Management of combined malignant biliary-duodenal obstruction in Roux-en-Y gastric bypass anatomy with EUS-guided gastrogastrostomy, EUS biliary drainage, and duodenal stent placement

Hirokazu Honda, MD, Jeffrey D. Mosko, MD, Gary R. May, MD

CASE PRESENTATION

ERCP for patients with Roux-en-Y gastric bypass (RYGB) anatomy is technically challenging. EUS-guided gastrogastrostomy facilitates access to the pancreaticobiliary system and enables us to perform additional procedures. Here, we describe a case of a patient with RYGB anatomy undergoing EUS-guided gastrogastrostomy followed by EUS-guided fine-needle biopsy (EUS-FNB), EUS-guided biliary drainage, and duodenal stent placement.

A 58-year-old woman with RYGB anatomy presented with abdominal pain and jaundice. A CT scan showed a hypoattenuating ill-defined mass within the pancreatic head with vascular involvement, concerning for pancreatic...
adenocarcinoma, a dilated common bile duct (CBD), and evidence of duodenal obstruction just distal to the papilla (type III duodenal obstruction). The total bilirubin level was 96 µmol/L (reference range: 0-23 µmol/L), and CA19-9 was 526 U/L (reference range: 0-35 U/L).

Treatment strategies were discussed with the patient, and a 2-session procedure was chosen to facilitate EUS-FNB, biliary decompression, and duodenal stent placement. In the first session, we performed a gastrogastrostomy to access the excluded stomach from the gastric pouch by placing a lumen-apposing metal stent (LAMS). The stomach remnant was dilated as a result of the duodenal obstruction and was easily visualized with EUS. Under EUS guidance, a 20- × 10-mm electrocautery-enhanced LAMS (Hot AXIOS; Boston Scientific, Marlborough, Mass, USA) was directly deployed between the gastric pouch and the excluded stomach body. The stent was then dilated up to 15 mm using a balloon, and a gastroscope was introduced into the stomach remnant and duodenum. This confirmed duodenal obstruction just distal to the papilla. The appearance was that of malignant infiltration.

The first session was then terminated to avoid stent dislodgement. A second session that included EUS-FNB and biliary decompression was scheduled after a 4-day interval. This interval was deemed appropriate based on the presumed stability of the stent based on its trajectory, balanced with the patient’s ongoing symptoms. First, the duodenoscope was advanced through the LAMS to the second part of the duodenum. Initially, a standard ERCP was attempted. Despite more than 5 minutes of attempted biliary cannulation time and use of the double-wire technique, biliary cannulation was unsuccessful. Precut

Figure 2. A, Endoscopic view of deployed lumen-apposing metal stent (LAMS) for gastrogastrostomy. B, Endoscopic view of infiltrated ampulla. C, Endoscopic view of deployed LAMS for choledochoduodenostomy. D, Deploying LAMS for gastrogastrostomy. E, Hypoechoic and heterogeneous mass. F, Deploying LAMS for choledochoduodenostomy and biliary drainage.

Figure 3. Abdominal radiograph after second session of EUS-directed transgastric ERCP. ①Lumen-apposing metal stent for gastrogastrostomy, ②lumen-apposing metal stent for choledochoduodenostomy, ③duodenal stent.
sphincterotomy was believed to be too risky owing to tu-
mor infiltration of the major papilla obscuring the anat-
omy. Accordingly, ERCP was aborted and we proceeded
with an EUS-guided approach.

A linear echoendoscope was inserted into the excluded
stomach. A 3-cm hypoechoic, heterogeneous, and ill-
defined pancreatic head mass was observed and EUS-FNB
was performed (3 passes) using the 22-gauge FNB needle
(Shark Core; Medtronic Corp, Boston, Mass, USA). The
CBD was dilated to 19 mm and easily visualized from the
first part of the duodenum. An EUS-guided choledochodu-
genostomy was then performed using an 8- × 6-mm
electrocautery-enhanced LAMS (Hot AXIOS), which was de-
ployed between the first part of the duodenum and the
CBD. Excellent bile drainage was observed endoscopically.

Finally, a duodenal metal stent (WallFlex duodenal
stent; Boston Scientific) was deployed across the duodenal
stricture using a standard duodenoscope. The procedure
was then terminated. A third unplanned procedure was
performed 5 days later to assess the biliary LAMS, which
was patent. During that procedure, the LAMS across the
gastrogastrostomy was dislodged and therefore removed.
We did not attempt to close the fistula.

Pancreatic ductal adenocarcinoma was confirmed by
histologic analyses of the EUS-FNB. The patient improved
symptomatically, and her liver biochemistry normalized af-
after the second endoscopic procedure.

In conclusion, EUS-guided gastrogastrostomy is an
effective method allowing for endoscopic access in pa-
tients with RYGB anatomy and thereby facilitating the full
spectrum of endoscopic evaluation and treatment for pa-
tients with pancreatic cancer (Figs. 1-3; Video 1, available
online at www.VideoGIE.org).

DISCLOSURE

All authors disclosed no financial relationships.

REFERENCES

1. Gonzalez-Urquijo M, Baca-Arzaga AA, Flores-Villalba E, et al. Laparo-
copy-assisted transgastric endoscopic retrograde cholangiopancreatog-
raphy for choledocholithiasis after Roux-en-Y gastric bypass: a case
report. Ann Med Surg (Lond) 2019;44:46-50.

2. James HJ, James TW, Wheeler SB, et al. Cost-effectiveness of endoscopic
ultrasound-directed transgastric ERCP compared with device-assisted
and laparoscopic-assisted ERCP in patients with Roux-en-Y anatomy.
Endoscopy 2019;51:1051-8.

3. Kedia P, Kumta NA, Widmer J, et al. Endoscopic ultrasound-directed
transgastric ERCP (EDGE) for Roux-en-Y anatomy: a novel technique.
Endoscopy 2015;47:159-63.

4. Wang TJ, Ryoo M. Evolving techniques for endoscopic retrograde chol-
angiopancreatography in gastric bypass patients. Curr Opin Gastroen-
terol 2018;34:444-50.

5. Wang TJ, Thompson CC, Ryoo M. Gastric access temporary for
endoscopy (GATE): a proposed algorithm for EUS-directed trans-
gastric ERCP in gastric bypass patients. Surg Endosc 2019;33:
2024-33.

The Centre for Therapeutic Endoscopy and Endoscopic Oncology, St.
Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada.

Copyright © 2021 American Society for Gastrointestinal Endoscopy.
Published by Elsevier Inc. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.vgie.2021.02.003