A Review of Changing Episode Definitions and Their Effects on Estimates of Diarrhoeal Morbidity

Jim Wright1, Stephen W. Gundry2, and Ronán M. Conroy3

1 Centre for Geographical Health Research, Department of Geography, University of Southampton, Highfield, Southampton SO17 1BJ, UK, 2 Water and Environmental Management Research Centre, University of Bristol, 83 Woodland Road, Bristol BS8 1US, UK, and 3 Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland

ABSTRACT

This paper describes how the methodology used for measuring diarrhoeal morbidity has changed over time and assesses how differences in episode definition have affected estimates of diarrhoeal morbidity among children aged less than five years. The episode definition used in 73 studies included in three previously-published literature reviews was identified. In earlier work, a method was developed that adjusts morbidity estimates to take account of differences in episode definition. This adjustment method was applied to the studies identified in these three literature reviews. Episode definitions were better documented and were more consistent in studies published after 1980. Adjusting morbidity estimates to account for definitional differences did not substantially alter the reviews’ conclusions. Diarrhoeal surveillance has steadily improved since 1980, with methodology becoming more consistent between studies and better documented. Although episode definitions have changed over time, the morbidity estimates derived in the three reviews appear robust to these changes.

Key words: Definition; Developing countries; Diarrhoea; Epidemiology; Morbidity

INTRODUCTION

Accurate quantification of the burden of diseases enables research efforts and resources to be targeted towards the most widespread diseases (1). The burden of diarrhoeal morbidity is generally measured in terms of episodes (2). Several studies have found that when undertaking surveillance of diarrhoea, differences in episode definition may affect estimates of the burden of the disease (3-6). To overcome these problems, a standard international definition has been proposed for a diarrhoea episode (4); however, it is unclear at present how far this proposed standard has been adopted in epidemiological studies.

This paper explored these issues through a re-examination of three literature-based studies of the global burden of diarrhoeal disease. We assessed the episode definitions used in the studies that form the basis of these three reviews and considered whether these definitional differences could account for the observed morbidity trend.

MATERIALS AND METHODS

Literature review

Three studies sponsored by the World Health Organization (WHO) have drawn on published literature to assess the changing patterns of global diarrhoeal morbidity and mortality among children aged less than five years. The first of these studies drew on work published between 1955 and 1980 (7), the second on work published between 1980 and 1990 (8), and the third on work published between 1991 and 2000 (9). The three reviews identified longitudinal studies of diarrhoeal disease and excluded studies that failed to meet certain criteria. These inclusion criteria included the length of the study (at least one year) and the recall period used, but not the episode definition used. Each of the three reviews collated morbidity for all the included studies and then calculated median estimates of morbidity for different world regions. These studies suggest a slight increase in diarrhoeal morbidity since 1980.

The first of these reviews documented the different episode definitions used in the included studies,
but the subsequent reviews did not. To assess the possible impacts of differing episode definitions, we re-examined all the studies included in the two later reviews and documented the episode definition used in each of them.

Adjusting morbidity estimates for definitional differences

We have previously described a method for adjusting morbidity estimates to take into account differences in the episode definition used between studies (3). To develop this methodology, morbidity data from three African countries were collected for children aged 9-32 months using a simple diary that enabled episodes to be defined according to a range of different criteria. For example, the number of loose or watery stools used in the definition could be varied. Based on the observed differences in morbidity resulting from different episode definitions, we then developed an adjustment method using linear regression. For example, if a study estimated morbidity based on an episode definition of four or more loose stools a day, the morbidity estimate would be adjusted upwards to account for the narrow definition used. If the study used seven diarrhoea-free days to define the end of an episode, the morbidity estimate would be further adjusted upwards to account for the merging together of consecutive episodes.

This methodology can be used only on studies that define diarrhoeal morbidity in terms of numbers of loose or watery stools per day. It cannot be used where studies have adopted a local language word as their definition of diarrhoea (e.g. the Shona word ‘manyoka’ in Zimbabwe (10)). We applied our adjustment method to the studies included in the three literature reviews that used a definition amenable to adjustment.

The principal author collated the studies included in the two later reviews and documented the episode definition used in each of them. Such definitions had already been collated by the authors of the earliest review. We then recalculated the medians for each region using these adjusted morbidity figures, following the same methodology adopted in the original review articles. Given that the data used for developing the adjustment factors relating to children in the 12-35-month age cohort, we were only able to adjust the morbidity estimates for children in this age range and not the other cohorts aged under five years covered by the reviews.

The data used for developing the adjustment method were imperfect, since they were based on data of seven months’ surveillance rather than data for the whole year. However, they provide an indication of the effect of episode definition on estimates of the burden of disease, and the same methodology could be repeated using more complete surveillance data.

RESULTS

Changes in episode definition over time

The number of loose stools used for defining an episode was not documented for three of the 27 studies published during 1991-2000 (11-13), two of the 22 studies published during 1980-1990 (14,15), and eight of the 18 studies of morbidity published during 1955-1980 (16-23). A further four studies from 1991 to 2000 (10,24-26), five from 1980 to 1990 (27-31), and two from 1955 to 1980 (32,33) used definitions that were not amenable to adjustment, such as local language words or the mother’s definition. It is, therefore, apparent that far more studies included in the two later reviews documented this aspect of their methodology than those in the earliest review.

Figure 1 shows how the number of loose or watery stools used for defining a diarrhoea-day varied for the remaining 20 studies from 1991 to 2000 (34-53), 15 studies from 1980 to 1990 (54-68), and eight studies from 1955 to 1980 (69-76). The proposed standard definition of three or more loose or watery stools per day was more frequently adopted in the two reviews covering studies published during 1980-1990 and 1991-2000 than in the review covering 1955-1980. The number of loose or watery stools used for defining a diarrhoea-day has also decreased slightly over time, averaging 3.8 during 1955-1980, 3.3 during 1980-1990, and 2.8 during 1991-2000.

The number of diarrhoea-free days used for defining the end of an episode was only documented for two of the 18 studies published during 1955-1980 (70,72). This criterion was not documented (14,15,56,59,63,65,67,68) or not a definitional component (27-29) in 11 of the 22 studies published during 1980-1990 and in three of the 27 studies published during 1991-2000 (42,49,50). The proportion of studies documenting this aspect of their methodology thus progressively increased in the later reviews covering the 1980s and 1990s.

Figure 2 shows how the number of diarrhoea-free days used for defining the end of an episode varied for the remaining 37 studies. It is somewhat harder to discern trends in this component of the definition, since so many studies published before 1990 did not document this aspect of their methodology. In all the three periods reviewed, only a minority of studies included bloody stools within the definition of a diarrhoea-day.
Effects of episode definition on global estimates of morbidity

Many studies either did not document the episode definition used, or else used a local definition that was not amenable to adjustment. Most studies included in the earliest review did not fully document the episode definition used. We were therefore, only able to apply our adjustment method to 15 of the 22 studies (54-68) from 1980 to 1990 and to 20 of the 27 studies (34-53) from 1990 to 2000, where fuller details of the episode definition were available.

Figure 3 shows the estimated global median incidence of diarrhoeal morbidity before and after ap-
plying the adjustment factors. To ensure that the original and revised median estimates in Figure 3 were comparable, we recalculated the median incidence from data for all the studies included in the original reviews, whether amenable to adjustment or not. After consulting with one of the review’s authors, we established that the median value for the one and two-year age cohorts published in the article by Bern et al. had been miscalculated and was incorrect. The unadjusted values in Figure 3, therefore, show the corrected median values calculated from the original data. Although the median number of episodes of diarrhoea is slightly increased by the adjustment method, the trend over time remained the same as that observed in the original paper. In other words, the 12-23-month age cohort showed an increase in the incidence of diarrhoea between the 1980s and the 1990s, with incidence remaining broadly similar in the 24-35-month cohort.

DISCUSSION

Results of our re-analysis of these earlier literature reviews suggest that the methodological quality of diarrhoeal surveillance has improved over time. Studies are now more likely to adopt an internationally-accepted standard definition for an episode and to document this as part of the publication process. This implies that the potential difficulty of having to combine morbidity estimates based on widely differing definitions is becoming less of a problem.

We were only able to adjust a subset of the reviews’ morbidity estimates to account for differences in episode definition. Several articles used location-specific definitions of an episode, such as the mother’s definition or a local language word, which we could not adjust. Such an approach makes survey questionnaires simpler and less confusing to respondents (77) and, therefore, has its advantages. However, while location-specific episode definitions closely match standard medical definitions in some settings (78,79), elsewhere they do not (80). In particular, the differences in prevalence of diarrhoea between Demographic and Health Surveys and Control of Diarrhoeal Diseases Surveys have been attributed to inconsistencies in episode definition and de facto use of local language words for diarrhoea (81). This suggests that understanding the relationship between local illness definitions and their standard international equivalents is important where such an approach is adopted.

The adjustment generally increased the original estimates of morbidity. This is because the definition used as a standard (4) included bloody stools, whereas the majority of studies covered by the three reviews did not. Although the adjusted morbidity
estimates calculated here were slightly greater than those presented in the original reviews, they do not substantially alter the observed trends in morbidity. This suggests that the methodology adopted in the three reviews is robust to differences in episode definition between the studies included. The original reviews did not attempt to convert morbidity and mortality estimates into disease-burden measures, such as Disability Adjusted Life Years (DALYs), nor have we attempted to do so here. Although only a small adjustment to the reviews' overall findings was made, it is, therefore, possible that such adjustment may have an impact on the contribution that diarrhoea makes to the global burden of disease.

ACKNOWLEDGEMENTS

This work was funded by the European Union under the INCO-DEV: International Co-operation with Developing Countries Programme (Contract No. ICA4-CT-2000-30039. Title: 'The Policy Implications of Contamination of Rural Water Between Source and Point-of-Use in Kenya, South Africa and Zimbabwe–AQUAPOL'; www.bristol.ac.uk/aqua-pol).

The authors wish to acknowledge the contributions of Martella du Preez and Bettina Genthe of CSIR Environmentek (South Africa), Sibonginkosi Moyo and Dr. Jerry Ndamba (deceased) of the Institute of Water and Sanitation Development (Zimbabwe), Prof. Anna Ferro-Luzzi of the Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione–INRAN (Italy), Dr. Natasha Potgieter of University of Venda (South Africa), Dr. Charles Mutisi at University of Zimbabwe, and Misheck Kirimi of the Network for Water and Sanitation International (Kenya). All of these colleagues from the AQUAPOL project helped develop the adjustment methodology used in this article. The authors also thank two anonymous reviewers for their comments on this manuscript. The authors also thank two anonymous reviewers for their comments on this manuscript.

REFERENCES

1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global burden of disease and risk factors. Oxford: Oxford University Press, 2006. 506 p.
2. Hutton G, Haller L. Evaluation of the costs and benefits of water and sanitation at the global level. Geneva: World Health Organization, 2004. 87 p. (WHO/ SDE/WSH/04.04).
3. Wright JA, Gundry SW, Conroy RM, Wood D, du Preez M, Ferro-Luzzi A et al. Defining diarrhoea episodes: results from a 3-country study in sub-Saharan Africa. J Health Popul Nutr 2006;24:8-16.
4. Baqui AH, Black RE, Yunus M, Hoque AR, Chowdhury HR, Sack RB. Methodological issues in diarrhoeal diseases epidemiology: definition of diarrhoeal episodes. Int J Epidemiol 1991;20:1057-63.
5. Morris SS, Cousens SN, Lanata CF, Kirkwood BR. Diarrhea—defining the episode. Int J Epidemiol 1994;23:617-23.
6. Pickering H, Hayes RJ, Tomkis AM, Carson D, Dunn D. Alternative measures of diarrhoeal morbidity and their association with social and environmental factors in urban children in the Gambia. Trans R Soc Trop Med Hyg 1987;81:853-9.
7. Snyder JD, Merson MH. The magnitude of the global problem of acute diarrhoeal disease: a review of active surveillance data. Bull World Health Organ 1982;60:605-13.
8. Bern C, Martines J, de Z, I, Glass RI. The magnitude of the global problem of diarrhoeal disease: a ten-year update. Bull World Health Organ 1992;70:705-14.
9. Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ 2003;81:197-204.
10. Moy RJ, Booth JW, Choto RG, McNeish AS. Recurrent and persistent diarrhoea in a rural Zimbabwean community: a prospective study. J Trop Pediatr 1991;37:293-9.
11. Molbak K, Jensen H, Ingholt L, Aaby P. Risk factors for diarrhoeal disease incidence in early childhood: a community cohort study from Guinea-Bissau. Am J Epidemiol 1997;146:273-82.
12. Cruz JR, Bartlett AV, Mendez H, Sibrian R. Epidemiology of persistent diarrhoea among Guatemalan rural children. Acta Paediatr 1992;381(Suppl):22-6.
13. Kaminsky RG. Parasitism and diarrhea in children from 2 rural communities and marginal Barrio in Honduras. Trans R Soc Trop Med Hyg 1991;85:70-3.
14. Oyelode CO, Fagbami AH. An epidemiological study of rotavirus diarrhoea in a cohort of Nigerian infants: II. Incidence of diarrhoea in the first two years of life. Int J Epidemiol 1988;17:908-12.
15. Giugliano LG, Bernardi MG, Vasconcelos JC, Costa CA, Giugliano R. Longitudinal study of diarrhoeal disease in a peri-urban community in Manaus (Amazon–Brazil). Ann Trop Med Parasitol 1986;80:443-50.
16. Mata LJ. The children of Santa María Cauqué: a prospective field study of health and growth. Cambridge, MA: MIT Press, 1978. 395 p.
17. James JW. Longitudinal study of the morbidity of diarrhoeal and respiratory infections in malnourished children. Am J Clin Nutr 1972;25:690-4.
18. Brotowasisto B. Epidemiology of diarrhoea. In: Proceedings of the National (Indonesia) Seminar on Rehydration. Jakarta: Department of Health, 1974:20-6.

19. Saroso JS, Suparnadi, Ratniwati, Manikoro. A longitudinal survey of diseases occurring in children under 5 years of age in Pondok Pinang, Jakarta. *Paediatr Indones* 1972;12:469-78.

20. Kiellmann AA, Taylor CE, DeSweemer C. The Narangwal experiment on interactions of nutrition and infections. II. Morbidity and mortality effects. *Indian J Med Res* 1978;68(Suppl):21-41.

21. Datta Banik ND, Krishna R, Mane SIS. A longitudinal study of morbidity and mortality pattern of children under age of five years in an urban community. *Indian J Med Res* 1969;57:948-57.

22. Curlin GT. The influence of drinking tubewell water on diarrhoea rates in Matlab thana, Bangladesh. In: Symposium on Cholera: proceedings of the 12th Joint Conference of the US-Japan Cooperative Medical Science Program, Sapporo. Tokyo: National Institute of Health, 1976:48-53.

23. Rea JN. Social and nutritional influences on morbidity: a community study of young children in Lagos. *Proc Nutr Soc* 1970;29:223-30.

24. Wyrsch M, Coakley K, Alexander N, Saleu G, Taime J, Kakazo M. Diarrhoea morbidity in children in the Asaro Valley, Eastern Highlands province, Papua New Guinea. *Papua New Guinea Med J* 1998;41:7-14.

25. Lal S. Surveillance of acute diarrhoeal diseases at village level for effective home management of diarrhoea. *Indian J Public Health* 1994;38:65-8.

26. Chavasse DC, Shler RP, Murphy OA, Huttly SRA, Cousins SN, Akhtar T. Impact of fly control on childhood diarrhoea in Pakistan: community-randomised trial. *Lancet* 1999;353:22-5.

27. Rowland SG, Lloyd-Evans N, Williams K, Rowland MG. The etiology of diarrhoea studied in the community in young urban Gambian children. *J Diarrhoeal Dis Res* 1985;3:7-13.

28. el Alamy M, Thacker SB, Arafat RR, Wright CE, Zaki AM. The incidence of diarrhoeal disease in a defined population of rural Egypt. *Am J Trop Med Hyg* 1986;35:1006-12.

29. Guerrant RL, Kirchhoff LV, Shields DS, Nations MK, Leslie J, de Sousa MA et al. Prospective study of diarrheal illnesses in northeastern Brazil: patterns of disease, nutritional impact, etiologies, and risk factors. *J Infect Dis* 1983;148:986-97.

30. Schorling JB, Wanke CA, Schorling SK, Mcauliffe JE, de Souza MA, Guerrant RL. A prospective study of persistent diarrhea among children in an urban Brazilian slum. Patterns of occurrence and etiologic agents. *Am J Epidemiol* 1990;132:144-56.

31. Grinstein S, Gomez JA, Bercovich JA, Biscotti E. Epidemiology of rotavirus infection and gastroenteritis in prospectively monitored Argentine families with young children. *Am J Epidemiol* 1989;130:300-8.

32. Leeuwenburg J, Gemert W, Muller AS, Patel SC. Machakos Project Studies: agents affecting health of mother and child in a rural area of Kenya. VII: The incidence of diarrhoeal disease in the under-five population. *Trop Geogr Med* 1978;30:383-91.

33. Moore HA, De la Cruz E, Vargas-Mendez O. Diarrheal disease studies in Costa Rica. I. Plan and methods of investigation. *Am J Public Health Nations Health* 1966;56:276-86.

34. Mirza NM, Caulfield LE, Black RE, Macharia WM. Risk factors for diarrheal duration. *Am J Epidemiol* 1997;146:766-85.

35. Oni GA, Schumann DA, Oke EA. Diarrhoeal disease morbidity, risk factors and treatments in a low socioeconomic area of Ilorin, Kwara State, Nigeria. *J Diarrhoeal Dis Res* 1991;9:250-7.

36. Barreto ML, Santos LMP, Assis AMO, Araujo MPN, Farenzena GG, Santos PAB et al. Effect of vitamin A supplementation on diarrhoea and acute lower-respiratory-tract infections in young-children in Brazil. *Lancet* 1994;344:228-31.

37. Ferreccio C, Prado V, Ojeda A, Cayyazo M, Abrego P, Guers L et al. Epidemiologic patterns of acute diarrhoea and endemic *Shigella* infections in children in a poor periurban setting in Santiago, Chile. *Am J Epidemiol* 1991;134:614-27.

38. Guerrero ML, Noel JS, Mitchell DK, Calva JJ, Morrow AL, Martinez J et al. A prospective study of astrovirus diarrhea of infancy in Mexico City. *Pediatr Infect Dis J* 1998;17:723-7.

39. Lanata CF, Black RE, Gilman RH, Lazo E, Delagulita R. Epidemiologic, clinical, and laboratory characteristics of acute vs persistent diarrhea in periurban Lima, Peru. *J Pediatr Gastroenterol Nutr* 1991;12:82-8.

40. Lima AM, Moore SR, Barboza MS, Soares AM, Schleupner MA, Newman RD. Persistent diarrhoea signals a critical period of increased diarrhoea burdens and nutritional shortfalls: a prospective cohort study among children in northeastern Brazil. *J Infect Dis* 2000;181:1643-51.

41. Linhares AC, Gabbay YB, Mascarenhas JDP, deFreitas RB, Oliveira CS, Bellesi N et al. Immunogenicity, safety and efficacy of tetravalent rhesus-human reassortant rotavirus vaccine in Belem, Brazil. *Bull World Health Organ* 1996;74:491-500.
42. Mahmud A, Jalil F, Karlberg J, Lindblad BS. Early child health in Lahore, Pakistan: VII. Diarrhoea. Acta Paediatr 1993;390(Suppl):79-85.
43. Naficy AB, Rao MR, Holmes JL, Abu-Elyazeed R, Savarinno SJ, Wierzbka TF et al. Astrovirus diarrhea in Egyptian children. J Infect Dis 2000;182:685-90.
44. Punyaratambhandhu P, Vathanophas K, Varavithya W, Sangchai R, Athipanyakom S, Echeverria P et al. Childhood diarrhea in a low-income urban community in Bangkok: incidence, clinical features, and child caretaker's behaviours. J Diarrheal Dis Res 1991;9:244-9.
45. Baqui AH, Black RE, Sack RB, Chowdhury HR, Yunus M, Siddique AK. Malnutrition, cell-mediated immune-deficiency, and diarrhea—a community-based longitudinal study in rural Bangladeshi children. Am J Epidemiol 1993;137:355-65.
46. Dibley MJ, Sadjimin T, Kjolhede CL, Moulton LH. Vitamin A supplementation fails to reduce incidence of acute respiratory illness and diarrhea in preschool age Indonesian children. J Nutr 1996;126:434-42.
47. Gupta DN, Sircar BK, Sengupta PG, Ghosh S, Banu MK, Mondal SK et al. Epidemiological and clinical profiles of acute invasive diarrhea with special reference to mucoid episodes: a rural community-based longitudinal study. Trans R Soc Trop Med Hyg 1996;90:544-7.
48. Rahmathullah L, Underwood BA, Thulasiraj RD, Milton RC. Diarrhea, respiratory infections, and growth are not affected by a weekly low-dose vitamin A supplement—a masked, controlled field trial in children in southern India. Am J Clin Nutr 1991;54:568-77.
49. Lie C, Ying C, Wang EL, Brun T, Geissler C. Impact of large-dose vitamin A supplementation on childhood diarrhea, respiratory disease and growth. Eur J Clin Nutr 1993;47:88-96.
50. Yip KL, Yasmin AM, Wong YH, Ooi YE, Tan SC, Jegathesan M. A one year community-based study on the incidence of diarrhea and rotavirus infection in urban and suburban Malaysian children. Med J Malaysia 1992;47:303-8.
51. Chen KC, Lin CS, Qiao QX, Zen NM, Zhen GK, Chen GL et al. The epidemiology of diarrheal diseases in southeastern China. J Diarrhoeal Dis Res 1991;9:94-9.
52. Yang CR, Meng ZD, Wang X, Li YL, Zhang YX, Zhao QP. Diarrhea surveillance in children aged under 5 years in a rural area of Hebei Province, China. J Diarrhoeal Dis Res 1990;8:155-9.
53. Manum’ebo MN, Haggerty PA, Kalengaie M, Ashworth A, Kirkwood BR. Influence of demographic, socioeconomic and environmental variables on childhood diarrhea in a rural area of Zaire. J Trop Med Hyg 1994;97:31-8.
54. Huttly SR, Blum D, Kirkwood BR, Emeh RN, Okeke N, Ajala M et al. The Imo State (Nigeria) Drinking Water Supply and Sanitation Project. 2. Impact on dracunculiasis, diarrhea and nutritional status. Trans R Soc Trop Med Hyg 1990;84:316-21.
55. Huttly SR, Hoque BA, Aziz KM, Hasan KZ, Patwary MY, Rahaman MM et al. Persistent diarrhea in a rural area of Bangladesh: a community-based longitudinal study. Int J Epidemiol 1989;18:964-9.
56. Britwum RB, Isomura S, Assoku A, Torigoe S. Growth and diarrhoeal disease surveillance in a rural Ghanaian pre-school child population. Trans R Soc Trop Med Hyg 1986;80:208-13.
57. Chen LC, Huq EMDA, Huffman SL. A prospective study of the risk of diarrheal diseases according to the nutritional status of children. Am J Epidemiol 1981;114:284-92.
58. Bhan MK, Bhandari N, Sazawal S, Clements JD, Raj P. Descriptive epidemiology of persistent diarrhea among young children in rural northern India. Bull World Health Organ 1989;67:281-8.
59. Mathur R, Reddy V, Naidu AN, Ravikumar R, Krishna-Machari KA. Nutritional status and diarrheal morbidity: a longitudinal study in rural Indian pre-school children. Hum Nutr Clin Nutr 1985;39C:447-54.
60. Lanata CF, Black RE, Delagulla R, Gil A, Verastegui H, Gerna G et al. Protection of Peruvian children against rotavirus diarrhea of specific serotypes by one, two, or three doses of the RIT4237 attenuated bovine rotavirus vaccine. J Infect Dis 1989;159:452-9.
61. Lopez de Romana Guil, Brown KH, Black RE, Creed Kanaashi Hila. Longitudinal studies of infectious diseases and physical growth of infants in Huascar, an underprivileged peri-urban community in Lima, Peru. Am J Epidemiol 1989;129:769-84.
62. Cravioto A, Reyes RE, Trujillo F, Uribe F, Navarro A, De La Roca JM et al. Risk of diarrhea during the first year of life associated with initial and subsequent colonization by specific enteropathogens. Am J Epidemiol 1990;131:886-904.
63. Linhares AC, Gabbay YB, Freitas RB, da Rosa ES, Mascarenhas JDP, Loureiro EC. Longitudinal study of rotavirus infections among children from Belem, Brazil. Epidemiol Infect 1989;102:129-45.
64. Simhon A, Mata LJ, Vives M, Rivera L, Vargas S, Ramirez G et al. Low endemicity and low pathogenicity of rotaviruses among rural children in Costa Rica. J Infect Dis 1985;152:1134-42.
65. Cravioto A, Reyes RE, Ortega R, Fernandez G, Hernandez R, Lopez D. Prospective study of diarrhoeal disease in a cohort of rural Mexican children: incidence and isolated pathogens during the first two years of life. *Epidemiol Infect* 1988;101:123-34.

66. Black RE, Brown KH, Becker S, Abdul Alim ARM, Huq I. Longitudinal studies of infectious diseases and physical growth of children in rural Bangladesh. II. Incidence of diarrhoea and association with known pathogens. *Am J Epidemiol* 1982;115:315-24.

67. Sircar BK, Deb BC, Sengupta PG, Mondal SK, De SP, Sen D. A longitudinal study of diarrhoea among children in Calcutta communities. *Indian J Med Res* 1984;80:546-50.

68. Kumar V, Kumar R, Datta N. Oral rehydration therapy in reducing diarrhoea-related mortality in rural India. *J Diarrhoeal Dis Res* 1987;5:159-64.

69. Rahaman MM, Aziz KM, Patwari Y, Munshi MH. Diarrhoeal mortality in two Bangladeshi villages with and without community-based oral rehydration therapy. *Lancet* 1979;2:809-12.

70. Higgins AR, Floyd TM. Studies in shigellosis. I. General considerations, locale of studies, and methods. *Am J Trop Med Hyg* 1955;4:263-70.

71. Freij L, Walls S. Exploring child health and its ecology. The Kirkos study in Addis Ababa: an evaluation of procedures in the measurement of acute morbidity and a search for causal structure. *Acta Paediatr Scand* 1977;267(Suppl):1-120.

72. Scrimshaw NS, Ascoli W, Kevany JJ, Flores M, Iscaza SJ, Gordon JE. Nutrition and infection field study in Guatemalan villages, 1959-1964. III. Field procedure, collection of data and methods of measurement. *Arch Environ Health* 1967;15:6-15.

73. Scrimshaw NS. Studies of diarrheal disease in Central America. IV. Demographic distributions of acute diarrheal disease in two rural populations of the Guatemalan highlands. *Am J Trop Med Hyg* 1961;11:401-9.

74. Ghai OP, Jaiswal VN. Relationship of under-nutrition to diarrhoea in infants and children. *Indian J Med Res* 1970;58:789-95.

75. Kamath KR, Feldman RA, Sundar PSSR, Webb JKG. Infection and disease in a group of South Indian families: general morbidity patterns in families and family members. *Am J Epidemiol* 1969;89:375-83.

76. Lie KJ, Rukmono B, Oemijati S, Sahab K, Newell KW, Hway ST *et al*. Diarrhoea among infants in a crowded area of Djakarta, Indonesia: a longitudinal study from birth to two years. *Bull World Health Organ* 1966;34:197-210.

77. Killewo JZ, Smet JE. Mother's definition of diarrhoea in a suburban community in Tanzania. *J Diarrhoeal Dis Res* 1989;7:21-3.

78. Ruel MT, Rivera JA, Santizo MC, Lonnerdal B, Brown KH. Impact of zinc supplementation on morbidity from diarrhea and respiratory infections among rural Guatemalan children. *Pediatrics* 1997;99:808-13.

79. Pathela P, Hasan KZ, Roy E, Huq F, Siddique AK, Sack RB. Diarrheal illness in a cohort of children 0-2 years of age in rural Bangladesh: I. Incidence and risk factors. *Acta Paediatr* 2007;95:430-7.

80. Larson A, Mitra SN. Usage of oral rehydration solutions (ORS): a critical assessment of utilisation rates. *Health Policy Plan* 1992;7:251-9.

81. Forseberg BC, Vanginneken JK, Nagelkerke NJD. Cross-sectional household surveys of diarrhoeal diseases—a comparison of data from the control of diarrhoeal diseases and demographic and health surveys programs. *Int J Epidemiol* 1993;22:1137-45.