Kinesin 9 family members perform separate functions in the trypanosome flagellum

Raphaël Demonchy, Thierry Blisnick, Caroline Deprez, Geraldine Toutirais, Celine Loussert, William Marande, Philippe Grellier, Philippe Bastin, Linda Kohl

To cite this version:
Raphaël Demonchy, Thierry Blisnick, Caroline Deprez, Geraldine Toutirais, Celine Loussert, et al.. Kinesin 9 family members perform separate functions in the trypanosome flagellum. Journal of Cell Biology, 2009, 187 (5), pp.615-622. 10.1083/jcb.200903139. mnhn-02047425

HAL Id: mnhn-02047425
https://mnhn.hal.science/mnhn-02047425v1
Submitted on 24 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Kinesin 9 family members perform separate functions in the trypanosome flagellum

Raphaël Demonchy,1 Thierry Blisnick,2 Caroline Deprez,1 Géraldine Toutirais,2 Céline Loussert,4 William Marande,1 Philippe Grellier,1 Philippe Bastin,3 and Linda Kohl1

1Adaptation Processes of Protozoa to their Environment, Centre National de la Recherche Scientifique FRE3206 and 2Nucleic acids: Dynamics, Targeting and Biological Functions, UMR5153, Muséum National d’Histoire Naturelle, 75231 Paris, France
2Trypanosome Cell Biology, Centre National de la Recherche Scientifique URA 2581 and 3Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, 75015 Paris, France

Numerous eukaryote genome projects have uncovered a variety of kinesins of unknown function. The kinesin 9 family is limited to flagellated species. Our phylogenetic experiments revealed two subfamilies: KIF9A (including Chlamydomonas reinhardtii KLP1) and KIF9B (including human KIF6). The function of KIF9A and KIF9B was investigated in the protist Trypansomoa brucei that possesses a single motile flagellum. KIF9A and KIF9B are strongly associated with the cytoskeleton and are required for motility. KIF9A is localized exclusively in the axoneme, and its depletion leads to altered motility without visible structural modifications. KIF9B is found in both the axoneme and the basal body, and is essential for the assembly of the paraflagellar rod (PFR), a large extra-axonemal structure. In the absence of KIF9B, cells grow abnormal flagella with excessively large blocks of PFR-like material that alternate with regions where only the axoneme is present. The functional diversity of the kinesin 9 family illustrates the capacity for adaptation of organisms to suit specific cytoskeletal requirements.

Introduction

Kinesins are usually plus end–directed microtubule motors that move vesicles, organelles, or chromosomes (Sharp et al., 2000; Hirokawa and Noda, 2008). Members of this superfamily are defined by a conserved motor domain that binds to microtubules and transforms the chemical energy of nucleotide triphosphate into mechanical force, resulting in motility. Kinesins have been grouped into families depending on the position of their motor domain, the type and number of subunits composing their active form, and their motility. Recent classifications of superfamilies are based on the large datasets available from genome projects (Miki et al., 2005; Wickstead and Gull, 2006).

Cilia and flagella perform essential functions such as motility, sensing, or morphogenesis. Their conserved architecture is a cylinder of nine doublet microtubules that form the outer circumference of the axoneme. At least five kinesin superfamilies are limited to flagellated species (kinesin 2, 9, 13, and probably 16 and 17). Kinesin 2 and 13 participate in flagellum circumference of the axoneme. At least five kinesin superfamilies are limited to flagellated species (kinesin 2, 9, 13, and probably 16 and 17). Kinesin 2 and 13 participate in flagellum formation and function. Kinesin 9 family members perform separate functions in the trypanosome flagellum (KIF9) that is characterized by a specific neck domain, which is downstream from the catalytic core domain (Miki et al., 2005). First described in the green algae Chlamydomonas reinhardtii, CrKLP1 (C. reinhardtii KLP1) is localized to the central pair of singlet microtubules within the axoneme (Bernstein et al., 1994) and is involved in motility, possibly by regulating flagellar dynein activity (Yokoyama et al., 2004).

Trypanosoma brucei, the protist that causes sleeping sickness, is an amenable model to study the formation and function of flagella (Ralston and Hill, 2008). Its motile flagellum contains a classically structured “9 + 2” axoneme and is attached along the cell body for most of its length. It also possesses a paraflagellar rod (PFR), which is a large, lattice-like structure that runs parallel to the axoneme from where it emerges from the cell body to the distal tip. The PFR is composed of two major proteins, PFR1 and PFR2, and contains at least 20 other proteins (Portman et al., 2009). Association of the PFR within the flagellum is required for cell motility (Bastin et al., 1998).

© 2009 Demonchy et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a Creative Commons License Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/.
demonstrated the existence of two subfamilies of KIF9 in all flagellated species analyzed (Fig. 1A). The KIF9A family includes CrKLP1 and human KIF9, whereas the KIF9B family includes the so-called KIF6 human protein. Nevertheless, the kinesin 9 gene family was clearly separate from the kinesin 6 family (Fig. 1A). Trypanosome KIF9A and KIF9B possess the typical kinesin motor domain and ATP binding domain signatures (P-loop, Switch1, and Switch2). Trypanosome KIF9A is characterized by a unique 35–amino acid insertion in its N-terminal domain, whereas KIF9B is marked by at least seven insertions in its C-terminal domain (Fig. S1A).

To determine the cellular location of KIF9A and KIF9B, a fragment of each of the divergent C-terminal domains (KIF9A, amino acids 479–891; KIF9B, amino acids 490–1,041; Fig. S1A) was expressed as His-tagged fusion proteins in Escherichia coli and used to immunize mice. The resulting polyclonal sera recognized a single band on trypanosome whole cell extracts, 100 kD for KIF9A (calculated 96.9 kD) and 115 kD for KIF9B (calculated 113.3 kD), which is in contrast to preimmune sera that gave no detectable signal (Fig. 1B and Fig. S1B). Both proteins were tightly associated with the cytoskeletal fraction, as shown after removal of the membrane by detergent treatment (Fig. 1C). This is in agreement with the presence of KIF9A in a proteomic analysis of the structural components and is essential for survival at the bloodstream stage of the parasite (Branche et al., 2006; Broadhead et al., 2006).

In this study, we demonstrate that the two members of the T. brucei kinesin 9 family, KIF9A and KIF9B, are strongly associated with the flagellar skeleton and participate in flagellar motility. However, their individual contributions are distinct because only inhibition of KIF9B effects construction of the PFR, thus revealing the first kinesin involved in the formation of an extra-axonemal structure.

Results and discussion

Trypanosome KIF9 proteins display different characteristics and locations

Searching the T. brucei genome database (http://www.genedb.org/genedb/tryp/blast.jsp) with the CrKLP1 protein sequence (P46870) identified two candidate members for the KIF9 family, which were termed KIF9A (NCBI Protein Database accession no. XP_846252) and KIF9B (NCBI Protein Database accession no. XP_846346). Reciprocal Blastp analysis showed that both KIF9A and KIF9B sequences recognized the CrKLP1 (expectancy [e]: KIF9A-CrKLP1 = 9 e−66; KIF9B-CrKLP1 = 9 e−67) as well as members of the KIF9 family from numerous flagellated species. Phylogenetic analyses demonstrated the existence of two subfamilies of KIF9 in all flagellated species analyzed (Fig. 1A). The KIF9A family includes CrKLP1 and human KIF9, whereas the KIF9B family includes the so-called KIF6 human protein. Nevertheless, the kinesin 9 gene family was clearly separate from the kinesin 6 family (Fig. 1A). Trypanosome KIF9A and KIF9B possess the typical kinesin motor domain and ATP-binding domain signatures (P-loop, Switch1, and Switch2). Trypanosome KIF9A is characterized by a unique 35–amino acid insertion in its N-terminal domain, whereas KIF9B is marked by at least seven insertions in its C-terminal domain (Fig. S1A).

To determine the cellular location of KIF9A and KIF9B, a fragment of each of the divergent C-terminal domains (KIF9A, amino acids 479–891; KIF9B, amino acids 490–1,041; Fig. S1A) was expressed as His-tagged fusion proteins in Escherichia coli and used to immunize mice. The resulting polyclonal sera recognized a single band on trypanosome whole cell extracts, 100 kD for KIF9A (calculated 96.9 kD) and 115 kD for KIF9B (calculated 113.3 kD), which is in contrast to preimmune sera that gave no detectable signal (Fig. 1B and Fig. S1B). Both proteins were tightly associated with the cytoskeletal fraction, as shown after removal of the membrane by detergent treatment (Fig. 1C). This is in agreement with the presence of KIF9A in a proteomic analysis of the structural components.
of flagella purified upon detergent and high salt treatment (Broadhead et al., 2006).

Indirect immunofluorescence assays (IFAs) of detergent-extracted cytoskeletons revealed the presence of KIF9A and KIF9B on the flagellum, but KIF9B also localized to the basal body (BB; Fig. 1, D and E; and Fig. S1 G). The preimmune sera did not produce any signal (unpublished data). These results were confirmed by IFA on nonextracted cells using KIF9A (Fig. S1 C) or in live cells by expression of a GFP::KIF9 fusion protein (Fig. S1 H). Double staining with L8C4 (PFR marker; Kohl et al., 1999) or MAb25 (axoneme marker; Pradel et al., 2006) showed that both KIF9A and KIF9B are associated with the axoneme and not the PFR. The initiation of PFR construction happens only after the flagellum has emerged from the cell body (Fig. S1, D, E, I, and J). Double IFA with BB markers showed that KIF9A staining was absent from the BB area in contrast to KIF9B (Fig. S1, F and K). Unfortunately, immunogold electron microscopy using antibodies against KIF9A, KIF9B, or GFP in the case of GFP::KIF9 failed to produce a significant signal, whereas a clear positive signal was obtained for the control L3B2 monoclonal antibody (Kohl et al., 1999).

The axonemal localization and the association with the cytoskeleton are similar to CrKLP1 (Bernstein et al., 1994), but KIF9B localization at the BB was more surprising. Dual localization to the axoneme and BB is typical for kinesin 2 and IFT proteins, but these are not tightly linked to the flagellar skeleton (Cole et al., 1998; Absalon et al., 2008a). Consistently, movement of GFP::KIF9B within the flagellum could not be detected (Video 1), which is in contrast to the GFP::IFT52 control (Absalon et al., 2008a).

Silencing of KIF9A and KIF9B causes different motility defects

Plasmids allowing tetracycline-inducible expression of KIF9A or KIF9B double-stranded RNA were used to generate KIF9A RNAi or KIF9B RNAi cell lines. Western blotting demonstrated knockdown efficiency in both cases as well as absence of cross RNAi (Fig. 2 A; and Fig. S2, A and D). Observation of live KIF9A RNAi cells revealed a significant reduction in flagellum and cell movement, resulting in cell sedimentation (Fig. 2 B and Video 2), which is in agreement with the proposed function for KLP1 in C. reinhardtii (Yokoyama et al., 2004). The motility phenotype was more pronounced in KIF9B RNAi and KIF9B RNAi mutants under noninduced conditions (dashed line) and induced conditions (solid lines), representative of four experiments. [D and E] IFA on 72-h-induced KIF9A RNAi [D] and KIF9B RNAi [E] performed at least 20 times. Combined phase-contrast and DAPI images (left), MAb25 (middle left), L8C4 (middle right), and combined DAPI, MAb25, and L8C4 images are shown (right).

Figure 2. Both KIF9 proteins participate in cell motility, but only KIF9B is involved in PFR assembly. (A) Western blot of total protein samples (10° cells per lane) from noninduced (0 h) and 96-h-induced KIF9A RNAi (left) and KIF9B RNAi (right), with the experiment performed at least three times. The same membrane was cut into three parts and probed with anti-KIF9A antibody (left), anti-KIF9B antibody (right), or L8C4 and MAb25. Values on blot are given in kilodaltons. (B) Sedimentation assay showing the mean of five reproducible experiments. Trypanosomes were incubated in cuvettes, and optical density was measured before and after mixing. KIF9A RNAi (blue) and KIF9B RNAi (black) were induced for 4 d or 3 d, respectively (solid lines). Control cells were grown without tetracycline (dashed line). (C) Cumulative growth curves of KIF9A RNAi and KIF9B RNAi mutants under noninduced conditions (dashed line) and induced conditions (solid lines), representative of four experiments. (D and E) IFA on 72-h-induced KIF9A RNAi [D] and KIF9B RNAi [E] performed at least 20 times. Combined phase-contrast and DAPI images (left), MAb25 (middle left), L8C4 (middle right), and combined DAPI, MAb25, and L8C4 images are shown (right).
observed in KIF9BRNAi–induced cells (Fig. 2 A). By IFA, MAb25 showed the expected labeling from the proximal to the distal tip of the flagellum in both cases. L8C4 showed a uniform labeling of the flagellum on noninduced cells (C and D), whereas the old flagellum was normal (Fig. 4 A). By IFA, MAb25 showed the expected labeling from the proximal to the distal tip of the flagellum in both cases. L8C4 showed a uniform labeling of the flagellum on noninduced cells (C and D), whereas the old flagellum was normal (Fig. 4 A).

KIF9BRNAi cells fail to assemble a normal PFR

When a new flagellum is built, the PFR is only added to the axoneme as the flagellum exits the flagellar pocket and the two structures are built almost simultaneously (Sherwin and Gull, 1989). The PFR abnormalities in KIF9BRNAi cells could result from either its partial assembly or postassembly destabilization. Cells were carefully analyzed at early time points of RNAi induction, revealing that only the new flagellum showed discontinuous labeling, whereas the old flagellum was normal (Fig. 4 A and Fig. S2 F). We quantified the emergence of the PFR-related phenotype in cells with either one or two flagella at various time points after RNAi-mediated knockdown (n > 100). In cells with one flagellum, an irregular PFR labeling was first detected after 24 h. The abundance of these cells then increased steadily to reach a plateau at ~80% (Fig. 4 B). In biflagellated cells (Fig. 4 C), the proportion of cells with both new and old normal PFR labeling decreased rapidly: they were replaced by siblings with an abnormal new flagellum (up to 42% at 48 h). After 24 h, most cells possessed two flagella that were both affected. This can be explained if one daughter cell inherits the flagellum with a normal PFR structure at cytokinesis, and the other daughter exhibits the abnormal PFR. Further division of the cell with abnormal PFRs results in irregular labeling of both the old and new flagellum.

PFR structure in KIF9BRNAi cells

Although both old and new flagellum of wild-type (WT) trypanosomes have a constant diameter of ~300 nm all along their length, induced KIF9BRNAi cells exhibit a highly variable diameter (150–450 nm) along the length of the flagellum (Fig. S3, D and E). To better visualize flagellar structure, cells were treated with cold triton to remove the pellicular and flagellar membrane (Absalon et al., 2008b). In WT trypanosomes, the characteristic lattice-like PFR structure connected to the axoneme is clearly visible with a constant diameter of ~300 nm (Fig. 4 D). In contrast, the flagellum of induced KIF9BRNAi cells shows regions with one or more PFR-like structures (Fig. 4 E, arrows), alternating with portions containing only the axoneme (Fig. 4 E, arrowhead). The locally excessive PFR material is still connected to the axoneme but is not resistant to extraction with 1M NaCl (Fig. S3, F and G), indicating that these segments are not as stably connected to the axoneme as in WT cells.

In transmission electron microscopy of WT cells, the PFR has a diameter of ~150–200 nm and is anchored to the axoneme via connections to doublets 4–7 (Fig. 4 F, asterisks). In KIF9BRNAi cells, several situations are encountered: a naked axoneme (36%), one PFR-like structure (15%), or two or more PFR-like structures (49%; n = 89). Several connections were visible between the multiple PFR-like structures and the axoneme (Fig. 4, G–I). The axoneme appeared normal, with the 9 + 2 organization and the dynein arms, but the orientation of the central pair could not be determined as a result of the presence of multiple PFR-like structures. In addition to these structural modifications, induced KIF9BRNAi trypanosomes display a flagellum that is partially detached from the cell body (Fig. S3, H and I), which is in contrast to KIF9ARNAi cells. The flagellum of cells with normal PFR labeling was always attached, whereas ~35% of cells with interrupted PFR labeling exhibited a detached flagellum (Fig. S3 J). This could be a consequence of the motility defect as described in other mutants with decreased flagellar beating (Absalon et al., 2007; Li and Wang, 2008).

Separate functions for KIF9A and KIF9B in flagellum beating and construction

Our data demonstrate that the two kinesin 9 proteins are performing distinct functions in the trypanosome flagellum. KIF9A is required for motility but does not play a role in PFR assembly. In C. reinhardtii, CrKLP1 regulates flagellar dynein activity (Yokoyama et al., 2004) and interacts with Hydin, a central pair protein essential for motility in algae (Lechtreck and Witman, 2007) and trypanosomes (Dawe et al., 2007). It has been shown recently that Hydin is also essential for ciliary motility and has a similar effect on central pair structure in mice (Lechtreck et al., 2008). In contrast to algae or ciliates, the central pair does not twist during beating in trypanosomes (as in humans), and this functional difference could be associated with discrete structural variations of the axoneme.
KIF9B displays a conserved motor domain in its N-terminal region and a divergent C-terminal region with multiple insertions. We postulate that these insertions could be interacting either directly with PFR proteins or with proteins ensuring the junction between axoneme and PFR. During PFR assembly, PFR1 and PFR2 subunits are actively transported to their assembly site at the distal tip of the growing flagellum (Bastin et al., 1999a,b). This transport does not require preassembly, as shown in the mutant snl-1, where in the absence of PFR2, PFR1 is still transported to the distal tip (Bastin et al., 1999a). This transport could be ensured by the IFT machinery as reported for radial spokes or dynein arms in the *C. reinhardtii* axoneme (Qin et al., 2004). This is supported by the absence of a PFR in mutants where IFT has been abolished (Kohl et al., 2003). In this case, KIF9B would be deposited on the growing axoneme by the IFT machinery and would serve as a linker protein with the growing PFR structure or in the incorporation of PFR proteins in the PFR structure. However, the PFR is added to the axoneme only after the emergence of the flagellum from the flagellar pocket, i.e., when the axoneme is already 2-µm long. Therefore, the absence of PFR in IFT mutants could be caused by the lack of an axoneme that is needed as support for the PFR.

The intriguing localization of KIF9B to the BB region could also be significant for the role of this protein in flagellar assembly and motility. BBs appear ninefold symmetric but have asymmetric accessory structures. KIF9B could be important in either recognizing or determining this asymmetry, thereby allowing proper PFR assembly at defined microtubule doublets 4–7, whereas its absence would lead to patches of PFR that assemble with random radial orientation.

Figure 4. **Characterization of the KIF9B RNAi mutant.** KIF9B is involved in PFR assembly. (A) IFA on 48 h–induced KIF9B RNAi cells. (left) Cell with one nucleus, an old flagellum (OF), and a short new flagellum (NF) are shown. The old flagellum shows a normal axoneme/PFR labeling, whereas the new flagellum shows a normal axoneme but a disrupted PFR. (right) Cells with two nuclei and two flagella exhibit the same phenotype. Detached flagella are shown by arrows. The experiment was reproduced more than three times, and at least 100 biflagellated cells were analyzed. (B and C) KIF9B RNAi cells with a normal PFR labeling (black lines) are progressively replaced by cells with an interrupted labeling (red lines) both in unflagellated (B) and biflagellated cells (C). In biflagellated cells, the phenotype is first visible in the new flagellum (purple line). For both populations, at least 100 cells were analyzed per induction time. (D and E) Scanning electron micrograph of a WT cell (D) and a 72 h–induced KIF9B RNAi cell (E) extracted with cold Triton X-100. The white rectangle indicates the position of the magnified area. Representative images were chosen from at least 20 cells. (F–I) Transmission electron micrographs showing cross sections of flagella from WT (F) or 72 h–induced KIF9B RNAi cells (G–I). Representative images were chosen from >50 sections of WT and 89 sections of KIF9B RNAi. Asterisks indicate doublets 4–7, arrows point toward excessive PFR, and arrowheads show a naked axoneme.
KIF9B could be involved in a specific machinery constructing the PFR, associating with kinesin 2, like kinesin 2 and osm-3 do in sensory cilia of Caenorhabditis elegans (Snow et al., 2004). KIF9B could transport PFR and associated proteins to the tip for assembly, allowing coordinated elongation of PFR and axoneme. In the absence of KIF9B, kinesin 2 still drives IFT and axoneme formation, whereas PFR elongation fails with proteins being dropped along the way. However, no movement of KIF9B could be detected in live cells, and the protein is tightly attached to the axoneme. Using its polar movement, KIF9B could translocate PFR material from one KIF9B molecule to its neighbor toward the distal tip. The extremely divergent C-terminal domain of KIF9B could be used as an adapter to interact with different partners according to the cell type where KIF9B is expressed. In mammals, KIF9A and KIF9B are expressed in a variety of tissues, such as testis, brain, and lung, but their function is unknown. Expression in testis could be related to the presence of extra-axonal structures in the flagella of spermatozoa (Escalier, 2003), and investigation of their function in the construction of these elements holds promises. In conclusion, this work illustrates the diversification of the KIF9 family with contribution at the axoneme and the PFR level. Although sharing the motor domain, they have diversified their C-terminal tail to suit specific cytoskeletal requirements.

Materials and methods

Trypanosome cell lines and cultures
All cell lines used for this study were derivatives of strain 427 of T. brucei and cultured in SDM/9 medium with hemin and 10% fetal calf serum. Cell lines KIF9A

- and KIF9B express double-stranded RNA from two tetracycline-inducible T7 promoters facing each other in pZJM vector (Wong et al., 2000) transformed in 29–13 cells, and resistant clones were selected by adding in a reconstructed complete GFP::KIF9B fusion. The plasmid was tor was linearized by SphI and integrated in the endogenous locus, result

- has been cloned between PFR1 and PFR2 intergenic sequences. The vec

- and osm-3 do in sensory cilia of T. brucei.
Cell fractionation. 5 x 10^6 cells were harvested by centrifugation and washed once in PBS. The pellet was resuspended in 100 mM Pipes, 2 mM EGTA, and 1 mM MgSO_4 containing 1% Nonidet P40 and incubated for 2 min at room temperature to provide a cytoskeleton preparation. After centrifugation (at 10,000 g for 5 min), the pellet was resuspended in either 60 mM CaCl_2 or 1 M NaCl to depolymerize the subpellicular microtubules, which were incubated for 15 min at room temperature and centrifuged (Kohl et al., 1999). The pellet was resuspended in PBS. Equal cell equivalents of each fraction were resolved by SDS-PAGE and subjected to Western blot analysis.

Western blotting. 1–2 x 10^7 cells were loaded per well on 10% SDS-PAGE gels. Proteins were transferred to nitrocellulose membranes (Hybond ECL Plus; GE Healthcare) and after blocking with 1% TBS-BSA, were incubated with anti-KIF9B antibody (1:500), anti-KIF9A antibody (1:500), BLC4 (1:50), or MAB25 (1:50). The secondary antibody used was an anti-mouse HRP (1:5,000; GE Healthcare).

Multiple alignment and tree inference of kinesin 9 family sequences. The kinesin multiple alignment made by Wickstead and Gull (2006) was updated with new sequences of kinesin 9 family members: Trypanosoma cruzi (NCBI Protein Database accession no. XP_810642.1 and XP_808244.1), Micromonas pusilla (NCBI Protein Database accession no. AAC63266), Mus musculus (NCBI Protein Database accession nos. AA117566, NP_796626.2, and NP_032472), Leishmania major (NCBI Protein Database accession no. XP_001682276), and Homo sapiens (NCBI Protein Database accession no. NP_655846.1).

All new sequences were incorporated and aligned using the ED program of the package MUST (Management Utilities for Sequences and Trees; Philippe, 1993). Ambiguously aligned regions and gaps were excluded in phylogenetic analyses. Maximum likelihood phylogenetic analyses were performed with the program Treefinder (Jobb et al., 2004) and bootstrap values were calculated from 1,000 replicates using Whelan and Goldman (2001) substitution matrix was used with a ω-distributed variation in substitution rate approximated to four discrete categories.

Online supplemental material. Fig. S1 shows the characterization of the kinesin 9 proteins, Fig. S2 shows the efficiency of RNAi in the KIF9A/KIF9B mutants, and Fig. S3 shows the analysis of the KIF9B/KIF9A mutant. Video 1 shows T. brucei expressing GFP::KIF9B, and Videos 2 and 3 show the effect on motility in T. brucei of knockdown of KIF9A and KIF9B, respectively. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200903139/DC1.

We acknowledge the electron microscopy department of the Muséum National d’Histoire Naturelle for providing access to their equipment. We wish to thank Derek Robinson (Bordeaux) for critical reading of the manuscript and anonymous referees for constructive suggestions.

R. Demonchy was funded by the French Ministry of Research. This work was funded by the Pasteur Institut, Centre National de la Recherche Scientifique, and Fonds Dédié Sanofi-Aventis/Ministère de la Recherche.

Submitted: 25 March 2009
Accepted: 29 October 2009

References

Absalon, S., L. Kohl, C. Branche, T. Blisnick, G. Toutirais, F. Rusconi, J. Cosson, M. Bonhivers, D. Robinson, and P. Bastin. 2007. Basal body positioning is controlled by flagellar formation in Trypanosoma brucei. PLoS One. 2:e437. doi:10.1371/journal.pone.0000437

Absalon, S., T. Blisnick, L. Kohl, G. Toutirais, G. Doré, D. Julkowska, A. Tavenet, and P. Bastin. 2008a. Intraflagellar transport and functional analyses of genes required for flagellar formation in trypanosomes. Mol. Biol. Cell. 19:929–944. doi:10.1091/mbc.E07–08–0749

Absalon, S., T. Blisnick, M. Bonhivers, L. Kohl, N. Cayet, G. Toutirais, J. Buisson, D. Robinson, and P. Bastin. 2008b. Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei. J. Cell Sci. 121:3704–3716. doi:10.1242/jcs.035626

Bastin, P., T. Sherwin, and K. Gull. 1998. Paragarflagellar rod is vital for trypanosome motility. Nature. 391:548. doi:10.1038/35300

Bastin, P. T.J. Pulman, T. Sherwin, and K. Gull. 1999a. Protein transport and flagellum assembly dynamics revealed by analysis of the paralysed trypanosome mutant sml-1. J. Cell Sci. 112:3769–3777.
evolutionarily conserved dynein regulatory system. *Eukaryot. Cell.* 5:696–711. doi:10.1128/EC.5.4.696-711.2006

Scholey, J.M. 2008. Intraflagellar transport motors in cilia: moving along the cell’s antenna. *J. Cell Biol.* 180:23–29. doi:10.1083/jcb.200709133

Sharp, D.J., G.C. Rogers, and J.M. Scholey. 2000. Microtubule motors in mitosis. *Nature.* 407:41–47. doi:10.1038/35024000

Sherwin, T., and K. Gull. 1989. The cell division cycle of *Trypanosoma brucei brucei*: timing of event markers and cytoskeletal modulations. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 323:573–588. doi:10.1098/rstb.1989.0037

Snow, J.J., G. Ou, A.L. Gunnarson, M.R. Walker, H.M. Zhou, I. Brust-Mascher, and J.M. Scholey. 2004. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on *C. elegans* neurons. *Nat. Cell Biol.* 6:1109–1113. doi:10.1038/ncb1186

Wang, Z., J.C. Morris, M.E. Drew, and P.T. Englund. 2000. Inhibition of *Trypanosoma brucei* gene expression by RNA interference using an integratable vector with opposing T7 promoters. *J. Biol. Chem.* 275:40174–40179. doi:10.1074/jbc.M008405200

Whelan, S., and N. Goldman. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. *Mol. Biol. Evol.* 18:691–699.

Wickstead, B., and K. Gull. 2006. A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. *Mol. Biol. Cell.* 17:1734–1743. doi:10.1091 /mbc.E05-11-1090

Wirtz, E., S. Leal, C. Ochatt, and G.A. Cross. 1999. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in *Trypanosoma brucei*. *Mol. Biochem. Parasitol.* 99:89–101. doi:10.1016/S0166-6851(99)00002-X

Woods, A., T. Sherwin, R. Sasse, T.H. MacRae, A.J. Baines, and K. Gull. 1989. Definition of individual components within the cytoskeleton of *Trypanosoma brucei* by a library of monoclonal antibodies. *J. Cell Sci.* 93:491–500.

Yokoyama, R., E. O’toole, S. Ghosh, and D.R. Mitchell. 2004. Regulation of flagellar dynein activity by a central pair kinesin. *Proc. Natl. Acad. Sci. USA.* 101:17398–17403. doi:10.1073/pnas.0406817101