Reduced Frontal P3a Amplitude in Migraine Patients during the Pain-Free Period

Yong Seo Koo,a Deokwon Ko,b,c Gwan-Taek Lee,a,b Kyungmi Oh,a Myung-Sun Kim,d Kyung Hwan Im,e Chang-Hwan Im,e Ki-Young Junga

*aDepartment of Neurology, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
bBK21 Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
cDepartment of Psychology, Sungshin Women’s University, Seoul, Korea
dDepartment of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Korea
eDepartment of Biomedical Engineering, Hanyang University, Seoul, Korea

J Clin Neurol 2013;9:43-50
http://dx.doi.org/10.3988/jcn.2013.9.1.43

The author wishes to apologize for incorrectly displaying the references. We correct the lists of the references as follows.

1. Schmitz N, Arkink EB, Mulder M, Rubia K, Admiraal-Behloul F, Scopoletta SS. The relationship between frontotemporal dysfunction and symptoms of ADHD in children: a voxel-based FDG-PET study. *J Child Neurol* 2012;27:1094-1100.
2. Waldie KE, Hausmann M, Milne BJ, Poulton R. Migraine and cognitive function: a life-course study. *Neurology* 2005;62:1270-1275.
3. Gómez-Beldarrain M, Carrasco M, Bilbao A, García-Moncó JC. Orbitofrontal dysfunction predicts poor prognosis in chronic migraine with medication overuse. *J Headache Pain* 2011;12:459-466.
4. Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW, et al. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. *Cephalalgia* 2008;28:598-604.
5. Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW, et al. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. *Cephalalgia* 2008;28:598-604.
6. Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW, et al. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. *Cephalalgia* 2008;28:598-604.
28. Vanatta K, Getzoff EA, Powers SW, Noll RB, Gerhardt CA, Hershey AD. Multiple perspectives on the psychological functioning of children with and without migraine. *Headache* 2008;48:994-1004.
29. Moutran AR, Villa TR, Diaz LA, Noffs MH, Pinto MM, Gabbai AA, et al. Migraine and cognition in children: a controlled study. *Ary Neuropsychiatr* 2011;69:192-195.
30. Mulder EJ, Linsen WH, Paschier J, Orlebeke JF, de Geus EJ. Interictal and postictal cognitive changes in migraine. *Cephalalgia* 1999;19:557-565; discussion 541.
31. Clemens B, Bánk J, Piros P, Bessenyei M, Veto S, Tóth M, et al. Threadditional localization of abnormal EEG activity in migraine: a low resolution electromagnetic tomography (LORETA) study of migraine patients in the pain-free interval. *Brain Topogr* 2008;21:36-42.
32. Petrovic P, Petersson KM, Ghatan PH, Stone-Elander S, Ingvar M. Distraction modulates connectivity of the cingulo-frontal cortex and postictal cognitive changes in migraine. *Cephalalgia* 2008;29:204-213.
33. Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, et al. Correlation between abnormal brain excitability and emotional symptomatology in paediatric migraine. *Cephalalgia* 2009;29:662-669.
34. Brighina F, Piazza A, Vitello G, Aloisio A, Palermo A, Daniele O, et al. Functional imaging, EEG spectral power, and self-rated headache pain. *Clin Neurophysiol* 2011;122:e2.
35. Faber PL, Tei S, Chen C, Hsiao P, Lehmann D. Three-dimensional localization of abnormal EEG activity in migraine: a pilot study. *J Neurol Sci* 2004;227:67-71.
36. Zakznis KK, Mraz R, Graham SJ. An IMRI study of the Trail Making Test. *Neuropsychologia* 2005;43:1878-1886.
37. Faber PL, Tei S, Chen C, Hsiao P, Lehrmann D. 3 Brain LORETA functional imaging, EEG spectral power, and self-rated headache pain. *Clin Neurophysiol* 2011;122:e2.
38. Parisi P, Verrotti A, Paolino MC, Urbano A, Bernabucci M, Castaldo R, et al. Headache and cognitive profile in children: a cross-sectional controlled study. *J Headache Pain* 2010;11:45-51.
39. Eccleston C, Cronin G. Pain demands attention: a cognitive-affective model of the interruptive function of pain. *Psychol Bull* 1999;125:356-366.
40. Houlihan ME, McGrath PJ, Connolly JF, Stroink G, Allen Finley G, Dick B, et al. Assessing the effect of pain on demands for attentional resources using ERPs. *Int J Psychophysiol* 2004;51:181-187.
41. Seminowicz DA, Davis KD. Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task. *J Neurophysiol* 2007;97:3651-3659.
42. Seidel S, Hartl T, Weber M, Matterey S, Paul A, Riederer F, et al. Quality of sleep, fatigue and daytime sleepiness in migraine - a controlled study. *Cephalalgia* 2009;29:662-669.
43. Kruit MC, Lanter Lj, Overbosch J, van Buchem MA, Ferrari MD. Iron accumulation in deep brain nuclei in migraine: a population-based magnetic resonance imaging study. *Cephalalgia* 2009;29:351-359.
44. Lipton RB, Bigal ME. Looking to the future: research designs for study of headache disease progression. *Headache* 2008;48:58-66.
45. Kim BK, Chu MK, Lee TG, Kim JM, Chang CS, Lee KS. Prevalence and impact of migraine and tension-type headache in Korea. *J Clin Neurol* 2012;8:204-211.
46. Bigal ME, Lipton RB. Migraine at all ages. *Curr Pain Headache Rep* 2006;10:207-213.
47. Stewart WF, Linet MS, Celentano DD, Van Natta M, Ziegler D. Age- and sex-specific incidence rates of migraine with and without visual aura. *Am J Epidemiol* 1991;134:1111-1120.
48. Valitieri M, Gali F, Tarantini S, Gracceva D, Pignata E, Milucci R, et al. Correlation between abnormal brain excitability and emotional symptomatology in paediatric migraine. *Cephalalgia* 2009;29:204-213.
49. Siniatchkin M, Kropp P, Gerber WD. What kind of habituation is impaired in migraine patients? *Cephalalgia* 2003;23:511-518.
50. Evers S, Quibeldey F, Grotemeyer KH, Suhr B, Husstedt IW. Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval. *Cephalalgia* 1999;19:485-491.
51. Evers S, Bauer B, Grotemeyer KH, Kurlemann G, Husstedt IW. Event-related potentials (P300) in primary headache in childhood and adolescence. *J Child Neurol* 1998;13:322-326.
52. Evers S, Bauer B, Suhr B, Husstedt IW, Grotemeyer KH. Cognitive processing in primary headache: a study on event-related potentials. *Neurology* 1997;48:108-113.
53. Demarquay G, Cadlin A, Bruadon F, Fischer C, Morlet D. Exacerbated attention orienting to auditory stimulation in migraine patients. *Clin Neurophysiol* 2011;122:1755-1763.
54. Zohse K, Hofmeister J, Flor H, Herrmann C. Altered pain processing in children with migraine: an evoked potential study. *Eur J Pain* 2008;12:1090-1101.
55. Chen W, Shen X, Liu X, Luo B, Liu Y, Yu R, et al. Passive paradigm single-tone elicited ERPs in tension-type headaches and migraine. *Cephalalgia* 2007;27:139-144.
56. Gerber WD, Stephani U, Kirsch E, Kropp P, Siniatchkin M. Slow cortical potentials in migraine families are associated with psychosocial factors. *J Psychosom Res* 2002;52:215-222.
57. Buodo G, Palomba D, Sarlo M, Naccarella C, Battistella PA. Auditory event-related potentials and reaction times in migraine children. *Cephalalgia* 2004;24:554-563.
58. Siniatchkin M, Kirsch E, Kropp P, Stephani U, Gerber WD. Slow cortical potentials in migraine families. *Cephalalgia* 2000;20:881-892.
59. Polich J, McIsaac HK. Comparison of auditory P300 habituation from active and passive conditions. *Int J Psychophysiol* 1994;17:25-34.