Data S1. Supplemental Methods

VA-ECMO management protocol

VA-ECMO indications and management were based on our local protocol and available guidelines through a multidisciplinary team including cardiologists, intensivists, and cardiac surgeons. Briefly, VA-ECMO was discussed for RCS defined by persisting mismatch between oxygen supplies and tissue needs due to a pump dysfunction despite inotrope and/or vasopressor perfusion. In case of RCA, VA-ECMO implantation was discussed only for selected patients (≤ 70 yo, witnessed cardiac arrest, BMI < 40 kg/m², end-tidal CO2 > 10 mmHg, pH level > 6.9 and lactatemia < 25 mmol/L at ICU arrival). Contra-indications to VA-ECMO were common: age > 80 years; anticoagulation contraindication; severe peripheral artery disease; significant aortic regurgitation; life expectancy less than 5 years due to associated chronic or acute illness and severe post anoxic coma. Anticipated directives were also taken into consideration.

VA-ECMO was initiated under general anesthesia by femoral approach thanks to a modified Seldinger technique. The circuit used includes a venous inflow cannula (23 to 29 Fr) inserted up to the inferior vena cava-right atrium junction, a SORIN® centrifuge pump with a D905® oxygenator (or a MAQUET® centrifuge pump with a QUADROX® oxygenator), and an arterial outflow cannula (19 to 21 Fr) inserted up to the common iliac artery with systemic insertion of a reperfusion cannula (7 Fr) for the ipsilateral superficial femoral artery. The initial output is adjusted to the theoretical cardiac output (70/mL/kg/min) then to a target MAP ≥ 65 mmHg (after volume loading and vasopressors, if necessary). Inotrope support with dobutamine could be continued to maintain an aortic valve opening. Curative anticoagulation was started by intravenous unfractionated heparin for a target anti-Xa level between 0.2 and 0.4 IU/mL. The decision to wean the patient from VA-ECMO depends on a set of clinic-biological and ultrasound criteria assessed by daily weaning trial at a minimum VA-ECMO output of 1.5-2 L/min.

Characteristics of left heart decompression used (9)

The IABP (AutoCAT 2 Wave TELEFLEX®) is implanted in the descending aorta then connected to an electrocardiogram in order to inflate the balloon with helium during protodiastole and deflate it during telediastole, thereby reducing the LV afterload while increasing diastolic blood pressure (DBP) and thus coronary and cerebral perfusion.

The micro-axial flow pump Impella (Abiomed, Danvers, MA, USA) is a catheter-based LV assist device which is inserted into the LV cavity via arterial access (axillary or subclavian access in case of Impella 5.0, and femoral access in case of Impella CP). From that position, it actively drains blood from the LV and propels it into the proximal ascending aorta, thereby decreasing LV preload and increasing cardiac output.

Percutaneous atrioseptostomy (PA) involves creating a left-right shunt through perforation of the interatrial septum after femoral vein catheterization. PA was performed under fluoroscopic guidance in the hemodynamical or electrophysiological laboratories, with the help of trans-oesophageal echocardiography when needed. After femoral venous catheterization, transseptal puncture was performed according to usual techniques (10) with a SLO sheath (St Jude Medical™) and Brokenbrough needle, under common fluoroscopic landmarks and/or pressure monitoring. Of note that transseptal puncture was sometimes especially tricky in this situation, due to the presence of the ECMO venous canula, anticoagulation and dilated/distorted cardiac anatomy. Then an aortic valvuloplasty balloon (diameter 10 to 18 mm) was mounted over a 0.32 mm guidewire positioned in the left superior pulmonary vein. The sheath was then removed into the right atrium and the balloon was inflated at the level of the transseptal puncture in order to create an inter-atrial communication and thus maintain a significant left-right shunt (11).

The surgical decompression is the addition of a left intraventricular cannula to the venous circuit of the VA-ECMO by surgical approach: a transvalvular aortic cannula by a subclavian artery or axillary approaches, or directly through the LV by transapical thoracotomy or sternotomy.

The different LHD techniques were implemented and checked under x-ray and/or ultrasound guidance (transesophageal echo (TEE) or transthoracic echo (TTE)).
Table S1. Comparison of characteristics of cardiogenic shock or refractory cardiac arrest VA-ECMO patients with vs without left heart decompression

	General population n=163	Non-LHD group n=100 (61%)	LHD group n=63 (39%)	p-value
Demographic data				
Male	113 (69%)*	65 (65%)	48 (76%)	0.133
Age (years)	55 (42 – 61) †	52 (36 – 62)	57 (47 – 60)	0.091
BMI (kg/m²)	25.9 (22.8 – 29.4)	25.3 (22 – 29)	26.6 (24 – 30)	0.071
Previous known heart disease				
Ischemic	61 (37%)	29 (29%)	32 (51%)	0.053
Dilated	20 (12%)	11 (11%)	9 (14%)	0.535
Hypertrophic	12 (7%)	10 (10%)	2 (3%)	0.105
Valvular	11 (7%)	8 (8%)	3 (5%)	0.424
Tachycardia induced cardiomyopathy	17 (10%)	9 (9%)	8 (13%)	0.453
None	50 (31%)	32 (32%)	18 (29%)	0.645
Cardiovascular risk factors				
Hypertension	54 (33%)	32 (32%)	22 (36%)	0.648
Diabetes	24 (15%)	15 (15%)	9 (14%)	0.901
Smoking	87 (53%)	49 (49%)	38 (60%)	0.160
Dyslipidemia	40 (25%)	23 (23%)	17 (27%)	0.527
Indication for VA-ECMO				
RCS / RCA	110 (68%) / 53 (32%)	68 (68%) / 32 (32%)	42 (67%) / 21 (33%)	0.269
Etiology of the RCS				
End-stage heart failure	18 (11%)	10 (10%)	8 (13%)	0.799
Recent myocardial infarction	44 (27%)	16 (16%)	28 (44%)	<0.001
Drug overdose	13 (8%)	13 (13%)	0 (0%)	0.002
Electrical storm	24 (15%)	15 (15%)	9 (14%)	0.999
Other (pulmonary embolism, ARDS, etc.)	31 (19%)	24 (24%)	7 (11%)	0.069
Severity score at initiation

Score	ENCOURAGE	SOFA	SAPS2	
Severity	22 (14.2 – 27.8)	21 (14 – 27)	23 (17 – 28)	0.425
SOFA	11 (9 – 13)	12 (9 – 13)	10 (9 – 12)	0.192
SAPS2	68.5 (55 – 79)	68 (54 – 78)	70 (57 – 80)	0.571

Therapeutics at initiation

Therapeutics	ENCOURAGE	SOFA	SAPS2	p-value
Noradrenaline	94 (58%)	62 (62%)	32 (51%)	0.144
Adrenaline	104/161 (65%)	60/98 (61%)	44 (70%)	0.245
Dobutamine	60 (37%)	32 (32%)	28 (44%)	0.135
RRT	7 (4%)	7 (7%)	0 (0%)	0.146
Mechanical ventilation	149 (91%)	94 (94%)	55 (87%)	0.132

RCA before initiation of VA-ECMO

RCA	ENCOURAGE	SOFA	SAPS2	p-value
Prior cardiac arrest	93 (57%)	56 (56%)	37 (59%)	0.747
Out-of-hospital RCA	36 (22%)	25 (25%)	11 (17%)	0.342
No flow > 5 min	9/87 (10%)	6/51 (12%)	3/36 (8%)	0.727
Bilateral mydriasis at initiation	35/149 (23%)	28/94 (30%)	7/55 (13%)	0.018

Clinical and biological data at initiation of VA-ECMO

Parameter	ENCOURAGE	SOFA	SAPS2	p-value
HR (bpm)	73.5 (0 – 111)	57 (0 – 115)	90 (0 – 110)	0.627
MAP (mmHg)	50 (0 – 67)	50 (0 – 65)	55 (0 – 70)	0.383
LVEF (%)	10 (5 – 20)	10 (5 – 25)	10 (5 – 15)	0.009
Arterial blood pH	7.21 (7.05 – 7.35)	7.19 (7.03 – 7.35)	7.22 (7.1 – 7.33)	0.815
PaO2 (mmHg)	108 (74.7 – 267.5)	113 (77 – 255)	105 (72.7 – 279)	0.947
PaCO2 (mmHg)	39.6 (30 – 49)	39.2 (30.9 – 50.3)	40 (29 – 47)	0.593
Lactatemia (mmol/L)	7.1 (3.2 – 14.3)	6.7 (3.8 – 14)	8.3 (3 – 14.9)	0.903
Serum creatinine (µmol/L)	135 (103 – 171.5)	138 (103 - 177)	127.5 (103 – 164)	0.648
ASAT (IU/L)	184 (62.5 – 611.5)	184 (79 – 612)	229 (47 – 647)	0.935
ALAT (IU/L)	107.5 (56 – 370.5)	105 (48 – 403)	112 (57 – 338)	0.877
PT (%)
\[55 \ (39 - 69) \quad 52.5 \ (40 - 69) \quad 55 \ (36 - 71) \ 0.977 \]

Hemoglobin (g/dL)
\[12.5 \ (10.1 - 15.0) \quad 12.3 \ (10.2 - 14) \quad 12.6 \ (10.1 - 15.2) \ 0.508 \]

Blood product transfusions during hospitalization

Blood product	N (25% - 75%)	P (25% - 75%)	Q (25% - 75%)	p-value
pRBCs	8 (3 - 13)	6 (2 - 11)	10 (5 - 17)	<0.001
Fresh frozen plasma	2 (0 - 6)	0.5 (0 - 6)	3 (0 - 6)	0.063
Platelet concentrates	1 (0 - 8)	1 (0 - 7)	3 (0 - 12)	0.006

Complications

Complication	N (25%)	P (25%)	Q (25%)	p-value
Neurological complications	40 (25%)	23 (23%)	17 (27%)	0.583
Sepsis	122 (75%)	70 (70%)	52 (83%)	0.181
RRT	56 (34%)	29 (29%)	27 (43%)	0.094
LV thrombus	13 (8%)	7 (7%)	6 (10%)	0.768

Evolution

Evolution	N (25% - 75%)	P (25% - 75%)	Q (25% - 75%)	p-value
Duration of ICU stay (days)	16.5 (11 – 28)	13 (9 – 21)	28 (15 – 40)	0.007
Length of hospital stay (days)	36.5 (23.3 – 53.3)	35 (21 – 51)	41 (29 – 58)	0.251
Duration of VA-ECMO (days)	6 (4 - 10)	5 (3 – 7)	10 (6.3 – 16)	<0.001
Weaning VA-ECMO	88 (54%)	54 (54%)	34 (54%)	0.9969
Transplant or chronic assistance at 3 months	15/160 (9%)	9/98 (9%)	6/62 (10%)	0.921
Death at D90	101 (62%)	56 (56%)	45 (71%)	0.066

*Copied result N (%), N being the number of cases and (%) the ratio of cases over the total number, expressed as a percentage
† Copied result M (25 – 75P), M being the median and 25 – 75P the interquartile range
‡ When data are missing, the case/total ratio is indicated before the percentage ()

ALAT: alanin aminotransferase; ASAT: aspartate aminotransferase; ARDS: acute respiratory distress syndrome; bpm: beats per minute; BMI: body mass index; D: day; HR: heart rate; ICU: intensive care unit; LHD: left heart decompression; LV: left ventricle; LVEF: left ventricular ejection fraction; MAP: mean arterial pressure; pRBCs: packed red blood cells; PACO2: partial pressure of carbon dioxide; PaO2: partial pressure of oxygen; PT: prothrombin time; RCA: refractory cardiac arrest; RCS: refractory cardiogenic shock; RRT: renal replacement therapy; SAPS2: simplified acute physiology score 2; SOFA: sequential organ failure assessment; VA-ECMO: veno-arterial extracorporeal membrane oxygenation
Table S2. Progression of the variables of interest during the first 48 hours after introduction of the left heart decompression

	Total LHD population (n=63)	Atrioseptostomy (n=26)	Other LHD (n=37)				
	M(25-75p)	Friedmann test	Friedmann test	Friedmann test			
	p	p<0.05 between variables	p<0.05 between variables	p<0.05 between variables			
Lactatemia (mmol/L)							
H0†	4.5 (1.7-8.8)	(H48)	3.0 (1.7 – 9.7)	NA‡			
			2.8 (2 – 4.4)	3.8 (1.7 – 6.0)			
			1.9 (1.5 – 2.8)	2.1 (1.5 – 4.3)			
H24	3.2 (1.7-4.9)	**0.012**	**0.103**	NA			
			2.8 (2 – 4.4)	**0.017**			
			2.1 (1.5 – 4.3)	NS			
			2.1 (1.5 – 4.3)				
H48	2.1 (1.5-3.5)	(H0)	1.9 (1.5 – 2.8)	(H0)			
		(H24)	2.1 (1.5 – 4.3)	(H0)			
Arterial blood pH							
H0	7.31 (7.23 - 7.430)	(H24)	7.31 (7.23 – 7.43)	7.23 (7.12 – 7.34)			
		(H48)	7.31 (7.23 – 7.43)	(H48)			
			7.37 (7.34 – 7.44)	NS			
			7.38 (7.29 – 7.42)	**0.011**			
			7.42 (7.36 – 7.47)	(H0)			
H24	7.38 (7.34 - 7.440)	<**0.001**	**0.029**	7.38 (7.29 – 7.42)			
			7.38 (7.29 – 7.42)	(H0)			
			NS	(H0)			
H48	7.43 (7.35 - 7.475)	(H0)	7.44 (7.38 – 7.48)	(H0)			
		(H24)	7.44 (7.38 – 7.48)	(H0)			
Total bilirubin (mmol/L)							
H0	13.2 (6.5 - 23.8)	(H24)	18.2 (11.8 – 34.6)	14.3 (6.5 – 20.9)			
		(H48)	18.2 (11.8 – 34.6)	(H48)			
			23.9 (13 – 50.2)	NS			
			26.1 (14.5 – 36.1)	<**0.001**			
			32.4 (21.5 – 45)	(H48)			
H24	18.2 (12.7 - 35.1)	<**0.001**	<**0.001**	26.1 (14.5 – 36.1)			
			26.1 (14.5 – 36.1)	(H24)			
			NS	<**0.001**			
			32.4 (21.5 – 45)	(H48)			
H48	24.5 (15.5 - 57.8)	(H0)	57.8 (21.8 – 89)	(H0)			
		(H24)	57.8 (21.8 – 89)	(H48)			
Hemoglobin (g/dL)							
H0	11.6 (9.7 – 14)	(H24)	10.8 (9.2 – 12.8)	12.4 (10.8 – 14.9)			
		(H48)	10.8 (9.2 – 12.8)	(H48)			
			12.4 (10.8 – 14.9)	(H48)			
H24	10.0 (8.7 – 11.0)	(H0)	10.0 (8.7 – 11.0)	9.9 (8.5 – 11.7)			
		(H24)	9.9 (8.5 – 11.7)	(H0)			
			9.9 (8.5 – 11.7)	(H0)			
	H0	H24	H48	H0	H24	H48	
----------------	----------	----------	-----------	----------	----------	-----------	
Platelets (G/L)							
H0	140 (107 – 219)	(H24)	121 (98 – 79)	(H48)	217 (155 – 335)	(H24)	
H24	108 (75 – 171)	<0.001	103 (71 – 171)	0.004	NS	<0.001	
H48	93 (76 – 119)	(H0)	93 (85 – 121)	(H0)	94 (73 – 115)	(H0)	
Serum creatinine (µmol/L)							
H0	122 (91 – 161)	NA	124 (78 – 168)	NA	124 (99 – 159)	NA	
H24	144 (87 – 201)	0.626	153 (99 – 205)	0.781	NA	0.715	
H48	131 (97 – 225)	NA	129 (108 – 216)	NA	131 (87 – 259)	NA	
Diuresis during the last 24 hours							
H0	1350 (275-2400)	(H24)	1350 (720 – 2455)	NA	413 (65 – 1495)	NA	
H24	1700 (809-2740)	0.027	1540 (848 – 2425)	0.277	NA	1835 (615 – 2893)	0.047†
H48	1308 (968-1850)	(H24)	1355 (998 – 2413)	NA	1550 (1005 – 2366)	NA	

* H0; H24; H48: data at the time of LHD introduction; 24 hours after; 48 hours after
† Copied result M (25 – 75P), M being the median and 25 – 75P the interquartile range
‡ NA: not applicable
§ NS: non-significant
† Significant Friedman test but multiple comparisons of non-significant pairs
Table S3. Characteristics that affect 90-day mortality for VA-ECMO patients with left heart decompression based on multivariable Cox proportional-hazard model

Covariate	Exp(b)*	95% CI of Exp(b)	p-value
Percutaneous atrioseptostomy (vs others LHD)	2.53	1.17 to 5.45	0.019
Prior cardiac arrest	0.80	0.42 to 1.53	0.504
Tachycardia induced cardiomyopathy	1.50	0.50 to 4.44	0.469
BMI (kg/m²)	1.01	0.95 to 1.08	0.781

BMI, body mass index; CI confidence interval; LHD, left heart decompression

For a continuous covariate, Exp(b) is the increase of the hazard ratio for 1 unit change of the continuous variable. Note that when b is negative, then Exp(b) is less than 1 and Exp(b) is the decrease of the hazard ratio for 1 unit change of the continuous variable. For a dichotomous covariate, Exp(b) is the hazard ratio.
Table S4. Characteristics that affect 90-day mortality for VA-ECMO patients with left heart decompression based on multivariable Cox proportional-hazard model 2

Covariate	Exp(b)	95% CI of Exp(b)	p-value
Percutaneous atrioseptostomy (vs others LHD)	1.99	1.03 to 3.85	0.041
Time under MV before LHD performance (days)	0.99	0.61 to 1.61	0.982
Recent myocardial infarction	1.16	0.63 to 2.16	0.637
Curative LHD indication (vs prophylactic)	1.05	0.55 to 2.04	0.876

CI confidence interval; LHD, left heart decompression; MV, mechanical ventilation

For a continuous covariate, Exp(b) is the increase of the hazard ratio for 1 unit change of the continuous variable. Note that when b is negative, then Exp(b) is less than 1 and Exp(b) is the decrease of the hazard ratio for 1 unit change of the continuous variable. For a dichotomous covariate, Exp(b) is the hazard ratio.)
Figure S1. Kaplan-Meier curves describing 90-day survival for patients on VA-ECMO for cardiogenic shock or refractory cardiac arrest with (red) vs without (blue) left heart decompression.

Decompressed patients associated each patient one or more left heart decompression technique used during VA-ECMO support. Time is provided in days. “p-value” is unadjusted. LHD, left heart decompression.
Figure S2. Kaplan-Meier curves describing survival at 90-day for patients on VA-ECMO according to curative (blue) vs prophylactic (green) left heart decompression indication for decompressed patients

In case of refractory and critical pulmonary congestion, a “curative” LHD was introduced. In case of severely depressed left ventricular ejection fraction (LVEF), low differential arterial pressure (<5-10 mmHg), major distention of the left ventricle, or absence of aortic valve opening, a “preventive” LHD was considered. Time is provided in days. “p-value” is unadjusted. LHD, left heart decompression.