Antisense Oligonucleotide Inhibition of MicroRNA-494 Halts Atherosclerotic Plaque Progression and Promotes Plaque Stabilization

Eva van Ingen,1,2 Amanda C. Foks,3 Mara J. Kröner,3 Johan Kuiper,3 Paul H.A. Quax,1,2 Ilze Bot,3 and Anne Yaël Nossent1,2,4,5

INTRODUCTION

Atherosclerosis is a chronic inflammatory disease characterized by progressive plaque buildup in the arterial wall. Most plaques that develop during one’s life remain clinically silent. However, lesion progression and disruption of a vulnerable plaque may result in a cardiovascular event, such as an ischemic stroke or myocardial infarction.1 Surgical interventions to prevent, for example, ischemic stroke are carotid endarterectomy or stenting, but due to the perioperative risks, these are only performed when a plaque causes a stenosis of the carotid artery of more than 70% or when the plaque is symptomatic, i.e., causing transient ischemic attacks (TIAs).2

We have previously shown that third-generation antisense (3GA) inhibition of 14q32 microRNA (miRNA)-494 reduced early development of atherosclerosis. However, patients at risk of atherosclerotic complications generally present with advanced and unstable lesions. Here, we administered 3GAs against 14q32 miRNA-494 (3GA-494), miRNA-329 (3GA-329), or a control (3GA-ctrl) to mice with advanced atherosclerosis. Atherosclerotic plaque formation in LDLr−/− mice was induced by a 10-week high-fat diet and simultaneous carotid artery collar placement. Parallel to 3GA-treatment, hyperlipidemia was normalized by a diet switch to regular chow for an additional 5 weeks. We show that, even though plasma cholesterol levels were normalized after diet switch, carotid artery plaque progression continued in 3GA-ctrl mice. However, treatment with 3GA-494 and, in part, 3GA-329 halted plaque progression. Furthermore, in the aortic root, intra-plaque collagen content was increased in 3GA-494 mice, accompanied by a reduction in the intra-plaque macrophage content. Proatherogenic cells in the circulation, including inflammatory Ly6Chi monocytes, neutrophils, and blood platelets, were decreased upon miRNA-329 and miRNA-494 inhibition. Taken together, treatment with 3GA-494, and in part with 3GA-329, halted atherosclerotic plaque progression and promotes stabilization of advanced lesions, which is highly relevant for human atherosclerosis.

MicroRNAs (miRNAs) are post-transcriptional negative regulators of gene expression. Because of their ability to fine-tune expression of multiple target genes, miRNAs are promising drug targets for complex diseases, including atherosclerosis.3 Several studies have focused on the therapeutic potential of miRNA-modulation in atherosclerosis. For example, the miRNA-33 family, including miRNA-33a and miRNA-33b, regulates cholesterol metabolism by targeting cholesterol transporter ABCA1. Inhibition of miRNA-33 resulted in decreased very low-density lipoprotein (VLDL), whereas high-density lipoprotein (HDL) was increased in the plasma.4–6 More recently, it was shown that miRNA-33 inhibition also promotes cholesterol efflux from arterial macrophages and thereby directly regulates atherosclerotic plaque formation.7 Inflammation in atherosclerosis was reduced via miRNA-155 inhibition. miRNA-155 is predominantly expressed in pro-inflammatory macrophages. Inhibition

Received 14 June 2019; accepted 24 September 2019;
https://doi.org/10.1016/j.omtn.2019.09.021.
Correspondence: Anne Yaël Nossent, Department of Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands.
E-mail: a.y.nossent@lumc.nl

1Department of Surgery, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; 2Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; 3Division BioTherapeutics, LACDR, Leiden University, 2333 CC, Leiden, the Netherlands; 4Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; 5Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
Furthermore, plaque stability was shown to increase upon plasma cholesterol levels. Importantly, inhibition of 14q32 initial lesion development, increased plaque stability, and decreased atherosclerosis, we showed that inhibition of 14q32 miRNAs reduced remodeling, one for intimal hyperplasia and one for accelerated shown previously.

The 14q32 cluster is the largest known miRNA gene cluster in humans and contains more than 50 miRNA genes. We have evaluated the therapeutic inhibition of 14q32 miRNAs in different vascular remodeling processes. In two different murine models of vascular remodeling, one for intimal hyperplasia and one for accelerated atherosclerosis, we showed that inhibition of 14q32 miRNAs reduced initial lesion development, increased plaque stability, and decreased plasma cholesterol levels. Importantly, inhibition of 14q32 miRNAs reduced macrophage influx in the intima in the intimal hyperplasia model. These studies, however, focused on the effects of 14q32 miRNA inhibition in initial lesion development, where most patients present in the clinic with advanced, symptomatic atherosclerotic lesions.

In the current study, we therefore aimed to investigate the effects of 14q32 miRNA inhibition on advanced lesions. We used third-generation antisenes (3GA) to inhibit two different 14q32 miRNAs, miRNA-494 and miRNA-329. Parallel to 3GA treatment, we included a diet switch from high-fat high-cholesterol to regular chow to normalize hyperlipidemia, in order to closely mimic routine lipid-lowering treatment.

First, we show that inhibition of 14q32 miRNAs, particularly miRNA-494, halted atherosclerotic plaque progression and increased plaque stability in mice with advanced atherosclerotic lesions. Second, we show that plasma cholesterol levels show a modest but further reduction after miRNA-494 and miRNA-329 inhibition. Third, we show that pro-atherogenic cells in the circulation, including inflammatory Ly6Chi monocytes, neutrophils, and platelets, were decreased upon miRNA-329 and miRNA-494 inhibition, which is highly relevant in further reducing the risk of atherosclerotic complications.

RESULTS

3GA-494 and 3GA-329 Treatment Reduces Plasma Cholesterol Levels and Body Weight

The timeline of the study is shown in Figure S1. Plasma cholesterol levels showed a clear decrease in all groups after diet replacement (Figure 1A). Both 3GA-494- and 329-treated groups showed a further reduction in total plasma cholesterol levels compared to the 3GA-control (3GA-ctrl) 5 weeks after diet switch (3GA-494, 155 ± 6 mg/dL; 3GA-329, 168 ± 11 mg/dL; versus 3GA-ctrl, 214 ± 13 mg/dL, p < 0.05; Figure 1B). Similar to as shown previously, body weight did not significantly differ after diet switch in the 3GA-ctrl group as compared to baseline but showed a reduction in 3GA-494- or 3GA-329-treated mice compared to 3GA-ctrl (Figure 1C). Subsequently, all groups increased in body weight during the remainder of the study, independent of the treatment, but body weight levels of 3GA-494- and 3GA-329-treated mice remained decreased compared to 3GA-ctrl. The size of the spleen was increased in all of the 3GA-494-treated mice and in half of the 3GA-329-treated mice, as is further described below. All other organs appeared normal, and mice did not show any pathological changes.

3GA-494 Treatment Halts Plaque Progression in the Carotid Artery

In the carotid arteries, miRNA-494 and miRNA-329 expression were inhibited in both 3GA-494 and 3GA-329, respectively, compared to 3GA-ctrl (Figure 2A). miRNA-494 and miRNA-329 target gene expression levels (miRNA-494—IL33, TIMP3, and TLR4; miRNA-329—VEGFA, MeF2A, and TLR4), however, were not significantly different compared to the control 1 week after final 3GA injections (Figures S2A and S2B). 3GA-ctrl-treated mice showed increased carotid artery average plaque size compared to baseline, indicating continued atherogenesis, even after lowering plasma cholesterol levels by diet replacement (baseline, 18 ± 4 × 10^3 μm², versus 3GA-ctrl, 32 ± 10 × 10^3 μm²; Figures 2B and 2D). At the site of maximal stenosis, plaque size was increased in 3GA-ctrl compared
to baseline (baseline, 30 ± 8 × 10^3 μm^2, versus 3GA-ctrl, 56 ± 16 × 10^3 μm^2; Figure 2C). In 3GA-494 mice, carotid artery plaque size was significantly decreased compared to 3GA-ctrl. In fact, 3GA-494 mice had similar plaque sizes to baseline mice in both average plaque sizes (baseline, 18 ± 4 × 10^3 μm^2; 3GA-ctrl, 32 ± 10 × 10^3 μm^2, versus 3GA-494, 13 ± 3 × 10^3 μm^2, p < 0.05; Figures 2B and 2D) and at the site of maximal stenosis (baseline, 30 ± 8 × 10^3 μm^2; 3GA-ctrl, 56 ± 16 × 10^3 μm^2; versus 3GA-494, 23 ± 7 × 10^3 μm^2, p < 0.05; Figure 2C). 3GA-329-treated mice showed a trend toward a smaller average plaque size and at the site of maximal stenosis (average, 3GA-329, 15 ± 1 × 10^3 μm^2, p = 0.09; maximal stenosis, 3GA-329, 21 ± 3 × 10^3 μm^2, p = 0.1; Figures 2B–2D). Due to the small size, most plaques showed a fatty streak phenotype rather than an advanced atherosclerotic plaque phenotype. Advanced atherosclerotic plaque features, such as a fibrous cap and necrotic core, were lacking in most plaques, and therefore, we were unable to quantify and compare this among the groups.

Inhibition of miRNA-494 Increases Plaque Stability in Advanced Plaques

In the aortic root, plaque size and necrotic core size did not differ between groups (Figures 3A and 3B). Other markers for plaque stability, however, were increased after miRNA-494 and, in part, miRNA-329 inhibition (Figures 3C–3E). Intra-plaque collagen content was strongly increased in 3GA-494 mice compared to the control (3GA-ctrl, 37% ± 3%, versus 3GA-494 55% ± 3%, p < 0.0005; Figure 3C). Treatment with 3GA-329 resulted in four mice in increased collagen content, whereas the other four showed similar collagen content as baseline mice (baseline, 15% ± 2%, versus 3GA-329, 34% ± 9%; Figure 3C). SMCs are the main source of collagen synthesis in atherosclerotic plaques, but the SMC content was similar in all groups (baseline, 12% ± 1%; 3GA-ctrl, 14% ± 1%; 3GA-494, 11% ± 1%; 3GA-329, 13% ± 1%; Figure 3D). Relative intra-plaque macrophage area was reduced upon diet switch from diet with high-fat high-cholesterol to regular chow (baseline, 22% ± 2%, versus 3GA-ctrl, 17% ± 2%; Figure 3E). In 3GA-494 mice, a further reduction in intra-plaque macrophage content was shown (3GA-ctrl, 17% ± 2%, versus 3GA-494, 12% ± 1%, p < 0.05; Figure 3E), which is another marker of increased plaque stability. For the 3GA-329 treated mice, the relative macrophage area remained similar to control levels (3GA-329, 17% ± 2%; Figure 3E). Numbers of intra-plaque neutrophils were very small and not different among the groups (data not shown). Plaque necrotic core sizes were not significantly different between groups as well (Figure 3E).

Blood, Spleen, and Lymph Node Analyses of LDLr^{−[−]} Mice Treated with 3GA-494, 3GA-329, or 3GA-ctrl

Blood analysis by Sysmex and flow cytometry revealed altered numbers of circulating cells upon 3GA-494 and 3GA-329 treatment compared to 3GA-ctrl (Figure 4 and Figure S3). White blood cells (WBCs) remained similar after miRNA-494 inhibition but were decreased after miRNA-329 inhibition (Figure 4A). Myeloid cells, as defined by CD11b⁺ and CD11c[−]CD11b⁺, were elevated in 3GA-494 mice, whereas CD11b⁺ cells were decreased in 3GA-329 mice (Figures S3A and S3B). More specifically, we observed that neutrophils (Ly6C[−]Ly6G⁺int), which are part of the myeloid compartment of WBCs, were decreased after miRNA-494 and miRNA-329 inhibition (Figures 4B and 4C). The total monocyte count, also part of the myeloid compartment of WBCs, was not significantly altered, although we did observe differences in the pro-inflammatory subset (Ly6C⁺Ly6G[−]) quantified by fluorescence-activated cell sorting (FACS) analysis (Figures 4D and 4E).

Although total amounts of lymphocytes were similar, CD19⁺ B cells were reduced in 3GA-494 mice, and CD4⁺ and CD8⁺ T cells were slightly increased in 3GA-329 mice (Figure 4F and Figures S3C–S3E). Furthermore, miRNA-494 inhibition decreased red blood cell
and, in particular, strongly reduced platelet count (Figures 4G and 4H). In the 3GA-329-treated mice, three mice showed reduced platelet counts, whereas platelet counts were normal in the remaining mice (Figure 4H).

Percentages of CD4$^+$ and CD8$^+$ T cells in the spleen were decreased in 3GA-494-treated mice and showed a trend toward a reduction in 3GA-329-treated mice (Figures S3F and S3G). However, since the spleens were enlarged due to proliferation of other cell types, as discussed below, the absolute numbers of CD4$^+$ and CD8$^+$ T cells may be similar among all groups. CD4$^+$ and CD8$^+$ T cells in the draining lymph nodes were not different among all groups (Figures S3H and S3I).

Splenic Megakaryocyte Retention

As mentioned above, all 3GA-494 mice and half of the 3GA-329 mice showed splenomegaly compared to 3GA-ctrl and baseline mice (Figures 5A and 5B). Staining for Von Willebrand factor (VWF) revealed strongly elevated numbers of megakaryocytes in the enlarged spleens of 3GA-494 mice compared to 3GA-ctrl, indicating increased megakaryopoiesis (Figures 5A and 5C). In 3GA-329 mice, only the mice with low platelet counts showed splenomegaly, accompanied by strongly elevated megakaryocyte numbers (Figure 5B). Despite the administration of a miRNA-494 inhibitor, splenic expression of miRNA-494 was upregulated 1 week after the final 3GA injection (Figure 5C). Increased expression of megakaryocyte/platelet markers, i.e., glycoprotein Ib platelet subunit alpha (GPIbα) and subunit beta (GpIbβ), both part of the platelet receptor complex for VWF, and integrin subunit beta 3 (Itgβ3), in the spleen of 3GA-494 mice confirmed indeed increased megakaryopoiesis (Figures 5D–5F). Megakaryocytes and erythrocytes derive from a bipotent erythrocytic-megakaryocyte progenitor. Transcription factors involved in commitment of erythrocytic-megakaryocyte progenitor cells toward megakaryocyte progenitors and platelet production were also increased upon 3GA-494 treatment (Figures 5G–5I). Expression of transcription factors involved in hematopoietic stem cell (HSC) proliferation and differentiation, which are putative targets of miRNA-494 and conserved in both human and mouse, as was predicted by http://www.targetscan.org (release 7.2), was similar in both 3GA-494- and 3GA-ctrl-treated mice (Figure S2C). In the spleen of 3GA-329 mice, no significant differences in megakaryocyte/platelet markers or transcription factor expression was shown compared to 3GA-ctrl mice (Figures 5D–5F).

A previous study showed that in primary myelofibrosis, overexpression of miRNA-494 in HSCs promotes megakaryopoiesis via...
downregulation of suppressor of cytokine signaling 6 (SOCS6).24 We quantified SOCS6 expression in the spleen. However, SOCS6 expression showed a trend toward upregulation compared to 3GA-ctrl instead of downregulation (Figure S2D).

As the bone marrow is also a source of megakaryopoiesis, we stimulated freshly isolated murine bone marrow cells with either 3GA-ctrl or 3GA-494. Although the miRNA-494 expression was downregulated in bone marrow cells after 3GA-494 treatment, we did not observe differences in SOCS6 expression nor in expression of transcription factors for megakaryocyte commitment and GPIbα and GPIbβ expression (Figures S2E and S2F).

Increased Hepatic Platelet Markers

Platelets can be cleared by hepatocytes and liver macrophages (Kupffer cells).25 Expression of miRNA-494 in the liver was similar in both 3GA-494 and 3GA-ctrl mice (Figure 6A). miRNA-329 was not expressed at all in the liver of either 3GA-329 or 3GA-ctrl mice (data not shown). Expression levels of platelet markers quantified by qPCR were upregulated in the liver of 3GA-494-treated mice, suggesting increased platelet clearance compared to 3GA-ctrl (Figures 6B–6D). In 3GA-329 mice, only the mice with low platelet counts showed increased expression of platelet markers in the liver (Figures 6B–6D).

Increased Expression of Platelet Receptors upon 3GA-494 Treatment

We further investigated whether 3GA-494 treatment could lead to miRNA-494 inhibition in anucleate platelets. Compared to 3GA-ctrl, mature miRNA-494 expression was first downregulated after
1 h and then upregulated after 4 h of incubation with 3GA-494 (Figure 7A). As platelets have no transcription, upregulation of miRNA-494 was accompanied by depletion of the primary miRNA-494 transcript, pri-miRNA-494, indicating rapid processing of the primary miRNA-494 upon miRNA-494 downregulation (Figure 7B). Changes in the intermediate precursor miRNA-494, pre-miRNA-494, were less pronounced (Figure 7C).

Genes that we initially tested as housekeeping genes, including GAPDH, U6, and YWHAE, appeared to be unstable in 3GA-treated platelets (Figures S4B–S4D).26 Pre-ITGβ3 showed stable expression and was, therefore, used as a housekeeping gene (Figure S4A). Pro-survival genes BCL2 and MCL1 are putative targets of miRNA-494, as was predicted by http://www.targetscan.org (release 7.2). Since miRNA-494 was upregulated in platelets, we checked whether BCL2 and MCL1 were downregulated, leading to more apoptosis and subsequently to more clearance. MCL1 appeared downregulated in 3GA-494, but BCL2 did not (Figures S4E and S4F).

Next, we quantified expression of platelet GPIBα and integrin subunit ITGβ3, both part of platelet receptors involved in platelet activation, and found upregulation after 4 h of 3GA-494 treatment compared to 3GA-ctrl (Figures 7D–7F). Since splicing occurs upon platelet activation, we measured pre-mRNA levels of MCL1, GAPDH, and GPIBα.27–28 Pre-mRNA levels were declined in 3GA-494-treated platelets compared to 3GA-ctrl, indicating increased splicing and hence increased platelet activation in 3GA-494-treated platelets (Figures S4G–S4I).

Time points from 8 h on were excluded, since all platelets, independent of their treatment, were hyper-activated in culture.

DISCUSSION

In this study, we first show that inhibition of 14q32 miRNAs, particularly miRNA-494, in mice with advanced atherosclerotic lesions halted carotid atherosclerotic plaque progression and promoted plaque stability in the aortic root of LDLr⁻/⁻ mice. Second, plasma cholesterol levels were lowered further by 14q32 miRNA inhibition than by diet switch alone. Third, pro-atherogenic cells in the circulation, including pro-inflammatory monocytes (Ly6Ch⁻), neutrophils, and platelets were decreased after miRNA-329 and miRNA-494 inhibition.

Even though plasma cholesterol was lowered by diet switch, plaques in the carotid artery continued to grow in 3GA-ctrl mice. With 3GA-494 treatment and, in part, 3GA-329 treatment, we managed to halt plaque progression in the carotid artery. Although we combined 3GA treatment with plasma lipid lowering, plaque sizes from 3GA-494- and 3GA-329-treated mice were not significantly reduced compared to baseline, indicating that plaque regression did not occur in this setup. Unlike for the carotid artery lesions, neither 3GA-494 treatment nor 3GA-329 treatment resulted in reduced plaque sizes in the aortic root compared to 3GA-ctrl treatment. We have previously established that the expression of 14q32 miRNAs differs between sites of lesion development in mice,14 and more recently, we demonstrated that expression of 14q32 miRNAs, including miRNA-494 and miRNA-329 and their targets, varies widely across the human vasculature as well.29 Differences in response to miRNA inhibition in carotid artery plaques and aortic root plaques are, therefore, likely caused by differences in local miRNA and target gene expression. Although plaque size was not affected in the aortic root, plaque stability was clearly affected and increased after miRNA-494 inhibition, which is particularly relevant in reducing the risk of...
cardiovascular events. These results indicate that 3GA-494 treatment would be relevant for treating different types of plaques, developing at different sites in the vasculature.

Collagen provides structural support in the fibrotic cap and in our study, particularly miRNA-494 inhibition increased intra-plaque collagen content in advanced lesions. Collagen is synthesized by SMCs, however, we have previously shown that miRNA-494 does not affect collagen synthesis. Furthermore, even though miRNA-494 does affect proliferation of myofibroblasts, neither miRNA-494 nor miRNA-329 inhibition affected the intra-plaque SMC content, which indicates that another mechanism caused the enhanced collagen deposition. We previously validated tissue inhibitor of metalloproteinases 3 (TIMP3) as a target of miRNA-494. TIMP3 inhibits collagen degradation by matrix metalloproteinases (MMPs) and, therefore, more TIMP3 expression likely contributed to the observed increase in collagen content. Since macrophages produce MMPs, the reduced intra-plaque macrophage content may also have contributed to the increased collagen content in the plaques. Lipid-lowering strategies have been described to contribute to fewer intra-plaque macrophages. Fewer intra-plaque macrophages are associated with a more stable plaque phenotype. In our study, macrophages in advanced plaques of 3GA-ctrl mice were decreased compared with baseline mice, which was likely an effect of plasma lipid lowering by diet switch, and additional treatment with 3GA-494 even further reduced intra-plaque macrophage numbers. Circulating inflammatory monocytes (Ly6C+) are associated with promoting plaque progression after extravasation into the lesion.

Particularly, 3GA-494 mice showed reduced levels of circulating inflammatory cells, including neutrophils, red blood cells, and platelets, all of which originate from a common early-myeloid progenitor cell. Decreased expression of miRNA-494 has been reported to drive chronic myeloid leukemia, a stem-cell-derived malignant disorder in human. We measured whether transcription factors involved in HSC proliferation and differentiation were targeted by increased miRNA-494 expression in the spleen. However, expression levels were not affected, indicating that this was not primary cause of reduced levels of circulating neutrophils, red blood cells, and platelets in 3GA-494 mice. Others have also described a role for 14q32 miRNAs, including miRNA-494, in human erythropoiesis and, therefore, proper development of erythrocytes in our murine model may have been targeted by 3GA-494 treatment. Exact mechanisms on how myeloid cells in the circulation are reduced, however, remains to be determined in future research.

In previous studies, we have shown that multiple miRNAs transcribed from the 14q32 cluster are involved in different processes of vascular remodeling. Inhibition of 14q32 miRNAs, including miRNA-494, in human erythropoiesis and, therefore, proper development of erythrocytes in our murine model may have been targeted by 3GA-494 treatment. Exact mechanisms on how myeloid cells in the circulation are reduced, however, remains to be determined in future research.

and here, both miRNA-494 and miRNA-329 inhibition resulted in a reduction in circulating pro-inflammatory Ly6C+ monocytes, which may have caused the reduction in plaque macrophages. In addition, platelets have been described to mediate monocyte activation, recruitment, and extravasation into the lesion. Therefore, the strongly reduced blood platelet levels in 3GA-494 mice may also have contributed to a reduction in macrophage extravasation into the lesion.
Strongly increased megakaryocyte content and increased expression of transcription factors in the spleen of 3GA-494 mice clearly showed increased commitment toward the megakaryocyte lineage. Since SOCS6 expression was not affected upon 3GA-494 treatment in either the spleen or bone marrow cells, this indicates that megakaryocyte differentiation was not targeted by 3GA-494 treatment. Increased splenic megakaryocyte differentiation in 3GA-494 mice is, therefore, likely a compensatory mechanism to prevent severe thrombocytopenia. Others have also demonstrated that mice show increased megakaryocyte differentiation as a response to lower platelet counts.36

The underlying mechanism of platelet exhaustion may be an increased hepatic clearance. We found increased platelet receptor expression in the liver. Apoptotic platelets are recognized and cleared by the liver.27 However, pro-survival genes Mcl-1 and Bcl-2 were not clearly affected by miRNA-494 expression in the platelets and were therefore unlikely the key contributors to increased platelet clearance. Activation of the platelet receptor GPIb-IX can also lead to rapid hepatic clearance, and differential expression of the 14q32 cluster has previously been linked to platelet reactivity.37–39 Indeed, we found that upregulation of miRNA-494 expression following 3GA-494 treatment led to hyper-activation of platelets. Also, as miRNA-494 expression in the liver itself was not affected by 3GA-494, it is most likely that increased platelet clearance is caused by platelet activation in response to 3GA-494 treatment, rather than by upregulation of clearance pathways in the liver.

A surprising observation in this study is the fact that in both platelets and in the spleen, 3GA-494 treatment resulted in short-term miRNA-494 inhibition followed by a clear miRNA-494 upregulation. The upregulation was accompanied by rapid depletion of miRNA-494 precursors in platelets. RNA binding proteins, which are regulated by miRNAs themselves, are able to regulate miRNA processing in a cell-specific manner. In a previous study, we have demonstrated post-transcriptional regulation of miRNA-494 by Mef2A, which directly binds to pri-miRNA-494.17 However, which precise mechanism underlies the cell- and tissue-specific autoregulation of miRNA-494 in LDLr−/− mice remains to be determined.

Mice and Experimental Design

All animal work performed conforms to the guidelines from the Dutch government and the Directive 2010/63/EU of the European Parliament, and all experiments were approved by the local animal ethics committee (DEC number 14103). Male LDLr−/− mice, aged 8 to 9 weeks, were obtained from our in-house breeding facility (Gorlaeus Laboratories, Leiden University, Leiden, the Netherlands). Food and water were available ad libitum.

The timeline of the study is shown in Figure S1. All mice were fed a Western-type diet (WTD) containing 0.25% cholesterol and 15% cacao butter (SDS, Sussex, UK) for 10 weeks to induce advanced atherosclerotic lesions, as described previously.13 Four weeks after start of the WTD, mice underwent surgical interventions in order to induce carotid artery plaque formation. As described previously, semi-constrictive collars were placed around both carotid arteries.14 Mice were anaesthetized by subcutaneous injection of ketamine.
Six weeks after collar placement, mice were age-, cholesterol-, and weight-matched to ensure an equal distribution over all groups before start of the treatment. At that time point, a subset of mice (n = 10) was sacrificed as baseline control. The remaining mice were placed on a regular chow diet to lower plasma cholesterol levels, and 3GAs against miRNA-494 (3GA-494; n = 10), miRNA-329 (3GA-329; n = 10), or negative control (3GA-ctrl; n = 10) was administered via the tail vein (intravenously [i.v.]) at a concentration of 1 mg/mouse. 3GAs were designed with perfect reverse complementarity to the mature target miRNA sequence and synthesized by Idera Pharmaceuticals (Cambridge, MA, USA). The same sequences have the largest plaque size, using Leica Qwin software, as described previously.45 Mice with plaques containing a reorganized thrombus were excluded from the plaque size analysis (three mice in baseline, four mice in 3GA-ctrl, one mouse in 3GA-494, and one mouse in 3GA-329).

To determine lesion size in the three-valve area, cryosections (10 μm thick) of the aortic root were stained with oil red O and hematoxylin (Sigma-Aldrich, Zwijndrecht, the Netherlands). Lesion size was calculated from at least five 10-μm-thick sections of the three-valve area. Masson’s trichrome staining was used to visualize collagen and determine necrotic core area. Plaque macrophages were stained using a MOMA-2 antibody at a 1:1,000 concentration (rat IgG2b, Serotec, Kidlington, UK). SMCs were stained with a subcutaneous injection of a cocktail containing ketamine (40 mg/mL), atropine (50 μg/mL), and sedazine (6.25 mg/mL). Mice were subsequently perfused with PBS through the left cardiac ventricle, after which carotid arteries and other organs were collected, frozen, and used for further analysis. At sacrifice, whole blood was analyzed on a Sysmex XT-2000i analyzer (Goffin Meyvis, Etten Leur, the Netherlands).

Flow Cytometric Analysis
At sacrifice, blood, spleen, and the mediastinal lymph nodes near the heart (HLN) were isolated. Single-cell suspensions of spleen and HLN were obtained by squeezing the organs through a 70-μm cell strainer. Red blood cells were removed using Ammonium-Chloride-Potassium (ACK) lysis buffer (0.15 M NH₄Cl, 10 mM NaHCO₃, 0.1 mM EDTA [pH 7.3]). Immune cells were analyzed with flow cytometry: T cells (CD4⁺, CD8⁺), B cells (CD19⁺), neutrophils (CD11b⁻Ly6G⁻Ly6Chigh), and inflammatory monocytes (CD11b⁺Ly6G⁺Ly6Chib⁺). FACS analysis was performed on a FACS Canto II (BD Biosciences), and data was analyzed with FlowJo software (Treestar).

RNA Isolation and qRT-PCR
Frozen tissues were crushed by use of pestle and mortar while immersed in liquid nitrogen. After homogenizing and complete evaporation of the liquid nitrogen, TRIzol (Thermo Fisher, Bleiswijk, the Netherlands) was added to the samples. For carotid artery RNA isolation, carotid artery segments from three to four mice were pooled and homogenized with a pellet crusher in TRIzol. Total RNA was isolated by standard TRIzol-chloroform extraction. RNA concentration and purity were measured on the Nanodrop (Nanodrop Technologies).

For miRNAs, miRNA-specific Taqman qPCR kits (Thermo Fisher, Bleiswijk, the Netherlands) were used for reversed transcription and quantification by qPCR according to the manufacturers protocol. For miRNA, RNA was reverse transcribed using a "high-capacity RNA to cDNA" kit (Thermo Fisher, Bleiswijk, the Netherlands). SybrGreen reagents (QIAGEN Benelux, Venlo, the Netherlands) were used for the qPCR. The data were normalized using a stably expressed endogenous control. miRNA-191 was used for miRNAs and Gapdh and Hprt for mRNA. qPCR was performed on the VIIa7 (Applied Biosystems).

Immunohistochemistry
Frozen sections of carotid arteries (10 μm thick) were fixed with Formalin-Fixx (Thermo Fisher, Bleiswijk, the Netherlands) for 30 min and subsequently stained with H&E to determine plaque size. Analysis was performed on sections throughout the atherosclerotic lesion (100 μm apart, resulting in the average plaque size value) and at the site of maximal stenosis, the site/section of the plaque that has the largest plaque size, using Leica Qwin software, as described previously.55 Mice with plaques containing a reorganized thrombus were excluded from the plaque size analysis (three mice in baseline, four mice in 3GA-ctrl, one mouse in 3GA-494, and one mouse in 3GA-329).

Bone Marrow Cells
To isolate bone marrow (BM) cells, femurs and tibias of C57BL/6 mice were dissected, and the bone marrow was flushed with PBS. BM cells were filtered through a 70-μm cell strainer, centrifuged at 300 × g for 15 min, and suspended in RPMI 1640 medium containing L-glutamine supplemented with 10% heat-inactivated fetal calf serum (FCSi) and 1% penicillin/streptomycin (P/S). BM cells were plated at a concentration of 1.8 × 10⁶ cells/mL and stimulated with 3GA-494 or 3GA-ctrl at a concentration of 10 ng/μL for 48 h
in an incubator at 37°C with 5% CO₂. After 48 h of incubation, cells were washed with PBS and resuspended in TRIzol for subsequent RNA isolations.

Human Platelets
Platelets, pooled from five different healthy donors with blood type O and Rh positive, were obtained from a blood bank facility (Sanquin, Amsterdam, the Netherlands). The same conditions as used for storage in platelet transfection were used in the experiment. Platelets in PAS-III buffer with 30%-35% plasma were transferred from the transfection bag into 6-well plates and kept in an incubator at 22°C with 5% CO₂ at continuously swirling. Platelet concentration was measured to compare single treatment with the control group. p < 0.05 was considered significant. A Grubbs’ test was used to identify significant outliers (α < 0.05).

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.omtn.2019.09.021.

AUTHOR CONTRIBUTIONS
E.v.I., A.C.F., I.B., and A.Y.N. designed the experiments; E.v.I., A.C.F., M.J.K., I.B., and A.Y.N. conducted the experiments; E.v.I., A.C.F., I.B., A.Y.N., J.K., and P.H.A.Q. wrote, reviewed, and edited the paper; I.B. and A.Y.N. acquired funding; I.B., A.Y.N., and P.H.A.Q. supervised.

CONFLICTS OF INTEREST
The authors declare no competing interests.

ACKNOWLEDGMENTS
This study was supported by a grant from the Rembrandt Institute of Cardiovascular Science (2016), the Dutch Heart Foundation (grant number 2018T051), the CVON GENIUS II program, the LUMC Johanna Zaaner Fund (2017), and the Austrian Science Fund FWF (Lise Meitner Grant, grant number M2578-B30). We acknowledge S. Agrawal, B. Boermsa, and G. Beerends for their technical support.

REFERENCES
1. Libby, P., Ridker, P.M., and Hansson, G.K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325.
2. Bonati, L.H., Dobson, J., Featherstone, R.L., Ederle, J., van der Woop, H.B., de Borst, G.J., Mali, W.P., Beard, J.D., Cleveland, T., Engelter, S.T., et al.; International Carotid Stenting Study investigators (2015). Long-term outcomes after stenting versus endarterectomy for treatment of symptomatic carotid stenosis: the International Carotid Stenting Study (ICSS) randomised trial. Lancet 385, 529–538.
3. Stone, N.J., Robinson, J.G., Lichtenstein, A.H., Bairey Merz, C.N., Blum, C.B., Eckel, R.H., Goldberg, A.C., Gordon, D., Levy, D., Lloyd-Jones, D.M., et al.; American College of Cardiology/American Heart Association Task Force on Practice Guidelines (2014). 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129 (Suppl 2), 51–545.
4. Steen, D.L., Khan, I., Ansell, D., Sanchez, R.J., and Ray, K.K. (2017). Retrospective examination of lipid-lowering treatment patterns in a real-world high-risk cohort in the UK in 2014: comparison with the National Institute for Health and Care Excellence (NICE) 2014 lipid modification guidelines. BMJ Open 7, e013255.
5. Grisby, M., Nordin-Fredriksson, G., Shah, P.K., Yano, J., Zhu, J., and Nilsson, J. (2001). Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 103, 926–933.
6. Ridker, P.M., Everett, B.M., Thuren, T., MacFadyen, J.G., Chang, W.H., Ballantyne, C., Forsen, E., Nicollau, J., Koenig, W., Anker, S.D., et al.; CANTOS Trial Group (2017). Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 377, 1119–1131.
7. Welten, S.M., Geossens, E.A., Quax, P.H., and Nossent, A.Y. (2016). The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc. Res. 110, 6–22.
8. Nazari-Jahantigh, M., Wei, Y., Noels, H., Akhtar, S., Zhou, Z., Koenen, R.R., Heyll, K., Behr, V., Chaleff, S.E., Moen, J., Mayr, M., Ford, D.A., Baldan, A., et al. (2017). Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis. Cell Rep. 21, 1317–1330.
9. Gils, J.M., Rayner, A.J., Chang, A.N., Suarez, Y., et al. (2011). Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931.
10. Rayner, K.J., Suárez, Y., Dávalos, A., Parathath, S., van Gils, J.M., Rayner, A.J., Chang, A.N., Suarez, Y., et al. (2011). Antagonism of microRNA-miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. Cell. Rep. 21, 1317–1330.
11. Rayner, K.J., Suárez, Y., Dávalos, A., Parathath, S., Fitzgerald, M.L., Tamehno, N., Fisher, E.A., Moore, K.J., and Fernández-Hernando, C. (2010). MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1566–1569.
12. Price, N.L., Rotllan, N., Canfrán-Duque, A., Zhang, X., Pati, P., Arias, N., Moen, J., Mayr, M., Ford, D.A., Baldan, A., et al. (2017). Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis. Cell Rep. 21, 1317–1330.
13. Nazari-Jahantigh, M., Wei, Y., Noels, H., Akhtar, S., Zhou, Z., Koenen, R.R., Heyll, K., Gremse, F., Kiessling, F., Grommes, I., et al. (2012). MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J. Clin. Invest. 122, 4190–4202.
14. Eken, S.M., Jin, H., Chernogubova, E., Li, Y., Simon, N., Sun, C., Korzunowicz, G., Busch, A., Bicklund, A., Osterholm, C., et al. (2017). MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions. Circ. Res. 120, 633–644.
15. Welten, S.M., Rezazadeh, A.H., De Vries, M.R., Geossens, E.A., Boonstra, M.C., Hamming, J.F., Kandimalla, E.R., Kuiper, I., et al. (2015). Inhibition of MicroRNA-494 Reduces Carotid Artery Atherosclerotic Lesion Development and Increases Plaque Stability. Ann. Surg. 262, 841–847, discussion 847–848.
16. Welten, S.M., Rezazadeh, A.H., De Vries, M.R., Peters, E.A., Boonstra, M.C., Sheikh, S.P., La Monica, N., Tonk, E.R., Quax, P.H.I., and Nossent, A.Y. (2014). Inhibition of 14q32 MicroRNAs miR-329, miR-487b, and miR-495 increases neovascularization and blood flow recovery after ischemia. Circ. Res. 115, 696–708.
17. Welten, S.M., De Jong, R.C.M., Welzel, A., De Vries, M.R., Boonstra, M.C., Parma, I., Jukema, J.W., van der Sluis, T.C., Arens, R., Bot, I., et al. (2017). Inhibition of 14q32 microRNA miR-495 reduces lesion formation, intimal hyperplasia and plasma cholesterol levels in experimental restenosis. Atherosclerosis 261, 26–36.
18. Welten, S.M., De Vries, M.R., Peters, E.A.B., Agrawal, S., Quax, P.H.A., and Nossent, A.Y. (2017). Inhibition of Mez2a Enhances Neovascularization via Post-transcriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494. Mol. Ther. Nucleic Acids 7, 61–70.
23. Nemeth, M.J., Kirby, M.R., and Bodine, D.M. (2006). Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation. Proc. Natl. Acad. Sci. USA 103, 13783–13788.

24. Rontauroli, S., Norfo, R., Pennucci, V., Zini, R., Rossi, C., Prudente, Z., Rossi, C., Rosi, V., et al. (2017). miR-494-3p overexpression promotes megakaryocyte-erythroid development in primary myelofibrosis hematopoietic stem/progenitor cells by targeting SOCS6. Oncotarget 8, 21380–21397.

25. Sørensen, A.L., Rumjantseva, V., Nayeb-Hashemi, S., Clausen, H., Hartwig, J.H., Cheng, T., and Ju, Z. (2015). Wp1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways. Nat. Commun. 6, 6808.

26. Nemeth, M.J., Kirby, M.R., and Bodine, D.M. (2006). Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation. Proc. Natl. Acad. Sci. USA 103, 13783–13788.

27. Ronkina, S., Norfo, R., Pennucci, V., Zini, R., Ruberti, S., Bianchi, E., Salati, S., Prudente, Z., Rossi, C., Rosi, V., et al. (2017). miR-494-3p overexpression promotes megakaryocyte-erythroid development in primary myelofibrosis hematopoietic stem/progenitor cells by targeting SOCS6. Oncotarget 8, 21380–21397.

28. Sørensen, A.L., Rumjantseva, V., Nayeb-Hashemi, S., Clausen, H., Hartwig, J.H., Cheng, T., and Ju, Z. (2015). Wp1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways. Nat. Commun. 6, 6808.

29. Mescher, M.J., Kirby, M.R., and Bodine, D.M. (2006). Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation. Proc. Natl. Acad. Sci. USA 103, 13783–13788.

30. Rontauroli, S., Norfo, R., Pennucci, V., Zini, R., Ruberti, S., Bianchi, E., Salati, S., Prudente, Z., Rossi, C., Rosi, V., et al. (2017). miR-494-3p overexpression promotes megakaryocyte-erythroid development in primary myelofibrosis hematopoietic stem/progenitor cells by targeting SOCS6. Oncotarget 8, 21380–21397.

31. Badryna, S., Schriemer, W.C., Kral, J.B., Yaiw, K.C., Volf, I., Schabbauer, G., Soderberg-Naucler, C., and Assinger, A. (2014). Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler. Thromb. Vasc. Biol. 34, 571–580.

32. Salati, S., Salvestrini, V., Carretta, C., Genovese, E., Rontauroli, S., Zini, R., Rossi, C., Ruberti, S., Bianchi, E., Barbieri, G., et al. (2017). Deregulated expression of miR-29a-3p, miR-494-3p and miR-660-5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells. Oncotarget 8, 49451–49469.

33. Lesard, S., Beaudoin, M., Orkin, S.H., Bauer, D.E., and Lettre, G. (2018). 14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts. Hum. Mol. Genet. 27, 1411–1420.

34. Parma, L., Baganha, F., Quax, P.H.A., and de Vries, M.R. (2017). Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur. J. Pharmacol. 816, 107–115.

35. Epstein, S.E., Stabile, E., Kinnaard, T., Lee, C.W., Clavijo, L., and Burnett, M.S. (2004). Janus phenomenon: the interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherosclerosis. Circulation 109, 2826–2831.

36. Barwari, T., Eminaga, S., Mayr, U., Lu, R., Armstrong, P.C., Chan, M.V., Sahraei, M., Fernandez-Fuentes, M., Moreau, T., Barzilov-Barreiro, J., et al. (2018). Inhibition of profibrotic microRNA-21 affects platelets and their releasate. Sci Rep 3, 123335.

37. Quach, M.E., Chen, W., and Li, R. (2018). Mechanisms of platelet clearance and translation to improve platelet storage. Blood 131, 1512–1521.

38. Deng, W., Xu, Y., Chen, W., Paul, D.S., Syed, A.K., Dragovic, M.A., Liang, X., Zakas, P., Berndt, M.C., Di Paolo, J., et al. (2016). Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor. Nat. Commun. 7, 12863.

39. Edelstein, L.C., Simon, L.M., Montoya, R.T., Holinstat, M., Chen, E.S., Bergeron, A., Kong, X., Nagalla, S., Mohandas, N., Cohen, D.E., et al. (2013). Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-576c. Nat. Med. 19, 1609–1616.

40. Santulli, G. (2015). microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis. Adv. Exp. Med. Biol. 887, 53–77.

41. Rogg, E.M., Abplanalp, W.T., Bischof, C., John, D., Schulz, M.H., Krishnan, J., Fischer, A., Poluzzi, C., Schaefer, L., Bonauer, A., et al. (2018). Analysis of Cell Type-Specific Effects of MicroRNA-92a Provides Novel Insights Into Target Regulation and Mechanism of Action. Circulation 138, 2545–2558.

42. van Duijn, J., Kritikou, E., Benne, N., van der Heijden, T., van Puijvelde, G.H., Kröner, M.J., Schaftenaar, F.H., Foks, A.C., Wezel, A., Meets, S., et al. (2019). CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses. Cardiovasc. Res. 115, 729–738.

43. Bot, I., Ortiz Zacarias, N.V., de Witte, W.E., de Vries, H., van Santbrink, P.J., van der Velde, D., Kröner, M.J., van der Berg, D.J., Stamos, D., de Lange, E.C., et al. (2017). A novel CCR2 antagonist inhibits atherogenesis in apoE deficient mice by achieving high receptor occupancy. Sci. Rep. 7, 52.