The Influence of The Covid-19 Pandemic on Mode Choice Preference in Jakarta

Siti Maimunah, Ainun Rahmawati, Mokhammad Rifqi Tsani
Politeknik Keselamatan Transportasi Jalan, Indonesia

Abstract
The COVID-19 pandemic has had an enormous global impact in only a few months. It coerces the government in any country to impose some strict policies to stop COVID-19 from spreading, i.e., stay-at-home requirements or household lockdowns. Travel behaviours are essentially impacted due to such measures. This study focuses on changes in travel behaviour caused by the COVID-19 outbreak in Jakarta. The data was taken through an online survey of 1138 respondents. The questionnaire in this study includes questions about the mode choice containing the purpose of the trip, frequency, travel distance, and several other supporting attribute factors in the pre-pandemic period until the early months of the pandemic. Results clarified that people’s travel behaviour was considerably contrastive between those two different times, i.e., the frequency of being outside, transport apps used, and Eid and Christmas Homecoming Tradition. Moreover, the top destinations are grocery stores indicated for primary movement only. In this case, it can be seen that there is a shifting mode for people’s daily movement, from what was previously public to private vehicles. Distance, activities, driving license, and vehicle ownership were essential considerations for mode choice throughout the COVID-19 outbreak. The findings of this study may be helpful in transportation planning and establishing policies in the future.

Keywords: Covid-19 Pandemic; Mode Choice Preference; Travel Behaviour

INTRODUCTION
The COVID-19 outbreak has significantly disrupted daily life, routine activities, and travel patterns globally (Bhaduri et al., 2020). People in Indonesia (especially Jakarta) currently have to obey the government’s orders to stay at home, entirely or partially, which leads to new habits in behaviour, including travel behaviour. During pandemics, many cities implemented several limitations to stop the virus breakout.

Besides, the steps which the central and local governments take in dealing with the spread of this virus tend to differ according to each level of society’s social and economic conditions. The solutions mentioned are school termination, virtual classes and courses, remote working, limited activities in shops and dine-in restaurants, preventing public and social events, and other things. (Abdullah et al, 2020). Such rules, restrictions, and current policies will fundamentally change people’s lifestyles and ways of interacting; for a certain period, it will also impact economic conditions (de Haas et al., 2020; Mogaji, 2020). Meanwhile, a person’s level of vigilance against the chances of being exposed to the spread of the virus will have an impact on travel behaviour and mode choice preference.
RESEARCH METHOD

Survey Design and Sample
The questionnaire was created and distributed using the Indonesian language via Google Forms. It was widely dispersed using personal messages, online communities, emails, and social media platforms, e.g., Twitter, Instagram, and Facebook, from November through December 2020 and collected 1138 responses using random sampling techniques. The questionnaire was divided into three conditions for comparison. The first condition was the travel mode chosen before the COVID-19 pandemic, the second was during the early time of the pandemic (around March to June), and the last was recent. The questions consisted of socio-demographic variables followed by the character of daily travel to factors that should be considered in their travel behaviour before and during the COVID-19 pandemic (early and recent times).

The socio-demographic factors in this study are age, monthly income in Indonesian Rupiah, gender, education level, residence status, marital status, employment status, vehicle ownership, driving license ownership, how many school-age children in a household, employment status, and the working status of the spouse (whether or not their spouse is also a worker).

The fundamental role of movement was characterized as the reason individuals predominantly attempted their trips. It is possible that during the pandemic, people will reduce their trivial trips. Nevertheless, sometimes some conditions require a person to keep traveling outside their zone (in this case Jakarta Region), such as a business trip. Thus, it is crucial to ask in detail and precisely about the purpose of the trip and when their first travel outside Jakarta was made. It identifies a few things, e.g., whether the trips are regular or occasional, distance, frequency, mode choice, and travel time.

The virus spread significantly in Indonesia when the survey was run at the end of the year. Therefore, in general, it can be said that respondents have experienced living in the pandemic era for several months. Hence, the acquired data can be thoroughly assessed regardless of Jakarta’s lockdown rules and timelines.

Multinomial Logistic Regression
A multinomial logit is a derivation from a logit regression which demonstrably inferred that a linear model would be ensued by responses’ log odds, with the linear equation as follows:

$$\log \frac{P_{ij}}{P_{i-j}} = \alpha_j + \beta_j X_i$$

Where α_i is a constant and β_j is a regression coefficient vector, for $j = 1, 2, \ldots, j-1$.

Maimunah and Shinji (2015) stated that supplement I, observed individually, has been deleted due to a simplification issue. Moreover, Maimunah and Shinji (2015) explained that in some cases, $P_j, j = 1, \ldots, j-1$ denotes the likelihood that the j^{th} option is supposed to be determined. The calculated parameters will determine the impact of changes in X on the probability ratios’ logarithm. The restriction using a calculated probability equal to 1 in total must be considered a constraint. Every equation assumes that the attribute X is a linear function of the logarithm of the probability, which came from one option that compared to another. The next step is to ensure that the sum of the individual probability for the four outcomes must equal one. These odds also depend on other odds associated with the other two equations. There will be unnecessary to do an estimation for all equations. The logit decision, which created a constraint to eliminate the approximation parameters, can be introduced to the reduced model. Renormalizing the predicted parameter value after the initial least squares regression might be used to achieve this (Maimunah & Shinji, 2015). However, the errors are probably triggering the occurrence of heteroscedasticity. Additionally, generalized least squares should be considered for the cross-equation error.
correlation. A general form of the maximum probability technique should be applied in case of inadequate repetition as it will ensure the accurate statistics of large samples and consistent parameter values (Pindyck, 1998).

FINDINGS AND DISCUSSION
Descriptive Analysis

This article is supplementing and giving information about variables used in specific models. Most respondents who were allowed to react to the question stated that their daily travels, including their leisure travel, had been impacted by the COVID-19 pandemic. As we might see from the figure below, people may likely avoid traveling, as shown in the pink colour of Figure 1, meaning they were not going anywhere during the pandemic. The primary commute purpose of vacation also sharply decreased before and during pandemics. The intention of respondents’ daily commute other than work is dominated by grocery shopping and doing exercise.

![Figure 1. Respondents’ daily commutes other than work](image)

As the pandemic spread and forced the world into lockdown, business organizations, governments, and companies had no option but to switch to remote or online working. Many people rapidly transitioned from working in offices to working from home. As a result, there has been a drastic increase in the number of remote workers in Jakarta lately, as shown in Figure 2 below. Before the pandemic, most people were making daily commutes to their offices. This situation might be affected people’s travel behaviour as well.

![Figure 2. Remote Work Statistics](image)
It can be seen in Figure 3 that before the COVID-19 pandemic, the intensity of people checking the internet before leaving the house reached the middle score. Meanwhile, this habit changed after the pandemic. People often check conditions outside through the internet before doing outdoor activities. This might be a prevention to protect themselves from contracting and transmitting the virus.

Eid and Christmas Day are usually the busiest times for domestic travel when Indonesians gather with relatives and friends across the cities. Since the COVID-19 pandemic was announced, the government has appealed to residents not to travel during the Eid holiday to minimize the spread of COVID-19. As shown in Figure 4, the movement has been in freefall since the start of the pandemic, while public officials have appealed to the public to avoid unnecessary travel.
Figure 4. Homecoming on Eid (above) and Christmas (below)

Figure 5 below provides descriptive statistics of the people's movement frequency other than work, as seen in the figure. During the early pandemic, due to lockdown policies, they were strictly not going anywhere, and now the behaviour has changed to twice a week compared to pre-COVID days when people tend to move up to three times a day.

Figure 5. Commuting Frequency other than work
Modelling Result

The collected data can be estimated using multinomial logit as the dependent variable is the selected mode choice. The result of model-fitted information demonstrates that the Chi-square test in 1% and 5% levels are significant for each case in some variables. The first case in Table 2 was the result of people's mode choice preference before the pandemic, the second case in Table 3 was the result of the early COVID-19 pandemic (around March – July), and the last case in Table 4 was the current situation. The parameter estimates for each variable were described in detail in the appendix. Further, the result mentioned in Table 1 below indicates that Pseudo R-Square is also high through this model, scoring greater than 0.2 for the Cox and Snell, Nagelkerke, and Mc Fadden indicator.

Pseudo R-Square
Cox and Snell
Nagelkerke
McFadden
Table 2. Likelihood Ratio Test (Case 1)

Effect	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.
Intercept	468.194	0.000	0	-
income	477.876	6.848	2	0.008
age	481.818	13.624	2	0.001
distance	486.497	213	2	0.699
other_act	482.648	14.854	8	0.808
internet	465.683	1.499	2	0.757
multi_trip	476.615	2.446	2	0.294
travel_time	494.471	26.777	12	0.009
df	471.231	3.007	2	0.222
dic	476.633	8.439	2	0.165
spouse_work	474.239	6.045	2	0.049
spouse_wid	469.270	1.076	2	0.694
car_ow	450.859	2.045	2	0.000
motor_ow	455.243	17.279	2	0.169
child_school	469.587	3.035	2	0.615
job	473.776	5.553	2	0.016
edu	472.297	5.035	2	0.023
marital	472.553	3.959	2	0.136
gender	466.576	1.365	2	0.600

The Chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0. This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.

Table 3. Likelihood Ratio Test (Case 2)

Effect	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.
Intercept	332.027	0.000	0	-
income	330.085	2.000	2	0.156
distance	342.581	12.954	2	0.002
other_act	343.697	14.070	8	0.690
internet	330.034	4.057	2	0.116
multi_trip	333.016	3.399	2	0.110
travel_time	350.098	24.642	14	0.000
df	350.060	6.000	2	0.012
dic	355.089	12.931	2	0.001
spouse_work	352.739	1.285	2	0.262
spouse_wid	356.670	6.050	2	0.049
car_ow	359.788	60.142	2	0.000
motor_ow	355.054	23.427	2	0.000
child_school	329.511	2.850	2	0.067
job	353.797	6.170	2	0.046
edu	355.031	10.305	2	0.001
marital	336.484	3.839	2	0.147
gender	335.245	0.719	2	0.690

The Chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0. This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.

Table 4. Likelihood Ratio Test (Case 3)

Effect	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.
Intercept	394.952	0.000	0	-
income	395.024	0.000	0	-
distance	402.591	7.629	2	0.002
other_act	403.536	8.573	2	0.014
internet	398.645	1.882	2	0.190
multi_trip	395.090	0.160	4	0.404
travel_time	403.296	16.305	14	0.000
df	395.045	4.993	2	0.097
dic	407.650	12.699	2	0.032
spouse_work	396.800	1.052	2	0.309
spouse_wid	395.539	1.487	2	0.275
car_ow	442.735	47.272	2	0.000
motor_ow	408.180	5.220	2	0.000
child_school	398.337	3.345	2	0.196
job	395.895	3.943	2	0.139
edu	403.691	14.999	2	0.009
marital	402.292	8.299	2	0.016
gender	396.236	3.274	2	0.196

The Chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0. This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.
As public transportation was selected as the reference category in the parameter estimations, the model reflects that the frequency of doing activities other than work is the only significant, influential factor in all models before and during a pandemic.

Numerous things influence people's mode of transportation extensively. Several crucial elements that probably influence the mode selections, particularly during a pandemic, were found. In the first model, factors that significantly impact mode choice preference before the COVID-19 pandemics are income, age, frequency of activities other than work, travel time, motorbike driving license, whether or not their spouse is a worker, job status, and vehicle ownership. People are more likely to use a car with a higher income. The older people and the longer time on their daily commute also make them more likely to choose a car. Interestingly, if the respondents' spouse was also a worker, the model said that respondents were more likely to use a car than public transport. As mentioned in the appendix's first table, the students were likely to use private vehicles on their daily commutes.

In the second model, the early COVID-19 pandemic, the statistical tests validated that the significant factors on respondents' travel behaviour are distance, frequency of activities other than work, travel time, driving license and vehicle ownership, and whether or not their spouse was doing remote working. If their spouse was not working from home (WFH), meaning they still go to the office, the respondents tended to use public transport instead of private vehicles. Moreover, respondents with longer distances scarcely choose public transport over private vehicles. In contrast, short-distance travel reveals otherwise.

The last model was quite interesting. It can be said that people adapted to the new normal condition, and they were using their privilege of living. Factors significantly affecting mode choice preference in Jakarta are age, distance, frequency of activities other than work, driving license and vehicle ownership, education, and marital status. Single people are more likely to choose private vehicles over paratransit or public transport than married people. Furthermore, compared to non-vehicle owners, car owners are more likely to select private transportation over paratransit or public transportation since they have more options for doing that and holding a driving license. People with any level of education also observed that if they have a higher liability of selecting an option in transport mode, they tend to choose it rather than public transport or paratransit. This was reasonable because public transport can be an ideal setting to spread coronavirus and may even increase the risk in certain boroughs.

CONCLUSION

Theoretically, the government's implementation of the lockdown policy and the personal dread of infectious disease will more or less cause changes in travel behaviour compared to the normal situation before the pandemic. This research explored how changes in travel habits brought on by the covid outbreak were explored through the results from an online poll in some periods. Here are some key findings from this study. First, during the COVID-19 pandemic, grocery shopping is the primary purpose for making daily movements other than work and followed by outdoor exercises, such as taking a walk, jogging, or riding a bike outside. Subsequently, the use of private vehicles was increasing, followed by the decreasing use of paratransit (i.e., taxi, ojek, and on-demand ride service) and public transport in contrast. Travel behaviour of huge annual events for Indonesian people, such as Eid and Christmas homecoming traditions, was also dramatically changing. During a pandemic, people tend to cancel their annual homecoming plan and celebrate in a small private group or individual celebration to avoid spreading the virus. It indeed made a significant impact on transportation.

Monthly income, age, travel time, motorbike driving license, car ownership, motorbike ownership, job status, activities other than work, and whether or not their spouse is a worker
became the most significant factors affecting their mode choice before the COVID-19 pandemic. In the second model, the early time of the COVID-19 pandemic, some significant variables, i.e., distance, travel time, activities other than work, spouse remote working status (WFH), driving license, and vehicle ownership, were identified. Particular variables become influential while others are no longer significant, e.g., income, job status, and age. Age, distance, driving license and vehicle ownership, education level, and marital status were the most influential factors in mode choice in recent times during the COVID-19 outbreak.

The findings could suggest transportation planning in the new-normal era or during the post-pandemic period. These encounters may influence future conduct long after the actual infection is not, at this point, a danger. People have experienced the ease and comfort of doing main activities, e.g., working and studying, from home, and this might impact their daily commute in the future. So, these conditions, encountered with the new patterns of activities and mobilities after the pandemic spread out, will surely impact individuals’ travel behaviour.

LIMITATION & FURTHER RESEARCH

It is necessary to note that this research paper has many limitations. Because this research used an online survey as a method of data collection, it indicates that the respondents, with a narrow age range, responded to this questionnaire and are only citizens accustomed to using the internet. Summing up results for an average population in a given society will probably be useless.

Furthermore, Van Dorn et al. (2020) mentioned that several factors, which have not been included in this research, such as health inequalities and socioeconomic conditions, also played a significant role in identifying travel behaviour. Almost certainly, the behaviour patterns in this study cannot fully represent the authentic habits of respondents, especially before the pandemic. Future studies should solve this issue with larger and more diverse representative samples.

REFERENCES

Abdullah, Muhammad., Dias, Charitha., Muley, Deepti., Shahin, Md. 2020. Exploring the impacts of COVID-19 on travel behaviour and mode preferences. ScienceDirect Journal.

Bhaduri, Eeshan., Manoj B.S., Wadud, Zia., Goswani, Arkopal K., Choudhury, Charisma F. 2020. Modelling the effects of COVID-19 on travel mode choice behaviour in India. Science Direct Journal.

De Haas, M., Faber, R., Hamersma, M., 2020. How COVID-19 and the Dutch ‘intelligent lockdown’ change activities, work and travel behaviour: Evidence from longitudinal data in the Netherlands. Transp. Res. Interdisc. Perspect. 100150.

De Vos, J. (2020). The effect of COVID-19 and subsequent social distancing on travel behaviour. Transp. Res. Interdisc. Perspect. 100121.

Goolsbee, Austan., Syverson, Chad (2020) Fear, Lockdown, and Diversion: Comparing Drivers of Pandemic Economic Decline 2020. National Bureau of Economic Research

Maimunah, Siti., Kaneko Shinji. 2015. Commuters’ behaviour and attitude toward current transport mode chosen. IDEC Journal.

Pindyck, Robert S., Rubinfeld, Daniel L., Hill/Irwin, Mc Graw. Econometric Models and Economic Forecasts 4th edition. 1998.

Van Dorn, A., Cooney, R.E., Sabin, M.L., (2020). COVID-19 exacerbating inequalities in the US. Lancet (London, England) 395 (10232), 1243.
APPENDIX

Parameter Estimates

Parameter	Estimate	SE	CI	P-value	LR Statistic	LR DF
Intercept	-4.628	0.17	-5.07 to -4.18	0.00001	124.52	1
X1	0.123	0.03	0.06 to 0.19	0.00001	124.52	1
X2	0.012	0.01	0.00 to 0.03	0.012	8.64	1
X3	-0.003	0.02	-0.04 to 0.01	0.868	1.35	1
X4	0.001	0.01	-0.01 to 0.02	0.973	0.01	1

Note: The confidence interval (CI) is presented for each parameter estimate. The P-value is calculated for the significance of each parameter. The LR Statistic represents the likelihood ratio statistic, and LR DF stands for the degrees of freedom for the likelihood ratio test.
The Influence of The Covid-19 Pandemic on Mode Choice Preference in Jakarta

Siti Maimunah, Ainun Rahmawati, Mokhammad Rifqi Tsani

Parameter Variables	t	Std. Error	Mean	95% Confidence Interval	Lower Bound	Upper Bound
model 1		0.21	0.13	0.15	0.11	0.17
model 2		0.22	0.14	0.17	0.13	0.18
model 3		0.23	0.15	0.19	0.14	0.21
model 4		0.24	0.16	0.21	0.16	0.22
model 5		0.25	0.17	0.23	0.17	0.24
model 6		0.26	0.18	0.25	0.18	0.26
model 7		0.27	0.19	0.27	0.19	0.28
model 8		0.28	0.20	0.28	0.20	0.29
model 9		0.29	0.21	0.29	0.21	0.30
model 10		0.30	0.22	0.30	0.22	0.31
model 11		0.31	0.23	0.31	0.23	0.32
model 12		0.32	0.24	0.32	0.24	0.33
model 13		0.33	0.25	0.33	0.25	0.34
model 14		0.34	0.26	0.34	0.26	0.35
model 15		0.35	0.27	0.35	0.27	0.36
model 16		0.36	0.28	0.36	0.28	0.37
model 17		0.37	0.29	0.37	0.29	0.38
model 18		0.38	0.30	0.38	0.30	0.39
model 19		0.39	0.31	0.39	0.31	0.40
model 20		0.40	0.32	0.40	0.32	0.41
model 21		0.41	0.33	0.41	0.33	0.42
model 22		0.42	0.34	0.42	0.34	0.43
model 23		0.43	0.35	0.43	0.35	0.44
model 24		0.44	0.36	0.44	0.36	0.45
model 25		0.45	0.37	0.45	0.37	0.46
model 26		0.46	0.38	0.46	0.38	0.47
model 27		0.47	0.39	0.47	0.39	0.48
model 28		0.48	0.40	0.48	0.40	0.49
model 29		0.49	0.41	0.49	0.41	0.50

a. This parameter was not included in the model.

b. This parameter was not included in the model.
Parameter Estimates

Parameter	B	SE	P	95% Confidence Interval Low	95% Confidence Interval High	LogLikelihood	Significance
Income	0.00	0.00	1	0.00	0.00	3.00	0.05
age	0.00	0.00	1	0.00	0.00	3.00	0.05
distance	0.00	0.00	1	0.00	0.00	3.00	0.05
income_age	-0.00	0.00	1	-0.00	0.00	3.00	0.05
income_dist	-0.00	0.00	1	-0.00	0.00	3.00	0.05
age_dist	0.00	0.00	1	0.00	0.00	3.00	0.05
income_age_dist	0.00	0.00	1	0.00	0.00	3.00	0.05
age_dist	0.00	0.00	1	0.00	0.00	3.00	0.05
income_dist	0.00	0.00	1	0.00	0.00	3.00	0.05
age_dist	0.00	0.00	1	0.00	0.00	3.00	0.05

The table above represents the parameter estimates for the model on the influence of the Covid-19 pandemic on mode choice preference in Jakarta.

- The columns denoted by P indicate statistical significance.
- The significance level is set at 0.05.