Complete chloroplast genome of Cardamine hupingshanensis K.M.Liu, L.B.Chen, H.F.Bai & L.H.Liu (Brassicaceae) in Enshi, Hubei

Xiuqing Liu\(^a\) and Siying Zhang\(^b\)

\(^a\)Forestry College, Xinyang Agriculture and Forestry University, Xinyang, China; \(^b\)Tourism Management College, Xinyang Agriculture and Forestry University, Xinyang, China

ABSTRACT

Cardamine hupingshanensis K.M.Liu, L.B.Chen, H.F.Bai & L.H.Liu 2008, also called Cardamine enshiensis, belongs to the genus Cardamine, Brassicaceae. As a plant with selenium enrichment ability, it has high development value. Here, we analyzed the chloroplast genome of C. hupingshanensis. The complete chloroplast genome had a total size of 154,832 bp with a typical quadripartite structure, including a large single-copy region (LSC, 83,908 bp) and a small single-copy region (SSC, 17,938 bp), separated by a pair of inverted repeat regions (IRs, 26,493 bp). Genome annotation showed the chloroplast genome contained 113 unique genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. A total of 143 SSRs were found in the chloroplast genome. Phylogenetic analysis showed that C. hupingshanensis was closer to the C. circaeoides and C. lyrata. This chloroplast genome resource will be useful for study of the phylogeny and evolution of Cardamine in the future.
6, 5, 5, 5, and 5 from mononucleotide to hexanucleotide, respectively. The simple sequence repeat analysis showed that 143 SSRs were identified in the chloroplast genome of *C. hupingshanensis*. Moreover, the genome size, GC content, gene number, and gene order were similar to other *Cardamine* chloroplast genomes.

In order to explore the phylogenetic relationship of *C. hupingshanensis*, the complete chloroplast genomes of 42 species from Brassicaceae and one species from Caricaceae were obtained from the GenBank database. We used the PhyloSuite v. 1.2.2 (Zhang et al. 2020) to extract 79 protein-coding genes from the chloroplast genome annotation files. Each protein-coding gene sequence was aligned by using MAFFT v. 7.4 (Katoh and Standley 2013), and then 79 aligned sequences were concatenated by using PhyloSuite v. 1.2.2 (Zhang et al. 2020). With the *Carica papaya* as the outgroup, the phylogenetic tree (Figure 1) was constructed by maximum-likelihood (ML) method with IQ-TREE v. 2.1.2 (Nguyen et al. 2015) under the optimal model of GTR + F + R4. The bootstrap value was 1000. The analysis result showed that *Cardamine* and *Nasturtium* were closer, and were monophyletic groups to each other. There were three main branches in the genus *Cardamine*. Clade A included *C. abchasica*, *C. quinquefolia*, *C. bipinnata*, *C. bulbifera*, *C. impatiens*, *C. macrophylla*, *C. hirsuta*, and *C. oligosperma*. Clade B included *C. circaeoides*, *C. hupingshanensis*, *C. lyrate*, *C. fallax*, *C. amariformis*, *C. parviflora*, *C. resedifolia*, *C. amara*, and *C. resedifolia*. Clade C included *C. kitaibelii*, *C. pentaphyllos*, and *C. heptaphylla*. In the genus *Cardamine*, *C. hupingshanensis* was closer to *C. circaeoides* and *C. lyrata*. This finding was similar to previous research results (Hu et al. 2015;...
Raman and Park 2021, 2022; Raman et al. 2021; Xu et al. 2022). Our results provide valuable data and shed light on the phylogenomic study of Cardamine and Brassicaceae.

Ethical approval
In this study, all experimental protocols relating to plant experiments were in accordance with the measures for the Wild Plant Protection Regulations of Henan Province (approved by the Henan Provincial Government in 2007) and Plant Protection Regulations of Hubei Province, China (approved by the Hubei Provincial Government in 2009). The Plant Herbarium of Xinyang Agriculture and Forestry University approved the collection and research of this material. All the research meets ethical guidelines and adheres to the legal requirements of the study country.

Author contributions
Zhang Siying conceptualized and designed research; Liu Xiqing analyzed data and wrote the manuscript. All authors read and approved the final manuscript.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was supported by the Key Scientific Research Project Plan of Colleges and Universities in Henan Province [19A220005].

Data availability statement
The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under the accession no. ON322745. The associated ‘BioProject’, ‘BioSample’, and ‘SRA’ numbers are PRJNA830645, SAMN27735482, and SRR18884471, respectively.

References
Bai H, Chen L, Liu K, Liu L. 2008. A new species of Cardamine (Brassicaceae) from Hunan, China. Novon. 18(2):135–137.
Behne D, Kyriakopoulos A. 2001. Mammalian selenium-containing proteins. Annu Rev Nutr. 21:453–473.
Beier S, Thiel T, Münch T, Schulz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics. 33(16):2583–2585.
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120.
Butler JA, Beilstein MA, Whanger PD. 1989. Influence of dietary methionine on the metabolism of selenomethionine in rats. J Nutr. 119(7):1001–1009.
Cui L, Zhao J, Chen J, Zhang W, Gao Y, Li B, Li Y-F. 2018. Translocation and transformation of selenium in hyperaccumulator plant Cardamine enshiensis from Enshi, Hubei, China. Plant Soil. 425(1–2):577–588.
Chen L, Song M, Zha H, Li Z. 2014. A modified protocol for plant genome DNA extraction. Plant Divers Resour. 36(3):375–380.
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull. 19:11–15.
Freeman JL, Banuelos GS. 2011. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phyto remediation from agricultural drainage sediments. Environ Sci Technol. 45(22):9703–9710.
Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH. 2006. Spatial imaging, spectiation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol. 142(1):124–134.
Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M, Varotto C. 2015. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics. 16(1):306.
Huang C, Ying H, Yang X, Gao Y, Li T, Wu B, Ren M, Zhang Z, Ding J, Gao J, et al. 2021. The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance. Cell Discov. 7(1):62.
Jin J-J, Yu W-B, Yang J-B, Song Y, dePamphilis CW, Yi T-S, Li D-Z. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274.
Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M. 2009. Physiological functions of beneficial elements. Curr Opin Plant Biol. 12(3):267–274.
Qu X-J, Moore MJ, Li D-Z, Yi T-S. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 15(1):50.
Rafferty TS, Green MHL, Lowe JE, Arlett C, Hunter JAA, Beckett GJ, McKenzie RC. 2003. Effects of selenium compounds on induction of DNA damage by broadband ultraviolet radiation in human keratinocytes. Br J Dermatol. 148(5):1001–1009.
Raman G, Park KT, Park S. 2021. The complete chloroplast genome of an endemic plant to Korea, Cardamine amaraeformis Nakai.: genome structure and phylogenetic analysis. Mitochondrial DNA Part B. 6(9):2725–2726.
Raman G, Park S. 2021. Complete chloroplast genome features and phylogenetic implications of Cardamine fallax (O. E. Schulz) Nakai. Mitochondrial DNA Part B. 6(9):2722–2724.
Raman G, Park S. 2022. Structural characterization and comparative analyses of the chloroplast genome of Eastern Asian species Cardamine occulta (Asian C. flexuosa With.) and other Cardamine species. Front Biosci. 27(4):124.
Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. 2019. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 47(W1):W65–W73.
Sargent M. 2008. Food-chain selenium and human health: spotlight on speciation. Br J Nutr. 100(2):254–268.
Sharma S, Bansal A, Dhillon SK, Dhillon KS. 2010. Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L). Plant Soil. 329(1–2):339–348.
Shao S, Zheng B, Su H, Luo C, Li XY. 2007. A new species of selenium hyperaccumulator identified in Yutangba se deposit area. Acta Mineral Sin. 27:567–570.
Simon A. 2020. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Williams PN, Lombi E, Sun G-X, Scheckel K, Zhu Y-G, Feng X, Zhu J, Carey A-M, Adomako E, Lawgali Y, et al. 2009. Selenium characterization in the global rice supply chain. Environ Sci Technol. 43(15):6024–6030.
Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 31(20):3350–3352.
Xu X, Yao X, Zhang C, Xia P. 2022. Characterization of the complete chloroplast genome sequence of Cardamine lyrata Bunge (Brassicaceae). Mitochondrial DNA Part B. 7(6):936–937.
Zhang D, Gao F, Jakovljevic I, Zou H, Zhang J, Li WX, Wang GT. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 20(1):348–355.