Phosphorescent Imaging of Living Cells Using a Cyclometalated Iridium(III) Complex

Dik-Lung Ma¹*, Hai-Jing Zhong², Wai-Chung Fu¹, Daniel Shiu-Hin Chan¹, Hiu-Yee Kwan³, Wang-Fun Fong³, Lai-Hon Chung⁴, Chun-Yuen Wong⁴, Chung-Hang Leung²

1 Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China, 2 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China, 3 Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China, 4 Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People’s Republic of China

Abstract

A cell permeable cyclometalated iridium(III) complex has been developed as a phosphorescent probe for cell imaging. The iridium(III) solvato complex [Ir(phq)₂(H₂O)₂] preferentially stains the cytoplasm of both live and dead cells with a bright luminescence.

Introduction

Luminescence imaging of biological specimens using non-invasive probes is a basic technique in life and biomedical sciences for studying the morphologic characteristics of tissue at high resolution [1–5]. Since the cell is the primary structural and functional unit of all known living organisms, the morphological aberration of certain cell types can lead to various diseases such as sickle cell anemia [6,7]. Consequently, a great deal of attention has been invested into the development of luminescent probes for live cell imaging in recent years. Currently, organic dyes constitute the majority of the most commonly-used fluorescent probes [8]. However, organic dyes can be subject to various drawbacks, including small Stokes shift values and short luminescence lifetimes [9–11]. In this context, luminescent transition metal complexes have arisen as viable alternatives to organic fluorophores for sensing and imaging applications due to the following advantages: [12–36] (i) tunable excitation and emission maxima over the visible region without the need for lengthy synthetic protocols; (ii) tunable emission energies by modification of the ancillary ligands; (iii) large Stokes shift for facile separation of excitation and emission wavelengths and elimination of self-quenching; (iv) relatively long phosphorescence lifetimes that can mitigate a short-lived autofluorescence background through the use of time-resolved spectroscopy which offers high selectivity; and (v) good solubility in aqueous solution (containing <0.01% organic solvent).

In eukaryotes, the cytoplasm is an aqueous fluid that primarily consists of a transparent substance termed hyaloplasm or cytosol. Numerous life processes take place within the cytoplasm, including protein synthesis, metabolic reactions, and cellular signaling. However, only a few phosphorescent metal complexes have been developed for cytoplasmic staining. For example, Coogan and co-workers have reported a series of Re(I) complexes of type fac-[Re(bisim)L(CO)₃]⁺ containing highly lipophilic esters of 3-hydroxymethylpyridine as luminescence agents that selectively distribute in membranes and membrane structures within the cytoplasm of living cells [35]. Barton and co-workers investigated a series of phosphorescent ruthenium(II) complexes with different ancillary ligands that selectively stain the cytoplasm [37]. The groups of Li and Lo have developed a series of cationic iridium(III) complexes as phosphorescent probes for luminescence staining of the cytoplasm of living cells [29,38–40].

Iridium(III) complexes with d⁶ electronic structures often possess excellent photophysical properties such as tunable excitation and emission wavelengths (from blue to red), high luminescent quantum yields, and relatively long phosphorescence lifetimes [41,42]. Iridium complexes have received considerable attention in inorganic photochemistry [43–48], phosphorescent materials for optoelectronics [49–60], chemosensors [61–66], bio-labeling [67–69], live cell imaging [29,70–72], and in vivo tumor imaging [73]. As part of our continuous efforts, the cyclometalated iridium(III) solvato complex [Ir(ppy)₂(solvent)₂]³⁺ has been utilized as a selective luminescence switch-on probe for histidine/histidine-rich proteins and a dye for protein staining in sodium dodecyl sulfate polyacrylamide gels [74]. Subsequently, Li and co-workers reported iridium(III) solvato complex [Ir(ppy)₂(DMSO)₂]³⁺ as a luminescence agent for imaging live cell nuclei [75]. Thus, we were interested to investigate the effect of varying the extent of conjugation of the C-N co-ligand on the photophysical properties of this type of complex. We herein report the application of iridium(III) solvato complex [Ir(phq)₂(solvent)₂]³⁺ (1) for the detection
Figure 1. Chemical structures of iridium(III) solvato complexes 1–3 bearing different C N ligands.
doi:10.1371/journal.pone.0055751.g001

Figure 2. Luminescence photographs (upper panel) of (left) [Ir(phq)2(H2O)2]OTf (1), (middle) [Ir(ppy)2(H2O)2]OTf (3), and (right) [Ir(bzq)2(H2O)2]OTf (2) at 1 mM concentration in DMSO solution under UV-transillumination. Emission spectra (lower panel) of complex 1 (50 μM) in 20 mM Tris buffer (pH 7.4) and DMSO.
doi:10.1371/journal.pone.0055751.g002
of histidine/histidine-rich proteins and for luminescence imaging in cells. We demonstrate that the complex is successfully taken up by both living and dead cells and can function as a selective luminescent probe for cytoplasmic staining.

The luminescence response of complex 1 to various natural amino acids was investigated (Figure 3). Complex 1 is non-emissive in aqueous buffered solution in the absence of analyte. In the presence of histidine, complex 1 exhibits an intense phosphorescence emission at $\lambda_{\text{max}} = 598$ nm. No significant change in the emission of the complex 1 was observed upon the addition of other natural amino acids (Figure 3). This result indicates that complex 1 displays a high degree of selectivity for histidine over other amino acids. Furthermore, the emission maxima of 1 falls on the boundary of the near-infrared (NIR) “optical window” (600–900 nm), which is a region where the absorbance of photons by biological tissues decreases to a minimum [66]. This suggests that complex 1 may be potentially developed for in vivo imaging applications. By comparison, the previously reported iridium(III) complex $\text{Ir}([\text{ppy}]_2\text{solv})_2^+$ utilized for cellular staining emits green phosphorescence at a shorter wavelength of 505 nm in the presence of histidine, which is outside the optical window [74,75].

We next studied the luminescence response of complex 1 with bovine serum albumin (BSA) and calf-thymus DNA (ct DNA). Complex 1 displayed an intense luminescence upon interaction with the histidine-rich BSA, but was only weakly emissive in the presence of ct DNA (Figure 4). Furthermore, the change in luminescence intensity of complex 1 upon the addition of various amounts ($12.5 – 100$ μM) of histidine or BSA was investigated. The results showed that BSA or histidine were able to induce significant luminescence enhancements in complex 1 (Figure 5). In combination with previously published reports [74,76], we propose that the labile solvato co-ligands of complex 1 are displaced by the imidazole N-donor moieties of histidine residues via coordinative bond formation. This shelters the metal center within the hydrophobic environment of the protein, reducing solvent-mediated non-radiative decay of the excited state and thereby enhancing the phosphorescence of complex 1.

Figure 3. Emission spectra of complex 1 (50 μM) in 20 mM Tris buffer (pH 7.4) with various natural amino acids (200 μM). Group 1: L-alanine, L-arginine, L-asparagine, L-glutamine, L-threonine; Group 2: L-glycine, L-isoleucine, L-lysine, L-phenylalanine, L-proline, L-serine; Group 3: L-tryptophan, L-tyrosine, L-valine, L-glutamic acid, L-cysteine, L-methionine.

doi:10.1371/journal.pone.0055751.g003

Figure 4. Photograph image of complex 1 (50 μM) in absence (left) or presence of BSA (50 μM, middle) or ct DNA (50 μM, right) under UV-transillumination.

doi:10.1371/journal.pone.0055751.g004
Results and Discussion

The cyclometalated iridium(III) solvent complexes 1–3 (Figure 1) were synthesized according to previously reported methods (see Materials and Methods). To examine the effect of varying the extent of the conjugation of the CN co-ligand on the emissive color of the complexes, we first obtained luminescence photographs of the complexes in dimethyl sulfoxide (DMSO) (Figure 2A). Interestingly, complex 1 emits an intense orange luminescence in DMSO under UV-transillumination and was thus considered as a promising candidate for further cell imaging studies. On the other hand, luminescence of 1 was significantly suppressed in Tris buffer (Figure 2B). We rationalize that the reduced luminescence intensity of 1 in aqueous solution is due to non-radiative decay of the excited state of complex 1 by complex-solvent interactions. Presumably, this effect is less pronounced in DMSO, leading to a higher luminescence signal.

![Figure 5](image_url)

Figure 5. Luminescence intensity changes of complex 1 (50 μM) in 20 mM Tris buffer (pH 7.4) with various amounts of BSA or histidine (0, 12.5, 25, 50 and 100 μM). doi:10.1371/journal.pone.0055751.g005

![Figure 6](image_url)

Figure 6. Brightfield images of live HeLa cells (top left). Luminescence images of cells stained with complex 1 (10 μM) in DMSO/PBS (pH 7.4, 1:99 v/v) for 10 min at 37°C (top right) and then with Hoechst 33258 for a further 20 min (bottom left). Overlay of images in (b) and (c) (bottom right). doi:10.1371/journal.pone.0055751.g006
We also investigated the application of iridium(III) complex 1 for staining fixed cells. HeLa cells fixed with 4% paraformaldehyde exhibited strong intracellular luminescence in the cytoplasm upon incubation with complex 1 (Figure 8b). Similar to the results with live cells, only weak luminescence was observed in the nucleus of the fixed cells (Figure 8c,d). These results suggest that complex 1 is an effective luminescent cytoplasmic stain for both living and dead cells.

The practical application of complex 1 as a luminescent probe in living cells was investigated using confocal laser scanning microscopy (Figure 6). HeLa cells showed negligible background fluorescence. After incubation with 10 μM of 1 in DMSO/PBS (pH 7.4, 1:99, v/v) for 10 min at 37°C, an intense intracellular luminescence was observed particularly in the cytoplasm of the cells, suggesting that the iridium(III) complex is cytoplasmic permeable. No cell death was observed under the staining and imaging conditions used (Figure 7). Overlay images revealed that...
the luminescence pattern of complex 1 differed considerably from that of DNA-binding dye Hoechst 33258 (Figure 6d). Furthermore, a large signal ratio was observed between the nuclei and cytoplasm, indicating that complex 1 prefers to stain the cytoplasmic regions of the cells. We presume that the observed luminescence enhancement of complex 1 is due to its interactions with histidine or histidine-rich proteins in the cellular cytoplasm. These results indicate that complex 1 acts as a luminescent imaging agent for live cells without requiring prior membrane permeabilization.

Conclusions

In conclusion, we have presented the cytoplasmic permeable iridium(III) complex 1 as a phosphorescent dye for live and fixed cell imaging. Complex 1 shows a bright phosphorescence in living cells, and effectively enters and stains the cytoplasm. Given that the emission properties of metal complexes can be fine-tuned through modifications of auxiliary ligands, we envision that further improvements can be achieved in the application of luminescent iridium(III) complexes as cellular imaging probes.

Materials and Methods

Materials

Iridium chloride hydrate (IrCl₃.xH₂O) was purchased from Precious Metals Online. DMSO, L-alanine, L-arginine, L-asparagine, L-glutamine, L-glycine, L-isoleucine, L-lysine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-glutamic acid, L-cysteine, L-methionine, L-histidine, bovine serum albumin, and calf thymus DNA were obtained from Sigma (St. Louis, MO). Hoechst 33258 and cell culture reagents were purchased from Invitrogen (Carlsbad, CA).

Synthesis of [Ir(C^N)2(H₂O)₂]OTf (1–3, where OTf = trifluoromethanesulfonate)

The following complexes were prepared using literature methods: [Ir2(ppy)2(C18)] [77], [Ir2(bzq)2(C18)] [77], [Ir2(phpq)2(C18)] [78], [Ir(ppy)(H₂O)₂]OTf [79], [Ir(phpq)(H₂O)₂]OTf [76], and [Ir(bzq)(H₂O)₂]OTf [76].

References

1. Evans CL, Potma EO, Pouto/haag M, Cote D, Lin CP, et al. (2005) Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci U S A 102: 16807–16812.
2. Huisken J, Swoyer J, Del BF, Winbrod J, Stelzer EHH. (2004) Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy. Science 303: 1007–1010.
3. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3: 793–796.
4. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300: 82–86.
5. Yu M, Li F, Chen Z, Hu H, Zhan C, et al. (2009) Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors. Anal Chem 81: 950–955.
6. Ballas SK, Mohandas N (2004) Sickle Cell Micro rheology and Sickle Blood Rheology. Microcirculation 11: 209–225.
7. Horner MK (1981) Sickle cell anaemia as a rheologic disease. Am J Med 70: 288–298.
8. Yang Y, Zhao Q, Feng W, Li F (2012) Luminescent Chemodosimeters for Bioimaging. Chem Rev dx.doi.org/10.1021/cr2004103.
9. Kuil J, Steunenberg P, Chin PTK, Oldenburg J, Jalink K, et al. (2011) Peptide-Functionalized Luminescent Iridium Complexes for Lifetime Imaging of CXCR4 Expression. ChemBioChem 12: 1097–1103.
10. Martin RM, Leonhardt H, Cardoso MC (2005) DNA labeling in living cells. Cytometry, Part A 67A: 45–52.
11. Pfleger GP, You Y-H, Basarbatina A (2005) Mutations induced by ultraviolet light. Mutat Res 571: 19–31.
12. Guerchais V, Fillaut J-L (2011) Sensory luminescent iridium(III) and platinum(II) complexes for cation recognition. Coord Chem Rev 255: 2448–2457.
13. You Y, Lee S, Kim T, Ohkubo K, Chae W-S, et al. (2011) Phosphorescent Sensor for Biological Mobile Zinc. J Am Chem Soc 133: 18326–18342.
14. Lee P-K, Law WH-T, Liu H-W, Lo KK-W (2011) Luminescent Cyclometalated Iridium(III) Polypyridyl Di-2-picolylamine Complexes: Synthesis, Photophysics, Electrochemistry, Cation Binding, Cellular Internalization, and Cytotoxic Activity. Inorg Chem 50: 8570–8579.
15. Louie M-W, Liu H-W, Lam MH-C, Lau T-C, Lo KK-W (2009) Novel Luminescent Tricarbonyl(ene)Iridium(I) Polypyridyl Tyramine-Derived Dipolyamidylamine Complexes as Sensors for Zinc(II) and Cadmium(II) Ions. Organometallics 28: 4297–4307.
16. Fernandez-Moreira V, Thorp-Goodwin FL, Coogan MP (2010) Application of d6 transition metal complexes in fluorescence cell imaging. Chem Commun 46: 180–202.
17. Zhao Q, Huang C, Li F (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40: 2508–2524.
18. Lo KK-W, Choi AW-T, Law WH-T (2012) Applications of luminescent inorganic and organometallic metal complexes as biomedical and cellular probes. Dalton Trans 41: 6021–6047.
19. Lo KK-W, Hui W-K, Chung C-K, Tsang KH-K, Lee TK-M, et al. (2006) Luminescent transition metal complex bionanotubes. Coord Chem Rev 250: 1724–1736.
20. Yang WV-W, Wong KM-C (2011) Luminescent metal complexes of d6, d8, and d10 transition metal ions. Coord Chem Rev 256: 1762–1785.
47. Tsuboyama A, Takiguchi T, Okada S, Osawa M, Hoshino M, et al. (2004) A
44. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very
43. Ikai M, Tokito S, Sakamoto Y, Suzuki T, Taga Y (2001) Highly efficient
42. Steunenberg P, Ruggi A, van dBNS, Buckle T, Kuil J, et al. (2012)
40. Lee P-K, Liu H-W, Yiu S-M, Louie M-W, Lo KK-W (2011) Luminescent
33. O’Connor NA, Stevens N, Samaroo D, Solomon MR, Marti AA, et al. (2009) A
31. Gill MR, Thomas JA (2012) Ruthenium(ii) polypyridyl complexes and DNA-
30. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
29. Zhao Q, Yu M, Shi L, Liu S, Li C, et al. (2010) Cationic Iridium(III) Complexes
28. Tian X, Gill MR, Canto´n I, Thomas JA, Battaglia G (2011) Live Cell
26. Yang T, Xia A, Liu Q, Shi M, Wu H, et al. (2011) Polymer nanoparticles with
25. Koo C-K, So LKY, Wong K-L, Ho Y-M, Lam Y-W, et al. (2010) Inside Cover:
24. Wu P, Wong EL-M, Ma D-L, Tong GS-M, Lo KK-W, et al. (2009) A
21. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
19. Tian X, Gill MR, Canto´n I, Thomas JA, Battaglia G (2011) Live Cell
18. Yang T, Xia A, Liu Q, Shi M, Wu H, et al. (2011) Polymer nanoparticles with
17. Chang J, McMillan-Jones J, Chen X-L, Zhao Q, Shi L, et al. (2011) A
16. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very
15. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
14. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very
13. Chiou L-B, Liu H-F, Wu H-W, et al. (2011) Covalent Functionalization of
12. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very
11. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
10. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
9. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
8. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
7. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
6. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
5. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
4. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
3. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
2. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
1. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)
0. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, et al. (2008)

Cell Imaging
75. Li C, Yu M, Sun Y, Wu Y, Huang C, et al. (2011) A Nonemissive Iridium(III) Complex That Specifically Lights-Up the Nuclei of Living Cells. J Am Chem Soc 133: 11231–11239.
76. Man BY-W, Chan H-M, Leung C-H, Chan DS-H, Bai L-P, et al. (2011) Group 9 metal-based inhibitors of [small beta]-amyloid (1–40) fibrillation as potential therapeutic agents for Alzheimer’s disease. Chem Sci 2: 917–921.
77. Lowry MS, Hudson WR, Pascal RA, Jr., Bernhard S (2004) Accelerated luminophor discovery through combinatorial synthesis. J Am Chem Soc 126: 14129–14135.
78. Kwon T-H, Oh YH, Shin I-S, Hong J-I (2009) New approach toward fast response light-emitting electrochemical cells based on neutral iridium complexes via cation transport. Adv Funct Mater 19: 711–717.
79. McDaniel ND, Coughlin FJ, Tinker LL, Bernhard S (2008) Cyclometalated Iridium(III) Aquo Complexes: Efficient and Tunable Catalysts for the Homogeneous Oxidation of Water. J Am Chem Soc 130: 210–217.