Data Article

Dataset of allele, genotype and haplotype frequencies of four polymorphisms filaggrin gene in Russian patients with atopic dermatitis

Tatyana Belyaeva a, Irina Ponomarenko a, Evgeny Reshetnikov a,*, Alexey Polonikov b, Inna Aristova a, Anna Elykova a, Natalya Rudykh a, Mikhail Churnosov a

a Department of Medical Biological Disciplines, Belgorod State University, 308015, Belgorod, Russia
b Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041, Kursk, Russia

A R T I C L E I N F O

Article history:
Received 8 January 2020
Received in revised form 11 February 2020
Accepted 13 February 2020
Available online 21 February 2020

Keywords:
Single nucleotide polymorphism
Atopic dermatitis
Female
Male
FLG

A B S T R A C T

Data on the allele, genotype and haplotype frequencies of four single nucleotide polymorphisms (SNPs) (rs3126085, rs12144049, rs471144 and rs4363385) filaggrin (FLG) gene in Russian patients with atopic dermatitis are presented. Genome-wide association studies identified these SNPs could be significant genetic markers associated with atopic dermatitis. The frequencies of alleles, genotypes and haplotypes of four SNPs were calculated in 3 groups: entire sample, females and males. No significant differences in the allele, genotype and haplotype frequencies between males and females with AD patients were observed.

© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail address: reshetnikov@bsu.edu.ru (E. Reshetnikov).

https://doi.org/10.1016/j.dib.2020.105307
2352-3409/© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Data description

The dataset represents the raw data (supplementary Table), frequencies of alleles, genotypes (Table 1) and haplotypes (Fig. 1, Table 2) for four single nucleotide polymorphisms (SNPs) (rs3126085, rs12144049, rs471144 and rs4363385 of the FLG gene in Russian were not differed between males and females with AD. The polymorphisms at the FLG gene may associate with atopic dermatitis. The allele, genotype and haplotype frequencies are an important data for understanding the genetic architecture of different populations. The data can be used for studying the genetic basis of atopic dermatitis and other skin (i.e. psoriasis) or allergic disease (i.e. asthma) in various populations of the world.

Table 1

The frequencies of alleles and genotypes for single nucleotide polymorphisms (SNPs) rs3126085, rs12144049, rs471144 and rs4363385 in FLG gene in Russian patients with atopic dermatitis.

SNP genotype or allele	All (n = 350)	Female (n = 237)	Male (n = 113)
	n frequency	n frequency	n frequency
rs3126085			
AA	12 0.0342	9 0.0380	3 0.0265
GA	77 0.2200	52 0.2194	25 0.2212
GG	261 0.7457	176 0.7426	85 0.7522
A	101 0.1443	70 0.1477	31 0.1372
G	599 0.8557	404 0.8523	195 0.8628
rs12144049			
GG	26 0.0743	18 0.0759	8 0.0708
AG	109 0.3114	76 0.3207	33 0.2920
AA	215 0.6143	143 0.6034	72 0.6372
G	161 0.2300	112 0.2363	49 0.2168
A	539 0.7700	362 0.7637	177 0.7832
rs471144			
TT	4 0.0114	4 0.0169	0 0.0000
GT	42 0.1200	31 0.1308	11 0.0973
GG	304 0.8686	202 0.8523	102 0.9027
T	50 0.0714	39 0.0823	11 0.0487
G	650 0.9286	435 0.9177	215 0.9513
rs4363385			
AA	66 0.1886	45 0.1899	21 0.1858
GA	165 0.4714	113 0.4768	52 0.4602
GG	119 0.3400	79 0.3333	40 0.3540
A	297 0.4243	203 0.4283	94 0.4159
G	403 0.5757	271 0.5717	132 0.5841
rs12144049, rs471144 and rs4363385) filagrin (FLG) gene in Russian patients with atopic dermatitis (AD). These SNPs were associated with AD in previously published genome-wide association studies (GWAS) (Table 3) and also candidate gene studies [1–5], have significant regulatory potential (Table 4) and influence gene expression level (Table 5). The dataset frequencies of the SNP alleles, genotypes and haplotypes were divided into three groups: entire sample, females and males. The minor allele frequency (MAF) for rs3126085 = 0.1443 (female = 0.1477, male = 0.1372), rs12144049 = 0.2300 (female = 0.2363, male = 0.2168), rs471144 = 0.0714 (female = 0.0823, male = 0.0487) and rs4363385 = 0.4243 (female = 0.4283, male = 0.4159). No significant differences in the allele, genotype and haplotype frequencies were found between males and females with AD patients.

2. Experimental design, materials, and methods

2.1. Subjects selection

During a period between 2010 and 2016, AD patients were recruited at Dermatovenerologic dispensaries of Belgorod and Kursk regions (Russia). AD was diagnosed by experienced dermatologists according to the UK Diagnostic Criteria [6]. The participants were unrelated Russians born in the
Central Russia [7]. The exclusion criteria were as follows: malignant tumors, severe autoimmune diseases, chronic severe diseases of the vital organs (heart, respiratory or renal failure). A total of 350 patients with AD (237 female and 113 male) met these criteria. This work was approved by the Regional Ethics Committee of Belgorod State University and informed consents were obtained from all participants.

2.2. DNA analysis

The procedures of whole blood sampling, genomic DNA isolation were described elsewhere [8].

Four SNPs in the FLG gene such as rs3126085, rs12144049, rs471144 and rs4363385 were selected for the analysis according to the following criteria [9]: 1) a SNP was reported to be associated with AD risk by genome-wide association, 2) SNP possesses a regulatory potential (regSNP), 3) SNP is associated with changes in gene expression (eSNP), and 4) MAF > 5%.

The selected SNPs were found to be associated with the risk of AD, as previously reported by genome-wide association studies (Table 3) and were found to be functionally significant polymorphisms, i.e. they possess significant regulatory potential (Table 4), as determined by the HaploReg online tools, v4.1 update 05.11.2015 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php), and have impact on gene expression level (Table 5), as determined by the GTExportal, (http://www.gtexportal.org).

DNA samples were genotyped using the MALDI-TOF mass spectrometry iPLEX platform (Agena Bioscience Inc, San Diego, CA). To ensure quality control of genotyping blind replicates were included. Laboratory personnel involved in genotyping were completely blinded to patients’ information. The repeatability test for 5% of randomly selected samples was performed, yielded 100% reproducibility.

2.3. Statistical analysis

Genotypes for the polymorphisms were evaluated regarding their accordance to Hardy-Weinberg equilibrium (HWE) using the chi-square test. Differences in allele, genotype and haplotype frequencies between females and males with AD were assessed by the Kruskall-Wallis test. The linkage disequilibrium (LD) between rs3126085, rs12144049, rs471144 and rs4363385 FLG gene was analyzed using Haploview version 4.2 software (https://www.broadinstitute.org/haploview/haploview). The LD block structure was determined using the Solid Spine of the LD algorithm [10] provided by the Haploview 4.2. The degree of genetic linkage between the 4 SNPs in 3 groups was estimated as Lewontin’s coefficient D’ and squared Pearson’s correlation coefficient r². D’ values vary gradually from white color (D’ = 0, no LD between SNPs) to dark red (D’ = 1, SNPs are in complete LD). (Fig. 1).

Table 2
The frequencies of haplotypes for haploblock of single nucleotide polymorphisms (SNPs) rs3126085 and rs12144049 in FLG gene in Russian patients with atopic dermatitis.

Haplotype (rs3126085 and rs12144049)	All (n = 350), frequency	Female (n = 237), frequency	Male (n = 113), frequency
GA	0.638	0.626	0.656
GG	0.224	0.232	0.212
AA	0.138	0.142	0.132

Table 3
The literature data about associations of the studied polymorphisms with atopic dermatitis (GWAS data).

SNP	Position (hg38)	Association (significance)	Reference																
rs3126085	152,328,341	OR = 1.22 (p = 6 × 10^{-12})	[1]																
rs12144049	152,468,434	OR = 1.53 (p = 2 × 10^{-16})	[2]																
rs471144	152,481,779	OR = 1.54 (p = 2 × 10^{-16})	[2]																
rs4363385	153,016,845	OR = 1.23 (p = 2 × 10^{-17})	[2]																
chr	pos (hg38)	variant	Ref	Alt	AFR freq	AMR freq	ASN freq	EUR freq	SiPhy cons	Promoter histone marks	Enhancer histone marks	DNAse bound	Proteins	Motifs	NHGRI/EBI	GRASP QTL	Selected eQTL	GENCODE genes	dbSNP func annot
-----	-------------	---------	-----	-----	----------	----------	----------	----------	----------	----------------------	-----------------------	-------------	----------	-------	-----------	-----------	--------------	---------------	-----------------
1	152328341	rs3126085	G	A	0.53	0.36	0.59	0.15		7 tissues					Foxp3, TEF	1 hit	1 hit	26 hits	FLG-AS1 intronic
1	152468434	rs12144049	C	T	0.67	0.8	0.76	0.74		Irf, Obox6, ZEB1						2 hits	1 hit	23kb 3’ of RP1-91G5.3	
1	152481779	rs471144	G	T	0.06	0.08	0.18	0.08		LIV, GI					7 altered motifs	1 hit	1 hit	29kb 5’ of LCE5A	
1	153016845	rs4363385	T	C	0.78	0.54	0.66	0.59		7 altered motifs						3 hits	7 hits	4.2kb 5’ of SNORA31	
Table 5
The cis-eQTL values of the 4 SNPs of the FLG gene in skin (according to Genotype-Tissue Expression (GTEx) (http://www.gtexportal.org/)).

SNP	Gene expression	Reference allele	Alternative allele	Effect Size (β)	P-Value	Tissue
rs3126085	FLG	G	A	−0.22	0.0000000337	Skin - Sun Exposed (Lower leg)
rs12144049	CRNN	C	T	−0.3	0.0000000096	Skin - Sun Exposed (Lower leg)
rs471144	FLG-AS1	T	G	−0.51	0.000023	Skin - Not Sun Exposed (Suprapubic)
rs4363385	SPRR2B	T	C	0.27	0.0000000045	Skin - Sun Exposed (Lower leg)
LCE3C	T	C	−0.34	0.000000033	Skin - Sun Exposed (Lower leg)	
LCE3C	T	T	−0.34	0.000000033	Skin - Sun Exposed (Lower leg)	
LCE1D	T	C	−0.27	0.00000014	Skin - Not Sun Exposed (Suprapubic)	
SPRR1B	T	C	−0.18	0.00000025	Skin - Not Sun Exposed (Suprapubic)	
SPRR2B	T	C	−0.24	0.00000046	Skin - Not Sun Exposed (Lower leg)	

Acknowledgements

This is a self-funded work with no external sponsorship.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105307.

References

[1] L.D. Sun, F.L. Xiao, Y. Li, W.M. Zhou, H.Y. Tang, X.F. Tang, H. Zhang, H. Schaarasmidt, X.B. Zuo, R. Foelster-Holst, et al., Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population, Nat. Genet. 43 (2011) 690–694.

[2] H. Baurecht, M. Hotze, S. Brand, C. Bünig, P. Cormican, A. Corvin, D. Ellinghaus, E. Ellinghaus, J. Esparza-Gordillo, R. Fölster-Holst, A. Franke, C. Gieger, N. Huhner, T. Illig, A.D. Irvine, M. Kubesch, Y.A. Lee, W. Lieb, I. Marenholz, W.H. McLean, D.W. Morris, U. Mrowietz, R. Nair, M.M. Nothen, N. Novak, G.M. O’Regan, , Psoriasis Association Genetics Extension, S. Schreiber, C. Smith, K. Strauch, P.E. Stuart, R. Trembath, L.C. Tsoi, M. Weichenthal, J. Barker, J.T. Elder, S. Weidinger, H.J. Cordell, S.J. Brown, Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms [published correction appears in Am J Hum Genet. 2015 Dec 3;97(6):933], Am. J. Hum. Genet. 96 (2015) 104–120, https://doi.org/10.1016/j.ajhg.2014.12.004.

[3] H. Schaarasmidt, D. Ellinghaus, E. Rodriguez, A. Kretschmer, H. Baurecht, S. Lipinski, U. Meyer-Hoffert, J. Harder, W. Lieb, N. Novak, R. Fölster-Holst, J. Esparza-Gordillo, I. Marenholz, F. Ruschendorf, N. Huhner, E. Reischl, M. Waldenberger, C. Gieger, T. Illig, M. Kubesch, X.J. Zhang, F.L. Xiao, Y.A. Lee, A. Franke, S. Weidinger, A genome-wide association study reveals 2 new susceptibility loci for atopic dermatitis, J. Allergy Clin. Immunol. 136 (2015) 802–806, https://doi.org/10.1016/j.jaci.2015.01.047.

[4] T.M. Belyaeva, Role of interaction of polymorphic loci of the FLG gene in the formation of chronic true eczema in women, Res. Results Biomed. 5 (4) (2019) 20–30, https://doi.org/10.18413/2658-6533-2019-5-4-0-1 (In Russian).

[5] C. Shen, L. Liu, Z. Jiang, X. Zheng, L. Meng, X. Yin, J. Gao, Y. Sheng, J. Gao, Y. Li, F. Zhou, F. Xiao, L. Sun, Y. Cui, S. Yang, X. Zuo, X. Zhang, Four genetic variants interact to confer susceptibility to atopic dermatitis in Chinese Han population, Mol. Genet. Genom. 290 (2015) 1493–1498, https://doi.org/10.1007/s00438-015-1014-x.

[6] H.C. Williams, P.G. Burney, A.C. Pembroke, R.J. Hay, The U.K. working party’s diagnostic criteria for atopic dermatitis. III. Independent hospital validation, Br. J. Dermatol. 131 (1994) 406–416.
[7] I.N. Sorokina, N.A. Rudykh, I.N. Bezmenova, I.S. Polyakova, Population genetic characteristics and genetic epidemiological research of candidate genes associations with multifactorial diseases, Res. Results Biomed. 4 (4) (2018) 20–30, https://doi.org/10.18413/2313-8955-2018-4-4-0-3 (In Russian).

[8] I. Ponomarenko, E. Reshetnikov, O. Altuchova, A. Polonikov, I. Sorokina, A. Yermachenko, V. Dvornyk, M. Churnosov, Association of genetic polymorphisms with age at menarche in Russian women, Gene 686 (2019) 228–236, https://doi.org/10.1016/j.gene.2018.11.042.

[9] I.V. Ponomarenko, Selection of polymorphic loci for association analysis in genetic-epidemiological studies, Res. Result Med. Pharm. 4 (2) (2018) 40–54, https://doi.org/10.18413/2313-8955-2018-4-2-0-5 (in Russian).

[10] J.C. Barrett, B. Fry, J. Maller, M.J. Daly, Haplovew: analysis and visualization of LD and haplotype maps, Bioinformatics 21 (2005) 263–265.