Unraveling the importance of molecules of natural origin in antifungal drug development through targeting ergosterol biosynthesis pathway

Fatemehsadat Jamzivar¹, Masoomeh Shams-Ghahfarokhi², Mansoor Khoramizadeh³, Niloufar Yousefi⁴, Mohammadhassan Gholami-Shabani¹, Mehdi Razzaghi-Abyaneh*¹

¹Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
²Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
³School of Iranian Traditional Medicine, Iran University of Medical Sciences, Tehran, Iran

Received: June 2019, Accepted: October 2019

ABSTRACT

Over the past decades, the incidence of life-threatening fungal infections has increased dramatically in particular among patients with hampered immune function. Fungal infections cause around 1.5 million deaths annually, superior to malaria and tuberculosis. With respect to high toxicity, narrow spectrum of activity and drug resistance to current antifungals, there is an urgent need to discover novel leads from molecules of natural origin especially those derived from plants and microorganisms for antifungal drug discovery. Among antifungal drugs introduced into the clinic, those affecting ergosterol biosynthesis are still superior to other classes and the vital role of ergosterol in fungal growth and development. This review highlights current knowledge about available antifungal agents and further issues on antifungal drug discovery from compounds of natural origin which affect ergosterol biosynthesis. Special attention is made to the fungal sterol C24-methyltransferase (SMT), a crucial enzyme in ergosterol biosynthesis pathway as a novel target for rational drug design.

Keywords: Ergosterol biosynthesis; Antifungal drug discovery; Natural compounds; Fungal infections

INTRODUCTION

Nowadays, the mortality rate of fungal infections in the world is more than 1,500,000 cases every year. This figure is higher than mortality due to HIV and malaria infections and equal to tuberculosis. The incidence of infections varies from person to person, and depending on each individual's immune system, the level of exposure varies considerably (1, 2). Therapeutic methods for invasive fungal infections that are currently in use are very limited in comparison with bacterial infections. Moreover, there are no reliable methods for the treatment of many fungal diseases such as candidiasis, due to the resistance of the etiologic fungi to available antifungal drugs (2). With respect to the high prevalence of fungal infections and the treatment problems associated with such infections, further efforts are needed to identify and detect new antifungal drugs. There are currently three antifungal drug groups used in clinic including polyenes, azoles and echinocandins (3). These antifungals target cell membrane and cell wall components of moulds and yeasts while they have limitations in treatment of invasive fungal infections.
that has forced researchers to make further studies on the production of new drugs (4) (Fig. 1). For example, famous polyene i.e. amphotericin B has the least function in the safe form of liposome, azoles produce drug resistance and echinocandins prescribed only intravenously are very expensive (4).

With respect to these issues, a series of specific natural compounds have recently been used to produce new antifungal drugs (4). Many of these alternative new natural antifungal drugs are not categorized as antifungal drugs, but alone or synergically, their antifungal effects have been proven (5). The α-bisabolol in chamomile interferes with zymosterol synthesis by a novel mode of action as inhibiting 24-methyl transferase and prevents the foundation of fecosterol from zymosterol in ergosterol biosynthesis (6). Many anti-fungal drugs have natural origin as phenolic acids, flavonoids, tannins, stilbenescurscinoids, coumarins, lignans, and quinines. They are produced by the plants during secondary metabolism or when a plant is injured. Microorganisms also have the ability to synthesize various groups of natural antifungal compounds (7).

Challenges and new approaches of antifungal drug development. Nowadays, the development of new antifungal drugs has over growing increasing. Compared to the advances in new antibiotics that are used to treat bacterial infections, fundamental advances in fungal treatments are challenging due to the eukaryotic nature of fungi (2). One of these challenges is the toxic effect of antifungal drugs in addition to the pathogen fungus on the host. Thus, the three main classes of antifungal drugs are designed to be unique to fungi, and the biggest challenge in the development of new drugs is the complexity of knowing the clinical effects of these drugs (8). Other factors slowing the development of new drugs are lack of sufficient scientific documentation, economic challenges and rigorous monitoring of centers and government agencies (9). Consequently, new creative solutions are needed to overcome these factors.

It has been shown that new antifungal drugs can be produced by targeting ergosterol biosynthesis at the cell membrane as well as targeting the cell wall components of the pathogenic fungi (10). In fact, the mechanism of action of these drugs is to destroy or disable the enzymes or compounds necessary for the survival of the fungi that are present in their cell membrane or cell wall. One of the new classes of antifungal drugs is enfumafungin that is a natural suppressant of GS1 (3-β glucan synthesis) produced by
an endophytic Hormonema species (11).

For the development of new antifungal drugs, finding specific compounds from natural origin by high throughput screening is in progress (Fig. 2). One approach is screening of chemical compounds, in which they are used to create mutations in pathogenic fungi and the resistance to infection in a mutated fungus is evaluated using the wild type of the desired fungus. Use of assessing the lack of growth by increasing the sensitivity or specificity of the combination is another important approach of antifungal drug discovery from natural sources (12, 13).

Natural product-based antifungal drug discovery. Since the discovery of penicillin, the pharmaceutical industry has begun tremendous efforts to use natural compounds to make antibiotic drugs especially in the production of antifungal drugs. Natural compounds that inhibit cell wall synthesis are an important class of antifungal drugs (4). As shown in Fig. 3, antifungal drugs with the natural combination origin, belong to two groups: a group that has a completely natural origin directly extracted from plants or microorganisms through cultivation (5, 14, 15) and another group discovered by using metagenomics approaches.

Methods to investigate the genomic structure of natural compounds are also used to determine the best performance of drugs and the best fungi for genomic testing of drugs include: Saccharomyces cerevisiae, C. albicans and Aspergillus fumigatus (16). Despite the large number of antifungal compounds introduced in recent years, there are very limited reports on the mode of action of such antifungals. Fig. 4, shows the chemical structure of natural antifungal compounds with known mechanisms of action of which echinocandins are selected examples of currently developed antifungals used in clinics. The other compounds are candidates to develop as novel antifungal drugs.

Echinocandins. Echinocandins including caspofungin Fig. 4(1), micafungin, and anidulafungin are a new class of antifungal drugs that inhibit the glucan synthesis in the fungal cell wall of main pathogens i.e. Aspergillus and Candida via inhibiting the enzyme 1, 3-β glucan synthase. As a consequence of β-glucan destruction, resistance against osmotic forces is impaired which leads to fungal cell lysis. It has been shown that echinocandins improve host immune responses via exposing antigenic β-glucan epitopes that trigger host cellular recognition and inflammatory responses.

Berberine and the isoquinoline alkaloids. Berberine Fig. 4(2) is a quaternary ammonium salt from the protoberberine group of benzylisoquinoline alkaloids found in various plants as Berberis vulgaris, Mahonia aquifolium, Hydrastis canadensis, Xanthorrhiza simplicissima, Phellodendron amurense, Coptis chinensis, Tinospora cordifolia, Argemone mexicana and Eschscholzia californica (17). The isoquinoline alkaloids Fig. 4(3) are a description of the chemical structures totally named alkaloids (17). Berberine is usually found in the roots, rhizomes, stems, and bark. It has been used synergistically in

Fig. 2. Screening assay for introducing small molecules as novel candidates of antifungal therapy
Fig. 3. Drug discovery from natural sources: comparison of routine cultivation with metagenomics approaches
combination with fluconazole for the treatment of candidiasis due to *C. albicans* in laboratory conditions (17, 18). It has been shown that berberine accumulates in the treated cells causing the cell cycle to stop and reduces transcription in the cell's genetic cycle (2).

Antimicrobial peptides (AMPs). Another group of natural antifungals is antimicrobial peptides (AMPs) and proteins produced by a wide array of biodiversity including plants, fungi, bacteria, insects and humans. This group has a complex mechanism of action. They are potent, broad spectrum antibiotics and demonstrate potential as novel therapeutic agents. They damage the cell membrane, cause apoptosis and cell death, and also impair ion entry and exit in the fungal cell membrane. The modes of action by which antimicrobial peptides kill fungi vary and differ for different fungal species (19). Some antimicrobial peptides kill both fungi and bacteria. The cytoplasmic membrane is mainly affected as a usual target, but peptides may also interfere with DNA and protein synthesis, protein folding, and cell wall synthesis in the fungal cells (20). Likewise, they may penetrate into the fungal cells to bind intracellular molecules which are crucial to cell growth and development. Inhibition of cell wall synthesis, alteration of the cytoplasmic membrane, activation of autolysin, inhibition of DNA, RNA, and protein synthesis, and inhibition of vital enzymes are considered as different modes of action of AMPs. However, in many cases, the exact mechanism of killing of treated fungi is not known (2).

Bisabolol. Bisabolol Fig. 4(4) (α-bisabolol or levomenol) is a natural monomeric sesquiterpene alcohol with sweet aroma soluble in ethanol (21). It is the primary constituent of the essential oil of the plants *Matricaria recutita*, *Eremanthus erythropappus*, *Smyrniosis aecheri*, *Vanillosmopsis* species, *Myoporum crassifolium*, *Arnica longifolia*, *Aster hesperius* and *Chrysanthus nauseosus* (6, 22-25).

It was shown that *Vanillosmopsis* sp, *M. chamomilla* and *S. runcinata* contain 5.0 and 9.0% α-bisabolol (26, 27). It has been shown that α-bisabolol in *Candeia* wood (*Eremanthus erythropappus*), may contain 85% α-bisabolol (28). α-bisabolol has been introduced as generally regarded as safe for human health by the Food and Drug Administration. The main use of α-bisabolol in pharmacy is related to the production of anti-inflammatory, anti-spasmodic and anti-allergic drugs (28, 29).

Bisabolol is known to have anti-irritant, anti-inflammatory, and antifungal and antimicrobial properties (24, 30, 31).

α-bisabolol induces apoptosis by decreasing oxygen consumption in human and mouse glioma cells via disturbing the structure and function of the mitochondrial permeability transition pore (32). It has strong antifungal activity toward different pathogenic fungi (6, 33, 34). It has been proposed that α-bisabolol also induces apoptosis in fungi by interacting with fungal hyphal membranes.

Phenolic compounds. Many antifungal compounds have phenolic origin. They are produced by the plants during secondary metabolism or when the plant is injured. Microorganisms also have the ability to synthesize phenolics (7). Phenolic acids, flavonoids, tannins, stilbenescurcinomides, coumarins, lignans, quinines are some examples of natural compounds with phenolic origin adopted from the pharmaceutical herbs and dietary plants. Curcumin made by *Curcuma longa* has been showed to exert toxic affect against *C. albicans* as well as non-albicans species by enhancing reactive oxygen species (ROS) levels and inducing early apoptosis. It also reported to inhibit *Aspergillus parasiticus* growth and aflatoxin production by the fungus via affecting essential genes in the toxin biosynthetic pathway (35). Ajugol from *Spathodea campanulata* is a phenolic compound of the plant fruit which has been reported to have antifungal properties (36). Bisbibenzyl is a new antifungal agent that prevents the growth of *C. albicans* by inhibiting the morphogenetic shift and by inhibiting biofilm formation due to up-regulation of DPP3 gene (37). Phenolics from *Spirulina*, a cyanobacterium has shown to inhibit fungal growth by an ergosterol-suppressive effect (38). 2,5-dihydroxybenzaldehyde exhibited synergistic effects with itraconazole and amphotericin B against *C. neoformans*. Similarly, thymol Fig. 4(5) also shows synergistic effect with azoles such as fluconazole (39). Thymol can interfere with the fungal growth in two ways; a disturbance in the cell wall integrity (40) or changes in the plasma cell membrane by inhibiting ergosterol biosynthesis (41). Various phenolics such as salicylic acid, phenol and benzoic acid inhibit the growth of *F. oxysporum* by an unknown mechanism (42).

Benzothiazolinone compounds (BZT). By us-
ing a development therapeutics program (DTP) li-
rary containing multiple and classified compoun
d, a low molecular weight compound group named
benzothiazolinone compounds was created by sev-
eral advanced laboratories (3, 43). Scaffolds such
as the amino acid-derived 1, 2-benzothiazolinone
Fig. 4(6) scaffold were screened against Candida
species, Cryptococcus neoformans, Aspergillus fu-
migatus and several dermatophytic fungi (43, 44).
These studies revealed that a methyl group and a
phenyl ring are required for most fungal activity. All
of these compounds causes synergistic effects with
fluconazole and with a similar concentration of mi-
cafungin and amphotericin B exhibited a fatal effect
and had a minimum toxicity for human cells (43).

Novartis compound archive. Another method
used for the identification of new antifungal com-
ounds is using the Novartis compound archive Fig.
4(7), which is obtained from S. cerevisiae by the
method of haplo insufficiency profiling (HIP) (45).
There are other extraction methods that each of them
has different effects on a specific species of fungi (2).
All of these methods determined that for the produc-
tion of antifungal drugs by using the method of HIP,
S. cerevisiae or the profile of other pathogen fungi
can be the most practical way to make new combina-
tions of drugs (2).

Targeting ergosterol biosynthesis via inhibition
of C24-methyltransferase (24-SMT). Sterol metab-
olism is one of the main differences between human
and pathogens biochemical metabolism, so it can be
used to increase the effectiveness of antifungal and
anti-parasitic drugs. Fungi and protozoans rather
than animals have more similarities and proximity to
plants that use of these similarities to synthesis 24-alk-
ky side chains characteristic of the C28 and C29
plants that use of these similarities to synthesis 24-al-
kan than animals have more similarities and proximity to
anti-parasitic drugs. Fungi and protozoans rather
used to increase the effectiveness of antifungal and
and pathogens biochemical metabolism, so it can be
important because it can be used to enhance inhibitors
by increasing activity or a wider range of them. The
comparative analysis of this pathway in three dis-
tinct Aspergillus species showed that there are sev-
eral copied genes in this pathway. It is interesting
that, erg3 showed two, three, and four copies in A.
nidulans, A. fumigatus and A. oryzae, respectively,
while erg11 presented two copies in A. nidulans and
A. fumigatus, and three copies in A. oryzae (53). Be-
sides, if a change in the precursors of the ergosterol
biosynthesis pathway occurs, its production will be
stopped. For example, in S. cerevisiae, if a change
occurs in the stages of ergosterol production, it leads
to the production of lanosterol instead of ergosterol
(54). Study of sterol changes by GC-MS and H1NMR
methods showed that C-methylation of this reaction
by 24-C-methyltransferase (24-SMT) takes place.

General studies have shown that there is no base
substrate for inhibiting 24-SMT in humans and for

http://ijm.tums.ac.ir
Fig. 4. Chemical structure of new antifungal compounds of natural origin.
antifungal treatment; ergosterol homeostasis can be used to design antifungal drugs. The way that homeostasis is present in ergosterol is different from how drugs work, for example, the polyene antibiotic binds to ergosterol in the membrane fats and causing interference in the permeability of the cell membrane, while EBI's effect on the target enzyme and causing a breakdown of carbon flow that is needed for ergosterol and accumulation of mediators within the cell. These compounds act at the lowest levels of their concentration in the 14α-demethylation phase of the lanosterol metabolism. This step is controlled by the CYP51 enzyme that is identical in fungi and humans (55, 56). C14-demethylation most of them has a dedicated and unit site. In recent years, concerns have been raised for their resistance, which with different methods such as mutation in the main structure of the compound, it is possible to produce non-resistive drugs (57, 58).

24-SMT of the wild type of C. albicans has been extensively studied (59). The external metabolism that prepares Δ3α-sterols for giving ergosterol and also the observed properties for it in vitro, showed that in yeast 24-SMT is as a receptor and in the form of combination with C-24 alkylation sterol. This may be due to the lateral chain building and the specific physiology of ergosterol. This feature can be used as a goal for the development of chemical therapies methods (59).

To determine what specific structural features of the C3-polar group ensure sterol catalysis, a series of structurally related C3-analogs of lanosterol that differed in stereochemistry, bulk and electronic properties were examined against the fungal 24-SMT from Paracoccidioides brasiliensis (Pb) which recognize lanosterol as the natural substrate. Researchers studied the magnitude of sterol C24-methylation activity (based on the kinetic constants of Vmax/Km and product distributions determined by GC–MS (60). Resulting from changes at the C3-position in which the 3β-OH was replaced by 3α-OH, 3β-acetyl, 3-oxo, 3-OMe, 3β-F, 3β-NH2 (protonated species) or 3H group revealed that lanosterol and five substrate analogs were catalyzed and yielded identical side chain products whereas neither the 3H- or 3α-OH lanosterol derivatives were productively bound (60).

Important natural compounds that have a structural similarity between fungi and plants, are terpenoids from aromatic plants, which due their similarity to the 24-SMT enzyme present in both fungi and plants, making them suitable to produce a lot of antifungal drugs like α-bisabolol and put them into the market. Pauli (33) proposed that α-bisabolol inhibits fungal growth by affecting ergosterol biosynthesis. However, he did not introduce any obvious document for his claim. Jahanshiri et al. (6) showed that α-bisabolol strongly inhibited Aspergillus fumigatus growth (35.53-77.77%) and ergosterol synthesis (26.31-73.77%) dose-dependently and suppressed the expression of erg6 gene by 76.14% at the highest concentration of 9 mM. They clarified that α-bisabolol inhibits the activity of 24-SMT by 99% at the concentration of 5 mM. As shown in Fig. 5, these results provided evidence for the first time that α-bisabolol inhibits A. fumigatus Af239 growth via affecting microsomal Δ3α-sterol methyltransferase as a crucial enzyme in ergosterol biosynthetic pathway. This finding is surprising because shows that novel antifungal compounds may target ergosterol biosynthesis in specific action sites such as 24-SMT which is absent in mammalian cells.

CONCLUDING REMARKS AND FUTURE PROSPECTS

The development and production of antifungal drugs has progressed markedly since the 1950s with the spread of cryptococcosis disease in the world, at that time penicillin was the only known drug that used for all infections. When amphotericin was discovered and developed, fungal treatments improved significantly. At present, the growth trend of novel antifungal drugs is very slow compared to the rise in fungal infections. The reason for this is the low demand of market, low profits, and the opinion of drug manufacturing companies that the use of these new drugs is more expensive than current drugs. Therefore, it is quite logical to research about new antifungal drug compounds based on natural compounds and originated from nature at reasonable prices. This review further indicates that broad spectrum bioactive molecules by natural origin which target specific sites in the ergosterol biosynthesis pathway such as α-bisabolol are potential candidates for drug development against a wide array of fungi with least toxicity for the mammalian host. Further studies for drug discovery based on omics approaches are quite necessary to reduce the upcoming challenges in making new drugs.
Fig. 5. The mechanism of action 24-SMT: Inhibition of ergostrol biosyntetise with the enzyme 24-SMT occurs in several forms

ACKNOWLEDGEMENTS

Research reported in this publication was supported by Elite Researcher Grant Committee under award numbers [958634 and 963646] to Dr. Mehdi Razzaghi-Abyaneh from the National Institute for Medical Research Development (NIMAD), Tehran, Iran. Authors wish to thank Dr. Azar Tahghighi for kind drawing chemical structures.

REFERENCES

1. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Rai M. Medical Mycology: Current Trends and Future Prospects. 1st ed. CRC Press, Taylor & Francis Group, USA, 2015.
2. Calderone R, Sun N, Gay-Andrieu F, Groutas W, Weerawarna P, Prasad S, et al. Antifungal drug discovery: the process and outcomes. Future Microbiol 2014; 9: 791-805.
3. Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010; 9: 719-727.
4. Roemer T, Xu DB, Singh SB, Parish CA, Harris G, Wang H, et al. Confronting the challenges of natural product-based antifungal discovery. Chem Biol 2011; 18: 148-164.
5. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Rai M. Antifungal Metabolites from Plants. First Edition, Springer-Verlag, Germany, 2013.
6. Jahanshiri Z, Shams-Ghahfarokhi M, Asghari-Paskiabi F, Saghiri R, Razzaghi-Abyaneh M. α-Bisabolol inhibits Aspergillus fumigatus AF239 growth via affecting...
microsomal Δ^24-sterol methyltransferase as a crucial enzyme in ergosterol biosynthesis pathway. World J Microbiol Biotechnol 2017; 33: 55.
7. Abad MJ, Ansuategui M, Bermejo P. Active antifungal substances from natural sources. ARKIVOC 2007; 8: 116-145.
8. Rex JH, Walsh TJ, Nettleman M, Anaissie EJ, Bennett JE, Bow EJ, et al. Need for alternative trial designs and evaluation strategies for therapeutic studies of invasive mycoses. Clin Infect Dis 2001; 33: 95-106.
9. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ES-KAPE! An update from the infectious diseases society of America. Clin Infect Dis 2009; 48:1-12.
10. Roemer T, Krysan D. Antifungal Drug Development: Challenges, Unmet Clinical Needs, and New Approaches. Cold Spring Harbor Laboratory Press, 2017.
11. Peláez F, Cabello A, Platas G, Diez MT, González-delval, et al. The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Syst Appl Microbiol 2000; 23: 333-343.
12. Krysan DJ, Didone L. A high-throughput screening assay for small molecules that disrupt yeast cell integrity. J Biomol Screen 2008; 13: 657-664.
13. Tebbets B, Stewart D, Lawry S, Nett J, Nantel A, Andes D, et al. Identification and characterization of antifungal compounds using a Saccharomyces cerevisiae reporter bioassay. PLoS One 2012; 7(5):e36021.
14. Di Santo R. Natural products as antifungal agents against clinically relevant pathogens. Nat Prod Rep 2010; 27: 1084-1098.
15. Jahanshiri Z, Shams-Ghahfarokhi M, Allameh A, Razzaghi-Abyaneh M. Inhibitory effect of euugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxic biosynthetic pathway. World J Microbiol Biotechnol 2015; 31: 1071-1078.
16. Hopkin A, Groom C. The druggable genome. Nat Rev Drug Discov 2002; 1: 727-730.
17. Zhang L, Chang JJ, Zhang SL, Damu GLV, Geng R-X, Zhou C-H. Synthesis and bioactive evaluation of novel hybrids of metronidazole and berberine as new types of antimicrobial agents and their transportation behavior by human serum albumin. Bioorg Med Chem 2013; 21: 4158-4169.
18. Li D, Xu Y, Zhang D-Z, Quan H, Mylonakis E, Hu, D-D, et al. Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 2013; 57: 6016-6027.
19. Sima Sadat Seyedjavadi, Soghra Khani, Hadi Zare-Zardin, Rahelleh Halabian, Mehdi Goudarzi, Shohreh Khatami, et al. Isolation, functional characterization biological properties of MCh-AMP1, a novel antifungal peptide from Matricaria chamomilla L. Chem Biol Drug Des 2019; 93: 949-959.
20. Soghra Khani, Sima Sadat Seyedjavadi, Hadi Zare-Zardini, Hamiddeh Mahwoodzadeh Hosseini, Mehdi Goudarzi, Shohreh Khatami, et al. Isolation and functional characterization of an antifungal hydrophilic peptide, Skh-AMP1, derived from Satureja khuzistanica leaves. Phytochemistry 2019;164: 136-143.
21. Gunther R, Carle R, Fleishhauer C, Merget S. Semi-preparative liquid-chromatographic separation of all four stereoisomers of α-bisabolol on tribenzoylcellulose. Fresenius J Anal Chem 1993; 345: 787-790.
22. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Rai M. (2013) Antifungal Plants of Iran: An Insight into Ecology, Chemistry, and Molecular Biology. In: Antifungal Metabolites from Plants. Ed. M. Razzaghi-Abyaneh, M. Rai. Springer-Verlag Berlin Heidelberg, pp. 27-57.
23. Liu J, Nes WD. Steroidal Tripterpenes: Design of substrate-based Inhibitors of ergosterol and sitosterol synthesis. Molecules 2009; 14: 4690-4706.
24. Tolouee M, Alinezhad S, Saberi R, Eslamifar A, Zad SJ, Jaimand K, et al. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. Int J Food Microbiol 2010; 139: 127-133.
25. Jamalain A, Shams-Ghahfarokhi M, Jaimand K, Pashootan N, Amani A, Razzaghi-Abyaneh M. Chemical composition and antifungal activity of Matricaria recutita flower essential oil against medically important dermatophytes and soil-borne pathogens. J Mycol Med 2012; 22: 308-315.
26. Isaac O, Thiemer K. [Biochemical studies on camomile components/III. In vitro studies about the anti-peptic activity of (-)-alpha-bisabolol (author's transl)]. Arzneimittelforschung 1975; 25: 1352-1354.
27. Viljoen AM, Gono-Bwalya AB, Kamatou GPP, Baser KHC, Demirci B. The essential oil composition and chemotaxonomy of Salvia stenophylla and its allies S. repens and S. runcinata. J Essent Oil Res 2006; 18: 37-45.
28. De Souza AT, Benazzi TL, Grings MB, Cabral V, da Silva EA, Cardozo-Filho L, et al. Supercritical extraction process and phase equilibrium of Candelia (Eremanthus erythropappus) oil using supercritical carbon dioxide. J Supercrit Fluid 2008; 47: 182-187.
29. Williams AC, Barry BW. Terpenes and the lipid-proteintapartitioning theory of skin penetration enhancement. Pharm Res 1991; 8: 17-24.
30. Brehm-Stecher B, Johnson EA. Sensitization of Staphylococcus aureus and Escherichia coli by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother 2003; 47: 3357-3360.
31. Van Zyl RL, Sealthlo ST, Van Vuuren SF, Viljoen AM. ANTIFUNGAL DRUG DEVELOPMENT
The biological activities of 20 nature identical essential oil constituents. *J Essent Oil Res* 2006; 18:129-133.

32. Cavalieri E, Bergamini C, Mariogotto S, Leoni S, Perbellini L, Darra E, et al. Involvement of mitochondrial permeability transition pore opening in α-bisabolol induced apoptosis. *FEBS J* 2009; 276: 3990-4000.

33. Pauli A. α-Bisabolol from Chamomile–A specific ergosterol biosynthesis inhibitor? *Int J Aromather* 2006; 16: 21-25.

34. Romagnoli C, Baldisserotto A, Malisardi G, Vicentini CB, Mares D, Andreetti E, et al. A multi-target approach toward the development of novel candidates for antidermatophytic activity: Ultrastructural evidence on α-bisabolol-Treated *Microsporum gypseum*. *Molecules* 2015; 20: 11765-11776.

35. Jahanshiri Z, Shams-Ghahfarokhi M, Allameh A, Razzaghi-Abyaneh M. Effect of curcumin on *Aspergillus parasiticus* growth and expression of major genes involved in the early and late stages of aflatoxin biosynthesis. *Iran J Public Health* 2012; 41: 72-79.

36. Pianaro A, Pereira Pinto J, Ferreira DT, Kazue Ishikawa N, Braz-Filho R. Iridoid glucoside and antifungal phenolic compounds from *Sphenoeidea campanulata* roots. *Semin Cienc Agrar* 2007; 28:251-255.

37. Zhang L, Chang W, Sun B, Groh M, Speicher A, Lou H. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in *Candida albicans*. *PLoS One* 2011; 6(12):e28953.

38. Peeler TC, Stephenson NB, Einspahr KJ, Tompson GA. Lipid characterization of an enriched plasma membrane fraction of *Dunaliella salina* grown in media of varying salinity. *Plant Physiol* 1989; 89: 970-976.

39. Faria NCG, Kim JH, Goncalves LAP, Martins MDL, Chan KL, Campbell BC. Enhanced activity of antifungal drugs using natural phenolics against yeast strains of *Candida* and *Cryptococcus*. *Lett Appl Microbiol* 2011; 52: 506-513.

40. Kim J, Campbell BC, Mahoney N, Chan K, Molyneux R, May G. Chemosensitization prevents tolerance of *Aspergillus fumigatus* to antifungal drugs. *Biochem Biophys Res Commun* 2008; 372: 266-271.

41. Guo N, Liu J, Bi X, Meng R, Wang X, et al. Antifungal activity of thymol against clinical isolates of *Candida albicans* and its mechanism. *J Med Microbiol* 2009; 58: 1074-1079.

42. Shukla A, Dwivedi SK. Antifungal approach of phenolic compounds against *Fusarium udum* and *Fusarium oxysporum* f. sp. *ciceri*. *Afr J Agric Res* 2013; 8: 596-600.

43. Alex D, Gay-Andrieu F, May J, Thampi L, Dou D, Mooney A, et al. Amino acid derived 1,2-benzisothiazolinetone derivatives as novel small molecule inhibitors: identification of potential genetic targets. *Antimicrob Agents Chemother* 2012; 56: 4630-4639.

44. Dou D, Alex D, Du B, Tiew KC, Aravapallis S, Mandadapu SR, et al. Antifungal activity of a series of 1,2-benzisothiazol-3(2H)-one derivatives. *Bioorg Med Chem* 2011; 19: 5782-5787.

45. Hoepfner D, Karkaree S, Helliwell S, Pfeifer M, Trunzer M, De Bonnechose S, et al. An integrated approach for identification and target validation of antifungal compounds active against Erg11p. *Antimicrob Agents Chemother* 2012; 56: 4233-4240.

46. Barrett-Bee K, Dixon G. Ergosterol biosynthesis inhibition: a target for antifungal agents. *Acta Biochim Pol* 1995; 42:465-479.

47. Leaver DJ. Synthesis and biological activity of sterol 14α-demethylase and sterol C24-methyltransferase inhibitors. *Molecules* 2018; 23: E1753.

48. Nes WD. Enzyme mechanisms for sterol C-methylations. *Phytochemistry* 2003; 64: 75-95.

49. Lorente SO, Rodrigues JCF, Jimenez-Jimenez C, Joyce-Menekse M, Rodrigues C, Croft SL, et al. Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. *Antimicrob Agents Chemother* 2004; 48:2937-2950.

50. Nes WD, Zhou W, Ganapathy K, Liu J, Vatsayyan R, Chamala S, et al. Sterol 24-C-methyltransferase: An enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in *Cryptococcus neoformans*. *Arch Biochem Biophys* 2009; 481: 210-218.

51. Ragsdale NN, Sisler HD. Inhibition of ergosterol synthesis in Ustilago maydis by the fungicide triarimol. *Biochem Biophys Res Commun* 1972; 46: 2048-2053.

52. Van den Bossche H, Willemsens G, Cools W, Lauwers WFJ, Jeune Le, Chem L. Biochemical effects of micconazole on fungi. II. Inhibition of ergosterol biosynthesis in *Candida albicans*. *Chem Biol Interact* 1978; 21: 59-78.

53. Da Silva Ferreira ME, Colombo AL, Paulsen I, Ren Q, Wortman J, Huang J, et al. The ergosterol biosynthesis pathway, transporter genes, andazole resistance in *Aspergillus fumigatus*. *Med Mycol* 2005; 43 Suppl 1:S313-319.

54. Ruan B, Lai PS, Yeh CW, Wilson WK, Pang J, Xu R, et al. Alternative pathways of sterol synthesis in yeast. Use of C27 sterol tracers to study aberrant double-bond migrations and evaluate their relative importance. *Steroids* 2002; 67: 1109-1119.

55. Debeljak NA, Fink M, Rozman D. Many facets of mammalian lanosterol 14α-demethylase from the evolutionarily conserved cytochrome P450 family CYP51. *Arch Biochem Biophys* 2003; 409: 159-171.

56. Lepesheva GI, Waterman MR. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. *Biochim Biophys Acta* 2007; 1770: 467-477.

57. Favre B, Didmon M, Ryder NS. Multiple amino acid
substitutions in lanosterol 14alpha-demethylase contribute to azole resistance in Candida albicans. Microbiology 1999; 145: 2715-2725.

58. Lamb DC, Kelly DE, White TC, Kelly SL. The R467K amino acid substitution in Candida albicans sterol 14α-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother 2000; 44: 63-67.

59. Nes WD, McCourt BS, Zhou W, Ma J, Marshall JA, Peek L, et al. Overexpression, purification, and stereochemical studies of the recombinant (S)-adenosyl-L-methionine: Δ^{24(25)}- to Δ^{24(28)}-sterol methyl transferase enzyme from Saccharomyces cerevisiae. Arch Biochem Biophys 1998; 353: 297-311.

60. Alicia L, Jialin L, Gamal A, Emily K, Kalgi S, Chizaram A, et al. Sterol C24-methyltransferase: Physio- and stereo-chemical features of the sterol C3 group required for catalytic competence. Arch Biochem Biophys 2012; 521: 43-50.