Neonatal seizures and therapeutic hypothermia for hypoxic-ischemic encephalopathy

Dawn Gano¹,², Sharon A. Orbach³, Sonia L. Bonifacio¹, Hannah C. Glass¹,⁴

¹Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
²Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
³School of Medicine, University of California, San Francisco, San Francisco, CA, USA
⁴Department of Neurology, University of California, San Francisco, San Francisco, CA, USA

Correspondence: Hannah C. Glass
E-mail: Hannah.Glass@ucsf.edu
Received: February 18, 2013
Published online: March 15, 2014 February

Neonatal seizures occur in up to 4 per 1000 live births in the United States [¹-³]. The most common etiology of seizures in neonates is hypoxic-ischemic encephalopathy (HIE) due to perinatal asphyxia [²]. Seizures are an important risk factor for abnormal neurodevelopment and epilepsy after HIE [⁴-⁶], and severe burden in neonatal HIE is strongly related to brain injury detected by magnetic resonance imaging (MRI) [⁶,¹²,¹³]. There is increasing evidence from animal and human studies that seizures themselves may be harmful to the developing brain, and confer a risk for adverse outcomes independent of the severity of H1 injury detected on MRI [¹⁴-¹⁸].

Therapeutic hypothermia is the only known effective and clinically available treatment for neonatal HIE [⁷-¹¹]. Animal studies indicate that therapeutic hypothermia can reduce seizures and epileptiform activity in the setting of hypoxia-ischemia [¹⁹-²¹], however clinical data in human infants have been conflicting. Three observational studies showed a reduced incidence and severity of seizures among neonates with HIE who were treated with therapeutic hypothermia [²²-²⁴]. Two studies showed a lower burden of electrographic seizures by continuous electroencephalogram (EEG) monitoring: (1) among neonates with moderate encephalopathy [²²], and (2) after accounting for severity brain injury on MRI [²³]. In addition, in a small cohort from our center, neonates who were treated with therapeutic hypothermia and found to have arterial ischemic stroke on MRI had a lower likelihood of seizure as compared to those neonates with stroke who were not cooled [²⁴]. In contrast, meta-analyses of randomized controlled trials of therapeutic hypothermia for neonatal HIE have failed to show an association between therapeutic hypothermia and reduced seizure burden [⁸,⁹]. The potential anti-epileptogenic effects of therapeutic hypothermia have important clinical implications, since some seizure medications...
have limited effectiveness in newborns [25] and may be harmful [26].

We recently examined the relationship between therapeutic hypothermia and the cumulative incidence of seizures by examining a cohort of neonates with HIE who were admitted to our center either before or after the initiation of our cooling program [27]. Among 224 newborns included in our study, 151 were treated with hypothermia. Seizure monitoring in the subjects born prior to onset of the cooling program was at the discretion of the treating physician, whereas cooled newborns had continuous monitoring with amplitude-integrated EEG and conventional video EEG from admission until the completion of rewarming after therapeutic hypothermia. Cooled newborns with moderate encephalopathy were much less likely to have either clinical or electrographic seizures compared to non-cooled newborns (cooled: 26% vs. non-cooled: 61%, P<0.001), but there was no difference in the risk of seizures among newborns with severe encephalopathy (cooled: 87% vs. non-cooled: 83%, P=0.8). Since continuous EEG monitoring was implemented alongside hypothermia at our center, it is likely that EEG seizure frequency was under-estimated in the non-cooled group when monitoring was more limited and at the discretion of the treating physician, however this would lead to an under-estimate of the magnitude of reduced seizure burden associated with hypothermia and consequently does not change the interpretation of the results. Our data support preclinical and clinical studies that suggest therapeutic hypothermia may have anti-epileptogenic effects. Studies are underway to evaluate the relationship between seizure burden and neurodevelopmental outcome in this cohort.

Our results are consistent with clinical trial data that indicate that newborns with moderate encephalopathy benefit most from therapeutic hypothermia [28]. Further studies are needed to uncover the mechanisms that underlie the reduced risk of seizures associated with therapeutic hypothermia in newborns with moderate HIE, as well as the potential anti-epileptogenic role for hypothermia in other clinical settings.

Conflict of Interest:

The authors have no potential conflicts of interest to disclose.

Acknowledgements

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: University of British Columbia Clinician-Investigator Program (DG), the National Center for Advancing Translational Sciences, National Institutes of Health, through UCSF-CTSI grants TL1TR000144 (SAO), K23NS066137 (HCG), and the Neonatal Brain Research Institute. K23NS066137 award is from National Institutes of Health/National Institute of Neurological Disorders and Stroke.

References

1. Glass HC, Pham TN, Danielsen B, Towner D, Glidden D, Wu TW. Antenatal and intrapartum risk factors for seizures in term newborns: a population-based study, California 1998-2002. J Pediatr 2009;154:24-28. http://dx.doi.org/10.1016/j.jpeds.2008.07.008 PMid:18760807 PMCid:PMC2635430

2. Ronen GM, Penney S, Andrews W. The epidemiology of clinical neonatal seizures in Newfoundland: a population-based study. J Pediatr 1999; 134:71-75. http://dx.doi.org/10.1016/S0022-3476(99)70374-4

3. Lanska MJ, Lanska DJ, Baumann RJ, Kryscio RJ. A population-based study of neonatal seizures in Fayette Country, Kentucky. Neurology 1995;45:724-732. http://dx.doi.org/10.1212/WNL.45.4.724 PMid:7723962

4. Garfinkle J, Shevell MI. Cerebral palsy, developmental delay, and epilepsy after neonatal seizures. Pediatr Neurol 2011;44:88-96. http://dx.doi.org/10.1016/j.pediatrneurol.2010.09.001 PMid:21215907

5. Glass HC, Hong KJ, Rogers EE, Jeremy RJ, Bonifacio SL, Sullivan JE, et al. Risk factors for epilepsy in children with neonatal encephalopathy. Pediatr Res 2011;70:535-540. http://dx.doi.org/10.1203/PDR.0b013e31822f24c7 PMid:21796017 PMCid:PMC3189270

6. van Rooij LG, Toet MC, van Huffelen AC, Groenendaal F, Laan W, Zecic A, et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics 2010;125:e358-366. http://dx.doi.org/10.1542/peds.2009-0136 PMid:20100767

7. Hoehn T, Hansmann G, Bührer C, Simbrunner G, Gunn AJ, Yager J, et al. Therapeutic hypothermia in neonates. Review of current clinical data, ILCOR recommendations and suggestions for implementation in neonatal intensive care units. Resuscitation 2008;78:7-12. http://dx.doi.org/10.1016/j.resuscitation.2008.04.027 PMid:18554560

8. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic-ischemic encephalopathy. Cochrane Database Syst Rev 2013;1:CD003311. PMid:23440789
9. Shah PS. Hypothermia: a systematic review and meta-analysis of clinical trials. Semin Fetal Neonatal Med 2010;15:238-246. http://dx.doi.org/10.1016/j.siny.2010.02.003 PMid:20211588

10. Shankaran S, Barnes PD, Hintz SR, L护肤ook AR, Zaluska-Baxter KM, McDonald SA, et al. Brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 2012;97:F398-404. PMid:23084077 PMCid:PMC3722585

11. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K, et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 2012;366:2085-2092. http://dx.doi.org/10.1056/NEJMoa1112066 PMid:22646631 PMCid:PMC3459579

12. Nash KB, Bonifacio SL, Glass HC, Sullivan JE, Barkovich AJ, Ferriero DM, et al. Video-EEG monitoring in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neurology 2011;76:556-562. http://dx.doi.org/10.1212/WNL.0b013e31820f91a PMid:21300971 PMCid:PMC3053178

13. Glass HC, Nash KB, Bonifacio SL, Barkovich AJ, Ferriero DM, Sullivan JE, et al. Seizures and magnetic resonance imaging-detected brain injury in newborns cooled for hypoxic-ischemic encephalopathy. J Pediatr 2011;159:731-735. http://dx.doi.org/10.1016/j.jpeds.2011.07.015 PMid:21839470 PMCid:PMC3193544

14. Ben-Ari Y, Holmes GL. Effects of seizures on developmental processes in the immature brain. Lancet Neurol 2006;5:1055-1063. http://dx.doi.org/10.1016/S1474-4422(06)70626-3

15. McCabe BK, Silveira DC, Cilio MR, Cha BH, Liu X, Sogawa Y, et al. Reduced neurogenesis after neonatal seizures. J Neurosci 2001;21:107-116.

16. Glass HC, Glidden D, Jeremy RJ, Barkovich AJ, Ferriero DM, Miller SP. Clinical neonatal seizures are independently associated with outcome in infants at risk for hypoxic-ischemic brain injury. J Pediatr 2009;155:318-23. http://dx.doi.org/10.1016/j.jpeds.2009.03.040 PMid:19540512 PMCid:PMC3014109

17. Wirrell EC, Armstrong EA, Osman LD, Yager YJ. Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr Res 2001;50:445-454. http://dx.doi.org/10.1203/00006450-200106000-00005 PMid:11568286

18. Miller SP, Weiss J, Barnwell A, Ferriero DM, Latal-Hajnal B, Ferrer-Rogers A, et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology 2002;58:542-548. http://dx.doi.org/10.1212/WNL.58.4.542 PMid:11865130

19. Bennet L, Dean JM, Wassink G, Gunn AJ. Differential effects of hypothermia on early and late epileptiform events after severe hypoxia in preterm fetal sheep. J Neurophysiol 2007;97:572-578. http://dx.doi.org/10.1152/jn.00957.2006 PMid:17093117

20. Tooley JR, Satas S, Porter H, Silver IA, Thoresen M. Head cooling with mild systemic hypothermia in anesthetized piglets is neuroprotective. Ann Neurol 2003;53:65-72. http://dx.doi.org/10.1002/ana.10402 PMid:12509849

21. Wang Y, Liu PP, Li LY, Zhang HM, Li T. Hypothermia reduces brain edema, spontaneous recurrent seizure attack, and learning memory deficits in the kainic acid treated rats. CNS Neurosci Ther 2011;17:271-280. http://dx.doi.org/10.1111/j.1755-5949.2010.00168.x PMid:21951365

22. Low E, Boylan GB, Mathieson SR, Murray DM, Korotchikova I, Stevenson NJ, et al. Cooling and seizure burden in term neonates: an observational study. Arch Dis Child Fetal Neonatal Ed 2012;97:F267-272. http://dx.doi.org/10.1136/archdischild-2011-300716 PMid:22215799

23. Srinivasakumar P, Zempel J, Wallendorf M, Lawrence R, Inder T, Mathur A. Therapeutic hypothermia in neonatal hypoxic ischemic encephalopathy: electrographic seizures and magnetic resonance imaging evidence of injury. J Pediatr 2013;163:465-470. http://dx.doi.org/10.1016/j.jpeds.2013.01.041 PMid:23452588

24. Harbert MJ, Tam EW, Glass HC, Bonifacio SL, Haeusslein LA, Barkovich AJ, et al. Hypothermia is correlated with seizure absence in perinatal stroke. J Child Neurol 2011;26:1126-1130. http://dx.doi.org/10.1177/0883073811408092 PMid:21700899 PMCid:PMC3594994

25. Painter MJ, Scher MS, Stein AD, Armatti S, Wang Z, Gardiner JC, et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N Engl J Med 1999;341:485-489. http://dx.doi.org/10.1056/NEJM199908123410704 PMid:10441604

26. Bittigau P, Sifringer M, Genz K, Reith E, Pospischil D, Govindarajulu S, et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci U S A 2002;99:15089-5094. http://dx.doi.org/10.1073/pnas.222550499 PMid:12417760 PMCid:PMC137548

27. Orbach SA, Bonifacio SL, Kuzniewicz MW, Glass HC. Lower Incidence of Seizure Among Neonates Treated With Therapeutic Hypothermia. J Child Neurol 2013. http://dx.doi.org/10.1177/0883073813507978 PMid:24334344

28. Edwards AD, Broklehurst P, Gunn AJ, Halliday H, Juszczak E,
Levene M, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 2010;340:c363. http://dx.doi.org/10.1136/bmj.c363 PMid:20144981 PMCid:PMC2819259

To cite this article: Gano M, et al. Neonatal seizures and therapeutic hypothermia for hypoxic-ischemic encephalopathy. Mol Cell Epilepsy 2014; 1: e88. doi: 10.14800/mce.88.