The carbon footprint from the power plant in Indonesia and renewable energy supply for reduce the carbon emission

Rosalina Azmi, Putri Maslahat and Johannes W. Wahono

1 Chemical Engineering, University of Jayabaya
2 Business Management, University of Bina Nusantara

Email: johannes.wahono@binus.ac.id

Abstract. The causes of the carbon emissions is the one use of electrical energy. According to PLN (Perusahaan Listrik Negara), the electricity sector contributes 14% of carbon emissions of the total national emissions. The International Energy Agency (IEA) reported that the total of carbon dioxide (CO$_2$) emissions reached 33.9 gigatons throughout 2020. A total of 13.5 gigatons of which came from electricity and heating, being the most compared to the other sources. Indonesia as the fourth most populous country in the world also contributes to carbon emissions from electricity use. The electricity consumption in Indonesia each year increases by an average of about 3.60% (from 2015-2020) and contributes to these carbon emissions. Indonesia with the largest potential sources of renewable energy (wind, solar power, geothermal and other sources), is expected to be able and develop and become a leader, especially in the Association of Southeast Asian Nations (ASEAN) Region. This paper will discuss the analysis of carbon footprint from electricity demand in Indonesia and renewable energy supply that can be used to reduce carbon emissions in dealing with climate change problems. The results of the analysis show that the carbon footprint of electricity usage per year on average is 5242.3 KgCO$_2$. The Projection of Renewable Energy Growth in Indonesia in 2045 will reach 20711.67 megawatt. Estimates of net-zero carbon emissions in Indonesia conclude that Indonesia has not yet achieved net-zero carbon emissions in 2045.

Keywords: carbon footprint; electricity consumption; sustainability; carbon emission; climate change; renewable energy.

1. Introduction

A carbon footprint is the total greenhouse gas (GHG) emissions caused directly and indirectly by an individual, organization, event or product. It is calculated by summing the emissions resulting from every stage of a product or service’s lifetime (material production, manufacturing, use, and end-of-life). Throughout a product’s lifetime, or lifecycle, different GHGs may be emitted, such as carbon dioxide (CO$_2$), methane (CH$_4$), and nitrous oxide (N$_2$O), each with a greater or lesser ability to trap heat in the atmosphere. These differences are accounted for by the global warming potential (GWP) of each gas, resulting in a carbon footprint in units of mass of carbon dioxide equivalents (CO$_2$e) [15].

The concept of carbon footprint (CF), namely the greenhouse gases expressed in carbon dioxide equivalents, emitted during the life cycle of an examined system, has been known for several decades as an indicator for assessing the impact of human activities to global warming potential [1].

Despite the fact that carbon dioxide is a natural component of air, high concentrations or exposure over a long time period can cause significant problems in human health [7].
CF estimation is helpful for the efficient management of greenhouse gas emissions and the evaluation of measures to reduce them. CF analysis can identify significant sources of emissions and prioritize the areas with the greatest potential for improvement, thereby increasing environmental efficiency and optimizing financial costs of amelioration actions. Several tools for CF calculation are available in current literature [2].

Various human activities cause an increase in the concentration of greenhouse gases (GHG) in the earth's atmosphere. The United Nations Framework Convention on Climate Change (UNFCCC) defines six types of greenhouse gases produced by human actions: Carbon dioxide (CO$_2$), Methane (CH$_4$), Nitrogen Oxide (N$_2$O), Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs) and Sulphur hexafluoride. (SF$_6$). It is estimated that currently the concentration of Carbon dioxide (CO$_2$) is the most dominant in the atmosphere. The International Energy Agency (IEA) reported that total carbon dioxide (CO$_2$) emissions reached 33.9 gigatons throughout 2020. A total of 13.5 gigatons of which came from electricity and heating, being the most compared to the other sources [1].

The value of carbon emissions produced by an organization, event, product, and human activity is referred to as its carbon footprint. According to the World Health Organization (WHO), the carbon footprint is a measure of the impact of our activities on the amount of carbon dioxide (CO$_2$) produced by burning fossil fuels and is expressed as the weight of CO$_2$ emissions produced in tonnes. Indonesia as the fourth most populous country in the world also contributes to carbon emissions from electricity use. Electricity consumption in Indonesia each year increases by an average of about 3.6% (from 2015-2020) and contributes to these carbon emissions. The following is a graph of the growth of electricity consumption in Indonesia from 2015-June 2020 per kWh/capita [1].

![Figure 1. Growth of Electricity Consumption in Indonesia from 2015- June 2020 per kWh/capita.](image)

Source: Directorate of General of Electricity, Ministry of Energy, and Mineral Resources (2021).

The Ministry of Energy and Mineral Resources (ESDM) (2019) also released the Decree of the Minister of Energy and Mineral Resources Number 143K/20/MEM/2019 concerning the General Plan of National Electricity for 2019 to 2038. ESDM in that decision, projects the average growth of national electricity energy needs to be around 6.9% per year [15].

This projection is achieved if the average national economic growth is around 6%, the average inflation is around 3.5%, the average population growth is around 0.8%, the electrification ratio target is around 99.9% in 2019 and 100% in 2020. Besides that, it also accommodates all potential demands for special economic zones (SEZ), industrial areas, smelters, and electric vehicles [15].

Electricity is the one of the causes of greenhouse gas emissions and climate change. Therefore, the use of renewable energy must be increased even more. In addition to minimizing greenhouse gas emissions and climate change, electricity use from renewable energy can also minimize the cost of using electricity. Various policies have also been implemented in various parts of the world, such as the Paris Agreement. It is hoped that various policies implemented in several countries in the world can also be
applied in Indonesia. However, policies made in Indonesia must be adapted to various conditions. It is important to understand that efforts to reduce greenhouse gas emissions and the development of renewable energy sources must be promoted from an early age to all levels of society [11].

Although climate change action needs to be massively increased to achieve the goals of the Paris Agreement, the years since its entry into force have already sparked low-carbon solutions and new markets. More and more countries, regions, cities and companies are establishing carbon neutrality targets. Zero-carbon solutions are becoming competitive across economic sectors representing 25% of emissions. This trend is most noticeable in the power and transport sectors and has created many new business opportunities for early movers [11].

The gap between aspiration and the reality in tackling climate change remains as significant as ever, despite mounting evidence of the harm that climate change is causing. Negative effects of climate change are becoming more evident year by year (NASA, WMO, 2020). Yet global energy related CO₂ emissions, despite levelling off periodically, have risen by 1% per year on average over the last decade [14].

In order to respond to climate change, Indonesia has stated its commitment at the Conference of Parties (COP) 15 of 2009 to reduce greenhouse gas (GHG) emissions by 26% (with its efforts) and by 41% (if it receives international assistance) by 2020. Indonesia’s commitment was strengthened through the first Nationally Determined Contribution (NDC) document of the Republic of Indonesia in November 2016. The stipulation of an unconditional target of 29% and a conditional target of up to 41% compared to the business as usual (BAU) scenario in 2030. Nationally, the emission reduction target in 2030 based on the NDC is 834 million tons of CO₂ on the unconditional target (CM1) and 1081 million tons of CO₂e on the conditional target (CM2). To meet these targets, nationally, various mitigation actions have been carried out in all sectors by those in charge of mitigation actions [15].

2. Methodology
In such circumstances, it is essential to carry out an analysis of the carbon footprint of the power generation company so that the methodology adopted and the policy implications can be shared by the managers of the power generation company. As a result, the purpose of this paper is to present an innovative method for analyzing carbon footprints in power generation companies and analyzing carbon footprints if the power plant is converted to renewable energy fuels, where the result can be seen by what percentage of greenhouse gas emission reductions can be reduced from use of renewable energy fuels in power generation companies. A case study approach is used to describe the feasibility and application of this method. The whole paper is arranged as below. Following this introductory section, we provide our research methodology, including an overview of studies related to the carbon footprint that identifies the relevant research literature and sets the stage for these studies and the data collection process. We then present the results of the case studies and provide policy implications. The purpose of this paper is to analysis of carbon footprint from electricity demand in Indonesia and renewable energy supply that can be used to reduce carbon emissions in dealing with climate change problems.

The method used in this research is quantitative. Quantitative method is a systematic scientific study of parts and phenomena and their relationships. This method aims to develop and use mathematical models, theories and hypotheses related to natural phenomena.

3. Result and discussion
3.1. Average factor emission
Before calculating the carbon footprint, first to calculate the emission factor from several power plants. Data of PT Perusahaan Listrik Negara (Persero) power plants based from Statistik PLN 2020. PT PLN (Persero) is a state-owned company that handles all aspects of electricity in Indonesia. The following is the installed power generation capacity from power plants in Indonesia [19]:
Table 1. The Installed Power Generation Capacity From Power Plants in Indonesia. **Source:** Statistics of PLN (2020) and Dong et al (2013).

No.	Power Plant	Type of Power Plant	Raw Materials	Emission Factor (tCO$_2$/MWh)	Capacity (MWh)	(t CO$_2$) $\times 10^2$
1	UIW Aceh	Diesel Electric Power Plant	Diesel Fuel	3.096	142.39	440.84
2	UIW Sumatera Utara	Diesel Electric Power Plant	Diesel Fuel	3.096	4.11	0.00
3	UIW Sumatera Barat	Diesel Electric Power Plant	Diesel Fuel	3.096	35.36	0.00
4	UIW Riau	Diesel Electric Power Plant	Diesel Fuel	3.096	125.31	0.00
5	UIW Kepulauan Riau	Diesel Electric Power Plant	Diesel Fuel	3.096	114.31	0.00
6	UIW Sumatera Selatan	Diesel Electric Power Plant	Diesel Fuel	3.096	6.01	0.00
7	UIW Jambi	Diesel Electric Power Plant	Diesel Fuel	3.096	17.38	0.00
8	UIW Bengkulu	Diesel Electric Power Plant	Diesel Fuel	3.096	35.78	0.00
9	UIW Bangka Belitung	Electric Steam Power Plant	Coal	2.030	129.80	0.00
10	UID Lampung	Diesel Electric Power Plant	Diesel Fuel	3.096	4.96	15.36
11	UIW Kalimantan Barat	Diesel Electric Power Plant	Diesel Fuel	3.096	70.29	0.00
12	UIW Kalimantan Selatan	Diesel Electric Power Plant	Diesel Fuel	3.096	16.28	0.00
13	UIW Kalimantan Tengah	Diesel Electric Power Plant	Diesel Fuel	3.096	43.60	0.00
14	UIW Kalimantan Timur dan Utara	Diesel Electric Power Plant	Diesel Fuel	3.096	35.70	0.00
15	UIW Sulawesi Utara	Diesel Electric Power Plant	Diesel Fuel	3.096	43.29	0.00
16	UIW Gorontalo	Diesel Electric Power Plant	Diesel Fuel	3.096	3.53	0.00
17	UIW Sulawesi Tengah	Diesel Electric Power Plant	Diesel Fuel	3.096	99.53	0.00
18	UIW Sulawesi Selatan	Diesel Electric Power Plant	Diesel Fuel	3.096	10.23	0.00
19	UIW Sulawesi Tenggara	Diesel Electric Power Plant	Diesel Fuel	3.096	23.17	0.00
20	UIW Sulawesi Barat	Diesel Electric Power Plant	Diesel Fuel	3.096	2.77	0.00
21	UIW Maluku	Diesel Electric Power Plant	Diesel Fuel	3.096	302.33	0.00
22	UIW Maluku Utara	Diesel Electric Power Plant	Diesel Fuel	3.096	14.00	28.42
23	UIW Papua	Diesel Electric Power Plant	Diesel Fuel	3.096	101.61	314.58
24	UIW Papua Barat	Diesel Electric Power Plant	Diesel Fuel	3.096	103.30	0.00
25	UID Bali	Diesel Electric Power Plant	Diesel Fuel	3.096	283.96	0.00
26	UIW Nusa Tenggara Barat	Diesel Electric Power Plant	Diesel Fuel	3.096	2.96	0.00
27	UIW Nusa Tenggara Timur	Diesel Electric Power Plant	Diesel Fuel	3.096	377.14	0.00
28	PT PLN Batam	Electric Steam Power Plant	Coal	2.030	77.00	156.31
		Gas Power Plant	Natural Gas	2.030	284.47	880.72
		Gas & Steam-Electric Power Plant	Natural Gas	2.030	47.00	95.41
No.	Power Plant	Type of Power Plant	Raw Materials	Emission Factor (tCO₂/MWh)	Capacity (MWh)	(t CO₂)
-----	-------------------	---------------------------	---------------	-----------------------------	----------------	----------
29	UIK Sumatera Bagian Utara	Diesel Electric Power Plant	Diesel Fuel	3.096	133.18	412.33
		Steam-Electric Power Station	Coal	2.030	1798.00	3649.94
		Gas Power Plant			302.46	6539.19
		Gas & Steam-Electric Power Plant	Natural Gas	21.620	817.88	0.00
		Diesel Electric Power Plant	Diesel Fuel	3.096	752.53	2329.83
30	UIK Sumatera Bagian Selatan	Steam-Electric Power Station	Coal	2.030	1109.00	2251.27
		Gas Power Plant			352.87	7629.05
		Gas & Steam-Electric Power Plant	Natural Gas	21.620	160.00	0.00
		Diesel Electric Power Plant	Diesel Fuel	3.096	216.08	668.98
31	UIKL Kalimantan	Steam-Electric Power Station	Coal	2.030	773.63	1570.47
		Gas Power Plant			255.55	5524.99
		Gas & Steam-Electric Power Plant	Natural Gas	21.620	60.00	0.00
		Diesel Electric Power Plant	Diesel Fuel	3.096	894.90	2770.61
32	UIKL Sulawesi	Steam-Electric Power Station	Coal	2.030	459.00	931.77
		Gas Power Plant			222.72	4815.21
		Gas & Steam-Electric Power Plant	Natural Gas	21.620	510.46	1580.38
		Diesel Electric Power Plant	Diesel Fuel	3.096	33.07	0.00
33	UID Jawa Timur	Diesel Electric Power Plant	Diesel Fuel	3.096	0.74	0.00
34	UID Banten	Steam-Electric Power Station	Coal	2.030	3700.00	7511.00
		Gas Power Plant			520.88	11261.43
		Gas & Steam-Electric Power Plant	Natural Gas	21.620	3172.98	0.00
		Diesel Electric Power Plant	Diesel Fuel	3.096	375.26	1161.80
35	PT Indonesia Power	Steam-Electric Power Station	Coal	2.030	1800.00	3654.00
		Gas Power Plant			1188.20	25688.88
		Gas & Steam-Electric Power Plant	Natural Gas	21.620	2747.36	0.00
		Diesel Electric Power Plant	Diesel Fuel	3.096	3.19	9.88
36	PT Pembangkitan Jawa Bali (PJB)	Steam-Electric Power Station	Coal	2.030	2840.00	5765.20
		Gas Power Plant			2170.00	0.00
No.	Power Plant	Type of Power Plant	Raw Materials	Emission Factor (tCO₂/MWh)	Capacity (MWh)	(t CO₂)
-----	--	----------------------	-----------------	-----------------------------	----------------	----------
40	UIK Jawa Bagian Tengah	Steam-Electric Power Station	Coal	2.030	3330.00	6759.90
	Gas & Steam-Electric Power Plant	Natural Gas	21.620	3489.09	75434.13	
41	UIK Jawa Bagian Timur, Bali, dan Nusa Tenggara	Steam-Electric Power Station	Coal	2.030	1990.00	4039.70
	Gas & Steam-Electric Power Plant	Natural Gas	21.620	501.00	10831.62	
42	UIW Papua dan Papua Barat	Steam-Electric Power Station	Coal	2.030	24.00	48.72
	Diesel Electric Power Plant	Diesel Fuel	3.096	91.95	284.68	
43	UIP Kaltim Bagian Timur	Steam-Electric Power Station	Coal	2.030	7.00	14.21
44	UIP Sulawesi Bagian Selatan	Steam-Electric Power Station	Coal	2.030	10.00	0.00
45	UIP Sulawesi Bagian Utara	Steam-Electric Power Station	Coal	6.00	0.00	
46	UIP Nusa Tenggara	Diesel Electric Power Plant	Diesel Fuel	3.096	30.00	151.39
	Total			39285.37	202017.35	

Average Emission Factor = \(\frac{\sum (\text{Emission Factor} \times \text{capacity})}{\sum \text{capacity}} = \frac{202017.36 \text{tCO}_2}{39285.37 \text{MWh}} = 5.14 \text{ kg CO}_2/\text{kWh} \) (1)

After being averaged, the emission factor used for the next calculation is 5.14 kg CO₂/kWh.

3.2. Carbon footprint from electric demand in Indonesia

The data to carry out made by electorate General of Electricity at the Ministry of Energy and Mineral Resources of Indonesia. The Directorate General of Electricity or if it is abbreviated as Directorate General of Electricity or can be called DJK is the implementing element of the Ministry of Energy and Mineral Resources (ESDM) in charge of the electricity sub-sector. The Directorate General of Electricity has the task of carrying out the formulation and implementation of policies in the fields of development, business, engineering, work safety, and the environment in the electricity sub-sector in Indonesia. The following is the calculation of carbon footprint from electricity demand in Indonesia from 2015 – June 2020.
Table 2. The Calculation of the Carbon Footprint from Electricity Demand in Indonesia 2015 –2020.

Year	Electricity Consumption (kWh/capita)	Emission Factor	CO₂ Emission (Kg CO₂)	Percentage Increase Electricity Consumption
2015	910	5.14	4677.40	
2016	956	5.14	4913.84	5.05%
2017	1021	5.14	5247.94	6.80%
2018	1064	5.14	5468.96	4.21%
2019	1084	5.14	5571.76	1.88%
2020	1084.36	5.14	5573.61	0.03%
	Average		**5242.25**	**3.60%**

Source: Statistics of PLN (2020).

Based on the calculation, the carbon footprint from electricity usage per year on average is 5242.3 KgCO₂ and increase of 3.60% on percentage. Based on the table above, it can be seen that the calculation of the carbon footprint from electricity demand in Indonesia 2015 –2020 from year to year trends to increase and when viewed from the development of the industry, the needs of the electricity usage will also increased.

Based on the data in the table above, the projected growth and development of the carbon footprint of electricity in Indonesia in the future can be estimated using the Least Square method with the following formula:

\[Y = x + bx \]

(2)

So with this formula, the following table is obtained the calculation of the carbon footprint from electricity demand in Indonesia 2021 – 2045:

Table 3. The Projection of the Calculation of the Carbon Footprint from Electricity Demand in Indonesia 2021 – 2045.

Tahun	y (Kg CO₂)	X
2021	5909.83	3
2022	6100.56	4
2023	6291.30	5
2024	6482.04	6
2025	6672.77	7
2026	6863.51	8
2027	7054.25	9
2028	7244.98	10
2029	7435.72	11
2030	7626.46	12
Figure 2. Calculation of the Growth of the Carbon Footprint of Electricity Demand in Indonesia 2021 – 2045.

Source: Statistics of PLN (2020).

3.3. Project 35000 MW

Press release number 25/SJI/2015 dated on May 4, 2015 by the Ministry of Energy and Mineral Resources of the Republic of Indonesia. The President of the Republic of Indonesia Joko Widodo accompanied by the Minister of Energy and Mineral Resources (ESDM) Sudirman launched the 35000 Megawatt Power Plant Development Program in Samas, Bantul Regency, Yogyakarta Special Region Province. The 35000 megawatt program is the one of the flagship programs in order to achieve one of the Nawacita targets, namely realizing economic independence by moving strategic sectors, especially
energy sovereignty. The 35000 megawatt power plant program will also be a potential that produces more carbon emissions if the resources are not from renewable energy [20].

3.4. Renewable energy supply

3.4.1. New energy potential and renewable energy

The reduced production of fossil energy, especially oil, and the global commitment to reducing greenhouse gas emissions, has encouraged the Government to continuously increase the role of new and renewable energy as part of maintaining energy security and independence. According to PP No. 79 of 2014 concerning National Energy Policy, the target for the new and renewable energy mix in 2025 are at least 23% and 31% in 2050. Indonesia has a large enough potential for new and renewable energy to achieve the primary energy mix target, as shown in Table 4 [7].

Type of Energy	Potential
Hydroelectric Power Plant	94.3 GW
Geothermal	28.5 GW
Bioenergy	Bio: 32.6 GW
	BBN: 200000Bph
Solar	207.8 GWp
Wind	60.6 GW
Ocean Energy	17.9 GW

Table 4. Renewable Energy Potential in Indonesia.

Source: Direktorat Jenderal Energi Baru, Terbarukan (EBT) dan Konservasi Energi (DITJEN EBTKE) (2018).

3.4.2. Realization renewable energy generation in Indonesia

The total renewable energy potential equivalent to 442 GW is used for power generation, while BBN and Biogas of 200 thousand Bph are used for fuel purposes in the transportation, household, commercial and industrial sectors. The utilization of NRE for power plants in 2018 was 8.8 GW or 14% of the total power generation capacity (fossil and non-fossil) which is 64.5 GW [7].

The lack of use of NRE for electricity is due to the relatively high production price of EBT-based power plants, making it difficult to compete with fossil generators, especially coal. In addition, the lack of support from the domestic industry related to the components of renewable energy generation and the difficulty of obtaining low-interest funding has also caused the development of renewable energy to be hampered. The use of NRE in the transportation sector, especially biodiesel, has begun to develop rapidly in line with the implementation of the mandatory biofuel policy which mandates: the mixture of biofuel to fuel by 20% (B20) in the transportation sector. The development of biodiesel production, export, and utilization is shown in Figure 1 [7].
The renewable energy supply is continuously increasing. A large amount of investment has been made during recent years and the advancement of technology has enabled countries to produce renewable energy more cost effectively. It is forecasted that the number of countries producing above 100 megawatts (MW) of renewable energy will increase significantly by 2017 (IEA, 2012d). Due to some negative and irreversible externalities coming with conventional energy production, it is necessary to promote and develop renewable energy supply technologies. These technologies may not be comparable with conventional fuels in terms of production cost, but they could be comparable if we consider their associated externalities, such as their environmental and social effects. Also, it should be noted that economies of scale could play a key role in reducing the unit production cost. Transmission and distribution costs, as well as technologies, do not differ much among the conventional and renewable energies [13].

The following is the development of installed capacity of renewable power plants in Indonesia 2015-2020:

Table 5. The Development of Installed Capacity of Renewable Power Plants in Indonesia 2015-2020.

Year	Hybrid	Solar	Wind	Bio Energy	Geothermal	Water	Total
2015	4	33	2	1742	1438	5278	8497
2016	4	43	2	1783	1533	5621	8986
2017	4	51	2	1857	1808	5658	9380
2018	4	68	144	1883	1948	5742	9789
2019	4	137	154	1890	2131	5976	10292
2020	4	154	154	1904	2131	6121	10468

Source: 2020 Annual Report. Direktorat Jenderal Energi Baru, Terbarukan (EBT), dan Konservasi Energi (DITJEN EBTKE) (2020).
Based on the table above, it can be seen that the development of installed capacity growth for renewable energy power plants from year to year trends to increase and when viewed from the development of industry, the need for renewable energy power plants will also increase. Based on the data in the table above, the projected growth and development of renewable energy power plants in Indonesia in the future can be estimated using the Least Square method. The following table is obtained the projected of renewable energy growth in Indonesia 2021 – 2045:

Table 6. The Projection of Renewable Energy Growth in Indonesia 2021 – 2045.

Tahun	y (Megawatt)	X
2021	10986.87	3
2022	11392.07	4
2023	11797.27	5
2024	12202.47	6
2025	12607.67	7
2026	13012.87	8
2027	13418.07	9
2028	13823.27	10
2029	14228.47	11
2030	14633.67	12
2031	15038.87	13
2032	15444.07	14
2033	15849.27	15
2034	16254.47	16
2035	16659.67	17
2036	17064.87	18
2037	17470.07	19
2038	17875.27	20
2039	18280.47	21
2040	18685.67	22
2041	19090.87	23
2042	19496.07	24
2043	19901.27	25
2044	20306.47	26
2045	20711.67	27
Figure 4. The Projection of Renewable Energy Growth in Indonesia 2021–2045.

The following is percentage of installed capacity for renewable energy power generation:

Table 7. Percentage of Installed Capacity for Renewable Energy Power Generation.

Year	Oil	Coal	Gas	Renewable Energy
2015	42.12	30.14	22.77	5.32
2016	44.90	27.84	21.12	4.97
2017	41.42	30.53	21.39	6.66
2018	38.71	33.00	19.68	8.61
2019	35.03	37.28	18.51	9.18
2020	30.49	38.68	19.52	11.31
Figure 5. Percentage of Installed Capacity for Renewable Energy Power Generation 2015-2020.
Source: 2020 Annual Report. Direktorat Jenderal Energi Baru, Terbarukan (EBT), and Konservasi Energi (DITJEN EBTKE) (2020).

3.5. Estimation net zero carbon emission from renewable power plant in Indonesia
Press release number 389.Pers/04/SJI/2021 dated on November 21, 2021 by the Ministry of Energy and Mineral Resources of the Republic of Indonesia. Indonesia's commitment to climate change mitigation is reinforced by the formulation of a number of policies, especially in the energy sector. Indonesia has set the targets for emission reduction and Net Zero Emission by 2060 or sooner [21].

Zero carbon emission from power plants in Indonesia can be achieved if the source of power generation is 100% using renewable energy. The following is an estimation timeline Indonesian renewable power plants can reach zero carbon emission:

Table 8. Electricity Consumption for non-Renewable Power Plant In Indonesia.

Year	The Power Plant Growth for non-Renewable Energy (MW) (y)	x	xy	x²
2010	28038	-5	-140190	25
2011	30723	-4	-122892	16
2012	39062	-3	-117186	9
2013	39660	-2	-79320	4
2014	46822	-1	-46822	1
2015	47983	0	0	0
2016	52580	1	52580.37	1
2017	51394	2	102788	4
2018	56012	3	168036	9
2019	57078	4	228312	16
2020	57224	5	286120	25
Table 9. The Power Plant Growth for non-Renewable Energy (MW) (y) In Indonesia

Year	The Power Plant Growth for non-Renewable Energy (MW) (y)	X
2021	64130.20	6
2022	67143.17	7
2023	70156.13	8
2024	73169.10	9
2025	76182.07	10
2026	79195.03	11
2027	82208.00	12
2028	85220.97	13
2029	88233.94	14
2030	91246.90	15
2031	94259.87	16
2032	97272.84	17
2033	100285.80	18
2034	103298.77	19
2035	106311.74	20
2036	109324.70	21
2037	112337.67	22
2038	115350.64	23
2039	118363.61	24
2040	121376.57	25
2041	124389.54	26
2042	127402.51	27
2043	130415.47	28
2044	133428.44	29
2045	136441.41	30

Table 10. The Projection of Power Plant Growth for non-Renewable Energy (MW) (y) In Indonesia

Tahun	The Power Plant Growth for Renewable Energy (MW) (y)	x	xy	x2
2010	6001.51	-5	-30007.55	25
2011	5181.51	-4	-20726.04	16
2012	5521.23	-3	-16563.69	9
2013	6546.66	-2	-13093.32	4
Table 1. The Power Plant Growth for Renewable Energy (MW) (y) In Indonesia

Year	The Power Plant Growth for Renewable Energy (MW) (y)	X
2021	7651.92	6
2022	7821.41	7
2023	7990.90	8
2024	8160.38	9
2025	8329.87	10
2026	8499.36	11
2027	8668.84	12
2028	8838.33	13
2029	9007.82	14
2030	9177.30	15
2031	9346.79	16
2032	9516.27	17
2033	9685.76	18
2034	9855.25	19
2035	10024.73	20
2036	10194.22	21
2037	10363.71	22
2038	10533.19	23
2039	10702.68	24
2040	10872.17	25
2041	11041.65	26
2042	11211.14	27
2043	11380.63	28
2044	11550.11	29
2045	11719.60	30
Figure 6. The Projection of Power Plant Growth for Renewable Energy & non Renewable Energy (MW) (y) In Indonesia 2021–2045.

From the table and figure above, it can be concluded that Indonesia has not yet achieved the net-zero carbon emission target in 2045. If Indonesia wants to achieve net-zero carbon emission, the development of renewable energy power plants must be increased more massively so that net-zero carbon emissions can be achieved at the target in 2060.

4. Conclusion and outlook

Power plants are one of the main areas of carbon emission because intensive power generation consumes a lot of fossil fuels and electricity has become a primary human need. Therefore, it is essential to conduct a carbon footprint analysis in power plants companies so that key sectors can be identified and appropriate emission reduction policies can be improved. To carry out this mission, we calculated carbon emissions from power generation capacity and averaged emission factors. In addition, we also estimate the carbon footprint that will be generated and the percentage of renewable energy power plants' growth from 2021-2045 and estimation net zero carbon emission from renewable power plant in Indonesia.

While electrical energy has a significant effect on producing carbon emissions and is still increasing by the year, an increase in greenhouse gas emissions and the problem of climate change will be inevitable. A future to use renewable energy technologies is expected to create the desired climate change where there are fewer floods, storms, droughts and other extreme conditions because the global warming. All levels of society must work together so that the world can accelerate its transition to sustainable energy and a sustainable future.

From the data above, it can be conclude that from 2015-2045 there is an increase in electricity demand which will also result in an increase in the amount of the carbon footprint. However, with the growth and increasing of the installation capacity of renewable energy power plants, it is expected that the amount of the carbon footprint generated can be reduced, in line with the increase in line with the growth of renewable energy power plants.
In general, electricity consumption in Indonesia will increase, so in order to reduce the carbon footprint, the increase in the volume of renewable power generation capacity must be increased as well as its development needs to be expanded in various sources, such as geothermal, wind, water, and others.

Based on the data in the table above, it can be concluded that to reduce the carbon footprint in Indonesia, the construction of renewable energy power plants requires an increase in capacity of 4 times the current renewable energy power plants. Therefore, a zero carbon footprint from power generation can be obtained by 2050.

References
[1] Center for Sustainable Systems, University of Michigan. 2021. "Carbon Footprint Factsheet." Pub. No. CSS09-05. https://css.umich.edu/factsheets/carbon-footprint-factsheet. (Accessed on August 30, 2021).
[2] Cucek, L., Klemes, J.J., and Kravanja, Z. 2012. —A Review of Footprint analysis tools for monitoring impacts on sustainability.l Journal of Cleaner Production 34: 9-20. doi:10.1016/j.jclepro.2012.02.036.
[3] Direktorat Jenderal Energi Baru, Terbarukan, dan Konservasi Energi (DITJEN EBTKE) (2018). Renewable Energy Potential. https://ebtke.esdm.go.id/post/2021/06/26/2895/laporan.tahunan.ditjen.ebtke.tahun.2020. (Accessed on August 30, 2021).
[4] Direktorat Jenderal Energi Baru, Terbarukan (EBT), dan Konservasi Energi (DITJEN EBTKE). 2020. 2020 Annual Report. Ministry of Energy and Mineral Resources. https://ebtke.esdm.go.id/post/2021/06/26/2895/laporan.tahunan.ditjen.ebtke.tahun.2020. (Accessed on 21 November 20, 2021).
[5] Directorate General of Electricity, Ministry of Energy and Mineral Resources. Directorate General of Electricity Materials. Press Conference Electricity Subsector Performance Achievements. (Accessed on July 21, 2021).
[6] Dong, et al. 2013. Carbon Footprint Evaluation At Industrial Park Level: A Hybrid Life Cycle Assessment Approach. Key Lab on Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang, Liaoing Province 110016, P.R. China. Energy Policy 57 (2013) 298–307. Elsevier Ltd. www.elsevier.com/locate/enpol. (Accessed on August 30, 2021).
[7] Finkbeiner, M. 2009. —Carbon Footprinting - Opportunities and Threats.l International Journal of Life Cycle Assessment 14: 91-94,. doi:10.1007/s11367-009-0064-x.
[8] Freund, P., Bachu, S., Simbeck, D., Thambimuthu, K. and Gupta, M. 2012. Properties of CO2 and carbon-based fuels, IPCC special report on carbon dioxide and storage. Annex I: Properties of CO2 and carbon-based fuels, pp. 384-400. Retrieved from. http://www.ipcc.ch/pdf/special-reports/srccs/srccs_annex1.pdf. (Accessed on August 30, 2021).
[9] Guidelines for National Greenhouse Gas Inventories. 2006. Volume 2. Intergovernmental Panel On Climate Change (IPCC). https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html. (Accessed on August 30, 2021).
[10] Heshmati, A, et al. A Review of Renewable Energy Supply and Energy Efficiency Technologies. https://ftp.iza.org/dp8145.pdf. (Accessed on July 15, 2021).
[11] IEA (International Energy Agency). Global Energy Review 2020: The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2 Emissions. Available online:https://www.iea.org/reports/global-energy-review-2020/electricity#abstract. (Accessed on July 31, 2021).
[12] IEA. (2012b). Medium-Term Renewable Energy Market Report 2012: OECD Publishing. https://iea.blob.core.windows.net/assets/542cb9a3-b7bd-4edd-a5dad5db3aa569a/MTRMR2014.pdf. (Accessed on July 31, 2021).

[13] International Energy Agency (IEA). Global Energy Review: CO₂ Emission in 2020. https://www.iea.org/articles/global-energy-review-co2-emissions-in-2020. (Accessed on October 16, 2021).

[14] IRENA—International Renewable Energy Agency. Global Renewables Outlook: Energy Transformation 2050. Available online: https://www.irena.org//media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf. (Accessed on July 31, 2021).

[15] Keputusan Menteri Energi dan Sumber Daya Mineral Nomor 143 K/2019 tentang Rencana Umum Ketenagalistrikan Nasional Tahun 2019 Sampai Dengan Tahun 2038. https://jdih.esdm.go.id/index.php/web/result/1973/detail. (Accessed on August 30, 2021).

[16] Laporan Inventarisasi Gas Rumah Kaca dan Monitoring, Pelaporan Verifikasi Tahun 2018. Ministry of Environment and Forestry, Directorate General of Climate Change Control, Directorate of Greenhouse Gas and MPV Inventory. http://ditjenppi.menlhk.go.id/reddplus/images/adminppi/dokumen/igrk/lapigrkmrv2018.pdf. (Accessed on 21 November 20, 2021).

[17] Pandey, D., Agrawal, M. and Pandey, J.S. 2011. —Carbon footprint: current methods of estimation.1 Environmental Monitoring Assessment 178: 135-160. doi: 10.1007/s10661-0101678-y. (Accessed on October 16, 2021).

[18] Sekretariat Jenderal Dewan Energi Nasional. 2019. Outlook Energi Indonesia (OEI). https://www.esdm.go.id/assets/media/content/content-outlook-energi-indonesia-2019bahasa-indonesia.pdf. (Accessed on August 30, 2021).

[19] Statistics of Perusahaan Listrik Negara (PLN). Pages of 19. 2020. https://web.pln.co.id/statics/uploads/2021/07/Statistik-PLN-2020.pdf. (Accessed on October 30, 2021).

[20] Press release number 25/SJI/2015. 2015. The Ministry of Energy and Mineral Resources of the Republic of Indonesia. https://www.esdm.go.id/en. (Accessed on October 28, 2021).

[21] Press release number 389.Pers/04/SJI/2021. 2021. The Ministry of Energy and Mineral Resources of the Republic of Indonesia. https://www.esdm.go.id/en. (Accessed on December 27, 2021).

[22] Electricity Statistics 2006 – 2010. Page of 8. 2011. https://www.bps.go.id/publication/2011/12/13/1dbfbf9343a06a4391dbe7cc/statistik-listrik2006-2010.html. (Accessed on January 15, 2022).

[23] Electricity Statistics 2007 – 2011. Page of 9. 2012. https://www.bps.go.id/publication/2012/11/12/1181f6087be0bf53a4364845/statistik-listrik2007-2011.html. (Accessed on January 15, 2022).

[24] Electricity Statistics 2011 – 2012. Page of 9. 2013. https://www.bps.go.id/publication/2013/12/05/c39ff78f1076e26522f0c862/statistik-listrik2011-2012.html. (Accessed on January 15, 2022).

[25] Electricity Statistics 2011 – 2013. Page of 13. 2014. https://www.bps.go.id/publication/2014/11/03/b6059bf6c509bf88c9c6ed9e/statistik-listrik2011-2013.html. (Accessed on January 15, 2022).

[26] Electricity Statistics 2011 – 2014. Page of 10. 2015. https://www.bps.go.id/publication/2015/12/23/1150c1e8a4ff5a88e9d25dc6/statistik-listrik2011-2014.html. (Accessed on January 15, 2022).