Use of antisense oligonucleotides to target Notch3 in skeletal cells

Ernesto Canalis1,2,3*, Michele Carrer4, Tabitha Eller3, Lauren Schilling3, Jungeun Yu1,3

1 Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, United States of America, 2 Department of Medicine, UConn Health, Farmington, Connecticut, United States of America, 3 The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, United States of America, 4 Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America

* canalis@uchc.edu

Abstract

Notch receptors are determinants of cell fate and function, and play an important role in the regulation of bone development and skeletal remodeling. Lateral Meningocele Syndrome (LMS) is a monogenic disorder associated with NOTCH3 pathogenic variants that result in the stabilization of NOTCH3 and a gain-of-function. LMS presents with neurological developmental abnormalities and bone loss. We created a mouse model (Notch3em1Ecan) harboring a 6691TAATGA mutation in the Notch3 locus, and heterozygous Notch3em1Ecan mice exhibit cancellous and cortical bone osteopenia. In the present work, we explored whether Notch3 antisense oligonucleotides (ASO) downregulate Notch3 and have the potential to ameliorate the osteopenia of Notch3em1Ecan mice. Notch3 ASOs decreased the expression of Notch3 wild type and Notch36691-TAATGA mutant mRNA expressed by Notch3em1Ecan mice in osteoblast cultures without evidence of cellular toxicity. The effect was specific since ASOs did not downregulate Notch1, Notch2 or Notch4. The expression of Notch3 wild type and Notch36691-TAATGA mutant transcripts also was decreased in bone marrow stromal cells and osteocytes following exposure to Notch3 ASOs. In vivo, the subcutaneous administration of Notch3 ASOs at 25 to 50 mg/Kg decreased Notch3 mRNA in the liver, heart and bone. Microcomputed tomography demonstrated that the administration of Notch3 ASOs ameliorates the cortical osteopenia of Notch3em1Ecan mice, and ASOs decreased femoral cortical porosity and increased cortical thickness and bone volume. However, the administration of Notch3 ASOs did not ameliorate the cancellous bone osteopenia of Notch3em1Ecan mice. In conclusion, Notch3 ASOs downregulate Notch3 expression in skeletal cells and their systemic administration ameliorates cortical osteopenia in Notch3em1Ecan mice; as such ASOs may become useful strategies in the management of skeletal diseases affected by Notch gain-of-function.

Introduction

Notch receptors (Notch1 through 4) are single-pass transmembrane proteins that play a critical role in cell fate and function [1, 2]. Notch1, 2 and 3 and low levels of Notch4 transcripts are
detected in bone cells, where each receptor acts in a distinct capacity to influence the fate of cells of the osteoblast and osteoclast lineages [3]. Interactions of Notch receptors with ligands of the Jagged and Delta-like families result in the cleavage of NOTCH and the release of its intracellular domain (NICD) [1]. The NICD translocates into the nucleus, and following the formation of a complex with recombination signal-binding protein for Ig of κ (RBPjk) and mastermind (MAML) it induces the transcription of target genes [4–6]. These include genes encoding Hairy Enhancer of Split (HES)1, 5 and 7 and HES-related with YRPW motif (HEY) 1, 2 and L [7].

Lehman Syndrome or Lateral meningocele syndrome (LMS) (Online Mendelian Inheritance in Man 130720) is a devastating monogenetic disorder associated with pathogenic variants of NOTCH3 [8–11]. Individuals affected by LMS present with meningoceles, distinct facial features, developmental delay, decreased muscle mass, cardiac valve defects, short stature, scoliosis and bone loss [8–11]. Exome sequencing of families affected by LMS revealed the presence of mutations or deletions in exon 33 of NOTCH3, that create a stop codon upstream of sequences coding for the proline (P), glutamic acid (E), serine (S) and threonine (T) (PEST) domain. As a consequence, the PEST domain, which is necessary for the ubiquitination and degradation of NOTCH3, is not translated and NOTCH3 is presumably stable, resulting in a gain-of-function [9]. Autosomal dominant inheritance and de novo heterozygous mutations are reported. Treatment of LMS is not available. NOTCH3 is critical for the function of mural vascular cells and pathogenic variants of NOTCH3 associated with mutations in the extracellular domain of NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) [12–15].

In an effort to understand the mechanisms and possible therapeutic avenues to treat individuals with LMS, we created a Notch3 knock-in mutant mouse model reproducing functional outcomes of the human disease [16]. For this purpose, we introduced a 6691-TAATGA mutation into the mouse genome upstream of sequences coding for the PEST domain, using CRISPR/Cas9 technology to create Notch3^{em1Ecan} (syn Notch3^{em1Ecan}) mutant mice that express a truncated NOTCH3 devoid of the PEST domain.

The administration of antisense oligonucleotides (ASO) has emerged as a novel therapeutic approach to downregulate wild type and mutant transcripts, and has been successful in the silencing of mutant genes in the central and peripheral nervous system, retina, liver and muscle [17–25]. ASOs are single-stranded synthetic nucleic acids that bind target mRNA by Watson-Crick pairing resulting in mRNA degradation by RNase H [26, 27]. Although attempts have been made to transport ASOs to bone, complex delivery systems were necessary and the technology is new to the correction of gene mutations in the skeleton [28].

Approaches to prevent or downregulate Notch signaling include the use of biochemical inhibitors of Notch activation, thapsigargin, antibodies to nicastrin or to Notch receptors or their ligands, and the use of molecules that disrupt the assembly of an active Notch transcriptional complex [29–34]. A limitation of these approaches is that either they are not specific inhibitors of Notch signaling or inhibit all Notch receptors, leading to a generalized Notch knockdown. Antibodies to the negative regulatory region (NRR) of Notch are specific and have been effective at preventing the activation of Notch receptors [35–37]. However, the pronounced downregulation of Notch activation may result in gastrointestinal toxicity, and a possible alternative is the use of second generation ASOs [38].

The purpose of the present work was to determine whether Notch3 could be downregulated in skeletal cells with a mouse specific Notch3 ASO and possibly ameliorate the osteopenia of Notch3^{em1Ecan} mice, a mouse model of LMS and NOTCH3 gain-of-function secondary to the stabilization of the NOTCH3 NICD resulting in higher levels of NOTCH3 activity. We postulated that Notch3 ASOs would target Notch3 and as a consequence decrease the levels of the
biologically active NOTCH3 NICD. To this end, cells of the osteoblast lineage were obtained from Notch3™em1Ecan and control mice and were treated with ASOs targeting Notch3 to determine their effects on the downregulation of Notch3. Notch3 ASOs were tested in vivo for their effects on the downregulation of Notch3 and on the skeletal microarchitecture of heterozygous Notch3™em1Ecan mice.

Materials and methods

Notch3 antisense oligonucleotides

ASOs targeting Notch3 mRNA were designed in silico by scanning through the entire sequence of murine Notch3 pre-mRNA, which was screened for potential oligonucleotides complementary to the pre-mRNA. Sequence motifs that were intrinsically problematic because of unfavorable hybridization properties, such as polyG stretches, or potential toxicity due to immunogenic responses, were avoided. Notch3 ASOs were tested for activity in vitro for downregulation of Notch3 mRNA in C2C12 cells at Ionis Pharmaceuticals (Carlsbad, CA), and for activity and toxicity in vivo at the Korea Institute of Toxicology (KIT, Daejeon, Korea). For this purpose, 7-week-old BALB/c male mice were administered ASOs at a dose of 50 mg/Kg subcutaneously once a week for a total of 3.5 weeks (4 doses). Body weights were determined weekly and mice were euthanized 48 h after the last dose of ASO. Liver, kidney and spleen were weighed, normalized to body weight and compared with organs from control mice. Blood was obtained by cardiac puncture, and plasma was collected for the measurement of alanine aminotransferase, aspartate aminotransferase, total bilirubin, albumin and blood urea nitrogen. These procedures were performed at, and approved by, the Animal Care and Use Committee of the Korea Institute of Toxicology. Total RNA was extracted from lung samples to determine Notch3 mRNA levels corrected for cyclophilin A expression. ASOs that downregulated Notch3 mRNA in the lung by more than 75% compared to a control ASO and without toxicity in vivo were selected. For this study, a mouse Notch3 ASO and control ASO that does not hybridize to any specific mRNA sequence were selected.

Notch3™em1Ecan mutant mice

A mouse model of Lehman Syndrome, termed Notch3™em1Ecan (syn Notch3™m1Ecan), harboring a tandem termination at bases 6691–6696 (ACCAAG—TAATGA) in exon 33 of Notch3 was previously reported and validated [16]. Notch3™em1Ecan mice were created in a C57BL/6J background. Genotypes were determined by PCR analysis of tail DNA using forward primer 5’- GTGCTCAGCTTTGGTCTGCTC-3’ and reverse primer 5’-CGCAGGAAGCGCGCTCATTA-3’ for Notch3™em1Ecan or 5’-CGCAGGAAGCGGGCCTTGG-3’ for the wild type allele (Integrated DNA Technologies, Coralville, IA). Heterozygous Notch3™em1Ecan mutants were crossed with wild type mice to generate ~50% heterozygous Notch3™em1Ecan mice and 50% control littermates to be characterized and administered Notch3 ASOs. Studies were approved by the Institutional Animal Care and Use Committee of UConn Health.

Osteoblast-enriched cell cultures

Osteoblasts were isolated from the parietal bones of 3 to 5 day old control and Notch3™em1Ecan mice following exposure to liberase TL 1.2 units/ml (Sigma-Aldrich St. Louis, MO) for 20 min at 37°C for 5 consecutive reactions [39]. The last 3 digestions of cells were pooled and seeded at a density of 10 x 10⁴ cells/cm², as reported [40]. Osteoblast-enriched cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with non-essential amino acids (both from Thermo Fisher Scientific, Waltham, MA) and 10% heat-inactivated fetal bovine
serum (FBS; Atlanta Biologicals, Norcross, GA) in a humidified 5% CO$_2$ incubator at 37˚C. Confluent osteoblast-enriched cells were exposed to DMEM supplemented with 10% heat-inactivated FBS, 100 μg/ml ascorbic acid and 5 mM β-glycerophosphate (both from Sigma-Aldrich) in the presence of Notch3 ASO or control ASO at various doses and periods of time as indicated in text and legends.

Bone marrow stromal cells

Femurs from 4 to 8 week old Notch3em1Ecan mice and littermate controls were dissected aseptically, the epiphysis removed and bone marrow stromal cells recovered by centrifugation, as described. Cells were pooled and seeded at a density of 1.25 x 106 cells/cm2 in α-minimum essential medium (α-MEM; Thermo Fisher Scientific) containing heat-inactivated 15% FBS and cultured at 37˚C in a humidified 5% CO$_2$ incubator. At confluence, cells were exposed to α-MEM supplemented with 10% FBS, 100 μg/ml ascorbic acid and 5 mM β-glycerophosphate and cultured in the presence of Notch3 or control ASOs at 20 μM.

Osteocyte-enriched cultures

To obtain osteocyte-enriched preparations, femurs or tibiae from 4 to 8 week old Notch3em1Ecan mice and control littermates were collected following sacrifice. Tissues surrounding the bones were dissected, the proximal region to the epiphysis excised and the bone marrow removed by centrifugation. The distal epiphyseal region was removed and the femoral fragments were sequentially exposed for 20 min periods to type II collagenase pretreated with 17 μg/ml Nα-Tosyl-L-lysine chloromethylketone hydrochloride and 5 mM EDTA (Thermo Fisher Scientific) at 37˚C to remove the endosteal and periosteal layers of cells, as described. Osteocyte-enriched bone fragments were obtained and cultured individually in DMEM supplemented with nonessential amino acids, 100 μg/ml ascorbic acid and 10% FBS for 72 h in a humidified 5% CO$_2$ incubator at 37˚C in the presence of Notch3 ASOs or control ASOs at 20 μM.

Cell proliferation assay

Cell replication was determined using the Cell Counting Kit-8 (CCK-8). In this assay, the tetrazolium salt WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophynyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt] produces a formazan dye, measured at an absorbance of 450 nm, upon reduction by cellular dehydrogenases. The assay quantifies viable cells and was used in accordance with manufacturer’s instructions (Dojindo Molecular Technologies, Rockville, MD).

In vivo administration of Notch3 ASOs

Four and a half week old male Notch3em1Ecan heterozygous mutant and sex-matched wild type littermates were administered Notch3 ASO or control ASO suspended in PBS subcutaneously at various doses and diverse periods of time as indicated in text and legends. To assess an effect on bone microarchitecture, ASOs were administered subcutaneously at a dose of 50 mg/Kg once a week for 4 consecutive weeks to 4.5 week old Notch3em1Ecan and control mice, and mice were euthanized at 8.5–9 weeks of age.

Microcomputed tomography (μCT)

Bone microarchitecture of one femur or vertebra (lumbar 3, L3) from experimental and one femur or L3 from control mice was determined using a microcomputed tomography
instrument (μCT 40; Scanco Medical AG, Bassersdorf, Switzerland), which was calibrated periodically using a phantom provided by the manufacturer [41, 42]. Femurs and vertebrae were placed in 70% ethanol and scanned at high resolution, energy level of 55 kVp, intensity of 145 μA and integration time of 200 ms. For cancellous microarchitecture, 160 slices at the distal femoral metaphysis or ~500 slices of L3 were acquired at an isotropic voxel size of 216 μm³ and a slice thickness of 6 μm, and chosen for analysis. Trabecular bone volume fraction and microarchitecture were evaluated starting ~1.0 mm proximal from the femoral condyles. For L3, the vertebral body was scanned in its entirety. Contours were manually drawn a few voxels away from the endocortical boundary every 10 slices to define the region of interest for analysis. The remaining slice contours were iterated automatically. Trabecular regions were assessed for total volume, bone volume, bone volume fraction (bone volume/total volume), trabecular thickness, trabecular number, trabecular separation, connectivity density and structure model index (SMI), using a Gaussian filter (σ = 0.8), and a threshold of 240 permil equivalent to 355.5 mg/cm³ hydroxyapatite [41, 42]. For analysis of femoral cortical bone, contours were iterated across 100 slices along the cortical shell of the femoral midshaft, excluding the marrow cavity. Analysis of bone volume/total volume, porosity, cortical thickness, total cross-sectional and cortical bone area were performed using a Gaussian filter (σ = 0.8, support = 1), and a threshold of 400 permil equivalent to 704.7 mg/cm³ hydroxyapatite.

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

Total RNA was extracted from cells, homogenized tibiae, following the removal of the bone marrow by centrifugation, or osteocyte-enriched fragments with the RNeasy kit or micro-RNeasy Kit (Qiagen, Valencia, CA), in accordance with manufacturer’s instructions [43–46]. The integrity of the RNA from tibiae and osteocyte-rich fragments was assessed by microfluidic electrophoresis on an Experion instrument (BioRad, Hercules, CA), and only RNA with a quality indicator number equal to or higher than 7.0 was used for subsequent analysis. Equal amounts of RNA were reverse-transcribed using the iScript RT-PCR kit (BioRad) and amplified in the presence of specific primers (IDT) (Table 1A) with the iQ SYBR Green Supermix or SsoAdvanced Universal SYBR Green Supermix (BioRad) at 60°C for 35 cycles. Transcript copy number was estimated by comparison with a serial dilution of cDNA for Notch1 (from J. S. Nye, Cambridge, MA), Notch2 (from Thermo Fisher Scientific) and Notch4 (from Y. Shirayoshi, Tottori, Japan) [47, 48]. Notch3 wild type copy number was estimated by comparison to a serial dilution of a 100 to 200 base pair synthetic DNA template (IDT) cloned into pcDNA3.1 (Thermo Fischer Scientific) by isothermal single reaction assembly using commercially available reagents (New England BioLabs, Ipswich, MA) [49].

In experiments where cells or tissues were obtained from Notch3em1Ecan and littermate controls, Notch3 wild type and Notch36691-TAATGA mutant transcripts expressed by heterozygous Notch3em1Ecan mice were determined by RT-PCR using fluorescent tagged products. To this end, total RNA was reverse transcribed with Moloney murine leukemia virus reverse transcriptase in the presence of reverse primers of Notch3 (5’-TGGCATTGGTAGCAGTTC-3’) and Rpl38 (Table 1A). Notch3 cDNA was amplified by qPCR in the presence of SsoAdvanced Universal Probes Supermix (Bio-Rad) gene expression assay mix, specific Notch3 and Notch3 mutant primers and HEX labeled Notch3 and FAM labeled Notch36691-TAATGA probes (Table 1B) (Bio-Rad) at 95°C for 10 secs then 60°C for 30 secs and repeated for 45 cycles [50]. Notch3 or Notch36691-TAATGA mutant transcript copy number was estimated by comparison with a serial dilution of a 100 to 200 bp synthetic DNA fragment (IDT) with or without the 6691TAATGA mutation in the Notch3 locus cloned into pcDNA3.1(-) [49].
Statistics

Data are expressed as individual sample values, and means ± SD. All data represent biological replicates except for osteoblast-enriched and stromal cell cultures, which represent technical replicates. Quantitative reverse transcript-polymerase chain reaction (qRT-PCR) values were derived from two technical replicates of technical or biological replicates as indicated in the text and legends. Statistical differences were determined by unpaired t test for pairwise comparisons or two-way analysis of variance for multiple comparisons with Tukey’s post-hoc analysis using GraphPad Prism version 9.3.1 for Mac OS, GraphPad Software (San Diego, CA).

Results

Effect of Notch3 ASOs on Notch3 expression in cells of the osteoblast lineage

The effect of Notch3 ASOs was tested in cells of the osteoblast lineage since previous work demonstrated that Notch3 is preferentially expressed in these cells and is not expressed in cells of the myeloid lineage [16, 51, 52]. Mouse Notch3 ASOs added to the culture medium of osteoblast-enriched cells from C57BL/6 mice at 20 μM decreased Notch3 mRNA by ~60 to 80% 72 h after ASO addition without microscopic evidence of cellular toxicity or substantial changes in cell replication (Fig 1). The effect of the Notch3 ASO was observed at doses as low as 1 μM and was specific for Notch3 mRNA since at 20 μM, it did not decrease the expression of Notch1, 2 or 4 mRNA (Fig 1). The expression of wild type Notch3 was lower in osteoblasts from heterozygous Notch3^{em1Ecan} mice since they carried only one wild type allele, and only Notch3^{em1Ecan} osteoblasts expressed the Notch3^{6691TAATGA} transcript (Fig 2). Notch3 ASOs decreased Notch3 mRNA in osteoblasts and bone marrow stromal cells from wild type and Notch3^{em1Ecan} mice and Notch3^{6691TAATGA} mutant mRNA in Notch3^{em1Ecan} cells for periods of up to 21 days (Fig 2). The inhibitory effect of Notch3 ASOs was also observed in osteocyte-enriched cells, a
Fig 1. Effect of control or Notch3 ASOs on Notch3 mRNA expression and cell replication in calvarial osteoblast-enriched cells. In panels A and B, Notch3 mRNA levels were obtained 24 to 72 h (panel A) or 72 h (panel B) after the addition of Notch3 (closed circles) or control ASOs (open circles) at 20 μM in panel A or at 1 to 20 μM in panel B to cells from wild type C57BL/6 mice. In panel C, Notch1, 2, 3 and 4 mRNA levels were obtained 72 h after the addition of Notch3 (black bars) or control ASO (white bars) at 20 μM to cells from wild type C57BL/6 mice. Transcript levels are expressed as relative number following correction for Rpl38. Values are means ± SD; n = 3 technical replicates. In panel D, osteoblasts were cultured for 0 to 72 h in the absence or presence of control or Notch3 ASOs at 20 μM and viable cells determined by cell counting kit 8 assay and data expressed as formazan dye and measured at an absorbance of 450 nm. Data are means ± SD; n = 4 technical replicates. *Significantly different between Notch3 ASO and control ASO, p < 0.05.

https://doi.org/10.1371/journal.pone.0268225.g001
Fig 2. Effect of control or Notch3 ASOs on Notch3 and Notch36691TAATGA mutant mRNA in A. calvarial osteoblast-enriched cells, B. bone marrow stromal cells and C. osteocytes from control (white bars) and Notch3em1Ecan mutant mice (gray bars). Osteoblasts or stromal cells were cultured for 3 weeks and osteocytes for 72h in the presence of Notch3 (closed circles) or control ASOs (open circles) at 20 \(\mu \text{M} \). In A, B and C, transcript levels are expressed as copy number corrected for Rpl38. Individual values are shown, and bars and ranges represent means ± SD; \(n = 4 \) technical replicates in A and B and biological replicates in C. *Significantly different between Notch3 ASO and control ASO, \(p < 0.05 \). #Significantly different between Notch3em1Ecan and control cells, \(p < 0.05 \).

https://doi.org/10.1371/journal.pone.0268225.g002
cellular environment that preferentially expresses Notch3 [51, 52]. In this culture system, Notch3 ASOs inhibited Notch3 expression in wild type and Notch3 em1Ecan mice and also suppressed the expression of Notch3^6691-TAATGA mRNA in Notch3 em1Ecan mutant cells, although this effect did not reach statistical significance (Fig 2).

Effect of Notch3 ASOs on Notch3 expression in vivo

In initial experiments, we tested whether mouse Notch3 ASOs downregulated Notch3 mRNA in vivo in tissues where Notch3 is expressed. The subcutaneous administration of murine ASOs targeting Notch3 in C57BL/6 mice at a dose of 50 mg/Kg caused a ~50 to 60% downregulation of Notch3 mRNA 96 hours later in femur, heart and liver (Fig 3). In a subsequent experiment, Notch3 ASOs, administered subcutaneously to C57BL/6 mice downregulated Notch3 mRNA 72 hours later in femur when tested at a dose of 25 to 50 mg/Kg, and in heart and liver when administered at doses of 12.5 to 50 mg/Kg (Fig 3).

Effect of Notch3 ASOs on general characteristics and femoral microarchitecture of Notch3 em1Ecan mice

Heterozygous Notch3^em1Ecan mutant male mice were compared to wild type sex-matched littermate controls in a C57BL/6 genetic background. Male mice were studied since they appear to have an osteopenic phenotype that is sustained for up to ~18 weeks of age whereas female Notch3^em1Ecan mutants have osteopenia at 4.5 weeks but not at ~18 weeks of age [16]. Homozygous Notch3^em1Ecan mice were not studied since the homozygous mutation appears to be lethal during embryogenesis [16]. Confirming prior results, Notch3^em1Ecan heterozygous male mice had modest reductions in weight and no changes in femoral length when compared to controls (Fig 4) [16]. Following the administration of mouse Notch3 ASOs, control and Notch3^em1Ecan experimental mice appeared healthy and experienced no changes in weight over a 4 week period. Femoral length was not affected.

![Fig 3. Effect of control or Notch3 ASOs administered subcutaneously to C57BL/6 wild type mice on Notch3 mRNA.](https://doi.org/10.1371/journal.pone.0268225.g003)
Notch3 ASOs administered for a 4 week period decreased Notch3 mRNA expression in wild type mice and in Notch3^{em1Ecan} mutant mice. Notch3^{6691-TAATGA} mutant mRNA was expressed in tibiae only from Notch3^{em1Ecan} mice, and it was suppressed by ~50% following the administration of Notch3 ASOs for 4 weeks, although the effect did not reach statistical significance (Fig 4).

Validating previous observations, μCT of the femoral mid-diaphysis revealed that 8.5–9 week old Notch3^{em1Ecan} male mice had decreased cortical bone volume/total volume (BV/TV) associated with increased porosity and decreased cortical thickness (Fig 5) [16]. The subcutaneous administration of mouse Notch3 ASOs once a week at 50 mg/Kg for 4 weeks increased cortical BV/TV and cortical thickness and decreased cortical porosity in Notch3^{em1Ecan} mice. A similar, although more modest effect, was noted in wild type mice.

Cancellous bone microarchitecture revealed that Notch3^{em1Ecan} mice had decreased cancellous BV/TV and trabecular number when compared to wild type littermates (Fig 6). Administration of Notch3 ASO did not increase femoral (Fig 6) or vertebral cancellous BV/TV significantly in either Notch3^{em1Ecan} or control littermates. BV/TV (%) was (means ± SD; n = 18) 20.1 ± 2.8 in control mice treated with control ASO and (n = 17) 20.6 ± 2.7 in control treated with Notch3 ASO. BV/TV (%) was (n = 16) 15.0 ± 2.3 in Notch3^{em1Ecan} mice treated with control ASO and (n = 14) 16.4 ± 3.3 in Notch3^{em1Ecan} mice treated with Notch3 ASO. Therefore, the effect of Notch3 ASO was limited to the cortical bone osteopenia, possibly because Notch3 is preferentially expressed by the osteocyte and cortical bone is enriched in these cells [51, 52].

Discussion

The present work demonstrates that Notch3 ASOs downregulate Notch3 mRNA in cells from wild type and Notch3^{em1Ecan} mice, a preclinical model of Lehman Syndrome (LMS). Notch3 ASOs were effective in vitro in cells of the osteoblast lineage, where Notch3 is expressed. The effect was observed in the absence of obvious cellular toxicity although a modest decrease in cell number was noted. Notch3 ASOs were specific since they did not modify the expression of Notch1, 2 and 4 in osteoblast-enriched cells.

Multiple approaches to downregulate Notch signaling have been reported; however, often they are not specific to this signaling pathway or to a particular Notch receptor. A recent alternative has been the use of antibodies to the NRR of individual Notch receptors to prevent...
Notch activation by blocking the NRR from exposure to the γ-secretase complex [35–37]. We have demonstrated that anti-Notch2 NRR and anti-Notch3 NRR antibodies are effective in reversing the skeletal phenotype of $\text{Notch2}^{\text{tm1Ecan}}$ and of $\text{Notch3}^{\text{em1Ecan}}$ mice, models of Hajdu Cheney Syndrome and LMS, respectively [36, 37]. Although anti-Notch NRR antibodies are specific, the significant downregulation of the Notch receptor could lead to gastrointestinal toxicity.

Alternate approaches to downregulate specific Notch receptors have included ASOs, and we demonstrated that Notch2 ASOs downregulate Notch2 expression in vitro and in vivo and ameliorate the osteopenia of mice harboring a Notch2 mutation replicating the one found in Hajdu Cheney Syndrome [38]. Similar to these observations, we expected that Notch3 ASOs would downregulate Notch3 wild type and mutant transcripts, and as a consequence decrease the expression of NOTCH3.

In the present study, we confirm that specific Notch ASOs are a suitable alternative to decrease Notch activation in conditions of Notch gain-of-function. However, the effect of Notch3 ASOs was less pronounced than the one reported with anti-Notch3 NRR antibodies [37]. This is possibly because the anti-Notch3 antibody targets the NRR located in the transmembrane domain of NOTCH3, whereas the Notch3 ASO targets Notch3 transcripts and as a consequence has to penetrate the cell to be effective. It is also possible that blocking Notch activation is a more effective way to prevent a Notch gain-of-function, or anti-Notch3 antibodies might be more stable or gain better access to target tissues than Notch3 ASOs. Notch3 ASOs were effective at ameliorating the cortical osteopenia of $\text{Notch3}^{\text{em1Ecan}}$ mice without evidence of

Fig 5. Cortical bone microarchitecture assessed by μCT of the mid-diaphyseal femur from 8.5–9-week old $\text{Notch3}^{\text{em1Ecan}}$ mutant (gray bars) male mice and sex-matched littermate controls (white bars) treated with Notch3 ASO (closed circles; n = 19 for control, n = 16 for $\text{Notch3}^{\text{em1Ecan}}$) or control ASO (open circles; n = 21 for control, n = 16 for Notch3 ASO) both at 50 mg/kg subcutaneously, once a week for 4 weeks prior to sacrifice. Parameters shown are cortical bone volume/total volume (BV/TV, %), cortical porosity (%), and cortical thickness (mm). Individual values are shown, and bars and ranges represent means ± SD of biological replicates. *Significantly different between Notch3 and control ASO, $p < 0.05$. #Significantly different between $\text{Notch3}^{\text{em1Ecan}}$ and control, $p < 0.05$. Representative images show cortical bone osteopenia in $\text{Notch3}^{\text{em1Ecan}}$ mutant mice and its amelioration by Notch3 ASOs. Scale bars in the right corner represent 100 μm.

https://doi.org/10.1371/journal.pone.0268225.g005
apparent toxicity. However, Notch3 ASOs did not modify the cancellous bone osteopenia of Notch3em1Ecan mice at either femoral or vertebral sites. The effect of Notch3 ASOs was not explored at other skeletal sites since \(\mu\)CT parameters of bone microarchitecture are only established for cortical and cancellous bone [41]. It is possible that Notch3 ASOs were more effective at the osteocyte-rich cortical compartment because Notch3 is preferentially expressed by these cells [11, 51–53]. Although the work demonstrates that Notch3 and Notch36691-TAATGA mutant mRNA were downregulated in osteocyte-rich preparations, we did not demonstrate that Notch3 ASOs are more effective in this cell population following their administration \textit{in vivo}. It is possible that Notch3 ASOs were transported more efficiently to cortical than to cancellous bone. This may be related to differences in the blood vessel network between cortical and cancellous bone allowing for better access of the systemically administered Notch3 ASO to the cortical compartment. Blood supply of cortical long bones is carried out by a central nutrient artery (2/3) and periosteal arteries (1/3), whereas the metaphyseal, cancellous-rich bone, is irrigated by the epiphyseal arteries [54, 55]. However, perfusion efficiency does not appear to be different between epiphyseal and diaphyseal bone [56].

Attempts have been made to enhance the transport of ASOs to bone using complex delivery systems, and the technology has not been applied to the correction of gene mutations in the skeleton [28]. In this study, a practical systemic approach was used to downregulate Notch3 in skeletal and non-skeletal tissue by the subcutaneous administration of Notch3 ASOs. We demonstrate that a murine Notch3 ASO downregulated Notch3 in tissues where the gene is expressed, including bone. The decrease in Notch3 in a mouse model of LMS was associated
with partial recovery of bone mass at cortical sites. Although this was not complete, a significant effect on cortical BV/TV and thickness was achieved with amelioration of the \(\text{Notch3}^{\text{em1E.can}} \) cortical phenotype.

The present findings confirm that a mouse model replicating a mutation found in LMS displays femoral cancellous and cortical bone osteopenia [16]. The phenotype of the \(\text{Notch3}^{\text{em1E.can}} \) mutant mouse recapitulates aspects of LMS including osteopenia, but not the neurological manifestations of the disease [11, 16]. The osteopenic phenotype is manifested early in life in mice of both sexes, although it seems to be more persistent in male mice and for this reason we elected to study and treat 4.5 week old male \(\text{Notch3}^{\text{em1Ecan}} \) mice in an attempt to ameliorate the osteopenic phenotype. Because only male mice were reported, it is important not to extrapolate the results to female mice. Phenotypic alterations of experimental and control mice were assessed by \(\mu \)CT, and analyses required the \(\text{ex vivo} \) exam of bone following the sacrifice of mice. Therefore, the same animal could not be analyzed before and after the administration of Notch3 ASOs.

The osteopenia of \(\text{Notch3}^{\text{em1Ecan}} \) mutants has been attributed to an increase in osteoclast number and bone resorption secondary to an increased expression of receptor activator of nuclear factor-κB ligand (RANKL) by cells of the osteoblast lineage [57]. \(\text{Notch3} \) is not expressed in the myeloid lineage; and therefore, NOTCH3 does not have direct effects on osteoclastogenesis [3, 11, 16]. Consequently, direct effects of Notch3 ASOs in this lineage were not examined.

Conclusions

In conclusion, Notch3 ASOs downregulate \(\text{Notch3} \) expression in skeletal cells from a mouse model of LMS and ameliorate its cortical osteopenic phenotype. Consequently, ASOs may become a useful strategy in the management of skeletal diseases affected by gain-of-Notch function.

Acknowledgments

The authors thank Magda Mocarska for technical assistance, Mary Yurczak for secretarial support, Christopher Bonin and Genevieve Hargis for artwork and creation of figures.

Author Contributions

Conceptualization: Ernesto Canalis.

Formal analysis: Ernesto Canalis.

Funding acquisition: Ernesto Canalis.

Investigation: Tabitha Eller, Lauren Schilling, Jungeun Yu.

Methodology: Ernesto Canalis, Michele Carrer.

Project administration: Ernesto Canalis.

Resources: Michele Carrer.

Supervision: Ernesto Canalis.

Validation: Ernesto Canalis, Tabitha Eller, Lauren Schilling, Jungeun Yu.

Visualization: Jungeun Yu.

Writing – original draft: Ernesto Canalis.
Writing – review & editing: Ernesto Canalis, Michele Carrer, Tabitha Eller, Lauren Schilling, Jungeun Yu.

References

1. Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev. 2017; 97(4):1235–94. https://doi.org/10.1152/physrev.00005.2017 PMID: 28794168

2. Zanotti S, Canalis E. Notch Signaling and the Skeleton. Endocr Rev. 2016; 37(3):223–53. https://doi.org/10.1210/er.2016-1002 PMID: 27074349

3. Canalis E. Notch in skeletal physiology and disease. Osteoporos Int. 2018; 29(12):2973–83. https://doi.org/10.1007/s00198-018-4694-3 PMID: 30194467

4. Kovall RA. More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene. 2008; 27(38):5099–109. https://doi.org/10.1038/onc.2008.223 PMID: 18758478

5. Nam Y, Sliz P, Song L, Aster JC, Blacklow SC. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell. 2006; 124(5):973–83. https://doi.org/10.1016/j.cell.2006.01.035 PMID: 16530045

6. Wilson JJ, Kovall RA. Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell. 2006; 124(5):985–96. https://doi.org/10.1016/j.cell.2006.01.035 PMID: 16530045

7. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003; 194(3):237–55. https://doi.org/10.1002/jcp.10208 PMID: 12548545

8. Gripp KW, Scott CI Jr., Hughes HE, Wallenstein R, Nicholson L, States L, et al. Lateral meningocele syndrome: three new patients and review of the literature. Am J Med Genet. 1997; 70(3):229–39. PMID: 9188658

9. Gripp KW, Robbins KM, Sobreira NL, Witsba UM, Bird LM, Avela K, et al. Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am J Med Genet A. 2015; 167A(2):271–81. https://doi.org/10.1002/ajmg.a.36863 PMID: 25394726

10. Lehman RA, Stears JC, Wesselberg RL, Nusbaum ED. Familial osteosclerosis with abnormalities of the nervous system and meninges. J Pediatr. 1977; 90(1):49–54. https://doi.org/10.1016/s0022-3476(77)80763-4 PMID: 830893

11. Canalis E. The Skeleton of Lateral Meningocele Syndrome. Front Genet. 2020; 11:620334. https://doi.org/10.3389/fgene.2020.620334 PMID: 33519922

12. Mizuno T, Mizuta I, Watanabe-Hosomi A, Mukai M, Koizumi T. Clinical and Genetic Aspects of CADA-SIL. Front Aging Neurosci. 2020; 12:91. https://doi.org/10.3389/fnagi.2020.00091 PMID: 32457593

13. Prakash N, Hansson E, Betsholtz C, Mitsiadis T, Lendahl U. Mouse Notch 3 expression in the pre- and postnatal brain: relationship to the stroke and dementia syndrome CADASIL. Exp Cell Res. 2002; 278(1):31–44. https://doi.org/10.1006/excr.2002.5544 PMID: 12126955

14. Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B. Notch3 is critical for proper angiogenesis and mural cell investment. Circ Res. 2010; 107(7):860–70. https://doi.org/10.1161/CIRCRESAHA.110.218271 PMID: 20689064

15. Henshall TL, Keller A, He L, Johansson BR, Wallgard E, Rascherger E, et al. Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler Thromb Vasc Biol. 2015; 35(2):409–20. https://doi.org/10.1161/ATVBHA.114.305743 PMID: 25477343

16. Canalis E, Yu J, Schilling L, Yee SP, Zanotti S. The lateral meningocele syndrome mutation causes marked osteopenia in mice. J Biol Chem. 2018; 293(36):14165–77. https://doi.org/10.1074/jbc.RA118.004242 PMID: 30042323

17. Murray SF, Jazayeri A, Matthes MT, Yasumura D, Yang H, Peralta R, et al. Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration. Invest Ophthalmol Vis Sci. 2015; 56(11):6362–75. https://doi.org/10.1167/iovs.15-16400 PMID: 26436889

18. Shy ME. Antisense oligonucleotides offer hope to patients with Charcot-Marie-Tooth disease type 1A. J Clin Invest. 2018; 128(1):110–2. https://doi.org/10.1172/JCI86617 PMID: 29199996

19. Carroll JB, Warby SC, Southall AL, Doty CN, Greenlee S, Skotte N, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol Ther. 2011; 19(12):2178–85. https://doi.org/10.1038/mt.2011.201 PMID: 21971427

20. Limmroth V, Barkhof F, Desem N, Diamond MP, Tachas G, Group ATLS. CD49d antisense drug ATL1102 reduces disease activity in patients with relapsing-remitting MS. Neurology. 2014; 83(20):1780–8. https://doi.org/10.1212/WNL.0000000000009262 PMID: 2529835
21. McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A, Farley BJ, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest. 2018; 128(8):3558–67. https://doi.org/10.1172/JCI99081 PMID: 30010620

22. Zhao HT, Damle S, Ikeda-Lee K, Kuntz S, Li J, Mohan A, et al. PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models. J Clin Invest. 2018; 128(1):359–68. https://doi.org/10.1172/JCI96499 PMID: 29202483

23. Zhu C, Kim K, Wang X, Bartolome A, Salomao M, Dongiovanni P, et al. Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Sci Transl Med. 2018; 10(468). https://doi.org/10.1126/scitransmed.aat0344 PMID: 30463916

24. Li M, Jancovski N, Jafar-Nejad P, Burbano LE, Rollo B, Richards K, et al. Antisense oligonucleotide therapy reduces seizures and extends life span in an SCN2A gain-of-function epilepsy model. J Clin Invest. 2021; 131(2).

25. Nguyen Q, Yokota T. Antisense oligonucleotides for the treatment of cardiomyopathy in Duchenne muscular dystrophy. Am J Transl Res. 2019; 11(3):1202–18. PMID: 30972156

26. Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of Antisense Drugs. Annu Rev Pharmacol Toxicol. 2017; 57:81–105. https://doi.org/10.1146/annurev-pharmtox-010716-104846 PMID: 27732800

27. Cerritelli SM, Crouch RJ. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 2009; 276(6):1494–505. https://doi.org/10.1111/j.1742-4658.2009.06908.x PMID: 19228196

28. Zhang G, Guo B, Wu H, Tang T, Zhang BT, Zheng L, et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nature medicine. 2012; 18(2):307–14. https://doi.org/10.1038/nm.2617 PMID: 22863006

29. Ryeom SW. The cautionary tale of side effects of chronic Notch1 inhibition. J Clin Invest. 2011; 121(2):508–9. https://doi.org/10.1172/JCI45976 PMID: 21266769

30. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999; 398(6727):518–22. https://doi.org/10.1038/19083 PMID: 10206645

31. Duggan SP, McCarthy JV. Beyond gamma-secretase activity: The multifunctional nature of presenilins in cell signalling pathways. Cell Signal. 2016; 28(1):1–11. https://doi.org/10.1016/j.cellsig.2015.10.006 PMID: 26498858

32. Ilagan MX, Kopan R. Selective blockade of transport via SERCA inhibition: the answer for oncogenic forms of Notch? Cancer Cell. 2013; 23(3):267–8. https://doi.org/10.1016/j.ccr.2013.02.020 PMID: 23518343

33. Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009; 462(7270):182–8. https://doi.org/10.1038/nature08543 PMID: 19907488

34. Lehali R, Zarij V, Vigolo M, Urech C, Frisnuntas V, Zanger N, et al. Pharmacological disruption of the Notch transcription factor complex. Proc Natl Acad Sci U S A. 2020; 117(28):16292–301. https://doi.org/10.1073/pnas.1922606117 PMID: 32601208

35. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010; 464(7291):1052–7. https://doi.org/10.1038/nature08878 PMID: 20393564

36. Canalis E, Sanjay A, Yu J, Zanotti S. An Antibody to Notch2 Reverses the Osteopenic Phenotype of Hajdu-Cheney Mutant Male Mice. Endocrinology. 2017; 158(4):730–42. https://doi.org/10.1210/en.2016-1787 PMID: 28323963

37. Yu J, Siebel CW, Schilling L, Canalis E. An antibody to Notch3 reverses the skeletal phenotype of lateral meningocoele syndrome in male mice. J Cell Physiol. 2020; 235(1):210–20. https://doi.org/10.1002/jcp.28960 PMID: 31188489

38. Canalis E, Grossman TR, Carrer M, Schilling L, Yu J. Antisense oligonucleotides targeting Notch2 ameliorate the osteopenic phenotype in a mouse model of Hajdu-Cheney syndrome. J Biol Chem. 2020; 295(12):3952–64. https://doi.org/10.1074/jbc.RA119.011440 PMID: 31992595

39. Yesil P, Michel M, Chwalek K, Pedack S, Jany C, Ludwig B, et al. A new collagenase blend increases the number of islets isolated from mouse pancreas. Islets. 2009; 1(3):185–90. https://doi.org/10.4161/isl.1.3.9556 PMID: 21099271

40. McCarthy TL, Centrella M, Canalis E. Further biochemical and molecular characterization of primary rat parietal bone cell cultures. J Bone Miner Res. 1988; 3(4):401–8. https://doi.org/10.1002/jbmr.5650030406 PMID: 3265777
41. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010; 25(7):1468–86. https://doi.org/10.1002/jbmr.141 PMID: 20533309

42. Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-Related Changes in Trabecular Architecture Differ in Female and Male C57BL/6J Mice. J Bone Miner Res. 2007; 22(6):1197–207. https://doi.org/10.1359/jbmr.070507 PMID: 17488199

43. Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S. Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis and Bone Resorption. J Biol Chem. 2016; 291:1538–51. https://doi.org/10.1074/jbc.M115.685453 PMID: 26627824

44. Zanotti S, Yu J, Sanjay A, Schilling L, Schoenherr C, Economides AN, et al. Sustained Notch2 signaling in osteoblasts, but not in osteoclasts, is linked to osteopenia in a mouse model of Hajdu-Cheney syndrome. J Biol Chem. 2017; 292(29):12232–44. https://doi.org/10.1074/jbc.M117.786129 PMID: 28592489

45. Nazarenko I, Lowe B, Darfler M, Ikonomi P, Schuster D, Rashtchian A. Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res. 2002; 30(9):e37. https://doi.org/10.1093/nar/30.9.e37 PMID: 11972352

46. Nazarenko I, Pires R, Lowe B, Obaidy M, Rashtchian A. Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res. 2002; 30(9):2069–195. https://doi.org/10.1093/nar/30.9.2069 PMID: 11972350

47. Nye JS, Kopan R, Axel R. An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development. 1994; 120(9):2421–30. https://doi.org/10.1242/dev.120.9.2421 PMID: 7956822

48. Shirayoshi Y, Yuasa Y, Suzuki T, Sugaya K, Kawase E, Ikemura T, et al. Proto-oncogene of int-3, a mouse Notch homologue, is expressed in endothelial cells during early embryogenesis. Genes Cells. 1997; 2(3):213–24. https://doi.org/10.1046/j.1365-2443.1997.d01-310.x PMID: 9189758

49. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009; 6(5):343–5. https://doi.org/10.1038/nmeth.1318 PMID: 19634985

50. Kutyaev IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, et al. 3'-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 2000; 28(2):655–61. https://doi.org/10.1093/nar/28.2.655 PMID: 10606668

51. Canalis E, Zanotti S, Schilling L, Eller T, Yu J. Activation of Notch3 in osteoblasts/osteocytes causes compartment-specific changes in bone remodeling. J Biol Chem. 2021; 296:100583. https://doi.org/10.1016/j.jbc.2021.100583 PMID: 33774049

52. Zanotti S, Canalis E. Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone. 2017; 103:159–67. https://doi.org/10.1016/j.bone.2017.06.027 PMID: 28676438

53. Delgado-Calpe J, Anderson J, Gregor MD, Hiasa M, Chirgwin JM, Carlesso N, et al. Bidirectional Notch Signaling and Osteocyte-Derived Factors in the Bone Marrow Microenvironment Promote Tumor Cell Proliferation and Bone Destruction in Multiple Myeloma. Cancer Res. 2016; 76(5):1089–100. https://doi.org/10.1158/0008-5472.CAN-15-1703 PMID: 26833121

54. Filipowska J, Tomaszewski KA, Niedzwiedzi L, Walocha JA, Niedzwiedzi T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017; 20(3):308–320. https://doi.org/10.1007/s10456-017-9541-1 PMID: 28194536

55. Watson EC, Adams RH. Biology of Bone: The Vasculature of the Skeletal System. Cold Spring Harb Perspect Med. 2018; 8(7):a031559. https://doi.org/10.1101/cshperspect.a031559 PMID: 28893838

56. Lassailly F, Foster K, Lopez-Onieva L, Currie E, Bonnet D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood. 2013; 122(10):1730–40. https://doi.org/10.1182/blood-2012-11-467496 PMID: 23814020

57. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020; 40:2. https://doi.org/10.1186/s41232-019-0111-3 PMID: 32047573