Oral Mucositis Complicating Chemotherapy and/or Radiotherapy: Options for Prevention and Treatment

Wolfgang J. Köstler, MD; Michael Hejna, MD; Catharina Wenzel, MD; and Christoph C. Zielinski, MD

ABSTRACT Chemotherapy- and radiotherapy-induced oral mucositis represents a therapeutic challenge frequently encountered in cancer patients. This side effect causes significant morbidity and may delay the treatment plan, as well as increase therapeutic expenses.

The pathogenesis of this debilitating side effect can be attributed to the direct mucosal toxicity of cytotoxic agents and ionizing radiation and to indirect mucosal damage caused by a concomitant inflammatory reaction exacerbated in the presence of neutropenia, and the emergence of bacterial, mycotic, and viral infections. The prophylactic and therapeutic armamentarium for the treatment of oral mucositis consists of locally and systemically applied nonpharmacological measures and pharmacotherapeutics. (CA Cancer J Clin 2001; 51: 290-315.)

INTRODUCTION

Oral mucositis represents a major non-hematologic complication of cytotoxic chemotherapy and radiotherapy associated with significant morbidity; pain, odynodysthesia, dysgeusia, and subsequent dehydration and malnutrition reduce the quality of life of affected patients. In addition, oral mucositis represents a significant risk factor for systemic infections, particularly in neutropenic patients.¹ Consecutive protraction or termination of antineoplastic therapy may lead to treatment failure and result in increases in therapeutic expenses.²⁻⁴

The term oral mucositis emerged in the late 1980s to describe the chemotherapy- and radiotherapy-induced inflammation of the oral mucosa, which represents a separate entity distinct from oral lesions with other pathogenic background summarized as stomatitis.⁷

Incidence, Pathogenesis, and Predisposing Factors for Oral Mucositis

The incidence and severity of oral mucositis is influenced by the type of antineoplastic treatment administered and by patient-related factors. Severe courses of oral mucositis are observed during simultaneous radiochemotherapy, which
affects virtually all patients with head and neck cancer who receive this therapeutic modality. However, up to 40% of patients treated with conventional chemotherapy and the more than 70% of patients undergoing conditioning therapy for bone marrow transplantation also experience oral treatment-related complications.

The pathogenesis of oral mucositis is not fully understood, yet it is thought to involve direct and indirect mechanisms. Direct mucosal injury by radiation and chemotherapy interfere with the average 5- to 14-day turnover time of the oral epithelium and induce apoptosis. Indirect stomatotoxic effects that result from the release of inflammatory mediators, loss of protective salivary constituents, and therapy-induced neutropenia have been postulated to contribute to the development of oral mucositis and also promote the emergence of bacteria, fungi, and viruses on damaged mucosa. Although a linear relationship among the occurrence of oral mucositis, oral and systemic granulocyte counts, and a coincidence of resolution of mucositis with neutrophil recovery, has been demonstrated, significant mucositis can occur in the absence of myelotoxicity. In addition, the prophylactic or therapeutic elimination of the pathogenic mucosal flora frequently observed in patients developing oral mucositis by various antiseptic and antimicrobial agents can at most alleviate the course of oral mucositis (see Antimicrobial Agents p. 302).

Based upon these considerations, newer pathophysiologic concepts have emerged characterizing oral mucositis as having an initial inflammatory/vascular phase, an epithelial phase, a (pseudomembranous) ulcerative/bacteriological phase and a healing phase. During the inflammatory phase, tissue injury induces release of free radicals, modified proteins and proinflammatory cytokines including interleukin-1β, prostaglandins and tumor necrosis factor-α (TNF-α) by epithelial, endothelial, and connective tissue cells. These inflammatory mediators are thought to cause further damage, either directly or by increasing vascular permeability thus enhancing the accumulation of cytotoxic drugs. In contrast, release of anti-inflammatory cytokines, such as Interleukin-11, may counteract this early inflammatory response.

The epithelial phase occurring 4 to 5 days after cytotoxic treatment is mediated by the proapoptotic and/or cytotoxic effect of chemotherapy and radiotherapy on dividing basal cells. The degree of tissue damage in this phase is directly related to the proliferative rate of the oral epithelium: The higher incidence and the faster recovery from oral mucositis observed in younger patients as compared with elderly patients can be attributed to the higher mitotic rate of their basal cells. Experimental data have shown that the course of oral mucositis may be modified by factors such as epidermal growth factor, keratinocyte growth factor, and transforming growth factor-β3, which affect cellular turnover, the inflammatory response of the oral epithelium and immunologic effector cells.

Epithelial breakdown ultimately results in the ulcerative phase of oral mucositis typically occurring one week after the initiation of antineoplastic treatment. Loss of epithelia and fibrinous exudation lead to the formation of pseudomembranes and ulcers. In this phase, microbial colonization of damaged mucosal surfaces by gram-negative organisms and yeast may be exacerbated by concomitant neutropenia. In addition, the release of bacterial metabolites, including endotoxin, results in the respiratory burst of mononuclear cells, which further enhances the release of inflammatory mediators such as interleukin-1, nitric oxide and TNF-α. Genetic polymorphisms in the expression of transcription factors modifying this inflammatory response may, in part, explain the individual differences in the severity of oral mucositis at this stage.
The duration of the healing phase, usually lasting from day 12 to 16, again critically depends upon epithelial proliferation rate, hematopoietic recovery, reestablishment of the local microbial flora, and the absence of factors interfering with wound healing, such as infection and mechanical irritation.

Within the context of chemotherapy, mucosal toxicity depends upon the anti-neoplastic agent, the therapeutic regimen, duration of treatment and dose intensity, as well as upon concomitant medication and previous mucosatoxic treatments. Prolonged or repetitive administration of lower doses of cytotoxic agents have been associated with an increased risk for the development of oral mucositis as compared with bolus infusions, whereas chronomodulation of chemotherapy has been shown to decrease mucosal toxicity without compromising antineoplastic activity. The risk of developing oral mucositis increases with the number of chemotherapeutic cycles and previous episodes of chemotherapy-induced mucositis. Drugs affecting DNA synthesis (so-called S-phase specific agents such as 5-fluorouracil, methotrexate and cytarabine) exhibit the most pronounced stomatotoxic effects. (A survey of antineoplastic agents with known mucosal toxicity is given in Table 1.) Concomitant total body irradiation during conditioning therapy for stem cell transplantation further increases the risk of developing oral mucositis.

The degree and duration of mucositis in patients treated with radiotherapy is related to the radiation source, cumulative dose, dose intensity, the volume of irradiated mucosa, smoking and alcohol consumption habits, and other predisposing factors such as xerostomia or infection. In standard 200 centi-Gray (cGy) daily fractioned radiotherapy programs, mucosal erythema occurs within the first week of treatment. Patchy or confluent pseudomembranous radiation-induced mucositis peaks during the fourth to fifth week of therapy. Less severe mucositis is noted in programs with daily fractions lower than 200 cGy, however in accelerated radiotherapy programs mucositis peaks within 3 weeks. The effects of radiotherapy upon epithelial cells are further enhanced by connective tissue damage. In immunocompetent hosts, radiotherapy-induced oral lesions usually heal within 3 weeks after cessation of radiotherapy. Mucositis caused by interstitial radioactive implants usually appears in 7 to 10 days and peaks after 2 weeks. These lesions usually heal within several weeks unless large mucosal areas have been damaged.

Other factors influencing an individual's risk of developing oral mucositis include defects of certain metabolic enzymes (e.g., dihydro-pyrimidine dehydrogenase) and DNA-repair mechanisms, deficiencies of folic acid and vitamin B12, delayed elimination of antineoplastic agents due to impaired renal or hepatic function, and pleural or peritoneal effusions, or the administration of specific antidotes such as leucovorin. Underlying hematologic malignancy and preexisting oral pathology, including xerostomia, also promote

Table 1

Selected mucosatoxic antineoplastic agents (markedly mucosatoxic agents are printed in bold)
Actinomycin D
Carboplatin
Cisplatin
Dacarbazine
Docetaxel
Estramustine
5-Fluorouracil
Hydroxyurea
Irinotecan
Melphalan
Methotrexate
Mitotane
Plicamycin
Thioguanin
Vinblastine
Vinorelbine
mucositis. The risk caused by xerostomia may be attributed to the decreased production and reduced buffering capacity of saliva, an increase in the viscosity and acidity of saliva, and reduced oral IgA levels favoring the growth of a highly cariogenic and infectious oral flora.35-39

Symptoms and Diagnostic Workup

The earliest signs and symptoms of oral mucositis include erythema and edema, a burning sensation, and an increased sensitivity to hot or spicy food. Erythematous areas may develop into elevated white desquamative patches and subsequently into painful ulcers (Figure 1).7 The latter are not only often secondarily infected, but also impair nutrition and fluid intake, resulting in malnutrition and dehydration which further interfere with mucosal regeneration.

The movable nonkeratinized mucosa of the soft palate, cheeks and lips, the ventral surface of the tongue, and the floor of the mouth are most vulnerable to direct stomatotoxicity, whereas the gingiva, dorsal surface of the tongue, or the hard palate are rarely affected—probably due to their slower rate of cellular turnover. Interestingly, lesions tend to reappear in the same location in each episode of mucositis.13 Oral lesions usually disappear without scar formation unless mucositis is complicated by serious infection or xerostomia. However, other oral sequelae of cytotoxic therapy such as epithelial hyperplasia and dysplasia, as well as glandular and connective tissue degeneration, may persist.40 The severity of oral mucositis occurring in the course of antineoplastic therapy is most frequently graded according to National Cancer Institute-CTC or World Health Organization criteria (Table 2), but more detailed scoring schemes may be applied if the prophylaxis or management of oral mucositis represents a primary study endpoint.41

TREATMENT

Despite multimodal prophylaxis and therapy, oral mucositis often takes a therapeutically refractory turn necessitating the use of topical and systemic analgesics. Although a variety of new approaches to oral mucositis have been taken, a single efficacious intervention or agent for the prophylaxis or management of radiotherapy- or chemotherapy-induced oral mucositis has not yet been identified. This section attempts to review prophylactic and therapeutic interventions for oral mucositis. However, evaluating these interventions remains difficult because of the polypharmacy of approaches, the heterogeneity
of patient populations, and the relatively small number of double-blind and placebo-controlled clinical trials. To review the available data, we have categorized preventive and treatment approaches into established, experimental, and inefficacious locally and systemically applied pharmacological and nonpharmacological methods for the prevention and treatment of oral mucositis. (For an overview see Table 3.)

ESTABLISHED METHODS

Locally Applied Nonpharmacological Methods

Oral Hygiene

Poor oral care with concomitant dental and periodontal pathology, such as dental caries, periodontal and pulpal disease, including third molar pathology, leads to a greater risk for oral complications in the course of cytotoxic therapy. Similarly, ill-fitting prostheses, orthodontic appliances, defective restorations, and other sources of mucosal and gingival irritation have been associated with an increased risk of developing oral mucositis during antineoplastic therapy.\(^{23,42-51}\) Although they are a risk factor for the development of osteoradionecrosis, periapical lesions in endodontically treated teeth do not seem to predispose the development of oral mucositis.\(^{52}\)

Careful inspection of the oral cavity should be included in the diagnostic workup before initiation of potentially mucosotoxic therapy, and should be repeated in the course of treatment. This practice not only allows for the differentiation of oral mucositis from preexisting changes, such as pemphigoid, lichen planus, leukoplakia, and graft-versus-host disease, but also permits the identification

TABLE 2

Side effect	Grade 0 (none)	Grade 1 (mild)	Grade 2 (moderate)	Grade 3 (severe)	Grade 4 (life threatening)
WHO	none	oral soreness, erythema	oral erythema, ulcers, can eat solids	oral ulcers, requires liquid diet only	oral alimentation not possible
chemotherapy-induced stomatitis/pharyngitis (oral/pharyngeal mucositis)	none	painless ulcers, erythema, or mild soreness in the absence of lesions	painful erythema, edema, or ulcers, but can eat or swallow	painful erythema, edema, or ulcers requiring IV hydration	severe ulceration or requires parenteral or enteral nutritional support or prophylactic intubation
NCI-CTC mucositis due to radiation	none	erythema of the mucosa	patchy pseudomembranous reaction (patches generally ≤1.5 cm in diameter and noncontiguous)	confluent pseudomembranous reaction (contiguous patches generally >1.5 cm in diameter)	necrosis or deep ulceration; may include bleeding not induced by minor trauma or abrasion
NCI-CTC stomatitis/pharyngitis (oral/pharyngeal mucositis) for BMT studies	none	painless ulcers, erythema, or mild soreness in the absence of lesions	painful erythema, edema, or ulcers, but can swallow	painful erythema, edema, or ulcers preventing swallowing or requiring hydration or parenteral (or enteral) nutritional support	severe ulceration requiring prophylactic intubation or resulting in documented aspiration pneumonia
and elimination of preexisting potential sources of infection. In addition to an inspection of the oral cavity, the pretherapeutic workup should include peridontal, dental and, if necessary, radiographic evaluation to identify caries, periapical, third molar, and peridontal pathology. Additionally, hard and soft, fixed and removable prostheses have to be cautiously examined. If prolonged neutropenic episodes are expected and specific pathogens such as candida or herpes simplex virus are suspected, the procedure can be complemented by histological, cytological, microbiologic, and serologic examinations, and allows for a significant reduction of complications of antineoplastic therapy.

Meticulous pretreatment assessment, restorative dental procedures performed at least three weeks before the initiation of mucosatoxic therapy, and oral care during therapy have all been shown to reduce the incidence and duration of oral mucositis and complicating infections, and therapeutic expenses. Preexisting xerostomia is associated with an increased bacterial colonization on dental surfaces and prostheses and, thus, a higher incidence of oral mucositis and dental caries in the course of antineoplastic therapy. Furthermore, optimal functioning of oral chemoreceptors requires some moisture. Xerostomia, therefore, reduces taste sensation as well as the neurogenic stimulation of saliva flow initiated by taste. Xerostomia may be ameliorated by treatment of any underlying autoimmune disease, avoidance of other drugs that decrease salivary flow (e.g., tricyclic antidepressants), and by mechanical debridement of the dorsum of the tongue to allow optimal stimulation of chemoreceptors. In addition, stimulation of salivary flow may be achieved by the use of nonirritating, cinnamon-free, mint-free, and sugar-free drops or chewing gum, alkaline saline solutions, or by low dose pilocarpine. Salivary substitutes containing methylcellulose or mucopoly saccharides may be indicated.

Although they have not been evaluated in clinical trials, topical fluorides that are applied as (brushing) gels, rinses, and vacuum-formed vinyl splints loaded with fluoride gel are frequently used to prevent caries and mucositis in the course of radiotherapy because they induce fluoride incorporation into tooth enamel and dentin. They also reduce oral bacterial load. Although acidulated fluorides such as stannous fluoride are thought to be most effective, neutral fluorides such as sodium fluoride may be required if there is an irritation of the oral mucosa or a pitting of porcelain prosthetics. In general, a treatment of fluoride prophylaxis followed by calcium phosphate remineralizing rinses is initiated at least one week before radiotherapy and continued indefinitely unless symptoms of oral mucositis require discontinuation of the treatment.

During mucosatoxic therapy, patients should be advised to perform frequent and effective mechanical plaque removal using a soft toothbrush and dental floss. To maintain oral moistness and to decrease cariogenic flora, patients should rinse with saline or bicarbonate solutions, use lip lubricants, and employ “sugarfree” products. Since mechanical cleansing with a toothbrush may cause microtraumas, which promotes the occurrence of infections, foam brushes and rinsing solutions are most frequently recommended during radiotherapy or myeloablative chemotherapy. In cases of preexisting mucosal irritation or thrombocytopenic hemorrhage, cotton swabs or sponges can be used instead of a toothbrush. In addition, patients should be advised to avoid wearing removable prostheses during mucosatoxic treatment, except while eating. It is also recommended that patients avoid factors that cause irritation, including hot, spicy, and coarse foods, fruits and beverages with a high acid content, and alcohol (including alcohol-containing elixirs). Patients should refrain from smoking.
Clinical trials on prevention and treatment of oral mucositis

RT, CT, BMT	Author	Randomized/Controlled/Double-blind	P/T	Application/Doses	Results
1. Locally applied nonpharmacological methods					
a) Oral hygiene					
RT	Shieh et al.	yes/yes/no	P	instructions on oral care	significant reduction
	Rugg et al.	no/no/no	P	smoking during RT	higher mucositis incidence in smokers
CT	Greenberg et al.	no/yes/no	P	dental treatment prior to CT	significant reduction of sepsis
CT+RT	Sonis et al.	no/no/no	P	early and aggressive dental intervention	reduced frequency of oral complications
BMT	Peters et al.	no/no/no	P	treatment of asymptomatic periapical radiolucencies	no difference in infectious complications
BMT	Borowski et al.	yes/yes/no	P	intensive vs. regular oral care	significant reduction of mucositis but not sepsis
b) Radiation shields					
RT	Perch et al.	no/no/no	P	midline mucosa sparing blocks	decreased mucositis without affecting tumor control
	Keus et al.	no/yes/no	P	customized beam shaping	lower incidence of mucositis
c) Soft lasers					
BMT	Barasch et al.	yes/yes/no	P	laser on one buccal side, placebo light to the other	significant reduction
	Cowen et al.	yes/yes/no	P	laser vs. no treatment	significant reduction of incidence
	Ciais et al.	no/yes/no	P+T	soft laser treatment	lowers incidence and alleviates course of mucositis
d) Cryotherapy					
CT	Mahood et al.	yes/no	P	oral cryotherapy vs. no prophylaxis	significant lower incidence
	Rocke et al.	yes/no	P	30 vs. 60 minutes of cryotherapy during	equivalent
	Cascinu et al.	yes/no	P	oral cryotherapy vs. no prophylaxis	significant lower incidence
	Edelman et al.	no=yes/no	P	ice chips during dose escalation of edatrexate	lower incidence of mucositis
	Gandara et al.	no=yes/no	P	ice chips during edatrexate-based CT	lower incidence of severe mucositis

2. Locally applied pharmacotherapeutics					
e) Mouth-coating agents					
Sucralfate					
CT	Loprinzi et al.	yes=yes	T	sucralfate vs. placebo after cryoprophylaxis	no difference
RT	Scherlacher et al.	yes/no	P	sucralfate vs. standard oral hygiene	significant reduction of incidence and severity of mucositis

RT = Radiotherapy
CT = Chemotherapy
HD-CT = High-dose Chemotherapy
BMT = Bone Marrow Transplantation
TBI = Total Body Irradiation
TABLE 3—Continued

Study	Treatment	P/T	Comparison	Effect
Allison et al.	yes/yes/no	P+T	sucralfate+fluconazole vs. standard oral care	significant reduced severity and symptomatic relief
Franzén et al.	yes/yes/yes	P	sucralfate vs. placebo	sig. lower incidence of severe mucositis
Makkonen et al.	yes/yes/yes	P	sucralfate vs. placebo	only slight protective effect of sucralfate
Epstein et al.	yes/yes/yes	P+T	sucralfate vs. placebo	nonsignificant reduction of oral discomfort
Meredith et al.	yes/yes/yes	T	antacid,diphenhydramine, lidocaine ± sucralfate	nonsignificant reduction of severity
Cengiz et al.	yes/yes/yes	P+T	sucralfate vs. placebo	decreased severity
Carter et al.	yes/yes/yes	P	sucralfate vs. placebo	no difference
Barker et al.	yes/yes/yes	P+T	oral hygiene+sucralfate vs. diphenhydramine+kaolin-pectin	no difference

f) Antiseptic and antibiotic agents

Hydrogen peroxide

Study	Treatment	P/T	Comparison	Effect
Feber et al.	yes/yes/no	P	hydrogen peroxide vs. saline	significantly more oral discomfort

Chlorhexidine

Study	Treatment	P/T	Comparison	Effect
Spijkervet et al.	yes/yes/yes	P+T	chlorhexidine vs. placebo	no difference
Foote et al.	yes/yes/yes	P	chlorhexidine vs. placebo	slight aggravation
Ferretti et al.	yes/yes/yes	P	chlorhexidine vs. placebo	significant reduction of incidence and duration, less candidemia
Weisdorf et al.	yes/yes/yes	P	chlorhexidine vs. placebo	no difference
Rutkauskas et al.	yes/yes/yes	P	chlorhexidine vs. placebo	significant reduction
Feretti et al.	yes/yes/yes	P+T	chlorhexidine vs. placebo	significant reduction of incidence and severity in the CT group only
McGaw et al.	yes/yes/yes	P	chlorhexidine vs. placebo	significant reduction
Wahlin et al.	yes/yes/yes	P	chlorhexidine vs. standard oral care	slight aggravation
Epstein et al.	yes/yes/no	P	nystatin, saline ± chlorhexidine	no difference

Select decontamination

Study	Treatment	P/T	Comparison	Effect
Spijkervet et al.	no/yes/no	P	lozenges of polymyxin, tobramycin, amphotericin vs. historical controls	lower incidence of mucositis
Mattews et al.	yes/yes/no	P	sucralfate+(ciprofloxacin or ampicillin)+ clotrimazole vs. sucralfate	sig. reduction of incidence and severity
Symonds et al.	yes/yes/yes	P	pastilles containing polymyxin, tobramycin, amphotericin vs. sucralfate	significant reduction of severe mucositis
Okuno et al.	yes/yes/yes	P+T	lozenges of polymyxin, tobramycin, amphotericin vs. placebo	significant reduction of oral discomfort, no objective difference
Bondi et al.	yes/yes/no	T	polymyxin, tobramycin, amphotericin, chlorhexidine vs. diphenhydramine, magnesium- and aluminium-hydroxide, lidocaine	antibiotic regimen more effective

Nystatin

Study	Treatment	P/T	Comparison	Effect
Rahn et al.	yes/yes/no	P	nystatin, rutosides, immunoglobulines, panthenol±PVP-iodine	significant reduction
Adamiez et al.	yes/yes/no	P	nystatin, rutosides, immunoglobulines, panthenol±PVP-iodine	significant reduction
Hasenau et al.	no/yes/no	P	hydrogen peroxide, PVP iodine, expanthenol, nystatin	lower incidence and severity of oral mucositis

Selective decontamination

Study	Treatment	P/T	Comparison	Effect
Spijkervet et al.	no/yes/no	P	lozenges of polymyxin, tobramycin, amphotericin vs. historical controls	lower incidence of mucositis
Symonds et al.	yes/yes/yes	P	pastilles containing polymyxin, tobramycin, amphotericin vs. sucralfate	significant reduction of severe mucositis
Okuno et al.	yes/yes/yes	P+T	lozenges of polymyxin, tobramycin, amphotericin vs. placebo	significant reduction of oral discomfort, no objective difference
Bondi et al.	yes/yes/no	T	polymyxin, tobramycin, amphotericin, chlorhexidine vs. diphenhydramine, magnesium- and aluminium-hydroxide, lidocaine	antibiotic regimen more effective
Oral Mucositis Complicating Chemotherapy and/or Radiotherapy

Treatment	Authors	Intervention	Outcomes	
BMT+CT	Barrett et al.	no/yes/no	topical nystatin during granulocytopenia	no impact upon candida infections
	Epstein et al.	no/yes/no	chlorhexidine+nystatin+saline vs. historical controls	no reduction in mucositis incidence
CT	Carpentieri et al.	no/yes/no	nystatin prophylaxis	lower incidence of mucositis
	Williams et al.	yes/yes/no	nystatin vs. natamycin vs. no prophylaxis	no difference
Clotrimazole	Aviles et al.	no/yes/no	topical clotrimazole	lower incidence of oral candidiasis
	Yeo et al.	yes/yes/no	topical clotrimazole vs. no prophylaxis	lower incidence of oropharyngeal candidiasis
	Yap et al.	yes/yes	50 mg vs. 10 mg clotrimazole troches	50 mg troches more effective in manifest oropharyngeal candidiasis
Fluconazole	Samonis et al.	yes/yes/yes	fluconazole p.o. vs. placebo	lower incidence of oropharyngeal candidiasis
Amphotericin B	Bondi et al.	no/yes/yes	amphotericin+tobramycin+polymyxin vs. diphenhydramine, aluminium- and magnesium-hydroxide+local anesthetic	superior activity
	Okuno et al.	yes/yes/no	amphotericin+colistin+tobramycin+chlorhexidine vs. placebo	decreased oral discomfort
	Symonds et al.	yes/yes/yes	amphotericin+tobramycin+polymyxin vs. placebo	significant reduction of the incidence of severe mucositis
	Spijkervet et al.	no/yes/no	amphotericin+tobramycin+polymyxin vs. historical chlorhexidine or placebo group	significant reduction of severity of mucositis

h) Anti-inflammatory agents

| Chamomile | Carl et al. | no/yes/no | chamomile vs. historical group | low incidence of mucositis |
| | Fidler et al. | yes/yes/yes | chamomile vs. placebo, cryoprophylaxis in all patients | no difference |

| Betamethasone | Abdelaal et al. | no/no/no | high-dose betamethasone | impressive prevention of mucositis incidence |

Benzylamine	Kim et al.	yes/yes/yes	benzydamine vs. placebo	significant reduction (less pain)
	Epstein et al.	yes/yes/yes	benzydamine vs. placebo	significant reduction of incidence and severity
	Samaranayake et al.	no/yes/no	benzydamine vs. chlorhexidine	no difference (more discomfort)
	Prada et al.	yes/yes/yes	benzydamine vs. placebo	significant reduction

i) Cytoprotectants

Allopurinol	Tsavaris et al.	no/yes/no	allopurinol mouthwashes in pats. with mucositis history	lower incidence of mucositis
	Clark et al.	no/yes/no	allopurinol mouthwashes in pats. with mucositis history	lower incidence of mucositis
	Loprinzi et al.	yes/yes/yes	allopurinol mouthwashes vs. placebo	no difference

| Glutamine | Huang et al. | yes/yes/yes | glutamine suspension vs. placebo | sig. reduction of severity and duration |
| | Van Zaanen et al. | yes/yes/yes | parenteral glutamine vs. placebo | no difference |
TABLE 3—Continued

| CT | Anderson et al. 140 | yes/yes/yes | P | glutamine suspension vs. placebo | reduces severity and incidence of mucositis
| CT | Jebb et al. 141 | yes/yes/yes | P | oral glutamine vs. placebo | no difference
| BMT | Anderson et al. 142 | yes/yes/yes | P | oral glutamine vs. placebo | significant reduction of mucositis

Prostaglandin E2 (PGE2)

| CT+RT | Portedner et al. 131 | no/yes/no | P | PGE2 or nothing | significant reduction (less pain)
| RT | Matejka et al. 133 | no/yes/no | T | PGE2 tablets four times a day | reduction of mucositis severity
| BMT | Labar et al. 134 | yes/yes/yes | P | PGE2 vs. placebo | no difference

Vitamin E

| CT | Wadleigh et al. 137 | yes/yes/yes | T | topical vitamin E vs. placebo | accelerated healing in vitamin E group

j) Multiagent mouthrinses

| CT+RT | Hasenau et al. 138 | no/no/no | P+T | hydrogen peroxide, nystatin, PVP-iodine, dexamethasone | lower incidence of mucositis
| RT | Rothwell et al. 139 | yes/yes/yes | P | hydrocortisone, nystatin, tetracyclines, diphenhydramine vs. placebo | significant reduction of incidence

k) Agents influencing mucosal proliferation

| Silver nitrate | Maciejewski et al. 140 | no/yes/no | P | applied to one side of buccal mucosa | significant reduction compared with contralateral side
| Dorr et al. 141 | no/yes/no | P | applied to one side of buccal mucosa | no difference compared with contralateral side

| Tretinoin | Cohen et al. 142 | yes/yes/no | P | 0.1% topical tretinoin cream vs. controls | significant reduction of mucositis incidence

| Transforming growth factor β3 | Wymenga et al. 143 | no/yes/no | P | TGFβ3 mouthwashes | deserve further studies

l) Hematopoetic growth factors

| GM-CSF | Bez et al. 144 | no/yes/no | T | GM-CSF mouthrinses | accelerated healing as compared with historical control
| Ovilla-Martinez et al. 145 | no/yes/no | T | GM-CSF mouthwashes | accelerated healing as compared with historical control
| CT | Haus et al. 146 | no/yes/no | T | topical GM-CSF | reduction of duration and severity of mucositis
| Ibrahim et al. 147 | no/yes/no | T | GM-CSF mouthwashes | accelerated healing and reduction of severity of oral mucositis
| Cinat et al. 148 | no/yes/no | T | GM-CSF mouthwashes | accelerated healing of oral mucositis
| Lira-Puerto et al. 149 | no/yes/no | T | GM-CSF mouthwashes | accelerated healing of oral mucositis
| Hejna et al. 150 | yes/yes/no | T | GM-CSF mouthwashes vs. PVP-iodine, amphotericin and lidocaine | significant reduction of severity and duration
| Berberoglu et al. 151 | no/yes/no | T | GM-CSF mouthwashes | accelerated healing of mucositis
| Cartee et al. 152 | yes/yes/yes | P | GM-CSF mouthwashes vs. placebo | higher incidence of mucositis in the GM-CSF group

| G-CSF | Karthaus et al. 153 | yes/yes/no | P | G-CSF mouthwashes vs. placebo | lower incidence of severe mucositis

m) Local anesthetics

| CT | Le Veque et al. 144 | no/yes/no | T | benoxcaine+mouth coating agent | significant reduction of oral discomfort
| RT | Barker et al. 145 | yes/yes/yes | P+T | oral hygiene+sucralfate vs. diphenhydramine+kaolin-pectin | no difference
| CT+RT | Berger et al. 146 | no/yes/no | T | capsaicin in a candy vehicle | significant temporary pain relief
3) Systemically applied pharmacotherapeutics

n) Agents influencing mucosal proliferation

Beta carotene	Mills et al.	yes/no	P	betacarotene or nothing	decreased severity in the treatment group
RT Bourhis et al.	yes/no	P	amifostine or nothing	marked reduction of mucositis (tolerance was poor)	
Kourkourakis et al.	yes/no	P	amifostine vs. saline	significant reduction of mucositis	
Schonekas et al.	no/no	P	amifostine vs. controls	significant reduction of mucositis	
Wagner et al.	yes/no	P	amifostine or nothing	significant reduction of mucositis	
CT+RT Buntzel et al.	yes/no	P	amifostine or nothing	sig. reduction of mucositis and xerostomia	
Peters et al.	yes/no	P	amifostine or nothing	no significant difference	
Vacha et al.	yes/no	P	amifostine or nothing	trend towards reduction of mucositis	
HD-CT De Souza et al.	no/no	P	amifostine or nothing	significant reduction of mucositis compared with historical control	
TBI Gabriel et al.	no/no	P	amifostine or nothing	significant reduction of mucositis compared with historical control	
CT Fahlke et al.	no/no	P	amifostine or nothing	significant reduction of mucositis compared with controls	
Glutamine	CT Jebb et al.	yes/no	P	glutamine or placebo	no difference
Azelastine	CT+RT Osaki et al.	yes/no	P	Vitamins C+E, glutathione ± azelastine	significant reduction
Allopurinol	CT Ahmann et al.	no/no	P	HD-5-FU + IV allopurinol vs. historical control	no difference
Weiss et al.	yes/no	P	allopurinol or nothing	no difference	
Uridine	CT Seiter et al.	no/no	P	uridine rescue after HD-5-FU	no sig. reduction of mucositis incidence
Propantheline	CT Ahmed et al.	yes/no	P	propantheline vs. placebo	significant lower incidence and severity of mucositis

p) Immunmodulatory drugs

Pentoxifylline	Bianco et al.	no/no	P	IV pentoxifylline (PTX) prophylaxis	less mucositis compared with control group
BMT Clift et al.	yes/no	P	oral PTX vs. placebo	no difference	
Stockschaider et al.	yes/no	P	IV PTX vs. historical controls	significant aggravation	
Attal et al.	yes/no	P	oral PTX vs. placebo	no difference	
van der Jagt et al.	no/no	P	oral PTX vs. historical controls	no difference	
CT Verdi et al.	yes/no	P	oral PTX vs. placebo	no difference	
Indomethacin	RT Pillsbury et al.	yes/no	P	indomethacin vs. placebo	significant delay of mucositis onset
Immunoglobulines					

300 CA A Cancer Journal for Clinicians
Throughout treatment, elimination of apparent infectious foci, mostly through extraction of teeth with infected pulp, has to be emphasized—even in myelosuppressed patients.63,64 This can be accomplished by antibiotic coverage, meticulous closure, exact hemostasis and, if needed, platelet transfusion. If severe mucosal bleeding occurs, topical application of microfibrillar collagen, thrombin or other hemostatic gels may prove useful.63,64

Cryotherapy

The application of popsicles or ice chips is primarily based on the idea that temporary vasoconstriction of the oral mucosa can reduce exposure of replicating oral epithelium to peak levels of cytostatic agents with a relatively short plasma half-life, such as 5-fluorouracil (5-FU). Sucking ice cubes for half an hour during intravenous infusion of 5-FU has uniformly resulted in a significantly lower incidence and

| TABLE 3—Continued |
|-------------------|-------------------|-------------------|-----------------|-------------------|
| CT+RT | Mose et al.¹⁹⁰ | no/yes/no | P | i.m. immunoglobulins | significant reduction in CT+RT patients, no difference in RT |
| **q) Hematopoetic growth factors** |
| **GM-CSF** |
CT	Ho et al.¹⁰⁰	no/yes/no	P	CT+GM-CSF	lower incidence of mucositis
Archimbaud et al.¹⁷¹	no/yes/no	P	CT+GM-CSF vs. historical controls	no difference in mucositis incidence	
Chi et al.¹³⁴	yes/yes/no	P	CT+GM-CSF	significant reduction of incidence and severity and duration of mucositis	
BMT	Atkinson et al.¹⁷²	no/yes/no	P	BMT+GM-CSF vs. historical controls	no sig. difference in mucositis incidence
Nemunaitis et al.¹⁷⁰	yes/yes/yes	P	myeloablative CT ± GM-CSF	sig, lower incidence of severe mucositis	
Gordon et al.¹⁹³	no/yes/no	P	HD-CT±TBI±GM-CSF	shorter duration of mucositis in TBI+GM-CSF vs. TBI alone	
RT	Wagner et al.¹⁷⁸	no/yes/no	P	RT + GM-CSF vs. historical control	significant lower severity of mucositis
Makkonen et al.¹⁷⁷	yes/yes/no	P	sucralfate ± GM-CSF	no difference	
Kannan et al.²⁵⁰	no/yes/no	P	RT+GM-CSF	lower incidence of severe mucositis	
CT+RT	Rosso et al.²³¹	no/yes/no	P	GM-CSF vs. historical control	sig, lower incidence of severe mucositis
G-CSF					
CT	Gabriolove et al.¹⁷³	no/yes/no	P	CT+G-CSF vs. historical controls	significant lower incidence and severity of mucositis
Crawford et al.¹⁷⁵	yes/yes/yes	P	G-CSF vs. placebo	significant reduced incidence of mucositis	
Pettengell et al.¹⁴	yes/yes/no	P	CT±G-CSF	no difference in severe mucositis	
Welte et al.²³²	yes/no/no	P	CT±G-CSF	lower incidence of mucositis	
RT	Mascarin et al.¹⁷³	yes/yes/no	P	RT±G-CSF	less treatment interruptions only
Schneider et al.¹⁷⁶	yes/yes/yes	P	RT±G-CSF	sig, reduced incidence of severe mucositis	
BMT	Locatelli et al.²³³	no/yes/no	P	BMT±G-CSF	no difference
r) Antiviral agents					
Acyclovir					
CT+RT	Bubley et al.²⁵	yes/yes/yes	P	acyclovir vs. placebo	no impact upon incidence and severity of mucositis
BMT	Woo et al.²⁴	no/yes/no	P	acyclovir prophylaxis	no impact upon incidence and severity of mucositis
Epstein et al.²⁵	no/yes/no	P	acyclovir prophylaxis	no impact upon incidence and severity of mucositis	
severity of oral mucositis, compared with control groups in three randomized trials.65-67 A low incidence of chemotherapy-induced oral mucositis was also noted upon prophylactic use of ice chips in patients receiving melphalan and edatrexate-based chemotherapy regimens.68-70

LOCALLY APPLIED PHARMACOTHERAPEUTICS

Antimicrobial Agents

The oral mucosa of cancer patients is colonized by a variety of potentially pathogenic microorganisms, especially gram-positive cocci, gram-negative opportunistic bacteria and fungi.71-73 Disturbed integrity of the oral epithelial barrier, leukopenia, changes in salivary flow, and composition, and a shift of the oral microflora to an abundance of gram-negative organisms—particularly in patients with periodontal disease—favor the emergence of oral infections in the course of antineoplastic therapy.54,74 Thus, the necessity of antimicrobial agents for the prophylaxis and treatment of oral mucositis has been emphasized by many authors75 and numerous studies have evaluated the efficacy of a variety of disinfectant, antibacterial, antiviral, and antifungal agents.

Antifungal Agents

Although fungi are not primarily involved in the development of oral mucositis, they account for the most frequent infections of the damaged oral mucosa in immunosuppressed patients.76-78 Candidiasis is the predominant fungal infection manifesting itself by characteristic white coats or erythematous lesions in the corners of the mouth and on the soft palate and tongue. Aspergillosis and mucormycosis, characterized by painful oral ulcerations which may invade the orofacial skeleton are less frequently observed. Since fungal sepsis can be held responsible for one-third of septic deaths in immunocompromised patients79 the prophylactic use of various antifungal agents has to be emphasized in patients who are likely to develop prolonged granulocytopenia. Although frequently used, topical prophylaxis with polyene antifungal agents, such as nystatin, was found to be inefficacious in most clinical trials.30-32 In contrast, randomized trials have provided evidence that prophylactic and therapeutic topical use of imidazole antibiotics such as clotrimazole and fluconazole significantly reduces the incidence and duration of oropharyngeal candidiasis in patients undergoing myeloablative treatment.84-87

Multiagent mouth rinses containing amphotericin B have also been applied successfully for both selective decontamination of the oral cavity and treatment of manifest oral candidiasis.71,88-90 However, evaluation of amphotericin B as a single agent remains difficult. To date, most antifungal agents are available as oral suspensions and troches. Albeit the use of solutions is generally preferred by patients with severe mucositis, some patients may be allergic to parabenes serving as preservatives in oral suspensions.

Systemic antifungal prophylaxis, which is frequently used in patients undergoing myeloablative treatment, has been shown to reduce oral complications caused by fungi. Within this context, fluconazole seems to be superior in terms of tolerability as compared with amphotericin B.91

Antiviral Agents

Second to fungi, viruses, particularly herpes simplex virus type I (HSV) and varicella zoster virus (VZV), represent the most common pathogens aggravating oral mucositis in the course of antineoplastic therapy.51 Viral infections of the oral cavity are characterized by ulcerative-necrotizing changes and some-
times labial or extraoral vesicles usually occurring around day 18 after chemotherapy or myeloablative therapy, thus differing from lesions caused by direct stomatotoxicity or fungal and bacterial infections.92 The re-activation of oral HSV occurs in 50% to 90% of patients—particularly after myeloablative treatment and in patients seropositive for the virus. Oral infection with VZV is characterized by grouped small vesicles that tend to burst, leaving behind painful ulcers. Their distribution is often unilateral usually following a branch of the trigeminal or facial nerve. Infection usually occurs 2 to 3 weeks after discontinuation of chemotherapy.

For seropositive and myelosuppressed patients, topical and systemic acyclovir treatment is effective in the management of oral herpetic infections and for preventing oropharyngeal shedding of herpetic viruses, respectively, but acyclovir prophylaxis does not influence the incidence of chemotherapy-, radiotherapy-, or BMT-related oral mucositis.51,73,93-95

Antibacterial Agents

Odontogenic and gingival infections represent the major source of bacteria complicating mucositis.96 Whereas α-streptococci are not involved primarily in the pathogenesis of oral mucositis,76-78 aerobic species including pseudomonas spp, Staphylococcus epidermidis, anaerobic bacteria such as Bacteroides spp and Veillonella spp and endotoxin derived from aerobic gram-negative bacilli are thought to play a pivotal role in the bacterial phase. This hypothesis is further corroborated by the observation that elimination of gram-negative bacilli results in a lower incidence of oral mucositis.74,90,97 Therefore, selective decontamination of the oral cavity for the prophylaxis of oral mucositis has been emphasized by many authors.71 Antibiotic lozenges containing polymyxin E, tobramycin (and amphotericin B), have successfully eliminated the potentially pathogenic microbial flora and prevented severe forms of oral mucositis when compared with historical controls using placebo or chlorhexidine mouthwashes in patients with head and neck cancer undergoing radiotherapy.71 Similarly, prophylactic sucralfate-based mouthwashes containing ciprofloxacin or ampicillin (and clotrimazol) also reduced radiation-induced mucositis.98 However, in other studies, selective decontamination only achieved a moderate reduction of mucositis incidence and severity, suggesting that bacterial infections are not primarily involved in the pathogenesis of oral mucositis, but may alter the course of preexisting oral inflammation.88-90 Consequently, patients suspected to carry a highly pathogenic flora due to underlying oral pathology may benefit most from the prophylactic use of antibacterial agents.

Local Anesthetics

Although not protecting the integrity or hastening the recovery of the oral mucosa, oral solutions containing local anesthetics such as diphenhydramine, viscous xilocaine, lidocaine, or dyclonine hydrochloride are frequently used to palliate pain caused by oral mucositis. Since these substances also interfere with taste perception, thus possibly contributing to hypoalementation, the prophylactic use of local anesthetics should be discouraged. The most efficacious local anesthetic remains to be determined. A double-blind randomized trial comparing the efficacy of viscous lidocaine with 1% cocaine to dyclonine, kaolin-pectin plus diphenhydramine and saline, or placebo favored dyclonine but failed to demonstrate a significant difference among the four solutions, mostly due to the low number of enrolled patients.99 As the duration of pain control by topical anesthetics is usually short, combinations of local anesthetics and mouthcoating agents are frequently applied.100,101
analgesics has to be emphasized. Within this context, superior pain relief from oral mucositis and less morphine consumption can be achieved by patient-controlled analgesia, as compared with continuous infusion or staff-controlled analgesia, respectively.102,103

EXPERIMENTAL APPROACHES

Locally Applied Nonpharmacological Methods

Radiation Shields

Preliminary data suggest that removal of detachable parts of prostheses and fabrication of protective radiation stents as well as use of midline mucosa-sparing blocks to reduce irradiation of uninvolved mucosa and to avoid secondary electron scatter from large dental restorations and implants, respectively, may reduce oral complications of radiotherapy without affecting local tumor control. However, prospective randomized trials will be needed to confirm these observations.104-106

Laser

The application of low-energy helium-neon lasers (soft lasers) has been shown to reduce the incidence and, by hastening oral reepithelialization, favorably influence the outcome of oral mucositis in patients undergoing standard and myeloablative chemotherapy.107-110 Most interestingly, no notable side effects have been reported for this therapeutic approach. In a small multicenter, placebo-controlled double-blind study, prophylactic treatment with low-energy helium-neon laser before the initiation of radiotherapy for head and neck cancer resulted in a markedly reduced duration and severity of oral mucositis in the treatment group as compared with patients receiving placebo light.111

Anti-inflammatory and Mucosa Protectant Agents

Chamomile

The main ingredients of chamomile emulsions are chamazulenes exhibiting anti-inflammatory effects; levomenol having anti-inflammatory, spasmylytic, antipeptic and antibacterial effects; polyines and flavonoids acting additively spasmylytic. Since chamomile is inexpensive and readily available, and because the side effects of chamomile, such as desiccation are generally mild it is frequently used as a mild oral rinse emulsion despite a lack of well-founded data.112 Only one uncontrolled prevention study reported on encouraging results with chamomile mouthwashes,113 whereas a placebo-controlled trial in which 164 patients undergoing 5-FU based chemotherapy were enrolled observed no difference between patients receiving chamomile mouthwashes or placebo.114 Similarly, the efficacy of other frequently used astringent and anti-inflammatory herbal essences including sage, tormentill, and fennel, has not yet been evaluated in clinical trials.

Benzydamine

Benzydamine hydrochloride is a non-steroidal agent frequently used in European countries exhibiting antimicrobial, anti-inflammatory, anesthetic, and analgesic effects. Three randomized trials demonstrated that the topical application of benzydamine resulted in a reduced incidence and significant symptom alleviation of radiotherapy- and chemotherapy-induced oral mucositis as compared with placebo.115-117 However, studies comparing the efficacy of benzydamine and chlorhexidine in the treatment of radiotherapy-induced mucositis found oral discomfort to be more pronounced in patients rinsing with benzydamine.118,119
Sucralfate

Sucralfate is a basic aluminium salt of sucrose sulfate predominantly used as a therapeutic agent in patients with peptic ulcer disease. Upon contact with ulcerated mucosa, sucralfate generates a paste-like protective coat by formation of an ionic bond to proteins. In addition, sucralfate promotes the local production of prostaglandin E2, which itself is thought to act as a cytoprotectant stimulating epithelial proliferation and migration, mucosal blood flow, and mucus production. The clinical use of sucralfate as a prophylactic or therapeutic agent for oral mucositis has produced controversial results. Two randomized preventive studies and one therapeutic study found a statistically significant reduction of the severity of oral mucositis in patients using topical sucralfate (and fluconazole) during radiotherapy, whereas four other randomized studies comparing sucralfate with placebo or the addition of sucralfate to standard treatment with diphenhydramine, viscous lidocaine and antacids, respectively, found at most a nonsignificant decrease in severity and oral discomfort in patients receiving sucralfate.

Another prospective double-blind study comparing sucralfate with a mixture of the mouth-coating agent kaolin-pectin and diphenhydramine syrup found no significant differences in the degree of radiotherapy-induced oral mucositis between these two groups, but did find a reduction of oral discomfort in comparison with a historical group through both treatment modalities. Out of three randomized trials evaluating the efficacy of sucralfate in the prevention of chemotherapy-induced oral mucositis, only one found sucralfate to be moderately active, one demonstrated a reduction of mucositis-associated oral discomfort, and the third found no difference as compared with placebo. In addition, sucralfate failed to alleviate symptoms in patients experiencing 5-FU induced oral mucositis despite oral cryoprophylaxis. In conclusion, sucralfate seems to have little—if any—benefit when compared with standard oral hygiene and symptomatic treatment of oral mucositis.

Prostaglandin E2

Studies evaluating the prophylactic use of the prostaglandin E2 (PGE2) derivate misoprostol have produced controversial results. Two small studies comparing its topical use with placebo in patients undergoing simultaneous chemoradiation and the therapeutic potency of PGE2 in chemotherapy-induced oral mucositis, respectively, found the substance to be effective in reducing oral discomfort as well as the duration of reepithelialization. Another prophylactic pilot study enrolling patients undergoing radiotherapy found an impressive reduction of severe cases of radiotherapy-induced mucositis. In contrast, a randomized study that used lower doses of PGE2 as compared with the previously mentioned trials did not note any benefit in patients who were undergoing bone marrow transplantation, but observed a higher incidence of herpes virus reactivation and severe mucositis in patients using PGE2. These findings are mirrored by a randomized placebo-controlled trial demonstrating that prophylactic systemic administration of indomethacin, a cyclooxygenase inhibitor, significantly reduced the severity and delayed the onset of radiotherapy-induced oral mucositis.

Retinoids

Vitamin A and its derivates exert significant inhibitory effects upon inflammation and epithelial proliferation and have been used for the chemoprevention of squamous cell carcinomas. Based upon the consideration that temporary cell cycle arrest of oral epithelium may enhance mucosal resistance to cycle-
specific cytotoxic treatment, the prophylactic use of topical tretinoin has been found to reduce oral complications during bone marrow transplantation.136

\textit{Vitamin E}

The rationale for the topical use of tocopherol is based upon its antioxidant and membrane stabilizing potency, thus, potentially interfering with the inflammatory damage caused by reactive oxygen species and free radicals created in the course of chemotherapy or radiotherapy. In a randomized clinical trial including patients who had experienced chemotherapy-induced oral mucositis the topical application of vitamin E was found to have a significantly superior activity as compared with placebo.137 Since tocopherol is inexpensive, readily available, and well tolerated, confirmatory and prophylactic trials will be of great interest.

\textit{Glutamine}

Glutamine is a nonessential amino acid and well-known protector of the bowel, from radiation-induced mucosal injury.138 In two small, randomized studies prophylactic glutamine mouthwashes significantly reduced the incidence, severity, and duration of oral mucositis in patients undergoing radiotherapy or chemotherapy, respectively.139,140 Oral and parenteral glutamine supplementation, however, produced inconsistent results concerning the prevention of (myeloablative) chemotherapy-induced oral mucositis.141-143 Further studies on this approach are needed.

\textit{Silver Nitrate}

Silver nitrate is a caustic agent that has been thought to reduce the severity of oral mucositis by stimulating the regeneration of the oral mucosa damaged by radiotherapy. But the favorable results of Maciejewski et al.144 could not be confirmed in a subsequent trial.145 Data on the therapeutic use of silver nitrate are lacking so far.

\textit{Sodium Alginate}

Only one randomized study has evaluated the prophylactic topical use of sodium alginate and found a reduction of the discomfort and severity of radiotherapy-induced oral mucositis.146

\textit{Cytokines}

\textit{Transforming Growth Factor-\(\beta_3\)}

Transforming growth factor beta 3 (TGF-\(\beta_3\)) inhibits oral basal cell proliferation, decreasing the incidence and alleviating the course of oral mucositis in an animal model when used prophylactically.19 Based upon these considerations, a pilot study evaluated the prophylactic topical application TGF-\(\beta_3\) in breast cancer patients undergoing chemotherapy and demonstrated a good tolerability and a low incidence of oral mucositis.147 Since the patient cohort observed was very small, the authors said they would perform further studies.

\textit{G-CSF and GM-CSF}

The local accumulation of activated neutrophils subsequent to systemic administration of granulocyte colony-stimulating factor (G-CSF, filgrastim) and granulocyte-macrophage colony-stimulating factor (GM-CSF, molgramostim) has been shown to enhance defense mechanisms of the oral mucosa.15 In addition, topical use of G-CSF and GM-CSF has promising effects in the treatment of impaired wound healing and chronic venous ulcers,148 suggesting that the mechanisms of action of these cytokines are, in part, independent of their effect upon systemic neutrophil recovery. Thus, both the systemic
and local use of G-CSF and GM-CSF, respectively, have been evaluated for the prevention and treatment of chemotherapy-induced oral mucositis (reviewed in 149).

GM-CSF mouthwashes have been shown to cause marked alleviation of existing oral mucositis in several studies without detectable systemic accumulation of GM-CSF or effects upon systemic neutrophil counts. In our hands, GM-CSF mouthwashes significantly abbreviated oral mucositis caused by 5-FU chemotherapy when compared with mouthwashes with povidone-iodine, amphotericin B and viscous lidocaine. However, a double-blind, randomized placebo-controlled clinical trial failed to demonstrate a reduction in the incidence of mucositis upon prophylactic use of GM-CSF. To date, only one prospective, placebo-controlled clinical trial has evaluated the topical use of G-CSF as mucositis prophylaxis in patients undergoing bone marrow transplantation and found a significant reduction of severe cases of oral mucositis and days of hospitalization.

Antiseptic Agents

Povidone-iodine

The wide antiseptic effects including antiviral, antibacterial, and antifungal efficacy and good tolerability have resulted in the frequent use of povidone-iodine (PVP-iodine) as a preventive and therapeutic drug in radiotherapy- and chemotherapy-induced oral mucositis. A prospective randomized trial using prophylactic PVP-iodine mouthwashes in addition to standard treatment with topical nystatin, rutosides, panthenol and systemic immunoglobulins demonstrated a reduction in the incidence, severity, and duration of oral mucositis in 40 patients with head and neck cancer. Similar data were obtained by the prophylactic use of another PVP-iodine containing multiagent mouth rinse. However, data from single-agent prophylactic and therapeutic trials are lacking so far and PVP-iodine may not yet be recommended as a standard preventive or therapeutic regimen.

Multiagent Mouth Rinses: Role of Corticosteroids, Mouth-Coating Agents, and Dexpansphenol

Various topical mouth rinses containing corticosteroids, disinfectants, antimicrobial substances, sucralfate, baking soda, or local anesthetics are used in the prophylaxis and therapy of chemotherapy or radiotherapy-induced oral mucositis. While many "mucositis cocktails" containing corticosteroids have shown promising results in pilot studies, data on larger, single-agent trials evaluating the prophylactic and therapeutic use of topical and systemic steroids are lacking. Similarly, dexpansphenol, a granulation-promoting agent; caustic compounds such as aluminium hydroxide, and milk of magnesia; and mouth-coating agents including kaolin-pectin are part of many multiagent mouth-rinses, although their efficacy has not yet been demonstrated in single-agent trials.

Capsaicin

A pilot trial using capsaicin, a potent inhibitor of neuropathic pain in a candy vehicle has demonstrated a marked reduction of oral pain in patients experiencing oral mucositis in the course of chemotherapy or radiotherapy.

SYSTEMICALLY APPLIED PHARMACOTHERAPEUTICS

G-CSF and GM-CSF

The systemic administration of GM-CSF was found to significantly reduce the incidence and severity of oral mucositis in patients undergoing conventional chemotherapy. GM-CSF was also found to shorten the duration of mucositis in some myeloablative
regimens without influencing the incidence of oral mucositis subsequent to myeloablative chemotherapy. These results are possibly due to a lack of mucosal accumulation of GM-CSF subsequent to subcutaneous administration.

Several clinical trials have addressed the issue of whether systemic administration of G-CSF also exerts protective effects upon mucosal integrity, most of which clearly demonstrated a reduction of the incidence and severity of oral mucositis subsequent to standard or myeloablative chemotherapy. The effects observed with these cytokines in the prophylaxis and treatment of chemotherapy-induced oral mucositis have raised the issue of whether they might be beneficial for patients treated with radiotherapy, too. Whereas a pilot trial evaluating the prophylactic subcutaneous application of GM-CSF during radiotherapy has been shown to reduce oral toxicity as compared with a historic control, a randomized preventive study failed to demonstrate a reduction of oral mucositis by the additional subcutaneous administration of GM-CSF as compared with the control group treated by sucralfate mouthwashes alone. Similarly, the prophylactic use of G-CSF during radiotherapy reduced treatment interruptions and the occurrence of severe mucositis without significantly altering the incidence or severity of oral mucositis.

Amifostine

Amifostine is an antioxidant cytoprotective agent selectively taken up by nonmalignant cells without detectable protection of tumor cells. A series of clinical trials have reported on mucosaprotective effects of subcutaneous dosages up to 500 mg and on intravenous use at doses up to 740 mg/m². Side effects, mostly nausea and hypotension, seem to be more pronounced at higher doses and upon intravenous use, whereas, the optimal mucosaprotectant dose and route of administration remains to be defined. Studies evaluating the prophylactic use of amifostine during radiotherapy have uniformly reported a reduction of the incidence and severity of oral mucositis, but produced inconsistent results concerning the tolerability of the substance—regardless of its dosage and route of administration. Similarly, three out of four studies have demonstrated mucosaprotective effects of amifostine during simultaneous radiochemotherapy. Data on the use of amifostine in the prevention of chemotherapy-induced oral mucositis are scant, because the evaluation of mucositis does not constitute a primary endpoint of most studies. The substance has been shown to reduce the occurrence and severity of oral mucositis during peripheral blood stem cell mobilization with high-dose cyclophosphamide and total body irradiation. Comparable results were obtained in a phase II study evaluating the mucosaprotective effect of amifostine in patients receiving high-dose 5-FU for metastatic colorectal carcinoma.

Beta Carotene

Based upon the observation that beta carotene can produce regression of oral leukoplakia by inducing cellular differentiation, the effects of beta carotene have been evaluated in a small randomized study in patients undergoing simultaneous chemoradiation. In this trial a significantly decreased incidence of severe oral mucositis has been noted.

Azelastine

Azelastine hydrochloride is an anti-inflammatory antioxidant and antihistamine. Osaki et al. reported a significant reduction of the incidence and severity of oral mucositis during chemoradiation in patients treated...
prophylactically with azelastine, vitamins C+E, and glutathione as compared with a control group that did not receive azelastine.

Propantheline

A pilot trial of orally administered propantheline has demonstrated a significant reduction of oral mucositis caused by etoposide. Propantheline is an anticholinergic agent that reduces salivary flow and, therefore, salivary excretion of etoposide. Confirmatory trials are lacking.

Immunoglobulins

Based upon the observed decrease of salivary and systemic immunoglobulin levels subsequently to antineoplastic treatment and the immunomodulating anti-inflammatory propensities, intravenous or intramuscular immunoglobulins are frequently used in multimodal prophylactic and therapeutic regimens for radiotherapy-induced mucositis. Consequently, a validation of their impact upon the occurrence and course of oral mucositis is difficult. In the near future, the topical application of protease-resistant immunoglobulins will be of great interest.

INEFFICACIOUS APPROACHES

Locally Applied Pharmacotherapeutics

Allopurinol and Uridine

The rationale for the topical use of allopurinol for the prevention of 5-FU-induced oral mucositis was based upon its inhibition of orotidylate decarboxylase, an enzyme responsible for the intracellular formation of cytotoxic 5-FU metabolites. Whereas initial studies of topically administered allopurinol reported a reduction of mucosal toxicity in patients receiving 5-FU-based chemotherapy, consecutive trials failed to confirm these findings. In contrast, one double-blind, randomized, clinical trial found a higher incidence of oral mucositis in patients treated prophylactically with allopurinol. Similarly, systemic administration of uridine, another substance postulated to protect tissues from the toxic effects of 5-FU, failed to demonstrate a reduction of chemotherapy-induced oral mucositis.

Chlorhexidine

Chlorhexidine gluconate, a bisguanidine exhibiting broad-spectrum antibacterial and antymycotic activity and sustained binding to oral surfaces has been investigated intensely concerning its prophylactic and therapeutic efficacy in oral mucositis. Although much emphasis has been put on the effects of chlorhexidine for the prevention and treatment of chemotherapy- and radiotherapy-induced oral mucositis, randomized trials failed to confirm the postulated effects of chlorhexidine. Furthermore, the emergence of infections caused by gram-negative bacilli despite chorhexidine mouthwashes, mouthwash-induced discomfort, and interference with the antifungal effect of nystatin have been reported. According to the evidence derived from randomized clinical trials, chlorhexidine cannot be recommended for the prophylaxis or treatment of oral mucositis occurring in the course of antineoplastic treatment.

Hydrogen Peroxide

In a prospective trial involving patients undergoing radical radiotherapy, treatment with hydrogen peroxide (3.5%) rinses was associated with an increased risk for mucositis as compared with mouthwashes with regular saline.
Hydrogen peroxide applied as 1% rinsing solution has failed to demonstrate activity as a prophylactic mucosal disinfectant or therapeutic drug in patients with mucositis. Subsequent to rinsing with hydrogen peroxide, patients reported that symptoms of oral mucositis seemed to intensify, leading to withdrawal of the drug due to glossodynia. In addition, the rationale for the therapeutic application of hydrogen peroxide has been challenged due to the substance’s antifibroblastic effect resulting in impaired wound healing. Consequently, the use of hydrogen peroxide for the prevention or treatment of oral mucositis has to be discouraged.

Systemically Applied Pharmacotherapeutics

Pentoxifylline

Systemic use of pentoxifylline, which can down regulate endotoxin-induced production of TNF-α, has been evaluated intensely based upon a relatively small study that reported efficacy in preventing oral mucositis in patients undergoing myeloablative therapy. However, none of the consecutive randomized, placebo-controlled trials found pentoxifylline to be effective.

CONCLUSIONS

Since treatment options for chemotherapy- and radiotherapy-induced oral mucositis are limited, prophylaxis of this debilitating complication has to be emphasized. Pre-therapeutic assessment and treatment of underlying oral pathology are essential to minimize acute and chronic oral and systemic sequelae of antineoplastic therapy. The therapeutic approach to manifest oral mucositis has a supportive and palliative character. It is aimed at alleviating symptoms and avoiding secondary complications, such as dehydration, cachexia, and infection. It is also aimed at improving the patient’s quality of life and enabling the patient to adhere to the treatment plan. Despite their widespread clinical use, many drugs and other modalities have not been evaluated in controlled clinical trials. Consequently, no therapeutic modality has become a standard approach for patients who suffer from oral mucositis.

Aside from nonpharmacological interventions, including cryotherapy, radiation shields, soft laser treatment, and oral hygiene, a multitude of drugs have been evaluated successfully as prophylactic and therapeutic agents for oral mucositis. The latter not only include local anesthetics and antimicrobial substances, but more recently cytoprotectant substances, such as amifostine and a series of cytokines, which may soon become standard therapy. In contrast, sucralfate, misoprostol, hydrogen peroxide, chlorhexidine, pentoxifylline, uridine, and allopurinol have not proven particularly efficacious in the prevention or treatment of chemotherapy-induced oral mucositis.

Promising, but not yet sufficiently evaluated approaches include antiseptic substances, such as povidone iodine and benzylamine, vitamin E, tretinoin, beta carotene and cytokines such as TGF-β3. Novel agents such as Interleukin-11, dehydroascorbic acid, keratinocyte growth factor, and epidermal growth factor, which hasten growth, cellular differentiation, and cell migration of the oral epithelium are being evaluated. However, aside from all of these mechanistic and pharmacological interventions, medical personnel must not ignore the positive effect of attentive medical care. In a randomized trial, Janjan et al. demonstrated that daily intensive personal contact by the nursing staff, as well as prompt adaptation of the required analgesic regimen during chemotherapy or radiotherapy, significantly reduced the oral discomfort associated with mucositis, which decreased the need for pain medication.
REFERENCES

1. Elting LS, Bodey GP, Keeffe BH. Septicemia and shock syndrome due to viridans streptococci: a case-control study of predisposing factors. Clin Infect Dis 1992;14:1201-1207.

2. Bitran JD, Samuels B, Klein L, et al. Tandem high-dose chemotherapy supported by hematopoietic progenitor cells yields prolonged survival in stage IV breast cancer. Bone Marrow Transplant 1996;17:157-162.

3. Patrone F, Ballestero A, Fernandez F, et al. Four-step high-dose sequential chemotherapy with double hematopoietic progenitor-cell rescue for metastatic breast cancer. J Clin Oncol 1995;13:840-846.

4. Pettengell R, Gurney H, Radford JA, et al. Granulocyte colony-stimulating factor to prevent dose-limiting neutropenia in non-Hodgkin's lymphoma: a randomized controlled trial. Blood 1992;80:1430-1436.

5. Cox JD, Pajak TF, Marcial VA, et al. Interruptions adversely affect local control and survival with hyperfractionated radiation therapy of carcinomas of the upper respiratory and digestive tracts. New evidence for accelerated proliferation from Radiation Therapy Oncology Group Protocol 8313. Cancer 1992;69:2744-2748.

6. Budman DR, Berry DA, Cirmcione CT, et al. Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B (see comments). J Natl Cancer Inst 1998;90:1205-1211.

7. Peterson DE. Research advances in oral mucositis. Curr Opin Oncol 1999;11:261-266.

8. Jansma J, Visnek A, Spijkerbek FK, et al. Protocol for the prevention and treatment of oral sequelae resulting from head and neck radiation therapy. Cancer 1992;70:2171-80.

9. Sonis ST, Sonis AL, Lieberman A. Oral complications in patients receiving treatment for malignancies other than of the head and neck. J Am Dent Assoc 1978;97:468-472.

10. Woo SB, Sonis ST, Monopoly MM, Sonis AL. A longitudinal study of oral ulcerative mucositis in bone marrow transplant recipients. Cancer 1993;72:1612-1617.

11. Deschner E, Lipkin M. Proliferation and differentiation of gastrointestinal cells in relation to therapy. Med Clin North Am 1971;55:601-612.

12. Ferretti GA, Raybould TP, Brown AT, et al. Chlorhexidine prophylaxis for chemotherapy- and radiotherapy-induced stomatitis: a randomized double-blind trial. Oral Surg Oral Med Oral Pathol 1990;70:331-338.

13. Lockhart PB, Sonis ST. Relationship of oral complications to peripheral blood leukocyte and platelet counts in patients receiving cancer chemotherapy. Oral Surg Oral Med Oral Pathol 1979;48:21-28.

14. Dale DC, Bomilla MA, Davis MW, et al. A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 1993;81:2496-2502.

15. Lieszke GJ, Ramgeuhi U, O'Connor MP, et al. Studies of neutrophil levels in patients receiving G-CSF after autologous marrow transplantation. Br J Haematol 1992;82:588-595.

16. Chu KH, Chen CH, Chan WK, et al. Effect of granulocyte-macrophage colony-stimulating factor on oral mucositis in head and neck cancer patients after cisplatin, fluorouracil, and leukovorin chemotherapy (see comments). J Clin Oncol 1995;13:2620-2628.

17. Ibrahim EM, al-Mulhim FA. Effect of granulocyte-macrophage colony-stimulating factor on chemotherapy-induced oral mucositis in non-neutropenic cancer patients. Med Oncol 1997;14:47-51.

18. Sonis ST. Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral Oncol 1998;34:39-43.

19. Sonis ST, Lindquist L, Van Vugt A, et al. Prevention of chemotherapy-induced ulcerative mucositis by transforming growth factor beta 3. Cancer Res 1994;54:1135-1138.

20. Guggenheimer J, Verbin RS, Appel BN, Schmutz J. Clinico-pathologic effects of cancer chemotherapy agents on human buccal mucosa. Oral Surg Oral Med Oral Pathol 1977;44:58-63.

21. Sonis A, Sonis S. Oral complications of cancer chemotherapy in pediatric patients. J Pedod 1979;3:122-128.

22. Waterfield MD. Epidermal growth factor and related molecules, Lancet 1989;1:1243-1246.

23. Sonis S, Clark J. Prevention and management of oral mucositis induced by antineoplastic therapy. Oncology (Huntingt) 1991;5:11-18; discussion 18-22.

24. Plevova P. R: Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral Oncol 1999;35:225-226.

25. Bodey GP, Buckley M, Sathe YS, Freireich EJ. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 1966;64:328-340.

26. Kenny SA. Effect of two oral care protocols on the incidence of stomatitis in hematology patients. Cancer Nurs 1990;13:345-353.

27. Petrelli NJ, Rustum YM, Bruckner H, St valein D. The Roswell Park Memorial Institute and Gastrentestinal Tumor Study group phase III experience with the modulation of 5-fluorouracil by leucovorin in metastatic colorectal adenocarcinoma. Adv Exp Med Biol 1988;244:143-155.

28. Poon MA, O’Connell MJ, Moertel CG, et al. Biochemical modulation of fluorouracil: evidence of significant improvement of survival and quality of life in patients with advanced colorectal cancer. J Clin Oncol 1989;7:1407-1418.

29. Levi F. Cancer chemotherapy. J Pharm Pharmacol 1999;51:891-898.

30. Franzen L, Funegard U, Ericson T, Henriksson CA. Effect of radiation-induced xerostomia on saliva and serum lysozyme and immunoglobulin levels. Oral Surg Oral Med Oral Pathol 1976;41:83-92.

31. Brown LR, Dreizen S, Handler S, Johnston DA. The effect of radiation-induced xerostomia on saliva and serum lysozyme and immunoglobulin levels. Oral Surg Oral Med Oral Pathol 1976;41:83-92.

32. Peterson DE, D’Ambrosio JA. Diagnosis and management of acute and chronic oral complications of nonsurgical cancer therapies. Dent Clin North Am 1992;36:945-966.

33. Paralek W, Mackenzie R, Bjarnason G, Jordan RC. Scoring oral mucositis. Oral Oncol 1998;34:63-71.

34. Peterson DE. Oral toxicity of chemotherapeutic agents. Semin Oncol 1992;19:478-491.

35. Sonis S, Woods PD, White B. Pretreatment oral assessment. NCI Monogr 1999;9:29-32.

36. Greenberg MS, Cohen SG, McKitrick JC, Casciotta PA. The oral flora as a source of septicemia in patients with acute leukemia. Oral Surg Oral Med Oral Pathol 1982;53:32-36.

37. Lockhart PB, Clark J. Pretherapy dental status of patients with malignant conditions of the head and neck. Oral Surg Oral Med Oral Pathol 1994;77:236-241.

38. Peterson DE, Sonis ST. Oral complications of cancer chemotherapy: present status and future studies. Cancer Treat Rep 1982;66:1251-1266.

39. Lindquist SE, Hickey AJ, Drane JB. Effect of oral hygiene on stomatitis in patients receiving cancer chemotherapy. J Prosthet Dent 1978;40:312-314.

40. DePaola LG, Peterson DE, Overholser CD Jr., et al. Dental care for patients receiving chemotherapy. J Am Dent Assoc 1986;112:198-203.

41. Overholser CD. Oral care for the cancer patient in: Klastersky J, Stephen C. Schnipf, Hans-Jürg Senn, (ed.) Handbook of Supportive Care in Cancer. Marcel Dekker, New York 1995.

42. Bergmann OJ. Oral infections and septicaemia in immunocompromised patients with haematologic malignancies. J Clin Microbiol 1988;26:2105-2109.

43. Montgomery MT, Redding SW, LeMastre CE. The incidence of oral herpes simplex virus
infection in patients undergoing cancer chemotherapy. Oral Surg Oral Med Oral Pathol 1998;86:6‌1-62.
52. Peters E, Monopoli M, Woo SB, Sonis S. Assessment of the need for treatment of posten-‌odontic asymptomatic periapical radiolucencies in bone marrow transplant recipients. Oral Surg Oral Med Oral Pathol 1993;76:45–48.
53. Stevenson-Moore P. Oral complications of cancer therapies. Essentials of a pretreat-‌ment oral examination. NCI Monogr 1990;9:‌33-36.
54. Peterson DE. Pretreatment strategies for infection prevention in chemotherapy patients. NCI Monogr 1990;9:61-71.
55. Shelt SH, Wang ST, Tsai ST, Tseng CC. Mouth care for nasopharyngeal cancer patients undergoing radiotherapy. Oral Oncol 1997;‌33:36-41.
56. Bavier AR. Nursing management of acute oral complications of cancer. NCI Monogr 1990;9:123-128.
57. Johnson JT, Ferretti GA, Nethery WJ, et al. Oral pilocarpine for post-irradiation xerostomia in patients with head and neck cancer (see comments). N Engl J Med 1993;329:390-395.
58. LeVaque FG, Montgomery M, Potter D, et al. A multicenter, randomized, double-blind, place-‌bo-controlled, dose-titration study of oral pilo-‌carpine for treatment of radiation-induced xero-‌stomia in head and neck cancer patients. J Clin Oncol 1993;11:1124-1131.
59. Levine MJ, Aguirre A, Hatton MN, Tabak LA. Artificial saliva: present and future. J Dent Res 1987;66 Spec No:693-698.
60. Greer DM, Daniels TE. Effectiveness of pilocarpine in postirradiation xerostomia. Cancer 1987;59:1123-1125.
61. National Institutes of Health. Research development conference statement: oral complications of cancer therapies: diagnosis, prevention, and treatment. J Am Dent Assoc 1989;119:179-183.
62. Epstein J, Ransier A, Lunn R, Spinnelli J. Enhancing the effect of oral hygiene with the use of a foam brush with chlorhexidine. Oral Surg Oral Med Oral Pathol 1994;77:242-247.
63. Overholser CD, Peterson DE, Bergman SA, Williams LT. Dental extractions in patients with acute nonlymphocytic leukemia. J Oral Maxillofac Surg 1982;40:296-298.
64. Willford SK, Salisbury PL 3rd, Peacock JE, Jr., Schimpff SC. Periodontal infection in patients undergoing radiotherapy of the head and neck. Br J Oral Maxillofac Surg 1989;27:334-340.
65. Martin MV, Al-Tikriti U, Bramley PA. Yeast flora of the mouth and skin during and after irradiation for oral and laryngeal cancer. J Med Microbiol 1981;14:457-467.
66. Pau HW, Schachl-Pohl HJ, Eusner M. Yeast fungus flora in tumor irradiation of the upper aerodigestive tract. Hno 1985;33:483-488.
67. Ferretti GA, Ash RC, Brown AT, et al. Clinical trial of oral muco-‌sitis and candidiasis in marrow transplantation: a prospective, double-blind trial of chloro-‌hexidine digluconate oral rinse. Bone Marrow Transplant 1983;8:483-493.
68. Pizzo PA. Infectious complications in the child with cancer. II. Management of specific infectious organisms. J Pediatr 1991;89:513-523.
69. Carpenteri U, Haggard ME, Lockhart LH, et al. Clinical experience in prevention of candidia-‌sis by nystatin in children with acute lymphocyt-‌ic leukemia. J Pediatr 1978;92:593-595.
70. Epstein JB, Vickers L, Spinelli J, Reece D. Efficacy of chlorhexidine and nystatin rinses in prevention of oral complications in leukemia and bone marrow transplantation. Oral Surg Oral Med Oral Pathol 1992;73:682-689.
71. Barrett AP. Evaluation of nystatin in prevention and elimination of oropharyngeal Candida in immunosuppressed patients. Oral Surg Oral Med Oral Pathol 1984;58:148-151.
72. Williams C, Whitehouse JM, Lister TA, Wrigley PF. Oral antifungal prophylaxis in patients undergoing chemotherapy for acute leukemia. Med Pediatr Oncol 1977;3:275-280.
73. Yeo E, Alvarado T, Fainstein V, Bodey GP. Prophylaxis of oropharyngeal candidiasis with fluconazole. Rev Infect Dis 1990;12 Suppl 3:S369-S373.
74. Bondi E, Baroni C, Prete A, et al. Local antiviral strategy of oral mucositis in pediat-‌ric patients undergoing bone marrow transplant. Oral Oncol 1997;33:322-326.
75. Okuno SH, Foote RL, Loprinzi CL, et al. A randomized trial of a nonabsorbable antibiotic lozenge given to alleviate radiation-induced mucositis. Cancer 1997;79:2193-2199.
76. Symonds RP, McIroy P, Khorrami J, et al. The reduction of radiation mucositis by selective decontamination antibiotic pastilles: a placebo-‌controlled double-blind trial. Br J Cancer 1996;74:312-317.
77. Wolfl SF, Fay J, Stevens D, et al. Fluconazole vs low-dose amphotericin B for the prevention of fungal infections in patients undergoing bone marrow transplantation: a study of the North American Marrow Transplant Group. Bone Marrow Transplant 2000;25:853-859.
78. Saral R, Burn WJ, Prentice HG. Herpes virus infections: clinical manifestations and thera-‌peutic strategies in immunocompromised patients. Clin Haematol 1984;13:645-660.
79. Epstein JB, Ransier A, Sherlock CH, et al. Acyclovir prophylaxis of oral herpes virus during bone marrow transplantation. Eur J Cancer B Oral Oncol 1996;32B:158-162.
80. Woy SB, Sonis ST, Sonn AL. The role of her-‌pes simplex virus in the development of oral mucositis in bone marrow transplant recipients. Cancer 1996;66:2375-2379.
81. Bubley GJ, Chapman B, Chapman SK, et al. Effect of acyclovir on radiation-and chemotherapy-induced mouth lesions. Antimicrob Agents Chemother 1989;33:862-‌865.
82. Overholser CD, Peterson DE, Williams ET, Schimpff SC. Periodontal infection in patients with acute nonlymphocytic leukemia. Prevalence of acute exacerbations. Arch Intern Med 1982;142:531-534.
83. Brown AT, Sims RE, Raybould TP, et al. Oral gran-negative bacilli in bone marrow transplant patients given chlorhexidine rinses. J Dent Res 1989;68:1199-1204.
84. Matthews RH, Encal N. Prevention of mucositis in irradiated head and neck cancer patients. J Exp Ther Oncol 1996;1:135-138.
85. Carrnel SB, Blakeslee DB, Oswald SG, Barnes M. Treatment of radiation- and chemotherapy-‌induced stomatitis. Otolaryngol Head Neck Surg 1990;102:326-330.
86. LeVaque FG, Paruchowski JB, Farinacci GC, et al. Clinical evaluation of MGI 209, an anesthetic, film-forming agent for relief from painful oral ulcers associated with chemotherapy. J Clin Oncol 1992;10:1963-1968.
87. Barker G, Loftus L, Cuddy P, Barker B. The effects of sucralfate suspension and diphenyl-‌dramine syrup plus kaolin-pectin on radiothera-‌py-induced mucositis. Oral Surg Oral Med Oral Pathol 1991;71:288-293.
apy: a controlled study with benzydamine. Prevention of oral mucositis in radiation therapy for prevention of 5-FU-induced oral mucositis in bone marrow transplantation patients. Cancer 1995;76:2550-2556.

109. Barasch A, Peterson DE, Tanzer JM, et al. Soft-laser therapy for iatrogenic mucositis (published erratum appears in J Pediatr 1988;113:758-763). J Pediatr 1988;113:758-763.

110. Cowen D, Tardieu C, Schubert M, et al. Low-energy He/Ne laser in the prevention of radiation-induced mucositis: a double-blind randomized trial. Int J Radiat Oncol Biol Phys 1994;30:219-223.

111. Bensadoun RJ, Franquin JC, Ciais G, et al. Prostaglandin E2 for prophylaxis of oral mucositis following BMT. Bone Marrow Transplant 1993;11:379-382.

112. Cohen G, Elad S, Or R, Galili D, Garfinkel AA. The use of tretonin as oral mucositis prophylaxis in bone marrow transplantation patients: a preliminary study. Oral Dis 1997;3:243-246.

113. Waddegh RG, Redman KS, Graham ML, et al. Vitamin E in the treatment of chemotherapy-induced mucositis. Am J Med 1992;92:481-484.

114. Klimberg VS, Souba WW, Dolson DJ, et al. Prophylactic glutamine protects the intestinal mucosa from radiation injury. Cancer 1999;86:62-68.

115. Epstein JB, Stevenson-Moore P, Jackson S, et al. Prevention of oral mucositis during chemotherapy: a study of 98 patients. J Prosthet Dent 1991;66:361-369.

116. Prada A, Chiesa F. Effects of benzydamine on the oral mucositis during antineoplastic radiotherapy and/or intra-arterial chemotherapy. Int J Tissue React 1987;9:115-119.

117. Kim JH, Chu FC, Lakshmi V, Houde R. Benzydamine HCl, a new agent for the treatment of radiotherapy-induced stomatitis of the oropharynx. Am J Clin Oncol 1986;9:132-134.

118. Samaranayake LP, Robertson AG, MacFarlane TW, et al. The effect of chlorhexidine and benzydamine mouthwashes on mucositis induced by therapeutic irradiation. Clin Radiol 1988;39:291-294.

119. Lever SA, Dupuis LL, Chan HS. Comparative evaluation of benzydamine oral rinse in children with antineoplastic-induced stomatitis. Drug Intell Clin Pharm 1987;21:359-361.

120. Scherfacher A, Beaufort-Spontin F. Radiotherapy of head-neck neoplasms: prevention of inflammation of the mucosa by sucralfate treatment. Hno 1990;38:24-28. German.

121. Allison RR, Vongtama V, Vaughan J, Shin KH. Symptomatic acute mucositis can be minimized or prophylaxed by the combination of sucralfate and fluconazole. Cancer Invest 1995;13:16-22.

122. Fransen L, Henriksen B, Littbrand B, Zackrisson B. Effects of sucralfate on mucositis during and following radiotherapy of malignancies in the head and neck region. A double-blind placebo-controlled study. Acta Oncol 1995;34:219-223.

123. Makkonen TA, Bostrom PI, Pajunen H. Sucrel fate mouth washing in the prevention of radiation-induced mucositis: a placebo-controlled double-blind randomized study. Int J Radiat Oncol Biol Phys 1994;30:177-182.

124. Meredith R, Salter M, Kim R, et al. Sucralfate for radiation mucositis: results of a double-blind randomized trial. Int J Radiat Oncol Biol Phys 1997;37:275-279.

125. Epstein JW, Wong FL. The efficacy of sucralfate suspension in the prevention of oral mucositis due to radiation therapy. Int J Radiat Oncol Biol Phys 1994;28:693-698.

126. Carter DL, Hebert ME, Smink K, et al. Double-blind randomized trial of sucralfate vs placebo during radical radiotherapy for head and neck cancers. Head Neck 1999;21:760-766.

127. Shenep JL, Kalwinsky DK, Hutson PR, et al. Efficacy of oral sucralfate suspension in prevention and treatment of chemotherapy-induced mucositis (published erratum appears in J Pediatr 1989;114:9400). J Pediatr 1988;113:758-763.

128. Chiara S, Nobile MT, Vincenti M, et al. Sucralfate in the treatment of chemotherapy-induced Stomatitis: A double-blind placebo-controlled pilot study. Proc Am Soc Clin Oncol 2000;19 Abstract 2485:630a.

129. Pfeiffer P, Madsen EL, Hansen O, May O. Effect of prophyllactic sucralfate suspension on stomatitis induced by cancer chemotherapy. A randomized, double-blind cross-over study. Acta Oncol 1990;29:171-173.

130. Loprinzi CL, Ghosh C, Camoriano J, et al. Phase III controlled evaluation of sucralfate to alleviate stomatitis in patients receiving fluorouracil-based chemotherapy. J Clin Oncol 1997;15:1235-1238.

131. Portered H, Rausch E, Kment G, Watzek G, Matejka M, Smzinger H. Local prophylaxis E2 in patients with oral malignancies undergoing chemo- and radiotherapy. J Cranio maxillofac Surg 1988;16:371-374.

132. Kuhler I, Kuzmits R, Linkesch W, Ludg H. Topical PGE2 enhances healing of chemotherapy-associated mucosal lesions (letter). Lancet 1986;1:623.

133. Matejka M, Nell A, Kment G, et al. Local benefit of proprastadgan E2 in radiochemotherapy-induced oral mucositis. Br J Oral Maxillofac Surg 1990;28:89-91.

134. Maciejewski B, Zajusz A, Pilecki B, et al. Double-blind randomized trial of sucralfate vs placebo during radical radiotherapy for head and neck cancer. Radiother Oncol 1991;22:7-11.

135. Oshita T, Okada K, Kushima T, et al. Effects of stimulated repopulation on oral mucositis during conventional radiotherapy. Radiat Oncol 1995;37:100-107.

136. Oshtani T, Okada K, Kushima T, et al. Clinical evaluation of sodium alginate on oral mucositis associated with radiotherapy. Nippon Gai Chiryo Gakkai Shi 1990;25:1129-1137. Japanese.

137. Wynnenga AN, van der Graaf WT, Hofstra LS, et al. Phase I study of transforming growth factor-beta3 mouthwashes for prevention of chemotherapy-induced mucositis. Clin Cancer Res 1999;5:1363-1368.

138. Raderer M, Kornek G, Hejna M, et al. Topical granulocyte-macrophage colony-stimulating factor in patients with cancer and impaired wound healing (letter). J Natl Cancer Inst 2001;51:290-315.
Oral Mucositis Complicating Chemotherapy and/or Radiotherapy

1997;89:263.
149. Hejna M, Brodowicz T, Zielinski CC. Local use of GM-CSF for severe mucositis. Eur J Cancer 1999;35 Suppl 3:S14-S17.
150. LeVeque F, Naylor P, Naylor S, et al. Mucosal bioavailability of GM-CSF given per os and by subcutaneous injection. Proc Am Soc Clin Oncol 1999;18:62a Abstract 232.
151. Bez C, Dzemara F, Sandella A, et al. GM-CSF mouthrinses in the treatment of severe oral mucositis: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;88:311-315.
152. Ovila-Martinez R, Rubio ME, Berbolla JR. GM-CSF mouthwashes as treatment for mucositis in BMT patients. Blood 1994; 84. Abstract 2853.
153. Haas U, Quetsch D, Faerber L, Dittrich H. Effect of rh-granulocyte-macrophage colony-stimulating factor (GM-CSF) on oral mucositis. Ann Hematology 1996;73(Suppl. II):A51, Abstract 205.
154. Cinat G, Mückiewicz E, Alvarez A. Local use of GM-CSF in the treatment of severe mucositis. A preliminary trial. Proc Am Soc Clin Oncol 1997;16:Abstract 216/63a.
155. Lira-Puerto V, Silva A, Martinez R, et al. Grade 3-4 stomatitis successfully treated with local GM-CSF (Leukomax). Ann Oncol 1999;5:207-208 (abstract).
156. Berenggula S, Illan I. Effect of granulocyte macrophage colony stimulating factor on chemotherapy induced oral mucositis in pediatric cancer patients. Proc Am Soc Clin Oncol 2000;19:Abstract 2462/62a.
157. Melchior B, Kohout P, Bratova M, et al. Effect of oral GM-CSF on intestinal permeability and systemic immune activation in chemotherapy-induced mucositis. Proc Am Soc Clin Oncol 2000;19:Abstract 2466/62a.
158. Hejna M, Kostler W, Raderer M, et al. A prospective randomized trial on the efficacy in GM-CSF mouthwashes for the treatment of chemotherapy-induced oral mucositis. Proc Am Soc Clin Oncol 2000;19:Abstract 2407/61a.
159. Cartee L, Petros WP, Ronser GL, et al. Evaluation of GM-CSF mouthwash for prevention of chemotherapy-induced mucositis: a randomized, double-blind, dose-ranging study. Cytokine 1995;7:471-477.
160. Karthaus M, Rosenthal C, Huebner G, et al. Effect of topical oral G-CSF on oral mucositis: a randomized placebo-controlled trial. 1998:22:781-785.
161. Rahn R, Adamietz IA, Boetchter HD, et al. Povidone-iodine to prevent mucositis in patients during antineoplastic radiochemotherapy. Dermatology 1997;195:57-61.
162. Hasenauer C, Clasen BP, Roettger D. [Use of standardized oral hygiene in the prevention and therapy of mucositis in patients treated with radiochemotherapy of head and neck neoplasms]. Laryngol Rhino1 Otol (Stuttg) 1988;67:576-579. German.
163. Abdelal AS, Barker DS, Ferguson MM. Treatment for irradiation-induced mucositis (letter). Lancet 1989;1:97.
164. Rothwell BR, Spektor WS. Palliation of radiation-related mucosits. Spec Care Dentist 1990;10:21-25.
165. Adamietz IA, Rahn R, Bottcher HD, et al. Prophylaxis with povidone-iodine against induction of oral mucositis by radiochemotherapy (see comments). Support Care Cancer 1998;6:373-377.
166. Mose S, Adamietz IA, Saran F, et al. Can prophylactic application of immunoglobulin decrease radiotherapy-induced oral mucositis? Ann J Clin Oncol 1997;20:407-411.
167. Berger A, Henderson M, Nadolsman W, et al. Oral capsin is a temporary relief for oral mucositis and secondary to chemotherapy/radiation therapy (published erratum appears in J Pain Symptom Manage 1996;11:331). J Pain Symptom Manage 1995;10:243-248.
168. Ho AD, Del Valle F, Haas R, et al. Sequential studies on the role of mitoxantrone, high-dose cytarabine, and recombinant human granulocyte-macrophage colony-stimulating factor in the treatment of refractory non-Hodgkin’s lymphoma. Semin Oncol 1990;17:14-18; discussion 18-19.
169. Gordon B, Spadinger A, Hodges E, et al. Effect of granulocyte-macrophage colony-stimulating factor on oral mucositis after hematopoietic stem-cell transplantation. J Clin Oncol 1994;12:1917-1922.
170. Nemunaitis J, Rosenfeld CS, Ash R, et al. Phase III randomized, double-blind placebo-controlled trial of rhGM-CSF following allogeneic bone marrow transplantation. Bone Marrow Transplant 1995;15:949-954.
171. Archimbaud E, Fenaux P, Reiffers J, et al. Granulocyte-macrophage colony-stimulating factor in association to timed-sequential chemotherapy with mitoxantrone, etoposide, and cytarabine for refractory acute mylogenous leukaemia. Leukemia 1993;7:372-377.
172. Atkinson K, Biggs JC, Downs K, et al. GM-CSF after allogeneic bone marrow transplantation: accelerated recovery of neutrophils, monocytes and lymphocytes. Aust N Z J Med 1991;21:686-692.
173. Gabrilove JL, Jakubowski A, Scher H et al. Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N Engl J Med 1988;318:1414-1422.
174. Crawford J, Glaspie J, Vincent M, et al. Effect of filgrastim (r-Methug-CSF) on oral mucositis in patients with small cell lung cancer receiving chemotherapy (Cyclophosphamide, Doxorubicin and Etoposide, CAE). Proc Am Soc Clin Oncol 1994;13 Abstract 1543/442a.
175. Crawford J, Tomuta DK, Mazaran R, et al. Reduction of oral mucositis by filgrastim (r-MethHuc-CSF) in patients receiving chemotherapy. Cytokines Cell Mol Ther 1999;5:187-193.
176. Wagner W, Alfrink M, Haus U, Matt J. Treatment of irradiation-induced mucositis with growth factors (rhGM-CSF) in patients with head and neck cancer. Anticancer Res 1999;19:799-803.
177. Makkonen TA, Minn H, Jekunen A, et al. Side effects on the role of mitoxantrone, high-dose cytarabine, and recombinant human granulocyte-macrophage colony-stimulating factor in the treatment of refractory non-Hodgkin’s lymphoma. Ann Oncol 1999;10:243-248.
178. Gabriel DA, Shea T, Wiley J, et al. Use of prophylaxis with povidone-iodine against inducing factor for oral mucositis. J Pain Symptom Manage 1995;10:243-248.
179. Haus U, Quetsch D, Faerber L, Dittrich H. Effect of rh-granulocyte-macrophage colony-stimulating factor (GM-CSF) and its potential use in the reduction of radiation-induced oropharyngeal mucositis: an interim look at a randomized, double-blind, placebo-controlled trial. Cytokines Cell Mol Ther 1999;5:175-180.
180. Bagi K, Marcin M, Franchin G, Minatel E, et al. The effect of granulocyte colony-stimulating factor on oral mucositis in head and neck cancer patients treated with hyperfractionated radiotherapy. Oral Oncol 1999;35:203-208.
181. Chornow MI, Krygis G, Kakolyris S, et al. Use of granulocyte colony-stimulating factor for severe oral mucositis in patients undergoing chemotherapy. Support Care Cancer 1999;4:271-279.
182. Bouhnik J, De Crevosier R, Abdulkarim B, et al. A randomized study of very accelerated radiotherapy with and without amifostine in head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2000;46:1105-1108.
183. Gabriel DA, Shea T, Wiley J, et al. Use of prophylaxis with high-dose cytarabine for refractory acute mylogenous leukaemia. Leukemia 1993;7:372-377.
184. Atkinson K, Biggs JC, Downs K, et al. GM-CSF after allogeneic bone marrow transplantation: accelerated recovery of neutrophils, monocytes and lymphocytes. Aust N Z J Med 1991;21:686-692.
185. Archimbaud E, Fenaux P, Reiffers J, et al. Granulocyte-macrophage colony-stimulating factor in association to timed-sequential chemotherapy with mitoxantrone, etoposide, and cytarabine for refractory acute mylogenous leukaemia. Leukemia 1993;7:372-377.
186. Atkinson K, Biggs JC, Downs K, et al. GM-CSF after allogeneic bone marrow transplantation: accelerated recovery of neutrophils, monocytes and lymphocytes. Aust N Z J Med 1991;21:686-692.
187. Gabriel DA, Shea T, Wiley J, et al. Use of prophylaxis with povidone-iodine against inducing factor for oral mucositis. J Pain Symptom Manage 1995;10:243-248.
188. Gabriel DA, Shea T, Wiley J, et al. Use of prophylaxis with povidone-iodine against inducing factor for oral mucositis. J Pain Symptom Manage 1995;10:243-248.
189. Gabriel DA, Shea T, Wiley J, et al. Use of prophylaxis with povidone-iodine against inducing factor for oral mucositis. J Pain Symptom Manage 1995;10:243-248.
antioxidants. Head Neck 1994;16:331-339.
192. Ahmed T, Engelking C, Szaloga J, et al. Propantheline prevention of mucositis from etoposide. Bone Marrow Transplant 1993;12:131-132.
193. Gafunkel AA, Tager N, Chau A, Chau S, Haze C, Galili D. Oral complications in bone marrow transplantation patients: recent advances. Isr J Med Sci 1994;30:120-124.
194. Plevova P, Blazek B. Intra-venous immunoglobulin as prophylaxis of chemotherapy-induced oral mucositis. J Natl Cancer Inst 1997;89:326-327.
195. Reilly RM, Domingo R, Sandhu J. Oral delivery of antibodies. Future pharmacokinetic trends. Clin Pharmacokinet 1997;32:313-323.
196. Schwartz PM, Dunegan JM, Marsh JC, Handschumacher RE. Allopurinol modification of the toxicity and antimicrobial activity of 5-fluorouracil. Cancer Res 1980;40:1885-1889.
197. Tsvaris N, Caragairuis P, Kosmidos P. Reduction of oral toxicity of 5-fluorouracil by allopurinol mouthwashes (see comments). Eur J Surg Oncal 1988;14:405-406.
198. Clark PI, Slevin ML. Allopurinol mouthwashes and 5-fluorouracil induced oral toxicity. Eur J Surg Oncal 1985;11:267-268.
199. Ahmman FR, Garewal H, Greenberg BR. Phase II trial of high-dose continuous infusion 5-fluorouracil with allopurinol modulation in colon cancer. Oncology 1986;43:83-85.
200. Loprinzi CL, Appelman HA, Nemunaitis J, et al. A controlled evaluation of an allopurinol mouthwash as prophylaxis against 5-fluorouracil-induced stomatitis. Cancer 1990;65:1879-1882.
201. Weiss GR, Green S, Hannigan EV, et al. The effect of granulocyte macrophage colony-stimulating factor on prevention of mucositis in pediatric patients undergoing allogeneic bone marrow transplantation. J Clin Oncal (R Coll Radiol) 1996;14:1061-111.
202. Dietz A, Konoj H, Maier H, et al. The problem of radiophobia and chemotheraphy-induced mucositis of the mouth and oropharynx. Carcinoma 1994;13:2341-2343.
203. McGaw WT, Belch A. Oral complications of chemotherapy. A preliminary report. Oral Surg Oral Med Oral Pathol 1989;67:154-161.
204. Foote RL, Liporini CL, Frank AR, et al. Randomized trial of a chlorhexidine mouthwash for alleviation of radiation-induced mucositis. J Clin Oncal 1994;12:2630-2633.
205. Raybould TP, Carpentier AD, Ferretti GA, et al. Emergence of gram-negative bacilli in the mouths of bone marrow transplant recipients using chlorhexidine mouthrinse. Oral Nurs Forum 1994;21:691-696.
206. Barkvoll P, Attramadul A. Effect of nystatin and chlorhexidine digluconate on Candida albicans. Oral Surg Oral Med Oral Pathol 1989;67:279-281.
207. Feber T. Management of mucositis in oral irradiation. Clin Oncal (R Coll Radiol) 1996;14:1061-111.
208. Foote RL, Liporini CL, Frank AR, et al. Randomized trial of a chlorhexidine mouthwash for alleviation of radiation-induced mucositis. J Clin Oncal 1994;12:2630-2633.
209. Raybould TP, Carpentier AD, Ferretti GA, et al. Emergence of gram-negative bacilli in the mouths of bone marrow transplant recipients using chlorhexidine mouthrinse. Oral Nurs Forum 1994;21:691-696.
210. Barkvoll P, Attramadul A. Effect of nystatin and chlorhexidine digluconate on Candida albicans. Oral Surg Oral Med Oral Pathol 1989;67:279-281.
211. Feber T. Management of mucositis in oral irradiation. Clin Oncal (R Coll Radiol) 1996;14:1061-111.
212. Dietz A, Konoj H, Maier H, et al. The problem of radiophobia and chemotheraphy-induced mucositis of the mouth and oropharynx. Carcinoma 1994;13:2341-2343.
213. Weiss GR, Green S, Hannigan EV, et al. A Phase I-II trial of pentoxifylline for the prevention of transplant-related toxicities following bone marrow transplantation. published erratum appears in Blood 1992;79:3397 (see comments) Blood 1991;78:1205-1211.
214. Clift RA, Bianco JA, Garewal HS, Koenig LM, et al. Emergence of gram-negative bacilli in the mouths of bone marrow transplant recipients using chlorhexidine mouthrinse. Oral Nurs Forum 1994;21:691-696.
215. Stockschlafer M, Kalls P, Peters S, et al. Intravenous pentoxifylline failed to prevent transplant-related toxicities in allogeneic bone marrow transplant recipients. Bone Marrow Transplant 1993;12:357-362.
216. Attal M, Huguet F, Robie H, et al. Prevention of regimen-related toxicities after bone marrow transplantation by pentoxifylline: a prospective, randomized trial. Blood 1993;82:732-736.
217. van der Jagt RH, Pari G, McDiarmid SA, et al. Effect of pentoxifylline on regimen related toxicity in patients undergoing allogeneic or autologous bone marrow transplantation (see comments). Bone Marrow Transplant 1994;13:203-207.
218. Ferra C, de Sanjose S, Lastra CF, et al. Pentoxifylline, ciprofloxacin and prednisone mouthwashes and 5-fluorouracil induced oral toxicity. Bone Marrow Transplant 1994;12:357-362.
219. Verdi CJ, Garewal HS, Haze C, Galili D. Oral complications in bone marrow transplantation patients. Oral Surg Oral Med Oral Pathol 1993;76:441-448.
220. Lopez J, Cancelas JA, Valino JM, et al. [Pentoxifylline is not useful in the prevention of toxicity associated with bone marrow transplantation] (see comments). Med Clin (Barc) 1994;102:485-488.
221. Keith JD, Rich SJ, Sonis ST, et al. An increased incidence of infectious toxicities in the hamster acute radiation model. Proc Am Soc Clin Oncol 1995;19:601A Abstract 2367.
222. Sonis ST, Costa JW, Jr., Evitts SM, et al. Effect of epidermal growth factor on ulcerative mucositis in hamsters that receive cancer chemotherapy. Oral Surg Oral Med Oral Pathol 1993;74:749-755.
223. Merris NL, Gutheil TL, Pelley B, et al. Keratinocyte growth factor (KGF) as a mucositis protectant: a randomized phase I trial. Proc Am Soc Clin Oncol 2000;19:603A Abstract 2374.
224. Janjan NA, Weissman DE, Pahule A. Improved pain management with daily nursing intervention during radiation therapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys 1992;23:647-652.
225. WHO handbook for reporting the results of cancer treatment. WHO Offset Publications, Geneva 1979; Series number 48. (Albany, N.Y.: sold by WHO Publications Centre USA).
226. DCTD, NCI, NIH, DHHS. Cancer Therapy Evaluation Program: Common Toxicity Criteria Version 2.0 (http://ctep.info.nih.gov/CTC3/ctc.htm), 1998.
227. Cengiz M, Ozary E, Ozturk D, et al. Sucralfate in the prevention of radiation-induced oral mucositis. J Clin Gastroenterol 1999;28:40-43.
228. Kannan V, Basp YP, Anthan N, et al. Efficacy and safety of granulocyte macrophage-colony stimulating factor (GM-CSF) on the frequency, severity and duration of chemotherapy-induced mucositis in the hamster acute radiation model. Proc Am Soc Clin Oncol 2000;19:601A Abstract 2367.
229. Keratinocyte growth factor (KGF) as a mucositis protectant: a randomized phase I trial. Proc Am Soc Clin Oncol 2000;19:603A Abstract 2374.
230. Janjan NA, Weissman DE, Pahule A. Improved pain management with daily nursing intervention during radiation therapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys 1992;23:647-652.
231. WHO hand book for reporting the results of cancer treatment. WHO Offset Publications, Geneva 1979; Series number 48. (Albany, N.Y.: sold by WHO Publications Centre USA).
232. DCTD, NCI, NIH, DHHS. Cancer Therapy Evaluation Program: Common Toxicity Criteria Version 2.0 (http://ctep.info.nih.gov/CTC3/ctc.htm), 1998.
233. Cengiz M, Ozary E, Ozturk D, et al. Sucralfate in the prevention of radiation-induced oral mucositis. J Clin Gastroenterol 1999;28:40-43.
234. Kannan V, Basp YP, Anthan N, et al. Efficacy and safety of granulocyte macrophage-colony stimulating factor (GM-CSF) on the frequency, severity and duration of radiation mucositis in patients with head and neck carcinoma. Int J Radiat Oncol Biol Phys 1997;37:1005-1010.
235. Roos M, Blaz M, Ghebene E, Bosso R. Effect of granulocyte-macrophage colony-stimulating factor on prevention of mucositis in head and neck cancer patients treated with chemoradiotherapy. J Chemother 1999;7:382-388.
236. Welte K, Reiter A, Mempel K, et al. A randomized phase-III study of the efficacy of granulocyte colony-stimulating factor in children with high-risk acute lymphoblastic leukemia. Berlin-Frankfurt-Munster Study Group. Blood 1996;87:3143-3150.
237. Loscalzi E, Pession A, Zecca M, et al. Use of recombinant human granulocyte colony-stimulating factor in children given allogeneic bone marrow transplantation for acute or chronic leukemia. Bone Marrow Transplant 1996;17:31-37.