Model study on $\Upsilon (nS)$ modification in small collision systems

Junlee Kim,3 Jinjoo Seo,1 Byungsik Hong,6 Juhee Hong,2 Eun-Joo Kim,3 Yongsun Kim,5 MinJung Kweon,1 Su Hoong Lee,2 Sanghoon Lim,4 and Jaebeom Park6

1Department of Physics, Inha University, Incheon 22212, South Korea
2Department of Physics and Institute of Physics and Applied Physics, Yonsei University, Seoul 03722, Korea
3Division of Science Education, Jeonbuk National University, Jeonju 54896, South Korea
4Department of Physics, Pusan National University, Busan, 46241, South Korea
5Department of Physics, Sejong University, Seoul, 05006, South Korea
6Department of Physics, Korea University, Seoul 02841, South Korea

(Dated: September 27, 2022)

Quarkonium production has been studied extensively in relativistic heavy-ion collision experiments to understand the properties of the quark gluon plasma. The experimental results on the yield modification in heavy-ion collisions relative to that in $p+p$ collisions can be described by several models considering dissociation and regeneration effects. A yield modification beyond initial-state effects has also been observed in small collision systems such as $p+Au$ and $p+Pb$ collisions, but it is still premature to claim any hot medium effect. A model study in various small collision systems such as $p+p$, $p+Pb$, $p+O$, and $O+O$ collisions will help quantitatively understanding nuclear effects on the $\Upsilon (nS)$ production. A theoretical calculation considering the gluo-dissociation and inelastic parton scattering and their inverse reaction reasonably describe the suppression of $\Upsilon (1S)$ in $Pb+Pb$ collisions. Based on this calculation, a Monte-Carlo simulation is developed to more realistically incorporate the medium produced in heavy-ion collisions with event-by-event initial geometry and hydrodynamic evolution. We extend this framework to small systems to study the medium effects. In this work, we quantify the nuclear modification factor of $\Upsilon (nS)$ as a function of charged particle multiplicity ($dN_{ch}/d\eta$) and transverse momentum. We also calculate the elliptic flow of $\Upsilon (nS)$ in small collision systems.

I. INTRODUCTION

Quarkonia have long been considered as golden probes to study the strongly interacting matter consisting of deconfined quarks and gluons, the quark-gluon plasma (QGP), produced in high-energy heavy-ion collisions [1–5]. Quarkonium states are produced at the early stages of the collision via hard parton scatterings, thus experiencing the full space-time evolution of the medium. Also, their spectral functions are modified due to color screening [4, 5] and interactions with medium constituents such as gluo-dissociation or Landau damping [6–8]. Consequently, the quarkonium yields are expected to be suppressed in heavy ion collisions with respect to expectations from proton-proton ($p+p$) data, following the order of their binding energies. On the other hand, the yields of quarkonia can be enhanced in the presence of the QGP by recombination processes of uncorrelated as well as correlated quarks [9–12].

The modification of the quarkonium yields have been studied by various experiments at RHIC and LHC using the nuclear modification factor quantified as the yield ratio in nucleus-nucleus collisions ($A+A$) to that in $p+p$ collisions scaled by the average number of binary NN collisions [13–20]. One of the most remarkable signatures is the ordered suppression of $\Upsilon (1S)$, $\Upsilon (2S)$, and $\Upsilon (3S)$ mesons by their binding energies reported in LHC [16, 18–20].

To better understand the in-medium effects of quarkonia in $A+A$ collisions in a sophisticated way, it is important to study the “cold nuclear matter” (CNM) effects which are typically probed using proton-nucleus ($p+A$) collisions. Modification of parton distribution functions in the nucleus [21], energy loss [22] or nucleus absorption [23, 24], and interactions with comoving particles [25–27] are examples of CNM effects. On the other hand, various experiments have reported capital results, suggesting a QGP-like behavior of the created medium also in smaller collision systems, such as the observation of long-range collective azimuthal correlations in high multiplicity regions [28–38]. Therefore, sophisticated phenomenological studies in such interactions become the subject that is sensitive to understanding the quarkonium production in small collision systems.

In this paper, we report a detailed study of the in-medium effects for $\Upsilon (1S)$, $\Upsilon (2S)$, and $\Upsilon (3S)$ mesons in proton-lead ($p+Pb$), proton-oxygen ($p+O$), and oxygen-oxygen ($O+O$) collisions. Theoretical calculations for dissociation of $\Upsilon (nS)$ [39] are incorporated with the SONIC framework [40] to describe the time evolution of the medium. The dissociation component is constraint in potential non-relativistic QCD (pNRQCD) limits, and coupled into the Boltzmann equation. The thermal width is calculated based on hard thermal loop (HTL) perturbation theory using the Bethe-Salpeter amplitude. We report the nuclear modification factors and the second-order Fourier coefficient (v_2) of the azimuthal distribution of $\Upsilon (nS)$ mesons in $p+Pb$, $p+O$, and $O+O$ collisions, and the contribution of feed-down from higher excited states are considered to compare with the experimental data properly. For the demonstration of the framework, we also present the results in $Pb+Pb$ collisi-
sions and compare them with the experimental results.

II. SIMULATION FRAMEWORK

The simulation framework is composed of two parts, hydrodynamics simulation for background medium and medium response of quarkonia. For the first part, we follow the procedure described in Ref. [41]. Initial energy density in the transverse plane of in the collision of nucleus-nucleus or proton-nucleus is obtained with the MC-Glauber framework [42]. In the MC-Glauber, a nucleon-nucleon inelastic cross section of 72 mb [43] is employed for small system collisions at $\sqrt{s_{NN}} = 8$ TeV. The same scale factor is used for p+O and O+O collisions at $\sqrt{s_{NN}} = 8$ TeV by assuming the scale factor does not change much in the collision systems with a similar number of participants.

![Figure 1](image1.png)

FIG. 1. Charged particle multiplicity distribution in p+O, O+O, and p+Pb collisions at $\sqrt{s_{NN}} = 8$ TeV from SONIC.

Figure 1 shows the charged particle multiplicity distributions of unbiased (0–100%) p+O, O+O, and p+Pb collisions at $\sqrt{s_{NN}} = 8$ TeV from SONIC. The mean charged particle multiplicity for p+O and O+O with the scale factor obtained from p+Pb collisions is 10.0 and 31.2, respectively. We also check the elliptic flow of charged particle in 0–5% high multiplicity events as shown in Fig. 2, and the p+Pb result is slightly lower than p+O and O+O results at higher p_T. Note that we use a shear viscosity to entropy density ratio of 0.08 and a bulk viscosity ratio of zero in the SONIC calculations. There are other frameworks for initial conditions [46, 47], but we use only the MC-Glauber initial condition as a simple case in this study.

![Figure 2](image2.png)

FIG. 2. Elliptic flow as a function of p_T for charged particles in 0–5% central p+O, O+O, and p+Pb collisions at $\sqrt{s_{NN}} = 8$ TeV from SONIC.

During the SONIC simulation, temperature distributions at multiple time steps are stored for medium response of Upsilons. At the beginning of the second part, we generate $\Upsilon(nS)$ mesons, and the x and y positions are determined based on the initial energy density distribution. We used a Tsallis fit to the p_T distribution of $\Upsilon(1S)$ in $\sqrt{s} = 5.02$ TeV [16] to sample p_T of Upsilons, and p_x and p_y are determined based on a randomly assigned azimuthal angle. The initial p_T distribution is assumed to be the same for 5.02 TeV and 8 TeV. Also, any difference in the p_T shape, if any, is expected to be negligible because the results are obtained in fine p_T bins. The medium response is simulated based on the procedure described in Ref. [39]. The fraction of survived Upsilons for a certain time step (Δt) is calculated as:

$$\frac{N(t + \Delta t, p_T)}{N(t, p_T)} = e^{-\Gamma_{diss}^T(t')},$$

where Γ_{diss} is the thermal width depending on the medium temperature and Upsilon p_T, and Δt is set to 0.02 fm/c in the hydrodynamic simulation. The medium temperature is from the SONIC simulation according to x, y, and t values. The temperature in which the quarkonium’s in-medium binding energy reaches zero, i.e. dissociation temperature, is set as 600 MeV, 240 MeV, and 190 MeV for $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$, respectively [48, 49]. The thermal width from numerical calculations considering gluo-dissociation and inelastic parton scattering is obtained from Ref. [39]. Figure 3 shows thermal width as function of temperature for $\Upsilon(1S)$ (left), $\Upsilon(2S)$ (middle), and $\Upsilon(3S)$ (right), and each line represents a distribution for different p_T. It generally increases with p_T, and the thermal width for excited states is larger. Note that thermal width for $\Upsilon(3S)$ is obtained at the limited p_T range,
so we estimated values for \(p_T > 2 \) GeV/c using the \(p_T \) dependence of \(\Upsilon(2S) \) as:

\[
\Gamma_{\text{diss}}^{\Upsilon(3S)} (p_T) = \frac{\Gamma_{\text{diss}}^{\Upsilon(3S)} (2 \text{ GeV}/c)}{\Gamma_{\text{diss}}^{\Upsilon(2S)} (2 \text{ GeV}/c)} \cdot \Gamma_{\text{diss}}^{\Upsilon(2S)} (p_T). \tag{2}
\]

A different formation time (\(t_{\text{form}} \)) of each states is used as 0.5, 1.0, and 1.5 for \(\Upsilon(1S), \Upsilon(2S), \) and \(\Upsilon(3S) \), respectively, based on values in Ref. [50]. We do not consider dissociation at the pre-resonance stage, so the medium response on the \(\Upsilon \) states is turned off for dissociation at the pre-resonance stage, so the medium response is sensitive to the choice of the formation time and pre-resonance response. The setting that can well reproduce heavy-ion results is used for small systems consistently. After incorporating the regeneration effect in heavy-ion collisions, a detailed systematic study will be performed later.

In each time step after the formation time, a survival rate is calculated for each \(\Upsilon \) based on Eq. 1, and the \(\Upsilon \) is removed when a random number from the uniform distribution within 0–1 is greater than the survival rate. If the \(\Upsilon \) is survived, the position for the next time step is calculated based on the momentum and time step (\(\Delta t \)). We repeat the survival rate calculation with a different temperature at the new position until the temperature is lower than a critical temperature of 170 MeV. For the simulation results presented in later sections, we use 1000 events for MC-Glauber and SONIC. The number of generated \(\Upsilon(nS) \) for a certain event scales with the number of inelastic collisions from the MC-Glauber. In this study, we do not consider a contribution from the regeneration effect which is not expected to be significant in small collision systems. In addition, there could be other nuclear effects such as modification of parton density, initial-state energy loss, and other final-state effects, but we focus on evaluating the dissociation effect.

A. Nuclear modification factor

The nuclear modification factors (\(R_{pA} \) and \(R_{AA} \)) are defined as the ratios of the production cross sections of \(\Upsilon \) mesons in \(p+A \) and \(A+A \) collisions to the expected cross sections extrapolated from \(p+p \) collisions. To make an equivalent comparison, we took the ratio of generated to survived number of \(\Upsilon \)s in the full medium response simulation as the nuclear modification factor.

B. Elliptic flow

The elliptic flow (\(v_2 \)) is calculated from the azimuthal angle distribution of survived \(\Upsilon(nS) \) with respect to the event plane angle

\[
\frac{dN}{d(\phi - \Psi)} \propto 1 + 2v_2(p_T) \cos(2(\phi - \Psi)),
\]

where \(\phi \) is the azimuthal angle of the \(\Upsilon(nS) \), and \(\Psi \) is the event plane angle. The event plane angle for each event is calculated with the initial energy density profile from the MC-Glauber.
C. Feed-Down correction

To simulate the medium response of inclusive bottomonium production, the contributions from feed-down decays, i.e. decays from higher excited states, need to be carefully considered. Here we consider only strong or electromagnetic decay modes of excited states in the feed-down decays, as the decays from \(H, Z, \) and \(W \) bosons to \(\Upsilon \) states have negligible effects to the inclusive yields.

In general, the feed-down component from a \(Q_m \) state to a \(Q_n \) state (\(Q_m \) being a higher excited state) can be calculated as

\[
\mathcal{F}_{Q_n}^Q = B(Q_m \rightarrow Q_n) \frac{\sigma_{Q_m}}{\sigma_{Q_n}} \tag{3}
\]

where \(B \) denotes the branching ratio of \(Q_m \) into \(Q_n \) and \(\sigma_Q \) referring the cross section of the corresponding state. We used published experimental data in \(p+p \) collisions at LHC by CMS [51] and LHCb [52, 53] to estimate the feed-down fraction. Figure 4 shows the feed-down fraction from higher excited states for each \(\Upsilon(1S), \Upsilon(2S), \) and \(\Upsilon(3S) \) states. The feed-down fractions from CMS are calculated using the presented cross section ratios multiplied by the PDG world-average branching ratios [54] as in Eq. 3. The data points of each feed-down component are fitted with an empirical function and their sum drawn as the black solid line which is the total amount of feed-down fraction for the given \(\Upsilon \) state. For \(\Upsilon(2S) \) and \(\Upsilon(3S) \), the fit function is parameterized to be the same as for the P-wave state feed-down function of \(\Upsilon(1S) \) because of the absence of experimental measurements at low-\(p_T \). Afterwards, the function is normalized to match the data points at high-\(p_T \) for each \(\Upsilon(2S) \) and \(\Upsilon(3S) \) meson, respectively.

The feed-down contribution for the nuclear modification factor and elliptic flow of inclusive \(\Upsilon(nS) \) is considered by calculating an weighted average of the quantities for possible states as

\[
R_n(p_T) = \sum_i R_i(p_T) \mathcal{F}_{Q_n}^Q(p_T),
\]

where \(R_n \) is the weighted averaged value for a certain \(\Upsilon(nS) \) state, \(R_i \) is the value for a certain state contributing the the \(\Upsilon(nS) \) state, and \(\mathcal{F}_{Q_n}^Q \) is the feed-down fraction. The effect of possible \(p_T \) shifts by the decays are ignored as the daughter particle carries mostly the mother \(\Upsilon \)'s momentum because of their similar masses. Since we do not have the nuclear modification factor and elliptic flow for \(\chi_b \) states, it is assumed that \(R_{\Upsilon(2S)} \approx R_{\chi_b(1P)} \) and \(R_{\Upsilon(3S)} \approx R_{\chi_b(2P)} \approx R_{\chi_b(3P)} \) like the study in Ref. [39].

FIG. 4. Feed-down fraction for \(\Upsilon(1S) \) (top), \(\Upsilon(2S) \) (middle), and \(\Upsilon(3S) \) (bottom) states.
III. RESULTS AND DISCUSSIONS

This section presents and discuss the obtained results of nuclear modification factors (R_{AA}, R_{pA}) and elliptic flow (v_2) for Υ(1S), Υ(2S), and Υ(3S) mesons in p+Pb, p+O, and O+O collisions at $\sqrt{s_{NN}} = 8$ TeV. The performance of our framework is tested in nucleus-nucleus collisions and compared with the experimental data at LHC as described in Sec. IIIA. The results of the nuclear modification factors and v_2 in the three small collision systems are shown and discussed in Sec. III B and Sec. III C, respectively. For all results, the uncertainty represents the statistical uncertainty that arises from the number of generated events. Also, the feed-down corrections are applied in all calculations as described in Sec. II C.

A. Framework demonstration in Pb+Pb

The medium response of the full simulation is demonstrated in Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. Figure 5 shows the R_{AA} curves for Υ(1S), Υ(2S), and Υ(3S) as a function of $\langle N_{\text{part}} \rangle$ in Pb+Pb collision at $\sqrt{s_{NN}} = 5.02$ TeV together with the measurements from CMS [16, 20]. The calculations agree well with the experimental data for Υ(1S) after applying feed-down corrections, while this correction seems to have restricted effects for Υ(2S) and Υ(3S). The results of the excited Υ states show consistency with data in peripheral collisions, although deviations are found towards central Pb+Pb collisions. The discrepancy in central collisions might be present due to the exclusion of recombination processes in this paper, which is expected to be more prominent at large $\langle N_{\text{part}} \rangle$ values.

B. Nuclear modification factor

The calculated nuclear modification factor as a function of $dN_{ch}/d\eta$ for Υ(1S), Υ(2S), and Υ(3S) mesons in p+Pb, p+O, and O+O collisions at $\sqrt{s_{NN}} = 8$ TeV are shown in Fig. 7. The nuclear modification factor shows a gradual decrease with increasing event multiplicity for all three Υ states in all three collision systems. Also, the amount of suppression towards higher multiplicity events is found to be sequentially ordered following the magnitude of the corresponding Υ binding energy.

To diagnose the strength of modification among different collision systems, the nuclear modification factors are separately displayed for each Υ state as shown in Fig. 8. In the low multiplicity region ($dN_{ch}/d\eta < 25$), the suppression level of Υ states is found to be similar in p+Pb and p+O collisions, while a slightly less suppression is seen in O+O collisions in particular for Υ(2S) and Υ(3S). Despite the medium size in O+O collisions being the largest and that in p+O collisions the smallest, the amount of suppression is not proportional to the size of the created system. The fact that the system size is larger in a given multiplicity event rather implies a smaller energy density of the medium. Therefore, we conclude that the weaker suppression in O+O collisions is accounted for the smaller energy density compared to p+O and p+Pb collisions. At higher multiplicity region,

Figure 6 shows the computed results of v_2 as a function of p_T for Υ(1S) mesons under the same conditions for the Pb+Pb R_{AA} calculations. The results indicate very small v_2 values in Pb+Pb collisions for Υ(1S) mesons which is consistent with the measurements from ALICE [55] and CMS [56].

FIG. 5. Calculated R_{AA} for Υ states as a function of $\langle N_{\text{part}} \rangle$ in Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The uncertainties of the curves represent the statistical uncertainty to the corresponding simulated events. The data points are taken from results by CMS [16, 20].
where the results in $p+$Pb and O+O collisions are compared, Υ states are stronger suppressed in $p+$Pb collisions than in O+O collisions which is consistent with the finding at low multiplicity because of the same reason.

Figure 9 shows the same quantities presented as a function of p_T. The ordering of the nuclear modification factors is similar at low-p_T as in Fig. 8, but found to be reversed between $p+$Pb and O+O collisions at high-p_T. Since the formation time of the Υ states is delayed towards the higher p_T region, the effective interaction time with the medium is also reduced. Such effect is more prominent in $p+$Pb collisions because of the smaller initial medium size. The relation between the medium size and energy density affects the Υ suppression in the opposite direction for low- and high-p_T. These results show that the shape of the p_T-dependent nuclear modification factor is sensitive to the formation time and initial collision geometry.

We also compare our calculations with measured data by CMS in $p+$Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [57] as
shown in Fig. 10. The results are in good agreement with data for $\Upsilon(1S)$, whereas deviations are seen for $\Upsilon(2S)$ and $\Upsilon(3S)$. Note that our R_{pA} values are for 8 TeV, in which the average multiplicity is about 15% higher than that at 5.02 TeV [44]. This difference affects the modification of Υ yields more significantly at low-p_T, where they mostly experience the full medium evolution. Although the mean p_T of the highest p_T bin of the CMS measurements for the $\Upsilon(2S)$ and $\Upsilon(3S)$ meson is expected to be slightly lower than the center of the bin, our calculations still overshoot the experimental data. As discussed in Fig. 9, this disagreement is possibly related to the formation time and initial collision geometry. Note that initial-state model calculations considering modification of nuclear parton distribution functions and energy loss show about 10% suppression of $\Upsilon(1S)$ at mid-rapidity [21, 44, 58].

![Nuclear modification factors](image)

FIG. 9. Nuclear modification factors for $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ as a function of p_T in $p+O$, $p+Pb$, and $O+O$ collisions at $\sqrt{s_{NN}} = 8$ TeV. The uncertainties represent the statistical uncertainty to the corresponding simulated events.

![Nuclear modification factors compared](image)

FIG. 10. Calculated nuclear modification factor for $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ as a function of p_T in $p+Pb$ collisions at $\sqrt{s_{NN}} = 8$ TeV compared with the CMS results at $\sqrt{s_{NN}} = 5.02$ TeV.

C. Elliptic flow

The v_2 is calculated in the same setting as in the calculation for the nuclear modification factors in Sec. III B and shown in Fig. 11. For all three Υ states, the v_2 values are consistent with zero in the overall p_T region in $p+Pb$, $p+O$, and $O+O$ collisions. Also, their v_2 values are very similar among the three collision systems. It may indicate that the elongated formation time of Υs towards high-p_T is not as significant as implemented in the employed model. To test the relation between v_2 and the amount of suppression, we computed the v_2 in the $0–5\%$ selected high-multiplicity events. For all Υ states, the v_2 values are found to be larger at high-multiplicity only with a small magnitude.

Although the yields of Υ mesons are more strongly suppressed for excited states as well as for higher multiplicity events, their v_2 values show an overall consistency with each other in all studied cases. In particular, since the low-p_T Υ mesons are traversing very slowly, it is unlikely expected that they escape the medium before it reaches the chemical freeze-out temperature. Therefore, such Υ mesons are not able to capture the anisotropy of the initial collision geometry despite their significant suppression. It is understood that the path-length dependent suppression could lead to a non-zero v_2 which can be probed at high-p_T for Υ mesons. However, with our current simulation settings, we did not observe any firm non-zero v_2 that deviates from that at low-p_T in small collision systems for all Υ states.
We have performed a Monte Carlo simulation study for the medium response of bottomonia in $p+A$ and $A+A$ collisions. The simulation framework has been developed based on the theoretical calculation of the thermal width of $\Upsilon(nS)$ [39] and the publicly available codes to describe the initial condition and evolution of heavy-ion collisions. In this initial work, only dissociation effect is considered, and we also considered the contribution of feed-down from higher excited states. To demonstrate the framework, we calculate the nuclear modification factor and elliptic flow of $\Upsilon(nS)$ and compare to experimental results. In the nuclear modification factor as a function of the number of participants, the model and data are comparable for $\Upsilon(1S)$ at the entire region, whereas the suppression for $\Upsilon(2S)$ and $\Upsilon(3S)$ are stronger in the model. In addition to the formation time, which could directly affect the magnitude of nuclear modification, the comparison for excited states would be improved when...
incorporating the regeneration effect. In case of the elliptic flow, the model expect $v_2 < 0.01$ which agrees with the experimental results \[55, 56\].

We extend the framework to small systems, p+Pb, p+O, and O+O collisions at $\sqrt{s_{NN}} = 8$ TeV. Generally, a stronger modification is observed for higher states ($R_{pA,AA}^{1S} > R_{pA,AA}^{2S} > R_{pA,AA}^{3S}$) even in small system. In low multiplicity events where the system size is very small, less suppression of $\Upsilon(3S)$ is observed due to the late formation time. In comparing different systems at the same multiplicity, a similar suppression is seen in $dN_{ch}/d\eta < 25$. At higher multiplicity, the modification in O+O is weaker than that in p+Pb because the energy density (temperature) in O+O is lower due to the larger system size. Regarding the elliptic flow results, we obtain very small (< 0.01) elliptic flow for all three systems, even in high multiplicity events. It will be very interesting to compare with experimental results from the upcoming LHC run with the oxygen ion. It can provide valuable information on sources of nuclear effects on bottomonia production in small systems.

V. ACKNOWLEDGMENTS

The work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) under Project No. 2018R1A5A1025563 and 2020R1C1C1004985. We also acknowledge technical support from KIAF administrators at KISTI.
[1] W. Busza, K. Rajagopal, and W. van der Schee, “Heavy Ion Collisions: The Big Picture, and the Big Questions,” Ann. Rev. Nucl. Part. Sci. 68, 339 (2018), arXiv:1802.04801 [hep-ph].

[2] F. Karsch, E. Laermann, and A. Peikert, “The Pressure in two flavor, (2+1)-flavor and three flavor QCD,” Phys. Lett. B 478, 447–455 (2000), arXiv:hep-lat/0002003.

[3] Edward V. Shuryak, “Theory of Hadronic Plasma,” Sov. Phys. JETP 47, 212–219 (1978), [Zh. Eksp. Teor. Fiz.74,408(1978)].

[4] T. Matsui and H. Satz, “J/ψ suppression by quark-gluon plasma formation,” Phys. Lett. B 178, 416 (1986).

[5] S. Digal, P. Petreczky, and H. Satz, “Quarkonium feed down and sequential suppression,” Phys. Rev. D 64, 094015 (2001), arXiv:hep-ph/0106017.

[6] M. Laine, O. Philipsen, P. Romatschke, and M. Tassler, “Real-time static potential in hot QCD,” JHEP 03, 054 (2003), arXiv:hep-ph/0611300 [hep-ph].

[7] Nora Brambilla, Jacopo Ghiglieri, Antonio Vairo, and Giovanni Garberoglio, “Heavy quark bound states in a quark-gluon plasma: Dissociation and recombination,” Phys. Rev. D 78, 014017 (2008), arXiv:0804.0993 [hep-ph].

[8] Nora Brambilla, Miguel Angel Escobedo, Jacopo Ghiglieri, Joan Soto, and Antonio Vairo, “Heavy quarkonium in a weakly coupled quark-gluon plasma below the melting temperature,” JHEP 09, 038 (2010), arXiv:1007.4156 [hep-th].

[9] Mark I. Gorenstein, A. P. Kostyuk, Horst Stoecker, and W. Greiner, “Statistical coalescence model with exact charm conservation,” Phys. Lett. B 509, 277 (2001), arXiv:hep-ph/0010148 [hep-ph].

[10] A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, “Evidence for charmonium generation at the phase boundary in ultra-relativistic nuclear collisions,” Phys. Lett. B 652, 259 (2007), arXiv:nucl-th/0701079 [NUCL-TH].

[11] L. Ravagli and R. Rapp, “Quark Coalescence based on a Transport Equation,” Phys. Lett. B 655, 126–131 (2007), arXiv:0705.0021 [hep-ph].

[12] Jean-Paul Blaizot, Davide De Boni, Pietro Faccioli, and Giovanni Garberoglio, “Heavy quark bound states in a quark-gluon plasma: Dissociation and recombination,” Nucl. Phys. A 946, 49 (2016), arXiv:1503.03857 [nucl-th].

[13] L. Adamczyk et al. (STAR), “Suppression of Y production in d+Au and Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV,” Phys. Lett. B 735, 127–137 (2014), arXiv:1312.3675 [nucl-ex].

[14] Albert M Sirunyan et al. (CMS), “Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV,” Eur. Phys. J. C 78, 509 (2018), arXiv:1712.08959 [nucl-ex].

[15] Morad Aaboud et al. (ATLAS), “Prompt and non-prompt J/ψ and ψ(2S) suppression at high transverse momentum in 5.02 TeV Pb+Pb collisions with the ATLAS experiment,” Eur. Phys. J. C 78, 762 (2018), arXiv:1805.04077 [nucl-ex].

[16] Albert M Sirunyan et al. (CMS), “Measurement of nuclear modification factors of Y(1S), Y(2S), and Y(3S) mesons in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV,” Phys. Lett. B 790, 270 (2019), arXiv:1805.09215 [hep-ex].

[17] S. Acharya et al. (ALICE), “Studies of J/ψ production at forward rapidity in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV,” JHEP 02, 041 (2020), arXiv:1909.03158 [nucl-ex].

[18] S. Acharya et al. (ALICE), “Υ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV,” Phys. Lett. B 822, 136579 (2021), arXiv:2011.05758 [nucl-ex].

[19] “Production of Υ(nS) mesons in Pb+Pb and pp collisions at 5.02 TeV,” (2022), arXiv:2205.03042 [hep-ex].

[20] Observation of the T(3S) meson and sequential suppression of Υ states in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Tech. Rep. (CERN, Geneva, 2022).

[21] R. Vogt, “Shadowing effects on J/ψ and Υ production at energies available at the CERN Large Hadron Collider,” Phys. Rev. C 92, 034909 (2015), arXiv:1507.04415 [hep-ph].

[22] François Arleo and Stéphane Peigné, “Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams,” Adv. High Energy Phys. 2015, 961951 (2015), arXiv:1504.07428 [hep-ph].

[23] D. C. McGlinchey, A. D. Frawley, and R. Vogt, “Impact parameter dependence of the nuclear modification of J/ψ production in d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Rev. C 87, 054910 (2013), arXiv:1208.2667 [nucl-th].

[24] F. Arleo, P. B. Gossiaux, T. Gouset, and J. Aichelin, “Charmonium suppression in p-A collisions,” Phys. Rev. C 61, 054906 (2000), arXiv:hep-ph/9907286.

[25] A. Capella, A. Kaidalov, A. Kouider Akil, and C. Gerchel, “J/ψ and psi-prime suppression in heavy ion collisions,” Phys. Lett. B 393, 431–436 (1997), arXiv:hep-ph/9607265.

[26] E. G. Ferreiro, “Excited charmonium suppression in proton-nucleus collisions as a consequence of comovers,” Phys. Lett. B 749, 98–103 (2015), arXiv:1411.0549 [hep-ph].

[27] Elena G. Ferreiro and Jean-Philippe Lansberg, “Is bottomonium suppression in proton-nucleus and nucleus-nucleus collisions at LHC energies due to the same effects?” JHEP 09, 014 (2018), [Erratum: JHEP 03, 063 (2019)], arXiv:1804.04474 [hep-ph].

[28] Vardan Khachatryan et al. (CMS), “Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC,” JHEP 09, 091 (2010), arXiv:1009.4122 [hep-ex].

[29] Georges Aud et al. (ATLAS), “Observation of Long-Range Elliptic Azimuthal Anisotropies in proton-proton collisions with the ATLAS Detector,” Phys. Rev. Lett. 116, 172301 (2016), arXiv:1509.04776 [hep-ex].

[30] Vardan Khachatryan et al. (CMS), “Evidence for collectivity in pp collisions at the LHC,” Phys. Lett. B 765, 193–220 (2017), arXiv:1606.06198 [nucl-ex].

[31] Shreyasi Acharya et al. (ALICE), “Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV,” JHEP 05, 290 (2021), arXiv:2103.03110 [nucl-ex].

[32] Serguei Chatrchyan et al. (CMS), “Observation of Long-Range Near-Side Angular Correlations in Proton-Lead Collisions at the LHC,” Phys. Lett. B 718, 795–814 (2013), arXiv:1210.5482 [nucl-ex].
[33] Betty Abelev et al. (ALICE), “Long-range angular correlations on the near and away side in p-Pb collisions at √sNN = 5.02 TeV,” Phys. Lett. B 719, 29–41 (2013), arXiv:1212.2001 [nucl-ex].

[34] Roel Aaij et al. (LHCb), “Measurements of long-range near-side angular correlations in √sNN = 5TeV proton-lead collisions in the forward region,” Phys. Lett. B 762, 473–483 (2016), arXiv:1512.00439 [nucl-ex].

[35] Vardan Khachatryan et al. (CMS), “Evidence for Collectiv Multiple Particle Correlations in p-Pb Collisions,” Phys. Rev. Lett. 115, 012301 (2015), arXiv:1502.05382 [nucl-ex].

[36] Albert M Sirunyan et al. (CMS), “Multiparticle correlation studies in pPb collisions at √s = 5.6 TeV, Phys. Rev. C 101, 014912 (2020), arXiv:1904.11519 [hep-ex].

[37] L. Adamczyk et al. (STAR), “Long-range pseudorapidity dihadron correlations in d+Au collisions at √sNN = 200 GeV,” Phys. Lett. B 747, 265–271 (2015), arXiv:1502.07052 [nucl-ex].

[38] C. Aidala et al. (PHENIX), “Creation of quark–gluon plasma droplets with three distinct geometries,” Nature Phys. 15, 214–220 (2019), arXiv:1805.02973 [nucl-ex].

[39] Juhee Hong and Su Houng Lee, “Υ(1S) transverse momentum spectra through dissociation and regeneration in heavy-ion collisions,” Phys. Rev. B 801, 135147 (2020), arXiv:1909.07696 [nucl-th].

[40] Paul Romatschke, “Light–Heavy Ion Collisions: A window into pre-equilibrium QCD dynamics?” Eur. Phys. J. C 75, 305 (2015), arXiv:1502.04745 [nucl-th].

[41] S. H. Lim, J. Carlson, C. Loizides, D. Lonardoni, J. E. Lynn, J. L. Nagle, J. D. Orjuela Koop, and J. Ouellette, “Exploring New Small Geometric Systems in Heavy Ion Collisions,” Phys. Rev. C 99, 044904 (2019), arXiv:1812.08096 [nucl-th].

[42] Michael L. Miller, Klaus Reygers, Stephen J. Sanders, and Peter Steinberg, “Glauber modeling in high energy nuclear collisions,” Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007), arXiv:nucl-ex/0701025.

[43] M. Asboud et al. (ATLAS), “Measurement of the total cross section from elastic scattering in pp collisions at √s = 8 TeV with the ATLAS detector,” Phys. Lett. B 761, 158 (2016), arXiv:1607.06605 [hep-ex].

[44] Albert M Sirunyan et al. (CMS), “Pseudorapidity distributions of charged hadrons in proton-lead collisions at √sNN = 5.02 and 8.16 TeV,” JHEP 01, 045 (2018), arXiv:1710.09355 [hep-ex].

[45] Shreyasi Acharya et al. (ALICE), “Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at √sNN = 8.16 TeV,” Eur. Phys. J. C 79, 307 (2019), arXiv:1812.01312 [nucl-ex].

[46] J. Scott Moreland, Jonah E. Bernhard, and Steffen A. Bass, “Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions,” Phys. Rev. C 92, 011901 (2015), arXiv:1412.4708 [nucl-th].

[47] Bjorn Schenke, Prithwish Tribedy, and Raju Venugopalan, “Fluctuating Glasma initial conditions and flow in heavy ion collisions,” Phys. Rev. Lett. 108, 252301 (2012), arXiv:1202.6646 [nucl-th].

[48] Agnes Mocsy, Peter Petreczky, and Michael Strickland, “Quarkonia in the Quark Gluon Plasma,” Int. J. of Mod. Phys. A 28, 1340012 (2013), arXiv:1302.2180 [hep-ex].

[49] Helmut Satz, “Colour deconfinement and quarkonium binding,” J. Phys. G: Nucl. Part. Phys. 32, R25 (2006), arXiv:hep-ph/0512217 [hep-ph].

[50] Xiaoqian Du, Ralf Rapp, and Min He, “Color screening and regeneration of bottomonia in high-energy heavy-ion collisions,” Phys. Rev. C 96, 054901 (2017), arXiv:1706.08670 [hep-ph].

[51] V. Khachatryan et al. (CMS), “Measurements of the Υ(1S), Υ(2S), and Υ(3S) differential cross sections in pp collisions at √s = 7 TeV,” Phys. Lett. B 749, 14 (2015), arXiv:1501.07750 [hep-ex].

[52] R. Aaij et al. (LHCb), “Forward production of Υ mesons in pp collisions at √s = 5.02 TeV,” JHEP 11, 103 (2015), arXiv:1509.02372 [hep-ex].

[53] R. Aaij et al. (LHCb), “Study of χc meson production in pp collisions at √s = 7 and 8 TeV and observation of the decay χc(3P) → Υ(3S)γ,” Eur. Phys. J. C 74, 10 (2014), arXiv:1407.7734 [hep-ex].

[54] P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics,” PTEP 2020, 083C01 (2020).

[55] S. Acharya et al. (ALICE), “Measurement of Υ(1S) elliptic flow at forward rapidity in Pb-Pb collisions at √sNN = 5.02 TeV,” Phys. Rev. Lett. 123, 192301 (2019), arXiv:1907.03169 [nucl-ex].

[56] A. M. Sirunyan et al. (CMS), “Measurement of the azimuthal anisotropy of χ(1s) and χ(2s) mesons in pp collisions at √sNN = 5.02 TeV,” Phys. Lett. B 819, 136385 (2021), 2006.07707 [hep-ex].

[57] Armen Tumasyan et al. (CMS), “Nuclear modification of Υ states in pPb collisions at √sNN = 5.02 TeV,” JHEP 10, 103 (2014), arXiv:1407.5054 [hep-ph].