An Assessment of Storm Surge Risk in Coastal Communities in the Rio Grande Valley

Dean Kyne
The University of Texas Rio Grande Valley, dean.kyne@utrgv.edu

Follow this and additional works at: https://scholarworks.utrgv.edu/soc_fac

Part of the Environmental Sciences Commons, and the Sociology Commons

Recommended Citation
Kyne, D. An Assessment of Storm Surge Risk in Coastal Communities in the Rio Grande Valley. Preprints 2021, 2021090282 (doi: 10.20944/preprints202109.0282.v1).

This Article is brought to you for free and open access by the College of Liberal Arts at ScholarWorks @ UTRGV. It has been accepted for inclusion in Sociology Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.
An Assessment of Storm Surge Risk in Coastal Communities in the Rio Grande Valley

Dean Kyne¹,*

¹ Associate Professor, Disaster Studies Program Director, Department of Sociology, University of Texas Rio Grande Valley; dean.kyne@utrgv.edu
* Correspondence: dean.kyne@utrgv.edu; Tel.: (956) 656-2572

Abstract: (1) Background: Cameron County, which is located in the Rio Grande Valley, holds historical records for storm surges with noticeable property damage, fatalities, and injuries; (2) Methods: using storm surge hazard datasets from the National Oceanic and Atlantic Agency (NOAA), and American Community Survey (ACS) 2019 datasets and Geographic Information System (GIS), the study estimates at-risk population and their socio-demographic attributes; (4) Conclusions: Estimated water levels of a storm surge could be reached up to 5 feet in category 1 event, 9 feet in category 2, 17 feet in category 3, and above 20 feet in category 4 and 5. In the category 5 event, there is an estimated 37% (159,659) of the total county’s population (434,294) will be under flooded water. Suggestions are made to better prepare and successfully evaluate.

Keywords: storm surge, flood risk, costal region, Rio Grande Valley

1. Introduction

Hurricanes are associated with major hazards, namely storm surge and storm tide, heavy rainfall and inland flooding, high winds, rip currents, and tornadoes [1]. Among the hazards, the storm surge and storm tide pose great threats to the lives of people who reside in the coastal regions. According to the National Hurricane Center [1], storm surge is defined as an unusual rise of water, which is caused by a speedy wind during a storm, whereas storm tide is caused by a the storm surge coupling with the astronomical tide. The storm surge which could reach to a height of more than 20 feet, in fact, could take away lives of individuals, damage buildings, and wash away roads and beaches. For example, Hurricane Charley (Category 4), which made landfall in Florida in 2004, produced a storm surge of 6 to 8 feet; Hurricane Katrina (Category 3), at landfall in Louisiana in 2005, produced a 28-foot storm surge; Hurricane Ike (Category 2), in Texas in 2008, included a 20-foot storm surge; Hurricane Irene (Category 1) at landfall in North Carolina in 2011 had a storm surge of 8 to 11 feet [2]; and Hurricane Harvey (Category 4), which made landfall in Texas in 2017, caused a 12 feet storm surge [3]. The varying amount of surge is influenced by many factors which include central pressure of the impacting hurricane, storm intensity, size of the storm, storm forward speed, angle of approach to coast, shape of the coastline, wind and slope of the ocean bottom, and local features [2]. The total water level during a hurricane storm is contributed by a storm surge, tides, waves, and freshwater input [2]. Through the years, storm surges have demonstrated their destructive power with a record of many deaths and injuries [4]. According to a study which examines the number of deaths from coastal waters during tropical cyclones in the United States in a 50-year period, about half of the fatalities were caused by the storm surge [5].

In the U.S., the coastal regions, including the Atlantic Coast, the Gulf of Mexico, and the Hawaiian Islands have been hit hard by hurricanes and storm surges. It was estimated that there are about 52% (163.8 million) of the total US population (US Census 2010) who live in 769 Coastal Watershed Counties [6]. The states that host the coastal regions which include AL, CT, DE, DC, FL, GA, LA, ME, MD, MA, MS, NH, NJ, NY, NC, RI, SC, TX, and
VA are vulnerable to hurricanes [7]. The study’s findings also reveal that all the coastal states are vulnerable to storm surge inundation, while their exposure to storm surge risk increases with the level of severity of hurricane storm. According to the National Hurricane Center, the coastal communities which are located along the Gulf of Mexico are extremely vulnerable to storm surge. Their geographical locations with unique features of flat continental shelf and low-lying land elevations exposed the communities to potential storm surges with a greater height and a wide inland extent [7]. It was observed that there were at least one major hurricane making landfall in the Gulf Coast region every two years [2]. The level of vulnerability to storm surge could be amplified by increase in ocean temperature due to climate change. According to the Fourth National Climate Assessment Report, a rise in atmospheric temperature and an increase in ocean surface temperature could result in increased wind speeds from tropical storms [8, 9]. It is projected that more frequent and intense hurricanes in the U.S. Atlantic and Gulf Coast states are likely to increase the probability of extreme flooding and storm surge risk [8]. For example, by the end of the 2018 Atlantic hurricane season, there were 15 named storms, including eight hurricanes of which Florence and Michael were major category. These statistics exceed the seasonal average of 12 named storms, six hurricanes and three major hurricanes annually [10].

Among the counties that are situated in the Gulf Coast, Cameron and Willacy are the two out of four counties that constitutes the Rio Grande Valley (RGV), which hosts a population of around 1.3 million [11]. The valley consists of four counties, namely Hidalgo (61% of the valley’s total population), Cameron (32%), Willacy (5%), and Starr (2%) counties. The Cameron and Willacy counties are located adjacent to the Gulf of Mexico and prone to hurricanes and storm surges. In addition, the county that shares the border along the Rio Grande River with Mexico is exposed to risk of river flooding. Historically, the Cameron and Willacy counties have been significantly impacted by hurricanes and storm surges. On September 4th and 5th, 1933, Cameron county was inundated with a 13-foot storm surge; on September 20th to 22nd, 1967, Hurricane Beulah caused inundation in both Cameron and Willacy County with a 18 feet tides; on August 10th, 1980, Hurricane Allen (Category 5) made a landfall with one of the worst storms on record which inundated the Brownsville with 4-feet of storm surge; on September 16th and 17th, 1988, Hurricane Gilbert (Category 3), the strongest storm on record for the Atlantic basin at the time, flooded Cameron and Willacy coastal regions with a notable storm surge; on August 23rd, 1999, Hurricane Bret (Category 4) hit Brownsville are with a foot of rain fall; on July 23rd, 2008, Hurricane Dolly (Category 2) hit the residents of the Lower Texas coastline and 3 to 4 foot surge was observed in the Brownsville Ship Channel; on June 30th, 2010, Hurricane Alex caused heavy rains and severe flooding in the Lower and Middle Rio Grande Valley [12].

To better cope with the anticipated frequency and new level of intensity of hurricanes and their associated hazards including storm surge and tide, it is imperative to build disaster resiliency in the coastal communities which are at-risk of hurricanes and their repercussions. Disaster resiliency is defined as increasing the ability to understand risk and vulnerability and enhancing capability to mitigate from, prepare for, respond to and recover from natural disasters. This brings about a return to normal or better than normal conditions [13]. The current approach of relying much on response and recovery phases will not work for future disasters resulting from climate change [8]. Building disaster resiliency begins with understanding hazards, social vulnerability, and risk which is conceptualized as the intersection between storm hazards and social vulnerability. The study aims at empirically investigating spatial distribution of storm surge hazards associated with hurricanes in Cameron County, the largest coastal county in the Rio Grande Valley and assessing social vulnerability of the coastal community members who expose to the storm surge hazards.
2. Materials and Methods

The study utilizes a conceptual framework which consists of storm surge hazards, social vulnerability, and storm surge risk (Figure 1). Storm surge hazard is defined as a dangerous phenomenon that causes an unusual rise of water during a storm and the amount of water is caused by storm surges, tides, waves, and freshwater input. Storm surge vulnerability refers to the social characteristics of a community that are susceptible to the damage caused by a storm surge hazard. Storm surge risk or exposure to storm surge hazards refers to communities and their members that reside in storm surge hazard areas and they are subject to potential losses.

![Figure 1. Conceptual Framework of Storm Surge Hazards, Social Vulnerability, and Storm Surge Risk](image)

To examine storm surge risks, the study employs two types of datasets: storm surge hazards and social vulnerability. First, storm surge hazard datasets were obtained from the National Oceanic and Atlantic Agency (NOAA). The datasets included the National Storm Surge Hazard Maps (NSSHM) - Version 2 data from NOAA [7]. Second, socio-demographic datasets were obtained from the U.S. Census Bureau. The social datasets consisted of census block group American Community Survey (ACS) 2019 data. In addition, the county boundary shapefiles were obtained from the U.S. Census Bureau (Figure 2).

![Figure 2. Data Analytics for Computing Socio-demographic Attributes Associated by Block Group which are Exposed to Storm Surge Risk under Five Hurricane Categories](image)
The NSSHM data was downloaded from the NHC, the National Oceanic and Atmosphere Administration (NOAA), website [14]. The hydrodynamic Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model was utilized to project the storm surge map in the NSSHM data. The SLOSH model, which was developed by the National Weather Service (NWS), is a numerical model that could run on computers to project storm surge heights. The model could be used to estimate storm surge heights from past hurricanes or predicting future hurricanes [15]. Specifically, the model consists of physical equations which require input information of shoreline, bay and river configurations, water depths, bridges, roads, levees and other physical features [15]. The data is in GeoTIFF format which could be used in Geographic Information Systems (GIS) software.

The attribute data of ACS 2019 at block group level include (1) total population, (2) gender, (3) age, (4) race, (5) tenure of living in the same house, (6) language, (7) total number of families, (8) educational attainment, (9) households with public assistance, (10) medium household income, (11) employment, (12) average age of buildings, (13) median value of houses, (14) total population without insurance, (15) native born, and (16) total occupied houses.

The study utilizes the areal apportionment method, which is widely used in estimating population [16, 17]. The method recalculates area of each census block group area that exists within the projected storm surge area in the NSSHM layer. When a census block group is covered by a storm surge area, then the entire population is counted toward the number exposed to storm surge risk. Similarly, when only a fraction of a census block group is exposed to a projected storm surge area in the NSSHM layer, then the fraction of the population is counted as the portion exposed to the storm surge risk.

\[P_s = P_t \times P_{cb} \]

Whereas:

\(P_s \) = the number of people potentially impacted by the storm surge,

\(P_t \) = the population type,

\(P_{cb} \) = the percentage of census block group area.

For example, 5,000 individuals live in a block group and only 10% of the block group exists in the projected storm surge area, then only 500 individuals are counted as population that is exposed to the storm surge risk. The other socio-economic variables are also recalculated using the apportionment method. One underlying assumption with this method is that the population and its socio-demographic attributes are evenly distributed in a block group, but, it is not always the case.

3. Results

Five storm surge maps for hypothetical hurricane events with category 1, 2, 3, 4, and 5 are depicted in the Figure 3.A, 3.B, 3.C, 3.D, and 3.E respectively (Figure 3). The findings indicate that estimated storm surge water could be as high as 21 feet or more during the hypothetical hurricane category 4 and 5 (Figure 3.D and 3.E). It is obvious that the area impacted by the storm surge water increases with the level of hurricane intensity.
Data Source: The National Storm Surge Hazard Maps (NSSHM)

First, estimated water levels of a storm surge could be up to 5 feet in category 1 event, 9 feet in category 2, 17 feet in category 3, and above 20 feet in category 4 and 5. The study’s
findings show that an estimated 36.7% (159,659) of the county’s total population (434,294) will likely be exposed to hurricane induced storm surges in a hypothetical hurricane category 5 event (Figure 4.A, Appendix A, Table A.5). Similarly, 14.39% (62,512), 3.48% (15,123), 1% (4,340), and 0.16% (711) of the county’s total could be exposed to storm surge in a hypothetical hurricane category 4, 3, 2, and 1 event (Appendix A, Table A.4, Table A.3, Table A.2, and Table A.1).

Second, 23.53% of individuals who are at-risk for flooding speak only Spanish in Category 5, 21.87% in Category 4, 19.02% in Category 3, 18.15% in Category 2, and 19.24% in Category 1 (Figure 4.B, Appendix A, Table A.5, Table A.4, Table A.3, Table A.2, and Table A.1).

Third, among the at-risk individuals, an estimated 32.48% of the total had no schooling or attained less than high school education in the hypothetical hurricane category 1, 29.57% in category 2, 28.81% in category 3, 33.28% in category 4 and 35.27% in category 5 (Figure 4.C, Appendix A, Table A.5, Table A.4, Table A.3, Table A.2, and Table A.1). Fourth, a trend of close association among the level of education attainment and median household income was observed. The higher the percentage of no schooling and less than high school education, the lower the income. The median household income was observed as $37276 among the at-risk population in hypothetical hurricane category 1, $36454 in category 2, $37875 in category 3, $40352 in category 4, and $41384 in category 5 (Figure 4.D, Appendix A, Table A.5, Table A.4, Table A.3, Table A.2, and Table A.1).

Fifth, about 14% and 38% of at-risk total households received public assistance in hypothetical hurricane category 4 and 5 respectively whereas lower percentage of them (0.22% in category 1, 1.31% in category 2, 4.16% in category 3) were observed as households receiving public assistance (Figure 4.E, Appendix A, Table A.5, Table A.4, Table A.3, Table A.2, and Table A.1).

Sixth, the findings indicated that there was an estimated 42% of total at-risk individuals observed to have no health insurance who were likely to be exposed to storm surges induced by a hypothetical hurricane category 5 (Figure 4.F). Similarly, about 17%, 4%, 1% and 0.22% of the total at-risk individuals were observed in the hypothetical hurricane category 4, 3, 2, and 1 respectively (Figure 4.F, Appendix A, Table A.5, Table A.4, Table A.3, Table A.2, and Table A.1).

Figure 4.A Projected total population exposed to hurricane induced storm surge under five hypothetical hurricane categories

Figure 4.B Projected percent speaking Spanish of total population exposed to hurricane induced storm surge under five hypothetical hurricane categories
4. Discussion and Conclusions

The study’s findings provide a better understanding of social vulnerability to storm surge hazards in Cameron County in the Rio Grande Valley, Texas, which is adjacent to the Gulf of Mexico and bordering with the Rio Grande River and Mexico. The county hosts a total population of 423,163 [18]. Using NOAA’s storm surge projection under each of five hypothetical hurricane categories, the study finds community members who reside in the storm surge hazard areas under projected varying water depth up to 21 feet. It was alarming to notice that in a hypothetical hurricane category five event, there is an estimated 37% (159,659) of the total population (434,294) in the country that will be under flooded water (Appendix A, Table 5). The estimated population could experience the flooding water level over 21 feet high. In the event of hurricane category 5, the most daunting task for local emergency managers is to encourage at-risk individuals to leave their residence under a mandatory evacuation. This challenge was evident with previous findings that during the deadliest hurricane category 5 event, there are people who will remain in their residences in the Rio Grande Valley [19]. This daunting task could be amplified with the existing condition of low level of disaster preparedness among the residents [20].

A successful implementation of a mandatory evacuation order begins with individual preparedness. It is vital to educate the at-risk population about potential risks associated with a storm surge, its impacts on property, and potential deaths. The need for the
educating program is justified by three reasons. First, the Saffir–Simpson scale of hurricanes does not explicitly carry the risk associated with a hurricane [21]. Second, the public does not pay sufficient attention the storm surge risk [22]. Third, the storm surge is an abstract phenomenon, and it is rare to have personal experience with during a sole lifetime [7]. Providing relevant and reliable information is associated with building trust in authorities recommendation which could in turn influence the positive evacuation-decision making among the valley residents [23].

In addition, the storm surge maps in this study were very helpful to visualize the spatial distribution of the flooding areas, but it also requires additional steps to provide an understanding on the location of individual households and impacts from the potential storm surge, including deaths [24]. Moreover, according to the findings, a larger percentage (about 23%) of the total at-risk population who speak Spanish indicates that communication in Spanish is a factor.

To respond effectively to the hurricane event, the at-risk population must be able to safely leave their residential areas to a designated location. To do so, it is essential to be familiar with the evacuation routes and estimated time to travel to their destination. There are only three primary evacuation routes from the coastal areas toward the mainland (Appendix B, Figure 1). The storm surge map shows that these primary routes originating from the coastal areas could be inundated (Figure 3). As a result, local emergency managers must make a prompt evacuation order, while evacuees must execute their evacuation plan in a timely manner. Moreover, the findings show that about 40% of the total at-risk population receive public assistance and about 42% of them do not have health insurance. These findings suggest that local authorities must prepare to provide shelters, necessities, and health care services during evacuation. Some studies suggest that those who are socially vulnerable are likely to face asset vulnerability [21]. This suggests that there is a need for better mitigation strategies for this at-risk population to mitigate potential loss of their property. Above all, the study’s evidence provides a wake-up call to all key stakeholders to prepare for a potential storm surge in Cameron County.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Acknowledgement: The author would like to thank Yajaira Ayala, Diana C. Chimal, Leslie M. Cisneros, Nicolas A. Crane, Stephanie L. Kasper, Ramon Martinez, Rebecca N. Moran, Alma R. Provenco, Gabriel Rodriguez, Xochilt R. Roman, who studied in his course, namely GIS for Disaster Management, which was offered in the Disaster Studies MA program, University of Texas Rio Grande Valley.
Table A.1 Socio-demographic characteristics of projected population who are exposed to storm surge under Hurricane Category 1

Unflooded Flooded	Level	Total	Flooded	Level				
	0-2’	2-3’	3-4’	4-5’	0-2’	2-3’	3-4’	4-5’
Total population	433583	711	295	188	142	86		434294
Male	211281	334	138	90	66	41		211615
Female	222030	376	157	98	76	45		222679
65 or older (female)	8121	30	12	8	5	4	8151	
65 or older (male)	4323	13	6	4	2	1	4336	
White	407064	694	289	183	139	84	407758	
Black	2440	1	0	0	0	0	2441	
Native	1069	1	0	0	0	0	1070	
Asian	2967	3	1	1	1	0	2970	
Other	20044	11	5	3	2	1	20055	
Same house 1 year ago	389572	638	270	166	128	75	390210	
Different house 1 year ago	32596	23	9	7	4	2	32619	
Spanish	96601	137	55	36	28	18	96738	
English Only	29524	110	48	32	19	11	29634	
Total families	100101	164	68	44	32	20	100265	
Families with no husband	25342	35	15	9	7	4	25377	
Total population (age 25 or older)	253292	476	199	129	92	56	253768	
No schooling	10732	33	14	7	7	4	10785	
Less than high school	71328	122	52	29	26	15	71450	
Highschool diploma	66747	164	67	44	32	20	66911	
Associate degree	18335	30	12	9	5	4	18365	
Bachelor degree	30218	46	19	14	8	5	30264	
Professional degree	2067	2	1	1	0	0	2069	
Some college	42886	61	25	19	10	7	42947	
Graduate degree	10959	18	9	6	2	1	10977	
Medium household income ($)	39568	37276	36633	36836	37112	38523	38422	
----------------------------	-------	-------	-------	-------	-------	-------	-------	
Total household	127453	248	104	69	47	29	127701	
Households with public assistance	2829	3	1	1	1	1	2832	
Household without public assistance	124624	245	103	68	47	28	124869	
Total population (labor force)	315546	548	226	148	107	66	316094	
In labor	175675	275	114	74	54	33	175950	
Unemployed	10270	6	2	2	1	1	10276	
Average age of buildings	36	27	28	28	27	26	36	
Medium value of houses ($)	84754	143899	138527	141529	144387	151155	114326	
Total population without health insurance	123420	278	118	68	59	33	123698	
Native	333950	528	216	145	102	65	33478	
Foreign born	99634	182	80	42	40	21	99816	
Total houses	154553	505	221	148	84	51	155058	
Total occupied houses	127453	248	104	69	47	29	127701	
Total vacant houses	27100	257	118	80	37	23	27357	

Unflooded	Flooded Level	Total	Flooded Level
0-2'	2-4'	4-6'	6-9'

Table A.2 Socio-demographic characteristics of projected population who are exposed to storm surge under Hurricane Category 2
| Category | Total | Male | Female | 65 or older (female) | 65 or older (male) | White | Black | Native | Asian | Other | Same house 1 year ago | Different house 1 year ago | Total families | Families with no husband | Total population (age 25 or older) | No schooling | Less than high school | Highschool diploma | Associate degree | Bachelor degree | Professional degree | Some college | Graduate degree | Medium household income ($) | Total household | Households with public assistance |
|--------------------------------|-------------|--------------|---------------|---------------------|--------------------|-------------------|-------|--------|--------|-------|------------------------|-----------------------------|----------------|-------------------------|-----------------------------|--------------|----------------------|---------------------|-------------------|------------------|-------------------|-------------|----------------|------------------------|----------------|----------------------|-------------------|
Table A.3 Socio-demographic characteristics of projected population who are exposed to storm surge under Hurricane Category 3

Unflooded	Flooded Level	Total	Flooded Level							
	0-2'	2-4'	4-6'	6-9'	9-17'	0-2'	2-4'	4-6'	6-9'	9-17'
Total population	419171	15123	6082	3608	3337	1761	335	434294		

- Household without public assistance
- Total population (labor force)
- In labor
- Unemployed
- Average age of buildings
- Medium value of houses ($)
- Total population without health insurance
- Native
- Foreign born
- Total houses
- Total occupied houses
- Total vacant houses

Household without public assistance	123363	1506	994	370	103	39	124869																									
Total population (labor force)	312713	3381	2225	829	232	95	316094																									
In labor	174328	1622	1038	418	116	49	175950																									
Unemployed	10245	31	22	7	2	1	10276																									
Average age of buildings	36	27	27	28	27	27	36																									
Medium value of houses ($)	84754	129126	132496	130894	124630	128482	106940																									
Total population without health insurance	122073	3251	2154	782	225	89	334478																									
Native	331227	3251	2154	782	225	89	334478																									
Foreign born	98727	1089	661	308	80	41	99816																									
Total houses	152743	2315	1427	648	182	58	155058																									
Total occupied houses	126175	1526	1008	374	104	40	127701																									
Total vacant houses	26568	789	419	275	77	18	27357																									
Category	Male	Female	65 or older (female)	65 or older (male)	White	Black	Native	Asian	Other	Same house 1 year ago	Different house 1 year ago	Spanish	English Only	Total families	Families with no husband	Total population (age 25 or older)	No schooling	Less than high school	Highschool diploma	Associate degree	Bachelor degree	Professional degree	Some college	Graduate degree	Medium household income ($)	Total household	Households with public assistance	Household without public assistance				
--------------------------------	------------	------------	----------------------	--------------------	-------------	-----------	----------	------------	------------	-----------	----------------------	--------------------------	----------	--------------	----------------	--------------------------	----------------------------------	-------------	-----------------------	-------------------	-----------------	-----------------	----------------------	-------------	----------------	--------------------------	----------------	--------------------------	--------------------------			
	204446	214725	7749	4128	393262	2412	1050	2888	19559	375988	32053	93861	27753	96655	24598	244101	10302	69148	63861	17610	29296	2032	41372	10480	39568	122889	2764	120125				
	7169	7954	402	208	14496	29	20	82	496	14222	566	2877	1881	3610	779	9667	483	2302	3050	755	968	37	1575	497	37876	4812	68	4744				
	2884	3197	113	60	5804	7	7	34	228	5612	338	1255	547	1446	341	3656	150	907	1062	289	434	16	636	497	40880	1819	30	1789	42846	35225		
	1745	1863	110	60	1583	7	4	18	125	1753	99	657	486	859	175	115	114	513	760	204	222	11	636	197	37646	1155	37	1142	36946	38722		
	1583	1754	112	67	803	10	5	20	89	1680	82	571	486	819	152	89	89	484	767	69	213	8	410	297	3213	715	1165	1144	35025	38722		
	803	958	56	27	154	2	3	9	45	297	7	326	448	417	32	10	10	328	391	49	183	11	375	297	3213	10	71450	1236	32846	38722		
	154	182	11	3	211615	0	1	1	45	325	7	68	326	414	74	45	45	70	71	32	324	11	137	1236	211615	10	71450	1236	32846	38722		
	211615	222679	8151	4336	407758	2441	1070	2970	20555	390210	32619	96738	29634	100265	25377	390210	2441	2302	66911	3248	3064	9	497	2832	37646	127701	287	124869	20480	2032		
	3.39	3.57	4.93	4.79	3.56	1.18	1.90	2.75	2.47	3.64	1.74	2.97	6.35	3.60	3.07	3.81	4.48	3.22	4.56	4.11	3.20	1.79	3.67	4.53	3.77	122889	96	3.80	1.43	0.91	0.92	0.46
Total population (labor force)	304745	11349	4456	2752	1304	242	316094	3.59	3.59	1.41	0.87	0.82	0.41																			
In labor	170177	5773	2373	1380	1247	647	175950	3.28	3.28	1.35	0.78	0.71	0.37																			
Unemployed	10051	225	128	50	34	9	10276	2.19	2.19	1.25	0.49	0.33	0.09																			
Average age of buildings	36	26	25	26	27	27	36	2.19	2.19	1.25	0.49	0.33	0.09																			
Medium value of houses ($)	84754	124511	131761	135497	129572	121421	104306	104632																								
Total population without health insurance	118549	5149	2007	1177	1111	709	146	123698	4.16	4.16	1.62	0.95	0.90	0.57																		
Native	322995	11483	4623	2816	2571	1243	231	334478	3.43	3.43	1.38	0.84	0.77	0.37																		
Foreign born	96176	3640	1459	792	766	518	105	99816	3.65	3.65	1.46	0.79	0.77	0.52																		
Total houses	148373	6685	2314	1608	1721	900	142	155058	4.31	4.31	1.49	1.04	1.11	0.58																		
Total occupied houses	122889	4812	1819	1155	1161	577	100	127701	3.77	3.77	1.42	0.90	0.91	0.45																		
Total vacant houses	25484	1873	495	453	560	323	42	27357	6.84	6.84	1.81	1.65	2.05	1.18																		

Table A.4 Socio-demographic characteristics of projected population who are exposed to storm surge under Hurricane Category 4

Unflooded Flooded Level	Flooded Level																												
0-2' 2-4' 4-6' 6-9' 9-21'	Total																												
Flooded Level	0-2' 2-4' 4-6' 6-9' 9-21'																												
Category	Total Population	Male	Female	65 or Older (Female)	65 or Older (Male)	White	Black	Native	Asian	Other	Same House 1 Year Ago	Different House 1 Year Ago	Spanish	English Only	Total Families	Families with No Husband	Total Population (Age 25 or Older)	No Schooling	Less than High School	High School Diploma	Associate Degree	Bachelor Degree	Professional Degree	Some College	Graduate Degree	Medium Household Income ($)	Total Household	Households with Public Assistance	
--------------------------------	-----------------	---------------	----------------	---------------------	---------------------	-------------	----------	---------	--------	--------	----------------------	---------------------------	---------	-------------	-----------------	------------------------	--------------------------	-------------	--------------------------	-----------------	---------------------	------------------------	----------------	------------------------					
	371782	181536	190245	7297	3882	347728	2245	943	2675	18190	332991	28605	83065	25966	85745	22004	217562	9125	61062	57153	15745	25768	1878	37337	9404	39568	110190	2442	95788
Table A.5 Socio-demographic characteristics of projected population who are exposed to storm surge under Hurricane Category 5

Unflooded	Flooded Level	Flooded Level														
	0-2’	2-4’	4-6’	6-9’	9-21’	Total	0-2’	2-4’	4-6’	6-9’	9-21’					
Total population	274635	159659	45007	37197	28893	28947	19615	434294	36.76	36.76	10.36	8.36	6.65	6.67		
Category	Male	Female	65 or older (Female)	65 or older (Male)	White	Black	Native	Asian	Other	Same house 1 year ago	Different house 1 year ago	Spanish	English Only	Total families	Families with no husband	Total population (age 25 or older)
----------------------------------	---------	-----------	---------------------	-------------------	-----------	-----------	-----------	-----------	-----------	-----------------------	-----------------------------	--------------	--------------	-----------------	-------------------------------	----------------------------------
Age	133715	140919	5833	3126	255340	1551	684	2056	15004	246214	20799	59165	23186	63524	16152	162228
Race	77900	81760	2318	1210	152418	890	386	914	5051	143996	11820	37573	6448	36741	9225	91540
Same family	22105	22902	743	368	42798	251	140	242	1577	39568	3885	10963	1406	10199	2832	25346
Household income ($)	18319	18878	513	267	35418	288	85	254	1151	26118	2731	9188	977	8544	2129	21415
Education	14197	14697	304	172	27658	154	79	159	844	26342	2198	6855	866	6544	1632	16368
Dropout	13966	14982	346	190	18783	121	59	161	845	18270	2069	6564	1355	6721	1603	11869
Bachelor degree	9313	10301	412	213	407758	77	23	98	634	390210	936	4003	1844	4587	1029	11899
Associate degree	21165	222679	8151	4336	470758	2441	1070	2970	20055	39210	32619	96738	29634	30265	25377	253768
Medium household income ($)	36.81	36.72	28.44	27.90	37.38	36.46	36.10	30.76	25.19	36.90	36.24	38.84	21.76	36.64	36.35	36.07
Total household	36.81	36.72	28.44	27.90	37.38	36.46	36.10	30.76	25.19	36.90	36.24	38.84	21.76	36.64	36.35	36.07
Household with public assistance	36.81	36.72	28.44	27.90	37.38	36.46	36.10	30.76	25.19	36.90	36.24	38.84	21.76	36.64	36.35	36.07
Household without public assistance	36.81	36.72	28.44	27.90	37.38	36.46	36.10	30.76	25.19	36.90	36.24	38.84	21.76	36.64	36.35	36.07
	2009	2011	2013	2014	2015	2016	2017	2019								
--------------------------------	------	------	------	------	------	------	------	------								
Total population (labor force)	20097	115157	32376	27052	20749	14352	316094	36.43								
In labor	111628	64322	17634	15405	11971	11701	7611	175950	36.56							
Unemployed	6467	3809	1080	959	750	668	351	10276	37.07							
Average age of buildings	36	27	28	27	26	27	36									
Medium value of houses ($)	84754	113604	102289	108756	117159	121693	118123	99179	41.56							
Total population without health insurance	72291	51407	14252	11752	9178	9528	6697	123698	34.92							
Native	217687	116791	32655	27014	21079	21334	14709	334478	42.95							
Foreign born	56947	42869	12352	10183	7814	7614	4906	99816	42.95							
Total houses	103548	51510	14111	11610	8795	9295	7699	155058	33.22							
Total occupied houses	83194	44507	12486	10292	7818	8008	5902	127701	34.85							
Total vacant houses	20354	7003	1624	1317	978	1287	1797	27357	25.60							

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 September 2021

doi:10.20944/preprints202109.0282.v1
Appendix B

Figure 1. Hurricane Evacuation Routes in Brownsville and Rio Grande Valley
Source: Texas Department of Transportation (TxDOT) [25]

References

1. NHC Hurricane Preparedness - Hazards; Online, 2017.
2. National Hurricane Center Introduction to Storm Surge. https://www.nhc.noaa.gov/surge/
3. National Weather Service Major Hurricane Harvey - August 25-29, 2017. http://www.weather.gov/crp/hurricane_harvey
4. Morrow, B. H.; Lazo, J. K.; Rhome, J.; Feyen, J., Improving Storm Surge Risk Communication: Stakeholder Perspectives. B Am Meteorol Soc 2014, 96, (1), 35-48.
5. Rappaport, E. N., Fatalities in the United States from Atlantic Tropical Cyclones: New Data and Interpretation. B Am Meteorol Soc 2013, 95, (3), 341-346.
6. NOAA National Coastal Population Report: Population Trends from 1970 to 2020; Online, March 2013, 2013.
7. Zachry, B. C.; Booth, W. J.; Rhome, J. R.; Sharon, T. M., A National View of Storm Surge Risk and Inundation. Weather Clim Soc 2015, 7, (2), 109-117.
8. USGCRP, Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II. U.S. Global Change Research Program: Washington, DC, USA, 2018; p xxx.
9. GFL Global Warming and Hurricanes: An Overview of Current Research Results. https://www.gfdl.noaa.gov/global-warming-and-hurricanes/ (03/26/2019),
10. NOAA, Destructive 2018 Atlantic hurricane season draws to an end. In 11/28/2018 ed.; National Oceanic and Atmospheric Administration (NOAA): 2018.
11. US Census, United States Census 2010 Data. In United States Census Bureau: Online, 2010.
12. National Weather Service, Hurricane Preparedness, Rio Grande Valley: Hurricane History. In 2017.
13. US NRC, Disaster resilience: a national imperative. . US National Research Council, The National Academies Press: Washington, 2012.
14. NHC National Storm Surge Hazard Map-Version 2; Online, 2018.
15. NHC Sea, Lake, and Overland Surges from Hurricanes (SLOSH); Online, 2018.
16. Goodman, K. Environmental Justice and GIS: A Comparison of Three GIS Methods for Estimating Vulnerable Population Exposed to Brownfield Pollution in Portland, Oregon. Kyle Goodman, Portland State University, Jiunn-Der (Geoffrey) Duh, 2017.
17. Maantay, J.; Maroko, A.; Porter-Morgan, H., Research Note—A New Method for Mapping Population and Understanding the Spatial Dynamics of Disease in Urban Areas: Asthma in the Bronx, New York. 2008; Vol. 29, p 724-738.
18. Census Bureau, QuickFacts. In 2019.
19. Kyne, D., Lomeli, A., Donner, W., Zuloaga, E., Who Will Stay, Who Will Leave: Decision-Making of Residents Living in Potential Hurricane Impact Areas During a Hypothetical Hurricane Event in the Rio Grande Valley. J Homel Secur Emerg 2018.
20. D Kyne, L. C., J Delacruz, B Lopez, C Madrid, R Moran, A Provencio, F Ramos, MF Silva, Empirical evaluation of disaster preparedness for hurricanes in the Rio Grande Valley. Progress in Disaster Science 2019, 5, 1-12.
21. Felsenstein, D.; Lichter, M., Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding. Nat Hazards 2014, 71, (1), 463-491.
22. Morss, R. E.; Demuth, J. L.; Lazo, J. K.; Dickinson, K.; Lazrus, H.; Morrow, B. H., Understanding Public Hurricane Evacuation Decisions and Responses to Forecast and Warning Messages. Weather Forecast 2016, 31, (2), 395-417.
23. Kyne, D.; Donner, W., Kyne–Donner Model of Authority’s Recommendation and Hurricane Evacuation Decisions: A Study of Hypothetical Hurricane Event in the Rio Grande Valley, Texas. Popul Res Policy Rev 2018, 37, (6), 897-922.
24. Arlikatti, S.; Lindell, M. K.; Prater, C. S.; Zhang, Y., Risk area accuracy and hurricane evacuation expectations of coastal residents. Environ Behav 2006, 38, (2), 226-247.
25. Texas Department of Transportation Hurricane Evacuation Routes. https://www.brownsvilletx.gov/DocumentCenter/View/5715/Hurricane-Evacuation-Routes-TxDOT