Pressure investigation of superconductivity of V$_3$Si

To cite this article: Shigeki Tanaka et al 2010 J. Phys.: Conf. Ser. 200 012202

View the article online for updates and enhancements.
Pressure Investigation of Superconductivity of V_3Si

Shigeki Tanaka1,2, Atsushi Miyake1,2, B. Salce2, D. Braithwaite2, Tomoko Kagayama1, Katsuya Shimizu1

1 KYOKUGEN, Osaka University, Osaka, Japan
2 INAC/SPSMS, CEA-Grenoble, Grenoble, France

E-mail: tanaka@djebel.mp.es.osaka-u.ac.jp

Abstract. V_3Si is one of the superconducting A15 compounds and has relatively high T_c of $T_c = 16.7$ K at ambient pressure. A15 compounds have another feature the martensitic cubic-tetragonal structural phase transition at T_M comparatively close to T_c; T_M of V_3Si is 21.5 K at ambient pressure. Interestingly, there are two types of crystals of V_3Si showing transformation (T) and non-transformation (NT). Here, we have revealed the pressure dependence of T_c in NT V_3Si under hydrostatic pressures up to 14 GPa. T_c monotonically increases up to 6 GPa and saturates on further compression, which is different behavior from previous report.

1. Introduction

In many superconductors including the new recently discovered new high-T_c Fe based ones, a structural phase transition seems to play important roles in the appearance of superconductivity, but it is still unclear. The difficulty may be arisen from the difference between their transition temperatures, i.e. superconducting transition occurs at much lower temperature than structural phase transition temperature [1].

It has been already observed in the A15 compound V_3Si having relatively high T_c of $T = 16.7$ K at ambient pressure. A15 compounds have another feature the martensitic cubic-tetragonal structural phase transition at T_M comparatively close to T_c; T_M of V_3Si is 21.5 K at ambient pressure. Interestingly, there are two types of crystals of V_3Si showing transformation (T) and non-transformation (NT). Here, we have revealed the pressure dependence of T_c in NT V_3Si under hydrostatic pressures up to 14 GPa. T_c monotonically increases up to 6 GPa and saturates on further compression, which is different behavior from previous report.

2. Experimental details

The small polycrystal of V_3Si was used in this work. High pressure was applied by using a diamond anvil cell (DAC) and pressure was up to 9.2 GPa (Run 1) and up to 14 GPa (Run 2). The culet diameter of the anvils were 1 mm. The pressure transmitting medium was liquid argon. Pressure was changed in the refrigerator and determined by the ruby fluorescence method at low temperature [5].

For ac-susceptibility measurement, we put a micro-coil with 300 µm in diameter, which was a pick-up coil and wound 10 turns with 12 µm insulated copper wire in 300 µm, into a pressure
chamber [6,7]. $V_3\text{Si}$ and lead were put inside the pick-up coil. The lead was the marker to check whether the ac-susceptibility measurement was going well, and also used as a manometer [8].

3. Experimental results
Figure 1 presents temperature dependence of magnetic susceptibility $\chi'(T)$ of $V_3\text{Si}$ at several pressures in Run 1. There are three anomalies corresponding to superconducting transitions. At ambient pressure two clear drops of the $\chi(T)$ are observed around 7.2 K and 17 K. The low temperature anomaly monotonically decreases, indicating that the drop is due to the superconducting transition of Pb in the pressure chamber and that the measurements is working well. The anomaly at higher temperature is corresponding to T_c of $V_3\text{Si}$. T_c was determined from the peak of the temperature derivative of the susceptibility as shown in the inset of Fig. 1 and in agreement with previous works. With increasing pressure, T_c of $V_3\text{Si}$ initially increases with a slope of $dT_c/dP = 0.18$ K/GPa. This value was slightly smaller than previous works [2,3].

From this experiment T_c of NT sample continues increasing with applying pressure up to ~ 6 GPa and saturates on further compression. However the data of Run 2 were not systematically-changed and difficult to determine the T_c of $V_3\text{Si}$, the onset of superconductivity seemed to decrease for higher pressures.

We show the pressure dependence of T_c and T_M for T and NT samples of $V_3\text{Si}$ in Fig. 2. Our results are different from previous works. Though the various works on $V_3\text{Si}$ had been previously reported, it is still unclear that how T_c depends on the type (T or NT) of sample. SC transition of NT sample occurs without any changes in its cubic structure. These results suggests SC transition doesn’t depend on the crystal structure, which may result in that the weak pressure dependence of SC in $V_3\text{Si}$ as seen in Fig. 2. In order to clarify the more detail, the other physical properties such as the pressure dependence of the jump of specific heat at T_c with the both T and NT samples are required.

![Figure 1](image-url)

Figure 1. Magnetic susceptibility of $V_3\text{Si}$ under pressure: SC transition of (1) lead manometer, (2) solder, (3) $V_3\text{Si}$. The inset shows temperature derivative of the susceptibility. At all pressure range, we determined T_c by its peak.
Figure 2. The pressure dependence of T_c and T_M for T and NT samples of V_3Si. Open triangles show T sample, open and solid circles show NT sample.

4. Acknowledgment
This work was achieved by the support of ‘Support Program for Improving Graduate School Education’ (JSPS). That program gave me an opportunity to study at CEA/Grenoble, France for a month.

5. References
[1] J. Q. Yan, A. Kreysig, S. Nandi, N. Ni, S. L. Budfko, A. Kracher, R. J. McQueeney, R. W. McCallum, T. A. Lograsso, A. I. Goldman, and P. C. Canfield Phys. Rev. B. 78 024516
[2] C. W. Chu and L. R. Testardi 1974 Phys. Rev. Lett. 32 766
[3] C. W. Chu and V. Diatschenko 1978 Phys. Rev. Lett. 41 572
[4] C. W. Chu 1974 Phys. Rev. Lett. 33 21
[5] B. Salce, J. Thomasson, A. Demuer, J. J. Blanchard, J. M. Martinod, L. Devoille, and A. Guillaume 2000 Rev. Sci. Instrum. 71 2461
[6] Patricia Lebre Alireza, Stephen R. Julian 2003 Rev. Sci. Instrum. 74 4728
[7] D. Braithwaite, G. Lapertot, and B. Sake 2007 Phys. Rev. B. 76 224427
[8] M. J. Clark and T. F. Smith J. Low Temp. Phys. 32 495