Role of two-dimensional shear wave elastography in chronic liver diseases: A narrative review

Jae Yoon Jeong, Young Seo Cho, Joo Hyun Sohn

Abstract
Liver biopsy is the gold standard for evaluating the degree of liver fibrosis in patients with chronic liver disease. However, due to the many limitations of liver biopsy, there has been much interest in the use of noninvasive techniques for this purpose. Among these techniques real-time two-dimensional shear wave elastography (2D-SWE) has the advantage of measuring tissue elasticity with the guidance of B-mode images. Recently, many studies have been conducted on the application of 2D-SWE in patients with various liver diseases, and their validity has been confirmed. Here, we briefly discuss the role of 2D-SWE in patients with chronic liver diseases, particularly aspects of the examination techniques and clinical applications.

Key words: Shear wave elastography; Liver disease; Liver fibrosis; Portal hypertension; Hepatocellular carcinoma

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Assessing the degree of liver fibrosis in patients with chronic liver disease is clinically important. Real-time two-dimensional shear wave elastography (2D-SWE) has the advantage of measuring tissue elasticity with the guidance of B-mode images. Recently, many studies have shown that 2D-SWE is a useful tool for evaluating not only liver fibrosis in various liver diseases but also portal hypertension, and for predicting the development of hepatocellular carcinoma. Here, we discuss briefly the role of 2D-SWE in patients with chronic liver diseases, particularly aspects of the examination technique and clinical applications.

Jeong JY, Cho YS, Sohn JH. Role of two-dimensional shear wave elastography in chronic liver diseases: A narrative review. World J Gastroenterol 2018; 24(34): 3849-3860 Available from: URL:
英特ロージョン

慢性肝臓病は、全世界で最も大きな原因となる死因の1つであり、重大な公衆健康問題を引き起こす。慢性肝臓病に関する検査は、肝硬変の進行度を評価することは肝に生じた原因を特定するためのものではないが、肝臓の機能を監視する手段として用いられる。肝実質の硬度（LS）を測定する2次元剪断波エラストグラフィー（2D-SWE）は、肝硬変の進行度を評価するために用いられる最近の方法の1つである。肝炎、肝硬変、及び肝細胞癌（HCC）の進行度を評価するための2D-SWEの導入が、肝硬変の診断において大きな進歩をもたらした。しかし、2D-SWEの利点が、検査の精度に影響を及ぼす腫瘍や血管の存在を示している。

MEASURING LIVER STIFFNESS

Measurements of liver stiffness (LS) using 2D-SWE are usually performed through right intercostal scans, with the patient in a supine position. Because the sonographic window gets clearer as the intercostal space enlarges, LS is measured with right arm maximal abduction. Deep inspiration is avoided as it increases the measured LS value, and, if possible, LS is measured with a short breath hold for 4 to 5 s and neutral breathing. A trapezoidal color box (3.5 cm × 2.5 cm) is positioned in the liver parenchyma and acquires the elasticity signals. When the elastogram signals in the color box are judged to reach a plateau, i.e., after about 2 or 3 s, the image is frozen. After call-back, the most homogenous areas of elastogram signals among the sequential frames are identified using a cine loop, and a round ROI (also referred to as the Q-box) is positioned in the region of the color box. The brighter the grayscale image obtained without shadowing in the scan, the more uniform the elastogram signal generated. The ROI is located in a homogenous elastogram signal in the liver parenchyma where there is no large vessel or hepatic nodule. To avoid reverberation artifacts, ROIs are located 1 to 2 cm from the liver capsule. The ROI is as large as possible and up to 2 cm in diameter, but its size is reduced if necessary, depending on the measurable areas of the elastogram signal and the location of large vessels. Also, if the measurement depth is too great, a qualitatis elastogram signal is not generated and the signal is less reliable; measurement should preferably be at a depth of less than 6 cm from the capsule. Measured elasticity values are expressed in kilopascal (kPa) and recorded on the image as means and standard deviations (Figure 1).

Technically, measurement of LS using 2D-SWE has several advantages. It is not affected by ascites, because the shear waves are generated by the focused beam inside the liver parenchyma rather than at the surface of the body. Large vessels can be avoided using simultaneous gray scale images, and the sampling volume is larger than in p-SWE. By means of real-time color mapping, an experienced examiner can judge whether measurements are reliable.

Optimal region and number of measurements, and validation

LS was measured in the right lobe in all previous studies. Measurement of LS in the left lobe is inappropriate, because it is affected by cardiac pulsation. Most measurements of LS by 2D-SWE use an intercostal scan, and they are usually made in the right anterior section. When measured in this way, measurement reliability is high and the correlation with histologic hepatic fibrosis staging is good[9,10].

When LS is measured by TE, it is measured 10 times and validated using a success rate of 60% or more and interquartile range/median (IQR/M) < 0.3, and the median value of the measurements is selected as the LS value. However there is no agreement on the objective number of measurements needed or on the quality criteria for validation of 2D-SWE. Most
studies using 2D-SWE have measured LS with 3 to 5 repetitions. According to previous studies of the number of LS measurements, when LS is measured 6 or more times no further increase in intra-class correlation (ICC) is observed[11], and the LS from a 10-repetition protocol is not significantly different from that from a 5-repetition protocol[12]. Another group has concluded that three valid measurements are enough[13]. There is no evidence about whether the mean or median values of repeated measurements correlate better with liver fibrosis. There are quality criteria for LS measurements by 2D-SWE, such as standard deviation (SD), IQR/M and coefficient of variance (CV, SD/mean), but there is no established standard of validation as there is for TE. Therefore, we suggest that three to five measurements of LS by 2D-SWE are appropriate, and in case of validation by IQR/M, five measurements are required.

In LS measurement using 2D-SWE, it is measured faster and more consistently in a patient with a good sonographic window for B-mode images. In the patients with obese and thick abdominal wall, the shadowing occurs in the liver parenchyma and the elasticity signal is not generated well in the color box. In case of poor sonographic window due to severe shrinkage of liver and interposition of omental fat or bowel, the measurement is not successful. And, if the motion is not restricted because the patient is not coordinated, or the liver is affected by cardiac movement, there is a limitation in the measurement. 2D-SWE has more chance to be affected by technical factors because it has larger sampling volume compared to TE or point shear wave elastography. However, the measurement failure rate of 2D-SWE is lower than that of TE when the experienced examiner measures LS[14,15].

Figure 1 Liver two-dimensional shear wave elastography images. A. 2D-SWE images of a 52-year-old patient without underlying disease with normal range of LS. Ultrasound images show the color-code mapping of 2D-SWE (top) and the corresponding B-mode image (bottom). On the right side of the image, the mean (5.2 kPa) and standard deviation (0.4 kPa) of Young modulus in the ROI have been calculated. And the size and depth of the measured ROI are recorded. The summarized values at the top are the mean and median values of the stiffness values of the previous 4 measurements and the 5th measurement, and the average size of the measured ROI. B. A 2D-SWE image of a 58-year-old patient with chronic hepatitis B who was proven as F2 fibrosis in liver biopsy specimen. Increased LS (8.5 kPa) was identified compared to normal patients. C. In 55-year-old patient with chronic hepatitis B and compensated cirrhosis, median LS was 18.5 kPa. D. In 71-year-old patient with chronic hepatitis B and decompensated cirrhosis with ascites, median LS was 33.6 kPa. 2D-SWE: Two-dimensional shear wave elastography; LS: Liver stiffness; ROI: Region of interest.
Reproducibility
The reproducibility of LS measurements by 2D-SWE is high but user-dependent. The intra-observer reproducibility of 2D-SWE in healthy volunteers is excellent (ICC 0.92 to 0.95). Inter-observer agreement is good (0.63 to 0.84) and is influenced by operator experience. In the chronic liver disease group, intra-observer reproducibility is excellent, with an ICC of 0.9 to 0.95, and intra-subject reproducibility at short intervals is excellent, with an ICC of 0.83 to 0.9. The inter-observer reproducibility of LS measurements using 2D-SWE is excellent, from 0.83 to 0.94.

Since 2D-SWE measurement is user-dependent, it is recommended that at least 50 supervised scans and measurements are performed by a novice operator to ensure consistent measurements.

Normal values of liver stiffness, and confounders
The LS value using 2D-SWE in healthy volunteers was found to be 4.5-5.5 kPa. Food intake increases LS value and IQR, and may result in over-staging of liver fibrosis and unreliable measurements. According to Mederacke et al., LS value declines to the normal range by 180 min after food intake; hence it is recommended to measure LS at least 4 h after food consumption, or after overnight fasting. Caffeine intake, smoking, and exercise also increase LS value, as do acute hepatic inflammation, obstructive cholestasis, and hepatic congestion. The effect of hepatic steatosis on LS value is not yet clear. These confounding factors should be avoided when measuring LS, and patient co-morbidities must be considered when interpreting LS values so as to prevent over-staging of hepatic fibrosis.

MEASURING SPLEEN STIFFNESS
According to a recent meta-analysis, Spleen Stiffness (SS) values measured by 2D-SWE are useful for predicting clinically significant portal hypertension in chronic liver diseases. They are significantly correlated with the presence of esophageal varix, and are superior to LS values. In addition, 2D-SWE can check real-time grayscale images at the time of measurement, so that SS can be measured in the most appropriate region. SS is measured by left intercostal or subcostal scans, and is not fundamentally different from LS measurements.

ROLE OF 2D-SWE IN ASSESSING LIVER FIBROSIS

Various liver diseases
Several studies have evaluated fibrosis in various liver diseases by 2D-SWE (Table 1). LS measured by 2D-SWE had an excellent diagnostic performance with areas under the curve (AUROCs) of about 0.9 for
assessing each stage of fibrosis[44,45]. However, since the burden of fibrosis depends on the dominant disease, the value of LS for a given stage of fibrosis is also dependent on the dominant disease in the patients that are examined. Therefore, the diagnostic performance of 2D-SWE, which was expected to be superior to other noninvasive fibrosis methods such as TE, did not show a statistically significant dependence on stage of fibrosis.

Chronic hepatitis C

Studies of the degree of fibrosis according to the disease involved were the first to evaluate patients with chronic hepatitis C (CHC). The results are summarized in Table 2. LS measured by 2D-SWE showed a significant positive correlation with fibrosis stage evaluated by the METAVIR scoring system in patients with CHC[46-48]. Also, 2D-SWE had a similar or better diagnostic performance than TE for assessing each stage of fibrosis[44-45]. Based on the above results, 2D-SWE can be used to predict the efficacy of antiviral treatment in CHC as well as the degree of fibrosis. Tada et al[46] reported that patients with CHC who achieved a sustained virologic response showed an early decrease in LS after administration of a direct acting agent (DAA), and this was the case especially in patients with progressive liver fibrosis. Similarly, Korda et al[51] found a significant decrease in LS after DAA treatment in patients with recurrent HCV infection after liver transplantation. Therefore 2D-SWE may be a useful tool in the follow-up after treatment of CHC.

Chronic hepatitis B

So far the disease most studied for assessing degree of fibrosis by 2D-SWE is hepatitis B virus (HBV) infection. Studies of patients with chronic hepatitis B (CHB) have been mainly performed in China, where HBV is endemic. LS measured by 2D-SWE was positively correlated with fibrosis stage evaluated by the METAVIR scoring system in patients with CHC[46-48]. In recently published patient data based on a meta-analysis, the AUROCs for F2,F3 and F4 of 2D-SWE were 0.863, 0.915 and 0.929, respectively, and the proposed cut off values were 7.1 kPa, 9.2 kPa and 13.0 kPa, respectively[49]. However, the diagnostic performance of 2D-SWE for each stage of fibrosis was not significantly different from that of TE[49]. In several studies the optimal cutoff values for each fibrosis stage were 7.1-9.12 kPa for \geq F2, 8.7-10.08 kPa for \geq F3, and 10.4-13.30 kPa for F4[46-48]. AUROC: Area under ROC curve; Se: Sensitivity; Sp: Specificity; PPV: Positive predictive value; NPV: Negative predictive value.

Table 1 Diagnostic performance of shear wave elastography for significant fibrosis (F \geq 2), advanced fibrosis (F \geq 3) and cirrhosis (F4) in patients with various liver diseases

Ref.	Year	Patients (n)	F \geq 2 (%)	F \geq 3 (%)	F \geq 4 (%)	AUROC	Cutoffs (kPa)	Se (%)	Sp (%)	PPV (%)	NPV (%)
Jeong et al[49]	2014	70	78.6			0.915	8.60	78.2	93.3	97.7	53.8
				50		0.913	10.46	88.6	80.0	81.6	87.6
				31.4	0.878	14.00	77.3	85.4	70.8	79.0	82.9
Deffieux et al[46]	2015	120	48.0			0.890	8.90	77.0	79.0	77.0	79.0
				33	0.880	9.10	85.0	72.0	60.0	90.0	19.6
				15.0	0.890	10.20	85.0	76.0	38.0	96.0	19.6

Table 2 Diagnostic performance of shear wave elastography for significant fibrosis (F \geq 2), advanced fibrosis (F \geq 3) and cirrhosis (F4) in patients with chronic hepatitis C

Ref.	Year	Patients (n)	F \geq 2 (%)	F \geq 3 (%)	F \geq 4 (%)	AUROC	Cutoffs (kPa)	Se (%)	Sp (%)	PPV (%)	NPV (%)
Bavu et al[49]	2011	113	55.8			0.950	9.12	81.0	72.0		
				34.5		0.960	10.08	75.0	78.0		
				13.3		0.970	13.30	80.0	87.0		
Ferraioli et al[41]	2012	121	58.7			0.920	7.10	90.0	87.5	91.3	85.7
				31.4		0.980	8.70	97.3	95.1	90.0	98.7
				19.8		0.980	10.40	87.5	96.8	87.5	96.8
Tada et al[46]	2013	55	32.7			0.940	8.80	88.9	91.9	84.2	94.4
Herrmann et al[49]	2018	379	58.3			0.863	7.10	94.7	52.0		
				33.5		0.915	9.20	90.3	76.8		
				18.2		0.929	13.00	85.8	87.8		

1The reference fibrosis level is derived from the algorithm proposed by Sebastiani et al[49]. AUROC: Area under ROC curve; Se: Sensitivity; Sp: Specificity; PPV: Positive predictive value; NPV: Negative predictive value.
correlated with liver fibrosis stage evaluated by the METAVIR scoring system in patients with CHB, as it was for those with CHC[49,52-55].

Leung et al[49] reported that the AUROCs for $\geq F_2$, $\geq F_3$, and F_4 of 2D-SWE were 0.88, 0.93, and 0.98, respectively, and 2D-SWE performed better than TE for predicting all fibrosis stages. In particular, the cutoff value of 7.1 kPa for F_2 by SWE had a relatively high specificity of 92.1%, indicating that 2D-SWE is an excellent screening tool for diagnosing significant fibrosis, which is an important starting point for the treatment of chronic viral hepatitis[14]. In addition, as fibrosis progressed, the optimal cut off value had a high negative predictive value, indicating that 2D-SWE is a very reliable tool for excluding cirrhosis[14]. Similar trends were seen in other studies.

Zeng et al[54] and Zhuang et al[55] analyzed hepatitis B patients using an index cohort and a validation cohort, and showed that SWE had good diagnostic accuracy in predicting each fibrosis stage. Diagnostic performances in patients with CHB were summarized in Table 3. AUROCs for $\geq F_2$, $\geq F_3$ and F_4 were 0.88-0.97, 0.917-0.96 and 0.926-0.98, respectively[49,52-55]. The optimal cutoff values for each fibrosis stage were 7.1-8.2 kPa for $\geq F_2$, 7.9-9.1 kPa for $\geq F_3$, and 10.1-11.3 kPa for F_4[49,52-55]. In addition, the diagnostic performance of 2D-SWE was equivalent or superior to use of non-invasive fibrosis markers including TE in most fibrosis stages[49,52-53,55].

In a recently published patient data-based meta-analysis, the AUROCs for $\geq F_2$, $\geq F_3$ and F_4 of 2D-SWE were 0.906, 0.931, and 0.955, respectively, and the proposed cut off values were 7.1 kPa, 8.1 kPa, and 11.5 kPa, respectively[49]. In addition, 2D-SWE in patients with CHB had a better diagnostic performance than TE in predicting $\geq F_2$ and F_4, but not $\geq F_3$, unlike in patients with CHC[49].

Non-viral liver diseases

One of the most common causes of advanced liver disease worldwide is nonalcoholic fatty liver disease (NAFLD)[56]. It is important to diagnose the fibrosis stage in patients with NAFLD because the degree of fibrosis is the most important prognostic factor in these patients[17]. Three studies on the degrees of fibrosis in NAFLD have recently been published (Table 4)[20,49,58]. LS measurements by 2D-SWE in these patients had a relatively high failure rate (2.7%-13%) because of the higher BMIs in these patients[20,58]. Diagnostic performance in predicting each fibrosis stage was relatively low, and the cut-off values of the fibrosis stages differed between the studies[20,49,58]. This suggests that steatosis may have an effect on liver stiffness measurements, and further studies are needed[49].

The only study of patients with alcoholic liver disease was one performed by Thiele et al[19]. In that study, SWE had high diagnostic performances with AUCs of 0.94 and 0.95, respectively, for detecting significant fibrosis (Ishak fibrosis stage ≥ 3) and cirrhosis (Ishak fibrosis stage ≥ 5)[19]. In addition, the cutoff values for predicting the fibrosis stages there were higher than in other diseases, particularly in chronic viral hepatitis; liver injury in alcoholic liver disease is associated with relatively high levels of perivenular and pericellular fibrosis with central extension, and this may have resulted in a higher fibrosis burden[19].

There are two recent studies of autoimmune liver disease[59,60]. Because of the low prevalence of this disease, these studies included patients with autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and overlap syndrome, all of

Ref.	Year	Patients (n)	AUROC	Cutoffs (kPa)	Se (%)	Sp (%)	PPV (%)	NPV (%)		
Leung et al[49]	2013	226	60.2	0.880	7.100	84.70	92.10	85.3	91.7	
			35.4	0.930	7.900	89.80	90.00	71.8	97.0	
			15.5	0.980	10.100	97.40	93.00	60.1	99.6	
Zeng et al[54]	2014	206 (104)	45.7 (45.1)	0.917 (0.907)	7.200	86.36 (85.19)	86.96 (80.85)	88.8	83.6	94.2 (82.6)
			69.0 (70.3)	0.945 (0.934)	9.100	91.94 (89.66)	85.71 (80.56)	74.0	65.0	96.0 (95.1)
Wu et al[55]	2016	437	47.2	14.0	0.926	11.256	91.80	84.31	48.7	98.4
Zhai et al[56]	2017	304 (155)	86.8 (84.6)	0.970 (0.970)	7.600	92.00 (91.6)	90.00 (87.5)	98.4	96.0	64.3 (65.0)
			70.4 (67.8)	0.960 (0.970)	9.200	91.60 (88.6)	96.70 (96.0)	98.5	97.8	82.9 (80.1)
Zeng et al[57]	2017	257	46.3	24.9	0.917	8.300	89.66	76.84	55.9	95.8
			13.2	0.926	11.300	93.25	87.55	52.7	98.9	
Hermann et al[58]	2018	379	52.0	29.8	0.906	7.100	87.60	73.60		
			13.0	0.955	11.500	79.90	93.90			

1These studies are divided into index cohort and validation cohort and parentheses are index cohort. AUROC: Area under ROC curve; Se: Sensitivity; Sp: Specificity; PPV: Positive predictive value; NPV: Negative predictive value.
which have different liver damage patterns\(^{[59,60]}\). For this reason, the AUROCs of autoimmune liver disease according to fibrosis stage were lower than those of chronic viral hepatitis\(^{[59,60]}\). Further studies should be performed separately for each disease.

USE OF 2D-SWE FOR ASSESSING PORTAL HYPERTENSION AND ESOPHAGEAL VARICES

Measurement of hepatic venous pressure gradient (HVPG) is considered the reference standard for assessing portal hypertension in liver cirrhosis, which is one of the most powerful prognostic factors in advanced chronic liver disease\(^{[61]}\). However, the use of HVPG is limited because it is unavailable in some centers and because of its invasiveness\(^{[61]}\). Hence, TE was introduced as a noninvasive tool and is known to be strongly correlated with HVPG and excellent for predicting clinically significant portal hypertension (CSPH, HVPG ≥ 10 mmHg)\(^{[61]}\).

There have been many studies aimed at establishing whether LS measured by 2D-SWE can identify portal hypertension. First, Choi et al\(^{[63]}\) analyzed the association of HVPG with LS by 2D-SWE. They showed that HVPG and LS measured by 2D-SWE were moderately correlated (\(r = 0.593\)), and that change in LS and change in HVPG were strongly related (\(r = 0.863\))\(^{[63]}\). As a result of that study, 2D-SWE unlike TE, can be considered a useful method for monitoring hemodynamic responses to drug therapy. Since then, several studies have examined whether LS measured by 2D-SWE can predict CSPH, and they are summarized in Table 5\(^{[64-67]}\). The AUROC5 for predicting CSPH ranged from 0.81 to 0.87, which is relatively high diagnostic performances, and optimal cut-off values ranged from 15.2 to 24.6 kPa\(^{[64-67]}\). The different optimal cut-off values in the different studies were probably due to differences between the major forms of disease examined in the studies\(^{[64-67]}\). Therefore, as in the case of degree of fibrosis, studies on the prediction of portal hypertension may need to be carried out separately for each disease.

Efforts have been made to improve the reliability of LS measurements by 2D-SWE for predicting portal hypertension. Procopet et al\(^{[64]}\) obtained a diagnostic performance with an AUC of 0.939 for predicting CSPH using a SD/median ≤ 0.10 and/or depth < 5.6 cm. In addition, Elkrief et al\(^{[65]}\) and Jansen et al\(^{[67]}\) observed a strong correlation between HVPG and LS by 2D-SWE and an excellent AUROC in predicting CSPH, when the variation coefficient (SD/mean) was ≤ 10%.

There have been attempts to complement LS in predicting CSPH by measuring SS, but the results were unsatisfactory. Procopet et al\(^{[64]}\) found a 66% success rate for SS measurements and an AUROC of 0.725 for predicting CSPH. In addition, they obtained a high mismatch rate (25%) and indeterminate outcomes (60%) with a method employing a rule-out CSPH cutoff of > 90% sensitivity and a rule-in CSPH cutoff of > 90% specificity\(^{[64]}\). In that study, a small spleen was the most common reason for the inability to measure SS\(^{[64]}\). Elkrief et al\(^{[65]}\) achieved a success rate of 97% for SS measurements but the AUC of SS in predicting CSPH was only 0.64, a moderate diagnostic performance. Unlike other studies, Jansen et al\(^{[67]}\) had a success rate of 81.2% for SS measurements and a relatively good diagnostic performance with an AUROC of 0.84 in predicting CSPH. Based on this finding, they proposed a combined algorithm consisting of a rule-in algorithm and a rule-out algorithm, and the diagnostic accuracy of the algorithm was 91.6%\(^{[67]}\). Therefore they suggested that only those patients who were indeterminate in this algorithm would need to undergo invasive HVPG measurements\(^{[67]}\). Recently, Elkrief et al\(^{[68]}\) performed...
Table 5 Diagnostic performance of shear wave elastography for detecting clinically significant portal hypertension (HVPG ≥ 10 mmHg)

Ref.	Year	Patients (n)	Study design	Prevalence (%)	Site	Success rate (%)	Cutoffs (kPa)	AUROC	Se (%)	Sp (%)	PPV (%)	NPV (%)
Procopet et al[64]	2015	88	Restrospective	55.0	LS	99.0	17.0	0.859	80.8	82.1		
					SS	66.0	15.4	0.948	91.3	90.9		
Elkrief et al[65]	2015	79	Prospective	90.9	LS	97.0	24.5	0.870	81.0	88.0	98.0	35.0
					SS	97.0	34.7	0.640	40.0	100.0	100.0	18.0
Kim et al[66]	2015	92	Prospective	83.7	LS	98.3	15.2	0.819	85.7	80.0	95.7	52.2
					SS	97.0	21.6	0.867	83.3	80.8	91.7	65.6
Jansen et al[67]	2017	109	Prospective	67.9	LS	100.0	24.6	0.860	68.3	80.4	87.7	55.4
					SS	81.2	26.3	0.840	79.7	84.2	90.8	68.0

1Highly reliable and reliable measurements (n = 45); SD/median > 0.10 or depth ≥ 5.6 cm; 2Severe portal hypertension (HVPG ≥ 12 mmHg); AUROC: Area under ROC curve; Se: Sensitivity; Sp: Specificity; PPV: Positive predictive value; NPV: Negative predictive value; LS: Liver stiffness; SS: Spleen stiffness.

an external validation of the algorithm. When it was used in 191 patients with liver cirrhosis, the negative predictive value for rule-out was estimated to be 60% and the positive predictive value for rule-in was 87% for predicting CSPH[68]. Thus the algorithm was not good enough to diagnose CSPH[68].

There have been three studies on the use of 2D-SWE for predicting esophageal varices (EV). Elkrief et al[65] compared the diagnostic performance of LS and SS in predicting high risk EV. They detected no difference in LS and SS between patients with high risk EV and without high risk EV, and the AUROCs of the LS and SS values for predicting high risk EV were 0.54 and 0.64, respectively[65]. This outcome was probably due to the small number of patients tested (n = 35) most of whom had high HVPS and/or decompenated cirrhosis[65]. On the other hand, Stefanescu et al[69] studied the use of LS and SS in predicting EV in 73 patients with compensated liver cirrhosis. The AUROCs of LS, SS and platelet count (PLT) were 0.753, 0.747, and 0.773, respectively, and the best cut-off values of LS, SS and PLT gave moderate diagnostic performances of 19 kPa, 38 kPa, and 100 × 10^3/mL, respectively[69]. When this result was used to apply the Baveno IV recommendations and stepwise approaches (LS < 19 kPa and PLT < 100 × 10^3/mL = no EV, LS > 19 kPa and PLT > 100 × 10^3/mL = probable EV; in the Grey zone, SS < 38 kPa = no EV, SS ≥ 38 kPa = probable EV), it had an accuracy of 83.07% for ruling out EV[69]. However, when the algorithm was used with the platelet counts to predict EV it did not improve the diagnostic accuracy of the rule out algorithm proposed by Jansen et al[70]. Similarly, Kim et al[71] evaluated the predictive performance of LS for presence of EV and high risk EV in 103 patients with compensated liver cirrhosis. The AUROCs of LS for presence of EV and high risk EV were 0.887 and 0.880, respectively, and the best cut-off values were 13.9 kPa and 16.1 kPa, respectively[71].

ROLE OF 2D-SWE IN PREDICTING THE DEVELOPMENT OF HCC

TE is a useful predictor of HCC development in patients with CHB[72]. In particular, it is known to identify patients with CHB who do not have clinical cirrhosis but who rather have so-called subclinical cirrhosis with a high risk of developing HCC[73]. There have been two studies on the role of 2D-SWE in predicting the development of HCC. Jeong et al[74] followed up 291 compensated hepatitis B patients for 35.8 months and examined the use of measurements of LS by 2D-SWE for predicting HCC development. Patients with LS ≥ 10kPa by 2D-SWE had a 4-fold higher risk of developing HCC than those with LS < 10 kPa. Lee et al[75] investigated the role of SWE in the prognosis of HCC after radiofrequency ablation (RFA). In 134 patients who underwent RFA as a curative treatment for HCC, LS by 2D-SWE was a significant predictor of overall survival and recurrence-free survival, and the optimal cutoff value was 13.3 kPa[75].

ROLE OF 2D-SWE IN ASSESSING FOCAL LIVER LESIONS

Focal lesions are often seen in US examinations, but benign focal lesions and malignant focal lesions are difficult to distinguish by conventional US. In such cases additional Doppler or contrast US has been used. Unlike TE, 2D-SWE can measure the stiffness of focal liver lesions (FLLs) under B-mode guidance. Several groups have reported that stiffness measured by 2D-SWE helps distinguish intrahepatic focal lesions[76-78]. The stiffness value of malignant lesions was significantly higher than that of benign lesions[76,78]. In benign lesions, the stiffness of focal nodular hyperplasia was significantly higher than that of hepatocellular adenoma[77]. In malignant lesions, the stiffness of metastatic tumors was significantly higher than that of HCC[76].

Recently, Grgurevic et al[79] analyzed 196 patients with 259 FLLs and found that the best performing cutoff value for malignancy was 22.3 kPa (sensitivity 83%, specificity 86%, positive predictive value 91.5%, negative predictive value 73%). In addition, a Liver Elastography Malignancy Prediction (LEMP) score was constructed by combining lesion stiffness, lesion/liver stiffness ratio and lesion stiffness variability[79]. The
CONCLUSION
Assessing liver fibrosis by noninvasive methods is always an important issue in the management of chronic liver diseases. In this article, we have summarized evidence that 2D-SWE is a promising tool for evaluating liver fibrosis in various liver diseases. It is also a useful method for evaluating portal hypertension and predicting HCC development. However, it cannot completely replace invasive methods for managing these patients because of the complexity of liver diseases and the variety of factors that affect liver stiffness. In addition, the data on some aspects of chronic liver diseases based on studies of LS by 2D-SWE are still inadequate. In that context, larger, prospective and multicenter studies of 2D-SWE are needed.

REFERENCES
1. Castera L. Invasive and non-invasive methods for the assessment of fibrosis and disease progression in chronic liver disease. Best Pract Res Clin Gastroenterol 2011; 25: 291-303 [PMID: 21497746 DOI: 10.1016/j.bpg.2011.02.003]
2. Dienstag JL. The role of liver biopsy in chronic hepatitis C. Hepatology 2002; 36: S152-S160 [PMID: 12407589 DOI: 10.1053/jhep.2002.36381]
3. Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med 2001; 344: 495-500 [PMID: 11172192 DOI: 10.1056/NEJM20010504284142]
4. Bedossa P, Dargère D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 2003; 38: 1449-1457 [PMID: 14647056 DOI: 10.1016/j.hep.2003.09.022]
5. Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Milot L, Parry C, Williams R, Burns PN. Inter- and intra-operator reliability and repeatability of shear wave elastography in the evaluation of liver elasticity. Eur J Radiol 2012; 81: 3102-3106 [PMID: 22749107 DOI: 10.1016/j.ejrad.2012.05.030]
6. Lahat Y, Shen J, Wong VW, Abrigo J, Wong GL, Chim AM, Chu SH, Chan AW, Choi PC, Ahuja AT, Chan HL, Chu WC. Quantitative elastography of liver fibrosis and spleen stiffness in chronic hepatitis B carriers: comparison of shear-wave elastography and transient elastography with liver biopsy correlation. Radiology 2013; 269: 910-918 [PMID: 23912619 DOI: 10.1148/radiol.13131028]
7. Poynard T, Munteanu M, Luckin E, Perazzo H, Ngo Y, Royer L, Fedchuk L, Sattontrom F, Pais R, Lebray P, Rudler M, Thabut D, Ratziu V. Liver fibrosis evaluation using real-time shear wave elastography: applicability and diagnostic performance using methods without a gold standard. J Hepatol 2013; 58: 928-935 [PMID: 23231316 DOI: 10.1016/j.jhep.2012.12.021]
8. Ferrarioli G, Tinelli C, Zichetti M, Above E, Poma G, Di Gregorio M, Filice C. Reproducibility of real-time shear wave elastography for the evaluation of liver elasticity. Eur J Radiol 2012; 71: 1371-1376 [PMID: 22655632 DOI: 10.1016/j.ejrad.2011.12.011]
9. Thiele M, Dellefsen S, Sevelsted Moller L, MadSEN BS, Fuglsang Hansen J, Fiala AD, Trebicka J, Krag A. Transient and 2-Dimensional Shear-Wave Elastography Provide Comparable Assessment of Alcoholic Liver Fibrosis and Cirrhosis. Gastroenterology 2016; 150: 123-133 [PMID: 26453570 DOI: 10.1053/j.gastro.2015.09.040]
10. Cassinotto C, Bourrier J, de Ledinghen V, Lebigot B, Lapuyade B, Cales P, Bhirant JB, Michalack S, Biaz EL, Carvill V, Mournies A, Oberli E, Fouchard-Hubert I, Vergniol J, Aubé C. Liver stiffness in nonalcoholic fatty liver disease: A comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology 2016; 63: 1817-1827 [PMID: 26659452 DOI: 10.1002/hep.28394]
11. Woo H, Lee JY, Yoon JH, Kim W, Cho B, Choi BI. Comparison of the Reliability of Acoustic Radiation Force Impulse Imaging and Supersonic Shear Imaging in Measurement of Liver Stiffness. Radiology 2015; 277: 881-886 [PMID: 26147680 DOI: 10.1148/radiol.2015141975]
12. Cassinotto C, Charrie A, Mournies A, Lapuyade B, Bhirant JB, Vergniol J, Gaye D, Hocquellet A, Charbonnier M, Foucher J, Laurent F, Cernak F, Montaudon M, de Ledinghen V. Liver and spleen elastography using supersonic shear imaging for the non-invasive diagnosis of cirrhosis severity and oesophageal varices. Dig Liver Dis 2015; 47: 695-701 [PMID: 25959234 DOI: 10.1016/j.dld.2015.04.008]
13. Ferrarioli G, Parekh P, Levitov AB, Filice C. Shear wave elastography for evaluation of liver fibrosis. J Ultrasound Med 2014; 33: 197-203 [PMID: 24449721 DOI: 10.7863/ultima.33.2.197]
14. Huang Z, Zheng J, Zeng J, Wang X, Wu T, Zheng R. Normal liver stiffness in healthy adults assessed by real-time shear wave elastography and factors that influence this method. Ultrasound Med Biol 2014; 40: 2549-2555 [PMID: 25282481 DOI: 10.1016/j.ultrasmedbio.2014.05.008]
of liver stiffness measurement for fibrosis assessment in patients with genotype 1 chronic hepatitis C. J Hepatol 2014; 61: 523-529 [PMID: 24815874 DOI: 10.1016/j.jhep.2014.04.045]

39 Yoneda M, Yoneda M, Mawatari H, Fujita K, Endo H, Iida H, Nozaki Y, Yonemitsu K, Hugurashi T, Takahashi K, Kobayashi N, Kirikoshi H, Abe Y, Inamori M, Kubota K, Saito T, Tamanou M, Hiraishi H, Maeyama S, Yamaguchi N, Togo S, Nakajima A. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with nonalcoholic fatty liver disease (NAFLD). Dig Liver Dis 2008; 40: 371-378 [PMID: 18083083 DOI: 10.1016/j.dld.2007.10.019]

40 Wong VW, Vergniol J, Wong GL, Foucher J, Chan HL, Le Bail B, Choi PC, Kowlo M, Chan AW, Merrouche W, Sung JH, de Lédinghen V. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010; 51: 454-462 [PMID: 20101745 DOI: 10.1002/hep.23312]

41 Deng H, Qi X, Zhang T, Qi X, Yoshiida EM, Guo X. Supersonic shear imaging for the diagnosis of liver fibrosis and portal hypertension in liver diseases: a meta-analysis. Expert Rev Gastroenterol Hepatol 2018; 12: 91-98 [PMID: 29189094 DOI: 10.1080/17474124.2018.1412257]

42 Ma X, Wang L, Wu H, Feng Y, Han X, Bu H, Zhu Q. Spleen Stiffness Is Superior to Liver Stiffness for Predicting Esophageal Varices in Chronic Liver Disease: A Meta-Analysis. PLoS One 2016; 11: e0165786 [PMID: 27829056 DOI: 10.1371/journal.pone.0165786]

43 Grgeurevic I, Puljiz Z, Brnic D, Bukun T, Heinzl R, Lukic A, Lukse B, Krauth AM, Bokun T, Heinzl R, Lukic A, Lukse B, Krauth AM, Bokun T. Liver and spleen stiffness and their ratio assessed by real-time two-dimensional-shear wave elastography in patients with liver fibrosis and cirrhosis due to chronic viral hepatitis. Eur Radiol 2015; 25: 3214-3221 [PMID: 25903706 DOI: 10.1007/s00330-015-3728-x]

44 Jeong YJ, Kim TY, Sohn J, Kim Y, Jeong WK, Oh YH, Yoo KS. Real time shear wave elastography in chronic liver diseases: accuracy for predicting liver fibrosis, in comparison with serum markers. World J Gastroenterol 2014; 20: 13920-13929 [PMID: 25320528 DOI: 10.3745/wjg.v20.i38.13920]

45 Defieux T, Gennisson JL, Bousquet L, Corouge M, Coscione A, Annrou D, Tripon S, Terris B, Mallet V, Sogini P, Tanter M, Pol S. Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography. J Hepatol 2015; 62: 317-324 [PMID: 25251998 DOI: 10.1016/j.jhep.2014.09.020]

46 Bail B, Gennisson JL, Couade M, Bercoff J, Mallet V, Fink M, Badel A, Vallet-Pichard A, Nalpas B, Tanter M, Pol S. Noninvasive in vivo liver fibrosis evaluation using supersonic shear imaging: a clinical study on 113 hepatitis C virus patients. Ultrasound Med Biol 2011; 37: 1361-1373 [PMID: 21775051 DOI: 10.1016/j.ultrasmedbio.2011.05.016]

47 Ferrarioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C; Liver Fibrosis Study Group. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology 2012; 56: 2125-2133 [PMID: 22767302 DOI: 10.1002/hep.25936]

48 Tada T, Kumada T, Toyoda H, Ito T, Sone Y, Okuda S, Tsuji N, Imayoshi Y, Yasuda E. Utility of real-time shear wave elastography for assessing liver fibrosis in patients with chronic hepatitis C infection without cirrhosis: Comparison of liver fibrosis indices. Hepatology Rev 2015; 45: E122-E129 [PMID: 25580959 DOI: 10.1111/hepr.12476]

49 Herrmann E, de Lédéning V, Cassinotto C, Chu WC, Leung YV, Ferrarioli G, Filice G, Castéra L, Vilgrain V, Ronot M, Damortier J, Guibal A, Pol S, Trebicka J, Jansen C, Strassburg C, Zheng R, Zheng J, Françoise Quevauviller T, Vonghia L, Manesis EK, Zumpoulis P, Sporea I, Thiele M, Krag A, Cohen-Bacrie C, Ciron A, Gay J, Defieux T, Friedrich-Rust M. Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: An individual patient data-based meta-analysis. Hepatology 2018; 67: 260-272 [PMID: 28370257 DOI: 10.1002/hep.29179]

50 Tada T, Kumada T, Toyoda H, Mizuno K, Sone Y, Kataoka
applicability, reliability and accuracy for clinically significant portal hypertension. J Hepatol 2015; 62: 1068-1075 [PMID: 25514554 DOI: 10.1016/j.jhep.2014.12.007]

Elkrief L, Rautou PE, Ronot M, Lambert S, Dioguardi Burgio M, Francoz C, Plessier A, Durand F, Valla D, Lebrec D, Vilgrain V, Castéra L. Prospective comparison of spleen and liver stiffness by using shear-wave and transient elastography for detection of portal hypertension in cirrhosis. Radiology 2015; 275: 589-598 [PMID: 25469784 DOI: 10.1148/radiol.141141210]

Kim T, Jeong WK, Sohn JH, Kim J, Kim MY, Kim Y. Evaluation of portal hypertension by real-time shear wave elastography in cirrhotic patients. Liver Int 2015; 35: 2416-2424 [PMID: 25875718 DOI: 10.1111/liv.12646]

Jansen C, Bogs C, Verlinden W, Thiele M, Möller P, Görtzen J, Lehmann J, Vanvollehghem T, Vonghia L, Praktiknjo M, Chang J, Krag A, Strassburg CP, Francque S, Trebicka J. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension: A prospective multicentre study. Liver Int 2017; 37: 396-405 [PMID: 27569696 DOI: 10.1111/liv.13243]

Elkrief L, Ronot M, Andrade F, Dioguardi Burgio M, Issoufaly T, Zappa M, Roux O, Bissonnette J, Payancé A, Lebrec D, Francoz C, Soubrae O, Valla D, Durand F, Vilgrain V, Castéra L, Rautou PE. Non-invasive evaluation of portal hypertension using shear-wave elastography: analysis of two algorithms combining liver and spleen stiffness in 191 patients with cirrhosis. Aliment Pharmacol Ther 2018; 47: 621-630 [PMID: 29232599 DOI: 10.1111/apt.14488]

Stefanescu A, Allegritti G, Salvatore V, Piscaglia F. Bidimensional shear wave ultrasound elastography with supersonic imaging to predict presence of oesophageal varices in cirrhosis. Liver Int 2017; 37: 1405-1409 [PMID: 28954250 DOI: 10.1111/liv.13148]

Jansen C, Thiele M, Verlinden W, Krag A, Francque S, Trebicka J. Prediction of presence of oesophageal varices just by shear-wave elastography of the liver and spleen. Liver Int 2017; 37: 1406-1407 [PMID: 28845618 DOI: 10.1111/liv.13446]

Kim T, Kim TY, Kim Y, Lim S, Jeong WK, Sohn JH. Diagnostic Performance of Shear Wave Elastography for Predicting Esophageal Varices in Patients With Compensated Liver Cirrhosis. J Ultrasound Med 2016; 35: 1373-1381 [PMID: 27280198 DOI: 10.7863/ultra.15.07024]

Jung KS, Kim SU, Ahn SH, Park YN, Kim DY, Park JY, Chon CY, Choi EH, Han KH. Risk assessment of hepatitis B virus-related hepatocellular carcinoma development using liver stiffness measurement (FibroScan). Hepatology 2011; 53: 885-894 [PMID: 21319193 DOI: 10.1002/hep.24121]

Kim MN, Kim SU, Kim BK, Park JY, Kim DY, Ahn SH, Song KJ, Park YN, Han KH. Increased risk of hepatocellular carcinoma in cirrhotic hepatitis B patients with transient elastography-defined subclinical cirrhosis. Hepatology 2015; 61: 1851-1859 [PMID: 25643638 DOI: 10.1002/hep.27735]

Jeong JY, Sohn JH, Sohn W, Park CH, Kim TY, Jun DW, Kim Y, Jeong WK. Role of Shear Wave Elastography in Evaluating the Risk of Hepatocellular Carcinoma in Patients with Chronic Hepatitis B. Gut Liver 2017; 11: 852-859 [PMID: 28651307 DOI: 10.5009/gnl16521]

Lee DH, Lee JM, Yoon JH, Kim YJ, Lee JH, Yu SJ, Han JK. Liver Stiffness Measured by Two-Dimensional Shear Wave Elastography: Prognostic Value after Radiofrequency Ablation for Hepatocellular Carcinoma. Liver Cancer 2018; 7: 65-75 [PMID: 29662834 DOI: 10.1002/1938-7961.10004]

Park HS, Kim YJ, Yu MH, Jung SI, Jeon HJ. Shear Wave Elastography of Focal Liver Lesion: Intraobserver Reproducibility and Elasticity Characterization. Ultrason Q 2015; 31: 267-271 [PMID: 26066459 DOI: 10.1097/RQU.0000000000000175]

Brunel T, Guibal A, Boularan C, Ducerf C, Mabrut JY, Dancel B, Bousset L, Rode A. Focal nodular hyperplasia and hepatocellular adenoma: The value of shear wave elastography for differential diagnosis. Eur J Radiol 2015; 84: 2059-2064 [PMID: 26299323 DOI: 10.1016/j.ejrad.2015.07.029]

Grgurevic I, Bokun T, Salkic NN, Brkljacic B, Vukelic-Markovic M, Stoos-Weic T, Aralica G, Rakic M, Filipec-Kanjaj I, Berzigotti S, Hashinokuchi S. Improvement of liver stiffness in patients with hepatitis C virus infection who received direct-acting antiviral therapy and achieved sustained virological response. J Gastroenterol Hepatol 2017; 32: 1982-1988 [PMID: 28298813 DOI: 10.1111/jgh.13788]

Korda D, Lenard ZM, Gerlei Z, Jakab Z, Haboub-Sandil A, Wagner L, Varga M, Cserekal O, Marton A, Horváth D, Takacs S, Doros A, Mathe Z. Shear-wave elastography for the assessment of liver fibrosis in liver transplant recipients treated for hepatitis C virus recurrence. Eur J Gastroenterol Hepatol 2018; 30: 27-32 [PMID: 29049126 DOI: 10.1097/EJM.0000000000001003]

Zeng J, Zheng J, Huang Z, Chen S, Liu J, Wu T, Zheng R, Lu M. Comparison of 2-D Shear Wave Elastography and Transient Elastography for Assessing Liver Fibrosis in Chronic Hepatitis B. Ultrasound Med Biol 2017; 43: 1563-1570 [PMID: 28483579 DOI: 10.1016/j.ultrasmedbio.2017.03.014]

Wu T, Wang P, Zhang T, Zheng J, Li S, Zeng J, Kudo M, Zheng R. Comparison of Two-Dimensional Shear Wave Elastography and Real-Time Tissue Elastography for Assessing Liver Fibrosis in Chronic Hepatitis B. Dig Dis 2016; 34: 640-649 [PMID: 27750231 DOI: 10.1159/000448825]

Zeng J, Liu GJ, Huang ZP, Zheng J, Wu T, Zheng RQ, Lu MD. Diagnostic accuracy of two-dimensional shear wave elastography for the non-invasive staging of hepatic fibrosis in chronic hepatitis B: a cohort study with internal validation. Eur Radiol 2014; 24: 2572-2581 [PMID: 25027837 DOI: 10.1007/s00330-014-2392-9]

Zhuang Y, Ding H, Zhang Y, Sun H, Xu C, Wang W. Two-dimensional Shear-Wave Elastography Performance in the Noninvasive Evaluation of Liver Fibrosis in Patients with Chronic Hepatitis B: Comparison with Serum Fibrosis Indexes. Radiology 2017; 283: 873-882 [PMID: 27982760 DOI: 10.1148/radiol.2016160131]

Pinzani M, Bosch J. Non invasive evaluation of portal hypertension: imaging, non-invasive markers of fibrosis and liver biopsy. Radiology 2001; 219: 627-638 [PMID: 11270393 DOI: 10.1148/radiol.2192001046]

Procopet B, Berzigotti A, Dioguardi Burgio M, Francoz C, Plessier A, Durand F, Valla D, Lebrec D, Vilgrain V, Castéra L. Prospective comparison of spleen and liver stiffness by using shear-wave and transient elastography for detection of portal hypertension in cirrhosis. Radiology 2015; 275: 589-598 [PMID: 25469784 DOI: 10.1148/radiol.141141210]

Kim T, Jeong WK, Sohn JH, Kim J, Kim MY, Kim Y. Evaluation of portal hypertension by real-time shear wave elastography in cirrhotic patients. Liver Int 2015; 35: 2416-2424 [PMID: 25875718 DOI: 10.1111/liv.12646]
Jeong JY et al. 2D-SWE in chronic liver diseases

A. Liver elastography malignancy prediction score for noninvasive characterization of focal liver lesions. *Liver Int* 2018; 38: 1055-1063 [PMID: 29028279 DOI: 10.1111/liv.13611]

79 Sebastiani G, Halfen P, Castera L, Pol S, Thomas DL, Mangia A, Di Marco V, Pirisi M, Voiculescu M, Guido M, Bourliere M, Noventa F, Alberti A. SAFE biopsy: a validated method for large-scale staging of liver fibrosis in chronic hepatitis C. *Hepatology* 2009; 49: 1821-1827 [PMID: 19291784 DOI: 10.1002/hep.22859]

P- Reviewer: Abenavoli L, Pellicano RS
S- Editor: Gong ZM
L- Editor: Ae
E- Editor: Bian YN
