Studying Structural Properties and Fourier Transformation Infrared Spectrum of Sb Doped SnO₂ Powders Prepared by Solid State Reaction

Samia Haj Najeeb¹* Ahmad Khdro² Talal Khalas³
1.MSc Student, Department of Physics, Faculty of Science, Tishreen University, Syria
2.Professor, Department of Physics, Faculty of Science, Tishreen University, Syria
3.Assistant Professor, Department of Physics, Faculty of Science, Tishreen University, Syria

Abstract

Sb doped tin oxide transparent conducting powder were prepared by solid state reaction method. Structural properties of the samples were investigated as a function of various Sb-doping levels (x=0.00-0.01-0.02-0.04-0.06). The results of x-ray diffraction have shown that the samples are polycrystalline structure in tetragonal phase with preferential orientations along the (110) and (101) planes. The relative intensities, distance between crystalline planes (d), crystallite size (D), dislocation density (d) and lattice parameters (a), (c) were determined. Infrared Spectroscopy have been studied by Infrared Spectrometer Device.

Keywords: powder, Antimony doped Tin Oxide, solid state reaction, Structural properties, Infrared Spectroscopy.

DOI: 10.7176/CMR/11-10-03
Publication date: December 31st 2019

1. Introduction

Nano-crystals of semiconductor metal oxides have attracted a great interest due to their intriguing properties, which are different from those of their corresponding bulk state [1]. Tin dioxide SnO₂ has achieved special attention among the metal oxides, because of its wide band gap (3.6eV), optical transparency and high carrier density, thermal and chemical stabilities [2, 3].

Because of its unique electronic, optical, electrochemical and catalytical properties, it has been widely used in flat panel displays, transparent conducting electrodes, solar cells, gas sensors and rechargeable Li – ion batteries, etc [4].

It crystallizes in the tetragonal rutile structure with space group P42/mnm. the lattice parameters a = b = 4.738 Å and c = 3.187 Å [5].

Its unit cell contains two tin and four oxygen atoms as is shown in figure (1). The tin atom is at the center of six oxygen atoms placed at the corners of a regular octahedron. Every oxygen atom is surrounded by three tin atoms at the corners of an equilateral triangle [6].

Fig (1) : Unit cell of the crystal structure of SnO₂. Large circles indicate oxygen atoms and the small circles indicate tin atoms.

The aim of this paper is preparing a doped metal oxide Sn₁₋ₓSbₓO₂ and characterizing by X-ray and FTIR to study the structural properties.

2. Experimental Method

Sn₁₋ₓSbₓO₂ powders (x = 0.00 - 0.01 - 0.02 - 0.04 - 0.06) were prepared by a solid state reaction method. were accurately weighed in required proportions and were mixed and ground thoroughly using an Agate mortar and pestle to convert to very fine powders.

The grinding of the mixtures was carried out for 3 hours for all the powder samples. The ground powder
samples were firing at 700°C for 3 hours.

3. Results and discussions

3.1 Structural properties

The X-ray diffraction patterns of undoped and Sb doped SnO₂ powders prepared with various Sb concentration 0 wt%, 1 wt%, 2 wt%, 4 wt% and 6 wt% are shown in Figure (2). The XRD reveals that all samples are having polycrystalline nature with tetragonal structure and peaks correspond to (110), (101), (200), (111), (210), (211), (220), (002), (310), (112), (301), (202) and (321) planes. The preferred orientation is (110) for pure and Sb doped SnO₂ powders at 1 and 4 wt% doping, but for 2 and 6 wt% doping the preferred orientation change to (101) plane.

Fig (2): XRD results of pure SnO₂, 1 wt% Sb doped SnO₂, 2 wt% S doped SnO₂, 4 wt% Sb doped SnO₂, 6 wt% Sb doped SnO₂.
Table (1) shows results of structural values of undoped SnO$_2$ sample.

samples	2θ (deg)	hkl	d (Å)	Rel. int. [%]	β (deg)	D (nm)	Average D (nm)	δ 10^{15} line/m2	Lattice const.
SnO$_2$ pure	26.62	(110)	3.348	100	1.392	6.128			
	33.99	(101)	2.637	87	1.391	6.240			
	37.95	(200)	2.370	25	0.886	9.908			
	38.96	(111)	2.311	7	0.440	20.012			
	42.62	(210)	2.121	4	0.510	17.471			
	51.87	(211)	1.762	58	1.265	7.297			
	54.75	(220)	1.676	58	0.506	18.473			
	57.87	(002)	1.593	11	1.012	9.372			
	61.99	(310)	1.497	14	1.341	7.221			
	64.84	(112)	1.437	17	1.898	5.180			
	65.96	(301)	1.416	15	0.632	15.656			
	71.25	(202)	1.323	7	1.645	6.207			
	78.30	(321)	1.221	10	0.424	25.240			

Table (2) shows results of structural values of Sb doped SnO$_2$ samples (x=0.01-0.02).

samples	2θ (deg)	hkl	d (Å)	Rel. int. [%]	β (deg)	D (nm)	Average D (nm)	δ 10^{15} line/m2	Lattice const.
SnO$_2$:Sb (1 wt%)	26.62	(110)	3.345	100	1.15	7.414			
	33.89	(101)	2.642	72	1.45	5.982			
	38.15	(111)	2.357	15	2.01	4.367			
	42.51	(210)	2.124	4	0.82	10.857			
	51.98	(211)	1.757	55	1.49	6.195			
	58.32	(002)	1.580	8	1.85	5.135			
	62.23	(310)	1.490	11	1.79	5.414			
	65.36	(301)	1.426	13	2.42	4.073			
	71.86	(202)	1.312	6	1.95	5.254			
	78.25	(321)	1.220	10	2.13	5.021			

Table (2) shows results of structural values of Sb doped SnO$_2$ samples (x=0.01-0.02).

samples	2θ (deg)	hkl	d (Å)	Rel. int. [%]	β (deg)	D (nm)	Average D (nm)	δ 10^{15} line/m2	Lattice const.
SnO$_2$:Sb (2 wt%)	26.85	(110)	3.317	80	1.85	4.611			
	33.94	(101)	2.639	100	1.15	7.543			
	37.96	(200)	2.368	12	1.56	5.624			
	43.25	(210)	2.090	6	2.12	4.210			
	52.16	(211)	1.752	68	1.25	7.390			
	58.2	(002)	1.583	9	1.46	6.504			
	61.95	(310)	1.496	7	1.77	5.467			
	65.78	(301)	1.418	13	1.95	5.067			
	71.35	(202)	1.320	4	2.22	4.600			
	78.99	(321)	1.211	9	1.68	6.400			
Table (3) shows results of structural values of Sb doped SnO\textsubscript{2} samples (x=0.04-0.06).

samples	2θ (deg)	hkl	d (Å)	Rel. int. [%]	β (deg)	D (nm)	Average D (nm)	δ 10\(^{18}\) line/m\(^2\)	Lattice const.
SnO\textsubscript{2}:Sb (4 wt%)									
	26.63	(110)	3.344	100	1.92	4.440	6.532	50.705	4.730 3.129
	34.12	(101)	2.625	80	1.83	4.742		44.456	
	38.1	(111)	2.360	10	1.52	5.775		29.983	
	42.22	(210)	2.138	5	1.35	6.588		23.038	
	52.27	(211)	1.748	69	1.75	5.281		35.852	
	58.98	(002)	1.564	7	0.98	9.726		10.569	
	61.85	(310)	1.498	9	1.15	8.410		14.136	
	65.34	(301)	1.427	15	2.1	4.693		45.390	
	71.52	(202)	1.318	4	1.12	9.129		11.997	
SnO\textsubscript{2}:Sb (6 wt%)									
	26.25	(110)	3.392	94	1.52	5.605	5.186	31.828	4.797 3.150
	33.88	(101)	2.643	100	1.75	4.956		40.706	
	38.02	(111)	2.364	15	1.86	4.718		44.919	
	52.21	(211)	1.750	48	1.96	4.714		44.995	
	58.56	(002)	1.575	7	1.62	5.872		29.001	
	61.84	(310)	1.499	4	2.15	4.498		49.414	
	65.15	(301)	1.430	16	1.65	5.967		28.081	
	70.85	(202)	1.328	6	1.82	5.594		31.948	
	78.15	(321)	1.222	10	2.25	4.750		44.316	

The relative intensities of undoped and Sb doped SnO\textsubscript{2} powders are calculated. The distance between crystalline planes values (d) are calculated by using following relation:

\[2d \sin \theta = n \lambda \] (1)

Where \(d \) is distance between crystalline planes (Å), \(\theta \) is the Bragg angle, \(\lambda \) is the wavelength of X-rays (\(\lambda = 1.54056 \) Å).

The crystallite size is calculated from Scherrer’s equation [7]:

\[D = \frac{0.0942}{\beta \cos \theta} \] (2)

Where, D is the crystallite size, \(\lambda \) is the wavelength of X-ray, \(\beta \) is full width at half maximum (FWHM) intensity in radians and \(\theta \) is Bragg’s angle.

The dislocation density is defined as the length of dislocation lines per unit volume and calculated by following equation [8]:

\[\delta = \frac{1}{\beta \cos \theta} \] (3)

The lattice constants \(a \) and \(c \) for tetragonal phase structure are determined by the relation [9]:

\[\frac{1}{\alpha^2} = \frac{n^2+k^2}{a^2} + \frac{l^2}{c^2} \] (4)

Where \(d \) and (hkl) are distance between crystalline planes and Miller indices, respectively.

The calculated lattice constants \(a, c \) values are given in table 1,2,3. It was seen that \(a, c \) and \(c/a \) match well with JCPDS data (\(a=b= 4.737 \) Å and \(c= 3.185 \) Å).

The change in peak intensities is basically due to the replacement of Sn4+ ions with Sb5+ ions in the lattice of the SnO\textsubscript{2}.

Figure (3) represents variation of the average grain size with different concentrations of Sb doped SnO\textsubscript{2} powders.
We observed that the crystallite size decreases with increasing of the antimony ion content. This is due to the fact that the Sb^{5+} (0.62 Å) radius is smaller than the Sn^{4+} (0.69 Å), and the replacement process which causes shrinkage of the lattice [10, 11].

4. FT/IR analysis:

![FTIR analysis of pure and Sb doped SnO₂ powder](image)

FTIR is a technique used to obtain information regarding chemical bonding and functional groups in a material. In the transmission mode, it is quite useful to predict the presence of certain functional groups which are adsorbed at certain frequencies; thus, it reveals the structure of the material. The band positions and numbers of absorption peaks depend on the crystalline structure, chemical composition, and also on morphology [12]. To investigate chemical groups on the surface of sintered samples, an FTIR analysis was carried out at room temperature over the wave number range of 400–4000 cm⁻¹. There are several bands appearing in the wave number range 400–4000 cm⁻¹. The broad absorption band at 3423 cm⁻¹, the peaks at 2977 cm⁻¹, and 1630 cm⁻¹ are assigned to the vibration of hydroxyl group due to the absorbed/adsorbed water and show a stretching vibrational mode of O–H group [13]. Absorption peaks observed around 2380 cm⁻¹ belong to the stretching vibrations of C–H bonds.
that could be due to the adsorption and interaction of atmospheric carbon dioxide with water during the firing process [14]. The main IR features of SnO$_2$ appear at 468 and 609 cm$^{-1}$, which assign to O–Sn–O and Sn–O stretching vibration, respectively [15]. The changing in the shapes and positions of absorption peaks indicates to presence of stretching modes, which are, give an indication of successful doping Sb to tin oxide nanoparticles [16].

5. Conclusion
This paper presents a study of structural properties of Sb doped SnO$_2$ powders prepared by solid state reaction method. X-ray diffraction patterns confirm that the samples have polycrystalline nature with tetragonal structure and show presence (110) (101) (111) (210) (211) (220) (002) (310) (301) (202) and (321) planes in pure tin oxide sample. The SnO$_2$ have preferred orientation along (110) for all samples, but for (0.02, 0.06) doping levels the preferred orientation change to (101) plane. The average of crystallite size is within the range [11.877- 5.186 nm] for all samples. It was defined that the lattice constants a, c for all the samples, were almost identical with JCPDS values, and the ratio c/a remained constant with increasing Sb dopant concentration. FTIR analysis revealed that the Sb doping manifests itself by a shift in Sn–O absorption peaks positions.

REFERENCE:
[1] - Ashock.D.Bhagwat , Sachin.S.Sawant , Balaprasad G.Ankamwar , Chandrashekhar M.Mahajan . (2015) ‘’ Synthesis of Nanostructured Tin Oxide SnO$_2$ powders and Thin films by Sol-gel method ‘’, J.Nano and Electronic, Vol.7 , No.4, 04037 , (4pp).
[2] - K. Subramanyama, N.Sreelakha a, G.Murali b, D.AmaranathaReddy c, R.P.Vijayalakshmi. (2014) “Structural, optical and magnetic properties of Cr doped SnO$_2$ nanoparticles stabilized with polyethylene glycol”, PhysicaB454 , 86–92.
[3] - S.A.Wolf,D.D.Awschalom,R.A.Buhrman,J.M.Daughton,S.VonMolnar, M.L. Roukes, A.Y. Chichkelanova, D.M.Treger. (2001) “Spintronics: A Spin- Based Electronics Vision for the Future” Science,294, 1488–1495 .
[4] - C.Wang , J.Li , Y.Zhang , Y.Wei , J.Liu . (2010) , J.Alloys Compd.493 , 64-69 .
[5] - G.McCarthy , J.Wetton , Powder Diffraction 4 , (1989) 156 .
[6] - Jarzebski Z. & Marton J. (1976) “Physical Properties of SnO$_2$ Materials”, Journal of the Electrochemical Society, 199-205.
[7] - Mariappan R., Ponnsuwamy V. & Suresh P. (2012) “Effect Of Doping Concentration On The Structural And Optical Properties Of Pure And Tin Doped Zinc Oxide Thin Films By Nebulizer Spray Pyrolysis (NSP) Technique”, Superlattices and Microstructures, 52, 500-513.
[8] - Turgut G., Keskenler E. F., Aydin S., Sonmez E., Dogan B. & Ertugrul M. (2013), “Effect Of Nb Doping On Structural, Electrical And Optical Properties Of Spray Deposited SnO$_2$ Thin Films”, Superlattices and Microstructures, 56, 53-64.
[9] - Gurakar S., Serin T & Serin N. (2014) “Electrical And Microstructural Properties Of (Cu, Al, In)-Doped SnO$_2$ Powders Deposited By Spray Pyrolysis”, Advanced Materials Letters, 5(6), 309-314.
[10] - N.B.Ibrahim,M.H.Abdil.H.AbdullahH.Baqiah. (2013) ” Structural and optical characterisation of undoped and chromium doped tin oxide prepared by sol–gel method “, App. Surf. Sci. 271, 260-264.
[11] - L. Zhang, S. Ge, Y. ZuO, J. Wang, J. Qi, (2010) “Ferromagnetic properties in undoped and Cr-doped SnO$_2$ nanowires”, Scripta Materialia 63, 953–956.
[12] - Ashokkumar,M.et al, (2014), ”ZnO$_{0.96},Cu_{0.04}Fe$_{2}O$_3$ alloys – Optical and structural studies”, Superlattices and Microstructures, 69, 53-64.
[13] - Faisal.M, et al, (2015), "SnO$_2$ doped ZnO nanostructures for highly efficient photocatalyst", Journal of Molecular catalysis A: chemical, 39, 19-25.
[14] - Gnanam.S, Rajendran.V, (2010), "Preparation of Cd-doped SnO$_2$ nanoparticles by sol–gel route and their optical properties", Journal of Sol-Gel Science and Technology, 56, 128–133.
[15] – Kuantama E, Han DW, Sung YM, Song JE, Han CH. Thin Solid Films. (2009); 517:4211-4.
[16] - S.Blessi, M. Maria Lumina Sonia, S.Vijayalakshmi and S.Pauline. (2014) ” Preparation and characterization of SnO$_2$ nanoparticles by hydrothermal method", Int. J. of ChemTech Res , 6(3), 2153-2155.