Measurement of the Generalized Forward Spin Polarizabilities of the Neutron

M. Amarian, L. Auerbach, T. Averett, J. Berthot, P. Bertin, W. Bertozzi, T. Black, E. Brash, D. Brown, E. Burtin, J. Calarco, G. Cates, Z. Chai, J.-P. Chen, Seonho Choi, E. Chudakov, E. Cisbani, C. W. de Jager, A. Deur, R. DiSalvo, S. Dieterich, P. Djawotho, J. M. Finn, K. Fissum, H. Fonvieille, S. Frullani, H. Gao, J. Gao, F. Garibaldi, A. Gasparian, S. Gilad, R. Gilman, A. Glazazdin, C. Glashausser, E. Goldberg, J. Gomez, V. Gorbenko, J. Black, E. Brash, and D. Brown.

The study of nucleon structure is one of the most important subjects of modern physics. The dominant interaction responsible for nucleon structure is the strong interaction. High energy experiments have established Quantum Chromodynamics (QCD) as the gauge theory describing the strong interaction between quarks and gluons, which are the elementary constituents of the nucleon. At high energies, observables in QCD can be calculated perturbatively since the running coupling constant is small. However, at low energies, the coupling con-
stant becomes increasingly large and quarks and gluons are confined to color singlet objects known as hadrons. There, nucleon structure is usually described in terms of hadronic degrees of freedom, namely baryons and mesons. Chiral Perturbation Theory (χPT) is applicable in this region. The intermediate energy region is described by phenomenological models and will eventually be described by Lattice QCD calculations.

The polarizabilities of the nucleon are fundamental observables that characterize nucleon structure. They are related to integrals of the nucleon excitation spectrum. The electric and magnetic polarizabilities measure the nucleon’s response to an external electromagnetic field. Because the polarizabilities can be linked to the forward Compton scattering amplitudes, real photon Compton scattering experiments were performed to measure these polarizabilities. Another polarizability, associated with a spin-flip, is the forward spin polarizability γ0. It has been measured in an experiment at MAMI (Mainz) with a circularly polarized photon beam on a longitudinally polarized proton target. The extension of these quantities to the case of virtual photon Compton scattering with finite four-momentum-squared, Q^2, leads to the concept of the generalized polarizabilities. Generalized polarizabilities are related to the forward virtual Compton scattering (VCS) amplitudes and the forward doubly-virtual Compton scattering (VVCS) amplitudes. With this additional dependence on Q^2, the generalized polarizabilities provide a powerful tool to probe the nucleon structure covering the whole range from the partonic to the hadronic region. In particular, the generalized polarizabilities provide one of the most extensive tests of χPT calculations in the low Q^2 region. However, up to now, other than the real photon measurement of γ0 for the proton from MAMI, there are no experimental data available for the generalized spin polarizabilities for either the proton or the neutron.

In this paper, we present the first results for the neutron generalized forward spin polarizabilities γ0(Q^2) and δLT(Q^2) over the Q^2 range from 0.1 to 0.9 (GeV)^2. These results were extracted from a measurement of σTT and σLT, the doubly polarized transverse-transverse and longitudinal-transverse interference cross sections, or equivalently g_1 and g_2, the two inclusive spin structure functions, in the resonance region. Jefferson Lab’s high intensity polarized electron beam and a high density polarized 3He target were used for the measurement. The polarized 3He target provided an effective polarized neutron target because the ground state of 3He is dominated by the s state, in which the spins of the two protons anti-align and cancel. Therefore the spin of the 3He nucleus comes largely from the neutron. Doubly polarized inclusive cross sections were measured at six incident beam energies from 0.86 to 5.1 GeV, all at a fixed scattering angle of 15.5°. Data were collected for both longitudinal and transverse target polarization orientations, enabling the extraction of both σTT and σLT. The integrals of σTT and σLT of the neutron were extracted from those of the 3He following the prescription suggested by Ciofi degli Atti and Scopetta in Ref. to take into account the nuclear corrections. Details of the experiment can be found in Refs.

Following Ref. an unsubtracted dispersion relation for the spin-flip VVCS amplitude gTT with an appropriate convergence behavior at high-energy leads to

\[
\text{Re } \tilde{g}_{TT}(\nu, Q^2) = \frac{\nu}{2\pi^2} \int_{\nu_0}^{\infty} \frac{K(\nu, Q^2)\sigma_{TT}(\nu, Q^2)}{\nu^2 - \nu'^2} d\nu',
\]

(1)

where \(\tilde{g}_{TT} \equiv g_{TT} - g_{TT}^{pole} \), \(g_{TT}^{pole} \) is the nucleon pole contribution, \(\nu \) is the energy of the virtual photon and \(K \) is the virtual photon flux factor. The lower limit of the integration \(\nu_0 \) is the \(\pi \) production threshold on the neutron. A low energy expansion gives:

\[
\text{Re } \tilde{g}_{TT}(\nu, Q^2) = \left(\frac{2\alpha}{M^2} \right) I_A(Q^2)\nu + \gamma_0(Q^2)\nu^3 + O(\nu^5),
\]

(2)

with \(\alpha \) the electromagnetic fine-structure constant and \(M \) the neutron mass. \(I_A(Q^2) \) is the coefficient of the \(O(\nu) \) term of the Compton amplitude. Equation (2) defines the generalized forward spin polarizability \(\gamma_0(Q^2) \). Combining Eqs. (1) and (2), the \(O(\nu) \) term yields a sum rule for the generalized Gerasimov-Drell-Hearn (GDH) integral: the integration of \(\sigma_{TT} \), with 1/\(\nu \) weighting, is proportional to \(I_A \), the coefficient of the \(O(\nu^3) \) term of the VVCS amplitude. From the \(O(\nu^3) \) term, one obtains a sum rule for the generalized forward spin polarizability:

\[
\gamma_0(Q^2) = \frac{1}{2\pi^2} \int_{\nu_0}^{\infty} \frac{K(\nu, Q^2)\sigma_{TT}(\nu, Q^2)}{\nu^3} d\nu', \quad \nu_0 = \frac{\pi}{\nu^2 + M^2}.
\]

(3)

where \(x = Q^2/(2M\nu) \) is the Bjorken scaling variable.

Considering the longitudinal-transverse interference amplitude \(g_{LT} \), with the same assumptions, one obtains:

\[
\text{Re } \tilde{g}_{LT}(\nu, Q^2) = \left(\frac{2\alpha}{M^2} \right) I_3(Q^2) + Q\delta_{LT}(Q^2)\nu^2 + O(\nu^4)
\]

(4)

where the \(O(1) \) term leads to a sum rule for \(I_3(Q^2) \), which relates it to the \(\sigma_{LT} \) integral over the excitation spectrum. The \(O(\nu^2) \) term leads to the generalized longitudinal-transverse polarizability:

\[
\delta_{LT}(Q^2) = \frac{1}{2\pi^2} \int_{\nu_0}^{\infty} \frac{K(\nu, Q^2)\sigma_{LT}(\nu, Q^2)}{\nu^3} d\nu \quad \text{Re } \tilde{g}_{LT}(\nu, Q^2) = \frac{1}{2\pi^2} \int_{\nu_0}^{\infty} \frac{K(\nu, Q^2)\sigma_{LT}(\nu, Q^2)}{\nu^3} d\nu.
\]

(5)
The basic assumptions leading to the dispersion relations between the forward Compton amplitudes and the generalized spin polarizabilities are the same as those leading to the generalized GDH sum rule. However, since the generalized polarizabilities have an extra $1/\nu^2$ weighting compared to the GDH sum or I_3, these integrals converge much faster, which minimizes the issue of extrapolation to the unmeasured region at large ν. For the kinematics of this experiment, the contributions to the generalized polarizabilities from the unmeasured region are negligible.

At low Q^2, the generalized polarizabilities have been evaluated with χPT calculations \cite{12,13}. One issue in the χPT calculations is how to properly include the nucleon resonance contributions, especially the Δ resonance, which is usually dominating. As was pointed out in Ref. \cite{12,13}, while γ_0 is sensitive to resonances, δ_{LT} is insensitive to the Δ resonance. Measurements of the generalized spin polarizabilities will be an important step in understanding the dynamics of QCD in the Chiral Perturbation region.

We will first focus on the low Q^2 region where the comparison with χPT calculations is meaningful, and then show the complete data set from Q^2 of 0.1 GeV2 to 0.9 GeV2.

The results of $\gamma_0(Q^2)$ for the neutron are shown in the top panel of Fig. 1 as a function of Q^2 for the two lowest Q^2 values of 0.10 GeV2 and 0.26 GeV2. The statistical uncertainties are generally smaller than the size of the symbols. The systematic uncertainties are dominated by the uncertainties in the radiative corrections, the spectrometer acceptance and the beam and target polarization measurements. The data are compared with a next-to-leading order, $O(\rho^4)$, Heavy Baryon χPT (HBχPT) calculation \cite{12}, a next-to-leading-order Relativistic Baryon χPT (RBχPT) calculation \cite{13}, and the same calculation explicitly including both the Δ resonance and vector meson contributions. Predictions from the MAID model \cite{14} are also shown. At the lowest Q^2 point of 0.1 GeV2 the RBχPT calculation including the resonance contributions is in good agreement with the experimental result. For the HBχPT calculation without explicit resonance contributions, discrepancies are large even at $Q^2 = 0.1$ GeV2. This might indicate the significance of the resonance contributions or a problem with the heavy baryon approximation at this Q^2. The higher Q^2 data point is in good agreement with the MAID prediction, but the lowest data point at $Q^2 = 0.1$ GeV2 is significantly lower, consistent with what was observed for the generalized GDH integral results \cite{7} and the underestimation from MAID for the neutron GDH sum rule at the real photon point \cite{11}. Since the longitudinal-transverse spin polarizability δ_{LT} is insensitive to the dominating Δ resonance contribution, it was believed that δ_{LT} should be more suitable than γ_0 to serve as a testing ground for the chiral dynamics of QCD \cite{12,13}. The bottom panel of Fig. 1 shows δ_{LT} for the neutron compared to χPT calculations and the MAID predictions. It is surprising to see that the data are in significant disagreement with the χPT calculations even at the lowest Q^2, 0.1 GeV2. This disagreement presents a significant challenge to the present theoretical understanding. The MAID predictions are in good agreement with our results.

Table 1 lists the experimental results for all Q^2 values. Figure 2 shows the results of both γ_0 and δ_{LT} multiplied by Q^6 along with the MAID and χPT calculations. Also shown are the world data \cite{15} and a quenched Lattice QCD calculation \cite{16}, both at $Q^2 = 5$ GeV2.

It is expected that at large Q^2, the Q^6-weighted spin polarizabilities become independent of Q^2 (scaling) \cite{4}, and the deep-inelastic-scattering (DIS) Wandzura-Wilczek relation \cite{17} leads to a relation between γ_0 and δ_{LT}:

$$\delta_{LT}(Q^2) \rightarrow \frac{1}{3} \gamma_0(Q^2) \quad \text{as} \quad Q^2 \rightarrow \infty. \quad (6)$$

For inclusive DIS structure functions and their first mo-
TABLE I: Results for $\gamma_0(Q^2)$ and $\delta_{LT}(Q^2)$, along with statistical and systematic uncertainties

Q^2 (GeV2)	$\gamma_0 \pm$ stat. \pm syst. $(10^{-4}$ fm4)	$\delta_{LT} \pm$ stat. \pm syst. $(10^{-4}$ fm4)
0.10	$-2.02 \pm 0.11 \pm 0.36$	$0.364 \pm 0.092 \pm 0.091$
0.26	$-0.67 \pm 0.015 \pm 0.14$	$0.084 \pm 0.011 \pm 0.025$
0.42	$-0.200 \pm 0.005 \pm 0.039$	$0.018 \pm 0.004 \pm 0.005$
0.58	$-0.084 \pm 0.002 \pm 0.019$	$0.004 \pm 0.002 \pm 0.002$
0.74	$-0.037 \pm 0.001 \pm 0.009$	$0.002 \pm 0.001 \pm 0.001$
0.90	$-0.016 \pm 0.001 \pm 0.004$	$0.001 \pm 0.001 \pm 0.000$

In conclusion, we have made the first measurement of the forward spin polarizabilities $\gamma_0(Q^2)$ and $\delta_{LT}(Q^2)$ for the neutron in the Q^2 range from 0.1 GeV2 to 0.9 GeV2. The low Q^2 results were compared to next-to-leading order χPT calculations of two groups. The data for γ_0 at the lowest Q^2 is in good agreement with the RB χPT calculations including explicit resonance contributions. Although it was expected that χPT calculations should converge faster for δ_{LT} than for γ_0 as a result of smaller resonance contributions, we find significant disagreement between data and both χPT calculations for δ_{LT}. The discrepancy presents a significant challenge to our theoretical understanding at its present level of approximations and might indicate that higher order calculations are needed for $Q^2 \geq 0.1$ GeV2 and above. Our results, combining with future measurements at even lower Q^2 [18], will provide benchmark tests for our understanding of QCD chiral dynamics. Except at the lowest Q^2 point for γ_0, the rest of the new data agree well with the MAID model. It shows that the current level of phenomenological understanding of the resonance spin structure in these observables is reasonable. In the Q^2 range of this experiment, the expected high-Q^2 scaling behavior has not been observed yet.

We would like to acknowledge the outstanding support of the Jefferson Lab staff. We thank V. Bernard, D. Drechsel, T. Hemmert, B. Holstein, C. W. Kao, Ulf-G. Meissner, L. Tiator, M. Vanderhaeghen and their collaborators for theoretical support and helpful discussions. This work was supported by the U.S. Department of Energy (DOE), the U.S. National Science Foundation, the European INTAS Foundation, the Italian INFN and the French CEA, CNRS, and Conseil Régional d’Auvergne. The Southeastern Universities Research Association operates the Thomas Jefferson National Accelerator Facility for the DOE under contract DE-AC05-84ER40150.

[1] V. Olmos de Leon et al., Eur. Phys. J. A 10, 207 (2001); J. Tonnison et al., Phys. Rev. Lett. 80, 4382 (1998).
[2] J. Ahrens et al., Phys. Rev. Lett. 87, 022003 (2001).
[3] P. A. M. Guichon, G. Q. Liu and A. W. Thomas, Nucl. Phys. A 591, 606 (1995).
[4] D. Drechsel, B. Pasquini and M. Vanderhaeghen, Phys. Rep. 378, 99 (2003).
[5] J. Roche et al., Phys. Rev. Lett. 85, 708 (2000).
[6] C. Ciofi degli Atti and S. Scopetta, Phys. Lett. B 404, 223 (1997).
[7] M. Amarian et al., Phys. Rev. Lett. 89, 242301 (2002).
[8] M. Amarian et al., Phys. Rev. Lett. 92, 022301 (2004)
[9] S. B. Gerasimov, Sov. J. Nucl. Phys. 2, 598 (1965); S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966).
[10] D. Drechsel, S. S. Kamalov and L. Tiator, Phys. Rev. D 63, 114010 (2001).
[11] X. Ji and J. Osborne, J. of Phys. G 27, 127 (2001).
[12] C. W. Kao, T. Spitzenberg and M. Vanderhaeghen, Phys. Rev. D 67, 016001 (2003).
[13] V. Bernard, T. R. Hemmert and Ulf-G. Meissner, Phys. Rev. D 67, 076008 (2003).
[14] D. Drechsel, S. S. Kamalov and L. Tiator, Phys. Rev. D 63, 114010 (2001).
[15] P. L. Anthony, et al., Phys. Lett. B 493, 19 (2000); ibid. 553, 18 (2003).
[16] M. Gockeler, et al., Phys. Rev. D 63, 074506, (2001).
[17] S. Wandzura and F. Wilczek, Phys. Lett. B 72, 195 (1977).
[18] Jefferson Lab E97-110, J. -P. Chen,
A. Deur and F. Garibaldi, spokespersons;
http://hallaweb.jlab.org/experiment/E97-110/