Global distribution of IRC7 alleles in Saccharomyces cerevisiae populations: a genomic and phenotypic survey within the wine clade

Javier Ruiz,1 Miguel de Celis,1 Maria Martín-Santamaría,1 Iván Benito-Vázquez,1 Ana Pontes,2 Val F. Lanza,3 José Paulo Sampaio,2 Antonio Santos1* and Ignacio Belda1*

1Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain.
2Departamento de Ciencias da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal.
3Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, 28034, Spain.

Summary

The adaptation to the different biotic and abiotic factors of wine fermentation has led to the accumulation of numerous genomic hallmarks in Saccharomyces cerevisiae wine strains. IRC7, a gene encoding a cysteine-S-β-lyase enzyme related volatile thiols production in wines, has two alleles: a full-length allele (IRC7F) and a mutated one (IRC7S), harbouring a 38 bp-deletion. Interestingly, IRC7S-encoding a less active enzyme – appears widespread amongst wine populations. Studying the global distribution of the IRC7S allele in different yeast lineages, we confirmed its high prevalence in the Wine clade and demonstrated a minority presence in other domesticated clades (Wine-PDM, Beer and Bread) while it is completely missing in wild clades. Here, we show that IRC7S-homozygous (HS) strains exhibited both fitness and competitive advantages compared with IRC7F-homozygous (HF) strains. There are some pieces of evidence of the direct contribution of the IRC7S allele to the outstanding behaviour of HS strains (i.e., improved response to oxidative stress conditions and higher tolerance to high copper levels); however, we also identified a set of sequence variants with significant co-occurrence patterns with the IRC7F allele, which can be co-contributing to the fitness and competitive advantages of HS strains in wine fermentations.

Introduction

Saccharomyces cerevisiae is a eukaryotic model microorganism used in cellular physiology, molecular biology and genetics. However, much is still unknown about its metabolism in natural environments, beyond the laboratory (Liti, 2015). S. cerevisiae strains are worldwide distributed, occurring in multiple wild habitats and associated to several human activities (Wang et al., 2012). From its natural origin, the genome and the phenome of S. cerevisiae strains have been shaped for millennia, through different domestication events driven by a combination of natural and anthropic selection forces. These domestication events are accompanied with specific phenotypic traits originating from genetic variants, from single-nucleotide polymorphism to copy number variation or horizontal gene transfer (Belda et al., 2020). This process has originated highly adapted strains, defining different – and domesticated – lineages of S. cerevisiae during its evolutionary history (domesticated clades: Wine, Wine-PDM (Prise de Mousse), Beer1, Beer2, Bread and Sake; wild clades: West African, Mediterranean Oak, North America & Japan and Malaysia; Gallone et al., 2016; Gonçalves et al., 2016). These clades reflect, not only their geographical distribution, but also their lifestyle in association to different niches (Liti et al., 2009; Schacherer et al., 2009; Strope et al., 2015; Barbosa et al., 2018; Peter et al., 2018; Pontes et al., 2020). Because of the selective pressures of the different niches and, as a consequence of their high genome plasticity, S. cerevisiae strains are highly adapted to each environment they inhabit (Legras et al., 2018).

One of these well-defined monophyletic lineages is the Wine clade, including isolates from wine must, grapes and vineyard soils (Almeida et al., 2017). It has been demonstrated that this clade arose from a single bottleneck event of domestication (Peter et al., 2018).
Mediterranean Oak population being the proposed wild origin for wine yeasts clade (Almeida et al., 2015). Thereafter, viticulture expansion through Europe and Mediterranean Sea led to the migration of yeasts associated to grapevines to all the wine-producing regions around the world (Legras et al., 2007). For approximately 9000 years (McGovern et al., 2004), the specific environmental conditions of wine fermentations and the human pressure to achieve wine desirable traits, have led to a rapid evolutionary adaptation of wine strains, implying important changes on their genomes if compared with non-wine strains (Marsit and Dequin, 2015). Therefore, numerous hallmarks of domestication have been reported in wine strains, as examples of the adaptive process to wine environment (Belda et al., 2020).

In this work, we report new genetic and phenotypic signatures within the wine yeasts population which help to explain the previously reported paradoxical distribution of the IRC7S allele in wine yeasts (Belda et al., 2016). This gene, encoding a cysteine-S-conjugate β-lyase (EC 4.4.1.13), is the direct responsible for the release of volatile thiols (mainly 4MSP (4-methyl-4-sulfanylpentan-2-one)) from their cysteinylated precursors, conferring pleasant aromas in white wines (Harsch and Gardner, 2013; Howell et al., 2004; Swiegers and Pretorius, 2007; Tominaga et al., 2013). Two alleles have been reported for IRC7 in S. cerevisiae: a 1200-bp full-length allele (IRC7F) encoding a 400 amino acid protein, and an altered allele harbouring a 38-bp deletion (IRC7S), creating a premature stop codon, and thus encoding a shorter enzyme (360 amino acids) with lower activity (Roncoroni et al., 2011). Hence, three IRC7 genotypes have been described in S. cerevisiae strains: homozygous strains for the full-length IRC7 allele, IRC7F (HF), heterozygous strains (HT), and homozygous strains for the short-length IRC7 allele, IRC7S (HS). Surprisingly, the great majority of S. cerevisiae wine strains are homozygous for the IRC7F allele (HS strains), and therefore, they encode a less active β-lyase enzyme to release aromatic thiols (Roncoroni et al., 2011; Belda et al., 2016; Cordente et al., 2019).

To understand the high prevalence of HS strains in wine environment, we performed: (i) an IRC7 genotyping survey in a global collection of S. cerevisiae genomes coming from different domesticated and wild lineages; (ii) a genome-wide association study of IRC7-related sequence variants found in genes potentially involved the population prevalence of strains harbouring IRC7S allele in domesticated populations and (iii) a high throughput phenotyping study to seek metabolic and growth differences between the three IRC7 genotypes in wine strains. In summary, here we evidence that IRC7S-harbouring strains exhibited fitness and competitive advantages which could explain the outstanding high prevalence of these strains in wine population. Also, we found some phenotypic patterns in HS strains (i.e., an overall improvement in proliferative growth parameters, a better competitive fitness against HF strains and a strong pattern of resistance to S. cerevisiae killer strains) that seems to go beyond the functional activity of Irc7p. Thus, here we reported a set of sequence variants, with a high co-occurrence pattern with the IRC7S allele which could help to explain the population prevalence, and the fitness and competitive advantages of HS strains in wine fermentations.

Results

IRC7 allele distribution in S. cerevisiae populations

The evolutionary history of S. cerevisiae has defined well-separated domesticated and wild phylogenetic clades (Peter et al., 2018). To study the prevalence of the IRC7 alleles amongst S. cerevisiae populations, we performed an IRC7 genotyping survey using a collection of 283 S. cerevisiae genomes representing different – domesticated and wild – phylogenetic clades and origins (Supporting Information File S1). As stated before, two IRC7 alleles have been described (IRC7F and IRC7S), defining three genotype groups: HF for homozygous strains for the IRC7F allele; HT for heterozygous strains; and HS for homozygous strains for the IRC7S allele (Roncoroni et al., 2011).

Figure 1 shows the distribution of IRC7 alleles amongst different S. cerevisiae phylogenetic clades. Here we confirmed that the IRC7S allele was largely widespread in the Wine clade (85% of the strains). However, other domesticated clades such as Wine-PDM (‘Prise de Mousse’, a cluster of strains isolated from the secondary fermentation of sparkling wines), Beer2 and Bread showed a minority presence of the IRC7S allele (27.3%, 35.0% and 37.5% respectively). All the strains pertaining to the other domesticated (Beer 1 and Sake), and wild clades (Mediterranean Oak, Philippines, North America & Japan, West Africa and Malaysia) only harboured the IRC7F allele.

IRC7-rooted genomic survey in domesticated populations

With the aim of understanding if some additional genomic features – beyond the IRC7S allele – can be co-contributing to the population prevalence of HS strains in domesticated populations, especially amongst wine strains, we carried out a genomic survey looking for allelic variants potentially associated with the IRC7S allele. We performed a preliminary search in the whole genome of 9 wine strains (HS4, HS6, HS9; HT3, HT6, HT10;
HF1, HF2, HF9; see Supporting Information File S1), including 3 representative strains of each IRC7 genotype that were selected amongst those that will be characterized phenotypically later on (Table S2). In this search, we used *S. cerevisiae* VL3 (a well-studied and widely used strain in the wine industry; homozygous for the IRC7F allele) as the reference genome for the variant calling. The presence and co-occurrence of these sequence variants amongst the nine studied strains were represented in a bipartite network, including moderate and highly important mutations, and discarding those widespread mutations found in all the strains and those rare ones just found in one single strain (Fig. S1). Interestingly, HS strains appeared closely located in the network, indicating a conserved pattern of sequence variants against the HF strain genome (VL3) used as a reference. To focus our analysis on the potential genomic features associated with the IRC7S allele, we identified those genetic variants found as conserved amongst the genome of all the HS strains and absent in all HF strains in the subset of nine genomes. With this premise, the three HS strains shared 34 sequence variants – pertaining to 10 different genes, including IRC7 – which were not detected in any of the three HF strains analysed here (Table S1).

The 34 sequence variants, identified in the preliminary search, were then explored in a wider population survey of 150 genomes from different domesticated clades (genomes highlighted with an asterisk in Supporting Information File S1; mainly obtained from Gallone and colleagues (2016) and the genomes from the sequencing effort of this work), to confirm those sequence variants showing significant co-occurring patterns with the IRC7S allele (Fig. 2A, Supporting Information File S2). Figure 2B shows the prevalence patterns of the most significant sequence variants in terms of co-occurrence rates with IRC7S, within the wine clade and in the other domesticated clades (see Table S1 for a description of the nature and effect of the sequence variant detected, and the function of the genes affected). As occurred with IRC7S, all these sequence variants showed higher prevalence figures within the wine clade than in other domesticated clades (with the exception of XII_2022 PAU6) (Fig. 2B). Particularly noticeable, some sequence variants showed extremely low (those found in SDH1, YDR185C and
Fig. 2. A. Presence of the 34 sequence variants (affecting 10 different genes), identified in the variant calling analysis and potentially associated with IRC7 allele, in 150 genomes from different domesticated clades (Wine, Wine-PDM, Sake/Asian, Bread/Mixed, Beer1, Beer2 and Mosaic). The IRC7 allele and phylogenetic clades of the strains are highlighted at the left side of the heatmap, and the sequence variant of IRC7 is highlighted in bold letters in the heatmap. The presence/absence (variant allele/reference allele) of each sequence variant in the genome collection (representing six domesticated clades) is indicated by yellow and blue colours respectively. Strains (represented as rows in the heatmap) are grouped by their phylogenetic clade and IRC7 genotype. Sequence variants (represented as columns in the heatmap) are clustered in the dendrogram based on their distribution amongst genomes. Supporting data for this heatmap is described in the Supporting Information File S2.

B. Prevalence of the allelic variants amongst yeast strains belonging to the wine clade and average values for the other non-wine domesticated clades. Only those sequence variants with a prevalence in Wine clade higher than 25% were represented. The global co-occurrence ratios between each allelic variant with the IRC7F and IRC7S alleles were also represented in the heatmap above the barplot.
YJL163C genes) to no prevalence (that found in RSFI1) in non-wine domesticated clades. None of these sequence variants has higher prevalence figures than IRC7S within the wine clade, but one of the variants found in VPS10 (II_173796) and the ones found in APC4 and SDH1 have a prevalence higher than 50% amongst wine strains. In addition, the sequence variants found in APC4 and RSFI1 stand out as those with the highest co-occurrence ratio with IRC7S versus IRC7F allele (Fig. 2B, Supporting Information File S3).

Phenotypic landscape in wine strains based on IRC7-genotype

To understand the biological basis of the high prevalence of the IRC7S allele within the Wine clade, and due to the great diversity of functions in which the genes carrying mutations potentially associated with IRC7S are involved, we carried out a high throughput phenotyping looking for differences in growth parameters between the IRC7-genotype groups. Thirty S. cerevisiae wine strains, representing the three different IRC7 genotypes (10 HF, 10 HT and 10 HS; Table S2) were assayed in a panel of 48 culture conditions (testing different carbon and nitrogen sources, physicochemical conditions and antimicrobials; Table S3). Growth curves in axenic cultures were analysed to obtain the following growth parameters: lag time (time to initiate proliferation), growth rate (during exponential growth) and proliferative efficiency (population density change; Supporting Information File S4).

Figure 3A represents mean values (normalized to average for each condition) of the growth parameters obtained in all the growth conditions tested for the group of strains pertaining to each IRC7 genotype. Despite the high variability observed in lag phase duration and growth rate between strains – especially within the HF genotype, HF strains showed an overall lower growth rate between strains and success rates of 67%–100%–83% in wine, beer and non-fermentative conditions respectively.

Looking for other pieces of evidence, explaining the competitive advantage showed by IRC7-HS strains, we also evaluated the killer phenotype in our strains collection, looking for patterns in killer activity and/or resistance amongst HS–HT–HF groups. Figure 4B shows the results obtained for the killer (growth inhibition) assays, representing the sensitivity/resistance phenotypes of the strains tested. Killer phenotype showed a pattern associated with the IRC7 genotype, as all HS strains tested were resistant to the rest of S. cerevisiae strains tested as potential killer strains. Conversely, 7 out of 10 HT-strains and only 2 out of 10 HF strains were resistant. In addition, killer activity (against at least one of the potentially sensitive strains tested) was observed in 9 out of 10 HS strains, 7 out of 10 HT-strains, and only in 4 out of 10 HF strain.

Discussion

As reported before (Roncoroni et al., 2011; Belda et al., 2016; Cordente et al., 2019), the IRC7S allele appeared widespread in yeasts within the wine clade. Interestingly, here we show that it is also present, with a minority prevalence, in other domesticated clades such as Bread and, Wine-PDM and Beer2 – both defined as intermediate groups between non-wine and wine strains.
(Dunn et al., 2012; Gallone et al., 2016), but it is completely absent in wild clades. In addition, we detected the IRC7S allele in wine strains isolated from all continents (Europe, America, Asia, Africa and Oceania); thus, the occurrence of this allele does not appear as restricted to a specific region (Supporting Information File S1). All these observations suggest that the prevalence of the IRC7S allele may have been favoured during the domestication process of S. cerevisiae, with an outstanding prevalence in wine strains.

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 23, 3182–3195

Fig. 3. A. Boxplot of the average lag time, growth rate and efficiency of the three different strains groups, according to their IRC7 genotype. The performance in all the media panel were considered together in each plot. Different letters indicate the existence of statistical differences ($P < 0.05$).

B. Principal component analysis (PCA) representation of the wine fermentative parameters measured after the fermentation of the strains in synthetic grape must. Pairwise comparisons using PERMANOVAs on the Euclidean distance matrix used to plot the PCA reported significant differences between HF-HS ($P = 0.003$) and HT-HF ($P = 0.024$), but not between HS-HT ($P = 0.171$). [Color figure can be viewed at wileyonlinelibrary.com]
Reinforcing this hypothesis, other wine yeasts not belonging to the *Saccharomyces* genus, such as *Torulaspora delbrueckii* (a yeast species with a high capacity to release volatile thiols in wine fermentations), do not harbour the *IRC7S* allele in the orthologous gene in any of the wine strains investigated, but only the *IRC7F* allele (Belda et al., 2017). In this sense, the prevalence of the *IRC7S* allele in *S. cerevisiae* wine strains may be counterintuitive, as the *IRC7F* allele is strongly related with the production of pleasant aromas in wine fermentations and, as occurred with other aroma-related genes, those alleles related with higher quality products are assumed to be artificially selected through the domestication process (Steensels et al., 2019). Thus, in this work we aim to contribute to the pending task of understanding the biological basis of the paradoxical distribution of *IRC7* alleles in wine yeasts (Santiago and Gardner, 2015; Belda et al., 2016; Cordente et al., 2019).

Irc7p may have an implication in *S. cerevisiae* growth under some specific conditions, due to their role in cysteine and methionine metabolisms. Santiago and Gardner (2015) proposed a putative role of *IRC7F* coding enzyme on cysteine homeostasis by demonstrating its cysteine desulphydrase activity. A fully functional Irc7p (encoded by the *IRC7F* allele) could compromise the availability of the intracellular cysteine pool, therefore, due to the important impact of cysteine on glutathione production, *IRC7* could have a relevant role in the protection against oxidative damage in fermentation environments (García-Ríos and Guillamón, 2019). This hypothesis was supported by the fact that we found slightly lower oxidative damage levels in HS strains compared with HF strains in a controlled oxidative-stress shock assay (Fig. S3A). In addition, *IRC7* is regulated by copper availability (*IRC7* expression is inhibited under high copper conditions) and it may have a role on copper tolerance (Cordente et al., 2019). This trait represents a competitive advantage for wine strains, since high levels of copper in grape musts (mainly coming from the use of phytosanitary sprays in the vineyard) can be toxic for yeasts, causing stuck fermentations (Cavazza et al., 2013). Cordente and colleagues (2019) proposed that an Irc7p enzyme with a reduced ability to utilize cysteine ensure a higher intracellular cysteine pool, needed...
for the synthesis of cysteine-rich copper metallothioneins (i.e., Cup1p) which confer copper resistance to wine yeasts (Crosato et al., 2020). Reinforcing this hypothesis, Fig. S3B shows that HS strains have an overall better growth performance in the copper supplemented medium, exhibiting, on average, outstanding shorter lag phases and higher growth rates compared with HF strains. At this point, we should highlight the sequence variant detected in MAP1 (significantly co-occurring with the IRC7S allele, and showing a higher prevalence within the wine clade than in other domesticated clades; Fig. 2B), due to its functional relationship with Irc7p, as both participate in the metabolism of methionine, which has a great importance in both fermentation kinetics and wine flavour (Gutiérrez et al., 2013).

Apart from these observations, the other phenotypic results presented here – and not directly related to Irc7p enzymatic activity – could demonstrate an advantage phenotype of HS strains, explaining their high prevalence within Wine clade. When inoculated in grape must, yeast cells have to adapt to a highly stressful and competitive environment, performing a switch between respiration and fermentation metabolism, which is the main factor determining lag phase duration (Vermes et al., 2019). Therefore, the rapid adaptation to these conditions, which leads to the onset of exponential growth, will be decisive for the subsequent population to compete efficiently with the microbial populations inhabiting the same niche. Shorter lag phases and higher growth rates are major determinants of competitive fitness in complex multi-strains and multi-species environments (Schmidt et al., 2020), so, the great dominance of HS strains in wine fermentations (Fig. 4A) can be partially supported by their advantageous proliferation kinetics (Fig. 3A). However, the great diversity of phenotypes observed here, that goes beyond the cysteine-S-conjugate β-lyase activity of Irc7p, led us to hypothesize that the additional genetic variants detected by the genomic survey in other genes, but highly co-occurring with the IRC7S allele, could help explain the population prevalence and the phenotypic pattern of HS strains.

Amongst the sequence variants identified as highly co-occurring with the IRC7S allele (Supporting Information File S3; Fig. 2B), and therefore, potentially candidates to explain the outstanding phenotype of HS strains, SDH1 is a gene involved in the yeast's respiratory metabolism, encoding a flavoprotein subunit of the succinate dehydrogenase (SDH), which oxidizes the succinate in the TCA cycle. The sequence variant detected in SDH1 appeared widespread within the wine clade, but with a minority prevalence in other domesticated clades. It has been reported that, during fermentation, TCA cycle is interrupted at the level of SDH complex, but succinate is still formed by the oxidative branch of the TCA pathway (Camarasa et al., 2003). The transition to a respiratory metabolism and the maintenance of certain degree of respiration during fermentation have a direct impact on ethanol consumption at the end of the fermentation, and therefore, on the competitive performance during wine fermentation (Gasmi et al., 2014). Further studies are necessary to understand the functional impact of the sequence variant detected here in SDH1 (genomic position: XI_167775) in the metabolism of succinate and the maintenance of respiratory activity during wine fermentation. In addition, the sequence variants found in two other genes (VHS1 and APC4), should be also studied in detail to understand their potential contribution to the fitness advantage found in HS strains. Briefly, VHS1 encodes for a protein kinase activated by glucose availability, and it has been described as a member of the fermentome group (genes required to accomplish wine fermentation in S. cerevisiae; Walker et al., 2014), and APC4 encodes for a ubiquitin ligase involved in the anaphase inhibitors degradation and the reduction on its functionality could generate an increased competitive fitness (Breslow et al., 2008).

RSF1, another gene with a sequence variant highly co-occurring with the IRC7S allele, encodes a transcriptional factor required for the transition to respiratory growth. It is specifically necessary for the use of glycerol and ethanol as carbon sources (Lu et al., 2005), but it is also involved in the sporulation process. Interestingly, Gerke and colleagues (2009) reported that the sequence variant in RSF1 found in our work (XIII_93636_C, D181G) is missing in wild strains (i.e. oak strains) exhibiting a high-sporulation efficiency, but occurs in most strains isolated from vineyards. Our results reinforced this observation, showing that this RSF1 mutation is only found in S. cerevisiae wine strains and completely missing in any other domesticated clades (Fig. 2B, Supporting Information File S2). In S. cerevisiae wild strains, sexual reproduction – and therefore sporulation lifestyle – is favoured, rather than domesticated strains which present a predominant asexual lifecycle (Liti, 2015). Thus, although further studies are necessary to demonstrate the increased ability of RSF1-mutated strains to survive and compete in wine fermentations, our results suggest that this sequence variant has been favoured through the domestication process of wine strains. Interestingly, as sporulation and pseudohyphal growth are conflicting behaviours (Cullen and Sprague, 2012), and the latter gives cells an advantage in food foraging at nutrient-limited conditions (Carstens et al., 1998), our results shows that, while a 100% of our HS strains tested showed a notable pseudohyphal growth ability when nitrogen nutrient limitations is reached, only a 30% of HF strains showed this phenotype (Fig. S4).
Furthermore, *S. cerevisiae* strains able to secrete killer toxins – active against other sensitive yeasts, including strains of the same species, but also those strains resistant to the toxins produced by killer strains, could have a significant advantage in competitive environments such as wine fermentation (Marquina et al., 2002). In this sense, Servienćiò and colleagues (2012) demonstrated that the deletion of *VPS10* led to a K2 killer toxin hypersensitivity caused by a defect in cell osmoregulation. Thus, we suggest that the mutated version detected in *VPS10* (which accumulate several sequence variants with a higher prevalence in *IRC7*-HS than in *IRC7*-HF strains) could play a role in the strong resistance pattern to killer toxins found in most HS strains (Fig. 4B). In addition, although the biological role of *PAU6* is still unknown, the high percentage identity (84%) between Pau6p and Pau5p – which has a direct role in the resistance against yeast killer toxins (Rivero et al., 2015) – allows us to hypothesize that *PAU6*, and the sequence variants found on it (genomic positions: XII_2020 to XII_2022), may also be involved in killer toxins resistance, both in wine and non-wine strains.

At this point, it is important to note that, grouping the strains studied in the proliferative phenotyping (Supporting Information File S4) by all the potential genotypes (homozygous for the reference allele, heterozygous, and homozygous for the variant allele) defined by the existing allelic variants of the genes discussed above, we confirmed that the different *IRC7* genotypes exhibited the most significant differences in terms of proliferative fitness (lag time and growth rate). However, the homozygous genotypes for the allelic variants found in VHS1, *YJL163C*, *APC4*, *SDH1* and *RSF1* also showed an increased growth rate compared with the respective homozygous genotypes for the reference allele (Table S5); always with a lower statistical significance than the *IRC7* genotypes, and without any significant impact in the lag phase duration (with the exception of *YJL163C*).

Some of the results discussed in this work may partially explain the great prevalence of HS strains in the *S. cerevisiae* clade, but the reason why the *IRC7* allele is not as widespread in other highly domesticated clades like Wine-PDM, Beer or Bread (Fig. 1), remains to be unravelled. One explanation is that these clades, in comparison to Wine, are inhabiting fermentation processes from raw materials with a lower microbial diversity – sometimes even sterilized – where the strains used are not exposed to such highly competitive pressure as it occurs in grape musts (Conacher et al., 2019).

To conclude, since *IRC7* genotype, itself, does not seem to justify all the aspects of the advantageous fitness and competitive capability of HS strains, here we identified a set of sequence variants with high co-occurrence rates with the *IRC7* allele, which may be co-contributing to the outstanding phenotype of HS strains and the population prevalence in wine environments. However, further molecular studies are needed to unravel the actual individual or joint contribution of the identified sequence variants, and to explore other complex mechanisms, such as genetic hitchhiking, which may be responsible for the phenotypic advantages found in *IRC7*-HS strains.

Experimental procedures

Yeast strains

Saccharomyces cerevisiae strains used in this study (Table S1) were from CYC (Complutense Yeast Collection, Madrid, Spain) and Agrovín S.A. (Alcázar de San Juan, Spain). Sabouraud medium (Oxoid, Hampshire, UK) was routinely used for handling of the strains.

IRC7 genotyping

Previously, our research group performed the *IRC7* genotyping by PCR analysis (Roncoroni et al., 2011) of a vast collection of *S. cerevisiae* wine strains (Belda et al., 2016). Continuing this work, we performed an extensive *IRC7* genotyping using the genome information of 283 *S. cerevisiae* genomes, representing different phylogenetic clades (Supporting Information File S1). A local BLAST database was set up for each genome and, using BLASTN searches (1e-4 E-value cut-off), we identified the presence of each allelic variant of *IRC7* in the genome collection, using the *IRC7* sequence of *S. cerevisiae* VL3 strain as a query (GenBank: CM001131.1:228715-229917). When the BLAST search found the *IRC7* allele as the subject, we then identified this genome as harbouring *IRC7*; thus, heterozygosity was not considered in this search. Strains harbouring *IRC7* allele showed ≥99.9% of query coverage, while strains harbouring the *IRC7* allele presented 98.5% of query coverage. This identity percentage difference corresponds to the 38-bp deletion fragment. The prevalence of the *IRC7* alleles amongst *S. cerevisiae* populations was represented in a schematic overview of a phylogenetic tree of both wild and domesticated of *S. cerevisiae* (Fig. 1). This tree was drawn based on a phylogenetic analysis (not included) performed with a reduced dataset of *S. cerevisiae* genomes, representing different lineages.

IRC7-phenotyping study

High throughput phenotyping. We developed a phenotyping screening to characterize the fitness of the
strains, in order to find growth ability patterns associated with the *IRC7* genotype. Thirty *S. cerevisiae* strains (Table S2; 10 strains belonging to each *IRC7*-genotype group as described lately) were subjected to a high throughput phenotyping study. Strains were precultured during 48 h in 300 μl of Synthetic Defined (SD) medium (Warringer et al., 2011) with some modifications (2% glucose, 0.14% Yeast Nitrogen Base (BD Difco™, USA), 0.5% ammonium sulfate, 2.27% succinic acid disodium salt and 0.077% Complete Supplement Mixture (CSM, MP Biomedicals™, UK); pH was set to 5.8). Thereafter, strains were inoculated at a final OD₆₀₀ nm of 0.2 into 300 μl of the specific SD medium. Assays were performed in triplicate in 96-well plates. All media used are listed in Table S3. The category ‘carbon source’ indicates that 2% of glucose was substituted with the indicated concentration of the specified carbon source. Likewise, the category ‘nitrogen source’ indicates that 0.5% of ammonia sulfate was substituted with the indicated concentration of the specified nitrogen source. Strains were cultured during 60 h and OD₆₀₀ nm was measured every 4 h using a microplate reader (Varioskan Flash Multimode Reader, Thermo Scientific, USA). Raw OD data were processed as follows: OD measurements of non-inoculated media were subtracted and then, non-linearity of high-density cultures were corrected using the formula ODcorrected = 0.2453(ODobs)³ + 0.2735(ODobs)² + 0.9779(ODobs) – 0.0577 (Warringer & Blomberg, 2003). Finally, wrong data were removed to obtain smoothed growth data, making easy the growth parameters to be extracted. Fitness of the strains was analysed by extracting the growth parameters (lag time, growth rate and proliferative efficiency) from the growth curves using GrowthRates R package (Hall et al., 2014). Growth curves were adjusted to a Baranyi model (Baranyi and Roberts, 1994). Growth parameters, extracted from growth curves, for each strain and condition are shown in Supporting Information File S4. Lag phase determination was no possible in all the growth curves (values in red in Supporting Information File S4), because of the curve shape showed in some media. These missing data were not included in the statistical analysis, neither in the heat map representation.

Microviniﬁcations assays. The 30 wine strains were assayed in microviniﬁcations assays to characterize the effect of *IRC7*-genotype on wine parameters. Firstly, strains were precultured during 48 h in YNB-G medium (0.17% Yeast Nitrogen Base (BD Difco™, USA) and 2% glucose) in 15 ml ﬂasks with 10 ml of medium at 28°C with shaking (120 rpm). Then, strains were inoculated at a ﬁnal cell concentration of 10⁶ cells ml⁻¹ in Synthetic Grape Must medium described by Henschke and Jiranek (1993), that mimics a natural grape must, supplemented with 300 mg L⁻¹ of sodium metabisulﬁte and adjusted to pH 3.5. Assays were performed in triplicate in 30 ml ﬂasks with 25 ml of must. Fermentations were performed at 25°C with shaking at 120 rpm. Once fermentations ﬁnished, cultures were centrifugated at 7000 rpm for 10 min to remove biomass. Then, supernatants were stored at −20°C until further analysis. To quantify basic parameters of ﬁnished fermentation we used the near infrared spectroscopy method, utilizing one monochromator instrument, Foss NIRSystems 6500 SY-I (Silver Spring, MD, USA). Ethanol content, residual sugars, density, pH, malic acid, lactic acid, volatile acidity and total acidity were determined by this method.

Competition assays. To conﬁrm the effect of *IRC7*-genotype on the ﬁtness of the *S. cerevisiae* strains, competitions assays were carried out where two strains, harbouring the two different version of *IRC7*, were inoculated in mixed cultures. Four HF strains (HF1, HF2, HF8 and HF9) and three HS strains (HS4, HS6 and HS9) were selected for the pairwise competition assays. These experiments were performed into three different media to simulate wine fermentation, beer fermentation and non-fermentative condition. Synthetic Grape Must (Henschke and Jiranek, 1993) supplemented with 300 mg L⁻¹ of sodium metabisulﬁte, Beer Must (malt extract 13.2%, pH 5.2) and non-fermentative medium (glycerol 6% – as sole carbon source; YNB without amino acid and ammonium sulfate 0.017% (BD Difco™, USA); CSM 0.077% (MP Biomedicals™, UK); ammonium sulfate 0.5%) were used as culture media. Cultures were performed, in triplicate, in 40 ml ﬂasks with 30 ml of the corresponding medium, and incubated at 25°C under orbital shaking at 120 rpm. Previously, strains were pre-cultured during 48 h in YNB-G medium. Thereafter, strains were inoculated in the proportion 1:1, reaching a final concentration of 2×10⁶ cells ml⁻¹. Weight loss was monitored daily to determine the end of the fermentation. Final time samples were taken, serially diluted and plated to obtain colonies after incubation at 28°C. Ten colonies were selected from each replicate, and the implantation of the strains was monitored by DNA extraction and PCR ampliﬁcation of the interdelta polymorphism ﬁngerprinting method (Legras and Karst, 2003). Thus, the implantation percentage (ﬁnal prevalence of each strain) and the success rate (number of competition experiments won – implantation higher than 50% – by HS strains divided by the total number of competitions) of each strain at the end of the culture were calculated.

Killer activity assays. Killer activity and killer sensitivity of the 30 strains of the study (representing the three *IRC7*-genotype group) were measured using the method.
described by Santos and colleagues (2009). Strains to be tested for killer activity were inoculated in ~1 cm diameter concentrated zones onto YMA-MB plates (1% glucose, 0.3% yeast extract, 0.3% malt extract and 0.5% proteose peptone, supplemented with 30 mg L$^{-1}$ of methylene blue, 3% NaCl and 2% agar, pH 4.8) previously seeded with a lawn (5.0 \times 10^5 \text{cells ml}^{-1}) of the strains to be tested for killer sensitivity. Plates were incubated for a week at 20°C. After that, killer activity was detected by the observation of the halo of inhibition. Semiquantitative estimation of the killer activity intensity was calculated as the total diameter of the halo (growth inhibition) divided by the diameter of the biomass concentrated zone.

Oxidative stress evaluation. To compare the oxidative stress level in fermentation conditions between both IRC7F and IRC7S genotype group, intracellular ROS levels were evaluated. As described in the high throughput phenotyping, strains were precultivated and inoculated in SGM medium. After 24 h of fermentation, cells were treated during 90 min with menadione 1 mM. Then, cells were treated with dihydrorhodamine 123 (DHR 123, Sigma-Aldrich) at a final concentration of 7.5 µg ml$^{-1}$, and incubated in the dark during 90 min at 28°C under orbital shaking. After that, cells were pelleted, washed and resuspended in PBS. Then, the oxidative stress was analysed by quantified green fluorescence emission (540 nm) after excitation (485 nm) in a microplate reader Varioskan Flash Multimode Reader (Thermo Scientific).

Pseudohyphal growth test. For pseudohyphal growth development, yeasts were grown on minimal medium (0.17% yeast nitrogen base without amino acids and ammonium sulfate, 2% glucose, and 10 mM ammonium sulfate) for 16 h at 28°C. After that, cells were harvested and diluted (10^6 factor). From these dilutions, 100 µl were taken and spread onto synthetic Synthetic Low-Ammonium-Dextrose (SLAD) medium (0.17% yeast nitrogen base without amino acids and ammonium sulfate, 2% glucose, and 50 µM ammonium sulfate). Plates were incubated for 5 days at 28°C and colonies were observed by microscopy (10×).

Genome sequencing and identification of IRC7-associated mutations

Nine *S. cerevisiae* wine strains genomes, in representation the three IRC7 genotypes, were sequenced (GenBank accession PRJNA646611). Total genomic DNA was extracted using ZR Fungal/Bacterial DNA MiniPrep Kit (Zymo Research®, USA). Library preparation was performed by enzymatic fragmentation using Nextera DNA Library Prep kit (Illumina, USA). Libraries were sequenced using Illumina NextSeq 500/550 v2.5 per kits, with a coverage of 50 ×, obtaining sequences with the following stats; total number of reads from 6,876,948 to 11,022,748; total bases sequenced from 1,018,248,534 to 1,637,804,639; and an average length of 148 bases (minimum length of 35 bases and maximum length of 151 bases).

Sequence was filter with Trimmomatic v.0.38 (Bolger et al., 2014) with the following parameters: sliding window 15, minimum quality Q20 and minimum length 140. Filtered sequence was aligned with BWA (0.7.15-r1140; Li and Durbin, 2010) against *S. cerevisiae* VL3 genome (GenBank accession GCA_00019023.5_ScVL3_v01). Variant calling process was performed using GATK4 (4.0.4.0; McKenna et al., 2010). The process includes: indel realignment, duplicate removal, and performed SNP and INDEL discovery. The parameter was set according to GATK Best Practices recommendations. SNP and INDEL functional annotations were performed by SnpEff4.3 t (Cingolani et al., 2012).

Variant calling results were treated with R version 3.6.3 (R Development Core Team, 2019) and the packages vcfR (Knaus and Grünwald, 2017) and tidyverse (Wickham et al., 2019). Bipartite network was built selecting the combination of chromosome, position and alternative and linking with the strain. The resulting network was visualized using the Gephi software version 0.9.2. (Bastian et al., 2009). Only ‘moderate’ and ‘high importance’ sequence variants identified by SnpEff4.3t – according to its putative functional impact – have been taken into account for further analysis (see http://snpeff.sourceforge.net/VCFAnnotationFormat_v1.0.pdf for more detailed information about this categories).

Genomic survey

In order to study the distribution of the previous identified mutations across the *S. cerevisiae* population, genomic results were combined with all genomes from the publication of Gallone and colleagues (2016) (including *S. cerevisiae* genomes from six different phylogenetic populations). In order to compare and combine the results original fastq sequences were downloaded from ENA database. All samples were processed with the same workflow as described above (except for the functional annotation). All tables were processed using R and tidyverse packages. Mutation heatmap was performed using heatmap (Kolde, 2019). The co-occurrences with IRC7S and IRC7F allelic variants of each mutation were obtained using the results from mutations distribution data (Supporting Information File S2). The presence of the relevant allelic variants identified in this work were double-checked in the *S. cerevisiae* strains listed in Table S2, by the use of specific primers for the
amplification and sequencing of the regions containing these mutations (Table S6).

Statistical analysis
Statistical analysis was performed with the package stats of R software, version 3.6.3 (R Development Core Team, 2019). Analysis of variance (ANOVA) and Tukey post-hoc tests were applied to compare means of the different assays. T-test were applied to compare implantation percentages resulting from the (HS vs. HF) competition assays. Principal component analysis were applied to analyse wine basic parameters of microvini assays using the prcomp package in R.

Acknowledgements
Funding for the research in this paper was provided by Agrovin S.A, under the framework of the CDTI-financed project IDI-20160102, by Pago de Carraovejas S.L.U. CDTI-financed project IDI-20160750 (Centre for Industrial Technological Development, Spanish Ministry of Economy, Industry and Competitiveness, Spain), by the Madri-d foundation and the Rey Juan Carlos University (R&D projects for young researchers under the competitive project ‘WiNetworks’) and by the Ministry of Science and Innovation of Spain (MICINN project ‘WiNetworks’: PID2019-105834GA-I00).

Javier Ruiz acknowledges to the Complutense University of Madrid for his doctoral grant (CT17/17-CT18/17) and the Rey Juan Carlos University (R&D projects for young and Competitiveness, Spain), by the Madrid foundation and the Spanish Ministry of Economy, Industry and Competitiveness for his doctoral grant (BES-2017-080024) in the framework of the project CMT2016-76491-P.

References
Almeida, P., Barbosa, R., Bensasson, D., Gonçalves, P., and Sampaio, J.P. (2017) Adaptive divergence in wine yeasts and their wild relatives suggests a prominent role for introgressions and rapid evolution at noncoding sites. Mol Ecol 26: 2167–2182. https://doi.org/10.1111/mec.14071.

Almeida, P., Barbosa, R., Zalar, P., Imanishi, Y., Shimizu, K., Turchetti, B., et al. (2015) A population genomics insight into the Mediterranean origins of wine yeast domestication. Mol Ecol 24: 5412–5427. https://doi.org/10.1111/mec.13341.

Baranji, J., and Roberts, T.A. (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23: 277–294. https://doi.org/10.1016/0168-1605(94)90157-0.

Barbosa, R., Pontes, A., Santos, R.O., Montandon, G.G., de Ponzzes-Gomes, C.M., Morais, P.B., et al. (2018) Multiple rounds of artificial selection promote microbial secondary domestication-the case of cachaça yeasts. Genome Biol Evol 10: 1939–1955. https://doi.org/10.1093/gbe/evy132.

Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.

Belda, I., Goibbi, A., Ruiz, J., de Celis, M., Ortiz-Álvarez, R., Acedo, A., and Santos, A. (2020) Microbiomics to define wine terroir. In Reference Module in Food Science. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22875-8.

Belda, I., Ruiz, J., Beisert, B., Navascués, E., Marquina, D., Calderón, F., et al. (2017) Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. Int J Food Microbiol 257: 183–191. https://doi.org/10.1016/j.ijfoodmicro.

Belda, I., Ruiz, J., Navascués, E., Marquina, D., and Santos, A. (2016) Improvement of aromatic thiol release through the selection of yeasts with increased 3′-lyase activity. Int J Food Microbiol 225: 1–8. https://doi.org/10.1016/j.ijfoodmicro.2016.03.001.

Bolger, A.M., Lohse, M., and Usadel, B. (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

Breslow, D.K., Cameron, D.M., Collins, S.R., Schuldiner, M., Stewart-Osstein, J., and Newman, H.W. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5: 711–718. https://doi.org/10.1038/nmeth.1234.

Camara, C., Grivet, J.P., and Dequin, S. (2003) Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology (Reading) 149: 2669–2678. https://doi.org/10.1099/micro.0.26007-0.

Carstens, E., Lambrechts, M.G., and Pretorius, I.S. (1998) Flocculation, pseudohyphal development and invasive growth in commercial wine yeast strains. S Afr J Enol Vitic 19: 52–61.

Cavazzza, A., Guzzon, R., Miacarne, M., and Larcher, R. (2013) The influence of the copper content in grape must on alcoholic fermentation kinetics and wine quality. A survey on the performance of 50 commercial active dry yeasts. Vitis 52: 149–155.

Cingolani, P., Platts, A., Wang, L., Coon, M., Nguyen, T., Wang, L., et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118, iso-2; iso-3. Fly (Austin) 6: 80–92. https://doi.org/10.4161/fly.19695.

Conacher, C.G., Rossouw, D., and Bauer, F.F.B. (2018) Peer pressure: evolutionary responses to biotic pressures in wine yeasts. FEMS Yeast Res 19: foz072. https://doi.org/10.1093/femsyr/foz072.

Cordente, A.G., Bornerman, A.R., Bartel, C., Capone, D., Solomon, M., Roach, M., and Curtin, C.D. (2019) Inactivating mutations in Irc7p are common in wine yeasts, attenuating carbon-sulfur 3′-lyase activity and volatile sulfur compound production. Appl Environ Microbiol 85: e02684–e02684. https://doi.org/10.1128/AEM.02684-18.

Crosato, G., Nadai, C., Carlot, M., Garavaglia, J., Ziegler, D. R., Ross, R.C., et al. (2020) The impact of CUP1 gene copy-number and XVI-VIII/XV-XVI translocations on copper and sulfite tolerance in vineyard Saccharomyces.
cerevisiae strain populations. *FEMS Yeast Res* **20**: foaa028. https://doi.org/10.1093/femsyr/foaa028.

Cullen, P.J., and Sprague, G.F. (2012) The regulation of filamentous growth in yeast. *Genetics* **190**: 23–49. https://doi.org/10.1534/genetics.111.127456.

Dunn, B., Richter, C., Kvitk, D.J., Pugh, T., and Sherlock, G. (2012) Analysis of the *Saccharomyces cerevisiae* pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. *Genome Res* **22**: 908–924. https://doi.org/10.1101/gr.310330.111.

Gallone, B., Steenens, J., Prahl, T., Soriaga, L., Saels, V., Herrera-Malaver, B., et al. (2016) Domestication and divergence of *Saccharomyces cerevisiae* beer yeasts. *Cell* **166**: 1397–1410. https://doi.org/10.1016/j.cell.2016.08.020.

García-Ríos, E., and Guillamón, J.M. (2019) Mechanisms of yeast adaptation to wine fermentations. *Prog Mol Subcell Biol* **58**: 37–59. https://doi.org/10.1007/978-3-030-13035-0_2.

Gasmi, N., Jacques, P.E., Klímová, N., Guo, X., Ricciardi, A., Robert, F., and Turcotte, B. (2014) Dual role for yeast ErT1: activator of gluconeogenic genes and repressor of *PDC1*, a key fermentation gene. *Genetics* **3**: 114–560. https://doi.org/10.10344/gene64209.

Gonçalves, M., Pontes, A., Almeida, P., Barbosa, R., Serra, M., Libkind, D., et al. (2016) Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. *Curr Biol* **26**: 750–7261. https://doi.org/10.1016/j.cub.2016.08.040.

Gutiérrez, A., Beltran, G., Warringer, J., and Guillamón, J.M. (2013) Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains. *PLoS One* **8**: e67166. https://doi.org/10.1371/journal.pone.0067166.

Hall, B.G., Acar, H., Nandipati, A., and Barlow, M. (2014) Growth rates made easy. *Mol Biol Evol* **31**: 232–238. https://doi.org/10.1093/molbev/msu187.

Harsch, M.J., and Gardner, R.C. (2013) Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts. *Appl Microbiol Biotechnol* **97**: 223–235. https://doi.org/10.1007/s00253-012-4198-6.

Henschke, P., and Jiranek, V. (1993). Yeasts–metabolism of nitrogen compounds. In G.H. Fleet (Ed.), *Wine Microbiology and Biotechnology* (Switzerland: Harwood Academic, 1993) pp 77-164

Howell, K.S., Swiegers, J.H., Elsey, G.M., Siebert, T.E., Bartowsky, E.J., Fleet, G.H., et al. (2004) Variation in 4-mercapto-4-methyl-pentan-2-one release by *Saccharomyces cerevisiae* commercial wine strains. *FEMS Microbiol Lett* **240**: 125–129. https://doi.org/10.1016/j.femsle.2004.09.022.

Knaus, B.J., and Grunwald, N.J. (2017) VCFR: a package to manipulate and visualize variant call format data in R. *Mol Ecol Resour* **17**: 44–53.

Kolde, K. (2019). pheatmap: Pretty Heatmaps. R package version 1.0.12.

Legras, J.L., Galeote, V., Bigey, F., Camarasa, C., Marsit, S., Nidelet, T., et al. (2018) Adaptation of *S. cerevisiae* to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. *Mol Biol Evol* **35**: 1712–1727. https://doi.org/10.1093/molbev/msy066.

Legras, J.L., and Karst, F. (2003) Optimisation of interdelta analysis for *Saccharomyces cerevisiae* strain characterisation. *FEMS Microbiol Lett* **221**: 249–255. https://doi.org/10.1016/S0378-1097(03)00205-2.

Legras, J.L., Merdinoglu, D., Cornuet, J.M., and Karst, F. (2007) Bread, beer and wine: *Saccharomyces cerevisiae* diversity reflects human history. *Mol Ecol* **16**: 2091–2102. https://doi.org/10.1111/j.1365-294X.2007.03266.x.

Li, H., and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler Transform. *Bioinformatics* **26**: 589–595. https://doi.org/10.1093/bioinformatics/btp698.

Liti, G. (2015) The natural history of model organisms: the fascinating and secret wild life of the budding yeast *S. cerevisiae*. *Elite 4*: e50535. https://doi.org/10.7554/eLife.05835.

Liti, G., Carter, D.M., Moses, A.M., Warringer, J., Parts, L., and James, S.A. (2009) Population genomics of domestic and wild yeasts. *Nature* **458**: 337–341. https://doi.org/10.1038/nature07743.

Lu, L., Roberts, G.G., Oszt, C., and Hudson, A.P. (2005) The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast *Saccharomyces cerevisiae*. *Curr Genet* **48**: 235–246. https://doi.org/10.1007/s00294-005-0023-4.

Marquina, D., Santos, A., and Peinado, J.M. (2002) Biology of killer yeasts. *Int Microbiol* **5**: 65–71. https://doi.org/10.1007/s10123-002-0066-z.

Marsit, S., and Dequín, S. (2015) Diversity and adaptive evolution of *Saccharomyces* wine yeasts: a review. *FEMS Yeast Res* **15**: fov067. https://doi.org/10.1093/femsyr/fov067.

McGovern, P.E., Zhang, J., Tang, J., Zhang, Z., Hall, G.R., Moreau, R.A., et al. (2004) Fermented beverages of pre-and proto-historic China. *PNAS* **101**: 17593–17598. https://doi.org/10.1073/pnas.0407921102.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al. (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* **20**: 1297–1303. https://doi.org/10.1101/gr.107524.110.

Peter, J., De Chiara, M., Friedrich, A., Yue, J.X., Pfiefer, D., Bergström, A., et al. (2018) Genome evolution across 1,011 *Saccharomyces cerevisiae* isolates. *Nature* **556**: 399–344. https://doi.org/10.1038/s41586-018-0030-5.

Pontes, A., Hutzler, M., Brito, P.H., and Sampaio, J.S. (2020) Revisiting the taxonomic synonyms and populations of *Saccharomyces cerevisiae*-phylogeny, phenotypes, ecology and domestication. *Microorganisms* **8**: 903. https://doi.org/10.3390/microorganisms8060903.

Rivero, D., Berna, L., Stefanini, I., Baruffini, E., Bergerat, A., Ciskáš-Nagy, A., et al. (2015) Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains. *Environ Microbiol* **17**: 3069–3081. https://doi.org/10.1111/1462-2920.12950.
Roncoroni, M., Santiago, M., Hooks, D.O., Moroney, S., Harsh, M.J., Lee, S.A., Richards K.D., Nicolaou L., Gardner R.C. (2011). The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. *Food Microbiol* **28**:926–935. https://doi.org/10.1016/j.fm.2011.01.002, 28, 5, 926, 935

Santiago, M., and Gardner, R.C. (2015) The IRC7 gene encodes cysteine desulphhydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source. *Yeast* **32**: 519–532. https://doi.org/10.1002/yea.3076.

Santos, A., San Mauro, M., Bravo, E., and Marquina, D. (2009) PMKT2, a new killer toxin from *Pichia membranifaciens*, and its promising biotechnological properties for control of the spoilage yeast *Brettanomyces bruxellensis*. *Microbiology (Reading)* **155**: 624–634. https://doi.org/10.1099/mic.0.023663-0.

Schacherer, J., Shapiro, J.A., Ruderfer, D.M., and Kruglyak, L. (2009) Comprehensive polymorphism survey elucidates population structure of *Saccharomyces cerevisiae*. *Nature* **458**: 342–345. https://doi.org/10.1038/nature07670.

Schmidt, S.A., Kolouchova, R., Forgan, A.H., Borneman, A. R. (2020) Evaluation of *Saccharomyces cerevisiae* wine yeast competitive fitness in environmentally relevant environments by barcode sequencing. *G3* **10**: 591–603. https://doi.org/10.1534/g3.119.400743, 10, 2, 591, 603

Servien, E., Lukša, J., Orentait, I., Lafontaine, D.L., and Urbonavicius, J. (2012) Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility. *PLoS One* **7**: e50779. https://doi.org/10.1371/journal.pone.0050779.

Steensels, J., Gallone, B., Voordeckers, K., and Verstrepen, K.J. (2019) Domestication of industrial microbes. *Curr Biol* **29**: R381–R393. https://doi.org/10.1016/cub.2019.04.025.

Strope, P.K., Skelly, D.A., Kozmin, S.G., Mahadevan, G., Stone, E.A., Magwene, P.M., et al. (2015) The 100-genomes strains, an *S. cerevisiae* resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. *Genome Res* **25**: 762–774. https://doi.org/10.1101/gr.185538.114.

Swiegers, J., and Pretorius, I. (2007) Modulation of volatile sulfur compounds by wine yeast. *Appl Microbiol Biotechnol* **74**: 954–960. https://doi.org/10.1007/s00253-006-0828-1.

Tominaga, T., Furrer, A., Henry, R., and Dubourdieu, D. (1998) Identification of new volatile thiols in the aroma of *Vitis vinifera* L. var. Sauvignon blanc wines. *Flav Frag J* **13**: 159–162.

Vermersch, L., Perez-Samper, G., Carulus, B., Jariani, A., Gallone, B., Voordeckers, K., et al. (2019) On the duration of the microbial lag phase. *Curr Genet* **65**: 721–727. https://doi.org/10.1007/s00294-019-00938-2.

Walker, M.E., Nguyen, T.D., Licioli, T., Schmid, F., Kalatzis, N., Sundstrom, J.F., et al. (2014) Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by *Saccharomyces cerevisiae*. *BMC Genomics* **15**: 552. https://doi.org/10.1186/1471-2164-15-552.

Wang, Q.M., Liu, W.Q., Liti, G., Wang, S.A., and Bai, F.Y. (2012) Surprisingly diverged populations of *Saccharomyces cerevisiae* in natural environments remote from human activity. *Mol Ecol* **21**: 5404–5417. https://doi.org/10.1111/j.1365-294X.2012.05732.x.

Warringer, J., and Blomberg, A. (2003). Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in *Saccharomyces cerevisiae*. *Yeast*, **20**: 53–67.

Warringer, J., Zörgö, E., Cubillos, F.A., Zia, A., Gjuvsland, A., Simpson, J.T., et al. (2011) Trait variation in yeast is defined by population history. *PLoS Genet* **7**: e1002111. https://doi.org/10.1371/journal.pgen.1002111.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., et al. (2019) Welcome to the tidyverse. *J Open Source Softw* **4**: 1686. https://doi.org/10.21105/joss.01686.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Appendix S1. Supplementary Information

Table S1. Mutations shared amongst the HS strains (highlighted in red in Fig. S1) identified in the variant calling analysis of nine of our studied strains (including three representative strains of each IRC7-genotype (HS4, HS6, HS9; HT3, HT6, HT10; HF1, HF2, HF9) and VL3 as a reference representative strains of each IRC7-genotype (HS4, HS6, HS9; HT3, HT6, HT10; HF1, HF2, HF9) and VL3 as a reference strain).

Table S2. *S. cerevisiae* strains used in the phenotyping study.

Table S3. Culture media used in the *S. cerevisiae* strains phenotyping.

Table S4. Enological parameters at the end of the microvinification assays.

Table S5. Average lag time, growth rate and proliferative efficiency of the yeast strains pertaining to different genotype groups (homoygous for the reference allele (HR), heterozygous (HT) and homoygous for the alternative variant allele (HV)), according to allelic variants found in different genes highlighted in Fig. 2B, assayed in a panel of media (Table S3). Different letters indicate the existence of significant differences in an ANOVA comparison. Comparisons with significant differences are highlighted with bold letters.

Table S6. List of primers used to confirm some relevant allelic variants found in this work.