Intermodular Configuration Scrubbing of On-detector FPGAs for the ARICH at Belle II

R. Giordano, Y. Lai, S. Korpar, R. Pestotnik, A. Lozar, L. Šantelj, M. Shoji, and S. Nishida

Abstract—On-detector digital electronics in High-Energy Physics experiments is increasingly being implemented by means of SRAM-based FPGA, due to their capabilities of reconfiguration, real-time processing and multi-gigabit data transfer. Radiation-induced single event upsets in the configuration hinder the correct operation, since they may alter the programmed routing paths and logic functions. In most trigger and data acquisition systems, data from several front-end modules are concentrated into a single board, which then transmits data to back-end electronics for acquisition and triggering. Since the front-end modules are identical, they host identical FPGAs, which are programmed with the same bitstream.

In this work, we present a novel scrubber capable of correcting radiation-induced soft-errors in the configuration of SRAM-based FPGAs by majority voting across different modules. We show an application of this system to the read-out electronics of the Aerogel Ring Imaging Cherenkov (ARICH) subdetector of the Belle II experiment at SuperKEKB of the KEK laboratory (Tsukuba, Japan). We discuss the architecture of the system and its implementation in a Virtex-5 LX50T FPGA, in the concentrator board, for correcting the configuration of up to six Spartan-6 LX45 FPGAs, on pertaining front-end modules. We discuss results from fault-injection and neutron irradiation tests at the TRIGA reactor of the Jožef Stefan Institute (Ljubljana, Slovenia) and we compare the performance of our solution to the Xilinx Soft Error Mitigation controller.

Index Terms—Radiation effects, single event effects, single event upsets, multiple bit upsets, soft errors, FPGA, radiation testing, neutron, Belle II, Cherenkov.

I. INTRODUCTION

On-detector digital electronics in High-Energy Physics (HEP) experiments is increasingly being implemented by means of Static Random Access Memory-based (SRAM-based) Field Programmable Gate Arrays (FPGAs) [1], [2]. The main reasons are that these devices are reconfigurable, they are capable to process large amounts of data in real-time and to perform multi-gigabit data transfers on serial lines. Radiation-induced single event upsets (SEUs) in the device configuration hinder the correct operation, since they may alter the programmed routing paths and logic functions [3], [4]. These errors need to be removed, i.e. scrubbed [5], as soon as possible. If accumulated, they can even break triple modular redundancy (TMR) schemes [6]. Simple scrubbing schemes foresee additional radiation-hardened memories for storing a golden bitstream, so they make it possible to correct any number of upsets per configuration frame (i.e. the smallest accessible configuration element). Other solutions exploit error correcting codes, such as the Xilinx Soft Error Mitigation (SEM) controller, and they make it possible to correct few upsets per frame.

Recently, novel scrubbing techniques based on redundancy of configuration frames have been proposed [7], [8] and they make it possible at the same time to avoid external memories and have no a priori limit on the number of correctable errors. These techniques require to generate redundant configuration frames in the device and to provide circuits to majority vote frames for data detection and correction.

In most trigger and data acquisition systems, data from several front-end modules are concentrated into a single board, which then transmits data to back-end electronics for acquisition and triggering, as for instance in [9], [10]. The front-end modules are identical and their FPGAs are programmed with the same bitstream, which can be uploaded via the data concentrator board.

The contribution of this work to the state of the art is twofold. On one hand, we present a novel scrubber which majority votes configuration frames of FPGAs across different modules. The main advantage of our solution is that there is no impact on the resource occupation in the device for generating the redundant frames, since the inherent redundancy of different modules is leveraged. On the other hand, we show an actual case study of our concept in a running experiment. In fact, we applied our concept to the Aerogel Ring Imaging CHERenkov (ARICH) counter of the Belle II [11] experiment at the SuperKEKB e^+e^- collider (Tsukuba, Japan).

II. THE ARICH COUNTER

The ARICH is part of the crucial particle identification (PID) system [12], which is required for B-meson flavor tagging in CP violation studies in the neutral B system. PID is also key in precision measurements of rare B and D decays, since it makes it possible to suppress backgrounds. The ARICH consists of 124 pairs of aerogel tiles as radiators, an array of 420 144-channel Hybrid Avalanche Photo-Detectors (HAPDs), and the pertaining readout system [13]. A front-end board (FEB) is attached to each HAPD and it hosts four application specific integrated circuits (ASICs) and a Spartan-6 LX45 FPGA. Groups of six (or in a few cases five) FEBs transfer digitized hit information to a merger board,
built around a Virtex-5 LX50T FPGA, which transmits data to the off-detector electronics (Fig. 1). Spartan-6 devices are produced with a high concentration of Boron as a p-type dopant. The high cross-section of ^{10}B for thermal neutron capture leads to an increased SEU rate with respect to other Xilinx devices. Irradiation tests at the TRIGA reactor \cite{14} of the Jožef Stefan Institute (Ljubljana, Slovenia) made it possible to measure the configuration upset rate with a neutron spectrum similar to one of the Belle II spectrometer. The results extrapolated to Belle II conditions provided a rate of 8 SEUs per hour per board, or 3.3k SEUs per hour overall. Single-bit errors per frame can be recovered by the SEM, but multi-bit errors are unrecoverable. Our results have also shown that the SEM cannot effectively limit the accumulation of SEUs in the Spartan-6 configuration, therefore, we decided to address this issue by designing a custom solution.

III. THE CONFIGURATION CONSISTENCY CORRECTOR

The scrubber we designed, named Configuration Consistency Corrector (C^3), operates in the merger-board FPGA for majority voting the configuration of up to 6 FEB FPGAs. It is built around a Xilinx picoBlaze 6 (pB) soft-core, it runs at 127 MHz (frequency used by the Belle II link system) and it features parallel readback for the target FPGA configuration. The JTAG IO can be performed in two modes: single and broadcast read/write. Single mode makes it possible to write to and read from a single FPGA, while broadcast mode permits simultaneous write to and read from multiple FPGAs, in a majority-voted fashion. Block RAMs (BRAMs) are used for storing the pB program, configuration frames read from or to be written to target FPGAs, and device-specific details about the frame address increment logic. Finally a UART (or optionally a JTAG interface) makes it possible to send commands to the core and to log details about the detected SEUs (device, frame address, bit offsets, upset polarity). The whole system consists of three redundant cores, with majority-voted outputs. The internal scratchpad RAMs of pBs from the three cores are majority-voted and scrubbed at each processor reset, which is performed after a programmable number of scrubbing cycles has been completed. BRAMs from the three cores are continuously majority-voted and scrubbed via their second access port. The configuration error detection runs in background with respect to the logic implemented in the front-end FPGAs and it does not disrupt operation. The C^3 is capable to correct any number of errors per frame and it requires 3.3s to complete the parallel read back of the 6 target FPGAs. Its resource occupation is just 1068 flip-flops, 2005 look-up-table slices and 9 BRAMs, respectively 3%, 6% and 14% of the overall available resources in the merger FPGA. The C^3 is designed for portability across most of the Xilinx families, from the legacy Virtex-5 to the latest-generation Ultrascale+.

IV. TEST SETUP AND RESULTS

We realized a test-setup (Fig. 2) to verify the C^3 operation on the bench. The merger board is initially configured as a pass-through to program the FEB FPGAs from a dedicated personal computer (PC A). After configuration, another personal computer (PC B) configures the merger with the C^3 bitstream. At this point the PC B sends commands via UART to the C^3 to inject SEUs and, after injection, it starts scrubbing. We injected more than 4k upsets, uniformly distributed in devices, frames and in the range from 1 to 4 upsets per frame. All the injected errors have been detected and corrected. We used a similar setup for a new neutron testing campaign of the C^3 at the TRIGA reactor, in January 2020. Our results, show that the C^3 effectively limits accumulation of upsets in configuration memory of FEB FPGAs and it improves the mean time between failures of the read out functionality by 30% with respect to the SEM. During the irradiation test we did not record any single-event latch-ups, nor other hard failures, of the Merger and FEB FPGAs. Moreover, the C^3 is operating in the ARICH since June 2020, and SEU counts are logged via the EPICS-based slow control system. We are using this data to monitor the SEU
spatial distributions and the SEU counts versus time for all the FEBs. We plan to study the correlation of this data with the collider operating conditions.

ACKNOWLEDGMENT

We wish to thank A. Boiano, A. Vanzanella, A. Pandalone, E. Masone from SER (Electronics and Detectors Service) of Istituto Nazionale di Fisica Nucleare Sezione di Napoli for their technical support to this activity and the Jožef Stefan Institute TRIGA staff for their technical support during the irradiation test. This work is part of the ROAL project (grant no. RBSI14JOUV) funded by the Scientific Independence of Young Researchers (SIR) 2014 program of the Italian Ministry of Education, University and Research (MIUR).

REFERENCES

[1] Virtex UltraScale+ FPGA Data Sheet: DC and AC Switching Characteristics. Xilinx Inc. DS923 (v1.13) September 30, 2019
[2] Agilex Device Data Sheet. DS-1060 Intel Corp. 2019.04.02
[3] M. Wirthlin, in Proc. of the IEEE, vol. 103, no. 3, pp. 379-389, Mar. 2015. doi: 10.1109/PROC.2015.2404212
[4] H. Quinn, Semicond. Sci. Technol., vol. 32, no. 4 (8pp), Mar. 2017 doi: 10.1088/1361-6641/aa57f6
[5] A. Stoddard et al., IEEE Trans. on Nucl. Sci., vol. 64, no. 1, pp. 497-503, Jan. 2017. doi: 10.1109/TNS.2016.2636666
[6] P. S. Ostler et al., IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3519–3526, Dec. 2009. doi: 10.1109/TNS.2009.2033381
[7] J. Tonfet et al., IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 3080–3087, Dec. 2015. doi: 10.1109/TNS.2015.2489601
[8] R. Giordano et al., in IEEE Trans. on Nucl. Sci., vol. 65, no. 10, pp. 2691-2698, Oct. 2018. doi: 10.1109/TNS.2018.2868992
[9] F. Anuli et al., J. Instr., Apr. 17 2009. doi: 10.1088/1748-0221/4/04/P04010
[10] D. Kotchetkov et al., Nucl. Instr. Meth. in Phys. Res. Sec. A, no. 941, 162342, Oct.11 2019. doi: 10.1016/j.nima.2019.162342
[11] I. Heredia de la Cruz, J. Phys. Conf. Ser., no. 761, 012017, 2016. doi: 10.1088/1742-6596/761/1/012017
[12] P. Krizan, J. Instr., no. 9, C07018, 2014. doi: 10.1088/1748-0221/9/07/c07018
[13] R. Pestotnik et al., Nucl. Instr. Meth. in Phys. Res. Sec. A, 2018, doi: 10.1016/j.nima.2018.12.026
[14] L. Snoj et al., Appl. Radiat. Isot. 70 (2012) 483. doi: 10.1016/j.apradiso.2011.11.042