Undersulfation of Proteoglycans Synthesized by Chondrocytes from a Patient with Achondrogenesis Type 1B Homozygous for an L483P Substitution in the Diastrophic Dysplasia Sulfate Transporter*

(Received for publication, November 10, 1995, and in revised form, April 29, 1996)

Antonio Rosi§§, J. Jacky Bonaventure, Anne-Lise Delezoide, Giuseppe Cettati, and Andrea Superti-Furga

From the 1Departimento di Biochimica "Alessandro Castellanii," Università di Pavia, 27100 Pavia, Italy, the §Service de Génétique et Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U-393, CNRS ER-88, Hôpital des Enfants-Malades, 75743 Paris, France, and the ¶Division of Metabolic and Molecular Diseases, Department of Pediatrics, University of Zurich, CH-8032 Zurich, Switzerland

Achondrogenesis type 1B is an autosomal recessive, lethal chondrodysplasia caused by mutations in the gene encoding a sulfate/chloride antiporter of the cell membrane (Superti-Furga, A., Hästbacka, J., Wilcox, W. R., Cohn, D. H., van der Harten, J. J., Rossi, A., Blau, N., Rimoin, D. L., Steinmann, B., Lander, E. S., and Gitzelmann, R. (1996) Nat. Genet. 12, 100–102). To ascertain the consequences of the sulfate transport defect in proteoglycans, we studied the structure and sulfation of proteoglycans in cartilage tissue and in fibroblast and chondrocyte cultures from a fetus with achondrogenesis 1B. Proteoglycans extracted from epiphyseal cartilage and separated on agarose gels migrated more slowly than controls and stained poorly with alcian blue. The patient’s cultured cells showed reduced incorporation of [35S]sulfate relative to [3H]glucosamine, impaired uptake of sulfate, and higher resistance to chromate toxicity compared to control cells. Epiphyseal chondrocytes cultured in alginate beads synthesized proteoglycans of normal molecular size as judged by gel filtration chromatography, but undersulfated as judged by ion exchange chromatography and by the amount of non-sulfated disaccharide. High performance liquid chromatography analysis of chondroitinase-digested proteoglycans showed that sulfated disaccharides were present, although in reduced amounts, indicating that at least in vitro, other sources of sulfate can partially compensate for sulfate deficiency. A t1475c transition causing a L483P substitution in the eleventh transmembrane domain of the sulfate/chloride antiporter was present on both alleles in the patient who was the product of a consanguineous marriage. The results indicate that the defect of sulfate transport is expressed in both chondrocytes and fibroblasts and results in the synthesis of proteoglycans bearing glycosaminoglycan chains which are poorly sulfated but of normal length.

Achondrogenesis type 1B (ACG-1B)1 (1) is an autosomal recessive, lethal chondrodysplasia with severe underdevelopment of the skeleton, extreme micromelia, and death before or immediately after birth because of thoracic hypoplasia (1–8). Both radiological and histological features differentiate ACG-1B from achondrogenesis type 1A and achondrogenesis type 2 (3). In ACG-1B, cartilage matrix contains abnormally coarse collagen fibers and stains poorly with cationic dyes which have affinity for sulfated proteoglycans (toluidine blue or alcian blue) (4, 8). Evidence of undersulfation of proteoglycans (PGs) in cartilage on the basis of histological findings and in fibroblast cultures, together with the demonstration of insufficient formation of activated sulfate metabolites, was obtained recently in one patient with ACG-1B (8). Further studies have revealed that ACG-1B is caused not by a defect in the metabolic activation of sulfate, as originally concluded (8), but by a sulfate uptake defect caused by mutations in the sulfate transporter gene (9) originally isolated as the locus responsible for the non-lethal disorder, diastrophic dysplasia (10). The pathogenesis of the severe developmental defect of the skeleton seen in ACG-1B is believed to involve undersulfation of cartilage PGs, as suggested by both the staining properties of cartilage and its markedly reduced sulfate content (9), but direct demonstration of undersulfation of individual cartilage PGs is lacking. We have obtained cartilage tissue, cultured skin fibroblasts, and epiphyseal chondrocytes maintained in alginate beads and used them to test the structure and the sulfation of PGs. The results indicate that both the large chondroitin sulfate proteoglycans (CSPGs) and the small CSPGs synthesized by ACG-1B chondrocytes bear glycosaminoglycan chains which are of normal length but not correctly sulfated.

MATERIALS AND METHODS

Case Report—The fetus studied was the product of a consanguineous marriage. Pregnancy was terminated at week 16 because of ultrasound detection of severe micromelia and macrocephaly, after appropriate parental counselling, and in accordance with legislation. X-rays showed extremely short tubular bones, missing ossification of vertebral bodies, short ribs without fractures, and crescent-shaped iliac wings characteristic for achondrogenesis type 1 (Fig. 1A). Histologic analysis of cartilage showed typical collagenous rings surrounding chondrocytes associated with coarse collagen fibers and absence of sulfated glycosaminoglycans as indicated by alcian blue staining. The joint space was preserved but without production of articular cartilage. The limbs showed the extreme micromelia with constrictions of the forearm and leg, and the spine was extremely short with almost no ossification. X-rays showed dysplasia of all parts of the skeleton with underdevelopment of the thoracic cavity and severe hypoplasia of the vertebral bodies.

The abbreviations used are: ACG-1B, achondrogenesis 1B; DTDST, diastrophic dysplasia sulfate transporter; PGs, proteoglycans; GdmCl, guanidinium chloride; DMEM, Dulbecco’s modified Eagle’s medium; FCS, fetal calf serum; APS, adenosine 5’-phosphosulfate; PAPS, 3’-phosphoadenosine 5’-phosphosulfate; PCR, polymerase chain reaction; CSPGs, chondroitin sulfate proteoglycans; HA, hyaluronic acid; ΔDI-05, 3-0-(2-gluc-4-eneuronosyl)-N-acetylgalactosamine; ΔDI-45 and ΔDI-65, derivatives of ΔDI-05 with a sulfate at the 4 or 6 position of the heparosamine moiety, respectively; bp, base pair; nt, nucleotide.

1 The abbreviations used are: ACG-1B, achondrogenesis 1B; DTDST, diastrophic dysplasia sulfate transporter; PGs, proteoglycans; GdmCl, guanidinium chloride; DMEM, Dulbecco’s modified Eagle’s medium; FCS, fetal calf serum; APS, adenosine 5’-phosphosulfate; PAPS, 3’-phosphoadenosine 5’-phosphosulfate; PCR, polymerase chain reaction; CSPGs, chondroitin sulfate proteoglycans; HA, hyaluronic acid; ΔDI-05, 3-0-(2-gluc-4-eneuronosyl)-N-acetylgalactosamine; ΔDI-45 and ΔDI-65, derivatives of ΔDI-05 with a sulfate at the 4 or 6 position of the heparosamine moiety, respectively; bp, base pair; nt, nucleotide.
associated with reduced ground substance and coarse collagen fibrils which allowed diagnosis of achondrogenesis type 1B rather than type 1A (Fig. 1B) (3, 4, 7, 8).

Biochemical Analysis of Cartilage—Cartilage fragments from the patient and from fetuses aborted for other causes and with no obvious signs of skeletal disorders were homogenized with a Polytron device and extracted with 4 M guanidinium chloride (GdmCl), 50 mM Tris-HCl, pH 7.4, as described previously (7). The uronic acid content of the 4 M GdmCl extract was determined by the carbazole reaction (11). Aliquots of cartilage extract were loaded on 0.8% agarose gels and subjected to electrophoresis in 0.04 M Tris-HCl buffer, pH 6.8, containing 20 mM sodium acetate, 50 mM Tris acetate, pH 7.3, at 37°C for 6 h. Undigested proteoglycans showed changes typical for achondrogenesis type 1B rather than type 1A (Fig. 3A) (3, 4, 7, 8)

Histologic section of the patient’s epiphyseal cartilage showing coarse collagen fibers forming dense rings surrounding the chondrocytes (right part).

Fig. 1. X-ray picture of the fetus showing changes typical for achondrogenesis type 1B (left part, see text). Histologic section of the patient’s epiphyseal cartilage showing coarse collagen fibers forming dense rings surrounding the chondrocytes (right part).
elution position of radiolabeled disaccharides agreed with those of the standards.

Samples of hyaluronic acid from the ion exchange fractionation were precipitated with 9 volumes of ethanol. After centrifugation, the pellet was redissolved in 5 units of Streptomyces hyaluronidase in 20 mM sodium acetate, pH 6.0, 75 mM NaCl at 60°C overnight. Undigested products were separated from oligosaccharides by gel chromatography on a Sephadex G-50 column in 0.5 M NH₄HCO₃ (15).

Gel Filtration Chromatography—To determine their molecular sizes, PGs were prepurified by step elution (0.1–1 M NaCl) from 1-ml DEAE-Sephadex columns and chromatographed on a 0.9 × 340-cm column of Sepharose CL-2B (Pharmacia) eluted at room temperature with a dissociative buffer of 4 M GdmCl, 0.5 M sodium acetate, 50 mM sodium phosphate, pH 6.8, 0.1% (w/v) Triton X-100 and the proteinase inhibitor EDTA (10 mM EDTA, 0.1 M 6-aminohexanoic acid, 5 mM benzamidine, and 10 mM N-ethylmaleimide) at a flow rate of 0.15 ml/min. An aliquot was collected and aliquots analyzed for radioactivity.

Activation of 35SO₄$^{2-}$ to APS and PAPS—All procedures were performed at 4°C unless otherwise stated. Confluent skin fibroblasts from a 75-cm² flask were harvested, centrifuged at 12,100 × g for 15 min and the protein content was estimated (BCA Protein Assay, Pierce) using bovine serum albumin as standard. A reaction mixture of 55 μl containing 5 μl of 0.1 M ATP, 2 μl of 10 mM cysteine-HCl, 6 μg of carrier-free Na35SO₄, 1 μl of 1 M MgCl₂, 1 μl of 0.01 M NAD$^-$, and 45 μl of cell extract containing 90 μg of protein in 0.05 M Tris-HCl, pH 8.0, was incubated at 37°C (17). The reaction was allowed to proceed for 1 h. Ten-μl aliquots were then spotted onto Whatman No. 3MM paper and subjected to high voltage electrophoresis for 60 min at 2 kV (paper length, 23 cm) in H₂O/pyridine/acetic acid (493/52) buffer, pH 5.3, at 4°C (18). The paper was dried and exposed to X-Omat AR films (Kodak).

Sulfate Uptake Assay—The same protocol was used for either fibroblasts or chondrocytes at the second passage as monolayer. Cells were seeded in 10-cm² dishes (3 × 10⁵ cells/dish) and incubated in DMEM containing 10% FCS for 24 h at 37°C. Sulfate uptake was performed as described previously (10, 19) using low ionic strength buffer (1 mM MgCl₂, 300 mM sucrose, 10 mM Tris-Hepes, pH 7.5) containing concentrations of Na$_2$SO₄ ranging from 2 to 250 μM. Prior to the assay, the cells were washed three times with prewarmed sulfate-free low ionic strength buffer and preincubated for 2 min in the same buffer at 37°C. The washed cells were then incubated for 1 min at 37°C in the low ionic strength buffer containing different concentrations of Na$_2$SO₄ and a constant concentration of carrier-free Na35SO₄ (0.1 μM, corresponding to 150 μCi/ml). The uptake medium was removed and the cells were washed four times with 1.5 ml of ice-cold medium containing 100 mM sucrose, 100 mM NaNO₃, 1 mM MgCl₂, and 10 mM Tris-Hepes, pH 7.5. Finally, cells were lysed in 0.8 ml of 2% SDS. Lysates were collected, heat-denatured, and centrifuged. Supernatants were assayed for radioactivity and protein content.

Chromat Sensitivity Assay—Fibroblasts were seeded in 96-microwell plates (3 × 10⁴ cells/well unless otherwise stated) and allowed to attach overnight. Cells were then incubated in DMEM without serum and with varying concentrations of K$_2$CrO₄ (0–200 μM) at 37°C for 8 days. After that period, surviving cells were fixed with 1% glutaraldehyde in phosphate-buffered saline, stained with crystal violet. Optical density in the microwells was read at 595 nm using a microplate reader.

Amplification, Cloning, and Sequencing of Genomic DNA—Genomic DNA was extracted from confluent skin fibroblasts according to a standard protocol (21). The published sequence of the diastrophic dysplasia sulfate transporter gene (DDTST; Ref. 10) was used to design polymerase chain reaction (PCR) primer pairs to produce overlapping PCR products 100–400 bp long. Single strand conformation polymorphism and heteroduplex analysis was performed either on the intact PCR product or on fragments obtained by restriction digestion (9). Briefly, PCR products were denatured at 95°C for 3 min, rapidly cooled on ice, and analyzed by electrophoresis on a 15% polyacrylamide gel (gel thickness 0.3 mm; acrylamide:deipiperazine:diacrylamide, 85:1) containing 8% glycerol in 120 mM Tris formate buffer, pH 8.0, and sonicated. The cell extract was clarified by centrifugation at 4°C for 8 h. The cell fraction or on fragments obtained by restriction digestion (9). Briefly, PCR products were denatured at 95°C for 3 min, rapidly cooled on ice, and then analyzed by electrophoresis on a 15% polyacrylamide gel (gel thickness 0.3 mm; acrylamide:deipiperazine:diacrylamide, 85:1) containing 8% glycerol in 120 mM Tris formate buffer, pH 8.0. The top and bottom of the gels were covered with Whatma No. 3MM paper soaked with 1.04 μl Tris borate buffer (2 × TBE), pH 9.0. Electrophoresis was carried out at 10°C for 90 min with 0.8 watts/cm gel width and the gels were stained with silver nitrate. For sequence analysis, a PCR fragment spanning nt 1171 to 1523 of the DDTST gene was cloned using the TA cloning kit (Invitrogen) and clones were sequenced on an automatic sequencer (ALF, Pharmacia) using standard sequencing reagents and fluorescent primers (Autoread, Pharmacia).

RESULTS

Biochemical Analysis of Cartilage Extracts—Total uronic acid content of GdmCl extract of cartilage was reduced by approximately 30% in the patient as compared to controls (160 μg/mg dry weight in patient versus 200–250 μg/mg in controls).

Equivalent amounts of uronic acid from each sample were separated on 0.8% agarose gel and stained with toluidine blue or alcan blue. The patient's sample did not stain with toluidine blue (lane 8) was observed in the patient. Lanes 2–7, controls.

TABLE I

Culture medium	Patient	Control
Chondrocytes	0.116	1.240
Fibroblasts	0.025	0.080

TABLE II

Patient	1.040
Cell fraction	1.047
Control	0.090

Acute sulfate uptake—Cells were double labeled with [H]glucosamine and [35S]sulfate for 24 h and the medium was harvested. Fibroblast's cell layer was extracted with 4 M GdmCl (cell pellet). Regarding chondrocytes, the alginate beads were dissolved in EDTA and the suspension was centrifuged. The cell pellet was extracted with 4 M GdmCl. The cell fraction refers to the alginate fraction plus the cell pellet. All fractions were exhaustively dialysed against 8 M urea and an aliquot was counted. In both cell strains the 35S/3H ratio is reduced in the patient compared to the control. This difference is less evident in the medium from chondrocytes which is consistent with the retention of PGs mainly in the alginate beads.

Gel Electrophoresis—Cartilage extracts were analyzed by agarose gel electrophoresis and stained with alcan blue or toluidine blue. An alcian blue-positive band was observed in the patient. Lanes 2–7, controls.

Fig. 2. Agarose gel electrophoresis of cartilage proteoglycans. Cartilage extracts were analyzed by agarose gel electrophoresis and stained with alcan blue or toluidine blue. An alcan blue-positive band with delayed mobility (lane 1, indicated by the arrow) which did not stain with toluidine blue (lane 8) was observed in the patient. Lanes 2–7, controls.
fate for 24 h, the total amount of non-dialyzable radioactivity in the patient's cells was reduced by 30% in the medium fraction and by more than 80% in the beads fraction when compared to control. In control samples, 96% of incorporated radioactivity was recovered in the beads fraction and 4% in the medium, while in the patient's chondrocytes, 88% was found in the beads fraction and 12% in the culture medium. Having observed reduced overall sulfate incorporation, we assayed proteoglycan sulfation by double-labeling with [35S]sulfate and [3H]glucosamine. In the patient's sample, the ratio between non-dialyzable 35S and 3H activities was reduced both in the medium and the cell fraction (Table I). Similar results were obtained with fibroblasts (Table I).

Structure of Proteoglycans Synthesized by Chondrocyte Cultures—After metabolic labeling with [3H]glucosamine and [35S]sulfate, PGs were harvested from the culture medium and from the alginite beads using associative and dissociative conditions to yield three fractions (for ion-exchange chromatography) or four fractions (for molecular sieve chromatography; see "Materials and Methods," above). Upon ion-exchange chromatography on DEAE-Sephacel, neutral glycoproteins were eluted with the isocratic buffer in the first peak, whereas the hyaluronic acid (HA) and the polyanionic CSPGs were eluted at approximately 0.3 M and 0.6 M NaCl, respectively.

In control samples, the CSPG peak was labeled with both 35S and 3H, whereas in the patient's samples this peak was broadened, some material eluting at a lower ionic strength. In the patient's samples a 3H-labeled peak (fractions 32–38), corresponding to hyaluronic acid, was higher than in the control samples (see Table II).
adex G-50 chromatography. The relative amount of hyaluronidase resistant material in the patient was similar to the controls (2-3%).

Aliquots of the PG peak from the 4 M GdmCl fraction were digested with chondroitinase ABC and disaccharides separated by high performance liquid chromatography. In the control, the relative proportions of unsulfated (ΔHi-0S), 4-sulfate (ΔHi-4S), and 6-sulfate (ΔHi-6S) disaccharides were similar to values obtained with chick embryo epiphyseal cartilage (23). In the patient the relative amount of ΔHi-0S was higher than control (Table III); however, sulfated disaccharides with a very low ΔSi-0S/ΔH ratio were present indicating that other sources of sulfate (e.g. sulfur containing amino acids) could partially compensate for the lack of exogenous sulfate. The higher proportion of ΔHi-4S versus ΔHi-6S in the patient confirmed previous observations suggesting that the biosynthetic system for sulfation at position 6 is more sensitive to sulfate availability than at position 4 (23).

To test whether PGs undersulfations changed the distribution of large and small PGs between the different matrix fractions, PGs were purified by step-elution from DEAE-Sephadex and subjected to molecular sieve chromatography on Sepharose CL-2B under dissociative conditions. The results (see Table IV and Fig. 4) showed that (i) undersulfation from extracellular sulfate affected both large and small proteoglycans but was slightly more pronounced in the large proteoglycans, and (ii) the degree of undersulfation was equivalent in the medium and in the different cell fractions (alginic fraction, 0.2 M GdmCl fraction, and 4 M GdmHCl fraction).

A further observation pertains to the relative proportions of large and small proteoglycans. In the cell fraction from the control (Fig. 4, D, F, and H) large molecular size PGs (corresponding to aggrecan) were predominant, whereas small PGs represented only 10–25% of total PGs (Table IV). Small PGs were recovered mostly in the culture medium. Conversely, in all fractions of the patient's chondrocyte cultures, the percentage of small PGs was higher, and that of large PGs lower, than in control chondrocytes (Table IV).

Finally, in the patient's cell-associated matrix (0.2 and 4 M GdmCl fraction), an ³H-labeled peak free of ³⁵S (fractions 37–43) and eluting in the void volume of the column (V0) was present (Fig. 4, E and G). Since this peak did not overlap with the proteoglycan peak, and since standard hyaluronic acid labeled with [³H]glucosamine eluted in the same position (data not shown), we presumed that this peak may represent hyaluronic acid. This hypothesis was further supported by the detection, upon DEAE-Sephadex chromatography, of a large peak of HA as described above.

Sulfate Activation in Cell Sonicates—The metabolic activation of inorganic sulfate requires the action of a bifunctional cystosolic enzyme, ATP sulfurylase/APS kinase, which converts sulfate first to adenosine 5' phosphosulfate (APS) and then to PAPS using two ATP molecules (18). After translocation into the Golgi lumen through a PAPS translocase, PAPS can act as a sulfate donor for the sulfation of PGs and other glycoproteins. ATP sulfurylase and APS kinase activities were assayed in control and patient's fibroblasts by incubating cell sonicates with [³⁵S]sodium sulfate and separating newly formed, labeled APS and PAPS by paper electrophoresis (Fig. 5). APS and PAPS levels in the patient's cellular extract were in the same range as in the control extract, indicating roughly normal activities of the bifunctional enzyme, ATP sulfurylase/APS kinase. These results contradicted the original conclusion of defective metabolic activation as the cause of ACG-1B (8), which was corrected recently (9).

Defective Activity of the Sulfate Transporter in Patient's Cells—Sulfate uptake was determined in patient's fibroblasts and chondrocytes by pulse labeling with [³⁵S]sulfate for 1 min in medium containing varying concentrations of unlabeled sodium sulfate. Uptake was reduced in the patient's cells at all sulfate concentrations tested (Fig. 6). The activity of the sulfate transporter was then assayed by determining the cells sensitivity to chromate. Chromate is toxic to cells and enters them through the sulfate transporter. Therefore, sulfate transport-deficient Chinese hamster ovary cells are relatively resistant to chromate (24). Patient's and control fibroblasts were incubated in medium containing various concentrations of K₂CrO₄ for 8 days and then their viability was assessed. The LD₅₀ was 2.5 μM in control cells and 40 μM in the patient's cells (Fig. 7), indicating that the sulfate transport-deficiency in the patient's cells rendered them resistant to chromate.

Identification of a Homozygous Mutation in the DTDST Gene—Genomic fragments of the DTDST gene were amplified by PCR reaction and subjected to single strand conformation polymorphism and heteroduplex analysis. A PCR fragment spanning nt 1171 to 1559 of the DTDST gene gave a single strand conformation polymorphism pattern different from that of controls. To map the sequence change more precisely, the 389-bp fragment was incubated with various restriction enzymes prior to electrophoresis. After digestion with ScrF1, a fragment of 148 bp seen in controls was cleaved completely in fragments of 84 and 64 bp in the patient, indicating that the patient was homozygous for a restriction site not present in controls (Fig. 8). DNA sequence analysis of clones containing this fragment identified a T to C transition at nucleotide 1475 which predicts the substitution of leucine 483 with proline within the eleventh transmembrane domain of the sulfate transporter (Fig. 9). Parental DNA was not available for study; however, the observation of the same mutation on both alleles is compatible with recessive inheritance and parental consanguinity.

TABLE II	Relative amount of HA, essentially unsulfated PGs and PGs in chondrocytes		
Culture medium	% HA	% Chn	% PGs
Control	4.9 (±0.8)	2.9 (±0.6)	92.0 (±1.3)
Patient	12.4 (±3.0)	4.2 (±0.4)	83.3 (±3.3)
Alginate fraction	4.2 (±0.9)	5.2 (±1.4)	90.5 (±1.5)
Patient	20.3 (±13.0)	9.3 (±2.0)	70.0 (±12.0)
GdmCl fraction	8.0 (±2.9)	4.8 (±0.5)	86.6 (±3.3)
Patient	36.5 (±8.5)	7.5 (±0.5)	55.6 (±8.8)

TABLE III	Disaccharides quantification by HPLC				
% ΔDi-0S	% ³⁵S/³H	% ³⁵S/³H			
Control	18	30	0.374	52	0.612
Patient	29	43	0.142	28	0.223
Preliminary analysis of cartilage extracts indicated re-
duced negative charge and a reduced sulfation of PGs. Double-
labeling experiments of chondrocytes cultured in alginate
beads followed by ion exchange chromatography confirmed
the contribution of inorganic extracellular sulfate to PGs
sulfation was markedly decreased. Even if the elution profiles
that the presence of a helix-breaking proline
within a transmembrane domain can be expected to disrupt its
integrity, and on the analogy with the mutations observed
previously, this mutation can be assumed to be pathogenic.
Accordingly, the activity of the sulfate transporter in skin
fibroblasts was found to be impaired both by the sulfate uptake
and by the chromate toxicity assay. The observation of a defect
in sulfate uptake in cells derived from epiphyseal cartilage is
direct proof that the gene is expressed also in chondrocytes.

Despite the histological and chemical evidence of defective
proteoglycan sulfation in ACG-1B cartilage, including reduced
or absent staining of histologic sections and tissue extracts
with cationic dyes (4, 8) and markedly reduced sulfate content
(9), little detail is known about the composition and the struc-
ture of PGs species synthesized by ACG-1B chondrocytes
in vivo and in vitro. The alginate bead culture system allows the
maintenance or the re-expression of the chondrocytic pheno-
type, otherwise lost in monolayer cultures (12, 14). It has been
used for the study of collagens and PGs secreted by normal
chondrocytes (25) as well as for the molecular characterization
of mutant type II collagen in patient's affected by spondylo-
epiphyseal dysplasia (26) or achondrogenesis type II (22). We
have recently shown that ACG-1B is caused by homozygos-
ity or compound heterozygosity for mutations in the DTDST
gene causing either premature termination of the DTDST pro-
tein or structural changes mainly within transmembrane do-
 mains (9). Consistent with this notion, the patient described
here was homozygous for a previously unobserved DTDST mu-
tation predicting a non-conservative amino acid substitution in
the eleventh transmembrane domain of the sulfate transporter.

Following the identification of a sulfation defect in ACG-1B
(8) and the identification of a sulfate/chloride antiporter
(DTDST) as the gene responsible for diastrophic dysplasia (10),
we have recently shown that ACG-1B is caused by homozygos-
ity or compound heterozygosity for mutations in the DTDST

table IV

Percentages of large and small proteoglycans and [35S]sulfate/[3H]glucosamine ratio in chondrocyte cultures after
molecular sieve chromatography

	Patient	Control						
	Large PGs	Small PGs	Large PGs	Small PGs				
%	35S/H	%	35S/H	%	35S/H	%	35S/H	
Medium	0	0	100	0.316	32	2.402	68	1.011
Alginate	31	0.199	69	0.206	74	1.141	26	0.789
0.2 M GdmHCl	64	0.189	36	0.195	89	1.611	11	0.951
4 M GdmCl	59	0.192	41	0.194	64	1.480	16	0.714

DISCUSSION

In all fractions; both large and small PGs are undersulfated compared to the control.

Patient

Control

...
pared to PGs, indicating that PG undersulfation can affect not only PG metabolism but also HA synthesis. Although these components are synthesized in different cell compartments, their metabolism is highly coordinated in bovine cartilage or- gancultures (28). If, as the biosynthetic studies of chondrocytes suggest, ACG-1B cartilage contains more hyaluronic acid than control cartilage, the concentration of proteoglycans may be reduced more significantly than suggested by the moderate decrease in uronic acid content. Accordingly, the poor staining of cartilage sections with chemical cationic dyes could be due not only to a lack of PGs sulfation but also to a reduced concentration of these macromolecules in the tissue.

The normal chromatographic pattern on Sepharose CL-2B provided indirect evidence that the length of glycosaminoglycan side chains of both large and small CSPGs was not significantly altered. These results correlate well with the observation of normally glycanated, albeit unsulfated, decorin in fibroblasts of a patient previously studied (8).

Disaccharide analysis of CSPGs synthesized by the patient's chondrocytes showed a higher amount of nonsulfated disaccharide (ΔDi-0S) when compared to sulfated disaccharides, thus demonstrating a reduced PGs sulfation. However, moderate amounts of sulfated disaccharides were present. Their poor labeling with 35S indicated that the contribution of extracellular inorganic sulfate was low and that other sources of sulfate (possibly, sulfur containing amino acids) were able to partially compensate the lack of exogenous inorganic sulfate. These data differ from previous findings in organ culture of chick embryo cartilage showing that the contribution of other sources of sulfate was poor (23). The discrepancy between the two studies may be related to different culture conditions and/or to differences in the regulation of alternative metabolic pathways. Be-
15% to the intracellular PAPS pool (29). No data are hitherto available regarding this metabolic pathway in cartilage, but it is likely to play a lesser role than in vitro due to the lower cysteine concentration in plasma (80 μM) than in culture medium (400 μM). Measurement of disaccharide content in cartilage will be required for comparison with in vitro findings. As chondrocytes are thought to have a greater sulfate requirement for PGs synthesis than any other tissues, cysteine metabolism in ACG-1B could be enhanced as an alternative source of sulfate.

Although the degree of undersulfation is not precisely measured in ACG-1B cartilage, it remains to be explained how decreased sulfation of PGs produces the marked histologic changes of cartilage matrix and severe bone dysplasia. We have considered four possibilities which are complementary rather than mutually exclusive. First, decreased sulfation may affect the stability of PGs in the tissue. Second, the undersulfation may change the binding properties of glycosaminoglycan chains to cationic ligands, such as specific domains of collagen II fibrils or the NC 4 peptide of collagen IX (32). There is evidence that the small chondroitin sulfate dermatan sulfate proteoglycans, decorin and fibromodulin, bind to the surface of collagen fibrils with their core protein but bridge over to adjacent fibrils with their sulfated glycosaminoglycan chains (33). Moreover, decorin and fibromodulin can slow collagen fibril formation and reduce the diameter of fibrils in vitro, although it is not clear whether the core protein or the sulfated glycosaminoglycan chain mediates this effect (34, 35). Thus, a reduced concentration or changes in the binding properties of PGs might explain the coarsening of collagen fibrils typical of ACG-1B cartilage. A third hypothesis is a reduction in the hydrophilic capacity of PGs caused by undersulfation. While substantial residual water binding activity would be presumed to be associated with the galactosamine and uronic acid residues in both PGs and HA, the loss of sulfate groups might be critical in lowering the hydration state of the cartilage matrix. A fourth hypothesis invokes differences in the binding of growth factors to their cell-membrane receptors, which in several instances requires the presence of heparan sulfate, leading to a change in cell proliferation (36). Whether these or other mechanisms are at work is the aim of further studies.

The role of the large chondroitin sulfate proteoglycan, aggrecan, for the integrity of the extracellular matrix of cartilage is highlighted by the lethal chondrodysplasias associated with mutations in the aggrecan core protein leading to the absence of aggrecan in chicken (37) and in mice (38). The importance of correct sulfation of PGs had been indicated by studies in the non-lethal, recessive mouse chondrodysplasia, brachymorphic (bm). In homozygous bm/ bm animals, who have short limbs and histological evidence of defective cartilage matrix including reduced metachromasia (39), there is a decrease in the activities of the bifunctional enzyme ATP sulfurylase/APS kinase, leading to PAPS depletion (17). The substantial residual activity of this enzyme in cartilage of affected mice may account for the non-lethal phenotype. Although the metabolic block in ACG-1B is at the level of sulfate transport rather than of sulfate activation, the severe phenotype is a further indication that PG sulfation must have a crucial role in cartilage matrix assembly. The results presented here demonstrate that chondrocytes are affected by the sulfate transport defect and synthesize PGs which are normal in size but not normally sulfated. The mechanism by which decreased sulfation is translated into the severe changes in the extracellular matrix and lastly into the lethal phenotype remains to be determined.

Acknowledgments—We thank Angelo Gallanti for expert cell culturing, J. Jean-Claude Allain and Sabine Fleig for technical assistance, Dr. F. Nombaliais for providing the x-ray picture of the patient, and Prof. R. Gitzelmann and Prof. B. Steinmann for critically reviewing the manuscript.

REFERENCES
1. Fraccaro, M. (1952) Folia Hered. Pathol. 1, 190–213
2. Wiedemann, H. R., Remagen, W., Hienz, H. A., Gorlin, R. J., and Maroteaux, P. (1974) Z. Kinderheilk. D. 116, 223–251
3. Borochowitz, Z., Lachman, R., Adomian, G. E., Spear, G., Jones, K., and Rimoin, D. L. (1988) J. Pediatr. 112, 23–31
4. van der Harten, H. J., Brons, J. T., Dijkstra, P. F., Niermeyer, M. F., Meijer, C. J. L. M., van Gijn, H. P., and Arts, N. F. T. (1988) Pediatr. Pathol. 8, 571–597
5. Spranger, J. (1992) Eur. J. Pediatr. 151, 407–415
6. Horton, W. A., and Hecht, J. T. (1993) in Connective Tissue: Its Genetic and Heritable Disorders. Molecular Genetics and Medical Aspects (Royce, P. M., and Steinmann, B., eds) pp. 643–675, Willey-Liss, Inc., New York
7. Freisinger, P., Stanesco, V., Jacob, B., Cohen-Solal, L., Maroteaux, P., and Bonaventure, J. (1994) Am. J. Med. Genet. 49, 439–446
8. Superti-Furga, A. (1994) Am. J. Hum. Genet. 55, 1137–1145
9. Superti-Furga, A., Hästbacka, J., Wilcox, W. R., Cooh, D. H., van der Harten, J. J., Rossii, A., Blau, N., Rimoin, D. L., Steinmann, B., Landers, E. S., and Gitzelmann, R. (1996) Nat. Genet. 12, 100–102
10. Hästbacka, J., de la Chapelle, A., Mahtani, M. M., Clines, G., Reeve-Daly, M. P., Daly, M., Hamilton, B. A., Kisumii, K., Tirvedi, B., Weaver, A., Colona, A., Lovett, M., Buckler, A., Kaitila, I., and Lander, E. S. (1994) Cell 78, 1073–1087
11. Bitter, T., and Muir, H. M. (1962) Anal. Biochem. 4, 330–334
12. Bonaventure, J., Kadmom, N., Cohen-Solal, L., Ng, K. H., Bourgignoun, J.,
13. Guo, J., Jourdian, G. W., and MacCallum, D. K. (1989) Connect. Tissue Res. 19, 277–297
14. Häuselmann, H. J., Aydelotte, M. B., Schumacher, B. L., Kuettnet, K. E., Gittelis, S. H., and Thonar E. J.-M. A. (1992) Matrix 12, 116–129
15. Harper, G. S., Hascall, V. C., Yanagishita, M., and Gahl, W. A. (1987) J. Biol. Chem. 262, 5637–5643
16. Yoshih, K., Miyouchi, S., Kikuchi, H., Tawada, A., and Tokuyasu, K. (1989) Anal. Biochem. 177, 327–332
17. Sugahara, K., and Schwartz, N. B. (1982) Arch. Biochem. Biophys. 214, 589–601
18. Geller, D. H., Henry, J. G., Belch, J., and Schwartz, N. B. (1987) J. Biol. Chem. 262, 7374–7382
19. Elgavish, A., Smith, J. B., Ilion, D. J., and Mezean, E. (1985) J. Cell. Physiol. 125, 243–250
20. Relle, H., Birnbock, H., Bernhardt, G., Spru, T., and Schonenberger, H. (1990) Anal. Biochem. 187, 262–267
21. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
22. Bonaventure, J., Cohen-Solal, L., Ritvaniemi, P., van Maldergem, L., Kadhom, N., Delezoide, A. L., Maroteaux, P., Prokop, D. J., and Ala-Kokko, L. (1995) Biochem. J. 307, 823–830
23. Ito, K., Kimata, K., Sobue, M., and Suzuki, S. (1982) J. Biol. Chem. 257, 917–923
24. Esko, J., Elgavish, A., Praastrofe, T., Taylor, W. H., and Weinke, J. L. (1986) J. Biol. Chem. 261, 15725–15733
25. Häuselmann, H. J., Fernandes, R. J., Mok, S. S., Schmid, T. M., Block, J. A., Aydelotte, M. B., Kuettnet, K. E., and Thonar, E. J.-M. A. (1994) J. Cell Sci. 107, 17–27
26. Chen, D., Taylor, T. K. F., and Cole, W. G. (1993) J. Biol. Chem. 268, 15238–15245
27. Sobue, M., Takeuchi, J., Ito, K., Kimata, K., and Suzuki, S. (1978) J. Biol. Chem. 253, 6190–6196
28. Morales, T. I., and Hascall, V. (1988) J. Biol. Chem. 263, 3632–3638
29. Imai, Y., Yanagishita, M., and Hascall, V. (1994) Arch. Biochem. Biophys. 312, 392–400
30. Keller, J. M., and Keller, K. M. (1987) Biochim. Biophys. Acta 926, 139–144
31. Humphries, D. E., Silbert, C. K., and Silbert, J. E. (1988) Biochem. J. 252, 305–308
32. Heinegard, D., and Oldberg, A. (1993) in Connective Tissue and Its Heritable Disorders-Molecular, Genetics and Medical Aspects (Royce, P. M., and Steinmann, B., eds) pp. 189–209, Wiley-Liss, Inc., New York
33. Hedbom, E., and Heinegard, D. (1993) J. Biol. Chem. 268, 27307–27312
34. Vogel, K. G., Paulsson, M., and Heinegard, D. (1984) Biochem. J. 223, 587–597
35. Schönherr, E., Haussler, H., Bevan, L., and Kresse, H. (1995) J. Biol. Chem. 270, 8877–8883
36. Spivak-Kroizman, T., Lenmon, M. A., Dikic, I., Ladbury, J. E., Pinchasi, D., Huang, J., J. aye, M., Crumley, G., Schlessinger, J., and Lax, J. (1994) Cell 79, 1015–1024
37. Li, H., Schwartz, N. B., and Vertel, B. M. (1993) J. Biol. Chem. 268, 23504–23511
38. Watanabe, H., Kimata, K., Line, S., Strong, D., Gao, L., Kozak, C. A., and Yamada, Y. (1994) Nat. Genet. 7, 154–157
39. Orkin, R. W., Pratt, R. M., and Martin, G. R. (1976) Dev. Biol. 50, 82–94.