A GENERAL FORM OF GELFAND-KAZHDAN CRITERION

BINYONG SUN AND CHEN-BO ZHU

Abstract. We formalize the notion of matrix coefficients for distributional vectors in a representation of a real reductive group, which consist of generalized functions on the group. As an application, we state and prove a Gelfand-Kazhdan criterion for a real reductive group in very general settings.

1. Tempered generalized functions and representations in the class \mathcal{FH}

In this section, we review some basic terminologies in representation theory, which are necessary for this article. The two main ones are tempered generalized functions and representations in the class \mathcal{FH}. We refer the readers to [W88, W92] as general references.

Let G be a real reductive Lie group, by which we mean that

(a) the Lie algebra \mathfrak{g} of G is reductive;
(b) G has finitely many connected components; and
(c) the connected Lie subgroup of G with Lie algebra $[\mathfrak{g}, \mathfrak{g}]$ has a finite center.

We say that a (complex valued) function f on G is of moderate growth if there is a continuous group homomorphism $\rho : G \to \text{GL}_n(\mathbb{C})$, for some $n \geq 1$, such that

$$|f(x)| \leq \text{tr}((\overline{\rho(x)})^t \rho(x)) + \text{tr}((\overline{\rho(x^{-1})})^t \rho(x^{-1})), \quad x \in G.$$

Here $\overline{}$ stands for the complex conjugation, and t the transpose, of a matrix. A smooth function $f \in C^\infty(G)$ is said to be tempered if Xf has moderate growth for all X in the universal enveloping algebra $U(\mathfrak{g}_\mathbb{C})$. Here and as usual, $\mathfrak{g}_\mathbb{C}$ is the complexification of \mathfrak{g}, and $U(\mathfrak{g}_\mathbb{C})$ is identified with the space of all left invariant differential operators on G. Denote by $C^\xi(G)$ the space of all tempered functions on G.

2000 Mathematics Subject Classification. 22E46 (Primary).

Key words and phrases. Matrix coefficients; tempered generalized functions; Fréchet globalization; Harish-Chandra modules; Gelfand-Kazhdan criterion.
A smooth function $f \in C^\infty(G)$ is called Schwartz if
\[
|f|_{X,\phi} := \sup_{x \in G} \phi(x) |(Xf)(x)| < \infty
\]
for all $X \in U(g_C)$, and all positive functions ϕ on G of moderate growth. Denote by $C^\varsigma(G)$ the space of Schwartz functions on G, which is a nuclear Fréchet space under the seminorms $\{| \cdot |_{X,\phi}\}$. (See [Tr67] or [Ta95] for the notion as well as basic properties of nuclear Fréchet spaces.) We define the nuclear Fréchet space $D^\varsigma(G)$ of Schwartz densities on G similarly. Fix a Haar measure dg on G, then the map
\[
C^\varsigma(G) \to D^\varsigma(G)
\]
\[
f \mapsto f dg
\]
is a topological linear isomorphism. We define a tempered generalized function on G to be a continuous linear functional on $D^\varsigma(G)$. Denote by $C^{-\varsigma}(G)$ the space of all tempered generalized functions on G, equipped with the strong dual topology. This topology coincides with the topology of uniform convergence on compact subsets of $D^\varsigma(G)$, due to the fact that every bounded subset of a complete nuclear space is relatively compact. Note that $C^\xi(G)$ is canonically identified with a dense subspace of $C^{-\varsigma}(G)$:
\[
C^\varsigma(G) \hookrightarrow C^{-\varsigma}(G).
\]

Remark 1.1. In [W92], the space $C^\varsigma(G)$ is denoted by $S(G)$ and is called the space of rapidly decreasing functions on G. Note that $C^\varsigma(G)$ (or $S(G)$) is different from Harish-Chandra’s Schwartz space of G, which is traditionally denoted by $\mathcal{C}(G)$.

By a representation of G, or just a representation when G is understood, we mean a continuous linear action of G on a complete, locally convex, Hausdorff, complex topological vector space. When no confusion is possible, we do not distinguish a representation with its underlying space. Let V be a representation. It is said to be smooth if the action map $G \times V \to V$ is smooth as a map of infinite dimensional manifolds. The notion of smooth maps in infinite dimensional setting may be found in [GN09], for example.

Denote by $C(G;V)$ the space of V-valued continuous functions on G. It is a complete locally convex space under the topology of uniform convergence on compact sets. Similarly, denote by $C^\infty(G;V)$ the (complete locally convex) space of smooth V-valued functions, with the usual smooth topology. For any $v \in V$, define $c_v \in C(G; V)$ by
\[
c_v(g) := gv.
\]
The vector \(v \) is called smooth if \(c_v \in C^\infty(G; V) \). Denote by \(V_\infty \) the space of all smooth vectors in \(V \), which clearly is stable under \(G \). Note that the linear map

\[
V_\infty \to C^\infty(G; V) \\
v \mapsto c_v
\]

is injective with closed image. Equip \(V_\infty \) with the subspace topology of \(C^\infty(G; V) \), then it becomes a smooth representation of \(G \), which is called the smoothing of \(V \). If \(V \) is smooth, then \(V_\infty = V \) as a representation of \(G \). In this case, its differential is defined to be the continuous \(U(g_C) \) action given by

\[
Xv = (Xc_v)(1), \quad X \in U(g_C), \ v \in V,
\]

where 1 is the identity element of \(G \).

The representation \(V \) is said to be \(Z(g_C) \) finite if a finite codimensional ideal of \(Z(g_C) \) annihilates \(V_\infty \), where \(Z(g_C) \) is the center of \(U(g_C) \). It is said to be admissible if every irreducible representation of a maximal compact subgroup \(K \) of \(G \) has finite multiplicity in \(V \). A representation of \(G \) which is both admissible and \(Z(g_C) \) finite is called a Harish-Chandra representation.

The representation \(V \) is said to be of moderate growth if for every continuous seminorm \(| |_\mu \) on \(V \), there is a positive function \(\phi \) on \(G \) of moderate growth, and a continuous seminorm \(| |_\nu \) on \(V \) such that

\[
|gv|_\mu \leq \phi(g)|v|_\nu, \quad \text{for all } g \in G, \ v \in V.
\]

The representation \(V \) is said to be in the class \(\mathcal{FH} \) if the space \(V \) is Fréchet, and the representation is smooth and of moderate growth, and Harish-Chandra. The category of all such \(V \) is denoted by the same symbol \(\mathcal{FH} \) (the morphisms being \(G \)-intertwining continuous linear maps). The strong dual of a representation in the class \(\mathcal{FH} \) is again a representation which is smooth and Harish-Chandra. A representation which is isomorphic to such a strong dual is said to be in the class \(\mathcal{DH} \).

By the Casselman-Wallach globalization theorem, both the category \(\mathcal{FH} \) and \(\mathcal{DH} \) are equivalent to the category \(\mathcal{H} \) of admissible finitely generated \((g_C, K) \)-modules ([C89], [W92, Chapter 11]).

Remark 1.2. Our terminology follows that of Wallach in [W92], where presumably \(\mathcal{F} \) refers to Fréchet, \(\mathcal{H} \) refers to Harish-Chandra, and \(\mathcal{FH} \) hints at Fréchet globalization of Harish-Chandra modules. Note that Casselman calls a representation in the class \(\mathcal{FH} \) a Harish-Chandra representation ([C89], page 394), while some other authors spell out all conditions of the class \(\mathcal{FH} \), without attaching a name.
From the theory of real Jacquet modules (by Casselman and Wallach), and the Casselman-Wallach globalization theorem, every representation in the class \mathcal{FH} is the smoothing of a Hilbert representation. In addition, all representation spaces in \mathcal{FH} are automatically nuclear Fréchet (and in particular are reflexive), and all morphisms in \mathcal{FH} and \mathcal{DH} are automatically topological homomorphisms with closed image. See [W92 Chapter 11]. Recall that in general, a linear map $\lambda : E \to F$ of topological vector spaces is called a topological homomorphism if the induced linear isomorphism $E/\text{Ker}(\lambda) \to \text{Im}(\lambda)$ is a topological isomorphism, where $E/\text{Ker}(\lambda)$ is equipped with the quotient topology of E, and the image $\text{Im}(\lambda)$ is equipped with the subspace topology of F.

2. Statement of results

Let U^∞, V^∞ be a pair of representations of G in the class \mathcal{FH} which are contragredient to each other, i.e., we are given a G-invariant non-degenerate continuous bilinear map

$$\langle \cdot, \cdot \rangle : U^\infty \times V^\infty \to \mathbb{C}.\tag{1}$$

Denote by $U^{-\infty}$ the strong dual of V^∞, which is a representation in the class \mathcal{DH} containing U^∞ as a dense subspace. Similarly, denote by $V^{-\infty}$ the strong dual of U^∞. For any $u \in U^\infty, v \in V^\infty$, the (usual) matrix coefficient $c_{u \otimes v}$ is defined by

$$c_{u \otimes v}(g) := \langle gu, v \rangle, \quad g \in G.\tag{2}$$

By the moderate growth conditions of U^∞ and V^∞, one easily checks that a matrix coefficient $c_{u \otimes v}$ is a tempered function on G.

The following theorem, which defines the notion of matrix coefficients for distributional vectors, is in a sense well-known. See the work of Shilika ([S74 Section 3]) in the context of unitary representations, and the work of Kostant ([K78 Section 6.1]) or Yamashita ([Y88 Section 2.3]) in the context of Hilbert representations. With the benefit of the Casselman-Wallach theorem, it is of interest and most natural to state the result in the context of representations in the class \mathcal{FH}. This is also partially justified by the increasing use of this class of representations, due to the recent progress in restriction problems for classical groups. One purpose of this note is to provide a detailed proof of this result.

Theorem 2.1. Let G be a real reductive group. Denote by $C^\xi(G)$ (resp. $C^{-\xi}(G)$) the space of all tempered functions (resp. tempered generalized functions) on G. Let (U^∞, V^∞) be a pair of representations of G in
the class \mathcal{FH} which are contragredient to each other. Then the matrix coefficient map
\begin{equation}
U^\infty \times V^\infty \to C^\xi(G), \\
(u, v) \mapsto c_{u\otimes v}
\end{equation}
extends to a continuous bilinear map
\begin{equation}
U^{-\infty} \times V^{-\infty} \to C^{-\xi}(G),
\end{equation}
and the induced $G \times G$ intertwining continuous linear map
\begin{equation}
c : U^{-\infty} \hat{\otimes} V^{-\infty} \to C^{-\xi}(G)
\end{equation}
is a topological homomorphism with closed image.

Here "$\hat{\otimes}$" stands for the completed projective tensor product of Hausdorff locally convex topological vector spaces. In our case, this coincides with the completed epsilon tensor product as the spaces involved are nuclear. Recall again that a linear map $\lambda : E \to F$ of topological vector spaces is called a topological homomorphism if the induced linear isomorphism $E/\text{Ker}(\lambda) \to \text{Im}(\lambda)$ is a topological isomorphism, where $E/\text{Ker}(\lambda)$ is equipped with the quotient topology of E, and the image $\text{Im}(\lambda)$ is equipped with the subspace topology of F. The action of $G \times G$ on $C^{-\xi}(G)$ is obtained by continuously extending its action on $C^\xi(G)$:
\begin{equation}
((g_1, g_2)f)(x) := f(g_2^{-1}xg_1).
\end{equation}

Remark 2.2. (A) Denote by t_{u^∞} the paring $V^\infty \times U^\infty \to \mathbb{C}$, and view it as an element of $U^{-\infty} \hat{\otimes} V^{-\infty}$. Then $c(t_{u^\infty}) \in C^{-\xi}(G)$ is the character of the representation U^∞.

(B) Let $U_1^\infty, U_2^\infty, \ldots, U_k^\infty$ be pairwise inequivalent irreducible representations of G in the class \mathcal{FH}. Let V_i^∞ be a representation of G in the class \mathcal{FH} which is contragredient to U_i^∞, $i = 1, 2, \ldots, k$. Then the second assertion of Theorem 2.1 implies that the sum
\begin{equation}
\bigoplus_{i=1}^k U_i^{-\infty} \hat{\otimes} V_i^{-\infty} \to C^{-\xi}(G)
\end{equation}
of the matrix coefficient maps is a topological embedding with closed image.

A second purpose of this note (and additional reason for writing down a proof of Theorem 2.1) is to prove the following generalized form of the Gelfand-Kazhdan criterion. For applications towards uniqueness of certain degenerate Whittaker models, it is highly desirable to have
the most general form of the Gelfand-Kazhdan criterion. We refer the reader to [JSZ08] for one such application.

Theorem 2.3. Let S_1 and S_2 be two closed subgroups of G, with continuous characters

$$\chi_i : S_i \to \mathbb{C}^\times, \quad i = 1, 2.$$

(a) Assume that there is a continuous anti-automorphism τ of G such that for every $f \in C^{-\xi}(G)$ which is an eigenvector of $U(\mathfrak{g}_C)^G$, the conditions

$$f(sx) = \chi_1(s)f(x), \quad s \in S_1,$$

and

$$f(xs) = \chi_2(s)^{-1}f(x), \quad s \in S_2$$

imply that

$$f(x^\tau) = f(x).$$

Then for any pair of irreducible representations (U^∞, V^∞) of G in the class \mathcal{FH} which are contragredient to each other, one has that

$$\dim \text{Hom}_{S_1}(U^\infty, \mathbb{C}_{\chi_1}) \dim \text{Hom}_{S_2}(V^\infty, \mathbb{C}_{\chi_2}) \leq 1.$$

The equality holds only if U^∞ and V^∞ are equivalent, where U^∞ is the representation obtained from U^∞ by (pre)composing with the automorphism $g \mapsto \tau(g^{-1})$.

(b) Assume that for every $f \in C^{-\xi}(G)$ which is an eigenvector of $U(\mathfrak{g})^G$, the conditions

$$f(sx) = \chi_1(s)f(x), \quad s \in S_1,$$

and

$$f(xs) = \chi_2(s)^{-1}f(x), \quad s \in S_2$$

imply that

$$f = 0.$$

Then for any pair of irreducible representations (U^∞, V^∞) of G in the class \mathcal{FH} which are contragredient to each other, one has that

$$\dim \text{Hom}_{S_1}(U^\infty, \mathbb{C}_{\chi_1}) \dim \text{Hom}_{S_2}(V^\infty, \mathbb{C}_{\chi_2}) = 0.$$

Here and as usual, $U(\mathfrak{g}_C)^G$ is identified with the space of bi-invariant differential operators on G, \mathbb{C}_{χ_i} is the one dimensional representation of S_i given by the character χ_i, and “Hom$_{S_i}$” stands for continuous S_i homomorphisms. The equalities in the theorem are to be understood as equalities of generalized functions. For example, $f(sx)$ denotes the
left translation of f by s^{-1}. Similar notations apply throughout this article.

Remark 2.4. (A) In concrete applications, the data $S_1, S_2, \chi_1, \chi_2, \tau$ are interconnected, and various considerations often imply that the two terms in the product $\dim \text{Hom}_{S_1}(U^{\infty}, C_{\chi_1}) \dim \text{Hom}_{S_2}(V^{\infty}, C_{\chi_2})$ are equal, and so each of them is at most 1. (One case is that $S_1 = S, S_2 = \tau(S_1), V^{\infty} = U^{\infty} \circ \tilde{\tau}$, and $\chi_2 = \chi_1 \circ \tilde{\tau}$.) This is how Gelfand-Kazhdan criterion (Part (a) of Theorem 2.3) is applied to prove the (local) uniqueness of certain models in the theory of automorphic forms. Part (b) serves a similar purpose in showing the disjointness of certain periods.

(B) The original Gelfand-Kazhdan criterion is in [GK71] (for the non-archimedean case), and their idea has been very influential ever since. Various versions for real reductive groups have appeared in the literature, including [ST74] and [K78] (for the study of Whittaker models, but both implicitly). Later works which state some versions of Gelfand-Kazhdan criterion explicitly include that of H. Yamashita ([Y88, Theorem 2.10]), and of A. Aizenbud, D. Gourevitch and E. Sayag ([AGS, Section 2]). The papers [ST74] and [Y88] have been particularly instructive for the current article.

3. Proof of Theorem 2.1

Let $(U, \langle \cdot, \cdot \rangle_U)$ be a Hilbert space which carries a continuous representation of G so that its smoothing coincides with U^{∞}. Denote by V the strong dual of U, which carries a representation of G. (Its topology is given by the inner product

$$\langle \bar{u}_1, \bar{u}_2 \rangle_V := \langle u_2, u_1 \rangle_U, \quad u_1, u_2 \in U,$$

where $\bar{u}_i \in V$ is the linear functional $\langle \cdot, u_i \rangle_U$ on U. Note that the smoothing of V coincides with V^{∞}. Recall, as is well-known, that the three pairs U and V, U^{∞} and $V^{-\infty}$, and $U^{-\infty}$ and V^{∞}, are strong duals of each other as representations of G. For $u \in U, v \in V$, set

$$|u|_U := \sqrt{\langle u, u \rangle_U} \quad \text{and} \quad |v|_V := \sqrt{\langle v, v \rangle_V}.$$

Lemma 3.1. There is a continuous seminorm $|\cdot|_G$ on $D^c(G)$ such that

$$\int_G |f(g)| |gu|_U dg \leq |\omega|_G |u|_U, \quad \omega = f dg \in D^c(G), u \in U.$$

Proof. This is well known, and follows easily from the facts that

(a) U is (automatically) of moderate growth ([W88 Lemma 2.A.2.2]), and
(b) there is a positive continuous function \(\phi \) on \(G \) of moderate growth so that \(1/\phi \) is integrable. See [W88, Lemma 2.A.2.4]. □

By Lemma 3.1, for any \(\omega \in D^c(G) \) and \(u \in U \), the integral (in the sense of Riemann)

\[
(5) \quad \omega u := \int_G \omega(g) gu
\]

converges absolutely, and thus defines a vector in \(U \). Furthermore, the bilinear map

\[
D^c(G) \times U \to U, \\
(\omega, u) \mapsto \omega u
\]

is continuous.

Lemma 3.2. For \(\omega \in D^c(G) \) and \(u \in U \), we have \(\omega u \in U^\infty \).

Proof. Denote by \(L \) the representation of \(G \) on \(D^c(G) \) by left translations. Thus for \(g \in G \) and \(\omega \in D^c(G) \), \(L_g(\omega) \) is the push forward of \(\omega \) via the map

\[
G \to G, \\
x \mapsto gx.
\]

It is routine to check that

\[
L : G \times D^c(G) \to D^c(G)
\]

is a smooth representation. For \(X \in \mathfrak{U}(\mathfrak{g}_C) \), denote by

\[
L_X : D^c(G) \to D^c(G)
\]

its differential. Trivially we have

\[
(7) \quad c_{\omega u}(g) = (L_g(\omega))u, \quad g \in G, u \in U.
\]

This implies that \(c_{\omega u} \in C^\infty(G; U) \), namely \(\omega u \in U^\infty \). □

The following two lemmas are refinements of [S74, Proposition 3.2].

Lemma 3.3. The bilinear map

\[
\Phi_U : D^c(G) \times U \to U^\infty, \\
(\omega, u) \mapsto \omega u.
\]

is continuous.

Proof. By the defining topology on \(U^\infty \), we need to show that the map

\[
D^c(G) \times U \to C^\infty(G; U), \\
(\omega, u) \mapsto c_{\omega u}.
\]
is continuous. In view of the topology on $C^\infty(G; U)$, this is equivalent to showing that the bilinear map
\[
D^\varsigma(G) \times U \to C(G; U),
\]
\[
(\omega, u) \mapsto X(c_{\omega u}),
\]
is continuous for all $X \in U(g_C)$. This is clearly true by observing that
\[
X(c_{\omega u}) = c_{(L_X(\omega))u}, \quad \omega \in D^\varsigma(G), \ u \in U.
\]
\[\square\]

For any $\omega \in D^\varsigma(G)$, denote by ω^\vee its push forward via the map
\[
G \to G,
\]
\[
g \mapsto g^{-1}.
\]
Applying Lemma 3.3 to V, we get a continuous bilinear map
\[
\Phi_V : D^\varsigma(G) \times V \to V^\infty,
\]
\[
(\omega, v) \mapsto \omega v.
\]
Now for any $\omega \in D^\varsigma(G)$, we define the continuous linear map
\[
U^{-\infty} \to U,
\]
\[
u \mapsto \omega \nu
\]
to be the transpose of
\[
V \to V^\infty,
\]
\[
v \mapsto \omega^\vee v,
\]
i.e.,
\[
(8) \quad \langle \omega \nu, v \rangle = \langle u, \omega^\vee v \rangle, \quad u \in U^{-\infty}, \ v \in V.
\]

Lemma 3.4. The bilinear map
\[
(9) \quad \Phi^\vee_V : D^\varsigma(G) \times U^{-\infty} \to U,
\]
\[
(\omega, u) \mapsto \omega u
\]
is separately continuous and extends (6).

Proof. It is routine to check that (9) extends (6). We already know that (9) is continuous in the second variable.

Fix $u \in U^{-\infty}$, then the continuity of the bilinear map
\[
\theta_u : D^\varsigma(G) \times V \to \mathbb{C},
\]
\[
(\omega, v) \mapsto \langle u, \omega^\vee v \rangle.
\]
clearly implies the continuity of the map
\[
D^\varsigma(G) \to U,
\]
\[
\omega \mapsto \omega u = \theta_u(\omega, \cdot).
\]
\[\square\]

9
Lemma 3.5. The image of Φ^\vee is contained in U^∞, and the induced bilinear map

$$\Phi^\vee : D^\varsigma(G) \times U^{-\infty} \to U^\infty,$$

is separately continuous.

Proof. By chasing the definition of ωu, we see that the equality (7) still holds for all $\omega \in D^\varsigma(G)$ and $u \in U^{-\infty}$. Again, this implies that $\omega u \in U^\infty$.

The proof for the separate continuity of Φ^\vee is similar to that of Lemma 3.3. We need to prove that the map

$$D^\varsigma(G) \times U^{-\infty} \to C^\infty(G; U),$$

$$(\omega, u) \mapsto c_{\omega u},$$

is separately continuous. This is the same as that the bilinear map

$$D^\varsigma(G) \times U^{-\infty} \to C(G; U),$$

$$(\omega, u) \mapsto X(c_{\omega u}),$$

is separately continuous for all $X \in U(g_C)$. This is again true by checking that

$$X(c_{\omega u}) = c_{(L_X(\omega))u}, \quad \omega \in D^\varsigma(G), \ u \in U^{-\infty}.\qed$$

To summarize, we get a separately continuous bilinear map

$$D^\varsigma(G) \times U^{-\infty} \to U^\infty,$$

which extends the action map

$$D^\varsigma(G) \times U \to U^\infty,$$

$$(\omega, u) \mapsto \omega u.$$

Similarly, we have a separately continuous bilinear map

$$D^\varsigma(G) \times V^{-\infty} \to V^\infty,$$

$$(\omega, v) \mapsto \omega v,$$

which extends the action map

$$D^\varsigma(G) \times V \to V^\infty,$$

$$(\omega, v) \mapsto \omega v.$$

Now define the (distributional) matrix coefficient map by

$$c : U^{-\infty} \times V^{-\infty} \to C^{-\xi}(G),$$

$$c_{u \otimes v}(\omega) := \langle \omega u, v \rangle = \langle u, \omega^\vee v \rangle, \quad \omega \in D^\varsigma(G).$$

The last equality is implied by (8) and the afore-mentioned separate continuity statements.

Lemma 3.6. The matrix coefficient map c defined in (11) is continuous.
Proof. Note that the spaces $U^{-\infty}, V^{-\infty}$ and $C^{-\xi}(G)$ are all strong duals of reflexive Fréchet spaces. Therefore by [Tr67, Theorem 41.1], it suffices to show that the map (11) is separately continuous. First fix $u \in U^{-\infty}$, then the map

\[V^{-\infty} \to C^{-\xi}(G), \quad v \mapsto c_{u \otimes v}, \]

is continuous since it is the transpose of the continuous linear map

\[D^\xi(G) \to U^\infty, \quad \omega \mapsto \omega u. \]

Similarly, fix $v \in V^{-\infty}$, the map

\[U^{-\infty} \to C^{-\xi}(G), \quad u \mapsto c_{u \otimes v}, \]

is continuous since it is the transpose of the continuous linear map

\[D^\xi(G) \to V^\infty, \quad \omega \mapsto \omega ^\vee v. \]

□

It is straightforward to check that (11) extends the usual matrix coefficient map (2). The proof of the first assertion of Theorem 2.1 is now complete.

To prove the second assertion of Theorem 2.1, we need two elementary lemmas.

Lemma 3.7. Let $\lambda : E \to F$ be a G intertwining continuous linear map of representations of G. Assume that E is Fréchet, smooth, and of moderate growth, and F is in the class \mathcal{FH}. Then $E/\text{Ker}(\lambda)$ is a representation of G in the class \mathcal{FH}, and λ is a topological homomorphism.

As the proof is routine, we omit the details.

Lemma 3.8. Let $\lambda : E \to F$ be a continuous linear map of nuclear Fréchet spaces. Equip the dual spaces E' and F' with the strong dual topologies. Then λ is a topological homomorphism if and only if its transpose $\lambda^t : F' \to E'$ is. When this is the case, both λ and λ^t have closed images.

Proof. The first assertion is a special case of [B87, Section IV.2, Theorem 1]. (Recall that every bounded set in a complete nuclear space is relatively compact.)

Now assume that λ is a topological homomorphism. Then as a Hausdorff quotient of a Fréchet space, $E/\text{Ker}(\lambda)$ is complete, and so is $\text{Im}(\lambda)$, which implies that $\text{Im}(\lambda)$ is closed in F. By the Extension Theorem of continuous linear functionals, the image of λ^t consists of all elements in E' which vanish on $\text{Ker}(\lambda)$. This is closed in E'.

□
Recall that both $\hat{V}^\infty \otimes \hat{U}^\infty$ and $D^\varsigma(G)$ are nuclear Fréchet spaces. In particular, they are both reflexive. The map c of (1) is the transpose of a $G \times G$ intertwining continuous linear map

$$c^t : D^\varsigma(G) \to \hat{V}^\infty \otimes \hat{U}^\infty.$$

(Here we have used the canonical isomorphism $E' \otimes F' \simeq (E \hat{\otimes} F)',$ for nuclear Fréchet spaces E and $F.$ See [Tr67, Proposition 50.7].) Lemma 3.7 for the group $G \times G$ implies that c^t is a topological homomorphism. Lemma 3.8 then implies that c is a topological homomorphism with closed image. This completes the proof of the second assertion of Theorem 2.1.

4. PROOF OF THEOREM 2.3

The argument is standard (c.f. [GK71] or [S74]). We use the notation and the assumption of Theorem 2.3. As before, $U^{-\infty}$ is the strong dual of $V^\infty,$ and $V^{-\infty}$ is the strong dual of $U^\infty.$ Suppose that both $\text{Hom}_{S_1}(U^\infty, C\chi_1)$ and $\text{Hom}_{S_2}(V^\infty, C\chi_2)$ are non-zero. Pick

$$0 \neq u_0 \in \text{Hom}_{S_2}(V^\infty, C\chi_2) \subset U^{-\infty}$$

and

$$0 \neq v_0 \in \text{Hom}_{S_1}(U^\infty, C\chi_1) \subset V^{-\infty}.$$

Then the matrix coefficient $c_{u_0 \otimes v_0} \in C^{-\xi}(G)$ satisfies the followings:

$$\begin{cases}
\text{it is an eigenvector of } U(g)^G, \text{ (by the irreducibility hypothesis)} \\
c_{u_0 \otimes v_0}(sx) = \chi_1(s) c_{u_0 \otimes v_0}(x), \quad s \in S_1, \text{ and} \\
c_{u_0 \otimes v_0}(xs) = \chi_2(s)^{-1} c_{u_0 \otimes v_0}(x), \quad s \in S_2.
\end{cases}$$

By the assumption of the theorem, we have

$$c_{u_0 \otimes v_0}(x^\tau) = c_{u_0 \otimes v_0}(x).$$

Lemma 4.1. Let $\omega \in D^\varsigma(G).$ Denote by

$$\tau_* : D^\varsigma(G) \to D^\varsigma(G)$$

the push forward map by $\tau.$ Then

$$\omega u_0 = 0 \quad \text{if and only if} \quad (\tau_*(\omega)) \cdot v_0 = 0.$$

Proof. As a consequence of (12), we have

$$c_{u_0 \otimes v_0}(\omega) = 0 \quad \text{if and only if} \quad c_{u_0 \otimes v_0}(\tau_* (\omega)) = 0.$$

By the irreducibility of $U^\infty,$ $\omega u_0 = 0$ if and only if

$$\langle g(\omega u_0), v_0 \rangle = 0 \quad \text{for all } g \in G,$$

i.e.,

$$\langle (L_g \omega) u_0, v_0 \rangle = 0 \quad \text{for all } g \in G.$$
By (13), this is equivalent to saying that
\[\langle (\tau_*(L_g\omega))u_0, v_0 \rangle = 0 \text{ for all } g \in G. \]
Now the lemma follows from the following elementary identity and the irreducibility of V^∞:
\[\langle (\tau_*(L_g\omega))u_0, v_0 \rangle = \langle (\tau_*\omega)(g^r u_0), v_0 \rangle = \langle (g^r u_0), (\tau_*\omega)^\vee v_0 \rangle. \]
\[\square \]

End of proof of Theorem 2.3. Let
\[0 \neq u_0' \in \text{Hom}_{S^1}(V^\infty, \mathbb{C}[\chi_2]) \subset U^{-\infty} \]
be another element. Applying Lemma 4.1 twice, we get that for all $\omega \in D^\varsigma(G)$,
\[\omega u_0 = 0 \text{ if and only if } \omega u_0' = 0. \]
Therefore the two continuous G homomorphisms
\[\Phi : \omega \mapsto \omega u_0, \text{ and } \Phi' : \omega \mapsto \omega u_0', \]
from $D^\varsigma(G)$ to U^∞ have the same kernel, say J. Here and as before, we view $D^\varsigma(G)$ as a representation of G via left translations. Both Φ and Φ' induce nonzero G homomorphisms into the irreducible Harish-Chandra representation U^∞
\[\tilde{\Phi}, \tilde{\Phi'} : D^\varsigma(G)/J \to U^\infty, \]
without kernel. Lemma 3.7 says that $D^\varsigma(G)/J$ is a representation of G in the class \mathcal{FH}. By Schur’s lemma for the Category \mathcal{FH}, $\tilde{\Phi}'$ is a scalar multiple of $\tilde{\Phi}$, which implies that u_0' is a scalar multiple of u_0. This proves that
\[\dim \text{Hom}_{S^1}(V^\infty, \mathbb{C}[\chi_2]) = 1. \]
Similarly,
\[\dim \text{Hom}_{S^1}(U^\infty, \mathbb{C}[\chi_1]) = 1. \]

To finish the proof of Part (a) of Theorem 2.3, we first note the identity $c_{u_0 \otimes v_0}(x^{-1}) = c_{v_0 \otimes u_0}(x)$ (as generalized functions). The equality of matrix coefficients in (12) will then imply that U_x^∞ and V^∞ are equivalent, in view of Remark 2.2, Part (B).

Part (b) of Theorem 2.3 is immediate as the matrix coefficient $c_{u_0 \otimes v_0}$ would have to be zero if there were nonzero $u_0 \in \text{Hom}_{S^1}(V^\infty, \mathbb{C}[\chi_2])$ and nonzero $v_0 \in \text{Hom}_{S^1}(U^\infty, \mathbb{C}[\chi_1])$.
\[\square \]

Acknowledgements: the authors thank Bernhard Krötz for helpful discussions, and in particular for pointing out an error in an early version.
of the manuscript. Binyong Sun is supported by NUS-MOE grant R-146-000-102-112, and NSFC grants 10801126 and 10931006. Chen-Bo Zhu is supported by NUS-MOE grant R-146-000-102-112.

References

[AGS] A. Aizenbud, D. Gourevitch and E. Sayag, (GL(n + 1, F),GL(n, F)) is a Gelfand pair for any local field F, Compos. Math. 144, no. 6, (2008), 1504-1524.
[B87] N. Bourbaki, Topological vector spaces, Chapter 1-5, Springer-Verlag, 1987.
[C89] W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Canad. Jour. Math. 41 (1989), 385–438.
[GK71] I.M. Gelfand and D. Kazhdan, Representations of the group GL(n, K), where K is a local field, Institute for Applied Mathematics, No. 942, 1971.
[JSZ08] D. Jiang, B. Sun and C.-B. Zhu, Uniqueness of Ginzburg-Rallis models: the Archimedean case, preprint, 2008.
[GN09] H. Glöckner and K.-H. Neeb, Infinite-dimensional Lie groups: General Theory and Main Examples, Graduate Texts in Mathematics, Springer-Verlag, book to appear.
[K78] B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101–184.
[S74] J.A. Shalika, Multiplicity one theorem for GL_n, Ann. Math. 100 (1974), 171–193.
[Ta95] J.L. Taylor, Notes on locally convex topological vector spaces, www.math.utah.edu/~taylor/LCS.pdf, 1995.
[Tr67] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.
[Y88] H. Yamashita, Multiplicity one theorems for generalized Gelfand-Graev representations of semisimple Lie groups and Whittaker models for discrete series, Advanced Studies in Pure Mathematics, Vol 14, pp. 31-121, 1988.
[W88] N. Wallach, Real Reductive Groups I, Academic Press, San Diego, 1988.
[W92] N. Wallach, Real Reductive Groups II, Academic Press, San Diego, 1992.

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, P.R. China
E-mail address: sun@math.ac.cn

Department of Mathematics, National University of Singapore, 2 Science drive 2, Singapore 117543
E-mail address: matzhucb@nus.edu.sg