Equianalytic and equisingular families of curves on surfaces

Gert-Martin Greuel
Universität Kaiserslautern
Fachbereich Mathematik
Erwin-Schrödinger-Straße
D – 67663 Kaiserslautern

Christoph Lossen
Universität Kaiserslautern
Fachbereich Mathematik
Erwin-Schrödinger-Straße
D – 67663 Kaiserslautern

March 19, 2022

Contents

Introduction 1

1 Equisingular deformations of plane curve singularities 2

2 The equianalytic and equisingular Hilbert scheme 6

3 Completeness of the equianalytic and equisingular characteristic linear series 8

4 Local isomorphism defects of plane curve singularities 17

5 Applications and Examples 21

References 23
Introduction

We consider flat families of reduced curves on a smooth surface S such that for each member C of the family the number of singular points of C and for each singular point $x \in C$ the “singularity type” of (C,x) is fixed. Fixing these data imposes conditions on the space of all curves and we obtain in this way a locally closed subscheme of the Hilbert scheme H_S of S. We are mainly concerned with the study of the equianalytic (H_{ea}^S) respectively the equisingular Hilbert scheme (H_{es}^S), which are defined by fixing the analytic respectively the (embedded) topological type of the singularities. We show that fixing the analytical (respectively topological) type of (C,x) imposes, at most, $\tau(C,x) = \text{Tjurina number of } (C,x)$ (respectively, at most, $\mu(C,x) - \mod(C,x)$, where μ denote the Milnor number, mod the modality in the sense of [AGV]) conditions with equality if $H^1(C,N^\alpha_{C/S})$ (respectively $H^1(C,N^{es}_{C/S})$) vanish. Here $N^\alpha_{C/S}$ (respectively $N^{es}_{C/S}$) denote the equianalytic (respectively equisingular) normal bundle. The vanishing of H^1 implies the independence of the imposed conditions and the smoothness of H_{ea}^S (respectively H_{es}^S) at C (cf. §3).

In Theorem 3.7 we prove sufficient conditions for the vanishing of $H^1(C,N^\alpha_{C/S})$ (respectively $H^1(C,N^{es}_{C/S})$); for the special case $S = \mathbb{P}^2$ we obtain an additional criterion in Corollary 3.12. For the proof we use a vanishing theorem of [GrK] which is an improvement upon the usual vanishing theorem for sheaves which are not locally free. The local isomorphism defect $id_x(N^\alpha_{C/S}, \mathcal{O}_C)$, which is introduced in 3.4, measures how much $N^\alpha_{C/S}$ fails to be free at x, and similar for $N^{es}_{C/S}$. In many cases of interest, in particular for $N^{es}_{C/S}$ and related sheaves, the isomorphism defect is quite big and gives a considerable improvement of the desired vanishing results. Therefore, we make some effort to compute respectively estimate it for certain classes of singularities in §4. In §5 we give some explicit examples and applications.

The present work is, in some sense, a continuation of some part of [GrK], where only equianalytic families were considered. Our results about the smoothness of H_{ea}^S which are valid for arbitrary singularities, contain the previously known facts for curves with only ordinary multiple points (cf. [Gr]) as a special case; concerning the smoothness of H_{es}^S they are an improvement of [Sh1]. For concrete applications of the theorems of this paper it is important to have good estimates for the isomorphism defects. Most of the formulas concerning these, together with further refinements and detailed proofs, appeared in [Lo]. Our results for \mathbb{P}^2 seem to be quite sharp for small d but are asymptotically weaker than those of Shustin [Sh3] which are quadratic in d. However, the methods presented here work for arbitrary surfaces and may be combined with Shustin’s to provide asymptotically optimal results for curves on (some classes of) rational surfaces. This will be the subject of a forthcoming joint paper.
1 Equisingular deformations of plane curve singularities

In this paragraph we recall some definitions and results due to J. Wahl in the framework of formal deformation theory (cf. \[Wa2\]), transfer them to the complex analytic category and obtain some additional results which are used later.

1.1 Let \((C,0) \subset (\mathbb{C}^2,0)\) be a reduced plane curve singularity and \(f \in \mathcal{O}_{\mathbb{C}^2,0} = \mathbb{C}\{u,v\}\) a convergent power series defining the germ \((C,0)\). Furthermore, let \(m = \text{mult}_0(C)\) denote the multiplicity of \((C,0)\), that is \(f \in m m_{\mathbb{C}^2,0} \setminus m_{\mathbb{C}^2,0}^{m+1}\) where \(m_{X,x}\) denotes the maximal ideal of a germ \((X,x)\). Consider a deformation \(\varphi : (C,0) \to (T,0)\) of \((C,0)\) over an arbitrary complex germ \((T,0)\) together with a section \(\sigma : (T,0) \to (C,0)\). Without loss of generality we may assume \(\varphi\) to be embedded, that is \(\varphi\) is given by a commutative diagram

\[
\begin{array}{ccc}
(C,0) & \to & (C,0) \\
\downarrow & & \downarrow \\
0 & \in & (T,0) \\
\end{array}
\]

where \(pr\) is the (natural) projection, \(\sigma\) maps to the trivial section and \((C,0)\) is a hypersurface germ of \((\mathbb{C}^2 \times T,0)\) defined by a power series \(F \in \mathcal{O}_{\mathbb{C}^2 \times T,0}\). Let \(I_{\sigma(T)}\) denote the ideal of \(\varphi(T,0)\) \((which is, of course, independent of the choice of the embedding and the choice of \(F))\).

1.2 Before defining equisingular deformations, let us recall that the equisingularity type (or topological type) of \((C,0)\) may be defined as follows: consider an embedded resolution of \((C,0) \subset (\mathbb{C}^2,0)\) given by a sequence of blowing up points \((N \geq 1)\):

\[
M_N \xrightarrow{\pi_N} M_{N-1} \to \cdots \to M_1 \xrightarrow{\pi_1} M_0 = (\mathbb{C}^2,0).
\] (1)

Let \(C_i \subset M_i\) be the strict and \(\hat{C}_i \subset M_i\) the reduced total transform of \(C_0 := (C,0) \subset M_0\) under \(\psi_i := \pi_1 \circ \cdots \circ \pi_i\). Assume that

- \(\pi_1\) blows up 0;
- for \(i = 2, \ldots, N\), \(\pi_i\) blows up singular points of \(\hat{C}_i\);
- \(\hat{C}_N\) has only singularities of type \(A_1\).

Hence, \(C_N\) is smooth and \(\psi_N\) induces a resolution of \((C,0)\). If we choose the minimal resolution (that is blowing up only non–nodes of \(\hat{C}_i\)) we obtain a well–defined system of multiplicity sequences (cf. \[BrK\]), which defines the equisingularity type of \((C,0)\). It is well–known (and was proved by Zariski in \[Zar\]) that this system of multiplicity sequences determines the embedded topological type of \((C,0)\) and vice versa (cf. \[BrK\], 8.4 and \[Zar\] for further characterizations).

1.3 Consider a deformation \(\varphi : (C,0) \to (T,0)\) of \((C,0)\) (without section) and assume it to be embedded
Theorem 1.4

Let \(\varphi : (C, 0) \to (T, 0) \) be any equisingular deformation of the reduced plane curve singularity \((C, 0) \subset (\mathbb{C}^2, 0) \).

(i) The equimultiple sections through all infinitely near points of \((C, 0)\) which are required to exist for \(\varphi \) are uniquely determined.

(ii) Let \(\phi : \tilde{C}_{(C, 0)} \to S_{(C, 0)} \) be the semiuniversal deformation of \((C, 0)\). Then there exists a smooth subcurve \(\tilde{S}_{(C, 0)} \subset S_{(C, 0)} \) such that if \(\varphi \) is induced from \(\phi \) via the base change \(\psi : (T, 0) \to \tilde{S}_{(C, 0)} \), then \(\psi \) factors through \(\tilde{S}_{(C, 0)} \). In particular, the restriction of \(\phi \) to \(\tilde{S}_{(C, 0)} \) is a semiuniversal equisingular deformation of \((C, 0)\).

(iii) Let \(T_\varepsilon := \text{Spec}(\mathbb{C}[\varepsilon]/\varepsilon^2) \) be the base space of first order infinitesimal deformations. The set

\[
I^e(C, 0) := \{ g \in \mathbb{C}\{u, v\} \ \big| \ F = f + \varepsilon g \text{ defines an equisingular deformation of } (C, 0) \text{ over } T_\varepsilon \}
\]
is an ideal, the equisingularity ideal of \((C,0)\). Especially it contains the Jacobian ideal

\[j(C,0) = (f, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}) \cdot \mathbb{C}\{u, v\} \]

and the vector space \(I^{es}(C,0)/j(C,0)\) is isomorphic to the tangent space of \(S^{es}_{(C,0)} \subset S_{(C,0)}\).

Proof: Wahl considers only deformations over Artinian spaces \((T,0)\) but the above facts follow easily from his results:

(i) Since we require the existence of holomorphic sections over arbitrary complex germs \((T,0)\), by Wahl these are unique modulo arbitrary powers of the maximal ideal \(m_{T,0}\), hence unique.

(ii) The existence of a smooth formal semuniversal equisingular deformation of \((C,0)\) was proved by Wahl. The existence of a convergent representative can be deduced from his result by applying Artin’s and Elkik’s algebraization theorems. A simple direct proof, using the deformation of the parametrization, is given in [Gr].

(iii) follows directly from ([Wa2], Proposition 6.1).

\[\blacksquare \]

Proposition 1.5 Openness of versality holds for equisingular deformations, that is if \(\varphi : (C,0) \to (T,0)\) is an equisingular deformation of \((C,0)\), then for any equisingular representative \(\varphi : C \to T\) together with the singular section \(\sigma : T \to C\) the set of points \(t \in T\) such that \((C,\sigma(t)) \to (T,t)\) is a versal deformation of \((\varphi^{-1}(t),\sigma(t))\) is a Zariski–open subspace of \(T\).

Proof: This follows quite formally from a criterion for openness of versality due to Flenner ([F], Satz 4.3).

\[\blacksquare \]

1.6 Let \(\mu(C,0) = \dim_{\mathbb{C}}(\mathbb{C}\{u, v\}/(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}))\) respectively \(\tau(C,0) = \dim_{\mathbb{C}}(\mathbb{C}\{u, v\}/(f, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}))\) denote the Milnor respectively Tjurina number of \((C,0)\). It is well–known that a deformation of \((C,0)\) over a reduced base \((T,0)\) is equisingular if and only if the Milnor number is constant along the (unique) singular section. Hence \(S^{es}_{(C,0)}\), being smooth, coincides with the \(\mu\)–constant stratum of \(S_{(C,0)}\). The codimension of \(S^{es}_{(C,0)}\) in \(S_{(C,0)}\) is (by Theorem 1.4 (ii) and (iii)) equal to

\[\tau^{es}(C,0) = \dim_{\mathbb{C}}(\mathbb{C}\{u, v\}/I^{es}(C,0)). \]

Together with a result of Gabrielov ([Gab]), which states that the modality \(\text{mod}(f)\) of the function \(f\) with respect to right equivalence (cf. [AGV]) is equal to the dimension of the \(\mu\)–constant stratum of \(f\) in the \((\mu\)–dimensional) semiversal unfolding of \(f\), we obtain the following

Lemma 1.7 For any reduced plane curve singularity \((C,0)\) defined by \(f \in \mathbb{C}\{u, v\}\), we have

\[\tau^{es}(C,0) = \mu(C,0) - \text{mod}(f). \]

1.8 If \(\sim\) denotes any equivalence relation of plane curve singularities, a \(\sim\)–singularity type is by definition a (not ordered) tuple \(S = ((C_1, x_1)/\sim, \ldots, (C_m, x_m)/\sim)\) of \(\sim\)–equivalence classes with \(m\) a non–negative integer. In this paper we are mainly interested in the following two cases:

- \(\sim\) = analytic equivalence (isomorphism of complex space germs), in this case we call the \(\sim\)–singularity type analytic type and denote it by \(\mathcal{A}\).
• \(\sim \) = topological equivalence (embedded homeomorphism of complex space germs (cf. 1.3)), the corresponding singularity type is called equisingularity type or topological type and denoted by \(T \).

If \((C, x)\) is a reduced plane curve singularity, then \(S(C, x) = (C, x)/\sim\) denotes its singularity type and if \(C \) is a reduced curve with finitely many singular points \(x_1, \ldots, x_m \) which are all planar, then \(S(C) = ((C, x_1)/\sim, \ldots, (C, x_m)/\sim) \) is the \(\sim \)-singularity type of \(C \). For \(S = \mathcal{A} \) we obtain \(\mathcal{A}(C) \), the equianalytic type of \(C \), and for \(S = T \) we obtain \(T(C) \), the equisingular type of \(C \).

As equisingular deformations preserve the topological type, the equianalytic deformations preserve the analytic type of each fibre, where a deformation \(\varphi : (C, 0) \to (T, 0) \) of \((C, 0)\) is called equianalytic if \((C, 0)\) is analytic isomorphic to \((C \times T, 0)\) over \((T, 0)\), that is, \(\varphi \) is analytically trivial.
2 The equianalytic and equisingular Hilbert scheme

2.1 Let S be a smooth surface, T a complex space, then by a family of embedded (reduced) curves over T we mean a commutative diagram

$$
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{j} & S \times T \\
\varphi \searrow & & \swarrow \text{pr}
\end{array}
$$

where φ is a proper and flat morphism such that for all points $t \in T$ the fibre $\varphi^{-1}(t)$ is a curve (that is a reduced pure 1–dimensional complex space), moreover, $j : \mathcal{C} \hookrightarrow S \times T$ is a closed embedding and pr denotes the natural projection. Such a family is called equianalytic (respectively equisingular) if for all $t \in T$ the induced (embedded) deformation of each singular point of $\varphi^{-1}(t)$ over (T, t) is equianalytic (respectively equisingular) — along the unique singular section σ (cf. 1.3).

2.2 The Hilbert functor Hilb_S on the category of complex spaces defined by

$$
\text{Hilb}_S(T) := \{ \text{subspaces of } S \times T, \text{ proper and flat over } T \}
$$

is well–known to be representable by a complex space H_S (cf. [Bin]). This means there is a universal family

$$
\begin{array}{ccc}
\mathcal{U} & \xrightarrow{j} & S \times H_S \\
\varphi \searrow & & \swarrow \text{pr}
\end{array}
$$

such that each element of $\text{Hilb}_S(T)$, T a complex space, can be induced from φ via base change by a unique map $T \rightarrow H_S$. We define the equianalytic (respectively equisingular) Hilbert functor $\text{Hilb}_{\text{ea}}^S$ (respectively $\text{Hilb}_{\text{es}}^S$) to be the subfunctor of Hilb_S with

$$
\begin{align*}
\text{Hilb}_{\text{ea}}^S(T) & := \{ \text{equianalytic families of embedded curves over } T \} \\
\text{Hilb}_{\text{es}}^S(T) & := \{ \text{equisingular families of embedded curves over } T \}
\end{align*}
$$

Moreover, fixing the analytic (respectively topological) singularity type (cf. 1.8), we define

$$
\begin{align*}
\text{Hilb}_{\text{ea}}^A(T) & := \{ \text{families in } \text{Hilb}_{\text{ea}}^S(T) \text{ whose fibres have (the fixed) analytic singularity type } A \} \\
\text{Hilb}_{\text{es}}^T(T) & := \{ \text{families in } \text{Hilb}_{\text{es}}^S(T) \text{ whose fibres have (the fixed) topological singularity type } T \}
\end{align*}
$$

Proposition 2.3 Let A be an analytic singularity type corresponding to the topological type T, then the functors $\text{Hilb}_{\text{ea}}^A$ and $\text{Hilb}_{\text{es}}^T$ are representable by locally closed subspaces $H_{\text{ea}}^A \subset H_{\text{es}}^T \subset H_S$.

Corollary 2.4 The functor $\text{Hilb}_{\text{ea}}^S$ (respectively $\text{Hilb}_{\text{es}}^S$) is representable by a complex space H_{ea}^S (respectively H_{es}^S) which is given as the disjoint union of all H_{ea}^A (respectively H_{es}^T).

Remark 2.5 If $S = \mathbb{P}^2$ and if we fix the degree of all fibres to be d, then $H_{\text{ea}}^{x,d}$ is given as a finite disjoint union of locally closed subspaces, while in general $H_{\text{es}}^{x,d} \subset \mathbb{P}^N$ is an infinite union.
2.6 For the proof of Proposition 2.3 we need the following Lemma, which, for the equianalytic case, is proven in ([GrK], Lemma 1.4). A proof for the equisingular case is given in [F3].

Lemma 2.7 Let \((C,x)\) be the germ of an isolated plane curve singularity and \(\varphi : (C,x) \to (B,b)\) a deformation of \((C,x)\), then there are unique closed subgerms \((B^{ca},b) \subset (B^{es},b) \subset (B,b)\) such that for any morphism \(f : (T,t) \to (B,b)\):

\[
\text{\(f^*\varphi\) is an equianalytic deformation if and only if \(f(T,t) \subset (B^{ca},b)\)}
\]

\[
\text{\(f^*\varphi\) is an equisingular deformation if and only if \(f(T,t) \subset (B^{es},b)\)}
\]

Moreover, if \(\phi : C_{(C,x)} \to S_{(C,x)}\) denotes the semiuniversal deformation of \((C,x)\) and if \(\psi : (B,b) \to S_{(C,x)}\) is any morphism inducing \(\varphi\) via pull–back, then \((B^{ca},b) = (\psi^{-1}(0),b)\) and \((B^{es},b) = (\psi^{-1}(S_{(C,x)}^{es}),b)\).

2.8 Proof of Proposition 2.3: First we have to remark that the condition for all fibres to be reduced curves defines an open subspace \(\tilde{H}_S \subset H_S\). Now, let \(b \in \tilde{H}_S\) be such that the fibre \(\varphi^{-1}(b)\) in the universal family has topological type \(T\), then by Lemma 2.7 for each \(x \in \varphi^{-1}(b)\) there is a unique closed subspace \((H^{ca}_x,b) \subset (\tilde{H}_S,b)\) such that a morphism \(f : (T,t) \to (\tilde{H}_S,b)\) factors through \((H^{ca}_x,b)\) if and only if \(f^*\varphi\) is an equisingular deformation.

Let

\[
(H^{ca},b) := \bigcap_{x \in \varphi^{-1}(b)} (H^{ca}_x,b) \subset (\tilde{H}_S,b)
\]

and \(H^{ca}(b) \subset \tilde{H}_S\) be a small (unique) representative, then \(\bigcup H^{ca}(b)\), where the union is taken over all \(b\) whose fibre \(\varphi^{-1}(b)\) has topological type \(T\), defines a locally closed subspace of \(H_S\) which obviously represents \(\text{Hilb}_T^S\). The statement for \(\text{Hilb}_S^A\) follows in the same manner. \(\square\)
3 Completeness of the equianalytic and equisingular characteristic linear series

3.1 Let S be a smooth complex surface and $C \subset S$ a reduced compact curve. Then a deformation of C/S over the pointed complex space T, $0 \in T$, is a triple (C, \tilde{i}, j) such that we obtain a Cartesian diagram

\[
\begin{array}{c}
C \xrightarrow{j} C \\
i \cap \quad \cap \tilde{i} \\
S \hookrightarrow S \times T \quad \Phi \text{ flat} \\
\downarrow \quad \downarrow \pi \\
0 \in T
\end{array}
\]

where j is a closed embedding and the composed morphism $\Phi := \pi \circ \tilde{i}$ is flat ($S \hookrightarrow S \times T$ denotes the canonical embedding with image $S \times \{0\}$ and π is the projection). Two deformations (C, \tilde{i}, j) and (C', \tilde{i}', j') of C/S over T are isomorphic if there exists an isomorphism $C \cong C'$ such that the obvious diagram (with the identity on $S \times T$) commutes.

Define $\text{Def}_{C/S}$ denotes the deformation functor from pointed complex spaces to sets defined by $\text{Def}_{C/S}(T) := \{\text{isomorphism classes of deformations of } C/S \text{ over } T\}$

and we have the natural forgetful morphism $\text{Def}_{C/S} \to \text{Def}_C$ given by $(C, \tilde{i}, j) \mapsto (C, \Phi = \pi \circ \tilde{i}, j)$, where Def_C denotes the functor of isomorphism classes of deformations of C (forgetting the embedding). Furthermore, for each point $x \in C$, we consider the morphism $\text{Def}_C \to \text{Def}_{C,x}$ where $\text{Def}_{C,x}$ denotes the functor of isomorphism classes of deformations of the analytic germ (C, x). Let $T_\varepsilon = \text{Spec } (\mathbb{C}[\varepsilon]/\varepsilon^2)$ be the base space of first order infinitesimal deformations. We turn our attention to a subfunctor $\text{Def}_{C,x} \subset \text{Def}_{C,x}$ such that

\[
(T^1)' := \text{Def}_{C,x}(T_\varepsilon)
\]

is an ideal in $\text{Def}_{C,x}(T_\varepsilon) \cong \mathbb{C}\{u, v\}/j(C, x)$ and the corresponding “global” subfunctor $\text{Def}_{C/S}' \subset \text{Def}_{C/S}$ where $\text{Def}_{C/S}'(T) \subset \text{Def}_{C/S}(T)$ consists exactly of all those elements of $\text{Def}_{C/S}(T)$ which are mapped to $\text{Def}_{C,x}'(T)$ for all points $x \in C$.

Examples:

1. $\text{Def}_{C/S}'^{eq}$ the subfunctor of $\text{Def}_{C/S}$ consisting of all isomorphism classes of equianalytic deformations of C/S, that is of those deformations whose induced deformations of the analytic germs (C, x) happen to be equianalytic for all $x \in C$. Here $\text{Def}_{C,x}'^{eq}(T_\varepsilon) = 0$ in $\mathbb{C}\{u, v\}/j(C, x)$.

2. $\text{Def}_{C/S}'^{es}$ the subfunctor of $\text{Def}_{C/S}$ consisting of all isomorphism classes of equisingular deformations of C/S, that is of those deformations whose induced deformations of (C, x) are equisingular for all $x \in C$. Here $\text{Def}_{C,x}'^{es}(T_\varepsilon) = \mathcal{I}^{es}(C, x)/j(C, x)$.

3. Further examples are the equimultiple, equigeneric and equiclassical deformation functors (cf. [DH]).

Remark 3.2 $\text{Def}_{C/S}'^{eq}$ coincides with $\text{Def}_{C/S}'^{es}$ if (and only if) C has only simple (ADE)–singularities.
Now, let \(J_C \) be the ideal sheaf of \(C \) in \(\mathcal{O}_S \), then we have the natural exact sequence
\[
0 \to J_C/J_C^2 \to \Omega^1_S \otimes_{\mathcal{O}_S} \mathcal{O}_C \to \Omega^1_C \to 0
\]
respectively its dual
\[
0 \to \theta_C \to \theta_S \otimes_{\mathcal{O}_S} \mathcal{O}_C \xrightarrow{\Psi} N_{C/S} \to \mathcal{F} \to 0.
\]
Here \(N_{C/S} = \mathcal{O}_S(C) \otimes_{\mathcal{O}_S} \mathcal{O}_C \) denotes the normal sheaf of \(C \) in \(S \) and \(\mathcal{T}^1_C := \text{Coker}(\Psi) \) is a skyscraper sheaf concentrated in the singular points of \(C \) with \(H^0(C, \mathcal{T}^1_C) \cong \text{Def}_C(T_x) \) and with stalk in \(x \in C \) equal to \(\mathcal{T}^1_{C,x} \cong \text{Def}_C(T_x) = \mathcal{T}^1_{C,x} \) (for details cf. [Ar]). Furthermore, for each subfunctor \(\text{Def}^r_{C/S} \) as above, let \((\mathcal{T}^1_C)^r \) denote the subsheaf of \(\mathcal{T}^1_C \) with stalk in \(x \) isomorphic to \((T^1)'/\subset T^1 \) and
\[
N_{C/S}^r := \text{Ker}(N_{C/S} \to \mathcal{T}^1_C/(\mathcal{T}^1_C)^r).
\]
In particular,
\[
N_{C/S}^{es} = \text{Ker}(N_{C/S} \to \mathcal{T}^1_C),
\]
\[
N_{C/S}^{es} = \text{Ker}(N_{C/S} \to \mathcal{T}^1_C/(\mathcal{T}^1_C)^{es})
\]
where \(\mathcal{T}^1_{C,x} \cong C(u,v)/j(C,x) \), \((\mathcal{T}^1_C)^{es} \cong \Omega^1(C_x)/j(C,x) \).

Lemma 3.3 There is a canonical isomorphism
\[
\Phi : \text{Def}^r_{C/S}(T_x) \cong H^0(C, N_{C/S}^r).
\]

Proof: Each representative of an element in \(\text{Def}^r_{C/S}(T_x) \) is given by local equations \((f_i + \varepsilon g_i = 0)_{i \in I}\) (where \(f_i, g_i \in \Gamma(U_i, \mathcal{O}_S) \)) for an open covering \((U_i)_{i \in I} \) of \(S \), which satisfy
\[
\begin{align*}
& \bullet (f_i = 0)_{i \in I} \text{ are local equations for } C \subset S \\
& \bullet f_i + \varepsilon g_i = (a_{ij} + \varepsilon b_{ij}) \cdot (f_j + \varepsilon g_j) \text{ on } U_i \cap U_j =: U_{ij} \text{ with } a_{ij} \text{ a unit in } \Gamma(U_{ij}, \mathcal{O}_S) \text{ and } b_{ij} \in \Gamma(U_{ij}, \mathcal{O}_S) \\
& \bullet \text{the germ } g_{i,x} \text{ of } g_i \text{ projects to an element of } \text{Def}^r_{C,x}(T_x) = (T^1)' \text{ for all } x \in C \cap U_i.
\end{align*}
\]

For the induced sections \(\overline{g_i}/f_i \in \Gamma(U_i, \mathcal{O}(C)) \) it follows immediately
\[
\frac{g_i}{f_i} - \frac{g_j}{f_j} = \frac{a_{ij}g_i + b_{ij}f_j}{a_{ij}f_j} - \frac{g_i}{f_i} = \frac{b_{ij}}{a_{ij}} = 0 \in \Gamma(U_{ij}, N_{C/S})
\]
and \(\overline{g_i}/f_i \) maps to an element of \((\mathcal{T}^1)^r \subset \mathcal{T}^1_C \). Hence, \((\overline{g_i}/f_i)_{i \in I} \) defines a global section in \(N_{C/S}^r \). It is easy to check that in this way we get the isomorphism we were looking for (cf. [Mu], [L]). \(\square \)

3.4 Let \(C \) be a compact reduced curve, \(\mathcal{F} \) and \(\mathcal{G} \) coherent torsion–free sheaves on \(C \), which have rank 1 on each irreducible component \(C_i \) of \(C \) and \(x \in C \). Then we define the local isomorphism defect of \(\mathcal{F} \) in \(\mathcal{G} \) in \(x \) as
\[
isod_x(\mathcal{F}, \mathcal{G}) := \min(\dim_C \text{Coker}(\varphi : \mathcal{F}_x \to \mathcal{G}_x))
\]
where the minimum is taken over all (injective) local homomorphisms \(\varphi : \mathcal{F}_x \to \mathcal{G}_x \). In particular, \(\text{isod}_x(\mathcal{F}, \mathcal{G}) \) is a non–negative integer and not zero only in finitely many points (in \(\text{GrK} \) \(\text{isod}_x(\mathcal{F}, \mathcal{G}) \) was denoted by \(-\text{ind}_x(\mathcal{F}, \mathcal{G}) \)). We call
\[
isod(\mathcal{F}, \mathcal{G}) := \sum_{x \in C} \text{isod}_x(\mathcal{F}, \mathcal{G})
\]
the total (local) isomorphism defect of F in \mathcal{G}. For an irreducible component C_i of C and $x \in C_i$ we set

$$\mathcal{F}_{C_i} := \mathcal{F} \otimes \mathcal{O}_{C_i} \text{ modulo torsion}$$

$$\text{isod}_{C_i,x}(\mathcal{F}, \mathcal{G}) := \min(\dim C \text{ Coker}(\varphi_{C_i} : \mathcal{F}_{C_i,x} \rightarrow \mathcal{G}_{C_i,x}))$$

where the minimum is taken over all φ_{C_i}, which are induced by local homomorphisms $\varphi : F_x \rightarrow G_x$, and

$$\text{isod}_{C_i}(\mathcal{F}, \mathcal{G}) := \sum_{x \in C_i} \text{isod}_{C_i,x}(\mathcal{F}, \mathcal{G}).$$

Note that this is again a non–negative integer. In Chapter 4 we present some explicit calculations.

Proposition 3.5 ([GrK], Proposition 5.2)

Let S be a smooth surface, $C \subset S$ a compact reduced curve and F a torsion–free coherent \mathcal{O}_C–module which has rank 1 on each irreducible component C_i of C ($i = 1, \ldots, s$). Then $H^1(C, F) = 0$ if for $i = 1, \ldots, s$

$$\chi(\mathcal{F}_{C_i}) > \chi(w_{C_i}) - \text{isod}_{C_i}(\mathcal{F}, w_C).$$

Here $\chi(M) = \dim H^0((C, M)) - \dim H^1(C, M)$ for a coherent sheaf M on C and w_C denotes the dualizing sheaf, $w_{C_i} := w_C \otimes \mathcal{O}_{C_i}$.

Remark 3.6 Using Riemann–Roch and the adjunction formula, the condition above reads

$$\deg(\mathcal{F}_{C_i}) > (K_S + C) \cdot C_i - \text{isod}_{C_i}(\mathcal{F}, \mathcal{O}_C)$$

where K_S is the canonical divisor on S. Since isod is a local invariant and since C has planar singularities, we can replace w_C by \mathcal{O}_C.

Theorem 3.7 Let S be a smooth complex surface and $C \subset S$ a reduced compact curve, $H^*_{C/S}$ respectively $H^*_{C/S}$ be the representing spaces for the equianalytic respectively equisingular Hilbert functor, then

(i) \(\dim(H^*_{C/S}, C) \geq C^2 + 1 - p_a(C) - \tau(C), \) with \(\tau(C) = \sum_{x \in \text{Sing}(C)} \tau(C, x), \)

\[\dim(H^*_{C/S}, C) \geq C^2 + 1 - p_a(C) - \tau^e(C), \] with \(\tau^e(C) = \sum_{x \in \text{Sing}(C)} \tau^e(C, x), \)

where \(\tau(C, x) = \dim C(\mathcal{O}_{C,x}/j(C, x)) \) and \(\tau^e(C, x) = \dim C(\mathcal{O}_{C,x}/I^e(C, x)) \)

(ii) If $H^1(C, \mathcal{N}^{eq}_{C/S}) = 0$ (respectively $H^1(C, \mathcal{N}^{es}_{C/S}) = 0$) then $H^*_{C/S}$ (respectively $H^*_{C/S}$) is smooth at C of dimension

$$C^2 + 1 - p_a(C) - \tau(C) \quad \text{(respectively } C^2 + 1 - p_a(C) - \tau^e(C)).$$

(iii) Let $C = C_1 \cup \ldots \cup C_s$ be the decomposition into irreducible components, then

- $H^1(C, \mathcal{N}^{eq}_{C/S}) = 0$ if for $i = 1, \ldots, s$

 $$-K_S \cdot C_i > D \cdot C_i + \tau(C_i) - \text{isod}_{C_i}(\mathcal{N}^{eq}_{C/S}, \mathcal{O}_C)$$

- $H^1(C, \mathcal{N}^{es}_{C/S}) = 0$ if for $i = 1, \ldots, s$

 $$-K_S \cdot C_i > \sum_{x \in \text{Sing}(C)} \dim C(\mathcal{O}_{C,x}/I^e(C, x)) \otimes \mathcal{O}_{C,x} - \text{isod}_{C_i}(\mathcal{N}^{es}_{C/S}, \mathcal{O}_C)$
where $D = \bigcup_{i \neq j} C_i$ and K_S denotes the canonical divisor on S. Moreover, the isomorphism defects $\text{isod}_C(N^e_{C/S}, \mathcal{O}_C)$ (respectively $\text{isod}_C(N^{es}_{C/S}, \mathcal{O}_C)$) have the lower bound $\#(C_i \cap \text{Sing} C)$.

Remark 3.8 1. If all singularities of C are quasi–homogeneous or ordinary k–tuple points (all branches are smooth with distinct tangents) then we obtain as an equivalent criterium for the vanishing of $H^1(C, N^{es}_{C/S})$

$$- - - K_S \cdot C_i > D \cdot C_i + \tau^{es}(C_i) - \text{isod}_C(N^{es}_{C/S}, \mathcal{O}_C).$$

2. From the adjunction formula we obtain

$$- - - K_S \cdot C_i = C_i^2 - 2p_a(C_i) + 2.$$

3. If C is irreducible, we have

- $H^1(C, N^{es}_{C/S}) = 0$ if $-K_SC > \tau(C) - \text{isod}(N^{es}_{C/S}, \mathcal{O}_C)$
- $H^1(C, N^{es}_{C/S}) = 0$ if $-K_SC > \tau^{es}(C) - \text{isod}(N^{es}_{C/S}, \mathcal{O}_C)$.

3.9 Proof: Most parts of the proof are identical for the equianalytic (ea) and the equisingular (es) case, there we use again the notation H' respectively H'_S as above:

(ii) Let $H^1(C, N^e_{C/S}) = 0$ and $A \rightarrow A/(\eta) = \tilde{A}$ be a small extension of Artinian \mathbb{C}–algebras. For the smoothness of (H', C), we have to show that each equianalytic (respectively equisingular) family \tilde{C} over \tilde{A} lifts to an equianalytic (respectively equisingular) family C over A.

\tilde{C} is given by local equations $\tilde{F}_i \in \Gamma(U_i, \mathcal{O}_S \otimes \tilde{A})$, where $(U_i)_{i \in I}$ is an open covering of S, such that

- on $U_{ij} := U_i \cap U_j$, $\tilde{F}_i = \tilde{G}_{ij} \cdot \tilde{F}_j$ with a unit \tilde{G}_{ij}
- the image $F_i^{(0)}$ of \tilde{F}_i in $\Gamma(U_i, \mathcal{O}_S \otimes \mathbb{C})$ is a local equation for $C \subset S$
- the germs $\tilde{F}_{i,x}$ describe an equianalytic (respectively equisingular) deformation of (C, x).

On the other hand, we know that the equianalytic (respectively equisingular) functor E', which associates to each Artinian local \mathbb{C}–algebra the set of all equianalytic (respectively equisingular) deformations of (C, x) over Spec A, is smooth and has a very good deformation theory (cf. [Val], for the equisingular case). Using the results of M. Schlessinger (Sch, Remark 2.17), this guarantees in particular

- the existence of an equianalytic (respectively equisingular) lifting $F_i \in \Gamma(U_i, \mathcal{O}_S \otimes A)$ of \tilde{F}_i
- for any lifting $G_{ij} \in \Gamma(U_{ij}, \mathcal{O}_S \otimes A)$ of \tilde{G}_{ij} the existence of $h_{ij} \in \Gamma(U_{ij}, \mathcal{O}_S \otimes A)$ with $F_i = G_{ij} \cdot F_j + \eta \cdot h_{ij}$ and $(h_{ij})_x \in j(C, x)$ (respectively $(h_{ij})_x \in I^{es}(C, x)$).

To obtain the lifted family we are looking for, we have to modify the F_i and G_{ij} in a suitable way, such that the h_{ij} become 0. We know

$$\eta \cdot h_{ij} + \eta \cdot G_{ij} \cdot h_{jk} = F_i - G_{ij} \cdot F_j + G_{ij} \cdot (F_j - G_{jk} \cdot F_k) = \eta \cdot h_{ik} + (G_{ik} - G_{ij} \cdot G_{jk}) \cdot F_k$$

where $(G_{ik} - G_{ij} \cdot G_{jk}) \in \Gamma(U_{ijk}, \mathcal{O}_S \otimes (\eta))$ and $(\eta) \cdot m_A = 0$. As sections in $\mathcal{O}_S \otimes A/m_A = \mathcal{O}_S \otimes \mathbb{C}$ we obtain

$$h_{ij} + G_{ij}^{(0)} \cdot h_{jk} = h_{ik} + \left[\frac{1 - G_{ij} \cdot G_{jk} \cdot G_{ik}^{-1}}{\eta} \right] \cdot G_{ik}^{(0)} \cdot F_k^{(0)}.$$
Furthermore, $F_{ij}^{(0)} = G_{ij}^{(0)} \cdot F_j^{(0)}$, which implies in $\Gamma(U_{ijk}, \mathcal{N}_C\mathcal{S})$ the cocycle condition

$$\frac{h_{ij}}{F_{ij}^{(0)}} + \frac{h_{jk}}{F_j^{(0)}} = \frac{h_{ik}}{F_i^{(0)}}.$$

From the definition of the h_{ij} it follows that $\left(\frac{h_{ij}}{F_{ij}^{(0)}} \mid i, j \in I \right)$ represents an element in $H^1(C, \mathcal{N}_C\mathcal{S}) = 0$. Hence, there exist $f_i \in \Gamma(U_i, \mathcal{O}_S \otimes \mathbb{C})$ such that

$$\frac{h_{ij}}{F_{ij}^{(0)}} = \frac{f_j}{F_j^{(0)}} - \frac{f_i}{F_i^{(0)}}$$

as sections in $\mathcal{N}_C\mathcal{S}$, especially $h_{ij} + f_i - f_j \cdot G_{ij}^{(0)} \in \Gamma(U_{ij}, J_C)$ and all germs $(f_i)_x$ lie in the Jacobian (respectively equisingularity) ideal. Defining $g_{ij} := \frac{h_{ij}+f_i-f_j \cdot G_{ij}^{(0)}}{F_{ij}^{(0)}} \cdot F_i := f_i + \eta \cdot f_i$ and $\tilde{G}_{ij} := G_{ij} + \eta \cdot g_{ij}$ we obtain the lifted family we were looking for.

(i) The germ (H'_S, C) is the fibre over the origin of a (non-linear) obstruction map $H^0(C, \mathcal{N}_C\mathcal{S}) \to H^1(C, \mathcal{N}_C\mathcal{S})$ (cf. [La], Theorem 4.2.4). Hence

$$\dim H^0(C, \mathcal{N}_C\mathcal{S}) \geq \dim(H'_S, C) \geq \dim(H^0(C, \mathcal{N}_C\mathcal{S})) - \dim(H^1(C, \mathcal{N}_C\mathcal{S})) = \chi(\mathcal{N}_C\mathcal{S}) - \chi(T_C/(T_C)^1) = \deg(\mathcal{N}_C\mathcal{S}) + \chi(\mathcal{O}_C) - \tau'(C) = C^2 + 1 - p_a(C) - \tau'(C)$$

where $\tau'(C)$ denotes the total Tjurina number of C (respectively $\tau'^s(C)$). Both inequalities become an equality if $H^1(C, \mathcal{N}_C\mathcal{S}) = 0$.

(iii) By Proposition 3.5, $H^1(C, \mathcal{N}_C\mathcal{S}) = 0$, if for $i = 1, \ldots, s$

$$\deg(\mathcal{N}_C\mathcal{S} \otimes \mathcal{O}_C) > (K_S + C) \cdot C_i - \text{isod}_{C_i}(\mathcal{N}_C\mathcal{S}, \mathcal{O}_C)$$

where isod_{C_i} denotes reduction modulo torsion. On the other hand, we have the exact sequence

$$0 \to \mathcal{N}_C\mathcal{S} \otimes \mathcal{O}_C \to \mathcal{N}_C\mathcal{S} \otimes \mathcal{O}_C \to (T_C/(T_C)^1) \otimes \mathcal{O}_C \to 0$$

which implies

$$\deg(\mathcal{N}_C\mathcal{S} \otimes \mathcal{O}_C) = C \cdot C_i - \dim \mathcal{H}^0(C, (T_C/(T_C)^1) \otimes \mathcal{O}_C).$$

Finally, we obtain the above criteria by

$$\dim \mathcal{H}^0(C, T_C/(T_C)^{\text{es}} \otimes \mathcal{O}_C) = \sum_{x \in C} \dim \mathcal{H}^0((\mathcal{O}_{C,x}/I^{\text{es}}(C, x)) \otimes \mathcal{O}_{C,x}),$$

respectively using the Leibniz rule (with g as the equation of (D, x)) by

$$\dim \mathcal{H}^1(C, T_C \otimes \mathcal{O}_C) = \sum_{x \in C} \dim \mathcal{H}^1((\mathcal{O}_{C,x}/j(C, x)) \otimes \mathcal{O}_{C,x})$$

$$= \sum_{x \in C} \dim \mathcal{H}^1(\mathcal{O}_{C,x}/g \cdot j(C, x))$$

$$= \sum_{x \in C} \dim \mathcal{H}^1(\mathcal{O}_{C,x}/j(C, x)) + \dim \mathcal{H}^1(\mathcal{O}_{C,x}/g \cdot \mathcal{O}_{C,x})$$

$$= \tau(C_i) + C_i \cdot D.$$
3.10 Curves in \(\mathbb{P}^2(\mathbb{C}) \)

Let \(C \subset \mathbb{P}^2 := \mathbb{P}^2(\mathbb{C}) \) be a reduced curve of degree \(d \) with (homogeneous) equation \(F(X,Y,Z) = 0 \), then we define the polar of \(C \) relative to the point \((\alpha : \beta : \gamma) \in \mathbb{P}^2 \) to be the curve \(C_{\alpha\beta\gamma} \) with equation \(\alpha \cdot F_X(X,Y,Z) + \beta \cdot F_Y(X,Y,Z) + \gamma \cdot F_Z(X,Y,Z) = 0 \).

Lemma 3.11 The generic polar \(C_{\alpha\beta\gamma} \) (with \((\alpha : \beta : \gamma) \in \mathbb{P}^2 \) a generic point) is an irreducible curve of degree \(d - 1 \), if and only if \(C \) is not the union of \(d \geq 3 \) lines through the same point.

Proof: Applying Bertini’s theorem, we have irreducibility if there is no algebraic relation between \(F_X, F_Y \) and \(F_Z \). Considering such a (homogeneous) relation of minimal degree

\[
\sum_{\alpha} a_{\alpha} F_X^{\alpha_1} F_Y^{\alpha_2} F_Z^{\alpha_3} = 0
\]

and differentiating, we obtain a system of equations

\[
A \cdot \begin{pmatrix} F_{XX} \\ F_{XY} \\ F_{XZ} \end{pmatrix} + B \cdot \begin{pmatrix} F_{YX} \\ F_{YY} \\ F_{YZ} \end{pmatrix} + \Gamma \cdot \begin{pmatrix} F_{ZX} \\ F_{ZY} \\ F_{ZZ} \end{pmatrix} = 0
\]

where \(A, B \) and \(\Gamma \) generically do not vanish. Now the lemma follows from the fact that the Hessian covariant vanishes identically only if \(C \) is the union of \(d \) lines through one point (cf. [He], Lehrsatz 6). \(\square \)

In the following we choose suitable coordinates such that Sing \(C \) lies in the affine plane \(Z \neq 0 \) and a generic polar \(C' \subset \mathbb{P}^2 \) relative to \((\alpha : \beta : 0) \) with equation \(\alpha \cdot F_X + \beta \cdot F_Y = 0 \) is irreducible.

Then we have an obvious morphism \(O_{C'}(d) \to \mathcal{T}_C^1 \) given by the natural projections

\[
O_{C',x} = O_{\mathbb{P}^2,x}/(\alpha f_X + \beta f_Y) \to O_{\mathbb{P}^2,x}/j(C,x) = \mathcal{T}_C^1
\]

where \(f(X,Y) = F(X,Y,1) \) is the affine equation of \(C \).

We define

\[
\hat{N}^{\text{red}}_{C'/\mathbb{P}^2} := \text{Ker}(O_{C'}(d) \to \mathcal{T}_C^1)
\]

\[
\hat{N}^{\text{red}}_{C'/\mathbb{P}^2} := \text{Ker}(O_{C'}(d) \to \mathcal{T}_C^1/(\mathcal{T}_C^1)^{es}).
\]

Corollary 3.12 Let \(C \subset \mathbb{P}^2 \) be a reduced projective curve of degree \(d \), \(C_i (i = 1, \ldots, s) \) its irreducible components and \(d_i \) the degree of \(C_i \).

(i) \(H^1(C, N_{C'/\mathbb{P}^2}^{\text{red}}) = 0 \) if and only if the forgetful morphism \(\text{Def}_{C'/\mathbb{P}^2} \to \prod_{x \in \text{Sing} C} \text{Def}_{C,x} \) is surjective.

(ii) If \(H^1(C, N_{C'/\mathbb{P}^2}^{\text{red}}) = 0 \) (respectively \(H^1(C, N_{C'/\mathbb{P}^2}^{\text{red}}) = 0 \)) then \((H^2_{\mathbb{P}^2}, C) \) (respectively \((H^2_{\mathbb{P}^2}, C) \)) is smooth of dimension \(\frac{1}{2}d(d+3) - \tau(C) \) (respectively \(\frac{1}{2}d(d+3) - \tau^{es}(C) \)).
(iii) $H^1(C, N_{C/p2}^a) = 0$ if for $i = 1, \ldots, s$

$$3d_i > d_i \cdot (d - d_i) + \tau(C_i) - \text{isod}_{C_i}(N_{C/p2}^a, O_C),$$

moreover, $\text{isod}_{C_i}(N_{C/p2}^a, O_C) \geq \# (\text{Sing}(C) \cap C_i),$

$H^1(C, N_{C/p2}^s) = 0$ if for $i = 1, \ldots, s$

$$3d_i > d_i \cdot (d - d_i) + \tau^{es}(C_i) - \text{isod}_{C_i}(N_{C/p2}^s, O_C).$$

(iv) If C is not the union of $d \geq 3$ lines through one point $H^1(C, N_{C/p2}^a)$ (respectively $H^1(C, N_{C/p2}^s)$) vanishes, if

$$4d > 4 + \tau(C) - \text{isod}(N_{C/p2}^a, O_{C'})$$

(respectively $4d > 4 + \tau^{es}(C) - \text{isod}(N_{C/p2}^s, O_{C'})$)

where C' denotes the generic polar as defined above.

Proof: (ii) and (iii) follow immediately from Theorem 3.7. To prove (iv), we consider the exact sequences

$$0 \rightarrow N_{C/p2}^a \rightarrow N_{C/p2} \rightarrow \mathcal{T}_C^1/(\mathcal{T}_C^1)' \rightarrow 0$$

$$0 \rightarrow N_{C/p2}^s \rightarrow O_{C'}(d) \rightarrow \mathcal{T}_C^1/(\mathcal{T}_C^1)' \rightarrow 0$$

and the corresponding long exact cohomology sequences where $'$ represents again both the equianalytic and the equisingular case. We know that $N_{C/p2} \cong O_C(d)$ and (by Proposition 3.5) $H^1(C, O_C(d)) = 0$. Furthermore, if C is not the union of $d \geq 3$ lines through one point, C' is irreducible and

$$\text{deg}(N_{C/p2}^a) - (K_{p2} + C') \cdot C' = \text{deg}(O_{C'}(d)) - \tau'(C) - (d - 4) \cdot (d - 1)$$

$$= 4 \cdot (d - 1) - \tau'(C).$$

Hence, applying Proposition 3.5 the conditions in (iv) guarantee the vanishing of $H^1(C', N_{C'/p2}^a)$. Additionally, the exact sequence

$$0 \rightarrow O_{p2} \rightarrow O_{p2}(d) \rightarrow O_C(d) \rightarrow 0$$

respectively an analogous sequence for C' induce surjective mappings

$$\Phi : H^0(\mathbb{P}^2, O_{p2}(d)) \rightarrow H^0(C, O_C(d))$$

$$\Phi' : H^0(\mathbb{P}^2, O_{p2}(d)) \rightarrow H^0(C', O_{C'}(d))$$

which lead to a commutative diagram with exact horizontal rows

$$\begin{array}{ccc}
H^0(\mathbb{P}^2, O_{p2}(d)) & \xrightarrow{\Phi} & H^0(C, O_C(d)) \\
\downarrow \Phi' & & \downarrow \\
H^0(C', O_{C'}(d)) & \rightarrow & H^0(C, \mathcal{T}_C^1/(\mathcal{T}_C^1)'') \rightarrow H^1(C, N_{C/p2}^a) \rightarrow 0
\end{array}$$

This shows that $H^0(C, O_C(d)) \rightarrow H^0(C, \mathcal{T}_C^1/(\mathcal{T}_C^1)'')$ is surjective and, hence, $H^1(C, N_{C/p2}^a) = 0$.

The same argument shows that $H^0(C, O_C(d)) \rightarrow H^0(C, \mathcal{T}_C^1)$ is surjective if and only if $H^1(C, N_{C/p2}^a) = 0$. Since $\mathcal{D}_{efC/p2}(T_x) = H^0(C, O_C(d))$ and $H^0(C, \mathcal{T}_C^1) \cong \prod_{x \in \text{Sing}(C)} \mathcal{D}_{efC,x}(T_x)$ this is equivalent to $\mathcal{D}_{efC/p2}(T_x) \rightarrow \prod_{x \in \text{Sing}(C)} \mathcal{D}_{efC,x}(T_x)$ being surjective (and $\mathcal{D}_{efC/p2}$ being unobstructed). But $\mathcal{D}_{efC/p2}$ and $\prod \mathcal{D}_{efC,x}$ being unobstructed, the surjectivity on the tangent level implies the surjectivity of the functors. \square
Remark 3.13

(i) We call the inequalities in 3.12 (iii) respectively 3.12 (iv) the \(4d \)-respectively \(d \)–criteria.

(ii) The use of a generic polar is due to Shustin \[Sh1\], who obtained (with a different proof) the weaker inequality \(4d > 4 + \mu(C) \) instead of 3.12 (iv), where \(\mu(C) \) is the total Milnor number of \(C \).

3.14 A generalization: We are also interested in families of curves in \(\mathbb{P}^2 \) of degree \(d \) where for some singularities the analytic type is fixed, for others only the topological type is fixed and for the remaining singularities any deformation is allowed.

Let \(C \subset \mathbb{P}^2 \) be of degree \(d \) and \(\text{Sing}(C) = \{x_1, \ldots, x_k\} \cup \{y_1, \ldots, y_\ell\} \cup \{z_1, \ldots, z_m\} \). We define the subsheaf \((T^1_0)'\) of \(T^1_0 \) by

\[
(T^1_0)'_x = \begin{cases}
0 & \text{if } x \in \{x_1, \ldots, x_k\} \\
I^es(C, x)/j(C, x) & \text{if } x \in \{y_1, \ldots, y_\ell\} \\
T^1_0(C, x) & \text{else}
\end{cases}
\]

and put

\[
\tau'(C) := \dim_\mathbb{C} H^0(\mathbb{C}, T^1_0/(T^1_0)'),
\]

Assume there exists a reduced curve \(C' \subset \mathbb{P}^2 \) of degree \(d' \) with the following properties:

(a) \(C' \) is irreducible,

(b) \(\{x_1, \ldots, x_k\} \cup \{y_1, \ldots, y_\ell\} \subset C' \),

(c) if \(f_j \) is a local equation of \((C', x_j) \), \(j = 1, \ldots, k \), then \(f_j \in j(C, x_j) \); if \(f_j \) is a local equation of \((C', y_j) \), \(j = 1, \ldots, \ell \), then \(f_j \in I^es(C, y_j) \).

Define

\[
N' := \text{Ker}(N_{C/\mathbb{P}^2} = \mathcal{O}_C(d) \to T^1_0/(T^1_0)'), \\
\tilde{N}' := \text{Ker}(\mathcal{O}_{C'}(d) \to T^1_0/(T^1_0)').'\]

Let \(\mathcal{A} \) be the analytic singularity type defined by \((C, x_1), \ldots, (C, x_k) \), \(T \) the topological singularity type defined by \((C, y_1), \ldots, (C, y_\ell) \) and let \(\text{Hilb}^{\mathcal{A}, T}_{d, g_2} \) denote the functor parametrising proper and flat families of reduced curves in \(\mathbb{P}^2 \) which have \(k \) singular points of fixed analytic type \(\mathcal{A} \) and \(\ell \) singular points of fixed topological type \(T \) (see 2.2 for a precise definition). This functor is represented by a locally closed subspace \(H^{\mathcal{A}, T}_{d, g_2} \subset H_{g_2} \) (cf. Proposition 2.3).

Proposition 3.15

Let \(C \subset \mathbb{P}^2 \) be a reduced projective curve of degree \(d \), \(\text{Sing}(C) = \{x_1, \ldots, x_k\} \cup \{y_1, \ldots, y_\ell\} \cup \{z_1, \ldots, z_m\} \) and assume that there exists a curve \(C' \subset \mathbb{P}^2 \) of degree \(d' \) satisfying (a) – (c) above.

(i) If \(\ell = 0 \), then \(H^1(C, N') = 0 \) if and only if \(\text{Def}_{C/\mathbb{P}^2} \to \prod_{i=1}^k \text{Def}_{(C, x_i)} \) is surjective.

(ii) If \(H^1(C, N') = 0 \) then \(H^{\mathcal{A}, T}_{d, g_2} \) is smooth at \(C \) of dimension \(\frac{1}{2}d(d + 3) - \tau'(C) \).

(iii) \(H^1(C, N') = 0 \) if \(d'(d - d' + 3) > \tau'(C) - \text{isol}(\tilde{N'}, \mathcal{O}_{C'}) \).

15
Proof: Use the same argumentation as for Corollary 3.12.

Remark 3.16 1. If $\ell = m = 0$, (i) is the same as 3.12 (i). If $\ell = m = 0$ (respectively $k = m = 0$) (ii) is the same as 3.12 (ii). If C is irreducible we may take $C' = C$ and then (iii) is equivalent to 3.12 (iii) for $\ell = m = 0$ respectively $k = m = 0$. If C is not the union of d lines through one point, we may take C' to be a generic polar and then (iii) is the same as 3.12 (iv) for $\ell = m = 0$ (respectively $k = m = 0$).

2. We obtain the best possible result for a curve C' of degree $d' = \frac{d+3}{2}$ satisfying (a) – (c). In [Sh2], Shustin has proven the existence of such an irreducible curve C' of degree

$$d' \leq (2\kappa^2 + \sqrt{\kappa}) \sqrt{\mu(C)} + (1 - \frac{1}{\kappa})d,$$

where $\mu(C)$ denotes the total Milnor number and

$$\kappa = \max_{1 \leq i \leq k} \{\mu(x_i, C) + \text{mult}_{x_i}(C), \mu(y_j, C) + \text{mult}_{y_j}(C)\} - 1$$
4 Local isomorphism defects of plane curve singularities

Let u, v be local coordinates of the smooth surface S in a singular point x of the reduced compact curve $C \subset S$, $C = C_1 \cup \ldots \cup C_s$ the decomposition into irreducible components and $f(u, v) = 0$ (respectively $f_i(u, v) = 0$) be local equations of (C, x) (respectively (C_i, x)). In the following, we give estimations for the (local) isomorphism defects occurring in Chapter 3:

Lemma 4.1 For a reduced plane curve singularity $(C, x) \subset (S, x)$ we have:

(i) $\text{isod}_{x}(N_{C/S}^{\text{es}}, \mathcal{O}_C) = 1$ if (C, x) is quasihomogeneous.

(ii) $\text{isod}_{x}(N_{C/S}^{\text{es}}, \mathcal{O}_C) > 1$ if (C, x) is not quasihomogeneous.

Proof:

(i) By definition $\text{isod}_{x}(N_{C/S}^{\text{es}}, \mathcal{O}_C) = \min \dim_{\mathbb{C}} (\text{coker} \varphi : j(C, x) \to \mathcal{O}_{C,x})$ where the minimum is taken over all $\mathcal{O}_{C,x}$–linear maps. Now the Jacobian ideal $j(C, x)$ of an isolated singularity cannot be generated by a single element and there is an isomorphism $\varphi : j(C, x) \cong \mathfrak{m}_{C,x}$ exactly if (C, x) is quasihomogeneous.

(ii) We have to look for an $\mathcal{O}_{C,x}$–linear map $\varphi : j(C, x) \to \mathcal{O}_{C,x}$ whose restriction to (C_i, x) has minimal cokernel. The above statement follows immediately.

4.2 Let (C, x) be quasihomogeneous with positive weight vector $w = (w_1, w_2)$ and (weighted) degree d, then (as an $\mathcal{O}_{C,x}$–ideal) $I^{\text{es}}(C, x)$ is generated by the Jacobian ideal $j(C, x)$ and all monomials $u^\alpha v^\beta$ with $w_1 \cdot \alpha + w_2 \cdot \beta \geq d$. Furthermore we have the normalization

$$n : \mathcal{O}_{C,x} \hookrightarrow \mathfrak{O} := \prod_{i=1}^{r} \mathbb{C}\{t\}$$

where r denotes the number of local irreducible components $(C^{(i)}, x)$ of (C, x) (not to be confused with the global components C_i).

In the following, we use the notations $\text{cond}({\mathcal{O}})$, $\text{cond}({j})$ respectively $\text{cond}({I^{\text{es}}})$ for the conductor ideals of $\mathcal{O}_{C,x}$, the Jacobian respectively the equisingularity ideal in $\mathcal{O}_{C,x}$, where, for an $\mathcal{O}_{C,x}$–ideal I,

$$\text{cond}(I) := \{ g \in I \mid g \cdot \mathfrak{O} \subset I \}.$$

Furthermore, for all these $\mathcal{O}_{C,x}$–ideals, we denote by $\Gamma(I) \subset \mathbb{N}^r$ the set of values of I and by $\mathfrak{c}(I) \in \mathbb{N}^r$ the conductor of I, that is $\Gamma(\text{cond}(I)) = \mathfrak{c}(I) + \mathbb{N}^r$.

Lemma 4.3 Let (C, x) be quasihomogeneous of degree d, then

(i) $\text{isod}_{x}(N_{C/S}^{\text{es}}, \mathcal{O}_C) = \delta(C, x) - \dim_{\mathbb{C}}(I^{\text{es}}(C, x)/\text{cond}(I^{\text{es}}))$

especially: $\text{isod}_{x}(N_{C/S}^{\text{es}}, \mathcal{O}_C) \geq 1$ with equality if and only if $j(C, x) = I^{\text{es}}(C, x)$.

(ii) $\text{isod}_{C_i,x}(N_{C_i/S}^{\text{es}}, \mathcal{O}_C) = \dim_{\mathbb{C}}((\mathcal{O}_{C,x}/\text{cond}({\mathcal{O}})) \otimes \mathcal{O}_{C_i,x}) - \dim_{\mathbb{C}}((I^{\text{es}}(C, x)/\text{cond}(I^{\text{es}})) \otimes \mathcal{O}_{C_i,x})$.

17
Proof:

(i) To calculate \(\text{isod}_x(\mathcal{N}_{C/S}^{es}, \mathcal{O}_C) \) we have to consider an \(\mathcal{O}_{C,x} \)-linear mapping

\[
\Psi : I^{es}(C, x) \rightarrow \mathcal{O}_{C,x}
\]

with minimal cokernel. We know that such a \(\Psi \) maps \(\text{cond}(I^{es}) \) to \(\text{cond}(\mathcal{O}) \), hence we obtain the estimate

\[
\text{isod}_x(\mathcal{N}_{C/S}^{es}, \mathcal{O}_C) \geq \dim_C(\mathcal{O}_{C,x}/\text{cond}(\mathcal{O})) - \dim_C(\mathcal{O}_{C,x}/\text{cond}(I^{es})) = \delta(C, x) - \dim_C(I^{es}(C, x)/\text{cond}(I^{es}))
\]

with equality if and only if there exists a \(\Psi \) that maps \(\text{cond}(I^{es}) \) onto \(\text{cond}(\mathcal{O}) \), or equivalently (using \(\varphi : j(C, x) \xrightarrow{\cong} m_{C,x} \)) if and only if we can find an \(\mathcal{O}_{C,x} \)-linear mapping

\[
\Phi : I^{es}(C, x) \rightarrow j(C, x)
\]

of weighted degree \(g(j) - g(I^{es}) \). Now \(g(I^{es}) - \frac{1}{C} \) is a maximal (in the sense of [De]) in the semigroup \(\Gamma(I^{es}) \supset \Gamma(j) \). Hence, \((g(\mathcal{O}) - g(j)) + g(I^{es}) - \frac{1}{C} \) is a maximal in \(\Gamma(\mathcal{O}) \) and using the symmetry of \(\Gamma(\mathcal{O}) \) we see that

\[
(g(\mathcal{O}) - \frac{1}{C}) - (g(\mathcal{O}) - g(j) + g(I^{es}) - \frac{1}{C}) = g(j) - g(I^{es}) \in \Gamma(\mathcal{O}).
\]

The additional statement is an immediate consequence from the fact that all monomials of degree at least \(d \) are contained in \(\text{cond}(I^{es}) \); thus,

\[
\dim_C(I^{es}(C, x)/\text{cond}(I^{es})) = \dim_C(j(C, x)/\text{cond}(I^{es}) \cap j(C, x)) \\ \leq \dim_C(j(C, x)/\text{cond}(j)) = \delta(C, x) - 1.
\]

(ii) Follows from the considerations above. \(\square \)

Remark 4.4 If \((C, x) \) is quasihomogeneous, then it is easy to see that

\[
\dim_C((\mathcal{O}_{C,x}/\text{cond}(\mathcal{O})) \otimes \mathcal{O}_{C_1,x}) = \dim_C(\mathcal{O}_{C,x}/\text{cond}(\mathcal{O}_C)) + (D \cdot C_1, x) \\ \dim_C((I^{es}(C, x)/\text{cond}(I^{es})) \otimes \mathcal{O}_{C_1,x}) \geq \dim_C(I^{es}(C_1, x)/\text{cond}(I^{es}(C_1, x)))
\]

(where \(C_j, j = 1, \ldots, s \) are the irreducible components of \(C \) and \(D = \bigcup C_j \)). Thus we obtain as an upper bound

\[
\text{isod}_{C, x}(\mathcal{N}_{C/S}^{es}, \mathcal{O}_C) \leq \text{isod}_x(\mathcal{N}_{C_1/S}^{es}, \mathcal{O}_{C_1}) + (D \cdot C_1, x).
\]

Furthermore, for integer weights \(w_1 \geq w_2, \gcd(w_1, w_2) = 1, \) the difference is bounded by \(\frac{w_1-1}{w_2} + 2 \).

4.5 Examples:

(i) If \((C, x) \) is an ADE–singularity, then \(\text{isod}_x(\mathcal{N}_{C/S}^{es}, \mathcal{O}_C) = 1 \).
(ii) If \((C, x)\) is homogeneous of degree \(r \geq 3\), then
\[
isod_x(N_{C/S}^{\alpha}, \mathcal{O}_C) = \frac{r \cdot (r-1)}{2} - 2 = \tau^\alpha(C, x) - \text{mult}_x(C)
\]
furthermore, let \(C = C_i \cup D\) as above, then we obtain for \((C_i, x)\) a smooth branch
\[
isod_{C_i, x}(N_{C_i/S}^{\alpha}, \mathcal{O}_C) = r - 2,
\]
while in the singular case
\[
isod_{C_i, x}(N_{C_i/S}^{\alpha}, \mathcal{O}_C) = (C_i \cdot D, x) + \text{isod}_x(N_{C_i/S}^{\alpha}, \mathcal{O}_{C_i}).
\]
More generally, these statements are valid, if \((C, x)\) is an ordinary \(r\)–tuple point \((r\) smooth branches with different tangents, \(r \geq 3\)); in this case each equimultiple deformation is equisingular.

(iii) If \((C, x)\) has the local equation \(u^p - v^q = 0\) where \(q \geq p \geq 3\) and \((C_i, x)\) consist of \(b \leq r = \text{gcd}(p, q)\) irreducible branches, then
\[
isod_{C_i, x}(N_{C_i/S}^{\alpha}, \mathcal{O}_C) = \frac{b}{2r} \cdot \left((pq - b^2) + (r - p - q) - \left\lfloor \frac{q - 2}{p} \right\rfloor \right) - M,
\]
where \(M = 2\) unless \(b = 1\) and \(q = k \cdot p\) \((k \in \mathbb{N})\), then \(M = 1\).

4.6 Now let \(S = \mathbb{P}^2\) and \(C \subset \mathbb{P}^2\) be different from the union of \(d \geq 3\) lines through one point and \(C' \subset \mathbb{P}^2\) denote the (irreducible) generic polar of \(C\) (cf. \(3.10\)) with affine equation \(\alpha \cdot f_x + \beta f_y = 0\).

Lemma 4.7

(i) \(\text{isod}_x(N_{C'/\mathbb{P}^2}^{\alpha}, \mathcal{O}_{C'}) \geq 0\) with equality if and only if \((C, x)\) is quasihomogeneous.

(ii) \(\text{isod}_x(N_{C'/\mathbb{P}^2}^{\alpha}, \mathcal{O}_{C'}) \leq \delta(C', x) = \cdots - \text{dim}_C(I^{\bullet}(C, x) \otimes \mathcal{O}_{C', x}/\text{cond}(I^{\bullet}(C, x) \otimes \mathcal{O}_{C', x})).\)

Proof: By definition, equality in (i) is equivalent to the statement that the \(\mathcal{O}_{C', x}\)–ideal generated by \(f, f_x\) and \(f_y\) is generated by one single element. Obviously, this holds exactly if \((C, x)\) is quasihomogeneous, (ii) follows from the considerations in the proof of Lemma 4.3.

Remark 4.8 The generic polar \(C'\) depends on the whole curve \(C\) and not only on the germ \((C, x)\), hence, in general it is not enough to know the local equation of \((C, x)\) to be able to calculate \(\text{isod}_x(N_{C'/\mathbb{P}^2}^{\alpha}, \mathcal{O}_{C'})\). For example, if \((C, x)\) is homogeneous of degree \(d \geq 6\), \((C', x)\) need not be quasihomogeneous. But, in special cases, we are able to give explicit formulas:

4.9 Examples:

(i) If \((C, x)\) is an ADE–singularity, then \(\text{isod}_x(N_{C'/\mathbb{P}^2}^{\alpha}, \mathcal{O}_{C'}) = 0\).

(ii) If \((C, x)\) has the (homogeneous) local equation \((u^r - v^q = 0)\) \((r \geq 3)\) then \((C', x)\) has an equation \((\tilde{u}^r - \tilde{v}^q = 0)\) and
\[
isod_x(N_{C'/\mathbb{P}^2}^{\alpha}, \mathcal{O}_{C'}) = \frac{r \cdot (r-3)}{2}.
\]
Moreover, in the case of a (not homogeneous) local equation \((u^p - v^q = 0)\) \((q > p \geq 3)\), \((C', x)\) has an equation \((\tilde{u}^p - \tilde{v}^q = 0)\) and we obtain the estimate
\[
isod_x(N_{C'/\mathbb{P}^2}^{\alpha}, \mathcal{O}_{C'}) \geq \frac{2 \text{gcd}(p-1, q-1) - \text{gcd}(p, q) - 1}{2} - \left\lfloor \frac{q}{p} \right\rfloor + \varepsilon
\]
where \(\varepsilon = 0\) unless \(p\) divides \(q\), then \(\varepsilon = 1\).
4.10 Problem: Do the different isomorphism defects considered above behave (lower) semicontinuous under equianalytic respectively equisingular deformations of C/S?
5 Applications and Examples

Corollary 5.1 (i) Let \(C \subset \mathbb{P}^2 \) be a curve of degree \(d \) with ordinary \((k_i)\) multiple points \((i = 1, \ldots, N)\) as the only singularities, \(C = C_1 \cup \ldots \cup C_s \) its decomposition into irreducible components \((\deg C_i = d_i)\) then

\[
(H^\ast_{\mathbb{P}^2}, C) \text{ is smooth of dimension } d \cdot (d + 3) + \sum_{j=1}^{N} \left(\frac{k_j \cdot (k_j + 1)}{2} - 2 \right), \text{ if for } i = 1, \ldots, s
\]

\[
3 \cdot d_i > \sum_{x \in C_i \cap \text{Sing} C \text{ mult}_x (C)} \text{mult}_x (C_i)
\]

where \(\text{mult}_x (C) \) (respectively \(\text{mult}_x (C_i) \)) denote the multiplicity of \(C \) (respectively \(C_i \)) at \(x \).

(ii) Let \(C \subset \mathbb{P}^2 \) be a curve of degree \(d \) whose singularities are all of local equations \((u^{p_i} - v^{q_i} = 0)\) \((q_i \geq p_i)\) or ADE–singularities, then

\[
(H^\ast_{\mathbb{P}^2}, C) \text{ is smooth of dimension } d \cdot (d + 3) + \sum_{i=1}^{N} \left(\frac{(p_i + 1) \cdot (q_i + 1) - \gcd(p_i, q_i) - 5}{2} - \left\lfloor \frac{q_i}{p_i} \right\rfloor + \varepsilon_i \right)
\]

where \(\varepsilon_i = 0 \) unless \(p_i \) divides \(q_i \), then \(\varepsilon_i = 1 \), if

\[
4d > 4 + \sum_{\{\text{ADE}\}} \mu(C, x) + \sum_{\{\text{not ADE}\}} (p_i + 2q_i - 3 - \gcd(p_i - 1, q_i - 1)).
\]

Proof: The statements follow immediately from Corollary 3.12 and Example 4.5 (ii), respectively Example 4.9 (ii). □

Remark 5.2 The result in (i) was already obtained by C. Giacinti-Diebolt \([\text{Gia}]\) using vanishing theorems on the normalization of \(C \). It implies the ancient result of Severi \([\text{Sev}]\) that for a curve \(C \) with no other singularities but ordinary double points \((H_{\mathbb{P}^2}^\ast, C)\) is smooth.

Another consequence of the calculations in Chapter 4 is the following: the contribution of a quasi-homogeneous singularity \((C, x)\) with local equation \((u^p - v^q + \tilde{f}(u, v) = 0)\), \(q \geq p \geq 3 \), to the right–hand side in the \(3d \)–criterion for an irreducible curve \(C \) is

\[
\tau^c(C, x) \cdot \text{isod}_{\ast}(N_{C/S}^\ast, \mathcal{O}_C) = p + q - \gcd(p, q) - \varepsilon
\]

where \(\varepsilon = 0 \), unless \(q \equiv 1 \mod p \), then \(\varepsilon = 1 \), while the contribution of an \(A_k \)–singularity is \(k - 1 \). This corresponds to the result of E. Shustin in \([\text{Sh2}]\).

Nevertheless, in some cases the new \(4d \)–criterion gives more information:

5.3 Example:

(a) \((x^4 - x^2 z^2 + y^2 z^2 + y^3 z) \cdot y \cdot (x + 2y + z) \cdot (x - 2y - z) = 0\) defines a reducible curve \(C \subset \mathbb{P}^2 \) having exactly 3 ordinary triple points lying on 1 line (hence, Corollary 5.1 does not apply) and 7 ordinary double points. But \(4d = 28 > 23 = 4 + \tau(C) \); hence, \((H_{\mathbb{P}^2}^\ast, C)\), respectively \((H_{\mathbb{P}^2}^\ast, C)\) are smooth of dimension 16.
5.4 In general, it is a difficult problem to determine for a given \(d \) whether there exists a projective plane curve of degree \(d \) having a fixed number of singularities of given analytic type. On the other hand, the local deformations of a plane curve singularity are well understood. Hence, knowing about the existence of one low degree curve with “big” singularities our 4\(d \)-criterion allows us to give positive answers to some of the above existing problems (answers which we did not obtain with the 3\(d \)-criterion in [36K]).

Remark 5.5 1. The surjectivity statement in [3, 12] (i) implies: let \(C \subset \mathbb{P}^2 \) be of degree \(d \) such that \(H^1(C, N_{C/P}^{\text{reg}}) = 0 \) and let \(\{x_1, \ldots, x_n\} \) be any subset of \(\text{Sing}(C) \). If, for \(i = 1, \ldots, n \), the germ \((C, x_i)\) admits a deformation with nearby fibre having singularities \(y_1^i, \ldots, y_n^i \), then \(C \) admits an embedded deformation with nearby curve \(C_1 \subset \mathbb{P}^2 \) having \(y_1^1, \ldots, y_1^n, \ldots, y_n^n \) as singularities. Hence, there exists a curve of degree \(d \) with the \(y \)'s as singularities.

2. The 4\(d \)-criterion in [3, 12] has the advantage that \(C \) need not be irreducible. On the other hand, in the 3\(d \)-criterion in [3, 12] and [3, 12] we can completely forget about \(A_1 \)-singularities on \(C \). By Lemma 4.1, for a node we have \(\tau(C, x) - \text{isol}_{C, x}(N_{C/P}^{\text{reg}}, \mathcal{O}_C) \leq 0 \), which can be neglected in the right-hand side of the 3\(d \)-criterion (we actually obtain \(-1 \) if the node results from the intersection of two global components of \(C \)).

3. Since, for a node \(N_{C/S,x}^{\text{reg}} = N_{C/S,x}^{\text{reg}}; \tau_{C,x} = \tau_{C,x}^{\text{reg}} \) and since the isomorphism defect is a local invariant, we can neglect nodes also in the 3\(d \)-formulas for \(\varepsilon \). For the 4\(d \)-criterion, however, nodes have to be counted with 1 (Lemma 4.7).

5.6 Examples:

(b) the irreducible curve \(C \subset \mathbb{P}^2 \) with affine equation
\[
f(x, y) = y^2 - 2x^2y + c_1xy^2 + c_2y^3 + x^4 - 2c_1x^3y + c_3x^2y^2 + c_4xy^3 + c_5y^4 + c_6x^5
\]
where \(c_1 := 16\alpha\beta - 66\beta^2, c_2 := 3\alpha\beta - 2\beta^2, c_3 := -(c_7+c_2), c_4 := -4\alpha+13, c_5 := \beta^2 - c_1, c_6 := 24\alpha\beta - 92\beta^2 \) and \(\alpha, \beta \) (complex) solutions of \(4\alpha^2 - 30\alpha + 55 = 0 \) and \(\beta^3 = \alpha^2 - 7\alpha + 12 \) of degree 6 has exactly one singularity, which is of type \(A_{19} \). (The equation of this curve was found by H. Yoshihara (cf. [Yo]). Now 4\(d \) = 24 > 23 = \(\tau(C) + 4 \) and, hence, each combination of \(A \)-singularities given by an adjacent subdiagram of \(A_{19} \) occurs on a curve of degree 6 (this is a very simple proof of a well-known result which was previously proved by using moduli theory of \(K3 \)-surfaces).

(c) The curve \(C \subset \mathbb{P}^2 \) with homogeneous equation \(x^9 + zx^8 + z(xz^3 + y^4)^2 = 0 \) has exactly one singularity at \((0:0:1)\) which is of type \(A_{31} \). Again we have \(4d = 36 > 35 = \tau(C) + 4 \), hence \(H_{p_2}^{\text{reg}} \) is smooth at \(C \). \(C \) is obtained by a small deformation of Luengo’s example of a degree 9 curve \((x^9 + z(xz^3 + y^4)^2 = 0 \), having an \(A_{35} \)-singularity) with non-smooth \((H_{p_2}^{\text{reg}}, C) \). Of course, our criterion supports also this non-smoothness since \(4d = 36 < 39 = \tau(C) + 4 \).

(d) \(x^7 + y^7 + (x - y)^2x^2y^2z = 0 \) defines an irreducible curve \(C \subset \mathbb{P}^2 \) which has 3 transverse cusps (not quasihomogeneous!) at \((0:0:1)\) and no other singularities. Since \(4d = 28 > 24+4-1 > \tau(C) + 4 - \text{isol}_{0:0:1}(N_{C/P}^{\text{reg}}, w_{C'}) \) we see that every local deformation of 3 transverse cusps can be realized by curves of degree 7.
References

[AGV] Arnol'd, V.I.; Gusein-Zade, S.M.; Varchenko, A.N.: Singularities of differentiable maps, Vol. I. Birkhäuser–Verlag (1985).

[Art] Artin, M.: Deformations of singularities. Tata Inst. Fund. Res. Lect. Notes, Vol. 54 (1976).

[Bin] Bingener, J.: Darstellbarkeitskriterien für analytische Funktoren. Ann. Sci. École Norm. Sup. 13, 317–347 (1980).

[BrK] Brieskorn, E.; Knörrer, H.: Plane algebraic curves. Birkhäuser–Verlag (1986).

[De] Delgado, de la Mata, F.: The semigroup of values of a curve singularity with several branches. Manuscripta math. 59, 347–374 (1987).

[DH] Díaz, S.; Harris, J.: Ideals associated to deformations of singular plane curves. Trans. Amer. Math. Soc., 309, No. 2, 433–467 (1988).

[Fl] Flenner, H.: Ein Kriterium für die Offenheit der Versalität. Math. Z. 178, 449–473 (1981).

[Gab] Gabièrlov, A.M.: Bifurcations, Dynkin–diagrams and modality of isolated singularities. Functional analysis and its appl. 8, 94–98 (1974).

[Gia] Giacinti-Diebolt, C.: Variétés des courbes projectives planes de degré et lieu singulier donnés. Math. Ann. 266, 321–350 (1984).

[Gr] Greuel, G.-M.: Easy deformations of curve singularities. Manuscript, University of Kaiserslautern, 1994.

[GrK] Greuel, G.-M.; Karras, U.: Families of varieties with prescribed singularities. Comp. Math. 69, 83–110 (1989).

[He] Hesse, M.O.: Über die Bedingung, unter welcher eine homogene ganze Function von n unabhängigen Variabeln durch lineäre Substitutionen von n andern unabhängigen Variabeln auf eine homogene Function sich zurückführen läßt, die eine Variable weniger enthält. Journal für reine und angew. Math. 42, 117–124 (1851).

[La] Laudal, A.: Formal moduli of algebraic structures. SLN 754, Springer–Verlag (1979).

[Lo] Lossen, C.: Äquisinguläre Familien von Kurven auf Flächen. Diplomarbeit Univ. Kaiserslautern (1994).

[Mu] Mumford, D: Lectures on curves on an algebraic surface. Princeton Univ. Press (1966).

[Schl] Schlessinger, M.: Functors of Artin rings. Trans. Amer. Math. Soc. 130, 208–222 (1968).

[Sev] Severi, F.: Vorlesungen über algebraische Geometrie. Teubner (1921) resp. Johnson (1968).

[Sh1] Shustin, E.: Versal deformation in the space of plane curves of fixed degree. Function. Anal. Appl. 21, 82–84 (1987).

[Sh2] Shustin, E.: On manifolds of singular algebraic curves. Sel. Math. Sov. 10, No. 1, 27–37 (1991).

[Sh3] Shustin, E.: Geometry of equisingular families of plane algebraic curves. To appear.

[Te] Teissier, B.: Résolution simultanée I, II. In: Seminaire Demazure–Pinkham–Teissier 1976/1977, SLN 777, Springer–Verlag (1980).
[Wa1] Wahl, J.M.: Deformations of plane curves with nodes and cusps. Ann. Journ. of Math. 96, 529–577 (1974).

[Wa2] Wahl, J.M.: Equisingular deformations of plane algebroid curves. Trans. Amer. Soc. 193, 143–170 (1974).

[Zar] Zariski, O.: Studies in equisingularity I–III. Amer. Journ. Math. 87, 507–536 and 972–1006 (1965), respectively Amer. Journ. Math. 90, 961–1023, (1968).

[Yos] Yoshihara, H.: On plane rational curves. Proc. Japan Acad. 55, Ser. A, 152–155 (1979).