Deletion of L-selectin increases atherosclerosis development in ApoE-/- mice

Rozenberg, I; Sluka, S H M; Mocharla, P; Hallenberg, A; Rotzius, P; Borén, J; Kränkel, N; Landmesser, U; Borsig, L; Lüscher, T F; Eriksson, E E; Tanner, F C

Abstract: Atherosclerosis is an inflammatory disease characterized by accumulation of leukocytes in the arterial intima. Members of the selectin family of adhesion molecules are important mediators of leukocyte extravasation. However, it is unclear whether L-selectin (L-sel) is involved in the pathogenesis of atherosclerosis. In the present study, mice deficient in L-selectin (L-sel(-/-)) animals were crossed with mice lacking Apolipoprotein E (ApoE(-/-)). The development of atherosclerosis was analyzed in double-knockout ApoE/L-sel (ApoE(-/-)L-sel(-/-)) mice and the corresponding ApoE(-/-) controls fed either a normal or a high cholesterol diet (HCD). After 6 weeks of HCD, aortic lesions were increased two-fold in ApoE(-/-)L-sel(-/-) mice as compared to ApoE(-/-) controls (2.46%±0.54% vs 1.28%±0.24% of total aortic area; p<0.05). Formation of atherosclerotic lesions was also enhanced in 6-month-old ApoE(-/-)L-sel(-/-) animals fed a normal diet (10.45%±2.58% vs 1.87%±0.37%; p<0.05). In contrast, after 12 weeks of HCD, there was no difference in atheroma formation between ApoE(-/-)L-sel(-/-) and ApoE(-/-) mice. Serum cholesterol levels remained unchanged by L-sel deletion. Atherosclerotic plaques did not exhibit any differences in cellular composition assessed by immunohistochemistry for CD68, CD3, CD4, and CD8 in ApoE(-/-)L-sel(-/-) as compared to ApoE(-/-) mice. Leukocyte rolling on lesions in the aorta was similar in ApoE(-/-)L-sel(-/-) and ApoE(-/-) animals. ApoE(-/-)L-sel(-/-) mice exhibited reduced size and cellularity of peripheral lymph nodes, increased size of spleen, and increased number of peripheral lymphocytes as compared to ApoE(-/-) controls. These data indicate that L-sel does not promote atherosclerotic lesion formation and suggest that it rather protects from early atherosclerosis.

DOI: https://doi.org/10.1371/journal.pone.0021675
Deletion of L-selectin increases atherosclerosis development in ApoE⁻/⁻ mice

Izabela Rozenberg¹,2, Susanna H. M. Sluka¹,2, Pavani Mocharla¹,2, Anders Hallenberg³, Pierre Rotzius³, Jan Borén⁴, Nicolle Kränkel¹,2, Ulf Landmesser¹,2,6, Lubor Borsig²,6, Thomas F. Lüscher¹,2,5, Einar E. Eriksson³,⁷, Felix C. Tanner¹,2,5

¹Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland
²Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
³Department of Physiology and Pharmacology, Karolinska Institute, S-171-77 Stockholm, Sweden.
⁴Wallenberg Laboratory, Sahlgrenska Academy at Göteborg University, Goteborg, Sweden
⁵Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
⁶Institute of Physiology, University of Zürich, Zürich, Switzerland
⁷Department of Molecular Medicine and Surgery, Karolinska Institute, Center for Molecular Medicine, Karolinska Hospital L8:03, S-17176, Stockholm, Sweden

Short title: L-selectin in atherosclerosis

Address for correspondence:
Felix C. Tanner, MD
Cardiovascular Research, Institute of Physiology, University of Zurich and Cardiology, Cardiovascular Center, University Hospital Zurich
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Phone +41 44 635 6469, Fax +41 44 635 6827
Email: felix.tanner@access.uzh.ch
Atherosclerosis is an inflammatory disease characterized by accumulation of leukocytes in the arterial intima. Members of the selectin family of adhesion molecules are important mediators of leukocyte extravasation. However, it is unclear whether L-selectin (L-sel) is involved in the pathogenesis of atherosclerosis.

In the present study, mice deficient in L-selectin (L-sel^{−/−}) animals were crossed with mice lacking Apolipoprotein E (ApoE^{−/−}). The development of atherosclerosis was analyzed in double-knockout ApoE^{−/−} / L-sel^{−/−} (ApoE^{−/−} L-sel^{−/−}) mice and the corresponding ApoE^{−/−} controls fed either a normal or a high cholesterol diet (HCD). After 6 weeks of HCD, aortic lesions were increased two-fold in ApoE^{−/−} L-sel^{−/−} mice as compared to ApoE^{−/−} controls (2.46% ± 0.54% vs 1.28% ± 0.24% of total aortic area; p<0.05). Formation of atherosclerotic lesions was also enhanced in 6-month-old ApoE^{−/−} L-sel^{−/−} animals fed a normal diet (10.45% ± 2.58% vs 1.87% ± 0.37%; p<0.05). In contrast, after 12 weeks of HCD, there was no difference in atheroma formation between ApoE^{−/−} L-sel^{−/−} and ApoE^{−/−} mice. Serum cholesterol levels remained unchanged by L-sel deletion. Atherosclerotic plaques did not exhibit any differences in cellular composition assessed by immunohistochemistry for CD68, CD3, CD4, and CD8 in ApoE^{−/−} L-sel^{−/−} as compared to ApoE^{−/−} mice. Leukocyte rolling on lesions in the aorta was similar in ApoE^{−/−} L-sel^{−/−} and ApoE^{−/−} animals. ApoE^{−/−} L-sel^{−/−} mice exhibited reduced size and cellularity of peripheral lymph nodes, increased size of spleen, and increased number of peripheral lymphocytes as compared to ApoE^{−/−} controls.

These data indicate that L-selectin does not promote atherosclerotic lesion
formation and suggest that it rather protects from early atherosclerosis.

Key words: Adhesion molecule, L-selectin, arthrosclerosis, $ApoE^\text{-/-}$ mice
Introduction

Endothelial activation and subsequent accumulation of leukocytes is a key event in early atherosclerosis. The selectin family of adhesion molecules mediates initial rolling and tethering of inflammatory cells at sites of activated endothelium. The family consists of the three closely homologous glycoproteins E-selectin (E-sel), P-selectin (P-sel), and L-selectin (L-sel), that all bind glycoproteins and glycolipids bearing sialyl Lewis X (sLeX) in a calcium-dependent manner. Upon stimulation, E-sel is expressed on endothelial cells, while P-sel is expressed in both endothelial cells and platelets. L-sel, on the other hand, is constitutively expressed on the majority of leukocytes.

L-sel exhibits adhesive as well as signaling functions and is particularly important for lymphocyte homing to secondary lymphoid organs. Indeed, animals lacking L-sel display an altered size of secondary lymphoid tissues and increased numbers of peripheral lymphocytes. Moreover, L-sel deficient mice show reduced leukocyte rolling along cytokine-stimulated endothelium in vivo. This is well documented in venules in the microcirculation and primarily depends on a lack of L-sel-mediated interactions between leukocytes regulating capture of cells from the free flow. Indeed, whether functional L-sel ligand activity is regularly upregulated on inflamed endothelium is still under debate.

Since the selectins are known to regulate leukocyte recruitment in inflammation, they are interesting candidates to study in the context of atherogenesis. Indeed, mice deficient in E- and P-sel display attenuated development of atherosclerosis. Moreover, lymphocyte recruitment to the aortic wall during atherosclerosis development is partially L-sel dependent. However, there are no in vivo reports addressing the
impact of L-sel for the development of atherosclerotic lesions \textit{in vivo}. In this study, L-selectin deficient (\textit{L-sel$^{--}$}) mice were crossed with \textit{Apolipoprotein E} deficient mice (\textit{ApoE$^{-/-}$}) to investigate the relevance of L-sel on both early and advanced stages of atherosclerosis.
Results

L-selectin attenuates early, but not advanced atherosclerosis

The development of atherosclerosis was monitored in descending aortas of mice with or without L-sel. In 12 week old ApoE^{−/−} L-sel^{−/−} animals fed a HCD for 6 weeks, the percentage of the aorta occupied by atherosclerotic plaques was two fold higher than in age- and diet-matched ApoE^{−/−} controls (2.46% ± 0.54% vs 1.13% ± 0.19%, respectively; p<0.05; Fig. 1A). The effect of L-sel deletion was even more pronounced in 6 month old animals fed a normal diet. Under these conditions, ApoE^{−/−} L-sel^{−/−} mice had 10.45 ± 2.58% of the descending aorta covered by plaques as compared to 1.87 ± 0.37% in ApoE^{−/−} controls (p<0.05; Fig. 1B). In contrast, the atherosclerotic burden in 18 week old ApoE^{−/−} L-sel^{−/−} animals fed a HCD for 12 weeks (11.80 ± 1.86%) was similar to that of ApoE^{−/−} controls (13.89 ± 2.06%; p=n.s.; Fig. 1C). There was no difference in plasma cholesterol levels between double knockout and control mice in any of the groups (p=n.s.; Supplemental Table 1). Expression of E-selectin did not differ in ApoE^{−/−} controls and ApoE^{−/−} L-sel^{−/−} animals during atherosclerotic lesion formation (p=n.s.; Supplemental Fig. 1A). P-selectin expression was significantly increased in arteries of ApoE^{−/−} mice after 6 weeks of HCD compared to ApoE^{−/−} L-Sel^{−/−} mice. (p<0.05; Supplemental Fig. 1B) Vascular smooth muscle cell accumulation was similar in the two groups (p=n.s.; Supplemental Fig. 1D). Staining for collagen exhibited a minor increase in plaques from ApoE^{−/−} L-sel^{−/−} animals as compared to ApoE^{−/−} controls (p<0.05; Supplemental Fig. 1C).

L-selectin does not influence leukocyte capture and rolling in atherosclerosis.
Leukocyte capture and rolling were assessed using intravital microscopy. There was no difference between $ApoE^{-/-}$ and $ApoE^{-/-}$ L-$sel^{-/-}$ animals in primary leukocyte capture directly to the endothelium from the free flow (5.4 ± 1.3 cells vs 5.5 ± 1.3 cells, respectively; $p=$n.s.; Fig. 2A). Secondary capture mediated by interactions between leukocytes was low in $ApoE^{-/-}$ as well as in $ApoE^{-/-}$ L-$sel^{-/-}$ mice (1.28 ± 0.92 cells vs 0.17 ± 0.14 cells, respectively; $p=$n.s.; Fig. 2B). Correspondingly, there was no difference in the total number of cells rolling along the aortic endothelium in $ApoE^{-/-}$ controls and $ApoE^{-/-}$ L-$sel^{-/-}$ mice ($p=$n.s.; Fig. 2C). Total capture correlated with the number of rolling cells (Fig. 2D).

L-selectin does not influence leukocyte accumulation in atherosclerotic plaques.

Immunohistochemistry on the aortic root was performed to monitor the composition of atherosclerotic plaques following L-sel deletion. Macrophages were visualized with anti-CD68 antibody, lymphocytes with anti-CD3 antibody, T-helper and T-cytotoxic cells with anti-CD4 and anti-CD8 antibodies, respectively. L-sel deletion did not result in an altered CD68 positive area in either early (71.10% ± 1.36% vs 74.44% ± 2.90%; $p=$n.s.; Fig. 3A) or advanced atherosclerosis (48.20% ± 4.13% vs 39.62% ± 1.99%; $p=$n.s.; Fig. 3A). Similarly, there was no difference between $ApoE^{-/-}$ and $ApoE^{-/-}$ L-$sel^{-/-}$ mice in the number of CD3 ($p=$n.s.; Fig. 3B), CD4 ($p=$n.s.; Fig. 3C), and CD8 positive cells ($p=$n.s.; Fig. 3D) after 6 and 12 weeks of HCD. Increased duration of HCD resulted in a decreased plaque area occupied by macrophages in both $ApoE^{-/-}$ and $ApoE^{-/-}$ L-$sel^{-/-}$ mice ($p<0.05$; Fig. 3A). In contrast, no significant difference in T-cell accumulation was observed after 6 and 12 weeks of HCD ($p=$n.s.). Cytokine expression was similar in aortas of $ApoE^{-/-}$ L-$sel^{-/-}$ mice as compared to $ApoE^{-/-}$ controls after 6 and
12 weeks of HCD (p=ns; Table 1). In contrast, the animals exhibited enhanced cytokine expression after 12 as compared to 6 weeks of HCD irrespective of the genotype (p<0.05; Table 1). The majority of circulating cytokines exhibited similar plasma levels in ApoE-/- and ApoE-/- L-sel/- mice after 6 weeks of HCD. Interestingly, the level of the chemotactic cytokine MCP-1 was four fold elevated in plasma of ApoE-/- L-sel/- mice (p<0.05; Table 2).

Increased number of circulating lymphocytes in L-sel/-mice

ApoE-/- L-sel/- animals exhibited a 1.4 fold and 1.6 fold increased number of blood lymphocytes as compared to ApoE-/- controls after 6 and 12 weeks of HCD, respectively (p<0.05; Fig. 4A). Consistent with this observation, there was an increased number of CD8+ and CD19+ cells in ApoE-/- L-sel/- mice irrespectively of the duration of HCD (p<0.05; Fig. 4B and C). Moreover, there was tendency towards an increased number of CD4+ cells in ApoE-/- L-sel/- mice after 6 weeks of HCD (p=0.24), which was significant after 12 weeks of this diet (p<0.05; Fig. 4D). The increased number of circulating lymphocytes in ApoE-/- L-sel/- mice was associated with an increased number of naive T helper cells (CD4+CD44−; p<0.05; Fig. 4E) after 6 and 12 weeks of HCD. The number of activated T helper cells (CD4+CD44+) did not differ after 6 weeks, but was lower in ApoE-/- L-sel/- as compared to ApoE-/- mice after 12 weeks of HCD (p<0.05; Fig. 4F). No significant difference in the circulating leukocyte profile was observed after 6 and 12 weeks of HCD in any of the genotypes.

A significant reduction in size (p<0.05; Supplemental Fig. 2A) and cellularity (p<0.05; Supplemental Fig. 2B) of peripheral lymph nodes was observed in ApoE-/- L-sel/- as compared to ApoE-/- mice after 6 and 12 weeks of HCD. In contrast, the spleen was
30% larger in L-sel deficient mice at both time-points (p<0.05; Supplemental Fig. 3A). The increased spleen size was not associated with an altered cellularity, cell composition (p=n.s.; Supplemental Fig. 3B and C) or an altered cytokine expression (p=n.s.; data not shown).

Materials and Methods

Mice

The development of atherosclerosis in ApoE^{−/−} L-sel^{−/−} mice was studied by two independent experiments. In the first set, L-sel^{−/−} mice backcrossed to C57Bl/6 background for 9 generations were used. In the other set, L-sel^{−/−} mice were purchased from Jackson Lab and backcrossed to C57Bl/6 background for 5 generations. L-sel^{−/−} mice were cross-bred with ApoE^{−/−} mice to generate ApoE^{−/−} L-sel^{−/−} and littermate ApoE^{−/−} controls. In the first set, 6 week old males were fed a HCD (Clinton-Cybulski diet, 1.25% cholesterol, Research Diets #D12108) for 6 or 12 weeks. In the other set, male ApoE^{−/−} L-sel^{−/−} animals and controls were fed a normal diet for 6 months before analysis. All animal experiments were approved by the appropriate authorities.

Quantification of atherosclerosis development

Under anesthesia, blood was collected through right ventricular puncture. Mice were then perfused with ice-cold saline. Aortas were harvested for RNA isolation, en face, and histological analysis. The thoracic and abdominal part of the aortas were fixed overnight with 4% paraformaldehyde (PFA), washed 3 times with ice-cold PBS, and stained for 3 hours with Oil red-O (Sigma #O9755). Quantification of aortic plaque area
was performed using AnalysisFIVE software manually by an investigator blinded to the genotypes.

Plasma triglyceride and cholesterol level

Plasma cholesterol level was determined using Infinity™ Cholesterol (Thermo Electron Corporation Standard #TR13421) and MC Cal (Abbott #1E65-02), plasma triglycerides using Infinity™ Triglycerides (Thermo Electron Corporation Standard #TR22421) and MC Cal (Abbott #1E65-02). The distribution of lipids within the plasma lipoprotein fractions was assessed by fast-performance liquid chromatography (FPLC) gel filtration using a Superose 6 HR 10/30 column (Pharmacia).

Immunohistochemistry

Aortic roots were harvested, mounted in O.C.T. compound (Tissue-Tek #62550-01) and frozen at -20°C. 8 μm-thick slices were fixed with 4% PFA and stained with anti-mouse CD3, CD4 CD8, or CD68 antibodies (Serotec), followed by incubation with alkaline phosphatase–conjugated secondary antibody (Jackson ImmunoResearch). Aortic arches were fixed with 4% formalin and embedded in paraffin. Sections were stained with anti-mouse α-SMA (clone 1A4, SIGMA), E-selectin (abcam), and P-selectin (LSBio). Percentages of stained area were quantified with AnalySIS-FIVE program.

Intravital microscopy

18 week old male mice fed with a HCD for 12 weeks were anesthetized with isofluran. The aorta was prepared as described previously 19. Briefly, the abdomen was opened by a midline incision and the intestines were retracted. The peritoneum was
then dissected to expose the abdominal aorta. The exposed tissue was superfused with a thermostated (37°C) bicarbonate-buffered saline solution. Microscopic observations were made using an intravital microscope (Leitz Biomed) with a water immersion objective (Leitz SW 25×). Epi-illumination fluorescence microscopy (Leitz Ploem-o-pac, filter block M2 illuminated by a cooled infrared filtered lamp (Osram HBO 200W/4)) was started 2 minutes after labeling of circulating leukocytes with an intravenous injection of rhodamine 6G (0.3 mg/ml, 0.67 mg/kg). Images were televised and recorded on videotape using a VNC-703 video camera. Leukocyte rolling flux was determined as the average number of leukocytes rolling within a 10000 μm² area during 30 seconds within a total observation time of at least 180 seconds. Leukocyte capture was determined as the number of leukocytes that initiated rolling within a 10000 μm² area during 30 seconds. Leukocyte capture in contact with or 50 μm downstream of rolling or adherent leukocytes were regarded as secondary, all other capture was regarded as primary.

FACS

Blood cells were stained with fluorescently labeled anti-mouse CD4 (PE-conjugated, clone RM4-5), CD8 (PE-Cy7-conjugated, clone H35-17.2), CD19 (PE-Cy7-conjugated, clone 1D3), or CD44 (APC-conjugated, clone IM7) antibodies (Pharmingen) for 30 minutes at 4°C. Erythrocytes were lyzed following staining using commercially available lysis buffer (BD #555899). Data were collected using DIVAII (BD), and FACS analysis was performed using FlowJo software.
The results were expressed as mean ± S.E.M. Comparison of means was carried out by Student's t-test or ANOVA in case of multiple comparisons. For each experiment, P<0.05 was accepted as statistically significant.
Accumulation of leukocytes in the arterial wall is an important pathogenic event in atherogenesis. It is well documented that the selectin family of adhesion molecules mediates initial attachment of leukocytes to activated endothelium, representing the first step of leukocyte emigration into sites of inflammation. Correspondingly, L-selectin may play a role in the migration of leukocytes to atherosclerotic lesions and data have been presented supporting that lymphocyte recruitment during atherosclerosis development is partially L-sel dependent. Thus, we hypothesized that deletion of L-sel might attenuate the development of atherosclerosis due to inhibition of leukocyte rolling and capture. To test this hypothesis, we compared atherogenesis in ApoE\(-/-\) L-sel\(-/-\) mice with that of ApoE\(-/-\) controls. Interestingly, the data show that L-sel does not promote atherosclerotic lesion formation in ApoE\(-/-\) mice. On the contrary, genetic deficiency in L-selectin resulted in a significant increase in lesion formation, at least during early stages of the disease. Indeed, after 6 month of normal diet, atherosclerosis was relatively advanced in the absence of L-Selectin, while plaque burden was still low in the ApoE\(-/-\) control group and comparable to the ApoE\(-/-\) control animals after 6 weeks of HCD. Thus, both feeding protocols induce an early stage of the disease; however, the absence of L-sel results in a strong increase of atherosclerosis. In line with this, there was no decrease in leukocyte rolling between ApoE\(-/-\) L-sel\(-/-\) and ApoE\(-/-\) control mice in the atherosclerotic aorta. These observations indicate that other members of the selectin family are sufficient to maintain leukocyte-endothelium interactions under conditions of L-sel deletion. In line with this interpretation, expression of E-selectin and P-selectin were not upregulated in the absence of L-Selectin during atherosclerotic lesion formation.
formation. Previous data reveal that the effect of combined deficiency of P- and E-
selectin has an effect on rolling and recruitment in inflammation which is much stronger
than that seen in mice deficient in L-sel. Blockage of P-selectin also virtually
abolishes interactions between leukocytes and endothelium in the atherosclerotic aorta
and inhibition of E-selectin stabilizes leukocyte rolling under these conditions supporting
that E- and P-selectin are key mediators of initial leukocyte attachment in arteries.
Combined deficiency in E-sel and P-sel also strongly reduces the formation of
atherosclerotic lesions. In contrast, as previously indicated, L-selectin-dependent
secondary capture does not increase rolling on atherosclerotic endothelium.
Nonetheless, L-selectin increases rolling in venules in the microcirculation, which
has been shown to be dependent mainly on interactions between leukocytes. Ligands
for L-selectin are only expressed by endothelium in secondary lymphoid tissues and,
der under certain circumstances, also by chronically inflamed systemic endothelium.
Interestingly, data from a previous study suggested that L-sel dependent accumulation
of lymphocytes in arteries occurs almost exclusively from the adventitial side of the
vessel suggesting that L-sel influences recruitment from the vasa vasorum. This
apparent role of L-sel could be mediated by both direct interactions between leukocytes
and endothelium as well as secondary capture interactions. Thus, it is possible that L-
selectin influences rolling and recruitment in other parts of the vascular wall than in the
arterial lumen. A strong argument against this interpretation is that plaques from ApoE-
L-sel mice exhibited similar numbers of macrophages and T cells as compared to
lesions from ApoE controls. Ideally, the cellular composition of the plaque should be
examined in the descending aorta, i.e. at that site of the aorta in which significant
differences in plaque size were noted. As the atherosclerotic alterations in the
descending aorta are focal, it is virtually impossible to cut the descending aorta at the
same site and find a plaque of similar size to assess and compare its composition. For
this reason, cellular plaque composition was studied in the aortic sinuses, i.e. at a site
where plaques of similar size could consistently be detected. It has been observed that
even if plaque size is similar at the level of the aortic root, differences in plaque
composition can be detected\[26\].

No difference in cytokine expression in atherosclerotic vessel walls from \(\textit{ApoE}^{-/-}\)
\(\textit{L-sel}^{-/-}\) and \(\textit{ApoE}^{-/-}\) mice was detected indicating a similar extent of local inflammation
without or with L-sel. The enhanced aortic cytokine levels in animals treated with HCD
for 12 weeks as compared to those treated for 6 weeks is consistent with a more
advanced stage of atherosclerosis in these mice and did not differ between strains.
Hence, alterations in local inflammation do not seem to account for the atheroprotective
actions of L-selectin. In line with these observations, plasma cytokine levels were similar
in \(\textit{ApoE}^{-/-}\) \(\textit{L-sel}^{-/-}\) and \(\textit{ApoE}^{-/-}\) mice. In plasma of \(\textit{ApoE}^{-/-}\) \(\textit{L-sel}^{-/-}\) mice fed a HCD for 6
weeks the levels of the chemotactic cytokine MCP-1 were elevated compared to \(\textit{ApoE}^{-/-}\)
mice, which most likely reflects the increased plaque burden in these animals.

Atherosclerosis does not only affect the wall of blood vessels, but also provokes
changes at the systemic level \[27, 28\]. Deletion of \(\textit{L-sel}\) resulted in abnormal systemic
leukocyte distribution, which could potentially affect atherosclerosis development \[29\].
Both size and cellularity of peripheral lymph nodes were decreased in \(\textit{ApoE}^{-/-}\) \(\textit{L-sel}^{-/-}\)
mice as compared to \(\textit{ApoE}^{-/-}\) controls, which is consistent with the observation that
migration of naive lymphocytes into peripheral lymph nodes is impaired in L-sel deficient
mice \[11, 13\]. Likely due to compensation for this impaired migration into tissues, \(\textit{L-sel}\)
deficiency results in increased numbers of circulating lymphocytes. Hence, it is possible
that the enhanced atherosclerosis in ApoE^{−/−} L-sel^{−/−} mice is driven by more abundant circulating proatherogenic cells, in particular because migration of these cells into lesions appears not to be impaired by lack of L-selectin^{2,30}.

In conclusion, this study demonstrates that absence of L-sel does not inhibit atherosclerosis but rather augments the early stages of atherogenesis. This effect is not associated with reduced leukocyte rolling or accumulation nor with altered cytokine production in atherosclerotic plaques.
Acknowledgement

This study was made possible by the GEBERT RÜF FOUNDATION. Further support was obtained from the Swiss National Science Foundation (grant 3200B0-113328/1 to F.C.T. and grant 3100-068118.02/1 to T.F.L.) and the Velux Foundation.

The authors would like to thank Mrs. Silvia Behnke from the Institute of Clinical Pathology (University Hospital Zurich) for her help with α-SAM, E- and P-Selectin immunohistochemical stainings, the lab technicians from the Institute of Veterinary Pathology (University of Zurich) for paraffin sectioning, and Dr. Jens Sobek from the Functional Genomics Center Zurich for his help with the mouse cytokine array.
Figures legends

Figure 1

L-sel modulates atherosclerosis development

Representative images of aortas stained with Oil-Red-O (ORO). Atherosclerotic lesion area is expressed as percentage of total aortic area. Compared to \textit{ApoE}^{−/−} controls, there is an increased atherosclerotic burden in A) 12 week old \textit{ApoE}^{−/−} \textit{L-sel}^{−/−} animals after 6 weeks of HCD (n=11-15; *p<0.05); and B) 6 month old \textit{ApoE}^{−/−} \textit{L-sel}^{−/−} animals after 6 months of a normal diet (n=5-9; *p<0.05), but not C) 18 week old \textit{ApoE}^{−/−} \textit{L-sel}^{−/−} animals after 12 weeks of HCD (n=10-15; p=n.s.).

Figure 2

L-sel does not affect leukocyte capture and rolling in atherosclerosis.

There was no difference between \textit{ApoE}^{−/−} and \textit{ApoE}^{−/−} \textit{L-sel}^{−/−} animals in either A) primary or B) secondary leukocyte capture (n=7; p=n.s.). C) Leukocyte rolling in atherosclerotic aorta was not affected by the presence or absence of \textit{L-sel} (n=7; p=ns). D) Total leukocyte capture was proportional to leukocyte rolling flux (R=0.8).

Figure 3

L-sel does not affect leucocyte accumulation in atherosclerotic plaques

Immunohistochemical analysis of A) macrophages (CD68^{+}), B) T-lymphocytes (CD3^{+}), C) T helper cells (CD4^{+}), and D) T-cytotoxic cells (CD8^{+}) after 6 and 12 weeks of HCD (n=5-13; p=n.s.).
Figure 4

L-sel decreases the number of circulating lymphocytes

ApoE−/− L-sel−/− animals exhibit increased number of A) total blood lymphocytes (n=5-8; *p<0.05), B) T-cytotoxic cells (CD8+; n=6-7; **p<0.01, #p<0.05), C) B lymphocytes (CD19+; n=5-7; *p<0.05, #p<0.05), D) total T-helper cells (CD4+; n=6-7; #p<0.0), E) naive T-helper cells (CD4+CD44−; n=5-7; *p<0.05; ##p<0.0001) after 6 and 12 weeks of HCD, respectively. F) The number of activated T-cells (CD4+CD44+) remained unchanged after 6 weeks of HCD (n=5-7; p=n.s.) and decreased after 12 weeks of HCD (n=5-7; *p<0.05) as compared to control.

Supplemental Figure 1

Histochemical and immunohistochemical stainings of aortic arches from mice fed a HCD for 6 weeks: A) Similar expression of E-selectin in *ApoE−/−* and *ApoE−/− L-sel−/−* mice. B) Increased expression of P-selectin in *ApoE−/−* compared to *ApoE−/− L-sel−/−* mice (p<0.05) C) Collagen area is increased in *ApoE−/− L-Sel−/−* mice compared to *ApoE−/−* mice (p<0.01) D) Smooth muscle cell area is similar in *ApoE−/−* and *ApoE−/− L-sel−/−* mice.

Supplemental Figure 2

Decreased A) size (n=5-6; **p<0.01; ##p<0.01) and B) cellularity (n=5-6; *p<0.05; #p<0.05) of peripheral lymph nodes (LN) in mice lacking *L-sel* after 6 and 12 weeks of HCD.

Supplemental Figure 3
A) Spleen size is increased upon L-sel deletion (n=6; **p<0.01; #p<0.05). B) Spleen cellularity is not affected by L-sel deletion (n=5-6; †p=n.s.) after 6 and 12 weeks of HCD.

C) Increased size but unchanged cell composition (table; % of leukocytes ± SEM) of spleens from animals after 6 month of normal diet.
Tables

Table 1
mRNA expression (normalized to S12 expression) of different cytokines in atherosclerotic plaques is not affected by L-sel after 6 and 12 weeks of HCD.

Table 2
Plasma MCP-1 is elevated in ApoE^{-/-} L-sel^{-/-} mice compared to ApoE^{-/-} mice after 6 weeks of HCD, while the other plasma cytokines are not affected.

Supplemental Table 1
Plasma cholesterol and triglyceride levels (n=5-12; p=n.s.) after normal diet or 6 and 12 weeks of HCD.
References

1. Libby, P., Inflammation in atherosclerosis, Nature, 2002, 420: 868-874.

2. Eriksson, E. E., Xie, X., Werr, J., Thoren, P. and Lindbom, L., Direct viewing of atherosclerosis in vivo: plaque invasion by leukocytes is initiated by the endothelial selectins, Faseb J, 2001, 15: 1149-1157.

3. Kunkel, E. J., Jung, U. and Ley, K., TNF-alpha induces selectin-mediated leukocyte rolling in mouse cremaster muscle arterioles, Am J Physiol, 1997, 272: H1391-1400.

4. Mayadas, T. N., Johnson, R. C., Rayburn, H., Hynes, R. O. and Wagner, D. D., Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice, Cell, 1993, 74: 541-554.

5. Spertini, O., Luscinskas, F. W., Kansas, G. S., Munro, J. M., Griffin, J. D., Gimbrone, M. A., Jr. and Tedder, T. F., Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion, J Immunol, 1991, 147: 2565-2573.

6. Tedder, T. F., Steeber, D. A., Chen, A. and Engel, P., The selectins: vascular adhesion molecules, Faseb J, 1995, 9: 866-873.

7. Brandley, B. K., Swiedler, S. J. and Robbins, P. W., Carbohydrate ligands of the LEC cell adhesion molecules, Cell, 1990, 63: 861-863.

8. Phillips, M. L., Nudelman, E., Gaeta, F. C., Perez, M., Singhal, A. K., Hakomori, S. and Paulson, J. C., ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex, Science, 1990, 250: 1130-1132.
Kilian, K., Dernedde, J., Mueller, E. C., Bahr, I. and Tauber, R., The interaction of protein kinase C isozymes alpha, iota, and theta with the cytoplasmic domain of L-selectin is modulated by phosphorylation of the receptor, J Biol Chem, 2004, 279: 34472-34480.

Giuffre, L., Cordey, A. S., Monai, N., Tardy, Y., Schapira, M. and Spertini, O., Monocyte adhesion to activated aortic endothelium: role of L-selectin and heparan sulfate proteoglycans, J Cell Biol, 1997, 136: 945-956.

Arbones, M. L., Ord, D. C., Ley, K., Ratech, H., Maynard-Curry, C., Otten, G., Capon, D. J. and Tedder, T. F., Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice, Immunity, 1994, 1: 247-260.

Steeber, D. A., Green, N. E., Sato, S. and Tedder, T. F., Humoral immune responses in L-selectin-deficient mice, J Immunol, 1996, 157: 4899-4907.

Tedder, T. F., Steeber, D. A. and Pizcueta, P., L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites, J Exp Med, 1995, 181: 2259-2264.

Eriksson, E. E., Xie, X., Werr, J., Thoren, P. and Lindbom, L., Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo, J Exp Med, 2001, 194: 205-218.

Sperandio, M., Smith, M. L., Forlow, S. B., Olson, T. S., Xia, L., McEver, R. P. and Ley, K., P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules, J Exp Med, 2003, 197: 1355-1363.

Eriksson, E. E., No detectable endothelial- or leukocyte-derived L-selectin ligand activity on the endothelium in inflamed cremaster muscle venules, J Leukoc Biol, 2008, 84: 93-103.
Rozenberg et al: L-selectin in atherosclerosis

17 Dong, Z. M., Chapman, S. M., Brown, A. A., Frenette, P. S., Hynes, R. O. and Wagner, D. D., The combined role of P- and E-selectins in atherosclerosis, J Clin Invest, 1998, 102: 145-152.

18 Galkina, E., Kadl, A., Sanders, J., Varughese, D., Sarembock, I. J. and Ley, K., Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent, J Exp Med, 2006, 203: 1273-1282.

19 Eriksson, E. E., Werr, J., Guo, Y., Thoren, P. and Lindbom, L., Direct observations in vivo on the role of endothelial selectins and alpha(4) integrin in cytokine-induced leukocyte-endothelium interactions in the mouse aorta, Circ Res, 2000, 86: 526-533.

20 Rotzius, P., Thams, S., Soehnlein, O., Kenne, E., Tseng, C. N., Bjorkstrom, N. K., Malmberg, K. J., Lindbom, L. and Eriksson, E. E., Distinct Infiltration of Neutrophils in Lesion Shoulders in ApoE(-/-) Mice, Am J Pathol.

21 Rotzius, P., Soehnlein, O., Kenne, E., Lindbom, L., Nystrom, K., Thams, S. and Eriksson, E. E., ApoE(-/-)/lysozyme M(EGFP/EGFP) mice as a versatile model to study monocyte and neutrophil trafficking in atherosclerosis, Atherosclerosis, 2009, 202: 111-118.

22 Jung, U. and Ley, K., Mice lacking two or all three selectins demonstrate overlapping and distinct functions for each selectin, J Immunol, 1999, 162: 6755-6762.

23 Rigby, S. and Dailey, M. O., Traffic of L-selectin-negative T cells to sites of inflammation, Eur J Immunol, 2000, 30: 98-107.

24 Ley, K., Gaehtgens, P., Fennie, C., Singer, M. S., Lasky, L. A. and Rosen, S. D., Lectin-like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo, Blood, 1991, 77: 2553-2555.
Rivera-Nieves, J., Burcin, T. L., Olson, T. S., Morris, M. A., McDuffie, M., Cominelli, F. and Ley, K., Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis, J Exp Med, 2006, 203: 907-917.

Rozenberg, I., Sluka, S. H., Rohrer, L., Hofmann, J., Becher, B., Akhmedov, A., Soliz, J., Mocharla, P., Boren, J., Johansen, P., Steffel, J., Watanabe, T., Luscher, T. F. and Tanner, F. C., Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for low-density lipoproteins, Arterioscler Thromb Vasc Biol, 30: 923-930.

Mullenix, P. S., Andersen, C. A. and Starnes, B. W., Atherosclerosis as inflammation, Ann Vasc Surg, 2005, 19: 130-138.

Willerson, J. T., Systemic and local inflammation in patients with unstable atherosclerotic plaques, Prog Cardiovasc Dis, 2002, 44: 469-478.

Hansson, G. K., Libby, P., Schonbeck, U. and Yan, Z. Q., Innate and adaptive immunity in the pathogenesis of atherosclerosis, Circ Res, 2002, 91: 281-291.

Ramos, C. L., Huo, Y., Jung, U., Ghosh, S., Manka, D. R., Sarembock, I. J. and Ley, K., Direct demonstration of P-selectin- and VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice, Circ Res, 1999, 84: 1237-1244.
Figure 1

A

6 weeks HCD

% plaque area

\[\text{ApoE}^{/-} \quad \text{ApoE}^{/-}/\text{L-sel}^{/-} \]

B

6 month normal diet

% plaque area

\[\text{ApoE}^{/-} \quad \text{ApoE}^{/-}/\text{L-sel}^{/-} \]

C

12 weeks HCD

% plaque area

\[\text{ApoE}^{/-} \quad \text{ApoE}^{/-}/\text{L-sel}^{/-} \]
Figure 2

A. Primary leukocyte capture

B. Secondary leukocyte capture

C. Rolling flux (cells/30 sec)

D. Total capture (cells/30 sec) vs. leukocyte rolling (cells/30 sec)

$R^2 = 0.8043$
Figure 3

A

![Graph showing CD68+ area (%)]

B

![Graph showing CD3+ cells/plaque area (x10^-4)]

C

![Graph showing CD4+ cells/plaque area (x10^-4)]

D

![Graph showing CD8+ cells/plaque area (x10^-4)]
Figure 4

ApoE-/- ApoE-/-Lsel-/- ApoE-/- ApoE-/-L-sel-/

6 weeks
12 weeks

A lymphocytes (x10^3/ml)

B % CD8+

C % CD19+

D % CD4+

E % CD4+CD44+

F % CD4+CD44−
expression level	6 weeks	12 weeks		
	ApoE^{-/-}	ApoE^{-/-} L-sel^{-/-}	ApoE^{-/-}	ApoE^{-/-} L-sel^{-/-}
MCP-1 (x10⁻²)	2.02 ± 0.58	2.59 ± 0.37	5.22 ± 1.47	5.95 ± 1.20
TNFα (x10⁻³)	1.40 ± 0.39	1.40 ± 0.15	3.90 ± 1.30	4.2 ± 1.01
INFγ (x10⁻⁴)	4.51 ± 1.8	3.88 ± 0.7	18.71 ± 8.00	25.45 ± 10.30
Mip-1 (x10⁻²)	3.44 ± 0.59	2.84 ± 0.36	5.88 ± 1.88	3.14 ± 0.65
IL-4 (x10⁻⁴)	4.43 ± 1.20	3.51 ± 0.4	11.01 ± 3.7	10.11 ± 2.7
IL-6 (x10⁻³)	1.11 ± 0.22	1.34 ± 0.25	2.32 ± 0.64	2.22 ± 0.59
IL-10 (x10⁻⁴)	2.22 ± 1.00	2.79 ± 0.40	6.51 ± 1.60	4.79 ± 1.3
plasmatic concentration (pg/ml) ± st.dev.	ApoE/-	ApoE/- L-Sel/-	p	
---	--------	---------------	--------	
GM-CSF	10.8 ± 3.3	11.6 ± 6.8	0.805	
IFN-γ	63.5 ± 35.7	43.2 ± 16.0	0.274	
IL-1β	20.9 ± 11.1	15.1 ± 4.2	0.307	
IL-2	13.2 ± 4.3	12.0 ± 5.5	0.697	
IL-4	19.3 ± 6.2	16.4 ± 2.1	0.349	
IL-5	192.7 ± 71.0	125.6 ± 38.8	0.093	
IL-6	37.9 ± 18.0	61.6 ± 20.2	0.070	
IL-10	83.5 ± 11.6	80.1 ± 13.7	0.664	
IL-12	47.2 ± 8.9	46.3 ± 4.7	0.844	
IL-17	132.0 ± 49.1	89.2 ± 10.1	0.090	
MCP-1	86.5 ± 79.1	332.7 ± 230.5	0.035	
RANTES	16.9 ± 11.1	8.9 ± 5.9	0.183	
VEGF	43.2 ± 13.5	65.0 ± 30.0	0.141	
Supplemental Figure 1

A Anti E-Sel

\begin{align*}
\text{ApoE}/- & & \text{ApoE}/- \text{ L-Sel}/- \\
\end{align*}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{SupplementalFigure1A}
\caption{E-Sel}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{SupplementalFigure1B}
\caption{P-Sel}
\end{figure}

\begin{align*}
\% \text{ of plaque area} & \\
\text{ApoE}/- & & \text{ApoE}/- \text{ L-Sel}/- \\
\end{align*}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{SupplementalFigure1C}
\caption{Masson's trichrome}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{SupplementalFigure1D}
\caption{Anti \(\alpha\)-SMA}
\end{figure}

\begin{align*}
\% \text{ of plaque area} & \\
\text{ApoE}/- & & \text{ApoE}/- \text{ L-Sel}/- \\
\end{align*}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{SupplementalFigure1E}
\caption{Collagen}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{SupplementalFigure1F}
\caption{SMA}
\end{figure}
Histochemical and immunohistochemical stainings of aortic arches from mice fed a HCD for 6 weeks: **A)** Similar expression of E-selectin in ApoE−/− and ApoE−/− L-sel−/− mice. **B)** Increased expression of P-selectin in ApoE−/− compared to ApoE−/− L-sel−/− mice (p<0.05) **C)** Collagen area is increased in ApoE−/− L-Sel−/− mice compared to ApoE−/− mice (p<0.01) **D)** Smooth muscle cell area is similar in ApoE−/− and ApoE−/− L-sel−/− mice.

Supplemental Figure 2

Decreased **A)** size (n=5-6; **p<0.01; ##p<0.01) and **B)** cellularity (n=5-6; *p<0.05; #p<0.05) of peripheral lymph nodes (LN) in mice lacking L-sel after 6 and 12 weeks of HCD.
A) Spleen size is increased upon L-sel deletion (n=6; **p<0.01; #p<0.05). B) Spleen cellularity is not affected by L-sel deletion (n=5-6; *p=n.s.) after 6 and 12 weeks of HCD. C) Increased size but unchanged cell composition (table; % of leukocytes ± SEM) of spleens from animals after 6 month of normal diet.
Supplemental Tables

Supplemental Table 1

mmol/L	no	6 weeks	12 weeks			
ApoE⁺	9.16 ± 1.19	10.48 ± 0.77	12.88 ± 1.53	32.31 ± 2.03	30.78 ± 2.53	
ApoE⁺L-sei⁺	1.56 ± 0.13	1.73 ± 0.16	1.25 ± 0.19	1.35 ± 0.23	1.27 ± 0.17	0.94 ± 0.08

Plasma cholesterol and triglyceride levels (n=5-12; p=n.s.) after normal diet or 6 and 12 weeks of HCD.