A Review Study on Sand Compaction Piles in Cohesive Soils and as a Liquefaction Resistance Technique

Aarthi N
KPR Institute of Engineering and Technology, Coimbatore, India
aarthicivilian@gmail.com

Abstract - The paper presents a detailed review of the state-of-the-art ground improvement technique namely sand compaction piles. The technique being originated in Japan has flourished around the globe for its efficient characteristics to act as a reinforcing member when it is installed in clays and is recognized as one of the best methods to prevent liquefaction. Known for its larger bandwidth of advantages, articles summarising the literature contribution on the technique are found to be very limited. Therefore, an attempt has been made to review the noteworthy literature that provides valuable information on the subject. An overview of the literature present on sand compaction piles installed in cohesive soils targeted to meet various demands like increasing bearing capacity, settlement, etc., and the technique’s efficiency in mitigating liquefaction associated problems are discussed.

Keywords - sand compaction pile, cohesive soils, liquefaction, review study, bearing capacity

1. Introduction
Sand compaction pile (SCP), a pile made of sand, that is compacted upon installation is often used as a pile in reclaimed lands, loose cohesionless stratum, soft soils (clay), to prevent liquefaction. The principle and working mechanism of the SCP technique varies in each and every mentioned soil stratum as mentioned above, including its performance attributes [1],[2]. To name a few, the SCP acts as a reinforcing member and drainage element when installed in cohesive soils [3]. It acts as an effective technique to withstand the aftermath effects of liquefaction in Japan, where the highest probability of the world’s earthquakes often occurs [4]. The present paper deals with the summarization of noteworthy literature available on the SCP technique that is implemented in soft soils and to prevent earthquake-induced liquefaction [5].

2. SCP Improved Cohesive Soils
Sand compaction piles have been in use for more than 5 decades since 1956 to improve the weak and dredged soils [6]. Many of the earlier successfully implemented projects such as offshore land reclamation projects (e.g., International Airports such as Kansai, New Kitakyusha, Kobe, and Chubu, Japan; Chep Lap Kok Airport, Hong Kong; Incheon Airport, South Korea), onshore structures like oil storage facilities in refineries, coastline structures such as port and harbor facilities, etc., stands as an evidence for the same [7]. The SCPs often provide a cost-effective and fast solution to improve the loose sandy deposits and soft clayey soils for the large-scale land reclamation work from the sea [8]. The intention of employing the SCP treatment in cohesive soils is to enhance the load-carrying capacity and reduce the probable settlement [9],[10],[11]. The sand piles in soft soils act as a stiff element (drains) and also accelerate the drainage movement by providing a drainage path that eventually results in decreased time required for primary consolidation of saturated clayey grounds [12],[13].

The SCPs in clays play a similar role as that of the preloading technique in clays which is often aimed to reduce the excessive primary settlement of the improved ground well before the execution of the superstructure [14],[15],[16]. The performance of the SCPs in soft soils evaluated before and after the treatment has been well documented in the earlier studies as presented in Table 1. The table includes some of the available literature on the SCPs in clays focusing mainly on the laboratory and field case studies [17]. It is evident from the table that the consolidation and deformation behaviour, pressure-settlement response, effects of SCP installation in the clay deposit with and without smear, shear strength, load transfer, bearing capacity, and settlement characteristics of these composite systems are addressed extensively in the literature [18].

Literature	Description
[21]	Mechanical response of soft cohesive deposit improved with SCP
[19]	Compressibility characteristics of cohesive soils reinforced by SCP
[23]	Bearing capacity characteristics of soft ground improved by SCP with low ARR

@ IJAICT India Publications 2020
M.G. Sumithra et al.(eds.). Advances in Computing, Communication, Automation and Biomedical Technology, https://doi.org/10.46532/978-81-950008-1-4_078
3. SCPs For Liquefaction Resistance

The SCP method is implemented in sands and silty grounds to address the following applications: increase of bearing capacity, reduction of total and differential settlements, preventing stability failure of structures, and reduction of liquefaction hazards [19],[20],[21],[22]. Wider use of the SCPs as liquefaction countermeasures for different structures started in the aftermath of the Niigata Earthquake in 1964. The efficiency of the SCP method as the liquefaction countermeasure was identified when a foundation of the tank constructed on the SCP treated ground prevented the liquefaction during a massive earthquake that occurred near the coast of Miyagi Prefecture in 1978, Japan [23],[24],[25],[26]. Followed by which a survey undertaken on the buildings that showed that these buildings stood firmly on the SCP improved grounds [27],[28],[29],[30]. This stated that the implementation of the method successfully served as an effective countermeasure against the liquefaction. More details on the classic success story of the SCP method can be obtained from the case studies related to the Nihonkai–Chubu Earthquake in 1983, Japan [31],[32].

Later on, extensive studies have been carried out to identify the possible reasons why the SCP improvement averted the earthquake-induced liquefaction efficiently [33],[34]. The evaluation of liquefaction resistance of soils can be performed using the approaches suggested by [35],[36],[37],[38].

The SCP method is considered since then as a well-established effective liquefaction countermeasure technique in Japan [39],[40]. The competency of the method and the extensive studies performed on the SCP improved grounds as liquefaction countermeasures are presented in Table 2. The table includes selected studies performed in the laboratory and the field, and along with a few case studies [41],[42]. In practice, the inclusion of SCPs in improving the engineering properties of the original sandy grounds is estimated indirectly by performing the SPT and CPT tests, before and after the improvement of the sandy deposits [43]. The field implementation procedure of the SCP method is often carried out by using the following methodology: Recording the initial SPT-N value of the natural ground to be treated, computing liquefaction potential, and implementing the SCP technique by targeting a final SPT-N value by improving the strength properties of the ground such that the liquefaction potential of the deposit can be minimized [44],[45]. These studies either employed the SPT or CPT or dynamic tests as tools to monitor the performance of the improved ground against the liquefaction hazards [46].

Reference	Description
[42]	SCP as liquefaction countermeasure as part of Hsin-Ta power plant site, Taiwan
[26]	Liquefaction characteristics of granular soils with fines
[1]	Liquefaction analysis of SCP improved cohesionless ground
[43]	Measures to counter the liquefaction induced settlement

Table 2: Overview of selected publications on SCP as a liquefaction countermeasure
nutshell would give an overall view of the SCP method when a detailed insight into the technique's behaviour and performance and will highlight the SCP technique's competency and consistency maintained throughout the years. For budding researchers and industry people, this paper in nutshell would give an overall view of the SCP method when implemented in practical applications.

4. Conclusion
The summarization is attempted since the significance of the amalgamation of the past literature available on sand compaction piles related to cohesive soil improvement and liquefaction resistance is identified. The article would provide a detailed insight into the technique's behaviour and performance and will highlight the SCP technique’s competency and consistency maintained throughout the years. For budding researchers and industry people, this paper in nutshell would give an overall view of the SCP method when implemented in practical applications.

References
[1] T Akiyoshi, K Fuchida, H Matsumoto, T Hyodo and HL Fang “Liquefaction analyses of sandy ground improved by sand compaction piles”. Soil Dynamics and Earthquake Engineering 12(5): 299–307, 1993.
[2] MS Ashwathy, M Bala Subramanian, Sugavanesanwar and Jayapragash V “Performance of sand compaction piles in sandy silt”. In Proceedings of Indian Geotechnical Conference. Roorkee, India, 1, pp. 1-4, 2013.
[3] YK Chow “Settlement analysis of sand compaction pile”. Soils and Foundations 36(1): 111-113, 1996.
[4] A Ezoe, K Harada and J Otani “Sand compaction pile method and its applications”. International Journal of Geosynthetics and Ground Engineering 5(24): 1-10, 2019.
[5] MZA Gutub and AM Khan “Shear strength characteristics of Madinah clay with sand compaction piles”. Geotechnical Testing Journal, 21(4), 1998.
[6] K Harada “Non-vibratory SCP method as countermeasure against liquefaction along coastal areas – Improvement effectiveness during the 2011 Off the Pacific Coast of Tohoku Earthquake”. Doboku Sekou 2011, No.12: 54-57, 2011.
[7] K Harada and J Ohbayashi “Development and improvement effectiveness of sand compaction pile method as a liquefaction countermeasure”. Soils and Foundations 57(6): 980-987, 2017.
[8] PG Hari, N Sankar and S Chandrarakan “Role of clay properties in improvement using small stone piles”. Geotechnical Research 3(1): 17-28, 2016.
[9] M Hatanaka, L Feng, N Matsumura and H Yasu “A study on the engineering properties of sand improved by the sand compaction pile method”. Soils and Foundations 48(1): 73–85, 2008.
[10] H He, Y Lin, J Li and N Zhang “Immersed tunnel foundation on marine clay improved by sand compaction piles”. Marine Geosources & Geotechnology 36(2): 218-226, 2018.
[11] IM Idriss and RW Bouldner “Soil Liquefaction during Earthquakes”, Earthquake Research Institute Report, ICC Macmillan Inc., United States of America, 2008.
[12] K Ishihara, Y Kawase, M Nakajima “Liquefaction characteristics of sand deposits at an oil tank site during the 1978 Miyagiken-Oki earthquake”. Soils and Foundations 20(2): 97–112, 1980.
[13] K Ishikawa and S Yasada “Liquefaction along Tokyo Bay during the 2011 Tohoku – Pacific Ocean earthquake in Japan”. In Proceedings of 2nd International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Taormina, Italy, pp. 38-41, 2012.
[14] JSCE Japan Society of Civil Engineering “Investigative Report on the 1983 Nihonkai-Chubu Earthquake” 1986.
[15] A Juneja and B Mir “Behaviour of clay reinforced by sand compaction pile with smear”. Proceedings of the ICE- Ground Improvement 165(2): 111-124, 2012.
[16] A Juneja, B Mir and A Parihar “Effect of sand compaction pile installation in model clay bed”. International Journal of Geotechnical Engineering 5(2): 199-209, 2011.
[17] JB Jung, Lee K-II and JS Lee “Consolidation behaviour of clay ground improved by sand compaction piles”. KSCE Journal of Civil Engineering 3(2): 205-212, 1999.
[18] SS Jung, K Soo-II and K Jackwon “Study on load transfer characteristics of sand compaction piles in soft soil deposits”. Journal of the Korean Geotechnical Society 20(7): 183-196, 2004.
[19] J Juram and A Guermazi “Settlement response of soft soils reinforced by compacted sand columns”. Journal of Geotechnical Engineering 114(8), 1988.
[20] K Kim and SH Lee “Comparison of bearing capacity characteristics of sand and gravel compaction pile treated ground”. KSCE Journal of Civil Engineering 9(3): 197-203, 2005.
[21] T Kimura, J Takemura, N Suemasa and A Hirooka “Mechanical behavior of soft clay improved with sand compaction piles”. In Proceedings of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Bangkok, Thailand. pp. 577-594, 1985.
[22] H Kinoshita, K Harada, M Nozu and J Oohbahayshi “Sand compaction pile technology and its performance in both sandy and clayey grounds”. In Proceedings of International Symposium on Ground Improvement, Brussels, Belgium. Paper No. TC – 211, 2012.
[23] M Kitazume “The Sand Compaction Pile Method”. Taylor & Francis, London 2005.
[24] AM Krishna and MR Madhav “Densification and dilation effects of granular piles in liquefaction mitigation”. Indian Geotechnical Journal 38(3): 295–316, 2008.
[25] J Kwon, C Kim, JW Im, Yoo “Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay”. Geomechanics and engineering 12(4): 175-185, 2018.
[26] KT Law and YH Ling “Liquefaction of granular soils with non-cohesive and cohesive fines”. In Proceedings of 10th World Conference on Earthquake Engineering, Madrid, Spain. pp. 1491-1497, 1992.
[27] FL Lee, Ng YW and KY Yong “Effects of installation method on sand compaction piles in clay in the centrifuge”. Geotechnical Testing Journal, ASTM International 24(3): 314–323, 2001.
[28] SS Lin and CJ Chein “Use of sand compaction piles for improvement of a coal ash pond”. Sixth International Conference on Case Histories in Geotechnical Engineering, Arlington, VA. pp. 11-16, 2008.
[29] ZC Moh, CD Ou, SM Woo and K Yu “Compacted sand piles for soil improvement”. In Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 3, 749-752, 1981.
[30]. SS Najjar, H Skeini “Triaxial response of clays reinforced with granular columns”. Proceedings of the Institution of Civil Engineers - Ground Improvement 168(4): 265-281, 2014.

[31]. AK Nazir and WR Azzam “Improving the bearing capacity of footing on soft clay with sand pile”. Alexandria Engineering Journal. pp. 371-377, 2010.

[32]. M Okamura, M Ishihara and K Tamura “Liquefaction resistance of sand deposit improved with sand compaction piles”. Soils and Foundations 43(5): 175-187, 2003.

[33]. M Okamura, M Ishihara and K Tamura “Degree of saturation and liquefaction resistances of sand improved with sand compaction pile”. Journal of Geotechnical and Geoenvironmental Engineering 132(2): 258-264, 2006.

[34]. Z Rahman, K Takemura, M Kouda and K Yasumoto “Experimental study on deformation of soft clay improved by low replacement ratio SCP under backfilled caisson loading”. Soils and Foundations 40(5): 19-35, 2000.

[35]. D Rajput, R Kumar, PK Jain and S Chandrawanshi “Load-settlement behaviour of soft soil reinforced with sand piles”. International Research Journal of Engineering and Technology 3(11): 303-1308, 2016.

[36]. A Sadrekarimi, A Ghalandarzadeh “Evaluation of gravel drains and compacted sandpiles in mitigating liquefaction”. Proceedings of the Institution of Civil Engineers: Ground Improvement 9(3): 91-104, 2005.

[37]. Y Sasaki, S Kano and O Matsuo “Research and practices on remedial measures for river dikes against soil liquefaction”. Journal of Japan Association for Earthquake Engineering 4(3) Special Issue, 2004.

[38]. BW Shin and EC Shin “Sand compaction piles: theory and practice for offshore development”. In Proceedings of the Second International Offshore and Polar Engineering Conference, San Francisco, USA, 1. ISBN 1-880653-01-X, 1992.

[39]. J Takemura, Y Watabe, N Suemasa and A Hirooka “Stability of soft clay improved with sand compaction piles”. In Proceedings of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Southeast Asian Geotechnical Society, Bangkok, Thailand, pp. 543-546, 1991.

[40]. G Teena and G Hari “Bearing capacity effect of soft clay with SCP”. International Journal of Science and Research 5(4): 1132-1135, 2016.

[41]. GM Varghese, RE Mathew, S Korah, K Vishnupriya and SM Kuriakose “Subgrade improvement by sand compaction pile”. Journal of civil and construction engineering 2(3), 2016.

[42]. SM Woo, TC Kao, TL Yen and ZC Moh “Long term geotechnical studies at the Hsin-ta power plant site”. In Proceedings of 10th Southeast Asian Conference, Taipei, Taiwan, 1, pp. 16-20, 1990.

[43]. S Yasuda and I Tohno “Sites of reliquefaction caused by the 1983 Nihonkai-Chubu Earthquake”. Soils and Foundations 28(2): 61-72, 1988.

[44]. S Yasuda, K Ishihara, K Harada and N Shinkawa “Effect of soil improvement on ground subsidence due to liquefaction”. Soils and Foundations, 36, Special Issue, 99-107, 1996.

[45]. JT Yi, SH Goh and FH Lee “Effect of sand compaction pile installation on strength of soft clay”. Geotechnique 63(12): 1029–1041, 2013.

[46]. BTL Youd, IM Idriss and RB Seed “Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER / NSF workshops on evaluation of liquefaction resistance of soils”. Journal of Geotechnical and Geoenvironmental Engineering 127(10): 817–833, 2001.