Buffer Insertion for Bridges and Optimal Buffer Sizing for Communication Sub-System of Systems-on-Chip

Sankalp S. Kallakuri, Alex Doboli
ECE Department
Stony Brook University
Stony Brook, NY 11794
email: elsanky,adoboli@ece.sunysb.edu

Eugene A. Feinberg
AMS Department
Stony Brook University
Stony Brook, NY 11794
email: Eugene.Feinberg@stonybrook.edu

Abstract

We have presented an optimal buffer sizing and buffer insertion methodology which uses stochastic models of the architecture and Continuous Time Markov Decision Processes CTMDPs. Such a methodology is useful in managing the scarce buffer resources available on chip as compared to network based data communication which can have large buffer space. The modeling of this problem in terms of a CTMDP framework lead to a nonlinear formulation due to usage of bridges in the bus architecture. We present a methodology to split the problem into several smaller though linear systems and we then solve these subsystems.

1. Introduction

We have applied CTMDP (Continuous Time Markov Decision Processes) to optimise the buffer space used in SoC architectures. This involves using continuous time queueing models for the architectures. The use of such continuous time stochastic models is necessary due to the continuous time nature of tasks when they are executed on the IP cores and the shift from RTL level design to system level design. A finite amount of buffer space has to be distributed among a set of processors talking to a bus and the continuous time modeling allows incorporating how long certain amounts of buffer space have to be allotted as well as how much of the space should be allotted to processor. The division of the finite buffer space by certain stochastic policies generated through the CTMDP based solutions [1] could lead to an optimal division of the buffer resources. We found this optimal distribution of buffer space different from simple division of the space depending on traffic ratios.

While attempting to solve the buffer sizing problem we encountered a problem when there were bridges between buses. A typical example of such an architecture has been shown in Figure 1 where buses b,f and g talk to each other apart from processors. The architectures in which two buses are connected by a bridge which is a typical example in the AMBA and CoreConnect systems. For such a scenario with bridges the model developed for CTMDPs was nonlinear and the system of quadratic equations were not solvable for a test example shown in Figure 1. We solved this problem by splitting the system to smaller subsystems and solving linear equations obtained from CTMDP based methods for the subsystems.

CTMDPs and continuous time modeling have been used in work done by Pedram et al. and Marculescu et al. in the generation of power management policies. We have attempted to use similar stochastic modeling for optimal buffer sizing as well as distribution of finite buffer space.

2 Buffer Insertion with Split Subsystems

In Figure 1 the architecture has buses that are connected only to processors like bus a, as well as buses b,f and g which are connected to other buses too. Thus communication between processors 2,3 and 5 will involve insertion of buffers and will require the controller to take into account traffic from all three processors while making arbitration decisions for any of these three buses. One of the problems with designing such an arbiter is that it would require equations which would be quadratic in nature due to the interaction between two buses. Each bus by itself has been modeled by a linear set of equations. In case the buses talk to each other through bridges the equality constraints and the cost function have quadratic terms. The number of quadratic terms depend on how many points in the bus topology are there in which buses are connected to each other and an equation may have more than one quadratic term. An attempt was made to solve the nonlinear equations by using the nonlinear solver from Matlab ver. 6.1, but we were not able to get solutions for them.

The solution we propose for this problem is to split the bus architecture into a set of linear systems which are sep-
Buffers inserted

Figure 1. Sample Architecture

Buffers inserted

Figure 2. Split Subsystems

at processors i.e. allowing some losses to be more important than the others.

Table 1. Loss under varying total buffer size

PROCESSOR	Buf 160	Buf 320	Buf 640
1	70	83	41
4	80	100	78
15	107	90	99
16	96	82	84

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE