Successional Change of the Fungal Microbiome Pine Seedling Roots Inoculated With *Tricholoma matsutake*

Ki Hyeong Park†, *Seung-Yoon Oh*†, *Shinnam Yoo*†, *Myung Soo Park*†, *Jonathan J. Fong*§ and *Young Woon Lim*§

† School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea, § Department of Biology and Chemistry, Changwon National University, Changwon, South Korea, § Science Unit, Lingnan University, Tuen Mun, Hong Kong

The pine mushroom (*Tricholoma matsutake*; Agaricales, Tricholomataceae) is an ectomycorrhizal fungus that produces a commercially valuable, edible mushrooms. Attempts to artificially cultivate *T. matsutake* has so far been unsuccessful. One method used to induce *T. matsutake* to produce fruiting bodies of in the wild is shiro (mycelial aggregations of *T. matsutake*) transplantation. *In vitro* ectomycorrhization of *T. matsutake* with seedlings of *Pinus densiflora* has been successful, but field trials showed limited production of fruiting bodies. Few studies have been done to test what happens after transplantation in the wild, whether *T. matsutake* persists on the pine seedling roots or gets replaced by other fungi. Here, we investigated the composition and the interaction of the root fungal microbiome of *P. densiflora* seedlings inoculated with *T. matsutake* over a 3 year period after field transplantation, using high-throughput sequencing. We found a decline of *T. matsutake* colonization on pine roots and succession of mycorrhizal fungi as *P. densiflora* seedlings grew. Early on, roots were colonized by fast-growing, saprotrophic Ascomycota, then later replaced by early stage ectomycorrhiza such as *Wilcoxina*. At the end, more competitive *Suillus* species dominated the host roots. Most of the major OTUs had negative or neutral correlation with *T. matsutake*, but several saprotrophic/plant pathogenic/mycoparasitic species in genera *Fusarium*, *Oidiodendron*, and *Trichoderma* had positive correlation with *T. matsutake*. Four keystone species were identified during succession; two species (*Fusarium oxysporum*, and *F. trinctum*) had a positive correlation with *T. matsutake*, while the other two had a negative correlation (*Suillus granulatus*, *Cylindrocarpon pauciseptatum*). These findings have important implications for further studies on the artificial cultivation of *T. matsutake*.

Keywords: fungal diversity, microbiome, network analysis, *Pinus densiflora*, *Tricholoma matsutake*, pine mushroom, ectomycorrhizal fungi
INTRODUCTION

Ectomycorrhizal fungi are one of the most common forms of plant-fungal root symbioses in woody plants (Brundrett, 2009; Van Der Heijden et al., 2015), and improve nutrition and stress resistance of the host plant (Smith and Read, 2010; Berendsen et al., 2012; Van Der Heijden et al., 2015). Ectomycorrhizal fungi compete with each other to colonize root tips (Koide et al., 2005; Kennedy et al., 2009; Bakker et al., 2014) or co-exist (Perry et al., 1989; Yamamoto et al., 2014). Succession of the mycorrhizal community was reported in several host plants (Twieg et al., 2007). This phenomenon not only occurs in mature trees, but also in seedlings, where the dominant ectomycorrhizal taxa can change (Matsuda et al., 2009; Obase et al., 2009). Early stage ectomycorrhizal fungi (e.g., members of Inocybe, Rhizopogon, or Suillus) require small amount of carbon from hosts and are usually found in pine seedling in disturbed area (Colpaert et al., 1996; Sim and Eom, 2009). Arrival sequence of ectomycorrhizal fungi often influences colonization at early stages, with negative consequences for later colonizers (Alford and Wilbur, 1985; Shorrocks and Bingley, 1994). This phenomenon is called the priority effect, and has been reported in the early stage of interaction between ectomycorrhizal fungi and pine seedlings (Kennedy and Bruns, 2005; Fukumi, 2015).

The pine mushroom (Tricholoma matsutake; Agaricales, Tricholomataceae) produces edible fruiting bodies during symbiosis with members of Pinaceae, especially Pinus densiflora (Yamada et al., 2010). Due to its commercial value, artificial cultivation of T. matsutake has been attempted, but thus far has been unsuccessful. Three unsuccessful methods to induce fruiting bodies of T. matsutake in the wild are inoculating cultured T. matsutake hyphae in soil (Lee et al., 2007), spraying of T. matsutake spores from fruiting body (Eto and Taniguchi, 2000), and transplanting shiro (aggregate of T. matsutake mycorrhiza) to uninfected pine trees (Kareki and Kawakami, 1985). The last approach of transplanting shiro to uninfected pine trees has been tried extensively in Korea (Park et al., 2007). In vitro ectomycorrhization of T. matsutake has been successful (Yamada et al., 1999; 2006; Saito et al., 2018), but field trials showed limited production of fruiting bodies (Ka et al., 2018). In order for this method to be efficient, T. matsutake must persist the pine seedling roots. Currently, it is unclear after pine seedlings are transplanted to the wild, T. matsutake persists on the pine seedling roots or gets replaced.

Advances in high-throughput sequencing have greatly contributed to our understanding the diversity and function of fungi in various environments (Nilsson et al., 2019), and have been used to study the succession of fungal communities (Dickie et al., 2013, 2017; Voríšková et al., 2014; Hannula et al., 2017). In this study, we used high-throughput sequencing to examine the change in the root microbiome of T. matsutake inoculated pine seedlings after transplantation, focusing on the succession of mycorrhiza and interaction between root associated fungi. We hypothesize that (i) there is a significant change in root fungal communities during transplantation and seedling growth, and (ii) there are some fungi with positive or negative correlation with T. matsutake that affect the survival of T. matsutake on pine seedling roots.

MATERIALS AND METHODS

Study Design and Sample Collection

This experiment was conducted at Gyeongsangbuk-do Forest Environment Research Institute in Gyeongju, South Korea. Tricholoma matsutake strain KBFERI 20T05 (GenBank accession no. AF367417) was cultured in K-liquid media (Park et al., 2007), and transferred to autoclaved culture vessels filled with mixed soil (perlite: peat moss = 80:1) as described by Park et al. (2007). For surface sterilization, P. densiflora seeds were placed in 70% ethanol for 60 s, and transferred to 2% NaClO solution for 4 min. Cleaned seeds were washed 3 times with sterile water then germinated in nutrient broth agar plates (Scharlau). Uncontaminated seedlings were transferred to culture vessels inoculated with T. matsutake in a sterilized culture room, then co-cultured for 3 months in a clean room illuminated with a fluorescent lamp (20°C; 25,000 lux; 24 h). Then, P. densiflora seedlings were moved to a greenhouse filled with autoclaved soil from a nearby pine forest. Sixteen pine seedlings were sampled at 6 different post T. matsutake-inoculation periods: 3 months (M03; in a sterilized culture room), 10, 17, 24, 31, and 38 months (M10, M17, M24, M31, M38; in a greenhouse). In total, 96 seedling roots were harvested.

DNA Extraction

Harvested seedlings were placed on ice, transported to the laboratory at Seoul National University (Seoul, South Korea), and stored at −80°C prior to DNA extraction. We did a preliminary morphological examination of roots to confirm the presence of T. matsutake (Gill et al., 2000; Yamada et al., 2010). Seedling roots were gently washed with running water to remove debris and sterilized with 3% sodium hypochlorite for 2 min. Samples were then washed with distilled water for 5 min. Surface-sterilized roots were cut into 5 cm fragments and air-dried. For each sample, three root fragments were wet with 500 µl of cetyltrimethylammonium bromide buffer (Biosesang, Seongnam, South Korea) and ground with a mortar and pestle. For each sample, genomic DNA was extracted from seedling root using modified CTAB methods (Rogers and Bendich, 1994). We confirmed the presence of T. matsutake in M03 samples with T. matsutake-specific primers (Kim and Han, 2009).

PCR Amplification and High Throughput Sequencing

The fungal internal transcribed spacer 2 (ITS2) region was amplified with primers ITS3 and ITS4 (White et al., 1990) with Illumina sequencing adaptors attached. PCR was conducted 3 times for each samples using AccuPower PCR PreMix kit (Bioneer, Daejeon, South Korea). PCR conditions were as follows: 94°C for 5 min, 30 cycles of 94°C for 30 s, 55°C for 30 s,
and 72°C for 40 s, and 72°C for 10 min as final extension. PCR products were confirmed on 1% agarose gel (BIOFACT, Daejeon, South Korea) with gel electrophoresis. After purification using the Expi™ PCR SV kit (GeneAll Biotechnology, Seoul, South Korea), a unique identifier sequence was attached to each PCR products with a second round PCR following the Nextera XT index kit protocol (illumina, San Diego, CA, United States). Second PCR products were purified as above. Concentration of each ampiclon library were measured using a NanoDrop2000 (Thermo Fisher Scientific, Waltham, MA, United States). Amplicon libraries were pooled in equimolar quantities and sequenced using Illumina MiSeq platform at Macrogen (Seoul, South Korea).

Bioinformatics and Statistical Analysis

After sequencing, the raw data were processed using the Quantitative Insights Into Microbial Ecology v.1.8.0. (QIIME) pipeline (Caporaso et al., 2010). Fastq-join was used for merging paired-end sequences. After filtering low-quality sequences (Q < 20, length < 200 bp), 9,513,644 reads were retained for later analyses. Clustering of operational taxonomic units (OTUs) was performed with the open-source sequence search tool Vsearch v. 2.6.2 (Rognes et al., 2016) with 97% similarity level. For taxonomic identification, the most abundant sequence was selected as an OTU's representative sequence. The UNITE v. 8.0 (Unite Community, 2019) database was used to determine OTU's taxonomic identity with NCBI BLAST, following the criteria of Tedersoo et al. (2014). We removed chimeric sequences based on the reference database of UCHIME (Edgar et al., 2011). Singleton OTUs and non-fungal sequences were removed, and all samples were rarefied to a minimum number of sequences before further analysis. Taxonomic identity of major OTUs (OTUs with total relative abundance >0.5%) were checked manually with NCBI and UNITE databases (access date: August 26 2020). FUNGuild was used as a database for fungal trophic mode assignment (Nguyen et al., 2016).

Alpha diversity indices (Chao1 richness, Shannon's diversity, equitability, and Good's coverage) were calculated in QIIME. Statistical analysis was performed in R software (version 3.6.1, R Core Team, 2019). Kruskal-Wallis tests were performed to compare the diversity indices between sampling times with Dunn's test as a post hoc test adjusted using the Benjamini and Hochberg method (Benjamini and Hochberg, 1995). Ordination analysis was performed by non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity index using the phyloseq package (McMurdie and Holmes, 2013). Difference of community compositions among sampling times were tested with permutational multivariate analysis of variance (PERMANOVA) with 999 permutations, using the "adonis" function in the vegan package (Oksanen et al., 2018), and pairwise post hoc tests were done using the pairwiseAdonis package with Bonferroni correction of the Bray-Curtis dissimilarity matrix (Martinez Arbizu, 2017).

To test for correlations between species, Sparse Correlations for Compositional data (SparCC) (Friedman and Alm, 2012) network analysis was performed at the OTU level (OTUs with total relative abundance >0.5%) with the Galaxy-based analysis pipeline (Inter-Domain ecological network analysis pipeline, IDENAP, Feng et al., 2019). The significance of correlation was calculated by comparing the shuffled data from 100 permutations. Following previous studies, correlations with SparCC >0.3 and p < 0.05 were included (Kurtz et al., 2015). The network was visualized with Cytoscape version 3.7.2 (Shannon et al., 2003). Clusters were detected with Markov clustering algorithms (Van Dongen and Abreu-Goedger, 2012). For the overall network, species with high degree, betweenness centrality, and closeness centrality were selected as the keystone taxa. NMDS ordination and network analyses were performed without M03 samples as they were distinctly different from other samples due to high abundance of T. matsutake (>94% in average). Sequencing data were deposited in NCBI Sequence Read Archive (SRA) under Project ID PRJNA638021.

RESULTS

Sequencing Results and Alpha Diversity Indices

A total of 7,697,559 sequence reads were obtained from 96 samples through illumina MiSeq sequencing with 25,244–228,456 sequence reads per sample. After rarefaction to 25,000 reads, 826 OTUs (range: 4–191) remained with a Good's coverage of 0.998–0.999. Based on taxonomic level, the OTUs represented 8 phyla, 28 classes, 89 orders, 188 families, and 327 genera. The number of OTUs significantly increased with the age of P. densiflora seedlings, from 63 OTUs found in M03 (mean = 7.88 OTUs per sample) to 487 OTUs in M38 (mean = 155.88 OTUs per sample) (Figure 1). Chao1 richness, Shannon's diversity, and equitability also showed significant increase following the growth of P. densiflora seedlings, especially between M03 and other sampling periods (Figure 1).

The NMDS ordination of Bray-Curtis dissimilarity based on OTU-level abundance revealed clear separation of fungal communities between most groups, except M24 and M31 (Figure 2A). This result was supported by pairwise adonis tests, where all but the M24-M31 comparison were statistically significant (Supplementary Table 1). We observed a significant shift of the overall fungal community in P. densiflora seedlings over time, based on the adonis analysis ($R^2 = 39.4\%$, $p = 0.001$; Figure 2A and Supplementary Table 1). The relative abundance of T. matsutake drastically decreased after the transplantation to greenhouse (M03 to M10; Figure 2C and Table 1), but T. matsutake was still detected in some samples (15/16 in M10; 8/16 in M17; 4/16 in M24 and M31; 2/16 in M38; Table 1).

Fungal Community Composition in P. densiflora Seedlings

The total abundances of major fungal phyla were relatively high: Ascomycota (64.353%) and Basidiomycota (35.516%). Abundance of the next most abundant phylum, Mortierellomycota, was low at less than 0.1% (Figure 2B). The abundance of Basidiomycota was high during the
inoculation stage (M03, 94.1%), but drastically decreased after transplantation (4.0% in M10; 1.7% in M17), being replaced by Ascomycota. The abundance of Basidiomycota increased in M24 (42.5%) and M31 (44.1%), but decreased again in M38 (26.7%). The pattern of relative abundance at the species level was similar to that at the genus level. The most abundant OTUs of each sampling period were *T. matsutake* (OTU 1, 94.0%) and *Cladosporium* sp. (OTU 7, 2.81%) in M03, *Pseudogymnoascus pannorum* (OTU 6, 28.5%) and *Oidiodendron echinulatum* (OTU 5, 21.5%) in M10, and *Wilcoxina mikolae* (OTU 2, 35.7%) in M17. After M24, the most abundant OTU was *Suillus granulatus* (OTU 3, 33.11% in M24; 25.19% in M31; 20.39% in M38) followed by *W. mikolae* (OTU 2, 11.84%) in M24, *S. luteus* in M31 (OTU 13, 7.37%), and *W. mikolae* (10.22%) in M38 (Figure 2C).

DISCUSSION

Change of Fungal Communities in Pine Seedlings After Transplantation

The root fungal communities significantly changed through seedling development. Our results showed that root colonization of *T. matsutake* dramatically decreased after being transplanted to the greenhouse, and they were replaced by other fungi. As expected, alpha diversity increased when seedlings were transplanted from a controlled environment to a more natural, open environment. After transplantation, fast-growing Ascomycota dominated, and then were replaced by early-stage ectomycorrhizal fungi. Previous studies looked at the mycorrhizal succession in pine seedlings (Peay et al., 2011; Herzog et al., 2019; Rudawska et al., 2019), and we found that the shift of root associated fungi in our study followed the general trend, despite being inoculated with *T. matsutake*. After transplantation to the greenhouse, Ascomycota species became dominant in seedling roots. In M10, most of the dominant OTUs were saprotrophs or pathotrophs, such as...
FIGURE 2 | Fungal community structures of *Pinus densiflora* seedlings. (A) NMDS plots based on Bray-Curtis dissimilarity. Relative abundance of (B) major phyla and (C) major species. Taxa with total relative abundance higher than 1% were chosen as major taxa in (C).
TABLE 1 | Average relative abundance and frequency (the number of samples with *T. matsutake*) of *Tricholoma matsutake* (OTU 1) in Pinus densiflora seedling roots.

Sampling groups	M03	M10	M17	M24	M31	M38
Sequence reads	376,056	2,625	44	11	5	2
Relative abundance (%)	94.014	0.662	0.011	0.00275	0.00125	0.0005
Number of samples with *T. matsutake*	16/16	15/16	8/16	4/16	4/16	2/16

Pseudogymnoascus and *Fusarium*, with one exception being *Oidiodendron echinulatum*, an ericoid mycorrhizal fungus. In M17, the abundance of symbiotrophs (e.g., *Wilcoxina mikolaev*) increased, while pathotrophs decreased. The presence of saprotrophic fungi is commonly reported in roots (Vasiliauskas et al., 2007; Federsoo and Smith, 2013; Lee et al., 2015; Rincón et al., 2015; Smith et al., 2017), so we believe their presence in our study is not a result of inappropriate sterilization of roots. Among the saprotroph species identified in our study, *Pseudogymnoascus pannorum* is widely distributed in the soil and adapted to nutrient poor environments (Minnis and Lindner, 2013; Chaturvedi et al., 2018). Previous studies of pine seedling roots also discovered the presence of *Pseudogymnoascus* species (Menkis and Vasaitis, 2011; Moler and Aho, 2018). Other taxa, like *Oidiodendron* and *Wilcoxina*, are well known species that are common in early successional or disturbed ecosystems (Berch et al., 2006; Lee et al., 2012; Lee and Eom, 2013; Rudawska et al., 2019). As these species were absent in samples from M03, and both taxa found in our study are expected to have been dispersed by wind (Horton, 2017). A noteworthy result is the high abundance of *Fusarium* in M10–M17 samples. Usually, *Fusarium* is considered a plant pathogen (Gordon, 2017), but *Fusarium* species have also been found as endophytes of a wide range of wild plants (Kulda and Yates, 2000; Min et al., 2014). For example, growth-enhancement or pathogen-resistance conferred by non-pathogenic *Fusarium* species were widely reported (Forsyth et al., 2006; Waweru et al., 2014). Their role is uncertain in our study, and further study would be needed to understand *Fusarium*’s role in roots of pine seedlings.

After M24, we witnessed an increase in proportion of ectomycorrhizal (*Suillus* and *Tomentella*) and endophytic fungi (*Cadophora* and *Phialocephala*), which are considered common fungi in an early successional stage (Colpaert et al., 1996; Berch et al., 2006; Sim and Eom, 2009; Lee et al., 2012; Lee and Eom, 2013; Lee and Koo, 2016).

While *T. matsutake* was still found in several *P. densiflora* seedlings, its frequency and abundance steadily decreased over time after transplantation. Although the priority effect in ectomycorrhizae was reported in previous studies (Kennedy and Bruns, 2005; Kennedy et al., 2009; Fukumi, 2015), it did not apply to *T. matsutake* in our study. As *T. matsutake* is usually known to form symbiotic relationship with mature pine trees in the field (Wang et al., 2017), our results suggest that the symbiosis between *T. matsutake* and young seedlings is not sustainable outside of sterile environment without proper support. We suggest that this is due to a slow growth rate and higher carbon demand of *T. matsutake* as a late-stage ectomycorrhizal fungus (Smith and Read, 2010).

Network Analysis and Keystone Taxa

Microbial network analysis has been used to visualize taxa with a strong effect on network structure, or highly connected taxa in various environments (Barberán et al., 2012; Gilbert et al., 2012; Agler et al., 2016). We constructed a network of 35 fungal OTUs that were abundant during pine seedling growth with SparCC correlations. Interaction and network formation between functionally diverse fungi were previously reported (Toju et al., 2016), and our results were similar; a combination of functionally different OTUs were observed in each cluster in our network (Supplementary Table 1).

Among the 35 major OTUs, 10 OTUs were found to have positive correlations with *T. matsutake*, despite the abundance of *T. matsutake* decreasing after transplantation (Table 1, Supplementary Tables 1, 2). Among these positively correlated OTUs, *Fusarium*, *Trichoderma*, and/or *Oidiodendron* might improve survival of *T. matsutake* in our environment. While competition between ectomycorrhiza and other microfungi are common in soil (Leake et al., 2003), several studies reported growth promotion of ectomycorrhizal fungi by microfungi isolated from soil (Ogawa, 1976; Oh et al., 2018). For instance, *Trichoderma* and *Oidiodendron* species were exclusively isolated from the *T. matsutake* fruiting zone of *P. densiflora* forests (Ogawa, 1977; Oh et al., 2018, 2019), and high abundance of *F. oxysporum* was reported in *Tuber magnatum*-productive areas (Mello et al., 2010). Likewise, we found that ectomycorrhizal fungi, such as *Suillus* were less abundant in root samples with *T. matsutake* than those without *T. matsutake*. *Trichoderma* might help survival of *T. matsutake* by promoting plant growth, root branching, and development (Guzmán-Guzmán et al., 2019), or by inhibiting the growth of other ectomycorrhizae as reported between *Trichoderma viride* and *Suillus bovinus* in
TABLE 2 | Major OTUs (relative abundance > 0.5%) identity and node properties of the *Pinus densiflora* root seedling microbiome network.

ID	Species	Correlation with *T. matsutake*	Cluster	Betweenness centrality	Closeness centrality	Clustering coefficient	Degree	NCBI blast result	Accession No.	Identity	E-value
OTU 1	*Tricholoma matsutake*	–	1	0.017	0.667	0.669	17	*Tricholoma matsutake*	JF908729	100.00%	0.0
OTU 2	*Wilcoxina mikolae*	Negative	3	0.068	0.63	0.438	15	*Wilcoxina mikolae*	JQ310817.1	99.71%	2E-179
OTU 3	*Suillus granulatus*	Negative	1	0.043	0.694	0.544	19	*Suillus granulatus*	AY986167.1	98.59%	0.0
OTU 5	*Oidiodendron echinulatum*	Positive	1	0.013	0.618	0.692	14	*Oidiodendron echinulatum*	AFO62791.1	100.00%	1E-166
OTU 6	*Pseudogymnoascus pannorum*	Positive	1	0.027	0.63	0.603	17	Geomyces pannorum (= Pseudogymnoascus pannorum)	JX13173.1	100.00%	9E-173
OTU 7	Cladosporium sp.	Neutral	3	0.002	0.459	0.333	3	Cladosporium cladosporioides	MK268136.1	100.00%	7E-174
OTU 8	*Fusarium oxysporum*	Positive	1	0.049	0.708	0.543	21	*Fusarium oxysporum*	MT453296.1	100.00%	2E-174
OTU 9	*Cadophora finlandica*	Negative	1	0.038	0.642	0.581	17	*Cadophora finlandica*	KT182905.1	97.82%	3E-153
OTU 10	*Leptosphaeria* sp.	Positive	1	0.004	0.586	0.821	13	*Leptosphaeria* sp.	JX238777	100.00%	4E-176
OTU 11	*Trichocladium* sp.	Positive	1	0.034	0.642	0.617	16	*Trichocladium sp./ Humicola grisea* (= Trichocladium griseum)	MT348608.1/ MT860993.1	100.00%/ 100.00%	4E-176/ 4E-176
OTU 12	Chaetomium sp.	Neutral	2	0.006	0.507	0.5	5	*Chaetomium angustispirale/Humicola grisea*	MT453288.1/ MT860993.1	100.00%/ 100.00%	4E-176/ 4E-176
OTU 13	*Sulillus luteus*	Neutral	0	0	0	0	0	*Sulillus luteus*	KX213740.1	100.00%	0.0
OTU 14	*Tomentella* sp.	Neutral	2	0.001	0.459	0.333	3	*Tomentella tederssoi*	NR121359.1	95.09%	7E-180
OTU 15	*Cylindrocarpon pauciseptatum*	Negative	1	0.073	0.739	0.515	22	*Dactylonectria pauciseptata* (= Cylindrocarpon pauciseptatum)	MK602783.1	100.00%	0.0
OTU 16	*Illyonectria* sp.	Neutral	1	0.021	0.531	0.778	10	*Illyonectria lindendri/Illyonectria destructans*	MK602788.1	100.00%	0.0
OTU 17	*Penicillium ochrochloron*	Neutral	2	0.058	0.596	0.236	11	*Penicillium ochrochloron*	MK450704.1	100.00%	0.0
OTU 18	*Phialeopha latifortis*	Negative	1	0.013	0.618	0.714	15	*Phialeopha latifortis*	KF313097.1	100.00%	3E-167
OTU 19	*Dactylonectria* sp.	Neutral	1	0.004	0.531	0.778	9	*Dactylonectria torresensis/Dactylonectria alacerasis*	MK602787/ MK602786	100.00%/ 100.00%	2E-180/ 2E-180

(Continued)
ID	Species	Correlation with T. matsutake	Cluster	Betweenness centrality	Closeness centrality	Clustering coefficient	Degree	NCBI blast result	Accession No.	Identity	E-value
OTU 20	Trichoderma viride	Positive	1	0.016	0.63	0.687	15	Trichoderma viride	KU202217.1	100.00%	0.0
OTU 21	Paraphaeosphaeria sporulosa	Positive	1	0.024	0.68	0.643	19	Paraphaeosphaeria sporulosa	MT576023.1	100.00%	1E-176
OTU 22	Xenochalara juniperi	Neutral	3	0.002	0.442	0.333	3	Xenochalara juniperi	JX869664.1	100.00%	3E-172
OTU 23	Hyaloscyphaceae sp.	Neutral	1	0.025	0.567	0.472	9	Hyaloscyphaceae sp.	AB986450.1	97.61%	6E-160
OTU 25	Helotiales sp.	Neutral	1	0.011	0.515	0.778	9	Helotiales sp.	LC218319.1	100.00%	4E-166
OTU 26	Trichoderma sp.	Neutral	1	0	0.515	0.952	7	Trichoderma sp.	MK871291.1	100.00%	0.0
OTU 27	Oidiodendron rhodogenum	Neutral	1	0.004	0.331	0.714	7	Oidiodendron rhodogenum	AF062803.1	100.00%	4E-166
OTU 28	Penicillium sp.	Negative	4	0.062	0.654	0.442	16	Penicillium sp.	MK450684.1	100.00%	0.0
OTU 29	Oidiodendron sp.	Neutral	1	0.03	0.654	0.6	16	Oidiodendron tenuissimum/Oidiodendron griseum	AF062797.1	99.69%	4E-165
OTU 34	Knufia sp.	Positive	1	0.015	0.618	0.725	14	Knufia sp.	KX610444.1	98.79%	8E-164
OTU 36	Entrophospora sp.	Neutral	1	0	0.515	1	6	Entrophospora sp.	AY035666.1	99.12%	3E-172
OTU 37	Fusarium sp.	Positive	1	0.038	0.708	0.59	21	Fusarium acuminatum/Fusarium tricinctum	MT294407.1	100.00%	0.0
OTU 43	Talaromyces sp.	Neutral	2	0.007	0.531	0.524	7	Talaromyces amestokiae	MN511323.1	100.00%	1E-177
OTU 48	Exophiala sp.	Neutral	3	0.026	0.557	0.357	8	Exophiala sp.	M6F19956.1	100.00%	0.0
OTU 58	Sebacina sp.	Negative	1	0.005	0.586	0.711	10	Sebacina sp.	KX271862.1	96.61%	3E-178
OTU 2217	Corynascus inaequalis	Neutral	2	0.001	0.453	0.667	3	Corynascus inaequalis	MT453282.1	99.41%	1E-172
OTU 2240	Pseudogymnoascus pannorum	Positive	1	0.015	0.642	0.667	16	Pseudogymnoascus pannorum	MH854616.1	99.70%	4E-171
OTU 3530	Cadophora finlandica	Neutral	1	0.019	0.596	0.679	13	Cadophora finlandica	DQ069045.1	99.03%	3E-153

OTUs in bold font indicate keystone taxa.
soil environment (Mucha et al., 2008; Sabella et al., 2015; Oh et al., 2018, 2019).

Four OTUs were identified as keystone taxa: S. granulatus, C. pauciseptatum, Fusarium sp. (OTU 37), and Fusarium oxysporum (Table 2). Keystone taxa are taxa highly connected to other network members and play important roles in the microbiome (Banerjee et al., 2018), and they are required to understand an ecosystem’s response to disturbance (Stinson et al., 2006). Of the four keystone taxa, S. granulatus and C. pauciseptatum showed a significantly negative correlation with T. matsutake, while F. oxysporum and Fusarium sp. (OTU 37) showed a significantly positive correlation with T. matsutake. As Suillus granulatus is a strong competitor and crucial in the establishment of pine seedlings (Dickie et al., 2010; Kohout et al., 2011; Hayward et al., 2015; Urclay et al., 2017; Policelli et al., 2019), its negative relationship with T. matsutake is as expected. However, the significant correlation between T. matsutake and C. pauciseptatum or Fusarium species was interesting, as C. pauciseptatum and Fusarium species are known as soil saprotrophs or plant pathogens. The presence of C. pauciseptatum was reported in Pinus sylvestris (Menkis and Vasaitis, 2011), the relationship between C. pauciseptatum and P. densiflora is still unknown. It is possible that C. pauciseptatum indirectly influenced microbiome by affecting quality of pine seedlings (Agler et al., 2016). Fusarium oxysporum and F. trincintum are known as plant pathogens or mutualistic endophytes (Kulda and Yates, 2000; Forsyth et al., 2006; Vu et al., 2006; Michielse and Rep, 2009; Min et al., 2014; Waweru et al., 2014; Vasundhara et al., 2016). While we do not understand their exact function in this study, both endophyte and plant pathogen might influence on root microbiome by positive or negative effects (Van Der Heijden et al., 2008).

CONCLUSION

We have documented the change in fungal community composition in pine seedlings after the T. matsutake inoculation, and introduced a SparCC analysis to predict the cross-fungi associations from NGS data. The root microbiome drastically changed at alpha- and beta-diversity levels after transplantation. Temporal succession of the mycorrhizal community suggests a weak priority effect as T. matsutake was rapidly replaced by W. mikolae, S. granulatus, and other fungi. While most of the major fungal OTUs showed negative or neutral correlation with T. matsutake, some of them showed a positive relationship. Fungi that had a positive correlation with T. matsutake were mostly known as saprotrophs or plant pathogens. In addition, we found four keystone species during microbiome succession that might play an important role in microbiome composition in pine seedlings. A further study is needed to verify the effect of fungi on the microbiome.
that have positive correlations with *T. matsutake* in an artificial cultivation of ectomycorrhizal fungi.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the NCBI Sequence Read Archive (SRA) under BioProject ID PRJNA638021 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA638021/) and also available on request to the corresponding author.

AUTHOR CONTRIBUTIONS

S-YO, MP, and YL contributed to conceiving and designing the experiments. KP and S-YO performed the experiments and analyzed the data. KP, S-YO, and SY wrote the manuscript with revisions from JF, MP, and YL. All authors contributed to the article and approved the submitted version.

REFERENCES

Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S. T., Weigel, D., et al. (2016). Microbial taxon link host and abiotic factors to plant microbiome variation. *PLoS Biol.* 14:e1002352. doi: 10.1371/journal.pbio.1002352

Alford, R. A., and Wilbur, H. M. (1985). Priority effects in experimental pond communities: competition between *Bufo* and *Rana*. *Ecology* 66, 1097–1105. doi: 10.2307/1939161

Bakker, M. G., Schlatter, D. C., Otto-Hanson, L., and Kinkel, L. L. (2014). Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. *Mol. Ecol.* 23, 1571–1583. doi: 10.1111/mec.12571

Banerjee, S., Schlaepfl, K., and van der Heijden, M. G. A. (2018). Keystone taxa as drivers of microbiome structure and functioning. *Nat. Rev. Microbiol.* 16, 567–576. doi: 10.1038/s41579-018-0024-1

Barberán, A., Bates, S. T., Casamayor, E. O., and Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. *ISME J.* 6, 343–351. doi: 10.1038/ismej.2011.119

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. R. Stat. Soc. Ser. B Methodol.* 57, 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Berch, S. M., Brockley, R. P., Battigelli, J. P., Hagerman, S., and Holl, B. (2006). Impacts of repeated fertilization on components of the soil biota under a young lodgepole pine stand in the interior of British Columbia. *Can. J. For. Res.* 36, 1415–1426. doi: 10.1139/x06-037

Berendsen, R. L., Pieterse, C. M., and Bakker, P. A. (2012). The rhizosphere microbiome and plant health. *Trends Plant Sci.* 17, 478–486. doi: 10.1016/j.tplants.2012.04.001

Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. *Plant Soil* 320, 37–77. doi: 10.1007/s11104-008-9877-9

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. *Nat. Methods* 7, 335–336. doi: 10.1038/nmeth.f.303

Chaturvedi, V., DeFiligo, H., and Chaturvedi, S. (2018). Phenotype profiling of white-nose syndrome pathogen *Pseudogymnoascus destructans* and closely-related *Pseudogymnoascus pannorum* reveals metabolic differences underlying fungal lifestyles. *F1000Res.* 7:665. doi: 10.12688/f1000research.15067.2

Colpaert, J. V., Van Laere, A., and van Asche, J. A. (1996). Carbon and nitrogen allocation in ectomycorrhizal and non-ectomycorrhizal *Pinus sylvestris* L. seedlings. *Tree Physiol.* 16, 787–793. doi: 10.1093/treephys/16.9.787

Danielson, R. M., and Prudel, M. (1990). “Ectomycorrhizal of spruce seedlings growing in disturbed soils and in undisturbed mature forests,” in *Proceedings of the 8th North American Conference on Mycorrhizae*, eds M. F. Allen and S. E. Williams (Jackson, WY), 68.

Dickie, I. A., Bolstridge, N., Cooper, J. A., and Peltzer, D. A. (2010). Co-invasion by Pinus and its mycorrhizal fungi. *New Phytol.* 187, 475–484. doi: 10.1111/j.1469-8137.2010.03277.x

Dickie, I. A., Bufford, J. L., Cobb, R. C., Desprez-Loustau, M. L., Grelet, G., Hulme, P. E., et al. (2017). The emerging science of linked plant–fungus invasions. *New Phytol.* 215, 1314–1332. doi: 10.1111/nph.14657

Dickie, I. A., Martínez-García, L. B., Koëne, N., Grelet, G. A., Tylanakis, J. M., Peltzer, D. A., et al. (2013). Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. *Plant Soil* 367, 11–39. doi: 10.1007/s11104-013-1609-0

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* 27, 2194–2200. doi: 10.1093/bioinformatics/btr381

Eto, S., and Taniguchi, M. (2000). Development of the spawns of *Tricholoma matsutake* using fungicides for the inoculation in forests. *J. Mushroom Sci. Soc.* Jpn. 8, 197–202.

Feng, K., Zhang, Y., He, Z., Ning, D., and Deng, Y. (2019). Interdomain ecological networks between plants and microbes. *Mol. Ecol. Resour.* 19, 1565–1577. doi: 10.1111/1755-0998.13081

Forsyth, L. M., Smith, L. J., and Atiken, E. A. (2006). Identification and characterization of non-pathogenic *Fusarium oxysporum* capable of increasing and decreasing Fusarium wilt severity. *Mycol. Res.* 110, 929–935. doi: 10.1016/j.mycres.2006.03.008

Friedman, J., and Alm, E. J. (2012). Inferring correlation networks from genomic survey data. *PLoS Comput. Biol.* 8:e1002687. doi: 10.1371/journal.pcbi.1002687

Fukumi, T. (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. *Annu. Rev. Ecol. Evol. Syst.* 46, 1–23. doi: 10.1146/annurev-ecolsys-110411-160340

Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbrück, L., Reeder, J., Temperton, B., et al. (2012). Defining seasonal marine microbial community dynamics. *ISME J.* 6, 298–308. doi: 10.1038/ismej.2011.107

Gill, W. M., Guerin-Laguette, A., Lapeyrie, F., and Suzuki, K. (2000). *Matsutake*–morphological evidence of ectomycorrhiza formation between *Tricholoma matsutake* and host roots in a pure *Pinus densiflora* forest stand. *New Phytol.* 147, 381–388. doi: 10.1046/j.1469-8137.2000.00707.x

Gordon, T. R. (2017). *Fusarium oxysporum* and the Fusarium wilt syndrome. *Annu. Rev. Phytopathol.* 55, 23–39. doi: 10.1146/annurev-phyto-080615-095919

FUNDING

This project was supported by the research project for exploring potential fungal diversity in forest soil (KNA1-1-25, 19-2) from the Korea National Arboretum.

ACKNOWLEDGMENTS

We would like to thank Gyeongsangbuk-do Forest Environment Research Institute (Gyeongju, South Korea) for their help in experiment and sample collection. We would also like to thank Yoonhee Cho for the English revision of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.574146/full#supplementary-material
Guzmán-Guzmán, P., Porrás-Troncoso, M. D., Olmedo-Monfil, V., and Herrera-Estrella, A. (2019). Trichoderma species: versatile plant symbionts. *Phytopathology* 109, 6–16. doi: 10.1094/PHYTO-07-18-00218-RW

Hannula, S. E., Morrien, E., de Hollander, M., Van Der Putten, W. H., van Veen, J. A., and De Boer, W. (2017). Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. *ISME J.* 11, 2294–2304. doi: 10.1038/ismej.2017.90

Hayward, J., Horton, T. R., and Nuñez, M. A. (2015). Ectomycorrhizal fungal communities coinhabiting with Pinaceae host plants in Argentina: Grings bajo el bosque. *New Phytol.* 208, 497–506. doi: 10.1111/nph.13453

Herzog, C., Hartmann, M., Frey, B., Sierist, B., Rumpel, C., Buchmann, N., et al. (2019). Microbial successional decomposing root litter in a drought-prone Scots pine forest. *ISME J.* 13, 2346–2362. doi: 10.1038/s41396-019-0436-6

Horton, T. R. (2017). “Sporde dispersal in ectomycorrhizal fungi at fine and regional scales?”, in *Biogeography of Mycorrhizal Symbiosis*. ed. I. Tedersoo (New York, NY: Springer), 61–78. doi: 10.1007/978-3-319-56363-3_3

Ka, K. H., Kim, H. S., Hur, T. C., Park, H., Jeon, S. M., Ryoo, R., et al. (2018). Analysis of Environment and Production of *Tricholoma matsutake* in Matsutake-infected Pine Trees. *Korean J. Med. Mycol.* 46, 34–42. doi: 10.4489/KJM.20180005

Kareki, K., and Kawakami, Y. (1985). Artificial formation of shiitake (fungus colony) by planting the pine saplings infected with *Tricholoma matsutake* (Ito et Imai) *Sing. Bull. Hiroshima Prefect. For. Exp. Station* 20, 13–23.

Kennedy, P. G., and Bruns, T. D. (2005). Priority effects determine the outcome of *Tricholoma* fruiting bodies in a coastal pine forest. *ISME J.* 1, 2346–2362. doi: 10.1038/s41396-019-0436-6

Koide, R. T., Xu, B., Sharda, J., Lekberg, Y., and Ostiguy, N. (2005). Evidence of *Tricholoma matsutake* in abandoned coal mine spoils. *Mycobiology* 33, 235–239. doi: 10.5941/MYCO.2005.33.4.235

Lee, W. H., Han, S. K., Kim, B. S., Shrestha, B., Lee, S. Y., Ko, C. S., et al. (2007). *Tricholoma matsutake*-infected young pine by coculturing aseptic pine seedlings and *Tricholoma matsutake* (Ito et Imai) *Sing. Bull. Gov. For. Exp. Stn. Tokyo* 293, 105ñ170. doi: 10.1371/journal.pone.0205900

Martínez Arbizu, P. (2017). *Pairwise Multilevel Comparison Using Adonis*. *R Package Version 0.3*. Available online at: https://github.com/pmartinezarbizu/pairwiseAdonis (accessed December 2, 2019).

Matsuda, Y., Noguchi, Y., and Ito, S. I. (2009). Ectomycorrhizal fungal community of naturally regenerated *Pinus thunbergii* seedlings in a coastal pine forest. *J. For. Res.* 14, 335–341. doi: 10.1007/s10310-009-0140-x

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS One* 8:e61217. doi: 10.1371/journal.pone.0061217

Mello, A., Mizioz, L., Vizzini, A., Napoli, C., Kowalchuk, G., and Bonfante, P. (2010). *Bacterial* and fungal communities associated with Tuber magnatum-productive niches. *Plant Biosyst.* 144, 323–332. doi: 10.1080/1126350900374724

Menkis, A., and Vasasiti, R. (2011). Fungi in roots of nursery grown *Pinus sylvestris*: ectomycorrhizal colonisation, genetic diversity and spatial distribution. *Microb. Ecol.* 61, 52–63. doi: 10.1007/00248-010-9676-8

Michiele, C. B., and Rep, M. (2009). Pathogen profile update: *Fusarium oxysporum*. *Mol. Plant Pathol* 10, 311–324. doi: 10.1111/j.1364-7370.2009.00538

Min, Y. J., Park, M. S., Fong, J. J., Quan, Y., Jung, S., and Lim, Y. W. (2014). Diversity and saline resistance of endophytic fungi associated with *Pinus thunbergii* in coastal shelterbelts of Korea. *J Microbiol. Biotechnol.* 24, 322–333. doi: 10.4014/jmb.1310.00104

Minnis, A. M., and Lindner, D. L. (2013). Phylogenetic evaluation of Geomyces and allies reveals no close relatives of *Pseudogymnoascus destructans*, comb. nov., in bat herbancula of eastern North America. *Fungal Biol.* 117, 636–649. doi: 10.1016/j.fusbio.2013.07.001

Moler, E. R., and Aho, K. (2018). Whitebark pine foliar endophyte communities in the southern Cascade Range, USA: host mycobiomes and white pine blister rust. *Fungal Ecol.* 33, 104–114. doi: 10.1016/j.fusene.2018.02.003

Mucha, J., Zadowny, M., Werner, A., Napierala-Filipiak, A., and Łakomy, P. (2008). Antagonistic activity of the ectomycorrhizal fungus *Suillus bovinus* challenged by saprotrophic fungi from different soils. *Nova Hedwigia* 87, 373–385. doi: 10.1127/0029-5305/2008/0037-0373

Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., et al. (2016). FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. *Fungal Ecol.* 20, 241–248. doi: 10.1016/j.fusene.2015.06.006

Nilsson, R. H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., and Tedersoo, L. (2019). Mycobiome diversity: high-throughput sequencing and identification of fungi. *Nat. Rev. Microbiol.* 17, 95–109. doi: 10.1038/s41579-018-0116-y

Obase, K., Cha, J. Y., Lee, J. K., Lee, S. Y., Lee, J. H., and Chun, K. W. (2009). Ectomycorrhizal fungal communities associated with *Pinus thunbergii* in the eastern coastal pine forests of Korea. *Mycorrhiza* 20, 39–49. doi: 10.1007/00572-009-0262-1

Ogawa, M. (1976). Studies on the artificial reproduction of *Tricholoma matsutake* (Ito et Imai) Sing. III. Effects of growth promotion of natural products on the vegetative growth of *T. matsutake*. *Trans. Mycol. Soc. Jpn.* 17, 492–498.

Ogawa, M. (1977). Microbial ecology of mycorrhizal fungus, *Tricholoma matsutake* (Ito et Imai) Sing. in pine forest. III: fungal flora in Shiro soil and on the mycorrhiza. *Bull. Gov. For. Exp. Stn. Tokyo* 293, 105–170.

Oh, S. Y., Park, M. S., Cho, H. J., and Lim, Y. W. (2018). Diversity and effect of *Trichoderma* isolated from the roots of *Pinus densiflora* within the fairy ring of pine mushroom (*Tricholoma matsutake*). *PLoS One* 13:e0205900. doi: 10.1371/journal.pone.0205900

Oh, S. Y., Park, M. S., and Lim, Y. W. (2019). The Influence of Microfungi on the Mycelial Growth of Ectomycorrhizal Fungi *Tricholoma matsutake*. *Microorganisms* 7:169. doi: 10.3390/microorganisms7060169

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Minchin, D., et al. (2018). vegan: *Community Ecology Package*. *R package version 2.5–2*. Available online at: https://CRAN.R-project.org/package=vegan (accessed December 2, 2019).

Park, M. C., Sim, S. G., and Cheon, W. J. (2007). Method of preparing *Tricholoma matsutake*-infected young pine by coculturing asceptic pine seedlings and *T. matsutake*. U.S. Patent No 7,269,923. Washington, DC: U.S. Patent and Trademark Office.
