Supplementary Information

Sensitivity to initial conditions

We determine how sensitive the final parameters are to variations in the initial parameters. For a quantity \(A \), we express the difference between its value for model \(i \) \((A^i) \) and the best model \((A^1) \) as \(\Delta \log A = \log(A^i/A^1) \), where \(A \) can be an initial property \((N_0 \text{ or } \rho_{h0}) \) or an observable property. For the latter we use \(N_{\text{cluster}} \) and the number density within the half-light radius: \(\rho_{\text{eff}} = 3 N_{\text{cluster}}/(8 \pi R_{\text{eff}}^3) \). We can write the variation in the final properties in terms of the initial properties as

\[
\begin{pmatrix}
\Delta \log N_{\text{cluster}} \\
\Delta \log \rho_{\text{eff}}
\end{pmatrix}
= \Sigma
\begin{pmatrix}
\Delta \log N_0 \\
\Delta \log \rho_{h0}
\end{pmatrix}
\]

(4)

Here \(\Sigma \) is a matrix that contains the constants that relate variations in initial parameter to variations in the final parameters. We find the four elements of \(\Sigma \) from the two models that are nearest to the observations (i.e. wBH-2, wBH-3 and noBH-2, noBH-3)

\[
\Sigma_{\text{wBH}} = \begin{pmatrix}
-5.74 & -1.56 \\
-7.19 & -1.57
\end{pmatrix},
\Sigma_{\text{noBH}} = \begin{pmatrix}
1.47 & 38.4 \\
-0.71 & 122
\end{pmatrix}.
\]

(5)

Absolute values of 1 mean that a fractional change in an initial parameter leads to the same fractional change in the final parameter. The absolute values > 1 in the left column of \(\Sigma_{\text{wBH}} \) mean that the final properties are most sensitive to \(N_0 \), which is because of the collisional nature of the wBH models. The > 1 value in the right column of \(\Sigma_{\text{noBH}} \) show that the final parameters are most sensitive to the initial density, which is because of the collisionless nature of these models. Taking the inverse of the \(\Sigma \) matrices, and assuming small variations, i.e. \(\Delta \log A \simeq \log(1 + \epsilon_A) \propto \epsilon_A \), with \(\epsilon_A \ll 1 \), we can write

\[
\begin{pmatrix}
\epsilon_{N_0} \\
\epsilon_{\rho_{h0}}
\end{pmatrix}_{\text{wBH}} \simeq \begin{pmatrix}
0.711 & -0.707 \\
-3.26 & 2.60
\end{pmatrix}
\begin{pmatrix}
\epsilon_{N_{\text{cluster}}} \\
\epsilon_{\rho_{\text{eff}}}
\end{pmatrix}
\]

(6)

and

\[
\begin{pmatrix}
\epsilon_{N_0} \\
\epsilon_{\rho_{h0}}
\end{pmatrix}_{\text{noBH}} \simeq \begin{pmatrix}
0.590 & -0.186 \\
0.00345 & 0.00713
\end{pmatrix}
\begin{pmatrix}
\epsilon_{N_{\text{cluster}}} \\
\epsilon_{\rho_{\text{eff}}}
\end{pmatrix}.
\]

(7)

This shows that the level of fine-tuning to obtain the correct \(N_0 \) is similar in both models, albeit more sensitive to variations in \(\rho_{\text{eff}} \) for the noBH models. However, we find different behaviour for the initial density, \(\rho_{h0} \): for the wBH models, variations in \(N_{\text{cluster}} \) and \(\rho_{\text{eff}} \) allow for larger variations in \(\rho_{h0} \), meaning that a relatively large range of initial densities can contribute to the error bars on the present-day properties. The results of the noBH models are extremely sensitive to the initial density, because variations in the observed properties correspond to variations of less than a per cent in the initial density. We can also estimate what fraction of the parameter space of the initial conditions is covered by the uncertainties in \(N_0 \) and \(\rho_{h0} \). We assume that the initial cluster properties are sampled from power-law distributions with indices \(-2\) for \(N_0 \) and \(-1\) for \(\rho_{h0} \) in the ranges \(10^5 \leq N_0 \leq 5 \times 10^6 \) and \(1 \leq \rho_{h0}/(M_\odot \text{pc}^{-3}) \leq 10^4 \). Then we find that the initial conditions of wBH-1(noBH-1) that contribute to the error circle cover a fraction \(1/200(1/3.6 \times 10^5) \) of the initial conditions. Given that the Milky Way has \(\sim 150 \) GCs, this exercise shows that finding Pal 5 is probable in the wBH scenario, while the probability in the noBH scenario is \(10^{-3} \).
Supplementary Figure 1: **Comparison of stream properties.** Comparison between stream properties of wBH-1 and noBH-1 and the observed stream from Erkal et al.3 The stream width (top) of both N-body models is similar over the range included in the observations and shows some systematic deviations from the observed width. The density profile (bottom) of the N-body models is smoother than the observed profile, which shows signatures of over/under-densities. The decline in the density of the trailing arm (large RA) is faster in wBH-1 than in noBH-1, which agrees more with the observed decline. Shaded regions indicate the 67% confidence intervals.
Name	Distance [kpc]	Tail data	Name	Distance [kpc]	Tail data
NGC 3201	4.9	long tidal tails	NGC 288	8.9	long tidal tails
NGC 6205	7.1	tidal tails	Pal 1	11.1	tidal tail
NGC 6341	8.3	long tidal tails	NGC 6101	15.4	-
NGC 362	8.6	tidal feature	NGC 5466	16.0	tidal tails
NGC 6779	9.4	-	NGC 5053	17.4	tidal feature
NGC 2808	9.6	-	IC 4499	18.8	-
NGC 5272	10.2	-	BH 176	18.9	-
NGC 4590	10.3	long tidal tails	Pal 12	19.0	tidal tails
NGC 7078	10.4	-	NGC 6426	20.6	-
NGC 2298	10.8	tidal feature	Rup 106	21.2	-
NGC 7089	11.5	-	ESO 280	21.4	-
NGC 5286	11.7	-	Ter 7	22.8	-
NGC 1851	12.1	long tidal tails	Pal 5	23.2	long tidal tails
NGC 1904	12.9	tidal tails	IC 1257	25.0	-
NGC 6934	15.6	-	Pal 13	26.0	long tidal tails
NGC 1261	16.3	long tidal tails	Ter 8	26.3	-
NGC 5024	17.9	-	NGC 7492	26.3	tidal tails
NGC 6981	17.0	-	Arp 2	28.6	-
NGC 4147	19.4	tidal feature	AM 4	32.2	-
NGC 6864	20.9	-	Pyxis	39.4	-
NGC 5634	25.2	-	Pal 15	45.1	tidal tails
Pal 2	27.2	-	Pal 14	76.5	tidal tails
NGC 6229	30.5	-	Eridanus	90.1	tidal tails
NGC 5824	32.1	-	Pal 3	92.5	tidal feature
NGC 5694	35.0	-	Pal 4	108.7	tidal feature
NGC 7006	41.2	-	AM 1	123.3	-

Supplementary Table 1: Summary of results of stream searches for GCs at distances > 8 kpc from the Galactic center. The classification 'compact' (left) and 'fluffy' (right) is from Baumgardt et al.[22]. All clusters are sorted in distance from the Sun. Among the compact clusters, no tidal tails nor tidal features were found for clusters that are more than 20 kpc away, while they were found for about half of the fluffy clusters beyond 20 kpc.
References

1. Krumholz, M. R., McKee, C. F. & Bland -Hawthorn, J. Star Clusters Across Cosmic Time. *Annu. Rev. Astron. Astrophys.* **57**, 227–303 (2019).

2. Kravtsov, A. V. & Gnedin, O. Y. Formation of Globular Clusters in Hierarchical Cosmology. *Astrophys. J.* **623**, 650–665 (2005).

3. Erkal, D., Koposov, S. E. & Belokurov, V. A sharper view of Pal 5’s tails: discovery of stream perturbations with a novel non-parametric technique. *Mon. Not. R. Astron. Soc.* **470**, 60–84 (2017).

4. Ibata, R. *et al.* Charting the Galactic acceleration field I. A search for stellar streams with Gaia DR2 and EDR3 with follow-up from ESPaDOnS and UVES. *arXiv:2012.05245* (2020).

5. Palau, C. G. & Miralda-Escudé, J. The tidal stream generated by the globular cluster NGC 3201. *doi:10.1093/mnras/stab1024, arXiv:2010.14381* (2020).

6. Kaderali, S., Hunt, J. A. S., Webb, J. J., Price-Jones, N. & Carlberg, R. Rediscovering the tidal tails of NGC 288 with Gaia DR2. *Mon. Not. R. Astron. Soc.* **484**, L114–L118 (2019).

7. Shipp, N. *et al.* Stellar Streams Discovered in the Dark Energy Survey. *Astrophys. J.* **862**, 114 (2018).

8. Leon, S., Meylan, G. & Combes, F. Tidal tails around 20 Galactic globular clusters. Observational evidence for gravitational disk/bulge shocking. *Astron. Astrophys.* **359**, 907–931 (2000).

9. Niederste-Ostholt, M. *et al.* The tidal tails of the ultrafaint globular cluster Palomar 1. *Mon. Not. R. Astron. Soc.* **408**, L66–L70 (2010).

10. Carballo-Bello, J. A. Using Gaia DR2 to detect extratidal structures around the Galactic globular cluster NGC 362. *Mon. Not. R. Astron. Soc.* **486**, 1667–1671 (2019).

11. Belokurov, V., Evans, N. W., Irwin, M. J., Hewett, P. C. & Wilkinson, M. I. The Discovery of Tidal Tails around the Globular Cluster NGC 5466. *Astrophys. J. Letters* **637**, L29–L32 (2006).

12. Bernard, E. J. *et al.* A Synoptic Map of Halo Substructures from the Pan-STARRS1 3π Survey. *Mon. Not. R. Astron. Soc.* **463**, 1759–1768 (2016).

13. Jordi, K. & Grebel, E. K. Search for extratidal features around 17 globular clusters in the Sloan Digital Sky Survey. *Astron. Astrophys.* **522**, A71 (2010).

14. Balbinot, E., Santiago, B. X., da Costa, L. N., Makler, M. & Maia, M. A. G. The tidal tails of NGC 2298. *Mon. Not. R. Astron. Soc.* **416**, 393–402 (2011).

15. Odenkirchen, M. *et al.* Detection of Massive Tidal Tails around the Globular Cluster Palomar 5 with Sloan Digital Sky Survey Commissioning Data. *Astrophys. J. Letters* **548**, L165–L169 (2001).
16. Bonaca, A. et al. Variations in the Width, Density, and Direction of the Palomar 5 Tidal Tails. *Astrophys. J.* **889**, 70 (2020).

17. Shipp, N., Price-Whelan, A. M., Tavangar, K., Mateu, C. & Drlica-Wagner, A. Discovery of Extended Tidal Tails around the Globular Cluster Palomar 13. *Astron. J.* **160**, 244 (2020).

18. Navarrete, C., Belokurov, V. & Koposov, S. E. The Discovery of Tidal Tails around the Globular Cluster NGC 7492 with Pan-STARRS1. *Astrophys. J. Letters* **841**, L23 (2017).

19. Myeong, G. C., Jerjen, H., Mackey, D. & Da Costa, G. S. Tidal Tails around the Outer Halo Globular Clusters Eridanus and Palomar 15. *Astrophys. J. Letters* **840**, L25 (2017).

20. Sollima, A., Martínez-Delgado, D., Valls-Gabaud, D. & Peñarrubia, J. Discovery of Tidal Tails Around the Distant Globular Cluster Palomar 14. *Astrophys. J.* **726**, 47 (2011).

21. Sohn, Y.-J. et al. Wide-Field Stellar Distributions around the Remote Young Galactic Globular Clusters Palomar 3 and Palomar 4. *Astron. J.* **126**, 803–814 (2003).

22. Baumgardt, H., Parmentier, G., Gieles, M. & Vesperini, E. Evidence for two populations of Galactic globular clusters from the ratio of their half-mass to Jacobi radii. *Mon. Not. R. Astron. Soc.* **401**, 1832–1838 (2010).