FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 and RESPIRATORY BURST OXIDASE HOMOLOG D and F independently modulate abscisic acid signaling

Hui Xue and Georg J Seifert*
Department of Applied Genetics and Cell Biology; University of Natural Resources and Life Science; Vienna, Austria

We previously suggested that *At-FLA4* and ABA signaling act in synergy. Reactive oxygen species generated from the NADPH oxidases *At-RBOHD* and *At-RBOHF* play an important role in cell wall integrity control and ABA signaling and here we investigate their role for the *At-FLA4* pathway. We find that in the *At-fla4 At-rbohD At-rbohF* triple mutant the root phenotype of *At-FLA4* is enhanced. Moreover, the abnormally high level of reactive oxygen species in *At-fla4* mutant does not depend on *At-RBOHD* and -F. Likewise, suppression of the *At-FLA4* phenotype by ABA does not depend on the 2 oxidases. Consistent with their lack of effect on ROS level in *At-fla4*, transcript level of *AtRBOHD* and -F is reduced in the *At-fla4* mutant background. Taken together, our findings suggest that neither *At-RBOHD* nor *At-RBOHF* is involved in the synergism between ABA and *At-FLA4*. Consistently, the oxidases and *At-FLA4* act independently of each other in ROS control.

Fasciclin-like arabinogalactan-proteins (FLAs) form a sub-group of arabinogalactan proteins (AGP), which were previously implicated in cell wall polymer biosynthesis, cell wall remodeling, and signaling. The *At-FLA4* locus of *A. thaliana* plays a non-redundant role for root growth and salt tolerance. The root of *At-fla4* shows a short and fat phenotype, which is caused by abnormal expansion of epidermal, cortical, and endodermal cells. Externally applied ABA suppresses the *At-fla4* phenotype, both its salt-oversensitivity and its root elongation defect under salt-free conditions. However, the mechanistic role of *At-FLA4* in ABA response is unclear.

Arabidopsis contains 10 RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) genes and RBOH-dependent Reactive oxygen species (ROS) have now been established as an important second messenger that regulates expression of hundreds of genes in response to stress. Reactive oxygen species generated by the partially redundant RBOH isoforms D and F play an important role in abscisic acid (ABA) signaling in stomatal guard cells and roots. ROS derived from *At-RBOHF* are involved in the regulation of osmosensitive metabolic changes and both *At-RBOHD* and *At-RBOHF* play crucial roles in modulating ABA-inhibited root growth via production of ROS. On the other hand, *At-RBOHD* and *At-RBOHF* are required for lignin deposition caused by cellulose biosynthesis inhibition in Arabidopsis roots implicating these loci with cell wall integrity control.

Because of the involvement of *At-RBOHD* and -F in ABA signaling, salt tolerance and cell wall integrity control and the proposed role of *At-FLA4* as a link between cell walls and ABA signaling we tested the possibility that *At-FLA4* and *At-RBOHD* and -F might act in the same genetic pathway by isolating *At-fla4 At-rbohD At-rbohF* triple mutants. The *At-rbohD* *At-rbohF* and the *At-fla4 At-rbohD At-rbohF* mutant combinations are hitherto referred to as double and triple mutant, respectively.

On NaCl-free medium (MS0) the *At-fla4* mutant and the double mutant show

ADDENDUM

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

© Hui Xue and Georg J Seifert
*Correspondence to: Georg J Seifert; Email: georg.seifert@boku.ac.at
Submitted: 09/11/2014
Revised: 09/30/2014
Accepted: 09/30/2014
http://dx.doi.org/10.4161/15592324.2014.989064

Keywords: ABA, *At-FLA4*, *At-RBOHD*, *At-rbohF*, ROS, qRT-PCR
Abbreviations: ROS, reactive oxygen species; NADPH, nicotinamide adenine dinucleotide phosphate-oxidase; RBOH, respiratory burst oxidase homolog; FLAs, fasciclin-like arabinogalactan-proteins; AGP, arabinogalactan protein; ABA, abscisic acid.

Addendum to: Seifert GJ, Xue H, Acet T. The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signaling to control root growth. Annals of botany 2014.
a significant reduction of root length (Fig. 1A), as previously reported.\(^3,7\) Moreover, the triple mutant shows shorter root length compared to the \(\text{At-fla}4\) mutant and the double mutant (Fig. 1A). Transfer to and growth on 100 mM NaCl for 48 hrs leads to a moderate suppression of root growth in the wild type and the double mutant. The \(\text{At-fla}4\) single mutant and the triple mutant are both dramatically shorter \((P < 0.001)\) than the wild type (Fig. 1A) and show root swelling to a comparable degree (Fig. 1B). The data indicate an additive effect of \(\text{At-FLA}4\) and the 2 oxidases on root growth.

As previously reported, the \(\text{At-fla}4\) phenotype is suppressed by 5 \(\mu M\) ABA both on salt free medium and on 100 mM NaCl (Fig. 1).\(^3\) We also confirmed the recent observation that the double mutant is shorter and less responsive to ABA than wild type (Fig. 1A).\(^7\) However, triple mutant roots are fully responsive to 5 \(\mu M\) ABA with respect to the suppression of the \(\text{At-fla}4\) mutant phenotype (Fig. 1). Taken together, this means that the ABA effect on \(\text{At-fla}4\) does not depend on the function of \(\text{At-RBOHD}\) and \(\text{At-RBOHF}\).

Next, we analyzed salt stress-induced ROS in roots with 3, 3’-diaminobenzidine tetrahydrochloride (DAB).\(^12,13\) Salt-stimulated ROS production show a biphasic profile with an elevation after 1 h NaCl treatment followed by a drop after 5 hrs and a second maximum at 24 hrs (Fig. 2A). Surprisingly, the double mutant shows the same profile and no significant differences to wild type. By contrast, in \(\text{At-fla}4\) and triple mutant roots the initial control level and final level of ROS are significantly \((P < 0.001)\) higher compared to the wild type and the double mutant (Fig. 2B). This
experiment suggests that loss of \textit{At-FLA4} function triggers a signaling events leading to increased ROS production. However, the effect of \textit{At-RBOHD} and \textit{-F} in this process might either be negligible or too subtle to detect with DAB staining.

It was previously shown that NaCl medium leads to increased transcript levels of \textit{At-RBOHD} and \textit{-F}. Consistently, transfer to and growth on 100 mM NaCl for 40 min leads to an increase of \textit{At-RBOHF} mRNA level in both wild type and mutant (Fig. 3). However, despite the increase in DAB staining, RNA levels of both \textit{At-RBOHD} and \textit{-F} are significantly ($P < 0.05$) lower in \textit{At-fla4} compared to wild type.

In this study, all the evidence suggests that the interaction between \textit{At-fla4} and ABA signaling is independent of \textit{At-RBOHD} and \textit{At-RBOHF}. ABA suppresses \textit{At-fla4} and the triple mutant, both the salt-oversensitive phenotype and its root elongation phenotype, under salt-free conditions. ROS generated by \textit{At-RBOHD} and \textit{At-RBOHF} are not required for the \textit{At-fla4} phenotype. The unchanged level of ROS in the double mutant compared to the wild type and in the triple mutant compared to the \textit{At-fla4} single mutants in the absence and presence of NaCl, indicates that other cellular mechanism may contribute to ROS generation in Arabidopsis roots. Our results do not exclude the possibility that other NADPH oxidase isoforms may be involved in the \textit{At-FLA4} pathway. Apart from elevated ROS levels, the increase of DAB staining in \textit{At-fla4} might also be due to altered peroxidase...
levels in mutant roots. The mechanism behind ABA suppressing At-fla4 phenotype is presently unknown, however our data indicate that this process acts independently of At-RBOHD and -F.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by the Austrian Science Fund (FWF - grant numbers P21782-B12, I1182-B22). H.X. was supported by the China Scholarship Council.

References

1. Johnson KL, Jones BJ, Bacic A, Schulz CJ. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 2003; 133:1911-25; PMID:14645732; http://dx.doi.org/10.1104/pp.103.031237
2. Seifert GJ, Roberts K. The biology of arabinogalactan rich repeat receptor kinases mediate signaling, linking auxin response of roots in Arabidopsis. Plant Physiol 2011; 156:1364-74; PMID:21546454; http://dx.doi.org/10.1104/pp.110.175737
3. Seifert GJ, Xue H, Aert T. The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN-PROTEIN 4 gene acts synergistically with abscisic acid signaling to control root growth. Ann Bot 2014; PMID:24603604
4. Xu SL, Rahman A, Baskin TI, Kieber JJ. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 2008; 20:3065-79; PMID:19017745; http://dx.doi.org/10.1105/tpc.108.063554
5. Shi H, Kim Y, Guo Y, Stevenon B, Zhu JK. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 2003; 15:19-32; PMID:12509519; http://dx.doi.org/10.1105/tpc.007872
6. Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, Wang JG, Kombikri I, McCormick S, Zhang XS, et al. Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J 2013; 74:496-8; PMID:23384085; http://dx.doi.org/10.1111/pj.12139
7. Kwasik JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dang JL, Bloom RE, Bodde S, Jones JD, Schroeder JJ. NADPH oxidase AtRbohD and AtRbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 2003; 22:2623-33; PMID:12773779; http://dx.doi.org/10.1093/emboj/cdf277
8. Woernert A, Bost SE, Chang I, McKenna JF, Nunes-Nesi A, Kjaer L, O’Donnelly K, Fernie AR, Woschokki R, Barter MC, et al. Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. Plant Physiol 2012; 159:105-17; PMID:22422940; http://dx.doi.org/10.1104/pp.112.195918
9. Jiao Y, Sun L, Song Y, Wang L, Liu L, Zhang L, Liu B, Li N, Miao C, Hao F. AtRbohD and AtRbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. J Exp Bot 2013; 64:4183-92; PMID:23963673; http://dx.doi.org/10.1093/jxb/eru228
10. Hamann T, Bennett M, Mansfield J, Somerville C. Identiﬁcation of cell-wall- and osmosensitive regulator of plant responses, Plant J 2009; 57:1015-26; PMID:19306384; http://dx.doi.org/10.1111/j.1365-313X.2008.03734.x
11. Denness L, McKenna JF, Segonzac C, Woernert A, Madhou P, Bennett M, Mansfield J, Denoux C, Hayes T, Gerrish C, Davies DR, et al. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant Physiol 2013; 156:1364-74; PMID:23546454; http://dx.doi.org/10.1104/pp.113.217573
12. Dai A, Cheng Z, O’Brien J, Mammarrella N, Khan S, Ausubel FM, Bolwell GP. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 2012; 24:275-87; PMID:22247351; http://dx.doi.org/10.1105/tpc.111.093039
13. Bindschneider LV, Dewdney J, Blew KA, Stone JM, Asai T, Plotnikov J, Denouc C, Hayes T, Gerrish C, Davies DR, et al. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 2006; 47:851-63; PMID:16889645; http://dx.doi.org/10.1111/j.1365-313X.2006.02837.x
14. Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F. NADPH-oxidase AtRbohD and AtRbohF function in ROS-dependent regulation of Na(+)/K(+)-homostasis in Arabidopsis under salt stress. J Exp Bot 2012; 63:305-17; PMID:21984648; http://dx.doi.org/10.1093/jxb/ert280
15. Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci 2012; 17:9-15; PMID:22087416; http://dx.doi.org/10.1016/j.tplants.2011.10.001