AGE-RELATED VARIATION IN RED BLOOD CELL STABLE ISOTOPE RATIOS (δ\(^{13}\)C AND δ\(^{15}\)N) FROM TWO YUPIK VILLAGES IN SOUTHWEST ALASKA: A PILOT STUDY

Michael J. Wilkinson, Youlim Yai, Diane M. O’Brien

Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, USA

ABSTRACT

Objectives. A significant fraction of the Alaska Native population appears to be shifting from a primarily subsistence-based diet to a market-based diet; therefore, the ability to link diet pattern to disease risk has become increasingly important to predicting public health needs. Our research aims to develop the use of stable isotope ratios as diet pattern biomarkers, based on naturally-occurring isotopic differences in the elemental composition of subsistence and non-subsistence foods. These differences are reflected in human blood, hair and fingernail isotope signatures.

Study design. In this preliminary study, we investigate the potential for \(^{13}\)C and \(^{15}\)N to serve as dietary biomarkers for age-related dietary differences in a subset of participants involved with a long-term study initiated by the Center for Alaska Native Health Research (CANHR) at the University of Alaska Fairbanks (UAF).

Methods. We measured δ\(^{13}\)C and δ\(^{15}\)N in red blood cells collected from 12 “elder” participants (age 60+ yrs) and 14 younger participants (age 14-19 yrs). Samples were evenly divided between males and females, and between two villages sampled in 2004. We also sampled market and subsistence foods in Fairbanks, AK, as an indicator of the isotopic differences likely to be observed in village foods.

Results. Elders were significantly enriched in \(^{15}\)N, but depleted in \(^{13}\)C, relative to younger participants. These differences are consistent with increased intake of marine subsistence in elders, and of certain market foods in younger participants. However, elders were considerably more variable in δ\(^{15}\)N, suggesting greater differences among individuals in their usual intake.

Conclusions. Overall we find that RBC stable isotope signatures exhibit variation consistent with previously documented dietary patterns in Alaska Natives, and we describe future directions for developing these biomarkers for diet pattern monitoring.

(Int J Circumpolar Health 2007; 66(1):31-41)

Keywords: Yup’ik, diet assessment, stable isotopes, marine subsistence
STABLE ISOTOPES AND NUTRITION IN ALASKA NATIVES

INTRODUCTION

The Yup’ik Eskimos of Southwest Alaska are a population in which the prevalence of obesity is equivalent to that observed in the general NHANES III study, yet rates of obesity-related chronic disease, such as diabetes, are relatively low (< 3%). The genetic and dietary factors contributing to obesity-related health risk in this population are the subject of ongoing research by the Center for Alaska Native Health Research (CAHNR) at the University of Alaska Fairbanks (UAF). The marine subsistence-based diet of the Yup’ik people may historically have served to protect them from chronic, obesity-related diseases, via high levels of n-3 polyunsaturated fatty acids (PUFAs) (1-4). However, many Alaska Native populations are transitioning from subsistence to market-based diets and lifestyles, with associated increases in non-insulin dependent diabetes mellitus, hypertension, and cancer (5-9). If subsistence-based diets are protective, then a diet shift toward market foods may accelerate the development of chronic disease in this population. Young people may be particularly at risk, as their diet is the highest in carbohydrates and sugars, and lowest in subsistence intake (4, 5). If these diet patterns are maintained into adulthood, they may have significant consequences for public health.

Establishing links between diet pattern and health risk is challenging, due to the multitude of correlated factors contributing to risk of chronic obesity-related disease. Dietary methods based on self-reporting are essential to understanding the complex mix of subsistence and market diets in these populations (1, 4, 10-12). However, these methods can be problematic due to bias, cost, and the time investment and compliance required of participants (13-15). While biomarker-based methods of diet assessment typically yield less information, data obtained by these techniques are often easier to collect and are relatively free of bias (16). The development of precise instruments for quantifying dietary exposure is essential for relating diet pattern to risk of complex disease (17).

This research aims to develop practical, unbiased diet pattern biomarkers, based on naturally-occurring isotopic differences in the elemental composition of subsistence and non-subsistence foods (18). These isotopic signatures (\(^{13}C/^{12}C\), \(^{15}N/^{14}N\), \(^{18}O/^{16}O\), D/H, and \(^{34}S/^{32}S\)) are incorporated into tissues, including blood, nail and hair, and reflect diet at the time the tissue was formed (19, 20). Unique isotopic signatures distinguish marine from terrestrial foods (\(^{15}N/^{14}N\), \(^{34}S/^{32}S\)) (21, 22), food and water deriving from higher and lower latitudes (\(^{18}O/^{16}O\), D/H) (19), foods deriving from different trophic levels (\(^{15}N/^{14}N\)), and foods deriving from C3 plants (most herbaceous plants and shrubs) or C4 plants (typically grasses) (\(^{13}C/^{12}C\)) (23, 24). The difference in carbon isotope signatures among plant types is manifested in the human food supply by strong \(^{13}C\) enrichment in corn and sugar cane, both being C4 plants. This signature is also passed to commercial meat, most of which is fed on corn for a large portion of its lifetime (25). Soda sweetened with high fructose corn syrup is also \(^{12}C\) enriched (this study). \(^{15}N\) is enriched in marine subsistence for two reasons: the N cycle in marine ecosystems produces enriched \(^{15}N\), and because \(^{15}N\) bioaccumulates and marine subsistence foods are typically high on the food chain (21, 22).
Stable isotope ratios have been used to assess paleohuman diets for over two decades (26, 27); for example, to date the introduction of agriculture to prehistoric human societies (28, 29), and to assess the importance of marine foods to the diet of a prehistoric population (30-32). Stable isotope analyses are also gaining attention for their potential as dietary biomarkers in modern nutritional studies (18, 33-35), and in human forensics (36). Because Yup’ik Eskimos are a high-latitude population which relies on a mix of local marine and terrestrial subsistence and market foods, they present an ideal population for testing the utility of isotopic dietary biomarkers for diet pattern assessment in nutritional studies.

This paper introduces our approach and presents isotope data from a preliminary subset of our study population. Here we investigate the potential for 13C and 15N to serve as dietary biomarkers for age-related dietary differences. We present isotope data from foods commonly consumed in Southwest Alaska, to establish the patterns of isotopic variation expected to affect study participants. We test whether different aspects of sample handling affect blood δ^{13}C and δ^{15}N, to establish a sampling protocol. Finally, we compare isotope signatures in red blood cells from two groups of study participants, elders (> 60 yrs) and teenagers (14-19 yrs), taking advantage of blood samples collected for ongoing research by CANHR. We select these two age classes because we expect they will have the greatest differences in diet (4), and thus be the most likely to exhibit significant differences in isotopic signatures. Because 15N tends to be enriched in marine foods, and elders consume more subsistence than teens, we predict that elders will be comparatively enriched in 15N. Because teens consume significant quantities of sweetened foods like soda (4, 5), we predict that they will be enriched in 13C, which is particularly high in cane sugar and corn syrup. It is important to evaluate whether isotopic methods can capture these important dietary differences before stable isotope methods for diet assessment in this population are developed further. The ability to track such changes using isotopic analysis may prove to be a significant tool in efforts to monitor the health of this population and to associate dietary differences with disease.

MATERIALS AND METHODS

Food sampling
In the spring of 2005, a variety of foods representing known sources of nutrition for individuals in Yup’ik villages were selected for isotopic analysis. Subsistence foods were donated by local hunters and fishers in the Fairbanks area and included moose, caribou, salmon, and halibut. Non-subsistence food was bought from a regional chain grocery store in Fairbanks (Fred Meyer) and included Crisco™, pilot bread, two types of rice (jasmine and pearl), pasta, two types of chicken, turkey, three types of beef, Coke™, and Tang™. A single muscle sample was taken from each of five different caribou and four moose contributions, whereas three muscle samples were taken from a single halibut and two salmon. Triplicate samples were taken from each bought item. All samples were dried at 50°C for 48 hours and ground to a fine powder using a Wig-L-Bug ball mill. Sub-samples of 0.2 - 0.4 mg were weighed into tin capsules for isotope analysis.
Sample handling test
Blood samples from two Fairbanks residents were drawn to test the effects of EDTA treated tubes and autoclaving on blood δ¹³C and δ¹⁵N. Blood from each participant was collected into three 10 ml Vacutainer® Whole Blood Tubes: one K3 EDTA-treated tube (15% Solution, 0.117 ml, 17.55 mg) and two untreated glass tubes, as described below. Samples were centrifuged for 15 minutes at 1000 rpm, and plasma was removed. Each sample was then further divided into two portions, one of which was autoclaved for 20 minutes at 121°C. Samples were then freeze dried, powdered with a mortar and pestle, and weighed out for isotope analysis. Each sample was analyzed in triplicate to test the effects of tube type and autoclaving on blood isotopic signatures. Each participant handled and prepared their own samples, so that exposure to non-autoclaved samples posed no pathogen risk.

Sample preparation
All blood samples from the Yukon Kuskokwim Delta villages were autoclaved for 20 minutes at 121°C degrees to destroy blood-borne pathogens. Samples were then freeze-dried, powdered with a mortar and pestle or a Wig-L-Bug ball mill, and stored in a dessicator until analysis. Between 0.3 and 0.35 mg of powder was transferred into tin capsules for isotope analysis. Peptone standards ranging 0.25 - 0.3 mg were prepared in an identical fashion.

Blood sampling
Blood samples were collected in 2004 by the Center for Alaska Native Health Research (CANHR) from two Yup’ik villages in Southwest Alaska, as approved by UAF IRB and the Yukon Kuskokwim Health Corporation. Samples were collected into untreated glass tubes, centrifuged for 15 minutes at 1000 rpm, and plasma was removed for separate analyses. The remaining clots of red blood cells (RBCs) were stored at -80°C in the laboratory. A total of 89 clot samples were collected, and among these 26 samples were selected for isotope analysis. These included all participants ≥ 60 years of age (= 12 samples, 6 female, 6 male), regardless of cancer (1) or diabetes (1 “unknown”) status. We matched these samples with 14 samples (7 female, 7 male) drawn from participants 14-19 years of age (from 29 available samples of this age class). These were selected using a random number generator (academics.hws.edu/bio/oldsite/pages/random.html). Unlike elders, younger members of this population were excluded from consideration if cancer, diabetes, or medications were self-reported. Body mass index was allowed to fluctuate as a random variable.

Sample analysis
Food and blood samples were analyzed for carbon and nitrogen isotopes at the Alaska Stable Isotope Facility. Briefly, δ¹³C and δ¹⁵N were determined from 0.3 - 0.35 mg samples with an Elemental Analyzer (Costech Scientific Inc.) interfaced with a Delta Plus XL Isotope Ratio Mass Spectrometer (IRMS) via the Conflo III interface (Thermo-Finnigan) (EA-IRMS). Data are presented in delta notation as δX = (Rsample − Rstandard)/Rstandard • 1000‰, where X = ¹⁵N or ¹³C, R = the ratio of heavy to light isotope, and international standards are VPDB for carbon and N₈ atm for nitrogen. Analytical precision was evaluated via the standard deviations of peptone samples prepared and run concurrently with blood samples. This was 0.08 ‰ for δ¹³C and 0.2 ‰ for δ¹⁵N.
Data analysis
All data were initially analyzed via full factorial ANOVA, with non-significant interaction terms excluded from the final model. Normality of residuals was evaluated with the Shapiro-Wilks test. Outliers were identified via two criteria, first if their residual fell more than 3 standard deviations from the average residual for the model tested, and second by the method of Hoaglin et al (37). All analyses were performed using JMP IN version 5.1.2 (SAS Institute Inc.).

RESULTS

Isotope ratios of food items
Typical subsistence and market foods available in Fairbanks, AK exhibited large variations in δ¹⁵N and δ¹³C (Fig. 1). As predicted, marine derived foods were highly enriched in δ¹⁵N and intermediate in δ¹³C relative to other foods. Halibut was enriched in both δ¹⁵N and δ¹³C relative to salmon. In contrast, caribou and moose were low in both δ¹⁵N and δ¹³C, exhibited little isotopic variation, and were indistinguishable from plant-based market foods such as pasta, rice, crackers, and vegetable shortening. Market meats (chicken and beef) were similar in δ¹⁵N to terrestrial meats but had a considerably higher δ¹³C. This difference, noted elsewhere, is due to the large amounts of corn fed to US livestock (25, 34, 36, 38). Tang™ and Coke™ were distinct from all other foods, showing highly enriched δ¹³C values that reflect the signature of cane sugar and/or corn syrup (Fig. 1).

Figure 1. Carbon and nitrogen isotope ratios of market and subsistence food items collected in Fairbanks, AK. Dotted lines group food items expected to be isotopically similar and of nutritional importance: marine subsistence foods (salmon, halibut), terrestrial subsistence (caribou, moose), market meat (chicken, beef), market grain/vegetable (Crisco™, rice, pasta, crackers) and corn syrup/sugar cane (Coke™, Tang™). Error bars indicate SD of replicate samples as outlined in methods. Coke™, Crisco™, and Tang™ contained no measurable nitrogen and are assigned δ¹⁵N = 0 for graphical purposes.
Sample handling test
Both δ\(^{13}\)C and δ\(^{15}\)N differed significantly between the two participants in the sample handling test: -20.89 ± 0.05‰ and 7.1 ± 0.2‰ (participant 1) vs. -19.95 ± 0.08‰ and 6.4 ± 0.2‰ (participant 2), n=8 (Table I). However, neither tube treatment (EDTA vs. untreated) nor autoclaving affected blood δ\(^{13}\)C or δ\(^{15}\)N (Table I), nor were there any significant interactions. This result suggests that tube type and autoclaving do not influence the isotope composition of field collected samples, and that all subsequently prepared blood samples should be autoclaved for safety.

Isotope ratios of blood samples
Blood δ\(^{13}\)C and δ\(^{15}\)N from elder (≥ 60 yrs) and younger (14-19 yrs) members of two Yup'ik villages indicates age-related differences in blood isotope composition (Fig. 2). Blood samples from elder members of this population were enriched in \(^{15}\)N (two tailed t-test, \(p=0.0005\)) and depleted in \(^{13}\)C (two-tailed t-test, \(p<0.0001\)) relative to teenagers. Although the range of δ\(^{13}\)C within elder and younger groups was similar (2.3 vs. 2.6‰, respectively), δ\(^{15}\)N varied more widely among the elder participants than among younger participants (4.0 vs. 1.9‰ respectively) (Fig. 2).

Table I. Effects of tube type and autoclaving treatment on the δ\(^{13}\)C and δ\(^{15}\)N of two volunteers, tested with ANOVA. n =24

Effect	δ\(^{15}\)N				δ\(^{13}\)C			
	SS	df	F	p	SS	df	F	p
Participant	3.06	1	57.76	< 0.0001	5.27	1	1225.7	< 0.0001
Tube type	0.008	1	0.15	0.7070	0.01	1	2.52	0.1282
Autoclaving	0.002	1	0.05	0.8268	0.0003	1	0.078	0.7823
Error	1.06	20			20			

\(^{a}\)Sum of Squares

Figure 2. Red blood cell δ\(^{13}\)C and δ\(^{15}\)N in elder (≥ 60 yrs) and younger participants (14-19 yrs). Cross hairs give age group means ± SE.
Table II. ANOVA of the effects of sex, age and village on participant RBC δ^{15}N (n= 25) and RBC δ^{13}C (n=26), including significant interactions.

Effect	RBC δ^{15}N	RBC δ^{13}C
	SS a df F p	SS a df F p
Age	19.58 1 48.24 < 0.0001	12.87 1 24.47 < 0.0001
Sex	2.58 1 6.35 0.0204	0.80 1 1.52 0.2318
Age \times Sex	3.64 1 8.98 0.0071	0.15 1 0.29 0.5980
Village	0.01 1 0.01 0.9093	2.31 1 4.39 0.0485
Error	8.04 20	11.04 21

a Sum of Squares
The effects of age, sex and village on both $\delta^{13}C$ and $\delta^{15}N$ were evaluated with ANOVA. As reported above, elders were significantly enriched in $\delta^{15}N$ relative to younger participants (Table II). Females were slightly $\delta^{15}N$ enriched relative to males, however, that effect was observed only in the elders, as reflected by a significant age \times sex interaction (Table II, Fig. 3). Younger males and females did not differ in $\delta^{15}N$ in this population (Fig. 3). One elder, female participant (age 92 yrs, $\delta^{15}N = 7.3 \%$) qualified as a statistical outlier and was excluded from this analysis (Fig. 2). Leaving the outlier in did not affect the age effect, but the age \times sex interaction became non-significant. In contrast, younger participants were enriched in $\delta^{13}C$ relative to elder participants, and there was no difference in $\delta^{13}C$ between males and females of either age. However, the magnitude of the $\delta^{13}C$ difference between elders and teenagers differed between villages, as reflected in a significant age \times village interaction (Table II, Fig. 4).

DISCUSSION

Although our sampling of foods is still preliminary, we find large isotopic variation in different classes of food commonly consumed in Alaska, consistent with trends identified in other geographic regions (25, 39). These data suggest that nitrogen isotope ratios may be a useful biomarker of marine subsistence intake, as marine foods were $\delta^{15}N$ enriched beyond any of the other foods in our sample (including both subsistence and market meats). This observation is consistent with a number of other studies in which $\delta^{15}N$ in human bone collagen is used to indicate reliance on marine resources (31, 32, 35). In using $\delta^{15}N$ as a quantitative marker of relative intake, care must be taken to measure the foods typically consumed in a given study population. This is because differences in $\delta^{15}N$ between marine foods (here observed between salmon and halibut samples) may confound the relationship between $\delta^{15}N$ and the extent of marine intake by an individual.

Foods exhibited four distinct groups of carbon isotope signatures. Most depleted in $\delta^{13}C$ were market foods manufactured from C3 plants (rice, pasta, crackers, and vegetable shortening). The carbon isotope signatures of these foods were indistinguishable from our samples of terrestrial subsistence (moose and caribou). Marine foods were enriched relative to these foods but still intermediate in $\delta^{13}C$. Market meats and sweetened beverages containing a significant amount of carbon derived from corn or sugar cane (both C4 plants) were substantially enriched in $\delta^{13}C$ isotope. Significantly depleted $\delta^{13}C$ suggests proportionally higher intake of terrestrial subsistence foods or market foods derived from C3 plants. Enriched $\delta^{13}C$ suggests proportionally higher intake of foods manufactured from corn (livestock, soda sweetened with corn syrup) or sugar cane; however, it could also represent greater marine intake relative to terrestrial intake. In this case, information from nitrogen or other isotopes indicative of marine foods can help to disentangle these explanations.

The isotopic data from participant red blood cells demonstrate that known dietary differences between age groups in the Yup'ik population (Luick and Bersamin, unpublished) are reflected in isotopic differences among individual participants. Enriched $\delta^{15}N$ in the elder participants of this study suggests higher intake of marine foods relative to younger
participants, as has been noted in several other studies of indigenous Arctic populations (1, 4-6). However, variation in nitrogen signatures was also high among elders (4%), suggesting variation in consumption of 15N enriched foods among individuals. The one data point excluded as an outlier suggested very little marine intake in one elder female. Interestingly, neither of the villages sampled in this study is directly on the coast, although salmon and other fish of marine origin are available, and freshwater fish also show elevated δ^{15}N. We would expect to see even larger age-related disparities in 15N in villages more closely connected to marine resources. We also found slightly elevated δ^{15}N in female elders compared to male elders, perhaps suggesting slightly more marine intake. We do not suggest that this pattern is general to the population as a whole, as it is based on a very small number of samples. However, a systematic pattern of isotopic variation suggests that the use of stable isotopes as dietary biomarkers may have considerable power when applied to a larger dataset.

Teenagers were significantly enriched in 13C relative to elder participants from these study villages. Because δ^{15}N is concomitantly reduced among these participants, it is unlikely that enriched 13C can be attributed to marine intake. Instead, this difference is consistent with a higher consumption of non-indigenous market foods, particularly those based on corn (beef, chicken, high fructose corn syrup) and/or cane sugar. This pattern is consistent with the findings of age-targeted nutritional studies among Yup’ik (4) and Alaska Native (5) youth. Consumption of sweetened drinks and foods by youth is of great concern due to the risk of obesity and juvenile diabetes (40). Because red blood cells are predominantly composed of protein, they will tend to reflect carbon from dietary protein to a greater extent than carbon from dietary sugars (41). Thus, our finding of only elevated 13C in teenagers is conservative, and probably underestimates the magnitude of difference in corn syrup consumption between age groups. Further study will address whether we can develop a more precise isotopic marker specific to beverage consumption, based on the combination of carbon and deuterium isotopes. Deuterium (2H) and 18O become less abundant in surface water with increasing latitude, and could indicate reliance on beverages bottled outside of Alaska when assessed jointly with 13C.

It is also worth considering whether the patterns of stable isotope signatures documented here may have a non-dietary explanation. Animals (including humans) in negative nitrogen balance have been demonstrated to show enriched δ^{15}N values (42, 43). However, the magnitude of these changes is typically on the order of < 1 %, whereas the differences in δ^{15}N exhibited here range over 4 %. None of the participants in this study were categorized as underweight. Lipid content of the sampled tissue can affect δ^{13}C (44); however, red blood cells have very little lipid associated with them and thus this factor is unlikely to affect participant δ^{13}C.

Our goal with this study was to test whether stable isotope signatures measured in individual RBCs exhibit variation consistent with previously documented dietary patterns in Alaska Natives and food isotopic signatures. Our analysis of RBCs from elder and younger members of two Yup’ik villages indicates that isotopic signatures vary in this population based on age-related dietary differences. However, the observed trends are based upon a very small data-set in which dietary recall data were unavailable. It is therefore our aim to match
blood isotopic signatures in a greater number of participants with information on their usual diet, deriving from self-reported, three day diet records. We are also investigating the correlation between blood and hair isotopic signatures. Should isotope signatures correlate well with aspects of usual diet that are of particular interest in health monitoring, and if hair and blood isotope signatures are equally informative, we have the potential to develop a non-invasive, simple but powerful tool for monitoring diet pattern.

Acknowledgements
We thank Scarlett Hopkins, Anya Goropashnaya, and Charity Gitschel for field and laboratory assistance, Johanna Herron for providing demographic data, Tim Howe and Norma Haubenstock at the Alaska Stable Isotope Facility for sample analyses, and Bert Boyer for helpful comments on this manuscript. This research was made possible by a grant from the U.S. National Institutes of Health (NIH), National Center for Research Resources (NCRR) (P20 RR16430). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NCRR or the NIH. Sample analyses were supported by a UAF Center for Research Services Undergraduate Research Award to Michael J. Wilkinson.

REFERENCES
1. Adler AI, Boyko EJ, Schraer CD, Murphy NJ. Lower Prevalence of Impaired Glucose-Tolerance and Diabetes-Associated with Daily Seal Oil or Salmon Consumption among Alaska Natives. Diabetes Care 1994;17(12):1498-1501.
2. Clarke SD. Polyunsaturated fatty acid regulation of gene transcription: A molecular mechanism to improve the metabolic syndrome. J Nutr 2001;131(4):1129-1132.
3. Tai ES, Corella D, Demissie S, et al. Polyunsaturated fatty acids interact with the PPARA-L162V polymorphism to affect plasma triglyceride and apolipoprotein C-III concentrations in the Framingham heart study. J Nutr 2005;135(3):397-403.
4. Nobmann ED, Ponce R, Mattil C, et al. Dietary intakes vary with age among Eskimo adults of northwest Alaska in the GOCADAN study, 2000-2003. J Nutr 2005;135(4):856-862.
5. Murphy NJ, Schraer CD, Theile MC, et al. Dietary Change and Obesity Associated with Glucose-Intolerance in Alaska Natives. J Am Diet Assoc 1995;95(6):676-682.
6. Kuhnlein HV, Receveur O, Soueida R, Egeland GM. Arctic Indigenous Peoples experience the nutrition transition with changing dietary patterns and obesity. J Nutr 2004;134(6):1447-1453.
7. Gittelsohn J, Wolever TMS, Harris SB, Harris-Giraldo R, Hanley AJG, Zinman B. Specific patterns of food consumption and preparation are associated with diabetes and obesity in a native Canadian community. J Nutr 1998;128(3):541-547.
8. Murphy NJ, Schraer CD, Theile MC, et al. Hypertension in Alaska Natives: association with overweight, glucose intolerance, diet and mechanized activity. Ethn Health 1997;2(4):267-75.
9. Slattery ML. What is the role of diet in the development of cancer in American Indian and Alaska Native populations? J Cancer Educ 2005;20(1):92-96.
10. Nobmann ED, Byers T, Lanier AP, Hankin JH, Jackson MY. The Diet of Alaska Native Adults - 1987-1988. Am J Clin Nutr 1992;55(5):1024-1032.
11. Ballew C, Tzilkowski AR, Hamrick K, Nobmann ED. The contribution of subsistence foods to the total diet of Alaska natives in 13 rural communities. Ecol Food Nutr 2006;45(1):1-26.
12. Nobmann ED, Ebbesson SO, White RG, et al. Dietary intakes among Siberian Yupiks of Alaska and implications for cardiovascular disease. Int J Circumpolar Health 1998;57(1):4-17.
13. Kipnis V, Subar AF, Midthune D, et al. Structure of dietary measurement error: Results of the OPEN biomarker study. Am J Epidemiol 2003;158(1):4-21.
14. Shai I, Rosner BA, Shahar DR, et al. Dietary evaluation and attenuation of relative risk: Multiple comparisons between blood and urinary biomarkers, food frequency, and 24-hour recall questionnaires: the DEARR study. J Nutr 2005;135(3):573-579.
15. Subar AF, Kipnis V, Troiano RP, et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN Study. Am J Epidemiol 2003;158(1):1-13.
16. Willett WC. The use of biomarkers in nutritional epidemiology. In: Kok FJvV, P., editor. Biomarkers of dietary exposure. London: Smith-Gordon; 1991. p. 9-14.
17. O’Rahilly S, Barroso I, Wareham NJ. Genetic factors in type 2 diabetes: The end of the beginning? Science 2005;307(5708):370-373.
18. Petzke KJ, Boeing H, Klaus S, Metges CC. Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J Nutr 2005;135:1515-1520.
19. Hobson KA. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 1999;120 (3):314-326.
20. Kelly JF. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 2000;78(1):1-27.
21. Hobson KA, Welch HE. Determination Of Trophic Relationships Within A High Arctic Marine Food Web Using Delta-C-13 And Delta-N-15 Analysis. Mar Ecol Prog Ser 1992;84(1):9-18.
22. Peterson BJ, Fry B. Stable Isotopes in Ecosystem Studies. Annu Rev Ecol Syst 1987;18:293-320.
23. Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annu. Rev PlantPhysiol Plant Mol Biol 1989;40:503-537.
24. McCutchan JH, Jr., Lewis WM, Jr., Kendall C, McGrath CC. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 2003;102(2):378-390.
25. Schoeller DA, Minagawa M, Slater R, Kaplan IR. Stable Isotopes of Carbon; Nitrogen and Hydrogen in the Contemporary North-American Human Food Web. Ecol Food Nutr 1986;18(3):159-170.
26. Schwarz HP, Schoeninger MJ. Stable Isotope Analyses in Human Nutritional Ecology. Yearbook of Phys Anthropol 1991;34:283-321.
27. Fogel ML, Tuross N, Johnson BJ, Miller GH. Biogeochemical record of ancient humans. Org Geochem 1997;27(5-6):275-287.
28. Van Der Merwe NJ, Vogel JC. 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 1978;276:815-816.
29. Richards MP, Schulting RJ, Hedges REM. Sharp shift in diet at onset of Neolithc. Nature 2003;425:366.
30. Chisholm BS, Nelson DE, Schwarz HP. Marine and terrestrial protien in prehistoric diets on the British Columbia coast. Curr Anthropol 1983;24(3):396-398.
31. Newsome SD, Phillips DL, Culeton B, Guilderson T, Koch PL. Dietary reconstruction of an early to middle Holocene human population from the central California coast: insights from advanced stable isotope mixing models. J Archaeol Sci 2004;31:1101-1115.
32. Richards MP, Jäger R, Cook J, Pettit FB, Stringer CB. Isotope evidence for the intensive use of marine foods by Late Upper Palaeolithic humans. J Human Evol 2005;49(3):390-394.
33. O’Connell TC, Hedges REM. Investigations into the effect of diet on modern human hair isotopic values. Am J Phys Anthropol 1999;108(4):409-425.
34. Bol R, Pflieger C. Stable isotope (C-13, N-15 and S-34) analysis of the hair of modern humans and their domestic animals. Rapid Commun Mass Spectrom 2002;16(23):2195-2200.
35. Williams JH, O’Connell TC. Differential relations between cognition and N-15 isotopic content of hair in elderly people with dementia and controls. J Gerontol A Biol Sci Med Sci 2002;57(12):M797-M802.
36. Fraser I, Meier-Augenstein W, Kalin RM. The role of stable isotopes in human identification: a longitudinal study into the variability of isotopic signals in human hair and nails. Rapid Commun Mass Spectrom 2006;20(7):1109-1116.
37. Hoaglin DC, Mosteller F, Tukey JW. Understanding robust and exploratory data analysis. New York: Wiley; 1983.
38. Macko SA, Engel MH, Andrusевич V, Lubec G, O’Connell TC, Hedges REM. Documenting the diet in ancient human populations through stable isotope analysis of hair. Phil Trans R Soc Lond B 1999;354(1379):65-75.
39. Minagawa M. Reconstruction of Human Diet from Delta-C-13 and Delta-N-15 in Contemporary Japanese Hair - a Stochastic Method for Estimating Multisource Contribution by Double Isotopic Tracers. Appl Geochem 1992;7(2):145-158.
40. Story M, Strauss KF, Zepherie E, Broussard BA. Nutritional concerns in American Indian and Alaska Native children: Transitions and future directions. J Am Diet Assoc 1998;98(2):170-176.
41. Gannes LZ, O’Brien DM, Rio. Martinez del Rio. Stable isotopes in animal ecology: assumptions, ca,veats, and a call for more laboratory experiments. Ecology 1997;78:1271-1276.
42. Hobson KA, Alisauskas RT, Clark RG. Stable-Nitrogen Isotope Enrichment in Avian-Tissues Due to Fasting and Nutritional Stress: Implications For Isotopic Analyses of Diet. Condor 1993;95(2):388-394.
43. Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, Hedges REM. Nitrogen balance and δ15N: Why you’re not what you eat during nutritional stress. Rapid Commun Mass Spectrom 2005;19:2497-2506.
44. Teece MA, Fogel ML. Preparation of ecological and biochemical samples for isotope analysis. In: de Groot PA, editor. Handbook of Stable Isotope Analytical Techniques. Amsterdam: Elsevier; 2004. p. 177-202.

Diane O’Brien
Center for Alaska Native Health Research
Institute of Arctic Biology
University of Alaska Fairbanks
Fairbanks, AK 99775-7000
USA
Email: ffdo@uaf.edu

International Journal of Circumpolar Health 66:1 2007 41