Recreation Resource Impacts of Pantai Kerachut Trail in Penang National Park

S N Bookhari1,2, S A Abdullah1 and M K Hussein3

1 Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
2 Centre of Studies for Parks & Amenity Management, Faculty of Architecture Planning & Surveying, Universiti Teknologi MARA, 40450 UiTM Shah Alam, Selangor, Malaysia.
3 Department of Landscape Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

E-mail: noorbaizura212@gmail.com

Abstract. Recreation resources often referred to as the combination of natural resources essential to carry on a variety of recreational activities for humankind. Being one of the most-visited destinations among visitors who are seeking outdoor experience, Penang National Park (PNP) faces a substantial impact on its recreation resources. Among the common issue arises are the impacts on the quality of the routing system, particularly on sites like Pantai Kerachut Trail. The impacts cause undesirable change and degrade the components of recreation resources such as soil, vegetation, wildlife and water resources of the natural area. This issue threatens its integrity to maintain the benefits of recreation function and raises conflict between the visitors and the management of this area to reach its sustainability. Thus, an assessment has been conducted to evaluate the current status of recreation resource impacts in Pantai Kerachut Trail. A total of 75 sampling points were collected along Pantai Kerachut Trail. The methods of Rapid Survey Technique, Census Sampling Technique, and Cross-sectional measurement were used to determine the major factors influencing the impact. This investigation also identifies the relationship between impact and inventory parameters caused by recreational activities on the trail. Findings reveal that the current status of soil (soil erosion and soil drainage); and vegetation (root exposure, loss of vegetation, decrease in the percentage of canopy cover and vegetation density) along Pantai Kerachut Trail are at the moderate level of impact. Meanwhile, water and wildlife are confirmed at a minimal level of impact. The outcomes as such could be advantageous for the management to ensure the sustainability of the trail system in accommodating visitation while enhancing protection towards recreation resources along Pantai Kerachut Trail.

Keywords: Recreation ecology, recreation resource impacts, trail impact assessment

1. Introduction

The national park is considered as one of the national icons in protecting the natural, ecological and cultural assets.[1, 2] According to the Union for Conservation of Nature (IUCN) national park categorized under Category II of protected areas with the main objective to protect natural biodiversity along with its underlying ecological structure and supporting environmental processes, and to promote education and recreation.[3] Meanwhile, the combination of these natural resources often referred to as recreation resources offer essential recreational opportunities beneficial for visitors’ participation. The Outdoor Recreation Resource Review
Commission (ORRRC) described recreation resources as “any available land, water resources and management of wildlife which compatible for outdoor recreation.”[4, 5] In 2012, Penang National Park (PNP) and ten other protected areas under the management of the Department of Wildlife and National Parks (DWNP) attracted 1.3 million tourists which represents a 22.5% increase compared to 2011 and evidenced by 108,276 visits to PNP [6]. However, such visitation has contributed impacts to all recreation resource components within the natural setting and this credit directed the establishment of recreation ecology field which connected outdoor recreation and ecological impacts.[7, 8, 9, 10]

Realizing the importance of linkages between recreation and resources, quality and well-managed trail system is crucial.[11] Significantly, there are three major functions of trails: protecting the resource by concentrating traffic on a hardened track, providing recreational opportunities along aesthetically trail routes and facilitate recreational use by providing a transportation network.[12, 13] For visitors, they used trails to reach the attractive spot in the park and also provide safe access for the visitor to pursue recreational activities such as jungle trekking, appreciation to the natural and scenic environment as well as to observe wildlife.[7] Hence, trail settings in nature areas are capable to improve both ecological conservation efforts and the quality and visitor experiences.[14, 15] But the situation faced by most of the managers when they provide accessibilities for visitors, trails degradation is widespread and the conflict to conserve flora, fauna, and natural ecological systems are arising especially for future generations. It worsens when the visitation contributed to adverse recreation resource impacts namely as impacts on soil, vegetation, wildlife and water. Resulted in developing systems to monitor visitor impacts and strategies to alleviate them when they are considered unacceptable.[16, 17]

Recreation activities that cause undesirable change to the ecosystem is called recreation resource impacts and these impacts include vegetation loss and compositional changes, soil compaction, erosion, muddiness, exposure of tree roots, trail widening, and the proliferation of visitor-created side trails.[18, 12, 19, 20] However, soil erosion is the only impact indicator that does not recover naturally over time compared to disturbed vegetation and compacted soil whereby requires costly management actions.[22, 23] All these issues need to be addressed to ensure the fulfilment of dual responsibilities in managing natural areas such as national park compromise the resources sustainability and opportunities for visitors to gain high quality of experiences.[7, 24]

To understand this situation, exploring recreation resource impacts mainly vital because trail-related recreation activities such as hiking and wildlife viewing are popular ecotourism activities, and because trails receive some of the most intensive visitor use within national parks.[25] The outcome of this research contributes to determining the causes and consequences of recreation resource impacts which are challenging and highly site-specific, with the relative balance of many factors depending on environmental, management and use-based characteristics. Thus, recreation resource impacts are a concern for managers because the trail may become difficult or unsafe, aesthetic aspects of protected areas may be diminished, and because substantial funding or staffing may be required to repair or maintain trails.

2. Purpose of Study
The objectives of this study are (1) to identify the condition of Pantai Kerachut Trail and (2) to assess recreation resource impacts on soil, vegetation, wildlife and water along the most popular trail in a national park.
3. Penang National Park

Penang National Park (PNP) is the smallest national park in Peninsular Malaysia with a total coverage area of 2,563 hectares and the only considerable natural setting left which makes up 0.04% of the Penang Island size.[6, 26] Located at the very northwest of the island (coordinates 5° 27’U, 100°12’T) (Figure 1), this is the only national park with five natural habitats found within a single location namely lowland dipterocarp forest, hill dipterocarp forest, mangrove forest, sandy beaches and meromictic lake (only in Penang, Malaysia and Victoria, Australia). The highest peak is the 464-meter high Bukit Batu Hitam. Further, there are recorded more than 1000 species of plants which dominated by the Family Dipterocarpaceae, Leguminaceae, Apocynaceae, Anacardiaceae and Moraceae; 271 species of wildlife, with some nearly driven to extinction.[27]

![Figure 1 Peninsular Malaysia, Penang and Penang National Park](image)

Formerly, PNP was known as Acheh Beach Forest Reserve which gazetted in 1928 and used for logging up until 1996. Due to overwhelm concerns from the Federal and State governments, NGOs and the local community on the importance of preserving biodiversity in a metropolitan area, Penang National Park was declared a National Park on 10th April 2003 under the National Park’s Act 1980 virgin forest.[28, 29] The main objective of its establishment is to preserve and protect wildlife, plants and interests in terms of geology. Ancient history, history, ethnicity and other interests of science and legislation.[30] Besides, the early establishment of PNP triggered by the consent in preserving and protecting “flora and fauna, geological, archaeological, historical, ethnological features, scientific values and scenic interest”.

Due to its status as a national park and the vicinity is considered one of the most developed state in Peninsular Malaysia, the Penang National Park is one of the prominent ecotourism destinations in Malaysia managed to attract significant number of visitors every year with various attractions such as jungle trekking, camping, swimming, sightseeing, etc. Thus, the recognition of the trail conditions and their level of degradation significantly valuable for PNP management in the context of proper management of visitor traffic and preventing further trail degradation.[9]
4. Methodology

Penang National Park currently has two main nature trails which starting from the main entrance which are Pantai Kerachut Trail (±3.4km) (Figure 2) and Pantai Teluk Kampi Trail (±4.9km). There are also other trails interconnected with the main trails namely Bukit Batu Hitam Trail (±6km), Muka Head Light House Trail (±4.7km), Monkey Beach Trail (±3.4km), Teluk Aling Trail (±2km), Sungai Tukun Trail (±940m) and Pasir Pandak Trail (±490m). Unfortunately, the trail to Monkey Beach is closed for maintenance due to landslide. For this study, only Pantai Kerachut Trail has been selected for the assessment on top of suggested by the PNP management as the existing of important biodiversity hotspot throughout the trail.

Figure 2 Pantai Kerachut Trail

Primarily, this study involves three methods. Rapid Survey Technique was conducted to collect data with 50 meters [13, 31] distance from one sample point to another, Census Sampling Technique involved census problem areas at the entire trail system and Cross-Sectional Measurement was used to understand the changes in trail depth, width and the relationship between both.[32] The data collection is based on the researcher’s visibility and confirmed by the PNP Park Ranger. It started at sample point number one located at the main entrance of Pantai Kerachut Trail, then rapidly continuous similar technique until the last sample point at the Pantai Kerachut Guard Post.

The content of inventory form has been sought by an expert judgement before the data collected on-site. The inventory form comprised of ecological aspect parameter that were divided into some sections focusing on impacts on soil, vegetation, wildlife and water; trail width, transect line depth, types of forest, soil profile slope and overall trail condition [19, 7, 33, 9]. Each of the chosen parameters rated into four classes respectively and later were analysed statistically using adapted interpret mean score in Table 1 to firm the classification.
5. Results and Discussion

5.1. The trail condition based on trail width and trail depth

A total of 75 points has been sampled from the whole length (3.734km) of the Pantai Kerachut Trail. Trail width and depth has been described as a part of the trail corridor which directly support the majority of recreation traffic in natural settings. But it is not applicable when the sample point not situated on the trail surface.[34] Commonly trail surface problems are excessive tread incision or soil erosion, excessive wet or muddy soil, excessive tread widths, the excessive occurrence of exposed roots, occurrence of running water, and occurrence of multiple or secondary treads.[35]

The result shows that readings for trail width are ranging from 37cm to 182cm throughout the trail (Table 2). Based on the record, 14.7% (11 points) of trail surface are paved by interlocking materials and only 1.3% (1 point) stated reading at 37cm which is below than assuming a conservative average trail width of two feet (60cm).[7] Significantly, 60% (45 points) marked the reading more than 90cm of width (excluded reading for pavement area) and this represented as excessive trail width because the trail exhibits a greater than 3 foot (90cm) expansion in width that is clearly attributable to recreational uses, such as walking around tree falls, wet or muddy areas, eroded areas, multiple treads, etc. [36, 37]. This result then supported by a reading of trail depth which calculated from data collected in three different sections of the trail which are the middle trail depth (D), the right side of trail depth (D1) and left side of trail depth (D2).

Mean score	Level
1.00 – 2.00	High
2.01 – 3.00	Medium
3.01 – 4.00	Low

D – middle trail depth reading
D1 – right side of trail depth reading
D2 – left side of trail depth reading

It is proven that the mean depth at the middle of the trail is considered severe (6cm) and almost equal with the right (4cm) and left (5cm) readings. All sections have minimum trail depth measurement which 1cm (excluded readings for 0cm pavement surface), while all sections are not much different in the maximum measurement of trail depth but the middle section still records the highest trail depth (37cm). None of these readings exceeded 100cm because once the trail reaches such depth it is considered highly eroded.[37]
5.2. The overall assessment of recreation resource impacts
The recreation resource impacts on vegetation (ten parameters), soil (four parameters), wildlife (four parameters) and water (four parameters) were assessed (Table 3). In terms of vegetation, the results indicated that impact classified at “Medium Level” is root exposure (Mean 2.56), canopy coverage (Mean 2.97) and vegetation composition (Mean 3.00). Meanwhile, the remaining seven parameters maintained at “Low Level” of impact. Based on the assessment, root exposure condition along Pantai Kerachut Trail rated “severe” (73.3%) because three-quarters or more of major roots are exposed more than 30cm from the base of the tree and soil erosion obvious.[38, 37] This followed by moderate level of canopy coverage (97.3%) since light intensity ranging from 26% to 50% and vegetation composition also moderate level generally because the trampling not so intense where most of the plants are not shifted to the adjacent of the trail.[39, 33, 40]

Table 3. The parameter for recreation resource impacts of Pantai Kerachut Trail

Impact	Parameter	Scale	Mean	Level
Vegetation	Root exposure	Total expose (%):		
		Severe (21.3%)	2.56	Medium
		Moderate (73.3%)		
		No/Slight (5.3%)		
Loss of vegetation	Clear (0%)	Severe (1.3%)	3.01	Low
		Moderate (96%)		
Canopy coverage	Total uncovered (%)	Severe (2.7%)	2.97	Medium
		Moderate (97.3%)		
	Dark (0%)			
Damages to vegetation	High (0%)	Severe (0%)	3.79	Low
		Moderate (21.3%)		
		Minimal (78.7%)		
Tree stumps, fallen trees and	High (0%)	Severe (1.3%)	3.84	Low
lean trees		Moderate (13.3%)		
		Minimal (85.3%)		
Vegetation density	Clear (0%)	Severe (0%)	3.09	Low
		Moderate (90.7%)		
		Compact (9.3%)		
Vegetation composition	High (0%)	Severe (0%)	3.00	Medium
		Moderate (100%)		
		Minimal (0%)		
Unique and endangered species	Clear (0%)	Severe (0%)	3.99	Low
		Moderate (1.3%)		
Impact	Parameter	Scale	Mean	Level
-----------------	------------------------------------	------------------------------	------	-------
Impact	Compact (98.7%)			
Mechanical damage	High (0%)		3.95	Low
	Severe (0%)			
	Moderate (5.3%)			
	Minimal (94.7%)			
Exotic species and weeds	High (0%)		4.00	Low
	Severe (0%)			
	Moderate (0%)			
	Minimal (100%)			
Soil Problem areas	Totally exposed (4%)		3.71	Low
	Trail widening (2.7%)			
	Gully (12%)			
	Muddy (81.3%)			
Soil erosion	High (2.7%)		2.83	Medium
	Severe (21.3%)			
	Moderate (66.7%)			
	Negligible (9.3%)			
Soil drainage	Bad (1.3%)		2.83	Medium
	Average (24%)			
	Moderate (65.3%)			
	Good (9.4%)			
Soil exposure	Mineral soil (26.7%)		2.56	Medium
	Organic soil (25.3%)			
	Organic litter (13.3%)			
	Forest litter (34.7%)			
Wildlife	Wildife disturbance		4.00	Low
	High (0%)			
	Severe (0%)			
	Moderate (0%)			
	None/Minimal (100%)			
Wildlife	Harvesting		4.00	Low
	High (0%)			
	Severe (0%)			
	Moderate (0%)			
	None/Minimal (100%)			
Loss or modification of wildlife habitats	High (0%)	4.00	Low	None/Minimal (100%)
Wildlife dependency on food	High (0%)	4.00	Low	None/Minimal (100%)
Impact and Parameter Analysis

Impact	Parameter	Scale	Mean	Level
Water	Contamination of useable water resources	High (0%)	3.96	Low
		Severe (0%)		
		Moderate (4%)		
		None/Minimal (96%)		
	The presence of bacteria	High (0%)	4.00	Low
		Severe (0%)		
		Moderate (0%)		
		None/Minimal (100%)		
	Water quality	High (0%)	4.00	Low
		Severe (0%)		
		Moderate (0%)		
		None/Minimal (100%)		
	Solid suspended matter	High (0%)	4.00	Low
		Severe (0%)		
		Moderate (0%)		

Impacts on soils occurred when there are changes in soil compaction, chemical and microbiological properties and soil loss.[41] Majority of the parameters for soil reached “Medium Level” classification with soil exposure (Mean 2.56), soil erosion (Mean 2.83) and soil drainage (2.83). Soil exposure clearly understood as the ground condition with very little or no organic litter (partially decomposed leaf, needle, or twig litter) or vegetation cover within the site boundaries.[37] Mineral soil surface (26.7%) and dark organic soil (25.3%) represented mostly along the trail. It is supported with soil drainage parameter also moderate (65.3%) due to the existence of multi-coloured horizons, at least with one that is blue or grey, as a result of poor drainage. Thus, the soil erosion completed the link when rated as moderate (66.7%) because of some deepening about 30cm and widening from the range 25 to 75cm of trail soil may scatter along trail edge.

Nonetheless, the impact on wildlife which resulted in “Low Level” on wildlife disturbance, wildlife harvesting, loss or modification of wildlife habitats and wildlife dependency on food. Similarly, impact on water shows “Low Level” of all parameters such as contamination of useable water resources in natural areas due to erosion of riverbanks and camping activities, the presence of bacteria from food leftover and domestic animal waste, water quality changes and the presence solid suspended matter. However, a constant assessment should be done by the management (DWNP) to ensure the sustainability of these recreation resources and strategies on minimizing unacceptable impacts. The results show that the current condition of recreation resources along Pantai Kerachut for impacts on soil was moderately damaged and lightly damaged with minimal disturbance for impacts on vegetation. No substantial impacts collected for wildlife and water resource. Therefore, the integrated current efforts by the management with the support of responsible visitors will lead to the improvement of healthy recreation resources and high-quality recreational experiences.

6. Conclusion

As a conclusion, since PNP is one of the most-visited destinations among who are seeking outdoor experience, it has the potentials to face many threats and challenges especially from
its precious clients – the visitor. Hence, this kind of assessment specifically to comprehend the range of recreation resource impacts derived from common activities that visitors did when they visited a national park. Further studies such as this are important in maintaining the standards of quality to ensure the sustainability of the trail in accommodating visitation to meet the user’s expectation as this will reflect their memories and experience while enhancing natural resource protection along Pantai Kerachut Trail.

References
[1] Castley JG. 2012 An international perspective on tourism in national parks and protected areas. 6th National Wilderness Conf - Wilderness, Tourism National Park.
[2] Hashim Z, Abdullah SA and Nor SM. 2019 The Perceptions of Local Communities toward Penang National Park. IOP Conf Ser Earth Environ Sci. 239(1).
[3] Dudley N. 2008 Guidelines for applying protected area management categories. Vol. 46, IUCN.
[4] Siehl GH. 2008 The Policy Path to the Great Outdoors: A History of the Outdoor Recreation Review Commission.
[5] Olson BA. 2010 Paper trails: The Outdoor Recreation Resource Review Commission and the rationalization of recreational resources. Geoforum. 41(3):447–56.
[6] Kaffashi S, Radam A, Shamsudin MN, Yacob MR and Nordin NH. 2015 Ecological Conservation, Ecotourism, and Sustainable Management: The Case of Penang National Park. 2345-70.
[7] Leung YF and Marion JL. 2000 Recreation impacts and management in wilderness: A state-of-knowledge review. Wilderness Sci a Time Chang Wilderness Ecosystem Threat Management. 23–48.
[8] Daniels ML and Marion JL. 2005 Communicating Leave No Trace Ethics and Practices: Efficacy of Two-Day Trainer Courses. Journal of Park Recreation Administration. 23(4):1–19.
[9] Tomczyk AM and Ewertowski M. 2011 Degradation of recreational trails, Gorce National Park, Poland. Journal of Maps. 5647(September):507–18.
[10] Dragovich D. 2012 Managing Natural Resources in Protected Areas : The Challenge of Changing Recreational Demands in National Parks. International Conference of Agriculture, Chemical and Environmental Science.
[11] Atik M, Sayan S, Karagüzel O and Emrah Y. 2011 Trail Impact Management Related to Vegetation Response in Termessos National Park , in Turkish Mediterrane.
[12] Leung YF and Marion JL. 1996 Trail degradation as influenced by environment factors: A state-of-the-knowledge review. Journal of Soil and Water Conservation. 51(2):130–6.
[13] Marion JL and Leung YF. 2001 Trail Resource Impacts and An Examination of Alternative Assessment Techniques. Vol. 19, Journal of Park and Recreation Administration. p. 17–37.
[14] Hill W and Pickering C. 2009 Manual for Assessing Walking Tracks in Protected Areas.
[15] Oishi Y. 2013 Toward the improvement of trail classification in national parks using the recreation opportunity spectrum approach. Environmental Management. 51(6):1126–36.
[16] Monz CA. 1998 Monitoring Recreation Resource Impacts in Two Coastal Areas of Western North America: an Initial Assessment. USDA For Serv Proc RMRS-P-4. I:117–22.
[17] Monz CA, Cole DN, Leung YF and Marion JL. 2010 Sustaining visitor use in protected areas: Future opportunities in recreation ecology research based on the USA experience. Environmental Management. 45(3):551–62.
[18] Tyser RW and Worley CA. 1992 Alien Flora in Grasslands Adjacent to Road and Trail Corridors in Glacier National Park, Montana (U.S.A). Conservation Biology. 6(2).
[19] Hammitt WE and Cole DN. 1998 Wildland Recreation: Ecology and management. Wiley-Interscience. 15(2):290.
[20] Marion JL. 2006 Guidance for Managing Informal Trails. 12.
[21] Jewell MC and Hammitt WE. 2000 Assessing soil erosion on trails: a comparison of techniques. Wilderness Science in a Time of Change Conference. 133–40.
[22] Marion JL and Olive N. 2006 Assessing and understanding trail degradation: Results from Big South Fork National River and Recreational Area. National Park Service.
[23] Wenzel K and Langen T. 2011 Clarkson University Trail Network Impact Assessment and Management Plan.
[24] Moore RL, Leung YF, Matisoff C, Dorwart CE and Parker A. 2012 Understanding users’ perceptions of trail resource impacts and how they affect experiences: An integrated approach. Landscape Urban Plan. 107(4):343–50.
[25] Marion JL and Linville R. 2000 Trail Impacts and Their Management in Huascarán National Park, Andes Mountains, Peru. Mt Inst Virginia Tech Coop Park Stud Unit. (0324):1–19.
[26] Abdullah AR, Weng CN, Afif I and Fatah A. 2018 Ecotourism in Penang National Park : a Multi-Stakeholder Perspective on Environmental Issues (Ekopelancongan Di Taman Negara Pulau Pinang : Perspektif Pemegang Taruh Terhadap Isu-Isu Alam Sekitar). Journal of Business and Social Development. 6(4):70–83.
[27] Oyedele DT, Sah SAM, Zainudin MSMM, Ibrahim WMMW and Latip NSA. 2019 Statistical analysis of topographic characteristics and nest-site preference of the White-Bellied Sea-Eagle (Haliaeetus leucogaster) in Penang National Park, Malaysia. *Songkranakarin Journal of Science and Technology*. 41:899–906.

[28] Samdin Z and Aziz YA. 2016 The Role of Socio-demographic and Economics on Ecotourism Activities at the Penang National Park, Malaysia: a Services Marketing Perspective. *The 2nd International Research Symposium in Service Management*.

[29] Hashim Z, Abdullah SA and Nor SM. 2017 Stakeholders analysis on criteria for protected areas management categories in Peninsular Malaysia. *IOP Conf Ser Earth Environ Sci.* 91(1).

[30] PERHILITAN, EPU, DANCED. 1996 Capacity Building and Strengthening of the Protected Areas system in Peninsular Malaysia.

[31] Hill W and Pickering C. 2009 Comparison of Condition Class, Point Sampling and Track Problem Assessment Method in Assessing the Condition Tracks in New South Wales. *Sustainable Tourism*. 36 p.

[32] Way P. 2004 Integrated trail impact assessment and monitoring to meet ecosystem research and monitoring needs. (3).

[33] Cole DN. 2004 Impacts of Hiking and Camping on Soils and Vegetation: A Review. *Environ Impacts Ecotourism*. 41–60.

[34] Wimpey JF and Marion JL. 2010 The influence of use, environmental and managerial factors on the width of recreational trails. *Journal of Environmental Management*. 91(10):2028–37.

[35] Leung YF. 1998 Assessing and Evaluating Recreation Resource Impacts: Spatial Analytical Approaches.

[36] Leung YF and Meyer K. 2004 Research to Support Development of Resource Indicators and Standards for Visitor Experience and Resource Protection (VERP) Implementation in Boston Harbor Islands, A National Park Area. Vol. Final Report.

[37] Porucznik J. 2009 Recreation site and trail impact assessment methods and procedures for bouldering areas in Little Cottonwood Canyon.

[38] Marion JL. 1991 Developing A Natural Resource Inventory and Monitoring Program for Visitor Impacts on Recreation Sites: A procedural manual.

[39] Cole DN. 1994 The Wilderness Threats Matrix: A Framework for Assessing Impacts. *USDA For Serv.* (April).

[40] Kim MK. 2010 Monitoring vegetation change by using remote sensing: An examination of visitor-induced impact at Cadillac Mountain, Acadia National Park. *Statistics* (Ber).

[41] Barros A, Gonnet J and Pickering C. 2013 Impacts of informal trails on vegetation and soils in the highest protected area in the Southern Hemisphere. *Journal of Environmental Management*. 127:50–60.