Supplementary Information

Serological fingerprints link antiviral activity of therapeutic antibodies to affinity and concentration

Sebastian Fiedler1, Sean R. A. Devenish1, Alexey S. Morgunov1,2, Alison Ilsley1, Francesco Ricci1, Marc Emmenegger3, Vasilis Kosmoliaptsis4,5,6, Elitza S. Theel7, John R. Mills8,9, Anton M. Sholukh10, Adriano Aguzzi11, Akiko Iwasaki11,12,13,14, Andrew K. Lynn1, Tuomas P. J. Knowles1,2,15*

1Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
2Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
3Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
4Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, United Kingdom
5NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge CB2 0QQ, United Kingdom
6NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge CB2 0QQ, United Kingdom
7Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
8Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
9Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, Minnesota, USA
10Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
11Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
12Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
13Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
14Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
15Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom

*to whom correspondence should be addressed: tpjk2@cam.ac.uk
Table S1. Mutations within the spike protein shared among SARS-CoV-2 variants\(^4\)4.

Domain	Region	SARS-CoV-2 variant
		Alpha Beta Gamma Delta Kappa Omicron (BA.1) Omicron (BA.2) Eta Iota Lambda Mu
NTD		L18F L18F T19R T19I P26S P26- A67V A67V H69- H69- V70- V70- T95I T95I T95I G142- G142- V143- V143- Y144- Y144- Y144- Y144- Y145D Y145D Y145 D253G D253N
S1		G339D G339D S371L S371F S373P S373P S375F S375F K417N K417T K417N K417N N440K N440K L452R L452R T478K T478K E484K E484K E484Q E484A E484A E484K E484K Q493R Q493R Q498R Q498R N501Y N501Y N501Y N501Y N501Y N501Y N501Y Y505H Y505H
SD2		D614G H655Y H655Y H655Y H655Y N679K N679K N679K P681H P681R P681R P681R P681H P681H P681H P681H
S2		A701V A701V N764K N764K D796Y D796Y
HR1		D950N D950N Q954H Q954H N969K N969K
Table S2. Mutations within the spike protein unique among SARS-CoV-2 variants44.

SARS-CoV-2 variant	Alpha	Beta	Gamma	Delta	Kappa	Omicron (BA.1)	Omicron (BA.2)	Eta	Lota	Lambda	Mu
						Unique mutations					
	A570D	D80A	T20N	E156-	E154K	N211-	L24-	Q52R	L5F	G75V	R346K
	T716I	D215G	D138Y	F157-	Q1071H	L212I	P25-	Q677H	T76I	R246-	
	S982A	L241-	R190S	R158G	G446S	A275	F888L				
	D1118H	L242-	T1027I		G496S	V213G				S247-	
	A243-	V1176F			T547K	T376A				Y248-	
						N856K	D405N	L249-	T250-	P251-	
						L981F	R408S			G252-	
										F490S	
										T859N	
Table S3

Summary of unpublished microfluidic antibody affinity profiling data from SARS-CoV-2 convalescent samples shown in Figure 3. Results from samples collected by Blutspendedienst (BDS) Kanton Zürich and University Hospital Zurich (CH) have been published previously in *Life Sci. Alliance* 2021, 5 (2), e202101270.

Sample source: Working reagent for anti-SARS-CoV-2 immunoglobulin, NIBSC code 21/234. National Institute for Biological Standards and Control (UK)	K_D (nM)	[antibody] (nM)				
antigen	best fit	lower 95% CI	upper 95% CI	best fit	lower 95% CI	upper 95% CI
SARS-CoV-2 wt spike RBD	12.3	9.3	16.4	110	130	93.9
SARS-CoV-2 delta spike RBD	17.5	13	24.3	119	138	98.1
SARS-CoV-2 omicron spike RBD	30.1	23	39.9	59.3	71.7	46.4

Sample source: Fred Hutchinson Cancer Research Center, Seattle WA, USA	K_D (nM)	[antibody] (nM)				
antigen	best fit	lower 95% CI	upper 95% CI	best fit	lower 95% CI	upper 95% CI
SARS-CoV-2 wt spike RBD	11.2	3.2	26.8	246	76.7	452
SARS-CoV-2 wt spike RBD	9.3	4.1	18.9	70.5	40.5	110
SARS-CoV-2 wt spike RBD	6.9	3.6	12.2	676.8	597	813
SARS-CoV-2 wt spike RBD	9.4	5.8	13.2	240	196	281
SARS-CoV-2 wt spike RBD	17.4	12.4	23.1	495	414	583
SARS-CoV-2 wt spike RBD	8.6	3.2	25.9	424	230	777
SARS-CoV-2 wt spike RBD	40.4	23.5	64.9	239	161	324
SARS-CoV-2 wt spike RBD	15.1	0.29	37.0	104	3.1	202
SARS-CoV-2 wt spike RBD	4.5	0.01	11.2	190	67.7	349
SARS-CoV-2 wt spike RBD	10.9	3.9	27.4	170	77.3	275
SARS-CoV-2 wt spike RBD	9.3	0.06	28.5	71.7	22.0	127
SARS-CoV-2 wt spike RBD	5.8	1.9	11.0	140	99.6	192
SARS-CoV-2 wt spike RBD	25.4	11.9	60.9	249	127	400
SARS-CoV-2 wt spike RBD	9.7	0.01	1108	9.7	0.09	1416
SARS-CoV-2 wt spike RBD	9.4	3.4	16.1	1778	1176	2270
SARS-CoV-2 wt spike RBD	30.7	11.8	62.5	275	146	788
SARS-CoV-2 wt spike RBD	6.8	1.4	19.6	26.7	11.3	46
SARS-CoV-2 wt spike RBD	48.3	1.0	278	326	4.5	804
SARS-CoV-2 wt spike RBD	9.2	0.01	294	373	0.0	3441
SARS-CoV-2 wt spike RBD	6.5	2.8	11.7	135	108	178
SARS-CoV-2 wt spike RBD	51.8	20.0	124	340	103	1014
SARS-CoV-2 wt spike RBD	16.3	10.5	24.1	297	224	383
SARS-CoV-2 wt spike RBD	7.4	0.02	14.3	96.0	32.0	151
SARS-CoV-2 wt spike RBD	29.2	17.2	47.7	430	241	583
SARS-CoV-2 wt spike RBD	18.5	8.1	37.7	92.0	39.0	153

Sample source: Mayo Clinic, Rochester, MN, USA
antigen	K_o (nM)	[antibody] (nM)				
	best fit	lower 95% CI	upper 95% CI	best fit	lower 95% CI	upper 95% CI
SARS-CoV-2 wt spike RBD	0.55	0.011	1.5	2.3	1.2	5.6
SARS-CoV-2 wt spike RBD	0.02	0.010	1.98	22.3	14.6	66.5
SARS-CoV-2 wt spike RBD	1.0	0.013	2.8	19.4	13.1	26.2
SARS-CoV-2 wt spike RBD	0.02	0.010	0.67	3.3	2.0	10.4