How clustered protocadherin binding specificity is tuned for neuronal self-/nonself-recognition

Kerry Marie Goodman1†, Phinikoula S Katsamba1†, Rotem Rubinstein2,3, Göran Ahlsén1, Fabiana Bahna1, Seetha Mannepal1, Hanbin Dan4, Rosemary V Sampogna4, Lawrence Shapiro1,5*, Barry Honig1,4,5,6*

1Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, United States; 2School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel; 3Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; 4Department of Medicine, Division of Nephrology, Columbia University, New York, United States; 5Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States; 6Department of Systems Biology, Columbia University, New York, United States

Abstract The stochastic expression of fewer than 60 clustered protocadherin (cPcdh) isoforms provides diverse identities to individual vertebrate neurons and a molecular basis for self-/nonself-discrimination. cPcdhs form chains mediated by alternating cis and trans interactions between apposed membranes, which has been suggested to signal self-recognition. Such a mechanism requires that cPcdh cis dimers form promiscuously to generate diverse recognition units, and that trans interactions have precise specificity so that isoform mismatches terminate chain growth. However, the extent to which cPcdh interactions fulfill these requirements has not been definitively demonstrated. Here, we report biophysical experiments showing that cPcdh cis interactions are promiscuous, but with preferences favoring formation of heterologous cis dimers. Trans homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different isoforms. A new C-type cPcdh crystal structure and mutagenesis data help to explain these observations. Overall, the interaction characteristics we report for cPcdhs help explain their function in neuronal self-/nonself-discrimination.

Editor’s evaluation
The direct investigation of homotypic and heterotypical preference between cis and trans interactions among the protocadherin isoforms is an important step to understand the mechanisms of self avoidance. We are particularly excited about the discovery that the discovery that showed cis interactions are promiscuous, but with preferences favoring formation of heterologous cis dimers. Trans-homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different isoforms.

Introduction
Clustered protocadherins (cPcdhs) are a large family of cadherin-like proteins named for the clustered arrangement of their genes in vertebrate genomes (Wu and Maniatis, 1999; Wu et al., 2001). cPcdhs
play roles in many facets of neural development (Peek et al., 2017), including circuit development, most notably neurite self-avoidance in vertebrates (Kostadinov and Sanes, 2015; Lefebvre et al., 2012; Mountoufaris et al., 2017), and tiling (Chen et al., 2017). In self-avoidance, neurites from the same neuron (sister neurites) actively avoid one another, whereas neurons from different neurons can freely interact. Tiling is similar to self-avoidance, but in tiling all neurons acquire the same identity, so that there is uniform repulsion among self- and nonself-neurites (Chen et al., 2017). Self-avoidance among sister neurites leads to the characteristic arbor structures of dendritic trees, and prevents the formation of self-synapses (Kostadinov and Sanes, 2015; Lefebvre et al., 2012).

The molecular mechanisms through which neurons discriminate self from nonself, differ between vertebrate and most invertebrate animals. For arthropod invertebrates such as Drosophila melanogaster, self-avoidance is mediated by immunoglobulin superfamily Dscam1 cell surface proteins. The stochastic alternative splicing of Dscam1 pre-mRNAs can, in principle, generate 19,008 distinct extracellular isoforms; the vast majority of which, based on ELISA-based binding assays, mediate homophilic recognition (Miura et al., 2013; Schmucker et al., 2000; Wojtowicz et al., 2004; Wojtowicz et al., 2007). Each Drosophila neuron expresses a repertoire estimated at 10–50 isoforms and the large number of Dscam1 isoforms ensures a low probability that any two contacting neurons will have an identical or even a similar isoform repertoire thus minimizing the chance of inappropriate avoidance between nonself-neurons (Hattori et al., 2009).

In mammalian nervous systems, cPcdh isoform expression is controlled by the unique organization of three tandem gene clusters, Pcdha, Pcdhb, and Pcdhγ (Wu and Maniatis, 1999), with each cluster containing multiple variable exons, which encode full cPcdh ectodomain regions with six extracellular cadherin (EC) domains, a single transmembrane region, and a short cytoplasmic extension (Figure 1A). The Pcdha and Pcdhb gene clusters also contain three ‘constant’ exons that encode cluster-specific intracellular domains. The last two variable exons in the Pcdha gene cluster and the last three variable exons of the Pcdhγ gene cluster diverge in sequence from other cPcdh isoforms and are referred to as ‘C-type’ cPcdhs (Wu and Maniatis, 1999; Wu et al., 2001). Sequence differences further subdivide Pcdhγ genes into two subfamilies – PcdhγA and PcdhγB (Wu and Maniatis, 1999). The full mouse cPcdh complement is comprised of 53 non-C-type cPcdhs, commonly known as alternate cPcdhs (α1–12, β1–22, γA1–12, and γB1–7), whose expression choices vary stochastically between cells through alternate promoter choice (Canzio and Maniatis, 2019) and 5 C-type cPcdhs (αC1, αC2, γC3, γC4, and γC5), which are constitutively expressed. cPcdh expression, either stochastic or constitutive, varies between cell types: for example, olfactory sensory neurons express ~5–10 cPcdhs stochastically; Purkinje neurons express ~10 alternate cPcdhs stochastically and all five C-types constitutively (Esumi et al., 2005; Kaneko et al., 2006); and serotonergic neurons express just αC2 constitutively (Canzio and Maniatis, 2019; Chen et al., 2017). While the cPcdh and Dscam1

![Figure 1. Clustered protocadherin (cPcdh) domain organization and extracellular interactions. (A) Schematic depicting the domain organization of cPcdhs. EC, extracellular cadherin domain; TM, transmembrane domain; ECD, ectodomain; ICD, intracellular domain. (B) Schematic of two cPcdhs interacting via the EC1–4 trans interface. (C) Schematic of two cPcdhs interacting via the ECS–6/EC6 cis interface. (D) Schematic depiction of the cis/trans cPcdh zipper comprising multiple cPcdh isoforms (various colors) engaged in homophilic trans interactions and promiscuous cis interactions as required for the proposed ‘isoform-mismatch chain-termination model’ of cPcdh-mediated neuronal self-recognition and self-avoidance.](https://doi.org/10.7554/eLife.72416)
systems bear striking similarities, the relatively small number of cPcdh isoforms – fewer than 60 – has presented a significant challenge to generation of sufficient diversity to provide mammalian neurons with functionally unique identities.

Solution biophysics and functional mutagenesis studies have shown that cPcdhs interact in trans through antiparallel interactions between their EC1–4 regions (Rubinstein et al., 2015), and crystal structures of alternate α, β, and γ cPcdh trans homodimers have revealed interfaces involving EC1 interacting with EC4 and EC2 with EC3 (Figure 1B; Goodman et al., 2016c; Goodman et al., 2016a; Nicoludis et al., 2016; Rubinstein et al., 2015; Thu et al., 2014). cPcdhs also form cis dimers through their membrane-proximal EC5–6 regions, and are presented on cell surfaces as cis dimers (Goodman et al., 2017; Rubinstein et al., 2015; Thu et al., 2014). Crystal structures of cis-interacting protocadherin ectodomains (Brasch et al., 2019; Goodman et al., 2017) have revealed an asymmetrical interaction mode, where one molecule interacts through elements of ECS and EC6, and the other interacts exclusively through EC6 (Figure 1C). To date, structural studies of C-type cPcdh interactions have not been available. Here, we extend our molecular understanding of cPcdhs to C-type isoforms as well, with the goal of understanding the evolutionary design of the entire family.

In order to explain how about 60 cPcdh isoforms can provide a comparable or even greater level of neuronal diversity as 19,000 Dscam isoforms, Rubinstein et al., 2015 proposed that cPcdhs located on apposed membrane surfaces would form an extended zipper-like lattice through alternating cis and trans interactions (Figure 1D). In self-interactions – between two membranes with identical cPcdh repertoires – these chains would grow to form large structures, limited mainly by the number of molecules (Brasch et al., 2019; Rubinstein et al., 2015). However, in nonself-interactions – between two membranes with differing cPcdh repertoires – such large linear assemblies would not form since even a single mismatch between expressed isoforms would terminate chain assembly (Brasch et al., 2019; Rubinstein et al., 2017; Rubinstein et al., 2015). This ‘isoform-mismatch chain-termination model’ for the ‘barcoding’ of vertebrate neurons envisions the assembly of long cPcdh chains between sites of neurite–neurite contact to represent the signature of ‘self’, which is then translated by downstream signaling that leads to self-avoidance (Fan et al., 2018). X-ray crystallographic studies and cryo-electron tomography studies of the full-length cPcdh ectodomains bound between the surfaces of adherent liposomes revealed the existence of linear zippers thus providing strong evidence supporting the validity of the model (Brasch et al., 2019). However, crucial questions remain unanswered. Here, a number of them are addressed.

1. For the proposed mechanism to successfully explain neuronal barcoding, cis interactions must be promiscuous to generate diverse repertoires of cis-dimeric biantennary ‘interaction units’, while trans interactions must be highly specific so that mismatched isoforms do not inappropriately enable growth of the chain through heterophilic interactions. While cell aggregation assays have suggested trans homophilic specificity, these assays only reflect a competition between different cell populations and thus do not inform as to the strength of heterophilic interactions. Moreover, the results of cell aggregation assays depend critically on the relative strengths of homophilic and heterophilic interactions and thus do not inform as to actual binding affinities (Honig and Shapiro, 2020). It is thus necessary to establish the extent to which heterophilic trans interactions are truly disallowed.

2. The assumption that cis interactions are promiscuous is based in large part on the fact that α-cPcdhs and γC4 cannot reach the cell surface without binding in cis to another ‘carrier’ isoform (Bonn et al., 2007; Goodman et al., 2016a; Murata et al., 2004; Schreiner and Weiner, 2010; Thu et al., 2014). As is the case for trans interactions, the strength of cis interactions has only been probed quantitatively in a small number of cases so that the term ‘promiscuous’ is qualitative at best. In fact, compared to γB and β cPcdh isoforms, most γA-Pcdhs do not form measurable cis homodimers in solution (Goodman et al., 2016a; Figure 4—source data 1). Nevertheless, all γA-Pcdhs are still able to reach the cell surface when expressed alone (Thu et al., 2014). This observation can be understood if the cis dimerization affinity of γA-Pcdhs is large enough to enable them to dimerize in the 2D membrane environment (Goodman et al., 2016a; Wu et al., 2013). Nevertheless, their weak dimerization affinities suggest, more generally, that cPcdhs may exhibit a range of cis dimerization affinities. We establish below that a wide range of affinities does in fact exist and, strikingly, most homophilic cis interactions are weaker than their heterophilic counterparts. We consider the functional implications of this novel observation in the discussion.
3. Structures have not yet been determined for complete C-type cPcdh ectodomains. Yet these isoforms play unique functional roles, some of which have no apparent connection to isoform diversity. For example, a single C-type isofrom is sufficient for tiling which can be simply understood in terms of the formation of zipppers containing identical homodimers so that all interacting neurons will avoid another (Chen et al., 2017). Moreover, Garrett et al. discovered that neuronal survival and postnatal viability are controlled solely by γC4 suggesting a function that is unique to this isofrom (although it presumably requires β and/or other γ carriers to reach the cell surface) (Garrett et al., 2019). Additionally, a recent paper by Iqbal et al. has shown that genetic γC4 variants cause a neurodevelopmental disorder which is potentially linked to γC4’s role in programmed cell death of neuronal cells (Iqbal et al., 2021). Below we report extensive biophysical interaction studies of C-type isofrom ectodomains and report the first crystal structure of a trans dimer formed by γC4. Our findings reveal that the specialized functions of C-type cPcdhs probably do not involve unique structural or biophysical properties of their ectodomains.

Overall, in accordance with the requirements of the isoform-mismatch chain-termination model, we find that trans homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different cPcdh isoforms. In contrast cPcdh cis interactions are largely promiscuous but with relatively weak intrasubfamily and, especially, homophilic interactions. Possible implications of this somewhat surprising finding are considered in the discussion. Our study reveals how the extraordinary demands posed by the need to assign each neuron with a unique identity are met by an unprecedented level of protein–protein interaction specificity.

Results
cPcdh trans interactions are strictly homophilic
We generated biotinylated ectodomain fragments containing the trans-interacting EC1–4 regions (Nicoludis et al., 2015; Rubinstein et al., 2015) of six representative α, β, γA, and γB mouse cPcdh isoforms – α7, β6, β8, γA8, γA9, and γB2 – which include the most closely related isoforms by sequence identity from the β and γA subfamilies (β6/8 and γA8/9) (Rubinstein et al., 2015). These molecules were coupled over independent NeutrAvidin-immobilized flow cells and trans-interacting ectodomain fragments of multiple members of each mouse cPcdh subfamily, including the C-types (α4, α7, α12, β6, β8, γA4, γA8, γA9, γB2, γB4, γB5, αC2, γC3, γC4, and γC5), were then flowed over the six cPcdh surfaces to assess their binding. The surface plasmon resonance (SPR)-binding profiles reveal strictly homophilic binding (Figure 2A). All ectodomain fragments used in these SPR experiments were confirmed to form homodimers in solution by sedimentation equilibrium analytical ultracentrifugation (AUC) (Figure 2—source data 1), validating that these proteins are well behaved and active. Remarkably, no heterophilic binding was observed for any of the analytes over any of the six surfaces (Figure 2A). Even β6/8 and γA8/9 that have 92% and 82% sequence identities, respectively, in their trans-binding EC1–4 regions exhibit no heterophilic binding. We estimate that, for heterophilic trans dimers, the lower limit for the dissociation constant (K_D) would be ~200 μM. Mutations designed to disrupt α7, β6, and γA8 trans interaction inhibited homophilic binding, demonstrating that the observed binding occurs via the trans interface (Figure 2—figure supplement 1A; Goodman et al., 2016a; Goodman et al., 2016c; Rubinstein et al., 2015). This behavior is unlike that of other adhesion receptor families where, whether they display homophilic or heterophilic preferences, the signal is never as binary as the one shown in Figure 2 (Honig and Shapiro, 2020).

Much of the original evidence as to homophilic specificity was based on cell aggregation assays (Rubinstein et al., 2015; Schreiner and Weiner, 2010; Thu et al., 2014) and it is of interest to compare the results obtained from these assays to those obtained from SPR. We do this in the context of examining the heterophilic binding specificity between β6/8 and β8/8 trans fragments that share 92% sequence identity and differ at only five residues (Figure 2—figure supplement 2A), within their respective binding interfaces (Goodman et al., 2016c). Each of these residues was mutated individually and in combination. Figure 2—figure supplement 2B, C displays SPR profiles and cell aggregation images, respectively, for wild-type β6 and β8 and for the various mutations. We first note that changing all five residues in β6 to those of β8 generates a mutant protein with essentially wild-type β8 properties; it binds strongly to β8 but not to β6 as seen in SPR and also forms mixed aggregates with β8 but not β6. In contrast, most of the single residue mutants retain β6-like properties in both assays whereas double and triple mutants exhibit intermediate behavior between β6 and β8. These
Figure 2. Clustered protocadherins (cPcdhs) show strict homophilic specificity in their trans interactions. (A) Surface plasmon resonance (SPR) binding profiles of cPcdh trans fragment analytes from all cPcdh subfamilies (denoted in the top row) flowed over six surfaces coated with alternate cPcdh trans fragments (rows). Responses over all surfaces are drawn on the same scale and normalized for molecular weight (mw). (B) SPR binding profiles of cPcdh}
trans fragment analytes from all cPcdh subfamilies (shown in columns) flowed over individual surfaces coated with C-type and α4 cPcdh trans fragments (rows). Responses over all surfaces are drawn on the same scale and normalized for molecular weight.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Sedimentation equilibrium analytical ultracentrifugation data for trans SPR reagents.

Figure supplement 1. Trans interface mutants demonstrate homophilic interactions observed in surface plasmon resonance (SPR) are mediated by the trans dimer interface.

Figure supplement 2. Mutagenesis experiments reveal role in trans specificity for the five interfacial residue differences between close pair β6,4 and β8,4.

results demonstrate that despite the 92% sequence identity between β6 and β8, their highly specific homophilic properties can be attributed to five interfacial residues. Moreover, the cell aggregation assays are consistent with the heterophilic binding traces measured by SPR; cells expressing mutants that generate strong SPR signals with either wild-type β6 or β8 also form mixed aggregates with cells expressing the same wild-type protein.

Of note, trans-interacting fragments of all four C-type cPcdhs tested showed no binding over the alternate cPcdh SPR surfaces (Figure 2A). To test whether C-type cPcdhs also show strict homophilic specificity with respect to each other we coupled biotinylated trans-interacting fragments of αC2, γC3, γC4, and γC5 to SPR chips and passed the same four fragments alongside alternate cPcdh trans fragments over these four surfaces. Only homophilic binding was observed, with each of the four C-type fragments binding to its cognate partner and no other isoform (Figure 2B). Disrupting the γC5 trans interaction with the S116R mutation (Rubinstein et al., 2015), inhibited binding to the γC5 surface, demonstrating that the observed binding occurs via the trans interface (Figure 2—figure supplement 1B).

In contrast to the other C-type isoforms, αC1 does not mediate cell–cell interactions in cell aggregation assays even when coexpressed with cPcdhs that facilitate cell-surface delivery of γC4 (Thu et al., 2014). Although we have been able to produce an αC1 EC1–4 fragment the recombinant molecule forms disulfide-linked multimers which are likely nonnative, precluding confident examination of αC1’s potential trans interactions. Notably, the sequence of mouse αC1 reveals the EC3:EC4 linker does not contain the full complement of calcium-coordinating residues, which may impact the structure and binding properties of this protein (Thu et al., 2014).

Since all the cPcdh trans fragment molecules used in these SPR experiments homodimerize our SPR data cannot be used to determine accurate binding affinities (Rich and Myszka, 2007). We therefore used AUC to measure the trans homodimer K_D (Figure 2—source data 1) revealing a >200-fold range of binding affinities, from 2.9 μM (α7γ6) to >500 μM (γC4γ4). Regardless of their trans-binding affinity, all cPcdhs (except αC1) have previously been shown to effectively mediate cell–cell interactions in cell aggregation assays (Schreiner and Weiner, 2010; Thu et al., 2014).

Crystal structure of C-type cPcdh γC4 reveals EC1–4-mediated head-to-tail trans dimer interaction

The biophysical properties of C-type cPcdhs pose a number of interesting questions: Despite their more divergent sequences compared with alternate cPcdhs, AUC data have confirmed that C-type cPcdhs αC2, γC3, and γC5 form trans dimers using their EC1–4 domains (Goodman et al., 2016a; Rubinstein et al., 2015). However, γC4γ4 behaved as a very weak dimer in AUC (K_D >500 μM; Figure 2—source data 1), nevertheless full-length γC4 can mediate cell aggregation when delivered to the cell surface by coexpression with a ‘carrier’ cPcdh (Thu et al., 2014). In addition, C-type isoforms have unique expression profile and function compared to alternate cPcdhs (Canzio and Maniatis, 2019; Mountoufaris et al., 2018). However, there are no published crystal structures of C-type cPcdh trans dimers. We therefore sought to crystallize a mouse C-type cPcdh engaged in a trans interaction and obtained two distinct crystal forms of γC4γC4, one at 2.4 Å resolution (crystallized at pH 7.5) and the other with anisotropic diffraction at 4.6/3.9/3.5 Å resolution (Figure 3A, Figure 3—source data 1) (crystallized at pH 6.0). Both crystal structures revealed an EC1–4-mediated head-to-tail trans dimer: The 4.6/3.9/3.5 Å crystal structure appears to have a fully intact trans interface with a total buried surface area of 3800 Å², which is a similar size to other cPcdh trans...
Figure 3. C-type clustered protocadherin (cPcdh) γC4 adopts an EC1–4-mediated head-to-tail trans dimer like alternate cPcdhs with a comparatively weak dimer affinity. (A) Ribbon diagrams of the γC4EC1–4 trans dimer crystal structures obtained from two different crystal forms. Bound calcium ions are shown as green spheres and glycans are shown in pale blue spheres. (B) The two crystal structures have a markedly different trans interface buried surface area (BSA). Left, surface views of the two trans dimer crystal structures highlight the difference, with a gap apparent in the EC2:EC3 region of Figure 3 continued on next page
the interface in crystal form two that is absent from crystal form 1. Surfaces are colored by atom type with the carbons colored orange for crystal form one and yellow for crystal form 2. Right, close-up view of the gap region in the crystal form two dimer with the side chains depicted as sticks. The intact crystal form 1 γC4 dimer is similar overall to those of the published intact alternate α, β, γA, and γB γC4 dimers and the published δ2 nonclustered (nc) Pcdh trans dimers (root mean square deviation [RMSD] over aligned Cα 2.4–4.5 Å; Figure 3—source data 2). The published crystal structures of γA1, γA8, and γB3 also show partially disrupted trans interfaces though in differing regions of the interface (Goodman et al., 2016a; Nicoludis et al., 2016). (C) Comparison between the (i) EC1:EC4 and (ii) EC2:EC3 regions of the γC4 (orange) and γB2 (blue, PDB 5T9T) trans dimer interfaces. Potential hydrogen bonds are depicted as dashed black/yellow (γC4) or blue (γB2) lines. (i) Structural alignment of the EC1:EC4 portion of the γC4 and γB2 trans dimers highlights a possible destabilizing role for γC4 residue E78 since unlike its counterpart in γB2 (D77), it is not juxtaposed with a basic residue. (ii) Similarly, an additional negatively charged residue (D290) which occupies a central position in the γC4’s weak trans dimer interaction. Distances between the D290 side chain and its nearest contacts are shown as dashed gray lines with distances given in Angstroms.

Figure 3 continued

Overall structural similarity between cPcdh γC4, alternate cPcdhs, and non-clustered Pcdhs trans dimer structures. Despite the γC4 trans dimer sharing structural similarity and the interface having similar buried surface area as alternate α, β, γA, and γB cPcdhs and δ2 nonclustered Pcdhs (Figure 3—source data 2; Cooper et al., 2016; Goodman et al., 2016a; Goodman et al., 2016c; Hudson et al., 2021; Nicoludis et al., 2016), its binding affinity is very weak. The two most structurally similar molecules to γC4 over their trans-interacting domains are cPcdh γB2 and nonclustered Pcdh19. γB2 and Pcdh19 have trans dimer KD of 21.8 and 0.48 μM, respectively (Harrison et al., 2020), while that of γC4 is >500 μM. Comparison between the γB2 and γC4 dimer interfaces highlighted two buried charges in the γC4 trans interface, E78 and D290, which could potentially contribute to the low interaction affinity (Figure 3C). To test this, we mutated these two residues to neutral amino acids and used AUC to determine whether the binding affinity increased: The two D290 mutations we tested, D290A and D290N, had no measurable impact on binding; but mutating E78 significantly increased the binding affinity with γC4EC1–4 E78Q, 83 μM (γC4EC1–4 E78Q, 83 μM (Harrison et al., 2020; Figure 3D, Figure 3—figure supplement 1C). The equivalent residue to E78 in γB2 is also charged (D77) and forms a salt bridge with K340 in the γB2 dimer (Figure 3C). To assess whether generating a similar salt bridge in γC4 would compensate for the negative impact of E78 on dimer affinity we generated an S344R mutant. Similar to the E78 mutants, γC4EC1–4 S344R also had a stronger binding affinity than wild-type with a KD of 112 μM (Figure 3D, Figure 3—figure supplement 1C). It appears then that E78 plays an important role in weakening cPcdh γC4’s trans interaction although the functional reasons for γC4’s weak trans interaction are unclear.

cPcdh cis interactions are promiscuous with a range of interaction strengths

To systematically investigate cPcdh cis interactions, we coupled cis-interacting fragments of mouse β9, γA4, γA9, γB2, αC2, γC3, and γC5 to SPR chip surfaces. Cis-interacting fragments of three members from each of the β, γA, and γB subfamilies (β1, β6, β9, γA3, γA4, γA9, γB2, γB5, and γB7) alongside αC2, γC3, and γC5 fragments were flowed over the seven surfaces to detect their heterophilic binding (Figure 4A). Alternate α-cPcdhs, and the C-types αC1 and γC4 were not included in this study since EC6-containing fragments of these molecules cannot be expressed, although an α7EC1-4

Goodman, Katsamba, et al. eLife 2022;11:e72416. DOI: https://doi.org/10.7554/eLife.72416 8 of 32
Figure 4. Clustered protocadherin (cPcdh) cis interactions are promiscuous with a preference for interfamily heterodimers. (A) Surface plasmon resonance (SPR)-binding profiles of cPcdh cis fragment analytes from all cPcdh subfamilies except alphas (shown in columns) flowed over individual surfaces coated with cPcdh cis fragments. Binding profiles for each surface are individually scaled and responses are normalized for molecular weight. (B) Table of dissociation constants calculated from the SPR data for the four monomeric analytes. The number in brackets represents the error of the fit.

Table: Dissociation Constants for Heterophilic cis Interactions

Cis dimer	β9_3-6	yA4_3-6	yA9_3-6	yC3_3-6
β9_3-6	NB	NB	NB	0.220(2)
yA4_3-6	>50	>50	>50	2.73(1)
yA9_3-6	>50	>50	>50	9.60(3)
yB2_3-6	25.69(8)	44.0(6)	>50	20.00(7)
αC2_3-6	>50	>50	>50	11.51(1)
yC3_3-6	1.116(4)	3.47(2)	14.5(2)	
yC5_2-6	6.91(3)	7.74(4)	18.2(2)	>50

Figure 4 continued on next page
The asymmetric cis dimer interface and cis-binding specificity

The crystal structure of the yB7 cis dimer revealed an asymmetric interaction, with the dimer formed by one protomer engaging using surface of both EC5 and EC6 and one protomer engaging using only EC6 (Goodman et al., 2017) with regions of EC6 overlapping in both EC5–6 and the EC6-only interfaces for all CPcDh subfamilies (Thu et al., 2014; Goodman et al., 2017). The asymmetric nature
of the cis interaction implies that for each dimer interaction there are two possible arrangements: one with protomer ‘1’ forming the EC5–6 side and protomer ‘2’ forming the EC6-only side and the second where protomer ‘1’ forms the EC6-only side and ‘2’ the EC5–6 side. These two configurations are distinct with different residue:residue interactions. Alternate α-cPcdhs, which can only form the EC5–6 side of the cis dimer, require coexpression with a ‘carrier’ cPcdh from another cPcdh subfamily, which can form the EC6-only side of the cis dimer, for robust delivery to the cell surface (Thu et al., 2014; Goodman et al., 2017). Although α-cPcdhs and γC4, which also requires a carrier for delivery to the cell surface, are likely to be extreme cases, sequence analysis alongside the low homodimerization ability of many cPcdh isoforms suggests many cPcdhs will more readily form one side of the cis interface than the other (Goodman et al., 2017).

We previously suggested that γA-cPcdhs will prefer to form the EC6-only side of the interface since they have a poorly conserved EC5 interface and do not form strong homodimers in solution (Figure 4—source data 1; Goodman et al., 2017). The C-type cPcdh γC3 also does not form cis homodimers in solution. However, as shown in Figure 4, γA-cPcdhs form strong heterodimers with γC3 with dissociation constants in the low-micromolar range (Figure 4B and Figure 4—figure supplement 1B). Structure-guided sequence analysis for the γA4/γC3 dimer in both EC6-only and EC5–6 possible orientations, using the available crystal structures of the γB7 EC3–6 cis dimer and monomeric γA4 EC3–6 (Figure 5A and Figure 5—figure supplement 1), suggests that γC3 prefers to form the EC5–6 side: γC3 has a number of residue differences in interface residues that are conserved among β, γA, and γB cPcdhs (V/L555, R/K558, W/V562, and S/R595) that seem likely to disfavor the EC6-only side of the interface and favor the EC5–6 side (Figure 5—figure supplement 1B, C). Two of these residues, V555 and S595, result in a potential loss of EC6-only interface buried surface area and are shared with α-cPcdhs, which cannot occupy the EC6-only position (Goodman et al., 2017). Structural analysis further suggests that γC3-specific residue R558 would not be well accommodated from the EC6-only side, potentially causing van der Waals clashes (Figure 5—figure supplement 1C). By contrast, from the EC5–6 side R558 is positioned to form an additional salt bridge with γA4 residue E544 and a hydrogen bond with Y532, promoting dimer formation (Figure 5A; Figure 5—figure supplement 1B). γA4 residue E544 is positioned to form this salt bridge due to the EC6 A/A’ loop region adopting a different arrangement in the γA4 crystal structure to that observed for γB2 and γB7 in their respective crystal structures (Goodman et al., 2016a; Goodman et al., 2017).

Based on our analysis, we generated mutants of both γA4 and γC3 targeting the EC6-only side of the interface and used size exclusion-coupled multiangle light scattering (SEC-MALS) to assess their preferred orientation on γA4/γC3 heterodimerization. In SEC-MALS wild-type γA4 EC3–6 and γC3 EC3–6 behave as monomers when run alone, and form a dimer when mixed in equimolar amounts (Figure 5B; Figure 5—figure supplement 2A). The V560R mutation (γB7 numbering, see methods for sequence alignment) is based on EC6-only impaired α-cPcdhs, and has been previously shown to block γB6’s homophilic cis interaction in solution (Goodman et al., 2017). γA4 V560R did not dimerize with wild-type γC3, whereas γC3 V560R could still dimerize with wild-type γA4 (Figure 5B). Therefore, impairing γA4’s EC6-only interface blocks γA4/γC3 dimer formation while impairing γC3’s EC6-only interface does not (although the dimerization appears to be weaker compared to the wild-type γA4/γC3 cis-interacting pairs). We also generated a γC3-like mutant of γA4, K558R, which also targets the EC6-only interface. Like γA4 V560R, γA4 K558R also did not dimerize with wild-type γC3 in MALS and, when replicated, in SPR experiments (Figure 5B, Figure 5—figure supplement 2B).

The reverse mutation in γC3, R558K, inhibited dimerization with wild-type γA4 (Figure 5B). Therefore, like the α-specific R560 residue, γC3-specific R558 has distinct effects on dimerization when in γA4 or γC3, inhibiting heterodimerization when mutated into γA4 but promoting heterodimerization in γC3. Together these data suggest that the γA4/γC3 dimer has a preferred orientation, with γA4 predominantly occupying the EC6-only position and γC3 the EC5–6 side. Our data also account for the fact that neither isoform homodimerizes in solution since the EC5–6 side would be impaired in the γA4 homodimer while the EC6 side would be impaired in the γC3 homodimer.

Next, we sought to test whether γA4 and γC3 preferentially adopt these specific positions in cis interactions with a γB isoform. To accomplish this we generated mutants of γB7 individually targeting the EC6-only interaction surface, γB7 Y532G, and the EC5–6 side, γB7 A570R, respectively (Goodman et al., 2017; Figure 4—source data 1). In SPR, γB7 Y532G had only a small impact on γA4 binding, while γB7 A570R abolished γA4 binding (Figure 5C). In contrast, γB7 Y532G prevented γC3 binding.
Figure 5. γA4 preferentially forms the EC6-only side and γC3 the EC5–6 side in cis dimers. (A) Structural model of γA4/γC3 cis dimer based on γB7/EC3–6 cis dimer and γA4/EC3–6 crystal structures (PDBs: 5V5X and 5SZQ). γA4 is shown adopting the EC6-only side (blue protomer) and γC3 is shown adopting the EC5–6 side (yellow protomer). Left, schematic of the γA4/γC3 EC3–6 cis dimer. Right, close-up view of the EC6:EC6 interface from the modeled cis dimer showing interfacial residue side chains. Bound calcium ions are shown as green spheres. Residues which were mutated in the panel B are circled in red. γB7 crystal structure numbering is used for both γA4 and γC3 residues. See methods for γA4 and γC3 alignment. Please note the model shown here is solely for hypothesis generation, since it is unlikely to be completely accurate. See methods for further details of structural modeling. (B) Top, size exclusion-coupled multiangle light scattering (SEC-MALS) data for an equimolar mixture of wild-type γA4EC3–6 and γC3EC3–6 showing dimer formation. Plot shows size exclusion absorbance at 280 nm trace (left axis), molecular weight of the eluant peaks (right axis), and the monomer molecular weights of γA4EC3–6 and γC3EC3–6 measured by mass spectrometry – 54.5 and 56.5 kDa, respectively – as dashed gray lines. Average molecular weight of the molecules in the dimer and monomer eluant peaks are labeled. Middle, SEC-MALS data for V560R mutants, which target the EC6-only side of the interface. Bottom, SEC-MALS data for residue 558 mutants. The γC3-like K558R mutation in γA4 inhibits heterodimer formation with wild-type γC3. Figure 5 continued on next page
Similarly, the A4-like R558K in γC3 inhibits dimerization with wild-type γA4. (C) SPR-binding profiles for γB7EC3A wild-type and cis interface mutants flowed over three individual wild-type cis fragment surfaces. The two mutations specifically target one side of the cis interface.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Structure-guided sequence analysis of γA4 and γC3 cis interactions.

Figure supplement 2. γA4 and γC3 cis fragments behave as monomers in size exclusion-coupled multangle light scattering (SEC-MALS) and mutating γA4 to make it more like γC3 prevents γA4/γC3 cis heterodimerization.

Discussion

Trans specificity

The results of this study add to our current understanding of cPcdhs in a number of ways. First, they reveal a remarkable level of specificity in trans homophilic interactions since in no case was a heterophilic trans interaction detected in our SPR measurements. Prior data have clearly indicated that cPcdhs exhibit a preference for homophilic trans interactions but the extent of this specificity was not established in quantitative terms but were, rather, based on cell aggregation experiments. The SPR experiments with cPcdhs reported here show no evidence of cross-interaction between nonidentical cPcdh isoforms. This level of specificity is unusual for cell–cell recognition proteins, as significant intrafamily interactions are evident in most other families examined to date including type I cadherins (Katsamba et al., 2009; Vendome et al., 2014), type II cadherins (Brasch et al., 2018), DIPs and Dprs (Cosmanescu et al., 2018), sidekicks (Goodman et al., 2016b), and nectins (Harrison et al., 2012). Even the nonclustered δ-protocadherins, which are preferentially homophilic and utilize an antiparallel EC1–4 interface like the cPcdhs (Harrison et al., 2020), show heterophilic intra-family trans interactions, though they show no cross-reactivity with cPcdhs (Harrison et al., 2020).

High-fidelity homophilic interaction is a strict requirement of the chain-termination model for the barcoding of vertebrate neurons and has been accomplished through the exploitation of a multidomain interface of almost 4000 Å² (Nicoludis et al., 2019) that enables the positioning of enough ‘negative constraints’ (Sergeeva et al., 2020) to preclude the dimerization of about 1600 heterophilic pairs of 58 mouse cPcdh isoforms (Rubinstein et al., 2017). Dscams accomplish the same task for thousands of isoforms by exploiting the combinatorics made possible by a three-domain interface where each domain interacts largely independently with an identical domain on its interacting partner (see discussion in Zipursky and Grueber, 2013). Although it is likely that Dscams dimerize with a comparable level of homophilic specificity to that of cPcdhs, the evidence is based on a semiquantitative ELISA-type assay of recombinant multimerized isoforms (Wojtowicz et al., 2007) and AUC experiments on a few select isoforms (Wu et al., 2012).

Cis interactions

Despite early evidence that cis interactions are promiscuous, the data reported here indicate that this generalization needs to be significantly refined. Functional mutagenesis studies have already established that alternate α cPcdhs and the C-type γC4 do not form intrasubtype cis interactions and can only reach the cell surface when mediated by heterophilic cis interactions with members of
other subtype families (Goodman et al., 2017; Thu et al., 2014). The data presented in Figure 4 indicate that this is an extreme example of quite general behavior: intrasubtype cis interactions are invariably weaker than intersubtype interactions. However, unlike α cPcdhs, most cPcdhs can reach the cell surface on their own. This includes β1, all γA-Pcdhs, and γC3 which do not form measurable homodimeric cis interactions in our solution-based AUC experiments. We have attributed this to their presence on the restricted 2D surface of membranes which can promote cis dimerization (Wu et al., 2013) whereas biophysical experiments are carried out in a 3D solution environment (Goodman et al., 2016a). (There may of course be other, still undetermined, factors involved in cPcdh cell surface transport [Phillips et al., 2017].) Therefore, although our biophysical experiments demonstrate that intrasubtype cis interactions are comparatively weak and, in some cases undetectable in solution, intrasubtype cis dimers likely assemble when constrained in more native membrane environments. As such, while α cPcdhs and γC4 are obligatory participants in cis heterodimers, at least in their cell surface transport, our data show that the remaining cPcdhs are preferentially, although not exclusively, participants in cis heterodimers.

The cis-binding preferences indicated by our data can be largely understood in terms of the asymmetric interface discussed above. Specifically, different isoforms preferentially form one side of the cis dimer: for example, the EC6-only side for Cpcdh-γA4 and the EC5–6 side for Cpcdh-γC3. Homodimerization requires participation of single isoform on both sides of an interface posing challenges in the optimization of binding affinities since, in some cases the same residue must participate in different intermolecular interactions. Given significant sequence conservation in all members of an alternate cPcdh subfamily (Figure 4—figure supplement 3) even intrasubfamily heterophilic interactions are more difficult to optimize relative to intersubfamily heterodimerization where there are no constraints on the two interacting surfaces. Additionally, the robust cell surface delivery of many cPcdhs in cells expressing only a single isoform also suggests that all carrier isoforms – β1, γA-, and γB-cPcdhs, plus C-types αC2, γC3, and γC5 – can fill both the EC6 and EC5–6 roles, as cis dimer formation is thought to be required for cell surface export (Goodman et al., 2017; Goodman et al., 2016a; Thu et al., 2014). Therefore side preferences are most likely not absolute for carrier cPcdh isoforms and may vary among individual isoform and/or subtype pairings.

Functional implications of cPcdh interactions

The functional role of precise trans homophilic specificity in ensuring high-fidelity discrimination between neuron self and nonself has been discussed previously (Rubinstein et al., 2017; Rubinstein et al., 2015) and is summarized above. It is an essential feature of the chain-termination model. The role of promiscuous cis interactions can also be understood in terms of this model in that cis promiscuity enables the formation of a large and diverse set of cis dimers that can only form long molecular zippers when all isoforms are matched. However, the results of this study reveal strong preferences for intersubgroup heterophilic interactions whose biological rationale is uncertain. cPcdhs from the three subfamilies have been shown to act cooperatively in certain neuronal contexts although whether this relates to their cis interactions is unknown (Hasegawa et al., 2016; Ing-Esteves et al., 2018).

One possible advantage of weak homophilic cis interactions would be to ensure that once reaching the cell surface a diverse set of cis dimers forms. This explanation implicitly assumes that most isoforms (except for α-Pcdhs and γC4) reach the surface as homodimers that must then quickly dissociate and form more stable heterodimers. Another explanation posits that homotypic zippers consisting solely of cis homodimers are kinetically easier to form than heterotypic zippers since in a homotypic zipper, either ‘wing’ of the new cis dimer can form trans interactions with the wing at the chain terminus. In contrast, in a heterodimeric zipper, only one wing can form homophilic interactions with the chain terminus (Figure 1D). A preference for homotypic zippers would then reduce the diversity required in the chain-termination model since, in this model, it is essential that all isoforms be incorporated into a growing zipper. The formation of long homotypic zippers might lead to a repulsive phenotype even when mismatches are present.

However, these explanations would not fully account for interfamily heterophilic preferences. One possibility is suggested by the observation that C-types are often highly expressed compared to alternate cPcdhs, for example in Purkinje cells (Esumi et al., 2005; Kaneko et al., 2006). To ensure sufficient diversity in growing zippers, it would then be important to ensure that zippers that are formed are not overly enriched in C-type isoforms as would be accomplished through preferential heterophilic
cis interactions. This same logic would also pertain to alternate cPcdhs in cases where one subfamily is more heavily expressed than another.

C-type cPcdhs have different functions than alternate cPcdhs and these are reflected in different expression patterns. For example, αC2 can be alone responsible for tiling (Chen et al., 2017). (Of note, in the chain-termination model, a completely homophilic zipper is sufficient to initiate self-avoidance facilitating tiling.) On the other hand, γC4, which has a unique and crucial role in neuronal survival (Garrett et al., 2019), requires coexpression with another cPcdh isoform for robust cell surface expression and therefore is likely unable to act in isolation (Thu et al., 2014). Furthermore, as detailed above, γC4 has a much weaker trans interaction affinity than any other cPcdh isoform measured to date, although it is still able to mediate cell aggregation when delivered to the cell surface (Thu et al., 2014). The presence of E78 appears in large part to be responsible for this weak affinity. It is unclear whether γC4’s weak trans affinity plays any functional role, although a weak homodimer interaction may facilitate extracellular interactions with other, currently unidentified, proteins. More generally, it seems likely that different intracellular interactions account for the specialized functions of C-type Pcdhs. The cytoplasmic domain plays an important role in the activation of Wnt, WAVE, and other signaling cascades (Chen et al., 2009; Fukuda et al., 2008; Keeler et al., 2015; Mah and Weiner, 2017; Onouchi et al., 2015; Pancho et al., 2020). In some cases, the cytoplasmic domains of a subset or even a single cPcdh isoform activates a specific signaling cascade. For example, cPcdh γC3 is the only isoform able to form and inhibit Axin1, a Wnt pathway activator (Mah et al., 2016). Of note, γ-cPcdh intracellular domains consist of a C-terminal constant region common to all γ isoforms (including the three γ C-types) and a membrane-proximal variable region consisting of ~100 residues that could account for the unique intracellular interactions and signaling of individual isoforms. Additionally, it is possible that extracellular interactions to molecules from other families, such as Neurilogs, may account for some distinctions in function (Molumby et al., 2017; Steffen et al., 2021).

Overall, the results of this study demonstrate the remarkable tuning of the interactions among cPcdh family members: homophilic trans interactions are remarkably specific despite the high level of sequence identity among family members while cis interactions, though somewhat promiscuous, also appear designed to have binding preferences of still uncertain function. These binding properties match requirements of the ‘isoform-mismatch chain-termination model’ for neuronal self- vs nonself-discrimination in which all expressed cPcdh isoforms assemble into intercellular zippers formed by alternating promiscuous cis and matched trans interactions with assembly size dictated by the presence or absence of mismatched isoforms. It remains to be seen whether such assemblies can be observed in vivo and how they control downstream signaling pathways.

Materials and methods

Protein production and purification

cDNAs for mouse cPcdh ectodomain fragments, excluding the predicted signal sequences, were cloned into a pdShP-H mammalian expression vector (a kind gift from Daniel J. Leahy, John Hopkins University) modified with the human binding immunoglobulin protein (BiP; MKLSLVAAMLLLSSAARA) signal sequence and a C-terminal octa-histidine tag (Rubinstein et al., 2015). The signal sequences were predicted using the SignalP 4.0 server (Petersen et al., 2011). Point mutations were introduced into cDNA constructs using the KOD hot start polymerase (Novagen) following the standard Quikchange protocol (Stratagene).

Suspension-adapted HEK293 Freestyle cells (Invitrogen) in serum-free media (Invitrogen) grown and maintained at 37°C and 10% carbon dioxide were used for protein expression. FreeStyle 293F cell line has been authenticated and verified negative for mycoplasma using PCR testing (Thermo Fisher). The plasmid constructs were transfected into cells using polyethyleneimine (Polysciences Inc) (Baldi et al., 2012). Media was supplemented with 10 mM CaCl₂ 4 hr after transfection. Conditioned media was harvested ~6 days after transfection and the secreted proteins were purified using batch nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography followed by size exclusion chromatography over Superdex 200 26/60 column (Cytiva) on an AKTA pure fast protein liquid chromatography system (Cytiva). Purified proteins were concentrated to >2 mg/ml in 10 mM Tris–Cl, pH 8.0, 150 mM NaCl, 3 mM CaCl₂, and 100–250 mM imidazole pH 8.0 and stored at 4°C for short-term use or flash frozen in liquid nitrogen for long-term storage at −80°C.
Constructs encoding biotinylated cPcdh fragments for immobilization in SPR experiments were prepared by insertion of an Avi-tag (GLNDIFEAQKIEWHE)-encoding sequence between the octa-histidine tag and stop codon. These were cotransfected with a plasmid encoding the biotin-Ligase BirA from *E. coli* (Lys2–Lys321) with a BiP signal sequence and a C-terminal endoplasmic reticulum-retention signal (DYKDEL) ([Barat and Wu, 2007](#)). The expression and BirA plasmids were mixed at a 9:1 ratio for transfection and 50 μM Biotin (Sigma) was added to the media 4 hr post-transfection. Purification was carried out exactly as for the nonbiotinylated constructs and biotinylation was confirmed by western blot using NeutrAvidin-HRP (Thermo Fisher).

Sedimentation equilibrium AUC

Protein	Imidazole pH 8.0 (mM)	Spin speeds (rpm)
α4 EC1–5	100	9000, 11,000, 13,000, 15,000
α7 EC1–5 L301R	100	9000, 11,000, 13,000, 15,000
α12 EC1–5 *(poorly behaved)*	200	11,000, 14,000, 17,000, 20,000
γB4 EC1–5	200	11,000, 14,000, 17,000, 20,000
γB5 EC1–4–AVI	200	11,000, 14,000, 17,000, 20,000
γC5 EC1–5 S116R	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4	100	9000, 11,000, 13,000, 15,000
β6 EC1–4–AVI tag	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 R41N	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 S117I	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 L125P	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 E369K	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 Y371F	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 R41N/S117I *(precipitates)*	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 R41N/E369K	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 S117I/L125P	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 R41N/S117I/L125P	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 R41N/S117I/E369K	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 R41N/E369K/Y371F	200	11,000, 14,000, 17,000, 20,000
β6 EC1–4 R41N/S117I/L125P/E369K/Y371F	200	11,000, 14,000, 17,000, 20,000
β1 EC3–6	200	12,000, 16,000, 20,000, 24,000
β6 EC1–6	250	9000, 11,000, 13,000, 15,000
β9 EC3–6	200	11,000, 14,000, 17,000, 20,000
γA3 EC3–6	200	11,000, 14,000, 17,000, 20,000
γA9 EC3–6	200	11,000, 14,000, 17,000, 20,000
γB7 EC3–6 A570R	200	13,000, 17,000, 21,000, 25,000
αC2 EC3–6–AVI tag	200	11,000, 14,000, 17,000, 20,000
γC5 EC2–6	250	9000, 11,000, 13,000, 15,000
γC4 EC1–4	250	11,000, 14,000, 17,000, 20,000
γC4 EC1–4 D290A	250	11,000, 14,000, 17,000, 20,000
γC4 EC1–4 D290N	250	11,000, 14,000, 17,000, 20,000

Continued on next page
Protein Imidazole pH 8.0 (mM)

Protein	Imidazole pH 8.0 (mM)	Spin speeds (rpm)
γC4 EC1–4 E78A	250	11,000, 14,000, 17,000, 20,000
γC4 EC1–4 E78Q	250	11,000, 14,000, 17,000, 20,000
γC4 EC1–4 S344R	250	11,000, 14,000, 17,000, 20,000

Experiments were performed in a Beckman XL-A/I analytical ultracentrifuge (Beckman-Coulter, Palo Alto CA, USA), utilizing six-cell centerpieces with straight walls, 12-mm path length and sapphire windows. Protein samples were dialyzed overnight and then diluted in 10 mM Tris–Cl, pH 8.0, 150 mM NaCl, 3 mM CaCl₂ with 100–250 mM imidazole pH 8.0, as detailed in the above table. The samples were diluted to an absorbance of 0.65, 0.43, and 0.23 at 10 and 280 nm in channels A, B, and C, respectively. For each sample, buffer was used as blank. The samples were run in duplicate at four speeds as detailed in the above table. The lowest speed was held for 20 hr then four scans were conducted with 1-hr interval, the subsequent three speeds were each held for 10 hr followed by four scans with 1-hr interval each. Measurements were taken at 25°C, and detection was by UV at 280 nm or interference. Solvent density and protein v-bar at both temperatures were determined using the program SednTerp (Alliance Protein Laboratories, Corte Cancion, Thousand Oaks, CA, USA). The molecular weight of each protomer used in AUC experiments was determined by MALDI mass spectrometry. For the calculation of dimeric K_D and apparent molecular weight, all data were used in a global fit, using the program HeteroAnalysis (http://www.biotech.uconn.edu/auf). The calculation of the tetramer K_Ds was done with the program Sedphat (http://www.analyticalultracentrifugation.com/sedphat/index.htm).

SPR binding experiments

SPR-binding experiments were performed using a Biacore T100 biosensor equipped with a Series S CM4 sensor chip, immobilized with NeutrAvidin over all four flow cells. NeutrAvidin immobilization was performed in HBS-P (HEPES-Buffered Saline-P20) buffer, pH 7.4 at 32°C, over all four surfaces using amine-coupling chemistry as described in Katsamba et al., 2009, resulting in approximately 10,000 RU of NeutrAvidin immobilized (Katsamba et al., 2009). Binding experiments were performed at 25°C in a running buffer containing 10 mM Tris–Cl, pH 8.0, 150 mM NaCl, 3 mM CaCl₂, 20 mM imidazole, 0.25 mg/ml BSA (Bovine Serum Albumin), and 0.005% (vol/vol) Tween-20 unless otherwise noted.

C-terminal biotinylated fragments were tethered over individual NeutrAvidin-immobilized flow cells (shown in the left column of each Figures 2, 4, and 5C, Figure 2—figure supplement 1, Figure 2—figure supplement 2B, Figure 4—figure supplement 1, and Figure 5—figure supplement 2B) at 2300–3000 RU, depending on the experiment, using a flow rate of 20 μl/min. A NeutrAvidin-immobilized flow cell was used as a reference in each experiment to subtract bulk refractive index changes. The analytes tested in each experiment are listed at the top row. All analytes (with exceptions for the cis-interacting pairs γC3₃–₆/β9₃–₆, in both orientations, and β6₁–₆/γC3₃–₆ in Figure 4A, discussed below) were tested at six concentrations ranging between 24, 8, 2.667, 0.889, 0.296, and 0.099 μM, prepared using a threefold dilution series. γC3₃–₆ binding over β9₃–₆ (Figure 4A) was tested at five concentrations from 8 to 0.099 μM.

For all experiments, analyte samples were injected over the captured surfaces at 50 μl/min for 40 s, followed by 180 s of dissociation phase, a running buffer wash step and a buffer injection at 100 μl/min for 60 s. Protein samples were tested in order of increasing concentration, and within the same experiment the entire concentration series was repeated to confirm reproducibility. Every three binding cycles, buffer was used as an analyte instead of a protein sample to double reference the binding responses by removing systematic noise and instrument drift. The resulting binding curves were normalized for molecular weight differences according to data provided by mass spec for each molecule. The data were processed using Scrubber 2.0 (BioLogic Software). To provide an estimate of the number of possible heterophilic binding pairs, we have used a cutoff of 40 RU, which is the lowest signal that can be observed for a homodimeric cis fragment pair, yB2₁–₆₄.

In Figure 4A, β6₁–₆ and β9₃–₆ were tested over γC3₃–₆ at six concentrations ranging from 900 to 3.7 nM, which is 27-fold lower than the other interactions, prepared using a threefold dilution series
in a running buffer containing increased concentrations of imidazole (100 mM) and BSA (0.5 mg/ml) to minimize nonspecific interactions. For these two interactions, although analyte samples were injected over the captured surfaces at 50 μl/min for 40 s, the dissociation phase was monitored for 300 s to provide additional time for complex dissociation. Nevertheless, higher analyte concentrations produced binding profiles that were not reproducible, most likely due to the fact that bound complexes could not dissociate completely at these higher concentrations.

For the calculation of heterophilic K_Ds for the monomeric cis fragments $\beta_{13-6}, \gamma A_{3-6}, \gamma A_{93-6}$, and γC_{3-6} over each of the six surfaces, except β_{93-6}, the duplicate binding responses were fit globally, using an 1:1 interaction model and a single K_D was calculated as the analyte concentration that would yield 0.5 R_{max} and a fitting error, indicated in brackets. K_Ds lower than 24 μM were calculated using an independent R_{max}. For K_Ds greater 24 μM, the R_{max} was fixed to a global value determined by the R_{max} of a different cPcdh analyte tested over the same surface during the same experiment that showed binding above 50% and therefore produced a more accurate R_{max}. For K_Ds > 50 μM, a lower limit is listed since at the analyte concentrations used (0.098–24 μM), accurate K_Ds could not be determined, even when the R_{max} is fixed. NB (no binding) represents interactions that did not yield any binding signal. The binding curves of γC_{3-6} did not come to equilibrium during the time-course of the experiment, so a kinetic analysis was performed to calculate a K_D (Figure 4—
figure supplement 1A). Binding of γC_{3-6} was tested using a concentration range of 900–0.411 nM prepared using a threefold dilution series in a running buffer containing increased concentrations or imidazole (100 mM) and BSA (0.5 mg/ml) to minimize any nonspecific interactions. Protein samples were injected over the captured surfaces at 50 μl/min for 90 s, followed by 420 s of dissociation phase, a running buffer wash step and a buffer injection at 100 μl/min for 60 s. Protein samples were tested in order of increasing concentration in triplicate to confirm reproducibility. Every three binding cycles, buffer was used as an analyte instead of a protein sample to double reference the binding responses by removing systematic noise and instrument drift. The binding data were analyzed using an 1:1 interaction model to calculate the kinetic parameters and the K_D.

K562 cell aggregation assays

Full-length cPcdhs $\beta 6$ and $\beta 8$ cDNAs were cloned into the pMax expression vectors encoding C-terminal mCherry- or mVenus-tagged cPcdh proteins, then transfected into K562 cells (ATCC CCL243) as previously described (Goodman et al., 2017; Thu et al., 2014). K-562 bone marrow chronic myelogenous leukemia cell line has been authenticated and verified negative for mycoplasma using PCR testing (ATCC). Point mutants were generated using the QuickChange method (Stratagene). In brief, K562 cells were cultured at 37°C with 5% CO2 in Dulbecco’s modified Eagle medium with GlutaMAX (GIBCO) supplemented with 10% fetal bovine serum and 1% penicillin–streptomycin for 2 days. Next, cells were counted, centrifuged, and resuspended at a density of 1.5×10^4 cells/μl in SF Cell Line 4D-Nucleofector Solution SF with supplement according to the manufacturer’s instructions (Lonza). 2 μg of each PcDH expression construct were transfected into 20 μl of the K562 cell suspension by electroporation using an Amaxa 4D-Nucleofector (Lonza). Transfected cells were transferred to a 24-well plate in 500 μl of medium per well and incubated overnight at 37°C and 5% CO2. Cells were mixed, reincubated with gentle rocking for 4 h, then imaged with an Olympus IX73 fluorescent microscope to determine the extent of aggregation.

Size exclusion-coupled multiangle light scattering

SEC-MALS experiments were performed using a Superdex 200 Increase 3.2/300 size exclusion column on an AKTA FPLC system (Cytiva) coupled to inline static light scattering (Dawn Heleos II, Wyatt Technology), differential refractive index (Optilab rEX, Wyatt Technology), and UV detection. Purified cPcdh proteins were diluted to 18 μM in running buffer (150 mM NaCl, 10 mM Tris–Cl, pH 8, 3 mM CaCl$_2$, 200 mM imidazole, pH 8) and 50 or 100 μl samples were run at a flow rate of 0.5 ml/min at room temperature. Mixtures of cPcdh fragments were prepared in the same buffer at final concentrations of 18 μM for each protein and run under the same conditions. Data were analyzed using ASTRa software (Wyatt Technologies).

During SEC-MALS experiments, a dimer/monomer equilibrium is established as proteins move through the size exclusion chromatography column, which is influenced by the K_D of the interaction. The concentrations used in the current experiments (18 μM for each cPcdh fragment), although above
the K_d of 3 μM for the γC3/γA4 cis interaction, are not sufficiently high for all the cis fragments to be bound into heterodimers, leaving a significant population of molecules as monomers, resulting in apparent molecular weights of ~76 kDa for the dimeric species compared to the predicted molecular weight for a dimer of ~108 kDa.

X-ray crystallography

Crystallization screening of γC4-4 using the vapor diffusion method yielded two protein crystal forms: The first crystal form crystals were grown using a protein concentration of 7 mg/ml in 10% (wt/vol) PEG8000, 20% ethylene glycol, 10% Morpheus Amino Acids (Molecular Dimensions), and 0.1 M Morpheus Buffer System 2 (Hepes/MOPS buffer; Molecular Dimensions), pH 7.5. No additional cryoprotection was required for this crystal form. The second crystal form crystals were grown using a protein concentration of 7 mg/ml in 1 M LiCl, 0.1 M Mes pH 6.0, and 10% (wt/vol) PEG 6000. The crystal used for data collection was cryoprotected in the crystallization condition plus 30% (wt/vol) glycerol. X-ray diffraction data for each crystal form were collected at 100 K from single crystals at Northeastern Collaborative Access Team (NE-CAT) beamline 24ID-E at the Advanced Photon Source, Argonne National Laboratory.

γC4-4 crystal form 1: diffraction anisotropy and pseudosymmetry

The X-ray diffraction data for the first crystal form showed strong diffraction anisotropy, with relatively strong diffraction along c^* and much weaker diffraction along a^* and b^* (Figure 3—figure supplement 1A). These data were therefore truncated using ellipsoidal limits with using a 3.0 F/σ cutoff along each of the three principal crystal axes as implemented in the UCLA Diffraction Anisotropy Server (Strong et al., 2006) to 4.6/3.9/3.5 Å. The completeness within the applied ellipsoidal resolution limits was 96.8% (Figure 3—source data 1).

γC4-4 crystal form 1: crystal structure phasing and refinement

The γC4-4 crystal structure was solved by molecular replacement using Phaser (McCoy et al., 2007), implemented in CCP4 (Winn et al., 2011). The γC5EC1-3 crystal structure (PDB: 4ZPO) modified using a sequence alignment to γC4 with Phenix's MRage program (Liebschner et al., 2019) was used as a search model. Following an initial round of rigid body refinement in Phenix (Liebschner et al., 2019) the EC domain 4 from the α7EC1-5 crystal structure (PDB: 5DZV) was manually placed into the electron density map, using structural alignment to the EC1–3 regions as a guide. The resulting model was subjected to a further round of rigid body refinement. At this stage there was clear difference density for the interdomain calcium ions and covalently linked glycans not present in the models. Iterative model building using Coot (Emsley et al., 2010) and maximum-likelihood refinement using Phenix (Liebschner et al., 2019) was subsequently conducted. The higher resolution (2.4 Å) crystal form two crystal structure (see below) was used as a reference model in later rounds of iterative model building and refinement to guide the local geometry choices in this lower resolution structure. Final refinement statistics are given in Figure 3—source data 1.

γC4-4 crystal form 2: data processing, phasing, and refinement

The γC4-4 crystal form two dataset was indexed using XDS (Kabsch, 2010) and scaled using AIMLESS (Evans and Murshudov, 2013). The data were spherically truncated with high resolution limit of 2.4 Å. Data collection statistics are given in Figure 3—source data 1.

The γC4-4 crystal form two crystal structure has two molecules in the asymmetric unit was solved by molecular replacement using Phaser (McCoy et al., 2007), implemented in Phenix (Liebschner et al., 2019), using the EC2–3 portion of the trans dimer from the γC4-4 crystal form one crystal structure early in refinement as a search model. The molecular replacement solution was then subjected to an initial round of rigid body refinement using Phenix, followed by two rounds of model building in Coot (Emsley et al., 2010) and maximum-likelihood refinement in Phenix. The two EC4 domains were then manually placed in the electron density and subjected to rigid body refinement. Following a further two iterative rounds of model building and refinement the two EC1 domains were manually placed. Iterative model building and refinement continued yielding the final crystal structure whose statistics are given in Figure 3—source data 1.
Structure analysis
Buried surface areas were calculated using ‘Protein interfaces, surfaces and assemblies’ service (PISA) at the European Bioinformatics Institute (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) (Krissinel and Henrick, 2007) and are given as the change in accessible surface area over both protomers. Root mean square deviations over aligned Cα atoms (RMSDs) between structures were calculated using Pymol (Schrödinger, LLC). Crystal structure figures were made using Pymol (Schrödinger, LLC).

Sequence analysis
Multiple sequence alignments were generated using Clustal Omega (Sievers et al., 2011) and visualized using ESPript3.0 (Robert and Gouet, 2014). Sequence logos were generated from multiple sequence alignments using WebLogo3 (Crooks et al., 2004).

Amino acid sequence alignment of cPcdhs γB7, γA4, and γC EC1–6 regions
CLUSTAL O(1.2.4) multiple sequence alignment

γB7	-QPVRYSIEELDRGSGVKGAKLKLGLSLSVSARKLRVS--AEKLHFSVSESGDLIVK	57
γA4	-EQIYRSVPFEELRSVQVGLADLGLEPKLAGVRLVSGPQLDFLNNPGRSGLVTAT	59
γC3	STIHVEILERERPEFGVPVGTVDGLDGLSLSSRALLRVGVSARFFEFVNVETGMFVN	60
γB7	DRIDROKECLGRCLEAVLEQVNLIFHHVVEVEDNQAPKPDPEINLIASEDS	117
γA4	GVRDREGLDRSPKTANIELLEDKVRILAEIEIVDNDAPSFPGAQGKEIKVASEN	119
γC3	DLREDLCLTGILPSTCVTIELVLEQVNLSEAEVQVQIDNDSFPGTGEMREISEAL	120

γA4	HHLMLTAVDGDQEQRTGQITQRVDDANVPNQIDVYQVRLPQTVLRLKAM	237
γA4	HHLVLTAFDGDPVRSTATIQVVTLDNDAPFQTPQEPHYISVKENLPVGTLLIKAT	239
γC3	VQLVTLALDQTPARSLTPFTLTVNDANPQFQSLYRARVDFAPGPTVQVATL	240

γB7	DQEGIMAEPEFTSLG-V-ANK-AQFLSDDIPITGDITVRQQLDFEEVEQYTDVEAKDRGS	294
γA4	DPDEGVEQTVFSRFN-REKIGSLQFLQNVSLGTDITLVGELDYSFGYVDVEAHDGG	298
γC3	DLDEGLINEM1YFSGHVRAGVRELMDTVALIDVQGKDLFEDTLKHEIYQAKDKGA	300

γC3	VQQCLVQELVDAOEDVDPVRSTATIQVVTLDNDAPFQTPQEPHYISVKENLPVGTLLIKAT	352
γA4	IARQKRPYQAVQTVLTDNDAPFQTPQEPHYISVKENLPVGTLLIKAT	356
γC3	NPEGAHKVLVEVDVNDAPFQPEEELDAPVLTQVQYQTDAPFQTPQEPHYISVKENLPVGTLLIKAT	360

γB7	SLSGNCPFKHHSSNNYKLTVTSL1RDREQTQPYNVITATDRGPKPLSSSTTTITLVAD	472
γA4	SIPDNPPRLKETYGHNYHRLLLHRTLDREEVSYNTITATDBGTPPLSTTESIYQLQVD	474
γC3	EVPPGILPSLTLSSKNFPTLRTSADLREMPEYNLSTIRGDPSILSALTITVQVQSD	480

γB7	VNDNAPVQFOQAYLINVAENNNQGTSITQVKAQVPDGSGNLISYIISIALDELPFALLS	532
γA4	INNPNPQSSQYDSYVEENNLPGVPLNLSDVWDDAPPARSELFLELHGATGELSVY	540
γC3	INNPNPQSSQYDSYVEENNLPGVPLNLSDVWDDAPPARSELFLELHGATGELSVY	548

γB7	VSVNQDSGVYQAARFDEQIRSFQFQQ4LRQARDQSGPSLANSVMVYDLDNDNAFPLVY	552
γA4	VSINSTGVLAYSLSFDEQFQDGLKTLVRSTDSTGPSLPSVLSLQVLDQNDPFLPELY	558
γC3	FTTRRNGVLITLTVLPLYEDERQPELTAHINDGTPVLATINSVNFVTDNDNAPQVLY	560

γB7	PTELEPDSALFMVPRAEPEGLVLTVKLVDADDSGHNAWLSYLYVQASDPEGLFSLGRTG	592
γA4	PTIPDQSGTSLTPTSDAPDYGTPVTTVKKDSDKGQANSLYRLKASEPGLESFVGLHTG	597
γC3	PR----PGQSSVEMLPGTAAIGHVTVSSVGWDADAHGNALWLSYLLGAPPNQSLFAVGLHTG	597
Structure-based sequence analysis of the γA4/γC3 interaction

Since both γA4_{3–6} and γC3_{3–6} are monomeric in solution but form a robust heterodimer when mixed (in SPR, AUC, and SEC-MALS) we hypothesized that these molecules might have opposing cis interaction side preferences. To facilitate hypothesis generation on the nature of their cis heterodimer interaction we modeled the two possible γA4/γC3 cis dimers: one with γA4 occupying the EC6-only position and γC3 the EC5–6 position; and the second with γC3 in the EC6-only position and γA4 in the EC5–6 position. To do this the monomeric γA4_{EC3–6} crystal structure (PDB: 5SZQ) was structurally superimposed over EC6 domains with the EC6-only protomer from the γB7_{EC3–6} cis dimer crystal structure (PDB: 5V5X; RMSD 0.7 Å over 91 aligned C\text{\textalpha}s) or over EC5–6 domains with the EC5–6 protomer (RMSD 1.0 Å over 194 aligned C\text{\textalpha}s). Since γA4 and γB7 are so structurally similar in their EC5–6 regions modeling γA4’s cis interactions in this manner as a basis for hypothesis generation seemed reasonable. The only region of significant structural deviation within the EC5–6 regions between γA4 and γB7 is in the EC6 A–A′ loop region which has a peripheral role in the EC6-only protomer interface. For modeling γC3 we used computational mutagenesis of the γB7 structure selecting the best-fit rotamer for each amino acid from the Dunbrack rotamer library (Shapovalov and Dunbrack, 2011), implemented in UCSF Chimera (Pettersen et al., 2004). No energy minimization was conducted and the models are intended only for use in hypothesis generation.

Cis interface mutants

Our studies of Pcdh cis interactions we have found that mutagenesis of the cis interface commonly has a deleterious impact on protein expression levels in our system (Goodman et al., 2017). We assume this is because cis interaction is required for robust cell surface delivery/secretion (Thu et al., 2014), although this has not been specifically addressed in our HEK293 protein expression system.

To test our structure-guided hypotheses regarding γA4 and γC3’s cis interactions and side preferences as we tried to make a number of different cis interface mutants and were able to obtain four different mutants (see table below). Since protein yields were generally too low for AUC and SPR, MALSS was used to study the impact of these mutants on γA4/γC3 cis dimer formation.

Mutant protein (γB7 numbering given in parentheses)	Cis interface side targeted	Protein expression in 25 ml test
γC3 EC3–6 Y540G (Y532G equivalent)	EC6-only	No
γC3 EC3–6 V560D (L555D equivalent)	EC6-only	No
γC3 EC3–6 V565R (V560R equivalent)	EC6-only	Yes
γC3 EC3–6 A575R (A570R equivalent)	EC5–6	No
γC3 EC3–6 R563K (K558R equivalent)	Both	Yes
γA4 EC3–6 Y536G (Y532G equivalent)	EC6-only	No
γA4 EC3–6 L559D (L555D equivalent)	EC6-only	No
γA4 EC3–6 V564R (V560R equivalent)	EC6-only	Yes
γA4 EC3–6 A574R (A570R equivalent)	EC5–6	No
γA4 EC3–6 K562R (K558R equivalent)	EC6-only	Yes
β1 EC3–6 V563R (V560R equivalent)	EC6-only	No
β1 EC3–6 S573R (A570R equivalent)	EC6-only	No
β1 EC3–6 K561R (K558R equivalent)	EC5–6	No

Continued on next page
Mutant protein (γB7 numbering given in parentheses)	Cis interface side targeted	Protein expression in 25 ml test
β9 EC3–6 V563R (V560R equivalent) | EC6-only | No
β9 EC3–6 A573R (A570R equivalent) | EC6-only | No
β9 EC3–6 K561R (K558R equivalent) | EC5–6 | No

Acknowledgements
We thank Surajit Banerjee for help with synchrotron data collection at the APS NE-CAT 24-ID-C/E beamlines, supported by NIH P41GM103403. This work was supported by the NIH (grants R01MH114817 to LS and R01DK106548 to RS), the National Science Foundation (grant MCB-1914542 to BH), the Israel Science Foundation (grant 1463/19 to RR), and the Israel Cancer Research Fund (grant ICRF 19-203-RCDA to RR).

Additional information

Funding

Funder	Grant reference number	Author
National Institutes of Health	R01MH114817	Lawrence Shapiro
National Institutes of Health	R01DK106548	Rosemary V Sampogna
National Science Foundation	MCB-1914542	Barry Honig
Israel Science Foundation	1463/19	Rotem Rubinstein
Israel Cancer Research Fund	ICRF19-203-RCDA	Rotem Rubinstein

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Author contributions
Kerry Marie Goodman, Conceptualization, Data curation, Formal analysis, Writing – original draft, Writing – review and editing, Cloned, expressed, purified and crystallized proteins; Phinikoula S Katsamba, Data curation, Formal analysis, Methodology, Writing – review and editing, Writing – original draft, Performed and analyzed SPR experiments; Rotem Rubinstein, Writing – review and editing; Göran Ahlsén, Data curation, Formal analysis, Performed and analyzed the analytical ultracentrifugation and multi-angle light scattering experiments; Fabiana Bahna, Data curation, Formal analysis, Cloned, expressed, purified and crystallized the proteins; Seetha Mannepalli, Data curation, Formal analysis, Cloned, expressed, purified and crystallized the proteins; Hanbin Dan, Data curation, Formal analysis, Performed and analyzed the cell aggregation experiments; Rosemary V Sampogna, Data curation, Formal analysis, Funding acquisition, Performed and analyzed the cell aggregation experiments; Lawrence Shapiro, Conceptualization, Funding acquisition, Writing – original draft, Writing – review and editing, Formal analysis, Designed experiments, analyzed data, drafted and edited the manuscript; Barry Honig, Conceptualization, Writing – original draft, Writing – review and editing, Formal analysis, Funding acquisition, Designed experiments, analyzed data, drafted and edited the manuscript

Author ORCIDs
Kerry Marie Goodman http://orcid.org/0000-0003-2063-5823
Phinikoula S Katsamba http://orcid.org/0000-0003-3981-1604
Additional files

Supplementary files
- Transparent reporting form

Data availability

Atomic coordinates and structure factors have been deposited in the PDB under the accession codes 7JGZ and 7RGF.

The following datasets were generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Goodman KM	2021	Protocadherin gammaC4 EC1-4 crystal structure	https://www.rcsb.org/structure/7JGZ	RCSB Protein Data Bank, 7JGZ
Goodman KM	2021	Protocadherin gammaC4 EC1-4 crystal structure	https://www.rcsb.org/structure/7RGF	RCSB Protein Data Bank, 7RGF

References

Baldi L, Hacker DL, Meerschman C, Wurm FM. 2012. Large-Scale Transfection of Mammalian Cells. Hartley JL (Ed). In Protein Expression in Mammalian Cells: Methods and Protocols. Totowa, NJ: Humana Press. p. 13–26.

Barat B, Wu AM. 2007. Metabolic biotinylation of recombinant antibody by biotin ligase retained in the endoplasmic reticulum. *Biomolecular Engineering* 24:283–291. DOI: https://doi.org/10.1016/j.bioeng.2007.02.003, PMID: 17379573

Bonn S, Seeburg PH, Schwarz MK. 2007. Combinatorial expression of alpha- and gamma-protocadherins alters their presenilin-dependent processing. *Molecular and Cellular Biology* 27:4121–4132. DOI: https://doi.org/10.1128/MCB.01708-06, PMID: 17403907

Brasch J, Katsamba PS, Harrison OJ, Ahlsén G, Troyanova RB, Indra I, Kaczynska A, Kaeser B, Troyanovsky S, Honig B, Shapiro L. 2018. Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior. *Cell Reports* 23:1840–1852. DOI: https://doi.org/10.1016/j.celrep.2018.04.012, PMID: 29742438

Brasch J, Goodman KM, Noble AJ, Rapp M, Manepalli S, Bahna F, Daney VP, Bepler T, Berger B, Maniatis T, Potter CS, Carragher B, Honig B, Shapiro L. 2019. Visualization of clustered protocadherin neuronal self-recognition complexes. *Nature* 569:280–283. DOI: https://doi.org/10.1038/s41586-019-1089-3, PMID: 30971825

Canzio D, Maniatis T. 2019. The generation of a protocadherin cell-surface recognition code for neural circuit assembly. *Current Opinion in Neurobiology* 59:213–220. DOI: https://doi.org/10.1016/j.conb.2019.10.001, PMID: 31710891

Chen J, Lu Y, Meng S, Han MH, Lin C, Wang X. 2009. alpha- and gamma-Protocadherins negatively regulate PYK2. *The Journal of Biological Chemistry* 284:2880–2890. DOI: https://doi.org/10.1074/jbc.M807417200, PMID: 19047047

Chen WW, Nwakeze CL, Denny CA, O’Keeffe S, Rieger MA, Mountoufaris G, Kirner A, Dougherty JD, Hen R, Wu Q, Maniatis T. 2017. Pcdhac2 is required for axonal tiling and assembly of serotonergic circuitries in mice. *Science (New York, N.Y.)* 356:406–411. DOI: https://doi.org/10.1126/science.aal3231, PMID: 28450636

Cooper SR, Jontes JD, Sotomayor M. 2016. Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy. *eLife* 5:e18529. DOI: https://doi.org/10.7554/eLife.18529, PMID: 27787195

Cosmanescu F, Katsamba PS, Sergeeva AP, Ahlsen G, Patel SD, Brewer JJ, Tan L, Xu S, Xiao Q, Nagarkar-Jaiswal S, Nern A, Bellien HJ, Zipursky SL, Honig B, Shapiro L. 2018. Neuron-Subtype-Specific Expression, Interaction Affinities, and Specificity Determinants of DIP/Dpr Cell Recognition Proteins. *Neuron* 100:1385-1400. DOI: https://doi.org/10.1016/j.neuron.2018.10.046, PMID: 30467080

Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. *Genome Research* 14:1188–1190. DOI: https://doi.org/10.1101/gr.409004, PMID: 15173120
Research article
Neuroscience | Structural Biology and Molecular Biophysics

Goodman KM, Rubinstein R, Thu CA, Mannepalli S, Bahna F, Ahlsén G, Rittenhouse C, Maniatis T, Honig B, Shapiro L. 2016a. γ-Protocadherin structural diversity and functional implications. *eLife* 5:e20930. DOI: https://doi.org/10.7554/eLife.20930, PMID: 27782885

Goodman KM, Yamagata M, Jin X, Mannepalli S, Katsamba PS, Ahlsén G, Sergeeva AP, Honig B, Sanes JR, Shapiro L. 2016b. Molecular basis of sidekick-mediated cell-cell adhesion and specificity. *eLife* 5:e19058. DOI: https://doi.org/10.7554/eLife.19058, PMID: 27644106

Goodman KM, Rubinstein R, Thu CA, Bahna F, Mannepalli S, Ahlsén G, Rittenhouse C, Maniatis T, Honig B, Shapiro L. 2016c. Structural Basis of Diverse Homophilic Recognition by Clustered-α- and -β-Protocadherins. *Neuron* 90:709–723. DOI: https://doi.org/10.1016/j.neuron.2016.04.004, PMID: 27161523

Goodman KM, Rubinstein R, Dan H, Bahna F, Mannepalli S, Ahlsén G, Aye Thu C, Sampogna RV, Maniatis T, Honig B, Shapiro L. 2020. Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered-β-Protocadherins. *Cell Reports* 30:2655–2671.. DOI: https://doi.org/10.1016/j.celrep.2020.02.003, PMID: 32101743

Hasegawa S, Kumagai M, Hagihara M, Nishimaru H, Hirano K, Kaneko R, Okayama A, Hirayama T, Sanbo M, Hirabayashi M, Watanabe M, Hirabayashi T, Yagi T. 2016. Distinct and Cooperative Functions for the Protocadherin-α, -β and -γ Clusters in Neuronal Survival and Axon Targeting. *Frontiers in Molecular Neuroscience* 9:155. DOI: https://doi.org/10.3389/fnmol.2016.00155

Hattori D, Chen Y, Matthews BJ, Salvinski L, Sabatti C, Grueber WB, Zipursky SL. 2009. Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. *Nature* 461:644–648. DOI: https://doi.org/10.1038/nature08431

Honig B, Shapiro L. 2020. Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition. *Cell* 181:520–535. DOI: https://doi.org/10.1016/j.cell.2020.04.010, PMID: 32359436

Hudson JD, Tamilselvan E, Sotomayor M, Cooper SR. 2018. A complete Protocadherin-19 ectodomain model for evaluating epilepsy-causing mutations and potential protein interaction sites. *Structure (London, England)* 26:1128–1143. DOI: https://doi.org/10.1016/j.str.2017.07.006, PMID: 25402737

Ing-Esteves S, Kostadinov D, Marocha J, Sing AD, Joseph KS, Laboulaye MA, Sanes JR, Lefebvre JL. 2018. Combinatorial Effects of Alpha- and Gamma-Protocadherins on Neuronal Survival and Dendritic Self-Avoidance. *The Journal of Neuroscience* 38:2713–2729. DOI: https://doi.org/10.1523/JNEUROSCI.3035-17.2018, PMID: 29439167

Iqbal M, Maroofian R, Çavdarlı B, Riccardi F, Field M, Banka S, Subbshait DK, Li Y, Hertecant J, Baig SM, Dyment D, Efthymiou S, Abdullah U, Mahkdom EUH, Ali Z, Scherf de Almeida T, Molinari F, Mignon-Ravix C, Chabrol, B, Antony J, et al. 2021. Biallelic variants in PCDHG4 cause a novel neurodevelopmental syndrome with progressive microcephaly, seizures, and joint anomalies. *Genetics in Medicine* 23:2138–2149. DOI: https://doi.org/10.1038/s41436-021-01260-4, PMID: 34244665

Kabsch W. 2010. XDS. *Acta Crystallographica. Section D, Biological Crystallography* 66:125–132. DOI: https://doi.org/10.1107/S0907444909047337, PMID: 20124692

Kaneko R, Kato H, Kawamura Y, Esumi S, Hirayama T, Hirabayashi T, Yagi T. 2006. Allelic gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic and biallelic expression in single Purkinje cells. *The Journal of Biological Chemistry* 281:30551–30560. DOI: https://doi.org/10.1074/jbc.M605677200, PMID: 16893882
Katsamba P, Carroll K, Ahlsen G, Bahna F, Vendome J, Posy S, Rajebhosale M, Price S, Jessell TM, Ben-Shaul A, Shapiro L, Honig BH. 2009. Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. PNAS 106:11594–11599. DOI: https://doi.org/10.1073/pnas.0905491106, PMID: 19535217

Keeler AB, Schreiner D, Weiner JA. 2015. Protein Kinase C Phosphorylation of a γ-Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization. The Journal of Biological Chemistry 290:20674–20686. DOI: https://doi.org/10.1074/jbc.M115.642306, PMID: 26139604

Kostadinov D, Sanes JR. 2015. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife 4:e08964. DOI: https://doi.org/10.7554/eLife.08964, PMID: 26140686

Kriessnel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology 372:774–797. DOI: https://doi.org/10.1016/j.jmb.2007.05.022, PMID: 17681537

Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR. 2012. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488:517–521. DOI: https://doi.org/10.1038/nature11305, PMID: 22842903

Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Caruana K, Chen VB, Corthesy B, Czarnota J, de la Torre J, Dubochet J, et al. 2016. Molrep: a tool for initial macromolecular model building. Journal of Applied Crystallography 49:158–171. DOI: https://doi.org/10.1107/S0021889816013212, PMID: 27350553

Mah KM, Houston DW, Weiner JA. 2016. The γ-Protocadherin-C3 isoform inhibits canonical Wnt signalling by binding to and stabilizing Axin1 at the membrane. Scientific Reports 6:31665. DOI: https://doi.org/10.1038/srep31665, PMID: 27530555

Mah KM, Weiner JA. 2017. Regulation of Wnt signaling by protocadherins. Seminars in Cell & Developmental Biology 49:158–171. DOI: https://doi.org/10.1016/j.semcdb.2016.07.043, PMID: 28774578

McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. Journal of Applied Crystallography 40:658–674. DOI: https://doi.org/10.1107/S0021889807021206, PMID: 19461840

Miura SK, Martins A, Zhang XK, Graveley BR, Zipursky SL. 2013. Probabilistic splicing of Dscam1 establishes identity at the level of single neurons. Cell 155:1166–1177. DOI: https://doi.org/10.1016/j.cell.2013.10.018, PMID: 24267895

Modak D, Sotomayor M. 2019. Identification of an adhesive interface for the non-clustered δ1 protocadherin-1 involved in respiratory diseases. Communications Biology 2:354. DOI: https://doi.org/10.1038/s42003-019-0586-0, PMID: 31583286

Molumby MJ, Anderson RM, Newbold DJ, Koblesky NK, Garrett AM, Schreiner D, Radley JJ, Weiner JA. 2017. γ-Protocadherins Interact with Neurologin-1 and Negatively Regulate Dendritic Spine Morphogenesis. Cell Reports 18:2702–2714. DOI: https://doi.org/10.1016/j.celrep.2017.02.060, PMID: 28297673

Mountoufaris G, Canzio D, Nwakeze CL, Chen WV, Hirabayashi Y, O'Keeffe S, Chevee M, Maniatis T. 2017. Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. Science (New York, N.Y.) 356:411–414. DOI: https://doi.org/10.1126/science.aai8801, PMID: 28450637

Mountoufaris G, Canzio D, Nwakeze CL, Chen WV, Maniatis T. 2018. Writing, Reading, and Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit Assembly. Annual Review of Cell and Developmental Biology 34:471–493. DOI: https://doi.org/10.1146/annurev-cellbio-100613-060701, PMID: 30296392

Murata Y, Hamada S, Morishita H, Mutoh T, Yagi T. 2004. Interaction with protocadherin-gamma regulates the cell surface expression of protocadherin-alpha. The Journal of Biological Chemistry 279:49508–49516. DOI: https://doi.org/10.1074/jbc.M408771200, PMID: 15347688

Nicoludis JM, Lau SY, Schärfe CPI, Marks DS, Weihofen WA, Gaudet R. 2015. Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity. Structure (London, England) 23:2087–2098. DOI: https://doi.org/10.1016/j.str.2015.09.005, PMID: 26481813

Nicoludis JM, Vogt BE, Green AG, Schärfe CP, Marks DS, Gaudet R. 2016. Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4. eLife 5:e18449. DOI: https://doi.org/10.7554/eLife.04849, PMID: 27472898

Nicoludis JM, Green AG, Walukjar S, May EJ, Sotomayor M, Marks DS, Gaudet R. 2019. Interaction specificity of clustered protocadherins inferred from sequence covariation and structural analysis. PNAS 116:17825–17830. DOI: https://doi.org/10.1073/pnas.1821063116, PMID: 31431536

Onouchi T, Kishino-Kaneko Y, Kameshita I, Ishida A, Suyeshi N. 2015. Regulation of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) by protocadherin-γC (PcdhγC). Archives of Biochemistry and Biophysics 585:109–120. DOI: https://doi.org/10.1016/j.abb.2015.09.014, PMID: 26386307

Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. 2020. Protocadherins at the Crossroad of Signaling Pathways. Frontiers in Molecular Neuroscience 13:117. DOI: https://doi.org/10.3389/fnmol.2020.00117, PMID: 32694982

Peek SL, Mah KM, Weiner JA. 2017. Regulation of neural circuit formation by protocadherins. Cellular and Molecular Life Sciences 74:4133–4157. DOI: https://doi.org/10.1007/s00018-017-2572-3, PMID: 28631008

Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8:785–786. DOI: https://doi.org/10.1038/nmeth.1701, PMID: 21959131

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605–1612. DOI: https://doi.org/10.1002/jcc.20084, PMID: 15264254
Phillips GR, LaMassa N, Nie YM. 2017. Clustered protocadherin trafficking. Seminars in Cell & Development Biology 69:131–139. DOI: https://doi.org/10.1016/j.secmcb.2017.05.001, PMID: 28478299

Rich RL, Myszka DG. 2007. Survey of the year 2006 commercial optical biosensor literature. Journal of Molecular Recognition 20:300–366. DOI: https://doi.org/10.1002/jmr.862, PMID: 18074396

Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research 42:W320–W324. DOI: https://doi.org/10.1093/nar/gku316, PMID: 24753427

Rubinstein R, Thu CA, Goodman KM, Wolcott HN, Bahnà F, Munnepalli S, Ahlsen G, Chevee M, Zipursky SL, Halim A, Clausen H, Maniatis T, Shapiro L, Honig B. 2015. Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell 163:629–642. DOI: https://doi.org/10.1016/j.cell.2015.09.026, PMID: 26478182

Rubinstein R, Goodman KM, Maniatis T, Shapiro L, Honig B. 2017. Structural origins of clustered protocadherin-mediated neuronal barcoding. Seminars in Cell & Development Biology 69:140–150. DOI: https://doi.org/10.1016/j.secmcb.2017.07.023, PMID: 28743640

Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. 2000. Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 101:671–684. DOI: https://doi.org/10.1016/s0092-8674(00)80878-8, PMID: 10892653

Schreiner D, Weiner JA. 2010. Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. PNAS 107:14893–14898. DOI: https://doi.org/10.1073/pnas.1004526107, PMID: 20679223

Sergeeva AP, Katsamba PS, Cosmanescu F, Brewer JJ, Ahlsen G, Munnepalli S, Shapiro L, Honig B. 2020. DIP/DIR interactions and the evolutionary design of specificity in protein families. Nature Communications 11:2125. DOI: https://doi.org/10.1038/s41467-020-15981-8, PMID: 32358559

Shapovalov MV, Dunbrack RL. 2011. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure (London, England 19:844–858. DOI: https://doi.org/10.1016/j.str.2011.03.019, PMID: 21645855

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7:539. DOI: https://doi.org/10.1038/msb.2011.75, PMID: 21988385

Steffen DM, Ferri SL, Marcucci CG, Blocklinger KL, Molumby MJ, Abel T, Weiner JA. 2021. The y-Protocadherins Interact Physically and Functionally with Neuriligin-2 to Negatively Regulate Inhibitory Synapse Density and Are Required for Normal social Interaction. Molecular Neurobiology 58:2574–2589. DOI: https://doi.org/10.1007/s12035-020-02263-z, PMID: 33471287

Strong M, Sawaya MR, Wang S, Phillips M, Cascio D, Eisenberg D. 2006. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. PNAS 103:8060–8065. DOI: https://doi.org/10.1073/pnas.0602606103, PMID: 16690741

Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T. 2014. Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell 158:1045–1059. DOI: https://doi.org/10.1016/j.cell.2014.07.012, PMID: 25171406

Vendome J, Felsovalyi K, Song H, Yang Z, Jin X, Brasch J, Harrison OJ, Ahlsen G, Bahnà F, Kaczynska A, Katsamba PS, Edmond D, Hubbell WL, Shapiro L, Honig B. 2014. Structural and energetic determinants of adhesive binding specificity in type I cadherins. PNAS 111:E4175-E4184. DOI: https://doi.org/10.1073/pnas.1007120111, PMID: 24753890

Winnd MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krisinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS. 2011. Overview of the CCP4 suite and current developments. Acta Crystallographica. Section D, Biological Crystallography 67:235–242. DOI: https://doi.org/10.1107/S0907444910045749, PMID: 21460441

Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC. 2004. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118:619–633. DOI: https://doi.org/10.1016/j.cell.2004.08.021, PMID: 15339666

Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL. 2007. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130:1134–1145. DOI: https://doi.org/10.1016/j.cell.2007.08.026, PMID: 17889655

Wu Q, Maniatis T. 1999. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97:779–790. DOI: https://doi.org/10.1016/s0092-8674(00)80789-8, PMID: 10380929

Wu Q, Zhang T, Cheng JF, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM, Maniatis T. 2001. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Research 11:389–404. DOI: https://doi.org/10.1101/gr.167301, PMID: 11230163

Wu W, Ahlsen G, Baker D, Shapiro L, Zipursky SL. 2012. Complementary chimeric isoforms reveal Dscam1 binding specificity in vivo. Neuron 74:261–268. DOI: https://doi.org/10.1016/j.neuron.2012.02.029, PMID: 22542180

Wu Y, Honig B, Ben-Shaul A. 2013. Theory and simulations of adhesion receptor dimerization on membrane surfaces. Biophysical Journal 104:1221–1229. DOI: https://doi.org/10.1016/j.bpj.2013.02.009, PMID: 23528081

Zipursky SL, Grueber WB. 2013. The Molecular Basis of Self-Avoidance. Annual Review of Neuroscience 36:547–568. DOI: https://doi.org/10.1146/annurev-neuro-062111-150414
Appendix 1

Appendix 1—key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Strain, strain background (E. coli)	One shot Top10 Competent Cells	Invitrogen	C4040-06	Plasmid production
Cell line (Homo sapiens)	FreeStyle 293 F cells	Thermo Fisher Scientific	R79007	Cell line for protein expression
Cell line (Homo sapiens)	K-562 bone marrow chronic myelogenous leukemia (CML) cells	ATCC	ATCC CCL-243	Cell line for cell-aggregation assays
Transfected construct (M. musculus)	α4₁₋₅	This paper	Pcdhα4 EC1-5, Honig/Shapiro labs	
Transfected construct (M. musculus)	α7₁₋₅	Rubinstein et al., 2015		
Transfected construct (M. musculus)	α12₁₋₅	This paper	Pcdhα12 EC1-5, Honig/Shapiro labs	
Transfected construct (M. musculus)	β6₁₋₄	Goodman et al., 2016c		
Transfected construct (M. musculus)	β8₁₋₄	Goodman et al., 2016c		
Transfected construct (M. musculus)	γA1₁₋₄	Goodman et al., 2016a		
Transfected construct (M. musculus)	γA4₁₋₄	Goodman et al., 2016a		
Transfected construct (M. musculus)	γA8₁₋₄	Rubinstein et al., 2015		
Transfected construct (M. musculus)	γA9₁₋₅	Goodman et al., 2016a		
Transfected construct (M. musculus)	γB2₁₋₅	Goodman et al., 2016a		
Transfected construct (M. musculus)	γB4₁₋₅	This paper	Pcdhγ4 EC1-5, Honig/Shapiro labs	
Transfected construct (M. musculus)	γB5₁₋₄	Goodman et al., 2016a		
Transfected construct (M. musculus)	αC2₁₋₄	Rubinstein et al., 2015		
Transfected construct (M. musculus)	γC3₁₋₄	Goodman et al., 2016a		
Transfected construct (M. musculus)	γC4₁₋₄	This paper	Pcdhγ4 EC1-4, Honig/Shapiro labs	

Appendix 1 Continued on next page
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Transfected construct (M. musculus)	$\gamma_{C5,6}$		Rubinstein et al., 2015	
Transfected construct (M. musculus)	$\alpha_{7,15}$-AVI	This paper		
Transfected construct (M. musculus)	$\beta_{6,4}$-AVI	This paper		
Transfected construct (M. musculus)	$\beta_{8,4}$-AVI	This paper		
Transfected construct (M. musculus)	$\gamma_{A8,4}$-AVI	This paper		
Transfected construct (M. musculus)	$\gamma_{A9,5}$-AVI	This paper		
Transfected construct (M. musculus)	$\gamma_{B2,5}$-AVI	This paper		
Transfected construct (M. musculus)	$\alpha_{C2,4}$-AVI	This paper		
Transfected construct (M. musculus)	$\gamma_{C3,4}$-AVI	This paper		
Transfected construct (M. musculus)	$\gamma_{C4,5}$-AVI	This paper		
Transfected construct (M. musculus)	$\gamma_{C5,5}$-AVI	This paper		
Transfected construct (M. musculus)	$\alpha_{4,4}$-AVI	This paper		
Transfected construct (M. musculus)	$\alpha_{7,5}$ L301R	This paper		
Transfected construct (M. musculus)	$\gamma_{A8,4}$ I116R		Rubinstein et al., 2015	
Transfected construct (M. musculus)	$\beta_{6,4}$ R41N	This paper		
Transfected construct (M. musculus)	$\gamma_{C5,5}$ S116R	This paper		
Transfected construct (M. musculus)	$\beta_{6,4}$ S117I	This paper		
Transfected construct (M. musculus)	$\beta_{6,4}$ L125P	This paper		
Transfected construct (M. musculus)	$\beta_{6,4}$ E369K	This paper		

Appendix 1 Continued on next page
Appendix 1 Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Transfected construct (M. musculus)	β6,4 Y371F	This paper	Pcdhβ6 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	β6,4 R41N/S117I	This paper	Pcdhβ6 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	β6,4 R41N/E369K	This paper	Pcdhβ6 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	β6,4 S117L/L125P	This paper	Pcdhβ6 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	β6,4 R41N/S117I/E369K	This paper	Pcdhβ6 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	β6,4 R41N/S117I/Y371F	This paper	Pcdhβ6 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	γC4,4 E78A	This paper	PcdhγC4 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	γC4,4 E78Q	This paper	PcdhγC4 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	γC4,4 S344R	This paper	PcdhγC4 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	γC4,4 D290A	This paper	PcdhγC4 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	γC4,4 D290N	This paper	PcdhγC4 EC1–4 mutant, Honig/Shapiro labs	
Transfected construct (M. musculus)	β1,4	This paper	Pcdhβ1 EC3–6, Honig/Shapiro labs	
Transfected construct (M. musculus)	β6,4	This paper	Pcdhβ6 EC1–6, Honig/Shapiro labs	
Transfected construct (M. musculus)	β9,4	This paper	Pcdhβ9 EC3–6, Honig/Shapiro labs	
Transfected construct (M. musculus)	γA3,4	This paper	PcdhγA3 EC3–6, Honig/Shapiro labs	
Transfected construct (M. musculus)	γA4,4	Goodman et al., 2016a		
Transfected construct (M. musculus)	γA9,4	This paper	PcdhγA9 EC3–6, Honig/Shapiro labs	

Appendix 1 Continued on next page
Appendix 1 Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Transfected construct (M. musculus)	γB2₂₄	Goodman et al., 2016a		
Transfected construct (M. musculus)	γB5₂₄	Goodman et al., 2016a		
Transfected construct (M. musculus)	γB7₂₄	Goodman et al., 2016a		
Transfected construct (M. musculus)	αC2₂₄	Goodman et al., 2016a		
Transfected construct (M. musculus)	α_{1C}γC3₃ chimera	Goodman et al., 2016a		
Transfected construct (M. musculus)	γC3₃	Goodman et al., 2016a		
Transfected construct (M. musculus)	γC5₅	This paper		PcdhyC5 EC2–6, Honig/Shapiro labs
Transfected construct (M. musculus)	β9₉-AVI	This paper		Biotinylated Pcdh β9 EC3–6, Honig/ Shapiro labs
Transfected construct (M. musculus)	γA4₄-AVI	This paper		Biotinylated PcdhyA4 EC3–6, Honig/ Shapiro labs
Transfected construct (M. musculus)	γA9₉-AVI	This paper		Biotinylated PcdhyA9 EC3–6, Honig/ Shapiro labs
Transfected construct (M. musculus)	γB2₂₄-AVI	This paper		Biotinylated PcdhyB2 EC3–6, Honig/ Shapiro labs
Transfected construct (M. musculus)	αC2₂₄-AVI	This paper		Biotinylated Pcdh αC2 EC3–6, Honig/ Shapiro labs
Transfected construct (M. musculus)	γC3₃-AVI	This paper		Biotinylated PcdhyC3 EC3–6, Honig/ Shapiro labs
Transfected construct (M. musculus)	γC5₅-AVI	This paper		Biotinylated PcdhyC5 EC2–6, Honig/ Shapiro labs
Transfected construct (M. musculus)	γA4₄-V560R	This paper		PcdhyA4 EC3–6 mutant, Honig/Shapiro labs
Transfected construct (M. musculus)	γC3₃-V560R	This paper		PcdhyC3 EC3–6 mutant, Honig/Shapiro labs
Transfected construct (M. musculus)	γA4₄-K558R	This paper		PcdhyA4 EC3–6 mutant, Honig/Shapiro labs
Transfected construct (M. musculus)	γC3₃-R558K	This paper		PcdhyC3 EC3-6 mutant, Honig/Shapiro labs
Transfected construct (M. musculus)	γB7₇-Y532G	Goodman et al., 2017		

Appendix 1 Continued on next page
Appendix 1 Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Transfected construct \((M. \) \(\text{musculus} \))	\(\gamma B_{7,4} \) AS70R	This paper		PcdhγB7 EC3-6 mutant, Honig/Shapiro labs
Peptide, recombinant protein	NeutrAvidin-HRP	Thermo Fisher Scientific	31,030	Biotinylated protein western blot
Peptide, recombinant protein	NeutrAvidin protein	Thermo Fisher Scientific	31,000	SPR assays
Peptide, recombinant protein	BSA	Sigma-Aldrich	A7906	SPR assays
Commercial assay or kit	Spin Miniprep Kit	Qiagen	27,106	
Commercial assay or kit	Hi-speed Plasmid Maxi Kit	Qiagen	12,663	
Commercial assay or kit	SF Cell Line 4D-Nucleofector X Kit S	Lonza	V4XC-2032	
Commercial assay or kit	Amino-coupling kit	Cytiva	BR100050	SPR experiments
Commercial assay or kit	Morpheus Amino Acids	Molecular Dimensions	MD2-100-77	Crystallography
Commercial assay or kit	Morpheus Buffer System II	Molecular Dimensions	MD2-100-101	Crystallography
Chemical compound	Polyethyleneimine	Polysciences	24765-2	Transfection
Chemical compound	Biotin	Sigma-Aldrich	B4501	Protein biotinylation
Chemical compound	Tris Base	Fisher Scientific	BP152-5	
Chemical compound	Sodium Chloride	Fisher Scientific	S271-10	
Chemical compound	Calcium Chloride	JT Baker	1336-01	
Chemical compound	Imidazole	ACROS	301870025	
Chemical compound	HEPES	Sigma-Aldrich	H3375	
Chemical compound	Tween-20	Sigma-Aldrich	P7949	
Chemical compound	Sodium Acetate	Sigma-Aldrich	S7545	
Chemical compound	IMAC Sepharose 6 Fast Flow	Cytiva	17092109	
Chemical compound	Penicillin Streptomycin	Thermo Fisher Scientific	15070063	
Chemical compound	PEG 6000	Sigma-Aldrich	81,260	
Chemical compound	PEG 8000	Sigma-Aldrich	89,510	
Chemical compound	Ethylene Glycol	Fluka	03760	
Chemical compound	Lithium Chloride	Sigma-Aldrich	L8895	
Chemical compound	MES	Sigma-Aldrich	M3671	
Chemical compound	Glycerol	ACROS	332031000	
Software, algorithm	UCLA Diffraction Anisotropy Server	Strong et al., 2006	https://srv.mbi.ucla.edu/Anisoscal/	
Software, algorithm	SednTerp	Thomas Laue		http://bitcwiki.sr.unh.edu/index.php/Main_Page
Software, algorithm	HeteroAnalysis			https://core.uconn.edu/auf
Software, algorithm	Scrubber 2.0	BioLogic Software		http://www.biologic.com.au

Appendix 1 Continued on next page
Appendix 1 Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Software, algorithm Phaser	McCoy et al., 2007	Implemented in CCP4 or Phenix (see below)		
Software, algorithm CCP4	Winn et al., 2011	https://www.ccp4.ac.uk/		
Software, algorithm Phenix	Liebschner et al., 2019	http://www.hkl-xray.com/		
Software, algorithm XDS	Kabsch, 2010	http://xds.mpimf-heidelberg.mpg.de		
Software, algorithm AIMLESS	Evans and Murshudov, 2013			http://www.ccp4.ac.uk
Software, algorithm Coot	Emsley et al., 2010			https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
Software, algorithm PISA	Krissinel and Henrick, 2007			http://www.ebi.ac.uk/pdbe/protint/pistart.html
Software, algorithm Pymol	Schrödinger			https://pymol.org
Software, algorithm UCSF Chimera	Pettersen et al., 2004			https://www.cgl.ucsf.edu/chimera/
Software, algorithm Clustal Omega	Sievers et al., 2011			https://www.ebi.ac.uk/Tools/msa/clustalo/
Software, algorithm WebLogo 3.0	Crooks et al., 2004			http://weblogo.threeplusone.com/
Software, algorithm SignalP 4.0	Petersen et al., 2011			https://services.healthtech.dtu.dk/service.php?SignalP.5.0
Software, algorithm ASTRA	Wyatt			https://www.wyatt.com/products/software/astra.html
Other	Freestyle 23 Expression Media	Thermo Fisher Scientific	12338-018	Protein expression media
Other	Opti-MEM Reduced Serum Media	Thermo Fisher Scientific	31985-070	Protein expression media
Other	Series S CM4 chip	Cytiva	BR100539	SPR assays
Other	Fetal Bovine Serum	Thermo Fisher Scientific	16141079	Cell-aggregation assays media
Other	DMEM with GlutaMAX	Thermo Fisher Scientific	10569010	Cell-aggregation assays media