC transporters. It has been proposed that the exporter extrudes the hydrophobic substrate from the inner/outer leaflet of the membrane to the trans-side of the membrane and/or extracellular space, respectively (Fig. 5). This efflux mechanism was proposed and shown for the lantibiotics nisin, subtilin, epidermin and nukacin ISK-1 [111,113,122,133]. The fast extrusion from the membrane appears to prevent pore formation as shown for nisin [141]; pore formation was monitored via a SYTOX green assay, and it clearly demonstrated that the expression of NisFEG prevented pore formation. Important to note is the cooperative function of the LanFEG-type transporter with the associate membrane-bound immunity proteins (LanI or LanH) to confer full immunity against the lantibiotic [108,118,133,145–147]. An independent action of only LanFEG-type transporter has also been observed for NisFEG and SpaFEG [111,113]; however, full immunity could only be observed if both proteins were expressed.

Resistance to lantibiotics by ABC transporters expressed in human pathogens

Although resistance against lantibiotics is rarely observed, still some inherent resistance mechanisms have been reported, mainly in human pathogenic bacteria. This resistance can arise from modifications of the cell wall or membrane and the formation of biofilms or endospores (reviewed in [148]). In all cases, the presence of lantibiotics is sensed by specific protein detection systems (e.g. two-component systems; TCS), which alter the gene regulation and thereby the expression of enzymes involved in peptidoglycan modification, lipid biosynthesis or resistance proteins (e.g. ABC transporters in Firmicutes). The encoded ABC transporter either belongs to the group of CprABC-type transporter (Cpr: cationic AMP resistance) or belongs to the group of BceAB-type transporter (Bce: bacitracin efflux) [87,95,149] (Table 1).

The first group are CprABC-type transporters, which are similar to the LanFEG-type transporters [150,151]. All proteins are encoded by the same operon but expressed separately under the control of the
corresponding TCS, which is responsible for lantibiotic sensing. The functional transporter consists of two NBDs and a heterodimeric TMD. Unusually for LanFEG-type transporters, the ABC transporter CprA2BC from the Gram-positive bacterium Clostridioides difficile confers resistance against multiple lantibiotics such as nisin and gallidermin [151]. In contrast to LanFEG-type transporters of lantibiotic-producing bacteria, these ABC transporters have a wide substrate spectrum and are not specific for a single lantibiotic. Another CprABC-type transporter is LetFEG from Streptococcus mutans, which confers resistance against nukacin ISK-1 and lactacin 481 under the control of the TCS LcrRS [152]. Interestingly, on a different gene locus, the TCS NsrRS regulates the expression of the ABC transporter NsrFE1E2G, which confers resistance against nisin but not to other lantibiotics such as nukacin ISK-1. In the Streptococcus pyogenes, SF370 bacterium, the TCS SrtRK and the ABC transporter SrtFEG only confer resistance to nisin [153].

The second group is composed of BceAB-type transporters, which are part of broad stress response systems [154]. These exporters display substrate promiscuity and export lantibiotics, bacteriocins or other AMPs, glycopeptides and even antibiotics (e.g. bacitracin or β-lactam antibiotics) suggesting a different mechanism [95]. The domain organisation of these ABC transporters is completely different in comparison with the LanT-type or LanFEG-type transporters [155]. The BceB protein (TMD) is predicted to have 10 TM helices and an additional large extracellular sub-domain (ECD) between TM helix 7 and TM helix 8 of roughly 200 amino acids in size, where the BceA protein is the NBD [156] (Table 1). Interestingly, the topology of the C-terminal four TM helices and the ECD is similar to MacB [157]. The ECD domain is believed to be important for sensing the putative substrate. It is proposed that these transporters have co-evolved with their TCS, as the histidine kinase (HK) lacks the sensor domain normally present in other putative HKs [158,159]. The presumed functions of BceAB-type transporters are either the translocation of the substrate (bacitracin or AMP) and/or the flipping of the membrane target, which is sensed by the associated TCS [160–162]. The suggested stoichiometry of the BceAB-type transporter is 2 : 1, as shown for the ABC transporter BceAB from Bacillus subtilis, where the HK BceS interacts with BceB [162]. This transporter mainly expels bacitracin and forms a complex with the bacitracin sensing TCS BceRS [159,163]. Additionally, it confers resistance against plectasin, actagardine and mersacidin [164]. Similarly, the BceAB paralog PsdAB from B. subtilis confers resistance against the lantibiotics mersacidin, actagardine, gallidermin, nisin and the peptide antibiotic bacitracin [164]. Further BceAB-type transporter examples include MbrAB from Staphylococcus mutans [165], VraDE from Staphylococcus aureus [166], YsaBC from L. lactis IL1403Nis’ [167] and AnrAB from Listeria monocytogenes, which confer resistance against nisin, bacitracin and some β-lactam antibiotics (e.g. oxacillin and penicillin G) [168]. It has been proposed that the BceAB transporter form B. subtilis confers resistance by transiently ‘free’ lipid II cycle intermediates from the inhibitory AMP complexes; however, the exact molecular mechanism is unknown [169].

A special variation of the standard operon of BceAB-type transporter can be mainly found in pathogenic strains such as S. aureus, Streptococcus agalactiae, Enterococcus faecium and Streptococcus sanguinis [170]. These operons include genes that encode a TCS, a BceAB-type transporter and an additional lipoprotein. Interestingly, strains containing such an operon do not produce AMPs, but are resistant against some lantibiotics. For example, in the human pathogen S. agalactiae COH1 an operon for nisin resistance can be found, which encodes the lipoprotein SaNSR, a serine protease belonging to the S41 protease family, a BceAB-type transporter SaNsrFP and the TCS SaNsrRK [120,170–172].

The CprABC and BceAB transporters appear to have different number of transmembrane helices and structural arrangements compared with the NisFEG transporter from L. lactis and the NsrFP from S. agalactiae. This is reflected by their substrate specificity; NisFEG recognises the C terminus of nisin, suggesting that mainly the pore-forming mode of action is targeted [141], whereas the SaNsrFP transporter recognises the N terminus, suggesting that it interferes with the binding of nisin towards the membrane or lipid II [173].

Self-immunity to microcins conferred by ABC transporters

The biosynthetic gene cluster of microcins, which belong to class I and class II, usually encodes the precursor peptide, enzymes involved in PTMs and at least one efflux system for export and subsequent self-immunity (Fig. 2). These efflux systems are usually ABC transporters, but an involvement of transporters that belong to the major facilitator superfamily (MFS) has also been reported [174]; immunity to the MccC7/C51 microcin requires the MFS transporter MccC [174] and immunity proteins MccE (also involved in the posttranslational modification of the MccC7/C51; an
acetyl-CoA-dependent acetyltransferase acetylates the primary amino group of the aminoacyl moiety of the processed microcin that cannot bind to aspartyl-tRNA-synthase [175] and MccF (a serine carboxypeptidase that degrades only mature MccC7) [175, 176]. The precursor peptides in both classes have a leader sequence that is cleaved prior to export. Class I microcin ABC transporters display a typical ABC transporter fold, a TMD and an NBD, to export the mature microcins, whereas the class II microcin ABC transporters contain an additional accessory N-terminal peptidase domain that is involved in the final maturation step of the microcin by cleaving its leader peptide prior to export (Table 2). In both systems, they ensure efficient export out of the producing bacteria to alleviate the microcin toxic effect.

Class I microcin export by ABC transporters – structure and mechanism

Bacteria that synthesise class I microcins can confer self-immunity by either heterodimeric or homodimeric ABC transporters. In some cases, full self-immunity is conferred by additional proteins. The ABC transporter genes are found at the end of the biosynthetic clusters ensuring efficient protection against the accumulation of endogenous peptides during biosynthesis, whereas the immunity one is found near the microcin structural gene (Fig. 2). Biosynthesis of the microcin MccB17, which contains thiazole and oxazole rings, requires seven genes,

Microcin ABC transporters	MccD	MccFE
Sequence length (amino acids)	580	241 + 247
Predicted transmembrane helices	6	MceE: 6
Stoichiometry	Homodimer	Heterodimer
Special sequence motif	–	–
Inactive transport mutant	Walker B	Walker B
Observed mechanism	Secretion of produced microcin	Secretion of produced microcin
Substrate specificity	Lasso peptide MccJ25	MccB17

The export of the microcin MccJ25 is one of the better understood systems amongst microcins belonging to the class I. As mentioned earlier, the biosynthetic cluster consists of four genes [73], mejABC, where mejA encodes the 58-amino acid peptide precursor MejA that is posttranslationally modified by MejB, an ATP-dependent cysteine protease, and MejC, a lactam synthetase [61]. Self-immunity is provided by the ABC transporter McjD [73, 76]. Unlike other class I microcins, self-immunity to MccJ25 is only conferred by the ABC transporter McjD (Fig. 2 and Table 2) and not additional immunity proteins. The mechanism of export has been extensively studied and has provided novel insights on the self-immunity process of class I microcins. The crystal structure of McjD has been determined in the presence and absence of nucleotides and it displays a characteristic homodimeric ABC transporter architecture with a TMD, which consists of 12 TM helices, and a dimeric NBD [76, 178] (Fig. 6). Its overall architecture is similar to Sav1866 from S. aureus [179] and MsbA from E. coli [180], but it does not display an accessible open cavity for substrate translocation regardless of the presence or absence of nucleotides [178]. In the absence of nucleotides, MsbA adopts an inward-closed conformation, whereas in the presence of nucleotides both Sav1866 and MsbA have been shown to adopt outward-open conformations; in both the inward-closed and outward-open conformations, the TMD is open to the inside or the outside of the membrane for ligand binding and release, respectively. The TMD of McjD is occluded at both sides of the membrane as a result of the movement of TM 1 and TM 2 towards the TMs 1′ and 2′ of the opposite monomer. The occluded TMD defines a large cavity of around 5900 Å³ that can accommodate MccJ25. In addition to the occluded TMD, McjD does not display TM helices intertwining unlike MsbA and Sav1866, as a result of the TM 1 and TM 2 movement. No structure
of McjD has been reported in the presence of MccJ25, but mutagenesis studies within the cavity have identified key residues for the binding of MccJ25 including charged and hydrophobic residues that could coordinate its binding [76]. Further evidence of MccJ25 binding within the cavity was provided by accessibility assays in inside-out vesicles using modification of cysteines by maleimide-PEG10K, which showed that the absence of an McjD-MccJ25 crystal structure, NMR studies revealed that only three residues from MccJ25 interact with McjD (shown in red sticks) (right panel). In the absence of an McjD-MccJ25 complex structure, NMR studies revealed that only three residues from MccJ25 interact with McjD (shown in red sticks) (right panel).

The role of ABC transporters in lantibiotic and microcin export

Burkholderia species with self-immunity against the lasso peptide capistruin [182,183]. Capistruin is a lasso peptide that displays structural similarities to MccJ25 as well as a similar mode of inhibition of RNA polymerase [83]. Interestingly, CapD did not provide *E. coli* cells with resistance against MccJ25 suggesting that ABC transporters associated with microcin biosynthetic clusters have a dedicated role in the self-immunity against the synthesised microcin. Considering the structural similarities between MccJ25 and capistruin, it would have been predicted that these two transporters should have substrate overlap, although the TMDs do not display any significant sequence similarity, but they display a single substrate specificity. As toxic levels of these microcins are building up in the cytoplasmic side of the inner membrane, it would be counterintuitive for these transporters to export other compounds. It cannot be excluded that multidrug ABC transporters have ‘evolved’ from such dedicated systems by altering their cavities for selectivity.

ABC transporters use the alternating access mechanism for substrate export based on the structures of Sav1866 from *S. aureus* [179] and MsbA from *E. coli* [180]. Although this model is applicable to many ABC transporters, there are several other models that are emerging (see Ford and Beis [184] for a comprehensive review). In the alternating access mechanism model, the transporter switches from an inward-facing to an outward-facing conformation that is driven by ATP binding. The role of ATP hydrolysis is to revert the transporter in an inward-facing conformation for another transport cycle. Several biophysical techniques have provided additional insights on the transport cycle. A consensus mechanism for ABC exporters has been proposed, where the apo inward-facing TMD can bind its substrate. In the inward-facing apo conformation, the NBDs are disengaged, but substrate binding induces small conformational changes along the TMD that subsequently brings the NBDs closer. ATP binding causes the NBDs to dimerise, which in turn causes major conformational changes resulting in the outward-open conformation and release of the substrate. ATP hydrolysis resets the transporter back to the inward-facing conformation.

In the light of the structural work on McjD, it is apparent that its overall structure and mechanism are distinguishable from the multidrug transporters MsbA and Sav1866. As mentioned earlier, McjD adopts an occluded TMD in the presence and absence of nucleotides as verified by crystallography, pulsed electron-electron double resonance (PELDOR) and cross-linking assays in inside-out vesicles, suggesting that its
mechanism of export is different from the alternative access model [178]. Although these studies uniformly showed that McjD is occluded in the membrane, they have been unable to provide evidence of TMD opening for substrate release. The first evidence of TMD opening came from single molecule Förster resonance energy transfer (sm-FRET) experiments with McjD reconstituted in liposomes. Donor and acceptor FRET labels were placed at the TM1, and they showed that in the absence or presence of nucleotides, the TMD remained occluded as it was previously reported [178], but the TMD displayed an opening in the presence of both ATP and MccJ25 [185]. This is a strikingly different regulation of an ABC transporter that could be unique to microcin ABC transporters. This tight regulation of both ATP and substrate binding to trigger the opening of the TMD and substrate release could possibly provide these self-immunity ABC transporters with substrate selectivity as well.

Two mechanisms have been proposed for McjD, one that can describe the futile ATP hydrolysis and one for the ligand-induced ATPase activity [178,185]. In the absence of its substrate MccJ25 and ATP, the TMD of McjD remains occluded but it samples an inward-open conformation as shown by the maleimide-PEG10K experiments [178], although the inward-occluded conformation is more readily sampled. Binding of ATP triggers dimerisation of the NBDs without adopting an outward-open conformation as seen in Sav1866 and MsbA [179]. ATP hydrolysis results in an inward-occluded conformation with NBD disengagement and reset of the transport cycle. In the presence of MccJ25, the peptide can bind to the large cavity and subsequent ATP binding triggers NBD dimerisation and conformational changes along the TMD for adopting a ‘transient’ or short-lived nucleotide (ATP)-bound outward-open conformation for releasing MccJ25. Upon release of MccJ25, McjD adopts a stable nucleotide (ATP)-bound outward-open conformation. ATP hydrolysis results in McjD adopting an inward-occluded conformation with NBD disengagement.

Resistance to MccJ25 has also been reported in target bacteria to overcome its toxic effects. In E. coli, resistance to MccJ25 is conferred by the ABC transporter YojI and outer membrane protein TolC [186]. YojI is a partially characterised ABC transporter whose function or substrates are not known, but it has been shown that it cannot confer resistance to antibiotics, suggesting that it is not an MDR ABC transporter but likely a promiscuous peptide exporter. It cannot be excluded that other ABC transporters can confer resistance to other microcins as well.

Class II microcin export by ABC transporters – structure and mechanism

Microcins that belong to class II result from a similar gene organisation as the class I ones (Fig. 2). Self-immunity is also conferred by ABC transporters and immunity proteins. Unlike class I microcins, the class II microcin ABC transporters participate in the maturation process of the precursor microcins by removing the leader sequence of the microcin prior to export (Table 2); they contain an additional N-terminal domain that poses peptidase activity that acts on the C-terminal side of a double-Gly type motif of the leader peptide [187,188]. The consensus sequence of cleavage of the leader peptide is L(−12)XXXE(−8)L(−7)XXXXG(−2)G(−1), where X could be any amino acids. Protein sequence analyses have shown similarity to the C39 peptidase superfamily, which has the catalytic triad Cys-His-Asp [189,190]. They are termed bifunctional ABC transporters and belong to the ABC transporter maturation secretion (AMS) superfamily, or peptidase-containing ATP-binding transporters (PCAT) [191].

Maturation of the class II microcins, MccL, Mcc24, MccE492, MccH47 and MccM, requires such a bifunctional peptidase/export system (Table 2). Since the final maturation step is associated with the ABC transporter, it can provide producing cells with a very efficient self-immunity since the cleavage and export are tightly regulated. At the time of this review, there were no structures of either isolated class II microcin C39 peptidase domains or full transporters. Details on the function of the C39 peptidase domain come from the functional characterisation of microcin V (MccV) from E. coli [189,190] (Table 2). MccV is a class IIa microcin, and self-immunity requires a tripartite efflux system CvaA-CvaB-TolC in E. coli [192]. CvaB is the ABC transporter and belongs to the AMS/PCAT family. Mutagenesis studies on the isolated peptidase domain have identified a catalytic triad consisting of Cys32, His105 and Asp121. Activity of the protease also requires Ca2+ [189,190]. The first structural insights on an isolated C39 peptidase domain were for the ComA ABC transporter from S. mutans [193]. ComA is responsible for the maturation and export of the quorum-sensing peptide ComC. The overall fold of the C39 peptidase domain is similar to the papain-like cysteine proteases, including three helices in the N terminus and β-sheets and a helix (α4) in the C terminus [193] that contain the catalytic triad Cys17, His96 and Asp112. The overall structure displays a shallow hydrophobic concave surface that can bind the leader sequence of ComC.
The crystal structure of PCAT1 from *Clostridium thermocellum* [194] provided the first structural information on the interaction between the C39 peptidase domain and the ABC transporter (Fig. 7). In the absence of a Gram-negative ABC transporter structure that belongs to the AMS/PCAT family, the PCAT1 structure from *C. thermocellum* is a good representative to gain insights on the domain architecture and function of this class of ABC transporters. PCAT1 removes the leader peptide and secretes a small protein of 66 residues, Cthe_0535 (CtA). The structure of PCAT1 has been determined in the presence and absence of substrate and nucleotides and has provided insights on both the leader sequence recognition/processing by the C39 peptidase and export mechanism [194,195] (Fig. 7). The overall transporter architecture is very similar to other type IV ABC transporters including McjD and MsbA. In the absence of nucleotides or the presence of CtA only, PCAT1 adopts an inward-open conformation. In the apo PCAT1, the C39 peptidase domain is interacting with the open TMD and the catalytic triad is facing the open TMD. In the presence of CtA, only part of the leader peptide sequence could be resolved in the cryo-EM maps; it displays an L-shaped structure that wraps around the C39 peptidase domain with the N-terminal end facing the cytosol and the C-terminal one towards the open TMD. Binding of the leader peptide to the C39 peptidase is coordinated by van der Waals interactions with Ala55 and Ile59. The double glycine motif, G23-G24, faces the catalytic triad, Cys21Ala (inactive mutant), His99 and Asp115. Some weak density corresponding to the rest of the CtA sequence could be observed inside the TMD. Although PCAT1 is a homodimer, and densities for two leader sequences could be observed at the C39 peptidase domains, and only density for one CtA molecule was found inside the TMD, suggesting that PCAT1 can only transport one molecule, whereas the second CtA molecule is outside the TMD [195]. Binding of CtA results in a more open cytoplasmic gate as a result of movement of TMs 3 and 4. In addition, the NBDs show larger separation relative to the apo structure. In the nucleotide-bound structure, PCAT1 adopts an outward-occluded conformation, similar to McjD, and no density for the C39 peptidase could be resolved, suggesting that it dissociates from the TMD upon nucleotide binding and the conformational changes associated with it.

Based on the available PCAT1 structures, a processing and export mechanism has been proposed: in the absence of ATP, PCAT1 adopts an inward-facing conformation with its TMD open to the cytoplasm so that it can recruit the C39 peptidase domain. The C39 peptidase domain can bind two substrates, but only one is processed and facing the TMD for export. Upon cleavage of the leader sequence and binding of ATP at the NBDs, the peptidase domain is displaced as a result of the conformational changes and the transporter adopts a transient nucleotide-bound outward-open conformation for substrate release. Upon exit of the substrate from the cavity, the TMD adopts a nucleotide-bound outward-occluded conformation. ATP hydrolysis resets the transporter to an inward-facing conformation with the C39 peptidase domain.
re-associating with the TMD. PCAT1 is a very good model to understand the mechanism of class II microcin export by bifunctional ABC transporters, but it is unclear whether the class II microcin transporters can process and transport one or two microcins since their size is smaller than the PCAT1 substrate; CtA has a molecular weight of around 10 kDa, whereas class II microcins range between 4.8 and 8.9 kDa. We cannot exclude that a variation of the processed and transported substrates can occur by their respective ABC transporters depending on their relative size.

Conclusions and perspectives

Unlike the NBDs that display several conserved motifs, the TMD of ABC transporters does not have conserved motifs or significant sequence conservation that could possibly explain substrate overlap between multidrug transporters, which often transport common drugs. In an attempt to investigate if certain motifs or conserved regions exist in the TMDs of these self-immunity proteins, we performed sequence alignments between the lantibiotic and microcin transporters discussed in this review. Such analyses did not reveal any significant motifs or homology between the different ABC transporters that could explain substrate specificity. Interestingly, specificity cannot be predicted based on the sequence of the lantibiotics and microcins either, because many of them have a similar scaffold and yet can only be transported by their respective self-immunity transporter. This does not exclude that a more in-depth analysis, with the inclusion of more sequences, may reveal such conserved motifs.

In conclusion, ABC transporters are fascinating and complex machines and their role in protecting cells against intrinsic (e.g. AMPs) or extrinsic (e.g. antibiotics) toxic molecules is remarkable. Although our understanding of self-immunity to AMPs conferred by ABC transporters has increased in recent years, a lot of unanswered questions remain. To date, we have no structures available for full-length lanthipeptide ABC transporters that could explain their organisation and mechanism. Additionally, we require more structural and functional studies of ABC transporters from different classes of microcins. Do all self-immunity ABC transporters from Gram-positive and Gram-negative bacteria show a single substrate selectivity or are there exceptions? Is it possible that such systems may allow us to decipher why certain ABC transporters are MDR? We believe that the AMP field is gaining a very good understanding on the biosynthesis of these complex peptides, but the self-immunity transporters are usually overlooked and they play a pivotal role in the survival of bacteria. We hope that the cryo-EM era will allow for more structures to be determined, which in turn will stimulate more research on the function of these ABC transporters.

Acknowledgements

We thank all members of the Institute of Biochemistry for fruitful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, Grant Schm1279/13-1 to LS). The Center for Structural studies is funded by the DFG (Grant Number 417919780 and INST 208/761-1 FUGG to SHJS). This work has been partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project Number 270650915 (Research Training Group GRK2158, TP4b to SHJS). KB acknowledges funding from the Medical Research Council (MR/N020103/1)

References

1 Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30, 108–160.
2 Gross E and Morell JL (1971) The structure of nisin. J Am Chem Soc 93, 4634–4635.
3 Belshaw PJ, Roy RS, Kelleher NL and Walsh CT (1998) Kinetics and regioselectivity of peptide-to-heterocycle conversions by microcin B17 synthetase. Chem Biol 5, 373–384.
4 Rosengren KJ, Clark RJ, Daly NL, Goransson U, Jones A and Craik DJ (2003) Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J Am Chem Soc 125, 12464–12474.
5 Newton GG, Abraham EP and Berridge NJ (1953) Sulphur-containing amino-acids of nisin. Nature 171, 606.
6 Ingram LC (1969) Synthesis of the antibiotic nisin: formation of lanthionine and beta-methyl-lanthionine. Biochim Biophys Acta 184, 216–219.
7 Gross E and Morell JL (1967) The presence of dehydroalanine in the antibiotic nisin and its relationship to activity. J Am Chem Soc 89, 2791–2792.
8 Gross E and Morell JL (1968) The number and nature of alpha, beta-unsaturated amino acids in nisin. FEBS Lett 2, 61–64.
9 Corvey C, Stein T, Dusterhus S, Karas M and Entian KD (2003) Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE, WprA, and Vpr. Biochem Biophys Res Commun 304, 48–54.
10 Goto Y, Li B, Claesen J, Shi Y, Bibb MJ and van der Donk WA (2010) Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 8, e1000339.

11 Tracanna V, de Jong A, Medema MH and Kuipers OP (2017) Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiol Rev 41, 417–429.

12 Li B, Sher D, Kelly L, Shi Y, Huang K, Knerr PJ, Joewono I, Rusch D, Chisholm SW and van der Donk WA (2010) Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc Natl Acad Sci USA 107, 10430–10435.

13 Jung G (1991) Lantibiotics—ribosomally synthesized biologically active polypeptides containing sulfide bridges and α, β-didehydroamino acids. Angew Chem Int Ed Engl 30, 1051–1068.

14 Sahl HG and Bierbaum G (1998) Lantibiotics: biosynthetic and biological activities of natural and modified peptides from Gram-positive bacteria. Annu Rev Microbiol 52, 41–97.

15 McAuliffe O, Ross RP and Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25, 285–308.

16 Chatterjee C, Paul M, Xie L and van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105, 633–684.

17 Ortiz-Lopez FJ, Carretero-Molina D, Sanchez-Hidalgo M, Martin J, Gonzalez I, Roman-Hurtado F, de la Cruz M, Garcia-Fernandez S, Reyes F, Deisinger JP et al. (2020) Cacoidin, first member of the new lanthidin RiPP family. Angew Chem Int Ed Engl 59, 12654–12658.

18 Xu M, Zhang F, Cheng Z, Bashiri G, Wang J, Hong J, Wang Y, Xu L, Chen X, Huang SX et al. (2020) Functional genome mining reveals a class V lanthipeptide containing a d-amino acid introduced by an F420 H2-dependent reductase. Angew Chem Int Ed Engl 59, 18029–18035. https://doi.org/10.1002/anie.202008035

19 Lagedroste M, Reiners J, Smits SHJ and Schmitt L (2020) Impact of the nisin modification machinery on the transport kinetics of NisT. Sci Rep 10, 12295.

20 Repka LM, Chekan JR, Nair SK and van der Donk WA (2017) Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem Rev 117, 5457–5520.

21 Banerjee S and Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem 263, 9508–9514.

22 Dodd HM, Horn N and Gasson MJ (1990) Analysis of the genetic determinant for production of the peptide antibiotic nisin. J Gen Microbiol 136, 555–566.

23 Rauch PJ and de Vos WM (1992) Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol 174, 1280–1287.

24 Augustin J, Rosenstein R, Wieland B, Schneider U, Schnell N, Engelke G, Entian KD and Gotz F (1992) Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur J Biochem 204, 1149–1154.

25 Ersfeld-Dressen H, Sahi HG and Brandis H (1984) Plasmid involvement in production of and immunity to the staphyloccocin-like peptide Pep 5. J Gen Microbiol 130, 3029–3035.

26 Johnson CM and Grossman AD (2015) Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet 49, 577–601.

27 Dias L, Caetano T, Pinheiro M and Mendo S (2015) The lantipeptides of Bacillus methylotrophicus and their association with genomic islands. Syst Appl Microbiol 38, 525–533.

28 Ingram L (1970) A ribosomal mechanism for synthesis of peptides related to nisin. Biochim Biophys Acta 224, 263–265.

29 Dong SH, Tang WX, Lukk T, Yu Y, Nair SK and van der Donk WA (2015) The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold. Elife 4, e07607.

30 Mukherjee S and van der Donk WA (2014) Mechanistic studies on the substrate-tolerant lanthipeptide synthetase ProcM. J Am Chem Soc 136, 10450–10459.

31 Shimafuji C, Noguchi M, Nishie M, Nagao J, Shioya K, Zendo T, Nakayama J and Sonomoto K (2015) In vitro catalytic activity of N-terminal and C-terminal domains in NukM, the post-translational modification enzyme of nukacin ISK-1. J Biosci Bioeng 120, 624–629.

32 Wang J, Ge X, Zhang L, Teng K and Zhong J (2016) One-pot synthesis of class II lanthipeptide bovicin HJ50 via an engineered lanthipeptide synthetase. Sci Rep 6, 38630.

33 van Heel AJ, Klooosterman TG, Montalban-Lopez M, Deng J, Plat A, Baudu B, Hendriks D, Moll GN and Kuipers OP (2016) Discovery, production and modification of five novel lantibiotics using the promiscuous nisin modification machinery. ACS Synth Biol 5, 1146–1154.

34 Maffioli SI, Monciardini P, Catarcielo B, Mazzetti C, Munch D, Brunati C, Sahi HG and Donadio S (2015) Family of class I lantibiotics from actinomycetes and improvement of their antibacterial activities. ACS Chem Biol 10, 1034–1042.

35 Wang J, Zhang L, Teng K, Sun S, Sun Z and Zhong J (2014) Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity. Appl Environ Microbiol 80, 2633–2643.

36 Crowther GS, Baines LD, Todhunter SL, Freeman J, Chilton CH and Wilcox MH (2013) Evaluation of
The role of ABC transporters in lantibiotic and microcin export

S. H. J. Smits et al.

NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection. J Antimicrob Chemother 68, 168–176.

37 Stevens KA, Sheldon BW, Klapes NA and Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol 57, 3613–3615.

38 Kordel M, Benz R and Sahl HG (1988) Mode of action of the staphylococcinlike peptide Pep 5: voltage-dependent depolarization of bacterial and artificial membranes. J Bacteriol 170, 84–88.

39 Reisinger P, Seidel H, Tschesche H and Hammes WP (1980) The effect of nisin on murein synthesis. J Bacteriol 141, 714–719.

40 Brötz H, Bierbaum G, Markus A, Molitor E and Sahl HG (1995) Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob Agents Chemother 39, 714–719.

41 Parisot J, Carey S, Breukink E, Chan WC, Narbad A and Bonev B (2008) Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob Agents Chemother 52, 612–618.

42 Hsu ST, Breukink E, Tischenko E, Lutters MA, de Kruijff B, Kaptein R, Bonvin AM and van Nuland NA (2004) The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11, 963–967.

43 Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B and Breukink E (2006) An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313, 1636–1637.

44 Brötz H, Bierbaum G, Leopold K, Reynolds PE and Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42, 154–160.

45 Fujinami D, Mahin AA, Elsayed KM, Islam MR, Nagao JJ, Roy U, Momin S, Zendo T, Kohda D and Sonomoto K (2018) The lantibiotic nukacin ISK-1 exists in an equilibrium between active and inactive lipid-II binding states. Commun Biol 1, 150.

46 Wiedemann I, Bottiger T, Bonelli RR, Schneider T, Sahl HG and Martinez B (2006) Lipid II-based antimicrobial activity of the lantibiotic plantaricin C. Appl Environ Microbiol 72, 2809–2814.

47 Wiedemann I, Bottiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P et al. (2006) The mode of action of the lantibiotic lactacin 3147—a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol 61, 285–296.

48 Shenkarev ZO, Finkina EI, Nurmuskhamedova EK, Balandin SV, Mineev KS, Nadezhdin KD, Yakimenko ZA, Tagaev AA, Temirov YV, Arseniev AS et al. (2010) Isolation, structure elucidation, and synergistic antibacterial activity of a novel two-component lantibiotic lichenicidin from Bacillus licheniformis VK21. Biochemistry 49, 6462–6472.

49 Hasper HE, de Kruijff B and Breukink E (2004) Assembly and stability of nisin-lipid II pores. Biochemistry 43, 11567–11575.

50 Wiedemann I, Benz R and Sahl HG (2004) Lipid II-mediated pore formation by the peptide antibiotic nisin: a black lipid membrane study. J Bacteriol 186, 3259–3261.

51 Medeiros-Silva J, Jekhmane S, Paioni AL, Gawarecka K, Baldus M, Swiezewska E, Breukink E and Weingarth M (2018) High-resolution NMR studies of antibiotics in cellular membranes. Nat Commun 9, 3963.

52 Ruhr E and Sahl HG (1985) Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother 27, 841–845.

53 Gao FH, Abee T and Konings WN (1991) Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl Environ Microbiol 57, 2164–2170.

54 Tol MB, Morales Angeles D and Scheffers DJ (2015) In vitro cluster formation of nisin and lipid II is correlated with membrane depolarization. Antimicrob Agents Chemother 59, 3683–3686.

55 Mulholland S, Turpin ER, Bonev BB and Hirst JD (2016) Docking and molecular dynamics simulations of the ternary complex nisin2:lipid II. Sci Rep 6, 21185.

56 ’t Hart P, Oppedijk SF, Breukink E and Martin NI (2016) New insights into Nisin’s antibacterial mechanism revealed by binding studies with synthetic lipid II analogues. Biochemistry 55, 232–237.

57 Iorio M, Sasso O, Maffioli SI, Bertaini R, Monciardini P, Sosio M, Bonezi F, Summa M, Brunati C, Bordoni R et al. (2014) A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem Biol 9, 398–404.

58 Ferrig P, Petrova MI, Andrei G, Hukens D, Hoorraeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Bronstrup M et al. (2013) The lantibiotic peptide labyrinthepeptin AI demonstrates broad anti-HIV and anti-HSV activity with potential for microbialid applications. PLoS One 8, e64010.

59 Kodani S, Lodato MA, Durrant MC, Picart F and Willey JM (2005) SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes. Mol Microbiol 58, 1368–1380.

60 Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR and Willey JM (2004) The SapB morphogen is a lantibiotic-like peptide derived from...
the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci USA 101, 11448–11453.

61 Duquesne S, Destoumieux-Garzon D, Peduzzi J and Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24, 708–734.

62 San Millan JL, Kolter R and Moreno F (1985) Plasmid genes required for microcin B17 production. J Bacteriol 163, 1016–1020.

63 Guijarro JI, Gonzalez-Pastor JE, Baleux F, San Millan JL, Castilla MA, Rico M, Moreno F and Delepierre M (1995) Chemical structure and translation inhibition studies of the antibiotic microcin C7. J Biol Chem 270, 23520–23532.

64 Heddle JG, Blance SJ, Zamble DB, Hollfelder F, Miller DA, Wentzell LM, Walsh CT and Maxwell A (2001) The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J Mol Biol 307, 1223–1234.

65 Collin F and Maxwell A (2019) The microbial toxin microcin B17: prospects for the development of new antibacterial agents. J Mol Biol 431, 3400–3426.

66 Semenova E, Yuzenkova Y, Peduzzi J, Rebuffat S and Severinov K (2005) Structure-activity analysis of microcinJ25: distinct parts of the threaded lasso molecule are responsible for interaction with bacterial RNA polymerase. J Bacteriol 187, 3859–3863.

67 Lagos R, Wilkens M, Vergara C, Cecchi X and Monasterio O (1993) Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett 321, 145–148.

68 Bieler S, Silva F, Soto C and Belin D (2006) Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannos permease. J Bacteriol 188, 7049–7061.

69 Mathavan I and Beis K (2012) The role of bacterial membrane proteins in the internalization of microcin MccJ25 and MccB17. Biochem Soc Trans 40, 1539–1543.

70 Salomon RA and Farias RN (1995) The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol 177, 3323–3325.

71 Novikova M, Metlitiskaya A, Datsenko K, Kazakov T, Kazakov A, Wanner B and Severinov K (2007) The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J Bacteriol 189, 8361–8365.

72 Wilson KA, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K and Darst SA (2003) Structure of microcin J25; a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125, 12475–12483.

73 Solbiati JO, Ciaccio M, Farias RN, Gonzalez-Pastor JE, Moreno F and Salomon RA (1999) Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol 181, 2659–2662.

74 Duquesne S, Destoumieux-Garzon D, Zirah S, Goulard C, Peduzzi J and Rebuffat S (2007) Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem Biol 14, 793–803.

75 Yan KP, Li Y, Zirah S, Goulard C, Knappe TA, Marahiel MA and Rebuffat S (2012) Dissecting the maturation steps of the lasso peptide microcin J25 in vitro. ChemBioChem 13, 1046–1052.

76 Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S, Zirah S, Rebuffat S, van Veen HW and Beis K (2014) Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci USA 111, 9145–9150.

77 Salomon RA and Farias RN (1993) The FhuA protein is involved in microcin 25 uptake. J Bacteriol 175, 7741–7742.

78 Mathavan I, Zirah S, Mehmood S, Choudhury HG, Goulard C, Li Y, Robinson CV, Rebuffat S and Beis K (2014) Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides. Nat Chem Biol 10, 340–342.

79 Runti G, Lopez Ruiz MC, Stoiloa T, Hussain R, Jennions M, Choudhury HG, Benincasa M, Gennaro R, Beis K and Scooch M (2013) Functional characterization of SbmA, a bacterial inner membrane transporter required for importing the antimicrobial peptide Bac7(1–35). J Bacteriol 23, 5343–5512.

80 Corbafen N, Runti G, Adler C, Covaceuszach S, Ford R, Lamba D, Beis K, Scooch M and Vincent PA (2013) Functional and structural study of the dimeric inner membrane protein SbmA. J Bacteriol 233, 5352–5361.

81 Vincent PA, Bellomo A, de Arcuri BF, Farias RN and Morero RD (2005) MccJ25 C-terminal is involved in RNA-polymerase inhibition but not in respiration inhibition. Biochem Biophys Res Commun 331, 549–551.

82 Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee J, Lis JT, Borukhov S, Wang MD and Severinov K (2004) Molecular mechanism of transcription inhibition by peptide antibiotic Microcin J25. Mol Cell 14, 753–762.

83 Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ and Darst SA (2019) Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc Natl Acad Sci USA 116, 1273–1278.

84 Holland IB, Cole SPC, Kuchler K and Higgins CF (2003) ABC Proteins from Bacteria to Man, Chapter 125, 8361–8365.

85 Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ and Darst SA (2019) Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc Natl Acad Sci USA 116, 1273–1278.

86 Holland IB, Cole SPC, Kuchler K and Higgins CF (2003) ABC Proteins from Bacteria to Man, Chapter 2. Academic Press, London.

87 Beis K (2015) Structural basis for the mechanism of ABC transporters. Biochem Soc Trans 43, 889–893.
The role of ABC transporters in lantibiotic and microcin export

S. H. J. Smits et al.

86 Thomas C and Tampe R (2018) Multifaceted structures and mechanisms of ABC transport systems in health and disease. *Curr Opin Struct Biol* 51, 116–128.

87 Clemens R, Zaschke-Kriesche J, Khosa S and Smits SHJ (2017) Insight into two ABC transporter families involved in lantibiotic resistance. *Front Mol Biosci* 4, 91.

88 Quiao M and Saris PE (1996) Evidence for a role of NisT in transport of the lantibiotic nisin produced by *Lactococcus lactis* N8. *FEBS Microbiol Lett* 144, 89–93.

89 Izaguirre G and Hansen JN (1997) Use of alkaline phosphatase as a reporter polypeptide to study the role of the subtilin leader segment and the SpaT secretion of subtilin in *Bacillus subtilis* 168. *Appl Environ Microbiol* 63, 3965–3971.

90 Meyer C, Bierbaum G, Heidrich C, Reis M, Suling J, Iglesias-Wind MI, Kempter C, Molitor E and Sahl HG (1995) Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation. *Eur J Biochem* 232, 478–489.

91 Heidrich C, Pag U, Josten M, Metzger J, Jack RW, Bierbaum G, Jung G and Sahl HG (1998) Isolation, characterization, and heterologous expression of the novel lantibiotic epidin in Bacillus subtilis 168. *Appl Environ Microbiol* 64, 3140–3146.

92 Ortega MA, Velasquez JE, Garg N, Zhang Q, Joyce RE, Nair SK and van der Donk WA (2014) Substrate specificity of the lantipeptide peptidease ElxP and the oxidoreductase ElxO. *ACS Chem Biol* 9, 1718–1725.

93 Geissler S, Götz F and Kupke T (1996) Serine protease EpiP from *Staphylococcus epidermidis* catalyzes the processing of the epidermin precursor peptide. *J Bacteriol* 178, 284–288.

94 van der Meer JR, Polman J, Beethuyzen MM, Siezen RJ, Kuipers OP and De Vos WM (1993) Characterization of the *Lactococcus lactis* nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. *J Bacteriol* 175, 2578–2588.

95 Gebhard S (2012) ABC transporters of antimicrobial peptides in Firmicutes bacteria - phylogeny, function and regulation. *Mol Microbiol* 86, 1295–1317.

96 Nishie M, Shioya K, Nagao J, Jikuya H and Sonomoto K (2009) ATP-dependent leader peptide cleavage by NukT, a bifunctional ABC transporter, during lantibiotic biosynthesis. *J Biosci Bioeng* 108, 460–464.

97 Zheng S, Nagao JI, Nishie M, Zendo T and Sonomoto K (2017) ATPase activity regulation by leader peptide processing of ABC transporter maturation and secretion protein, NukT, for lantibiotic nukacin ISK-1. *Appl Microbiol Biotechnol* 2, 763–772.

98 Uguen P, Hindre T, Didelot S, Marty C, Haras D, Le Pennec JP, Valle-Rehel K and Dufour A (2005) Maturation by LctT is required for biosynthesis of full-length lantibiotic lacticin 481. *Appl Environ Microbiol* 71, 562–565.

99 Altena K, Guder A, Cramer C and Bierbaum G (2000) Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. *Appl Environ Microbiol* 66, 2565–2571.

100 Liu G, Zhong J, Ni J, Chen M, Xiao H and Huan L (2009) Characteristics of the bovicin HJ50 gene cluster in *Streptococcus bovis* HJ50. *Microbiology* 155, 584–593.

101 Begley M, Cotter PD, Hill C and Ross RP (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. *Appl Environ Microbiol* 75, 5451–5460.

102 Nagao J, Aso Y, Sashihara T, Shioya K, Adachi A, Nakayama J and Sonomoto K (2005) Localization and interaction of the biosynthetic proteins for the lantibiotic, Nukacin ISK-1. *Biosci Biotechnol Biochem* 69, 1341–1347.

103 Tang W, Dong S-H, Repka LM, He C, Nair SK and van der Donk WA (2015) Applications of the class II lantipeptide protease LiCp for sequence-specific, traceless peptide bond cleavage. *Chem Sci* 6, 6270–6279.

104 Voller GH, Krawczyk B, Enslie P and Sussmuth RD (2013) Involvement and unusual substrate specificity of a prolyl oligopeptidase in class III lantipeptide maturation. *J Am Chem Soc* 135, 7426–7429.

105 Chen S, Xu B, Chen E, Wang J, Lu J, Donadio S, Ge H and Wang H (2019) Zn-dependent bifunctional proteases are responsible for leader peptide processing of class III lantipeptides. *Proc Natl Acad Sci USA* 116, 2533–2538.

106 Hegemann JD and van der Donk WA (2018) Investigation of substrate recognition and biosynthesis in class IV lantipeptide systems. *J Am Chem Soc* 140, 5743–5754.

107 Iftīme D, Jasyk M, Kulik A, Imhoff JF, Stegmann E, Wohlleben W, Sussmuth RD and Weber T (2015) Streptocollin, a type IV Lanthipeptide produced by *Streptomyces collinus* Tu 365. *ChemBioChem* 16, 2615–2623.

108 Takala T, Koponen O, Qiao M and Saris P (2004) Lipid-free NisI: interaction with nisin and contribution to nisin immunity via secretion. *FEBS Microbiol Lett* 237, 171–177.

109 Koponen O, Takala TM, Saarela U, Qiao M and Saris PEJ (2004) Distribution of the NisI immunity protein and enhancement of nisin activity by the lipid-free NisI. *FEBS Microbiol Lett* 231, 85–90.
110 Reis M, Eschbach-Bludau M, Iglesias-Wind MI, Kupke T and Sahl HG (1994) Producer immunity towards the lantibiotic Pep5: identification of the immunity gene pepI and localization and functional analysis of its gene product. *Appl Environ Microbiol* **60**, 2876–2883.

111 Stein T, Heinzmann S, Dusterhus S, Borchart S and Entian KD (2005) Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host *Bacillus subtilis* MO1099. *J Bacteriol* **187**, 822–828.

112 McAuliffe O, Hill C and Ross RP (2000) Identification and overexpression of ltnl, a novel gene which confers immunity to the two-component lantibiotic lactacin 3147. *Microbiology* **146** (Pt 1), 129–138.

113 Stein T, Heinzmann S, Solovieva I and Entian KD (2003) Function of *Lactococcus lactis* nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host *Bacillus subtilis*. *J Biol Chem* **278**, 89–94.

114 Hacker C, Christ NA, Duchardt-Ferner E, Korn S, Gobli C, Berninger L, Dusterhus S, Hellmich UA, Madl T, Kotter P et al. (2015) The solution structure of the lantibiotic immunity protein NisI and its interactions with Nisin. *J Biol Chem* **290**, 28869–28886.

115 Christ NA, Bochmann S, Gottstein D, Duchardt-Ferner E, Hellmich UA, Dusterhus S, Kotter P, Guntert P, Entian KD and Wohlen E (2012) The first structure of a lantibiotic immunity protein, SpaI from *Bacillus subtilis*, reveals a novel fold. *J Biol Chem* **287**, 35286–35298.

116 Jeong JH and Ha SC (2018) Crystal structure of NisI in a lipid-free form, the Nisin immunity protein, from *Lactococcus lactis*. *Antimicrob Agents Chemother* **62**, e01966-17.

117 AlKhatib Z, Lagedroste M, Fey I, Kleinschrodt D, Abts A and Smits SH (2014) Lantibiotic immunity: inhibition of nisin mediated pore formation by NisI. *PLoS One* **9**, e102246.

118 Takala TM and Saris PE (2006) C terminus of NisI provides specificity to nisin. *Microbiology* **152**, 3543–3549.

119 Hoffmann A, Schneider T, Pag U and Sahl HG (2004) Localization and functional analysis of Pepl, the immunity peptide of Pep5-producing *Staphylococcus epidermidis* strain 5. *Appl Environ Microbiol* **70**, 3263–3271.

120 Khosa S, Lagedroste M and Smits SH (2016) Protein defense systems against the lantibiotic Nisin: function of the immunity protein NisI and the resistance protein Nsr. *Front Microbiol* **7**, 504.

121 Peschel A and Gotz F (1996) Analysis of the *Staphylococcus epidermidis* genes epiF, -E, and -G involved in epidermin immunity. *J Bacteriol* **178**, 531–536.

122 Otto M, Peschel A and Gotz F (1998) Producer self-protection against the lantibiotic epidermin by the ABC transporter EpiFEG of *Staphylococcus epidermidis* Tu3298. *FEMS Microbiol Lett* **166**, 203–211.

123 AlKhatib Z, Abts A, Mavaro A, Schmitt L and Smits SH (2012) Lantibiotics: how do producers become self-protected? *J Biotechnol* **159**, 145–154.

124 Pozzi R, Coles M, Linke D, Kulik A, Nega M, Wohlen W and Stegmann E (2016) Distinct mechanisms contribute to immunity in the lantibiotic NAI-107 producer strain Microbispora ATCC PTA-5024. *Environ Microbiol* **18**, 118–132.

125 Ra SR, Qiao M, Immonen T, Pujana I and Saris EJ (1996) Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in *Lactococcus lactis* N8. *Microbiology* **142** (Pt 5), 1281–1288.

126 Klein C and Entian KD (1994) Genes involved in self-protection against the lantibiotic subtilin produced by *Bacillus subtilis* ATCC 6633. *Appl Environ Microbiol* **60**, 2793–2801.

127 Wescombe PA and Tagg JR (2003) Purification and characterization of streptin, a type A1 lantibiotic produced by *Streptococcus pyogenes*. *Appl Environ Microbiol* **69**, 2737–2747.

128 Pag U, Heidrich C, Bierbaum G and Sahl HG (1999) Molecular analysis of expression of the lantibiotic pep5 immunity phenotype. *Appl Environ Microbiol* **65**, 591–598.

129 Skaugen M, Abildgaard CI and Nes IF (1997) Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S. *Mol Gen Genet* **253**, 674–686.

130 Marki F, Hanni E, Fredenhagen A and van Oostrum J (1991) Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. *Biochem Pharmacol* **42**, 2027–2035.

131 Hille M, Kies S, Gotz F and Peschel A (2001) Dual role of GdmH in producer immunity and secretion of the Staphylococcal lantibiotics gallidermin and epidermin. *Appl Environ Microbiol* **67**, 1380–1383.

132 Aso Y, Okuda K, Nagao J, Kanemasa Y, Thi Bich Phuong N, Koga H, Shiyo K, Sashihara T, Nakayama J and Sonomoto K (2005) A novel type of immunity protein, NukH, for the lantibiotic nukacin ISK-1 produced by *Staphylococcus warneri* ISK-1. *Biosci Biotechnol Biochem* **69**, 1403–1410.

133 Osuka K, Aso Y, Nakayama J and Sonomoto K (2008) Cooperative transport between NukFEG and NukH in immunity against the lantibiotic nukacin ISK-1 produced by *Staphylococcus warneri* ISK-1. *J Bacteriol* **190**, 356–362.

134 Mculeren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL and van der Donk WA (2006) Discovery
The role of ABC transporters in lantibiotic and microcin export

and in vitro biosynthesis of haloduracin, a two-component lantibiotic. *Proc Natl Acad Sci USA* **103**, 17243–17248.

135 Caetano T, Krawczyk JM, Mosker E, Sussmuth RD and Mendoza S (2011) Lichenicidin biosynthesis in *Escherichia coli*: licFGEHI immunity genes are not essential for lantibiotic production or self-protection. *Appl Environ Microbiol* **77**, 5023–5026.

136 Dischinger J, Josten M, Szekat C, Sahl HG and Bierbaum G (2009) Production of the novel two-peptide lantibiotic lichenicidin by *Bacillus licheniformis* DSM 13. *PLoS One* **4**, e6788.

137 Siegers K and Entian KD (1995) Genes involved in immunity to the lantibiotic nisin produced by *Lactococcus lactis* MT 113. *Appl Environ Microbiol* **61**, 1082–1089.

138 Rince A, Dufour A, Uguen P, Le Pennec JP and Haras D (1997) Characterization of the lactacin 481 operon: the *Lactococcus lactis* genes lefT, lefE, and lctG encode a putative ABC transporter involved in bacteriocin immunity. *Appl Environ Microbiol* **63**, 4252–4260.

139 Guder A, Schmitter T, Wiedemann I, Sahl H-G and Bierbaum G (2002) Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mesducacin production and immunity. *Appl Environ Microbiol* **68**, 106–113.

140 Aso Y, Nagao J-I, Koga H, Okuda K-I, Kanemasa Y, Sashihara T, Nakayama J and Sonomoto K (2004) Heterologous expression and functional analysis of the gene cluster for the biosynthesis of and immunity to the lantibiotic lichenicidin by *Bacillus licheniformis* DSM 13. *Appl Environ Microbiol* **63**, 4252–4260.

141 AlKhatib Z, Lagedroste M, Zaschke J, Wagner M, Abts A, Fey I, Kleinschrodt D and Smits SH (2014) The C-terminus of nisin is important for the ABC transporter NisFEG to confer immunity in *Escherichia coli*. *Appl Environ Microbiol* **192**, 2801–2808.

142 Okuda K, Yanagihara S, Sugayama T, Zendo T, Nakayama J and Sonomoto K (2010) Functional significance of the E loop, a novel motif conserved in the lantibiotic immunity ATP-binding cassette transport systems. *J Bacteriol* **192**, 2801–2808.

143 Saier MH Jr, Paulsen IT, Sliwinska MK, Pao SS, Skurray RA and Nikiado H (1998) Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. *Faseb J* **12**, 265–274.

144 Lubelski J, Konings WN and Driessen AJM (2007) Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. *Microbiol Mol Biol Rev* **71**, 463–476.

145 Ra R, Beerthuyzen MM, de Vos WM, Saris PE and Kuipers OP (1999) Effects of gene disruptions in the nisin gene cluster of *Lactococcus lactis* on nisin production and producer immunity. *Microbiology* **145** (Pt 5), 1227–1233.

146 Geiger C, Korn SM, Häusler M, Peetz O, Martin J, Köttler P, Morgner N and Entian K-D (2019) Functional analysis of lani mediated lantibiotic immunity in *Bacillus subtilis*. *Appl Environ Microbiol* **85**, e00534-19.

147 Draper LA, Grainger K, Deegan LH, Cotter PD, Hill C and Ross RP (2009) Cross-immunity and immune mimicry as mechanisms of resistance to the lantibiotic lactacin 3147. *Mol Microbiol* **71**, 1043–1054.

148 Draper LA, Cotter PD, Hill C and Ross RP (2015) Lantibiotic resistance. *Microbiol Mol Biol Rev* **79**, 171–191.

149 Revilla-Guarinos A, Gebhard S, Mascher T and Zuniga M (2014) Defence against antimicrobial peptides: different strategies in Firmicutes. *Environ Microbiol* **16**, 1225–1237.

150 Suarez JM, Edwards AN and McBride SM (2013) The *Clostridium difficile* cpr locus is regulated by a noncontiguous two-component system in response to type A and B lantibiotics. *J Bacteriol* **195**, 2621–2631.

151 McBride SM and Sonenshein AL (2011) Identification of a genetic locus responsible for antimicrobial peptide resistance in *Clostridium difficile*. *Infect Immun* **79**, 167–176.

152 Kawada-Matsu M, Oogai Y, Zendo T, Nagao J, Shibata Y, Yamashita Y, Ogura Y, Hayashi T, Sonomoto K and Komatsuzawa H (2013) Involvement of the novel two-component NrSRS and LcrRS systems in distinct resistance pathways against Nisin A and nukacin ISK-1 in *Streptococcus mutans*. *Appl Environ Microbiol* **79**, 4751–4755.

153 Kawada-Matsu M, Tatsuno I, Arii K, Zendo T, Oogai Y, Noguchi K, Hasegawa T, Sonomoto K and Komatsuzawa H (2016) Two-component systems involved in susceptibility to Nisin A in *Streptococcus pyogenes*. *Appl Environ Microbiol* **82**, 5930–5939.

154 Gebhard S and Mascher T (2011) Antimicrobial peptide sensing and detoxification modules: unravelling the regulatory circuitry of *Staphylococcus aureus*. *Mol Microbiol* **81**, 581–587.

155 Greene NP, Kaplan E, Crow A and Koronakis V (2014) Antibiotic resistance mediated by the MacB ABC transporter family: a structural and functional perspective. *Front Microbiol* **9**, 950.

156 Furtmann F, Porta N, Hoang DT, Reiners J, Schumacher J, Gottstein J, Gohlke H and Smits SHJ (2020) Characterization of the nucleotide-binding domain NsrF from the BceAB-type ABC transporter NsrFP from the human pathogen *Streptococcus agalactiae*. *Sci Rep* **10**, 15208.

157 Okada U, Yamashita E, Neuberger A, Morimoto M, van Veen HW and Murakami S (2017) Crystal structure of tripartite-type ABC transporter MacB from *Acinetobacter baumannii*. *Nat Commun* **8**, 1336.

158 Dintner S, Staron A, Berchtold E, Petri T, Mascher T and Gebhard S (2011) Coevolution of ABC transporters in lantibiotic and microcin export.
transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria. J Bacteriol 193, 3851–3862.

159 Rietkötter E, Hoyer D and Mascher T (2008) Bacitracin sensing in Bacillus subtilis. Mol Microbiol 68, 768–785.

160 Bernard R, Guiseppi A, Chippaux M, Foglino M and Denizot F (2007) Resistance to bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the control of expression of its own structural genes. J Bacteriol 189, 8636–8642.

161 Kingston AW, Zhao H, Cook GM and Helmann JD (2014) Accumulation of heptaprenyl diphosphate sensitizes Bacillus subtilis to bacitracin: implications for the mechanism of resistance mediated by the BceAB transporter. Mol Microbiol 93, 37–49.

162 Dintner S, Heermann R, Fang C, Jung K and Gebhard S (2014) A sensory complex consisting of an ATP-binding cassette transporter and a two-component regulatory system controls bacitracin resistance in Bacillus subtilis. J Biol Chem 289, 27899–27910.

163 Ohki R, Giyanto, Tateno K, Masuyama W, Moriya S, Kobayashi K and Ogasawara N (2003) The BceRS two-component regulatory system induces expression of the bacitracin transporter. BacA, in Bacillus subtilis. Mol Microbiol 49, 1135–1144.

164 Staron A, Finkeisen DE and Mascher T (2011) Peptide antibiotic sensing and detoxification modules of Bacillus subtilis. Antimicrob Agents Chemother 55, 515–525.

165 Tsuda H, Yamashita Y, Shibata Y, Nakano Y and Koga T (2002) Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 46, 3756–3764.

166 Hiron A, Falord M, Valje, Debarbouillé M and Msadek T (2011) Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the Bra/SBraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol 81, 602–622.

167 Kramer NE, van Hijum SA, Knol J, Kok J and Kuipers OP (2006) Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 50, 1753–1761.

168 Collins B, Curtis N, Cotter PD, Hill C and Ross RP (2010) The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various beta-lactam antibiotics. Antimicrob Agents Chemother 54, 4416–4423.

169 Kobras CM, Pienpenreier H, Emenegger J, Sim A, Fritz G and Gebhard S (2020) BceAB-type antibiotic resistance transporters appear to act by target protection of cell wall synthesis. Antimicrob Agents Chemother 64, e02241-19.

170 Khosa S, AliKhatib Z and Smits SH (2013) NSR from Streptococcus agalactiae confers resistance against nisin and is encoded by a conserved nsr operon. Biol Chem 394, 1543–1549.

171 Khosa S, Hoepner A, Gohlke H, Schmitt L and Smits SH (2016) Structure of the response regulator NsrR from Streptococcus agalactiae, which is involved in lantibiotic resistance. PLoS One 11, e0149903.

172 Khosa S, Frieg B, Mulnaes D, Kleinschrodt D, Hoepner A, Gohlke H and Smits SH (2016) Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus agalactiae. Sci Rep 6, 18679.

173 Reiners J, Lagedroste M, Ehlen K, Leusch S, Zaschke-Kriesche J and Smits SHJ (2017) The N-terminal region of Nisin is important for the BceAB-type ABC transporter NsrFP from Streptococcus agalactiae COH1. Front Microbiol 8, 1643.

174 Gonzalez-Pastor JE, San Millan JL, Castilla MA and Moreno F (1995) Structure and organization of plasmid genes required to produce the translation inhibitor microcin C7. J Bacteriol 177, 7131–7140.

175 Agarwal V, Metlitskaya A, Severinov K and Nair SK (2011) Structural basis for microcin C7 inactivation by the MccE acetyltransferase. J Biol Chem 286, 21295–21303.

176 Agarwal V, Tikhonov A, Metlitskaya A, Severinov K and Nair SK (2012) Structure and function of a serine carboxypeptidase adapted for degradation of the protein synthesis antibiotic microcin C7. Proc Natl Acad Sci USA 109, 4425–4430.

177 Garrido MC, Herrero M, Kolter R and Moreno F (1988) The export of the DNA replication inhibitor Microcin B17 provides immunity for the host cell. EMBO J 7, 1853–1862.

178 Bountra K, Hagelueken G, Choudhury HG, Corradi V, El Omari K, Wagner, Mathavan I, Zirah S, Yuan Wahlgren W, Tieleman DP et al. (2017) Structural basis for antibacterial peptide self-immunity by the bacterial ABC transporter McjD. EMBO J 36, 3062–3079.

179 Dawson RJ and Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185.

180 Ward A, Reyes CL, Yu J, Roth CB and Chang G (2007) Flexibility in the ABC transporter MsBA: alternating access with a twist. Proc Natl Acad Sci USA 104, 19005–19010.

181 Romano M, Fusco G, Choudhury HG, Mehmoond S, Robinson CV, Zirah S, Hegemann JD, Lescop E, Marahiel MA, Rebuffat S et al. (2018) Structural basis for natural product selection and export by bacterial ABC transporters. ACS Chem Biol 13, 1598–1609.

182 Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X and Marahiel MA (2008) Isolation and structural
characterization of capistruin, a lasso peptide predicted from the genome sequence of *Burkholderia thailandensis* E264. *J Am Chem Soc* **130**, 11446–11454.

183 Kuznedelov K, Semenova E, Knappe TA, Mukhamedyarov D, Srivastava A, Chatterjee S, Ebright RH, Marahiel MA and Severinov K (2011) The antibacterial threaded-lasso peptide capistruin inhibits bacterial RNA polymerase. *J Mol Biol* **412**, 842–848.

184 Ford RC and Beis K (2019) Learning the ABCs one at a time: structure and mechanism of ABC transporters. *Biochem Soc Trans* **47**, 23–36.

185 Husada F, Bountra K, Tassis K, de Boer M, Romano M, Rebuffat S, Beis K and Cordes T (2018) Conformational dynamics of the ABC transporter McjD seen by single-molecule FRET. *EMBO J* **37**, e100056.

186 Delgado MA, Vincent PA, Farias RN and Salomon RA (2005) YojI of *Escherichia coli* functions as a microcin J25 efflux pump. *J Bacteriol* **187**, 3465–3470.

187 Dirix G, Monsieurs P, Dombrecht B, Daniels R, Marchal K, Vanderleyden J and Michiels J (2004) Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters. *Peptides* **25**, 1425–1440.

188 Havarstein LS, Diep DB and Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. *Mol Microbiol* **16**, 229–240.

189 Wu KH, Hsieh YH and Tai PC (2012) Mutational analysis of Cvab, an ABC transporter involved in the secretion of active colicin V. *PLoS One* **7**, e35382.

190 Wu KH and Tai PC (2004) Cys32 and His105 are the critical residues for the calcium-dependent cysteine proteolytic activity of Cvab, an ATP-binding cassette transporter. *J Biol Chem* **279**, 901–909.

191 Bobeica SC, Dong SH, Huo L, Mazo N, McLaughlin MI, Jimenez-Oses G, Nair SK and van der Donk WA (2019) Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycin motif protease. *Elife* **8**, e42305.

192 Gilson L, Mahanty HK and Kolter R (1990) Genetic analysis of an MDR-like export system: the secretion of colicin V. *EMBO J* **9**, 3875–3884.

193 Ishii S, Yano T, Ebihara A, Okamoto A, Manzoku M and Hayashi H (2010) Crystal structure of the peptidase domain of *Streptococcus* ComA, a bifunctional ATP-binding cassette transporter involved in the quorum-sensing pathway. *J Biol Chem* **285**, 10777–10785.

194 Lin DY, Huang S and Chen J (2015) Crystal structures of a polypeptide processing and secretion transporter. *Nature* **523**, 425–430.

195 Kieuvongngam V, Olinares PDB, Palillo A, Oldham ML, Chait BT and Chen J (2020) Structural basis of substrate recognition by a polypeptide processing and secretion transporter. *Elife* **9**, e51492.