Facile Preparation of Self-Assembled Chitosan-Based POSS-CNTs-CS Composite as Highly Efficient Dye Absorbent for Wastewater Treatment

Hongjie Zhao, Ran Wang, Huizhen Deng, Lijun Zhang, Lili Gao,* Lexin Zhang, and Tifeng Jiao*

Cite This: ACS Omega 2021, 6, 294−300

ABSTRACT: In this work, a new nanocomposite based on octa-amino polyhedral oligomeric silsesquioxanes (POSS), carbon nanotubes (CNTs), and chitosan (CS) was synthesized and used for wastewater treatment. The properties and morphologies of the prepared composite were analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscope, thermogravimetric, and atomic force microscopy. The results showed that POSS, CNTs, and CS formed a stable composite through intermolecular forces, and the modification of CS by POSS and CNTs improved its stability. In addition, the obtained composite showed good adsorption performance for the degradation of methyl orange and Congo red dyes. The pseudo-first-order model and pseudo-second-order model were used to analyze the adsorption data, and the results showed that the adsorption process conforms to the kinetic model. Moreover, the maximum adsorption capacity of the composite to methyl orange and Congo red reached 63.23 and 314.97 mg/g, respectively. This work provides new ideas for the preparation of self-assembled multi-composite and their potential applications in wastewater treatment.

1. INTRODUCTION

Synthetic dyes are widely used as colorants in textile, papermaking, leather, gasoline, pharmaceutical, and food industries, which produce a large amount of dye wastewater. Moreover, most organic dyes have aromatic molecular structure, stable physicochemical properties, and are difficult to degrade. The pollution of surface water and groundwater by synthetic dyes has always been an environmental problem that has plagued humans.1 At present, the common methods for treating dye wastewater include adsorption, catalytic degradation, and membrane separation.2 The catalytic degradation process is relatively complicated, and it is easy to produce a large amount of organic toxic and harmful substances. The secondary treatment greatly increases the cost. However, the amount of wastewater treated by membrane separation technology is small and the cost is relatively high. The adsorption process can not only treat a large amount of wastewater without producing by-products but also has low cost. Therefore, adsorption is a widely used technology in the treatment of dye wastewater.3−8

Polyhedral oligomeric silsesquioxane (POSS) is an organic/inorganic hybrid molecule with a cage structure. Unlike traditional nano fillers such as montmorillonite and silica, POSS has a regular cage structure, nanoscale and good compatibility with polymers. The preparation of POSS and polymer is simple, and can form a true molecular level compound with the polymer, improve the thermal stability,5,10 mechanical strength,11−13 oxidation resistance, anti-aging,14 and other properties of the polymer. Nanohybrid materials have very important academic significance and practical application value.15−17

Since the discovery and synthesis of carbon nanotubes (CNTs), many related works have been reported in the removal of organic and inorganic pollutants,18−24 and many explorations have been made in commercial applications. CNTs have stable properties, high temperature resistance, and a large specific surface area. Different functional groups on the surface can be grafted with other molecules to form different composites. At the same time, CNTs also have certain adsorption properties,1,25,26 which can be used in wastewater treatment. Chitosan (CS) is a biopolymer discovered in recent years, which has good physical and chemical and biological properties.27 It is widely used in food, papermaking, printing and dyeing,28 environmental protection, textiles, water treatment,29,30 medical treatment,31,32 and heavy metal recycling. CS is a positively charged polyelectrolyte in solution, which has strong adsorption and excellent stability to organic solvents, and it is convenient for secondary processing. CS molecules have amine groups and hydroxyl functional groups,

Received: September 17, 2020
Accepted: October 14, 2020
Published: December 21, 2020

http://pubs.acs.org/journal/acsodf
© 2020 American Chemical Society
which is easy to combine with other molecules through intermolecular forces to form composite.11,22,34 Gu et al. prepared a chitosan–ignosulfonate composite by chemical modification, and it shows good adsorption performance for Congo red and Rhodamine B.35 Demarchi et al. synthesized O-carboxymethylchitosan-N-lauryl/c-Fe\textsubscript{2}O\textsubscript{3} magnetic nanoparticles, which exhibit potential adsorption performance for RR198 and other possible anionic reactive dyes.36

In this study, the composite based on POSS, CNTs, and CS was successfully synthesized. POSS and CS were grafted onto carboxylated CNTs by intermolecular forces, and the reaction mechanism was shown in Figure 1. In addition, compared with the CS molecules, the thermal stability and the adsorption capacity of the obtained composite were greatly improved. The current work provides new clues for the preparation of CS and POSS multi-composite and their potential applications in dye adsorption.

2. RESULTS AND DISCUSSION

Figure 2a shows the scanning electron microscopy (SEM) image of the synthesized POSS. It can be found that the particles of POSS have an obvious agglomeration, which may be caused by the intermolecular interaction between the amine group and the hydroxyl group at the end of POSS. To evaluate the morphologies of POSS, atomic force microscopy (AFM) image of the POSS dissolved in methanol was obtained. From Figure 2b,c, it can be seen that the prepared POSS particles size are approximately 1.133 nm with the height of 1.235 nm, and the large particles observed in the picture may be due to the agglomeration of POSS particles.

As shown in Figure 3a, the microscopic morphology of the POSS-CNTs-CS composite can be characterized by the transmission electron microscope (TEM). It can be clearly seen that the filamentous CNTs were grafted onto the CS. The functional groups of the synthesized POSS and the prepared POSS-CNTs-CS nanocomposite were analyzed by FT-IR, as shown in Figure 3b. In the spectrum of POSS, the peaks appeared at 3443 cm−1 correspond to the stretching vibration of N–H and C–H, and the peaks at 1050–1121 cm−1 correspond to stretching vibration of the POSS cage Si–O–Si structure. From the CS spectrum, there are some adsorption peaks appeared at 1597 cm−1 (–NH\textsubscript{2} bending), 1158 cm−1 (asymmetric stretching of the C–O–C bridge) and 1089 cm−1 (skeletal vibration involving the C–O stretching), 3417 cm−1 (wide peak of O–H stretching overlapped with N–H stretching), 2923 cm−1 (C–H stretching), and 1371 cm−1 (asymmetric C–H bending of CH\textsubscript{2} groups). The peaks of CNTs from 1550–1730 cm−1 can be assigned to the carboxyl groups. As for the prepared POSS-CNTs-CS composite, the peak at 1050 cm−1 is due to the Si–O–Si vibration of POSS, and the absorption peak appeared at 1415 cm−1 correspond to the stretching vibration of –CH\textsubscript{2}. In addition, the peak at 1539

Figure 1. (a) Molecular structure of POSS and (b) schematic illustration of the synthesis of POSS-CNTs-CS composite.

Figure 2. (a) SEM image and (b, c) AFM images of POSS particles.

Figure 3a, the microscopic morphology of the POSS-CNTs-CS composite can be characterized by the transmission electron microscope (TEM). It can be clearly seen that the filamentous CNTs were grafted onto the CS. The functional groups of the synthesized POSS and the prepared POSS-CNTs-CS nanocomposite were analyzed by FT-IR, as shown in Figure 3b. In the spectrum of POSS, the peaks appeared at 3443 cm−1 correspond to the stretching vibration of N–H and C–H, and the peaks at 1050–1121 cm−1 correspond to stretching vibration of the POSS cage Si–O–Si structure. From the CS spectrum, there are some adsorption peaks appeared at 1597 cm−1 (–NH\textsubscript{2} bending), 1158 cm−1 (asymmetric stretching of the C–O–C bridge) and 1089 cm−1 (skeletal vibration involving the C–O stretching), 3417 cm−1 (wide peak of O–H stretching overlapped with N–H stretching), 2923 cm−1 (C–H stretching), and 1371 cm−1 (asymmetric C–H bending of CH\textsubscript{2} groups). The peaks of CNTs from 1550–1730 cm−1 can be assigned to the carboxyl groups. As for the prepared POSS-CNTs-CS composite, the peak at 1050 cm−1 is due to the Si–O–Si vibration of POSS, and the absorption peak appeared at 1415 cm−1 correspond to the stretching vibration of –CH\textsubscript{2}. In addition, the peak at 1539
cm$^{-1}$ is the bending vibration of N–H and the stretching vibration of C–N of the amide bond (formed by the binding of amino group in POSS or CS with the carboxyl group in CNTs). The absorption peak at 1646 cm$^{-1}$ corresponds to the stretching vibration of −OH and O–C–O (the ester group formed by the combination of the hydroxyl group in CS and the carboxyl group in CNTs), while the peak at 3450 cm$^{-1}$ can be attributed to the vibration of −OH, C–H, and other groups. Due to the large amount of CS in the composite, the characteristic peaks of CNTs and POSS groups are relatively weak on the spectral of the POSS-CNTs-CS composite.

X-ray diffraction (XRD) patterns of the samples are shown in Figure 4a. The diffraction peak of POSS-NH$_2$ appeared at 2θ values of 6.52 and 22.23°, the broadness of the peak present in most POSS hybrids can be attributed to the hybrid formation in the presence of POSS inorganic segments. The characteristic peaks of CS appeared at 11.2 and 20.3°. As for the X-ray diffraction curve, a sharp characteristic peak appeared at 2$\theta = 26.05$°. In addition, the characteristic peaks of the POSS-CNTs-CS composite are located at 2$\theta = 11.37$, 20.36, and 26.05°. However, the peaks corresponding to CNTs and POSS are not obvious in the composite curve, which may be due to the relatively low CNTs and POSS content in the composite. The thermal stability of samples was further investigated by thermograms (TG), as shown in Figure 4b. The samples were heated from 50 to 800 °C at a heating rate of 10 °C/min under argon. The TG curves of CS and composite were divided into three stages. CS is a crystal with a melting point, in the first stage, the temperature of free water losing its connection with intermolecular forces is 78−89 °C, and the weight loss is about 3.34%. Second, the crystal water with stronger bond is lost, and the maximum decomposition temperature of main chain fracture is 266 °C with a weight loss about 7.17%. Lastly, the weight of CS loss is 60.17%, this stage weight caused by the final decomposition and the temperature is 560−688 °C. The prepared POSS-CNTs-CS composite was obtained by the freeze-drying method. After freeze-drying, there will be some crystal water in the solid. In the TG curve, it can be found that the decline trend of the composite curve at 100−200 °C is significantly faster than that of the CS monomer. When the temperature was higher than 200 °C, the TG curve of the composite decreased more slowly than that of CS, indicating that the thermal stability of the POSS-CNTs-CS composite was improved by doping POSS and CNTs. When the temperature was higher than 317 °C, the curve of the POSS-CNTs-CS composite showed the stability of relative advantage, and the weight loss of CS mass was 30.09%, while the weight loss of POSS-CNTs-CS composite was only 19.68%.

The scanning electron microscopy (SEM) images of the POSS-CNTs-CS composite are shown in Figure 5. It can be found from Figure 5a that there are filamentous CNTs.
Figure 5. (a, b) SEM images and (c–f) elemental mappings of the prepared POSS-CNTs-CS composite.

attached to the surface of the smooth CS, which can prove the attachment of CNTs in the CS. The POSS cannot be clearly seen in SEM images due to its small particle size. In addition, the SEM element maps were used to further characterize the elements in the composite. As shown in Figure 5b–f, C, N, O, and Si elements can be clearly observed, indicating that POSS and CNTs have been successfully added into composite.

CS is a positively charged polyelectrolyte with strong adsorption ability, and the adsorption capacity was further enhanced after doping CNTs. The \(-\text{NH}_2\) \(-\text{OH}\) group in CS can combine with the \(-\text{SO}_3\) group in methyl orange (MO) dye solution and the \(-\text{NH}_2\) \(-\text{SO}_3\) group in Congo red through intermolecular force, thus producing adsorption effect. To evaluate the adsorption capacity of POSS-CNTs-CS composite for MO and CR dyes, the prepared POSS-CNTs-CS composite was used to adsorb MO and CR dye solution. The adsorption kinetics was studied by fitting the adsorption experimental data, and pseudo-first-order model and pseudo-second-order model adsorption equation were used to analyze the data.

The pseudo-first-order model

\[
\log(q_e - q_t) = \log q_e - \frac{K_1}{2.303}t
\]

The pseudo-second-order model

\[
\frac{t}{q_t} = \frac{1}{K_2q_e^2} + \frac{t}{q_e}
\]

In the formula, \(t\) represents the adsorption time, \(q_t\) is the capacity of adsorption at time \(t\) (mg/g), and \(q_e\) is the capacity of adsorption (mg/g) at equilibrium. \(K_1\) and \(K_2\) represent the pseudo-first and pseudo-second kinetic rate constants, respectively. The fitted data of kinetic adsorption are shown in Table 1. As for POSS-CNTs-CS composite, the correlation coefficients of the pseudo-first-order model and the pseudo-second-order model were \(R^2 > 0.943\) and \(R^2 > 0.999\) for MO systems, respectively. In addition, the correlation coefficients of the pseudo-first-order model and the pseudo-second-order model were \(R^2 > 0.891\) and \(R^2 > 0.999\) for CR systems, as shown in Figure 6a,b. At 120 min, the adsorption of MO by the POSS-CNTs-CS composite and CS reached equilibrium, and the \(q_t\) values were 63.23 mg/g and 22.43 mg/g, respectively. Moreover, it can be clearly seen that the prepared POSS-CNTs-CS composite shows higher adsorption capacity for MO dye solution. The same result can also be observed in the CR system, the \(q_t\) of CS and POSS-CNTs-CS composite were 167.89 and 314.97 mg/g, respectively. The results show that compared with CS, the adsorption capacity of the POSS-CNTs-CS composite is greatly enhanced after adding POSS and CNTs. To better compare the adsorption properties of the prepared POSS-CNTs-CS composite with other similar composite materials, the relevant results are summarized in Table 2. It is worth noting that the POSS-CNTs-CS composite in this work shows better adsorption property for MO and CR dyes.

3. CONCLUSIONS

In summary, CS was modified with POSS and CNTs by intermolecular forces. POSS was grafted onto CS molecules to improve the stability of CS. Carbon nanotube is a kind of nanomaterials with large surface area, good mechanical properties, and adsorption capacity. The addition of the carbon nanotubes can effectively improve the adsorption performance of the composite. Compared with CS, the prepared POSS-CNTs-CS composite showed enhanced adsorption capacity of for MO and CR solution. The excellent adsorption properties of prepared POSS-CNTs-CS composite make it show potential applications in food, wastewater treatment, and medical treatment. This work also provides new ideas for the preparation of CS-based multi-composite.

4. EXPERIMENTAL SECTION

4.1. Materials. The used chitosan, carbon nanotubes (CNTs), and γ-aminopropyl triethoxysilane were all purchased from Aladdin Chemicals (Shanghai, China). Methyl orange (MO) and Congo red (CR) were obtained from Sinopharm Chemical Reagent Co. Ltd. (analytical reagent grade, Shanghai, China). Tetrahydrofuran, acetic acid, concentrated hydrochloric acid, and sodium hydroxide were purchased from Sinopharm Chemical Reagent Co. Ltd. (analytical reagent grade). The aqueous water was purified with a two-stage Millipore Milli-Q water purification system. All reagents were used without further purification.

4.2. Preparation of POSS. Octa-amino polyhedral oligomeric silsesquioxanes were synthesized according to the method reported by Feher et al. and Seckin et al. γ-aminopropyl triethoxysilane (5 mL), concentrated hydrochloric acid (7.5 mL) and anhydrous methanol (90 mL) were added to a 250 mL three-necked flask, and stirred at 70 °C for 19 h. Then, an equal volume of tetrahydrofuran was added to the mixture and a white precipitate appears. The white precipitate was washed by tetrahydrofuran repeatedly to

Table 1. Kinetic Parameters of the Composite and Chitosan Adsorbed MO or CR

dye	composite and chitosan absorbed MO or CR	pseudo-first-order model	pseudo-second-order model				
		\(q_e\) (mg/g)	\(R^2\)	\(K_1\) (min\(^{-1}\))	\(q_e\) (mg/g)	\(R^2\)	\(K_2\) (g/mg.min\(^{-1}\))
MO	CS	22.43	0.992	0.07038	25.70	0.985	0.00250
	POSS-CNTs-CS	63.23	0.943	0.29918	69.88	0.999	0.00442
CR	CS	167.89	0.981	0.00899	178.57	0.981	0.000012
	POSS-CNTs-CS	314.97	0.891	0.17814	341.30	0.999	0.00080
remove impurities in the product, and the finally sample was dried to obtain POSS solid particles.

4.3. Preparation of POSS-CNTs-CS Composite. POSS-CNTs-CS was synthesized according to the following method:31,49,50 0.6000 g of CS powder was dissolved in 2% acetic acid solution under ultrasound for 30 min, then 5 mg of CNTs and 10 mg of POSS were added to the mixture and sonicated for 10 min. The obtained mixture solution was stirred for about 12 h under a water bath at 40 °C. After the reaction, the solution was slowly added to the configured alkaline coagulant (H₂O:MeOH:NaOH = 4:5:1, v/v) at room temperature and continuously stirred for 6 h to form POSS-CNTs-CS composite. Finally, the composite was dried by deionized water for 3 days to remove impurities. After the dialysis, the composite was dried in a lyophilizer at −50 °C for 3−5 days to remove water.51−54

4.4. Adsorption Experiment Studies. The adsorption properties of the composites were performed by removal of methyl orange (MO) and Congo red (CR) by a UV−vis spectrophotometer (752-type, Sunny Hengping Scientific Instrument Co. Ltd., Shanghai, China). Equilibrium adsorption experiments were conducted by adding 0.08 g POSS-CNTs-CS composite into 50 mg/L MO or 200 mg/L CR solution at room temperature. The absorbance of the dye solution was measured at certain intervals.

4.5. Characterization. The composites used in this study were dried at −50 °C by a FD-1C-50 lyophilizer instrument from Beijing Boyikang Experimental Instrument Co., Ltd. (Beijing, China). The atomic force microscopy (AFM) pictures of POSS were measured with a nanoscope model Multimode & Scanning Probe Microscopy (Veeco Instrument, USA). The infrared spectra were characterized by a Fourier infrared spectroscopy (Nicolet Corporation, America) using the KBr sheet method. X-ray diffraction (XRD) was measured on an X-ray diffractometer equipped with a Cu Ka X-ray radiation source and a Bragg diffraction setup (SMART LAB, Rigaku, Japan). The nanostructures of the composites were studied by a field-emission scanning electron microscopy (SEM) (S-4800II, Hitachi, Japan) with 5−30 kV accelerating voltage. Thermogravimetry (TG) was conducted by using a NETZSCHTA 409 PC Luxxsi mutaneous thermal analyzer (Netzsch Instruments Manufacturing Co, Ltd., Germany) in

Figure 6. Kinetic adsorption of (a) q versus t plots and (b) t/q versus t plots for MO; (c) q versus t plots and (d) t/q versus t plots for CR.

Table 2. Comparison of the Adsorption Capacity of the Composite to MO and CR Dye

adsorbent	dye	adsorption capacity (mg/g)	references
PbS/ZnO	MO	159	[37]
ZnFe₂O₄/graphene	MO	2.31	[22]
chitosan/organic rectorite	MO	5.56	[38]
composite	polyaniline nano-adsortent	75.9	[39]
hexagonal-shaped nanoporous	MO	18.8	[40]
carbon	modified fly ash with Ca(OH)₂/Na₃FeO₄	23.8	[41]
graphene oxide	MO	16.83	[42]
biochar adsorbent	MO	39.37	[43]
m-CS/c-Fe₂O₄/MWCNTs	MO	31.52	[44]
PVA/MF	CR	221.43	[45]
CS/CTAB	CR	352.5	[26]
CS-VTM	CR	62.2	[46]
Sn(II)-BDC MOF	CR	95.2	[47]
ZnFe₂O₄/MgAl-LDH	CR	294.12	[48]

Table 2. Comparison of the Adsorption Capacity of the Composite to MO and CR Dye
argon gas. The transmission electron microscope (TEM) (HT7700, Hitachi High-Technologies Corporation, Japan) was used to characterize the morphology of the materials. UV−vis spectra were measured by Shimadzu UV-2550 system (Shimadzu Corporation, Japan).

AUTHOR INFORMATION

Corresponding Authors

Lili Gao — State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China; Email: gliqhd@163.com

Tiefeng Jiao — Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China; orcid.org/0000-0003-1238-0277; Email: tfjiao@ysu.edu.cn

Authors

Hongjie Zhao — Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China

Ran Wang — State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China

Huizheng Deng — State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China

Lijun Zhang — State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China

Lexin Zhang — State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c04565

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We greatly appreciate the financial support of the National Natural Science Foundation of China (nos. 21872119 and 22072127), the Talent Engineering Training Funding Project of Hebei Province (no. A201905004), the Research Program of the College Science and Technology of Hebei Province (no. ZD2018091), the Natural Science Foundation of Hebei Province (no. C2018203374), and the Innovation and Entrepreneurship Training Program for College Students of Yanshan University (no. CXXL2020538).

REFERENCES

1. Gupta, V. K.; Kumar, R.; Nayak, A.; Saleh, T. A.; Barakat, M. A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Colloid Interface Sci. 2013, 193-194, 24−34.

2. Mian, M. M.; Liu, G. Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism. Chem. Eng. J. 2020, 392, 123681.

3. Foo, K. Y.; Hameed, B. H. Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 2009, 152, 39−47.

4. Gupta, V. K.; Mittal, A.; Malviya, A.; Mittal, J. Adsorption of carmoisine A from wastewater using waste materials−bottom ash and deoiled soya. J. Colloid Interface Sci. 2009, 335, 24−33.

5. Mittal, A.; Kaur, D.; Malviya, A.; Mittal, J.; Gupta, V. K. Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. J. Colloid Interface Sci. 2009, 337, 345−354.

6. Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V. K. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 2010, 343, 463−473.

7. Keyvani, F.; Rahpeima, S.; Javanbakht, V. Synthesis of EDTA-modified magnetic activated carbon nanocomposite for removal of permanganate from aqueous solutions. Solid State Sci. 2018, 83, 31−42.

8. Hou, N.; Wang, R.; Wang, F.; Bai, J.; Jiao, T.; Bai, Z.; Zhang, L.; Zhou, J.; Peng, Q. Self-assembled hydrogels constructed via host-guest polymers with highly efficient dye removal capability for wastewater treatment. Colloid Surf. A 2019, 579, 123670.

9. Şekin, T.; Köytepe, S.; Adıgüzel, H. I. Molecular design of POSS core star polyimides as a route to low-x dielectric materials. Mater. Chem. Phys. 2008, 112, 1040−1046.

10. Sabet, S. M.; Mahfuz, H.; Terentis, A. C.; Nezakat, M.; Hashemi, J. Effects of POSS functionalization of carbon nanotubes on microstructure and thermomechanical behavior of carbon nanotube/polymer nanocomposites. J. Mater. Sci. 2018, 53, 8963−8977.

11. Chen, J.; Loo, L. S.; Wang, K. Enhanced mechanical properties of novel chitosan nanocomposite fibers. Carbohydr. Polym. 2011, 86, 1151−1156.

12. Shen, W.; Ma, R.; Du, A.; Cao, X.; Hu, H.; Wu, Z.; Zhao, X.; Fan, Y.; Cao, X. Effect of carbon nanotubes and octa-aminopropyl polyhedral oligomeric silsesquioxane on the surface behaviors of carbon fibers and mechanical performance of composites. Appl. Surf. Sci. 2018, 447, 894−901.

13. Zhao, F.; Huang, Y.; Liu, L.; Bai, Y.; Xu, L. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 2011, 49, 2624−2632.

14. Wu, G.; Ma, L.; Jiang, H.; Liu, L. Directly grafting octa(aminophenyl) polyhedral oligomeric silsesquioxane onto carbon fibers for superior interfacial strength and hydrothermal aging resistance of silicone resin composites. Constr. Build. Mater. 2017, 157, 1040−1046.

15. Yamamoto, K.; Sakata, Y.; Nohara, Y.; Takahashi, Y.; Tatsumi, T. Organic-Inorganic Hybrid Zeolites Containing Organic Frameworks. Science 2003, 300, 470−472.

16. Cheetham, A. K.; Rao, C. N. R. There’s Room in the Middle. Science 2007, 318, 58−59.

17. Feher, F. J.; Wyndham, K. D. Amine and ester-substituted silsesquioxanes: synthesis, characterization and use as a core for starburst dendrimers. Chem. Commun. 1998, 323−324.

18. Yang, K.; Xing, B. Adsorption of Organic Compounds by Carbon Nanomaterials in Aqueous Phase: Polanyi Theory and Its Application. Chem. Rev. 2010, 110, 5989−6008.

19. Gupta, V. K.; Agarwal, S.; Saleh, T. A. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 2011, 185, 17−23.

20. Saleh, T. A.; Gupta, V. K. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci. 2012, 371, 101−106.

21. You, J.; Zhao, Y.; Wang, L.; Bao, W.; He, Y. Atomic layer deposition of γ-Fe2O3 nanoparticles on modified MWCNT for efficient adsorption of Cr(VI) ions from aqueous solution. J. Phys. Chem. Solids 2020, 142, 109441.

22. Alves, D. C. S.; Gonçalves, J. O.; Cosseglio, B. B.; Burgo, T. A. L.; Dotto, G. L.; Pinto, L. A. A.; Cadaval, T. R. S., Jr. Adsorption of
phenol onto chitosan hydrogel scaffold modified with carbon nanotubes. J. Environ. Chem. Eng. 2019, 2213–3437.

(23) Sui, K.; Li, Y.; Liu, R.; Zhang, Y.; Zhao, X.; Liang, H.; Xia, Y. Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes. Carbohydr. Polym. 2012, 90, 399–406.

(24) Li, Z.; Sellau, L.; Franco, D.; Netto, M. S.; Georgin, J.; Dotto, G. L.; Bajajhar, A.; Belmabrouk, H.; Bonilla-Petricolet, A.; Li, Q. Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism. Chem. Eng. J. 2020, 389, 124467.

(25) Gupta, V. K.; Agarwal, S.; Saleh, T. A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 2011, 45, 2207–2212.

(26) Chatterjee, S.; Lee, M. W.; Woo, S. H. Adsorption of Congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol. 2010, 101, 1800–1806.

(27) Tischchenko, G.; Bleha, M. Diffusion permeability of hybrid chitosan/polyhedral oligomeric silsesquioxanes (POSS™) membranes to amino acids. J. Membr. Sci. 2005, 248, 45–51.

(28) Chatterjee, S.; Lee, D. S.; Lee, M. W.; Woo, S. H. Enhanced adsorption of Congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresour. Technol. 2009, 100, 2803–2809.

(29) Kazemi, J.; Javanbakht, V. Alginate beads impregnated with magnetic Chitosan@Zeolite nanocomposite for cationic methylene blue dye removal from aqueous solution. Int. J. Biol. Macromol. 2019, 1426.

(30) Albadarin, A. B.; Collins, M. N.; Naushad, M.; Shirzad, S.; Walker, G.; Mangwandi, C. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Mater. Sci. Eng., C 2019, 100, 196–208.

(31) Kucuk, A. C.; Uruçu, O. A. Silsesquioxane-modified chitosan nanocomposite as a nanoadsorbent for the wastewater treatment. React. Funct. Polym. 2019, 140, 22–30.

(32) Tamburaci, S.; Kimma, C.; Tihminlioglu, F. Bioactive diatomite and POSS silica cage reinforced chitosan/Na-carboxymethyl cellulose polyelectrolyte scaffolds for hard tissue regeneration. Mater. Sci. Eng., C 2019, 100, 196–208.

(33) Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186.

(34) Hernández, R.; Zamora-Mora, V.; Sibaja-Ballester, M.; Vega-Baudrit, J.; López, D.; Mijangos, C. Influence of iron oxide nanoparticles on the rheological properties of hybrid chitosan ferrogels. J. Colloid Interface Sci. 2009, 339, 53–59.

(35) Gu, F.; Geng, J.; Li, M.; Chang, J.; Cui, Y. Synthesis of chitosan–ignousulfonate composite as an adsorbent for dyes and metal ions removal from wastewater. ACS Omega 2019, 4, 21421–21430.

(36) Demarchi, C. A.; Debrassi, A.; Buzzi, F. C.; Nedelko, N.; Waniewska, A. S.; D’Iulvezki, P.; Magro, J. D.; Scapinello, J.; Rodrigues, C. A. Adsorption of the dye Remazol Red 198 (RR198) by O-carboxymethylchitosan-N-Lauryl-c-Fe2O3 magnetic nanoparticles. Arab. J. Chem. 2019, 12, 3444–3453.

(37) Liu, S.; Wang, W.; Cheng, Y.; Yao, L.; Han, H.; Zhu, T.; Liang, Y.; Fu, J. Methyl orange adsorption from aqueous solutions on 3D hierarchical PbS/ZnO microspheres. J. Colloid Interface Sci. 2020, 574, 410–420.

(38) Zeng, L.; Xie, M.; Zhang, Q.; Yang, Y.; Guo, X.; Xiao, H.; Peng, Y.; Luo, J. Chitosan/organic rectorite composite for the magnetic uptake of methylene blue and methyl orange. Carbohydr. Polym. 2015, 123, 89–98.

(39) Tazifit, M.; Hosseini, S. H.; Kadihi, A. D.; Olazar, M.; Karimipour, K.; Rezaieemehr, R.; Ali, K. Artificial neural network optimization for methyl orange adsorption onto polyaniline nanoadsorbt: Kinetic, isotherm and thermodynamic studies. J. Mol. Liq. 2017, 244, 189–200.

(40) Kundu, S.; Chowdhury, I. H.; Naskar, M. K. Synthesis of hexagonal shaped nanoporous carbon for efficient adsorption of methyl orange dye. J. Mol. Liq. 2017, 234, 417–423.

(41) Gao, M.; Ma, Q.; Lin, Q.; Chang, J.; Bao, W.; Ma, H. Combined modification of fly ash with Ca(OH)2/Na2FeO4 and its adsorption of Methyl orange. Appl. Surf. Sci. 2015, 359, 323–330.

(42) Robati, D.; Mirza, B.; Rajabi, M.; Moradi, O.; Tyagi, L.; Agarwal, S.; Gupta, V. K. Removal of hazardous dyes-Br-12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 2016, 284, 687–697.

(43) Yu, J.; Zhang, X.; Wang, D.; Li, P. Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Sci. Technol. 2018, 77, 1303–1312.

(44) Zhu, H. Y.; Jiang, R.; Xiao, L.; Zeng, G. M. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized gamma-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour. Technol. 2010, 101, 5063–5069.

(45) Bhat, S. A.; Zafar, F.; Mondal, A. H.; Mirza, A. U.; Rizwanul Haq, Q. M.; Nishat, N. Efficient removal of Congo red dye from aqueous solution by adsorbent films of polyvinyl alcohol/melamine-formaldehyde composite and bactericidal effects. J. Cleaner Prod. 2020, 255, 120602.

(46) Zhang, W.; Lan, Y.; Ma, M.; Chai, S.; Zuo, Q.; Kim, K. H.; Gao, Y. A novel chitosan-vanadium-titanium-magnetite composite as a superior adsorbent for organic dyes in wastewater. Environ. Int. 2020, 142, 105798.

(47) Ghosh, A.; Das, G. Green synthesis of Sn(II)-BDC MOF: Preferential and efficient adsorption of anionic dyes. Microporous Mesoporous Mater. 2020, 297, 110039.

(48) Sun, Q.; Tang, M.; Hendriksen, P. V.; Chen, B. Biotemplated fabrication of a 3D hierarchical structure of magnetic ZnFe2O4/MgAl-LDH for efficient elimination of dye from water. J. Alloys Compd. 2020, 829, 154552.

(49) Sabet, S. M.; Mahfuz, H.; Terentis, A. C.; Hashemi, J.; Boesl, B. A facile approach to the synthesis of multi-walled carbon nanotube-polyhedral oligomeric silsesquioxane (POSS) nanohybrids. Mater. Lett. 2016, 168, 9–12.

(50) Liu, H.; Huang, S.; Li, X.; Zhang, L.; Tan, Y.; Wei, C.; Lv, J. Facile fabrication of novel polyhedral oligomeric silsesquioxane/carboxymethyl cellulose hybrid hydrogel based on supermolecular interactions. Mater. Lett. 2013, 90, 142–144.

(51) Cao, M.; Shen, Y.; Yan, Z.; Wei, Q.; Jiao, T.; Shen, Y.; Han, Y.; Wang, Y.; Wang, S.; Xia, Y.; Yue, T. Extraction-like removal of organic dyes from polluted water by the graphite oxide/PNIPAM composite system. Chem. Eng. J. 2021, 405, 126647.

(52) Qian, C.; Wang, R.; Li, M.; Li, X.; Ge, B.; Bai, Z.; Jiao, T. Facile preparation of self-assembled black phosphorus-based composite LB films as new chemical gas sensors. Colloids Surf., A 2021, 608, 125616.

(53) Bai, J.; Wang, R.; Ju, M.; Zhou, J.; Zhang, L.; Jiao, T. Facile Preparation and High Performance of Wearable Strain Sensors Based on Ionic Cross-linking Composite Hydrogels. Sci. China Mater. 2020, DOI: 10.1007/s10483-020-1507-0.

(54) Ge, L.; Zhang, M.; Wang, R.; Li, N.; Zhang, L.; Liu, S.; Jiao, T. Fabrication of CS/GA/RGO/Pd composite hydrogels for highly efficient catalytic reduction of organic pollutants. RSC Adv. 2020, 10, 15091–15097.