Protein Misfolding Detected Early in Pathogenesis of Transgenic Mouse Model of Huntington Disease Using Amyloid Seeding Assay*

Received for publication, September 16, 2011, and in revised form, December 1, 2011 Published, JBC Papers in Press, December 20, 2011, DOI 10.1074/jbc.M111.305417

Sharad Gupta, Shy'Ann Jie, and David W. Colby
From the Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716

Huntington disease (HD) is one of several fatal neurodegenerative disorders associated with misfolded proteins. Here, we report a novel method for the sensitive detection of misfolded huntingtin (HTT) protein and found early protein misfolding in a transgenic mouse model.

Background: Huntington disease is associated with protein misfolding.

Results: We developed an amyloid seeding assay for detecting misfolded huntingtin (HTT) protein and found early protein misfolding in a transgenic mouse model.

Conclusion: The amyloid seeding assay allows for sensitive detection of misfolded HTT.

Significance: The detection of misfolded HTT in young YAC128 mice suggests that protein misfolding may be an early event in pathogenesis.

Huntington disease (HD) is one of several fatal neurodegenerative disorders associated with misfolded proteins. Here, we report a novel method for the sensitive detection of misfolded huntingtin (HTT) protein and found early protein misfolding in a transgenic mouse model.

Background: Huntington disease is associated with protein misfolding.

Results: We developed an amyloid seeding assay for detecting misfolded huntingtin (HTT) protein and found early protein misfolding in a transgenic mouse model.

Conclusion: The amyloid seeding assay allows for sensitive detection of misfolded HTT.

Significance: The detection of misfolded HTT in young YAC128 mice suggests that protein misfolding may be an early event in pathogenesis.

Huntington disease (HD) is one of several fatal neurodegenerative disorders associated with misfolded proteins. Here, we report a novel method for the sensitive detection of misfolded huntingtin (HTT) protein and found early protein misfolding in a transgenic mouse model.

Background: Huntington disease is associated with protein misfolding.

Results: We developed an amyloid seeding assay for detecting misfolded huntingtin (HTT) protein and found early protein misfolding in a transgenic mouse model.

Conclusion: The amyloid seeding assay allows for sensitive detection of misfolded HTT.

Significance: The detection of misfolded HTT in young YAC128 mice suggests that protein misfolding may be an early event in pathogenesis.
and then use it to demonstrate that protein misfolding occurs much earlier than previously detected in the YAC128 mouse model.

EXPERIMENTAL PROCEDURES

Peptide Solubilization—We used a modified version of a protocol reported previously (37) to create monomeric solutions of K_{2}Q_{44}K_{4} (>90% purity by HPLC; Keck Biotechnology Center at Yale University). Briefly, the crude peptide was suspended in a 1:1 mixture of TFA (Acros) and hexafluorosopropanole (ReagentWorld) at 2 mg/ml and stirred for 2 days at room temperature. Solvent was removed under argon flow, and the peptide film was dissolved in 2 M guanidine hydrochloride at 2 mg/ml. Any residual aggregates were removed by ultracentrifugation at 300,000 × g for 3 h at 4 °C. The top half-layer was removed and used immediately for the amyloid formation experiments.

Monitoring Amyloid Formation by ThT Assay—Disaggregated monomeric peptide was diluted with TBS (pH 8.5) and 100 μM ThT (T3516, Sigma) to an approximate peptide concentration of 0.4 mg/ml. This solution was mixed with an equal volume of seeding agent solution containing the indicated amount of preformed amyloids or partially misfolded HTT from brain tissues and transferred to 5 wells of a black 96-well flat-bottom plate (353945, BD Biosciences) containing a single 3-mm glass bead (Z143928, Sigma) for mixing. Thus, each well carried a 200-μl volume of 0.2 mg/ml peptide with 50 μM ThT and 0.2 M guanidine hydrochloride in TBS (pH 8.5) at the indicated concentration of amyloid seeds or other agents. The plate was sealed with sealing tape (235207, Fisher) and incubated in a SpectraMax M2 plate reader at 37 °C. Before each reading, the plate was shaken for 5 s, and fluorescence was recorded every 10 min with excitation at 444 nm and emission at 484 nm. Background fluorescence as recorded in the absence of peptide was subtracted from each data set. Glycogen (G0885), salmon sperm DNA (D1626), and purified brain lipid extract (B3635) were purchased from Sigma.

Transgenic Mice—All animal procedures were performed in accordance with policies set forth by the Institutional Animal Care and Use Committee at the University of Delaware. Transgenic mice (The Jackson Laboratories), including R6/2 (2810), N171-82Q (3627), and YAC128 (4938), were crossed with the corresponding wild-type mice to create hemizygous progeny. Genotypes were confirmed by PCR according to the protocols recommended by Jackson ImmunoResearch Laboratories. R6/2 and N171-82Q mice and age-matched controls were allowed to age until they exhibited behavioral symptoms of neurodegeneration such as tremors, loss of balance, and hind limb claspings (10–14 weeks for R6/2 mice and 13–20 weeks for N171-82Q mice). Mice were killed by CO_{2} asphyxiation, followed by removal of the brains. YAC128 mice and controls were killed at the ages indicated. Whole brain tissues were kept frozen at −80 °C until used.

Human Tissue Samples—Human brain tissue samples were obtained from the Harvard Brain Tissue Resource Center and the Human Brain and Spinal Fluid Resource Center at UCLA, including samples from the caudate, putamen, and acuems region of grade 4 HD-affected patients (AN 12029, 09048, 2989, and 4132) and normal non-disease donor controls (AN 08364, 16128, 3535, and 3590) and from the superior frontal cortex region of an Alzheimer disease (AD)-affected patient (AN 03349) and a normal non-disease donor control (AN 16860).

Enrichment and Partial Purification of Misfolded HTT from Brain Tissues—We modified a protocol (38) to purify misfolded HTT. Briefly, the whole brain sample from mice or the tissue block from human brain was thawed on ice and suspended in 9 volumes of homogenization buffer A (10 mM Tris, 1 mM EDTA, 0.8 M NaCl, 10% sucrose, and 0.1% Triton X-100) supplemented with protease inhibitors (1 mM PMSF (Acros) and protease inhibitor mixture (P8340, Sigma)). Tissue was homogenized on ice by extrusion through progressively thinner needles (10 passages each for 16-, 18-, and 21-gauge needles). The brain homogenate was centrifuged at 1000 × g for 10 min at 4 °C, and supernatant S1 was saved. The residual pellet (P1) was homogenized in 10 volumes of buffer A (with protease inhibitors) by extrusion through a 21-gauge needle. This homogenate was centrifuged at 1000 × g for 10 min at 4 °C, and the supernatant was mixed with S1 to yield a 5 weight % brain homogenate equivalent supernatant (S2). Four ml of S2 was adjusted to a final concentration of 1% (w/v) Sarkosyl (BP234, Fisher) and 0.2% (w/v) DTT (P-765, Boston Bioproducts) and incubated at room temperature for 2.5 h with stirring. Multimeric huntingtin and aggregates were pelleted by ultracentrifugation at 300,000 × g for 1.5 h at 4 °C. To remove residual Sarkosyl, pellet P3 was saved in 4 ml of TBS and ultracentrifuged at 300,000 × g for 1.5 h at 4 °C. The residual pellet (P4) was suspended in TBS (pH 8.5) by stirring overnight. This suspension was passed five times through a 27-gauge needle to break up any residual large aggregates and used immediately for ThT assay. Unused seed solution was stored at −80 °C.

SDS-PAGE and Western Blotting—Pellet P4 from the protocol described for enrichment of misfolded HTT was adjusted to 2 mg of brain tissue equivalent (BTE) and visualized by Western blotting using anti-polyglutamine monoclonal antibody 1C2 (MAB1574, Millipore).

Data Analysis—To calculate the lag phase for ThT kinetic data, we identified the first of three consecutive time points that were significantly above the background and after which the signal did not fall below background. To plot the ThT fluorescence values as a function of BTE within a single assay, we calculated an average of five time point fluorescence values as a function of BTE. To plot the ThT fluorescence values as a function of BTE within a single plate or by Student’s two-sample unpaired t test (within a single plate) or by Student’s paired test (for samples from different plates) using Minitab 16 software.

RESULTS

Effect of Adding Synthetic Seeds to Polyglutamine Amyloid Formation Reactions—Synthetic polyglutamine peptides, including K_{2}Q_{44}K_{4}, form amyloid following a lag phase upon incubation at 37 °C in buffered solution as detected by light scattering, ThT fluorescence, and sedimentation assays (39, 40). We prepared monomeric solutions of K_{2}Q_{44}K_{4} using a modified version of a reported protocol (37) as follows. To delay amyloid formation in the absence of a seed, we dissolved the
Detection of Misfolded HTT by Amyloid Seeding Assay

A, the addition of 1% preformed amyloids composed of the synthetic peptide K2Q44K2 accelerated the conversion of monomeric K2Q44K2 into amyloid compared with unseeded reactions as monitored by ThT fluorescence. B, mean log phase (hours) for amyloid formation plotted as a function of the preformed amyloid seed concentration added to the reaction (log ~1 corresponds to 10% by volume of a completed amyloid formation reaction). A significant decrease in log phase (p < 0.01) was observed for a 10^{-5} dilution (or 400 pg of seed/well). C, the addition of brain homogenates (1% final concentrations) from both Tg R6/2 mice and WT mice inhibited amyloid formation compared with control reactions. D, effect of components of brain homogenate, including carbohydrates, proteins, lipids, and nucleic acids, on amyloid formation. Each data point represents a mean of values obtained from five wells, and error bars denote S.E. AFU, arbitrary fluorescence units.

Brain Homogenates Inhibit Amyloid Formation—We sought to examine the ability of misfolded HTT in the brains of mouse models and human brain tissues to act as seeds in amyloid formation reactions. Initially, we homogenized whole brain tissues obtained from a single end-stage R6/2 mouse and an age-matched WT control in PBS and attempted to use the crude brain homogenate to seed the amyloid formation (final concentration of 1%). We found that unpurified brain homogenates inhibited amyloid formation (Fig. 1C) compared with unseeded reactions. However, WT brain homogenate inhibited amyloid formation to a greater extent than R6/2 brain homogenate. We surmised that components of brain homogenate that inhibit amyloid formation may prevent sensitive detection of misfolded protein by an ASA for HD.

To determine which specific component(s) of brain homogenate inhibit amyloid formation, we added purified brain lipid extract, BSA, DNA, and glycogen individually to amyloid formation reactions. We used a physiologically relevant concentration of each biomolecule present in 1% brain homogenate. We observed that the addition of lipids (0.25 mg/ml purified brain lipid extract) and protein (0.25 mg/ml BSA) both significantly delayed amyloid formation (Fig. 1D). The addition of carbohydrate (0.05 mg/ml glycogen) mildly affected amyloid formation, and DNA (0.05 mg/ml) did not significantly alter the kinetics of amyloid formation (Fig. 1D).

Partial Purification of Misfolded HTT—Based on the observation that lipids and proteins inhibit amyloid formation, we adapted a protocol (38) to enrich misfolded HTT from brain homogenates while retaining the greatest possible yield of misfolded HTT (Fig. 2A). Incubation with Sarkosyl and DTT removes undesired proteins without dissolving misfolded HTT, which is largely insoluble in detergents (41). Lipids were removed by ultracentrifugation in 10% sucrose and 0.8 M NaCl. We monitored the progress of the partial purification protocol at various steps by dot blot assay (data not shown) and confirmed the presence of HTT protein in final pellet by Western blotting (Fig. 2B).

Sensitive Detection of Misfolded HTT in End-stage Transgenic Mouse Models and Human HD Brain Tissue by Amyloid Seeding—We subjected whole brain tissues harvested from end-stage transgenic (Tg) mouse models of HD (R6/2, n = 3; and N171-82Q, n = 4 mice), post-mortem human HD brain tissues (n = 4), and appropriate normal controls to the partial purification protocol. The residual pellets obtained were used to seed the conversion of K2Q44K2 into amyloid.

Using 0.2 mg of BTE/well, we observed a seeding effect for all 11 samples relative to unseeded reactions and negative control samples (WT mouse and normal human brains); representative kinetic traces are shown in Fig. 3 (A, C, and F), longer kinetic traces are shown for 1.0 mg of BTE/well in supplemental Fig. 1. We also monitored amyloid formation as a function of the concentration of brain-derived material over 5 logs by measuring ThT fluorescence at a single time point for each sample (Fig. 3, B, D, and F). Samples containing misfolded HTT accelerated K2Q44K2 amyloid formation at concentrations as low as 0.04 mg of BTE for R6/2 mice, 0.2 mg of BTE for N171-82Q mice, and 0.008 mg of BTE for human HD samples. We found that for all three tissue types, ThT fluorescence increased with increasing seed concentration, reached a maximum at 1 mg of BTE (Fig. 3, B and D), then decreased at higher concentrations, potentially due to remaining impurities in the samples.

To check the specificity of the HD ASA, we applied the same purification protocol to post-mortem brain obtained from an AD-affected patient and added the resulting P4 pellet to amyloid formation reactions at 1 mg of BTE. We also seeded the amyloid formation reaction with 1 mg of BTE of scrapie prion that was partially purified by phosphotungstic acid precipitation (30) from RML/Chandler-infected FVB mouse brain tissue
Detection of Misfolded HTT by Amyloid Seeding Assay

In both cases, amyloid formation was comparable with negative controls (Fig. 3G).

Statistical Confidence in HD ASA for Detecting Misfolded HTT Protein—The preceding analyses using human HD samples, as well as R6/2 and N171-82Q mouse samples, were all performed on end-stage samples containing misfolded HTT. To check the combined statistical significance of all of the measurements made using the HD ASA, we plotted the mean value of ThT fluorescence observed for 1 mg of BTE for each of the tissue samples analyzed (n = 11 samples containing misfolded HTT and n = 15 negative controls) (Fig. 4). To analyze the data on a single scale, we used a time point (t_{1.25}) that was 1.25 times the lag phase for unseeded samples. This analysis indicated that the HD ASA can detect the presence of misfolded HTT with a high degree of statistical confidence (p < 0.001).

Detection of Misfolded HTT in 11-week-old YAC128 Mice—Having established that the ASA can detect the presence of misfolded HTT in partially purified brain tissue samples from end-stage HD mouse models and post-mortem human HD samples, we next examined whether the ASA can detect misfolded HTT in an age-dependent manner in YAC128 mice, in which misfolded protein is not seen until 18 months of age (26–28). We subjected whole brain tissue harvested from YAC128 mice at different ages (3.4 (n = 1), 7.4 (n = 3), 11 (n = 1), 12 (n = 3), 21 (n = 2), and 33 (n = 1) weeks) and age-matched WT controls to the partial purification protocol and added the resulting P4 pellets to amyloid formation reactions (Fig. 5 and supplemental Fig. 2).

Amyloid seeding was observed in an age- and dose-dependent manner. Although an increase in ThT fluorescence could be seen after the addition of 5 mg of BTE of the P4 fraction derived from mice 12 weeks and older (Fig. 5, A and B), age dependence was more evident at 1 mg of BTE (Fig. 5, C and D). We also determined the dose dependence of amyloid seeding over a broader range for YAC128 mice 3.4, 7.4, 11, 12, 21, and 33 weeks of age (Fig. 5, E–G). To investigate the possibility that this age dependence is merely a manifestation of increasing expression levels of the transgene for HTT as the mice age, we measured HTT protein levels in YAC128 mice for the range of time points used and established that there was no change in expression levels with age (data not shown).

DISCUSSION

We have developed a sensitive ASA for the detection of misfolded HTT in brain tissues from HD mouse models and humans with HD and have demonstrated that the ASA can detect the misfolding of HTT in the YAC128 mouse model much earlier than demonstrated with other methods (26). The short synthetic peptide K_{2}Q_{44}K_{2} was chosen as the substrate for ASA because it is available commercially and has well characterized amyloid formation kinetics (37, 39, 40). Reaction conditions were identified that resulted in a well-defined lag phase (20 h) (Fig. 1A), allowing for observation of a seeding effect with as little as 400 pg of preformed K_{2}Q_{44}K_{2} amyloid. Presumably further optimization of the conditions used for the HD ASA could result in greater sensitivity or a more facile assay, as was demonstrated by altering the conditions used for the original prion ASA (30, 33).

Material recovered from WT samples during the purification protocol resulted in slightly higher ThT fluorescence values when added to amyloid formation reactions compared with unseeded reactions (e.g. Fig. 3A). We attribute this to trace compounds either from brain homogenate or from chemicals used in the purification procedure that may be retained in the final pellet upon ultracentrifugation.

Upon seeding amyloid formation reactions with misfolded HTT isolated from HD mouse models, we observed a non-linear dependence of the amount of seed added on the increase in ThT fluorescence (e.g. Fig. 3B). This may have been due to the cumulative effect of two opposing factors: an
increase in misfolded HTT seed concentration, which accelerates amyloid formation, is accompanied by an increase in cellular contaminants (such as membrane bound lipids and proteins) that co-pellet with misfolded HTT and tend to inhibit amyloid formation.

The limit of detection for partially purified misfolded HTT in HD ASA is \(\sim 40 \mu g \) of BTE for mouse models (R6/2 and N171-82Q) (Fig. 3, B and D), on the same order as reported for the AD ASA (40 \(\mu g \) of BTE) (31) but significantly lower than that observed for the prion ASA (3.4 ng of BTE after phosphotungstic acid precipitation) (30). It is likely that the sensitivity of each assay depends both on the relative concentration of misfolded protein in brain tissues in each disease and on the amyloidogenicity of each misfolded protein.

One could argue that the misfolded protein that we detected was formed during the purification process. However, two observations argue against this hypothesis. First, no acceleration in amyloid formation was observed for the 7.4-week-old YAC128 mouse even though the protein levels at this age are the same as those observed in older YAC128 mice. Second, there was a clear age dependence on the magnitude of the increase in ThT fluorescence observed following seeding with material isolated from the YAC128 mice, implying that the misfolded protein content increases over the age range investigated. If the amyloid seeding effect was an artifact of the purification protocol, no such trend would be observed.

There is no direct correlation between the presence of NIIs and neurotoxicity: in some mouse models such as R6/2 (14) and N171-82Q (42), NIIs precede onset of HD-related behavioral symptoms, whereas in other mouse models such as YAC128 (26, 43) and knock-in models (44, 45), NIIs are not visible until late stages of the disease. In the YAC128 model, motor impairment has been observed by 4 months (27), with nuclear immunostaining of HTT seen as early as 2 months, although NIIs are...
not visible until 18 months of age (26). We do not know if the HD ASA detects large NIIs or earlier intermediates in the protein misfolding process, such as oligomers (46). However, we have demonstrated that some form of misfolded HTT can be detected by 11 weeks of age. Thus, HTT misfolding takes place early in the pathogenesis of disease in the YAC128 model and can be observed around the same time that the earliest behavioral symptoms begin to manifest (27), consistent with the observation in cell culture experiments that misfolded HTT nucleation occurs randomly in time (47). It is possible that, because of their small size, these intermediates are not visible by immunostaining or that NIIs are present at early ages but not at sufficient densities to easily detect by neuropathology, which typically entails examining slices that compose only a small volume of the brain.

The sensitivity of the HD ASA and its ability to detect misfolded HTT early may make the assay useful as a biomarker for HD pathogenesis in preclinical trials, especially in studies aimed at determining the effectiveness of putative HD therapeutics in the YAC128 mouse model. Our findings also suggest that drugs directed toward preventing protein misfolding (e.g., Ref. 48) should be administered early in this mouse model. If the HD ASA can be extended to the detection of misfolded HTT in peripheral tissues or blood of HD patients, it may be a useful biomarker for clinical trials as well.

Acknowledgments—We thank Natalie Barnes for help with breeding mouse colonies and harvesting tissue samples, Zachary March for purification of AD and control brain tissue samples, and Kyle Doolan for purification of PrPSc from brain tissue sample. We thank the patients and families who donated tissue samples and the Harvard Brain Tissue Resource Center (supported in part by United States Public Health Service Grant R24 MH068855 from the National Institutes of Health) and the Human Brain and Spinal Fluid Resource Center at UCLA (supported in part by NINDS/National Institute of Mental Health) for providing tissues.

REFERENCES

1. Huntington, G. (1872) On chorea. Med. Surg. Rep. 26, 317–321
2. The Huntington Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington disease chromosomes. Cell 72, 971–983
3. DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., and Aronin, N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993
4. Gourfinkel-An, I., Cancel, G., Duyckaerts, C., Faucheux, B., Hauw, J. J., Trottier, Y., Brice, A., Agid, Y., and Hirsch, E. C. (1998) Neuronal distribution of intranuclear inclusions in Huntington disease with adult onset. Neuroreport 9, 1823–1826
5. Herndon, E. S., Hladik, C. L., Shang, P., Burns, D. K., Raisanen, J., and White, C. L. (2009) Neuroanatomic profile of polyglutamine immunoactivity in Huntington disease brains. J. Neuropathol. Exp. Neurol. 68,
Detection of Misfolded HTT by Amyloid Seeding Assay

250–261

6. Maat-Schieman, M., Roos, R., Losekoot, M., Dorsman, J., Welling-Graaf, C., Hegeman-Kleinn, I., Broefer, Y., Breuning, M., and van Duinen, S. (2007) Neuronal intranuclear and neuropil inclusions for pathological assessment of Huntington disease. Brain Pathol. 17, 31–37

7. Sieradzan, K. A., Mechan, A. O., Jones, L., Wanker, E. E., Nukina, N., and Mann, D. M. (1999) Huntington disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Exp. Neurol. 156, 92–99

8. Saudou, F., Finkbeiner, S., Devys, D., and Greenberg, M. E. (1998) Huntingtin acts in the nucleus to induce apoptosis, but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66

9. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R., and Finkbeiner, S. (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810

10. Yang, W., Dunlap, I. R., Andrews, R. B., and Wetzel, R. (2002) Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917

11. Campioni, S., Mannini, B., Zampagni, M., Pensalfini, A., Parrini, C., Evangelisti, E., Rinali, A., Stefanini, M., Dobson, C. M., Cecchi, C., and Chiti, F. (2010) A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147

12. Nucifora, F. C., Jr., Sasaki, M., Peters, M. F., Huang, H., Cooper, J. K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V. L., Dawson, T. M., and Ross, C. A. (2001) Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291, 2423–2428

13. Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, and Thomas, M., Friedlich, A., Browne, S. E., Schilling, G., Borchelt, D. R., Ratovitski, T., Cooper, J. K., Jenkins, N. A., Copeland, N. G., and Jenkins, M. A., Ferrer, I., Slunt, H. H., Ratovitski, T., Cooper, J. K., Jenkins, N. A., Copeland, N. G., and Jenkins, M. A. (2004) Neuronal intranuclear inclusions for pathological assessment of Huntington disease. Hum. Mol. Genet. 13, 293–302

14. Schilling, G., Becher, M. W., Sharp, A. H., Finkbeiner, S., Devys, D., and Greenberg, M. E. (1998) Huntington disease in the nucleus to induce apoptosis, but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66

23. Masuda, N., Peng, Q., Li, Q., Jiang, M., Liang, Y., Wang, X., Zhao, M., Wang, W., Ross, C. A., and Duan, W. (2008) Triangular is neuroprotective in the N171-82Q and R6/2 mouse models of Huntington disease. Neurobiol. Dis. 30, 293–302

24. Zádori, D., Nyiri, G., Szonyi, A., Szatmári, I., Fulop, F., Toldi, J., Freund, T. F., Vécsei, L., and Klívényi, P. (2011) Neuroprotective effects of a novel kynurenine acid analogue in a transgenic mouse model of Huntington disease. J. Neural Transm. 118, 865–875

25. Hodgson, J. G., Agopyan, N., Gutekunst, C. A., Leavitt, B. R., LePiane, F., Singaraja, S., Smith, D. J., Bissada, N., McCutcheon, K., Nasir, J., Jamot, L., Li, X. J., Stevens, M. E., Rosemond, E., Roder, J. C., Phillips, A. G., Rubin, E. M., Hersch, S. M., and Hayden, M. R. (1999) A YAC mouse model for Huntington disease with full-length huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192

26. Slow, E. J., van Raamsdonk, J., Rogers, D., Coleman, S. H., Graham, R. K., Deng, Y., Oh, R., Bissada, N., Hossain, S. M., Yang, Y. Z., Li, X. J., Simpson, E. M., Gutekunst, C. A., Leavitt, B. R., and Hayden, M. R. (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 12, 1555–1567

27. Van Raamsdonk, J. M., Pearson, J., Slow, E. J., Hossain, S. M., Leavitt, B. R., and Hayden, M. R. (2005) Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington disease. J. Neurosci. 25, 4169–4180

28. Crook, Z. R., and Housman, D. (2011) Huntington’s disease: can mice lead the way to treatment? Neuro 69, 423–435

29. Van Raamsdonk, J. M., Metzler, M., Slow, E., Pearson, J., Schwab, C., Carroll, J., Graham, R. K., Leavitt, B. R., and Hayden, M. R. (2007) Phenotypic abnormalities in the YAC128 mouse model of Huntington disease are penetrant on multiple genetic backgrounds and modulated by strain. Neurobiol. Dis. 26, 189–200

30. Colby, D. W., Zhang, Q., Wang, S., Groth, D., Legname, G., Riesner, D., and Prusiner, S. B. (2007) Prion detection by an amyloid seeding assay. Proc. Natl. Acad. Sci. U.S.A. 104, 20914–20919

31. Du, D., Murray, A. N., Cohen, E., Kim, H. E., Simkovsky, R., Dillin, A., and Kelly, J. W. (2011) A kinetic aggregation assay allowing selective and sensitive amyloid-beta quantification in cells and tissues. Biochemistry 50, 1607–1617

32. Saeed, S. M., and Fine, G. (1967) Thioflavin T for amyloid detection. Am. J. Clin. Pathol. 47, 588–593

33. Wilham, J. M., Ortu, C. D., Bessen, R. A., Atarashi, R., Sano, K., Race, B., Meade-White, K. D., Taubner, L. M., Timmes, A., and Caughey, B. (2010) Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. e1001217

34. Atarashi, R., Satoh, K., Sano, K., Fuse, T., Yamaguchi, N., Ishibashi, D., Matsubara, T., Nakagaki, T., Yanamaka, H., Shirabe, S., Yamada, M., Mizusawa, H., Kitamoto, T., Klug, G., McClade, A., Collins, S. J., and Nishida, N. (2011) Ultrasonic human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat. Med. 17, 175–178

35. Colby, D. W., Wain, R., Baskakov, I. V., Legname, G., Palmer, C. G., Chung, W., Peng, Q., Li, X. J., Stevens, M. E., Gutekunst, C. A., Leavitt, B. R., and Pavletich, N. P. (2007) Protease-sensitive synthetic prions. PLoS Pathog. e1000736

36. Nekooki-Machida, Y., Kurosawa, M., Nukina, N., Ito, K., Oda, T., and Tanaka, M. (2009) Distinct conformations of in vitro and in vivo amyloids of huntingtin exist in the brain. Biochem. J. 413, 34–74

37. Díaz-Hernández, M., Moreno-Herrero, F., O’Nuallain, B., Thakur, A. K., Williams, A. D., Bhattacharyya, A. M., Chen, S., Thirumurugan, A., and Wetzel, R. (2006) Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay. Methods Enzymol. 413, 34–74

38. Diaz-Hernández, M., Moreno-Herrero, F., Gómez-Ramos, P., Morán, M. A., Ferrer, I., Baró, A. M., Avila, J., Hernández, F., and Lucas, J. I. (2004) Biochemical, ultrastructural, and reversibility studies on huntingtin filaments isolated from mouse and human brain. J. Neurosci. 24, 9361–9371

39. Chen, S., Berthelier, V., Yang, W., and Wetzel, R. (2001) Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182

40. Chen, S., Ferrone, F. A., and Wetzel, R. (2002) Huntington disease age of onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. U.S.A. 102, 5820–5825

VOLUME 287 • NUMBER 13 • MARCH 23, 2012
41. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G. P., Davies, S. W., Lebrach, H., and Wanker, E. E. (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558

42. Schilling, G., Jinnah, H. A., Gonzales, V., Coonfield, M. L., Kim, Y., Wood, J. D., Price, D. L., Li, X. J., Jenkins, N., Copeland, N., Moran, T., Ross, C. A., and Borchelt, D. R. (2001) Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA. Neurobiol. Dis. 8, 405–418

43. Van Raamsdonk, J. M., Murphy, Z., Slow, E. J., Leavitt, B. R., and Hayden, M. R. (2005) Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 14, 3823–3835

44. Wheeler, V. C., White, J. K., Gutekunst, C. A., Vrbanac, V., Weaver, M., Li, X. J., Li, S. H., Yi, H., Vonsattel, J. P., Gusella, J. F., Hersch, S., Auerbach, W., Joyner, A. L., and MacDonald, M. E. (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum. Mol. Genet. 9, 503–513

45. Menalled, L. B., Sison, J. D., Dragatsis, I., Zeitlin, S., and Chesselet, M. F. (2003) Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J. Comp. Neurol. 465, 11–26

46. Legleiter, J., Mitchell, E., Lotz, G. P., Sapp, E., Ng, C., DiFiglia, M., Thompson, L. M., and Muchowski, P. J. (2010) Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J. Biol. Chem. 285, 14777–14790

47. Colby, D. W., Cassady, J. P., Lin, G. C., Ingram, V. M., and Wittrup, K. D. (2006) Stochastic kinetics of intracellular huntingtin aggregate formation. Nat. Chem. Biol. 2, 319–323

48. Colby, D. W., Chu, Y., Cassady, J. P., Duennwald, M., Zazulak, H., Webster, J. M., Messer, A., Lindquist, S., Ingram, V. M., and Wittrup, K. D. (2004) Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc. Natl. Acad. Sci. U.S.A. 101, 17616–17621