The Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection

Gabrielle P. Huizinga¹, Benjamin H. Singer²*, and Kanakadurga Singer³*

¹Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI USA

²Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA

³Department of Pediatrics and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI USA

*Co-senior authors

Corresponding Author: Kanakadurga Singer M.D., Department of Pediatrics and Communicable Diseases, Division of Pediatric Endocrinology. D1205 MPB, 1500 E Medical Center Dr., Ann Arbor, MI 48109, Phone (734) 764-5175; FAX (734) 615-3353; Email: ksinger@umich.edu

Disclosure Summary: The authors have nothing to disclose.

Support: BHS is supported by K08NS101054 and KS is supported by R01DK11583.

© Endocrine Society 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com en.2020-00561 See https://academic.oup.com/endocrinesociety/pages/Author_Guidelines for Accepted Manuscript disclaimer and additional information.
Abstract

The COVID-19 pandemic has forced us to consider the physiologic role of obesity in the response to infectious disease. There are significant disparities in morbidity and mortality by sex, weight and diabetes status. Numerous endocrine changes might drive these varied responses to SARS-CoV-2 infection including hormone and immune mediators, hyperglycemia, leukocyte responses, cytokine secretion, and tissue dysfunction. Studies of patients with severe COVID-19 disease have revealed the importance of innate immune responses in driving immunopathology and tissue injury. In this review we will describe the impact of the metabolically induced inflammation (meta-inflammation) that characterizes obesity on innate immunity. We consider that obesity-driven dysregulation of innate immune responses may drive organ injury in development of severe COVID-19 and impair viral clearance.
Introduction

The chronic obesity-induced inflammation characterized by increased tissue and circulating myeloid cells has been termed metabolic inflammation or meta-inflammation. The coronavirus disease 2019 (COVID-19) pandemic has highlighted the endocrine manifestations of obesity and impact of diabetes and obesity on immune responses to infectious disease. Obesity and metabolic syndrome have been identified as risk factors for severe manifestations of SARS-CoV-2 infection. Prior studies of the epidemiology of sepsis, the acute respiratory distress syndrome (ARDS), and other acute illnesses have raised the question of whether obesity is associated with lower mortality in critical illness – the “obesity paradox”. However, the COVID-19 pandemic has forced reconsideration of the impact of obesity and diabetes on disease outcomes. While obesity and diabetes may complicate the delivery of supportive care in critical illness regardless of the underlying disease, lessons learned from the interaction of obesity with other systemic inflammatory syndromes suggest that obesity modifies biologic factors related to SARS-CoV-2 infection and the COVID-19 syndrome.

COVID-19 was first reported in Wuhan, China in December 2019 and first made its appearance in the United States in Washington State on January 31, 2020. Outbreaks quickly spread throughout Washington and California before spreading to the rest of the US. Obesity was not studied in the early SARS-CoV-2 studies coming from Wuhan, China, likely because so little of the population is obese. However, pre-existing type 2 diabetes was demonstrated to be a risk factor for illness severity. In the US, obesity, hypertension, and diabetes are commonly reported among the most common comorbidities for patients hospitalized with COVID-19 across several metropolitan disease outbreaks. When considering the obesity epidemic in the US, this is not surprising, as approximately 35% of men and 40% of women in the United States are obese by body mass index (BMI > 30 kg/m2). However, obesity is independently associated with odds of hospital or intensive care admission among patients presenting for medical care. Several studies suggest that...
obesity is an independent predictor of hypoxic respiratory failure and death among hospitalized patients, even among young patients with fewer comorbidities. Decisions about hospital admission, and thus the characteristics of hospitalized patients, may be confounded by the expectation that obese patients require closer monitoring. Population-based estimates of COVID-19 mortality, however, also show a 2.6-fold increase in risk for patients with BMI > 40.

Prior meta-analyses of both ARDS and sepsis have found either no harm or reduction in mortality among obese adults. However, severity of illness and organ damage has been demonstrated to increase based on obesity in pediatric patients. While changes in critical care practice during a pandemic could explain differences in mortality or ICU admission, the association of obesity with physiologically defined hypoxic respiratory failure suggests a biologic interaction of obesity with SARS-CoV-2 infection. Obesity as a risk factor for severe infectious disease is not a new concept and is not limited to coronavirus infections. During the 2009 influenza A/H1N1 pandemic, it was noted that obese patients were more likely to experience more severe disease requiring hospitalization than normal weight patients. Additionally, even when both groups were vaccinated, obese individuals were more likely to become infected with the influenza virus. Along with viral infections, obesity alters the course of bacterial infections. All of this clinical evidence emphasizes the importance of further understanding the mechanisms by which obesity influences immune responses.

The current SARS-CoV-2 pandemic has highlighted the increased need for research to understand the mechanisms behind severity of pandemic infection in different risk groups.
With the prevalence of obesity rising without an end in sight, it is important to understand the endocrine, metabolic, and inflammatory shifts that occur in obesity may drive increased pathogen-driven morbidity and mortality.

Monocytes and macrophage activation at the intersection between chronic metabolic inflammation and acute infection

High levels of circulating chemokines and cytokines are associated with severe COVID-19 disease and mortality. SARS-CoV-2 infection, like many other coronavirus infections, has the ability to generate a cytokine storm\(^{27}\), caused by the release of large amounts of cytokines and chemokines by effector cells of the immune system. The cytokines most associated with the cytokine storm generated by SARS-CoV-2 are IL-1\(\beta\), IL-6, IL-12, and TNF-\(\alpha\). IL-6 seems to be the most predictive cytokine, as patients with increased IL-6 above 80 pg/mL was associated with a 22-fold increased risk of respiratory failure\(^{28}\).

Early studies of leukocyte heterogeneity utilizing single-cell RNAseq in samples from patients with COVID-19 indicate a shift in monocyte populations. These studies have identified increased cytokine and chemokine expression which are associated with markers of classical, pro-inflammatory monocytes in circulation\(^{29}\). Similarly, leukocytes in the bronchoalveolar lavage fluid of patients with COVID-19 shift from homeostatic alveolar macrophage signatures to chemokine expressing classical monocytes with cell surface markers such as CD14, FCN1, and S100A8\(^{30}\). Given the association of high cytokine and chemokine expression and innate-immune mediated tissue injury, these pro-inflammatory immune subsets have been viewed as drivers of pathology in SARS-CoV2 infection\(^{31}\).
Pro-inflammatory circulating monocyte and macrophage populations are associated with a number of chronic diseases, including obesity. A striking feature of obesity in both clinical and animal studies is the chronic low-grade inflammation tied with metabolic diseases, meta-inflammation. Increased BMI correlates with an increase of several cytokines including IL-6, IL-8, IL-1β, and TNF-α and obesity also correlates with an increase in chemokines such as CCL14 and MCP-1 furthering the overall inflammatory tone.

Hyperglycemia alone may lead to significant changes in macrophage function and inflammation. In patients with diabetes, increased glucose levels and glycolysis promoted Sars-CoV-2 replication in monocytes via ROS/HIFα pathway activation leading to secondary T-cell dysfunction. Patients with well controlled blood glucose levels were less likely to experience serious complications and death from COVID-19 compared to diabetic patients with poorly controlled blood glucose levels. The well-controlled patients had lower IL-6, C Reactive Protein, and LDH levels, as well as only a 1.1% mortality rate, which is significantly lower than the 11% mortality rate seen in the poorly controlled group. This association of diabetes diagnosis with COVID-19 mortality is also observed on the population level as well. While one cannot directly say the hyperglycemia causes this enhanced mortality, there is abundant evidence that obesity leads to long-term reprogramming of the innate immune system.

Macrophages from obese animals and humans have been described as metabolically active, M1 polarized, and pro-inflammatory with both regulatory and detrimental activity. These macrophages produce cytokines, chemokines, reactive oxygen species, and factors regulating fibrosis and metabolism. Overall, our understanding is that these metabolic macrophages have a similar profile to those stimulated with lipopolysaccharide (LPS), an abundant bacterial derived
molecular pattern molecule and ligand of the Toll-like receptor 4 (TLR4). More recently it has become clear that while the inflammatory phenotype of these macrophages is closest to what is seen with LPS stimulation, traditional M1 macrophages, the added activation by fatty acids creates a unique phenotype that has characterized these obesity myeloid cells as metabolically active macrophages 41.

While changes to macrophage phenotype in obesity were originally characterized in the adipose tissue36,42, it is now evident that obesity has significant effects on hematopoiesis, circulating monocytes, and macrophages in multiple organs. Elevated BMI and obesity has been shown to enhance hematopoiesis and expand myeloid cell production43,44 but it has also been shown to impair immune responses in a TLR4 dependent manner 45. High fat diet increases the number of monocytes in circulation and expands bone marrow macrophages, neutrophils and their progenitors 43. Expansion of these progenitors leads to increased macrophage production, but also skews the resulting macrophage population to a pro-inflammatory phenotype43,44,46.

During obesity there is an overall increase in chemokines, which play a role in metabolic inflammation by recruiting monocytes into adipose tissue. Additionally, during obesity and type 2 diabetes (T2D), there is an increase in circulation of free fatty acids (FFAs), including palmitate (PA). PA induces CCL4 release from monocytes and macrophages by interacting with TLR4 47. Obese individuals, regardless of diabetes status, also have higher circulating levels of LPS 48,49 which binds to TLR4. This binding increases the production of the chemokine CCL2 in monocytes and macrophages 50. This further leads to enhanced tissue macrophages that have the potential to lead to dysfunctional cytokine production and tissue damage if triggered.
While the phenotype of these macrophages in driving impaired metabolism is well described there are several other implications of these metabolically activated macrophages. In pulmonary viral infections such as influenza, macrophages from obese mice exhibit enhanced and likely injurious pro-inflammatory cytokine production but impaired production of antiviral type-I interferons. Obese mice suffer increased interstitial inflammation, alveolar permeability, and lung injury even in the absence of increased viral load. Chronic systemic inflammation is accompanied by impaired induction of pathogen-induced and lung-specific responses to influenza across a variety of obesity models. Pro-inflammatory activation of macrophages in obesity impairs their function in other domains, as well. For example, in obese diabetic mice, macrophages recruited to diabetic wounds as a result of epigenetic alterations have a pro-inflammatory phenotype and have elevated levels of prostaglandin E2 (PGE2) production. PGE2 signaling can impair macrophage innate immune functions as well as alter production of pro-inflammatory cytokines. This activated state causes delayed wound healing but may also have further implications in responses to infection, which is a major physiologic function of macrophages. PGE2 signaling instructs macrophages to secrete IL-10 and influences naïve T cells to shift from a Th1 to a Th2 phenotype. This Th2 phenotype causes a decreased ability to clear intracellular pathogens, such as viruses.

Impact of Obesity in Response to Infection

Immune system activation in obesity is not confined to adipose tissue or organ dysfunction related to metabolic disease, such as the liver or vasculature, but also has a negative effect on the immune system on the whole, leading to an increase risk of infection. It is well recognized clinically that diabetes negatively impacts the body’s response to infection. Hyperglycemia stemming from T2D caused by obesity has proven to reduce control of invading pathogens. Hyperglycemia can increase glucose concentrations in the lung and respiratory system, allowing for greater bacterial colonization and replication and can further directly affect intestinal barrier dysfunction enhancing risk for
infection66. On top of the direct effects that obesity may have on macrophage function in infection, diaphragm excursion is also inhibited due to obesity, which restricts ventilation and can inhibit the clearance of pulmonary pathogens10.

Along with increased lung glucose and compromised airspace creating a hotspot for pulmonary infections in obesity67, this condition and diabetes impairs bacterial killing68. Several bacterial models have been tested in obese mouse models and have demonstrated impaired bacterial killing and more severe infection outcomes. For example, during infection with \textit{Mycobacterium tuberculosis}, macrophages from diabetic mice show impaired recognition of the bacteria, as well as a decrease in ability to properly phagocytize and clear \textit{M. tuberculosis}69. After adoptive transfer of macrophages from infected diabetic mice into lean mice, defects in macrophages were still noted to lead to impaired T-cell priming, indicating an intrinsic defect in these macrophages separate from their diabetic environment70. The diabetic lung microenvironment has influenced these alveolar macrophages to have impaired recognition and killing. Bacterial loads are also higher in the lungs, liver, and spleen of diabetic mice, with an increase in the number and size of granulomas in the lungs of these animals71. With directed pulmonary infection with \textit{Klebsiella pneumoniae}, obese mice had impaired host defense with defects in macrophage phagocytosis72-74. Similarly, studies with \textit{Staphylococcus aureus} sepsis demonstrated higher bacterial loads in obese mice although numbers of tissue macrophages were higher in obese mice73. Additionally, less virulent strains of \textit{S. aureus} can generate and maintain an infection longer in diabetic hosts compared to normal weight hosts75. Even more broadly in sepsis models, obese animals have been seen to have more severe organ damage and worsened survival76,77.
Even a short-term high fat diet can impact the reaction to a bacterial infection. Mice fed a high fat diet for 16 days and then orally challenged with *Listeria monocytogenes* had reduced inflammatory responses, and as a result increased bacterial load and increased numbers of goblet cells.

Obese individuals are not only susceptible to severe bacterial infections, but also severe viral infections. Obesity has been shown to be a risk factor for human papilloma virus incident infection, however obesity was not associated with how long the infection persisted. Additionally, in the 2009 H1N1 Influenza pandemic, obesity was a major risk factor for severe infection and death. Adults aged 20 years or older who died from H1N1 infection were more likely to be obese or morbidly obese. When lean and obese mice are infected with H1N1, although the lungs exhibit the same viral titer, the obese mice lost more weight and experienced more pulmonary pathology than lean mice. Additionally, the virus spread to the alveolar epithelial cells in the obese mice. The increased spreading of the virus in obese mice combined with the reduction in local production of several pro-inflammatory cytokines (while still increased in circulation) likely contributed to the increased murine morbidity and mortality due to infection. The same illness severity and poor responsiveness to treatment with obesity has been demonstrated in seasonal influenza infections.

It has been widely speculated that higher ACE-2 expression in adipose tissue may result in higher total body SARS-CoV-2 viral load in obese individuals. Early reports have not demonstrated a correlation among viral load and obesity or initial viral load and disease severity. In seasonal and pandemic influenza, however, obese individuals may be more susceptible to severe viral respiratory disease even if they mount a serologic response to vaccination, likely due to impaired T-cell function despite enhanced expression of typical myeloid-cell derived pro-inflammatory cytokines. The possibility of different vaccine or treatment efficacy in obese patients underscores the importance of adequate representation of obese individuals in clinical trials and a focus on patient-centered, rather than serologic outcomes in evaluating efficacy.
Along with possible impairments in pathogen clearance, obese hosts are more likely to experience the breakdown of respiratory epithelium during a pulmonary infection, which leads to increased fluid in the airway space. This allows the pathogen to have the opportunity to more easily spread throughout the body and leaves the host with reduced lung function63.

ACE-2 expression and vulnerability to SARS-CoV-2 infection

The SARS-CoV-2 virus, like other members of the betacoronavirus subfamily85, enters mammalian cells through the interaction of the viral envelope spike glycoprotein and angiotensin converting enzyme 2 (ACE-2) on host cells86. ACE-2 is expressed in many human tissues, including not only the lungs but also kidney, brain, adipose tissue and small intestine, raising the question of which symptoms of COVID-19 are due to direct viral effects versus systemic immune responses, especially in severe disease87. Tropism of SARS-CoV-2 for extrapulmonary tissues is confirmed by detection of viral RNA from samples outside the respiratory tract88. ACE-2 is upregulated in adipocytes in obese and diabetic patients, which allows the virus to target and replicate in adipose tissue and has led to speculation that adipose tissue can serve as a reservoir of SARS-CoV-2, potentially worsening disease severity in obese individuals89-91. A correlation between respiratory tract viral load and obesity, however, has not been confirmed83.

Intestinal involvement in SARS-CoV-2 infection may interact with obesity associated meta-inflammation. While meta-inflammation in obesity is a systemic, multifactorial process92, the gut microbiome is known to have a bidirectional relationship to meta-inflammation93 influencing intestinal inflammation94. SARS-CoV-2 infection has been associated with shifts in gut microbiota to more pathogenic taxa, as have other states of critical illness96. These shifts may encourage a state of
systemic inflammation. Both dysbiosis and the direct enteropathic effect of SARS-CoV-2 infection may promote gut barrier permeability and increase metabolic endotoxemia, a potential mediator of metabolic disease and meta-inflammation in obesity96. Establishing a connection between gut dysfunction and meta-inflammation in COVID-19 survivors will require long-term studies.

While considerable speculation has focused on how ACE-2 levels are driven by either polymorphisms, comorbidity, or environmental factors, other genetic factors may also play a role in susceptibility to severe COVID-19 disease, as well97. The first genome-wide association study of COVID-19 severity identified two loci – one containing the ABO blood group locus and another at 3p21.3198. The latter locus contains several chemokine genes, the expression of which may plausibly be altered in meta-inflammation. An ongoing multinational effort continues to examine how host genetics may inform susceptibility to severe COVID19 and may reveal factors that interact with gene expression obesity99. While genetic factors explain a small part of the risk for developing diabetes, diabetes risk genes typically do not include those related to antiviral immunity100, emphasizing that susceptibility to SARS-CoV-2 infection or development of severe COVID19 disease is likely due to environmental exposure and pathophysiology that develops through the life course, rather than a common predisposing genotype.

Females are protected both from COVID-19 disease and meta-inflammation

In addition to obesity and comorbidity, male sex confers a significantly increased risk of severe COVID-19 disease and death14. Differences in myeloid inflammation among males and females may play a protective role in the immunopathology of COVID-19, especially in the setting of obesity.
Not all obese individuals are at risk for metabolic and cardiovascular disease102 and not all obese develop obesity induced inflammation to the same degree103. Increased androgen concentration in males is also thought to lead to increased IL-10 production when peripheral blood mononuclear cells are stimulated by viral antigens, leading to a delayed and diminished pro-inflammatory response which may also explain disease severity104. Additionally, males tend to have increased levels of pro-inflammatory cytokines and chemokines after stimulation with LPS intraperitoneally \textit{in vivo} and \textit{in vitro} assays105,106. Hence, this difference by sex and due to sex hormones could lead to a possible increased cytokine storm in males with obesity107, and explain the pathologic response and enhanced morbidity described clinically.

Pre-menopausal females are relatively protected from obesity induced inflammation, macrophage activation, and expansion of myeloid progenitors and are relatively protected from metabolic and cardiovascular disease108. In pre-clinical models, females are protected from meta-inflammation108-111. One explanation for this is that females generally handle the expansion of adipocytes with resident macrophage proliferation without recruitment of pro-inflammatory macrophages109. This finding that all macrophages are not the same in responsiveness to obesity but that the overall trend is pro-inflammatory in nature requires further investigation into the overall macrophage phenotype with obesity. In the context of infection though, those with pro-inflammatory macrophages can produce an enhanced cytokine environment leading to severity of illness in obese individuals via both systemic and local lung effects112,113.

While the interaction of sex and diet induced obesity has been most elucidated in the setting of innate immune cell populations, sex hormone receptors are present on cells of the adaptive immune system as well, and sexual dimorphism in autoimmunity and humoral responses has been noted for
decades114. These differences may also be critical in favoring antiviral immunity in females. Of particular note, female mice expand the population of regulatory T-cells significantly compared to male mice in obesity115. This cell population is noted to be deficient in obese male mice during influenza infection54 and may play a role in limiting lung injury in the setting of viral infection.

\textbf{Influence of age on COVID-19—does increased BMI and age shift disease burden?}

Individuals of all ages are at risk for obesity, but it is not clear if weight status influences what has been seen with age related risk for COVID severity. Of patients aged 19-64 years admitted to the hospital, those with co-morbidities caused by high BMI were more likely to be admitted to the ICU63 and this is true regardless of sex10. As humans age, the immune system changes116, with a decreased number of lymphocytes, which are important cells for fighting viruses. This has proved to be a significant disadvantage during past epidemics, such as SARS117. While elderly individuals are at increased risk for severe COVID-19, the obesity epidemic is shifting to the most targeted demographic to a younger age group. Younger COVID patients are likely to have a higher BMI than older patients while this same trend did not exist in non-COVID admissions118. Age related changes in metabolic inflammation are still being understood regardless of infection119 and the impact of this on COVID-19 needs to be further examined.

On the other extreme, young children have fared better than adults during this pandemic. Many viruses, including respiratory syncytial virus and influenza virus, infect children at particularly high rates compared to adults aged 30-65. However, children appear to be less susceptible to SARS, MERS, and SARS-CoV-2 infection120. Additionally, few children present with common co-morbidities seen in adults, such as hypertension, T2D, cancers, and pulmonary diseases. The absence of these diseases may allow children to only have a mild case of the virus122. More recently some children
who have recovered from SARS-CoV-2 infection are presenting with post-infectious cytokine release syndrome, indicative by a fever, GI symptoms, and a rash. Consistent with early life meta-inflammation with obesity it appears that obese children are at higher risk for severe disease. Does hyperglycemia worsen COVID-19 or does COVID-19 lead to immune pancreatic damage leading to hyperglycemia?

COVID-19 patients have been found to have elevated blood sugars during hospitalization and those with uncontrolled diabetes had a higher mortality. However, SARS-CoV-2 virus can also damage the pancreas by infecting the α and β cells, which function to regulate blood sugar levels. In severe COVID-19 cases, 17% of patients were diagnosed with pancreatic injury, compared to only 1-2% in non-severe cases. One possible explanation is that the virus can also increase pro-inflammatory cytokines that destroy these cells. This could possibly lead to an autoimmune disease and development of type 1 diabetes (T1D). Prior studies have demonstrated that SARS coronavirus itself can directly damage islets, further research will be needed to see if T1D or beta cell failures were caused by COVID-19 and if this has happened to other individuals. Given ACE-2 expression in the pancreas it has been hypothesized that this may be a mechanism for pancreatic damage specifically in SARS-CoV2 infection.

Conclusion

Obesity is a significant risk factor for severe COVID-19 illness. Patients with obesity and metabolic disease frequently experience a state of low-grade chronic meta-inflammation. Prior studies of vaccine efficacy and response to viral and bacterial infection show that meta-inflammation may significantly alter the response to pathogens. While this has not been directly established in SARS-CoV-2 infection, emerging evidence indicates that disordered myeloid inflammatory responses are a
significant driver of COVID-19 severity. While the understanding of possible therapies and vaccines continues to rapidly evolve,

understanding the mechanisms and pathways altered by enhanced adiposity and metabolic inflammation in COVID-19 severity is critical to understanding disease severity and the possible treatment mechanisms.
1 Suleyman, G. et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. *JAMA Netw Open* **3**, e2012270, doi:10.1001/jamanetworkopen.2020.12270 (2020).

2 Killerby, M. E. et al. Characteristics Associated with Hospitalization Among Patients with COVID-19 - Metropolitan Atlanta, Georgia, March-April 2020. *MMWR Morb Mortal Wkly Rep* **69**, 790-794, doi:10.15585/mmwr.mm6925e1 (2020).

3 Prescott, H. C. & Chang, V. W. Overweight or obese BMI is associated with earlier, but not later survival after common acute illnesses. *BMC Geriatr* **18**, doi:10.1186/s12877-018-0726-2 (2018).

4 Prescott, H. C., Chang, V. W., O’Brien, J. M., Jr., Langa, K. M. & Iwashyna, T. J. Obesity and 1-year outcomes in older Americans with severe sepsis. *Crit Care Med* **42**, 1766-1774, doi:10.1097/CCM.0000000000003336 (2014).

5 Zhu, L. et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. *Cell Metab* **31**, 1068-1077 e1063, doi:10.1016/j.cmet.2020.04.021 (2020).

6 Goyal, P. et al. Clinical Characteristics of Covid-19 in New York City. *N Engl J Med* **382**, 2372-2374, doi:10.1056/NEJMc2010419 (2020).

7 Cummings, M. J. et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. *Lancet* **395**, 1763-1770, doi:10.1016/S0140-6736(20)31189-2 (2020).

8 Richardson, S. et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. *JAMA*, doi:10.1001/jama.2020.6775 (2020).

9 Jaacks, L. M. et al. The obesity transition: stages of the global epidemic. *Lancet Diabetes Endocrinol* **7**, 231-240, doi:10.1016/S2213-8587(19)30026-9 (2019).

10 Kass, D. A., Duggal, P. & Cingolani, O. Obesity could shift severe COVID-19 disease to younger ages. *Lancet* **395**, 1544-1545, doi:10.1016/S0140-6736(20)31024-2 (2020).

11 Goyal, P. et al. Obesity and COVID-19 in New York City: A Retrospective Cohort Study. *Ann Intern Med*, doi:10.7326/M20-2730 (2020).

12 Hajifathalian, K. et al. Obesity is associated with worse outcomes in COVID-19: Analysis of Early Data From New York City. *Obesity (Silver Spring)*, doi:10.1002/oby.22923 (2020).

13 Pettit, N. N. et al. Obesity is Associated with Increased Risk for Mortality Among Hospitalized Patients with COVID-19. *Obesity (Silver Spring)*, doi:10.1002/oby.22941 (2020).

14 Palaiodimos, L. et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. *Metabolism* **108**, 154262, doi:10.1016/j.metabol.2020.154262 (2020).

15 Deng, M. et al. Obesity as a Potential Predictor of Disease Severity in Young COVID-19 Patients: A Retrospective Study. *Obesity (Silver Spring)*, doi:10.1002/oby.22943 (2020).

16 Klang, E. et al. Morbid Obesity as an Independent Risk Factor for COVID-19 Mortality in Hospitalized Patients Younger than 50. *Obesity (Silver Spring)*, doi:10.1002/oby.22913 (2020).
Williamson, E. J. et al. OpenSAFELY: factors associated with COVID-19 death in 17 million patients. *Nature*, doi:10.1038/s41586-020-2521-4 (2020).

Ni, Y. N. et al. Can body mass index predict clinical outcomes for patients with acute lung injury/acute respiratory distress syndrome? A meta-analysis. *Crit Care* 21, 36, doi:10.1186/s13054-017-1615-3 (2017).

Wang, S. et al. The role of increased body mass index in outcomes of sepsis: a systematic review and meta-analysis. *BMC Anesthesiol* 17, 118, doi:10.1186/s12871-017-0405-4 (2017).

Ross, P. A. et al. Body Habitus and Risk of Mortality in Pediatric Sepsis and Septic Shock: A Retrospective Cohort Study. *J Pediatr* 210, 178-183 e172, doi:10.1016/j.jpeds.2019.03.027 (2019).

Peterson, L. S. et al. Outcomes and Resource Use Among Overweight and Obese Children With Sepsis in the Pediatric Intensive Care Unit. *J Intensive Care Med* 35, 472-477, doi:10.1177/0885066618760541 (2020).

Maley, N., Gebremariam, A., Odetola, F. & Singer, K. Influence of Obesity Diagnosis With Organ Dysfunction, Mortality, and Resource Use Among Children Hospitalized With Infection in the United States. *J Intensive Care Med* 32, 339-345, doi:10.1177/0885066616631325 (2017).

Papadimitriou-Olivgeris, M. et al. The Role of Obesity in Sepsis Outcome among Critically Ill Patients: A Retrospective Cohort Analysis. *Biomed Res Int* 2016, 5941279, doi:10.1155/2016/5941279 (2016).

Moser, J. S. et al. Underweight, overweight, and obesity as independent risk factors for hospitalization in adults and children from influenza and other respiratory viruses. *Influenza Other Respir Viruses* 13, 3-9, doi:10.1111/irv.12618 (2019).

Neidich, S. D. et al. Increased risk of influenza among vaccinated adults who are obese. *Int J Obes (Lond)* 41, 1324-1330, doi:10.1038/ijo.2017.131 (2017).

Trivedi, V., Bavishi, C. & Jean, R. Impact of obesity on sepsis mortality: A systematic review. *J Crit Care* 30, 518-524, doi:10.1016/j.jcrc.2014.12.007 (2015).

Moore, J. B. & June, C. H. Cytokine release syndrome in severe COVID-19. *Science* 368, 473-474, doi:10.1126/science.abb8925 (2020).

Lipworth, B., Chan, R. & RuiWen Kuo, C. Predicting severe outcomes in COVID-19. *J Allergy Clin Immunol Pract*, doi:10.1016/j.jaip.2020.06.039 (2020).

Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. *Nat Med*, doi:10.1038/s41591-020-0944-y (2020).

Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. *Nat Med* 26, 842-844, doi:10.1038/s41591-020-0901-9 (2020).

Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. *Nat Rev Immunol* 20, 355-362, doi:10.1038/s41577-020-0331-4 (2020).

Friedrich, K. et al. Perturbation of the Monocyte Compartment in Human Obesity. *Front Immunol* 10, 1874, doi:10.3389/fimmu.2019.01874 (2019).

Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. *J Clin Invest* 121, 2111-2117, doi:10.1172/JCI857132 (2011).

Geerlings, S. E. & Hoepelman, A. I. Immune dysfunction in patients with diabetes mellitus (DM). *FEMS Immunol Med Microbiol* 26, 259-265, doi:10.1111/j.1574-695X.1999.tb01397.x (1999).
Wolf, R. M. et al. Cytokine, Chemokine, and Cytokine Receptor Changes Are Associated With Metabolic Improvements After Bariatric Surgery. *J Clin Endocrinol Metab* **104**, 947-956, doi:10.1210/jc.2018-02245 (2019).

Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. *J Clin Invest* **116**, 115-124, doi:10.1172/JCI24335 (2006).

Codo, A. C. et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1alpha/Glycolysis-Dependent Axis. *Cell Metab*, doi:10.1016/j.cmet.2020.07.007 (2020).

Coats, B. R. et al. Metabolically Activated Adipose Tissue Macrophages Perform Detrimental and Beneficial Functions during Diet-Induced Obesity. *Cell Rep* **20**, 3149-3161, doi:10.1016/j.celrep.2017.08.096 (2017).

Boutens, L. et al. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. *Diabetologia* **61**, 942-953, doi:10.1007/s00125-017-4526-6 (2018).

Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. *Cell Metab* **20**, 614-625, doi:10.1016/j.cmet.2014.08.010 (2014).

Nakarai, H. et al. Adipocyte-macrophage interaction may mediate LPS-induced low-grade inflammation: potential link with metabolic complications. *Innate Immun* **18**, 164-170, doi:10.1177/1753425910393370 (2012).

Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. *J Clin Invest* **117**, 175-184, doi:10.1172/JCI29881 (2007).

Singer, K. et al. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. *Mol Metab* **3**, 664-675, doi:10.1016/j.molmet.2014.06.005 (2014).

Nagareddy, P. R. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. *Cell Metab* **19**, 821-835, doi:10.1016/j.cmet.2014.03.029 (2014).

Liu, A. et al. Bone marrow lympho-myeloid malfunction in obesity requires precursor cell-autonomous TLR4. *Nat Commun* **9**, 708, doi:10.1038/s41467-018-03145-8 (2018).

Griffin, C. et al. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c(+) adipose tissue macrophage production in obese mice. *J Biol Chem* **293**, 8775-8786, doi:10.1074/jbc.RA117.001526 (2018).

Kochumon, S. et al. Palmitate Activates CCL4 Expression in Human Monocytic Cells via TLR4/MyD88 Dependent Activation of NF-kappaB/MAPK/PI3K Signaling Systems. *Cell Physiol Biochem* **46**, 953-964, doi:10.1159/000488824 (2018).

Liang, H., Hussey, S. E., Sanchez-Avila, A., Tantiwong, P. & Musi, N. Effect of lipopolysaccharide on inflammation and insulin action in human muscle. *PLoS One* **8**, e63983, doi:10.1371/journal.pone.0063983 (2013).

Lassenius, M. I. et al. Endotoxins are associated with visceral fat mass in type 1 diabetes. *Sci Rep* **6**, 38887, doi:10.1038/srep38887 (2016).

Akhter, N. et al. TLR4/MyD88 -mediated CCL2 production by lipopolysaccharide (endotoxin): Implications for metabolic inflammation. *J Diabetes Metab Disord* **17**, 77-84, doi:10.1007/s40200-018-0341-y (2018).
Odegaard, J. I. & Chawla, A. Mechanisms of macrophage activation in obesity-induced insulin resistance. Nat Clin Pract Endocrinol Metab 4, 619-626, doi:10.1038/ncpendmet0976 (2008).

Namkoong, H. et al. Obesity worsens the outcome of influenza virus infection associated with impaired type I interferon induction in mice. Biochem Biophys Res Commun 513, 405-411, doi:10.1016/j.bbrc.2019.03.211 (2019).

Smith, A. G., Sheridan, P. A., Harp, J. B. & Beck, M. A. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr 137, 1236-1243, doi:10.1093/jn/137.5.1236 (2007).

Milner, J. J. et al. Obesity Increases Mortality and Modulates the Lung Metabolome during Pandemic H1N1 Influenza Virus Infection in Mice. J Immunol 194, 4846-4859, doi:10.4049/jimmunol.1402295 (2015).

Honce, R. & Schultz-Cherry, S. Impact of Obesity on Influenza A Virus Pathogenesis, Immune Response, and Evolution. Front Immunol 10, 1071, doi:10.3389/fimmu.2019.01071 (2019).

Davis, F. M. et al. Epigenetic Regulation of TLR4 in Diabetic Macrophages Modulates Immunometabolism and Wound Repair. J Immunol 204, 2503-2513, doi:10.4049/jimmunol.1901263 (2020).

denDekker, A. D. et al. TNF-alpha regulates diabetic macrophage function through the histone acetyltransferase MOF. JCI Insight 5, doi:10.1172/jci.insight.132306 (2020).

Kimball, A. et al. Ly6C(Hi) Blood Monocyte/Macrophage Drive Chronic Inflammation and Impair Wound Healing in Diabetes Mellitus. Arterioscler Thromb Vasc Biol 38, 1102-1114, doi:10.1161/ATVBAHA.118.310703 (2018).

Lo, C. J. Upregulation of cyclooxygenase-II gene and PGE2 production of peritoneal macrophages in diabetic rats. J Surg Res 125, 121-127, doi:10.1016/j.jss.2004.12.005 (2005).

Davis, F. T. L. W., R.; denDekker A.; Joshi A.; Wilke C.; Deng H.; Obi, A.; Huang S.; Billi A.; Robinson S. T.; Lipinski J.; Melvin W.J.; Audu C.; Weidinger S.; Kunkel S.; Smith A.; Gudjonsson J.; Moore B.M.; and Gallagher K. Epigenetic Regulation of the PGE2 Pathway Modulates Macrophage Phenotype in Normal and Pathologic Wound Repair. JCI Insight (2020).

Luan, B. et al. CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci USA 112, 15642-15647, doi:10.1073/pnas.1519644112 (2015).

Sander, W. J., O’Neill, H. G. & Pohl, C. H. Prostaglandin E2 As a Modulator of Viral Infections. Front Physiol 8, 89, doi:10.3389/fphys.2017.00089 (2017).

Maffetone, P. B. & Laursen, P. B. The Perfect Storm: Coronavirus (Covid-19) Pandemic Meets Overfat Pandemic. Front Public Health 8, 135, doi:10.3389/fpubh.2020.00135 (2020).

Carey, I. M. et al. Risk of Infection in Type 1 and Type 2 Diabetes Compared With the General Population: A Matched Cohort Study. Diabetes Care 41, 513-521, doi:10.2337/dc17-2131 (2018).

Gill, S. K. et al. Increased airway glucose increases airway bacterial load in hyperglycaemia. Sci Rep 6, 27636, doi:10.1038/srep27636 (2016).

Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376-1383, doi:10.1126/science.aar3318 (2018).
Pezzulo, A. A. et al. Glucose depletion in the airway surface liquid is essential for sterility of the airways. *PLoS One* **6**, e16166, doi:10.1371/journal.pone.0016166 (2011).

Sima, A. A., O’Neill, S. J., Naimark, D., Yagihashi, S. & Klass, D. Bacterial phagocytosis and intracellular killing by alveolar macrophages in BB rats. *Diabetes* **37**, 544-549, doi:10.2337/db37-0544 (1988).

Vallerskog, T., Martens, G. W. & Kornfeld, H. Diabetic mice display a delayed adaptive immune response to *Mycobacterium tuberculosis*. *J Immunol* **184**, 6275-6282, doi:10.4049/jimmunol.1000304 (2010).

Martinez, N., Ketheesan, N., West, K., Vallerskog, T. & Kornfeld, H. Impaired Recognition of *Mycobacterium tuberculosis* by Alveolar Macrophages From Diabetic Mice. *J Infect Dis* **214**, 1629-1637, doi:10.1093/infdis/jiw436 (2016).

Alim, M. A. et al. Increased susceptibility to *Mycobacterium tuberculosis* infection in a diet-induced murine model of type 2 diabetes. *Microbes Infect*, doi:10.1016/j.micinf.2020.03.004 (2020).

Mancuso, P. et al. Leptin-deficient mice exhibit impaired host defense in Gram-negative pneumonia. *J Immunol* **168**, 4018-4024, doi:10.4049/jimmunol.168.8.4018 (2002).

Strandberg, L. et al. Mice chronically fed high-fat diet have increased mortality and disturbed immune response in sepsis. *PLoS One* **4**, e7605, doi:10.1371/journal.pone.0007605 (2009).

Martinez, N. et al. Defects in early cell recruitment contribute to the increased susceptibility to respiratory *Klebsiella pneumoniae* infection in diabetic mice. *Microbes Infect* **18**, 649-655, doi:10.1016/j.micinf.2016.05.007 (2016).

Tuchscherr, L. et al. *Staphylococcus aureus* requires less virulence to establish an infection in diabetic hosts. *Int J Med Microbiol* **308**, 761-769, doi:10.1016/j.ijmm.2018.05.004 (2018).

Petronilho, F. et al. Obesity Exacerbates Sepsis-Induced Oxidative Damage in Organs. *Inflammation* **39**, 2062-2071, doi:10.1007/s10753-016-0444-x (2016).

Frydrych, L. M. et al. GM-CSF Administration Improves Defects in Innate Immunity and Sepsis Survival in Obese Diabetic Mice. *J Immunol* **202**, 931-942, doi:10.4049/jimmunol.1800713 (2019).

Las Heras, V. et al. Short-term consumption of a high-fat diet increases host susceptibility to *Listeria monocytogenes* infection. *Microbiome* **7**, 7, doi:10.1186/s40168-019-0621-x (2019).

Huang, X. et al. Metabolic Syndrome and Risk of Cervical Human Papillomavirus Incident and Persistent Infection. *Medicine (Baltimore)* **95**, e2905, doi:10.1097/MD.0000000000002905 (2016).

Morgan, O. W. et al. Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease. *PLoS One* **5**, e9694, doi:10.1371/journal.pone.0009694 (2010).

Easterbrook, J. D. et al. Obese mice have increased morbidity and mortality compared to non-obese mice during infection with the 2009 pandemic H1N1 influenza virus. *Influenza Other Respir Viruses* **5**, 418-425, doi:10.1111/j.1750-2659.2011.00254.x (2011).
Segaloff, H. E. et al. The impact of obesity and timely antiviral administration on severe influenza outcomes among hospitalized adults. *J Med Virol* 90, 212-218, doi:10.1002/jmv.24946 (2018).

Argyropoulos, K. V. et al. Association of Initial Viral Load in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Patients with Outcome and Symptoms. *Am J Pathol*, doi:10.1016/j.ajpath.2020.07.001 (2020).

Green, W. D. & Beck, M. A. Obesity Impairs the Adaptive Immune Response to Influenza Virus. *Ann Am Thorac Soc* 14, S406-S409, doi:10.1513/AnnalsATS.201706-447AW (2017).

Coronaviridae Study Group of the International Committee on Taxonomy of, V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. *Nat Microbiol* 5, 536-544, doi:10.1038/s41564-020-0695-z (2020).

Bassendine, M. F., Bridge, S. H., McCaughan, G. W. & Gorrell, M. D. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? *J Diabetes*, doi:10.1111/1753-0407.13052 (2020).

Li, M. Y., Li, L., Zhang, Y. & Wang, X. S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. *Infect Dis Poverty* 9, 45, doi:10.1186/s40249-020-00662-x (2020).

Wang, W. et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. *JAMA*, doi:10.1001/jama.2020.3786 (2020).

Kruglikov, I. L. & Scherer, P. E. The Role of Adipocytes and Adipocyte-Like Cells in the Severity of COVID-19 Infections. *Obesity (Silver Spring)* 28, 1187-1190, doi:10.1002/oby.22856 (2020).

von der Thusen, J. & van der Eerden, M. Histopathology and genetic susceptibility in COVID-19 pneumonia. *Eur J Clin Invest*, e13259, doi:10.1111/eci.13259 (2020).

Ryan, P. M. & Caplice, N. M. Is Adipose Tissue a Reservoir for Viral Spread, Immune Activation, and Cytokine Amplification in Coronavirus Disease 2019? *Obesity (Silver Spring)* 28, 1191-1194, doi:10.1002/oby.22843 (2020).

Zuo, T. et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. *Gut*, doi:10.1136/gutjnl-2020-322294 (2020).

Rastelli, M., Knauf, C. & Cani, P. D. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. *Obesity (Silver Spring)* 26, 792-800, doi:10.1002/oby.22175 (2018).

Sharma, N. S. et al. Differences in airway microbiome and metabolome of single lung transplant recipients. *Respir Res* 21, 104, doi:10.1186/s12931-020-01367-3 (2020).
Ellinghaus, D. et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. *N Engl J Med*, doi:10.1056/NEJMoa2020283 (2020).

Initiative, C.-H. G. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. *Eur J Hum Genet* 28, 715-718, doi:10.1038/s41431-020-0636-6 (2020).

Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. *Nat Commun* 9, 2941, doi:10.1038/s41467-018-04951-w (2018).

Vishvanath, L. & Gupta, R. K. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. *J Clin Invest* 129, 4022-4031, doi:10.1172/JCI129191 (2019).

Torcia, M. G. et al. Sex differences in the response to viral infections: TLR8 and TLR9 ligand stimulation induce higher IL10 production in males. *PLoS One* 7, e39853, doi:10.1371/journal.pone.0039853 (2012).

Asai, K. et al. Gender differences in cytokine secretion by human peripheral blood mononuclear cells: role of estrogen in modulating LPS-induced cytokine secretion in an ex vivo septic model. *Shock* 16, 340-343, doi:10.1097/00024382-200116050-00003 (2001).

Moieni, M. et al. Sex Differences in the Effect of Inflammation on Subjective Social Status: A Randomized Controlled Trial of Endotoxin in Healthy Young Adults. *Front Psychol* 10, 2167, doi:10.3389/fpsyg.2019.02167 (2019).

Zore, T., Palafox, M. & Reue, K. Sex differences in obesity, lipid metabolism, and inflammation- A role for the sex chromosomes? *Mol Metab* 15, 35-44, doi:10.1016/j.molmet.2018.04.003 (2018).

Bornstein, S. R., Dalan, R., Hopkins, D., Mingrone, G. & Boehm, B. O. Endocrine and metabolic link to coronavirus infection. *Nat Rev Endocrinol* 16, 297-298, doi:10.1038/s41574-020-0353-9 (2020).

Watanabe, M. et al. Obesity and SARS-CoV-2: A population to safeguard. *Diabetes Metab Res Rev*, e3325, doi:10.1002/dmrr.3325 (2020).
Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. *Nat Rev Immunol* **8**, 737-744, doi:10.1038/nri2394 (2008).

Pettersson, U. S., Walden, T. B., Carlsson, P. O., Jansson, L. & Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. *PLoS One* **7**, e46057, doi:10.1371/journal.pone.0046057 (2012).

Chhetri, J. K. *et al.* Prevention of COVID-19 in Older Adults: A Brief Guidance from the International Association for Gerontology and Geriatrics (IAGG) Asia/Oceania region. *J Nutr Health Aging* **24**, 471-472, doi:10.1007/s12603-020-1359-7 (2020).

Liu, Y. *et al.* Association between age and clinical characteristics and outcomes of COVID-19. *Eur Respir J* **55**, doi:10.1183/13993003.01112-2020 (2020).

Bhasin, A. *et al.* Is BMI higher in younger patients with COVID-19? Association between BMI and COVID-19 hospitalization by age. *Obesity (Silver Spring)*, doi:10.1002/oby.22947 (2020).

Chen, G. & Yung, R. Meta-inflammaging at the crossroad of geroscience. *Aging Med (Milton)* **2**, 157-161, doi:10.1002/agm2.12078 (2019).

Dhochak, N., Singhal, T., Kabra, S. K. & Lodha, R. Pathophysiology of COVID-19: Why Children Fare Better than Adults? *Indian J Pediatr* **87**, 537-546, doi:10.1007/s12098-020-03322-y (2020).

Cao, Q., Chen, Y. C., Chen, C. L. & Chiu, C. H. SARS-CoV-2 infection in children: Transmission dynamics and clinical characteristics. *J Formos Med Assoc* **119**, 670-673, doi:10.1016/j.jfma.2020.02.009 (2020).

Chang, T. H., Wu, J. L. & Chang, L. Y. Clinical characteristics and diagnostic challenges of pediatric COVID-19: A systematic review and meta-analysis. *J Formos Med Assoc* **119**, 982-989, doi:10.1016/j.jfma.2020.04.007 (2020).

Zachariah, P. *et al.* Epidemiology, Clinical Features, and Disease Severity in Patients With Coronavirus Disease 2019 (COVID-19) in a Children's Hospital in New York City, New York. *JAMA Pediatr*, e202430, doi:10.1001/jamapediatrics.2020.2430 (2020).

Bode, B. *et al.* Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. *J Diabetes Sci Technol* **14**, 813-821, doi:10.1177/1932296820924469 (2020).

Liu, F. *et al.* ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. *Clin Gastroenterol Hepatol*, doi:10.1016/j.cgh.2020.04.040 (2020).

Chee, Y. J., Ng, S. J. H. & Yeoh, E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. *Diabetes Res Clin Pract* **164**, 108166, doi:10.1016/j.diabres.2020.108166 (2020).

Yang, J. K., Lin, S. S., Ji, X. J. & Guo, L. M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. *Acta Diabetol* **47**, 193-199, doi:10.1007/s00592-009-0109-4 (2010).

Rubino, F. *et al.* New-Onset Diabetes in Covid-19. *N Engl J Med*, doi:10.1056/NEJMc2018688 (2020).

Beigel, J. H. *et al.* Remdesivir for the Treatment of Covid-19 - Preliminary Report. *N Engl J Med*, doi:10.1056/NEJMoa2007764 (2020).

Wang, Y. *et al.* Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. *Lancet* **395**, 1569-1578, doi:10.1016/S0140-6736(20)31022-9 (2020).
Shen, C. et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. *JAMA*, doi:10.1001/jama.2020.4783 (2020).