Predicting outcome in older patients with cancer: Comprehensive geriatric assessment and clinical judgment

Kathelijn S. Versteeg a,b,1, Stéphanie M.L.M. Looijaard c,1, Monique S. Slee-Valentijn d, Henk M.W. Verheul e, Andrea B. Maier c,f,2, Inge R.H.M. Konings a,b,2

a Amsterdam University Medical Center, VU Medical Center Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands.

b Amsterdam University Medical Center, VU Medical Center Amsterdam, Department of Internal Medicine, Section of Geriatric Medicine, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands.

c Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7, 1081 BT Amsterdam, the Netherlands.

d Center of Excellence in Geriatric Rehabilitation, Cordaan, Postbus 1103, 1000 BC Amsterdam, the Netherlands.

e Radboud University Medical Center, Radboud University, Department of Medical Oncology, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands.

f Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, University of Melbourne, 300 Grattan Street, Victoria 3050, Melbourne, Australia.

1. Introduction

For medical oncologists, predicting treatment toxicity and clinical outcome in older patients with cancer is challenging while complication rates are high [1–3]. Treatment decisions are mostly based on clinical judgment and subjective performance scales such as the Karnofsky performance score. However, these scales are not as sensitive in older populations as in younger populations [4,5], potentially leading to suboptimal treatment of older patients with cancer [6,7]. Moreover, objective reasoning is desired to assist medical oncologists in their advice to adapt or refrain from standard treatment. One of the main goals of a Comprehensive Geriatric Assessment (CGA) is to objectively identify patients who will benefit from anticancer treatment to prevent under- and over-treatment of older patients with cancer [8–11] and to initiate interventions and supportive care based on impaired domains.

CGA in older patients with cancer is valuable to detect impairments predicted multidomain problems in 77 out of 110 patients (70.0%) and the medical oncologist had doubts about standard treatment tolerance in 30 out of 62 patients (48.4%). Unfavorable outcome occurred in 48 out of 80 patients (60%) who received anticancer treatment but could not be predicted by CGA, medical oncologist’s clinical judgment or their combination. There was discrepancy between CGA and clinical judgment in 24 out of 62 patients (38.7%).

Conclusion: Neither CGA, medical oncologist’s clinical judgment or a combination could predict unfavorable outcome in our heterogeneous sample. CGA and clinical judgment did not align in more than one-third of patients.

© 2020 Elsevier Ltd. All rights reserved.

ARTICLE INFO

Article history:
Received 1 January 2020
Received in revised form 17 May 2020
Accepted 20 August 2020
Available online 14 September 2020

Keywords:
Geriatric assessment
Aged
Neoplasms
Cancer
Physical functional performance

ABSTRACT

Objectives: Comprehensive Geriatric Assessment (CGA) has been incorporated into geriatric oncology to prevent unfavorable outcome from anticancer treatment. This study determined the value of CGA and medical oncologist’s clinical judgment in predicting unfavorable outcome and explored whether treatment decisions can be based on CGA.

Patients and Methods: In this prospective cohort study, a multidomain CGA was performed by a geriatric nurse and geriatrician in 110 consecutive patients aged ≥70 years, newly referred to a multidisciplinary oncology clinic. CGA domains included comorbidity, polypharmacy, mood, cognition, nutrition, functionality and physical performance. Medical oncologist’s clinical judgment on expected tolerance of standard treatment was noted (N = 62). Unfavorable outcome was defined as any ≥grade three chemotherapy toxicity, dose reduction, postponement of treatment, death before start of treatment and early progression before first evaluation of treatment (N = 80).

Results: CGA identified multidomain problems in 77 out of 110 patients (70.0%) and the medical oncologist had doubts about standard treatment tolerance in 30 out of 62 patients (48.4%). Unfavorable outcome occurred in 48 out of 80 patients (60%) who received anticancer treatment but could not be predicted by CGA, medical oncologists’ clinical judgment or their combination. There was discrepancy between CGA and clinical judgment in 24 out of 62 patients (38.7%).

Conclusion: Neither CGA, medical oncologist’s clinical judgment or a combination could predict unfavorable outcome in our heterogeneous sample. CGA and clinical judgment did not align in more than one-third of patients.
self-assessment to Patients received written information about their appointments and a geriatric nurse and geriatrician who together conducted a CGA.

To gain more insight into this matter, a multidomain CGA was performed in patients with cancer aged 70 years and older who were referred for geriatric consultation at a multidisciplinary outpatient clinic by their medical oncologist. The aim was to determine the value of CGA and medical oncologist's clinical judgment in predicting unfavorable outcome in older patients with cancer.

2. Patients and Methods

2.1. Study Population

This prospective cohort study was conducted at Amsterdam University Medical Center, location VU University Medical Center, a tertiary hospital in the Netherlands. The research protocol was approved by the ethics board of Amsterdam University Medical Center, location VU University Medical Center and the study was performed according to the 1964 Declaration of Helsinki. Written informed consent from patients was obtained. Patients were referred by their doctor (e.g. surgeon, general practitioner) to the medical oncology department. After referral to the Amsterdam University Medical Center, location VU Medical Center, triage was performed by a medical oncologist. Patients aged 70 years or older with cancer newly referred for treatment by a medical oncologist, were considered eligible for the Multidisciplinary Older Oncological Patient (MOOP) clinic. If patients already knew they would only receive surgery or did not want to receive any treatment, they were not seen at the department of Medical Oncology. Patients were planned in order of referral with a maximum of three patients per week. Medical oncologists were asked for their clinical judgment on the expected tolerance of standard anticancer treatment as part of usual care before they were made aware of the results of the CGA, if this was not possible due to logistic reasons, clinical judgment was not taken into account. The MOOP clinic incorporated a geriatric consultation including a CGA performed by a geriatric nurse and geriatrician into clinical care for older patients with cancer. Geriatric impairments were analyzed and suggestions for improvement were provided. These suggested interventions included referral to a dietician in case of polypharmacy, referral to a physiotherapist in case of high fall risk or mobility problems, referral to a neuropsychologist for neurocognitive analysis in case of memory complaints, advice to the general practitioner to engage a case manager to coordinate care and support caregivers, or critical revision of the medication by a geriatrician in case of polypharmacy. The MOOP clinic was set up in a senior friendly way [21], including combined appointments with a medical oncologist, and a geriatric nurse and geriatrician who together conducted a CGA. Patients received written information about their appointments and a self-assessment to fill in at home prior to their visit. After consultation at the Medical Oncology department and MOOP clinic, CGA results were shared in a multidisciplinary meeting and anticancer treatment was discussed. Patients were excluded if there was no malignancy (N = 2). Between June 2013 and February 2016, 110 consecutive patients were included.

2.2. Self-Assessment

A questionnaire on demographic data, social status, mobility, history of falls, functionality, and cognitive complaints was conducted. Functional dependence was assessed using the Katz Index for Activities of Daily Living (ADL) with ≥ two points indicating dependency in ADL [22] and Lawton-Brody scale for Instrumental ADL (IADL) with > seven points indicating dependency in IADL [23].

2.3. CGA

A geriatric nurse conducted a CGA consisting of: depressive symptoms, cognition, nutritional status, and physical performance. Depressive symptoms were measured using the Geriatric Depression Scale (GDS), > four points indicating depressive symptoms [24,25]. Cognition was assessed using the Mini Mental State Examination (MMSE), <24 points indicating cognitive impairment [26]. The Mini Nutritional Assessment-Short Form (MNA-SF) assessed the nutritional domain, ≤ eleven points indicating risk of malnourishment [27]. Additionally, weight and height were measured to calculate body mass index (BMI).

Physical performance was tested using the Short Physical Performance Battery (SPPB), Timed-Up and Go (TUG) test and handgrip strength (HGS). The SPPB included balance tests in which three positions (side-by-side, semi-tandem and tandem) had to be maintained for ten seconds, four-meter walk test (cutoff <4.82 s) and chair stand test (CST) (cutoff ≤11.19 s) [28]. For the four-meter walk test, patients walked four meters at their usual pace and the fastest time of two measurements was scored [28]. The CST measured the fastest time needed to stand up five times and sit down again while keeping the arms crossed over the chest [28]. These tests formed a SPPB composite score of zero to twelve points, < ten points indicating mobility limitations [28]. For the TUG, patients were asked to stand up from a sitting position without using their hands, walk three meters, walk around a cone, walk three meters back and return to sitting position without using hands, as fast as possible, > fourteen seconds considered low performance [29,30]. HGS was measured using a hydraulic hand dynamometer (Jamar Handheld Dynamometer) in standing position, the shoulder abducted and elbow flexed at 90 degrees, forearm and wrist in neutral position. Patients were instructed to squeeze as hard as possible with alternating hands for three times [31]. Maximal HGS was analyzed continuously in kilograms and dichotomized into low HGS <30 kg for men and <20 kg for women and normal HGS [32]. Patients who were unable to perform or finish a test were given a score of 0 kg HGS or 100 s for four-meter walk test, CST (or used hands to stand up) and TUG to include these patients in analyses [33].

2.4. Physicians Assessment

A geriatrician evaluated comorbidity using the Charlson Comorbidity Index (CCI) and polypharmacy, which was defined as use of ≥ five medications. The CCI questions the presence of nineteen comorbidities scored based on their severity (0–39 points), ≥ two points indicating multimorbidity [34]. Tumor characteristics including cancer type and stage were documented.

2.5. Decision Making

The medical oncologist's clinical judgment was dichotomized into no doubts versus doubts. CGA results were subdivided into seven domains including comorbidity (CCI), polypharmacy, mood (GDS), cognition (MMSE), nutrition (MNA-SF), functionality (history of falls, ADL and IADL), and physical performance (SPPB, TUG, and HGS) [12]. Aforementioned cut-off points were used to determine whether problems on each of the domains were identified. CGA result was dichotomized into no/one domain problem versus multidomain problems identified.

2.6. Follow-up and Outcome Measures

Patients' charts were followed. Information regarding given treatment, treatment toxicity, disease progression and survival was documented. Unfavorable outcome was chosen as outcome measure because it is of importance to not only predict treatment toxicity, but other outcomes that should be avoided as well i.e. early progression of disease and death before start of treatment. Systemic treatment in the metastatic setting is aimed at prolonged survival with preservation of
quality of life (QoL). It is important to know the patients’ individual goals of life in light of the estimated prognosis. An incorrect expectation of prognosis limits making informed choices about the potential harms of treatment and the potential benefits of palliative care and thus affects QoL. In this study unfavorable outcome is defined as any grade three or higher chemotherapy toxicity (according to CTCAE 4.0) before every new cycle of treatment, dose reduction, postponement of treatment more than one week, death before start of planned treatment, and early clinical progression (based on either imaging, tumor markers or clinical deterioration) or mortality before first evaluation (eight to twelve weeks) of treatment. Upfront dose reduction was not considered unfavorable outcome. Due to the heterogeneity of treatments, unfavorable outcome was separately analyzed in patients treated with chemotherapy.

2.7. Statistical Analysis

Analyses were performed using SPSS version 25.0 (IBM Corporation, Armonk, USA). Descriptive statistics were used to describe basic features of the data, continuous data presented as mean ± standard deviation (sd) if normally distributed and median [interquartile range (IQR)] if distribution was skewed. Individual elements of CGA were tested as determinants of the medical oncologist’s clinical judgment using multiple logistic regression analysis. The associations between CGA result, medical oncologist’s clinical judgment and a combination of CGA and clinical judgment with unfavorable outcome were analyzed using logistic regression analysis. These analyses were performed separately for individual domains of CGA. Diagnostic accuracy of CGA result, medical oncologist’s clinical judgment, and their combination to predict unfavorable outcome was determined by calculating sensitivity, specificity and, area under the curve (AUC). AUC was defined as low <0.70, acceptable 0.70–0.80 and excellent >0.80. The relation between CGA result and medical oncologist’s clinical judgment was analyzed using cross tabs and chi-square test. P-values of ≤0.05 were considered statistically significant.

3. Results

3.1. Patient Characteristics

The study population of older patients with cancer had a mean age of 77.9 ± 5.2 years old and 54.5% was male. Gastro-intestinal cancers were most represented and the majority of patients suffered from metastatic cancer (54.1%). Most patients were treated with chemotherapy alone (N = 48; 43.6%). Table 1 shows cancer-related patient characteristics.

3.2. CGA

Table 2 shows patient characteristics obtained by CGA. Multimorbidity was present in 43.6% and polypharmacy in 52.8% of patients. An indication of depressive symptoms was present in 18.4% of patients, of cognitive impairment in 6.9% and risk of malnourishment in 52.4%. There were problems identified in the domain of functionality including ADL-, IADL dependency and history of falls, in 37.9% of patients and physical performance problems were present in 61.3%. CGA did not reveal any problems in eleven patients (10.0%). In 22 patients, CGA revealed a single domain problem (20.0%), which was predominantly the domain of physical performance, while none of these patients had problems within the domain of mood or cognition. In the 77 patients with multidomain problems (70.0%), the domain of physical performance was also the most affected, followed by the domain of polypharmacy, nutrition, and comorbidity.

3.3. Clinical Judgment

Medical oncologist’s clinical judgment was recorded in 62 patients. The medical oncologist had doubts about administering standard anticancer treatment in 30 patients (48.4%). Of these 30 patients, standard anticancer treatment was started in seven patients and non-standard anticancer treatment in the form of reduced dosage or less toxic treatment was started in four patients. In five patients treatment was planned but because of clinical deterioration not received and in three patients doubts led to refraining from treatment. Given treatment was unknown in eleven patients due to loss to follow-up or treatment elsewhere. Chance of doubts by the medical oncologist was higher if patients used a walking aid, in case of polypharmacy, a high GDS score, a low MNA-SF score, a history of falling, low ADL and IADL score, inability to perform the tandem balance test, low total SPPB score and prolonged TUG (Supplementary Table 1, subdivided into elements that are part of a standard oncological consult and elements specifically added by CGA). Polypharmacy and the use of a walking aid were independent predictors of doubts by the medical oncologist.

3.4. Unfavorable Outcome

An overview of the number of patients with available data is shown in Fig. 1. Of the 110 patients, unfavorable outcome could not be determined in 30 patients because they did not receive any anticancer treatment (patient’s preference (N = 8), were advised to refrain from therapy by the medical oncologist or multidisciplinary

Table 1	Patient characteristics, cancer-related (N = 110).		
Patient characteristics	**N**	**N (%)**	
Socio-demographics			
Gender, male	110	60 (54.5)	
Age, years, mean ± sd	110	77.9 ± 5.2	
BMI, kg/m², mean ± sd	93	24.7 ± 3.9	
Cancer characteristics			
Tumor type	110		
Colorectal cancer	28 (25.5)		
Renal cell/urothelial cancer	16 (14.5)		
Melanoma/others	13 (11.8)		
Breast cancer	12 (10.9)		
Pancreas cancer	12 (10.9)		
Prostate cancer	12 (10.9)		
Upper GI cancer	10 (9.1)		
Head/neck cancer	7 (6.4)		
Stage of cancer			
Stage 1	109	7 (6.4)	
Stage 2		17 (15.6)	
Stage 3		26 (23.9)	
Stage 4		59 (54.1)	
Tumor type			
No treatment	110		
Chemotherapy	36 (32.7)		
Hormonal therapy	48 (43.6)		
Radiotherapy	13 (11.8)		
Chemoradiation	5 (4.5)		
Surgical resection	3 (2.7)		
Toxicity			
Unfavorable outcome	80	48 (60.0)	
Progression/death before start treatment	9 (11.3)		
Early progression	6 (7.5)		
Toxicity	4 (5.0)		
Toxicity leading to reduction, postponement or stop treatment	24 (30.0)		
Surgical resection			
Death during treatment	2 (2.5)		
Other complication	3 (3.8)		
Unfavorable outcome for treatment type		80	48 (60.0)
No treatment	9 (100.0)		
Chemotherapy	47	34 (72.3)	
Hormonal therapy	13	7 (7.7)	
Radiotherapy	4	1 (25.0)	
Chemoradiation	4	2 (50.0)	
Surgical resection	3	1 (33.3)	

All variables are given as number (percentage) unless indicated otherwise. SD: standard deviation; BMI: body mass index; GI: gastrointestinal.
In 26 of these 30 patients, CGA identified multidomain problems (86.7%). The medical oncologist had doubts about initiating standard treatment in fourteen out of seventeen of these patients (82.4%). CGA result and medical oncologist’s clinical judgment overlapped in fifteen out of seventeen patients (88.2%). In conclusion, analyses with unfavorable outcome were performed in 80 patients. Analyses with chemotherapy-related unfavorable outcome were performed in 60 patients, since 20 patients received another type of anticancer treatment such as hormonal therapy. These 60 patients included 47 patients who received chemotherapy (N = 1 missing due to treatment elsewhere), four patients who received chemoradiation (N = 1 missing due to treatment elsewhere) and nine patients who were planned to receive chemotherapy but eventually did not due to early progression or death prior to the start of chemotherapy treatment. The medical oncologist’s clinical judgment was known in 62 patients, of whom 45 also had data on unfavorable outcome and 35 patients on chemotherapy-related unfavorable outcome.

In total, 48 out of 80 patients (60.0%) and 45 out of 60 patients (75.0%) who received chemotherapy, experienced an unfavorable outcome. The prevalence of uncomplicated treatment and unfavorable outcome stratified by CGA result and medical oncologist’s clinical judgment is shown in Fig. 2. Of the 80 patients of whom both CGA result and outcome was known, CGA showed s one domain problem in 29 patients (36.3%). Treatment in十二 of these patients (41.4%) was indeed uncomplicated. If problems in ≥ two domains were identified by CGA, treatment was uncomplicated in 20 out of 51 patients (39.2%). Of the 45 patients of whom both medical oncologist’s clinical judgment and outcome were known, the medical oncologist had no doubts about prescribing standard treatment in 29 patients (64.4%). Treatment in thirteen patients (44.8%) was indeed uncomplicated; remaining patients experienced complications such as early progression and chemotherapy toxicity including neuropathy and neutropenia. If the medical oncologist did have doubts, treatment was uncomplicated in five out of sixteen patients (31.2%).

No significant associations between CGA result, individual domains of CGA, medical oncologist’s clinical judgment nor a combination of CGA and clinical judgment with unfavorable outcome were found. The nutritional domain was borderline significant in the chemotherapy subgroup (p = 0.050) (Table 3).
Sensitivity of CGA result to predict unfavorable outcome was 64.6%, specificity 37.5% and AUC 0.51. For the medical oncologist’s clinical judgment, sensitivity was 40.7%, specificity 72.2% and AUC 0.57, and for their combination sensitivity was 29.6%, specificity 72.2% and AUC 0.51. Similar results were found if diagnostic accuracy was calculated in the chemotherapy subgroup, except specificity was slightly lower for CGA result (53.3%). Conclusions remained similar if the association between CGA result and unfavorable outcome was only assessed in the 45 patients of whom the medical oncologist’s clinical judgment was known.

Fig. 2. Outcome stratified for Comprehensive Geriatric Assessment result and medical oncologists’ clinical judgment. Diagram showing uncomplicated treatment and unfavorable outcome according to Comprehensive Geriatric Assessment result (2a) and medical oncologist’s clinical judgment (2b). CGA: Comprehensive Geriatric Assessment.

Table 3. Association between comprehensive geriatric assessment result/medical oncologists’ clinical judgment and unfavorable outcome.

	Unfavorable outcome	Unfavorable outcome, chemotherapy		
	N OR 95% CI	p-value	N OR 95% CI	p-value
CGA result, multi-domain				
problems CGA N=29 (36.3%)	80 1.094 0.422–2.769	.849	60 1.882 0.578–6.125	.293
Comorbidity	80 0.680 0.274–1.685	.405	60 0.828 0.249–2.747	.757
Polypharmacy	78 0.582 0.232–1.457	.247	59 0.857 0.258–2.851	.802
Mood/depression	64 0.955 0.241–3.788	.947	48 2.200 0.237–20.396	.488
Cognition	75 0.419 0.066–2.670	.357	56 NA NA NA	NA
Nutrition	76 1.810 0.714–4.587	.211	57 3.667 1.092–13.418	.050
Functional	74 1.734 0.609–4.940	.303	56 3.009 0.589–15.291	.186
Physical performance	78 1.112 0.446–2.772	.820	59 1.504 0.464–4.878	.497
Medical oncologists’ clinical judgment, doubts	45 1.787 0.494–6.466	.376	35 2.062 0.350–12.168	.424
Combination CGA and clinical judgment, multi-domain problems and doubts	45 1.095 0.292–4.104	.893	35 1.263 0.209–7.649	.799

N: number; OR: odds ratio; CI: confidence interval; CGA: Comprehensive Geriatric Assessment; NA: not applicable. For the cognitive domain analysis could not be performed for chemotherapy-related unfavorable outcome, due to low number of patients that showed problems within the cognitive domain. Analyses were performed with N = 80 for unfavorable outcome and N = 60 for chemotherapy-related unfavorable outcome. P-value of < .05 was considered statistically significant and given in bold.
3.5. CGA Versus Medical Oncologist

For 62 patients, both CGA result and medical oncologist’s clinical judgment were available. There was discrepancy between CGA result and medical oncologist’s clinical judgment in 24 patients (38.7%) (Fig. 3). In the majority of these patients, CGA identified multidomain problems, while the medical oncologist did not identify these problems or did not consider them a problem for prescribing standard anticancer treatment. Most frequently disturbed domains in these patients were nutrition and physical performance. Multidomain problems identified by CGA and doubts of the medical oncologist were associated with one another ($p = 0.022$).

4. Discussion

This prospective cohort study showed that in more than two-thirds of older patients with cancer referred to the medical oncologist, CGA identified multidomain problems, which mainly concerned physical performance. In almost half of referred patients the medical oncologist had doubts about initiating standard anticancer treatment. Unfavorable outcome defined as chemotherapy toxicity, dose reduction, postponement of treatment, death before start of treatment and early progression before first evaluation of treatment was highly prevalent (~60%), but could not be predicted by CGA, medical oncologist’s clinical judgment, nor by their combination. Unfavorable outcome still occurred in more than half of patients who were considered fit for treatment by either CGA or medical oncologist. On the other hand, treatment was uncomplicated in at least one-third of patients who were considered unfit by either CGA or medical oncologist. CGA and medical oncologists came to different conclusions in more than one-third of patients, CGA being more reserved than the medical oncologist, mainly due to problems identified within the domain of nutrition and physical performance.

The findings of this study endorse the prevalence of geriatric impairments in older patients with cancer [12,20]. Furthermore, they indicate the importance of improving patient selection for anticancer treatment, adequate treatment adjustments, and optimizing supportive care during anticancer treatment, since 60% of all patients and 75% of patients who received chemotherapy experienced some form of unfavorable outcome such as early progression and chemotherapy toxicity. The prevalence of unfavorable outcome was even higher than other studies have reported [1–3], which can be attributed to the definition of unfavorable outcome which included not only treatment toxicity but also early progression and death before start of treatment. This shows the importance of not only aiming at predicting treatment toxicity. Especially the prevalence of patients who were unable to receive any treatment was relatively high (nine of 80 patients), which could be due to the academic hospital population which included tumor types with generally worse prognoses.

Although several studies showed that CGA was a better predictor of treatment toxicity than clinical judgment [36,37], neither CGA nor medical oncologist’s clinical judgment was associated with unfavorable outcome in this study. The relatively high specificity of the medical oncologist’s clinical judgment might indicate that doubts about tolerating standard anticancer treatment should lead to caution and maybe even refraining from anticancer treatment. It should be noted that despite the medical oncologists’ hesitance towards treatment, treatment was still started or intended in several patients. Reasons could be that medical oncologists are inclined to give patients the benefit of the doubt if patients are motivated to undergo treatment [38]. This emphasizes the need for objective measures in addition to clinical judgment to support medical oncologists to refrain from treatment. Moreover, it highlights the importance of acknowledging the medical oncologist’s doubts, educating medical oncologists on treatment goals in geriatric oncology and on discussing best supportive care as an alternative for palliative treatment with expected low benefit [39,40] [41].

CGA however, was slightly more reserved with relatively higher sensitivity. No or single domain problems seemed to be a better indicator of uncomplicated treatment than multidomain problems for unfavorable outcome. Therewith, multidomain problems detected by CGA should not implicitly lead to modified treatment plans. This could lead to undertreatment, as supported by more than one-third of patients with multidomain problems who still underwent treatment without complications. Though this could have been influenced by interventions that were initiated before and during treatment such as advice from a dietitian, physiotherapist and medication alterations, it might indicate the need for further evaluation and consideration with the patients and their families to optimize treatment strategies.

When interpreting the results of this study it is important to consider the following points. First, the relatively small study population was heterogeneous in type, stage and, treatment of cancer as well as comorbidities. The toxicity of treatment varies between different chemotherapy regimens, and the prognosis varies greatly between different cancer types. For these reasons, it is difficult to draw firm conclusions from the study for specific groups of patients. Secondly, interventions were initiated immediately if CGA identified problems. This could have led to extra support from a dietician or physiotherapist for example, which may have had a positive influence on treatment outcome in this group. This study does not provide data on QoL or the development of functional status. It is known that not all unfavorable outcome leads to poorer QoL, for instance grade 3 leukopenia. Further research should be directed towards improving objective patient selection for anticancer treatment and identifying patients who are prone for unfavorable outcome, as well as optimizing treatment adjustments and supportive care during anticancer treatment to improve outcome. During the decision-making process, dedicated attention should be given to assess the patients’ goals and preferences in anticancer treatment. Shared decision-making should be pursued and the patients’ thoughts on how to maintain and improve quality of life should be guiding. Also, it is of importance to increase diagnostic accuracy of CGA to predict the risk of unfavorable outcome.

5. Conclusion

In conclusion, unfavorable outcome was highly prevalent in a heterogeneous cohort of older patients with cancer treated with different

![Fig. 3. Discrepancy between Comprehensive Geriatric Assessment result and medical oncologists' clinical judgment (N = 62). Discrepancy between Comprehensive Geriatric Assessment result and medical oncologists' clinical judgment is indicated in grey shading. CGA: Comprehensive Geriatric Assessment.](image-url)
modalities, and could not be predicted by CGA, medical oncologist’s clinical judgment or by their combination. Unfavorable outcome was still highly prevalent in patients considered fit for treatment, while there was also a large number of patients with uncomplicated treatment who were considered unfit. Moreover, discrepancy between CGA and medical oncologist’s clinical judgment was high, both identifying different patients as fit or unfit for anticanter treatment. The results emphasize the need for more objective measures to identify older patients with a high risk of unfavorable outcome to provide reasoning for refraining from or adapting treatment. The main goal of CGA should remain identifying existing geriatric impairments to improve overall condition.

Author Contribution
Conceptualization: All authors.
Data curation: Kathelijn S. Versteeg, Stéphanie M.L.M. Looijaard, Monique S. Slee-Valentijn, Inge R.H.M. Konings.
Formal analysis: Kathelijn S. Versteeg, Stéphanie M.L.M. Looijaard, Henk M.W. Verheul, Andrea B. Maier, Inge R.H.M. Konings.
Funding acquisition: Henk M.W. Verheul, Andrea B. Maier.
Investigation: All authors.
Methodology: All authors.
Project administration: Kathelijn S. Versteeg, Stéphanie M.L.M. Looijaard, Monique S. Slee-Valentijn.
Resources: H. Verheul, Andrea B. Maier, Inge R.H.M. Konings.
Software: Kathelijn S. Versteeg, Stéphanie M.L.M. Looijaard, Monique S. Slee-Valentijn.
Supervision: Henk M.W. Verheul, Andrea B. Maier, Inge R.H.M. Konings.
Validation: Kathelijn S. Versteeg, Stéphanie M.L.M. Looijaard, Monique S. Slee-Valentijn.
Writing - original draft: Kathelijn S. Versteeg, Stéphanie M.L.M. Looijaard, Monique S. Slee-Valentijn.
Writing - review & editing: Henk M.W. Verheul, Andrea B. Maier, Inge R.H.M. Konings.

Funding
This work was supported by the European Union’s Horizon 2020 research and innovation program under the Marie-Sklodowska-Curie grant agreement no. 675003 (PANINI program). The funders had no role in the study design, analysis and interpretation of data, in the writing of the report or in the decision to submit the article for publication.

Declaration of Competing Interest
Kathelijn S. Versteeg, Stéphanie M.L.M. Looijaard, Monique S. Slee-Valentijn, Henk M.W. Verheul, Andrea B. Maier and Inge R.H.M. Konings declare that they have no conflict of interest.

Acknowledgements
European Union’s Horizon 2020: Marie-Sklodowska-Curie grant agreement no. 675003; PANINI. The funding was not specifically given for the Multidisciplinary Older Oncology Patient Clinic.

References
[1] Hurria A, Togawa K, Mohile SG, Owuwu C, Klepin HD, Gross CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol 2011;29:3457–65.
[2] Hurria A, Mohile S, Gajra A, Klepin H, Huss H, Chapman A, et al. Validation of a prediction tool for chemotherapy toxicity in older adults with Cancer. J Clin Oncol 2016;34:2366–71.
[3] Febiu J, Heredia-Soto V, Girones R, Jimenez-Munarriz B, Saldana J, Guillen-Ponce C, et al. Management of the toxicity of chemotherapy and targeted therapies in elderly cancer patients. Clin Transl Oncol 2019. https://doi.org/10.1007/s12094-019-21617-y.
[4] Solommon D, Bower A, Brummel-Smith K, Burgess L, D'Aognito RB, Goldschmidt JW, et al. National Institutes of Health consensus development conference statement: geriatric assessment methods for clinical decision-making. J Am Geriatr Soc 1988;36:342–7.
[5] Tvert C, Albrand G, Mosconi G, Droz JP. Karnofsky Performance Scale (KPS) or Physical Performance Test (PPT)? That is the question. Crit Rev Oncol Hematol 2011;77:142–7.
[6] Kahn KL, Adams JL, Weeks JC, Chrischilles EA, Schrag D, Ayanian JZ, et al. Adjunct chemotherapy use and adverse events among older patients with stage III colon cancer. JAMA 2010;303:1037–45.
[7] Aparicio T, Navazesh M, Bouter L, Basu R, Chatterji S, Parkin DM, et al. The predictive value of each geriatric assessment domain for older patients with cancer: a systematic review. J Geriatr Oncol 2018;9:430–49.
[8] de Vreede E, Schoone D, Rydwick E, Mueller V, Frandin K, et al. Performance-based physical function in older community-dwelling persons: a systematic review of instruments. Age Ageing 2012;41:712–21.
[9] Sheikh JI, Yesavage JA, Brooks 3rd JO, Friedman L, Gratzinger P, Hill RD, et al. Validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 1982;17:37–49.
[10] Proctor M, Thompson S, Lowe D, Pearson MG. Ageism in the management of lung cancer. Age Ageing 2003;32:171–7.
[11] Bastiaannet E, Portielje JE, van de Velde CJ, de Craen AJ, van der Velde S, Kuppen PJ, et al. Lack of survival gain for elderly women with breast cancer. Oncologist 2011;16:415–23.
[12] Wildiers H, Heeren P, Puts M, Topinkova E, Jansen-Heijn J, Extermann M, et al. International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer. J Clin Oncol 2014;32:2595–603.
[13] Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 1969;9:178–86.
[14] Verheul MS, van Loon K, Laarman GJ, van der Woude L, Berendse HW, Brouwer-Oude Oosteweer DM, et al. Geriatric assessment in older patients with cancer after adjuvant chemotherapy and radiation therapy for colorectal cancer in a population-based cohort. J Clin Oncol 2003;21:1293–300.
[15] Aparicio T, Navazesh M, Bouter L, Basu R, Chatterji S, Parkin DM, et al. The predictive value of each geriatric assessment domain for older patients with cancer: a systematic review. J Geriatr Oncol 2018;9:430–49.
[16] Proctor MS, Thompson S, Lowe D, Pearson MG. Ageism in the management of lung cancer. Age Ageing 2003;32:171–7.
Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (1985) 2003;95:1851–60.

de Bruine ES, Reijnierse EM, Trappenburg MC, Pasma JH, de Vries OJ, Meskers CGM, et al. Diminished dynamic physical performance is associated with orthostatic hypotension in geriatric outpatients. J Geriatr Phys Ther 2018. https://doi.org/10.1519/jpt.0000000000000186.

Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373–83.

Supportive PDQ, Palliative Care Editorial B. Planning the transition to end-of-life care in advanced cancer (PDQ(R)): health professional version. PDQ cancer information summaries. Bethesda (MD): National Cancer Institute (US); 2002.

Tucci A, Ferrari S, Bottelli C, Borlenghi E, Drera M, Rossi G. A comprehensive geriatric assessment is more effective than clinical judgment to identify elderly diffuse large cell lymphoma patients who benefit from aggressive therapy. Cancer 2009;115:4547–53.

Magnuson A, Lemelman T, Pandya C, Goodman M, Noel M, Tejani M, et al. Geriatric assessment with management intervention in older adults with cancer: a randomized pilot study. Support Care Cancer 2018;26:605–13.

Peppercorn JM, Smith TJ, Heilbr PR, Debono DJ, Berry SR, Wollins DS, et al. American society of clinical oncology statement: toward individualized care for patients with advanced cancer. J Clin Oncol 2011;29:755–60.

Horlait M, Chambaere K, Pardon K, Deliens L, Van Belle S. What are the barriers faced by medical oncologists in initiating discussion of palliative care? A qualitative study in Flanders, Belgium. Support Care Cancer 2016;24:3873–81.

Yip KF, Wong TH, Alhamid SM, Nadkarni N, Tan CKC, Pang A, et al. Integrating Advance Care Planning as part of Comprehensive Geriatric Assessment for hospitalised frail elderly patients: findings of a cross-sectional study. Singapore Med J 2019. https://doi.org/10.11622/smedj.2019098.

Koedoot CG, Dort FJ, de Haan RJ, Bakker PJ, de Graeff A, de Haes JC. The content and amount of information given by medical oncologists when telling patients with advanced cancer what their treatment options are. Palliative chemotherapy and watchful-waiting. Eur J Cancer 2004;40:225–35.
