Incommensurate Crystal Structure, Thermal Expansion Study and Magnetic Properties of (dimethylimidazolium)$_2$[Fe$_2$Cl$_6$(μ-O)]

Fabio Scé,1 Palmerina González-Izquierdo,1,2 Israel Cano,3,4,* Garikoitz Beobide,5 Oscar Fabelo,2 Bruno J. C. Vieira,6 João C. Waerenborgh,6 Oriol Vallcorba,7 Oscar Castillo5,* and Imanol de Pedro1,*

1 CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain
2 Institut Laue-Langevin, BP 156X, F-38042 Grenoble Cedex, France.
3 School of Chemistry, University of Nottingham, NG7 2RD, Nottingham, UK.
4 Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain
5 Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080, Bilbao, Spain.
6 Universidade de Lisboa, Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, EN 10 (km 139.7), 2695-066 Bobadela, Portugal.
7 ALBA Synchrotron Light Source, Cerdanyola del Valle, Barcelona, Spain.

E-mail: depedrov@unican.es (Imanol de Pedro); israel.canorico@unican.es (Israel Cano); oscar.castillo@ehu.eus (Oscar Castillo).
Figure S1. Reciprocal lattice showing the main and satellite reflections.
Figure S2. Variable temperature synchrotron powder X-ray diffraction patterns collected while heating the sample in the 100-378 K range.
Figure S4. Sequential refinements against follow the evolution of the propagation vector with the temperature from 100 to 208 K.
Figure S4. Comparison of the PXRD patterns collected at 20 °C during sample solid-liquid transition in a heating and cooling cycle.
Table S1 (a). Intramolecular bond parameters for the imidazolium cation and most relevant interatomic distances of (dimim)$_2$[Fe$_2$Cl$_6$(μ-O)] at 293(2) K.

Imidazolium bond parameters (Å, °)
N1–C2
C2–N3
N3–C4
C4–C5
C5–N1
N1–C6
N3–C7
C6–N1–C2
C7–N3–C2

Supramolecular interactions
Length (Å)

H···Cl (potential hydrogen bonds)
C5–H5···Cl1
C6a–H6a···Cl2i
C4i–H4i···Cl2 i
[FeCl]···[Dimim]$^+$ (potential π-d interactions)
Fe···Centroid
Cl1···Centroid
Cl2···Centroid

(a) Distance longer than the sum of vdw radii (2.95Å for C-H···Cl)

(b) Angle between Fe···Centroid vector and the imidazolium ring plane.

(c) Symmetry codes: i: 2-x, 1-7, 2-z; a: x, 1+y, 1+z
Table S1 (b). Intramolecular bond parameters for the imidazolium cation and most relevant interatomic distances of (dimim)$_2$[Fe$_2$Cl$_6$(μ-O)] at 100(2) K.

Bond	Average	Minimum	Maximum
N1–C2	1.317(13)	1.304(13)	1.331(13)
C2–N3	1.333(12)	1.320(12)	1.347(12)
N3–C4	1.370(11)	1.354(11)	1.386(11)
C4–C5	1.343(17)	1.334(17)	1.351(17)
C5–N1	1.377(12)	1.363(12)	1.391(12)
N1–C6	1.461(14)	1.455(14)	1.467(14)
N3–C7	1.467(14)	1.451(12)	1.471(12)
C6–N1–C2	124.8(8)	122.4(8)	127.3(8)
C7–N3–C2	125.7(6)	122.9(6)	128.5(7)
Assignment	(dimim)[FeCl₄] Frequency (cm⁻¹)	(dimim)₂[Fe₂Cl₆(μ-O)] Frequency (cm⁻¹)	
------------	-------------------------------	-------------------------------------	
Fe-Cl Sym-Bend	110.9	98.1	
Fe-Cl Asym-Bend	137.0	128.4	
Fe-Cl Sym-Stretch	329.4	302.6	
Fe-Cl Asym-Stretch	373.5	408.2	
Fe-O-Fe Sym-Stretch			
[Ring] ip sym bend, [Ring CH₃] CH₃-N stretch	606.3	604.3	
[Ring] op asym bend, CH₃-N CN stretch	622.7	620.4	
[Ring] ip asym bend, [Ring CH₃] CH₃-N stretch	660.6		
[Ring] ip asym bend, CH₃-N CN stretch	713.6	715.2	
Fe-O-Fe Sym-Stretch		**847.2**	
[Ring] HC=CH asym bend	858.8	861.4	
[Ring] ip sym stretch	1020.2	1026.1	
[Ring] ip sym stretch, [Ring CH₃] CH₃-N stretch	1080.5		
[Ring] ip asym stretch, [Ring CH₃] CH₃-N twist	1104.9	1108.1	
[Ring] ip asym stretch, [Ring CH₃] CH₃-N stretch	1120.9	1120.7	
[Ring CH₃] H-C-H bend	1168.3	1195.4	
[Ring] ip asym stretch, [Terminal CH₃] CH₃-N stretch	1369.7	1340.9	
[Ring] ip asym stretch, [Ring CH₃] CH₃-N stretch	1395.6	1400.2	
[Ring] ip asym stretch, CC stretch, CH₃-N CN stretch	1426.8	1435.1	
[Ring] ip asym stretch, [Ring CH₃] CH₃-N stretch	1570.2	1560.4	
[Terminal CH₃] H-C-H sym stretch	2810.4	2816.5	
[Ring CH₃] H-C-H sym stretch	2848.5	2857.8	
CH₃-N sym stretch	2961.4	2960.1	
CH₃-N sym stretch	2967.3		
[Terminal CH₃] asym stretch	2988.0	2985.4	
[Ring CH₃] H-C-H asym stretch	3112.1	3022.2	
[Ring CH₃] H-C-H asym stretch	3121.9	3110.2	
[Ring N-C(H)-N] C-H stretch	3129.0	3134.7	
[Ring] HC=CH sym stretch, [Ring] sym stretch	3151.7		
[Ring] HC=CH sym stretch, [Ring] sym stretch	3163.74	3166.2	
