ELEKTRIZOVANÉ DOPRAVNÉ SYSTÉMY – PERSPEKTÍVA DOPRAVY PRE 3. TISÍCROČIE

ELECTRIFIED TRANSPORT SYSTEMS – PERSPECTIVE OF TRANSPORT FOR THE THIRD MILLENNIUM

V súčasnom svete je energetika a doprava založená väčšinou na využívaní zdrojov fosílnych palív (tafty, uhlia, zemného plynu). Ich obrovská spotreba spôsobuje emisie CO2 a NOx a globálne otepľovanie atmosféry. Zdroje fosílnych palív sú do budúcnosti obmedzené najmä pri naftovej, užívané v spalovacích motoroch cestných vozidiel a lietadiel. Za týchto okolností sa jazdnou dráhou vedené dopravné systémy s elektrickým pohonom energeticky a ekologicky vhodným riešením rýchlej a bezpečnej dopravy budúcnosti, lebo elektrickú energiu je možné získavať aj z obnoviteľných zdrojov (potenciálu vody, vetra, slnečnej energie) alebo z jadrovej energie bez zmienených emisií.

1. Energetické zdroje a spotreba energie vo svete

Štatistiky a merania hodnotiace dostupné energetické zdroje vo svete sa často líšia v jednotlivých číslach. Nejaké zdroje sa môžu v budúcnosti objaviť, avšak tendencia vedúca k vyčerpaniu zdrojov predovšetkým nafty je krátkom čase celkom zrejmá. Predpokladané svetové zásoby zdrojov energie [1] sú uvedené v tab. 1.

Doba do vyčerpania svetových energetických zásob Tab. 1

Zdroj energie	Využiteľné zásoby [roky]	Geologické zásoby [roky]
Ropa	40	140
Zemný plyn	55	100
Uhlí	250	1700
Uran	90	140
Uran2)	5400	8400

Pri využití v: 1) pomalých 2) rýchlych nukleárnych reaktoroch

Využitie týchto energetických zdrojov je v rôznych častiach sveta veľmi nerovnomerné. Tab. 2 [1] uvádza prehľad spotreby energie v rozvinutých kapitalistických (C), bývalých socialistických (S) a rozvojových krajínach „tretího sveta“ (D).

Podobne nerovnomerné rozdelenie vidieť z tab. 3 [1], ktorá udáva spotrebu energie na jedného obyvateľa.

Energetics and transport in the contemporary world are based mostly on exploitation of fossil fuels (petroleum, coal, natural gas). Enormous consumption of fossil fuels causes emissions of CO2 and NOx and global atmosphere warming. The supply of fossil fuels in the future is mainly limited by petroleum used for combustion machines of road vehicles and aeroplanes. Under these circumstances, the electric-propelled guided transport systems (electrified railways, maglev) are energetically - and ecologically-suitable solutions for quick and safe transport in the future because electrical energy can be produced also from renewable sources (water potential, wind, sun energy) or from nuclear energy without above-mentioned emissions.

1. Energy sources and energy consumption in the world

Statistics and documentation evaluating available energy sources in the world often differ in single numbers. Some new sources can be discovered in the future, but the trend leading especially to the exhaustion of world petroleum sources in the near future is quite obvious. The assumed world energy sources [1] are shown in Tab. 1.

Time until the exhaustion of world energetic sources Tab. 1

Sort of energy source	Usable sources [years]	Geological sources [years]
Petroleum	40	140
Natural gas	55	100
Coal	250	1700
Uran1)	90	140
Uran2)	5400	8400

Utility in: 1) slow 2) quick nuclear reactors

Utilization of these energetic sources is extremely unequal in different parts of the world. Table 2 [1] gives a review of energy consumption in developed capitalist (C), former socialist (S) and developing “third-world” countries (D).

A similarly unequal distribution can be seen in the Tab. 3 [1] where energy consumption per one inhabitant is given.
Rozdelenie spotreby energie vo svete

Státy	C	S	D (s Čínou)
Obyvatelstvo [% obyvateľov sveta]	15	8	77
Spotreba primárných energetických zdrojov sveta [%]	50	25	25
Pôdol na svetovej spotrebe elektrickej energie [%]	55	22	19

Tab. 2

Spotreba energie na obyvateľa za rok

Spotreba na obyvateľa a rok	C	S	D
Primárna energia [TO = ekviv. 1 t nafty]	5,1	5,0	0,5
Elektrická energia [kWh]	7800	5400	500

Tab. 3

Distribution of energy consumption in the world

Countries	C	S	D (incl. China)
Inhabitants [% of the world inhabitants]	15	8	77
Consumption of primary world energy sources [%]	50	25	25
Consumption of produced electrical energy [%]	55	22	19

Tab. 2

Súčasné pravdepodobne použiteľné zásoby nafty vo svete sú asi 1000 miliónov barel. Svetová denná spotreba je asi 66 miliónov barel; v USA je to 18 miliónov barel (27,3 %), z ktorých 2/3 (12 miliónov) sa užívajú na účely dopravy! Podobná situácia je v ostatných rozvinutých krajínách.

Výššie uvedené zásoby nafty môžu vyzdvihovať (podľa súčasnej výrobe) na budúcnosť až na 40 rokov. Životná úroveň v krajinách „treťieho sveta“ však rastie. Ak by tam bola rovnaká spotreba nafty ako v USA, denná spotreba nafty vo svete by vzrástla na 200 miliónov barel a zásoby nafty by sa vyčerpali už za 13 rokov.

Elektrifikované dráhové dopravné systémy (EDVDS) poskytujú rôznomu alternatívu k dopravným prostriedkom spotrebujúcim nafty. Valivy odpor kolíktorov je v prípade cestných motorových vozidiel až dvanásobko vyšší ako pri elektrifikovaných želneych systémoch. Elektrická energia bude určite k dispozícii v celom budúcnom tisícročí.

2. Porovnanie vlastností dopravných systémov

Hlavné charakteristiky základných dopravných systémov užívaných v súčasnosti a v budúcnosti sú porovnávané v tab. 4 [2], [3], [4].

The greatest part of fossil fuels is used for electrical energy production and house heating. But for oil, the combustion process of which produces some 35 % of world emissions of CO₂, the greatest amount is utilized for transport in high-developed countries, mainly for the individual automobile usage.

In the United States, e.g. [2], every citizen travels (in average) 27 000 km by car, 3500 km by plane, and requires 20,000 tons of freight movement per year.

The current available world petroleum resources are about 1000 × 10⁹ barrels. The daily world consumption is 66 million barrels; in the United States it is 18 million barrels (27,3 %), of which two-thirds (12 million) is used for transport purposes! A similar situation exists in other developed countries.

The above-mentioned petroleum resources can last (by the current consumption rate) for another 40 years. But the living standard in the “third-world” countries is rising. If oil consumption there was the same as in the United States, then the world daily consumption would increase to 200 million barrels and the oil resources would be exhausted in only 13 years.

Electrified guided transport systems (EGTS) give the wise alternative to oil fuel-consuming transport means. The roll resistance rail/wheel is many times lower (or zero by maglev) by EGTS than that of automobiles, so the specific energy consumption by EGTS is essentially lower, and its efficiency is higher. High-speed railways operate at up to 300 km.h⁻¹ today and maglev systems are tested at 500 km.h⁻¹. No car or plane (by shorter distances) can reach this operating speed. And the electrical energy would surely be available throughout the next millennium.

2. Comparison of transport system characteristics

The main characteristics of basic transport systems currently used and in future are compared in Tab. 4 [2], [3], [4].
3. Elektrizované vysokorychlostné železnice

Vlaky prevádzkované rýchlosťou 200 km.h⁻¹ alebo vyššou sú vysokorychlostné (VR) vlaky. Prvá VR elektrické jednotky pome- nované Shinkansen boli uvedené do prevádzky 1964 medzi Tokiomi a Ōsakou (Tokaido-line, 25 kV, 60 Hz) v Japonsku. V Európe jazdili rušne DB typu E 03 s vlakmi od roku 1966 medzi Mnichovom a Augsburgom a neskoršie viac centrálnych sietí DB, rýchlosťou 200 km.h⁻¹. Inštitúcie a krajiny EÚ a tieto trate sa stavajú aj inde, v Rusku, Južnej Kórei, na východnom pobreží USA, atď. Svetový rekord 513 km.h⁻¹ sa stala v Eschede, Nemecko; každoročne však nie mávajú s maximálnou rýchlosťou 260 km.h⁻¹.

Odvtedy sa sief vysokorychlostných tras rozšírila v Japonsku, krajinách EU a tieto trate sa stavajú aj inde, v Rusku, Južnej Kórei, na východnom pobreží USA, atď. Svetový rekord 513 km.h⁻¹ sa už dosiahol TGV-A vo Francúzsku a prevádzková rýchlosť stúpla na 300 km.h⁻¹ (a má vzrašť na 350 km.h⁻¹). Jadzny komfort, bezpečnosť a krátké doby jazdy sú atraktívnejšie ako pri automobiloch alebo lietadielách (pri tých do prepravnej vzdialenosti asi 1000 km). Čo sa týka bezpečnosti, jediná veľká nehoda za celú éru prevádzkovania VR vlakov sa stala v Eschede, Nemecko; každoročne viac

Comparison of some electrified guided and road transport systems characteristics

Parameter	Transport on railway : road	Note
Roll resistance wheel : tyre drag	1 : (5 to 10)	By maglev : 0
Specific fuel consumption : [dm³/tkm]	1 : (4 to 6)	For railway diesel traction
Average specific energy consumption re-calculated on primary fuel potential : [kJ/tkm], electric railway : road cars	1 : 5	Supply from thermal power stations
Operating accidents risk	(2 to 3) : 1	Supply from hydro-electric plant
Negative environment influences	very small : very high	Thermal, nuclear/ water power stations

In addition to Tab. 4, the specific energy consumption [kJ/pas- senger kilometer] of maglev systems compared with the air trans- port is only about 1/4 to 1/5 by the 350 km.h⁻¹ maglev speed and about 1/2 by the 500 km.h⁻¹ speed [2]. The direct city centres connection is another time-saving maglev advantage. The maglev train sets have no “dead” time during their operation, contrary to aeroplanes, whose motors must operate before start, after landing and while waiting at airports and in the air.

3. Electrified high-speed railways

Trains operating at a running speed of 200 km.h⁻¹ or higher are the “high-speed” (HS) trains. The first HS electric motor units (EMU) called Shinkansen were set in normal operation on October 1, 1964 between Tokyo and Osaka, Japan (Tokaido-line, 25 kV, 60 Hz). In Europe, DB-locomotives E 03 have been operating since 1966 between München und Augsburg and later on in some other parts of the DB-net at 200 km.h⁻¹ (supply 15 kV, 16 2/3 Hz); the first special high-speed line TGV-PSE (Paris – Lyon, France) opened in 1981. The two-system (1,5 kV DC and 25 kV, 50 Hz) units TGV-PSE operate at a 260 km.h⁻¹ maximum speed.

Since the net of high-speed railways has widely spread in Japan. EU countries and such lines have also been built in other countries like in Russia, South Korea, on the United States’ East Coast, etc. The speed record 513 km.h⁻¹ was reached by TGV-A in France, and the operating speed has increased up to 300 km.h⁻¹ (and it ought to increase up to 350 km.h⁻¹). The ride comfort, safety and short-travelling times are more attractive than by car or air transport (by the latter up to about 1000 km travelling distance). In regard to safety, the only major accident of high-speed train operation era happened in Eschede, Germany, but 45.000 people
zomiera 45 000 ľudí v USA a vyše 40 000 v krajínach EÚ na cestách a státisíce utrpia zranenia. Aj počet leteckých nehôd je vysoký.

Tvrdí sa, že investičné náklady na výstavbu VR trati sú vysoké. Je to pravda, ale treba povedať aj to, že pravdepodobne ešte vyššie náklady na cestnú dopravu priamo majitelia automobilov v cenách vozidiel, paliva a poplatkov. Napríklad [4], merná spo- treba energie na osobu a 100 kilometrov zdopoveda pri systéme TGV asi 1,5 dm³ ekvivalentu nafty pri rýchlosti jazdy 300 km/h. To nedokáže žiadne cestné vozidlo. Prepravna kapacita dvojkolaj- nej železnice so súpravami TGV-Duplex (300 km.h⁻¹, 1100 ces- tujúcich v súprave, následný interval vlakov 3 minúty) je 2 × 22 000 cestujúcich/h. Na rovnomere prepravnej kapacitou by sa musela postaviť diaľnica s 2 × 7 dopravnými pruhmi, so všetkými zlými ekologickými vplyvami, zaberajúca obrovskú plochu pôdy. Avšak celá trať TGV-PSE zaberá plochu adekvátnu ploche len jedného veľkého letiska v Pariži.

Tab. 5 dáva prehľad o VR tratiach a vlakoch v Európe a Japon- sku v roku 1995.

Od roku 1995 sa samozrejme vybudovali, budujú a plánujú nové trate; napr. tohoto a Tokuriku (dlhé 270 resp. 118 km) die in the United States and more than 40,000 in EU countries on roads every year, and hundreds of thousands sustain injuries. The number of aeroplane catastrophes is also high.

The railway freight transport running speed has increased, and now, it is 160 km.h⁻¹ on many lines. It is said that the investment costs for building high-speed railway lines are high. It is true, but it must also be said that even higher costs for road transport are paid directly by car owners in prices of cars, fuel and taxes. For example [4], the specific energy consumption per passenger and 100 kilometres by TGV system at 300 km.h⁻¹ corresponds to an equivalent of 1.5 dm³ of oil fuel. No road vehicle can reach it. The transport capacity of a two-way railway with TGV-Duplex sets (300 km.h⁻¹, 1100 passengers per set, train interval 3 minutes) is 2 × 22,000 passengers/h. For the same transport capacity of road transportation, it would take a speedway of 2 × 7 traffic lanes with all its ecological defects and taking enormous area of soil. But the whole TGV-PSE line Paris – Lyon takes the area corresponding to only one major airport in Paris.

Tab. 5 introduces a review about HS lines and trains in Europe and Japan in 1995.

However, since 1995 new lines have been or are being built or projected; e.g. Tohoku and Tokuriku lines (270 and 118 km long)
v Japonsku; TGV-Méditerranée a TGV-Est vo Francúzsku (300 a 460 km); 1451 km nových trati (po roku 2000) v Nemecku; Pariž – Brusel – Kolín/Amsterdam v EÚ. Aj železnice v krajínach strednej Európy hodlajú zvyšovať maximálnu rýchlosť na svojich traťach. Všetky tieto nové VR trate sú napájané vysokonapäťovými sústavami striedaveho prúdu. Nové VR trakčné vozidlá sú poháňané asynchronnými trakčnými motormi napájanými z meničov a opät- reň moderným riadiacim a zabezpečovacim zariadením. Vo všeobecnosti, v elektrickej trakcii nachádzajú uplatnenie najmodernejšie technológie a naopak, toto odvetvie podnecuje vedecky a technický vývoj v elektrotechnike.

4. Magneticky levitovaná doprava (maglev)

Dalšie jazdnou dráhou vedený a elektrickou energiou napájaný systém je maglev. Hnacie vozidlá maglevu sú pohánané elektrodynamicky lineárnym motorom a počas jazdy (letu) magneticky levitované. Kolesá vozidla sa užívajú na zaistenie polohy vozidla na zastávkach a súho ho pri rozjazde a brzdení. Adhézna síla pôsobí z kolesa na jazdnú dráhu len pri núdzovom brzdení alebo pri brzdení z nižších rýchlosti. Na zrychľovanie a prevádzkové brzdenie sa využíva elektrodynamická síla vyvíjaná lineárnym motorom. Často sa používajú supravodivé magnety na zníženie rozmerov a strat magnetov.

Boli vyvinuté systémy maglevu lúšiace sa podľa druhu lineár- neho motora a spôsobu levitácie. Dnes sú v prevádzke niektóre miestne trate maglevu s vysokou rýchlosťou, avšak nepríjemnosť vali- vého odporu umožňuje vlakom maglevu napríklad Transrapid v Nemecku a MLX01 v Japonsku jazdiť s veľmi vysokou rýchlosťou okolo 500 km.h⁻¹, takže tento systém môže konkurovať aj leteckej doprave.

4.1 Japonský systém maglevu

Hornatá konfigurácia japonských ostrovov a vysoká hustota obyvateľstva, ktoré žije prevážne vo veľkomestách na pobreží, vyvo- lali potrebu výkonného a rýchleho dopravného systému umožňujúceho mobilitu ľudí i tovaru v tejto priečasti. Štúdium mobility nebude v budúc- nosti splniť dokonca ani železničný systém Shinkansen s prevádzkovou rýchlosťou 300 km.h⁻¹. Preto sa začali v 60-tych rokoch experimenty so systémom maglev.

Skúšobná trať maglevu Yamana- shi (Yamanashi Maglev Test Line – YMTL) nedaleko Tokia bola otvo- rená v roku 1997. Na tejto 42.8 km dlhej trati sa skúšali vozidlá maglevu MLX01 a v roku 1999 tu bol dosiahnutý nový svetový rýchlostný rekord súpravy 552 km.h⁻¹ a zaznamenaná

4. Magnetic levitation (maglev) transport

Another electrical energy-supplied guided transport system is maglev. Maglev driven vehicles are electrodynamically propelled by a linear motor and magnetically levitated during their running (or flight). Vehicle wheels are used for fixing the vehicle position on stops and for stopping by acceleration and braking. The adhesive force affects from a wheel on track or rail only by emergency mechanical braking or during braking at lower speed. For acceleration and operation braking, the electrodynamic force produced by the linear motor is used. Superconducting magnets are often used to minimize size and loss of magnets.

Maglev systems differ both in the kind of linear motor and the levitation method were developed. Some local maglev lines operating at lower speed are in service today. But the absence of rolling resistance enables the maglev trains e.g Transrapid in Germany and MLX in Japan to run at very high speeds (about 500 km.h⁻¹), so the system can even compete with air transport.

4.1 The Japanese maglev system

The mountainous configuration of Japanese islands and the high density of inhabitants living mostly in large cities on the sea coast has evoked the need for a powerful and quick transport system enabling people and goods mobility in this high industrially developed country. Even the Shinkansen railway system with 300 km.h⁻¹ operation speed cannot fulfil the mobility requests of the future. It was the reason why experiments with maglev systems started in the 1960’s in Japan.
relatívna rýchlosť dvoch protiidúcich súprav 1003 km.h⁻¹ [2], [6], [7], [9], [10]. V roku 2000 sa začala nová pťročná skúšobná fáza overovania dlhodobej odolnosti aj rozličných skúšok zariadení novovytváraných za účelom zníženia konštrukčných nákladov v budúcnosti prevádzkovaných trati.

4.2 Nemecký systém maglevu Transrapid

Nemecká súprava maglevu Transrapid sa liší od japonskej MLX01 v principe leviačky, ktoré je pri Transrapidé elektromagnetický, ktorý pri MLX01 elektrodynamický. Transrapid sa skúšal na skúšobnej trati v Emsland a je konštruuovaný na rýchlosť 450 km.h⁻¹ [6], [8], [12]. Prvá prevádzkovaná trať v Nemecku mála spúšťať Hamburg a Berlin v roku 2005, pripravený projekt viac dočasne pozastavili. Výhody systému Transrapid sú: nižšia hlúčnosť, možnosť prepravy cestujúcich aj tovaru (17 ton tovaru alebo 100 pasažierov v jednom vozidle; 2 až 10 vozidiel v súprave); bezpečnosť dopravy 700krát vyššia ako pri cestných vozidlách a 20krát vyššia ako pri leétadlách; o 30 % nižšia spotreba energie v porovnaní s vlakom a 3,5krát nižšia (pri rýchlosti 400 km.h⁻¹) ako u cestných vozidiel; malá plocha pôdy potrebná pre trať maglevu [12].

4.3 Zámery dopravy maglevm pre USA

Vysokorýchlostná doprava maglevom využívaným aj v nákladnej doprave by mohla byť vhodným riešením mobility v USA po roku 2000 [2]. Myšlienku je previsel komíny z diaľnic na trate maglevu. Prevádzkové náklady maglevu sú nízke, asi 2centy/osobokm a 5 centov/tkm (bez amortizácie trate maglevu). Tieto náklady sú asi 9centov/osobokm v leteckej doprave, 25 centov/vozidlový kilometer pre automobilu a 18 centov/tkm pre kamión.

Investičné náklady na traf maglevu sú však príliš vysoké, ak sa maglev využíva len v osobnej doprave [2]. Ale jeho vozidlá môžu byť upravené na vysokú rýchlosť (400 – 500 km.h⁻¹). Priemerná rýchlosť cenína v nákladnej doprave komíny je asi 600 km a náklady na komínovú dopravu cína v USA ročne asi 200 mld USD. Výhodou maglevu je, že so zvýšenou rýchlosťou až do 500 km.h⁻¹, prepravné náklady sú až 10 % nižšie ako vozidlové. Ako aj vozidlové, ale majú 3x nižšie spotrebu energie.

Zamýšlaná sieť tratí maglevu [2] je na obr. 2. Zamýšľaná sieť tratí je na obr. 2.

Zmiesaný osobno-nákladný systém maglevu by mohol navrátiť investičné náklady na trať za niekoľko rokov. Napríklad pri 10 000 cestujúcich a 2000 kamiónoch denne (20 % komínové dopravy Chicago - New York) je doba návratnosti trate s cenou 6 miliónov dolárov za kilometer len 3 roky.

V súčasnosti sa konštruuje 35 km dlhá trať medzi Space Coast Regional Airport a Port Canaveral (Florida). Táto 1003 km.h⁻¹ was recorded in 1999 [2], [6], [7], [9], [10]. Since 2000 a new five-year phase of durability tests, as well as various tests for newly developed equipment, began to reduce construction costs of the future service line.

4.2 The German maglev system Transrapid

The German maglev train Transrapid differs from the Japanese MLX01 in the principle of levitation, which is an electromagnetic one by Transrapid but electrodynamic by MLX01. The Transrapid had been tested on the test line in Emsland and is fitted for the speed of 450 km.h⁻¹ [6], [8], [12]. The first service line in Germany ought to connect Hamburg and Berlin in 2005, but this project preparation was temporary suspended. Advantages of the Transrapid system are: a low noise level; the possibility of both the passenger and freight transport (17 tons of goods or 100 passengers for 1 vehicle, 2 to 10 vehicles in a train); transport safety estimated at 700-times higher than that by road vehicles and 20-times higher than that by planes; about 30 % lower energy consumption compared with express trains and 3.5-times lower (at 400 km.h⁻¹) than that by road vehicles; and, small area of soil needed for the maglev guideway [12].

4.3 Maglev transport intention for the USA

The high-speed maglev transport used for freight transport could also be a suitable solution to mobility in the United States after 2000 [2]. The idea is to transfer trucks from expressways to maglev lines.

The operating costs of maglev are low, some 2 cents/pas-senger/km and 5 cents/tons.km (without the amortization of maglev track). These costs are about 9 cents/passenger/km in air transport, 25 cents/vehicle/km with automobiles and 18 cents/tons.km with trucks.

The investment costs of the maglev track, however, are too high if the maglev is utilized for passenger transport only [2]. But its vehicles can be configured to carry prevoz and loaded trailers at the speed up to 400 – 500 km.h⁻¹. The average distance by freight trucks is about 600 km, and the costs of trucking are 200 milliard USD yearly in America. For these 200 milliard USD, it would be possible to build a 30,000 km-long net of maglev lines connecting metropolitan areas with 95 % of U.S. inhabitants over 20 years. Seventy-five percent of inhabitants would live less than 25 km from maglev stations. Trucks transferred by maglev could attend to customers in an adjacent station area after their detrainment.

The intended maglev line net [2] is shown in Fig. 2.

A dual passenger-freight maglev system could pay back the guideway capital cost in a few years. For example, with 10,000 pas-sengers and 2000 trailers daily (20 % of the Chicago – New York truck traffic) the payback time for a guideway costing six million dollars per km is only 3 years.

Currently, the 35 km-long maglev line is designed between Space Coast Regional Airport and Port Canaveral (Florida). The
trať umožní získať skúsenosti s dopravou maglevom a urobiť ju atraktívnou a populárnejšou.

5. Elektrická mestská hromadná doprava

Pohyb obyvateľstva vo veľkomestách a aglomeráciách je nepredstaviteľný bez výkonných prostriedkov mestského transportu. Len elektrifikované trate električiek, metra, mestských ľahkých a rýchlych železníc sú schopné prepraviť množstvo cestujúcich rýchlo a bezpečne v mestách, ktorých ulice a cesty sú preplnené automobilmi. Na rýchle spojenie letísk s mestskými centrami sa stvára špecializovaná železnica. Výhodami týchto systémov sú nulové exhalácie a nízka hladina hluku.

Vzrastajúca urbanizácia vo svete si vynúti široký rozvoj elektrifikovanej mestského transportu.

6. Cestné vozidlá s elektrickým pohonom

Aj v budúcnosti bude cestná doprava dôležitá. Elektrickou energiou napájané cestné vozidlá sa dnes menej požívajú, aj keď trolejbusy a elektromobily premávajú v mnohých mestách. Ale výskum výkonnejších batérií a moderných pohonov s motormi na striedavý prúd (asynchronnými, s permanentnými magnetmi, reluctan-

PREHLADY / REVIEWS

Obr. 2. Plánovaná sieť trát maglevu v Severnej Amerike

Fig. 2. The planned net of maglev lines in the North America
motors for electromobiles goes on successfully. All big automobile and electric equipment-producing companies in the world prepare their projects in this industry branch to be ready for the boom expected in electric road vehicle production in the future.

7. Conclusions

The improving transport demands in the 21st century and later cannot be met by transport systems consuming fossil fuels. Electrically powered systems both of high speed and city mass transport are able to solve these demands in a more energy-, ecologically- and economically-friendly way than existing systems. Naturally, if the world (not only) transport policy anticipates expect changes in energy resources in the next few years.

Literatúra – References

[1] MARŠÁLEK, O.: Vliv současné energetické situace na rozvoj elektrického vytápění. Elektrotechnik č. 4/90, s. 85–87.
[2] DANBY, G., POWELL, J.: The Development of Maglev - Yamanashi and Beyond. Proceedings of papers read by occasion of opening the Yamanashi Maglev Test Line on April 4th, 1997, p. 4–19.
[3] DRÁBEK, J.: Energetická náročnost dieselelektrické vozby. Železniční technika č. 12/1982, s. 13–18.
[4] LACÔTE, F.: Die TGV-Fahrzeugfamilie der SNCF. Elektrische Bahnen Nr. 5/1992, S. 176–179.
[5] DRÁBEK, J.: Pozemní vedená vysokorychlostní doprava v Japonsku. Nová železniční technika č. 3/1997, s. 66–69.
[6] DRÁBEK, J.: Vysokorychlostní doprava soupravami s magnetickou levitací v Japonsku. Nová železniční technika č. 4/1997, s. 98–101.
[7] Hirota, T.: The Second Train Set for the Yamanashi Test Line. Quarterly Report of RTRI Tokyo, Feb. 1998.
[8] KRETSCHMAR, R.: Das Magnetschnellbahn-Projekt Berlin – Hamburg und die Einsatzmöglichkeiten des Transrapid in den Pan-Europäischen Verkehrskorridoren. Zborník konferencie Budúcnosť vysokorýchlostnej dopravy na Slovensku v európskom kontexte, Stará Lesná 9. – 11. 10.1997, s. 6–16.
[9] www.rtri.or.jp – web site of the Railway Technical Research Institute (RTRI) Tokyo.
[10] HASEGAWA, H.: Maglev vehicles MLX01 attained 1003 km/h relative speed of two trains passing on the Yamanashi Test Line. Quarterly Report of RTRI Tokyo Nr. 2/2000.
[11] SEKI, A.: The JR-Maglev System after Three Years Evaluation Tests. Quarterly Report of RTRI Tokyo Nr. 2/2000.
[12] PALEČEK, J., PALEČEK, L.: TRANSRAPID - nová dimenze v dopravní technologii. Nová železniční technika č. 1/1998, s. 2–4.