2-semiarcs in $\text{PG}(2, q)$, $q \leq 13$

Daniele Bartoli, Giorgio Faina, György Kiss, Stefano Marcugini and Fernanda Pambianco

Abstract

A 2-semiarc is a pointset S_2 with the property that the number of tangent lines to S_2 at each of its points is two. Using some theoretical results and computer aided search, the complete classification of 2-semiarcs in $\text{PG}(2, q)$ is given for $q \leq 7$, the spectrum of their sizes is determined for $q \leq 9$, and some results about the existence are proven for $q = 11$ and $q = 13$. For several sizes of 2-semiarcs in $\text{PG}(2, q)$, $q \leq 7$, classification results have been obtained by theoretical proofs.

1 Introduction

Ovals, k-arcs, and semiovals of finite projective planes are not only interesting geometric structures, but they have important applications to coding theory and cryptography, as well. For details about these objects we refer the reader to [10, 25, 26, 28].

Semiarcs are a natural generalization of arcs. Let Π_q be a projective plane of order q. A non-empty pointset $S_t \subset \Pi_q$ is called a t-semiarc if for every point $P \in S_t$ there exist exactly t lines $\ell_1, \ell_2, \ldots, \ell_t$ such that $S_t \cap \ell_i = \{P\}$ for $i = 1, 2, \ldots, t$. These lines are called the tangents to S_t at P. If a line ℓ meets S_t in 2, 3 or k points (where $k > 3$), then ℓ is called a bisecant, trisecant or k-secant of S_t, respectively. The classical examples of semiarcs are the semiovals ($t = 1$) and the subplanes ($t = q - m$, where m is the order of the subplane).

Semiarcs are closely connected to other combinatorial structures, too. Without the pursuit of wholeness we mention $(r, 1)$-designs and configurations.

Definition 1.1. A finite point-line incidence structure is called linear space if each line contains at least two points and any two distinct points are on exactly one line. If there are exactly r lines through each point, then the linear space is called $(r, 1)$-design.

A (v_r, b_k)-configuration is a finite point-line incidence structure with the following properties:

- There are v points and b lines.
- There are r lines through each point and there are k points on each line.
- Two distinct lines intersect each other at most once and two distinct points are connected by at most one line.

If $v = b$ and $r = k$, then the configuration is called symmetric (v_k)-configuration.

*The research was supported by the Italian MIUR (progetto 40% “Strutture Geometriche, Combinatoria e loro Applicazioni”), and by GNSAGA.
†The research was supported by the Hungarian National Foundation for Scientific Research, Grant No. K 81310, and by the Slovenian-Hungarian Intergovernmental Scientific and Technological Cooperation Project, Grant No. TET 10-1-2011-0606.
The following proposition gives a natural correspondence between embeddable \((r,1)\)-designs and semiarcs in finite planes. Its proof is straightforward.

Proposition 1.2. If \(S_t\) is a \(t\)-semiarc in \(\Pi_q\), then the points of \(S_t\) and the secants of \(S_t\) form a \((q+1-t,1)\)-design.

If an \((r,1)\)-design is embeddable to \(\Pi_q\), then its points form a \((q+1-r)\)-semiarc.

\((r,1)\)-designs with small \(r\) were investigated by Gropp [22,23]. He constructed all \((r,1)\)-designs with at most 12 points, his list contains 974 elements, most of them are configurations. His proof is computer assisted and he has not considered the embeddability of these designs.

In the last years the interest and research on the fundamental problem of determining the spectrum of values for which there exists a given subconfiguration of points in \(\text{PG}(n,q)\) have increased considerably (see for example [2,4–9,17,18,25,27,36,41]). In particular semiellipses were investigated by several authors. Among others Lisonek [31] determined the spectrum of sizes of semiarc by exhaustive computer search for \(q \leq 9\), \(q\) odd, Bartoli [3], Ranson and Dover [19,37], Kiss, Marcugini and Pambianco [29,30], and Nakagawa and Suetake [35,40] gave characterization theorems for semiarc in planes of small order.

Because of the huge diversity of semiarc, their complete classification seems out of reach.

The aim of this paper is to investigate and characterize 2-semiarcs in projective planes of order \(q \leq 13\).

The paper is organized as follows. In Section 2 we give lower and upper bounds and prove some number theoretical conditions on the sizes of 2-semiarcs in \(\Pi_q\). Using these propositions and the results of Gropp, in Section 3 the complete characterization is provided for \(q \leq 5\). In Section 4 we consider the 2-semiarcs in \(\text{PG}(2,7)\). A computer-free description is given for 2-semiarcs having sizes at most 12, and a computer-assisted proof shows that there are no 2-semiarcs in the plane with \(|S_2| \geq 13\). Section 5 is devoted to the description of the algorithm used to obtain the classification of 2-semiarcs. Finally in Section 6 results about the existence of 2-semiarcs in \(\text{PG}(2,q)\) for \(q \in \{8,9,11,13\}\) are given. The computer search is supported by the structural constraints proven in Section 2.

2 Some conditions on the sizes of 2-semiarcs

It follows from the definition that each \(t\)-semiarc in \(\Pi_q\) satisfies \(t \leq q+1\). If \(t\) is close to this upper bound, then we can easily classify the \(t\)-semiarc. The following proposition was proved by Csajbók and Kiss [10].

Proposition 2.1. Let \(S_t\) be a \(t\)-semiarc in \(\Pi_q\). The following properties hold:

- If \(t = q+1\), then \(S_t\) is a single point,

- If \(t = q\), then \(S_t\) is a subset of a line, and vice versa any subset of a line containing at least two points is a \(q\)-semiarc,

- If \(t = q - 1\), then \(S_t\) is a set of three non-collinear points.

\(\square\)

A semiarc cannot contain large collinear subsets. If \(S_t\) is a \(t\)-semiarc in \(\Pi_q\), \(S_t\) is not contained in a line and it has a \(k\)-secant, then \(k \leq q + 1 - t\) obviously holds. Semiarcs with long secants were investigated by Csajbók. He proved the following results; see [14 Theorems 2.4 and 4.6].
Theorem 2.2. Let S_t be a t-semiarc in $\text{PG}(2, q)$. Then the following properties hold.

- If $t < (q - 1)/2$, then S_t has no $(q + 1 - t)$-secants.
- If S_t has two $(q - t)$-secants such that the common point of these secants is not contained in S_t and $\gcd(q, t) = \gcd(q - 1, t - 1) = 1$, then S_t is the union of these two $(q - t)$-secants.

Bounds on the sizes of t-semiarcs were also given by Csajbók and Kiss [10]. In the case $t = 2$ their result is the following.

Theorem 2.3. Let S_2 be a 2-semiarc in a projective plane of order q. Then

$$q \leq |S_2| \leq 1 + \left\lfloor \frac{q(1 + \sqrt{8q - 7})}{4} \right\rfloor.$$

The simplest example of a 2-semiarc of size q is a q-arc, a set of q points such that no three of them are collinear. As the following proposition shows, there are no more examples of 2-semiarc of size q.

Proposition 2.4. Let S_2 be a 2-semiarc of size q in a projective plane of order q. Then S_2 is an arc.

Proof. We have to prove that no three points of S_2 are collinear. Suppose that the line ℓ is a trisecant of S_2. If P is a point in $\ell \cap S_2$, then $|S_2| = q$ implies that there are at least $(q + 1) - (q - 2) = 3$ tangents to S_2 at P, contradiction.

Theorem 2.5. In $\text{PG}(2, p^h)$, $p \neq 2$, there exists, up to collineations, a unique 2-semiarc S_2 of size $q = p^h$. Its stabilizer group has size $hq(q - 1)$.

Proof. S_2 is an arc of size $q = p^h$. It is known, that in $\text{PG}(2, q)$ each q-arc is contained in a $(q + 1)$-arc, and if q is odd, then by the Theorem of Segre, it is contained in an irreducible conic [39]. The stabilizer of a conic is transitive on its points, hence all the q-point subsets of the conic are projectively equivalent. Since the number of conics is $q^3(q^2 + q + 1)(q - 1)$ and each has $q + 1$ subsets of size q, there are exactly $q^2(q^2 + q + 1)(q - 1)(q + 1)$ different 2-semiarcs of size q. Thus the stabilizer group has size $\frac{|\text{PGL}(3, q)|}{q^2(q^2 + q + 1)(q - 1)(q + 1)} = hq(q - 1)$.

If Π_q contains a 2-semiarc whose size is close to the lower bound q, then the order of the plane must satisfy some number theoretical conditions.

Proposition 2.6. Let S_2 be a 2-semiarc of size $q + 1$ in a projective plane of order q. Then $q + 1$ is divisible by 3.

Proof. Let P be any point of S_2. The total number of lines through P is $q + 1$, and two of them are tangents to S_2. The remaining q points of S_2 are distributed among the $q - 1$ secants through P. Hence there are $q - 2$ bisecants and one trisecant through P. Thus each point of S_2 lies on exactly one trisecant, hence $|S_2|$ is divisible by 3.

Proposition 2.7. Let S_2 be a 2-semiarc of size $q + 2$ in a projective plane of order q. Then there exist integers $0 \leq \alpha$ and $0 \leq \beta \neq 1$ such that $q + 2 = 4\alpha + 3\beta$.

Proof. Let P be any point of S_2. The total number of lines through P is $q + 1$, two of them are tangents to S_2. The remaining $q + 1$ points of S_2 are distributed among the $q - 1$ secants through P. Hence there are either two trisecants and $q - 3$ bisecants, or one 4-secant and $q - 2$ bisecants through P. Thus each point lies on either two trisecants or one 4-secant. Let T_3 be the set of points lying on two trisecants. Then it is a configuration (v_2, k_3), where $v = |T_3|$ and, by [21] Theorem 3.1, $|T_3| = 3\beta$, with $\beta \neq 1$. Let T_4 be the set of points lying on one 4-secant, then $|T_4| = 4\alpha$. Then $q + 2 = 4\alpha + 3\beta$, with $\alpha, \beta \geq 0$ and $\beta \neq 1$.

\[3\]
3 The small planes

The classification of 2-semiarcs in the cases \(q = 2 \) and \(q = 3 \) follows from Proposition 2.1.

Theorem 3.1.

- In \(\text{PG}(2, 2) \) each 2-semiarc \(S_2 \) consists of two or three collinear points.
- In \(\text{PG}(2, 3) \) each 2-semiarc \(S_2 \) is a set of three non-collinear points.

If \(q = 4 \), then 2-semiarcs correspond to \((3, 1)\)-designs by Proposition 1.2. Gropp [22, Table 1] proved that there are three such designs, they consist of 4, 6 and 7 points, respectively. He also gave a detailed combinatorial description of these objects. We show that each of these designs is embeddable into \(\text{PG}(2, 4) \).

Theorem 3.2. In \(\text{PG}(2, 4) \) there are three projectively non-equivalent 2-semiarcs.

- \(|S_2| = 4 \), four points in general position.
- \(|S_2| = 6 \), the vertices of a complete quadrilateral.
- \(|S_2| = 7 \), the points of a subplane of order 2.

Proof. It is easy to verify (without applying Gropp’s results), that there are only three possible sizes of a 2-semiarc. Theorem 2.3 gives \(4 \leq |S_2| \leq 7 \). From Proposition 2.6 we get \(|S_2| \neq 5 \), because \(q + 1 = 5 \) is not divisible by 3. Hence \(|S_2| \in \{ 4, 6, 7 \} \).

The case \(|S_2| = 4 \) follows from Proposition 2.4. The combinatorial description of Gropp gives that if \(|S_2| = 6 \), then there are two trisecants and one bisecant through each point, hence the design corresponds to the six vertices of a complete quadrilateral and it is obviously embeddable into \(\text{PG}(2, 4) \). If \(|S_2| = 7 \), then according to Gropp, the design is a \((7_3)\)-configuration. In other words this is the Fano plane \(\text{PG}(2, 2) \), which is embeddable to \(\text{PG}(2, 4) \).

\[
\begin{array}{|c|c|c|c|c|}
\hline
|S_2| & x_0 & x_1 & x_2 & x_3 & G \\
\hline
4 & 7 & 8 & 6 & 0 & \mathbb{Z}_2 \times S_4 \\
6 & 2 & 12 & 3 & 4 & \mathbb{Z}_2 \times S_4 \\
7 & 0 & 14 & 0 & 7 & \text{PSL}(3, 2) \times \mathbb{Z}_2 \\
\hline
\end{array}
\]

Table 1: 2-semiarcs in \(\text{PG}(2, 4) \)

If \(q = 5 \), then 2-semiarcs correspond to \((4, 1)\)-designs by Proposition 1.2. Gropp [22, Table 1] proved that there are eight such designs with at most 12 points. We show that only three of them are embeddable into \(\text{PG}(2, 5) \).

Theorem 3.3. In \(\text{PG}(2, 5) \) there are three projectively non-equivalent 2-semiarcs.

- \(|S_2| = 5 \), five points of a conic.
- \(|S_2| = 6 \), the union of two trisecants.
\begin{itemize}
\item $|S_2| = 9$, the projective triangle.
\end{itemize}

Proof. It is easy to see that there are only four possible sizes of a 2-semiarc. Theorem 2.3 gives $5 \leq |S_2| \leq 9$. From Proposition 2.7 we get $|S_2| \neq 7$, because $q + 2 = 7$ cannot be written as $4\alpha + 3\beta$ with $\beta \neq 1$.

First we prove that $|S_2| \neq 8$. Suppose to the contrary that S_2 is a 2-semiarc with 8 points. Gropp proved that there is only one $(4, 1)$-design with eight points, the symmetric (S_3)-configuration (also called Möbius-Kantor configuration). But it was proven by Abdul-Elah, Al-Dhahir and Jungnickel $[1]$ that this configuration cannot be embedded into $PG(2, 5)$. Hence $|S_2| \in \{5, 6, 9\}$.

The case $|S_2| = 5$ follows from Proposition 2.4.

In the case $|S_2| = 6$, if $P \in S_2$ is a point, then there are $6 - 2 = 4$ non-tangents through P, hence S_2 has no 4-secants. Let a be the number of trisecants, and b be the number of bisecants through P. Then we get $a + b = 4$ and $2a + b = 5$, hence $a = 1$ and $b = 3$. So S_2 is the union of two trisecants, ℓ_1 and ℓ_2. This is the second case of Theorem 2.2.

Finally consider the case $|S_2| = 9$. Gropp proved that there are two $(4, 1)$-designs with nine points. One of them is the affine plane of order 3. But $AG(2, 3)$ cannot be embedded into $PG(2, q)$ if $q \equiv 2 \pmod{3}$ (see e.g. $[11]$).

The points of the other $(4, 1)$-design are of two types: (i) the vertices of a triangle T, (ii) the points on exactly one side of T, two points on each side. If a point is of type (i), then it is on two 4-secants and on two bisecants; if a point is of type (ii), then it is on one 4-secant and hence on two trisecants and on one bisecant. Hence S_2 has three 4-secants, $6 \cdot \frac{2}{3} = 4$ trisecants and $(3 \cdot 2 + 6 \cdot 1 \cdot 2 = 6$ bisecants. S_2 also has $9 \cdot 2 = 18$ tangents, so S_2 is a blocking set because $3 + 4 + 6 + 18 = 31$ equals to the total number of lines in $PG(2, 5)$. This blocking set has cardinality $3(q + 1)/2$, hence by a theorem of Lovász and Schrijver $[32]$ it is a projective triangle.

A possible embedding into $PG(2, q)$ is the following. The vertices of T: $\{(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)\}$, the points on the sides of T: $\{(1 : 1 : 0), (4 : 1 : 0), (1 : 0 : 1), (4 : 0 : 1), (0 : 1 : 1), (0 : 4 : 1)\}$.

\begin{table}[h]
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$|S_2|$ & x_0 & x_1 & x_2 & x_3 & x_4 & G \\
\hline
5 & 11 & 10 & 10 & 0 & 0 & $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$ \\
6 & 8 & 12 & 9 & 2 & 0 & D_4 \\
9 & 0 & 18 & 6 & 4 & 3 & S_4 \\
\hline
\end{tabular}
\caption{2-semiarcs in $PG(2, 5)$}
\end{table}

Table 2 contains the non-equivalent 2-semiarcs in $PG(2, 5)$, the number of their i-secants, x_i, and the description of the stabilizer groups in $PGL(3, 5)$.

4 2-semiarcs in $PG(2, 7)$

The number of $(6, 1)$-designs with at most 12 points is 47. Instead of considering the list of Gropp $[22]$, we give a geometric characterization of the embeddable designs and we prove that there are 25 non-equivalent 2-semiarcs in $PG(2, 7)$. First consider the long secants of the semiars. If $q = 7$ and $t = 2$, then Theorem 2.2 gives the following corollary.
Corollary 4.1. Let \(S_2 \) be a 2-semiarc in \(PG(2,7) \). Then \(S_2 \) has no 6-secants. If \(S_2 \) has two 5-secants such that the common point of these secants is not contained in \(S_2 \), then \(S_2 \) is the union of these two 5-secants.

If the common point of the long secants belongs to \(S_2 \), then the size of the semiarc cannot be small.

Proposition 4.2. Let \(S_2 \) be a 2-semiarc in \(PG(2,7) \). If \(S_2 \) has two 5-secants such that the common point of these secants is contained in \(S_2 \), then \(|S_2| > 12 \).

Proof. Let \(\ell_1 \) and \(\ell_2 \) be the 5-secants and let \(P \in \ell_1 \cap \ell_2 \). Then \(P \in S_2 \) implies that there are six secants of \(S_2 \) through \(P \). Hence \(S_2 \setminus (\ell_1 \cup \ell_2) \) must contain at least four points. So \(|S_1| \geq 9 + 4 = 13 \) holds. \(\square \)

Theorem 4.3. In \(PG(2,7) \) there are nine combinatorially non-equivalent 2-semiarcs (there are projectively non-equivalent subclasses in some combinatorial classes).

- \(|S_2| = 7\), seven points of a conic.
- \(|S_2| = 9\), there are two types,
 1. nine vertices of a \(3 \times 3 \) grid,
 2. the six vertices of two triangles \(T_1 \) and \(T_2 \), and the three points of intersections of the corresponding sides of \(T_1 \) and \(T_2 \).
- \(|S_2| = 10\), there are two types,
 1. the union of two 5-secants,
 2. the points of a \(10_3 \) configuration.
- \(|S_2| = 11\), then the semiarc has no 5-secant. There are two types,
 1. four 4-secants and four trisecants,
 2. one 4-secant and ten trisecants.
- \(|S_2| = 12\), then it has three 4-secants and these lines form a triangle \(T \). There are two types,
 1. two vertices of \(T \) belong to \(S_2 \),
 2. three vertices of \(T \) belong to \(S_2 \).

Proof. Theorem \(2.3 \) gives \(7 \leq |S_2| \leq 15 \). Let \(s \) be the number of points of \(S_2 \), let \(\mathcal{L} = \{\ell_1, \ell_2, \ldots, \ell_{57}\} \) be the set of lines of \(PG(2,7) \) and let \(c_i = |S_2 \cap \ell_i| \) for \(i = 1, 2, \ldots, 57 \). If we count in two different ways the number of incident point-line pairs \((P, \ell_j) \) where \(\ell_j \in \mathcal{L} \) and \(P \in S_2 \), and the ordered triples \((P_1, P_2, \ell_j) \) where \(\ell_j \in \mathcal{L} \) and the distinct points \(P_1 \) and \(P_2 \) are in \(S_2 \cap \ell_j \), then we get

\[
\sum_{i=1}^{57} c_i = 8s \quad \text{and} \quad \sum_{i=1}^{57} c_i(c_i - 1) = s(s - 1).
\]
Hence
\[\sum_{i=1}^{57} c_i^2 = s^2 + 7s. \]

We may assume without loss of generality that the lines \(\ell_{58-2s}, \ell_{59-2s}, \ldots, \ell_{57} \) are the tangents to \(S_2 \), for these lines \(c_i = 1 \). If we subtract these values, then we get
\[\sum_{i=1}^{57-2s} c_i = 6s \quad \text{and} \quad \sum_{i=1}^{57-2s} c_i^2 = s^2 + 5s. \]

(1)

It follows from Corollary 4.1 that if \(k \geq 6 \), then \(S_2 \) has no \(k \)-secant. Let \(x_i \) be the number of \(i \)-secants of \(S_2 \) for \(i = 0, 1, \ldots, 5 \). Then
\[\sum_{i=1}^{57-2s} (c_i - 2)(c_i - 3) = 6x_0 + 2x_4 + 6x_5 \quad \text{and} \quad \sum_{i=1}^{57-2s} (c_i - 3)(c_i - 4) = 12x_0 + 2x_2 + 2x_5. \]

On the other hand, Equations (1) give
\[6x_0 + 2x_4 + 6x_5 = s^2 - 37s + 342 \quad \text{and} \quad 12x_0 + 2x_2 + 2x_5 = s^2 - 61s + 684. \]

(2)

First we prove the non-existence parts of the theorem. From Proposition 2.6 we get \(|S_2| \neq 8\), because \(q + 1 = 8 \) is not divisible by 3.

Suppose, that \(s = 15 \). Then Equations (1) give \(\sum_{i=1}^{27} c_i = 90 \) and \(\sum_{i=1}^{27} c_i^2 = 300 \). Applying the inequality between the arithmetic and quadratic means we get
\[\frac{90}{27} = \frac{\sum_{i=1}^{27} c_i}{27} \leq \sqrt{\frac{\sum_{i=1}^{27} c_i^2}{27}} = \sqrt{\frac{300}{27}} = \frac{10}{3}. \]

Thus equality holds, hence \(c_1 = c_2 = \ldots = c_{27} \). But \(90/27 \) is not an integer, contradiction.

Now suppose, that \(s = 14 \). Then Equations (2) give
\[3x_0 + x_4 + 3x_5 = 10 \quad \text{and} \quad 6x_0 + x_2 + x_5 = 13. \]

Elementary counting shows that there are only nine possibilities for the numbers \(x_0, x_1, \ldots, x_5 \).

These are the following:

\(x_0 \)	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)
2	28	1	22	4	0
1	28	7	14	7	0
0	28	13	6	10	0
2	28	0	25	1	1
1	28	6	17	4	1
0	28	12	9	7	1
1	28	5	20	1	2
0	28	11	12	4	2
0	28	10	15	1	3
Now suppose, that \(s = 13 \). Then Equations (2) give
\[
3x_0 + x_4 + 3x_5 = 15 \quad \text{and} \quad 6x_0 + x_2 + x_5 = 30.
\]
Elementary counting shows that there are only twelve possibilities for the numbers \(x_0, x_1, \ldots, x_5 \). These are as follows.

\(x_0 \)	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)
5	26	0	26	0	0
4	26	6	18	3	0
3	26	12	10	6	0
2	26	18	2	9	0
4	26	5	21	0	1
3	26	11	13	3	1
2	26	17	5	6	1
3	26	10	16	0	2
2	26	16	8	3	2
1	26	22	0	6	2
2	26	15	11	0	3
1	26	21	3	3	3

In these cases an exhaustive computer search shows that there are no 2-semiarcs of sizes 14 and 13 in PG(2, 7).

Now consider the existence parts. The case \(|S_2| = 7 \) follows from Proposition 2.4.

If \(|S_2| = 9 \) then we can apply Proposition 2.7. As \(9 = 4\alpha + 3\beta \) implies \(\alpha = 0 \) and \(\beta = 3 \), we get that there is no 4-secant of \(S_2 \) and there are two trisecants through each point of \(S_2 \). Hence the total number of trisecants is \(9 \times 2/3 = 6 \). There are two possibilities.

(i) There do not exist three trisecants such that they form a triangle whose three vertices are in \(S_2 \). Then the points of \(S_2 \) are the nine vertices of a \(3 \times 3 \) grid, whose six lines are the trisecants of \(S_2 \). An example for this case is the following. The points of \(S_2 \) are the points of intersections of three horizontal and three vertical lines. Their cartesian coordinates are the following: \((0,0), (1,0), (3,0), (0,1), (1,1), (3,1), (0,4), (1,4)\) and \((3,4)\).

The grid has two triples of lines. There are two possibilities in each triples: the lines either form a triangle or they belong to a pencil. Hence there are projectively non-isomorphic examples of this combinatorial type (see Table 3).

(ii) There exist three trisecants such that they form a triangle \(T_1 \) whose three vertices, say \(P_1, P_2 \) and \(P_3 \) are in \(S_2 \). In this case \(S_2 \) contains three points, say \(Q_1, Q_2 \) and \(Q_3 \) from the sides of \(T_1 \), and three more points, say \(R_1, R_2 \) and \(R_3 \). Consider the three other trisecants of \(S_2 \). If \(Q_iQ_j \) were a trisecant, then it ought to contain exactly one point from the set \(\{R_1, R_2, R_3\} \), hence both of the remaining two trisecants would pass on the other two \(R_i \), contradiction. So each of the remaining three trisecants contains one point of the set \(\{Q_1, Q_2, Q_3\} \), hence two points from the set \(\{R_1, R_2, R_3\} \). So the points \(R_1, R_2 \) and \(R_3 \) form a triangle \(T_2 \). An example for this case is the following. The homogeneous coordinates of the vertices of \(T_1 \) are \((0 : 0 : 1), (0 : 1 : 0)\) and \((1 : 0 : 0)\), the coordinates of the vertices of \(T_2 \) are \((2 : 3 : 1), (3 : 4 : 1)\) and \((5 : 5 : 1)\). The points of intersections of the corresponding sides are \((1 : 4 : 0), (0 : 1 : 1)\) and \((1 : 0 : 1)\).

There are projectively non-isomorphic examples of this combinatorial type, too (see Table 3).

If \(|S_2| = 10 \), then first we consider the largest collinear subset of \(S_2 \). Because of Theorem 2.2 its cardinality is at most \(q - 2 = 5 \). If \(S_2 \) has a 5-secant, then Csajbók, Héger and Kiss [15, Proposition 2.3] proved that \(S_2 \) is the union of two 5-secants.

8
If S_2 has no 5-secants, then the points of S_2 can be partitioned into two subsets. Let $A \subset S_2$ be the set of points belonging to three trisecants of S_2 and let $B \subset S_2$ be the set of points belonging to one trisecant and one 4-secant of S_2. If $|A| = a$ and $|B| = b$, then the total number of trisecants of S_2 is $(3a + b)/3$, hence $3|b|$. Thus if $b > 0$, then $b \geq 3$, and no point of S_2 lies on more than one 4-secant. Hence $b > 0$ implies $|S_2| \geq 3 \times 4 = 12$, contradiction. So S_2 has no 4-secant, hence it is a (10_3)-configuration. An example for this case is the Desargues configuration.

It is known that there are ten projectively non-isomorphic (10_3)-configurations [21]. The embeddability of these configurations were investigated by Glynn [20], who proved that one of them is not embeddable into any pappian plane. It is also known, that the other nine can be embedded into the classical euclidean plane [12]. Our exhaustive computer search shows that these nine can also be embedded into $\text{PG}(2,7)$.

If $|S_2| = 11$, then it is a 2-semicirc with $q + 4$ points. For each point $P \in S_2$ there are $q - 1$ secants through P, thus $q + 3$ points of S_2 are distributed among the secants through P. It follows from Corollary 4.1 that S_2 has no 6-secant. Thus the points of S_2 can be partitioned into four subsets. Let $A \subset S_2$ be the set of points belonging to four trisecants of S_2, let $B \subset S_2$ be the set of points belonging to two trisecants and one 4-secant of S_2, let $C \subset S_2$ be the set of points belonging to two 4-secants of S_2 and finally let $D \subset S_2$ be the set of points belonging to one trisecant and one 5-secant of S_2.

First we prove that $D = \emptyset$. Let $|A| = a$, $|B| = b$, $|C| = c$ and $|D| = d$. Let s be the number of 5-secants. Then Corollary 4.1 and Proposition 4.2 imply that $s \leq 1$. Suppose that $s = 1$. Then we show that $c = 0$ also holds. The 4-secants cannot meet the 5-secant in a point of S_2 and the union of two intersecting 4-secants contains 7 points, so if $c \neq 0$, then S_2 contains at least $5 + 7 > 11$ points, contradiction. So $s = 1$ implies $a + b = 6$. The number of the 4-secants of S_2 is $b/4$, hence $4|b|$. There are only two possibilities, either $b = 0$ or $b = 4$. In the first case $a = 6$, in the second $a = 2$. The number of the trisecants of S_2 is $(5 + 4a + 2b)/3$. If $b = 0$, then this number is $5 + 4 \cdot 6 = 29$ and it is not divisible by 3, contradiction. If $b = 4$ then $a = 2$, and S_2 has one 5-secant, ℓ_5, one 4-secant, ℓ_4 and seven trisecants. Let $S_2 \setminus (\ell_5 \cup \ell_4) = \{P, R\}$. Then there are four trisecants through both P and R, hence the line PR is a trisecant. Each of the other $2 \times 3 = 6$ trisecants through P or R must contain one point of ℓ_5, but there exists a unique trisecant at each point of ℓ_5. This contradiction proves $d = 0$.

If $d = 0$, then $a + b + c = 11$. The number of the trisecants of S_2 is $(4a + 2b)/3$, hence

\[
b \equiv a \pmod{3}.
\]

The number of the 4-secants of S_2 is $(b + 2c)/4 = (22 - 2a - b)/4$, hence

\[
b \equiv 2a + 2 \pmod{4}.
\]

Thus the Chinese Remainder Theorem gives

\[
b \equiv 10a + 6 \pmod{12}.
\]

We know that $0 \leq a, b \leq 11$, hence if a is given, then this congruence uniquely determines b, and also $0 \leq c = 11 - a - b$. We have the following possibilities.

a	0	1	2	3	4	5	6	7	8	9	10	11
b	6	4	2	0	10	8	6	4	4	0	10	8
c	5	6	7	8	–	–	–	0	–	2	–	–

Case	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}
An example for Case A_1 is the following. Let $C = \{(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 0), (1 : 0 : 1)\}$. The two 4-secants through $(1 : 0 : 0)$ contain the points $(1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 0), (1 : 5 : 0)$ and $(1 : 0 : 0), (0 : 0 : 1), (1 : 0 : 1), (1 : 0 : 4)$, respectively. The 4-secant through $(0 : 0 : 1)$ and $(0 : 1 : 0)$ contains the points $(0 : 1 : 1), (0 : 1 : 5) \in B$. The 4-secant through $(1 : 1 : 0)$ and $(1 : 0 : 1)$ contains the points $(1 : 3 : 5), (1 : 2 : 6) \in B$.

An example for Case A_8 is the following. Let $$(1 : 0 : 0) \in A \quad \text{and} \quad B = \{(0 : 1 : 0), (0 : 0 : 1), (0 : 1 : 1), (0 : 1 : 3)\}.$$ The four 3-secants through $(1 : 0 : 0)$ contain the points $$(1 : 0 : 0), (0 : 1 : 0), (1 : 2 : 2), \quad \{(1 : 0 : 0), (0 : 1 : 1), (1 : 4 : 4)\},$$ $$(1 : 0 : 0), (1 : 1 : 5), (1 : 4 : 6), \quad \{(1 : 0 : 0), (1 : 6 : 1), (1 : 3 : 4)\}.$$ We prove that the other cases do not appear. Cases $A_5, A_6, A_7, A_9, A_{11}$ and A_{12} cannot appear, because they do not satisfy the condition $a + b + c = 11$. The number of the 4-secants of S_2 is $f = (b + 2c)/4$. If $b = 0$ and $c = 2$, then $f = 1$, but then obviously do not exist any point which is on two 4-secants. In the Cases A_2, A_3 and A_4 we have $f = 4$. But four lines have at most 6 points of intersections, hence $c = 7$ and $c = 8$ are impossible. If $c = 6$, then the four 4-secants form a complete quadrilateral, the sides of it contain the four points of the set B, and A consists of a single point, say P. Then each of the four trisects through P must contain two points from B. But then the pigeonhole principle implies that some of these trisects have more than one point in common. This contradiction proves the nonexistence of this configuration.

If $|S_2| = 12$, then Equations (2) give
$$6x_0 + 2x_4 + 6x_5 = 42 \quad \text{and} \quad 6x_0 + x_2 + x_5 = 48.$$ Proposition [12] gives that $x_5 \leq 1$, hence elementary counting shows that there are only five possibilities for the numbers x_0, x_1, \ldots, x_5. These are the following.

x_0	x_1	x_2	x_3	x_4	x_5	Case
7	24	6	20	0	0	B_1
6	24	12	12	3	0	B_2
5	24	18	4	6	0	B_3
6	24	11	15	0	1	B_4
5	24	17	7	3	1	B_5

We show that only Case B_2 appears. For each point $P \in S_2$ there are six secants through P. We have to distribute 11 points among the secants through P. It follows from Corollary [11] that S_2 has no 6-secant. Thus the points of S_2 can be partitioned into four subsets. Let $A \subset S_2$ be the set of points belonging to five trisects of S_2, let $B \subset S_2$ be the set of points belonging to three trisects and one 4-secant of S_2, let $C \subset S_2$ be the set of points belonging to one trisect and two 4-secants of S_2 and finally let $D \subset S_2$ be the set of points belonging to two trisects and one 5-secant of S_2.

If S_2 has a 5-secant, ℓ, then let $R = S_2 \setminus \ell$ and let $\ell \setminus S_2 = \{P, Q, R\}$.

- Case B_1. In this case S_2 is a $(12, 3)$-arc. In [13] the intersection sizes with lines of all the regular complete $(12, 3)$-arcs in $PG(2, 7)$ are presented and there exist no regular complete $(12, 3)$-arcs in $PG(2, 7)$ having 20 trisects. An exhaustive computer search among incomplete $(12, 3)$-arcs in $PG(2, 7)$ shows that all of them have less than 20 trisects.
• Case B_3. First we prove that no three of the 4-secants have a point in common. There are at most two 4-secants through any point of S_2, and if three 4-secants would meet in a point outside S_2, then the union of these lines would contain S_2, so any other line could contain at most three points of S_2, but the total number of 4-secants is six. Hence through each point of S_2 there are exactly two 4-secants and one trisecant of S_2.

The six 4-secants have $6 \cdot 5/2 = 15$ points of intersection. Three of these points are not in S_2, let X and Y be two of them and let O and E be two points of S_2 such that OX, OY, EX and EY are 4-secants of S_2. There is a projectivity mapping the points of the projective frame to $\{X, Y, O, E\}$. After this projectivity the points of S_2 are in the affine plane. If we use cartesian coordinates, we get $O = (0, 0)$, $E = (1, 1)$, and the points $P = OX \cap EY = (1, 0)$ and $R = OY \cap EX = (0, 1)$ belong to S_2. Let the further points of $OY \cap S_2$ and $OX \cap S_2$ be $A = (0, a)$, $B = (0, b)$, and $C = (c, 0)$, $D = (d, 0)$, respectively. Then $\{a, b, c, d\} \cap \{0, 1\} = \emptyset$.

Without loss of generality we may assume that AC and BD are 4-secants. The equations of these lines are $X/c + Y/a = 1$ and $X/d + Y/b = 1$, respectively. Then the remaining points of S_2 must be $PY \cap AC = K = (1, a - a/c)$, $PY \cap BD = L = (1, b - b/d)$, $RX \cap AC = M = (c - c/a, 1)$ and $RX \cap BD = N = (d - d/b, 1)$. Hence the lines OE and PR are bisecants. Consider the unique trisecant through O. It must contain one point from the set $\{K, L\}$ and one point from the set $\{M, N\}$. But none of the lines KM and LN contains O, thus without loss of generality we may assume, that the line KN is the trisecant through O. Hence

$$\frac{a - a}{c} = \frac{1}{d - b} \iff \frac{a(c - 1)}{c} = \frac{b}{d(b - 1)}. \quad (3)$$

In the same way we get that the unique trisecants through the points P, R and E must be the lines MB, LC and DA, respectively. The equation of the line joining the points $(s, 0)$ and $(0, t)$ is $X/s + Y/t = 1$, thus from these collinearity conditions we get the following equations:

$$c - \frac{c}{a} + \frac{1}{b} = 1 \iff \frac{c(a - 1)}{a} = \frac{b - 1}{b}, \quad (4)$$

$$\frac{1}{c} + \frac{b}{d} = 1 \iff \frac{b(d - 1)}{d} = \frac{c - 1}{c}, \quad (5)$$

$$\frac{1}{d} + \frac{a}{a} = 1 \iff \frac{d}{a} = \frac{a}{a - 1}. \quad (6)$$

From the last equation we get $(d - 1)/d = 1/a$, hence Equations (4) and (6) give $b = (2a - 1)/a$ and $bc = 1$. Finally from Equations (3) and (4) we get $c = (a + 1)/a$. Hence

$$\frac{2a - 1}{a} \cdot \frac{a + 1}{a} = 1, \quad \text{thus} \quad a^2 + a - 1 = 0.$$

But this equation has no root in $GF(7)$, so there is no semiarcs of this type in $PG(2, 7)$.

• Case B_4. Each point of $S_2 \cap \ell$ is contained in two trisecants. Thus the number of trisecants of S_2 through the points of $\ell \cap S_2$ is 10. Let x'_2 and x'_3 be the number of bisecants and trisecants of \mathcal{R}, respectively. Then counting in two different ways the ordered triples (A, B, e) where both A and B are points in \mathcal{R} and e is a line incident with both of them, we get $2x'_2 + 6x'_3 = 42$. On the other hand, each trisecant of S_2 containing a point of ℓ corresponds to a bisecant of \mathcal{R}. Since the number of trisecants of S_2 is 15, the other 5 trisecants of S_2 must be trisecants also for \mathcal{R}, thus $x'_2 \geq 10$ and $x'_3 = 5$. Hence $42 = 2x'_2 + 6x'_3 \geq 20 + 30$, contradiction. So there is no semiarc of this type.
• Case B_5. There are no 4-secants through the points of $\ell \cap S_2$. Hence each of the three 4-secants meets R in four points. But the union of the three 4-secants contains at least $4 + 3 + 2 = 9$ distinct points and R contains only seven points. So there is no semiarc of this type.

Thus only Case B_2 can appear. Now S_2 has three 4-secants, say ℓ_1, ℓ_2 and ℓ_3. Let M be the set of points of intersections of the 4-secants. The number of 4-secants through any point of S_2 is at most two, hence there are four possibilities.

1. $|M| = 1$ and $M \cap S_2 = \emptyset$,
2. $|M| = 3$ and $|M \cap S_2| = 1$,
3. $|M| = 3$ and $|M \cap S_2| = 2$,
4. $|M| = 3$ and $|M \cap S_2| = 3$.

An exhaustive computer search shows that there are no examples in cases 1 and 2, and there are examples in cases 3 and 4. An example of case 3 is the following. Let $S_2 \cap \ell_1 = \{(1 : 0 : 0), (1 : 0 : 5), (1 : 0 : 6)\}$, $S_2 \cap \ell_2 = \{(1 : 0 : 0), (0 : 1 : 0), (1 : 5 : 0), (1 : 6 : 0)\}$ and $S_2 \cap \ell_3 = \{(0 : 1 : 0), (0 : 1 : 2), (0 : 1 : 3), (0 : 1 : 5)\}$, finally let $S_2 \setminus (\ell_1 \cup \ell_2 \cup \ell_3) = \{(1 : 1 : 1), (1 : 5 : 1)\}$.

An example of case 4 is the following. Let $x = 0$, $S_2 \cap \ell_1 = \{(1 : 0 : 0), (0 : 0 : 1), (1 : 0 : 1), (1 : 0 : 5)\}$, $S_2 \cap \ell_2 = \{(1 : 0 : 0), (0 : 1 : 0), (1 : 2 : 0), (1 : 3 : 0)\}$ and $S_2 \cap \ell_3 = \{(0 : 0 : 1), (0 : 1 : 0), (0 : 1 : 4), (0 : 1 : 5)\}$, finally let $S_2 \setminus (\ell_1 \cup \ell_2 \cup \ell_3) = \{(1 : 1 : 3), (1 : 1 : 6), (1 : 4 : 3)\}$.

An exhaustive computer search shows that there are no examples in cases 1 and 2, and there are examples in cases 3 and 4. An example of case 3 is the following. Let $S_2 \cap \ell_1 = \{(1 : 0 : 0), (0 : 1 : 0), (1 : 0 : 4), (1 : 0 : 5)\}$, $S_2 \cap \ell_2 = \{(1 : 0 : 0), (0 : 1 : 0), (1 : 2 : 0), (1 : 3 : 0)\}$ and $S_2 \cap \ell_3 = \{(0 : 1 : 0), (0 : 1 : 2), (0 : 1 : 3), (0 : 1 : 5)\}$, finally let $S_2 \setminus (\ell_1 \cup \ell_2 \cup \ell_3) = \{(1 : 1 : 1), (1 : 5 : 1)\}$.

Table 3 contains the projectively non-equivalent 2-semiarcs in $PG(2,7)$, the number of their i-secants, x_i, and the description of the stabilizer groups in $PGL(3,7)$.

5 The algorithm

The algorithm used for the classification of 2-semiarcs in $PG(2, q)$ is a modification of the one presented in [3, 34]. When possible, the search is helped by the structural constraints proven in Section 2.

In this case the algorithm works on admissible sets, i.e. sets such that each point lies on at least two tangent lines, instead of working on partial solutions. In fact, the property of being a 2-semiarc is not an hereditary feature, i.e. a feature preserved by all the subsets, so the weaker hereditary feature of being an admissible set has been used. It is weaker in the sense that it allows to prune very few branches of the search space with respect to the cases when considering arcs and $(k,3)$-arcs. This and the fact that 2-semiarcs are in general larger than arcs and $(k,3)$-arcs make the problem computationally harder than the ones faced in [33, 34].

Note also that, in general, not all the admissible sets can be extended to 2-semiarcs.

The exhaustive search has been feasible because projective properties among admissible sets have been exploited to avoid obtaining too many isomorphic copies of the same 2-semiarc and to avoid searching through parts of the search space isomorphic to previously searched ones.

The algorithm starts constructing a tree structure containing a representative of each class of non-equivalent admissible sets of size less than or equal to a fixed threshold h. If the threshold h were equal to the actual size of the putative 2-semiarcs, the algorithm would be orderly, that is capable of constructing each goal configuration exactly once [38].

However, in the present case, the construction of the tree with the threshold h equal to the size of the putative 2-semiarcs would have been too space and time consuming. For this reason...
a hybrid approach has been adopted. The obtained non-equivalent admissible sets of size \(h \) have been extended using a backtracking algorithm trying to determine 2-semiarcs of the desired size. In the backtracking phase, the information obtained during the classification of the admissible sets has been further exploited to prune the search tree. In fact the points that would have given admissible sets equivalent to already obtained ones have been excluded from the backtracking steps.

A simple parallelization technique, based on data distribution, has been used to divide the load of the computation in a multiprocessor computer. In our searches we used a 3.3 Ghz Intel Exacore 16 Gb of memory.

6 Results for \(8 \leq q \leq 13 \)

In Table 4, the number of non-equivalent examples of 2-semiarcs in \(\text{PG}(2, q) \), \(q \leq 9 \), is given. The two examples of 2-semiarcs of size 8 in \(\text{PG}(2, 8) \) are obtained by deleting two points from the hyperoval (two points of the conic or one point of the conic and the nucleus).

The following non-existence results are obvious corollaries of Propositions 2.6 and 2.7.

Corollary 6.1. In \(\text{PG}(2, 9) \) there are no 2-semiarcs of size 10 or 11.

In Tables 5 and 6 the description of the stabilizer of the non-equivalent examples of 2-semiarcs \(S_2 \) in \(\text{PG}(2, 8) \) and \(\text{PG}(2, 9) \) is presented. In Table 7 (resp. 8) the 2-semiarcs in \(\text{PG}(2, 8) \) (resp. \(\text{PG}(2, 9) \)) having stabilizer of size larger than 16 are listed (\(x_i \) indicates the number of \(i \)-secants of \(S_2 \) and \(\omega \) denotes an element satisfying the equation \(\omega^3 + \omega^2 + 1 = 0 \) (resp. \(\omega^2 - 2\omega - 1 = 0 \)).

By our experimental results we are able to prove the following.

Theorem 6.2. In \(\text{PG}(2, 11) \) there exist 2-semiarcs of size \(k \in \{11, 12, 14\} \). In \(\text{PG}(2, 13) \) there exist 2-semiarcs of size \(k \in \{13, 27 - 30\} \).

Note that there exists a unique 2-semiarc of size 11 (resp. 13) in \(\text{PG}(2, 11) \) (resp. \(\text{PG}(2, 13) \)) and its stabilizer is \((Z_{11} \rtimes Z_5) \rtimes Z_2 \) (resp. \((Z_{13} \rtimes Z_4) \rtimes Z_3 \)), according to Theorem 2.5. We also proved by an exhaustive computer search that there exists a unique 2-semiarc of size 12 in \(\text{PG}(2, 11) \) and its stabilizer is \(S_4 \).

Acknowledgement

The authors are grateful to the anonymous reviewer for his/her detailed and helpful comments and suggestions.

References

[1] M. S. Abdul-Elah, M. W. Al-Dhahir and D. Jungnickel: \(8_3 \) in \(\text{PG}(2, q) \), Arch. Math. 49 (1987), 141–150.

[2] S. Ball: *On small complete arcs in a finite plane*, Discrete Math. 174 (1997), 29–34.

[3] D. Bartoli: *On the structure of semiovals of small size*, J. Comb. Designs, DOI: 10.1002/jcd.21383.
[4] D. Bartoli, A.A. Davydov, G. Faina, S. Marcugini, F. Pambianco: On sizes of complete arcs in PG(2, q), Discrete Math. 312 (2012), 680–698.

[5] D. Bartoli, A.A. Davydov, G. Faina, S. Marcugini, F. Pambianco: New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane, J. Geom. 104 (2013), 11–43.

[6] D. Bartoli, A.A. Davydov, G. Faina, S. Marcugini, F. Pambianco: A new algorithm and a new type of estimate for the smallest size of complete arcs in PG(2, q), Electronic Notes in Discrete Mathematics 40 (2013), 27–31. DOI:10.1016/j.endm.2013.05.006.

[7] D. Bartoli, A.A. Davydov, S. Marcugini, F. Pambianco: The minimum order of complete caps in PG(4, 4), Advanc. in Math. Commun. 5 (2011), 37–40.

[8] D. Bartoli, G. Faina, S. Marcugini, F. Pambianco: Classification of the smallest minimal 1-saturating sets in PG(2, q), q ≤ 23, Electronic Notes in Discrete Mathematics 40 (2013), 229-233. DOI:10.1016/j.endm.2013.05.041.

[9] D. Bartoli, S. Marcugini, F. Pambianco: New quantum caps in PG(4, 4), J. Combin. Des. 20 (2012), 448–466.

[10] L. M. Batten: Determining sets, Australas. J. Combin. 22 (2000), 167–176.

[11] A. Bichara, G. Korchmáros: n²-sets in a projective plane which determine exactly n² + n lines, J. Geom. 15 (1980), 175–181.

[12] J. Bokowski and B. Sturmfels: Computational Synthetic Geometry, Lecture Notes in Mathematics 1355, Springer, Berlin, 1989.

[13] K. Coolsaet and H. Sticker: The Complete (k, 3)-Arcs of PG(2, q), q ≤ 13, J. Combin. Des. 20 (2012), 89–111.

[14] B. Csajbók: Semiarcs with two long secants, manuscript.

[15] B. Csajbók, T. Héger, Gy. Kiss: Semiarcs with a long secant in PG(2, q), submitted.

[16] B. Csajbók, Gy. Kiss: Notes on semiarcs, Mediterr. J. Math. 9 (2012), 677–692.

[17] A.A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco: New inductive constructions of complete caps in PG(N, q), q even, J. Combin. Des. 18 (2010), 176–201.

[18] A.A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco: Linear nonbinary covering codes and saturating sets in projective spaces, Advanc. Math. Commun. 5 (2011), 119–147.

[19] J. M. Dover: Semiovals with large collinear subsets, J. Geom. 69 (2000), 58–67.

[20] D. Glynn: On the Anti-Pappian 103 and its Construction, Geometriae Dedicata 77 (1999), 71–75.

[21] H. Gropp: Non-symmetric configurations with natural index, Discrete Math. 124 (1994), 87–98.

[22] H. Gropp: Configurations and (r, 1)-designs, Discrete Math. 129 (1994), 113–137.

[23] H. Gropp: Graph-like combinatorial structures in (r, 1)-designs, Discrete Math. 134 (1994), 65–73.
[24] J.W.P. Hirschfeld: *Maximum sets in finite projective spaces*. In: Lloyd, E.K. (ed.) Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 82, pp. 55–76. Cambridge University Press, Cambridge (1983).

[25] J.W.P. Hirschfeld, L. Storme: *The packing problem in statistics, coding theory and finite geometry: update 2001*. In: Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., Thas, J.A. (eds.) Finite Geometries, Developments of Mathematics, vol. 3, Proc. of the Fourth Isle of Thorns Conf., Chelwood Gate, 2000, pp. 201–246. Kluwer Academic Publisher, Boston, 2001.

[26] J. W. P. Hirschfeld: *Projective Geometries over Finite Fields, 2nd ed.*, Clarendon Press, Oxford, 1998.

[27] J.H. Kim, V. Vu: *Small complete arcs in projective planes*, Combinatorica 23 (2003), 311–363.

[28] Gy. Kiss: *A survey on semiovals*, Contrib. Discrete Math. 3 (2008), 81–95.

[29] Gy. Kiss, S. Marcugini, F. Pambianco: *On the spectrum of the sizes of semiovals in PG(2, q), q odd*, Discrete Math. 310 (2010), 3188–3193.

[30] Gy. Kiss, S. Marcugini, F. Pambianco: *Semiovals in projective planes of small order*, Proceedings of Algebraic and Combinatorial Coding Theory, Eleventh International Workshop, June 16-22, 2008, Pamporovo, Bulgaria, 151–154.

[31] P. Lisonek: *Computer-assisted Studies in Algebraic Combinatorics*, Ph.D. Thesis, RISC, Johannes Kepler University of Linz, 1994.

[32] L. Lovász, A. Schrijver: *Remarks on a theorem of Rédei*, Studia Sci. Math. Hungar. 16 (1983), 449–454.

[33] S. Marcugini, A. Milani, F. Pambianco: *Maximal (n, 3)-arcs in PG(2, 13)*, Discrete Math. 294 (2005), 139–145.

[34] S. Marcugini, A. Milani, F. Pambianco: *Complete arcs in PG(2, 25): the spectrum of the sizes and the classification of the smallest complete arcs*, Discrete Math. 307 (2007), 739–747.

[35] N. Nakagawa, C. Suetake: *On blocking semiovals with an 8-secant in projective planes of order 9*, Hokkaido Math. J. 35 (2006), 437–456.

[36] O. Polverino: *Small minimal blocking sets and complete k -arcs in PG(2, pk)*, Discrete Math. 208-209 (1999), 469–476.

[37] B. B. Ranson, J. M. Dover: *Blocking semiovals in PG(2, 7) and beyond*, European J. Combin. 24 (2003), 183–193.

[38] G.F. Royle: *An orderly algorithm and some applications to finite geometry*, Discrete Math. 185 (1998), 105–115.

[39] B. Segre: *Curve razionali normali e k-archi negli spazi finiti*, Ann. Mat. Pura Appl. 39 (1955), 357–379.

[40] C. Suetake: *Two families of blocking semiovals*, European J. Combin. 21 (2000), 973–980.
[41] T. Szönyi: Arac, caps, codes and 3-independent subsets. In: Faina, G., Tallini, G. (eds.) Giornate di Geometrie Combinatorie, Università degli Studi di Perugia, 57-80. Perugia, 1993.

György Kiss
Department of Geometry and MTA-ELTE GAC Research Group
Eötvös Loránd University
1117 Budapest, Pázmány s. 1/c, Hungary
e-mail: kissgy@cs.elte.hu

Daniele Bartoli, Giorgio Faina, Stefano Marcugini and Fernanda Pambianco
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia
Via Vanvitelli 1, 06123 Perugia, Italy
e-mails: daniele.bartoli@DMI.unipg.it, faina@DMI.unipg.it, gino@DMI.unipg.it, fernanda@DMI.unipg.it
S_2	S_2	x_0	x_1	x_2	x_3	x_4	G
7	1 1 1 0 0 1 1 1 2 0 1 0 3 6 1 3 0 0 1 2 4	22 14 21 0 0 0	G_{42}				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	Z_2				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	Z_2				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	Z_3				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	Z_6				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	S_3				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	Z_2				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	Z_2				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	Z_3				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	Z_6				
9	0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 2 0 1 6 1 1 5 1 5 0 0 2 1 3 1 2 5	15 18 18 6 0 0	S_3				

Table 3: 2-semiarcs in PG(2, 7)
Table 4: 2-semiarcs in PG(2, q), q ≤ 9

q	Size	# non-equivalent examples
4	4	1
	6	1
	7	1
5	5	1
	6	1
	9	1
7	7	1
	9	6
	10	12
	11	3
	12	3
8	8	2
	9	2
	10	1
	11	10
	12	26
	13	31
	14	29
	15	11
	16	2
9	9	1
	12	30
	13	59
	14	360
	15	925
	16	1149
	17	655
	18	162
	19	19
	20	3

Table 5: 2-semiarcs in PG(2, 8)

| Size | \(\mathbb{Z}_2\) | \(\mathbb{Z}_3\) | \(\mathbb{Z}_6\) | \(\mathbb{Z}_2\times\mathbb{Z}_6\) | \(\mathbb{Z}_3\times\mathbb{Z}_6\) | \(\mathbb{Z}_4\times\mathbb{Z}_6\) | \(\mathbb{D}_4\times\mathbb{Z}_3\) | \(\mathbb{S}_4\times\mathbb{Z}_3\) | \(\mathbb{S}_4\times\mathbb{Z}_6\) | \(\mathbb{S}_4\times(\mathbb{Z}_3\times\mathbb{Z}_6)\) | \(\mathbb{S}_4\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\) | \(\mathbb{S}_4\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times\mathbb{Z}_2\) | \(\mathbb{S}_4\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times\mathbb{Z}_2\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\) | \(\mathbb{S}_4\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times\mathbb{Z}_2\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\) | \(\mathbb{S}_4\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times\mathbb{Z}_2\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\) | \(\mathbb{S}_4\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times\mathbb{Z}_2\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\times(\mathbb{Z}_4\times\mathbb{Z}_3\times\mathbb{Z}_6)\) |
|------|-----|-----|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | |
| 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | |
| 10 | 8 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | |
| 11 | 8 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | |
| 12 | 8 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | |
| 13 | 22 | 4 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | |
| 14 | 14 | 8 | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | |
| 15 | 5 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | |
| 16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | |

18
Table 6: 2-semiarcs in PG(2,9)

Size	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}	S_{12}	S_{13}	S_{14}	S_{15}	S_{16}	S_{17}	S_{18}	S_{19}	S_{20}
9	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
12	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
16	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	

Table 7: 2-semiarcs in PG(2,8) with $|G| > 16$

| $|S_2|$ | S_2 | ℓ_0 | ℓ_1 | ℓ_2 | ℓ_3 | ℓ_4 | ℓ_5 | ℓ_6 | G |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------------------|
| 8 | 1 0 0 1 1 1 1 1 1 | 29 16 28 0 0 0 0 | $(Z_7 \times Z_3) \times Z_2$ |
| 8 | 0 1 0 1 ω^3 ω^3 | 29 16 28 0 0 0 0 | Z$\sigma(3 \times Z_8)$ |
| 9 | 1 0 0 1 0 1 1 1 1 | 25 18 27 3 0 0 0 | S$\sigma_3 \times Z_3$ |

19
Table 8: 2-semiarcs in PG(2, 9) with $|G| > 16$

$	S_2	$	S_2	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	G	
9	1 0 0 1 1 1 1 1 1	0 1 0 1	ω 2 ω^5 ω^6 ω^7	0 0 1 1 ω^3 ω^3 ω^7 ω^2	37	18	36	0	0	$((\mathbb{Z}_3 \times \mathbb{Z}_3) \times \mathbb{Z}_8) \rtimes \mathbb{Z}_2$	
12	1 0 0 1 0 0 1 1 1 1 1 1	0 1 0 1	1 1 1 1 ω ω^3 ω^3 ω^6	0 0 1 1 ω^2 ω^3 ω^7 ω^6 ω^5 ω	24	24	36	4	3	0	$S_3 \times \mathbb{Z}_4$
12	1 0 0 1 0 0 1 1 1 1 1 1	0 1 0 1	1 1 1 1 ω ω^2 ω^3 ω^2 ω^6	0 0 1 1 ω ω^2 ω^7 ω^7 ω^3 ω^2 ω	25	24	30	12	0	0	S_4
12	1 0 0 1 0 0 1 1 1 1 1 1	0 1 0 1	1 1 1 1 ω ω^3 ω^3 ω^5 ω^7	0 0 1 1 ω ω^5 ω^7 ω^2 ω^7 ω^6	24	24	36	4	3	0	$D_8 \rtimes S_3$
15	1 0 0 1 0 1 1 1 1 1 1 1 1 1	0 1 0 1	1 1 1 1 ω ω ω^3 ω^3 ω^5 ω^6 ω^7	0 0 1 1 ω ω^3 ω^6 ω^2 ω^7 ω^1	16	30	15	30	0	0	S_4
18	1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1	0 1 0 1	1 1 1 1 ω ω ω ω ω ω^3 ω^3 ω^5 ω^6 ω^7	0 0 1 1 ω ω^3 ω^3 ω^2 ω^7 ω^2 ω^3	1	36	36	9	0	9	$S_3 \times \mathbb{Z}_3$
18	1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1	0 1 0 1	1 1 1 1 ω ω ω ω ω ω ω^3 ω^3 ω^5 ω^6 ω^7	0 0 1 1 ω ω^5 ω^3 ω^2 ω^5 ω^7 ω^3 ω^7	6	36	15	22	12	0	S_4
18	1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1	1 1 1 1 ω ω ω ω ω ω ω ω^2 ω^3 ω^2 ω^5	0 0 1 1 ω ω^7 ω ω ω ω	4	36	27	6	18	0	$\mathbb{Z}_6 \rtimes S_3$