Nystagmus may be the first neurological sign in early stages of spinocerebellar ataxia type 3

Background: Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant spinocerebellar ataxia worldwide. Almost all patients with SCA3 exhibit nystagmus and/or saccades impairment.

Objective: To investigate the presence of nystagmus as an early neurological manifestation, before ataxia, in some patients with SCA3 in the first six months of the disease.

Methods: We evaluated a series of 155 patients with clinically and molecularly proven SCA3 between 2013 and 2020. Data regarding sex, age, age at onset, disease duration, CAG repeat expansion length, first symptom, presence of ataxia, scores on SARA and ICARS scales, and presence and characteristics of nystagmus were collected.

Results: We identified seven patients with symptomatic SCA3 who presented with isolated nystagmus. In these seven individuals the age at onset ranged from 24 to 57 years, and disease duration from four to six months.

Conclusions: Our study showed that nystagmus may be the first neurological sign in SCA3. This clinical observation reinforces the idea that the neurodegenerative process in SCA3 patients may start in vestibular system connections or in flocculonodular lobe. This study adds relevant information about pre-symptomatic features in SCA3 that may work as basis for a better understanding of brain degeneration and for future therapeutic clinical trials.

Keywords: Machado-Joseph Disease; Ataxin-3; Neurodegenerative Diseases; Cerebellar Ataxia.
the fourth or fifth decade of life, although early r and late onset may occur depending on the CAG repetition length. Larger CAG repetition lengths are associated with genetic anticipation and earlier disease onset.

Several authors have postulated that SCA3 should be divided into specific phenotypes depending on age of onset. Patients with early onset, in the second or third decade of life, present with marked extrapyramidal features (parkinsonism and dystonia) and a more severe disease, while patients with adult onset usually present with cerebellar ataxia associated with pyramidal signs. On the other hand, patients with very late onset present with slow progression and a less severe phenotype. However, the criticism raised on the classification into phenotypes is that clinical features may vary in different stages with disease progression. Therefore, patients with early onset may present with pure cerebellar ataxia in the first years, and a severe parkinsonism and dystonia may occur in advanced stages.

Besides ataxia, nystagmus is one the most common neurological feature observed in patients with SCAs. Almost all patients with SCA3 present with nystagmus or/and saccades impairment. Nystagmus in SCA3 is usually spontaneous and symmetrical, and may be vertical or horizontal. Nystagmus is anatomically related to the vestibular system (peripheral or central). Pathological and functional studies in SCA3 have demonstrated involvement of the vestibular system and its connections. Moreover, the flocculonodular lobe has important connections with vestibular nuclei. Thus, flocculonodular lobe involvement in SCA3 may partially explain nystagmus as a very common neurological sign in SCA3.

In this article we aimed to demonstrate if nystagmus could be an early neurological manifestation, before ataxia, in patients with SCA3 in the first 6 months of the disease. Also, we discuss the natural history of brain degeneration in SCA3, and postulate that flocculonodular lobe and vestibular system (and its connections) are the first structures involved in brain degeneration of these patients.

METHODS

From a series of 155 patients with clinically and molecularly proven SCA3, we evaluated seven patients in the first six months of disease duration, between 2013 and 2020. Many patients with SCA3 from this series were firstly evaluated in different stages of the disease, and already presented with ataxia in the first appointment. Sex, age, age at onset, disease duration, CAG repeat expansion length, first symptom, presence of ataxia, scores on SARA and ICARS scales, and presence and characterization of nystagmus in all 7 patients were recorded. Subjects with SCA3 and pure nystagmus also underwent brain magnetic resonance imaging.

RESULTS

In these seven individuals with symptomatic SCA3 and pure nystagmus, the age at onset ranged from 24 to 57 years, and disease duration from four to six months. Their SARA score was zero and ICARS score was 1. CAG repetition number varied from 61 to 80 and cerebellar atrophy in MRI was seen in two out of seven individuals. In all cases, the nystagmus was gaze-evoked, horizontal and vertical, mild and transitory, not accompanied by saccadic pursuit, dysmetric saccades, or ophthalmoparesis. Their first symptom was either loss of balance or dizziness. The clinical and molecular profiles of SCA3 patients with isolated nystagmus are showed in Table 1. From the seven patients described, two progressed to type 1 SCA3 phenotype (marked extrapyramidal features), three to type 2 (pure ataxia and pyramidal signs), and one developed type 3 (slow progressive ataxia and neuropathy).

DISCUSSION

In this article, we demonstrated that nystagmus may be the first neurological sign in some patients with SCA3. Neurological evaluation in the first months of symptoms disclosed no cerebellar sign in the seven patients with SCA3. The main questions discussed in this article are: Can patients with SCA3 in the first months of symptoms be misdiagnosed? and should a genetic test for SCA3 be requested for a patient with positive family history and pure nystagmus as the first sign? Finally, the pathophysiological mechanisms related with pure nystagmus as the first sign indicate that flocculonodular lobe, its connections, or the vestibular system are the first structures to be damaged concerning the natural history of brain degeneration in patients with SCA3.

Similarly to the article by Raposo et al., our study suggests that in early stages, the neurodegenerative process in SCA3 predominantly affects the vestibular system and its cerebellar connections, before damage to the cerebellar neurons involved in gait and coordination becomes clinically relevant. Also, in line with our findings, Raposo et al. demonstrated nystagmus occurs in a considerable proportion of pre-symptomatic carriers of mutated ATXN3 alleles, which were tested for being relatives of SCA3 patients. Our study took place in a healthcare setting, thus showing that isolated nystagmus occurs in symptomatic SCA3 individuals in clinical practice.

Our cases had positive family history and they reported vague complaints of either vertigo or dizziness by the time of their first evaluation. The decision to test for SCA3 was based on the presence of gaze-evoked nystagmus, which usually occurs in cerebellar conditions. Nystagmus can be subtle and may be overlooked, and it is possible that SCA3 cases with isolated nystagmus are misdiagnosed. Although it is neither
stage schemes to map the natural history of brain degeneration in SCA3, it was a retrospective and observational study and did not follow neuroanatomic changes over time. Indeed, all these MRI findings are in line with the manifestation of nystagmus in early stages of the disease and further analysis need to be done to confirm this hypothesis. Of note, three of the seven patients of our series with pure nystagmus and SCA3 had a normal conventional brain MRI, which suggests that this is not a reliable biomarker for neurological involvement in the beginning of the symptoms.

In conclusion, nystagmus can be the only neurological sign in symptomatic patients with SCA3 in early stages, which represent a small proportion of individuals seen in a neurogenetic outpatient clinic. Our findings reinforce the idea that the neurodegenerative process in SCA3 patients predominantly affects vestibular system connections or floculonodular lobe early in disease course. Finally, our study indicates clinicians should look carefully for oculomotor abnormalities in individuals at risk for SCA3, which may ensure timely diagnosis, genetic counseling, and therapeutic interventions.

Table 1. Summary of clinical features of patients with spinocerebellar ataxia type 3 and isolated nystagmus as initial presentation.

Case number	Sex	Age of disease onset (years)	Disease duration (months)	SARA	ICARS	CAG repetition number	MRI findings
1	Female	24	3	0	1	80	Normal
2	Female	56	6	0	1	-	Not performed
3	Male	57	6	0	1	61	Normal
4	Male	37	3	0	1	71	Cerebellar atrophy
5	Male	39	4	0	1	67	Cerebellar atrophy
6	Male	48	3	0	1	-	Normal
7	Male	39	4	0	1	-	Normal

ICARS: international cooperative ataxia rating scale; MRI: magnetic resonance imaging; SARA: scale for assessment and rating of ataxia; SCA3: spinocerebellar ataxia type 3.
1. Paulson H. Machado-Joseph disease/Spinocerebellar ataxia type 3. Handb Clin Neurol. 2012;103:437-49. https://doi.org/10.1016/B978-0-444-51892-7.00027-9

2. Pedroso JL, Braga-Neto P, Radavany J, Barsottini OG. Machado-Joseph disease in Brazil: from the first descriptions to the emergence as the most common spinocerebellar ataxia. Arq Neuropsiquiatr. 2012 Aug;70(8):630-32. https://doi.org/10.1590/S0004-282X2012000800013

3. Nakano KK, Dawson DM, Spence A. Machado-Joseph disease. A hereditary ataxia in Portuguese emigrants to Massachusetts. Neurology. 1972 Jan;22(1):49-55. https://doi.org/10.1212/wnl.22.1.49

4. Schöls L, Amoiridis G, Epplen JT, Langkafel M, Riess O. Relations between genotype and phenotype in German patients with the Machado-Joseph disease mutation. J Neurol Neurosurg Psychiatry. 1996 Nov;61(5):466-70. https://doi.org/10.1136/jnnp.61.5.466

5. Moro A, Munhoz RP, Arruda WD, Raskin S, Moscovitch M, Teive H. Spinocerebellar ataxia type 3: subphenotypes in a cohort of Brazilian patients. Arq Neuropsiquiatr. 2014 Sep;72(9):659-62. https://doi.org/10.1590/0004-282X20140129

6. Rub U, Bruntr ER, de Vos RA, Del Turco D, Del Tredici K, Giorga K, et al. Degeneration of the central vestibular system in spinocerebellar ataxia type 3 (SCA3) patients and its possible clinical significance. Neuropathol Appl Neurobiol. 2004 Aug;30(4):402-14. https://doi.org/10.1034/j.1365-2990.2004.00554.x

7. Raposo M, Vasconcelos J, Bettencourt C, Kay T, Coutinho P, Lima M. Nystagmus as an early ocular alteration in Machado-Joseph disease (MJD/SCA3). BMC Neurol. 2014 Jan;14:17. https://doi.org/10.1186/1471-2377-14-17

8. Ribeiro RS, Pereira MM, Pedroso JL, Braga-Neto P, Barsottini OG, Manzano GM. Cervical and ocular vestibular evoked potentials in Machado-Joseph disease: functional involvement of otolith pathways. J Neurol Sci. 2015 Nov;358(1-2):294-8. https://doi.org/10.1016/j.jns.2015.09.013

9. Pedroso JL, Bor-Seng-Shu E, Braga-Neto P, Bezerra ML, Prado LB, et al. Neuropsychological studies and non-motor symptoms prior to ataxia in a patient with Machado-Joseph disease: trying to understand the natural history of brain degeneration. Cerebellum. 2014 Aug;13(4):447-51. https://doi.org/10.1007/s12311-014-0553-8

10. Rezende TJ, Paiva JL, Martinez AR, Cendes IL, Pedroso JL, Barsottini OG, et al. Structural signature of SCA3: from presymptomatic to late disease stages. Ann Neurol. 2018 Sep;84(3):401-8. https://doi.org/10.1002/ana.25297

11. D'Abreu A, França-Jr MC, Yasuda CL, Campos BA, Cendes IL, Cendes F. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging. 2012 Jul;22(3):285-91. https://doi.org/10.1111/j.1552-6569.2011.00614.x

12. Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M, et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain. 2013 Mar;136(Pt 3):905-17. https://doi.org/10.1093/brain/awa369

13. Adanyeguh LM, Perlbarg V, Henry PG, Rinaldi D, Petit E, Valabregue R, et al. Autosomal dominant cerebellar ataxias: imaging biomarkers with high effect sizes. Neuroimage Clin. 2018 Jun;19:858-67. https://doi.org/10.1016/j.nicl.2018.06.011

14. Joers JM, Deelchand DK, Lyu T, Emir UE, Hutter D, Gomez CM, et al. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann Neurol. 2018 Apr;83(4):816-29. https://doi.org/10.1002/ana.25212

15. Campbell W. The Oculomotor Nerves: Dejong's The Neurologic Examination. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2013.

16. Kheradmand A, Zee DS. Cerebellum and ocular motor control. Front Neurol. 2011 Sep;2:53. https://doi.org/10.3389/fneur.2011.00053