A systematic review of 3D scanners and computer assisted analyzes of bite marks: searching for improved analysis methods during the Covid-19 pandemic

Piret Vilborn1 · Herman Bernitz1

Received: 16 April 2021 / Accepted: 7 July 2021 / Published online: 24 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The global Covid-19 pandemic has forced forensic dentists to improve infection control methods. This search investigated the practical utilization of different 3D scanners to record and to analyze bite marks in the skin- and inanimate objects with this aim in mind. A systematic review of the literature using keywords like “human bite mark”, “bite mark analyzes”, “3D analyzes”, “3D scanning”, “forensic odontology”, and “forensic dentistry” was performed in three scientific databases: MEDLINE®, Pubmed® and Google Scholar. The initial search yielded 263 full-text articles, of which 15 were considered eligible and current within the last 10 years. 3D scanners and computer-assisted human bite mark analyzes showed potential advantages and can be effectively used in forensic odontology on skin and inanimate objects. These technologies minimize the number of people being exposed to pathogens, simplify the chain of evidence, facilitate immediate information exchange between the team members and enable the virtual presentation of the expert witnesses in a court of law.

Keywords Forensic science · Forensic odontology · Covid-19 · 3D documentation · Photogrammetry · 3D computer-assisted analyzes · Bite marks

Introduction
Covid-19 has presented new challenges in every sphere of life including the science of bite mark analysis. The pandemic has seen an increase in the number of domestic violence cases, murders, cases involving sexual assault, child abuse, and the neglect of the elderly [1–4]. Human bite marks were observed in many of these cases [5].

Currently collecting evidence for bite marks poses a risk of occupational exposure to Covid-19 infection for the forensic dentist in a mortuary setting, particularly if the necessary precautionary measures are lacking [6, 7]. The use of alternative methods, such as three-dimensional (3D) scanning technology which are less invasive, digitally transferrable, and equally accurate to conventional methods should now be considered. Since the onset of Covid-19, the Pretoria team of forensic odontologists have included 3D scanning of both, the bite marks and the suspect’s dentition in their analysis of the relevant cases. Bitemarks will always undergo a degree of warpage, shrinkage, and distortion with time [8–10]. A 3D scan is thus, a representation of a distorted bite mark [11] in either skin or an inanimate object. A 3D scan is a snapshot in time that will capture and freeze the images that we know are already distorted. A 3D scanner generates point clouds from geometric data gathered from the surface of an object. The object’s shape is reconstructed from the digital data on the known spatial position of each measurement point. Different scanning and processing software programs are used to generate comparison of dental casts and scanned dentition [12].

This systematic review aims to investigate the practical utilization of different 3D scanners in recording bite marks in skin- and inanimate objects and the use of computer-assisted methods in human bite mark analyzes during and after the Covid-19 pandemic.
Methods

In August 2020, during the height of the South African pandemic, a systematic review of the literature was performed using an online search in three scientific databases: MEDLINE®, Pubmed®, and Google Scholar. As a result of rapid development of technology, only articles from 2011 onwards were considered relevant. Key words such as “human bite mark”, “bite mark analyzes”, “3D analyzes”, “3D scanning”, “forensic odontology”, and “forensic dentistry” were searched. The search was expanded by checking the reference lists of the articles. Additional mining of above mentioned databases was conducted in February 2021 for the purpose of this review. The articles obtained by the search were screened and selected by two operators. Only English language full-text articles with indexed abstracts published in ISI-accredited dental, forensic, and legal medicine journals were included. Short communications, letters to the editor, case reports, ordinary, and systematic reviews were excluded from the results.

From the articles that fulfilled the criteria, the following data were extracted: (1) the aim of the study, (2) the sample size, (3) the bite mark substrate (4) registration techniques and the scanners used, (5) software, and (6) the study outcome.

Results

The initial search yielded 263 full-text articles, of which 248 did not meet the selection criteria. A PRISMA[13] flowchart is presented in a Fig. 1.

The year of publication, authors, titles, and journals are presented in the Table 1.

Fifteen eligible articles were divided on a basis of the analysis target as follows:

A Studies assessing the reliability of measurements of different 3D scanners are presented in the Table 2 (6 articles)
B Studies utilizing 3D comparison of the dental crown morphology of the anterior dentition are presented in the Table 3 (3 articles)
C Studies on suitability of different computer-assisted methods for bitemark analyzes are presented in the Table 4 (6 articles)

Discussion

From the search it became clear that 3D digital scanning of bite marks enables accurate and fast recording of the bite marks in soft substances such as cheese, chocolate, pears, apples, and human skin without further distortion of the evidence during impression taking [10, 11]. While using digital scanners, an exposure to pathogens can be minimized and several steps can be eliminated. These include mixing an impression material, waiting for setting of impressions and casting of models from impressions [27]. Taking impressions of the suspect’s dentition can sometimes be problematic due to noncompliance and gagging which can be alleviated by the small heads available in some of the scanners [28, 29]. Maintaining a chain of evidence becomes far simpler and can be digitally traced. A digital file can be uploaded to a cloud server for immediate communication with the forensic team members [30]. It minimizes the number of people being exposed to the evidence or suspect from a pandemic control point of view and allows the team to work remotely via cloud server. It also enables for the virtual presentation of the expert witness in a court of law [31].

Studies assessing the reliability of different 3D scanners

The study on contact 3D scanners showed that the contact between the scanner and the bitemark was problematic as the evidence could inadvertently be damaged. Contact scanners were also unable to capture surfaces with marked concavity.
This has led to increased interest in noncontact methods such as laser scanning. The 3D laser scanners have proved their precision for different applications. However, the difficulty detecting sharp edges, especially incisal edge of the anterior incisors may provide false presentation of the tooth morphology. While using the 3D laser scanners for dental casts and biting edges in practical forensic cases, the margin of the error should be considered [12].

Utilization of fringe pattern protection scanners, also known as optical surface scanners such as Gom ATOS III (Gom, Braunschweig, Germany) in 3D documentation of bite marks was reported in two articles [10, 15]. The method is noninvasive, displays high resolution results, and does not damage the evidence [10]. The difficulties of capturing tiny areas and deep structures of the surface and the cost of equipment have been reported in the literature [10, 32].

The evidence suggests that intra- and inter-arch measurements obtained from digital dental models using intraoral scanners is equivalent to dental plaster models or digital images generated from conventional dental impressions [33]. Zfx InraScan intraoral 3D scanner and its virtual measuring tool was found valid for measuring key features in dental casts [20]. The studies done by Fournier et al. [23, 25] proposed a protocol for the bite-mark analyzes using Planmeca Emerald® intraoral scanner. In a validation study it was found reliable on wax, cheese, and chocolate, but yielded...
Author	Molina *et al.*[12]	Rajshekar *et al.*[20]	Fournier *et al.*[25]	Fournier *et al.*[23]	Ali *et al.*[21]	Corte-Real *et al.*[22]
Aim of the study	**Comparison of contact and laser 3D scanners in tooth mark analysis**	**Assesses measurements accuracy made on dental casts using intraoral 3D scanner**	**Assess the 3D bite mark analysis protocol using an intraoral scanner**	**Study the feasibility of a 3D bitemark analysis protocol using an intraoral scanner**	**Assess bite marks dimensional changes on food-stuffs at different time intervals using CBCT**	**Comparison a foodstuff and the suspects’ dentition through the analysis of tomographic images**
The sample size	10 individuals 20 casts	25 individuals 50 casts	27 individuals	16 casts 24 bitemarks	30 individuals 60 casts 120 bitemarks	12 individuals 12 bitemarks
Substrates used generating bitemark	None	Human skin	Dental wax Cheese Chocolate Apple	Dental wax Cheese	Cheese Chocolate Apple	Apple
Registration technique	2020i Desktop 3D scanner Picza® 3D Scanner	Zfx™IntraScan + Handheld Caliper Mitutoyo® Digimatic	Planmeca Emerald®	Planmeca Emerald®	Kodak 9000 C 3D	iCAT
Software packages	Meshlab V1.3.3 3-D, Pisa, Italy) Conversor© Dentalprint©	Zfx™IntraScan software	Romexis ®5.1.0R Cloudcompare® 2.910.1 MeshMixer® 3.4.35	Romexis ®5.1.0R Cloudcompare® 2.9.1 MeshMixer® 3.4.35	Kodak Digital image communication software, SPSS 17.0	InVivoSTM SPSS Statistics 20 Microsoft Excel
the poorest results in apples. The use of any type of scanner and associated equipment always requires a high degree of training and expertise. These devices showed an excellent potential for use in bite-mark analysis.

The CBCT-assisted analysis of bite marks was considered a nondestructive, accurate, and simple. Ali et al. [21] concluded that CBCT images of bite marks displayed no distortion artifacts and enabled accurate 3D measurements. Corte-Real et al. [22] showed in their study that bite mark analysis could be done through software that searches for matching dentitions in a CBCT database. This could add value in the identification process of potential suspects where countries have one or more national databases for all the performed radiographic images. Using ionizing radiation may pose potential risk to the operator and the suspect [34]. This obviously does not apply to the bitemarks on the bodies observed and investigated in the mortuary. The availability of the CBCT machines and the cost of the procedure might be an obstacle for utilizing this novel approach in less developed countries. In spite of these shortcomings, CBCT could provide a potential alternative modality for recording the bite marks in forensic odontology, especially on food-stuffs [35].

Photogrammetry in 3D documentation of skin bite marks was published for the first time in 2003 by Thali et al. [36]. A series of overlapping photos from different points of view around a targeted object are taken and the 2D photographs are combined into a true-to-scale 3D model of the object. Simplicity, inexpensiveness, free software, and somewhat trivial technical requirements of photogrammetry enable us to create a textured 3D surface model [37]. The accuracy of this technique has been proven to be comparable to the laser scanners [38]. Photogrammetry has been routinely utilized in forensic 3D documentation of skin injuries [39–41]. The use of photogrammetry was demonstrated by De Sainte Croix et al. [16] in our systematic review.

Studies utilizing 3D comparison of the dental crown morphology of the anterior dentition.

The uniqueness of human dentition (UHD) could be assessed using 2D (flatbed scanning and photography) and 3D (laser scanning and intraoral scanning) image registration [42]. Chong et al. [17] used intraoral 3D scanner and 3D analyzes software to investigate the UHD in the orthodontically treated study population on human anterior dentition. The authors found that anterior dentition was unique within their study population as no perfect matches were detected. They concluded that using 3D scanner and commercially available 3D analyzes software were highly encouraging methods in bite-mark analyzes particularly in the absence of any positive DNA assay [17]. In two studies by Franco et al. [18, 19] they investigated the uniqueness of the human dentition utilizing 3D methods in randomly selected subjects. The subjects included orthodontically treated patients and twins to increase the reliability of the study [18]. The first study analyzing incisal edges did not show uniqueness, but when

Author	Chong et al.[17]	Franco et al. [18]	Franco et al.[19]		
Aim of the study	Use intraoral 3D scanner and 3D analyzes software to investigate the uniqueness of the anterior human dentition (UHD) among patients who had completed orthodontic treatment. Determine the feasibility of a combined intraoral 3D scanner and 3D analyzes software approach to bite mark analyze	Assess the UHD in the anterior dentition based on systematically reducing the 3D quantity of dental material analyze and using slices of the analyzed dental material	Prove the UHD 3D comparing the dental crown morphology of the anterior dentition in of orthodontically treated patients, twins, and orthodontically treated twins in relation to a threshold sample of identical dentitions		
The sample size: Individuals	20 individuals	445 casts	445 casts		
Substrates used generating bitemark	none	none	none		
Registration technique	3MLava Chairside Oral Scanner C.O.S. (3 M ESPE St. Paul, MN)	XCAD 3D® (XCADCAM Technology®, Sao Paulo, SP, Brazil)	XCAD 3D® (XCADCAM Technology®, Sao Paulo, SP, Brazil)		
Software packages	Meshlab V1.3.2, Pisa, Italy) Geomagic Control (Morrisville, NC)	Geomagic Studio® (3D Systems®, Rock Hill, SC, USA) software package (GS), S.® 8.0 (Tibco®, Palo Alto, California, USA)	Geomagic Studio® (3D Systems®, Rock Hill, SC, USA) software package (GS), S.® 8.0 (Tibco®, Palo Alto, California, USA)		
Author	Aim of the study	The sample size	Substrates used generating bitemark	Registration technique	Software packages
--------------------------------	---	-----------------	------------------------------------	--	---
Naether et al. [10]	Evaluate the identification of bite marks in different kinds of food and investigated whether the identification of the biter is still possible, after food has been lying around for some time	6 adults	Buttered bread,Applles,Chocolate, Cheese	3D optical surface scanner GOM Atos III (Braunschweig, Germany)	ATOS 3D Studio max animation software
Martin-de-las-Heras et al. [14]	Develop a quantitative method to compare 3D overlays from dental casts with experimental bitemarks by using geometric morphometric analysis	13 upper and lower dental casts and corresponding simulated bitemarks	Dental wax	3D contact-type scan (Roland, Picza 3D, Pix-3, Roland DG Corp, Japan)	DentalPrint® Dig v. 2.10 morphometric Software (Stony Brook, 2006)
Przystańska et al. [15]	Investigate the possibility of identifying a biter using 2D and 3D analysis of experimental bite marks	10 individuals	Cheese Chocolate Apple Grapes	Epson Perfection 4900 GOM Atos II Rev.01, Canon 20D SLR camera	CorelDrawX3 ATOS
de Sainte Croix et al. [16]	Investigate if a 3D imaging technique, creating a 3D time-lapse image of a bite mark can provide context to the nature and location of injury	10 individuals	Human skin	DI3D® Photogrammetry	Autodesk Maya 2015®, Adobe Photoshop® CS6, Adobe After Effects CS6®
Ramos et al. [24]	Can BitePrint calculate the same parameters for the biting edges generated from 3D images of dental casts?	64 casts	Piglet skin	Photographs, nonspecified equipment	C + + with the Microsoft Visual Studio 2005 PE, QGLViewer, OpenGL Dentalprint® Biteprint® SPSS Windows 20.0 (SPSS Inc., Chicago, IL)
Molina et al. [26]	Determine dental parameters that characterize human bite marks and dentitions for biter identification using semiautomatized technology	65 individuals	Human skin	2020i Desktop 3D scanner Photographs, nonspecified equipment	Dentalprint® Biteprint® SPSS Statistics 20
the complete crowns of the anterior teeth were included, UHD was demonstrated [18, 19].

It must be understood that the presence of recognizable dental features, nicks, chips, and imperfections are required to correctly match suspects to bitemarks. A lack of features seen in orthodontically treated patients, especially in skin bite cases will create problems in identifying a perpetrator and be impossible to present in the court of law [9].

After considering the research results 3D scanners and computer-assisted methods in bite mark analyzes showed promising results. Small sample size, lacking statistical methods for data comparison, missing intra- and inter-examiner calibrations, nonvalidated software for 3D shape comparison or relatively scarcity of studies performed in vitro present the main limitations in studies included.

Studies on computer-assisted methods for bitemark analyzes

Computer-assisted methods for bitemark analyzes enable experts to work remotely and seek advice from the other team members and colleagues during pandemic. It must be noted, that computers cannot manufacture that which does not exist. Digital analyzes of the bite mark can only enhance existing features and enable the proficient presentation of these features. The use of 3D imaging technology offers practical advantages to the courtroom, specifically with respect to the juror’s understanding of technical language [31].

Biting is a dynamic process. Thus, bite mark analysis is based on a combination of morphological and positional data [43]. Computer assisted graphics and animations have showed the potential for accurate representation of bite marks in all three dimensions, compare the dentitions of presumed biter to the evidence and match the corresponding biter to the bite-mark among several suspects [44]. ATOS software enables an automatic computation of the deviation between the two meshes, thus, allows an easy and very accurate analysis and interpretation of the results. 3D Studio Max software allows dynamic comparison during the animated act of biting, where 3D match or nonmatch is clearly detectable [10].

De Sainte Croix et al. [16] successfully created 3D time-lapse animations, which can be viewed on most electronic devices. The quality of DI3D Photogrammetry system was accurate enough to enable the animations to illustrate the color and shape of bruising. Some distortions were present around the edges of 3D model. The animations can have significant benefit to the photographic evidence presentation in court setting, especially if the presentation has been made virtually [16].

Realistic 3D perspective allows the placement of a higher number of landmarks [44, 45]. Additionally, automated image superimposition and mesh processing leads to improved digital 3D image analyzes and interpretation of bitemarks [18]. 3D capture of the bitemark and digital analysis provide images that have less angular and perspective distortion, which results in less measurement errors [24]. It can be performed using high-tech commercially available as well as special forensic odontology software such as Dentalprint©, BluePrint©, and Biteprint© [12, 24, 26].

Semiautomated BluePrint© software enables the investigator to compare the photographs of a bite mark with the biting edges of a dental cast. It generates data on the dental parameters required for identification (e.g. intercanine distance, rotation, eccentricity, angular position, and distance to the arch of each tooth mark). BitePrint© represents the biting edges of dental casts as a set of geometric coefficients, offering a measurable, semiautomatic, and less subjective analysis. Molina et al. [26] evaluated the accuracy and reproducibility of dental parameters between photographs of bite marks and dental casts using semiautomated technology. The sensitivity of this technology was found to be 92% and specificity 53%. The accuracy of these programs can be applied in practical forensic dentistry and in criminal trials involving human bite mark cases [24, 26].

Conclusion

The global pandemic has forced us to search for new and innovative techniques which are safer to use in our day to day practice of forensic science. Three-dimensional scanners have shown potential advantages and can be used in forensic odontology on the skin and inanimate objects. The analyzes of the bite marks depends on quality, quantity, and the presence of recognizable features in a pattern associated analysis. The latter requires only a degree of accuracy which is standard in the majority of 3D scanners. Training and expertise on 3D scanners and computerized technologies is an absolute prerequisite for forensic dentists to obtain accurate results. The authors believe that in changing world the 3D scanning and analyzing techniques will replace the methods which were derived in a world free of Covid-19, Ebola, HIV, and global connectivity.

Authors contribution Both authors contributed to the idea for the article, Piret Vilborn performed the literature search and drafted the work, which was approved by both authors. Both authors commented on previous versions of the manuscript, read and approved the final manuscript.
Declarations

Ethical approval Not applicable.

Conflict of interest The authors declare no conflict of interest.

References

1. Bradbury-Jones C, Isham L (2020) The pandemic paradox: the consequences of COVID-19 on domestic violence. J Clin Nurs 29:2047–2049
2. Gutерес, A (2020) UN chief calls for domestic violence ‘ceasefire’ amid ‘horrifying global surge.’. Retrieved from UN News. https://news.un.org/en/story/2020/04/1061052. Accessed 05 Jan 2021
3. Viero A et al (2021) Violence against women in the Covid-19 pandemic: a review of the literature and a call for shared strategies to tackle health and social emergencies. Forensic Sci Int 319:110650
4. Andrew MC (2020) An increasing risk of family violence during the Covid-19 pandemic: strengthening community collaborations to save lives. Forensic Sci Int: Reports 2:100089. https://doi.org/10.1016/j.jsir.2020.100089
5. Freeman AJ, Senn DR, Arendt DM (2005) Seven hundred seventy eight bite marks: analysis by anatomic location, victim and biter demographics, type of crime, and legal disposition. J Forensic Sci 50(6):1436–1443
6. George R, George A (2020) COVID-19 as an occupational disease? S Afr Med J 110(4):260–260
7. Emilio N, Hemlata P, Francesco L (2020) Dental autopsy recommendations in SARS-CoV-2 infected cases. Forensic Sci Int: Synergy 2:154–156. https://doi.org/10.1016/j.jsisy.2020.04.004
8. Reinprecht S et al (2017) An analysis of dental intercanine distance for use in court cases involving bite marks. Int J Legal Med 131(2):459–464
9. Bernitz H et al (2008) An integrated technique for the analysis of skin bite marks. J Forensic Sci 53(1):194–198
10. Naether S et al (2012) The examination and identification of bite marks in foods using 3D scanning and 3D comparison methods. Int J Legal Med 126(1):89–95
11. Stols G, Bernitz H (2010) Reconstruction of deformed bite marks using affine transformations. J Forensic Sci 55(3):784–787
12. Molina A, Martin-de-las-Heras S (2015) Accuracy of 3D scanners in tooth mark analysis. J Forensic Sci 60(Suppl 1):S222–S226
13. Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535
14. Martin-de-Las-Heras S, Tafur D, Bravo M (2014) A quantitative method for comparing human dentition with tooth marks using three-dimensional technology and geometric morphometric analysis. Acta Odontol Scand 72(5):331–336
15. Przystanska A et al (2015) Skuteczność metod 2D i 3D w analizie eksperymentalnych śladów ugrzyzień. Dent Med Probl 52(1):86–92
16. de Sainte Crèche MM et al (2016) Three-dimensional imaging of human cutaneous forearm bite marks in human volunteers over a 4 day period. J Forensic Leg Med 40:34–39
17. Chong GTF, Forgie AH (2017) A pilot study to analyze the uniqueness of anterior teeth using a novel three-dimensional approach. JFI 67(3):361–378
18. Franco A et al (2017) Uniqueness of the anterior dentition three-dimensionally assessed for forensic bitemark analysis. J Forensic Leg Med 46:58–65
19. Franco A et al (2017) Three-dimensional analysis of the uniqueness of the anterior dentition in orthodontically treated patients and twins. Forensic Sci Int 273:80–87
20. Rajeshkar M et al (2017) The reliability and validity of measurements of dental casts made by an intra-oral 3D scanner, with conventional hand-held digital callipers as the comparison measure. Forensic Sci Int 278:198–204
21. Ali IK, Sansare K, Karjodkar FR (2018) Analysis of inter-canine distance and dimensional changes in bite marks on foodstuffs using cone beam computed tomography. Am J Forensic Med Pathol 39(3):213–217. https://doi.org/10.1097/PAF.0000000000000399
22. Corte-Real A et al (2018) Tri-dimensional pattern analysis of foodstuff bitemarks—a pilot study of tomographic database. Forensic Sci Int 288:304–309
23. Fournier G et al (2019) Three-dimensional analysis of bitemarks using an intraoral scanner. Forensic Sci Int 301:1–5
24. Ramos B et al (2019) A new method to geometrically represent bite marks in human skin for comparison with the suspected dentition. Aust J Forensic Sci 51(2):220–230
25. Fournier G et al (2020) Three-dimensional analysis of bitemarks: a validation study using an intraoral scanner. Forensic Sci Int 309:110198
26. Molina A, et al (2020) Dental parameter quantification with semi-automatized computational technology for the analysis of human bitemarks. Aust J Forensic Sci 1–11. https://doi.org/10.1080/00450618.2020.1793385
27. Donovan TE, Chee WW (2004) A review of contemporary impression materials and techniques. Dent Clin North Am 48(2):vi–vii (445-70)
28. Means CR, Flenniken IE (1970) Gagging—a problem in prosthetic dentistry. J Prosthet Dent 23(6):614–620
29. Wismeijer D et al (2014) Patients’ preferences when comparing analogue implant impressions using a polyether impression material versus digital impressions (Intraoral Scan) of dental implants. Clin Oral Implants Res 25(10):1113–1118
30. Patzelt, S.B., et al., The time efficiency of intraoral scanners: an in vitro comparative study. Journal of the American Dental Association (1939), 2014. 145(6): p. 542–51.
31. Errickson D et al (2020) The effect of different imaging techniques for the visualisation of evidence in court on jury comprehension. Int J Legal Med 134(4):1451–1455
32. Fahmi S et al (2019) An exploratory study toward the contribution of 3D surface scanning for association of an injury with its causing instrument. Int J Legal Med 133(4):1167–1176
33. Aragon ML et al (2016) Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Orthod 38(4):429–434
34. Kim YJ, Cha ES, Lee WJ (2016) Occupational radiation procedures and doses in South Korean dentists. Community Dent Oral Epidemiol 44(5):476–484
35. Marques J et al (2013) Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)–3D reconstruction. J Forensic Odontostomatol 31(1):1–7
36. Thali MJ et al (2003) Bite mark documentation and analysis: the forensic 3D/CAD supported photogrammetry approach. Forensic Sci Int 135(2):115–121
37. Slot L, Larsen PK, Lynnerup N (2014) Photogrammetric documentation of regions of interest at autopsy—a pilot study. J Forensic Sci 59(1):226–230
38. Buck U et al (2018) Validation and evaluation of measuring methods for the 3D documentation of external injuries in the field of forensic medicine. Int J Legal Med 132(2):551–561
39. Flies MJ et al (2019) Forensic 3D documentation of skin injuries using photogrammetry: photographs vs video and manual vs automatic measurements. Int J Legal Med 133(3):963–971
40. Urbanova P, Hejna P, Jurda M (2015) Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology. Forensic Sci Int 250:77–86
41. Villa C (2017) Forensic 3D documentation of skin injuries. Int J Legal Med 131(3):751–759
42. Franco A et al (2015) The uniqueness of the human dentition as forensic evidence: a systematic review on the technological methodology. Int J Legal Med 129(6):1277–1283
43. Bernitz H et al (2000) Comparison of bitemarks left in foodstuffs with models of the suspects’ dentitions as a means of identifying a perpetrator. J Forensic Odontostomatol 18(2):27–31
44. Blackwell SA et al (2007) 3-D imaging and quantitative comparison of human dentitions and simulated bite marks. Int J Legal Med 121(1):9–17
45. Sheets HD, Bush PJ, Bush MA (2013) Patterns of variation and match rates of the anterior biting dentition: characteristics of a database of 3D-scanned dentitions. J Forensic Sci 58(1):60–68

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.