On (2-d)-Kernels in Two Generalizations of the Petersen Graph

Pawel Bednarz * and Natalia Paja †,

Abstract: A subset \(J \) is a (2-d)-kernel of a graph \(G \) if \(J \) is independent and 2-dominating simultaneously. In this paper, we consider two different generalizations of the Petersen graph and we give complete characterizations of these graphs which have (2-d)-kernel. Moreover, we determine the number of (2-d)-kernels of these graphs as well as their lower and upper kernel number. The property that each of the considered generalizations of the Petersen graph has a symmetric structure is useful in finding (2-d)-kernels in these graphs.

Keywords: domination; independence; (2-d)-kernel; generalized Petersen graphs

1. Introduction

In general, we use the standard terminology and notation of graph theory (see [1]). Let \(G \) be an undirected, connected, and simple graph with the vertex set \(V(G) \) and the edge set \(E(G) \). The order of the graph \(G \) is the number of vertices in \(G \). The size of the graph \(G \) is its number of edges. By \(P_n, n \geq 1 \) and \(C_n, n \geq 3 \), we mean a path and a cycle of order \(n \), respectively.

Let \(G = (V, E) \) and \(G' = (V', E') \) be two graphs. If \(V' \subseteq V \) and \(E' \subseteq E \), then \(G' \) is a subgraph of \(G \), written as \(G' \subseteq G \). If \(G' \subseteq G \) and \(G' \) contain all the edges \(xy \in E \) with \(x, y \in V \), then \(G' \) is an induced subgraph of \(G \) and we write \(G' := (V')_G \). Graphs \(G \) and \(G' \) are called isomorphic, and denoted by \(G \cong G' \), if there exists a bijection \(\phi : V \rightarrow V' \) with \(xy \in E \Leftrightarrow \phi(x)\phi(y) \in E' \) for all \(x, y \in V \). The complement of the graph \(G \) is a graph \(\overline{G} \) such that \(V(\overline{G}) = V(G) \) and two distinct vertices of \(\overline{G} \) are adjacent if and only if they are not adjacent in \(G \). A graph \(G \) is called bipartite if \(V(G) \) admits a partition into two classes such that every edge has its ends in different classes.

A subset \(D \subseteq V(G) \) is a dominating set of \(G \) if each vertex of \(G \) not belonging to \(D \) is adjacent to at least one vertex of \(D \). A subset \(S \subseteq V(G) \) is called an independent set of \(G \) if no two vertices of \(S \) are adjacent in \(G \). A subset \(J \) being independent and dominating is a kernel of \(G \).

The concept of kernels was initiated in 1953 by von Neumann and Morgenstern in digraphs with regard to game theory (see [2]). One of the pioneers studying the kernels in digraphs was C. Berge (see [3–5]). In literature, we can find many types and generalizations of kernels in digraphs (for results and applications, see, for example, [6–11]). The problem of the existence of kernels in undirected graphs is trivial because every maximal independent set is a kernel. Currently, distinct kind of kernels in undirected graphs are being studied quite intensively and many papers are available. For results and application, see, for example, [12–18]. Among many types of kernels in undirected graphs, there are kernels related to multiple domination, introduced by Fink and Jacobson in [19]. Let \(p \geq 1 \) be an integer. A subset \(S \) is said to be \(p \)-dominating if every vertex outside \(S \) has at least \(p \) neighbors in \(S \). If \(p = 1 \), then we obtain a dominating set in the classical sense. If \(p = 2 \), we get a 2-dominating set. A set which is 2-dominating and independent is named a 2-dominating kernel ((2-d)-kernel in short). The concept of (2-d)-kernels was introduced by...
A. Włoch in [20]. Some properties of $(2-d)$-kernels were studied in [21–24]. In particular, in [23], it was proved that the problem of the existence of $(2-d)$-kernels is NP-complete for general graphs. In [25], Nagy extended the concept of $(2-d)$-kernels to k-dominating kernels. He considered a k-dominating set instead of the 2-dominating set, which he called k-dominating independent sets. Some properties of these sets were studied in [26,27]. The number of $(2-d)$-kernels in the graph G is denoted by $\sigma(G)$. Let G be a graph with the $(2-d)$-kernel. The minimum cardinality of the $(2-d)$-kernel of G is called a lower $(2-d)$-kernel number and denoted by $\gamma(G)$. The maximum cardinality of the $(2-d)$-kernel of G is called an upper $(2-d)$-kernel number and is denoted by $\Gamma(G)$.

In this paper, we consider two different generalizations of the Petersen graph. Various types of domination in the class of generalized Petersen graphs have been extensively studied in the literature (see [28–32]). Referring to this research, we will consider $(2-d)$-kernels for two different generalizations of the Petersen graph. We solve the problem of the existence of $(2-d)$-kernels, their number, and their cardinality in these graphs. Moreover, we determine a lower and an upper kernel number in these graphs. It is worth noting that each of presented generalizations of the Petersen graph has a symmetric structure. This property is useful in finding $(2-d)$-kernels in these graphs.

2. Main Results

In this section, we consider the problem of the existence of $(2-d)$-kernels in two different generalizations of the Petersen graph. In particular, we give complete characterizations of these generalizations, which have the $(2-d)$-kernel. We determine the number of $(2-d)$-kernels in these graphs as well as the lower and the upper $(2-d)$-kernel number.

In the further part of the paper, we will use green color to mark vertices belonging to the $(2-d)$-kernel, and red color to indicate vertices that cannot belong to it.

2.1. Generalized Petersen Graph

Let $n \geq 3, k < \frac{n}{2}$ be integers. The graph $P(n,k)$ is called the generalized Petersen graph, if $V(P(n,k)) = \bigcup_{i=0}^{n-1} \{u_i, v_i\}$ and $E(P(n,k)) = \bigcup_{i=0}^{n-1} \{u_iu_{i+1}, u_iv_i, v_iv_{i+k}\}$, where subscripts are reduced modulo n. These graphs were first defined by Watkins in [33]. Figure 1 shows generalized Petersen graphs $P(10,3)$, $P(5,2)$ and examples of $(2-d)$-kernels in these graphs.

![Figure 1](image.png)

Figure 1. Examples of $(2-d)$-kernels in $P(10,3)$ and $P(5,2)$.

We start with the problem of existence of $(2-d)$-kernels. At the beginning, we give a sufficient condition, emerging from the property of bipartite graphs. We have the following complete characterization of bipartite generalized Petersen graphs.

Proposition 1 ([34]). Let $n \geq 3, k < \frac{n}{2}$ be integers. The graph $P(n,k)$ is bipartite if and only if n is even and k is odd.
From this characterization we directly obtain the sufficient condition for the existence of \((2,d)\)-kernels.

Proposition 2. Let \(n \geq 3, k < \frac{n}{2}\) be integers. If \(n\) is even and \(k\) is odd, then the graph \(P(n,k)\) has at least two \((2,d)\)-kernels which are a partition of the vertex set.

Proof. Let \(n, k\) be as in the statement of the proposition. From Proposition 1, it follows that the graph \(P(n,k)\) is a bipartite graph. Thus, there exist two independent sets of vertices \(V_1, V_2\) that are a partition of the set \(V(P(n,k))\). Moreover, the graph \(P(n,k)\) is a 3-regular graph. Therefore, sets \(V_1, V_2\) are \((2,d)\)-kernels of the graph \(P(n,k)\).

Now, we improve the above proposition to obtain the complete characterization of the generalized Petersen graph having \((2,d)\)-kernel.

Theorem 1. Let \(n \geq 3, k < \frac{n}{2}\) be integers. The graph \(P(n,k)\) has a \((2,d)\)-kernel if and only if

1. \(n\) is even and \(k\) is odd
2. \(n \equiv 0 \pmod{5}\) and \(k \equiv 2 \pmod{5}\)
3. \(n \equiv 0 \pmod{5}\) and \(k \equiv 3 \pmod{5}\)

Proof. If \(n = 3, 4\), then the result is obvious. Let \(n \geq 5, k < \frac{n}{2}\) be integers. If \(n\) is even and \(k\) is odd, then by Proposition 2, (i) follows. Let \(n \equiv 0 \pmod{5}\), \(k \equiv j \pmod{5}\), \(j = 2, 3\). We will show that the set \(J = \{u_i; i \in \{0, 5, \ldots, n\}\} \cup \{u_{i+2}; i \in \{0, 5, \ldots, n\}\} \cup \{v_{i+3}; i \in \{0, 5, \ldots, n\}\} \cup \{v_{i+4}; i \in \{0, 5, \ldots, n\}\}\) is a \((2,d)\)-kernel of \(P(n,k)\). The independence of \(J\) follows from the definition of \(P(n,k)\). Let us assume that \(x \in V(P(n,k)) \setminus J\). Then, either \(x = u_s, s \in \{0, 1, \ldots, n-1\}, s \equiv a \pmod{5}\), \(a = 1, 3, 4\) or \(x = v_t, t \in \{0, 1, \ldots, n-1\}, t \equiv b \pmod{5}\), \(b = 0, 1, 2\). We consider two cases.

1. \(x = u_s\).
 If \(s \equiv 1 \pmod{5}\), then \(\{u_{s-1}, u_{s+1}\} \subseteq N(u_s)\) and \(u_{s-1}, u_{s+1} \in J\). If \(s \equiv 3 \pmod{5}\), then \(\{u_{s-1}, v_s\} \subseteq N(u_s)\) and \(u_{s-1}, v_s \in J\). If \(s \equiv 4 \pmod{5}\), then \(\{u_{s+1}, v_s\} \subseteq N(u_s)\) and \(u_{s+1}, v_s \in J\).

2. \(x = v_t\).
 Let \(t \equiv 0 \pmod{5}\). If \(k \equiv 2 \pmod{5}\), then \(\{u_t, v_{t-2}\} \subseteq N(v_t)\) and \(u_t, v_{t-2} \in J\). If \(k \equiv 3 \pmod{5}\), then \(\{u_t, v_{t+1}\} \subseteq N(v_t)\) and \(u_t, v_{t+1} \in J\). If \(k \equiv 1 \pmod{5}\), then \(\{v_{t-k}, v_{t+k}\} \subseteq N(v_t)\) and \(v_{t-k}, v_{t+k} \in J\), \(k \equiv 2 \pmod{5}\), \(j = 2, 3\). Let \(t \equiv 2 \pmod{5}\). If \(k \equiv 2 \pmod{5}\), then \(\{u_t, v_{t+2}\} \subseteq N(v_t)\) and \(u_t, v_{t+2} \in J\). If \(k \equiv 3 \pmod{5}\), then \(\{u_t, v_{t-3}\} \subseteq N(v_t)\) and \(u_t, v_{t-3} \in J\).

Summing up all the above cases we obtain that every vertex \(x \in V(P(n,k)) \setminus J\) is 2-dominated by \(J\). Hence, \(J\) is a \((2,d)\)-kernel of \(P(n,k)\).

Conversely, let \(n \geq 5, k < \frac{n}{2}\), \(i \in \{0, 1, \ldots, n-1\}\) be integers and let \(J\) be a \((2,d)\)-kernel of \(P(n,k)\). If \(u_i, u_{i+1}, u_{i+2} \notin J\), then the vertex \(u_{i+1}\) is not 2-dominated by \(J\). Thus, each connected component of the graph \(\bigcup_{i=0}^{n-1} u_i \setminus J\) is isomorphic to either \(P_1\) or \(P_2\). We will show that in the graph \(P(n,k)\) having a \((2,d)\)-kernel, the configurations of these paths \(P_1, P_2\) on the outer cycle, which are shown in the Figure 2 are forbidden.

![Figure 2](https://example.com/figure2.png)

Figure 2. Forbidden configurations of the paths \(P_1, P_2\) for the graph \(P(n,k)\) with the \((2,d)\)-kernel.

Let us consider the following cases.

1. First, we will prove that the configuration of the paths \(P_1, P_2\) shown on the left side of the Figure 2 is forbidden. Suppose that \(u_i, u_{i+3}, u_{i+6} \in J\) for some \(i\), as in Figure 3. Then,
$v_{i+1}, v_{i+2}, v_{i+4}, v_{i+5} \in J$; otherwise, vertices $u_{i+1}, u_{i+2}, u_{i+4}, u_{i+5}$ are not 2-dominated by J.

Therefore, for every k vertices $v_{i+1+k}, v_{i+2+k}, v_{i+4+k}, v_{i+5+k} \notin J$.

Figure 3. The case when $u_i, u_{i+3}, u_{i+6} \in J$.

We have the next two possibilities.

1.1. $v_{i+3+k} \notin J$ for some i (see Figure 4).

Since $v_{i+3+k} \notin J$, the vertex $u_{i+3+k} \in J$ and $u_{i+2+k}, u_{i+4+k} \notin J$. Then $v_{i+2+2k}, v_{i+3+2k}, v_{i+4+2k} \notin J$. This means that $u_{i+2+2k}, u_{i+3+2k}, u_{i+4+2k} \notin J$. Hence, the vertex u_{i+3+2k} is not 2-dominated by J, a contradiction.

Figure 4. The case when $u_i, u_{i+3}, u_{i+6} \in J$ (the first subcase).

1.2. $v_{i+3+k} \in J$ for some i (see Figure 5).

Then, $u_{i+3+k} \in J$ and $u_{i+2+k}, u_{i+4+k} \in J$; otherwise, they are not 2-dominated by J. Because J is an independent set, $u_{i+1+k}, u_{i+5+k} \notin J$. Moreover, $u_{i+k}, u_{i+6+k} \in J$ to 2-dominate u_{i+1+k}, u_{i+5+k}. Hence, $v_{i+k}, v_{i+6+k} \notin J$. To 2-dominate v_{i+1+k}, v_{i+5+k}, we must have $v_{i+1+2k}, v_{i+5+2k} \in J$. Moreover, $u_{i+1+2k}, u_{i+5+2k} \in J$ and $u_{i+2+2k}, u_{i+4+2k} \notin J$. Next, $u_{i+2+2k}, u_{i+4+2k} \in J$ to 2-dominate u_{i+1+2k}, u_{i+5+2k} and $v_{i+2+2k}, v_{i+4+2k} \notin J$. Thus, $v_{i+2+3k}, v_{i+3+3k}, v_{i+4+3k} \in J$ to 2-dominate $v_{i+2+2k}, v_{i+3+2k}, v_{i+4+2k}$. Therefore, $u_{i+2+3k}, u_{i+3+3k}, u_{i+4+3k} \notin J$. This means that u_{i+3+3k} is not 2-dominated, a contradiction.

Figure 5. The case when $u_i, u_{i+3}, u_{i+6} \in J$ (the second subcase).

Hence, for each n and k, it is not possible that the vertices u_i, u_{i+3}, u_{i+6} belong to a $(2,d)$-kernel of $P(n,k)$.

2. Now, we will prove that the configuration of the paths P_1, P_2 shown on the right side of the Figure 2 is forbidden. Suppose that $u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J$ for some i, as in Figure 6.

Then, v_{i+5}, v_{i+6}, which causes $v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}, v_{i+5}, v_{i+6}, v_{i+7} \notin J$.

Figure 6. The case when $u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J$.

We consider four subcases.

2.1. $v_{i+1}, v_{i+3} \notin J$ for some i (see Figure 7).

Then, $v_{i+1-k}, v_{i+3-k}, v_{i+1+k}, v_{i+3+k} \in J$. Since v_{i+2} must be 2-dominated, so $v_{i+2-k} \in J$ or $v_{i+2+k} \in J$. Without loss of generality, assume that $v_{i+2-k} \in J$. Thus, $u_{i+1+k}, u_{i+2+k}, u_{i+3+k} \notin J$. Hence, the vertex u_{i+2+k} is not 2-dominated, a contradiction.

Figure 7. The case when $u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J$ (the first subcase).
2.2. \(v_{i+1} \notin J \) and \(v_{i+3} \in J \) for some \(i \) (see Figure 8).

Then, \(v_{i+3+k}, v_{i+5+k}, v_{i+6+k} \notin J \). Since \(v_{i+7} \) must be 2-dominated, we obtain that \(v_{i+7-k} \in J \) or \(v_{i+7+k} \in J \). Without loss of generality, assume that \(v_{i+7+k} \in J \). Thus, \(u_{i+7+k} \notin J \) and \(u_{i+6+k} \in J \). Because \(J \) is an independent set and \(u_{i+6+k} \in J \), \(u_{i+5+k} \notin J \). Therefore, \(u_{i+4+k} \notin J \) which causes \(u_{i+3+k}, u_{i+4+k} \notin J \). Moreover, \(u_{i+3+2k}, u_{i+4+2k}, u_{i+5+2k} \notin J \) and finally \(u_{i+3+3k}, u_{i+4+2k}, u_{i+5+2k} \notin J \). Hence, the vertex \(u_{i+4+2k} \) is not 2-dominated, a contradiction.

![Figure 8. The case when \(u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J \) (the second subcase).](image)

2.3. \(v_{i+1} \in J \) and \(v_{i+3} \notin J \) for some \(i \) (see Figure 9).

Then, \(v_{i+3+k}, v_{i+5+k}, v_{i+6+k}, v_{i+3+k} \notin J \). Since \(v_{i+4} \) must be 2-dominated, \(v_{i+4-k} \in J \) or \(v_{i+4+k} \in J \). Without loss of generality, assume that \(v_{i+4+k} \in J \). Thus, \(u_{i+4+k} \notin J \). Moreover, \(u_{i+2+k}, u_{i+5+k} \notin J \) which causes \(u_{i+1+k}, u_{i+6+k}, u_{i+2+k} \notin J \). To 2-dominate \(u_{i+1+k} \), we must have \(u_{i+k} \in J \). Then, \(v_{i+k} \notin J \) and \(v_{i+2+k}, v_{i+1+k}, v_{i+2+k} \notin J \). From the independence of the set \(J \), we get that \(u_{i+2k}, u_{i+1+2k}, u_{i+2+2k} \notin J \). Hence, the vertex \(u_{i+1+2k} \) is not 2-dominated, a contradiction.

![Figure 9. The case when \(u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J \) (the third subcase).](image)

2.4. \(v_{i+1}, v_{i+3} \in J \) for some \(i \).

Proving analogously as in subcase 2.3., we obtain a contradiction with the assumption that \(J \) is a \((2-d)\)-kernel. Therefore, for each \(n \) and \(k \), it is not possible that the vertices \(u_i, u_{i+2}, u_{i+4}, u_{i+7} \) belong to a \((2-d)\)-kernel of \(P(n, k) \).

Hence, for the graph with the \((2-d)\)-kernel, the configurations of \(P_1, P_2 \) shown in the Figure 10 are the only ones that may be possible. Now, we will show that they are indeed possible.

![Figure 10. Possible configurations of the paths \(P_1, P_2 \) for the graph \(P(n, k) \) with the \((2-d)\)-kernel.](image)

3. Suppose that \(u_i, u_{i+2}, u_{i+4} \notin J \) for some \(i \), as in Figure 11. Then, \(u_{i+1}, u_{i+3}, v_i, v_{i+2}, v_{i+4} \notin J \).

![Figure 11. The case when \(u_i, u_{i+2}, u_{i+4} \notin J \).](image)

We consider four subcases.

3.1. \(v_{i+2}, v_{i+3} \notin J \) for some \(i \) (see Figure 12).

Since \(v_{i+2} \) must be 2-dominated, we obtain that \(v_{i+2+k} \in J \) or \(v_{i+2-k} \in J \). Without loss of generality, assume that \(v_{i+2+k} \in J \). Moreover, \(v_{i+1+k}, v_{i+3+k} \in J \) and \(u_{i+1+k}, u_{i+2+k}, u_{i+3+k} \notin J \). Hence, the vertex \(u_{i+2+k} \) is not 2-dominated, a contradiction.
Then, \(v_{i+3} \notin J \) and \(v_{i+4} \notin J \). Since \(v_{i+2} \) must be 2-dominated, \(v_{i+2+k} \in J \) or \(v_{i+2-k} \in J \). Without loss of generality, assume that \(v_{i+2+k} \in J \). Thus, \(u_{i+1+k}, u_{i+2+k} \notin J \) and \(u_{i+k}, u_{i+3+k} \in J \), which causes \(v_{i+k}, u_{i+4+k} \notin J \) and \(v_{i+4+k} \in J \). Moreover, \(v_{i+1+2k}, v_{i+2+2k}, v_{i+3+2k} \notin J \), \(v_{i+2k} \in J \), \(u_{i+2k} \notin J \), \(u_{i+1+2k} \in J \), \(u_{i+2+2k} \notin J \), \(u_{i+3+2k} \in J \) and \(u_{i+4+2k} \notin J \). Finally, \(v_{i+2+3k}, v_{i+3+3k}, v_{i+4+3k} \notin J \) and \(u_{i+2+3k}, u_{i+3+3k}, u_{i+4+3k} \notin J \). Hence, the vertex \(u_{i+3+3k} \) is not 2-dominated, a contradiction.

Figure 13. The case when \(u_{i}, u_{i+2}, u_{i+4} \in J \) (the second subcase).

3.3. \(v_{i+1} \notin J \) and \(v_{i+3} \notin J \) for some \(i \).

Proving analogously as in Section 3.2., we obtain a contradiction with the assumption that \(J \) is a \((2d)\)-kernel.

3.4. \(v_{i+1}, v_{i+3} \in J \) for some \(i \) (see Figure 14).

Then, \(v_{i+1+k}, v_{i+3+k} \notin J \). First, we will show that \(v_{i+k} \) and \(v_{i-k} \) must belong to a \((2d)\)-kernel \(J \). Suppose on contrary that \(v_{i+k} \notin J \). Since \(v_{i+k} \) must be 2-dominated, \(u_{i+k} \in J \). Thus, \(u_{i+1+k} \notin J \) and \(u_{i+2+k} \in J \). Moreover, \(v_{i+1+2k}, v_{i+1+2k}, v_{i+2+2k} \in J \) and \(u_{i+2+2k}, u_{i+1+2k}, u_{i+2+2k} \in J \). Hence, the vertex \(u_{i+1+2k} \) is not 2-dominated, a contradiction.

Figure 14. The case when \(u_{i}, u_{i+2}, u_{i+4} \in J \) (the fourth subcase).

This means that \(v_{i+k}, v_{i-k} \in J \) and also \(v_{i+2+k}, v_{i+4+k}, u_{i+1+k}, u_{i+3+k} \) belong to a \((2d)\)-kernel (see Figure 15).

Figure 15. The case when \(u_{i}, u_{i+2}, u_{i+4} \in J \) implies that \(v_{i+k}, v_{i+2+k}, v_{i+4+k}, u_{i+1+k}, u_{i+3+k} \in J \).

Hence, \(n \) must be even, and from the definition of \(P(n, k) \), we conclude that \(k \) must be odd, which proves (i).

4. Suppose that \(u_{i}, u_{i+2}, u_{i+5} \in J \) for some \(i \). Then, \(u_{i+1}, u_{i+3}, u_{i+4}, v_{i}, v_{i+2}, v_{i+5} \notin J \). Since \(u_{i+3}, u_{i+4} \) must be 2-dominated, \(v_{i+3}, v_{i+4} \notin J \). First, we prove that \(v_{i+1} \notin J \). Suppose on contrary that \(v_{i+1} \in J \), as in Figure 16. Then, \(v_{i+1+k}, v_{i+3+k}, v_{i+4+k} \notin J \). Since \(v_{i+1+k} \) must be 2-dominated, \(v_{i+k} \in J \) or \(v_{i+k} \in J \). Without loss of generality, assume that \(v_{i+k} \in J \). Thus, \(u_{i+k} \notin J \), \(u_{i+1+k} \in J \) and \(u_{i+2+k} \notin J \). Moreover, \(u_{i+3+k} \in J \), \(u_{i+4+k} \notin J \), \(u_{i+5+k} \in J \), \(v_{i+5+k} \notin J \), and \(v_{i+2+k} \in J \). Proving analogously as in Section 3.3., we obtain a contradiction with the assumption that \(J \) is a \((2d)\)-kernel.

Figure 16. The case when \(u_{i}, u_{i+2}, u_{i+5}, v_{i+1} \in J \).
Hence, \(v_{i+1} \notin J \) (see Figure 17). Moreover, \(v_{i+1+k}, v_{i+3+k}, v_{i+4+k} \notin J \).

We consider two subcases.

\[+k \]

Figure 17. The case when \(u_i, u_{i+2}, u_{i+5} \in J \) and \(v_{i+1} \notin J \).

4.1. \(v_{i+2+k} \notin J \) for some \(i \) (see Figure 18).

Then, \(u_{i+2+k} \in J, u_{i+3+k} \notin J, u_{i+4+k} \in J, u_{i+5+k} \notin J \), and \(v_{i+1+k} \notin J \). Moreover, \(v_{i+k} \in J \) and \(u_{i+k} \notin J \); otherwise, we obtain the same configuration as in Section 3.3.

\[+k \]

Figure 18. The case when \(u_i, u_{i+2}, u_{i+5} \in J \) (the first subcase).

Hence, \(n \) must be divisible by 5, and from the definition of \(P(n,k) \), we conclude that \(k \equiv 2 \pmod{5} \), which proves (ii).

4.2. \(v_{i+2+k} \in J \) for some \(i \) (see Figure 19).

Then, \(u_{i+2+k} \notin J, u_{i+k}, u_{i+3+k} \in J \) and \(v_{i+k}, u_{i+4+k} \notin J \). Moreover, \(u_{i+5+k} \in J \) and \(v_{i+5+k} \notin J \).

\[+k \]

Figure 19. The case when \(u_i, u_{i+2}, u_{i+5} \in J \) (the second subcase).

Hence, \(n \) must be divisible by 5, and from the definition of \(P(n,k) \), we conclude that \(k \equiv 3 \pmod{5} \), which proves (iii), which ends the proof.

Basing on the proof of Theorem 1, the following corollaries are obtained. They concern the number of \((2-d) \)-kernels in the generalized Petersen graph as well as the lower and upper \((2-d) \)-kernel numbers. By a rotation of configurations shown on Figure 10, condition (i) of Theorem 1 gives two \((2-d) \)-kernels in generalized Petersen graph and conditions (ii) and (iii) give five \((2-d) \)-kernels. Therefore, if \(n \) and \(k \) satisfy more than one of these conditions, we obtain more \((2-d) \)-kernels. Moreover, the proof of the Theorem 1 presents the constructions of the \((2-d) \)-kernels in the generalized Petersen graph \(P(n,k) \). Figure 20 shows the smallest and the largest \((2-d) \)-kernel in the graph \(P(20,7) \).

\[P(20,7) \]

\[P(20,7) \]

Figure 20. The largest (left side) and the smallest (right side) \((2-d) \)-kernel in the graph \(P(20,7) \).
Theorem 2. Let \(n \geq 5 \) be an integer. Let \(n \equiv 0 \) (mod 10) and \(k \equiv a \) (mod 10), \(a = 3,7 \), then

\[
\gamma(P(n,k)) = \frac{4}{5}n \quad \text{and} \quad \Gamma(P(n,k)) = n.
\]

Corollary 2. Let \(n \geq 3, k < \frac{n}{2} \) be integers. If \(n \equiv 0 \) (mod 10) and \(k \equiv a \) (mod 10), \(a = 3,7 \), then

\[
\gamma(P(n,k)) = \frac{4}{5}n \quad \text{and} \quad \Gamma(P(n,k)) = n.
\]

Corollary 3. Let \(n \geq 3, k < \frac{n}{2} \) be integers. If \(n \equiv 5 \) (mod 10) and \(k \equiv a \) (mod 5), \(a = 2,3 \) or \(n \equiv 0 \) (mod 10) and \(k \equiv a \) (mod 10), \(a = 2,8 \), then

\[
\gamma(P(n,k)) = \Gamma(P(n,k)) = \frac{4}{5}n.
\]

Corollary 4. Let \(n \geq 3, k < \frac{n}{2} \) be integers. If \(n \equiv 0 \) (mod 10) and \(k \equiv a \) (mod 10), \(a = 1,5,9 \) or \(n \) is even, \(n \equiv 0 \) (mod 10) and \(k \) is odd, then

\[
\gamma(P(n,k)) = \Gamma(P(n,k)) = n.
\]

The above corollaries characterize all possible graphs \(P(n,k) \), which have the \((2-d) \)-kernel.

2.2. The Second Generalization of the Petersen Graph

Now, we consider another generalization of the Petersen graph. Let \(n \geq 5 \) be an integer. Let \(C_n \) be a cycle and \(\overline{C_n} \) its complement such that \(V(C_n) = \{x_1, x_2, \ldots, x_n\} \), \(V(\overline{C_n}) = \{x_1^2, x_2^2, \ldots, x_n^2\} \) with the numbering of vertices in the natural order. Let \(G(n) \) be the graph such that \(V(G(n)) = V(C_n) \cup V(\overline{C_n}) \) and \(E(G(n)) = E(C_n) \cup E(\overline{C_n}) \cup \{x_ix_i^2; i \in \{1,2,\ldots,n\}\} \). Figure 21 shows an example of a \((2-d) \)-kernel in \(G(13) \). It is easy to check that if \(n = 5 \), then \(G(5) \) is isomorphic to the Petersen graph.

![Figure 21](image-url)

Figure 21. An example of a \((2-d) \)-kernel in \(G(13) \).

The next Theorem shows a complete characterization of graphs \(G(n) \) with the \((2-d) \)-kernel.

Theorem 2. Let \(n \geq 5 \) be integer. The graph \(G(n) \) has a \((2-d) \)-kernel if and only if \(n \) is odd.

Proof. Let \(n \geq 5 \) be odd. We will show that \(J = \{x_i^2, x_i^3, x_i, x_4, x_6, \ldots, x_{n-1}\} \) is the \((2-d) \)-kernel of the graph \(G(n) \). The independence of \(J \) is obvious. It is sufficient to show that \(J \)
is a 2-dominated set. By the definition of the graph $G(n)$, we can assume that $x_{n+1} = x_1$. Suppose that $y \in V(G(n)) \setminus J$. Hence, $y \in V(C_n)$ or $y \in V(C_n^c)$. Let $y \in V(C_n)$. Thus $y = x_k$, $k \in \{2, 3, 5, \ldots, n\}$. If $x_k \notin J$, then there exist vertices $x_{k-1}, x_{k+1} \in J$ adjacent to x_k. If $x_k \in J$, then $k = 2$ or $k = 3$. For $k = 2$, the vertex x_2 is adjacent to $x_1, x_2 \in J$. Moreover, if $k = 3$, then the vertex x_3 is adjacent to $x_4, x_3 \in J$. Hence, every vertex from the set $V(C_n)$ is 2-dominated by the set J. Let now $y \in V(C_n^c)$. Thus $y = x_k'$, $k \in \{1, 4, 5, \ldots, n\}$. Then, the vertex x_k', $k \in \{5, 6, \ldots, n\}$ is adjacent to $x_4, x_5^2 \in J$. If $k = 1$, then $x_1'x_1, x_1'x_5^2 \in E(G(n))$. Moreover, for $k = 4$ the vertex x_k' is adjacent to x_4, x_5^2. Therefore, vertices from the set $V(C_n)$ are 2-dominated by J and hence J is a $(2,d)$-kernel of $G(n)$.

Conversely, suppose that a graph $G(n)$ has a $(2,d)$-kernel J. We will show that n is odd. By the definition of the graph $G(n)$, we obtain that $J \cap V(C_n) \neq \emptyset$. Otherwise, vertices from the set $V(C_n)$ are not 2-dominated by the set J. Let $x_k \notin J$. Then either $x_k^2 \notin J$ or $x_k^2 \notin J$. Otherwise, x_k^2 or x_k^2 is not 2-dominated. Hence, $|J \cap V(C_n)| = 2$. Without loss of generality assume that $x_k^2 \notin J$. This means that $x_k^2, i \in \{4, 5, \ldots, n-1\}$ is 2-dominated by J and x_k^2, x_k^2 are dominated by J. Let $J^* = J \setminus \{x_k^2, x_k^2\}$. Then, $J^* \subset V(C)$. Since J is the $(2,d)$-kernel, $x_3, x_k \in J^*$. Therefore, the graph $(\{x_3, x_k, \ldots, x_n\})_{G(n)} \cong P_{n-2}$ must have a $(2,d)$-kernel to 2-dominate vertices from $V(C_n) \setminus J^*$. This means that n must be odd. Thus, $J^* = \{x_3, x_5, \ldots, x_n\}$, which ends the proof.

Finally, it turns out that if a graph $G(n)$ has $(2,d)$-kernels, then the number of $(2,d)$-kernels depends linearly on the number of vertices. Moreover, each $(2,d)$-kernel of $G(n)$ has the same cardinality.

Corollary 5. If $n \geq 5$ is odd, then $\sigma(G(n)) = n$ and

$$
\gamma(2,d)(G(n)) = \Gamma(2,d)(G(n)) = \left\lceil \frac{n}{2} \right\rceil + 2.
$$

Proof. Let $n \geq 5$ be odd. From the construction of a $(2,d)$-kernel described in the proof of Theorem 2, we conclude that exactly two not adjacent vertices from the set $V(C_n) \subset V(G(n))$ belong to a $(2,d)$-kernel. The selection of these two vertices will determine the $(2,d)$-kernel in $G(n)$. Since two not adjacent vertices can be chosen on n ways, $\sigma(G(n)) = n$. Moreover, from the construction of $(2,d)$-kernels in $G(n)$, it follows that all of them have the same cardinality. Hence, $\gamma(2,d)(G(n)) = \Gamma(2,d)(G(n)) = \left\lceil \frac{n}{2} \right\rceil + 2$, which ends the proof.

3. Concluding Remarks

In this paper, we considered two different generalizations of the Petersen graph, and we discussed the problem of the existence of $(2,d)$-kernels in these graphs. In particular, we determined the number of $(2,d)$-kernels in these graphs and their lower and upper $(2,d)$-kernel number. The generalized Petersen graphs considered in this paper are special cases of I-graphs (see, for example, [35]). The I-graph $I(n,j,k)$ is a graph with a vertex set $V(I(n,j,k)) = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}$ and an edge set $E(I(n,j,k)) = \{u_iu_{i+j}, u_iv_i, v_{i+k}; i \in \{1, 2, \ldots, n\}\}$, where subscripts are reduced modulo n. Because $P(n,k) = I(n,1,k)$, the results obtained could be a starting point to studying and counting $(2,d)$-kernels in I-graphs. It could also be interesting to investigate the number of $(2,d)$-kernels in other generalizations of generalized Petersen graphs. For more generalizations, see, for example, [36].

Author Contributions: Both authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Diestel, R. *Graph Theory*, 3rd ed.; Springer: New York, NY, USA, 2005.
2. Morgenstern, O.; Von Neumann, J. *Theory of Games and Economic Behavior*; Princeton University Press: Princeton, NJ, USA, 1944.
3. Berge, C. *Graphs and Hypergraphs*; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1973.
4. Berge, C.; Duchet, P. Perfect graphs and kernels *Bull. Inst. Math. Acad. Sin.* 1988, 16, 263–274.
5. Berge, C.; Duchet, P. Recent problems and results about kernels in directed graphs. *Discrete Math.* 1990, 86, 27–31.
6. Galeana-Sánchez, H.; Hernández-Cruz, C. On the existence of (k, l)-kernels in infinite digraphs: A survey. *Discuss. Math. Graph Theory* 2014, 34, 431–466.
7. Galeana-Sánchez, H.; Hernández-Cruz, C.; Arumugam, S. On the existence of (k, l)-kernels in digraphs with a given circumference. *AKCE Int. J. Graphs Comb.* 2013, 10, 15–28.
8. Kucharska, M. On (k, l)-kernel perfectness of special classes of digraphs. *Discuss. Math. Graph Theory* 2005, 25, 103–119.
9. Włoch, I. On kernels by monochromatic paths in the corona of digraphs. *Open Math.* 2008, 6, 537–542.
10. Bai, Y.; Fujita, S.; Zhang, S. Kernels by properly colored paths in arc-colored digraphs. *Discrete Math.* 2018, 341, 1523–1533.
11. de la Maza, S. G. H.; Hernández-Cruz, C. On the complexity of the k-kernel problem on cyclically k-partite digraphs. *Theoret. Comput. Sci.* 2019, 795, 9–19.
12. Hedetniemi, S. M.; Hedetniemi, S. T.; Knisely, J.; Rall, D. F.; Haynes, T. W. Secondary domination in graphs. *AKCE Int. J. Graphs Comb.* 2008, 5, 103–115.
13. Szumny, W.; Włoch, A.; Włoch, I. On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs. *Discrete Math.* 2008, 308, 4616–4624.
14. Włoch, I. On kernels by monochromatic paths in D-join. *Ars Combin.* 2011, 98, 215–224.
15. Bednarz, U.; Włoch, I. On strong (1,1,2)-kernels in graphs. *Ars Combin.* 2020, 152, 32–43.
16. Bednarz, U. Strong (1,1,2)-kernels in the corona of graphs and some realization problems. *Iran. J. Sci. Technol. Trans. A Sci.* 2020, 44, 401–406.
17. Bednarz, U.; Włoch, I. Fibonacci numbers in graphs with strong (1, 1, 2)-kernels. *Bol. Soc. Mat. Mex.* 2021, 27, 1–12.
18. Michalski, A.; Włoch, I. On the number and existence of independent (1,2)-dominating sets in the G-join of graphs. *Appl. Math. Comput.* 2020, 377, 125155.
19. Fink, J.F.; Jacobson, M.S. n-domination in graphs. In *Graph Theory with Applications to Algorithms and Computer Science*; John Wiley & Sons, Inc.: New York, NY, USA, 1985; pp. 283–300.
20. Włoch, A. On 2-dominating kernels in graphs. *Australas. J. Combin.* 2012, 53, 273–284.
21. Bednarz, P.; Włoch, I. An algorithm determining (2,d)-kernels in trees. *Util. Math.* 2017, 102, 215–222.
22. Bednarz, P.; Włoch, I. On (2,d)-kernels in the cartesian product of graphs. *Ann. Univ. Mariae Curie-Skłodowska Sect. A* 2016, 70, 1–8.
23. Bednarz, P.; Hernández-Cruz, C.; Włoch, I. On the existence and the number of (2,d)-kernels in graphs. *Ars Combin.* 2015, 121, 341–351.
24. Bednarz, P. On (2-d)-Kernels in the Tensor Product of Graphs. *Symmetry* 2021, 13, 230.
25. Nagy, Z. L. On the Number of k-Dominating Independent Sets. *J. Graph Theory* 2017, 84, 566–580.
26. Gerbner, D.; Keszegh, B.; Methuku, A.; Patkós, B.; Vizer, M. An improvement on the maximum number of k-Dominating Independent Sets. *J. Graph Theory* 2019, 91, 88–97.
27. Nagy, Z. L. Generalizing Erdős, Moon and Moser’s result—The number of k-dominating independent sets. *Electron. Notes Discrete Math.* 2017, 61, 909–915.
28. Behzad A.; Behzad M.; Praeger C. E. On the domination number of the generalized Petersen graphs. *Discrete Math.* 2009, 308, 603–610.
29. Ebrahimi B. J.; Jahanbakh N.; Mahmoodian E. S. Vertex domination of generalized Petersen graphs. *Discrete Math.* 2009, 309, 4355–4361.
30. Yan H.; Kang L.; Xu G. The exact domination number of the generalized Petersen graphs. *Discrete Math.* 2009, 309, 2596–2607.
31. Gabrovšek B.; Peperko A.; Žerovnik J. Independent Rainbow Domination Numbers of Generalized Petersen Graphs P(n, 2) and P(n, 3). *Mathematics* 2020, 8, 996.
32. Erveš R.; Žerovnik J. On 2-Rainbow Domination Number of Generalized Petersen Graphs P(5k, k). *Symmetry* 2021, 13, 809.
33. Watkins, M. E. A theorem on Tait colorings with an application to the generalized Petersen graphs. *J. Combin. Theory* 1969, 6, 152–164.
34. Alspach, B.; Liu, J. On the Hamilton connectivity of generalized Petersen graphs. *Discrete Math.* 2009, 309, 5461–5473.
35. Boben, M.; Pisanski, T.; Žitnik, A. I-graphs and the corresponding configurations. *J. Combin. Des.* 2005, 13, 406–424.
36. Saražin, M. L.; Pacco, W.; Previdi, A. Generalizing the generalized Petersen graphs. *Discrete Math.* 2007, 307, 534–543.