ARTIGO DE REVISÃO

COVID-19 em China, Itália e Estados Unidos da América: uma breve revisão

COVID-19 in China, Italy and the United States of America: a short review

Amanda Ribeiro Rangel¹, Luísa Macambira Noronha¹, Gabriel Cavalcante Lima Chagas¹, Gdayllon Cavalcante Meneses², Geraldo Bezerra da Silva Júnior³, Roberto da Justa Pires Neto⁴, Elizabeth de Francesco Daher¹

RESUMO: Em dezembro de 2019, um novo coronavírus foi identificado e associado à ocorrência de pneumonia de causa desconhecida na China. SARS-CoV-2 rapidamente disseminou-se, e, atualmente, a COVID-19 é classificada como pandemia. O objetivo desse estudo consiste em discutir as características gerais da COVID-19, incluindo a epidemiologia, transmissão, medidas de controle, virologia, apresentações clínicas e achados radiológicos e laboratoriais. Nesse contexto, foram consultados artigos publicados em base de dados com a finalidade de comparação entre países mais afetados na Ásia, Europa e América até 31 de março de 2020. A principal forma de transmissão ocorre entre humanos por secreções respiratórias, e estudos indicam um substancial envolvimento de pacientes assintomáticos nesse processo. Pacientes com COVID-19 são predominantemente homens e podem apresentar inúmeros sintomas, especialmente febre e tosse. Hipertensão arterial e diabetes mellitus foram as comorbidades mais comuns. Pior prognóstico está associado a aumento da idade, comorbidades e complicações. Anormalidades na tomografia computadorizada de tórax são frequentes, sendo opacidades em vidro fosco e infiltrados bilaterais os padrões pulmonares mais comuns, contudo porcentagem significativa dos pacientes não apresenta alterações na admissão. Exames laboratoriais normalmente apresentam linfocitopenia, aumento de contagem de neutrófilos e plaquetas, velocidade de hemossedimentação, lactato desidrogenase, proteína C reativa, aminotransferase, creatinina, creatina fosfoquinase, mioglobina, glicose e citocinas. Apesar dos achados radiológicos e laboratoriais apresentarem similaridades na China, Itália e EUA, as taxas de mortalidade podem ser conflitantes, sugerindo, portanto, a necessidade de estudos de acordo com cada região.

Palavras-chave: Infeccções por Coronavírus; Epidemiologia; Sinais e sintomas; Pandemia.

ABSTRACT: In December 2019, a novel coronavirus was discovered and associated with a cluster of pneumonia of unknown cause in China. SARS-CoV-2 rapidly spread and is now characterized as a pandemic. The objective of this study is to discuss COVID-19 general features, including epidemiology, transmission, control measures, virology, diagnosis, clinical characteristics and radiological and laboratory results. In this context, literature was assessed to compare the three most affected countries in Asia, Europe and Americas March 31, 2020. The main form of transmission is human-to-human by respiratory secretions, and studies indicated substantial involvement of asymptomatic patients in this process. COVID-19 patients are predominantly men and may present multiple symptoms, especially fever and cough. Arterial hypertension and diabetes mellitus were the most common comorbidities. Worse outcomes are associated with increased age, comorbidities, and complications. Abnormalities in computed tomography of the chest are frequent, with pulmonary ground-glass opacity and bilateral patchy shadowing as the most common patterns, but a significant percentage of patients do not present any findings at time of admission. Laboratory results often present lymphocytopenia, increased neutrophils and platelet counts, erythrocyte sedimentation rate, lactate dehydrogenase, reactive protein, ferritin, total bilirubin, aspartate aminotransferase, alanine aminotransferase, creatinine, creatine phosphokinase, myoglobin, glucose and cytokines. Although radiological findings and laboratory results presented similarities in China, Italy and USA, case-fatality rates can be conflicting suggesting, therefore, the need for studies according to each region.

Keywords: Coronavirus infections; Epidemiology; Signs and symptoms; Pandemics.

1. Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Interna, Universidade Federal do Ceará, Fortaleza, Ceará Brasil. ORCID: Rangel AR - https://orcid.org/0000-0001-8116-9251; Noronha LM - https://orcid.org/0000-0002-0736-8225; Chagas GCLC - https://orcid.org/0000-0002-7398-9070; Daher EF - https://orcid.org/0000-0003-4189-1738. E-mails: amandaribeiro@hotmail.com; luisamacambira@gmail.com; gabrielchagas.gc@gmail.com; ef.daher@yahoo.com.br

2. Departamento de Análise Clínica e Toxicológica, Escola de Farmácia, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil. https://orcid.org/0000-0002-0160-5728. E-mail: gdayllon@yahoo.com.br

3. Programas de Pós-Graduação em Saúde Coletiva e Ciências Médicas, Faculdade de Medicina, Centro de Ciências da Saúde da Universidade de Fortaleza. Fortaleza, Ceará, Brasil. https://orcid.org/0000-0002-8971-0994. E-mail: geraldobezerrajr@yahoo.com.br

4. Programa de Pós-Graduação em Saúde Coletiva, Secretaria de Saúde Comunitária, Universidade Federal do Ceará, Fortaleza, Brasil. https://orcid.org/0000-0003-0291-9523. robertojusta@gmail.com

Endereço para correspondência: Amanda Ribeiro Rangel. Avenida Santos Dumont, 3210, Apt. 308A. Fortaleza, CE, Brasil. CEP: 60150-162. E-mail: amandaribeiro@hotmail.com.

Rev Med (São Paulo). 2021 mar.-abr.;100(2):162-70.

doi: http://dx.doi.org/10.11606/issn.1679-9836.v100i2p162-170
INTRODUÇÃO

Em dezembro de 2019, foram relatados diversos casos de pacientes com infecção respiratória aguda de causa desconhecida em hospitais de Wuhan, China1,2. O patógeno foi identificado como um novo coronavírus e nomeado, pela primeira vez, 2019-nCoV1,2. Em fevereiro de 2020, o Grupo de Estudos sobre Coronavírus do Comitê Internacional nomeou oficialmente o vírus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)3. A doença relacionada ao coronavírus foi nomeada COVID-19 pela Organização Mundial da Saúde (OMS)4.

Neste artigo de revisão, pretendemos discutir as características gerais da COVID-19, incluindo epidemiologia, transmissão, medidas de controle, virologia, diagnóstico, características clínicas e resultados radiológicos e laboratoriais. Assim, literatura foi avaliada para sintetizar semelhanças e diferenças entre os três países mais afetados na Ásia, Europa e Américas até 31 de março de 2020, segundo o 71º relatório da OMS5.

DISCUSSÃO

Epidemiologia

Os primeiros casos da doença foram associados a um mercado de frutos do mar em Wuhan, província de Hubei, na China, no qual a maioria dos pacientes transitou antes de adoecer, sugerindo que a origem do vírus era proveniente do mercado, embora essa hipótese não tenha sido confirmada até o momento1,2.

O número de casos aumentou rapidamente e se espalhou para outras localidades dentro e fora da China2. Em 30 de janeiro de 2020, a OMS declarou o surto de COVID-19 uma emergência de saúde pública de preocupação internacional, e, em 11 de março de 2020, caracterizou a doença como pandemia6,7. Segundo dados da OMS em 5 de maio de 2020, a COVID-19 estava presente em todos os continentes, exceto na Antártida, com 3.525.116 casos confirmados e 243.540 mortes8. Os Estados Unidos da América (EUA) foram o país com o maior número de casos confirmados mundialmente, representando quase 78% dos casos nas Américas; ao comparar continentes, a Europa apresentou o maior número de casos confirmados, representando, aproximadamente, 44% do total8.

Transmissão

A principal forma de transmissão da COVID-19 é de humano para humano por secreções respiratórias, por meio de gotículas ou contato9,10. Wang et al.11 avaliaram a presença de SARS-CoV-2 em outros espécimes, incluindo amostras nasais, escarro, swab faringeo, lavado broncoalveolar, biópsia de escova de fibrobroncoscópio, sangue, urina e fezes. Nessa análise, excetuando as amostras de urina, todos as outras amostras apresentaram percentual de resultados positivos (Tabela 1).

Espécimes	Presença de SARS-CoV-2
Sangue	Positivo
Lavado broncoalveolar	Positivo
Fezes	Positivo com vírus vivo
Biópsia de escova de fibrobroncoscópio	Positivo
Amostras nasais	Positivo
Swab faringeo	Positivo
Escarro	Positivo
Urina	Negativo

Outro estudo identificou SARS-CoV-2 no trato gastrointestinal, saliva e urina, propondo potenciais rotas de transmissão12. Sugere-se que a COVID-19 também possa ter um componente sistêmico, hipótese sustentada pela presença de RNA viral no sangue de alguns pacientes10,11. Tais achados endossam a possibilidade de que a testagem de diferentes espécimes possa reduzir o risco de resultados falso-negativos11. No entanto, não há dados suficientes para conclusões decisivas, reafirmando que mais estudos são necessários para compreender completamente as formas de transmissão do novo coronavírus.

Além disso, o período durante o qual um paciente infectado pode transmitir a doença é incerto, mas pode começar antes do desenvolvimento dos sintomas10,11. Arons et al.14 avaliaram um surto de COVID-19 em uma casa de repouso nos EUA, em que 56% dos pacientes com infecção pelo SARS-CoV-2 não relataram sintomas no momento do teste. Dos pacientes assintomáticos, 86% desenvolveram sintomas posteriormente, sendo classificados como pacientes pré-sintomáticos. Sugere-se que pacientes assintomáticos e pré-sintomáticos tiveram contribuição na extensão da disseminação da COVID-19 nesta instalação, com potencial de liberação de partículas virais.

Além disso, estudos têm evidenciado alta carga viral no início da fase sintomática, sugerindo maior risco de transmissão nesta fase13. Valores semelhantes foram encontrados em pacientes sintomáticos e assintomáticos, reafirmando a transmissão da doença por pacientes assintomáticos13. Evidências da transmissão SARS-CoV-2 de indivíduos pré-sintomáticos também foram demonstradas em outras investigações14,16-18.
Medidas de controle
A OMS sugeriu medidas para controlar a transmissão do vírus, como identificação rápida de casos, testagem e isolamento de casos rapidamente, rastreamento e tratamento de contatos e quarentena de contatos\(^1\). Essas ações podem reduzir a disseminação da COVID-19, evitando a sobrecarga dos sistemas de saúde e permitindo que eles supram a demanda eficientemente.

Vários países que apresentavam um grande número de transmissão comunitária implementaram outras medidas para conter o surto, incluindo, a título de ilustração, medidas generalizadas de distanciamento social e restrições de deslocamento\(^19\). No entanto, tais ações impactam significativamente a sociedade, causando inúmeras consequências psicológicas e impactos negativos na economia\(^19,23\). Além disso, alguns grupos podem ser mais afetados, como pessoas em situação de pobreza, imigrantes, refugiados e aqueles que vivem em ambientes superlotados e sem recursos\(^19,23\).

Virologia
SARS-CoV-2 é um vírus RNA positivo com cadeia de fita simples pertencente à família Coronaviridae, que pode infectar humanos e animais, causando doenças respiratórias, gastrointestinais, entre outras\(^1,2,24\).

Além do recém-descoberto SARS-CoV-2, existem seis coronavírus já conhecidos que infectam humanos: HCoVs-NL63, HCoVs-229E, HCoVs-OC43, HCoVs-HKU1, coronavirus da síndrome respiratória aguda grave (SARS-CoV) e coronavirus da síndrome respiratória do Oriente Médio (MERS-CoV)\(^1,2,24\). A maioria deles causa doenças leves, mas dois foram responsáveis por milhares de mortes no século XXI: SARS-CoV, que causou o surto de síndrome respiratória aguda grave em 2002, especialmente na Ásia, e MERS-CoV, que causou o surto de síndrome respiratória do Oriente Médio em 2012\(^2,24,25\).

SARS-CoV-2 é um betacoronavírus, assim como SARS-CoV e MERS-CoV, mas é considerado mais infeccioso do que eles, visto que possui maior transmissibilidade\(^6\). Estudos demonstraram que o SARS-CoV-2 utiliza o mesmo receptor do SARS-CoV para entrar nas células do hospedeiro, a enzima conversora de angiotensina 2 (ECA2), diferentemente do MERS-CoV, que utiliza a dipeptidil peptidase 4 (DPP4)\(^26,28\) (Tabela 2).

Tabela 2 - Comparação entre SARS-CoV-2, MERS-CoV e SARS-CoV
Similaridade com SARS-CoV-2
Receptor alvo em células humanas

ECA2: enzima conversora de angiotensina 2; DPP4: dipeptidil peptidase 4

Além disso, muitos estudos foram realizados para elucidar a distribuição corpórea da enzima ECA2, visando identificar potenciais células-alvo para infecção por SARS-CoV-2\(^2,29\). A alta expressão deste receptor foi encontrada em células alveolares tipo II (AT2) do pulmão, esôfago superior e células epiteliais estratificadas, enterócitos do íleo e cólon, colangiócitos, células miocárdicas, células do túbulo contorcido proximal e células uroteliais da bexiga\(^29\). Esses achados apoiam a ideia de que outros órgãos podem estar sob risco de infecção pelo SARS-CoV-2.

Geneticamente, SARS-CoV-2 possui maior semelhança com coronavírus de origem do morcego: bat-SL-CoVZC45 e bat-SL-CoVZXC21\(^1,2\). De fato, no que diz respeito à identidade nucleotídea, SARS-CoV-2 tem 79,0% de semelhança com SARS-CoV, 51,8% com MERS-CoV e mais de 90% com coronavírus derivado de morcego\(^24\). Esses achados sugerem que o SARS-CoV-2 poderia ser originado de morcegos, os quais são reservatório natural de muitos coronavírus, e poderia ser transmitido para humanos diretamente deles ou por um intermediário desconhecido\(^1,2,28\).

Avaliação e diagnóstico
Sendo uma nova doença que apresenta sintomas gripais, levando a muitos diagnósticos diferenciais possíveis, a suspeita pode ocorrer em três cenários possíveis\(^9\). A primeira é uma pessoa com doença respiratória aguda, com febre e sintomas de doença respiratória, como falta de ar e tosse, e com histórico de viagem ou residência em áreas com transmissão comunitária relatada no prazo de 14 dias após o início dos sintomas\(^9\). O segundo é um indivíduo com doença respiratória aguda, com febre e sintomas de doença respiratória, como falta de ar e tosse, e com histórico de contato com um caso suspeito ou confirmado de COVID-19 no prazo de 14 dias após o início dos sintomas\(^9\). O terceiro é um paciente com doença respiratória grave, com febre e sintomas de doença respiratória, necessitando de internação e sem outro diagnóstico que explique todos os achados\(^9\). Esses casos são rotulados como suspeitos e requerem confirmação laboratorial da infecção pelo SARS-CoV-2.

A confirmação diagnóstica é feita por testes de amplificação de ácido nucleico (NAAT), como reação em cadeia de polimerase de transcrição reversa em tempo real (\(rRT-PCR\)), baseada na detecção de partes do RNA
viral11. As amostras escolhidas para testes iniciais são secreções respiratórias, especialmente do trato respiratório superior11,32. O Centro de Controle e Prevenção de Doenças (CDC) dos EUA recomenda espécime nasofaríngeo, orofaríngeo, amostra de swab nasal, lavagem ou aspirado nasofaríngeo ou lavagem ou aspirado de amostra nasal12. O teste com espécimes do trato respiratório inferior também pode ser feito31,32.

Na verdade, como a COVID-19 é uma doença nova, a maioria dos laboratórios não estava preparada para lidar com o alto número de casos que precisam ser avaliados33. Assim, para testar os pacientes mais propensos a ter a doença, alguns critérios podem ser estabelecidos, como priorizar indivíduos com doenças mais graves e contato com casos confirmados33,34.

Características clínicas

Inicialmente, em janeiro de 2020, Huang et al.35 relataram as principais características clínicas de 41 pacientes infectados pelo SARS-CoV-2 em Wuhan, observando prevalência do sexo masculino (73%) e idade mediana de 49 anos (IQR, 41-58). Estudos subsequentes realizados no mesmo hospital apresentaram características semelhantes36,37.

Em fevereiro de 2020, também no epicentro da pandemia de COVID-19, 138 pacientes apresentaram resultados semelhantes, com prevalência de homens (54,3%) e idade mediana de 56 anos (IQR, 42-68)38.

Guan et al.12, em um estudo maior, com dados de 1.099 pacientes provenientes de 30 províncias da China, também mostraram preponderância de homens (58%) e idade mediana de 47 anos (35-58).

Na Itália, uma série de casos retrospectivos de 1.591 pacientes com COVID-19 encaminhados para internação de unidade de terapia intensiva (UTI), 82% dos pacientes eram do sexo masculino, e a idade mediana foi elevada [63 anos (IQR, 56-70) anos], o que possivelmente está associado às características demográficas no país39.

Da mesma forma, nos EUA, uma análise retrospectiva multicêntrica em Seattle também apresentou que 63% dos pacientes eram homens e tinham uma idade média de 64 anos40.

O tempo mediano desde o início dos sintomas até a primeira internação foi de sete dias35,38. Quase 90% dos pacientes infectados com SARS-CoV-2 apresentaram múltiplos sintomas37. Os estudos iniciais sobre as manifestações clínicas da doença incluíram febre como o sintoma mais comum (83-98,6%), seguido pela tosse (59,4-82%) e fadiga/mialgia (38,1%-69,6%), assemelhando-se às infecções por SARS-CoV e MERS-CoV12,35-37.

Guan et al.12, no entanto, sugeriram que a febre não era definidora do início da COVID-19, uma vez que estava presente em apenas 43,8% dos pacientes no momento da admissão, embora 88,7% dos pacientes a desenvolvessem durante a internação.

Os sintomas gastrointestinais foram incomuns, incluindo náuseas e vômitos (1-5%) e diarreia (2-3,8%). Ao analisar apenas pacientes gravemente doentes, a prevalência desses sintomas aumentou para 10,1%38 (Tabela 3).

Comorbidades

A presença de qualquer comorbidade variou de 23,7% a 46,7%, segundo estudos na China12,38. Hipertensão arterial, doenças cardiovasculares e diabetes mellitus foram as comorbidades mais comuns associadas à COVID-197,12,33-38,40-42. Além disso, estudos mostraram maior prevalência de doenças subjacentes na Itália (86%) e nos EUA (37,6-86%)39,41. A análise de pacientes gravemente doentes em Washington, EUA, relatou que quase metade dos pacientes apresentava doença renal crônica (DRC) (47,6%) e insuficiência cardíaca congestiva (42,9%)41 (Tabela 4).

Tabela 3 – Resumo das características clínicas em pacientes com COVID-19 na China, Itália e Estados Unidos da América

	Huang et al.	Yang et al.	Chen et al.	Wang et al.	Guan et al.	Arentz et al.
Febre	98,6%	98%	83%	98%	43,8%	52,4%
Tosse	76%	77%	82%	59,4%	67,8%	47,6%
Fadiga	44%	-	-	69,6%	38,1%	-
Diarreia	3%	-	2%	10,1%	3,8%	-
Náusea/Vômitos	5%	4%	1%	10,1%	5%	-

Além disso, estudos mostraram maior prevalência de doenças subjacentes na Itália (86%) e nos EUA (37,6-86%)39,41. A análise de pacientes gravemente doentes em Washington, EUA, relatou que quase metade dos pacientes apresentava doença renal crônica (DRC) (47,6%) e insuficiência cardíaca congestiva (42,9%)41 (Tabela 4).
Complicações
A síndrome do desconforto respiratório agudo (SDRA) foi a principal complicação da COVID-19, sugerindo um forte componente da afeição respiratória, de acordo com estudos de Wuhan, China.12,35-38 Adicionalmente, a prevalência de lesão cardíaca aguda, lesão renal aguda (LRA) e disfunção hepática revelou que outros sistemas de órgãos também foram comprometidos12,35-38,41.

A análise de 1099 pacientes com COVID-19 na China revelou que SDRA e LRA só ocorreram em 3,5% e 0,5% dos casos, respectivamente12. Diferentemente, a análise de pacientes graves com COVID-19 evidenciou aumento da prevalência de SDRA (81%), LRA (29%) e maior demanda por ventilação mecânica (71%) e terapia de substituição renal (TSR) (17%)36.

Em Washington, a primeira descrição de pacientes com COVID-19 em estado crítico nos EUA, revelou que 95,2% de todos os pacientes apresentavam SDRA e que 71% deles necessitavam de ventilação mecânica41. Grasselli et al.39 apresentaram desfechos compatíveis na Itália, revelando que 99% (IC95%, 98%-99%) dos pacientes na UTI necessitavam de suporte respiratório, incluindo 88% (IC95%, 87%-90%) que receberam ventilação mecânica invasiva (Tabela 5).

Tabela 5 - Resumo das complicações em pacientes com COVID-19 na China, Itália e Estados Unidos da América.

	Huang et al.	Yang et al.	Chen et al.	Wang et al.	Guan et al.	Arentz et al.	Grasselli et al.	n=41	n=52	n=99	n=138	n=1.099	n=21	n=1.591
Pneumonia	100%	-	-	-	91,1%	-	-	41	52	99	138	1.099	21	1.591
SDRA	29%	67%	17%	19,6%	3,4%	95,2%	-							
Ventilação mecânica invasiva	10%	71%	4%	47,2%	6,1%	71%	88%							
Lesão cardíaca aguda	12%	23%	-	7,2%	-	33,3%	-							
Cardiomiopatiaa	7%	29%	3%	3,6%	0,5%	19,1%	-							
LRA	7%	17%	9%	-	0,8%	-	-							
TSR														
Disfunção hepática														

SDRA: Síndrome do desconforto respiratório agudo; LRA: Lesão renal aguda; TSR: Terapia de substituição renal.
aDefinida como evidência de função sistólica ventricular esquerda reduzida globalmente no ecocardiograma transtorácico, além de sinais clínicos de choque cardiogênico, elevação no nível de creatinina quinase ou troponina I, ou diminuição na saturação de oxigênio venoso central (Arentz et al.).
Fatores de risco para internação em UTI
Inicialmente, apenas a presença de complicações foi estatisticamente significativa para a internação na UTI. Estudos subsequentes demonstraram que idosos e pacientes com qualquer doença subjacente eram propensos a piores desfechos clínicos e aumento da mortalidade, correlacionando esses achados com uma resposta imune mais fraca e tempestade de citocinas nesses pacientes.

Os pacientes admitidos em UTI em Wuhan, China, eram mais velhos [idade mediana de 66 anos (IQR, 57-78) vs 51 anos (IQR, 37-62); p < 0,001] e mais propensos a ter complicações e doenças crônicas (72,2% vs 46,6%; p<0,001), incluindo hipertensão arterial (58,3% vs 21,6%), diabetes mellitus (22,2% vs 5,9%), doença cardiovascular (25,0% vs 10,8%) e doença cerebrovascular (16,7% vs 1,0%) do que os pacientes não admitidos em UTI. A COVID-19 em Wuhan, China, também progrediu mais rapidamente em idosos, com menor intervalo de dias entre a ocorrência dos primeiros sintomas e a morte em pessoas com 70 anos ou mais, quando comparados com aquelas com menos de 70 anos (11,5 vs 20 dias, p=0,033).

Corroborando com esses achados, uma coorte italiana reportou que 68% dos pacientes admitidos em UTI tinham no menos uma comorbidade. No entanto, a idade mediana dos pacientes graves foi de 63 anos (IQR, 56-70), o mesmo que a idade mediana de todos os casos italianos de COVID-19, sugerindo que a idade mais avançada não é um fator de risco isolado para a internação na UTI. Com base nisso, estudos dos EUA também referiram maior percentual de doenças crônicas entre pacientes que necessitaram de admissão em UTI, e aumento do risco de piros desfechos entre pessoas com 85 anos ou mais.

Em Wuhan, China, os não sobreviventes eram, em sua maioria, homens (66%), e metade deles tinha doenças crônicas. Além disso, tais pacientes eram mais propensos a receber ventilação mecânica (94% vs 35%), invasiva ou não invasiva, quando comparados com os sobreviventes. Da mesma forma, na Itália, os não sobreviventes eram predominantemente homens (70%) e 48,5% deles tinham três ou mais doenças subjacentes.

A comparação das mortes entre China e Itália inicialmente evidenciou taxas equivalentes de mortalidade (2,3)40. A diferença atual entre a taxa global de mortalidade na Itália (7,2) e na China (2,3) foi sugerida estar relacionada com: diferenças demográficas entre esses países, incluindo pacientes mais velhos com mais comorbidades na Itália; o método de classificação de óbitos relacionados à COVID-19 e diferentes estratégias para o diagnóstico de infecção por SARS-CoV-2. Neste contexto, Lippi et al.41 também sugeriram que maior risco de morte na Itália poderia estar associado à frequência variável de fatores de risco em diferentes populações.

Achados radiológicos
Huang et al.35 revelaram que, no momento da admissão, todos os pacientes apresentaram anormalidades na tomografia computadorizada (TC) de tórax, e que 98% destes tiveram envolvimento pulmonar bilateral, achados consistentes com estudos posteriores também realizados em Wuhan, China.36-38

Um estudo maior na China, incluindo 1.099 pacientes, não revelou anormalidades na TC de tórax no momento da internação em 13,8% dos pacientes e não demonstrou anormalidades radiológicas ou tomográficas em 17,9% daqueles sem doença grave. Opacidade pulmonar em vidro fosco (56,4%) e sombra irregular bilateral (51,8%) foram os padrões mais comuns.32

Radiografia de tórax anormal foi observada em 20 pacientes (95%) na admissão em pacientes de UTI em Washington, USA. Os achados mais comuns na radiografia inicial foram opacidades reticulonodulares bilateralmente (11 pacientes [52%]) e opacidades em vidro fosco (10 [48%]). Em 72 horas, 18 pacientes (86%) apresentaram opacidades reticulonodulares bilateralmente, e 14 (67%) apresentaram evidências de opacidades em vidro fosco.41

Em outro estudo retrospectivo, em Seattle, USA, foram observados resultados semelhantes. Radiografia torácica foi obtida em 23 pacientes (96%) durante internação na UTI, e todas as radiografias mostraram opacidades pulmonares bilaterais.40

Achados laboratoriais
Na China, linfocitopenia (contagem de linfócitos <1,0×10^9/L) esteve presente em 35%-83,2% dos pacientes. Em estudos retrospectivos com pacientes adultos graves, a baixa contagem de linfócitos ocorreu em mais de 80% deles, característica que também foi proeminente na infecção por SARS-CoV e MERS-CoV.42 No entanto, em outros estudos, apenas 35% dos pacientes com COVID-19 não graves apresentaram linfocitopenia, sugerindo que menor contagem de linfócitos reflete gravidade da infecção pelo SARS-CoV-2. Nos EUA, Bhatraju et al.40 apresentaram achado comum de linfocitopenia (75%) entre os pacientes internados na UTI, e Arendt et al.41 relataram linfocitopenia em 67% dos pacientes internados na UTI.

Na China, hemograma completo de pacientes na admissão mostrou que 25%-33,7% tinham leucopenia (contagem de glóbulos brancos <4,0×10^9/L)42,35. Nos EUA, Arentz et al.41 apresentaram que 67% dos pacientes tinham contagem de glóbulos brancos dentro dos valores normais de referência.

Lactato desidrogenase estava aumentada em 39,9% para 75% dos pacientes. Dímero D, proteína C-reactiva, aspartato aminotransferase e interleucina (IL)-6 também estavam elevadas no plasma (36%, 86%, 34%, 52%, respectivamente). Outros achados incluíram diminuição
da albumina e aumento dos níveis de neutrófilos, plaquetas, taxa de sedimentação eritrócito, bilirrubina total, alanina aminotransferase, ferritina, creatinina, creatina quinase, mioglobina e glicose.2,12,35,37

Também houve diferenças nos achados laboratoriais entre pacientes que necessitaram de admissão em UTI e aqueles que não necessitaram. Pacientes internados na UTI apresentaram maior contagem de glóbulos brancos e neutrófilos, bem como níveis mais elevados de d-dímero e creatina quinase do que aqueles não admitidos na UTI.19

Resposta imune e tempestade de citocinas

A disseminação de partículas SARS-CoV-2 através da mucosa respiratória possibilita infecção de outras células e desencadeia respostas imunes, induzindo uma tempestade de citocinas sistêmica, que gera alterações em leucócitos periféricos ou em células imunes. Ao mesmo tempo em que a resposta imunológica é vital para o controle e resolução de infecções, ela também pode levar à imunopatogênese quando fora de controle.1,38

Os pacientes com COVID-19 apresentaram níveis aumentados de citocinas plasmáticas e quimiocinas, incluindo IL-1, IL-2, IL-4, IL-7, IL-10, IL-12, IL-13, IL-17, fator estimulante da colônia granulócitos (GCSF), fator estimulante da colônia de macrófagos (MCSF), 10kD proteína induzida por interferon-gama (IP-10), proteína quimioatratora de monócito-1 (MCP-1), proteína inflamatória de macrófago 1-α (MIP-1α), fator de crescimento de hepatócito (HGF), interferon gama (IFN-γ) e fator de necrose α (TNF-α).1

Citocinas plasmáticas estavam elevadas em indivíduos infectados pelo SARS-CoV-2 que necessitaram de admissão na UTI, sugerindo associação com a gravidade da COVID-19. A contagem de neutrófilos e os níveis de
d-dímero, ureia e creatinina foram significativamente maiores em pacientes graves, enquanto a contagem de linfócitos estava diminuída. Os fatores inflamatórios IL-2, IL-6, IL-7, IL-10 e TNF-α também estavam elevados.1,35

A linfocitopenia foi maior em pacientes na UTI (85% vs 54%, p <0,045) quando comparada com pacientes não internados em UTI. Alguns estudos sugeriram que uma diminuição substancial no número total de linfócitos indica que o SARS-CoV-2 induz o consumo de células imunes e a inibição da função imune celular corporal. Assim, o dano aos linfócitos pode ser um fator importante que leva a exacerbações de pacientes.37

Além disso, o fortalecimento da resposta imunológica pode ser benéfico para populações com COVID-19 que apresentem disfunção imunológica, como idosos, diabéticos, indivíduos que fazem uso prolongado de agentes imunossupressores e gestantes.37

CONCLUSÃO

SARS-CoV-2 é um coronavírus que surgiu na China. A doença agora é uma pandemia, que rapidamente se espalhou pelo mundo e levou a um esforço global para contê-la. Estudos sugeriram que pacientes assintomáticos contribuíram para a extensão da disseminação da doença. A COVID-19 afeta predominantemente homens e pode apresentar múltiplos sintomas. Piores desfechos da COVID-19 estão associados ao aumento da idade, comorbidades, complicações, linfocitopenia e tempestade de citocinas. Características clínicas, achados radiológicos e resultados laboratoriais apresentaram semelhanças em diferentes populações, mas as taxas de mortalidade podem ser conflitantes, expondo a necessidade de estudos de acordo com cada região.

Agradecimentos: Os autores agradecem à Universidade Federal do Ceará e aos colegas que contribuíram para os estudos analisados neste artigo. O estudo contou com o apoio do Conselho Nacional de Desenvolvimento Científico e Tecnológico, do CNPq – e da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflitos de interesse: Nenhum.

Participação dos autores: Rangel AR - contribuiu com a ideia principal e auxiliou na coleta de dados, na análise de dados e na elaboração do manuscrito. Noronha LM e Chagas GCL - auxiliaram na coleta de dados e na elaboração do manuscrito. Silva Júnior GB, Meneses GC, Pires Neto RDJ e Daher EF - contribuíram para a análise de dados, elaboração e revisão do manuscrito. Todos os autores aprovaram a versão final do artigo.

REFERENCES

1. Guo Y, Cao Q, Hong Z, Tan Y, Chen S, Jin H, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Med Res. 2020;7(1):1-10. doi: 10.1186/s40779-020-00240-0.

2. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis. 2020;94:44-8. doi: 10.1016/j.ijid.2020.03.004.

3. Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol. 2020;11:298. doi: 10.3389/fmicb.2020.00298.

4. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. doi: 10.1038/s41368-020-0074-x.

5. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report – 71. Genève; 2020 [cited 2020 April 01]. Available from: https://www.who.int/docs/default-source/coronaviruse/covid-19-sprp-unc-guidelines.pdf?sfvrsn=4360e92b_8.

6. World Health Organization. COVID-19 strategic preparedness and response plan operational planning guidelines to support country preparedness and response. Genève; 2020 [cited 2020 April 23]. Available from: https://www.who.int/docs/default-source/coronaviruse/covid-19-sprp-unc-guidelines.pdf.
7. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 51. Genève; 2020 [cited 2020 April 27]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10.

8. World Health Organization. WHO COVID-19 Dashboard. Genève; 2020 [cited 2020 May 05]. Covid19.who.int. 2020. Available from: https://covid19.who.int.

9. Han Y, Yang H. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): a Chinese perspective. J Med Virol. 2020;92(6):639-44. doi: 10.1002/jmv.25749.

10. Gandhi R, Lynch J, del Rio C. Mild or moderate Covid-19. New Engl J Med. 2020;383(18):1757-66. doi: 10.1056/NEJMcp2009249.

11. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843-4. doi: 10.1001/jama.2020.3786.

12. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032.

13. Lippi G, Mattiuzzi C, Sanchis-Gomar F, Henry B. Clinical and demographic characteristics of patients dying from COVID-19 in Italy versus China. J Med Virol. 2020;92:1759-60. doi: 10.1002/jmv.25860.

14. Arons M, Hatfield K, Reddy S, Kimball A, James A, Jacobs J, et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. New Engl Med. 2020;382:2081-90. doi: 10.1056/NEJMoa2008457.

15. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. New Engl J Med. 2020;382(12):1177-9. doi: 10.1056/NEJMoa2001737.

16. Wei W, LiZ, Chiew C, Yong S, Toh M, Lee V. Presymptomatic transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:411-5. doi: 10.15585/mmwr.mmr6914e1.

17. Tong Z, Tang A, Li K, Li P, Wang H, Yi J, et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg Infect Dis. 2020;26(5):1052-4. doi: 10.3201/eid2605.200198.

18. Qian G, Yang N, Ma A, Wang L, Li G, Chen X, et al. COVID-19 transmission within a family cluster by presymptomatic carriers in China. Clin Infect Dis. 2020;94:133-8. doi: 10.1016/j.cidd.2020.03.042.

19. World Health Organization. COVID-19 strategy update - 14 April 2020. Genève; 2020 [cited 2020 April 23]. Available from: https://www.who.int/publications-detail/covid-19-strategy-update---14-april-2020.

20. Wang C, Pan R, Wan X, Tan Y, Xu L, Ho C, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int J Environ Res Public Health. 2020;17(5):1729. doi: 10.3390/ijerph17051729.

21. Lima C, Carvalho P, Lima I, Nunes J, Saraiva J, de Souza R, et al. The emotional impact of Coronavirus 2019-nCoV (new Coronavirus disease). Psychiatr Res. 2020;287:112915. doi: 10.1016/j.psychres.2020.112915.

22. Nicola M, Alsafi Z, Sohрабi R, Kerman A, Al-Jabir A, Iosifidis C, et al. The Socio-Economic Implications of the Coronavirus and COVID-19 Pandemic: a review. Int J Surg. 2020;78:185-93. doi: 10.1016/j.ijsu.2020.04.018.

23. Page K, Venkataramani M, Beyrer C, Polk S. Undocumented U.S. Immigrants and Covid-19. New Engl J Med. 2020;382(21):e62. doi: 10.1056/NEJMmp2005953.

24. Liu J, Zheng X, Tong Q, Li W, Wang B, Sutter K, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92(5):491-4. doi: 10.1002/jmv.25709.

25. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10245):565-74. doi: 10.1016/S0140-6736(20)30251-8.

26. Shereen M, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-8. doi: 10.1016/j.jare.2020.03.005.

27. Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents. 2020;55(6):105948. doi: 10.1016/j.ijantimicag.2020.105948.

28. de Wit E, van Doremalen N, Falzarano D, Munster V. SARS and MERS: recent insights into emerging coronaviruses. Nature Rev Microbiol. 2016;14(8):523-34. doi: 10.1038/nrmicro.2016.81.

29. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;78:185-93. doi: 10.1016/j.ijantimicag.2020.105948.

30. World Health Organization. Global surveillance for COVID-19 caused by human infection with COVID-19 virus: interim guidance, 20 March 2020. Genève; 2020 [cited 2020 April 27]. Available from: https://covid19.who.int.

31. World Health Organization. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance, 2 March 2020. Genève; 2020 [cited 2020 April 23]. Available from: https://apps.who.int/iris/handle/10665/331506.

32. Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19): 2020 [cited 2020 April 30]. Available from: https://www.cdc.gov/coronavirus/2019-nCoV/lab/guidelines-clinical-specimens.html.

33. Sharifstein J, Becker S, Mello M. Diagnostic Testing for the Novel Coronavirus. JAMA. 2020;323(15):1437. doi: 10.1001/jama.2020.3864.

34. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323(18):1775-6. doi: 10.1001/jama.2020.4683.

35. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus
in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5.

36. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81. doi: 10.1016/S2213-2600(20)30079-5.

37. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7.

38. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. doi: 10.1001/jama.2020.1585.

39. Grasselli G, Zaninelli A, Zanella A, Antonelli M, Cabrini L, Castelli A et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574. doi: 10.1001/jama.2020.5394.

40. Bhatraju P, Ghassemieh B, Nichols M, Kim R, Jerome K, Nalla A, et al. Covid-19 in critically Ill patients in the Seattle Region - case series. New Engl J Med. 2020;382:2012-22. doi: 10.1056/NEJMoa2004500.

41. Arentz M, Yim E, Klafl L, Lokhandwala S, Riedo F, Chong M, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612. doi: 10.1001/jama.2020.4326.

42. Bialek S, Boundy E, Bowen V, Chow N, Cohn A, Dowling N, et al. Severe outcomes among patients with coronavirus disease 2019 (COVID-19) — United States, February 12–March 16, 2020. MMWR Morb Mortal Weekly Rep. 2020;69(12):343-6. doi: 10.15585/mmwr.mm6912e2.

43. Chow N, Fleming-Dutra K, Gierke R, Hall A, Hughes M, Plisshvili T, et al. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 — United States, February 12–March 28, 2020. MMWR Morb Mortal Weekly Rep. 2020;69(13):382-6. doi: 10.15585/mmwr.mm6913e2.

44. Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol. 2020;92(4):441-7. doi: 10.26355/eurrev_202004_21046.

45. Sommer P, Lukovic E, Fagley E, Long D, Sobol J, Heller K, et al. Initial clinical impressions of the critical care of COVID-19 patients in Seattle, New York City, and Chicago. Anesth Analg. 2020;131(1):55-60. doi: 10.1213/ANE.0000000000004830.

46. Porcheddu R, et al. Similarity in case fatality rates (CFR) of COVID-19/SARS-COV-2 in Italy and China. J Infect Dev Countries. 2020;14(02):125-8. doi: 10.3855/jidc.12600.

Recebido: 11.05.2020
Aceito: 07.04.2021