Learning Dexterous Manipulation from Exemplar Object Trajectories and Pre-Grasps

Sudeep Dasari¹, Abhinav Gupta¹, Vikash Kumar²
Carnegie Mellon University¹, Meta AI Research²

Abstract—Learning diverse dexterous manipulation behaviors with assorted objects remains an open grand challenge. While policy learning methods offer a powerful avenue to attack this problem, these approaches require extensive per-task engineering and algorithmic tuning. This paper seeks to escape these constraints, by developing a Pre-Grasp informed Dexterous Manipulation (PGDM) framework that generates diverse dexterous manipulation behaviors, without any task-specific reasoning or hyper-parameter tuning. At the core of PGDM is a well known robotics construct, pre-grasps (i.e. the hand-pose preparing for object interaction). This simple primitive is enough to induce efficient exploration strategies for acquiring complex dexterous manipulation behaviors. To exhaustively verify these claims, we introduce TCDM, a benchmark of 50 diverse manipulation tasks defined over multiple objects and dexterous manipulators. Tasks for TCDM are defined automatically using exemplar object trajectories from diverse sources (animators, human behaviors, etc.), without any per-task engineering and/or supervision. Our experiments validate that PGDM’s exploration strategy, induced by a surprisingly simple ingredient (single pre-grasp pose), matches the performance of prior methods, which require expensive per-task feature/reward engineering, expert supervision, and hyper-parameter tuning. For animated visualizations, trained policies, and project code, please refer to https://pregrasps.github.io/.

I. INTRODUCTION

Dexterous manipulation tasks – loosely defined as controlling a robot hand to effectively re-arrange its own environment [1] – were often solved by designing controllers to realize a sequence of stable object transitions. These approaches were limited to narrowly-scooped scenarios, as they required experts to carefully reason about hand-object contact behavior on a per-task basis: e.g. in terms of geometry [2], [3], [4], and/or force closures [5], [6], [7], [8].

As a result, the field has trended towards robot learning paradigms [9], [10], [11], which seek to leverage data-driven exploration to automatically acquire dexterous behaviors [12], [13], [14]. However, learning algorithms rely on naive search strategies [15] that struggle with dexterous manipulation, due to high-dimensional search spaces (e.g. ShadowHand [16] has 30-DoF) and small error-margins. In practice, this “deep exploration challenge” is addressed using a wealth of task-specific supervision and engineering. While effective, this approach takes us back to square one (heavy reliance on expert knowledge).

This paper seeks to find a general strategy that can overcome the aforementioned exploration challenge with minimal assumptions. Instead of viewing this issue from a purely algorithmic perspective, we demonstrate that “pre-grasp” states – i.e. a classical robotics construct [17] that denotes states where the robot is poised to initiate object interaction – can act as a general supervisory structure to relax exploration challenges in learning dexterous manipulation behaviors. Specifically, pre-grasps act as a “pre-condition” that can enable robots to efficiently and safely explore object contacts and intermittent interaction dynamics, without requiring exquisite optimization techniques. In addition, pre-grasps are practical: they are easy to specify (e.g. via human annotation), realize (movement in free space), and unlike grasps (see App. A.2 for details), do not involve hard to sense object surface or inertial details. Thus, we propose a Pre-Grasp informed Dexterous Manipulation (PGDM) framework that embeds pre-grasp poses (as exploration primitives) into existing learning pipelines, to synthesize behaviors without requiring task engineering or hyper-parameter tuning. While the connection between pre-grasps and manipulation has been studied before [18], [19], [20], [21], to the best of our knowledge, we are the first to analyze pre-grasp’s...
effectiveness in a multi-task learning paradigm.

To demonstrate PGDM’s versatility, it is important to test across as many scenarios as possible. However, existing dexterous manipulation benchmarks are shallow and packed with expert knowledge (e.g. favourable tasks with heavily engineered details – initialization, input, reward, etc.). Thus, we developed a Trajectory Conditioned Dexterous Manipulation benchmark, TCDM. As the name suggests, TCDM tasks are automatically constructed from diverse exemplar object trajectories (sourced from human behaviors, animations, etc.), which prevents expert designers from injecting task-specific supervision. Indeed, every part of the task setup (e.g. formulation, reward/termination functions, hyper-parameters, etc.) is kept constant across TCDM, except for the exemplar trajectory itself. TCDM’s diverse tasks span: 3 robotic hands, 30+ standardized objects [22], [23], and behaviors ranging from fixed goal-reaching (e.g. relocation [24], [25]) to cyclic, dynamic skills (e.g. hammering, bottle shaking, etc.).

This work develops PGDM, a simple exploration framework for dexterous manipulation, and validates it across the diverse tasks in TCDM. Our contributions include: (1) identifying pre-grasps as a key ingredient to guide successful exploration in dexterous manipulation, and embedding them into existing behavior synthesis pipelines. (2) Next, our PGDM framework achieves SOTA results on a diverse suite of dexterous manipulation tasks, while using significantly less supervision (e.g. single frame vs full hand trajectory) than representative baseline methods. (3) In addition, we find which pre-grasp properties (e.g. proximity, finger pose) are important for successful behavior learning. (4) Finally, we commit to open-sourcing the TCDM benchmark, PGDM’s code-base, and all experimental artifacts (e.g. trained policies) for the community’s benefit.

II. RELATED WORK

Prior robot learning approaches achieved impressive results on various dexterous tasks [26], [27], [28], [24], [25], [29], [14], [30], [31]. But while learning approaches strive to be automatic, prior work requires a wealth of expertise for successful deployment. We now classify these approaches (and others), by the supervision strategies required to make them work in practice.

A. Task-engineering

A popular solution is to carefully design environments, tasks, and learning curriculums that structure the robot’s exploration. This can be accomplished by: extensive reward shaping [14], [31] to reduce noise in optimization; action space constraints [24] to prevent degenerate solutions; decomposing tasks into sub-skills [32], [33]; changing environment physics so the policy can develop its skill over the course of training [26], [31]; and cleverly initializing the policy so it can learn to pass through challenging bottlenecks in the state space [34], [35]. These strategies require weeks of expert trial and error to make a single-task solution, and often rely on unrealistic assumptions (e.g. changing gravity, reset robot in mid-air, etc.). In contrast, PGDM avoids these issues by using a simple pre-grasp based exploration primitive to accelerate learning, and needs no task knowledge.

B. Expert Data

Another common strategy is to initialize exploration strategies with expert data – ranging from trajectories collected by human demonstrators [24], [36], [25] to affordances [29] mined from human contact data [22], [37]. However, this data rarely generalizes between settings (i.e. trajectories are robot and task specific), and collecting it is expensive, since it requires special purpose experimental setups [36], [22]. More fundamentally, it is unclear if/when adding additional data can yield performance benefits. Our investigation addresses these issues, by outlining how simple data sources (pre-grasps and object desired trajectories) can accelerate policy learning, while being easy to acquire [38], [39], [40], [41].

III. METHODS

How can a single method learn a diverse range of dexterous manipulation behaviors? We argue that a simple, data-driven solution with minimal hyper-parameters offers the best chance. In this spirit, Sec. III-A presents a general task formulation, which parameterizes diverse dexterous behaviors using exemplar object trajectories, and Sec. III-B introduces PGDM, a framework for accelerating policy learning using pre-grasp states. An overview is shown in Fig. 2.

A. Task Formulation

Let’s begin by formalizing the definitions for robotic tasks and environments. We adopt the finite Markov Decision Process (MDP) formulation [42]. At each time-step the agent observes states (s_t ∈ S) and goals (g_t ∈ S), and executes an action (a_t ∈ A). The next state evolves according to stochastic dynamics (s_{t+1} ∼ P(s_{t+1}|s_t, a_t)). The agent collects trajectory rollouts within the MDP (T = [s_0, a_0, s_1, . . . , s_n]), starting from an initial state s_0 ∼ P(s_0). Desired behavior is specified by adding time-varying goal variables (G = [g_1, . . . , g_T]) that are used to condition both the reward function R(s_t, a_t, g_t) (optimized by agent) and the termination condition T(s_t, g_t) (early-stops failed episodes). To preserve the Markov property, the current time-step t must be appended to s_t, since g_t = G(t). Note that this is a super-set of the more standard static-goal conditioned MDP: it allows us to specify time-varying behaviors, and we can recover the standard formulation by setting g_t = g ∀ t. Given a discount factor γ, the learning objective is to find a policy a_t ∼ π(·|s_t) that maximizes: max_a J(π) = E_{T ∼ π} [∑ T=0 γ^t R(s_t, a_t, g_t)].

Parameterizing Task MDPs: We now describe how to create task MDPs from exemplar object trajectories – i.e. X = [x_1, . . . , x_T], where each x_t = [x_t^{(p)}, x_t^{(o)}] is an object pose (position and orientation). Object trajectories are used as goal variables (i.e. G = X), which in turn parameterize a pre-defined reward function R and termination condition T. Specifically: (1) goal variables are set to match the desired object pose at each time-step g_t = x_t; (2) the reward function encourages matching the exemplar trajectory – R(̂x_t, x_t) := λ_1 exp{−α || ̂x_t^{(p)} − x_t^{(p)} ||_2 − β |Z(̂x_t^{(o)}, x_t^{(o)})|} + λ_2 1{lifted},
where $\hat{x}_t = \hat{x}(s_t)$ is the real object pose in state s_t, \angle is the Quaternion angle between the two orientations, and $\mathbb{1}\{liftable\} = x_t^{(z)} > \zeta$ and $\hat{x}_t^{(z)} > \zeta$ encourages stable object lifting; (3) episodes are terminated when the object is too far from the goal $T(x_t, \hat{x}_t) := ||x_t - \hat{x}_t||_2 > \gamma$. All hyper-parameters for these function are reported in App. B.1. This formulation encourages the robot to produce behaviors that match the given template object trajectory. In practice, it allows us to specify diverse tasks – including dynamic, cyclic behaviors that eluded past work (e.g. hammering) – simply by supplying an appropriate object trajectory. One can even recover standard static-goal conditioned behaviors (e.g. lifting), by setting a fixed goal pose for the whole trajectory. Note that all this is possible without any per-task engineering (e.g. knob-turning bonus [24], etc.).

B. PGDM: Accelerating Exploration w/ Pre-Grasps

Our attention turns to creating a general exploration primitive that can accelerate learning across a wide range of tasks. Note that all dexterous tasks begin with the hand gaining proximity to the target object, before transitioning into general manipulation. Thus, it’s natural to decompose dexterous tasks into a “reaching stage” and a “manipulation stage,” and use different strategies to solve each. But in the first stage, what state should the robot reach for? We argue that pre-grasp states (i.e. hand pose directly preceding contact) provide the answer. Pre-grasps favourably position the robot relative to a target object, so that it can quickly learn the intermittent contacts behaviors required for dexterous manipulation. For example, the pre-grasps shown in Fig. 2 informs the robot hand how to approach and attend to the functional parts (e.g. fingers wrapped around handle) of the target object, which allows the robot to easily gain control. As an added bonus pre-grasps require minimal assumptions: they can be mined from human behavior data [39], [40] or cheaply annotated by human labelers, and can be easily reached by robots (e.g. w/ free-space planner [43]). The key insight of PGDM is to exploit these favorable properties, by learning to first achieve the pre-grasp state before beginning the learning object manipulation. From the learning agent’s (i.e. π) perspective, this is equivalent to modifying P_0 to maximally reduce exploration complexity, while still making minimal assumptions in practice. Finally, for additional pre-grasp examples and a more extensive definition, please refer to App. A.

IV. Experimental Setup

The following sections describe how our task formulation is used to create TCDM (see Sec. IV-A), alongside our implementation of PGDM (see Sec. IV-B). We stress that these decisions were made for the sake of consistent experiments, and are not inherent to our framework.

A. Introducing TCDM

Our task formulation (see Sec. III-A) acts as a recipe for converting exemplar object trajectories into dexterous manipulation tasks. We use this to define a set of 50 tasks, which span: 34 different objects; 3 distinct robotic hand platforms; and unique object trajectories mined from various sources – motion capture data-sets, human animated trajectories, and expert policy behaviors (see Figs. 1, 2). The pre-grasps for each task come from one of four sources: (1) human MoCap recordings [37] transferred to robot via IK, (2) expert pre-grasps extracted from Tele-Op data [24], (3) manually labeled pre-grasps, and (4) learned pre-grasps generated by an object mesh conditioned grasp predictor [37]. Further details on the task creation process and a full table of all tasks are presented in App. B.
Fig. 3: Average Success and Error metrics at the end of training for both the PGDM-only method and 6 baselines (3 methods, w/ and w/out PGDM). Note how methods using PGDM strongly outperform those that don’t, and how adding additional supervision does not improve performance.

To make an investigation of this scale reproducible, the tasks are simulated (using MuJoCo [44]) and compiled into a benchmark, named TCDM-50. Note that a subset of 30 tasks (named TCDM-30) contain additional supervision, in the form of expert hand trajectories and grasping data. While not useful for our formulation, this data is required for the baselines. Thus, some of our experiments are run on the abridged TCDM-30 for fair comparison with the baselines.

Success Metrics: Before continuing, let’s discuss quantitative metrics for judging performance on TCDM tasks. Put simply, a “good” policy is one that stably controls the object and matches the exemplar trajectory. We define (using the constants from Sec. III-A) three simple metrics that capture both these properties. The COM Error metric – \(E(X) = \frac{1}{T} \sum_{t=0}^{T} ||x_t^{(p)} - \hat{x}_t^{(p)}||_2 \) – calculates Euclidean error (in meters) between the object’s COM position, and the desired position from the exemplar trajectory. Similarly, the Ori Error metric – \(E(X) = \frac{1}{T} \sum_{t=0}^{T} \angle(x_t^{(o)} - \hat{x}_t^{(o)}) \) – is defined as the angle (in radians) between the achieved object orientation and desired orientation. In addition, the success metric – \(S(X) = \frac{1}{T} \sum_{t=0}^{T} \mathbb{1}(||x_t^{(p)} - \hat{x}_t^{(p)}||_2 < \epsilon) \) – reports the fraction of time-steps where COM error is below a \(\epsilon = 1 \text{cm} \) threshold. In practice, we’ve noticed that that humans easily perceive roll-outs that score from 60 – 80% as “successful.”

B. Implementing PGDM

Finally, let’s discuss our implementation for the two stage task decomposition proposed by PGDM (see Sec. III-B). Given a task’s initial state distribution \(P(s_0) \) (e.g. hand at reset position and object on table), we load an appropriate pre-grasp state \(\hat{s}_{pg} \), and solve for a reaching policy (using a scene-agnostic trajectory optimizer [45]) to \(\hat{s}_{pg} \). At this point, our system transitions to learning an agent within the MDP (i.e. maximize \(J \)) as normal. Specifically, we utilize the PPO [46] algorithm, to learn the dexterous behavior. Note that (except for desired object trajectories and respective pre-grasp) the entire system remains fixed across different tasks. Hyper-parameters and pseudo-code are presented in App. B.

Table I: Error and success metrics (averaged across all tasks w/ 3 seeds per-task) at the end of RL training (50M samples), and broken down by pre-grasp source.

| & All Trials & MoCap & Tele-Op & Labeled & Learned |
|---|---|---|---|---|---|
| Success | 74.5% | 75.0% | 84.5% | 69.2% | 90.4% |
| COM Error (m) | 5.23e-3 | 4.45e-3 | 1.12e-3 | 7.76e-3 | 1.55e-3 |
| Ori Error (rad) | 0.33 | 0.32 | 0.059 | 0.42 | 0.18 |
| # of Tasks | 50 | 37 | 3 | 7 | 3 |

V. Experiments

These experiments seek to validate both our trajectory centric task formulation (i.e. TCDM) and our pre-grasp based exploration primitive (i.e. PGDM). Specifically, we pose the following questions: (Q1) Can our methodology learn a broad and diverse range of dexterous manipulation skills? (Q2) Are we able to match the performance of baselines methods that leverage task specific reasoning (demonstrations, curriculum, etc.)? (Q3) What attributes of pre-grasps make them useful exploration primitive? (Q4) And finally, how accurately do our simulated results match real world behavior?

A. Learning Behaviors w/ Pre-Grasps and PGDM Tasks

To verify our methods’ viability, we deploy the PGDM policy learning scheme on the entire TCDM benchmark. Recall, no task specific tuning is allowed for any component in our setup. Since RL algorithms often display significant run-to-run variance, we run this experiment using 3 random seeds. Error and success metrics at the end of training (broken down by pre-grasp source and averaged across tasks) are shown in Table I. The behavior policies learned with PGDM achieve a tracking error of 5.23e-3, success rate of 74.5%, and low run-to-run variance, despite the breadth and diversity of TCDM tasks. Note that PGDM can learn effective policies using any of our 4 pre-grasp sources (MoCap, Expert Tele-Op, Human Labeled, and Learned). In particular, the successful experiments w/ learned pre-grasps suggest further avenues for scaling our results. Even though PGDM
uses no hand supervision outside of pre-grasps, we note that the final policies often produce smooth motions and realistic finger behavior. This defies conventional wisdom in the field that suggests human supervision is critical for “normal” behaviors [24], [29], [25]. That being said, multiple imperfections (e.g. large forces) remain in our policies, which leaves room for further improvement. Readers are encouraged to view the supplementary video\(^1\), to understand the learned qualitative behaviors. For additional visualizations, learning curves, and a more thorough breakdown of individual tasks please refer to App. ??.

B. Baselines: Is Additional Supervision Needed for Exploration?

Our prior experiment demonstrated that PGDM can solve a wide range of manipulation tasks. We now seek to understand if PGDM can compete with baselines, which rely on significantly more expert supervision and tuning for stable exploration. Specifically, we consider three baselines (listed below) that broadly exemplify prior work in this area:

- **DeepMimic** [34]: DeepMimic requires full hand and object trajectory supervision: it optimizes the robot to imitate expert fingertip poses in addition to the object trajectory. Thus, this baseline receives the maximum possible expert supervision at every time-step. DeepMimic is easily implemented by adding rewards and termination conditions for the fingertips to our existing task formulation.

- **GRAFF”** [29]: GRAFF encourages the robot to make functional contacts with the objects using “object affordances” – i.e. parts of the object where a human expert would grasp to accomplish a task. In practice, it rewards the robot for making contact at ground truth grasping points. While the original paper operated on visual observations, we re-implement it with simulator state information for fair comparison.

- **Task Curriculum** [32]: This baseline uses an expert designed curriculum to accelerate policy learning, in the hope that learning easy tasks will accelerate learning harder tasks later on. First, the robot must learn how to stably pick (i.e. lift) objects. To learn the rest of the task, our full tracking objective (e.g. \(\lambda_1\) from Sec. III-A) is linearly activated over the course of \(4M\) timesteps (i.e. average time to learn lifting).

A major benefit of using PGDM is that it shortens the task exploration horizon, since moving to pre-grasp moves the robot near to the object. To control for this factor, we implement each baseline once with PGDM (i.e. start baseline at pre-grasp) and once without (i.e. initialize at start pose). Additional implementation details are presented in App. D. All six baselines (3 methods, w/ and w/out PGDM) are evaluated against a PGDM-only method on TCDM-30\(^2\) tasks. Their performance at 50M steps are presented in Fig. 3. We observe that the baseline methods (which require dense supervision beyond pre-grasps) provide no appreciable performance boost (even when using PGDM), and are completely ineffective w/out PGDM.

These experiments offer strong evidence that pre-grasps act as crucial supervision for dexterous manipulation, since the baselines could only remain competitive when implemented w/ PGDM. Simply put, behavior synthesis frameworks that leverage pre-grasps can more easily acquire diverse dexterous manipulation behaviors, thus making further supervision far less valuable. Indeed, this observation is also reflected (though unacknowledged) in past learning work [26], [27], [31] – we find that removing pre-grasps from their setups causes them to collapse entirely (see App. A.3).

C. Ablations: What Makes a Pre-Grasp Useful?

Our investigation has established that pre-grasps are a key source of supervision that enable scaling to the diverse tasks in TCDM. We now run an ablation study to understand what pre-grasp properties (e.g. hand pose, proximity to object, etc.) make them useful during learning.

Error Metric	Success Metric
4.82e-3	75.5%

Pre-Grasps	Ablate Pose	Ablate Distance
23.1%	59.5%	28.6%

\(^1\)https://pregrasps.github.io/

\(^2\)TCDM-30 is used, since the baselines need added supervision.
Cracker-Box Lifting Robotic Setup

Fig. 5: Picture of our real world task setup. The D’Manus robotic hand is controlled to lift the “Cheez-Itz” cracker-box from YCB [23].

The following ablation classes are considered (visualized in Fig. 4):

- **Ablate Pose:** This ablation tests if finger pose information (i.e. finger joint positions) is required for PGDM to work. Specifically, we replace the pre-grasp finger pose with both an “Open Hand” (see Fig. 4b) and a “Mean Hand” (see Fig. 4c), calculated by averaging all the pre-grasps used in our investigation.

- **Ablate Distance:** The previous ablation does not address the importance of the object proximity. To test this factor, we shift the wrist away from the pre-grasp (towards default robot’s reset pose) by two fixed offsets (see Fig. 4d), while keeping the finger pose fixed.

These ablations\(^3\) (see Table. II) reveal that object proximity matters significantly – moving the hand away from the object dramatically reduces PGDM’s performance. Finger pose information is critical as well. The “Open Hand” experiment demonstrates how removing the pre-grasp’s finger pose causes a drastic decrease in performance. Furthermore, the “Mean Hand” experiments show that some of the fine-grained aspects of the pre-grasp pose matter, since replacing it with a generic hand pose resulted in a 20\% performance hit. However, the Mean Hand does perform significantly better than the Open Hand setting (59.5\% vs 23.1\% respectively), which indicates that pre-grasps need not be perfect for control.

D. Real World Validation

Since PGDM does not use extensive supervision to shape learning, it is possible that the learnt policies will not be viable on real hardware (e.g. actions are too aggressive). Our final experiment seeks to dispel this fear, by executing actions from a trained (using PGDM) policy (in open-loop fashion) on an actual D’Manus robot. Specifically, a simple “Cracker-box Lifting” task is defined using PGDM, alongside a matching real-world environment replica (see Fig. 5, details in App. E). We find that simulated actions can be replayed on the robot – i.e. the robot grasps and lifts the cracker-box using the learned behavior. This provides initial evidence that our simulated results could fully transfer to hardware. However, a more thorough real world investigation of our ideas (i.e. robot policy deployment for all tasks) is outside the scope of this paper.

VI. DISCUSSION

This paper demonstrated that simple ingredients can enable learning dexterous behaviors in diverse scenarios. Specifically, we use exemplar object trajectories as generic task specifiers, and pre-grasps as supervisory signals for exploration. Our primary contributions are (1) the PGDM framework, which functions as a simple exploration prior for dexterous policy learning, and (2) the TCDM benchmark which fills an important gap – the lack of diverse dexterous manipulation benchmarks (50 tasks, 20+ objects, 3 robots). Our system was able to achieve diverse control results with no per-task expert engineering, while using the minimal possible supervision (i.e. a single pre-grasp frame). Indeed, our learned behaviors match the performance of baselines that make significantly more assumptions. Finally, we characterize the pre-grasp properties required for stable exploration, as well as demonstrate that our learned behaviors are physically plausible.

VII. LIMITATIONS AND FUTURE WORK

Our investigation was primarily conducted in simulation, which is quite common in this space due to the lack of affordable dexterous hands (ShadowHand is $100K+). However, a few affordable solutions are in development [28], [30], which we are starting to investigate. We hope to eventually deploy a fully trained PGDM policy in the real world using a combination of: domain randomization [31]; real world training [30], [14]; and/or adaptation [47]. In addition, the pre-grasps used in this investigation were curated, but this approach would not work “in-the-wild” where objects are innumerable. To address this, we plan to predict pre-grasps from visual inputs using recent advances from the vision community [39], [40], [41], [48]. Next, while our trajectory centric task formulation can encode a wide range of behaviors, extensions are needed to further increase task diversity. For example, additional constraints will be needed for tasks with precise force requirements (e.g. hammering a nail with 15N force). Finally, we only consider single-object tasks without distractor objects or clutter. Handling these situations will require changes to our task formulation, and a more flexible (i.e. clutter-aware [49]) reaching policy in PGDM.

APPENDIX

Supplemental text with hyper-parameters and additional experimental details is available on our website: https://pregrasps.github.io/.

ACKNOWLEDGMENTS

We’d like to recognize Shikhar Bahl, Homanga Bharadhwaj, Yufei Ye, and Sam Powers for their valuable feedback. The work was conducted while the first author was an intern at Meta AI.
“Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control,” in ICLR, 2019.

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[47] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[48] A. Murali, W. Liu, K. Marino, S. Chernova, and A. Gupta, “Same object, different grasps: Data and semantic knowledge for task-oriented grasping,” arXiv preprint arXiv:2011.06431, 2020.

[49] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny, A. D. Dragan, and K. Goldberg, “Robot grasping in clutter: Using a hierarchy of supervisors for learning from demonstrations,” in 2016 IEEE international conference on automation science and engineering (CASE), pp. 827–834, IEEE, 2016.