ESCHER DEGREE OF NON-PERIODIC L-TILINGS BY 2 PROTOTILES.

KAZUSHI AHARA, MAMI MURATA, AND ANNO OJIRI

Abstract. For a given tiling of the euclidean plane E^2, we call the
degree of freedom of perturbed edges of prototiles escher degree.
In this paper we consider non-periodic L-tilings by 2 prototiles and
obtain the escher degree of them.

1. Introduction

A non-periodic L-tiling is a limit of the sequence of tilings as shown in Figure 1. (Often this is called a chair tiling.) It is well known that this is a tiling of the euclidean plane E^2 and that it has no periodicity of parallel transformation.

Sugihara [1] introduces escherization of a plane tiling. Let T be a
tiling of E^2. If we have a finite set $S = \{\alpha_1, \alpha_2, \ldots, \alpha_\ell\}$ of connected regions, and each tile of T is (orientation preserving) congruent to one of $\alpha_1, \alpha_2, \ldots, \alpha_\ell$, then we call S the tile set and $\alpha_1, \alpha_2, \ldots, \alpha_\ell$ prototiles.
If we perturb some of edges of prototiles and get another tiling of the plane, we call the process of perturbation escherization of the tiling T. This is a famous technique in artworks of M. C. Escher.

For example, see Figure 2. The left figure is a tiling by one parallelogram. We can perturb the horizontal edges and slanted edges independently as in the right figure.

In this paper, we determine the escher degree of L-tilings, that is, the degree of freedom of perturbed edges of prototiles of L-tilings. If the

2000 Mathematics Subject Classification. 52C20; 05B45, 52C23.
Key words and phrases. L-tiling, non-periodic hierarchical tiling, escherization.
tile set of an L-tiling consists of one prototile, then the escher degree is one. This is shown in Theorem A. If the tile set of an L-tiling consists of two prototiles, then we show that there are 6 types of non-trivial tilings. (A non-trivial tiling is a tiling whose escher degree is more than 1.) This is shown in Theorem B and Theorem C.

We have new kinds of tile sets in these theorems, but none of them are aperiodic. This is shown in Appendix (2).

This paper is organized as follows. In Section 2 we prepare some notations and basic lemmas. In Section 3 we consider an L-tiling by one prototile. In Section 4, 5 we consider L-tilings by two prototiles. In appendix, we show figures of tilings.

2. PRELIMINARY

In this section, first we introduce a non-periodic hierarchical tiling. Let $\mathcal{S} = \{\alpha_1, \alpha_2, \cdots, \alpha_\ell\}$ be a set of connected regions and $\lambda > 1$ a constant. Let $\alpha'_i (i = 1, 2, \cdots, \ell)$ be a λ scale-up copy of α_i.

Suppose that each $\alpha'_i (i = 1, 2, \cdots, \ell)$ can be tiled by prototiles $\alpha_1, \cdots, \alpha_\ell$. That is, each α'_i can be divided into some of copies of $\alpha_1, \cdots, \alpha_\ell$. Let α''_i be a λ scale-up copy of α'_i. Then in the same way α''_i can be tiled by $\alpha'_1, \cdots, \alpha'_\ell$. Substituting $\alpha_1, \cdots, \alpha_\ell$ into $\alpha'_1, \cdots, \alpha'_\ell$, we have a tiling of α''_i by \mathcal{S}.

The tiling rules of α'_is by \mathcal{S} are called substitution rules. A tiling of \mathbb{E}^2 obtained by substitution rules is called a hierarchical tiling, and if it doesn’t have any periodicity of parallel transformation, it is called non-periodic.

An L-tiling is an example of a non-periodic hierarchical tiling. Let $\alpha = \includegraphics{example}$ and $\mathcal{S} = \{\alpha\}$. Let $\lambda = 2$ and $\alpha' = \includegraphics{example}$, then it gives a substitution rule. We call this tiling an L-tiling and this rule L-substitution.

Definition 2.1 (s-spread). We call α', a tiling of once L-substitution from α, 1-spread. We call $\alpha^{(s)}$, a tiling of s times L-substitution from α, s-spread.
Next, we define a edge and a perturbed edge.

Definition 2.2 (edge). Let an edge be a pair of a segment and a one-side neighborhood. See Figure 3.

For an edge, we regard a segment as an edge of a prototile, and one-side neighborhood as inside of a prototile. In the sequel, we do not distinguish an edge of a prototile from an edge in this definition. Next, we define a perturbed edge.

Definition 2.3 (perturbed edge). For an edge, fixing the both ends of the edge and perturbing it a little, we get a perturbed edge. See Figure 4. For two perturbed edges a, b, $a = b$ if they are congruent.

In order to perturb edges of prototiles, there exists restriction on a way of perturbing, because each prototile must be connected. In our context, we only concern degree of freedom of perturbed prototiles, so we consider only a perturbed edge which is a little perturbed to avoid the restriction.

Next, we define a product of perturbed edges.

Definition 2.4 (product of edges). Let a_1, a_2, \ldots, a_k be perturbed edges. If they are placed on a straight line from right to left and form a row, then we call it a product of a_1, a_2, \ldots, a_k and we denote this product by $a_1a_2\cdots a_k$. See Figure 5.

For a perturbed edge a, we define two operations \overline{a}, and a^{-1}. For a perturbed edge a, \overline{a} is a symmetry (right-side-left) image of a. In the same way, a^{-1} is an upside-down image of a. See Figure 6. It is easy to show the following lemma.

Lemma 2.5. (1) $\overline{(a)} = a, (a^{-1})^{-1} = a$

(2) $\overline{ab} = \overline{a}\overline{b}, (ab)^{-1} = b^{-1}a^{-1}$

(3) $\overline{(a^{-1})} = (\overline{a})^{-1}$
Figure 6. definition of \overline{a}, and a^{-1}

In a tiling, if a tile with a perturbed edge a and another tile with a perturbed edge b are neighbors at a and b, we have $a = \overline{b^{-1}}$. We denote this relation by $a \overset{a}{b}$. We often say that a matches b.

The following lemma is trivial.

Lemma 2.6. (1) $a \overset{a}{b}$ if and only if $b \overset{b}{a}$

(2) If $a \overset{a}{b}$ and $a \overset{a}{c}$ then $b = c$

(3) $a \overset{ab}{cd}$ if and only if $a \overset{a}{d}$ and $b \overset{b}{c}$

Let \mathcal{T} be a tiling with respect to a tile set \mathcal{S}. Suppose that all prototiles are polygons. Here we assume that there is no vertex of a tile lying on an edge of another tile.

Definition 2.7 (escherization, escher degree). (1) Let \mathcal{T} and \mathcal{S} be as above. If we perturb edges of prototiles such that the perturbed prototiles give another tiling, we call this process *escherization*.

(2) If the set of escherization of \mathcal{T} is parametrized by some perturbed edges, the *escher degree* is the number of the parameters.

Example 2.8 (escher degree of (P1)). Let α be a parallelogram and (P1) a tiling of E^2 as in Figure 2. Let a, b, c, d be edges of α as in Figure 7.

From the matching of the tiling, we have $a \overset{a}{c}$ and $b \overset{b}{d}$. That is, if we perturb a, then the edge c changes such that $c = a^{-1}$, and we can perturb b independently of a. Then the edge d changes such that $d = b^{-1}$. See Figure 8. We call relations obtained from the tiling...
property \textit{edge-matchings}. Hence all escherization of the tiling (P1) is parametrized by edges \(a\) and \(b\). So the escher degree is 2.

3. Escher degree of L-tiling by one prototile

In this section we show that the escher degree of L-tiling by one prototile is one. We assume that an L-figure prototile \(\alpha\) has 8 perturbed edges \(a, b, c, \ldots, h\) as in Figure 9.

\textbf{Theorem 3.1} (Theorem A). (1) In a non-periodic L-tiling by one prototile \(\alpha\), we have
\[
\begin{align*}
 a &= c = e = g, \\
 b &= d = f = h.
\end{align*}
\]
(2) The escher degree of this tiling is one. See Figure 18.

\textbf{Remark 3.2.} \(\frac{a=c=e=g}{b=d=f=h}\) means \(a = c = e = g, b = d = f = h\), and \(\frac{a}{h}\)

\textbf{Proof:} \(1\) Considering 1-spread, we directly have
\[
\begin{array}{cccccccc}
 b & a & h & b & f & h & g & h \\
 c & d & c & e & a & c & b & a
\end{array}
\]
(See Figure 10.) This follows that \(\frac{a=c=e=g}{b=d=f=h}\).

(2) The proof of (1) implies the following lemma.

\textbf{Lemma 3.3.} \textit{There exists a 1-spread of }\alpha\textit{ if and only if }\alpha\textit{ satisfies }\frac{a=c=e=g}{b=d=f=h}.

Let \(\alpha'\) be a 1-spread and \(a', b', \ldots, h'\) its edges. (See Figure 11.)
Then we have

\[a' = ha, b' = bc, c' = e' = g' = de, d' = f' = h' = fg. \]

(See Figure 10.) If \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{g}{h} \), then we easily show that

\[a' = c' = e' = g', \quad b' = d' = f' = h'. \]

(For example, \(h = d \) and \(a = e \) implies \(a' = ha = de = c' \), \(h = c \) and \(a = b \) implies \(\frac{ka}{bc} \) and \(\frac{a}{b} \).) This follows that a 1-spread of \(\alpha' \) exists, that is, a 2-spread of \(\alpha \) exists.

In the same way, if we assume that we have an \(s \)-spread \(\alpha^{(s)} \) of \(\alpha \) and \(\alpha^{(s-1)} \) has edges \(a^{(s-1)}, b^{(s-1)}, \ldots, h^{(s-1)} \), then it satisfies that

\[a^{(s-1)} = c^{(s-1)} = e^{(s-1)} = g^{(s-1)}, \quad b^{(s-1)} = d^{(s-1)} = f^{(s-1)} = h^{(s-1)}. \]

If we set

\[a^{(s)} = h^{(s-1)} a^{(s-1)}, \quad b^{(s)} = b^{(s-1)} c^{(s-1)}, \quad c^{(s)} = e^{(s)} = g^{(s)} = d^{(s-1)} e^{(s-1)}, \quad d^{(s)} = f^{(s)} = h^{(s)} = f^{(s-1)} g^{(s-1)}. \]
inductively, then they satisfy
\[a^{(s)} = c^{(s)} = e^{(s)} = g^{(s)} \]
\[b^{(s)} = d^{(s)} = f^{(s)} = h^{(s)}. \]
and it follows that an 1-spread of \(\alpha^{(s)} \) exists, that is, we have an \((s + 1)\)-
spread of \(\alpha \).

If \(\alpha \) satisfies \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{g}{h} \) then an \(s \)-spread \(\alpha^{(s)} \) exists for any \(s \).

Hence the escherization is parametrized by \(a \) and the escher degree is one. This completes the proof.

4. \(L \)-tiling by two prototiles (1)

In this section, we consider the cases where two prototiles \(\alpha, \beta \) (Figure 12) make one 1-spread \(\alpha' \).

From Theorem A, if \(\alpha' \) satisfies \(\frac{\alpha' \cdot c' = e' = g' \cdot \beta'}{b' = d' = f' = h'} \) then \(\alpha' \) has \(s \)-spread for \(s = 1, 2, 3, \ldots \). We observe 5 patterns of \(\alpha' \) in Figure 13. We call them no.8, no.4, no.2, no.3, and no.5 respectively. (The numbering order is not ascending nor descending. These numberings are determined by the order of \(\alpha \) and \(\beta \).)

And we have the following theorem.

Theorem 4.1 (Theorem B). (1) For no.2, no.3, no.4, the escher degree is 1.

(2) For no.5, we have
\[a = e = m, \quad c = g = i = k = o \]
\[b = f = n, \quad d = h = j = l = p \]
and the escher degree is 2. (See Figure 19.)
For no.8, we have
\[
\begin{align*}
 a &= n = p, \\
 b &= d = f = h, \\
 c &= g = i = l = k = m = o, \\
 d &= f = h = j = l = n = p.
\end{align*}
\]
and the escher degree is 4. (See Figure 20.)

Proof: If \(\alpha'\) satisfies \(a' = c' = e' = g'\), then \(\alpha'\) has \(s\)-spread for any \(s\).

So, it is sufficient to solve the edge-matching in \(\alpha'\) and \(a' = c' = e' = g'\). For example, for no.5, edge-matching is given as in Figure 14 and we have

\[
\begin{align*}
 p &\rightarrow j, \\
 m &\rightarrow i, \\
 k &\rightarrow g, \\
 c &\rightarrow f, \\
 d &\rightarrow h.
\end{align*}
\]

\[
a' = c' = e' = g' \quad b' = d' = f' = h'.
\]

implies

\[
\begin{align*}
 pa &= lm = de = lm, \\
 bk &= no = fg = no.
\end{align*}
\]

We solve the system of equation and we have \(a = c = e = m, b = f = n\). Inversely if \(a = c = e = m, b = f = n\) then \(a' = c' = e' = g'\) is satisfied. For other tilings, we can solve the system of relations in a similar way.

Remark 4.2. If we have

\[
\begin{align*}
 a &= b = c = e = g = i = k = m = o, \\
 b &= d = f = h = j = l = n = p,
\end{align*}
\]

it follows that \(\alpha = \beta\). So we can return the case of one prototile \(\alpha\) and the escher degree is 1. This means that there are no solution of two distinct prototiles. In the two prototiles case, if the escher degree is more than 1, we call the tiling non-trivial. There are two types (no.5 and no.8) of non-trivial tilings by two prototiles and one 1-spread.

5. L-tiling by two prototiles (2)

In this section, we consider two prototiles \(\alpha, \beta\) (Figure 12) and make two 1-spreads \(\alpha', \beta'\). There are 16 possibilities for \(\alpha'\) and so as for \(\beta'\).

We determine numbering for \(\alpha'\) and \(\beta'\) as in Figure 15, and we represent a tiling by a pair of two numbers for \(\alpha'\) and \(\beta'\). For example,
Figure 15. numbering for α' and β'

Figure 16. Tiling (5, 10)

(5, 10) means that α' and β' given in Figure 16. We remove the case $\alpha' = \beta'$ and two trivial cases (0, 15) and (15, 0), there remains 238 combinations. If we exchange the role of α and β, we know that (i, j) and $(15 - j, 15 - i)$ are equivalent. From the following lemma, we conclude that the number of remaining combinations is 119.

Lemma 5.1. $(i, 15 - i)$ and $(15 - i, i)$ are equivalent.
Proof: If we denote \(\alpha_{(i,j)}^{(s)} \) (resp. \(\beta_{(i,j)}^{(s)} \)) by the \(s \)-spread of \(\alpha \) (resp. \(\beta \)) of tiling \((i,j)\), it is easily show that

\[
\begin{align*}
\alpha_{(i,15-i)}^{(2k-1)} &= \beta_{(15-i,i)}^{(2k-1)}, \\
\alpha_{(i,15-i)}^{(2k)} &= \alpha_{(15-i,i)}^{(2k)}, \\
\beta_{(i,15-i)}^{(2k)} &= \beta_{(15-i,i)}^{(2k)};
\end{align*}
\]

for any \(k = 1, 2, \ldots \). This completes the proof.

Here we have the third theorem.

Theorem 5.2 (Theorem C). (1) If the escher degree of \((i,j)\) tiling is more than 1, then \((i,j) = (5,10), (10,5), (0,2), (13,15), (0,8), (7,15), (0,10), (5,15)\).

(2) For the tiling \((5,10)\) (equivalently \((10,5)\)), \(a=c=e=m, c=e=k=o \) and the escher degree is 2. (See Figure 21.)

(3) For the tiling \((0,2)\) (equivalently \((13,15)\)), \(a=c=e=g=k \) and the escher degree is 5. (See Figure 22.)

(4) For the tiling \((0,8)\) (equivalently \((7,15)\)), \(a=c=e=g=k=m, b=d=f=h=j=p \) and the escher degree is 3. (See Figure 23.)

(5) For the tiling \((0,10)\) (equivalently \((5,15)\)), \(a=c=e=g=k=m, o \) and the escher degree is 3. (See Figure 24.)

For each \((i,j)\), we solve a system of equations of edge-matchings of \(s \)-spread \((s = 1, 2, \ldots)\).

In some cases, only \(i \) (resp. only \(j \)) determines the result. For example, the following lemma holds.

Lemma 5.3. The escher degree of \((1,j)\) is 1 for any \(j \).

Proof: Assume that \(\alpha' \) is no.1. (See Figure 17.) From the edge-matching of \(\alpha' \), we get

\[
\begin{align*}
e &= k = i, \quad a = g, \\
b &= h, \quad d = f, \quad j.
\end{align*}
\]
Edges of α' is given by $a' = pa, b' = bc, c' = e' = de, d' = f' = fg, g' = lm, h' = no$ and we have

$$\frac{c'}{b'} = \frac{\alpha'}{h'}; \frac{\alpha'}{f'},$$

in the edge-matching of α'', and we get additional conditions $\frac{d}{c}, b = n, c = o, \frac{p}{g}$ and hence $\frac{a = c = e = k = i = o}{b = d = f = h = n}, \frac{g}{j = p}$. In the edge-matching in α'', we obtain another condition $\frac{d'}{c'}, \frac{d}{e}, \frac{g}{f}$, and we have $\frac{a = c = e = g = k = i = o}{b = d = f = h = j = n = p}$. In the edge-matching in α''', we have $\frac{d'}{g'}$, hence $\frac{f}{m}$ and $\frac{g}{l}$, and we have $\frac{a = c = e = g = i = k = m = o}{b = d = f = h = j = l = n = p}$. This implies that within at most 4-spread all edges a, b, \cdots, p are related and $\alpha = \beta$. This completes the proof.

And in a similar way, we can show that the escher degree of any tiling other than $(i, j) = (5, 10), (10, 5), (0, 2), (13, 15), (0, 8), (7, 15), (0, 10), (5, 15)$ is 1.

(2) In $(i, j) = (5, 10)$ case, the edge-matching of α' is

(a) $$\begin{array}{cccccccc}
 j & i & p & b & f & h & g & h \\
 c & d & e & a & c & k & j & i
\end{array}$$

(See the left figure of Figure 16.) The edge-matching of β' is

(b) $$\begin{array}{cccccccc}
 b & a & h & j & n & o & p \\
 k & l & k' & m & c & b & a
\end{array}$$

(See the right figure of Figure 16.) (a),(b) are equivalent to

(c) $$\begin{array}{cccccccc}
 a = c = e = g = m, & e = i = k = o \\
 f = j = l = p, & b = d = h = n
\end{array}$$

Let a', b', \cdots, a', p' be edges of α', β' as in Figure 11, we have

$$a' = pa, b' = bk, c' = lm, d' = no, e' = de, f' = fg, g' = lm, h' = no$$

$$i' = hi, j' = je, k' = de, l' = fg, m' = lm, n' = no, o' = de, p' = fg$$

Since the formula (c) holds for α', β', we have

$$\begin{array}{cccccccc}
 a' = c' = g' = m', & e' = i' = k' = o' \\
 f' = j' = l' = p', & b' = d' = h' = n'
\end{array}$$

For example, $p = l$ and $a = m$ implies $a' = pa = lm = c'$, and so on. These are edge-matching of 2-spread α'', β''.

Inductively, we observe as follows. Suppose that we have $\alpha^{(s)}, \beta^{(s)}$. Let $a^{(s)}, b^{(s)}, \cdots, o^{(s)}, p^{(s)}$ be edges of $\alpha^{(s)}, \beta^{(s)}$. The relation between
$a^{(s-1)}$s and $a^{(s)}$s are given by
\[a^{(s)} = p^{(s-1)}a^{(s-1)}, \quad b^{(s)} = b^{(s-1)}i^{(s-1)}, \quad c^{(s)} = l^{(s-1)}m^{(s-1)}, \quad d^{(s)} = n^{(s-1)}o^{(s-1)},\]
\[e^{(s)} = d^{(s-1)}e^{(s-1)}, \quad f^{(s)} = f^{(s-1)}g^{(s-1)}, \quad g^{(s)} = l^{(s-1)}m^{(s-1)}, \quad h^{(s)} = n^{(s-1)}o^{(s-1)}\]
\[i^{(s)} = h^{(s-1)}i^{(s-1)}, \quad j^{(s)} = j^{(s-1)}c^{(s-1)}, \quad k^{(s)} = d^{(s-1)}e^{(s-1)}, \quad l^{(s)} = f^{(s-1)}g^{(s-1)},\]
\[m^{(s)} = l^{(s-1)}m^{(s-1)}, \quad n^{(s)} = n^{(s-1)}o^{(s-1)}, \quad o^{(s)} = d^{(s-1)}e^{(s-1)}, \quad p^{(s)} = f^{(s-1)}g^{(s-1)},\]
for any $s = 0, 1, 2, \cdots$. Using simple calculations, we have the following lemma.

Lemma 5.4. If \[a^{(s-1)} = c^{(s-1)} = g^{(s-1)} = m^{(s-1)}, \quad e^{(s-1)} = i^{(s-1)} = k^{(s-1)} = o^{(s-1)}\]
then \[a^{(s)} = e^{(s)} = m^{(s)} \quad \frac{f^{(s)}}{f^{(s)}} = j^{(s)} = l^{(s)} = p^{(s)}; \quad b^{(s)} = d^{(s)} = h^{(s)} = n^{(s)} \cdot\]

Proof: For example, \[p^{(s-1)} = l^{(s-1)} \quad \text{and} \quad a^{(s-1)} = m^{(s-1)} \quad \text{implies} \quad a^{(s)} = p^{(s-1)}a^{(s-1)} = l^{(s-1)}m^{(s-1)} = c^{(s)} \cdot \]
Other relations are shown in a similar way. From this lemma, \((s+1)-\text{spreads}~ \alpha^{(s+1)}, \beta^{(s+1)} \text{ exist for any } s.\]
3. (3), (4), and (5) are shown in a similar way as (2).

Remark 5.5. In Appendix, we show figures of these tilings. In (0, 2), (0, 8) tilings, $\beta^{(s)}$ contains only one tile β. This means that these tilings are equivalent to a tiling of α as infinite tilings.

6. **Appendix (1)**

From Figure 18 to Figure 24 are pictures of tilings appearing in Theorems A, B, and C.

7. **Appendix (2)**

For a tile set T, if any tiling by T has no periodicity of parallel transformation then we call T an aperiodic tile set. Any tilings we obtain in this paper are not aperiodic tile sets. From Figure 25 to Figure 28 are figures of periodic tilings.

References

1. K. Sugihara, *Escher magic*, (in Japanese), University of Tokyo Press, 2011
2. C. Goodman-Strauss, *A small aperiodic set of tiles*, Europ. J. Combinatorics, 20, (1999) pp. 375-384
3. K. Komatsu and F. Nakano, *A substitution rule for the Penrose tiling*, Nihonkai Math. J., 19 (2008) pp.111-135.

Department of Mathematics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan

E-mail address: kazuaha63@hotmail.co.jp
Figure 18. Tiling of one prototile.

Figure 19. Tiling of two prototiles, no.5.

Figure 20. Tiling of two prototiles, no.8.
Figure 21. Tiling of two prototiles (5,10).

Figure 22. Tiling of two prototiles (0,2).

Figure 23. Tiling of two prototiles (0,8).
Figure 24. Tiling of two prototiles (0,10).

Figure 25. Periodic tiling of one prototile.

Figure 26. Periodic tiling of two prototiles no.5.
Figure 27. Periodic tiling of two prototiles no.8.

Figure 28. Periodic tiling of two prototiles (5,10).