LIPSCHITZ PROPERTY OF HARMONIC MAPPINGS WITH RESPECT TO PSEUDO-HYPERBOLIC METRIC

J. HUANG1,2,3, A. RASIΛ2,3,* and J.-F. ZHU1

1School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
e-mails: jie.huang@gtiit.edu.cn, flandy@hqu.edu.cn

2Mathematics with Computer Science Program, Guangdong Technion, 241 Daxue Road,
Jinping District, Shantou, Guangdong 515063, People's Republic of China
e-mails: antti.rasila@iki.fi, antti.rasila@gtiit.edu.cn

3Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel

(Received September 17, 2021; revised December 5, 2021; accepted December 12, 2021)

Abstract. In this paper, we show that harmonic Bloch mappings are Lipschitz continuous with respect to the pseudo-hyperbolic metric. This result improves the corresponding result of [11, Theorem 1]. Furthermore, we prove the similar property for harmonic quasiregular Bloch-type mappings.

1. Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk, $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ the unit circle, and $\overline{\mathbb{D}}$ the closure of \mathbb{D}, i.e., $\overline{\mathbb{D}} = \mathbb{D} \cup \mathbb{T}$. For $z \in \mathbb{C}$, the partial derivatives of a complex-valued function f are defined by

\begin{equation}
 f_z = \frac{1}{2}(f_x - if_y) \quad \text{and} \quad f_{\overline{z}} = \frac{1}{2}(f_x + if_y).
\end{equation}

For $z = re^{i\theta} \in \mathbb{C}$ and $\alpha \in [0, 2\pi]$, the directional derivative of f is defined by

\begin{equation}
 \partial_{\alpha} f(z) = \lim_{r \to 0^+} \frac{f(z + re^{i\alpha}) - f(z)}{r} = e^{i\alpha} f_z(z) + e^{-i\alpha} f_{\overline{z}}(z).
\end{equation}

*Corresponding author.
The research was supported by NNSF of China (No. 11501220, 11971182, 11971124), NSF of Fujian Province (No. 2021J01304, 2019J0101), and NSF of Guangdong Province (No. 2020A1515010320).

\textit{Key words and phrases}: harmonic mapping, Bloch function, quasiregular mapping, Lipschitz property, pseudo-hyperbolic metric.

\textit{Mathematics Subject Classification}: primary 30C62, 30H30, secondary 30C20, 30F15, 30A05.
Then
\begin{equation}
\Lambda_f(z) := \max_{0 \leq \alpha \leq 2\pi} |\partial_\alpha f(z)| = |f_z(z)| + |f_{\bar{z}}(z)|
\end{equation}

and
\begin{equation}
\lambda_f(z) := \min_{0 \leq \alpha \leq 2\pi} |\partial_\alpha f(z)| = ||f_z(z)| - |f_{\bar{z}}(z)||.
\end{equation}

Complex dilatation. A complex-valued function f of the class C^2 is said to be harmonic mapping, if it satisfies $\Delta f := 4f_{z\bar{z}} = 0$. Moreover, it was shown in [13] that a function f is locally univalent and sense-preserving in \mathbb{D} if and only if its non-vanishing Jacobian $J_f(z) := |f_z(z)|^2 - |f_{\bar{z}}(z)|^2 > 0$, i.e., the dilatation of f

$$|\omega_f(z)| = \frac{|f_{\bar{z}}(z)|}{|f_z(z)|} < 1$$

in \mathbb{D}.

Assume that f is a harmonic mapping defined in a simply connected domain $\Omega \subseteq \mathbb{C}$. Then f has the canonical decomposition $f = h + g$, where h and g are analytic in Ω. For a sense-preserving harmonic mapping f in \mathbb{D}, let

$$\omega(z) = \frac{g'(z)}{h'(z)}$$

be the (second) complex dilatation of f. Then $\omega(z)$ is holomorphic mapping of \mathbb{D} and

$$\|\omega\|_\infty := \sup_{z \in \mathbb{D}} |\omega(z)| \leq 1.$$

In this paper, we consider locally univalent and sense-preserving harmonic mappings in \mathbb{D}. For basic properties of harmonic mappings, we refer to [9].

It is worth of noting that the composition $f \circ \varphi$ of a harmonic mapping f with a conformal mapping φ is a harmonic mapping. Therefore, it is sufficient to consider harmonic mappings defined in the unit disk \mathbb{D}. However, $\varphi \circ f$ is not harmonic in general.

Pseudo-hyperbolic distance. Fix $w \in \mathbb{D}$ and let φ_w be the Möbius transformation of \mathbb{D}, that is,

$$\varphi_w(z) = \frac{w - z}{1 - \bar{w}z}, \quad \text{where } z \in \mathbb{D}.$$

The pseudo-hyperbolic distance on \mathbb{D} is defined by

$$\rho(z, w) = |\varphi_w(z)|.$$
The pseudo-hyperbolic distance is invariant under Möbius transformations, that is,
\[\rho(g(z), g(w)) = \rho(z, w), \]
for all \(g \in \text{Aut}(\mathbb{D}) \), the Möbius automorphisms of \(\mathbb{D} \). It has the following useful property (which will be used in proving Theorem 1.4 below):
\[(1.5) \quad 1 - \rho(z, w)^2 = \frac{(1 - |z|^2)(1 - |w|^2)}{|1 - \overline{z}w|^2} = 1 - |w|^2|\varphi'_z(w)|. \]

Lipschitz continuity with respect to pseudo-hyperbolic metric. The classical Bloch space for analytic functions are defined as follows.

Definition 1.1. We call a function \(h \) a Bloch function (and write \(h \in B \)) if \(h \) is analytic in \(\mathbb{D} \) and
\[\|h\|_B = \sup_{z \in \mathbb{D}} (1 - |z|^2)|h'(z)| < \infty. \]

The above formula defines a seminorm, and the Bloch functions form a complex Banach space \(B \) with the norm
\[\|h\|_B = |h(0)| + \|h\|_B. \]

The Bloch space has been considered in many different contexts. For example, very recently, Bohr radius has been established for analytic Bloch spaces in a more general setting (see [14]).

A mapping \(f(z) \) is said to be Lipschitz (resp. co-Lipschitz) in \(\mathbb{D} \) if there exists a constant \(L \) such that the following inequality
\[\frac{|z_1 - z_2|}{L} \leq |f(z_1) - f(z_2)| \quad (\text{resp. } |f(z_1) - f(z_2)| \leq L|z_1 - z_2|) \]
holds for all \(z_1, z_2 \in \mathbb{D} \), where \(L \geq 1 \) is called the Lipschitz constant. The function \(f \) is said to be bi-Lipschitz if \(f \) is Lipschitz and co-Lipschitz.

It is easy to see that the condition \(h \in B \) does not ensure that \(h \) is a Lipschitz mapping. For example, take \(h(z) = \log(1 - z^2) \), for \(z \in \mathbb{D} \). Then \(h \in B \) since \(\|h\|_B = \sup_{z \in \mathbb{D}} (1 - |z|^2)|h'(z)| \leq 2 \). However, for \(z_1 = x \in (0, 1) \), choose arbitrarily small \(t > 0 \) such that \(z_2 = x + t \in (0, 1) \). Then
\[\left| \frac{h(z_1) - h(z_2)}{z_1 - z_2} \right| \geq \frac{1}{1 - x} \to \infty \quad \text{as} \quad x \to 1. \]

This shows that \(h \) is not a Lipschitz mapping.

Let
\[C_{\varphi_w} h(z) = h \circ \varphi_w(z), \]

Analysis Mathematica 48, 2022
where $z, w \in \mathbb{D}$. Then $|C'_{\varphi_w} h(0)| = (1 - |w|^2)|h'(w)|$. In [11], Ghatage, Yan and Zheng showed that $C'_{\varphi_w} h$ is a Lipschitz function with respect to pseudo-hyperbolic metric. They also used this result to study the composition operators C_{φ_w} on the Bloch space. In fact, they proved the following theorem.

Theorem A [11, Theorem 1]. Let h be in the Bloch space. Then the inequality

$$|(1 - |z|^2)|h'(z)| - (1 - |w|^2)|h'(w)|| \leq 3.31 \rho(z, w)\|h\|_B,$$

holds for all $z, w \in \mathbb{D}$.

Here the constant 3.31 is not sharp, The sharp constant $3\sqrt{3}/2$ was given later by C. Xiong [17].

Harmonic Bloch space and Bloch-type space. Analogue to the classical analytic Bloch space, one can define the harmonic Bloch space as follows.

Definition 1.2. A harmonic mapping f in \mathbb{D} is called a harmonic Bloch mapping (in sign: $f \in B_h$) if

$$\|f\|_{B_h} = \sup_{z \in \mathbb{D}} (1 - |z|^2) \Lambda_f(z) < \infty.$$

This defines a seminorm, and the space equipped with the norm

$$\|f\|_{B_h} = |f(0)| + \|f\|_{B_h}$$

is called the harmonic Bloch space. It is a Banach space. Clearly, $f = h + \overline{g} \in B_h$ if and only if $h \in B$ and $g \in B$, since

$$\max\{\|h\|_B, \|g\|_B\} \leq \|f\|_{B_h} \leq \|h\|_B + \|g\|_B.$$

The harmonic Bloch space was studied by Colonna [7] as a generalization of the classical Bloch space. We refer to [1,2,6,15,16] and the references therein for more information on B_h. More recently, authors in [8,12] investigated extreme points and support points of harmonic and harmonic α-Bloch mappings.

Motivated by a number of well-known results on analytic Bloch functions, in [10,14] the authors introduced the harmonic Bloch-type mappings, defined as follows.

Definition 1.3. A harmonic mapping f in \mathbb{D} is called a harmonic Bloch-type mapping if

$$\|f\|_{B_h^*} = \sup_{z \in \mathbb{D}} (1 - |z|^2) \sqrt{\left|J_f(z)\right|} < \infty.$$
We denote this class of functions by B^*_h and call the quantity

$$\|f\|_{B^*_h} = |f(0)| + \|f\|_{B_h}$$

the Bloch-type pseudo-norm of f.

It is easy to see that $B_h \subseteq B^*_h$, because $\sqrt{|J_f(z)|} \leq \Lambda_f(z)$, for each $z \in \mathbb{D}$.

Motivations. Estimates of the directional derivatives and coefficients, establishing Schwarz lemmas, for harmonic Bloch mappings, or harmonic Bloch-type mappings, and their generalizations have been studied by several authors in, see for example, [3–7,14]. In this paper, our primary goal is to improve the above Theorem A in the case of harmonic Bloch-type mappings. We first improve Theorem A for harmonic Bloch mappings and Bloch-type mappings as follows:

Theorem 1.4. Let f be in B_h space. Then the inequality

$$\left|(1-|z|^2)\Lambda_f(z) - (1-|w|^2)\Lambda_f(w)\right| \leq 3\sqrt{3}\rho(z,w)\|f\|_{B_h},$$

holds for all $z, w \in \mathbb{D}$.

Suppose $f(z)$ is a sense-preserving harmonic mapping of \mathbb{D} into a domain $\Omega \subseteq \mathbb{C}$. Then $f(z)$ is a harmonic K-quasiregular mapping, if

$$K(f) := \sup_{z \in \mathbb{D}} \frac{|f_z(z)| + |f_\bar{z}(z)|}{|f_z(z)| - |f_\bar{z}(z)|} \leq K,$$

where $K \geq 1$ is a constant.

We show in Lemma 2.2 below that if f is a harmonic K-quasiregular mapping in \mathbb{D}, then $f \in B^*_h$ if and only if $f \in B_h$. Moreover, by using quasiregularity, we generalize Theorem A as follows.

Theorem 1.5. Let f be a harmonic K-quasiregular mapping in \mathbb{D} and in B^*_h. Then the inequality

$$(1.6) \left|(1-|z|^2)\sqrt{J_f(z)} - (1-|w|^2)\sqrt{J_f(w)}\right| \leq 2.8587(K+1)\rho(z,w)\|f\|_{B^*_h},$$

holds for all $z, w \in \mathbb{D}$.

We conclude this section by stating an open problem.

Question 1.6. What are the optimal constants in Theorem 1.4 and Theorem 1.5?
In this section, we prove three lemmas that will be used in proving Theorem 1.5.

Lemma 2.1. Let f be in B_h or in B_h^*. The respective pseudo-norms of f are Möbius invariant.

Proof. For $z, w \in \mathbb{D}$, let
$$ \lambda = \varphi_w(z) = \frac{w - z}{1 - wz}. $$
Then
$$ z = \varphi_w(\lambda) = \frac{w - \lambda}{1 - \overline{w}\lambda}. $$
Elementary calculation leads to
$$ (1 - |z|^2)|\varphi'_w(z)| = 1 - |\lambda|^2. $$
Thus
$$ \|f \circ \varphi_w\|_{B_h} = \sup_{z \in \mathbb{D}} (1 - |z|^2)(|f_\lambda(\lambda)||\varphi'_w(z)| + |f_{\overline{\lambda}}(\lambda)||\varphi'_w(z)|) $$
$$ = \sup_{z \in \mathbb{D}} (1 - |\lambda|^2)\Lambda_f(\lambda) = \|f\|_{B_h}. $$
Similarly, we have $\|f \circ \varphi_w\|_{B_h^*} = \|f\|_{B_h}$. This completes the proof of Lemma 2.1. \qed

The following lemma shows that if f is a harmonic K-quasiregular mapping of \mathbb{D}, then $f \in B_h^*$ if and only if $f \in B_h$.

Lemma 2.2. Let f be a harmonic K-quasiregular mapping in \mathbb{D}. Then $f \in B_h$ if and only if $f \in B_h^*$. Moreover, we have
$$ \|f\|_{B_h^*} \leq \|f\|_{B_h} \leq \sqrt{K} \|f\|_{B_h^*}. $$

Proof. Suppose $f \in B_h$. Since $\sqrt{J_f(z)} \leq \Lambda_f(z)$, it is easy to see that
$$ \sup_{z \in \mathbb{D}} (1 - |z|^2)\sqrt{J_f(z)} \leq \sup_{z \in \mathbb{D}} (1 - |z|^2)\Lambda_f(z) = \|f\|_{B_h}. $$
This implies that $f \in B_h^*$ and $\|f\|_{B_h^*} \leq \|f\|_{B_h}$.

On the other hand, suppose $f \in B_h^*$. The assumption that f is a harmonic K-quasiregular mapping of \mathbb{D} ensures that f has the canonical decomposition $f = h + \bar{g}$, where h and g are analytic in \mathbb{D}, and
$$ \frac{|h'| + |g'|}{|h'| - |g'|} = \frac{\Lambda_f^2}{J_f} \leq K. $$
This implies that $\Lambda_f \leq \sqrt{K} \sqrt{J_f}$, and thus, $f \in B_h$. Moreover, we have

$$\|f\|_{B_h} \leq \sqrt{K} \|f\|_{B_h^*}.$$

The proof of Lemma 2.2 is complete. □

Lemma 2.3. Let h belong to the Bloch space B. For $z, w \in \mathbb{D}$, let $\zeta = \varphi_w(z)$ and $g = C_{\varphi_w} h = h \circ \varphi_w$. If $|\zeta| \leq \frac{1}{3}$, then

$$(1 - |\zeta|^2) \left| g'(\zeta) - g'(0) \right| \leq c_1 |\zeta| \|h\|_B,$$

where $c_1 \approx 2.6920$ is the least value of

$$\psi(r) = \frac{1 + r^2/9}{r(1 - r^2)}, \quad 0 < r < 1.$$

Proof. For $z, w \in \mathbb{D}$, recall that

$$\zeta = \varphi_w(z) = \frac{w - z}{1 - \overline{w}z}.$$

Then

$$-(1 - |w|^2) h'(w) = (h \circ \varphi_w)'(0).$$

Let $g = h \circ \varphi_w$. We may rewrite the above equation as follows

$$g'(0) = -(1 - |w|^2) h'(w).$$

Note that for any $w \in \mathbb{D}$, by using Cauchy formula for analytic functions, we obtain

$$(1 - |w|^2)|g''(w)| = |(g' \circ \varphi_w)'(0)| = \frac{1}{2\pi r} \left| \int_0^{2\pi} g' \circ \varphi_w(re^{i\theta})e^{-i\theta} d\theta \right|,$$

where $0 < r < 1$. By estimating the integral and noting that $\|g\|_B = \|h\|_B$, one has

$$\left| \int_0^{2\pi} g' \circ \varphi_w(re^{i\theta})e^{-i\theta} d\theta \right| \leq \|g\|_B \int_0^{2\pi} \frac{1}{1 - |\varphi_w(re^{i\theta})|^2} d\theta = \|h\|_B \int_0^{2\pi} \frac{|1 - \overline{w}re^{i\theta}|^2}{(1 - |w|^2)(1 - r^2)} d\theta.$$

It follows from the equality

$$\int_0^{2\pi} \text{Re}(\overline{w}re^{i\theta}) d\theta = 0$$

Analysis Mathematica 48, 2022
and the above discussion that the inequality

\[(1 - |w|^2)|g''(w)| \leq \|h\|_B \frac{1 + r^2|w|^2}{r(1 - r^2)}\]

holds for any \(0 < r < 1\).

Now, consider the function

\[\psi(r) = \frac{1 + r^2/9}{r(1 - r^2)}, \quad 0 < r < 1.\]

Let \(c_1 \approx 2.6920\) denote the least value of \(\psi(r)\). Thus if \(|w| \leq \frac{1}{3}\), then

\[(1 - |w|^2)|g''(w)| \leq c_1\|h\|_B.\]

By using the inequality

\[|g'(\zeta) - g'(0)| \leq \int_0^1 |g''(t\zeta)||\zeta| dt\]

and the assumption that \(|\zeta| \leq \frac{1}{3}\), we have

\[|g'(\zeta) - g'(0)| \leq c_1\|h\|_B \int_0^1 \frac{|\zeta|}{1 - t^2|\zeta|^2} dt\]

\[= c_1\|h\|_B \int_0^{|\zeta|} \frac{ds}{1 - s^2} = c_1\|h\|_B \cdot \frac{1}{2} \ln \frac{1 + |\zeta|}{1 - |\zeta|}.\]

This implies that

\[(1 - |\zeta|^2)|g'(\zeta) - g'(0)| \leq c_1|\zeta|\|h\|_B,\]

because

\[(1 - |\zeta|^2) \ln \frac{1 + |\zeta|}{1 - |\zeta|} \leq 2|\zeta|.\]

The proof of Lemma 2.3 is complete. \(\square\)

3. Proof of main results

Proof of Theorem 1.4. Assume that \(f = h + \bar{g} \in B_h\). First note that \(h \in B\) and \(g \in B\), because

\[\|h\|_B = \sup_{z \in \mathbb{D}} (1 - |z|^2)|h'(z)| \leq \sup_{z \in \mathbb{D}} (1 - |z|^2)\Lambda_f(z) = \|f\|_{B_n},\]

Analysis Mathematica 48, 2022
and similarly,
\[\|g\|_B = \sup_{z \in \mathbb{D}} (1 - |z|^2)|g'(z)| \leq \sup_{z \in \mathbb{D}} (1 - |z|^2)\Lambda_f(z) = \|f\|_{B_h}, \]
where \(\Lambda_f(z) = |h'(z)| + |g'(z)|. \)

By elementary calculations and using Theorem A, we have
\[
\left| (1 - |z|^2)\Lambda_f(z) - (1 - |w|^2)\Lambda_f(w) \right| \\
\leq \left| (1 - |z|^2)|h'(z)| - (1 - |w|^2)|h'(w)| \right| + \left| (1 - |z|^2)|g'(z)| - (1 - |w|^2)|g'(w)| \right| \\
\leq \frac{3\sqrt{3}}{2} \rho(z, w)\|h\|_B + \frac{3\sqrt{3}}{2} \rho(z, w)\|g\|_B \leq 3\sqrt{3} \rho(z, w)\|f\|_{B_h}.
\]
This completes the proof of Theorem 1.4. \(\square \)

Proof of Theorem 1.5. Let \(\zeta = \varphi_w(z) \) and \(\psi = f \circ \varphi_w \), where \(z, w \in \mathbb{D} \) and \(f = h + \tilde{g} \) is a harmonic \(K \)-quasiregular mapping in \(\mathbb{D} \), where \(h \) and \(g \) are analytic in \(\mathbb{D} \). Then \(J_f(z) = |h'(z)|^2 - |g'(z)|^2 > 0 \), and
\[\sqrt{J_\psi(0)} = (1 - |w|^2)\sqrt{J_f(w)}. \]
Moreover, it follows from (1.5) that
\[(1 - |z|^2)\sqrt{J_f(z)} = (1 - |\zeta|^2)\sqrt{J_\psi(\zeta)}. \]
Hence,
\[
(1 - |z|^2)\sqrt{J_f(z)} - (1 - |w|^2)\sqrt{J_f(w)} = |(1 - |\zeta|^2)\sqrt{J_\psi(\zeta)} - \sqrt{J_\psi(0)}|.
\]
Following the proof of Theorem 1.4, we now divide our proof into two cases.

Case 1: \(|\zeta| \leq \frac{1}{3} \). First, it follows from (3.1) that
\[
\left| (1 - |z|^2)\sqrt{J_f(z)} - (1 - |w|^2)\sqrt{J_f(w)} \right| \\
\leq |\zeta|^2 \sqrt{J_\psi(0)} + (1 - |\zeta|^2) \sqrt{J_\psi(\zeta)} - \sqrt{J_\psi(0)}. \]

By using Definition 1.3 and Lemma 2.1, we have
\[\sqrt{J_\psi(0)} \leq \|\psi\|_{B_h^*} = \|f \circ \varphi\|_{B_h^*} = \|f\|_{B_h^*}. \]
Next, we estimate \(|\sqrt{J_\psi(\zeta)} - \sqrt{J_\psi(0)}| \) as follows.
By letting $H = h \circ \varphi_w$ and $G = g \circ \varphi_w$, we have
\[
\left| \sqrt{J_\psi(\zeta)} - \sqrt{J_\psi(0)} \right| = \frac{|J_\psi(\zeta) - J_\psi(0)|}{\sqrt{J_\psi(\zeta)} + \sqrt{J_\psi(0)}}
\]
\[
\leq \frac{|H'(\zeta)| + |H'(0)| \cdot |H'(\zeta) - H'(0)|}{|H'(\zeta)|\sqrt{1 - |\omega_\psi(\zeta)|^2} + |H'(0)|\sqrt{1 - |\omega_\psi(0)|^2}} + \frac{|G'(\zeta)| + |G'(0)| \cdot |G'(\zeta) - G'(0)|}{|H'(\zeta)|\sqrt{1 - |\omega_\psi(\zeta)|^2} + |H'(0)|\sqrt{1 - |\omega_\psi(0)|^2}}.
\]
where $\omega_\psi = G'/H'$. Because $f = h + \tilde{g}$ is a harmonic K-quasiregular mapping of \mathbb{D}, we have
\[
\|\omega_f\|_\infty = \sup_{z \in \mathbb{D}} \frac{|g'(z)|}{|h'(z)|} \leq k,
\]
where $k = \frac{K-1}{K+1} < 1$. A direct calculation leads to
\[
\|\omega_\psi\|_\infty = \sup_{z \in \mathbb{D}} \frac{|G'(z)|}{|H'(z)|} \leq k.
\]
Then
\[
\frac{|H'(\zeta)| + |H'(0)| \cdot |H'(\zeta) - H'(0)|}{|H'(\zeta)|\sqrt{1 - |\omega_\psi(\zeta)|^2} + |H'(0)|\sqrt{1 - |\omega_\psi(0)|^2}} \leq \frac{|H'(\zeta) - H'(0)|}{\sqrt{1 - k^2}},
\]
and
\[
\frac{|G'(\zeta)| + |G'(0)| \cdot |G'(\zeta) - G'(0)|}{|H'(\zeta)|\sqrt{1 - |\omega_\psi(\zeta)|^2} + |H'(0)|\sqrt{1 - |\omega_\psi(0)|^2}} \leq \frac{|G'(\zeta) - G'(0)|}{\sqrt{1 - k^2}}.
\]
These show that
\[
(3.2) \quad \left| \sqrt{J_\psi(\zeta)} - \sqrt{J_\psi(0)} \right| \leq \frac{|H'(\zeta) - H'(0)| + |G'(\zeta) - G'(0)|}{\sqrt{1 - k^2}}.
\]
Moreover, because $f \in B_h^*$, we see from Lemma 2.2 that
\[
\|f\|_{B_h} \leq \sqrt{K}\|f\|_{B_h^*}.
\]
Therefore, it follows from Lemma 2.3 that
\[
(1 - |\zeta|^2)|H'(\zeta) - H'(0)| \leq c_1|\zeta||H|_B \leq c_1|\zeta||f|_{B_h} \leq c_1|\zeta|\sqrt{K}\|f\|_{B_h^*},
\]
and similarly,
\[
(1 - |\zeta|^2)|G'(\zeta) - G'(0)| \leq c_1|\zeta|\sqrt{K}\|f\|_{B_h^*}.
\]
Combining the above inequalities and (3.2) yields

\[(1 - |\zeta|^2) \sqrt{J_\psi(\zeta) - J_\psi(0)} \leq \frac{2c_1 \sqrt{K} \|f\|_{B_h^*}}{\sqrt{1 - k^2}} = c_1(K + 1)|\zeta|\|f\|_{B_h^*}.
\]

Hence, for $|\zeta| \leq \frac{1}{3}$, one has

\[|\zeta|^2 \sqrt{J_\psi(0) + (1 - |\zeta|^2)} \sqrt{J_\psi(\zeta) - J_\psi(0)} \leq c_1(K + 1)|\zeta|\|f\|_{B_h^*} + |\zeta|^2\|f\|_{B_h^*} \leq c_3(K + 1)|\zeta|\|f\|_{B_h^*},
\]

where $c_3 \approx 2.8587$.

Case 2: $\frac{1}{3} < |\zeta| < 1$. Since $3|\zeta| > 1$, we have

\[|(1 - |\zeta|^2) \sqrt{J_\psi(\zeta) - J_\psi(0)} \leq \max \left\{((1 - |\zeta|^2) \sqrt{J_\psi(\zeta)}, \sqrt{J_\psi(0)}\right\}
\]

\[\leq \|\psi\|_{B_h^*} < 3|\zeta|\|f\|_{B_h^*}.
\]

Desired inequality (1.6) follows from (3.3) and (3.5). This completes the proof of Theorem 1.5. □

Acknowledgement. We would like to thank the anonymous referee for helpful comments that had a significant impact on this paper.

References

[1] J. Anderson, J. Clunie, and C. Pommerenke, On Bloch functions and normal functions, *J. Reine Angew. Math.*, 270 (1974), 12–37.

[2] M. Bonk, D. Minda, and H. Yanagihara, Distortion theorems for Bloch functions, *Pacific. J. Math.*, 179 (1997), 241–262.

[3] Sh. Chen, G. Liu, and A. Rasila, Characterizations of Lipschitz-type, Bloch-type and Dirichlet-type spaces, *Monatsh. Math.*, 191 (2020), 513–536.

[4] Sh. Chen, S. Ponnusamy, and A. Rasila, On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces, *Math. Z.*, 279 (2015), 163–183.

[5] Sh. Chen, S. Ponnusamy, and A. Rasila, Lengths, areas and Lipschitz-type spaces of planar harmonic mappings, *Nonlinear Anal.*, 115 (2015), 62–70.

[6] Sh. Chen, S. Ponnusamy, and X. Wang, Landau’s theorem and Marden constant for harmonic v-Bloch mappings, *Bull. Aust. Math. Soc.*, 84 (2011), 19–32.

[7] F. Colonna, The Bloch constant of bounded harmonic mappings, *Indiana Univ. Math. J.*, 38 (1989), 829–840.

[8] H. Deng, S. Ponnusamy, and J. Qiao, Extreme points and support points of families of harmonic Bloch mappings, *Potential Anal.*, (2020), DOI: 10.1007/s11118-020-09871-3.

[9] P. Duren, *Harmonic Mappings in the Plane*, Cambridge University Press (New York, 2004).

Analysis Mathematica 48, 2022
[10] I. Efraimidis, J. Gaona, R. Hernández, and O. Venegas, On harmonic Bloch-type mappings, *Complex Var. Elliptic Equ.*, **62** (2017), 1081–1092.

[11] P. Ghatage, J. Yan, and D. Zheng, Composition operators with closed range on the Bloch space, *Proc. Amer. Math. Soc.*, **129** (2000), 2039–2044.

[12] M. Huang, S. Ponnusamy, and J. Qiao, Extreme points and support points of harmonic \(\alpha \)-Bloch mappings, *Rocky Mountain J. Math.*, **50** (2020), 1324–1354.

[13] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, *Bull. Amer. Math. Soc.*, **42** (1936), 689–692.

[14] G. Liu and S. Ponnusamy, On harmonic \(\nu \)-Bloch and \(\nu \)-Bloch-type mappings, *Results Math.*, **73** (2018), Paper No. 90, 21 pp.

[15] C. Pommerenke, On Bloch functions, *J. London Math. Soc.*, **2** (1970), 689–695.

[16] C. Pommerenke, *Boundary Behaviour of Conformal Maps*, Springer (Berlin, 1992).

[17] C. Xiong, On the Lipschitz continuity of the dilatation of Bloch functions, *Period. Math. Hungar.*, **47** (2003), 233–238.