The Path Analysis to Increase Rural Income of Heilongjiang Peasant
— the View of Transfer of Surplus Labor Force

Song ShuLi
School of Economic Management, Heilongjiang Bayi Agricultural University, Daqing, China, 163319

Keywords: Rural, Partial Least Squares, Transfer of Surplus Labor Force, Rural Income

Abstract: Based on the view of increasing rural income by transfer of surplus labor force, this study took partial elements as independent variable to build partial least-squares regression (PLS) model. According to the statistic data from 2003 to 2017 in Heilongjiang province, we analyzed the prechoose variable about route of rural income increased by PLS method using matlab 7.0 to analysis the data. The research suggested that all chosen variables have positive effect, such as value of agriculture production, value of forestry animal husbandry and fishery, number of rural workers, number of rural migrant workers, the total power of agricultural machinery, agricultural production investment, non-agricultural income and rural per capita net income. Based on analysis of result, this study proposed the effective transfer of surplus of labor force is the policy suggestion for realizing rapid growth in rural income.

1. Introduction

China is a typical country with surplus labor force. The ‘Three agriculture-related issues’ is the most prominent problem during the process of modernization and coordinated development of urban-rural economy. However, the core to solve the ‘Three agriculture-related issues’ is to solve the issue of increasing the rural income well. Based on the No.1 document of central government in year 2017, China will be rich in the near future, and farmer must be rich. To increase the rural income, it must promote farmer transfer employment and entrepreneurship. Heilongjiang is a big agricultural province which has 31 cities, 19 county-level cities, 46 counties and 459 towns. At the same time, it is also a populous province which owns a permanent population of 38.34 million, one of the which agriculture population of 16.678 million accounts for about 43.50% of the total population. In recent years, influences by natural conditions, an economic factor, social conditions and agricultural mechanization lead to a decline of the demand for labor in the agricultural production rapidly and producing a large number of surplus labor forces. About 9.486 million rural labor forces and 5.374 million people engaged in production of agricultural labor force and about 4.112 million rural surplus labor need to be transferred in the future.
Domestic research showed that rural poverty problem must take reduction rural labor as the main strategic objectives[1]. Transferring rural surplus labor could promote to increase rural family income[2], at the same time, it could also narrow the rural income gap[3], where may exist nonlinear relationship[4], which is the precondition of food production scale[5] and has become a new growth point of underdeveloped rural areas’ income[6]. It has a positive correlation between farmers' income and the number of labor force engaged in the secondary industry[7]. Therefore, transfer of the rural labor could inhibit the expansion of urban-rural income gap in short time but it may cause the income gap expansion between urban and rural areas for the long run[8]. It showed that transfer of labor interacts with the income gap between urban and rural areas[9]. The discrimination for labor market in big city for the rural labor migration didn’t really narrow the gap between urban and rural income[10]. The degree of transferring rural labor force makes an important contribution to society economic development, while it also brings the negative impact on development of agricultural production[11]. For example, a large number of transferring rural labor would make the land derelict, which would be serious detrimental to agricultural sustainable development, and even affect food security[12]. The growth of non-agricultural income from transfer of surplus labor has a strong periodicity[13]. The importance of agricultural income from the income of farmers is gradually weakened, while the importance of non-agricultural income from the income of farmers is increased[14].

Through the literature review, it was found that more studies are qualitative research on the relationship between surplus labor transfer and farmers' income, and most of them are intuition judgment and general description, while relatively few systematic research are from a quantitative view. In addition, many of them are from national macro-level, and less research on micro-level of single provinces and cities, where especially the study of Heilongjiang province is quite few. Therefore, based on the perspective of surplus labor transfer, PLS model is adopted to analyze way of increasing farmers' income for Heilongjiang province, in order to verify the ideas and judgment that transfer of rural surplus labor smoothly and orderly is the most effective way of increasing farmers' income.

2. Model Built and Analysis

2.1 Variables and Variable Description

Peasant income consists of agriculture part and non-agriculture part. According to the impact factors of these two parts, it combined income source with components of Heilongjiang province peasant. According to expert's point of view who is devoted to research transfer of surplus labor force and peasant income, it was selected parts of variable as researching index (refer to Table 1).

2.2 Principle of Model

We assumed y as dependent variable, $p\{x_1, x_2, \ldots x_p\}$ as Independent variable, n as sample quantities, and $X=[x_1, x_2, \ldots x_p]_{n \times p}$ as independent variable and $Y=[y]_{n \times 1}$ as dependent variable. For the requirement of regression analysis as extracting components, the two conditions shall be met as follows:
Table 1: Variable and variable declaration

Variable type	Variable symbol	Variable name	Unit	Variable description
Dependent variable	y	Rural per capita net	Yuan	From Statistical yearbook indicators
Independent variable	X₁	Agriculture output	Ten Thousand Yuan	Total value- Agriculture output
	X₂	Forestry and fishery	Ten Thousand Yuan	Total value- Forestry and fishery output
	X₃	The number of people	Ten Thousand Person	The number of people performing farming at current year
	X₄	The number of rural	Ten Thousand Person	Rural labor force leaving countryside and living on wage income
	X₅	Total power of	Ten Thousand KW	From Statistical yearbook indicators
	X₆	Agricultural production	Yuan	Original value of fixed assets per capita
	X₇	The average non-agricultural income per capita	Yuan	Rural migrant workers income in the employ of enterprise or individual household, based on wage income of statistical yearbook

Data source: 《Heilongjiang province statistical yearbook 2004-2018》, 《China Statistical Yearbook 2004-2018》, Derived from official website of Heilongjiang Statistic bureau directly or calculation.

1) t_1, u_1 shall possess variability information from their datasheet as much as possible.
2) The correlation of t_1 and u_1 shall reach maximum.

After extracting t_1, u_1, we performed the regression of X vs t_1 and Y vs u_1 by the method of PLS. If the regression equation get a satisfied accuracy, and the operation be terminated, otherwise we will perform the second operation using residual X, Y to be resolved by t_1. Looping computing fution until we get the satisfied accuracy. Assuming components t_1, t_2, \ldots, t_m were extracted for X, we performed the regression of Y to t_1, t_2, \ldots, t_m by PLS and then established regression equation of Y to t_1, t_2, \ldots, t_m, until PLS modeling is finished. Data matrix from normalization X be marked $E_0=(E_{01}, E_{02}, \ldots, E_{0q})_{n \times p}$, Data matrix from normalization y be marked $F_0=(F_{01}, F_{02}, \ldots, F_{0q})_{n \times p}$. The correlation of t_1 and u_i $r_i = \frac{F_{0i}' t_1}{\| t_1 \|}$.

When performing cross validation test, we made $Q_k^2 \geq (1-0.95^2) = 0.0975$ as effective index, which showed that added component is valid to improve modeling quality, otherwise not(Wang huiwen, Wu zaibin etc. 2006).
2.3 PLS Analysis

2.3.1 Data Statistics, Multiple Correlation Test and Data Normalization Processing

This paper collected Time-series data influencing rural income from《Heilongjiang province statistical yearbook》, 《China Statistical Yearbook》2004-2018, multiple correlation test use Variance Inflating Factor. Variance Inflating Factor for x_j is marked VIF$_j$, the calculation is $VIF_j = (1 - R_j^2)^{-1}$. Here R_j^2 is the coefficient of multiple determination that regress x_j to other independent variable. The maximum VIF$_j$ of x_j is used as the indicator testing multiple correlation. Generally, if VIF$_j$ is greater than 10, which demonstrates $R_j^2 > 0.9$ and multiple correlation will influence estimated value of LS(Least squares) seriously. Here can justify this independent variable is the approximate linear combination of other independent variable, independent variable and dependent variable are highly coorrelated. Using matlab7.0 to make the analysis to original data, this study showed correlation information of between variables are as follows(Table 2):

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	y
X_1	1	0.9726	-0.7715	0.8271	0.9708	0.9674	0.9868	0.9888
X_2	0.9726	1	-0.8541	0.916	0.9928	0.975	0.987	0.9922
X_3	-0.7715	-0.8541	1	-0.9774	-0.8566	-0.7868	-0.7941	0.8057
X_4	0.8271	0.916	-0.9774	1	0.9125	0.8479	0.8573	0.8707
X_5	0.9708	0.9928	-0.8566	0.9125	1	0.9673	0.9907	0.9906
X_6	0.9674	0.975	-0.7868	0.8479	0.9673	1	0.9796	0.983
X_7	0.9868	0.987	-0.7941	0.8573	0.9907	0.9796	1	0.9973
y	0.9888	0.9922	0.8057	0.8707	0.9906	0.983	0.9973	1

Table 2 showed serious multiple correlations are existed both among dependent variables and among independent variables.

In order to remove adverse effects due to differences between test units and ensuring eaching variable own the same expression, we used matlab7.0 to make normalization treatment for dependent variables and independent variables and got normalization data as follows(Table 3):

3. Extracting Principal Component

1). Extracting the first principal component:

\[
W_1^* = (-0.3936, -0.3949, -0.3466, 0.3207, -0.3943, -0.3912, -0.3970)
\]

\[
P_1=(-0.3804,-0.3911,-0.3673,0.3490,-0.3907,-0.3818,-0.3860)
\]

\[
t_1=E_0W_1^* = -0.3936E_1-0.3949E_2-0.3466E_3+0.3207E_4-0.3943E_5-0.3912E_6 -0.3970E_7
\]

Regression Equation F_0 to t_1:

\[
F_0 = r_1t_1=-0.3878t_1=0.1526E_1+0.1531E_2+0.1344E_3-0.1244E_4+0.1529E_5+0.1517E_6+0.1540E_7
\]

(1) Cross validation judgement:

\[
Q_1^2=0.9576>(1-0.952)=0.0975, \text{ it was demonstrated that adding component is valid to improve modeling quality and continue to extract principal component.}
\]

2). Extracting the second principal component:
W_2^*=(0.3251,0.0956,-0.5096,0.6990,0.0899,0.2351,0.2711)
P_2=(0.3228,0.0849,0.5238,-0.4849,0.0815,0.2628,0.2662)
t_2=E_0W_2^*+0.3251E_1+0.0956E_2-0.5096E_3+0.6990E_4+0.0899E_5+0.2351E_6+0.2711E_7

Regression Equation F_0 to t_1, t_2:
F_0 = r_1t_1+r_2t_2 = -0.3878t_1+0.2354t_2 = 0.2291E1+0.1756E2+0.0144E3+0.2889E4+0.1739E5+0.2070E6+0.2178E7

(2) Cross validation judgement:
Q_2^2=0.2341>(1-0.952)=0.0975, which demonstrate added component is valid to improve modeling quality and continue to extract principal component.

3). Extracting the third principal component
W_3^*=(0.0634,0.2894,0.3812,0.3790,0.2261,-0.7448,0.1322)
P_3=(0.0807,0.2279,0.2742,0.2935,0.3423,-0.8214,0.1654)
t_3=E_0W_3^*+0.0634E_1+0.2894E_2+0.3812E_3+0.3790E_4+0.2261E_5+0.7448E_6+0.1322E_7

(3) Cross validation judgement:
Q_3^2=-0.4573<(1-0.952)=0.0975, it was demonstrated that added component is not valid to improve modeling quality and terminate extracting principal component.

Table 3: Normalization scale data for variables.

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	y
1	-0.9458	-1.1878	1.6004	-1.7613	-1.1097	-1.1054	-0.9507	-1.0183
2	-0.8973	-1.092	1.5798	-1.4459	-1.0791	-0.8015	-0.9165	-0.9649
3	-0.8478	-1.0366	1.5248	-1.3251	-0.9561	-0.919	-0.8824	-0.9144
4	-0.8271	-0.822	0.8987	-0.8352	-0.9377	-0.8015	-0.8513	-0.8724
5	-0.6969	-0.5989	0.2727	-0.3033	-0.8095	-0.7327	-0.8178	-0.672
6	-0.5379	-0.4845	-0.0506	-0.0315	-0.5595	-0.5857	-0.7272	-0.5847
7	-0.4053	-0.4887	-0.2948	-0.0097	-0.2609	-0.4124	-0.39	-0.451
8	-0.1983	-0.1899	-0.7936	0.3191	-0.0704	-0.1525	-0.1795	-0.2167
9	0.0316	0.2943	-0.6938	0.554	0.1364	0.1357	0.0733	0.0759
10	0.1167	0.418	-0.484	0.6513	0.4761	0.0775	0.2552	0.2177
11	0.3345	0.6545	-0.711	0.95	0.7732	0.2587	0.648	0.6234
12	0.9145	1.145	-0.7042	0.9433	1.0939	1.5613	1.0989	1.1809
13	1.6035	1.5591	-1.0619	1.106	1.4945	1.7364	1.6656	1.5902
14	2.3285	1.8294	-1.0825	1.1882	1.8488	1.741	1.9745	2.0064

4. Extracting Principal Component

1). Extracting the first principal component:
W_1^*=(-0.3936,-0.3949,-0.3466,0.3207,-0.3943,-0.3912,-0.3970)
P_1=(-0.3804,-0.3911,-0.3673,0.3490,-0.3907,-0.3818,-0.3860)
t_1=E_0W_1^*+0.3936E_1+0.3949E_2-0.3466E_3+0.3207E_4+0.3943E_5+0.3912E_6+0.3970E_7
Regression Equation \(F_0 \) to \(t_1 \):
\[
F_0 = r_1 t_1 = -0.3878 t_1 + 0.1526 E_1 + 0.1531 E_2 + 0.1344 E_3 - 0.1244 E_4 + 0.1529 E_5 + 0.1517 E_6 + 0.1540 E_7
\]
(1) Cross validation judgement:
\[Q_1^2 = 0.9576 > (1 - 0.952) = 0.0975, \text{ it was demonstrated that adding component is valid to improve modeling quality and continue to extract principal component.} \]

2). Extracting the second principal component:
\[
W_2^* = (0.3251, 0.0956, -0.5096, 0.6990, 0.0899, 0.2351, 0.2711)
\]
\[
P_2 = (0.3228, 0.0849, 0.5238, -0.4849, 0.0815, 0.2628, 0.2662)
\]
\[
t_2 = E_0 W_2^* = 0.3251 E_1 + 0.0956 E_2 - 0.5096 E_3 + 0.6990 E_4 + 0.0899 E_5 + 0.2351 E_6 + 0.2711 E_7
\]
Regression Equation \(F_0 \) to \(t_1, t_2 \):
\[
F_0 = r_1 t_1 + r_2 t_2 = -0.3878 t_1 + 0.2354 t_2 + 0.2291 E_1 + 0.1756 E_2 + 0.0144 E_3 + 0.2889 E_4 + 0.1739 E_5 + 0.2070 E_6 + 0.2178 E_7
\]
(2) Cross validation judgement:
\[Q_2^2 = 0.2341 > (1 - 0.952) = 0.0975, \text{ which demonstrate added component is valid to improve modeling quality and continue to extract principal component.} \]

3). Extracting the third principal component
\[
W_3^* = (0.0634, 0.2894, 0.3812, 0.3790, 0.2261, -0.7448, 0.1322)
\]
\[
P_3 = (0.0807, 0.2279, 0.2742, 0.2935, 0.3423, -0.8214, 0.1654)
\]
\[
t_3 = E_0 w_3^* = 0.0634 E_1 + 0.2894 E_2 + 0.3812 E_3 + 0.3790 E_4 + 0.2261 E_5 - 0.7448 E_6 + 0.1322 E_7
\]
(3) Cross validation judgement:
\[Q_3^2 = -0.4573 < (1 - 0.952) = 0.0975, \text{ it was demonstrated that added component is not valid to improve modeling quality and terminate extracting principal component.} \]

5. Building PLS Regression Equation

As above calculation and ratiocination showed, it is only to extract two principal components for satisfying modeling quality, and the regression equation for normalization variable as follows:
\[
F_0 = r_1 t_1 + r_2 t_2 = -0.3878 t_1 + 0.2354 t_2 + 0.2291 E_1 + 0.1756 E_2 + 0.0144 E_3 + 0.2889 E_4 + 0.1739 E_5 + 0.2070 E_6 + 0.2178 E_7
\]
(2) Regression equation \(y \) to \(x = \{x_1, x_2, \ldots, x_p\} \):
\[
y = 0.8345 x_1 + 0.8342 x_2 + 6.4500 x_3 + 10.6437 x_4 + 0.1147 x_5 + 0.0326 x_6 + 1.6716 x_7 - 8325.1270
\]
(3) As we can see from the equation(4), that \(x_j \) is negative to showed \(x_j \) and \(y \) are negative correlation, that \(x_j \) is positive showed that \(x_j \) and \(y \) are positive correlation.

For \(x_1, x_2, x_3, x_4, x_5, x_6, x_7 \), the degree of positive correlation in a descending order as \(x_4 > x_3 > x_7 > x_1 > x_2 > x_5 > x_6 \), That \(x_4 \) is maximum indicated \(x_4 \) is the biggest influence for \(y \).

Table 4: Judgement result of cross validation

Quantities of component	\(Q_i^2 \)	Critical value
1	0.9576	0.0975
2	0.2341	0.0975
3	-0.4753	0.0975
6. Results Analysis

From the PLS model regression equation (3) and figure 1, it was concluded that each variable x_j's has influence on per capita net income of farmers y: through the establishment of the regression equation, it showed that the larger independent variable regression coefficient absolute value, and the greater this variable’s influence on per capita net income of farmers. Among these, the regression coefficient of the number of rural migrant workers x_4 is 10.6347 means every increase of 1 person in number of rural migrant workers, per capita net income of farmers will increase 10.6347 yuan; Regression coefficient of agricultural workers x_3 is 6.4500, which means that every increase of 1 person in agricultural workers, and per capita net income of farmers will increase 6.4500 yuan; Regression coefficient of non-agricultural accept x_7 is 1.6716, which means that when the non-agricultural income increase 1 yuan, per capita net income of farmers will increase 1.6716 yuan; Regression coefficient agricultural production x_1 is 0.8345, which means per addition 1 yuan of agricultural output value, and per capita net income of farmers will increase 0.8345 yuan; Regression coefficient of output value forestry animal husbandry and fishery x_2 is 0.8342, which means per addition of 1 yuan in forestry animal husbandry and fishery, and per capita net income of farmers will increase 0.8342 yuan; Regression coefficient of total agricultural machinery power x_5 is 0.1147, which means per addition of 1 KWH total agricultural machinery power, and per capita net income of farmers will increase 0.1147 yuan; Regression coefficient of agricultural investment x_6 is 0.0362, which means per addition of 1 yuan in agricultural production investment, and per capita net income of farmers will increase 0.0362 yuan.

The results showed that the agricultural output value and value of forestry, animal husbandry and fishery have the same influence on per capita net income of farmers to some degree. The reason is that all output values should deduct production costs of farming, forestry, animal husbandry and fishery, then the farmers' income. Agricultural mechanization level and the investment of agricultural production both affect per capita net income of farmers, but the impact is not significant. Non-farm income plays obvious promoting effect on increasing of per capita net income of farmers. In this study, In order to emphasize the relationship between the surplus labor transfer and the farmers' income, we took non-agricultural income which only take salary income earned in the form of engaging in non-agricultural industries after labor transfer to work as an example. In fact, the farmers' income of non-agricultural income partly also include the incomes from operating of the second and third industry and property transfer income and so on, so when we took the salary income as example to explain the influence of non-agricultural income from per capita net income of the farmers, and there is also gearing effect by property income and transfer income of the, etc. together with salary income.

Among these, how much the number of migrant rural labor directly shows the transfer of rural surplus labor, and non-agricultural income is the manifestation of earned income by engaging in non-agricultural industries in form of wages after the rural surplus labor transfer. Therefore, the research results showed that with the improvement of modern agricultural mechanization, agricultural output value increased at the same time and also produced a large number of surplus labor force. Retention of surplus labor force in agriculture will cause a decline in agricultural labor productivity, so agricultural production is improving but it does not affect much on the increase in per capita net income of farmers. At the same time, in the context of fixed land acreage and
improving degree of agricultural mechanization, the effect to promoting farmers' income by increasing the number of workers for the agricultural will be limited. Therefore, the reasonable allocation of quantity of agricultural workers and rural migrant workers will have great influence on per capita net income of farmers. Moreover, forestry, animal husbandry and fishery industry are labor-intensive industry, where its development also depends on the transfer of rural surplus labor from the agricultural production, i.e. Lin Muyu output value of forestry, animal husbandry and fishery industry influence on per capita net income of farmers based on the premise of rural surplus labor transfer. Therefore, in the final analysis, the reasonable transfer of rural surplus labor force will have great influence on increasing per capita net income of farmers.

7. Model Fitting and Prediction

From the analysis of the results and using PLS regression equation model (4) to calculate the fitting results of per capita net income of farmers in Heilongjiang province (took integer data, chosen 2001-2014 as the example, and took 2015 as the prediction value for model applications). Among them, prediction of 2015(11410 yuan) is the independent variable which is increased by 10% based on 2014, For instance, it was calculated by PLS model equation as follows, the condition of the agricultural output value ($31.419 million), the forestry, animal husbandry and fishery industry output value ($19.547 million), agricultural workers (7.334 million), the number of rural migrant workers (3.587 million people), agricultural machinery total power (54.4357 million kw), agricultural production investment ($33015.4) and non-agricultural income (2190.8).

8. Conclusions and Suggestions

Through previous results analysis, we can reach the following conclusions: (1) various influencing factors, such as agricultural production value x_1, forestry, animal husbandry and fishery industry output value x_2, agriculture workers x_3, the number of rural migrant workers x_4, total agricultural machinery power x_5, farmers productive investment x_6 and of non-agricultural income x_7 will directly affect the per capita net income of farmers y. (2) the PLS method can effectively eliminate the multiple correlation among each variable, at the same time, the PLS model is also a preferable research method of analyzing the influence factors to quantitative prediction and farmers' income, which can fit result close the actual statistics, own less prediction errors, and higher the prediction accuracy. (3) Adoption the PLS model can make the results more intuitively and it accurately reflect the influence of various influence factors to farmers' income, according to this, it was found that the smoothly and orderly transfer of rural surplus labor is the realization of the effective ways to increase farmers' income. (4) on the basis of the limited planting land area, it allocates rationally the agricultural workforce and the proportion of the number of rural migrant workers, which further increases the non-agricultural income and improves output value of forestry, animal husbandry and fishery industry to realize per capita net income of farmers and effective way.

For increasing farmers' income, it combined with the present situation of the rural population in China and surplus labor transfer long-term characteristic, the following policy suggestions have been put forward: (1) To accurately position the government in the labor transfer work, actively promote institutional innovation, change from directly management to indirectly control the economic, unblock external environment of rural labor force transfer. (2) To improve the training
ability of training institutions and government should strengthen the support to training institutions, and increase training for farmers to enhance working skills and cultural quality of rural labor force, therefore, to increase the comparative employment advantage during transfer of labor force, which creates conditions for the rural surplus labor transfer. (3) To guide the establishment of rural labor transfer institutions or organizations, it improves the rural labor transfer information service and gradually establish the coordinated development of urban and rural labor market. (4) To standard recruitment mechanism, it fully plays the positive role of labor management and supervision departments to protect the transfer of rural labor forces’ rights and interests. (5) To vigorously support the development of township enterprises, accelerate the process of rural urbanization and provide more transfer of labor force non-agricultural jobs, increase the demand for rural surplus labor force.

References

[1] Wang HuiWen, Wu ZaiBin, Meng Jie. Linear and Nonlinear Method of Partial Least-squares Regression. Beijing: National Defence Industry Press, In September 2006.

[2] Deng NianWu, Xu Hui. A Single Dependent Variable Partial Least-squares Regression Model and its Application. Journal of Wuhan University, 2010(2):14-16.

[3] Li Heng. The Empirical Study of Migrant Workers to Promote Farmers’ Income. Agricultural Economic Problems, 2016(7):23-26.

[4] Duan Jun. The Income Effect and Causes of China’s Rural Surplus Labor Transfer Research. Chongqing University, 2012.

[5] Wang HongTao, LiWei, Yu HaiXia. To Promote Rural Labor Transfer Effectively to Increase Farmers’ Income. Agriculture and Technology, 2018(10):9-12.

[6] Guan YongBin. China’s Rural Labor Transfer to the Farmers’ Income Effect Research. Southwest Agricultural University, 2005.

[7] Song ShuLi, Qi WeiXia. Based on the Multiple Linear Regression of the Rural Surplus Labor Transfer Research. Agricultural Technology Economy, 2016(3):104-109.

[8] Lai XiaoLu. Study on the Relationship between the Agricultural Labor Force Transfer and Farmers’ Income in Liaoning Province. Shenyang Agricultural University, 2006.

[9] Lin Yan. Variable Selection Method of Least Squares and its Application Research. Xiamen University, 2007.

[10] Gao MengKe. Rural Surplus Labor Transfer to Urban and Rural Residents Income Gap Analysis of the Effect. The Communist Party of China Journal of Sichuan Provincial Party School, 2014(4):51-55.

[11] Yu Jan. Based on PLS Regression Methods in the Study of the Application of the Economic System. Harbin Engineering University, 2018.

[12] Liu Anyuan. Heilongjiang Province Rural Surplus Labor Force Estimation and Prediction Research Problem. The Northeast Agricultural University, 2008.

[13] Gao ShiLiang, Wang XinYuan, Chen XiaoLi. From the Perspective of Sustainable Agricultural Development of rural surplus labor transfer. Economic manager, 2015(2): 8-10.

[14] Li Ai. The Government Behavior of Rural Labor Transfer. Jinan: Shandong People’s Publishing House, In August 2016.