Hubble constant and sound horizon from the late-time Universe

Xue Zhang1,2,* and Qing-Guo Huang2,3,4,†

1Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
4School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China

(Dated: June 8, 2021)

We measure the expansion rate of the recent Universe and the calibration scale of the baryon acoustic oscillation (BAO) from low-redshift data. BAO relies on the calibration scale, i.e., the sound horizon at the end of drag epoch \(r_d\), which often imposes a prior of the cosmic microwave background (CMB) measurement from the Planck satellite. In order to make really independent measurements of \(H_0\), we leave \(r_d\) completely free and use the BAO data sets combined with the 31 observational \(H(z)\) data, GW170817 and Pantheon sample of Type Ia supernovae. In \(\Lambda\)CDM model, we get \(H_0 = 68.63^{+1.15}_{-1.77} \text{ km s}^{-1} \text{ Mpc}^{-1}\), \(r_d = 146.85^{+3.29}_{-3.77} \text{ Mpc}\). For the two model-independent reconstructions of \(H(z)\), we obtain \(H_0 = 68.02 \pm 1.82 \text{ km s}^{-1} \text{ Mpc}^{-1}\), \(r_d = 148.18^{+3.06}_{-3.78} \text{ Mpc}\) in the cubic expansion, and \(H_0 = 68.58 \pm 1.76 \text{ km s}^{-1} \text{ Mpc}^{-1}\), \(r_d = 149.02^{+3.63}_{-3.66} \text{ Mpc}\) in the polynomial expansion. The values of Hubble constant \(H_0\) and sound horizon \(r_d\) are consistent with the estimate derived from the Planck CMB data assuming a flat \(\Lambda\)CDM model, but \(H_0\) is in 2.4 \sim 2.6 σ tension with SH0ES 2019, respectively.

I. INTRODUCTION

In the past few years, cosmological parameters have been measured with unprecedented precision. In particular, the cosmic microwave background (CMB) experiments, such as WMAP and Planck, played a key role. The Planck Collaboration presents the strongest constraints to date on key parameters, such as the Hubble constant \(H_0\). \(H_0\) cannot be measured by CMB experiments directly, but can be inferred once the other cosmological parameters are determined by global fitting. In the \(\Lambda\)CDM model, Planck finds a lower value of \(H_0\) in the first data release [1] and reports the updated results, \(H_0 = 67.27 \pm 0.60 \text{ km s}^{-1} \text{ Mpc}^{-1}\), in the final data release [2]. The constraint of \(H_0\) in CMB measurement relies on the choice of cosmological model. At present, although the \(\Lambda\)CDM model is basically successful in fitting available cosmological data, it is still challenged by some compatibility tests at low and high redshifts. Recently, the discrepancy in the Hubble constant measured from low- and high-redshift probes has attracted a lot of attention. In particular, SH0ES (Supernovae and the Equation of State) project [3] constructed a local distance ladder approach from the Cepheids to measure \(H_0\). The local measurement of \(H_0\) is model independent as it does not depend on cosmological assumptions. They improve the accuracy of \(H_0\) and publish the updated results as \(H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{ Mpc}^{-1}\) [4], which increases the tension with the final result of Planck to 4.4σ.

In the absence of systematic errors in both measurements, the model-dependent CMB measurement should be consistent with the model-independent local measurements if the standard cosmological model is correct. The tension could provide evidence of physics beyond the standard model. With clear motivation, extensive research has been done on extended models beyond the standard model to alleviate inconsistencies between data sets. For example, see Refs. [5–19]. On the other hand, a growing number of other measurements independently provide measurements of the Hubble constant. The H0LiCOW Collaboration [20] presents another independent approach to measure \(H_0\) by the time delay from lensing. In a flat \(\Lambda\)CDM cosmology, they provide a latest value \(H_0 = 73.3^{+1.7}_{-1.5} \text{ km s}^{-1} \text{ Mpc}^{-1}\) (2.4% precision) [21]. It is consistent with the local measurement of \(H_0\) by the distance ladder, but in 3.2σ tension with respect to the CMB data from Planck satellite. This method is independent of both the distance ladder and other cosmological probes. In addition, the Advanced LIGO and Virgo report a gravitational-wave measurement of the Hubble constant \(H_0 = 70^{+12}_{-8} \text{ km s}^{-1} \text{ Mpc}^{-1}\) using the gravitational-wave signal from the merger of a binary neutron-star system [22]. The red giant branch method provides one of the most accurate means of measuring the distances to nearby galaxies. Recently, using the revised measurement, Ref. [23] reported \(H_0 = 69.6 \pm 0.8 \text{ km s}^{-1} \text{ Mpc}^{-1}\).

The baryon acoustic oscillation (BAO) surveys provide measurements of three types \(D_A(z)/r_d\), \(D_V(z)/r_d\) and \(H(z)r_d\), where \(r_d\) is the comoving size of sound horizon at the end of the baryon drag epoch [24, 25]. The Hubble constant \(H_0\) and sound horizon \(r_d\) are closely related.

* Corresponding author: zhangxue@yzu.edu.cn
† Corresponding author: huangqg@itp.ac.cn
and link the late-time and early time cosmology. If we measure H_0 using the BAO data, an independent distance calibration is required. In other words, r_d is the standard ruler which calibrates the distance scale measurements of BAO. In general, r_d relies on the physical properties of the early universe, which can be constrained by precise CMB observations. The CMB measurement relies on the assumption of a ΛCDM model to constrain the cosmological parameters. In most all of BAO measurements r_d often be imposed a Gaussian prior to r_d from CMB. In this sense, the constraint on the Hubble constant by using BAO data, for example, Ref. [26], is not completely independent on the CMB data. Instead of early time physical calibration of r_d, an alternative approach is to combine BAO measurements with other low-redshift observations.

Planck public available MCMC chains give $r_d = 147.05 \pm 0.30$ Mpc in ΛCDM model. This is a model-dependent theoretical expectation determined from the CMB measurement. Assuming the cold dark matter model with a cosmological constant, Ref. [27] took the sound horizon at radiation drag as a ruler, determined $r_d = 142.8 \pm 3.7$ Mpc by adding the clocks and the local H_0 measurement to the SNe and BAO. They found excellent agreement with the derived quantity of the sound horizon deduced from Planck data. In the spline models for the expansion history $H(z)$, Bernal et al. obtained $r_d = 136.8 \pm 4.0$ Mpc and $r_d = 133.0 \pm 4.7$ Mpc when Ω_k was left as a free parameter from the BAO, SNe Ia, and local measurement without CMB-derived r_d prior [28]. Combining the data sets from clocks, SNe, BAO, and local measurement of H_0, Verde et al. found $r_d = 143.9 \pm 3.1$ Mpc with a flat curvature [29]. Then, using BAO measurements and SNe Ia, calibrated with time delay from H0LiCOW, Aylor et al. inferred the sound horizon $r_d = 139.3_{-4.4}^{+4.8}$ Mpc in ΛCDM model [30]. Using the inverse distance ladder method, Dark Energy Survey Collaboration found $r_d = 145.2 \pm 18.5$ Mpc from SNe Ia and BAO measurements [31]. In their analysis, they adopted a prior on r_d taken from the Planck 2018. Using the supernovae Ia and BAO measurements combined with H_0 from H0LiCOW, Ref. [32] provides the sound horizon at recombination $r_d = 137.0 \pm 4.5$ Mpc in the polynomial expansion of $H(z)$. See Refs. [33-36] for more papers about the sound horizon. This apparent discrepancy comes from fitting the BAO measurements with or without a prior of CMB from Planck. Comparing the sound horizon obtained from the low-redshift data with the value derived from Planck may give us a better understanding of the discordance between the data sets or reveal new physics beyond the standard model.

In order to solve the discrepancy of H_0 and r_d from early and late universe, using the recent low-redshift data to constrain the sound horizon of early universe is the main motivation of this paper. In our analysis, we consider the ΛCDM model and two model-independent reconstructions of $H(z)$. Without any assumption about the early time physics, we set the standard ruler r_d of BAO as a free parameter. Combining BAO with observational $H(z)$ data, gravitational wave, and SN Ia measurement, we measure the Hubble constant H_0 and sound horizon r_d regardless of the early time physics. In Sec. II we introduce the reconstruction of $H(z)$. The data sets and methodology used in this paper are shown in Sec. III. In Sec. IV we present the results of sound horizon without assuming any early time physics. We summarize the conclusions in the last section.

II. THE RECONSTRUCTION OF $H(z)$

We will perform our analyses with following three different forms of $H(z)$.

First, in flat ΛCDM model, the Hubble parameter can be expressed as

$$ H(z) = H_0 \sqrt{\Omega_{m}(1+z)^3 + \Omega_{\Lambda}}, $$

where $\Omega_{\Lambda} = 1 - \Omega_m$.

Second, in order to avoid working within a specific cosmological model, we try to reconstruct $H(z)$ in the a model-independent way. The Hubble parameter is expressed as a cubic expansion of scale factor $(1 - a)$,

$$ H(z) = H_0 \left[1 + h_1(1-a) + h_2(1-a)^2 + h_3(1-a)^3 \right]. $$

We can easily determine H_0 from the corresponding reconstructed $H(z)$ ranges.

The third one is a polynomial expansion of $H(z)$. We follow [37] and Taylor expand the scale factor with respect to cosmological time. Then the Hubble parameters $H(t)$, deceleration parameters $q(t)$, jerk parameters $j(t)$ and snap parameters $s(t)$ are defined as

$$ H(t) = \frac{1}{a} \frac{da}{dt}, $$

$$ q(t) = - \frac{1}{a} \frac{d^2a}{dt^2} \left(\frac{1}{a} \frac{da}{dt} \right)^2, $$

$$ j(t) = + \frac{1}{a} \frac{d^3a}{dt^3} \left(\frac{1}{a} \frac{da}{dt} \right)^3, $$

$$ s(t) = + \frac{1}{a} \frac{d^4a}{dt^4} \left(\frac{1}{a} \frac{da}{dt} \right)^4. $$

Using these parameters, the Hubble parameter can be parametrized as a polynomial expansion

$$ H(z) = H_0 + \frac{dH}{dz} \bigg|_{z=0} z + \frac{1}{2!} \frac{d^2H}{dz^2} \bigg|_{z=0} z^2 + \frac{1}{3!} \frac{d^3H}{dz^3} \bigg|_{z=0} z^3 + \frac{1}{4!} \frac{d^4H}{dz^4} \bigg|_{z=0} z^4 + \cdots $$

$$ = H_0 \left[1 + (1 + q_0)z + \frac{1}{2} (j_0 - q_0^2)z^2 + \frac{1}{6} (3q_0^2 + 3j_0 - 4q_0 j_0 - 3j_0 - s_0)z^3 + \mathcal{O}(z^4) \right] $$

where the subscript “0” indicates the parameters at the present epoch ($z = 0$).
III. DATA

We use the observational data sets including the measurements of the BAO, observational $H(z)$ data (OHD), GW170817 and Pantheon sample. For BAO measurement, the angular diameter distance D_A and the volume-averaged scale D_V are related to $H(z)$ by

$$D_A(z) = \frac{1}{1 + z} \int_0^z \frac{dz'}{H(z')} , \quad (8)$$

$$D_V(z) = \left[(1 + z)^2 D_A^2(z) \frac{z}{H(z)} \right]^{1/3} . \quad (9)$$

The sound horizon is given by

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} \, dz , \quad (10)$$

where $c_s(z)$ is the sound speed and z_d is the redshift at the end of drag epoch. The sound horizon r_d is the standard ruler to calibrate the BAO observations [27, 29]. It is often imposed a prior of the CMB measurement from Planck satellite. In this paper, we remove the prior r_d from Planck and set r_d as a free sampling parameter.

We use the constraints on BAO from the following galaxy surveys: the 6dF Galaxy Survey [38], the SDSS DR7 Main Galaxy sample [39], the BOSS DR12 [40], and eBOSS DR14 quasar [41]. We also include eBOSS DR14 Lyα [42]. The data sets are listed in Table I.

TABLE I. BAO data measurements included in our analysis. D_A, D_V, and r_d are in units of Mpc, while $H(z)$ is in units of km s$^{-1}$ Mpc$^{-1}$.

z_{eff}	r_d/D_V	Measurement	Constraint	Reference
0.106	0.336 ± 0.015	38		
0.15	4.47 ± 0.17	39		
0.31	6.29 ± 0.14	40		
0.36	7.09 ± 0.16	40		
0.40	7.70 ± 0.16	40		
0.44	8.20 ± 0.13	40		
0.48	8.64 ± 0.11	40		
0.52	8.90 ± 0.12	40		
0.56	9.16 ± 0.14	40		
0.59	9.45 ± 0.17	40		
0.64	9.62 ± 0.22	40		
0.31	11.550 ± 0.70	40		
0.36	11.810 ± 0.50	40		
0.40	12.120 ± 0.30	40		
0.44	12.530 ± 0.27	40		
0.48	12.970 ± 0.30	40		
0.52	13.940 ± 0.39	40		
0.56	13.790 ± 0.34	40		
0.59	14.550 ± 0.47	40		
0.64	14.600 ± 0.44	40		
1.52	26.000 ± 0.99	41		
2.34	11.20 ± 0.56	42		

TABLE II. The 31 observational $H(z)$ data obtained by the differential age method.

z	$H(z)$	Reference
0.09	69 ± 12	45
0.17	83 ± 8	46
0.27	77 ± 14	46
0.4	95 ± 17	46
0.9	117 ± 23	46
1.3	168 ± 17	46
1.43	177 ± 18	46
1.53	140 ± 14	46
1.75	202 ± 40	46
0.48	97 ± 62	47
0.88	90 ± 40	47
0.1791	75 ± 4	48
0.1993	75 ± 5	48
0.3519	83 ± 14	48
0.5929	104 ± 13	48
0.6797	92 ± 8	48
0.7812	105 ± 12	48
0.8754	125 ± 17	48
1.037	154 ± 20	48
0.07	69.0 ± 19.6	49
0.12	68.6 ± 26.2	49
0.20	72.9 ± 29.6	49
0.28	88.8 ± 36.6	49
1.363	160 ± 33.6	50
1.965	186.5 ± 50.4	50
0.3802	83 ± 13.5	51
0.4004	77 ± 10.2	51
0.4247	87.1 ± 11.2	51
0.4497	92.8 ± 12.9	51
0.4783	80.9 ± 9	51
0.47	89 ± 23	52

In the current analysis, we do not make use of the OHD extracted from the measurement of BAO. We only consider the OHD from differential age method. The differential age method is proposed in Ref. [43]. It can be used to measure the expansion rate of the Universe. The quantity measured in differential age method is directly related to the Hubble parameter,

$$H(z) = -\frac{1}{(1 + z)} \frac{dz}{dt} . \quad (11)$$

This method can be used to determine Hubble constant H_0. Table II shows an updated compilation of OHD accumulating a total of 31 points given by differential age method [44].

Recently, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817 which is a strong signal from the merger of a binary neutron-star system [22]. The measurement of GW170817 reports

$$H_0 = 70.0^{+12.0}_{-8.0} \text{ km s}^{-1} \text{ Mpc}^{-1} . \quad (12)$$

In addition, the Pantheon sample includes 1048 SNe Ia which is the largest confirmed SNe Ia sample [53].
with the following equation.

\[\chi^2 = \chi^2_{\text{BAO}} + \chi^2_{\text{OHD}} + \chi^2_{\text{GW}} + \chi^2_{\text{SN}}. \] (13)

All presented results are computed using the public Monte Carlo Markov Chain public code CosmoMC [54].

IV. RESULTS

In \(\Lambda \text{CDM} \) model, we set \(\Omega_m, H_0 \) and \(r_d \) as free parameters. Figure 1 shows our results, including the contours of \(\Omega_m-H_0 \) and \(H_0-r_d \) for BAO, OHD, GW, SN, and the joint analyses of the data sets. The upper figure shows that the SN data sets cannot constrain \(H_0 \) and the GW data cannot constrain \(\Omega_m \). However, the joint OHD+GW+SN can give a tight constraint of \(H_0 \). From the lower figure, we find the OHD+GW+SN data sets cannot constrain \(r_d \). Their joint result gives the constraint of Hubble constant. The BAO-only data cannot limit the value of \(H_0 \) or \(r_d \). Combining BAO with the OHD+GW+SN data sets, we get

\[H_0 = 68.63^{+1.75}_{-1.77} \, \text{km s}^{-1} \, \text{Mpc}^{-1}, \] (14)

\[r_d = 146.85^{+3.29}_{-3.77} \, \text{Mpc}. \] (15)

The Hubble constant \(H_0 \) and sound horizon \(r_d \) are consistent with the results of Planck 2018. However, there is a 2.4 \(\sigma \) tension on \(H_0 \) with SH0ES 2019.

The constraints on the parameters of cubic expansion and polynomial expansion are illustrated in Figs. 2 and 3. The blue contours show 68% and 95% constraints in cubic expansion using the BAO+OHD+GW+SN data sets without prior on \(r_d \). The orange contours show the constraints cubic expansion using the the BAO+OHD+GW+SN data sets without prior on \(r_d \).

In Fig. 4, we show the evolutions of expansion histories \(H(z) \) on 68% and 95% confidence levels using the joint BAO+OHD+GW+SN data sets. The \(\Lambda \text{CDM} \) model is represented by green region, the cubic expansion is represented by blue region and polynomial expansion represented by orange region. The OHD data sets are shown in gray and the GW170817 is shown in red. We display the constraints on \(H_0 \) and \(r_d \) in three different models without CMB prior on \(r_d \). For comparison, the gray bands represent the inferred value by the final result of Planck in \(\Lambda \text{CDM} \) model.

Table III lists the best fit value of parameters inferred from BAO+OHD+GW+SN data sets in \(\Lambda \text{CDM} \), cubic expansion and polynomial expansion. For the cubic expansion on \(H(z) \) without a CMB prior on \(r_d \), we obtain

\[H_0 = 68.02 \pm 1.82 \, \text{km s}^{-1} \, \text{Mpc}^{-1}, \] (16)

\[r_d = 148.18^{+3.36}_{-3.78} \, \text{Mpc}. \] (17)

The Hubble constant \(H_0 \) and sound horizon \(r_d \) are consistent with the results of Planck 2018. However, there is a 2.6 \(\sigma \) tension on the Hubble constant with SH0ES 2019. For the polynomial expansion on \(H(z) \) without a CMB prior on \(r_d \), we obtain

\[H_0 = 68.58 \pm 1.76 \, \text{km s}^{-1} \, \text{Mpc}^{-1}, \] (18)

\[r_d = 148.02^{+3.63}_{-3.60} \, \text{Mpc}. \] (19)

![FIG. 1. The constraints on \(\Omega_m-H_0 \) and \(H_0-r_d \) panel in the flat \(\Lambda \text{CDM} \) model using the different data sets.](image-url)
FIG. 2. The constraints on the parameters in cubic expansion using the BAO+OHD+GW+SN data sets.

FIG. 3. The constraints on the parameters in polynomial expansion using the BAO+OHD+GW+SN data sets.
The Hubble constant H_0 and sound horizon r_d are consistent with the results of Planck 2018. However, there is a $2.4 \, \sigma$ tension on H_0 with SH0ES 2019. We provide the constraint on the Hubble constant in these two model-independent reconstructions, and the mean values are a little larger than Planck 2018. Meanwhile, the sound horizon r_d is nicely consistent with the Planck results as well. In the ΛCDM model and the two reconstructions of $H(z)$, the results of r_d are basically the same including the mean and the uncertainty. We can conclude that the sound horizon r_d is robust for the different parametrizations. In other words, it is nearly free from dependence on the expansion history $H(z)$.

V. SUMMARY AND CONCLUSIONS

In this paper, we provide a new independent measurement on the Hubble constant using the low-redshift observational data sets including the measurements of BAO, observational $H(z)$ data, GW170817 and SN measurement. In order to avoid imposing a prior of sound horizon r_d from CMB measurement, we remove the prior from Planck and set r_d as a free sampling parameter in BAO distance measure, and we find $H_0 = 68.63^{+1.77}_{-1.75}$ km s$^{-1}$ Mpc$^{-1}$, $r_d = 146.85^{+3.29}_{-3.77}$ Mpc in ΛCDM model, $H_0 = 68.02 \pm 1.82$ km s$^{-1}$ Mpc$^{-1}$, $r_d = 148.18^{+3.76}_{-3.78}$ Mpc in the cubic expansion of $H(z)$, and $H_0 = 68.58 \pm 1.76$ km s$^{-1}$ Mpc$^{-1}$, $r_d = 148.02^{+3.63}_{-3.60}$ Mpc in the polynomial expansion of $H(z)$. Our results of Hubble parameter H_0 and sound horizon r_d are basically consistent with Planck 2018 in 1 σ. However, H_0 is still in $2.4 \, \sigma$, $2.6 \, \sigma$, and $2.4 \, \sigma$ tension with SH0ES 2019, respectively. In addition,
we conclude that H_0 and r_d are both insensitive to the reconstruction of the expansion history.

ACKNOWLEDGMENTS

We acknowledge the use of HPC Cluster of ITP-CAS. This work was supported by grants from NSFC (Grants No. 12005183, No. 11991052, No. 11975019, No. 11690021, No. 11947302), the Strategic Priority Research Program of Chinese Academy of Sciences (Grants No. XDB23000000, No. XDA15020701), Key Research Program of Frontier Sciences, CAS, Grant No. ZDBS-LY-7009, and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJD140002).

[1] P. A. R. Ade et al. (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571, A16 (2014).

[2] N. Aghanim et al. (Planck Collaboration), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020).

[3] A. G. Riess et al., A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 750, 119 (2011).

[4] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Sedmik, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876, no. 1, 85 (2019).

[5] E. Di Valentino, A. Melchiorri, and J. Silk, Reconciling Planck with the local value of H_0 in extended parameter space, Phys. Lett. B 761, 242 (2016).

[6] Q. G. Huang and K. Wang, How the dark energy can reconcile Planck with local determination of the Hubble constant, Eur. Phys. J. C 76, no. 9, 506 (2016).

[7] G. B. Zhao et al., Dynamical dark energy in light of the latest observations, Nat. Astron. 1, no. 9, 627 (2017).

[8] J. Solà, A. Gómez-Valent, and J. de Cruz Pérez, The H_0 tension in light of vacuum dynamics in the Universe, Phys. Lett. B 774, 317 (2017).

[9] H. Miao and Z. Huang, The H_0 Tension in Non-flat QCDM Cosmology, Astrophys. J. 868, no. 1, 20 (2018).

[10] L. Xu and Q. Huang, Detecting the Neutrinos Mass Hierarchy from Cosmological Data, Sci. China Phys. Mech. Astron. 61 (2018) no.3, 039521.

[11] R. Y. Guo, J. F. Zhang, and X. Zhang, Can the H_0 tension be resolved in extensions to ΛCDM cosmology?, JCAP 1902, 054 (2019).

[12] W. Yang, S. Pan, E. Di Valentino, E. N. Saridakis, and S. Chakraborty, Observational constraints on one-parameter dynamical dark-energy parametrizations and the H_0 tension, Phys. Rev. D 99, no. 4, 043543 (2019).

[13] V. Poulin, T. L. Smith, T. Karwai, and M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett. 122, no. 22, 221301 (2019).

[14] J. Ryan, Y. Chen, and B. Ratra, Baryon acoustic oscillation, Hubble parameter, and angular size measurement constraints on the Hubble constant, dark energy dynamics, and spatial curvature, Mon. Not. Roy. Astron. Soc. 488, no. 3, 3844 (2019).

[15] X. Li and A. Shafieloo, A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tension, Astrophys. J. Lett. 883, L3 (2019).

[16] S. Vagnozzi, New physics in light of the H_0 tension: An alternative view, Phys. Rev. D 102, no.2, 023518 (2020).

[17] M. Liu, Z. Huang, X. Luo, H. Miao, N. K. Singh, and L. Huang, Can Non-standard Recombination Resolve the Hubble Tension?, Sci. China Phys. Mech. Astron. 63, no. 9, 290405 (2020).

[18] Q. Ding, T. Nakama, and Y. Wang, A gigaparsec-scale local void and the Hubble tension, Sci. China Phys. Mech. Astron. 63, no. 9, 290403 (2020).

[19] E. Di Valentino, A. Melchiorri, and J. Silk, Cosmic Discordance: Planck and luminosity distance data exclude ΛCDM, arXiv:2003.04935 [astro-ph.CO].

[20] S. H. Suyu et al., H0LiCOW - I. H0 Lenses in COSMO-GRAIL’s Wellspring program overview, Mon. Not. Roy. Astron. Soc. 468, no. 3, 2590 (2017).

[21] K. C. Wong et al., H0LiCOW XIII. A 2.4% measurement of H_0 from lensed quasars: 5.3σ tension between early and late-Universe probes, Mon. Not. R. Astron. Soc. 498, 1420 (2020).

[22] B. P. Abbott et al. (LIGO Scientific and Virgo and 1M2H and Dark Energy Camera GW-E and DES and DLT40 and Las Cumbres Observatory and VINROUGE and MASTER Collaborations), A gravitational-wave standard siren measurement of the Hubble constant, Nature 551, no. 7678, 85 (2017).

[23] W. L. Freedman et al., Calibration of the Tip of the Red Giant Branch (TRGB), arXiv:2002.01550.

[24] D. J. Eisenstein and W. Hu, Baryonic features in the matter transfer function, Astrophys. J. 496, 605 (1998).

[25] W. Hu and M. J. White, Acoustic signatures in the cosmic microwave background, Astrophys. J. 471, 30 (1996).

[26] X. Zhang and Q. G. Huang, Measuring H_0 from low-z datasets, Sci. China Phys. Mech. Astron. 63, no.9, 290402 (2020).

[27] A. Heavens, R. Jimenez, and L. Verde, Standard rulers, candles, and clocks from the low-redshift Universe, Phys. Rev. Lett. 113, no. 24, 241302 (2014).

[28] J. L. Bernal, L. Verde, and A. G. Riess, The trouble with H_0, JCAP 1610, 019 (2016).

[29] L. Verde, J. L. Bernal, A. F. Heavens, and R. Jimenez, The length of the low-redshift standard ruler, Mon. Not. Roy. Astron. Soc. 467, no. 1, 731 (2017).

[30] K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan, and Dark Energy Camera GW-E and DES and DLT40 and Las Cumbres Observatory and VINROUGE and MASTER Collaborations, A gravitational-wave standard siren measurement of the Hubble constant, Nature 551, no. 7678, 85 (2017).

[31] E. Macaulay et al. (DES Collaboration), First Cosmo-Logical Results using Type Ia Supernovae from the Dark Energy Survey, Mon. Not. Roy. Astron. Soc. 486, no. 2, 2184 (2019).

[32] R. Wojtak and A. Agnello, The Hubble - Lemaître constant and sound horizon from low-redshift probes, Mon. Not. Roy. Astron. Soc. 486, no. 4, 5046 (2019).
[33] B. L’Huillier and A. Shafieloo, Model-independent test of the FLRW metric, the flatness of the Universe, and non-local measurement of H_{0}, JCAP 01, 015 (2017).

[34] A. Shafieloo, B. L’Huillier, and A. A. Starobinsky, Falsifying ΛCDM: Model-independent tests of the concordance model with eBOSS DR14Q and Pantheon,” Phys. Rev. D 98, no.8, 083526 (2018).

[35] D. Camarena and V. Marra, A new method to build the (inverse) distance ladder, Mon. Not. Roy. Astron. Soc. 495, no.3, 2630-2644 (2020).

[36] R. C. Nunes, S. K. Yadav, J. F. Jesus, and A. Bernui, Cosmological parameter analyses using transversal BAO data, Mon. Not. R. Astron. Soc. 497, 2133 (2020).

[37] M. J. Zhang, H. Li, and J. Q. Xia, What do we know about cosmography, Eur. Phys. J. C 77, no. 7, 434 (2017).

[38] F. Beutler et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011).

[39] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent distance measure at $z = 0.15$, Mon. Not. Roy. Astron. Soc. 449, no. 1, 835 (2015).

[40] Y. Wang et al. (BOSS Collaboration), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space, Mon. Not. Roy. Astron. Soc. 469, no. 3, 3762 (2017).

[41] M. Ata et al., The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2, Mon. Not. Roy. Astron. Soc. 473, no. 4, 4773 (2018).

[42] V. de Sainte Agathe et al., Baryon acoustic oscillations at $z = 2.34$ from the correlations of Lyα absorption in eBOSS DR14, Astron. Astrophys. 629, A85 (2019).

[43] R. Jimenez and A. Loeb, Constraining cosmological parameters based on relative galaxy ages, Astrophys. J. 573, 37 (2002).

[44] J. Magana, M. H. Amante, M. A. Garcia-Aspeitia, and V. Motta, The Cardassian expansion revisited: constraints from updated Hubble parameter measurements and type Ia supernova data, Mon. Not. Roy. Astron. Soc. 476, no. 1, 1036 (2018).

[45] R. Jimenez, L. Verde, T. Treu, and D. Stern, Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB, Astrophys. J. 593, 622 (2003).

[46] J. Simon, L. Verde, and R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71, 123001 (2005).

[47] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S. A. Stanford, Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements, JCAP 1002, 008 (2010).

[48] M. Moresco et al., Improved constraints on the expansion rate of the Universe up to $z \sim 1.1$ from the spectroscopic evolution of cosmic chronometers, JCAP 1208, 006 (2012).

[49] C. Zhang, H. Zhang, S. Yuan, T. J. Zhang, and Y. C. Sun, Four new observational $H(z)$ data from luminous red galaxies in the Sloan Digital Sky Survey data release seven, Res. Astron. Astrophys. 14, no. 10, 1221 (2014).

[50] M. Moresco, Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at $z \sim 2$, Mon. Not. Roy. Astron. Soc. 450, no. 1, L16 (2015).

[51] M. Moresco et al., A 6% measurement of the Hubble parameter at $z \sim 0.45$: direct evidence of the epoch of cosmic re-acceleration, JCAP 1605, 014 (2016).

[52] A. L. Ratsimbazafy, S. I. Loubser, S. M. Crawford, C. M. Cress, B. A. Bassett, R. C. Nichol, and P. Vaisanen, Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope, Mon. Not. Roy. Astron. Soc. 467, no. 3, 3239 (2017).

[53] D. M. Scolnic et al., The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample,” Astrophys. J. 859, 101 (2018).

[54] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66, 103511 (2002).