REMARKS ON RAMANUJAM-KAWAMATA-VIEHWEG VANISHING THEOREM

F. LAYTIMI AND D.S. NAGARAJ

Abstract. In this article we prove a general result on a nef vector bundle E on a projective manifold X of dimension n depending on the vector space $H^{n,n}(X, E)$. It is also shown that $H^{n,n}(X, E) = 0$ for an indecomposable nef rank 2 vector bundles E on some specific type of n dimensional projective manifold X. The same vanishing shown to hold for indecomposable nef and big rank 2 vector bundles on any variety with trivial canonical bundle.

1. Introduction

Let X be a smooth projective complex manifold of dimension n. For any coherent sheaf E on X, we denote $H^{p,q}(X, E)$ the cohomology group $H^q(X, E \otimes \Omega^p_X)$, where Ω^p_X is the sheaf of holomorphic differential forms of degree p on X.

Akizuki-Kodaira-Nakano famous vanishing theorem says:

If L is an ample line bundle on a projective manifold X of dimension n, then

\[H^{p,q}(X, L) = 0 \text{ for } p + q - n > 0. \]

The particular case $p = n$ is the Kodaira vanishing theorem. The Kodaira vanishing theorem was extended to nef and big line bundle on a smooth surface by Ramanujam [7] and for higher dimension by Kawamata [3] and Viehweg [9].

Ramanujam has given in [7] an example showing that in general, one does not expect Akizuki-Kodaira-Nakano type vanishing result for nef and big line bundle.

Le Potier [6] generalized the Akizuki-Kodaira-Nakano type vanishing theorem to the case of ample vector bundle as follows:

If E is an ample vector bundle of rank r on a projective manifold X of dimension n, then

\[H^{p,q}(X, E) = 0 \text{ for } p + q - n > r - 1. \]

1991 Mathematics Subject Classification. 14F17.
The vanishing results of Ramanujam-Kawamata-Viehweg and Le Potier naturally led to ask the following question:

Let E be a nef and big vector bundle of rank r on a projective manifold X of dimension n. Is

\[(2) \quad H^{n,q}(X, E) = 0 \quad \text{for} \quad q > r - 1?\]

The example given by Ramanujam in [7] shows that one can not expect in general ”Akizuki-Kodaira-Nakano” type of vanishing for nef and big line bundle. The same example can also be used to show that the question (2) has a negative answer (see Example (4.2)).

Regarding the question (2) for a nef and big rank two vector bundle E on a smooth surface X the only group which one hope to vanish is the group $H^{2,2}(X, E)$. In trying to investigate this problem we obtained the following:

Theorem 1.1. Let E be a nef vector bundle of rank r on a projective manifold X of dimension n. Set $k(E) := \dim H^{n,n}(X, E)$. Then $k(E) \leq r$ and E admits a trivial bundle of rank $k(E)$ as quotient. In particular, $k(E) = r$ if and only if E is isomorphic to trivial vector bundle of rank r.

Corollary 1.2. Let E be an indecomposable nef vector bundle of rank r on a projective manifold X of dimension n. Assume that $c_r(E) \neq 0$. Then $H^{n,n}(X, E) = 0$.

For the case of rank 2 vector bundles we have the following:

Theorem 1.3. Let E be an indecomposable nef vector bundle of rank 2 on a projective manifold X of dimension n. If $H^{1}(X, \det(E)) = 0$, then $H^{n,n}(X, E) = 0$.

As a consequence we obtain:

Corollary 1.4. Let X be a Grassmannian of dimension $n \geq 2$ or a complete intersection of dimension $n \geq 3$ in a Grassmannian. If E is an indecomposable nef vector bundle of rank 2 on X, then $H^{n,n}(X, E) = 0$.

Corollary 1.5. Let X be a projective manifold of dimension $n \geq 2$ with $K_X = \mathcal{O}_X$. If E is an indecomposable nef and big vector bundle of rank 2 on X, then $H^{n,n}(X, E) = 0$.

We recall a vanishing theorem of Schneider [8] related to nef and big vector bundle, in a slightly different version from the original one, but follows from the proof given there.
Theorem 1.6. Let E (resp. L) be a vector bundle (resp. line bundle) on a projective manifold X of dimension n. If $E \otimes L$ is nef and big then
\[H^{n,q}(X, S^k(E) \otimes \det(E) \otimes L) = 0, \quad \text{for} \quad q > 0. \]

2. **Notations and Definitions**

Throughout we work over the field of complex numbers.

For a vector bundle E on a projective manifold X, we will denote by E^\vee the dual of E, $c_i(E) \in H^{2i}(X, \mathbb{Z})$ is the i-th chern class of E, $\mathbb{P}(E)$ is the projective bundle whose fiber over a point $x \in X$ is the projective space of 1-dimensional quotients of the vector space E_x, and $\mathcal{O}_{\mathbb{P}(E)}(1)$ the universal quotient line bundle on $\mathbb{P}(E)$.

Definition 2.1. Let X be a projective manifold of dimension n. A line bundle L on X is called nef, if for every irreducible curve C in X, degree of $L|_C$ is non negative. A nef line bundle L is called big if $c_1(L)n > 0$.

A vector bundle E on X is said to be nef if the line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ on $\mathbb{P}(E)$ is nef.

A nef vector bundle E is said to be big if $\mathcal{O}_{\mathbb{P}(E)}(1)$ on $\mathbb{P}(E)$ is big or equivalently
\[s_n(E) = p^* (c_1(\mathcal{O}_{\mathbb{P}(E)}(1)))^{n+r-1} > 0, \]
where $s_n(E)$ is the n-th Segre class of E and $p : \mathbb{P}(E) \to X$ be the natural projection.

3. **Proof of the results**

First we recall some results which we need.

Proposition 3.1. [5, Proposition 6.1.18 (i)] A vector bundle E on X is nef if and only if the following condition is satisfied: Given any morphism $f : C \to X$ finite onto its image from an irreducible smooth curve C to X, and given any quotient line bundle L of $f^*(E)$, then one has $\deg L \geq 0$.

Lemma 3.2. [1, Proposition 1.16] Let E be a nef vector bundle on a projective manifold X of dimension n. If σ is a non-zero section of E^\vee then σ is nowhere vanishing on X.

Proof: The proof given in [1] uses analytic methods. Here we give an algebraic proof. First we prove the lemma when X is a curve. In this case if σ vanishes at some points, we get a positive degree line sub bundle of E^\vee. By dualizing we see that E has a line bundle quotient of negative degree. This is a contradiction to the Proposition(3.1). Thus σ is nowhere vanishing on X.

3
For the general case, assume σ vanishes at some points and dimension of X is greater than one. Let Z be the subscheme of X defined by the vanishing of σ and I_Z denotes its sheaf of ideals. The section σ induces surjection
\begin{equation}
\sigma : E \to I_Z \to 0.
\end{equation}

Let C be a smooth curve in X with the property $D = C \cap Z$ is a non-empty proper closed subscheme of C. Then by restricting the surjective scheme σ to C and going modulo torsion we get a surjection:
\begin{equation}
\tau : E|_C \to \mathcal{O}_C(-D) \to 0.
\end{equation}

Since C is a smooth curve $\mathcal{O}_C(-D)$ is a line bundle of negative degree, which is a contradiction to the fact that E is nef. Hence we must have $Z = \emptyset$. □

Lemma 3.3. [10, see, Proposition 4.8.] If E is a nef and big vector bundle on a Kähler manifold X, then the line bundle $\det(E)$ on X is big.

The Dominance theorem [theorem 3.3] in [4] ensures that $\det(E)$ is nef.

We also need to recall the proposition [Prop. 1.15 (iii)] in [1]. We will state it in a different version, which follows immediately from the proof given there.

Lemma 3.4. Let
\begin{equation*}
0 \to F \to E \to Q \to 0
\end{equation*}
be an exact sequence of holomorphic vector bundles and $\text{rank}(E) = r, \text{rank}(F) = f$.

If $\wedge^{r-f+1} E \otimes \det Q^{-1}$ is nef (resp. ample), then F is nef (resp. ample).

Proof of Theorem (1.1):

The proof is by induction on the $\text{rank}(E) = r$. If $r = 1$ and $k(E) = 0$ then there is nothing to prove.

If $k(E) > 0$, then by Lemma(3.2) there is a non zero homomorphism
\[\sigma : \mathcal{O}_X \to E^\vee \]
which is nowhere vanishing. This implies that E is a trivial bundle of rank one. Since $k(\mathcal{O}_X) = 1$, the Theorem follows in this case.

Let $r > 1$. We assume our Theorem holds for all nef vector bundles of rank less than or equal $r - 1$. Again, if $k(E) = 0$ there is nothing to
prove. So we assume \(k(E) > 0 \). Then applying Lemma \((3.2)\) we get an exact sequence

\[
0 \to \mathcal{O}_X \to E^\vee \to F^\vee \to 0,
\]

where \(F^\vee \) is a dual of vector bundle \(F \) of rank \(r - 1 \). Dualizing \((5)\) we get an exact sequence

\[
0 \to F \to E \to \mathcal{O}_X \to 0.
\]

By Lemma \((3.4)\) \(F \) is a nef vector bundle. Now since \(\text{rank}(F) = r - 1 \), we have by induction assumption \(k(F) \leq r - 1 \) and \(F \) admits a trivial quotient of rank \(k(F) \). This implies by duality \(F^\vee \) admits trivial subbundle of rank \(k(F) \).

Taking the inverse image of this \(V \) we see that \(E^\vee \) admits a subbundle \(S^\vee \) of rank \(k(E) \). Note that \(S^\vee \) is an extension of \(\mathcal{O}_X^{k(E)-1} \) by \(\mathcal{O}_X \). The dual \(S \) of \(S^\vee \) is nef, since it is an extension of trivial bundle of rank \(k(E) - 1 \) by a trivial bundle of rank 1. If \(k(E) < r \) then it follows by induction \(S \) is trivial. This proves the result.

If \(k(E) = r \) then again by induction \(F = \mathcal{O}_X^{r-1} \) and all the sections of \(F^\vee \) lifts to sections of \(E^\vee \), hence \(E^\vee \) and \(E \) are isomorphic to \(\mathcal{O}_X^r \).

Proof of Theorem \((1.3)\):

Assume \(H^{n,n}(X, E) \neq 0 \), then we get by Serre duality \(H^{0,0}(X, E^\vee) \neq 0 \). Let \(\sigma \) be a non-zero section of \(E^\vee \). Since \(E \) is nef by Lemma \((3.2)\) the section \(\sigma \) is nowhere vanishing, and gives an exact sequence

\[
0 \to \mathcal{O}_X \to E^\vee \to \det(E)^\vee \to 0.
\]

This extension gives a class in the cohomology group \(H^1(X, \det(E)) \). But by our assumption this group is zero and hence the extension splits. Thus \(E^\vee \) splits and hence \(E \) splits too, this is a contradiction.

Proof of Corollary \((1.2)\):

If \(H^{n,n}(X, E) \neq 0 \), then by Theorem \((1.1)\) we get an exact sequence

\[
0 \to F \to E \to \mathcal{O}_X \to 0.
\]

This implies \(c_r(E) = c_r(F) = 0 \), this is a contradiction.
Proof of Corollary (1.4):

If X is a Grassmannian of dimension ≥ 2 or a complete intersection of dimension ≥ 3 in a Grassmannian, then for any line bundle L, $H^1(X, L) = 0$. Hence if E is an indecomposable vector bundle of rank two on X, then the hypothesis of Theorem(1.1) holds for E. \hfill \Box \\

Proof of Corollary (1.5):

Assume $H^{n,n}(X, E) \neq 0$. Since E is nef and big, $\det(E)$ is nef and big by the Lemma(3.3). Hence we have an exact sequence:

$$0 \to \det(E) \to E \to \mathcal{O}_X \to 0.$$

But K_X is trivial implies $H^1(X, \det(E)) = 0$ by Kawamata-Ramanujam-Viehweg vanishing theorem. Hence that the exact sequence (10) splits and hence E is decomposable, which is a contradiction. \hfill \Box \\

Remark 3.5. Corollary (1.5) applies for example to complex algebraic torus, $K3$ surfaces and Calabi-Yau manifolds. \hfill \Box \\

4. Counter examples of Ramanujam

Example 4.1. The following example is due to Ramanujam [7]. Denote \mathbb{P}^3 blown up at a point by X and $\pi : X \to \mathbb{P}^3$ be the natural morphism and $L = \pi^*(\mathcal{O}_{\mathbb{P}^3}(1))$. Clearly the line bundle L is nef and big and hence $H^1(X, \Omega_X \otimes L^{-1}) \neq 0$.

Example 4.2. Note that the variety X in the Example(4.1) can be identified with $\mathbb{P}(E)$ in such a way that $L \simeq \mathcal{O}_{\mathbb{P}(E)}(1)$, where $E = \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(1)$. Clearly the bundle E on \mathbb{P}^2 is nef and big and $H^{2,2}(\mathbb{P}^2, E) \neq 0$. This shows that one can not expect Le Potier type vanishing result for nef and big vector bundle even for $p = n$.

More general example: if Y is a projective manifold of dimention n and H is an ample line bundle on Y, then the vector bundle $E = \mathcal{O}_Y \oplus H$ is nef and big vector bundle but $H^{n,n}(Y, E) \neq 0$.

Remark 4.3. The non vanishing of $H^{1,1}(X, L^{-1})$ of Example (4.1) can be deduced from the non vanishing of the group $H^{2,2}(\mathbb{P}^2, E)$ in Example (4.2). Indeed:

$$H^2(X, \Omega_X^2 \otimes L) \simeq H^{2,2}(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(1))$$

by Le Potier isomorphism [6, Lemma 8].
Acknowledgements: Last named author would like to thank University of Lille1 and University of Artois at Lens and would also like to thank IRSES-Moduli program for their hospitality and the support.

REFERENCES

[1] J.P. Demailly, T. Peternel, M. Schneider, Compact complex manifolds with numerically effective tangent bundles J. Algebraic Geom. 3 (1994) no. 2, 295-345.
[2] P. A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles 1969 Global Analysis (Papers in Honor of K. Kodaira) pp. 185251 Univ. Tokyo Press, Tokyo.
[3] Y. Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem Math. Ann. 261 (1982), 43-46.
[4] F. Laytimi, W.Nahm, A vanishing theorem Nagoya Math. J. Vol. 180(2007), 35-43.
[5] R. Lazaresfeld, Positivity in Algebraic Geometry II A Series of Modern surveys in Mathematics. Vol. 49. Springer.
[6] J. Le Potier, Annulation de la cohomologie à valeurs dans un fibre vectoriel holomorphe positif de rang quelconque Math. Ann. 218 (1975) 35-53
[7] C.P. Ramanujam, Remarks on the Kodaira Vanishing Theorem Journal of Indian Math. Soc. 36 (1972) 41-51.
[8] M. Schneider, Some remarks on vanishing theorems for holomorphic vector bundles Math. Z. 186 (1984), no. 1, 135142.
[9] E. Viehweg, Vanishing theorems J. Reine Angew. Math. 335 (1982), 1-8.
[10] Xiaokui Yang, Big vector bundles and complex manifolds with semi-positive tangent bundles arXiv: 1412.5156V2[math.DG], 22 April, 2015.

Mathématiques - bât. M2, Université Lille 1, F-59655 Villeneuve d’Ascq Cedex, France
E-mail address: fatima.laytimi@math.univ-lille1.fr

Institute of Mathematical Sciences C.I.T. campus, Taramani, chennai 600113,India
E-mail address: dsn@imsc.res.in