ABSTRACT

C–H activation offers an intriguing access into inherently chiral calix[4]arenes, but has been little explored in the literature. In this article, we report our investigation into a published C–H activation method that uses carbamates to direct a palladium catalyzed C–H activation and subsequent reaction with N-bromosuccinimide. However, we show that this report is unfortunately flawed on a number of points. An earlier reported study revealed the more likely SEAr mechanism of the bromination reaction, which did not involve palladium catalysis. We nevertheless employed the SEAr bromination in an attempt to form inherently chiral calix[4]arenes, using a chiral (+)-menthyl carbamate as a directing group. Unfortunately, although the reaction was high yielding, the diastereomers formed were inseparable and we were unable to quantify their ratio. Subsequent removal of the chiral (+)-menthyl carbamate, returned a small positive optical rotation, suggesting that at least a level of asymmetric induction was achieved in the bromination to afford a non-racemic product.

KEYWORDS

C–H activation, calix[4]arene, inherent chirality, bromination, diastereoselectivity.

1. Introduction

Chirality is and will always be one of the most important aspects of chemistry since all living forms are chiral. From its initial introduction to chemistry students in the form of point chirality (tetrahedral carbon atoms), students later learn that chiral molecules can be formed in many other ways. Our area of research has been focused on one of these aspects, that of inherently chiral calix[4]arenes. Inherently chiral calix[4]arenes can actually be formed by a number of different ways, which makes them attractive targets to study (see Fig. 1 for some simple examples). We have focused on meta-functionalization as a preferred strategy, owing to its similarity to planar chiral ferrocenes, which have a good history of acting as asymmetric ligands. To date, we have developed some strategies that stereoselectively synthesize meta-functionalized inherently chiral calix[4]arenes using ortho-lithiation chemistry directed by either chiral oxazolines or a sulfoxide. Whilst these methods are currently the only meaningfully stereoselective methods available to form inherently chiral calix[4]arenes, they suffer from rather difficult chemistry that makes scale-up problematic. To this end, we have been looking at other methods that might generate meta-functionalized inherently chiral calix[4]arenes. One such method involving a putative C–H activation pathway caught our attention in the literature. In this 2016 paper by Moghaddam and coworkers, it was reported that methyl carbamates were excellent directing groups for ortho-aryl C–H activation (Scheme 1). We wondered whether the same method could be used on a calix[4]arene to generate inherently chiral versions if the carbamate itself was chiral. Herein we would like to report our preliminary findings in this area, as well as reveal our deep concerns regarding the paper by Moghaddam and co-workers.
co-workers was itself correct (Scheme 1). We had some initial concerns about the reported method, as the paper appeared to have superficial errors that we found surprising. Some of these errors might have been due to topographical oversight, but did warrant further investigation. One concern was that the reported method should have been theoretically possible using just N-bromosuccinimide (NBS), without any need for the palladium catalyst. In the paper, the authors reported that the reaction failed using NBS in acetonitrile, but only worked when palladium acetate was added. The authors then reported that the reaction failed in dichloroethane (DCE) even with palladium acetate, but worked again when para-toluenesulfonic acid (PTSA) was added. The published table of results showed no example of an experiment that then excluded the palladium catalyst, but kept PTSA, i.e. a control experiment. However, the text did report that a control experiment had been performed and then referred to an incorrect entry on the table (hence a possible typographical error). For this reason, we decided to have a closer look at the reaction ourselves.

The model selected (carbamate 1) included a para-methoxy group, which served both as a model for a single functionalised aromatic ring on the calix[4]arene, and as a means for testing the directing ability of the carbamate vs. the methoxy group. Essentially, it was found that the role of the palladium in this experiment was greatly exaggerated (see Table 1), with the yield of brominated 2 only being marginally higher when it was included. In both cases, the carbamate was the sole director towards ortho-bromination. It therefore seems likely to us that Moghaddam and co-workers had somewhat overstated the importance of the palladium and its role in the reaction.

With this rather unsurprising result, we took a much closer look at the paper by Moghaddam and co-workers and noticed more problems. In the introduction, they made the main claim that: ‘To the best of our knowledge, this is the first report of application of N-arylcarbamates as DG in C–halogen bond formation’. This statement cannot be proven false, since it is ‘to the best of their knowledge’, but it is nevertheless wrong. A quick search on Reaxys reveals a different story: excluding papers reported after their own 2016 publication, 43 documents (including patents) report the use of NBS brominating an aryl ring ortho to a carbamate; 12 documents using NCS (chlorination) and 24 documents using NIS (iodination). Many further examples can also be found employing the respective molecular halogen reagent (e.g. chlorine, bromine and iodine). A minor selection of examples from the peer review literature are shown in Fig. 2 (refer to Supplementary Information). It is disheartening that the reviewers never noticed this, since this fact alone puts a completely different interpretation onto the results presented.

Secondly, Moghaddam and co-workers cite a 2014 paper by

![Figure 2](https://www.pngimg.com/)
Figure 2 Selected reports using NXS reagents and N-arylcarbamates prior to Moghaddam and co-workers’ paper. * = not disclosed.

Table 1 Model study to examine the role of the palladium catalyst.

Entry	Pd(OAc)₂	PTSA	Time	Yield
1	5 mol%	50 mol %	2.5 h	79 %
2	–	50 mol %	2.5 h	69 %

* The acid is important in this reaction; without it the rate drops dramatically.
Uhlig and Li8 making the following statement: ‘Although they are structurally and electronically similar to O-aryl carbamates, after being introduced by Li et al. as an effective and removable DG, N-aryl carbamates have not been investigated as C–H activation DG(sic).’ This statement is false, since Uhlig and Li very definitely reported on N-aryl carbamates being used as C–H activation directing groups. In fact, it is the entire focus of their paper, which is titled ‘Aniline Carbamates: A Versatile and Removable Motif for Palladium-Catalyzed Directed C–H Activation.’ In Uhlig and Li’s paper, they also had a good look at the reaction mechanism and found that the aniline carbamate strongly favoured the promotion of electrophilic aromatic substitution, which aligns with the observations in the literature that NXS is itself capable of halogenating ortho to an N-aryl carbamate via a non-C–H activation pathway.

Thirdly, closer inspection of Moghaddam and co-workers’ proposed mechanism also reveals a number of problems. Firstly, an intermediate involving a deprotonated carbamate is proposed, which is unlikely since the reaction is under acidic conditions, and secondly, they make no account of the purpose proposed, which is unlikely since the reaction is under acidic conditions.

Firstly, an intermediate involving a deprotonated carbamate is proposed, that NXS is itself capable of halogenating ortho to an N-aryl carbamate via a non-C–H activation pathway.

2.2. Calix[4]arene Study

Whilst our starting point for the study proved to be somewhat spurious, the use of a chiral carbamate to potentially form inherently chiral calix[4]arenes was deemed to be worth pursuing. First an achiral model study was carried out, in order to check the chemistry, by reacting the known mono-amino calix[4]arene 31,22 with methyl chlorofomate and pyridine (Scheme 2). The carbamate product 4 was confirmed via 1H NMR spectroscopy (singlet at \(\delta = 2.69\) ppm for the hydrogen atoms of the methoxy group), infrared (1727 cm\(^{-1}\) for the carbamate)23 and HRMS (calculated for \(\text{C}_{42}\text{H}_{52}\text{NO}_6\) [M+H]+= \(666.3790\); found 666.3782). With this material in hand, we attempted the bromination reaction using the protocol without palladium, and reacted it with mono-amine calix[4]arene 3 under the same conditions as before. The new chiral calix[4]arene 6 was obtained in excellent yields between 90 and 98\% after work-up and column chromatography. The mono-methyl carbamate calix[4]arene 6 was characterized by NMR spectroscopy, HRMS (calculated for \(\text{C}_{51}\text{H}_{68}\text{NO}_6\) [M+H]+= \(790.5047\); found 790.5040) and infrared (1697 cm\(^{-1}\) for carbamate).

With our chiral carbamate in hand, we attempted a selective bromination reaction using the protocol without palladium, which returned a good yield (>80\%) for the inseparable brominated products 7a and 7b. We had been hoping to use 1H NMR spectroscopy to quantify the diastereoselectivity of the reaction, but to our disappointment, there were really no promising signals to work with. Different solvents (CDCl\(_3\), DMSO-d\(_6\) and \(\text{C}_6\text{H}_6\)) and different temperatures (up to the maximum allowed) all failed to help us determine the diastereoselectivity. The only signal that appeared marginally useful was the methine signal on the chiral centre of the menthyl group. In our inability to determine the ratio of diastereomers in this reaction.

In order to see if we could improve on this diastereoselectivity, we tried the reaction at lower temperatures. Since DCE is relatively limited in this sense, we changed the solvent to dichloromethane (DCM) and initiated a temperature study (Table 3). Unfortunately, in all cases (down to \(-35^\circ\text{C}\)) we saw no discernible improvement in the diastereoselectivity (as judged by the aforementioned signals in the 1H NMR spectra). However, what was unexpected was just how well the reaction occurred even at lower temperatures, albeit with slightly longer reaction times.

Our inability to determine the ratio of diastereomers in this
reaction was frustrating. Even normal and reversed-phased HPLC experiments, including the use of a chiral column, failed to separate the two diastereomers. As a last resort, we decided to remove the chiral menthyl group and examine the optical rotation of the resultant mixture of enantiomers to see if any optical activity was displayed. Although this would not be a means of determining enantioselectivity, the optical rotation would at least point to whether any chiral induction had taken place. Removal of the menthyl group was readily achieved using Coudert’s method of tetrabutylammonium fluoride (Bu₄NF, TBAF) in THF (Scheme 3). The reaction, as expected, was sluggish and required heating under reflux for 36 h. Nevertheless, after work-up and purification, the aminocalix[4]arene product was obtained in yields >80%. The 1H NMR spectrum showed the complete removal of the menthyl group, greatly simplifying the spectrum. The loss of the carbamate was also detected by IR spectroscopy and the HRMS returned the expected molecular ion (and isotopic distribution pattern) for the product. Optical rotation experiments were then run on material generated from bromination at –35 °C (Table 3, entries 5 and 6), returning values of [α]D = +6 ° and +3 ° for products derived from entries 5 and 6, respectively. Whilst these values cannot be used for any form of quantification, they do indicate a level of enantiomeric excess, which in turn, points to at least some degree of diastereoselectivity induced by the chiral menthyl carbamate.

3. Conclusion
In conclusion, we have shown that a report in the literature claiming a C–H activation route, mediated by a catalytic palladium in which a carbamate directs the formation of an aryl halide bond, is somewhat overstated and incorrect on a number of points claimed. Nevertheless, using a chiral calix[4]arene carbamate, bromination successfully delivered a product that suggested a modest level of inherent chirality that could not be quantified. Further work can potentially look at other chiral groups and also at extending the number of directing groups on the upper-rim of the calix[4]arene to two or even four, in order to access more interesting meta-functionalized calix[4]arenes.

Supplementary Material
Copies of NMR, IR and HRMS spectra for all new compounds synthesized and also references for halogenation reactions prior to 2016 are provided in the supplementary material appended to the end of this article.

Experimental
All chemicals were purchased from Merck or Sigma-Aldrich. Dichloromethane was dried from calcium hydride under nitro-
gen. Other reagents that required purification were done so according to standard procedures. The synthesis of methyl (4-methoxyphenyl)carbamate 1 was performed using a literature procedure from p-anisidine,23 and mono-aminocalix[a] arene 3 was prepared as previously reported by us.24
For syntheses performed under inert conditions the glassware was oven-dried and then placed under vacuum of <0.05 mm Hg before being periodically flushed with argon until reaching room temperature. All reactions were performed under positive pressure of 2.8 kPa of 5.0 grade argon (Air Products). Low temperature was achieved via a UV lamp or using a cerium ammonium nitrate (OCH2CH2)2). The contents were then heated to 60 °C and left to stir for two and a half hours. After the allotted time, the solution was cooled to room temperature and diluted with DCM (2 mL) before being poured into H2O (10 mL). The product was extracted with DCM (5 mL × 3) and the combined organic layers were subsequently washed with 10 % HCl (10 mL), sat. NaHCO3 (10 mL) and finally brine (20 mL). The solution was then dried over MgSO4 and the solvent was removed via reduced pressure. Purification was achieved via silica gel flash column chromatography (EtOAc:PET 10:90) to yield compound 2 as an orange solid in 69 % yield (99 mg).

The characterisation data collected for this compound compared well to literature data.4

1H NMR (400 MHz, CHLOROFORM-d) δ ppm 7.93 (br s, 1H, NH), 7.07 (d, JHH = 2.9 Hz, 1H, ArHf), 6.90–6.82 (m, 2H, ArHf), 3.78 (s, 3H, OCH3) 3.77 (s, 3H, OCH3).

5-Methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene (4)
To an oven-dried 2-neck round-bottomed flask, compound 3 (375 mg, 0.62 mmol) dissolved in DCM (20 mL) and pyridine (74.0 µL, 0.92 mmol, 1.5 eq) was added. After cooling the mixture to 0 °C, methyl chloroformate (71.5 µL, 0.92 mmol, 1.5 eq) was added. The reaction was then allowed to warm to room temperature and after 30 min the reaction had run to completion. H2O (20 mL) was added to the reaction mixture and the product was subsequently extracted with DCM (10 mL × 3). The organic layers were combined and first washed with a dilute HCl solution (0.2 M, 25 mL), brine (25 mL) and dried over MgSO4 before being removed excess solvent under vacuo. The crude product was purified via silica gel flash column chromatography (EtOAc:PET 5:95) to afford compound 4 as a colourless glass (370 mg, 90 %).

Rf = 0.66 (10:90 EtOAc:PET); Mp: 124–128 °C; IR (ATR, cm–1): 3374 (N-H), 2960 and 2873 (C-H), 1727 (C=O), 1529 (arene), 1545 (C=C), 1211 and 1191 (C-C-O), 1005 and 966 (C-N), 757 (C-H).

1H NMR (300 MHz, CHLOROFORM-d) δ ppm 6.85–6.36 (br s, 1H, 1H, ArHf), 6.13 (br s, 1H, NH), 4.47 (d, JHH = 13.4 Hz, ArCH2-), 4.42 (d, 2H, JHH = 13.4 Hz, ArCH2-), 3.92–3.76 (m, 8H, OCH2CH2), 3.70(s, 3H, OCH3), 3.16 (d, 2H, JHH = 13.4 Hz, Ar-CH3), 3.13 (d, 2H, JHH = 13.4 Hz, ArCH2-), 2.00–1.84 (m, 8H, CH2CH2CH3), 1.08–0.94 (m, 12H, CH2CH2CH3); 13C{1H} (75 MHz, CHLOROFORM-d) δ ppm 158.0 (ArC=O), 155.3 (NH), 153.5 (ArC=O), 153.3 (ArC=O), 153.3 (ArC=O), 153.0 (ArC=O), 135.6 (ArC=O), 135.5 (ArC=O), 135.3 (ArC=O), 135.0 (ArC=O), 131.5 (ArC=O), 128.5 (ArC=O), 128.4 (ArC=O), 128.1 (ArC=O), 121.1 (ArC=O), 119.4 (ArC=O), 76.80 (OCH2CH2), 76.76 (OCH2CH2), 52.0 (OCH2CH2), 31.2 (ArCH2Ar), 31.1 (ArCH2Ar), 23.43 (OCH2CH2), 23.37 (OCH2CH2), 23.37 (OCH2CH2), 10.6 (OCH2CH2), 10.4 (OCH2CH2); HRMS–Positive: m/z [M+H]+ calcld for C33H51NO6: 666.3795; found 666.3782.

2)-6-Bromo-5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene (5)
A Schlenk equipped with a magnetic stir bar and flushed with argon was charged with compound 4 (97 mg, 0.15 mmol), NBS (28 mg, 0.16 mmol, 1.1 eq), PTSA (14 mg, 0.071 mmol, 0.5 eq) and Pd(OAc)2 (1.6 mg, 0.007 mmol, 0.05 eq) in DCE (2 mL). The contents were heated to 60 °C and left to stir for two and a half hours. After the allotted time, the reaction was cooled to room temperature and diluted with DCM (5 mL) before being poured into H2O (10 mL). The product was extracted with DCM (5 mL × 3) and the combined organic layers were subsequently washed with 10 % HCl (10 mL) sat. NaHCO3 (10 mL) and finally brine (10 mL). The solution was then dried over MgSO4 and the solvent was removed via reduced pressure. Purification was achieved via silica gel flash column chromatography (EtOAc:PET 1:9 to yield compound 5 as an amorphous glass (90 mg, 82 %). Rf = 0.70 (DCM); Mp = 174–184 °C; IR (ATR, cm–1): 2957 and 2873 (C-H), 1723 (C=O), 1705 (C=O), 1545 (C=C), 1192 and 1087 (C-C-O), 1050 and 965 (C-N), 762 (C-H); 1H NMR (300 MHz, CHLOROFORM-d) δ ppm 7.86 (br s, 1H, NH), 7.13 (br s, 1H, ArHf), 7.09 (d, JHH = 7.4 Hz, ArHf), 6.90 (t, 1H, JHH = 7.4 Hz, ArHf) 6.40–6.09 (m, 6H, ArHf), 4.49–4.36 (m, 4H, ArCH2Ar), 4.11–3.81 (m, 4H, OCH2CH2 and 1H, ArCH2Ar), 3.83 (s, 3H, OCH3), 3.74–3.63 (m, 4H, OCH2CH2), 3.27–3.06 (m, 3H, ArCH2NHAr), 2.08–1.79 (m, 8H, CH2CH2CH3), 1.10 (t, JHH = 7.4 Hz, 6H, CH2CH2CH3), 0.91 (t, JHH = 7.4 Hz, 3H, CH2CH2CH3), 0.90 (t, JHH = 7.4 Hz, 3H, CH2CH2CH3); 13C{1H} (75 MHz, CHLOROFORM-d) δ ppm 157.0 (ArC=O), 153.5 (NH), 153.5 (ArC=O), 153.0 (ArC=O), 136.7 (ArC=O), 136.7 (ArC=O), 135.5 (ArC=O), 135.3 (ArC=O), 135.0 (ArC=O), 129.0 (ArC=O), 128.9 (ArC=O), 127.9 (ArC=O), 127.8 (ArC=O), 127.5 (ArC=O), 126.6 (ArC=O), 122.1 (ArC=O), 121.0 (ArC=O), 77.1 (OCH2CH2), 77.0 (OCH2CH2), 76.6 (OCH2CH2), 52.6 (OCH2CH2), 31.2 (ArCH2Ar), 31.1 (ArCH2Ar), 30.2 (ArCH2Ar), 23.65 (OCH2CH2), 23.59 (OCH2CH2), 23.1 (OCH2CH2), 23.0 (OCH2CH2), 10.94 (OCH2CH2), 10.91 (OCH2CH2), 9.97 (OCH2CH2), 9.96 (OCH2CH2); HRMS–Positive: m/z [M+Na]+ calcld for C41H44BrNO6: 771.3165; found 771.3157.

5-Methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene (6)
In an oven-dried 2-neck round-bottomed flask, compound 5 (500 mg, 0.823 mmol) was dissolved in DCM (40 mL) and cooled
to 0 °C. Pyridine (79.5 µL, 0.987 mmol, 1.2 eq) and methyl chloroformate (209 µL, 0.987 mmol, 1.2 eq) were subsequently added and the mixture was warmed to room temperature. After 15 min, the contents of the flask were poured into H2O (40 mL) and extracted with DCM (20 mL × 3). The organic layers were then combined and first washed once with dilute HCl solution (25 mL, 0.2 M) followed by brine (25 mL) and finally dried over MgSO4. The solvent was removed under reduced pressure and the crude product was purified via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 6 as a colourless glass (650 mg, 98 %).

Rf chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromatography (3:97 EtOAc:PET) to afford compound 7a via silica gel flash chromato
References

1 A. Szumna, Inherently chiral concave molecules – from synthesis to applications, Chem. Soc. Rev., 2010, 39 (11), 4274–4285.
2 G.E. Arnott, Inherently chiral calixarenes: synthesis and applications, Chem. – A Eur. J., 2014, 28 (4), 1744–1754.
3 L.X. Dai, T. Tu, S.L. You, W.P. Deng and X.L. Hou, Asymmetric catalysis with chiral ferrocene ligands, Acc. Chem. Res., 2003, 36 (9), 659–667.
4 S.A. Herbert and G.E. Arnott, An asymmetric ortholithiation approach to inherently chiral calix[4]arenes, Org. Lett., 2009, 11 (21), 4986–4989.
5 S.A. Herbert and G.E. Arnott, Synthesis of inherently chiral calix[4]arenes: stereocontrol through ligand choice, Org. Lett., 2010, 12 (20), 4600–4603.
6 S.A. Herbert, D.C. Castell, D.C. Clayden and G.E. Arnott, Manipulating the diastereoselectivity of ortholithiation in planar calixarones, Org. Lett., 2013, 15 (13), 3334–3337.
7 D.C. Castell, N. Lesotho, V.I. Nikolaeyenko and G.E. Arnott, Inherently chiral calix[4]arenes: a chiral sulfoxide as an ortholithiation director, European J. Org. Chem., 2017, 2017 (29), 4328–4333.
8 F.M. Moghaddam, G. Tavakoli, B. Saeednia, P. Langer and B. Jafari, Palladium-catalyzed car bamate-directed regioselective halogena tion: a route to halogenated anilines, J. Org. Chem., 2016, 81 (9), 3868–3876.
9 G.E. Arnott, Inherently chiral calixarenes: synthesis and applications, Chem. – A Eur. J., 2018, 22 (8), 1744–1754.
10 M.C. Davis, Chlorination of aniline and methyl carbamilate by N-chlorosuccinimide and synthesis of 1,3,5-trichlorobenzene, Synth. Commun., 2009, 39 (6), 1100–1108.
11 P.V.N. Reddy, B. Banerjee and M. Cushman, Efficient total synthesis of ammonasamide B, Org. Lett., 2010, 12 (13), 3112–3114.
12 A. Roth, H. Li, C. Anorma and J. Chan, A reaction-based fluorescent probe for imaging of formaldehyde in living cells, J. Am. Chem. Soc., 2015, 137 (34), 10890–10893.
13 D.L. Boger, R.J. Wysocki, S.A. Munk, T. Ishizaki, P.A. Kitos and O. Sunternwat, Total synthesis and evaluation of (±)-N-(tert-butyloxycarbonyl)-CBI, (±)-CBI-CDP1I and (±)-CBI-CDP12: CC-1065 functional agents incorporating the equivalent 1,2,9,9a-tetrahydrocycloprop[1,2-c]benz[1,2-e]indol-4-one (CBI) left-hand subunit, J. Am. Chem. Soc., 1989, 111 (16), 6461–6463.
14 M. Guyonnet and O. Baudoin, Synthesis of tricyclic nitrogen heterocycles by a sequence of palladium-catalyzed N-H and C(sp3)-H arylation, Org. Lett., 2012, 14 (1), 398–401.
15 R.A. Fujimoto, L.W. Mcquire, L.G. Monovich, B.B. Mugarde, D.T. Parker, J.H. Van Duizer and S. Wattanasin, Substituted amino phenylacetic acids, derivatives thereof, their preparation and their use as cyclooxygenase 2 (cox-2) inhibitors, WO 2004/048314 A1, 2004.
16 N. Uhlig and C.J. Li, Aniline car bamates: a versatile and removable motif for palladium-catalyzed directed c-h activation, Chem. – A Eur. J., 2014, 20 (38), 12066–12070.
17 X. Shi and D. Shi, Recent advances in transition-metal-catalyzed halides formation, Curr. Org. Chem., 2018, 22 (23), 2229–2255.
18 C. Que, N. Chen and J. Xu, Application of car bamates in the C-H bond activation, Prog. Chem., 2018, 30 (2–3), 139–155.
19 R. Das and M. Kapur, Transition-metal-catalyzed site-selective C-H halogenation reactions, Asian J. Org. Chem., 2018, 7 (8), 1524–1541.
20 C. Sambitio, D. Schönauer, R. Bleck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M.F. Zia, J. Wencel-Delord, T. Besse, B.U.W. Maes and M. Schürch, A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry, Chem. Soc. Rev., 2018, 47 (17), 6603–6743.
21 A.M.A. Van Wageningen, E. Snip, W. Verboom, D.N. Reinholdt and H. Boerrigter, Synthesis and application of iso(thio)cyanate-functionalized calix[4]arenes, Liebigs Ann., 1997, 111, 2235–2245.
22 C.D. Jurisch and G.E. Arnott, Attempted synthesis of a meta -meta lated calix[4]arene, Beilstein J. Org. Chem., 2019, 15 (1), 1996–2002.
23 S. Pinchas and D. Ben-Ishai, The carbonyl absorption of car bamates and 2-oxazolidones in the infrared region, J. Am. Chem. Soc., 1957, 79 (15), 4099–4104.
24 U. Jacqueyard, V. Bénêteau, M. Lefoix, S. Routier, J.Y. Mérour and G. Coudert, Mild and selective deprotection of car bamates with Bu 4 NF, Tetrahedron, 2004, 60 (44), 10039–10047.
25 P.M. Esch, H. Hiemstra and WN. Speckamp, Oxazinone versus allene formation in the reaction of N-alkoxy carbamoylaminium ions with propargyltrimethylsilane, Tetrahedron Lett., 1988, 29 (3), 367–370.
Supplementary material to:

K.J. Visagie, L. Hodson and G.E. Arnott,

C–H activation: a Critical Evaluation of a Published Method and its Application Towards Inherently Chiral Calix[4]arenes,

S. Afr. J. Chem., 2020, *73*, 15–21.
Supplementary Information for
Investigation into a C–H activation pathway towards inherently chiral calix[4]arenes

Kevin J. Visagie, Luke Hodson and Gareth E. Arnott*

Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

Contents:
NMR, IR and HRMS Spectra for all new compounds synthesized and also References for halogenation reactions prior to 2016
5-Methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene (4)

Figure 1. IR spectrum (ATR) for 5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 4.

Figure 2. 1H NMR spectrum (300MHz, CDCl$_3$) for 5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 4.

Figure 3. 13C NMR spectrum (75MHz, CDCl$_3$) for 5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 4.
Figure 4. HRMS spectrum (ESI+) for 5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 4.

4-Bromo-5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene (5)

Figure 5. IR spectrum (ATR) for (±)-6-bromo-5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 5

Figure 6. 1H NMR spectrum (300MHz, CDCl$_3$) for (±)-6-bromo-5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 5
Figure 7. 13C NMR spectrum (75MHz, CDCl$_3$) for (±)-6-bromo-5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 5

Figure 8. HRMS spectrum (ESI+) for (±)-6-bromo-5-methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 5

5-Methyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene (6)

Figure 9. IR spectrum (ATR) for 5-menthyl carbamate-25,26,27,28-tetrapropoxy-calix[4]arene 6
Figure 10. 1H NMR spectrum (600 MHz, CDCl$_3$) for 5-menthyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 6

Figure 11. 13C NMR spectrum (150 MHz, CDCl$_3$) for 5-menthyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 6

Figure 12. HRMS spectrum (ESI+) for 5-menthyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 6

C$_{31}$H$_{32}$N$_2$O$_6$ [M+NH$_3$]$^+$

C$_{61}$H$_{68}$NO$_6$ [M+H]$^+$

C$_{55}$H$_{67}$NNaO$_6$ [M+Na]$^+$
4-Bromo-5-menthyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene (7a and 7b)

\Visagie\Chapter 3 - Mono Carbamate Calixarenes\(11) 4-Bromo-5-menthyl carbamate-25,26,27,28-tetrapropoxy calix[4]arene

Figure 13. IR spectrum (ATR) for 4-bromo-5-menthyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 7a and 7b

Figure 14. 1H NMR spectrum (300 MHz, CDCl$_3$) for 4-bromo-5-menthyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 7a and 7b

Figure 15. 13C NMR spectrum (75 MHz, CDCl$_3$) for 4-bromo-5-menthyl carbamate-25,26,27,28-tetrapropoxycalix[4]arene 7a and 7b
Figure 16. HRMS spectrum (ESI+) for 4-bromo-5-menthyl carbamate-25,26,27,28-tetrapropoxy-calix[4]arene 7a and 7b

4-Bromo-5-amino-25,26,27,28-tetrapropoxy-calix[4]arene (8)

Figure 17. IR spectrum (ATR) for 4-bromo-5-amino-25,26,27,28-tetrapropoxy-calix[4]arene 8a and 8b
Figure 18. 1H NMR spectrum (600 MHz, CDCl$_3$) for 4-bromo-5-amino-25,26,27,28-tetrapropoxycalix[4]arene 8a and 8b.

Figure 19. 13C NMR spectrum (600 MHz, CDCl$_3$) for 4-bromo-5-amino-25,26,27,28-tetrapropoxycalix[4]arene 8a and 8b.

Figure 20. HRMS spectrum (ESI+) for 4-bromo-5-amino-25,26,27,28-tetrapropoxycalix[4]arene 8a and 8b.
References for reactions where halogenation directed by a carbamate have been reported:

Using NCS

Name	Title	Reference
BRISTOL-MYERS SQUIBB COMPANY; CIANCI, Christopher, W.; GERRITZ, Samuel; LI, Guo; PEARCE, Bradley, C.; PENDRI, Annapurna; SHI, Shuhao; ZHAI, Weixu; ZHU, Shirong	NOVEL PIPERAZINE ANALOGS AS BROAD-SPECTRUM INFLUENZA ANTIVIRALS	Patent: WO2012/33736; (2012); (A1)
View in Reaxys	1/12	

Name	Title	Reference
BRISTOL-MYERS SQUIBB COMPANY; CORTE, James, R.; FANG, Tianan; DECICCO, Carl, P.; PINTO, Donald, J., P.; ROSSI, Karen, A.; HU, Zilun; JEON, Yoon; QUAN, Mimi, L.; SMALLHEER, Joanne, M.; WANG, Yufeng; YANG, Wu	MACROCYCLES AS FACTOR XIA INHIBITORS	Patent: WO2011/100401; (2011); (A1)
View in Reaxys	2/12	

Name	Title	Reference
Array Biopharma, Inc.	RAF INHIBITOR COMPOUNDS AND METHODS OF USE THEREOF	Patent: US2010/63066; (2010); (A1)
View in Reaxys	3/12	

Name	Title	Reference
Reddy, P. V. Narasimha; Banerjee, Biplab; Cushman, Mark	Efficient total synthesis of ammosamide B	Organic Letters; vol. 12; nb. 13; (2010); p. 3112 - 3114
View in Reaxys	4/12	

Name	Title	Reference
Davis, Matthew C.	Chlorination of aniline and methyl carbanilate by N-chlorosuccinimide and synthesis of 1,3,5-trichlorobenzene	Synthetic Communications; vol. 39; nb. 6; (2009); p. 1100 - 1108
View in Reaxys	5/12	

Name	Title	Reference
Somei, Masanori; Hattori, Atsuhiko; Suzuki, Nobuo	Indole derivative and application thereof	Patent: US2007/197629; (2007); (A1)
View in Reaxys	6/12	

Name	Title	Reference
NOVARTIS AG; NOVARTIS PHARMA GMBH	SUBSTITUTED AMINO PHENYLACETIC ACIDS, DERIVATIVES THEREOF, THEIR PREPARATION AND THEIR USE AS CYCLOOXYGENASE 2 (COX-2) INHIBITORS	Patent: WO2004/48314; (2004); (A1)
View in Reaxys	7/12	

Name	Title	Reference
PFIZER INC.	DIAZEPINOINDOLE DERIVATIVES AS KINASE INHIBITORS	Patent: WO2004/63198; (2004); (A1)
View in Reaxys	8/12	
Using NBS

Richter Gedeon Vegyészeti Gyár RT.

PROCESS FOR THE SYNTHESIS OF A BENZAMIDE DERIVATIVE

Patent: WO2003/106440; (2003); (A2)

View in Reaxys 9/12

Herrinton, Paul M.; Owen, Carolyn E.; Gage, James R.

Iodination and metal halogen exchange of aromatic compounds: An improved preparation of a key oxazolidinone antibiotic intermediate

Organic Process Research and Development; *vol.* 5; nb. 1; (2001); p. 80 - 83

View in Reaxys 10/12

Xue Liang Tao; Cheng; Nishiyama; Yamamura

Synthetic studies on tetrahydropyrroloquinoline-containing natural products: Syntheses of discorhabdin C, batzelline C and isobatzelline C

Tetrahedron; *vol.* 50; nb. 7; (1994); p. 2017 - 2028

View in Reaxys 11/12

Tao, Xue Liang; Nishiyama, Shigeru; Yamamura, Shosuke

Total Syntheses of Batzelline C and Isobatzelline C, the Novel Pyrroloquinoline Alkaloids Isolated from the Marine Sponge Batzella Sp.

Chemistry Letters; nb. 10; (1991); p. 1785 - 1786

View in Reaxys 12/12

Using NBS

Chugai Seiyaku Kabushiki Kaisha; MURATA, Takeshi; KAWADA, Hatsu; NIIZUMA, Satoshi; HARA, Sousuke; HADA, Kihito; SHIMADA, Hideaki; TANAKA, Hiroshi; MIO, Toshiyuki

QUINAZOLINEDIONE DERIVATIVE

Patent: EP2842946; (2015); (A1)

View in Reaxys 1/43

Astellas Pharma Inc.; KANAYAMA, Takatoshi; KUBOTA, Hideki; MATSUMOTO, Shunichiro; SAITO, Tomoyuki; SHIMIZU, Takafumi; KATOH, Naoto; MATSUI, Shigeo

INDOLECARBOXAMIDE DERIVATIVE

Patent: EP2873660; (2015); (A1)

View in Reaxys 2/43

Elgersma, Ronald C.; Coumans, Ruud G. E.; Huijbregts, Tijl; Menge, Wiro M. P. B.; Joosten, John A. F.; Spijker,Henri J.; De Groot, Franciscus M. H.; Van Der Lee, Miranda M. C.; Ubink, Ruud; Van Den Dobbelsteen, Diels J.; Egging, David F.; Dokter, Wim H. A.; Verheijden, Gijs F. M.; Lemmens, Jacques M.; Timmers, C. Marco; Beusker, Patrick H.

Design, synthesis, and evaluation of linker-duocarmycin payloads: Toward selection of HER2-targeting antibody-drug conjugate SYD985

Molecular Pharmaceutics; *vol.* 12; nb. 6; (2015); p. 1813 - 1835

View in Reaxys 3/43

Nowak, Monika; Malinowski, Zbigniew; Fornal, Emilia; Jóźwiak, Andrzej; Parfieniuk, Ewa; Gajek, Gabriela; Kontek, Renata
Title	Journal	Volume	Number	Year	Pages	Authors	Patent	View in Reaxys
Substituted benzoquinazolinones. Part 2: Synthesis of amino-, and sulfanyl-derivatives of benzo[f]- and benzo[h]quinazolinones	Tetrahedron	71	50	2015	9463 - 9473	SYNTHON BIOPHARMACEUTICALS B.V.; HUIJBRGTS, Tijl; ELGERSMA, Ronald Christiaan; BEUSKER, Patrick Henry; JOOSTEN, Johannes Albertus Frederikus; COUMANS, Rudy Gerardus Elisabeth; SPIJKER, Henri Johannes; MENGE, Wiro; DE GROOT, Franciscus Mariuns Hendrikus	WO2015/185142	4/43
IMPROVED PROCESS FOR MAKING DUOCARMYCIN PRODRUGS						NGUYEN, Bichlien H.; PERKINS, Robert J.; SMITH, Jake A.; MOELLER, Kevin D.		
Solvolysis, Electrochemistry, and Development of Synthetic Building Blocks from Sawdust	Journal of Organic Chemistry	80	24	2015	11953 - 11962	PATIL, Pravin C.; LEE, Moses		
An efficient synthesis of furano analogs of duocarmycin C1 and C2: Seco-iso-cyclopropylfuranо[e]indoline-trimethoxyindole and seco- cyclopropylfuranо[f]quinoline-trimethoxyindole	Tetrahedron Letters	55	21	2014	3283 - 3285	EL-DEEB, Ibrahim M.; ROSE, Faith J.; HEALY, Peter C.; VON ITZSTEIN, Mark		
A versatile synthesis of "tafuramycin A": A potent anticancer and parasite attenuating agent	Organic and Biomolecular Chemistry	12	24	2014	4260 - 4264	ZHANG, Yu-Chen; JIANG, Fei; WANG, Shu-Liang; SHI, Feng; TU, Shu-Jiang		
Organocatalytic chemo- and regioselective oxyarylation of styrenes via a cascade reaction: Remote activation of hydroxyl groups	Journal of Organic Chemistry	79	13	2014	6143 - 6152	RONG, Zhouting; LI, Qingjiang; LIN, Wenhan; JIA, Yanxing		
Reagent-free synthesis of 2,3,4-polysubstituted tetrahydroquinolines: Application to the formal synthesis of (+)-martinellic acid and martinelline	Tetrahedron Letters	54	33	2013	4432 - 4434	RVX Therapeutics Inc.; McLure, Kevin G.; Young, Peter Ronald	US2013/281397	10/43
TREATMENT OF DISEASES BY EPIGENETIC REGULATION						GUYONNET, Mathieu; BAUDOIN, Olivier		
Synthesis of tricyclic nitrogen heterocycles by a sequence of palladium-catalyzed N-H and C(sp³)-H								
arylations
Organic Letters; vol. 14; nb. 1; (2012); p. 398 - 401
View in Reaxys 12/43

BRISTOL-MYERS SQUIBB COMPANY; CIANCI, Christopher, W.; GERRITZ, Samuel; LI, Guo; PEARCE, Bradley, C.; PENDRI, Annapurna; SHI, Shuhao; ZHAI, Weixu; ZHU, Shirong
NOVEL PIPERAZINE ANALOGS AS BROAD-SPECTRUM INFLUENZA ANTIVIRALS
Patent: WO2012/33736; (2012); (A1)
View in Reaxys 13/43

Inoue, Keisuke; Ishikawa, Yuichi; Nishiyama, Shigeru
Synthesis of tetrahydropyrroloiminoquinone alkaloids based on electrochemically generated hypervalent iodine oxidative cyclization
Organic Letters; vol. 12; nb. 3; (2010); p. 436 - 439
View in Reaxys 14/43

Wilson, Kenneth J.; Illig, Carl R.; Chen, Jinsheng; Wall, Mark J.; Ballentine, Shelley K.; Desjarlais, Renee L.; Chen, Yanmin; Schubert, Carsten; Donatelli, Robert; Petrounia, Ioanna; Crysler, Carl S.; Molloy, Christopher J.; Chaikin, Margery A.; Manthey, Carl L.; Player, Mark R.; Tomczuk, Bruce E.; Meegalla, Sanath K.
Reducing ion channel activity in a series of 4-heterocyclic arylamide FMS inhibitors
Bioorganic and Medicinal Chemistry Letters; vol. 20; nb. 13; (2010); p. 3925 - 3929
View in Reaxys 15/43

RESVERLOGIX CORP.; HANSEN, Henrik, C.; WAGNER, Gregory, S.; ATTWELL, Sarah, C.; MCLURE, Kevin, G.; KULIKOWSKI, Ewelina, B.
NOVEL ANTI-INFLAMMATORY AGENTS
Patent: WO2010/123975; (2010); (A1)
View in Reaxys 16/43

Tietze, Lutz F.; Behrendt, Frank; Major, Felix; Krewer, Birgit; Von Hof, J. Marian
Synthesis of fluorescence-labelled glycosidic prodrugs based on the cytotoxic antibiotic duocarmycin
European Journal of Organic Chemistry; nb. 36; (2010); p. 6909 - 6921
View in Reaxys 17/43

THE SCRIPPS RESEARCH INSTITUTE
CBI DERIVATIVES SUBJECT TO REDUCTIVE ACTIVATION
Patent: WO2009/64908; (2009); (A1)
View in Reaxys 18/43

MacMillan, Karen S.; Nguyen, Trihn; Hwang, Inkyu; Boger, Dale L.
Total synthesis and evaluation of iso-duocarmycin SA and iso-yatakemycin
Journal of the American Chemical Society; vol. 131; (2009); p. 1187 - 1194
View in Reaxys 19/43

PFIZER LIMITED
NOVEL COMPOUNDS
Patent: WO2009/144632; (2009); (A1)
Milbank, Jared B. J.; Stevenson, Ralph J.; Ware, David C.; Chang, John Y. C.; Tercel, Moana; Ahn, G.-One; Wilson, William R.; Denny, William A.
Synthesis and evaluation of stable bidentate transition metal complexes of 1-(chloromethyl)-5-hydroxy-3-(5,6,7-trimethoxyindol-2-ylcarbonyl)-2, 3-dihydro-1H-pyrrolo[3,2-f]quinoline (seco-6-azaCBI-TMI) as hypoxia selective cytotoxins
Journal of Medicinal Chemistry; vol. 52; nb. 21; (2009); p. 6822 - 6834 |

Patent: WO2009/144632; (2009); (A1)
Tercel, Moana; Atwell, Graham J.; Yang, Shangjin; Stevenson, Ralph J.; Botting, K. Jane; Boyd, Maruta; Smith, Eileen; Anderson, Robert F.; Denny, William A.; Wilson, William R.; Pruijn, Frederik B.
Hypoxia-activated prodrugs: Substituent effects on the properties of nitro seco-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (nitroCBI) prodrugs of DNA minor groove alkylating agents
Journal of Medicinal Chemistry; vol. 52; nb. 22; (2009); p. 7258 - 7272 |

Patent: US2008/188467; (2008); (A1)
Gauss, Carla M.; Hamasaki, Akiyuki; Parrish, Jay P.; MacMillan, Karen S.; Rayl, Thomas J.; Hwang, Inkyu; Boger, Dale L.
Synthesis and preliminary evaluation of duocarmycin analogues incorporating the 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[2,3-e]indol-4-one (CNI) and 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[1,2-e]indol-4-one (iso-CNI) alkylation subunits
Tetrahedron; vol. 65; nb. 33; (2009); p. 6591 - 6599 |

Patent: US2008/188467; (2008); (A1)
Wong, Norman C.W.; Tucker, Joseph E.L.; Hansen, Henrik C.; Chiachia, Fabrizio S.; McCaffrey, David
COMPOUNDS FOR THE PREVENTION AND TREATMENT OF CARDIOVASCULAR DISEASES
Patent: US2008/188467; (2008); (A1) |

Patent: US2007/249593; (2007); (A1)
Illig, Carl R.; Ballentine, Shelley K.; Chen, Jinsheng; DesJarlais, Renee Louise; Meegalla, Sanath K.; Wall, Mark; Wilson, Kenneth
INHIBITORS OF C-FMS KINASE
Patent: US2007/249593; (2007); (A1) |

Patent: WO2006/43839; (2006); (A1)
Auckland Uniservices Limited
NITROBENZINDOLES AND THEIR USE IN CANCER THERAPY
Patent: WO2006/43839; (2006); (A1) |

Patent: WO2005/32594; (2005); (A2)
The Government of the United States of America, as Represented by the Secretary, Department of Health and Human Services
BUILDING BLOCKS FOR DNA BINDING AGENTS
Patent: WO2005/32594; (2005); (A2) |
Ennis, Michael D.; Frank, Kristine E.; Hoffman, Robert L.; Fu, Jian-Min
THERAPEUTIC 1H-PYRIDO [4, 3-B] INDOLES
Patent: US2003/60464; (2003); (A1)
View in Reaxys 28/43

Tietze, Lutz F.; Haunert, Frank; Feuerstein, Tim; Herzig, Tobias
A concise and efficient synthesis of seco-duocarmycin SA
European Journal of Organic Chemistry; nb. 3; (2003); p. 562 - 566
View in Reaxys 29/43

Chassot, Laurent; Braun, Hans-Juergen
Dyes for keratin fibres containing 1,3-diamino-4-heteroarylbenzene derivatives and novel 1,3-diamino-4-heteroarylbenzene derivatives
Patent: US2003/93867; (2003); (A1)
View in Reaxys 30/43

Howard, Tiffany T; Lingerfelt, Brian M; Purnell, Bethany L; Scott, Adrienne E; Price, Carly A; Townes, Heather M; McNulty, LuAnne; Handl, Heather L; Summerville, Kaitlin; Hudson, Stephen J; Bowen, J Phillip; Kiakos, Konstantinos; Hartley, John A; Lee, Moses
Novel furano analogues of duocarmycin C1 and C2: design, synthesis, and biological evaluation of seco-iso-cyclopropylfurano[2,3-e]indoline (seco-iso-CFI) and seco-cyclopropyltetrahydrofurano[2,3-f]quinoline (seco-CFQ) analogues.
Bioorganic and medicinal chemistry; vol. 10; nb. 9; (2002); p. 2941 - 2952
View in Reaxys 31/43

Boger; Hughes; Hedrick
Synthesis, chemical properties, and biological evaluation of CC-1065 and duocarmycin analogues incorporating the 5-methoxycarbonyl-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one alkylation subunit
Journal of Organic Chemistry; vol. 66; nb. 7; (2001); p. 2207 - 2216
View in Reaxys 32/43

The Scripps Research Institute
Analogs of CC-1065 and the duocarmycins
Patent: US6060608; (2000); (A)
View in Reaxys 33/43

The Scripps Research Institute
MCBI analogs of CC-1065 and the duocarmycins
Patent: US5985908; (1999); (A)
View in Reaxys 34/43

Patel, Vinod F.; Andis, Sherri L.; Enkema, Julia K.; Johnson, David A.; Kennedy, Joseph H.; Mohamadi, Fariborz; Schultz, Richard M.; Soose, Daniel J.; Spees, Michael M.
Total synthesis of seco (+)- and ent(-)-oxaduocarmycin SA: Construction of the (chloromethyl)indoline alkylation subunit by a novel intramolecular aryl radical cyclization onto a vinyl chloride
Journal of Organic Chemistry; vol. 62; nb. 25; (1997); p. 8868 - 8874
Boger, Dale L.; McKie, Jeffrey A.; Cai, Hui; Cacciari, Barbara; Baraldi
Synthesis and properties of substituted CBI analogs of CC-1065 and the duocarmycins incorporating the 7-methoxy-1,2,9,9a-tetrahydrocyclop[ac]benz[e]indol-4-one (MCBI) alkylation subunit: Magnitude of electronic effects on the functional reactivity
Journal of Organic Chemistry; vol. 61; nb. 5; (1996); p. 1710 - 1729

Boger, Dale L.; Han, Nianhe; Tarby, Christine M.; Boyce, Christopher W.; Cai, Hui; Jin, Qing; Kitos, Paul A.
Synthesis, chemical properties, and preliminary evaluation of substituted CBI analogs of CC-1065 and the duocarmycins incorporating the 7-cyano-1,2,9,9a-tetrahydrocyclop[ac]benz[e]indol-4-one alkylation subunit: Hammett quantitation of the magnitude of electronic effects on functional reactivity
Journal of Organic Chemistry; vol. 61; nb. 15; (1996); p. 4894 - 4912

Mohamadi, Fariborz; Spees, Michael M.; Staten, Gilbert S.; Marder, Philip; Kipka, Julia K.; et al.
Total Synthesis and Biological Properties of Novel Antineoplastic (Chloromethyl)furanoidolines: An Asymmetric Hydroboration Mediated Synthesis of the Alkylation Subunits
Journal of Medicinal Chemistry; vol. 37; nb. 2; (1994); p. 232 - 239

Boger; Nishi; Teegarden
p-Quinomethide analog of the CC-1065 and duocarmycin alkylation subunits
Journal of Organic Chemistry; vol. 59; nb. 17; (1994); p. 4943 - 4949

Eli Lilly and Company
Furanoidolines
Patent: US5248691; (1993); (A)

Boger, Dale L.; Yun, Weiya; Teegarden, Bradley R.
An Improved Synthesis of 1,2,9,9a-Tetrahydrocyclop[ac]benz[e]indol-4-one (CBI): A Simplified Analogue of the CC-1065 Alkylation Subunit
Journal of Organic Chemistry; vol. 57; nb. 10; (1992); p. 2873 - 2876

Boger, Dale L.; Ishizaki, Takayoshi; Kitos, Paul A.; Suntornwat, Oranart
Synthesis of N-(tert-Butyloxycarbonyl)-CBI, CBI, CBI-CDPI1, and CBI-CDPI2: Enhanced Functional Analogues of CC-1065 Incorporating the 1,2,9,9a-Tetrahydrocyclop[ac]benz[e]indol-4-one (CBI) Left-Hand Subunit
Journal of Organic Chemistry; vol. 55; nb. 23; (1990); p. 5823 - 5832

Boger, Dale L.; Ishizaki, Takayoshi; Wysocki, Ronald J.; Munk, Stephen A.; Kitos, Paul A.; Suntornwat,
Oranart

Total Synthesis and Evaluation of (±/-)-N-(tert-Butyloxy carbonyl)-CBI, (±/-)-CBI-CDPI1, and (±/-)-CBI-CDPI2: CC-1065 Functional Agents Incorporating the Equivalent 1,2,9,9a-Tetrahydrocycloprop<1,2-c>benz<1,2-e>indol-4-one (CBI) Left-Hand Subunit

Journal of the American Chemical Society; vol. 111; nb. 16; (1989); p. 6461 - 6463

Using NIS

Fra, Laura; Millán, Alba; Souto, José A.; Muñiz, Kilian
Indole synthesis based on a modified koser reagent
Angewandte Chemie - International Edition; vol. 53; nb. 28; (2014); p. 7349 - 7353
View in Reaxys 1/24

Uematsu, Mika; Boger, Dale L.
Asymmetric synthesis of a CBI-based cyclic N-acyl O-amino phenol duocarmycin prodrug
Journal of Organic Chemistry; vol. 79; nb. 20; (2014); p. 9699 - 9703
View in Reaxys 2/24

THE SCRIPPS RESEARCH INSTITUTE; BOGER, Dale L.
CYCLIC PRODRUGS OF DUOCARMYCN ANALOGS
Patent: WO2013/148631; (2013); (A1)
View in Reaxys 3/24

Zhao, Robert Yongxin; Erickson, Hans K.; Leece, Barbara A.; Reid, Emily E.; Goldmacher, Victor S.; Lambert, John M.; Chari, Ravi V. J.
Synthesis and biological evaluation of antibody conjugates of phosphate prodrugs of cytotoxic DNA alkylators for the targeted treatment of cancer
Journal of Medicinal Chemistry; vol. 55; nb. 2; (2012); p. 766 - 782
View in Reaxys 4/24

Stevenson, Ralph J.; Denny, William A.; Tercel, Moana; Pruijn, Frederik B.; Ashoorzadeh, Amir
Nitro seco analogues of the duocarmycins containing sulfonate leaving groups as hypoxia-activated prodrugs for cancer therapy
Journal of Medicinal Chemistry; vol. 55; nb. 6; (2012); p. 2780 - 2802
View in Reaxys 5/24

Wolfe, Amanda L.; Duncan, Katharine K.; Parelkar, Nikhil K.; Weir, Scott J.; Vielhauer, George A.; Boger, Dale L.
A novel, unusually efficacious duocarmycin carbamate prodrug that releases no residual byproduct
Journal of Medicinal Chemistry; vol. 55; nb. 12; (2012); p. 5878 - 5886
View in Reaxys 6/24

Boyle, Kristopher E.; MacMillan, Karen S.; Ellis, David A.; Lajiness, James P.; Robertson, William M.; Boger, Dale L.
Synthesis and evaluation of duocarmycin SA analogs incorporating the methyl 1,2,8,8a-tetrahydrocyclopropa[c]oxazolo[2,3-e]indol-4-one-6-carboxylate (COI) alklyation subunit
Bioorganic and Medicinal Chemistry Letters; vol. 20; nb. 6; (2010); p. 1854 - 1857
F. Hoffmann-La Roche AG

Process for the preparation of an indole derivative
Patent: EP2011783; (2009); (A1)

Milbank, Jared B. J.; Stevenson, Ralph J.; Ware, David C.; Chang, John Y. C.; Tercel, Moana; Ahn, G.-One; Wilson, William R.; Denny, William A.

Synthesis and evaluation of stable bidentate transition metal complexes of 1-(chloromethyl)-5-hydroxy-3-(5,6,7-trimethoxyindol-2-ylcarbonyl)-2, 3-dihydro-1H-pyrrolo[3,2-f]quinoline (seco-6-azaCBI-TMI) as hypoxia selective cytotoxins
Journal of Medicinal Chemistry; vol. 52; nb. 21; (2009); p. 6822 - 6834

MacMillan, Karen S.; Lajiness, James P.; Cara, Carlota Lopez; Romagnoli, Romeo; Robertson, William M.; Hwang, Inkyu; Baraldi, Pier Giovanni; Boger, Dale L.

Synthesis and evaluation of a thio analogue of duocarmycin SA
Bioorganic and Medicinal Chemistry Letters; vol. 19; nb. 24; (2009); p. 6962 - 6965

Tietze, Lutz F.; Panknin, Olaf; Major, Felix; Krewer, Birgit

Synthesis of a novel pentagastrin-drug conjugate for a targeted tumor therapy
Chemistry - A European Journal; vol. 14; nb. 9; (2008); p. 2811 - 2818

Faeh, Christoph; Kuehne, Holger; Luebbers, Thomas; Mattei, Patrizio; Maugeais, Cyrille; Pflieger, Philippe

Heteroaryl and benzyl amide compounds
Patent: US2007/185113; (2007); (A1)

Conte, Aurelia; Kuehne, Holger; Luebbers, Thomas; Mattei, Patrizio; Maugeais, Cyrille; Mueller, Werner; Pflieger, Philippe

Heteroaryl carboxamide compounds
Patent: US2007/185182; (2007); (A1)

Tichenor, Mark S.; MacMillan, Karen S.; Stover, James S.; Wolkenberg, Scott E.; Pavani, Maria G.; Zanella, Lorenzo; Zaid, Abdel N.; Spalluto, Gianpiero; Rayl, Thomas J.; Hwang, Inkyu; Baraldi, Pier Giovanni; Boger, Dale L.

Rational design, synthesis, and evaluation of key analogues of CC-1065 and the duocarmycins
Journal of the American Chemical Society; vol. 129; nb. 45; (2007); p. 14092 - 14099

MEDAREX, INC.

METHODS AND COMPOUNDS FOR PREPARING CC-1065 ANALOGS
Patent: WO2007/51081; (2007); (A1)
View in Reaxys 15/24
Tichenor, Mark S.; Trzupek, John D.; Kastrinsky, David B.; Shiga, Futoshi; Hwang, Inkyu; Boger, Dale L.
Asymmetric total synthesis of (+)- and ent-(-)-yatakemycin and duocarmycin SA: Evaluation of yatakemycin key partial structures and its unnatural enantiomer
Journal of the American Chemical Society; vol. 128; nb. 49; (2006); p. 15683 - 15696 |

View in Reaxys 16/24
Conte-Mayweg, Aurelia; Kuehne, Holger; Luebbers, Thomas; Maugeais, Cyrille; Mueller, Werner; Pfieger, Philippe
Indole, indazole and indoline derivatives as CETP inhibitors
Patent: US2006/30613; (2006); (A1) |

View in Reaxys 17/24
Spirogen Limited
Cyclopropylindole derivatives
Patent: US6909006; (2005); (B1) |

View in Reaxys 18/24
Adams, David; Benardeau, Agnes; Bickerdike, Mike J.; Bentley, Jon M.; Bissantz, Caterina; Bourson, Anne; Cliffe, Ian A.; Hebeisen, Paul; Kennett, Guy A.; Knight, Antony R.; Malcolm, Craig S.; Mizrahi, Jacques; Plancher, Jean-Marc; Richter, Hans; Roever, Stephan; Taylor, Sven; Vickers, Steven P.
5-HT\textsubscript{2C} receptor agonists for the treatment of obesity. Biological and chemical adventures
Chimia; vol. 58; nb. 9; (2004); p. 613 - 620 |

View in Reaxys 19/24
Bentley, Jonathan Mark; Bickerdike, Michael John; Hebeisen, Paul; Kennett, Guy Anthony; Lightowler, Sean; Mattei, Patrizio; Mizrahi, Jacques; Morley, Timothy James; Plancher, Jean-Marc; Richter, Hans; Roever, Stephan; Taylor, Sven; Vickers, Steven Paul
Novel indole derivatives
Patent: US2002/160997; (2002); (A1) |

View in Reaxys 20/24
Boger; Brunette; Garbaccio
Synthesis and evaluation of a series of C3-substituted CBI analogues of CC-1065 and the duocarmycins
Journal of Organic Chemistry; vol. 66; nb. 15; (2001); p. 5163 - 5173 |

View in Reaxys 21/24
Boger; Boyce
Selective metal cation activation of a DNA alkylating agent: Synthesis and evaluation of methyl 1,2,9,9a-tetrahydrocyclopenta[c]pyrido[3,2-e]indol-4-one-7-carboxylate (CPyl)
Journal of Organic Chemistry; vol. 65; nb. 13; (2000); p. 4088 - 4100 |

View in Reaxys 22/24
Boger, Dale L.; McKie, Jeffrey A.; Cai, Hui; Cacciari, Barbara; Baraldi
Synthesis and properties of substituted CBI analogs of CC-1065 and the duocarmycins incorporating the 7-methoxy-1,2,9,9a-tetrahydrocyclopenta[c]benzo[e]indol-4-one (MCBI) alkylation subunit:
Author(s)

Boger, Dale L.; Han, Nianhe; Tarby, Christine M.; Boyce, Christopher W.; Cai, Hui; Jin, Qing; Kitos, Paul A.
Hansen, John Bondo; Fink-Jensen, Anders; Christensen, Birgitte V.; Gronvald, Frederick C.; Jeppesen, Lone; Mogensen, John P.; Nielsen, Erik B.; Scheideler, Mark A.; White, Francis J.; Zhang, Xu-Feng
Yamanouchi Pharmaceutical Co., Ltd.
Yamanouchi Pharm.
Pan; Fletcher
Cosulich et al.
Matheson; McCombie
Buchan; McCombie
Using Br₂

Authors	Title	Journal	Volume	Number	Pages	View in Reaxys
Isley, Nicholas A.; Dobarco, Sebastian; Lipshutz, Bruce H.	Installation of protected ammonia equivalents onto aromatic & heteroaromatic rings in water enabled by micellar catalysis	Green Chemistry	16	3	1480 - 1488	1/18
Hashimoto, Takuya; Nakatsu, Hiroki; Takiguchi, Yuka; Maruoka, Keiji	Axially chiral dicarboxylic acid catalyzed activation of quinone imine ketals: Enantioselective arylation of enecarbamates	Journal of the American Chemical Society	135	43	16010 - 16013	2/18
Evans, Kathryn M.; Haraldsen, Jeralyn D.; Pearson, Russell J.; Slawin, Alexandra M. Z.; Ward, Gary E.; Westwood, Nicholas J.	Synthesis and chemical characterisation of target identification reagents based on an inhibitor of human cell invasion by the parasite Toxoplasma gondii	Organic and Biomolecular Chemistry	5	13	2063 - 2069	3/18
LANXESS Deutschland GmbH	Process for the preparation of carbamic acid derivatives	Patent: EP1669346; (2006); (A1)				4/18
Ishida, Junya; Yamamoto, Hirofumi; Kido, Yoshiyuki; Kamijo, Kazunori; Murano, Kenji; Miyake, Hiroshi; Ohkubo, Mitsu; Kinoshita, Takayoshi; Warizaya, Masaichi; Iwashita, Akinori; Mihara, Kayoko; Matsuoka, Nobuya; Hattori, Kouji	Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling	Bioorganic and Medicinal Chemistry	14	5	1378 - 1390	5/18
Ishida, Junya; Hattori, Kouji; Yamamoto, Hirofumi; Iwashita, Akinori; Mihara, Kayoko; Matsuoka, Nobuya	4-Phenyl-1,2,3,6-tetrahydropyridine, an excellent fragment to improve the potency of PARP-1 inhibitors	Bioorganic and Medicinal Chemistry Letters	15	19	4221 - 4225	6/18
Frank, Kristine E.; Aube, Jeffrey	Cyclizations of substituted benzylidene-3-alkenylamines: Synthesis of the tricyclic core of the martinelines	Journal of Organic Chemistry	65	3	655 - 666	
View in Reaxys 7/18						

Hansen, John Bondo; Fink-Jensen, Anders; Christensen, Birgitte V.; Gronvald, Frederick C.; Jeppesen, Lone; Mogensen, John P.; Nielsen, Erik B.; Scheideler, Mark A.; White, Francis J.; Zhang, Xu-Feng						
Mesolimbic selective antipsychotic arylcarbamates						
European Journal of Medicinal Chemistry; **vol. 33**; nb. 11; (1998); p. 839 - 858						

View in Reaxys 8/18
Nikam, Sham S.; Yuen, Po-Wai; Kornberg, Brian E.; Tobias, Brian; Rafferty, Michael F.
Novel Use of Substituted 1,4-Dihydrobenz<d><1,3>oxazin-2-ones in the Synthesis of Important Aminomethyl o-Nitroanilines
Journal of Organic Chemistry; **vol. 26**; 62; (1997); p. 9331 - 9334

View in Reaxys 9/18
Novo Nordisk A/S
ANTIPSYCHOTIC PIPERIDINE DERIVATIVES
Patent: US5378714; (1995); (A)

View in Reaxys 10/18
Cambie, Richard C.; Higgs, Paul I.; Rutledge, Peter S.; Woodgate, Paul D.
Aryne Chemistry of Podocarpic Acid Derivatives
Australian Journal of Chemistry; **vol. 47**; nb. 8; (1994); p. 1483 - 1508

View in Reaxys 11/18
Bengtsson, Stefan; Hoegberg, Thomas
Secondary β-Aminobenzamide and Heteroatom Directed Lithiation in the Synthesis of 5,6-Dimethoxyanthanilamides and Related Compounds
Journal of Organic Chemistry; **vol. 54**; nb. 19; (1989); p. 4549 - 4553

View in Reaxys 12/18
Schmidt, Hans-Werner
Synthesis of new 4-Hydroxybenzonitrile Derivatives and their Herbicidal Properties
Monatshefte fuer Chemie; **vol. 118**; (1987); p. 217 - 228

View in Reaxys 13/18
Ishii, Hisashi; Murakami, Yusuoiki; Watanabe, Toshiko; Suzuki, Hideharu; Maejima, Hideyuki
Fischer Indolization and Its Related Compounds. XIX. Synthesis of Ethyl 4-Methoxy- and Ethyl 5-Methoxy-1-phenyl-3H-benz<e>indole-2-carboxylates
Chemical & Pharmaceutical Bulletin; **vol. 31**; nb. 12; (1983); p. 4401 - 4408

View in Reaxys 14/18
Yamanouchi Pharm.
Patent: FR2299855; (1976) DE2603417; (1976)

View in Reaxys 15/18
Wagner et al.
Using I₂

Tietze, Lutz F.; Herzig, Tobias; Feuerstein, Tim; Schuberth, Ingrid
Synthesis and biological evaluation of novel analogues and prodrugs of the cytotoxic antibiotic CC-1065 for selective cancer therapy
European Journal of Organic Chemistry; nb. 10; (2002); p. 1634 - 1645
[View in Reaxys](#) 1/3

Gallo-Rodriguez, Carola; Ji, Xiao-duo; Melman, Neli; Siegman, Barry D.; Sanders, Lawrence H.; et al.
Structure-Activity Relationships of N⁶-Benzyladenosine-5'-uronamides as A₁-Selective Adenosine Agonists
Journal of Medicinal Chemistry; vol. 37; nb. 5; (1994); p. 636 - 646
[View in Reaxys](#) 2/3

Schmidt, Hans-Werner
Synthesis of new 4-Hydroxybenzonitrile Derivatives and their Herbicidal Properties
Monatshefte für Chemie; vol. 118; (1987); p. 217 - 228
[View in Reaxys](#) 3/3