Identification of Placental Transforming Growth Factor-β and Bikunin Metabolites as Contaminants of Pharmaceutical Human Chorionic Gonadotrophin Preparations by Proteomic Techniques*

Sotiris Malatos‡§, Hendrik Neubert¶||, Andrew T. Kicman¶**,**, and Ray K. Iles‡§‡‡

A contaminant protein complex found in pharmaceutical urinary human chorionic gonadotrophin preparations is reported to have anti-human immunodeficiency virus-associated Kaposi’s sarcoma activity. The aim of this study was to isolate and characterize this protein complex by proteomic approaches. Size exclusion chromatography was used in the isolation of these human chorionic gonadotrophin-associated fragments. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of a protein complex that dissociated into two protein bands under reducing conditions. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of this complex showed three polypeptides at ~6.2, 11.4, and 15.8 kDa. Peptide mapping and N-terminal amino acid sequencing identified two polypeptides as metabolites of placental transforming growth factor-β (11.4 kDa) and bikunin (15.8 kDa). Subsequent matrix-assisted laser desorption/ionization time-of-flight mass spectral analysis of the anti-human immunodeficiency virus-associated Kaposi’s sarcoma active preparations CG-10 (Sigma), Pregnyl (Organon), and Profasi (Serono) revealed the presence of metabolites of placental transforming growth factor-β in all three; no other non-human chorionic gonadotrophin-related protein species were observed in these preparations. Our findings present evidence that urinary human chorionic gonadotrophin preparations are contaminated with metabolites of placental transforming growth factor-β, which may have transforming growth factor-β agonist actions, and metabolites of bikunin, which is a protease inhibitor. In combination these molecules may be responsible for the anti-human immunodeficiency virus-associated Kaposi’s sarcoma activity demonstrated for these urinary human chorionic gonadotrophin preparations. Molecular & Cellular Proteomics 4:984–992, 2005.

Human chorionic gonadotrophin (hCG) is the principal hormonal product of the conceptus and is responsible for signaling maternal recognition of pregnancy in humans. More recently it has been reported to inhibit human immunodeficiency virus (HIV) replication in maternal blood cells during pregnancy and transmission from lymphocytes to trophoblasts (1). It was later proposed that the antiviral activity of hCG in blood cells was determined by its free β-subunit (hCGβ) (2). The anti-HIV effects of hCG and hCGβ have also been noted in HIV-associated Kaposi’s sarcoma (KS) (3–7). KS usually presents as lesions consisting of aggregates of spindle-shaped cells interspersed with endothelium-lined channels, which remain confined to the subcutaneous layer of the skin. Human hepatitis virus-8 is the main causative agent of KS, but HIV infection results in a completely distinct manifestation; lesions arise all over the body but particularly affect the face and the moist mucosa of the mouth and nose (8). HIV-induced KS is the most common tumor of patients infected with the virus, and the risk of developing the sarcoma is increased 20,000-fold in acquired immunodeficiency syndrome sufferers (8). The anti-HIV-KS activity of hCG was initially noted as part of an investigation into the significance of the male gender bias of HIV-associated KS: Kaposi observed a bias of 15:1 toward male presentation for this condition in his initial study (for a review, see Ref. 9). Lunardi-Iskandar et al. (4) at the NCI, National Institutes of Health

1 The abbreviations used are: hCG, human chorionic gonadotrophin; HAF, human chorionic gonadotrophin-associated fragments; hCGα, human chorionic gonadotrophin α-subunit; hCGβ, human chorionic gonadotrophin β-subunit; hCGβcf, human chorionic gonadotrophin β core fragment; HIV, human immunodeficiency virus; KS, Kaposi’s sarcoma; m-bik, bikunin metabolite; MIC-1, macrophage inhibitory cytokine-1; m-pTGF-β, placental transforming growth factor-β metabolite; m-ESI, nano-ESI; pTGF-β, placental transforming growth factor-β; TATI, tumor-associated trypsin inhibitor; TGF-β, transforming growth factor-β.
(Bethesda, MD) noticed that mice with induced KS who then became pregnant went into tumor remission. They went on to describe how preparations of hCG and hCGβ “killed KS cells in vitro and in vivo, apparently by apoptosis.” The effect was initially attributed to luteinizing hormone/hCG receptor activation, but the mouse does not possess a chorionic gonadotrophin β gene or express an equivalent gonadotrophin during pregnancy (10). Various clinical trials were carried out; most of them used crude hCG preparations. In the majority of studies, hCG administration resulted in various degrees of KS lesion remission (11–17). In response to this, Krown (18) commented on the variation in the quality of hCG preparations; the free subunits of hCG and the urinary metabolite of hCG, hCGβ core fragment (hCGβcf), were common contaminants. Rabkin et al. (19) suggested that a contaminant factor present in pregnancy urine hCG must explain the tumor regression in pregnant mice. Albini et al. (20) concluded that the active compound was hCGβcf. However, others fractionating anti-HIV-KS active hCG preparations suggested that the anti-HIV-KS activity was due to small contaminating molecules that eluted close to hCGβcf on size exclusion columns (21). Various low molecular weight components have now been isolated from neat pregnancy urine and urinary hCG preparations with anti-HIV-KS activity. These have been variously described as antiviral lysozyme C and antiviral RNases (22–24). However, none have been unequivocally identified and are best described as an unidentified protein complex termed “hCG-associated fragments” (HAF) (25, 26).

We have previously isolated and purified a contaminant complex of the urinary hCG preparation CG-10 (Sigma) that appeared to co-elute in our isolation of hCGβcf (27). We now report the characterization of this protein complex by SDS-PAGE, N-terminal sequencing, and mass spectrometry and confirm its presence in urinary hCG preparations found to have anti-HIV-KS activity.

EXPERIMENTAL PROCEDURES

Reagents—Three clinical grade hCG preparations were used: CG-10 (Sigma), Pregnyl (Organon, Cambridge, UK), and Profasi (Serono, Feltham, UK). The MALDI-TOF MS grade matrices α-cyano-4-hydroxycinnamic and 2,5-dihydroxybenzoic acids were obtained from Fluka (Poole, UK). All other chemicals were obtained from Merck unless otherwise stated.

Size Exclusion Chromatography—HAF was isolated from CG-10 by size exclusion chromatography on a Sephadex G-100 column (Amersham Biosciences) as described previously (27). Briefly the material was dissolved in 0.01 M phosphate buffer saline prior to chromatography. The column was then eluted with the above buffer.

Assays—Total protein was measured by using the Bradford dye (0.5 mg/ml Coomassie Blue G in 25% ethanol, 42.5% concentrated phosphoric acid). Absorbance was read at 570 nm by using an EL3115X microtiter plate reader (Anachem, Luton, UK).

The S781 polyclonal antibody was used as the capture antibody against intact hCG, whereas the S752 monoclonal antibody was used as the capture antibody against free hCGβ (27). The M107 monoclonal antibody (27) was conjugated to horseradish peroxidase (Dako, Ely, UK) and was subsequently used as the detection antibody in both assays.

The INN112 monoclonal antibody was used as a capture antibody against the β13 epitope on hCGβcf; the INN112 antibody was a gift from Professor Peter Berger (Institute for Biomedical Aging Research, Innsbruck, Austria). The 5S04 polyclonal antibody (27) was used as a primary detection antibody for hCGβcf, and a donkey anti-sheep- horseradish peroxidase monoclonal antibody (Jackson Immunoresearch Inc., West Grove, PA) was used as a secondary detection antibody.

SDS-PAGE—One-dimensional SDS-PAGE was performed using 20% acrylamide separating gels and 5% stacking gels. Samples were denatured for 5 min at 100 °C prior to running under reducing and non-reducing conditions. Electrophoresis was performed in Tris-glycine buffer at a constant current of 15 mA. Gels were stained overnight with 25% Coomassie Blue (w/v) in 50% methanol, 10% acetic acid and destained with 50% methanol, 10% acetic acid.

In Situ Reduction, Alkylation, and Digestion—Reduction and alkylation of the stained proteins were done with dithiothreitol and iodoacetamide as described previously (28). Briefly stained protein bands were excised from gels and were further destained with 25 mM ammonium bicarbonate, 50% acetonitrile and reduced and alkylated with 10 mM dithiothreitol and 55 mM iodoacetamide. Tryptic digestion was carried out at a concentration of 12.5 ng/ml trypsin (Sigma) in a solution of 50 mM ammonium bicarbonate, 5 mM calcium chloride.

MALDI-TOF MS—A sample preparation protocol using MALDI target plates with a 600-μm hydrophilic anchor (AnchorChip™ 600, Bruker Daltonics, Coventry, UK) was used (29). All protein preparations and in-gel tryptic digests were desalted using C18 ZipTips (Millipore). An aliquot of the sample was acidified with 1 μl of 1% aqueous trifluoroacetic acid to enhance peptide binding on the C18 resin. Conditioning, loading, and washing steps were done according to the manufacturer’s recommendation. Proteins and peptides were eluted from the C18 bed with 2 μl of acetonitrile, 0.1% aqueous trifluoroacetic acid (50:50, v/v) directly onto either a thin layer of α-cyano-4-hydroxycinnamic acid crystals formed from 0.3 μl of a 5 mg/ml solution of α-cyano-4-hydroxycinnamic acid (acetone, 0.1% aqueous trifluoroacetic acid; 97:3) or a thin layer of 2,5-dihydroxybenzoic acid crystals formed from 0.5 μl of a 5 mg/ml solution of 2,5-dihydroxybenzoic acid (acetone, 0.1% aqueous trifluoroacetic acid; 1:2). After drying, the α-cyano-4-hydroxycinnamic acid-containing preparations were recrystallized with 0.3 μl of ethanol, acetone, 0.1% aqueous trifluoroacetic acid (6:3:1).

MALDI-TOF mass spectra were acquired on an Autoflex (Bruker Daltonics, Coventry, UK) operated in the positive ion mode using a nitrogen laser emitting at 337 nm. Protein mass spectra were acquired in the linear mode, whereas digest spectra were recorded in reflectron mode for enhanced mass resolution. To avoid detector saturation low mass material was deflected. The detector voltage was 1.75 kV. All other parameters were set for an optimized mass resolution. Usually the mass spectra from 200 laser shots were averaged. Linear MALDI-TOF mass spectra were externally calibrated using the signals from bovine insulin, bovine ubiquitin, equine cytochrome c, and bovine α-lactalbumin. MALDI spectra of tryptic digests were internally mass-corrected using trypsin autolysis fragments.

PSD MALDI-TOF MS—For PSD MALDI analysis, the pulsed ion deflector on the Autoflex was set to allow the selection of the precursor ion in a ±5-Da mass window. Pulsed ion extraction of 80 ns was used for enhanced spectral resolution. The reflector voltage was stepped from a maximum of 20 kV depending on the mass of the precursor ion down to 0.59 kV in a maximum of 18 segments to focus metastable fragments on the detector. The spectra obtained at each reflector voltage setting were pasted together in XMASSTM using a calibration file from the PSD fragments of the adrenocorticotropic hormone clip 18–39. The mass assignment of fragments was performed in XMASSTM using an annotation macro for PSD spectra.
Nano (n)-ESI-MS—The peptide samples were desalted using C18 ZipTips as described above with the exception that formic acid was used instead of trifluoroacetic acid as an ion-pairing agent. The samples were directly infused into a LCQ Deca XP ion trap mass spectrometer (Thermo Finnigan, San Jose, CA) using PicoTip nano-capillaries (New Objective, Woburn, MA). Each ion species was isolated for an MS2 experiment using an isolation width of 2–3 mass units, and the normalized collision energy was set between 30 and 40%.

N-terminal Sequencing by Edman Degradation—N-terminal sequences were provided as a service by Dr. J. Keen of the protein sequencing facility at the University of Leeds using a Procise 494 gas-phase/liquid-pulse sequencer (Applied Biosystems, Foster City, CA).

Carbohydrate Staining—To identify carbohydrates after SDS-PAGE, a glycoprotein detection kit (Sigma) was used in accordance with the procedures recommended by the manufacturer.

RESULTS

Isolation of HAF—In a previous study we fractionated protein molecules from the urinary hCG preparation CG-10 (Sigma) on a Sephadex G-100 column where hCG eluted first and hCGβcf appeared in later fractions. An unidentified protein complex (HAF) eluted closely to hCGβcf (data shown in previous publication) (27). Those fractions were pooled together and assayed for total protein (530 μg/ml), hCG (not detected, <1% cross-reactivity), hCGβ (not detected, <1% cross-reactivity), and hCGβcf (1,200 pmol/ml, ~3% cross-reactivity). SDS-PAGE of HAF showed protein bands at 27, 19, and 10 kDa under non-reducing conditions; under reducing conditions two bands were observed at 15 and 10 kDa (Fig. 1).

Molecular Identification of HAF—Polypeptides were eluted from individual gel bands produced under both non-reducing and reducing conditions and subjected to MALDI-TOF MS. Analysis of intact HAF components eluted from the non-reducing SDS-PAGE bands showed no MALDI signals for the 27-kDa gel band, two signals at m/z 15,770.5 (singly charged ion) and 7,887.1 (doubly charged ion) for the 19-kDa band, and two signals at m/z 11,361.5 (singly charged ion) and 5,684.0 (doubly charged ion) for the 10-kDa band (Fig. 1, A–C). In-gel tryptic digestion of the separated HAF components on non-reducing SDS-polyacrylamide gels followed by MALDI-TOF MS and a Mascot data base search (www.matrixscience.com) identified two polypeptides included within the 27-kDa gel band that were derived from placental transforming growth factor-β (pTGF-β) and bikunin and will be referred to here as metabolite (m)-pTGF-β and metabolite-bikunin (m-bik), respectively (Fig. 1D). Moreover the 19-kDa gel band contained only m-bik (~15.8 kDa with MALDI-TOF MS) (Fig. 1E), whereas the 10-kDa gel band contained m-pTGF-β (~11.4 kDa by MALDI-TOF MS) (Fig. 1F). Details of the tryptic mass mapping can be seen in Table I, and Fig. 2.
shows the full amino acid sequences of m-bik and m-pTGF-β.

Identical results with the 19- and 10-kDa gel bands under non-reducing conditions were obtained from polypeptides eluted from reducing SDS-polyacrylamide gel bands at 15 and 10 kDa, respectively (data not shown).

PSD MALDI-TOF and nESI-MS were performed with some selected tryptic fragments to confirm peptide identifications. For example, PSD MALDI-TOF MS confirmed the presence of m-bik within the 19-kDa (non-reducing SDS-PAGE) and 15-kDa (reducing SDS-PAGE) gel bands by generating characteristic fragmentation of the major peptide ion at m/z 1,213.6 (Fig. 3). Furthermore nESI-MS confirmed the identity of some tryptic peptides of m-pTGF-β within the 10-kDa gel bands (non-reducing and reducing SDS-PAGE), for example at m/z 1,814.9 (Fig. 4).

To determine the N-terminal position of the HAF components, Edman degradation experiments were performed on polypeptides eluted from reducing SDS-polyacrylamide gels.

Table I: Identification of tryptic fragments of HAF

HAF tryptic fragments shown in Fig. 1 were identified by using the Mascot search engine. P signals were obtained from m-pTGF-β, and B signals were obtained from m-bik. The N-terminal sequences of m-bik and m-pTGF-β as shown in Table II are bold.

Peptide no.	Range	Amino acid sequence
m-bik		
B1	1-3	VTK
B2	4-4	K
B3	5-23	EDSCQLGYSAGPCMGMTSR
B4	24-52	YFYNGTSMACETFQYGGMCGMGNNFVTEK
B5	53-58	ECLOTCR
B6	60-70	TVAACNLPIVR
B7	71-74	GPCR
B8	75-86	AFIOQLWAFDAVK
B9	87-88	GK
B10	89-103	CBLFPGYGCQGNGNK
B11	104-108	FYSEK
B12	109-111	ECR
B13	112-126	EYGCVPGDGEELLR
B14	127-129	FSN
B15	4-23	KEDSCQLGYSAGPCMGMTSR
B16	104-111	FYSEKERC

m-pTGF-β		
P1	1-2	AR
P2	3-13	NGDHCP6PGR
P3	14-16	CCR
P4	17-21	LTHTVR
P5	22-37	ASLEDLGWADWLSLR
P6	38-53	EVQVTMICGAQSFR
P7	54-62	AAMHAIKQ
P8	63-67	TSLHR
P9	68-91	LKPDTDVPACCVPAVSNYMVLQK
P10	92-107	TDTGVSLQTYDDLAK
P11	108-112	DCHCI
P10a	92-112	TDTGVSLQTYDDLAKDCHI

a	Tryptic peptides were also observed in the 27-kDa gel band from non-reducing SDS-polyacrylamide gels (Fig. 1D).
b	Indicates a missed cleavage.
c	Low molecular weight ions not shown in Fig. 1.

Fig. 2. Amino acid sequences of m-bik and m-pTGF-β

A, m-bik (129 amino acids); B, m-pTGF-β (112 amino acids). Numbers indicate amino acid positions on the precursor proteins. Gray areas represent tryptic peptides identified in Table I. Italics, N-terminal sequence; *, N-linked glycosylation site.
The obtained N-terminal sequence tags were subjected to a protein BLAST search (www.ncbi.nlm.gov/BLAST) for short and nearly exact matches in protein and gene data bases. They generated significant sequence alignments with bikunin and pTGF-β/H9252 for polypeptides eluted from reducing SDS-polyacrylamide bands at 15 and 10 kDa, respectively (Table II).

Carbohydrate Detection in HAF Preparation—Both bikunin and pTGF-β are known to contain carbohydrate structures (30, 31). Their presence on both m-bik and m-pTGF-β was investigated, although carbohydrate moieties were not expected to be found on m-pTGF-β (see “Discussion”). Carbohydrates were detected on SDS-PAGE bands that were run under non-reducing conditions. The SDS-PAGE protein band corresponding to m-bik at 19 kDa stained positively for carbohydrates, whereas all other bands were negative (Fig. 5).

Mass Spectrometric Analysis of Urinary Pregnancy hCG Preparations—The anti-HIV-KS active clinical grade urinary hCG preparations CG-10 (Sigma), Pregnyl (Organon), and Profasi (Serono) were subjected to MALDI-TOF MS and compared with the MALDI spectra of HAF (Fig. 6). Within the low molecular mass range (m/z 6–18,000), all commercial preparations gave a resolved signal pattern of the α-subunit of hCG (hCGα) resulting from glycoform heterogeneity. Furthermore doubly charged hCGα signals were also observed (Fig. 6, A and C). In addition, the Pregnyl preparation exhibited considerable levels of hCGβcf. All preparations contained a signal at approximately m/z 11,400. A signal at approximately m/z 15,800 was only present in the HAF preparation; however, as it was of low abundance it might have been suppressed in the MALDI spectra of other hCG preparations where more total protein (mainly hCG) was present (Fig. 6, A–C). Furthermore an intense signal at approximately m/z 6,200 in the HAF preparation was also observed as a major species with Pregnyl and as a low abundance signal with CG-10, but it was not present in Profasi.

DISCUSSION

Proteins associated with pregnancy urine and hCG preparations have been shown to reduce Candida albicans pathogenesis, induce apoptosis in KS cells, and inhibit HIV replication (22–26). The active protein components have been reported previously to be an 18-kDa RNase closely homologous to eosinophil-derived neurotoxin (22, 23), a 14-kDa hu-
man lysozyme C (24), an RNase A (23 kDa), and a urinary RNase U (~18 kDa) (24). In some cases it has simply been described as a protein complex named HAF that was composed of 15–30- and 2–4-kDa polypeptides (25, 26). The urinary hCG preparation CG-10 (Sigma) is known to be rich in these hCG-associated bioactive polypeptides. The aim of this study was to use modern mass spectrometry to identify these urinary hCG-associated proteins that contaminate pharmaceutical preparations of hCG known to have anti-HIV-KS activity (25, 26).

Tryptic mass mapping by MALDI-TOF MS, PSD MALDI-TOF MS, nESI-MS, and N-terminal sequencing of isolated HAF identified two polypeptides to be fragments of pTGF-β (m-pTGF-β, 11.4 kDa) and bikunin (m-bik, 15.8 kDa) (Figs. 1, 3, 4, and 6 and Tables I and II). There was no evidence for the presence of RNase A, RNase U, eosinophil-derived neurotoxin, or lysozyme C.

pTGF-β is also known as macrophage inhibitory cytokine-1 (MIC-1), growth differentiation factor-15, placental bone morphogenic protein, prostate differentiation factor, and neuregulin-1. It has a mature intact polypeptide mass of 12.5 kDa (Swiss-Prot entry number Q99988, www.expasy.ch) and, by homology to other TGF-βs, forms a disulfide-linked homodimeric protein (32). pTGF-β first appeared in the literature as MIC-1, an autocrine regulatory molecule of macrophage cells (31). It was later shown that the human placenta produced MIC-1 with elevated levels found in maternal serum (33). Antitumorigenic activity of pTGF-β was first demonstrated by Li et al. (34) who found that its overexpression could induce cell cycle arrest and apoptosis in breast tumor cells in vitro. Subsequent studies showed that its down-regulation could decrease cell cycle arrest and apoptosis in human mammary carcinoma cells (35) and increase the incidence of benign prostatic hyperplasia (36). In vitro experiments on cancer cells showed that pTGF-β could reduce cell adhesion followed by cell detachment and induce apoptosis (37, 38). However, some studies have proposed a positive relationship between pTGF-β expression and tumor progression in colorectal carcinoma (39) as well as gastric tumor tissues (40). This is consistent with the bifunctional role of TGF-β, which induces mesothelial cell growth while inducing epithelial cell apoptosis (6).

It is important to bear in mind that what has been detected in these urinary hCG preparations is a fragment of the pTGF-β monomer not the mature protein. Thus any anti-HIV-KS activity is not likely to be via receptor activation but most probably via antagonist mechanisms. Interestingly this is consistent with a previous suggestion that hCGβ fragments block the TGF-β receptor complex by virtue of their cysteine knot growth factor structural homology with TGF-β (6). Obviously if this were the case, high levels of a monomeric fragment of pTGF-β would have greater antagonistic properties. However, it is highly probable that the anti-HIV-KS activity of these preparations is not solely due to m-pTGF-β. Clinical studies have clearly shown that effective anti-HIV-KS treatment is only achievable when an antiviral replication agent is used in combination with a protease inhibitor (41).

Bikunin is a proteinase inhibitor containing two Kunitz domains (30). It has various synonyms: inter-α-trypsin inhibitor light chain, urinary trypsin inhibitor, acid-stable trypsin inhibitor, mgingrin, urinastatin, and ulinastatin. It is initially expressed as the α1-microglobulin/bikunin precursor, which is post-translationally modified to contain asparagine (N-)linked glycosylation moieties and a very large chondroitin chain. The mass of the unmodified amino acid chain is 16.0 kDa (Swiss-Prot entry number P02760, www.expasy.ch), whereas its intact mass is 25–26 kDa depending on the structure of the post-translational chondroitin and N-linked glycosylation chains (30). Aside from its established proteinase inhibitor activity, bikunin also functions as a growth factor in fibroblasts and as an inflammatory acute phase marker protein (30). One study has shown that certain recombinant forms of bikunin can have an inhibitory effect on HIV-1 infectivity in vitro (42). In cancers, its expression by human glioblastoma cells can cause suppression of tumor invasion (43), whereas addition of bikunin to human chondrosarcoma cell cultures blocks cell spreading (44).

Although we only detected a fragment of bikunin (m-bik) in these preparations, it is very likely that what remains are active protein Kunitz inhibitor domains. The large m-bik 15.8-kDa fragment contains both Kunitz domains of bikunin, and domain I is the only domain to contain an N-linked carbohydrate structure (amino acid position 250 on the precursor molecule) (30). An O-linked chondroitin sulfate chain, consisting of disaccharide-repeating units, is attached on the N-terminal extension of bikunin but is not found within m-bik (amino acid position 215 of the precursor molecule) (30). In the present study, m-bik was shown to be glycosylated. In contrast, although pTGF-β contains an N-linked glycosylation site at amino acid position 70 of the intact precursor molecule (31), there was no evidence for any carbohydrate structures being present on m-pTGF-β (Fig. 5). This is consistent with the fact that m-pTGF-β was truncated at amino acid 197 on the precursor polypeptide, whereas m-bik was truncated at amino acid 224 on the precursor polypeptide; therefore m-bik retained a possibly metabolized N-linked glycosylation at amino acid position 250 (Fig. 2A). Bikunin carbohydrates play
It is also significant that MALDI-TOF MS analysis of HAF (Fig. 6D) revealed the presence of a 6.2-kDa trypsin resistant component that was not visualized on the gels. It is possible that m-bik retains its Kunitz domain protease inhibitory properties (45).

Fig. 6. MALDI-TOF MS of different hCG preparations. A, CG-10 (Sigma); B, Pregnyl (Organon); C, Profasi (Serono); D, HAF preparation. The spectra focus on the mass region between 6 and 18 kDa. hCGβ was observed in A, B, and C but is omitted here for clarity. The mass region from 8.5 to 15 kDa in B is expanded 10×.
that, due to its mass resemblance and loss after extensive denaturation during SDS-PAGE, this might have been a further degradation fragment of bikunin consisting solely of Kunitz domain II. A theoretical mass for a bikunin Kunitz domain II fragment, between amino acids 285 and 340 of its precursor protein, is 6,176 Da and therefore matches the unknown peptide detected to within 1 Da of mass accuracy. An alternative candidate trypsin inhibitor exists in the literature. A 6.2-kDa polypeptide protein with antiprotease activity was isolated from the urine of a patient with ovarian cancer (46). It was termed tumor-associated trypsin inhibitor (TATI) but is also known as pancreatic secretory trypsin inhibitor (47). TATI has an intact mass of 6,247 Da (Swiss-Prot entry number P00995, www.expasy.ch), and thus the polypeptide observed at m/z 6,175 in this study (Fig. 6D) could be a metabolic product of TATI. Its expression has also been noted in pregnancy where TATI is produced at levels similar to those in cancerous conditions (48).

Clearly this study is in conflict with previous data, which propose RNase and lysozyme molecules as the active anti-HIV-KS contaminant components of pregnancy urine and urinary hCG preparations (22–24). In an editorial Darzynkiewicz (7) pointed out the considerable methodological and theoretical flaws in the previously reported studies of the anti-KS factor found in urinary hCG preparations. Indeed he stated that identification of this anti-KS factor contaminating hCG was essential for further progress in the clinical application of hCG. The proteomic mass spectrometric techniques used in this study are far more discriminatory than immunoblotting and catalytic enzymatic assays used in other reports. Indeed none of the previously proposed molecules were observed in any of the examined hCG preparations.

In 1998 a publication by Lunardi-Iskandar et al. (25) stated that identification of the active moiety(ies) of HAF from clinical grade pregnancy urine hCG preparations was one of the high priorities for the initiation of clinical trials where the biological properties of the recognized components could be investigated. We have now identified the anti-HIV-KS proteins closely co-eluting with hCGβcT from the pregnancy urine hCG preparations CG-10 (Sigma), Pregnyl (Organon), and Profasi (Serono) as m-pTGF-β, m-bik, and possibly a metabolic product of TATI. In general terms, this concurs with the original studies of Lunardi-Iskandar et al. (25) in which they proposed HAF to be composed of several polypeptides ranging from 2–30 kDa. Now that we have identified the contaminant proteins in commercial hCG preparations with anti-HIV-KS activity, the possible role of hCG in HIV-KS treatment can be thoroughly investigated.

Acknowledgments — We thank Mireia Fernandez Ocaña for support with the acquisition of nanoelectrospray ionization mass spectra and Stephen Butler for useful comments on methodology.

* This work was supported in part by the Joint Research Board of St. Bartholomew’s Hospital Ph.D. studentship (to S. M.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

** Recipient of a University of London Maplethorpe Fellowship during the course of this study.

†† To whom correspondence may be addressed: Biomedical Sciences, Inst. of Social and Health Research, Middlesex University, Enfield EN3 4SA, UK. E-mail: r.iles@mdx.ac.uk.

REFERENCES

1. Bourinaiai, A. S., and Nagorny, R. (1992) Inhibitory effect of human chorionic gonadotropin (hCG) on HIV-1 transmission from lymphocytes to trophoblasts. FEBS Lett. 309, 82–84

2. Bourinaiai, A. S., and Lee-Huang, S. (1995) Anti-HIV effect of β subunit of human chorionic gonadotropin (βhCG) in vitro. Immunol. Lett. 44, 13–18

3. McNamee, D. (1995) β-hCG inhibits Kaposi’s sarcoma. Lancet 345, 1169

4. Lunardi-Iskandar, Y., Bryant, J. L., Zeman, R. A., Lam, V. H., Samaniego, F., Besnier, J. M., Hermans, P., Thierry, A. R., Gill, P., and Gallo, R. C. (1995) Tumorogenesis and metastasis of neoplastic Kaposi’s sarcoma cell line in immunodeficient mice blocked by a human pregnancy hormone. Nature 375, 64–68

5. Lang, M. E., Lottersberger, C., Roth, B., Bock, G., Recheis, H., Sgonc, R., Sturzl, M., Albini, A., Tsachchiler, E., Zangerle, R., Donini, S., Feichtinger, H., and Schwarz, S. (1997) Induction of apoptosis in Kaposi’s sarcoma spindle cell cultures by the subunits of human chorionic gonadotropin. AIDS 11, 1333–1340

6. Butler, S. A., and Iles, R. K. (2003) Ectopic hCG connection? Immunol. Lett. 91, 178–186

7. Darzynkiewicz, Z. (1999) The butler did it: search for killer(s) of Kaposi’s sarcoma. Lancet 353, 1187–1189

8. Boshoff, C., and Weiss, R. A. (2001) Epidemiology and pathogenesis of Kaposi’s sarcoma-associated herpesvirus. Philos. Trans. R. Soc. Lond. B 356, 517–534

9. Wahman, A., Melnick, S. L., Rame, F. S., and Potter, J. D. (1991) The epidemiology of classic, African, and immunosuppressed Kaposi’s sarcoma. Epidemiol. Rev. 13, 178–199

10. Berger, P., and Dimhofer, S. (1995) Kaposi’s sarcoma in pregnant women. Nature 377, 21–22

11. Harris, P. J. (1995) Treatment of Kaposi’s sarcoma and other manifestations of AIDS with human chorionic gonadotropin. Lancet 346, 118–119

12. Harris, P. J. (1997) Intraregional human chorionic gonadotropin for Kaposi’s sarcoma. N. Engl. J. Med. 336, 1187–1189

13. Gill, P. S., Lunardi-Iskandar, Y., Louie, S., Tulpele, A., Zheng, T., Espina, B. M., Beauchon, J. M., Hermans, P., Levine, A. M., Bryant, J. L., and Gallo, R. C. (1996) The effects of preparations of human chorionic gonadotropin on AIDS-related Kaposi’s sarcoma. N. Engl. J. Med. 335, 1261–1269

14. Gill, P., Tsai, Y., Rao, A. P., and Jones, P. (1997) Clonality in Kaposi’s sarcoma. N. Engl. J. Med. 337, 570–572

15. Gill, P. S., McLaughlin, T., Espina, B. M., Tulpele, A., Louie, S., Lunardi-Iskandar, Y., and Gallo, R. C. (1997) Phase I study of human chorionic gonadotropin given subcutaneously to patients with acquired immunodeficiency syndrome-related mucocutaneous Kaposi’s sarcoma. N. Engl. J. Med. 335, 1261–1269

16. Hermans, P., Clumeck, N., Picard, O., van Vroon, J. P., Duriez, P., Zucca, D., Bryant, J. L., Gill, P., Lunardi-Iskandar, Y., and Gallo, R. C. (1998) AIDS-related Kaposi’s sarcoma patients with visceral manifestations. Response to human chorionic gonadotropin preparations. J. Hum. Virol. 1, 82–89

17. Tavio, M., Nasti, G., Simonelli, C., Vaccaro, E., De Paoli, P., Giacca, M., and Torelli, U. (1998) Human chorionic gonadotropin in the treatment of HIV-related Kaposi’s sarcoma. Eur. J. Cancer 34, 1634–1637

18. Krown, S. E. (1996) Kaposi’s sarcoma—what’s human chorionic gonadotropin got to do with it? N. Engl. J. Med. 335, 1309–1310

19. Rabin, C. S., Chibwe, G., Muyunda, K., and Musaba, E. (1995) Kaposi’s sarcoma in pregnant women. Nature 377, 21
20. Albini, A., Paglieri, I., Oreno, G., Carlone, S., Aluiji, M. G., DeMarchi, R., Matteucci, C., Mantovani, A., Carozzi, F., Donini, S., and Benelli, R. (1997) The β-core fragment of human chorionic gonadotropin inhibits growth of Kaposi’s sarcoma-derived cells and a new immortalized Kaposi’s sarcoma cell line. AIDS 11, 713–721

21. Kachra, Z., Guo, W. X., Sairam, M. R., and Antaky, T. (1997) Low molecular weight components but not dimeric hCG inhibit growth and down-regulate AP-1 transcription factor in Kaposi’s sarcoma cells. Endocrinology 138, 4038–4041

22. Griffiths, S. J., Bramley, T. A., Menzies, G. S., and Adams, D. J. (1997) Co-purification of a ribonuclease and human chorionic gonadotrophin β-core protein from human urine and displacement of 125I-human luteinizing hormone from Candida albicans binding sites by ribonucleases. Mol. Cell. Endocrinol. 134, 69–76

23. Griffiths, S. J., Adams, D. J., and Talbot, S. J. (1997) Ribonuclease inhibits Kaposi’s sarcoma. Nature 390, 568

24. Lee-Huang, S., Huang, P. L., Sun, Y., Huang, P. L., Kung, H., Blithe, D. L., and Chen, H. (1999) Lysozyme and RNases as anti-HIV components in β-core preparations of human chorionic gonadotropin. Proc. Natl. Acad. Sci. U. S. A. 96, 2678–2681

25. Lunardi-Iskandar, Y., Bryant, J. L., Blattner, W. A., Hung, C. L., Flammard, L., Gill, P., Hermans, P., Birken, S., and Gallo, R. C. (1998) Effects of a urinary factor from women in early pregnancy on HIV-1, SIV and associated disease. Nat. Med. 4, 428–434

26. Samaniego, F., Bryant, J. L., Liu, N., Karp, J. E., Sabichi, A. L., Thierry, A., Lee, C. L., Iles, R. K., Shepherd, J. H., Hudson, C. N., and Chard, T. (1991) Induction of programmed cell death in Kaposi’s sarcoma cells by preparations of human chorionic gonadotropin. J. Natl. Cancer Inst. 91, 135–143

27. Lee, C. L., Iles, R. K., Shepherd, J. H., Hudson, C. N., and Chard, T. (1991) The purification and development of a radioimmunoassay for β-core fragment of human chorionic gonadotrophin in urine: application as a marker of gynaecological cancer in premenopausal and postmenopausal women. J. Endocrinol. 130, 481–489

28. Jeno, P., Mini, T., Moe, S., Hintermann, E., and Horst, M. (1995) Internal sequences from proteins digested in polyacrylamide gels. Anal. Biochem. 224, 75–82

29. Schuurenberg, M., Luebbert, C., Eckhoff, H., Kalkum, M., Lehrahc, H., and Nordhoff, E. (2000) Prestructured MALDI-MS sample supports. Anal. Chem. 72, 438–442

30. Fries, E., and Blom, A. M. (2000) Bikunin—not just a plasma proteinase inhibitor. Int. J. Biochem. Cell Biol. 32, 125–137

31. Bootcov, M. R., Bauskin, A. R., Valenzuela, S. M., Moore, A. G., Bansal, M., He, X. Y., Zhang, H. P., Donnellan, M., Mahler, S., Pryor, K., Walsh, B. J., Nicholson, R. C., Fairlie, W. D., Por, S. B., Robbins, J. M., and Breit, S. N. (1997) MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc. Natl. Acad. Sci. U. S. A. 94, 11514–11519

32. Fairlie, W. D., Moore, A. G., Bauskin, A. R., Russell, P. K., Wang, H. P., and Breit, S. N. (1999) MIC-1 is a novel TGF-β superfamily cytokine associated with macrophage activation. J. Leukoc. Biol. 65, 2–5

33. Moore, A. G., Brown, D. A., Fairlie, W. D., Bauskin, A. R., Brown, P. K., Munier, M. L. C., Russell, P. K., Salamonsen, L. A., Wallace, E. M., and Breit, S. N. (2000) The transforming growth factor-β superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women. J. Clin. Endocrinol. Metab. 85, 4781–4788

34. Li, P. X., Wong, J., Ayed, A., Ngo, D., Brade, A. M., Arrowsmith, C., Austin, R. C., and Klamut, H. J. (2000) Placental transforming growth factor-β is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J. Biol. Chem. 275, 20127–20135

35. Graichen, R., Liu, D. X., Sun, Y., Lee, K. O., and Lobie, P. E. (2002) Autocrine human growth hormone inhibits placental transforming growth factor-β gene transcription to prevent apoptosis and allow cell cycle progression of human mammary carcinoma cells. J. Biol. Chem. 277, 26662–26672

36. Kakih, Y., Segawa, T., Wu, X. X., Kulkarni, P., Dhir, R., and Getzenberg, R. H. (2004) Down-regulation of macrophage inhibitory cytokine-1/ prostate derived factor in benign prostatic hyperplasia. Prostate 59, 351–356

37. Liu, T., Bauskin, A. R., Zaunders, J., Brown, D. A., Pankurst, S., Russell, P. J., and Breit, S. N. (2003) Macrophage inhibitory cytokine 1 reduces cell adhesion and induces apoptosis in prostate cancer cells. Cancer Res. 63, 5034–5040

38. Yang, H., Filipovic, Z., Brown, D., Breit, S. N., and Vassilev, L. T. (2003) Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol. Cancer Ther. 2, 1023–1029

39. Brown, D. A., Ward, R. L., Buckhaults, P., Liu, T., Romans, K. E., Hawkins, N. J., Bauskin, A. R., Kinzler, K. W., Vogelstein, B., and Breit, S. N. (2003) MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma. Clin. Cancer Res. 9, 2642–2650

40. Lee, D. H., Yang, Y., Lee, S. J., Kim, K., Koo, T. H., Shin, S. M., Song, K. S., Lee, Y. H., Kim, Y., Lee, J. J., Choi, I., and Lee, J. (2003) Macrophage inhibitory cytokine-1 induces the invasiveness of gastric cancer cells by up-regulating the urokinase-type plasminogen activator system. Cancer Res. 63, 4648–4655

41. Sgdari, C., Monini, P., Barillari, G., and Ensoli, B. (2003) Use of HIV protease inhibitors to block Kaposi’s sarcoma and tumour growth. Lancet Oncol. 4, 537–547

42. Blinkmann, T., Schafer, J., Gurtler, L., Kido, H., Niwa, Y., Katunuma, N., and Tschesche, H. (1997) Inhibition of tryptase TLa from human T4 lymphocytes and inhibition of HIV-1 replication in H9 cells by recombinant aprotinin and bikunin homologues. J. Protein Chem. 16, 651–660

43. Hamasuna, R., Kataoka, H., Meng, J. Y., Itoh, H., Moriyama, T., Wakisaka, S., and Koono, M. (2001) Reduced expression of hepatocyte growth factor activator inhibitor type-2/placental bikunin (HAI-2/PB) in human glioblastomas: implication for anti-invasive role of HAI-2/PB in glioblastoma cells. Int. J. Cancer 93, 339–345

44. Suzuki, M., Kobayashi, H., Fujiw, M., Nishida, T., Takigawa, M., Kanayama, N., and Terao, T. (2002) Kunzti-type protease inhibitor bikunin disrupts phorbol ester-induced oligomerization of CD44 variant isoforms containing epitope v9 and subsequently suppresses expression of urokinase-type plasminogen activator in human chondrosarcoma cells. J. Biol. Chem. 277, 8022–8032

45. Zhuo, L., Salustri, A., and Kimata, K. (2003) A physiological function of serum proteoglycan bikunin: the chondroitin sulfate moiety plays a central role. Glycoconj. J. 19, 241–247

46. Huhtala, M. L., Pesonen, K., Kalkkinen, N., and Stenman, U. H. (1982) Purification and characterization of a tumour-associated trypsin inhibitor from the urine of a patient with ovarian cancer. J. Biol. Chem. 257, 13713–13716

47. Stenman, U. H. (2002) Tumor-associated trypsin inhibitor. Clin. Chem. 48, 1206–1209

48. Kolho, K. L., Huhtala, M. L., Jalanko, H., Rauramo, I., and Stenman, U. H. (1986) Pancreatic secretory trypsin inhibitor from human amniotic fluid and fetal and neonatal urine: concentrations and physicochemical characterization. Clin. Chim. Acta 156, 123–129