Coefficient Bounds Problem For Functions associated with Universally Prestarlike Functions

Joseph Lourthu Mary¹,a, and T N Shanmugam ²,b

¹ Department of Mathematics, Yuvabharathi International School, Jurong West, Singapore
² Department of Mathematics, Anna University, Chennai, Tamilnadu, India

E-mail: a lourthu_mary@yahoo.com
b drtns2008@gmail.com

Abstract. Universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda = \mathbb{C} \setminus [1, \infty)$ have been introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in \mathbb{C}). In this paper, we obtain coefficient bounds for certain class of analytic functions associated with universally prestarlike function.

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω. For domain Ω containing the origin $H_0(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with $f(0) = 1$. We also use the notation $H_1(\Omega) = \{zf : f \in H_0(\Omega)\}$. In the special case when Ω is the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, we use the abbreviation H, H_0 and H_1 respectively for $H(\Omega), H_0(\Omega)$ and $H_1(\Omega)$. A function $f \in H_1$ is called starlike of order α with $0 \leq \alpha < 1$ satisfying the inequality

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (z \in \Delta)$$

and the set of all such functions is denoted by S_α. The convolution or Hadamard Product of two functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=0}^{\infty} b_n z^n$$

is defined as

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

A function $f \in H_1$ is called prestarlike of order α if

$$\frac{z}{(1-z)^{2-2\alpha}} \ast f(z) \in S_\alpha$$

The set of all such functions is denoted by R_α. The notion of prestarlike functions has been extended from the unit disk to other disk and half planes containing the origin by Ruscheweyh.
and Salinas[1]. Let Ω be one such disk or half plane. Then there are two unique parameters \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\rho \in [0,1] \) such that
\[
\Omega_{\gamma,\rho} = \{ w_{\gamma,\rho}(z) : z \in \Delta \}
\]
(3)
where, \(w_{\gamma,\rho}(z) = \frac{\gamma z}{1 - \rho z} \). Note that \(\frac{1}{z} \in \Omega_{\gamma,\rho} \) iff \(|\gamma + \rho| \leq 1 \).

Definition 1:[1] Let \(\alpha \leq 1 \), and \(\Omega = \Omega_{\gamma,\rho} \) for some admissible pair \((\gamma, \rho)\). A function \(f \in H_1(\Omega_{\gamma,\rho}) \) is called prestarlike of order \(\alpha \) in \(\Omega_{\gamma,\rho} \) if
\[
f_{\gamma,\rho}(z) = \frac{1}{\gamma} f(w_{\gamma,\rho}(z)) \in \mathcal{R}_\alpha.
\]
(4)
The set of all such functions \(f \) is denoted by \(\mathcal{R}_\alpha(\Omega) \).

Let \(\Lambda \) be the slit domain \(\mathbb{C} \setminus [1, \infty) \) (the slit being along the positive real axis).

Definition 2:[1] Let \(\alpha \leq 1 \). A function \(f \in H_1(\Lambda) \) is called universally prestarlike of order \(\alpha \) if and only if \(f \) is prestarlike of order \(\alpha \) in all sets \(\Omega_{\gamma,\rho} \) with \(|\gamma + \rho| \leq 1 \). The set of all such functions is denoted by \(\mathcal{R}^u_\alpha \).

For a univalent function \(f(z) \) of the form
\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\]
(5)
the \(k^{th} \) root transform is defined as
\[
F(z) = [f(z^k)]^{\frac{1}{k}} := z + \sum_{n=1}^{\infty} d_{kn+1} z^{kn+1}
\]
(6)
k \(\in \mathbb{N} = \{1, 2, \ldots \} \).

Definition 3:[2],[3],[4],[5] Let \(\phi(z) \) be an analytic function with positive real part on \(\Delta \), which satisfies \(\phi(0) = 1 \), \(\phi'(0) > 0 \) and which maps the unit disc \(\Delta \) onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class \(\mathcal{R}^u_\alpha(\phi) \) consists of all analytic function \(f \in H_1(\Lambda) \) satisfying
\[
\frac{D^{3-2\alpha} f(z)}{D^{2-2\alpha} f(z)} < \phi(z).
\]
(7)
where \(\prec \) denotes the subordination, where \((D^\beta f)(z) = \frac{z}{(1-z)^\beta} * f \), for \(\beta \geq 0 \). In particular, for \(\beta = n \in \mathbb{N} \), we have \(D^{n+1} f = \frac{z}{(1-z)^n} (z^n f)^{(n)} \).

Note: Let \(F(z) = \sum_{k=0}^{\infty} a_k z^k = \int_0^1 \frac{d\mu(t)}{1-tz} \) where \(a_k = \int_0^1 t^k d\mu(t) \), \(\mu(t) \) is a probability measure on \([0,1] \). Let \(T \) denote the set of all such functions \(F \). They are analytic in the slit domain \(\Lambda \).

To prove our result we need the following theorems.
Theorem 1:[2],[3],[4],[5] Let $0 \leq \alpha \leq 1$ and $f \in H_1(\Lambda)$. Then $f \in R_\alpha^u$ if and only if
\[
\frac{D^{3-2\alpha} f}{D^{2-2\alpha} f} \in T.
\] (8)

This admits an explicit representation of the function in R_α^u. If $f \in H_0$ has all its taylor coefficients at the origin different from zero we write $f^{(-1)}$ for the (possibly formal but) unique solution of $f \ast f^{(-1)} = \frac{1}{1-z}$.

Theorem 2:[2] Let f be an universally prestarlike function of order $\alpha \leq 1$, then the function $f(z)$ has a representation of the form
\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]
for $n = 2, 3, \ldots$ where,
\[
a_n = \left\{ \frac{n-1}{C'(\alpha, n) - C(\alpha, n)} \right\}
\]
\[
C(\alpha, n) = \prod_{k=2}^{n} (k - 2\alpha) \frac{1}{(n-1)!}, \quad C(\alpha, k) = \prod_{m=2}^{k} (m - 2\alpha) \frac{1}{(k-1)!}, \quad C(\alpha, 1)a_1 = 1
\]
\[
C'(\alpha, n) = \prod_{k=2}^{n} (k + 1 - 2\alpha) \frac{1}{(n-1)!}, \quad b_n = \int_0^1 t^n d\mu(t) \text{ and } \mu(t) \text{ a probability measure on } [0,1].
\]

Let Ω_1 be the class of analytic functions ω, normalized by $\omega_1(0) = 0$, satisfying the condition $|\omega_1(z)| < 1$. The following two lemmas regarding the coefficients of functions in Ω_1 are needed to prove our main results.

The following lemma is a reformulation of the corresponding result for functions with positive real part due to Ma and Minda[6].

Lemma 1:[7] If $\omega \in \Omega_1$ and
\[
\omega(z) = \omega_1 z + \omega_2 z^2 + \ldots, (z \in \Delta)
\] (10)
then,
\[
|\omega_2 - t\omega_1^2| \leq \left\{ \begin{array}{ll}
-t, & t \leq -1 \\
1, & -1 \leq t \leq 1 \\
t, & t \geq 1.
\end{array} \right.
\]

For $t < -1$, or $t > 1$, the equality holds if and only if $\omega(z) = z$ or one of its rotations. For $-1 < t < 1$, then the equality holds if and only if $\omega(z) = z^2$ or one of its rotations. Equality holds for $t = -1$ if and only if $\omega(z) = \frac{\lambda + z}{1 + \lambda z} (0 \leq \lambda \leq 1)$ or one of its rotations, while for $t = 1$, equality holds if and only if $\omega(z) = -z \frac{\lambda + z}{1 + \lambda z} (0 \leq \lambda \leq 1)$ or one of its rotations.
Lemma 2:[8] If $\omega \in \Omega_1$, then $|\omega^2 - t\omega^2| \leq \max\{1; |t|\}$, for any complex number t. The result is sharp for the function $\omega(z) = z^2$ or z.

Lemma 3:[6] If $P_1(z) = 1 + c_1 z + c_2 z^2 + \ldots$ is an analytic function with positive real part in Δ, then
\[
|c_2 - vc_1^2| \leq \begin{cases}
-4v + 2, & v \leq 0 \\
2, & 0 \leq v \leq 1 \\
4v + 2, & v \geq 1
\end{cases}
\]

when $v < 0$, or $v > 1$, the equality holds if and only if $P_1(z)$ is $\frac{1+z}{1-z}$ or one of its rotations. when $0 < v < 1$, then the equality holds if and only if $P_1(z)$ is $\frac{1+z^2}{1-z^2}$ or one of its rotations. If $v = 0$, the equality holds if and only if $P_1(z) = \left(\frac{1}{2} + \frac{\lambda}{2}\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{\lambda}{2}\right)\frac{1-z}{1+z}$ for any complex number t. The reciprocal of one of the function for which the equality holds in the case of $v = 0$. Also the above upper bound can be improved as follows when $0 < v < 1$
\[
|c_2 - vc_1^2| + v|c_1|^2 \leq 2, \quad \left(0 < v \leq \frac{1}{2}\right).
\]
\[
|c_2 - vc_1^2| + (1-v)|c_1|^2 \leq 2, \quad \left(\frac{1}{2} < v \leq 1\right).
\]

We now estimate the sharp bound for the coefficient functional $|d_{2k+1} - \mu d_{2k+1}^2|$ corresponding to the k^{th} root transformation of universally prestarlike functions of order α with respect to ϕ.

2. Coefficient bounds for the k^{th} root transformation

Theorem 3: Let $\phi(z) = 1 + \frac{B_1}{2} z + \frac{B_2}{2} z^2 + \ldots$, and
\[
\sigma_1 = \frac{-2k}{(3-2\alpha)B_1} + \frac{2kB_2}{(3-2\alpha)B_1^2} + \frac{k(2-2\alpha)}{(3-2\alpha)} - \frac{k}{2} + \frac{1}{2}
\]
\[
\sigma_2 = \frac{2k}{(3-2\alpha)B_1} + \frac{2kB_2}{(3-2\alpha)B_1^2} + \frac{k(2-2\alpha)}{(3-2\alpha)} - \frac{k}{2} + \frac{1}{2}
\]
\[
t = -\frac{B_2}{B_1} - \frac{(2-2\alpha)B_1}{2} + \frac{(3-2\alpha)B_1}{2} \left[\frac{1}{2} - \frac{1}{2k} + \frac{\mu}{k}\right]
\]
If $f \in \mathcal{R}_{\alpha}^n(\phi)$ and F is the k^{th} root transformation of f given by (5), then,
\[
|d_{2k+1} - \mu d_{2k+1}^2| \leq \begin{cases}
-\frac{B_1}{(3-2\alpha)2k} t, & \mu \leq \sigma_1 \\
\frac{B_1}{(3-2\alpha)2k}, & \sigma_1 \leq \mu \leq \sigma_2 \\
\frac{B_1}{(3-2\alpha)2k} t, & \mu \geq \sigma_2,
\end{cases}
\]
and where μ complex
Now, by using (15) in (6) and equating the coefficients of z and d, we get,

$$d_{k+1} = \frac{a_2}{k}; \quad d_{2k+1} = \frac{a_3}{k} - \frac{(k-1)a_2^2}{2k^2}$$

Next, for a function f, a computation shows that

$$\frac{D^{3-2\alpha}f(z)}{D^{2-2\alpha}f(z)} = \phi(\omega(z)).$$

(11)

We know that, $D^{3-2\alpha}f(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$ where $b_n = \int_0^1 t^n d\mu(t)$ and $\mu(t)$ is a probability measure on $[0, 1]$. and

$$\phi(\omega(z)) = 1 + \frac{B_1}{2} \omega_1 z + (\frac{B_1}{2} \omega_2 + B_2 \omega_3^2) z^2 + \ldots$$

Therefore,

$$1 + b_1 z + b_2 z^2 + \ldots = 1 + \frac{B_1}{2} \omega_1 z + (\frac{B_1}{2} \omega_2 + B_2 \omega_3^2) z^2 + \ldots$$

Now, equating the coefficients of z and z^2 we get

$$b_1 = \frac{B_1}{2} \omega_1, \quad b_2 = \frac{B_1}{2} \omega_2 + \frac{B_2}{2} \omega_3^2$$

(12)

Now, $D^{3-2\alpha}f(z) = 1 + [C'(\alpha, 2)a_2 - C(\alpha, 2)a_2] z +$

$$[C'(\alpha, 3)a_3 - C(\alpha, 2)C'(\alpha, 2)^2 - C(\alpha, 3) + (C(\alpha, 2)a_2]^2] z^2 + \ldots$$

$$= 1 + \frac{B_1}{2} z + b_2 z^2 + \ldots$$

where, $C(\alpha, n) = \prod_{k=2}^{n} (k-2\alpha)/(n-1)!$, $C'(\alpha, n) = \prod_{k=2}^{n} (k+1-2\alpha)/(n-1)!$, $b_n = \int_0^1 t^n d\mu(t)$ for $n = 2, 3, \ldots$ and $\mu(t)$ a probability measure on $[0, 1]$.

Equating the coefficients of z and z^2 respectively and simplifying we get,

$$a_2 = b_1; \quad a_3 = \frac{b_2 + (2 - 2\alpha)b_1^2}{(3 - 2\alpha)}$$

(13)

Now, using (12) in (13) we get,

$$a_2 = \frac{B_1}{2} \omega_1; \quad a_3 = \frac{2B_1 \omega_2 + (2B_2 + (2 - 2\alpha)B_1^2) \omega_3^2}{4(3 - 2\alpha)}$$

(14)

Now, for a function f, a computation shows that

$$\frac{1}{f(z^k)^k} = z + \frac{a_2}{k} z^{k+1} + \left(\frac{a_3}{k} - \frac{(k-1)a_2^2}{2k^2}\right) z^{2k+1} + \ldots$$

(15)

Now, by using (15) in (6) and equating the coefficients of z and z^2 we get,

$$d_{k+1} = \frac{a_2}{k}; \quad d_{2k+1} = \frac{a_3}{k} - \frac{(k-1)a_2^2}{2k^2}$$

(16)
Now, using (14) in (16) we get,
\[d_{k+1} = \frac{B_1 \omega_1}{2k} \]
and
\[d_{2k+1} = \frac{1}{k} \left[\frac{2B_1 \omega_2 + (2B_2 + (2 - 2\alpha)B_1^2) \omega_1^2}{4(3 - 2\alpha)} - \frac{B_1^2 \omega_1^2}{4} + \frac{B_1^2 \omega_1^2}{4k} \right] \]

Now,
\[d_{2k+1} - \mu d_{k+1} = \frac{1}{k} \left[\frac{2B_1 \omega_2 + (2B_2 + (2 - 2\alpha)B_1^2) \omega_1^2}{4(3 - 2\alpha)} - \frac{B_1^2 \omega_1^2}{4} + \frac{B_1^2 \omega_1^2}{4k} \right] \]
\[- \mu B_1^2 \omega_1^2 \frac{1}{4k^2} \]
and hence
\[d_{2k+1} - \mu d_{k+1} = \frac{B_1}{(3 - 2\alpha)2k} [\omega_2 - \omega_1^2 t] \]

The first result is established by an application of Lemma 1

If \(t \leq -1 \), then,
\[\mu \leq \frac{-2k}{(3 - 2\alpha)B_1} + \frac{2kB_2}{(3 - 2\alpha)B_1^2} + \frac{k(2 - 2\alpha)}{(3 - 2\alpha)} - k \frac{1}{2} + \frac{1}{2} \quad (\mu \leq \sigma_1), \]
and Lemma 1 gives:
\[|d_{2k+1} - \mu d_{k+1}| \leq \frac{B_1}{(3 - 2\alpha)2k} t. \]

For \(-1 \leq t \leq 1\), we have \(\sigma_1 \leq \mu \leq \sigma_2 \), where
\[\sigma_1 = \frac{-2k}{(3 - 2\alpha)B_1} + \frac{2kB_2}{(3 - 2\alpha)B_1^2} + \frac{k(2 - 2\alpha)}{(3 - 2\alpha)} - k \frac{1}{2} + \frac{1}{2} \]
\[\sigma_2 = \frac{2k}{(3 - 2\alpha)B_1} + \frac{2kB_2}{(3 - 2\alpha)B_1^2} + \frac{k(2 - 2\alpha)}{(3 - 2\alpha)} - k \frac{1}{2} + \frac{1}{2} \]
\[t = \frac{-B_2}{B_1} - \frac{(2 - 2\alpha)B_1}{2} + \frac{(3 - 2\alpha)B_1}{2} \left[\frac{1}{2} - \frac{1}{2k} + \frac{\mu}{k} \right] \]
and Lemma 1 yields:
\[|d_{2k+1} - \mu d_{k+1}| \leq \frac{B_1}{(3 - 2\alpha)2k}. \]

For \(t \geq 1 \), we have,
\[\mu \geq \frac{2k}{(3 - 2\alpha)B_1} + \frac{2kB_2}{(3 - 2\alpha)B_1^2} + \frac{k(2 - 2\alpha)}{(3 - 2\alpha)} - k \frac{1}{2} + \frac{1}{2} \quad (\mu \geq \sigma_2), \]
and it follows from Lemma 1 that
\[|d_{2k+1} - \mu d_{k+1}| \leq \frac{B_1}{(3 - 2\alpha)2k} t. \]

For the sharpness of the results in the above theorem we have the following:
(i) If $\mu = \sigma_1$, then the equality holds in the Lemma 1 if and only if
\[\omega(z) = z \frac{\lambda + z}{1 + \lambda z} (0 \leq \lambda \leq 1) \text{ or one of its rotations.} \]
(ii) If $\mu = \sigma_2$, then $\omega(z) = -z \frac{\lambda + z}{1 + \lambda z} (0 \leq \lambda \leq 1) \text{ or one of its rotations.}$
(iii) If $\sigma_1 < \mu < \sigma_2$, then $\omega(z) = z^2$.

The second result follows by an application of lemma 2

For $k = 1$, the k^{th} root transformation of f reduces to the given function f itself. Thus the estimate given in the above theorem is an extension of the corresponding result for the Fekete-Szego functional corresponding to universally prestarlike functions of order α with respect to ϕ.

Theorem 4: Let $\phi(z) = 1 + B_1 \frac{z}{2} + B_2 \frac{z^2}{2} + \ldots$, where B_n's are real with $B_1 > 0, B_2 \geq 0$. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is a universally prestarlike function of order α then

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{2B_2 + (2 - 2\alpha)B_1^2 - (3 - 2\alpha)B_1^2 \mu}{4(3 - 2\alpha)}, & \mu \leq \sigma_1 \\
\frac{B_1}{2(3 - 2\alpha)}, & \sigma_1 \leq \mu \leq \sigma_2 \\
\frac{-2B_2 - (2 - 2\alpha)B_1^2 + (3 - 2\alpha)B_1^2 \mu}{4(3 - 2\alpha)}, & \mu \geq \sigma_2,
\end{cases}
\]

where

\[
\sigma_1 = \frac{(2B_2 - 2B_1) + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2},
\]
\[
\sigma_2 = \frac{(2B_2 + 2B_1) + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2}
\]

the result is sharp.

For the choice $\alpha = 0$, theorem 4 coincides with the following result obtained for the class $C(\phi)$ by Ma and Minda [6]

Corollary 1: Let $0 \leq \mu \leq 1$, Further Let $\phi(z) = 1 + \frac{B_1}{2} z + \frac{B_2}{2} z^2 + \ldots$, where B_n's are real with $B_1 > 0, B_2 \geq 0$ and

\[
\sigma_1 = \frac{2(B_2 - B_1) + B_1^2}{3B_1^2},
\]
\[
\sigma_2 = \frac{2(B_2 + B_1) + B_1^2}{3B_1^2}
\]

If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in C(\phi)$, then
\[|a_3 - \mu a_2^2| \leq \begin{cases} \frac{1}{6} \left[B_2 + B_1^2 - \frac{3B_1^2 \mu}{2} \right], & \mu \leq \sigma_1 \\ \frac{B_1}{6}, & \sigma_1 \leq \mu \leq \sigma_2 \\ \frac{1}{6} \left[-B_2 - B_1^2 + \frac{3B_1^2 \mu}{2} \right], & \mu \geq \sigma_2, \end{cases} \]

If \(\sigma_1 \leq \mu \leq \sigma_2 \) then in view of lemma 3 theorem 4 can be improved.

Corollary 2: Let \(\sigma_3 \) be given by

\[\sigma_3 = \frac{2B_2 + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2} \]

If \(\sigma_1 \leq \mu \leq \sigma_3 \), then,

\[|a_3 - \mu a_2^2| + \left(\frac{(3 - 2\alpha)\mu B_1^2 - [(2B_2 - 2B_1) + (2 - 2\alpha)B_1^2]}{(3 - 2\alpha)B_1^2} \right) |a_2^2| \leq \frac{B_1}{2(3 - 2\alpha)} \]

If \(\sigma_2 \leq \mu \leq \sigma_3 \), then,

\[|a_3 - \mu a_2^2| + \left(\frac{-3(3 - 2\alpha)\mu B_1^2 + 2B_2 + 2B_1 + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2} \right) |a_2^2| \leq \frac{B_1}{2(3 - 2\alpha)} \]

For the choice \(\alpha = 0 \), Corollary 2 coincides with the following result obtained for the class \(C(\phi) \) by Ma and Minda[6].

Corollary 3: If \(\sigma_1 \leq \mu \leq \sigma_2 \) then in view of Lemma 3 Corollary 2 can be improved. Let \(\sigma_3 \) be given by

\[\sigma_3 = \frac{2(B_2 + B_1^2)}{3B_1^2} \]

If \(\sigma_1 \leq \mu \leq \sigma_3 \), then,

\[|a_3 - \mu a_2^2| + \left(\frac{3\mu B_1^2 - [2(B_2 - B_1 + B_1^2)]}{3B_1^2} \right) |a_2^2| \leq \frac{B_1}{6} \]

If \(\sigma_2 \leq \mu \leq \sigma_3 \), then,

\[|a_3 - \mu a_2^2| + \left(\frac{-3\mu B_1^2 + 2(B_2 + B_1 + B_1^2)}{3B_1^2} \right) |a_2^2| \leq \frac{B_1}{6} \]

3. Fractional Derivative

We begin by recalling the following definitions of operators of fractional calculus (that is fractional derivatives and fractional integrals) which was used by Owa and Srivastava.
Definition 4:[9] Let \(f \) be analytic in a simply connected region of the \(z \)-plane containing the origin. The fractional derivative of \(f \) of order \(\lambda \) is defined by

\[
D_\zeta^\lambda f(z) := \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^\lambda} d\zeta \quad (0 < \lambda < 1)
\]

where the multiplicity of \((z-\zeta)^\lambda\) is removed by requiring that \(\log(z-\zeta) \) is real for \(z - \zeta > 0 \).

Using the above definition and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava(1987) introduced the operator \(\Omega^\lambda \) : \(\mathcal{A} \rightarrow \mathcal{A} \) for \(\lambda \) any positive real number \(\neq 2, 3, 4, \ldots \) defined by

\[
(\Omega^\lambda f)(z) = \Gamma(2-\lambda)z^\lambda D_\zeta^\lambda f(z)
\]

and \(\mathcal{A} = H_1(\Delta) \).

The class \((\mathcal{R}_\alpha^u)^\lambda(\phi)\) consists of function \(f \in \mathcal{A} \) for which \(\Omega^\lambda f \in (\mathcal{R}_\alpha^u)(\phi) \).

Note that \((\mathcal{R}_\alpha^u)^\lambda(\phi)\) is the special case of the class \((\mathcal{R}_\alpha^u)^\sigma(\phi)\) when

\[
g(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^n
\]

Let \(g(z) = z + \sum_{n=2}^{\infty} g_n z^n \) \((g_n > 0)\), \(g \) be analytic in \(\Delta \) and \(f \ast g \neq 0 \). Since \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in (\mathcal{R}_\alpha^u)^\sigma(\phi) \) if and only if

\[
(f \ast g)(z) = z + \sum_{n=2}^{\infty} g_n a_n z^n \in (\mathcal{R}_\alpha^u)(\phi),
\]

we obtain the coefficient estimate for functions in the class \((\mathcal{R}_\alpha^u)^\sigma(\phi)\), from the corresponding estimate for functions in the class \((\mathcal{R}_\alpha^u)(\phi)\).

Theorem 5: Let \(\phi(z) = 1 + \frac{B_1}{2} z + \frac{B_2}{2} z^2 + \ldots \). If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in (\mathcal{R}_\alpha^u)^\sigma(\phi) \) then

\[
-a_3 - \mu a_2^2 \leq \left\{ \begin{array}{ll}
\frac{1}{4g_3(3-2\alpha)} \left(2B_2 + B_1^2(2-2\alpha) - \nu \right), & \mu \leq \sigma_1 \\
\frac{B_1}{2g_3(3-2\alpha)}, & \sigma_1 \leq \mu \leq \sigma_2 \\
\frac{1}{4g_3(3-2\alpha)} \left(-2B_2 - B_1^2(2-2\alpha) + \nu \right), & \mu \geq \sigma_2,
\end{array} \right.
\]

where

\[
\nu = \frac{(3-2\alpha)\mu g_3 B_1^2}{g_2^2}
\]

\[
\sigma_1 = \frac{g_2}{g_3} \left[\frac{(2B_2 - 2B_1) + (2-2\alpha)B_1^2}{(3-2\alpha)B_1^2} \right],
\]

\[
\sigma_2 = \frac{g_2}{g_3} \left[\frac{(2B_2 + 2B_1) + (2-2\alpha)B_1^2}{(3-2\alpha)B_1^2} \right].
\]
the result is sharp.

Note: Since
\[g(z) = (\Omega^zf)(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} a_n z^n, \]
(17)

We have
\[g_2 := \frac{\Gamma(3)\Gamma(2-\lambda)}{\Gamma(3-\lambda)} = \frac{2}{2-\lambda} \]
(18)

and
\[g_3 := \frac{\Gamma(4)\Gamma(2-\lambda)}{\Gamma(4-\lambda)} = \frac{6}{(2-\lambda)(3-\lambda)}. \]
(19)

For \(g_2 \) and \(g_3 \) mentioned above substitute in theorem 5 reduces to the following

Theorem 6: Let \(\phi(z) = 1 + \frac{B_1}{2} z + \frac{B_2}{2} z^2 + \ldots \), If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in (R_n^\alpha)^g(\phi) \) then

\[-a_3 - \mu a_2^2 \leq \begin{cases}
\frac{(2-\lambda)(3-\lambda)}{24(3-2\alpha)} \left(2B_2 + B_1^2(2-2\alpha) - \nu_1\right), & \mu \leq \sigma_1 \\
\frac{(2-\lambda)(3-\lambda)B_1}{12(3-2\alpha)}, & \sigma_1 \leq \mu \leq \sigma_2 \\
\frac{(2-\lambda)(3-\lambda)}{24(3-2\alpha)} \left(-2B_2 - B_1^2(2-2\alpha) + \nu_1\right), & \mu \geq \sigma_2,
\end{cases}\]

where
\[\nu_1 = \frac{3(3-2\alpha)\mu(2-\lambda)}{2(3-\lambda)} \]
\[\sigma_1 = \frac{2(3-\lambda)}{3(2-\lambda)} \left[\frac{2B_2 - B_1 + (2-2\alpha)B_1^2}{(3-2\alpha)B_1^2}\right], \]
\[\sigma_2 = \frac{2(3-\lambda)}{3(2-\lambda)} \left[\frac{2B_2 + B_1 + (2-2\alpha)B_1^2}{(3-2\alpha)B_1^2}\right]. \]

the result is sharp.

For \(\alpha = 0 \) in theorem 5, we get the following result by Ma and Minda (1994) [6] for the class \(C(\phi) \)

Corollary 4: Let the function \(\phi \) given by \(\phi(z) = 1 + \frac{B_1}{2} z + \frac{B_2}{2} z^2 + \ldots \),

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in C(\phi) \]

\[-a_3 - \mu a_2^2 \leq \begin{cases}
\frac{1}{6g_3} \left[B_2 + B_1^2 \left(1 - \frac{3g_3\mu}{2g_2}\right)\right], & \mu \leq \sigma_1 \\
\frac{B_1}{6g_3}, & \sigma_1 \leq \mu \leq \sigma_2 \\
\frac{-1}{6g_3} \left[B_2 + B_1^2 \left(1 - \frac{3g_3\mu}{2g_2}\right)\right], & \mu \geq \sigma_2,
\end{cases}\]

where
\[\sigma_1 = \frac{2g_2^2}{3g_3B_1^2} \left[B_2 - B_1 + B_1^2\right]. \]
\[\sigma_2 = \frac{2g_2^2}{3g_3B_1^2} \left[B_2 + B_1 + B_1^2 \right] \]

the result is sharp.

For \(\alpha = 0 \) in corollary 4, we get the following result by Ma and Minda (1994)[6] for the class \(C(\phi) \).

Corollary 5: Let the function \(\phi \) given by \(\phi(z) = 1 + \frac{B_1}{2} z + \frac{B_2}{2} z^2 + \ldots \),

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in C(\phi) \]

then,

\[
-a_3 - \mu a_2^2 \leq
\begin{cases}
\frac{(2 - \lambda)(3 - \lambda)}{36} \left[B_2 + B_1^2 \left(1 - \frac{9(2 - \lambda)\mu}{4(3 - \lambda)} \right) \right], & \mu \leq \sigma_1 \\
\frac{B_1(2 - \lambda)(3 - \lambda)}{36}, & \sigma_1 \leq \mu \leq \sigma_2 \\
\frac{-(2 - \lambda)(3 - \lambda)}{36} \left[B_2 + B_1^2 \left(1 - \frac{9(2 - \lambda)\mu}{4(3 - \lambda)} \right) \right], & \mu \geq \sigma_2,
\end{cases}
\]

where

\[\sigma_1 = \frac{4(3 - \lambda)}{9B_1^2(2 - \lambda)} \left[B_2 - B_1 + B_1^2 \right], \]

\[\sigma_2 = \frac{4(3 - \lambda)}{9B_1^2(2 - \lambda)} \left[B_2 + B_1 + B_1^2 \right] \]

the result is sharp.

References

[1] S. Ruscheweyh, L. Salinas, T. Sugawa 2009 Completely monotone sequences and universally prestarlike functions *Israel J. Math.* 171 285–304

[2] T.N. Shanmugam, J. Lourthu Mary 2010 Fekete-Szegö inequality for universally prestarlike functions *Fract. Calc. Appl. Anal.* 13 No.4 385–394

[3] T.N. Shanmugam, J. Lourthu Mary A Note on Universally Prestarlike Functions *Stud.Univ.Babes-Bolyai Math.* 57 No.1 53–60

[4] T.N. Shanmugam, J. Lourthu Mary 2013 Universally prestarlike functions of complex order *Int. Journal of Math. Analysis* 7 No. 24 1155–1164

[5] T.N. Shanmugam, J. Lourthu Mary 2014 Fekete-Szegö Coefficient Functional For Transforms Of Universally Prestarlike Functions *Bulletin of the Iranian Mathematical Society* 40 No. 6 1403–1411

[6] W. Ma, D. Minda 1994 A unified treatment of some special classes of univalent functions *Proc. Conf. on Complex Analysis* (Eds: F. Li, L. Ren, L. Yang, S. Zhang) Int. Press 157–169

[7] R.M. Ali, S.K. Lee, V. Ravichandran, S. Supramaniam 2009 The Fekete-Szegö coefficient functional for transforms of analytic function *Bulletin of the Iranian Mathematical Society* Vol.35, No.2 119–142

[8] R.M. Ali, V. Ravichandran, N. Seenivasagan 2007 Coefficient bounds for p-valent function *Appl. Math. Comput.* 187 No.1 35–46

[9] H. M. Srivastava, S. Owa 1984 An application of the fractional derivative *Math. Japan* 29 383–389