Title: ANALYSIS OF HARMONICS REDUCTION METHOD SELECTION FOR TRANSFORMER SUBSTATION

Authors: Szymon Racewicz, Mateusz Rokicki

To appear in: Technical Sciences

Received 7 October 2019;
Accepted 20 February 2020;
Available online 9 March 2020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ANALYSIS OF HARMONICS REDUCTION METHOD SELECTION FOR TRANSFORMER SUBSTATION

Szymon Racewicz¹, Mateusz Rokicki²

¹Department of Mechatronics and Technical-Computer Sciences Education, University of Warmia and Mazury in Olsztyn
²Maintenance Department, Michelin Polska S.A.

Abstract

The article presents an investigation of the harmonic level and its possible reduction methods for one of the Michelin factory transformer substation. The substation electrical network consists of two transformers (1.6 MVA and 2.0 MVA) supplying a production line composed of several electrical equipment based on DC and AC motors. In order to investigate the harmonics level and its influence on the substation operation the measurements of the current and the load factor of the powered machines as well as the coefficients \(\text{THD}_u\), \(\text{THD}_i\), \(D_u\) and \(D_i\) have been performed using the 3-phase energy quality analyzer Fluke 435II and the network parameter recorder PEL103. Basing on the measurements data the four harmonics reduction methods (passive filters, active filters, 12-pulse rectifier and the Active Front End system) have been proposed and studied. For this purpose the substation electrical network has been modelled using Emerson Harmonics Estymator software. Furthermore, in order to choose the optimal solution the financial analysis of the potential investments has been performed.

Keywords: harmonics reduction, active filters, THD coefficient

1. Introduction

Higher harmonics of voltages and currents are among the main disturbances occurring in electric power systems. They appear in power grids due to the constantly increasing number of electrical equipment with nonlinear characteristics and at the same time due to the decreasing tendency of resistive devices share [1]. Even if a unit power of the device installed in the network is small like for example for lighting installations, the considering number of such devices can significantly decrease energy quality in the network by increasing the content of higher harmonics. Then low quality of the energy influences on other equipment present in the network [2]. For the last few decades the knowledge about the problems associated with
harmonics has been improved significantly [3–7]. Nevertheless, it allows us only to reduce the threats rather than to completely eliminate them.

This article is focused on the optimal selection of the higher harmonic reduction method for the P50 transformer substation operating in the Michelin tire factory in Olsztyn, in terms of the cost-performance ratio. The harmonic tests in the P50 substation have been carried out due to the substation self-ignition and fire, which took place in 2016. However, it was not a single case concerning only Poland. This problem was also identified in other company factories. It was presumed and then proved that the direct cause of the substations fires had been related to the exceed of the acceptable harmonic levels described in the standards PN-EN 50160: 2010 and PN-EN 61000-4-30: 2011. In the described case the long term higher harmonic presence in the network damaged and decreased the capacitance of certain capacitors used for reactive power compensation what resulted in a sudden reactive power rise and an overheat of the installation. This hypothesis was also confirmed by the thermovision measurements which showed the increased current consumption flowing through the power contactors installed in the capacitor bank (Fig. 1). In order to improve the safety and to guarantee the substation reliability the level of higher harmonics present in the substation network was reduced significantly. For this purpose and in order to choose the best filtration method a number of measurements and tests have been carried out.

The efficiency of the filtration method has been evaluated by measuring certain coefficients like: the ratio of the n-th harmonic to the fundamental harmonics for voltage and current (\(D_u, D_i\)) given by equations 1 and 2 as well as the quotient of the harmonic effective value to the effective value of the fundamental harmonic for voltage and current (\(THD_u, THD_i\)) given by equations 3 and 4 [8,9].

\[
D_u(n) = \frac{U_{rms(n)}}{U_{rms(1)}} \cdot 100\%
\]

\[
D_i(n) = \frac{I_{rms(n)}}{I_{rms(1)}} \cdot 100\%
\]

\[
THD_u = \sqrt{\frac{\sum_{n=2}^{\infty} U_{rms(n)}^2}{U_{rms(1)}^2}} \cdot 100\%
\]

\[
THD_i = \sqrt{\frac{\sum_{n=2}^{\infty} I_{rms(n)}^2}{I_{rms(1)}^2}} \cdot 100\%
\]
Practically, the upper limit of the summation in equations (3) and (4) is taken as \(n = 50 \) or even \(n = 25 \) when the risk of resonance for higher harmonics is small. Table 1. presents the limit values for individual voltage harmonics according to EN50160 and IEC61000 standards [10,11]. The limit values for individual current harmonics has been presented in [12]. According to the standards the limit for THD_u is 5% for medium voltage network and 8% for low voltage network. It should be also noted that the coefficients THD_u and THD_i give only an overall image of the harmonics present in the network what sometimes can lead to misinterpretation of the measurements results especially when the measurements are carried out during partial load of the network (Fig. 2). Therefore, it is then necessary to carry out the complete measurements including the equipment load analysis [1,13,14].

2. Research object

The P50 substation consists of two transformers (TR1 and TR2) which powers are 2 MVA and 1.6 MVA respectively. It supplies the extrusion line P01 which serves to mix three components to obtain a product for a tire tread as well as to reuse its own returns. The P01 line consists of: three extruders cold fed (supplied by the TR1) and heating rolling mill, plasticizer and extruder NAR1200 (supplied by the TR2). All of devices are driven by DC and AC motors of 2184 kW total power. The P01 line has been designed for continuous operation. Schematic of the P50 substation electrical network has been shown in Fig. 3. In the network schematic the two capacitor banks C1 and C2 as well as other electric receivers (lighting, control systems, etc.) modeled by L1 and L2 have been shown.

Fig. 4 shows currents consumed by the equipment installed in the P01 extrusion line. Taking into consideration the nominal values of the equipment motor currents one can calculate that the average load factor of the devices is not exceeding 50%. The load factor is closely related to the assortment currently produced by the extrusion line what in consequence causes variation of the THD coefficients. Therefore, the continuous monitoring of higher harmonic present in electric network is necessary.

The following figures (Fig. 5, Fig. 6, Fig. 7, Fig. 8) show courses of the coefficients THD_u, and THD_i captured for the extruder 150 during the test which has been carried out for two weeks as well as the values of the coefficients D_u, and D_i for subsequent odd harmonics up to 30th picked for one of the stable operating state. Presented measurements have been performed using the 3-phase energy quality analyzer Fluke 435II with the i430-Flex current clamp and the network parameter recorder PEL103 Chauvin Arnoux. The energy quality
analyzer Fluke 435II averages measurements every 6.5 minutes what gives one value sample. The maximum number of samples which can be recorded is 3000 what gives about 2 weeks of network parameters monitoring. Measurements carried out for the other devices installed in the P50 substation electrical network have also confirmed a similar over normed higher harmonics production what has had a destructive influence on the capacitor banks used for reactive power compensation. The spikes of the THD, coefficient observed in the Fig. 6 are related to the moments of turning the extruder 150 on while processing heavier assortment.

3. Simulation results

The evaluation of filtration quality for four types of solutions (passive filters, active filters, 12-pulse rectifiers, AFE) has been carried out using the predefined models available in the Emerson Harmonics Estimator simulation software. The measured machines loads have been introduced into the Emerson software individually for each machine as a percentage of nominal machine load. Simulation results have served to predict the potential level of higher harmonics presented at the secondary side of the transformers for different methods of harmonics reduction and to compare the methods with each other.

3.1 Passive filters

One of the most economical methods for limiting the negative influence of the electric drives present in the network is the use of passive filters which are individually designed for the particular type of drive and installed on the power supply side [15–17]. They are designed taking into account the nominal current of the drive. Their efficiency is high provided that they are installed close to the drive working with its nominal power for which the filter has been designed. The effectiveness of the passive filter (DC choke) depending on the machine load has been presented in Fig. 9.

Fig. 10 shows schematic of the P50 transformer substation electrical network equipped with passive filters (F1 – F6) used for Emerson Harmonics Estimator software simulation. Simulation results have been presented in Fig. 11 and Fig. 12.

3.2 Active filters

Active filters reduce the higher harmonics in electrical network by generating those harmonics which are consumed by nonlinear receivers [18–20]. For example, if the receiver needs the fifth and seventh harmonics the active filter generates them what results in more sinusoidal shape of the network current.
Fig. 13 shows schematic of the P50 transformer substation electrical network equipped with active filters (Active filter 1 and 2) used for Emerson Harmonics Estimator software simulation. Simulation results have been presented in Fig. 14 and Fig. 15.

3.3 12-pulse rectifier

Multi-pulse rectifiers have been known for many years as the devices which minimize the higher harmonics generated by drive systems [21,22]. According to the theory the multi-pulse rectifiers exclude certain harmonics due to the phase shift between the transformer windings [23,24]. Increasing a number of secondary winding phases can be achieved in several ways but the simplest is to use a triangle-star system in which the number of secondary winding phases is 6. After rectification by two parallel rectifier system one can obtain a DC voltage.

Fig. 16 shows schematic of the P50 transformer substation electrical network equipped with 12-pulse rectifier (R1 – R6) used for Emerson Harmonics Estimator software simulation. Simulation results have been presented in Fig. 17 and Fig. 18.

3.4 Active Front End

The AFE (Active Front End) technology is a solution which guarantees a very low THD coefficient [25–27]. It comprises a fully controlled IGBT transistor input bridge which is used as a supplementary converter called a regenerative drive. It has an energy return function. The inverter design includes then two separate power modules – motoring drive and regenerative drive – connected together by a common DC bus with a LCL network filter. Unfortunately, the cost of implementation of such solution is very high in a situation where the modernized electrical network consists in majority of DC drives as the AFE converters use only frequency speed control dedicated for AC drives. The one AFE can be also used for several different drives connected by a common DC bus as shown in Fig. 19 but in the studied case an installation of the DC bus has been impossible due to lack of space.

Fig. 20 shows schematic of the P50 transformer substation electrical network equipped with AFE systems (AFE1 – AFE6) used for Emerson Harmonics Estimator software simulation. Simulation results have been presented in Fig. 21 and Fig. 22.

4. Discussion of the results

Comparing the simulation results one can observe that the best quality of higher harmonic filtration is realized by the AFE system where all higher harmonics values have been reduced to below 1% (Fig. 21 and Fig. 22). It is also the more expensive solution valued at
442 500 € what is mainly associated with the need to replace the DC motors by the AC motors. The second more expensive filtration method is the use of the 12-pulse rectifiers which also need some equipment replacement. It is valued at 300 000 € because of the need to replace the two of transformers (TR1 and TR2) by the ones with two secondary windings connected in star and triangle. The filtration quality is acceptable for the fifth and the seventh harmonics. Nevertheless, for the studied case the simulations have revealed also the presence of the eleventh and the thirteenth harmonics what is not favorable for the condition of the network (Fig. 17 and Fig. 18). The least expensive solution for the higher harmonic filtration is the use of passive filters valued at 44 990 €. The main disadvantage of this method is related to an inability to adapt to the changing network conditions present in the P01 extrusion production line. Moreover, the filtration quality is several times lower than for the other methods (Fig. 11 and Fig. 12). The last studied method, i.e. active filters ensures effective higher harmonics reduction (Fig. 14 and Fig. 15) at a relatively low cost of investment (135 000 €).

All of above mentioned methods with their implementation cost and the filtration quality analysis for the fifth and the seventh harmonics have been collected in the Table 2 and compared in the Fig. 23 and the Fig. 24. The filtration quality has been presented in the Table 2 as the THD coefficient values respectively for voltage and current.

Finally, after above mentioned analysis the active filter technology has been chosen for the P01 extrusion line. More precisely, the active filters AccuSine PCS - Power Correction system - Model CE54 - Sizes 300A have been installed in the TR1 and the TR2 networks. More detailed information about the filters can be found in the technical documentation [28]. The active filter implementation has resulted in considerable higher harmonic reduction. Fig. 25, Fig. 26, Fig. 27 and Fig. 28 show the measurements results of the THD_u, THD_i, D_u and D_i coefficients captured for the extruder 150 after the filters installation. In comparison to the Fig. 5, Fig. 6, Fig. 7 and Fig. 8 one can observe the THD_u reduction from more than 15% to about 5% and the THD_i reduction from more than 60% to about 30%. Regarding D_u and D_i coefficients, particularly important is reduction of the 5th and the 7th harmonics which exceeded standard limits before filtration implementation.

5. Conclusions

In the article the problem of higher harmonics presence in one of the transformer substation electrical network in the Michelin tire factory has been investigated. Increased reactive power consumption and a high temperature in the capacitor bank have led to the
supposition that the capacitors have been successively damaged by the higher harmonics present in the network for a long time. This situation has finally resulted in the substation fire which has taken place in 2016. To prevent such situations in the future the series of measurements and tests have been carried out in order to apply the best higher harmonics filtration method.

The measurements have showed some exceed of the permissible levels of the coefficients D_u, D_i, THD$_u$, and THD$_i$ for individual devices while producing certain assortment of tire components. The simulations carried out in Emerson Harmonics Estymator software for four types of harmonics reduction methods (passive filters, active filters, 12-pulse rectifier and the AFE) have showed the potential possibilities and effectiveness of these solutions. After financial analysis of each solution implementation cost the active filtration has been proposed and implemented in P50 transformer substation what has reduced significantly the higher harmonics values (Fig. 25 and Fig. 26 in comparison to Fig. 5 and Fig. 6) and has improved the capacitor banks operating conditions. The temperature of the power contactors installed in the capacitor banks has been reduced from about 89.4 °C - 101.8 °C to about 50.8 °C - 74.3 °C depending on power contactor group and actual production.

6. References

[1] Z. Hanzelka, Jakość energii elektrycznej część 4 - Wyższe harmoniczne napięć i prądów, n.d. http://twelvee.com.pl/pdf/Hanzelka/cz_4_pelna.pdf (accessed May 27, 2019).

[2] A.A. Girgis, J.W. Nims, J. Jacomino, J.G. Dalton, A. Bishop, Effect of Voltage Harmonics on the Operation of Solid-State Relays in Industrial Applications, IEEE Trans. Ind. Appl. 28 (1992) 1166–1173. doi:10.1109/28.158844.

[3] H.E. Mazin, W. Xu, B. Huang, Determining the harmonic impacts of multiple harmonic-producing loads, IEEE Trans. Power Deliv. 26 (2011) 1187–1195. doi:10.1109/TPWRD.2010.2093544.

[4] H. Hu, Y. Shao, L. Tang, J. Ma, Z. He, S. Gao, Overview of Harmonic and Resonance in Railway Electrification Systems, IEEE Trans. Ind. Appl. 54 (2018) 5227–5245. doi:10.1109/TIA.2018.2813967.

[5] H. Sharma, M. Rylander, D. Dorr, Grid impacts due to increased penetration of newer harmonic sources, IEEE Trans. Ind. Appl. 52 (2016) 99–104. doi:10.1109/TIA.2015.2464175.
[6] L. Motta, N. Faúndes, Active / passive harmonic filters: Applications, challenges &
trends, in: Proc. Int. Conf. Harmon. Qual. Power, ICHQP, IEEE Computer Society,
2016: pp. 657–662. doi:10.1109/ICHQP.2016.7783319.

[7] G. Vivek, M.D. Nair, M. Barai, Online reduction of fifth and seventh harmonics in single
phase quasi square wave inverters, in: 12th IEEE Int. Conf. Electron. Energy, Environ.
Commun. Comput. Control (E3-C3), INDICON 2015, Institute of Electrical and
Electronics Engineers Inc., 2016. doi:10.1109/INDICON.2015.7443721.

[8] J. Arrillaga, D.A. (David A.. Bradley, P.S. Bodger, Power system harmonics, John
Wiley, 1985. https://books.google.pl/books/about/Power_system_harmonics.html?id=st1SAAAAA
AAJ&redir_esc=y (accessed September 12, 2019).

[9] J. Horska, S. Maslan, J. Streit, M. Sira, A validation of a THD measurement equipment
with a 24-bit digitizer, in: CPEM Dig. (Conference Precis. Electromagn. Meas., Institute
of Electrical and Electronics Engineers Inc., 2014: pp. 502–503.
doi:10.1109/CPEM.2014.6898479.

[10] D. Żabicki, Jakość energii elektrycznej według normy PN-EN 50160, Elektroinstalator.
nr 6 (2017).

[11] K.N. Sakthivel, S.K. Das, K.R. Kini, Importance of quality AC power distribution and
understanding of EMC standards IEC 61000-3-2, IEC 61000-3-3 and IEC 61000-3-11,
in: Proc. Int. Conf. Electromagn. Interf. Compat., Institute of Electrical and Electronics
Engineers Inc., 2003: pp. 423–430. doi:10.1109/ICEMIC.2003.238094.

[12] Z. Stein, M. Zielińska, ANALIZA HARMONICZNYCH W PRĄDZIE
ZASILAJĄCYM WYBRANE URZĄDZENIA ŚREDNIEJ MOCY, Electr. Eng. (2016)
213–219.

[13] S.K. Khadem, M. Basu, R. Kerrigan, B. Basu, Power quality analysis of energy efficient
harmonic loads, in: Institute of Electrical and Electronics Engineers (IEEE), 2015: pp.
470–471. doi:10.1109/icce-berlin.2014.7034333.

[14] C. Gupta, A. Varshney, N. Verma, S. Shukla, THD Analysis of Eleven Level Cascaded
H-Bridge Multilevel Inverter with Different Types of Load Using in Drives
Applications, in: Proc. - 2015 2nd IEEE Int. Conf. Adv. Comput. Commun. Eng.
ICACCE 2015, Institute of Electrical and Electronics Engineers Inc., 2015: pp. 355–359.
[15] Rajeshwari, A. Bagwari, Voltage harmonic reduction using passive filter shunt passive-active filters for non-linear load, in: Proc. - 7th Int. Conf. Commun. Syst. Netw. Technol. CSNT 2017, Institute of Electrical and Electronics Engineers Inc., 2018: pp. 131–136. doi:10.1109/CSNT.2017.8418524.

[16] S. Gadekar, N. Kulkarni, S. Mhetre, H.H. Kulkarni, Design and development of passive filter and comparative study of simulation results of passive and Active filter, in: Int. Conf. Energy Syst. Appl. ICESA 2015, Institute of Electrical and Electronics Engineers Inc., 2016: pp. 324–328. doi:10.1109/ICESA.2015.7503364.

[17] A. Baitha, N. Gupta, A comparative analysis of passive filters for power quality improvement, in: Proc. IEEE Int. Conf. Technol. Adv. Power Energy, TAP Energy 2015, Institute of Electrical and Electronics Engineers Inc., 2015: pp. 327–332. doi:10.1109/TAPENERGY.2015.7229640.

[18] S. Karve, Jakość energii. Harmoniczne – Filtry aktywne, (2016) 1–9. https://leonardo-energy.pl/wp-content/uploads/2016/05/EIM01210-Harmoniczne-filtry-aktywne.pdf (accessed September 25, 2019).

[19] M. Izhar, C.M. Hadzer, M. Syafrudin, S. Taib, S. Idris, An analysis and design of a star delta transformer in series with active power filter for current harmonics reduction, in: Natl. Power Energy Conf. PECon 2004 - Proc., 2004: pp. 94–97. doi:10.1109/PECON.2004.1461623.

[20] S. Yarahmadi, G.A. Markade, J. Soltani, Current harmonics reduction of non-linear load by using active power filter based on improved sliding mode control, in: PEDSTC 2013 - 4th Annu. Int. Power Electron. Drive Syst. Technol. Conf., 2013: pp. 524–528. doi:10.1109/PEDSTC.2013.6506763.

[21] S. Kocman, V. Kolar, T. Trung Vo, Elimination of harmonics using multi-pulse rectifiers, in: ICHQP 2010 - 14th Int. Conf. Harmon. Qual. Power, 2010. doi:10.1109/ICHQP.2010.5625408.

[22] J. Kim, J.S. Lai, X. Liu, Analysis of Harmonic Cancellation Performance of a Shunt Phase-Shift Transformer Rectifier, in: 2018 IEEE 4th South. Power Electron. Conf. SPEC 2018, Institute of Electrical and Electronics Engineers Inc., 2019. doi:10.1109/SPEC.2018.8635850.
[23] J. Iwaszkiewicz, A. Muc, P. Mysiak, A 12-pulse rectifier using coupled reactors for supplying three-inverters, Renew. Energy Power Qual. J. 17 (2019) 589–592. doi:10.24084/repqj17.382.

[24] P. Mysiak, A 24-pulse diode rectifier with coupled three-phase reactor, J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A/Chung-Kuo K. Ch’eng Hsuch K’an. 30 (2007) 1197–1212. doi:10.1080/02533839.2007.9671347.

[25] N.M. Salgado-Herrera, O. Anaya-Lara, D. Campos-Gaona, A. Medina-Rios, R. Tapia-Sanchez, J.R. Rodriguez-Rodriguez, Active Front-End converter applied for the THD reduction in power systems, in: IEEE Power Energy Soc. Gen. Meet., IEEE Computer Society, 2018. doi:10.1109/PESGM.2018.8586414.

[26] J. Rodriguez, J. Pontt, R. Huerta, P. Newman, 24-Pulse active front end rectifier with low switching frequency, in: PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., 2004: pp. 3517–3523. doi:10.1109/PESC.2004.1355097.

[27] E. Espinosa, J. Espinoza, J. Rohten, R. Ramirez, M. Reyes, J. Munoz, P. Melin, An efficiency comparison between a 18 pulses diode rectifier and a multi-cell AFE rectifier operating with FCS - MPC, in: IECON Proc. (Industrial Electron. Conf., Institute of Electrical and Electronics Engineers Inc., 2014: pp. 1214–1220. doi:10.1109/IECON.2014.7048657.

[28] Schneider Electric, AccuSine ® Power Correction System (PCS) Models: CE30 & CE54 Sizes: 50A, 100A, 300A Instruction Bulletin, n.d.

Table 1. Limit values for individual voltage harmonics according to EN50160 and IEC61000 standards

	Odd harmonics		Even harmonics						
	not a multiplicity of 3	multiplicity of 3	Amplitude [%]	Order	Amplitude [%]	Order	Amplitude [%]		
Order	Amplitude [%]	Order	Amplitude [%]		Order	Amplitude [%]		Order	Amplitude [%]
5	6	3	5		2	2		4	1
7	5	9	1.5		6	0.5		8	0.5
11	3.5	15	0.5		10	0.5		12	0.5
13	3	21	0.5		14	0.5		16	0.5
17	2				10	0.5		12	0.5
19	1.5				14	0.5		16	0.5
23	1.5							14	0.5
25	1.5							16	0.5
Fig. 1. Temperature of power contactor installed in capacitor bank

18	0.5
20	0.5
22	0.5
24	0.5
Fig. 2. Variation of THD$_i$ value for different loads

\[
\begin{align*}
\text{I}_\text{rms} &= 552\text{A} \\
\text{I}_\text{harmo} &= 20\text{A} \\
\text{THD}_i &= 3.6% \\
\end{align*}
\]

\[
\begin{align*}
\text{I}_\text{rms} &= 174\text{A} \\
\text{I}_\text{harmo} &= 15\text{A} \\
\text{THD}_i &= 8.6% \\
\end{align*}
\]

Fig. 3. Schematic of P50 transformer substation electrical network
Fig. 4. Current consumed by the P01 line equipment (time sample ≈ 6.5 min)

Extruder 150

Fig. 5. Course of the THD_n coefficient captured for the extruder 150 during two-week test without higher harmonics filtration (time sample ≈ 6.5 min)
Fig. 6. Course of the THD_i coefficient captured for the extruder 150 during two-week test without higher harmonics filtration (time sample ≈ 6.5 min)

Fig. 7. Values of subsequent voltage harmonics produced by extruder 150 without higher harmonics filtration
Fig. 8. Values of subsequent current harmonics produced by extruder 150 without higher harmonics filtration.

Fig. 9. Passive filter effectiveness depending on the machine load.
Fig. 10. Schematic of P50 transformer substation electrical network with passive filters

Fig. 11. Harmonic level estimation for transformer TR1 secondary side after passive filters application
Fig. 12. Harmonic level estimation for transformer TR2 secondary side after passive filters application

Fig. 13. Schematic of P50 transformer substation electrical network with active filters
Fig. 14. Harmonic level estimation for transformer TR1 secondary side after active filters application

Fig. 15. Harmonic level estimation for transformer TR2 secondary side after active filters application
Fig. 16. Schematic of P50 transformer substation electrical network with 12-pulse rectifiers

Fig. 17. Harmonic level estimation for transformer TR1 secondary side after 12-pulse rectifiers application
Fig. 18. Harmonic level estimation for transformer TR2 secondary side after 12-pulse rectifiers application

Fig. 19. Schematic of the AFE network with DC bus circuit for many machines
Fig. 20. Schematic of P50 transformer substation electrical network with AFE system

Fig. 21. Harmonic level estimation for transformer TR1 secondary side after AFE system application
Fig. 22. Harmonic level estimation for transformer TR2 secondary side after AFE system application

Table 2. Comparison of implementation costs and filtration quality for various higher harmonic filtration methods

Transformer	TR1	TR2	Implementation cost		
Harmonics (THD) voltage/current [%]	5	7	5	7	
Without filtration	5.6/14.2	3.8/9.9	7.7/24.3	6.6/16.8	0 €
Passive filters	1.5/5.4	1/2.7	1.4/10	1.3/6.5	44 990 €
Active filters	0.4/3.5	0.3/2.4	0.06/0.5	0.08/0.4	135 000 €
12-pulse rectifier	0.4/0.5	0.4/0.6	0.25/0.3	0.25/0.4	300 000 €
AFE (Active Front End)	0.1/0.7	0.2/0.8	0.2/0.7	0.4/0.9	442 500 €

Fig. 23. Comparison of different methods filtration quality for transformer TR1 network
Fig. 24. Comparison of different methods filtration quality for transformer TR2 network

Fig. 25. Course of the THD_u coefficient captured for the extruder 150 during two-week test with higher harmonics active filtration (time sample ≈ 6.5 min)
Fig. 26. Course of the THD\(_i\) coefficient captured for the extruder 150 during two-week test with higher harmonics active filtration (time sample = 6.5 min).

Fig. 27. Values of subsequent voltage harmonics produced by extruder 150 with higher harmonics active filtration.
Fig. 28. Values of subsequent current harmonics produced by extruder 150 with higher harmonics active filtration