THE H-N FILTRATION OF BUNDLES AS FROBENIUS PULL-BACK

MINGSHUO ZHOU

Abstract. Let X be a smooth projective curve of genus $g \geq 2$ over an algebraic closed field k of characteristic $p > 0$. Let $F : X \to X_1$ be the relative Frobenius morphism, and E be a semistable torsion free sheaf on X. For a semistable vector bundle E, one may guess that the length of Harder-Narasimhan filtration is not more than p. In this paper, I give a negative answer to this by giving an explicit example.

1. Introduction

Let X be a smooth projective curve of genus $g \geq 2$ defined over an algebraic closed field k of characteristic $p > 0$. The absolute Frobenius morphism $F_X : X \to X$ is induced by $O_X \to O_X, f \mapsto f^p$. Let $F : X \to X_1 := X \times_k k$ denote the relative Frobenius morphism over k. One of the themes is to study its action on the geometric objects on X.

Recall that a vector bundle E on a smooth projective curve is called semistable (resp. stable) if $\mu(E') \leq \mu(E)$ (resp. $\mu(E') < \mu(E)$) for any nontrivial proper subbundle $E' \subset E$, where $\mu(E)$ is the slope of E. Semistable bundles are basic constituents of vector bundle in the sense that any bundle E admits a unique filtration

$$HN_i(E) : 0 = HN_0(E) \subset HN_1(E) \subset \cdots \subset HN_i(E) = E'$$

which is the so called Harder-Narasimhan filtration, such that

1. $gr^H_N i (E) := HN_i(E)/HN_{i-1}(E) (1 \leq i \leq \ell)$ are semistable;

2. $\mu(gr^H_N 1 (E)) > \mu(gr^H_N 2 (E)) > \cdots > \mu(gr^H_N \ell (E))$. The integer ℓ is called the length of the Harder-Narasimhan filtration of bundle E. It measures how far is a vector bundle from being semistable in some sense, and it’s clear E is semistable if and only if $\ell = 1$. It is known that F_* preserves the stability of vector bundles ([6]), but F^* does not preserve the semistability of vector bundle ([3] for example).

Date: April 20, 2012.

The author is supported by gucas.
Given a semistable vector bundle E on X, then F^*E may not be semistable, it’s natural to consider the length of the Harder-Narasimhan filtration of F^*E. If $E = F_*W$ where W is a semistable bundle on X, the length of Harder-Narasimhan filtration of F^*E is p by Sun’s Theorem (cf. [6, Theorem 2.2]). In this case, the instability of F^*E is $(p - 1)(2g - 2)$ which reaches the upper bound of F^*E. Actually, in [5], the authors prove the instability $I(F^*E) \leq (p - 1)(2g - 2)$ for a semistable bundle E on X. In consideration of the above statement, one may guess that \forall semistable bundle E on X, the length of the Harder-Narasimhan filtration of F^*E is not more than p.

In this note, we give a negative answer to the above guess by constructing an example. Briefly, give a polarized smooth projective surface (Y, H) with $\mu(\Omega^1_Y) > 0$ is semistable, for a suitable semistable vector bundle W on Y (take W to be line bundle for example), F_*W is semistable and F^*F_*W has the Harder-Narasimhan filtration whose length is bigger than p. Restricting F^*F_*W and the Harder-Narasimhan filtration to a generic hyperplane X of high degree, by some analysis, one can check it’s actually the Harder-Narasimhan filtration of $F^*(E|_X)$, where $E = F_*W$ and the stability of $E|_X$ would been proved in the text.

2. CONSTRUCTION OF THE EXAMPLE

Let Y be a smooth projective variety of dimension n over an algebraic closed field k with $\text{char}(k) = p > 0$. Fix an ample divisor H on Y, for a torsion free sheaf E, the slope of E is defined as

$$\mu(E) = \frac{c_1(E) \cdot H^{n-1}}{rk(E)}$$

where $rk(E)$ denotes the rank of E. Then

Definition 2.1. A torsion free sheaf E on Y is called semistable (resp. stable) if for any subsheaf $E' \subset E$ with E/E'' torsion free, we have

$$\mu(E') \leq (\text{resp.} <) \mu(E).$$

Theorem 2.2. (Harder-Narasimhan filtration) For any torsion free sheaf E, there is a unique filtration

$$HN_\bullet(E) : 0 = HN_0(E) \subset HN_1(E) \subset \cdots \subset HN_\ell(E) = E'$$

which is the so called Harder-Narasimhan filtration, such that

1. $gr^H_{i+1}(E) := HN_i(E)/HN_{i-1}(E)$ ($1 \leq i \leq \ell$) are semistable;
2. $\mu(gr^H_1(E)) > \mu(gr^H_2(E)) > \cdots > \mu(gr^H_\ell(E))$.

Remark 2.3. In [4, Theorem 1.3.4], the proof of existence of the filtration is given in terms of Gieseker stability. In particular, \(gr_i^{HN}(E) \) are Gieseker semistable, thus they are \(\mu \) semistable torsion free sheaves. We call the integer \(\ell \) the length of the Harder-Narasimhan filtration.

Definition 2.4. Let \(E \) be a semistable sheaf. A Jordan-Hölder filtration of \(E \) is a filtration

\[
0 = E_0 \subset E_1 \subset \cdots \subset E_\ell = E
\]

such that the factors \(gr_i(E) = E_i/E_{i-1} \) are stable.

Remark 2.5. Jordan-Hölder filtration always exists. As in Remark 2.3, we can get the factors \(gr_i(E) \) are torsion free.

Let \(F : Y \to Y_1 := Y \times_k k \) denote the relative Frobenius morphism over \(k \).

Lemma 2.6. Let \(X \) be a closed subvariety of \(Y \), then the induced morphism \(F|_C : C \to C_1 \) is the relative Frobenius morphism.

Proof. For the case of absolute Frobenius morphism, it’s trivial. In the relative case, it’s just a translation of the absolute case to the relative case. \(\square \)

Now, let’s restrict \(Y \) to be a smooth projective variety of dimension \(n \) with \(\Omega^1_Y \) is semistable and \(\mu(\Omega^1_Y) > 0 \) (For example, \(Y \) can been chosen to be \(C \times C \) with \(C \) is a smooth projective curve with genus \(g \geq 2 \)). Let \(W \) be a torsion free sheaf on \(Y \), define \(V_0 := V = F^*(F_*W) \), \(V_1 = \ker(F^*(F_*W)) \to W \),

\[
V_{\ell+1} := \ker((V_\ell) \to V \otimes_{\mathcal{O}_Y} \Omega_Y^1 \to (V/V_\ell) \otimes_{\mathcal{O}_Y} \Omega_Y^1)
\]

where \(\nabla : V \to V \otimes_{\mathcal{O}_Y} \Omega_Y^1 \) is the canonical connection. Actually, for the above filtration we have

Theorem 2.7. ([6, Theorem 3.7]) The filtration defined above is

\[
0 = V_{n(p-1)+1} \subset V_{n(p-1)} \subset \cdots \subset V_1 \subset V_0 = V = F^*(F_*W)
\]

which has the following properties

1. \(\nabla(V_{\ell+1}) \subset V_\ell \otimes \Omega_Y^1 \) for \(\ell \geq 1 \), and \(V_0/V_\ell \cong W \).
2. \(V_\ell/V_{\ell+1} \to (V_{\ell-1}/V_\ell) \otimes \Omega_Y^1 \) are injective for \(1 \leq \ell n(p-1) \), which induced isomorphisms

\[
\nabla^\ell : V_\ell/V_{\ell+1} \cong W \otimes_{\mathcal{O}_Y} T^\ell(\Omega_Y^1), \quad 0 \leq \ell \leq n(p-1)
\]
The vector bundle $T^\ell(\Omega^1_Y)$ is suited in the exact sequence

$$0 \to \text{Sym}^{\ell-(p)}(\Omega^1_Y) \otimes F^*\Omega^q_Y \xrightarrow{\phi} \text{Sym}^{\ell-(q(p)-1)}(\Omega^1_Y) \otimes F^*\Omega^p_Y \xrightarrow{\phi} \text{Sym}^{\ell-(q(p)-1)}(\Omega^1_Y) \otimes F^*\Omega^q_Y \to 0$$

where $\ell(p) > n$ is the integer such that $\ell - \ell(p) \cdot p < p$.

Lemma 2.8. If Ω^1_Y is strongly semistable with $\mu(\Omega^1_Y) > 0$ and W is strongly semistable, then the filtration defined in Theorem 2.7

$$0 = V_n(p-1) + V_n(p-1) \subset \cdots \subset V_1 \subset V_0 = V = F^*(F_*W)$$

is the Harder-Narasimhan filtration of $F^*(F_*W)$.

Proof. From the Lemma 4.5 of [7], one can get

$$\mu(V_\ell/V_{\ell+1}) = \frac{l}{n}K_Y \cdot H^{n-1} + \mu(W).$$

So the rest is enough to show that $W \otimes_{\mathcal{O}_Y} T^\ell(\Omega^1_Y)$ is semistable. By W is strongly semistable, it's enough to show $T^\ell(\Omega^1_Y)$ is strongly semistable. In the long exact sequence of Theorem 2.7, every terms have slope $\ell \cdot \mu(\Omega^1_Y)$ by direct computations and strongly semistable by easily checking. Now, the lemma comes from the following fact: For a short exact sequence of torsion free sheaves with the same slope:

$$0 \to E_1 \to E_2 \to E_3 \to 0,$$

then one of them is strongly semistable if the other two is strongly semistable.

Remark 2.9. Under the above condition, one can deduce F_*W is semistable, denote it by E. Actually, it is a direct corollary of the following Theorem.

Theorem 2.10. ([7] Theorem 4.2] When $K_Y \cdot H^{n-1} \geq 0$, we have, for any $E \subset F_*W$,

$$\mu(F_*W) - \mu(E) \geq -\frac{1(W, X)}{p}.$$

In particular, if $W \otimes T^\ell(\Omega^1_Y)$, $0 \leq \ell \leq n(p-1)$, are semistable, then F_*W is semistable. Moreover, if $K_Y \cdot H^{n-1} > 0$, the stability of the bundles $W \otimes T^\ell(\Omega^1_Y)$, $0 \leq \ell \leq n(p-1)$, implies the stability of F_*W.

Lemma 2.11. ([2] Corollary 5.4] Let E be a torsion-free sheaf of rank $r > 1$ on Y. Assume that E is μ semistable with respect to (D_1, \cdots, D_{n-1}) and let $0 = E_0 \subset E_1 \subset \cdots \subset E_m = E$ be the corresponding Jordan-Hölder filtration of E, set $F_i = E_i/E_{i-1}$, $r_i = \text{rk}F_i$.

Let $D \in |kD|$ be a normal divisor such that all the sheaves $F_i|_D$ have no torsion. If

$$k > \left[\frac{r-1}{r} \Delta(E)D_2 \cdots D_{n-1} + \frac{1}{dr(r-1)} + \frac{(r-1)\beta_r}{dr} \right]$$

then $E|_D$ is μ semistable with $(D_2|_D, \cdots, D_{n-1}|_D)$.

Remark 2.12. For the notation, one can see [2] for detail. Note that if E is torsion free then the restriction $E|_D$ is also torsion free for a general divisor D in a base point-free system (see [4, Corollary 1.1.14] for a precise statement). Take $k \gg 0$, using the Bertini’s Theorem (cf. [1, Theorem 8.8]), we can choose $D \in |kD|$ to be smooth projective variety and $E|_D$ is a semistable torsion free sheaf with respect to $(D_2|_D, \cdots, D_{n-1}|_D)$. Repeating the above process, we can get a smooth projective curve X which is a subvariety of Y, such that $E|_C$ is a semistable vector bundle. From our choice, the curve C has large genus.

Now, we can construct the example using the above preliminaries.

Construction 2.13. Let Y to be a smooth projective variety of dimension n with Ω^1_Y is strongly semistable and $\mu(\Omega^1_Y) > 0$, for example we can take $Y = C \times \cdots \times C$ with C is a smooth curve of genus $G \geq 2$. Let W to be a strongly semistable bundle on Y, for example we can take W to be the copies of line bundle. Consider the following diagram:

$$
\begin{array}{ccc}
Y & \overset{F}{\rightarrow} & Y \\
\uparrow & & \uparrow \\
X & \overset{F}{\rightarrow} & X
\end{array}
$$

where X is smooth projective curve which is chosen as in Remark 2.13, and the commutative diagram comes from Lemma 2.6. Denote F_*W by E, then E is semistable from Remark 2.9 and $E|_X$ is semistable from Remark 2.12. Denote the Harder-Narasimhan filtration of F^*E

$$0 = V_{n(p-1)+1} \subset V_{n(p-1)} \subset \cdots \subset V_1 \subset V_0 = V = F^*(F_*W)$$

by HN, we have the length of HN is $n(p-1)+1$. Consider the restriction of the filtration HN to X which denoted by $\text{HN}|_X$, $(V_i/V_{i+1})|_X = (V_i|_X)/(V_{i+1}|_X)$ is semistable by Remark 2.12 and $\mu((V_i|_X)/(V_{i+1}|_X))$ is strictly increasing. Meanwhile, $(F^*E)|_X = F^*(E|_X)$ by the commutative diagram and $\text{HN}|_X$ is the Harder-Narasimhan filtration of $F^*(E|_X)$. Above all, we construct a semistable bundle $E|_X$ over a smooth curve X with genus $g > 2$, such that the length of the Harder-Narasimhan filtration is $n(p-1)+1$. So there is no bound for the
length of the Harder-Narasimhan filtration of a bundle as Frobenius pull-back of a semistable bundle.

References

[1] R. Hartshorne: *Algebraic geometry*, Berlin-Heidelberg-New York. Springer, 1977.
[2] A. Langer: *Semistable sheaves in positive characteristic*, Ann.Math. 159 (2004), 251-276.
[3] D. Gieseker: *Stable vector bundles and the Frobenius morphism*, Ann.Sci.École Norm.Sup. (4), 6 (1973), 95-101.
[4] D. Huybrechts and M. Lehn, *The Geometry of Moduli Spaces of Sheaves*, Aspects of Mathematics 31, Friedr. Vieweg & Sohn, Braunschweig (1977).
[5] V. Mehta and C. Pauly: *Semistability of Frobenius direct images over curves*, Bull. SOC. Math. France, 135 (2007), 105-117.
[6] X. Sun: *Direct images of bundles under Frobenius morphism*, Invent. math. 173 (2008), 427-447.
[7] X. Sun: *Frobenius morphism and semistable bundles*, Advanced Studies in Pure Mathematics 60 (2010), Algebraic Geometry in East Asia- Seoul (2008), 161-182.

Academy of Mathematics and Systems Science, Chinese Academy of Science, Beijing, P. R. of China

E-mail address: zhouningshuo@amss.ac.cn