Oxidized low-density lipoprotein receptor 1: a novel potential therapeutic target for intracerebral hemorrhage

Abstract
Oxidized low-density lipoprotein receptor 1 (OLR1) is upregulated in neurons and participates in hypertension-induced neuronal apoptosis. OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive-induced stroke. Therefore, OLR1 is likely involved in the progression of intracerebral hemorrhage. In this study, we examined the potential role of OLR1 in intracerebral hemorrhage using a rat model. OLR1 small interfering RNA (10 μL; 50 pmol/μL) was injected into the right basal ganglia to knock down OLR1. Twenty-four hours later, 0.5 U collagenase type VII was injected to induce intracerebral hemorrhage. We found that knockdown of OLR1 attenuated neurological behavior impairment in rats with intracerebral hemorrhage and reduced hematoma, neuron loss, inflammatory reaction, and oxidative stress in rat brain tissue. We also found that silencing of OLR1 suppressed ferroptosis induced by intracerebral hemorrhage and the p38 signaling pathway. Therefore, silencing OLR1 exhibits protective effects against secondary injury of intracerebral hemorrhage. These findings suggest that OLR1 may be a novel potential therapeutic target for intracerebral hemorrhage.

Key Words: ferroptosis; inflammation; intracerebral hemorrhage; neurological behavior; neuroprotection; novel therapeutic target; oxidative stress; oxidized low-density lipoprotein receptor 1; p38 signaling pathway; secondary brain injury

Introduction
Intracerebral hemorrhage (ICH) is a devastating nervous system disease with high mortality and disability rates and constitutes approximately 15% of stroke cases worldwide (Rocha et al., 2020). Approximately 75% of survivors with persistent ICH show various degrees of neurological function deficit, including sensory, reflex, motor, and language deficits (Ren et al., 2020a). Cerebral damage induced by ICH is not only from hematoma expansion and hematoma mass effects (the main reasons of primary damage), but also from secondary brain injury (Chen et al., 2015; Wang et al., 2018; Deng et al., 2020). Secondary damage is caused by intraparenchymal blood, resulting in activation of excitotoxic, cytotoxic, inflammatory, and oxidative pathways, and hemoglobin lysate (including iron) released from hematoma (Zhou et al., 2014; Wan et al., 2019). An effective treatment for ICH is lacking because of the complex pathophysiology of ICH (Sembill et al., 2018). Thus, better understanding of the underlying mechanisms is critical to identify novel therapeutic targets for ICH.

Iron released from hematomas can cause an oxidative threat to surrounding tissues, resulting in an iron-dependent non-apoptotic cell death known as ferroptosis (Zhang et al., 2018; Djulbegovic and Uversky, 2019; Stockwell et al., 2020). Ferroptosis is characterized by extremely high lipid peroxidation levels and contributes to secondary brain injury after ICH (Djulbegovic and Uversky, 2019; Bao et al., 2020; Zhang et al., 2020b; Fan et al., 2021). In the ferroptosis process, the repression of glutathione peroxidase 4 (GPX4) enhances lipid peroxide production, leading to increased reactive oxygen species (ROS), which causes oxidative lipid damage and ferroptosis of neuronal cells (Guo et al., 2017; Bai et al., 2019). Glutathione (GSH) acts as the reducing substrate for GPX4 activity and is indispensable for inhibiting ferroptosis (Feng and Stockwell, 2018). A previous study showed that the amelioration of ferroptosis in the acute phase...
of ICH exerts long-term cerebral protective effects by decreasing malondialdehyde (MDA) and cyclooxygenase-2 (COX-2) levels (Chen et al., 2019). Therefore, identifying treatments targeting ferroptosis might be an excellent strategy against the progression of ICH.

Oxidized low-density lipoprotein receptor 1 (OLR1), also known as lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), is a membrane protein receptor of the C-type lectin family (Akmedov et al., 2021; Barreto et al., 2021). OLR1 is mainly expressed in organs with abundant blood vessels, such as placenta, lung, and brain, and plays an essential role in vascular dysfunction (Shaw et al., 2014). OLR1 is upregulated in neurons and involved in hypertension-induced neuronal apoptosis (Li et al., 2012). OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive-induced stroke (Li et al., 2020). Bioinformatics analysis predicted that OLR1 is highly expressed in hematoma tissues after ICH and OLR1 is a biomarker of acute ICH (Inoue et al., 2019; Liu et al., 2019). We thus speculated that OLR1 might play a role in post-ICH brain injury.

In this study, we investigated the function of OLR1 in cerebral damage in ICH. We established an ICH mouse model using collagenase type VII to explore the role of OLR1 in brain injury and examined the underlying mechanism of the cerebral protection caused by downregulated OLR1.

Materials and Methods

Animals

All animal experimental protocols were approved by the Institutional Animal Care and Use Committee of China Medical University (approval No. KT2018042; approval date: March 1, 2018) and were performed in compliance with The Guideline for the Care and Use of Laboratory Animals. All experiments were designed and reported according to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines (Peric et al., 2019). Adult male Sprague-Dawley rats (200–220 g; 8 weeks old) were purchased from Liaoning Changsheng Biotechnology (Shenyang, China) and were housed in a controlled environment until use. All animal experimental procedures for ICH inducement.

In ICH procedures for ICH inducement.

siRNA into the burr hole. After 24 hours, all rats underwent the procedures for ICH inducement.

Caveat: After all treatments, rats received food and water ad libitum. After 24 hours, neurological behavior assessments including modified Neurological Severity score (mNSS) and corner turn test were performed. After the neurological function assessment, the rats were sacrificed. The perihematoma tissues were isolated at 2 mm around the hematoma for further experiments. Moreover, brain tissues of rats in each group were serially cut into several sections to evaluate the hematoma area.

Modified Neurological Severity score

Neurological behavior changes were evaluated by mNSS as previously described (Chen et al., 2001). Briefly, the neurological behavior score ranged from 0 to 28 (normal, 0; maximal injury, 28). The mNSS consists of motor tests (maximum = 6), sensory tests (maximum = 6), balance tests (maximum = 6), and reflex absence and abnormal movements (maximum = 6). In each of the tests, one point was given for the failure to test or the lack of a tested reflex. Therefore, a higher score indicated a more severe deficit.

Corner turn test

The corner turn test was performed to assess neurological behavior as previously described (Hua et al., 2002). Rats were allowed to enter a corner at a 30° angle, then turned to the left or the right to leave the corner. All tests were recorded. The trials were repeated 12 times with at least 1 minute between the behaviors, and the proportion of right turns (corner turn score) was calculated. Excluding the ventral inversion or horizontal rotation, only turns involving full rearing along either side were included. The rats were not picked up immediately after each turn so that they did not develop an aversion for their pentareturning response.

Brain water content

At 24 hours after the neurological behavior assessment, rats were sacriﬁced with 200 mg/kg sodium pentobarbital by intraperitoneal injection. The skull was removed rapidly, and brain tissues were isolated without the brain stem and divided into five pieces. The pieces were swiftly weighed to obtain the wet weight and then dried at 100°C for 24 hours to obtain the dry weight. The brain water content was calculated as a percentage using the following formula: (wet weight – dry weight)/wet weight × 100.

Fluro-Jade B staining

Fluro-Jade B is a cell death marker that was chosen for demonstration of neuroprotection (Abd-El-Basset and Rao, 2018). At 24 hours after ICH, brain tissue sections were incubated with 1% NaOH (mixed with 80% ethanol) for 5 minutes. Sections were maintained in 70% ethanol for 2 minutes, followed by incubation with 0.06% potassium permanganate for 10 minutes. Slices were transferred to Fluro-Jade B solution (Merck Millipore, Billerica, MA, USA) for 20 minutes and protected from light. After rinsing with distilled water, sections were dried at 50°C for 5 minutes and fixed with neutral balata. Images were captured on a BX53 fluorescence microscope (Olympus, Tokyo, Japan).

Quantitative reverse transcription-polymerase chain reaction

OLR1 mRNA expression was detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) at 24 hours after ICH. Total RNA was extracted from rat brain tissues around hematoma with the TRIpure kit (BioTek Instruments, Winooski, VT, USA) in accordance with the manufacturer’s protocols. Reverse transcription of RNA to complementary DNA was performed using BeyoRT II M-MLV reverse transcriptase (Beyotime, Shanghai, China). PCR was performed with the 2x Taq PCR MasterMix (Solarbio, Shanghai, China) and SYBR Green (Solarbio) in accordance with the manufacturer’s instructions. For normalization of gene expression, β-actin mRNA was used as an internal control. Primers were synthesized by GenScript, and the sequences are as follows: OLR1 forward: 5′-CCT GCT GTG ACT CTG-3′; reverse: 5′-TTC CCT CTT TGA TTC TTG TG-3′; β-actin forward: 5′-GG AGAT CAT TGC CTC GGC TCC TAG C-3′; reverse: 5′-GGCGCGCATCCTACTCCTG-3′. The program was as follows: 94°C for 5 minutes, 94°C for 20 seconds, 60°C for 30 seconds, 72°C for 40 seconds; 40 cycles of 72°C for 5.5 minutes and 40°C for 4.5 minutes; and finally 25°C for 1–2 minutes. Data were analyzed using the 2−ΔΔCT method.

Western blot analysis

At 24 hours after ICH, total protein was extracted from brain tissues around hematoma using protein lysis buffer (Beyotime) containing 1% phenylmethanesulfonyl fluoride. Protein concentration was calculated as a percentage using the following formula: (protein concentration of test sample/ protein concentration of standard sample) × 100%. Protein samples were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and then transferred to polyvinylidene fluoride membranes (Thermo Fisher Scientific, Pittsburgh, PA, USA). After Western blot analysis.
blocking with 5% bovine serum albumin (BioSharp Life Science, Hefei, China), the membrane was incubated with primary antibodies at 4°C overnight, followed by incubation with horseradish-peroxidase (HRP)-conjugated goat anti-rabbit IgG (1:10,000; RRID: AB_2722564; Cat# SA00001-2, Proteintech, Wuhan, China) or HRP-conjugated goat anti-mouse IgG (1:10,000; RRID: AB_2722565; Cat# SA00001-1, Proteintech) at 37°C for 40 minutes.

The primary antibodies are listed as follows: rabbit polyclonal anti-OLR1 (1:1000; RRID: AB_2763697; Cat# A1639; AbCleon Technology, Shanghai, China), rabbit polyclonal anti-COX-2 (ferroptosis marker; 1:1000; RRID: AB_289270; Cat# A2153, AbCleon Technology), rabbit polyclonal anti-GPX4 (ferroptosis marker; 1:500; RRID: AB_2763960; Cat# A1933, AbCleon Technology), rabbit polyclonal anti-ferritin heavy polypeptide 1 (FTH1; ferroptosis marker; 1:500; RRID: AB_2862659; Cat# A19544, AbCleon Technology), rabbit polyclonal anti-p-p38 (1:500; RRID: AB_2771309; Cat# AP0526, AbCleon Technology), rabbit polyclonal p38 (1:500; RRID: AB_2761271; Cat# A14401, AbCleon Technology), and mouse monoclonal β-actin (1:2000; RRID: AB_2289225; Cat# 00001-1g, Proteintech).

Membranes were washed with Tris-buffered saline plus Tween-20 and then treated with Immobilon western HR substrate solution (7 Sea Biotech, Shanghai, China). Images were scanned by a WD-9413 gel imager (Liuyi Biotech, Beijing, China). The optical density of bands was analyzed using Gel-Pro Analyzer software (Media Cybernetics, Bethesda, MD, USA).

Enzyme-linked immunosorbent assay
At 24 hours after ICH, rat brain tissues around hematoma and saline at 1:3 (g/mL) were homogenized and the samples were centrifuged at 421 × g for 10 minutes. The supernatant was used for detecting the concentration of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and 4-hydroxynonenal (4-HNE) using the ELISA kit, TNF-α ELISA kit, and 4-HNE ELISA kit purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China) following the manufacturer’s instructions.

Immunofluorescence staining
Paraffin-embedded sections of the brain tissues around hematoma (5 μm) were deparaffinized in xylene and rehydrated in an ethanol gradient with distilled water. Antigen retrieval of brain tissues sections was performed in a pressure cooker for 5 minutes and the sections were blocked with goat serum (Solarbio) for 15 minutes at room temperature. The sections were then incubated with the following primary antibodies: rabbit polyclonal anti-myeloperoxidase (MPO; neutrophil marker; RRID: AB_2760599; Cat# A1374, 1:100; AbCleon Technology), mouse monoclonal anti-NeuN (neuronal nuclear protein marker; Dinkin et al. 2017; Cat# 5000; RRID: AB_10711040; Cat# ab104224, Abcam, Cambridge, UK), rabbit polyclonal anti-GPX4 (1:100; RRID: AB_2763960; Cat# A1933, AbCleon Technology), rabbit polyclonal anti-glial fibrillary acidic protein (GFAP; astrocyte marker; 1:100; RRID: AB_2893014; Cat# WLO836, Wanleibio, Shenyang, China), and rabbit monoclonal anti-ionized calcium-binding adaptor molecule 1 (Iba1; microglia/macrophage marker; 1:100; RRID: AB_283224A, Cat# ab178847, Abcam) at 4°C overnight. Samples were washed three times with phosphate buffer saline, followed by incubation with Cy3-conjugated goat anti-rabbit IgG (1:200; RRID: AB_2893015; Cat# A0516, Beyotime) or fluorescein isothiocyanate-conjugated goat anti-mouse IgG (1:200; RRID: AB_2893016; Cat# A0568, Beyotime) at room temperature for 90 minutes in the dark. Then, in the dark, the sections except for the GAFP- and Iba1-stained sections were then treated with Immobilon western HRP substrate solution (7 g/L; Sea Biotech, Shanghai, China). Images were scanned by a WD-9413 gel imager (Liuyi Biotech, Beijing, China). The optical density of bands was analyzed using Gel-Pro Analyzer software (Media Cybernetics, Bethesda, MD, USA).

Evaluation of reactive oxygen species formation
Superoxide production was assessed by fluorescent-labeled dihydroethidium staining at 24 hours after ICH. Rat brain sections around hematoma were incubated with dihydroethidium (1:100; Beyotime) at 37°C for 30 minutes protected from the light. The images were captured using a BX53 fluorescence microscope.

Determination of superoxide dismutase, glutathione, and malondialdehyde levels
Rat brain tissues around hematoma were isolated and homogenized with saline at 1:9 (g/mL), and the samples were centrifuged at 421 × g for 10 minutes. The supernatant was used for the determination of global superoxide dismutase (SOD), GSH, and MDA levels using the SOD test kit, GSH assay kit, and MDA test kit, respectively, purchased from Nanjing Jiancheng Bioengineering Institute, in accordance with the manufacturer’s instructions.

Statistical analysis
The selected sample size was calculated by power analysis using G* power 3.1.9.7 software (https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html) with n = 24, power = 0.86, and α error probe = 0.05. The evaluators were blind to the groups for the assessment of neuropsychological behavior. Statistical analysis was performed using GraphPad Prism 8.0 software (GraphPad Software, La Jolla, CA, USA). Data are presented as mean ± standard deviation (SD) except for the boxplot (median, interquartile range, maximum and minimum). The difference among four groups was analyzed using one-way analysis of variance following by Bonferroni’s post hoc test. Neurological function results were analyzed by nonparametric tests (Kruskal-Wallis, followed by Dunn’s post hoc test). Six independent repeats were performed in each experiment except for the neurological function assessment (twelve independent repeats). P < 0.05 was considered statistically significant.

Results
Silencing OLR1 attenuates neurological behavior impairment, hematoma expansion, brain water content, and neuron loss in rat brain tissues after ICH
To investigate the role of OLR1 in the functional impairment after ICH, we established ICH model rats as described in Methods and evaluated the effects of OLR1 knockdown on neurological behavioral changes after ICH. As shown in Figure 1A and B, ICH-mediated induction of OLR1 mRNA and protein levels was decreased by the downregulation of OLR1 in brain tissues after ICH. Knockdown of OLR1 recovered the neurological dysfunction after ICH, as evidenced by the reverse of the ICH-mediated increase in mNSS score and cortex turn score (Figure 1C and D). Furthermore, knockdown of OLR1 decreased the elevated brain water content and the increased hematoma area of serial brain sections of rats caused by ICH (Figure 1E and F). Moreover, downregulation of OLR1 reversed the ICH-induced neuron loss of brain tissues, as shown by Fluro-Jade B staining (Figure 1G). Together, these results indicated that decreased expression of OLR1 attenuated the functional impairment, hematoma expansion, brain water content, and neuron loss in brain tissues post-ICH.

Silencing of OLR1 alleviates the inflammation of rat brain tissues after intracerebral hemorrhage
To determine the contribution of OLR1 to inflammation, we examined the secretion of pro-inflammatory factors using ELISA. The results revealed that silencing of OLR1 reduced the increased concentration of IL-1β, IL-6, and TNF-α in the supernatant of rat brain tissues after ICH (Figure 2A–C).

We next examined the infiltration of immunocytes in brain tissues by immunofluorescence staining for indicators of neutrophils, microglia/macrophages, and astrocytes (MPO, Iba1, and GFAP, respectively). As shown in Figure 2D, OLR1 knockdown reversed the elevated MPO in brain tissues induced by ICH. The same findings were observed for Iba1 and GFAP levels (Additional Figure 1). These results suggested that OLR1 knockdown alleviated the inflammation of brain tissues around hematoma after ICH.

Silencing of OLR1 mitigates oxidative stress in rat brain tissues after intracerebral hemorrhage
We further investigated the effects of OLR1 on oxidative stress, which plays an important function in mediating ICH-induced injury and is characterized by the gain of ROS, MDA, 4-HNE and the loss of SOD and GSH. Dihydroethidium fluorescence assay demonstrated that the knockdown of OLR1 reversed the increased ROS in post-ICH brain tissues (Figure 3A). Furthermore, downregulation of OLR1 partially restored the reduced global SOD activity and GSH content and reversed the enhanced MDA and 4-HNE in the supernatant of rat brain tissues after ICH (Figure 3B–E). These data indicated that silencing of OLR1 mitigated oxidative stress in rat brain tissues after ICH.
We next investigated the mechanism underlying the effects of OLR1 silencing of tissues after intracerebral hemorrhage.

Silencing of OLR1 alleviates the inflammation of rat brain tissues 24 hours after ICH.

After injection with OLR1 siRNA or scramble siRNA for 24 hours, rats were infused with collagenase type VII to induce ICH. (A–C) Concentrations of IL-1β, IL-6 and TNF-α in the supernatant of rat brain tissues as detected by enzyme-linked immunosorbent assay. (D) Representative immunofluorescence staining to identify MPO-positive cells. The loss of OLR1 reversed the elevated MPO in brain tissues induced by ICH. MPO-positive cells (white arrows) were labeled red with Cy3. Nuclei were labeled blue by DAPI. Scale bar: 50 μm (top three rows), 10 μm (bottom row). Data are shown as mean ± SD and were analyzed by one-way analysis of variance followed by Bonferroni’s post hoc test. Data in C and D are shown as median, interquartile range, maximum and minimum and were analyzed by Kruskal-Wallis test followed by Dunn’s post hoc test. The experiments were repeated 12 times in C and D, and six times in other figures. ICH: Intracerebral hemorrhage; mNss: modified Neurological Severity score; OLR1: oxidized low-density lipoprotein receptor 1; siRNA: small interfering RNA.

Silencing of OLR1 suppresses ferroptosis of neuron in rat brain tissues after intracerebral hemorrhage

We next investigated the mechanism underlying the effects of OLR1 knockdown after ICH. GSH depletion reduces GPX4 activity and cell antioxidant capacity, resulting in the accumulation of lipid ROS and ultimately the occurrence of oxidative damage and ferroptosis (Wang et al., 2019; Li et al., 2020). Given the data on the impact of OLR1 on GSH and oxidative stress, we speculated that the loss of OLR1 might prevent secondary brain injury in ICH rats by regulating ferroptosis. We thus next examined protein expression levels of ferroptotic indicators (GPX4, FTH1, and COX-2) (Datta et al., 2013; Chen et al., 2019; Seibt et al., 2019). Western blot analysis showed that OLR1 depletion reversed the downregulation of GPX4 and FTH1 and the upregulation of COX-2 in brain tissues around hematoma after ICH (Figure 4A). Moreover, immunofluorescence staining results of GPX4 expression in NeuN-positive cells showed similar results; GPX4 was localized in cytoplasm (Figure 4B). These results indicated that silencing of OLR1 suppressed the ferroptosis of neurons in rat brain tissues induced by ICH.
Silencing of OLR1 represses the p38 signaling pathway in brain tissues after intracerebral hemorrhage

Studies have shown that downregulated GPX4-triggered ferroptosis is mediated by p38 activation (Zhang et al., 2020c; Wang et al., 2021). To get a deeper understanding of the mechanism of OLR1 in regulating ferroptosis after ICH, we examined the effects of OLR1 knockdown on p38 activation. As shown in Figure 5, the knockdown of OLR1 partially reversed ICH-mediated activation of p38.

Figure 5 | Silencing of OLR1 represses the p38 signaling pathway 24 hours after ICH.

The protein levels of p-p38 and p38 were evaluated in brain tissues of rats injected with OLR1 siRNA or scramble siRNA, followed by infusion with collagenase type VII to induce ICH. Data are shown as mean ± SD (n = 6) and are analyzed by one-way analysis of variance following by Bonferroni’s post hoc test. The experiments were repeated six times. ICH: intracerebral hemorrhage; OLR1: oxidized low-density lipoprotein receptor 1; siRNA: small interfering RNA.

Together, these results indicate that OLR1 silencing protected the post-ICH brain tissues from secondary brain injury by the inhibition of ferroptosis, which might be mediated by the p38 signaling pathway (Additional Figure 2).

Discussion

ICH is a fatal cerebral disease with high morbidity and mortality rates (Hostettler et al., 2019). Increasing evidence has suggested that brain damage induced by the occurrence of intraparenchymal blood causes oxidative stress, overproduction of ROS, and brain edema, which ultimately lead to cerebral injury and neurological deterioration (Zhou et al., 2014; Wilkinson et al., 2018). Thus, amelioration of these brain injuries is of great significance for the treatment of ICH. Previous studies showed that amelioration of ICH-induced secondary brain injury is mediated by the suppression of inflammation, oxidative stress, and mitochondria and DNA damage (Wang et al., 2018; Yang et al., 2021). In this work, we found that knockdown of OLR1 attenuated the neurological behavior impairment, hematoma expansion, brain water content and neuron loss in rat brain tissues induced by ICH. Furthermore, downregulation of OLR1 alleviated inflammatory and oxidative stress in post-ICH brain tissues. Moreover, the protective effects of OLR1 silencing on ICH-induced cerebral damage may be mediated by inhibition of neuronal ferroptosis and repression of the p38 signaling pathway.

OLR1 is a type II single-pass transmembrane glycoprotein and the receptor for oxidized low-density lipoprotein (Jiang et al., 2019). OLR1 has been implicated in the progression of various diseases, such as atherosclerosis, diabetes mellitus, ischemia/reperfusion cerebral injury, gastric cancer, and osteoarthritis (Hashimoto et al., 2017; Akhmedov et al., 2019; Stankova et al., 2019; Takemura et al., 2019). A previous study showed that the serum OLR1 levels of ICH patients are significantly higher than that of healthy individuals, indicating the potential role for OLR1 as a biomarker of ICH (Linou et al., 2019). Liang et al. (2020) reported that knockdown of OLR1 attenuates spontaneous brain damage in stroke-prone hypertensive rats. Yuan et al. (2020) demonstrated that the neuroprotective effect in ischemic stroke (the alleviation of brain water content and neurological outcome) from the downregulation of OLR1 is mediated by the inhibition of inflammation (secretion of IL-1β, IL-6, and TNF-α), SOD, GSH, and catalase via the suppression of NF-κB signaling. Ge et al. (2019) showed that OLR1 facilitates microglia activation and aggravates neuroinflammation-induced neuronal apoptosis and neuronal injury. These studies indicate the potential role of OLR1 in cerebral diseases. In the current study, we found that loss of OLR1 partially reversed the changes in functional impairment, hematoma expansion, brain water content, and neuron loss in rat brain tissues after ICH. Silencing of OLR1 reversed the increased inflammation as reflected by changes in IL-1β, IL-6, TNF-α, and MPO in brain tissues following ICH. The aggravated oxidative stress was reversed by the downregulation of OLR1 with changes in ROS, MDA, 4-HNE, SOD and GSH in post-ICH brain tissues.

The accumulation of iron released from hematoma after ICH may be a contributor of oxidative stress and perihematomal edema and causes ferroptosis (Zhou et al., 2020). Ferroptosis is characterized by GSH antioxidant dysfunction, GPX4 depletion, the accumulation of lipid hydroperoxides, and ROS overproduction (Ren et al., 2020b; Zhou et al., 2020). Research has shown that suppression of ferroptotic cell death might markedly prevent secondary brain injury after ICH (Zhang et al., 2018; Chen et al., 2019; Bai et al., 2020). Duan et al. (2021) reported that ferroptosis depletion protects ICH-induced brain tissues from motor deficits, hematoma formation, iron deposition, and neuronal degradation by upregulating GPX4, solute carrier family 11 membrane 7, and reducing ROS levels. Guo et al. (2017) demonstrated that aortic atherosclerosis lesions are abrogated via the decreased levels of blood lipid and MDA as well as the enhanced content of GSH and SOD. These effects were mediated by downregulating the expression of OLR1 and the oxidized low-density lipoprotein. Therefore, interventions targeting ferroptosis may represent a potential strategy in the therapy of various diseases. In this study, we found that downregulation of OLR1 expression repressed the ICH-induced ferroptosis of neurons by reversing ICH-mediated downregulation of GPX4 and FTH1 and upregulation of COX-2. OLR1 repression ameliorates Ang II-induced oxidant stress and the relative levels of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (a membrane-bound enzyme complex) (Lu et al., 2011). ROS generated by NADPH oxidase induces lipid peroxidation by reacting with the polyunsaturated fatty acids of lipid membranes,
resulting in ferroptosis (Ma et al., 2017; Hou et al., 2019). Zhang et al. (2014) found that either genetic loss or pharmacological suppression of NAPDH oxidase mitigates ROS overproduction and lipid peroxidation in pathological progression of various diseases.

On the basis of these results and combined with the findings of the inhibitory effects of depleted OLR1 on ROS levels in the current study, we speculate that OLR1 downregulation might block ROS production by decreasing NAPDH oxidase levels, leading to the attenuation of lipid peroxidation and ferroptosis.

p38 is a mitogen-activated protein kinase (MAPK) that responds to stimulation by regulating cell proliferation, apoptosis, ferroptotic cell death, oxidative stress, and inflammation (Son et al., 2013; Wei and Hsieh, 2020). In coronary syndrome, knockdown of OLR1 enhances vascular remodeling and inhibits the secretion of the inflammatory reneurogenic factors by repressing the p38 MAPK pathway (Yu et al., 2020). Depleted OLR1 influences autophagy via reducing NAPDH oxidase in the brain tissues of hypertensive rats by weakening the p38 MAPK pathway (Ding et al., 2015). The OLR1/p38-MAPKs/NF-κB positive feedback loop may facilitate microglia activation and aggravate neuroinflammation and neuronal injury (Ge et al., 2019). These findings indicate that OLR1 plays an essential part in the progression of cerebral diseases and vascular diseases through regulation of the p38 signaling pathway. In this study, we found that downregulation of OLR1 restored the upregulation of p-p38 in post-ICH brain tissues of rat, suggesting that the brain protective function triggered by OLR1 in ICH involves the p38 pathway.

Ferroptosis is regulated by the activation of p38 MAPK. p38-mediated GPX4 downregulation has been reported to participate in the suppression of the pathological characteristics of ICH patients. Second, we found that pathological characteristics of ICH patients. Second, we found that pathological characteristics of ICH patients. Second, we found that pathological characteristics of ICH patients.

In conclusion, our results show that the p38 pathway participates in the regulation of ferroptosis and apoptosis that inhibits the development of hepatocellular carcinoma (Chang et al., 2021; Wang et al., 2021). Li et al. (2018) showed that suppression of the p38 MAPK activation blocks ferroptotic cell death triggered by deprivation/reoxygenation. A ferroptotic inhibitor attenuates the development of epileptic rats through the regulation of synaptic protein by repressing the p38 MAPK pathway (Ye et al., 2020). Furthermore, LOX-1 knockout mice exhibit reduced myocardial ischemia/reperfusion injury and decreased levels of p38 (Hu et al., 2008). These studies suggest that the p38 MAPK pathways participate in the regulation of ferroptosis in various diseases. On the basis of our results showing that OLR1 silencing regulates p38 activation, we considered that the OLR1 downregulation–induced ferroptotic attenuation might be mediated by the suppression of p38 activation. We speculate that knockdown of OLR1 inhibited p38 MAPK signaling, which further repressed ferroptosis, as evidenced by the suppression of expression of GPX4 and the downregulation of COX-2. The suppression of ferroptosis further resulted in the mitigation of inflammation, as evidenced by the downregulation of MPO.

This study has several limitations. First, the collagenase type V-induced rat model of ICH does not completely simulate the pathological characteristics of ICH patients. Second, we found that OLR1 knockdown protected against ICH via regulating ferroptosis by repressing the p38 signaling pathway. However, the mechanism by which blocking p38 improves ICH outcome has not been studied. Future investigations should address these issues.

In conclusion, our results show that OLR1 silencing ameliorated secondary brain injury in ICH through blocking of ferroptosis by inhibiting the p38 signaling pathway. These findings suggest that OLR1 might be a novel target of ICH therapy.

Author contributions: Study conception: HY2, ZHY2; study design: HY2, XL, LT, YYY, ZHY2; experimental implementation: HY2, XL; data analysis: HY2, LT, YYY; statistical analysis: HY2, XL, LT; manuscript preparation: HY2, manuscript revision: ZHY2. All authors approved the final manuscript before submission for publication.

Conflicts of Interest: The authors declare that there are no conflicts of interest associated with this manuscript.

Availability of data and materials: All data generated or analyzed during this study are included in this published article and its supplementary information files.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

©Article author(s) (unless otherwise stated in the text of the article) 2022. All commercial use is permitted unless otherwise expressly granted.

Open peer reviewers: Rosario Donato, Universita degli Studi di Perugia, Italy.

Additional files: Additional Figure 1: Representative immunofluorescence staining to identify GFAP+ and Iba1-positive cells. Additional Figure 2: The mechanism graph of OLR1/p38 axis and ferroptosis involves in the protective effects of ICH. Additional file 1: Open peer review report 1.

References

Abd-El-Basset EM, Rao MS (2018) Dibutyryl cyclic adenosine monophosphate rescues the neurons from degeneration in stab wound and excitotoxic injury models. Front Neurosci 12:546.

Akmedov A, Sawamura T, Chen CH, Krabler S, Vdovenko D, Lüüscher TF (2021) Blocking of ferroptosis by oxidized low-density lipoprotein receptor-1 (LOX-1): a crucial driver of atherosclerotic cardiovascular disease. Eur Heart J 42:1797-1807.

Akmedov A, Bonetti NR, Reiner MF, Spescha RD, Amstalden H, Merlini M, Gault GS, Diaz-Castello C, Briand-Schumacher S, Spescha RS, Semerano A, Giacalone G, Savarese G, Montecucco F, Kulic L, Nitsch RM, Matter CM, Kullak-Ublick GA, Sessa M, Lüscher TF, et al. (2016) Deleterious role of endothelial lectin-like oxidized low-density lipoprotein receptor-1 in ischaemia/reperfusion cerebral injury. J Cereb Blood Flow Metab 39:2233-2245.

Bai Q, Liu I, Wang G (2020) Ferroptosis, a regulator of neuronal cell death type after intracerebral hemorrhage. Front Cell Neurosci 14:591874.

Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, Kang R, Wang X, Tang D, Dai E (2019) Lipid storage and lipophagy regulates ferroptosis. Biochim Biophys Acta Rev Commun 508:997-1003.

Bao WD, Zhou XT, Zhou LT, Wang F, Yin X, Lu Y, Zhu LQ, Liu D (2020) Targeting mir-124/Ferroptordin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell 19:e11235.

Banerjee J, Karathanasis SK, Remaley A, Saposnik AC (2021) Role of LOX-1 (lectin-like oxidized low-density lipoprotein receptor 1) as a cardiovascular risk predictor: mechanistic insight and potential clinical use. Arterioscler Thromb Vasc Biol 41:153-166.

Chang WT, Bow YD, Fu PI, Li CY, Wu CY, Chang YH, Teng YN, Li RN, Lu MC, Liu YC, Chiu CC (2021) A marine terpenoid, heteronemin, induces both the apoptosis and ferroptosis of hepatocellular carcinoma cells and involves the ROS and MAPK pathways. Oxid Med Cell Longev 2021:7689045.

Chen B, Chen Z, Liu M, Gao X, Cheng Y, Wei Y, Wu Z, Cui D, Shang H (2019) Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res Bull 153:122-132.

Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682-2688.

Chen S, Yang Q, Chen G, Zhang JH (2015) An update on inflammation in the acute phase of intracerebral hemorrhage. Transl Stroke Res 6:4-8.

Datta A, Akatsu H, Heese S, Kie SK (2013) Quantitative clinical proteomic study of automated human infantile brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. J Proteomics 91:556-568.

Deng H, Zhang Y, Li GG, Yu HH, Bai S, Guo GY, Guo WL, Ma Y, Wang JH, Liu N, Pan C, Tang ZP (2021) P2X7 receptor activation aggravates NADPH oxido 2-induced oxidative stress after intrastereuminal injection. Neuro Regen Res 16:1582-1591.

Ding Z, Liu S, Wang X, Khaidakov M, Fan Y, Deng X, Xiang D, Mehta JL (2015) Lectin-like oxidized low-density lipoprotein receptor-1 regulates apoptosis and ill-like receptor 4 in the brain of hypertensive mice. J Hypertens 33:525-533; discussion 533.

Djulbegovic MB, Uversky VN (2019) Ferroptosis- an iron- and disorder-dependent programmed cell death. Int J Biol Macromol 135:1052-1069.

Duan L, Zhang Y, Yang Y, Su S, Zhou L, Lo PC, Cai J, Qiao Y, Li M, Huang S, Wang H, Mo Y, Wang Q (2021) Baicilin inhibits ferroptosis in intracerebral hemorrhage. Front Pharmacol 12:693797.

Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q (2016) Novel insights into ncuin: from neuronal marker to splicing regulator. Mol Neurobiol 53:1637-1647.

Fan BY, Pang YL, Li WX, Zhao CX, Zhang Y, Xiang D, Kong GZ, Kong XH, Liu C, Yao X, Feng SQ (2021) Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neuronal Regen Res 16:561-566.

Feng H, Stockwell BR (2018) Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol 16:e2002602.

Ge L, Zhang DM, Li MM, Zhang Y, Xu YY, Zhou Y, Peng X, Shen AG (2019) Microglial IDO1-MAPKs/NF-κB positive loop promotes the vicious cycle of neuroinflammation and neuronal injury. Int Immunopharmacol 70:187-200.
Additional Figure 1 Representative immunofluorescence staining to identify GFAP- or Iba1-positive cells. The GFAP-positive and Iba1-positive cells were labeled red by Cy3, respectively. White arrows indicate the GFAP-positive or Iba1-positive cells. The loss of OLR1 reverted the elevated levels of GFAP and Iba1 in brain tissues induced by ICH. The experiments were repeated by six times. Scale bar: 50 μm. GFAP: Glial fibrillary acidic protein; Iba1: ionized calcium-binding adaptor molecule 1; ICH: intracerebral hemorrhage; OLR1: oxidized low-density lipoprotein receptor 1; siRNA: small interfering RNA.
Additional Figure 2 The mechanism graph of OLR1/p38 axis and ferroptosis involves in the protective effects of ICH.

The OLR1 silence protected post-ICH brain tissues from the secondary brain injury by the inhibition of ferroptosis, which might be mediated by the downregulation of p38 signaling pathway. COX-2: Cyclooxygenase-2; FTH1: ferritin heavy polypeptide 1; GPX4: glutathione peroxidase 4; GSH: glutathione; IL: interleukin; MDA: malondialdehyde; MPO: myeloperoxidase; OLR1: oxidized low-density lipoprotein receptor 1; ROS: reactive oxygen species; SOD: superoxide dismutase; TNF-α: tumor necrosis factor-α; 4-HNE: 4-hydroxynonenal.