Exact phase diagram of quasispecies model with mutation rate modifier

Apoorva Nagar
School of Physics, Korea Institute for Advanced Study, Seoul 130-722, South Korea

Kavita Jain
Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India

We consider an infinite asexual population with a mutator allele which can elevate mutation rates. With probability \(f \), a transition from nonmutator to mutator state occurs but the reverse transition is forbidden. We find that at \(f = 0 \), the population is in the state with minimum mutation rate and at \(f = f_c \), a phase transition occurs between a mixed phase with both nonmutators and mutators and a pure mutator phase. We calculate the critical probability \(f_c \) and the total mutator fraction \(Q \) in the mixed phase exactly. Our predictions for \(Q \) are in agreement with those seen in microbial populations in static environments.

PACS numbers: 87.10.-e, 87.10.Ca

In the absence of recombination, biological evolution is driven by two competing processes namely selection that tends to localise the population around a fitness peak and mutation which has the opposite effect of delocalising it. Extensive theoretical and experimental studies have shown that there exists an error threshold beyond which the mutational load (fitness reduction) becomes too high to be compensated by selection pressure \(\mu \). For this reason, and because most mutations are known to have deleterious effects \(\mu \), the spontaneous mutation rate is expected to be minimum subject to physicochemical constraints and physiological costs \(\mu \).

However, mutators with mutation rate higher than the wild type can be produced when for example, an organism is unable to neutralize mutagens such as radiation or repair DNA damage during replication \(\mu \). In fact, hypermutable strains in high frequency have been found in some cancerous cells \(\mu \) and in natural isolates of certain pathogenic bacteria which persist for many years in spite of the presence of antibiotics \(\mu \). Subpopulations with \(10^{-100} \) times higher mutation rates have also been seen to arise spontaneously in long term adaptation experiments on \(E. Coli \) \(\mu \). Due to the persistence of mutators at long times, it is important to study their role when mutation-selection balance has been reached.

Here we consider the mutator problem within the framework of quasispecies model which is defined on the genotypic space and assumes an infinite population \(\mu \). The transition from a nonmutator to mutator state occurs with probability \(f \) but the reverse reaction is ignored as it has a much smaller probability than \(f \). While the mutators are thus continually generated, they are selected against due to high mutational load. At sufficiently high \(f \), we may expect the mutators to take over the whole population. However the possibility of such a transition has not been considered in previous studies on smooth fitness landscapes \(\mu \). Here we show that the system can be in one of the following three phases (see Fig. 1): a phase with only nonmutators \((f = 0) \), a mixed phase in which both mutators and nonmutators are present \((f < f_c) \) and a phase with only mutators \((f \geq f_c) \). The critical probability \(f_c \) at which a phase transition occurs between the mixed phase and a pure mutator phase is found exactly. We also calculate the total mutator fraction exactly for which approximate expressions have been obtained in the past \(\mu \).

We consider a haploid asexual population of infinite size evolving in a static environment. An individual in the population is represented by a binary sequence \(\sigma = \{ \sigma_1, ..., \sigma_L \} \) with \(L \) loci where \(\sigma_i = 0 \) or 1. Each sequence is endowed with fitness \(F(\sigma) \) which is proportional to the average number of offspring produced per generation. As there is considerable experimental evidence that the individual loci can contribute independently to the genome fitness \(\mu \), we work with multi-
plicative fitness \(F(\sigma) = \prod_{i=1}^{L} (1 - s)^{x_i} \) where the selection coefficient \(s \in [0,1) \). Assuming that independent point mutations occur during the replication process, a sequence \(\sigma' \) mutates to \(\sigma \) with a probability given by the mutation matrix \(M_{\mu}(\sigma, \sigma') = \mu^{d(\sigma, \sigma')}(1 - \mu)^{L - d(\sigma, \sigma')} \) where \(d(\sigma, \sigma') = \sum_{i=1}^{L} x_i \) is the Hamming distance between the sequences \(\sigma \) and \(\sigma' \) and \(\mu \) is the mutation probability per locus per generation. The mutation rate modifier allele is modeled by attaching an additional bit with each sequence which controls the mutation rate but does not affect the fitness. A nonmutator sequence has a spontaneous mutation probability \(\nu \) per locus per generation while the one with mutator allele increases the spontaneous mutation probability per locus per generation. A nonmutator additional bit with each sequence which controls the mutation probability per locus per generation. The mutation rate modifier allele is modeled by attaching an additional bit with each sequence which controls the mutation rate but does not affect the fitness. A nonmutator sequence has a spontaneous mutation probability \(\nu \) per locus per generation while the one with mutator allele increases the spontaneous mutation probability per locus per generation. The mutation rate modifier allele is modeled by attaching an additional bit with each sequence which controls the mutation rate but does not affect the fitness.

Thus the average fraction \(P(\sigma, t) \) and \(Q(\sigma, t) \) of the nonmutator and the mutator respectively at generation \(t \) evolves deterministically according to the following coupled nonlinear difference equations:

\[
P(\sigma, t + 1) = \frac{(1 - f) \sum_{\sigma'} M_{\mu}(\sigma, \sigma') F(\sigma') P(\sigma', t)}{W(t)} \]

\[
Q(\sigma, t + 1) = \frac{\sum_{\sigma'} M_{\nu}(\sigma, \sigma') F(\sigma') Q(\sigma', t)}{W(t)} + \frac{f \sum_{\sigma'} M_{\mu}(\sigma, \sigma') F(\sigma') P(\sigma', t)}{W(t)} .
\]

The average fitness \(W(t) = \sum_{\sigma'} F(\sigma) [P(\sigma, t) + Q(\sigma, t)] \) in the denominator of the above equations ensures the normalisation condition \(\sum_{\sigma} P(\sigma, t) + Q(\sigma, t) = 1 \) is satisfied. We are interested in the steady state when these frequencies become time-independent. The steady state phase diagram is summarised in Fig. 1. If \(f = 0 \), although the steady state fractions \(P(\sigma) \) and \(Q(\sigma) \) obey similar equations, the minimum mutation rate is chosen and the population is in a pure nonmutator phase with a quasispecies localised around the fitness peak as there is no error threshold for multiplicative fitness \(\nu \). For \(f \neq 0 \), while the nonmutator population reduces due to nonzero forward rate, they are favored over the mutators since the latter have the tendency to delocalise due to elevated mutation rates. Due to this competition, we may anticipate a phase transition in the \(\lambda - f \) plane between the mixed and pure mutator phase. Note that this transition is different from the error threshold transition in which the population delocalises from the fitness peak beyond a critical error rate \(\nu \).

Before discussing the phase transition, we first demonstrate that for generic initial conditions, the population is in the state with minimum mutation rate when \(f = 0 \). Writing \(P(\sigma, t) = Y(\sigma, t)/X(t) \) and \(Q(\sigma, t) = Z(\sigma, t)/X(t) \) in Eqs. 1 and 2 where \(X(t) = \sum_{\sigma'} Y(\sigma', t) + Z(\sigma', t) \) and

\[
X(t + 1) = \sum_{\sigma} F(\sigma) [Y(\sigma, t) + Z(\sigma, t)] ,
\]

we find that the unnormalised variables \(Y(\sigma, t) \) and \(Z(\sigma, t) \) obey linear uncoupled equations given by \(2 \)

\[
Y(\sigma, t + 1) = \sum_{\sigma'} M_{\mu}(\sigma, \sigma') F(\sigma') Y(\sigma', t) \]

\[
Z(\sigma, t + 1) = \sum_{\sigma'} M_{\nu}(\sigma, \sigma') F(\sigma') Z(\sigma', t) .
\]

The solution of the above equations is of the following product form,

\[
Y(\sigma, t) = \prod_{i=1}^{L} y_{i}^{1-\sigma_{i}} y_{i}^{\sigma_{i}} , \quad Z(\sigma, t) = \prod_{i=1}^{L} z_{0}^{1-\sigma_{i}} z_{1}^{\sigma_{i}}
\]

where the time-dependent fractions \(y_{i} \) and \(z_{k} \), \(k = 0, 1 \) obey Eqs. 4 and 5 for \(L = 1 \). This can be verified, for example, for \(Y(\sigma, t) \) by using the above ansatz in Eq. 1 whose right hand side (RHS) can be expressed as a product over terms,

\[
\prod_{i=1}^{L} (1 - \mu)(1 - s)^{1-\sigma_{i}} y_{0}^{1-\sigma_{i}} y_{1}^{\sigma_{i}} \left(\frac{\mu}{1 - \mu} \right) \sigma_{i} + \sigma_{i} + 2 \sigma_{i}
\]

\[
= \prod_{i=1}^{L} \mu^{\sigma_{i}} (1 - \mu)(1 - s)^{1-\sigma_{i}} y_{0}(t) + \mu^{\sigma_{i}} (1 - \mu)^{\sigma_{i}} (1 - s) y_{1}(t)
\]

\[
= \prod_{i=1}^{L} y_{0}^{1-\sigma_{i}} (t + 1) y_{1}^{\sigma_{i}} (t + 1)
\]

where we have used the evolution equations for \(y_{0}, y_{1} \) to arrive at the desired result. For an initial condition in which all the population is at the least fit sequence \(\sigma^{(0)} = \{1, 1, ..., 1\} \) with unnormalised nonmutator population \(\alpha \neq 0 \) and mutator population \(\beta \), the one locus fractions \(y_{k} \) and \(z_{k} \) can be straightforwardly computed and we find that the ratio \(z_{0}(t)/y_{0}(t) \sim Q^{s(\sigma)} \frac{\kappa^{\nu}(s) - \kappa^{\nu}(s)}{\kappa^{\nu}(s) - \kappa^{\nu}(s)} \)

\[
= \frac{(2 - s)(1 - \mu) \pm \sqrt{4\mu^{2}(1 - s) + s^{2}(1 - \mu)^{2}}}{2} .
\]

Since \(\kappa_{-} < \kappa_{+} \) and \(\kappa_{+}(\nu) < \kappa_{+}(\mu) \), it follows that \(z_{0}/y_{0} \) vanishes when \(t \rightarrow \infty \). Using this in the expression for the average fitness \(W(t) \), it follows that the steady state fitness \(W = \kappa^{\nu}_{+}(\mu) \) as in the pure nonmutator phase.

We now consider the interesting situation when the forward rate \(f \) is nonzero. In the following, we will first find the average fitness \(W_{<} \) for \(f < f_{c} \) and \(W_{>} \) for \(f > f_{c} \) and then determine the critical point \(f_{c} \) by matching \(W_{<} \) and \(W_{>} \) at the transition. The steady state equations for the population fractions, unlike the time-dependent ones, can not be linearised by passing to \(Y \) and \(Z \) variables due to Eq. 3. As a consequence, due to the normalisation factor \(W \) in the denominator, Eq. 1 for the nonmutator fraction is coupled to the mutator fraction. However on summing over \(\sigma \) on both sides of Eq. 1 in
the steady state, we find that provided the nonmutator fraction \(P = \sum \sigma P(\sigma) \) is nonzero, the average fitness \(W \) does not depend on the mutator fraction and writeable as

\[
W = \frac{(1 - f) \sum \sigma F(\sigma)P(\sigma)}{\sum \sigma P(\sigma)}, \quad P \neq 0
\]

thus leading to an uncoupled nonlinear equation for \(P(\sigma) \). Eliminating \(W \) from Eq. (1) using the above equation and writing \(\tilde{P}(\sigma) = P(\sigma)/\sum \sigma P(\sigma) \), we see that \(\tilde{P}(\sigma) \) obeys the quasispecies equation for a population without mutation rate modifier. In this case, the normalised steady state distribution is known to be given by [22],

\[
\tilde{P}(\sigma) = \prod_{i=1}^{L} \tilde{p}_0^{1-\sigma_i} \tilde{p}_1^{\sigma_i}
\]

where \(\tilde{p}_0, \tilde{p}_1 \) are the solutions of the corresponding one locus model and the average fitness is given by \(\kappa_L(\mu) \) as seen in the pure nonmutator phase. From Eq. (8), we thus obtain \(W_\sigma = (1 - f) \sum \sigma F(\sigma)P(\sigma) = (1 - f) \kappa_L(\mu) \). Contrary to na"ive expectation, the fitness \(W_\sigma \) is unaffected by the mutation rate \(\nu \). This result is consistent with the reduction principle that requires the average fitness to be maximised [3]. This can happen if only the nonmutators contribute to the fitness thus minimising the mutational load due to mutators. But as the forward rate is nonzero, this contribution is reduced by a factor \(1 - f \). Besides \(P \neq 0 \) (mixed phase), \(P = 0 \) is also a solution of Eq. (1). For \(f > f_c \) phase in which this solution is valid, the mutator population \(Q(\sigma) = \prod_{i=1}^{L} q_0^{1-\sigma_i} q_1^{\sigma_i} \) (see Fig. [3]) and the average fitness \(W_\sigma = \kappa_L(\nu) \).

A plot of average fitness as a function of \(f \) and \(\lambda \) is shown in Fig. [2]. With increasing \(f \) as the population goes from the mixed to pure mutator phase, the average fitness decreases to a constant since the nonmutator fraction vanishes for \(f > f_c \). As shown in the inset, in the pure mutator phase, the fitness decreases with increasing \(\lambda \) since the increase in mutation rate decreases the population at the top of the fitness landscape. In the mixed phase, as discussed above, the fitness is constant in \(\lambda \). Matching the fitnesses \(W_\sigma \) and \(W_\perp \) at the critical point, the phase boundary in the \(f - \lambda \) plane is obtained (see Fig. [3]),

\[
(1 - f_c)^{1/L} = \frac{(2 - s)(1 - \nu_c) + \sqrt{4\nu_c^2(1 - s) + s^2(1 - \nu_c)^2}}{(2 - s)(1 - \mu) + \sqrt{4\mu^2(1 - s) + s^2(1 - \mu)^2}}
\]

(10)

When \(\nu = \mu = s = 0 \), the critical point \(f_c = 0 \) and the population is always in the pure mutator phase.

So far we have discussed the quasispecies model for arbitrary genome length \(L \). To compute the total fraction \(Q = \sum \sigma Q(\sigma) \) of mutators in the mixed phase, we now consider the model defined by Eqs. (1) and (2) when the genome length \(L \rightarrow \infty \) and the mutation probabilities \(\mu, \nu \rightarrow 0 \) with \(U = \mu L \) and \(V = \nu L \) finite. In this limit, a sequence at a Hamming distance \(k \) from the fittest mutates to one at distance \(j \) with mutation probability \(M_U(j, k) \) which is a Poisson distribution with mean \(U \) for \(j \leq k \) and zero otherwise [22]. Furthermore, the average fitness \(W_\sigma = (1 - f)e^{-U} \) and \(W_\perp = e^{-V} \) so that the critical probability \(f_c = 1 - e^{-V+U} \), independent of \(s \). The fractions \(P(k) \) and \(Q(k) \) of nonmutators and mutators respectively at a Hamming distance \(k \) from the fittest sequence obey the following equations [20],

\[
P(k) = \sum_{k'=0}^{k} \frac{U^{k-k'}}{(k-k')!} (1-s)^k P(k')
\]

(11)

\[Q(k) = c_1 \sum_{k'=0}^{k} \frac{V^{k-k'}}{(k-k')!} (1-s)^k Q(k') + c_2 P(k')
\]

(12)

where the coefficient \(c_1 = (1 - f_c)/(1 - f) \) and \(c_2 = f/(1 - f) \). Using the Eqs. (11) and (12), one can write down the recursion relations for the generating function \(G(z) = \sum_{k=0}^{\infty} z^k Q(k) \) and \(H(z) = \sum_{k=0}^{\infty} z^k P(k) \) with \(G(1) = 1 - H(1) = Q \). On applying these recursion

- FIG. 2: Average fitness \(W \) as a function of \(f \) (main) and \(\lambda \) (inset) for \(L = 20, \mu = 10^{-3} \) and \(s = 0.05 \).
- FIG. 3: Phase diagram in the \(f - \lambda \) plane obtained using Eq. (10) with \(\mu L = 0.003 \) and \(s = 0.05 \). The horizontal lines show the maximum possible value of \(\lambda \) as \(\nu = \lambda \mu < 1 \). Inset: Mutator distribution \(Q(d) \) as a function of the distance \(d \) from the master sequence for \(L = 10 \) and \(f_c = 0.025 \).
situations for which the infinite sum by an integral. For biologically realistic equations \(n \) times and setting \(z = 1 \), we obtain

\[
Q = c_1 e^{-V} \sum_{k=0}^{n-1} (1-s)^k \int_{1-s}^1 (1-s)^n \\
+ c_2 (1 - Q) \sum_{m=0}^{n-1} e^{-m(V-U)} \sum_{k=0}^{m-1} (1-s)^k.
\]

(13)

In the limit \(n \to \infty \), the first term on the RHS drops out for \(c_1 < 1 \) and the sum can be expressed in terms of an incomplete gamma function by replacing the infinite sum by an integral. For biologically realistic situations for which \(f \ll s \ll V - U \) (see below), the sum can be calculated approximately to yield

\[
Q \approx \frac{f \sqrt{2\pi}}{f\sqrt{2\pi} + (1-f)\sqrt{(V-U)s}}
\]

(14)

which increases with \(f \) but decreases with \(U, \lambda \) and \(s \) (also see Fig. 4).

As an application of our results, we consider a large population of bacteria \(E. \text{Coli} \) for which the genome mutation rate \(U \approx 2 \times 10^{-4} \) and the spontaneous forward transition rate \(f \approx 5 \times 10^{-7} \) has been estimated. Our calculations show that a subpopulation of weak mutators with \(\lambda = 10 \) can take over the entire population if \(f > 2 \times 10^{-3} \). Such a high transition rate can occur in the presence of mutagens [13]. Moreover, our preliminary simulations on finite populations indicate that \(f_* \) is considerably reduced due to stochastic fluctuations and it should be possible to observe this phase transition in experiments even without mutagens.

As shown in Fig. 4, we obtain \(Q \approx 0.5\% - 0.03\% \) for \(s \sim 10^{-5} - 10^{-1} \) and \(\lambda = 10 \) using Eq. (13). Such small fractions have been observed in several long term experiments on \(E. \text{Coli} \): 0.25\% in [12], 0.6\% in [13] and more recently, 0.5\% in [14].

To summarise, we have presented several exact results for a quasispecies model with mutation rate modifier. The model discussed above can well describe large populations in a stable environment and harboring less than 1\% of mutator subpopulation. However if the population is exposed to a continuously changing environment as in infectious diseases [11], the mutator fraction can be as high as 50 – 70\% and we need to consider the evolution on dynamic fitness landscapes [13, 19].

AN acknowledges the kind hospitality of JNCASR during his visits. K.J. thanks KITP, Santa Barbara for hospitality where she learnt about the mutator problem.

* Electronic address: apoorva@kias.re.kr Present address: Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Golm, D-14424 Potsdam, Germany
† Electronic address: jain@jncasr.ac.in Also at Evolutionary and Organismal Biology Unit

[1] M. Eigen, Naturwissenschaften 58, 465 (1971).
[2] K. Jain and J. Krug, in Structural Approaches to Sequence Evolution: Molecules, Networks and Populations, edited by U. Bastolla, M. Porto, H. Roman, and M. Vendruscolo (Springer, Berlin, 2007), pp. 299-340.
[3] A. Sturtevant, Q. Rev. Biol. 12, 464 (1937).
[4] T. Kibota and M. Lynch, Nature 381, 694 (1996).
[5] J. W. Drake et al. Genetics 148, 1667 (1998).
[6] M. Lynch et al. Evolutionary 53, 645 (1999).
[7] M. Kimura, Genet. Res. 9, 23 (1967).
[8] U. Liberman and M. Feldman, Theor. Pop. Biol. 30, 341 (1986).
[9] J. Miller, Annu. Rev. Microbiol. 50, 625 (1996); C. Baer, M. Miyamoto, and D. Denver, Nat. Rev. Genet. 8, 619 (2007); E. Tannenbaum and E.I. Shakhnovich, Physics of Life Reviews 2, 290 (2005).
[10] L. Loeb, K. Loeb, and J. Anderson, Proc. Natl. Acad. Sci. USA 100, 776 (2003).
[11] J. LeClerc et al. Science 274, 1208 (1996); I. Matic et al. Science 277, 1833 (1997); A. Oliver et al. Science 288, 1251 (2000); B. Björkholm et al. Proc. Natl. Acad. Sci. USA 98, 14607 (2001); A. Richardson et al. Proc. Natl. Acad. Sci. USA 99, 6103 (2002).
[12] M. D. Gross and E. C. Siegel, Mutat. Res. 91, 107 (1981).
[13] W. Tröhner and R. Piechocki, Mol. Gen. Genet. 198, 177 (1984).
[14] E. Mao et al. J. Bacteriol. 179, 417 (1997).
[15] P. D. Sniegowski, P. J. Gerrish, and R. Lenski, Nature 387, 703 (1997).
[16] L. Boe et al. Mut. Res. 448, 47 (2000).
[17] T. Taddei et al. Nature 387, 700 (1997).
[18] D. A. Kessler and H. Levine, Phys. Rev. Lett. 80, 2012 (1998).
[19] O. Tenaille et al. Genetics 152, 485 (1999).
[20] T. Johnson, Proc. Royal Society B 266, 2389 (1999).
[21] J. de Visser and S. Elena, Nat. Rev. Genet. 8, 139 (2007).
[22] G. Woodcock and P.G. Higgs, J. theor. Biol. 179, 61 (1996).
[23] P.G. Higgs, Genet. Res. Camb. 63, 63 (1994).
[24] J. Ninio, Genetics 129, 957 (1991).