Conceptual challenges and computational progress in X-ray simulation

Maria Grazia PIA1*, Mauro AUGELLI2, Marcia BEGALLI3, Chan-Hyeung KIM4, Lina QUINTIERI5, Paolo SARACCO1, Hee SEO4, Manju SUDHAKAR1, Georg WEIDENSPOINTNER6, Andreas ZOGLAUER7

1 INFN Sezione di Genova, 16146 Genova, Italy
2 CNES, 31401 Toulouse, France
3 State University Rio de Janeiro, 20550-013 Rio de Janeiro, Brazil
4 Hanyang University, 133-791 Seoul, Korea
5 INFN Laboratori Nazionali di Frascati, 00044 Frascati, Italy
6 MPE and MPI Halbleiterlabor, 81739 München, Germany
7 University of California at Berkeley, 94720 Berkeley, CA, USA

Recent developments and validation tests related to the simulation of X-ray fluorescence and PIXE with Geant4 are reviewed. They concern new models for PIXE, which has enabled the first Geant4-based simulation of PIXE in a concrete experimental application, and the experimental validation of the content of the EADL data library relevant to the simulation of X-ray fluorescence. Achievements and open issues in this domain are discussed.

KEYWORDS: Monte Carlo, Geant4, PIXE, X-rays, fluorescence, electron binding energies, EADL

I. Introduction

X-ray fluorescence (XRF) and PIXE (Particle Induced X-ray Emission) are widely used experimental techniques for non-destructive material analysis; they are applied in diverse experimental domains like planetary science, the cultural heritage, radiation oncology and nuclear forensics. Their effects also play an important role in other experimental domains, from microdosimetry to shielding optimization.

Significant effort has been invested in the recent years to assess the evaluated data used by Monte Carlo codes for X-ray fluorescence simulation, and to design and implement sound tools for PIXE simulation in the context of Geant41)2).

This paper provides a review of recent developments and validation results related to the simulation of X-ray fluorescence and PIXE. PIXE developments concern the simulation of this physical process with the Geant4 toolkit; the results regarding X-ray fluorescence are associated with the experimental validation of atomic physics tabulations in the Evaluated Data Library3) (EADL), which is used by various Monte Carlo systems.

II. Progress with PIXE simulation

Despite the simplicity of its nature as a physical effect, PIXE represents a conceptual challenge for general-purpose Monte Carlo codes, since it involves an intrinsically discrete effect (the atomic relaxation) intertwined with a process (ionisation) affected by infrared divergence. The largely incomplete knowledge of ionization cross sections, limited to the innermost atomic shells both as theoretical calculations and experimental measurements, further complicates the achievement of a conceptually consistent description of this process.

Early developments of proton and α particle impact ionization cross sections in Geant4 are reviewed in a recent paper4), which highlights some intrinsic inconsistencies present in the first development cycle and several flaws of models released in Geant4 9.24). The same article also presents new, extensive developments for PIXE simulation, their validation with respect to experimental data and the first Geant4-based application involving PIXE in a concrete experimental use case: the optimization of the graded shielding of the X-ray detectors of the eROSITA6) mission.

The recent PIXE developments provide a variety of proton and α particle cross sections for the ionization of K, L and M shells: theoretical calculations based on the ECPSSR7) model and its variants (with Hartree-Slater corrections8), with the “united atom” approximation9) and specialized for high energies10)), theoretical calculations based on plane wave Born approximation and empirical models based on fits to experimental data collected by Paul and Sacher11), Paul and Bolik12), Kahoul et al.13), Miyagawa et al.14), Orlic et al.15) and Sow et al.16). An example of the available cross section options is shown in Figure 1, which plots the cross section for the ionization of carbon K shell by proton impact according to the various implemented modeling options.

*Corresponding Author, E-mail:MariaGrazia.Pia@ge.infn.it
The validation process involved two stages: first, goodness-of-fit analysis based on the \(\chi^2 \) test to evaluate the hypothesis of compatibility with experimental data, then categorical analysis exploiting contingency tables to determine whether the various modelling options differ significantly in accuracy. Contingency tables were analyzed with the \(\chi^2 \) test and with Fisher’s exact test.

Regarding the K shell, the statistical analysis identified the ECPSSR model with Hartree-Slater correction as the most accurate in the energy range up to approximately 10 MeV; at higher energies the ECPSSR model in its plain formulation or the empirical Paul and Sacher one (within its range of applicability) exhibit the best performance. The scarcity of high energy data prevents a definitive appraisal of the ECPSSR specialization for high energies.

Regarding the L shell, the ECPSSR model with “united atom” variant approximation exhibits the best accuracy among the various implemented models; its compatibility with experimental data libraries, which tabulate the atomic parameters on which it depends: electron binding energies and radiative transition probabilities.

The validation process involved two stages: first, goodness-of-fit analysis based on the \(\chi^2 \) test to evaluate the hypothesis of compatibility with experimental data, then categorical analysis exploiting contingency tables to determine whether the various modelling options differ significantly in accuracy. Contingency tables were analyzed with the \(\chi^2 \) test and with Fisher’s exact test.

![Graph showing cross section for the ionization of carbon K shell by proton impact according to the various implemented modeling options, and comparison with experimental data.](image)

The simulation of X-ray fluorescence is largely based on data libraries, which tabulate the atomic parameters on which it depends: electron binding energies and radiative transition probabilities.

The accuracy of EADL parameters associated with X-ray fluorescence has been investigated to validate the results of Monte Carlo applications depending on its content. It is worthwhile to emphasize that also the accuracy of PIXE simulation is affected by the accuracy of the parameters that govern atomic relaxation.

III. X-ray fluorescence

The simulation of X-ray fluorescence is largely based on data libraries, which tabulate the atomic parameters on which it depends: electron binding energies and radiative transition probabilities.

Geant4 atomic relaxation\(^{(21)}\) simulation is based on EADL (Evaluated Data Library); this data library is also used by other Monte Carlo codes.

The accuracy of EADL parameters associated with X-ray fluorescence has been investigated to validate the results of Monte Carlo applications depending on its content. It is worthwhile to emphasize that also the accuracy of PIXE simulation is affected by the accuracy of the parameters that govern atomic relaxation.

1. X-ray energies

The energy of the X-rays produced by the process of atomic relaxation is determined by the electron binding energies of the atom, where a vacancy in the shell occupancy has been produced. In the Geant4 implementation of atomic relaxation electron binding energies are derived from the Evaluated Atomic Data Library (EADL).

Two studies have addressed the validation of this simulation domain. The first one\(^{(22)}\) directly evaluated the accuracy of X-ray energies produced by Geant4 with respect to the collection of experimental data of DesLattes et al.\(^{(23)}\), which concerns K and L shell transitions. The compatibility between simulated values and experimental measurements was assessed by means of the Kolmogorov-Smirnov test; the p-values resulting from the test ranged from 0.997 to 1, thus demonstrating the statistical equivalence of simulated and experimental data. For what concerns individual transitions, the accuracy of the simulation is comprised within 1-2% in most cases.

A more recent, still unpublished, study has evaluated the accuracy of several tabulations\(^{(24,25,26,27)}\) of electron binding energies with respect to reproducing the experimental X-ray energy compilations by DesLattes et al. and other high precision experimental measurements of atomic binding energies. This survey involved the electron binding energies used by EGS5\(^{(28)}\), EGSnrc\(^{(29)}\), GEANT 3\(^{(30)}\), Geant4, MCNP/MCNPX\(^{(31,32)}\) and Penelope\(^{(33)}\). The analysis was based on rigorous statistical methods in this second part of the assessment as well.

The results of this study show that, among the evaluated binding energies compilations, EADL exhibits relatively worse accuracy than other tabulations analyzed in this study. The set of binding energies implemented in the Geant4 G4AtomicShells class also appears less accurate than other...
tabulations. A sample of results is shown in Figure 2, which plots the relative difference between KL₂ X-ray energies deriving from binding energy tabulations and the experimental values in DesLattes et al. Further tests are in progress; the full set of results will be included in a dedicated journal publication.

The accuracy of Geant4 simulation of X-ray fluorescence energies can be easily improved by supplying more accurate data libraries, since this simulation is data-driven. The software design would allow this modification in a transparent way. Nevertheless, as it is discussed in another paper of these proceedings, care should be exercised in replacing the EADL binding energies used by Geant4 with alternative compilations, since such a modification could affect the consistency of the simulation. A sounder option would be the revision and update of the so-called “Livermore library”, which includes EADL, to account for the state-of-the-art in the physics domain it covers.

2. Radiative transition probabilities

The radiative transition probabilities reported in EADL were calculated according to Hartree-Slater methods. Values based on Hartree-Fock calculations are also documented in the literature. The Hartree-Fock approach is generally considered more accurate from a theoretical perspective; nevertheless, a quantitative estimate of the accuracy of EADL radiative transition probabilities with respect to experimental data, and relative to Hartree-Fock calculations, had not been documented in the literature prior to the study mentioned below.

The results of the two calculation methods were compared to a collection of experimental data concerning K and L shell transition probabilities; a plot of KN₂,₃ transition probabilities is shown in Figure 3.

The comparison was performed in two stages, exploiting statistical analysis methods: first through a series of \(\chi^2\) tests concerning individual transitions, then comparing the outcome of the \(\chi^2\) tests by means of contingency tables to determine whether the two calculation methods are significantly different regarding their compatibility with experimental data.

The results of the statistical analysis show that transition probabilities derived from Hartree-Fock calculations are globally more accurate with respect to experimental measurements.

In addition, the EADL validation process identified a few cases where the values tabulated in the data library are not consistent with its nominal source (Scofield’s Hartree-Slater calculations). The tabulated values in these cases differ from experimental data by orders of magnitude. These inconsistencies hint to some accidental errors in assembling the library.

The full set of results is documented in a dedicated paper. Similarly to what is discussed in the previous section, an update of EADL to better represent the state-of-the-art in radiation transition probabilities calculation would be desirable.

III. Conclusion

General purpose Monte Carlo codes have recently risen to the role of major players in the domain of X-ray fluorescence and PIXE, which had been previously dominated by specialized software systems.

The brief review of recent activities in this field summarized in the previous sections has highlighted progress in the development of new simulation tools and the assessment of the accuracy of atomic parameter compilations relevant to this domain.

The results of the validation process suggest that a revision of EADL electron binding energies and atomic transition probabilities would be appropriate to improve the accuracy of the data. Alternative sources of data, which would result in more accurate X-ray fluorescence simulation, have been identified and experimentally validated.
The authors express their gratitude to CERN for support to the research described in this paper. The authors thank Sergio Bertolucci, Andreas Pfeiffer and Alessandro Zucchiatti for valuable discussions. CERN Library’s support has been essential to this study; the authors are especially grateful to Tullio Basaglia.

Acknowledgment

The authors express their gratitude to CERN for support to the research described in this paper. The authors thank Sergio Bertolucci, Andreas Pfeiffer and Alessandro Zucchiatti for valuable discussions. CERN Library’s support has been essential to this study; the authors are especially grateful to Tullio Basaglia.

References

1) S. Agostinelli et al., “Geant4 - a simulation toolkit“, Nucl. Instrum. Meth. A, 506 [3], 250-303 (2003).
2) J. Allison et al., “Geant4 Developments and Applications“, IEEE Trans.Nucl. Sci., 53 [1], 270-278 (2006).
3) S. T. Perkins et al., Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1-100, UCRL-50400 30 (1991).
4) M. G. Pia et al., “PIXE simulation with Geant4“, IEEE Trans. Nucl. Sci., 56 [6] 3614-3649 (2009).
5) H. Abdelhwahed, S. Incerti, A. Mantero, “New Geant4 Cross Section Models for PIXE Simulation“, Nucl. Instrum. Meth. B, 267 [1], 37-44 (2009).
6) P. Predelh et al., “eROSITA“, Proc. of the SPIE, 6686, 668617 (2007).
7) W. Brandt and G. Lapicki, “Energy-loss effect in inner-shell Coulomb ionization by heavy charged particles“, Phys. Rev. A, 23, 1717 (1981).
8) G. Lapicki, “The status of theoretical K-shell ionization cross sections by protons“, X-Ray Spectrom., 34, 269-278 (2005).
9) S. J. Cipolla, “The united atom approximation option in the ISICS program to calculate K-, L-, and M-shell cross sections from PWBA and ECPSSR theory“, Nucl. Instrum. Meth. B, 261, 142-144 (2007).
10) G. Lapicki, “Scaling of analytical cross sections for K-shell ionization by nonrelativistic protons to cross sections by protons at relativistic velocities“, J. Phys. B, 41, 115201 (2008).
11) H. Paul and J. Sacher, “Fitted empirical reference cross sections for K-shell ionization by protons“, At. Data Nucl. Data Tab., 42, 105-156 (1989).
12) H. Paul and O. Bolik, “Fitted Empirical Reference Cross Sections for K-Shell Ionization by Alpha Particles“, At. Data Nucl. Data Tab., 54, 75-131 (1993).
13) A. Kahoul, M. Nekkab, B. Deghfel, “Empirical K-shell ionization cross-sections of elements from Be to U by proton impact“, Nucl. Instrum. Meth. B, 266, 4969-4975 (2008).
14) Y. Miyagawa, S. Nakamura, S. Miyagawa, “Analytical Formulas for Ionization Cross Sections and Coster-Kronig Corrected Fluorescence Yields of the L_2 , L_3 , and M_2 Subshells“, Nucl. Instrum. Meth. B, 30, 115-122 (1988).
15) I. Orlic, C. H. Sow, S. M. Tang, “Semiempirical Formulas for Calculation of L Subshell Ionization Cross Sections“, Int. J. PIXE, 4 [4], 217-230 (1994).
16) C. H. Sow, I. Orlic, K. K. Lob, S. M. Tang, “New parameters for the calculation of L subshell ionization cross sections“, Nucl. Instrum. Meth. B, 75, 58-62 (1993).
17) G. A. P. Cirrone et al., “A Goodness-of-Fit Statistical Toolkit“, IEEE Trans. Nucl. Sci., 51 [5], 2056-2063 (2004).
18) B. Mascalino, A. Pfeiffer, M. G. Pia, A. Ribon, and P. Viarengo, “New developments of the Goodness-of-Fit Statistical Toolkit“, IEEE Trans. Nucl. Sci., 53 [6], 3834-3841 (2006).
19) I. Orlic, J. Sow, S. M. Tang, “Experimental L-shell X-ray production and ionization cross sections for proton impact“, At. Data Nucl. Data Tab., 56, 159-210 (1994).
20) R. S. Sokhi and D. Crompton, “Experimental L-Shell X-Ray Production and Ionization Cross Sections for Proton Impact“, At. Data Nucl. Data Tab., 30, 49-124 (1984).
21) S. Guatelli et al., “Geant4 Atomic Relaxation“, IEEE Trans. Nucl. Sci., 54 [3], 585-593 (2007).
22) S. Guatelli et al., “Validation of Geant4 Atomic Relaxation against the NIST Physical Reference Data“, IEEE Trans. Nucl. Sci., 54, [3], 594-603 (2007).
23) R. D. Deslattes et al., “X-ray transition energies: new approach to a comprehensive evaluation“, Rev. Mod. Phys., 75, 35-99 (2003).
24) T. A. Carlson, Photoelectron and Auger spectroscopy, Plenum, New York, 1975.
25) W. Lotz, “Electron binding energies in free atoms“, J. Opt. Soc. Am., 60, 206-210 (1970).
26) R. B. Firestone et al., Table of Isotopes, 8th ed., John Wiley & Sons, New York (1996).
27) A. C. Thompson et al., X-ray Data Booklet, Lawrence Berkeley National Laboratory, Berkeley, CA, USA (2009).
28) H. Hirayama, et al., “The EGS5 code system“, Report SLAC-R-730, Stanford Linear Accelerator Center, Stanford, CA, USA (2006).
29) I. Kawrakow and D. W. O. Rogers, “The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport“, NRCC Report PIRS-701 (2006).
30) “GEANT Detector Description and Simulation Tool“, CERN Program Library Long Writeup W5013 (1995).
31) X-5 Monte Carlo Team, “MCNP - A General Monte Carlo N-Particle Transport Code, Version 5“, Los Alamos National Laboratory Report LA-UR-03-1987 (2003) Revised (2005).
32) J. S. Hendricks et al., “MCNPX, Version 26c“, Los Alamos National Laboratory Report LA-UR-06-7991 (2006).
33) J. Baro et al., “Penelope, an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter“, Nucl. Instrum. Meth. B, 100 [1] 31-46 (1995).
34) J. H. Scofield, “Radiative Decay Rates of Vacancies in the K and L Shells“, Phys. Rev., 179 [1], 9-16 (1969).
35) J. H. Scofield, “Relativistic Hartree-Slater Values for K and L X-ray Emission Rates“, At. Data Nucl. Data Tables, 14, 121-137 (1974).
36) J. H. Scofield, “Exchange corrections of K X-ray emission rates“, Phys. Rev. A, 9 [2], 1041-1049, (1974).
37) J. H. Scofield, “Hartree-Fock values of L X-ray emission rates“, Phys. Rev. A, 10 [5], 1507-1510 (1974).
38) M. G. Pia, P. Saracco, M. Sudhakar, “Validation of radiative transition probability calculations“, IEEE Trans. Nucl. Sci., 56, [6], 3650-3661 (2009).
39) S. I. Salem, S. I. Panossian, R. A. Krause, “Experimental K and L Relative X-ray Emission Rates“, Atom. Data Nucl. Data Tables, 14, 91-109 (1974).
40) A. Lechner, A. Mantero, M. G. Pia, M. Sudhakar, “Validation of Geant4 X-Ray Fluorescence Transitions - Validation of Geant4 electromagnetic models against calorimetry measurements in the energy range up to 1 MeV“, IEEE Nucl. Sci. Symp. Conf. Rec., 2869-2876 (2008).