A New Role for Escherichia coli DsbC Protein in Protection against Oxidative Stress*

Katleen Denooncin, Didier Vertommen, Isabelle S. Arts, Camille V. Goemans, Sophie Rahuel-Clermont, Joris Messens, and Jean-François Collet

From the de Duve Institute, Université catholique de Louvain, 1200 Brussels, Belgium, WELBIO, 1200 Brussels, Belgium, Brussels Center for Redox Biology, 1200 Brussels, Belgium, the Structural Biology Research Center, VIB, 1050 Brussels, Belgium, the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium, and the CNRS-Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France

Background: DsbC is a protein-disulfide isomerase present in the periplasm of Gram-negative bacteria.

Results: We discovered that DsbC also regulates the redox state of the single cysteine residue of the L-arabinose-binding protein AraF.

Conclusion: DsbC is involved in the protection of single cysteine residues against oxidative stress.

Significance: This finding reveals a new link between oxidative stress protection and oxidative protein folding.

The cell envelope of Gram-negative bacteria is characterized by the presence of two membranes, the outer membrane and the inner membrane, which are separated by the periplasm, a viscous compartment that contains a thin layer of peptidoglycan and represents 10–20% of the total cell volume (1). More than 300 proteins are present in the periplasm where they perform a large variety of functions, such as uptake and transport of nutrients and detoxification of harmful substances.

In contrast to their cytoplasmic counterparts, many periplasmic proteins are stabilized by the formation of one or more disulfide bonds that are essential for conformational stability and biological activity (2). Although the majority of the cysteine residues present in periplasmic proteins are involved in disulfide bonds (3), a small but significant fraction of secreted proteins possess cysteine residues that remain in the reduced thiol (-SH) state. These reduced cysteine residues are therefore potential targets for the reactive oxygen species (ROS)2.

As by-products of aerobic metabolism or generated by the host defenses to kill the invading bacteria.

The first oxidation product of a cysteine residue exposed to ROS is the sulfenic acid derivative (-SOH), a highly reactive intermediate that, unless stabilized within a protein microenvironment, either reacts with another thiol present in the vicinity to form a disulfide or is irreversibly oxidized to sulfenic (-SO2H) and sulfonic (-SO3H) acids (4). As these latter modifications can lead to the irreversible inactivation of the damaged proteins, cells have developed protective mechanisms to prevent sulfenic acid oxidation (5).

Recently, we discovered that Escherichia coli DsbG, a periplasmic oxidoreductase from the thioredoxin superfamily, is involved in the protection of a family of enzymes that cross-link the major outer membrane lipoprotein Lpp to the peptidoglycan (6). We found that these enzymes, known as “L,D-transpeptidases,” form a sulfenic acid on a cysteine residue essential for activity and that DsbG controls the level of sulfenylation of this residue. Our results also suggested that DsbC, an oxidoreductase homologous to DsbG, that is best known as a periplasmic protein-disulfide isomerase (7, 8), functions as a backup for DsbG in the control of sulfenylation in the periplasm (6). However, the role, if any, played by DsbC in the defense mechanisms against oxidative stress remained elusive.

We decided to investigate whether DsbC specifically protects certain periplasmic proteins from oxidative damage. Our initial strategy to address this question was to investigate whether DsbC interacts with proteins presenting a single cysteine residue, as these proteins, which do not form nonnative disulfide bonds, cannot use the disulfide isomerase activity of DsbC. By using a well-established technique to trap the substrates of proteins with a thioredoxin fold (9), we found that an abundant substrate of DsbC is the arabinose-binding protein AraF, a soluble protein with a single cysteine residue. The function of AraF is to bind L-arabinose in the periplasm and to deliver it to the inner membrane protein complex AraH-AraG. We also found that AraF forms a disulfide-linked dimer under oxidative stress conditions, which prevents L-arabinose binding. Remarkably,
DsbC, unlike DsbG, is able to reduce the dimer, highlighting the specificity of the interaction. Altogether, our results show that the protein-disulfide isomerase DsbC plays a role in the protection of free cysteine residues against ROS, connecting oxidative protein folding to the defense mechanisms against oxidative stress.

**EXPERIMENTAL PROCEDURES**

**Bacterial Strains and Growth Conditions**—Bacterial strains and plasmids used in this study are listed in Table 1. Bacterial strains are *E. coli* MC4100 derivatives (10). All alleles were moved by P1 transduction using standard procedures (11). Unless indicated, bacteria were grown aerobically at 37 °C in LB medium or in M63 minimal medium, supplemented with 0.2% glycerol, 0.2% casamino acids, vitamins (10 μg/ml thiamin, 1 μg/ml biotin, 10 μg/ml riboflavin, 10 μg/ml nicotinamide), and 1 mM MgSO$_4$. When necessary, growth media were supplemented with chloramphenicol (25 μg/μl).

**Plasmid Construction**—The AraF expression vector was constructed as follows. The region encoding the mature AraF protein (without the signal sequence) was amplified from the chromosome using primers AraF_Fw (5’-AAAAACATGGGAGAACCTGAAGCTCGGTTTC-3’) and AraF_Rv (5’-CCCTCTGAGCTTACCGGCTAAACCTTTTC-3’) and cloned into a pET28a vector, generating plasmid pKD1. The stop codon at the 3’ end of the araf gene was added by site-directed mutagenesis using primers AraFSTOP_Fw (5’-GGTTAGGCGGTATACTGGAGCCACCCAC-3’) and AraFSTOP_Rv (5’-GTGGTGTCCTCCTACCTACCCTAAACCC-3’), generating plasmid pKD2.

**Trapping and Purification of the AraF-DsbCXXS Complex**—Strain KD80 was grown in LB medium at 37 °C to reach an A$_{600}$ of 0.6. Expression of DsbCXXS was induced for 5 h by the addition of 0.2% L-arabinose. After precipitation with 10% TCA, the proteins were resuspended in 100 mM Na$_2$P$_2$O$_7$, pH 8, 300 mM NaCl, 0.3% SDS, 8 M urea, and 100 mM iodoacetamide (IAM) to prevent disulfide bond rearrangement. The lysate was centrifuged at 23,000 × g for 45 min. Ni-NTA resin (Qiagen) was then added to the supernatant and the mixture incubated overnight at room temperature. The Ni-NTA resin was packed in a 1-ml column and washed thoroughly using 100 mM Na$_2$P$_2$O$_7$, pH 8, 300 mM NaCl, and 0.3% SDS. DsbCXXS and the proteins bound to it were eluted with a step gradient from 30 mM to 300 mM imidazole. Only one fraction eluted from the column. This fraction was concentrated 10-fold and analyzed by SDS-PAGE with or without dithiothreitol (DTT). After electrophoresis, the SDS-polyacrylamide gel was stained with Coomassie Blue.

**Identification of AraF as a DsbC Substrate by LC-MS/MS**—The bands of interest were cut out from the gel and digested with trypsin. The peptides were analyzed by capillary LC-MS/MS in a LTQ XL ion trap mass spectrometer (Thermo Scientific, San Jose, CA), fitted with a microelectrospray probe. The scan routine was a top five experiment consisting of a full MS scan (400–2000 m/z) followed by a MS/MS scan for the five most abundant ions. Dynamic exclusion allowed fragmentation of co-eluting peptides. The data were analyzed with the ProteomeDiscoverer software (Thermo Scientific, version 1.4.0.288), and the proteins were identified with SEQUEST against a target decoy nonredundant *E. coli* protein database obtained from UniProtKB. The false discovery rate was set below 5%.

**Specificity of the Interaction between DsbC and AraF**—The proteins DsbCXXS and DsbGXXA were expressed and purified from KD80 and KD192 strains, respectively, using the protocol described above. Then, proteins were loaded on a SDS-polyacrylamide gel with or without DTT and transferred to a nitrocellulose membrane. After transfer, proteins were detected using an anti-AraF antibody (1/8000), an anti-DsbC antibody (1/10,000), or an anti-DsbG antibody (1/10,000). All of the antibodies were produced from rabbits immunized with the purified protein (Eurogentec, Liège, Belgium). Anti-rabbit IgG (Sigma) was used as the secondary antibody at a dilution of 1/5000. Thermo Scientific Pierce ECL Western blotting substrate and Fuji films were used to visualize the protein bands.

**Identification of the Dimedone-modified Peptide by LC-MS/MS**—Recombinant AraF (10 μg) was incubated in the presence of 5 mM dimedone with 1 mM H$_2$O$_2$ or 2 mM HOCl for 10 min at 37 °C. The protein was then precipitated with 10% TCA and the pellet resuspended in 50 μl of 100 mM NH$_4$HCO$_3$, pH 8.0, for overnight digestion at 30 °C with 0.5 μg of sequencing grade trypsin (Promega). The peptides were analyzed by LC-MS/MS as described above except that the mass spectrometer was operated in the data-dependent mode and switched automatically between MS, Zoom Scan for charge state determination and MS/MS for the three most abundant ions. Peptides were identified by Proteome Discoverer considering dynamic modifications on cysteine residues of 138.0 Da for sulfenic dimedone, 32.0 Da for sulfenic, and 48.0 Da for sulfonic. Gas-phase fragmentation and chromatographic retention times of the Cys-containing AraF peptide (GFVICTPDPK) were characterized for all oxidation states to determine the best daughter ion to be monitored for single reaction monitoring (SRM transitions) assay by LC-MS/MS (see below).

**Identification of the Sulfenylated Modified Cysteine of AraF by SRM**—The KD19 strain was grown in LB medium at 37 °C until reaching an A$_{600}$ of 0.6. Expression was induced for 1 h 30...
min by the addition of 0.2% L-arabinose. The culture was then harvested by centrifugation at 3000 × g for 15 min at 4 °C. Cultures were standardized to the same \( A_{660} \) before centrifugation to obtain an equal amount of bacteria. The pellet was then resuspended in 6 ml of TSE buffer (100 mM Tris-HCl, pH 8, 20% sucrose, 1 mM EDTA) containing 10 mM dimedone and 50 mM IAM. After 15 min of incubation at 4 °C with gentle shaking, the sample was centrifuged at 12,000 × g for 15 min at 4 °C. The pellet was then resuspended in buffer containing 5 mM cold MgSO\(_4\) as well as 10 mM dimedone and 50 mM IAM. After 30 min of incubation at 4 °C with gentle shaking, the sample was centrifuged for 25 min at 12,000 × g at 4 °C. An amount of 100 \( \mu g \) of total proteins was precipitated and digested overnight with trypsin in 50 mM NH\(_4\)HCO\(_3\). Peptides (20 \( \mu g \)) were then analyzed by LC-MS/MS using the predefined five SRM transitions targeting the different oxidation states of the single-cysteine-containing peptide of AraF.

**Monitoring AraF Dimer Formation in Vivo**—KD215, KD216, and KD217 strains were grown in M63 medium at 37 °C until an \( A_{660} \) of 0.6. AraF expression was induced by the addition of 0.2% L-arabinose. After 5 h of induction, the cultures were precipitated with 10% TCA. Cultures were standardized according to \( A_{660} \) before TCA precipitation. Then, proteins were resuspended in 100 mM NaPi, pH 8, 300 mM NaCl, 0.3% SDS, 8 M urea, and 100 mM IAM to prevent any further thiol rearrangement. The lysates were incubated at room temperature for 20 min and centrifuged at 21,000 × g for 15 min. Finally, samples were loaded on a SDS-polyacrylamide gel and transferred to a nitrocellulose membrane, and proteins were detected by Western blotting as described above.

**Oxidation of AraF by HOCl**—KD215 and KD216 strains were grown in M63 medium at 37 °C until an \( A_{660} \) of 0.6. AraF expression was induced by the addition of 0.2% L-arabinose. After 1 h and 30 min of induction, HOCl (3 mM) was added to the cultures. After 20 min of HOCl incubation, proteins were precipitated with 10% TCA. Cultures were standardized according to \( A_{660} \).

**AraF Dimer Reduction in Vitro**—DsbC and DsbG were reduced first with 10 mM DTT for 1 h at 37 °C. The proteins were then loaded on a gel filtration column (NAP-5; GE Healthcare) equilibrated with 50 mM NaPi, pH 8, 100 mM NaCl and eluted with the same buffer. AraF (40 \( \mu \)M) was incubated either with 5 mM DTT or with 120 \( \mu \)M reduced DsbC or DsbG at 37 °C for 1 h. Samples were then analyzed by SDS-polyacrylamide gel stained with Coomassie Brilliant Blue.

\( \text{L-[1-}\text{\({ }^{14}\text{C}\)}\text{]}\text{Arabinose Binding Assays—L-Arabinose binding was assayed by equilibration dialysis in Slide-A-Lyzer MINI Dialysis Devices (Thermo Scientific). L-[1-\text{\({ }^{14}\text{C}\)}]Arabinose was purchased from Moravek Biochemicals (54 mCi/mmol). Equilibrium binding constants (K}\_d\) were determined using purified AraF, reversibly denatured by dialysis against a solution of 2 M guanidine, 50 mM Tris, pH 7.6, 1 mM MgCl\(_2\), and 5 mM DTT to remove residual amounts of l-arabinose. Samples of 6 \( \mu \)M AraF were dialyzed against the assay buffer consisting of 50 mM Tris, pH 7.6, 1 mM MgCl\(_2\), 5 mM DTT and containing increasing concentrations of \( \text{L-[1-}\text{\({ }^{14}\text{C}\)}\text{]}\text{Arabinose (from 0.02 to 0.7 } \mu \text{M). After overnight incubation at 4 °C, samples of the external dialysate and the dialyzed material were mixed with scintillation fluid, and counted for 2 min in a PerkinElmer Life Sciences TriCarb 2800Tr scintillation counter. The counts observed in the sample of the dialyzed material in excess of those observed in the external dialysate are considered to represent l-arabinose bound to the AraF protein.**

**RESULTS**

*AraF Is a New DsbC Substrate*—To investigate the possible role of DsbC in the protection mechanisms against oxidative stress, we sought to determine whether DsbC interacts with periplasmic proteins presenting a single cysteine residue. Indeed, these proteins cannot form a nonnative disulfide bond and therefore do not use the disulfide isomerase activity of DsbC. The catalytic domain of DsbC adopts a thiooxidin fold and possesses a conserved CXXC catalytic motif which is maintained reduced by the inner membrane protein DsbD (7, 12). In proteins belonging to the thioredoxin superfamily, the first cysteine of the CXXC motif performs a nucleophilic attack on an oxidized substrate, leading to the formation of a mixed-disulfide intermediate (9). The role of the second cysteine of the CXXC motif is to resolve this mixed-disulfide to release the substrate. Thus, to trap DsbC in complex with its substrates, we prepared a DsbC variant in which the CXXC motif was replaced by CXXS (DsbC\(_{CXXS}\)), a mutation that prevents the dissociation of the DsbC\(_{CXXS}\)-substrate complexes. This approach has been used previously to trap the substrates of proteins with a thioredoxin fold (6, 13–15). After expression of DsbC\(_{CXXS}\) in the periplasm of a \( \Delta \text{dsbC} \) mutant strain, proteins were precipitated, and free cysteine residues were alkylated with IAM to avoid any further disulfide bond rearrangement. DsbC\(_{CXXS}\) was then purified under nonreducing denaturing conditions by taking advantage of the His tag at the C terminus of the protein. Only one peak eluted from the affinity column when an imidazole gradient was applied. The purified sample was then analyzed by SDS-PAGE with or without DTT, a reducing agent. As shown in Fig. 1A, several bands appeared after reducing treatment, suggesting that they correspond to proteins that were released from DsbC under the reducing conditions. These bands were cut out of the gel, digested with trypsin, and analyzed by LC-MS/MS. Remarkably, we found that the most abundant protein released upon treatment with DTT corresponds to AraF, a periplasmic protein with a single cysteine residue. AraF belongs to a family of periplasmic binding proteins that function as high affinity receptors for multiple low molecular weight compounds in the bacterial envelope. AraF mediates the uptake of L-arabinose in the periplasm by binding to this sugar with a high affinity (0.3 \( \mu \)M) (16, 17), transporting it across the periplasm and delivering it to the AraH-AraG IM protein complex (18). To confirm that DsbC interacts with AraF in vivo, we expressed DsbC in cells deleted for the *araBAD* genes. This strain cannot metabolize L-arabinose, allowing high expression levels of AraF upon L-arabinose addition. One h after adding L-arabinose to cells in exponential phase, proteins were precipitated with TCA, resuspended in a denaturing nonreducing buffer, and analyzed by Western blotting using a specific anti-AraF antibody. As shown in Fig. 1B, we observed the formation of a band migrating at the size expected for a DsbC-AraF complex, supporting that DsbC and AraF interact in living cells.
The Single Cysteine Residue of AraF Is Conserved—The overall fold of the AraF protein, illustrated in Fig. 2A, is described as a “kidney bean” and is characterized by the presence of two globular domains and a connecting hinge. These two domains enclose a deep and narrow cleft in which the binding site for L-arabinose is located (Fig. 2A) (16, 19, 20). Interestingly, the single cysteine residue of AraF is localized within this cleft, near the sugar binding site (21), and is widely conserved among the homologous proteins from α-, β-, and γ-proteobacteria (Fig. 2C). It does not, however, participate directly in L-arabinose binding (16).

The Single Cysteine of AraF Can Be Oxidized to a Sulfenic Acid—The fact that we trapped AraF in a disulfide-linked complex with DsbC implies that the single cysteine of AraF can be oxidized. A likely hypothesis is that the cysteine of AraF can be modified to a sulfenic acid by the oxidants present in the periplasm, as observed previously for YbiS, one of the three DsbG substrates (6). Because of their high reactivity, sulfenic acids are difficult to identify. Therefore, their identification often requires the covalent modification of the sulfenic acid intermediate with specific reagents such as dimedone (5,5-dimethyl-1,3-cyclohexadione) (4). To test whether AraF is indeed able to form a stable sulfenic acid, we incubated the purified AraF protein with dimedone. The protein was then digested with trypsin and the peptide mixture analyzed by LC-MS/MS. A dimedone-modified peptide, as well as the sulfinic and sulfonic acid-modified peptides, were detected using SRM analysis, indicating that the AraF cysteine can also be sulfenylated in vivo.

AraF Forms a Disulfide-linked Homodimer—While performing experiments on the purified AraF protein, we observed that AraF forms a high molecular mass complex migrating in SDS-polyacrylamide gels at the size expected for a dimer (Fig. 4A, lane 1), which was confirmed by gel filtration and mass spectrometry. As shown in Fig. 4A (lane 2), the AraF dimer is sensitive to DTT, which indicates that it results from an intermolecular disulfide bond between two AraF molecules, most likely following the oxidation of the cysteine residue of one of the two subunits to a sulfenic acid (see “Discussion”). To establish the physiological relevance of the dimer formation, it was important to determine whether the AraF homodimer also forms in vivo. The ΔaraBAD mutant was grown in LB at 37 °C, L-arabinose was added to induce AraF expression, and samples were taken at different time points. Free thiols were blocked with IAM to prevent nonphysiological oxidation of cysteine thiols, and proteins were precipitated with TCA. Then, the samples were resuspended in a denaturing buffer and analyzed by Western blotting using a specific anti-AraF antibody. As shown in Fig. 4B, a DTT-sensitive band migrating at the size expected for an AraF homodimer (~70 kDa) appeared in stationary phase, indicating that AraF forms a disulfide-linked homodimer in vivo. As dimer formation was observed in stationary phase, i.e. after 5 h of induction (Fig. 4C, lane 1), a growth condition known to accumulate ROS, we investigated whether exposing AraF-expressing cells to H₂O₂ or HOCl, two oxidizing agents commonly encountered by bacteria, leads to increased dimer formation. Whereas addition of H₂O₂ does not cause dimer formation, addition of HOCl leads to a significant accumulation of the AraF dimer (Fig. 4D, lanes 1 and 2).
Formation of the Dimer Prevents l-Arabinose Binding by AraF—The fact that the cysteine residue of AraF is located in the vicinity of the sugar binding site raises the question of whether its involvement in an intermolecular disulfide bond influences the binding properties of AraF toward l-arabinose. To address this question, we purified the AraF homodimer by gel filtration, and we compared its affinity constant (Kd) for l-arabinose with that of the monomeric protein. Remarkably, whereas we found a Kd of 0.41 μM for the wild-type protein, in agreement with previous data (16, 17), the disulfide-linked dimer was unable to bind l-arabinose, indicating that formation of the intermolecular disulfide disturbs substrate binding in AraF (Fig. 5).

The AraF Homodimer Is Specifically Reduced by DsbC—The identification of an AraF-DsbC complex suggests that DsbC is able to reduce the intermolecular disulfide of the AraF homodimer. This is indeed what we observed when the AraF homodimer was incubated in vitro with DsbC in excess (Fig. 4A, lane 3). Furthermore, we found that DsbC regulates dimer formation in living cells by comparing the amount of the AraF dimer detected in a ΔdsbG mutant and in a wild-type strain. As shown in Fig. 4, C and D (lanes 3 and 4), we observed that deletion of dsbC leads to an increased accumulation of the AraF dimer, especially during HOCl-induced oxidative stress. Thus, these results indicate that DsbC is involved in the reduction of the AraF intermolecular disulfide bond in vivo.

As explained above, DsbG, a homodimeric protein sharing a similar three-dimensional structure and a similar CXXC catalytic motif with DsbC, controls the sulfenylation level of certain periplasmic proteins. To test whether DsbG is also able to interact with AraF, we expressed a DsbGCXXA mutant in a ΔdsbG strain and purified the protein by affinity chromatography. However, no band corresponding to AraF was released from DsbG upon DTT treatment (Fig. 1C), indicating that DsbG and AraF do not interact in vivo. In agreement with this result, we found that, although DsbG appears to be able to reduce the disulfide-linked AraF dimer in vitro (Fig. 4A, lane 4), it does it less efficiently than DsbC, further indicating that AraF is a specific DsbC substrate. Interestingly, DsbC was previously shown to inefficiently catalyze the in vitro reduction of the transpeptidase YbiS, a specific DsbG substrate (6). Thus, it seems that although the homologous proteins DsbC and DsbG have favorite substrates in vivo, they are both able to catalyze to a certain extent the reduction of one another’s substrates in vitro.
The function of DsbC as a periplasmic protein-disulfide isomerase is well documented. The protein has indeed been shown to assist the folding of several envelope proteins containing disulfides formed between cysteine residues that are not consecutive in the sequence. The list of DsbC substrates includes RNase I, MepA (22), AppA (23), and RcsF (24), as well as eukaryotic recombinant proteins expressed in *E. coli* such as RNase A, bovine pancreatic trypsin inhibitor, and urokinase (12, 25, 26). In this study, we show that, in addition to its role in helping proteins with multiple cysteine residues to fold, DsbC is also involved in the defense mechanisms against oxidative stress by reducing a disulfide-linked dimer formed by the L-arabinose-binding protein AraF under oxidative stress conditions. This finding further highlights the importance of protecting periplasmic proteins from oxidative damage, a concept recently put forward by the identification of several reducing pathways involved in the protection of bacterial envelope proteins (27). Indeed, in *E. coli*, DsbG has been shown to control the level of sulfenylation in a family of L,D-transpeptidases (6), whereas in *Neisseria meningitidis*, PilB repairs oxidized methionine residues (28). Moreover, in *Caulobacter crescentus*, PrxP has been identified as the first periplasmic peroxiredoxin, directly reducing ROS in the cell envelope (29). Noteworthy, the activity of DsbC, DsbG, PilB, and PrxP depends on electrons provided by DsbD, an inner membrane protein that transfers reducing equivalents from the cytoplasmic thioredoxin system to the periplasm (12, 27–30).

We also report that the cysteine residue of AraF can be oxidized to a sulfenic acid, both *in vitro* and *in vivo*, which indicates that it is sensitive to ROS oxidation. It is likely that the formation of the sulfenic acid is the first step toward the formation of the AraF disulfide-linked homodimer. Indeed, although we do not have a direct evidence to support this hypothesis, the dimer most probably results from the reaction between the sulfenic acid of one AraF molecule and the thiol group of a second one. In the structure shown in Fig. 2A, the single cysteine residue of AraF is buried in the cleft of the protein, near the L-arabinose binding site, and is therefore poorly accessible (21). This raises the intriguing question of how this buried cysteine residue can...
mediate the formation of a disulfide-linked dimer. However, previous work (32, 33) showed that the hinge that links the two globular domains of AraF is remarkably flexible (19, 20, 32), allowing the L-arabinose-free protein to adopt an open conformation (Fig. 2B) (34). Thus, it is likely that the conformational flexibility of AraF facilitates the formation of a disulfide bond between two cysteine residues of two neighboring AraF monomers.

Another intriguing question is why the single cysteine residue of AraF has been conserved during evolution. A plausible hypothesis is that this cysteine residue is important for the regulation of L-arabinose transport in the periplasm. Indeed, the import of L-arabinose fuels the tricarboxylic acid cycle and therefore the electron transport chain, from which electrons can escape and promote the formation of ROS. Thus, when ROS accumulate, oxidizing AraF to a dimer unable to bind L-arabinose might be a way to shut off L-arabinose import. The function of DsbC would be to reduce the dimer and to restore the L-arabinose uptake when ROS concentrations decrease.

Altogether, our results further highlight the sensitivity of single cysteine residues in oxidizing environments such as the bacterial periplasm, where they can function as switch to tune protein activity in response to changes in the oxidative state of the cell. Moreover, our work shows that even cysteine residues that are buried in the protein structure can become susceptible to oxidation by ROS, probably following conformational changes. Protecting these single cysteine residues requires reducing systems. We postulate that, in the oxidizing environment of the endoplasmic reticulum, proteins with single cysteine residues are also sensitive to oxidation and require the presence of reducing pathways for correct functioning.

Acknowledgments—We thank Veronica Tamu Dufe for help with crystallization studies, Asma Boujat and Gaëtan Herinckx for technical assistance, and Géraldine Laloux and Alexandra Gennaris for critical reading of the manuscript.

REFERENCES
1. Goemans, C., Denoncin, K., and Collet, J. F. (2013) Folding mechanisms of periplasmic proteins. Biochim. Biophys. Acta, in press, 10.1016/j.bbamcr.2013.10.014
2. Messens, J., and Collet, J. F. (2006) Pathways of disulfide bond formation in Escherichia coli. Int. J. Biochem. Cell Biol. 38, 1050–1062
3. Dutton, R. J., Boyd, D., Berkmen, M., and Beckwith, J. (2008) Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. U.S.A. 105, 11933–11938
4. Reddie, K. G., and Carroll, K. S. (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr. Opin. Chem. Biol. 12, 746–754
5. Roos, G., and Messens, J. (2011) Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med. 51, 314–326
6. Depuydt, M., Leonard, S. E., Vertommen, D., Denoncin, K., Morrisme, P., Wahni, K., Messens, J., Carroll, K. S., and Collet, J. F. (2009) A periplasmic reducing system protects single cysteine residues from oxidation. Science 326, 1109–1111
7. Rietsch, A., Belin, D., Martin, N., and Beckwith, J. (1996) An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 93, 13048–13053
8. Shevchik, V. E., Condemeine, G., and Robert-Baudouy, J. (1994) Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. EMBO J. 13, 2007–2012
9. Collet, J. F., and Messens, J. (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal. 13, 1205–1216
10. Casadaban, M. J. (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage Lambda and Mu. J. Mol. Biol. 104, 541–555
11. Miller, J. H. (1992) A Short Course in Bacterial Genetics: Laboratory Manual (Cold Spring Harbor Laboratory, ed), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
12. Rietsch, A., Bessette, P., Georgiou, G., and Beckwith, J. (1997) Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J. Bacteriol. 179, 6602–6608
13. Kawazu, S., Takemae, H., Komaki-Yasuda, K., and Kano, S. (2010) Target proteins of the cytosolic thioredoxin in Plasmodium falciparum. Parasitol. Int. 59, 298–302
14. Sturm, N., Jortzik, E., Mailu, B. M., Koncarevic, S., Deponte, M., Forchhammer, K., Rahils, S., and Becker, K. (2009) Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog. 5, e1000383
15. Denoncin, K., Vertommen, D., Paek, E., and Collet, J. F. (2010) The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential β-barrel protein LptD. J. Biol. Chem. 285, 29425–29433
16. Newcomer, M. E., Miller, D. M., and Quiocho, F. A. (1979) Location of the sugar-binding site of L-arabinose-binding protein: sugar derivative syntheses, sugar binding specificity, and evidence for a structural change. J. Biol. Chem. 254, 7529–7533
17. Declerq, N., and Abelson, I. (1994) Novel substrate specificity engineered in the arabinose-binding protein. Protein Eng. 7, 997–1004
18. Horazdovsky, B. F., and Hogg, R. W. (1989) Genetic reconstitution of the high-affinity L-arabinose transport system. J. Bacteriol. 171, 3053–3059
19. Newcomer, M. E., Gilliland, G. L., and Quiocho, F. A. (1981) L-Arabinose-binding protein-sugar complex at 2.4 A resolution: stereochemistry and evidence for a structural change. J. Biol. Chem. 256, 13213–13217
20. Quiocho, F. A., and Vyas, N. K. (1984) Novel stereospecificity of the L-arabinose-binding protein. Nature 310, 381–386
21. Miller, D. M., 3rd, Newcomer, M. E., and Quiocho, F. A. (1979) The thiol group of the L-arabinose-binding protein: chromophoric labeling and chemical identification of the sugar-binding site. J. Biol. Chem. 254, 7521–7528
22. Hiniker, A., and Bardwell, J. C. (2004) In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem. 279, 12967–12973
23. Berkmen, M., Boyd, D., and Beckwith, J. (2005) The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DscB. J. Biol. Chem. 280, 11387–11394
24. Leverrier, P., Declercq, J. P., Denoncin, K., Vertommen, D., Hiniker, A., Cho, S. H., and Collet, J. F. (2011) Crystal structure of the outer membrane protein RscF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J. Biol. Chem. 286, 16734–16742
25. Sun, X. X., and Wang, C. C. (2000) The N-terminal sequence (resides 1–65) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC. J. Biol. Chem. 275, 12067–12072
26. Joly, J. C., and Swartz, J. R. (1997) In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbB. Biochemis
36, 10067–10072
27. Cho, S. H., and Collet, J. F. (2013) Many roles of the bacterial envelope reducing pathways. Antioxid. Redox Signal. 18, 1690–1698
28. Brot, N., Collet, J. F., Johnson, L. C., Jonsson, T. J., Weissbach, H., and Lowther, W. T. (2006) The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases. J. Biol. Chem. 281, 32668–32675
29. Cho, S. H., Parsonage, D., Thurston, C., Dutton, R. J., Poole, L. B., Collet, J. F., and Beckwith, J. (2012) A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. mBio. 3, e00291–00291
30. Bessette, P. H., Cotto, J., Gilbert, H. F., and Georgiou, G. (1999) In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG. J. Biol. Chem. 274, 7784–7792
31. Vertommen, D., Depuydt, M., Pan, J., Leverrier, P., Knoops, L., Szikora,


**DsbC Is Involved in Oxidative Stress Protection**

J. P., Messens, J., Bardwell, J. C., and Collet, J. F. (2008) The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. *Mol. Microbiol.* 67, 336–349

32. Vermersch, P. S., Tesmer, J. J., Lemon, D. D., and Quiocho, F. A. (1990) A Pro to Gly mutation in the hinge of the arabinose-binding protein enhances binding and alters specificity: sugar-binding and crystallographic studies. *J. Biol. Chem.* 265, 16592–16603

33. Mao, B., and McCammon, J. A. (1983) Theoretical study of hinge bending in L-arabinose-binding protein: internal energy and free energy changes. *J. Biol. Chem.* 258, 12543–12547

34. Schreier, B., Stumpp, C., Wiesner, S., and Höcker, B. (2009) Computational design of ligand binding is not a solved problem. *Proc. Natl. Acad. Sci. U.S.A.* 106, 18491–18496

35. Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J. Bacteriol.* 177, 4121–4130