ABSTRACT: Pseudouridine (Ψ) is the first discovered and the most prevalent posttranscriptional modification, which has been widely studied during the past decades. Pseudouridine was observed in almost all kinds of RNAs and shown to have important biological functions. Currently, the time-consuming and high-cost procedures of experimental approaches limit its uses in real-lifeΨsite detection. Alternatively, by taking advantage of the explosive growth ofΨsequencing data, the computational methods may provide a more cost-effective avenue. To date, the existing mouseΨsite predictors were all developed based on sequence-derived features, and their performance can be further improved by adding the domain knowledge derived feature. Therefore, it is highly desirable to propose a genomic feature-based computational method to increase the accuracy and efficiency of the identification ofΨRNA modification in the mouse transcriptome. In our study, a predictive framework PSI-MOUSE was built. Besides the conventional sequence-based features, PSI-MOUSE first introduced 38 additional genomic features derived from the mouse genome, which achieved a satisfactory improvement in the prediction performance, compared with other existing models. Moreover, PSI-MOUSE also features in automatically annotating the putativeΨsites with diverse types of posttranscriptional regulations (RNA-binding protein [RBP]-binding regions, miRNA-RNA interactions, and splicing sites), which can serve as a useful research tool for the study ofΨRNA modification in the mouse genome. Finally, 3282 experimentally validated mouseΨsites were also collected in a database with customized query functions. For the convenience of academic users, a website was built to provide a user-friendly interface for the query and analysis on the database. The website is freely accessible at www.xjtu.edu.cn/biologicalsciences/psimouse and http://psimouse.rnamd.com. We introduced the genome-derived features to mouse for the first time, and we achieved a good performance in mouseΨsite prediction. Compared with the existing state-of-art methods, our newly developed approach PSI-MOUSE obtained a substantial improvement in prediction accuracy, marking the reliable contributions of genomic features for the prediction of RNA modifications in a species other than human.

KEYWORDS: Pseudouridine sites, genomic feature, web-server

Introduction
Pseudouridine (Ψ) is the first discovered1 and the most abundant RNA modification2 that has been widely studied in the past decades. To date, 13 pseudouridine synthases (PUSs) have been identified, which are responsible for the catalytic reactions ofΨsites in various RNA types,3-7 as well as its differential functions in nuclear miRNA processing.8 It has been shown that pseudouridylation in the tRNA and tRNA can maintain the ribosome entry sites9 and stabilize its structure.10 Pseudouridylation of tRNA-derived fragments were also found to impact stem cell commitment during early embryogenesis through translation control.11 In mRNA, Ψis contributed to the regulation of transcript stability,12 translation efficiency, and RNA immune response.13 The mRNA structure was proved to be recognized as the target of PUS 1, which implies that modulation of RNA structure may be a possible mechanism to regulate mRNA pseudouridylation.14 Pseudouridine was also found to be responded to environmental changes like serum starvation and been regulated by those signals accordingly.15 In the mouse model, the associations between diseases and abnormal pseudouridylation have been reported.16-18 For example, the sequence-specific pseudouridylation of ribosomal RNAs is linked to the growth and metastasis of xenograft tumors.16 The mutation of DKC1, aΨsynthase (PUS) that affects the accumulation of telomerase RNA,17 can lead to dyskeratosis congenita (DC) and cancer.18

Currently, the transcriptome-wide distribution ofΨRNA modification has been profiled by several types of high-throughput sequencing techniques, which contains Pseudo-seq,15Ψ-seq,12 PSI-seq,19 CeU-seq,20 and ribosomal binding site (RBS)-seq.21 The first 4 approaches were developed with similar principles, in which RNA is treated with theN-cyclohexyl-N’-(2-morpholinoethyl)-carbodiimide-metho-p-toluenesulfonate (CMC), and the reverse transcription is stopped onΨposition by the presence of a bulky group. As a recently developed novelΨsite-detection approach, the RBS-seq21 is realized based on a modified version of the RNA bisulfite sequencing, which could result in better sensitivity. Although thousands of experimentally validatedΨsites were revealed by the 5 sequencing techniques mentioned above, only 2 mouseΨdata sets are publicly available, while both of them are identified by CeU-seq technique. Several computational models have been developed22-27 to support the prediction of mouseΨsites in a given RNA transcript. However, all those
methods are based on sequence-derived features. The published prediction models were reported to have reasonable performances, but their accuracy still has room for improvement. Moreover, it is worth noting that, in a more recent study, Dou et al applied a feature extraction approach bi-profile Bayes (BPB) to obtain sequence information from both positive and negative RNA sequences. Interestingly, their results concluded that the overall performances for identification using BPB features as well as the combined features (a combination of sequence and BPB features) were not obviously enhanced, with the general accuracies ranging from 60% to 70%. Therefore, it is highly desirable to develop a high-accuracy approach for the identification of RNA modification in mouse transcriptome, not only for taking the best use of experimentally detected data but also to further improve the real-life biological usages of RNA predictors.

In this study, we first introduced genome-derived information to the predictive framework of RNA modification in the mouse transcriptome. The genomic feature was first introduced and implemented in research for human m6A site prediction, which achieved a marked improvement in performance compared with previously sequence-based only predictors. In a more recent study, the combination of genomic and sequence features was applied to site prediction work of human RNA modification, which validated the consistent performance of genome-derived information in a different type of human RNA modification. However, both these studies focused on human transcriptome only, no evidence was found if genome-derived features work equally effective in a species other than human. In our study PSI-MOUSE, we extracted 38 genomic features from mouse transcripts. Combining the hand-crafted features with conventional sequence-based information, a high-accuracy mouse RNA site predictor was established. We further trained and validated our predictive framework in the yeast genome and compared the performance with other competing methods. PSI-MOUSE also systematically checks whether the putative RNA sites localize in regions with various post-transcriptional regulation factors, that is, RNA-binding protein (RBP)-binding regions, miRNA targets, and splicing sites, which can serve as a useful computational approach to facilitate the study of mouse RNA modification. The web-based server of PSI-MOUSE is freely accessed at www.xjtlu.edu.cn/biologicalsciences/psimouse and http://psimouse.rnamd.com.

Materials and Methods

Training and testing data

The known base-resolution mouse RNA sites used for training and benchmarking were obtained from CeU-seq (Table 1) downloaded from Gene Expression Omnibus (GEO), we then filtered the experimentally validated RNA sites to remain only those located on known transcripts for the extraction of genomic features. For the extraction of negative data, the unmodified U sites located on the same transcripts of positive RNA sites were randomly selected. To fully utilize the underrepresented positive data, we match 10 negative sites for each of the positive site, from which 10 separate predictors were established with 1:1 positive-to-negative ratio, and their prediction performances were averaged during the evaluation. The known mouse RNA sites from CeU-seq were detected under 2 independent conditions (brain and liver, see Table 1). In order to perform data set-level leave-one-out cross-validation, data set M1 was used for training first, while its performance was validated by data set M2 generated under another condition. Subsequently, data set M2 was used for training, with data set M1 for independent testing.

In order to faithfully compare the performance of our approach with competing methods, we further used the mouse and yeast RNA data sets collected from Chen et al’s study (Supplementary Table S1), which were also applied as benchmark data sets in many previous published studies.

Feature extraction

Genome-derived features. The previous RNA predictors were all developed by extracting sequence-based information from RNA segments. Inspired by the successful application of genomic features used in human m6A prediction, a total of 38 mouse and 22 yeast genome-derived features were generated to capture the attributes of the transcriptomic topologies for RNA sites. The Genomic Features R/Bioconductor package with transcript annotations mm10 TxDb package and sacCer3 TxDb package were used to generate Genomic Features 1-16, which are dummy variables indicating the overlapping state with the corresponding transcriptomic regions. We checked whether the uridine sites localize in a variety of types of topological features, that is, 5′UTR, 3′UTR, and intron. In order to overcome the isomeric ambiguity from the annotation, only the transcript sub-regions on the primary (longest)

Table 1. Base-resolution data set used for RNA site prediction.

SPECIES	DATA SET ID	CELL LINE	SITE #	OVERLAPPED #	TECHNIQUE	SOURCE
Mouse	M1	Brain	1566	46	CeU-Seq	Li et al20
	M2	Liver	1484			

All the mouse RNA data sets from CeU-Seq can be freely downloaded from PSI-MOUSE website. Only the RNA sites not previously used as training data were considered during performance evaluation, so the training sites and testing sites did not overlap.
transcripts of each gene were extracted. The second category of features (number 17-20) calculates the relative position of uridine sites in the transcript regions. The features are real numbered values between 0 and 1, where the value close to 0 indicates the relative approximation with the 5’ start of the region. The values are set to 0 if the sites do not belong to this region. Genomic features 21 to 25 calculate the length of the corresponding transcript regions where uridine sites localize. The values are also set to 0 for the sites not overlapping with the transcript region. The distances between uridine to the splicing junctions and the nearest Ψ site are captured in features 26 to 29. The clustering status of uridine sites was presented in features 30 and 31, which were defined by the number of neighboring uridine sites within the 100 bp and 1000 bp flanking regions of the target uridine sites. Besides, the RNA secondary structures around the uridine site are predicted using RNAfold with the Vienna RNA package33 and presented in features 32 and 33. Finally, the various functional properties of the transcripts containing the Ψ RNA modification were represented by features 34 to 38, such as the number of isoforms and the transcript types of the coding. The detailed information of all genomic features we used in the Ψ site prediction was listed in Table 2.

Sequence-derived feature. To try to achieve the best performance in accuracy, 2 kinds of sequence-based features were also extracted and combined with genomic features mentioned above. The chemical properties of nucleotides and nucleotide density were first created and used for splice site prediction34 and then being widely used in the predictive framework of RNA modification.35–37 For chemical properties, the 4 types of nucleotides were classified into 3 categories. First, the adenosine and guanosine have 2 rings in their structure, while the cytidine and uridine only have one ring. Second, the guanosine and cytidine have stronger hydrogen bonding than that of adenosine and uridine. And finally, adenosine and cytidine contain the amino group, while guanosine and uridine contain the keto group. Based on these 3 principles, the i-th nucleotide from sequence S may be encoded by a vector $S_i = (x_i, y_i, z_i)$

\[
x_i = \begin{cases} 1 \text{ if } s_i \in \{A, G\} \\ 0 \text{ if } s_i \in \{C, U\} \end{cases},
\]

\[
y_i = \begin{cases} 1 \text{ if } s_i \in \{A, C\} \\ 0 \text{ if } s_i \in \{G, U\} \end{cases},
\]

\[
z_i = \begin{cases} 1 \text{ if } s_i \in \{A, U\} \\ 0 \text{ if } s_i \in \{C, G\} \end{cases},
\]

Thus, the A, C, G, U can be encoded as a vector (1,1,1), (0,1,0), (1,0,0), and (0,0,1), respectively. For the nucleotide density, the cumulative nucleotide frequency of nucleotide in i-th position is calculated. The density of nucleotide in i-th position is defined as the occurrences of the nucleotide A_i before i+1 position divided by its position i: $d_i = A_i / i$. If we take the RNA fragment “GAUACGCUA” as an example, the cumulative frequency of adenosine at the second, fourth, and ninth position is encoded as .50 (1/2), .50 (2/4), and .33 (3/9), respectively; and for cytidine is .20 (1/5) and .29 (2/7) at the fifth and seventh position of the example sequence.

Machine-learning approach used for Ψ site prediction

Support vector machine (SVM) has been widely applied for the prediction of genomic and proteomic data in computational biology, such as the microRNA target prediction,38 and protein phosphorylation prediction.39 In terms of RNA modification, the SVM was also used in previous m6A,40 m5C,41 and m1A42 prediction and was shown to be a robust and effective machine-learning algorithm. In this project, the R interface of LIBSVM was used to build the predictor using the kernel of radial basis function.43 In the data set-level leave-one-out experiment, only the Ψ sites not previously used as training data were considered in independent testing, which avoided the leakage between the training and testing data. Consequently, the performance evaluated on the testing data can justly reflect the ability of the proposed predictor to identify unknown Ψ sites.

Model performance evaluation

To evaluate the performance, we calculated the receiver operating characteristic (ROC) curve (sensitivity against 1-specificity) and the area under ROC curve (AUROC) as the main performance evaluation metric. The sensitivity (Sn), specificity (Sp), Matthews correlation coefficient (MCC), and overall accuracy (ACC) were calculated as other indicators to evaluate the reliability of the model. All the prediction processing is based on R language. To compare the performance of the newly proposed model with the existing Ψ site predictors, we reproduced the machine learning scaffold of PPUS, iRNA-PseU, and PseUI by realizing each of their sequence-based encoding methods, and the predictors are learned with the training data used in our study

\[
Sn = \frac{TP}{TP + FN}
\]

\[
Sp = \frac{TN}{TN + FP}
\]

\[
MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}
\]

\[
ACC = \frac{TP + TN}{TP + TN + FP + FN}
\]

where TP represents the true positive, while TN represents the true negative; FP is the number of false positives, and FN the number of false negatives.
ID	NAME	DESCRIPTION	NOTE	SPECIES
1	UTR5	5’ UTR	Dummy variables indicating whether the site is overlapped to the	Mouse only
			topological region on the major RNA transcript.	
2	UTR3	3’ UTR		
3	cds	Coding sequence		Mouse and yeast
4	Stop_codons	Stop codons flanked by 100bp		
5	Start_codons	Start codons flanked by 100bp		
6	TSS	Downstream 100bp of TSS		
7	TSS_A	Downstream 100bp of TSS on A		
8	exon_stop	Exons containing stop codons		
9	alternative_exon	Alternative exons		Mouse only
10	constitutive_exon	Constitutive exons		Mouse and yeast
11	internal_exon	Internal exons		
12	long_exon	Long exons (exon length > 400 bp)		Mouse only
13	last_exon	5’ last_exon		Mouse and yeast
14	last_exon_400bp	5’ 400bp of the last exons		Mouse only
15	last_exon_sc400	5’ 400bp of the last exons containing stop codons		
16	intron	intron		
17	pos_cds	Relative position on coding sequence	Relative position on the region	Mouse and yeast
18	pos_UTR5	Relative position on 5’ UTR		Mouse only
19	pos_UTR3	Relative position on 3’ UTR		
20	pos_exons	Relative position on exon		Mouse and yeast
21	length_UTR5	5’ UTR length	The region length in bp.	Mouse only
22	length_UTR3	3’ UTR length		
23	length_gene_ex	Mature transcript length		Mouse and yeast
24	length_cds	Coding sequence length		
25	length_gene_full	Full transcript length		Mouse and yeast
26	dist_sj_5_p2000	Distance to the 5’ splicing junction	Nucleotide distances toward the splicing junctions or the nearest	Mouse only
27	dist_sj_3_p2000	Distance to the 3’ splicing junction	the nearest neighboring sites.	
28	dist_nearest_p200	Distance to the closest neighbor truncated at 200bp		Mouse only
29	dist_nearest_p2000	Distance to the closest neighbor truncated at 2000bp		
30	clust_f100	Clustering information at 100 pb	Clustering information of modification sites	Mouse and yeast
31	clust_f1000	Clustering information at 1000 pb		
32	struc_hybridize	Predicted RNA hybridized region	RNA secondary structures	Mouse only
33	struc_loop	Predicted RNA loop region		
34	sncRNA	sncRNA	Genomic properties	
35	IncRNA	IncRNA		
36	isoform_num	Number of isoforms		Mouse and yeast
37	exon_num	Number of exons		
38	GC_cont_genes	GC composition of genes		

Genomic features generated from both mouse and yeast genome are in bold.
Estimate the probability of mouse Ψ RNA modification

In our study, the likelihood ratio (LR) is used to indicate how likely the computationally predicted result to be a true Ψ RNA modification. A LR of “100” suggests that it is an experimentally validated Ψ site. The calculation of LR is showed as follows

\[
LR = \frac{P(\text{observation} | \Psi)}{P(\text{observation} | U)}
\]

(6)

The statistical significance of LR is assessed by an upper bound of the p value. It indicates how extreme the observed LR is among all the mouse transcriptome U\text{sites}. It is calculated from the relative ranking of the putative Ψ sites, that is, if only 0.1% of U\text{sites} have an LR score larger than a specific U\text{site}, then the upper bound of the p value of this site is .001. A transcriptome-wide prediction of mouse Ψ\text{site} was applied using PSI-MOUSE, a putative Ψ\text{site} is considered as high confidence if its LR within top 0.5% of LR (corresponding to p value < .005) of all the transcriptome U\text{sites}, followed by medium confidence (.005 < p value < .05) and low confidence (p value > .05).

Gene annotation and posttranscriptional regulation association analysis

To help academic users gain a more comprehensive understanding of the predicted mouse Ψ\text{sites}, various types of functional genomic information were automatically annotated in PSI-MOUSE for each putative Ψ\text{site} using ANNOVAR package,44 that is, gene symbol, Ensembl gene ID, gene region, and gene type. PSI-MOUSE also checks whether the putative Ψ\text{sites} localized in regions with RBPs, miRNA-RNA targets, and splice sites, which help users to explore the potential effect of Ψ\text{RNA} modification on posttranscriptional regulation. The RBPs\text{regions} were obtained from POSTAR2,45 the miRNA-RNA targets were downloaded from miRanda46 and starBase2,47 and the Canonical splice sites (GT-AG) from UCSC annotations. For splicing sites analysis, specifically, we expanded 100bp upstream region from 5’ splicing sites and 100bp downstream region from 3’ splicing sites, the putative Ψ\text{sites} were then mapped with these regions. The Supplementary Table S2 shows detailed information related to posttranscriptional regulation analysis.

Results

As the process of RNA library preparation for existing data sets was based on polyA selection, to avoid the under-representation of the intronic Ψ\text{sites} in the data, we designed 2 modes for mouse Ψ\text{site} prediction. For the mature mRNA mode, the positive and negative Ψ\text{sites} mapped to intron regions were both filtered to only remain the sites localized on the mature mRNA transcripts. While for the full transcript mode, all Ψ\text{sites} were considered in the prediction. Consequently, the performance of the predictor was evaluated under these 2 modes, respectively. In addition, we applied feature selection to identify the most significant subset of features, which was implemented using Perturb method.48 The functional insights of genomic features in our tool can be reflected by the feature importance plot. The feature importance scores can indicate the scientific significance of genomic markers in terms of its predictability for Ψ. According to the rank of the importance, the Ψ\text{sites} were used in the prediction and evaluated with 5-fold cross-validation. In the process of feature selection, the Ψ\text{sites} from mouse brain data set were used as training data, while the mouse liver Ψ\text{sites} were used for testing purposes. Finally, the top 26 and 28 genomic features contribute to the best prediction performance under mouse full transcript and mature mRNA model, respectively (see Figure 1).

We observed that our approach PSI-MOUSE achieved remarkable improvement in prediction accuracy compared with existing encoding methods for Ψ\text{prediction} when tested on 5-fold cross-validation and independent data sets (see Table 3). Besides, the SVM algorithm applied in our PSI-MOUSE model, we further re-built predictors using 4 other machine-learning approaches, which are Random Forest, Naïve Bayes, decision tree, and generalized linear model. When tested on independent data sets, our model, PSI-MOUSE, achieved a better performance than the competitive predictors in all conditions (Table 4). This result suggested that the features used by the prediction model contribute to most of the predictive power, and the impact of machine-learning algorithm is limited. The detailed evaluation by the sensitivity, specificity, ACC, and MCC were summarized in Supplementary Table S3 and S4 for the full-transcript model and mRNA model, respectively.

Besides, the study of iPseU-CNN,27 iPseU-NCP,25 and XG-PseU26 all used data sets from Chen et al’s study to develop and validate their predictive pipelines. To faithfully compare the performance of our approach with these competing methods, we further trained and tested our predictive framework using data sets from Chen et al’s study. For mouse Ψ\text{site} prediction, data set M_944 was used for training purpose and tested on 5-fold cross-validation. Consistent with previous results, PSI-MOUSE achieved a major improvement in all conditions compared with other state-of-the-art predictors (Table 5), suggesting the reliability of the approach. For Ψ\text{site} prediction in yeast genome, data set S_628 was used to train the predictor, while its performance was tested on independent testing data set S_200. When tested on 5-fold cross-validation and independent data set, we observed that our approach, which integrated additional genomic features besides the conventional sequence features, achieved reasonable improvement in prediction performance compared with other competing predictors, respectively (Supplementary Table S5). To sum up, for the first time, we generated genome-derived features from mouse and yeast transcriptome, respectively. The predictive framework achieved satisfactory improvement compared with
Table 3. Performance evaluation of mouse Ψ site predictors (AUROC).

MODE	TESTING METHOD	PREDICTOR	BASE-RESOLUTION TECHNIQUE AND DATA SET ID		
			BRAIN	LIVER	AVERAGE
Full transcript	Cross-validation	PSI-MOUSE	0.982	0.982	0.982
		iRNA-PseU	0.798	0.791	0.795
		PPUS	0.795	0.789	0.792
		PseUI	0.715	0.701	0.708
Independent data set	PSI-MOUSE	0.981	0.981	0.981	
		iRNA-PseU	0.779	0.778	0.778
		PPUS	0.791	0.789	0.790
		PseUI	0.698	0.703	0.701
Mature mRNA	Cross-validation	PSI-MOUSE	0.943	0.948	0.945
		iRNA-PseU	0.799	0.790	0.794
		PPUS	0.794	0.789	0.792
		PseUI	0.676	0.664	0.670
Independent data set	PSI-MOUSE	0.932	0.927	0.929	
		iRNA-PseU	0.784	0.786	0.785
		PPUS	0.775	0.777	0.776
		PseUI	0.653	0.657	0.655

Abbreviation: AUROC, area under ROC curve.

Using the sequence-based encoding methods described in each existing predictor, we faithfully reproduced the iRNA-PseU, PPUS, and PseUI using the same training data of PSI-MOUSE. The 5-folds cross-validation and independent data set testing were performed to evaluate prediction accuracy under full-transcript and mature mRNA modes, respectively. When the independent data set testing was performed, the observations used for testing were excluded from the training data.
previous published predictors, marking the reliable contributions of genomic features for the prediction of RNA modifications in species other than human.

Web server interface

A web server for our newly purposed model was built using Hyper Text Markup Language (HTML), cascading style sheets (CSSs), and hypertext preprocessor (PHP). All the components of PSI-MOUSE can be easily accessed through the homepage of PSI-MOUSE (see Figure 2). The webserver of PSI-MOUSE provides different prediction modes, which allows users to customize their prediction under different pipelines, that is, feature sets, various combinations of annotation methods. Users can upload either genome coordinate in txt format, or the FASTA file containing RNA sequences as the input of PSI-MOUSE. The database of PSI-MOUSE collected 3282 experimentally validated mouse Ψ sites, users can also query the database by Gene and Chromosome region. All the materials presented in the database and web server can be freely downloaded. PSI-MOUSE is freely accessed at www.xjtlu.edu.cn/biologicals-sciences/psimouse and http://psimouse.rnamd.com.

Discussion

With the massive amount of data generated from various types of high-throughput sequencing techniques, many computational methods have been developed to facilitate the research of RNA modification, such as site prediction and data collection works,49-53 RNA modification-associated genetic variants analysis tools,54,55 as well as functional annotation tools.56-59 In this study, we innovatively represented 38 RNA topological features on the mouse genome, and a prediction framework PSI-MOUSE was built upon them. Compared with existing works that based on sequence-derived features only, PSI-MOUSE achieved a significant improvement in performance accuracy, indicating the successful application of genome-derived features in the mouse

Table 4. Performance on an independent data set using different machine-learning algorithms (AUROC).

MODEL	FULL TRANSCRIPT SVM	Full transcript	iRNA-PseU	PPUS	PseUi
SVM	0.981	0.778	0.790	0.701	
RF	0.984	0.787	0.789	0.802	
GLM	0.977	0.777	0.775	0.724	
NB	0.976	0.684	0.774	0.684	
DT	0.967	0.710	0.687	0.658	
Mature mRNA	SVM	0.929	0.785	0.776	0.655
	RF	0.945	0.782	0.788	0.796
	GLM	0.942	0.777	0.772	0.719
	NB	0.898	0.684	0.772	0.706
	DT	0.901	0.719	0.704	0.670

Abbreviations: AUROC, area under ROC curve; DT: decision tree; GLM: generalized linear model; NB: Naïve Bayes; RF: random forest; SVM: support vector machine. The iRNA-PseU, PPUS, and PseUi were rebuilt using the same training data of PSI-MOUSE with their own sequence-based encoding methods.

Table 5. Performance evaluation of mouse Ψ predictors using data set M_944.

MODEL	TRAINING DATA SET	5-FOLD CROSS-VALIDATION			
	ACC (%)	MCC	Sn (%)	Sp (%)	
PSI-MOUSE	M_944	91.97	0.84	86.62	97.31
iRNA-PseU		69.07	0.38	73.31	64.83
PseUi		70.44	0.41	74.58	66.31
iPseU-CNN		71.81	0.44	74.49	69.11
iPseU-NCP		71.82	0.44	67.37	76.27
XG-PseU		72.03	0.45	76.48	67.57

Abbreviations: ACC, accuracy; MCC, Matthews correlation coefficient; Sn, sensitivity; Sp, specificity.
transcriptome. In addition, 3282 experimentally validated mouse Ψ sites with functional annotations were also collected in our work.

However, the mouse experimentally validated Ψ sites are only available in 2 conditions detected from the same sequencing technique, and thus, the prediction performance may be over-estimated. Besides, we further validated our approach using mouse and yeast Ψ data sets collected from Chen et al’s study, which were also applied in many state-of-the-art Ψ site prediction studies. We observed a remarkable improvement of prediction accuracy in the mouse genome, as well as a relatively minor bonus in the yeast genome. The genomic features derived from annotation file of yeast transcript were obviously less than that of from mouse transcript; therefore, the application of genomic features in yeast can be further studied, and the performance of yeast Ψ site predictor can still be improved by deriving more informative genomic patterns from yeast genome. In future research, PSI-MOUSE will be further updated with more experimental identified Ψ sites detected under multiple technical contexts. In addition, the PSI-MOUSE scheme can be further expanded to the prediction of other RNA modification such as m1A and m7G.

Author Contributions
ZW initialized the project. ZW and BS designed the research plan. ZW and KC constructed the genomic features considered in mouse pseudouridine site prediction. BS performed the development of the pseudouridinase site web server. YT and BS built the website. BS and ZW drafted the manuscript. All authors read, critically revised, and approved the final manuscript.

ORCID iDs
Bowen Song https://orcid.org/0000-0002-8586-0573
Kunqi Chen https://orcid.org/0000-0002-6025-8957

Supplemental Material
Supplemental material for this article is available online.

REFERENCES
1. Cohn WE, Volkin E. Nucleoside-5′-phosphates from ribonucleic acid. Nature. 1951;167:483-484.
2. Jacob R, Zander S, Gutschner T. The dark side of the epitranscriptome: chemical modifications in long non-coding RNAs. Int J Mol Sci. 2017;18:2387.
3. Hamma T, Ferre-D’Amare AR. Pseudouridine synthases. Chem Biol. 2006;13:1125-1135.
4. McCleverty CJ, Hornsby M, Spraggon G, Kreusch A. Crystal structure of human Pus10, a novel pseudouridine synthase. J Mol Biol. 2007;373:1243–1254.
5. Shaheen R, Han L, Faqieh E, et al. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum Genet. 2016;135:707-713.
6. Chen J, Patton JR. Pseudouridylate synthase 3 from mouse modifies the anticodon loop of tRNA. Biochemistry. 2000;39:12723-12730.
7. Zhao X, Patton JR, Davis SL, Florence B, Ames SJ, Spanjaard RA. Regulation of nuclear receptor activity by a pseudouridylate synthase through posttranscriptional modification of steroid receptor RNA activator. Mol Cell. 2004;15:549-558.
8. Song J, Zhuang Y, Zhu C, et al. Differential roles of human PUS10 in mRNA processing and RNA pseudouridylation. *Nat Chem Biol*. 2020;16:160-169.

9. Jack K, Bellodi C, Landry DM, et al. tRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. *Mol Cell*. 2015;43:660-666.

10. Kierzek E, Malgowska M, Lisonевич J, Turner DH, Głąbczyński Z, Kierzek R. The contribution of pseudouridine to stability and structure of tRNAs. *Nucleic Acids Res*. 2014;42:3492-3501.

11. Guzzi N, Ciesla M, Ngoc PCT, et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. *Cell*. 2018;173:1204.e26-e26.

12. Schwartz S, Bernstein DA, Mumbach MR, et al. Transcriptome-wide mapping of pseudouridine in mammalian cells. *Nature*. 2014;513:143-146.

13. Cui L, Nakano K, Ob choe K, et al. Small nucleolar noncoding RNA SNORA23, up-regulated in human pancreatic ductal adenocarcinoma, regulates expression of spectrin repeat-containing nuclear envelope protein to promote growth and metastasis of xenograft tumors in mice. *J Biol Chem*. 2017;292:299-262.

14. Lovejoy AF, Riordan DP, Brown PO. Transcriptome-wide mapping of pseudouridine. *RNA*. 2004;10:10756-10761.

15. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. Pseudouridinylating RNA binding factor 1 (PBF1) binds 18S rRNA and facilitates 18S rRNA processing. *Proc Natl Acad Sci U S A*. 2004;101:10756-10761.

16. Karijolich J, Yu YT. The new era of RNA modification. *Cell*. 2005;121:6784-6789.

17. Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR. Characterization of N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach. *PLoS Comput Biol*. 2020;16:1-5.

18. Chen W, Tang H, Lin H. MethyRNA: a web server for identification of N6-methyladenosine sites using ensemble learning. *Mol Ther Nucleic Acids*. 2018;12:635-644.

19. Carlile TM, Martinez NM, Schaening C, et al. mRNA structure determines binding sites for pseudo nucleotide compositions. *Mol Biosyst*. 2016;12:3307-3311.

20. Liu H, Yue D, Chen Y, Gao SJ, Huang Y. Improving performance of mammalian microRNA target prediction. *BMC Bioinformatics*. 2010;11:47.

21. Guzzi N, Ciesla M, Ngoc PCT, et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. *Cell*. 2018;173:1204.e26-e26.

22. Schwartz S, Bernstein DA, Mumbach MR, et al. Transcriptome-wide mapping of pseudouridine in mammalian cells. *Nature*. 2014;513:143-146.

23. Chen W, Tang H, Lin H. Identifying RNA 5-methylcytosine sites via deep learning and network-based approaches. *PLoS Comput Biol*. 2019;15:966-974.

24. Li YH, Zhang G, Cui Q. PPUS: a web server to predict PUS-specific pseudouridine sites in mammalian RNA. *Nucleic Acids Res*. 2016;44:e137.

25. Feng P, Ding H, Yang H, Chen W, Lin H, Chou KC. iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. *Mol Ther Nucleic Acids*. 2017;2:155-163.

26. Liu H, Wang H, Wei Z, et al. MeT-DB V2.0: elucidating context-specific functions and its disease association using deep learning and network-based methods. *PLoS Comput Biol*. 2020;16:1-5.

27. Liu H, Wang H, Wei Z, et al. McT-DB v2.0: elucidating context-specific functions and its disease association using deep learning and network-based methods. *PLoS Comput Biol*. 2019;15:966-974.

28. Shao J, Xu D, Tsai SN, Wang Y, Ngai SM. Computational identification of PUS-specific pseudouridine sites in human mRNAs. *Mol Biosyst*. 2015;11:1073-1080.

29. Dou L, Li X, Ding H, Xu L, Xiang H. Is there any sequence feature in the RNA pseudouridylation? *Mol Cell Res*. 2015;31:3362-3364.

30. Li X, Zhe P, Ma S, et al. Chemical pulldown reveals dynamic pseudouridylated sites in the mammalian transcriptome. *Nat Chem Biol*. 2015;11:592-597.

31. Khodadi V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. *Proc Natl Acad Sci U S A*. 2019;116:6784-6789.

32. Lawrence M, Huber W, Pages H, et al. Software for computing and annotating N6-methyladenosine (m6A) epitranscriptome from large-scale CLIP-seq data. *Nucleic Acids Res*. 2013;42:D92-D97.

33. Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models. *Evol Model*. 2003;16:249-264.

34. Song B, Tang H, Lin H, Yerra A, Mosbruger TL, Bartolli KM, Gilbert WV. Characterization of N6-methyladenosine methyltransferase. *Nucleic Acids Res*. 2018;46:D281-D287.

35. Liu H, Lei X, Meng J, Wei Z. WITMS: large-scale prediction of human intronic m6A RNA methylation sites from sequence and genomic features. *Curr Genet*. 2019;74:1304-1316.