Essential Oils and Their Formulations for the Control of Curculionidae Pests

Karla A. Garrido-Miranda1,2*, Juan D. Giraldo3 and Mauricio Schoebitz4,5

1 Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIORÉN-UFRO, Universidad de la Frontera, Temuco, Chile, 2 Agriaquaculture Nutritional Genomic Center (CGNA), Temuco, Chile, 3 Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Bahia Pelloco, Los Pinos s/n, Puerto Montt, Chile, 4 Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Casilla 160-C, Universidad de Concepción, Concepción, Chile, 5 Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, University of Concepcion, Barrio Universitario s/n, Concepción, Chile

Pesticides are widely used in producing food to control pests. However, it has been determined that synthetic pesticides present severe toxicity (residual), while they also result in environmental contamination and development of high-level resistance in some insect species. Due to this, some of these substances have been banned or restricted in many countries, which has reduced the number of agrochemicals that can be used for pest control, particularly in the case of crops exported to green markets such as Europe and Asia. Under this scenario, essential oils (EOs) are being increasingly studied as bioinsecticides because they are renewable, natural, biodegradable, non-persistent in the environment and safe to non-target organism and humans. It has been determined that EOs have repellent, ovicidal, larvicidal, and insecticidal effects against different types of pests, but they also have some drawbacks due to their high volatility and low aqueous solubility. This mini-review focusses on EOs used as bioinsecticides for the control of Curculionidae and on current stabilization techniques, such as nanoencapsulation, to prolong the biocidal effect of EOs against these pests.

Keywords: essential oils, curculionidae, bioinsecticide, nanoencapsulation, pest

INTRODUCTION

Curculionids (Curculionidae), known as weevils, are a family of herbivorous phytophagous coleopterans. Some species of weevil are harmful to agriculture, affecting plantations and stored products (Tewari et al., 2014). The life cycle of this pest passes through the stages of egg, larva, pupa, and adult (Fiaboe et al., 2012). When they are in the larval stage, they attack plantations, causing damage to the neck and crown of the plants (Espinoza et al., 2018). Adults have a mouthpart with powerful jaws that allow them to consume the laminae of leaves, shoots, twigs, and fruits, causing deep gouges in lignified tissues of trees and woody shrubs (Espinoza et al., 2016). Some subspecies of this group are classified as quarantine pests requiring phytosanitary treatments to ensure that exported products are free of these pests.
Insect damage on Brassica (Brassica napus L, Brassica oleracea var. botrytis, Brassica oleracea var. capitata) crops ranges from 10 to 90%, with an average of 35 to 45% (Pavela, 2016), varying significantly depending on the type of pest and crop, climatic conditions, and incidence of natural enemies (Grzywacz et al., 2014). Even though traditional methods used to control pests with synthetic insecticides have successfully counteracted such damage, their use and excessive application have harmed human health and the environment (Nicolopoulou-Stamati et al., 2016). Because of this, some synthetic insecticides have been banned or their use has been restricted and regulated, with maximum residue limits (MRLs) being lowered in some countries. As a result, producers have higher costs, while their products may not have access to some international markets (Rodriguez-Saona et al., 2019; Wahab et al., 2022). Under this scenario, the need to reduce or replace the use of synthetic insecticides with natural products has led to the search for eco-friendly methods of pest control. In recent years, essential oils (EOs) have gained popularity because they are readily available in different plants, and they also present low toxicity for mammals and high degradation patterns.

EOs have been tested as botanical insecticides against a wide range of pests that attack crops such as lettuce, coffee, soybean, cereal grains, legumes, and maize. (Boulogne et al., 2012; Menossi et al., 2021). Carvacrol, linalool, alpha-pinene, menthol, cinnamaldehyde, eugenol, 1-8 cineole, geraniol, and limonene are some of the components of EOs that have shown insecticidal activity against different pests (Regnault-Roger et al., 2012; de Oliveira et al., 2014; Singh et al., 2021). However, the main disadvantage of EOs is that they are highly volatile and susceptible to degradation by factors such as moisture, light, or air (Menossi et al., 2021). In this sense, nanoencapsulation can improve the effectiveness and stability of EOs, preventing fast volatilization and degradation.

This mini-review focuses on EOs used as bioinsecticides for the control of Curculionidae and on current encapsulation techniques to prolong the biocidal effect of EOs against these pests.

PESTS

Globally, the Curculionidae is the largest family of insects, with about 60,000 species (Anderson, 2002), but not all of them are considered pests. In terms of natural pest control, only a limited number of these species has been managed using EOs.

The most important Curculionidae pests are described in Table 1. *Sitophilus zeamais*, commonly known as corn weevil or rice weevil, is one of the most important pests that attack grains and stored seeds, resulting in both quantitative and qualitative losses (Romani et al., 2019). Larvae and adults cause the most significant damage, affecting nutritional levels, weight loss, taste, odor, and decrease in the germination capacity of the grains such as wheat, rice, sorghum, maize, and others (Patiño-Bayona et al., 2021b). *Sitophilus zeamais* and *Sitophilus oryzae* are very closely related species that are difficult to differentiate, and thus morphological or DNA tests are required (Moon, 2015). *Sitophilus oryzae* is also one of the most destructive pests of grains, causing weight loss and affecting the nutritional value of grains, and finally resulting in significant economic losses (Maazoun et al., 2017).

Sitophilus granarius or wheat weevil attacks stored grains, also causing significant damage. Unfortunately, this insect is difficult to detect, and once it has infested a facility, all stored products must be destroyed (Plata-Rueda et al., 2018). The most effective control method for this type of pest, which specifically attacks stored products, is fumigation (Abdelgaleil et al., 2016).

Rhynchophorus ferrugineus, known as the red palm weevil, attacks coconut, date, and oil palm crops, resulting in significant damage (Antony et al., 2016). The larva is the most damaging stage of the pest, specifically attacking the heart of the palm, where it can live between 25 and 105 days before turning into a pupa. When the damage caused by the pest is visible, it means that the palm tree is already critically infested with high population levels, resulting in palm trees being felled and transported to a safe place to prevent further propagation (Al Dawsari Mona, 2020). Adults do not cause the highest level of damage, but they can fly 900 m in a single flight and travel up to 7 km, infesting quickly (Fiaboe et al., 2012).

Other important curculinoid pests are *Aegorhinus superciliosus* and *Aegorhinus nodipennis*, which mainly attack hazelnut, blueberry, and raspberry plantations. These pests are found mainly in Chile and Argentina (Espinoza et al., 2016). The larval stage of both *Aegorhinus* species causes damage to the collar or crown of plants, causing premature reddening, yellowing, reduction of new twigs, and even death of plants when the attack is severe. Adults have mouthparts with powerful mandibles that allow them to consume leaf laminae, shoots, twigs, and fruits, causing deep gouges in lignified tissues of trees and woody shrubs (Tampe et al., 2015; Tampe et al., 2016; Tampe et al., 2020).

There is little information on the use of EOs for the control of *Hylastinus obscurus*, *Hypothenemus hampei*, *Listronotus orogenes*, and *Xylosandrus germanus*, known as ambrosia beetles. The most common exotic ambrosia beetle is *Xylosandrus germanus*, attacking ornamental nursery plants. Unlike other pests, *X. germanus* bores holes to cultivate the fungus *Ambrosiella groomsianae*, which serves as food for larvae and adults (Ranger et al., 2011; Ranger et al., 2012; Galko et al., 2018). On the other hand, *Hylastinus obscurus*, significantly affects red clover yields (Parra et al., 2013; Quiroz et al., 2017; Espinoza et al., 2018). *Hypothenemus hampei* reduces coffee production and compromises the quality of stored coffee beans (Reyes et al., 2019). In fact, *H. hampei* attacks coffee plantations, ovipositing inside coffee berries or stored green coffee so that larvae feed on them. Finally, *Listronotus orogenes*, or carrot weevil, causes damage to *Apiaceae* (parsley, carrot, celery, and dill) plantations since larvae feed on their roots, reducing crop yield by up to 50% (Gagnon et al., 2021).

ESSENTIAL OILS FOR CURCULIONIDAE PEST CONTROL

EOs are aromatic and volatile substances with an oily consistency. They are extracted from different plant parts (leaf,
TABLE 1 | Important Curculionidae pests (Tewari et al., 2014; Barkai-Golan and Follett, 2017; Bandeira et al., 2021).

Species	Common name	Affected crops	References
Rhynchophorus ferrugineus	Red palm weevil	Palm trees	(Mazza et al., 2014)
Rhynchophorus palmarum	Black palm weevil	Coconut	(Hoddle et al., 2020)
Sitophilus oryzae	Rice weevil	Seeds	(Wu and Yan, 2018)
Sitophilus zeamais	Maize weevil	Maize	
Sitophilus granarius	Rice weevil	Rice	(Lemic et al., 2020)
Aegonthopus superciliosus	Raspberry weevil	Berries	(Závila et al., 2011)
Aegonthopus nodipennis	Fruit weevil	Hazelnut	
Diocalandra frumenti	Coconut weevil	Coconut	(Yacas et al., 2017)
Cosmopolites sordidus	Banana corn weevil	Banana	(Apizar et al., 2012)
Diaprepes abbreviates	Root weevil	Citrus fruits	(Lapointe et al., 2012)
Sitona lineatus	Pea leaf weevil	Leguminous	
Sternechus subsignatus	Soybean stalk weevil	Soybean	(Socias et al., 2014)
Heilipus lauri	Avocado seed weevil	Avocado	(Romero-Frias et al., 2019)
Rhabdoscelus obscurus	Sugarcane weevil	Sugarcane	(Reddy et al., 2011)
Scyphophorus acupunctatus	Agave weevil	Agaves	(Cuevas-Parra et al., 2019)
Hypothemenus hampei	Cofe berry borer	Cofe	(Al Dawsari Mona, 2020)
Sturnochotus Mangiferae	Mango seed weevil	Mango	(Abdulla et al., 2016)
Euseceps postfasciatus	West Indian sweet potato weevil	Potato	(Okada et al., 2014)
Cylis formicarius Eleganctulus	Sweet potato weevil	Potato	
Athanomonus grandis grandis	Boll weevil	Cotton	(Burbano-Figueroa et al., 2021)
Athanomonus eugeni Cano	Pepper weevil	Pepper	(Rossini et al., 2020)
Athanomonus musculus Say	Cranberry weevil	Blueberry, Cranberry	(Szendrei et al., 2011)
Athanomonus rubi Herbst	Strawberry blossom weevil	Strawberry	(Tonina et al., 2021)

Research on the use of EOs as insecticides has increased considerably because sustainable agriculture has gained great acceptance, while preference to organic or ecological crops is increasingly becoming popular worldwide. On the other hand, the FDA (Food and Drug Administration) of the United States has recognized that EOs are safer than synthetic insecticides (Hikal et al., 2017). Given the interest in EOs, several research studies have shown that EOs have repellent, insecticidal, ovicidal, and growth inhibitory effects (Hikal et al., 2017; Ikbal and Pavela, 2019; Isman, 2020; Chaudhari et al., 2021). Insecticidal activity can be evaluated by methods such as: a) fumigation, in which EOs can be absorbed, ingested, or inhaled; b) contact, in which EOs should penetrate the cuticle of the insects; and c) ingestion (Nenaah, 2014; de Lira et al., 2015).

One of the essential oils that excels in controlling a wide range of insects of the Curculionidae family is eugenol, which is extracted from cloves, nutmeg, and cinnamon. Contact toxicity tests against different curculionids, such as S. zeamais (Gonzales Correa et al., 2015) and S. granarius (Plata-Rueda et al., 2018), have reported lethal concentrations to eliminate 50% (LC50) of insects of 0.69 (µL/cm²) for cinnamon against S. zeamais, and 2.765 (µL/mL) for eugenol against S. granarius. Furthermore, its contact and fumigant toxicity has also been studied against S. oryzae (rice weevil), where two LC50 were reported; 0.376 (µL/cm²) and 963.3 (µL/L) of Ocimum tenuiflorum oil (eugenol is the major component of this oil) (Bhavya et al., 2018). On the other hand, a study conducted by Al Dawsari Mona (2020) determined that the application of 0.7 mL of clove essential oil extract (high concentration of eugenol) and 7 mg of clove powder caused 100% of mortality in the R. ferrugineus pest, on the first and third day of exposure, respectively.

The presence of α-pinene in the composition of different essential oils allows for insecticidal effects. The α-pinene is found in more significant quantities in plants such as: Azilia eringyoides (Apiceaceae, endemic to Iran), accounting for 63.8% (Ebodolahi and Mahboubi, 2011); Hypericum myricariifolium (found in high mountain regions of the Andes in Central and South America), accounting for 45.52% (Patiño-Bayona et al., 2021b); Cupressus sempervirens (Mediterranean cypress), accounting for 37.88% (Abdelgaleil et al., 2016); and Rosmarinus officinalis, accounting 23.52% of the total composition. Ebodolahi and Mahboubi (2011) determined that the essential oil of A. eringyoides presented a toxic fumigant activity against S. granarius in the adult stage, with an LC50 of 20.05 (µL/L) (Ebodolahi and Mahboubi, 2011). Patiño-Bayona et al. (2021b) found that H. myricariifolium essential oil showed fumigant toxicity against adult Sitophilus zeamais with an LC50 of 463.1 (µL/L). The essential oil of C. lusitanica showed contact toxicity against Sitophilus zeamais in the adult stage, reaching a mortality rate of 59.2% at a concentration of 2% v/w (Bett et al., 2016).

Limonene is an essential oil that has also been studied for pest control. It comes from citrus species such as Citrus sinensis, Citrus lemon, Citrus aurantifolia, and Citrus reticulata, as well as other plants such as Aegle marmelos (originally from Asia) and...
The modes of action (insecticidal effects) of EOs against Curculionidae have not been fully described. In general terms, it has been described that EOs inhibit some physiological functions of gamma-aminobutyric acid (GABA) receptors, which is the primary inhibitory neurotransmitter of the central nervous system of insects (Tampe et al., 2015). It has also been determined that plant metabolites can inhibit the actions of acetylcholinesterase (AChE), which hydrolyzes acetylcholine, a neurotransmitter responsible for signal transmission in the central nervous system (López and Pascual-Villalobos, 2010). Bhavya et al. (2018) analyzed the effect of eugenol and Ocimum tenuiflorum essential oil on AChE activity in S. oryzae (in vivo), and reported that eugenol reaches a higher percentage of AChE inhibition after two hours, while both EOs inhibit approximately 40% of AChE only after 4 h of contact. These values are related to the high insecticidal activity of eugenol and O. tenuiflorum since inhibiting AChE produces neurotoxic effects against S. oryzae, which finally results in the death of the pest (Bhavya et al., 2018).

Another neurotransmitter affected by EOs is octopamine. This substance acts as a neurotransmitter and neuromodulator, which means that it is involved in several biological processes (Pavela and Benelli, 2016; Upadhyay et al., 2018; Chaudhari et al., 2021). This effect was analyzed by Plata-Rueda et al. (2018), who determined that eugenol, α-pinene, α-humulene, and α-phellandrene produce muscle contractions in the legs and abdomen of the insect, along with an impairment in locomotor behavior associated with the fact that these EOs would cause blockade of octopamine receptor binding sites, which would be related to a modulatory influence on the nervous-muscular system (Plata-Rueda et al., 2018). Furthermore, this neurotoxic effect is responsible for the rapid death of S. granarius when in contact with EOs above mentioned.

Hussain et al. (2017) analyzed the insecticidal activity of Piper nigrum extract against R. ferrugineus, and determined that piperine, which is the main component of the extract, increased the expression of the cytochrome P450 gene, being responsible for the metabolism leading to the release of toxins in insects. Furthermore, when piperine was used in the diet of R. ferrugineus larvae, cytochrome P450 expression increased 35-fold, resulting in larval death within six days when using a concentration of 500 mg/L of piperine (Hussain et al., 2017).

MODES OF ACTION: INSECTICIDAL ESSENTIAL OILS

ENCAPSULATION FOR PROLONGED EFFECT

Essential oil-based insecticides have several advantages and have proven effective against some Curculionidae species, but they are highly volatile under certain environmental conditions of temperature and pressure conditions. Nanoencapsulation is one of the techniques that can help solve this problem. Nanoencapsulation is based on encapsulating EOs in materials that have some of their dimensions in the nanometer range (between 1-100 nm), including nanomaterials, lipid nanomaterials, polymeric nanoparticles, and clay nanomaterials (Kumar et al., 2019; Chaudhari et al., 2021; Esmaili et al., 2021).

Nanoemulsions

A nanoemulsion is produced when two phases are mixed, water in oil (W/O) or oil in water (O/W). To properly stabilize these mixtures, surfactants are used to reduce the surface tension between water and oil. It should be noted that O/W nanoemulsions are used to encapsulate EOs (Singh et al., 2017; Heydari et al., 2020; Mohd Narawi et al., 2020). The nanometric size of the droplets produced allows them to have physical stability over time, as it protects EOs from environmental factors.

Nanoemulsions are obtained by two types of techniques: a) high-energy methods and b) low-energy methods. Both techniques are expected to obtain a monomodal droplet size distribution (Espitia et al., 2019). High-energy methods use mechanical devices, which use disruptive forces to obtain smaller droplets; their disadvantages are the high acquisition values of each device and the temperature increases associated with the friction generated by the emulsions. Some of the equipment used include ultrasonic, high-pressure valve homogenization (HPVH), and microfluidization (Sneha and Kumar, 2021). Low-energy methods include phase inversion composition (PIC), phase inversion temperature (PIT), solvent displacement, emulsion inversion point (EIP), bubble bursting, and spontaneous nanoemulsion, which is the most commonly used method to encapsulate EOs (Kupikowska-Stobba and Kasprzak, 2021).

The use of EOs-based nanoemulsions for Curculionidae control has been analyzed in two studies in the literature. Adak et al. (2020) reported 100% and 80% mortality rates for eucalyptus nanoemulsion and eucalyptus oil against Sitophilus oryzae (adult) at a concentration of 1.5 μL/cm² (Adak et al., 2020). Oliveira et al. (2017) analyzed the lethal time (LT₅₀) of thymol nanoemulsion and thymol oil against Sitophilus zeamais populations from Maracaju. They found an LT₅₀ of 47.5 hours for thymol nanoemulsion versus an LT₅₀ of 26.3 hours for thymol oil (Oliveira et al., 2017). Both studies reported that EO-based nanoemulsions resulted in higher insecticidal activity compared to oils, while mortality rates were maintained over time.

Polymeric Nanoparticles

Polymeric nanoparticles can be obtained using biodegradable polymers (obtained from renewable resources) or synthetic...
TABLE 2 | Current research on the effectiveness of EOs against Curculionidae pests.

Essential Oils	Major constituents	Mode of toxicity	LC50	Target Curculionidae	State	References
Illicium pachyphyllum	trans-p-mentha-1(7),8-dien-2-ol	Fumigant	11.49 mg/L	*Sitophilus zeamais*	Adult	(Liu et al., 2012)
Lippia alba	Limonene	Contact	17.33 μg/adult	*Sitophilus zeamais*	Adult	(Patiño-Bayona et al., 2021a)
R. officinalis	1,8-Cineole, α-Pinene	Fumigant	243.7 (μL/L)	*Sitophilus zeamais*	Adult	(de Lira et al., 2015)
H. mexicanum	nonane	Contact	223.5 (μL/L)	*Sitophilus zeamais*	Adult	(Peixoto et al., 2015)
Eucalyptus sp	1,8-cineole	Fumigant	184.3 (μL/L)	*Sitophilus zeamais*	Adult	(Torres et al., 2014)
Laurelia sempervirens	undetermined	Contact	2.3 (mL/kg)	*Sitophilus zeamais*	Adult	(de Araújo et al., 2017)
Alpinia purpurata	β-pineene, α-Pinene	Fumigant	17.7 (μL/L air)	*Sitophilus zeamais*	Adult	(de Souza et al., 2018)
Lippia alba	Carvone	Contact	15.2 (μL/mL)	*Sitophilus zeamais*	Adult	(Gonzales Correa et al., 2015)
Clove	Eugenol	Contact	0.45 (μL/cm²)	*Sitophilus zeamais*	Adult	(Peixoto et al., 2015)
Cinnamon	Eugenol	Contact	0.69 (μL/cm²)	*Sitophilus zeamais*	Adult	(Torres et al., 2014)
Pimenta psuedocaryophyllus	Chavibetol	Contact	1522 (mg/kg)	*Sitophilus zeamais*	Adult	(Ribeiro et al., 2015)
Cupressus lusitanica	Umbellulone, α-pineene, sabinene,	Contact	0.21 (%v/w)	*Sitophilus zeamais*	Adult	(Bett et al., 2016)
Eucalyptus saligna	1,8-Cineole, α-Pinene	Fumigant	29.11 (μL/L air)	*Sitophilus zeamais*	Adult	(Fouad and da Camara, 2017)
Ocimum basilicum	Linalool, Methylchavicol	Fumigant	26.59 (μL/L air)	*Sitophilus zeamais*	Adult	(Foud and da Camara, 2017)
Piper hispidinervum	Saffrole	Fumigant	7.42 (μL/L)	*Sitophilus zeamais*	Adult	(Moura et al., 2021)
Citrus aurantifolia	(S)-Limonene	Fumigant	71.18 (μL/mL)	*Sitophilus zeamais*	Adult	(Mishra et al., 2013)
Citrus reticulata	(R)-Limonene	Contact	51.29 (μL/mL)	*Sitophilus zeamais*	Adult	(Langsi et al., 2020)
Lippia sidoides (NFs)	Thymol	Contact	26.44 (μg/mg)	*Sitophilus zeamais*	Adult	(Peixoto et al., 2015)
Lippia sidoides	Thymol	Contact	7.10 (μg/mg)	*Sitophilus zeamais*	Adult	(Peixoto et al., 2015)
Mustard	Allyl isothiocyanate (AITC)	Fumigant	4.03 (μL/L)	*Sitophilus zeamais*	Adult	(Patiño-Bayona et al., 2021a)
Lippia sidoides	thymol and p-cymene	Fumigant	86.55 (μL/L air)	*Sitophilus zeamais*	Adult	(Ribeiro et al., 2015)
Cupressus sempervirens	α-pineene	Contact	13.394 ppm	*Sitophilus zeamais*	Adult	(Garrido-Miranda et al., 2019)
Hypericum mexicanum	n-nonane	Contact	223.5 (μL/L)	*Sitophilus zeamais*	Adult	(Patiño-Bayona et al., 2021b)
Hypericum myricarifolium	α-pineene	Contact	463.1 (μL/L)	*Sitophilus zeamais*	Adult	(Patiño-Bayona et al., 2021b)
Ocimum basilicum	Linalool and estragole	Contact	25.4 (μL/L air)	*Sitophilus zeamais*	Adult	(Moura et al., 2021)
Lavandula dentata	eucalyptol	Contact	26.9 (μL/L air)	*Sitophilus zeamais*	Adult	(Wagner et al., 2021)
Syzygium aromaticum	Eugenol	Contact	17.328 (μL/2 cm²)	*Sitophilus oryzae*	Adult	(Mishra et al., 2013)
Aegle marmelos	Limonene	Contact	18.488 (μL/2 cm²)	*Sitophilus oryzae*	Adult	(Abdelgaiel et al., 2016)
Origanum vulgare	Pulegone	Contact	1.64 (mg/L air)	*Sitophilus oryzae*	Adult	(Khani et al., 2017)
Citrus lemon	Limonene	Contact	0.11 (mg/cm²)	*Sitophilus oryzae*	Adult	(Patiño-Bayona et al., 2021b)
Callistemon viminals	1,8-Cineole	Contact	0.20 (mg/cm²)	*Sitophilus oryzae*	Adult	(Patiño-Bayona et al., 2021b)
Cupressus sempervirens	α-Pineen	Contact	17.16 (mg/L air)	*Sitophilus oryzae*	Adult	(Khani et al., 2017)
Citrus sinensis	Limonene	Contact	0.6 (mg/cm²)	*Sitophilus oryzae*	Adult	(Khani et al., 2017)
Mentha piperita	Menthol	Contact	0.27 (mg/cm²)	*Sitophilus oryzae*	Adult	(Khani et al., 2017)
Rosmarinus officinalis	α-pineen	Contact	115.83 (μL/L air)	*Sitophilus oryzae*	Adult	(Khani et al., 2017)
Hyssopus officinalis	cis-pinocamphone	Fumigant	78.16 (μL/L air)	*Sitophilus oryzae*	Adult	(Khani et al., 2017)

(Continued)
TABLE 2 | Continued

Essential Oils	Major constituents	Mode of toxicity	LC50	Target Curculionidae	State	References
Ocimum tenuiflorum	Eugenol	Fumigant	963.3 (μL/L)	Sitophilus oryzae	Adult	(Bhavya et al., 2018)
		Contact	0.376 (μL/cm²)			
Agave americana	undetermined	Contact	8.99 (μg/cm²)	Sitophilus oryzae	Adult	(Maazoun et al., 2019)
Mentha piperita	menthone	Contact	3.79 (μL/L)	Sitophilus oryzae	Adult	(Mackled et al., 2019)
Pinus roxburghii	longifolene	Contact	0.036 (mg/cm²)			
Rosa	methyl eugenol	Fumigant	>100 (μL/L)			
		Contact	0.62 (mg/cm²)			
Melaleuca bracteata	methyl eugenol	Contact	20.4 (μg/adult)	Sitophilus oryzae	Adult	(Zhang et al., 2021)
Cinnamon	Eugenol, trans-3-caren-2-ol and benzyl benzoate	Contact	13.80 (w/v)	Sitophilus granarius	Adult	(Plata-Rueda et al., 2018)
Clove	Eugenol and caryophyllene		11.95 (w/v)			
Comercial	Caryophyllene oxide		2.784 (μL/mL)			
	α-pineno		4.235 (μL/mL)			
Humulus lupulus	undetermined	Contact	16.17 (μg/adult)	Sitophilus granarius	Adult	(Paventi et al., 2021)
Piper nigrum	piperine	Ingestion	342.62 (mg/l)	Rhynchophorus ferrugineus	Larval	(Hussain et al., 2017)
Thymus vulgaris	p- cineno	Contact	11.4 (μg/mL)	Rhynchophorus ferrugineus	Larval	(Darrag et al., 2021)
Ocimum basilicum	thymol	Contact	1032 (μL/mL)	Rhyynchophorus ferrugineus	Adult	
			14.6 (μg/mL)			
			1246 (μL/mL)			
Eucalyptus resinifera	1,8-cineole	Fumigant	64.72 (μL/L)	Hypothemenus hampei	Adult	(Reyes et al., 2019)
		Contact	0.52 (mg/cm²)			
			0.076 (mg/cm²)			
			0.036 (mg/cm²)			
			0.376 (μL/cm²)			
			0.62 (mg/cm²)			
			20.4 (μg/adult)			
			13.80 (w/v)			
			16.17 (μg/adult)			
			342.62 (mg/l)			
			11.4 (μg/mL)			
			1032 (μL/mL)			
			14.6 (μg/mL)			
			1246 (μL/mL)			
			64.72 (μL/L)			
			0.52 (mg/cm²)			
			0.076 (mg/cm²)			
			0.036 (mg/cm²)			
			0.376 (μL/cm²)			
			0.62 (mg/cm²)			
			20.4 (μg/adult)			
			13.80 (w/v)			
			16.17 (μg/adult)			
			342.62 (mg/l)			
			11.4 (μg/mL)			
			1032 (μL/mL)			
			14.6 (μg/mL)			
			1246 (μL/mL)			
			64.72 (μL/L)			

polymers, also working with a blend of polymers. Some of the most used polymers are chitosan, pectin, cellulose, alginate, cyclodextrin, starch, polycaprolactone, and polyethylene glycol (Esmaeili et al., 2021; Ramachandraiah and Hong, 2021). Biodegradable polymers from renewable resources are inexpensive and readily available in nature (Campos et al., 2015).

EOs can be encapsulated in different forms in the polymer (Figure 1). For example, they can be adsorbed on the nanoparticle’s surface, coupled to the nanoparticle via linkers, encapsulated by a hydrophilic or hydrophobic polymer shell, or trapped in a polymer matrix (Kumar et al., 2019). In addition, polymeric nanoparticles can be obtained by electrospray, supercritical fluid, solvent evaporation, ionotropic gelation, nanoprecipitation, and salinization (Sagiri et al., 2016; George et al., 2019).

Unfortunately, there are no reports of essential oils encapsulated in polymeric nanoparticles evaluated against Curculionidae. However, the efficiency of polymeric nanoparticles-eOs against other pests has been demonstrated. For instance, Werdin González et al. (2014) determined that polyethylene glycol (PEG) 6000 nanoparticles can stabilize geranium or bergamot EOs, as their volatility and degradation were significantly decreased. The obtained results demonstrated that only 25% of the encapsulated EOs were volatilized in a 6-month-period. Furthermore, PEG-EOs nanoparticles may control and effectively release the oil against Tribolium castaneum and Rhizopertha dominica, since their toxicity by contact increased from 4 weeks to 24 weeks (Werdin González et al., 2014). de Oliveira et al. (2019) evaluated the effect of nanoparticles of zein containing blends of the EOs—geraniol, -eugenol, and -cinnamaldehyde against Chrysodeixis includens and Tetranychus urticae. Nanoencapsulation prevented a decrease in acute toxicity and the rapid degradation of EOs, while it also increased the effectiveness against the target pest over 120 days (de Oliveira et al., 2019). These results demonstrate the potentiality of the polymeric nanoparticles to improve the effectiveness of EOs, highlighting the need for further research on Curculionidae pests.

Clay Nanomaterials

Nano-clays are nanoparticles with a high specific surface area and ion exchange capacity, which enables them to change their nature from hydrophobic to hydrophilic or vice versa, while they are also economically viable and biocompatible (de Oliveira et al., 2022). Furthermore, most clays are lamellar aggregates, with the presence of interlamellar cations (Na+), which allow ion exchange to make clays more compatible with EOs, facilitating their adsorption and then controlling their release through the “tortuous path” produced by the clay lamellae and by the interactions that occur (Garrido-Miranda et al., 2018). Furthermore, surfactants such as ammonium salts are used to alter the hydrophobicity of clays, which change the net charge of the solid, facilitating the interaction between molecular species such as EOs, and increasing the interlaminal space (Brito et al., 2018). Finally, montmorillonite and kaolinite are the most commonly used clays for encapsulating EOs as insecticides (Goletti et al., 2015). An example of this is the encapsulation of Ocimum gratissimum in montmorillonite. This formulation resulted in S. zeamais mortality rates of 100% in the first days and 75% after 30 days, proving the effectiveness of clays in the gradual release of EOs (Nguemtchouin et al., 2013).
CONCLUSION

Essential oils have a great potential as natural insecticides against curculionids or other species. In fact, they can play an important role in pest management and organic farming because they do not generate toxic residues and are environmentally friendly. The disadvantages they present, which are related to their high volatility and degradation, can be minimized by using current encapsulation methods. Therefore, future research should focus on determining how encapsulation of EOs or mixtures of EOs can increase the effectiveness in controlling different life stages of pests under changing environmental conditions.

REFERENCES

Abdergalel, S. A. M., Mohamed, M. I. E., Shawir, M. S., and Abou-Taleb, H. K. (2016). Chemical Composition, Insecticidal and Biochemical Effects of Essential Oils of Different Plant Species From Northern Egypt on the Rice Weevil, Sitophilus Oryzae L. J. Pest Sci. 89, 219–229. doi: 10.1007/s10340-015-0665-z

Abdulla, N. R., Rwegasira, G. M., Jensen, K. M. V., Mwatawala, M. W., and Offenberg, J. (2016). Control of Mango Seed Weevils (Sternocnetae Mangiferae) Using the African Weaver Ant (Oecophylla Longinoda Latreille) (Hymenoptera: Formicidae). J. Appl. Entomol. 140, 500–506. doi: 10.1111/jen.12260

Adak, T., Barik, N., Patil, N. B., Govindharaj, G. P., Gadratagi, B. G., Annamalai, M., et al. (2020). Nanoemulsion of Eucalyptus Oil: An Alternative to Synthetic Pesticides Against Two Major Storage Insects (Sitophilus Oryzae (L) and Tribolium Castaneum (Herbst)) of Rice. Ind. Crops Prod. 143, 111849. doi: 10.1016/j.indcrop.2019.111849

Al Dawsari Mona, M. (2020). Insecticidal Potential of Cardamom and Clove Exports on Adult Red Palm Weevil Rhynchophorus Ferrugineus. Saudi. J. Biol. Sci. 27, 195–201. doi: 10.1016/j.sjbs.2019.07.009

Alpizar, D., Fallas, M., Oehlschla ger, A. C., and Gonzalez, L. M. (2012). Management of Cosmopterid Sordidus and Metamasius Hemipterus in Banana by Pheromone-Based Mass Trapping. J. Chem. Ecol. 38, 245–252. doi: 10.1007/S10886-012-0991-0/FIGURES/6

Anderson, R. S. (2002). "Family 131 Curculionidae Latreille 1802," in American Beetles, Volume II Polyphaga: Scarabaeoidea Through Curculionoidea. Eds. R. J. Arnett, M. C. Thomas, P. E. Skelley and J. H. Frank (Boca Raton: CRC Press), 722–815.

Antony, B., Soffan, A., Jakše, J., Abdelaziz, M. M., Aldosari, S. A., Aldawood, A. S., et al. (2016). Identification of the Genes Involved in Odorant Reception and Detection in the Palm Weevil Rhynchophorus Ferrugineus, an Important Quarantine Pest, by Antennal Transcriptome Analysis. BMC Genomics 17, 69. doi: 10.1186/s12864-016-2362-6

Bandeira, P. T., Fávaro, C. F., Francke, W., Bergmann, J., and Zarinb, P. H. G. (2021). Aggregation Phenomenes of Weevils (Coleoptera: Curculionidae): Advances in the Identification and Potential Uses in Semiochemical-Based Pest Management Strategies. J. Chem. Ecol. 47, 968–986. doi: 10.1007/s10886-021-01319-1

Barkai-Golan, R., and Follett, P. A. (2017). "Phytosanitary Irradiation: Generic Treatments," in Irradiation for Quality Improvement, Microbial Safety and PhytoSanitation of Fresh Produce, 191–206. doi: 10.1016/b978-0-12-811025-6.00011-2

Bett, P. K., Deng, A. L., Ongendo, J. O., Kariuki, S. T., Kamatenesi-Mugisha, M., Mihale, J. M., et al. (2016). Chemical Composition of Cupressus Lusitanica and Eucalyptus Saligna Leaf Essential Oils and Bioactivity Against Major Insect Pests of Stored Food Grains. Ind. Crops Prod. 82, 51–62. doi: 10.1016/j.indcrop.2015.12.009

Bhavya, M. L., Chandu, A. G. S., and Devi, S. S. (2018). Ocimum Tenuiflorum Oil, a Potential Insecticide Against Rice Weevil With Anti-Acetylcholinesterase Activity. Ind. Crops Prod. 126, 434–439. doi: 10.1016/j.indcrop.2018.10.043

Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., and Chemat, F. (2015). Bio-Refinery of Orange Peels Waste: A New Concept Based on Integrated Green and Solvent Free Extraction Processes Using Ultrasound and Microwave Techniques to Obtain Essential Oil, Polyphenols and Pectin. Ultrason. Sonochem. 24, 72–79. doi: 10.1016/j.ultsonch.2014.11.015

Boulgone, I., Petit, P., Ozier-Lafoine, H., Desfontaines, L., and Loranger-Mercirs, G. (2012). Insecticidal and Antifungal Chemicals Produced by Plants: A Review. Environ. Chem. Lett. 10, 325–347. doi: 10.1007/s10311-012-0359-1

AUTHOR CONTRIBUTIONS

KG-M: Writing - original draft - review & editing. JG: Writing - review & editing. MS: Writing - review & editing. All authors contributed to the article and approved the submitted version.

FUNDING

Projects ANID/FONDECYT/POSTDOCTORAL 3220459, 3210599, FONDEF ID2110050, and a postdoctoral scholarship from the Universidad de La Frontera.
Kupikowska-Stobba, B., and Kasprzak, M. (2021). Fabrication of Nanoparticles for Bone Regeneration: New Insight into Applications of Nanoemulsion Technology. J. Microbiol. Biotechnol. 9, 5221–5244. doi: 10.1039/d1jb00559f
Langi, J. D., Nukerini, E. N., Oumarou, K. M., Moktar, H., Fokunang, C. N., and Mbata, G. N. (2020). Evaluation of the Insecticidal Activities of α-Pinenene and 3-Carene on Sitophilus Zeamais Motschulsky (Coleoptera: Curculionidae). Insects 11, 1–11. doi: 10.3390/insects11080540
Lapointe, S. L., Alessandro, R. T., Robbins, P. S., Khriemian, A., Svatos, A., Dickens, J. D., Nukenine, E. N., Oumarou, K. M., Moktar, H., Fokunang, C. N., and Langsi, J. D. (2014). An Overview on the Natural Enemies of Rhynchophorus Palm Weevils, Sitophilus Granarius (Coleoptera: Curculionidae) Infestation. Insects 11, 343. doi: 10.3390/insects11060343
Liu, P., Liu, X. C., Dong, H. W., Liu, Z. L., Du, S. S., and Deng, Z. W. (2012). Chemical Composition and Insecticidal Activity of the Essential Oil of Illicium Pachyphyllum Fruits Against Two Grain Storage Insects. Molecules 17, 14870–14881. doi: 10.3390/molecules171214870
López, M. D., and Pascual-Villalobos, M. J. (2010). Mode of Action of Inhibitory Acetylcholinesterase by Monoterpenoids and Implications for Pest Control. Ind. Crops Prod. 31, 284–288. doi: 10.1016/j.indcrop.2009.11.005
Mazou, A. M., Hamdi, S. H., Belhadj, F., Jema, J.M.F., Messaoud, C., and Marouzki, M. N. (2019). Phytochemical Profile and Insecticidal Activity of Agave Americana Leaf Extract Towards Sitophilus Oryzae (L.) (Coleoptera: Curculionidae). Environ. Sci. Pollut. Res. 26, 19486–19480. doi: 10.1007/s11356-019-05316-6
Mazou, A. M., Hile, T.B., Hamdi, S. H., Belhadj, F., Jema, J.M.B., and Marouzki, M. N. (2017). Screening for Insecticidal Potential and Acetylcholinesterase Activity Inhibition of Urginea Maritima Bulbs Extract for the Control of Sitophilus Oryzae (L.). J. Asia. Pac. Entomol. 20, 752–760. doi: 10.1016/j.aspen.2017.04.004
Mackled, M. I., El-Hefny, M., Bin-Jumah, M., Wahba, T. F., and Allam, A. A. (2019). Assessment of the Toxicity of Natural Oils From Mentha Piperita, Pinus Roxbuhgiri, and Rosa Spp. Against Three Stored Product Insects. Process 7, 861. doi: 10.3390/pr7110861
Mazza, G., Francardi, V., Simonì, S., Benvenuti, C., Cervo, R., Faleiro, J. R., et al. (2014). An Overview on the Natural Enemies of Rhynochopus Palm Weevils, With Focus on R. Ferrugineus. Biol. Control. 77, 83–92. doi: 10.1016/j.biocontrol.2014.06.010
Menossi, M., Ollier, R. P., Casalongué, C. A., and Alvarez, V. A. (2021). Essential Oil-Loaded Bio-Nanomaterials for Sustainable Agricultural Applications. J. Chem. Technol. Biotechnol. 96, 2109–2122. doi: 10.1002/jctb.6705
Mishra, B. B., Tripathi, S. P., and Tripathi, C. P. (2013). Bioactivity of Two Plant-Derived Essential Oils Against Rice Weevils Sitophilus Oryzae (L.) (Coleoptera: Curculionidae). Proc. Nat. Acad. Sci. India, Sect. B - Biol. Sci. 83, 171–175. doi: 10.1007/s40011-012-0123-0
Mohd Narawi, M., Chiu, H. L., Yong, Y. K., Mohmad Zain, N. N., Ramachandran, M. R., Tham, C. L., et al. (2020). Biocompatible Nutmeg Oil-Mediated Nanoemulsion as Phyto-Repellent. Front. Pharmacol. 11. doi: 10.3389/fphar.2020.00214
Moon, M. J. (2015). Microstructure of Mandibulate Mouthparts in the Greater Leaf Beetle (Coleoptera: Curculionidae) Responses of Sitophilus Oryzae (L.) (Coleoptera: Curculionidae) to E-2-Hexenal and Limonene, Two Host-Derived Semiochemicals. Cenc. e Investig. Agrar. 40, 637–642. doi: 10.4067/S0718-16202013000300016
Patino-Bayona, W. R., Nagles Galeano, J. L., Bustos Cortes, J. J., Delgado Ávila, W. A., Herrera Daza, E., Suárez, L. E. C., et al. (2021a). Effects of Essential Oils From 24 Plant Species on Sitophilus Zeamais Motsch (Coleoptera, Curculionidae). Insects 12. doi: 10.3390/insects12060532
Patino-Bayona, W. R., Plazas, E., Bustos-Cortes, J. J., Prieto-Rodriguez, J. A., and Patino-Ladino, O. J. (2021b). Essential Oils of Three Hypericum Species From Colombia: Chemical Composition, Insecticidal and Repellent Activity Against Sitophilus Zeamais Motsch. (Coleoptera: Curculionidae). Rec. Nat. Prod. 15, 111–121. doi: 10.25135/rnp.192.20.05.1665
Pavela, R. (2015). Essential Oils for the Development of Eco-Friendly Mosquito Larvicides: A Review. Ind. Crops Prod. 76, 174–187. doi: 10.1016/j.indcrop.2015.06.050
Pavela, R. (2016). History, Presence and Perspective of Using Plant Extracts as Commercial Botanical Insecticides and Farm Products for Protection Against Insects-A Review. Plant Prot. Sci. 52, 229–241. doi: 10.17221/31/2016-PPS
Pavela, R., and Benelli, G. (2016). Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 21, 1000–1007. doi: 10.1016/j.tplants.2016.10.005
Paventi, G., Rotundo, G., Pistillo, M., D’isita, L., and Germinara, G. S. (2021). Bioactivity of Wild Hop Extracts Against the Granary Weevil, Sitophilus Granarius (L.). Insects 12, 564. doi: 10.3390/insects12060564
Peixoto, M. G., Bacci, L., Fitzgerald Blank, A., Araújo, A. P. A., Alves, P. B., Silva, J. H. S., et al. (2015). Toxicity and Repellency of Essential Oils of Lippia Alba Chemotypes and Their Major Monoterpenes Against Stored Grain Insects. Ind. Crops Prod. 71, 31–36. doi: 10.1016/j.indcrop.2015.03.084
Plata-Rueda, A., Campos, J. M., da Silva Rolim, G., Martinelli, L. C., Dos Santos, M. P., Fernandes, F. L., et al. (2018). Terpenoid Constituents of Cinnamon and Clove Essential Oils Cause Toxic Effects and Behavior Repellency Response on Granary Weevil, Sitophilus Granarius. Environ. Exp. Bot. 156, 263–270. doi: 10.1016/j.envexpbot.2018.03.033
Quiroz, A., Mendez, L., Mutis, A., Hormazabal, E., Ortega, F., Birkett, M. A., et al. (2017). Antifeedant Activity of Red Clover Root Isoflavonoids on Hylastinus Obscurus. J. Soil Sci. Plant Nutr. 17, 231–239. doi: 10.4607/jspn-9516201700500018
Ramachandraiah, K., and Hong, G. P. (2021). Polymeric Nanomaterials for the Development of Sustainable Plant Food Value Chains. Food Bioci. 41, 2212–2429. doi: 10.1080/11010978
Ranger, C. M., Reding, M. E., Oliver, J. B., Schultz, P. B., Moysenko, J. J., and Youssef, N. (2011). Comparative Efficacy of Plant-Derived Essential Oils for Managing Ambrosia Beetles (Coleoptera: Curculionidae: Scytocnita) and Their Corresponding Mass Spectral Characterization. J. Econ. Entomol. 104, 1665–1674. doi: 10.1603/EC11106
Ranger, C. M., Reding, M. E., Schultz, P. B., and Oliver, J. B. (2012). Ambrosia Beetle (Coleoptera: Curculionidae) Responses to Volatile Emissions Associated With Ethanol-Injected Magnolia Virginiana. Environ. Entomol. 41, 636–647. doi: 10.1603/EN11299
Reddy, G. V. P., Balakrishnan, S., Remolona, J. E., Kikuchi, R., and Bamba, J. P. (2011). Identification of Trap Type, Size, Color, and Trapping Location on Capture of Rhabdoscelus Obscurus (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 104, 594–603. doi: 10.1603/AN10200
Regnault-Roger, C., Vincent, C., and Arnason, J. T. (2012). Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 57, 407–424. doi: 10.1146/annurev-ento-120710-103000

Reyes, E. I. M., Farias, E. S., Silva, E. M. P., Filomeno, C. A., Plata, M. A. R., Picanço, M. C., et al. (2019). Eucalyptus Resinifera Essential Oils Have Fumigant and Repellent Action Against Hypothenemus Hampei. Crop Prot. 116, 49–55. doi: 10.1016/j.cropro.2018.09.018

Ribeiro, L. P., Ansante, T. F., Niculau, E. S., Pavarini, R., Silva, M. F. G. F., Seffrin, R. C., et al. (2015). Pimenta Pseudocaryophyllus Derivatives: Extraction Methods and Bioactivity Against Sitophilus Zeamais Motschulsky (Coleoptera: Curculionidae). Neotrop. Entomol. 44, 634–642. doi: 10.1007/S13744-015-0321-6

Rodriguez-Saona, C., Vincent, C., and Isaac, R. (2019). Blueberry IPM: Past Successes and Future Challenges. Annu. Rev. Entomol. 64, 95–114. doi: 10.1146/annurev-ento-011118-112147

Romani, R., Bedini, S., Salerno, G., Ascrizzi, R., Flaminì, G., Echeverria, M. C., et al. (2019). Andean Flora as a Source of New Repellents Against Insect Pests: Behavioral, Morphological and Electrophysiological Studies on Sitophilus Zeamais (Coleoptera: Curculionidae). Insects 10, 171. doi: 10.3390/insects10060171

Romero-Frias, A. A., Sinuco, D. C., and Bento, J. M. S. (2019). Male-Specific Volatiles Released by the Big Avocado Seed Weevil Heilipus Lauri Boheman (Coleoptera: Curculionidae). J. Braz. Chem. Soc. 30, 158–163. doi: 10.21577/0103-0503.20180166

Rosinśka, L., Cottarini, M., Severini, M., Talano, D., and Speranza, S. (2020). A Modelling Approach to Describe the Anthonomus Eugenii (Coleoptera: Curculionidae) Life Cycle in Plant Protection: A Priori and a Posteriori Analysis. Florida Entomol. 103, 259–263. doi: 10.1653/024.103.0217

Ruíz-Díaz, C. P., and Rodríguez, J. C. V. (2021). Vertical Trapping of the Coffee Berry Borer, Hypothenemus Hampei (Coleoptera: Scolytinae), in Coffee. Insects 12, 607. doi: 10.3390/insects12070607

Sagiri, S. S., Anis, A., and Pal, K. (2016). Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. Polym. Plast. Technol. Eng. 55, 291–311. doi: 10.1080/15322829.2015.1050521

Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., et al. (2016). Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. J. Essent. Oil-Bear. Plants 21, 282–297. doi: 10.1007/978-2018-0149578

Vacas, S., Navarro, I., Seris, E., Ramos, C., Hernández, E., Navarro-Llopis, V., et al. (2017). Identification of the Male-Produced Aggregation Pheromone of the Four-Spotted Coconut Weevil, Diocalandra Frumenti. J. Agric. Food Chem. 65, 270–275. doi: 10.1021/acs.jafc.6b04829

Vankosky, M. S., Crema, H. A., and Dosdall, L. M. (2011). Response of Pism Sativum (Fabaceae: Fabaceae) to Sittone Lineatus (Coleoptera: Curculionidae) Infestation: Effect of Adult Weevil Density on Damage, Larval Population, and Yield Loss. J. Econ. Entomol. 104, 1550–1560. doi: 10.1603/EC10392

Wagner, L. S., Sequin, C. J., Foti, N., and Campos-Soldini, M. P. (2021). Insecticidal, Fungicidal, Phytotoxic Activity and Chemical Composition of Lavandula Dentata Essential Oil. Biocatal. Agric. Biotechnol. 35, 102092. doi: 10.1016/j.jbac.2021.102092

Wahab, S., Musammil, K., Nasir, N., Khan, M. S., Ahmad, M. F., Khalid, M., et al. (2022). Advancement and New Trends in Analysis of Pesticide Residues in Food: A Comprehensive Review. Plants 11, 1106. doi: 10.3390/PLANTS11091106

Werdin González, J. O., Gutiérrez, M. M., Ferrero, A. A., and Fernández Band, B. (2014). Essential Oils Nanoformulations for Stored-Product Pest Control – Characterization and Biological Properties. Chemosphere 100, 130–138. doi: 10.1016/j.chemosphere.2013.11.056

Wu, F., and Yan, X. P. (2018). Distribution of the Related Weevil Species Sitophilus Oryzae and S. Zeamais (Coleoptera: Curculionidae) in Farmer Stored Grains of China. J. Econ. Entomol. 111, 1461–1468. doi: 10.1093/jee/toy061

Zavala, A., Elgueta, M., Abarzúa, J., Aguilera, A., Quiroz, A., and Rebollo, R. (2011). Diversity and Distribution of the Aegorhinus Genus in the La Araucania Region of Chile, With Special Reference to A. Supericulosus and A. Aegorhinus. Cínc. e Invest. Agrar. 38, 367–377. doi: 10.4067/S0718-16202010000300066

Zhang, J., Wang, Y., Feng, Y., Du, S., and Jia, L. (2021). Contact Toxicity and Repellent Efficacy of Essential Oil From Aerial Parts of Melaleuca Bracteata and its Major Compositions Against Three Kinds of Insects. J. Essent. Oil-Bearing Plants 24, 349–359. doi: 10.1007/978-2018-01886995

Conflict of Interest: The authors declare that the mini-review was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Garrido-Miranda, Giraldo and Schoebitz. This is an open-access publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.