Spectral engineering with multiple quantum well structures

L. I. Deych, M. V. Erementchouk, and A. A. Lisyansky
Department of Physics, Queens College, City University of New York, Flushing, New York 11367

It is shown that it is possible to significantly modify optical spectra of Bragg multiple quantum well structures by introducing wells with different exciton energies. The reflection spectrum of the resulting structures is characterized by high contrast and tuning possibilities.

Introduction Band-gap engineering is aimed at creating materials with pre-determined electrical properties. From the point of view of optical or optoelectronic applications, it is also important to be able to design materials with pre-determined optical spectra. This requires a development of spectral engineering to control the interaction between light and matter. The realization that such a possibility exists led to the development of the field of photonic crystals. Additional opportunities in controlling the light-matter interaction arise in photonic structures made of materials with internal resonances lying in the spectral region of the photonic band structure. Light propagates through such materials in the form of polaritons, which are electromagnetic waves coupled with internal excitations of the materials. By changing properties of the material excitations, one can manipulate the properties of light as well. Combining polaritonic effects with photonic crystal effects, one obtains a greater flexibility in designing optical properties and an opportunity to tune them after the growth. An interesting one-dimensional example of such systems is given by Bragg multiple quantum wells (BMQW). In these structures, the wavelength of the quantum well (QW) exciton radiation, \(\lambda \), matches the period of the multiple quantum well structure, \(d \): \(\lambda = 2d \). As a result, the radiative coupling between quantum wells causes a very significant modification of exciton radiative properties, which are effectively controlled by geometrical parameters of the structure. Such structures, therefore, are good candidates for spectral engineering. In Ref.\(^{6}\) it was found that by replacing a single base structural element of BMQW structure with an element with different properties (a defect), one can significantly alter optical spectra of these structures. It was shown that upon introducing different types of the defect, a great variety of spectral types could be created. However, Ref.\(^{7}\) dealt with ideal structures and it was not clear if these effects can be reproduced in realistic structures suffering from homogeneous and inhomogeneous broadenings, and whose lengths are limited by technological capabilities. The goal of this paper is to show that realistic BMQW structures with defects (DBMQW) can be designed to exhibit reflection spectra with sharp features characterized by high contrast even in the presence of relatively large values of the broadenings. We will also show that the spectra of these structures can be tuned after their growth with the help of the quantum confined Stark effect (QCSE). This makes DBMQW structures a potential candidate for spectral engineering with applications for tunable switching and modulating devices.

Reflection spectra of DBMQW structures We consider a structure consisting of \(N = 2m + 1 \) QW-barrier layers. The layers are identical except for one in the middle, where the quantum well has a different exciton frequency. While our calculations are of a rather general nature, we will have in mind a GaAs/AlGaAs system as an example. In this case, such a defect can be produced either by changing the concentration of Al\(\text{GaAs} \) in the barriers surrounding the central well, or the width of the well itself during growth. While both these methods will also affect the optical width of the defect layers, this effect is negligibly small for the systems under consideration, and we will assume that the exciton frequency is the only parameter differentiating the defect well from the others.

The reflection spectra are calculated using the transfer matrix approach. The inhomogeneous broadening of the QW excitons is taken into account within the framework of the effective medium approximation, which was shown to describe the main contribution to the reflection coefficient. Within this approach the exciton susceptibility, which determines the reflection and transmission coefficients for a single QW, is replaced with its value averaged over the distribution of the exciton frequencies along the plane of a QW:

\[
\chi_{h,d}(\omega) = \int d\omega_0 f_{h,d}(\omega_0) \frac{\Gamma_0}{\omega_0 - \omega - i\gamma}. \tag{1}
\]

Here \(\Gamma_0 \) is the effective radiative rate of a single QW, characterizing the strength of the coupling between excitons and electromagnetic field, \(\gamma \) is the parameter of the nonradiative homogeneous broadening, and \(f_{h,d} \) are distribution functions of the exciton energies of the host and defect QW’s respectively. The variance of this function, \(\Delta \), is interpreted as the parameter of the inhomogeneous broadening. The functions \(f_h \) and \(f_d \) differ in their mean values, which are \(\omega_h \) and \(\omega_d \) for the host and defect QW respectively. The defect-induced effects are most pronounced if \(|\omega_h - \omega_d| \gg \Delta \). In this case the inhomogeneous broadening of the host wells is negligible in the vicinity of \(\omega_d \), and defect-induced modifications of the spectra can be studied with only the inhomogeneous broadening of the defect well taken into account.

If the length of the BMQW structure is not very large (for GaAs/AlGaAs it should be less than \(\simeq 500 \) periods), the reflection coefficient can be presented in
the form

\[r = \frac{i\bar{\Gamma}}{\omega_h - \omega + i(\gamma + \bar{\Gamma})} \Omega_s - \Gamma_0 D_d = \Gamma_0 D_d \]

(2)

where \(D_d = 1/\chi_d \), \(\bar{\Gamma} \) is the radiative width of the pure BMQW structure\(^6\)

\[\bar{\Gamma} = \Gamma_0 N/(1 - i\pi q N), \]

(3)

and \(\Omega_s = (\omega_d - \omega_h)/N \). The reflection spectrum is characterized by the presence of a minimum and a maximum, Fig. 1, both of which lie in the vicinity of \(\omega_d \), but are shifted with respect to it. The position of the minimum is determined mostly by parameter \(\Omega_s \), \(\Omega_{s,\text{min}} = \omega_d - \Omega_s - \gamma^2/\Omega_s \). When \(\Omega_s \gg \Delta \) the inhomogeneous broadening of the defect well does not affect the value of the reflection at \(\omega_{\text{min}} \). For this to happen, the number of wells must satisfy the condition \(N < N_c \), where \(N_c \approx 27 \) for GaAs/AlGaAs\(^{16}\) and \(N_c \approx 36 \) for CdTe/Zn_{0.13}Cd_{0.87}Te\(^{15}\). In this case, the value of the reflection at the minimum \(R_{\text{min}} \) is determined by the rate of the non-radiative relaxation,

\[R_{\text{min}} = |\bar{\Gamma}|^2 \gamma \gamma^2 N^4/[(\omega_d - \omega_h)^4(N - 1)^2], \]

(4)

and can be very small, when the latter is small. Meanwhile, \(\omega_{\text{max}} \) lies in the spectral region, where the host system is almost transparent, and the value of the reflection at this frequency, \(R_{\text{max}} \) can be estimated as that of a single defect QW

\[R_0 = 4\Gamma_0^2/(\pi\gamma^2 + 2\Gamma_0)^2. \]

(5)

The highest values of the contrast, defined as the ratio of the maximum and minimum reflections \(\eta = R_{\text{max}}/R_{\text{min}} \), are obtained when the number of periods in the structure is small. For low temperature values of \(\gamma \), the contrast can be as large as \(10^4 \). However, these large values of the contrast are accompanied by rather small values of \(R_{\text{max}} \). For switching or modulating applications, it would be useful to have large contrast, and a large maximum reflection. The latter can be improved by considering structures with multiple defect wells. This leads, of course, to an increase in the total number of wells, but as we show, one can achieve a significant increase in \(R_{\text{max}} \) for quite reasonable total length of the structure without compromising the contrast too much. Fig. 2 shows the results of numerical computations of the dependence of \(R_{\text{max}} \) and the contrast upon the number of defects. The structures were constructed of several blocks, each of which is a 9-period long BMQW with a single defect well in the middle.

One can see that, indeed, the spectrum of such multi-defect structures exhibits large \(R_{\text{max}} \) (up to 0.8 for structures no longer than 80 periods), while preserving high values of the contrast (of the order of \(10^3 \)).

\[\eta \approx \left[(\omega_d - \omega_h)/N \sqrt{\gamma} \right]^4 \]

(6)

Tunability Applications of DBMQW structures for switching or modulating devices is based on the possibility to change the value of the reflection coefficient at a working frequency \(\omega_w \) by switching between \(\omega_w = \omega_{\text{max}} \) and \(\omega_w = \omega_{\text{min}} \), using for instance the QCSE in order to change the value of \(\omega_d \). The structures under consideration also allow for tuning of the working frequency of the device by shifting the entire spectrum of the structure using QCSE in host wells. There are several different ways to implement this idea, but here we only want to demonstr-
strate its feasibility. The main difficulty results from the fact that shifting ω_d will detune the whole system from the Bragg resonance and may destroy the desirable spectral features discussed above. In order to see how the detuning affects the spectrum, we assume for simplicity that ω_h and ω_d change uniformly, and study the reflection spectrum of an off-Bragg structure.

It was shown in Ref. 17 that the small detuning from the Bragg resonance results in opening up a propagating band at the center of the forbidden gap significantly complicating the spectrum. It turns out, however, that as long as ω_{\min} and ω_{\max} are well separated from ω_h, the detuning did not affect the part of the spectrum associated with the defect. Indeed, we show that the reflection spectrum of an off-Bragg structure is described by the same Eq. (2) as that of the Bragg structure. The only modification is the change of the definition of $\bar{\Gamma}$, which now becomes

$$\bar{\Gamma} = \Gamma_0/\left[1 - iN \sin \pi (\omega - \omega_B)/\omega_B \right].$$

(7)

Thus, for such shifts of the exciton frequencies, ω_s, that satisfy the condition

$$N \sin (\pi \omega_s/\omega_B) \ll 1$$

(8)

the destructive effect of the detuning of the structure away from the Bragg resonance is negligible in the vicinity of ω_d. It is important to note that the shift should be small in comparison with the relatively big exciton frequency rather than, for example, with the width of the reflection band. Because of this circumstance, our structures can tolerate as large changes of the exciton frequencies as are possible with QCSE. The result of such a change is simply a uniform shift of the part of the spectrum shown in Fig. 1 by ω_s.

Additionally, Eq. (7) demonstrates a stability of the considered spectrum with respect to weak perturbations, such as small mismatch of refraction indices of wells and barriers, different optical widths of the host and defect quantum wells, and others.

Conclusion In this paper we considered reflection spectra of one special case of DBMQW structures, namely those in which the defect well differs from the host wells in the value of the exciton energy. We showed that if the frequency of the defect lies at the edge of the host reflection band, the spectrum of such a structure becomes significantly modified: in the vicinity of the defect frequency it becomes non monotonic with a well defined minimum and maximum. The value of the reflection at the minimum, R_{\min}, is determined mostly by the rate of the non-radiative relaxation of excitons, and can be very small at low temperatures. The small value of the reflection leads to a giant contrast, defined as R_{\max}/R_{\min}, which can be as large as 10^4. The contrast is one of the figures of merit for structures considered for switching or modulating applications, however, the maximum reflection R_{\max} in such structures is rather low. We showed that R_{\max} can be significantly increased for structures with several defects without compromising the value of the contrast.

An additional advantage of the proposed structures is their tunability. We demonstrated that shifting the host and defect exciton energies by several widths of the hosts’ reflection band leads to the uniform shift of the entire spectrum without any significant adverse effects on the spectral region in the vicinity of the defect frequency. This shift can be realized using, for instance, QCSE so that the spectra of the considered structures can be electrically tuned.

The work is supported by AFOSR grant F49620-02-1-0305 and PSC-CUNY grants.

1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
3. L. I. Deych, D. Livdan, and A. A. Lisyansky, Phys. Rev. E 57, 7254 (1998).
4. A. Yu. Sivachenko, M. E. Raikh, and Z. V. Vardeny, Phys. Rev. A 64, 013809 (2001).
5. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan Phys. Rev. Lett. 90, 196402 (2003).
6. E. L. Ivchenko, A. I. Nesvizhskii, and S. Jord, Phys. Solid State 36, 1156 (1994).
7. L. I. Deych, A. Yamilov, and A.A. Lisyansky, Phys. Rev. B 64, 075321 (2001); L.I. Deych, A. Yamilov, and A.A. Lisyansky, Optics letters, 25, 1705 (2000).
8. L. I. Deych, A. Yamilov, A. A. Lisyansky, Nanotechnology, 13, 114 (2002).
9. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gosnard, W. Wiegmann, T. H. Wood and C. A. Burrus, Phys. Rev. B. 32, 1043 (1985).
10. H. C. Casey Jr, and M. B. Panish, *Heterostructure Lasers*, Academic, New York, 1978.
11. Z. R. Wasilewski, M. M. Dion, D. J. Lockwood, P. Poole, R. W. Streater, A. J. SpringThorpe, J. Appl. Phys. 81, 1683 (1997); C. Bosio, J. L. Staehli, M. Guzzi, G. Burri, R. A. Logan, Phys. Rev. B 38, 3263 (1988).
12. N. Grandjean, J. Massies, and M. Leroux, Appl. Phys. Lett 74, 2361 (1999).
13. G. Malpuech, A. Kavokin, G. Panzarini, Phys. Rev B 60, 16788 (1999).
14. L. I. Deych, M. V. Erementchouk and A. A. Lisyansky, submitted to PRB
15. L. I. Deych, A. A. Lisyansky, Phys. Rev. B 62, 4242 (2000).
16. M. Hüblner, J. Kuhl, T. Stroucken, A. Knorr, S.W. Koch, R. Hey, and K. Ploog, Phys. Rev. Lett. 76, 4199 (1996).
17. Y. Merle d’Aubigné, A. Wasiela, H. Mariette and T. Dietl, Phys. Rev. B 54, 14003 (1996).