Robust Polarimetry via Convex Optimization

JACOB M. LEAMER,1,2 WENLEI ZHANG,1,2 RAVI K. SARIPALLI, 1 RYAN T. GLASSER, 1,* AND DENYS I. BONDAR1

1Department of Physics and Engineering Physics, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
2These authors contributed equally to this work
*rglasser@tulane.edu

Abstract: We present mathematical methods, based on convex optimization, for correcting non-physical coherency matrices measured in polarimetry. We also develop the method for recovering the coherency matrices corresponding to the smallest and largest values of the degree of polarization given the experimental data and a specified tolerance. We use experimental non-physical results obtained with the standard polarimetry scheme and a commercial polarimeter to illustrate these methods. Our techniques are applied in post-processing, which compliments other experimental methods for robust polarimetry.

© 2020 Optical Society of America

1. Introduction

Polarization describes the trajectory of the electric field vector of light as it oscillates. Polarimetry and polarization imaging enable technologies in many fields, such as machine vision [1, 2], remote sensing [3, 4], biomedical optics [5], astronomy [6, 7], and free-space optical communication [8–10]. Many quantum information protocols also depend on the determination of polarization states [11–14]. A new generation of polarization imaging cameras is currently under development, which will further accelerate the application of polarimetry in many fields [15].

The state of polarization can be described by the Stokes parameters [16, 17] or the coherency matrix [18], which is a generalization of the Jones calculus [19]. The Stokes parameters, s0, s1, s2, s3, and the coherency matrix, J, are related by

\[J = \frac{1}{2} \begin{pmatrix} s_0 + s_1 & s_2 + is_3 \\ s_2 - is_3 & s_0 - s_1 \end{pmatrix}. \]

(1)

The coherency matrix provides all second-order statistical information about the polarization state.

As shown in later sections, non-physical coherency matrices (for example, with negative eigenvalues) arise in common polarimetry schemes due to experimental errors, such as fluctuations of the light source, imperfect alignment of optical components, and spectral bandwidth of the source. Several techniques based on pre-processing, calibration, and in-situ optimization [20–22] or novel polarimetric schemes [23–26] have been developed to reduce the effect of such experimental errors.

In this article, we present a method of correcting these non-physical results by finding the closest physical coherency matrix via convex optimization. This method is applied in post-processing, and does not depend on a priori information or the experimental setup. Having such a method is especially useful when dealing with other degrees of freedom in addition to polarization. For example, when measuring the polarization profile of a vector beam, we might have the result where only a few points are non-physical due to experimental errors [27]. Using our method, we can find the closest approximate physical coherency matrix for these points rather than invalidating all points and repeating the entire measurement. It is also potentially
Fig. 1. Experimental polarimetry setup: (a) modified standard method; (b) polarimeter method. H: half-wave plate; Q: quarter-wave plate; Pol: linear polarizer.

useful when dealing with measurements that cannot be easily repeated, such as the polarimetry of single photons. This method can be easily generalized to be used for multi-photon Stokes parameters [28].

2. Experimental Setup

We used the two independent polarimetry schemes shown in Fig. 1 to measure the coherency matrices of both linearly and elliptically polarized light to verify the validity of the developed methods. In both schemes, the light from the laser is vertically polarized, and passes through either a half-wave plate (HWP) or a quarter-wave plate (QWP). The HWP preserves the linearity of the laser light, but changes the angle of polarization, while the QWP changes linear polarization to elliptical polarization. The exact polarization state after the waveplates depends on θ, which is the angle between the fast axis of the waveplates and the horizontal axis. In Fig. 1 (a), we use a modified version of the standard method for measuring the Stokes parameters [17, 29]. The detection scheme consists of another QWP, a linear polarizer, and an intensity detector. The following four intensity measurements are required to measure all four Stokes parameters: $I(0^\circ, 0^\circ)$, $I(0^\circ, 90^\circ)$, $I(0^\circ, 45^\circ)$, and $I(45^\circ, 45^\circ)$, where $I(\psi, \phi)$ is the intensity measured by the detector when the fast axis of the QWP (in the detection scheme) is at angle ψ w.r.t. the horizontal axis and the axis of transmission of the polarization is at angle ϕ w.r.t. the horizontal axis. The Stokes parameters can be calculated from the intensity measurements using the following equations,

$$s_0 = I(0^\circ, 0^\circ) + I(0^\circ, 90^\circ),$$

$$s_1 = I(0^\circ, 0^\circ) - I(0^\circ, 90^\circ),$$

$$s_2 = 2I(45^\circ, 45^\circ) - s_0,$$

$$s_3 = 2I(0^\circ, 45^\circ) - s_0.$$

Non-physical results produced via this method mostly come from fluctuations of the laser light between the four intensity measurements. In the polarimeter method (Fig. 1 (b)), the measurement is done solely with a polarimeter, and the Stokes parameters are given automatically. The polarimeter employs a spinning waveplate and curve-fitting technique to obtain the Stokes parameters [30]. While this method is fast (sampling rate up to 400 Hz), the polarimeter
We want to find the corrected coherency matrix, \(J \), which satisfies Eq. (8) with equality. Thus, our problem is convex. Since the solution to a problem where the objective and constraint functions are convex, i.e. they satisfy the condition that for all \(x, y \in C \)

\[
f_i(tx + (1-t)y) \leq t f_i(x) + (1-t) f_i(y),
\]

where \(t \in [0, 1] \) and \(C \) is some convex set [31]. A convex set \(C \) is defined as a set where, for all \(x, y \in C \) and \(t \in [0, 1] \), \(tx + (1-t)y \in C \). The constraint presented in Eq. (7b) restricts the possible choices for \(J_{\text{corrected}} \) to the set of positive semi-definite matrices, which are known to form a convex set [32]. The objective function Eq. (7a) in our problem is convex due to the definition of norms, namely that they are subadditive and absolutely scalable. Finally, we know that Eq. (7c) is convex because of the linearity of trace, \(\text{Tr}(aA + \beta B) = a \text{Tr}(A) + \beta \text{Tr}(B) \), which satisfies Eq. (8) with equality. Thus, our problem is convex. Since the solution to a convex optimization problem is unique and provides a lower bound on more general optimization problems, the ability to construct and solve a convex optimization problem has proven useful in a wide variety of topics such as the reconstruction of quantum channels [33], the selection of sensors to minimize error in a measurement [34], and multi-period trading [35]. As such, a number of tools and techniques for solving convex optimization problems efficiently have been developed. In particular we opted to use Matlab’s CVX library [36, 37] due to its ability to handle complex matrices and its ease of use compared to other options.

We also want to determine the upper and lower bounds on the DOP for \(J_{\text{corrected}} \) given some tolerance \(\epsilon \) for the acceptable difference between \(J_{\text{corrected}} \) and \(J_{\text{measured}} \). Let \(J_{\text{min}} \) denote the value for \(J_{\text{corrected}} \) with the lowest DOP for the specified tolerance; likewise, \(J_{\text{max}} \) be the value for \(J_{\text{corrected}} \) with the largest DOP. If we consider the representation of coherence matrices on the Poincaré sphere as shown in Fig. 2, the Stokes vectors for \(J_{\text{min}} \) and \(J_{\text{max}} \) must lie within a ball of radius \(\epsilon \) centered on \(J_{\text{measured}} \). The DOP of a coherency matrix corresponds to the length of its Stokes vector. Thus, if a ray (labelled \(\tau \) in Fig. 2) is drawn from the origin of the Poincaré sphere into the direction of the Stokes vector for \(J_{\text{measured}} \), then \(J_{\text{max}} \) and \(J_{\text{min}} \) are found where this ray
Fig. 2. Schematic for the construction of a convex optimization problem to determine the coherency matrices with the highest and lowest DOP (respectively J_{max} and J_{min}) for a given J_{measured} and error tolerance ϵ. The blue arrows are the Stokes vectors of the corresponding coherency matrices. $\mathbf{I}/2$ corresponds to the zero vector, where \mathbf{I} is the identity matrix.

Intersects the ϵ-ball. To make this problem easier to formalize, we parameterize the ray in Fig. 2 by τ and require that the sought J_{min} and J_{max} lie on the ray. This is achieved by the following expression:

$$\left\| J_{\text{min, max}} - \tau J_{\text{measured}} - \frac{1 - \tau}{2} \mathbf{I} \right\| = 0. \quad (9)$$

The smaller the τ, the closer the sought coherency matrices to the origin. Hence, J_{max} and J_{min} can be found by maximizing and minimizing τ, respectively. It is important to note that the value of τ not only depends upon J_{measured} and ϵ, but also on the constraint both $J_{\text{min, max}}$ be non-negative as in the problem (7a–(7c). Because the l.h.s. of Eq. (9) is a norm of a linear expression over a convex set, the constrain function (9) is convex. Now we can combine the constraints (7b), (7c), and (9) with the requirement that $J_{\text{min, max}}$ be ϵ-close to J_{measured} to formulate the following convex optimization problems for obtaining physically corrected coherency matrices $J_{\text{min, max}}$ with the minimal and maximal DOP:

To recover the physically-constrained coherency matrix J_{min} with the minimal DOP that is ϵ-close to the measured J_{measured}, we solve the convex optimization problem

$$\min_{\tau, J_{\text{min}}} \quad \tau$$

subject to

$$\left\| J_{\text{min}} - \tau J_{\text{measured}} - \frac{1 - \tau}{2} \mathbf{I} \right\| = 0,$$

$$\left\| J_{\text{min}} - J_{\text{measured}} \right\| \leq \epsilon,$$

$$\text{Tr}(J_{\text{min}}) = 1,$$

$$J_{\text{min}} \geq 0. \quad (10)$$

Likewise, to obtain the physically-constrained coherency matrix J_{max} with the maximal DOP
that is ϵ-close to the measured J_{measured}, we solve

$$\begin{align*}
\text{maximize} & \quad \tau, J_{\text{max}} \\
\text{subject to} & \quad \|J_{\text{max}} - \tau J_{\text{measured}} - \frac{1 - \tau}{2} I\| = 0, \\
& \quad \|J_{\text{max}} - J_{\text{measured}}\| \leq \epsilon, \\
& \quad \text{Tr}(J_{\text{max}}) = 1, \\
& \quad J_{\text{max}} \geq 0.
\end{align*}$$

(11)

4. Results

To solve Eqs. (7a)–(7c), (10), and (11), we had to specify a norm. We chose to use the Frobenius norm, which is defined by

$$\|A\|_F = \sqrt{\text{Tr}(A^\dagger A)},$$

(12)

because, according to Eq. (6), the Frobenius norm of a coherency matrix is related to its DOP. While the use of the Frobenius norm may have been the natural choice given our interest in the DOP, the convex optimization problems outlined in Eqs. (7a)–(7c), (10), and (11) can be solved using any norm.

The results of our program, shown in Code 1 [38], applied to four sets of measured coherency matrices of linearly polarized light and four sets of measured coherency matrices of elliptically polarized light are respectively displayed in Fig. 3 and Fig. 4. In the non-physical cases where the DOP of J_{measured} is greater than 1, the DOP of $J_{\text{corrected}}$ obtained from solving the minimization problem (7a)–(7c) is exactly 1. In the cases where J_{measured} is physical, the obtained $J_{\text{corrected}}$ is equal to J_{measured}. In both measurement schemes shown in Fig. 1, we found that measuring the vertically polarized light through a QWP gave more non-physical results than that of a HWP.

We also found $J_{\text{min}, \text{max}}$ with the minimum and maximum DOP given a tolerance parameter of $\epsilon = 0.1$, which was done by solving the optimization problems defined in Eqs. (10) and (11), respectively. In most cases, the maximum DOP is found to be 1 and the minimum DOP is a constant value, which depends on ϵ, lower than the measured DOP. Given the constraints in Eqs. (10) and (11), this is to be expected. There are a few exceptional points. In Fig. 4(c) at $\theta = 30^\circ$, 40°, the maximum DOP is lower than 1. This is caused by the constraint that J_{max} be ϵ-close to J_{measured}, which makes the Stoke vector for J_{max} lie inside the Poincaré sphere. Another exceptional case is demonstrated by the missing points on both the max DOP and min DOP plots in Fig. 4(a) at $\theta = 70^\circ$. Here, due to the same constraint above, the vectors corresponding to both J_{max} and J_{min} lie outside the Poincaré sphere, and thus, no solutions for both Eqs. (10) and (11) can be found.

The normalized Stokes vectors corresponding to $J_{\text{corrected}}$ and J_{measured} for each of the data points are displayed in the right column of Fig. 3 for linearly polarized light and in the right column of Fig. 4 for elliptically polarized light. In every case, the vectors for $J_{\text{corrected}}$ and J_{measured} are parallel. In the cases where the vector of J_{measured} is outside the Poincaré sphere, the vector of $J_{\text{corrected}}$ ends on the surface of the Poincaré sphere. This indicates that our method is successful at preserving the direction of the measured Stoke vectors while correcting for experimental errors.

5. Conclusion

We presented the convex optimization methods for the purpose of robust polarimetry as described in Sec. 3. We have demonstrated the validity of these methods using the experimentally measured results obtained for different polarization states and via different polarimetry schemes described in Sec. 2. The performance of the developed techniques are discussed in Sec. 4. The presented
Fig. 3. DOP of J_{measured} and $J_{\text{corrected}}$ (left column) and the location of their corresponding vectors on the Poincaré sphere (right column) for linearly polarized light: (a), (b) high intensity light measured with the standard method; (c), (d) high intensity light measured with the polarimeter method; (e), (f) low intensity light measured with the standard method; (g), (h) low intensity light measured with the polarimeter method. In each case, $J_{\text{corrected}}$ was obtained by solving Eqs. (7a)–(7c). The minimum and maximum DOP were calculated from the solutions to Eqs. (10) and (11) using a tolerance of $\epsilon = 0.1$.
Fig. 4. DOP of $\mathbf{J}_\text{measured}$ and $\mathbf{J}_\text{corrected}$ (left column) and the location of their corresponding vectors on the Poincaré sphere (right column) for elliptically polarized light: (a), (b) low intensity light measured with the standard method; (c), (d) high intensity light measured with the polarimeter method; (e), (f) low intensity light measured with the standard method; (g), (h) low intensity light measured with the polarimeter method. In each case, $\mathbf{J}_\text{corrected}$ was obtained by solving Eqs. (7a)–(7c). The minimum and maximum DOP were calculated from the solutions to Eqs. (10) and (11) using a tolerance of $\epsilon = 0.1$.
methods do not depend on any \textit{a priori} information or calibration of the components nor on the type of experimental noise or error, and can be easily integrated into the post-processing of many polarimetry protocols.

\textbf{Funding}

Defense Advanced Research Projects Agency (DARPA)(D19AP00043); U.S. Office of Naval Research (N000141912374); Louisiana Board of RegentsÂ’ Graduate Fellowship Program.

\textbf{Acknowledgments}

This work was supported by the Defense Advanced Research Projects Agency (DARPA) grant number D19AP00043 under mentorship of Dr. Michael Fiddy. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of DARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. RTG also acknowledges funding from the U.S. Office of Naval Research under grant number N000141912374. J.M.L. was supported by the Louisiana Board of RegentsÂ’ Graduate Fellowship Program.

\textbf{Disclosures}

The authors declare no conflicts of interest.
References

1. L. Wolff, “Polarization-based material classification from specular reflection,” IEEE Transactions on Pattern Analysis Mach. Intell. 12, 1059–1071 (1990). Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

2. K. Koshikawa and Y. Shirai, “A Model-based Recognition of Glossy objects using Their Polarizational Properties*,” J. Robotics Soc. Jpn. 3, 4–9 (1985).

3. J. S. Tyo, D. L. Goldenstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). Publisher: Optical Society of America.

4. J. R. Schott, Fundamentals of Polarimetric Remote Sensing (SPIE, 1000 20th Street, Bellingham, WA 98227-0010 USA, 2009).

5. N. Ghosh and A. I. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011). Publisher: International Society for Optics and Photonics.

6. W. H. T. Vlemmings, “A review of maser polarization and magnetic fields,” Proc. Int. Astron. Union 3, 371–346 (2007).

7. E. L. Degl’innocenti and M. Landolfo, eds., Polarization in Spectral Lines, Astrophysics and Space Science Library (Springer Netherlands, Dordrecht, 2004).

8. J. Zhang, S. Ding, and A. Dang, “Polarization property changes of optical beam transmission in atmospheric turbulent channels,” Appl. Opt. 56, 5145–5155 (2017).

9. J. Ma, J. Wu, L. Tan, and S. Yu, “Polarization properties of gaussian–schell model beams propagating in a space-to-ground optical communication downlink,” Appl. Opt. 56, 1781–1787 (2017).

10. R. Yang, Y. Xue, Y. Li, L. Shi, Y. Zhu, and Q. Zhu, “Influence of atmospheric turbulence on the quantum polarization state,” in Young Scientists Forum 2017, vol. 10710 S. Zhuang, J. Chu, and J.-W. Pan, eds., International Society for Optics and Photonics (SPIE, 2018), pp. 36–41.

11. S. Gasparoni, J.-W. Pan, F. Walther, T. Rudolph, and A. Zeilinger, “Realization of a Photonic Controlled-NOT Gate Sufficient for Quantum Computation,” Phys. Rev. Lett. 93, 020504 (2004). Publisher: American Physical Society.

12. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). Publisher: American Physical Society.

13. J. L. O’Brien, A. Furusawa, and J. VuÅñoviÅ (“Photon quantum technologies”), Nat. Photonics 3, 687–695 (2009). Number: 12 Publisher: Nature Publishing Group.

14. K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Single-photon three-qubit quantum logic using spatial light modulators,” Nat. Commun. 8, 739 (2017). Number: 1 Publisher: Nature Publishing Group.

15. N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365, eaax1839 (2019).

16. G. G. Stokes, On the Composition and Resolution of Streams of Polarized Light from different Sources (Cambridge University Press, Cambridge, 1999), 7th ed.

17. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999), 7th ed.

18. J. W. Goodman, Statistical optics, Wiley classics library (Wiley, New York, 2000), wiley classics library ed ed.

19. R. C. Jones, “A New Calculus for the Treatment of Optical Systems.I. Description and Discussion of the Calculus,” JOSA 31, 488–493 (1941). Publisher: Optical Society of America.

20. M. R. Foreman, C. M. Romero, and P. TÃ–rÃ, “A priori information and optimisation in polarimetry,” Opt. Express 16, 15212–15227 (2008). Publisher: Optical Society of America.

21. D.-D. Zhi, J.-J. Li, D.-Y. Gao, W.-C. Zhai, X.-H. Huang, and X.-B. Zheng, “Error analysis and Stokes parameter characterization,” J. Light. Technol. 28, 2084–2095 (2010).

22. D. Clarke, “Interference effects in Pancharatnam wave plates,” J. Opt. A: Pure Appl. Opt. 6, 1047–1051 (2004). Publisher: IOP Publishing.

23. M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Comprehensive quantitative analysis of vector beam states based on vector field reconstruction,” Sci. Reports 9, 9979 (2019). Number: 1 Publisher: Nature Publishing Group.

24. A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum entanglement and the two-photon Stokes parameters,” Opt. Commun. 201, 93–98 (2002).

25. D. Lopez-Mago, “On the overall polarisation properties of Poincaré beams,” J. Opt. 21, 115605 (2019). Publisher: IOP Publishing.

26. D. Clarke, “Interference effects in Pancharatnam wave plates,” J. Opt. A: Pure Appl. Opt. 6, 1047–1051 (2004). Publisher: IOP Publishing.

27. M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Comprehensive quantitative analysis of vector beam states based on vector field reconstruction,” Sci. Reports 9, 9979 (2019). Number: 1 Publisher: Nature Publishing Group.

28. A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum entanglement and the two-photon Stokes parameters,” Opt. Commun. 201, 93–98 (2002).

29. E. Collett, Polarized light: fundamentals and applications, no. 36 in Optical engineering (Marcel Dekker, New York, 1993).

30. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007). Publisher: American Association of Physics Teachers.

31. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
32. J. von Neumann, “Some matrix-inequalities and metrization of matric-spaces,” Tomsk Univ. Rev. pp. 286–300 (1937).
33. e. a. Xuan-Lun Huang, “Reconstruction of quantum channel via convex optimization,” Sci. Bull. 65, 286–292 (2020).
34. S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Transactions on Signal Process. 57, 451–462 (2009).
35. S. e. a. Boyd, “Multi-period trading via convex optimization,” Foundations Trends Optim. 3, 1âĂ§Ã76 (2017).
36. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx (2014).
37. M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura, eds. (Springer-Verlag Limited, 2008), Lecture Notes in Control and Information Sciences, pp. 95–110. http://stanford.edu/~boyd/graph_dcp.html.
38. J. M. Leamer, “Convex polarimetry,” (2020).