INTRODUCTION

Propolis, having hundreds of polyphenols, is a mixture produced by the honeybee. This sticky, greenish-brown product has different compositions depending on the location of the bees and what trees and flowers they have access to. Propolis from Turkey or Egypt will not have the same chemical properties as propolis from Europe or Brazil. This is because it is very difficult for researchers to come to general conclusions about its health benefits. Caffeic acid phenethyl ester (CAPE) [Figure 1] is one of important compounds found in propolis that has antiviral [1], antioxidant, anti-inflammatory, antiproliferative, antitumor, and immunomodulatory effects [2]. This marvelous compound has been used to prevent oxidative stress-based deterioration in cells/tissues/organs in both cell culture and experimental animals. Lately, the protection of CAPE on central and peripheral nervous system as well as a reproductive system have been extensively reviewed [3-5]. Cyclophosphamide (CP) is an anticancer chemotherapeutic drug classified as an alkylating agent. It has extensively been used to treat a broad of malignancies including Hodgkin’s and non-Hodgkin’s lymphoma, Burkitt’s lymphoma, chronic lymphocytic leukemia, Ewing’s sarcoma, breast cancer, testicular cancer, etc. It may cause several side effects after treatment. In this mini review, the protective effects of propolis and CAPE were compared each other in terms of effectiveness against CP-induced injuries.

Can propolis and caffeic acid phenethyl ester be promising agents against cyclophosphamide toxicity?

Sumeyya Akyol¹, Mehmet Akif Gulec², Haci Kemal Erdemli³, Omer Akyol⁴

1Department of Medical Biology, Turgut Ozal University Medical Faculty, Ankara, Turkey, 2Department of Medical Biochemistry, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey, 3Department of Biochemistry Laboratory, Corum Training and Research Hospital, Corum, Turkey, 4Department of Medical Biochemistry, Hacettepe University Medical Faculty, Ankara, Turkey

Address for correspondence: Sumeyya Akyol, Department of Medical Biology, Turgut Ozal University Medical Faculty, Ankara, Turkey. E-mail: sumeyyaak@hotmail.com

Received: December 18, 2015
Accepted: January 11, 2016
Published: January 28, 2016

KEY WORDS: Caffeic acid phenethyl ester, cyclophosphamide, propolis

ABSTRACT

Propolis is a mixture having hundreds of polyphenols including caffeic acid phenethyl ester (CAPE). They have been using in several medical conditions/diseases in both in vitro and in vivo experimental setup. Cyclophosphamide (CP) has been used to treat a broad of malignancies including Hodgkin’s and non-Hodgkin’s lymphoma, Burkitt’s lymphoma, chronic lymphocytic leukemia, Ewing’s sarcoma, breast cancer, testicular cancer, etc. It may cause several side effects after treatment. In this mini review, the protective effects of propolis and CAPE were compared each other in terms of effectiveness against CP-induced injuries.
ameliorative effect of propolis against CP-induced toxicity in mice was studied by El-Naggar et al. [6]. It throws light on the side effects of a common anticancer agent, CP, used in the treatment of various malignancies and possible remedies to prevent that type of side effects in vital organs such as liver and kidney. The proposed natural compound propolis has been found to be protective against CP toxicity. Uysal et al. [7] conducted an experimental animal study to determine protective role of CAPE on CP-induced hemorrhagic cystitis (HC). While CP-induced HC lead to increase in superoxide dismutase, catalase, and malondialdehyde activities/levels, CAPE significantly reduced these parameters showing the protective effects. In addition to this biochemical effects, CAPE also ameliorates edema, hemorrhage, inflammation, and mucosal ulceration of CP-induced HC.

We published a review article about toxicities of some therapeutic compounds and the protective effect of CAPE on chemotherapy- and radiotherapy-induced toxicity [8]. We have shown that CAPE has protective effects on oxidative stress-induced toxicities by doxorubicin (nephrotoxicity) [9], cisplatin (neurotoxicity, ototoxicity, and hepatotoxicity) [10-13], and bleomycin (lung fibrosis) [14].

Currently, there is no medically recommended dose for propolis, since the mixture of propolis is subjected to change depending on its source. The most successful medical application field of propolis is beauty and skin care, especially in acne vulgaris because of its antibacterial, antiviral, antifungal, and anti-inflammatory properties. Despite the fact that both water and ethanolic extracts of propolis have been used in the in vivo and in vitro experiments, water-soluble extracts of propolis exhibit higher antioxidant and inhibitory activities as compared ethanolic extract in vitro [15]. In this perspective, even though the extraction method selection is dependent on the authors’ desire, it would be expected for authors to study propolis for their experiments comparatively by selecting propolis extracted by both extraction methods. CAPE is the most potent antioxidant agent of propolis mixture having free radical scavenging activity and potent inhibition of NF-κB. So, the protective antioxidant effect of ethanol extract of propolis on organs depends mostly on CAPE rather than other polyphenolic compounds such as flavonoids, phenolic acids, and their esters [Figure 2]. CAPE was shown to completely block the production of reactive oxygen species in human neutrophils and in the xanthine/xanthine oxidase systems at 10 μM concentration by its competent antioxidant capacity [16]. Indeed, CAPE has a regulatory effect on antioxidant enzyme activities such as catalase, superoxide dismutase, and glutathione peroxidase [7,17] [Figure 2].

It has been shown that CAPE application to the rats modifies the enzyme activity of cytochrome P450 (CYP) isoforms involved in the activation of diethylnitrosamine such as CYP1A1/2 and CYP2B12 [18]. Furthermore, treatment with CAPE of carbon tetrachloride-induced hepatotoxicity in mice blocks CYP2E1-mediated CCl4 bioactivation and protects against fas/FasL-mediated apoptosis [19]. It will be very interesting to see the effect of CAPE on CYP2B6, which constitutes 3-6% of total hepatic CYP content and metabolizes several pharmaceuticals including CP [20]. To achieve this, further studies on the every single bioactive constituent of propolis such as CAPE and some other polyphenols are necessary to identify interactions mediating their biological effects on CYP2B6, since there are roughly 150 different polyphenolic compounds within propolis.

As a conclusion, studying propolis to prevent CP-induced oxidative stress in animals has several limitations since the proposed effect cannot be specified to one or several molecules within the mixture. In that case, every single bioactive constituent of propolis needs to be studied to show the source of real effects and the molecular mechanisms of this effects.

REFERENCES

1. Erdemli HK, Akyol S, Armutcu F, Akyol O. Antiviral properties of caffeic acid phenethyl ester and its potential application. J Interdisc Ethnopharmacol 2015;4:344-7.

2. Akyol S, Ozturk G, Ginis Z, Armutcu F, Yigitoglu MR, Akyol O. In vivo and in vitro antineoplastic actions of caffeic acid phenethyl ester (CAPE): Therapeutic perspectives. Nutr Cancer 2013;65:515-26.

3. Akyol S, Erdemli HK, Armutcu F, Akyol O. In vivo and in vivo neuroprotective effect of caffeic acid phenethyl ester. J Interdisc Ethnopharmacol 2015;4:192-3.

4. Akyol S, Armutcu F, Yigitoglu MR. The medical usage of caffeic acid phenethyl ester and its potential application. J Interdisc Ethnopharmacol 2015;4:344-7.
Akyol, et al.: Propolis and CAPE in cyclophosphamide toxicity

acid phenethyl ester (CAPE), an active compound of propolis, in neurological disorders and emergencies. Spatula DD 2011;4:179-81.

5. Akyol S, Akbas A, Butun I, Toktas M, Ozyurt H, Sahin S, et al. Caffeic acid phenethyl ester as a remedial agent for reproductive functions and oxidative stress-based pathologies of gonads. J Intercult Ethnopharmacol 2015;4:187-91.

6. El-Naggar SA, Alm-Eldeen AA, Germoush MO, El-Borayy SF, Elgebaly HA. Ameliorative effect of propolis against cyclophosphamide-induced toxicity in mice. Pharm Biol 2015;53:236-41.

7. Uysal E, Yilmaz HR, Ugan Y, Altuntas A, Dogru A, Kutucan A, et al. Protective effects of caffeic acid phenethyl ester on cyclophosphamide-induced hemorrhagic cystitis in rats. J Biochem Mol Toxicol 2015.

8. Akyol S, Ginis Z, Armutcu F, Ozturk G, Yigitoglu MR, Akyol O. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity. Cell Biochem Funct 2012;30:438-43.

9. Yagmurca M, Erdogan H, Iraz M, Songur A, Ucar M, Fadillioglu E. Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats. Clin Chim Acta 2004;348:27-34.

10. Ozerol E, Kizilay A, Kalcioglu MT, Paksoy Y, Zeybekoglu A, Akyol O, et al. The activities of liver adenosine deaminase, xanthine oxidase, catalase, superoxide dismutase enzymes and the levels of malondialdehyde and nitric oxide after cisplatin toxicity in rats: Protective effect of caffeic acid phenethyl ester. Toxicol Ind Health 2006;21:67-73.

11. Kizilay A, Kalcioglu MT, Ozerol E, Iraz M, Gulec M, Akyol O, et al. Caffeic acid phenethyl ester ameliorated otoxicity induced by cisplatin in rats. J Chemother 2004;16:381-7.

12. Ozyurt H, Sogut S, Yildirim Z, Kart L, Iraz M, Armutcu F, et al. Inhibitory effect of caffeic acid phenethyl ester on bleomycin-induced lung fibrosis in rats. Clin Chim Acta 2004;399:65-75.

13. Volpert R, Elstner EF. Biochemical activities of propolis extracts. I. Standardization and antioxidant properties of ethanolic and aqueous derivatives. Z Naturforsch C 1993;48:851-7.

14. El-Naggar SA, Alm-Eldeen AA, Germoush MO, El-Borayy SF, Elgebaly HA. Ameliorative effect of propolis against cyclophosphamide-induced toxicity in mice. Pharm Biol 2015;53:236-41.

15. Uysal E, Yilmaz HR, Ugan Y, Altuntas A, Dogru A, Kutucan A, et al. Protective effects of caffeic acid phenethyl ester on cyclophosphamide-induced hemorrhagic cystitis in rats. J Biochem Mol Toxicol 2015.

16. Akyol S, Ginis Z, Armutcu F, Ozturk G, Yigitoglu MR, Akyol O. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity. Cell Biochem Funct 2012;30:438-43.

17. Yagmurca M, Erdogan H, Iraz M, Songur A, Ucar M, Fadillioglu E. Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats. Clin Chim Acta 2004;348:27-34.

18. Ozerol E, Kizilay A, Kalcioglu MT, Paksoy Y, Zeybekoglu A, Akyol O, et al. The activities of liver adenosine deaminase, xanthine oxidase, catalase, superoxide dismutase enzymes and the levels of malondialdehyde and nitric oxide after cisplatin toxicity in rats: Protective effect of caffeic acid phenethyl ester. Toxicol Ind Health 2006;21:67-73.

19. Kizilay A, Kalcioglu MT, Ozerol E, Iraz M, Gulec M, Akyol O, et al. Caffeic acid phenethyl ester ameliorated otoxicity induced by cisplatin in rats. J Chemther 2004;16:381-7.

© SAGEYA. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.

Source of Support: Nil, Conflict of Interest: None declared.