Lifetimes of b-flavoured hadrons

Fulvia De Fazio†
† Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, UK

Abstract. I discuss the heavy quark expansion for the inclusive widths of heavy-light hadrons, which predicts quite well the experimental ratios of B_q meson lifetimes. As for Λ_b, current determinations of $O(m_b^{-3})$ contribution to $\tau(\Lambda_b)$ do not allow to explain the small measured value of $\tau(\Lambda_b)/\tau(B_d)$. As a final topic, I discuss the implications of the measurement of the B_c lifetime.

1. Lifetimes of heavy-light hadrons

Inclusive particle widths describe the decay of the particle into all possible final states with given quantum numbers f. For weakly decaying heavy-light $Q\bar{q}$ (Qqq) hadrons H_Q, the spectator model considers only the heavy quark Q as active in the decay, the light degrees of freedom remaining unaffected. Hence, all the hadrons containing the same heavy quark Q should have the same lifetime; this picture should become accurate in the $m_Q \to \infty$ limit, when the heavy quark decouples from the light degrees of freedom. However, the measurement of beauty hadron lifetime ratios [1]:

\[
\frac{\tau(B^-)}{\tau(B_d)} = 1.066 \pm 0.02, \quad \frac{\tau(B_s)}{\tau(B_d)} = 0.99 \pm 0.05, \quad \frac{\tau(\Lambda_b)}{\tau(B_d)} = 0.794 \pm 0.053 \quad (1)
\]

shows that $\tau(\Lambda_b)/\tau(B_d)$ significantly differs from the spectator model prediction.

A more refined approach consists in computing inclusive decay widths of H_Q hadrons as an expansion in powers of m_Q^{-1} [2]. Invoking the optical theorem, one can write $\Gamma(H_Q \to X_f) = 2i m(H_Q)\langle\hat{T}|H_Q\rangle/2M_{H_Q}$, with $\hat{T} = i \int d^4x T[L_w(x)\mathcal{L}_w^\dagger(0)]$ the transition operator describing the heavy quark Q with the same momentum in the initial and final state, and \mathcal{L}_w the effective lagrangian governing the decay $Q \to X_f$. An operator product expansion of \hat{T} in the inverse mass of the heavy quark allows to write: $\hat{T} = \sum_i C_i \mathcal{O}_i$, with the local operators \mathcal{O}_i ordered by increasing dimension, and the coefficients C_i proportional to increasing powers of m_Q^{-1}. As a result, for a beauty hadron H_b the general expression of the width $\Gamma(H_b \to X_f)$ is:

\[
\Gamma(H_b \to X_f) = \Gamma_0 \left[c_f^i (\bar{b}b)_{H_b} + \frac{c_f^j}{m_b^2} (\bar{b}ig_\ast \sigma \cdot Gb)_{H_b} + \sum_i \frac{c_f^{(i)}}{m_b^3} \langle\mathcal{O}_i\rangle_{H_b} + \mathcal{O}\left(\frac{1}{m_b^4}\right)\right], \quad (2)
\]

with $\langle\mathcal{O}\rangle_{H_b} = \frac{\langle H_b | \mathcal{O} | H_b \rangle}{2M_{H_b}}$, $\Gamma_0 = \frac{G_F^2 m_b^5}{192\pi^3} |V_{qb}|^2$ and V_{qb} the relevant CKM matrix element.
The first operator in (4) is $\bar{b}b$, with dimension $D = 3$; the chromomagnetic operator $O_G = \bar{b}^{\mu} b_{\nu} G^{\mu \nu b}$, responsible of the heavy quark-spin symmetry breaking, has $D = 5$; the operators O^b_i have $D = 6$. In the limit $m_b \to \infty$, the heavy quark equation of motion allows to write:

$$\langle \bar{b}b \rangle_{H_b} = 1 + \frac{\langle O_G \rangle_{H_b}}{2m_b^2} - \frac{\langle O_\pi \rangle_{H_b}}{2m_b^2} + \mathcal{O}\left(\frac{1}{m_b^4}\right), \quad (3)$$

with $O_\pi = \bar{b}(i\partial^2)b$ the heavy quark kinetic energy operator. When combined with (4), the first term in (3) reproduces the spectator model result. $\mathcal{O}(m_b^{-1})$ terms are absent \footnote{\cite{3,4}} since $D = 4$ operators are reducible to $\bar{b}b$ by the equation of motion. Finally, the operators O_G and O_π are spectator blind, not sensitive to light flavour. Their matrix elements can be determined from experimental data; as a matter of fact, defining $\mu^2_G(H_b) = \langle O_G \rangle_{H_b}$ and $\mu_\pi^2(H_b) = \langle O_\pi \rangle_{H_b}$, one has: $\mu^2_G(B) = 3(M_{B^-} - M_{B^0})/4$, while $\mu^2_\pi(\Lambda_b) = 0$ since the light degrees of freedom in the Λ_b have zero total angular momentum relative to the heavy quark. Moreover, from the mass formula:

$$M_{H_b} = m_b + \bar{\Lambda} + \mu^2_G - \mu_\pi^2 + \mathcal{O}(m_b^{-2}) \quad \text{with} \quad \bar{\Lambda}, \mu^2_G \text{ and } \mu_\pi^2 \text{ independent of } m_b,$$

from the experimental data, one can infer $\mu^2_\pi(B_d) \simeq \mu^2_\pi(\Lambda_b)$, as confirmed by QCD sum rule estimates \footref{1}.

The $\mathcal{O}(m_b^{-3})$ terms in (4) come from four-quark operators, accounting for the presence of the spectator quark in the decay. Their general expression is \footnote{\cite{5}}:

$$O^q_{-A} = (\bar{b}_L \gamma_\mu q_L)(\bar{q}_L \gamma_\mu b_L) \quad \text{and} \quad T^q_{-A} = (\bar{b}_L \gamma_\mu \gamma^a q_L)(\bar{q}_L \gamma_\mu \gamma^a b_L)$$

$$O^q_{-S-P} = (\bar{b}_R q_L)(\bar{q}_L b_R) \quad \text{and} \quad T^q_{-S-P} = (\bar{b}_R \gamma^a q_L)(\bar{q}_L \gamma^a b_R). \quad (4)$$

Their matrix elements over B_q can be parametrized as:

$$\langle \bar{O}^q_{-A} \rangle_{B_q} = \langle \bar{O}^q_{-S-P} \rangle_{B_q} \left(\frac{m_b + m_q}{M_{B_q}}\right) = f_{B_q}^2 \frac{M_{B_q}}{8}, \quad \langle T^q_{-A} \rangle_{B_q} = \langle T^q_{-S-P} \rangle_{B_q} = 0, \quad (5)$$

f_{B_q} being the B_q decay constant. As for Λ_b, one can write:

$$\langle \bar{O}^q_{-A} \rangle_{\Lambda_b} = f_{B_B}^2 M_B r/48, \quad \langle \bar{O}^q_{-A} \rangle_{\Lambda_b} = -\tilde{B} \langle \bar{O}^q_{-A} \rangle_{\Lambda_b} \quad (6)$$

with $\bar{O}^q_{-A} = (\bar{b}_L \gamma_\mu b_L)(\bar{q}_L \gamma_\mu q_L)$. In the valence quark approximation $\tilde{B} = 1$.

Actually, with the computed values of the Wilson coefficients in (4), only large values of the parameter r in \footnote{\cite{8}} (namely $r \simeq 3 - 4$) could explain the observed difference between $\tau(\Lambda_b)$ and $\tau(B_d)$. This, however, seems not to be the case.

2. $\langle \bar{O}^q_{-A} \rangle_{\Lambda_b}$ from QCD sum rules

The parameter r in (6) can be determined using quark models or lattice QCD \footnote{\cite{7}}. HQET QCD sum rules allow to estimate it from the correlator:

$$\Pi_{CD} = (1 + \gamma_5)_{CD} \Pi(\omega, \omega') = i^2 \int dx dy \, e^{i\omega x - i\omega' y} \langle 0 \left| T[J_C(x) \bar{O}^q_{-A}(0) J_D(y)] \right| 0 \rangle \quad (7)$$

between Λ_b interpolating fields $J_{C,D}$ (C, D Dirac indices) \footnote{\cite{8}} and the operator \bar{O}^q_{-A}; ω (ω') is related to the residual momentum of the incoming (outgoing) current $p^\mu = \bar{O}^q_{-A}$.
m_b v^\mu + k^\mu with k^\mu = \omega v^\mu. The projection of the interpolating fields on the \Lambda_b state is parametrized by \langle 0 | J_C | \Lambda_b (v) \rangle = f_{\Lambda_b} (\psi_v) C (with \psi_v the spinor for a \Lambda_b of velocity v).

Saturating the correlator \Pi(\omega, \omega') with baryonic states and considering the low-lying double-pole contribution in the variables \omega and \omega', one has:

\[\Pi^{had}(\omega, \omega') = \langle \tilde{O}_q^{V-A} \rangle_{\Lambda_b} \frac{f_{\Lambda_b}^2}{2} \frac{1}{(\Delta_{\Lambda_b} - \omega)(\Delta_{\Lambda_b} - \omega')} + \ldots \]
(8)

with \Delta_{\Lambda_b} defined by \(M_{\Lambda_b} = m_b + \Delta_{\Lambda_b} \). Besides, for negative values of \omega, \omega', \Pi can be computed in QCD in terms of a perturbative contribution and of vacuum condensates:

\[\Pi^{QCD}(\omega, \omega') = \int d\sigma d\sigma' \frac{\rho_{11}(\sigma, \sigma')}{(\sigma - \omega)(\sigma' - \omega')} \]
(9)

with possible subtractions omitted [9]. The sum rule consists in equating \(\Pi^{had} \) and \(\Pi^{QCD} \). Moreover, invoking global duality, the contribution of higher resonances and of continuum to \(\Pi^{had} \) can be modeled as the QCD term in the region \omega \geq \omega_c, \omega' \geq \omega_c, with \(\omega_c \) an effective threshold. Finally, a double Borel transform to \(\Pi^{QCD} \) and \(\Pi^{had} \) in \omega, \omega', with Borel parameter \(E_1, E_2 \), removes the subtraction terms in (9), improves factorially the convergence of the OPE and enhances the contribution of the low-lying resonances in \(\Pi^{had} \). Choosing \(E_1 = E_2 = 2E \), one gets a sum rule the result of which is depicted in figure 1. Considering the variation with \(E \) and the threshold \(\omega_c \), one has an estimate of \(\langle \tilde{O}_q^{V-A} \rangle_{\Lambda_b} \):

\[\langle \tilde{O}_q^{V-A} \rangle_{\Lambda_b} \simeq (0.4 - 1.20) \times 10^{-3} \, GeV^3, \]
(10)

corresponding to \(r \simeq 0.1 - 0.3 \) [10]. The same calculation gives \(\tilde{B} \simeq 1 \). This result produces \(\tau(\Lambda_b)/\tau(B_d) \geq 0.94 \), at odds with the experimental result. The discrepancy discloses exciting perspectives both from experimental and theoretical sides [10].

3. \(B_c \) lifetime

A different hadronic system, whose lifetime can be determined by OPE-based methods, is the \(B_c \) meson, observed at Fermilab with mass \(M_{B_c} = 6.40 \pm 0.39 \pm 0.13 \, GeV \) and lifetime \(\tau_{B_c} = 0.46 \pm 0.18 \pm 0.03 \, ps \) [11]. Like quarkonium states, \(B_c \) can be treated in a non relativistic way, but unlike them it can decay only weakly, with the main decay
mechanisms induced by the quark transitions $b \to cW^-$, $\bar{c} \to \bar{s}W^-$ and $\bar{c}b \to W^-$ (annihilation). Predictions for τ_{B_c} spread in the range $0.4 - 1.2$ ps \cite{12, 13, 14}. In the $m_b, m_c \to \infty$ limit one would have $\Gamma_{B_c} = \Gamma_{b,spec} + \Gamma_{c,spec}$. Corrections to this result can be computed using an OPE organized in powers of the heavy quark velocity \cite{14}. The result is: $\tau_{B_c} \simeq 0.4 - 0.7$ ps, together with the prediction of the dominance of charm transitions; as a matter of fact, b-decay dominance would imply a larger lifetime: $\tau_{B_c} = 1.1 - 1.2$ ps \cite{13}. Hence, the measurement of τ_{B_c} provides us with the first hints on the underlying dynamics in this meson. For this system, it is interesting to investigate the validity of the non relativistic approximation: actually, one estimates $\langle k^2 \rangle/m_c^2 \simeq 0.43$, where $\langle k^2 \rangle$ is the average squared momentum of the charm quark, implying possible deviations from the non relativistic limit \cite{13}.

4. Conclusions

$1/m_Q$ expansion can be used to compute inclusive widths of heavy-light hadrons. A QCD sum rule calculation of the matrix element $\langle \hat{O}_{V-A}^q \rangle_{\Lambda_b}$ contributing to $\mathcal{O}(m_b^{-3})$ to the Λ_b lifetime gives the result: $\tau(\Lambda_b)/\tau(B_d) \geq 0.94$, thus implying that such a correction does not explain the observed difference between $\tau(\Lambda_b)$ and $\tau(B_d)$. Finally, the measurement of B_c lifetime already enlightens some aspects of the quark dynamics in this meson.

Acknowledgments

I thank P. Colangelo for collaboration on the topics discussed above. I acknowledge for support the EU-TMR Programme, Contract No. CT98-0169, EuroDAΦNE.

References

[1] LEP B lifetime group, \url{http://wwwcn.cern.ch/~claires/lepblife.html}.
[2] I. Bigi et al., in S. Stone (ed.), B Decays, 2nd ed., World Scientific, pag.132.
[3] J. Chay et al., Phys. Lett. B 247 (1990) 399.
[4] I. Bigi et al., Phys. Lett. B 293 (1992) 430; 297 (1993) 477 (E).
[5] M. Neubert and C.T. Sachrajda, Nucl. Phys. B 483 (1997) 339.
[6] P. Ball et al., Phys. Rev. D 49 (1994) 2472; P. Colangelo et al., Phys. Rev. D 54 (1996) 4622.
[7] B. Guberina et al., Z. Phys. C 33 (1986) 297; J.L. Rosner, Phys. Lett. B 379 (1996) 267; M. Di Pierro et al., UKQCD Collab., \url{hep-lat/9906031}.
[8] E.V. Shuryak, Nucl. Phys. B 198 (1982) 83.
[9] P. Colangelo and F. De Fazio, Phys. Lett. B 387 (1996) 371.
[10] M. B. Voloshin, \url{hep-ph/0011095}.
[11] CDF Collab., Phys. Rev. Lett. 81 (1998) 2432; Phys. Rev. D58 (1998) 112004.
[12] M. Lusignoli and M. Masetti, Z. Phys. C 51 (1991) 549; P. Colangelo et al., Z. Phys. C 57 (1993) 43; A.Y. Anisimov et al., Phys. Lett. B452 (1999) 129.
[13] C. Quigg, in Proceedings of the Workshop on B Physics at Hadron Accelerators, Snowmass, Colorado 1993, ed. P. McBrade and C.S. Mishra, pag. 439.
[14] M. Beneke and G. Buchalla, Phys. Rev. D53 (1996)4991.
[15] P. Colangelo and F. De Fazio, Mod. Phys. Lett. A14 (1999) 2303; Phys. Rev. D61 (2000) 034012.