Graph convolutional neural networks (GCNNs) learn parametric maps from high-dimensional data whose dependencies can be represented by a graph, e.g., biological data, financial data, and social network data \([1–3]\). The GCNN map is a compositional layered function of simpler components, which in turn serve as inductive prior. In particular, if we narrow the view towards the linear nodal feature aggregation, consequently, it overshadows the implicit state-space model present in graph convolutions. Unveiling and analyzing this state-space model can bring new insight into how graph convolutions operate and can allow the proposal of more general nodal aggregation schemes. In fact, state-space models have resulted fundamental in advancing Markov chains, Kalman filtering [18], and recurrent neural networks [19].

Inspired by the coupling between state-space models and sequential statistical learning, we put forth a similar interplay for graph convolutional filters. The state-space model considers the graph representation matrix (e.g., adjacency, Laplacian) as the state transition matrix while the intermediate nodal aggregations as system outputs (Section 2). We then show the GCNN state-space convolutional module is rather limiting and propose appropriate generalizations towards a full-fledged nonlinear state-space propagation rule (Section 3). Concretely, the contributions of this paper are twofold. First, it proposes a state-space analysis of graph convolutions, revealing the GCNN is limited to linear nodal aggregations where the input signal of a specific layer vanishes/explodes with the filter order. Consequently, the filter coefficients have also to mitigate such effect. Second, it develops a new family of graph neural networks (GNNs), which considers non-linear nodal aggregations within a layer and have intra-layer residual bridges to account for the layer input signal in the higher-order aggregations. By making parallelisms with nonlinear state-space models and with conventional RNNs, we further introduce a gating mechanism to increase the nonlinear filter order but still account for multi-resolution information in a data-driven manner. These contributions have been corroborated with numerical results in source localization and authorship attribution (Section 4). Conclusions are drawn in Section 5.

Graph convolutional neural networks (GCNNs) learn a parametric map from high-dimensional data whose dependencies can be represented by a graph, e.g., biological data, financial data, and social network data \([19]\). The GCNN map is a compositional layered function of simpler ones, where each layer is composed of a linear graph convolutional filter nested into a nonlinearity \([4]\). The graph serves as the prior about the data structure and restricts the space of functions to those exploiting this nested into a nonlinearity \([4]\). The graph serves as the prior about the data structure and restricts the space of functions to those exploiting this nested into a nonlinearity \([4]\). The graph serves as the prior about the data structure and restricts the space of functions to those exploiting this nested into a nonlinearity \([4]\). The graph serves as the prior about the data structure and restricts the space of functions to those exploiting this.
the input \(k \) times to produce a graph signal whose value \(w_{ki} \) at node \(i \) is a linear combination of the input signal on neighbors that are at most \(k \) hops away. But since \(w_{i} \) can also be obtained as \(w_{i-1} \) as \(w_k = S^k x = S w_{k-1} \), it implies an aggregation from one-hop neighbors of the former shifted signal \(w_{k-1} \).

Leveraging the graph convolutional filter in (1), we can define graph convolutional neural networks (GCNNs) as a compositional architecture of \(L \) convolutional filters and nonlinearities. At layer \(l \), the GCNN takes as input a collection of \(F \) signal features input signals \(\{x_i^{f-1}\}_{f=1}^F \) from the previous layer, processes them in parallel with a bank of \(F^2 \) graph convolutional filters \(\{H_i^f\}_{f=1}^F \), and passes these outputs to a nonlinearity to obtain the propagation rule

\[
x_l^f = \sigma \left(\sum_{g=1}^F H_i^{fg}(S)x_i^{g-1} \right)
\]

for \(f = 1, \ldots, F \). The \(F \) outputs of layer \(l \), \(\{x_l^f\}_f \), are inputs to the subsequent layer \(l+1 \), and this process repeats itself until the last layer, \(l = L \), is reached. If we consider for simplicity only one input feature \(x_0 := x \in \mathbb{R}^N \) and one output feature \(x_L := x_L^0 \in \mathbb{R}^N \), this GCNN can be written succinctly as the map \(x_L = \Phi(S;x;H) \). This notation emphasizes the dependence of the parameterization on the GSO \(S \) and on the filter coefficients \(H = \{H_i^{fg}\}_{f,g} \) for all layers \(l \) and filter pairs \(f, g \). Graph convolutional neural networks exhibit several desirable properties. Namely, they are local and distributed information processing architectures, making them perfectly suited for distributed learning [20][21]. They are also permutation equivariant [22][23] and stable to changes in the underlying graph support [22]. They also have isomorphic properties [9][24][25] and are found to be more discriminable than the corresponding graph filters [26].

2.1. The State-Space Model of Graph Convolutions

A discrete linear system with inputs \(u_k \in \mathbb{R}^N \) and outputs \(y_k \in \mathbb{R}^N \) can be expressed through its \textit{state-space representation}

\[
\begin{align*}
w_k &= Aw_{k-1} + Bu_k \\
y_k &= Cw_k + Du_k
\end{align*}
\]

where \(w_k \in \mathbb{R}^N \) is the state sequence and \(A, B, C, D \in \mathbb{R}^{N \times N} \) are the state-to-state, input-to-state, state-to-output, and input-to-output transition matrices, respectively. Comparing the recursive implementation of (1) with (3), we see that the convolutional module of the GCNN layer can be represented as a discrete linear system where the steps \(k \) correspond to graph shifts. Explicitly, the filter output \(y = H(S)x \) can be formulated as

\[
\begin{align*}
w_k &= Sw_{k-1} \\
y_k &= h_kw_k \quad k = 1, \ldots, K
\end{align*}
\]

where \(u_k = 0 \), \(A = S \) and \(C = h_kI \). The state is initialized as \(w_0 = x \), and the instantaneous output as \(y_0 = h_0w_0 \). The overall filter output \(y \) is calculated as the sum of the \(K + 1 \) instantaneous outputs \(\{y_k\}_k \). Equation (4) makes for an interesting parallel between linear systems and graph convolutions. At the same time, it shows that the linear components of the layers of a GNN are rather simple dynamical systems. While this is not necessarily a disadvantage, it reveals the opportunity of increasing the expressive power of GNNs by modifying the linear system in (4).

Moreover, we can see that if \(S \) has eigenvalues greater than one in magnitude, the instantaneous state \(w_k \) explodes. This implies the instantaneous outputs \(y_k \) will see little input signal for larger \(k \). In turn, this will force the network coefficients \(h_k \), on one hand, to learn convolutional representations of the input, while, on the other hand, to mitigate the explosive states for larger order states. Likewise, a similar trade-off is present if \(h_k \) has eigenvalues smaller than one in magnitude. In that case, we have to face with vanishing states, therefore, higher-order shifts from multi-hop neighbors will play little role in the final output. These trade-offs limit implicitly the degrees of freedom of the GCNN, consequently, the model captures only partially the coupling between the signal and the topology. This translates to limited expressive power. In the sequel, our goal is to generalize the convolutional state-space model (4) to forms closer to a full-flagged non-linear state-space representation that still captures the coupling between the signal and the underlying topology.

3. NONLINEAR STATE-SPACE EXTENSIONS OF GCNNs

In this paper, we work towards extending the graph convolutional neural network to propagation rules within a layer that can be represented as the \(N \)-state discrete \textit{nonlinear} system

\[
\begin{align*}
w_k &= \sigma_h \left(Aw_{k-1} + Bu_k \right) \\
y_k &= \sigma_y \left(Cw_k + Du_k \right)
\end{align*}
\]

Contrasting (5) with the state space GCNN model (4), we can point out three key differences.

First, system (4) is linear in all of its components. The GCNN applies the nonlinearity only to the filter output \(y \), but not to the shifted signals \(w \) nor to the instantaneous outputs \(y_k \). Thus, graph convolutions limit nodal feature aggregations to the linear space.

Second, in (4) both the state \(w_k \) and the instantaneous output \(y_k \) are disconnected from the input \(x \). In fact, the input is only considered when initializing the state as \(w_0 = x \). Therefore, its contribution to high-order shifts \(w_k \) and instantaneous outputs \(y_k \) is small and affected by the shift operator spectra. Additionally, nodes only learn weights to scale the influence of the values of the shifted signals \(S^kx \) in their immediate neighborhood but leave unexploited any direct relationship with the input signal components of their \(k \)-hop neighbors.

Third, while in (4) the state \(w_{k-1} \) is diffused through the graph to produce the next state \(w_k \), there is no parametric relationship between state updates; i.e., \(w_{k-1} \) and \(w_k \). In turn, this leads to the instabilities related to the state-transition matrix \(S \) discussed earlier. Making \(w_k \) a graph parametric update of \(w_{k-1} \) improves our control over the stability of the state-transition matrix as a whole.

In the GNN architectures we develop next, the nodal aggregation schemes emulate a nonlinear state-space model [cf. (5)] that accounts for the graph structure in a similar fashion to graph convolutions [cf. (4)]. Approaching GNNs from this state-space perspective allows changing the family of propagation rules, which are generalized from the linear form in (4) to nonlinear node updates. As we will illustrate with the numerical experiments in Section 4, these modifications significantly improve GNN performance in a variety of application scenarios.

3.1. RSNs: Recursive Shift Networks

In the so-called \textit{recursive shift networks} (RSNs), we enhance the capacity of the filter (4) by making both the state \(w_k \) and the instantaneous output \(y_k \) nonlinear on the state \(w_{k-1} \) and input \(x \). Explicitly, the nonlinear state-space model for an RSN has the form

\[
\begin{align*}
w_k &= \sigma_h \left(h_{kw}w_k + h_{kw}x \right) \\
y_k &= \sigma_y \left(\sum_{k=0}^K y_k \right)
\end{align*}
\]

where \(h_{kw}w_k, h_{kw}x \) are scalar weights encoding the dependency of state \(w_k \) on state \(w_{k-1} \) and the input \(x \), respectively, while \(h_{kw}, h_{ky} \) are scalar weights encoding the dependency of the instantaneous output \(y_k \)
on the state \(w_k \) and the input \(x \), respectively. On the one hand, \((6)\) retains the simplicity and efficiency of the convolutional graph filter \((4)\); on the other, it improves the expressive power of the graph convolution by including nonlinearities. These additional parameters as well as the nonlinearities endow the RNS with minimal degrees of freedom that are enough to control with a better trade-off the explosion/vanishing of the state \(w_k \).

Despite looking similar to the conventional recurrent neural network (RNN) propagation rule, RSNs and RNNs are very different. RNNs have \(N \times N \) parameter matrices, whereas in \((6)\) the parameters of the nonlinear graph filters are independent of the graph dimensions. The nonlinear graph filters we consider share parameters across nodes—not shifts. This property is inherited from the graph convolutional filter \([cf. (4)]\), in which the parameters \(h_k \) are distinct for different \(y_k \). These differences notwithstanding, we leverage the analogy with RNNs to consider gating mechanisms in Section 3.2.

3.2. LSSMs: Long Short Shift Memories

In both \((4)\) and \((6)\), the filter order \(K \) controls the information locality in the vertex and spectral domains. In the vertex domain, the order implies that state \([w_k]\) at node \(i \) receives information from nodes up to \(K \) hops away; i.e., it defines a “local window” around the nodes. In the spectral domain, it controls the sharpness of the filter frequency response \((10)-(11)\). When the information at a particular layer is localized around a few graph frequencies (eigenvalues of \(S \)), higher filter order filters are needed; i.e., the filter order imposes a “local window” around the graph frequencies. This is in agreement with the uncertainty principle that states that low values of graph frequencies are needed to control with a better trade-off the explosion/vanishing of the state \(w_k \).

Increasing the filter order is thus necessary to capture more information in the vertex domain while retaining localized responses in the spectral domain. However, large \(K \) usually leads to numerical instabilities associated with large powers \(S^K \) and, depending on the eigenvalues of \(S \), we also have to cope with vanishing or exploding gradients. These challenges are similar to those encountered in RNNs. There, they are typically addressed by gating mechanisms that introduce an additional set of parameters to control how the information propagates in different state updates \((10)-(11)\). Here, we will use gates within the GNN layer to capture long dependencies over the graph because of the high order of \(K \) in \((6)\).

In analogy with long-short term memories (LSTMs), we call our architecture **long-short shift memory** (LSSM). LSSMs comprise learnable gating parameters taking values in the interval \([0, 1]\). These parameters control the information passed to state \(w_k \) and instantaneous output \(y_k \) in \((6)\).

An LSSM filter comprises:

- **Updating the \(N \times 1 \) internal memory variable \(c[k] \) as**
 \[
 \bar{c}_k = \tanh (h_{kca}S w_{k-1} + h_{kcx}x)
 \]
 \((7)\)
 to track the state update.

- **Updating the \(N \times 1 \) forget gate \(\gamma_f[k] \), update gate \(\gamma_u[k] \), and state gate \(\gamma_c[k] \) respectively as**
 \[
 \gamma_f = \text{sigmoid}(h_{fua}S w_{k-1} + h_{fux}x)
 \]
 \((8a)\)
 \[
 \gamma_u = \text{sigmoid}(h_{hua}S w_{k-1} + h_{hux}x)
 \]
 \((8b)\)
 \[
 \gamma_c = \text{sigmoid}(h_{cua}S w_{k-1} + h_{cux}x)
 \]
 \((8c)\)

 which are internal variables that control the system evolution with their own set of parameters. The sigmoid nonlinearity ensures that the values are in the interval \([0, 1]\).

- **Updating the \(N \times 1 \) global memory variable \(c[k] \) and state \(w_k \)**
 \[
 c_k = \gamma_f \circ c_{k-1} + \gamma_u \circ \bar{c}_k
 \]
 \((9a)\)

 \[
 w_k = \gamma_c \circ \tanh(c_k)
 \]
 \((9b)\)

where “\(\circ \)” denotes the element-wise Hadamard product. The forget gate \(\gamma_f \) and update gate \(\gamma_u \) control which entries of the former memory \(c_{k-1} \) to propagate and which entries to update through the internal memory \(\bar{c}_k \) \([cf. (7)]\). The global memory variable is then used to update the state \(w_k \), whose value is in turn controlled by the state update gate \(\gamma_w \).

- Setting the instantaneous output \(y_k \) to
 \[
 y_k = \sigma_g(h_{kyw}w_k + h_{kyx}x)
 \]
 \((10)\)

- Setting the overall LSSM output to
 \[
 y = \sigma_g(\sum_{k=0}^K y_k)
 \]
 \((11)\)

In summary, the LSSM filter is defined by steps \((7)-(11)\). Note that this **nonlinear graph filter** updates the state \(w_k \) as a nonlinear, shifted version of the former state while prioritizing information coming from certain nodes and, thus, only learning state updates on nodes that are relevant for the task at hand. The update is controlled by the gating mechanisms \([cf. (6)]\), which are graph-based state-space models themselves. The additional parameters increase further the LSSM degrees of freedom compared with the RSNs to control both the state updates but also allow it to work where a higher vertex-spectra locality is needed. Substituting \(H^K(S) \) for the LSSM filter in \((2)\) leads to an LSSM-GNN layer update rule. Because of gating, the LSSM-GNN can be parametrized with higher values of \(K \). This longer memory over the graph endows the LSSM-GNN with a better accuracy-robustness trade-off than the GCNN and the RSN.

4. Numerical Experiments

In the following, we describe the scenarios and respective experimental setups used to corroborate the proposed solutions. The baseline setups are those of \([15]\), which compares the GCNN with different state-of-the-art approaches. The models we evaluate are: (i) the conventional GCNN with linear filters \([cf. (4)]\); (ii) the RSN \([cf. (6)]\); (iii) the LSSM \([cf. (7)-(11)]\). All models have ReLU nonlinearities between layers and are trained using the ADAM optimizer with parameters \(\beta_1 = 0.9 \) and \(\beta_2 = 0.999 \) \([31]\).

Source localization. The goal of this experiment is to identify the source community of a signal diffused over the graph given a snapshot of the signal at an arbitrary time step. The graph is an undirected stochastic block model (SBM) with \(N = 50 \) nodes divided into \(C = 5 \) blocks, each representing a community \([c_1, \ldots, c_C]\). The intra-community probability is \(p = 0.8 \) and the inter-community probability is \(q = 0.2 \). The source signal \(x[0] \) is a Kronecker delta centered at one source node and diffused at time \(t \in [0, 50] \) as \(x[t] = S^t x[0] \), where \(S \) is the graph adjacency matrix normalized by the maximum eigenvalue. The training set comprises 10,240 tuples of the form \((x[i], c_i)\) for a random \(t \) and \(i \in \{1, 2, 3, 4, 5\} \). The validation and the test sets are both composed of 2,500 tuples. The models are trained with batch sizes of 100 samples for 40 epochs and a learning rate 10\(^{-3}\), which is tuned for the GNN but not for the proposed models. The performances are averaged over ten different graph realizations and ten data splits, for a total of 100 realizations.

We vary the filter order \(K \) in the set \(\{4, 16, 32\} \) to compare the accuracy-robustness trade-off of the GCNN, RSN, and LSSM in the source localization scenario. All architectures have \(L = 1 \) layer and \(F = 4 \) features. The nonlinearities \(\sigma_c \) and \(\sigma_p \) are the ReLU in \((6)\), and \(\sigma_g \) is the ReLU in \((10)\) and \((11)\). At the output of each architecture, a readout layer maps the output signal to a one-hot vector of dimension \(C \), which is then fed to a softmax.

The average test accuracies are shown in Figure \([1]\). Both the RSN and the LSSM outperform the GCNN by a significant margin for all values of \(K \). While the RSN achieves the best accuracy for \(K = 4 \), the
LSSM exhibits a better performance for larger values of K, which indicates its better robustness-accuracy trade-off for high-order filters. This is further validated by the fact that they present the smallest standard deviation for $K = 16$ and $K = 32$.

Authorship attribution. In authorship attribution, the learning task is to decide whether a n-word text excerpt has been authored by a specific author or by any of the other 20 contemporary authors in the author pool, given their word adjacency network (WAN) \[32\]. WANs are author-specific directed graphs whose nodes are function words without semantic meaning (e.g., prepositions, pronouns, conjunctions) and whose directed edges capture the transition probabilities between pairs of function words. An example of WAN is shown in Figure 2 and the graph signal is the word frequency count.

Like in \[15\], we classify texts for: Jane Austen, Emily Bronte, and Edgar Alan Poe. The WANs of these authors have from $N = 190$ to $N = 210$ function word nodes. We consider a train-test split of $95\% - 5\%$ of the available texts per author and around 8.7% of the train samples are used for validation. This leads to around $1,000$ training samples and 100 validation and test samples. For each author, we extend the training, validation, and test sets by the same number of text samples taken at random from the author pool. All models are trained with batches of 100 samples for 25 epochs, and the learning rate is 5×10^{-3}. The loss function is the cross-entropy and we report average test accuracies for 30 data splits.

In this experiment, we fix the parameters so that the GCNN achieved the best performance in the source localization experiment—$L = 1$, $F = 4$, and $K = 32$—to make for a fair comparison. The results are presented in Table 1. We observe that the RSN outperforms the GNN for all authors except Bronte, and the LSSM exhibits the best performance by a large margin.

	Austen	Bronte	Poe
GCNN	64 ± 20	71 ± 16	84 ± 18
RSN	80 ± 19	68 ± 16	72 ± 19
LSSM	87 ± 14	73 ± 15	83 ± 14

Table 1: Authorship attribution accuracy (%).

5. CONCLUSIONS

Graph convolutional neural networks carry implicitly a state-space model in their convolutional module. In this paper, we explicitly reveal such model and analyze its behavior from an internal state perspective. Highlighting that the internal state may explode or vanish depending on the spectrum of the shift operator, we argued the GCNN parameters need to be learned to also control the latter, which leads to a stability-performance trade-off. We then built further links with discrete state-space models to develop a new family of graph neural networks, in which nodal aggregations are performed in a nonlinear and parametric manner. The latter leads to higher degrees of freedom to control the stability-performance trade-off and allows developing new solutions to improve the expressivity of the GCNNs. We proposed two such solutions, namely, \(i\) a recursive shift network that includes the input signal in every state update contrarily to the GCNN; \(ii\) a long-short term shift memory that allows for increasing further the filter order within a layer through the introduction of the gating mechanisms in a form akin to conventional LSTMs. Numerical results on source localization and authorship attribution corroborate the models, while in the future we plan to investigate the theoretical benefits of these nonlinear aggregation rules.

6. REFERENCES

[1] M. E. J. Newman, *Networks: An Introduction*, Oxford University Press, Oxford, UK, 2010.
[2] E. Bullmore and O. Sporns, “Complex brain networks: Graph theoretical analysis of structural and functional systems,” Nature Reviews Neuroscience, vol. 10, pp. 186–198, March 2009.
[3] M. O. Jackson, *Social and Economic Networks*, Princeton University Press, Princeton, NJ, 2008.
[4] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “From graph filters to graph neural networks,” arXiv:2003.03777v3 [cs.LG], 8 Aug. 2020, accepted for publication in IEEE Signal Process. Mag.
[5] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and deep locally connected networks on graphs,” in 2nd Int. Conf. Learning Representations, Banff, AB, 14-16 Apr. 2014, pp. 1–14.
[6] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” in 30th Conf. Neural Inform. Process. Syst., Barcelona, Spain, 5-10 Dec. 2016, pp. 3844–3858, Neural Inform. Process. Foundation.
[7] J. Du, J. Shi, S. Kar, and J. M. F. Moura, “On graph convolution for graph CNNs,” in 2018 IEEE Data Sci. Workshop, Lausanne, Switzerland, 4-6 June 2018, pp. 239–243, IEEE.
[8] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural network architectures for signals supported on graphs,” IEEE Trans. Signal Process., vol. 67, no. 4, pp. 1034–1049, 15 Feb. 2019.
[9] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?,” in 7th Int. Conf. Learning Representations, New Orleans, LA, 6-9 May 2019, pp. 1–17.
[10] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[11] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, 1 Apr. 2013.

[12] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving average graph filtering,” IEEE Trans. Signal Process., vol. 65, no. 2, pp. 274–288, 15 Jan. 2017.

[13] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets: Graph convolutional neural networks with complex rational spectral filters,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97–109, 1 Jan. 2019.

[14] A. Wijesinghe and Q. Wang, “DFNets: Spectral cnns for graphs with feedback-looped filters,” in 33rd Conf. Neural Inform. Process. Syst., Vancouver, BC, 8-14 Dec. 2019, pp. 6009–6020, Neural Inform. Process. Syst. Foundation.

[15] E. Isufi, F. Gama, and A. Ribeiro, “EdgeNets: Edge Varying Graph Neural Networks,” arXiv:2001.07620v2 [cs.LG], 12 March 2020.

[16] D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches, John Wiley & Sons, Hoboken, NJ, 2006.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Adaptive Comput. Mach. Learning ser. The MIT Press, Cambridge, MA, 2016.

[18] D. Owerko, F. Gama, and A. Ribeiro, “Optimal power flow using graph neural networks,” in 45th IEEE Int. Conf. Acoust., Speech and Signal Process., Barcelona, Spain, 4-8 May 2020, pp. 5930–5934, IEEE.

[19] F. Gama, E. Tolstaya, and A. Ribeiro, “Graph neural networks for decentralized controllers,” arXiv:2003.10280v2 [cs.LG], 21 Oct. 2020.

[20] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph neural networks,” IEEE Trans. Signal Process., vol. 68, pp. 5680–5695, 25 Sep. 2020.

[21] D. Zou and G. Lerman, “Graph convolutional neural networks via scattering,” Appl. Comput. Harmonic Anal., vol. 49, no. 3, pp. 1046–1074, Nov. 2020.

[22] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence between graph isomorphism testing and function approximation with GNNs,” in 33rd Conf. Neural Inform. Process. Syst., Vancouver, BC, 8-14 Dec. 2019, pp. 15894–15902, Neural Inform. Process. Syst. Foundation.

[23] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe, “Weisfeiler and Lehman go neural: Higher-order graph neural networks,” in 33rd AAAI Conf. Artificial Intell., Honolulu, HI, 27 Jan.-1 Feb. 2019, vol. 33, pp. 4602–4609, Assoc. Advancement Artificial Intell.

[24] S. Pfrommer, F. Gama, and A. Ribeiro, “Discriminability of single-layer graph neural networks,” arXiv:2010.08847v2 [eess.SP], 21 Oct. 2020.