Low Temperature Sintering of PZT

Anna Medesi
Albert-Ludwigs-University of Freiburg
Department of Microsystems Engineering (IMTEK)

Laboratory for Material Process Technology
Pb(Zr\textsubscript{x}Ti\textsubscript{1-x})O\textsubscript{3}

- Solid solution of PbZrO\textsubscript{3} and PbTiO\textsubscript{3}
- Ferroelectric functional ceramic
- Properties sensitive to Zr/Ti ratio
- Largest electromechanical coupling factor at the MPB: Zr / Ti = 52 / 48
Application using PZT films

Actuators
- Micromotors
- Micropumps

Sensors
- Displacement sensors
- Proximity sensors
- Pressure sensors
- Force sensors

Capacitors
- Ferroelectric RAMs

Transducers
- Lamb wave pumps
- Energy harvesters

PICMA Stack Actuator (PI Ceramic GmbH)

Pressure Sensor (SINTEF, Norway)

FeRAM Device (Fujitsu Semiconductor Europe)

Energy Harvester V25W (Mide Technology Corporation)
Fabrication of PZT films

Thin films < 3µm
- Deposition on glass/silicon/metal substrates
- CSD, CVD, PLD, Sputtering, EPD

Thick films > 50 µm
- No need for a substrate
- Tape casting method

MULTILAYER PIEZOELECTRIC BENDING TRANSDUCER

C. Eichhorn, 2011
Ceramic Multilayer Technology

NEW: Piezoelectric Multilayer with Ag-Electrodes
Challenge: Material Compatibility

\[T_{\text{SINTER}} (\text{PZT}) \approx 1200 \degree \text{C} \]

\[T_m (\text{Ag}) = 961 \degree \text{C} \]

PZT-ML are fabricated with high temperature stable inner electrodes from Pt or Ag/Pd alloys.

Ag can not be cofired together with PZT

Low Temperature Co-fired Piezo Ceramic

Metall prices [US-$/oz]

Ag	14.77
Pd	703.87
Pt	1,100.81

Source: finanzen.net, 18.11.2014
Further Benefits of PZT-based LTCC

MATERIAL COMPATIBILITY	STABILIZATION OF ELECTROMECH. PROP.	REDUCTION OF PROCESS COSTS
Co-firing of Hybrid ML structures with integrated LTCC-Layers	Reduction of evaporation of volatile PbO out of PZT during the sintering process, so that the subsequent piezoelectric components become more reliable	Less environmental pollution through less evaporation of Pb-compounds Less energy consumption through lowered sintering temperatures
Approaches for Lowering the T_{SINTER}

1. Hot-pressing in oxygen
2. Vacuumed-air-venting process
3. Using fine ball-milled powders
4. Using bimodal powders
5. **Liquid Phase Sintering Technology**
1. Incorporation of low-melting **metal oxides** into the ‘green’ unsintered ceramic

2. **Formation of a liquid-phase** at temperatures about 600 to 800 °C

3. **Acceleration of densification** through facilitating the PZT particles rearrangement

4. **Formation of sintering necks** with subsequent grain growth
Commercial Ferroelectric Hard PZT

PIC 181 (PI Ceramic)

- Withstands high mechanical and electrical stresses
- Properties change only hardly in dynamic long-term operations
- Relatively low permittivity
- High electromechanical coupling factors
- Very low dielectric losses
- Very high mechanical quality factor

Property	Value
T_C	330 °C
$\varepsilon_{33}^T / \varepsilon_0$	1200
$\varepsilon_{11}^T / \varepsilon_0$	1500
tan δ	$< 3 \cdot 10^{-3}$
k_{31}	0.33
k_{33}	0.66
k_p	0.56
d_{31}	-120 pC/N
d_{33}	265 pC/N
Q_m	2000

well suited for vibration energy harvesters driven in continuous use in resonance mode with only low intrinsic warming of the component
Investigated Sintering Aids

	Aid:						
1	Li₂CO₃	2	Li₂O	3	Bi₂O₃	4	V₂O₅
	Tₘ:						
	720°C						
	Han et al., 2011, Korea	Lee et al., 2005, Korea	Wang et al., 1992, China	Seo et al., 2011, Korea	Corker et al., 2000, Denmark	Ahn et al., 2006, Korea	

	Aid:						
5	MnO₂	6	PbO	7		8	
	Tₘ:						
	535°C						
	CORKER et al., 2000, Denmark	Yoo et al., 2005 Japan	Lee et al., 2005, Korea	Jin et al., 2003, Korea	Wang et al., 1992, China	Seo et al., 2011, Korea	

	Aid:						
9	Li₂CO₃ · Bi₂O₃ · CuO (1:1:4)	10	CuO				
	Tₘ:						
	1326°C						
	Corker et al., 2000, Denmark	Vötsch et al., 2007, Austria	Nielsen et al., 2002, Slovenia	Yoo et al., 2004, Korea	Wang et al., 2000, Japan	Nam et al., 2011, Korea	Lee et al., 2000, Korea
Preparation and Characterization of 20 different PZT-Sintering Aid Combinations

... for each SA in 2 volume fractions: 2 vol.% and 5 vol.%

Microstructure
- porosity density

Piezoelectric properties
- charge constant d_{33}

Mechanical stability
- breaking strength σ_0

Thermal behavior
- T_{SINTER}
Thermal Behavior

Dilatometry:
Detection of pellet shrinkage

Source: TA Instruments

Length ↓ with T ↑

Result for the composition:
PZT + 2 vol.% Li₂CO₃

$T_{SINTER} = 814 \degree C$
Highest Densification Rate

- Green dots: 2 vol.%
- Blue dots: 5 vol.%

sintering aids

- LBCu
- Bi$_2$O$_3$
- PbO·WO$_3$
- Cu$_2$O·PbO
- PbO
- Li$_2$CO$_3$
- Li$_2$O
- CuO
- V$_2$O$_5$
- Mn$_2$O

Lowest T_{SINTER}: PZT + 2 vol.% LBCu

Temperature / °C
Almost 100% of the theoretical density of PZT sintered @ 1200 °C:

PZT + 5 vol.% LBCu sintered @ 900 °C
Microstructure

PZT

PZT + 5 vol.% PbO·WO₃

PZT + 5 vol.% LBCu

porous
dense @ 900 °C
Mechanical Stability

Performed:
3-point-bending tests according to DIN EN 843-1 on > 10 specimens for each PZT-SA composition

Measured:
Breaking strength of each specimen

\[\sigma_f = \frac{3 \cdot F \cdot d}{2 \cdot b \cdot h^2} \]

Evaluated:
Characteristic breaking strengths with Weibull statistic

\[P_V (\sigma_f) = 1 - \exp \left(- \left(\frac{\sigma_f}{\sigma_0} \right)^m \right) \]

using Maximum-Likelihood-Methode

\[L = \prod_{j=1}^{N} \left(\frac{m}{\sigma_0} \right) \left(\frac{\sigma_{fj}}{\sigma_0} \right)^{m-1} \exp \left[- \left(\frac{\sigma_{fj}}{\sigma_0} \right)^m \right] \]
Mechanical Stability

\[\sigma_f \]

\[\sigma_0 \]

failure probability

breaking strength
Mechanical Stability

Characteristic Breaking Strength

- 2 vol.%
- 5 vol.%

Most stable films:

PZT + 5 vol.% LBCu

Very brittle!
Piezoelectric Properties

d_{33} values

- Green circle: 2 vol.%
- Blue circle: 5 vol.%

Sintering Aids	d_{33} (pC/N)
CuO	5
LBCu	42
PbO·WO₃	70
Cu₂O·PbO	82
Li₂CO₃	37
V₂O₅	71
Li₂O	74
Bi₂O₃	46
PbO	14
Mn₂O	14

Nearly the piezoelectricity of PIC 181 (d_{33} = 265 pC/N) is reached:

PZT + 5 vol.% CuO
We fabricated piezoelectric ML with inner electrodes from pure Ag.

10 sintering aids for hard PZT have been investigated.

Mechanical stability, microstructure, thermal behavior, and piezoelastic properties of low temperature sintered thick films (t ≈ 100 µm) were studied.

Films made of PZT + LBCu sintered @ 900 °C shows:

a) Lowest T_{SINTER} (641°C)

b) Highest density ($\rho_{rel} = 97\%$)

c) Highest mechanical stability ($\sigma_0 = 77$ MPa)

d) High piezoelectric properties ($d_{33} = 246$ pC/N)

Addition CuO has a positive effect on the piezoelectric properties of PZT.
THANK YOU
FOR
YOUR KIND ATTENTION!
Co-Casting – The New Manufacturing Process

For film thicknesses < 50 µm required green tape thicknesses: < 80 µm

Limit of accurately metallizing and stacking is reached

Co-casted piezoelectric ML with interdigital electrode structure

- Electrode thickness: 5-10 µm
- Ceramic layer thickness: 30-70 µm