Agronomic and genetic approaches for enhancing tolerance to heat stress in rice: a review

Adnan RASHEED¹, Mahmoud F. SELEIMAN²,³, Muhammad NAWAZ⁴, Athar MAHMOOD⁵, Muhammad RIZWAN ANWAR⁶, Muhammad AHSIN AYUB⁶, Muhammad AAMER⁷, Mohamed A. EL-ESAWI⁸, Ehab H. EL-HARTY², Maria BATool⁹, Muhammad U. HASSAN⁷, Ziming WU¹, Huijie LI¹,¹⁰*

¹Jiangxi Agricultural University, Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education / College of Agronomy, Nanchang, 330045, Peoples Republic of China; adnanbreeder@yahoo.com; lihuijie169@163.com
²(corresponding author); wuzm@jxau.edu.cn
³King Saud University, Plant Production Department, College of Food and Agriculture Sciences, Riyadh 11451, Saudi Arabia; mseleiman@ksu.edu.sa; eelharty@ksu.edu.sa
⁴Menoufia University, Faculty of Agriculture, Department of Crop Sciences, Shibil El-Kom 32514, Egypt
⁵Khawaja Fareed University of Engineering and Information Technology, Department of Agricultural Engineering, Rahim Yar Khan, Punjab, Pakistan; dmnawaz@kfueit.edu.pk
⁶University of Agriculture Faisalabad, Department of Agronomy, Faisalabad, 38040, Pakistan; athar.mahmood@uaf.edu.pk
⁷Rice Research Station, Bahawalnagar, Punjab, Pakistan; Muhammad.rizwan.a@gmail.com; ahsinayub@gmail.com
⁸Jiangxi Agricultural University, Research Center for Ecological Sciences, Nanchang 330045, China; muhammadamer@jsau.edu.cn; muhassanuaf@gmail.com
⁹Tanta University, Botany Department Faculty of Science, Tanta 31527, Egypt; mohamed.ekzaw@science.tanta.edu.eg
¹⁰Huazhong Agricultural University, College of Plant Science and Technology, Wuhan 430070, China; maria.batool@webmail.hzau.edu.cn

Abstract

Rice is an important cereal crop worldwide that serves as a dietary component for half of the world’s population. Climate change, especially global warming is a rising threat to crop production and food security. Therefore, enhancing rice growth and yield is a crucial challenge in stress-prone environments. Frequent episodes of heat stress threaten rice production all over the world. Breeders and agronomists undertake several techniques to ameliorate the adverse effects of heat stress to safeguard global rice production. The selection of suitable sowing time application of plant hormones, osmoprotectants and utilization of appropriate fertilizers and signaling molecules are essential agronomic practices to mitigate the adverse effects of heat stress on rice. Likewise, developing genotypes with improved morphological, biochemical, and genetic attributes is feasible and practical way to respond to this challenge. The creation of more genetic recombinants and the identification of traits responsible for heat tolerance could allow the selection of early-flowering cultivars with resistance to heat stress. This review details the integration of several agronomic, conventional breeding, and
molecular approaches like hybridization, pure line selection, master-assisted-selection (MAS), transgenic breeding and CRRISPR/Cas9 that promise rapid and efficient development and selection of heat-tolerant rice genotypes. Such information’s could be used to determine the future research directions for rice breeders and other researchers working to improve the heat tolerance in rice.

Keywords: agronomic approaches; breeding approaches; heat stress; plant hormones; rice

Introduction

Rice (*Oryza sativa* L.) is an important staple food crop for half of the world's population (Aslam *et al*., 2015; Liang *et al*., 2021; Badawy *et al*., 2021). It fulfils the dietary needs of more than 3 billion people across the globe (Rasheed *et al*., 2020a, 2020b; Rasheed *et al*., 2020; Rasheed *et al*., 2021b). Asian countries are the primary rice consumers, accounting for more than 80% of total rice consumption (Suh, 2015). Rice contains a significant amount of protein, nutrients, carbohydrates, fiber, and sugar (Kennedy and Burlingame, 2003; Badawy *et al*., 2021). Rice is a model crop because of its small genome size (Bennetzen, 2002), and it is suitable for effective genetic transformation (Rodríguez *et al*., 2005). The above mentioned characteristics suggested that the yield potential of rice could be increased by selecting genetic variants that can cope with changes in heat, drought, and salinity stresses (Jwa *et al*., 2006). In 2019 rice was grown on an area of 162,666.00 thousand hectares and global rice production was remained at 497.76 million metric tons (FAO, 2019).

Abiotic stresses are significant constraints (Rasheed *et al*., 2021a; Badawy *et al*., 2021) for rice growth and production (Hassan *et al*., 2017; Hassan *et al*., 2020). Heat stress (HS) refers to an increase in the temperature level beyond the threshold limit (Kumari *et al*., 2020; Mukhtar *et al*., 2020) for a definite period that permanently decreases growth and development (Govindaraj *et al*., 2018). Cereal production has decreased by 9-10% over the last 50 years due to extreme heat and drought stress (Lesk *et al*., 2016). A daytime temperature of over 35 °C during flowering decreases the fertility rate (Wang *et al*., 2019b) and causes a substantial reduction in rice productivity (Khan *et al*., 2019). Moreover, the occurrence of HS at the flowering stage induces pollination failure and results in a severe yield reduction (Abd El-Daim *et al*., 2014; Song *et al*., 2014). Heat stress also reduces the production of assimilates and enzymatic activities and leads to a severe reduction of the final yield (Chaturvedi *et al*., 2017; Mukhtar *et al*., 2020). There is a negative relationship between the increment of temperature and the yield of rice, wheat, and maize. Heat stress affects plants by blocking the metabolic pathways and reducing the seed setting rate, plant growth, and development, and seed ripeness, which can cause a significant reduction in final grain yield. Long-term heat stress reduces plants photosynthetic activity, decreases water use efficiency, reduces seed weight and grain weight, and shortens the leaf area (Hassan *et al*., 2020). The ability of plants to sustain their yield and maintain average growth under heat stress conditions is driven by various metabolic and morphological features referred to as heat tolerance traits (Wahid *et al*., 2007; Mukhtar *et al*., 2020). Heat tolerance traits are governed by many genetic factors and are linked to rice physiological and morphological adaptations (Impa *et al*., 2021).

Heat tolerance mechanisms can be divided into three types: avoidance, escape, and tolerance. Escape mechanisms include the completion of the reproduction cycle before the heat stress period. A plant retains more water by decreasing the leaf area, stomatal closure, and dropping old leaves (Mohammed *et al*., 2021). Some researchers have determined the adaptation approaches of rice against heat stress (Julia and Dingkuhn, 2013). Rice escapes heat stress by regulating the panicle emergence time and the opening of spikelets (Julia and Dingkuhn, 2012). Spikelet sterility has been generally investigated to improve rice tolerance to HS. Variations among the cultivars in terms of spikelet fertility under harsh conditions can be considered as essential for heat tolerance mechanisms in rice (Weerakoon *et al*., 2008). Rice crop can decrease the HS via panicles up to 10 °C through transpiration, which determines the potency of spikelet’s (Matsui *et al*., 2001). Erect and long leaves safeguard the panicles from the direct impacts of heat stress and induce HS tolerance in rice (Julia and
Heat tolerance can be gained by altering several morphological, molecular, and biochemical traits. The heat-tolerant wild genotype (Oryza meridionalis) maintained a high photosynthesis rate under HS conditions owing to better maintenance of the enzyme Rubisco (Qu et al., 2021). The chlorophyll content and electrolyte leakage from leaves and roots increased during HS and can be utilized as a marker to investigate heat tolerance.

Different agronomic and breeding approaches could be used to enhance the heat tolerance in rice crops. Agronomic approaches involve early sowing, spraying of signalling molecules, and hormones and osmoprotectants to mitigate the adverse effects of heat stress. The early sowing ensures the plant's survival at high temperatures, increasing overall productivity and quality (Krishnan et al., 2011). The application of plant hormones (auxins, salicylic acid, ascorbic acid, methionine, alpha-tocopherol, and brassinosteroids) can also alleviate the adverse effect of heat stress and ensures better productivity (Khan et al., 2019). Likewise, the application of signalling molecules reduced the heat-induced adverse effects in rice crop by increasing the PS II efficiency, water use efficiency, and activity of anti-oxidants (Chandrakala et al., 2013). Additionally, the application of variable osmolytes (proline, glycine-betaine, and spermidine) is also considered a critical approach to improving the robust approach to improving rice crops heat tolerance (Khan et al., 2019; Sakamoto and Murata, 2000).

Breeding techniques are considered a long-term solution to solve the heat stress problem in rice crop. Conventional breeding approaches, including the selection of heat-tolerant cultivars, can help to improve the heat tolerance of rice crops. Likewise, recently developed molecular approaches have adopted the omics technique to develop transgenic plants by manipulating targeted genes, which can also help to improve the heat tolerance of rice crops (Duque et al., 2013; Kosová et al., 2011). Additionally, the identification of heat-tolerant QTLs and the use of proteomics and transcriptomics approaches may help identify underlying molecular heat tolerance processes, providing development to the heat-tolerant crop genotypes. Therefore, the current review reports on the agronomic approaches, conventional, and molecular approaches that can improve heat stress tolerance in rice. We discuss the heat stress mechanisms, agronomic approaches, conventional approaches, molecular approaches, heat tolerance QTL and genes, and the future outlook for heat tolerance in rice.

Effects of heat stress on rice

In the future, rice production may face massive challenges due to an increase in extreme climatic events (Sun et al., 2021). Heat stress can cause permanent injury to plants (Wahid et al., 2007) by impairing growth, metabolic processes, and seed setting rate as well as causing pollen infertility (Hassan et al., 2017), therefore leads to severe yield reduction (Hasanuzzaman et al., 2013; Zafar et al., 2017). Extreme heat stress rapidly decreases plants photosynthesis rate, grain weight (Table 1), leaf area, and water use efficiency (WUE) (Shah and Paulsen, 2003). High levels of heat stress may hinder vegetative and reproductive growth (Katiyar-Agarwal et al., 2003). The booting and flowering stages are the most crucial stages of the rice life cycle, and exposure to HS at these stages can cause complete infertility in rice crop (Shah et al., 2011).

Effects of heat stress on photosynthesis, growth, and yield

Heat stress (HS) significantly decreases rice growth during the initial stages (Figure 1) and, seedling mortality is considered as a common effect of HS (Abd El-Daim et al., 2014; Xiao et al., 2011). Depending on the genotype, heat stress reduces rice growth and final production by decreasing relative water content (RWC), photosynthetic pigment concentration, and assimilating production (Fahad et al., 2016a; Ihsan et al., 2016). The process of photosynthesis is vulnerable to HS, and it is adversely affected by high-temperature stress. Heat stress (30 °C and 35 °C) decreased photosynthesis, stomatal conductance, and transpiration, substantially reducing the final yield and quality (Fahad et al., 2016b). Other impacts of HS are reductions in carbon dioxide pathways, electron transport chain and rubisco activity. Heat stress remarkably reduces photosynthetic
processes and causes membrane instability and damage (Zheng et al., 2016). However, the consequences of this stress might be different among plant species (Alghabari et al., 2016). Heat stress decreases the concentrations of proteins and lipids; however, reducing lipids is relatively more significant (Johnston et al., 2007). The presence of HS at the flowering stage has been shown to spikelet sterility (Figure 1) by stopping another dehiscence and germination of pollen on the stigma (Coast et al., 2016). Heat stress also leads to a poor seed filling rate and poor seed development (Sehgal et al., 2018). High temperatures cause low root vigor, and the selection of root base traits becomes tedious (Fahad et al., 2017). In conclusion, HS reduces the chlorophyll content, rubisco activity, water use efficiency and induces oxidative damage and stomata closure, therefore causing significant reductions in the growth and yield of rice plants. The influences of heat stress on rice are given in Table 1.

Table 1. Influences of heat stress on rice growth, photosynthesis, yield and quality

Heat stress temperature	Effects	References
45 °C	Heat stress reduced the seed setting and seed yield	(Akman, 2009)
35/25, 40/30, 45/35, and 50/40 °C	Heat stress reduced the length of pollen tube, and decreased pollen protein and sugar contents	(Das et al., 2014)
38 °C	Heat stress decreased 1000 grain weight, and rice yield	(Aghamolki et al., 2014)
35 °C	Heat stress reduced yield traits, grain size, and rice yield	(Wu et al., 2016)
34 °C	Heat stress reduced growth and increased kernel chalkiness	(Shi et al., 2016)
33, 35, or 37 °C	Reduced Pollen fertility	(Wada et al., 2020)
42 °C	Reduced grain weight	(Chaudhary et al., 2021)
28 °, 42 °C	Reduced photosynthesis	(Qu et al., 2021)
33 °C	Photosynthesis	(Huang et al., 2021)
32 °C	Reduce grain yield	(Nakano et al., 2021)
33 °C	Reduced spikelets fertility	(Chidambaranathan et al., 2021)

Effect of heat stress on water usage efficiency and nutrient uptake

Heat stress reduces the water use efficiency in rice (Zou et al., 2011) by increasing transpiration rate (Topbjerg et al., 2015). Rice plant showed reduction in WUE under extreme heat stress and it leads to lower photosynthesis (Piveta et al., 2021). HS also disrupts plant minerals and their translocation. Likewise, Cabral et al. (2016) noted that higher nitrogen (N) concentration was allocated to grains than tillers under HS, and the phosphorus (P) concentration was also decreased in wheat plants subjected to the HS. High temperature (>2 °C above the average level) was shown to enhance the C: N (Figure 1) ratio and decreased the concentration of nutrients in maize plants (Zhang et al., 2013a). In another study the effects of heat stress on nutrients uptake were studied. The heat stress significantly reduced the nitrogen application rate in Boro rice variety (Hossain et al., 2021). In general, few studies have investigated the impacts of HS on the mineral status of plants. More extensive investigation could help to establish nutrient absorption pathways for heat-stressed plants.

Effects of heat stress on the production of reactive oxygen species and antioxidant enzymes

Oxidative stress is also accompanied by heat stress (Figure 1) and occurs due to the accumulation of ROS in plants (Pucciariello et al., 2012), which cause substantial damage to the significant molecules, including the DNA, proteins, sugars, and carbohydrates, and can induce cell death (Gill and Tuteja, 2010). In crops, reactive oxygen species exist in molecular forms. Their ionic form is superoxide anions, and their molecular state is singlet oxygen (Mittler et al., 2004). Numerous enzymes, such as NADPH oxidases, polyamine, and a large
family of class III peroxidases present on the cell surface, create ROS (Cosio and Dunand, 2009). The overproduction of ROS during the HS is highly toxic to lipids, proteins, and nucleic acids, eventually, damaging cells and leading to cell death (Gill and Tuteja, 2010). Plants use different types of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR), to scavenge ROS. The antioxidant molecules are positioned in plant cells and work in groups to detoxify ROS (You and Chan, 2015). In conclusion, HS induces the production of ROS, which cause damage to significant molecules and eventually leads to cell death. Therefore, proper measures should be adopted to reduce ROS production under HS conditions to ensure better rice production.

Figure 1. Effects of heat stress on various growth, physiological, biochemical, and yield traits of rice crops

Heat tolerance mechanisms in rice

Plants have different mechanisms, including escape, avoidance, and survival, to cope with HS. Plants undergo several types of modifications to avoid heat stress. Rice varieties have covered panicles to reduce HS by decreasing the evaporation rate (Shah et al., 2011). Early flowering varieties have a better capability to tolerate heat stress by using a heat avoidance mechanism (Bheemanahalli et al., 2017; Ishimaru et al., 2012). Genetic variations in rice plants can be exploited to screen the germplasm for HS tolerance (Ishimaru et al., 2012).

Size of anther and basal pore

The length of anther varies among genotypes. Genotypes associated with longer anthers are considered more heat tolerant than those associated with short anthers (Matsui and Omasa, 2002). Under heat stress conditions, floret sterility is a direct cause of reduced pollen grain germination on the stigma owing to poor anther dehiscence (Ishimaru et al., 2012). Anther size has a positive association with the number of pollen grains per anther. It is considered that cultivars with more prominent anthers have more pollen grains, allowing them to compensate for temperature-induced effects (Matsui and Omasa, 2002). Likewise, the size of basal pores varies among cultivars. The large anther size can minimize the effects of heat stress and could be use as tolerance criteria in rice under extreme heat stress (Santiago et al., 2021). Large basal pores induce the release of pollen grains to the stigmata during another dehiscence; thus, the number of pollen grains in the plant sigma depends on the basal pore size (Matsui, 2005). Conversely, pollen grains remain inside the anther in plants with
tiny basal pores until the floret opens. Then, the anther bends and spreads pollen. Thus, genotypes with tiny basal pores undergo self-pollination and are more likely to cross-pollinate (Matsui and Kagata, 2003). Large basal pores facilitate the release of pollen from the anther and increase the chance of pollination. Basal pore can also be used as tolerance criteria under condition of extreme heat stress and pollination rate can be enhanced (Wang et al., 2021). In conclusion, cultivars with large anthers and basal pores should be cultivated to reduce the effects of heat stress.

Photosynthesis and the carbohydrate content

The selection of genotypes that can accumulate a high concentration of nonstructural carbohydrates produce more biomass, and maintain a higher photosynthesis rate under extreme heat stress could be used to develop the heat-tolerant cultivars to minimize yield loss induced by heat stress. Genotypes tolerant to heat stress at the anthesis and reproductive stages can maintain a higher rate of photosynthesis for a long time and thus produce more grains (Egeh, 1991). To attain heat tolerance and maximum growth, retention of a high photosynthetic rate is critical. The response of photosynthetic parameters to HS was observed in two rice cultivars (IR46 and IR53) under high heat stress conditions during the day-time. It was noted that photosynthetic traits like the chlorophyll content were more prominent in cultivar N22 than another cultivar. It was found that all photosynthetic traits of N22 were more prominent than in the other genotypes at elevated temperatures, showing the greater tolerance of N22. The rate of photosynthesis was first improved with temperature up to an optimal temperature of 32 °C, which then reduced when the temperature continued to increase to 42 °C (Gesch et al., 2003). Thus, we should develop rice cultivars with improved photosynthesis and carbohydrate synthesis capacities to achieve the maximum yield potential under HS conditions.

Heat shock protein content

Heat shock proteins (HSPs) are considered significant molecular chaperons that help in folding protein assembly and the maintenance of homeostasis under both ideal and adverse conditions (Lin et al., 2014). In a previous study, Jagadish et al. (2010) observed the changes in protein expression under HS conditions and showed that the tolerant genotype N22 expressed more HSPs. Hence, it was proven that HSPs enhance HS tolerance. The gene expression analysis showed a variation in the expression levels of genes encoding HSPs in rice leaves. Higher expression of HSPs was found in the heat-tolerant rice cultivars R-1389 and N22 (Chandel et al., 2013). The HSPs (OsHsfA7 and OsHsfA2a) were strongly upregulated in plants with the N22 genotype under HS conditions (42 °C) at the flower opening phase. The functions of Hsfs, OsHsfA2e and OsHsfA7 were also upregulated in the Vandana variety, but the increase in function was lower than in N22 (Sailaja et al., 2015). In another experiment, Lin et al. (2014) tested the heat tolerance of the japonica and indica N22 varieties of rice. Both studies analyzed the heat-stress tolerance of different rice varieties to allow a clear comparison between varieties to be made. These cultivars exhibited conflicting levels of heat tolerance. N22 showed a rapid decline in HSP101 compared with japonica, which might have been due to environmental alterations. The Nipponbare genotype attained HS tolerance over the long term, while N22 showed greater basal HS tolerance (Katiyar-Agarwal et al., 2003). The high expression of genes related to the heat shock transcription factor (Hspf) is one of the important factors in the reaction of plants to heat waves (Liu et al., 2009). Consequently, HSPs are associated with higher heat-stress tolerance in rice crops as they reduce the permanent accumulation and degradation of mis-folded proteins and maintain cellular homeostasis.

Thermostability of the cell membrane and chlorophyll fluorescence

Genetic variations have been identified in rice cultivars regarding chlorophyll fluorescence traits under HS (Sailaja et al., 2015). The rice genotype N22, tolerant to heat-stress, demonstrated a high Fv/Fm ratio when exposed to HS (42 °C) (Bahuguna et al., 2015). Heat stress declined the chlorophyll contents, and the decline was more prominent in heat-sensitive cultivars (Sailaja et al., 2015; Zhou et al., 2007). Moreover, membrane thermostability (MTS) is a trustworthy feature that could be exploited to select tolerant genotypes. It has been
shown to have a more significant association with yield under HS conditions (Sailaja et al., 2015). Heat stress was shown to increase electrolyte leakage, leading to a significant reduction in the final yield (Mohammed and Tarpley, 2009). Zhang et al. (2005) examined the influence of HS on the physiological and biochemical features of rice at the flowering and heading stages. They noted that the sensitive variety (4628) had lower membrane permeability than the heat-tolerant (line-96) under HS conditions. In another study, membrane thermostability was found to have a significant association with the grain yield/plant. Earlier studies showed that early-morning flowering could minimize the effects of HS on rice and be used as a selection criteria. In this study, a set of diverse rice genotypes were exposed to HS and the flowering time was observed (Bheemanahalli et al., 2017). Membrane and chlorophyll fluorescence must be increased in rice cultivars under changing HS scenarios to ensure better rice production.

Spikelet fertility and yield traits

There are genetic differences in the sensitivity of spikelets to HS (Buu et al., 2021). Spikelet’s from heat-tolerant genotypes show better results than sensitive ones under HS (Jagadish et al., 2010; Prasad et al., 2006). Two traits, spikelet fertility and yield/plant could be selected to attain HS tolerance. For instance, N22, a highly heat-tolerant rice cultivar, maintains spikelet fertility of 71%. In contrast, cultivars with moderate or poor heat tolerance (IR 64 and Moroberekan) retained 48% and 18% spikelet fertility levels, respectively. Nevertheless, Prasanth et al. (2016) stated that spikelet fertility is not a significant criteria for determining heat tolerance after excluding the yield/plant.

Agronomic approaches to enhancing heat tolerance in rice

Early planting

Determining an appropriate sowing time is an imperative agronomic strategy for reducing the damaging effects of heat stress. Most agronomic practices focus on the early sowing of rice crop, the adjustment of irrigation systems, and the adaptation of early and late maturing cultivars to mitigate the adverse effects of heat stress (Krishnan et al., 2011). Early sowing of rice has significant role in avoiding stress in rice. Ding et al. (2020) adjusted the sowing date of rice under adverse climatic conditions and concluded that shifting of sowing date showed promising results in terms of rice yield. In this way yield loss can be compensated. Jagadish et al. (2015) also presented a detailed review in which they showed that management of sowing date in rice could protect rice from extreme heat stress. Appropriately timed sowing of rice is crucial to reduce the effects of heat stress at critical growth stages. Setiyono et al. (2018) found significant reductions in the rice yield with heat stress at the plant reproductive stage due to a high rate of spikelet sterility. They also suggested that yield losses in rice crops can be reduced substantially by early sowing. The use of optimum sowing dates also reduces the unfavorable adverse effects of heat stress on the grain yield and quality. Zhu et al. (2013) studied the impacts of various sowing dates on the rice yield and quality. They found that adjusting the sowing time can reduce the effects of heat stress on the rice yield and quality. However, they also suggested that adjusting the sowing time is very difficult because it affects the proceeding crops. In a flooded anaerobic system, methane and nitrous oxide emissions are the main factors responsible for global warming. Therefore, adjusting the irrigation system, for example, using alternate wetting and drying periods, can help to decrease the effects of heat stress by reducing greenhouse gas emissions (Yu et al., 2004; Aamer et al., 2021). Additionally, covering the soil surface with crop residue and modifying the microclimate by shading can reduce the effects of heat stress in rice crops (Krishnan et al., 2011). In conclusion, optimizing the sowing time can help reduce the harmful effects of heat stress in rice crops.
Employing plant hormones to increase heat tolerance in rice

It is well known that the five classical phytohormones have drawn the interest of many scientists and have been investigated for decades (Chattha *et al*., 2017). Plant hormones may be targeted to enhance abiotic stress tolerance and the growth and yield of rice (Ciura and Kruk, 2018). Increasing the auxin level during panicle formation increases heat tolerance in rice (Sarwar, 2019). The gaseous hormone ethylene is developed in response to heat stress (Wu and Yang, 2019), and ethylene-mediated signaling induces heat tolerance in rice seedlings. In a previous experiment, ethylene-responsive mutants were identified and characterized in rice. It was concluded that ethylene significantly increases heat tolerance in rice seedlings (Wu and Yang, 2019) by maintaining the seed ripening rate during extreme heat waves.

Abscisic acid is an important plant hormone that contributes to the response to diverse stress conditions including HS, drought, and cold stress (Zou *et al*., 2017). Many studies have revealed that ABA improves thermos-tolerance in various plant species (Claeys *et al*., 2014). Amino acids also play key roles in HS tolerance in rice crops. Amino acids are involved in metal binding, cell signaling, and the antioxidant defense system. Therefore, they play essential roles in plant defenses when exposed to different stresses (Sharma and Dietz, 2006). Proline is a vital amino acid that protects the plants from stressful conditions (Verbruggen and Hermans, 2008). It plays a significant role in different mechanisms, including antioxidant defense, turgor production, N, and carbon assimilation (Verbruggen and Hermans, 2008), and protein stabilization (Maggio *et al*., 2002). Proline minimizes the negative impacts of HS by lowering the ROS concentration and increasing the activity of antioxidants and the accumulation of different metabolites, including proline, ascorbic acid, and glutathione (Ali *et al*., 2020). Spermidine is a natural polyamine that is involved in the adaptation of plants to various abiotic stresses, such as heat (Tian *et al*., 2012), cold (Yamamoto *et al*., 2012), heavy metals (Xu *et al*., 2011), and drought (Fu *et al*., 2019). Spermidine was shown to increase, therefore, antioxidants activity, therefore increasing plant survival under stressful conditions (Tian *et al*., 2012).

Ethylene and cytokinin also play a significant role under heat stress in plants as well as rice. In response to extreme heat stress in rice, the gaseous hormone like, ethylene is produced in plants and its manipulation under heat stress brings promising results (Poór *et al*., 2021). Likewise, cytokinin (CK) a plant growth promoting hormone also protects plants under heat stress. In rice, CK governs several biological features like, growth of shoot and increase spikelets number under heat stress (Wu *et al*., 2017).

Foliar spraying of spermidine has been shown to improve the tolerance of rice to HS by reducing oxidative damage and increasing photosynthetic and antioxidant activity under HS conditions (42 °C) (Mostofa *et al*., 2014). Moreover, spermidine was found to increase plant growth and the chlorophyll content under HS conditions (Murkowski, 2001; Zain *et al*., 2017). Salicylic acid is a type of phytohormones with an abundant distribution in plants. It governs the response of a large number of physiological features to abiotic stresses. The exogenous application of SA to rice seedlings was found to minimize the adverse effects of high heat waves at a up to 32 °C and enhance dry matter portioning at up to 16% (Mohammed and Tarpley, 2009). The induction of a class 11 HSP, Oshsp18.0, by SA in rice demonstrated the role of SA in response to heat waves (Chang *et al*., 2007). Methyl jasmonates play a crucial role in alleviating heat stress, and their application increased early flowering under heat stress conditions (Kobayasi and Atsuta, 2010). Zhang *et al*. (2018) revealed the consequences of spraying auxin on the elongation of pollen tubes of heat-tolerant and susceptible plant varieties. They stated that spraying naphthalene acetic acid reduced and upturned the spikelet sterility in heat susceptible and tolerant rice plant genotypes by obstructing the reduction of pollen tube growth. These findings suggest that plant hormones could increase growth and improve HS tolerance in rice crops.

Utilizing fertilizers and signaling molecules to increase heat tolerance in rice

The application of signaling molecules and fertilizers can significantly reduce the negative impacts of heat stress in rice. Likewise, the application of CaCl2 (10 mM) was shown to mitigate the adverse effects of heat stress in rice by improving the PS-II efficiency and water use efficiency and increasing the chlorophyll content and spikelet fertility (Chandtrakala *et al*., 2013). Similarly, nitric oxide regulated different processes in
plants and was shown to improve flowering, fertilization, and high-stress tolerance (Hasanuzzaman et al., 2013). Rice seedlings treated with hydrogen peroxide showed significant improvements in PS-II efficiency, antioxidant activity, and gene expression, which increased rice heat tolerance. The basal application of boron mitigated the adverse effects of heat stress in rice by improving the membrane stability and spikelet fertility (Shahid et al., 2018). The soil application of potassium fertilizers remarkably reduced the effects of drought stress by increasing the photosynthetic efficiency and antioxidant activity and decreasing the MDA content. Thus, the application of fertilizers and signaling molecules can reduce the adverse impacts of heat stress by increasing the photosynthetic efficiency, membrane stability, and activity antioxidants.

Using osmoprotectants to increase heat tolerance in rice

The accumulation of various osmoprotectants in response to different abiotic stresses can alleviate the adverse impacts of stressful conditions (Hassan et al., 2020). Osmoprotectants protect plant metabolic processes by stabilizing cellular membranes and increasing different antioxidants’ photosynthetic efficiency and activity. Glycine betaine (GB) is an essential osmolyte that accumulates in plants under heat stress conditions (Hassan et al., 2020). It induces heat tolerance by protecting different enzymes (Rubisco and citrate synthase) from heat degradation (Quan et al., 2004). Many plant species such as maize and sugarcane accumulate higher concentrations of GB under heat stress conditions, whereas rice, Arabidopsis, and mustard do not accumulate GB (Annunziata et al., 2019). Thus, the exogenous application of GB increases the rice yield under heat stress conditions by promoting the activity of antioxidants which, in turn, protects the membrane, enzymes, and major molecules from the damaging effects of heat stress (Mohammed and Tarpley, 2009). The application of GB prevents the degradation of rubisco due to heat stress which, in turn, improves the photosynthetic efficiency and, consequently, the rice yield (Dionisio-Sese et al., 2000).

Proline also accumulates in plants in response to heat stress and protects the plants from the damaging effects of heat stress. Proline protects the rubisco enzyme from degradation due to heat stress which, in turn, increases the overall photosynthetic efficiency and rice yield (Dionisio-Sese et al., 2000). Spermidine is also a critical osmoprotectant that plays a vital role in increasing the tolerance to different stresses, including heat stress (Liu et al., 2015). Spermidine-induced tolerance to heat stress in rice is attributed to an increase in antioxidant, starch, and polyamine metabolism. Spermidine increases the expression of the starch synthesis enzyme, favouring an increase in starch accumulation (Tang et al., 2018).

Moreover, spermidine reduces the hydrogen peroxide content in japonica rice by modulating the glutathione and glyoxalase systems (Mostofa et al., 2014; Tang et al., 2018). The application of spermidine also increase the grain yield and grain filling rate in rice by increasing antioxidant activity, photosynthetic activity, the efficiency of PS-II, and the sugar content and modulating starch and polyamine metabolism (Fu et al., 2019). It is concluded that osmoprotectants are important contributing factor in heat stress tolerance in rice. These osmoprotectants can be used in different modified forms and significant heat tolerance can be achieved in rice. Their role can be studied by exposing rice under different heat stress conditions.

Breeding approaches for enhancing heat tolerance in rice

Phenotypic selection of tolerant cultivars

Developing breeding methods that promote HS tolerance in rice crops requires a proper understanding of HS tolerance mechanisms (Karwa et al., 2020). Considerable and significant genotypic variation is present in rice cultivars subjected to HS, and the selection of heat-tolerant genotypes will ensure sustainable production under HS conditions (Prasad et al., 2006; Shah et al., 2011). Rice genotypes show varying responses to heat stress, and this increases the possibility of identifying heat-tolerant genotypes. With the changing climate, the selection of tolerant genotypes will become a greater focus. In a previous experiment, 1217 rice genotypes collected from different areas were tested for heat tolerance, and it was observed that only 2% of cultivars were
heat tolerant under changing environments (Masuduzzaman et al., 2016). Heat-tolerant genotypes should be investigated to identify the heat stress tolerance mechanism present in rice crop. A schematic display of increasing heat tolerance in rice using several factors and development of heat tolerant cultivars using breeding methods is provided in Figure 2 and Figure 3.

Figure 2. Development of heat-tolerant rice genotypes. The use of different genetic, phenotypic, physiological, and biochemical factors to enhance heat tolerance in rice. A complete graphical overview

Figure 3. Diagrammatic representation of novel strategies used to improve the heat tolerance of rice crops. The development of heat-tolerant cultivars by traditional breeding practices and advanced molecular techniques can help to improve heat tolerance in rice crops
Loci with a putative quantitative trait confer heat tolerance in rice

QTL mapping is an effective technique that can be used to locate genomic regions controlling several traits (Rasheed et al., 2020a, 2020b; Rasheed et al., 2020; Rasheed et al., 2021b). Multiple QTLs have been mapped for HS tolerance (Xu et al., 2021), especially for rice flowerings (Ye et al., 2012; Ye et al., 2015a). Such markers can be used to initiate MAS for a pyramid of genes to promote the breeding of plants with greater HS tolerance (Cheng et al., 2012; Ye et al., 2015b). Nonetheless, before the use of these QTLs in MAS, the potential of subsequent populations to be used in large germplasm must be determined after initial mapping (Ye et al., 2015a).

Nowadays, rice breeders use double haploid (DH), backcross inbred lines (BIL), and RIL to unfold the genetic backgrounds of HS-tolerant rice plants (Qingquan et al., 2008; Tao et al., 2008). A previous study used a set of introgression lines (ILs) developed from a cross of *Oryza officinalis* and Koshihikari. The lines showed earlier flowering and improvement in the spikelet fertility and yield/plant compared with late-flowering genotypes (Ishimaru et al., 2010). Heat-stress tolerance is a polygenic feature governed by multiple genes that varies by stage and between plants species (Ashraf and Harris, 2005; Bohnert et al., 2006). Due to the advancement of marker technology, identifying QTLs associated with heat tolerance is an important approach. QTL identification assists in unfolding genetic mechanisms and the cloning of QTL. Many QTLs have been identified in previous studies (Wang et al., 2011; Xiao et al., 2011). The majority of these QTL were identified in rice genotypes at the flowering stage. QTLs governing spikelet fertility and the yield/plant were mainly mapped on chromosomes, 1, 4, 10, and all 12 linkage groups (Qingquan et al., 2008; Tao et al., 2008). In a previous study, Zhao et al. (2016) evaluated chromosome segment substitution lines (CSSL) from Habakati (heat-tolerant) and Sasanishiki (heat-sensitive) cultivars. Two QTLs (*qSFht2* and *qSFht4.2*) correlated with spikelet fertility, and two (*qDFT3* and *qDFT10.1*) correlated with flowering time were mapped. *SL412* presented a considerably higher spikelet fertility level in Habakati than Sasanishiki, and 6 CSSL exhibited a high pollen detachment level.

Zhang et al. (2009) identified two SSR markers (RM3586 and RM3735) accountable for 3% and 17% of the difference in HS tolerance among plants. They recommended the exploitation of genetic loci using MAS to develop HS-tolerant cultivars. Jagadish et al. (2010) used the *F₆* progeny of RIL and documented eight QTLs related to spikelet fertility in HS on dissimilar chromosomes. A QTL accountable for 18% of the phenotypic deviation in tolerance to heat stress was identified on chromosome 1. Xiao et al. (2011) used pollen sterility to indicate HS tolerance and recognized two QTLs (*qPF4* and *qPF6*) that improved pollen fertility. Ye et al. (2015a) identified several QTLs with a deviation in spikelet fertility in HS. In another investigation, Shanmugavadivel et al. (2017) crossed the heat-tolerant genotype (Nagina 22) with the heat-susceptible genotype (IR64) to investigate the QTL responsible for heat tolerance. Huang et al. (2012) recognized 32 novel loci linked to the flowering time. Lafarge et al. (2017) used the GWAS technique to identify the QTL associated with preserving spikelet fertility under high HS conditions. They selected 167 indica lines with 13,162 single nucleotide polymorphisms (SNPs). A total of 14 loci were linked with spikelet sterility, and 8 of these were consistent with previously identified QTLs. Genes at loci related to the fertility of spikelets were linked with the response of plants to HS conditions. N22 and some Indian and Taiwanese genotypes are active contributors of HS tolerance in rice (Lafarge et al., 2017). Kushwah et al. (2021) identified a QTL *Qdg-01* for days to germination under heat stress using recombinant inbred lines population (RIL). A list of QTLs related to heat-stress tolerance is given in Table 2.
Table 2. QTLs associated with heat-stress tolerance in rice crops

Source	Trait	QTL	Chromosome	Reference
Rice	Pollen sterility	qPF6	6	(XIAO et al., 2011)
Rice	Flowering stage	qHTSF4	4	(Ye et al., 2012)
NILs	Flowering time	qEMF3	3	(Hirabayashi et al., 2015)
Giza 178	Flowering stage	qHTSF4	4	(Ye et al., 2015a)
Habakata, Sasanishiki	Spikelet fertility	qSFht2	2	(Zhao et al., 2016)
Habakata, Sasanishiki	Spikelet fertility	qSFht4.2	4	(Zhao et al., 2016)
N22 and IR64	Root length	rlht5.1	5	(Kilasi et al., 2018)
Rice	Heat tolerance	rMQTL9.1	9	(Raza et al., 2020)
127 RILs	Spikelet’s fertility	qSF1	1	(Ravikiran et al., 2020)
Oryza rufipogon	Booting stage	qHTB1-1	1	(Cao et al., 2020)
Takanari and IR64	Spikelet fertility	qHTSF4.1	4	(Takai et al., 2020)
IR64/N22	Heat tolerance	qSSPF10 and qHT6	10,6	(Withanawasam et al., 2021)
F2:3 Population	Heat tolerance	TT1-2	1	(Yan et al., 2021a)
SSSLs	Grain chalkiness	qPGC9	9	(Yang et al., 2021)
Uma, N22	Spikelet fertility	qSF3	3	(Waghmare et al., 2021)
HHZ, 9311	Flowering stage	qHTT8	8	(Chen et al., 2021)
Rice	Heat stress	qSSR6-1	1	(Nguyen et al., 2021)
Rice	Spikelet’s fertility	qHTSF4	4	(Jin et al., 2021)
RILs	Days to germination	Qdg-01	1	(Kushwah et al., 2021)

Development of transgenic rice tolerant cultivars

Heat shock proteins are synthesized by many genetic factors (Buu et al., 2021) that switch on when exposed to HS and play critical roles in the recovery of plants after HS (Liu et al., 2006; Nakamoto and Hiyama, 1999). Alterations in transgenic rice associated with HSPs have the potential to increase HS tolerance in rice (Zou et al., 2011). The genetic enhancement of rice cultivars is a reliable approach to sustain rice production under a changing environment (Zou et al., 2011). Heat tolerance in rice using the transgenic approach has rarely been reported. The overexpression of HSPs in rice has been associated with heat tolerance (Katiyar-Agarwal et al., 2003). HSPs improve HS tolerance in mutant and transgenic rice species (Katiyar-Agarwal et al., 2003). Earlier, Katiyar-Agarwal et al. (2003) used Arabidopsis thaliana and transformed HSP (AtHSP101 cDNA) into the indica variety of rice (Pusa basmati 1). Compared with typical plants, the existence and development of T2 lines were enriched with proteinaceous material under HS.

In a previous study, a transgenic rice variety (Hoshinoyume) showed overexpression of HSP (sHSP17.7), which was confirmed to be associated with greater tolerance to HS (Murakami et al., 2004). Qi et al. (2011) described that, in transgenic rice cultivars, the overexpression of mitochondrial genetic factors associated with mtHsp70 enhanced HS by decreasing programmed cell death, improving the stability of the mitochondrial membrane, and inhibiting ROS production. WRKY genetic factors are recognized as the encoding for many transcription factors, contributing to numerous abiotic factors. Wu et al. (2009) merged cDNA from OsWRKY11 with the HSP101 promoter and transferred it to rice d plants grown under HS conditions. The WRKY genes overexpressed in rice were associated with improved HS tolerance and growth and traits under HS. Proteomic investigations can help us to understand the molecular foundations of HS tolerance in rice plants. Lee et al. (2007) examined the proteomes of rice leaves grown under HS conditions and identified nearly 73 low molecular mass proteins, and these were mostly linked to HSPs. In conclusion, transgenic cultivars can play significant roles in increasing HS tolerance in rice crops. However, future studies must be conducted to develop cultivars and tested these cultivars in a wide range of field conditions to ensure their availability across the globe. List of genes related to heat tolerance in transgenic rice and normal rice is given in Tables 3 and 4.
Table 3. Candidate genes identified in transgenic rice associated with heat tolerance

Gene	Crop	Source plant	Mechanism of action	Reference
sHSP17.7	Hoshinoyume	Rice	CaMV 35S promoter, improved heat stress	(Sato and Yokoya, 2008)
OsWRKY11	Sasanishiki	Rice	The promoter of HSP101, improved dehydration tolerance	(Wu et al., 2009)
PHT3	Rice	Rice	Improved heat tolerance	(Jia et al., 2015)
DPB3-1	Rice	Arabidopsis	Overexpression of DPB3, upregulation of stress-related genes	(Sato et al., 2016)
rcs	Rice	Oryza australiensis	Due to overexpression of the yield	(Scafaro et al., 2018)
UGT73B3	Rice	Rice	Improved heat tolerance	(Lee and Bailey-Serres, 2019)
OsBiP2	Rice	Rice	Improved dehydration tolerance	(Raza et al., 2020)
OsNTL3	Rice	Rice	NAC transcription factor improved thermal tolerance in rice	(Liu et al., 2020b)
AtPLC9	Rice	Rice	Expression of transcription factors	(Liu et al., 2020b)
OsWRKY	Rice	Rice	Improved thermal tolerance	(Jeyasri et al., 2021)
OsIAA13, Os IAA20	Rice	Rice	Improved heat tolerance	(Sharma et al., 2021)
LOC_Os08g 07010	Rice	Rice	Decreased extreme heat stress	(Chen et al., 2021)

Table 4. Important genes associated with heat tolerance in rice crops

Gene	Function	Protein	Reference
SBPase	Confers heat tolerance by overexpression of SBPase and increases photosynthesis	SBPase	(Feng et al., 2007)
mtHsp70	Overexpression of mtHsp70 overwhelmed cell death and ROS production	HSP70	(Qi et al., 2011)
ZFP	Enhances HS tolerance during the seedling stage	Protein	(Wei et al., 2013)
OsLea14-A	Confers stress tolerance		(Hu et al., 2019)
MTH1745	Increase heat stress tolerance	Isomerase-like protein	(Wang et al., 2019a)
OsPAL	Increases heat stress tolerance	OsProDH	(Akhter et al., 2019)
HsfA2a	Controls heat tolerance	Heat shock transcription factor	(Malumpong et al., 2019)
OsGSK1	Improves heat tolerance		(Wahab et al., 2020)
TT1	Improves heat tolerance		(Wahab et al., 2020)
OsHSP20	Improve heat stress tolerance		(Guo et al., 2020a)
eIF4A1	Enhances temperature stress		(Singha et al., 2020)
OsProDH	Proline overproduction	OsProDH	(Guo et al., 2020b)
PSL50	Promotes heat tolerance	OsProDH	(He et al., 2020)
OsNTL3	Enhances heat tolerance	NAC transcription factor	(Liu et al., 2020b)
OsBiP2, OsMed37_1 controls heat tolerance (Raza et al., 2020)

Proteomics and transcriptomics approaches for increasing heat tolerance in rice

Comprehensive proteomic surveys of metabolic enzymes, storage and structural proteins, and different allergens found in rice grains have been done using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and gel-free-based shotgun technologies (Koller et al., 2002; Lee and Koh, 2011; Lin et al., 2005). Lee and Koh (2011) identified 4172 non-redundant proteins with a range of pI (pH 2.9-12.6) and molecular weights (5.2-611 kDa) in developing and maturing grains of rice. The analysis of the expression of different protein groups linked with diverse functional categories showed dynamic changes in metabolism during rice grain development. A switch from carbon metabolism to alcohol fermentation is imperative for the synthesis and accumulation of starch during the development process (Xu et al., 2008). It was also noticed that proteins involved in the citric acid cycle, lipid metabolism, glycolysis, and proteolysis were accumulated more in mature grains than developing grains (Lee and Koh, 2011). Proteomic studies also revealed that all classes of storage proteins increased considerably at the early ripening stages, whereas the polyamine concentration decreased considerably at the maturation and desiccation stages (Lin et al., 2010). Moreover, Li et al. (2011) noted that pullulanase (PUL) was downregulated, whereas pyruvate phosphate dikinase (PPDK) was upregulated in a grain filling study. Thus, the proteomic approach can help us improve protein expression in rice to increase heat tolerance.

Transcriptomics has been widely used to study the molecular mechanisms associated with heat tolerance in wheat, tomato, and potato (Bita et al., 2011; Ginzberg et al., 2009; Qin et al., 2008) and different pathways and genes have been identified as being heat-responsive. In rice crops, few transcriptomic analyses have been conducted to determine the heat response at the flowering stage (Endo et al., 2009; Zhang et al., 2013b). Most of these studies were conducted on spikelets and flag leaves, with limited studies conducted on anthers or pistils (González-Schain et al., 2016; Li et al., 2015). Liu et al. (2020a) found a stable anther structure in rice line SDWG005 under heat stress conditions. Their transcriptomic analysis found 3559 differentially expressed genes in anthers of SDWG005 plants under heat stress at the anthesis stage. They also stated that the agmatine-coumarin-acyltransferase gene is involved in heat tolerance in SDWG005 plants (Liu et al., 2020a).

Mutation for improving heat tolerance in rice

A mutation is an essential tool that can create genetic variability (Mba et al., 2010). Over the last century, physical mutagens, including ultraviolet rays, X-ray and chemical rays, and chemical mutagens such as N-methyl-N-nitrosourea (MNU), sodium azide, hydrogen fluoride (HF), methyl methanesulfonate (MMS), and ethyl methanesulfonate (EMS), have been used to create mutations in plants (Krishnan et al., 2009).

The EMS-induced mutation is considered very effective, and it is commonly used in a diverse range of breeding programs to develop improved crop genotypes. The application of EMS improves agronomic traits and the rate of photosynthesis in rice leaves while reduces the concentration of mesophyll interveinal cells (Feldman et al., 2017; Feldman et al., 2014). Moreover, MNU is another important mutagen that is mainly used to create mutations in rice. The application of MNU is a more efficient way to create mutations in developing rice cells than in seeds (Satoh et al., 2010). MNU-induced mutagenesis affects various physiological processes and leads to discovering gene functions and increased genetic variability in rice (Satoh et al., 2010). Therefore, mutagens can be used to change the genetic makeup of rice to develop genotypes with desired traits.
Role of CRISPR/Cas9 in improving the heat tolerance in rice

Conventional breeding techniques also bring undesirable genes along with desirable genes (Rasheed et al., 2021c). These techniques are time-consuming and hence they are not suitable to increase the rice production for rapidly growing world population. In addition, hybridization is possible among two plants of the same species, limiting new traits and genes (Jiang et al., 2012). Therefore, in these scenarios, the novel genome editing techniques (GET) can tackle the limitations of conventional breeding by improving the desirable traits in any species in a short time (Jiang et al., 2012). Nonetheless, information related to gene sequencing, genes function, and QTL responsible for traits of interest is vital for GET application. The application of GET modifies the particular gene of the desired trait by DNA cutting via target-specific nucleases. Different site-specific endonucleases (SSE), i.e., zinc finger nucleases, transcription activator-like effector nucleases introduced in the last decade, have been widely used in gene editing tools (Chen and Gao, 2014). Different studies were conducted in which several genes were knock out using CRISPR/Cas9 technique to improve heat stress tolerance in rice. The CRISPR/Cas based editing tool to edit genes responsible for heat tolerance has been widely used in rice (Wang et al., 2020). CRISPR/Cas9 application can help to develop the heat-tolerant cultivars of rice by changing plant and panicle architecture, leaf morphology, and ABA signalling pathway by modifying desired genes (Jiang et al., 2012). The knockout of OsNAC006 gene significantly increased heat stress tolerance in rice (Wang et al., 2020). Likewise in another study, OsProDH gene was mutated using CRISPR/Cas9 technique and it was concluded that this gene negatively regulates the heat tolerance in rice by scavenging of ROS. Recent advances in GET involve developing a clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system. Multiple Cas proteins, such as Cas8, Cas9, Cas12a, or Cpf1 are identified, used in genome editing by CRISPR technology to improve the diverse traits in plants (Cebrian-Serrano and Davies, 2017; Naeem et al., 2020). CRISPR/Cas9 is considered as an easier, reliable, and efficient system used for improving stress resistance, grain yield, herbicide resistance, and product quality in many crops such as sativa, barley, maize, cucumber, soybean, wheat, and rice (Komor et al., 2016).

Conclusions

As a complex polygenic trait, heat stress tolerance is difficult to improve by using conventional breeding methods. Genetic factors which are governing the heat stress tolerance in rice and least influenced by the environment can be explored to improve heat stress tolerance in rice. Cultivars with strong and stable genetic makeup can maintain a higher rate of spikelet fertility, early flowering, and a higher yield under frequent heat episodes. The complex genetic architecture of this polygenic characteristic has still not been fully explored. Investigations are underway to detect the roles of morphological, physiological and biochemical features in sustainable rice production under exposure to heatwaves. Integrating several molecular techniques, including genomics, proteomics, and transcriptomics, is critical to develop highly heat-tolerant genotypes in rice. The high yielding genotypes are specially used because they can maintain high yield under heat stress. Hormonal applications significantly increased heat stress tolerance in rice. QTL pyramiding technique is very effective to transfer multiple heat tolerant QTL in genotypes and we can bring durable tolerance in rice genotypes. Hence, we have concluded that there are several factors needed to study to improve heat stress tolerance in rice. The novel breeding techniques like improved hybridization and molecular breeding methods can be effectively used to enhance heat stress tolerance in rice. The CRISPR/Cas9 and its variants need to use to edit targeted gene in rice responsible for heat stress tolerance in rice.

A recent period of extreme heat stress had damaging effects on crop production, and it is expected that this situation will continue to occur in the near future. This will threaten the global food supply chain. To overcome this and sustain rice production, effective management strategies must be implemented, and tolerant rice cultivars must be produced. We must improve the tolerance of rice to heat stress at the physiological,
molecular, and biochemical levels through the development of tolerant cultivars to maintain the quality and quantity of rice across changing environments. Heat stress affects grain filling and pollen fertility, disturb plant water relation, lead to lipid peroxidation, and cause oxidative stress in rice. Plant hormones and inorganic osmolytes can induce an acclimation response in plants. The use of these hormones and osmolytes is an excellent solution to reduce the consequences of heat stress. Few studies have described the roles of these regulators in plant responses to heat stress, and further studies are needed. In the era of modernized genetics, high throughput phenotypic, and genotyping approaches like GWAS to identify phenotypic diversity can contribute to the development of heat-tolerant genotypes. For unique trait such as heat tolerance, the recent development of advanced gene-editing technique, like CRISPR-Cas9 will further speed up crop improvement.

Authors’ Contributions

AR conceptualized and prepared the draft; MFS, MN, AM, MRA, MAA, MA, MAE, EHE, and MA, and MUH reviewed the manuscript; MB improved the scientific figures; ZU and HL supervised the study. All authors read and approved the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The research was supported by the National Natural Science Foundation of China (31560350, 31760350, and 71963020), the National Key Research and Development Program of China (2018YFD0301102), the Key Research and Development Program of Jiangxi Province (2017ACF60018 and 20192ACB60003), Natural Science Foundation of Jiangxi (20181BAA208055 and 20202BABL205020), the Jiangxi Agriculture Research System (JXARS-18) and Training Program for Academic and Technical Leaders of Major Discipline in Jiangxi Province (20204BCJL22044).

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Aamer M, Hassan MU, Shaaban M, Rasul F, Haiying T, Qiaoying M, ... Qitao S (2021). Rice straw biochar mitigates N2O emissions under alternate wetting and drying conditions in paddy soil. Journal of Saudi Chemical Society 25:101172. https://doi.org/10.1016/j.jscs.2020.11.005

Abd El-Daim IA, Bejai S, Meijer J (2014). Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant and Soil 379:337-350. https://doi.org/10.1007/s11104-014-2063-3

Aghamolki MTK, Yusop MK, Oad FC, Zakikhani H, Jaafar HZ, Kharidah S, Musa MH (2014). Heat stress effects on yield parameters of selected rice cultivars at reproductive growth stages. Journal of Food Agriculture and Environment 12:741-746.

Akhter D, Qin R, Nath UK, Eshag J, Jin X, Shi C (2019). A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling. Gene 699:62-72. https://doi.org/10.1016/j.gene.2019.03.013

Akman Z (2009). Comparison of high temperature tolerance in maize, rice and sorghum seeds by plant growth regulators. Journal of Animal and Veterinary Advances 8:358-361.
Alghabari F, Ihsan MZ, Khaliq A, Hussain S, Daur I, Fahad S, Nasim W (2016). Gibberellin-sensitive Rht alleles confer tolerance to heat and drought stresses in wheat at booting stage. Journal of Cereal Science 70:72-78. https://doi.org/10.1016/j.jcs.2016.05.016

Ali S, Rizwan M, Arif MS, Ahmad R, Hasanuzzaman M, Ali B, Hussain A (2020). Approaches in enhancing thermotolerance in plants: an updated review. Journal of Plant Growth Regulation 39:456-480. https://doi.org/10.1007/s00344-019-09994-x

Annunziata MG, Ciarmiello LF, Woodrow P, Dell’ Aversana E, Carillo P (2019). Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Frontiers in Plant Science 10:230. https://doi.org/10.3389/fpls.2019.00230

Ashraf M, Harris P (2005). Abiotic stresses: plant resistance through breeding and molecular approaches. CRC Press. Books.google.com

Aslam MM, Zeeshan M, Irum A, Hassan MU, Ali S, Hussain R, Ramzani PMA, Rashid MF (2015). Influence of seedling age and nitrogen rates on productivity of rice (Oryza sativa L.): A review. American Journal of Plant Sciences 6:1361. https://doi.org/10.4236/ajps.2015.69135

Badawy SA, Zayed BA, Bassiouini SMA, Mahdi AHA, Majrashi A, Ali EF, Seleiman MF (2020). Influence of nano silicon and nano selenium on root characters, growth, ion selectivity, yield, and yield components of rice (Oryza sativa L.) under salinity conditions. Plants 10:657. https://doi.org/10.3390/plants10081657

Bahuguna RN, Jha J, Pal M, Shah D, Lawas LM, Khetarpal S, Jagadish KS (2015). Physiological and biochemical characterization of NERICA-L-44: a novel source of heat tolerance at the vegetative and reproductive stages in rice. Physiologia Plantarum 154:543-559. https://doi.org/10.1111/ppl.12299

Bennetzen J (2002). Opening the door to comparative plant biology (Perspectives: the rice genome). Science 296:60-63. https://doi.org/10.1126/science.1071.402

Bheemanahalli R, Sathishraj R, Manoharan M, Sumanth H, Muthurajan R, Ishimaru T, Krishna J (2017). Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice? Field Crops Research 203:238-242. hhttps://doi.org/10.1016/j.fcr.2016.11.011

Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T (2011). Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics 12:1-18. https://doi.org/10.1186/1471-2164-12-384

Bohnert HJ, Gong Q, Li P, Ma S (2006). Unraveling abiotic stress tolerance mechanisms–getting genomics going. Current Opinion in Plant Biology 9:180-188.

Buu BC, Chan CY, Lang N, Nguyen (2021). Molecular breeding for improving heat stress tolerance in rice: recent progress and future perspectives. Molecular Breeding for Rice Abiotic Stress Tolerance Nutritional Quality 92-119. https://doi.org/10.1002/9781119633174.ch5

Cabral C, Ravnskov S, Tringovska I, Wollenweber B (2016). Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant and Soil 408:385-399. https://doi.org/10.1007/s10018-016-4202-9

Cao Z, Li Y, Tang H, Zeng B, Tang X, Long Q, Wu X, Cai Y, Yuan L, Tan J (2020). Fine mapping of the qHTB1-1 QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line. Theoretical and Applied Genetics 133:1611-1175. https://doi.org/10.1007/s00122-020-03539-7

Cebrian-Serrano A, Davies B (2017). CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mammalian Genome 28:247-261. https://doi.org/10.1007/s10879-017-9697-4

Chandel G, Dubey M, Meena R (2013). Differential expression of heat shock proteins and heat stress transcription factor genes in rice exposed to different levels of heat stress. Journal of Plant Biochemistry and Biotechnology 22:277-285. https://doi.org/10.1002/13562-012-0156-8

Chandrapakala J, Chaturvedi AK, Ramesh K, Rai P, Khetarpal S, Pal M (2013). Acclimation response of signalling molecules for high temperature stress on photosynthetic characteristics in rice genotypes. Indian Journal of Plant Physiology 18:142-150. https://doi.org/10.1007/s10402-013-0021-3

Chang PFL, Jinn TL, Huang WK, Chen Y, Chang HM, Wang CW (2007). Induction of a cDNA clone from rice encoding a class II small heat shock protein by heat stress, mechanical injury, and salicylic acid. Plant Science 172:64-75. https://doi.org/10.1016/j.plantsci.2006.07.017
Chattha MB, Chattha MU, Hassan MU, Khan I, Nawaz M, Khan MAU, Aamer M, Usman M (2017). Foliar application of growth promoting substances strongly influence the phenology, growth and yield of hybrid maize. International Journal of Biology and Biotechnology 14:597-602.

Chaturvedi AK, Bahuguna RN, Shah D, Pal M, Jagadish SK (2017). High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO$_2$ on assimilate partitioning and sink-strength in rice. Scientific Reports 7:1-13. https://doi.org/10.1038/s41598-017-07464-6

Chaudhary C, Sharma N, Khurana P (2021). Decoding the wheat awn transcriptome and overexpressing Ta RealS in rice for heat stress tolerance. Plant Molecular Biology 105:133-146.

Chen K, Gao C (2014). Targeted genome modification technologies and their applications in crop improvements. Plant Cell Reports 33:575-583. https://doi.org/10.1007/s00299-013-1539-6

Chen L, Wang Q, Tang M, Zhang X, Pan Y, Yang X, Gao G, Lv R, Tao W, Jiang L (2021). QTL mapping and identification of candidate genes for heat tolerance at the flowering stage in rice. Frontiers in Genetics 11:1840. https://doi.org/10.3389/fgene.2020.621871

Cheng LR, Wang JM, Uzokwe V, Meng LJ, Yun W, Yong S, Zhu LH, Xu JI, Li ZK (2012). Genetic analysis of cold tolerance at seedling stage and heat tolerance at anthesis in rice (Oryza sativa L.). Journal of Integrative Agriculture 11:359-367. https://doi.org/10.1016/S2095-3119(12)60020-3

Chidambaranathan P, Balasubramaniasai C, Behura N, Purty M, Samantaray S, Subudhi H, Ngangkham U, Devanna B, Katara JL, Kumar A (2021). Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition. Genetic Resources Crop Evolution 68:1923-1935.

Chida J, Kruk J (2018). Phytohormones as targets for improving plant productivity and stress tolerance. Journal of Plant Physiology 229:32-40. https://doi.org/10.1016/j.jplph.2018.06.013

Claeys H, De Bodt S, Inzé D (2014). Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends in Plant Science 19:231-239. https://doi.org/10.1016/j.tplants.2013.10.001

Coast O, Murdoch AJ, Ellis RH, Hay FR, Jagadish K (2016). Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant, Cell and Environment 39:26-37.

Cosio C, Dunand C (2009). Specific functions of individual class III peroxidase genes. Journal of Experimental Botany 60:391-408. https://doi.org/10.1093/jxb/ern318

Das S, Krishnan P, Nayak M, Ramakrishnan B (2014). High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany 101:36-46. https://doi.org/10.1016/j.envexpbot.2014.01.004

Ding Y, Wang W, Zhuang Q, Luo Y (2020). Adaptation of paddy rice in China to climate change: The effects of shifting sowing date on yield and irrigation water requirement. Agricultural Water Management 228:105890.

Dionisio-Sese M, Shono M, Tobita S (2000). Effects of proline and betaine on heat inactivation of ribulose-1, 5-bisphosphate carboxylase/oxygenase in crude extracts of rice seedlings. Photosynthetica 36:557-563. https://doi.org/10.1023/A:1007044121420

Duque AS, de Almeida AM, da Silva AB, da Silva JM, Farinha AP, Santos D, Fereveiro P, de Sousa AS (2013). Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. Abiotic Stress-Plant Responses Applications in Agriculture 49:101.

Egech AO (1991). High temperature effects on crop and grain growth of four rice cultivars. Thesis 76

Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Oshihina M, Higashitani A, Watanabe M, Kagawishi-Kobayashi MJP, Physiology C (2009). High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiology 50:1911-1922. https://doi.org/10.1093/pcp/pcp135

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Sciences 8:1147. https://doi.org/10.3389/fpls.2017.01147

Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F, Ihsan MZ, Ullah A, Wu C, Bajwa AA (2016a). Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11:e0159590. https://doi.org/10.1371/journal.pone.0159590

Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Khan F, Ullah S (2016b). A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiology and Biochemistry 103:191-198. https://doi.org/10.1016/j.plaphy.2016.03.001
Rasheed A et al. (2021). Not Bot Horti Agrobo 49(4):12501

FAO (2019). OECD-FAO Agricultural Outlook. 2019-2028. Organisation for Economic Co-operation and Development. Published on December 2019 (Data Range 1990-2028).

Feldman AB, Leung H, Baraoidan M, Elmido-Mabilangan A, Canicosa I, Quick WP, Sheehy J, Murchie E (2017). Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number. Frontiers in Plant Sciences 8:1883. https://doi.org/10.3389/fpls.2017.01838

Feldman AB, Murchie EH, Leung H, Baraoidan M, Coe R, Yu SM, Lo SF, Quick W (2014). Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice. PLoS One 9:e94947. https://doi.org/10.1371/journal.pone.0094947

Feng L, Wang K, Li Y, Tan Y, Kong J, Li H, Li Y, Zhu Y (2007). Overexpression of SbPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Reports 26:1635-1646. https://doi.org/10.1007/s00299-006-0299-y

Fu Y, Gu Q, Dong Q, Zhang Z, Lin C, Hu W, Pan R, Guan Y, Hu J (2019). Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism. Molecules 24:1395.

Gesch R, Kang IH, Gallo-Meagher M, Vu J, Boote KJH, Allen L, Bowes G (2003). Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated growth CO₂ and temperature. Plant, Cell and Environment 26:1941-1950. https://doi.org/10.1046/j.1365-3040.2003.01110.x

Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, De Jong W, Fogelman E (2009). Transcriptomic profiling of heat-stress response in potato periderm. Journal of Experimental Botany 60:4411-4421. https://doi.org/10.1093/jxb/erp281

González-Schain N, Dreni L, Lawas LM, Galbiati M, Colombo L, Heuser S, Jagadish KS, Kater M (2016). Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties. Plant Cell Physiology 57:57-68. https://doi.org/10.1038/pcp/pcv174

Govindaraj M, Pattanashetti SK, Patne N, Kanatti AA (2018). Breeding cultivars for heat stress tolerance in staple food crops. Next Generation Plant Breeding. London (UK): IntechOpen 45-74.

Guo LM, Li J, He J, Liu H, Zhang HM (2020a). A class I cystolic HSP20 of rice enhances heat and salt tolerance in different organisms. Scientific Reports 10:1-13. https://doi.org/10.1038/s41598-020-58395-8

Guo M, Zhang X, Liu J, Hou L, Liu H, Zhao XJR (2020b). OsProDH negatively regulates thermotolerance in rice by modulating proline metabolism and reactive oxygen species scavenging. Rice 13:1-5.

Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita MJ (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14:9643-9684. https://doi.org/10.3390/ijms14059643

Hassan MU, Aamer M, Chatttha MU, Ullah MA, Sulaman S, Nawaz M, Zhiqiang W, Yanqin M, Guoqin H (2017). The role of potassium in plants under drought stress: mini review. Journal of Basic and Applied Sciences 13:268-271.

Hassan MU, Chatttha MU, Khan I, Chatttha MB, Aamer M, Iqbal MM, Nawaz M, Mahmood A, Ali A (2020). Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosystems 155:211-234. https://doi.org/10.1080/11263504.2020.1727987

He Y, Zhang XB, Shi Y, Xu X, Li L, Wu JI (2020). Premature senescence leaf 50 promotes heat stress tolerance in rice (Oryza sativa L.). Rice 14:53. https://doi.org/10.1186/s12284-021-00493-w

Hirabayashi H, Sasaki K, Kambe T, Gannaban RB, Miras MA, Mendioro MS, Simon EV, Lumanglas PD, Fujita D, Takemoto-Kuno Y (2015). qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. Journal of Experimental Botany 66:1227-1236. https://doi.org/10.1038/jxb.2013.109

Hossain MS, Khan MHR, Islam M (2021). Impacts of heat stress on mineral nutrition of Boro rice cultivar (BR 19) as influenced by the indigenous organic fertilizers. Dhaka University Journal of Biological Sciences 30:125-131.

Hu T, Liu Y, Zhu S, Qin J, Li W, Zhou N (2019). Overexpression of OsLea14-A improves the tolerance of rice and Hg accumulation under diverse stresses. Environmental Science and Pollution Research 26:10537-10551. https://doi.org/10.1007/s11356-019-04464-z

Huang M, Yin X, Chen J, Cao F (2021). Biochar application mitigates the effect of heat stress on rice (Oryza sativa L.) by regulating the root-zone environment. Frontiers in Plant Science 12:1653. https://doi.org/10.3389/fpls.2021.711725
Huang X, Zhao Y, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D (2012). Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics 44:32-39. https://doi.org/10.1038/ng.1018

Ihsan MZ, El-Nakhlawy FS, Ismail SM, Fahad S (2016). Wheat phenological development and growth studies as affected by drought and late season high temperature stress under arid environment. Frontiers in Plant Science 7:795. https://doi.org/10.3389/fpls.2016.00795

Impa SM, Raju B, Hein NT, Sandhu J, Prasad PV, Walia H, Jagadish SK (2021). High night temperature effects on wheat and rice: Current status and way forward. Plant, Cell & Environment 44(7):2049-2065. https://doi.org/10.1111/pce.14028

Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, Ando I, Ogawa T, Kondo M (2010). A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany 106:515-520. https://doi.org/10.1093/aob/mcq124

Ishimaru T, Hirabayashi H, Kuwagata T, Ogawa T, Kondo M (2012). The early-morning flowering trait of rice reduces spikelet sterility under windy and elevated temperature conditions at anthesis. Plant Production Science 15:19-22. https://doi.org/10.1626/pps.15.19

Jagadish S, Murty M, Quick WP (2015). Rice responses to rising temperatures–challenges, perspectives and future directions. Plant Cell and Environment 38:1686-1698. https://doi.org/10.1111/pce.12430

Jagadish S, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010). Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany 61:143-156. https://doi.org/10.1093/jxb/erp289

Jia F, Wan X, Zhu W, Sun D, Zheng C, Liu P, Huang J (2015). Overexpression of mitochondrial phosphate transporter 3 severely hampers plant development through regulating mitochondrial function in Arabidopsis. PLoS One 10:e0129717.

Jiang Y, Cai Z, Xie W, Long T, Yu H, Zhang Q (2012). Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnology Advances 30:1059-1070.

Jin L, Ma X, Zhou H, Li S, Cui D, Hu J, Han B, Li M, Han L (2021). Mapping of QTL associated with heat tolerance at the reproductive stage in rice (Oryza sativa L.). Research Square 1-16. http://doi.org/10.21203/rs.3.rs-813354/v1

Johnston MK, Jacob NP, Brodl M (2007). Heat shock-induced changes in lipid and protein metabolism in the endoplasmic reticulum of barley aleurone layers. Plant Cell Physiology 48:31-41.

Julia C, Dingkuhn M (2012). Variation in time of day of anthesis in rice in different climatic environments. European Journal of Agronomy 43:166-174. https://doi.org/10.1016/j.eja.2012.06.007

Julia C, Dingkuhn M (2013). Predicting temperature induced sterility of rice spikelets requires simulation of crop-generated microclimate. European Journal of Agronomy 49:50-60. https://doi.org/10.1016/j.eja.2013.03.006

Jwa NS, Agrawal GK, Tamogami S, Yonekura M, Han O, Iwashashi H, Rakwal R (2006). Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiology and Biochemistry 44:261-273.

Karwa S, Bahuguna RN, Chaturvedi AK, Maurya S, Arya SS, Chinnusamy V, Pal M (2020). Phenotyping and characterization of heat stress tolerance at reproductive stage in rice (Oryza sativa L.). Acta Physiologica Plantarum 42:29. https://doi.org/10.1007/s11738-020-3016-5

Katiyar-Agarwal S, Agarwal M, Grover A (2003). Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology 51:677-686. https://doi.org/10.1023/A:1022561926676

Kennedy G, Burlingame B (2003). Analysis of food composition data on rice from a plant genetic resources perspective. Food Chemistry 80:589-596. https://doi.org/10.1016/S0308-8146(02)00507-1

Khan S, Anwar S, Ashraf MY, Khaliq B, Sun M, Hussain S, Gao ZQ, Noor H, Alam S (2019). Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants 8:508. https://doi.org/10.3390/plants8110508
Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish S, Kusolwa P, Rathinasabapathi B (2018). Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science 9:1578. https://doi.org/10.3389/fpls.2018.01578

Kobayasi K, Atsuta Y (2010). Sterility and poor pollination due to early flower opening induced by methyl jasmonate. Plant Production Science 13:29-36. https://doi.org/10.1626/pps.13.29

Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J (2002). Proteomic survey of metabolic pathways in rice. Proceedings of the National Academy of Sciences 99:11969-11974. https://doi.org/10.1073/pnas.172183199

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 551(7681):464-471. https://doi.org/10.1038/nature17946

Kosová K, Vitámvás P, Prášil IT, Renault J (2011). Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. Journal of Proteomics 74:1301-1322. https://doi.org/10.1016/j.jprot.2011.02.006

Krishnan A, Guiderdoni E, An G, Hsing YIC, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q (2009). Mutant resources in rice for functional genomics of the grasses. Plant Physiology 149:165-170. https://doi.org/10.1104/pp.108.128918

Krishnan P, Ramakrishnan B, Reddy KR, Reddy V (2011). High-temperature effects on rice growth, yield, and grain quality. In: Advances in Agronomy 111:87-106.

Kumari P, Rastogi A, Yadav S (2020). Effects of Heat stress and molecular mitigation approaches in orphan legume, chickpea. Molecular Biology Reports 1-12. https://doi.org/10.1007/s11033-020-05358-x

Kushwah A, Bhatia D, Singh I, Thudi M, Singh G, Bindra S, Vij S, Gill B, Bharadwaj C, Singh S (2021). Identification of stable heat tolerance QTLs using inter-specific recombinant inbred line population derived from GPF 2 and ILWC 292. Plos One 16:e0254957. https://doi.org/10.1371/journal.pone.0254957

Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N (2017). Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One 12:e0171254.

Lee DG, Ahsan N, Lee SH, Kang KY, Bakh JD, Lee JJ, Lee BH (2007). A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369-3383. https://doi.org/10.1002/pmic.200700266

Lee J, Koh HJ (2011). A label-free quantitative shotgun proteomics analysis of rice grain development. Proteome Science 9:1-10.

Lee TA, Bailey-Serres J (2019). Integrative analysis from the epigenome to translatome uncovers patterns of dominant nuclear regulation during transient stress. The Plant Cell 31:2573-2595. https://doi.org/10.1105/tpc.19.00463

Lesk C, Rowhani P, Ramankutty N (2016). Influence of extreme weather disasters on global crop production. Nature 529:84-87.

Li H, Chen Z, Hu M, Wang Z, Hua H, Yin C, Zeng H (2011). Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Reports 30:1641-1659. https://doi.org/10.1007/s00299-011-1074-2

Li X, Lawas LM, Malo R, Glaubitz U, Erban A, Mauleon R, ..., Jagadish KS (2015). Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant, Cell & Environment 38(10):2171-2192.

Liang Z, Zhang Q, Ji C, Hu G, Zhang P, Wang Y, Yang L, Gu X (2021). Reorganization of the 3D chromatin architecture of rice genomes during heat stress. BMC Biology 19:1-10. https://doi.org/10.1186/s12915-021-00996-4

Lin CJ, Li CY, Lin SK, Yang FH, Huang JJ, Liu YH, Lur HS (2010). Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). Journal of Agricultural Food Chemistry 58:10545-10552.

Lin My, Chai KH, Ko SS, Kuang LY, Lur HS, Charm Y (2014). A positive feedback loop between heat shock protein 101 and heat stress-associated 32-KD protein modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiology 164:2045-2053. https://doi.org/10.1104/pp.113.22609

Lin SK, Chang MC, Tsai YG, Lur H (2005). Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5:2140-2156. https://doi.org/10.1002/pmic.200401105
Liu G, Zha Z, Cai H, Qin D, Jia H, Liu C, Qiu D, Zhang Z, Wan Z, Yang Y (2020a). Dynamic transcriptome analysis of anther response to heat stress during anthesis in thermotolerant rice (*Oryza sativa* L.). International Journal of Molecular Sciences 21:1155.

Liu JG, Qin QF, Zheng Z, Peng KH, Xiong AS, Chen JM, Yao QH (2009). OsHSF7 gene in rice, *Oryza sativa* L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Reports 42:16-21. https://doi.org/10.5483/BMBRep.2009.42.1.016

Liu JH, Wang W, Wu H, Gong X, Moriguchi T (2015). Polyamines function in stress tolerance: from synthesis to regulation. Frontiers in Plant Sciences 6:827. https://doi.org/10.3389/fpls.2015.00827

Liu NY, Ko SS, Yeh KC, Charrg YY (2006). Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Science 170:976-985.

Liu XH, Lyu YS, Yang W, Yang ZT, Lu SJ, Liu JX (2020b). A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal 18:1317-1329. https://doi.org/10.1111/pbi.13297

Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002). Does proline accumulation play an active role in stress-induced growth reduction? The Plant Journal 31:699-712.

Malumpong C, Cheabu S, Mongkolsiriwatana C, Detpittayanan W, Vanavichit A (2019). Spikelet fertility and heat shock transcription factor (Hsf) gene responses to heat stress in tolerant and susceptible rice (*Oryza sativa* L.) genotypes. The Journal of Agricultural Science 157:283-299. https://doi.org/10.1017/S002185961900056X

Masuduzzaman A, Ahmad H, Haque M, Ahmed M (2016). Evaluation of rice lines tolerant to heat during flowering stage. Rice Research 1-5.

Matsui T, Kagata H (2003). Characteristics of floral organs related to self-pollinability in rice (*Oryza sativa* L.). Annals of Botany 91:473-477. https://doi.org/10.1093/aob/mcg045

Matsui T, Omasa K, Horie T (2001). The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science 4:90-93.

Matsui T, Omasa K (2002). Rice (*Oryza sativa* L.) cultivars tolerant to high temperature at flowering: another characteristics. Annals of Botany 89:683-687. https://doi.org/10.1093/aob/mcf112

Matsui T (2005). Function of long basal dehiscence of the theca in rice (*Oryza sativa* L.) pollination under hot and humid condition. PHYTON-HORN 45:401.

Mba C, Afza R, Bado S, Jain S (2010). Induced mutagenesis in plants using physical and chemical agents. Plant Cell Culture: Essential Methods 20:111-130.

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004). Reactive oxygen gene network of plants. Trends in Plant Science 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009

Mohammed AR, Tarpley L (2009). Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Science 49:313-322.

Mostoфа MG, Yoshida N, Fujita M (2014). Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regulation 73:31-44. https://doi.org/10.1007/s10725-013-9865-9

Mukhtar T, Rehman S, Smith D, Sultan T, Seleimen MF, Alsadon AA, ... Saad MAO (2020). Mitigation of heat stress in *Solanum lycopersicum* L. by ACC-deaminase and exopolysaccharide producing *Bacillus cereus*: effects on biochemical profiling. Sustainability 12:2159. https://doi.org/10.3390/su12062159

Murakami T, Matsuba S, Funatsuhi K, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004). Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Molecular Breeding 13:165-175. https://doi.org/10.1023/B:MOBL.0000018764.30795.e1

Murkowski A (2001). Heat stress and spermidine: effect on chlorophyll fluorescence in tomato plants. Biologia Plantarum 44:53-57. https://doi.org/10.1023/A:1017966203859

Naeem M, Majed S, Hoque MZ, Ahmad I (2020). Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 9:1608. https://doi.org/10.3390/cells9071608

Nakamoto H, Hiyama T (1999). Heat-shock proteins and temperature stress. Handbook of plant and crop stress. Marcel Dekker, New York 399-416.
Nakano H, Iwasawa N, Takai T, Arai-Sanoh Y, Kondo M (2021). Grain weight and the concentrations of phenylpropanoid glycosides and γ-oryzanol in response to heat stress during ripening in rice. Cereal Chemistry 98(4):858-865. https://doi.org/10.1002/cche.10428

Nguyen T, Shen S, Cheng M, Qingquan C (2021). Identification of QTLs for heat tolerance at flowering stage using chromosome segment substitution lines in rice. Research Square 1-18. https://doi.org/10.21203/rs.3.rs-777041/v1

Piveta LB, Roma-Burgos N, Noldin JA, Viana VE, Oliveira Cd, Lamego FP, Avila L (2021). Molecular and physiological responses of rice and weedy rice to heat and drought stress. Agriculture 11:9. https://doi.org/10.3390/agriculture11010009

Poór P, Nawaz K, Gupta R, Ashfaqe F, Khan M (2021). Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Reports 1-24. https://doi.org/10.1007/s00299-021-02675-8

Prasad P, Boote K, Allen Jr L, Sheehy J, Thomas J (2006). Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research 95:398-411. https://doi.org/10.1016/j.fcr.2005.04.008

Prasanth VV, Basava KR, Babu MS, VGN VT, Devi SR, Mangrauthia S, Voleti S, Sarla N (2016). Field level evaluation of rice introgression lines for heat tolerance and validation of markers linked to spikelet fertility. Physiology and Molecular Biology of Plants 22:179-192. https://doi.org/10.1007/s12298-016-0350-6

Pucciariello C, Banti V, Perata P (2012). ROS signaling as common element in low oxygen and heat stresses. Plant Physiology and Biochemistry 59:3-10.

Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011). Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. Febs Letters 585:231-239. https://doi.org/10.1016/j.febslet.2010.11.051

Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008). Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics 9:1-19. https://doi.org/10.1186/1471-2164-9-432

Qingquan C, Sibin Y, Chunhai L (2008). Identification of QTLs for heat tolerance at flowering stage in rice. Scientia Agricultura Sinica 41(2):315-321.

Qu Y, Sakoda K, Fukayama H, Kondo E, Suzuki Y, Makino A, Terashima I, Yamori W (2021). Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress. Plant, Cell & Environment 14051. https://doi.org/10.1111/pce.14051

Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal 2:477-486. https://doi.org/10.1111/j.1467-7652.2004.00093.x

Rasheed A, Fahad S, Hassan MU, Tahir MM, Aamer M, Wu Z (2020a). A review on aluminum toxicity and quantitative trait loci mapping in rice (Oryza sativa L.). Applied Ecology and Environmental Research 18:3951-3961.

Rasheed A, Fahad S, Aamer M, Hassan MU, Tahir MM, Wu Z (2020b). Role of genetic factors in regulating cadmium uptake, transport and accumulation mechanisms and quantitative trait loci mapping in rice. a review. Applied Ecology and Environmental Research 18:4005-4023.

Rasheed A, Hassan M, Aamer M, Bian J, Xu Z, He X, Wu Z (2020). Iron toxicity, tolerance and quantitative trait loci mapping in rice: a review. Applied Ecology and Environmental Research 18:7483-7498.

Rasheed A, Hassan MU, Fahad S, Aamer M, Batoole M, Ilyas M, Shang F, Wu Z, Li H (2021a). Heavy metals stress and plants defense responses. In: Sustainable Soil and Land Management and Climate Change 57-82. CRC Press.

Rasheed A, Wassan GM, Khanzada H, Solangi AM, Han R, Li H, Bian J, Wu Z (2021b). Identification of genomic regions at seedling related traits in response to aluminium toxicity using a new high-density genetic map in rice (Oryza sativa L.). Genetic Resources and Crop Evolution 68:1889-1903. https://doi.org/10.1007/s10722-020-01103-2

Rasheed A, Gill RA, Hassan MU, Mahmood A, Qari S, Zaman QU, ... Wu Z (2021c). A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Current Issues in Molecular Biology 43: 1950-1976.

Ravikiran K, Krishnan SG, Vinod K, Dhawan G, Dwivedi P, Kumar P, Bansal VP, Nagarajan M, Blowmick PK, Ellur R (2020). A trait specific QTL survey identifies NL44, a NERICA cultivar as a novel source for reproductive stage heat stress tolerance in rice. Plant Physiology Reports 25:664-676. https://doi.org/10.1007/s00502-020-00547-z
Raza Q, Riaz A, Bashir K, Sabar M (2020). Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. Plant Molecular Biology 104:97-112. https://doi.org/10.1007/s11103-020-01027-6

Rodríguez M, Canales E, Borrás-Hidalgo O (2005). Molecular aspects of abiotic stress in plants. Biotecnología Aplicada 22:1-10.

Sailaja B, Subrahmanyam D, Neelamraju S, Vishnukiran T, Rao YV, Vijayakashmi P, Voleti SR, Bhadana VP, Mangrauthia SK (2015). Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature. Frontiers in Plant Science 6:1044.

Sakamoto A, Murata N (2000). Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. Journal of Experimental Botany 51:81-88. https://doi.org/10.1093/jexbot/51.342.81

Santiago JP, Soltani A, Bresson MM, Preiser AL, Lowry DB, Sharkey TDJP (2021). Contrasting anther glucose-6-phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant Cell & Environment 44:2185-2199. https://doi.org/10.1111/pce.14057

Sarwar N (2019). Improved auxin level at panicle initiation stage enhance the heat stress tolerance in rice plants. Agronomy Australia Conference 2-4.

Sato H, Todaka D, Kudo M, Mizoi J, Kidokoro S, Zhao Y, Shinozaki K, Yamaguchi-Shinozaki K (2016). The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnology Journal 14:1756-1767. https://doi.org/10.1111/pbi.12535

Sato Y, Yokoya S (2008). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Reports 27:329-334. https://doi.org/10.1007/s00299-007-0470-0

Satoh H, Matusaka H, Kumamaru T (2010). Use of N-methyl-N-nitrosourea treatment of fertilized egg cells for saturation mutagenesis of rice. Breeding Science 60:475-485.

Scafaro AP, Atwell BJ, Muylaert S, Reusel BV, Ruiz GA, Rie JV, Gallé A (2018). A thermotolerant variant of Rubisco activase from a wild relative improves growth and seed yield in rice under heat stress. Frontiers in Plant Science 9:1663. https://doi.org/10.3389/fpls.2018.01663

Schgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, Hanumantha Rao B, Nair RM, Prasad P, Nayyar H (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science 9:1705. https://doi.org/10.3389/fpls.2018.01705

Setiyono T, Barbieri M, Prasadini P, Maunahan A, Gatti L (2018). Spatial assessment of heat stress impact on rice production in two districts of Andhra Pradesh, India. World Journal of Agriculture Research 6:10-14.

Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K (2011). Impact of high-temperature stress on rice plant and its traits related to tolerance. The Journal of Agricultural Science 149:545-556. doi:https://doi.org/10.1017/S0021859611000360

Shah N, Paulsen G (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil 257:219-226.

Shahid M, Nayak AK, Tripathi R, Katara JL, Bihari P, Lal B, Gautam P (2018). Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages. International Journal of Biometeorology 62:1375-1387. https://doi.org/10.1007/s00484-018-1537-z

Shanmugavadivel P, Sow AM, Prakash C, Ramkumar M, Tiwari R, Mohapatra T, Singh NK (2017). High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice 10:28. https://doi.org/10.1186/s12284-017-0167-0

Sharma E, Borah P, Kaur A, Bhatnagar A, Mohapatra T, Kapoor S, Khurana J (2021). A comprehensive transcriptome analysis of contrasting rice cultivars highlights the role of auxin and ABA responsive genes in heat stress response. Genomics 113:1247-1261.

Sharma S, Dietz K-J (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57:711-726.

Shi W, Yin X, Struik PC, Xie F, Schmidt RC, Jagadish KS (2016). Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Field Crops Research 190:18-25.

Singha DL, Maharana J, Panda D, Dehury B, Modi MK, Singh S (2020). Understanding the thermal response of rice eukaryotic transcription factor cIF4A1 towards dynamic temperature stress: insights from expression profiling and
molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics 1-10. https://doi.org/10.1080/07391102.2020.1751295

Song Y, Chen Q, Ci D, Shao X, Zhang D (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biology 14:1-20. https://doi.org/10.1186/1471-2229-14-111

Suh J (2015). An institutional and policy framework to foster integrated rice–duck farming in Asian developing countries. International Journal of Agricultural Sustainability 13:294-307. https://doi.org/10.1080/14735903.2014.975480

Sun T, Hasegawa T, Liu B, Tang L, Liu L, Cao W, Zhu Y (2021). Current rice models underestimate yield losses from short-term heat stresses. Global Change Biology 27:402-416.

Takai T, Lumanglas P, Simon EV (2020). Genetic mechanism of heat stress tolerance at anthesis among three different rice varieties with different fertilities under heat stress. Plant Production Science 1-10. https://doi.org/10.1080/1343943X.2020.1766363

Tang S, Zhang H, Li L, Liu X, Chen L, Chen W, Ding Y (2018). Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period. Functional Plant Biology 45:911-921.

Tao Z, Li Y, Kaifeng J (2008). QTL mapping for heat tolerance of the tassel period of rice. Molecular Plant Breeding 6(5):867-873.

Tian J, Wang LP, Yang YJ, Sun J, Guo S-R (2012). Exogenous spermidine alleviates the oxidative damage in cucumber seedlings subjected to high temperatures. Journal of the American Society for Horticultural Science 137:11-19. https://doi.org/10.21273/JASHS.137.1.11

Topbjerg HB, Kaminski KP, Katrup K, Nielsen KL, Kirk HG, Andersen MN, Liu F (2015). Screening for intrinsic water use efficiency in a potato dihaploid mapping population under progressive drought conditions. Acta Agriculturae Scandinaevica, Section B-Soil & Plant Science 65:400-411.

Verbruggen N, Hermans C (2008). Proline accumulation in plants: a review. Amino Acids 35:753-759. https://doi.org/10.1007/s00726-008-0061-6

Wada H, Hatakeyama Y, Nakashima T, Nonami H, Erra-Balsells R, Hakata M, Nakata K, Hiraoka K, Onda Y, Nakano H (2020). On-site single pollen metabolomics reveals varietal differences in phosphatidylinositol synthesis under heat stress conditions in rice. Scientific Reports 10:1-11.

Waghmare SG, Sindhumole P, Mathew D, Shylaja M, Francis RM, Abida P, Narayananukurty M (2021). Identification of QTL linked to heat tolerance in rice (Oryza sativa L.) using SSR markers through bulked segregant analysis. Electronic Journal of Plant Breeding 12:46-53.

Wahid A, Gelani S, Ashraf M, Foolad MR (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany 61:199-223. https://doi.org/10.1016/j.exppbot.2007.05.011

Wang B, Zhong Z, Wang X, Han X, Yu D, WANG C, Song W, Zheng X, Chen C, Zhang YJ (2020). Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. International Journal of Molecular Sciences 21:2288.

Wang X, Cai J, Jiang D, Liu F, Dai T, Cao W (2011). Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology 168:585-593. https://doi.org/10.1016/j.jplph.2010.09.016

Wang X, Chen J, Liu C, Luo J, Yan X, Ai A, Cai Y, Xie H, Ding X, Peng X (2019a). Over-expression of a protein disulfide isomerase gene from methanothermobacter thermautotrophicus, enhances heat stress tolerance in rice. Gene 684:124-130.

Wang Y, Wang L, Zhou J, Hu S, Chen H, Xiang J, Zhang Y, Zeng Y, Shi Q, Zhu D (2019b). Research progress on heat stress of rice at flowering stage. Rice Science 26:1-10. https://doi.org/10.1016/j.rsci.2018.06.009

Wceerakoon W, Maruyama A, Ohba K (2008). Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L.). Journal of Agronomy and Crop Science 194:135-140.

Wei H, Liu J, Wang Y, Huang N, Zhang X, Wang L, Zhang J, Tu J, Zhong X (2013). A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 0C high temperature at seedling stage. Journal of Heredity 104:287-294.
Withanawasam D, Madhavilatha K, Syamala P, Aparna E, Swarajyalakshmi B, Vinod M, Amarnath K, Ramana Rao P, Sudhakar P, Reddy R (2021). Screening of QTL pyramided rice lines for thermotolerance by thermal induction response (TIR) technique. Journal of Pharmacognosy and Phytochemistry 10(1):401-405.

Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, Huang J, Nie L, Mohapatra PK, Peng S (2017). Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Frontiers in Plant Science 8:371. https://doi.org/10.3389/fpls.2017.00371

Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, Huang J, Nie L, Peng S (2016). Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports 6:34978. https://doi.org/10.1038/srep34978

Wu X, Shirote Y, Kishitani S, Ito Y, Toriyama K (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports 28:21-30.

Wu Y-S, Yang C-Y (2019). Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Botanical Studies 60:1-12.

Xiao YH, Yi P, Luo LH, Deng HB, Zhang GI, Tang WB, Chen LY (2011). Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice (Oryza sativa). Rice Science 18:204-209. https://doi.org/10.1016/S1672-6308(11)60028-0

Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T (2008). Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiology 148:908-925.

Xu X, Shi G, Ding C, Xu Y, Zhao J, Yang H, Pan Q (2011). Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regulation 63:251-258. https://doi.org/10.1007/s10725-010-9522-5

Xu Y, Chu C, Yao S (2021). The impact of high-temperature stress on rice: challenges and solutions. The Crop Journal 9:963976. https://doi.org/10.1016/j.cj.2021.02.011

Yamamoto A, Shim IS, Fujihara S (2012). Chilling-stress responses by rice seedlings grown with different ammonium concentrations and its relationship to leaf spermidine content. Journal of Plant Biology 55:191-197.

Yan C, Zhan G, Hong X, Yang D (2021a). Identification and fine mapping of a major QTL, TT1-2, that plays significant roles in regulating heat tolerance in rice. Plant Molecular Biology Reporter 39:376-385. https://doi.org/10.1007/s11105-020-01256-5

Yan H, Wang C, Liu K, Tian X (2021b). Detrimental effects of heat stress on grain weight and quality in rice (Oryza sativa L.) are aggravated by decreased relative humidity. Peer J 9:e11218. https://doi.org/10.7717/peerj.11218

Yang W, Liang J, Hao Q, Luan X, Tan Q, Lin S, Zhu H, Liu G, Liu Z, Bu S (2021). Fine mapping of two grain chalkiness QTLs sensitive to high temperature in rice. Rice 14:33. https://doi.org/10.1186/s12284-021-00476-x

Ye C, Argayoso MA, Redoña ED, Sierra SN, Laza MA, Dilla CJ, ... Delaviña CB (2012). Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breeding 131:33-41. https://doi.org/10.1111/j.1439-0523.2011.01924.x

Ye C, Tenorio FA, Argayoso MA, Laza MA, Koh HJ, Redoña ED, Jagadish KS, Gregorio GB (2015a). Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genetics 16:41. https://doi.org/10.1186/s12863-015-0199-7

Ye C, Tenorio FA, Redoña ED, Morales-Cortezano PS, Cabrega GA, Jagadish KS, Gregorio GB (2015b). Fine-mapping and validating qHTSF4. 1 to increase spikelet fertility under heat stress at flowering in rice. Theoretical and Applied Genetics 128:1507-1517. https://doi.org/10.1007/s00122-015-2526-9

You J, Chan Z (2015). ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science 6:1092. https://doi.org/10.3389/fpls.2015.01092

Yu K, Chen G, Patrick JR William H (2004). Reduction of global warming potential contribution from a rice field by irrigation, organic matter, and fertilizer management. Global Biogeochemical Cycles 18. https://doi.org/10.1029/2004GB002251

Zafar SA, Hameed A, Khan AS, Ashraf M (2017). Heat shock induced morpho-physiological response in indica rice (Oryza sativa L.) at early seedling stage. Pakistan Journal of Botany 49:453-463.

Zain M, Khan I, Chattha M, Qadri R, Anjum S, Hassan M, Mahmood A, Ilyas M (2017). Foliar applied thiourea at different growth stages modulated late sown wheat. Pakistan Journal of Science 69:39.

Zhang GL, Chen LY, Lei DY, Zhang ST (2005). Progresses in research on heat tolerance in rice. Hybrid Rice 1:1-15.

Zhang GL, Chen LY, Xiao GY, Xiao YH, Chen XB, Zhang ST (2009). Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers. Agricultural Sciences in China 8:482-487.
Zhang M, Fang Y, Ji Y, Jiang Z, Wang L (2013a). Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of *Broussonetia papyrifera*. South African Journal of Botany 85:1-9. https://doi.org/10.1016/j.sajb.2012.11.005

Zhang Q, Wei Y, Peng C (2018). Effects of endogenous ascorbic acid on resistance to high-temperature stress in excised rice leaves. Photosynthetica 56:1453-1458.

Zhang X, Rerksiri W, Liu A, Zhou X, Xiong H, Xiang J, ... Xiong X (2013b). Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Gene 530:185-192. https://doi.org/10.1016/j.gene.2013.08.048

Zhao L, Lei J, Huang Y, Zhu S, Chen H, Huang R, ... Yan S (2016). Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breeding Science 15084. https://doi.org/10.1270/jsbbs.15084

Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Cui K, Nie L (2016). Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation 78:167-178. https://doi.org/10.1007/s10725-015-0083-5

Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L (2007). Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Molecular Biology 63:591-608.

Zhu L, Shah F, Nie L, Cui K, Shah T, Wu W, ... Wang Q (2013). Efficacy of sowing date adjustment as a management strategy to cope with rice (*Oryza sativa* L.) seed quality deterioration due to elevated temperature. Australian Journal of Crop Science 7:543-549.

Zou J, Liu C, Chen X (2011). Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Reports 30:2155-2165. https://doi.org/10.1007/s00299-011-1122-y

Zou M, Yuan L, Zhu S, Liu S, Ge J, Wang C (2017). Effects of heat stress on photosynthetic characteristics and chloroplast ultrastructure of a heat-sensitive and heat-tolerant cultivar of *wucai* (*Brassica campestris* L.). Acta Physiologiae Plantarum 39:30. https://doi.org/10.1007/s11738-016-2319-z

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.