Hausdorff Realization of Linear Geodesics of Gromov–Hausdorff Space.

Alexander O. Ivanov, Alexey A. Tuzhilin

April 22, 2019

Abstract

We have constructed a realization of rectilinear geodesic (in the sense of [1]), lying in Gromov–Hausdorff space, as a shortest geodesic w.r.t. the Hausdorff distance in an ambient metric space.

Introduction

In [2] it was shown that the space of isometry classes of compact metric spaces, endowed with the Gromov–Hausdorff metric, is a geodesic metric space. The proof consisted of two steps: first, it was shown how an optimal correspondence R between two finite metric spaces X and Y can be endowed with a one-parametric family of metrics generating a shortest geodesic R_t, $t \in [0, 1]$, connecting X with Y, and such that its length equals the Gromov–Hausdorff distance between X and Y. At the second step the Gromov Precompactness Criteria was used to prove that for any two compact metric spaces there exists a compact metric space which is their “midpoint”. A little bit later, in [3] and independently in [4], it was shown that a compact optimal correspondence exists between any two compact metric spaces, and if one defines a one-parametric family of metrics on it in the same manner as it was done in [2], then again a shortest geodesic with the described properties is obtained. In [1] such geodesics were called rectilinear (there are some other shortest geodesics that are called deviant in [1]).

In the present paper we show that for each pair X, Y of compact metric spaces, and each compact optimal correspondence R between them, the compact $R \times [0, 1]$ can be endowed with a metric in such a way that for each t the restriction of the metric to $R \times \{t\}$ coincides with the metric of the compact R_t, and that the Hausdorff distance between $R \times \{t\}$ and $R \times \{s\}$ equals to the Gromov–Hausdorff distance between R_t and R_s. In other words, we construct a realization of the geodesic R_t as a shortest geodesic w.r.t. the Hausdorff distance defined on the subsets of the space $R \times [0, 1]$ endowed with some special metric.
1. Main Definitions and Preliminary Results

Let X be a metric space. By $|xy|$ we denote the distance between points $x, y \in X$.

Let $\mathcal{P}(X)$ be the set of all nonempty subsets of the space X. For each $A, B \in \mathcal{P}(X)$, and $x \in X$, we put

$$|xA| = |Ax| = \inf \{ |xa| : a \in A \}, \quad |AB| = \inf \{ |ab| : a \in A, b \in B \},$$

$$d_H(A, B) = \max \{ \sup_{a \in A} |aB|, \sup_{b \in B} |Ab| \} = \max \{ \sup_{a \in A} \inf_{b \in B} |ab|, \sup_{b \in B} \inf_{a \in A} |ba| \}.$$

Definition 1.1. The function $d_H : \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}$ is called the Hausdorff distance.

The set of all nonempty closed bounded subsets of the metric space X is denoted by $\mathcal{H}(X)$.

Theorem 1.2 ([5]). The function d_H is a metric on $\mathcal{H}(X)$.

Theorem 1.3 ([5]). The space $\mathcal{H}(X)$ is compact iff X is compact.

Let X and Y be metric spaces. A triple (X', Y', Z) consisting of a metric space Z and two its subsets X' and Y' isometric to X and Y, respectively, is called a realization of the pair (X, Y). The Gromov–Hausdorff distance $d_{GH}(X, Y)$ between X and Y is the infimum of the reals r such that there exist realizations (X', Y', Z) of the pair (X, Y) with $d_H(X', Y') \leq r$.

Theorem 1.4 ([5]). The Gromov–Hausdorff distance is a metric on the set of all isometry classes of compact metric spaces.

Definition 1.5. The set of all isometry classes of compact metric spaces endowed with the Gromov–Hausdorff metric is called the Gromov–Hausdorff space and is denoted by \mathcal{M}.

We need one more (equivalent) definition of the Gromov–Hausdorff distance. Recall that a relation between sets X and Y is a subset of the Cartesian product $X \times Y$. The set of all nonempty relations between X and Y we denote by $\mathcal{R}(X, Y)$.

Definition 1.6. If X and Y are metric spaces, then the distortion $\text{dis} \sigma$ of a relation $\sigma \in \mathcal{R}(X, Y)$ is the value

$$\text{dis} \sigma = \sup \left\{ |xx'| - |yy'| : (x, y), (x', y') \in \sigma \right\}.$$

A relation $R \subset X \times Y$ between sets X and Y is called a correspondence, if the restrictions to R of the canonical projections $\pi_X : (x, y) \mapsto x$ and $\pi_Y : (x, y) \mapsto y$ are surjective. The set of all correspondences between X and Y we denote by $\mathcal{R}(X, Y)$.

Theorem 1.7 ([5]). For any metric spaces X and Y we have

$$d_{GH}(X, Y) = \frac{1}{2} \inf \{ \text{dis } R : R \in \mathcal{R}(X, Y) \}.$$

For topological spaces X and Y, we consider $X \times Y$ as the topological space with the standard Cartesian product topology. Then it makes sense to talk about closed relations and correspondences. The set of all closed correspondences between X and Y we denote by $\mathcal{R}^c(X, Y)$.

Corollary 1.8 ([4]). For metric spaces X and Y we have

$$d_{GH}(X, Y) = \frac{1}{2} \inf \{ \text{dis } R : R \in \mathcal{R}^c(X, Y) \}.$$

Definition 1.9. A correspondence $R \in \mathcal{R}(X, Y)$ is called optimal if $d_{GH}(X, Y) = \frac{1}{2} \text{dis } R$. The set of all optimal correspondences between X and Y is denoted by $\mathcal{R}_{\text{opt}}(X, Y)$. The subset of $\mathcal{R}_{\text{opt}}(X, Y)$ consisting of all closed optimal correspondences is denoted by $\mathcal{R}^c_{\text{opt}}(X, Y)$.

Theorem 1.10 ([4]). For any $X, Y \in \mathcal{M}$ we have $\mathcal{R}^c_{\text{opt}}(X, Y) \neq \emptyset$.

Theorem 1.11 ([3], [4]). For any $X, Y \in \mathcal{M}$ and each $R \in \mathcal{R}^c_{\text{opt}}(X, Y)$ the family R_t, $t \in [0, 1]$, of compact metric spaces such that $R_0 = X$, $R_1 = Y$, and for $t \in (0, 1)$ the space R_t is the set R with the metric

$$\|(x, y), (x', y')\|_t = (1 - t)|xx'| + t|yy'|,$$

is a shortest curve in \mathcal{M} connecting X and Y, and its length is equal to $d_{GH}(X, Y)$.

In [1] the curve R_t was called a rectilinear geodesic corresponding to $R \in \mathcal{R}^c_{\text{opt}}(X, Y)$. In the same paper it was noted that the Gromov–Hausdorff space has non rectilinear shortest geodesics.

The main result of the present paper follows from more general theorem describing a special construction of metric on the Cartesian product of a metric space and a segment of a Euclidean line.

2 A special extension of a metric to Cartesian product

Let Z be an arbitrary set, and ρ_t, $t \in [a, b]$, a one-parametric family of metrics on Z. For convenience, we put $|zz'|_t = \rho_t(z, z')$ and $Z_t = Z \times \{t\}$. Fix some $c > 0$, and define a distance function on $Z \times [a, b]$ as follows:

$$\|(z_1, t_1)(z_2, t_2)\| = \inf_{z \in Z} (|z_1z|_{t_1} + |zz_2|_{t_2}) + c|t_1 - t_2|, \quad (1)$$

It is clear that this function is non negative and symmetric, i.e., it is a distance function such that its restriction to each section $Z \times \{t\}$ coincides with ρ_t, and on the section $\{z\} \times [a, b]$ with the Euclidean distance $c|t - s|$, $t, s \in [a, b]$ (notice that the latter one does not depend on the choice of z); also, $|Z_tZ_s| = c|t - s|$.

To ensure the triangle inequality, one needs two more conditions.
Theorem 2.1. Under the notations introduced above, suppose also that the following conditions hold:

1. For any \(z, z' \in Z \) the function \(f(t) = |zz'|_t, t \in [a, b] \) is monotonic on \(t \);
2. For any \((z, t), (z', s) \in Z \times [a, b] \) we have
 \[
 |zz'|_t \leq c|t - s| + |zz'|_s + c|t - s|.
 \]

Then the distance function defined by Equation (1) satisfies the triangle inequality, i.e., it is a metric; moreover, for any \(t, s \in [a, b] \) we have \(d_H(Z_t, Z_s) = |Z_tZ_s| = c|t - s| \), where \(d_H \) is the Hausdorff distance in \(\mathcal{H}(Z \times [a, b]) \).

Proof. We illustrate the proof in Figure 1.

![Figure 1: Triangle inequality verification.](image)

To verify the triangle inequality, let us choose three arbitrary points \((z_i, t_i), \) \(i = 1, 2, 3\) and show that

\[
|(z_1, t_1)(z_2, t_2)| + |(z_2, t_2)(z_3, t_3)| \geq |(z_1, t_1)(z_3, t_3)|.
\]

The proof depends on the ordering of the values \(t_i \) (in the figure the \(t_i \) correspond to the height of the sections \(Z_{t_i} \)): we get three cases up to symmetry and degeneration (when some \(t_i \) equal to each other). Now we proceed each of the cases analytically. Notice that the solid polygonal lines connecting \(z_i \) and \(z_j \) code, in a natural way, the distances between the points \((z_i, t_i)\) and \((z_j, t_j)\); the dashed lines show how one could decrease the value \(|(z_1, t_1)(z_2, t_2)| + |(z_2, t_2)(z_3, t_3)| \) to obtain a one greater or equal to \(|(z_1, t_1)(z_3, t_3)| \).

The initial steps are the same in all the three cases, and they can be obtained
from the following triangle inequality: \(|zz_2|_{t_2} + |zz'|_{t_2} \geq |zz'|_{t_2} \):

\[
|z_1, t_1)(z_2, t_2)| + |(z_2, t_2)(z_3, t_3)| = \inf_{z \in \mathbb{Z}} \left(|z_1 z|_{t_1} + c|t_1 - t_2| + \inf_{z' \in \mathbb{Z}} \left(|zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_3 - t_2| \right) \geq \inf_{z, z' \in \mathbb{Z}} \left(|z_1 z|_{t_1} + |zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_1 - t_2| + c|t_3 - t_2|.
\]

Then some differences between the Cases appear.

Case (a). We have

\[
\inf_{z, z' \in \mathbb{Z}} \left(|z_1 z|_{t_1} + |zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_1 - t_2| + c|t_3 - t_2| = \left| (z_1, t_1)(z_3, t_3) \right|,
\]

where the first equality, according to the given order between \(t_i \), follows from \(c|t_1 - t_2| = c|t_1 - t_3| + c|t_3 - t_2| \); the first inequality follows from condition (2) of Theorem under consideration, that gives \(c|t_3 - t_2| + |zz'|_{t_2} + c|t_1 - t_3| \geq |zz'|_{t_3}; \) the last inequality follows from the triangle inequality \(|zz'|_{t_3} + |z' z_3|_{t_3} \geq |zz'|_{t_3} \).

Case (b). In this case we use Condition (1) of Theorem, and thus we conclude that \(|zz'|_{t_2} \) is more or equal than either \(|zz'|_{t_1} \), or \(|zz'|_{t_1} \). Without loss of generality, let us suppose that \(|zz'|_{t_2} \geq |zz'|_{t_1} \), then

\[
\inf_{z, z' \in \mathbb{Z}} \left(|z_1 z|_{t_1} + |zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_1 - t_2| + c|t_3 - t_2| \geq \inf_{z, z' \in \mathbb{Z}} \left(|z_1 z|_{t_1} + |zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_1 - t_3| + c|t_3 - t_2| \geq \inf_{z \in \mathbb{Z}} \left(|z_1 z|_{t_1} + |zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_1 - t_3| = \left| (z_1, t_1)(z_3, t_3) \right|,
\]

where the first inequality can be obtained from \(|zz'|_{t_2} \geq |zz'|_{t_1} \) and, according to the given order between \(t_i \), from \(c|t_1 - t_3| = c|t_1 - t_2| + c|t_3 - t_2| \); the second inequality follows from the triangle inequality \(|z_1 z|_{t_1} + |z' z|_{t_1} \geq |z_1 z'|_{t_1} \).

Case (c). We have

\[
\inf_{z, z' \in \mathbb{Z}} \left(|z_1 z|_{t_1} + |zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_1 - t_2| + c|t_3 - t_2| = \inf_{z, z' \in \mathbb{Z}} \left(|z_1 z|_{t_1} + |zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_1 - t_3| + c|t_3 - t_2| \geq \inf_{z, z' \in \mathbb{Z}} \left(|z_1 z|_{t_1} + |zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_1 - t_3| \geq \inf_{z \in \mathbb{Z}} \left(|z_1 z|_{t_1} + |zz'|_{t_2} + |z' z_3|_{t_3} \right) + c|t_1 - t_3| = \left| (z_1, t_1)(z_3, t_3) \right|,
\]

where the first equality, according to the given order between \(t_i \), follows from the condition \(c|t_3 - t_2| = c|t_3 - t_1| + c|t_1 - t_2| \); the first inequality can be obtained from Condition (2) of Theorem, that gives \(c|t_1 - t_2| + |zz'|_{t_2} + c|t_1 - t_3| \geq |zz'|_{t_1}; \) the last inequality follows from the triangle inequality \(|z_1 z|_{t_1} + |z' z|_{t_1} \geq |z_1 z'|_{t_1} \). □
As a consequence from Theorem 2.1, we construct a realization of a rectilinear geodesic in Gromov–Hausdorff space, as a shortest geodesic in the sense of Hausdorff metric.

3 Realization of Rectilinear Geodesics

Choose arbitrary $X, Y \in \mathcal{M}$, $R \in \mathcal{R}_{op}^c(X, Y)$, and construct the corresponding rectilinear geodesic R_t, $t \in [0, 1]$. For convenience reason, the distance in R_t between points (x, y) and (x', y') is denoted by $|(x, y), (x', y')|_t$. Put $c = \frac{1}{2} \text{dis } R$, and define the distance on $R \times [0, 1]$ by Formula (1).

Corollary 3.1. For nonisometric X and Y, the distance function on $R \times [0, 1]$ defined above is a metric such that $d_H(R_t, R_s) = d_{GH}(X, Y)|t - s|$, thus, R_t, being considered as a curve in the space $\mathcal{H}(R \times [0, 1])$, is a shortest curve.

Proof. It suffices to verify that the conditions of Theorem 2.1 hold in the case under consideration.

Since X and Y are nonisometric, then $\text{dis } R > 0$, thus $c > 0$.

Further, for any (x, y) and (x', y') from R, the function $f(t)$ from Condition (1) equals $(1 - t)|xx'| + t|yy'|$, therefore, it is linear on t, thus the Condition (1) holds.

At last, let us check Condition (2). To do that, choose arbitrary $(x, y), (x', y') \in R$, and arbitrary $t, s \in [0, 1]$, then

$$|(x, y), (x', y')|_t - |(x, y), (x', y')|_s =$$

$$= (1 - t)|xx'| + t|yy'| - (1 - s)|xx'| - s|yy'| =$$

$$= (t - s)(|yy'| - |xx'|) \leq |t - s| \text{dis } R = 2c|t - s|,$$

that completes the proof. □

References

[1] S.Chowdhury and F.Memoli, *Explicit Geodesics in Gromov-Hausdorff Space*. ArXiv e-prints, arXiv:1603.02385, 2018.

[2] A.O.Ivanov, N.K.Nikolaeva, and A.A.Tuzhilin, *The Gromov-Hausdorff Metric on the Space of Compact Metric Spaces is Strictly Intrinsic*. ArXiv e-prints, arXiv:1504.03830, 2015.

[3] S.Chowdhury and F.Memoli, *Constructing Geodesics on the Space of Compact Metric Spaces*. ArXiv e-prints, arXiv:1603.02385, 2016.

[4] A.O.Ivanov, S.Iliadis, and A.A.Tuzhilin, *Realizations of Gromov-Hausdorff Distance*. ArXiv e-prints, arXiv:1603.08850, 2016.

[5] D.Yu.Burago, Yu.D.Burago, and S.V.Ivanov, *A Course in Metric Geometry*. AMS, Providence, RI, 2001.