The structure and labelled enumeration of $K_{3,3}$-subdivision-free projective-planar graphs

Andrei Gagarin, Gilbert Labelle and Pierre Leroux

Laboratoire de Combinatoire et d'Informatique Mathématique, Université du Québec à Montréal, Montréal, Québec, CANADA, H3C 3P8

e-mail: gagarin@lacim.uqam.ca, labelle.gilbert@uqam.ca and leroux.pierre@uqam.ca

February 1, 2008

Abstract

We consider the class F of 2-connected non-planar $K_{3,3}$-subdivision-free graphs that are embeddable in the projective plane. We show that these graphs admit a unique decomposition as a graph K_5 (the core) where the edges are replaced by two-pole networks constructed from 2-connected planar graphs. A method to enumerate these graphs in the labelled case is described. Moreover, we enumerate the homeomorphically irreducible graphs in F and homeomorphically irreducible 2-connected planar graphs. Particular use is made of two-pole (directed) series-parallel networks. We also show that the number m of edges of graphs in F satisfies the bound $m \leq 3n - 6$, for $n \geq 6$ vertices.

1 Introduction

The projective plane is a non-orientable surface of non-orientable genus 1 that can be represented as a circular disk with its antipodal points identified. A graph G is projective-planar if it can be drawn on the projective plane without any pair of edges crossing. See Figure 1 where two projective planar embeddings of K_5 are represented. A graph G is projective-planar if and only if it contains at most one non-planar projective-planar 2-connected component while all the other 2-connected components of G are planar.

In this paper, we consider the class F of 2-connected non-planar projective-planar graphs without a $K_{3,3}$-subdivision. Results for the class C_F of connected projective-planar (non-planar) graphs with no $K_{3,3}$-subdivisions are then easily deduced. Since $K_{3,3}$

*With the partial support of FQRNT (Québec) and NSERC (Canada)
is a 3-regular graph, it is possible to see that the graphs with no $K_{3,3}$-subdivisions are precisely the graphs with no $K_{3,3}$-minors. Therefore we may refer to them as $K_{3,3}$-free graphs. By Kuratowski’s Theorem [15], these graphs must contain a subdivision of K_5. Hence the simplest graphs G in \mathcal{F} consist of a graph K_5 (the core) where the edges are replaced by two-pole networks constructed from 2-connected planar graphs. We show that in fact this is the only possibility and moreover that the core K_5 of G is uniquely determined as well as the two-pole networks entering in the construction. This fact is expressed in Theorem 1 by the equation

$$\mathcal{F} = K_5 \uparrow \mathcal{N}_P.$$

(1)

This property is specific to the projective plane since for other surfaces, for instance, for the torus, more complex cores such as toroidal crowns can occur (see [10, 11]).

We then apply this structure theorem to enumerate the labelled graphs in \mathcal{F} according to the number of vertices and edges. Other results include a bound on the number of edges of graphs in \mathcal{F}, which is reminiscent of planar graphs, and the enumeration of labelled homeomorphically irreducible graphs in \mathcal{F}.

In Section 2, we state and prove the structure theorem for the class \mathcal{F}. A general recursive decomposition for non-planar $K_{3,3}$-free graphs is described in Wagner [22] and Kelmans [14]. We recall the results of Fellows and Kaschube [7] and Gagarin and Kocay [9] on the structure of non-planar graphs containing a K_5-subdivision of a special type and cite from [9] the characterization of 2-connected non-planar $K_{3,3}$-free projective-planar graphs (the class \mathcal{F}) as graphs obtained from K_5 by substituting planar networks for edges. We then prove the uniqueness of this decomposition which establishes Theorem 1.

In Section 3, we first review some basic notions and terminology of labelled graphical enumeration. The reader should have some familiarity with exponential generating functions and their operations (addition, multiplication and composition). See, for example, Bergeron, Labelle and Leroux [2], Goulden and Jackson [13], Stanley [18], or Wilf [25]. We use mixed generating functions of the form

$$G(x, y) = \sum_{n \geq 0} \sum_{m \geq 0} g_{n,m} y^m x^n \frac{n!}{m!},$$

(2)
where \(g_{n,m} \) is the number of graphs in a given class \(\mathcal{G} \), with \(m \) edges and on a set of vertices \(V_n \) of size \(n \). The main result here is that the effect on generating functions of the edge substitution operation is given by

\[
(\mathcal{G} \uparrow \mathcal{N})(x, y) = \mathcal{G}(x, \mathcal{N}(x, y)).
\]

(3)

Use is made of the enumeration of the class \(P \) of 2-connected planar graphs by Bender, Gao and Wormald \[3\] and Bodirsky, Grüpl, and Kang \[4\], based on previous work of Mullin and Schellenberg \[16\] on labelled enumeration of 3-connected planar graphs.

In Section 4, we study a special class of two-pole networks, the class \(\mathcal{R} \) of \textit{series-parallel} networks. Note that parallel edges are not permitted here. We also consider the species of series-parallel graphs denoted by \(\mathcal{G}_{sp} \) \[6, 8, 23\]. Our presentation follows a more structural and intuitive approach, where the emphasis is put on the structure classes or species. Indeed their recursive definitions can be translated into functional equations satisfied by the species themselves and these relations are then expressed in terms of their generating functions. Moreover, many computations can be carried out and understood at the species level, before taking the generating functions.

Attention is given, in Section 5, to the enumeration of the class \(H_{\mathcal{F}} \) of homeomorphically irreducible graphs in \(\mathcal{F} \). Here again the edge substitution operation \(H \uparrow \mathcal{R} \) plays a central role, where \(\mathcal{R} \) represents the class of series-parallel networks. We introduce a new general iterative scheme for the computation of the generating series \(H(x, y) \) satisfying an identity of the form

\[
B(x, y) = H(x, R(x, y)),
\]

(4)

where \(B(x, y) \) and \(R(x, y) \) are known. This scheme is also applied to enumerate the class \(H_{\mathcal{P}} \) of homeomorphically irreducible 2-connected planar graphs.

Finally, a short concluding section is devoted to some related questions. For example, the class \(C_{\mathcal{F}} \) of connected projective-planar (non-planar) \(K_{3,3} \)-free graphs is studied and asymptotic questions are touched on. Extensions to the class \(T \) of non-planar toroidal \(K_{3,3} \)-free graphs and to unlabelled enumeration are also considered.

Numerical results appear in six tables giving the number of labelled graphs of the families \(\mathcal{F} \), \(H_{\mathcal{F}} \) and \(H_{\mathcal{P}} \), for example, for \(n \leq 16 \) and \(m \leq 42 \) for the class \(H_{\mathcal{F}} \). Results for connected graphs in \(\mathcal{F} \) are also given. The calculations were done with \textit{Maple 9.5} software on Apple Macintosh computers.

2 A structure theorem for \(K_{3,3} \)-free projective-planar graphs

By convention, the graph \(K_2 \) is considered as a 2-connected (non-separable) graph in this paper. A \textit{two-pole network} (or more simply, a \textit{network}) is a connected graph \(N \) with two distinguished vertices 0 and 1, such that the graph \(N \cup 01 \) is 2-connected, where the notation \(N \cup ab \) is used for the graph obtained from \(N \) by adding the edge \(ab \) if it is not
already there. The vertices 0 and 1 are called the *poles* of N, and all the other vertices of N are called *internal* vertices.

We define an operator τ acting on 2-pole networks, $N \mapsto \tau \cdot N$, which interchanges the poles 0 and 1. A class \mathcal{N} of networks is called *symmetric* if $N \in \mathcal{N} \implies \tau \cdot N \in \mathcal{N}$.

Definition. Let \mathcal{G} be a class of graphs and \mathcal{N} be a symmetric class of networks. We denote by $\mathcal{G} \uparrow \mathcal{N}$ the class of pairs of graphs (G, G_0), such that

1. the graph G_0 is in \mathcal{G} (called the *core*),
2. the vertex set $V(G_0)$ is a subset of $V(G)$,
3. there exists a family $\{N_e : e \in E(G_0)\}$ of networks in \mathcal{N} (called the *components*) such that the graph G can be obtained from G_0 by substituting N_e for each edge $e \in E(G_0)$, identifying the poles of N with the extremities of e according to some orientation.

An example of a $(\mathcal{G} \uparrow \mathcal{N})$-structure (G, G_0), with $\mathcal{G} = P_4$, the class of path-graphs of order 4, and $\mathcal{N} =$ the class of all networks, is given in Figure 2.

![Figure 2: Example of a $(P_4 \uparrow \mathcal{N})$-structure (G, G_0)](image)

The substitution of a network N_e for an edge e of G_0 is similar to the 2-sum operation defined for matroids and graphs by Seymour in [17]. One difference is that when the edge 01 is absent from the network N_e, the corresponding edge e is also absent from the resulting graph G.

We say that the composition $\mathcal{G} \uparrow \mathcal{N}$ is *canonical* if for any structure $(G, G_0) \in \mathcal{G} \uparrow \mathcal{N}$, the core $G_0 \in \mathcal{G}$ is uniquely determined by the graph G. In this case, we can identify $\mathcal{G} \uparrow \mathcal{N}$ with the class of resulting graphs G.

A network N is *strongly planar* if the graph $N \cup 01$ is planar. Denote by \mathcal{N}_P the class of strongly planar networks. Let K_5 denote the class of complete graphs with 5 vertices.

Theorem 1 The class \mathcal{F} of 2-connected non-planar projective-planar $K_{3,3}$-free graphs can be expressed as a canonical composition

$$\mathcal{F} = K_5 \uparrow \mathcal{N}_P.$$ \hspace{1cm} (5)
Proof. We use the following previously established results. Following Diestel [5], a subgraph isomorphic to a K_5-subdivision is denoted by TK_5. Let G be a non-planar 2-connected graph with a TK_5. The vertices of degree 4 in TK_5 are called corners and the vertices of degree 2 are the inner vertices of TK_5. A path connecting two corners and containing no other corner is called a side of the K_5-subdivision. Note that two sides of the same TK_5 can have at most one common corner and no common inner vertices. A path p in G such that one endpoint is an inner vertex of TK_5, the other endpoint is on a different side of TK_5 and all other vertices and edges lie in $G \setminus TK_5$ is called a shortcut of the K_5-subdivision. A vertex $u \in G \setminus TK_5$ is called a 3-corner vertex with respect to TK_5 if $G \setminus TK_5$ contains internally disjoint paths from u to at least three corners of the K_5-subdivision.

The following proposition is proved in a different context:

Proposition 1 (Asano [1],[7, 9]) Let G be a non-planar graph with a K_5-subdivision TK_5 for which there is either a shortcut or a 3-corner vertex. Then G contains a $K_{3,3}$-subdivision.

Proposition 2 ([7, 9]) Let G be a 2-connected graph with a TK_5 having neither a shortcut nor a 3-corner vertex. Let K denote the set of corners of TK_5. Then any connected component C of $G \setminus K$ contains inner vertices of at most one side of TK_5 and C is adjacent to exactly two corners of TK_5 in G.

Given a graph G satisfying the hypothesis of Proposition 2, a side component of TK_5 is defined as a subgraph of G induced by a pair of corners a and b of TK_5 and all connected components of $G \setminus K$ which are adjacent to both a and b. Notice that side components or the entire graph G can contain a $K_{3,3}$-subdivision. For example, see Figure 3. However, if G has no $K_{3,3}$-subdivisions, then Proposition 2 can be applied in virtue of Proposition 1.

![Figure 3: A graph containing subdivisions of $K_{3,3}$ and K_5.](image)

Corollary 1 ([7, 9]) For a 2-connected graph G with a TK_5 having no shortcut or 3-corner vertex, two side components of TK_5 in G have at most one vertex in common. The common vertex is the corner of intersection of two corresponding sides of TK_5.
Thus we see that a graph G satisfying the hypothesis of Proposition 2 can be decomposed into side components corresponding to the sides of TK_5. Each side component H contains exactly two corners a and b corresponding to a side of TK_5. If the edge ab between the corners is not in H, we add it to H to obtain $H \cup ab$. Otherwise $H \cup ab = H$. We call $H \cup ab$ an augmented side component of TK_5.

If G is a 2-connected non-planar $K_{3,3}$-free graph, we can apply Proposition 2 and Corollary 1 to decompose G into side components of a TK_5. Notice that with 6 or more vertices, these graphs are not 3-connected since such a 3-connected non-planar graph contains a $K_{3,3}$-subdivision (see, for example, [1]).

Theorem 2 ([9]) A 2-connected non-planar $K_{3,3}$-free graph G is projective-planar if and only if G contains a K_5-subdivision TK_5 such that each augmented side component of TK_5 is planar.

The proof is based on properties of the two embeddings of the complete graph K_5 in the projective plane shown in Figure 1. Theorem 2 reduces projective-planarity testing if there is no $K_{3,3}$-subdivision in the graph. Theorem 2 can be strengthened to give the following equivalent form of Theorem 1. We say that a side component H is strongly planar if the augmented side component $H \cup ab$ is planar. This is coherent with the previously defined concept of strongly planar network.

Theorem 3 A 2-connected non-planar projective-planar $K_{3,3}$-free graph G has a unique decomposition into strongly planar side components of a TK_5.

Proof. By Proposition 2 the set of corners K of TK_5 completely defines a decomposition into the side components. Therefore it is sufficient to show that any other K_5-subdivision TK'_5 in G shares the same set K of corners with TK_5. Since each augmented side component of TK_5 in G is planar, all corners of TK'_5 cannot be contained in any particular side component. Suppose that a corner a of TK'_5 is not in K. Then a is in a side component S of TK_5. Recall that there should be four disjoint paths from a to the four other corners of TK'_5. Since there is no shortcut or 3-corner vertex of TK_5 in G, the side component S of TK_5 must contain at least 2 other corners of TK'_5, say b and c. Now consider a corner d of TK'_5 that is not in the side component S of TK_5. Three of the sides adjacent to d must connect d to the three corners a, b and c of TK'_5. However the disjoint sides da, db and dc of TK'_5 must share two corners of the side component S of TK_5, a contradiction.

This concludes the proof of Theorem 1.

A corollary to Euler’s formula for the plane says that a planar graph with $n \geq 3$ vertices can have at most $3n - 6$ edges (see, for example, [4]). Let us state this for 2-connected planar graphs with n vertices and m edges as follows:

$$m \leq \begin{cases} 3n - 5 & \text{if } n = 2 \\ 3n - 6 & \text{if } n \geq 3 \end{cases}.$$

(6)

In fact, $m = 3n - 5 = 1$ if $n = 2$. The generalized Euler Formula (see, for example, [10]) implies that a projective-planar graph G with n vertices can have up to $3n - 3$ edges. An
arbitrary $K_{3,3}$-free graph G is known to have at most $3n - 5$ edges (see [1]). However we show here that projective-planar $K_{3,3}$-free graphs satisfy the following stronger relation, which is similar to that of planar graphs.

Proposition 3 The number m of edges of a non-planar projective-planar $K_{3,3}$-free n-vertex graph G satisfies $m = 3n - 5 = 10$ if $n = 5$, and

$$m \leq 3n - 6 \text{ if } n \geq 6.$$ (7)

Proof. It is sufficient to prove the result for 2-connected graphs. By Theorem 2, each augmented side component S_i of G, $i = 1, 2, \ldots, 10$, satisfies the condition (6) with $n = n_i$, the number of vertices and $m = m_i$, the number of edges of S_i, $i = 1, 2, \ldots, 10$. Since each corner of TK_5 is in precisely 4 side components, we have $\sum_{i=1}^{10} n_i = n + 15$ and we obtain, by summing these 10 inequalities,

$$m = \sum_{i=1}^{10} m_i \leq \begin{cases} 3 \sum_{i=1}^{10} n_i - 50 = 3(n + 15) - 50 = 3n - 5 & \text{if } n = 5 \\ 3 \sum_{i=1}^{10} n_i - 51 = 3(n + 15) - 51 = 3n - 6 & \text{if } n \geq 6 \end{cases},$$

since $n = 5$ iff $n_i = 2$, $i = 1, 2, \ldots, 10$, and $n \geq 6$ if and only if at least one $n_j \geq 3$, $j = 1, 2, \ldots, 10$.

Notice that Corollary 8.3.5 of [1] implies that graphs without a K_5-subdivision also can have at most $3n - 6$ edges.

3 Initial enumerative results

We now consider the labelled enumeration of projective-planar $K_{3,3}$-free graphs according to the numbers of vertices and edges. We first review some basic notions and terminology of labelled enumeration. The reader should have some familiarity with exponential generating functions and their operations (addition, multiplication and composition). See [2], [13], [18], or [25].

By a *labelled* graph, we mean a simple graph $G = (V, E)$ where the set of vertices $V = V(G)$ is itself the set of labels and the labelling function is the identity function. V is called the *underlying set* of G. An edge e of G then consists of an unordered pair $e = uv$ of elements of V and $E = E(G)$ denotes the set of edges of G. If W is another set and $\sigma : V \rightarrow W$ is a bijection, then any graph $G = (V, E)$ on V can be transformed into a graph $G' = \sigma(G) = (W, \sigma(E))$, where $\sigma(E) = \{\sigma(e) = \sigma(u)\sigma(v) \mid e \in E\}$. We say that G' is obtained from G by *vertex relabelling* and that σ is a graph *isomorphism* $G \simeq G'$. An *unlabelled graph* is then seen as an isomorphism class γ of labelled graphs. We write $\gamma = \gamma(G)$ if γ is the isomorphism class of G. By the *number of ways to label* an unlabelled graph $\gamma(G)$, where $G = (V, E)$, we mean the number of distinct graphs G' on the underlying set V which are isomorphic to G. Recall that this number is given by $n!/|\text{Aut}(G)|$, where $n = |V|$ and $\text{Aut}(G)$ denotes the automorphism group of G.

7
A *species* of graphs is a class of labelled graphs which is closed under vertex relabellings. Thus any class \mathcal{G} of unlabelled graphs gives rise to a species, also denoted by \mathcal{G}, by taking the set union of the isomorphism classes in \mathcal{G}. For any species \mathcal{G} of graphs, we introduce its *mixed (exponential) generating function* $\mathcal{G}(x, y)$ as the formal power series

$$
\mathcal{G}(x, y) = \sum_{n \geq 0} g_n(y) \frac{x^n}{n!}, \quad \text{with} \quad g_n(y) = \sum_{m \geq 0} g_{n,m} y^m,
$$

where $g_{n,m}$ is the number of graphs in \mathcal{G} with m edges over a given set of vertices V_n of size n. Here y is a formal variable which acts as an edge counter. For example, for the species $\mathcal{G} = K = \{K_n\}_{n \geq 0}$ of complete graphs, we have

$$
K(x, y) = \sum_{n \geq 0} \binom{n}{2} x^n / n!,
$$

while for the species $\mathcal{G} = G_a$ of all simple graphs, we have $G_a(x, y) = K(x, 1 + y)$. Another example is the class of *discrete* graphs (i.e. with no edges), which we denote by \mathcal{E} (for French "Ensemble") since these are just sets of vertices, and we have $\mathcal{E}(x, y) = \sum_{n \geq 0} x^n / n! = \exp(x)$.

A species of graphs is *molecular* if it contains only one isomorphism class. Examples include the class K_1 of one-vertex graphs, which is denoted by X and satisfies $X(x, y) = x$, and the class K_2, with $K_2(x, y) = y x^2 / 2$. In general, for a molecular species $\gamma = \gamma(G)$, where G has n vertices and m edges, we have $\gamma(x, y) = \frac{y^m n!}{|\text{Aut}(G)|} x^n / n! = y^m x^n / |\text{Aut}(G)|$. For example, we have

$$
K_5(x, y) = x^5 y^{10} / 5!
$$

For two-pole networks, only the internal vertices form the underlying set for the purpose of enumeration and for species considerations. In particular, the mixed generating function of a class (or species) \mathcal{N} of networks is defined by

$$
\mathcal{N}(x, y) = \sum_{n \geq 0} \nu_n(y) \frac{x^n}{n!}, \quad \text{with} \quad \nu_n(y) = \sum_{m \geq 0} \nu_{n,m} y^m,
$$

where $\nu_{n,m}$ is the number of networks in \mathcal{N} with m edges with a given set of internal vertices V_n of size n.

There is an operator τ acting on two-pole networks, $N \mapsto \tau \cdot N$, which interchanges the poles 0 and 1. A species \mathcal{N} of networks is called *symmetric* if $N \in \mathcal{N} \implies \tau \cdot N \in \mathcal{N}$. Examples of symmetric species of networks include the class \mathcal{N}_P of strongly planar networks and the class \mathcal{R} of series-parallel networks described in the next section.

Proposition 4 (T. Walsh [23]) Let \mathcal{G} be a species of graphs and \mathcal{N} be a symmetric species of networks. Then we have

$$
(\mathcal{G} \uparrow \mathcal{N})(x, y) = \mathcal{G}(x, \mathcal{N}(x, y)).
$$
Proof. If \((G, G_0)\) is a \((G \uparrow N)\)-structure where the core graph \(G_0\) has \(k\) edges, thus contributing a term \(y^k\) to \(G(x, y)\), we can assume that the underlying set of \(G_0\) is linearly ordered. We say that the substitution of a network \(N\) for an edge \(e = ab\), with \(a < b\), is coherent if the pole 0 of \(N\) is identified with \(a\) and the pole 1, with \(b\). Since the class \(N\) is symmetric, it is sufficient to restrict ourselves to coherent substitutions. Moreover, we can order the edges of \(G_0\) lexicographically so that the process of edge substitution is uniquely determined by a list of \(k\) disjoint networks in \(N\). Since these lists are counted by \(\mathcal{N}^k(x, y)\), formula (12) follows.

Corollary 2 The mixed generating function \(\mathcal{F}(x, y)\) of labelled 2-connected non-planar projective-planar \(K_{3,3}\)-free graphs is given by

\[
\mathcal{F}(x, y) = \frac{x^5 \mathcal{N}_{P}^{10}(x, y)}{5!}.
\]

Proof. This follows from Theorem 1, Proposition 4, and the fact that \(K_5(x, y) = x^5y^{10}/5!\).

There remains to compute the generating series \(\mathcal{N}_{P}(x, y)\). If \(\mathcal{M}\) is a class of networks which do not contain the edge 01, then we denote by \(y\mathcal{M}\) the class obtained by adding this edge to all the networks of \(\mathcal{M}\). Observe that there are two distinct networks on the empty set, namely the trivial network \(\mathbb{I}\), consisting of two isolated poles 0 and 1, and the one edge network \(\mathbb{Y}\).

Now let \(B\) be a given species of 2-connected graphs containing \(K_2\), for example \(B = B_a\), the class of all 2-connected graphs, \(B = \{K_2\}\) or, more importantly here, \(B = P\), the class of all 2-connected planar graphs. We denote by \(B^{(y)}\) the species of graphs obtained by selecting and removing an edge in all possible ways from graphs in \(B\). Note that

\[
B^{(y)}(x, y) = \frac{\partial}{\partial y} B(x, y).
\]

If, moreover, the endpoints of the selected edge are unlabelled and numbered 0 and 1, in all possible ways, the resulting class of networks is denoted by \(B_{0,1}\). Relabelling the two poles yields the identity

\[
x^2 B_{0,1}(x, y) = 2 B^{(y)}(x, y).
\]

Finally, we introduce the species of networks \(\mathcal{N}_B\) associated to the class \(B\) by the formula

\[
\mathcal{N}_B = B_{0,1} + yB_{0,1} - \mathbb{I} = (1 + y)B_{0,1} - \mathbb{I}.
\]

Thus, the generating function of \(\mathcal{N}_B\) is given by

\[
\mathcal{N}_B(x, y) = (1 + y) \frac{2}{x^2} \frac{\partial}{\partial y} B(x, y) - 1.
\]
for computing the generating function $P(x, y)$ of labelled 2-connected planar graphs are described in [3] and [4]. Both methods are based on the network decomposition of [20] which is also stated for planar graph embeddings in [21]. The decomposition allows to count the 2-connected planar graphs via labelled 3-connected planar graphs whose counting can be derived from [16].

Formulas (17) and (13) can then be used to compute $N_P(x, y)$ and $F(x, y)$. Numerical results are presented in Tables 1 and 2, where $F(x, y) = \sum_{n \geq 5} \sum_m f_{n,m} x^n y^m / n!$ and $f_n = \sum_m f_{n,m}$.

4 Series-parallel networks and graphs

In this section, we study a special class of two-pole networks, the class \mathcal{R} of series-parallel networks (also called two-terminal directed series-parallel networks). Note that parallel edges are not permitted here. We also consider the species of series-parallel graphs, denoted by \mathcal{G}_{sp}. See, for example, [6], [8] and [23].

n	m	$f_{n,m}$	n	m	$f_{n,m}$	n	m	$f_{n,m}$
5	10	1	11	16	1	13	18	1
6	11	0	12	11	1	13	19	1
7	12	3	13	12	5	13	20	2
8	13	7	14	14	11	13	21	3
9	14	28	15	15	24	13	22	4
10	15	116	16	16	335	13	23	5
11	16	504	17	17	789	13	24	6
12	17	16648	18	18	15456	13	25	7
13	18	33520	19	19	27592	13	26	8
14	19	66648	20	20	76560	13	27	9
15	20	19656	21	21	22147	14	28	10
16	21	22147	22	22	10526	14	29	11
17	22	66648	23	23	14517	14	30	12
18	23	19656	24	24	15456	14	31	13
19	24	33520	25	25	27592	14	32	14
20	25	66648	26	26	76560	14	33	15
21	26	19656	27	27	22147	14	34	16
22	27	22147	28	28	10526	14	35	17
23	28	66648	29	29	14517	14	36	18
24	29	19656	30	30	33520	14		

Table 1: The number $f_{n,m}$ of labelled non-planar projective-planar 2-connected graphs without a $K_{3,3}$-subdivision (having n vertices and m edges).
Table 2: The number f_n of labelled non-planar projective-planar 2-connected graphs without a $K_{3,3}$-subdivision (having n vertices).

It is assumed that the poles of a network N are distinct from those of any other network. There are two main operations on two-pole networks: parallel composition and series composition. Let S be a finite set of disjoint networks which are not equal to $\mathbb{1}$ and do not contain the edge 01. The parallel composition of S is the network obtained by taking the union of the graphs in S where, moreover, all the 0-poles are fused into one 0-pole and similarly for the 1-poles. By convention, the parallel composition of an empty set of networks is the trivial network $\mathbb{1}$. If \mathcal{N} is a species of networks which are distinct from $\mathbb{1}$ and have non-adjacent poles and if each network in a class \mathcal{M} can be viewed unambiguously as a parallel composition of networks in \mathcal{N}, then the result can be expressed as a species composition $\mathcal{M} = \mathbb{E}(\mathcal{N})$, and we have

$$\mathcal{M}(x, y) = \exp(\mathcal{N}(x, y)).$$

(18)

Note that the class \mathcal{N} is then included in \mathcal{M} and that $\mathbb{1}$ is in \mathcal{M}.

Let M and N be two non-trivial disjoint networks. The series composition $M \circ_s N$ of M followed by N is a network whose underlying set is the union of the underlying sets of M and N plus an extra element. It is obtained by taking the graph union of M and N where moreover the 1-pole of M is fused with the 0-pole of N and this connecting vertex is labelled by the extra element. The series composition $\mathcal{M} \circ_s \mathcal{N}$ of two species of networks \mathcal{M} and \mathcal{N} not containing $\mathbb{1}$ is the class obtained by taking all series compositions $M \circ_s N$ with $M \in \mathcal{M}$ and $N \in \mathcal{N}$. If moreover the two components $M \in \mathcal{M}$ and $N \in \mathcal{N}$ are uniquely determined by the resulting network $M \circ_s N$, the species $\mathcal{M} \circ_s \mathcal{N}$ can be expressed as the species product $\mathcal{M} \times \mathcal{N}$, where the factor X corresponds to the connecting vertex, and we have

$$(\mathcal{M} \circ_s \mathcal{N})(x, y) = x\mathcal{M}(x, y)\mathcal{N}(x, y).$$

(19)

The species \mathcal{R} of series-parallel networks can be defined recursively as the smallest class of networks containing the one-edge network $y\mathbb{1}$ and closed under series and parallel
compositions. We partition \mathcal{R} as $\mathcal{R} = \mathcal{S} + \mathcal{P}$, where \mathcal{S} represents the species of essentially series networks (i.e., of the form (20) below) and $\mathcal{P} = \mathcal{R} - \mathcal{S}$ is the complementary class, of essentially parallel networks. These classes are characterized recursively by the following functional equations involving series and parallel composition:

$$S = \mathcal{P} \cdot_s \mathcal{R} = \mathcal{P} X \mathcal{R}. \quad (20)$$

$$\mathcal{R} = (1 + y) \mathcal{E}(\mathcal{S}) - \mathbb{I}. \quad (21)$$

From these two equations, we deduce

$$\mathcal{R} = \mathcal{S} + \mathcal{P} = \mathcal{P} X \mathcal{R} + \mathcal{P} = \mathcal{P}(1 + X \mathcal{R}) \Rightarrow \mathcal{P} = \mathcal{R} / (1 + X \mathcal{R}) \quad (22)$$

and

$$\mathcal{R} = (1 + y) \mathcal{E}(\mathcal{P} X \mathcal{R}) - \mathbb{I} = (1 + y) \mathcal{E}\left(\frac{X \mathcal{R}^2}{1 + X \mathcal{R}}\right) - \mathbb{I} \quad (23)$$

and for the generating functions,

$$\mathcal{R}(x, y) = (1 + y) \exp\left(\frac{x \mathcal{R}^2(x, y)}{1 + x \mathcal{R}(x, y)}\right) - 1. \quad (24)$$

The series $\mathcal{R}(x, y)$ can be computed recursively using (24).

Now a **series-parallel graph** is a 2-connected graph which is either an edge or can be obtained from a series-parallel network by adding the edge 01 (if not already present) and labelling the poles. Series-parallel graphs can be characterized as 2-connected graphs without a K_4-subdivision (see [6]). The class of series-parallel graphs is denoted by \mathcal{G}_{sp}. It is easy to see that the networks induced by series-parallel graphs are precisely the series-parallel networks, i.e., that

$$\mathcal{N}_{\mathcal{G}_{sp}} = \mathcal{R}. \quad (25)$$

This implies, using (17), that

$$\mathcal{G}_{sp}(x, y) = \frac{x^2}{2} \int_0^y \frac{\mathcal{R}(x, t) + 1}{1 + t} \, dt. \quad (26)$$

5 Homeomorphically irreducible graphs

A graph is called **homeomorphically irreducible** if it contains no vertex of degree 2. For a graph G embeddable in a surface, any subdivision of G is trivially embeddable in the same surface. Therefore, it is interesting to count graphs embeddable in a surface that are minimal with respect to the operation of subdivision, i.e., homeomorphically irreducible graphs. Here we do this for the classes \mathcal{P} of 2-connected planar graphs and \mathcal{F} of 2-connected non-planar projective-planar $K_{3,3}$-free graphs, applying the method of Walsh ([23]) as follows.
Any 2-connected graph G is either a series-parallel graph or contains a unique 2-connected homeomorphically irreducible core $C(G)$, which is different from K_2, and unique components $\{N_e\}_{e \in E(C(G))}$ which are series-parallel networks, whose composition gives G. Let \mathcal{B} be a species of 2-connected graphs. Denote by $H_\mathcal{B}$ the class of graphs which are homeomorphically irreducible cores of graphs in \mathcal{B}. Also set $\mathcal{B}_{sp} = \mathcal{B} \cap \mathcal{G}_{sp}$ which is the class of series-parallel graphs in \mathcal{B}.

Proposition 5 Let \mathcal{B} be a species of 2-connected graphs such that

1. $H_\mathcal{B}$ is contained in \mathcal{B},
2. \mathcal{B} is closed under edge substitution by series-parallel networks, i.e. $\mathcal{B} \uparrow \mathcal{R}$ is contained in \mathcal{B}.

Then we have

$$\mathcal{B} = \mathcal{B}_{sp} + H_\mathcal{B} \uparrow \mathcal{R},$$

(27)

and the composition $H_\mathcal{B} \uparrow \mathcal{R}$ is canonical.

For the generating functions, it follows that

$$B(x, y) = B_{sp}(x, y) + H_\mathcal{B}(x, \mathcal{R}(x, y)),$$

(28)

from which the series $H_\mathcal{B}(x, y)$ can be computed, in virtue of the following lemma:

Lemma 1 Let $B(x, y)$ and $R(x, y)$ be two-variable formal power series such that $R(x, y) = y + O(y^2)$. Then there exists a unique formal power series $H(x, y)$ such that

$$B(x, y) = H(x, R(x, y)).$$

(29)

Moreover, $H(x, y)$ can be expressed as

$$H(x, y) = \sum_{i \geq 0} (-1)^i \Delta^i_R B(x, y),$$

(30)

where Δ^i_R is an operator defined on two-variable formal power series $F(x, y)$ by

$$\Delta^i_R F(x, y) = F(x, R(x, y)) - F(x, y).$$

Proof. The first statement follows from the fact that under the hypothesis, the series $R(x, y)$, viewed as a formal power series in the variable y, is invertible under composition. The equation (30) then follows from the observation that equation (29) is equivalent to $B(x, y) = (I + \Delta^i_R)H(x, y)$, where I denotes the identity operator. Details are left to the reader.

Walsh uses Proposition 5 to enumerate all labelled homeomorphically irreducible 2-connected graphs in [23]. Here we give two other applications. First, we take $\mathcal{B} = P$, the class of 2-connected planar graphs. In this case, $H_\mathcal{B} = H_P$ is the class of 2-connected
planar graphs with no vertices of degree less than 3 and $H_P + K_2$ is the class of 2-connected homeomorphically irreducible planar graphs. Series-parallel graphs are known to be planar: they do not contain a subdivision of K_4, but K_5 and $K_{3,3}$ do. It follows that $P = \mathcal{P} \cap \mathcal{G}_{sp} = \mathcal{G}_{sp}$. It is clear that the hypotheses of Proposition 6 are satisfied and we deduce from (27) that

$$P = \mathcal{G}_{sp} + H_P \uparrow \mathcal{R}$$

(31)

where the composition is canonical. Taking the generating functions, we obtain:

Proposition 6 The mixed generating functions of the species P of planar 2-connected graphs and H_P of homeomorphically irreducible graphs in P are related by the equation

$$P(x, y) = \mathcal{G}_{sp}(x, y) + H_P(x, \mathcal{R}(x, y)).$$

(32)

We have used this equation to compute the first terms of the series $H_P(x, y) = \sum_{n \geq 3} \sum_{m} H_P(n, m)x^ny^m/n!$ using Lemma 1. The results are presented in Tables 3 and 4, where $H_P(n) = \sum_m H_P(n, m)$. Notice that the computational results of Table 3 in

n	m	$H_P(n, m)$	n	m	$H_P(n, m)$	n	m	$H_P(n, m)$
2	1	1	3	1	77	5	1	233
2	2	3	3	2	285	5	2	1009
2	3	60	3	3	2670	5	3	30264
2	4	128	3	4	2243	5	4	23880
2	5	88	3	5	1252	5	5	6464
2	6	8	3	6	72	5	6	112
2	7	2	3	7	45	5	7	9
2	8	1	3	8	23	5	8	5
2	9	1	3	9	13	5	9	2
2	10	1	3	10	7	5	10	1

Table 3: The number $H_P(n, m)$ of labelled 2-connected homeomorphically irreducible planar graphs (having n vertices and m edges).
Table 4: The number $H_P(n)$ of labelled 2-connected homeomorphically irreducible planar graphs (having n vertices).

n	$H_P(n)$
4	1
5	25
6	1317
7	96012
8	8976600
9	1027205280
10	139315157730
11	21864486188160
12	3898841480307900
13	778680435365714700
14	172192746831203449890
15	4176231538761743574100
16	11024455369912310561835600
17	3146065407516184280981053200
18	965135197612755256313598822450
19	31673189105560965510693297185400
20	110718818921232836033333337842628300

Comparison to those of [3] verify that any maximal planar graph with $n \geq 4$ vertices (and $3n - 6$ edges) have all vertex degrees at least 3. In other words, for $n \geq 4$ and $m = 3n - 6$, we have $H_P(n, m) = P(n, m)$.

Now we take $B = \mathcal{F}$, the species of non-planar projective-planar 2-connected graphs without a $K_{3,3}$-subdivision. Then $H_\mathcal{F}$ is the class of homeomorphically irreducible graphs in \mathcal{F} and $\mathcal{F}_{sp} = \mathcal{F} \cap \mathcal{G}_{sp}$ is empty. It is clear that the hypotheses of Proposition 5 are satisfied and we deduce from (27) that

$$\mathcal{F} = H_{\mathcal{F}} \uparrow \mathcal{R}$$

where the composition is canonical. Taking the generating functions, we obtain:

Proposition 7 The generating functions $\mathcal{F}(x, y)$ and $H_{\mathcal{F}}(x, y)$ of labelled non-planar projective-planar 2-connected $K_{3,3}$-free graphs and those with no vertices of degree less than 3 (resp.) are related by the equation

$$\mathcal{F}(x, y) = H_{\mathcal{F}}(x, \mathcal{R}(x, y)).$$

We have used this equation to compute the first terms of the series $H_{\mathcal{F}}(x, y) = \sum_{n \geq 5} \sum_m h_{n,m} x^n y^m / n!$. The results are presented in Tables 5 and 6, where $h_n = \sum_m h_{n,m}$. Notice that numbers in Table 6 are much smaller than corresponding numbers in Table 2. However, for $n \geq 7$ and $m = 3n - 6$, the corresponding numbers in Tables 1 and 5 are the same. This verifies that maximal non-planar projective-planar $K_{3,3}$-free graphs have vertex degrees at least 3. That can be seen as a corollary to Theorem 2, Proposition 4 and the corresponding statement for maximal planar graphs.

There is an alternate way to compute the series $H_{\mathcal{F}}(x, y)$ which reduces computations significantly. The idea is to determine what are the side components that should be substituted into the edges of K_5 in order to obtain homeomorphically irreducible graphs...
in \mathcal{F}. The question is to determine the class of networks \mathcal{N} for which $H_\mathcal{F} = K_5 \uparrow \mathcal{N}$. A first try is to take the class $\mathcal{N} = \mathcal{N}_{H_P}$ of networks \mathcal{N} such that $\mathcal{N} \cup 01$ is a planar 2-connected graph with no vertices of degree less than 3. Following [17], we have

$$\mathcal{N}_{H_P}(x, y) = (1 + y) \frac{2}{x} \frac{\partial}{\partial y} H_P(x, y) - 1,$$

(35)

where $H_P(x, y)$ is given by Proposition 16. However, the degree requirements can be relaxed for the two poles of the network \mathcal{N} since they will become identified with the corners of K_5 and will have degree at least 4. In particular, the one-edge network $y \mathbb{1}$ can be used as a side component. Another way to have a pole of degree one is to start with a network N of $\mathcal{N} = \mathcal{N}_{H_P}$ and add a leg at the 0-pole, the 1-pole, or both. This means taking the series compositions $y \mathbb{1} \cdot N$, $N \cdot y \mathbb{1}$, or $y \mathbb{1} \cdot N \cdot y \mathbb{1}$. In this way, we obtain the class $y \mathbb{1} X N_{H_P} + N_{H_P} X y \mathbb{1} + y \mathbb{1} X N_{H_P} X y \mathbb{1} = (2y \mathbb{1} X + (y \mathbb{1} X)^2)N_{H_P}$. Let us denote by Leg this operator of adding legs, with $\text{Leg}(x, y) = 2yx + y^2x^2$. Now it is possible to join the

n	m	$h_{n,m}$	n	m	$h_{n,m}$	n	m	$h_{n,m}$
5	10	19	12	21	2025777600	15	25	7206830632000
7	14	210	12	22	44347564800	15	26	923801887728000
15	210	3216095675600	15	27	2199020494392000			
15	330	1163155593600	15	28	226159108104996000			
16	13440	2640309088000	15	29	13076688616020000			
17	13120	32148206996000	15	30	481974716668224000			
18	500	26741141412000	15	31	121350174303136225000			
19	5120	13757424912000	15	32	216471646724055705000			
17	257040	40055552480000	15	33	279891003963182375000			
18	948780	30949752000000	15	34	263529917940207485000			
19	1372140	57579672900000	15	35	17930879290005557175000			
20	861840	62924007760000	15	36	859875759258519600000			
21	1905600	57019020000000	15	37	275978175918212000000			
10	18	2116800	15	38	5325653288654400000			
19	2351160	167127032782000	15	39	467469612592992000000			
20	8542800	378396353116800	16	27	5038469339940000000			
10	14568120	5633927053526500	16	28	277860083959840000000			
12	128899800	5633073395435000	16	29	501890616813840000000			
20	57531600	375765589998000	16	30	459176010482298000000			
10	102815600	1067836230000000	16	31	25498857600517390000000			
19	6652800	3998715394100000	16	32	9455955679641040000000			
20	301039200	4401723289000000	16	33	24747000047229208000000			
21	2559249000	27461161728000000	16	34	4725629815340841251000000			
22	9253749600	1002223430208000	16	35	67103456102347220302000000000			
23	1753412600	12079216150416000	16	36	7147505229138218900000000000			
24	19736016300	73622460415200000	16	37	5699265888087307092000000000000			
25	12781345500	269580846146884000	16	38	3341472585422352654000000000000			
26	44914761600	646750724585420000	16	39	140601536306771456000000000000000			
27	663616800	1064304790249360000	16	40	401357157281140064000000000000000			

Table 5: The number $h_{n,m}$ of labelled non-planar projective-planar 2-connected $K_{3,3}$-free homeomorphically irreducible graphs (having n vertices and m edges).
n	h_n
5	1
6	0
7	420
8	36960
9	3651480
10	454448800
11	67528553400
12	11697136922400
13	2306595939347700
14	509359065545072800
15	116693689650728011500
16	3322613294554368288400
17	9635384706205021006042800
18	3012126613564117021370798400
19	10992635433358900918427155535600
20	36069621436519186180018210552000

Table 6: The number of labelled non-planar projective-planar 2-connected $K_{3,3}$-free homeomorphically irreducible graphs (having n vertices).

poles by an edge to obtain one or two poles of degree 2, giving rise to the operator $y\text{Leg}$, and to iterate this process. Hence we set

$$N_\ell = (1 + \text{Leg}) \left(\sum_{k \geq 0} (y \text{Leg})^k \right) \mathcal{N}_{HP}. \quad (36)$$

The generating series of this class of networks is given by

$$N_\ell(x, y) = \frac{1 + \text{Leg}(x, y)}{1 - y\text{Leg}(x, y)} \mathcal{N}_{HP}(x, y), \quad (37)$$

where $N_{HP}(x, y)$ is defined by (35), and we have the following proposition.

Proposition 8 Let N_ℓ be the species of networks defined by equation (36). Then the species H_F of homeomorphically irreducible non-planar projective-planar 2-connected $K_{3,3}$-free graphs can be expressed as

$$H_F = K_5 \uparrow (N_\ell + y \mathbb{1}) \quad (38)$$

and its generating series satisfies

$$H_F(x, y) = x^5 \frac{(N_\ell(x, y) + y)^{10}}{5!}, \quad (39)$$

where $N_\ell(x, y)$ is given by (37).

6 Concluding Remarks

We have obtained the labelled enumeration of the class \mathcal{F} of 2-connected non-planar projective-planar $K_{3,3}$-free graphs. In this short section, we mention some extensions which can be obtained of these results.
6.1 Connected graphs in \mathcal{F}

It is easy to deduce the labelled enumeration for the class $C_\mathcal{F}$ of 1-connected (i.e. connected) non-planar projective-planar $K_{3,3}$-free graphs. Indeed it suffices to attach arbitrary vertex-rooted connected planar graphs at each vertex of graphs in \mathcal{F} in order to obtain all graphs in $C_\mathcal{F}$. More precisely, we have

$$C_\mathcal{F}(x, y) = \mathcal{F}(C_p^*(x, y), y),$$ \hspace{1cm} (40)

where C_p^* denotes the class of vertex rooted connected planar graphs.

Recall that P denotes the class of 2-connected connected planar graphs. Then it is well known (see [2], [12]) that

$$C_p^*(x, y) = x \exp(P'(C_p^*(x, y), y)),$$ \hspace{1cm} (41)

where $P'(x, y) = \frac{\partial}{\partial x} P(x, y)$, from which $C_p^*(x, y)$ and then $C_\mathcal{F}(x, y)$ can be computed. For example, setting $y = 1$, we obtain the following first numbers $|C_\mathcal{F}[n]|$ of labelled connected non-planar projective-planar $K_{3,3}$-free graphs with n vertices, $n = 5, 6, \ldots, 20$:

1, 150, 16800, 1809360, 206725050, 26484163020, 3942600552660, 694822388340960, 1451005058449032805, 3543952888229273520, 9927470411345581984890, 3128005716477250367216640, 1090689073286188397027568380, 415560636438834909293721364320, 17133808330354526351372985887520, 75873636257232699557453120820157440.

6.2 Asymptotics

Using results of Bender, Gao and Wormald [3] and Giménez and Noy [12], it is easy to see that labelled non-planar $K_{3,3}$-free projective-planar 2-connected and 1-connected graphs share similar asymptotic behaviours, in particular, the same growth constants, as their planar counterparts.

6.3 Other extensions

Using methods of the present paper, we have been able to give a similar characterization for the class \mathcal{T} of non-planar $K_{3,3}$-free toroidal 2-connected graphs. In this case, more complex toroidal cores can occur, whose class is denoted by \mathcal{T}_C, for which the equation $\mathcal{T} = \mathcal{T}_C \uparrow \mathcal{N}_P$ holds. See [10] for details.

Walsh in [24] has shown how to enumerate unlabelled graphs in a class which admits an unambiguous representation of the form $\mathcal{G} \uparrow \mathcal{N}$. Therefore the characterization of Theorem 1 also leads to the unlabelled enumeration of $K_{3,3}$-free projective-planar and toroidal graphs. This has been carried out in the paper [11].

Acknowledgement.

The authors are thankful to Professor Timothy Walsh for providing useful references and discussions.
References

[1] T. Asano, “An approach to the subgraph homeomorphism problem”, Theoret. Comput. Sci. 38 (1985), 249–267.

[2] F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-like Structures, Cambridge Univ. Press, 1998.

[3] E. A. Bender, Zh. Gao, and N. C. Wormald, “The number of labeled 2-connected planar graphs”, Electron. J. Combin. 9 (2002), Research Paper 43, 13 pp. (electronic).

[4] M. Bodirsky, C. Gröpl, and M. Kang, “Generating labelled planar graphs uniformly at random”, in Proceedings of the 30-th International Colloquium on Automata, Languages and Programming, LNCS 2719, Springer, 2003, 1095–1107.

[5] R. Diestel, Graph Theory, 2nd edition, Springer, 2000.

[6] R. J. Duffin. “Topology of series-parallel networks”, Journal of Mathematical Analysis and Applications, 10 (1965), 303–318.

[7] M. Fellows and P. Kaschube, “Searching for $K_{3,3}$ in linear time”, Linear and Multilinear Algebra, 29 (1991), 279–290.

[8] P. Flocchini and F. L. Luccio, “Routing in series-parallel networks”, Theory Comput. Syst., 36 (2003), no. 2, 137–157.

[9] A. Gagarin and W. Kocay, “Embedding graphs containing K_{5}-subdivisions”, Ars Combinatoria, 64 (2002), 33–49.

[10] A. Gagarin, G. Labelle, and P. Leroux, “The structure of $K_{3,3}$-subdivision-free toroidal graphs”, submitted, (2004), 18 pages. [arXiv:math.CO/0411356]

[11] A. Gagarin, G. Labelle, and P. Leroux, “Counting unlabelled toroidal graphs with no $K_{3,3}$-subdivisions”, Advances in Applied Math. 2006, to appear, 25 pages. [arXiv:math.CO/0509004]

[12] O. Giménez and M. Noy, “Asymptotic enumeration and limit laws of planar graphs”, 2005, 21 p. [arXiv:math.CO/0501269]

[13] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, New York, 1983.

[14] A. K. Kelmans, “Graph expansion and reduction”, Algebraic methods in graph theory, Vol. I (Szeged, 1978), Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam-New York, 1981, 317–343.

[15] K. Kuratowski, “Sur le problème des courbes gauches en topologie”, Fund. Math. 15 (1930), 271–283.
[16] R. C. Mullin and P. J. Schellenberg, “The enumeration of c-nets via quadrangulations”, *J. Comb. Theory, 4* (1968), 259–276.

[17] P. D. Seymour, “Decomposition of regular matroids”, *J. Combin. Theory Ser. B* **28** (1980), no. 3, 305–359.

[18] R. P. Stanley, *Enumerative Combinatorics*, Vol. 1, Wadsworth Brooks/Cole, Pacific Grove, CA, 1986. Reedited in Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 1997.

[19] C. Thomassen, “The Jordan-Schönflies theorem and the classification of surfaces”, *Amer. Math. Monthly, 99* (2002), no. 2, 116–131.

[20] B. A. Trakhtenbrot, “Towards a theory of non-repeating contact schemes”, *Trudi Mat. Inst. Akad. Nauk SSSR, 51* (1958), 226–269. [Russian]

[21] W. T. Tutte, “A census of planar maps”, *Canad. J. Math.* **15** (1963), 249–271.

[22] K. Wagner, Über eine Erweiterung eines Satzes von Kuratowski, *Deutsche Math.* **2** (1937), 280–285. [German]

[23] T. R. S. Walsh, ”Counting labelled three-connected and homeomorphically irreducible two-connected graphs”, *J. Comb. Theory Ser. B, 32* (1982), 1–11.

[24] T. R. S. Walsh, ”Counting unlabelled three-connected and homeomorphically irreducible two-connected graphs”, *J. Comb. Theory Ser. B, 32* (1982), 12–32.

[25] H. S. Wilf, *Generatingfunctionology*, Academic, New York, 1990.