Eigenfunctions of Composition Operators on Bloch-type Spaces

Bhupendra Paudyal

Abstract

Suppose \(\varphi \) is a holomorphic self map of the unit disk and \(C_\varphi \) is a composition operator with symbol \(\varphi \) that fixes the origin and \(0 < |\varphi'(0)| < 1 \). This work explores sufficient conditions that ensure all holomorphic solutions of Schröder equation for the composition operator \(C_\varphi \) belong to a Bloch-type space \(B_\alpha \) for some \(\alpha > 0 \). The results from composition operators have been extended to weighted composition operators in the second part of this work.

1 Introduction

Let \(\mathcal{D} \) be the unit disk of the complex plane \(\mathbb{C} \). Suppose that \(\mathcal{H}(\mathcal{D}) \) denotes space of holomorphic functions defined on the unit disk. Recall that a holomorphic function \(f \) on \(\mathcal{D} \) said to be in Bloch-type space \(B_\alpha \) for some \(\alpha > 0 \) if

\[
\sup_{z \in \mathcal{D}} (1 - |z|^2)^\alpha |f'(z)| < \infty.
\]

Under the norm

\[
\|f\|_{B_\alpha} = |f(0)| + \sup_{z \in \mathcal{D}} (1 - |z|^2)^\alpha |f'(z)|,
\]

\(B_\alpha \) becomes a Banach space. From the definition of Bloch-type spaces, it immediately follows that \(B_\alpha \subset B_\beta \) for \(\alpha \leq \beta \) and \(B_\alpha \subset H^\infty \) for \(\alpha < 1 \).

Functions in the Bloch space have been studied extensively by many authors, see [1] and [8]. It has been shown in [8] that the Bloch-type norm for \(\alpha > 1 \) is equivalent to the \(\alpha - 1 \) Lipschitz-type norm:

\[
\|f\|_{B_\alpha} \approx \sup_{z \in \mathcal{D}} (1 - |z|^2)^{\alpha - 1} |f(z)|, \quad f \in B_\alpha, \ \alpha > 1.
\]
Composing functions f in $\mathcal{H}(\mathcal{D})$, with any holomorphic self-map φ of \mathcal{D}, induces a linear transformation, denoted by C_φ and called a composition operator on $\mathcal{H}(\mathcal{D})$:

$$C_\varphi f = f \circ \varphi.$$

For any $u \in \mathcal{H}(\mathcal{D})$ we define weighted composition operator uC_φ on $\mathcal{H}(\mathcal{D})$ as

$$uC_\varphi(f) = (u)(f \circ \varphi).$$

In this work, we study holomorphic solutions f of the Schröder’s equation

$$(C_\varphi)f(z) = \lambda f(z), \quad (1.3)$$

and of the weighted Schröder’s equation

$$uC_\varphi f = \lambda f, \quad (1.4)$$

where λ is a complex constant. Assuming φ fixes the origin and $0 < |\varphi'(0)| < 1$, Königs in [5] showed that the set of all holomorphic solutions of Eq. (1.3) (eigenfunctions of C_φ acting on $\mathcal{H}(\mathcal{D})$) is exactly $\{\sigma^n\}_{n=0}^\infty$, where σ, principal eigenfunction of C_φ, is called Königs function of φ. Following the Königs’s work, Hosokawa and Nguyen in [4] showed that the set of all eigenfunctions of uC_φ acting on $\mathcal{H}(\mathcal{D})$ is exactly $\{v\sigma^n\}_{n=0}^\infty$ where v is principal eigenfunction of uC_φ and σ is the Königs function.

According to a general result of Hammond in [2] if uC_φ is compact on any Banach space of holomorphic functions on \mathcal{D} containing the polynomials, all eigenfunctions $v\sigma^n$ belong to the Banach space. Hosokawa and Nguyen in [4] under somewhat strong restrictions on the growths of u and φ near the boundary of the unit disk showed that all the eigenfunctions $v\sigma^n$ are eigenfunctions of uC_φ acting on the Bloch space B. Our goal in this work is to study conditions under which all eigenfunctions $v\sigma^n$ belong to a Bloch-type space B_α.

The basic organization of this paper is as follows. We present results concerning to composition operators in Section 3. Theorem 3.1 provides the sufficient conditions that ensure all the eigenfunctions σ^n belong to Bloch type spaces B_α for $\alpha < 1$. Similar results for $\alpha = 1$ and $\alpha > 1$ are presented by Theorem 3.2 and 3.3 respectively. Towards the end of this work we prove results concerning to weighted composition operators.
2 Preliminaries

We recall the following criteria from [6, Theorem 2.1] for boundedness of uC_φ on Bloch-type spaces B_α.

Theorem 2.1. Let u be analytic on D, φ an analytic self-map of D and α be a positive real number.

1. If $0 < \alpha < 1$, then uC_φ is bounded on B_α if and only if $u \in B_\alpha$ and
 \[
 \sup_{z \in D} |u(z)| \frac{(1 - |z|^2)^\alpha}{(1 - |\varphi(z)|^2)^\alpha} |\varphi'(z)| < \infty.
 \]

2. The operator uC_φ is bounded on B if and only if

 (a) $\sup_{z \in D} |u'(z)| (1 - |z|^2) \log \frac{1}{1 - |\varphi(z)|^2} < \infty$

 (b) $\sup_{z \in D} |u(z)| \frac{(1 - |z|^2)^\alpha}{(1 - |\varphi(z)|^2)^\alpha} |\varphi'(z)| < \infty$.

3. If $\alpha > 1$, then uC_φ is bounded on B_α if and only if the following are satisfied.

 (a) $\sup_{z \in D} |u'(z)| \frac{(1 - |z|^2)^\alpha}{(1 - |\varphi(z)|^2)^\alpha} < \infty$

 (b) $\sup_{z \in D} |u(z)| \frac{(1 - |z|^2)^\alpha}{(1 - |\varphi(z)|^2)^\alpha} |\varphi'(z)| < \infty$.

The following theorem from [6, Theorem 3.1] provides the compactness criterion for uC_φ acting on B_α.

Theorem 2.2. Let u be holomorphic function on D and let φ be holomorphic self map of D. Let α be a positive real number, and uC_φ is bounded on B_α.

1. If $0 < \alpha < 1$ then uC_φ is compact on B_α if and only if
 \[
 \lim_{|\varphi(z)| \to 1^-} |u(z)| \frac{(1 - |z|^2)^\alpha}{(1 - |\varphi(z)|^2)^\alpha} |\varphi'(z)| = 0.
 \]

2. The operator uC_φ is compact on B if and only if the following are satisfied.

 (a) $\lim_{|\varphi(z)| \to 1^-} |u'(z)| (1 - |z|^2) \log \frac{1}{1 - |\varphi(z)|^2} = 0$

 (b) $\lim_{|\varphi(z)| \to 1^-} |u(z)| \frac{(1 - |z|^2)^\alpha}{(1 - |\varphi(z)|^2)^\alpha} |\varphi'(z)| = 0$.

3. If $\alpha > 1$, then uC_φ is compact on B_α if and only if the following are satisfied.
(a) \(\lim_{|\varphi(z)| \to 1^-} |u'(z)| \frac{(1-|z|^2)^{\alpha}}{(1-|\varphi(z)|^2)^{\alpha}} = 0 \)

(b) \(\lim_{|\varphi(z)| \to 1^-} |u(z)| \frac{(1-|z|^2)^{\alpha}}{(1-|\varphi(z)|^2)^{\alpha}} |\varphi'(z)| = 0 \).

Remark 2.1. If we assume \(u \equiv 1 \) in Theorem 2.1 and Theorem 2.2, they provide the criterion for boundness and compactness of composition operators \(C_\varphi \) acting on Bloch-type spaces \(B_\alpha \).

The following two theorems are fundamental for our work. Theorem 2.3 is the famous Kônigs’s Theorem about the solutions to SchrÖder’s equations (see [5] and [7, Chapter 6]).

Theorem 2.3 (Kônigs’s Theorem (1884)). Assume \(\varphi \) is a holomorphic self map of \(D \) such that \(\varphi(0) = 0 \) and \(0 < |\varphi'(0)| < 1 \). Then the following assertions hold.

i. The sequence of functions
\[
\sigma_k(z) := \frac{\varphi_k(z)}{\varphi'(0)^k},
\]
where \(\varphi_k \) is the \(k \)th iterates of \(\varphi \), converges uniformly on a compact subset of \(D \) to a non-constant function \(\sigma \) that satisfies (1.3) with \(\lambda = \varphi'(0) \).

ii. \(f \) and \(\lambda \) satisfy (1.3) if and only if there is a positive integer \(n \) such that \(\lambda = \varphi'(0)^n \) and \(f \) is a constant multiple of \(\sigma^n \).

The following theorem characterizes all eigenfunctions of a weighted composition operator under some restriction on the symbol (see [3]).

Theorem 2.4. Assume \(\varphi \) is a holomorphic self map of \(D \) and \(u \) is a holomorphic map of \(D \) such that \(u(0) \neq 0, \varphi(0) = 0, 0 < |\varphi'(0)| < 1 \). Then, the following statements hold.

i. The sequence of functions
\[
v_k(z) = \frac{u(z)u(\varphi(z))u(\varphi(\varphi(z)))...u(\varphi_{k-1}(z))}{u(0)^k}
\]
where \(\varphi_k \) is the \(k \)th iterates of \(\varphi \), converges to a non-constant holomorphic function \(v \) of \(D \) that satisfies (1.4) with \(\lambda = u(0) \).

ii. \(f \) and \(\lambda \) satisfy (1.4) if and only if \(f = v\sigma^n \), \(\lambda = u(0)\varphi'(0)^n \), where \(n \) is a non-negative integer and \(\sigma \) is the solution of the Schröder equation (1.3) \(\sigma \circ \varphi = \varphi'(0)\sigma \).
3 Composition operators

In this section, we investigate sufficient conditions that ensure the eigenfunctions σ^n of a composition operator belong to B_α for some positive number α and for all positive integers n.

Definition 3.1. Let us define the *Hyperbolic α-derivative* of φ at $z \in \mathcal{D}$ by

$$\varphi^{(h_\alpha)}(z) = \frac{(1 - |z|^2)^\alpha \varphi'(z)}{(1 - |\varphi(z)|^2)^\alpha}.$$

When $\alpha = 1$ then it is simply called the Hyperbolic derivative of φ at z and denoted by $\varphi^{(h)}(z)$.

Definition 3.2. Suppose φ is a holomorphic self map of \mathcal{D}, $\varphi(0) = 0$, $0 < |\varphi'(0)| < 1$ and φ_m is the m^{th} iteration of φ for some fixed non-negative integer m. Then we say φ satisfies condition (A) if there exists a non-negative integer m such that

$$|\varphi^{(h_\alpha)}(\varphi_m(z))| = \frac{(1 - |\varphi_m(z)|^2)^\alpha |\varphi'(\varphi_m(z))|}{(1 - |\varphi_{m+1}(z)|^2)^\alpha} \leq |\varphi'(0)|,$$

for all $z \in \mathcal{D}$ and for some fixed $\alpha > 0$.

Remark 3.1. If φ satisfies the condition (A) for some m then it satisfies the condition for all non-negative integers greater than m.

The following example provides a family of maps that satisfies condition (A). The example is extracted from [3].

Example 3.1. Consider a map γ that maps the unit disk univalently to the right half plane. This map is given by

$$\gamma(z) = \frac{1 + z}{1 - z}.$$

For any $t \in (0, 1)$, define

$$\varphi_t(z) = \frac{\gamma(z)^t - 1}{\gamma(z)^t + 1}.$$

It is well known that φ_t maps the unit disk into the unit disk for each $t \in (0, 1)$, see [7]. These maps are known as *lens map*.
Claim 3.1. \(\varphi_t \) satisfies condition \(\text{(A)} \) for \(\alpha = 1 \) and \(m = 0 \). That is to say for all \(t \in (0, 1) \), \(|\varphi_t^{(h)}(z)| \leq |\varphi_t'(0)| \) for all \(z \in D \).

Proof. Clearly, \(\varphi_t(0) = 0 \) and

\[
|\varphi_t'(0)| = \frac{2t |\gamma(z)| |\gamma'(z)|}{|\gamma(z) + 1|^2}.
\]

Since \(\gamma'(z) = \frac{2}{(1-z)^2} \), we see that \(|\varphi_t'(0)| = t \). It is known that image of \(\varphi_t \) touches the boundary of the unit disk non tangentially at 1 and \(-1\). Now put \(w = \gamma(z) = re^{i\theta} \), we see that

\[
|\varphi_t^{(h)}(z)| = \frac{1 - |z|^2}{1 - \frac{|w^t - 1|^2}{|w^t + 1|^2}} 2t \frac{|w^t - 1| |w'|}{|w^t + 1|^2} \frac{1 - |z|^2}{|w^t + 1|^2} |w^t - 1|^2 2t |w^t - 1| |w'|.
\]
On the other hand, we have

\[|w^t + 1|^2 - |w^t - 1|^2 = (w^t + 1)(\overline{w}^t + 1) - (w^t - 1)(\overline{w}^t - 1) \]
\[= (w^t + 1)(\overline{w}^t + 1) - (w^t - 1)(\overline{w}^t - 1) \]
\[= 2(w^t + \overline{w}^t) \]
\[= 2 \left(e^{it\theta} + e^{-it\theta} \right) \]
\[= 4 r^t \cos t\theta. \]

And \(w' = \gamma'(z) = \frac{2}{(1 - z)^2} \)

\[\left| \varphi_t^{(h)}(z) \right| = \frac{1 - |z|^2}{|1 - z|^2} \frac{t \ r^{t-1} |e^{(t-1)\theta}|}{r^t \cos t\theta}. \]

Using \(z = \frac{w - 1}{w + 1} \), we get

\[\left| \varphi_t^{(h)}(z) \right| = \frac{1 - \left| \frac{w - 1}{w + 1} \right|^2}{1 - \left| \frac{w - 1}{w + 1} \right|^2} \frac{t \ r^{t-1}}{r^t \cos t\theta} \]
\[= \frac{|w + 1|^2 - |w - 1|^2}{4} \frac{t \ r^{t-1}}{r^t \cos t\theta} \]
\[= \frac{4 \ r \cos \theta}{r^t \cos t\theta} \frac{t \ r^{t-1}}{r^t \cos t\theta} \]
\[= \frac{t \cos \theta}{\cos t\theta}. \]

If \(z \in (-1, 1) \) then \(\gamma(z) \in \mathbb{R}_+ \). Therefore \(\theta = 0 \) and so \(|\varphi_t^{(h)}(z)| = t \). On the other hand if \(z \in \mathcal{D} \setminus (-1, 1) \) then \(|\theta| \in (0, \pi/2) \). Hence \(\cos t\theta > \cos \theta > 0 \)
and so \(|\varphi_t^{(h)}(z)| < t \). This completes the proof. \(\square \)

Remark 3.2. From the proof of Claim [3.1] we see that \(|\varphi_t^{(h)}(z)| \rightarrow 0 \) as \(z \) approaches the boundary of the unit disk along the real-axis. Hence the composition operator with symbol \(\varphi_t \) is a non-compact operator on \(\mathcal{B} \).

The following proposition provides the sufficient condition that ensures the Königs function belongs to Bloch-type spaces. This proposition plays an important role to prove main theorems.

Proposition 3.1. Assume \(C_\varphi \) is bounded on \(\mathcal{B}_\alpha \) and \(\varphi \) satisfies the condition \([A] \) for some \(\alpha > 0 \) and for some fixed non-negative integer \(m \). Then \(\sigma \) belongs to \(\mathcal{B}_\alpha \).
Thus, by using the condition (A) repeatedly, we get
\[
(1 - |z|^2)\alpha |\varphi_k'(z)| \leq M(1 - |\varphi(z)|^2)^\alpha, \quad \text{for } z \in \mathcal{D}.
\] (3.1)

For \(m \) given by the assumption, choose non-negative integer \(k \) such that
\[
k > m.
\]
For \(z \in \mathcal{D} \), we have
\[
(1 - |z|^2)\alpha |\varphi_k'(z)| = (1 - |z|^2)\alpha |\varphi'(\varphi_{k-1}(z))\varphi'(\varphi_{k-2}(z)) \ldots \varphi'(\varphi_{m-1}(z))\varphi'(\varphi_m(z)) \ldots \varphi'(\varphi_{k-2}(z))\varphi'(\varphi_{k-1}(z))|.
\]

By using (3.1),
\[
(1 - |z|^2)\alpha |\varphi_k'(z)| \leq M(1 - |\varphi(z)|^2)^\alpha |\varphi'(\varphi(z)) \ldots \varphi'(\varphi_{m-1}(z))\varphi'(\varphi_m(z)) \ldots \varphi'(\varphi_{k-2}(z))\varphi'(\varphi_{k-1}(z))|.
\]
Again using (3.1) repeatedly, we get
\[
(1 - |z|^2)\alpha |\varphi_k'(z)| \leq M^m \left(1 - |\varphi_m(z)|^2 \right)^\alpha |\varphi'(\varphi_m(z)) \ldots \varphi'(\varphi_{k-2}(z))\varphi'(\varphi_{k-1}(z))|
\]
Now using the condition (A) repeatedly, we get
\[
(1 - |z|^2)\alpha |\varphi_k'(z)| \leq M^m |\varphi'(0)^{k-m}| (1 - |\varphi_k(z)|^2)^\alpha.
\]
Thus,
\[
\lim_{k \to \infty} (1 - |z|^2)\alpha \left| \frac{\varphi_k'(z)}{\varphi'(0)^k} \right| \leq \frac{M^m}{|\varphi'(0)^m|} \lim_{k \to \infty} (1 - |\varphi_k(z)|^2)^\alpha \leq \frac{M^m}{|\varphi'(0)^m|}.
\]

This implies that \((1 - |z|^2)^\alpha |\sigma'(z)| \leq \frac{M^m}{|\varphi'(0)^m|}\). Hence, \(\sigma \in \mathcal{B}_\alpha \). \(\blacksquare \)

The following corollary provides a sufficient condition that ensures all the integer powers of the Königs function belong to Bloch-type spaces \(\mathcal{B}_\alpha \) for \(\alpha < 1 \).

Theorem 3.1. Suppose \(\alpha < 1 \). If \(C_\varphi \) is bounded on \(\mathcal{B}_\alpha \) and \(\varphi \) satisfies the condition (A), then \(\sigma^n \in \mathcal{B}_\alpha \) for all positive integers \(n \).

Proof. From Proposition 3.1, we see that \(\sigma \in \mathcal{B}_\alpha \). Suppose \(\mathbb{H}^\infty \) denotes the space of bounded holomorphic functions on the unit disk \(\mathcal{D} \). Since \(\mathcal{B}_\alpha \subset \mathbb{H}^\infty \) for \(\alpha < 1 \), so there exists a positive constant \(C \) such that \(\|\sigma\|_{\mathbb{H}^\infty} \leq C \).

\[
(1 - |z|^2)^\alpha |(\sigma^n(z))'| = (1 - |z|^2)^\alpha | n \sigma^{n-1}(z) \sigma'(z) |
\leq \|\sigma\|_{\mathcal{B}_\alpha} n |\sigma^{n-1}(z)|
\leq n \|\sigma\|_{\mathcal{B}_\alpha} C^{n-1}.
\]

Hence, \(\sigma^n \in \mathcal{B}_\alpha \) for all positive integers \(n \). \(\blacksquare \)

8
The following theorem gives a sufficient condition that ensures all the integer powers of Königs function belong to the Bloch space.

Theorem 3.2. Suppose \(\varphi \) is a holomorphic self map of \(D \), \(\varphi(0) = 0 \), \(0 < |\varphi'(0)| < 1 \). Also, assume that

\[
1 - |z|^2 \leq \frac{2}{1 - |\varphi(z)|^2} |\varphi'(z)| \leq |\varphi'(0)|, \quad \text{for all } z \in D. \tag{3.2}
\]

Then \(C_\varphi \) is bounded on \(B \) and \(\sigma^n \in B \) for all positive integers \(n \).

Proof. Boundedness of \(C_\varphi \) on the Bloch space is consequence of Schwarz-Pick theorem. From the hypothesis of the theorem, we have

\[
(1 - |z|^2) \log \frac{2}{1 - |z|}|\varphi'(z)| \leq |\varphi'(0)|(1 - |\varphi(z)|^2) \log \frac{2}{1 - |\varphi(z)|}, \quad \text{for all } z \in D. \tag{3.3}
\]

Suppose \(k \) be a positive integer, then

\[
(1 - |z|^2)|\varphi_k'(z)| \log \frac{2}{1 - |z|} = (1 - |z|^2)|\varphi'(z)\varphi'(z)\ldots\varphi'(\varphi_{k-1}(z))| \log \frac{2}{1 - |z|} \\
= (1 - |z|^2) \log \frac{2}{1 - |z|}|\varphi'(z)\varphi'(z)\ldots\varphi'(\varphi_{k-1}(z))|.
\]

By using (3.3), we see that

\[
(1 - |z|^2)|\varphi_k'(z)| \log \frac{2}{1 - |z|} \leq |\varphi'(0)|(1 - |\varphi(z)|^2) \log \frac{2}{1 - |\varphi(z)|}|\varphi'(z)\ldots\varphi'(\varphi_{k-1}(z))|.
\]

And using (3.3) repeatedly, we get

\[
(1 - |z|^2)|\varphi_k'(z)| \log \frac{2}{1 - |z|} \leq 2|\varphi'(0)|^k(1 - |\varphi_k(z)|^2) \log \frac{2}{1 - |\varphi_k(z)|} \\
\leq 2|\varphi'(0)|^k(1 - |\varphi_k(z)|) \log \frac{2}{1 - |\varphi_k(z)|}.
\]

Since \(\log x \leq x \) for \(x > 1 \),

\[
(1 - |z|^2)|\varphi_k'(z)| \log \frac{2}{1 - |z|} \leq 4|\varphi'(0)|^k.
\]

Hence,

\[
\lim_{k \to \infty} (1 - |z|^2) \left| \frac{\varphi_k(z)}{\varphi'(0)^k} \right| \log \frac{2}{1 - |z|} = (1 - |z|^2)|\sigma'(z)| \log \frac{2}{1 - |z|} \leq 4, \quad z \in D
\]
which shows that
\[|\sigma'(z)| \leq \frac{4}{(1 - |z|^2) \log \frac{2}{1 - |z|}}. \] (3.4)

Recall that \(\sigma(0) = 0 \). Now let us get an estimate for \(\sigma \).

\[
|\sigma(z)| = \left| \int_0^1 \sigma'(tz)d(tz) \right| \\
\leq \int_0^1 |\sigma'(tz)d(tz)| \\
\leq \int_0^1 \frac{4}{\log \frac{2}{1 - |tz|^2}} \frac{1}{1 - |tz|^2} d(t|z|) \\
\leq 4 \left[\log \left(\log \frac{2}{1 - t|z|} \right) \right]_0^1 \\
= 4 \left[\log \left(\log \frac{2}{1 - |z|} \right) - \log(\log 2) \right]. \] (3.5)

Now by using (3.4) and the estimate above for \(\sigma \), we get

\[
(1 - |z|^2)(\sigma^n(z))' = (1 - |z|^2) n |\sigma^{n-1}(z)\sigma'(z)| \\
\leq 4^n n \left(\log \log \frac{2}{1 - |z|} - \log \log 2 \right)^{n-1} \frac{1}{\log \frac{2}{1 - |z|}}.
\]

Taking limit \(|z| \to 1 \), it is easy to see that the right hand side of the last expression goes to zero. Hence \(\sigma^n \in \mathcal{B} \) for all positive integers \(n \).

Let us recall the Lipschitz-type norm which is equivalent to the usual norm defined for function \(f \in \mathcal{B}_\alpha \), \(\alpha > 1 \):

\[\|f\|_{\mathcal{B}_\alpha} \equiv \sup_{z \in \mathcal{D}} (1 - |z|^2)^{\alpha-1}|f(z)|. \]

Next, we present results for the Bloch-type spaces, \(\mathcal{B}_\alpha \) for \(\alpha > 1 \). Let us start with the following definition.

Definition 3.3. Suppose \(f \in \mathcal{B}_\alpha \) for some \(\alpha > 0 \), then we define the *Bloch number* of \(f \) by \(b_f = \inf_\alpha \{ \alpha : f \in \mathcal{B}_\alpha \} \).

Proposition 3.2. Suppose \(\beta > 0 \). Then \(f^n \in \mathcal{B}_{\beta+1} \) for all positive integers \(n \) if and only if \(b_f \) is at most 1.
Proof. Suppose \(f^n \in B_{\beta + 1} \) for all positive integers \(n \). Need to show \(b_f \leq 1 \). On the contrary assume \(b_f > 1 \). Then there exists a positive integer \(n_0 \) such that \(1 < 1 + \frac{\beta}{n_0} < b_f \). Now in the view of the Lipschitz-type norm, we see that for any fixed positive integer \(M \) there exists \(z \in D \) such that

\[
M \leq (1 - |z|^2)^{\beta/n_0} |f(z)| \leq \left((1 - |z|^2)^{\beta/n_0} |f(z)| \right)^{n_0} = (1 - |z|^2)^\beta |f(z)|^{n_0},
\]

which shows that

\[
M \leq \sup_{z \in D} (1 - |z|^2)^{\beta} |f(z)|^{n_0} = \|f^{n_0}\|_{B_{\beta + 1}}.
\]

Since \(M \) is an arbitrary positive integer, \(f^{n_0} \notin B_{\beta + 1} \). Which is a contradiction.

Conversely, suppose \(b_f \leq 1 \). Since \(B_\alpha \subset B \) for all \(\alpha \leq 1 \), then clearly \(f \in B \). For any fixed \(\beta > 0 \) and for any fixed positive integer \(n \),

\[
(1 - |z|^2)^{\beta + 1} |(f^n)'(z)| = (1 - |z|^2)^{\beta + 1} |nf^{n-1}(z)f'(z)|
\]

\[
= n(1 - |z|^2)f'(z)((1 - |z|^2)^\beta |f^{n-1}(z)|)
\]

\[
\leq n\|f\|_B (1 - |z|^2)^\beta \left(\|f\|_B \log \frac{1}{1 - |z|} \right)^{n-1}
\]

\[
= n(\|f\|_B)^n (1 - |z|^2)^\beta \left(\log \frac{1}{1 - |z|} \right)^{n-1}.
\]

The last expression goes to zero as \(|z| \to 1 \). This shows that \(f^n \in B_{\beta + 1} \) for all positive integers \(n \).

\[\Box \]

Theorem 3.3. Suppose \(\varphi \) is a holomorphic self map of \(D \), \(\varphi(0) = 0 \), \(0 < |\varphi'(0)| < 1 \), and also assume \(\alpha > 1 \). If \(|\varphi^{(h)}(z)| \leq |\varphi'(0)| \) for all \(z \in D \) then \(C_\varphi \) is bounded on \(B_\alpha \) and \(\sigma^n \in B_\alpha \) for all positive integers \(n \).

Proof. Since \(|\varphi^{(h)}(z)| \leq |\varphi'(0)| \) for all \(z \in D \), from Proposition \[3.1\] \(\sigma \in B \). So \(b_f \leq 1 \). Therefore the result follows from Proposition \[3.2\]. \[\Box \]

4 Weighted Composition operator

Let us recall that if \(u \) is a holomorphic function of the unit disk, and \(\varphi \) is a holomorphic self map of the unit disk then the Schröder equation for weighted composition operator is given by

\[
u(z)f(\varphi(z)) = \lambda f(z),
\]

(4.1)
where \(f \in \mathcal{H}(D) \) and \(\lambda \) is a complex constant.

Let us also recall that if \(u(0) \neq 0, \varphi(0) = 0, 0 < |\varphi'(0)| < 1 \) then the solutions of (4.1) are given by Theorem 2.4. The principal eigenfunction corresponding to the eigenvalue \(u(0) \) is denoted by \(v \) and all other eigenfunctions are of the form \(v\sigma^n \) where \(\sigma \) is the Königs function of \(\varphi \) and \(n \) is a positive integer. Hosokawa and Nguyen [4] studied equation (4.1) in the Bloch space and obtained the following result.

Theorem 4.1. Assume \(\varphi \) is a holomorphic self map of \(D \) with \(\varphi(0) = 0 \) and \(0 < |\varphi'(0)| < 1 \), and \(u \) is holomorphic map of \(D \) such that \(u(0) \neq 0 \). Let us also assume that \(uC_\varphi \) is bounded on \(\mathcal{B} \). For \(0 < r < 1 \), set

\[
M_r(\varphi) := \sup_{|z|=r} |\varphi(z)|, \quad a_r := \sup_{|z|=r} (|u'(z)\varphi(z)| + |u(z)\varphi'(z)|).
\]

Suppose that

(i) \(\lim_{r \to 1} \log(1 - r) \log M_r(\varphi) = \infty \).

(ii) \(\log |a_r| < \epsilon \log(1 - r) \log M_r(\varphi) \),

where \(\epsilon > 0 \) is a constant satisfying \(\epsilon \log \|\varphi\|_\infty > -1 \).

Then, \(v\sigma^n \in \mathcal{B} \) for all non-negative integer \(n \).

Here we investigate the properties of weight \(u \) and symbol \(\varphi \) of weighted composition operators \(uC_\varphi \) that ensure \(v\sigma^n \) belongs to Bloch-type spaces \(\mathcal{B}_\alpha \) for some \(\alpha > 0 \) and for all non negative integer \(n \). Let us begin with following remark.

Remark 4.1. Suppose \(f \) is a holomorphic function defined on \(D \). If \(\|f'\|_\infty < M \) for some \(M > 0 \) then

\[
|f(z) - f(0)| = \left| \int_0^1 zf'(tz)dt \right| \\
\leq \int_0^1 |z f'(tz)|dt \\
\leq M \int_0^1 |z|dt
\]

If \(f \) also satisfies \(f(0) = 0 \), then \(\|f\|_\infty \leq M \).

Proposition 4.1. Assume \(\varphi \) is a univalent holomorphic self map of the unit disk with \(\varphi(0) = 0 \) and \(0 < |\varphi'(0)| < 1 \), and \(\sigma \) is Königs function of \(\varphi \). Then, \(\sigma \) is bounded if and only if there is a positive integer \(k \) such that \(\|\varphi_k\|_\infty < 1 \).
Proof. Suppose σ is bounded. Since φ is univalent, σ is also univalent (see [7], page 91). Since σ is bounded univalent map, there is a positive integer k such that $\|\varphi_k\|_\infty < 1$ (see [7]).

Conversely suppose there is a positive integer k such that $\|\varphi_k\|_\infty < 1$. Since we have $\varphi(\varphi(z)) = \varphi'(0)\sigma(z)$,

$$\sigma(\varphi_k(z)) = \sigma(\varphi_k(\varphi_{k-1}(z))) = \varphi'(0)\sigma(\varphi_{k-1}(z)) = \varphi'(0)^k\sigma(z).$$

Clearly left hand side is bounded and therefore σ is also bounded, which completes the proof.

\[\square\]

Theorem 4.2. Assume φ is a univalent holomorphic self map of the unit disk with $\varphi(0) = 0$ and $0 < |\varphi'(0)| < 1$ satisfying $|\varphi^{(h_\alpha)}(z)| \leq |\varphi'(0)|$ for all $z \in D$ and for some fixed $\alpha < 1$. If u is holomorphic map of D such that $u(0) \neq 0$ and $\|u\|_\infty < \infty$ then uC_φ is bounded on B_α and $\varphi u^n \in B_\alpha$ for all non-negative integers n.

Proof. Since $\|u\|_\infty < \|u\|_\infty + |u(0)| < \infty$ and $|\varphi^{(h_\alpha)}(z)| \leq |\varphi'(0)|$, uC_φ is bounded on B_α for some $\alpha < 1$.

Since $|\varphi^{(h_\alpha)}(z)| \leq |\varphi'(0)|$ for some $\alpha < 1$, using Proposition 3.1, we see that $\sigma \in B_\alpha$, $\alpha < 1$ and hence bounded. Since φ is univalent, σ is univalent. Consequently, there exists a non-negative integer k such that $\|\varphi_k\|_\infty < 1$. Composing φ_{k-1} on both sides of the Schröder equation (4.1) from right,

$$u(\varphi_{k-1}(z))f(\varphi_k(z)) = \lambda f(\varphi_{k-1}(z)).$$

(4.2)

The left hand side in the equation above is bounded and so is $f \circ \varphi_{k-1}$. Now differentiating both side of (4.2), we get that

$$u'(\varphi_{k-1}(z)) \varphi'_{k-1}(z) f(\varphi_k(z)) + u(\varphi_{k-1}(z)) f'(\varphi_k(z)) \varphi'_k(z) = \lambda f'(\varphi_{k-1}(z)) \varphi'_{k-1}(z).$$

Multiplying both sides by $(1 - |z|^2)\alpha$ and using boundedness of $\|u\|_\infty, \|u\|_\infty, f \circ \varphi_k$ and $f' \circ \varphi_k$, we see that there exists a constant M such that

$$(1 - |z|^2)^\alpha |\lambda f'(\varphi_{k-1}(z)) \varphi'_{k-1}(z)| \leq M(1 - |z|^2)^\alpha (|\varphi'_{k-1}(z)| + |\varphi'_k(z)|).$$

(4.3)

Right hand side of the above equation is uniformly bounded and therefore the left hand side is bounded. Again, let us compose φ_{k-2} on (4.1), to get

$$u(\varphi_{k-2}(z))f(\varphi_{k-1}(z)) = \lambda f(\varphi_{k-2}(z)).$$
Let us differentiate above expression and then multiply by \((1-|z|^2)^\alpha\) on both sides. Then, the use of \((1.2)\) and \((1.3)\) shows that \((1-|z|^2)^\alpha|f'(\varphi_{k-2}(z))\varphi'_{k-2}(z)|\) is bounded.

Continuing this process, we see that that sup\(_{z \in \mathcal{D}}\)\((1-|z|^2)^\alpha|f'(z)|\) is bounded and hence \(f \in \mathcal{B}_\alpha\). From Theorem 2.4 we know that any holomorphic \(f\) satisfying \((4.1)\) is of the form \(v\sigma^n\) for some positive integer \(n\), so \(v\sigma^n \in \mathcal{B}_\alpha\) for all non-negative integers \(n\). This completes the proof.

The following two theorems give us the sufficient conditions that ensure \(v\sigma^n\) belong to Bloch-type spaces \(\mathcal{B}_\alpha\) for some \(\alpha > 1\) and for all non-negative integers \(n\).

Theorem 4.3. Let \(\varphi\) be a holomorphic self map of the unit disk with \(\varphi(0) = 0\) and \(0 < |\varphi'(0)| < 1\), and \(u\) is holomorphic map of \(\mathcal{D}\) such that \(u(0) \neq 0\). Let \(\beta\) be a fixed positive number and assume

\[
|u(z)|\frac{(1-|z|^2)\beta}{(1-|\varphi(z)|^2)^\beta} \leq |u(0)|, \quad \text{for all} \ z \in \mathcal{D}.
\]

Then the following statements are true.

i. If \(|\varphi^{(h\alpha)}(z)| \leq |\varphi'(0)| \) for all \(z \in \mathcal{D}\) and for some \(\alpha < 1\), then \(v\sigma^n \in \mathcal{B}_{\beta+1}\) for all non-negative integers \(n\).

ii. If \(|\varphi^{(h)}(z)| \leq |\varphi'(0)| \) for all \(z \in \mathcal{D}\), then \(v\sigma^n \in \mathcal{B}_{p+1}\), for some \(p > \beta\) and for all non-negative integers \(n\).

Proof.

i. From definition of \(v_k\) (see Theorem 2.4), we have

\[
(1-|z|^2)^\beta|v_k(z)| = (1-|z|^2)^\beta \frac{|u(z)u(\varphi(z))......u(\varphi_{k-1}(z))|}{|u(0)|^k}
\leq (1-|\varphi(z)|^2)^\beta \frac{|u(\varphi(z))......u(\varphi_{k-1}(z))|}{|u(0)|^{k-1}}
\leq 1.
\]

Hence \((1-|z|^2)^\beta|v(z)| = \lim_{k \to \infty} (1-|z|^2)^\beta|v_k(z)| \leq 1\). Since \(z\) is arbitrary,

\[
\sup_{z \in \mathcal{D}} (1-|z|^2)^\beta|v(z)| < \infty.
\]
On the other hand the assumption $|\varphi^{(h)}(z)| \leq |\varphi'(0)|$ and Proposition 3.1 implies that $\sigma^n \in B_\alpha \subset \mathbb{H}^\infty$ for all non-negative integer n. Hence,

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)\beta |v(z)\sigma^n(z)| < \infty$$

for all non-negative integers n. Considering the equivalent norm (see (1.2)), we see that $v\sigma^n \in B_\beta + 1$ for all non-negative integers n.

ii. From the proof of (i), we see that

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)\beta |v(z)| < \infty. \quad (4.4)$$

On the other hand, since $|\varphi^{(h)}(z)| \leq |\varphi'(0)|$, Proposition 3.1 implies that $\sigma \in B$ so there exists $M > 0$ such that

$$|\sigma(z)| \leq M \log \frac{2}{1 - |z|^2}. \quad (4.5)$$

Now using equations (4.4) and (4.5), we have

$$(1 - |z|^2)^\beta |v(z)\sigma^n(z)| = (1 - |z|^2)^\beta |v(z)| \{ (1 - |z|^2)^{p-\beta} |\sigma^n(z)| \} \leq CM (1 - |z|^2)^{p-\beta} \left(\log \frac{2}{1 - |z|^2} \right)^n$$

for some constant $C > 0$. Now taking limit $|z| \to 1$, we get that the last expression goes to zero. Hence, $v\sigma^n \in B_{p+1}$ for all non-negative integers n.

\[\square \]

Theorem 4.4. Let φ be a holomorphic self map of the unit disk with $\varphi(0) = 0$ and $0 < |\varphi'(0)| < 1$, and u is holomorphic map of \mathbb{D} such that $u(0) \neq 0$. Suppose that β is a positive integer and

i. $|u(z)| \frac{(1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^\beta} \log \frac{2}{(1 - |z|^2)^p} \log \frac{2}{(1 - |\varphi(z)|^2)^p} \leq |u(0)|$, for all $z \in \mathbb{D}$

ii. $|\varphi^{(h)}(z)| \frac{\log \frac{2}{1 - |z|}}{\log \frac{2}{1 - |\varphi(z)|}} \leq |\varphi'(0)|$, for all $z \in \mathbb{D}$.

Then $v\sigma^n \in B_{\beta + 1}$ for all non-negative integers n.

15
Proof. From definition of v_k on\(2.4\) and the condition \((i)\), we have

\[
(1 - |z|^2)^\beta \log \frac{2}{(1 - |z|)^\beta} |v_k(z)| \leq (1 - |z|^2)^\beta \log \frac{2}{(1 - |z|)^\beta} \frac{|u(z)u(\varphi(z)) \ldots u(\varphi_{k-1}(z))|}{|u(0)|^k} \\
\leq (1 - |\varphi(z)|^2)^\beta \log \frac{2}{(1 - |\varphi(z)|)^\beta} \frac{|u(\varphi(z)) \ldots u(\varphi_{k-1}(z))|}{|u(0)|^k} \\
\leq (1 - |\varphi_k(z)|^2)^\beta \log \frac{2}{(1 - |\varphi_k(z)|)^\beta} \\
\leq 2^\beta (1 - |\varphi_k(z)|)^\beta \log \frac{2}{(1 - |\varphi_k(z)|)^\beta}.
\]

Since \(\log x \leq x\), for \(x > 1\)

\[
(1 - |z|^2)^\beta \log \frac{2}{(1 - |z|)^\beta} |v_k(z)| \leq 2^{\beta + 1}.
\]

So taking limit \(k\) approaches to \(\infty\), we see that

\[
(1 - |z|^2)^\beta |v(z)| \leq \frac{2^{\beta + 1}}{\log \frac{2}{1 - |z|}}. \tag{4.6}
\]

On the other hand, since \(\varphi\) satisfies condition \((ii)\), equation \(3.5\) of Theorem 3.2 says that there exists \(K > 0\) such that

\[
|\sigma(z)| \leq K \log \frac{2}{1 - |z|}. \tag{4.7}
\]

Now using \(4.6\) and \(4.7\), we get

\[
(1 - |z|^2)^\beta |v(z)\sigma^n(z)| \leq \frac{2^{\beta + 1}K^n}{\log \frac{2}{1 - |z|}} \left(\log \log \frac{2}{1 - |z|}\right)^n.
\]

Clearly right hand side of the above equation goes to 0 as \(|z| \to 1\). Using the norm defined on \((1.2)\), \(v\sigma^n \in B_{\beta + 1}\) for all non negative integers \(n\).

\[\square\]

This paper is based on a research which forms a part of the author’s Ph.D. dissertation from University of Toledo. The author wishes to express his deep gratitude to his dissertation adviser Professor Željko Ćučković.
References

[1] J. Anderson, Bloch functions: The basic theory, Operators and Function Theory, S. Power, editor, D. Reidel, (1985).

[2] C. N. B. Hammond, On the norm of a composition operator. Thesis (Ph.D.)-University of Virginia (2003).

[3] T. Hosokawa and S. Ohno, Topological structures of the sets of composition operators on the Bloch spaces. J. Math. Anal. Appl. 314 (2006), 736-748.

[4] T. Hosokawa and Q. D. Nguyen, Eigenvalues of weighted composition operators on the Bloch space, Integral Equations and Operator Theory 66 (2010), 553-564.

[5] G. Königs, Research on the integrals of certain functional equations, (French) Ann. Sci. Norm school. Sup. (3) 1 (1884), 3-41.

[6] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type Spaces, Rocky Mountain Journal of Mathematics, 33 (2003) no 1.

[7] J.H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.

[8] K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain Journal of Mathematics, 23 (1993).

Bhupendra Paudyal
Central State University
Math and Computer Sc. Dept.
Wilberforce, Ohio, USA
Email: bpaudyal@centralstate.edu