The CFH Optical PDCS survey (COP) I: The Data

C. Adami

Department of Physics and Astronomy, Northwestern University, Dearborn Observatory, 2131 Sheridan, 60208-2900 Evanston, USA

IGRAP, Laboratoire d’Astronomie Spatiale, Traverse du Siphon, F-13012 Marseille, France

adami@lilith.astro.nwu.edu

B. Holden

Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA

holden@tokyo-rose.uchicago.edu

F.J. Castander

Observatoire Midi-Pyrénées, 14, Avenue Edouard Belin, 31400 Toulouse, France

Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA

fjc@ast.obs-mip.fr

R.C. Nichol

Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

nichol@andrew.cmu.edu

A. Mazure

IGRAP, Laboratoire d’Astronomie Spatiale, Traverse du Siphon, F-13012 Marseille, France

alain.mazure@astrsp-mrs.fr

M.P. Ulmer

Department of Physics and Astronomy, Northwestern University, Dearborn Observatory, 2131 Sheridan, 60208-2900 Evanston, USA

ulmer@curie.astro.nwu.edu

M. Postman

STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA
This paper presents and gives the COP (COP: CFHT Optical PDCS; CFHT: Canada-France-Hawaii Telescope; PDCS: Palomar Distant Cluster Survey) survey data. We describe our photometric and spectroscopic observations with the MOS multi-slit spectrograph at the CFH telescope.

A comparison of the photometry from the PDCS (Postman et al. 1996) catalogs and from the new images we have obtained at the CFH telescope shows that the different magnitude systems can be cross-calibrated. After identification between the PDCS catalogues and our new images, we built catalogues with redshift, coordinates and V_{PDCS}, I_{PDCS} and R_{COP} magnitudes. We have classified the galaxies along the lines of sight into field and structure galaxies using a gap technique (Katgert et al. 1996). In total we have observed 18 significant structures along the 10 lines of sight.

Subject headings: galaxies: clusters: general — cosmology: observations — cosmology: large scale structure of universe

1. Introduction

One of the main goals of the study of distant rich clusters of galaxies is to understand their origin and evolution. Clusters are invaluable cosmological probes, since the evolution of cluster abundances is strongly dependent on the underlying cosmology and therefore can constrain cosmological models (e.g. Bahcall et al. 1997, Oukbir & Blanchard 1992 and 1997, Reichart et al 1999, Nichol et al. 1999). In order to be able to exploit this potential, large statistically representative spectroscopic samples are, however, required.

There are two types of samples that are being developed: those based on optical selection criteria and those based on X-ray detections. Below z of about 0.1, optically selected studies (e.g. ENACS: Katgert et al. 1996) have had about as many clusters in them as those selected via their X-ray fluxes. Up until recently, however, the higher redshift work has been dominated by X-ray selection techniques (e.g. CNOC: Carlberg et al. 1996 SHARC: Romer et al. 2000; RDCS: Rosati et al. 1998; WARPS: Jones et al. 1998; Vikhlinin et al. 1998). To greatly enlarge the sample of detailed studies of redshift about 0.4 optically selected clusters, we have embarked on a photometric and redshift campaign based on the Palomar Distant Cluster survey (Postman et al. 1996, see also Holden et al. 1999). We have observed a significant number of regions on the sky (10) and obtained about 70 redshifts per line of sight. These pointings were known to contain candidate clusters of galaxies based on the PDCS studies (e.g. Postman et al. 1996, Holden et al. 1997).
The main purpose of this paper is to publish the COP survey data and to describe the data reduction so as to lay a foundation for future papers. The interpretation of the results is, therefore, given in later papers (e.g. Holden et al. 2000). The outline of this paper is as follows. In Section 2, we give the observational strategy. In Section 3, we describe the way we have reduced and analyzed our photometry. In Section 4, we describe the way we have reduced and analyzed our spectroscopy. In the last section, we give an analysis of the redshift and spatial distribution of the galaxies in our sample. The data are given in tables 6-15.

2. Target Selection and Observations

2.1. Observing strategy

Our project required the measurement of a large number of redshifts (∼ 100) of faint galaxies (\(V_{PDCS} \leq 23\)) for a significant number of clusters (∼ 10). It was necessary, therefore, to optimize our spectroscopic observations to get as many useful spectra as possible per night. We had photometric data in our fields (the PDCS catalog: Postman et al. 1996) prior to our CFH observations which considerably reduced the number of nights necessary to produce the spectroscopic catalogue (compared for example to the time needed to achieve the CNOC survey, Yee et al. 1996).

The first goal of the survey was to study the reality of the selected cluster candidates: are these real physical systems or are these only galaxy number count enhancements due to superposition effects (see Holden et al. 2000)? This placed a requirement on the number of redshifts we needed along the line of sight (Katgert et al. 1996). Moreover, we wanted to compute a global velocity dispersion for each cluster. This required ∼10 redshifts in the main groups (the clusters) to allow us to use robust estimators (see e.g. Adami et al. 1998c).

Assuming a line-of-sight contamination between 50 and 75% for a cluster at \(z \sim 0.4\) (see e.g. Carlberg et al. 1996) and a success rate of 70% (see Adami et al. 1998b) for our magnitude ranges, we needed to obtain between 50 and 60 spectra for each line of sight in the ideal situation of 1 cluster per line of sight. Since there could be 2 structures (or more) per pointing, however, we set a goal of measuring 100 spectra for each pointing (to yield about 70 redshifts).

In order to have a statistically representative set of more than 10 lines of sight with more than 70 redshifts, we have used the CFH-MOS multi-slits spectrograph for its high multiplex gain.

We wanted to measure the radial velocity of our targets with an uncertainty of less than 150 km s\(^{-1}\) because this precision is almost the same as the one obtained for ENACS and CNOC galaxies (e.g. Katgert et al 1996, Mazure et al 1996, Yee et al. 1996). This allows an accurate comparison with these two surveys. Following Adami et al. (1998b) and Yee et al. (1996), we have used the CFH O300 grism, which provides a dispersion of about 5 Å px\(^{-1}\) with the STIS2 CFH CCD (pixels of 0.43″). The precision in the velocity measurement depends of both the resolution given by the grism and slit width (theoretical limiting factor) and the observational conditions.
(observational limiting factor). The resolution of the O300 grism allowed us to reach the required velocity accuracy.

We observed extended objects that were a few arcsecs in diameter. In order to properly subtract the sky in our spectra, we used slitlet lengths of 11 arcsecs. This setup allowed us to place about 40 slitlets per mask for the full spectral range of about 6500 Å delivered by the grism to be used. The setup would require about 3 masks per pointing to reach our goal of 100, however. In this case, the amount of time needed to observe 10 line of sights would have been prohibitive. To reduce the amount of time required and increase the multiplexing capabilities of the instrument to place \sim70 slitlets on each mask, we used CFH blocking filters (see Table 1 and see also the CNOC survey: Yee et al. 1996). This was effective, since we had estimates of the cluster redshifts (Postman et al. 1996), which have been confirmed to be accurate (see Holden et al. 1997) enough for our purposes. These estimates allowed us to chose the right CFH filter so as to span a spectral range that included at least 3 lines for each spectrum (typically selected from [OII], H&K, G band, Hβ, [OIII] and Hα). For each of the two filters used, Table 1 shows the redshift range that gives dispersed spectra of galaxies at that redshift that include the [OII], H&K and G band spectral features. Table 2 gives the filter used for each line of sight.

2.2. Cluster candidate selection

We selected cluster candidates to match the CFH telescope capabilities. It was impossible with the telescope time availability to sample structures at redshifts significantly greater than 0.5 (see Lubin et al. 1998 and references therein for such a study). We decided, therefore, to restrict our sample to cluster candidates in the estimated redshift range $0.3 < z < 0.5$. We also selected clusters so as to be able to complete the sample in only two semesters at the CFHT. Therefore, targets were selected from the PDCS fields at 9 and 13 hours for the Spring semester and from the PDCS fields at 16, 0 and 2 hours for the Autumn semester. We selected also the candidate clusters with both a richness class 1 or greater and significant density peaks in the galaxy distribution (see Fig. 1, 2 and 3) and we used the highest galaxy density areas. These densest areas coincided with or were close to the cluster centers given in Lubin et al. (1996) in most cases. PDCS34 was the exception. We observed at a position about 5’ to the North of the given cluster center, slightly different from Lubin et al. (1996), as we found no galaxy concentration at the exact coordinates of PDCS34.

In order to describe the galaxy distribution on the sky, we have computed the local projected galaxy density and produced isodensity contours for the PDCS galaxies using an adaptative kernel technique (e.g. Adami et al 1998a and ref. therein) for each line of sight. This technique adapts the size of the map window to the local density of objects. The same technique has been used in Adami et al (1998a) to study the ENACS clusters. Where the galaxy density is higher, the window used to compute the density of objects is reduced to a value consistent with producing a statistically significant number of galaxies. Where the galaxy density is lower, the window is larger so as to
produce a similarly valid statistic for the density estimate. We have then produced the Figures 1, 2 and 3.

Finally, among the cluster candidates matching the previous conditions, we selected those ones that were detected in X-rays (Holden et al. 1997, 1999) whenever possible (only 3 of the 10 lines of sight).

2.3. Mask design

We optimized the number of slitlets per mask to increase the efficiency of the survey. It is possible to show that for a field with a very high density of targets, the optimal configuration is to place the slitlets in band configurations. With our limiting magnitude and slitlet width, however, this is not the best method to use because the density of targets is not always the same. To take this into account, we have adapted the Minimal Spanning Tree (MST hereafter) method (e.g. Dussert et al. 1986) in order to find the optimal configuration according to the filter used. We only give a brief description here: for a given set of points, the MST process finds the minimal total length of a tree covering this set (without a loop). If we fix the area (thus the length of tree) the MST exactly finds the maximum number of slits that can be put in that area (according to the constraints: size of the slits, magnitudes, filter .etc...). We have checked this method by showing that it gives a band configuration for a high density of targets. We show in Figures 4 and 5 the typical configuration given by this method for 2 of the lines of sight: PDCS62 and PDCS67. PDCS62 has a high density of targets (3.97 gal arcmin2) while PDCS67 has a lower target density (2.20 gal arcmin2). The slit distribution for PDCS62 is close to a band configuration.

Practically, we designed the masks in three steps. First, the primary potential targets were selected from the galaxies with a low enough magnitude to provide a reasonable success rate (percentage of observed galaxies with a redshift successfully measured) according to the planned exposure time. This exposure time was chosen to observe galaxies brighter than $V_{PDCS} \sim -19$ at the mean redshift of the survey ($z \sim 0.4$). This is about 1.5 magnitude fainter than the typical values of M^* in nearby clusters (see e.g. Rauzy et al. 1998).

We used the MST selection for these galaxies first. Table 2 gives these magnitude ranges with the real success rates. The mean value is 66%, only slightly lower than the expected value. Then, the secondary potential targets were selected from the galaxies in the next 0.5 magnitude bin (in principle too faint to provide the same S/N, see Table 2 for the V_{PDCS} magnitude range). Finally, if some space remained on the mask after selecting these two types of targets, we also assigned slitlets to contain other objects, typically in the V_{PDCS} magnitude range [22,23] or selected by "eye" during the night (tertiary targets).

We did not select the galaxies on the basis of their color, in order to avoid selection effects along the line of sight. Also, the second mask for PDCS62 has been partially designed by hand (during the night with the image acquired at the CFH telescope) because the PDCS photometric
3. The photometry

3.1. The PDCS data

We selected 10 lines of sight (see Table 2 and Fig. 1-3 and 6) for our observations which include 14 PDCS cluster candidates that are described in Postman et al. (1996). We have used the original PDCS photometry to select the galaxy targets. The PDCS photometry was carried out in the 4-shooter Palomar V and I filters and calibrated in the AB system. We will refer to it as V_{PDCS} and I_{PDCS} from now on. Postman et al. (1996) showed how this photometry compared to the Vega-system standard system. Here, we briefly describe the comparison between systems: the effective wavelength of the V_{PDCS} filter is ≈ 100 Å bluer and about 50% wider than the standard Johnson’s V. I_{PDCS} has nearly the same width as the Kron-Cousins I filter, but the effective wavelength is about 500 Å redder. The zero points of the V_{PDCS} and I_{PDCS} magnitudes are based on the AB magnitude system of Oke & Gunn (1983). The magnitudes of Vega are $V_{PDCS}=+0.03$ and $I_{PDCS}=+0.46$. The relation between (V_{PDCS}, I_{PDCS}) and (V, I) are:

$$V = V_{PDCS} - 0.02 - 0.056(V_{PDCS} - I_{PDCS}) + 0.012(V_{PDCS} - I_{PDCS})^2$$

and

$$I = I_{PDCS} - 0.43 + 0.089(V_{PDCS} - I_{PDCS})$$

The uncertainty for $V_{PDCS} - I_{PDCS}$ is almost 0.2 magnitude (Lubin 1996).

Since we used the PDCS star/galaxy classification to select the galaxies to observe, it is of interest to determine how well this selection performed. Given our observational strategy with blocking filters, faint stars remain unidentified because no obvious spectral feature falls within our spectral coverage. The same is true for faint galaxies at redshifts outside the optimal range of the filter used and for galaxies only detected at low signal-to-noise. The validity of the star/galaxy separation can only then be tested against other methods for these cases. We have thus compared the PDCS star/galaxy selection against the classification scheme of Sextractor (Bertin & Arnouts 1996). Figure 7 shows the comparison for the West PDCS62 spectroscopic field using a V image taken at CFH (see below). We have plotted the ANN (Artificial Neural Network) parameter of Sextractor characterizing the nature of the objects versus the V_{PDCS} magnitude for the PDCS objects classified as galaxies. The objects in Figure 7 are, therefore, only galaxies according to the PDCS classification. The Sextractor ANN parameter spans the range $[0,1]$, being close to 1 if the object is classified by Sextractor as a star and moving closer to 0 if the object resembles a galaxy. There is a low contamination rate at faint magnitudes: a few number of objects classified as galaxies by the PDCS are interpreted as stars if we use Sextractor. We conclude, therefore, that we optimized the selection of our targets as can be seen by the ”ridge line” near 0 in Figure 7.
However, according to the mask design technique, we targeted sometimes, in the tertiary-target-class, objects that were classified as stars by the PDCS, but which were later found to be galaxies. These objects represent, however, less than 3% of the sample and are not a significant source of error.

3.2. The CFH photometry

Besides the multislit spectroscopy, we have also imaged the fields of study with the CFHT. The field of view of the frames obtained was 10' × 10'. The imaged areas are shown in Fig. 6 (the photometric fields are slightly larger than the spectroscopic fields of Fig. 6 which cover about 8' × 8'). We used the R, V, 2503 and 4611 filters. The 2503 and 4611 filters were the blocking filters used for the spectroscopy (to limit the extent of the spectra) and are described in Table 1. They are, respectively, a very wide V filter and a filter similar to a combination of the V + R filters. The V filter is a standard Johnson filter (centered at 5470 Å, and FWHM of 880 Å) and the R filter is similar to the Kron-Cousins R but somewhat narrower without the red tail. It is centered at 6500 Å, and has a FWHM of 1280 Å. From now on we will refer to these filters as V_{COP} and R_{COP}.

All fields were imaged for 5 minutes, except for PDCS16 and the two first fields of PDCS38 that were exposed for 15 and 8 minutes, respectively (see Table 3). The images have been photometrically calibrated in the Vega system using several Landolt standard fields (Landolt 1992). Given that most of the fields were observed in only one filter, the photometric calibrations only include a extinction term and a zero point but not a color term. The uncertainties in our photometry were dominated by the fluctuations of the zero points, computed at different airmasses throughout the night, due to imperfect photometric conditions. The internal statistical errors within a field are negligible, except for the faintest objects. We estimate the systematic zero-point error in our measured magnitudes to be less than 0.15 mag for the observations taken in February 1998 (see Table 3) and less than 0.10 mag for the August 1998 observations. Table 3 summarizes our observations.

We used the V_{COP} exposure for the second field of PDCS62 to complete the V_{PDCS} data. This cluster was not completely covered by the PDCS photometry. To transform our magnitudes into a V_{PDCS}, we have computed the relation between V_{PDCS} and our V_{COP} for the first field of PDCS62 and applied it to the second field where the V_{COP} magnitudes were also available. The best fit obtained was:

$$V_{PDCS} - V_{COP} = -0.28(V_{COP} - block_{4611}) + 0.14$$

We plot finally on Fig. 8 the relations between V_{PDCS} and I_{PDCS}, and between V_{PDCS} and R_{COP} for all the galaxies in our sample.
3.3. Galactic extinction

The fields chosen for the PDCS were selected from high-latitude Gun & Oke (1975) survey areas. We avoided regions of high extinction. As expected, the galactic extinction values obtained from the Burstein & Heiles (1982) and Schlegel et al. (1998) reddening maps are low. The mean extinction in the V_{PDCS} band is 0.027 and lower than this value for the I_{PDCS} filter in all the fields (Postman et al. 1996). Given the small extinction values and our photometric errors we have chosen not to correct for extinction.

4. The CFH spectroscopy

4.1. Computing the redshifts

We have used both the MIDAS (public ESO reduction package) and IRAF (see e.g. Kurtz & Mink 1998) packages to reduce the 2-Dimensional spectra to 1-Dimensional spectra. The details of the method used can be found in Holden et al. (1999). We computed the redshift from the 1-dimensional spectra from emission lines and from cross-correlation techniques (e.g. Tonry & Davis 1979). If there were more than two emission lines (“only”), we computed the emission line redshift measuring the centroid of the identified lines using gaussian fits and averaging the redshifts. For absorption line dominated spectra, we cross-correlated the spectra with 4 different spectroscopic templates (M31, M32, a 20 Gyear old E/So Bruzual & Charlot (1993) model and finally a spectrum resulting from the combination of 1959 low-z high quality absorption line spectra: Kurtz & Mink 1998). We used the IRAF/RVSAO package to compute the redshifts. For absorption line dominated galaxies, we produced 4 estimates of the redshift, one from each template. To select a unique value, we proceeded as follows:

- 1st: eliminated all the redshift estimates lower than -0.015 assuming that even the infalling galaxies of the Virgo cluster have velocities greater than -4500 km s$^{-1}$. This limit is clearly an extreme value.

- 2nd: eliminated all the redshift estimates with a cross-correlation coefficient lower than 3 (see Kurtz & Mink 1998, Tonry & Davis 1979).

- 3rd: selected as the true redshift the estimate with the best cross-correlation coefficient if there was a gap of more than 1 with the second best coefficient.

- 4th: assumed the mean value of the redshifts with the best cross-correlation coefficients if they were in agreement (difference less than 300 km s$^{-1}$).

- 5th: if neither the 3rd nor 4th conditions were fulfilled, we have simply assumed the value of the redshift with the best cross-correlation coefficient.

Using this approach, we obtained 636 redshifts (see Table 2 and 4 for details). We present a
sub-sample of 4 spectra in Fig 9. The lower left spectrum is typical of our best signal to noise. It represents a galaxy at z=0.462 with a cross-correlation coefficient of 13.26. The lower right spectrum is a galaxy where we have used emission lines to deduce the redshift (z=0.658), e.g. the [OII] line shown on the figure (at \(\sim 6180\)\AA). This spectrum is typical of the worse spectra we used, but the cross-correlation method also was able to detect the CaII H&K lines around 6600\AA. The upper spectra (left and right) are typical of all our sample. The upper left spectrum is a galaxy at z=0.461 (cross-correlation coefficient of 4.33) and the upper right spectrum is a galaxy at z=0.459 with both absorption line features (cross-correlation coefficient of 3.54) and emission line features ([OII]).

4.2. Checking the redshifts

To check the validity of the assigned redshifts we have "eye-balled" all the emission line redshifts and also checked a randomly selected sample of absorption line dominated spectra. Our visual inspection confirmed the validity of our computationally derived redshifts.

For 19 objects, we also had two separate spectra and, hence, two independent measurements of the redshift. These objects were observed twice due to overlaps in observing runs done at CFH and at the 4 meter Mayall telescope (see Holden et al. 1997). In order to estimate the uncertainties of our redshifts, we have then plotted the percentage difference between the two estimates versus the cross-correlation coefficient \(r \) (Tonry & Davis 1979). Fig. 10 shows the 18 galaxies with less than 2.5\% of difference. The mean error for the redshift estimate is 0.7\% of the redshift (or 0.0016 in redshift). The 19th galaxy, although having a cross-correlation coefficient of \(r=4.2 \), had a discrepancy of 42\%. This is clearly due to one wrong redshift. This galaxy was observed twice at CFHT. The first observation provides a redshift of 0.15364 and a correlation coefficient of 4.2. The second observation yielded a redshift of 0.08958 and a correlation coefficient of 4.2. However, for this observation, the second best estimate (with another template) of the redshift is 0.15673 with a correlation coefficient of 3.71, still acceptable. Using the second value of the redshift, the difference is only 2\% for the initially discrepant galaxy. Assuming that these 19 galaxies are representative of our entire sample, we estimate that less than about 5\% of our sample has a false redshift assignment. This has a negligible effect on conclusions we draw based on these results.

5. Analysis

5.1. Final catalogues

We identified the objects we measured at CFH (redshift + R\textsubscript{COP} magnitude) with the galaxies in the PDCS survey in order to build catalogues with position (measured at CFH), redshift, R\textsubscript{COP} magnitude and V\textsubscript{PDCS} and I\textsubscript{PDCS} magnitude (Tables 6-15). This is also a way to estimate the
uncertainty for the coordinates of the galaxies. We found a mean difference between the PDCS coordinates and the coordinates measured at CFH of 3.5" ± 2.3". This is typically the uncertainty for the coordinates we give in Table 6-15.

We also classified the galaxies in redshift space as members of a structure or as field galaxies. This was a first step. A more detailed classification is discussed in Holden et al. (2000), but we give these results in order to present a complete overview of the data. In order to make this classification, we have searched the velocity distribution of each line of sight for gaps of more than 1000 km s$^{-1}$. If we had more than 5 galaxies between two successive gaps, we have called these galaxies a structure. This is exactly the same method used to define the structures in the ENACS catalog (Katgert et al. 1996). The method does not completely avoid the inclusion of some interlopers, but, to a first approximation, it defines the compact structures (gravitationally bound) in redshift space. We summarize the results in Table 4, Table 6 to 15 and in Figures 11 and 12.

5.2. Completeness and spatial representativity

We show in Fig. 13 the variation of the completeness level of the spectroscopic catalogue compared to the photometric catalogue. This completeness level C is defined as the ratio between the number of galaxies with a measured redshift (galaxies targeted and successfully measured) and the total number of galaxies. It is different from the success rate, which is only the ability to deduce the redshift of a target. We see on Fig. 13 that this level is constant around 35% from $V_{PDCS} = 16.5$ to $V_{PDCS} = 21.0$. This relatively low level is because we did not have time to put a slit on all the available galaxies. The percentages of the 2 brightest bins of Fig. 13 are based on a low number of galaxies, since, we targeted more faint galaxies than bright galaxies explicitly to try to keep constant the completeness level C. This constant sampling is important for studying the galaxy distribution along the line of sights because it prevents us from severe redshift selection effects. For the faintest galaxies, the completeness level drops down to 6% for $V_{PDCS} = 22.5$. These percentages were computed using all the lines of sight put together except PDCS61 for which the exposure time was very short. These percentages do not change considerably from pointing to pointing (except for PDCS61). For several types of analysis, it may be useful to give an analytical expression of the variation of the completeness level C. For the magnitudes brighter than $V_{PDCS} = 20.5$, $C = 35.5\%$. For the fainter magnitudes, assuming a power law model, the best fit is:

$$C = 10^{-0.44(V_{PDCS} - 24.07)}\%$$

To test for selection effects in the spatial distribution of the galaxies for which we measured redshift, we compared the spatial distribution of our redshift measured sample to that of all the PDCS galaxies. For this comparison, we have used a bidimensional Kolmogorov-Smirnov test as a function of the V limiting magnitude to determine the variation of this representativity level as a function of the photometric depth of the sample. A value of the representativity level given by the Kolmogorov-Smirnov test close to 100% means that the two distributions on the sky are very
similar: the galaxies with a measured redshift are a statistically representative sub-sample in terms of spatial distribution. A value lower than 90% means that this sub-sample is statistically different at the level of 10%. We see in Tab. 5 that, except for PDCS30-45, the two spatial distributions are indistinguishable for the magnitudes brighter than 21. Note that the case of PDCS30-45 is not easily explained (see Tab. 5).

6. Summary

We have presented and given the data gathered in the COP survey. The spectroscopic and photometric observations were performed with the MOS/STIS2 instrument during 6 nights at the CFH telescope with the grism O300 and 2 blocking filters to enhance the multiplex gain of MOS. We have used a method based on the MST theory to optimize the number of slits per mask. This allowed us to measure 636 redshifts for 10 PDCS lines of sight. These lines of sight were selected to hold PDCS candidate clusters, with significant peaks in the galaxy density distribution.

The success rate (percentage of targeted galaxies with a successfully measured redshift) was close to 70% for the primary targets (typically brighter than $V_{PDCS}=22$). The completeness level (percentage of all galaxies with a measured redshift) was about 35% down to $V_{PDCS}=20.5$. The galaxies with a redshift were proved to be a spatially representative sub-sample down to $V_{PDCS}=20.5$ (no significant spatial selection effects). Finally, the percentage of false redshifts was about 5%, based on 19 galaxies observed twice.

A comparison of the photometry from the PDCS (Postman et al. 1996) catalogs and from the new images we have obtained at the CFH telescope shows that the different magnitude systems can be cross-calibrated. This confirmation is important for the reliability of future works based on the multi-color photometry of COP. After identification between the PDCS catalogues and our new images, we built catalogues with redshift, coordinates and V_{PDCS}, I_{PDCS} and R_{COP} magnitude (Tab. 6-15).

We have classified the galaxies along the lines of sight into field and structure galaxies using a gap technique (Katgert et al. 1996). In total we have observed 18 significant structures along the 10 lines of sight (Tab. 4). As noted in the introduction, the interpretation of the results is given elsewhere (e.g. Holden et al. 2000).

CA thanks the staff of the Dearborn Observatory for their hospitality during his postdoctoral fellowship. The authors thanks the CFHT TAC for support. BH would like to acknowledge support from the following: NSF AST-9256606, NASA grant NAG5-3202, NASA GO-06838.01-95A, and the Center for Astrophysical Research in Antarctica, a National Science Foundation Science and Technology Center.
REFERENCES

Adami, C., Mazure, A., Katgert, P., Biviano, A., 1998 A&A, 336, 63 a
Adami, C., Nichol, R.C., Mazure, A., et al. 1998, A&A, 334, 765 b
Adami, C., Mazure, A., Biviano, A., Katgert, P., 1998 A&A, 331, 493 c
Bahcall, N.A., Fan, X., & Cen, R. 1997, 485, L53
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Bruzual, A.G., Charlot, S. 1993, ApJ, 405, 538
Burstein, D., Heiles, C. 1982, AJ, 110, 1507
Carlberg, R., Yee, H., Ellingson, E., et al. 1996, ApJ, 462, 32
Dussert, C., Rasigni, G., Rasigni, M., Palmari, J., Llebaria, A. 1986, Physical Review B., 34, 3528
Gunn, J.E., & Oke, J.B. 1975, ApJ, 195, 255
Holden, B.P., et al. 2000, AJ, in revision
Holden, B.P., Nichol, R.C., Romer, A.K., Metevier, A., Postman, M., Ulmer, M.P., & Lubin, L.M. 1999, AJ, in press
Holden, B.P., Romer, A.K., Nichol, R.C., Ulmer, M.P. 1997, AJ, 114, 1701
Jones, L.R., Scharf, C., Ebeling, H., et al. 1998, ApJ, 495, 100
Katgert, P., Mazure, A., Perea., J., et al. 1996, A&A, 310, 8
Kurtz, M.J., & Mink, D.J. 1998, PASP, 110, 934
Landolt, A.U. 1992, AJ, 104,340
Lubin, L.M., Postman, M., Oke, J.B., et al. 1998, AJ, 116, 584
Lubin, L.M. 1996, AJ, 112, 23
Lubin, L.M., Postman, M. 1996, AJ, 111, 1795
Mazure, A., Katgert, P., den Hartog, R., et al. 1996, A&A, 310, 31
Nichol, R.C., Romer, A.K., Holden, B.P., et al. 1999, ApJ, 521, L21
Oke, J.B., & Gunn, J.E. 1983, ApJ, 266, 713
Oukbir, J., & Blanchard, A. 1997, A&A, 317, 1
Oukbir, J., & Blanchard, A. 1992, A&A, 262, L21

Postman, M., Lubin, L.M., Gunn, J., et al. 1996, AJ, 111, 615

Rauzy, S., Adami, C., Mazure, A. 1998, A&A, 337, 31

Reichart, D.E., Nichol, R.C., Castander, F.J., et al. 1999, ApJ, 518, 521

Romer, A.K., Nichol, R.C., Holden, B.P., et al. 2000, ApJS, in press

Rosati, P., Della Cecca, R., Norman, C., Giacconi, R. 1998, ApJ, 492, L21

Schlegel, D.J., Finkbeiner, D., Davis, M. 1998, ApJ, 500, 525

Tonry, J., & Davis, M. 1979, AJ, 84, 1511

Vikhlinin, A., McNamara, B.R., Forman, W., Jones, C. 1998, ApJ, 502, 558

Yee, H.K.C., Ellingson, E., Carlberg, R.G. 1996, ApJS, 102, 269
Fig. 1.— upper left: galaxy isodensity contours for PDCS04. The position of the galaxies with a measured redshift are also plotted. The small squares are the field objects, the larger symbols (circles, squares, triangles) are the different structures defined in Tab. 4.; upper right: PDCS16 ; lower left: PDCS30/45 ; lower right: PDCS33. We note that East is to the right and that some field galaxies appear to be very close to cluster galaxies, but we checked that they were not the same objects.

Fig. 2.— upper left: PDCS34 ; upper right: PDCS38 ; lower left: PDCS57 ; lower right: PDCS61.

Fig. 3.— left: PDCS62 ; right: PDCS67.

Fig. 4.— Slit distribution for mask number 1 of PDCS62. The points are all the PDCS galaxies available in this field, the circled points and the crosses are the spectroscopic targets. Circles denote primary and secondary targets. Crosses are the tertiary targets. We show the region occupied by the spectrum and the region where the zero-order of the spectrum lies on the CCD (thick small rectangles along the bottom of the figure, visible only for the galaxies higher than 30.405 deg in declination). The x-axis is in hours and the y-axis is in degrees (equinox 2000).

Fig. 5.— Slit distribution for mask number 1 of PDCS67. The points are all the PDCS galaxies available in this field, the circled points and the crosses are the spectroscopic targets. Circles denote primary and secondary targets. Crosses are the tertiary targets. We show the region occupied by the spectrum and the region where the zero-order of the spectrum lies on the CCD (thick small rectangles along the bottom of the figure, visible only for the galaxies higher than 41.215 deg in declination). The x-axis is in hours and the y-axis is in degrees (equinox 2000). There are fewer slitlets then in Fig. 1 due to the lower target density.

Fig. 6.— The 9 PDCS lines of sight which are the most sampled by the COP survey. We note that the East is to the right. The x-axes are in hours and the y-axes in degrees (equinox 2000). Each small box in the four fields is the area sampled by one spectroscopic mask. The small labelled circles are the position of the candidate clusters of galaxies as given in Postman et al. (1996).

Fig. 7.— Sextractor star-galaxy separation only for the objects classified as galaxies by the PDCS for PDCS62 (all the points on the figure are galaxies according to the PDCS: this gives raise to the narrow distribution at the bright end). The y-axis is the ANN parameter from sextractor. A value close to 0 means that the object is likely to be a galaxy and a value close to 1 means that the object is likely to be a star (according now to Sextractor). The x-axis is the V_{PDCS} magnitude. We see that the PDCS and Sextractor classifications only disagree partially at faint magnitudes.

Fig. 8.— Relations between the V, I and R magnitudes for the 10 lines of sight of this paper. The two x-axis are the V_{PDCS} magnitude. The left yaxis is the I_{PDCS} magnitude and the right y-axis is the R_{COP} magnitude. The number of galaxies used in each graph is indicated. The two straight lines show the 1-σ envelope of the relations.
Fig. 9.— The lower left spectrum represents a galaxy at $z=0.4621\pm0.0002$ with a cross-correlation coefficient of 13.26. The lower right spectrum is a galaxy where we have used emission lines to deduce the redshift ($z=0.6579\pm0.0004$), e.g., the [OII] line at $\sim6180\text{Å}$. The cross-correlation method detects also the H&K lines around 6600Å. The upper spectra (left and right) are two galaxies at $z=0.4610\pm0.0003$ (cross-correlation coefficient of 4.33) and at $z=0.4587\pm0.0004$ with both absorption line features (cross-correlation coefficient of 3.54) and emission line features ([OII]). The caption of each spectrum is the name of the line of sight (for example PDCS62) and the sequence of the spectrum in the observation process (for example 48) plus the mask number (for example .1 for the first mask of PDCS62).

Fig. 10.— Error percentage of the redshift estimation for 18 galaxies observed twice. The zero level is symbolized with a thick dotted line. The x-axis is the Beers & Tonry cross-correlation coefficient computed with RVSAO and the y-axis is the percentage of difference between the two estimations of the redshift.

Fig. 11.— Redshift distribution along the lines of sight of PDCS04, PDCS16, PDCS30-45, PDCS33 and PDCS34. The x-axis is the redshift and the y-axis, the number of redshifts. The significant structures (detected with the gap method described in Section 5.1) are marked with an arrow.

Fig. 12.— Same caption as for Fig. 13, but for PDCS38, PDCS57, PDCS61, PDCS62 and PDCS67.

Fig. 13.— Figure of the variation of the completeness level C as a function of the V_{PDCS} magnitude. C is the ratio of the number of galaxies with a measured redshift (given inside parentheses) and of the total number of galaxies in the fields. We note that for the magnitudes fainter than 22.5, the completeness level is very low and not plotted on this figure.
Table 1. Transmission level, spectral range and redshift range for the 2 blocking filters. We note that filter 2503 is limited on the blue side by the spectral range of STIS2: $\sim 4400\,\text{Å}$. The redshift range is computed to include [OII], H&K and the G band in the spectrum.

CFH number	Transmission	Wavelength range	Redshift range
2503	83%	[4089;6835]Å	[0.20;0.56]
4611	93%	[5262;7042]Å	[0.43;0.61]
Table 2. Name of the PDCS cluster, number of redshifts along the line of sight, number of masks, blocking filter, percentage of Emission Line Galaxies along the line of sight, exposure time in minutes and 3-σ X-ray emission detection. The last three columns are the V_{PDCS} magnitude ranges where we selected the primary (1st), secondary (2nd) and tertiary targets (3rd). We give the success rate (percentage of targets with a successfully measured redshift) for the first magnitude bin, except for PDCS61 where the exposure time was drastically lower than expected.

Name	z	mask	filter	ELG	time	X-ray	1st	2nd	3rd
PDCS04	74	2	4611	15%	120m	-	[-;22.3] (65%)	[22.3;22.8]	[22.8;23]
PDCS16	53	2	4611	13%	120m	-	[-;22.3] (42%)	[22.3;22.8]	[22.8;23]
PDCS30/45	88	4	2503	23%	90m	-	[-;21.2] (55%)	[21.2;21.7]	[21.7;23]
PDCS33/32	71	2	4611	30%	120m	yes	[-;22.3] (71%)	[22.3;22.8]	[22.8;23]
PDCS34	51	2	2503	20%	100m	-	[-;21.5] (88%)	[21.5;22]	[22.3]
PDCS38/39	75	3	2503	29%	80m	-	[-;21.1] (62%)	[21.1;21.6]	[21.6;23]
PDCS57	77	2	4611	32%	100m	-	[-;22.1] (66%)	[22.1;22.6]	[22.6;23]
PDCS61	22	1	2503	25%	20m	yes	[-;21.1] (-)	[21.1;21.6]	[21.6;23]
PDCS62	84	2	4611	25%	100m	yes	[-;22.3] (81%)	[22.3;22.8]	[22.8;23]
PDCS67	41	1	4611	39%	180m	-	[-;22.3] (60%)	[22.3;22.8]	[22.8;23]
Table 3. Table of the images observed at CFH with number of exposures, filter, exposure time, observation date and seeing.

Name	field	filter	time	Date	seeing
PDCS04	1	R_{COP}	5mn	08/98	1.0"
PDCS16	1	R_{COP}	7+8mn	08/98	1.0"+1.0"
PDCS30-45	1	R_{COP}	5mn	02/98	1.0"
PDCS30-45	2	R_{COP}	5mn	02/98	1.0"
PDCS30-45	3	R_{COP}	5mn	02/98	1.3"
PDCS30-45	3	2503	5mn	02/98	1.2"
PDCS30-45	4	R_{COP}	5mn	02/98	1.0"
PDCS33-32	1	R_{COP}	5mn	02/98	1.8"
PDCS33-32	1	4611	5mn	02/98	0.9"
PDCS33-32	2	4611	5mn	02/98	0.8"
PDCS34	1	R_{COP}	5mn	02/98	1.4"
PDCS34	1	2503	5mn	02/98	1.1"
PDCS34	2	2503	5mn	02/98	1.1"
PDCS37-38-39	1	R_{COP}	8mn	02/98	0.8"
PDCS37-38-39	2	R_{COP}	8mn	02/98	0.9"
PDCS37-38-39	3	R_{COP}	5mn	02/98	1.1"
PDCS57	1	R_{COP}	5mn	02/98	0.8"
PDCS57	1	4611	5mn	02/98	1.1"
PDCS57	2	4611	5mn	02/98	1.0"
PDCS61	1	2503	5mn	02/98	1.0"
PDCS62	1	R_{COP}	5mn	02/98	0.9"
PDCS62	1	V_{COP}	5mn	02/98	1.0"
PDCS62	1	4611	5mn	02/98	1.0"
PDCS62	2	V_{COP}	5mn	02/98	1.2"
PDCS62	2	4611	5mn	02/98	1.0"
PDCS67	1	R_{COP}	5mn	08/98	2.1"
Table 4. Table of the detected structures along the 10 PDCS lines of sight. The columns are the name of the line of sight (los), the structure number, the mean redshift of this structure, the total number of redshifts in each structure and the number of emission lines galaxies in these structures are given. We note that the structures of this table are sampled with more than 5 galaxies.

los	struct.	mean z	number of z	em. lines galaxies
PDCS04	1	0.4608	5	0
PDCS04	2	0.5486	5	0
PDCS16	1	0.3984	12	0
PDCS30-45	1	0.2017	9	1
PDCS30-45	2	0.2500	14	4
PDCS30-45	3	0.3312	9	1
PDCS33	1	0.2106	5	2
PDCS33	2	0.5530	5	3
PDCS34	1	0.5541	5	0
PDCS38	1	0.3316	13	4
PDCS38	2	0.4691	13	4
PDCS57	1	0.1605	6	5
PDCS57	2	0.3033	6	2
PDCS57	3	0.4586	7	2
PDCS62	1	0.2948	5	0
PDCS62	2	0.4619	19	3
PDCS67	1	0.1686	6	0
PDCS67	2	0.4675	6	4
Table 5. Table of the spatial representativity levels of the sample of galaxies with a measured redshift compared to the sample of all the PDCS galaxies (as a function of the limiting magnitude). We have used a bidimensional Kolmogorov-Smirnov test as a function of the V limiting magnitude. A value close to 100 means that the two distributions (sample with redshift versus total sample) have a very similar spatial distribution. A value lower than 90 means that the 2 distributions are spatially differently distributed at the level of 10%. We have tested each of the masks of the PDCS30/45 line of sight to see if the low representativity level of this line of sight was due to one peculiar mask. We give also for each representativity level the number of galaxies with a measured redshift (only when we used more than 10 galaxies).

Mask	<20	<20.5	<21	<21.5	<22	<22.5					
PDCS04	-	99.9	(10)	99.9	(22)	99.9	(36)	99.9	(49)	99.9	(63)
PDCS16	-	-	99.9	(11)	99.9	(21)	99.9	(34)	65.9	(42)	
PDCS30-45 all	61.0	58.0	48.0	24.9	30.4	14.5					
PDCS30-45 1	-	57.7	11.5	2.8	2.2						
PDCS30-45 2	-	76.5	46.4	22.7	37.6	36.6					
PDCS30-45 3	-	-	77.0	2.2							
PDCS30-45 4	-	71.8	30.8	16.9	3.6						
PDCS33	-	99.9	(13)	99.9	(19)	99.9	(26)	99.9	(36)	68.3	(48)
PDCS34	-	99.9	(12)	99.9	(26)	99.9	(36)	74.4	(44)	99.9	(47)
PDCS38	-	99.9	(11)	48.2	51.1	17.8	36.8				
PDCS57	99.9	99.9	99.9	83.4	83.1	84.0					
PDCS61	-	99.9	(10)	99.9	(12)	68.7	(12)	89.5	(17)	75.8	
PDCS62	-	69.3	(17)	99.9	(30)	48.3	(47)	57.5	(62)	48.5	
PDCS67	-	99.9	(12)	99.3	(16)	71.4	(20)	52.9	(32)	69.8	(37)
Table 6. Data for the line of sight PDCS04.

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
58.1	0	0.03822	0.00016	26047.6	18830.9	99.99	99.99	17.17	
46.1	0	0.07219	0.0001	26524.6	18754.9	20.55	19.70	19.95	ea
32.1	0	0.07864	0.00045	26447.5	18625.1	21.32	21.98	20.40	
36.2	0	0.08469	0.00025	26193.2	18687.7	22.37	21.09	21.61	
5.1	0	0.08489	0.00018	26464.0	18476.7	22.95	22.28	22.09	
45.2	0	0.08958	0.00027	26287.0	18830.3	18.90	18.76	18.54	
38.1	0	0.09029	0.00042	26123.0	18675.5	22.35	20.94	20.92	
20.2	0	0.09804	0.00046	26511.9	18587.9	20.99	20.54	20.23	
39.1	0	0.09908	0.00025	26404.9	18673.9	18.54	17.98	18.17	
21.1	0	0.11893	0.00019	26076.5	18551.4	22.30	20.90	21.54	
55.1	0	0.12926	0.00069	26161.9	18813.2	21.45	21.12	21.35	
27.1	0	0.15211	0.00023	26340.7	18602.1	20.41	19.79	20.07	
57.1	0	0.15291	0.00027	26253.6	18822.1	20.95	19.21	19.21	
21.2	0	0.15723	0.00051	26366.6	18598.7	20.53	20.16	20.07	
19.2	0	0.16826	0.00017	26005.8	18590.7	18.50	17.47	17.90	
23.1	0	0.17542	0.00033	26131.1	18578.9	21.40	20.39	20.70	
38.2	0	0.17792	0.00022	26158.0	18704.4	22.88	22.26	22.32	
3.1	0	0.18688	0.00043	26212.4	18453.5	22.72	20.98	22.04	
35.1	0	0.18785	0.00015	26319.3	18658.3	20.81	20.34	21.80	
43.2	0	0.19399	0.00015	26295.8	18810.8	20.99	20.82	20.68	
1.2	0	0.22739	0.00019	26421.1	18424.3	21.18	19.87	20.61	
25.2	0	0.22861	0.00027	26330.7	18619.3	20.66	20.24	20.41	
65.1	0	0.23424	0.00029	26317.3	18871.0	22.78	21.20	22.09	
36.1	0	0.23991	0.00022	26192.1	18659.1	19.73	18.59	18.65	
15.1	0	0.25862	0.00020	26486.8	18508.3	21.65	19.92	19.91	
16.1	0	0.25862	0.00020	26186.7	18512.8	22.29	20.36	21.60	
64.1	0	0.28453	0.00028	26378.9	18863.0	20.17	18.98	19.49	
31.1	0	0.30815	0.00052	26057.3	18620.3	21.82	20.22	20.05	
29.1	0	0.32014	0.00052	26021.4	18608.3	20.77	20.34	20.41	
63.1	0	0.32852	0.00045	26364.6	18858.2	21.53	20.64	20.68	
20.1	0	0.33048	0.00037	26361.3	18540.0	21.45	21.51	21.03	
11.1	0	0.35667	0.00032	26395.0	18481.1	22.42	21.35	21.88	
12.1	0	0.36430	0.00028	26411.0	18486.8	22.60	21.88	22.11	
49.1	0	0.36471	0.00030	26274.2	18774.8	20.48	19.28	19.79	
51.1	0	0.36548	0.00025	26462.5	18795.0	21.22	19.48	20.12	
34.1	0	0.36858	0.00033	26381.5	18649.5	20.47	20.22	19.87	
11.2	0	0.37991	0.00043	26208.6	18513.8	22.09	21.32	21.74	
18.2	0	0.38130	0.00025	26490.8	18581.6	22.22	21.26	20.88	
15.2	0	0.38455	0.00027	26385.1	18553.1	20.90	19.61	20.20	
48.1	0	0.38479	0.00061	26305.7	18772.2	21.38	20.07	20.69	
9.1	0	0.39307	0.00056	26085.8	18484.5	21.86	21.02	21.28	
58.1	0	0.39731	0.00042	26047.0	18830.9	99.99	99.99	17.17	
Table 6—Continued

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
12.2	0	0.39788	0.00051	26068.2	18529.6	22.20	20.66	21.34	
44.1	0	0.41919	0.00036	26486.9	18732.8	21.05	19.64	20.05	
60.1	0	0.41953	0.00025	26112.3	18849.5	99.99	99.99	22.34	
35.2	0	0.42944	0.00024	26215.0	18680.2	99.99	99.99	23.12	
16.2	0	0.44758	0.00025	26297.3	18554.3	22.16	20.50	21.30	
10.1	1	0.45835	0.00035	26247.5	18481.9	21.08	20.13	20.46	
31.2	1	0.46039	0.00041	26142.2	18678.1	22.08	21.82	21.87	
39.2	1	0.46065	0.00028	26018.2	18730.9	22.27	20.73	21.01	
47.1	1	0.46155	0.00032	26174.2	18771.6	21.06	19.27	21.55	
50.1	1	0.46262	0.00028	26132.4	18789.2	22.84	21.61	22.22	
35.2	0	0.46830	0.00043	26437.2	18748.0	21.52	21.40	21.24	
7.1	0	0.51588	0.00028	26066.4	18481.9	21.90	21.65	21.56	
30.1	2	0.54633	0.00032	26516.3	18611.5	21.68	20.56	20.68	
26.1	2	0.54633	0.00026	26500.2	18589.6	22.32	20.25	20.92	
14.2	2	0.54929	0.00031	26252.1	18549.8	22.26	20.61	21.05	
17.2	2	0.55017	0.00027	26267.9	18566.6	20.85	19.60	21.22	
18.1	2	0.55084	0.00107	26265.5	18525.2	21.32	19.82	20.46	
4.1	0	0.56125	0.00023	26523.1	18467.7	21.84	20.57	21.28	
2.1	0	0.56304	0.00032	26279.2	18448.4	22.98	21.67	22.58	
3.2	0	0.57251	0.00017	26358.9	18439.2	21.73	21.26	21.51	
44.2	0	0.59975	0.00039	26265.3	18829.3	20.99	19.61	19.52	
61.1	0	0.61101	0.00049	26148.3	18852.2	20.33	19.42	19.95	
9.2	0	0.61803	0.00021	26462.6	18505.8	22.70	22.01	21.98	
52.1	0	0.62239	0.00022	26063.1	18803.7	22.83	22.00	22.46	
6.2	0	0.62694	0.00031	26446.1	18492.6	22.60	21.33	21.89	
13.1	0	0.65787	0.00044	26303.9	18502.3	21.84	21.12	22.85	
34.2	0	0.69069	0.00036	26060.7	18682.5	21.14	20.42	20.56	
28.1	0	0.69525	0.00026	26147.6	18606.1	21.10	19.57	20.31	
45.1	0	0.70461	0.00044	26034.2	18740.5	21.61	20.80	20.83	
29.2	0	0.73380	0.00032	26310.7	18670.7	20.99	19.99	20.36	
10.2	0	0.75738	0.00043	26282.8	18511.6	22.49	21.56	22.06	

*a 1st column: observed galaxy sequence (58.1 means 58th galaxy observed in the mask 1). 2nd column: field/group classification, 0 means field galaxy, 1 means first group ... etc... 3rd column: redshift (the last digit is given only for information, but is not significant according to the error). 4th column: redshift error. 5th column: alpha coordinates from the CFH observations in arcsec (equinox 2000). 6th column: delta coordinates from the CFH observations in arcsec (equinox 2000). 7th column: PDCS V magnitude. 8th column: PDCS I magnitude. 9th column: CFH R magnitude. 10th column: spectral features: "em" means redshift from only emission lines, "ea" means redshift from emission lines but consistent with absorption line features, " " means redshift only from absorption line features."
Table 7. Data for the line of sight PDCS16.

Num. group	z	err-z	Alpha	Delta	V	I	R	type
2.35	0	0.01236	133519.9	2008.3	17.22	18.65		
2.30	0	0.02487	133484.2	2148.5	19.59	20.22		
2.51	0	0.02856	133654.9	2059.6	20.30	20.32		
1.20	0	0.07260	133377.8	1978.0	21.30	21.45		
1.52	0	0.07968	133640.3	1932.0	20.14	20.09		
1.45	0	0.08275	133592.8	2041.8	20.32	20.71		
1.15	0	0.12853	133302.8	1803.6	22.15	21.74		
2.49	0	0.15218	133643.0	2145.9	21.16	21.27		
1.36	0	0.16186	133514.5	1860.9	18.44	23.57		
1.1	0	0.18858	133190.5	1800.0	20.70	19.57		
2.8	0	0.23391	133258.5	1915.4	21.86	21.22		
2.32	0	0.25228	133496.6	2063.1	21.72	21.96		
1.4	0	0.26209	133220.2	1808.0	20.70	19.90		
2.23	0	0.26248	133415.1	2041.6	20.46	21.27		
2.3	0	0.27340	133227.2	2023.9	20.41	20.68		
2.33	0	0.28879	133509.1	1964.8	23.21	19.47		
2.4	0	0.29124	133226.6	1797.6	19.68	20.04		
2.11	0	0.30205	133279.0	2106.8	21.70	21.06		
2.7	0	0.30223	133247.7	1717.4	18.19	18.65		
1.11	0	0.30250	133422.1	2113.4	99.99	99.99		
2.15	0	0.32883	133315.7	2131.0	21.35	21.86		
1.14	0	0.36257	133297.9	2040.1	18.46	19.21		
2.12	0	0.38681	133285.5	1805.0	22.75	21.95		
2.1	1	0.39258	133340.4	1940.4	99.99	99.99		
2.46	1	0.39459	133617.1	1863.3	21.17	21.87		
2.41	1	0.39612	133572.2	1946.6	21.02	19.92		
1.29	1	0.39623	133452.4	1974.5	22.59	21.36		
2.38	1	0.39682	133540.9	2135.4	19.68	20.34		
2.58	1	0.39831	133716.4	2133.0	19.11	19.90		
2.45	1	0.39931	133602.5	1766.1	20.37	18.86		
2.48	1	0.39959	133631.1	1955.4	21.38	20.13		
1.46	1	0.40072	133598.2	1749.0	17.99	18.46		
2.50	1	0.40092	133639.7	1729.6	21.49	20.37		
2.59	1	0.40191	133718.0	1790.9	20.32	20.45		
2.43	1	0.40232	133587.9	2123.8	21.41	19.96		
2.36	0	0.41871	133532.8	1905.0	21.70	20.53		
1.42	0	0.42010	133716.2	2146.4	99.99	99.99		
2.6	0	0.42539	133244.5	1916.9	21.50	20.24		
2.18	0	0.44978	133348.1	2050.8	20.92	21.72		
2.13	0	0.46602	133293.6	2003.4	19.92	20.63		
2.25	0	0.47141	133425.4	1983.7	21.56	21.45		
2.0	0	0.51587	133742.8	2108.9	20.97	21.43		
Table 7—Continued

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
2.34	0	0.47633	0.00024	133509.1	1791.9	22.23	20.44	21.10	
2.9	0	0.48952	0.00019	133263.4	2092.9	22.11	20.14	20.98	
2.5	0	0.49257	0.00041	133236.9	1734.8	20.86	19.88	20.18	
1.5	0	0.49893	0.00086	133235.8	1999.4	21.66	19.79	20.33	
1.16	0	0.51073	0.00032	133329.8	1795.3	22.68	22.24	22.19	
1.17	0	0.51336	0.00031	133337.3	2075.1	22.34	21.26	21.51	
2.14	0	0.56521	0.00021	133306.6	1820.3	22.39	21.90	22.20	
1.21	0	0.60139	0.00019	133355.2	1900.4	22.57	21.28	21.99	
2.44	0	0.61066	0.00023	133598.7	1990.3	21.81	20.01	20.64	
1.27	0	0.65351	0.00026	133442.1	2112.8	21.60	20.22	20.75	
2.55	0	0.65660	0.00025	133687.3	2062.0	22.74	21.53	22.28	
Table 8. Data for the line of sight PDCS30/45.

Num. group	z	err-z	Alpha	Delta	V	I	R	type
1.43	0	0.02042	535818.8	169644.2	21.63	20.52	21.00	
2.45	0	0.03008	535322.0	169621.6	20.76	20.32	20.39	
3.4	0	0.05074	535101.1	170261.3	20.45	20.13	19.85	em
2.15	0	0.07501	534807.9	169763.8	19.59	19.09	19.17	
1.11	0	0.07601	535276.6	169833.2	20.74	19.69	20.03	
3.18	0	0.08746	535375.4	170312.4	21.63	19.88	20.38	
2.37	0	0.08779	535191.3	170003.5	99.99	99.99	17.05	
2.28	0	0.08841	535009.9	169782.8	20.54	19.02	19.68	
2.20	0	0.09886	534893.8	169884.0	20.91	19.17	19.85	
2.14	0	0.10364	534789.0	169828.2	22.99	22.56	22.37	
39.4	0	0.10447	535371.7	169975.4	21.57	20.55	99.99	
1.45	0	0.12380	535831.7	169718.4	21.93	20.99	21.33	
1.29	0	0.12575	535604.4	170052.8	22.16	20.84	20.61	
43.4	0	0.14599	535236.7	170362.4	22.49	21.23	21.07	
2.17	0	0.14811	534844.6	170038.8	19.42	18.59	18.85	
3.27	0	0.15894	535501.3	170037.7	22.03	20.34	21.10	
40.4	0	0.16247	535286.9	170001.0	22.22	21.03	21.57	em
3.39	0	0.16575	535684.3	170383.3	21.87	20.58	20.44	
1.34	0	0.16980	535683.2	169933.0	22.64	22.16	22.24	
26.4	0	0.18926	535003.4	169960.3	21.66	20.45	20.79	
2.9	1	0.19639	534719.9	169645.7	20.47	19.39	19.74	
2.41	1	0.19648	535242.2	169656.5	18.50	17.19	17.64	
1.9	1	0.19760	535246.4	169656.5	18.50	17.19	17.64	
1.48	1	0.19840	535895.5	169893.7	22.70	21.54	21.63	em
7.4	1	0.20075	534674.5	170220.6	19.46	18.36	18.63	
3.38	1	0.20321	535196.7	169725.2	19.88	18.52	18.97	
3.40	1	0.20548	535689.2	170014.3	21.84	21.62	21.51	
1.2	1	0.20782	535138.4	169674.5	99.99	99.99	18.84	
18.4	1	0.21064	534856.0	170066.9	21.58	21.07	20.93	
2.35	0	0.21475	535152.4	169854.8	99.99	99.99	19.79	
2.5	0	0.21986	534649.1	169966.4	20.38	20.02	19.42	
2.34	0	0.23850	535141.6	170006.4	21.29	19.39	20.22	
38.4	2	0.24768	535371.7	170101.1	20.38	18.98	19.37	
2.43	2	0.24893	535281.5	169818.8	20.07	18.97	19.40	
2.47	2	0.24933	535359.2	169740.4	99.99	99.99	19.87	
41.4	2	0.24959	535225.3	170107.6	21.97	21.33	21.51	em
13.4	2	0.24977	534760.9	170219.2	20.75	19.54	19.97	
2.38	2	0.25010	535192.4	169724.9	19.88	18.52	18.97	
1.4	2	0.25016	535176.2	169825.0	19.20	18.12	18.37	
28.4	2	0.25027	535073.6	169957.1	20.10	19.57	19.66	
1.5	2	0.25047	535194.5	169724.9	19.88	18.52	18.97	
Table 8—Continued

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
1.14	2	0.253	0.00062	535337.6	169871.4	20.37	19.95	20.11	em
1.38	2	0.256	0.00061	535730.8	169742.9	22.78	22.42	22.11	em
3.32	2	0.258	0.00029	535581.7	170295.8	19.53	18.24	18.59	
3.28	2	0.261	0.00029	535525.0	170241.5	20.72	19.63	19.76	
1.12	0	0.287	0.00114	535296.6	169810.2	20.12	18.77	19.35	
2.44	0	0.288	0.00041	535293.9	169790.0	19.63	18.64	18.96	ea
1.10	0	0.289	0.00027	535258.3	169841.5	19.50	18.07	18.56	
3.17	0	0.291	0.00036	535355.5	169987.0	21.73	21.24	19.99	
24.4	3	0.331	0.00053	535762.6	170015.8	20.72	20.34	20.36	
19.4	3	0.331	0.00033	534874.3	170271.7	19.73	18.33	18.86	
35.4	3	0.331	0.00013	535185.4	170147.5	20.34	18.77	19.26	
3.1	3	0.331	0.00024	535128.1	170163.4	20.88	19.28	19.74	
2.39	3	0.332	0.00048	535208.0	169632.7	20.92	19.92	20.22	
24.4	3	0.333	0.00015	534984.5	170133.8	24.65	19.80	19.62	
20.4	0	0.348	0.00040	534900.8	170149.0	20.73	19.66	20.02	
2.32	0	0.358	0.00033	535109.2	170022.6	22.74	21.66	21.38	
2.10	0	0.359	0.00020	534723.7	169912.8	21.34	19.33	19.88	
3.16	0	0.363	0.00020	535385.7	170101.1	20.38	18.98	19.37	
1.41	0	0.371	0.00045	535784.8	169997.8	19.92	19.10	19.22	
1.32	0	0.373	0.00021	535655.7	170059.7	21.15	19.97	20.30	
1.7	0	0.379	0.00038	535209.7	169632.7	20.92	19.92	20.22	
2.36	0	0.382	0.00050	535175.1	169825.0	19.20	18.12	18.37	
27.4	0	0.386	0.00029	535039.0	170009.3	20.80	19.29	19.88	
3.54	0	0.392	0.00026	535855.2	169966.8	99.99	99.99	19.57	
2.12	0	0.393	0.00027	534750.7	169629.5	21.64	20.85	20.68	
2.4	0	0.416	0.00035	534635.1	169970.4	20.74	18.82	18.95	
2.42	0	0.456	0.00017	535256.6	169724.5	21.21	19.30	19.84	
1.22	0	0.456	0.00028	535486.7	169828.9	21.61	20.05	20.70	
2.18	0	0.458	0.00108	534853.3	169802.6	21.22	20.72	20.73	
2.30	0	0.464	0.00049	535059.5	169904.9	20.39	18.95	19.39	
1.47	0	0.468	0.00081	535873.9	169719.8	22.43	21.42	21.77	
3.22	0	0.469	0.00034	535417.0	170077.0	21.28	19.73	20.34	
29.4	0	0.470	0.00111	535018.0	170251.9	22.43	20.92	21.43	
2.21	0	0.470	0.00040	534904.0	169750.4	21.52	21.18	21.27	
2.26	0	0.514	0.00030	534982.9	169647.1	99.99	99.99	21.31	
2.13	0	0.515	0.00026	534766.9	169724.5	22.09	20.23	20.77	
2.25	0	0.545	0.00055	534966.7	169980.1	21.38	20.26	20.58	
Table 8—Continued

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
1.23	0	0.56117	0.00035	535511.0	170026.2	22.42	20.86	21.42	
1.36	0	0.66670	0.00027	535707.0	169780.7	21.71	20.52	20.81	ea
1.31	0	0.67501	0.00047	535653.0	169769.5	20.55	20.41	20.16	
1.40	0	0.69687	0.00030	535772.9	169622.6	22.05	21.01	21.49	
Table 9. Data for the line of sight PDCS33.

Num. group	z	err-z	Alpha	Delta	V	I	R	type	
1.20	0	0.01166	532697.0	170099.6	21.64	21.05	21.07		
1.5	0	0.01961	532477.3	169996.3	21.64	19.91	20.21		
2.35	0	0.04537	533225.2	170312.0	20.17	18.79	19.22		
2.13	0	0.04622	532964.9	170368.2	22.86	21.52	21.95		
2.50	0	0.07506	533369.3	170305.6	21.03	19.25	99.99		
1.40	0	0.08026	532953.0	170237.9	20.01	19.14	19.39		
2.67	0	0.08665	533558.3	170019.7	22.24	20.88	99.99		
1.26	0	0.09783	532768.9	170374.7	22.71	22.10	22.41		
2.43	0	0.10248	533298.1	170122.7	19.59	19.08	99.99		
2.22	0	0.10414	533074.0	170431.9	20.14	19.56	19.66		
2.7	0	0.12473	532976.4	170357.4	99.99	99.99	99.99		
2.37	0	0.13344	533228.4	170292.6	99.99	99.99	99.99		
2.38	0	0.13857	533254.3	170341.9	22.32	21.19	99.99		
2.63	0	0.14507	533412.0	169980.5	99.99	99.99	99.99		
1.22	0	0.14882	532717.6	170097.1	19.95	19.52	19.70		
2.48	0	0.16380	533351.0	170346.6	19.03	18.55	99.99		
2.36	0	0.17367	533219.8	170036.6	20.57	19.09	19.43		
1.30	0	0.18629	532811.0	170172.7	20.80	20.12	20.34		
2.27	0	0.19162	533145.6	170269.2	99.99	99.99	22.14		
2.51	0	0.19690	533389.3	170353.4	19.23	18.33	99.99		
1.51	1	0.20544	533076.7	170066.5	22.53	22.08	21.82		
2.6	1	0.20716	532856.3	170149.0	21.92	20.78	20.68		
1.41	1	0.21047	532948.7	169997.8	21.96	21.49	21.76		
1.15	1	0.21437	532641.4	170057.5	20.43	19.79	19.96		
1.54	1	0.21531	533108.5	170232.1	22.19	21.32	21.44		
1.63	0	0.22703	533191.1	170224.6	22.23	20.95	21.77		
2.40	0	0.23501	533277.5	170284.0	20.80	19.58	99.99		
2.53	0	0.25263	533404.4	170420.0	21.32	21.06	99.99		
2.52	0	0.25745	533382.8	170200.1	20.29	19.65	99.99		
2.28	0	0.26466	533123.1	170428.0	20.57	19.34	19.62		
1.55	0	0.26500	533120.9	170428.0	20.57	19.34	19.62		
2.45	0	0.27810	533286.0	170158.7	99.99	99.99	99.99		
2.9	0	0.27904	532916.3	170300.9	22.72	22.21	99.99		
2.57	0	0.28041	533368.8	170032.7	99.99	99.99	99.99		
2.26	0	0.28623	533109.6	170293.3	22.63	21.12	21.59		
1.53	0	0.28985	533098.8	170012.9	22.73	21.46	22.61		
1.11	0	0.30591	532586.3	170179.9	21.46	20.71	20.66		
2.18	0	0.30681	533024.3	170325.7	22.53	21.83	22.13		
1.60	0	0.30773	533164.1	170088.1	22.39	22.15	22.13		
2.30	0	0.31917	533154.4	170234.3	22.58	22.01	22.72		
2.20	0	0.34047	533050.7	170325.4	20.39	19.47	19.70		
Num.	group	z	err-z	Alpha	Delta	V	I	R	type
------	-------	------	--------	-----------	-----------	----	----	-----	------
2.70	0	0.36610	0.00076	533589.7	170001.7	20.70	19.74	99.99	em
2.64	0	0.39156	0.00010	533046.4	170253.7	21.57	20.41	20.82	
1.29	0	0.39220	0.00062	533413.1	170001.7	21.35	20.48	99.99	
2.32	0	0.41506	0.00034	533179.8	170038.4	22.02	20.79	21.14	
1.43	0	0.41820	0.00037	532978.9	170380.8	22.53	21.28	21.98	
1.13	0	0.42351	0.00001	532605.2	170107.2	20.49	20.05	20.09	
1.34	0	0.42682	0.00058	532857.6	170359.2	99.99	99.99	99.99	
1.18	0	0.44246	0.00021	532724.4	170104.0	19.95	19.52	19.70	
2.34	0	0.45910	0.00053	533199.6	170102.5	99.99	99.99	99.99	
2.29	0	0.46296	0.00038	533139.3	170021.9	22.34	21.58	21.40	
2.60	0	0.46708	0.00021	533390.4	170152.2	99.99	99.99	99.99	
2.68	0	0.47773	0.00038	533561.0	170297.3	22.10	21.69	99.99	
2.16	0	0.48085	0.00029	532993.5	170199.4	21.33	19.44	19.82	
1.58	0	0.48086	0.00041	533142.0	170086.7	21.75	20.28	20.97	
2.11	0	0.51704	0.00023	532948.7	170192.5	22.53	21.73	22.67	
2.62	2	0.54757	0.00038	533508.7	170326.1	21.60	20.14	99.99	
2.21	2	0.54989	0.00039	533057.8	170034.8	19.88	19.48	19.53	
2.3	2	0.55449	0.00043	532805.0	170192.5	22.03	21.30	21.64	
2.49	2	0.55466	0.00028	533355.8	169997.8	22.27	21.33	99.99	
1.62	2	0.55838	0.00028	533177.6	170038.4	22.02	20.79	21.14	
2.47	0	0.57021	0.00033	533339.6	170061.8	22.13	20.86	99.99	
2.1	0	0.59994	0.00019	532793.2	170257.0	22.70	20.70	21.73	
2.14	0	0.62526	0.00017	532978.4	170181.4	21.94	20.01	20.60	
1.45	0	0.62597	0.00025	532992.4	170248.7	22.79	20.59	21.77	
1.32	0	0.63629	0.00062	532826.1	170278.9	22.93	22.30	22.80	
2.24	0	0.65836	0.00023	533078.8	170066.5	22.53	22.08	21.82	
2.69	0	0.71763	0.00025	533585.9	170387.3	21.95	20.00	99.99	
Table 10. Data for the line of sight PDCS34.

Num. group	z	err-z	Alpha	Delta	V	I	R	type
1.29	0	0.02708	535659.5	171235.1	22.48	21.33	21.51	
1.7	0	0.06390	535285.3	171073.8	19.85	19.11	19.30	
1.6	0	0.07104	535265.3	171346.3	22.49	20.75	21.62	
1.47	0	0.07899	535971.6	171432.4	21.64	20.71	21.03	
1.16	0	0.08948	535415.4	171175.0	20.41	19.83	19.84	
2.38	0	0.13132	536015.9	171400.0	18.94	17.88	99.99	
2.56	0	0.15736	536173.2	171367.6	21.12	20.06	99.99	
2.40	0	0.15866	536044.5	171198.0	17.26	16.18	99.99	
2.42	0	0.19188	536097.4	171307.4	21.42	20.33	99.99	
1.2	0	0.20881	535203.2	171150.8	21.75	20.87	20.83	
1.32	0	0.21371	535705.3	171357.1	21.98	21.73	21.63	em
2.2	2	0.21432	535499.6	171238.3	22.08	21.37	21.48	
2.13	2	0.22087	535640.5	171105.1	99.99	99.99	99.99	
2.33	0	0.23142	535705.9	171257.4	19.47	18.36	18.74	em
1.25	0	0.25001	535569.8	171143.3	20.78	19.60	19.91	
1.3	0	0.25057	535205.3	171414.7	19.92	18.88	19.27	em
2.28	0	0.25131	535748.4	171105.1	99.99	99.99	99.99	
2.16	0	0.25286	535727.0	171183.2	20.66	19.35	19.77	
2.20	0	0.28382	535793.9	171487.1	21.54	20.70	20.77	
2.35	0	0.30519	535980.8	171199.4	20.80	20.05	19.81	
1.20	0	0.31259	535490.5	171493.9	20.93	19.74	20.18	
2.46	0	0.31302	536167.1	171365.4	21.12	20.06	99.99	
1.38	1	0.32952	535813.9	171345.2	20.01	18.65	99.99	
1.12	1	0.33056	535351.7	171173.9	21.34	19.76	20.28	
2.32	1	0.33357	535940.3	171082.8	22.78	21.62	22.10	
1.44	1	0.33455	535905.2	171159.5	21.41	20.37	20.71	
1.48	1	0.33554	535978.6	171199.4	20.80	20.05	19.81	
2.9	0	0.34576	535604.4	171261.0	21.24	20.17	20.51	ea
1.39	0	0.34975	535825.5	171226.1	20.40	19.46	19.45	ea
2.1	0	0.35027	535492.1	171493.9	20.93	19.74	20.18	
2.25	0	0.35307	535867.2	171253.1	99.99	99.99	99.99	
1.14	0	0.35939	535405.7	171445.0	21.66	20.96	21.16	
1.26	0	0.37351	535583.9	171340.2	21.36	20.57	20.81	
1.46	0	0.38559	535927.3	171416.2	20.33	19.28	19.64	
2.31	0	0.38593	535929.5	171416.2	20.33	19.28	19.64	
2.54	0	0.41095	536278.9	171364.7	19.39	18.36	99.99	
2.55	0	0.41534	536291.8	171098.3	20.24	19.23	99.99	
1.24	0	0.44861	535553.6	171493.2	21.66	19.93	20.57	
1.21	0	0.45031	535511.0	171364.0	20.90	19.55	19.55	
2.27	0	0.46742	535876.6	171426.6	21.80	20.85	21.09	
2.43	0	0.46957	536104.4	171125.6	20.56	19.44	99.99	
0	2	0.47831	535832.6	171356.9	19.90	19.34	19.99	

Num. group	z	err-z	Alpha	Delta	V	I	R	type	
2.30	0	0.51257	0.00070	535906.8	171159.5	21.41	20.37	20.71	
2.23	0	0.51977	0.00015	535825.8	171196.2	20.53	19.50	19.83	ea
2.19	0	0.52009	0.00035	535786.9	171167.8	20.87	19.06	19.84	
1.42	0	0.52024	0.00027	535860.4	171494.6	21.25	20.43	20.09	ea
1.31	0	0.52198	0.00033	535690.8	171276.8	21.52	19.77	20.45	
1.19	0	0.53193	0.00017	535479.1	171225.4	20.90	18.80	19.44	ea
2.45	0	0.54180	0.00039	536148.7	171183.2	20.94	19.99	99.99	
2.37	0	0.54719	0.00036	535971.6	171078.5	99.99	99.99	99.99	
1.5	0	0.62983	0.00037	535242.1	171362.5	21.05	20.29	20.38	
Table 11. Data for the line of sight PDCS38.

Num. group	z	err-z	Alpha	Delta	V	I	R	type
1.29	0	0.0043	531785.0	171838.4	21.00	19.54	20.02	ea
3.20	0	0.0027	532379.0	171580.7	22.06	21.39	21.35	
3.25	0	0.0032	532459.4	171679.7	22.62	19.91	21.05	
1.47	0	0.0029	531975.6	171708.8	99.99	99.99	99.99	
3.30	0	0.0026	532529.1	171411.8	21.87	20.08	20.58	
2.15	0	0.0021	532124.6	172156.7	17.63	16.77	16.88	
1.6	0	0.00020	531400.5	171988.2	22.51	22.09	21.71	
1.27	0	0.0019	531756.4	172048.3	21.21	19.92	20.23	
2.46	0	0.0025	532607.4	171800.6	22.33	21.54	21.58	
1.21	0	0.0036	531625.1	172069.6	20.57	20.55	20.23	
3.47	0	0.0049	532777.0	171653.4	22.69	21.96	21.68	
1.25	0	0.0054	531698.6	171806.4	20.19	18.95	19.42	
2.1	0	0.0027	531883.3	172144.4	20.72	20.34	20.25	em
2.26	0	0.0043	532287.7	171839.2	20.69	19.58	19.84	
2.41	0	0.0107	532523.7	171950.8	20.81	20.36	20.39	
2.20	0	0.0018	532218.6	171915.5	22.76	21.57	21.55	
2.18	0	0.0020	532172.2	171837.0	22.62	21.61	21.42	
2.48	0	0.0027	532648.4	172112.0	22.26	21.18	21.52	
2.44	0	0.0027	532570.7	171888.1	20.89	20.38	20.53	em
1.9	0	0.0033	531434.0	171754.2	20.92	19.54	19.95	
2.42	0	0.0027	532543.1	172124.6	22.41	21.10	21.42	
1.19	0	0.0041	531610.0	172021.3	20.05	19.31	19.49	
1.20	0	0.0032	531618.1	171813.6	22.90	20.96	20.39	
2.10	0	0.0020	532037.2	172176.1	19.78	18.43	18.93	
3.32	0	0.0092	532565.3	171552.2	19.95	19.62	19.55	em
1.40	0	0.0014	531976.1	171837.7	22.36	21.60	21.54	em
1.26	0	0.0060	531715.3	171794.2	20.07	18.59	19.14	
2.16	0	0.0042	532141.9	171974.5	20.78	20.10	20.08	
3.11	0	0.0065	532270.8	171430.9	99.99	99.99	99.99	
2.34	0	0.0043	532406.5	172183.3	22.50	21.64	21.78	
3.21	1	0.0020	532411.9	171626.8	21.06	20.22	20.49	em
1.17	1	0.0030	531554.4	171641.5	22.39	20.74	21.34	
1.46	1	0.0030	532064.7	171976.3	20.53	19.36	19.81	
2.17	1	0.0060	532156.5	172170.7	20.19	18.67	18.94	
2.21	1	0.0021	532228.3	172202.0	20.61	19.12	19.63	
1.41	1	0.0033	531988.0	172070.3	20.84	20.04	20.19	ea
2.7	1	0.0015	532005.3	171846.7	20.09	18.55	19.15	
2.4	1	0.0017	531973.4	172157.0	19.88	18.48	18.89	
2.19	1	0.0033	532179.2	172153.1	20.85	19.37	19.91	
1.38	1	0.0023	531926.5	171784.4	22.15	20.73	21.24	
2.11	1	0.0032	532048.0	171841.3	19.91	18.72	19.02	ea
2.18	1	0.0032	532449.0	172170.7	19.91	18.72	19.02	em
Table 11—Continued

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
1.10	1	0.33850	0.00096	531448.6	171668.5	22.26	19.74	21.72	
2.8	0	0.35203	0.00048	532021.0	172114.2	20.92	20.47	20.46	ea
2.6	0	0.35250	0.00040	531990.2	172070.3	20.84	20.04	20.19	ea
1.11	0	0.37434	0.00038	531450.2	171938.5	21.27	20.24	20.58	
2.43	0	0.38238	0.00026	532545.3	171860.0	22.71	21.30	21.82	
1.30	0	0.38304	0.00022	531808.2	172051.9	20.81	19.63	19.95	
1.52	0	0.39252	0.00018	532139.8	171974.5	20.78	20.10	20.08	ea
1.48	0	0.43030	0.00028	532078.7	171918.7	22.22	20.61	20.98	
2.3	0	0.43451	0.00029	531917.8	172054.1	21.13	19.86	20.26	ea
2.39	2	0.45792	0.00032	532469.2	172165.3	21.22	19.27	19.85	
2.47	2	0.46250	0.00034	532629.0	171964.1	20.12	18.83	19.07	
2.30	2	0.46544	0.00027	532333.6	171842.4	20.99	19.29	19.90	
2.23	2	0.46562	0.00043	532258.6	172179.7	22.16	20.25	20.54	ea
2.45	2	0.46573	0.00021	532602.0	172149.8	21.31	19.45	19.57	
1.42	2	0.46752	0.00044	531989.1	171806.8	21.62	20.72	20.87	ea
2.28	2	0.46781	0.00025	532309.9	172157.4	21.41	19.45	20.22	
3.37	2	0.47112	0.00052	532630.1	171454.0	21.22	20.38	20.55	
2.25	2	0.47183	0.00039	532278.0	172185.8	21.56	19.75	20.36	
3.46	2	0.47346	0.00042	532760.2	171654.5	21.01	19.66	20.12	
2.22	2	0.47468	0.00043	532243.4	171950.8	21.03	19.96	20.11	ea
2.29	2	0.47477	0.00046	532336.9	172075.7	22.71	22.53	22.16	ea
3.48	2	0.47973	0.00065	532795.3	171672.8	22.62	21.46	21.53	
3.43	0	0.49224	0.00044	532726.2	171366.8	21.05	19.76	20.16	
2.49	0	0.53619	0.00043	532659.8	171870.8	22.47	22.12	21.66	
1.13	0	0.53965	0.00030	531481.0	171659.5	21.17	19.30	19.70	
3.49	0	0.55338	0.00033	532807.2	171443.9	21.65	20.40	20.61	ea
3.41	0	0.55607	0.00030	532704.6	171375.1	22.07	21.09	21.16	ea
2.13	0	0.56575	0.00049	532903.3	172141.6	22.67	20.39	21.29	ea
3.16	0	0.56647	0.00045	532300.7	171489.6	22.39	19.56	21.29	
2.24	0	0.58212	0.00055	532263.4	171926.3	22.97	21.54	22.06	
3.36	0	0.61749	0.00019	532609.0	171800.6	22.33	21.54	21.58	
3.44	0	0.62185	0.00028	532740.2	171415.1	20.78	19.68	20.09	
2.31	0	0.64559	0.00037	532352.5	172084.0	22.88	20.71	21.59	
Table 12. Data for the line of sight PDCS57.

Num. group	z	err-z	Alpha	Delta	V	I	R	type
1.17	0	0.01421	723173.4	108354.6	99.99	99.99	18.93	
2.30	0	0.01751	723594.6	107896.7	19.71	18.88	99.99	
1.64	0	0.12047	723799.8	107872.9	22.31	21.73	99.99	
2.42	0	0.12386	723546.0	108133.6	21.77	21.57	21.58	
2.51	0	0.13010	723627.0	108188.3	21.85	21.11	21.06	
2.24	0	0.14819	723724.2	107934.1	19.98	19.22	18.92	
2.35	1	0.15820	723697.2	107898.5	21.39	20.30	99.99	
1.61	1	0.15915	723578.4	108123.1	21.59	21.50	21.29	
1.65	1	0.15963	723546.0	108241.2	19.23	18.35	18.68	
2.45	1	0.16119	723346.2	108164.2	21.48	20.08	20.55	
1.22	1	0.16196	723546.0	108133.6	21.10	21.06	20.80	
2.33	1	0.16254	723627.0	108097.2	20.94	20.31	20.49	
1.37	0	0.17680	723367.8	108419.4	19.64	18.51	18.92	
2.62	0	0.22114	723897.0	108146.2	21.94	20.89	99.99	
2.2	0	0.22464	723324.6	107918.3	21.67	20.79	99.99	
2.49	0	0.23377	723767.4	108254.5	18.77	17.92	99.99	
1.68	0	0.24918	723627.0	108188.3	21.85	21.11	21.06	
1.59	0	0.24922	723519.0	108022.0	19.28	17.91	18.43	
1.23	0	0.24966	723627.0	108133.6	22.02	21.08	21.47	
1.34	0	0.25576	723335.4	108287.3	20.44	19.09	19.59	
2.23	0	0.25828	723535.2	107933.0	20.54	20.02	99.99	
2.52	0	0.26635	723799.8	107872.9	22.31	21.73	99.99	
1.8	0	0.27941	723092.4	108121.0	99.99	99.99	19.45	
1.70	0	0.28701	723643.2	108355.5	22.66	21.87	21.90	
1.25	0	0.28759	723546.0	108461.9	21.04	20.07	20.21	
2.60	2	0.30108	723875.4	108184.0	19.65	18.33	99.99	
1.45	2	0.30234	723412.8	108209.5	19.55	18.01	18.47	
1.29	2	0.30306	723281.4	108117.7	19.06	18.11	18.45	
2.64	2	0.30369	723292.4	108070.9	99.99	99.99	99.99	
1.60	2	0.30444	723535.2	108233.6	20.52	19.61	19.96	
1.31	2	0.30509	723297.6	108168.5	21.27	20.23	20.56	
1.53	0	0.31104	723481.2	108125.3	22.78	21.81	21.79	
1.24	0	0.31268	723249.0	108075.2	21.59	20.76	20.84	
1.62	0	0.31969	723562.2	108351.7	22.00	21.48	21.60	
2.61	0	0.32149	723897.0	107903.2	22.33	20.63	99.99	
2.58	0	0.33336	723859.2	107941.3	22.04	21.69	99.99	
1.58	0	0.33976	723513.6	108301.0	21.11	19.68	20.14	
1.30	0	0.34005	723297.6	108362.5	20.69	19.30	19.75	
1.14	0	0.34384	723151.8	108129.6	99.99	99.99	20.78	
2.8	0	0.36319	723389.4	108020.2	22.34	21.70	21.69	
Table 12—Continued

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
2.1	0	0.36542	0.00046	723319.2	108149.0	21.53	20.83	20.94	
2.55	0	0.38580	0.00023	723816.0	107965.8	21.52	21.62	99.99	
1.27	0	0.39174	0.00027	723265.2	108060.5	22.45	21.05	21.79	
1.20	0	0.40224	0.00021	723216.6	108379.1	22.09	21.37	21.46	
1.55	0	0.41289	0.00046	723486.6	108147.2	20.35	19.60	19.76	
1.42	0	0.41498	0.00043	723405.6	108400.7	18.20	17.03	17.36	
1.21	0	0.41900	0.00025	723222.0	108200.9	20.44	18.74	19.30	
1.36	0	0.41903	0.00032	723362.4	108256.3	22.17	20.69	20.97	
1.32	3	0.45309	0.00030	723308.4	108406.8	99.99	99.99	20.64	
1.26	3	0.45455	0.00027	723249.0	108270.7	21.45	19.85	19.86	
1.15	3	0.45558	0.00031	723151.8	108386.3	99.99	99.99	20.14	ea
1.46	3	0.45990	0.00018	723427.2	108443.5	22.11	20.47	21.26	
1.7	3	0.46069	0.00041	723070.8	108388.1	99.99	99.99	20.42	
1.28	3	0.46184	0.00031	723276.0	108307.4	21.87	19.78	20.39	
1.9	3	0.46414	0.00029	723097.8	108411.8	99.99	99.99	22.05	
2.56	0	0.47001	0.00036	723837.6	108218.5	21.78	21.61	99.99	
2.37	0	0.47573	0.00030	723664.8	108139.7	22.19	20.98	21.25	
2.19	0	0.47724	0.00063	723486.6	107936.3	21.16	20.49	99.99	ea
1.3	0	0.47893	0.00043	723027.6	108141.1	99.99	99.99	20.17	
1.12	0	0.48044	0.00028	723119.4	108161.6	99.99	99.99	21.05	
1.67	0	0.48806	0.00026	723610.8	108105.5	21.59	20.41	20.76	ea
2.31	0	0.48966	0.00025	723616.2	108105.5	21.59	20.41	20.76	ea
2.9	0	0.50116	0.00036	723405.6	108101.2	21.86	21.09	21.03	em
2.54	0	0.50246	0.00034	723805.2	108204.8	21.55	19.39	99.99	
1.38	0	0.50448	0.00031	723373.2	108098.6	21.22	19.84	20.32	
1.63	0	0.50765	0.00023	723578.4	108405.7	22.09	20.43	21.00	
2.12	0	0.51687	0.00031	723427.2	107973.7	22.53	20.96	21.62	ea
1.66	0	0.53380	0.00041	723610.8	108343.8	22.56	20.86	21.60	
2.67	0	0.54054	0.00016	723951.0	107934.1	99.99	99.99	99.99	
1.35	0	0.54464	0.00048	723340.8	108478.8	18.84	18.13	18.34	
1.41	0	0.56426	0.00026	723384.0	108042.1	21.05	20.20	20.40	
1.69	0	0.58086	0.00042	723627.0	108388.1	22.78	21.10	21.28	
2.28	0	0.60384	0.00019	723583.8	107946.7	21.72	20.40	99.99	ea
2.47	0	0.62882	0.00039	723756.6	108042.1	21.48	20.38	99.99	ea
2.66	0	0.65797	0.00021	723940.2	108228.2	21.77	20.21	99.99	
Table 13. Data for the line of sight PDCS61.

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
1.40	0	0.02084	0.00053	726519.6	109353.6	99.99	99.99	22.49	
1.6	0	0.09630	0.00021	726040.8	109359.7	22.35	22.02	22.52	
1.49	0	0.12389	0.00029	726559.2	109033.2	19.14	18.09	20.38	
1.29	0	0.12404	0.00045	726300.0	108997.9	19.54	19.34	19.58	em
1.37	0	0.15591	0.00057	726424.2	108931.3	20.85	19.22	21.47	
1.34	0	0.17021	0.00015	726386.4	109074.2	19.42	17.90	19.06	
1.51	0	0.17026	0.00037	726575.4	109107.7	20.14	19.46	20.06	em
1.50	0	0.19231	0.00025	726564.6	109290.2	22.20	22.04	21.72	em
1.31	0	0.19270	0.00028	726343.2	109076.8	22.56	20.07	22.34	
1.46	0	0.23467	0.00039	726526.8	109114.6	18.64	17.65	22.73	
1.35	0	0.26855	0.00026	726408.0	109053.7	19.04	17.47	21.92	
1.41	0	0.32502	0.00051	726456.6	109103.0	21.70	20.39	22.05	
1.25	0	0.33901	0.00053	726256.8	109223.3	19.96	18.16	19.00	
1.16	0	0.34410	0.00024	726159.6	109260.4	20.40	18.60	20.03	
1.30	0	0.35066	0.00040	726327.0	109206.0	21.58	20.06	21.52	
1.33	0	0.37550	0.00036	726381.0	109083.2	19.78	18.63	19.06	
1.21	0	0.38577	0.00033	726197.4	109308.6	21.66	20.18	21.46	
1.18	0	0.42178	0.00075	726159.6	109166.8	20.88	20.33	20.78	em
1.39	0	0.55517	0.00050	726440.4	108983.2	21.98	20.60	21.81	
1.3	0	0.56395	0.00033	726008.4	109189.1	20.45	19.09	21.78	
1.13	0	0.56815	0.00042	726089.4	109188.0	22.51	22.13	22.87	
1.42	0	?	?	726534.0	109132.6	99.99	99.99	21.13	quasar?

\(^a\)The last galaxy of this table (1.42) exhibits a single broad band emission line, probably from a quasar. The cross-correlation technique provides, however, with the absorption line features a redshift equal to 0.57801±0.00049.
Table 14. Data for the line of sight PDCS62.

Num. group	z	err-z	Alpha	Delta	V	I	R	type
63.2	0	0.00952	0.00091	723176.0	109521.6	17.24	99.99	16.72
37.2	0	0.01632	0.00028	723513.6	109489.3	22.93	21.46	22.20
63.1	0	0.01806	0.00019	723254.4	109116.4	22.16	21.44	21.49
12.2	0	0.02595	0.00033	723034.0	109173.9	22.45	99.99	21.60
14.1	0	0.04053	0.00020	723427.2	109154.5	22.20	21.35	21.57
68.1	0	0.04566	0.00017	723627.0	109503.4	19.13	18.37	18.54
60.1	0	0.04727	0.00023	723104.7	109479.7	18.61	99.99	17.98
70.1	0	0.04875	0.00025	723134.1	109512.4	21.46	99.99	19.90
40.2	0	0.06115	0.00008	723010.0	109395.3	20.91	99.99	99.99
30.2	0	0.06202	0.00032	723330.0	109312.9	19.01	19.23	18.87
19.2	0	0.06701	0.00026	723046.0	109242.4	20.24	99.99	19.44
54.2	0	0.07348	0.00039	723120.8	109448.4	22.17	99.99	21.66
28.1	0	0.09205	0.00057	723351.6	109552.9	21.03	20.84	20.71
45.1	0	0.11294	0.00015	723454.2	109346.0	21.41	20.07	20.44
33.2	0	0.11688	0.00025	723026.7	109357.5	22.29	99.99	20.93
17.2	0	0.13460	0.00016	723101.2	109235.2	18.92	99.99	18.19
8.1	0	0.15983	0.00017	723502.8	109118.9	21.46	21.13	18.85
75.1	0	0.16226	0.00004	723409.2	109552.9	21.53	99.99	21.20
1.1	0	0.16302	0.00003	723543.9	109068.8	20.81	20.76	20.57
45.2	0	0.16686	0.00024	72839.4	109429.6	20.31	99.99	99.99
9.1	0	0.17444	0.00019	723470.4	109123.6	22.18	22.37	21.81
36.1	0	0.23341	0.00016	723519.0	109319.0	20.77	19.49	19.89
30.1	0	0.23499	0.00012	723139.6	109286.4	20.56	99.99	20.13
47.1	0	0.23566	0.00024	723382.8	109357.9	21.35	20.64	20.61
59.1	0	0.24587	0.00021	723120.7	109448.9	22.06	99.99	21.66
27.2	0	0.25647	0.00030	722758.1	109285.9	20.36	99.99	99.99
35.2	0	0.28417	0.00086	722699.2	109344.0	21.39	99.99	99.99
50.1	0	0.28857	0.00002	723492.0	109374.8	19.70	18.88	19.13
42.1	0	0.28921	0.00023	723416.4	109332.7	21.26	20.13	20.52
26.2	1	0.29428	0.00018	723211.2	109276.2	19.74	18.62	19.14
37.1	1	0.29456	0.00024	723610.8	109323.4	19.45	18.12	18.67
26.1	1	0.29477	0.00020	723054.9	109241.8	19.83	99.99	19.06
40.1	1	0.29517	0.00028	723627.0	109328.8	21.16	19.97	20.32
34.1	1	0.29548	0.00019	723378.6	109314.7	21.51	20.21	20.70
20.1	0	0.30138	0.00023	723002.0	109193.8	19.67	18.57	18.94
31.1	0	0.30274	0.00013	723308.4	109286.6	21.56	21.63	21.14
4.1	0	0.31834	0.00060	72359.9	109012.3	21.91	21.15	21.32
53.1	0	0.32475	0.00016	723077.4	109405.2	20.13	99.99	19.07
54.1	0	0.32836	0.00022	723227.4	109404.0	21.21	20.42	19.84
10.2	0	0.33071	0.00046	722991.3	109168.3	20.53	99.99	99.99
Table 14—Continued

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
39.1	0	0.37053	0.00019	723546.0	109325.2	21.53	20.99	21.22	
15.2	0	0.37661	0.00054	723298.1	109211.7	21.54	99.99	20.72	
3.1	0	0.40976	0.00025	723664.8	109132.9	22.14	21.61	21.80	
10.1	0	0.41147	0.00035	723627.0	109108.8	20.47	19.31	19.68	
5.1	0	0.41225	0.00055	723573.0	109493.6	21.88	20.63	21.01	
66.1	0	0.42056	0.00033	722775.7	109106.3	21.44	99.99	99.99	
2.2	0	0.42762	0.00015	723562.2	109519.6	20.69	19.12	19.56	
71.1	0	0.42828	0.00024	723286.8	109258.6	21.88	20.35	20.90	
11.1	0	0.43427	0.00017	723529.8	109137.2	22.05	20.72	21.08	
17.1	0	0.43496	0.00029	723367.8	109166.8	22.15	20.58	21.24	
33.1	0	0.44427	0.00023	723234.6	109312.9	19.26	19.23	18.87	
1.2	2	0.45112	0.00019	722967.2	109087.7	20.84	99.99	99.99	
56.1	2	0.45240	0.00015	723157.8	109426.9	21.85	99.99	20.32	
52.1	2	0.45495	0.00024	723097.7	109395.1	21.88	99.99	20.41	
55.1	2	0.45819	0.00019	723170.7	109414.9	20.72	99.99	19.19	
41.1	2	0.45874	0.00035	723529.8	109332.7	21.43	20.35	20.56	
69.1	2	0.45922	0.00015	723134.1	109512.4	21.46	99.99	19.90	
67.1	2	0.46060	0.00020	723448.8	109496.9	21.22	19.43	20.02	
47.2	2	0.46102	0.00032	723292.2	109429.6	20.98	19.82	20.19	
24.1	2	0.46127	0.00021	723072.2	109234.1	21.86	99.99	20.91	
32.1	2	0.46136	0.00015	723562.2	109303.9	21.66	19.57	20.35	
48.1	2	0.46212	0.00015	723211.2	109366.2	19.97	18.47	20.35	
56.2	2	0.46283	0.00018	722848.1	109460.3	21.95	99.99	99.99	
60.2	2	0.46345	0.00020	722936.2	109480.3	20.40	99.99	99.99	
43.1	2	0.46443	0.00015	723276.0	109342.4	22.72	21.15	21.28	
44.1	2	0.46525	0.00014	723286.8	109343.9	21.02	19.31	19.59	
49.2	2	0.46775	0.00015	723243.6	109431.0	20.66	18.76	19.56	
65.1	2	0.46803	0.00024	723276.0	109494.7	21.87	20.45	20.80	
38.1	2	0.47118	0.00013	723249.0	109325.5	21.00	19.51	19.98	
20.2	2	0.47260	0.00013	723243.6	109253.9	20.28	18.92	19.41	
21.1	0	0.47787	0.00031	723643.2	109198.4	22.63	22.22	22.11	
14.2	0	0.47973	0.00020	723013.8	109202.1	21.18	99.99	99.99	
16.1	0	0.49868	0.00042	723443.4	109165.0	22.17	20.92	21.23	
23.1	0	0.51100	0.00014	723583.8	109228.0	21.52	19.40	20.02	
8.2	0	0.52277	0.00039	723133.9	109158.8	20.79	99.99	20.14	
34.2	0	0.63039	0.00039	722815.0	109342.4	20.16	99.99	99.99	
43.2	0	0.65472	0.00038	723265.2	109407.6	21.79	20.71	21.04	
64.2	0	0.65762	0.00019	722905.0	109531.9	21.97	99.99	99.99	
64.1	0	0.69326	0.00053	723610.8	109491.1	22.77	21.10	21.74	
28.2	0	0.69433	0.00027	722967.9	109288.4	99.99	99.99	99.99	
Table 15. Data for the line of sight PDCS67.

Num.	group	z	err-z	Alpha	Delta	V	I	R	type
56.1	0	0.02427	0.00012	867650.4	148451.0	18.17	18.08	17.32	em
59.1	0	0.03314	0.00027	867420.7	148496.2	19.67	19.33	19.35	em
21.1	0	0.06550	0.00036	867704.4	148123.4	21.98	20.99	21.26	
57.1	0	0.10789	0.00062	867347.5	148468.8	99.99	99.99	20.81	
22.1	1	0.16664	0.00017	867132.0	148233.6	21.56	20.56	20.98	
25.1	1	0.16773	0.00049	867353.4	148248.4	20.08	19.61	19.66	
46.1	1	0.16852	0.00032	867537.0	148399.2	18.64	17.62	18.07	
42.1	1	0.16879	0.00020	867574.8	148365.4	21.02	20.20	22.86	
36.1	1	0.16899	0.00008	867693.6	148282.6	18.55	17.39	17.92	
35.1	1	0.16911	0.00031	867434.4	148281.8	21.67	20.62	20.88	
53.1	0	0.18652	0.00022	867385.8	148437.0	21.74	21.43	21.24	
47.1	0	0.18764	0.00024	867499.2	148411.1	22.20	21.49	21.69	
24.1	0	0.20706	0.00005	867645.0	148236.1	21.72	21.52	21.48	em
48.1	0	0.22680	0.00022	867413.5	148153.5	99.99	99.99	21.81	em
38.1	0	0.22799	0.00018	867414.0	148303.5	99.99	99.99	22.00	
45.1	0	0.23349	0.00020	867164.4	148399.9	18.40	17.45	17.84	
52.1	0	0.23438	0.00028	867186.1	148442.7	99.99	99.99	18.40	
8.1	0	0.26523	0.00024	867269.2	148117.2	99.99	99.99	16.21	
54.1	0	0.26962	0.00024	867693.6	148433.4	21.72	20.65	20.94	
7.1	0	0.28121	0.00015	867323.2	148111.0	99.99	99.99	19.49	
4.1	0	0.28816	0.00019	867726.0	148080.2	20.10	19.41	19.56	em
55.1	0	0.32847	0.00020	867261.6	148441.0	22.84	22.41	21.84	
23.1	0	0.32892	0.00026	867613.7	148242.2	99.99	99.99	20.22	
16.1	0	0.32983	0.00042	867105.0	148156.2	20.17	19.05	19.48	ea
13.1	0	0.33096	0.00056	867310.2	148134.6	23.00	22.22	22.00	
30.1	0	0.36660	0.00047	867331.8	148255.2	21.63	20.66	21.04	
19.1	0	0.36709	0.00020	867218.4	148192.9	21.20	19.57	19.96	
39.1	0	0.36804	0.00039	867510.0	148309.9	20.83	19.82	20.30	
17.1	0	0.42277	0.00014	867753.0	148165.2	22.12	19.70	20.17	
31.1	2	0.46640	0.00038	867477.6	148263.8	21.85	20.53	20.98	ea
41.1	2	0.46558	0.00032	867709.8	148329.4	21.81	20.64	20.87	ea
18.1	2	0.46755	0.00040	867526.2	148176.4	20.87	19.73	20.16	ea
33.1	2	0.46759	0.00023	867393.2	148279.7	99.99	99.99	23.25	
28.1	2	0.46821	0.00015	867456.0	148255.6	21.41	19.70	20.16	
32.1	2	0.46859	0.00026	867466.8	148271.8	21.76	19.97	20.81	ea
29.1	0	0.52568	0.00027	867550.2	148267.5	99.99	99.99	22.85	ea
34.1	0	0.59038	0.00023	867434.4	148281.8	21.67	20.62	20.88	ea
43.1	0	0.59220	0.00016	867369.6	148382.3	21.58	19.69	21.63	
2.1	0	0.67098	0.00018	867493.8	148045.0	22.41	20.07	21.14	ea
