Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original article

Association of hyperglycaemia with hospital mortality in nondiabetic COVID-19 patients: A cohort study

M. Mamtani a,1, A.M. Athavale b,1, M. Abraham b, J. Vernik b, A.R. Amarah b, J.P. Ruiz b, A.J. Joshi b, M. Itteera b, S.D. Zhukovski c, R.P. Madaiah d, B.C. White e, P. Hart b, H. Kulkarni a,*

a M&H Research, LLC, San Antonio, Texas, USA
b Division of Nephrology, Department of Medicine, Cook County Health, Chicago, Illinois, USA
b Rush Medical College, Chicago, Illinois, USA
c Cerner Corporation, Kansas City, Missouri, USA
d Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA

Abstract

Objective. – Diabetes is a known risk factor for mortality in Coronavirus disease 2019 (COVID-19) patients. Our objective was to identify prevalence of hyperglycaemia in COVID-19 patients with and without prior diabetes and quantify its association with COVID-19 disease course.

Research design and methods. – This observational cohort study included all consecutive COVID-19 patients admitted to John H Stroger Jr. Hospital, Chicago, IL from March 15, 2020 to May 3, 2020 and followed till May 15, 2020. The primary outcome was hospital mortality, and the studied predictor was hyperglycaemia [any blood glucose ≥7.78 mmol/L (140 mg/dL) during hospitalization].

Results. – Of the 403 COVID-19 patients studied, 51 (12.7%) died; 335 (83.1%) were discharged while 17 (4.2%) were still in hospital. Hyperglycaemia occurred in 228 (56.6%) patients; 83 of these hyperglycaemic patients (36.4%) had no prior history of diabetes. Compared to the reference group no-diabetes/no-hyperglycaemia patients the no-diabetes/hyperglycaemia patients showed higher mortality [1.8% versus 20.5%, adjusted odds ratio 21.94 (95% confidence interval 4.04–119.0), P < 0.001]; improved prediction of death (P = 0.01) and faster progression to death (P < 0.01). Hyperglycaemia within the first 24 and 48 h was also significantly associated with mortality (odds ratio 2.15 and 3.31, respectively).

Conclusions. – Hyperglycaemia without prior diabetes was common (20.6% of hospitalized COVID-19 patients) and was associated with an increased risk of and faster progression to death. Development of hyperglycaemia in COVID-19 patients who do not have diabetes is an early indicator of progressive disease.

© 2021 Elsevier Masson SAS. All rights reserved.

Introduction

The coronavirus disease 2019 (COVID-19) pandemic has resulted in over 98 million cases and 2.1 million deaths globally [1]. Diabetes is associated with a higher mortality, need for intensive care, acute respiratory distress syndrome in COVID-19 disease [2]. Diabetes (HbA1c ≥ 6.5%) and/or uncontrolled hyperglycaemia (≥2 glucose measurements >10.0 mmol/L (>180 mg/dL)) are associated with poor outcomes in COVID-19 patients [3]. However, stress hyperglycaemia (defined as blood glucose values exceeding 7.78 mmol/L) (140 mg/dL) in the absence of diabetes is seen in severe acute illness [4–6]. Previous studies have shown that in critically ill patients, stress hyperglycaemia is associated with poor clinical outcomes during hospitalization [7]. Stress hyperglycaemia can prolong the length of hospital stay [8] - a parameter that is closely linked with poor outcomes in COVID-19 patients [9]. An excess of circulating proinflammatory cytokines (common in COVID-19 patients) is associated with the consequences of hyperglycaemia [10]. Sardu et al. [11] showed that hyperglycaemia during hospitalization correlated with interleukin-6 and D-dimer concentrations in COVID-19 patients. However, the mechanistic basis and replicability of associations of hyperglycaemia in absence of diabetes with COVID-19 disease course remains understudied.

In this investigation, we focused on the potential of hyperglycaemia detected early during hospitalization of COVID-19 as an...
indicator of mortality. We hypothesized that hyperglycaemia even in the absence of diabetes may be associated with adverse outcomes in COVID-19 patients. Here, we report the independent association of hyperglycaemia with clinical course in COVID-19 patients using a single-centre data of hospitalized COVID-19 patients from the United States of America.

Methods

Study participants

This retrospective, hospital record-based study was conducted at John H. Stroger, Jr Hospital of Cook County, Chicago, IL. All COVID-19 patients admitted between March 15, 2020 and May 3, 2020 and followed till the censoring date of May 15, 2020 were included. Thus, follow-up of the cohort was done from the date of admission to the hospital to one of the following endpoints: in-hospital death; hospital discharge or censoring on the day the study ended (May 15, 2020). On the censoring day, 17 (4%) patients were still in hospital. COVID-19 was confirmed using the polymerase chain reaction for the RdRp and N genes. Clinical data of these patients was collected by chart reviews. The study was approved by the Institutional Review Board of the Cook County Health, Chicago, IL with waiver of informed consent.

Outcomes and predictors

The primary outcomes were hospital mortality and time to progress to mortality. Outcome ascertainment was censored on May 15, 2020. Patients still in hospital who did develop an outcome under consideration were censored for computation of length of stay and time-to-event analyses. Main predictor of interest was hyperglycaemia defined as at least one BG value ≥7.78 mmol/L (140 mg/dl) – a cut-off recommended as a treatment target in critically ill patients [12] and a definition of hyperglycaemia in non-critically ill hospitalized patients [13]. To examine the use of hyperglycaemia as an early predictor of adverse outcomes, we also considered occurrence of hyperglycaemia within the first 24 h (HG24) and 48 h (HG48) of admission. BG values were retrospectively derived from the database and represented a mixture of fasting and non-fasting measurements and venous and capillary sources. Detailed information collected on socio-demographics, presenting symptoms, comorbidities, laboratory investigations, history of medications and substance use from the electronic health records. Severity of illness at admission was quantified using the qSOFA score that combines information from respiratory rate, systolic blood pressure and mental status into a single metric [14].

Statistical analyses

Descriptive statistics included mean ± standard deviation for continuous variables and number (%) for categorical variables. The time trends of BG values during hospitalization were examined using generalized estimating equations (GEE). The GEE models used Gaussian family function, identity link function and equal correlation structure. BG time trends were smoothed using cubic splines with a knot every day for the first 14 days of admission. The association of diabetes and hyperglycaemia with outcomes was tested for significance using the Pearson’s chi-square test and the Kruskal-Wallis test as appropriate. The association with risk of mortality was quantified as odds ratios (OR) using multivariable stepwise logistic regression analyses with forward addition strategy and a retention criterion of 0.05. The forward addition strategy was used since it is robust to the number of predictors for a moderate size dataset and accounts for the potential collinearity among covariates without overfitting the data. We did not input missing data and the stepwise models described below have been run on participants without missing data. The first step of the forward addition strategy – included a total of 59 covariates – 4 sociodemographic variables (age, gender, ethnicity and black race), 12 symptoms (cough, cough with sputum, nasal congestion, headache, fever, fever with chills, shortness of breath, nausea/vomiting, diarrhoea, myalgia, altered mental status and fatigue), 14 comorbidities (hypertension, diabetes, coronary artery disease, congestive heart failure, chronic obstructive pulmonary disease, asthma, other lung disease, chronic kidney disease, end-stage renal disease, chronic liver disease, cancer, ever smoker, alcohol consumption and qSOFA score), 11 laboratory investigations (total white cell count, neutrophil count, lymphocyte count, platelet count, haemoglobin concentration, serum sodium, serum bicarbonates, serum creatinine, serum globulin, proteinuria, haematuria) 15 medications (insulin, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, beta-blockers, other anti-hypertensive, statins, non-steroidal anti-inflammatory drugs, aspirin, vitamin D, hydroxychloroquine, azithromycin, rivaroxaban, chemotherapy and steroids) and 3 substance use variables (marijuana, cocaine and heroin). In the second step of this analysis, we added hyperglycaemia to the full model (total number of covariates 60). Lastly, to understand the association of hyperglycaemia with and without diabetes, we replaced the covariate hyperglycaemia with indicators for diabetes and hyperglycaemia groups and used the DM-/HG- patients as the reference group. Improvement in the prediction of the mortality using hyperglycaemia was also assessed by estimating the area under a receiver-operating characteristic curve (AUROC) from the fitted logistic regression models. Statistical significance for difference between two AUROCs was tested using the DeLong and DeLong test. To ensure robustness of the analyses conducted, we embarked upon some additional analyses. First, since some patients initially not identified as having diabetes could have been misclassified, we conducted sensitivity analyses by restricting the analyses to patients on whom Hba1C data was available; in this subset we reclassified patients with Hba1C ≥ 6.5% as diabetes. To arrive at robust estimates of standard errors and 95% confidence intervals, we conducted bootstrapping using the number of participants on whom Hba1C data was available and 1000 replicates. Second, we tested the hypothesis that the number of glucose measurements ordered till detection of hyperglycaemia is not a simple proxy measure of hyperglycaemia. Third, to ensure that the estimates of AUROC were unaffected by sample characteristics, we conducted 10-fold cross validation. For this, the folds were obtained a priori by shuffling the entire dataset and diving randomly into 10 equal parts. Ten-fold cross-validation proceeded by using each fold as the validation set and the remaining folds as the derivation set.

To test whether a continuous variable was associated with mortality in a linear fashion, we compared the likelihood ratio χ² statistic and the pseudo-R² of the untransformed covariate with a quadratic polynomial, cubic polynomial, log-transformed and square-root transformed variable as predictor. Further, we examined the strength of association of the quartiles of the untransformed variable with mortality and estimated the significance value of a linear trend using the Cochran-Armitage trend test. The association of early detection of hyperglycaemia with mortality was assessed by replacing the variable hyperglycaemia with hyperglycaemia during the first 24 h (HG24) or 48 h (HG48) in the multivariable stepwise logistic regression analyses described above.

Lastly, we tested the association of the study groups with the time to in-hospital mortality, we used Kaplan–Meier plots, logrank test and Cox proportional hazards regression to estimate the hazard ratios (HR). To test the independence of association from potential confounders, we used a forward addition, stepwise Cox regression
Table 1 (Continued)

Characteristic	Mean/N	SD/%	N availableb
Serum ALT (IU/L)	44.74	55.53	375
Serum LDH (IU/L)	375.84	475.00	313
Serum D-dimer (mg/L)	2.18	3.30	221
Lowest plasma glucose (mg/dL)	450.36	190.66	152
Serum Troponin (μg/L)	0.26	1.86	116
Serum creatine kinase (U/L)	2682.92	1600.10	53
Serum C-reactive protein (mg/L)	12.72	8.88	279
Proteinuria	8	2	403
Haematuria	52	12.9	403
HBAlc (%)	7.22	2.49	279

Medication history

- Insulin: 69 (17.1) 403
- ACE inhibitors: 85 (21.1) 403
- Angiotensin receptor blockers: 28 (7) 403
- Mineralocorticoid receptor antagonist: 10 (3) 403
- Beta-blocker: 62 (15.4) 403
- Other antihypertensive: 103 (25.6) 403
- Statin: 137 (34.0) 403
- NSAID: 28 (7) 403
- Aspirin: 77 (19.1) 403
- Vitamin C supplementation: 1 (<1) 403
- Vitamin D supplementation: 6 (1) 403
- Hydroxychloroquine: 2 (<1) 403
- Azithromycin: 4 (1) 403
- Warfarin: 10 (2) 403
- Aripiprazole: 4 (1) 403
- Steroids: 3 (1) 403
- Chemotherapy: 16 (4) 403
- Calcineurin inhibitor: 3 (1) 403
- Mycophenolate mofetil: 2 (<1) 403
- Azathioprine: 1 (<1) 403

Substance use

- Marijuana: 16 (4) 403
- Cocaine: 19 (5) 403
- Heroin: 22 (5) 403
- Amphetamine: 2 (<1) 403

Outcomes

- ICU admission: 97 (24.1) 403
- ARDS: 61 (15.1) 403
- Mechanical ventilation: 56 (13.9) 403
- Death: 51 (12.7) 403

Abbreviations: C = degrees in centigrade, mmHg = millimeters of mercury, bpm = beats per minute, min-per-minute, L = Litre, g/L = grams per Litre, % = percentage, μg/L = microgram per Litre, mg/L = milligram per Litre, mmol/L = millimol per litre, mg/dL = milligram per decilitre, μmol/L = micromole per litre, g/L = grams per litre, U/L = units per litre, IU/L = international units per litre, mg/L = milligram per litre, mg/L = milligram per litre.

* Columns indicate mean and standard deviation (SD) for continuous variables and number (N) and percentage for categorical variables.

b Total number of study participants on whom data was available.

b Parentheses show units.

variable selection strategy similar to the one used in logistic regression analyses explained above. Even though the study enrolled the patients from the time of admission, for the survival analyses, participants were considered to enter the cohort on the date and time of the first detection of hyperglycaemia; if hyperglycaemia was never detected then date and time of hospital admission was considered as the entry point. Exit from the cohort was as defined earlier.

All statistical analyses were conducted using Stata 12.0 software package (Stata Corp., College Station, TX). The statistical significance was assessed at a type I error rate of 0.05.

Results

Study participants

We included a total of 403 (out of 406 eligible, 99.3%) COVID-19 patients who were admitted to the study centre and had non-missing
Prevalence of hyperglycaemia and diabetes

Hyperglycaemia was observed in 228 (56.6\%) patients (Fig. 1A, yellow and red slices of the pie combined). The presence of hyperglycaemia and diabetes identified four subsets of patients: those with diabetes and hyperglycaemia (DM+/HG+, n = 145, 36.0\%), patients with diabetes but no hyperglycaemia (DM+/HG-, n = 10, 2\%), patients with hyperglycaemia who did not have diabetes (DM−/HG+, n = 83, 20.6\%) and patients who had neither diabetes nor hyperglycaemia (DM−/HG−, n = 165, 40.9\%) (Fig. 1A).

HbA1c values within the past year were available for 279 patients (69.2\%, Table 1). The median (interquartile range) HbA1c values for the four groups were as follows: DM+/HG+ group (available n = 141) – 8.0% (3.3\%); DM+/HG− group (available n = 8) – 6.8% (0.75\%); DM−/HG+ group (available n = 51) – 5.7% (0.8\%) and DM−/HG− group (available n = 79) – 5.6% (0.6\%). Three (2\%) patients belonging to the DM−/HG− group and 10 (19.6\%) patients belonging to the DM+/HG+ group had one HbA1c value ≥ 6.5\%.

As shown in Fig. 1B (White funnel), for the 403 patients included in this study, we had a total of 7263 (average 2.91 measurements per patient per day) BG measurements over the entire period of hospitalization. Of these, 3983 BG measurements were on 97 patients who were admitted to ICU during hospital stay and 70/97 (72.2\%) patients had their first hyperglycaemia finding before ICU admission. Of the 83 patients in the DM−/HG+ group (Fig. 1B, yellow funnel), 36 were admitted to ICU and 25/36 (69.4\%) patients had their first hyperglycaemia finding before ICU hospitalization. The average time (95\% CI) from first hyperglycaemia finding to ICU admission was 6.83 days (5.32–8.36 days) in all patients (n = 70) and 7.32 days (4.45–10.2 days) in the DM−/HG+ group (n = 25).

Glycaemia during hospitalization

Fig. 2A shows the cubic spline smoothed, non-linear trends of glycaemia in the study participants over the period of hospitalization according to the study groups. DM−/HG− patients (blue curve) had well-maintained BG levels that stayed around 5.56 mmol/L (100 mg/dL) throughout the first two-weeks of hospitalization with very little fluctuation. The DM+/HG+ patients (green curve) also mimicked the blue curve albeit with wider confidence bands and smaller number of data points. DM+/HG− patients (red curve) demonstrated consistently high BG values with substantially larger fluctuations.

BG levels of the DM−/HG+ patients (yellow curve) showed an interesting pattern. For the first week, these patients had low average values that appeared to increase in the second week. Indeed, during the second week the DM+/HG+ and DM−/HG− patients (red and yellow curve, respectively) showed overlapping confidence bands indicating no statistical difference in average BG levels. Consistent with these observations, the average coefficient of variation of BG values in the DM+/HG+ (red curve), DM+/HG− (green curve), DM−/HG+ (yellow curve) and DM−/HG− (blue curve) patients was 28.3\%, 9.8\% (likely influenced by a shorter duration of follow-up, Fig. 2A), 24.9\% and 7.3\%, respectively.

Association of hyperglycaemia and diabetes with mortality

In the first step of the forward addition, stepwise logistic regression analyses, higher neutrophil percentage, older age, insulin therapy (as outpatient), haematuria, high serum globulin at admission, low platelet count and nasal congestion significantly associated covariates retained in this final model (Table 2, Step 1). Interestingly, as shown in Table S1 (see supplementary materials associated with this article on line) and Figure S1 (see supplementary materials associated with this article on line), the association of neutrophilia with mortality was linear. In the second step of this analysis, we added hyperglycaemia to the full model (total number of covariates 60) and found that hyperglycaemia was retained in the final model with an OR of 14.0. In this model, two new covariates (fever with chills and marijuana use) got added to the final model at the expense of the symptom of nasal congestion. The AUROC for models in step 1 and step 2 was 0.86 (95\% CI 0.81–0.91) and 0.90 (95\% CI 0.86–0.94), implying a statistically significant improvement in prediction (increase in AUROC 0.04, DeLong and DeLong P = 0.01). Lastly, to understand the association of hyperglycaemia with and without diabetes, we replaced the covariate hyperglycaemia with indicators for diabetes and hyperglycaemia groups and used the DM−/HG− patients as the reference group. The results (Table 2, step 3) showed that occurrence of
hyperglycaemia in patients with or without diabetes was significantly associated with hospital mortality. All other covariates retained in the final model in this step 3 were the same as those retained in step 2. This analytic strategy demonstrated that hyperglycaemia with or without diabetes was an independent predictor of hospital mortality.

We assessed the robustness of this finding in several ways. First, sensitivity analyses on patients with HbA1c data reaffirmed these results with a comparably high OR (13.0 Table S2; see supplementary materials associated with this article on line) and bootstrap CIs mostly above unity. Second, the first detection of hyperglycaemia was not influenced by the number of BG measurements ordered till that time point (adjusted OR 0.94, 95% CI 0.87–1.03). Third, we conducted a 10-fold cross-validation of the final model (Table 2, step 2); the results of which (Table S3; see supplementary materials associated with this article on line) showed a consistent prediction across folds (average 10-fold accuracy 0.75) implying that the model did not overfit the data. Together, these results indicated that our observation of the association between hyperglycaemia and mortality risk in hospitalized COVID-19 patients was robust to potential misclassification and indication biases.

Hyperglycaemia as an early indicator of mortality

To examine the clinical use of hyperglycaemia as a predictor of mortality, we investigated whether detection of hyperglycaemia early after admission can still provide a prognostic value. Average time from hospital admission to the first detection of hyperglycaemia was 0.11 days (95% CI 0.0 – 0.27 days) in diabetes patients and 2.15 days (95% CI 1.46 – 2.83 days) in non-diabetes patients. Of the 228 patients with hyperglycaemia, 177 (77.6%) were detected by the end of 24 h and an additional 17 (total of 194, 85.1%) by the end of 48 h. For this, we repeated the analyses shown in Table 2, step 2 by replacing the variable hyperglycaemia with hyperglycaemia detected during the first 24 h (HG24) or 48 h (HG48). We found (Table S4; see supplementary materials associated with this article on line) that both HG24 and HG48 were significant and independent predictor of mortality (HG24 - OR 2.15, 95% CI 1.00 – 4.59, HG 48 OR - 3.31, 95% CI 1.44 – 7.62). Sensitivity analyses (Table S1; see supplementary materials associated with this article on line) in patients with HbA1c data suggested that while HG24 was marginally non-significant, HG48 was an independent predictor of mortality. Together, these results indicated that hyperglycaemia was an early predictor of the risk of mortality in the study cohort.
Association of hyperglycaemia and diabetes with the time to death

Table 3

Covariates	HR	95% CI
Step 1: using 59 covariates*		
Fatigue	3.33	1.53–7.23
Dialysis	2.95	1.21–7.22
Differential neutrophil countb	1.05	1.01–1.08
Initial Serum globulin (g/L)	2.25	1.32–3.84
Initial Platelet count (x10^12 cells/L)	0.99	0.99–1.00
Steroids	12.21	1.49–100.0
Step 2: Step 1 covariates + hyperglycaemia		
Hyperglycaemia	5.56	1.62–19.0
Fatigue	3.24	1.46–7.16
Age (y)	1.03	1.01–1.06
Steroids	13.88	1.64–117.65
Initial Serum globulin (g/L)	2.15	1.31–3.50
Initial Platelet count (x10^12 cells/L)	0.99	0.99–1.00
Differential neutrophil countb	1.04	1.00–1.08
Marijuana use	6.07	1.24–29.6
Rivaroxaban	8.37	1.04–66.8
Step 3: Step 1 covariates + combination of diabetes and hyperglycaemia		
Glycaemic status		
No-diabetes/no-hyperglycaemia	Ref	
No-diabetes/hyperglycaemia	8.86	1.90–41.4
Diabetes/no-hyperglycaemia	10.6	0.85–131.8
Diabetes/hyperglycaemia	7.58	1.73–33.1
Fatigue	3.41	1.49–7.80
Age (y)	1.04	1.01–1.06
Steroids	16.0	1.83–139.8
Initial Serum globulin (g/L)	2.26	1.41–3.60
Initial Platelet count (x10^12 cells/L)	0.99	0.99–1.00
Differential neutrophil countb	1.04	1.00–1.08
Marijuana use	5.19	0.99–160.5
Rivaroxaban	9.63	1.19–78.3

HR, hazards ratio; CI, confidence interval; Ref, reference category.
Abbreviations: % — percentage, y — years, g/L — grams per Litre, L — Litre.
* Results are from the final model retained after stepwise forward addition strategy. The full list of included variables in given in the Methods section. Variables in the final model are shown in the order of entry into the model.
b used as a continuous variable and expressed as percentage.

Discussion

The prevalence of hyperglycaemia in our study of hospitalized COVID-19 patients was 56.6% which is higher than the 38–40% prevalence reported in non-COVID-19 patients [15]. Our analyses have uncovered hospitalized nondiabetic COVID-19 patients with hyperglycaemia as a subgroup (20.6%) that is associated with a high risk of death and progress rapidly to death. Diabetes patients are a known high-risk group in COVID-19 disease [2,16]. While our results support this view, they also imply that it may be more informative to focus on the glycaemic status as an indicator of the clinical course of COVID-19 patients. Focusing on hyperglycaemia, as shown in Table 2, Table 3 and Fig. 2, can potentially inform a clinician early and accurately about the anticipated disease course. Our results also point toward the possibility of using hyperglycaemia within the first 48 h of admission as an independent predictor of COVID-19 prognosis. It is noteworthy that our definition of hyperglycaemia is inherently biased towards picking up hyperglycaemia early during disease.

We and others have previously demonstrated that the degree of hyperglycaemia in critically ill patients without diabetes plays a significant prognostic role in predicting hospital mortality [8,17,18]. Indeed, Max Harry Weil, father of critical care medicine, knew by 1973 that in critically ill patients, “Elevation of blood sugar reflects secretion of increased amounts of catecholamines from the adrenal medulla” [19]. Epinephrine-induced phosphorylation of the insulin receptor reduces its tyrosine kinase activity [20] and causes prompt and prolonged inhibition of pancreatic insulin secretion [21]. Thus, early appearance of hyperglycaemia in nondiabetic COVID-19 patients likely signals increased systemic stress.

We conjecture that hyperglycaemia may contribute to development of cytokine storm [11,22,23] and severe lung pathology in critically ill COVID-19 patients by promoting proinflammatory glycosylation of the Fc portion of IgG. A key characteristic that determines IgG pathogenicity is Fc glycosylation [24]. As discussed by Bermingham et al. [25], hyperglycaemia can drive production of diphosphate-N-acetylgalcosamine, a substrate for glycosylation of IgG-Fc. Elevated HbA1c is associated with pro-inflammatory glycosylation of IgG-Fc in both Type 1 and Type 2 diabetics [26,27] and predicts a more difficult course of COVID-19 [28]. Hoepel et al. [29] found increased Fc glycosylation in anti-Spike IgG from severely ill COVID-19 patients and went on to show that macrophages responded to these patients’ Spike-IgG immune complexes by producing inflammatory cytokines. In an in vitro model with human macrophages, pulmonary artery endothelial cells, and platelets, these Spike-IgG immune complexes induced long-lasting endothelial disruption and platelet activation. Spike-IgG immune complexes without enhanced Fc glycosylation did not induce these pathophysiological responses, and specific blockade of the macrophage Fcγ2 receptor blocked the inflammatory response to enhanced Fc-glycosylated IgG-Spike immune complexes [29]. Similarly, Zlamal et al. [30] have demonstrated platelets’ Fcγ2-receptor is responsible for platelet activation by IgG immune complexes from patients with severe COVID-19.
Platelet activation induced by enhanced Fc glycosylated immune complexes is consistent with platelet hyperactivity in severe COVID-19 patients [31] and autopsy histopathology identifying platelet-fibrin microthrombi in the lungs [32]. Excessive macrophage stimulation by enhanced Fc-glycosylated immune complexes is consistent with the macrophage activation syndrome (MAS) often manifest in the laboratory values seen in severe COVID-19 [33]. The result is hypercoagulability with compromised micro perfusion, pulmonary endothelial fluid leakage, and severe respiratory distress syndrome that can result in death.

However, this diagnostic role of hyperglycaemia varies by the primary cause of critical care such that primary diagnoses like trauma, coma and neurological diseases are especially prone to high likelihood of adverse outcomes associated with hyperglycaemia [8]. Our results need to be viewed in the light of the emerging literature on association of hyperglycaemia with COVID-19 prognosis. Studies have shown that pre-existing diabetes [2], newly detected diabetes [34], prediabetes [35], uncontrolled hyperglycaemia (≥2 BG values of ≥10 mmol/L) (≥180 mg/dl) [3] or fasting BG ≥ 7 mmol/L (≥126 mg/dl) [36] are significant determinants of COVID-19 prognosis. Our study adds to these findings the observation that hyperglycaemia detected early after hospitalization in patients without a history of diabetes can also independently predict the disease course in COVID-19 patients. Notably, as posited by Sathish et al. [37], SARS-CoV-2 may directly injure the pancreatic β-cells, may impede insulin signalling pathways or activate the renin-angiotensin system and via a combination of these mechanisms may contribute to new onset diabetes. We do not have post-discharge follow-up data on the study subjects to evaluate whether the hyperglycaemia detected during current hospitalization persisted after discharge, however, there remains a distinct possibility that the non-diabetic hyperglycaemia observed during a COVID-19 hospitalization may be a harbinger of new or unmasked diabetes.

Three other incidental findings in this study merit a mention. First, haematuria was found to be significantly associated with the risk of mortality in the logistic regression model. There is burgeoning evidence to support the association of haematuria, proteinuria and acute kidney injury (AKI) during COVID-19 disease and these parameters are considered to be early indicators of the renal involvement in COVID-19 [38]. The observed independent association of haematuria with mortality in this study, thus raises the possibility of kidney involvement. Whether this association is further accentuated by the presence of diabetes and/or hyperglycaemia needs to be investigated in future studies. Second, we found that differential neutrophil count remained a significantly associated covariate across all models. Several other studies have demonstrated the prognostic utility of relative or absolute neutrophilia in COVID-19 [39]. Third, our study found that high initial platelet count was associated with a reduced risk of mortality – a finding that concurs with other observations [40]. Thus, our results concur with most of the other haematological associations with in-hospital mortality in COVID-19 patients, but additionally reports the association of diabetic as well as non-diabetic hyperglycaemia even after accounting for known haematological associations. Notably, the prevalence of other factors retained in final models shown in Tables 2 and 3 was low and thus resulted in wide confidence intervals that need to be evaluated in larger samples in future studies.

Our study has some limitations. First, this is a retrospective, observational study of hospitalized COVID-19 patients and is thus prone to all the limitations of observational studies. For instance, causative association cannot be established from our results. While our analyses attempted to ensure that hyperglycaemia preceded the outcomes of interest, the possibility of a temporal bias cannot be refuted. Second, our study does not include any practice changes based on hyperglycaemia detection. However, our results suggest that a closer clinical scrutiny of COVID-19 patients based on glycaemic status may provide additional insights into their clinical course. Studies in future need to specifically address these hypotheses. Third, although we have provided a coherent model of the pathophysiology, whether hyperglycaemia in COVID-19 patients is consequential or coincidental to disease biology is currently unknown and cannot be surmised from our results. Studies are needed to specifically understand the biology of hyperglycaemia in COVID-19 patients. Fourth, since the BG data were retrospectively derived from the source of blood sample, its relation to fasting status remains unknown in this study. This heterogeneity of BG sampling could have biased our OR estimates. Despite this potential measured and unmeasured confounding, our results from sensitivity analyses indicate that our interpretations are likely to have been minimally influenced by confounding due to BG sampling. Fifth, the likelihood of undiagnosed diabetes at admission was 4% and 10% in the no-diabetes/no-hyperglycaemia and no-diabetes/hyperglycaemia groups, respectively. We evaluated, through sensitivity analyses, the influence of this misclassification on our interpretations. While the sensitivity analyses demonstrated the robustness of our inferences, larger multicentric studies are needed before the findings can be generalized. Sixth, information on neither the duration of diabetes nor the duration and dose of antidiabetic medication was available. In the same vein, it should be noted that glucose lowering agents such as metformin have been shown to influence outcomes in COVID-19 patients [41,42]. However, none of the admitted COVID-19 patients received any glucose lowering drug other than insulin which was accounted for in our analyses. Our study represents the clinical practice during very early stages of the pandemic when clear protocols for dysglycaemic COVID-19 patients were not in place. Whether development and implementation of such protocols can improve COVID-19 outcomes cannot be directly answered by our study and should be evaluated in future studies. Seventh, arguably drugs such as dexamethasone that are used in the management of respiratory distress can directly inflate blood glucose levels and may masquerade as hyperglycaemia. During the very early stages of the pandemic that our study data captures, corticosteroids were not commonly used. Indeed, in our dataset only three patients had received steroids during index hospitalization. Therefore, we believe that the potential influence of glucose-altering drugs on our inferences would be minimal.

Nevertheless, we have observed the appearance of hyperglycaemia in nondiabetic COVID-19 patients who are much more likely to progress to severe disease. We suggest this is an early marker of a stress response that results in amplification of the pathophysiology outlined above. Close and perhaps continuous monitoring of blood glucose in hospitalized COVID-19 patients could provide clinicians with early recognition of this risk. Hyperglycaemia as defined in this study is mostly inclusive of and incremental to known diabetes status both in terms of prevalence and its association with mortality. Thus, presence of hyperglycaemia can enable early identification of patients at risk for poor outcomes and improve risk stratification of COVID-19 patients.

Funding

None.

Conflict of interest

None of the authors have a conflict of interest to disclose.
Acknowledgments
H.K., A.M.A. and M.M. conceptualized the study. H.K. and M.M. conducted statistical analyses and wrote the first draft of the manuscript. A.M.A., M.A., J.V., A.R.A., J.P.R., A.J.J., M.I., S.Z., R.P.M. and P.H. contributed to data collection and critical revision of the manuscript. B.C.W. provided the pathophysiological foil to the inference and wrote the related parts. All authors read and approved the final version of the manuscript.

Appendix A. Supplementary data
Supplementary material related to this article can be found, in the online version, at doi:https://10.1016/j.diabete.2021.101254.

References
[1] COVID-19 dashboard by the center for systems science and engineering (CSSE) at Johns hopkins university (JHU); 2020 [Accessed 25 April 2020].
[2] Huang L, Lim MA, Pannar R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia – a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr 2020;14:395–403.
[3] Bode B, Garrett V, Messler J, McFarland R, Crowe J, Booth R, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol 2020;14:813–21.
[4] Ijvanji CJ, Arianm VM, Windsor JA, Petrov MS. New-onset diabetes after acute and critical illness: a systematic review. Mayo Clin Proc 2017;92:762–73.
[5] Boonen E, Van den Bergh G. Endocrine responses to critical illness: novel insights and therapeutic implications. J Clin Endocrin Metab 2014;99:1569–82.
[6] Mifsud S, Schermb EL, Gruppetta M. Stress-induced hyperglycaemia. Br J Hosp Med 2018;79:634–9.
[7] Olariu E, Pooley N, Daniel A, Miret P, Freicer JC. A systematic scoping review on the consequences of stress-related hyperglycaemia. PLoS One 2018;13:e0194952.
[8] Mantani M, Kulkarni H, Bihari S, Prakash S, Chavan S, Huckson S, et al. Degree of hyperglycemia independently associates with hospital mortality and length of stay in critically ill, nondiabetic patients: results from the ANZICS CORE binational registry. J Crit Care 2020;55:149–56.
[9] Wynants L, Van Calster B, Bonten MMJ, Collins GS, Debray TPA, De Vos M, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ 2020;369:m1328.
[10] de Lucena TMC, da Silva Santos AF, de Lima BR, de Albuquerque Boborema ME, de Azevedo Silva J. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab Syndr 2020;14:597–600.
[11] Sarbu C, D’Onofrio N, Balestrieri ML, Barbieri M, Rizzo MR, Messina V, et al. Outcomes in patients with hyperglycemia affected by covid-19: can we do more on glycemic control? Diabetes Care 2020;43:1408–15.
[12] Lansang MC, Umpleby GE. Inpatient hyperglycemia management: a practical review for primary medical and surgical teams. Cleveland J Med 2016;83(3 Suppl 1):534–43.
[13] Kodner C, Anderson L, Pohleger K. Glucose management in hospitalized patients. Am Fam Phys 2017;96:648–54.
[14] Freund Y, Lemachatti N, Krastinova E, Van Laer M, Claessens YE, Avondo A, et al. Prognostic accuracy of sepsis-3 criteria for in-hospital mortality among patients with suspected infection presenting to the emergency department. JAMA 2017;317:301–8.
[15] Corsino L, Dhatariya K, Umpleby G. In Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, et al., editors. Management of diabetes and hyperglycemia in hospitalized patients. South Dartmouth (MA): Endotext; 2000.
[16] Schein AJ, Marre M, Thivolet C. Prognostic factors in patients with diabetes hospitalized for COVID-19: findings from the CORONADO study and other recent reports. Diabetes Metab 2020;46:265–71.
[17] Yao RQ, Ren C, Wu GS, Zhu YB, Xia ZF, Yao YM. Is intensive glucose control bad for critically ill patients? A systematic review and meta-analysis. Int J Biol Sci 2020;16:1638–75.
[18] Murphy CV, Saliba I, MacDermott J, Soe K, Dungan KM. Individualizing glycemic control in the critically ill. Crit Care Nurs Quart 2020;43:14–27.
[19] Wei NL, Shubin H. Treatment of shock caused by bacterial infections. California Med 1973;119:7–13.
[20] Yu KT, Pessin JE, Czech MP. Regulation of insulin receptor kinase by multisite phosphorylation. Biochemistry 1985;67:1081–93.
[21] Drews C, Debyser A, Nenquin M, Hensquin JC. Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms including an increase in K+ permeability of the B-cell membrane. Endocrinology 1990;126:1646–53.
[22] Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect 2020;9:558–70.
[23] Tufan A, Avanoglu Guler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turkish J Med Sci 2020;50:620–32.
[24] Jennenwein MF, Alten G. The immunoregulatory roles of antibody glycosylation. Trends Immunol 2017;38:358–72.
[25] Bermingham ML, Colombo M, McGurnaghan SJ, Blackburn LK, Vuckovic F, Pucic Bakovic M, et al. N-glycan profile and kidney disease in type 1 diabetes. Diabetes Care 2018;41:79–87.
[26] Lee SM, Jeong Y, Simms J, Warner ML, Poyner DR, Chung KY, et al. Calcinon receptor n-glycosylation enhances peptide hormone affinity by controlling receptor dynamics. J Molecular Biol 2020;432:1996–2014.
[27] Liu J, Dolnik S, Stambuk J, Trbojevic-Akmaci I, Zhang J, Zhang J, et al. Glycomics for type 2 diabetes biomarker discovery: promise of immunoglobulin G subclass-specific fragment crystallizable n-glycosylation in the Ugyhur population. OMICS 2019;23:640–8.
[28] Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res Clin Pract 2020;164:108214.
[29] Hoepel W, Chen H-J, Allahverdysena S, Manz X, Aman J, Bonta P, et al. Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses. bioRxiv 2020;2020.07.13.190140.
[30] Zilamal J, Altahous K, Jaffal H, Pelzl I, Singh A, Wittzemann A, et al. C-MAP prevents antibody-mediated thrombus formation in COVID-19. medRxiv 2020.20247775.
[31] Marine BK, Deneffe M, Middleton EA, Portier I, Rowley JW, Stubben C, et al. Platelet gene expression and function in patients with COVID-19. Blood 2020;136:1317–29.
[32] Carasana L, Sonzogni A, Nass A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis 2020;20:1135–40.
[33] Otsuka R, Seino K. Macrophage activation syndrome and COVID-19. Inflamm Regen 2020;40:19.
[34] Li H, Tian S, Chen T, Cui Z, Shi N, Zhong X, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes Metab 2020;22:1897–906.
[35] Smith SM, Boppana A, Traupman JA, Unson E, Maddock DA, Chao K, et al. Increased glucose metabolism in patients with diabetes, prediabetes, and obesity is associated with severe COVID-19. J Med Virol 2021;93:409–15.
[36] Wang S, Ma P, Zhang S, Song S, Wang Z, Ma Y, et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: a multi-centre retrospective study. Diabetologia 2020;63:2102–11.
[37] Sathish T, Tapp RJ, Cooper ME, Zimmet P. Metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. Diabetes Metab 2021;47:101204.
[38] Ouyang L, Gong Y, Zhu Y, Gong J. Association of acute kidney injury with the severity and mortality of SARS-CoV-2 infection: a meta-analysis. Am J Emerg Med 2020.50735-6757(20)30783-X.
[39] Tjendra Y, Al Mana AF, Espejo AP, Aygun Y, Millan NC, Gomez-Fernandez C, et al. Predicting disease severity and outcome in COVID-19 patients: a review of multiple biomarkers. Arch Pathol Laboratory Med 2020;144:1465–74.
[40] Pakos I, Lo KB, Salacup G, Pelayo J, Bhargav R, Peterson E, et al. Characteristics of peripheral blood differential counts in hospitalized patients with COVID-19. Eur J Haematol 2020;105:773–8.
[41] Schein AJ. Metformin and COVID-19: from cellular mechanisms to reduced mortality. Diabetes Metab 2020;46:423–6.
[42] Lalau JD, Al-Salahem A, Haydajd S, Gorenflo T, Wiersmperger N, Pichelin M, et al. Metformin use is associated with a reduced risk of mortality in patients with diabetes hospitalized for COVID-19. Diabetes Metab 2020101216.