Geometry and Spectral Variation: the Operator Norm

K. GUNASEKARAN and R. KAVITHA

Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam – 612 002, Tamil Nadu, (India)

Corresponding of Author Email: kavithaannadurai1@gmail.com

http://dx.doi.org/10.22147/jusps-A/301003

Acceptance Date 08th July, 2018, Online Publication Date 2nd October, 2018

Abstract

In this paper, we will obtain if A is a q-k-normal matrix and B is any matrix close to A, then the optimal matching distance $d(\sigma(A), \sigma(B))$ is bounded by $\|A-B\|$.

Key words: q-k-Hermitian, q-k-Skew-Hermitian, q-k-normal path, q-k-unitary

AMS Classifications: 15A09, 15A57, 15A24, 15A33, 15A15

Introduction

We will use the notation $\sigma(A)$ for both the subset of the quaternion plane that consists of all the q-k-eigenvalues on $n \times n$ matrix A, and for the unordered n-tuple whose entries are the q-k-eigenvalues of A counted with multiplicity. Since we will be taking of the distances $s(\sigma(A), \sigma(B)), h(\sigma(A), \sigma(B))$ and $d(\sigma(A), \sigma(B))$, it will be clear which of the two objects is being represented by $\sigma(A)$.

We explore, how fare, these results can we carried over the q-k-normal matrices. The first difficulty we face is that, if the matrices re not q-k-Hermitian, there is no natural way to order their q-k-eigenvalues. So, the problem has to be formulated in terms of optimal matchings even after this has been done, analogues of the inequalities above turn out to be a little more complicated. Though several good results are known, many await discovery.

Definitions and Some Theorems

Theorem 2.1:

Let A be a q-k-normal and let B be any matrix such that $\|A-B\|$ is smaller half of the distance between

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)
any two-distinct q-k eigenvalues of A. Then $d(\sigma(A), \sigma(B)) \leq \|A - B\|$.

Proof:

Let $\alpha_1, \alpha_2, \ldots, \alpha_k$ be all the distinct q-k eigenvalues of A.

Let $\delta = \|A - B\|$, all the q-k eigenvalues of B lie in union of the disks $\overline{D}(\alpha_j, \delta)$. By the hypothesis, these disks are mutually disjoint.

We will show that if q-k eigenvalue $'\alpha_j'$ has multiplicity m_j, then the disk $\overline{D}(\alpha_j, \delta)$ contains exactly m_j q-k eigenvalues of B, counted with their respective multiplicities. Once this is established, the statement of the theorem is seen to follow easily.

Let $A(t) = (1-t)A + B; \ 0 \leq t \leq 1$.

\Rightarrow This is a continuous map from $[0,1]$ into the space of quaternion matrices.

$\Rightarrow A(0) = A \text{ and } A(1) = B$

$\Rightarrow \|A - B\| = \|A(0) - A(1)\|$

$\Rightarrow \|A - A(t)\| = t\delta$

So, all the q-k eigenvalues of $A(t)$ also lie in the disks $\overline{D}(\alpha_j, \delta)$ for each $0 \leq t \leq 1$, as t moves from 0 to 1 the q-k eigenvalues of $A(t)$ trace continuous curves can jump from one of the disks $\overline{D}(\alpha_j, \delta)$ to another. So, if we start off with m_j such curves in the disk $\overline{D}(\alpha_j, \delta)$. We must end up with exactly as many.

Hence proved.

Remark 2.2:

Let $H_{n \times n}$ denote the set of q-k normal of a fixed size n. If A is an element of $H_{n \times n}$, then so is tA for all real $'t'$. Thus the set $H_{n \times n}$ is path connected. However, N is not an affine set.

Definition 2.3:

A continuous map $'\gamma'$ from any interval $[a,b]$ into $H_{n \times n}$ will be called a q-k normal path or a q-k normal curve. If $\gamma(a) = A$ and $\gamma(b) = B$, We say that γ is a path joining A and B, then A and B are end prints of γ. The length of γ is defined with respect to the norm $\| \cdot \|$ by $1_{\| \cdot \|} (\gamma) = \sup_{k=0}^{n-1} \| \gamma(t_{k+1}) - \gamma(t_k) \| (1)$

Where the supremum is taken over all partitions of $[a,b]$ as $a = t_0 < t_1 < \ldots < t_m = b$.

Remark 2.4:
If this length is finite, the path γ is said to be rectifiable. If the function γ is piecewise H' function then
\[l_{\| \cdot \|}(\gamma) = \int_a^b \| \gamma'(t) \| dt \]

(2)

Theorem 2.5:
Let A and B be q-k normal matrices, and let γ be rectifiable q-k normal path joining them T, then
\[d(\sigma(A), \sigma(B)) \leq l_{\| \cdot \|}(\gamma) \]

(3)

Proof:
For our convenience, let us choose the parameter t to vary in $[0,1]$.

For $0 \leq r \leq 1$, let γ_r be that part of the curve which is parameterised by $[0, r]$.

Let $G = \{ r \in [0,1] : d(\sigma(A), \sigma(\gamma(r))) \leq l_{\| \cdot \|}(\gamma_r) \}$. The theorem will be proved if we show that the point 1 is in G.

Since the function γ, the arc length, and the distance d are all continuous in their arguments, the set G is closed. So it contains the point $g = \sup G$.

We have to show that $g = 1$. Suppose $g < 1$, let $S = \gamma(g)$ lying theorem (2.1). We can find a point t in $(g,1]$. Such that, if $T = \gamma(t)$, then $d(\sigma(B), \sigma(T)) \leq \| S - T \|$. But then
\[d(\sigma(A), \sigma(\gamma(t))) \leq d(\sigma(A), \sigma(S)) + d(\sigma(S), \sigma(T)) \]
\[\leq l_{\| \cdot \|}(\gamma_g) + \| S - T \| \]
\[\leq l_{\| \cdot \|}(\gamma_r) \]

By the definition of g, this is not possible. So $g = 1$. Hence proved.

Remark 2.6:
An effective estimate of $d(\sigma(A), \sigma(B))$ can thus be obtained if one could find that the length of the shortest normal path joining A and B. This is a difficult problem since the geometry of the set $H_{n \times n}$ is poorly understood. However, the theorems above have several interesting consequences.

Definition 2.7:
Let S be any subset of $H_{n \times n}$. We will say that S is metrically flat in the metric induced by the norm $\| \cdot \|$. If any two points A and B in S can be joined by a path that lies entirely within S and has length $\| A - B \|$.

Remark 2.8:
Every affine set in metrically flat. A non-trivial exchange of a $\| \cdot \|$ flat set is given by the theorem below. Let U be the set of $n \times n$. q-k unitary matrices and $H.U$ the set of all constant multiple of q-k unitary matrices.
Theorem 2.9: The set $H.U$ is $\| \cdot \|$ flat.

Proof: First note that $H.U$ consists of just non-negative real multiplies of q-k unitary matrices.

Let $A_0 = r_0 U_0$ and $A_1 = r_1 U_1$ be any two elements of this set, where $r_0, r_1 \geq 0$.

Choose an orthonormal basis in which the q-k unitary matrix is $U_1 U_0^{-1}$ diagonal.

$U_1 U_0^{-1} = \text{dia}(e^{i\theta_1}, \ldots, e^{i\theta_n})$ with $|\theta_1| \leq |\theta_{n-1}| \leq \ldots \leq |\theta_1| \leq \pi$.

We, Reduce to such a form can be achieved by a q-k unitary conjugation. Such a process changes neither q-k eigenvalues nor norms. So, we may assume that all q-k matrices are written with respect to the above orthonormal basis.

Let $K = \text{dia}(i\theta_1, i\theta_2, \ldots, i\theta_n)$, then K is q-k Skew-Hermitian matrix whose q-k eigenvalues are in the interval $(-i\pi, i\pi]$.

Therefore, we have,

$$\|A_0 - A_1\| = \|r_0 U_0 - r_1 U_1\|$$

$$= \|r_0 I - r U_1 U_0^{-1}\|$$

$$= \max_j |r_0 - r_k e^{i\theta_j}|$$

$$= |r_0 - r_k|.$$

This last quantity is the length of the straight line joining the points r_0 and $r_k e^{i\theta_j}$ in the quaternion space. Parameterise this line segment as $r(t)e^{i\theta_j}$, $0 \leq t \leq 1$. This can be done except when $|\theta_i| = \pi$, an exceptional case to which we will return later. The equation above can then be written as

$$\|A_0 - A_1\| = \frac{1}{0} \left| \int r(t)e^{i\theta_j} \right| dt$$

$$= \int_0^1 \left| r'(t) + r(t)i\theta_j \right| dt$$

Now, let $A(t) = r(t)e^{(k)U_0}$, $0 \leq t \leq 1$.

This is a smooth curve in $H.U$ with end points A_0 and A_1. The length of this curve is

$$\int_0^1 \|A'(t)\|dt = \int_0^1 \left| r'(t)e^{(k)U_0} + r(t)ke^{(k)U_0} \right| dt$$

$$= \int_0^1 \|r'(t)I + r(t)k\| dt.$$
Since, $e^{(tk)U_0}$ is a q-k unitary matrix.

$$
\| r'(t)I + r(t)K \| = \max_{j} \left| r'(t) + ir(t)\theta_j \right|
$$

$$
= \left| r'(t) + ir(t)\theta_1 \right|
$$

We put the last equation together, we see that the path $A(t)$ joining A_0 and A_1 has length $\|A_0 - A_1\|$.

The exceptional case $\|\theta_1\| = \pi$ is much simpler. The piecewise linear path that joins A_0 to 0 and then to A_1 has length $r_0 + r_1$.

This is equal to $\left| r_0 + r_1 e^{i\theta_1} \right|$ and hence to $\|A_0 - A_1\|$.

Thus H.U is flat

Hence proved.

Theorem 2.10:

The set H_{mn} q-k normal matrices is $\| . \|$ flat if and only if $n \leq 2$.

Proof:

Let A and B be 2×2 q-k normal matrices. If the q-k eigenvalues of A and these of B lie on two parallel lines, We assume that these two lines are parallel to real axis.

Then the q-k Skew-Hermitian part of $A - B$ is scalar and hence $A - B$ is q-k normal.

The straight line joining A and B then they are lying in H_{mn}.

If the q-k eigenvalues of A and B do not lie on parallel lines, then they lie on two concentric circles.

If α is common centre of these circles then A and B are in the set $\alpha + H.U$.

This set is $\| . \|$ flat. Thus, in either case, A and B can be joined by q-k normal path of length $\|A - B\|$.

Hence proved.

Remark 2.11:

If $n \geq 3$ then H_{mn} cannot be $\| . \|$ flat because of theorem (2.5).

Example 2.12:

Here is an example of a q-k Hermitian A and a q-k Skew-Hermitian matrix B that cannot be joined by a q-k normal path of length $\|A - B\|$.

Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$; $B = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$

Then $\|A - B\| = 2$.

If there were a q-k normal path of length 2 joining A,B then the midpoint of this path would be a normal matrix C such that $\|A - C\| = \|B - C\| = 1$.
Since each entry of a matrix is dominated by its norm, this implies that \(|C_{21}| \leq 1 \) and \(|C_{21} + 1| \leq 1 \)

Hence \(C_{21} = 0 \).

By the same argument, \(C_{32} = 0 \).

So \[A - C = \begin{pmatrix} * & * & * \\ 1 & * & * \\ * & 1 & * \end{pmatrix} \]

Where \(* \) represents an entry whose value is not yet known. But if \(\|A - C\| = 1 \).

We must have \[A - C = \begin{pmatrix} 0 & 0 & * \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \]

Hence, \[C = \begin{pmatrix} 0 & 1 & * \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \]

But then \(C \) could not have been normal.

References

1. Bhatia, Rajendra: Matrix Analysis; Springer Publications 168 – 172 (1997).
2. Fuzhen Zhang: Matrix Normal theory basic results and Techniques; Springer Publications, 241-249 (1999).
3. Grone. R, Johnson. CR, E.M.SQ, H.Wolkwicz: Normal matrices; Lin.Alg.Appl., 87, 213-225 (1987).
4. Gunasekaran.K and Kavitha.R, on Quaternion-\(k \)-normal matrices; International Journal of Mathematical Archive-7(7), 93-101 (2016).
5. Gunasekaran.K and Kavitha. R, Some Equivalent conditions on \(q-k \)-Normal Matrices., International Journal Mathematics Trends and Technology- Vol.48, No.4, August, 250 – 259 (2017).
6. Hill. R.D., Water.S.R: On \(k \)-real and \(k \)-Hermitian matrices; Lin. Alg. Appl., Vol 169,17-29 (1992).
7. Krishnamoorthy. S and Vijayakumar. R, on \(S \)-normal matrices; Journal of Analysis and Computation, Vol 2, (2009).