The complete chloroplast genome sequence of Cuphea hyssopifolia

Li Maa,b,c,, Yan-Ze Hea,b,c,, Jia-Yan Yua,b,c,, Cui-Hua Gua,b,c,, Xue-Zhu Liaod and Zhi-Qiang Wud

aSchool of Landscape and Architecture, Zhejiang A & F University, Hangzhou, China; bZhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, China; cKey Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, China; dShenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China

\textbf{ABSTRACT}

\textit{Cuphea hyssopifolia} is a small evergreen shrub of great economic and medicinal values. However, there are few studies on the ecological and genetic characteristics of this species. Chloroplast genomic analysis has been shown to resolve phylogenetic relationships. Here, we sequenced the complete chloroplast (cp) genome of \textit{Cuphea hyssopifolia}, which is the first complete cp genome reported in the genus \textit{Cuphea}. The size of the whole cp genome is 158,821 bp, exhibiting the large (LSC, 89,064 bp) and small (SSC, 18,373 bp) single-copy regions and a pair of inverted repeats (IRs, 25,692 bp). The genome contained 111 unique genes, including 78 protein coding genes, 29 transfer RNAs (tRNA), and four ribosomal RNAs (rrNA). Neighbour-joining (NJ) phylogenetic analysis based on 43 genomes showed that \textit{C. hyssopifolia} was closer to \textit{Heimia myrtilifolia} than \textit{Lagerstroemia} species in the Lythraceae family.

\textit{Cuphea hyssopifolia} is a small evergreen shrub of the genus \textit{Cuphea} in the Lythraceae family. It is native to Mexico and Guatemala, and commonly cultivated in southern China (Gonzalez et al. 1994). As continuously flowers throughout the year, it has high ornamental value and is often used as a garden ornamental plant. Many horticultural varieties of \textit{C. hyssopifolia} have been reported, such as Magenta broder (Elliot 2011). It has also been reported to treat gastric diseases and cancers (Chen et al. 1999). In addition, the results of Lu et al showed that dense vegetation formed by \textit{C. hyssopifolia} can limit the germination and growth of the invasive plant \textit{Macfadyena unguis-cati} (Lu et al. 2005). Liu et al discovered that the extract of \textit{C. hyssopifolia} has application potential in cosmetics and medical products (Liu et al. 2012). Therefore, the application prospect of \textit{C. hyssopifolia} is very broad and is worthy of further research and development.

In 1986, the cp genome of \textit{Marchantia polymorpha} was first sequenced (Umesono et al. 1984). To date, more than 4000 complete cp genome sequences have been stored in NCBI database. Chloroplasts, like mitochondria, is one of plastids. Because chloroplasts have maternal inheritance, they have become a research hot spot in recent years (Daniell et al. 2016). Little research has been done on the cp genome of \textit{C. hyssopifolia}, so we assembled and characterized the complete cp genome of \textit{C. hyssopifolia} with next-generation sequencing technology (GenBank: MN833211). Fresh leaves were collected from the \textit{C. hyssopifolia} grown in Zhejiang A & F University (30°26’N, 119°72’E) and immediately dried in silica gel. The voucher specimen is deposited at the Herbarium of Zhejiang A & F University (specimen code ZAFU2019066). CpDNA was then isolated following the CTAB protocol (Doyle and Doyle 1987). The 150-bp paired-end (PE) reads were generated by an Illumina HiSeq 2500 sequencer (Gu et al. 2019). \textit{Platanus} v2.0 with default settings were employed to assemble the reads from cp genome of \textit{C. hyssopifolia}. \textit{DOGMA} v1.2 software was used to annotate the cp genes automatically (Wyman et al. 2004). The genome map of \textit{C. hyssopifolia} was then drawn using OGDRAW (Lohse et al. 2013). We used MEGA 6 to generate a neighbour-joining tree (Figure 1) based on 64 homologous protein coding genes from 36 Myrtales species representing four families (Lythraceae, Myrtaceae, Onagraceae and Melastomataceae) (Tamura et al. 2013). To produce a rooted tree, we chose seven Geraniaceae species as outgroup.

\textbf{ARTICLE HISTORY}

Received 17 February 2020
Accepted 20 February 2020

\textbf{KEYWORDS}

\textit{Cuphea hyssopifolia}; chloroplast genome; Phylogeny

\textbf{CONTACT}

Cui-Hua Gu (guccuihua@zafu.edu.cn) School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, China; Zhi-Qiang Wu (wuzhiqiang@caas.cn) Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China

\textcopyright{} 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The structure of the *C. hyssopifolia* cp genome is typically quadripartite. A pair of 25,692 bp IRs divide the cp genome into a large single copy (LSC, 89,064 bp) and a small single copy (SSC, 18,373 bp). The whole cp genome was 158,821 bp in length and the total GC content was 36.97%. The GC content of the LSC and SSC regions were 34.91 and 31.05%, respectively. The molecule annotation resulted in the identification of 111 unique genes, including 29 tRNAs, four rRNAs and 78 protein-coding genes. 7 tRNA genes, four rRNA genes and 6 coding genes are located within the IR regions. Of the 16 intron-containing genes, 13 genes (*trnK*, *rps16*, *atpF*, *rpoC1*, *trnL-UAA*, *trnV-UAC*, *petB*, *petD*, *rpl16*, *ndhB*, *trnA*, *trnI-GAU*, *ndhA*) have a single intron and three genes (*clpP*, *rps12* and *ycf3*) have two introns.

In order to reveal the phylogenetic relationship between *C. hyssopifolia* and other species in Lythraceae, we selected 36 published cp genomes of Myrtales including 18 Lythraceae species, and seven Geraniaceae species as outgroup. The neighbour-joining phylogenetic tree based on the 43 cp genomes (Figure 1) showed that *C. hyssopifolia* was most closely related to *Heimia myrtifolia* in the Lythraceae with strong support. The complete cp genome presented in this study will provide useful data for population genomic and evolutionary studies on *C. hyssopifolia*.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Zhejiang Provincial Natural Science Foundation of China [LY17C160003] and National Undergraduate Training Program for Innovation and Entrepreneurship [201910341029].

References

Chen LG, Yen KY, Yang LL, Hatano T, Okuda T, Yoshida T. 1999. Macrocyclic ellagitannin dimers, cuphiin D1 and D2 and accompanying tannins from *Cuphea hyssopifolia*. Phytochemistry. 50(2):307–312.

Daniell H, Lin CS, Yu M, Chang WJ. 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17(1):134.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19:11–15.

Elliot R. 2011. *Cuphea* plant named ‘Magenta Border’: United States, US20110221854A1. 2011-09-20.

Gonzalez AG, Valencia E, Exposito TS, Barrera JB, Gupta MP. 1994. Chemical components of *Cuphea* species. Carthagenol: a new triterpene from *Cuphea carthagenesis*. Planta Med. 60:592–593.

Gu CH, Ma L, Wu ZQ, Chen K, Wang YX. 2019. Comparative analyses of plastid genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales. BMC Plant Biol. 19(1):281–299.

Liu JK, Ding ZH, Bai X, Jia RR, Qu Y, Dong ZJ. 2012. The application of the extract of *Cuphea hyssopifolia* in cosmetics and medical products: China, CN102525860A [P]. 2012-07-04.

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. Organellar Genome DRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41:575–581.

Lu CY, Hu HY, Zhang MQ, Zhong YT, Zheng FZ. 2005. Studies on the control of alien invasive plant *Macfadyena unguis-cati* with ecological substitution. Plant Protection. 31(3):53–56.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2729.

Umesono K, Inokuchi H, Ohyama K, Ozeki H. 1984. Nucleotide sequence of *Marchantia polymorpha* chloroplast DNA: a region possibly encoding three tRNAs and three proteins including a homologue of *E. coli* ribosomal protein S14. Nucl Acids Res. 12(24):9551–9565.

Unger H. 2018. *Cuphea* plant named ‘Wescufolia’: United States, US20180022807P1 [P]. 2018-08-09.

Wyman SK, Jansen RK, Boore J. 2004. Automatic annotation of organelar genomes with DOGMA. Bioinformatics. 20(17):3252–3255.

Figure 1. The neighbour-joining tree based on 64 shared protein-coding genes of 36 Myrtales species and 7 outgroup species. Numbers near the branch mean the bootstrap value of the protein analysis for each clade, and the values equal to 100 are not displayed.