SUPPLEMENTARY DATA

DISCUSSION

To the best of the author’s knowledge, only six studies, largely detailed in the Supplementary Data Tables 1 and 2, have examined the effects of RF on adults’ respiratory mechanics (Abdel-aziz & Ibraheem, 2008; Duncan et al., 1990; Moosavi et al., 2007; Siddiqui et al., 2005; Singha Roy & Bandyopadhyay, 2016; Subhan et al., 2006).
Reference	Duncan et al. (1990)	Siddiqui et al. (2005)	Subhan et al. (2006)	Moosavi et al. (2007)	Abdel-aziz & Ibraheem (2008)	Singha Roy & Bandyopadhyay (2016)					
Town (country)	.Kuala Lumpur (Malaysia)	.Karachi (Pakistan)	.Karachi (Pakistan)	.Tehran (Iran)	.Assiut (Egypt)	.Kolkata (India)					
Ramadan year	.NR	.2001	.2001	.2000	.2006	.2014					
Study timing	.1400 to 1600	.1400 to1600	.After 1100	.Between 1400 and 16h00	.1200 to1600	.1400 to 1700	.2-4 hours before breakfast	.1200 to 1400			
Average ambient temperature	.23°c	.NR	.20-23°c	.NR	.32-36°c	.NR					
Average ambient pressure	.758 mmHg	.NR	.NR	.NR	.NR	.NR					
Evaluation sessions’ number	.MR2-3	.One month AR	.10 days BR	.10 days BR	.10 days BR	.15 days BR	.10 days AR	.10 days BR	.15 days AR	.10 days BR	.10 days BR
Elapsed fasting time	.NR	.NR	.NR	.NR	.10-12 h	.NR					

STUDY CHARACTERISTICS

Ethnic	Malay	Pakistani	Pakistani	Iranian	Arab	Indian	
Sample size (Male/Female)	.13/0	.46/0	.46/0	.77/40	.32/0	.50/0	
Sample size calculation	.NR	.NR	.NR	.Unknown equation	.NR	.Method of Das & Das (1998)	
Randomization	.NR	.NR	.NR	.Simple method	.NR	.NR	
Recruitment method	.NR	.Convenience sample: personal request from staff and students local university	.Convenience sample: personal request from staff and students local university	.Convenience sample: students, professors, employees of local University	.Convenience sample: student	.Sample random sampling.	.Different part of Kolkata
Inclusion criteria	Duncan et al. (1990)	Siddiqui et al. (2005)	Subhan et al. (2006)	Moosavi et al. (2007)	Abdel-aziz & Ibraheem (2008)	Singha Roy & Bandyopadhyay (2016)	
--------------------	----------------------	------------------------	----------------------	----------------------	-------------------------------	----------------------------------	
Young healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	
Male	Male	Male	Male	Male	Non-smoking	Sedentary	
Adults						Non-smoker	
Sedentary habits							
				Healthy			
Non-inclusion and					Non-smoking		
exclusion criteria						Sedentary	
Heavy smoker		Non smoking		Lack of cooperation	Diabetes mellitus	Pulmonary disease	
Female		.Non smoking		.Smoker	.Renal disease	.Major disease	
Vertebra column or		.Vertebrea column or		.Asthma	.Respiratory and cardiovascular	.Non-Muslim	
thoracic cage		thoracic cage		.Chronic bronchitis	diseases	.Regular exercise	
abnormalities’		abnormalities’		.Pneumonia	.Major abdominal or thoracic	.Medication-use	
Histories of		.Histories of		.Fasting for at least 3	.Respiratory and cardiovascular	.History of health complication	
malignancy		malignancy		days in 1st visit	diseases		
Diabetes mellitus		.Diabetes mellitus		.Fasting for at least 3	.Major abdominal or thoracic		
Respiratory or		.Respiratory or		days in last visit	surgeries		
neuromuscular or		neuromuscular or		.Gross abnormalities	.Gross abnormalities		
cardiovascular		cardiovascular or		of the vertebra column	.FEV 1/FVC < 0.70		
diseases		cardiovascular diseases		or thoracic cage			
Major abdominal or		.Major abdominal or		.FEV 1/FVC < 0.70			
thoracic surgery		thoracic surgery		.Abnormal BMI			
FEV 1/FVC < 0.70		.FEV 1/FVC < 0.70		.Previous drug or			
Abnormal BMI		.Abnormal BMI		tobacco			
Previous drug or							
tobacco							
Ramadan experience	Fast Ramadan	NR	NR	NR	NR	NR	
annually							
NR							
Table 1 continued	Duncan et al. (1990)	Siddiqui et al. (2005)	Subhan et al. (2006)	Moosavi et al. (2007)	Abdel-aziz & Ibraheem (2008)	Singha Roy & Bandyopadhyay (2016)	
-------------------	---------------------	-----------------------	---------------------	-----------------------	-----------------------------	---------------------------------	
Fasting days	.NR	.NR	.NR	26.2 (25.1-27.3)f	.NR	.NR	
Applied questionnaire	.NR	.Not-specified	.Not-specified	.Not-specified	Not-specified	.ATS (Ferris, 1978)	
ANTHROPOMETRIC DATA							
Age (years)	.24.3±1.6a	.16-41d	.16-41d	.27.9 (26.2-29.6)f	.18-19d	.20-24d	
Height (cm)	.170±2.0a	.172.5±1.1e	.172.5±1.1e	.167.1 (164.9-169.2)f	.170.7±3.1e	.159.2-172.2e	
Weight (kg)	.57±2a	.70.48±2.20e	.70.48±2.20e	.67.6 (65.7-69.5)f	.70.58±2e	.62.1±11.25e	
BMI (kg/m2)	.23.5±0.57f	.23.5±0.57e	.NR	.NR	.NR	.NR	
BSA (m2)	.1.62±0.03a	.NR	.NR	.NR	.NR	.NR	
LUNG FUNCTION DATA							
Collected data	FVC, FEV$_1$, PEF, ERV, FRC, TLC, RV, anatomic VD	FVC, FEV$_1$, PEF, MMEF, FEF, FEV$_1$/FVC, MVV	FVC, FEV$_1$, PEF, MMEF, FEF, FEV$_1$/FVC, FEV$_1$	FVC, FEV$_1$, PEF, MMEF, FEF, FEV$_1$/FVC, arterial blood gases	FVC, FEV$_1$, PEF, MMEF, FEF, FEV$_1$/FVC, forced expiratory time		
Calibration	.NR	.Daily (1-L syringe)	.Daily (1-L syringe)	.Daily (1-L syringe)	.Daily (1-L syringe)	.Daily (Respiratory hand pump)	
Applied norms	.Local	.NR	.NR	.NR	.NR	.NR	
Subject position	.Standing	.Sitting	.Sitting	.NR	.Sitting	.NR	
Control-group	.No	.No	.No	.No	.No	.n=50 untrained Muslim males	
Table 1 continued.	Duncan et al. (1990)	Siddiqui et al. (2005)	Subhan et al. (2006)	Moosavi et al. (2007)	Abdel-aziz & Ibraheem (2008)	Singha Roy & Bandyopadhyay (2016)	
---------------------	----------------------	-----------------------	----------------------	-----------------------	-----------------------------	-------------------------------	
Applied guidelines	.Highest value of 3 flows efforts. .Average volumes value retained. .**Anatomic VD:** Bohr’s equation *(Comroe, 1962)* .Maximum value of 4 PEF efforts. .Volumes and anatomic VD corrected to BTPS .PEF in ATPS	.ATS (1987) .Volumes corrected to BTPS	.ATS (1987)	.NR	.ATS (1987) .Volumes corrected to BTPS	.Procedure of Bandyopadhyay et al. (2013)	
Statistical Analyses	.T-test .Bonferroni’s correction	.ANOVA .Bonferroni’s correction .Linear regression between weight and spirometric data .Outliers (> 3 SD from the mean) excluded	.ANOVA .Bonferroni’s correction .Linear regression between weight or fasting days and spirometric data	.T-test .Chi-2 test .Pearson correlation	.ANOVA .Linear regression between weight or fasting days and spirometric data	.Paired student t test .One-way repeated measure analysis of variance. .Unpaired student’s t test: significance of differences between mean values of Control and experimental groups.	

ANOVA: analysis of variance. AR: after-Ramadan. ATPS: ambient, temperature, pressure, saturation. ATS: American thoracic society. BMI: body mass index. BR: before-Ramadan. BSA: body surface area. BTPS: body, temperature, pressure, saturation. ERV: expiratory reserve volume. FEx%; forced expiratory flow when X% of FVC has been exhaled. FEV1: 1st second forced expiratory volume. FRC: functional residual capacity. FVC: forced vital capacity. NR: not-reported. MMEF: maximal mid expiratory flow. MR: mid-Ramadan. MR1: 1st week of Ramadan. MR2: 2nd week of Ramadan. MR3: 10 last days of Ramadan. MR2-3: between the MR2 and the 3rd week of Ramadan. MVV: maximal voluntary ventilation. PEF: peak expiratory flow. R: Ramadan. RV: residual volume. TLC: total lung capacity. SVC: slow vital capacity. VT: tidal-volume. VD: dead volume. Data are: *Mean±Standard error. *Mean (95% confidence interval). *Mean±Standard deviation (SD). *Minimum-maximum. *Mean±Standar error of mean. *Mean (minimum-maximum).
Table 2. Main results of the published studies aiming to evaluate the effects of Ramadan-fasting (RF) on The spirometric data of healthy adults.

Study	BR	MR1	MR	MR2	AR
Duncan et al. (1990)					
Weight (kg)	55.6±1.9	57.0±2.0			
FVC (L)	3.82±0.11a	3.90±0.12			
FEV₁ (L)	3.37±0.11a	3.37±0.11			
FEV₁/FVC (absolute value)	0.86±0.01a	0.86±0.01			
FRC (L)	3.31±0.16a	3.08±0.18			
RV (L)	1.80±0.12a	1.70±0.16a			
TLC (L)	5.62±0.19a	5.60±0.24			
RV/TLC (absolute value)	0.32±0.1a	0.30±0.02			
PEF (L/min)	520±14a	571±14a			
VD (mL)	172±5.0	184±5.6			
VT (mL)	536±23a	487±22a			
VD/VT (absolute value)	0.33±0.02	0.38±0.02			
Conclusion	RF does not exert a significant effect on pulmonary volume functions, but a reduction in the VD/VT ratio and PEF.				
Siddiqui et al. (2005)					
Weight (kg)	7.048±2.20b	69.96±2.22b	70.87±2.14b		
FVC (L)	4.61±0.12b	4.70±0.13b	4.54±0.13b		
FEV₁ (L)	3.76±0.11b	3.77±0.10b	3.72±0.11b		
FEV₁/FVC (absolute value)	0.80±0.01	0.80±0.09	0.81±0.01		
PEF (L/min)	608±16b	613±15b	607±15b		
VD/EF (L/s)	3.80±0.19b	3.80±0.17b	3.97±0.18b		
MVV (L/min)	142±4b	141±4b	140±4b		
Conclusions	AR weight was significantly higher relative to that MR. AR FVC shows a significant decrease compared to the MR values. No change in MR lung function variables.				
Subhan et al. (2006)					
Weight (kg)	70.48±2.20b	69.96±2.22b	70.87±2.14b		
FEF75% (L/s)	7.78±0.26b	7.59±0.25b	7.68±0.27b		
FEF50% (L/s)	4.50±0.18b	4.50±0.19b	4.59±0.19b		
FEF75% (L/s)	1.70±0.12b	1.60±0.09b	1.85±0.11b		
FEF75.85% (L/s)	1.13±0.11b	1.08±0.08b	1.26±0.10b		
Conclusions	RF does not affect expiratory flow rates. AR values showed an increase in FEF75% and FEF75.85%.				
Table 2 continued.

Measurement	BR	MR1	MR	MR2	AR
Weight (kg)	68.6 (65.7-69.5)c	91.4 (88.9-94.2)c	NR	92 (88.9-95.1)c	61.7 (65.2-69.0)c
FEV₁ (%)	87.5 (84.4-90.6)c	91.4 (88.9-94.2)c	NR	92 (88.9-95.1)c	61.7 (65.2-69.0)c
FVC (%)	85.4 (82.2-88.6)c	88.3 (85.2-91.3)c	NR	88.6 (85.4-91.8)c	61.7 (65.2-69.0)c
SVC (%)	85.8 (82.8-88.9)c	88.7 (85.7-91.7)c	NR	88.7 (85.8-91.7)c	61.7 (65.2-69.0)c
FEV₁/FVC (%)	81.4 (78.6-84.2)c	84.4 (82.3-86.5)c	NR	83.8 (81.8-85.7)c	61.7 (65.2-69.0)c
PEF (%)	71.1 (66.5-75.8)c	84.8 (84.9-92.8)c	NR	89.4 (85.8-93.1)c	61.7 (65.2-69.0)c
FEV₅₀ (%)	93.1 (86.9-99.2)c	98.3 (92.2-104.4)c	NR	95.2 (90-100.4)c	61.7 (65.2-69.0)c
SVC (%)	85.8 (82.8-88.9)c	84.5 (80.5-88.6)c	NR	88.7 (85.7-91.7)c	61.7 (65.2-69.0)c
FEV₅₀ (%)	94.5 (91.5-101.2)c	88.7 (85.4-91.8)c	NR	94.7 (89.5-99.9)c	61.7 (65.2-69.0)c
FEV₂₅ (%)	88.8 (83.2-94.4)c	94.6 (89.1-100.2)c	NR	94.7 (89.5-99.9)c	61.7 (65.2-69.0)c
MMEF (%)	88.3 (83-93.7)c	102.1 (94.8-109.4)c	NR	94.7 (89.5-99.9)c	61.7 (65.2-69.0)c

Other results

Significant correlation between fasting days and weight measured at the 4 visits, and height and FEF₅₀ and MMEF of MR2 and SVC (MR1) and FEV₁/FVC (MR1 and MR2).

Conclusion

RF increases lung volumes.

Abdel-aziz & Ibraheem (2008)

Measurement	BR	1st day	8th day	16th day	22nd day	30th day	AR
Weight (kg)	70.58±2.0d	69.3±3.5d	62.78±10.19d	61.45±10.03d	61.73±10.82d	60.24±9.89d	60.12±9.12d
FVC (L)	3.47±0.3d	3.56±0.2d	3.56±0.2d	3.56±0.2d	3.56±0.2d	3.56±0.2d	3.56±0.2d
FEV₁ (L)	3.08±0.4d	3.12±0.2d	3.12±0.2d	3.12±0.2d	3.12±0.2d	3.12±0.2d	3.12±0.2d
FEV₁/FVC (absolute value)	0.88±0.092d	0.87±0.069d	0.87±0.069d	0.87±0.069d	0.87±0.069d	0.87±0.069d	0.87±0.069d
PEF (L/S)	7.77±0.4d	7.81±0.5d	7.81±0.5d	7.81±0.5d	7.81±0.5d	7.81±0.5d	7.81±0.5d

Conclusion

Healthy males could tolerate fasting the month of Ramadan without significant alteration of their respiratory system functions.

Singha Roy & Bandyopadhyay (2016)

Measurement	BR	1st day	8th day	16th day	22nd day	30th day	AR
Weight (kg)	62.10±11.25d	62.78±10.19d	61.98±10.65d	61.45±10.03d	61.73±10.82d	60.24±9.89d	60.12±9.12d
VT (L)	5.83±0.59d	5.69±0.41d	5.52±0.42d	5.66±0.40d	5.58±0.37d	5.72±0.39d	5.58±0.42d
SVC (L)	4.10±0.53d	4.16±0.62d	4.00±0.56d	4.14±0.71d	4.20±0.57d	4.08±0.63d	4.09±0.52d
FVC (L)	3.83±0.52d	3.86±0.71d	3.88±0.71d	4.06±0.51d	3.90±0.53d	3.90±0.53d	3.90±0.53d
FEV₁ (L)	3.52±0.62d	3.76±0.55d	3.60±0.71d	3.84±0.67d	3.66±0.63d	3.70±0.70d	3.76±0.56d
FEV₁/FVC (absolute value)	0.91±0.07d	0.94±0.06d	0.90±0.06d	0.91±0.06d	0.92±0.06d	0.93±0.06d	0.93±0.06d
MMEF (L/min)	278.46±81.23d	270.45±60.86d	283.81±61.27d	269.00±58.39d	280.71±63.35d	280.04±57.57d	280.57±69.07d
FEV_{50,85} (L/min)	75.86±17.52d	76.96±16.07d	72.46±15.28d	72.71±19.04d	70.29±20.18d	73.77±18.56d	75.00±17.77d
PEF (L/min)	677.8±72.94d	674.2±72.23d	682.5±74.65d	688.9±73.78d	668.2±72.33d	676.4±71.46d	674.9±71.98d

Conclusion

RF did not affect pulmonary function measurements.

For abbreviations, see table 1. For Duncan et al. MR2 corresponds to MR2-3. Data are: *Mean±SE. †Mean±SEM. Mean (minimum-maximum). ‡Mean±SD. *p<0.05 (T-test): MR2 vs. AR in Duncan et al. study and AR vs. BR for weight of Moosavi et al. study. †Significant difference (ANOVA with Bonferroni’s correction): AR or BR vs. MR. ‡Significant difference (ANOVA without Bonferroni’s correction): four periods.
Effect of RF on Weight

The present study showed that relative to before-R baseline and after-R data, there was no significant effect of RF on weight in this group of healthy young adults. Therefore, it seems unlikely that the present study subjects were dehydrated.

In the studies evaluating the effects of RF on lung function data, confusing results were noted for weight: non-significant change (Duncan et al., 1990; Singha Roy & Bandyopadhyay, 2016), higher after-R weight compared to the weight obtained at mid-R (Siddiqui et al., 2005), higher after-R and before-R weights relative to mid-R (Subhan et al., 2006), higher before-R weight relative to after-R (Moosavi et al., 2007). Other studies, with different aims as the present one, reported also conflicting results: non-significant change (Sweileh, Schnitzler, Hunter, & Davis, 1992), significant decrease (Bigard, Boussif, Chalabi, & Guezennece, 1998) or increase (Frost & Pirani, 1987) in weight during Ramadan. There are many complications with comparisons of weight changes, which can lead to variations in weight loss or gain during RF (Moosavi et al., 2007; Siddiqui et al., 2005).

Some authors (Siddiqui et al., 2005; Subhan et al., 2006) have advanced many factors that can lead to weight-loss during RF: subject’s diet (lack of food and/or liquid ingested) and/or level of physical activity, season during Ramadan (winter/summer), fasting duration, whether baseline measurements are taken before-R or after-R and timing of weight measurements during the day and within the month of Ramadan. In their studies (Siddiqui et al., 2005; Subhan et al., 2006), dehydration hypothesis was excluded, since the fasts were performed in winter. However, the hydratation changes possibility is controversial: while some authors (Husain, Duncan, Cheah, & Ch'ng, 1987) have ruled out the risk of dehydration by measuring the fluid intake and 24 h urinary output during Ramadan, others (Sweileh et al., 1992) showed that subjects were dehydrated only during the first week of
Ramadan (as shown by increases in serum electrolytes and protein) and these differences were normalized in Ramadan’s last week. In another study (Ramadan, Telahoun, Al-Zaid, & Barac-Nieto, 1999), fluid balance was better maintained in active subjects compared to non-active ones, as the latter had significant increases in their blood osmolarity at the end of RF. Moosavi et al. (2007) have advanced two explanations for the weight gain observed during RF. The first one was the change in nutritional intake and frequency of meals. Although total food consumption is limited during Ramadan, more main dishes are prepared at home and more desserts are usually consumed. The second explanation was about physical activity during Ramadan known to be reduced. As a result, the total body metabolism is affected and lipid metabolism and blood lipid levels change during this month (Duncan et al., 1990).

In a recent systematic review including 35 English-language studies, it was concluded that RF could result in relatively small but significant weight loss (-1.24 kg; 95% confidence interval: -1.60, -0.88 kg) in both sexes and most of the weight loss was regained within a few weeks after-R (Sadeghirad, Motaghipisheh, Kolahdooz, Zahedi, & Haghdoot, 2014).

How can changes in lung function data during RF be explained?

In the present study, it may be hypothesized that, the hydration status of the Tunisian adults was not disturbed and insignificant changes in the weight may have had some physiological impact to preserve the spirometric data during the RF. It also seems that muscle contractile force and strength, and then expiratory efforts, were not changed in a fasting state if subjects maintained their hydration, motivation and training status (Shephard, 2015; Soori et al., 2016). Duncan et al. (1990) have made other hypothesis such as the absence of changes in alveoli elasticity which may result from the fasting diet.
Several hypotheses were made to explain the decrease or the increase of some lung function data during RF. The PEF, the FEF$_{75\%}$, and FEF$_{75-85\%}$ and the FVC decreases were explained by reductions in the expiratory muscle effort and anatomic dead-space-volume (Duncan et al., 1990) or by modifications in both body-water and fat content (Subhan et al., 2006) or by weight loss (Siddiqui et al., 2005). To explain the mechanisms resulting in pulmonary volumes increases, Moosavi et al. (2007) gave numerous explanations such as weight changes, decrease in contact with food allergens; flattening of the diaphragm due to stomach emptiness; decrease in smoking and/or gastroesophageal reflux; increase in catecholamine; a bronchodilator agent, due to starvation stress.

Study Limitations

The convenience sampling is a major confounding factor (Abdel-aziz & Ibraheem, 2008; Duncan et al., 1990; Moosavi et al., 2007; Siddiqui et al., 2005; Singha Roy & Bandyopadhyay, 2016; Subhan et al., 2006). Convenience sampling is a type of non-probability sampling technique based on the judgment of the researcher (Sousa, Zauszniewski, & Musil, 2004). Convenience sampling suffers from a number of biases. It can lead to the under/over representation of particular groups within the sample and undermines ability to make generalizations from the present sample to the population being studied. Whilst convenience sampling should be treated with caution, its low cost and ease of use makes it the preferred choice for a significant proportion of researchers (Abdel-aziz & Ibraheem, 2008; Duncan et al., 1990; Moosavi et al., 2007; Siddiqui et al., 2005; Singha Roy & Bandyopadhyay, 2016; Subhan et al., 2006).

REFERENCES

Abdel-aziz, I., & Ibraheem, A. (2008). Fasting during Ramadan: does it alter pulmonary functions in healthy males? *Al-Azhar Assiut Medical Journal, 6*(3), 53-63.
American Thoracic Society (ATS). Standardization of spirometry-1987 update. Official statement of American Thoracic Society. (1987). *Respiratory Care*, 32(11), 1039-1060.

Bandyopadhyay, A., Bhattacharjee, I., Dalui, R., & Pal, S. (2013). Pulmonary Function Studies of Healthy Non-smoking Male University Students of Kolkata, India - Revisited. *Malaysian Journal of Medical Sciences*, 20(2), 17-24.

Bigard, A. X., Boussif, M., Chalabi, H., & Guezenneec, C. Y. (1998). Alterations in muscular performance and orthostatic tolerance during Ramadan. *Aviation, Space, and Environmental Medicine*, 69(4), 341-346.

Comroe, J. H., Jr. (1962). *The lung*. Chicago.

Das, D., & Das, A. (1998). *Statistics in biology and psychology*. Kolkata: West Bengal, India: Academic.

Duncan, M. T., Husain, R., Raman, A., Cheah S. H., & Ch'ng, S. L. (1990). Ventilatory function in Malay Muslims during normal activity and the Ramadan fast. *Singapore Medical Journal*, 31(6), 543-547.

Ferris, B. G. (1978). Epidemiology Standardization Project (American Thoracic Society). *The American Review of Respiratory Disease* 118(6 Pt 2), 1-120.

Frost, G., & Pirani, S. (1987). Meal frequency and nutritional intake during Ramadan: a pilot study. *Human nutrition. Applied nutrition*, 41(1), 47-50.

Husain, R., Duncan, M. T., Cheah, S. H., & Ch'ng, S. L., (1987). Effects of fasting in Ramadan on tropical Asiatic Moslems. *The British journal of nutrition*, 58(1), 41-48

Moosavi, S. A., Kabir, A., Moghimi, A., Chehrei, A., & Rad, M. B. (2007). Evaluation of the effect of Islamic fasting on lung volumes and capacities in the healthy persons. *Saudi Medical Journal*, 28(11), 1666-1670.
Ramadan, J., Telahoun, G., Al-Zaid, N. S., & Barac-Nieto, M. (1999). Responses to exercise, fluid, and energy balances during Ramadan in sedentary and active males. *Nutrition, 15*(10), 735-739.

Sadeghirad, B., Motaghipisheh, S., Kolahdooz, F., Zahedi, M. J., & Haghdoost, A. A. (2014). Islamic fasting and weight loss: a systematic review and meta-analysis. *Public Health Nutrition, 17*(2), 396-406.

Siddiqui, Q. A., Sabir, S., & Subhan, M. M. (2005). The effect of Ramadan fasting on spirometry in healthy subjects. *Respirology, 10*(4), 525-528.

Singha Roy, A., & Bandyopadhyay, A. (2016). Pulmonary Function of Young Muslim Males During the Month of Ramadan. *American Journal of Men's Health.* pii: 1557988316643292 (DOI:10.1177/1557988316643292).

Shephard, R. J. (2015). Sport participation and Ramadan observance: Advice for the athlete. *Journal of Fasting and Health, 3*(2), 65-73.

Soori, M., Mohaghegh, S., Hajain, M., & Moraadi, B. (2016). Effects of Ramadan Fasting on Inspiratory Muscle Function. *Asian Journal of Sports Medicine.* doi: 10.5812/asjsm.35201.

Sousa, V. D., Zauszniewski, J. A., Musil, C. M. (2004). How to determine whether a convenience sample represents the population. *Applied Nursing Research, 17*(2):130-133.

Subhan, M. M., Siddiqui, Q. A., Khan, M. N., & Sabir, S. (2006). Does Ramadan fasting affect expiratory flow rates in healthy subjects? *Saudi Medical Journal, 27*(11), 1656-1660.

Sweileh, N., Schnitzler, A., Hunter, G. R., & Davis, B. (1992). Body composition and energy metabolism in resting and exercising muslims during Ramadan fast. *Journal of Sports Medicine and Physical Fitness, 32*(2), 156-163.
