Taurus: A Data Plane Architecture for Per-Packet ML

Tushar Swamy
Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle Olukotun

Stanford University
Datacenter networks are becoming harder to manage...

“Our current generation — Jupiter fabrics — can deliver more than 1 Petabit/sec of total bisection bandwidth”

— A Look Inside Google’s Data Center Networks

Networks require complex management with high performance
Automate decision-making with machine learning (ML)

- Making decisions based on data → *machine learning*

- Machine learning can:
 - *Approximate* network functions based on data
 - *Customize* network functions based on data

- Currently, we use by hand-written heuristics in the network…
Where in the network should ML happen?

Software Defined Network

Control Plane
Policy Creation (Flow Rules)

Data Plane
Packet Forwarding (Match Action)

Packet Digest
Flow Rule

Packets In
Packets Out
A Taurus network introduces ML for management

Software Defined Network

Control Plane
Policy Creation (Flow Rules)

Data Plane
Packet Forwarding (Match Action)

Packets In
Packet Digest
Flow Rule
Packets Out

Software Defined Network with Taurus

Control Plane
Policy Creation (Flow Rules + ML Training)

Data Plane
Packet Forwarding (Match Action) + Decision Making (ML Inference)

Packets In
Packet Digest
Flow Rule
ML model weights
Packets Out
ML inference should happen \textit{per-packet} in the \textit{data plane}
Example: Anomaly Detection

Processing time: 0.5 ms
Packets missed: 500k

Processing time: 1.0 ms
Packets missed: 1M

Processing time: 1.5 ms
Packets missed: 1.5M

1.5 M Packets missed during flow rule installation time
Robustness and performance of the network are determined by:

- Quality of reaction
- Speed of reaction
ML training happens in the control plane

Software Defined Network with Taurus

Control Plane
Policy Creation (Flow Rules + ML Training)

Packet Digest
Flow Rule
ML model weights

Data Plane
Packet Forwarding (Match Action) + Decision Making (ML Inference)

Packets In
Packets Out

ML Training is off critical path
Software Defined Network

with Taurus

Data Plane

Packet Forwarding (Match Action) + Decision Making (ML Inference)

Control Plane

Policy Creation (Flow Rules + ML Training)

ML Inference happens in the data plane

ML Inference is on critical path
Taurus is an architecture for per-packet ML inference in the data plane
What do programmable switches look like?

A Protocol Independent Switch Architecture (PISA)
What abstraction should we use?

- **Map-reduce** can support linear algebra operations common in ML algorithms
 - Ex. Operations) Dot products, matrix multiplications, etc.
 - Ex. Algorithms) Neural networks, support vector machines
What abstraction should we use?

- **SIMD Parallelism** enables performance with minimal logic
 - VLIW pipelines require too much communication hardware (e.g. Tofino)

- **Unrolling** patterns allows for flexibility
 - More unrolling \Rightarrow better performance
 - Less unrolling \Rightarrow less resource usage
The Taurus pipeline with a Map Reduce Unit

- **Map Reduce Unit** must:
 - be reconfigurable
 - meet line rate (with a fixed clock)
 - incur minimal area and power overhead
Example Application: Anomaly Detection

Packet Parser

Match-Action Tables

Map Reduce Unit

Match-Action Tables

Traffic Manager

Packets In

Read local features (e.g., IP address)

Retrieve out of network events (e.g., failed logins per IP)

Apply learned anomaly detection

Select a port or action (e.g., drop if score == 1)

Send packet to destination

Packets Out
Evaluation of a Taurus ASIC

- Our evaluation platform is based on *Plasticine*

- We program our map-reduce applications in the *Spatial HDL*

More architectural details in full paper!
Evaluation of a Taurus ASIC

- Our evaluation platform is based on *Plasticine*

- We program our map-reduce applications in the *Spatial HDL*

Hardware	Area	+%
12x10 MR Grid	4.8 x 4	3.8
Prog. Switch	500	---

Overheads are calculated relative to state of the art programmable switches
Evaluation of an Anomaly Detection (AD) benchmark

- **AD SVM**: 8 support vectors
- **AD DNN**: 4 layers - 12x6x3x2 neurons

Overhead of Map Reduce Unit

Model	TP (GPkt/s)	Lat (ns)	Area +%	Power +%
SVM	1	83	0.5	0.6
DNN	1	221	0.8	1.0

Overheads are calculated relative to state of the art programmable switches

More apps in full paper!
We provide an open-source, FPGA-based testbed.
FPGA-based testbed evaluations

- **FPGA Testbed** enables both control plane ML (baseline) and data plane ML (Taurus) evaluations

- **ML anomaly detection** is evaluated on both control plane and data plane

- **Control plane latency** directly affects the accuracy of the ML model, rendering it useless

Sampling	Batch Size	Baseline Latency (ms)	Detected (%)	F1 Score							
	XDP	Rem.	XDP	DB	ML	Install	All	Baseline	Taurus	Baseline	Taurus
10^{-5}	1	5	3	14	16	2	34	0.781	58.2	1.549	71.1
10^{-4}	2	33	2	17	18	4	41	2.553	58.2	4.944	71.1
10^{-3}	17	637	3	92	28	38	95	0.015	58.2	0.031	71.1
10^{-2}	2935	4570	201	141	59	112	512	0.000	58.2	0.001	71.1
Questions?

Tushar Swamy
tswamy@stanford.edu

Read the paper:
https://dl.acm.org/doi/10.1145/3503222.3507726

Try it out!
https://gitlab.com/dataplane-ai/taurus