Simultaneous Inboard and Outboard, Inflight Measurements of Ultrafine Particle Concentrations

Paul I. Williams1,2 & Jamie Trembath3

1Centre for Atmospheric Science, The University of Manchester, Manchester, UK
2National Centre for Atmospheric Science, The University of Manchester, Manchester, UK
3FAAM, Cranfield University, Bedford, MK43 0AL, UK

International Aircraft Cabin Air Conference 2021
Online, 15 – 18 March 2021
Overview

• Motivation & the UK research aircraft
• The 3686 LP Ultrafine Condensation Particle Counter
• Data – total of 12 flights, 3 with aerosol composition
• Conclusion
Motivation

• Pre-pandemic, on average 4 billion passengers per annum.
• The indoor-outdoor interface at airports is unique – distinct from urban, for example.
• Exceptionally high concentrations of UFP from aircraft engines.
• Inflight events of UFPs have been reported.

CAQ, March 2021
Motivation

- Inflight events – suggestions are ingress of external air, cooking, passengers and contamination of bleed air (oil or decomposition products such as TCP).
- Previous studies speculate source of aerosol only.

CAQ, March 2021
BAe 146 research aircraft

A BAe 146 aircraft
4000 kg of science equipment and 18 people
Duration of 1-6 hours
Range: surface to 10 km
Reduce galley – Hot drinks only

Visit www.faam.ac.uk
Quant/TSI 3786 LP UCPC

- Water based UCPC
- A modified version of a 3786 for low pressure applications
- $D_{50} = 2.5\text{nm}$
- Range: Ambient to 180hPa
- Single count mode to $9.99 \times 10^5 \text{cm}^{-3}$
- Sadly obsolete
Over 4 – 5 years of intercomparison, the maximum deviation of the 2 CPCs is 12%
Data – opportunistic sampling

- Volcanic and Atmospheric Near- to far-field Analysis of plumes Helping Interpretation and Modelling (VANAHEIM – based at Keflavik, Iceland)

- Methane Observations and Yearly Assessments (MOYA – Dakar, Senegal)

- Cloud and Aerosols Radiative Impact and Forcing (CLARIFY – Ascension Island)
Results – P153 transit style

Ground sources dominate

In cabin only events

CAQ, March 2021
Plume event and in cabin
C008 landing – oil contribution?
C040 Results – oil?

Cabin (Inboard)

Profile (outboard)

Relative intensity

0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.30
0.25
0.20
0.15
0.10
0.05
0.00

m/z

CAQ, March 2021
Context - mass

Smith et al., 2020, Env. Int., https://doi.org/10.1016/j.envint.2019.105188
CAQ, March 2021
Context - mass
Conclusions

• On the ground, before doors close, the number is dominated by ground sources.
• Number inside the cabin peak after doors close in 75% of flights.
• In flight, in cabin only UFP events occur in over 50% of cases on approach – change in aircraft engine.
• Chemical composition is a mixture of sources, but oil appears to be one component for the 146.
• There needs to be at least 3 parameters to have some confidence to identify the source of aerosol.
Conclusions

• Converting to average concentration, total exposure (ug m\(^{-3}\) hour) and average exposure per flight for mass all produce values below current workplace limits (comparing to 8 hour day) and ambient air quality limits.

• Calculated first estimate of number concentration total exposure and exposure per flight between 23,000 – 60,000 N cm\(^{-3}\) Hour and 6,800 – 10,800 N cm\(^{-3}\) per flight.

• Number concentration – equivalent to a London main road for events

• Mass concentration – Better than the underground; similar/worse* then main road (*delete as appropriate)

• published AS&T, 2021, https://doi.org/10.1080/02786826.2021.1880544