Sclerotherapy is the targeted chemical ablation of a varicose vein by intravenous injection of a liquid or foam sclerosant [1, 2]. Intradermal, subcutaneous and/or transfascial (perforator) veins can be treated by this method, as well as epi-, supra- and subfascial vessels with venous malformations. The sclerosant destroys the endothelium of the vein and possibly other regions of the vein wall, and is deactivated by blood components and circulating cells [1, 2]. After successful sclerotherapy the varicose vein is transformed in the long term into a string of connecting tissue, in a process known as sclerosis [3–6]. The objective of sclerotherapy is not thrombosis of the vein, since re-channelling may occur after this process, but its transformation into a string of connecting tissue. Re-channelling of this is impossible, so the functional outcome is equivalent to removal of the vein or endovenous thermal ablation.

2 Objectives of sclerotherapy

The objectives of sclerotherapy are:

- Ablation of varicose veins.
- Prevention and treatment of complications of chronic vein disease.
- Improvement and/or elimination of venous symptoms, improved quality of life.
- Improved venous function.
- Improved aesthetic appearance.

The objectives are consistent with those of other therapeutic procedures for varicose veins.

3 Indications

Recommendation 1

Sclerotherapy can be used for all forms of varicose veins, especially:
Leitlinien und Empfehlungen

- Incompetent saphenous veins [5, 7–18].
- Varicose tributaries [19, 20].
- Incompetent perforator veins [19, 21–24].
- Reticular varices [8, 20, 25–30].
- Spider veins (telangiectasia) [8, 20, 25–30].
- New, remaining and recurrent varicose veins after previous operations [19, 31–39].
- Genital and perigenital varices [31, 40–42].
- Varicose veins (veins with reflux) around a leg ulcer [43–50].
- Venous malformations [51–57].

Other indications (e.g. varicose veins in the oesophagus, haemorrhoids, varicocele, hygroma, lymphatic cyst, Baker’s cyst) are not covered by these guidelines.

Treatment with liquid sclerosants is considered the method of choice for reticular varices and spider veins due to the stability of the available data (C1 varicose veins according to the CEAP classification) [25, 27, 29, 58, 59]. Foam sclerotherapy is an additional treatment option for C1 varicose veins [8, 28, 29, 60].

Thermal and operative procedures have been established for the treatment of varicose saphenous veins. The treatment of incompetent saphenous veins by sclerotherapy is likewise a successful and cost-efficient treatment option [18, 61–70]. It has comparatively few side effects and can be repeated as required. This is particularly true of foam sclerotherapy, as has been shown in recent years by case studies and prospective, randomised, controlled trials [5, 11, 18, 27, 65, 66, 71–73]. The re-channelling and recurrence rates are higher than with operative and thermal procedures [11, 14–17]; however, the improvement in quality of life achieved after 5 years is similar to that of EVLA and stripping operations [18].

In combination with other saphenous vein ablation procedures, sclerotherapy with percutaneous vein ablation is an option for the elimination of an accompanying varicose tributary, either in the same session or after an interval [19, 20]. The same is true of treatment of recurrent varicose veins [37, 38]. Early ablation of the incompetent saphenous vein as well as peri-ulcer sclerotherapy has proved effective in the treatment of venous leg ulcers. Foam sclerotherapy of the incompetent saphenous vein accelerates ulcer healing, comparable with endovenous thermal procedures [74].

4 Contraindications

Recommendation 2

The following absolute and relative contraindications for sclerotherapy shall be observed:

Absolute contraindications [3, 4, 7, 59, 75]:
- Known allergy to the sclerosant.
- Acute venous thromboembolism.
- Local infection in the region of the sclerotherapy or severe generalised infection.
- For foam sclerotherapy:
 - Known symptomatic right-to-left shunt (e.g. symptomatic patent foramen ovale).

Relative contraindications (individual risk–benefit assessment is obligatory) [3, 59, 76]:
- Pregnancy.
- Lactation (if the indication is urgent, interrupt lactation for 2–3 days).
- Severe peripheral arterial occlusive disease.
- Poor general state of health.
- High risk of thromboembolism (e.g. known history of thromboembolic events, known severe thrombophilia, active cancer).
- Long-term immobility or bed-ridden patient.
- For foam sclerotherapy:
 - Neurological disorders, including migraine, after previous foam sclerotherapy.

Anticoagulation treatment is not a contraindication for sclerotherapy per se [43, 77, 78]; however, patients should be advised that the success of the treatment may be reduced and/or several treatments may be needed.

In addition, the technical information current in Germany, the instruction leaflet or the product description for the sclerosant used should be observed.

5 Complications and risks

If correctly executed, sclerotherapy is an efficient form of treatment with few complications [79].

Recommendation 3

Care shall be taken with the following undesired events after sclerotherapy [80–86] (GRADE IB) (Table 1):

Anaphylaxis

Anaphylactic shock is an extremely rare complication, which shall be treated as an emergency [87, 88].

Recommendation 4

If an anaphylactic reaction is suspected, injection shall be stopped immediately and the usual emergency measures taken, including, if appropriate, administering anti-histamines, corticosteroids and epinephrine.

Extensive tissue necrosis

Extensive necrosis may appear after inadvertent intra-arterial injection [89–92]. The risk of intra-arterial injection can be minimised by ultrasound control with proper representation and identification of the arteries in the immediate neighbourhood of the target veins. If severe pain occurs during injection, the procedure should be stopped immediately. If intra-arterial injection is suspected, local anticoagulation and thrombolysis should be administered by catheter if possible. This can be complemented, if appropriate, by systemic anticoagulation. Prompt administration of systemic corticosteroids can help to reduce the inflammatory reaction [85, 89].

Recommendation 5

To avoid inadvertent perivenous or intra-arterial injection, in both foam and liquid sclerotherapy, the injection should be carried out under ultrasound...
Table 1 Undesired events after sclerotherapy. (Modified and updated from [81])

Type of undesired event	Frequency	With liquid sclerotherapy	With foam sclerotherapy
Serious complications			
Anaphylaxis	* Individual cases	* Individual cases	
Extensive tissue necrosis	* Individual cases	* Individual cases	
Stroke and TIA	* Individual cases	* Individual cases	
Distal deep vein thrombosis (usually muscular)	** Rare	*** Occasional	
Proximal deep vein thrombosis	* Very rare	* Very rare	
Lung embolism	* Individual cases	* Individual cases	
Damage to motor nerves	* Individual cases	* Individual cases	
Benign complications			
Visual disturbances	* Very rare	*** Occasional	
Headache and migraine	* Very rare	*** Occasional	
Damage to sensory nerves	* Not reported	** Rare	
Tightness in the chest	* Very rare	* Very rare	
Dry cough	* Very rare	* Very rare	
Superficial thrombosis	Unclear⁶	Unclear⁶	
Skin reaction (contact allergy)	* Very rare	* Rare	
Matting	**** Frequent	**** Frequent	
Hyperpigmentation	**** Frequent	**** Frequent	
Skin necrosis (minimal)	** Rare	* Very rare	
Embolia cutis medicamentosa	* Very rare	* Very rare	

*As with all medication treatments, the possibility cannot be excluded that some of these serious side effects (e.g. anaphylaxis) may be fatal in the worst cases
⁵Frequencies between 0 and 45.8% are reported in the literature, with a mean value of 4.7% (see below)
⁶Local wheal formation and urticaria factitia may be observed at the insertion point, similar to that observed in the context of local histamine release; these should not generally be considered an "allergic reaction"

Skin necrosis and embolia cutis medicamentosa

Skin necrosis is described both after perivascular injection of high-percent-age sclerosant and in rare cases after correct intravascular injection of the sclerosant at low concentrations [93]. However, it has been shown that subcutaneous perivascular injection of liquid or foam polidocanol is not responsible for skin necrosis after sclerotherapy of reticular varices or spider veins [94]. In these cases a mechanism is assumed with transfer of sclerosant into a leg artery through an arteriovenous anastomosis or venoarterial reflex vasospasm [85, 95, 96]. In individual cases this has been described as embolia cutis medicamentosa or Nicolau syndrome [97, 98]. Treatment of skin necrosis should follow the recommendations for general wound treatment. Healing can sometimes be protracted.

Recommendation 6

If intra-arterial injection is suspected, local anticoagulation and thrombolysis should be administered by catheter if possible; this can be complemented, if appropriate, by systemic anticoagulation. Prompt administration of systemic corticosteroids can help to reduce the inflammatory reaction.

Recommendation 7

To reduce the risk of skin necrosis, injection of large volumes at any injection point should be avoided. The sclerosant should be injected at the lowest possible pressure.

Vision disorders, headache and migraine

Transient migraine-like symptoms can be observed after all forms of sclerotherapy. They appear more frequently after foam sclerotherapy than liquid sclerotherapy [58, 80, 84, 99–102]. To date no pathological findings have been reported in ophthalmological research, and there are no reports of lasting vision disorders [100].

Right-to-left shunt, for example due to patent foramen ovale, occurs in around 30% of the population; discussion continues as to whether the transfer of foam bubbles into the arterial circulation plays a part in this condition [103–107].

Vision disorders after sclerotherapy probably reflect a migraine with aura rather than temporary ischaemic cerebrovascular events [108, 109].

Vision disorders may be accompanied by paraesthesia and dysphasic speech disorders, depending on the extent of cortical spreading depression, the pathological equivalent of migraine with aura. There is no firm proof of interdependence between foam bubbles and visual or neurological disorders. Recent data show that potentially vasospastic endothelin 1 is released from vessels into which liquid or foam sclerosant has been injected [110, 111]. Vision disorders occur in patients with a history of migraine more frequently than in patients with no such history [108]. Multiple injections of small doses may possibly reduce rapid trans-
Deep vein thrombosis (DVT) and lung embolism (LE)

In Table 1, distal DVT is included under “serious complications”, although in individual cases it may be a “benign complication”, e.g. in the case of an asymptomatic calf vein thrombus. There are insufficient published data to assess the real frequency of DVT after liquid sclerotherapy. Most studies on the effectiveness of liquid sclerotherapy are old and were carried out without duplex ultrasound examination. In most studies there is no clear distinction between symptomatic and asymptomatic DVT, although the clinical consequences are usually distinguishable [126]. Severe thromboembolic events (proximal DVT, lung embolism) very seldomly occur after sclerotherapy [127, 128]. The total frequency of thromboembolic events is less than 1%; the frequency of DVT reported in the meta-analyses of Jia and of Dermondy is 0.6% [129, 130]. Deep vein thrombi are mostly distal. Most cases are discovered during routine follow-up examination by duplex ultrasound and are asymptomatic [80, 84, 130]. The injection of large volumes of liquid sclerosant, and more particularly of foam sclerosant, raise the risk of a thrombus [71, 75, 113, 131]. This is equally true of patients with a known history of thromboembolism or thrombophilia [7]. For patients with these risk factors a precise risk–benefit analysis shall be carried out and additional precautions should be taken [75, 77, 132]. Other risk factors, like overweight or insufficient mobility, should also be considered.

Recommendation 8

In patients who have presented neurological symptoms, including migraine, after previous sclerotherapy, the following should be considered:
- The patient should remain lying down for longer after the injection.
- Injection of large volumes of foam should be avoided, or liquid sclerosant should be used instead.
- The patient should avoid carrying out the Valsalva manoeuvre soon after the injection.
- Use of a thrombus prophylactic drug in accordance with the recommendations on thrombus prophylaxis in current guidelines.
- Physical prophylaxis (compression, exercise).
- Avoid injections of large volumes of foam sclerosant.
- Decide on a case-by-case basis (considering a risk–benefit analysis based on the indications).

Superficial vein thrombosis

Frequencies between 0 and 45.8% are reported in the literature, with a mean of 4.7% [80, 85, 129]. The definition of superficial vein thrombosis after sclerotherapy is controversial in the literature. An inflammatory reaction in the injected sector of vein is usually a keloid reaction to sclerotherapy, which—as long as it does not exceed a normal size—should not be interpreted as a superficial vein thrombosis; on the other hand, a superficial vein thrombosis in an un.injected vein, or which clearly extends beyond the injected sector, would meet the definition of a superficial vein thrombosis. According to this interpretation, superficial vein thrombosis does occur after sclerotherapy; however, its real frequency is unknown.

Damage to motor nerves

The incidence of nerve damage after sclerotherapy is very low, lower than with other treatment methods for varicose veins [133].

Hyperpigmentation

Transient skin pigmentation is reported with a frequency between 0.3 and 30% [93, 134]. In general the pigmentation disappears slowly over a period of weeks or months [135]. The incidence of hyperpigmentation is probably higher after foam sclerotherapy than liquid sclerotherapy [80]. To reduce the frequency of hyperpigmentation, intravascular clots should be removed by needle aspiration or squeezed out through a stab incision [136, 137].
Recommendation 10
To reduce the risk of hyperpigmentation, superficial clots can be removed.

Matting
Matting describes the repeated appearance of fine spider veins in the region of a vein which has already been treated by sclerotherapy or another ablation technique (stripping, laser); it is an unpredictable individual reaction of the patient. Matting can also occur after operative or thermal ablation of a varicose vein. In many cases the cause is non-treatment or insufficient treatment of the underlying reflux. High initial concentrations or large volumes of sclerosant can likewise lead to inflammation or excessive obstruction of the veins, with resulting angiogenesis. Treatment of matting should focus on the possible underlying reflux and the remaining open veins; the best treatment is with low concentrations of sclerosant or stripping.

Other
Other transient general or local reactions after sclerotherapy are tightness in the chest, vasovagal syncope, nausea, metallic taste, intravascular clot, haematoma, chest, vasovagal syncope, nausea, metallic taste, intravascular clot, haematoma, chest, vasovagal syncope, nausea, metallic taste, intravascular clot, haematoma, chest, vasovagal syncope, nausea, metallic taste, intravascular clot, haematoma, chest, vasovagal syncope, nausea, metallic taste, intravascular clot, haematoma, chest, vasovagal syncope, nausea, metallic taste, intravascular clot, haematoma, chest, vasovagal syncope, nausea, metallic taste, intravascular clot, haematoma.

Recommendation 12
Before sclerotherapy patients shall be informed of the following:
- Alternative treatment methods with their advantages and disadvantages.
- Description of the sclerotherapy procedure and post-operative treatment.
- Serious risks and complications.
- Frequent side effects.
- Explanation of rare and minor side effects in non-medically indicated sclerotherapy.

Recommendation 13
With respect to the expected outcome of sclerotherapy, patients should be informed of the following:
- Short- and medium-term controls may be necessary.
- Repeat treatment may be needed in some cases, especially in treatment of large varicose veins.
- Foam sclerotherapy is more effective than liquid sclerotherapy for subcutaneous varicose veins.
- Ultrasound-controlled foam sclerotherapy can avoid the need for an intra-arterial injection.
- Certain side effects may be more frequent with foam (see Complications and risks section).

7 Diagnosis before sclerotherapy and documentation
Successful sclerotherapy requires a methodical procedure. Treatment is usually applied in sequence from proximal to distal reflux sources, and from larger to smaller varicose veins. A comprehensive diagnosis shall therefore be carried out before treatment.

Recommendation 14
Before sclerotherapy, a diagnosis shall be obtained, including medical history and clinical and duplex ultrasound examinations. In cases of spider veins and reticular varices, examination with unidirectional Doppler ultrasound instead of duplex ultrasound can be sufficient.

Patients with new and/or recurrent varicose veins after previous treatment are recommended to have duplex ultrasound before sclerotherapy. In cases of vessel malformation, thorough duplex ultrasound is also recommended. In some cases further examinations are necessary to clarify the anatomical and haemodynamic situation. Functional examinations (e.g. phlebography, phlebodystonomometry, venous occlusion phlebography) should also be considered. Other imaging techniques (e.g. phlebography) should only be used in exceptional cases.
Leitlinien und Empfehlungen

Recommendation 15

Patients with recurrent varicose veins and patients with vessel malformations shall have a duplex ultrasound examination before sclerotherapy.

It is not necessary to examine specifically for the presence of a right-to-left shunt or thrombophilia before foam sclerotherapy [75].

Recommendation 16

Routine examination for a right-to-left shunt or the presence of thrombophilia factors in a clot system can be omitted.

The type of treatment, the number of treatments (injections and sessions), the medicinal products injected, volumes, concentrations and the proportions of the foam ingredients should be documented, including details of the veins treated (mapping).

8 Sclerotherapy of varicose veins

Polidocanol (Lauromacrogol 400)

A variety of different sclerosants have been used to treat varicose veins in recent decades, depending on national policies and traditions. In Germany, the only product authorised for use in the sclerotherapy of varicose veins is Aethoxysklerol® (Chemische Fabrik, Kreussler & Co. GmbH, Wiesbaden, Germany) [155], with the active ingredient polidocanol (Lauromacrogol 400).

Polidocanol is available in the following concentrations: 0.25%, 0.5%, 1%, 2% and 3% (corresponding to 5mg, 10mg, 20mg, 40mg and 60mg in a 2ml ampule).

Polidocanol is a non-ionic detergent and a local anaesthetic. A dose of 2mg polidocanol per kilogram body weight per day should not be exceeded (see German product information for Aethoxysklerol® [155]). Thus, for a patient with a body weight of 70kg, a maximum of 140mg of polidocanol can be injected for varicose vein sclerotherapy—regardless of the amount recommended for medical purposes. 140mg polidocanol are contained in:
- Aethoxysklerol® 0.25%: 56ml injection solution.
- Aethoxysklerol® 0.5%: 28ml injection solution.
- Aethoxysklerol® 1%: 14ml injection solution.
- Aethoxysklerol® 2%: 7ml injection solution.
- Aethoxysklerol® 3%: 4.6ml injection solution.

Sclerotherapy can be carried out with or without ultrasound control and with liquid or foam sclerosant.

8.1 Liquid sclerotherapy

Recommendation 17

The following recommendations on concentrations and amounts per injection for liquid sclerotherapy should be observed. Concentrations and amounts are reference values and can be adapted according to the therapist’s assessment (Tables 2 and 3).

8.1.1 Spider veins and reticular varices (C1)

Recommendation 18

The following recommendations should be observed for liquid ablation of spider veins and reticular varices (C1):
- Puncture and injection of spider veins and reticular varices are carried out with the limb in the horizontal position.
- A low-friction syringe is recommended.
- A small cannula (up to 32G) can be used.
- An air-block system can be used.
- The outcome may be improved by repeated sessions.
- In spider veins and reticular varices, discoloration of the vein immediately after the start of injection shows that the sclerosant is forcing out the blood and that the injection is intravasal.

If the skin round the injection point turns white during injection, the injection shall be stopped immediately to avoid skin damage.

In liquid ablation, as a rule, the sclerosant is slowly injected intravenously, if possible in a fractionated dose and controlling the intravasal position of the cannula.

Severe pain during injection may indicate paravascular or even intra-arterial injection. In this case injection shall be stopped immediately.

Diaphanoscopy can be used to detect invisible tributary or perforator veins.

8.1.2 Varicose veins (C2)

Recommendation 19

The following recommendations should be observed for liquid ablation of varicose veins (C2):
- The vein can be punctured with a free needle (“open needle”) or a cannula attached to the syringe (“closed needle”).
- Avoid puncturing a perforator vein or saphenofemoral junction directly.
- Low-friction syringes and cannulae of different diameters are recommended according to the indication.
- Injection systems: the injection can be carried out:
 - with a cannula attached to the syringe (“closed needle”); the syringe is filled with sclerosant (e.g. 2.5–5ml),
 - with a butterfly catheter as an option for varicose veins lying immediately under the skin (preferably with a short silicone tube due to the stability of the foam),
 - with a short catheter (e.g. Braunüle® [B. Braun Melsungen AG, Melsungen, Germany]) as an option for saphenous veins and with the possibility of an injection afterwards,
 - with a long catheter as an option for varicose saphenous veins.

After puncturing the skin with the cannula, the intravasal position is checked by allowing the blood...
Table 2 Recommended amounts per injection for polidocanol liquid sclerotherapy with single injections [155]

Indications	Volume/injection point
Spider veins (C1)	Up to 0.2 ml
Reticular varices (C1)	Up to 0.5 ml
Varicose veins (C2)	Up to 2.0 ml

To flow back or by aspiration, as appropriate.

- Several injections can be applied per session along the treated vein.
- Injection should be carried out with patient lying down.
- As a rule, the sclerosant is slowly injected intravenously, if possible in a fractionated dose and controlling the intravasal position of the cannula or short catheter.
- Severe pain during injection may indicate paravasal or even intra-arterial injection. In this case injection shall be stopped immediately.

8.2 Foam sclerotherapy

Sclerotherapy with foam sclerosants has been reported in the literature for many years [156]. Since foam was formally authorised in 2009, foam sclerotherapy has been practised with improving techniques, especially for the treatment of large-diameter veins [8, 128, 155, 157].

Detergent-type sclerosants, like polidocanol, can be converted into a fine-bubble foam by special techniques. In Tessari’s method the foam is produced by turbulent mixing of liquid and air in two syringes, connected by a three-way stopcock. In Tessari’s original technique, the proportion of sclerosant to air was 1+4 [156, 158]. In the double-syringe system (DSS), polidocanol sclerosant is mixed with air in the proportion of 1+4 by turbulent mixing in two syringes connected by a special two-way connector. At low concentrations of sclerosant, the resulting foam is relatively unstable; at higher concentrations it becomes more stable and viscous. There are no reports of side effects other than those attributable to the use of unsterile air for foam production [159].

Foam sclerotherapy can be performed with or without ultrasound control. Easily visible or palpable varicose veins can be treated simply, without ultrasound control [160, 161].

Foam production

Recommendation 20

For all indications, a three-way stopcock (Tessari method) or a two-way connector (DSS method)—or a similarly appropriate method—should be used for production of the sclerotherapy foam.

Recommendation 21

For all indications, ambient air or a mixture of carbon dioxide and oxygen should be used for the gas component in foam production.

Recommendation 22

A mixture of liquid sclerosant and gas in proportions of 1+4 (one part liquid to four parts gas) or 1+5 should be used for sclerotherapy foam production. For treatment of large-calibre varicose veins (C2), a homogeneous, viscous, fine-bubble foam shall be used. The proportion of liquid can be increased, especially in the case of low-concentration sclerosant.

Recommendation 23

The interval between foam production and injection should be as short as possible.

Recommendation 24

In foam sclerotherapy of large veins the cannula should be no smaller than 25 G; in so far as possible, low-silicon materials should be used and if a silicon tube is used (with a butterfly), it should be as short as possible, otherwise the foam quality will be affected.

Any alteration in the physical properties (e.g. cooling or heating) can alter the safety profile of the sclerosant used.

Foam volumes

There is no evidence-based specification for the maximum volume of foam per session. In the previous European consensus on foam sclerotherapy, the opinion of experts was that a volume of 10 ml of foam should be regarded as the safe maximum [75]. The incidence of thromboembolic complications and temporary side effects (e.g. vision disorders) rises with larger volumes of foam [115, 131].

Recommendation 25

In routine cases a maximum volume of 10 ml of foam per day/session should not be exceeded. Larger volumes of foam may however be used after carrying out an individual risk–benefit analysis.

Concentration of the sclerosant for foam sclerotherapy

Recommendation 26

The following concentrations should be observed in proportion to the diameter of the treated vein segment. The suggested concentrations and amounts are reference values and may be adapted according to the therapist’s assessment (Table 4).

In most studies with incompetent perforator veins, recurrent varicose veins and venous malformations, 1% polidocanol is applied [12, 56].
Table 4 Recommended concentrations of polidocanol for foam sclerotherapy [5, 8, 11, 19, 21, 23, 25 – 29, 31, 43 – 46, 51 – 53, 58, 60, 75, 79, 162 – 164]

Indications	Polidocanol concentration (%)
Spider veins	Up to 0.5
Reticular varices	Up to 1
Varicose tributary veins	Up to 2
GSV, SSV	
<4 mm	1
≥4 to ≤8 mm	1 – 3
>8 mm	3
Incompetent perforator veins	1 – 3
Recurrent varicose veins	1 – 3
Venous malformations	1 – 3

8.3 Ultrasound-guided sclerotherapy

Ultrasound-guided sclerotherapy with liquid and foam sclerosants has proved to be a useful complement to the various treatments available for varicose veins. In particular it is suitable for treatment of varicose saphenous veins (GSV and SSV), tributaries and perforator veins, and in cases of recurrent varicose veins and venous malformations [21, 30, 54–57, 165–167].

Recommendation 27

The following recommendations should be observed for ultrasound-controlled sclerotherapy:

- The vein segment to be treated and the nearby arteries are examined in ultrasound before the puncture is made.
- When treating incompetent saphenofemoral junctions and varicose saphenous veins it is recommended that the vein should be punctured in the proximal thigh region (great saphenous vein and anterior accessory saphenous vein) or the proximal calf (small saphenous vein).
- In all other cases the vein should be punctured at the safest and most accessible point.
- The vein should be shown in ultrasound lengthwise and/or in cross section.
- The vein is punctured under ultrasound control and the point of the cannula is placed in the centre of the vessel lumen.
- Backflow of blood into the cannula or catheter is checked and a few drops of liquid sclerosant or bubbles of foam are injected into the vein and controlled on the ultrasound screen before the actual injection.
- The injection is performed under ultrasound control.
- Foam is more suitable than liquid for ultrasound-controlled sclerotherapy because the bubbles contrast with the echo-poor vessels, allowing the sclerosant to be seen.
- After injection ultrasound is used to control the distribution of the sclerosant and the reaction of the vein (including venospasm).

8.4 Mechanochemical endovenous ablation (MOCA)

Mechanochemical endovenous ablation is a combination of mechanical damage to the vein wall and a chemical sclerotherapy reaction. A wire is introduced through a catheter into the saphenous vein and pushed up to the junction; during injection, usually of liquid sclerosant, the point is rotated rapidly. The combination of mechanical damage to the endothelium of the saphenous vein and the effect of the sclerosant is supposed to result in a better vein occlusion rate [168, 169]. The maximum daily doses for sclerosant injection shall be observed.

In several case series and non-randomised studies, high initial occlusion rates and little pain were reported [170–175]. MOCA was compared with radiofrequency ablation (RFA) in a prospective randomised study [176]. This showed that the pain was significantly less than after RFA, and occlusion rates, improvement in clinical findings and quality of life were comparable after 2 years. No longer-term outcomes are available. The side effects profile is similar to that of other sclerotherapy procedures.

Recommendation 28

Mechanochemical endovenous ablation can be used as an alternative to the other sclerotherapy methods for saphenous vein sclerotherapy.

9 Post-operative treatment after sclerotherapy

Recommendation 29

The following aspects of post-operative treatment after sclerotherapy should be considered:

- Watch carefully for any signs of undesired reactions.
- In addition to sclerotherapy, the treated limb can be treated with compression, either with a compression stocking or compression bandaging.
- The outcome of sclerotherapy of spider veins can be improved by daily wearing of compression stockings (23–32 mm Hg) for up to 3 weeks after treatment [187].
- Longer-term immobility after sclerotherapy can increase the risk of thromboembolic events.
- Remaining clots can be punctured where possible (with or without ultrasound control) in the post-operative check-up.

Walking a long distance after sclerotherapy is widely recommended; however, there are no indications in the literature to date either for or against this measure.

10 Outcome control after sclerotherapy

Assessment of the effectiveness of sclerotherapy comprises clinical, morphological and haemodynamic aspects.
Morphology and haemodynamics

Partial occlusion of the treated vein segment
Total patency of the treated vein segment
Patency or disappearance of the vein shall be used for duplex ultrasound [146]. The patency, occlusion (total or partial) shall be assessed by compressibility with the patient standing up. The appropriate settings can be assessed with duplex ultrasound [146].

The morphology of the treated vein can be assessed with duplex ultrasound by the compressibility with the patient standing up. The appropriate settings shall be used for duplex ultrasound [146]. The patency, occlusion (total or partial) or disappearance of the vein shall be checked. The examination should also include dynamic manoeuvres as per the UIP consensus [147].

See Table 5 for the findings that can be determined by duplex ultrasound.

Circulation and reflux	Morphology and haemodynamics
No circulation	Patency/occlusion
Antegrade circulation without reflux (<0.5 s)	Complete disappearance of the treated vein
Reflux < 1 s	Partial occlusion of the treated vein segment
Reflux > 1 s	Total patency of the treated vein segment
Vein measurements	Diameter before treatment
	Internal diameter after treatment
	Length of occluded segment
	Length of patent segment

For spider veins and reticular varices, a clinical check-up is sufficient.

Clinical outcome:

- Clinical assessment in routine practice: presence/absence or improvement of varicose veins in the treated area, assessed by the doctor and/or patients.
- The presence of venous ulcer, oedema, haemorrhage, inflammation, etc. belong to the clinical outcome.
- Symptom reporting: if necessary (e.g. in the context of scientific research), differentiated and standardised symptom scores like the Venous Clinical Severity Score (VCSS) and Patient-Reported Outcome Scores can be used.

Morphological and haemodynamic outcome:

The morphology of the treated vein can be assessed with duplex ultrasound by the compressibility with the patient standing up. The appropriate settings shall be used for duplex ultrasound [146]. The patency, occlusion (total or partial) or disappearance of the vein shall be checked. The examination should also include dynamic manoeuvres as per the UIP consensus [147].

See Table 5 for the findings that can be determined by duplex ultrasound.

These examination parameters can be used for all endovenous treatment procedures (laser, radiofrequency, sclerotherapy) and should make comparison easier, especially in scientific studies.

From a clinical point of view, regression of the varicose veins and/or venous symptoms is regarded as therapeutic success.

The disappearance or total occlusion of the treated vein in duplex ultrasound is regarded as the optimum therapeutic outcome.

Clinical improvement with occlusion of the treated vein, but with short open sections containing occasional circulation, can be judged as a therapeutic success at least in the short to medium term.

After sclerotherapy the findings in duplex ultrasound can present a wide spectrum of outcomes, which will not necessarily agree with the clinical outcome.

In some cases improved vein function can be shown by pre- and post-treatment functional examinations (e.g. phlebography, vein pressure measurements) [62, 153, 154].

Recommendation 30

With spider veins and reticular varices (C1), the success of treatment can be assessed in the check-up after sclerotherapy from the clinical outcome. With varicose veins (C2) and venous malformations, both clinical and ultrasound examinations should be carried out.

11 Effectiveness

Sclerotherapy with liquid and foam sclerosants is a safe and effective procedure for treating spider veins, reticular varices and subcutaneous varicose veins [5, 8, 9, 20, 25, 29, 34, 59, 60, 73, 164, 167].

Sclerotherapy with liquid polidocanol is the method of choice for treating spider veins and reticular varices, resulting in an improvement of more than 90% after treatment [20, 25–29, 58]. Foam sclerotherapy is an alternative procedure for the ablation of spider veins and reticular varices, with similar occlusion rates and side effects, as long as low concentrations are used in a rather liquid foam [8, 29].

Foam sclerotherapy is significantly more effective than liquid sclerotherapy for varicose saphenous veins [5, 7–9, 27]. The occlusion rate depends on the vein diameter, the concentration of the sclerosant and the volume of foam injected [19, 27]. Compared with endovenous thermal ablation and stripping operations, foam sclerotherapy has a higher medium-term rate of re-channelling [11, 12, 65, 67, 68]. The improvements in quality of life and symptoms are similar [11, 14–16, 65]; however, the improvement in quality of life achieved after 5 years is superior to that of EVLA and stripping operations [18].

There is no firm evidence for an improvement in occlusion rate or a reduction of side effects by keeping the limb raised, compression of the junction with the ultrasound probe or use of tumescent solution to reduce vessel diameter [101, 177, 178].

Foam sclerotherapy of incompetent saphenous veins with a long catheter is also effective [13, 47, 177, 179–184].

Follow-up sclerotherapy of partially re-channelled segments of vein is recommended and improves the medium-term outcome [185, 186].

Sclerotherapy of veins in the region of a venous ulcer improves the healing rate [43–50]. Early ablation of the incompetent saphenous vein together with peri-ulcer sclerotherapy has proved effective in the treatment of venous leg ulcers. Foam sclerotherapy accelerates healing, comparable with endovenous thermal procedures [74].

Foam sclerotherapy is more effective than liquid sclerotherapy for treating venous malformations [51–53].

Foam sclerotherapy is also effective for treating new and recurrent varicose veins after previous treatment, varicose saphenous tributaries, other superficial varicose veins and incompetent perforator veins [19, 21, 23, 31–35, 39].

Compression treatment with medical compression stockings or bandages
improves the outcome of sclerotherapy of spider veins [187–190] and may reduce the frequency of pigmentation [188–190]. There is still little evidence for the effectiveness of compression after sclerotherapy of saphenous veins [191, 192]. In a study in which compression stockings of three different compression classes were worn for 3 weeks after sclerotherapy, the higher the compression pressure, the lower the need for follow-up sclerotherapy [193]. Even selective positive eccentric compression can reduce the recurrence rate [194]. Local eccentric compression increases the local pressure in the sclerotherapy region significantly and may improve the effectiveness of sclerotherapy [195]. Treatment with topical corticosteroids immediately after sclerotherapy, on the other hand, apparently offers no benefits in terms of the appearance of inflammatory side effects [196].

Corresponding address
Prof. Dr. med. E. Rabe
Emeritus Klinik und Poliklinik für Dermatologie und Allergologie, Universitätssklinikum Bonn (AöR)
Venusberg-Campus 1, 53127 Bonn, Germany
eberhard.rabe@ukb.uni-bonn.de

Compliance with ethical guidelines
Conflict of interest. Documentation and declarations pertaining to potential conflicts of interest are available online at http://www.awmf.org/leitlinien.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

The supplement containing this article is not sponsored by industry.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. Rabe E, Breu FX, Cavezzi A, Coleridge Smith P, Frullini A, Gillert JL, Guex JJ, Hamel-Desnos C, Kern P, Parshott B, Ramelet AA, Tessari L, Tassani D, Tassari M, Verger L. European guidelines for sclerotherapy in chronic venous disorders. Phlebology 29:338–354
2. Connor DC, Cooley-Andrade O, Goh WX, Ma DDF, Parsi K (2015) Detergent sclerants are deactivated and consumed by circulating blood cells. Eur J Vasc Endovasc Surg 49:626–631
3. Drase LA, Dinehart SM, Goltz RW, Graham GF, Hordinsky MK, Lewis CW, Pariser DM, Skouge JW, Webster SB, Whitaker DC, Franceschi C (1996) Guidelines of care for sclerotherapy treatment of varicose and telangiectatic leg veins. J Am Acad Dermatol 34:523–528
4. Rabe E, Pannier-Fischer F, Gerlach H, Breu FX, Gugenbichler S, Zabel M, German Society of Phlebology (2004) Guidelines for sclerotherapy of varicose veins. Dermatol Surg 30:687–693
5. Hamel-Desnos C, Ouvry P, Benjiphi JP, Boitte G, Schadeck M, Venermo M, Saarinen J, Eskelinen E, Vähäaho S, Saarinen E, Railo M, Uurto I, Salmens J, Alaback A, Finnish Venous Study Collaborators (2016) Randomized clinical trial comparing surgery, endovenous laser ablation and ultrasound-guided foam sclerotherapy for the treatment of great saphenous varicose veins. Br J Surg 103:1438–1444
6. Lawaetz M, Serup J, Lawaetz B, Bjoern L, Blemings A, EK, Rasmussen L (2017) Comparison of endovenous ablation techniques, foam sclerotherapy and surgical stripping for great saphenous varicose veins. Extended 5-year follow-up of a RCT. Int Angiol 36:281–288
7. Brittenden J, Cotton SC, Elders A, Tassie E, Scotland G, Ramsay CR, Norrie J, Burr J, Francis J, Willeman S, Campbell B, Bachoo P, Chetter I, Gough M, Earnshaw J, Lees T, Scott J, Baker SA, MacLennan G, Prior M, Bovos D, Campbell MK (2015) Clinical effectiveness and cost-effectiveness of foam sclerotherapy, endovenous laser ablation and surgery for varicose veins: results from the Comparison of Laser, Surgery and foam Sclerotherapy (CLASS) randomised controlled trial. Health Technol Assess 19:1–342
8. Van der Velden SK, Biezens A, De Maeseneer M, Kockaert MA, Cuypers PW, Hollesteijn LM, Neumann HM, Nijsten T, van den Bos RR (2015) Five-year results of a randomized clinical trial of conventional surgery, endovenous laser ablation and ultrasound-guided foam sclerotherapy in patients with great saphenous varicose veins. Br J Surg 102:1184–1194
9. Myers RA, Jolley D, Clough A, Kirwan J (2007) Outcome of ultrasound-guided sclerotherapy for varicose veins: medium-term results assessed by ultrasound surveillance. Eur J Vasc Endovasc Surg 33:116–121
10. Zhang J, Jing Z, Schliephake D, Otto J, Malouf GM, Gu QY (2012) Efficacy and safety of the Eutectic Mixture of Local Anaesthetics (EMLA) in comparison with placebo solution for the treatment of varicose veins of the lower extremities in Chinese patients (ESA-China Study). Phlebology 27:184–190
11. Guex JJ (2000) Ultrasound guided Sclerotherapy (USGSS) for perforating veins. Hawaii Med J 59:261–262
12. Masuda EM, Kessler DL, Furigo P, Kistner RL, EK (2006) The effect of ultrasound guided sclerotherapy of incompetent perforator veins on venous clinical severity scores. J Vasc Surg 43:551–556
13. Van Neer P, Veera JCM, Neumann H (2006) Postero-lateral thigh perforator varicosities in 12 patients: a normal deep venous system and successful treatment with ultrasound-guided sclerotherapy. Dermatol Surg 32:1346–1352
14. Guzelianur S, Oguzkurt L, Roca N, Andic C, Gedikoglu M, Onal O (2014) Endovenous laser ablation and sclerotherapy for incompetent vein of Giaconia. Phlebology 29(8):511–516
15. Kahlle B, Leng K (2004) Efficacy of sclerotherapy in varicose veins—a prospective, blinded placebo-controlled study. Dermatol Surg 30:723–728
16. Nonnis M, Carlin MC, Ratl JL (1989) Treatment of essential telangiectasia: effects of increasing

Leitlinien und Empfehlungen
concentrations of polidocanol. J Am Acad Dermatol 20:643–649
27. Rabe E, Schliephake D, Otto J, Breu FX, Pannier F (2010) Sclerotherapy of telangiectasias and reticular veins: a double-blind, randomized, controlled trial of polidocanol, sodium tetradecyl sulphate and isotonic saline (EASI study). Phlebology 25:124–131
28. Uncu H (2010) Sclerotherapy: a study comparing polidocanol in foam and liquid form. Phlebology 26:44–49
29. Peterson JD, Goldman MP, Weiss RA, Duffy DM, Fabi SG, Weiss MA, Gulha I (2012) Treatment of reticular and telangiectatic leg veins: a double-blind, prospective comparative trial of polidocanol and hypertonic saline. Dermatol Surg 38:1–9
30. Parlar B, Blazek C, Cazzaniga S, Naldi L, Klotgen HW, Borradori L, Buettiker U (2015) Treatment of lower extremity telangiectasias in women by foam sclerotherapy vs. Nd:YAG laser: a prospective, comparative, randomized, open-label trial. J Eur Acad Dermatol Venereol 29:549–554
31. Kakkos SK, Bountoungroulou DG, Azzam M, Kalodiki E, Douskos M, Geroulakos G (2006) Effectiveness and safety of ultrasound-guided foam sclerotherapy for recurrent varicose veins: immediate results. J Endovasc Ther 13:357–364
32. McDonagh B, Sorenson S, Gray C, Huntley DE, Puttermann P, King T, Eaton T, Martin C, Harry JL, Cohen A, Gupta RC (2003) Clinical spectrum of recurrent postoperative varicose veins and efficacy of sclerotherapy management using the compass technique. Phlebology 18:173–186
33. Coleridge Smith P (2006) Chronic venous disease treated by ultrasound-guided foam sclerotherapy. Eur J Vasc Endovasc Surg 32:577–583
34. Coleridge Smith P (2011) Sclerotherapy and foam sclerotherapy for varicose veins. Phlebology 24:260–269
35. Bradbury AW, Bate G, Pang K, Darvall KA, Adam DJ (2010) Ultrasound-guided foam sclerotherapy is a safe and clinically effective treatment for superficial venous reflux. J Vasc Surg 52:939–945
36. Darvall KA, Bate GR, Adam DJ, Silverman SH, Bradbury AW (2011) Duplex ultrasound outcomes following ultrasound-guided foam sclerotherapy of symptomatic recurrent great saphenous varicose veins. Eur J Vasc Endovasc Surg 42:107–114
37. Darvall KA, Bate GR, Adam DJ, Silverman SH, Bradbury A (2011) Duplex ultrasound outcomes following ultrasound-guided foam sclerotherapy of symptomatic recurrent great saphenous varicose veins. Eur J Vasc Endovasc Surg 42:107–114
38. der Hautarzt Suppl 2·2021
39. Papel V, Vecchiato M, Spreafico G, Giraldi E, De Maeseneer M (2011) Surgery for recurrent telangiectatic leg veins and telangiectatic reticular veins in patients with chronic venous ulceration. Eur J Vasc Endovasc Surg 40:790–795
40. Hertzman PA, Owens R (2007) Rapid healing of chronic venous ulcers following ultrasound-guided foam sclerotherapy. Phlebology 22:34–39
41. Campos W, Torres IO, da Silva ES, Casella IB, Puech-Leão P (2010) Ultrasound guided study comparing polidocanol foam sclerotherapy with surgical treatment of patients with chronic venous insufficiency and ulcer. Ann Vasc Surg 29:1128–1135
42. Neumann MHA, Nijsten T (2013) Comparing endovenous laser ablation, foam sclerotherapy, and conventional surgery for great saphenous varicose veins. J Vasc Surg 58:727–734
43. Van der Vleuten CJM, Kater A, Wijnen MHWA, Locatelli F, Montagnani D, Preitea H, Djakou S, Gobin JP, Bradbury AW et al (2016) Cost-utility analysis of great saphenous vein ablation with radiofrequency, foam and surgery. Br J Surg 103:1040–1052
44. Melamed M, Caruana E, Peeters M, Kayser P, Khanna S, Chou Y, Neumann MHA, Nijsten T (2017) Sclerotherapy versus endovenous laser ablation for the treatment of great saphenous vein varices. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005624.pub3
45. National Institute for Health and Care Excellence (2011) Ultrasound-guided foam sclerotherapy for varicose veins. NICE interventional procedure guidance [IPG440]
46. Sibirumungwong B, Noroit P, Wilasrusmee C, Lee-Lahavavong P, Thakkinstan A, Teerawattananon Y (2016) Cost-utility analysis of great saphenous vein ablation with radiofrequency and foam sclerotherapy in the management of varicose veins in the presence of trunk vein incompetence: European randomized controlled trial. Phlebology 31:573–581
47. Varisolve European Phase III Investigators Group, Wright D, Gobin JP, Bradbury AW et al (2006) Varisolve® polidocanol microfoam compared with surgery or sclerotherapy in the management of varicose veins in the presence of trunk vein incompetence: European randomized controlled trial. Phlebology 21:180–190
48. Cavezzi A, Frullini A, Ricci S, Tassari L (2002) Treatment of varicose veins by foam sclerotherapy: two clinical series. Phlebology 17:13–18
49. Riess J, lamps S, Oelsner W, Mattern K, Heberer G, Frei P, Pernici M, Leupin H, Wüest M, Michel M, Zanetta P, Kopp M, Cattaneo S, Meili M, Enders A, Kern P, Ramelet A-A, Wutschert R, Bougnol P (2010) Double-blind comparative trial between foam and liquid Polidocanol and Sodium Tetradecyl Sulfate in the treatment of varicose and telangiectatic leg veins. Dermatol Surg 36:631–635
50. Bonesio G, Montorsi F, Giannakoudakis N, Pezzotti G, De Rossi A, Mazzucchi A, Bruna S, Peronaci R, Raimondo F, Scudeller D (2005) Duplex ultrasonography-guided foam sclerotherapy of incompetent perforator veins in a patient with bilateral varicose leg ulcers. Dermatol Surg 31:580–583
51. Van der Vleuten CJM, Kater A, Wijnen MHWA, Locatelli F, Montagnani D, Preitea H, Djakou S, Gobin JP, Bradbury AW et al (2016) Cost-utility analysis of great saphenous vein ablation with radiofrequency, foam and surgery. Br J Surg 103:1040–1052
52. Melamed M, Caruana E, Peeters M, Kayser P, Khanna S, Chou Y, Neumann MHA, Nijsten T (2017) Sclerotherapy versus endovenous laser ablation, foam sclerotherapy, and conventional surgery for great saphenous varicose veins. J Vasc Surg 58:727–734
53. van der Vleuten CJM, Kater A, Wijnen MHWA, Locatelli F, Montagnani D, Preitea H, Djakou S, Gobin JP, Bradbury AW et al (2016) Cost-utility analysis of great saphenous vein ablation with radiofrequency, foam and surgery. Br J Surg 103:1040–1052
54. Sibirumungwong B, Noroit P, Wilasrusmee C, Lee-Lahavavong P, Thakkinstan A, Teerawattananon Y (2016) Cost-utility analysis of great saphenous vein ablation with radiofrequency and foam sclerotherapy in the management of varicose veins in the presence of trunk vein incompetence: European randomized controlled trial. Phlebology 31:573–581
55. Varisolve European Phase III Investigators Group, Wright D, Gobin JP, Bradbury AW et al (2006) Varisolve® polidocanol microfoam compared with surgery or sclerotherapy in the management of varicose veins in the presence of trunk vein incompetence: European randomized controlled trial. Phlebology 21:180–190
56. Cavezzi A, Frullini A, Ricci S, Tassari L (2002) Treatment of varicose veins by foam sclerotherapy: two clinical series. Phlebology 17:13–18
133. Zipper SG (2000) Nervus perforans-Schaden nach Varizensklerosierung mit Aethoxysklerol. Versicherungsmedizin 4:185–187
134. Reich-Schupke S, Weyer K, Altmeyer P, Stückier M (2010) Treatment of varicose tributaries with sclerotherapy with polidocanol 0.5% foam. Vasa 39:169–174
135. Georgiev MJ (1990) Post sclerotherapy hyperpigmentations: a one-year follow-up. Dermatol Surg Oncol 16:608–610
136. Scutellati AH, Villavicencio JL, Kao TC, Gillespie DL, Kveton JD, Iaffa MD, Pikoulis E, Eifret S (2003) Microthrombectomy reduces post sclerotherapy pigmentation: multicenter randomized trial. J Vasc Surg 38:896–903
137. Goldman MP, Kaplan RP, Duffy DM (1987) Post sclerotherapy hyperpigmentation: a histologic evaluation. J Dermatol Surg Oncol 13:547–550
138. Davis LT, Duffy DM (1990) Cutaneous necrosis, telangiectatic matting, and hyperpigmentation following sclerotherapy. Etiology, prevention, and treatment. J Dermatol Surg Oncol 16:327–330
139. Ramelet A-A (2010) Phlébologie esthétique.
140. Rautio T, Perälä J, Biancari F, Wiik H, Ohtonen P, Beckitt T, Elstone A, Ashley S (2011) Air versus primary varicose veins. Eur J Vasc Endovasc Surg 32:450–455
141. Francois G (1998) Explorations ultrasonographiques des récidives variqueuses post-chirurgicales. Phlebologie 51:403–413
142. Venne SJA (2007) Outcomes and side effects of duplex-guided foam sclerotherapy: an approach for treatment of varicose veins. J Vasc Surg 40:407–413
143. Panayiotopoulos Y, Bowne TF (2007) Balloon guided, transcatheter foamsclerotherapyofthe saphenafemoral junction during ultrasound investigation of theveins in chronic venous disease of the lower limbs—UIP consensus document. Part I. Basic principles. Eur J Vasc Endovasc Surg 31:83–92
144. De Maeseneer M, Pichot O, Cavazzi A, Earnshaw J, van Rij A, Lurie F, Smith PC (2011) Duplex ultrasound investigation of the veins in chronic venous disease of the lower limbs—UIP consensus document. Part I. Basic principles. Eur J Vasc Endovasc Surg 42:89–102
145. Rautio T, Peralá J, Biancari F, Wilk H, Ohltonen P, Kaukijärvi K, Juvonen T (2002) Accuracy of hand-held Doppler in planning the operation for primary varicose veins. Eur J Vasc Endovasc Surg 24:450–455
146. Francois G (1998) Explorations ultrasonographiques des récidives variqueuses post-chirurgicales. Phlebologie 51:403–413
147. Jiang P, van Rij AM, Christie R, Hill G, Solomon C, Thomson I (1999) Current varicose veins: patterns of reflux and clinical severity. Cardiovasc Surg 7:323–339
148. Lee BB, Do YS, Byun HS, Choo IW, Kim DI, Huh SH (2009) Advanced management of venous malformation with ethanol sclerotherapy: midterm results. J Vasc Surg 37:533–538
149. Bihari I, Tasnadi G, Bihari P (2003) Importance of sub fascial collaterals in deep-vein malformations. Dermatol Surg 29:146–149
150. Brunken A, Rabe E, Pannier F (2009) Changes in venous function after foam sclerotherapy of varicose veins. Phlebologie 24:145–150
151. Khor SN, Kam JW, Kum S, Tan YK, Tang TY (2018) Clarivein™—One year results of mechano-chemical ablation for varicose veins in a multi-ethnic Asian population from Singapore. Phlebology. https://doi.org/10.1177/0268355518771225
152. Bihari I, TASNADI G, Bihari P (2003) Changes in sub fascial collaterals in deep-vein malformations. Dermatol Surg 29:146–149
153. Keeney N, Reckle AL, Recke A, Kahle B (2014) Catheter-directed foam sclerotherapy of great Saphenous veins in combination with sclerotherapy alone in extrafascial great saphenous vein. J Vasc Surg 57:445–450
154. Witte ME, Holewijn S, van Eekeren RR, de Vries JP, Zeebregts CJ, Reijnen MM (2017) Midterm outcome of mechanochemical endovenous ablation for the treatment of great Saphenous vein insufficiency. J Endovasc Ther 24:149–155
155. Lane T, Booton R, Dharmarajah B, Lim CS, Najem M, Renton S, Srinthan K, Davies AH (2017) A multi-centre randomised controlled trial comparing radiofrequency and mechanical occlusion chemically assisted ablation of varicose veins—Final results of the Venefit versus Clarivein for varicose veins trial. Phlebology 32:89–98
156. Devereux N, Recke AL, Recke A, Kahle B (2014) Catheter-directed foam Sclerotherapy of great Saphenous veins in combination with pre-treatment reduction of the diameter employing the principals of perivenous tumescent local anaesthesia. J Endovasc Ther 21:178–185
157. Ceulen RPM, Jagtman EA, Sommer A, Teule GJ, Schurink GWH, Kemerink GJ (2010) Blocking the principalsofperivenoustumescentlocal anesthesia. J Endovasc Ther 24:149–155
158. De Vries JP, Reijnen MM (2013) Postoperative pain and early quality of life after radiofrequency ablation and mechanochemical endovenous ablation of incompetent great saphenous veins. J Vasc Surg 57:445–450
159. Elias S, Raines JK (2012) Mechanochemical tumescenceless endovenous ablation: final results of the initial clinical trial. Phlebology 27:67–72
160. Whiteley MS, Dos SJJ, Lee CT, Li JM (2017) Mechanochemical ablation causes endothelial and medial damage to vein wall in deeper penetration of sclerosant compared with sclerotherapy alone in extraligual great saphenous vein using an ex vivo model. J Vasc Surg Venous Lymph Disord 5:370–377
161. National Institute for Health and Care Excellence (2016) Interventional procedure overview of endovenous mechanochemical ablation for varicose veins. NICE, London (https://www.nice.org.uk/guidance/ipp557/documents/overview)
162. Venous Lymph Disord (2017) Center for evidence-based policy. Oregon Health & Science University, Portland (www.ohsu.edu/policycenter)
163. Ramon R, van Eekeren JP, Boersma D, Konijn V, de Vries JP, Reijnen MM (2013) Postoperative pain and early quality of life after radiofrequency ablation and mechanochemical endovenous ablation of incompetent great saphenous veins. J Vasc Surg 57:445–450
164. Khor SN, Kam JW, Kum S, Tan YK, Tang TY (2018) Clarivein™—One year results of mechano-chemical ablation for varicose veins in a multi-ethnic Asian population from Singapore. Phlebology. https://doi.org/10.1177/0268355518771225
165. van Eekeren RR, Boersma D, Konijn V, de Vries JP, Reijnen MM (2013) Postoperative pain and early quality of life after radiofrequency ablation and mechanochemical endovenous ablation of incompetent great saphenous veins. J Vasc Surg 57:445–450
166. Witte ME, Holewijn S, van Eekeren RR, de Vries JP, Zeebregts CJ, Reijnen MM (2017) Midterm outcome of mechanochemical endovenous ablation for the treatment of great Saphenous vein insufficiency. J Endovasc Ther 24:149–155
167. Devereux N, Recke AL, Recke A, Kahle B (2014) Catheter-directed foam Sclerotherapy of great Saphenous veins in combination with pre-treatment reduction of the diameter employing the principals of perivenous tumescent local anaesthesia. J Endovasc Ther 21:178–185
168. Ceulen RPM, Jagtman EA, Sommer A, Teule GJ, Schurink GWH, Kemerink GJ (2010) Blocking the saphenafemoral junction during ultrasound guided foam sclerotherapy—assessment of a presumed safety-measure procedure. Eur J Vasc Endovasc Surg 40:772–776
169. Broderen JP (2007) Catheter-assisted vein sclerotherapy: a new approach for sclerotherapy of the greater saphenous vein with a double-lumen balloon catheter. Dermatol Surg 33:469–475
170. Wildenhues B (2005) Catheter-assisted foam sclerotherapy. A new minimally invasive method for the treatment of trunk varicosis of the long and short saphenous veins. Phlebologie 34:165–170
171. Hahn M, Schulz T, Jünker M (2007) Sonographically guided, transcatheter foam sclerotherapy of the great saphenous vein. Medical and cosmetic aspects. Phlebologie 36:309–312
172. Bidwai A, Beresford T, Dialynas M, Prianidis J, Panayiotopoulos Y, Bonnie TF (2007) Balloon...
control of the saphenofemoral junction during foam sclerotherapy: proposed innovation. J Vasc Surg 46:145–147

183. Kölbl T, Hinchliffe RJ, Lindblal B (2007) Catheter-directed foam sclerotherapy of axial saphenous reflux: Early results. Phlebology 22:219–222

184. Parsi K (2009) Catheter-directed sclerotherapy. Phlebology 24:98–107

185. Cavezzi A, Tessari L (2009) Foam sclerotherapy techniques: different gases and methods of preparation, catheter versus direct injection. Phlebology 24:247–251

186. Chapman-Smith P, Browne A (2009) Prospective five year study of ultrasound guided foam sclerotherapy in the treatment of great saphenous vein reflux. Phlebology 24:183–188

187. Kern P, Ramelet AA, Wüschert R, Hayoz D (2007) Compression after sclerotherapy for telangiectasia and reticular leg veins. A randomized controlled study. J Vasc Surg 45:1212–1216

188. Weiss RA, Sadick NS, Goldman MP, Weiss MA (1999) Post-sclerotherapy compression: controlled comparative study of duration of compression and its effects on clinical outcome. Dermatol Surg 25:105–108

189. Goldman MP, Beaudoin D, Marley W, Lopez L, Butie A (1990) Compression in the treatment of leg telangiectasia: a preliminary report. J Dermatol Surg Oncol 16:322–325

190. Nootheti PK, Cadag KM, Magpantay A, Goldman MP (2009) Efficacy of graduated compression stockings for an additional 3 weeks after sclerotherapy treatment of reticular and telangiectatic leg veins. Dermatol Surg 35:53–58

191. Hamel-Desnos C, Guias BJ, Desnos PR, Mesgard A (2010) Foam sclerotherapy of the saphenous veins. Randomised controlled trial with or without compression. Eur J Vasc Endovasc Surg 39:500–507

192. El-Sheikh J, Carradice D, Nandhra S, Leung HC, Smith GE, Campbell B, Chetter IC (2015) Systematic review of compression following treatment for varicose veins. Br J Surg 102:719–725

193. Zarca C, Bailly C, Gachet G, Spini L (2012) Class Mousse 1 study: compression hosiery and foam. Phlebologie 65:11–20

194. Ferrara F, Bernbach HR (2009) La compression écho-guidée après sclérothérapie. Phlebologie 62:36–41

195. Stanley PRW, Bickerton DR, Campbell WB (1991) Injection sclerotherapy for varicose veins—a comparison of materials for applying local compression. Phlebologie 6:37–39

196. Friedmann DP, Liolios AM, Wu DC, Goldman MP, Empunth S (2015) A randomized, double-blind, placebo-controlled study of the effect of a high potency topical corticosteroid after Sclerotherapy for reticular and telangiectatic veins of the lower extremities. Dermatol Surg 41:1158–1163