Abstract: The widely known generators of Poisson random variables are associated with different modifications of the algorithm based on the convergence in probability of a sequence of uniform random variables to the created stochastic number. However, in some situations, this approach yields different discrete Poisson probability distributions and skipping in the generated numbers. This article offers a new approach for creating Poisson random variables based on the complete twister generator of uniform random variables, using cumulative frequency technology. The simulation results confirm that probabilistic and frequency distributions of the obtained stochastic numbers completely coincide with the theoretical Poisson distribution. Moreover, combining this new approach with the tuning algorithm of basic twister generation allows for a significant increase in length of the created sequences without using additional RAM of the computer.

Keywords: pseudorandom number generator; stochastic sequences; Poisson distribution; twister generator

1. Introduction

Using generators of Poisson random variables realizes a stochastic process of creating integer random numbers \(\eta \in \mathbb{H} \) having the following probability distribution with respect to the real parameter \(\alpha \) [1,2]:

\[
P(\eta, \alpha) = \frac{\alpha^\eta}{\eta!} e^{-\alpha},
\]

where \(\eta \) takes any integer values such as 0, 1, 2, \ldots, \infty.

The Poisson model usually describes a scheme of rare events: under certain assumptions about the nature of a process with random events, the number of elements observed over a fixed time interval or in a fixed region of space is often a subject of Poisson distribution. Examples include the number of particles of radioactive decay registered by a counter for some period of time, the number of calls received to a telephone switching exchange during the designated time, the number of defects in a piece of cloth or in a tape of fixed length, etc. Thus, Poisson distribution simulates a random variable that represents the number of events that occurred over a fixed time. These events happened with some fixed average intensity and independently of each other. At the same time, Poisson distribution is discrete, which is one of the important limiting cases of a binomial distribution. Therefore, it gives a good approximation of a binomial distribution for both small and large values. In this case, Poisson distribution is intensively used in quality control cards, queuing theory, telecommunications, etc.

Poisson distribution has the remarkable properties of initial probabilistic moments with respect to mathematical expectation \(m(\eta, \alpha) = E_1(\eta, \alpha) = \alpha \) and to dispersion \(D(\eta, \alpha) = E_2(\eta, \alpha) = E_1(\eta^2, \alpha) = \alpha \).

These and other properties make it possible to use Poisson distribution in theoretical and statistical
algorithms [3,4], in the study of physical phenomena [5,6], in radio engineering and nuclear
physics [7,8], in informatics and information systems [9], in modeling of data transmission and
networks [10,11], in economics and financial analysis [12], and in other areas up to biological
studies [13–16] and research for medical physics and technics [17–19].

There are various methods for implementing the pseudorandom number generators based on
Poisson distribution. The generator proposed by Knuth [20,21] is widely known and actively used
by his followers. In Wikipedia [22] it is presented in the following form in an arbitrary pseudo-code
language, where parameter α has the notation λ, and the random variable η is equal to k:

```
algorithm poisson random number (Knuth):
  init:
    Let $L \leftarrow e^{-\lambda}$, $k \leftarrow 0$ and $p \leftarrow 1$.
  do:
    $k \leftarrow k + 1$.
    Generate uniform random number $u$ in $[0,1]$ and let $p \leftarrow p \times u$.
  while $p > L$.
  return $k - 1$.
```

Below is the program code in C# for Microsoft Visual Studio. According to Equation (1), instead of λ,
the parameter α is assigned here, which can be designated by any arbitrary value, for example $\alpha = 2.0$.
The function KnuthPoisson() creates stochastic integer numbers k, which are analogous to the random
variables η in (1). Their frequency distribution is stored in an array nuK. The function Random.Next() is
used as a generator of uniform random variables. The function PoissonP() places the probabilities
$P(\eta, \alpha)$ of stochastic events in an array $pEta$. To form the distribution, a total $N = 2^w = 2^{16} = 65536$ of
uniform random variables are applied. Program names P060102 and cP060102 are chosen arbitrarily.

```csharp
namespace P060102
{
    class cP060102
    {
        static uint gc = 0; //quantity of uniform generation
        static void Main(string[] args)
        {
            int w = 16; //bit width of uniform integer variable
            long N = 1L << w; //random variable quantity
            Console.WriteLine("w = {0} N = {1}", w, N);
            double Alpha = 2.0;
            Console.WriteLine("Alpha = {0:F2}", Alpha);
            Random G = new Random(); //uniform generator p
            int wx = 200;
            int[] nuK = new int[wx]; //Knuth frequency
            for (int i = 0; i < wx; i++) nuK[i] = 0;
            int maxK = 0; //distribution length
            for (int i = 0; i < N; i++)
            {
                int k = KnuthPoisson(Alpha, N, G);
                nuK[k]++; //Knuth frequency
                if (k > maxK) maxK = k; //distribution length
            }
            Console.WriteLine("maxK = {0}", maxK);
            double[] pEta = new double[wx]; //probability
            long[] nuEta = new long[wx]; //Poisson frequency
            int cEta = PoissonP(Alpha, N, pEta, nuEta);
            VerifyProbability(N, cEta, pEta, nuEta);
            Console.WriteLine("cEta = {0} ", cEta);
            long snuEta = 0; //sum of Poisson frequency
            double spEta = 0.0; //sum of Poisson probability
        }
    }
}
```
int snuK = 0; //sum of Knuth frequency
double spK = 0.0; //sum of Knuth probability
Console.Write("Eta pK nuK");
Console.Write("pEta nuEta");
Console.WriteLine("nuK − nuEta");
int nEta = cEta > maxK ? cEta : maxK;
for (int i = 0; i <= nEta; i++) //frequency tabling
{
 double pK = (double)nuK[i]/(double)N;
 int dnu = (int)(nuK[i] - nuEta[i]);
 Console.Write("{0,2} {2,12:F10} {1,10}",
 i, nuK[i], pK);
 Console.Write("{0,12:F10} {1,10}",
 pEta[i], nuEta[i]);
 Console.WriteLine("{0,8}", dnu);
 snuK += nuK[i]; //sum of Knuth frequency
 spK += pK; //sum of Knuth probability
 snuEta += nuEta[i]; //sum of Poisson frequency
 spEta += pEta[i]; //sum of Poisson probability
}
Console.Write("sum spK snuK");
Console.WriteLine("spEta snuEta");
Console.WriteLine("gc = {0}", gc); //result viewing

//--
static int KnuthPoisson(double Lam, long N, Random G)
{
 double L = Math.Exp(-Lam);
 double p = 1.0;
 double dN = (double)N;
 int k = 0;
 do
 {
 k++;
 long z = (long)G.Next(); //uniform variable
 z = z & (N - 1);
 double u = (double)z/dN;
 p = p * u;
 gc++; //global number of uniform generation
 } while (p > L);
 return k - 1;
}
//--
static int PoissonP(double alpha, long N,
 double[] pEta, long[] nuEta)
{
 double emAlpha = Math.Exp(-alpha);
 double spEta = 0.0; //probability sum
 long snuEta = 0L; //frequency sum
\[p_\eta[0] = 1.0 \times e^{\alpha}; \quad \text{Poisson probability } p(0) \]
\[s_{p_\eta} += p_\eta[0]; \quad \text{probability sum} \]
\[n_{u_\eta}[0] = (\text{long})\text{Math.Round}(p_\eta[0] \times \text{double}N); \quad \text{frequency sum} \]
\[double r = \alpha; \quad \text{Tailor first summand} \]
\[p_\eta[1] = r \times e^{\alpha}; \quad \text{Poisson probability } p(1) \]
\[s_{p_\eta} += p_\eta[1]; \quad \text{probability sum} \]
\[n_{u_\eta}[1] = (\text{long})\text{Math.Round}(p_\eta[1] \times \text{double}N); \quad \text{frequency sum} \]
\[int Eta = 2; \quad \text{random variable value} \]
\[do \{ \]
\[r *= \frac{\alpha}{\text{double}Eta}; \quad \text{regular summand of exp} \]
\[double p = r \times e^{\alpha}; \quad \text{probability } p(Eta) \]
\[long nu = (\text{long})\text{Math.Round}(p \times \text{double}N); \]
\[long sd = s_{n_\eta} + nu; \]
\[if (nu == 0L \quad \| \quad sd > N) \text{break; } \quad \text{the tail} \]
\[p_\eta[Eta] = p; \quad \text{probability } p(Eta) \]
\[s_{p_\eta} += p; \quad \text{probability sum} \]
\[n_{u_\eta}[Eta] = nu; \quad \text{frequency } nu(Eta) \]
\[s_{n_\eta} += nu; \quad \text{frequency sum} \]
\[Eta++; \quad \text{next random variable Eta} \]
\[} while (s_{n_\eta} < N); \]
\[long d = N - s_{n_\eta}; \quad \text{tailing frequencies} \]
\[if (d == 0L) \text{return } Eta - 1; \]
\[double d_1N = (1.0 - s_{p_\eta})/\text{double}d; \]
\[do \{ \]
\[p_\eta[Eta] = d_1N; \quad \text{the tail event probability} \]
\[n_{u_\eta}[Eta] = 1; \quad \text{one-part event} \]
\[s_{n_\eta}++; \quad \text{frequency sum} \]
\[Eta++; \]
\[} while (s_{n_\eta} < N); \]
\[return Eta - 1; \]
\]
\[static void VerifyProbability(long N, int cEta, \]
\[double[] p_\eta, long[] n_{u_\eta}) \]
\[\{ \]
\[double d_1N = (\text{double})N; \]
\[for (int i = 0; i <= cEta; i++) \]
\[p_\eta[i] = (\text{double})n_{u_\eta}[i]/d_1N; \]
\[\} \]
\[\]After starting the program \texttt{P060102}, the following result may be seen on a monitor.

\[w = 16 \quad N = 65536 \]
\[Alpha = 2.00 \]
\[maxK = 12 \]
\[cEta = 10 \]
\[Eta \quad pK \quad nuK \quad p_\eta \quad n_{u_\eta} \quad nuK - n_{u_\eta} \]
In this listing, the columns \(pK \) and \(nuK \) show the values for frequency and probability obtained by Knuth algorithm. These values correspond well to the analogous ones in the columns \(pEta \) and \(nuEta \), which are calculated by Poisson model (1). However, there are some peculiarities that should be addressed here.

The first drawback is due to the fact that string 11 shows 0 by Knuth algorithm. This means that the generator did not create the 11th random variable, although it did create 12th one. This case points out the skipping of the 11th variable. In the theoretical Poisson distribution, this situation is not allowed. For some applications that are not limited to strict constraints, this could be neglected. However, if the generator is used for the comprehensive modeling of real stochastic situations, it is better to avoid this.

The second disadvantage is apparent if Knuth generator is launched repeatedly. The monitoring of the values in columns \(pK \) and \(nuK \) registers their inconsistency. In probability theory by Kolmogorov axiomatics \([2,23]\) a change in the probabilistic measure in a given space under any circumstances is categorically prohibited. The disturbance of the axioms of a space can make it difficult to interpret the results. This may be crucial when repeated tests are required, for example, in emergency situations, i.e. when it is necessary to reiterate the special cases.

The third limitation of Knuth algorithm is that counter \(gc \), which summarizes the number of generated uniform random variables, turned out to be 197025. The cycle of Knuth generator is arbitrary; hence the value of \(gc \) should also be arbitrary. In the current case, value \(gc = 197025 \) is almost three times greater than the number \(N = 65536 \) of uniform random variables, from which Knuth algorithm generates Poisson stochastic variables. This entails uncontrolled repetitions and skipping of basic random variables together with a loss of their uniformity, which ultimately leads to an insufficient quality for the results obtained.

So, summing up all the aforementioned points, the aim of this article is to propose a generator of stochastic variables in strict accordance with the theory of Poisson distribution by having no excessive and intermediate generations of uniform variables. This is the next step in searching for better algorithms for Poisson stochastic generation and their optimization.

2. Theory

Poisson stochastic process operates with random variables that linearly depend on a continuous parameter. Usually, such a parameter is the observation time of a stochastic event, but other interpretations are possible as well. In this particular case, an interest is represented both by the time moment \(t \) and by the time interval \(\tau \) following it. The randomness of events in two successive continuous time intervals \([0, t]\) and \((t, t + \tau]\) implies \([23]\) that random events in the quantity \(\eta \) could
occur during the total time duration \([0, t + \tau]\). If events in the quantity \(k\) are observed in the interval \([0, t]\), then a diminution \(\eta - k\) for these events should occur in the half-open interval \((t, t + \tau]\). The first axiomatic restriction is due to the fact that both intervals are independent, and also that the events in them separately occur as the substantive cases. The consequence of this restriction is that the probability of observing the events \(\eta\) on the common interval \([0, t + \tau]\) is the joint probability of independent events:

\[
P_{\eta}([0, t + \tau]) = P_{\eta}([0, t]) \cdot P_{\eta-k}((t, t + \tau)).
\]

(2)

In Poisson model the probability \(P_{\eta-k}((t, t + \tau])\) has a number of serious limitations, which can be formulated as follows:

1. The probability of events in the time interval \((t, t + \tau]\) does not depend on its origin \(t\):

\[
P_{\eta-k}((t, t + \tau]) = P_{\eta-k}((0, \tau]).
\]

(3)

2. The probability of one event in the time interval \((0, \tau]\) depends linearly on the length of the interval \(\tau\) with given intensity \(\lambda\); and the probability \(o(\tau)\) of observing other events is negligible:

\[
P_{1}((0, \tau]) = P_{1}(\tau) = \lambda \tau + o(\tau).
\]

(4)

In Equation (4) the notation \(\alpha = \lambda t \) (1) is used, which in the theory of probabilities [2] and the theory of random processes is in common use. Equation (4) excludes an observation of two or more events simultaneously in the time interval \(\tau\). This makes it possible to simplify it without considering the events with an infinitesimal small probability of a higher order \(o(\tau)\):

\[
P_{1}(\tau) = \lambda \tau.
\]

(5)

Equation (5) allows for reaching the determination of probability of the event absence in the time interval \(\tau\):

\[
P_{0}(\tau) = 1 - P_{1}(\tau) = 1 - \lambda \tau.
\]

(6)

Combining together Equations (2) and (6), the probability of the event absence at the time moment \(t\) in the general interval \([0, t + \tau]\) could be obtained as follows:

\[
P_{0}(t + \tau) = P_{0}(t) \cdot P_{0}(\tau) = P_{0}(t)(1 - \lambda \tau).
\]

(7)

This expression (7) leads to the definition of the derivative with respect to probability:

\[
\frac{dP_{0}(t)}{d\tau} = \lim_{\tau \to 0} \frac{P_{0}(t + \tau) - P_{0}(t)}{\tau} = -\lambda P_{0}(t).
\]

(8)

The solving of the differential Equation (8) determines the probability of the absence of events at the time moment \(t\), in which the constant \(c = 1\) is derived from the initial condition \(P_{0}(0) = 1\). The result is the following:

\[
P_{0}(t) = ce^{-\lambda t} = e^{-\lambda t}.
\]

(9)

Equation (9) with allowance for Equation (2) and Constraints (5) and (6) admits calculating the probability of a single event \(P_{1}([0, t + \tau]\]) as follows:

\[
P_{1}([0, t + \tau]) = P_{0}(t)P_{1}(\tau) + P_{1}(t)P_{0}(\tau) = e^{-\lambda t} \lambda \tau + P_{1}(t)(1 - \lambda \tau).
\]

(10)

By analogy with Transformations (7) and (8), Equation (10) leads to the following differential equation:

\[
\frac{dP_{1}(t)}{d\tau} = \lambda e^{-\lambda t} - \lambda P_{1}(t).
\]

(11)
The solving of Equation (11) determines \(P_1(t) \) with the initial condition \(P_1(0) = 0 \): \[
P_1(t) = \lambda t e^{-\lambda t}. \tag{12}
\]

Performing successively the Transformations (10)–(12) for all variables \(\eta \in [0, \infty) \), the distribution of Poisson probabilities \(P_\eta(\lambda t) \) with respect to quantity \(\eta \) of random events with intensity \(\lambda \) at the time moment \(t \) could be obtained as follows:

\[
P_\eta(\alpha = \lambda t) = \frac{(\lambda t)^\eta}{\eta!} e^{-\lambda t} = \frac{\eta^\eta}{\eta!} e^{-\eta}. \tag{13}
\]

Since the set of \(\eta \in \mathbb{N} = [0, \infty) \) of random events in Kolmogorov axiomatics contains \(\sigma \)-algebra, the probability measure \(P_\eta(\alpha = \lambda t) \) (13) uniquely determines the cumulative function \(F_\eta(\eta, \alpha = \lambda t) \) of the distribution probabilities:

\[
F_\eta(\eta, \alpha = \lambda t) = \sum_{k=0}^{\eta} \frac{(\lambda t)^k}{k!} e^{-\lambda t} = \sum_{k=0}^{\eta} \frac{\eta^k}{k!} e^{-\eta}. \tag{14}
\]

Using a definition of number \(e^x = \sum_{k=0}^{\infty} x^k / k! \) for Equation (14), it follows that \(F_\eta(\eta, \lambda) \in [0 : 1] \).

It should be noted here that a probability space guarantees uniqueness of the determination of the inverse probability distribution function. If any value \(h \) of the cumulative distribution function \(F_\eta(\eta_h, \alpha = \lambda t) = h \) is given, then a value of the stochastic variable \(\eta_h \) can be obtained as the inverse transformation \(\eta_h = F_\eta^{-1}(h) \). Therefore, by specifying the complete uniform random values \(F_\eta^{-1}(\eta, \alpha = \lambda t) \in [0 : 1] \), it always uniquely obtains the stochastic values \(\eta \) of this distribution. This main mathematical model contains the bases for constructing the generators of random variables from given functions of their distribution. Let us use this statement for developing the generator of Poisson stochastic variables. For this it is necessary to get an absolutely complete and uniform generator, which has no repetitions and skipping of random variables. Let us use here the twister generator \textit{nsDeonYuliTwist32D} [24–27], which satisfies such properties.

In discrete probability space, the number \(N \) of events is fixed. For each quantitative variable \(\eta \), with the probability \(p(\eta, \alpha = \lambda t) \), it corresponds the frequency \(v(\eta, \alpha = \lambda t) \) of observation of the random events:

\[
v(\eta, \alpha = \lambda t) = p(\eta, \alpha = \lambda t) \cdot N = P_\eta(\lambda t) \cdot N. \tag{15}
\]

According to Kolmogorov axiomatics, the determination of probability \(p(\eta, \alpha = \lambda t) \) takes precedence over the determination of frequency \(v(\eta, \alpha = \lambda t) \). Therefore, in general for the values of frequency \(v(\eta, \alpha = \lambda t) \) in (15), it is possible to use mathematical rounding in the fractional part for the multiplication \(p(\eta, \alpha = \lambda t) \cdot N \).

Below is the program code, in which the twister generator \textit{nsDeonYuliTwist32D} [26] creates complete set \(\left[0 : 2^w - 1 \right] \) of uniform integer random variables \(z \), having the length of \(w \) bits. Function \(\text{PoissonD()} \) creates an array \textit{pEta} of Poisson probabilities (13) and an array of corresponding frequencies \textit{nuEta} (15). The last trailing single frequencies complement an array of frequency distributions \textit{nuEta} to the completeness \(2^w \) of basic uniform random variables. Therefore, the trailing probabilities \textit{pEta} are complemented relying on the trailing single frequencies in \textit{nuEta}. Such a negligible deviation in the rest of the distribution (13) allows for preserving the completeness of generation of Poisson stochastic variables based on initial generation of uniform random variables \(z \in \left[0 : 2^w - 1 \right] \). The values of the cumulative frequency function are located in an array of summarized frequencies \textit{cnuEta}. Inverse function \(F_\eta^{-1}(\eta_h, \alpha = \lambda t) \) is created by using function \textit{SearchEta()} in accordance with a searching algorithm for the index of element in an array of the cumulative frequencies \textit{cnuEta}. Program names \textit{P060202} and \textit{cP060202} are taken by chance.
using nsDeonYuliTwist32D; //complete twister generator
 //of integer uniform numbers
namespace P060202
{ class cP060202
{ static void Main(string[] args)
{ int w = 32; //bit width of uniform integer variable
 long N = 1L << w; //random variable quantity
 Console.WriteLine("w = {0} N = {1}", w, N);
 double Alpha = 2.0;
 Console.WriteLine("Alpha = {0:F2}", Alpha);
 int wX = 200;
 double[] pEta = new double[wX]; //Poisson probability
 long[] nuEta = new long[wX]; //Poisson frequency
 long[] cnuEta = new long[wX]; //cumulative frequency
 int cEta = PoissonDY(Alpha, pEta, nuEta, cnuEta, N);
 VerifyProbability(N, cEta, pEta, nuEta, cnuEta);
 Console.WriteLine("cEta = {0}", cEta);
 cDeonYuliTwist32D DYG = new cDeonYuliTwist32D();
 DYG.SetW(w); //set bit width of uniform variable
 DYG.Start(); //start uniform generator
 long[] nuDYG = new long[wX]; //frequencies of generator
 for (int i = 0; i < wX; i++) nuDYG[i] = 0;
 for (long j = 0; j < N; j++)
{ long z = DYG.Next(); //uniform variable
 int Eta = SearchEta(z, cnuEta, cEta);
 nuDYG[Eta]++; //uniform variable counter
}
 double spEta = 0.0; //sum of Poisson probability
 long snuEta = 0; //sum of Poisson frequency
 long snuDYG = 0; //sum of variables by generator
 Console.WriteLine("Eta pEta nuEta");
 Console.WriteLine(" cnuEta nuDYG");
 for (int Eta = 0; Eta <= cEta; Eta++)
{ Console.WriteLine(
 "{0,2} {1,12:F10} {2,10} {3,10} {4,10}",
 Eta, pEta[Eta], nuEta[Eta],
 cnuEta[Eta], nuDYG[Eta]);
 spEta += pEta[Eta];
 snuEta += nuEta[Eta];
 snuDYG += nuDYG[Eta];
}
 Console.WriteLine("Sum spEta snuEta");
 Console.WriteLine(" snuDYG");
 Console.WriteLine(" {0,12:F10} {1,10}",
 spEta, snuEta);
 Console.WriteLine(" {0,10} {1,10} {2,10}", snuDYG);
 Console.ReadKey(); //result viewing
} //--
static int PoissonDY (double alpha, double[] pEta, long[] nuEta, long[] cnuEta, long N)
{
 double emAlpha = Math.Exp(-alpha); // sum of probability
 long snuEta = 0L; // sum of frequency
 pEta[0] = 1.0 * emAlpha; // Poisson probability p(0)
 spEta += pEta[0]; // sum of probability
 nuEta[0] = (long)Math.Round(pEta[0] * (double)N);
 snuEta += nuEta[0]; // sum of frequency
 cnuEta[0] = snuEta; // cumulative frequency cnu(0)
 double r = alpha; // Tailor first summand
 pEta[1] = r * emAlpha; // Poisson probability p(1)
 spEta += pEta[1]; // sum of probability
 nuEta[1] = (long)Math.Round(pEta[1] * (double)N);
 snuEta += nuEta[1]; // sum of frequency
 cnuEta[1] = snuEta; // cumulative frequency cnu(1)
 int Eta = 2; // random variable
 do
 { r *= alpha/(double)Eta; // regular summand of exp
 double p = r * emAlpha; // probability p(Eta)
 long nu = (long)Math.Round(p * (double)N);
 long sd = snuEta + nu;
 if (nu == 0L || sd > N) break; // the tail
 pEta[Eta] = p; // probability p(Eta)
 spEta += p; // sum of probability
 nuEta[Eta] = nu; // frequency nu(Eta)
 snuEta += nu; // sum of frequency
 cnuEta[Eta] = snuEta; // cumulative frequency
 Eta++; // next random variable
 Eta--; // tailing frequencies
 } while (snuEta < N);
 Eta = 2;
 long d = N - snuEta; // tailing frequencies
 if (d == 0L) return Eta;
 double d1N = (1.0 - spEta)/(double)d;
 do
 { Eta++;
 pEta[Eta] = d1N; // probability of a tail event
 nuEta[Eta] = 1; // one-frequency event
 snuEta++; // sum of frequency
 cnuEta[Eta] = snuEta; // cumulative frequency
 } while (snuEta < N);
 return Eta;
}

// --
static void VerifyProbability (long N, int cEta, double[] pEta, long[] nuEta, long[] cnuEta)
{
 double dN = (double)N;
 for (int i = 0; i <= cEta; i++)
 pEta[i] = (double)nuEta[i]/dN;
}
After launching the program P060202 the following listing appears on the monitor.

$w = 32 \quad N = 4294967296$

$\text{Alpha} = 2.00$

$c\text{Eta} = 16$

Eta	$p\text{Eta}$	nuEta	cnuEta	nuDYG
0	0.1353352831	581260615	581260615	581260615
1	0.2706705665	1162521231	1743781846	1162521231
2	0.1804470443	3681317231	1743781846	1162521231
3	0.0902235222	775014154	4068824308	387507077
4	0.0360894089	155002831	423827139	155002831
5	0.0120298029	51667610	4275494749	51667610
6	0.0034370865	14762174	4290256923	14762174
7	0.0008592717	3690544	4293947467	3690544
8	0.0001909493	820121	4294767588	820121
9	0.0000381898	164024	4294931612	164024
10	0.0000069437	29823	4294961435	29823
11	0.0000011572	4970	4294966405	4970
12	0.0000001781	765	4294967170	765
13	0.0000000254	109	4294967279	109
14	0.0000000035	15	4294967294	15
15	0.0000000005	2	4294967296	2
Sum	1.000000000	4294967296	4294967296	

In this listing, the $p\text{Eta}$ column contains Poisson probabilities distribution (13). In the next column nuEta, there is a corresponding frequency distribution. The sum of all frequencies $\text{nuEta} = 4294967296$ has to be coincided with generation of the basic uniform random variables having $w = 32$ bits in the total quantity of $N = 2^w = 2^{32} = 4294967296$. The counters nuDYG of the last column confirm the complete coincidence of distribution of the generated random variables with the theoretical frequency distribution nuEta.

At this step, the theoretical issues are solved. With the currently reached result, the technology of the cumulative analysis provides an impeccable generation of the random variables with a frequency distribution according to Poisson probabilities. Testing of P060202 with $w \in [3:32]$ and $\alpha \in [0.1:10]$ confirms an impeccability of received results.

3. Construction and Results

Below is class $\text{nsDeonYuliCPoissonTwist32D}$, in which the random variables are created in accordance with Poisson distribution (13). This class is derived over the base one $\text{nsDeonYuliTwist32D}$
of the twister generator of uniform random variables [24–27], which in DieHard Tests [28–32] shows an absolute uniform distribution. An example of generation of Poisson stochastic variables is given here later in program P060302.

```csharp
using nsDeonYuliTwist32D; //complete twister generator
    //of integer uniform numbers
namespace nsDeonYuliCPoissonTwist32D
{
    class cDeonYuliCPoissonTwist32D : cDeonYuliTwist32D
    {
        public long N; //quantity of uniform events
        public double dN; //quantity of uniform events
        public double Alpha = 2.0; //Alpha parameter
        double emAlpha; //exp(-Alpha)
        public int cEta; //maximal Eta
        public double[] pC; //probability distribution
        public long[] nuC; //frequency distribution
        public long[] cnuC; //cumulative frequencies

        //------------------------------------------------------------------------------
        public cDeonYuliCPoissonTwist32D () {}
        //------------------------------------------------------------------------------
        public void CStart(double alpha)
        {
            Alpha = alpha; //Alpha parameter
            base.Start(); //uniform twister generator
            CStartInside();
        }
        //------------------------------------------------------------------------------
        public void CTimeStart(double alpha)
        {
            Alpha = alpha; //Alpha parameter
            base.TimeStart(); //uniform twister generator
            CStartInside();
        }
        //------------------------------------------------------------------------------
        void CStartInside()
        {
            int wX = 200;
            pC = new double[wX]; //probability distribution
            nuC = new long[wX]; //frequency distribution
            cnuC = new long[wX]; //cumulative frequencies
            emAlpha = Math.Exp(-Alpha); //exp(-Alpha)
            N = (long)N + 1L; //quantity of uniform events
            dN = (double)N; //quantity of uniform events
            cEta = CPoissonDY(); //probability and frequency
            CVerifyProbability(); //probability verification
        }
        //------------------------------------------------------------------------------
        public int CNext()
        {
            uint z = base.Next(); //uniform random variable
            return CSearchEta(z); //Poisson random variable
        }
        //------------------------------------------------------------------------------
        int CPoissonDY()
        {
            double spC = 0.0; //probability sum
            long snuC = 0L; //frequency sum
```
pC[0] = 1.0 * emAlpha; //Poisson probability p(0)
spC += pC[0]; //probability sum
nuC[0] = (long)Math.Round(pC[0] * dN); //frequency nu(0)
snuC = nuC[0]; //frequency sum
cnuC[0] = snuC; //cumulative frequency cnu(0)
double r = Alpha; //Tailor first summand
pC[1] = r * emAlpha; //Poisson probability p(1)
spC += pC[1]; //probability sum
nuC[1] = (long)Math.Round(pC[1] * dN); //frequency nu(1)
snuC += nuC[1]; //frequency sum
cnuC[1] = snuC; //cumulative frequency cnu(1)
int Eta = 2; //random variable
do
{ r *= Alpha/(double)Eta; //regular summand of exp
double p = r * emAlpha; //probability p(Eta)
long nu = (long)Math.Round(p * dN);
if (nu == 0L) break; //a tail zero frequencies
long sd = snuC + nu;
if (nu == 0L || sd > N) break; //the tail
pC[Eta] = p; //probability p(Eta)
spC += p; //probability sum
nuC[Eta] = nu; //frequency nu(Eta)
snuC += nu; //frequency sum
cnuC[Eta] = snuC; //cumulative frequency
Eta++; //the next random variable Eta
} while (snuC < N);
Eta--;
long d = N - snuC; //a tail frequencies
if (d == 0L) return Eta;
double d1N = (1.0 - spC)/(double)d;
do
{ Eta++;
pC[Eta] = d1N; //a tail event probability
nuC[Eta] = 1; //one-frequency event
snuC++; //frequency sum
cnuC[Eta] = snuC; //cumulative frequency
} while (snuC < N);
return Eta;

void CVerifyProbability()
{ for (int i = 0; i <= cEta; i++)
 pC[i] = (double)nuC[i]/dN;
}

int CSearchEta(uint z)
{ int Eta = 0;
 for (; Eta <= cEta; Eta++)
 if (z < cnuC[Eta]) break;
 return Eta;
As an example, let us use the following program code showing the complete generation of Poisson stochastic variables on a base space of uniform values having the bit length $w = 7$ (for arbitrary $w \leq 32$ the listing of $N = 2^w = 32 = 4294967296$ random numbers is too long to present here). This allows demonstrating in a visual form the work of the twister generator $\text{nsDeonYuliCPoissonTwist32D}$ with observance of Poisson distribution. Program names $P060302$ and $cP060302$ are assigned arbitrarily.

```csharp
using nsDeonYuliCPoissonTwist32D; //Poisson twister generator
    //by technology of cumulative frequencies

namespace P060302
{
    class cP060302
    {
        static void Main(string[] args)
        {
            cDeonYuliCPoissonTwist32D PT =
                new cDeonYuliCPoissonTwist32D();
            int w = 7; //bit width of uniform random variable
            PT.SetW(w); //set bit width of uniform variable
            double Alpha = 2.0; //Alpha parameter
            PT.CStart(Alpha); //start generator
            // PT.CTimeStart(Alpha);//start generator using time value
            Console.WriteLine("w = {0} N = {1}", PT.w, PT.N);
            Console.WriteLine("Alpha = {0:F2}", Alpha);
            Console.WriteLine("cEta = {0}", PT.cEta);
            int wX = 200;
            int[] nuG = new int[wX]; //frequencies of generator
            for (int i = 0; i < wX; i++) nuG[i] = 0;
            for (int i = 0, j = 1; i < PT.N; i++, j++)
            {
                int Eta = PT.CNext(); //Poisson variable
                Console.Write("{0,5}", Eta);
                if (j % 8 == 0) Console.WriteLine();
                nuG[Eta]++; //counter of random variable
            }
            Console.WriteLine();
            double spEta = 0.0; //Poisson probability sum
            long snuEta = 0; //Poisson frequency sum
            int snuG = 0; //frequency sum by generator
            Console.Write("Eta pC nuC");
            Console.Write(" cnuC nuDYG");
            for (int Eta = 0; Eta <= PT.cEta; Eta++)
            {
                Console.WriteLine("{0,2} {1,12:F10} {2,8} {3,8} {4,8}",
                    Eta, PT.pC[Eta], PT.nuC[Eta],
                    PT.cnuC[Eta], nuG[Eta]);
                spEta += PT.pC[Eta];
                snuEta += PT.nuC[Eta];
                snuG += nuG[Eta];
            }
            Console.WriteLine("Sum spC snuC");
        }
    }
}
```

After executing the program P060302 the following result appears on monitor.

\[w = 7 \quad N = 128 \]
\[\text{Alpha} = 2.00 \]
\[c\text{Eta} = 6 \]

\[
\begin{array}{ccccccccc}
1 & 6 & 3 & 1 & 3 & 1 & 1 & 2 \\
2 & 1 & 0 & 2 & 0 & 2 & 3 & 3 \\
3 & 2 & 1 & 4 & 2 & 3 & 0 & 0 \\
0 & 4 & 2 & 1 & 3 & 0 & 1 & 2 \\
1 & 1 & 5 & 2 & 0 & 1 & 2 & 3 \\
3 & 2 & 1 & 4 & 1 & 3 & 4 & 0 \\
0 & 4 & 2 & 1 & 2 & 0 & 1 & 1 \\
1 & 1 & 4 & 2 & 5 & 1 & 2 & 2 \\
2 & 2 & 1 & 3 & 1 & 2 & 4 & 5 \\
5 & 3 & 2 & 1 & 2 & 5 & 1 & 1 \\
1 & 0 & 3 & 2 & 4 & 1 & 2 & 2 \\
2 & 2 & 1 & 3 & 1 & 2 & 3 & 4 \\
4 & 3 & 2 & 0 & 2 & 4 & 0 & 1 \\
1 & 0 & 3 & 1 & 4 & 1 & 2 & 2 \\
2 & 1 & 0 & 3 & 1 & 2 & 3 & 3 \\
3 & 3 & 2 & 0 & 2 & 3 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Eta} & p\text{C} & \text{nuC} & \text{cnuC} & \text{nuDYG} \\
0 & 0.132812500 & 17 & 17 & 17 \\
1 & 0.273437500 & 35 & 52 & 35 \\
2 & 0.273437500 & 35 & 87 & 35 \\
3 & 0.179687500 & 23 & 110 & 23 \\
4 & 0.093750000 & 12 & 122 & 12 \\
5 & 0.039062500 & 5 & 127 & 5 \\
6 & 0.007812500 & 1 & 128 & 1 \\
\text{sum} & \text{spC} & \text{snuC} & \text{snuDYG} \\
1.000000000 & 128 & 128 & \\
\end{array}
\]

This result shows a stochastic sequence of random variables generated by twister generator \textit{nsDeonYuliCPoissonTwist32D}. The direct calculation by this listing confirms that all the elements including the random variables, their probabilities and frequencies do indeed satisfy Poisson distribution. Similar results could be obtained for other quantities as well, for example with a length of \(w \leq 32 \) bits.

4. Discussion

As mentioned at the beginning of this article, Poisson distribution has basic properties of initial probabilistic moments in terms of mathematical expectation and dispersion. The mathematical expectation for this type of a distribution characterizes the average number of successful results at any
interval. Usually, it is determined on a basis of the experimentally obtained data for a certain situation. Next, if the mathematical expectation is determined, then the dispersion is known also because of the distribution properties of Poisson probabilities. If it turns out that the values of the mathematical expectation and the dispersion are sufficiently close, then the hypothesis of the distribution of certain random variables in accordance with Poisson law is correct. However, if there is a meaningful difference in the obtained values of these characteristics, this would testify against the hypothesis of Poisson distribution of the given random variables.

Therefore, first of all, it is necessary to confirm two basic aforementioned properties of Poisson distribution on equality of parameter α to mathematical expectation and dispersion. Below is the program code that validates this. The generator in it creates the random variables in quantity $N = 2^w = 2^{32} = 4294967296$. Program names $P060402$ and $cP060402$ are chosen by chance.

```csharp
using nsDeonYuliCPoissonTwist32D; //Poisson twister generator
//by technology of cumulative frequencies
namespace P060402
{
    public class cP060402
    {
        public static void Main(string[] args)
        {
            cDeonYuliCPoissonTwist32D PT =
                new cDeonYuliCPoissonTwist32D();
            PT.SetW(32); //bit width of random variable
            double Alpha = 2.0; //Alpha parameter
            PT.CStart(Alpha); //start generator
            Console.WriteLine("w = {0} N = {1}", PT.w, PT.N);
            Console.WriteLine("Alpha = {0:F2}", Alpha);
            double p1 = 1.0/(double)PT.N; //event probability
            double m = 0.0; //mathematical expectation
            double D = 0.0; //dispersion
            for (long i = 0; i < PT.N; i++)
            {
                int Eta = PT.CNext(); //random variable
                m += Eta * p1; //mathematical expectation
                D += Eta * Eta * p1; //dispersion
            }
            D = D - m * m;
            Console.WriteLine("m = {0:F10}", m);
            Console.WriteLine("D = {0:F10}", D);
            Console.ReadKey(); //result viewing
        }
    }
}
```

After running the program $P060402$, the following listing appears on the monitor.

```
w = 32  N = 4294967296
Alpha = 2.00
m = 2.0000000014
D = 2.0000000116
```

This listing shows the obtained values of mathematical expectation m and dispersion D. Their negligible difference from the value of parameter $\alpha = 2.0$ is related to the discreteness of Poisson model in probabilities and frequencies of the events.

Further, a general discussion should also supplement the estimates of possible generation of the random variables with respect to Poisson distribution. To do this, let us refer to the capabilities of
the basic twister generator nsDeonYuLiTwist32D, which is used here for uniform random variables creation. For a given length of w bits it realizes several complete twisting sequences. Initial sequence contains $N = 2^w$ non-repeating numbers distributed uniformly and randomly in interval $[0 : 2^w - 1]$. For utilization, the constants a and c of the twister generation of the random variable $x_i = (ax_{i-1} + c) \mod 2^w$ obtained from the value of the previous variable x_{i-1} are used. When the generator completes the creation of one series consisting of $N = 2^w$ random variables, it automatically proceeds to the creation of the next twisting series, in which $N = 2^w$ elements are obtained as well. So, for each pair of twister constants a and c, the twisting uniform sequences in quantity N_T could be created:

$$N_T = w2^w. \tag{16}$$

Consequently, one complete twisting cycle (16) with unchanged a and c realizes the following quantity N_t for uniform random variables that allows the creation of the same number of Poisson stochastic variables:

$$N_t = N \cdot N_T = 2^w \cdot w2^w = w2^{2w}. \tag{17}$$

To obtain a complete cycle of all Poisson stochastic series with quantity $N_s = w2^{2w}$ of the random variables in each complete twister (17), it is necessary to take into account the varieties of coefficients a and c in the twister transformation $x_i = (ax_{i-1} + c) \mod 2^w$. The values of these coefficients must not exceed the interval limit $a, c \in [0 : 2^w - 1]$ of all uniform variables in the single series. Quantity N_a of the coefficient a is defined as:

$$N_a = \frac{N}{4} = \frac{2^w}{2^2} = 2^{w-2}. \tag{18}$$

During the generation of uniform random variables, the values of the coefficients c have to be odd, i.e., $c \mod 2 \neq 0$. Their quantity N_c is defined as the following:

$$N_c = \frac{N}{2} = \frac{2^w}{2^1} = 2^{w-1}. \tag{19}$$

Collecting Equations (16)–(19) together, the estimate for the total number N_{sac} of the random variables is defined in the following manner:

$$N_{sac} = N_s \cdot N_t \cdot N_c = w2^{2w} \cdot 2^{w-2} \cdot w^{w-1} = w2^{4w-3}. \tag{20}$$

Finally, the information concerning non-repeatable cycle N_{l} has the following estimation:

$$N_{l} = 2^w N_{sac} = 2^{w2^{4w-3}}. \tag{21}$$

As an example, let us get the real values of these estimations for the bit length $w = 32$. In this case, each series contains $N = 2^{32} = 4294967296$ Poisson stochastic variables, and in each of these series Poisson distribution is observed absolutely. In this case, the total number of generated Poisson stochastic variables is $N_{sac}(w = 32) = 322^{32}2^{32-3} = 2^{5}2^{125} = 2^{130}$, and the value of the non-repeatable cycle (21) is defined as $N_{l}(w = 32) = 2^{23}2^{130} = 2^{135}$.

Therefore, the complete discrete simulation of the random variables with Poisson distribution using the aforementioned basic twister generator confirms the important properties in terms of mathematical expectation and dispersion. Moreover, an automatic extension of the series of initial uniform random variables extends significantly the periods of non-repeatability (Equations (20) and (21)) for the series of Poisson stochastic variables. This notably exceeds the features of the known generators, which bases the probabilistic convergence algorithm.

5. Conclusions

An analysis of the source material shows that algorithms for generation of Poisson stochastic variables according to the probabilistic convergence technology lead to different realizations of
distributions. Moreover, the skipping of elements in such distributions may also occur, which is inappropriate in the theory of Poisson stochastic processes. Since the quality of the generators depends on the basic generations used for uniform random variables, it has been proposed here to use the twister generator nsDeonYuliCPoissonTwist32D to ensure the completeness of technology of the cumulative array of frequencies in Poisson space. This approach allows for reducing the time of operations and improving the quality of generation. In the discrete probabilistic Poisson space, the test results confirmed the complete coincidence of the distributions of the obtained stochastic variables with the ones received in theoretical modeling. Moreover, an automatic tuning of the parameters of the basic twister uniform generator nsDeonYuliTwist32D allows obtaining a significant increase in the overall period of non-repeatable generation of Poisson stochastic variables.

Author Contributions: Paper writing, conceptualization and methodology, programming and analysis, investigation and data curation, algorithm improvement were done by A.F.D. Paper writing, conceptualization, validation, original draft preparation, reviewing and editing, project administration and supervision were done by Y.A.M. All authors have read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are thankful to Matthew Vandenberg, J. Alex Watts, Jacqueline Nolan and Walter Harrington (University of Arkansas for Medical Sciences, Little Rock, AR, USA) for the proofreading.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Feller, W. An Introduction to Probability Theory and Its Applications, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008.
2. Gnedenko, B. Theory of Probability, 6th ed.; CRC Press: Boca Raton, FL, USA, 1998; p. 520.
3. Zhang, H.; Li, B. Characterizations of discrete compound poisson distribution. Commun. Stat.-Theory Method. 2016, 45, 6789–6802. [CrossRef]
4. Guerriero, V. Power low distribution: method of multi-scale inferential statistics. J. Mod. Math. Front. 2012, 1, 21–28.
5. Arkani, M.; Khalafi, H.; Vosoughi, N. A flexible multichannel digital random pulse generator based on FPGA. J. Nucl. Sci. Tech. 2013, 3, 109–116. [CrossRef]
6. Rasoanaivo, A.N.; Horowitz, W.A. Medium-induced radiation beyond the Poisson approximation. J. Phys. Conf. 2017, 878. [CrossRef]
7. Veiga, A.; Spinelli, E. A pulse generator with Poisson-exponential distribution for emulation of radioactive decay events. In Proceedings of the IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS), Florianopolis, Brazil, 28 February–2 March 2016; pp. 31–34. [CrossRef]
8. Kirkpatrick, J.M.; Young, B.M. Poisson statistical methods for the analysis of low-count gamma spectra. IEEE Trans. Nucl. Sci. 2009, 56, 1278–1282. [CrossRef] [PubMed]
9. Marsaglia, G.; Tsang, W.W.; Wang, J. Fast generation of discrete random variables. J. Stat. Software 2004, 11, 1–11. [CrossRef]
10. Kumari, S.; Valarmathi, M.; Prince, S. Generation of pseudorandom binary sequence using shot noise for optical encryption. In Proceedings of the International Conference on Communication and Signal Processing (IC CSP), Melmaruvathur, India, 6–8 April 2016; pp. 0119–0122. [CrossRef]
11. Hosamo, M. A Study of the Source Traffic Generator Using Poisson Distribution for ABR Service. Model. Simul. Eng. 2012, 2012, 1–6. [CrossRef]
12. Zhang, H.; Liu, Y.; Li, B. Notes on discrete compound poisson model with applications to risk theory. Insur. Math. Econ. 2014, 59, 325–336. [CrossRef]
13. Shanmugam, R. Informatics about fear to report rapes using bumped-up poisson model. Am. J. Biostat. 2013, 3, 17–29. [CrossRef]
14. Menyaev, Y.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Juratli, M.A.; Galan, E.I.; Tuchin, V.V.; Zharov, V.P. Optical clearing in photoacoustic flow cytometry. Biomed. Optic. Express 2013, 4, 3030–3041. [CrossRef] [PubMed]
15. Menyaev, Y.A.; Carey, K.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Galanzha, E.I.; Stumhofer, J.S.; Zharov, V.P. Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery. *Biomed. Optic. Express* **2016**, *7*, 3643–3658. [CrossRef] [PubMed]

16. Juratli, M.A.; Menyaev, Y.A.; Sarimollaoglu, M.; Melerzanov, A.V.; Nedosekin, D.A.; Culp, W.C.; Suen, J.Y.; Galanzha, E.I.; Zharov, V.P. Noninvasive label-free detection of circulating white and red blood clots in deep vessels with a focused photoacoustic prob. *Biomed. Opt. Express* **2018**, *9*, 5667–5677. [CrossRef] [PubMed]

17. Sitek, A.; Celler, A.M. Limitations of Poisson statistics in describing radioactive decay. *Phys. Med.* **2015**, *31*, 1105–1107. [CrossRef] [PubMed]

18. Menyaev, Y.A.; Zharov, V.P. Experience in development of therapeutic photomatrix equipment. *Biomed. Eng.* **2006**, *40*, 57–63. [CrossRef]

19. Menyaev, Y.A.; Zharov, V.P. Experience in the use of therapeutic photomatrix equipment. *Biomed. Eng.* **2006**, *40*, 144–147. [CrossRef]

20. Knuth, D.E. *Art of Computer Programming, Volume 2: Seminumerical Algorithms*, 3rd ed.; Addison-Wesley: Boston, MA, USA, 2014; p. 784.

21. Knuth, D.E. *Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1*, 1st ed.; Addison-Wesley: Boston, MA, USA, 2011; p. 912.

22. Wikipedia. Poisson Distribution. Available online: https://en.wikipedia.org/wiki/Poisson_distribution (accessed on 26 May 2019).

23. Kolmogorov, A.N.; Fomin, S.V. *Elements of the Theory of Functions and Functional Analysis*; Dover Publication: Mineola, NY, USA, 1974; p. 128.

24. Deon, A.F.; Menyaev, Y.A. The Complete Set Simulation of Stochastic Sequences without Repeated and Skipped Elements. *J. Univers. Comput. Sci.* **2016**, *22*, 1023–1047. [CrossRef]

25. Deon, A.F.; Menyaev, Y.A. Parametrical tuning of twisting generators. *J. Comput. Sci.* **2016**, *12*, 363–378. [CrossRef]

26. Deon, A.F.; Menyaev, Y.A. Twister generator of arbitrary uniform sequences. *J. Univers. Comput. Sci.* **2017**, *23*, 353–384. [CrossRef]

27. Deon, A.F.; Menyaev, Y.A. Uniform twister plane generator. *J. Comput. Sci.* **2018**, *14*, 260–272. [CrossRef]

28. Wikipedia. Diehard Tests. Available online: https://en.wikipedia.org/wiki/Diehard_tests (accessed on 26 May 2019).

29. The Marsaglia Random Number CDROM Including the Diehard Battery of Tests of Randomness. Available online: https://stat.fsu.edu/pub/diehard/ (accessed on 26 May 2019).

30. Runs Test for Detecting Non-randomness. Available online: https://wwww.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm (accessed on 26 May 2019).

31. Sample 33092: Wald-Wolfowitz (or Runs) Test for Randomness. Available online: https://support.sas.com/kb/33092.html (accessed on 26 May 2019).

32. Alhakim, A.; Hooper, W. A non-parametric test for several independent samples. *J. Nonparametric Stat.* **2008**, *20*, 253–261. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).