THE MAIN CONJECTURE FOR IMAGINARY QUADRATIC FIELDS FOR THE SPLIT PRIME \(p = 2 \)

KATHARINA MÜLLER

ABSTRACT. Let \(\mathbb{K} \) be an imaginary quadratic field such that 2 splits into two primes \(p \) and \(\mathfrak{p} \). Let \(\mathbb{K}_\infty \) be the unique \(\mathbb{Z}_2 \)-extension of \(\mathbb{K} \) unramified outside \(p \). Let \(\mathfrak{f} \) be an ideal coprime to \(p \) and \(\mathbb{L} \) be an arbitrary extension of \(\mathbb{K} \) contained in the ray class field \(\mathbb{K}(\mathfrak{p}^2\mathfrak{f}) \). Let \(\mathbb{L}_\infty = \mathbb{K}_\infty\mathbb{L} \) and let \(\mathbb{M} \) be the maximal \(p \)-abelian, \(p \)-ramified extension of \(\mathbb{L}_\infty \). We set \(X = \text{Gal}(\mathbb{M}/\mathbb{L}_\infty) \). In this paper we prove the Iwasawa main conjecture for the module \(X \).

Mathematics subject classification: 11R23, 11G05.

key words: \(p \)-adic \(L \)-functions, elliptic units, Iwasawa Main conjecture.

1. INTRODUCTION

Let \(\mathbb{K} \) be an imaginary quadratic field in which 2 splits into two distinct primes \(p \) and \(\mathfrak{p} \). By class field theory there exists exactly one \(\mathbb{Z}_2 \)-extension \(\mathbb{K}_\infty/\mathbb{K} \) which is unramified outside \(p \). Let \(\mathbb{L} = \mathbb{K}(\mathfrak{p}^2) \), \(L_\infty = \mathbb{K}_\infty\mathbb{L} \) and \(\mathbb{L}_n \) subextensions such that \([\mathbb{L}_n : \mathbb{L}] = 2^n \). We will denote the Euler system of elliptic units in \(\mathbb{L}_n \) by \(C_n \).

Let \(\mathfrak{f} \) be coprime to \(p \) and \(\mathbb{K} \subset \mathbb{L'} \subset \mathbb{L} \) be an abelian extension such that \(\mathbb{L} \) is the smallest ray class field of the type \(\mathbb{K}(\mathfrak{p}^2) \) containg \(\mathbb{L'} \). Analogous to \(\mathbb{L}_\infty \) we let \(L'_\infty = L_\infty\mathbb{L'} \) and \(L'_n \) be the intermediate fields. Let \(U_n \) be the local units congruent to 1 in \(L'_n \) and \(U_\infty = \lim_{\infty\leftarrow n} U_n \). We define the elliptic units in \(L'_n \) by \(C_n(L'_n) = N_{L_n/L'_n}(C_n) \). Let \(E_n \) be the units of \(L'_n \) congruent to 1 modulo \(p \) and define \(\overline{E} = \lim_{\infty\leftarrow n} E_n \). We define further \(\overline{C} = \lim_{\infty\leftarrow n} C_n \), where the overline denotes in both cases the \(p \)-adic closure of the groups \(E_n \) and \(C_n \), respectively (i.e. we embedd the groups \(C \) and \(E \) in the local units and consider their topological closure). We denote by \(A_n \) the \(2 \)-part of the class group of \(L'_n \) and define \(A_\infty = \lim_{\infty\leftarrow n} A_n \). Let further \(\Omega \) be the maximal \(2 \)-abelian \(p \)-ramified extension of \(L'_\infty \). We will use the notation \(X := \text{Gal}(\Omega/L'_\infty) \).

There is a natural decomposition \(\text{Gal}(L'_\infty/\mathbb{K}) \cong H \times \Gamma' \), where \(H = \text{Gal}(L'_\infty/\mathbb{K}_\infty) \) and \(\Gamma' \cong \text{Gal}(\mathbb{K}_\infty/\mathbb{K}) \). We will fix once and for all such a decomposition. Let \(\chi \) be a character of \(H \) and \(M \) an arbitrarly \(\Lambda = \mathbb{Z}_2[\Gamma' \times H] \)-module. Let \(\mathbb{Z}_2(\chi) \) be the extension of \(\mathbb{Z}_2 \) generated by the values of \(\chi \) and define \(M_\chi = M \otimes_{\mathbb{Z}_2[H]} \mathbb{Z}_2(\chi) \). So \(M_\chi \) is largest quotient on which \(H \) acts via \(\chi \). The modules \(M_\chi \) are \(\Lambda \)-modules. The main aim of this paper is to understand their structure in more detail, i.e. to prove the following main conjecture.

Theorem 1.1. \(\text{Char}(A_\infty \chi) = \text{Char}(\overline{E}/\overline{C})\chi \) and \(\text{Char}(X\chi) = \text{Char}(U_\infty/\overline{C})\chi \).

To do so we will use the following useful reduction step: Let \(\mathfrak{f}' \) be a principal ideal coprime to \(p \) in \(\mathbb{K} \) such that \(\omega_p = 1 \), where \(\omega_p \) denotes the number of roots of unity of \(\mathbb{K} \) congruent to 1 mod \(\mathfrak{f}' \).
Lemma 1.2. If Theorem 1.1 holds for $\mathcal{K} (f^p^n) := \cup_{n \in \mathbb{N}} \mathcal{K}(f^p^n)$, then it holds for every L_∞.

Theorem 1.1 was addressed before by Rubin in [Ru-1] and [Ru-2] for $p \geq 3$ and $[L' : K]$ coprime to p. Bley proved the conjecture in [Bl] for $p \geq 3$ and general ray class fields L' under the assumption that the class number of K is coprime to p.

The most recent work on this problem is due to Kezuka [Ke-2] for the prime $p = 2$ and $K = \mathbb{Q}(\sqrt{-q})$ where q is a prime congruent to 7 modulo 8. She proves the main conjecture in the case $L' = \mathbb{H}$ the Hilbert class field of K. Note that in Kezuka’s case the definition of K ensures that K has odd class number. In this article we drop the assumption that the class number has to be odd and allow $[L : K]$ to be even.

Our proof will follow closely the methods developed by Rubin and generalized by Bley and Kezuka. We will first construct a suitable measure on the group $\text{Gal}(L_\infty/K)$ and use it to define a p-adic L-function. This part of the paper is a summary of section 2 of [Cr-M]. Using properties of the Euler system of elliptic units developed by Rubin and Tchebotarev’s Theorem we will prove that $\text{Char}(A_{\infty, \chi})$ divides $\text{Char}(\mathcal{E}/C_\chi)$. In section 4 we will finish the proof by showing that they are generated by polynomials of the same degree and hence are equal.

An analogue of the relation between the galois groups Γ' and $\text{Gal}(L_\infty/K)$ explained in section 3.2 holds for $p \geq 3$ as well. Thus, all results of section 3.2 can be proved for general p and L as well. In fact most of them are in [Bl]. Thus, the proof given here can also be used to prove the main conjecture for general ray class fields L and any prime p without the assumption that the class number of K has to be coprime to p. It is not stated here for the general case as it is given in [Bl] up to the slight modification in section 3.2 and to avoid technical case distinctions for example in section 3.1, where the statements for $p \geq 3$ and $p = 2$ are actually different.

2. p-adic Measures

Before we start defining the p-adic measures we will need later we prove Lemma 1.2.

Proof of Lemma 1.2. Let $M \in \{A_{\infty}, U_{\infty}/C, E/C, X\}$. Let χ be a character of $\text{Gal}(L_\infty'/K_\infty)$. By restriction χ is also a character of $\text{Gal}(\mathcal{K}(f^p\infty)/K_\infty)$. In particular, it is trivial on $\text{Gal}(\mathcal{K}(f^p\infty)/L_\infty')$. As f is coprime to p and none of the characteristic ideals is divisible by 2 (this follows from Theorem 1.1 for $K(f^p\infty)$ and the fact that $\text{Char}(X)$ and $\text{Char}(A_{\infty})$ are not divisible by 2 as shown in Theorem 3.21 and Corollary 3.22) the $\text{Gal}(\mathcal{K}(f^p\infty)/L_\infty')$-invariant parts of $M(\mathcal{K}(f^p\infty))$ are pseudoisomorphic to the norm $N_{\mathcal{K}(f^p\infty)/L_\infty'} M(\mathcal{K}(f^p\infty))$ which is pseudoisomorphic to $M(L_\infty')$. Thus, we obtain $\text{Char}(M(L_\infty')_\chi) = \text{Char}(M(L_\infty)_\chi)$. □

For the rest of the paper we will only consider the case $L = \mathcal{K}(fp^2)$ for f being coprime to p, principal and such that $\omega f = 1$. Define $F_n = \mathcal{K}(fp^n)$ and note that $L_n = F_{n+2}$. We will use the notation $F_0 = F = \mathcal{K}(f)$. To define our elliptic units we will use the following exposition from [Cr-M].

Lemma 2.1. [Cr-M] Lemma 2] There exists an elliptic curve E/F which satisfies the following properties.

a) E has CM by the ring of integers O_K of K;
b) $\mathbb{F}(E_{\text{tors}})$ is an abelian extension of \mathbb{K};
c) E has good reduction at primes in \mathbb{F} lying above p.

Let ϕ be a Grossencharacter of \mathbb{K} of infinity type $(1,0)$ and conductor \mathfrak{f}. Let E/\mathbb{F} be the elliptic curve defined in Lemma 2.1. Then we can assume that the Grossencharacter ψ associated to E satisfies

$$\psi_{E/\mathbb{F}} = \phi \circ N_{\mathbb{F}/\mathbb{K}}.$$

In the sequel we have to describe the points on our elliptic curve explicitly. Therefore, we fix once and for all a minimal Weierstrass model of E.

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$$

Using the fact that E has good reduction at all primes above p we can assume that the discriminant $\Delta(E)$ is coprime to p. Choosing a suitable embedding $\mathbb{F} \hookrightarrow \mathbb{C}$ we can further assume that there is a complex number Ω_{∞} such that the period lattice \mathcal{L} of E satisfies $\mathcal{L} = \Omega_{\infty} \mathcal{O}(\mathbb{K})$ (see [Co-Go] for details).

Let $\sigma \in \text{Gal}(\mathbb{F}/\mathbb{K})$ be an arbitrary element. Then σ acts on the coefficients of the model (1) and defines another curve E_{σ} over \mathbb{F}. The curve E_{σ} satisfies point a)-c) of Lemma 2.1. From point b) we obtain that the two curves E and E_{σ} have the same Grossencharacter. In particular, all the E_{σ} are isogenous to each other.

Let a be an ideal in \mathbb{K} coprime to fp and $a \in a$ an arbitrary element. By point a) of Lemma 2.1 we see that the multiplication by a is a well defined endomorphism of E and we can consider its kernel E_{a}. We define further $E_{\sigma a} = \bigcap_{a \in a} E_{a}$. Let σ_{a} be the Artin symbol of a in $\text{Gal}(\mathbb{F}/\mathbb{K})$. Then the main theorem of complex conjugation allows us to define an isogeny $\eta_{\sigma}(a) : E_{\sigma} \to E_{\sigma a}$ over \mathbb{F}, of degree $N(a)$. This isogeny has the property that for every g coprime to a and any $u \in E_{g}$ we have

$$\sigma_{a}(u) = \eta_{g}(a)(u).$$

Moreover, the kernel of this isogeny is precisely the subgroup $E_{\sigma a}$ (see [Co-Go] proof of Lemma 4). Whenever σ is trivial we will drop the subscript σ and write $\eta(a)$ instead of $\eta_{id}(a)$.

Let ω be the Neron-differential associated to the model (1) of E then

$$\omega = \frac{dx}{2y + a_1x + a_3}.$$

Due to [Co-Go] p. 341, there exists a unique $\Lambda(a) \in \mathbb{F}^{\times}$ such that

$$\omega_{\sigma a} \circ \eta(a) = \Lambda(a)\omega.$$

This defines a map $\Lambda : \{\text{ideals coprime to } \mathfrak{f}\} \to \mathbb{F}^{\times}$ satisfying the cocyle condition. Therefore it can be extended to a cocyle of all fractional ideals coprime to \mathfrak{f}. This cocyle Λ plays also an important role in determining the period lattice for the curve $E_{\sigma a}$. Let $\mathcal{L}_{\sigma a}$ be the period lattice of $E_{\sigma a}$. Then

$$\Lambda(a)\Gamma_{\infty}a^{-1} = \mathcal{L}_{\sigma a}.$$

(see [Co-Go] p. 342 for details).

Recall that we choose an embedding $\overline{\mathbb{Q}}$ into \mathbb{C} such that $\mathcal{L} = \Omega_{\infty} \mathcal{O}(\mathbb{K})$. Choose a place v above p induced by this embedding and let \mathcal{I}_{p} be the ring of integers of the maximal unramified extension of \mathbb{F}_{v}. For every $\sigma \in \text{Gal}(\mathbb{F}/\mathbb{K})$ we denote by $\mathcal{E}_{\sigma v}$ the formal group given by the kernel of the reduction modulo v of E_{σ}/\mathbb{F}. Note
that the formal parameter of this group is \(t_\sigma = -x_\sigma/y_\sigma \). If \(\sigma \) is trivial we omit the sub- and superskript \(\sigma \). With these notations we obtain:

Lemma 2.2. [Cr-M, Lemma 3] There exists an isomorphism \(\beta^v \) between the formal multiplicative group \(\widehat{G}_m \) and the formal group \(\widehat{E^v} \), which can be written as a power series \(t = \beta^v(w) \in \mathcal{I}_p[[w]] \).

We fix once and for all such an isomorphism and denote the coefficient of \(w \) in this power series by \(\Omega \). The isogenies \(\eta(a) \) induce homomorphisms \(\widehat{\eta(a)} : \widehat{E}^v \rightarrow \widehat{E}^{\sigma_a.v} \). As long as \(a \) is coprime to \(f \) they are even isomorphisms. Define \(\beta_a = \eta(a) \circ \beta^v \). If we denote the first coefficient of \(\beta_a^v \) by \(\Omega_{a,v} \), we obtain from [Co-Go] Lemma 6] that \(\Omega_{a,v} = \Lambda(a) \Omega_v \).

These notations and definitions allow us to define our basic rational function: Let \(a \) be an integral element in \(\mathbb{K} \) that is coprime to \(6 \) and not a unit. Let \(P^a \) be a generic point on \(E^a \) and denote its \(x \)- and \(y \)-coordinates by \(x(P^a) \) and \(y(P^a) \). Then we define

\[
\xi_{a,\sigma}(P^a) = c_\sigma(a) \prod_{\beta \in V_{a,\sigma}} (x(P^a) - x(S)),
\]

where \(V_{a,\sigma} \) is a set of representatives of the non-zero \(\sigma \)-division points on \(E^a \) modulo \(\{\pm 1\} \) and \(c_\sigma(a) \) is a canonical 12th root in \(\mathbb{F} \) of \(\Delta((a^{-1}L_\sigma)/\Delta(L_\sigma))^{\frac{1}{12}}(\alpha) \) (here \(\Delta \) stands for the Ramanujan’s \(\Delta \)-function). -see also [Co, Appendix, Proposition 1] and [Co, Appendix, Theorem 8]. Recall that we assumed that \(f = (f) \) is principal. By the definition of \(L \) we see that \(\rho = \Omega_\infty/f \) defines a primitive \(f \) division point on \(E \).

Using this we define the rational function

\[
\xi_{a,\sigma}(P^a) = \xi_{a,\sigma}(P^a + \Lambda(a)\rho),
\]

where \(a \) is an integer ideal coprime to \(f \) such that \(\left(\frac{a}{\mathbb{K}}\right) = \sigma \). We fix a set of ideals \(\mathfrak{c}_0 \) such that the artinsymbols of \(a \in \mathfrak{c}_0 \) run through every element of \(\text{Gal}(\mathbb{F}/\mathbb{K}) \) exactly once and define

\[
Y_{a,\sigma}(P^a) = \frac{\xi_{a,\sigma}(P^a)^{\rho}}{\xi_{a,\sigma_p}(\eta_{\sigma}(p))(P^a)^{\rho}}.
\]

We obtain the following result ([Cr-M, Lemma 4] and [Cr-M, equation 15]):

Lemma 2.3. For an integral ideal \(a \) of \(\mathcal{O}_K \) coprime to \(f \), let \(\sigma_a \) denote the Artin symbol of \(a \) in \(\text{Gal}(\mathbb{F}/\mathbb{K}) \). Then the series \(Y_{a,\sigma_a}(t_{\sigma_a}) \) lies in \(1 + \mathfrak{m}_v[[t_{\sigma_a}] \) and the series \(h_{a,\sigma}(t_{\sigma_a}) := \frac{1}{2} \log(Y_{a,\sigma_a}(t_{\sigma_a})) \) has coefficients in \(\mathcal{O}(\mathbb{F}_v) \). Further, the function \(Y_{a,\sigma}(P^a) \) satisfies the relation \(\prod_{R \in \mathbb{E}_F} Y_{a,\sigma}(P^a \oplus R) = 0 \).

There is a one to one correspondence between \(\mathcal{I}_p \)-valued measures on \(\mathbb{Z}_p^{\times} \) and the ring of power series \(\mathcal{I}_p[[T]] \) given by Mahler’s Isomorphism

\[
F_v(w) = \int_{\mathbb{Z}_p^{\times}} (1 + w)^x dv(x).
\]

For every \(a \in \mathfrak{c}_0 \) we can consider the power series \(B_{a,\sigma}(w) = h_{a,\sigma}(\beta_a^v(w)) \). Using Lemma 2.3 we obtain that these series correspond to measures on \(\mathbb{Z}_p^{\times} \). We will denote these measures by \(\nu_{a,\sigma} \). Using [Si, Lemma 1.1] together with the second claim of Lemma 2.3 we see that the measures \(\nu_{a,\sigma} \) coincide with their restriction to
\[\mathbb{Z}_2^\times. \text{ As } \text{Gal}(\mathbb{L}_\infty/\mathbb{F}) \cong \mathbb{Z}_2^\times \text{ we can see the measures } \nu_{\alpha,a} \text{ as measures on } \text{Gal}(\mathbb{L}_\infty/\mathbb{F}). \]

If we extend them by zero outside \(\text{Gal}(\mathbb{L}_\infty/\mathbb{F}) \) we can even see them as measures on \(\text{Gal}(\mathbb{L}_\infty/\mathbb{K}) \). For \(a \in \mathcal{C}_0 \) let \(\nu_{\alpha,a} \circ \sigma_a \) be the pushforward measure of \(\nu_{\alpha,a} \) on \(\sigma_a^{-1}\text{Gal}(\mathbb{L}_\infty/\mathbb{F}) \). Then we can define

\[
\nu_\alpha := \sum_{a \in \mathcal{C}_0} \nu_{\alpha,a} \circ \sigma_a, \]

which is by the choice of \(\mathcal{C}_0 \) a measure on \(\text{Gal}(\mathbb{L}_\infty/\mathbb{K}) \). The measures \(\nu_\alpha \) have nice interpolation properties with respect to \(L \)-functions when it comes to integration of characters of the form \(\varepsilon = \chi \phi^k \) for a character of finite order \(\chi \). Let \(\chi \) be a character of conductor \(gp^n \) with \(g \mid f \) and consider the set

\[
S = \left\{ \gamma \in \text{Gal}(\mathbb{K}(fp^n/\mathbb{F})/\mathbb{K}) : \left| \gamma|_{\mathbb{K}(p^n)} \right| = \left(\frac{\mathbb{K}(fp^n)/\mathbb{K}}{p^n} \right) \right\}. \]

With this definition we can define the Gauss-like sum

\[
G(\varepsilon) = \frac{\phi^k(p^n)}{p^n} \sum_{\gamma \in S} \chi(\gamma)\zeta_{p^n}^{-\gamma}. \]

These notations allow us to state:

Theorem 2.4. [Cr-M, Theorem 4] Let \(\mathcal{D}_p = \mathcal{I}_p(\zeta_m) \), where \(\zeta_m \) denotes an \(m \)-th root of unity and \(m = |H| \). Then there exists a unique measure \(\nu \) on \(\text{Gal}(\mathbb{F}_\infty/\mathbb{K}) \) taking values in \(\mathcal{D}_p \) such that for any \(\varepsilon = \phi^k \chi \), with \(k \geq 1 \) and \(\chi \) a character of conductor dividing \(fp^n \) for some \(n \geq 0 \), one has

\[
\Omega_{\nu}^{-k} \int_{\text{Gal}(\mathbb{L}_\infty/\mathbb{K})} \varepsilon \, d\nu = \Omega_{\nu}^{-k} (-1)^k(k-1)!f^k u_\chi G(\varepsilon) \left(1 - \frac{\varepsilon(p)}{p} \right) L_1(\pi,k), \]

with a unit \(u_\chi \) only depending on \(\chi \). Further, \(\nu_\alpha = (N\alpha - \sigma_a)\nu \).

If \(\chi \) is a character of \(H \) it can be extended linearly to the ring of \(\mathcal{D}_p \) valued measures on \(\text{Gal}(\mathbb{L}_\infty/\mathbb{K}) \). It follows that the \(\chi(\nu_\alpha) \) generate the trivial ideal.

Proof. Only the first claim is stated in Theorem 4 of [Cr-M]. But the other claims are stated as intermediate steps in the proof. \(\square \)

To prove the main conjecture we will not only need measures on \(\text{Gal}(\mathbb{L}_\infty/\mathbb{K}) \) but also on \(\text{Gal}(\mathbb{K}(gp^n)/\mathbb{K}) \) for \(g \mid f \). Therefore we define the pseudomesure

\[
(4) \quad \nu(g) := \nu(f)|_{\text{Gal}(\mathbb{K}(gp^n)/\mathbb{K})} \prod_{\sigma \mid gp^n} \left(1 - \left| \sigma|_{\mathbb{K}(p^n)} \right|^{-1} \right)^{-1}, \]

where \(\nu(f)|_{\text{Gal}(\mathbb{K}(gp^n)/\mathbb{K})} \) is the measure on \(\text{Gal}(\mathbb{K}(gp^n)/\mathbb{K}) \) induced from \(\nu(f) \). Note that these pseudomesures are in fact measures as soon as \(g \neq (1) \), while \((1 - \sigma)(\nu(1)) \) is actually a measure for every \(\sigma \) in \(\text{Gal}(\mathbb{K}(p^n)/\mathbb{K}) \). It is an easy verification that in the case \(\omega_a = 1 \) the measure \(\nu(g) \) is actually the measure one would obtain by starting with an elliptic curve \(E/\mathbb{K}(g) \) and do all the constructions we did so far directly for \(\text{Gal}(\mathbb{K}(gp^n)/\mathbb{K}) \) (compare with [dS, comments after II 4.12]).

Having all these definitions in place allows us to define our \(p \)-adic \(L \)-function.
Definition 2.5. Fix an isomorphism
\[\kappa : \Gamma' \to 1 + 4\mathbb{Z}_2, \]
and let \(\chi \) be a character of \(H \). We denote by \(\mathfrak{g}_\chi \) the prime to \(p \)-part of its conductor and define the \(p \)-adic \(L \)-function of the character \(\chi \) as
\[
L_p(s, \chi) = \int_{\text{Gal}(\mathbb{K}(\mathfrak{g}_\chi \infty)/\mathbb{K})} \chi^{-1} \kappa^s d\nu(\mathfrak{g}_\chi)
\]
if \(\chi \neq 1; \)
\[
L_p(s, \chi) = \int_{\text{Gal}(\mathbb{K}(\mathfrak{p}_\infty)/\mathbb{K})} \chi^{-1} s \cdot (1 - \gamma) d((1 - \gamma)\nu(1))
\]
if \(\chi = 1. \)

3. Elliptic units and Euler Systems

It is well known that for every \(m \) torsion point \(P_{\sigma}^m \) on \(E_{\sigma}^m \) the elements \(\xi_{\alpha,\sigma}(P_{\sigma}^m) \) are contained in \(\mathbb{K}(m) \) [dS, Proposition II 2.4]. The following proposition will be very useful in the course of our proof.

Proposition 3.1. Let \(m \) be an ideal coprime to \(\alpha f \) and \(P \in E_{\sigma}^m \) a primitive \(m \)-division point. Let \(r \) be a prime and \(m = rm' \) with \(\mathbb{K}(m') \neq \mathbb{K}(1) \). Then
\[
N_{\mathbb{K}(m)/\mathbb{K}(m')} \xi_{\alpha,\sigma}(P) = \begin{cases}
\xi_{\alpha,\sigma}(\eta_{\sigma}(r)P) & \text{if } r \mid m' \\
\xi_{\alpha,\sigma}(\eta_{\sigma}(r)P)1 - \text{Frob}_{r}^{-1} & \text{if } r \nmid m'
\end{cases}
\]

Proof. This proof follows [Ke, Proposition 4.3.2]. The unit group \(\mathcal{O}^\times = \mathcal{O}(\mathbb{K})^\times \) has exactly two elements. Hence, the map \(\mathcal{O}^\times \to (\mathcal{O}/m)^\times \) is injective. It follows that the kernel of the projection
\[
\phi: (\mathcal{O}/m)^\times /\mathcal{O}^\times \to (\mathcal{O}/m')^\times /\mathcal{O}^\times
\]
is isomorphic to the kernel of
\[
\phi': (\mathcal{O}/m)^\times \to (\mathcal{O}/m')^\times.
\]
Hence,
\[
[\mathbb{K}(m) : \mathbb{K}(m')] = \begin{cases}
Nr - 1 & \text{if } r \mid m' \\
Nr & \text{if } r \nmid m'
\end{cases}
\]
The conjugates of \(P \) under \(\text{Gal}(\mathbb{K}(m)/\mathbb{K}(m')) \) are the set
\[
\{P + Q \mid Q \in E_{\sigma}^m \text{ such that } P + Q \notin E_{m'}^\sigma\}
\]
if \(r \mid m' \) and
\[
\{P + Q \mid Q \in E_{\sigma}^m\}
\]
if \(r \nmid m' \). In the first case there is exactly one \(r \)-torsion point \(Q_0 \) such that \(P + Q_0 \) is contained in \(E_{m'}^\sigma \). We obtain
\[
\xi_{\alpha,\sigma}(P + Q_0) N_{\mathbb{K}(m)/\mathbb{K}(m')} \xi_{\alpha,\sigma}(P) = \prod_{Q \in E_{\sigma}^m} \xi_{\alpha,\sigma}(P + Q) = \xi_{\alpha,\sigma}(\eta_{\sigma}(r)P).
\]
By the definition of \(\eta \) we obtain further that
\[
\xi_{\alpha,\sigma}(P + Q_0)^{\text{Frob}_r} = \xi_{\alpha,\sigma}(\eta_{\sigma}(r)(P + Q_0)) = \xi_{\alpha,\sigma}(\eta_{\sigma}(r)P),
\]
which implies the claim in this case.
In the case $r \mid m$ we obtain the claim directly from

$$N_{K(m)/K(m')} \xi_{\alpha,\sigma}(P) = \prod_{Q \in E'} \xi_{\alpha,\sigma}(P + Q) = \xi_{\alpha,\sigma}(\eta_\sigma(r)P).$$

\square

Before we can define our Euler system we still need one further concept. Let $S_{n,l}$ be the set of square free ideals of \mathcal{O} that are only divisible by prime ideals q satisfying the following two conditions

i) q is totally split in $\mathbb{L}_n = K(fp^{n+2})$

ii) $Nq \equiv 1 \mod 2^{l+1}$

Lemma 3.2. Let $\mathbb{H}_n = K(p^{n+2})$. Given a prime q in $S_{n,l}$ there exists a cyclic extension $\mathbb{H}_n(q)/\mathbb{H}_n$ of degree 2^l inside $\mathbb{H}_nK(q)$. Furthermore, $\mathbb{H}_n(q)/\mathbb{H}_n$ is totally ramified at the primes above q and unramified outside q. Let \mathbb{V} be any subfield $\mathbb{H}_n \subset \mathbb{V} \subset \mathbb{L}_n$ and $\mathbb{V}(q) = \mathbb{H}_n(q)\mathbb{V}$ then $\text{Gal}(\mathbb{V}(q)/\mathbb{V}) \cong \text{Gal}(\mathbb{H}_n(q)/\mathbb{H}_n)$ and the ramification behavior is the same.

Note that from now on $K(q)$ denotes a ray class field of conductor q, while we denote for any $\mathbb{V} \neq K$ the field constructed in Lemma [3.2] by $V(q)$.

Proof. As q is unramified in \mathbb{H}_n/K it follows that $K(q) \cap \mathbb{H}_n = K(1) \cap \mathbb{H}_n = K(1)$. Hence, $\text{Gal}(\mathbb{H}_nK(q)/\mathbb{H}_n) = \text{Gal}(K(q)/K(1)) \cong (\mathcal{O}/q)/\mathcal{O}^\times$. As $|\mathcal{O}^\times| = 2$ and $Nq \equiv 1 \mod 2^{l+1}$ we can extract a cyclic extension of degree 2^l over \mathbb{H}_n. By definition q is totally ramified in $\mathbb{H}_n(q)/\mathbb{H}_n$ and the extension is unramified outside q. The rest of the claim is an immediate consequence of the fact that q is unramified in \mathbb{L}_n. \square

If $r = \prod q_i$ with q_i distinct primes in $S_{n,l}$ then we define $V(r)$ as the compositum of the $V(q_i)$.

Having this in place we can define Euler systems.

Definition 3.3. An Euler system is a set of global elements

$$\{\alpha^\sigma(n, r) \mid n \geq 0, r \in S_{n,l}, \sigma \in \text{Gal}(K(p^{2})/K)\}$$

satisfying

i) $\alpha^\sigma(n, r) \in \mathbb{L}_n(r)^\times$ is a global unit in $\mathbb{L}_n(r)$ for $r \neq (1)$.

ii) If q is a prime such that $qr \in S_{n,l}$ then

$$N_{\mathbb{L}_n(qr)/\mathbb{L}_n(r)}(\alpha^\sigma(n, rq)) = \alpha^\sigma(n, r)^{\text{Frob}_{r}^{-1}}$$

iii) $\alpha^\sigma(n, rq) \equiv \alpha^\sigma(n, r)(Nq_{\ell} - 1)/2^{l} \mod \lambda$ for every prime λ above q.

Note that if we fix σ and n and let only r vary we obtain an Euler system in the sense of [Ru-2] for the field \mathbb{L}_n. So in Rubin’s language our Euler-System is a system of Euler systems indexed by the pairs (σ, n).

We now give a precise definition of the elliptic units.

Definition 3.4. Let $g | f$ be a non-trivial ideal. We define the elliptic units $C_{g,n}$ in \mathbb{L}_n as the group of units (they are units by [IS Chapter II Proposition 2.4 iii]) generated by all the $\xi_{\alpha,\sigma}Q_g(P_{n+2}^\sigma)$, where Q_g is a primitive g division point and P_{n+2}^σ is a p^n-torsion point on E^σ. If $g = (1)$ we define $C_{1,n}$ as the group generated by all the units of the form $\prod_{\ell=1}^s \xi_{\alpha,\sigma}(P_{n+2}^\sigma)^{m_\ell}$ with $\sum_{\ell=1}^s m_\ell(N\alpha_\ell - 1) = 0$ (they are units by [IS Chapter II Exercise 2.4]). We define further the groups $C_g = \lim_{\infty \leftarrow n} C_{g,n}$.
and the group \(C(\mathfrak{g}) = \prod_{h \in \mathfrak{g}} C_h \). We will also use the notation \(C_n \) and \(C \) instead of \(C_n(\mathfrak{g}) \) and \(C(\mathfrak{g}) \) if the conductor is clear from the context.

This allows us to prove the following Lemma.

Lemma 3.5. For every \(u \in C_g \) there exists an Euler system such that \(\alpha^\sigma(n, 1) = u \).

Proof. As the properties defining an Euler-system are multiplicative it suffices to consider the case of \(u \) being one of the generators, i.e. \(u = \xi_{\alpha, \sigma}(P^\sigma_{n+2} + Q_\emptyset) \). Assume first that \(g \neq (1) \) and let \(\mathcal{V}_n = \mathbb{K}(\mathfrak{g}p^{n+2}) \). Define

\[
\alpha^\sigma(n, r) = N_{\mathbb{K}(\mathfrak{g}p^{n+2})/\mathcal{V}_n(r)}(P^\sigma_{n+2} + Q_\emptyset + \sum_{l|r} Q_l),
\]

where \(l \) are primes in \(S_{l,n} \). Then \(\alpha^\sigma(n, 1) = u \). It remains to show that \(\alpha \) generates an Euler system. Using that \(\sigma_q = 1 \) and that \(\text{Gal}(\mathbb{L}_n(rq)/\mathbb{L}_n(r)) = \text{Gal}(\mathcal{V}_n(rq)/\mathcal{V}_n(r)) \) we obtain:

\[
N_{\mathbb{L}_n(rq)/\mathbb{L}_n(r)}(\alpha^\sigma(n, rq)) = N_{\mathbb{V}_n(q)/\mathcal{V}_n(r)}N_{\mathbb{K}(\mathfrak{g}p^{n+2}rq)/\mathcal{V}_n(q)}(P^\sigma_{n+2} + Q_\emptyset + \sum_{l|q} Q_l) \]

\[
= N_{\mathbb{K}(\mathfrak{g}p^{n+2}rq)/\mathcal{V}_n(r)}(P^\sigma_{n+2} + Q_\emptyset + \sum_{l|q} Q_l)\]

\[
= N_{\mathbb{K}(\mathfrak{g}p^{n+2}rq)/\mathcal{V}_n(r)}(P^\sigma_{n+2} + Q_\emptyset + \sum_{l|q} Q_l)\]

\[
= N_{\mathbb{K}(\mathfrak{g}p^{n+2}rq)/\mathcal{V}_n(r)}(P^\sigma_{n+2} + Q_\emptyset + \sum_{l|q} Q_l)\]

\[
= (\alpha^\sigma(n, r))^\text{Frob}_{q-1}
\]

It remains to check property iii): The group \(\text{Gal}(\mathbb{K}(\mathfrak{g}p^{n+2}rq)/\mathcal{V}_n(rq)) \) acts only on the \(q \)-torsion points. By definition we obtain that

\[
|\text{Gal}(\mathbb{K}(\mathfrak{g}p^{n+2}rq)/\mathcal{V}_n(rq))\mathbb{K}(\mathfrak{g}p^{n+2}rq))| = (Nq - 1)/2^l
\]

due to the fact that \(\mathbb{K}(\mathfrak{g}p^{n+2}) \neq \mathbb{K} \) is non-trivial. Using the fact that \(q \)-torsion points reduce to zero modulo \(\lambda \) and that \(\text{Gal}(\mathbb{K}(\mathfrak{g}p^{n+2}rq)/\mathcal{V}_n(rq)) \) restricts surjectively to \(\text{Gal}(\mathbb{K}(\mathfrak{g}p^{n+2}rq)/\mathcal{V}_n(r)) \) the claim is an easy consequence of the definitions.

If \(g = (1) \) we choose \(\alpha^\sigma(n, r) = \prod_{i=1}^s \xi_{\alpha_i, \sigma}(P^\sigma_{n+2} + \sum_{l|r} Q_l)^{m_i} \) and proceed as above. \(\square \)

For every prime \(q \in S_{l,n} \) we fix a generator \(\tau_q \) of \(G_q = \text{Gal}(\mathbb{L}_n(q)/\mathbb{L}_n) \) and define the following group ring elements

\[
N_q = \sum_{i=0}^{2^l-1} \tau_q^i \quad D_q = \sum_{i=0}^{2^l-1} i \tau_q^i.
\]

For \(r = \prod_{k=1}^s q_k \) we define \(D_r = \sum_{k=1}^s D_{q_k} \in \mathbb{Z}[\text{Gal}(\mathbb{L}_n(r)/\mathbb{L}_n)] \).

With these definitions we have the following lemma.

Lemma 3.6. [Ru-2 Proposition 2.2] For every Euler system \(\alpha^\sigma(n, r) \) there exists a canonical map

\[
\kappa: S_{l,n} \to \mathbb{L}_n^\times / (\mathbb{L}_n^\times)^{2^l}
\]

such that \(\kappa(r) = (\alpha^\sigma(n, r))^{D_r} \mod (\mathbb{L}_n(r))^{2^l} \).
For every prime ideal \(q \in S_{n,l} \) of \(K \) we define the free group of ideals in \(L_n \)
\[I_q = \bigoplus_{[y]_q} \mathbb{Z}\Omega = \mathbb{Z}[\text{Gal}(L_n/K)]\Omega. \]

For every \(y \in L_n^\times \) denote by \([y]_q\) the coset of the principal ideal \((y)\) in \(I_q/2^l I_q\). Let \(\tilde{\Omega} \) be a prime above \(\Omega \) in \(L_n(q) \) and note that for every \(x \in L_n(q)^\times \) the element \(x^{1-\tau q} \) lies in \((O(L_n(q))/\tilde{\Omega})^\times\). As \(O(L_n(q))/\tilde{\Omega} \cong O(L_n)/\Omega \) there is a well defined image \(x^{1-\tau q} \in (O(L_n)/\Omega)^\times \). Thus, we can define a map
\[L_n(q)^\times \to (O(L_n)/\Omega)^\times/((O(L_n)/\Omega)^\times)^{2^l} \quad x \mapsto (x^{1-\tau q})^1/d, \]
where \(d = (Nq - 1)/2^l \). This map is surjective and the kernel of this map consists precisely of the elements whose \(\tilde{\Omega} \) valuation is divisible by \(2^l \). Let now \(w \in (O(L_n)/\Omega)^\times/((O(L_n)/\Omega)^\times)^{2^l} \) and let \(x \) be a preimage. Define
\[l_{\Omega}(w) = \text{ord}_{\tilde{\Omega}}(x) \mod 2^l \in \mathbb{Z}/2^l\mathbb{Z}. \]

Note that \(l_{\tilde{\Omega}} \) is a well defined isomorphism. Thus, we can define
\[\varphi_q : (O(L_n)/q)^\times/((O(L_n)/q)^\times)^{2^l} \to I_q/I_q^{2^l} \quad w \mapsto \sum_{\Omega | q} l_{\Omega}(w)\Omega. \]

With these notations we have the following proposition.

Proposition 3.7. [Ru-2 Proposition 2.4] Let \(\alpha^\sigma(n,v) \) be an Euler system and \(\kappa \) be the map defined in Lemma 3.6. Let \(v \) be a prime in \(S_{n,l} \) and \(q \) be a prime in \(K \). Then

i) If \(q \nmid v \) then \([\kappa(v)]_q = 0.\)

ii) Assume that \(q | v \) and \(v/q \neq (1) \). Then \([\kappa(v)]_q = \varphi_q(\kappa(v/q))\)

iii) Assume that \(v = q \) and that the \(\Omega \)-valuation of \((\alpha^\sigma(n, 1)) \) is divisible by \(2^l \) for all \(\Omega \) above \(q \) in \(L_n \). Then \([\kappa(v)]_q = \varphi_q(\kappa(v/q))\).

Note that Rubin does not distinguish between the cases ii) and iii). But as Bley [Bl Proposition 3.3] points out, the extra assumption in iii) is necessary.

Let \(y \) be any element in the kernel of \([\cdot]\). Then \(y = B^2 C \), where \(B \) is an ideal only divisible by primes above \(q \) and \(C \) is coprime to \(q \). Let \((\beta) = BC \) for some ideal \(\mathfrak{D} \) coprime to \(q \). Then \(y = \beta^2 u \) and \(u \) is coprime to \(q \). In particular, \(u \) is a unit at all ideals above \(q \). Thus, \(\varphi_q(u) \) is well defined and we can extend \(\varphi_q \) on \(\ker([\cdot]_q) \).

3.1. An Application of Tchebotarev’s Theorem

This section follows ideas of Bley in [Bl] and of Greither in [Gr]. As some steps of the proofs are slightly different for the case \(p = 2 \) we will carry them out in detail. The main goal of this section is to prove the following Theorem.

Theorem 3.8. Let \(M = L_n \) for some \(n \) and write \(G = \text{Gal}(M/K) \). Assume that \(\overline{\mu}^\times \) is the precise power of \(\overline{\mu} \) dividing the conductor of the extension \(M/K \). Let \(M = 2^l \) for some \(l \) and let \(W \subset \mathbb{M}^\times/((\mathbb{M}^\times)^M \) be a finite \(\mathbb{Z}[G] \)-module. Assume that there is a \(\mathbb{Z}[G] \)- homomorphism \(\psi : W \to \mathbb{Z}/MZ[G] \). Let \(C \in A(M) \) be an arbitrary ideal class. Then there are infinitely many primes \(\Omega \) in \(M \) satisfying:

i) \([\Omega] = 2^{3k+4}C.\)

ii) If \(q = \Omega \cap \mathbb{K} \) then \(Nq \equiv 1 \mod 2M \) and \(q \) is totally split in \(M \).

iii) For all \(w \in W \) one has \([w]_q = 0 \) and there exists a unit \(u \) in \(\mathbb{Z}/MZ \) such that \(\varphi_q(w) = 2^{3k+4}u\psi(w)\Omega. \)
The proof of Theorem 3.8 relies on several lemmas which we will prove in the following. We fix the following Notation: Let \mathbb{H} be the Hilbert class field of \mathbb{M} and define $\mathbb{M}' = \mathbb{M}(\zeta_{2M})$ and $\mathbb{M}'' = \mathbb{M}'(W^{1/M})$.

Lemma 3.9. $|\mathbb{H} \cap \mathbb{M}' : \mathbb{M}| \leq 2^{c-1}$ if $c \geq 1$. The extension $\mathbb{H} \cap \mathbb{M}'/\mathbb{M}$ is trivial if $c = 0$.

Proof. As 2 is totally split in K/Q the ideal \mathfrak{p} is totally ramified in $K(\zeta_{2M})/K$ and the ramification index is M. If $c = 0$ then \mathbb{M}/K is unramified at \mathfrak{p} and \mathbb{M}'/\mathbb{M} is totally ramified at all primes above \mathfrak{p}. Hence, $\mathbb{M}' \cap \mathbb{H} = \mathbb{M}$ and the claim follows in this case. Assume now that $c \geq 1$, then the ramification index of \mathfrak{p} in \mathbb{M}/K is at most $|(O(\mathbb{K})/\mathfrak{p}^c)^\times|$. Hence, the ramification index of every divisor of \mathfrak{p} in \mathbb{M}'/\mathbb{M} is at least $M/2^{c-1}$. In particular, $|\mathbb{M}' : \mathbb{M} \cap \mathbb{H}| \geq M/2^{c-1}$. Using that $|\mathbb{M}' : \mathbb{M}| \leq M$ it follows that $|\mathbb{H} \cap \mathbb{M}' : \mathbb{M}| \leq 2^{c-1}$. □

Lemma 3.10. If $c = 0$ then the group $\text{Gal}(\mathbb{M}'' \cap \mathbb{H}/\mathbb{M})$ is annihilated by 4. If $c > 1$ then $\text{Gal}(\mathbb{M}'' \cap \mathbb{H}/\mathbb{M})$ is annihilated by 2^{c+2}. In both cases it is annihilated by 2^{2c+2}.

Proof. By definition we have $|K(\zeta_{2M}) : \mathbb{M} \cap K(\zeta_{2M})| \geq \min(M, M/2^{c-1})$. Consider first the case $c \geq 1$. As $\text{Gal}(K(\zeta_{2M})/K) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/(M/2)\mathbb{Z}$ we can choose an element j in $\text{Gal}(K(\zeta_{2M})/\mathbb{M} \cap K(\zeta_{2M}))$ of order $M/2^{c}$. Choose $r \in \mathbb{Z}$ such that $j(\mathbb{M}) = \mathbb{M}^r$. It follows that $rM/2^c \equiv 1 \mod 2M$ and $r \not\equiv 1 \mod 2M$ for every $0 < b < M/2^c$. The element j has a lift to $\text{Gal}(\mathbb{M}'/\mathbb{M})$ of the same order. Let σ be in $\text{Gal}(\mathbb{M}''/\mathbb{M}')$ and α in \mathbb{M}'' such that $\alpha^M = w$ generates a maximal cyclic subgroup of W. By Kummer Theory there exists an even integer t_w such that $\sigma(\alpha) = \mathbb{M}_2^w \alpha$. If we fix for every generator $w \in W$ one such α_w we can find a lift of j in $\text{Gal}(\mathbb{M}''/\mathbb{M})$ such that $j(\alpha_w) = \alpha_w$ for our chosen generators w. By abuse of notation we will denote the lift by j as well. We obtain

$$j\sigma j(\alpha_w) = j\sigma(\alpha_w) = j(\mathbb{M}_2^w \alpha_w) = \mathbb{M}_2^w \alpha_w.$$

Thus,

$$j\sigma j = \sigma^r.$$

The extension $(\mathbb{M}'' \cap \mathbb{H} \mathbb{M}')/\mathbb{M}$ is clearly abelian. Hence $\text{Gal}(\mathbb{M}'/\mathbb{M})$ acts trivially on the group $H = \text{Gal}(\mathbb{M}'' \cap \mathbb{H} \mathbb{M}'/\mathbb{M}')$. Together with (5) this implies that H is annihilated by $r - 1$. On the other hand it is a Kummer extension of exponent at most M. Therefore, H is annihilated by $2^d = \gcd(M, r - 1)$. Then $r \equiv 1 \mod 2^d$. Assume now that $v \equiv 0 \mod 2^v$ for some $v \geq d$. Then $v^{e+1-d} \equiv 1 \mod 2^{v+1}$. This shows that $2^{v+1-d} \equiv 1 \mod 2t+1$. Recall that $M = 2^t$ and that $r \not\equiv 1 \mod 2M$ for all $0 < b < M/2^c$. It follows that $M/2^c | 2M/2^d$ and $c \geq d - 1$. Therefore 2^{c+1} annihilates H. There is a natural surjective projection

$$H \rightarrow \text{Gal}(\mathbb{M}'' \cap \mathbb{H} \mathbb{M}'/\mathbb{M}'' \cap \mathbb{H}).$$

Using Lemma 3.9 this gives the claim in the case $c \neq 0$.

In the case $c = 0$ we choose j of order $M/2$. Then $r^{M/2} \equiv 1 \mod 2M$ and $r^b \not\equiv 1 \mod 2M$ for all $0 < b < M/2$. Using the same arguments as for the case $c = 1$ we obtain that the extension $\mathbb{M}'' \cap \mathbb{H} \mathbb{M}'/\mathbb{M}$ is annihilated by 4. This implies the claim in the case $c = 0$.

Using the Kummer pairing we see that there is a homomorphism

$$F : \text{Gal}(\mathbb{M}''/\mathbb{M}') \rightarrow \text{Hom}(W, \zeta_M)$$
Theorem. To do so we note that

Using that Lemma 3.11.

Proof. Let \(W' \) be the image of \(W \) in \(M'/\langle M' \rangle \). By Kummer duality we have \(\text{Hom}(W', \langle \zeta_M \rangle) \cong \text{Gal}(M''/M') \). Let \(f : (M'/\langle M' \rangle)_M^M \to (M''/\langle M' \rangle)_M^M \) be the natural map. Using the exact sequence

\[
0 \to \ker(f) \to W \to W' \to 0
\]

we obtain a second exact sequence

\[
\text{Hom}(W', \langle \zeta_M \rangle) \to \text{Hom}(W, \langle \zeta_M \rangle) \to \text{Hom}(\ker(f), \langle \zeta_M \rangle).
\]

Hence, to prove the lemma it suffices to prove that the kernel of \(f \) is annihilated by \(2^{c+2} \). Let \(u \in \ker(f) \) and choose an element \(v \in M' \) such that \(u = v^M \). We define \(\delta_v : \text{Gal}(M'/M) \to \langle \zeta_M \rangle \) by \(\delta_v(g) = g(v)/v \). As

\[
\delta_v(gh) = gh(v)/g(v) \cdot g(v)/v = \delta_v(g) \cdot g \delta_v(h).
\]

It follows that \(\delta_v \) is a cocycle. Note that \(v \) is unique up to \(M \)-th roots of unity. If we choose \(v' = v \zeta_M^c \), we obtain \(\delta_v'(g) = g(v)/v \cdot g \zeta_M^c / \zeta_M^c \). Hence, \(\delta_v \) is uniquely defined up to coboundaries and \(\delta_v \) has a well defined image in \(H^1(\text{Gal}(M'/M), \langle \zeta_M \rangle) \). Thus, we have an injective map \(\ker(f) \hookrightarrow H^1(\text{Gal}(M'/M), \langle \zeta_M \rangle) \). Therefore it suffices to bound \(H^1(\text{Gal}(M'/M), \langle \zeta_M \rangle) \). If the group \(\text{Gal}(M'/M) \) is cyclic we see that \(\langle \zeta_M \rangle \) has a trivial Herbrandt quotient. So it suffices to consider

\[
|H^0(\text{Gal}(M'/M), \langle \zeta_M \rangle)| \leq |\langle \zeta_M \rangle \cap M| \leq 2^{c+1}.
\]

If \(\text{Gal}(M''/M) \) is not cyclic then it is isomorphic to \(\Delta \times C_r \) where \(C_r \) is cyclic and \(\Delta \cong \mathbb{Z}/2\mathbb{Z} \). Using the exact sequence

\[
H^1(\Delta, \langle \zeta_M \rangle) \to H^1(\text{Gal}(M'/M), \langle \zeta_M \rangle) \to H^1(C_r, \langle \zeta_M \rangle)
\]

and the fact that the last term is annihilated by \(2^{c+1} \) while the first one is annihilated by \(2^{c+2} \) we obtain that the middle term is annihilated by \(2^{c+2} \) proving the lemma. \(\square \)

Now we have all ingredients to prove Theorem 3.8.

of Theorem 3.8 Consider the map \(\iota : (\mathbb{Z}/M\mathbb{Z})[G] \to \langle \zeta_M \rangle \) defined by \(\sum a_\sigma \sigma \to \zeta_M^a \). Then \(\iota \psi \in \text{Hom}(W, \langle \zeta_M \rangle) \). Using Lemma 3.11 we see that \(2^{c+2} \iota(\psi) \) has a preimage \(\gamma \) in \(\text{Gal}(M''/M') \). Let \(\gamma_1 = 2^{c+2} \left(\frac{C}{M/M} \right) \) and choose \(\delta \in \text{Gal}(M''/M') \) such that \(\delta \mid_{M'} = 2^{c+2} \gamma_1 \) and \(\delta \mid_{M''} = 2^{c+2} \gamma_2 \). Note that this is possible as \(\text{Gal}(M'' \cap H/M) \) is annihilated by \(2^{3c+2} \) due to Lemma 3.10 Using Tchebotarev’s Theorem we can find infinitely many primes \(\mathcal{Q} \in M \) of degree 1 such that

\[
\left(\frac{\mathcal{Q}}{M''/M} \right) = \text{conjugacy class of } \delta.
\]

As \(\delta \mid_{M''} = 2^{3c+2} \gamma_2 \mid_{M''} = \text{id} \) we see that \(\mathcal{Q} \) is totally split in \(M'/M \). Let \(q = \mathcal{Q} \cap K \). Then \(q \) is totally split in \(M'/K \) and \(Nq \equiv 1 \mod 2M \). Further \(\delta \mid_H = 2^{3c+2} \gamma_1 \mid_H = 2^{3c+4} \left(\frac{C}{H/M} \right) \). It follows that \(\mathcal{Q} \) is a preimage of \(2^{3c+4} \psi(w) \). It remains to prove point iii) of the Theorem. To do so we note that

\[
\text{ord}_\mathcal{Q}(2^{3c+4} \psi(w) \mathcal{Q}) \equiv 0 \mod M \iff 2^{3c+4} \psi(w) = 1.
\]

Using that \(\gamma \) is the preimage of \(2^{c+2} \psi \) we see that

\[
2^{3c+4} \psi(w) = 1 \iff (2^{2c+2} \gamma)w^{1/M}/w'^{1/M} = 1.
\]
As \mathcal{Q} has Artin-symbol $2^{2c+2}\gamma$ in $\mathcal{M}''/\mathcal{M}$ we see that
\[\text{ord}_\mathcal{Q}(2^{2c+4}\psi(w)\mathcal{Q}) \equiv 0 \pmod{M} \iff w \text{ is an } M\text{-th power modulo } \mathcal{Q}. \]
w is an M-th power in \mathcal{M}'' and \mathcal{Q} is not ramified in $\mathcal{M}''/\mathcal{M}$. Therefore, $[(w)]_q = 0$. By definition $\varphi_q(w) = 0 \iff w$ is an M-th power modulo \mathcal{Q}. It follows that
\[\text{ord}_\mathcal{Q}(2^{2c+4}\psi(w)\mathcal{Q}) = u'\text{ord}_\mathcal{Q}(\varphi_q(w)) \text{ for some unit } u'. \]
From this the claim follows as in [Ru-3, page 403].

3.2. χ-components on the class group and on E/C. Recall that we fixed a decomposition $\text{Gal}(\mathbb{L}_\infty/\mathbb{K}) \cong \Gamma' \times H$ with $H = \text{Gal}(\mathbb{L}_\infty/\mathbb{K}_\infty)$. Let γ' be a topological generator of Γ'. To simplify notation we will use the notation γ_n' for the element γ'^n. Let $\Gamma = \text{Gal}(\mathbb{L}_\infty/\mathbb{L})$. There exists a power of 2 such that Γ^{2^m} is contained in $\text{Gal}(\mathbb{L}_\infty/\mathbb{K}(\mathfrak{p}^2))$. In particular $\mathbb{L}_\infty/\mathbb{L}_{\Gamma^{2^m}}$ is totally ramified at all primes above \mathfrak{p} and $\Gamma^{2^m+\mu} = \Gamma^{2m'+\mu}$ for some $m' \leq m$ independent of n. Recall that A_n denotes the class group of \mathbb{L}_n, i.e. $\gamma'^{2^m+\mu}$ acts trivial on A_n and L_n for $n \geq m'$. We fixed the notations $\Lambda = \lim_{\substack{\longrightarrow \\mathbb{Z}_p[[\text{Gal}(\mathbb{L}_n/\mathbb{K})]]}}$ and $A_\infty = \lim_{\substack{\longleftarrow \\mathbb{Z}_p}} A_n$. Let χ be a character of H. Then $A_{\infty,\chi}$ and $(\overline{E}/\overline{C})_\chi$ are Λ_χ-modules. Let $\Lambda_{\chi,n}$ be the quotient of Λ_{χ} by $1 - \gamma_n'$. In particular, there is a pseudo-isomorphism
\[A_{\infty,\chi} \sim \bigoplus_{i=1}^k \Lambda_{\chi}/g_i, \]
with finite kernel and cokernel.

Lemma 3.12. The kernel of the multiplication of $(1 - \gamma_n')$ on A_∞ is finite for every n.

Proof. This follows directly from the fact that all finite subextension of $\mathbb{L}_\infty/\mathbb{K}$ are abelian over \mathbb{K} and that the Leopoldt conjecture holds for any abelian extensions of imaginary quadratic fields. In particular, Leopoldt’s conjecture holds for every field \mathbb{L}_n (see [Gr] for more details). \hfill \Box

Lemma 3.13. Let χ be a character of H and $n \geq m'$. Then there is a $\Lambda_{\chi,n}$ homomorphism
\[A_{\chi,n} \to \bigoplus_{i=1}^k \Lambda_{\chi,m+n-m'}/(\overline{g}_i), \]
with uniformly bounded cokernel. Here, \overline{g}_i is the restriction of g_i to level n.

Proof. This proof is very similar to [Gr, Lemma 3.11]: By [Wash, page 281] the module A_n is isomorphic to $A_\infty/\nu_{m+n-m',m'}Y$ for some submodule Y. Consider the map
\[\phi_n : A_\infty/(1 - \gamma_{m+n-m'})A_\infty \to A_n. \]
By definition the kernel is isomorphic to $\nu_{m+n-m',m'}Y/(1 - \gamma_{m+n-m'})A_\infty$ which is bounded by the size of $Y/(1 - \gamma_{m'})A_\infty \leq A_\infty/(1 - \gamma_{n'})A_\infty$. By Lemma 3.12 this quotient is finite and the kernel of ϕ_n is uniformly bounded. Thus, the kernel of the natural projections
\[A_{\infty,\chi}/(1 - \gamma_{m+n-m'})A_{\infty,\chi} \to A_{\chi,n} \]
has a uniformly bounded kernel and we can deduce the claim from (6). \hfill \Box
Let $\Gamma'_{n_2,n_1} = \Gamma^{q_1}/\Gamma^{q_2}$ for $n_2 > n_1$. Recall that Γ^{q_2} fixes the field \mathbb{L}_{m+n-m} for $n > m$. Hence $\text{Gal}(\mathbb{L}_{m+n-m}/\mathbb{L}_{n_1-m+m'}) = \Gamma'_{n_2,n_1}$.

Lemma 3.14. There is a constant k such that

$$|(1 - \gamma_m')H^1(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})| \leq 2^k \text{ and } |(1 - \gamma_m')H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})| \leq 2^k$$

for any pair (n_1, n_2) with $n_2 > n_1 \geq m$.

Proof. The proof follows the ideas of [Ri-1, Lemma 1.2]. But it is restated here as we use weaker assumptions. Let $E'_{m'+n_2-m}$ be the p-units in $\mathbb{L}_{m'+n_2-m}$ and $R_{m'+n_2-m}$ be the \mathbb{Z}_p-free group defined by the exact sequence

$$0 \to E_{m'+n_2-m} \to E'_{m'+n_2-m} \to R_{m'+n_2-m} \to 0$$

As $\mathbb{L}_\infty/\mathbb{L}_{m'}$ is totally ramified we see that Γ^m acts trivially on $R_{m'+n_2-m}$. We know from [PW, page 267] that $|H^1(\Gamma_{n_2,n_1}, E_{m'+n_2-m})|$ is uniformly bounded$ootnote{In Iwasawa's notation E' are the p-units, but the proof of Theorem 12 works for the p-units as well.}$. Further, we have the exact sequence

$$H^0(\Gamma'_{n_2,n_1}, R_{m'+n_2-m}) \to H^1(\Gamma'_{n_2,n_1}, E_{m'+n_2-m}) \to H^1(\Gamma_{n_2,n_1}, E_{m'+n_2-m})$$

The first term is annihilated by $1 - \gamma_m'$ and the last term is uniformly bounded. It follows that $(1 - \gamma_m')H^1(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})$ is uniformly bounded.

It is an immediate consequence from [Ja, V Theorem 2.5] that $q(E'_{m'+n_2-m}) = 2^{(n_2-n_1)(1-s)}$, where s is the number of primes above 2. Thus,

$$2^{(n_2-n_1)(s-1)}|H^1(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})| = |H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})|.$$

Consider the map $H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m}) \to N_{n_1,m}E'_{m'+n_1-m}/N_{n_1,m}E_{m'+n_2-m}$ induced by $N_{n_1,m} = (\gamma_m' - 1)/(\gamma_m' - 1)$. Using that $N_{n_1,m}(1 - \gamma_m') = (1 - \gamma_m')$ and that Γ^{q_1} is precisely the group fixing $\mathbb{L}_{m'+n_1-m}$ we see that the subgroup

$$((1 - \gamma_m')E'_{m'+n_1-m} + N_{n_2,n_1}E_{m'+n_2-m})/N_{n_2,n_1}E_{m'+n_2-m}$$

is certainly contained in the kernel. Note that $N_{n_1,m}E'_{m'+n_1-m}/N_{n_1,m}E_{m'+n_2-m}$ is the kernel of the natural map $H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m}) \to H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})$. Thus, we obtain:

$$|(1 - \gamma_m')H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})| \leq \frac{|H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})||H^0(\Gamma_{n_2,m}, E'_{m'+n_1-m})|}{|H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})|} \leq \frac{2^{(n_2-n_1)(s-1)+k}}{2^{(n_2-n_1)(s-1)}} = 2^k,$$

where 2^k is the uniform bound on $H^1(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})$. It is easy to verify that the natural map $H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m}) \to H^0(\Gamma'_{n_2,n_1}, E_{m'+n_2-m})$ is an injection and the claim follows. \hfill \square

Lemma 3.15. Let $n \geq m'$ and consider the projection

$$\pi_n: \overline{E}_\infty/(1 - \gamma_m'E_{m-n}) \to \overline{E}_n.$$

There exists an integer k such that $2^k(1 - \gamma_m')$ annihilates the kernel and the cokernel of π_n for all $n \geq m$.\footnote{In Iwasawa's notation E' are the p-units, but the proof of Theorem 12 works for the p-units as well.}
Proof. We have an exact sequence
\[
\lim_{\infty \to n'} H^1(\Gamma_{m+n'-m',m+n-m}, E_{n'}) \to \\
\to E_{\infty}/(1 - \gamma'_{m+n-m}) E_{\infty} \to E_n \to \lim_{\infty \to n} H^0(\Gamma_{m+n'-m',m+n-m}, E_n)
\]
The first and the last term are annihilated by $2^k(1 - \gamma'_{m})$ due to Lemma\ref{lem:Bley} and the claim follows.

Lemma 3.16. Let U_∞ be defined as in the introduction. $U_\infty \otimes_{Z_p} Q_p \cong \Lambda \otimes_{Z_p} Q_p$ and $U_{\infty,\chi} \otimes_{Z_p} Q_p \cong \Lambda_\chi \otimes_{Z_p} Q_p$.

Proof. The first claim follows as in \cite{Bley} Lemma 3.5 Claim 2]. Bley gives two references for this proof. Note that the second one is only stated for $p > 2$ but the proof works for $p = 2$ as well.

The second claim can be proved as follows:

\[
U_\infty \otimes_{Z_p} Z_p(\chi) \otimes_{Z_p} Q_p \cong \Lambda \otimes_{Z_p} Z_p(\chi) \otimes_{Z_p} Q_p.
\]
Let $I_\chi \subset Z(\chi)[H]$ be the module generated by $\sigma - \chi(\sigma)$ for $\sigma \in H$. It is an easy verification that

\[
U_\infty \otimes_{Z_p} Z_p(\chi) \otimes_{Z_p} Q_p / I_\chi(U_\infty \otimes_{Z_p} Z_p(\chi) \otimes_{Z_p} Q_p)
\cong \Lambda \otimes_{Z_p} Z_p(\chi) \otimes_{Z_p} Q_p / I_\chi(\Lambda \otimes_{Z_p} Z_p(\chi) \otimes_{Z_p} Q_p).
\]

It is proved in \cite{Bley} Lemma 2.1 that $M_\chi \cong (M \otimes_{Z_p} Z_p(\chi)) / I_\chi(M \otimes_{Z_p} Z_p(\chi))$. Further, for any module M we see that

\[
M \otimes_{Z_p} Z_p(\chi) \otimes_{Z_p} Q_p / I_\chi(M \otimes_{Z_p} Z_p(\chi) \otimes_{Z_p} Q_p)
= (M \otimes_{Z_p} Z_p(\chi) / I(\chi)(M \otimes_{Z_p} Z_p(\chi))) \otimes Q_p = M_\chi \otimes_{Z_p} Q_p.
\]
Using this for U_∞ and Λ the second claim follows.

Lemma 3.17. Let h_χ be the characteristic ideal of $(\overline{E}/\overline{C})_\chi$. Let $n \geq m$. Then there exist constants n_0, c_1 and c_2 independent of n, a divisor h'_χ of h_χ and a $\text{Gal}(\mathbb{L}_{m'+n-m}/\mathbb{K})$-homomorphism

\[
\partial_{m'+n-m} : \overline{E}_{m'+n-m,\chi} \to \Lambda_\chi
\]
such that

i) h'_χ is prime to $1 - \gamma'_{m}$ for all v,

ii) $(\gamma_{n_0} - 1)^{-1}2^{c_2} h'_\chi \Lambda_{n,\chi} \subset \partial_{m'+n-m}(\text{im}(\overline{C}_{m'+n-m,\chi}))$, where $\text{im}(\overline{C}_{m'+n-m,\chi})$ denotes the image of $\overline{C}_{m'+n-m,\chi}$ in $\overline{E}_{m'+n-m,\chi}$.

Proof. From the second claim of Lemma\ref{lem:Bley} and the fact that $\Lambda_\chi \otimes_{Z_p} Q_p$ is a principal ideal domain we obtain that the submodule $E_{\infty,\chi}$ is free cyclic over the ring $\Lambda_\chi \otimes_{Z_p} Q_p$. Consider the map

\[
\pi_n : \overline{E}/(1 - \gamma'_{n}) \to \overline{E}_{m'+n-m}.
\]
The rest of the proof is exactly the same as \cite{Bley} Lemma 3.5]; we just have to substitute E_n by $E_{m'+n-m}$ and $(1 - \gamma')$ by $(1 - \gamma'_{m})$ in all computations due to the new definition of π_n and the fact that Lemma\ref{lem:Bley} is weaker than the corresponding claim in Bley’s case. Note that Bley states the lemma only for non trivial characters but this assumption is not necessary. \qed
Lemma 3.18. Let $\mathcal{M} = \mathbb{L}_n$ for some n and let Δ be a subgroup of $Gal(\mathcal{M}/K)$. Let χ be a character of Δ, $M = 2^i$ and $\mathfrak{A} = \prod_{i=1}^{n} \mathfrak{q}_i \in S_{n,1}$. Let Ω be a divisor of \mathfrak{q}_i in \mathcal{M}. Let $C = [\Omega]$ the ideal class of Ω. Let $B \subset \mathcal{M}$ be the subgroup generated by ideals dividing $\mathfrak{A}/\mathfrak{q}_i$. Let $x \in \mathcal{M}/(\mathcal{M}/A)^M$ be such that $[x]_e = 0$ for all $(x, \mathfrak{A}) = 1$. Let $W \subset \mathcal{M}/(\mathcal{M}/A)^M$ be such that $\eta \in \mathcal{M}$-submodule generated by x. Assume that there are elements $\eta, g \in \mathcal{M}[G]$ such that

\[(8) \quad \psi : W \to (\mathbb{Z}/M\mathbb{Z})[G] \]

such that $(g\psi(x))_\chi = (\eta g[x]_\chi)$ in I_q/MI_q.

Proof. This is [Bl] Lemma 3.8. The proof is the same as [Gr] Lemma 3.12. \(\square\)

To prove the central theorem of this section we need the following lemma.

Lemma 3.19. [Gr] Lemma 3.13 Let Δ be any finite group and N a $\mathcal{M}[\Delta]$-module. Let χ be a character of Δ and $n : N \to N_\chi$ the natural projection. Then there exists a $\mathcal{M}[\Delta]$-homomorphism

\[\varepsilon : N_\chi \to N \]

such that $n \circ \varepsilon = |\Delta|$.

Proof. Let \mathfrak{q} be an element in $S_{n,1}$ and \mathfrak{A} in I_q. Then there is an element $v_\Omega(\mathfrak{A})$ in $\mathbb{Z}/2^l\mathbb{Z}[Gal([\mathfrak{L}])\mathbb{K}]$ such that $\mathfrak{A} = v_\Omega(\mathfrak{A})[\mathfrak{L}]$. The following theorem allows us to relate the characteristic ideal of A_χ to the one of $(\mathbb{E}/\mathbb{C})_\chi$. The proof follows the ideas of [Bl].

Theorem 3.20. Let $\mathcal{M} = \mathbb{L}_n$ and $G = Gal(\mathcal{M}/K)$ for n large enough. Let χ be a character of $H \subset Gal(\mathcal{M}/K)$. For $1 \leq i \leq k$ let $C_i \in A_\chi(M)$ be such that $t(C_i) = (0, 0, \cdots, 2c_3, 0, \cdots, 0)$ in $\mathbb{Z}/2^l\mathbb{Z}[\mathcal{M}]$ where t is the map defined in Lemma 3.13 and $2c_3$ annihilates the cokernel. Let C_{k+1} be arbitrary. Let $d = 3c + 4$ where c is defined in Theorem 3.38. Then there are prime ideals Ω_i in \mathcal{M} such that

\[(7) \quad (v_{\Omega_i}(\kappa(q_1))_\chi = u_i[H](\gamma_n - 1)2^{d+c_2}h_\chi^i \mod 2^n \]

\[(8) \quad (g_{i-1}v_{\Omega_i}(\kappa(q_1 \cdots q_{i-1}))_\chi = u_i[H](\gamma_n - 1)2^{d+c_2}h_\chi^{i-1} \mod 2^n \] for $2 \leq i \leq k + 1$.

Proof. By Lemma 3.17 there exists an element ξ' in $im(C_{n,\chi})$ with the property $\vartheta_n(\xi') = (1 - \gamma_n)2^{c_2}h_\chi^i$. By approximating ξ with a global elliptic unit we can find $\xi \in C_n$ such that $\vartheta_n(\xi) = (1 - \gamma_n)2^{c_2}h_\chi^i \mod MA_{\chi + n - m}$. We can apply Lemma 3.25 to find an Euler system $\alpha'(n, t)$ such that $\alpha'(n, (1)) = \xi$. Let $i = 1$ and C be a preimage of C_i under the map $A_n \to A_{\chi - n}$. Choose $M = 2^n$ and $W = \mathcal{O}(\mathcal{M})/\mathcal{O}(\mathcal{M}/C)^M$. Consider

\[\psi : W \to \mathbb{Z}/M\mathbb{Z}[G] \quad x \mapsto (\varepsilon \circ \vartheta_n)(x^n), \]
where \(v \) is such that \(x^v \in E_n \) for all \(x \) and \(\varepsilon_\chi \) is defined as in Lemma 3.19. Then Theorem 3.8 implies that we can find an ideal \(\Omega_1 \) satisfying i) and ii). We know further from Theorem 3.8 that \(\varphi_q(w) = 2^d u \psi(w) \Omega_1 \). As \(\alpha^\sigma(n, 1) \) is a unit we can apply Proposition 3.7 and obtain

\[
v_{\Omega_1}(\kappa(q_1))\Omega_1 = [\kappa(q_1)]_{q_1} = \varphi_{q_1}(\kappa(1))
= \varphi_{q_1}(\xi) = 2^d u \psi(\xi) \Omega_1 = 2^d u \varepsilon_\chi((\gamma^\prime_{n_0} - 1)^{c_1} 2^{c_2} h'_\chi) \mod 2^n.
\]

Projecting to the \(\chi \)-component and using the definition of \(\varepsilon_\chi \) we get (17).

We will now define the ideals \(\Omega_i \) inductively. Assume that we have already found the \(\Omega_1, \ldots, \Omega_{i-1} \) and let \(a_{i-1} = \prod_{j=1}^{i-1} q_i \). Using point iii) recursively we see

\[
\prod_{j \leq i-2} g_j(v_{\Omega_{i-1}}(\kappa(a_{i-1}))) = [H^{i-1} u 2^{(i-2)(2d+c_0)+d+c_2}(\gamma^\prime_{n_0} - 1)^{c_1} \Sigma_{j=1}^{i-2} c_j h'_\chi].
\]

Let \(D_i = |H^{i-1} u 2^{(i-2)(2d+c_0)+d+c_2} \) be by enlarging \(c_1 \) we can assume that \(c_1 + \Sigma_{j=1}^{i-2} c_j \) is bounded by \(c_i^{i-1} \) and set \(t_i = c_i^{i-1} \). It follows that \(v_{\Omega_{i-1}}(\kappa(a_{i-1})) \) is bounded by \(D_i h'_\chi(\gamma^\prime_{n_0} - 1)^{t_i} \).

Define \(N = (\gamma^\prime_{n_0} - 1)^{t_i}(I_{a_{i-1}/(\text{TM}_{a_{i-1}} + \mathbb{Z}_p[G][\kappa(a_{i-1})]_{q_{i-1}})}) \). As \(h'_\chi \) is coprime to every \(\gamma^\prime_n - 1 \) we see that \(A_{\chi,m+n-m'/h'_\chi} \) is finite and further

\[
|N| \leq |A_{\chi,m+n-m'/h'_\chi}|\cdot |A_{\chi,m+n-m'/h'_\chi}|.
\]

Choose now \(2^d = M > \max(|A_{\chi}(M)|, |A_{\chi,m+n-m'/h'_\chi}|) \) and we want to apply Lemma 3.18 with \(E = 2^{c_3+d}, \eta = (\gamma^\prime_{n_0} - 1)^{t_i}, g = g_{i-1}, \mathfrak{A} = a_{i-1}, \) and \(x = \kappa(a_{i-1}) \). To do so we have to check the assumptions. It follows directly from Proposition 3.7 i) that \([x]_r = 0 \) for all \(r \) coprime to \(a_{i-1} \). We now have to check the conditions i)-iii) from Lemma 3.18.

i) By definition \(C = [\mathfrak{Q}_{i-1}] = 2^d C_{i-1} \). The annihilator of \(t(C) \) is \(g_{i-1}/(2^{c_3+d}, g_{i-1}) \) and we obtain that \(E \cdot \text{ann}_{\mathbb{Z}_p[G]}(C_\chi) \subset g_{i-1} \mathbb{Z}_p[G]_\chi \).

ii) It is immediate from Lemma 3.13 that \(\mathbb{Z}_p[G]_\chi/\mathbb{Z}_p[G]_\chi \) is finite.

iii) \(M > |A_{\chi}| \cdot |N| = |A_{\chi}| \cdot |\eta(I_{a_{i-1}/(\text{TM}_{a_{i-1}})})| \).

Thus, we obtain a homomorphism

\[
\psi_i : W_\chi \rightarrow \mathbb{Z}/M \mathbb{Z}[G]
\]

with \(g_{i-1} \psi_i(\kappa(a_{i-1}))_\chi = (2^{c_3+d}(\gamma^\prime_{n_0} - 1)^{t_i} v_{\Omega_{i-1}}(\kappa(a_{i-1})))_\chi \). Let \(\Pi_\chi \) be the projection \(W \rightarrow W_\chi \) and define \(\psi = \varepsilon_\chi \circ \psi_i \circ \Pi_\chi \). Let \(M \) be as in the previous paragraph and \(C \) a preimage of \(C_i \). Then Theorem 3.8 gives us a prime ideal \(\Omega_i \) satisfying i) and ii) (recall that \(2^n \mid M \)). Further, \(\varphi_q(\kappa(a_{i-1})) = 2^d u \psi(\kappa(a_{i-1})) \Omega_i \). Then we obtain

\[
v_{\Omega_i}(\kappa(q_1 \ldots q_i)) \Omega_i = [\kappa(q_1 \ldots q_i)]_{q_i} = \varphi_{q_i}(\kappa(q_1 \ldots q_i))
= 2^d u \psi(\kappa(a_{i-1})) \Omega_i.
\]

Projecting to the \(\chi \)-component and using the definition of \(\psi \) we obtain

\[
(g_{i-1} u \varphi_q(\kappa(q_1 q_2 \ldots q_i)))_\chi = u_i[H](\gamma^\prime_{n_0} - 1)^{c_i^{i-1} 2^{2d+c_2}(v_{\Omega_{i-1}}(\kappa(q_1 \ldots q_i)))_\chi}
\]

which finishes the proof. \(\Box \)

To derive a relation between \(h_\chi \) and \(\prod_{i=1}^s g_i \) we need the following result which is proved in [Cr-M], Theorem 1] and [O-V] Theorem 1.1. In the case of \(\mathbb{L} \) being the Hilbert class field and \(K = \mathbb{Q}(\sqrt{-q}) \) with \(q \) a prime congruent to 7 modulo 8 this is [C-K-L] Theorem 1.1.
Theorem 3.21. Let \mathbb{M}/\mathbb{K} be an arbitrary abelian extension and $\Omega/\mathbb{K}_\infty \mathbb{M}$ be the maximal p-abelian p-ramified extension of $\mathbb{M}\mathbb{K}_\infty$ then $\text{Gal}(\Omega/\mathbb{K}_\infty \mathbb{M})$ is finitely generated as \mathbb{Z}_p-module.

Corollary 3.22. Let \mathbb{M} be as above and consider $\mathbb{H}/\mathbb{K}_\infty \mathbb{M}$ (the maximal p-abelian unramified extension of $\mathbb{K}_\infty \mathbb{M}$). Then $A_\infty = \text{Gal}(\mathbb{H}/\mathbb{K}_\infty \mathbb{M})$ is finitely generated as a \mathbb{Z}_p-module.

Proof. $\text{Gal}(\mathbb{H}/\mathbb{K}_\infty \mathbb{M})$ is a quotient of $\text{Gal}(\Omega/\mathbb{K}_\infty \mathbb{M})$ and therefore finitely generated. □

Theorem 3.23. $\text{Char}(A_{\infty,\chi}) | \text{Char}((\overline{E}/\mathcal{C})_\chi)$.

Proof. The main argument of this proof is analogous to [Wash, page 371]. From (7) and (8) we obtain that $\prod_{i=1}^{k} g_{i} \nu_{q_{k+1}}(\kappa(q_{1} \ldots q_{k+1})) = \eta h'_{\chi} \mod 2^{n}$, where $\eta = \tilde{u} | H|^{k+1} 2^{k(2d+c_{0})+d+c_{2}(n_{0} - 1)} \gamma + \sum_{j=1}^{c} c_{j}^{2}$ for some unit \tilde{u}. It follows that $\prod_{i=1}^{k} g_{i}$ divides $\eta h'_{\chi}$ in $\Lambda_{\chi,m+n-m'/2^{n}}$. For every n we can find an element z_{n} such that $\prod_{i=1}^{k} g_{i} z_{n} = \eta h'_{\chi}$ in $\Lambda_{\chi,n}/2^{n} \Lambda_{\chi,m+n-m'}$. The z_{n}’s have a convergent subsequence and we obtain that $\prod_{i=1}^{k} g_{i} | \eta h'_{\chi}$ in Λ_{χ}. By Lemma 3.12 and Corollary 3.22 $\text{Char}(A_{\infty,\chi})$ is coprime to η and the claim follows. □

Corollary 3.24. $\text{Char}(A_{\infty}) | \text{Char}(\overline{E}/\mathcal{C})$

Proof. As Theorem 3.23 holds for all characters and $\text{Char}(A_{\infty})$ is coprime to 2 this is immediate. □

4. Characteristic ideals and the main conjecture

Consider the exact sequence

$$0 \to \overline{E}/\mathcal{C} \to U_{\infty}/\mathcal{C} \to X \to A_{\infty} \to 0,$$

where $X = \text{Gal}(\Omega/\mathbb{L}_\infty)$. Then

$$\text{Char}(A_{\infty}) \text{Char}(U_{\infty}/\mathcal{C}) = \text{Char}(X) \text{Char}(\overline{E}/\mathcal{C}).$$

From Corollary 3.24 we deduce

$$\text{Char}(X) | \text{Char}(U_{\infty}/\mathcal{C}).$$

In the following we will establish a relation between p-adic L-functions and elliptic units to show that $\text{Char}(X)$ is in fact equal to $\text{Char}(U_{\infty}/\mathcal{C})$.

Let $u \in U_{\infty}$ and let $g_{u}(w)$ be the Coleman power series of u (see [dS I Theorem 2.2]). Let $\tilde{g}_{u}(W) = \log g_{u}(W) - \frac{1}{p} \sum_{w \in \mathbb{F}_{p}} \log g_{u}(W + w)$. There exists a measure ν_{u} on \mathbb{Z}_{p}^{\times} having $\tilde{g}_{u} \circ \beta^{v}$ as characteristic series [dS I 3.4]. Recall that $D_{p} = I_{p}(\zeta_{m})$ and let $\Lambda(D_{p}, \Gamma' \times H)$ be the algebra of D_{p}-valued measures on $\Gamma' \times H$. Define

$$\iota(f): U_{\infty} \to \Lambda(D_{p}, \Gamma' \times H), \quad u \mapsto \sum_{\sigma \in \text{Gal}(\mathbb{F}/\mathbb{K})} \nu_{u} \circ \sigma.$$

Note that this construction of measures coincides with the one from section 2 for elliptic units.

Lemma 4.1. $\iota(f)$ is a pseudoisomorphism.
Proposition 4.2. Let \(\chi \) be a character of \(H \) of conductor \(g \) or \(gp \). The module \(\chi \circ \iota(f)(C(f)) \) is pseudoisomorphic to \(\chi(\nu(g))\Lambda(D_p, \Gamma' \times H) \), if \(\chi \) is non-trivial. If \(\chi \) is trivial \(\chi \circ \iota(f)(C(f)) \) is pseudoisomorphic to \((\gamma' - 1)\chi(\nu(1))\Lambda(D_p, \Gamma' \times H) \).

Proof. Analogous to \([1S, III Lemma 1.10]\). As \(\chi \) has conductor \(g \) or \(gp \) it follows that \(\chi \circ \iota(f)(C(f)) = \chi \circ \pi_{g,a} \circ \iota(f)(C(f)) = \chi \circ \iota(g)N_{g,a}(C(f)) \). Assume first that \(g \neq 1 \). It is immediate that \(\sum_{\sigma \subseteq \text{Gal}(K(\mathbb{p}^\infty))} \chi(\sigma) = 0 \). Hence,

\[
(11) \quad \chi \circ \iota(g)(C(g)) = \chi \circ \iota(g)(\overline{C(g)}).
\]

If \(\omega_g = 1 \) we can construct the measure \(\nu(g) \) as in section 2 and obtain that \(\iota(g)(C(g)) = \iota(g)(\overline{C(g)}) \) is the ideal generated by \(\mathcal{J} \nu(g) \) where \(\mathcal{J} \) is the ideal generated by all the \(\nu_\alpha \). If \(\omega_g \neq 1 \) there exists an integer \(k \) such that \(\omega_g^k = 1 \) and then we can define the measure \(\nu(g^k) \). But by (11) we have \(\nu(g) = \nu(g^k) \) and \(N_{g^k,g} \) is surjective on the elliptic units. So in both cases the image under \(\iota(g) \) is precisely \(\mathcal{J} \nu(g) \).

If the norm \(N_{g,a} : \overline{C(f)} \to \overline{C(g)} \) is not surjective it follows that the cokernel of the module \(\chi \circ \iota(g) \circ N_{g,a}(C(f)) \) in \(\chi \circ \iota(g)(\overline{C(g)}) \) is annihilated by \(\text{Gal}(\mathbb{p}^\infty : \mathbb{K}(\mathbb{p}^\infty)) \) and the product \(\prod_{i \mid f,g} (1 - \chi(\sigma_i)\sigma_i^{-1}) \). These elements are certainly coprime and we see that \(\chi \circ \iota(f)(\overline{C(f)} \sim \chi \circ \iota(g)(\overline{C(g)}) \) due to (11), where \(A \sim B \) means that \(A \) and \(B \) are pseudoisomorphic. But the \(\chi(\nu_\alpha) \) are coprime due to Theorem 2.4 and the claim follows for \(g \neq 1 \).

Assume now that \(g = 1 \). Let \(\tau \in \text{Gal}(\mathbb{K}(\mathbb{p}^\infty) / \mathbb{K}) \) then the elements \(\xi_{\alpha,\sigma}(P_n^\alpha)^{-1} \) are norms of elliptic units in \(\mathbb{K}(\mathbb{p}^\infty) \), where \(\mathbb{p} \) is a prime having Artin symbol \(\tau^{-1} \) in \(\text{Gal}(\mathbb{p}^\infty / \mathbb{K}) \). It follows that the element \(\xi_{\alpha,\sigma}(P_n^\alpha)^{-1} \) corresponds to the measure \(\nu_\alpha(\tau - 1)\nu(1) \) under \(\iota(1) \). The group \(\overline{C(1)} \) is generated by products \(\prod_{i=1}^g \xi_{\alpha,\sigma}(P_n^\alpha)^{m_i} \) with \(\sum m_i(\tau - 1) = 0 \). Let \(\nu_\alpha \) be the measure corresponding to such a product. Then we obtain \(\tau - 1) = \sum m_i(\tau - 1)\nu(1) \). As \(\tau - 1) \nu(1) \) is not contained in the augmentation of \(\Lambda(D_p, \text{Gal}(\mathbb{K}(\mathbb{p}^\infty) / \mathbb{K}) \) we obtain that the ideal generated by \(\sum m_i(\tau - 1) \) is the augmentation ideal and that \(\iota((1))(\overline{C(1)}) = A\nu((1)) \), where \(A \) denotes the augmentation of \(\Lambda(D_p, \text{Gal}(\mathbb{K}(\mathbb{p}^\infty) / \mathbb{K}) \). Analogously to the case \(g \neq 1 \) we can conclude that \(\chi(\nu((1))(\overline{C(1)}) \) has finite index in \(\chi(\iota((1))((1)) \). Hence, it suffices to consider the image \(\chi(\nu((1))(\overline{C(1)}) \). If \(\chi \) is a non-trivial character, then \(\chi(A) \) contains \(\chi(\tau) - 1 \) as well as \(\gamma' - 1 \). Thus \(\chi(\nu((1))(\overline{C(1)}) \sim \chi(\nu(1)) \). If \(\chi \) is the trivial character then \(\chi(\nu((1))(\overline{C(1)}) \sim (\gamma' - 1) \chi(\nu(1)) \).

Corollary 4.3. Let \(F(w, \chi) \) be the Iwasawa function associated to \(L(\chi) \) defined in Definition 2.4. Then \(\text{Char}((U_\infty / C)\chi) = F(w, \chi) \).

Proof. Let \(g \) be such that the conductor of \(\chi \) is \(gp \) or \(g \). By Lemma 11 we see that \(\text{Char}(U_\infty / C) \) equals \(\text{Char}(\Lambda(D_p, \text{Gal}(\mathbb{K}(\mathbb{p}^\infty) / \mathbb{K})) / \iota(f)(C(f)) \). But the latter equals \(\chi(\nu(g)) \) if \(\chi \) is non-trivial and \((1 - \gamma' \chi(\nu(1)) \) if \(\chi \) is trivial. But these are precisely
the measures used to define $L_p(s, \chi)$. As $\int_G \kappa^* \chi d(1 - \gamma)^e \nu(g) = \int_G \kappa^* d(1 - \gamma)^e \nu(g)$, where $e = 1$ if χ is trivial and $e = 0$ in all other cases, the claim follows. \hfill \square

4.1. Matching the invariants. In the following we will show how the λ- and μ-invariants of $F(w, \chi)$ match with the ones of X. This section follows closely Section 4 of [Cr-M]. Recall that $L_n = \mathbb{K}(p^{n+2})$. To start with we need the following result from [Cr-M].

Let t be such that $\mathbb{K}_t = F \cap \mathbb{K}_\infty$.

Corollary 4.4. If $G \in \mathbb{Z}_p[[\Gamma']]$ is a characteristic power series for $Gal(\mathbb{M}(\mathbb{L}_\infty)/\mathbb{L}_\infty)$, then for all sufficiently large n one has

$$\mu(G) 2^{t+n-1} + \lambda(G) = 1 + \text{ord}_2 \left[\frac{h(\mathbb{L}_n) R_p(\mathbb{L}_n)}{\omega(\mathbb{L}_n) \sqrt{\Delta_p(\mathbb{L}_n/\mathbb{K})}} \frac{h(\mathbb{L}_{n-1}) R_p(\mathbb{L}_{n-1})}{\omega(\mathbb{L}_{n-1}) \sqrt{\Delta_p(\mathbb{L}_{n-1}/\mathbb{K})}} \right].$$

Note that $D_p[[\Gamma']] \cong D_p[[w]]$. Consider any character ρ of Γ' of finite order. We say level $(\rho) = m$ if $\rho\left((\Gamma')^{2m}\right) = 1$, but $\rho\left((\Gamma')^{2m-1}\right) \neq 1$.

To determine the invariants of the Iwasawa function $F(w, \chi)$ we need the following two results ([dS Chapter III, Lemma 2.9] and [dS Chapter III, Proposition 2.10]).

Lemma 4.5. For any power series $F \in D_p[[w]]$ and all sufficiently large n, one has

$$\mu(F) 2^{n+t-1} + \lambda(F) = \text{ord}_2 \left\{ \prod_{(\rho) = t+n} \rho(F) \right\},$$

where $\rho(F)$ means that the action of ρ is extended to $D_p[[\Gamma']]$ by linearity and ord_p is the valuation on \mathbb{C}_p normalized by taking $\text{ord}_2(2) = 1$.

Proposition 4.6. For any ramified character ε of $Gal(\mathbb{F}_\infty/\mathbb{K})$, we let g be the conductor of ε and g the least positive integer in $g \cap \mathbb{Z}$. We define $G(\varepsilon)$ as in Theorem 2.7 and we define $S_p(\varepsilon)$ by

$$S_2(\varepsilon) = -\frac{1}{12g\omega_\varepsilon} \sum_{\sigma \in Gal(\mathbb{K}(\varepsilon)/\mathbb{K})} \varepsilon^{-1}(\sigma) \log \varphi_{g}(\sigma).$$

Let A_n be the collection of all ε for which n is the exact power of p dividing their Artin conductor. Then for all sufficiently large n one has

$$\text{ord}_2 \left(\prod_{\varepsilon \in A_{n+1}} G(\varepsilon)S_p(\varepsilon) \right) = \text{ord}_2 \left[\frac{h(\mathbb{L}_n) R_p(\mathbb{L}_n)}{\omega(\mathbb{L}_n) \sqrt{\Delta_p(\mathbb{L}_n/\mathbb{K})}} \frac{h(\mathbb{L}_{n-1}) R_p(\mathbb{L}_{n-1})}{\omega(\mathbb{L}_{n-1}) \sqrt{\Delta_p(\mathbb{L}_{n-1}/\mathbb{K})}} \right].$$

Using [Cr-M Theorem 5], for a character ρ of Γ' of sufficiently large finite order, one has

$$\rho(F(w, \chi^{-1})) \sim \begin{cases} G(\rho \chi) S_2(\rho \chi) & \text{if } \chi \neq 1; \\ (\rho(\gamma_0) - 1) G(\rho \chi) S_2(\rho \chi) & \text{if } \chi = 1, \end{cases}$$

where $u \sim v$ denotes the fact that u/v is a p-adic unit. Let

$$F = \prod_{\chi \in \mathbb{H}} F(w, \chi).$$
It follows that for all sufficiently large n one has
\begin{equation}
\prod_{\text{level}(\rho) = t + n} \rho(F) \sim 2 \prod_{\varepsilon \neq 0 \atop \text{level}(\rho) = t + n} G(\varepsilon)S_p(\varepsilon),
\end{equation}

since in the product on the right hand side we range over all χ (including $\chi = 1$) and
\[
\prod_{\text{level}(\rho) = t + n} (\rho(\gamma_0) - 1) = 2.
\]

As \mathbb{L}_0/F is ramified at p of degree 2 and p is unramified in F/K we see that a character in A_{n+1} is of level $t + n$. Combining Corollary 4.4, Lemma 4.5 and (12) we obtain that
\[
\mu(F) 2^{n+t-1} + \lambda(F) = \mu(G)2^{t+n-1} + \lambda(G) \quad \forall n \gg 0
\]

This implies together with Theorem 3.21

Theorem 4.7. $\mu(G) = \mu(F) = 0$ and $\lambda(G) = \lambda(F)$.

4.2. **Proving the main conjecture.** In this section we use all the results proved before to prove the main conjecture.

Lemma 4.8. $\text{Char}(X) = \text{Char}(U_{\infty}/\overline{C})$ and $\text{Char}(A_{\infty, \chi}) = (\overline{E}/\overline{C})_{\chi}$.

Proof. The first claim follows directly from (10) and Theorem 4.7. From (9) we also obtain that $\text{Char}(A_{\infty}) = \text{Char}(\overline{E}/\overline{C})$. Further Theorem 3.23 establishes that $\text{Char}(A_{\infty, \chi})$ divides $\text{Char}(\overline{E}/\overline{C})_{\chi}$. Both together imply the second claim. \qed

This has also the following consequence:

Theorem 4.9. $\text{Char}(X_{\chi}) = \text{Char}((U_{\infty}/\overline{C})_{\chi})$ for any χ.

Proof. For any Λ-module we denote by M^χ the largest submodule in $M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(\chi)$ on which H acts via χ. By [15] page 5 there exists a homomorphism between M^χ and M^X such that the kernel and the cokernel are annihilated by $|H|$. As none of the characteristic ideals involved is divisible by 2 we can consider the characteristic ideals of M^X instead of M^χ for any M in $\{A_{\infty}, U_{\infty}/\overline{C}, X, \overline{E}/\overline{C}\}$. The sequence
\[
0 \to (\overline{E}/\overline{C})^X \to (U_{\infty}/\overline{C})^X \to X^X
\]
is exact. Let e_χ be the idempotent induced by the character χ. Then $e_\chi |H|$ is an element in $\mathbb{Z}_p(\chi)[H]$. In particular, $e_\chi |H|M \subset M^X$. It follows that the cokernel of the natural homomorphism $\phi_\chi : X^X \to A_{\infty, \chi}$ is annihilated by $|H|$. As A_{∞} has bounded rank it follows that the Coker (ϕ_χ) is finite. The module $\ker(\phi_\chi)$ equals $X^X \cap \im(U_{\infty}/\overline{C})$. Again the exponent of $X^X \cap \im((U_{\infty}/\overline{C}))/\im((U_{\infty}/\overline{C})^X)$ is bounded by $|H|$. Hence, $\text{Char}(A_{\infty, \chi})\text{Char}(\im(U_{\infty}/\overline{C})^X) = \text{Char}(X^X)$. Using the exactness of the sequence above we obtain
\[
\text{Char}(A_{\infty, \chi})\text{Char}((U_{\infty}/\overline{C})^X) = \text{Char}(\overline{E}/\overline{C})^X\text{Char}(X^X).
\]

The claim follows now from Lemma 4.8. \qed

The second claim of Lemma 4.8 and Theorem 4.9 prove Theorem 1.1 for L_{∞}.

Acknowledgements

The author would like to thank Sören Kleine for his comments on preliminary versions of this paper.
MAIN CONJECTURE FOR $p = 2$

REFERENCES

[Bl] Bley, W. (2006) Equivariant Tamagawa Conjecture for Abelian Extensions of a Quadratic Imaginary Field: Documenta Mathematica 11, pp 73-118

[C-K-L] Choi, J., Kezuka, Y., Li, Y. (2018). Analogues of Iwasawas $\mu = 0$ conjecture and weak Leopoldt theorem for certain non-cyclotomic \mathbb{Z}_2-extensions: Asian Journal of Mathematics, Vol. 23, No. 3, pp 383-400

[Co] Coates, J. (1991). Elliptic curves with complex multiplication and Iwasawa theory: Bull. London Math. Soc. 23, pp. 321-350.

[Co-Go] Coates, J., Goldstein, C. (1983). Some remarks on the main conjecture for elliptic curves with complex multiplication: American J. of Mathematics 105, pp. 337-366.

[Col79] Coleman, R. (1979). Division values in local fields: Invent. Math., 53, pp. 91-116.

[Cr-M] Crişan, V., Müller, K. The Vanishing of the μ-Invariant for Split Prime \mathbb{Z}_p-extensions over Imaginary Quadratic Fields To appear in The Asian Journal of Mathematics.

[DS] de Shalit, E. (1987). The Iwasawa theory of elliptic curves with complex multiplication: Progress. Math. Vol.3.

[Gr] Greither, C. (1992). Class groups of abelian fields, and the main conjecture Annales de L’Institut Fourier 42, no 3, pp 449-499.

[Ja] Janusz, G. J. (1973), Algebraic Number Fields Pure and Applied Mathematics Volume 55, Academic Press.

[Iw] Iwasawa, Kenkichi (1973) On \mathbb{Z}_l Extensions of Algebraic Number Fields Annals of Mathematics Second Series, Vol. 98, no.2, pp. 246-326.

[Ke] Kezuka, Y. (2016) On the Main Conjecture of Iwasawa Theory for certain elliptic curves with complex multiplication, PhD-Thesis, University of Cambridge, Cambridge.

[Ke-2] Kezuka, Y. (2019) On the Main Conjecture of Iwasawa Theory for Certain Non-Cyclotomic \mathbb{Z}_p-Extension. J. London Math. Soc., Vol. 100, pp. 107-136.

[Lu] Lubin, J. (1964). One Parameter Formal Lie Groups over p-adic Integer Rings: Annals of Mathematics, Second Series, Vol. 80, No. 3, pp. 464-484.

[O-V] Oukhaba, H., Viguié, S. (2016). On the μ-invariant of Katz p-adic L-functions attached to imaginary quadratic fields: Forum Math. 28, no. 3, pp. 507-525.

[Ru-1] Rubin, K. (1988) On the main conjecture of Iwasawa theory for imaginary quadratic fields: Invent. Math. 93, pp 701-7013

[Ru-2] Rubin, K. (1991). The "main conjectures" of Iwasawa Theory for imaginary quadratic fields: Invent. Math., 103, pp. 25-68.

[Ru-3] Rubin, K. (1990). The Main Conjecture, Appendix to the second edition of S. Lang: Cyclotomic Fields I and II Graduate Texts in Mathematics 121, Springer.

[Si] Silverman, J.H. (1986). The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106: Springer.

[Si] Sinnott, W. (1984). On the μ-invariant of the Γ-transform of a rational function: Invent. Math., 75, pp. 273-282.

[Ts] Tsuji, T. (1999) Semi-Local Units modulo Cyclotomic Units J. Nubmer Theory, Volume 78, Issue 1, pp 1-26.

[Wash] Washington, L.C. (1997) Introduction to cyclotomic fields, 2nd Edition, Graduate Texts in Mathematics 83: Springer.

(K. Müller) Mathematisches Institut der Universität Göttingen BUNSENSTRASSE 3-5, 37073 GÖTTINGEN, GERMANY

E-mail address: katharina.mueller@mathematik.uni-goettingen.de