REVIEW

Seroprevalence of Human Immunodeficiency Virus Type-1 Infection in Africa

Motonobu Miyazaki

The epidemiological characteristics of HIV-1 infection in Africa have gradually been elucidated through various studies. The HIV-1 infection is believed to have existed in the 1960s in Africa and is presently epidemic in Africa. The HIV-1 seropositive rate for the general population is higher in urban regions than in rural areas. The peak age of males infected with the HIV-1 tends to be higher than that of females infected with the HIV-1. Sex difference is recognized in the HIV-1 seropositive rates. Heterosexual contact, mother-to-child transmission and contaminated blood transfusion are confirmed as the modes of HIV-1 transmission. Prostitutes and STD patients are recognized as being high-risk groups for the HIV-1 infection. Where HIV-1 infection is widely distributed in the general population, risk reduction strategies should place strong emphasis on safe-sex techniques in addition to the promotion of partner reduction. J Epidemiol, 1995; 5: 1-9.

HIV-1 infection, Africa, epidemiology

Acquired immunodeficiency syndrome (AIDS) first originated from an abnormal increase in the number of patients suffering from pneumocystis carinii pneumonia and Kaposi’s sarcoma in the United States in 1981 and was named AIDS by the U.S. Centers for Disease Control and Prevention in September 1982. The modes of HIV-1 transmission are, however, different in each region. Homosexual contact and injecting drug use (IDU) are recognized as major modes of spread of HIV-1 in the United States, while heterosexual transmission and IDU are dominant in Thailand and most of HIV-1 infection occurred among heterosexuals in India and the Philippines. In addition, heterosexual contact of HIV-1 is increasing in Japan.

The human immunodeficiency virus type-1 (HIV-1) and type-2 (HIV-2) were later recognized as the etiologic viruses of AIDS. In Africa, the former virus is strongly epidemic in Central Africa and East Africa, and the later is mainly epidemic in West Africa.

In this paper, we describe the epidemiological characteristics of the HIV-1 infection in Africa, particularly in Sub-Sahara (south of the Sahara region), which have been comparatively elucidated in various studies.

SEROPOSITIVE RATES OF THE HIV-1 IN AFRICA

There are now a large number of reports of HIV-1 seropositive rates in African countries and we have conducted summarized comparable data on HIV-1 seropositive rates in Tables 1-4.

(1) Urban and rural regions

Table 1 shows the HIV-1 seropositive rates in urban and rural regions. The HIV-1 seropositive rates were higher in urban regions than in rural regions. The HIV-1 seropositive rates are evidently greater in Central and East African countries than in other African countries. Of the Central and East African countries, Zaire, Uganda, Rwanda and Tanzania show the highest HIV-1 seropositive rates.

(2) Sex

Table 2 shows the HIV-1 seropositive rates by sex. Sexual difference exists. The HIV-1 seropositive rates in females generally higher than in males regardless of target groups.

Received September 14; accepted October 17, 1994.
Department of Welfare and Health, Akita Prefectural Government. (Former, Special Pathogens Branch, Division of Viral Diseases, Center for Infectious Diseases, Centers for Disease Control, USA).
Address for correspondence : Motonobu Miyazaki, Associate Director General, Department of Welfare and Health, Akita Prefectural Government. 4-1-1 Sannou Akita City Akita, 010 Japan.
Table 1. Seropositive rates of HIV-1 in general residents by urban and rural regions (%).

Country	Urban	Rural	References
(CENTRAL AFRICA)			
Zaire	4.8-12.5	0.1-4.2	16, 17, 18, 19, 20, 21, 22, 23, 24, 25.
Uganda	10.2-15.5	0-19.7	22, 26, 27, 28, 29, 30.
Rwanda	9.5-15.7	1.4-8.5	17, 31, 32, 33, 34.
Central African Republic	2.2-9.7		35, 36.
Cameroon	0.7-3.2	0-0.2	35, 37, 38.
Equatorial Guinea	0-0.3	0.3-0.5	22, 35.
Gabon	0.1-1.8	0-0.8	22, 35, 39.
Congo	0-5.5	2.6	35, 40.
(EAST AFRICA)			
Kenya	2.6	0.3-1.0	41, 42.
Tanzania	5.2-32.8	0-4.8	22, 43, 44.
(SOUTH AFRICA)			
Zambia	14.8		45.
Angola	0-3.3		46, 47.
(WEST AFRICA)			
Mauritania	0.4-0.6		48.
Senegal	0-0.02	1.0	22, 49, 50.
Guinea Bissau	0.1		51.
Guinea	0.2		22.
Ivory Coast	1.1-8.0	0-2.7	52, 53, 54, 55, 56.
Nigeria	0-0.6	0-0.1	22, 57, 58.

(3) Pregnant women and children

Table 3 shows the HIV-1 seropositive rates of pregnant women and children. The HIV-1 seropositive rates of pregnant women tend to be higher in the countries where the HIV-1 is epidemic in general residents. The HIV-1 seropositive rates of children are the highest in Zaire, Uganda, Tanzania and Zambia. The HIV-1 seropositive rates in children are lower than in pregnant women. The HIV-1 seropositive rates in non-AIDS pediatric patients are higher in general children.

(4) High risk groups

Table 4 shows the HIV-1 seropositive rates of patients with sexually transmitted disease (STD), blood transfusion or medical injection-experienced persons and prostitutes. The HIV-1 seropositive rates in these groups are evidently higher than in general residents. The prostitutes have the highest HIV-1 seropositive rates regardless of the countries and become an important key category in the spread of the HIV-1 infection in Africa.

DISCUSSION

Basic virological, serological and clinical studies are important for understanding of HIV-1 pathogenicity. However, basic studies can not clarify virus distribution, infectious risk factors and/or transmission modes. Epidemiological research and analysis is required for this purpose. The monitoring of the HIV-1 epidemic has been carried out gradually in the general residents, patients and high-risk group in Africa. As a result, although the HIV-1 infection in the general residents, children, patients and prostitutes in African regions are reported, it is known that HIV-1 infections are concentrated generally in Central and East Africa (Table 1-4). The higher seropositive rates were seen in general among prostitutes and the STD patients.

The HIV-1 infection is mainly transmitted by sexual contact in Africa. This is known because STD patients and prostitutes have the highest HIV-1 seropositive rates (Tables 4). Low-class prostitutes have higher HIV-1 seropositive rates than high-class prostitutes\(^{115-117}\). Infections are present in heterosexual-contact partners of the HIV-1 seropositive\(^{56,113,118-120}\) and in the persons with multiple sex partners\(^{29,64,106,117,121}\). The frequent sexual contacts with different partners is an important factor more than the types of sexual intercourse\(^{122}\). In addition, seropositive rates among groups with using condom are lower than with non-using condom\(^{123}\). As for the peak age with the HIV-1 infection, the female seropositives are aged from 20 to 29 years, while the male seropositives are aged between 30 and 39 years\(^{29,45,66,}\). Males tend to be older than females. These facts suggest that sexual contact plays a key role as one of the modes of HIV-1 transmission.
HIV-1 Infection in Africa

Table 2. Seropositive rates of HIV-1 by sex (%).

Country	Male	Female	Remarks	References
(CENTRAL AFRICA)				
Zaire	5.3	8.1	General residents	19.
Zaire	2.8-4.5	3.7-8.2	Textile workers & their wives	22,63.
Zaire	5.5-5.8	3.7-7.3	Bank workers & their wives	22,63.
Zaire	47.5	58.9	Inpatients	60.
Zaire	3.9-43.7	9.4-57.6	Patients	61,62.
Zaire	12.4-33.7	230.0-43.3	Patients with TB	63.
Uganda	4.4-15.2	5.3-23.9	General residents	26,29,30,64,65,66.
Uganda	28.6	57.4	Bar, Hotel workers	29.
Uganda	28.1	38.0	Vendors	29.
Uganda	7.1	18.2	Students	29.
Uganda	12.2	15.6	Agriculture	29.
Uganda	19.4	29.3	MI in 60 Months	29.
Uganda	31.2-36.0	33.7-39.6	Patients with STD	29,67.
Rwanda	1.3-14.6	1.4-25.0	General residents	31,34.
Central African Republic	1.4-3.5	5.5-11.4	General residents	37.
Central African Republic	10.7	2.2	Workers	37.
(EAST AFRICA)				
Kenya	2.9-5.9	4.1-8.1	Patients with STD	68.
Kenya	19.7	17.3	Patients	79.
Tanzania	9.3-24.0	12.2-38.9	Patients with STD	43,70.
Tanzania	0-8.0	0-38.7	Bar workers	22.
(SOUTH AFRICA)				
Zambia	26.9	45.0	Patients with STD	45.
Angola	10.2-22.8	10.6-30.8	Patients with STD	22,47.
Angola	3.6	2.5	General residents	47.
Angola	19.0	3.2	Patients with TB	47.
Angola	5.1-5.2	4.1-5.1	Patients	47.
South Africa	1.9	3.2	Zulu patients	71.
(WEST AFRICA)				
Ivory Coast	3.6-5.1	2.1-3.0	General residents	56.

Note: Items showed in remarks are target materials used in each article.

STD; Sexually transmitted disease. TB; Tuberculosis. MI; Medical injection.

This is likely to be due to the movement and migration of the high sexual activities spreading the HIV-1 by sexual contact.

In Africa, Blood transfusion is frequent for the therapy of malaria and sickle cell anemia. Unfortunately, the more blood transfusion the children have received, the higher the HIV-1 seropositive rates have been reported. Blood transfusion-experienced adults also have higher HIV-1 seropositive rates in the general residents. The history of blood transfusion is a behavioral factor of HIV-1 infection in Africa.

Injections are also frequently carried out in Africa, and this fact is related to the peculiar African custom of patients preferring to receiving parenteral therapy rather than oral medicine. The number of medical injections are related to the HIV-1 seropositive rates in Africa regardless of age or sex.

These facts suggest that blood transfusion and medical injections through insufficient treatment are the important mode of HIV-1 transmission. Because blood transfusion and medical injections are so frequent in Africa, guidelines should be developed for improved laboratory service and reduction of unnecessary blood transfusion.

It is also a serious problem for pregnant women that the HIV-1 can be contracted through heterosexual contact. The HIV-1 seropositive rates of pregnant women are increasing. The peak age of HIV-1 seropositive rates in pregnant women is between 20 and 29 years, and it is reported that HIV-1 seroprevalence is associated with syphilis seropositivity in pregnant women. It is feared that HIV-1 infections will spread to children, because it is estimated that the transmission rate of HIV-1 from mother...
Table 3. Seropositive rates of HIV-1 on maternal and child (%)

Country	Pregnant women	Children (0-12)	Children (0-24)	References
(CENTRAL AFRICA)				
Zaire	2.2-9.0	0.6-12.4	0.3-35.6	19, 20, 25, 61, 72, 73, 74, 75, 76, 77, 78, 79.
Uganda	10.8-24.1	0 -10.1	15.4	26, 80.
Rwanda	32.0	0 -10.1	15.4	34, 81, 82.
Cameroon	0.9-2.2	0 - 0.2		22, 35, 38, 83, 84.
Gabon	0 -1.2			22, 85.
Congo	3.8-7.9			22, 40, 86.
(EAST AFRICA)				
Kenya	0 - 8.8			22, 41, 68, 85, 87.
Tanzania	0.7-16.0	0 - 24.1	5.0-32.7	22, 43, 44, 70, 88, 89.
(SOUTH AFRICA)				
Zambia	8.7-22.2	0 - 10.7		45, 90.
Malawi	2.0-17.6			91.
Angola	0.3-10.5			46, 47.
(WEST AFRICA)				
Mali	0.3			22.
Guinea Bissau	0 - 0.1			22, 92.
Ivory Coast	0 - 7.4	0.6-2.0	9.2	22, 93, 94, 95.
Nigeria	0 -2.9			96, 97.

Table 4. Seropositive rates of HIV-1 in risk groups (%).

Country	Sexually transmitted disease	Blood transfusion	Medical injection	Prostitute	References
(CENTRAL AFRICA)					
Zaire	15.5	16.7	10.8-18.7	0 - 40.0	20, 22, 75, 98, 99, 100, 101.
Uganda	10.6-42.6	4.2	25.5	25.0	22, 29, 64, 67, 102.
Rwanda	23.2-30.6	30.0-56.3	20.4-20.7	74.5-87.9	18, 31, 103, 104.
Cameroon	1.5-2.6		7.1-7.3		22, 38, 40, 83, 84, 85.
Congo		12.2			40, 86.
(EAST AFRICA)					
Kenya	0 -20.7		5.1	4.3-5.8	22, 41, 68, 87, 106.
Tanzania	0 - 29.1	4.7-9.1		4.3-5.8	43, 44, 70, 88.
Somalia		0 -3.0		107.	
Djibouti		4.5-9.7			108.
Madagascar	0 - 0.1				109.
(SOUTH AFRICA)					
Zambia	22.8-45.0				45.
Angola	10.3-30.8				22, 47.
(WEST AFRICA)					
Senegal	1.4-1.5			0.9-3.1	22.
Gambia	0 - 1.1			0 -13.5	22, 110, 111, 112.
Ivory Coast	5.8			6.9-9.5	22, 53, 93.
Burkina Faso				14.6	52.
Benin	19.8				113.
Nigeria	0			0 -12.3	22, 114, 115.
to child is 25% to 40% (53,129-133). The mother to child transmission is an important mode of HIV-1 epidemic in Africa.

With regard to clinical factors on HIV-1 infection, an evident relationship between the HIV-1 infection and history of STD (Table 4), and HIV-1 seropositive rates in STD seropositive group tend to increase (68,84). However, the whole relationship between HIV-1 infection and history of TB is now still unclear in Africa because reports are not many, although sporadic reports show the HIV-1 seropositive rates among TB patients (47,84,85,134,135). Further studies of the epidemiology of HIV-1 infection will be necessary in the future on how frequently TB appear in Africa (90,130,136-143).

The traditional cultural practices, such as/labial and gingival tootooing, clitoridectomy, scarification, and circumcision are preformed in Africa as African custom (50). Several reports suggest that the lack of circumcision is a cofactor facilitating HIV-1 transmission (90,138,144-146). However, the relationship between the traditional practices and HIV-1 transmission is not clarified so far (50). The potential for HIV-1 transmission by these traditional practices should be re-assessed.

In Africa in general, when AIDS affects the general heterosexual population (147), a very high proportion of adult transmission of HIV-1 is likely to be through heterosexual contact. STD is probably cofactors that increase the HIV-1 transmission in Africa. Where HIV-1 infection is widely distributed in the general population, risk reduction strategies should, in addition to the promotion of partner reduction, place strong emphasis on safe-sex techniques. Interventions designed to change male sexual behavior are also urgently needed.

REFERENCES

1. Miyazaki M. Administrative measures of CDC, the United States of America, in the early stage of AIDS: Change of the epidemiological measures, AIDS surveillance system (1981-1984). Jpn J Public Health, 1989; 36: 471-477 (in Japanese).
2. Centers for Disease Control. Hepatitis B virus vaccine safety: Reported of an interagencygroup. MMWR, 1982; 31: 465-467.
3. Centers for Disease Control. U.S. AIDS cases reported through December 1993. HIV/AIDS Surveillance year-end edition, 1994; 5(4): 1-23.
4. Weniger BG, Limpakamjanarat K, Unghusak K, et al. The epidemiology of HIV infection and AIDS in Thailand. AIDS, 1991; 5: 71-85.
5. Siraprapisiri T, Thanprasertsuk S, Rodkley A, et al. Risk factors for HIV among prostitutes in Chiangmai, Thailand. AIDS, 1991; 5: 579-582.
6. Nopkoesorn T, Mastro TD, Sangkharomya S, et al. HIV-1 infection in young men in northern Thailand. AIDS, 1993; 7: 1233-1239.
7. Singh YN, Malaviya AN, Tripathy SP, et al. Human immunodeficiency virus infection in the blood donors of Delhi, India. J Acquir Immune DeFic Syndr, 1990; 3: 152-154.
8. Singh YN, Malaviya AN, Tripathy SP, et al. HIV seroprevalence among prostitutes and patients from a sexually transmitted diseases clinic in Delhi, India. J Acquir Immune DeFic Syndr, 1990; 3: 287-289.
9. Hayes CG, Manaioto CR, Basaca-Sevilla V, et al. Epidemiology of HIV infection among prostitutes in the Philippines. J Acquir Immune DeFic Syndr, 1990; 3: 933-920.
10. Miyazaki M, Naemura M. Epidemiological characteristics on human immunodeficiency virus infection and acquired immunodeficiency syndrome in Japan. Int J STD AIDS, 1994; 5: 273-278.
11. Barre-Simoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patients at risk for acquired immune deficiency syndrome (AIDS). Science, 1983; 220: 868-871.
12. Kanki PJ, Barin F, M’Boup S, et al. New human T-lymphotropic retrovirus related to simian T-lymphotropic virus type III (STLV-IIIAGM). Science, 1986; 232: 238-243.
13. Praul A, Chacko S, Koch-Weser D. Sexual behavior, AIDS and poverty in Sub-Saharan Africa. Int J STD AIDS, 1991; 2: 1-9.
14. De Cock KM. Measuring the impact of HIV/AIDS in Africa. AIDS, 1994; 8: 127-128.
15. Miyazaki M. Epidemiological characteristics on HIV-2 infection in Africa. Jpn J Public Health, 1992; 39: 228-235 (in Japanese).
16. Nahmias AJ, Weiss J, Yao X, et al. Evidence for human infection with an HTLV-III/LAV-like virus in Central Africa, 1959. Lancet, 1986; 1: 1279-1280.
17. Getchell JP, Hicks DR, Svinivasan A, et al. Human immunodeficiency virus isolated from serum sample collected in 1976 in Central Africa. J Infect Dis, 1987; 156: 833-836.
18. Clumeech N, Robert-Guroff M, Van de Perre P, et al. Seroprevalence studies of HTLV-III antibody prevalence among selected groups of heterosexual Africans. JAMA, 1985; 254: 2599-2602.
19. Mann JM, Francis H, Davachi F, et al. Human immunodeficiency virus seroprevalence in pediatric patients 2 to 14 years of age at Mama Yemo Hospital, Kinshasa, Zaire. Pediatrics, 1986; 78: 673-677.
20. Nezilambi N, De Cock KM, Forthal DN, et al. The prevalence of infection with human immunodeficiency virus over a 10-year period in rural Zaire. N Engl J Med, 1988; 318: 276-279.
21. Mann JM, Francis H, Quinn TC, et al. HIV seroprevalence among hospital workers in Kinshasa, Zaire; Lack of association with occupational exposure. JAMA, 1986; 256: 3099-3102.
22. Miyazaki M. HIV-1 and AIDS in Africa. Jpn Med J, 1990; 3474: 97-100 (in Japanese).
23. Jager H, N’Galy B, Perriens J, et al. Prevention of transfusion-associated HIV transmission in Kinshasa, Zaire: HIV screening is not enough. AIDS, 1990; 4: 571-574.
24. Brown RC. Seroprevalence and clinical manifestations of HIV-1 infection in Kinshasa, Zaire. AIDS, 1990; 4: 1267-1269.
25. Green SD, Cutting J, Mokili M, et al. Stable seroprevalence of HIV-1 in antenatal women in rural Bas-Zaire, 1988-1993. AIDS, 1994; 8: 397-398.
26. Carswell JW. HIV infection in healthy persons in Uganda. AIDS, 1987; 1: 223-227.

27. Wender I, Schneider J, Gras B, et al. Seroprevalence of human immunodeficiency virus in Africa. Brit Med, J 1986; 293: 782-785.

28. Carswell JW, Sewankambo N, Lloyd G, et al. How long has the AIDS virus been in Uganda? Lancet, 1986; 1: 1217.

29. Serwadda D, Wawer MJ, Musgrave SD, et al. HIV risk factors in three geographic strata of rural Rakai District, Uganda. AIDS, 1992; 6: 983-989.

30. Mulder DW, Nunn AJ, Wagner HU, et al. HIV-1 incidence and HIV-1-associated mortality in a rural Ugandan population cohort. AIDS, 1994; 8: 87-92.

31. Van de Perre P, Clumeck N, Caraël M, et al. Female prostitutes: A risk group for infection with human T-cell lymphotropic virus type III. Lancet, 1985; 2: 524-527.

32. Van de Perre P, Le Polain B, Caraël M, et al. HIV antibodies in a remote rural area in Rwanda, Central Africa: An analysis of potential risk factors for HIV seropositivity. AIDS, 1987; 1: 213-215.

33. Clumeck N, Van de Perre P, Caraël M, et al. Heterosexual promiscuity among African patients with AIDS. N Engl J Med, 1985; 313: 182.

34. Anonymous. Nationwide community-based serological survey of HIV-1 and other human retrovirus infections in a Central African community. Lancet, 1989; 1: 941-943.

35. Merlin M, Jasse R, Gonzalez JP, et al. Epidemiology of HIV 1 infection among randomized representative Central African populations. Ann Inst Pasteur/Virolog, 1987; 138: 503-510.

36. Casellas FS. Changing patterns of Kaposi's sarcoma in northwest Tanzania. Trans Royal Soc Trop Med Hyg, 1987; 81: 841.

37. Mathiot CC, Lepage C, Chovaib E, et al. HIV seroprevalence and male to female ratio in Central Africa. Lancet, 1990; 335: 672.

38. Zekeng L, Salla R, Kaptue L, et al. HIV-2 infection in Cameroon: No evidence of indigenous cases. J Acquir Immune Defic Syndr, 1992; 5: 319-320.

39. Winkler E, Holten I, Mayer A, et al. Seroepidemiology of human immunodeficiency virus in Gabon. AIDS, 1989; 3: 106-107.

40. Lallemand M, Coeur SLL, Cheynier D, et al. Characteristics associated with HIV-1 infection in pregnant women in Brazzaville, Congo. J Acquir Immune Defic Syndr, 1992; 7: 269-273.

41. Petersen HD, Lindhardt BO, Nyarango M. A prevalence study of HIV antibodies in rural Kenya. Scand J Infect Dis, 1987; 19: 395-401.

42. Braddock MR, Kreiss JK, Embree JE, et al. Impact maternal HIV infection on obstetrical and early neonatal outcome. AIDS, 1990; 4: 1001-1005.

43. Mhalu F, Bredberg-Raden U, Mbenza E, et al. Prevalence of HIV infections in healthy subjects and groups of patients in Tanzania. AIDS, 1987; 1: 217-221.

44. Dolmans WMV, Van Loon AM, Van den Akker R, et al. Prevalence of HIV-1 antibody among groups of patients and healthy subjects from a rural and urban population in the Mwanza region. AIDS, 1989; 3: 297-299.

45. Melbye M, Neelsanika EK, Bayley A, et al. Evidence for heterosexual transmission and clinical manifestations of human immunodeficiency virus infection and related conditions in Lusaka, Zambia. Lancet, 1986; 2: 1113-1115.

46. Bottiger B, Palme IB, Da Costa JL, et al. Prevalence of HIV-1 and HIV-2/HTLV-IV infections in Luanda and Cabinda, Angola. J Acquir Immune Defic Syndr, 1988; 1: 8-12.

47. Santos-Ferreira MO, Cohen T, Loureno MH, et al. A study of seroprevalence of HIV-1 and HIV-2 in six provinces of People's Republic of Angola: Clues to the spread of HIV infection. J Acquir Immune Defic Syndr, 1990; 3: 780-786.

48. Lepers PJP, Billon C, Pesce JL, et al. Etude sero-epidemiologique en Mauritanie (1985-1986) frequence des frepomatoses, du virus de l'hepatite B, du virus VIH et desievres hemorrhogiques virales. Bull Soc Path Ex, 1988; 81: 24-31.

49. Kawamura M, Yamazaki S, Ishikawa K, et al. HIV-2 in west Africa in 1966. Lancet, 1989; 1: 385.

50. Kane F, Alary M, Ndoye I, et al. Temporary expatriation is related to HIV-1 infection in rural Senegal. AIDS, 1993; 7: 1261-1265.

51. Wilkins A, Ricard D, Todd J, et al. The epidemiology of AIDS, HIV infection in a rural area of Guinea-Bissau. AIDS, 1993; 7: 1119-1222.

52. Lauritzen E, Molbak K, Kvesnedal, et al. Transmission of HIV-2 in a West African family household. Scand J Infect Dis, 1988; 20: 455-456.

53. Ouattara SA, Chotard J, Meite M, et al. Retrovirus infections (LAV/HTLV-III and HTLV-I) in Ivory Coast, West Africa. Ann Int Pasteur/Virolog, 1986; 137E: 303-310.

54. Ouattara SA, Meite M, Cot MC, et al. Compared preva- lence of infections by HIV-1 and HIV-2 during a 2-year period in suburban and rural areas of Ivory Coast. J Acquir Immune Defic Syndr, 1989; 2: 94-99.

55. Gody M, Ouattara SA, De The G. Clinical experience of AIDS in relation to HIV-1 and HIV-2 infection in a rural hospital in Ivory Coast, West Africa. AIDS, 1989; 2: 433-436.

56. Benoit SN, Gersh-y-Damen CM, Coulibus A, et al. Seroprevalence of HIV infection in the general population of the Cote d'Ivoire, West Africa. J Acquir Immune Defic Syndr, 1990; 2: 1193-1196.

57. Okpara RA, Williams D, Schneider J, et al. Antibodies to human T-cell leukemia virus types I and III in blood donors from Calabar, Nigeria. Ann Int Med, 1986; 104: 132.

58. Mohammed I, Nasidi A, Chiwen JO, et al. HIV infection in Nigeria. AIDS. 1988; 2: 61-62.

59. Ryder RW, Ndilu M, Hassig SE, et al. Heterosexual transmission of HIV-1 among employees and their spouses at two large business in Zaire. AIDS, 1990; 4: 725-732.

60. Perriens JH, Mussa MM, Luabekeyaka M, et al. Neurological complications of HIV-1-seropositive internal medicine in-patients in Kinshasa, Zaire. J Acquir Immune Defic Syndr, 1992; 5: 333-340.

61. Gazzolo L, Robert-Guroff M, Jennings, et al. Type I and type III HTLV antibodies in hospitalized and out-patient Zairians. Int J Cancer, 1985; 36: 373-378.

62. Hassig SE, Perriens J, Baende E, et al. An analysis of the economic impact of HIV infection among patients at Mama Yemo Hospital, Kinshasa, Zaire. AIDS, 1990; 4: 883-887.

63. Colebunders RL, Ryder RW, Nzialbni N, et al. HIV infection in patients with tuberculosis in Kinshasa, Zaire. Am Rev Respir Dis, 1989; 139: 1082-1085.

64. Konde-Lulo JK, Berkley SF, Downing R. Knowledge, attitudes and practices concerning AIDS in Ugandans. AIDS, 1989; 3: 513-518.

65. Berkley S, Naamara W, Okware S, et al. AIDS and HIV infection in Uganda are more women infected than men.
66. Nunn AJ, Kengeya-Kayondo JF, Malamba SS, et al. Risk factors for HIV-1 infection in adults in a rural Ugandan community: A population study. AIDS, 1994; 8: 81-86.

67. Nsubuga P, Mugerwa R, Nalibambi J, et al. The association of genital ulcer disease and HIV infection at a dermatology-STD clinic in Uganda. J Acquir Immune Defic Syndr, 1990; 3: 1002-1005.

68. Piot P, Plummer A, Rey MA, et al. Retrospective sero-epidemiology of AIDS virus infection in Nairobi populations. J Infect Dis, 1987; 155: 1108-1112.

69. Gilks CF, Brindle RJ, Orbeno LS, et al. Life-threatening bacteremia in HIV-1 seropositive adults admitted to hospital in Nairobi, Kenya. Lancet, 1990; 336: 545-549.

70. Mahalu F, Haukens G. Prevalence of cytomegalovirus antibody in pregnant women, AIDS patients and STD patients in Dar es Salaam. AIDS, 1990; 4: 1294-1295.

71. O’Farrell N, Windsor I. Sexual behavior in HIV-1 seropositive Zulu men and women in Durban, South Africa. J Acquir Immune Defic Syndr, 1991; 4: 1258-1259.

72. Biggar RJ, Melbe M, Kestens L, et al. sero-epidemiology of HTLV-III antibodies in a remote population of eastern Zaire. Brit Med J, 1985; 290: 808-810.

73. Brun-Vezient F, Montanier L, Chamaret L, et al. Prevalence of antibodies to lymphadenopathy-associated retrovirus in African patients with AIDS. Science, 1984; 226: 453-456.

74. Mann JM, Francis HY, Davachi F, et al. Risk factors for human immunodeficiency virus seropositivity among children 1-24 months old in Kinshasa, Zaire. Lancet, 1986; 2: 654-657.

75. Greenberg AE, Nguyen-Dinh P, Mann, et al. The association between malaria, blood transfusions, and HIV seropositivity in a pediatric population in Kinshasa, Zaire. JAMA, 1988; 259: 545-549.

76. Nguyen-Dinh P, Greenberg AE, Mann JM, et al. Absence of association between plasmodium falciparum malaria and human immunodeficiency virus infection in children in Kinshasa, Zaire. Bull WHO, 1987; 65: 607-613.

77. Shaffer N, Hedberg K, Davacki F, et al. Trends and risk factors for HIV-1 seropositivity among outpatients children, Kinshasa, Zaire. AIDS, 1990; 4: 1231-1236.

78. Brown RC. Seroprevalence and clinical manifestations of HIV-1 infection in Kinshasa, Zaire. AIDS, 1990; 4: 1267-1269.

79. Holmes W. Breastfeeding and HIV. Lancet, 1992; 340: 1094-1095.

80. Kipp W, Kamugisha J, Rehle T. Reported and expected AIDS cases in Kabarole District, western Uganda, 1991 and 1992. AIDS, 1993; 7: 1284-1285.

81. Lepage P, Van de Peer P, Dabis F, et al. Evaluation and simplification of the World Health Organization clinical care definition for paediatric AIDS. AIDS, 1989; 3: 221-225.

82. Lindan C, Allen S, Carel M, et al. Knowledge, attitudes, and perceived risk of AIDS among urban Rwandan women: Relationship to HIV infection and behavior change. AIDS, 1991; 5: 993-1002.

83. Zekeng L, Kaptue L, Pinary P, et al. HIV-2 infection in Cameroon: No evidence of indigenous cases. J Acquir Immune Defic Syndr, 1992; 5: 319-320.

84. Garcia-Calleja JM, Zekung L, Mvondo JL, et al. HIV infection in Cameroon: 30 months’ surveillance in Yaounde. AIDS, 1992; 6: 881-882.

85. Wender I, Schneider J, Gras B, et al. Seroepidemiology of immunodeficiency virus in Africa. Brit Med J, 1986; 293: 782-785.

86. Lallemant M, Lallemant-Le Coeur S, Cheynier D, et al. Characteristics associated with HIV-1 infection in pregnant women in Brazzaville, Congo. J Acquir Immune Defic Syndr, 1992; 5: 279-285.

87. Temmerman M, Ali FA, Ndinya-Acholla J, et al. Rapid increase of both HIV-1 infection and syphilis among pregnant women in Nairobi, Kenya. AIDS, 1992; 6: 1181-1185.

88. Wilf MW, Van Loon DAM, Van den Akker R, et al. Prevalence of HIV-1 antibody among groups of patients and healthy subjects from a rural and urban population in Mwanza region, Tanzania. AIDS, 1989; 3: 297-299.

89. Mgone CS, Mhalu FS, Shao JF, et al. Prevalence of HIV-1 infection and symptomatology of AIDS in severely malnourished children in Dar es Salaam, Tanzania. J Acquir Immune Defic Syndr, 1991; 4: 910-913.

90. Bochaman DJ, Downing RG, Tedder RS. HTLV-III antibody positivity in Zambian copper belt. Lancet, 1986; 1: 155.

91. Miotti PG, Dallabetta G, Ndovi E, et al. HIV-1 and pregnant women: Associated factors, prevalence, estimate of incidence and role in fetal wastage in Central Africa. AIDS, 1990; 4: 733-736.

92. Andresson PA, Dias F, Naucler A, et al. A prospective study of vertical transmission of HIV-2 in Bissau, Guinea-Bissau. 1993; 7: 989-993.

93. Denis F, Barin F, Gershy-Damet G, et al. Prevalence of human T-lymphotropic retrovirus type III (HIV) and type IV in Ivory Coast. Lancet, 1987; 1: 408-411.

94. Odohouri K, De Cock KM, Krebs JW, et al. HIV-1 and HIV-2 infection associated with AIDS in Abidjan, Cote d’Ivoire. AIDS, 1989; 3: 509-512.

95. Gayle HD, Gnaore E, Adjorlolo G, et al. HIV-1 and HIV-2 infection in children in Abidjan, Cote d’Ivoire. J Acquir Immune Defic Syndr, 1992; 5: 513-517.

96. Williams CKO. AIDS and cancer in Nigerians. Lancet, 1986; 1: 36-37.

97. Fisher GD, Rinaldo CR, Gbadero D, et al. Seroprevalence of HIV-1 and HIV-2 infection among children diagnosed with protein-calorie malnutrition in Nigeria. Epidemic Infect, 1993; 110: 373-378.

98. Giasuddin ASM, Ziu MM, Abusadra A, et al. Failure to find antibody to human immunodeficiency virus type I in Libya. J Infect, 1988; 17: 192-193.

99. Mann JM, Quinn TC, Pietr P, et al. Condom use and HIV infection among prostitutes in Zaire. N Engl J Med, 1987; 316: 345.

100. Behets FS, Edidi B, Quinn TC, et al. Detection of salivary HIV-1-specific IgG antibodies in high-risk population in Zaire. J Acquir Immune Defic Syndr, 1991; 4: 183-187.

101. Hoxie NJ, Vergeront JM, Pfister JR, et al. Improving estimates of HIV-1 seroprevalence among childbearing women: Use of smaller blood spots. Am J Public Health, 1992; 82: 1370-1373.

102. Hudson CP, Hennis AJM, Kataaha P, et al. Risk factors for the spread of AIDS in rural Africa: Evidence from a comparative seroepidemiological survey of AIDS, hepatitis B, syphilis in southwestern Uganda. AIDS, 1988; 2: 255-260.

103. Van de Peer P, Carel M, Nzaramba D, et al. Risk factors for HIV seropositivity in selected urban-based Rwandese adults. AIDS, 1987; 1: 207-211.

104. Van de Peer P, Le Polain B, Carel M, et al. HIV
sexually transmitted disease patients in the Gambia. AIDS, 1992; 6: 489-493.

145. Cameron DW, Simonsen JN, D'Costa IJ, et al. Female-to-male transmission of HIV-1 risk factors for seroconversion in men. Lancet, 1989; 2: 403-407.

146. Pepin J, Plummer FA, Brunham RC, et al. The interaction of HIV infection and other sexually transmitted diseases: An opportunity for intervention. AIDS, 1989; 3: 3-9.

147. Connell JA, Parry JV, Mortimer PP, et al. Preliminary report: Accurate assays for anti-HIV in urine. Lancet, 1990; 335: 1366-1369.