Note on the Sum of Powers of Signless Laplacian Eigenvalues of Graphs

Ş. Burcu Bozkurt Altındağ* and Durmuş Bozkurt

Department of Mathematics, Science Faculty,
Selçuk University, 42075, Campus, Konya, Turkey
srf_burcu_bozkurt@hotmail.com, dbozkurt@selcuk.edu.tr

November 19, 2014

Abstract

For a simple graph G and a real number α ($\alpha \neq 0, 1$) the graph invariant $s_\alpha (G)$ is equal to the sum of powers of signless Laplacian eigenvalues of G. In this note, we present some new bounds on $s_\alpha (G)$. As a result of these bounds, we also give some results on incidence energy.

1 Introduction

Let G be a simple graph with n vertices and m edges. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ be the set of vertices of G. For $v_i \in V(G)$, the degree of the vertex v_i, denoted by d_i, is equal to the number of vertices adjacent to v_i. Throughout this paper, the maximum, the second maximum and the minimum vertex degrees of G will be denoted by Δ_1, Δ_2 and δ, respectively.

Let $A(G)$ be the $(0,1)$-adjacency matrix of a graph G. The eigenvalues of G are the eigenvalues of $A(G)$ [6] and denoted by $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then the energy of a graph G is defined by [17]

$$E = E(G) = \sum_{i=1}^{n} |\lambda_i| .$$

There is an extensive literature on this topic. For more details see [18, 28] and the references cited therein.

The concept of graph energy was extended to energy of any matrix in the following manner [36]. Recall that the singular values of any (real) matrix M are equal to the square roots of the eigenvalues of MM^T, where M^T is the transpose of M. Then
the energy of the matrix M is defined as the sum of its singular values. Clearly, $E(A(G)) = E(G)$.

Let $D(G)$ be the diagonal matrix of vertex degrees of G. Then the Laplacian matrix of G is $L(G) = D(G) - A(G)$ and the signless Laplacian matrix of G is $Q(G) = D(G) + A(G)$. As well known in spectral graph theory, both $L(G)$ and $Q(G)$ are real symmetric and positive semidefinite matrices, so their eigenvalues are non-negative real numbers. Let $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0$ be the eigenvalues of $L(G)$ and let $q_1 \geq q_2 \geq \cdots \geq q_n$ be the eigenvalues of $Q(G)$. These eigenvalues are called Laplacian and signless Laplacian eigenvalues of G, respectively. For details on Laplacian and signless Laplacian eigenvalues, see [7–10, 33, 34].

The incidence matrix $I(G)$ of a graph G with the vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G) = \{e_1, e_2, \ldots, e_m\}$ is the matrix whose (i, j)-entry is 1 if the vertex v_i is incident with the edge e_j, and 0 otherwise. In [24], Jooyandeh et al. motivated the idea in [36] and defined the incidence energy of G, denoted by $IE(G)$, as the sum of singular values of $I(G)$. Since $Q(G) = I(G)I(G)^T$, it was later proved that [20]

$$IE = IE(G) = \sum_{i=1}^{n} \sqrt{q_i}.$$

For the basic properties of IE involving also its lower and upper bounds, see [3,4,13,20,21,24,32,38,42,43].

In [30] Liu and Lu introduced a new graph invariant based on Laplacian eigenvalues

$$LEL = LEL(G) = \sum_{i=1}^{n-1} \sqrt{\mu_i}$$

and called it Laplacian energy like invariant. At first it was considered that [30] LEL shares similar properties with Laplacian energy [22]. Then it was shown that it is much more similar to the ordinary graph energy [23]. For survey and details on LEL, see [29].

For a graph G with n vertices and a real number α, to avoid trivialities it may be required that $\alpha \neq 0, 1$, the sum of the αth powers of the non-zero Laplacian eigenvalues is defined as [41]

$$\sigma_\alpha = \sigma_\alpha(G) = \sum_{i=1}^{n-1} \mu_i^\alpha.$$

The cases $\alpha = 0$ and $\alpha = 1$ are trivial as $\sigma_0 = n - 1$ and $\sigma_1 = 2m$, where m is the number of edges of G. Note that $\sigma_{1/2}$ is equal to LEL. It is worth noting that $n\sigma_{-1}$ is also equal to the Kirchhoff index of G (one can refer to the papers [2,19,37] for its definition and extensive applications in the theory of electric circuits, probabilistic theory and chemistry). Recently, various properties and the estimates of σ_α have been well studied in the literature. For details, see [14,31,39,41,43].

Motivating the definitions of IE, LEL and σ_α, Akbari et al. [1] introduced the sum of the αth powers of the signless Laplacian eigenvalues of G as

$$s_\alpha = s_\alpha(G) = \sum_{i=1}^{n} q_i^\alpha.$$
and they also gave some relations between σ_α and s_α. In this sum, the cases $\alpha = 0$ and $\alpha = 1$ are trivial as $s_0 = n$ and $s_1 = 2m$. Note that $s_{1/2}$ is equal to the incidence energy IE. Note further that Laplacian eigenvalues and signless Laplacian eigenvalues of bipartite graphs coincide \[7\] [33, 34]. Therefore, for bipartite graphs σ_α is equal to s_α [3] and LEL is equal to IE [20]. Recently some properties and the lower and upper bounds of s_α have been established in [1, 3, 27, 32].

In this paper, we obtain some new bounds on s_α of bipartite graphs which improve the some bounds in [14]. In addition to this, we extend these bounds to non-bipartite graphs. As a result of these bounds, we also present some results on incidence energy.

2 Lemmas

Let $t = t(G)$ denotes the number of spanning trees of G. Let \overline{G} be the complement of G and let $G_1 \times G_2$ be the Cartesian product of the graphs G_1 and G_2 [6]. Now, we give two auxiliary quantities for a graph G as

$$t_1 = t_1(G) = \frac{2t(G \times K_2)}{t(G)} \quad \text{and} \quad T = T(G) = \frac{1}{2} \left[\Delta_1 + \delta + \sqrt{(\Delta_1 - \delta)^2 + 4\Delta_1} \right]$$

where Δ_1 and δ are the maximum and the minimum vertex degrees of G, respectively.

Lemma 2.1. \[25\] Let G be a graph with n vertices and m edges. Then

$$\sum_{i=1}^{n} d_i^2 \leq m \left(\frac{2m}{n-1} + n - 2 \right)$$

Moreover, if G is connected, then the equality holds in (2) if and only if G is either a star $K_{1,n-1}$ or a complete graph K_n.

Lemma 2.2. \[7, 33, 34\] The spectra of $L(G)$ and $Q(G)$ coincide if and only if the graph G is bipartite.

Lemma 2.3. \[9\] If G is a connected bipartite graph of order n, then $\prod_{i=1}^{n-1} q_i = \prod_{i=1}^{n-1} \mu_i = nt(G)$. If G is a connected non-bipartite graph of order n, then $\prod_{i=1}^{n} q_i = t_1(G)$.

Lemma 2.4. \[5, 33\] Let G be a connected graph with $n \geq 3$ vertices and maximum vertex degree Δ_1. Then

$$q_1 \geq T \geq \Delta_1 + 1$$

with either equalities if and only if G is a star graph $K_{1,n-1}$.

Lemma 2.5. \[11\] Let G be a graph with second maximum vertex degree Δ_2. Then

$$q_2 \geq \Delta_2 - 1.$$
Lemma 2.6. [11] Let G be a connected graph with n vertices and minimum vertex degree δ. Then
\[q_n < \delta. \]

Lemma 2.7. [8] Let G be a connected graph with diameter $d(G)$. If G has exactly k distinct signless Laplacian eigenvalues, then $d(G) + 1 \leq k$.

Lemma 2.8. [20] Let G be a connected graph with $n \geq 3$ vertices and second maximum vertex degree Δ_2. Then
\[\mu_2 \geq \Delta_2 \]
with equality if G is a complete bipartite graph $K_{p,q}$ or a tree with degree sequence $\pi(T_n) = (n/2, n/2, 1, 1, \ldots, 1)$, where $n \geq 4$ is even.

Lemma 2.9. [13] Let G be a graph with n vertices, different from K_n and let δ be the minimum vertex degree of G. Then
\[\mu_{n-1} \leq \delta \]

Lemma 2.10. [12, 41] Let G be a simple graph with n vertices. Then $\mu_1 = \mu_2 = \cdots = \mu_{n-1}$ if and only if $G \cong K_n$ or $G \cong \overline{K}_n$.

Lemma 2.11. [16] For $a_1, a_2, \ldots, a_n \geq 0$ and $p_1, p_2, \ldots, p_n \geq 0$ such that $\sum_{i=1}^n p_i = 1$
\[\sum_{i=1}^n p_i a_i - \prod_{i=1}^n a_i^{p_i} \geq n \lambda \left(\frac{1}{n} \sum_{i=1}^n a_i - \prod_{i=1}^n a_i^{1/n} \right) \]
(3)
where $\lambda = \min \{p_1, p_2, \ldots, p_n\}$. Moreover, equality holds in (3) if and only if $a_1 = a_2 = \cdots = a_n$.

Lemma 2.12. [35] Let $a_i > 0$, $i = 1, 2, \ldots, p$ be the p real numbers. Then
\[p (A_p - G_p) \geq (p - 1) (A_{p-1} - G_{p-1}), \]
where
\[A_p = \frac{\sum_{i=1}^p a_i}{p} \text{ and } G_p = \left(\prod_{i=1}^p a_i \right)^{1/p}. \]

3 Main Results

In this section, we give the main results of the paper. First, we need the following lemma. For a graph G with signless Laplacian eigenvalues $q_1 \geq q_2 \geq \cdots \geq q_n$, let
\[M_k = M_k(G) = \sum_{i=1}^k q_i \]
for $1 \leq k \leq n - 1$. Then, we have:
Lemma 3.1. Let G be a connected graph with n vertices and m edges.

i) If G is bipartite, then for $1 \leq k \leq n-2$

$$M_k(G) \leq \frac{2mk + \sqrt{mk(n-k-1)(n^2-n-2m)}}{n-1}$$

with equality holding in (4) if and only if G is either a star $K_{1,n-1}$ or a complete graph K_n when $k = 1$ and G is a complete graph K_n when $2 \leq k \leq n-2$.

ii) If G is non-bipartite, then for $1 \leq k \leq n-1$

$$M_k(G) \leq \frac{2mk + \sqrt{mk(n-k)(n^2+2mn/n-1-4m)}}{n}$$

with equality holding in (5) if and only if $G \cong K_n$ when $k = 1$.

Proof. The inequality (4) was established in [40]. So we omit its proof here. Now we only prove the inequality (5). Let $M_k = M_k(G)$. It is clear that

$$q_1 + q_2 + \cdots + q_n = 2m$$

and

$$q_1^2 + q_2^2 + \cdots + q_n^2 = 2m + \sum_{i=1}^{n} d_i^2$$

Then, using Cauchy-Schwarz inequality, we get

$$(2m - M_k)^2 = (q_{k+1} + \cdots + q_n)^2$$

$$\leq (n-k)(q_{k+1}^2 + \cdots + q_n^2)$$

$$= (n-k) \left(2m + \sum_{i=1}^{n} d_i^2 - (q_1^2 + \cdots + q_k^2) \right)$$

$$\leq (n-k) \left(2m + \sum_{i=1}^{n} d_i^2 - \frac{1}{k}M_k^2 \right).$$

Therefore

$$M_k \leq \left\{ 2mk + \left[k(n-k) \left(n \left(2m + \sum_{i=1}^{n} d_i^2 \right) - 4m^2 \right) \right]^{1/2} \right\} / n.$$ (6)

From the inequality (6) and Lemma 2.1, the inequality (5) holds. Now we suppose that the equality holds in (5). Then, by Cauchy-Schwarz inequality we have $q_1 = \cdots = q_k$ and $q_{k+1} = \cdots = q_n$. Since G is connected non-bipartite graph, by Lemma 2.1 and Lemma 2.7, we conclude that $G \cong K_n$ when $k = 1$. \hfill \Box

The following result can be found in [14].

Theorem 3.2. [14] Let G be a bipartite graph with $n \geq 2$ vertices, m edges and positive integer k ($1 \leq k \leq n-2$).

(i) If $0 < \alpha < 1$, then

$$s_\alpha (G) = \sigma_\alpha (G) \leq k^{1-\alpha} \left(\frac{2mk}{n-1} \right)^{\alpha} + (n-k-1)^{1-\alpha} \left(\frac{2m - 2mk}{n-1} \right)^{\alpha}$$

(7)
with equality holding in (7) if and only if $G \cong K_n$ or $G \cong \overline{K}_n$.

(ii) If $\alpha > 1$, then
\[
s_\alpha(G) = \sigma_\alpha(G) \geq k^{1-\alpha} \left(2mk \right)^{\alpha} + (n-k-1)^{1-\alpha} \left(2m - \frac{2mk}{n-1} \right)^{\alpha}
\]
with equality holding in (8) if and only if $G \cong K_n$ or $G \cong \overline{K}_n$.

(iii) If G is connected and $\alpha < 0$, then
\[
s_\alpha(G) = \sigma_\alpha(G) \leq \min_{1 \leq k \leq n-1} \left\{ k^{1-\alpha} \left[\frac{2mk + \sqrt{mk(n-k-1)(n^2 - 2m)}}{n-1} \right]^\alpha
+ (n-k-1)^{1-\alpha} \left[\frac{2m(n-k-1) - \sqrt{mk(n-k-1)(n^2 - 2m)}}{n-1} \right]^\alpha \right\}
\]
with equality holding in (9) if and only if $G \cong K_{1,n-1}$ ($k = 1$) and $G \cong K_n$ ($2 \leq k \leq n-2$).

We now extend the above result to non-bipartite graphs.

Theorem 3.3. Let G be a non-bipartite graph with $n \geq 2$ vertices, m edges and positive integer k ($1 \leq k \leq n-1$).

(i) If $0 < \alpha < 1$, then
\[
s_\alpha(G) \leq k^{1-\alpha} \left(\frac{2mk}{n} \right)^{\alpha} + (n-k)^{1-\alpha} \left(2m - \frac{2mk}{n} \right)^{\alpha}
\]
with equality holding in (10) if and only if $G \cong \overline{K}_n$.

(ii) If $\alpha > 1$, then
\[
s_\alpha(G) \geq k^{1-\alpha} \left(\frac{2mk}{n} \right)^{\alpha} + (n-k)^{1-\alpha} \left(2m - \frac{2mk}{n} \right)^{\alpha}
\]
with equality holding in (11) if and only if $G \cong \overline{K}_n$.

(iii) If G is connected and $\alpha < 0$, then
\[
s_\alpha(G) \leq \min_{1 \leq k \leq n-1} \left\{ k^{1-\alpha} \left[\frac{2mk + \sqrt{mk(n-k)(n^2 - 2m)}}{n} \right]^\alpha
+ (n-k)^{1-\alpha} \left[\frac{2m(n-k) - \sqrt{mk(n-k)(n^2 - 2m)}}{n} \right]^\alpha \right\}
\]
with equality holding in (12) if and only if $G \cong K_n$ when $k = 1$.

Proof. Using power mean inequality, we get
\[
\sum_{i=1}^{k} q_i^\alpha \leq k^{1-\alpha} \left(\sum_{i=1}^{k} q_i \right)^{\alpha}, \text{ as } 0 < \alpha < 1
\]
with equality holding in (13) if and only if $q_1 = q_2 = \cdots = q_k$.

Considering the above manner, we also get
\[
\sum_{i=k+1}^{n} q_i^\alpha \leq (n-k)^{1-\alpha} \left(2m - \sum_{i=1}^{k} q_i \right)^\alpha, \text{ as } \sum_{i=1}^{n} q_i = 2m \tag{14}
\]
with equality holding in (14) if and only if \(q_{k+1} = q_{k+2} = \cdots = q_n \). Since \(q_1 \geq q_2 \geq \cdots \geq q_n \), we have
\[
\frac{\sum_{i=1}^{k} q_i}{k} \geq \frac{\sum_{i=k+1}^{n} q_i}{n-k} = \frac{2m - \sum_{i=1}^{k} q_i}{n-k}.
\]
Therefore, we get
\[
\sum_{i=1}^{k} q_i \geq \frac{2mk}{n}. \tag{15}
\]
By Eqs. (13) and (14), we obtain
\[
s_\alpha (G) = \sum_{i=1}^{n} q_i^\alpha = \sum_{i=1}^{k} q_i^\alpha + \sum_{i=k+1}^{n} q_i^\alpha \leq k^{1-\alpha} \left(\sum_{i=1}^{k} q_i \right)^\alpha + (n-k)^{1-\alpha} \left(2m - \sum_{i=1}^{k} q_i \right)^\alpha.
\]
Now consider the following function
\[
f (x) = k^{1-\alpha}x^\alpha + (n-k)^{1-\alpha} (2m-x)^\alpha
\]
for \(x \geq \frac{2mk}{n} \). Then it is easy to see that
\[
f' (x) = \alpha \left[\left(\frac{x}{k} \right)^{\alpha-1} - \left(\frac{2m-x}{n-k} \right)^{\alpha-1} \right] \leq 0, \text{ as } 0 < \alpha < 1.
\]
Thus, by (15), we get
\[
f (x) \leq f \left(\frac{2mk}{n} \right) = k^{1-\alpha} \left(\frac{2mk}{n} \right)^\alpha + (n-k)^{1-\alpha} \left(2m - \frac{2mk}{n} \right)^\alpha.
\]
Hence we get the the inequality (10). Now we suppose that the equality holds in (10). Then, from (13) and (14) we have \(q_1 = q_2 = \cdots = q_k \) and \(q_{k+1} = q_{k+2} = \cdots = q_n \), respectively. Furthermore from (15), we have
\[
\sum_{i=1}^{k} q_i = \frac{2mk}{n}.
\]
Therefore
\[
q_1 = q_2 = \cdots = q_n = \frac{2m}{n}.
\]
Then, we conclude that \(G \cong \overline{K}_n \).
Conversely, one can easily show that the equality holds in (10) for the complement of the complete graph \overline{K}_n.

(ii) Using power mean inequality, from (i), we obtain

$$s_\alpha (G) \geq k^{1-\alpha} \left(\sum_{i=1}^{k} q_i \right)^{\alpha} + (n-k)^{1-\alpha} \left(2m - \sum_{i=1}^{k} q_i \right)^{\alpha}, \text{ as } \alpha > 1.$$

Note that $f(x)$ is increasing function for $x \geq \frac{2mk}{n}$ as $\alpha > 1$. Then, similar to the proof of (i), we get the inequality (11). Furthermore, the equality holds in (11) if and only if $G \cong \overline{K}_n$.

(iii) From Lemma 3.1, we have

$$\sum_{i=1}^{k} q_i \leq \frac{2mk + \sqrt{mk (n-k) \left(n^2 + \frac{2mn}{n-1} - 4m \right)}}{n}.$$

As $\alpha < 0$, from (i), we obtain that $f(x)$ is increasing function for

$$\frac{2mk}{n} \leq x \leq \frac{1}{n} \left[2mk + \sqrt{mk (n-k) \left(n^2 + \frac{2mn}{n-1} - 4m \right)} \right].$$

Therefore

$$f(x) \leq k^{1-\alpha} \left(\frac{2mk + \sqrt{mk (n-k) \left(n^2 + \frac{2mn}{n-1} - 4m \right)}}{n} \right)^{\alpha} + (n-k)^{1-\alpha} \times \left(\frac{2m (n-k) - \sqrt{mk (n-k) \left(n^2 + \frac{2mn}{n-1} - 4m \right)}}{n} \right)^{\alpha}.$$

Hence the inequality (12) holds. Now we suppose that the equality holds in (12). Therefore we get that

$q_1 = q_2 = \cdots = q_k, q_{k+1} = q_{k+2} = \cdots = q_n$

and

$$\sum_{i=1}^{k} q_i = \frac{2mk + \sqrt{mk (n-k) \left(n^2 + \frac{2mn}{n-1} - 4m \right)}}{n}.$$

Then, from Lemma 3.1, we conclude that $G \cong K_n$ when $k = 1$.

Conversely, let G be isomorphic to the complete graph K_n when $k = 1$. Thus

$$k^{1-\alpha} \left[\frac{2mk + \sqrt{mk (n-k) \left(n^2 + \frac{2mn}{n-1} - 4m \right)}}{n} \right]^{\alpha} + (n-k)^{1-\alpha} \times \left(\frac{2m (n-k) - \sqrt{mk (n-k) \left(n^2 + \frac{2mn}{n-1} - 4m \right)}}{n} \right)^{\alpha} = \left(2(n-1) \right)^{\alpha} + (n-1)(n-2)^{\alpha}, \text{ as } k = 1, m = n(n-1)/2$$

$$= s_\alpha (G), \text{ since } q_1 = 2(n-1), q_2 = \cdots = q_n = n-2.$$
This completes the proof of theorem.

Theorem 3.4. Let α be a real number with $\alpha \neq 0, 1$ and let G be a connected graph with $n \geq 3$ vertices and t spanning trees and also let t_1 and T be given by (1). For any real number $k \geq 0$,

i) if G is bipartite, then

$$s_\alpha (G) = \sigma_\alpha (G) > (n - 2) (nt)^{\alpha/(n-1)} \left[\frac{(k + 1)(nt)^{\alpha/[(k+1)(n-1)n]} - k}{T^{\alpha/[(k+1)(n-1)]}} \right] + T^\alpha. \quad (16)$$

ii) If G is non-bipartite, then

$$s_\alpha (G) > (n - 1) (t_1)^{\alpha/n} \left[\frac{(k + 1)(t_1)^{\alpha/[(k+1)n(n-1)]} - k}{T^{\alpha/[(k+1)n(n-1)]}} \right] + T^\alpha. \quad (17)$$

Proof. By Lemmas 2.2–2.4, 2.10 and 2.11, the inequality (16) can be proved using similar method of Theorem 3.4 in [14]. We now only prove the inequality (17).

Setting in Lemma 2.11 $a_i = q_{i1}^\alpha$, $i = 1, 2, \ldots, n$ and $p_1 = \frac{k}{(k+1)n}$, $p_i = \frac{(k+1)n - k}{(k+1)n(n-1)}$, $i = 2, 3, \ldots, n$

we obtain

$$kq_1^\alpha \left(\frac{k}{(k+1)n} \right) + \frac{(k+1)n - k}{(k+1)n(n-1)} \sum_{i=2}^n q_i^\alpha - q_1 \prod_{i=2}^n \frac{(k+1)n - k}{(k+1)n(n-1)} q_i^\alpha$$

$$\geq \frac{k}{(k+1)n} \sum_{i=1}^n q_i^\alpha - \frac{k}{k + 1} \prod_{i=1}^n q_i^{\alpha/n}.$$

Then, by Lemma 2.3, we have

$$q_1 \left(\frac{k}{(k+1)n} \right) + \frac{(k+1)n - k}{(k+1)n(n-1)} (s_\alpha (G) - q_1^\alpha) - q_1 \prod_{i=2}^n \frac{(k+1)n - k}{(k+1)n(n-1)} q_i^\alpha$$

$$\geq \frac{k}{(k+1)n} s_\alpha (G) - \frac{k}{k + 1} (t_1)^{\alpha/n},$$

i.e.,

$$s_\alpha (G) \geq (n - 1) \left[\frac{(k + 1)(t_1)^{\alpha/[(k+1)n(n-1)]}}{q_1^{\alpha/[(k+1)n(n-1)]}} + \frac{q_1^\alpha}{n - 1} - k (t_1)^{\alpha/n} \right]. \quad (18)$$

Let us consider the auxiliary function

$$f(x) = \frac{(k + 1)(t_1)^{\alpha/[(k+1)n(n-1)]}}{x^{\alpha/[(k+1)n(n-1)]}} + \frac{x^\alpha}{n - 1}.$$

It is easy to see that $f(x)$ is increasing for $x > (t_1)^{1/n}$ whether $\alpha > 0$ or $\alpha < 0$. By Lemmas 2.3, 2.4 and Theorem 3.3 in [4], we have

$$q_1 \geq T \geq \Delta_1 + 1 > \Delta_1 \geq \frac{2m}{n} \geq (t_1)^{1/n}$$

where Δ_1 is the degree sequence of graph G.
Therefore
\[f(x) \geq f(T) = \frac{(k+1)\left(t_1\right)^{\frac{k(1+k)n-k}{k+1(n-k)}}}{T^{\frac{1}{k+1(n-k-1)}}} + \frac{T^\alpha}{n-1}. \]

Combining this with (18) we get the inequality (17). Now we assume that the equality holds in (17). Then all inequalities in the above arguments must be equalities. Thus \(q_1 = T \) and \(q_1 = q_2 = \cdots = q_n = \frac{2m}{n} \). Thus we have that \(q_1 = \frac{2m}{n} \leq \Delta_1 < \Delta_1 + 1 \leq T \) which contradicts with the result in Lemma 2.4 \[4\]. Hence (17) cannot become an equality.

\[\square \]

Remark 3.5. By Lemmas 2.2 and 2.4, we have that \(\mu_1 = q_1 \geq T \geq \Delta_1 + 1 \) for bipartite graphs. Then from the proof of Theorem 3.4 in \[14\], one can arrive at the bound (16) improves the bound of Theorem 3.4 in \[14\] for bipartite graphs.

Taking \(k = 1 \) in Theorem 3.4, we have the following result.

Corollary 3.6. Let \(\alpha \) be a real number with \(\alpha \neq 0, 1 \) and let \(G \) be a connected graph with \(n \geq 3 \) vertices and \(t \) spanning trees and also let \(t_1 \) and \(T \) be given by (1).

i) if \(G \) is bipartite, then
\[s_\alpha(G) = \sigma_\alpha(G) > (n-2)\left(\frac{2(n-1)}{T^{\frac{1}{2}(n-1)}}\right) + T^\alpha. \]

ii) If \(G \) is non-bipartite, then
\[s_\alpha(G) > (n-1)\left(\frac{2(t_1)^{\frac{1}{2(n-1)}}}{T^{\frac{1}{2(n-1)}}}\right) + T^\alpha. \]

As in Remark 3.5, one can easily conclude that the bound (19) of Corollary 3.6 improves Corollary 3.5 in \[14\]. Moreover, taking \(\alpha = 1/2 \) in Corollary 3.6, we have the following result.

Corollary 3.7. \[4\] Let \(G \) be a connected graph with \(n \geq 3 \) vertices and \(t \) spanning trees and also let \(t_1 \) and \(T \) be given by (1).

i) if \(G \) is bipartite, then
\[IE(G) = LEL(G) > \sqrt{T} + (n-2)\left(\frac{2(n-1)}{T^{1/4(n-1)}}\right) - 1. \]

ii) if \(G \) is non-bipartite, then
\[IE(G) > \sqrt{T} + (n-1)\left(\frac{2(t_1)^{1/2(n-1)}}{T^{1/4(n-1)}}\right) - 1. \]

Theorem 3.8. Let \(\alpha \) be a real number with \(\alpha \neq 0, 1 \) and let \(G \) be a connected graph with \(n \geq 3 \) vertices and \(t \) spanning trees and also \(t_1 \) and \(T \) be given by (1).
i) if G is bipartite, then
\[s_\alpha(G) = \sigma_\alpha(G) \geq T^\alpha + (n-2) \left(\frac{nt}{T} \right)^{\alpha/(n-2)} + \left(\frac{\Delta_2}{2} - \frac{\delta}{2} \right)^2. \] (23)

ii) if G is non-bipartite, then
\[s_\alpha(G) > T^\alpha + (n-1) \left(\frac{t_1}{T} \right)^{\alpha/(n-1)} + \left((\Delta_2 - 1)^{\alpha/2} - \frac{\delta}{2} \right)^2. \] (24)

where Δ_2 and δ are the second maximum and the minimum vertex degrees of the graph G, respectively.

Proof. Using Lemmas 2.2–2.4, 2.8, 2.9 and 2.12, one can prove inequality (23) similar to the proof of Theorem 3.9 in [14]. Here we only prove the inequality (24).

By Lemma 2.12, we have
\[p(A_p - G_p) \geq (p-1)(A_{p-1} - G_{p-1}) \geq \cdots \geq 2(A_2 - G_2) \]
i.e.,
\[A_p \geq G_p + \frac{2}{p} \left(\frac{a_1 + a_2}{2} - \sqrt{a_1 a_2} \right) = G_p + \frac{1}{p} (\sqrt{a_1} - \sqrt{a_2})^2 \] (25)
see, [14]. Setting $p = n-1$, $(a_1, a_2, \ldots, a_{n-1}) = (q_2^\alpha, q_3^\alpha, \ldots, q_n^\alpha)$ and $a_1 = q_2^\alpha, a_2 = q_n^\alpha$ in (25), we obtain
\[s_\alpha(G) = \sum_{i=1}^{n} q_i^\alpha \geq q_1^\alpha + (n-1) \left(\prod_{i=2}^{n} q_i \right)^{\alpha/(n-1)} + \left(q_2^{\alpha/2} - q_n^{\alpha/2} \right)^2. \]

Considering Lemmas 2.3, 2.5 and 2.6, we have
\[s_\alpha(G) = \sum_{i=1}^{n} q_i^\alpha \geq q_1^\alpha + (n-1) \left(\frac{t_1}{q_1} \right)^{\alpha/(n-1)} + \left((\Delta_2 - 1)^{\alpha/2} - \frac{\delta}{2} \right)^2. \] (26)

Let us consider the auxiliary function
\[f(x) = x^\alpha + (n-1) \left(\frac{t_1}{x} \right)^{\alpha/(n-1)} \].

Note that $f(x)$ is increasing for $x > (t_1)^{1/n}$ for both $\alpha > 0$ and $\alpha < 0$ [3]. Then by Lemmas 2.3, 2.4 and Theorem 4.9 in [3], we have
\[f(x) \geq f(T) = T^\alpha + (n-1) \left(\frac{t_1}{T} \right)^{\alpha/(n-1)}. \]

Combining this with Eq. (26), we get the inequality (24).

Remark 3.9. By Lemmas 2.2 and 2.4, we have that $\mu_1 = q_1 \geq T \geq \Delta_1 + 1$ for bipartite graphs. Then, from the proof of Theorem 3.9 in [14], one can arrive at the bound (23) improves the bound of Theorem 3.9 in [14] for bipartite graphs. Moreover, it is clear that the results of Theorem 3.8 are better than the results of Theorem 4.9 in [3].
Taking $\alpha = 1/2$ in Theorem 3.8, we get the following result on IE.

Corollary 3.10. Let G be a connected graph with $n \geq 3$ vertices and t spanning trees and also let t_1 and T be given by (1).

i) if G is bipartite, then

$$IE(G) = LEL(G) \geq \sqrt{T} + (n - 2) \left(\frac{nt}{T}\right)^{1/2(n-2)} + \left(\Delta_2^{1/4} - \delta^{1/4}\right)^2. \quad (27)$$

ii) if G is non-bipartite, then

$$IE(G) > \sqrt{T} + (n - 1) \left(\frac{t_1}{T}\right)^{1/2(n-1)} + \left((\Delta_2 - 1)^{1/4} - \delta^{1/4}\right)^2. \quad (28)$$

where Δ_2 and δ are the second maximum and the minimum vertex degrees of the graph G, respectively.

Remark 3.11. It is clear that the results of Corollary 3.10 improve the results of Theorem 4.8 in [3].

Remark 3.12. We finally note that, if we can establish a new lower bound such that $q_1 \geq \beta \geq T$, then we can improve the results in Theorems 3.4 and 3.8.

Acknowledgments. The authors are partially supported by TÜBİTAK and the Office of Selçuk University Research Project (BAP).

References

[1] S. Akbari, E. Ghorbani, J. H. Koolen, M. R. Oboudi, On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs, *El. J. Comb.* **17** (2010) R115.

[2] D. Bonchev, A. T. Balaban, X. Liu, D. J. Klein, Molecular cyclicity and centricity of polycyclic graphs: I. Cyclicity based on resistance distances or reciprocal distances, *Int. J. Quantum Chem.* **50** (1994) 1–20.

[3] Ş. B. Bozkurt, I. Gutman, Estimating the incidence energy, *MATCH Commun. Math. Comput. Chem.* **70** (2013) 143-156.

[4] Ş. B. Bozkurt, D. Bozkurt, On incidence energy, *MATCH Commun. Math. Comput. Chem.* **72** (2014) 215-225.

[5] Y. Chen, L. Wang, Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph, *Lin. Algebra Appl.* **433** (2010) 908-913.

[6] D. Cvetković, M. Doob, H. Sachs, *Spectra of Graphs*, Academic press, New York, 1980.
[7] D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacian of finite graphs, *Lin. Algebra Appl.* 423 (2007) 155-171.

[8] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian I, *Publ. Inst. Math.* (Beograd) 85 (2009) 19-33.

[9] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian II, *Lin. Algebra Appl.* 432 (2010) 2257-2277.

[10] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian III, *Appl. Anal. Discrete Math.* 4 (2010) 156-166.

[11] K. C. Das, On conjectures involving second largest signless Laplacian eigenvalues of graphs, *Lin. Algebra Appl.* 432 (2010) 3018-3029.

[12] K. C. Das, A sharp upper bound for the number of spanning trees of a graph, *Graphs Combin.* 23 (2007) 625-632.

[13] K. C. Das, I. Gutman, On incidence energy of graphs, *Lin. Algebra Appl.* 446 (2014) 329-344.

[14] K. C. Das, K. Xu, M. Liu, On sum of powers of the Laplacian eigenvalues of graphs, *Lin. Algebra Appl.* 439 (2013) 3561-3575.

[15] M. Fiedler, Algebraic connectivity of graphs, *Czechoslovak Math. J.* 23 (1973) 298-305.

[16] S. Furuichi, On refined Young inequalities and reverse inequalities, *J. Math. Inequal.* 5 (2011) 21-31.

[17] I. Gutman, The energy of a graph, *Ber. Math. Statist. Sekt. Forschungsz. Graz* 103 (1978) 1-22.

[18] I. Gutman, The energy of a graph: old and new results, in: Betten, A., Kohnert, A., Laue, R., Wassermann, A. (Eds.), *Algebraic Combinatorics and Applications*, Springer-Verlag, Berlin, 2001, pp. 196-211.

[19] I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, *J. Chem. Inf. Comput. Sci.* 36 (1996) 982-945.

[20] I. Gutman, D. Kiani, M. Mirzakhah, On incidence energy of a graphs, *MATCH Commun. Math. Comput. Chem.* 62 (2009) 573-580.

[21] I. Gutman, D. Kiani, M. Mirzakhah, B. Zhou, On incidence energy of a graph, *Linear Algebra Appl.* 431 (2009) 1223-1233.

[22] I. Gutman, B. Zhou, Laplacian energy of a graph, *Linear Algebra Appl.* 414 (2006) 29-37.

[23] I. Gutman, B. Zhou, B. Furtula, The Laplacian-energy like invariant is an energy like invariant, *MATCH Commun. Math. Comput. Chem.* 64 (2010) 85-96.
[24] M. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, *MATCH Commun. Math. Comput. Chem.* **62** (2009) 561-572.

[25] J. S. Li, Y. L. Pan, De Caen’s inequality and bounds on the largest Laplacian eigenvalue of a graph, *Lin. Algebra Appl.* **328** (2001) 153-160.

[26] J. S. Li, Y. L. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, *Lin. Multilin. Algebra* **48** (2000) 117-121.

[27] R. Li, On α-incidence energy and α-distance energy of a graph, *Ars Combin.*, in press.

[28] X. Li, Y. Shi, I. Gutman, *Graph Energy*, Springer, New York, 2012.

[29] B. Liu, Y. Huang, Z. You, A survey on the Laplacian–energy like invariant, *MATCH Commun. Math. Comput. Chem.* **66** (2011) 713–730.

[30] J. Liu, B. Liu, A Laplacian-energy like invariant of a graph, *MATCH Commun. Math. Comput. Chem.* **59** (2008) 355-372.

[31] M. Liu, B. Liu, A note on sum of powers of the Laplacian eigenvalues of graphs, *Appl. Math. Lett.* **24** (2011) 249–252.

[32] M. Liu, B. Liu, On sum of powers of the signless Laplacian eigenvalues of graphs, *Hacettepe J. Math. Stat.* **41** (2012) 2243-2251.

[33] R. Merris, Laplacian matrices of graphs A survey, *Lin. Algebra Appl.* **197** (1994) 143-176.

[34] R. Merris, A survey of graph Laplacians, *Lin. Multilin. Algebra* **39** (1995) 19-31.

[35] D. S. Mitrinović, P. M. Vasić, *Analytic Inequalities*, Springer-Verlag, New York, 1970, pp.74-94.

[36] V. Nikiforov, The energy of graphs and matrices, *J. Math. Anal. Appl.* **326** (2007) 1472-1475.

[37] J. Palacios, Foster’s formulas, probability and the Kirchhoff index, *Methodol. Comput. Appl. Probob.* **6** (2004) 381–387.

[38] O. Rojo, E. Lenes, A sharp upper bound on the incidence energy of graphs in terms of connectivity, *Lin. Algebra Appl.* **438** (2013) 1485-1493.

[39] G. X. Tian, T. Z. Huang, B. Zhou, A note on sum of powers of the Laplacian eigenvalues of bipartite graphs, *Lin. Algebra Appl.* **430** (2009) 2503-2510.

[40] B. Zhou, On Laplacian eigenvalues of a graph, *Z. Naturforsch* **59a** (2004) 181-184.

[41] B. Zhou, On sum of powers of the Laplacian eigenvalues of graphs, *Lin. Algebra Appl.* **429** (2008) 2239-2246.
[42] B. Zhou, More upper bounds for the incidence energy, *MATCH Commun. Math. Comput. Chem.* 64 (2010) 123-1228.

[43] B. Zhou, A. Ilić, On the sum of powers of Laplacian eigenvalues of bipartite graphs, *Czechoslovak Math. J.* 60 (135) (2010) 1161-1169.