ULTRAZVUČNE KARAKTERISTIKE ĆVOROVA U ŠTITASTOJ ŽLEZDI

Aleksandar Aleksić (1,4), Vlada Mitov (2), Aleksandar Jolić (2), Vanja Antić (3), Nataša Savić (4)

(1) SPECIJALISTIČKA INTERNISTIČKA ORDINACIJA ALEKMED ZAJEČAR, ODELJENJE INTERNE MEDICINE; (2) ZDRAVSTVENI CENTAR ZAJEČAR, ODELJENJE INTERNE MEDICINE; (3) ZDRAVSTVENI CENTAR ĆUPRIJA, ODELJENJE PNEUMOPTIZIOLOGIJE; (4) AKADEMIJA VASPITAČKO-MEDICINSKIH STRUKOVNIH STUDIJA ODSEK ĆUPRIJA

Sažetak: Nodusi ili čvorovi u štitastoj žlezdi su veoma česti i mogu se naći kod 50-68% odraslih osoba u opštoj populaciji. Samo oko 5% ovih nodusa su maligni i zahtevaju lečenje. Obično ne daju nikakve tegobe. Kada se otkriju, treba na osnovu kliničkog, ehosonografskog i citološkog nalaza, te po potrebi i korišćenjem dopunske dijagnostike, proceniti njihovu biološku prirodu i doneti odluku o potrebi lečenja. Na osnovu ultrazvučnih karakteristika nodusa odlučuje se da li je potrebna valovanja i mogu se naći kod 50%

Ključne reči: tiroidni čvorovi, ultrazvučni pregled, FNA

Uvod

Nodusi ili čvorovi u štitastoj žlezdi su veoma česti i mogu se naći kod 50-68% odraslih osoba u opštoj populaciji. Samo oko 5% ovih nodusa su maligni i zahtevaju lečenje. Obično ne daju nikakve tegobe. Kada se otkriju, treba na osnovu kliničkog, ehosonografskog i citološkog nalaza, te po potrebi i korišćenjem dopunske dijagnostike, proceniti njihovu biološku prirodu i doneti odluku o potrebi lečenja. Na osnovu ultrazvučnih karakteristika nodusa odlučuje se da li je potrebna valovanja i mogu se naći kod 50%

Trenutno je FNA najefikasnija metoda za utvrđivanje prirode čvora. Međutim, mnogi čvorovi su benigni a čak i maligni čvorovi, naročito oni manji od 1cm, često pokazuju indolentno i neagresivno ponašanje. Prema tome, svi otkriveni čvorovi ne zahtevaju FNA. Pouzdana neinvazivna metoda kojom se otkrivaju čvorovi koji su indikovani za FNA, bila bi izuzetno poželjna [6]. Ultrazvuk je inicialna dijagnostička metoda za detekciju tiroidnih nodusa. Osim prisustva nodusa, ona tačno određuje veličinu, lokalizaciju i broj nodusa u štitastoj žlezdi (ŠŽ). Ova neinvazivna metoda pregleda je bezbedna, neškodljiva i može se ponavljati. FNA je veoma važna dijagnostička metoda, ali njeno izvođenje mora biti selektivno s obzirom da se sistematično pitanje svih čvorova bez obzira na veličinu ili izgled, ne preporučuje. Važno je da se indikacije za FNA budu zasnovane i na kliničkim karakteristikama, kao i na ehosonografskoj stratifikaciji rizika od maligniteta. Zato se primenjuju uputstva za standardizovanje ultrazvučnog pregleda štitaste žlede (ŠŽ). Ova neinvazivna metoda pregleda je bezbedna, neškodljiva i može se ponavljati. FNA je veoma važna kod pacijenata sa čvorovima u ŠŽ kako bi se identifikovali oni čvorovi koje treba punktirati tankom iglom. Glavni nedostatak ovog pregleda je u tome što u velikoj mjeri zavisio od subjektivnosti lekarja koji vrši pregled [8]. Zbog toga se pokušalo sa pronalaženjem formule za procenu rizika u odnosu na ultrazvučne karakteristike i standardizovanja ultrazvučnog opisa, kako bi se umanjila subjektivnost ispitivača. Koike E. i sar. iz Noguchi Thyroid Clinic and Hospital Foundation iz Japana su još 2001. godine postavili formulu za predikciju maligniteta tiroidnih nodusa na osnovu 5 ultrazvučnih
ULTRASOUND CHARACTERISTICS OF NODULES IN THE THYROID GLAND

Aleksandar Aleksić, Vlada Mitov, Aleksandar Jolić, Vanja Antić, Nataša Savić

(1) SPECIALIST INTERNAL MEDICINE PRACTICE ALEKMED ZAJEČAR; (2) ZAJECAR HEALTH CENTER, DEPARTMENT OF INTERNAL MEDICINE; (3) ĆUPRIJA HEALTH CENTER, DEPARTMENT OF PNEUMOPHTISIOLOGY; (4) ACADEMY OF EDUCATIONAL AND MEDICAL VOCATIONAL STUDIES, ĆUPRIJA DEPARTMENT

Summary: Nodules in the thyroid gland are very common and can be found in 50-68% of adults in the general population. Only about 5% of these nodules are malignant and require treatment. They usually do not give any discomfort. When they are discovered, they should be assessed on the basis of clinical, echosonographic and cytological findings, and if necessary, using additional diagnostic methods, and make a decision on the need for treatment. Based on the ultrasound characteristics of the nodule, it is decided whether further diagnosis is needed, in terms of aspiration puncture with a thin needle (FNA) and cytological examination, after which a decision is made on further procedure. Ultrasound is the initial diagnostic method for the detection of thyroid nodules. In addition to the presence of nodules, it accurately determines the size, location and number of nodules in the thyroid gland (thyroid). This non-invasive screening method is safe, harmless and can be repeated.

FNA is a very important diagnostic method, but its performance must be selective, since systematic puncture of all nodes, regardless of size or appearance, is not recommended. It is important that the indications for FNA be based on clinical characteristics, as well as on echosonographic stratification of the risk of malignancy.

Key words: thyroid nodules, ultrasound examination, thin needle puncture.

INTRODUCTION

Nodules in the thyroid gland are very common and can be found in 50-68% of adults in the general population. Only about 5% of these nodules are malignant and require treatment. They usually do not give any discomfort. When they are discovered, they should be assessed on the basis of clinical, echosonographic and cytological findings, and, if necessary, using additional diagnostic methods, and make a decision on the need for treatment. Based on the ultrasound characteristics of the nodule, it is decided whether further diagnosis is needed, in terms of thin needle aspiration puncture (FNA) and cytological examination, after which a decision is made on further procedure [1-5].

Currently, FNA is the most effective method for determining the nature of the node. However, many nodules are benign, and even malignant nodules, especially those smaller than 1 cm, often show indolent and non-aggressive behavior. Therefore, not all detected nodes require FNA. A reliable non-invasive method to detect nodes indicated for FNA would be highly desirable [6]. Ultrasound is the initial diagnostic method for the detection of thyroid nodules. In addition to the presence of nodules, it accurately determines the size, location and number of nodules in the thyroid gland (thyroid).

This non-invasive screening method is safe, harmless and can be repeated [7]. Assessing the risk of malignancy is very important in patients with glandular nodules in order to identify those nodules that need to be punctured with a thin needle. The main disadvantage of this examination is that it largely depends on the doctor performing the examination [8]. Therefore, an attempt was made to find a formula for risk assessment in relation to ultrasound characteristics and standardization of ultrasound description, in order to reduce the subjectivity of the examiner. Koike E. et al. from the Noguchi Thyroid Clinic and Hospital Foundation from Japan in 2001. set the formula for the prediction of thyroid nodule malignancy based on 5 ultrasound characteristics of the nodule: margins, shape, echogenicity, echostructure and calcification [9,10]. As no characteristic can reliably predict malignancy, the use and combination of several traits or characteristics is advised. One such
karakteristika nodusa: margine, oblik, ehogenost, ehostrukture i kalcifikacije [9,10]. Kako nijedna karakteristika ne može pouzdanom odnosno karakteristika. Jedan ovakav sistem, odnosno način kombinovanja i bodovanja više osobina čvora u štitatoj žlezdi objavili su 2009. Horvath i saradnici kao Thyroid Imaging Reporting and Data System (TIRADS). Sastoji se od skale od 6 karakteristika za stratifikaciju rizika od maligniteta. Nakon toga su izdate slične preporuke Korejskog društva za radiologiju štitaste žlezde, Američkog udruženja za štitastu želdu, Američkog udruženja kliničkih endokrinologa, Američkog koledža za endokrinologiju i Italijanske asocijacije kliničkih endokrinologa [8]. Američki koledž radiologa (American college of radiology-ACR) 2015. godine izdao je uputstva za pristup najčešćim tiroidnim čvorovima i dao uputstva za standardizovanje ultrazvučnog pregleda štitaste žlezde. Thyroid Imaging Reporting and Data System (ACR TIRADS) [6].
Na osnovu pregleda literature, Američke asocijacije kliničkih endokrinologa, Američke tiroidne asocijacije i korejskih vodiča, 2017. formirana je nova EU-TI RADS (European Thyroid Imaging Reporting and Data System) klasifikacija za ocenu tiroidnih nodusa i donošenje odluke o eventualnoj FNA nodusa [7,8].
U daljem tekstu, biće opisani European Thyroid Imaging Reporting and Data System (EU-TIRADS) i American college of radiology (ACR), Thyroid Imaging Reporting and Data System (TI-RADS), ACR TI-RADS.

Uputstva za standardizovanje ultrazvučnog pregleda štitaste žlezde EU-TIRADS

Kategorija EU-TIRADS 1, jeste kategorija, odnosno štitasta žlezda (ŠŽ) koja ne sadrži noduse.

Benigna kategorija (EU-TIRADS 2), rizik od maligniteta bližu 0%.

U ovu kategoriju spadaju potpuno anehogeni čvorovi (ciste) i potpuno spongiformni čvorovi. Čisto cistične promene, ciste, karakteriše odsustvo zadebljanja zidova, posteriorno pojačanje signala kao i odsutstvo čvrste komponente, bez obzira na njihovu veličinu. Slika 1.

Slika 1. Potpuno cističan nodus. (preuzeto iz: Gilles R. et all. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017;6: 225–237. u naučne svrhe a ne koristi se u komercijalne svrhe)
system, that is, a way of combining and scoring several properties of a node in the thyroid gland, was published in 2009 by Horvath et al. as the Thyroid Imaging Reporting and Data System (TIRADS). It consists of a scale of 6 characteristics for stratification of malignancy risk. Subsequently, similar recommendations were issued by the Korean Thyroid Radiology Society, the American Thyroid Association, the American Association of Clinical Endocrinologists, the American College of Endocrinology, and the Italian Association of Clinical Endocrinologists [8].

In 2015, the American College of Radiology (ACR) issued instructions for access to the most common thyroid nodules and gave instructions for standardizing the ultrasound examination of the thyroid gland. Thyroid Imaging Reporting and Data System (ACR TI-RADS) [6].

Based on a review of the literature, the American Association of Clinical Endocrinologists, the American Thyroid Association and Korean guides, in 2017 a new EU-TIRADS (European Thyroid Imaging Reporting and Data System) classification was formed to assess thyroid nodules and decide on a possible FNA node [7].

In the following, the European Thyroid Imaging Reporting and Data System (EU-TIRADS) and the American College of Radiology (ACR), Thyroid Imaging Reporting and Data System (TI-RADS), ACR TI-RADS will be described.

GUIDELINES FOR STANDARDIZATION OF ULTRASOUND EXAMINATION OF THE THYROID GLAND EU-TIRADS

Category EU-TIRADS 1, is a category, i.e., thyroid gland (thyroid) that does not contain nodules. Benign category (EU-TIRADS 2), risk of malignancy close to 0%.

This category includes completely anechoic nodules (cysts) and completely spongiform nodules.

Pure cystic changes, cysts, are characterized by the absence of wall thickening, posterior signal amplification as well as the absence of a solid component, regardless of their size. Figure 1.

Figure 1. Completely cystic nodule (From: Gilles R. et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6: 225–237.)

This category also includes cysts that are divided into separate sections by fibrous septa. The presence of echogenic material within the cyst is often encountered and may correspond to either a clot of fibrin, a colloid, or a true solid component, which may be distinguished by the use of Doppler. If there is a suspicion regarding the existence of a solid component inside the cyst, such a node should be classified as low risk.

Spongiform nodules are composed of tiny cystic spaces that cover the entire nodule, with the size of the nodule not playing a role in assessing the risk of malignancy. Small cystic spaces are separated by numerous isoechoic septa. Figure 2. If cystic spaces do not fill the entire node, the node should be classified as a low-risk node. Pure cystic changes and completely spongy nodules should be considered benign. FNA is not recommended for these changes, regardless of their size, and even for such benign cystic nodules, ablation with ethanol is recommended as the therapy of first choice [8,11].
Kategoriju čvorova sa niskim rizikom. Čisto cistične promene i potpuno sunderaste čvoriće treba smatrati benignim. FNA se ne savetuje kod ovih promena, bez obzira na njihovu veličinu, čak se za ovakve beneigne cistične noduse, kao terapija prvog izbora, savetuje ablacija etanolom [8,11].

Slika 2. Spongiformni čvor. (preuzeto iz: Gilles R. et all. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017;6:225–237. u naučne svrhe a ne koristi se u komercijalne svrhe)

Kategorija niskog rizika (EU-TIRADS 3), kod koje rizik od maligniteta iznosi 2-4%.

Ove čvorove karakteriše ovalan oblik, glatke ivice (margine), što se ehogenosti tiče, ovi čvorovi su izoehogeni ili hiperehogeni, bez ikakvih karakteristika visokog rizika (slika 3 izoehogeni nodus; slika 4: hiperehogeni nodus). Čvorovi sa ovim karakteristikama imaju mali rizik od maligniteta i treba razmotriti FNA za čvorove>20mm. Prag od 20 mm je izabran na osnovu argumenta da se udaljene metastaze retko nalaze kod folikularnih karcinoma <2 cm [12]. Grupisane i udružene čvorove (polinodozne strume) ovakvih karakteristika treba uključiti u ovu kategoriju, a FNA treba razmotriti ako su jedan ili više čvorova > 20 mm. Treba istaći da potpuno homogen izoehogeni nodus može odgovarati u manje od 4% slučajeva folikularnom karcinomu ili folikularnoj varijanti PTC (papillary thyroid carcinoma) [13,14]. Međutim, čak minimalne cistične promene u čvoru idu u prilog benignosti [15]. Tako da čvorove ovalnog oblika, koji su izoehogeni ili hiperehogeni sa glatkim marginama i bez visoko rizičnih karakteristika treba svrstati u grupu sa malim rizikom od maligniteta. FNA se obično preporučuje samo za čvorove > 20 mm [8].
Figure 2. Spongiform node. (From: Gilles R. et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6: 225–237)

Low risk category (EU-TIRADS 3), where the risk of malignancy is 2-4%.
These nodes are characterized by an oval shape, smooth edges (margins), as far as echogenicity is concerned, these nodes are isoechoic or hyperechoic, without any high-risk characteristics. Figure 3, isoechoic nodule, Figure 4 hyperechoic nodule. Nodes with these characteristics have a low risk of malignancy and FNA for nodes> 20 mm should be considered. The 20 mm threshold was chosen based on the argument that distant metastases are rarely found in follicular carcinomas <2 cm [12]. Grouped and associated nodes (polynodose goiters) of these characteristics should be included in this category, and FNA should be considered if one or more nodes are> 20 mm. It should be noted that a completely homogeneous isoechoic nodule may correspond in less than 4% of cases to follicular carcinoma or follicular variant PTC [13,14]. However, even minimal cystic changes in the nodule favor benignity [15]. So oval-shaped nodules, which are isoechoic or hyperechogenic with smooth margins and without high-risk characteristics, should be classified as low-risk. FNA is usually only recommended for nodes> 20 mm [8].
Slika 3. Izoeugogeni nodus. (Iz: Gilles R. et all. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017;6:225–237. . u naučne svrhe a ne koristi se u komercijalne svrhe)

Slika 4. Hiperehogeni nodus. (Iz: Gilles R. et all. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017;6:225–237. . u naučne svrhe a ne koristi se u komercijalne svrhe)

Kategorija srednjeg rizika (EU-TIRADS 4) kod koje rizik od maligniteta iznosi 6–17%.

Ove čvorove karakteriše ovalni oblik, glatke ivice, blago do umerena hipoehogenost, bez ostalih karakteristika visokog rizika: (slika 5). Razlika između kategorije sa niskim i srednjim rizikom leži u ehogenosti solidne komponente čvora. U slučaju heterogene ehogenosti solidne komponente, prisustvo bilo kakve hipoehogene promene klasifikuje čvor u kategoriju srednjeg rizika. Prisustvo tankog haloa, delimično cističnih promena, artefakta tipa repa komete, periferna vaskularnost, smanjuju rizik od maligniteta. Hipoehogene čvorove treba svrstati u kategoriju sa srednjim rizikom, uključujući i one sa cističnim područjima, imajući u vidu da je rizik manji u delimično cističnih čvorova nego kod potpuno kompaktnih čvorova. Karakteristike kao što su diskontinuirane periferne margine, obodne makrokalcifikacije, gusti halo i pretežno centralna vaskularizacija mogu povećati rizik od maligniteta. U ovoj grupi, prag za FNA je preporučen za čvorove veće od 15mm [8].

Slika 5. Hipoehogeni nodus. (Iz: Gilles R. et all. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017;6:225–237. . u naučne svrhe a ne koristi se u komercijalne svrhe)

Kategorija visokog rizika (EU-TIRADS 5), kod koje rizik od maligniteta iznosi 26–87% Karakteristika ovih čvoroa je prisustvo najmanje jedne od sledećih karakteristika, koje spadaju u karakteristike (obeležja) visokog rizika: neovalni oblik (viši no širi), nepravilne ivice, mikrokalcifikacije i izrazita hipoehogenost: (slika 6.)
Medium risk category (EU-TIRADS 4) where the risk of malignancy is 6–17%. These nodules are characterized by an oval shape, smooth edges, mild to moderate hypoechoicity, without other high-risk features. Figure 5. The difference between the low and medium risk category lies in the echogenicity of the solid component of the node. In the case of heterogeneous echogenicity of a solid component, the presence of any hypoechoic change classifies the node into a medium-risk category. The presence of a thin halo, partially cystic changes, comet-type artifact, peripheral vascularity, reduce the risk of malignancy. Hypoechoic nodes should be classified as moderate risk, including those with cystic areas, bearing in mind that the risk is lower in partially cystic nodes than in completely compact nodes. Characteristics such as discontinuous peripheral margins, peripheral macrocalcifications, dense halo, predominantly central vascularization may increase the risk of malignancy. In this group, the threshold for FNA is recommended for nodes larger than 15mm [8].

High risk category (EU-TIRADS 5), where the risk of malignancy is 26–87%. The characteristic of these nodes is the presence of at least one of the following characteristics, which belong to the characteristics (features) of high risk: not oval shape (higher than wider), irregular edges, microcalcifications and marked hypoechoicity. Figure 6.
Slika 6. Nodus iz kategorije visokog rizika. (Iz: Gilles R. et all. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017;6:225–237. u naučne svrhe a ne koristi se u komercijalne svrhe)

Sve ove karakteristike pokazuju visoke stope specifičnosti (83–84%), ali takođe niske stope senzitivnosti (26–59%). Izražena hipoehogogenost ima najmanju osetljivost od četiri opisane karakteristike i specifična je samo ako je čvor kompaktn, jer izrazito hipoehogogen čvor može biti ostatak prethodne ciste. U delimično cističnom čvoru, mikrokalcifikacije su najbolji prediktor maligniteta, dok se druge osobine čine manje značajnim. Istovremeno prisutvo više anomalija, nazubljene, isprekidane ivice sa spikulacijama, lobulacijama, tačkasta ehogena žarišta, neovalni oblik, povećavaju rizik od maligniteta. Čvorovi sa ovakvim osobinama koji su veći od 10 mm trebaju da se podvrgnu FNA, sem kod inoperabilnih pacijenata iz bilo kog razloga ili se očekuje kratak životni vek, zbog postojanja ostalih komorbiditeta [8]. U slučaju benignog citološkog rezultata, FNA takvog čvora, punkciju treba ponoviti u roku od 3 meseca da bi se smanjio broj lažno negativnih nalaza. U slučaju čvorova manjih od jednog centimetra sa visoko rizičnim EU karakteristikama, preporučuje se aktivno praćenje čvora kao i praćenje patoloških limfnih čvorova na r名tu i simptoma i znaka koje pacijent prijavljuje. Poznato je da malo ko ili niko od ovih pacijenata neće razviti udaljene metastaze odnosno da je mortalitet zanemarljiv čak i ako čvor odgovara karcinomu, u slučaju subsantimetarskih dimenzija čvorova [8]. Pacijentima sa subcentimetarskim čvorovima i vrlo sumnjivim ultrazvučnim karakteristikama, ali bez abnormalnih limfnih čvorova na r名tu, treba predočiti mogućnost aktivnog nadzora kao jedne mogućnosti ili FNA pod kontrolom ultrazvuka.

EU-TIRADS bodovanje je korisno i kod multinodularne štitaste žlezde za odabir čvorova koji su kandidati za FNA. Tokom ehosonografskog pregleda treba identifikovati, odnosno uočiti ultrazvučno visoko rizične čvorove, opisati ih, i predložiti FNA ako je čvor veći od 10 mm. Identifikovati čvorove srednjeg rizika; opisati samo one čvorove koji su veći od 5 mm, a za FNA predložiti one koji su veći od 15 mm. Identifikovati čvorove niskog rizika; opisati samo one koji su veći od 10 mm i predložiti za FNA za one koji su veći od 20 mm. Ako postoji više čvorova, više od tri, detaljno opisati samo one suspektne (prema prethodnim kriterijumima rizika i veličine), ostale evidentirati [8].

ZNAČAJ OSTALIH ULTRAZVUČNIH KARAKTERISTIKA

Oblik, margine, ehogenost, sastav i mikrokalcifikacije su osnovne karakteristike koje omogućavaju EU TIRADS klasifikaciju. Međutim, još neke od ultrazvučnih karakteristika mogu se koristiti za dodatnu procenu i modulaciju indikacija za FNA.

Sumnjiva limfadenopatija

Ultrazvučna procena cervikalnih limfnih čvorova trebalo bi da bude izvedena kod svih pacijenata sa čvorovima na štitnoj žleždi, posebno kod onih sa srednjim i visokim rizikom. Kod sumnjivih limfnih čvorova treba uraditi FNA limfnog čvora za citološku analizu kao i za određivanje tireoglobulina i kalcitonina [8].
All these characteristics show high rates of specificity (83–84%), but also low rates of sensitivity (26–59%). Pronounced hypoechoicity has the lowest sensitivity of the four described characteristics and is specific only if the node is compact, because a highly hypoechoic node may be the remnant of a previous cyst. In a partially cystic node, microcalcifications are the best predictor of malignancy, while other features appear less significant. At the same time, the presence of several anomalies, jagged intermittent, edges with spicules, lobulations, dotted echogenic foci, non-oval shape, increase the risk of malignancy. Nodes with such properties that are larger than 10 mm should undergo FNA, except in inoperable patients for any reason or a short lifespan is expected, due to the existence of other comorbidities [8]. In case of a benign cytological result, FNA of such a node, the puncture should be repeated within 3 months in order to reduce the number of false negative findings. In the case of nodules smaller than one centimeter with high-risk ultrasound characteristics, it is recommended to actively monitor the nodules as well as to treat pathological lymph nodes in the neck and the symptoms and signs that the patient himself reports. It is known that few or none of these patients will develop distant metastases, ie that mortality is negligible even if the nodule corresponds to cancer, in the case of subsantimetric dimensions of the nodules [8]. Patients with subcentimeter nodules and very suspicious ultrasound characteristics but without abnormal lymph nodes in the neck should be presented with the possibility of active surveillance as one option or FNA under ultrasound control.

EU-TIRADS scoring is also useful in multinodular thyroid gland for selecting nodes that are candidates for FNA. During the echosonographic examination, ultrasound high-risk nodes should be identified, observed, described, and FNA suggested if the node is larger than 10 mm. Identify medium risk nodes; describe only those nodes larger than 5 mm and for FNA suggest those larger than 15 mm. Identify low-risk nodes; describe only those larger than 10 mm and suggest for FNA for those larger than 20 mm. If there are more nodes, more than three, describe in detail only those that are suspicious (according to the previous risk and size criteria), record the others [8].

SIGNIFICANCE OF OTHER ULTRASOUND CHARACTERISTICS

Shape, margins, echogenicity, composition and microcalcifications are the basic characteristics that enable EU TIRADS classification. However, some of the ultrasound features can be used to further assess and classify risks and modulate indications for FNA.

Suspicious lymphadenopathy

Ultrasound assessment of cervical lymph nodes should be performed in all patients with thyroid nodules, especially in those with medium and high risk. In suspected lymph nodes, lymph node FNA should be performed for cytological analysis as well as for determination of thyroglobulin and calcitonin [8].

Extrathyroid propagation, proliferation and invasion of surrounding tissue

Propagation into adjacent structures and disruption of thyroid capsule continuity may be considered a specific feature for invasive
Ekstratireoidna propagacija, širenje i invazija okolnog tkiva

Propagacija u susedne strukture i prekid kontinuiteta tireoidne kapsule može se smatrati specifičnom karakteristikom za invazivni malignitet. Naledjanje na kapsulu, odnosno blizak kontakt sa kapsulom ima manju specifičnost za makroskopsku ekstratireoidnu invaziju i širenje kroz kapsulu. Prisustvo neizmenjenog tireoidnog parenhima, od 2mm između nodusa i neprekinute, kompaktne tireoidne kapsule, ukazuje na to da gotovo ne postoji makroskopsko ekstratireoidno širenje i invazija dok smanjuje rizik i od mikroskopske invazije kapsule i ekstratireoidnog širenja. Prekid kontinuiteta kapsule, naleganje na kapsulu i ispupčenje kapsule treba obavezno naglasiti u izveštaju, odnosno ultrazvučnom opisu, zbog moguće invazije kapsule i ekstratireoidnog širenja [8].

Makrokalcifikacije i hiperehogene tačke (fokusi)

Makrokalcifikacije se mogu definisati kao ehogeni fokusi (tačke) veće od 1 mm sa postojanjem posteriornog zasenčenja (akustične senke). 1. Izolovane centralne intranodularne makrokalcifikacije nisu neminovno povezane sa malignitetom, odnosno ne ukazuju neminovno na malignitet. 2. Izolovana makrokalcifikacija, koja gotovo potpuno ispunjava kalcifikovani čvor ima nizak rizik od maligniteta. 3. Kalcifikacije na obodu, obodne kalcifikacije (periferne ili krivolinijske) ili (slika prekinute ljuske jajeta) po obodu čvora, povećavaju rizik od maligniteta ako je njihov kontinuitet prekinut [8].

Vaskularizacija

Što se tiče vaskularnosti, opis vaskularnosti uz pomoć kolor doplera često se koristi u kliničkoj praksi. Maligni čvorovi su skloniji da imaju vaskularnost tipa III, dok benigni čvorovi pokazuju vaskularnost tipa I i II. Tip I vaskularnosti, označava odsutnu ili oskudnu vaskularizaciju. Tip II, označava prisutnu perinodalnu i oskudnu intranodalnu vaskularizaciju a tip III označava oskudnu perinodalnu i oskudnu intranodalnu vaskularizaciju. Međutim, ne može se dati jasna definicija tankog i debelog haloa [8].

Rast čvorova

Što se tiče rasta tireoidnih čvorova, objavljeni rezultati sugerišu da rast čvorova ne može tačno razlikovati benigne i maligne lezije, tako da se određivanje rasta čvorova ne preporučuje kao kriterijum za razlikovanje malignih i benignih čvorova [8].
malignancy. Adherence to the capsule, ie close contact with the capsule, has less specificity for macroscopic extrathyroid invasion and spread, through the capsule. The presence of an unaltered thyroid parenchyma, 2 mm between the nodule and the continuous, compact thyroid capsule, indicates that there is almost no macroscopic extrathyroid expansion and invasion while reducing the risk of microscopic capsule invasion and extrathyroid expansion. The discontinuity of the capsule, the adhesion of the capsule and the bulge of the capsule must be emphasized in the report, ie the ultrasound description, due to the possible invasion of the capsule and extrathyroid expansion [8].

Macrocalcifications and hyperechoic points (foci)

Macrocalcifications can be defined as echogenic foci (points) larger than 1 mm with the existence of posterior shading (acoustic window).
1. Isolated central intranodular macrocalcifications are not necessarily associated with malignancy, ie they do not inevitably indicate malignancy.
2. Isolated macrocalcification, which almost completely fills the calcified node, has a low risk of malignancy.
3. Calcifications on the periphery, peripheral calcifications (peripheral or curvilinear) or (picture of broken egg shell) along the periphery of the node, increase the risk of malignancy if their continuity is interrupted [8].

Hyperechoic points (foci, spots)

These changes correspond to perimilimeter hyperechoic changes and can be caused by:
1. Colloidal crystals or remnants of fibrin that create artifacts (reverberations), comet tails and are almost always a sign of benign change.
2. Posterior acoustic amplification (posterior, posterior wall of the cyst, iemicrocystic area) is mainly seen in high-frequency probes and is a feature that indicates benignity.
3. Calcifications on the periphery, peripheral calcifications (peripheral or curvilinear) or (picture of broken egg shell) along the periphery of the node, increase the risk of malignancy if their continuity is interrupted [8].

Vascularization

As for vascularity, the description of vascularity with the help of color Doppler is often used in clinical practice. Malignant nodules are more likely to have type III vascularity, while benign nodules show type I and II vascularity. Type I vascularity, denotes absent or scarce vascularity. Type II, denotes present perinodal and scarce intranodal vascularization and type III denotes scarce perinodal and pronounced intranodal vascularization.

However, it is very important that the intranodular signal increases with the size of the benign nodule. Vascularity as a criterion remains controversial, mainly because the assessment of vascularity largely depends on the equipment and settings of the ultrasound apparatus and because it largely depends on the subjective assessment of the examiner. Therefore, the ETA working group does not recommend the inclusion of vascularity in the assessment in the TIRADS score [8].

Node growth

Regarding the growth of thyroid nodules, the published results suggest that the growth of nodules cannot accurately distinguish between benign and malignant lesions. Thus, determining the growth of nodules is not recommended as a criterion for distinguishing malignant and benign nodules [8].

The EU-TIRADS scoring system is based on the presence of ultrasound characteristics that are highly suspected of malignancy. This system includes five categories, ultrasound findings. The first category involves the absence
EU-TIRADS sistem bodovanja zasnovan je na prisustvu ultrazvučnih karakteristika koje su visoko suspektne na malignitet. Ovaj sistem obuhvata pet kategorija, ultrazvučnih nalaza. Prva kategorija podrazumeva odsustvo cvorova na štitastoj žledi, ostale četiri uključuju benigne, nisko suspektne, srednje suspektne i visoko suspektne kategorije. U poređenju sa drugim sistemima za bodovanje rizika, glavna prednost EU-TIRADS je olakšanje bodovanja u korisćenju specifičnih ultrazvucnih karakteristika za otkrivanje karcinoma štitaste žledje sa visokom osetljivosti što bi trebalo da omogući smanjenje nepotrebnih FNA procedure [8].

Veoma malo cvorova zahteva invazivnu obradu što uključuje citologiju i molekularno ispitivanje (FNA). Ultrazvučni pregled sa procenom kliničkih faktora rizika biće dovoljan za početnu strategiju praćenja i dijagnostike. Ovo je posebno važno za slabe, starije osobe sa komorbiditetima jer je malo verovatno da će ih ugroziti samo tumor štitaste žledje a preterano dijagnostika i intervencije mogu naneti više štete nego koristi. Cilj je identifikovati najbolju strategiju za pojedinca u pogledu ishoda bolesti i kvaliteta života, izbegavajući zamke preterane dijagnostike i preteranog lečenja [16].

AMERIČKI KOLEDŽ RADIOLOGA (AMERICAN COLLEGE OF RADIOLOGY-ACR) 2015. THYROID IMAGING REPORTING AND DATA SYSTEM ACR TI-RADS

Američki koledž radiologa (American college of radiology-ACR) 2015. godine izdao je uputstva za pristup najčešćim tiroidnim cvorovima i dao uputstva za standardizovanje ultrazvučnog pregleda štitaste žledje. Thyroid Imaging Reporting and Data System ACR TI-RADS[6]. Kod ovog sistema, pri proceni cvora, potrebno je odrediti (bodovati) svaku od karakteristika odnosno ultrazvučnih osobina cvora, koje će kasnije biti navedene, nakon čega se sabiraju poeni. Ukupan broj poena određuje nivo ACR TI-RADS skora, koji se kreće od TR1 što je benigno do TR5 što je visoko sumnjiv nalaz za malignitet. Preporuke za FNA i ultrazvučno praćenje cvora su bazirane na nivou broja poena i njegovom maksimalnom prečniku. Ultrazvučne karakteristike, odnosno osobine koje treba bodovati, su sastav cvora (kompozicija), ehogenost cvora, oblik cvora, margin, odnosno ivice cvora i ehogene tačke odnosno fokusi [6].

Sastav
Čvorovi koji su cistični ili skoro kompletno cistični ne donose nikakve poene, jer su skoro uvek benigni. Slično ovome sunderasta grada je visoko povezana sa benignim karakteristikama bez obzira na druge osobine. Međutim, sunderasti čvor mora da bude sastavljen od najmanje 50% malih cističnih prostora. Čvorovi ne bi trebali da se karakterišu kao sunderasti samo na osnovu prisustva nekoliko rasuti cističnih elemenata u solidnom čvoru. Mešoviti cistično solidni čvorovi, karakterišu se kao pretežno čvrsti i pretežno cistični. Čvrsta komponenta koja je ekscenetrično postavljena i ima oštar ugao u odnosu na zid čvora je sumnjiva kao i solidna komponenta koja je hipoehogena, sa lobulacijama i tačkastim ehogenim fokusima. Kompletno cistični, dominantno cistični i sunderasti čvorovi, boduju se na nula poena. Mešoviti, cistično dominantni, odnosno pretežno solidni čvorovi se boduju jednim poenom, a dominantno, odnosno pretežno solidni sa dva poena [6].

Ehogenost
Ova osobina se odnosi na reflektivnost cvora u odnosu na okolno tiroidno tkivo, osim za veoma hipoehogene čvorove gde se koriste mišići sa pripojem za hioidnu kost kao osnova za poređenje ehogenosti. Ova kategorija takođe uključuje anehogene promene sa nula poena, što se odnosi na cistične ili skoro cistične čvorove. Vrhunac hipoehogene čvorove kojima bi bilo dodeljeno tri poena zbog njihove veoma hipoehogene slike. Anehogeni čvorovi dobijaju nula poena, izoehogeni i hiperehogeni jedan poen, a hipoehogeni dva poena, dok izrazito hipoehogeni čvorovi dobijaju tri poena [6].

Oblik
Viši nego širi (jajast) je nesenzitivan, ali visoko specifičan indikator maligniteta. Ova osobina se procenjuje u aksijalnoj ravni time što se poredi visina i širina čvora koji se meri horizontalno i vertikalno u transverzalnom preseku. Viša nego šira konfiguracija je obično očigledna i retko zahteva formalna merenja. Ovakav oblik dobija tri poena, ovalan oblik nula poena [6].

Ivice
Glatke i jasne ivice čvora smanjuju rizik od maligniteta, ivice (margin) jako kritične za formalnu merenja. Ovakav oblik dobija tri poena, ovuljan oblik nula poena [6].
of thyroid nodules, the other four include benign, low-suspicion, moderate-suspicion, and high-suspicion categories. Compared to other risk scoring systems, the main advantage of EU-TIRADS is the facilitation of scoring in the use of specific ultrasound features to detect high-sensitivity thyroid cancer which should allow for the reduction of unnecessary FNA procedures [8].

Very few nodules will require invasive processing that includes cytology and molecular testing (FNA). An ultrasound examination with an assessment of clinical risk factors will be sufficient for an initial monitoring and diagnostic strategy. This is especially important for weak, elderly people, with comorbidities, because they are unlikely to be endangered by the thyroid tumor itself, and excessive diagnosis and interventions can do more harm than good. The goal is to identify the best strategy for the individual in terms of disease outcome and quality of life, avoiding the pitfalls of over-diagnosis and over-treatment [16].

ACR TI-RADS
THYROID IMAGING REPORTING AND DATA SYSTEM ACR TI-RADS

In this system, when evaluating the node, it is necessary to determine (score) each of the characteristics or ultrasonic properties of the node, which will be listed later, after which points are added. The total number of points determines the level of ACR TI-RADS score, which ranges from TR1 which is benign to TR5 which is a highly suspicious finding for malignancy. Recommendations for FNA and ultrasound monitoring of the node are based on the level of the number of points and its maximum diameter. Ultrasound, characteristics or properties to be scored are the composition of the node (composition), the echogenicity of the node, the shape of the node, the margins or edges of the node and the echogenic points or foci [6].

Composition

Nodes that are cystic or almost completely cystic do not bring any points, because they are almost always benign. Similarly, spongy material is highly associated with benign characteristics, regardless of other characteristics. However, the spongy node must be composed of at least 50% of small cystic spaces. Nodes should not be characterized as spongy only on the basis of the presence of several scattered cystic elements in a solid node. Mixed cystic solid nodules are categorized as predominantly solid and predominantly cystic. A solid component that is eccentrically placed and has a sharp angle in relation to the wall of the node is suspicious as well as a solid component that is hypoechoic, with lobulations and point echogenic foci. Completely cystic, predominantly cystic and spongy nodes are scored from zero points. Mixed, cystically solid nodes are scored with one point, and predominantly, ie mostly solid with two points [6].

Echogenicity

This feature refers to the reflectivity of the node in relation to the surrounding thyroid tissue, except for very hypoechoic nodules where muscles attached to the hyoid bone are used as a basis for comparing echogenicity. This category also includes anechoic changes with zero points, which refers to cystic or almost cystic nodes, and extremely hypoechoic nodes to which three points would be awarded due to their very hypoechoic picture. Anechoic nodes get zero points, isoechoic and hyperechoic one point, and hypoechoic two points, while highly hypoechoic nodes get three points [6].

Shape

Higher than wider (ovoid) is a non-sensitive but highly specific indicator of malignancy. This property is estimated in the axial plane by comparing the height and width of the node measured horizontally and vertically in the transverse section. A higher than broader configuration is usually obvious and rarely requires formal measurements. This shape got three points, the oval shape zero points [6].

Edges

Smooth and clear edges of the node reduce the risk of malignancy, the edges (margins of the node) with such characteristics get zero points. For nodes where we cannot estimate the edges, we classify them in the category of nodes with a poorly defined edge of the node, and that category gets zero points. A lobed or irregular margin refers to a serrated or needle-like edge, with or without protrusions in the surrounding parenchyma, and this characteristic of the node is scored with two points. Propagation beyond the thyroid gland is classified as extensive or minimal and is scored with three points. Extensive extrathyroid spread, which is characterized by invasion of the surrounding soft tissue or vascular structures, is a highly reliable sign of malignancy and is one of
čvorova kod kojih ne možemo proceniti ivice, svrstavamo ih u kategoriju čvorova sa loše definisanom ivicom čvora i ta kategorija dobija nula poena. Režnjevita (lobulirana) ili neregularna margina se odnosi na zupčastu ili igličastu ivicu, sa ili bez izbočina u okolini parenhim i ovakva karakteristika čvora se boduje sa dva poena. Širenje van granice tiroidne žlede se klasifikuje kao ekstenzivno ili minimalno i boduje se sa tri poena. Obimno (ekstenzivno) ekstratiroidno širenje, koje karakteriše invazija okolnog mekog tkiva ili vaskularnih struktura je visoko sumnjivo i jedan je od nepovoljnih prognozičkih znakova. Minimalna invazija može da bude ehosonografski sumnjiva ako imamo malo tiroidnog parenhima između nodusa i tieoide skafu, ili postoji nadutost (izbočenost) kontura i gubitak ehogenosti tiroidne granice [6].

Ehogeni fokusi

Artefakt repa komete je ehogeni fokus sa ehoima u obliku slova V čija je dubina veća od 1mm. Nalaze se u cističnim komponentama i karakteristika su benignosti, tako da za ovu karakteristiku čvor dobija nula poena. Makrokalkifikacije su grubi ehogeni foci koji su praćeni akustičnim senkama. Za postojanje istih dobija se jedan poen. Periferne kalkifikacije koje se nalaze duž cele margine ili duž jednog dela margine, dobijaju dva poena. Neki autori su skrenuli pažnju na isprekidane periferne kalkifikacije, koja su hiperehogeni značajno nedostatak podudarnosti između sonografskog i patohistološkog određivanja, te akustične senke koja sprečava ili ograničava procenu kalcifikacija koje prouzrokuju jaku akustičku sumnjivost. Za postojanje režnjevite ivice dobijaju tri poena. U solidnim sastojcima tiroidnih nula poena. Na ovu karakteristiku su benignosti, tako da za ovu karakteristiku dobija nula poena. Makrokalkifikacije su grubi ehogeni foci koji su praćeni akustičnim senkama. Za postojanje istih dobija se jedan poen. Periferne kalkifikacije koje se nalaze duž cele margine ili duž jednog dela margine, dobijaju dva poena. Neki autori su skrenuli pažnju na isprekidane periferne kalkifikacije, koja su hiperehogeni. Svi Italijanci stvorili su je i prerasli na visoku ekstenzivnost. Širenje van granice tiroidne žlede je visoko sumnjivo i jedan je od nepovoljnih prognozičkih znakova. Minimalna invazija može da bude ehosonografski sumnjiva ako imamo malo tiroidnog parenhima između nodusa i tieoide skafu, ili postoji nadutost (izbočenost) kontura i gubitak ehogenosti tiroidne granice [6].

Ultrazvučni izveštaj

Ultrazvučni izveštaj je u skladu sa većinom drugih smernica i preporučio FNA za vrlo sumnjive čvorove veće od 1 cm ili veće, odnosno za blago sumnjive i umereno sumnjive čvorove veće od 2,5 i 1,5 cm. Biopsija obično nije indikovana kod žlezde koja je izmenjena višestruko konfluentnim čvorovima sličnih karakteristika [6].
the unfavorable prognostic signs. Minimal invasion may be echosonographically suspicious if we have little thyroid parenchyma between the nodule and the thyroid capsule or there is swelling (bulge) of the contours and loss of echogenicity of the thyroid border [6].

Echogenic foci

The comet’s tail artifact is an echogenic focus with V-shaped echoes whose depth is greater than 1mm. They are found in cystic components and are characteristic of benignity, so that for this characteristic the node received zero points. Macrocalcifications are rough echogenic foci accompanied by acoustic shadows. For their existence, one point was awarded. Peripheral calcifications located along the entire margin or along one part of the margin receive two points. Some authors have drawn attention to intermittent peripheral calcifications with bulging soft tissue, as suspected malignancies. For nodes with calcifications that cause a strong acoustic shadow that prevents or limits the assessment of internal characteristics, especially echogenicity and composition, it is best to assume that the node is solid and assign 2 points for composition and one point for echogenicity [6].

Point (punctiform) echogenic foci are smaller than macrocalcifications and they are without acoustic shadow. For their existence, the node received three points. In solid constituents of thyroid nodules, they may correspond to psammomatous bodies (calcifications) that are associated with papillary carcinomas, and are therefore considered highly suspicious, especially in combination with other suspicious properties. This category includes echogenic foci that are associated with small comet tail artifacts in solid node components, as opposed to the large comet tail artifacts listed earlier. Significantly, small echogenic foci can be seen in spongy nodules, where they probably represent the posterior walls of small cysts. They are not suspicious in this case and should not be given any points [6].

Additional benign phenomena

Several ultrasound findings have been described as characteristic of benign changes with a high degree of reliability. These findings include the existence of uniform hyperechogenicity (white knight), as well as the variegated appearance of hyperechogenic areas, divided by hypoechoic bands resembling giraffe skin, both present in Hashimoto’s thyroiditis.

Node size as an indication for FNA

In a 2005 publication, Machens et al. [17] reported that the cumulative risk for distant metastases for papillary and follicular thyroid cancers increased significantly for nodules larger than 2 cm. So he suggested a biopsy of nodules larger than 2 cm. Machens et al. Based their analysis on tumor size in resected samples rather than ultrasound. Subsequent studies have shown a significant lack of concordance between sonographic and pathohistological sizing, with the tendency of ultrasound to result in larger measurements [18].

ACR TI-RADS is in accordance with most other guidelines in the recommended FNA for highly suspicious nodes of 1 cm or larger. That is, for slightly suspicious and moderately suspicious nodules larger than 2.5 and 1.5 cm. Biopsy is usually not indicated in a gland that is interspersed with multiple confluent nodules of similar characteristics [6].

Ultrasound report

For the ultrasound report, the exact dimension of the thyroid nodules is very important, since the maximum dimension of the nodule determines whether a given node should be biopsied or monitored.

Nodes should be measured in three planes. Maximum dimension in axial projection, maximum dimension in perpendicular projection in relation to the previous measurement, maximum longitudinal dimension in sagittal plane. The measurement should include a halo node if present. A calculation can also be used, which determines the volume. In addition to the dimensions, it is necessary to describe the ultrasonic characteristics, previously listed, on the basis of which the scoring is performed. It should be described whether the node touches the trachea or whether it is close to the tracheoesophageal groove (the place of the recurrent laryngeal nerve). An accurate description of the location of the nodes on the sonograms is equally important, especially when the gland is heteroechoic or multiple nodes are present. In the polynodose gland, describe accurately and in detail only the nodes that meet the criteria for FNA, only the others. As far as FNA is concerned, a biopsy of more than two nodes is not recommended, puncturing the most successful nodes. The decision to repeat a biopsy is usually made by physicians who monitor the patient.
važna, posebno kada je žlezda heteroehogena ili su prisutni višestruki čvorovi. U polinodoznoj žlezdi, tačno i detaljno opisati samo čvorove koji ispunjavaju kriterijume za FNA, ostale samo naznačiti. Što se FHA tiče, ne savetuje se biopsija više od dva čvora, pri čemu se punktiraju najsuspektniji čvorovi. Odluku o ponavljanju biopsije obično donose lekari koji prate pacijenta zasnovanu na prethodnim rezultatima FHA po Bethesda sistemu za citopatologiju štitnjače [18].

Definicija rasta
Kriterijumi za značajan rast zavise od veličine čvora pri čemu u obzir mora da se uzme i varijabilnost merenja. Značajno uvećanje se definiše kao povećanje od 20% u najmanje dve dimenzije čvora i minimalno povećanje od 2mm, ili 50% ili veće povećanje obima [6].

Vreme praćenja
Postoji mala saglasnost u literaturi oko optimalnog vremena praćenja čvorova, pošto stepen rasta pouzdana ne razlikuje benigne od malignih čvorova. Intervalli pregleda krajih od jedne godine nisu preporučeni, osim za dokazane malignitete pod aktivnim nadzorom koji mogu da zahtevaju i češće praćenje. Savetuje se da se intervale praćenja određujemo u odnosu na broj bodova dodeljenih čvoru. Za leziju od TR5 preporučujemo kontrolu jednom godišnje u roku od 5 godina. Za TR4 kontrole treba raditi prve, druge, treće i pete godine. Za TR3 kontrole mogu da se izvode prve, treće i pete godine. Praćenje može da se prekine nakon pet godina, ako nema promena u veličini, jer stabilnost u ovom vremenskom intervalu pouzdana ukazuje da se čvor ponaša benigne, što važi za sve kategorije čvorova [6]. Nema objavljenih podataka za lecjenje čvorova koji se značajno i dalje ispod praga za FHA i ostaju u istom broju budova ACR TI-RADS skora u roku od pet godina, ali je njihovo praćenje i dalje potrebno. Ukoliko se prilikom praćenja poveća ACR TI-RADS čvora sledeću kontrolu treba uraditi za godinu dana, bez obzira na njegov početni nivo [6].

Procena vrtnih limfnih čvorova
Sumnjiv nalaz je sugestivan kod limbnih žlezdi loptastog oblika, hiperehogenih žlezdi, gubitka normalnog ehogenog hilusa, prisustva izraženijeg perifernog protoka, odnosno vaskularizacije od hilusnom, Heteroehogenost sa cističnim komponentama i tačkastim ehogenim fokusima koji mogu da predstavljaju mikrokalcifikate, takođe je suspektn lanalaz [6].

Kategorizacija (skorovanje) čvorova nakon bodovanja
Nakon bodovanja ultrazvučnih osobina čvorova, čvorove kategorišemo kao TR1-TR5. TR1, benigni čvorovi sa 0 poena TR2, nesuspektni čvorovi sa 2 poena, pri čemu se za ove čvorove ne savetuje FHA, TR3 minimalno sumnjivi čvorovi sa 3 poena, pri čemu se za čvorove veće od 2,5 cm savetuje FHA a za čvorove veće od 1,5 cm praćenje, TR4 umerno sumnjivi čvorovi koji imaju 4-6 poena, pri čemu se za čvorove veće od 1,5 cm savetuje FHA a za čvorove veće od 1 cm praćenje i TR5 visoko sumnjivi čvorovi koji imaju više od 7 poena, pri čemu se za čvorove veće od 1 cm savetuje FHA a za veće od 0,5 cm praćenje [6].

Pored ultrazvučnog izgleda čvora, moraju se uzeti u obzir i drugi faktori kada se odlučuje o FHA. TSH bi trebao biti meren kod svih pacijenata kako bi se isključila mogućnost postojanja hiperfunkcionog čvora. Ovakve lezije ne zahtevaju biopsiju, jer su praktično uvek benigne. Faktori rizika za malignitet su izlaganje ionizujućem zračenju tokom detinjstva, akcidentalno ili iz medicinskih razloga, pozitivna porodična anamneza za malignitet štitastog žlezde, pojava čvorova kod dece i starijih, liničke karakteristike, čvorovi koji su čvrsti, tvrdi, fiksirani za podlogu i okolinu, brzo rastu. Nedavno je potvrđeno da je i lokacija čvora nezavisni faktor rizika za malignitet, dok oni koji se nalaze u istom broju nose veći rizik za malignitet, dok oni koji ne izlaze iz iste lokacije nose manji rizik u početku, ali iz tih razloga, srednjih ili gornjih dijelova tijela. Ovi faktori se obično ne vršu u algoritmu stratifikacije, ali mogu uticati na definitivni stav u zajedničkom donošenju odluka o daljim dijagnostičkim i terapijskim korakima [19].

Zaključak
Odredene ultrazvučne osobine, karakteristike čvorova u štitastoj žlezdi, mogu u značajnoj meri da ukazuju na malignitet, te se koriste kao kriterijumi za FHA. Osobine sa najvećim dijagnostičkim značajem za predviđanje maligniteta su oblik čvora, viši po širu i nepravilnu marginu, dok sunderast i cističan izgled čvora i prisustvo haloa oko čvora u
based on previous FNA results from the Bethesda system for thyroid cytopathology [18].

Definition of growth
Criteria for significant growth depend on the size of the node, which must also take into account the variability of measurements. Significant magnification is defined as a 20% increase in at least two node dimensions and a minimum increase of 2mm, or a 50% or greater volume increase [6].

Tracking time
There is little agreement in the literature about the optimal time to monitor nodules, since the degree of growth does not reliably distinguish benign from malignant nodules. Examination intervals shorter than one year are not recommended, except for proven malignancies under active supervision, which may require more frequent monitoring. It is advisable to determine the monitoring intervals in relation to the number of points assigned to the node. For a TR5 lesion, we recommend monitoring once a year for 5 years. The first, second, third and fifth years should be done for TR4 controls. For TR3 controls can be performed in the first, third and fifth years. Monitoring can be stopped after five years, if there are no changes in size, because stability in this time interval reliably indicates that the node behaves benignly, which is valid for all categories of nodes [6].

There are no published data for the treatment of nodules that increase significantly, if their size is still below the threshold for FNA and remain in the same number of ACR TI-RADS points for almost five years, but their monitoring is still necessary. If the ACR of the TI-RADS node increases during monitoring, the next control should be done in one year, regardless of its initial level [6].

Assessment of cervical lymph nodes
The suspicious finding is suggestive in spherical lymph glands, hyperechoic glands, loss of normal echogenic hilus, presence of more pronounced peripheral flow or vascularization than hilus. Heteroechogenicity with cystic components and point echogenic foci that may represent microcalcifications is also a suspicious finding [6].

Categorization (scoring) of nodes after scoring
After scoring the ultrasonic properties of the nodes, the nodes are categorized as, TR1-TR5. TR1, benign nodules with 0 points TR2, non-suspicious nodes with 2 points, where FNA is not recommended for these nodes, TR3 minimally suspicious nodes with 3 points, where FNA is advised for nodes larger than 2.5 cm and for nodes larger than 1.5 cm tracking, TR4 moderately suspicious nodes with 4-6 points, with FNA recommended for nodes larger than 1.5 cm and for nodes larger than 1 cm tracking and TR5 highly suspicious nodes having more than 7 points, with FNA is advised for nodes larger than 1 cm and monitoring for larger than 0.5 cm [6].

In addition to the ultrasound appearance of the nodule, other factors must be taken into account when deciding on FNA. TSH should be measured in all patients to rule out the possibility of a hyperfunctional node. Such lesions do not require a biopsy, because they are practically always benign. Risk factors for malignancy are exposure to ionizing radiation during childhood accidentally or for medical reasons, positive family history of thyroid malignancy, occurrence of nodules in children and the elderly, clinical features, nodules that are firm, hard, fixed to the substrate and the environment, grow rapidly. It has recently been confirmed that node location is also an independent risk factor for malignancy. Nodes located in the isthmus carry a higher risk of malignancy, while those located in the lower third of the lobe carry the lowest risk compared to those from the middle or upper lobes. These factors are not usually classified as a stratification algorithm, but may influence a definitive attitude in joint decision-making with patients about further diagnostic and therapeutic procedures [19].

Conclusion
Certain ultrasound properties, the characteristics of nodules in the thyroid gland, can significantly indicate malignancy and are used as criteria for FNA. The features with the greatest diagnostic significance for predicting malignancy are the shape of the nodule, higher than wider in the transverse section, ovoid appearance, the presence of small calcifications in the nodule, irregular margins, while the spongy and cystic appearance of the nodule and the presence of halo around the nodule significantly indicate benignity. Node size is an unreliable parameter for estimating nodes. These ultrasound properties have different sensitivity and specificity, but unfortunately
značajnoj meri ukazuju na benignitu. Veličina čvorova je nepouzdani parameter za procenu čvorova. Ove ultrazvučne osoblje imaju različitu senzitivnost i specifičnost, ali na žalost nijedna sama po sebi nije dovoljna za sigurno odbacivanje ili potvrdu maligniteta. FNA je veoma važna dijagnostička metoda, ali njeno izvođenje mora biti selektivno s obzirom da se sistematično punktiranje svih čvorova, bez obzira na veličinu ili izgled, ne preporučuje. Važno je da indikacije za FNA budu zasnovane i na kliničkim karakteristikama, kao i na ehosonografskoj stratifikaciji rizika od maligniteta.

LITERATURA:
1. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedüs L, at al; American Association Of Clinical Endocrinologists, American College Of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines For Clinical Practice For The Diagnosis And Management Of Thyroid Nodules - 2016 UPDATE. Endocr Pract. 2016;22(5):622-39. doi: 10.4158/EP161106-GL.
2. Liéhart F. Thyroid nodule: benign or malignant? Rev Med Brux. 2012;33(4):254-62.
3. Frates MC, Benson CB, Doublett PM, Kunreuther E, Contreras M, Cibas ES, Orcutt J, Moore FD Jr, Larsen PR, Marqusee E, Alexander EK. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab. 2006;91(9):3411-7.
4. Gharib H, Papini E. Thyroid nodules: clinical importance, assessment, and treatment. Endocrinol Metab Clin North Am. 2007;36:707-735.
5. Hegedüs L. Clinical practice. The thyroid nodule. N Engl J Med. 2004;351:1764-1771.
6. Franklin N, Tessler, MD, CMA, William D. Middleton, MDb, at al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee Franklin N. Tessler, MD, CMA, William D. Middleton, MDb, Edward G. Grant, M J Am Coll Radiol 2017;14:587-595.
7. Merima R. Goran. Značaj određivanja prediktivnih faktora za prisustvo limfonomodalnih metastaza kod papirarnog tiroidnog mikrokarcinoma. Doktorska disertacija Univerzitet u Beogradu, Medicinski fakultet 2018. Beograd.
8. Gilles Russia Steen J, Bonnemab Murat Falk Erdogan Cosimo Duranted Rose Ngue Laurence Leenhardt aThyroid and Endocrine Tumors, Institute of Endocrinology, Pitié Salpêtrière H. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017;6:225-237
9. Koike E, Noguchi S, Yamashita H, Murakami T, Ohshima A, Kawamoto H, et al. Ultrasonographic characteristics of thyroid nodules: prediction of malignancy. Arch Surg. 2001;136(3):334-7.
10. Oh EM, Chung YS, Song WJ, Lee YD. The pattern and significance of the calcifications of papillary thyroid microcarcinoma presented in preoperative neck ultrasonography. Ann Surg Treat Res. 2014; 86(3):115-21.
11. Enrico P, Herve M, Andrea F, Laszlo H. 2020 European Thyroid Association Clinical Practice Guideline for the Use of Image-Guided Ablation in Benign Thyroid Nodules. Eur Thyroid J 2020;9:172–185.
12. Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 2005; 102:2269–2273.
13. Yoon JH, Kim EK, Hong SW, Kwak JY, Kim MJ: Sonographic features of the follicular variant of papillary thyroid carcinoma. J Ultrasound Med 2008; 27:1431-1437.
14. Kim DS, Kim JH, Na DG, Park SH, Kim E, Chang KH, Sohn CH, Choi YE: Sonographic features of follicular variant papillary thyroid carcinomas in comparison with conventional papillary thyroid carcinomas. J Ultrasound Med 2009;28(12):1685-92.
15. Na DG, Kim JH, Kim DS, Kim SJ: Thyroid nodules with minimal cystic changes have a low risk of malignancy. Ultrasonography 2016; 35:153–158.
16. Giorgio Grani, Marialuisa Sponziello, Valeria Pecce, Valeria Ramundo, and Cosimo Dunante. Contemporary Thyroid Nodule Evaluation and Management. J Clin Endocrinol Metab, 2020; 105(9):2869–2903.
17. Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 2005;103:2269–73.
18. Deveci MS, Deveci G, LiVolsi VA, Gupta PK, Baloch ZW. Concordance between thyroid nodule sizes measured by ultrasound and gross pathology examination: effect on patient management. Diagn Cytopathol 2007;35:579-83.
19. Giorgio G, Marialuisa S, Valeria P, Valeria R, Cosimo D. Contemporary Thyroid Nodule Evaluation and Management. J Clin Endocrinol Metab, September 2020; 105(9):2869–2903.
none of them is enough for certain rejection or confirmation of malignancy. FNA is a very important diagnostic method, but its performance must be selective since systematic puncture of all nodes, regardless of size or appearance, is not recommended. It is important that the indications for FNA be based on clinical characteristics, as well as on echosonographic stratification of the risk of malignancy.

REFERENCES:

1. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedüs L, et al; American Association Of Clinical Endocrinologists, American College Of Endocrinology, And Associazione Medici Endocrinologi Medical Guidelines For Clinical Practice For The Diagnosis And Management Of Thyroid Nodules - 2016 UPDATE. Endocr Pract. 2016;22(5):622-39. doi: 10.4158/EP161208.GL.

2. Liénart F. Thyroid nodule: benign or malignant? Rev Med Brux. 2012;33(4):254-62.

3. Frates MC, Benson CB, Doublet PM, Kunreuther E, Contreras M, Cibas ES, Orcutt J, Moore FD Jr, Larsen PR, Marqusee E, Alexander EK. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab. 2006;91(9):3411-7.

4. Gharib H, Papini E. Thyroid nodules: clinical importance, assessment, and treatment. Endocrinol Metab Clin North Am. 2007;36:707-735.

5. Hegedüs L. Clinical practice. The thyroid nodule. N Engl J Med. 2004;351:1764-1771.

6. Franklin N, Tessler, MD, CM, William D. Middleton, MD, at al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee Franklin N. Tessler, MD, CM, William D. Middleton, MD, Edward G. Grant, M, J Am Coll Radiol 2017;14:587-595.

7. Merima R. Goran. Značaj određivanja prediktivnih faktora za prisustvo limfonomodalnih metastaza kod papilarnog tiroидног mikrokarcinoma. Doktorska disertacija Univerzitet u Beogradu, Medicinski fakultet 2018. Beograd.

8. GiBiševa Rassu, Steen J, Bonnemb Murat Fak Erdoganc, Cosimo Durante, Rose Ngue, Laurence Leenhardt, aThyroid and Endocrine Tumors, Institute of Endocrinology, Pitié Salpêtrière H. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017;6:225-237

9. Koike E, Noguchi S, Yamashita H, Murakami T, Ohshima A, Kawamoto H, et al. Ultrasonographic characteristics of thyroid nodules: prediction of malignancy. Arch Surg. 2001; 136(3):334-7.

10. Oh EM, Chung YS, Song WJ, Lee YD. The pattern and significance of the calcifications of papillary thyroid microcarcinoma presented in preoperative neck ultrasonography. Ann Surg Treat Res. 2014; 86(3):115-21.

11. Enrico P, Herve M, Andrea F, Laszlo H. 2020 European Thyroid Association Clinical Practice Guideline for the Use of Image-Guided Ablation in Benign Thyroid Nodules. Eur Thyroid J 2020;9:172–185.

12. Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 2005; 103:2269–2273.

13. Yoon JH, Kim EK, Hong SW, Kwak JH, Kim MJ: Sonographic features of the follicular variant of papillary thyroid carcinoma. J Ultrasound Med 2008; 27:1431–1437.

14. Kim DS, Kim JH, Na DG, Park SH, Kim E, Chang KH, Sohn CH, Choi YH: Sonographic features of follicular variant papillary thyroid carcinomas as comparison with conventional papillary thyroid carcinomas. J Ultrasound Med 2009;28(12):1685-92.

15. Na DG, Kim JH, Kim DS, Kim SJ: Thyroid nodules with minimal cystic changes have a low risk of malignancy. Ultrasonography 2016; 35:153–158.

16. Giorgio Grani, Marialuisa Sponti, Valeria Pece, Valeria Ranunza, and Cosimo Durante. Contemporary Thyroid Nodule Evaluation and Management. J Clin Endocrinol Metab, 2020; 105(9):2869–2883.

17. Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 2005; 103:2269–2273.

18. Deveci MS, Deveci G, LVolts VA, Gupta PK, Baloch ZW. Concordance between thyroid nodule sizes measured by ultrasound and gross pathology examination: effect on patient management. Diagn Cytopathol 2007;35:579–83.

19. Giorgio G, MariaJus S, Valeria P, Valeria R, Cosimo D. Contemporary Thyroid Nodule Evaluation and Management. J Clin Endocrinol Metab, September 2020; 105(9):2869–2883.