Effect of Sowing Dates and Planting Geometry on Yield attributes, Yield and Economics of Linseed under the North Hill Zone of Chhattisgarh

Rahul Raj1 and D. K.Gupta2*

RMD Collage of Agriculture and Research Station, Indira Gandhi Krishi Vishwavidyalaya
Ambikapur, Surguja- 497001 (Chhattisgarh)

*Corresponding author

A B S T R A C T

A field experiment was conducted during the rabi season of 2019-20 at Indira Gandhi Krishi Vishwavidyalaya University, Raipur, Rajmohini Devi College of Agriculture and Research Station, Ambikapur, to study the effect of sowing dates and planting geometry on yield attributes, yield and economics of linseed. The treatments comprised of 4 sowing dates, viz. D1: 4th week of October, D2: 1st week of November, D3: 2nd week of November and D4: 3rd week of November in main plots and 3 spacing, S1: 22.5 cm x 5 cm, S2: 22.5 cm x 7.5 cm and S3: 22.5 cm x 10 cm in sub-plots with replicated three times in a split plot design. Sowing dates as well as spacing significantly affected yield attributes, yield, and economics. The results of the experiment showed significantly higher number of capsule/plant (40.01), weight of capsule / plant (16.16 g), seed yield (12.61 q/ha), straw yield (32.75 q/ha), biological yield (45.58 q/ha), harvest index (27.79 %), oil yield (479 kg/ha) and accrued highest gross monetary return (Rs 56745 ha-1), net monetary return (Rs. 39145 ha-1) with B:C (2.22) were recorded in sowing on 4th week of October (D1). Sowing of linseed with planting geometry S3 (22.5 cm x 10 cm) was recorded significantly higher yield attributes but yield and economics were higher with S1 (22.5×5 cm) per unit area.

Keywords
Linseed, Date of sowing and planting geometry, interaction effect

Introduction

Linseed (Linum usitatissimum L) also known as flax is a member of genus Linum in the family Linaceae. It is commonly known as Alashi or Alsi. Every part of the linseed plant is utilized commercially, either directly or after processing. In India linseed is cultivated in about 3.30 lakh hectares with contribution of 1.72 lakh tones to the annual oilseed production of the country. The average productivity of linseed is 523 kg/ha and it contributes 7 per cent to the world linseed production (Anonymous, 2017). Major linseed growing states in India are Madhya Pradesh, Uttar Pradesh, Chhattisgarh, Bihar, Rajasthan, Orissa and Karnataka. At present Chhattisgarh cultivated over 28 thousand ha area with a production of 12.58 thousand tones and productivity of 446 kg/ha (3rd Advance Estimates of DES, 2017-18)). It is a major crop grown as “Utera” during Rabi season. In Surguja district, linseed is cultivated over 3.016 thousand ha area with a production of 1.508 thousand tones and productivity of 500 kg/ha (State Chhattisgarh,
Agriculture Contingency Plan for District Surguja, 2017-18).

The Optimum sowing time is one of the most important agronomic factor and non-monetary input but has noticeable impact on productivity of crop. Sowing dates significantly affect growth character, yield and its components as well as oil yield in flax (Al-Doori, 2012). The sowing date was a very important management tool in minimizing the negative impact of high temperature and moisture stress during the critical flowering and seed filling periods (Chauhan et al., 2008). Sowing date plays a key role in the yield of crops and the knowledge of this factor is imperative in working out a strategy for enhancing the yield of oil and fiber. Delay in sowing leads to an increase in temperature of the environment during the reproductive growth stage of the crop decline the crop yield. In case of plant geometry the proper row spacing is an important aspect for better growth and enhancing production potential of a crop by optimizing the utilization of moisture, nutrients and interception of light, CO$_2$, among others. These planting processes can lead to intraspecific competition (between plants) and interspecific competition (with other plants) for environmental resources causing damages in growth, development, and consequently the production of crops (Zanine and Santos, 2004).

Results and Discussion

Effect of sowing dates

Effect on yield attributes

Significantly highest number of capsules/plant (40.01), weight of capsule/plant (16.16 g), number of seeds/capsule (6.88) were recorded under treatment D$_1$ (4th week of October) sown crop as compared to delayed sowing dates but which was at par with D$_2$ (1st week of November) sown crop. This was possibly due to timely planting and crop exposure to favourable weather during the whole growth period and thus different phases of crop were completed at appropriate timings, which ultimately resulted in production of more number of branches/plant providing more sites for reproductive structures viz., number of capsules/plant, weight of capsule/plant, number of seeds/capsule. This also confirms the results of Ganga et al., (2015) at Varanasi and Maurya et al., (2017) at Varanasi and Raundal et al., (2015) at Pune and also confirm the findings of present investigation (Table 1).

Effect on yield

Treatment D$_1$ (4th week of October) were recorded significantly higher 1000 seed weight (6.33), seed yield (12.61 q/ha), straw yield (32.75 q/ha), biological yield (45.58 q/ha), harvest index (27.79 %), oil content (38 potassium (268 kg ha$^{-1}$). The experiment was carried out in split plot design (SPD) with 3 replications. With four levels of date of sowing, i.e. D$_1$: 4th week of October, D$_2$: 1st week of November, D$_3$: 2nd week of November and D$_4$: 3rd week of November in the main plot and three levels of planting geometry, viz. S$_1$: 22.5 cm × 5 cm, S$_2$: 22.5 cm × 7.5 cm and S$_3$: 22.5 cm × 10 cm in the sub plots.
oil yield (479 kg/ha), sown crop as compared to delayed sowing dates but which was at par with D₂ (1st week of November) sown crop. This due to timely sown crop got an advantage because after having completed its vegetative growth satisfactorily it came in the reproductive stage when the temperature was quite favourable. The results lend support to those reported by; El-Mohsen et al., (2013) at Egypt and Maurya et al., (2017) at Varanasi and; Ganga et al., (2015) at Varanasi and Al-Doori (2012) at Mousul (Table 2)

Economics

Various date of sowing D₁(4th week of October) also recorded the highest gross monetary returns (Rs 56,745 ha⁻¹), net monetary returns of (Rs 39,145 ha⁻¹) with B:C of (2.22). These findings are substantiated with those reported by Gohil et al., (2016) at Navsari and Maurya et al., (2017) at Varanasi (Table 3).

Effect of spacing

Effect on yield attributes

Number of capsules/plant and weight of capsule/plant, number of seeds/capsule were also indicated that significantly influenced due to different planting geometry. Treatment S₃ (22.5 cm× 10 cm) recorded remarkable higher number of capsules/plant (40.01), weight of capsule/plant (13.66 g), number of seeds/capsule (6.68), which was on par with S₂ (22.5× 7.5 cm), while, lowest number of capsules plant⁻¹ (37.75), weight of capsule/plant (11.26 g), number of seed/capsule (6.27) were noted under treatment S₁ (22.5× 5 cm). This also confirms the results of Kushwaha et al., (2006) at Kanpur, Chaudhary (2009) at Kanpur, Raundal et al., (2015) at Pune and Maurya et al., (2017) at Varanasi (Table 1).

Effect on yield

Planting geometry of S₁ (22.5 cm× 5 cm) was recorded significantly higher seed yield (12.72 q/ha), straw yield (33.17 q/ha), biological yield (45.89 q/ha), harvest index (27.81 %), oil yield (458 kg/ha) per unit area. But oil content (38%), 1000 seed weight (5.78 g) were recorded higher with planting geometry S₃ (22.5 cm× 10 cm). This due to timely sown crop got an advantage because after having completed its vegetative growth satisfactorily it came in the reproductive stage when the temperature was quite favourable. The results lend support to those reported by; El-Mohsen et al., (2013) at Egypt, Maurya et al., (2017) at Varanasi, Ganga et al., (2015) at Varanasi and Al-Doori (2012) at Mousul (Table 2).

Economics

Economic studies of different treatments differed significantly due to different planting geometry. The crop sown on S₁ (22.5 × 5 cm) closer spacing gave the highest gross monetary returns (Rs 57,240 ha⁻¹), net monetary return (Rs 39,640 ha⁻¹) and benefit: cost ratio (2.25) followed by S₂ (22.5 × 7.5 cm) and S₃ (22.5 × 10 cm) wider sown crops. This also confirms the results of Ganga et al., (2015) and Maurya et al., (2017) at Varanasi (Table 3).

Interaction effect

Effect on yield attributes

The interaction effect between date of sowing and planting geometry produce significant effect on number of capsules/plant, weight of capsule/plant (g) and number of seed/capsule. The data presented in Table 1 revealed that the interaction effect of date of sowing and planting geometry were found to be significantly superior highest number of
capsules/plant (42.10), weight of capsule/plant (18.50 g), number of seed/capsule (7.30) with treatment of D1xS3 (4th week of October with 22.5×10 cm spacing). These findings are substantiated with those reported by Gohil et al., (2016) at Navsari.

Effect on yield

The interaction effect between date of sowing and planting geometry produce significant effect on seed yield (14.22 q/ha), straw yield (34.20 q/ha), biological yield (48.96 q/ha), harvest index (29.05 %), oil yield (526 kg/ha), were recorded highest with treatment D1xS1 (4th week of October with 22.5×5 cm spacing) per unit area but oil content(40%) and 1000 seed weight (8.60 g) were recorded highest with treatment D1xS3 (4th week of October with 22.5×10 cm spacing) closer spacing sown crop as compared to wider sown crop. The results lend support to those reported by; El-Mohsen et al., (2013) at Egypt.

Economics

The interaction effect between date of sowing and planting geometry produce significant effect on gross monetary returns (Rs 58,230 ha⁻¹), net monetary return (Rs 40,763 ha⁻¹) and benefit: cost ratio (2.33), were recorded highest with treatment D1xS1 (4th week of October with 22.5×5 cm spacing). This also confirms the results of Ganga et al., (2015) and Maurya et al., (2017) at Varanasi.

Table.1 Effect of sowing dates and spacing on yield attributes of linseed

Treatment	Number of capsules/plant	Weight of capsules/plant(g)	Number of seed/capsule
Date of sowing (D)			
D1	40.01	16.16	6.88
D2	39.83	13.48	6.65
D3	38.11	10.94	6.22
D4	37.18	9.00	6.07
S.Em. ±	0.85	1.73	0.19
C.D.at 5%	2.55	5.19	NS
Planting geometry (S)			
S1	37.75	11.26	6.27
S2	38.8	12.27	6.38
S3	40.01	13.66	6.68
S.Em. ±	0.38	0.73	0.16
C.D.at 5%	1.11	2.19	NS
Interaction			
S.Em. ±	0.27	1.19	0.32
C.D.at 5%	NS	3.67	NS

(D1: 4th week of October – 23 October, D2: 1st week of November – 3 November, D3: 2nd week of November – 13 November, D4: 3rd week of November – 23 November, S1: 22.5 cm × 5 cm, S2: 22.5 cm × 7.5 cm, S3: 22.5 cm × 10 cm)
Table 2 Effect of sowing dates and spacing on yield of linseed

Treatment	Oil content (%)	Oil yield (kg/ha)	1000 seed weight	Seed yield (q/ha)	Straw yield (q/ha)	Biological yield (q/ha)	Harvest index (%)
Date of sowing (D)							
D1	38	479	6.33	12.61	32.75	45.58	27.79
D2	37	429	5.99	11.60	31.30	42.56	26.94
D3	36	368	5.44	10.22	30.59	40.68	25.12
D4	36	331	4.98	9.22	27.65	39.90	24.91
S.Em. ±	1	31.2	0.35	0.74	0.75	2.01	0.83
C.D.at 5%	NS	94.8	1.04	2.30	2.33	5.98	2.62
Planting geometry (S)							
S1	36	458	5.53	12.72	33.17	45.89	27.81
S2	36	366	5.72	10.17	30.12	40.35	25.41
S3	38	374	5.78	9.83	28.42	38.30	25.24
S.Em. ±	2	95.0	0.19	1.02	1.52	2.74	1.42
C.D.at 5%	NS	NS	NS	NS	NS	NS	NS
Interaction							
S.Em. ±	0.80	0.40	0.46	1.04	1.70	2.17	2.95
C.D.at 5%	NS	NS	NS	NS	NS	NS	NS

Table 3 Effect of sowing dates and spacing on economics of linseed

Treatment	Gross monetary return (Rs/ha)	Total cost of cultivation (Rs/ha)	Net monetary return (Rs/ha)	B:C ratio
Date of sowing (D)				
D1	56745	17600	39145	2.22
D2	52200	17600	34600	1.96
D3	45990	17600	28390	1.61
D4	41400	17600	23800	1.35
S.Em. ±	3228	-	3094	0.20
C.D.at 5%	11233	-	10700	0.60
Planting geometry (S)				
S1	57240	17600	39640	2.25
S2	45765	17600	28165	1.60
S3	44235	17600	26635	1.51
S.Em. ±	1879	-	1667	0.65
C.D.at 5%	NS	-	NS	NS
Interaction				
S.Em. ±	4602	-	4274	0.32
C.D.at 5%	NS	-	NS	NS
In conclusion, the date of sowing revealed that crop sown on D1 (4th week of October) significantly influenced and recorded highest yield attributes and yields and economics. The next better performing date of sowing was D2 (1st week of November). The wider planting geometry S3 (22.5 × 10 cm) recorded significantly higher yield attributes, but in case of yields and economics, closer planting geometry S1 (22.5 × 5 cm) recorded higher value per unit area as compared to wider planting geometry. Linseed crop should be sown on D1 (4th week of October) with S1 (22.5 × 5 cm) planting geometry archiving higher yields and net monetary return per unit area.

References

Anonymous. 2017. Department of Agriculture, Cooperation & Farmers Welfare Ministry of Agriculture & Farmers Welfare Government of India. Page: 3.
Anonymous. 2017. State Chhattisgarh, Agriculture contingency plan for District Surguja. Page: 3.
Al-Doorisaad Ahmed Mohamed. 2012. Influence of sowing dates on growth, yield and quality of some flax genotypes (Linumusitatissimum L.). College of Basic Education Researchers Journal. Vol. (12): pp. 733-746.
Anonymous. 2017. Department of Agriculture, Cooperation & Farmers Welfare Ministry of Agriculture & Farmers Welfare Government of India. Page: 3.
Chaudhry, Sanjai. 2009. Study on row spacings for different varieties of linseed (Linumusitatissimum L.). International Journal of Plant Sciences. Vol. 4(2): pp.373-374.
Chauhan, D.V.S., Lodhi, M.D. and Verma, Kumar, Neeraj. 2008. Effect of sowing dates, varieties and number of irrigations on yield attributes, yield and quality of linseed (Linumusitatissimum L.) under bundelkhand condition of Uttarpradesh. Agric. Sci. Digest. Vol.28(4): pp. 271-273.
El-Mohsen, A.A., Abdallah, A.M. and Mahmoud, G.O. 2013. Optimizing and describing the influence of planting dates and seeding rates on flax cultivars under Middle Egypt region conditions. World Essays Journal. Vol. 1(2):pp.28-39.
Ganga P, Singh R.K, Singh A, Singh, K. 2015. Growth, yield and nutrient uptake and quality of Linseed (Linumusitatissimum L.) varieties as affected by varying sowing dates. Environment and Ecology. Vol. 33(1A): pp.271-274.
Gohil JR, Kamani MD, Kumar D, Arvadiya LK. 2016. Performance of linseed (Linumusitatissimum Linn.) to different dates of sowing, seed rate and row spacing. Advances in Life Science. Vol. 5(5): pp.1755-1759.
Kushwaha, CL, Prasad K, Kushwaha, SP. 2006. Effect of row spacing and nitrogen doses on yield attributes and yield of linseed (Linumusitatissimum L.) varieties under irrigated conditions of Bundelkhand. Plant Archives. Vol. 6(2): pp.741-743.
Maurya, A.C., Raghuveer, M., Goswami , G. and Kumar, S. 2017. Influences of date of sowing on yield attributes and yield of linseed (Linumusitatissimum L.) varieties under dryland condition in eastern uttar Pradesh, International Journal of Current Microbiology and Applied Sciences. 6(7): 481-487.
Raundal, PU., Pohare, VB., Shinde, LD. 2015. Response of different linseed varieties under extended sowing date, International journal of Tropical. Vol. 33(4): pp.3485-3488.
Zanine, Anderson de Moura and Santos,
Edson Mauro, 2004. Competicao Entre Especies De Plants – Uma Revisao
Competition Among Species Of Plants

How to cite this article:
Rahul Raj and Gupta, D.K. 2020. Effect of Sowing Dates and Planting Geometry on Yield Attributes, Yield and Economics of Linseed under the North Hill Zone of Chhattisgarh. Int.J.Curr.Microbiol.App.Sci. 9(10): 3749-3755. doi: https://doi.org/10.20546/ijcmas.2020.910.431