A novel ^{83m}Kr tracer method for characterizing xenon gas and cryogenic distillation systems

S. Rosendahl,a,1 K. Bokeloh,a E. Brown,a I. Cristescu,b A. Fieguth,a C. Huhmann,a O. Lebeda,c C. Levy,a M. Murra,a S. Schneider,d D. V’enosc and C. Weinheimera

aInstitut für Kernphysik, University of Münster, Wilhelm-Klemm Straße 9, 48149 Münster, Germany
bTritium Laboratory Karlsruhe, Karlsruhe Institute of Technology, Hermann Von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
cNuclear Physics Institute, Academy of Sciences of the Czech Republic, CZ 250 68, Rež near Prague, Czech Republic

E-mail: rosendahl@wwu.de

ABSTRACT: The radioactive isomer ^{83m}Kr has many properties that make it very useful for various applications. Its low energy decay products, like conversion, shake-off and Auger electrons as well as X- and γ-rays are used for calibration purposes in neutrino mass experiments and direct dark matter detection experiments. Thanks to the short half-life of 1.83 h and the decay to the ground state ^{83}Kr, one does not risk contamination of any low-background experiment with long-lived radionuclides. In this paper, we present a new approach, using ^{83m}Kr as a radioactive tracer in noble gases. A method of doping ^{83m}Kr into xenon gas and its detection, using special custom-made detectors, based on a photomultiplier tube, is described. Two applications of this method are presented: firstly, it can be used to characterize the particle flow inside of gas routing systems and determine the circulation speed of gas particles inside of a gas purification system for xenon. Secondly, it is used for rapid estimating of the separation performance of a distillation system.

KEYWORDS: Photon detectors for UV, visible and IR photons (gas); Gas systems and purification; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Very low-energy charged particle detectors

ARXIV ePrint: 1407.3981

1Corresponding author.
1 Introduction

The number of applications of the isomer 83mKr, produced by the decay of 83Rb ($T_{1/2} = 86.2\text{ d}$) via electron capture (see [1]), in nuclear, particle and astroparticle physics has increased in recent years. Since it produces mono-energetic conversion electrons from the highly converted gamma transitions of $E_{\gamma,1} = 32.2\text{ keV}$ and $E_{\gamma,2} = 9.4\text{ keV}$, it has been used as a calibration source in neutrino mass experiments at Los Alamos, Mainz, Troitsk [2–5] and in KATRIN [6–8]. The isomer 83mKr has been applied for the calibration of the time projection chamber (TPC) of the ALICE detector at CERN, which is the world largest TPC with a volume of about 90 m3 [9]. The first studies also demonstrated excellent suitability of 83mKr for single-phase and dual-phase xenon detectors [10, 11].

83mKr does not contaminate low-background detectors, since it has short half-life ($T_{1/2} = 1.83\text{ h}$) and decays into the stable ground state 83Kr. Furthermore, the time behavior for the mixing of 83mKr into a liquid xenon TPC has been investigated in [12] and shows efficient distribution inside the detector volume. It has been, therefore, introduced as an internal calibration source in direct dark matter experiments using liquid noble gases (e.g. LUX [13], DarkSide-50 [14]) and it is planned as a calibration source for XENON1T [15].

Another 83mKr application as a tracer in xenon gas is presented in this paper: emanating from a 83Rb generator, 83mKr is mixed into xenon gas. The 83mKr-decay in the xenon gas is detected with a simple detector system measuring the xenon scintillation light with a photomultiplier tube (PMT).

For the next generation of direct dark matter detection experiments using liquid noble gas detectors, it is essential to reduce radioactive background substantially. One of its components originates in intrinsic contamination of the noble gas itself. For xenon detectors, it is predominantly the
isotope 85Kr released in above-ground nuclear bombs testing and in nuclear waste management, as well as the radon isotopes 219Rn, 220Rn and 222Rn originating from the actinium, thorium and uranium decay chains, which are present in trace amounts in the detector materials. In argon detectors, the cosmogenically produced isotope 39Ar forms the most relevant intrinsic contamination. However, argon detectors can distinguish between electronic recoils, e.g. produced by 85Kr and 39Ar decays, and nuclear recoils by pulse shape discrimination.

The most common technology to remove krypton from xenon is cryogenic distillation [16, 17], where concentrations of natKr/Xe < 20 ppt1 have been reached [18]. For further reduction of the intrinsic radioactive background, the krypton level has to be still decreased, i.e. the distillation process has to be improved. Naturally, an appropriate diagnostic tool is needed to characterize new distillation systems. It has been demonstrated, that monitoring concentrations of natKr/Xe < 1 ppt, using gas chromatography combined with noble gas mass spectrometry is possible [19]. An other technique, which uses atom trap trace analysis is currently under development [20]. Such analytical methods are not suitable for dynamic studies of distillation systems, since they are not rapid enough due to time required for both sample preparation and analysis itself, what makes continuous monitoring of operation very difficult. We, therefore, developed a method of doping the gas with trace amounts of radioactive 83mKr and measured its decay using photomultiplier tubes with quartz windows and a special bi-alkali photo-cathode optimized for the scintillation light from gaseous xenon at 171 nm [21]. Our measuring procedure should also be feasible for other noble gases like argon or neon, however, introducing wavelength shifters or specialized photomultipliers will be necessary.

In the section 2 of this paper, we present the 83mKr-mixing method and the detector setup to measure the 83mKr-decay rate in xenon gas. In the section 3, we describe the 83mKr mixing into xenon gas and the characterization of a xenon gas system. In section 4, we apply our mixing and detection technique to characterize the efficiency of a cryogenic distillation system for removal of krypton from xenon.

2 The 83mKr tracer method

2.1 83mKr decay

The isomeric state 83mKr at an excitation energy of 41.534 keV is populated by the electron capture of 83Rb with a branching ratio of 77.9 %, from which it decays to the ground state of 83Kr by two highly converted transitions. The intermediate state at 9.4058 keV has a very short half-life of 154.4 ns. Therefore, the half-life of 1.83 h of the isomeric state governs decay kinetics. Figure 1 displays the decay scheme. Significant advantage of using 83mKr is that the half-life of 1.83 hours is short enough to produce a rather high signal rate in the decay detectors, as well as still long enough for 83mKr distribution inside of gas and distillation systems. Furthermore, this isomer decays solely via isomeric transition to its stable ground state 83Kr, so there is no risk of contamination of xenon with long-lived decay products. The only potential risk of radioactive contamination represents the mother nuclide 83Rb with half-life of 86.2 d, however, this contamination can be efficiently prevented (see below).

\footnote{1 ppt = 10^{-12} \text{ mol/mol}.}
Figure 1. Decay scheme of 83Rb to 83Kr. The simplified decay scheme of 83Rb to 83mKr, which further decays via two highly converted transitions (total conversion coefficients $\alpha = 2010$ and $\alpha = 17$ respectively) into the stable 83Kr. The scheme is based on [1, 22] and [23].

2.2 Doping of xenon gas with 83mKr

The radionuclide 83Rb was produced on the cyclotron U-120M at the Nuclear Physics Institute, Academy of Sciences of the Czech Republic, by irradiating a medium-pressurized (13 bar) natural krypton gas target by a 26 MeV proton beam with an intensity of 15 μA. After irradiation, the rubidium isotopes were washed out of the target walls by several portions of deionized water almost quantitatively. The volume of the resulting solution was then reduced by evaporation in a quartz beaker under an infrared lamp. Finally a portion of the 83Rb solution with the desired activity was absorbed in zeolite beads of 2 mm diameter having 0.5 nm pores. The beads were dried under infrared lamp and then for 2 h at 350°C [24].

The structure and ion-exchange properties of the zeolite allow efficient emanation of 83mKr, while 83Rb is strongly trapped. The possible release of 83Rb from the beads has been investigated in [25], but no detectable traces of 83Rb were observed (less than 1 mBq after 2 weeks measurement of 1.8 MBq source). The 83mKr generators based on 83Rb adsorbed on zeolite can be, therefore, used in low count rate experiments like XENON100 or KATRIN without the contamination risk.

The emanation efficiency of 83mKr from zeolite is function of time and environment around the source. A freshly prepared source emanates about 80% of 83mKr born in the 83Rb decay. If exposure to air continues, emanation efficiency drops to ca 15% within 3–5 days. When such a source is exposed to the vacuum of 10^{-2} mbar or better, the 83mKr emanation efficiency increases to ca 70% and stays constant for more than a week. The restoration effect cannot be achieved in case of rotary pump vacuum.

The zeolite beads were placed into a stainless steel container linked by a VCR connector to a xenon gas system. A PTFE membrane filter with a pore size of 220 nm and a grid, closing the stainless steel container, prevent the potential release of zeolite microparticles from entering the system, while allowing easy transport of 83mKr. The 83mKr atoms are mixed with the xenon gas by diffusion. When xenon gas is circulating in the system, the 83mKr atoms follow the circulation as well (see also section 3).
Figure 2. Mass attenuation coefficients of photons and CSDA range of electrons in xenon. Top: mass attenuation coefficient μ/ρ for photons with energies up to 3 MeV, taken from [26]. Bottom: CSDA range of electrons in xenon for energies up to 3 MeV, data taken from [27]. The xenon gas density at room temperature is 5.3 mg/cm3, while liquid xenon density at $T=−100^\circ$C and $p=1.6$ bar is 2.8 g/cm3.

2.3 Detection of the 83mKr in gaseous xenon

The radioactive decay of 83mKr to 83Kr can be detected by the interaction of the decay products (conversion, shake-off and Auger electrons as well as X- and γ-rays) with gaseous xenon that produces scintillation light of 171 nm wavelength (VUV light). The scintillation light in gaseous xenon is produced by the de-excitation of xenon dimers that are formed by the recombination of an excited xenon atom with another Xe atom in the ground state [29]. The scintillation light
can be detected by photomultiplier tubes (PMTs) with a quartz window and a special bi-alkali photo-cathode adapted to this wavelength. The measured rate is proportional to 83mKr density in xenon gas.

Figure 2 shows the mass attenuation coefficient of X- and γ-rays and the CSDA\(^2\) range of electrons in gaseous xenon. For typical energies of up to 30 keV, the range of electrons is less than 1 cm in xenon gas at a pressure of 1 bar and the mean free path of the X- and γ-rays ranges from 20 cm for 30 keV to 1 cm at 10 keV. This defines necessary size of a 83mKr decay detector, based on the detection of scintillation light in gaseous xenon.

2.4 The detector design

To detect the scintillation light formed in xenon, a custom detector has been constructed: a 1 inch photomultiplier tube (PMT, type R8520-06-AL, Hamamatsu, Japan) is mounted perpendicularly to a stainless tube of 40 mm diameter to monitor the xenon that passes through the line (see figure 3 left). The same type of PMT is also used in the XENON100 experiment and is also designed for the stable operation at liquid xenon temperature. The bialkali photocathode of the PMT provides a quantum efficiency of $\geq 30\%$ at $\lambda = 178$ nm. A Polytetrafluoroethylene (PTFE) foil inside the stainless steel tube enhances the reflectivity of the walls [30] in order to increase number of scintillation photons detected by the PMT. The PMT is surrounded by a holding structure made out of PTFE to protect the sensitive detector and also to hold it in a defined position. It is attached to a CF-40 flange with threaded rods (see figure 3 right). The flange contains two SHV feedthroughs for a high voltage supply to the PMT (+800 V) and for a read out of the PMT signals. The casing of the PMT is at ground potential. The CF-40 flange is then mounted to a CF-40 T-piece on the outgoing line, while xenon can be flushed through the straight end. The detector is connected to the gas system by using half inch VCR connectors.

Our measurements revealed necessity, in order to achieve high light collection efficiency, to clean the xenon gas by a zirconium-based hot getter (type Monotorr, SAES) from impurities that

\(^2\)The CSDA range is the range of electrons calculated as the integral over the total stopping power in the continuous slow down approximation.
Figure 4. Schematic of the data acquisition system. The PMT is supplied with high voltage, while the raw signals are acquired with a FADC and processed by a PC using a VME interface to the digitizer.

absorb the scintillation light. We continuously run the xenon gas through the getter and gas purity was monitored by measuring xenon humidity with use of a moisture analyzer (type HALO+, Tiger Optics). In order to minimize the impurities that are introduced to the xenon, most of the parts have been cleaned in an ultrasonic bath using an alkaline degreaser (p3-almeco, Henkel) followed by deionized water. The parts that cannot be cleaned in the ultrasonic bath, like cables or bases, have been rinsed with pure ethanol.

The tubing volume, monitored by the PMT, is of cylindrical shape with length of \(\approx 10.5 \) cm. Since the energy is well deposited on short distances, one can estimate the number of scintillation photons produced in xenon due to single \(^{83m}\)Kr decay. The average energy deposition necessary for formation of one electron-ion pair is \(W = 22.0 \) eV for gaseous xenon \([28, 29]\). The average number of photons \(N_\gamma \) can be estimated as the fraction of deposited energy \(E_0 \) and the average energy per electron-ion pair \(W \). For the \(I=1/2\)-to-\(I=7/2^+ \) transition with 32.2 keV energy difference, \(N_{\gamma,32\text{keV}}=E_0/W_{\text{xenon}} = 1460 \) and for the \(I=7/2^+ \) to \(I=9/2^+ \) transition with 9.4 keV, \(N_{\gamma,9\text{keV}} = 427 \). In liquid xenon it has been observed that the number of photons on the latter decay is partly enhanced due to the ionization following the first decay \([31]\). About 1900 emitted photons are expected from the sum of the two decays (\(\sim 41 \) keV).

The PMT signals are acquired using an eight channel flash analog to digital converter (FADC) (type SIS3320, Struck Innovative Systeme) without any fast amplifiers (see figure 4). The FADC provides a 12 bit resolution and was used with 100 MHz sampling rate. It can be readout by a VME interface connected to the lab PC with a custom acquisition program. For the PMT supply voltage of +800 V a NIM module (type N470, CAEN) was used.

Since scintillation light pulses in xenon are very fast, it is possible to resolve the two transitions in the \(^{83m}\)Kr decay. A typical waveform of a \(^{83m}\)Kr decay event is shown in figure 5. The pulse heights of the two transitions are different due to the different energies of the decay steps (see figure 1).

3 Characterizing the mixing of \(^{83m}\)Kr in a xenon gas system

The \(^{83}\)Rb source, emanating \(^{83m}\)Kr, and the \(^{83m}\)Kr decay detector were attached to a xenon gas system, which allowed for circulating the gaseous xenon. The scheme of the setup is shown in
Figure 5. Example of a double coincidence waveform. This plot shows the waveforms that are acquired with a sampling rate of 100 MHz from the 83mKr decay detectors. In this waveform, the double coincidence signal represents the two resolved transitions in the 83mKr decay.

Figure 6. This system has been set up as a demonstrator for a gas distribution and purification system for the dark matter experiment XENON1T.

The gas circulation through electro-polished stainless steel lines of half-inch outer diameter is driven by a membrane pump (type N143AN.12E, KNF) and controlled with a mass flow controller (type 1579A, MKS), calibrated for xenon. The pressure inside the system is measured at several locations by using capacitance manometer (type 121A, MKS). The routing of the gas is controlled with bellow-sealed valves, either remotely controlled, pneumatic valves (type SS-8BG-VCR-5C, Swagelok, in figure 6 denoted by PV1 to PV9) or manually operated valves (type SS-8BG-VCR, Swagelok, in figure 6 denoted by MV1 to MV7). The gas can be routed through the getter (PV3 closed, PV1 and PV2 open), while the moisture analyzer is mounted to a bypass after the getter (PV6 closed, PV4 and PV5 open) and allows to measure the fraction of water in xenon down to 200 ppt. Since the device needs a very low flow rate of ≈ 1 slpm of xenon, compared to the flow rate of 8 slpm during normal operation, the majority of the gas passes the analyzer through the flow controller.

The valves MV3–MV5 allow the gas routing to the 83mKr decay detector either directly, or via a tube, immersed in a liquid nitrogen bath. The latter one can be used to test the temperature dependence of the krypton collection efficiency. The source also has an additional valve (MV7) to separate it completely from the system. This section of the system is also connected to a vacuum pump (Vac) by the valve MV2 which allows for the evacuation of these volumes independently from the rest of the circuit.

The pneumatic valves PV7 and PV9 were closed, while PV8 remained open and xenon was circulating through the closed circuit and the getter. Before the collection was started, the volume...
above the 83Rb containing zeolite beads was evacuated to $\approx 3 \cdot 10^{-3}$ mbar, by opening MV2-MV6, while MV1 and MV7 remained close. For the collection, MV3-MV6 remained open. MV2 was closed, while MV7 was opened and 83mKr, emanating from the beads, was collected in the section for 6 hours.

After the collection, the valve to the source MV7 was closed. The pneumatic valves PV7 and PV9 as well as MV1 were opened and PV8 was closed. The 83mKr then mixed with the circulating xenon, which was routed past the detector. On figure 7, the time evolution of a measurement of the first 800 s is shown. After the opening of the valve the signal rate peaks to a maximum of ≈ 500 cps and than decreases in a damped oscillation until it reaches a constant rate of ≈ 160 cps on the detector. The oscillation is a function of the xenon circulation flow rate. Since the krypton cloud is transported by the xenon flow around the closed loop, it forms a bolus in the beginning that
Figure 7. 83mKr decay rate in closed loop after injecting 83mKr at $T = 118$ s. The fit described in equation (3.1) is shown in red, while the individual single Gaussian terms of equation (3.1) are displayed in green.

diffuses with time and asymptotically approaches a uniform 83mKr concentration in xenon circuit, while slowly decaying.

We see the 83mKr-decays in the detector when the 83mKr passes by for the first time at $t_0 \approx 118$ s. Its decay gives rise to a very sharp Gaussian peak with a variance σ_0^2. After having cycled one time through the setup, the 83mKr passes by the 83mKr-decay detector at $t_0 + T_{\text{per}} \approx 155$ s. Now the time distribution already has a Gaussian shape with a width $\sigma = \sqrt{\sigma_0^2 + \sigma_1^2}$ due to diffusion of the 83mKr in the xenon. In fact, the process that is described here, is a diffusion process in a turbulent gas stream, driven by the circulation pump. To describe the data, we assume a further Gaussian broadening by σ_1 and a further delay of the peak by T_{per} per cycle. The overall rate is multiplied by an exponential function to describe the radioactive decay of 83mKr, see the definition of the function $f(t)$ in equation (3.1). We fit this function $f(t)$ to the data from the first Gaussian peak on, see figure 7, whereas the first peak is damped with a correction factor C_{DT}, that takes the dead time of the data acquisition for the high rate of the first transit of the 83mKr into account.

$$f(t) = a + b \left(\frac{C_{\text{DT}}}{\sqrt{2\pi}\sigma_0} \cdot e^{-\frac{(t-t_0)^2}{2\sigma_0^2}} + \sum_{n=1}^{N} \frac{1}{\sqrt{2\pi}\sqrt{\sigma_0^2 + n\sigma_1^2}} \cdot e^{-\frac{(t-(t_0+nT_{\text{per}}))^2}{2(\sigma_0^2 + n\sigma_1^2)}} \cdot e^{-t/\tau} \right)$$

(3.1)

From the fit, the period of the oscillation has been determined to be $T_{\text{per}} = (36.9 \pm 0.1)$ s, which is the time needed by gas particles to perform one circle. This value can be compared to the measurement of the gas circulation by the flow controller. The volume of the system has been estimated to be ≈ 3000 cm3 (with an uncertainty of 6%) by using a known volume of gas and measuring the pressure decrease after expanding it to the system. With a forced gas flow of $(8 \pm$
The experimental data points are shown in blue, while the described fit is shown in red. The broadening of the Gaussians for each passing of the 83mKr by the detector due to diffusion results finally in a purely exponential decrease of the count rate in the 83mKr-decay detector.

Since the valve to the 83Rb source was closed, the amount of 83mKr particles inside the xenon decreases with the half-life of 83mKr. From the fit of the function $f(t)$, the 83mKr half-life was calculated to be $(1.56 \pm 0.04)\text{ h}$. In the figure 8, the complete evolution of the detector signal in time is shown. The measured half-life is lower compared to the published value of $(1.83 \pm 0.02)\text{ h}$ [1]. One systematic uncertainty is introduced by only fitting the background in the beginning, neglecting the evolution of the background over time. But the main reduction of the effective half-life is coming from losses of 83mKr by diffusion into the parts of the system, where no circulation takes place, and by 83mKr adsorption at the system walls. The former can happen for example at pipes that lead to other subsystems.

Besides the time evolution of the rate, we could also determine energy spectra by integrating the signals and distinguishing between the two decay transitions of the 83mKr. After integrating the main signal, we identified and integrated the signal of the second transition as well. The result is shown in the figure 9.
Figure 9. Integrated spectrum of the double coincidence signals. The pulses of the first and second transition were selected from the measurement and integrated. The first transition at \(\sim 32 \) keV peaked at \(\approx 350 \) mV-ns (black), while the second transition at \(\sim 9 \) keV peaked at \(\approx 120 \) mV-ns (red).

The black distribution is related to the first transition of \(E_{\gamma,1} = 32.2 \) keV while the red distribution is related to the second transition at \(E_{\gamma,2} = 9.4 \) keV. From figure 9 the mean of the first transition has been determined to \(m_{\gamma,1} = (453.6 \pm 0.4) \) mV-ns. The peak maximum is at 350 mV-ns with a left (right) half width (HWHM) of 50% (73%). With an anode read-out resistor of 50 \(\Omega \) and a photomultiplier gain of \(\approx 2 \cdot 10^6 \) the mean value corresponds to \(\approx 28.4 \) detected photo electrons (0.88 pe/keV). The detector efficiency amounts to about \(\varepsilon_{\gamma,1} = 1.9\% \) considering the 1460 expected scintillation photons for the first transition (see section 2.4).

For the second transition with \(E_{\gamma,2} = 9.4 \) keV the mean has been determined to be \(m_{\gamma,2} = (188.0 \pm 0.3) \) mV-ns. The peak maximum is at 120 mV-ns with a left (right) half width (HWHM) of 65% (87%). The mean value corresponds to \(\approx 11.8 \) detected photo electrons (1.25 pe/keV). Compared to the 427 expected scintillation photons for the second transition (see section 2.4) the corresponding detection efficiency amounts to \(\varepsilon_{\gamma,2} = 2.8\% \).

As one can see, the energy resolution is rather poor: the peaks are very wide, which is also reflected by the resolution for the two distributions. Both distributions are overlapping each other. This can be explained by the high non-uniform light collection efficiency, which is limited by the usage of only one PMT together with a non-optimized PTFE reflector geometry and the range or energy deposition of the particles.

A calculation of the light yield ratio of electronic recoils \(R_e \), which is the ratio of the measured light yields (pe/keV) of the 9.4 keV transition and the 32.2 keV transition, as used in [31], gives a value of \(R_e \approx 1.4 \), compared to \(R_e = 1.052 \pm 0.005 \), measured in liquid xenon and presented in the same work [31]. The origin of this discrepancy is very likely caused by imperfections of the
light collection efficiency in combination with the particle ranges and the location of the energy deposition for the two transitions (see figure 2). The former assumption is also reflected in the large width of the distributions. Concerning the second argument, the density and thus the particle and energy deposit is very different in liquid xenon used in reference [31] with respect to gaseous xenon used in this work. An improvement of the uniformity of the light yield as function of energy might be achieved by using data-quality cuts but has not been investigated here.

We would like to note, that these detectors have been designed for the 83mKr tracer method to just count the number of events. The results presented here indeed demonstrate, that they are currently not feasible for spectroscopic applications.

4 Application: testing of separation efficiencies in cryogenic distillation

This tracer method was used for testing the separation efficiency of a cryogenic distillation stage. The scheme of the setup is shown in figure 10.

The xenon is liquefied at temperature of $-98^\circ C$ on a copper cooling block equipped with thin cooling fins to maximize the condensation surface. To keep the xenon clean, the condensation station is made from oxygen-free high thermal conductivity (OFHC) copper as well as stainless steel (alloy 316L). In addition, all parts have been cleaned in an ultra-sonic bath. The cooling was performed with a cryo cooler (type CP50, Oerlikon-Leybold) operated at its maximum cooling power of 100 W, while the temperature of $-98^\circ C$ was stabilized with a heater cartridge of variable heating power controlled by a temperature controller (Model 336, Lakeshore). The condensation station has two outputs, one for collecting xenon from the liquid phase and the other, located above the liquid level, for extraction xenon vapors. The incoming flow is controlled with a mass flow controller (type 1479B, MKS) with a maximum flow rate $q = 20$ slpm with an error of $\delta q = 0.2$ slpm, which is 1% of the maximal flow rate. The flow at the gas out line is controlled using a second flow controller of the same type (1479B) and the gas is fed back to the circuit. Since the circulation is driven in a closed loop, the flow at the liquid out line is defined by the inlet flow and the gas out flow in equilibrium. This construction allows to control the fraction of xenon passing the gas out line relative to the liquid out line. Increasing the gas out flow would lead to a decrease in the liquid out flow due to particle conservation in the closed loop.
Figure 11. Rates measured by the 83mKr decay detectors with the system filled and circulated with gaseous xenon only. The plot shows the rate evolution on the three 83mKr decay detectors for the system without any liquid load inside the condensation station. The valve to the 83Rb generator is opened at ≈ 2200 s followed by equal distribution of 83mKr in the whole system. The blue and the red lines lay closely together.

There are three 83mKr decay detectors mounted inside the system, one at the inlet and by one at each outlet. The 83mKr particle flow can be monitored for different flow configurations with these detectors in combination with the flow information and pressure readings at different points of the system.

In figure 11 the rates on all three 83mKr decay detectors were measured at room temperature ($T=20^{\circ}$C). The temperature at the cryo cooler is far above the xenon liquefaction temperature and no liquid level affects the gas flow. The 83mKr is distributed in the whole system, reaching an equilibrium. These measurements are necessary to determine the relative detector efficiencies. As one can see, the detector at the gas out line displays much higher rate (factor ≈ 1.6) than the other two detectors, although 83mKr is equally distributed in the system. All three detectors are identical in the geometry (neglecting tolerances in the manufacturing process), but they are all operated with the same voltage, although they exhibit different gains at this voltage. In different gain calibration measurements we observed, that differences of up to a factor 6 in the gain of different PMT for the same voltage are possible. Furthermore, the signal threshold in the data acquisition was the same for the three detectors. Therefore, difference of 1.6 in a single PMT can easily be obtained. These differences in detector efficiencies must be taken into account in the further description (see equation (4.1)).

The reservoir was then filled with certain amount of liquid xenon, by turning on the cryo cooler. For the measurement shown in figure 12, the inventory was ≈ 360 ml of liquid xenon. During the performance tests, the temperature at the condensing station was stabilized to -98°C and the circulating xenon gets liquefied.

In order to determine the separation efficiency, it is necessary to calculate the 83mKr particle balance in the system from the measured rates at the detectors.
Figure 12. Krypton from xenon separation in the condensation station filled with dual phase xenon as measured by the $^{83}\text{m}^\text{Kr}$ tracer method with the $^{83}\text{m}^\text{Kr}$-decay detectors. Top: relative $^{83}\text{m}^\text{Kr}$ flow rates according to the definition of F_g and F_l; middle: separation factor S; bottom: flow rates. The steps in the rates are due to different flow ratios between gaseous and liquid outputs.

In general, the $^{83}\text{m}^\text{Kr}$ particle flux ($\dot{N}(^{83}\text{m}^\text{Kr})$) can be expressed by the product of concentration $c(^{83}\text{m}^\text{Kr})$ and the total particle flux \dot{N}_{Tot}. While the concentration is proportional to the rate r at the detector, the total particle flux q is measured by the flow controller.

$$\dot{N}(^{83}\text{m}^\text{Kr}) = c(^{83}\text{m}^\text{Kr}) \cdot \dot{N}_{\text{Tot}} = r \cdot q \cdot \frac{\tau}{p} \cdot V_{\text{det}}$$ \hspace{1cm} (4.1)

where $\tau = T_{1/2} / \ln(2)$ is the mean life time of $^{83}\text{m}^\text{Kr}$ and V_{det} is the effective detector volume that reflects the individual detector efficiencies. The pressure p is measured by capacitance manometer (PTU-S, Swagelok).

In the next step, one can define the ratio between the measured signal of outgoing $^{83}\text{m}^\text{Kr}$ atoms at the gas outlet and ingoing $^{83}\text{m}^\text{Kr}$ atoms at the gas inlet F_g:

$$F_g = \frac{\dot{N}(^{83}\text{m}^\text{Kr})_{\text{gout}}}{\dot{N}(^{83}\text{m}^\text{Kr})_{\text{gin}}} = \frac{c(^{83}\text{m}^\text{Kr})_{\text{gout}}}{c(^{83}\text{m}^\text{Kr})_{\text{gin}}} \cdot \frac{\dot{N}_{\text{Tot}}_{\text{gout}}}{\dot{N}_{\text{Tot}}_{\text{gin}}} \cdot \frac{r_{\text{gout}} \cdot q_{\text{gout}} \cdot p_{\text{gin}}}{r_{\text{gin}} \cdot q_{\text{gin}} \cdot p_{\text{gout}}} \cdot \frac{V_{\text{det,gin}}}{V_{\text{det,gout}}}$$ \hspace{1cm} (4.2)

The same is valid for the ratio between the measured signal of outgoing $^{83}\text{m}^\text{Kr}$ atoms at the liquid out to the ingoing $^{83}\text{m}^\text{Kr}$ atoms at the liquid inlet F_l except for a correction factor T_{Res}.

$$F_l = \frac{\dot{N}(^{83}\text{m}^\text{Kr})_{\text{lout}}}{\dot{N}(^{83}\text{m}^\text{Kr})_{\text{gin}}} = \frac{c(^{83}\text{m}^\text{Kr})_{\text{lout}}}{c(^{83}\text{m}^\text{Kr})_{\text{gin}}} \cdot \frac{\dot{N}_{\text{Tot}}_{\text{lout}}}{\dot{N}_{\text{Tot}}_{\text{gin}}} \cdot \frac{r_{\text{lout}} \cdot q_{\text{lout}} \cdot p_{\text{gout}}}{r_{\text{gin}} \cdot q_{\text{gin}} \cdot p_{\text{lout}}} \cdot \frac{V_{\text{det,gin}}}{V_{\text{det,lout}}} \cdot T_{\text{Res}}$$ \hspace{1cm} (4.3)
The factor T_{Res} takes the half-life of ^{83m}Kr into account and is very important for long residence times of ^{83m}Kr atoms in the liquid phase. The separation factor can be then written as: $S = F_g/F_l$. A detailed description of the derivation of equations (4.2) and (4.3) as well as the determination of T_{Res} will be given in [33].

In figure 12 the time evolution of F_g and F_l is shown in the top plot, while the corresponding separation factor S is shown in the middle one. The data, shown in figure 12 has been corrected for the detector efficiencies as described in the formulas 4.2 and 4.3. During one measurement, different values for the gas out flow have been applied, as illustrated in the bottom plot. Since krypton is the more volatile component compared to xenon (at 2 bar the condensation temperature is $\approx -143.98^\circ\text{C}$), it should preferably stay in the gas phase, what could be verified. At equal flow rates of 2.5 slpm at both outlets, the separation factor has been determined to be $S \approx 15$ for the given conditions. For flow rates of more than 3 slpm in the gas out line, the pressure inside the system got unstable. Therefore, the measurements are only performed up to 3 slpm. It can also be observed, that with increasing flow rate at the gas out line, the separation factor S is increasing. This can be explained by different residence times of krypton particles above the liquid xenon phase. With increasing flow rate the residence time gets shorter and therefore the probability for the krypton atom to transfer to the liquid xenon reservoir is reduced.

5 Conclusion

The suitability of ^{83m}Kr as a radioactive tracer in xenon gas has been demonstrated for the characterization of a gas purification system and a single stage distillation facility. For this application, custom-made detectors based on PMTs were designed and tested. They allow to measure the xenon scintillation light that is produced from the interactions of X-rays, γ's and electrons of the ^{83m}Kr decay with gaseous xenon. This method allows the characterization of gas circulation systems as described in section 3. A circulation velocity of $T_{\text{per}} = 37\text{s}$ has been measured and allows for a cross calibration of commercial flow controllers. In a second application, the separation efficiency of a single stage distillation system was demonstrated on one measurement that revealed separation factor of $S \approx 15$ for equal flow rates of 2.5 slpm at both outlets. As it had been expected, krypton as the more volatile component preferred to stay in the gas phase. This technique can also be used to monitor the stability of larger distillation systems. Furthermore, the signal losses due to the radioactive decay can be used to determine the residence time of ^{83m}Kr atoms in such systems. Besides xenon, this method is applicable also to other noble gases, but that would require development of new detectors to monitor the scintillation light of different wavelengths or to use wavelength shifters.

Acknowledgments

The R&D for this tracer method are funded by DFG (WE 1843/7-1) and by Helmholtz Alliance of Astroparticle Physics HAP. Different aspects of the project and the contributions to the XENON1T experiment are supported by DFG Großgeräte (INST 211/528-1 FUGG, funded together with the state NRW and University of Münster) and by BMBF (05A11 PM1). The preparation of the ^{83m}Kr sources is supported by the Czech Science Foundation, GACR - grant number P203/12/1896 and by the CANAM project, funded by the Ministry of Education, Youth and Sport of the the Czech Republic (project no. LM2011019).
References

[1] Nuclear chart, Brookhaven National Laboratory, http://www.nndc.bnl.gov/chart/.

[2] R.G.H. Robertson et al., Limit on anti-electron-neutrino mass from observation of the beta decay of molecular tritium, Phys. Rev. Lett. 67 (1991) 957.

[3] A. Picard et al., Precision measurement of the conversion electron spectrum of 83mKr with a solenoid retarding spectrometer, Z. Physik A 342 (1992) 71.

[4] B. Bornschein, J. Bonn, L. Bornschein, E.W. Otten and C. Weinheimer, Self-charging of quench condensed tritium films, J. Low Temp. Phys. 131 (2003) 69.

[5] V.N. Aseev et al., Energy loss of 18 keV electrons in gaseous T$_2$ and quench condensed D$_2$ films, Eur. Phys. J. D 10 (2000) 39.

[6] KATRIN collaboration, J. Angrik et al., KATRIN design report 2004, Wissenschaftliche Berichte FZ Karlsruhe (2004) 7090.

[7] M. Zboril et al., Ultra-stable implanted 83Rb83mKr electron sources for the energy scale monitoring in the KATRIN experiment, 2013 JINST 8 P03009 [arXiv:1212.5016].

[8] M. Erhard et al., High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment, 2014 JINST 9 P06022.

[9] J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950].

[10] L.W. Kastens, S.B. Cahn, A. Manzur and D.N. McKinsey, Calibration of a liquid Xenon detector with 83mKr, Phys. Rev. C 80 (2009) 045809 [arXiv:0905.1766].

[11] A. Manalaysay et al., Spatially uniform calibration of a liquid xenon detector at low energies using 83mKr, Rev. Sci. Instrum. 81 (2010) 073303 [arXiv:0908.0616].

[12] L.W. Kastens, S. Bedikian, S.B. Cahn, A. Manzur and D.N. McKinsey, A 83mKr source for use in low-background liquid xenon time projection chambers, 2010 JINST 5 P05006 [arXiv:0912.2337].

[13] LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214].

[14] DarkSide-50T collaboration, Alexander et al., DarkSide search for dark matter, 2013 JINST 8 C11021.

[15] XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. C12-02-22 (2013) 93 [arXiv:1206.6288].

[16] K. Abe et al., Distillation of liquid xenon to remove krypton, Astropart. Phys. 31 (2009) 290 [arXiv:0809.4413].

[17] Z. Wang et al., Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors, Rev. Sci. Instr. 85 (2014) 015116.

[18] XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988].

[19] S. Lindemann and H. Simgen, Krypton assay in xenon at the ppq level using a gas chromatographic system and mass spectrometer, Eur. Phys. J. C 74 (2014) 2746 [arXiv:1308.4806].

[20] E. Aprile, T. Yoon, A. Loose, L.W. Goetzke and T. Zelevinsky, An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors, Rev. Sci. Instrum. 84 (2013) 093105 [arXiv:1305.6510].
[21] T. Takahashi, S. Himi, M. Suzuki, J. Ruan and S. Kubota, *Emission spectra from Ar-Xe, Ar-Kr, Ar-N$_2$, Ar-CH$_4$, Ar-CO$_2$ and Xe-N$_2$ gas scintillation proportional counters*, *Nucl. Instrum. Meth.* **205** (1983) 591.

[22] D. Venos, O. Dragoun, A. Špalek and M. Vobecký, *Precise energy of the weak 32-keV gamma transition observed in 83mKr decay*, *Nucl. Instrum. Meth.* **A 560** (2006) 352.

[23] M. Slezak, D. Venos, O. Lebeda and T. Trojek, *Precise energy of the 9.4 keV gamma transition observed in the 83Rb decay*, *Eur. Phys. J. A* **48** (2012) 12.

[24] D. Venos, A. Spalek, O. Lebeda and M. Fiser, *83mKr radioactive source based on 83Rb trapped in cation-exchange paper or in zeolite*, *Appl. Radiat. Isotopes* **63** (2005) 323.

[25] V. Hannen et al., *Limits on the release of Rb isotopes from a zeolite based 83mKr calibration source for the XENON project*, **2011 JINST** 6 P10013 [arXiv:1109.4270].

[26] J.H. Hubbell and S.M. Seltzer, *Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest*, http://www.nist.gov/pml/data/xraycoef/index.cfm (2004).

[27] *ESTAR program*, provided by the National Institute of Standards and Technology (NIST) U.S. Department of Commerce, http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html (2014).

[28] R.L. Platzman, *Total ionization in gases by high-energy particles: an appraisal of our understanding*, *Int. J. Appl. Radiat. Isot.* **10** (1961) 116.

[29] E. Aprile and T. Doke, *Liquid xenon detectors for particle physics and astrophysics*, *Rev. Mod. Phys.* **82** (2010) 2053 [arXiv:0910.4956].

[30] C. Silva et al., *Reflectance of Polytetrafluoroethylene (PTFE) for xenon scintillation light*, *J. Appl. Phys.* **107** (2010) 064902 [arXiv:0910.1056].

[31] E. Aprile et al., *Measurement of the scintillation yield of low-energy electrons in liquid xenon*, *Phys. Rev. D* **86** (2012) 112004 [arXiv:1209.3658].

[32] MKS instruments, *Datasheet type 1579 digital mass flow controller for high flow rates*, http://www.mksinst.com/docs/UR/1579DS.pdf (2006).

[33] S. Rosendahl et al., in preparation.