XWeB: the XML Warehouse Benchmark

Hadj Mahboubi and Jérôme Darmont

CEMAGREF Clermont-Ferrand -- Université de Lyon (ERIC Lyon 2)
hadj.mahboubi@cemagref.fr -- jerome.darmont@univ-lyon2.fr

September 17, 2010
New trends for business data warehousing and analysis

OLAP operation over irregular XML data

XML data warehouse

Performance is a crucial and critical issue

Performance assessment using benchmarks

XML database management system

Storage and querying

Extraction, Transformation and Loading (ETL)

XML data warehousing

Analysis

Context

Hadj Mahboubi and Jérôme Darmont

XWeB: the XML Warehouse Benchmark

September 17, 2010

2 / 23
Objective and contribution

- Existing XML benchmarks are not decision-oriented
 - Database schemas do not bear the multidimensional structure
 - Workload do not features typical OLAP-like queries

Objective

- Performance evaluation using a benchmark
 - A test XML data warehouse and its associated XQuery decision support workload

Contribution

- Complete and extend an early version of XWeB
 - Based on TPC-H
 - Complemented with XML irregular structures
 - Extended workload
Objective and contribution

- **Objective**
 - Performance evaluation using a benchmark
 - A test XML data warehouse and its associated XQuery decision support workload

- **Contribution**
 - Complete and extend an early version of XWeB
 - Based on TPC-H
 - Complemented with XML irregular structures
 - Extended workload
Objective and contribution

- Existing XML benchmarks are not decision-oriented
 - Database schemas do not bear the multidimensional structure
 - Workload do not feature typical OLAP-like queries

Objective

- Performance evaluation using a benchmark
 - A test XML data warehouse and its associated XQuery decision support workload

Contribution

- Complete and extend an early version of XWeB
 - Based on TPC-H
 - Complemented with XML irregular structures
 - Extended workload
Outline

1. Introduction

2. Related work

3. Reference XML Warehouse Model

4. XWeB Specifications

5. Sample Experiments

6. Conclusion and perspectives
Relational Decision Support Benchmarks

Benchmark Model	Description
OLAP Council – APB-1 Benchmark (OLAP Council, 1998)	Data warehouse schema: four dimensions structured around Sale facts. Simple to understood and to use, but limited.
Transaction Processing Performance Council – TPC standard benchmarks (TPC, 2008)	TPC-H: classical *product-order-supplier* database model and 22 SQL-92 parameterized queries. TPC-DS: constellation schema, four classes of query templates.
Star Schema Benchmark – SSB (O’Neil et al., 2009)	A simpler alternative to TPC-DS, query workload with both functional and selectivity features.
Data Warehouse Engineering Benchmark – DWEB (Darmont et al., 2007)	Helps generate various ad-hoc synthetic data warehouses and typical OLAP query workloads. Conceived for testing the effect of design choices or optimization techniques. Extensive set of parameters.
XML Benchmarks

XML micro-benchmarks
- Michigan Benchmark (Runapongsara et al., 2006) and MemBer (Afanasiev et al., 2005)
- Assess the individual performances of basic operation: projection, selection, join...
- Specialized and not adapted for decision support application evaluation

XML application benchmarks
- X-Mach1 (Böhme and Rahm, 2003), XMark Schmidt et al., 2003, XOO7 (Bressan et al., 2003) and XBench (Yao et al., 2004)
- Compare and evaluate the global performances of XML-native or compatible DBMSs
Outline

1. Introduction
2. Related work
3. Reference XML Warehouse Model
4. XWeB Specifications
5. Sample Experiments
6. Conclusion and perspectives
Reference XML Warehouse Model

XML web warehouses	XML documents warehouses	XML data warehouses
Xyleme (2001)	Baril & Bellahsène (2003)	Pokorný (2002)
Golfarelli et al. (2001)	Nassis et al. (2005)	Hümmer et al. (2003)
Vrdoljak et al. (2003)	Rajugan et al. (2005)	Rusu et al. (2005)
	Zhang et al. (2005)	Park et al. (2005)
		Boussaïd et al. (2006)

XML data warehouses

- Represent both facts and dimensions
- Converge toward a unified model
- Differ in the way dimensions are handled and in the number of XML documents used to store facts and dimensions

XML data warehouse reference model

- Performance evaluation *(Boukraa et al., 2006)*
- Represents facts in one single XML document and each dimension in one XML document
- Allows representing irregular XML data structures
Reference XML warehouse model

(a) facts_f.xml

(b) dimension_d.xml
Reference XML warehouse model

dw-model.xml
Outline

1 Introduction
2 Related work
3 Reference XML Warehouse Model
4 XWeB Specifications
5 Sample Experiments
6 Conclusion and perspectives
Principle

Why deriving from TPC-H

- To acknowledge the importance of TPC benchmarks’ standard status
- To fulfill Gray’s simplicity criterion for a good benchmark
- To benefit from TPC-H’s features, e.g., dbgen

XWeB components

- Database and workload models
- XWeB do not include ETL features
- The data Warehouse is a set of XML documents; loading can be timed
Parameterization

Size (S): helps control warehouse size

Depends on

- **Scale factor (SF):** inherited from TPC-H
- **Density (D):** helps control the overall size of facts independently from the size of dimensions

 $D=1$ \longrightarrow all possible dimension references are present in the fact document

Estimated as

$$S = S_{\text{dimensions}} + S_{\text{facts}}$$

- $S_{\text{dimensions}} = \sum_{d \in D} |d|_SF \times \text{nodesize}(d)$, does not change where SF is fixed
- $S_{\text{facts}} = \prod_{d \in D} |h^d_1|_SF \times D \times \text{fact_size}$, depends on D

Additional parameters (in fact instances)

- Probability of missing values (P_m)
- Probability of element reordering (P_0)
Schema Instantiation

Dimension data
1. Obtained from dbgen as flat files (size is tuned by SF)
2. Matched to `dw-model.xml` document \rightarrow dimension$_d$.xml ($d \in D$) documents

Part category selection algorithm
- **Names** are taken from TPC-H and organized in three arbitrary hierarchy levels
- **Non-strict hierarchy**: names are interrelated thought rollup and drill-down relationships
- **Non-covering hierarchy**: randomly assign to each part element several categories at any level
Workload Model

Workload queries and parameterization

- Twenty typical aggregation queries for decision support
- Structured in increasing order of query complexity

- Subdivided into five categories: simple reporting queries, 1, 2 and 3-dimension cubes; and complex hierarchy cubes
- Boolean execution parameters: \(RE, 1D, 2D, 3D \) and \(CH \)
Query workload

Group	Query	Specification
Reporting	Q01	Min, Max, Sum, Avg of f_quantity and f_totalamount
	Q02	f_quantity for each p_partkey
	Q03	Sum of f_totalamount
1D cube	Q04	Sum of f_quantity per p_partkey
	Q05	Sum of f_quantity and f_total-amount per m_monthname
	Q06	Sum of f_quantity and f_total-amount per d_dayname
	Q07	Avg of f_quantity and f_total-amount per r_name
2D cube	Q08	Sum of f_quantity and f_total-amount per c_name and p_name
	Q09	Sum of f_quantity and f_total-amount per n_name and p_name
	Q10	Sum of f_quantity and f_total-amount per r_name and p_name
	Q11	Max of f_quantity and f_total-amount per s_name and p_name
3D cube	Q12	Sum of f_quantity and f_total-amount per c_name, p_name and y_yearkey
	Q13	Sum of f_quantity and f_total-amount per c_name, p_name and y_yearkey
	Q14	Sum of f_quantity and f_total-amount per c_name, p_name and y_yearkey
Complex hierarchy	Q15	Avg of f_quantity and f_total-amount per t_name
	Q16	Avg of f_quantity and f_total-amount per t_name
	Q17	Avg of f_quantity and f_total-amount per p_name
	Q18	Sum of f_quantity and f_total-amount per p_name
	Q19	Sum of f_quantity and f_total-amount per t_name
	Q20	Sum of f_quantity and f_total-amount per t_name
Execution protocol

1. **Load test:** load the XML warehouse into an XML DBMS;

2. **Performance test:**
 - *cold run* executed once (to fill in buffers), w.r.t. parameters RE, $1D$, $2D$, $3D$ and CH;
 - *warm run* executed $NRUN$ times, still w.r.t. workload parameters.

Performance metric: response time

- Load test, cold and warm runs are timed separately
- Global average, minimum and maximum execution times; and standard deviation
- Possibility to derive composite metrics
Experiments

Studied systems

- XML native systems: XQuery decision support query formulation facilities
- Five systems: BaseX, eXist, Sedna, X-Hive and xIndice

Highlight the performance differences among the studied systems

Parameters $p_m = p_0 = 0$

Total size of XML documents

SF	D	Number of facts	Warehouse size (KB)
1	$1/14 \times 10^{-7}$	500	1710
1	$1/7 \times 10^{-7}$	1000	1865
1	$2/7 \times 10^{-7}$	2000	2139
1	$3/7 \times 10^{-7}$	3000	2340
1	$4/7 \times 10^{-7}$	4000	2686
1	$5/7 \times 10^{-7}$	5000	2942
1	$6/7 \times 10^{-7}$	6000	3178
1	10^{-7}	7000	3448
Load Test

Fig. Load test results

![Graph showing load test results for different XML databases: Sedna, Xindice, XHive, eXist, BaseX. The x-axis represents the number of facts, and the y-axis represents the loading time in milliseconds. The graph shows how the loading time increases with the number of facts for each database.](image-url)
Performance Test

Fig. RE performance test results

- X-Hive
- Sedna
- BaseX
- eXist
Performance Test

Fig. 1D performance test results
Performance Test

Fig. CH performance test results
1 Introduction

2 Related work

3 Reference XML Warehouse Model

4 XWeB Specifications

5 Sample Experiments

6 Conclusion and perspectives
Conclusion and perspectives

Conclusion

- XWeB: first XML decision support benchmark
- Gray’s criteria: Relevant, Portable, Scalable, Simple
- Experiments to illustrate XWeB’s relevance
- Also previously used to experimentally validate indexing and view materialization strategies

Perspectives

- Include update operations to improve workload relevance
- Filter factor and experimental feedbacks → Tune and broaden the benchmark scope and representativity
- Performance metrics: composite (as TPC benchmarks’) and qualitative metrics (query result correctness)
Conclusion and perspectives

Conclusion

- XWeB: first XML decision support benchmark
- Gray’s criteria: Relevant, Portable, Scalable, Simple
- Experiments to illustrate XWeB’s relevance
- Also previously used to experimentally validate indexing and view materialization strategies

Perspectives

- Include update operations to improve workload relevance
- Filter factor and experimental feedbacks → Tune and broaden the benchmark scope and representativity
- Performance metrics: composite (as TPC benchmarks’) and qualitative metrics (query result correctness)