PERFECT ISOMETRIES AND MURNAGHAN-NAKAYAMA RULES

OLIVIER BRUNAT AND JEAN-BAPTISTE GRAMAIN

Abstract. This article is concerned with perfect isometries between blocks of finite groups. Generalizing a method of Enguehard to show that any two p-blocks of (possibly different) symmetric groups with the same weight are perfectly isometric, we prove analogues of this result for p-blocks of alternating groups (where the blocks must also have the same sign when p is odd), of double covers of alternating and symmetric groups (for p odd, and where we obtain crossover isometries when the blocks have opposite signs), of complex reflection groups $G(d,1,n)$ (for d prime to p), of Weyl groups of type B and D (for p odd), and of certain wreath products. In order to do this, we need to generalize the theory of blocks, in a way which should be of independent interest.

1. Introduction

Perfect isometries, introduced by M. Broué in [1], are the shadow, at the level of characters, of very deep structural correspondences between blocks of finite groups (such as derived equivalences, or splendid equivalences). The existence of such equivalences is at the heart of Broué’s Abelian Defect Conjecture, which predicts that any p-block of a finite group with abelian defect group P and its Brauer correspondent in $N_G(P)$ are derived equivalent.

Recently, there has been considerable progress in the construction of equivalences between blocks, especially using a method, introduced and developped by J. Chuang and R. Rouquier in [4], and based on sl_2-categorification. As consequence of their work, they show that two p-blocks of (possibly different) symmetric groups with isomorphic defect groups are splendidly equivalent; see [4, Theorem 7.2]. This explains the result of M. Enguehard ([6, Theorem 11]), which is an analogue of [4, Theorem 7.2], but at the level of characters, that is, the existence of Broué perfect isometries between such blocks.

For p-blocks of (possibly different) double covers of the symmetric and alternating groups, it has been conjectured by M. Schaps and R. Kessar that, with some additional assumptions, a similar result holds. There are partial results in this direction, for example [12], [13] and [15]. However, even at the level of characters, the existence of perfect isometries between these p-blocks was yet unproved.

This article dicusses perfect isometries. Besides suggesting the existence of a derived equivalence between blocks, any perfect isometry between two p-blocks of finite groups provides an isomorphism between their centres, and an isomorphism between the Grothendieck groups of their module categories. In particular, perfectly isometric p-blocks have the same numbers of ordinary and of modular characters,
and their Cartan matrices and decomposition matrices have the same invariant factors.

Furthermore, the weaker version of Broué’s Abelian Defect Conjecture (that is, Broué’s conjecture at the level of characters) gives, in the abelian defect case, deep insight into more numerical conjectures, such as the Alperin, Knörr-Robinson, Alperin-McKay and Dade conjectures (see for example [5]).

In this paper, we generalize Enguehard’s method (see [6]) based on the Murnaghan-Nakayama rule in the symmetric group (which gives a way to compute iteratively the values of irreducible complex characters). We will prove that similar results hold for many classes of groups where some analogues of the Murnaghan-Nakayama rule are available.

For this, we extract the properties of the Murnaghan-Nakayama rule needed in Enguehard’s method, which we axiomatize in the concept of MN-structure for a finite group. In some cases, when the analogue of the Murnaghan-Nakayama rule for the considered groups do not give information on the whole group, but only on certain conjugacy classes (this happens for the double covers of the symmetric and alternating groups), we need to replace the set of p-regular elements of the group by an arbitrary union of conjugacy classes. We then develop a generalized modular theory, and define generalized blocks and generalized perfect isometries. Note that the notion of generalized blocks and generalized perfect isometries introduced by B. Külshammer, J. B. Olsson and G. R. Robinson in [14] is not exactly the same as ours. In some way, our notion is more general, because any Külshammer-Olsson-Robinson isometry or Broué isometry is a generalized perfect isometry in our sense.

The article is organized as follows. In Section 2 we generalize the theory of blocks of characters. Note that §2.1 is of independent interest, because it in particular gives a natural framework to use the techniques of the usual modular p-blocks theory for the theory of Külshammer, Olsson and Robinson. The main result of this section (Theorem 2.9) provides the bridge necessary to compare blocks and spaces of class functions of (possibly distinct) groups which have similar MN-structures. This combinatorification of the ideas in [6] can in turn be used to exhibit perfect isometries between blocks of these groups (see Corollary 2.16 and Theorem 2.19).

The remaining sections are devoted to describing MN-structures in several families of finite groups, and using our methods to build explicitly perfect isometries between their blocks.

More precisely, we prove in Section 3 that two p-blocks of (possibly different) alternating groups with same weight, (and the same signature type when p is odd) are perfectly isometric (see Theorems 3.9, 3.10 and 3.11).

Then, in Section 4, we study the case of spin blocks of the double covers of the symmetric and alternating groups, and we prove the perfect isometry version of the Kessar-Schaps conjecture. We show that, when p is odd, any two spin p-blocks with the same weight and sign are perfectly isometric (see Theorem 4.15 and Corollary 4.16). As is to be expected in these groups (see [13]), we also obtain crossover isometries, relating a p-block in “the symmetric case” to a p-block in “the alternating case”. Note that, in the proof of these results, even though the isometries we obtain are Broué isometries, we crucially need the generalized theory introduced in Section 2.
In the last section, we examine the case of certain wreath products. Applying our method, we give in §5.2 and §5.3 a new and more uniform construction of the isometries appearing in the Broué’s Abelian Defect Conjecture for symmetric groups, isometries introduced by M. Osima, and the generalized perfect isometry considered in [2] in order to show the existence of \(p\)-basic sets for the alternating group (see Theorem 5.1, Theorem 5.3 and Corollary 5.2). Even though these results are not new, they give explicit isometries, and considerably simplify the calculations (for example, note that the initial proof of Rouquier [24] of Broué’s perfect isometries Conjecture for symmetric groups (see [24]) is not constructive, and is based on a strong result of Fong and Harris in [7] on perfect isometries in wreath products).

In §5.4, we apply our method to \(p\)-blocks of complex reflection groups \(G(d, 1, n)\) with \(d\) prime to \(p\), and obtain in Theorem 5.4 an analogue of Enguehard’s result for these groups. In particular, this gives the result for \(p\)-blocks (with \(p\) odd) of (possibly different) Weyl groups of type \(B\) (see Theorems 5.7 and 5.8). All of these are new results.

Finally, in §5.6, we give an analogue of the generalized perfect isometry of [2, Theorem 3.6] for \(p\)-blocks (with \(p\) odd) of alternating groups (see Theorem 5.12). In a certain sense (see Example 5.9), this is a natural analogue of Osima’s isometry for alternating groups. When the \(p\)-block of the alternating group has abelian defect, our result gives an alternative proof of Broué’s perfect isometry conjecture first obtained by Fong and Harris in [8] (see Corollary 5.13).

We hope that our results, and in particular the fact that the Broué perfect isometries constructed here are explicit, will help to prove that the corresponding \(p\)-blocks are in fact derived equivalent.

2. Generalities

In this section, \(G\) denotes a finite group and \(C\) a set of conjugacy classes of \(G\). We set

\[C = \bigcup_{c \in C} c. \]

We write \(\text{Irr}(G)\) for the set of irreducible characters of \(G\) over the complex field \(\mathbb{C}\), and \(\langle , \rangle_G\) for the usual hermitian product on \(\mathbb{C} \text{Irr}(G)\). For \(x \in G\), we denote by \(x^G\) the conjugacy class of \(x\) in \(G\). Define \(\text{res}_C : \mathbb{C} \text{Irr}(G) \rightarrow \mathbb{C} \text{Irr}(G)\) by setting, for any class function \(\varphi \in \mathbb{C} \text{Irr}(G)\),

\[\text{res}_C(\varphi)(g) = \begin{cases} \varphi(g) & \text{if } g \in C, \\ 0 & \text{otherwise}. \end{cases} \]

For \(B \subseteq \mathbb{C} \text{Irr}(G)\), we set \(B^C = \{ \text{res}_C(\chi) \mid \chi \in B \}\).

2.1. Generalized modular theory. Let \(b\) be a \(\mathbb{Z}\)-basis of the \(\mathbb{Z}\)-module \(\mathbb{Z} \text{Irr}(G)^C\). For every \(\chi \in \text{Irr}(G)\), there are uniquely determined integers \(d_{\chi, \varphi}\) such that

\[\text{res}_C(\chi) = \sum_{\varphi \in b} d_{\chi, \varphi} \varphi. \]

We denote by \(b^\vee\) the dual basis of \(b\) with respect to \(\langle , \rangle_G\), i.e. the unique \(\mathbb{C}\)-basis \(b^\vee = \{ \Phi_{\varphi} \mid \varphi \in b \}\) of \(\mathbb{C} \text{Irr}(G)^C\) such that \(\langle \Phi_{\varphi}, \vartheta \rangle = \delta_{\varphi, \vartheta}\) for all \(\vartheta \in b\).
Proposition 2.1. Let \(C \) be a set of conjugacy classes of \(G \). Suppose that \(b \) is a \(\mathbb{Z} \)-basis of \(\mathbb{Z} \text{Irr}(G)^C \), and denote by \(b^\vee = \{ \Phi_\varphi \mid \varphi \in b \} \) the dual basis of \(b \) with respect to \(\langle \ , \rangle_G \) (as above). Then:

(i) For every \(\varphi \in b \), we have

\[
\Phi_\varphi = \sum_{\chi \in \text{Irr}(G)} d_{\chi \varphi} \chi = \sum_{\chi \in \text{Irr}(G)} d_{\chi \varphi} \text{res}_C(\chi),
\]

where the \(d_{\chi \varphi} \)'s are the integers defined in Equation (4).

(ii) We have

\[
\mathbb{Z} \text{Irr}(G) \cap \mathbb{Z} \text{Irr}(G)^C = \mathbb{Z} b^\vee.
\]

Proof. Let \(\varphi \in b \). We have \(\Phi_\varphi \in \mathbb{C} \text{Irr}(G)^C \). It follows that \(\langle \Phi_\varphi, \chi \rangle_G = \langle \Phi_\varphi, \text{res}_C(\chi) \rangle_G \) for all \(\chi \in \text{Irr}(G) \). Using Equation (2), we deduce that

\[
\langle \Phi_\varphi, \chi \rangle_G = \sum_{\theta \in b} d_{\chi \theta} \langle \Phi_\varphi, \theta \rangle_G = \sum_{\theta \in b} d_{\chi \theta} \Phi_\theta.
\]

This proves (i).

By (i), we clearly have \(\mathbb{Z} b^\vee \subseteq \mathbb{Z} \text{Irr}(G) \cap \mathbb{Z} \text{Irr}(G)^C \). Conversely, suppose that \(\psi \) is a generalized character vanishing on the elements \(x \) such that \(x^G \notin C \). Then

\[
\psi = \sum_{\varphi \in b} \langle \psi, \varphi \rangle_G \Phi_\varphi.
\]

Since \(b \subseteq \mathbb{Z} \text{Irr}(G)^C \), for every \(\varphi \in b \), there are integers \(a_{\varphi \chi} \) (not necessarily unique) such that

\[
\varphi = \sum_{\chi \in \text{Irr}(G)} a_{\varphi \chi} \text{res}_C(\chi).
\]

Define

\[
\psi_\varphi = \sum_{\chi \in \text{Irr}(G)} a_{\varphi \chi} \chi \in \mathbb{Z} \text{Irr}(G).
\]

Then \(\text{res}_C(\psi_\varphi) = \varphi \). Moreover, \(\psi \in \mathbb{Z} \text{Irr}(G)^C \). It follows that

\[
\langle \psi, \varphi \rangle_G = \langle \psi, \psi_\varphi \rangle_G,
\]

which is an integer because \(\psi \in \mathbb{Z} \text{Irr}(G) \) and (ii) holds. \(\square \)

Now, we introduce a graph as follows. The vertex set is \(\text{Irr}(G) \) and two vertices \(\chi \) and \(\chi' \) are linked by an edge, if there is \(\varphi \in b \) such that \(d_{\chi \varphi} \neq 0 \) and \(d_{\chi' \varphi} \neq 0 \). The connected components of this graph are called the \(C \)-blocks of \(G \).

Remark 2.2. Note that the \(C \)-blocks of \(G \) depend on the choice of the \(\mathbb{Z} \)-basis \(b \) of \(\mathbb{Z} \text{Irr}(G)^C \).

If \(B \) is a union of \(C \)-blocks of \(G \), we write \(\text{Irr}(B) \) for the subset of \(\text{Irr}(G) \) corresponding to the vertices of \(B \), and \(b_B \) for the set of elements of \(b \) which give edges in \(B \). We set \(b_B^\vee = \{ \Phi_\varphi \mid \varphi \in b_B \} \). Note that \(b_B^\vee \) is the dual basis of \(b_B \) (when \(b_B \) is viewed as a basis of the \(\mathbb{C} \)-vector space \(\mathbb{C} \text{b}_B \)) with respect to \(\langle \ , \rangle_G \).

We may (and do) order the elements of \(\text{Irr}(G) \) and \(b \) in such a way that, if the rows and columns of \(D = (d_{\chi \varphi})_{\chi \in \text{Irr}(G), \varphi \in b} \) are ordered correspondingly, then \(D \) is a block-diagonal matrix, and each (diagonal) block \(D_B \) of \(D \) corresponds to a \(C \)-block \(B \) of \(G \).
Corollary 2.3. With the notation as above, for every C-block B of G, we have
\[
\Phi_{\varphi} = \sum_{\chi \in \text{Irr}(B)} d_{\chi \varphi} \chi \text{ for all } \varphi \in b_B, \text{ and }
\]
\[
Z \text{ Irr}(B) \cap Z \text{ Irr}(G)^C = \mathbb{Z} \eta_B^2.
\]

Corollary 2.4. With the above notation, let $\chi, \psi \in \text{Irr}(G)$ and $\varphi, \theta \in b$ be such that $\langle \varphi, \theta \rangle_G \neq 0$ and $d_{\chi \varphi} \neq 0 \neq d_{\psi \theta}$. Then χ and ψ lie in the same C-block.

Proof. Let $\varphi, \theta \in b$. By Proposition 2.1(i), we have
\[
\delta_{\varphi \theta} = \langle \Phi_{\varphi}, \theta \rangle_G = \sum_{\chi \in \text{Irr}(G)} d_{\chi \varphi}(\text{res}_C(\chi), \theta)_G
\]
\[
= \sum_{\chi \in \text{Irr}(G)} \left(\sum_{\eta \in b} d_{\chi \varphi}d_{\chi \eta} \right) \langle \eta, \theta \rangle_G
\]
\[
= \sum_{\eta \in b} \left(\sum_{\chi \in \text{Irr}(G)} d_{\chi \varphi}d_{\chi \eta} \right) \langle \eta, \theta \rangle_G.
\]

Now, if we write $K = (\langle \varphi, \theta \rangle_G)_{\varphi, \theta \in b}$, then the preceding equation gives $I = tDDK$. Thus, K is invertible and $K^{-1} = tDD$. Furthermore, D is a block-diagonal matrix. Hence, K^{-1} also has a block-diagonal structure. More precisely, the blocks of K^{-1} are the $D_B D_B$'s for all C-blocks B of G. It follows that K has the same block-diagonal structure as K^{-1}. In particular, if $\langle \varphi, \theta \rangle_G \neq 0$, then φ and θ lie in the same C-block of G.

Our assumption that $\langle \varphi, \theta \rangle_G \neq 0$ therefore implies that φ and θ correspond to some subsets c_φ and c_θ of edges in a connected component B of the graph previously introduced. Moreover, χ (respectively ψ) is a vertex of some edge in c_φ (respectively in c_θ), because $d_{\chi \varphi} \neq 0$ (respectively $d_{\psi \theta} \neq 0$). Therefore $\chi, \psi \in B$. \qed

2.2. MN-Restriction. We fix a set of G-conjugacy classes C and a union of C-blocks B of G, and denote by C the corresponding set of elements as in Equation 1.

Definition 2.5. We say that G has an MN-structure with respect to C and B, if the following properties hold.

1. There is a subset $S \subseteq G$ containing 1 and stable under G-conjugation.
2. There is a bijection between a subset $A \subseteq S \times C$ and G (the image of $x_s, x_c \in A$ will be denoted by $x_s \cdot x_c$), such that for $(x_s, x_c) \in A$
\[
9(x_s \cdot x_c) = (9x_s) \cdot (9x_c) \text{ and } x_s \cdot x_c = x_s x_c = x_c x_s.
\]

Moreover, for all $x_s \in S$ and $x_c \in C$, we have $(x_s, 1) \in A$ and $(1, x_c) \in A$.
3. For $x_s \in S$, there is a subgroup $G_{x_s} \leq C_G(x_s)$ such that
\[
G_{x_s} \cap C = \{ x_c \in C \mid (x_s, x_c) \in A \}.
\]
To simplify the notation, for $x_s \in S$, we will again denote the set of G_{x_s}-conjugacy classes of $G_{x_s} \cap C$ by C.
4. For $x_s \in S$, there is a union of C-blocks B_{x_s} of G_{x_s} and a homomorphism
\[
r^{x_s} : C \text{ Irr}(B) \rightarrow C \text{ Irr}(B_{x_s})
\]
satisfying
\[
r^{x_s}(\chi)(x_c) = \chi(x_s \cdot x_c) \text{ for all } \chi \in C \text{ Irr}(B) \text{ and } (x_s, x_c) \in A.
\]
Moreover, we assume that $G_1 = G$, $B_1 = B$ and $r^1 = \text{id}$.

In the rest of this subsection, we suppose that \(G \) has an MN-structure. For \(x_S \in S \), we define a homomorphism \(d_{x_S} : \mathbb{C} \text{Irr}(B) \to \mathbb{C} \text{Irr}(B_{x_S})^C \) by setting
\[
(4) \quad d_{x_S}(\chi) = \text{res}_C \circ \phi_S(\chi) \quad \text{for } \chi \in \text{Irr}(B).
\]
Moreover, we fix some \(\mathbb{C} \)-basis \(b_{x_S} \) of \(\mathbb{C} \text{Irr}(B_{x_S})^C \) and we denote by
\[
e_{x_S} : \mathbb{C} b_{x_S}^C \to \mathbb{C} \text{Irr}(B)
\]
the adjoint map of \(d_{x_S} \) with respect to \(\langle \cdot , \cdot \rangle_G \).

Lemma 2.6. With the notation above, for any \(\phi \in \mathbb{C} b_{x_S}^C \) and \((y_S, y_C) \in A\), we have
\[
e_{x_S}(\phi)(y_S \cdot y_C) = \begin{cases} |C_G(y_S \cdot y_C)| \phi(x_C) & \text{if } y^C_S = x^C_S, \\ 0 & \text{otherwise.} \end{cases}
\]

Proof. We denote by \(1_{G,x} \) the indicator function of the conjugacy class of \(x \) in \(G \). We have
\[
e_{x_S}(\phi)(y_S \cdot y_C) = |C_G(y_S \cdot y_C)| \langle \phi, 1_{G,y_S \cdot y_C} \rangle_G = |C_G(y_S \cdot y_C)| \langle \phi, d_{x_S}(1_{G,y_S \cdot y_C}) \rangle_{G_{x_S}},
\]
because \(d_{x_S} \) and \(e_{x_S} \) are adjoint. Moreover, by Definition 2.4(3) and the fact that \(y_C \in C \), we deduce that
\[d_{x_S}(1_{G,y_S \cdot y_C}) = 1_{G,y_S \cdot y_C}\]
if \(y^C_S = x^C_S \) and 0 otherwise. Thus, if \(y^C_S \neq x^C_S \), then \(e_{x_S}(\phi)(y_S \cdot y_C) = 0 \). Suppose that \(y^C_S = x^C_S \). Then
\[
e_{x_S}(\phi)(y_S \cdot y_C) = |C_G(y_S \cdot y_C)| \langle \phi, 1_{G_{x_S},y_C} \rangle_{G_{x_S}} = \frac{|C_G(y_S \cdot y_C)|}{|C_{G_{x_S}}(y_C)|} \phi(y_C).
\]

By Definition 2.5(1), \(S = \bigcup_{\lambda \in \Lambda} \lambda \), where each \(\lambda \in \Lambda \) is a conjugacy class of \(G \). For each \(\lambda \in \Lambda \), we choose a representative \(x_\lambda \in \lambda \), and we let \(G_\lambda = G_{x_\lambda} \), \(B_\lambda = B_{2x_\lambda} \), \(r^\lambda = r^{x_\lambda} \), and \(d_\lambda = d_{x_\lambda} \). Now, we set
\[
d_G : \mathbb{C} \text{Irr}(B) \to \bigoplus_{\lambda \in \Lambda} \mathbb{C} \text{Irr}(B_\lambda)^C, \quad \chi \mapsto \sum_{\lambda \in \Lambda} d_\lambda(\chi).
\]
For \(\lambda \in \Lambda \), define \(l_\lambda : \mathbb{C} \text{Irr}(G_\lambda)^C \to \mathbb{C} \text{Irr}(G) \) by
\[
l_\lambda(\psi)(x) = \begin{cases} \psi(x_C) & \text{if } x^C_S = \lambda, \\ 0 & \text{otherwise}, \end{cases}
\]
and put
\[
l_G : \bigoplus_{\lambda \in \Lambda} \mathbb{C} \text{Irr}(G_\lambda)^C \to \mathbb{C} \text{Irr}(G), \quad \sum_{\lambda \in \Lambda} \psi_\lambda \mapsto \sum_{\lambda \in \Lambda} l_\lambda(\psi_\lambda).
\]

Lemma 2.7. The homomorphism \(d_G \) is injective, and the map \(l_G \circ d_G \) is the identity on \(\mathbb{C} \text{Irr}(B) \).
Proof. Let $x \in G$. Then by Definition 2.4, x is G-conjugate to $x_{\lambda} \cdot x_C$ for some $\lambda \in \Lambda$ and $x_C \in C$, and for any $\chi \in \mathbb{C}\text{Irr}(B)$, we then have
\[
\chi(x) = \chi(x_{\lambda}x_C) = r^\lambda(\chi)(x_C) \quad \text{(by Definition 2.4)}
\]
\[
= \text{res}_C(r^\lambda(\chi))(x_C)
\]
\[
= d_\lambda(\chi)(x_C) \quad \text{(by definition of } d_\lambda).\]

Now, fix $\chi \in \mathbb{Z}\text{Irr}(B)$ such that $d_\lambda(\chi) = 0$. Then, for every $\lambda' \in \Lambda$, we have $d_{\lambda'}(\chi) = 0$. In particular, $d_{\lambda}(\chi)(x_C) = 0$, and it follows that $\chi(x) = 0$. Thus d_G is injective.

Note that
\[
l_G \circ d_G = \sum_{\lambda' \in \Lambda} l_{\lambda'} \circ d_{\lambda'}.
\]
Hence, for every $\chi \in \mathbb{C}\text{Irr}(B)$, we have
\[
l_G \circ d_G(\chi)(x) = \sum_{\lambda' \in \Lambda} l_{\lambda'} \circ d_{\lambda'}(\chi)(x).
\]
By Eq. (5), if $\lambda' \neq \lambda$, then $l_{\lambda'}(d_{\lambda'}(\chi))(x) = 0$. Moreover, we have
\[
l_\lambda \circ d_\lambda(\chi)(x) = l_\lambda \circ d_\lambda(\chi)(x_C) = d_\lambda(\chi)(x_C) = \text{res}_C(r^\lambda(\chi))(x_C) = \chi(x),
\]
as required. \qed

For $\lambda \in \Lambda$, we set $b_{x_\lambda} = b_\lambda$ and $e_{x_\lambda} = e_\lambda$. The dual of $\bigoplus_{\lambda \in A} \mathbb{C}\text{Irr}(B_\lambda)^c$ is $\bigoplus_{\lambda \in \Lambda} \mathbb{C}b_\lambda^c$ and the homomorphism
\[
e_G : \bigoplus_{\lambda \in \Lambda} \mathbb{C}b_\lambda^c \rightarrow \mathbb{C}\text{Irr}(B), \quad \sum_{\lambda \in \Lambda} \phi_\lambda \mapsto \sum_{\lambda \in \Lambda} e_\lambda(\phi_\lambda)
\]
is the adjoint of d_G.

Lemma 2.8. The homomorphism e_G is injective.

Proof. Let $\sum_{\lambda' \in \Lambda} \phi_{\lambda'} \in \bigoplus_{\lambda' \in \Lambda} \mathbb{C}b_{\lambda'}^c$ be such that $e_G(\sum_{\lambda' \in \Lambda} \phi_{\lambda'}) = 0$. Take any $\lambda \in \Lambda$, and $x_C \in G_\lambda \cap C$. By Definition 2.3, we have $(x_\lambda, x_C) \in A$, and Lemma 2.6 implies that
\[
e_G(\sum_{\lambda' \in \Lambda} \phi_{\lambda'})(x_\lambda x_C) = \frac{|C_G(x_\lambda x_C)|}{|C_{G_\lambda}(x_C)|} \phi_\lambda(x_C).
\]
This implies that $\phi_\lambda(x_C) = 0$ for all $x_C \in G_\lambda \cap C$, so that $\phi_\lambda = 0$. This proves the result. \qed

2.3. Isometries. Let G and G' be two finite groups. We fix C (respectively C') a set of conjugacy classes of G (respectively G'), and B (respectively B') a union of C-blocks of G (respectively C'-blocks of G'). As above, we write
\[
C = \bigcup_{c \in C} c \quad \text{and} \quad C' = \bigcup_{c' \in C'} c'.
\]
We consider the isomorphism
\[
\Theta : \left\{ \begin{array}{ccc}
\mathbb{C}\text{Irr}(B) \otimes \mathbb{C}\text{Irr}(B') & \rightarrow & \text{End}(\mathbb{C}\text{Irr}(B), \mathbb{C}\text{Irr}(B')) \\
\sum_{\lambda, \lambda'} \chi \otimes \chi' & \mapsto & (\phi \mapsto \sum_{\lambda, \lambda'} \langle \phi, \chi \rangle G \chi')
\end{array} \right.
\]

Note that, if we write \(\hat{f} = \Theta^{-1}(f) \) for any \(f \in \text{End}(\mathbb{C} \text{Irr}(B), \mathbb{C} \text{Irr}(B')) \), then

\[
\hat{f} = \sum_{i=1}^{r} e_i \otimes f(e_i),
\]

where \(e = (e_1, \ldots, e_r) \) is any \(\mathbb{C} \)-basis of \(\mathbb{C} \text{Irr}(B) \) with dual basis \(e^\vee = (e_1^\vee, \ldots, e_r^\vee) \) with respect to \(\langle , \rangle_G \).

Theorem 2.9. Let \(G \) and \(G' \) be two finite groups. Suppose that

1. The group \(G \) (respectively \(G' \)) has an MN-structure with respect to \(C \) and \(B \) (respectively \(C' \) and \(B' \)). We keep the same notation as above, and the object relative to \(G' \) are denoted with a ‘prime’.
2. Assume there are subsets \(\Lambda_0 \subseteq \Lambda \) and \(\Lambda'_0 \subseteq \Lambda' \) such that:
 a. For every \(\lambda \in \Lambda \) with \(\lambda \not\in \Lambda_0 \) (respectively \(\lambda' \in \Lambda' \) with \(\lambda' \not\in \Lambda'_0 \)), we have \(r^\lambda = r'^{\lambda'} = 0 \).
 b. There is a bijection \(\sigma : \Lambda_0 \to \Lambda'_0 \) with \(\sigma(\{1\}) = \{1\} \) and for \(\lambda \in \Lambda_0 \), an isometry \(I_\lambda : \mathbb{C} \text{Irr}(B_\lambda) \to \mathbb{C} \text{Irr}(B'_{\sigma(\lambda)}) \) such that
 \[
 I_\lambda \circ r^\lambda = r'^{\sigma(\lambda)} \circ I_{\{1\}}.
 \]
3. For \(\lambda \in \Lambda_0 \), we have \(I_\lambda(\mathbb{C} b_\chi^\vee) = \mathbb{C} b'^{\chi'}_{\sigma(\lambda)} \). We write \(J_\lambda = I_\lambda|_{\mathbb{C} b_\chi^\vee} \).

Then for all \(x \in G \), \(x' \in G' \), we have

\[
\hat{I}_{\{1\}}(x, x') = \sum_{\lambda \in \Lambda_0} \sum_{\phi \in b_\lambda} e_{\lambda}(\Phi_\phi)(x) J_\lambda^{-1}(\phi)(x'),
\]

where \(b_\chi = \{ \Phi_\phi \mid \phi \in b_\lambda \} \) is the dual basis of \(b_\lambda \) as in \((2.1)\).

Proof. First, we remark that, for \(\lambda \in \Lambda_0 \), the adjoint of the inclusion \(i : \mathbb{C} b_\chi^\vee \to \mathbb{C} \text{Irr}(B_\lambda) \) is \(i^* = \text{res}_C \). Moreover, Hypothesis (3) implies that the following diagram is commutative:

\[
\begin{array}{ccc}
\mathbb{C} b_\chi^\vee & \xrightarrow{J_\lambda} & \mathbb{C} b'^{\chi'}_{\sigma(\lambda)} \\
| & | & | \\
\mathbb{C} \text{Irr}(B_\lambda) & \xrightarrow{I_\lambda} & \mathbb{C} \text{Irr}(B'_{\sigma(\lambda)})
\end{array}
\]

Dualizing, we obtain the following commutative diagram:

\[
\begin{array}{ccc}
\mathbb{C} b_\lambda & \xleftarrow{\text{res}_C} & \mathbb{C} b'^{\chi'}_{\sigma(\lambda)} \\
| & | & | \\
\mathbb{C} \text{Irr}(B_\lambda) & \xleftarrow{I^{-1}_\lambda} & \mathbb{C} \text{Irr}(B'_{\sigma(\lambda)})
\end{array}
\]

(The bottom arrow is indeed \(I^{-1}_\lambda \) because we identified \(\mathbb{C} \text{Irr}(B_\lambda) \) and \(\mathbb{C} \text{Irr}(B'_{\sigma(\lambda)}) \) with their duals.) Thus, we have \(\text{res}_C \circ I^{-1}_\lambda = J^{-1}_\lambda \circ \text{res}_{C'} \), which implies that \(J^{-1}_\lambda \circ \text{res}_C = \text{res}_{C'} \circ I_\lambda \), and we obtain

\[
\begin{align*}
J^{-1}_\lambda \circ \text{res}_C \circ r^\lambda &= \text{res}_{C'} \circ I_\lambda \circ r^\lambda, \\
J^{-1}_\lambda \circ d_\lambda &= \text{res}_{C'} \circ r'^{\sigma(\lambda)} \circ I_{\{1\}}, \\
J^{-1}_\lambda \circ d_\lambda &= d'_{\sigma(\lambda)} \circ I_{\{1\}},
\end{align*}
\]

\((8)\).
where the second equality comes from Hypothesis (2). Let $V_\lambda = l_\lambda(\mathbb{C}b_\lambda)$ and $V'_\lambda = l'_\lambda(\mathbb{C}b'_\lambda)$. Now, note that the assumption (2.a) implies that $d_G = \sum_{\lambda \in \Lambda_0} d_\lambda$ and also denoting by l_G the restriction of l_G to $\oplus_{\lambda \in \Lambda_0} \mathbb{C} \text{Irr}(G_\lambda)^e$, Lemma 2.7 gives that $l_G \circ d_G$ is the identity on $\mathbb{C} \text{Irr}(B)$ (the same is true for $l'_G \circ d'_G$). In particular, by Equation (9), the following diagram is commutative:

$$
\begin{array}{ccc}
\mathbb{C} \text{Irr}(B) & \xrightarrow{l_{(1)}} & \mathbb{C} \text{Irr}(B') \\
\oplus_{\lambda \in \Lambda_0} \mathbb{C} b_\lambda & \xrightarrow{d_G} & \oplus_{\lambda \in \Lambda_0} \mathbb{C} b'_\sigma(\lambda) \\
\oplus_{\lambda \in \Lambda_0} V_\lambda & \xrightarrow{l_{(1)}} & \oplus_{\lambda \in \Lambda_0} V'_\lambda \\
\end{array}
$$

Now, consider

$$
e = \bigcup_{\lambda \in \Lambda_0} \{l_\lambda(\phi) | \phi \in b_\lambda\}.
$$

Then e is a basis of $\mathbb{C} \text{Irr}(B)$. Let $\lambda \in \Lambda_0$ and $\phi \in b_\lambda$. Then $d_\lambda \circ l_\lambda(\phi) \in \mathbb{C} b_\lambda$. Let $x \in G_\lambda$. If $x \notin C$, then $\phi(x) = 0 = d_\lambda \circ l_\lambda(\phi)(x)$. Assume that $x \in C$. Then $x \in G_\lambda \cap C$. So, by Definition 2.5(3), $(x_\lambda, x) \in A$, and Definition 2.5(4) implies

$$d_\lambda \circ l_\lambda(\phi)(x) = r^\lambda \circ l_\lambda(\phi)(x) = l_\lambda(\phi)(x_\lambda \cdot x).
$$

Therefore, Equation (10) gives $d_\lambda \circ l_\lambda(\phi)(x) = \phi(x)$. This proves that for every $\phi \in b_\lambda$, we have

$$d_\lambda \circ l_\lambda(\phi) = \phi.
$$

Now, we claim that

$$e^\vee = \bigcup_{\lambda \in \Lambda_0} \{e_\lambda(\Phi_\phi) | \phi \in b_\lambda\}.
$$

Indeed, if $\lambda, \mu \in \Lambda$ with $\lambda \neq \mu$, then for any $\vartheta \in b_\lambda$ and $\phi \in b_\mu$, we have

$$\langle e_\lambda(\Phi_\phi), l_\mu(\phi) \rangle_G = \frac{1}{|G|} \sum_{g \in G} e_\lambda(\Phi_\phi)(g) l_\mu(\phi)(g) = 0,
$$

by Equation (5) and Lemma 2.6. Furthermore, if $\phi, \varphi \in b_\lambda$, then Equation (10) gives

$$\langle e_\lambda(\Phi_\phi), l_\lambda(\phi) \rangle_G = (\Phi_\phi, d_\lambda \circ l_\lambda(\phi))_{G_\lambda} = (\Phi_\phi, \phi)_{G_\lambda} = \delta_\phi^\phi.
$$

This proves that $l_\lambda(\phi)^\vee = e_\lambda(\Phi_\phi)$ for $\lambda \in \Lambda_0$ and $\phi \in b_\lambda$. Thus, writing $\hat{l}_{(1)}$ with respect to the basis e, we obtain

$$\hat{l}_{(1)} = \sum_{\lambda \in \Lambda_0} \sum_{\phi \in b_\lambda} e_\lambda(\Phi_\phi) \otimes l_\lambda(J_\lambda^{-1}(\phi)),
$$

as required. \(\square\)

Remark 2.10. Note that the assumption (2) of the theorem implies that the assumption (3) of the theorem holds for $\lambda = \{1\}$. Indeed, we have $\phi \in \mathbb{C} b'_{(1)}$ if and only if $\text{res}_{\mathbb{C}}(\phi) = 0$, where $\overline{C} = G \setminus C$. However, $x \in G$ lies in \overline{C} if and only if his
type λ is non-trivial. Thus, Definition 2.3(4) implies that $\phi \in Cb^\prime_{\lambda(1)}$ if and only if $r^\lambda(\phi) = 0$ for all $\lambda \neq \{1\}$. Let $\phi \in Cb^\prime_{\lambda(1)}$. Then for any $\{1\} \neq \lambda \in \Lambda_0$,

$$r^\lambda(\phi) = I_{(1)}(r^\lambda(\phi)) = 0.$$

Since σ is a bijection with $\sigma(\{1\}) = \{1\}$, we deduce that $I_{(1)}(\phi) \in Cb^\sigma_{\lambda(1)}$. To obtain the reverse inclusion, we apply this argument to $I_{(1)}^{-1}$.

In particular, if for any $\lambda \in \Lambda_0$, the group G_λ has an MN-structure with respect to $C \cap G_\lambda$ and B_λ, then the assumption (3) of Theorem 2.9 is automatically satisfied.

Remark 2.11. Suppose that $(I_\lambda : C\text{Irr}(B_\lambda) \to C\text{Irr}(B'_{\sigma(\lambda)}))_{\lambda \in \Lambda_0}$ are isometries such that properties (1), (2) and (3) of Theorem 2.9 hold. Then $I_\lambda^{-1} : C\text{Irr}(B'_{\sigma(\lambda)}) \to C\text{Irr}(B_\lambda)$ also satisfies the hypotheses of the theorem (for $\sigma^{-1} : \Lambda_0' \to \Lambda_0$). Moreover, writing \hat{I} with respect to the self-dual \mathbb{C}-basis $\text{Irr}(B)$ of $C\text{Irr}(B)$, we have

$$\hat{I} = \sum_{\chi \in \text{Irr}(B)} \overline{\chi} \otimes I(\chi).$$

It follows that

$$\hat{I} = \sum_{\chi' \in \text{Irr}(B')} \overline{I^{-1}(\chi')} \otimes \chi' = \text{conj} \left(\sum_{\chi' \in \text{Irr}(B')} \overline{\chi'} \otimes I^{-1}(\chi') \right) = \text{conj} \left(I^{-1} \circ \tau \right),$$

where $\tau : G \times G' \to G' \times G$, $(x, x') \mapsto (x', x)$ and conj denotes the complex conjugation.

2.4. Generalized perfect isometries. An isometry $I : C\text{Irr}(B) \to C\text{Irr}(B')$ with respect to the scalar products $\langle \ , \ \rangle_G$ and $\langle \ , \ \rangle_{G'}$ is said to be a generalized perfect isometry if $I(Z\text{Irr}(B)) = Z\text{Irr}(B'))$ and

$$I \circ \text{res}_C = \text{res}_{C'} \circ I.$$

Remark 2.12. Following Külshammer, Olsson and Robinson (see [14]), we say that an isometry $I : C\text{Irr}(B) \to C\text{Irr}(B')$ is a KOR-isometry if $I(Z\text{Irr}(B)) = Z\text{Irr}(B')$ and for all $\chi, \psi \in \text{Irr}(B)$, one has

$$\langle \text{res}_C(\chi), \text{res}_C(\psi) \rangle_G = \langle \text{res}_{C'}(I(\chi)), \text{res}_{C'}(I(\psi)) \rangle_{G'}.$$

Note that the argument in the proof of [2 Proposition 2.2] shows that the KOR-isometries are precisely the isometries that satisfy Equation 12. For the convenience of the reader, we now prove this fact. Before, we recall that the notion of blocks in [14] is not the same as ours. The KOR-blocks are the equivalence classes for the equivalence relation on $\text{Irr}(G)$ obtained extending by transitivity the relation defined by $\langle \text{res}_C(\chi), \text{res}_C(\psi) \rangle_G \neq 0$. First, we will show that $\text{Irr}(B)$ is a union of KOR-blocks. Since the KOR-blocks are a partition of $\text{Irr}(G)$, it is clear that $\text{Irr}(B)$ is contained in a union of KOR-blocks. It is sufficient to show that if $\chi \in \text{Irr}(B)$ and $\psi \in \text{Irr}(G)$ are such that $\langle \text{res}_C(\chi), \text{res}_C(\psi) \rangle_G \neq 0$, then $\psi \in \text{Irr}(B)$. Let $\chi \in \text{Irr}(B)$ and $\psi \in \text{Irr}(G)$ be such that $\langle \text{res}_C(\chi), \text{res}_C(\psi) \rangle_G \neq 0$, that is

$$\sum_{\varphi, \theta \in b} d_{\chi, \varphi} d_{\psi, \theta} \langle \varphi, \theta \rangle_G \neq 0.$$
In particular, there exists some $\varphi, \vartheta \in b$ such that $d_{\chi,\varphi}d_{\psi,\vartheta}(\varphi, \vartheta)_G \neq 0$. Hence, $d_{\chi,\varphi} \neq 0 \neq d_{\psi,\vartheta}$ and $(\varphi, \vartheta)_G \neq 0$. Thanks to Corollary 2.4, we conclude that ψ lies in the C-block of χ.

Now suppose $I : \mathbb{C}\text{Irr}(B) \to \mathbb{C}\text{Irr}(B')$ is a generalized perfect isometry. Let $\chi, \psi \in \text{Irr}(B)$. Then
\[
\langle \text{res}_{C'}(I(\chi)), \text{res}_{C'}(I(\psi)) \rangle_G = \langle I(\text{res}_C(\chi)), I(\text{res}_C(\psi)) \rangle_G = \langle \text{res}_C(\chi), \text{res}_C(\psi) \rangle_G,
\]
because I is an isometry.

Conversely, assume that I is a KOR-isometry. Let $\chi \in \text{Irr}(B)$. We have
\[
I(\text{res}_C(\chi)) = I \left(\sum_{\psi \in \text{Irr}(G)} \langle \text{res}_C(\chi), \psi \rangle_G \psi \right)
= \sum_{\psi \in \text{Irr}(B)} \langle \text{res}_C(\chi), \text{res}_C(\psi) \rangle_G I(\psi)
= \sum_{\psi \in \text{Irr}(B)} \langle \text{res}_{C'}(I(\chi)), \text{res}_{C'}(I(\psi)) \rangle_{G'} I(\psi)
= \sum_{\psi \in \text{Irr}(B)} \langle \text{res}_{C'}(I(\chi)), I(\psi) \rangle_{G'} I(\psi)
= \text{res}_{C'}(I(\chi)),
\]
proving the claim.

Proposition 2.13. Suppose that $\{B_i | 1 \leq i \leq r\}$ is the set of KOR-blocks of G with respect to a set of classes C. Then there is a \mathbb{Z}-basis b of $\mathbb{Z}\text{Irr}(G)^C$ such that the B_i’s are the C-blocks of G with respect to b.

Proof. By definition of the KOR-blocks, the sets $\text{Irr}(B_i)^C$ and $\text{Irr}(B_j)^C$ for $i \neq j$ are orthogonal with respect to \langle , \rangle_G, implying that
\[
\mathbb{Z}\text{Irr}(G)^C = \bigoplus_{i=1}^{r} \mathbb{Z}\text{Irr}(B_i)^C.
\]
Choose any \mathbb{Z}-basis b_i of $\mathbb{Z}\text{Irr}(B_i)^C$ and write b_i^\vee for the dual basis of b_i in the \mathbb{C}-space $\mathbb{C}\text{Irr}(B_i)^C$ with respect to \langle , \rangle_G. Define $b = b_1 \cup \ldots \cup b_r$. Then b is a \mathbb{Z}-basis of $\mathbb{Z}\text{Irr}(G)^C$. Moreover, since $b_i^\vee \subseteq \mathbb{C}\text{Irr}(B_i)^C$, and since the KOR-blocks are orthogonal, we deduce that $b^\vee = b_1^\vee \cup \ldots \cup b_r^\vee$ is the dual basis of b. Now, for $\varphi \in b_i$, we have
\[
\Phi_{\varphi} = \text{res}_C(\Phi_{\varphi}) = \sum_{j=1}^{r} \sum_{\chi \in \text{Irr}(B_j)} d_{\chi,\varphi} \text{res}_C(\chi) = \sum_{\chi \in \text{Irr}(B_i)} d_{\chi,\varphi} \text{res}_C(\chi),
\]
because $\Phi_{\varphi} \in \mathbb{C}\text{Irr}(B_i)^C$. Hence, for $\chi' \notin \text{Irr}(B_i)$, we have
\[
d_{\chi,\varphi} = \langle \Phi_{\varphi}, \chi' \rangle_G = \sum_{\chi \in \text{Irr}(B_i)} d_{\chi,\varphi} \langle \text{res}_C(\chi), \text{res}_C(\chi') \rangle_G = 0.
\]
This proves that B_i is a union of C-blocks. Furthermore, we have seen in Remark 2.12 that conversely, the C-blocks are unions of KOR-blocks. The result follows.

Proposition 2.14. Let $I : \mathbb{C}\text{Irr}(B) \to \mathbb{C}\text{Irr}(B')$ be an isometry. The following assertions are equivalent.
(i) \(I \) is a generalized perfect isometry.

(ii) If \(\tilde{I}(x,y) \neq 0 \), then either \((x,y) \in C \times C' \), or \((x,y) \in C \times C' \), where \(C = G \setminus C \) and \(C' = G \setminus C' \).

Proof. Suppose that \(I \) is a generalized perfect isometry. Note that \(C \text{Irr}(B)^{C \perp} = C \text{Irr}(B)^{C} \) and

\[
(13) \quad C \text{Irr}(B) = C \text{Irr}(B)^{C} \oplus C \text{Irr}(B)^{C}.
\]

Moreover, for any \(\phi \in C \text{Irr}(B') \), there is \(\chi \in C \text{Irr}(B) \) such that \(I(\chi) = \phi \) (because \(I \) is an isometry). Thanks to Equation (12), we have \(\text{res}_C(\phi) = I(\text{res}_C(\chi)) \). Hence, the restriction \(I : C \text{Irr}(B)^{C} \to C \text{Irr}(B')^{C'} \) is surjective, and yet bijective (because \(I \) is injective). Since \(I \) is an isometry, we have

\[
I\left((C \text{Irr}(B)^{C \perp}) = I\left(C \text{Irr}(B)^{C}\right)^{\perp} = (C \text{Irr}(B')^{C'})^{\perp}.
\]

It follows that

\[
(14) \quad I(C \text{Irr}(B)^{C'}) = C \text{Irr}(B')^{C'}.
\]

Now, we choose a \(C \)-basis \(b \) of \(C \text{Irr}(B)^{C} \) with dual basis \(b' \) and a \(C \)-basis \(\overline{b} \) of \(C \text{Irr}(B)^{C} \) with dual basis \(\overline{b}' \). Therefore, thanks to Equation (13), \(b \cup \overline{b} \) is a \(C \)-basis of \(C \text{Irr}(B) \) with dual basis \(b' \cup \overline{b}' \). Writing \(\hat{I} \) with respect to this basis, we obtain

\[
(15) \quad \hat{I} = \sum_{\alpha \in b} \overline{\alpha} \otimes I(\alpha) + \sum_{\beta \in \overline{b}} \beta \otimes I(\beta).
\]

Now, let \((x,y) \in C \times C' \). Then Equation (15) gives \(\hat{I}(x,y) = \sum_{\alpha \in b} \overline{\alpha}(x)I(\alpha)(y) \). But \(I(\alpha) \in C \text{Irr}(B')^{C'} \), implying that \(I(\alpha)(y) = 0 \). Hence, \(\hat{I}(x,y) = 0 \).

For \((x,y) \in C \times C' \), we similarly conclude that \(\hat{I}(x,y) = 0 \) using Equations (15) and (14). This proves that (i) implies (ii).

Conversely, assume that (ii) holds. For \(y \in G' \), we write \(\tilde{I}_y : G \to C, x \mapsto \tilde{I}(x,y) \). This is a class function on \(G \). We now write \(\hat{I} \) with respect to the \(C \)-basis \(I(B) \).

Thus, Equation (11) implies that for \(\chi \in \text{Irr}(G) \) and \(y \in G' \), we have

\[
I(\chi)(y) = \sum_{\theta \in \text{Irr}(B)} I(\theta)(y)\langle \overline{b}, \chi \rangle_C
\]

\[
= \langle \tilde{I}_y, \chi \rangle_C
\]

\[
= \frac{1}{|G|} \sum_{x \in G} I(x,y)\chi(x).
\]

In particular, for any \(\psi \in C \text{Irr}(G) \) and \(y \in G' \), we have

\[
I(\psi)(y) = \frac{1}{|G|} \sum_{x \in G} I(x,y)\psi(x).
\]

(16)

Let \(\chi \in C \text{Irr}(B) \) and \(y \in G' \). Applying Equation (10) to \(\text{res}_C(\chi) \), we obtain

\[
I(\text{res}_C(\chi))(y) = \frac{1}{|G|} \sum_{x \in G} I(x,y)\text{res}_C(\chi)(x) = \frac{1}{|G|} \sum_{x \in G} I(x,y)\chi(x).
\]

Suppose that \(y \in C' \). Then \(I(x,y) \neq 0 \) only if \(x \in C \) and the second equality gives \(I(\text{res}_C(\chi))(y) = 0 \). Otherwise, if \(y \in C' \), then \(I(x,y) = 0 \) for \(x \notin C \). In particular,
the third equality is equal to \(I(\chi)(y) = \text{res}_{C'}(I(\chi))(y) \). This proves that \(I \) satisfies Equation (12), whence it is a generalized perfect isometry.

\[\square \]

Remark 2.15. Note that Equation (13) applied to \(B' \) and Equation (14) imply that

\[\text{res}_{C'} \circ I = I \circ \text{res}_{C}. \]

Corollary 2.16. Let \(G \) and \(G' \) be two finite groups. We assume that Hypotheses (1), (2) and (3) of Theorem 2.9 are satisfied, and we keep the same notation. Then \(I_{(1)} \) is a generalized perfect isometry.

Proof. Let \((x, x') \in G \times G' \). Write \(\mu \) and \(\mu' \) for the type of \(x \) and \(x' \). Suppose that \((x, x') \notin C \times C' \) and \((x, x') \notin \overline{C} \times \overline{C'} \). Then either \(\mu = \{1\} \) and \(\mu' \neq \{1\} \), or \(\mu \neq \{1\} \) and \(\mu' = \{1\} \). Since \(\sigma(\{1\}) = \{1\} \), we deduce that \(\mu' \neq \sigma(\mu) \). Thanks to Lemma 2.6 and Equation (15), we have for every \(\lambda \in \Lambda \) and \(\phi \in b_{\lambda} \), either \(e_{\lambda}(\Phi_{\phi})(x) = 0 \), or \(l_{\lambda}(J_{\lambda}^{-1}(\phi))(x') = 0 \). In particular, Equation (7) gives \(\tilde{I}_{(1)}(x, x') = 0 \), and the result follows from Proposition 2.14. \(\square \)

2.5. Broué’s isometries

In this subsection, we fix a prime number \(p \) and assume that \(C \) and \(C' \) are the sets of \(p' \)-elements (that is, elements whose order is prime to \(p \)) of \(G \) and \(G' \), respectively. Let \(B \) and \(B' \) be a union of \(p \)-blocks of \(G \) and \(G' \). Denote by \((K, R, k) \) a \(p \)-modular system for \(G \) and \(G' \). Let \(I : \mathbb{C} \text{Irr}(B) \to \mathbb{C} \text{Irr}(B') \) be an isometry such that \(I(\mathbb{Z} \text{Irr}(B)) = \mathbb{Z} \text{Irr}(B') \) and \(\tilde{I} \) defined in Equation (6) is perfect, that is

1. For every \((x, x') \in G \times G' \), \(\tilde{I}(x, x') \) lies in \(|C_G(x)|R \cap |C_G(x')|R \).
2. \(\tilde{I} \) satisfies property (ii) of Proposition 2.14.

We call such an isometry a Broué isometry.

Remark 2.17. In fact, the perfect character \(\mu : G \times G' \to \mathbb{C} \) defined by Broué in \([1]\) is not exactly \(\tilde{I} \), but \(\mu(x, x') = \tilde{I}(x^{-1}, x') \). However, since the sets of \(p \)-regular and \(p \)-singular elements are stable under \(g \mapsto g^{-1} \), it follows that \(\mu \) is perfect if and only if \(\tilde{I} \) is perfect.

Remark 2.18. Since the set of irreducible Brauer characters \(\text{IBr}_p(G) \) is a \(\mathbb{Z} \)-basis of \(\mathbb{Z} \text{Irr}(G) \), which satisfies the conclusion of Proposition 2.13, Remark 2.12 and Proposition 2.14 imply that a Broué isometry is a perfect generalized isometry (in our sense and in the sense of Külshammer, Olsson and Robinson).

Theorem 2.19. Assume that \(G \) and \(G' \) are two finite groups and that \(C \) and \(C' \) are the sets of \(p' \)-elements of \(G \) and \(G' \), respectively. If the hypotheses of Theorem 2.9 hold, then \(I_{(1)} \) is a Broué isometry.

Proof. By Remark 2.18 and Corollary 2.16, \(I_{(1)} \) satisfies Property (ii). We thus only prove Property (i). Let \(x \in G \) and \(x' \in G' \). For \(\lambda \in \Lambda \), we take \(b_{\lambda} = \text{IBr}_p(B_{\lambda}) \).

In particular, for \(\phi \in b_{\lambda} \), the character \(\Phi_{\phi} \) is a projective character of \(G_{\lambda} \). Note that \(J_{\lambda}^{-1}(\phi) \in \mathbb{Z} \text{IBr}_p(B_{\eta(\lambda)}) \), and Equation (6) implies that \(l_{\lambda}(J_{\lambda}^{-1}(\phi))(x') \in R \).

Write \(x = x_S \cdot x_C \) and assume \(x \) is of type \(\mu \). Then Equation (7) and Lemma 2.6 give

\[
\frac{\tilde{I}_{(1)}(x, x')}{|C_G(x)|} = \sum_{\mu \in \Lambda_0} \sum_{\phi \in b_{\mu}} \frac{\Phi_{\phi}(x_C)}{|C_{G_{\mu}}(x_C)|_p} \cdot \frac{l_{\mu}(J_{\mu}^{-1}(\phi))(x')}{|C_{G_{\mu}}(x_C)|_{p'} \in R},
\]
because $1/|C_{G_n}(x_C)|_{p'} \in \mathcal{R}$, and $\Phi(a(x_C))/C_{G_n}(x_C)|_{p'} \in \mathcal{R}$ by [19, 2.21]. Similarly, using Remark [2.11] we deduce that $\tilde{f}(x, x')/C_{G'}(x')|_{p'} \in \mathcal{R}$, as required.

3. Alternating groups

Let n be a positive integer and p a prime. We denote by \mathcal{P}_n (or \mathcal{P}) the set of partitions of n, by \mathcal{O}_n (or \mathcal{O}) the set of partitions of n whose parts are odd, and by \mathcal{D}_n (or \mathcal{D}) the set of partitions of n whose parts are distinct. We also write $\mathcal{OD}_{\mathcal{O}}$ or $\mathcal{OD}_{\mathcal{O} \cap \mathcal{D}}$ (respectively $\mathcal{O} \cap \mathcal{D}$). Moreover, for $\lambda = (\lambda_1, \ldots, \lambda_r) \in \mathcal{P}$, we write $|\lambda| = \sum \lambda_i$ and $\ell(\lambda) = r$.

3.1. Notation. For any $\lambda \in \mathcal{P}_n$, we write χ_λ for the corresponding irreducible character of \mathcal{S}_n, and λ^* for the conjugate partition of λ. It is well-known that $\chi_{\lambda^*} = \chi_\lambda \otimes \varepsilon$, where ε denotes the sign character of \mathcal{S}_n. The character χ_λ is called self-conjugate when $\lambda = \lambda^*$. We denote by \mathcal{SC}_n (or \mathcal{SC}) the set of self-conjugate partitions of n. For any $\lambda \in \mathcal{SC}_n$, write $\overline{\lambda} \in \mathcal{OD}_n$ for the partition whose parts are the diagonal hooklengths of λ (see [21, p. 4] for the definition of a hook and its hooklength. Recall that with the notation of [21], a diagonal hook is an (i, i)-hook for some i), and define the map

$$a : \mathcal{SC}_n \rightarrow \mathcal{OD}_n, \quad \lambda \mapsto \overline{\lambda}.$$

We remark that a is bijective, and that $a^{-1}(\lambda)$ is the self-conjugate partition whose diagonal hooks have lengths the parts of λ.

Now, recall that $\text{Res}_{\mathcal{A}_n}^{\mathcal{S}_n}(\chi_\lambda)$ is irreducible if and only if λ is a non-self-conjugate partition (i.e. $\lambda \neq \lambda^*$). In this case, χ_λ and χ_{λ^*} restricts to the same irreducible character, which we denote by ρ_λ. Otherwise, when $\lambda = \lambda^*$, the restriction of χ_λ to \mathcal{A}_n is the sum of two irreducible characters ρ^-_λ and ρ^+_λ. Moreover, the conjugacy class of \mathcal{S}_n labelled by $a(\lambda)$ splits into two classes $a(\lambda)^\pm$ of \mathcal{A}_n, and following [11, Theorem 2.5.13], the notation can be chosen such that $\rho^+_\lambda(a(\lambda)^+) = x_\lambda \mp y_\lambda$ and $\rho^-_\lambda(a(\lambda)^-) = x_\lambda \mp y_\lambda$ with

$$x_\lambda = \frac{1}{2}(-1)^{\frac{a+1}{2}}$$

and

$$y_\lambda = \frac{1}{2} \sqrt{(-1)^{\frac{a-1}{2}} h_1 \cdots h_k},$$

where $a(\lambda) = (h_1 > h_2 > \cdots > h_k)$. Note that $x_\lambda = \chi_\lambda(a(\lambda))/2$, and if $x \in \mathcal{A}_n$ does not belong to the class of \mathcal{S}_n parametrized by $a(\lambda)$, then $\rho^+_\lambda(x) = \rho^-_\lambda(x) = \chi_\lambda(x)/2$.

To any $\lambda \in \mathcal{P}_n$, we associate its p-core $\lambda(p)$ and its p-quotient $\lambda(p)^* = (\lambda^1, \ldots, \lambda^p)$; see for example [21, p. 17]. Recall that the map

$$\lambda \mapsto (\lambda(p), \lambda(p)^*)$$

is bijective. Define

$$\lambda(p)^* = ((\lambda^p)^*, \ldots, (\lambda^1)^*).$$

Then by [21, Proposition 3.5], the p-core and p-quotient of λ^* are λ^*_p and $\lambda(p)^*$ respectively. In particular,

$$\lambda = \lambda^* \iff \lambda^*_p = \lambda(p) \quad \text{and} \quad \lambda(p)^* = \lambda(p).$$
3.2. *p*-blocks of \mathcal{A}_n. The “Nakayama Conjecture” asserts that two irreducible characters lie in the same p-block of \mathfrak{S}_n if and only if the partitions labelling them have the same p-core; see [11 Theorem 6.1.21]. Hence, the p-blocks of \mathfrak{S}_n are labelled by the p-cores of partitions of n. Such p-cores are called p-cores of n (or of \mathfrak{S}_n). For a p-core γ of n, we denote by B_γ the corresponding p-block of \mathfrak{S}_n. Moreover, we define the p-weight of γ (or of B_γ) by setting $w = (n - |\gamma|)/p$.

Let γ be a p-core of n. Then γ^* is also a p-core of n, and $\text{Irr}(B_{\gamma^*}) = \{\chi_{\lambda^*} \in \text{Irr}(\mathfrak{S}_n) | \lambda(p) = \gamma \} = \text{Irr}(B_\gamma)^*$.

If $\gamma \neq \gamma^*$, then $\text{Irr}(B_\gamma) \cap \text{Irr}(B_{\gamma^*}) = \emptyset$ and $\text{Irr}(B_\gamma)$ contains no self-conjugate character. In particular, the p-blocks B_γ and B_{γ^*} cover a unique p-block b_{γ, γ^*} of \mathcal{A}_n, which is such that $\text{Irr}(b_{\gamma, \gamma^*}) = \{\rho_\lambda \in \text{Irr}(\mathcal{A}_n) | \lambda(p) = \gamma \} = \{\rho_\lambda \in \text{Irr}(\mathcal{A}_n) | \lambda(p) = \gamma^* \}$.

Assume instead that $\gamma = \gamma^*$. Suppose that $w > 0$. By Equation (19), there is a partition λ of n with p-core γ and p-quotient $((w), \emptyset, \ldots, \emptyset)$. Furthermore, $\chi_\lambda \neq \chi_\lambda^*$ by Equation (21) and $\chi_\lambda \in \text{Irr}(B_\gamma)$. Hence, χ_λ restricts irreducibly to \mathcal{A}_n, and [19 Theorem 9.2] implies that B_γ covers a unique p-block b_γ of \mathcal{A}_n.

If, on the other hand, $w = 0$, then $\text{Irr}(B_\gamma) = \{\chi_\gamma\}$ has defect zero. If $n \leq 1$, then $\mathcal{A}_n = \mathfrak{S}_n = \{1\}$, and $\rho_\gamma = \chi_\gamma$ is the trivial character. The case $n = 2$ does not occur, because there are no self-conjugate partitions of size 2. If $n \geq 3$, then $\{\rho_\gamma^+\}$ and $\{\rho_\gamma^-\}$ are p-blocks of defect zero of \mathcal{A}_n.

3.3. Broué perfect isometries. Let q be a positive integer. For $\lambda \in \mathcal{P}_n$, we denote by $M_q(\lambda)$ the set of $\mu \in \mathcal{P}_{n-q}$ such that μ is obtained from λ by removing a q-hook. (The definition of q-hooks, and the process to remove a q-hook from a partition, is for example given in [21 p. 5]). Note that, if $\mu \in M_q(\lambda)$, then $\mu^* \in M_q(\lambda^*)$.

For $\mu \in M_q(\lambda)$, we denote by c_μ^λ the q-hook of λ such that μ is obtained from λ by removing c_μ^λ. Define

\[c_\mu^\lambda = (-1)^{L(c_\mu^\lambda)}, \]

where $L(c_\mu^\lambda)$ denotes the length of c_μ^λ (see for example [21 p. 3] for the definition of the length of a hook).

Lemma 3.1. If q is an odd integer, then $\alpha_\mu^\lambda = \alpha_\mu^{\lambda^*}$.

Proof. First, note that $c_\mu^{\lambda^*} = (c_\mu^\lambda)^*$. In particular, the leg of $c_\mu^{\lambda^*}$ is the arm of c_μ^λ. Hence, $L(c_\mu^\lambda) + L(c_\mu^{\lambda^*}) = q - 1$. Since q is odd, the result follows. \[\square \]

Lemma 3.2. Assume that q is odd, and that $\lambda = \lambda^*$. The set $M_q(\lambda)$ contains a self-conjugate partition if and only if $q \in \{\lambda_1, \ldots, \lambda_k\}$. In this case, $M_q(\lambda)$ contains a unique self-conjugate partition μ, and μ is such that $\overline{\mu} = \overline{\lambda} \setminus \{q\}$.

Proof. Since $\lambda = \lambda^*$, it follows from Equation (21) that $\lambda^i = (\lambda^{q-i+1})^*$, where $\lambda^{(q)} = (\lambda^1, \ldots, \lambda^q)$ is the q-quotient of λ. Moreover, by [21 Theorem 3.3] the multipartitions of $n - q$ obtained from $\lambda^{(q)}$ by removing any 1-hook are the q-quotients of partitions of $M_q(\lambda)$. In particular, $\mu \in M_q(\lambda)$ is self-conjugate if and only if $\mu^i = \lambda^i$ for $1 \leq i \leq (q - 1)/2$ and $\mu^{(q+1)/2}$ is a self-conjugate partition obtained from $\lambda^{(q+1)/2}$ by removing a 1-hook. However, when we remove a 1-hook to a self-conjugate partition, the resulting partition is never a self-conjugate partition.
partition, except if the removing box is a diagonal 1-hook. We now conclude with the argument of the proof of [2, 3.4].

Assume \(\lambda = \lambda^* \). In the case that \(M_q(\lambda) \) contains a (unique) self-conjugate partition \(\mu \), then we write \(\mu_\lambda = \mu \) (which is well-defined by Lemma 3.2).

Finally, for \(\lambda \in \mathcal{P}_n \), we set \(\alpha(\lambda) = 1 \) if \(\lambda \neq \lambda^* \) and \(\alpha(\lambda) = \frac{1}{2} \) otherwise.

Theorem 3.3. Let \(q \) be an odd integer and \(\lambda \in \mathcal{P}_n \). If \(\lambda \neq \lambda^* \), then we write \(\rho_\lambda = \rho_\lambda^+ = \rho_\lambda^- \). Let \(\sigma \) be a \(g \)-cycle with support \(\{ n - q + 1, \ldots, n \} \). Then for \(\epsilon \in \{ \pm 1 \} \) and \(g \in A_{n-q} \), we have

\[
\rho_\lambda(\sigma g) = \sum_{\mu \in M_q(\lambda), \mu \neq \mu^*} a(\rho_\lambda^+, \rho_\mu) \rho_\mu(g) + \sum_{\mu \in M_q(\lambda), \nu \neq \mu^*} (a(\rho_\lambda^+, \rho_\nu) \rho_\nu^+(g) + a(\rho_\lambda^-, \rho_\nu) \rho_\nu^- (g)),
\]

where the complex numbers \(a(\rho_\lambda^+, \rho_\mu) \) are defined as follows.

- If \(\mu^* \neq \mu \) and \(\mu^* \in M_q(\lambda) \), then \(a(\rho_\lambda^+, \rho_\mu) = \alpha(\lambda) (\alpha_\mu^+ + \alpha_\mu^-) \).
- If \(\mu^* \neq \mu \) and \(\mu^* \notin M_q(\lambda) \), then \(a(\rho_\lambda^+, \rho_\mu) = \alpha(\lambda) \alpha_\mu^+ \).
- If \(\mu = \mu^* = \mu_\lambda \), then \(a(\rho_\lambda^+, \rho_\mu^g) = \frac{1}{2} \left(\alpha_{\mu_\lambda}^+ + \epsilon \eta \sqrt{(-1)^{(q-1)/2q}} \right) \).

Proof. This is a consequence of Clifford theory and the Murnaghan-Nakayama formula in \(\mathfrak{S}_n \). We only prove the last point for \(\epsilon = +1 \). Assume that \(\lambda = \lambda^* \) and that \(\sigma g \) has cycle type \(\lambda \). By Lemma 3.2, \(g \in \mu_\lambda^\perp \). Now, if \(\lambda = (h_1 > h_2 > \cdots > h_k) \) then

\[
\rho_\lambda(\sigma g) = \frac{1}{2} \left(\chi_\lambda(\sigma g) \pm \sqrt{(-1)^{\frac{n-k}{2}} h_1 \cdots h_k} \right),
\]

\[
= \sum_{\mu \in M_q(\lambda), \mu \neq \mu^*} \frac{1}{2} (\alpha_\mu^+ + \alpha_\mu^-) \rho_\mu(g) + \sum_{\mu \in M_q(\lambda), \mu \neq \mu^*} \frac{1}{2} \alpha_\mu^+ \rho_\mu(g)
\]

\[
+ \sum_{\mu \in M_q(\lambda), \mu = \mu^*} \frac{1}{2} \alpha_\mu^+ (\rho_\mu^+(g) + \rho_\mu^-(g)) \pm \frac{1}{2} \sqrt{(-1)^{\frac{n-k}{2}} h_1 \cdots h_k},
\]

If we write \(\lambda(\{ q \}) = (h_1' > \cdots > h_{k-1}') \), then

\[
\sqrt{(-1)^{\frac{n-k}{2}} h_1 \cdots h_k} = \sqrt{(-1)^{\frac{n-k}{2}} h_1' \cdots h_{k-1}'}.
\]

The result follows.

Remark 3.4. In the last proof, when \(\lambda = \lambda^* \) and \(\mu \in \mathcal{P}_{n-q} \) is not self-conjugate and satisfies \(\{ \mu, \mu^* \} \in M_q(\lambda) \), then \(a(\rho_\lambda^+, \rho_\mu) = \alpha_\mu^+ \), because, by Lemma 3.1 \(\alpha_\mu^+ = \alpha_\mu^- \).

For \(q_1, q_2 \) multiples of \(q \), we define

\[(23) \quad M_{q_1, q_2}(\lambda) = \{ \mu \in M_{q_2}(\nu) \mid \nu \in M_{q_1}(\lambda) \}.
\]

Moreover, for \(\mu \in M_{q_1, q_2}(\lambda) \), we denote by \(\mathcal{P}_{q_1, q_2}^{\eta_1, \eta_2} \) the set all of pairs \((\eta_1, \eta_2) \), where \(\nu \in M_{q_1}(\lambda) \) and \(\mu \in M_{q_2}(\nu) \).
Theorem 3.5. Assume that \(q_1 \) and \(q_2 \) are even multiples of \(p \). Let \(\sigma = \sigma_1 \sigma_2 \) be such that \(\sigma_i \) is a \(q_i \)-cycle (for \(1 \leq i \leq 2 \)), and the supports of \(\sigma_1 \) and \(\sigma_2 \) are \(\{n - q_i + q_1, \ldots, n - q_i + q_2\} \) and \(\{n - q_i + q_1, \ldots, n\} \), respectively. Then for \(\epsilon \in \{\pm 1\} \) and \(g \in A_{n-q_1-q_2} \),
\[
\rho^*_\lambda(\sigma g) = \sum_{\mu \in \mathcal{M}_{q_1-q_2}(\lambda)} a(\rho^*_\lambda, \rho_\mu) \rho_\mu(g) + \sum_{\mu \in \mathcal{M}_{q_1-q_2}(\lambda)} (a(\rho^*_\lambda, \rho_\mu^+ \rho^-_\mu) \rho_\mu(g) + a(\rho^*_\lambda, \rho_\mu^- \rho^-_\mu) \rho_\mu(g))
\]
where the complex numbers \(a(\rho^*_\lambda, \rho_\mu^+ \rho^-_\mu) \) (\(\eta \in \{\pm 1\} \)) are defined as follows: if \(\mu^* \neq \mu \) and \(\mu^* \in M_{q_1,q_2}(\lambda) \), then
\[
a(\rho^*_\lambda, \rho_\mu^+) = a(\lambda) \sum_{(c_\mu^+, c_\mu^-) \in \mathcal{P}_{\lambda-q_2} \mod \mu} (-1)^L(c_\mu^+ + L(c_\mu^-)) + \sum_{(c_\mu^+, c_\mu^-) \in \mathcal{P}_{\lambda-q_2} \mod \mu^*} (-1)^L(c_\mu^+ + L(c_\mu^-)).
\]
In all other cases, one has
\[
a(\rho^*_\lambda, \rho_\mu^-) = a(\lambda) \sum_{(c_\mu^+, c_\mu^-) \in \mathcal{P}_{\lambda-q_2} \mod \mu} (-1)^L(c_\mu^+ + L(c_\mu^-)).
\]

Proof. Apply twice the Murnaghan-Nakayama formula in \(S_n \) and conclude with Clifford theory.

Let \(q \) be an integer. For \(\lambda \in \mathcal{P}_n \) and \(\mu \in M_\mu(\lambda) \), we introduce the relative \(q \)-sign \(\delta_q(\lambda, \mu) = \delta_q(\lambda)\delta_q(\mu) \) as in \([IS] \) p. 62], where \(\delta_q(\lambda) \) is the \(q \)-sign of \(\lambda \) (see \([IS] \) §2).

Lemma 3.6. Assume that \(q \) is odd. For any \(\lambda \in \mathcal{P}_n \), one has \(\delta_q(\lambda) = \delta_q(\lambda^*) \).

Proof. Let \(k \) be the \(q \)-weight of \(\lambda \) and \(c_0 = \emptyset \). We construct a sequence of \(q \)-hooks \(c_1, \ldots, c_k \) by choosing \(c_i \) to be a \(q \)-hook of \(\lambda \setminus \{c_1, \ldots, c_{i-1}\} \) for \(1 \leq i \leq k \), such that \(\lambda \setminus \{c_1, \ldots, c_k\} = \lambda(q) \). Note that \(c_1^*, \ldots, c_k^* \) is a sequence of \(q \)-hooks from \(\lambda^* \) to \(\lambda(q)^* \).

So, by \([IS] \) Corollary 2.3], \(\delta_q(\lambda) = \delta_q(\lambda, \lambda(q)) \) and \([IS] \) Proposition 2.2] yields
\[
(24) \quad \delta_q(\lambda) = (-1)^L(c_1^* + \cdots + L(c_k^*)) \quad \text{and} \quad \delta_q(\lambda^*) = (-1)^L(c_1^* + \cdots + L(c_k^*)).
\]
Now, by the argument of Lemma \([IS] \) we deduce that \(L(c_i) \equiv L(c_i^*) \mod 2 \) for \(1 \leq i \leq k \), because \(q \) is odd. The result follows.

Let \(\gamma \) and \(\gamma' \) be two self-conjugate \(p \)-cores of \(S_n \) and \(S_m \) of the same \(p \)-weight \(w > 0 \). We denote by \(b_\gamma \) and \(b_{\gamma'} \) the corresponding \(p \)-blocks of \(A_n \) and \(A_m \), respectively. Let \(\lambda \in \mathcal{P}_n \) be such that \(\lambda(p) = \gamma \). By Equation \([IS] \), there is a unique partition \(\Psi(\lambda) \in \mathcal{P}_m \) such that \(\Psi(\lambda)_{(p)} = \gamma' \) and \(\Psi(\lambda)^{(p)} = \lambda^{(p)} \). In particular, if we denote by \(f \) the canonical bijection between the set of hooks of length divisible by \(p \) in \(\lambda \) and the set of hooks in \(\lambda^{(p)} \) as in \([IS] \) Proposition 3.1], then for any integer \(q \) divisible by \(p \) and \(\mu \in M_q(\lambda) \), we have
\[
(25) \quad f(c_{\mu}^p) = f\left(\Psi(\lambda)_{(p)}\right)
\]
where \(\Psi : \mathcal{P}_{n-q} \to \mathcal{P}_{m-q} \) is defined as above. Moreover, \([IS] \) Corollary 3.4] gives
\[
(26) \quad (-1)^L(c_{\mu}^p) = (-1)^L(f(c_{\mu}^p)) \delta_p(\lambda, \mu).
\]

Lemma 3.7. Let \(\lambda \) and \(\Psi(\lambda) \) be as above. For any multiple \(q \) of \(p \) and \(\mu \in M_q(\lambda) \) such that \(\mu \neq \mu^* \), we have \(\Psi(\mu) \neq \Psi(\mu^*) \). Moreover, \(\mu^* \in M_q(\lambda) \) if and only if \(\Psi(\mu^*) \in M_q(\Psi(\lambda)) \). In this case, \(\Psi(\mu^*) = \Psi(\mu)^* \).
Thus, we deduce that, if

\[\delta_p(\lambda) \rho_p(\mu) = \delta_p(\Psi(\lambda)) \rho_p(\Psi(\mu)) \]

\[\rho_p(\Psi(\lambda)) \rho_p(\Psi(\mu)) \]

\[\delta_p(\lambda) \delta_p(\mu) = \delta_p(\Psi(\lambda)) \delta_p(\Psi(\mu)) \]

Proof. Let \(\mathcal{E}_\gamma \) be the set of partitions of \(n \) with \(p \)-core \(\gamma \). Since \(\gamma \) is self-conjugate, by Equation (21), \(\lambda \in \mathcal{E}_\gamma \) is self-conjugate if and only if its \(p \)-quotient is self-conjugate. The same holds for \(\gamma' \) and \(\Psi(\lambda) \in \mathcal{E}_{\gamma'} \). In particular, for \(\lambda \in \mathcal{E}_\gamma \), we have

\[\alpha(\lambda) = \alpha(\Psi(\lambda)) \]

proof: This is a consequence of [18] Proposition 3.1 and of [21] Proposition 3.5.

Proposition 3.8. Assume \(p \) is odd and keep the notation as above. We have

\[\delta_p(\lambda) \rho_p(\mu) = \delta_p(\Psi(\lambda)) \rho_p(\Psi(\mu)) \]

Proof. Let \(\mathcal{E}_\gamma \) be the self-conjugate p-cores of \(\mathfrak{S}_n \) and \(\mathfrak{S}_m \) respectively, and of same p-weight \(w > 0 \). Let \(b_\gamma \) and \(b_{\gamma'} \) be the corresponding p-blocks of \(\mathfrak{A}_n \) and \(\mathfrak{A}_m \). Define, for all \(\lambda \in \mathcal{E}_\gamma \) and \(\epsilon \in \{\pm 1\} \),

\[I : \mathbb{C} \text{Irr}(b_\gamma) \to \mathbb{C} \text{Irr}(b_{\gamma'}) \]

\[\rho_\lambda \mapsto \delta_p(\lambda) \rho_p(\Psi(\lambda)) \]

\[\rho_\lambda \rho_p(\Psi(\lambda)) \]

\[\delta_p(\lambda) \delta_p(\mu) = \delta_p(\Psi(\lambda)) \delta_p(\Psi(\mu)) \]

as required.

Theorem 3.9. Let \(p \) be an odd prime. Assume that \(\gamma \) and \(\gamma' \) are self-conjugate p-cores of \(\mathfrak{S}_n \) and \(\mathfrak{S}_m \) respectively, and of same p-weight \(w > 0 \). Let \(b_\gamma \) and \(b_{\gamma'} \) be the corresponding p-blocks of \(\mathfrak{A}_n \) and \(\mathfrak{A}_m \). Define, for all \(\lambda \in \mathcal{E}_\gamma \) and \(\epsilon \in \{\pm 1\} \),

\[I : \mathbb{C} \text{Irr}(b_\gamma) \to \mathbb{C} \text{Irr}(b_{\gamma'}) \]

\[\rho_\lambda \mapsto \delta_p(\lambda) \rho_p(\Psi(\lambda)) \]

\[\rho_\lambda \rho_p(\Psi(\lambda)) \]

\[\delta_p(\lambda) \delta_p(\mu) = \delta_p(\Psi(\lambda)) \delta_p(\Psi(\mu)) \]

Then \(I \) is a Broué perfect isometry.
Proof. First, we prove that A_n has an MN-structure. Let S be the set of elements of A_n with cycle decomposition $\sigma_1 \cdots \sigma_r$ (where we only indicate non-trivial cycles) such that each σ_i is a cycle of length divisible by p. We remark that when σ_i has even length, there is $j \neq i$ such that σ_j has even length (because $\sigma_1 \cdots \sigma_r \in A_n$). Moreover, S contains 1 and is stable by A_n-conjugation. Let C be the set of p'-elements of A_n. Now take any $\sigma \in A_n$. Using the cycle decomposition of σ, there are unique elements $\sigma_S \in S$ and $\sigma_C \in C$ with disjoint support such that $\sigma = \sigma_S \sigma_C = \sigma_C \sigma_S$. In particular, Definition 2.5(1) and (2) hold. Denote by J the support of σ_S, $\overline{J} = \{1, \ldots, n\} \setminus J$ and define $G_{\sigma_S} = A_{\overline{J}}$. Then G_{σ_S} satisfies Definition 2.5(3). Write Ω for the set of partitions of the form $p \cdot \beta$ such that

- There is some $i \leq n$ such that $p \cdot \beta$ is a partition of i.
- The number of even parts of β is even. In particular, we choose the notation such that $\beta = (\beta_1, \ldots, \beta_k)$ with $|\beta| = \beta_1 + \cdots + \beta_k$ and there is $1 \leq r \leq k$ with β_i odd for $1 \leq i \leq r$ and β_i even for $i > r$.

Note that each partition of Ω labels either one A_n-conjugacy class of S or two classes. Denote by Λ the set of parameters for the A_n-classes of S obtained by this process. The elements of Λ will be denoted $p \cdot \beta$, with $\beta = \beta$ when $p \cdot \beta \in \Omega$ labels a unique class of S, and $\beta \in \{\beta^+, \beta^-, \beta^0\}$ when $p \cdot \beta$ labels two classes of S. The notation is chosen as in Equation (18).

For $p \cdot \beta \in \Lambda$, we assume that the representative $\sigma_{\beta} = \sigma_{\hat{\beta}} \cdots \sigma_{\hat{\beta}}$, of the A_n-class labelled by $p \cdot \beta$ in A_n satisfies that the cycle σ_{β_i} has support $\{n + 1 - \sum_{k=1}^{i} p\beta_k, \ldots, n - \sum_{k=1}^{i-1} p\beta_k\}$. Moreover, when $p \cdot \beta$ labels two classes of A_n, we assume that $\sigma_{\beta_i} = \sigma_{\beta_i}^-$ for every $1 \leq i \leq r - 1$, and $\sigma_{\beta_r}^+$ and $\sigma_{\beta_r}^-$ are representatives of the $A_{p\beta}$-classes labelled by $p\beta_r^+$ and $p\beta_r^-$, respectively. In particular, σ_{β_i} has length $p\beta_i$ and the support of σ_{β_r} is $\{n + p|\beta| + 1, \ldots, n\}$.

Hence, $G_{\sigma_{\beta}} = A_{n-p|\beta|}$.

Now, we denote by Ω_0 the subset of partitions $p \cdot \beta \in \Omega$ such that $|\beta| \leq w$, and by Λ_0 the corresponding subset of Λ. For $p \cdot \beta \in \Omega_0$, define $r\beta : \text{Irr}(b_r) \to \mathbb{C} \text{Irr}(b_r, (A_n-p|\beta|))$ by applying iteratively Theorem 2.5. With $\sigma = \sigma_{\hat{\beta}}$, when β_i is odd and Theorem 3.5 with $\sigma = \sigma_{\beta_i} \sigma_{\beta_{i+1}}$ when β_i and β_{i+1} are even. By Theorems 3.3 and 3.4, Definition 2.5(4) holds. This proves that A_n has an MN-structure with respect to b_r and the set of p'-elements of A_n. Let $\lambda \in E_r$. Then $r\beta(\rho^+_\lambda)(g) = \rho^+_\lambda(\sigma_{\beta} g)$, and for $p \cdot \beta \in \Lambda \setminus \Lambda_0$, the Murnaghan-Nakayama rule in \mathbb{S}_n and Clifford theory imply that $\rho^+_\lambda(\sigma_{\beta} g) = 0$ except, maybe, when $\lambda = \lambda^*$ and $\sigma_{\beta} g \in \overline{\lambda}$. In this last case, λ has more than w diagonal hooks with length divisible by p, contradicting the fact that λ has p-weight w. This proves that, if $p \cdot \beta \notin \Lambda_0$, then $r\beta = 0$.

We define similarly an MN-structure for A_m with respect to b_r and the set of p'-elements of A_m. We denote by Ω', Ω'_0, Λ' and Λ'_0 the corresponding sets. Note that $\Omega_0 = \Omega'_0$.

There are two cases to consider. First, assume that $|\Lambda_0| = |\Lambda'_0|$. In fact, this case occurs if and only if $\Lambda_0 = \Lambda'_0$, because $\Omega_0 = \Omega'_0$. Thanks to Remark 2.10 we just have to prove that Theorem 2.9(2) holds.

Let $p \cdot \beta \in \Lambda_0$. Write $\beta = (\beta_1, \ldots, \beta_k)$ and r as above. Set $q_i = p|\beta_i|$ for $1 \leq i \leq k$. Now, for $1 \leq \ell \leq r$, write $x_i = q_i$, and for $1 \leq i \leq (n-r)/2$, write $x_{r+i} = \{q_{r+2i-1}, q_{r+2i}\}$. We also set $m = (n+r)/2$. For $1 \leq i \leq m$, define $M_{x_1, \ldots, x_i}(\lambda) = \{\mu \in M_{x_i}(\nu) \mid \nu \in M_{x_1, \ldots, x_{i-1}}(\lambda)\}$ (recall that $M_{x_i}(\nu)$ is defined as in Equation 23 when x_i has two elements).
Let \(\theta \in \text{Irr}(b_\gamma). \) There are \(\lambda \in \mathcal{E}_\gamma \) and \(\epsilon \in \{\pm 1\} \) such that \(\theta = \rho_{\lambda}^{\epsilon \delta_p(\lambda)} \) (with
the convention, as above, that if \(\lambda \neq \lambda^* \), then \(\rho_{\lambda}^+ = \rho_{\lambda} = \rho_{\lambda}^- \)). Then we set
\(\delta_p(\theta) = \delta_p(\lambda) \) and \(\Psi(\theta) = \rho_{\Psi(\lambda)}^{\epsilon \delta_p(\Psi(\lambda))} \in \text{Irr}(b_\gamma). \) We have
\[
\rho_\gamma(\theta) = \sum_{\vartheta \in \text{Irr}(b_\gamma(n-p|\beta))} a(\theta, \vartheta) \vartheta,
\]
where \(b_\gamma(n-p|\beta) \) denotes the union of \(p \)-blocks of \(A_{n-p|\beta} \) covered by the \(p \)-block
\(B_\gamma \) of \(\mathcal{S}_{n-p|\beta} \) labelled by \(\gamma. \) By \(\Omega \), \(b_\gamma(n-p|\beta) \) is a \(p \)-block of \(A_{n-p|\beta} \), except
when \(|\gamma| > 2 \) and \(|\beta| = w. \) In this last case, it is a union of two \(p \)-blocks \(\{\rho_\gamma^+\} \) and
\(\{\rho_\gamma^-\} \) of defect zero. Note that
\[
a(\theta, \vartheta) = \sum_{\vartheta_1, \ldots, \vartheta_{n-1}} a(\vartheta_0, \vartheta_1)a(\vartheta_1, \vartheta_2) \cdots a(\vartheta_{m-1}, \vartheta_m),
\]
where \(\vartheta_0 = \theta, \vartheta_m = \vartheta, \) and the sum runs over the set of \(\vartheta_1, \ldots, \vartheta_{m-1} \) such that
for each \(1 \leq i \leq m, \) there are \(\mu_i \in M_{i1, \ldots, x_i}(\lambda) \) and \(\epsilon_i \in \{\pm 1\} \) such that
\(\vartheta_i = \rho_{\mu_i}^{\epsilon_i \delta_p(\mu_i)}. \) Since
\[
\delta_p(\theta)\delta_p(\vartheta) = (\delta_p(\vartheta_0)\delta_p(\vartheta_1)) \cdot (\delta_p(\vartheta_1)\delta_p(\vartheta_2)) \cdots (\delta_p(\vartheta_{m-1})\delta_p(\vartheta_m)),
\]
and thanks to Proposition \(\mathbf{3.3} \) we deduce that
\[
\delta_p(\theta)\delta_p(\vartheta) a(\theta, \vartheta) = \sum_{\vartheta_1, \ldots, \vartheta_{n-1}} \delta_p(\vartheta_0)\delta_p(\vartheta_1)a(\vartheta_0, \vartheta_1) \cdots \delta_p(\vartheta_{m-1})\delta_p(\vartheta_m)a(\vartheta_{m-1}, \vartheta_m)
\]
\[
= \sum_{\vartheta_0, \vartheta_1} \delta_p(\vartheta_0)\delta_p(\vartheta_1)a(\vartheta_0, \vartheta_1) \cdots \delta_p(\vartheta_{m-1})\delta_p(\vartheta_m)a(\vartheta_{m-1}, \vartheta_m)
\]
\[
= \delta_p(\Psi(\theta))\delta_p(\Psi(\vartheta)) a(\Psi(\theta), \Psi(\vartheta)).
\]
In particular, one has
\[
\delta_p(\theta)\delta_p(\Psi(\theta)) a(\Psi(\theta), \Psi(\vartheta)) = \delta_p(\vartheta)\delta_p(\Psi(\vartheta)) a(\theta, \vartheta),
\]
and it follows that
\[
\rho_\gamma(\theta) = \delta_p(\theta)\delta_p(\Psi(\theta)) r^\beta(\Psi(\theta)) = \sum_{\vartheta \in \text{Irr}(b_\gamma(n-p|\beta))} a(\theta, \vartheta) I(\vartheta),
\]
\[
= \sum_{\vartheta \in \text{Irr}(b_\gamma(n-p|\beta))} a(\theta, \vartheta) I(\vartheta),
\]
The result then follows from Theorems \(\mathbf{2.9} \) and \(\mathbf{2.19} \).

Assume now that \(|A_0| \neq |A_0'|. \) Without loss of generality, we can suppose that
\(|A_0| > |A_0'|. \) This means that \(A_0' = \Omega_0, \) and every \(p : \beta \in \Omega_0 \) does not belong to
\(D \cap \mathcal{O}. \) In particular, \(|\gamma'| \geq 2. \) (In fact, \(|\gamma'| \geq 3 \) because \(\gamma' \) is self-conjugate.)

Since \(\gamma' \) is self-conjugate, it labels two irreducible characters \(\rho_{\gamma'} \) and \(\rho_{\gamma'}^\circ \) of \(A_{m-pw}. \)
Similarly, \(A_0 \neq \Omega_0 \) implies that \(|\gamma| \leq 1. \) Note that in this case, although \(\gamma \) is self-conjugate, the restriction of \(\chi_\gamma \) from \(\mathcal{S}_1 \) (or \(\mathcal{S}_0 \)) to \(A_1 \) (or \(A_0 \)) is irreducible.
(because it is the trivial character of the trivial group). Let $p \cdot \beta$ be in Ω_0. Suppose that $|\beta| < w$. Then $p \cdot \beta \in \Lambda_0$. Define $I_3 : \mathcal{C} \text{Irr}(b_r(n-p|\beta|)) \rightarrow \mathcal{C} \text{Irr}(b_r(m-p|\beta|))$ as in Equation (27). The same computation as in Equation (30) gives

$$r^\beta \circ I = I_\beta \circ r^\beta.$$

(31)

Suppose now that $|\beta| = w$. Then $p \cdot \beta$ parametrizes two classes of S and one class of S'. Moreover, $|\text{Irr}(b_r(n-pw))| = 1$ and $|\text{Irr}(b_r'(n-pw))| = 2$. Denote by G_{β^+} and G_{β^-} two copies of the trivial group, and set $\text{Irr}(G_{\beta^+}) = \{1_{\beta^+}\}$. In particular, $r^\beta(\mathcal{C}_\gamma) = \mathcal{C} \text{Irr}(G_{\beta^\pm})$. Define $I_\beta : \mathcal{C} \text{Irr}(G_{\beta^+}) \oplus \mathcal{C} \text{Irr}(G_{\beta^-}) \rightarrow \mathcal{C} \text{Irr}(b_r'(m-wp))$ by setting

$$I_\beta(1_{\beta^+}) = \rho^{\beta^+}_\gamma \text{ and } I_\beta(1_{\beta^-}) = \rho^{\beta^-}_\gamma.$$

(32)

Let $p \cdot \beta_0$ be the self-conjugate partition of n such that $\overline{\beta}_0 = \beta$ (that is, the diagonal hooks of $p \cdot \beta_0$ are the cycles of $p \cdot \beta$). By [2, 3.4], the p-quotient of $p \cdot \beta_0$ satisfies $(p \cdot \beta_0)^i = \emptyset$ if $i \neq (p+1)/2$ and $(p \cdot \beta_0)^{(p+1)/2} = \beta_0$. By definition of Ψ, the partition $\Psi(p \cdot \beta_0)$ of m has the same p-quotient as $p \cdot \beta_0$. Thus, [2, 3.4] also implies that $\Psi(p \cdot \beta_0)$ has the same diagonal hooks divisible by p as $p \cdot \beta_0$, and the other diagonal hooks of $\Psi(p \cdot \beta_0)$ have p'-length. In particular, $\Psi(p \cdot \beta_0)$ has $p \cdot \beta$ as a subpartition (corresponding exactly to those of the parts of $\Psi(p \cdot \beta_0)$ that are divisible by p). Moreover, this class splits into $\mathcal{A}_{m-p|\beta|}$ classes with representatives $\sigma^+_p \sigma^-_{p'}$ and $\sigma^-_p \sigma^+_{p'}$, where the cycle type of σ^+_p is $p \cdot \beta$, and the p'-elements σ^+ and σ^- are representatives of the split classes of $\mathcal{A}_{m-p|\beta|}$ labelled by $a(\gamma)^+$ and $a(\gamma)^-$, respectively.

Let $\mu_1 = p \cdot \beta_0$, $\mu_{\ell(\beta)} = \gamma$ and the μ_i’s be partitions such that $\mu_1 \sim \mu_2 \sim \cdots \sim \mu_{\ell(\beta)}$, where μ_i is obtained from μ_{i-1} by removing the diagonal hook of length $p \beta_i$.

Since $c^{\mu_{i-1}}_{\mu_i} = c^{\Psi(\mu_{i-1})}_{\Psi(\mu_i)}$ for every $1 \leq i \leq \ell(\beta) - 1$, Equations (24) and (26) give $\delta_{\rho}(\mu_i, \mu_{i+1}) = \delta_{\rho}(\Psi(\mu_i), \Psi(\mu_{i+1}))$ and it follows from [18 Corollary 2.3] that

$$\delta_{\rho}(p \cdot \beta_0) = \sum_{i=1}^{\ell(\beta)-1} \delta_{\rho}(\mu_i, \mu_{i+1}) = \sum_{i=1}^{\ell(\beta)-1} \delta_{\rho}(\Psi(\mu_i), \Psi(\mu_{i+1})) = \delta_{\rho}(\Psi(p \cdot \beta_0)).$$

(33)

Now, by [9 Theorem 11], we have

$$r^\beta(\chi_{\Psi(p \cdot \beta_0)}) = r^\beta(\delta_{\rho}(p \cdot \beta_0) \delta_{\rho}(\Psi(p \cdot \beta_0)) \chi_{\Psi(p \cdot \beta_0)})$$

$$= r^\beta \circ I(\chi_{p \cdot \beta_0})$$

$$= \chi_{p \cdot \beta_0}(p \cdot \beta) I(1_{\{1\}})$$

$$= \chi_{p \cdot \beta_0}(p \cdot \beta) \chi_\gamma,$$

and Clifford theory gives

$$r^\beta \left(\rho^+_\Psi(p \cdot \beta_0) \right) + r^\beta \left(\rho^-_\Psi(p \cdot \beta_0) \right) = \chi_{p \cdot \beta_0}(p \cdot \beta) \left(\rho^+_\gamma + \rho^-_\gamma \right),$$

(34)

where $\chi_{p \cdot \beta_0}(p \cdot \beta)$ denotes the value of $\chi_{p \cdot \beta_0}$ on any element of cycle type $p \cdot \beta$.

For $1 \leq i \leq \ell(\beta)$, write $q_i = p \beta_i$. Recall that $n = pw$ or $n = pw + 1$. Note that in the second case, there is a slight abuse of notation. Indeed, $p \cdot \beta$ labels the class of \mathfrak{S}_n, with cycle structure $\pi = (p \beta_1, \ldots, p \beta_{\ell(\beta)}, 1)$, and $\chi_{p \cdot \beta_0}$ (respectively $\rho^+_\Psi(p \cdot \beta_0)$) is the character of \mathfrak{S}_n (respectively of \mathcal{A}_n) labelled by $a^{-1}(\pi)$. However, in all cases,
we have \((-1)^{\frac{1}{2}(n-\ell(p))} = (-1)^{\frac{1}{2}(pw-\ell(\beta))}\) and \(\pi_1 \cdots \pi_{\ell(p)} = q_1 \cdots q_{\ell(\beta)}\). Thus, using Theorem 3.3, we obtain
\[
(35) \quad r^\beta(p^+_{\psi(p,\beta_0)}) - r^\beta(p^-_{\psi(p,\beta_0)}) = \sqrt{(-1)^{\frac{1}{2} \sum (q_i-1)q_{\ell(p)}}} (p^+_{\psi} - p^-_{\psi})
\]
\[
= 2y_{p,\beta_0} \left(p^+_{\psi} - p^-_{\psi} \right),
\]
because \(\sum (q_i-1) = pw-\ell(\beta)\). So, we deduce from Equations (31) and (35) that
\[
(36) \quad r^\beta(p^+_{\psi(p,\beta_0)}) = (x_{p,\beta_0} + \epsilon y_{p,\beta_0})p^+_{\psi} + (x_{p,\beta_0} - \epsilon y_{p,\beta_0})p^-_{\psi}.
\]
Furthermore, one has
\[
(37) \quad r^\beta(p^+_{\psi(p,\beta_0)}) = (x_{p,\beta_0} + \epsilon y_{p,\beta_0})_1p^+_{\psi} \quad \text{and} \quad r^\beta(p^-_{\psi(p,\beta_0)}) = (x_{p,\beta_0} - \epsilon y_{p,\beta_0})_1p^-_{\psi}.
\]
Hence, Equations (32), (33), (36) and (37) give
\[
I_{\beta} \left(r^\beta(p^+_{\psi(p,\beta_0)}) + r^\beta(p^-_{\psi(p,\beta_0)}) \right) = r^\beta(I(p^\beta_{\psi(p,\beta_0)})).
\]
Let now \(\lambda \neq p \cdot \beta\) have \(p\)-core \(\gamma\). Since \(p^\lambda_{\psi}(\sigma_{\beta_{\pm}}) = \alpha(\lambda)_\lambda(p \cdot \beta)\), we derive from [6, Theorem 11] and Clifford theory that \(I_{\beta}(r^\beta_{\psi}(p^\lambda_{\psi}) + r^\beta_{\psi}(p^\lambda_{\psi})) = r^\beta(I(p^\lambda_{\psi}))\). Finally, we obtain
\[
(38) \quad I_{\beta} \circ (r^{\beta^+} + r^{\beta^-}) = r^\beta \circ I.
\]
Using Equations (31) and (33), Remark 2.10 holds. Hence, the condition (2.b) of Theorem 2.9 is automatic for \(I_{\beta}\) with \(|\beta| < w\), and is true for \(I_{\beta}\) with \(|\beta| = w\) (because the characters \(1_{\beta_{\pm}}\) and \(p^\pm_{\psi}\) have defect zero). We remark that in the last case, with the notation of Theorem 2.9 one has \(J_{\beta}^{-1} = I_{\beta}\).

Now, following the proof of Theorem 2.9, if we set \(e_\beta = e_\beta\) when \(\hat{\beta} = \beta\), and \(e_\beta = e_{\beta_{\pm}}\) when \(\hat{\beta} = \beta_{\pm}\), then we obtain
\[
(39) \quad \tilde{I}(x, x') = \sum_{\beta \in \mathcal{B}_0} \sum_{\phi \in b_\beta} e_\beta(\Phi_\phi)(x)l_\beta(J_{\beta}^{-1}(\phi))(x'),
\]
where \(b_\beta\) is the set of irreducible Brauer characters in the \(p\)-block \(b_\lambda(n - p|\beta|)\) when \(\hat{\beta} = \beta\) and \(b_\beta = \{1_{\beta_{\pm}}, 1_{\beta_{\pm}}\}\) when \(\hat{\beta} \neq \beta\). Since an analogue of Remark 2.11 holds, we conclude as in Theorem 2.19.

Theorem 3.10. Let \(p\) be an odd prime. Assume that \(\gamma\) and \(\gamma'\) are non self-conjugate \(p\)-cores of \(\mathfrak{S}_n\) and \(\mathfrak{S}_m\) respectively, of same \(p\)-weight \(w > 0\). Let \(b_{\gamma,\gamma'}\) and \(b_{\gamma',\gamma'}\) be the corresponding \(p\)-blocks of \(\mathcal{A}_n\) and \(\mathcal{A}_m\). Let
\[
I : \mathbb{C} \mathfrak{Irr}(b_{\gamma,\gamma'}) \rightarrow \mathbb{C} \mathfrak{Irr}(b_{\gamma',\gamma'}), \quad \rho_\lambda \mapsto \delta_p(\lambda)\delta_p(\Psi(\lambda))\rho_\psi(\lambda).
\]
Then \(I\) is a Broué perfect isometry.

Proof. The proof is similar to that of Theorem 3.9. We use the same MN-structure. In a sense, this case is easier, because every irreducible character in \(\mathfrak{Irr}(b_{\gamma,\gamma'})\) is the restriction of a character of \(\mathfrak{S}_n\). Hence, the Murnaghan-Nakayama rule for \(\mathfrak{S}_n\) directly gives the result.

Theorem 3.11. Let \(\gamma\) and \(\gamma'\) be \(p\)-blocks of \(\mathcal{A}_n\) and \(\mathcal{A}_m\) of the same positive weight. Then \(I\) defined as in Equation (27) is a Broué perfect isometry.
Proof. The MN-structure is defined as in the case where p is odd, and one always has that $\Lambda_0 = \Omega_0 = \Lambda'_0$. Only the situation of Theorem 3.3 occurs. The result of Proposition 3.8 still holds, but the simplifications explained in the note within the proof are different. For any 2-hook c, one has $L(c) + L(c^*) \equiv 1 \mod 2$. In particular, for any $\mu \in M_{q_1,q_2}(\lambda)$, we deduce from Equation (24) that
\[
\delta_z(\mu)\delta_\tau(\mu^*) = (-1)^r = \delta_z(\Psi(\mu))\delta_\tau(\Psi(\mu)^*),
\]
where r is the number of 2-hooks to remove from μ to get to $\mu_{(2)}$ (this is also the number of 2-hooks we have to remove from $\Psi(\mu)$ to obtain $\Psi(\mu)_{(2)}$). The rest of the proof is similar to that of Theorem 3.9.

\[\square\]

4. Double covering groups of the symmetric and alternating groups

In this section, we will consider the double covering group \tilde{S}_n (for a positive integer n) of the symmetric group S_n defined by
\[
\tilde{S}_n = \langle z, t_i, 1 \leq i \leq n-1 \mid z^2 = 1, t_i^2 = z, (t_i t_{i+1})^3 = z, |i-j| \geq 2 \rangle.
\]
The group \tilde{S}_n and its representation theory were first studied by I. Schur in [25], and, unless otherwise specified, we always refer to [25] for details or proofs. We recall that $Z(\tilde{S}_n) = \langle z \rangle$ and that we have the following exact sequence
\[
1 \to \langle z \rangle \to \tilde{S}_n \to S_n \to 1.
\]
We denote by $\theta : \tilde{S}_n \to S_n$ the natural projection. Note that for every $\sigma \in S_n$, we have $\theta^{-1}(\sigma) = \{\tilde{\sigma}, z\tilde{\sigma}\}$, where $\tilde{\sigma} \in \tilde{S}_n$ is such that $\theta(\tilde{\sigma}) = \sigma$.

If we set
\[
\tilde{A}_n = \theta^{-1}(A_n),
\]
then \tilde{A}_n is the double covering group of the alternating group A_n.

4.1. Conjugacy classes and spin characters of \tilde{S}_n. If $x, y \in \tilde{S}_n$ are \tilde{S}_n-conjugate, then $\theta(x)$ and $\theta(y)$ are S_n-conjugate. Let $\sigma, \tau \in S_n$. Choose $\tilde{\sigma}, \tilde{\tau} \in \tilde{S}_n$ such that $\theta(\tilde{\sigma}) = \sigma$ and $\theta(\tilde{\tau}) = \tau$. Suppose that σ and τ are S_n-conjugate. Then $\tilde{\tau}$ is \tilde{S}_n-conjugate to $\tilde{\sigma}$ or to $z\tilde{\sigma}$ (possibly both). Hence, each conjugacy class C of S_n gives rise to either one or two conjugacy classes of \tilde{S}_n, according to whether $\tilde{\sigma}$ and $z\tilde{\sigma}$ are conjugate or not (here, σ lies in C and $\tilde{\sigma}$ is as above). In the first case, we say that the class is non-split, and, in the second case, that it is split. The split classes of \tilde{S}_n are characterized as follows. Recall that the conjugacy classes of S_n are labelled by the set \mathcal{P}_n of partitions of n. Write \mathcal{O}_n for the set of $\pi \in \mathcal{P}_n$ such that all parts of π have odd length, and \mathcal{D}_n for the set of $\pi \in \mathcal{P}_n$ with distinct parts. The partitions in \mathcal{D}_n are called bar partitions. Denote by \mathcal{D}_n^+ (respectively \mathcal{D}_n^-) the subset of \mathcal{D}_n consisting of all partitions $\pi \in \mathcal{D}_n$ such that the number of parts of π with an even length is even (respectively odd). Schur proved (see [25, §7])

Proposition 4.1. The split conjugacy classes of \tilde{S}_n are those classes C such that $\theta(C)$ is labelled by $\mathcal{O}_n \cup \mathcal{D}_n^-$.

We set $s_i = (i, i+1) \in \tilde{S}_n$. Then for every $1 \leq i \leq n-1$, we have $\theta(t_i) = s_i$. For $\pi = (\pi_1, \ldots, \pi_r) \in \mathcal{P}_n$, write s_π for a representative of the class of \tilde{S}_n, labelled by π. If $s_\pi = \sigma_{\pi_1} \cdots \sigma_{\pi_r}$ is the cycle decomposition (with disjoint supports) of s_π, then
we assume that the support of σ_π is $\left\{n - \sum_{j=1}^{t} \pi_j + 1, n - \sum_{j=1}^{t-1} \pi_j\right\}$. In order to make the notation precise, we will need the following lemma.

Lemma 4.2. Let $\pi \in \mathcal{O}_n$, and s_π be as above. Then the set $\theta^{-1}(s_\pi)$ has an element of odd order.

Proof. Let $g \in \theta^{-1}(s_\pi)$, so that $\theta^{-1}(s_\pi) = \{g, zg\}$, and let d be the order of s_π, which is an odd integer because $\pi \in \mathcal{O}_n$. Since $\theta(g^d) = \theta(g)^d = s_\pi^d = 1$, we obtain $g^d \in \{1, z\}$. If $g^d = 1$, then the order of g is odd. Otherwise, $g^d = z$, and $(zg)^d = z^d g^d = z^2 = 1$ because d is odd. Thus zg has odd order, as required. \square

Now, for any $\pi \in \mathcal{P}_n$, we choose an element $t_\pi \in \tilde{\mathcal{S}}_n$ such that $\theta(t_\pi) = s_\pi$. By Lemma 1.2 if $\pi \in \mathcal{O}_n$, then we can also assume that t_π has odd order. So, when $\pi \in \mathcal{O}_n \cup D_n^-$, the elements t_π and zt_π are representatives of the two split classes of $\tilde{\mathcal{S}}_n$ labelled by π. We denote by C^+_π (respectively C^-_π) the conjugacy class of t_π (respectively zt_π) in $\tilde{\mathcal{S}}_n$. It will also sometimes be convenient to write t_π^+ for t_π, and t_π^- for zt_π. When $\pi \in \mathcal{P}_n \setminus (\mathcal{O}_n \cup D_n^-)$, the elements t_π and zt_π belong to the same conjugacy class C_π of $\tilde{\mathcal{S}}_n$. In all cases, an element g (or an $\tilde{\mathcal{S}}_n$-class C) is said to be of type π if the $\tilde{\mathcal{S}}_n$-class of $\theta(g)$ (respectively of $\theta(g)$ for any $g \in C$) is labelled by π.

We are now interested in the set of irreducible complex characters of $\tilde{\mathcal{S}}_n$. Any irreducible (complex) character of $\tilde{\mathcal{S}}_n$ with z in its kernel is simply lifted from an irreducible character of the quotient \mathcal{S}_n. Any other irreducible character ξ of $\tilde{\mathcal{S}}_n$ is called a spin character, and it satisfies $\xi(z) = -\xi(1)$. In particular, for any spin character ξ and any $\pi \in \mathcal{P}_n$, one has $\xi(zt_\pi) = -\xi(t_\pi)$, which implies that ξ vanishes on the non-split conjugacy classes of $\tilde{\mathcal{S}}_n$.

Define $\varepsilon = \text{sgn} \circ \theta$, where sgn is the sign character of \mathcal{S}_n. Note that $\tilde{A}_n = \ker(\varepsilon)$. Then ε is a linear (irreducible) character of $\tilde{\mathcal{S}}_n$, and for any spin character ξ of $\tilde{\mathcal{S}}_n$, $\varepsilon \otimes \xi$ is a spin character (because $\varepsilon \otimes \chi(z) = -\varepsilon \otimes \chi(1)$). A spin character ξ is said to be self-associate if $\varepsilon \xi = \xi$. Otherwise, ξ and $\varepsilon \xi$ are called associate characters. It follows that, if ξ is self-associate and $\pi \in D_n^-$, then $\xi(t_\pi) = 0 = \xi(zt_\pi)$.

In [23], Schur proved that the spin characters of $\tilde{\mathcal{S}}_n$ are, up to association, labelled by D_n^-. More precisely, he showed that every $\lambda \in D_n^+$ indexes a self-associate spin character ξ_λ, and every $\lambda \in D_n^-$ a pair $(\xi_\lambda^+, \xi_\lambda^-)$ of associate spin characters. In this case, we will sometimes write ξ_λ for ξ_λ^+, so that $\xi_\lambda^+ = \varepsilon \xi_\lambda$.

For any partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ of n (where $\lambda_1 \geq \cdots \geq \lambda_r > 0$), we set $|\lambda| = \sum \lambda_i$ and we define the length $\ell(\lambda)$ of λ by $\ell(\lambda) = r$. If λ is furthermore a bar partition (i.e. $\lambda_1 > \cdots > \lambda_r > 0$), then we set $\sigma(\lambda) = (-1)^{|\lambda| - \ell(\lambda)}$. With this notation, we then have (see e.g. [21, p. 45])

$$\lambda \in D_n^{\sigma(\lambda)}. \tag{40}$$

If $\sigma(\lambda) = 1$, then λ is said to be even; otherwise, it is said to be odd.

Schur proved in [25] that, whenever $\lambda = (\lambda_1, \ldots, \lambda_r) \in D_n^-$, the labeling can be chosen in such a way that, for any $\pi \in D_n^-$, we have

$$\xi_\lambda^+(t_\pi) = \delta_{\pi \lambda_1} \sqrt{\frac{\lambda_1 \cdots \lambda_r}{2}}. \tag{41}$$
Writing z_λ for the product $\lambda_1 \ldots \lambda_r$, we therefore have, for any $\pi \in D_n^-$,

\begin{equation}
\xi^+\lambda(t_\pi) = \xi^\pm\lambda(t_\pi) = \delta_{\pi,\lambda} t^{n-r+1} \sqrt{z_\lambda \pi n} \quad \text{and} \quad \xi^-\lambda(t_\pi) = -\delta_{\pi,\lambda} t^{n-r+1} \sqrt{z_\lambda \pi n}.
\end{equation}

Finally, for any $\pi \in O_n$, we have
\[\xi^+\lambda(t_\pi) = \xi^\pm\lambda(t_\pi) \quad \text{and} \quad \xi^-\lambda(t_\pi) = \xi^\mp\lambda(t_\pi) .\]

4.2. Conjugacy classes and spin characters of \tilde{A}_n. We also write $\theta : \mathcal{A}_n \to \mathcal{A}_n$ for the restriction of θ to \mathcal{A}_n. As above, the type of $g \in \mathcal{A}_n$ is the partition encoding the cycle structure of $\theta(g)$. By [25, p. 176], we have

Proposition 4.3. The split classes of \mathcal{A}_n are the classes whose elements have type $\pi \in D_n^+ \cup O_n$.

Let $\pi \in D_n^+ \cup O_n$. If $\pi \notin D_n^+ \cap O_n$, then π labels two classes of D_n^+ and D_n^-. We assume that t_π defined above lies in D_n^+, so that representatives for D_n^+ and D_n^- are $t_{\pi}^\pm = t_\pi$ and $t_{\pi}^\mp = z t_\pi$.

Otherwise, if $\pi \in D_n^+ \cap O_n$, then π labels two classes of \mathcal{A}_n with representatives s_{π^+} and s_{π^-}. Since s_{π^+} and s_{π^-} have odd order, by Lemma 4.2 there are non \mathcal{A}_n-conjugate elements τ_{π^+} and τ_{π^-} in \mathcal{A}_n of odd order such that $\theta(\tau_{\pi^+}) = s_{\pi^+}$.

Thus, the elements $\tau_{\pi^+}^\pm = \tau_{\pi^+}$, $\tau_{\pi^+}^\mp = z \tau_{\pi^+}$, $\tau_{\pi^-}^\pm = \tau_{\pi^-}$, and $\tau_{\pi^-}^\mp = z \tau_{\pi^-}$ belong to 4 distinct \mathcal{A}_n-classes, labelled $D_{\pi^+}^\pm$, $D_{\pi^-}^\pm$, $D_{\pi^+}^\mp$, and $D_{\pi^-}^\mp$ respectively.

We can now describe the irreducible complex characters of \mathcal{A}_n. These are given by using Clifford’s Theory between \mathcal{S}_n and the subgroup \mathcal{A}_n of index 2. All the irreducible components of the restrictions to \mathcal{A}_n of non-spin characters of \mathcal{S}_n have z in their kernel, whence are non-spin characters of \mathcal{A}_n. They are exactly the irreducible characters of \mathcal{A}_n lifted from those of \mathcal{A}_n.

We now turn to spin characters (which are the irreducible components of the restrictions to \mathcal{A}_n of the spin characters of \mathcal{S}_n).

First consider $\lambda \in D_n^-$. Then λ labels two associated spin characters $\xi^\pm\lambda$ and $\xi^\mp\lambda$ of \mathcal{S}_n, which have the same restriction to \mathcal{A}_n. The restriction

\begin{equation}
\zeta_\lambda = \Res_{\mathcal{A}_n}^\mathcal{S}_n (\xi^\pm\lambda) = \Res_{\mathcal{A}_n}^\mathcal{S}_n (\xi^\mp\lambda)
\end{equation}

is an irreducible spin character of \mathcal{A}_n, and its only non-zero values are taken on elements of type belonging to O_n.

Now consider $\lambda \in D_n^+$. Then λ labels a single spin character ξ_λ of \mathcal{S}_n, and $\Res_{\mathcal{A}_n}^\mathcal{S}_n (\lambda \xi) = \zeta_\lambda^+ + \zeta_\lambda^-$, where ζ_λ^+ and ζ_λ^- are two conjugate irreducible spin characters of \mathcal{A}_n. Throughout, the characters ζ_λ^+ and ζ_λ^- are also called associate characters. These only differ on elements of type λ. Following Schur [25, p. 236], we have, writing Δ_λ for the difference character of ξ_λ (which is not well-defined, but just up to a sign), that

\begin{equation}
\Delta_\lambda(t) = \begin{cases} \pm \frac{\sqrt{z_\lambda \pi n}}{2} & \text{if } t \text{ has type } \lambda, \\ 0 & \text{otherwise}, \end{cases}
\end{equation}

where z_λ is defined after Equation (41).

We will now make the notation precise. We distinguish two cases. Suppose first that $\lambda \in D_n^+ \setminus O_n$. Then ζ_λ^+ and ζ_λ^- are completely defined by setting $\Delta_\lambda = \zeta_\lambda^+ - \zeta_\lambda^-$.

...
and $\Delta(\tau^\pm_\lambda) = i^{\frac{\lambda-\lambda(\lambda)}{2}} \sqrt{z_\lambda}$, where τ^\pm_λ is the representative of D^\pm_λ as above. Note that, using Equation (44) and $\tau^-_\lambda = z\tau^+_\lambda$, we deduce that $\Delta(\tau^-_\lambda) = -i^{\frac{\lambda-\lambda(\lambda)}{2}} \sqrt{z_\lambda}$. Since, for $\epsilon \in \{-1, 1\}$,

$$
\zeta^\pm_\lambda = \frac{1}{2} \left(\text{Res}_{\lambda(A)} \zeta(\lambda) + \epsilon \Delta(\lambda) \right),
$$

and $\zeta(\lambda) = 0$ (because C_λ is a non-split class of \mathfrak{S}_n), we obtain

$$
\zeta^+_\lambda(\tau^\pm_\lambda) = \Delta(\tau^\pm_\lambda) \quad \text{and} \quad \zeta^-_\lambda(\tau^\pm_\lambda) = \Delta(\tau^\mp_\lambda).
$$

And, on any element σ of type $\pi \neq \lambda$ of \mathfrak{A}_n, we have

$$
\zeta^\pm_\lambda(\sigma) = \zeta_\lambda(\sigma) = \frac{1}{2} \zeta(\lambda).
$$

Now suppose that $\lambda \in D^+_n \cap O_n$. Again, we completely define ζ^+_λ and ζ^-_λ by setting $\Delta(\lambda) = \zeta^+_\lambda - \zeta^-_\lambda$ and $\Delta(\tau^+_\lambda) = i^{rac{\lambda-\lambda(\lambda)}{2}} \sqrt{z_\lambda}$. Note that this does define Δ, and thus ζ^+_λ and ζ^-_λ by Equation (43), since we have $\Delta(\tau^-_\lambda) = -\Delta(\tau^+\lambda)$ because $\tau^+_\lambda = z\tau^+_\lambda$, and $\Delta(\tau^-_\lambda) = -\Delta(\tau^+_\lambda)$ by Clifford theory, because the elements τ^-_λ and τ^+_λ are \mathfrak{S}_n-conjugate, and ζ^+_λ and ζ^-_λ are \mathfrak{S}_n-conjugate. Finally, on any element σ of type $\pi \neq \lambda$ of \mathfrak{A}_n, Equation (47) holds.

4.3. Combinatorics of bar partitions. We just saw that the spin characters of \mathfrak{S}_n and \mathfrak{A}_n are labelled by the set \mathcal{D}_n of bar partitions of n. We now present some of the combinatorial notions and properties we will need to study the characters and blocks of these groups. For all of these, and unless otherwise specified, we refer to [21].

Let $\lambda = (\lambda_1, \ldots, \lambda_r) \in \mathcal{D}_n$ with $\lambda_1 > \cdots > \lambda_r > 0$. For $1 \leq i \leq r$, consider the set

$$
J_{i,\lambda} = \{1, \ldots, \lambda_i\} \cup \{\lambda_i + \lambda_j \mid j > i\} \setminus \{\lambda_i - \lambda_j \mid j > i\}.
$$

The multiset $B(\lambda) = \bigcup_{i=1}^r J_{i,\lambda}$ is the multiset of bar lengths of λ, which will play a role analogous to that played by hook lengths for partitions.

The shifted tableau $S(\lambda)$ of λ is obtained from the usual Young diagram of λ by shifting the ith row $i-1$ positions to the right, and writing in the nodes of the ith row the elements of $J_{i,\lambda}$ in decreasing order. Write $a_{i,j}$ for the integer lying in the (i,j)-node of $S(\lambda)$. As in the case of hooks, we can associate to this node a λ whose length is $a_{i,j}$. The construction goes as follows. If $i + j \geq r + 2$, then $b_{i,j}$ is the usual (i,j)-hook of $S(\lambda)$. If $i + j = r + 1$, then $b_{i,j}$ is the ith row of $S(\lambda)$. Finally, if $i + j \leq r$, then $b_{i,j}$ is the union of the ith row together with the jth row of $S(\lambda)$. In all cases, one checks that $a_{i,j}$ is exactly the number of nodes in $b_{i,j}$, and is therefore called the λ of $b_{i,j}$. We can also define the leg length $L(b_{i,j})$ of the bar $b_{i,j}$ by setting

$$
L(b_{i,j}) = \left\{ \begin{array}{ll}
|\{k \mid \lambda_i > \lambda_k > \lambda_i - a_{i,j}\}| & \text{if } i + j \geq r + 1, \\
\lambda_{i+j} + |\{k \mid \lambda_i > \lambda_k > \lambda_{i+j}\}| & \text{if } i + j \leq r.
\end{array} \right.
$$

As for hooks, it is always possible to remove any bar b from $S(\lambda)$. If b has bar length a, then this operation produces a new bar partition, written $\lambda \setminus b$, of size $n - a$.

Let q be an odd integer. We call q-bar (respectively (q)-bar) any bar b of λ whose length is q (respectively divisible by q). Note that, for any positive integer k, the removal of a kq-bar can be achieved by successively removing k bars of length
q (this fails when q is even). By removing all the (q)-bars in λ, one obtains the
\(\bar{q} \)-core \(\lambda_{(\bar{q})} \) of \(\lambda \). One can show that \(\lambda_{(\bar{q})} \) is independent on the order in which one
removes \(q \)-bars from \(\lambda \). In particular, the total number \(w_{\bar{q}}(\lambda) \) of \(q \)-bars to remove
from \(\lambda \) to get to \(\lambda_{(\bar{q})} \) is uniquely defined by \(\lambda \) and \(q \), and called the \(\bar{q} \)-weight of \(\lambda \).
Note that \(w_{\bar{q}}(\lambda) \) is also equal to the number of \((q) \)-bars in \(\lambda \).

It is also possible to define the \(\bar{q} \)-quotient \(\lambda^{(\bar{q})} \) of \(\lambda \), which contains the information
about all the \((q) \)-bars in \(\lambda \) (see [21, p. 28]). We have \(\lambda^{(\bar{q})} = (\lambda^0, \lambda^1, \ldots, \lambda^e) \),
where \(e = (q - 1)/2 \), \(\lambda^0 \) is a bar partition, and the \(\lambda^i \)'s are partitions for \(1 \leq i \leq e \).

For any integer \(k \), we define a \(k \)-bar \(b' \) of \(\lambda^{(\bar{q})} = (\lambda^0, \lambda^1, \ldots, \lambda^e) \) to be either a \(k \)-bar of \(\lambda^0 \), or a \(k \)-hook of \(\lambda^i \) for some \(1 \leq i \leq e \). The removal of \(b' \) from \(\lambda^{(q)} \) is then
defined accordingly, and the resulting \(\bar{q} \)-quotient is denoted by \(\lambda^{(\bar{q})} \setminus b' \). The leg length \(L(b') \) is also
defined in a natural manner. We then have the following fundamental result (see [21, Proposition 4.2, Theorem 4.3]):

Theorem 4.4. Let \(q \) be an odd integer. Then a bar partition \(\lambda \) determines and is
uniquely determined by its \(\bar{q} \)-core \(\lambda_{(\bar{q})} \) and its \(\bar{q} \)-quotient \(\lambda^{(\bar{q})} \). Moreover, there is a
canonical bijection \(g \) between the set of \((q) \)-bars of \(\lambda \) and the set of bars of \(\lambda^{(\bar{q})} \), such that,
for each integer \(k \), the image of a \(kq \)-bar of \(\lambda \) is a \(k \)-bar of \(\lambda^{(q)} \). Furthermore,
for the removal of corresponding bars, we have

\[
(\lambda \setminus b)^{(\bar{q})} = \lambda^{(\bar{q})} \setminus g(b).
\]

Note that the above theorem provides a (canonical) bijection between the set of
parts of \(\lambda \) with length divisible by \(q \) and the set of parts of \(\lambda^0 \) (see [21, Corollary (4.6)]).

Theorem 4.4 also implies that the \(\bar{q} \)-weight \(w_{\bar{q}}(\lambda) \) of \(\lambda \) satisfies \(w_{\bar{q}}(\lambda) = \sum_{i=0}^{e} |\lambda^i| \)
(we say that \(\lambda^{(\bar{q})} \) is a \(\bar{q} \)-quotient of size \(|\lambda^{(q)}| = w_{\bar{q}}(\lambda) \)), and that \(|\lambda| = |\lambda_{(\bar{q})}| + \bar{q}w_{\bar{q}}(\lambda) \)
(see [21, Corollary 4.4]). In addition, if we write, in analogy with bar partitions,
\(\sigma(\lambda^{(\bar{q})}) = (-1)^{|\lambda^{(q)}| - \ell(\lambda^0)} = (-1)^{w_{\bar{q}}(\lambda) - \ell(\lambda^0)} \), then we obtain that

\[
(48) \quad \sigma(\lambda) = \sigma(\lambda_{(\bar{q})})\sigma(\lambda^{(\bar{q})}).
\]

When we introduce analogues of the Murnaghan-Nakayama rule for spin charac-
ters later on, we will also need to use the relative sign for bar partitions introduced
by Morris and Olsson in [18]. Given an odd integer \(q \), one can associate in a canonical
way to each bar partition \(\lambda \) a sign \(\delta_{\bar{q}}(\lambda) \). If \(\mu \) is a bar partition obtained from \(\lambda \) by
removing a sequence of \(q \)-bars, then we define the relative sign \(\delta_{\bar{q}}(\lambda, \mu) \) by

\[
(49) \quad \delta_{\bar{q}}(\lambda, \mu) = \delta_{\bar{q}}(\lambda)\delta_{\bar{q}}(\mu).
\]

It is then possible to prove the following results (see [18, Proposition (2.5), Corollary
(2.6), Corollary (3.8)]):

Theorem 4.5. Let \(\lambda \) and \(\mu \) be bar partitions, and \(q \) be an odd integer.

(i) If \(\mu \) is obtained from \(\lambda \) by removing a sequence of \(q \)-bars with leg lengths
\(L_1, \ldots, L_s \), then

\[
\delta_{\bar{q}}(\lambda, \mu) = (-1)^{\sum_{i=1}^{s} L_i}.
\]

In particular, the parity of \(\sum_{i=1}^{s} L_i \) does not depend on the choice of \(q \)-bars
being removed in going from \(\lambda \) to \(\mu \).
(ii) If γ is a \bar{q}-core, then $\delta_q(\gamma) = 1$, so that

$$\delta_q(\lambda) = \delta_q(\lambda, \lambda(q)).$$

(iii) If b is a (q)-bar in λ and $\mu = \lambda \setminus b$, then

$$(-1)^{L(b)} = (-1)^{L(g(b))} \delta_q(\lambda, \mu),$$

where g is the bijection introduced in Theorem 4.4.

4.4. Spin blocks of \bar{S}_n and \bar{A}_n: Bijections. We now describe the blocks of irreducible characters of \bar{S}_n and \bar{A}_n, as well as bijections between them. Throughout this section, we assume that q is an odd prime (even though all the combinatorial arguments hold for any odd q).

If B is any q-block of \bar{S}_n, then B contains either no or only spin characters. In the former case, B coincides with a q-block of S_n; in the latter, we say that B is a spin block. The distribution of spin characters into spin blocks was first conjectured by Cabanes, who also determined the structure of the defect groups of spin blocks (see [3]).

Similarly, any q-block B^* of \bar{A}_n contains either no spin character, and coincides with a q-block of A_n, or only spin characters, and is then called a spin block.

The spin blocks of \bar{S}_n and \bar{A}_n are described by the following:

Theorem 4.6. Let χ and ψ be two spin characters of \bar{S}_n, or two spin characters of \bar{A}_n, labelled by bar partitions λ and μ respectively, and let q be an odd prime. Then χ is of q-defect 0 (and thus alone in its q-block) if and only if λ is a \bar{q}-core. If λ is not a \bar{q}-core, then χ and ψ belong to the same q-block if and only if $\lambda(q) = \mu(q)$.

One can therefore define the \bar{q}-core of a spin block B and its \bar{q}-weight $w_q(B)$, as well as its sign $\sigma(B) = \sigma(\lambda(q))$ (for any bar partition λ labeling some character $\chi \in B$).

One sees that the spin q-blocks of positive weight (or defect) of \bar{S}_n can be paired with those of \bar{A}_n. The spin characters in any such q-block of \bar{A}_n are exactly the irreducible components of the spin characters of a q-block of \bar{S}_n.

We can now define bijections between different blocks of possibly different groups. Let $w > 0$ be any integer, and let Q_w be the set of \bar{q}-quotients of size w. For any $\overline{\gamma}$-core γ, we let $E_{\gamma,w}$ be the set of bar partitions λ of length $|\gamma| + qw$ with $w_q(\lambda) = w$ and $\lambda(q) = \gamma$, and we denote by $B_{\gamma,w}$ and $B_{\gamma,w}^*$ the spin \bar{q}-blocks of $\bar{S}_{|\gamma|+qw}$ and $\bar{A}_{|\gamma|+qw}$ respectively labelled by γ. Note that the characters in $B_{\gamma,w}$ and those in $B_{\gamma,w}^*$ are labeled by the partitions in $E_{\gamma,w}$. Note also that

$$\Psi_{\gamma}: \begin{cases} E_{\gamma,w} & \longrightarrow Q_w \\ \lambda & \longmapsto \bar{\lambda}(q) \end{cases}$$

is a bijection. It provides us with the following:

Lemma 4.7. Let q be an odd prime, $w > 0$ be any integer, and γ and γ' be any \bar{q}-cores. Define the bijection

$$\Psi = \Psi_{\gamma'}^{-1} \circ \Psi_{\gamma}: E_{\gamma,w} \longrightarrow E_{\gamma',w}.$$

(i) If $\sigma(\gamma) = \sigma(\gamma')$, then Ψ induces bijections Ψ between $B_{\gamma,w}$ and $B_{\gamma',w}$, and Ψ^* between $B_{\gamma,w}^*$ and $B_{\gamma',w}^*$.

(ii) If \(\sigma(\gamma) = -\sigma(\gamma') \), then \(\Psi \) induces bijections \(\tilde{\Psi} \) between \(B_{\gamma,w} \) and \(B_{\gamma',w}^* \), and
\[\tilde{\Psi}^* \] between \(B_{\gamma,w}^* \) and \(B_{\gamma',w} \).

Proof. This follows easily from the definition of \(\Psi \) and formula [13], which gives that, for any \(\lambda \in E_{\gamma,w} \) and \(\mu \in E_{\gamma',w} \), we have \(\sigma(\lambda) = \sigma(\gamma)\sigma(\Psi_\gamma(\lambda)) \) and \(\sigma(\mu) = \sigma(\gamma')\sigma(\Psi_{\gamma'}(\mu)) \). We therefore have (taking \(\mu \) to be \(\Psi(\lambda) \))

\[
\sigma(\Psi(\lambda)) = \sigma(\gamma)'\sigma(\Psi_{\gamma'}(\Psi(\lambda))) = \sigma(\gamma)'\sigma(\Psi_{\gamma'}(\lambda)),
\]
so that \(\sigma(\Psi(\lambda)) = \sigma(\gamma)'\sigma(\Psi(\lambda)) \) and, finally,

\[
\sigma(\lambda) = \sigma(\gamma)'\sigma(\Psi(\lambda)) \quad \text{for any } \lambda \in E_{\gamma,w}.
\]

This means that, if \(\sigma(\gamma) = \sigma(\gamma') \), then any \(\lambda \in E_{\gamma,w} \) labels the same numbers of spin characters in \(\tilde{S}_{\gamma|q+w} \) and \(\tilde{A}_{\gamma|q+w} \) as \(\Psi(\lambda) \) does in \(\tilde{S}_{\gamma|q+w} \) and \(\tilde{A}_{\gamma|q+w} \) respectively. If, on the other hand, \(\sigma(\gamma) = -\sigma(\gamma') \), then \(\lambda \) labels the same numbers of spin characters in \(\tilde{S}_{\gamma|q+w} \) and \(\tilde{A}_{\gamma|q+w} \) as \(\Psi(\lambda) \) does in \(\tilde{A}_{\gamma|q+w} \) and
\(\tilde{S}_{\gamma|q+w} \) respectively.

We obtain the following description for the bijections \(\tilde{\Psi} \) and \(\tilde{\Psi}^* \):

(i) If \(\sigma(\gamma) = \sigma(\gamma') \), then, for any \(\lambda, \mu \in E_{\gamma,w} \) with \(\sigma(\lambda) = 1 \) and \(\sigma(\mu) = -1 \),

\[
\tilde{\Psi} : \{ \xi_\lambda, \xi_\mu \} \rightarrow \{ \xi_{\Psi(\lambda)}, \xi_{\Psi(\mu)} \}
\]
and \(\tilde{\Psi}^* : \{ \xi_{\Psi(\lambda)}, \xi_{\Psi(\mu)} \} \rightarrow \{ \xi_\lambda, \xi_\mu \} \).

(ii) If \(\sigma(\gamma) = -\sigma(\gamma') \), then, for any \(\lambda, \mu \in E_{\gamma,w} \) with \(\sigma(\lambda) = 1 \) and \(\sigma(\mu) = -1 \),

\[
\tilde{\Psi} : \{ \xi_\lambda, \xi_\mu \} \rightarrow \{ \xi_{\Psi(\lambda)}, \xi_{\Psi(\mu)} \}
\]
and \(\tilde{\Psi}^* : \{ \xi_{\Psi(\lambda)}, \xi_{\Psi(\mu)} \} \rightarrow \{ \xi_\lambda, \xi_\mu \} \).

\(\Box \)

4.5. Morris’ Recursion Formula and MN-structures for \(\tilde{S}_n \) and \(\tilde{A}_n \). A. O. Morris was the first to prove a recursion formula, similar to the Mullaghan-Nakayama Rule, for computing the values of spin characters of \(\tilde{S}_n \) (see [16] and [17]). This formula was then made more general by M. Cabanes in [3]. We have the following:

Theorem 4.8. [3] Theorem 20] Let \(n \geq 2 \) be an integer, \(q \in \{ 2, \ldots, n \} \) be an odd integer, and \(\rho \) a \(q \)-cycle of \(\mathfrak{S}_n \) with support \(\{ n-q+1, \ldots, n \} \). Let \(\lambda \) be a bar partition of \(n \). If \(\sigma(\lambda) = 1 \), then we write \(\xi_\lambda = \xi_\lambda^+ = \xi_\lambda^- \). Then \(x = t_\rho \) satisfies

\[
C_{\tilde{\xi}_\lambda}^-(x) = \tilde{S}_{n-q} \times \langle x \rangle \quad \text{and, for all } g \in \tilde{S}_{n-q},
\]

\[
(50) \quad \xi_\lambda^+(xg) = \sum_{\mu \in M_q(\lambda)} a(\xi_\lambda^+, \xi_\mu) \xi_\mu(g) + \sum_{\mu \in M_q(\lambda)} a(\xi_\lambda^+, \xi_\mu)(g) + a(\xi_\lambda^+, \xi_\mu^-)(g),
\]

where \(M_q(\lambda) \) is the set of bar partitions of \(n-q \) which can be obtained from \(\lambda \) by removing a \(q \)-bar, and \(a(\xi_\lambda^+, \xi_\mu), a(\xi_\lambda^-, \xi_\mu) \in \mathbb{C} \) are the following:

\begin{itemize}
 \item if \(\sigma(\mu) = 1 \), then \(a(\xi_\lambda^+, \xi_\mu) = (-1)^{\frac{q-1}{2}} \alpha_\mu \),
 \item if \(\sigma(\mu) = -1 \) and \(\mu \neq \lambda \setminus \{ q \} \), then \(a(\xi_\lambda^+, \xi_\mu^+) = a(\xi_\lambda^+, \xi_\mu^-) = \frac{1}{2}(-1)^{\frac{q-1}{2}} \alpha_\mu \),
 \item if \(\sigma(\mu) = -1 \) and \(\mu = \lambda \setminus \{ q \} \), then \(a(\xi_\lambda^+, \xi_\mu^+) = \frac{1}{2}(-1)^{\frac{q-1}{2}} (\alpha_\mu^+ + i \frac{2}{q-1} \sqrt{q}) \)
 and \(a(\xi_\lambda^+, \xi_\mu^-) = \frac{1}{2}(-1)^{\frac{q-1}{2}} (\alpha_\mu^- - i \frac{2}{q-1} \sqrt{q}) \).
\end{itemize}
The α^λ_μ's are the coefficient found by Morris in his recursion formula. They are given by

$$\alpha^\lambda_\mu = (-1)^{L(b)}2^{m(b)},$$

where $L(b)$ is the leg length of the q-bar b removed from λ to get μ, and

$$m(b) = \begin{cases} 1 & \text{if } \sigma(\lambda) = 1 \text{ and } \sigma(\mu) = -1, \\ 0 & \text{otherwise.} \end{cases}$$

Remark 4.9. Note that, with the notation of Theorem 4.8, since $\xi^-_\lambda(xg) = \varepsilon\xi^+_\lambda(xg)$, and since, with a slight abuse of notation, $\varepsilon(xg) = \varepsilon(g)$ (as q is odd and $x = t_\rho$), we can also write

$$\xi^-_\lambda(xg) = \sum_{\mu \in \mathcal{M}_q(\lambda) \atop \sigma(\mu) = -1} a(\xi^-_\lambda, \xi^-_\mu)g(\mu) + \sum_{\mu \in \mathcal{M}_q(\lambda) \atop \sigma(\mu) = 1} a(\xi^-_\lambda, \xi^+_\mu)g(\mu) + a(\xi^-_\lambda, \xi^-_\mu)g(\mu),$$

where, whenever $\sigma(\mu) = 1$, $a(\xi^-_\lambda, \xi^-_\mu) = a(\xi^-_\lambda, \xi^-_\mu)$, and, whenever $\sigma(\mu) = -1$, $a(\xi^-_\lambda, \xi^+_\mu) = a(\xi^-_\lambda, \xi^+_\mu)$ and $a(\xi^-_\lambda, \xi^-_\mu) = a(\xi^-_\lambda, \xi^+_\mu)$.

We now obtain an analogue of Theorem 4.8 for \tilde{A}_n.

Theorem 4.10. Let q and x be as in Theorem 4.8. In particular, $x \in \tilde{A}_n$, and $C_{\tilde{A}_n}(x) = \tilde{A}_{n-q} \times \langle x \rangle$. When $\lambda \in \mathcal{D}_n$, we set $\zeta^-_\lambda = \zeta^-_\lambda$. For all $\lambda \in \mathcal{D}_n$, $\epsilon \in \{-1, 1\}$ and $g \in \tilde{A}_{n-q}$, we have

$$\zeta^\epsilon_\lambda(xg) = \sum_{\mu \in \mathcal{M}_q(\lambda) \atop \sigma(\mu) = -1} a(\zeta^\epsilon_\lambda, \zeta^-_\mu)g(\mu) + \sum_{\mu \in \mathcal{M}_q(\lambda) \atop \sigma(\mu) = 1} (a(\zeta^\epsilon_\lambda, \zeta^+_\mu)g(\mu) + a(\zeta^\epsilon_\lambda, \zeta^-_\mu)g(\mu)),$$

where the coefficients are the following:

- if $\lambda \in \mathcal{D}_m$, then $a(\zeta_\epsilon, \zeta_\mu^\eta) = (-1)^{\frac{q-1}{2}}\alpha^\lambda_\mu$ for all $\mu \in \mathcal{M}_q(\lambda)$ and $\eta \in \{-1, 1\}$, where α^λ_μ is as in Theorem 4.8.
- if $\lambda \in \mathcal{D}_n^-$, then $a(\zeta^-_\lambda, \zeta^-_\mu) = \frac{1}{2}(-1)^{\frac{q-1}{2}}\alpha^\lambda_\mu$ whenever $\sigma(\mu) = -1$, and $a(\zeta^-_\lambda, \zeta^-_\mu) = \frac{1}{2}(-1)^{\frac{q-1}{2}}(\alpha^\lambda_\mu + q(\alpha^\lambda_\mu + \eta(\frac{q-1}{2})\sqrt{q}))$ for $\eta \in \{-1, 1\}$ whenever $\sigma(\mu) = 1$.

Proof. First assume that $\lambda \in \mathcal{D}_n^-$. Then, by Equation (13), and Clifford theory applied to Equation (50), we obtain the following. Whenever $\sigma(\mu) = -1$ (even if $\mu = \lambda \setminus \{q\}$), we have

$$a(\zeta_\lambda, \zeta_\mu^\eta) = a(\zeta^-_\lambda, \zeta^-_\mu^\eta) + a(\zeta^-_\lambda, \zeta^-_\mu^\eta) = \frac{1}{2}(-1)^{\frac{q-1}{2}}\alpha^\lambda_\mu + \frac{1}{2}(-1)^{\frac{q-1}{2}}\alpha^\lambda_\mu = (-1)^{\frac{q-1}{2}}\alpha^\lambda_\mu,$$

and, whenever $\sigma(\mu) = 1$,

$$a(\zeta_\lambda, \zeta_\mu^\eta) = a(\zeta_\lambda, \zeta^-_\mu^\eta) = a(\zeta^-_\lambda, \zeta^-_\mu) = (-1)^{\frac{q-1}{2}}\alpha^\lambda_\mu,$$

as required.
We now consider the case where $\lambda \in D^+_n$. By Equation (45) and Clifford theory applied to Equation (50), we obtain

\[
\zeta^+_\lambda(xg) = \frac{1}{2} (\xi_\lambda(xg) + \Delta_\lambda(xg))
\]

\[
= \sum_{\mu \in M_q(\lambda), \sigma(\mu) = 1} a(\xi_\lambda, \xi_\mu) (\zeta^+_\mu(g) + \zeta^-_\mu(g)) + \frac{\Delta_\lambda(xg)}{2}
\]

\[
+ \sum_{\mu \in M_q(\lambda), \sigma(\mu) = -1} a(\xi_\lambda, \xi^+_\mu) + a(\xi_\lambda, \xi^-_\mu) \zeta^-_\mu(g)
\]

(52)

We need to deal with the term $\frac{\Delta_\lambda(xg)}{2}$. Recall that this is 0 unless xg has cycle type λ. We start by noticing that, if xg does not have cycle type λ, then g does not have cycle type μ for any $\mu \in M_q(\lambda)$ with $\sigma(\mu) = 1$. Indeed, if μ is obtained from λ by removing a bar b of odd length q, then, depending on the type of b, we have $\ell(\mu) = \ell(\lambda)$, $\ell(\mu) = \ell(\lambda) - 2$ or $\ell(\mu) = \ell(\lambda) - 1$. In the first two cases, we obtain $\sigma(\mu) = (-1)^{n-q-\ell(\lambda)} = -\sigma(\lambda)$. The last case can only happen if b is a part of λ, in which case $\mu = \lambda \setminus \{q\}$ and $\sigma(\mu) = \sigma(\lambda)$. This has several consequences. The first is that $\{\mu \in M_q(\lambda) \mid \sigma(\mu) = 1\}$ is either empty, or contains only the partition $\lambda \setminus \{q\}$. This in turn implies that xg has cycle type λ if and only if $\{\mu \in M_q(\lambda) \mid \sigma(\mu) = 1\} = \{\lambda \setminus \{q\}\}$ and g has cycle type $\lambda \setminus \{q\}$. Finally, $\{\mu \in M_q(\lambda) \mid \sigma(\mu) = 1\}$ is empty if and only if λ does not have a part of length q, and, if this is the case, then $\frac{\Delta_\lambda(xg)}{2} = 0$ for all $g \in A_{n-q}$.

We therefore suppose that λ does have a part of length q, so that

\[
\{\mu \in M_q(\lambda) \mid \sigma(\mu) = 1\} = \{\lambda \setminus \{q\}\}.
\]

We will show that, if $\mu = \lambda \setminus \{q\}$, then, for all $g \in A_{n-q}$, we have

\[
\Delta_\lambda(xg) = (-1)^{\frac{q^2-1}{2}} \frac{q^{-1}}{\sqrt{q}} \Delta_\mu(g).
\]

(53)

If g does not have cycle type $\mu = \lambda \setminus \{q\}$, then $\Delta_\mu(g) = 0$, and xg does not have cycle type λ, so that $\Delta_\lambda(xg) = 0$ and Equation (53) holds. If, on the other hand, g has cycle type μ (and xg has cycle type λ), then xg belongs to one of the conjugacy classes C_λ, C^+_λ or C^-_λ of \widetilde{S}_n, and g to one of the classes C^+_μ, C^-_μ or C^0_μ of \widetilde{S}_{n-q}. And we see from [25] footnote (*), p. 179] that

\[
xg \in C^+_\lambda \quad \text{if and only if} \quad g \in C^{(-1)^{\frac{q^2-1}{2}}}_.
\]

Considering now conjugacy classes of \widetilde{A}_n and \widetilde{A}_{n-q}, we deduce from this that

\[
xg \in D^+_\lambda \iff g \in D^{(-1)^{\frac{q^2-1}{2}}}_. \quad \text{and} \quad xg \in D^{++}_\lambda \iff g \in D^{(-1)^{\frac{q^2-1}{2}}}._{++}.
\]
Using the values and properties we gave for the difference characters, we obtain that, for \(xg \in D^+ \) (or similarly for \(xg \in D^{-} \)), we have

\[
\Delta_\lambda(xg) = \Delta_\lambda(D^+_\lambda) = \sqrt{\frac{n - q(\lambda)}{2}}
\]

Using the property \(\lambda \) of the difference characters, we obtain

\[
\Delta_\lambda(xg) = \Delta_\lambda(D^+_\lambda) = (-1)^{\frac{n - q(\lambda)}{2}} \sqrt{\frac{n - q(\lambda)}{2}}
\]

(54)

Using the property \(\Delta_\lambda(D^+_\lambda) = -\Delta_\lambda(D^{-} \lambda) \), and its analogues for the classes \(D^{\pm}_{\lambda} \), we easily deduce that Equation (53) does hold for all \(g \in \tilde{A}_{n,q} \).

Now, from Equations (52) and (53), and Theorem 4.8, we deduce that, for \(\mu \in \tilde{M}_{q}(\lambda) \), if \(\sigma(\mu) = -1 \), then \(a(\zeta_1^+, \zeta^-) = \frac{1}{2}(-1)^{\frac{n}{2}} \sqrt{\frac{n}{2}} \) and, if \(\sigma(\mu) = 1 \), then \(a(\zeta_1^+, \zeta^-) = \frac{1}{2}(-1)^{\frac{n}{2}} \sqrt{\frac{n}{2}} \).

Our analysis of the term \(\Delta_\lambda(xg) \) also yields a similar formula for \(\zeta_1^+ \), and using Equation (51), we deduce the values of \(a(\xi^r, \xi^s) \) for all \(\mu \in \tilde{M}_{q}(\lambda) \) and \(\eta \in \{-1, 1\} \).

Let \(p \) be an odd prime. We define \(C_{\tilde{\Sigma}_n} \) to be the set of elements of \(\tilde{\Sigma}_n \) none of whose cycles has length an odd multiple of \(p \). We then let

\[
C_{\tilde{\Sigma}_n} = \theta^{-1}(C_{\Sigma}_n) \text{ and } C_{\tilde{A}_n} = C_{\tilde{\Sigma}_n} \cap \tilde{A}_n.
\]

Finally, we let \(C_{\tilde{\Sigma}_n} \) and \(C_{\tilde{A}_n} \) be the sets of (respectively \(\tilde{\Sigma}_n^- \) and \(\tilde{A}_n^- \)) conjugacy classes in \(C_{\tilde{\Sigma}_n} \) and \(C_{\tilde{A}_n} \) respectively.

We start by showing that the spin \(p \)-blocks of \(\tilde{\Sigma}_n \) (respectively \(\tilde{A}_n \)) are also \(C_{\tilde{\Sigma}_n^-} \)-blocks (respectively \(C_{\tilde{A}_n^-} \)-blocks). Recall that the \(p \)-blocks of \(\tilde{\Sigma}_n \) are just the \(\tilde{\Sigma}_n,p^- \)-blocks, where \(\tilde{\Sigma}_n,p^- \) is the set of \(p \)-regular elements of \(\tilde{\Sigma}_n \). Similarly, the \(p \)-blocks of \(\tilde{A}_n \) are \(\tilde{A}_n,p^- \)-blocks. Note that, by definition, we have \(\tilde{\Sigma}_n,p^- \subset C_{\tilde{\Sigma}_n} \) and \(\tilde{A}_n,p^- \subset C_{\tilde{A}_n} \).

Lemma 4.11. The \(p \)-blocks and \(C_{\tilde{\Sigma}_n^-} \)-blocks of spin characters of \(\tilde{\Sigma}_n \) coincide, and the \(p \)-blocks and \(C_{\tilde{A}_n^-} \)-blocks of spin characters of \(\tilde{A}_n \) coincide.

Proof. First take any two spin characters \(\xi \) and \(\xi' \) of \(\tilde{\Sigma}_n \), such that \(\xi' \notin \{ \xi, \varepsilon \xi \} \). Then the only elements of \(C_{\tilde{\Sigma}_n} \setminus \tilde{\Sigma}_n,p^- \), if any, on which \(\xi \) doesn’t vanish belong to split conjugacy classes labelled by the partition labeling \(\xi \) (this is because any split conjugacy class of \(C_{\Sigma}_n \), labelled by a partition of \(\Sigma_n \), and thus without even cycles, must also belong to \(\Sigma_n,p^- \)). And since \(\xi' \notin \{ \xi, \varepsilon \xi \} \), we see that \(\xi' \) vanishes on these elements. In this case, we therefore have \(\langle \xi, \xi' \rangle_{C_{\tilde{\Sigma}_n}} = \langle \xi, \xi' \rangle_{\tilde{\Sigma}_n,p^-} \). This shows that \(\xi \) and \(\xi' \) belong to the same \(p \)-block if and only if they belong to the same \(C_{\tilde{\Sigma}_n} \)-block.

Furthermore, if \(\xi \neq \varepsilon \xi \), then either \(\xi \) and \(\varepsilon \xi \) are each alone in their respective \(p \)-blocks, or they belong to the same \(p \)-block. In the first case, this means \(\xi \) and \(\varepsilon \xi \) both vanish identically on \(p \)-singular elements, so in particular also on \(\tilde{\Sigma}_n \setminus C_{\tilde{\Sigma}_n} \). Hence they are each alone in their respective \(C_{\tilde{\Sigma}_n} \)-blocks as well. In the second case, the \(p \)-block which contains \(\xi \) and \(\varepsilon \xi \) also contains some spin character \(\xi' \) such
that \(\xi' = \varepsilon \xi' \) (this follows from [20] (2.1)). Then, by the previous discussion, we see that \(\xi, \varepsilon \xi \) and \(\xi' \) all belong to the same \(C_{\tilde{\mathcal{S}}_n} \)-block.

This shows that the \(p \)-blocks and \(C_{\tilde{\mathcal{S}}_n} \)-blocks of spin characters of \(\tilde{\mathcal{A}}_n \) coincide.

Now take a self-associate spin character \(\zeta \) of \(\tilde{\mathcal{A}}_n \). Then \(\zeta \) only takes non-zero values on conjugacy classes labelled by partitions of \(\mathcal{O}_n \), so that, for any spin character \(\zeta' \) of \(\tilde{\mathcal{A}}_n \), we have \(\langle \zeta, \zeta' \rangle_{C_{\tilde{\mathcal{A}}_n}} = \langle \zeta, \zeta' \rangle_{\tilde{\mathcal{A}}_n} \). This shows that \(\zeta \) and \(\zeta' \) belong to the same \(p \)-block if and only if they belong to the same \(C_{\tilde{\mathcal{A}}_n} \)-block.

Hence, all that is left to show is that, for any \(\lambda, \mu \in D_n^* \) and for any signs \(\varepsilon \) and \(\eta, \zeta' \) and \(\zeta'' \) belong to the same \(p \)-block if and only if they belong to the same \(C_{\tilde{\mathcal{A}}_n} \)-block. If either of \(\zeta' \) and \(\zeta'' \) is alone in its \(p \)-block, then it vanishes on \(p \)-singular elements, whence in particular on \(\tilde{\mathcal{A}}_n \setminus C_{\tilde{\mathcal{A}}_n} \), thus is also alone in its \(C_{\tilde{\mathcal{A}}_n} \)-block. If, on the other hand, none of \(\zeta' \) and \(\zeta'' \) is alone in its \(p \)-block, then, as in the case of \(\tilde{\mathcal{S}}_n \), we can pick some self-conjugate spin character \(\zeta' \) in the same \(p \)-block as \(\zeta' \).

The above discussion then shows that \(\zeta' \) and \(\zeta'' \) belong to the same \(p \)-block if and only if they belong to the same \(C_{\tilde{\mathcal{A}}_n} \)-block, and that \(\zeta'_n \) and \(\zeta''_n \) belong to the same \(p \)-block if and only if they belong to the same \(C_{\tilde{\mathcal{A}}_n} \)-block, so that \(\zeta' \) and \(\zeta'' \) belong to the same \(p \)-block if and only if they belong to the same \(C_{\tilde{\mathcal{A}}_n} \)-block. This shows that the \(p \)-blocks and \(C_{\tilde{\mathcal{A}}_n} \)-blocks of spin characters of \(\tilde{\mathcal{A}}_n \) coincide.

We can now define on \(\tilde{\mathcal{S}}_n \) and \(\tilde{\mathcal{A}}_n \) an MN-structure with respect to the set of spin \(p \)-blocks of \(\tilde{\mathcal{S}}_n \) and \(\tilde{\mathcal{A}}_n \), and the sets \(C_{\tilde{\mathcal{S}}_n} \) and \(C_{\tilde{\mathcal{A}}_n} \) defined in Equation (55), respectively. For this, we define \(S_{\tilde{\mathcal{S}}_n} \) to be the set of elements \(\sigma \in \mathcal{S}_n \) all of whose cycles have length 1 or an odd multiple of \(p \). By Lemma 4.2, we denote by \(o_\sigma \) the element of \(\tilde{\mathcal{S}}_n \) of odd order such that \(\theta(o_\sigma) = \sigma \), and we let

\[
S_{\tilde{\mathcal{S}}_n} = \{ o_\sigma \mid \sigma \in S_{\tilde{\mathcal{S}}_n} \} \quad \text{and} \quad S_{\tilde{\mathcal{A}}_n} = S_{\tilde{\mathcal{S}}_n} \cap \tilde{\mathcal{A}}_n.
\]

Note that, since \(p \) is odd, and since we only consider odd multiples of \(p \), we have \(S_{\tilde{\mathcal{A}}_n} = S_{\tilde{\mathcal{S}}_n} \cap \tilde{\mathcal{A}}_n = S_{\tilde{\mathcal{S}}_n} \).

Proposition 4.12. Let \(n > 0 \) be any integer, and \(p \) be an odd prime. Let \(Sp(\tilde{\mathcal{S}}_n) \) and \(Sp(\tilde{\mathcal{A}}_n) \) be the sets of spin \(p \)-blocks of \(\tilde{\mathcal{S}}_n \) and \(\tilde{\mathcal{A}}_n \) respectively. Then \(\tilde{\mathcal{S}}_n \) has an MN-structure (as defined in Definition 2.5) with respect to \(C_{\tilde{\mathcal{S}}_n} \) and \(Sp(\tilde{\mathcal{S}}_n) \), and \(\tilde{\mathcal{A}}_n \) has an MN-structure with respect to \(C_{\tilde{\mathcal{A}}_n} \) and \(Sp(\tilde{\mathcal{A}}_n) \).

Proof. First note that, by Lemma 4.11, \(Sp(\tilde{\mathcal{S}}_n) \) and \(Sp(\tilde{\mathcal{A}}_n) \) are indeed unions of \(C_{\tilde{\mathcal{S}}_n} \)-blocks and \(C_{\tilde{\mathcal{A}}_n} \)-blocks respectively.

To stick with the notation of Definition 2.5, we take \(G \in \{ \mathcal{S}_n, \tilde{\mathcal{A}}_n \} \), \(B = Sp(G) \), \(C = C_G \) and \(S = S_G \) (as defined above). Properties 1 and 2 of Definition 2.5 are immediate consequences of the definition of \(S \) and \(C \). For \(x_S \in S \) and \(x_C \in C \), we have \((x_S, x_C) \in A \) if and only if the non-trivial cycles of \(\theta(x_S) \) and \(\theta(x_C) \) are disjoint (in particular, \(x_S \) and \(x_C \) commute).

Now take any \(x_S \in S \). If \(x_S = 1 \), then \(G_1 = G, B_1 = B \) and \(r^1 = id \) clearly satisfy Properties 3 and 4. If, on the other hand, \(x_S \neq 1 \), then, by definition of \(S \), we have \(x_S = o_\sigma \) for some \(\sigma \in S_{\mathcal{S}_n} \). Write \(\sigma = \sigma_1 \cdots \sigma_k \), where, for each \(1 \leq i \leq k \), \(\sigma_i \) is a \(q_i \)-cycle for some odd multiple \(q_i \) of \(p \), and the \(\sigma_i \)'s are pairwise disjoint. In particular, \(\sigma_i \in S_{\mathcal{S}_n} \) and, since \(\sigma_i \in \mathcal{A}_n \), [25] III, p. 172] gives \(o_\sigma = o_{\sigma_1} \cdots o_{\sigma_k} \), and \(C_G(x_S) \) has as a subgroup the group \(H = G_{x_S} \times \langle o_{\sigma_1} \rangle \times \cdots \times \langle o_{\sigma_k} \rangle \), where
$G_{x_S} \cong \tilde{S}_{n-\sum_{i=1}^k q_i}$ if $G = \tilde{S}_n$, and $G_{x_S} \cong \tilde{A}_{n-\sum_{i=1}^k q_i}$ if $G = \tilde{A}_n$ (and with the convention that $\tilde{S}_0 = \tilde{A}_0 = \langle z \rangle$).

Property 3 now follows from the definition of A we gave above. Clearly, if $x_C \in G_{x_S} \cap C$, then the non-trivial cycles of $\theta(x_C)$ and $\theta(x_S)$ are disjoint, so that $(x_S, x_C) \in A$. Conversely, if $(x_S, x_C) \in A$, then one must have $x_C \in C_G(x_S)$. If $x_C \in C_G(x_S) \setminus H$, then $\theta(x_C)$ must permute (non-trivially) the (p)-cycles of $\theta(x_S)$; in particular, the non-trivial cycles of $\theta(x_C)$ and $\theta(x_S)$ cannot be disjoint, so that $(x_S, x_C) \notin A$. Hence, if $(x_S, x_C) \in A$, then necessarily $x_C \in H$. Now, in order for x_C to be disjoint from x_S, we see that one must have $x_C \in G_{x_S}$. This proves that $G_{x_S} \cap C = \{ x_C \in C \mid (x_S, x_C) \in A \}$.

Finally, we obtain Property 4 by iterating Theorem 4.13 and Theorem 4.10. By considering (and removing) the “cycles” σ_i ($1 \leq i \leq k$) one at a time, one sees that we can define $r^{x_S}(\chi)$ for any spin character $\chi \in B$. By construction, $r^{x_S}(\chi)$ does satisfy $r^{x_S}(\chi)(x_C) = \chi(x_S \cdot x_C)$ for all $(x_S, x_C) \in A$. Taking B_{x_S} to be the set of spin characters of G_{x_S}, and extending r^{x_S} by linearity to $\mathbb{C} \text{Irr}(B)$, we obtain the result. \hfill \Box

4.6. Broué perfect isometries. Throughout this section, we denote by p an odd prime number.

Let n, q and λ be as in Theorem 1.3. Suppose furthermore that q is an odd multiple of p, and that $w_p(\lambda) > 0$. Next consider any spin p-block B', of \tilde{S}_m say, of the same weight and sign as the p-block B of ξ_λ^+, and the bijection Ψ described in Lemma 1.7. In particular, Ψ preserves the parity of bar partitions. Now, since q is a multiple of p, the removal of a q-bar can be obtained by removing a sequence of p-bars, and one sees from Theorem 1.4 that $M_q(\Psi(\lambda)) = \Psi(M_q(\lambda))$. This is a slight abuse of notation, as Ψ should only act on partitions of the same weight as λ, while the elements of $M_q(\lambda)$ have a smaller weight. But we see that Ψ is compatible with the bijections g_λ and $g_{\Psi(\lambda)}$ given by Theorem 1.4, since everything goes through the (common) \overline{p}-quotient of λ and $\Psi(\lambda)$. Also, for any $\mu \in M_q(\lambda)$, $\sigma(\Psi(\mu)) = \Psi(\mu)$. We then have the following:

Proposition 4.13. Let the notation be as above. For any $\mu \in M_q(\lambda)$, and for any $\epsilon, \eta \in \{1, -1\}$, we have

$$\delta_\mu(\lambda) \delta_\mu(\mu) a(\xi^\lambda_\mu, \xi^\mu_\mu) = \delta_\lambda(\Psi(\lambda)) \delta_\mu(\Psi(\mu)) a(\xi^\Psi(\lambda), \xi^\Psi(\mu)).$$

Proof. Let $\mu \in M_q(\lambda)$ be obtained by removing the q-bar b from λ. Then, by definition of Ψ, we see, using Theorem 1.6, that $\Psi(\mu) \in M_q(\Psi(\lambda))$ is obtained by removing the q-bar $\Psi(\mu)$ from $\Psi(\lambda)$.

We start by comparing α_μ^λ and $\alpha_{\Psi(\mu)}^{\Psi(\lambda)}$. By definition, we have

$$\alpha_\mu^\lambda = (-1)^L(b) 2^m(b) \quad \text{and} \quad \alpha_{\Psi(\mu)}^{\Psi(\lambda)} = (-1)^L(\Psi(b)) 2^m(\Psi(b)),$$

where

$$m(b) = \begin{cases} 1 & \text{if } \sigma(\lambda) = 1 \text{ and } \sigma(\mu) = -1, \\ 0 & \text{otherwise.} \end{cases}$$

and

$$m(\Psi(b)) = \begin{cases} 1 & \text{if } \sigma(\Psi(\lambda)) = 1 \text{ and } \sigma(\Psi(\mu)) = -1, \\ 0 & \text{otherwise.} \end{cases}$$
And, since Ψ preserves the parity of partitions, we see that $m(b) = m(\Psi(b))$. Now $L(b)$ is related to $L(g_\lambda(b))$, where g_λ is the bijection described in Theorem 4.3. Similarly, $L(\Psi(b))$ is related to $L(g_{\Psi(\lambda)}(\Psi(b)))$, but, as we remarked above, $g_{\Psi(\lambda)}(\Psi(b)) = g_\lambda(b)$. We have, by Theorem 4.3(iii), applied to the (p)-bar b,

$$(-1)^{L(b)} = (-1)^{L(g_\lambda(b))}\delta_p(\lambda, \mu) = (-1)^{L(g_\lambda(b))}\delta_p(\lambda)\delta_p(\mu)$$

and similarly

$$(-1)^{L(\Psi(b))} = (-1)^{L(g_{\Psi(\lambda)}(\Psi(b)))}\delta_p(\Psi(\lambda))\delta_p(\Psi(\mu)),$$

whence

$$\delta_p(\lambda)\delta_p(\mu)\alpha^\lambda_\mu = \delta_p(\Psi(\lambda))\delta_p(\Psi(\mu))\alpha^{\Psi(\lambda)}_{\Psi(\mu)};$$

If $\sigma(\mu) = 1$, then $\xi^+_{\mu} = \xi^-_{\mu} = \xi_\mu$ and $a(\xi^+_{\mu}, \xi^-_{\mu}) = a(\xi^-_{\mu}, \xi_\mu) = (-1)^{2\frac{1}{2}}\alpha^\lambda_{\mu}$. We also have $\sigma(\Psi(\mu)) = 1$, so $a(\xi^+_{\Psi(\lambda)}, \xi^-_{\Psi(\mu)}) = a(\xi^-_{\Psi(\lambda)}, \xi_\mu) = (-1)^{2\frac{1}{2}}\alpha^{\Psi(\lambda)}_{\Psi(\mu)}$. Thus equation (62) immediately gives the result.

Suppose now that $\sigma(\mu) = -1$. Then, by Remark 4.3, we have $a(\xi^+_{\mu}, \xi^+_{\mu}), a(\xi^-_{\mu}, \xi^-_{\mu}) = a(\xi^+_{\mu}, \xi^+_{\mu})$. We need to distinguish between the cases $\mu = \lambda \setminus \{q\}$ and $\mu \neq \lambda \setminus \{q\}$. If $\mu = \lambda \setminus \{q\}$, this means b is a part of length q in λ. Then, in Theorem 4.4 $q(b)$ must be a part of length q/p in the first (bar) partition of $\lambda^{(q)}$ (see [21, Theorem 4.3]), and $\Psi(b)$ is then a part of length q in $\Psi(\lambda)$. We thus have $\mu = \lambda \setminus \{q\}$ if and only if $\Psi(\mu) = \Psi(\lambda) \setminus \{q\}$.

Suppose first that that $\mu \neq \lambda \setminus \{q\}$, so that $\Psi(\mu) \neq \Psi(\lambda) \setminus \{q\}$. Then, by Theorem 4.8 and Remark 4.9

$$a(\xi^+_{\mu}, \xi^+_{\mu}) = a(\xi^+_{\mu}, \xi^-_{\mu}) = a(\xi^-_{\mu}, \xi^+_{\mu}) = a(\xi^-_{\mu}, \xi^-_{\mu}) = \frac{1}{2}(-1)^{2\frac{1}{2}}\alpha^\lambda_{\mu}$$

and

$$a(\xi^+_{\Psi(\lambda)}, \xi^+_{\Psi(\mu)}) = a(\xi^+_{\Psi(\lambda)}, \xi^-_{\Psi(\mu)}) = a(\xi^-_{\Psi(\lambda)}, \xi^+_{\Psi(\mu)}) = a(\xi^-_{\Psi(\lambda)}, \xi^-_{\Psi(\mu)}) = \frac{1}{2}(-1)^{2\frac{1}{2}}\alpha^{\Psi(\lambda)}_{\Psi(\mu)},$$

so that equation (62) gives the result.

Suppose, finally, that $(\sigma(\mu) = \sigma(\Psi(\mu)) = -1$ and $\mu = \lambda \setminus \{q\}$, so that $\Psi(\mu) = \Psi(\lambda) \setminus \{q\}$. This is the only case which is not straightforward. By Theorem 4.8 we have

$$a(\xi^+_{\lambda}, \xi^+_{\mu}) = \frac{1}{2}(-1)^{2\frac{1}{2}}(\alpha^\lambda_{\mu} + \sqrt{q}) \quad \text{and} \quad a(\xi^-_{\lambda}, \xi^-_{\mu}) = \frac{1}{2}(-1)^{2\frac{1}{2}}(\alpha^\lambda_{\mu} - \sqrt{q})$$

(and similar expressions for $a(\xi^+_{\Psi(\lambda)}, \xi^+_{\Psi(\mu)})$ and $a(\xi^+_{\Psi(\lambda)}, \xi^-_{\Psi(\mu)})$). Since, by Remark 4.9 $a(\xi^+_{\lambda}, \xi^+_{\mu}) = a(\lambda, \mu)$ and $a(\xi^-_{\lambda}, \xi^-_{\mu}) = a(\xi^+_{\lambda}, \xi^+_{\mu})$, we deduce that, for any $\epsilon \in \{1, -1\}$,

$$a(\xi^\epsilon_{\lambda}, \xi^\epsilon_{\mu}) = \frac{1}{2}(-1)^{2\frac{1}{2}}(\alpha^\lambda_{\mu} + \epsilon\sqrt{q})$$

(and a similar expression for $a(\xi^\epsilon_{\Psi(\lambda)}, \xi^\epsilon_{\Psi(\mu)})$). Multiplying by $\delta_p(\lambda)\delta_p(\mu)$, we obtain, using Equation (62),

$$\delta_p(\lambda)\delta_p(\mu)a(\xi^\epsilon_{\lambda}, \xi^\epsilon_{\mu}) = \frac{1}{2}(-1)^{2\frac{1}{2}} \left(\delta_p(\lambda)\delta_p(\mu)\alpha^\lambda_{\mu} + \epsilon(\sqrt{q}) \right)$$

$$= \frac{1}{2}(-1)^{2\frac{1}{2}} \left(\delta_p(\Psi(\lambda))\delta_p(\Psi(\mu))\alpha^{\Psi(\lambda)}_{\Psi(\mu)} + \epsilon(\sqrt{q}) \right),$$
whence
\[
\delta_p(\lambda)\delta_p(\mu) a \left(\xi^\delta_p(\lambda), \xi^\delta_p(\mu) \right) = \delta_p(\Psi(\lambda))\delta_p(\Psi(\mu)) a \left(\xi^\delta_p(\Psi(\lambda)), \xi^\delta_p(\Psi(\mu)) \right).
\]

Using Remark 4.9, this implies the last equality we have to prove:
\[
\delta_p(\lambda)\delta_p(\mu) a \left(\xi^\delta_p(\lambda), \xi^\delta_p(\mu) \right) = \delta_p(\Psi(\lambda))\delta_p(\Psi(\mu)) a \left(\xi^\delta_p(\Psi(\lambda)), \xi^\delta_p(\Psi(\mu)) \right).
\]

Now we consider \(\tilde{\mu} \)-cores \(\gamma \) and \(\gamma' \), and a positive integer \(w \). Let \(B \) and \(B' \) be the spin blocks of \(\tilde{S}_n \) and \(\tilde{S}_m \) of weight \(w \) and \(\tilde{\mu} \)-core \(\gamma \) and \(\gamma' \) respectively, and let \(B^* \) and \(B'^* \) be the corresponding spin blocks of \(\tilde{A}_n \) and \(\tilde{A}_m \). Suppose furthermore that \(\sigma(\gamma) = -\sigma(\gamma') \), so that, with the notation of Lemma 4.7(ii), \(\Psi \) is a sign inversing bijection, and \(\tilde{\Psi} \) gives a bijection between \(B \) and \(B'^* \).

Proposition 4.14. Let the notation be as above. For any \(\lambda \in D_n \) with \(\tilde{\mu} \)-core \(\gamma \) and \(\mu \in M_q(\lambda) \), and for any \(\eta, \epsilon \in \{1, -1\} \), we have
\[
\delta_p(\lambda)\delta_p(\mu) a(\xi^{\eta\delta_p(\lambda)}, \xi^{\epsilon\delta_p(\mu)}) = \delta_p(\tilde{\Psi}(\lambda))\delta_p(\tilde{\Psi}(\mu)) a(\xi^{\eta\delta_p(\tilde{\Psi}(\lambda))}, \xi^{\epsilon\delta_p(\tilde{\Psi}(\mu)))}.
\]

Proof. First, assume that \(\lambda \in D_n^+ \). Then by Lemma 4.7(ii), \(\tilde{\Psi}(\lambda) \in D_m^- \). Furthermore, by Theorem 4.8, for any \(\mu \in M_q(\lambda) \), we have \(a(\xi_\lambda, \xi_\mu) = (-1)^{\frac{\gamma - 1}{2}} \alpha_\mu^\lambda \) whenever \(\sigma(\mu) = 1 \), and \(a(\xi_\lambda, \xi_\mu^+ = a(\xi_\lambda, \xi_\mu^-) = \frac{1}{2} (-1)^{\frac{\gamma - 1}{2}} \alpha_\mu^\lambda \) whenever \(\sigma(\mu) = -1 \).

As previously, we see that \(\tilde{\Psi} \) is compatible with the bijections \(g_\lambda \) and \(g_\mu \) given by Theorem 4.3, whence it gives a sign inversing bijection between \(M_q(\tilde{\Psi}(\lambda)) \) and \(M_q(\lambda) \). If \(\mu \in M_q(\lambda) \) is obtained by removing the \(q \)-bar \(b \) from \(\lambda \), then \(\tilde{\Psi}(\mu) \in M_q(\tilde{\Psi}(\lambda)) \) is obtained by removing the \(q \)-bar \(\tilde{\Psi}(b) \) from \(\tilde{\Psi}(\lambda) \), so that we want to compare \(\alpha_\mu^\lambda \) and \(\alpha_{\tilde{\Psi}(\mu)}^{\tilde{\Psi}(\lambda)} \). For this, we use Equations (57), (58) and (59).

Since \(\tilde{\Psi}(\lambda) \in D_m^- \), we see that \(m(\tilde{\Psi}(b)) \) is always 0, so that \(\alpha_{\tilde{\Psi}(\mu)}^{\tilde{\Psi}(\lambda)} = (-1)^{L(\tilde{\Psi}(b))} \). And, since \(\lambda \in D_n^+ \), we see that \(m(b) = 1 \) and \(\alpha_\mu^\lambda = (-1)^{L(b)}2 \) whenever \(\sigma(\mu) = -1 \), while \(m(b) = 0 \) and \(\alpha_\mu^\lambda = (-1)^{L(b)} \) whenever \(\sigma(\mu) = 1 \).

As in the proof of Proposition 4.13, \(L(b) \) is related to \(L(g_\lambda(b)) \), and \(L(\tilde{\Psi}(b)) \) to \(L(g_{\tilde{\Psi}(\lambda)}(\tilde{\Psi}(b))) \), and \(g_{\tilde{\Psi}(\lambda)}(\tilde{\Psi}(b)) = g_\lambda(b) \). Thus, using Equations (60) and (61), we see that Equation (62) holds. If \(\sigma(\mu) = 1 \), then \(\sigma(\tilde{\Psi}(\mu)) = -1 \), and we obtain
\[
\delta_p(\lambda)\delta_p(\mu) a(\xi_\lambda, \xi_\mu) = (-1)^{\frac{\gamma - 1}{2}} \delta_p(\lambda)\delta_p(\mu) \alpha_\mu^\lambda
\]
\[
= (-1)^{\frac{\gamma - 1}{2}} \delta_p(\tilde{\Psi}(\lambda))\delta_p(\tilde{\Psi}(\mu)) (-1)^{L(b)}
\]
\[
= (-1)^{\frac{\gamma - 1}{2}} \delta_p(\tilde{\Psi}(\lambda))\delta_p(\tilde{\Psi}(\mu)) (-1)^{L(\tilde{\Psi}(b))}
\]
\[
= (-1)^{\frac{\gamma - 1}{2}} \delta_p(\tilde{\Psi}(\lambda))\delta_p(\tilde{\Psi}(\mu)) \alpha_{\tilde{\Psi}(\mu)}^{\tilde{\Psi}(\lambda)}
\]
\[
= \delta_p(\tilde{\Psi}(\lambda))\delta_p(\tilde{\Psi}(\mu)) a(\xi^{\tilde{\Psi}(\lambda)}, \xi^{\tilde{\Psi}(\mu)}).
\]
If, on the other hand, \(\sigma(\mu) = -1 \), then \(\sigma(\Psi(\mu)) = 1 \), and we obtain
\[
\delta_p(\lambda)\delta_p(\mu)a(\xi_\lambda, \xi_\mu^+) = \frac{(-1)^{\frac{p-1}{2}}\delta_p(\lambda)\delta_p(\mu)\overline{\alpha}_\mu^\lambda}{\overline{\alpha}_\mu^\lambda} = \frac{(-1)^{\frac{p-1}{2}}\delta_p(\lambda)\delta_p(\mu)\overline{\alpha}_\mu^\lambda}{\overline{\alpha}_\mu^\lambda} \cdot 2(-1)^{L(b)} = \frac{(-1)^{\frac{p-1}{2}}\delta_p(\lambda)\delta_p(\mu)\overline{\alpha}_\mu^\lambda}{\overline{\alpha}_\mu^\lambda} \cdot (1) = \frac{(-1)^{\frac{p-1}{2}}\delta_p(\lambda)\delta_p(\mu)\overline{\alpha}_\mu^\lambda}{\overline{\alpha}_\mu^\lambda}.
\]

Assume now that \(\lambda \in \mathcal{D}_n^- \). Then \(\Psi(\lambda) \in \mathcal{D}_m^+ \). Note that \(\lambda \) has a part of length \(q \), if and only if \(\Psi(\lambda) \) has one. If this is the case, then \(\sigma(\lambda \setminus \{q\}) = -1 \) and \(\{\mu \in M_q(\lambda) | \sigma(\mu) = -1\} = \{\lambda \setminus \{q\}\} \). Otherwise, \(\{\mu \in M_q(\lambda) | \sigma(\mu) = -1\} \) is empty. By Theorem 4.8, we have \(a(\xi_\lambda, \xi_\mu) = \frac{(-1)^{\frac{p-1}{2}}\overline{\alpha}_\mu^\lambda}{\overline{\alpha}_\mu^\lambda} \) whenever \(\sigma(\mu) = 1 \), and
\[
a(\xi_\lambda^+, \xi_\mu^+) = \frac{1}{2}(-1)^{\frac{p-1}{2}}(\alpha_\mu^\lambda+i\frac{p-1}{2}) \quad \text{and} \quad a(\xi_\lambda^-, \xi_\mu^-) = \frac{1}{2}(-1)^{\frac{p-1}{2}}(\alpha_\mu^\lambda-i\frac{p-1}{2}).
\]
whenever \(\sigma(\mu) = -1 \) and \(\mu = \lambda \setminus \{q\} \).

Furthermore, if \(\sigma(\mu) = 1 \), then \(a(\xi_\lambda^+, \xi_\mu) = a(\xi_\lambda^-, \xi_\mu) \), and, if \(\sigma(\mu) = -1 \), then \(a(\xi_\lambda^-, \xi_\mu^+) = a(\xi_\lambda^-, \xi_\mu^-) = a(\xi_\lambda^+, \xi_\mu^-) \).

As in the previous case, \(\Psi \) gives a sign inversions bijection between \(M_q(\lambda) \) and \(M_q(\Psi(\lambda)) \). If \(\mu \in M_q(\lambda) \) is obtained by removing the \(q \)-bar from \(\lambda \), then \(\Psi(\mu) \in M_q(\Psi(\lambda)) \) is obtained by removing the \(q \)-bar \(\Psi(b) \) from \(\Psi(\lambda) \). Note that \(\sigma(\lambda) = -1 \) and \(\sigma(\Psi(\lambda)) = 1 \), and for \(\mu \in M_q(\lambda) \), we have \(\sigma(\mu) = -\sigma(\Psi(\mu)) \). In particular, Equations 59 and 60 give \(m(b) = 0 \), and \(m(\Psi(b)) = 1 \) whenever \(\sigma(\mu) = 1 \), and \(m(\Psi(b)) = 0 \) otherwise.

If \(\sigma(\mu) = 1 \), then \(m(\Psi(b)) = 1 \) and \(\sigma(\Psi(\mu)) = -1 \). Thus Theorem 4.8 Proposition 4.10 and Equations 57 and 58 give the result.

If \(\sigma(\mu) = -1 \), then \(m(\Psi(b)) = 0 \) and \(\sigma(\Psi(\mu)) = 1 \). Thus, using Theorem 4.8 Proposition 4.10 and Equation 52, we conclude with a computation similar to that at the end of the proof of Proposition 4.13.

We now can state the main result of this section. Let \(\gamma \) and \(\gamma' \) be two \(p \)-cores, and \(w \) be a positive integer. Write \(E_{\gamma,w}, E_{\gamma',w} \) and \(\Psi : E_{\gamma,w} \to E_{\gamma',w} \) as in Lemma 4.7 and set \(n = |\gamma|+pw \) and \(m = |\gamma'|+pw \). If \(\sigma(\gamma) = \sigma(\gamma') \), then \(B_{\gamma,w} \) and \(B_{\gamma',w} \) denote the \(p \)-blocks of \(\overline{\omega} \)-weight \(w \) of \(G = \mathbb{S}_n \) and \(G' = \mathbb{S}_m \) corresponding to \(\gamma \) and \(\gamma' \) respectively. If \(\sigma(\gamma) = -\sigma(\gamma') \), then \(B_{\gamma,w} \) and \(B_{\gamma',w} \) denote the \(p \)-blocks of \(\overline{\omega} \)-weight \(w \) of \(G = \mathbb{S}_n \) and \(G' = \mathbb{S}_m \) respectively. We write \(\text{Irr}(B_{\gamma}) = \{X_\lambda^+ | \lambda \in E_{\gamma,w}, \epsilon \in \{-1,1\}\} \) and \(\text{Irr}(B_{\gamma'}) = \{Y_\lambda^+ | \lambda \in E_{\gamma',w}, \epsilon \in \{-1,1\}\} \), with the convention that, when \(X_\lambda \) or \(Y_\lambda \) are self-associate, we set \(X_\lambda^+ = X_\lambda^- = X_\lambda \) and \(Y_\lambda^+ = Y_\lambda^- = Y_\lambda \).

Theorem 4.15. Let \(p \) be an odd prime. We keep the notation as above. Then the isometry \(I : \mathbb{C}\text{Irr}(B_{\gamma,w}) \to \mathbb{C}\text{Irr}(B_{\gamma',w}) \) defined by
\[
I(X_\lambda^{\rho_p(\lambda)}(\mu)) = \delta_p(\lambda)\delta_p(\Psi(\lambda))Y_{\rho_p(\Psi(\lambda))}^-(\mu),
\]
where \(\lambda \in E_{\gamma,w} \) and \(\epsilon \in \{-1,1\} \), is a Broué perfect isometry.

Proof. Consider the map \(\hat{I} \) corresponding to \(I \) as in Equation 60. We will prove that \(\hat{I} \) satisfies Properties (i) and (ii) of a Broué isometry.

First, we use the MN-structures introduced in Proposition 4.12 for \((C_G, B_{\gamma,w}) \) and \((C_{G'}, B_{\gamma',w}) \). Let \(S_G \) and \(S_{G'} \) be as in Equation 56. Write \(\Omega \) for the set
of partitions π of $i \leq n$ such that p divides each part of π. Note that $\pi \in \Omega$ parametrizes one or two G-classes of elements of S_G (always one class when $G = \tilde{S}_n$, and two classes when $G = \tilde{A}_n$ and $\pi \in \mathcal{O}_n \cap \mathcal{D}_n$). In the case where π labels two classes, we denote the two parameters by π^\pm. Let Λ be the set of parameters obtained in this way. Then Λ labels the set of G-classes of S_G. We will now define a precise set of representatives for these classes. Let $\pi = (\pi_1, \ldots, \pi_r) \in \Omega$. Note that π and $(\pi_1), \ldots, (\pi_r)$ can all be viewed as partitions of $S_{\mathcal{O}_n}$ (by completing the partitions with parts of length 1). Then with this identification, we assume that $s_\pi = s_{\pi_1} \cdots s_{\pi_r}$. By [25] III, p.172], we in particular have $t_\pi = t_{\pi_1} \cdots t_{\pi_r}$.

Furthermore, for $\pi \in \mathcal{O}_n \cap \mathcal{D}_n$, we assume that the representatives of the two \mathcal{A}_n-classes labelled by π are $s_{\pi^+} = s_{\pi_1} \cdots s_{\pi_{r-1}} s_{\pi_r^{\pm}}$ as in the proof of Theorem 3.9. So, with the notation of §4.2 and by [25] III, p.172], we have $t_{\pi^\pm} := t_{\pi^{\pm}} = t_{\pi_1} \cdots t_{\pi_{r-1}} t_{\pi_r^{\pm}}$. Therefore, if $G = \tilde{S}_n$, then the set of t_π for $\pi \in \Omega$ is a set of representatives of the G-classes of S_G. If $G = \tilde{A}_n$, then the elements t_π (for $\pi \in \Omega$ and $\pi \notin \mathcal{O}_n \cap \mathcal{D}_n$) and t_{π^\pm} (for $\pi \in \Omega \cap \mathcal{O}_n \cap \mathcal{D}_n$) form a system of representatives of the \mathcal{A}_n-classes of $S_{\mathcal{A}_n}$. Moreover, for any $\hat{\pi} \in \Lambda$ (with $\hat{\pi} \in \{\pi^+, \pi^{-}\}$ if $\pi \in \mathcal{O}_n \cap \mathcal{D}_n$ and $\hat{\pi} = \pi$ otherwise), we write $G_{\hat{\pi}} = G_{\hat{\pi}}^+$ and $r^{\hat{\pi}} = r^{\hat{\pi}^\pm}$, where $G_{\hat{\pi}}^+$ and $r^{\hat{\pi}} : \mathbb{C} \text{Irr}(B_{\gamma, w}) \rightarrow \mathbb{C} \text{Irr}(B(G_{\hat{\pi}}^+))$ (where $B(G_{\hat{\pi}})$ is one p-block or two p-blocks of G_G) are defined in Proposition 4.12.

Now, we define $\Omega_0 = \{\pi \in \Omega | \sum \pi_i \leq pw\}$ and Λ_0 the set of parameters $\hat{\pi} \in \Lambda$ such that $\pi \in \Omega_0$. Then $\Omega_0 = \Lambda_0$ whenever $G = \tilde{S}_n$ or $G = \tilde{A}_n$ with $n \notin \{pw, pw+1\}$.

Similarly, we define Ω', Λ' and Λ'_0 for G' and $S_{G'}$. Since $G' = \tilde{S}_m$, we have $\Lambda' = \Omega'$ and $\Lambda'_0 = \Omega'_0 = \Omega_0$. We write t'_π for the representatives of the G'-classes of $S_{G'}$ (as described above for G) and, for $\pi \in \Omega'$, we define G'_π and $r^{\pi'} : \mathbb{C} \text{Irr}(B_{\gamma, w}) \rightarrow \mathbb{C} \text{Irr}(B(G'_\pi))$ as above.

Using Theorems 4.8 and 4.10 we show that for any $\pi \in \Omega \setminus \Omega_0$ or $\pi \in \Omega' \setminus \Omega'_0$, one has $r^{\pi} = 0$ and $r^{\pi'} = 0$.

Now we suppose that $\Lambda_0 = \Omega_0$. Let $\pi \in \Omega_0$. If $|\pi| < pw$, then $B(G_{\pi})$ and $B(G'_\pi)$ are just one p-block of G_{π} and G'_π, respectively. If $|\pi| = pw$, then $B(G_{\pi})$ and $B(G'_\pi)$ are one p-block with defect zero whenever $G = \tilde{S}_n$ and $\sigma(\gamma) = 1$ or $G = \tilde{A}_n$ and $\sigma(\gamma) = -1$, or are the union of two p-blocks with defect zero otherwise. We define (and denote by the same symbol to simplify the notation) $I : \text{Irr}(B(G_{\pi})) \rightarrow \text{Irr}(B(G'_\pi))$ by Equation (63). Therefore, using Propositions 4.13 and 4.14, we prove, with the argument of the proof of Theorem 3.9 (see Equations (28), (29) and (30) and also Equation (49)), that

$$I \circ r^{\pi} = r^{\pi'} \circ I.$$

Thus, Theorem 2.9 holds (see Remark 2.10).

Suppose, on the other hand, that $\Lambda_0 \neq \Omega_0$. Then $G = \tilde{A}_n$, and $n \in \{pw, pw+1\}$. In particular, $\sigma(\gamma) = 1$. Let $\pi \in \Omega_0$. If $\pi \notin \mathcal{O}_n \cap \mathcal{D}_n$, then we are in the same situation as above, and Equation (64) holds. Suppose instead that $\pi \in \mathcal{O}_n \cap \mathcal{D}_n$. Then π labels two classes with representatives t_{π^+} and t_{π^-} of S_G, and G_{π^+} and G_{π^-} are two copies of \mathbb{Z}_2, whose only spin p-block has defect zero, and consists of the (only) non-trivial character. Denote by $\{\epsilon_+\}$ and $\{\epsilon_-\}$ the spin p-blocks of G_{π^+} and G_{π^-}, respectively.
Now, even though $\sigma(\gamma) = 1$, γ labels just one p-block of G_{π^+} (and of G_{π^-}). Since $\sigma(\gamma') = -\sigma(\gamma) = -1$, it follows that γ' labels two p-blocks with defect zero of G'_{π}. In particular, $\mathrm{Irr}(B(G'_{\pi}))$ is the union of the p-blocks $\{Y^+_{\pi'}\}$ and $\{Y^-_{\pi'}\}$.

We then define $I_{\pi} : \mathbb{C}\{\epsilon_+\} \oplus \mathbb{C}\{\epsilon_-\} \to \mathrm{Irr}(B(G'_{\pi}))$ by setting $I_{\pi}(\epsilon_+) = Y^+_{\pi'}$ and $I_{\pi}(\epsilon_-) = Y^-_{\pi'}$. Now, using Theorems 4.3, 4.8 and 4.10 we prove that

$$I_{\pi} \circ \left(r^{\pi^+} + r^{\pi^-} \right) = r^\pi \circ I.$$

Finally, by the argument of the proof of Theorem 3.9 we obtain for \widehat{I} a decomposition as in Equation\r\n(39).

We now prove that \widehat{I} satisfies property (i) of a Broué isometry. Assume that $x \in G$ is p-singular and $x' \in G'$ is p-regular. If $x \notin C_G$, then $\widehat{I}(x, x') = 0$ (see the proof of Corollary 2.10). Otherwise, $x \in C_G$, and without loss of generality, we can assume that $x = z^kt_{\pi}$ for some $\pi \in D_n$ and $k \in \{0, 1\}$. Note that $z^kt_{\pi} \in C_G$ means that π has at least one part of length divisible by $2p$. In particular, $\pi \notin \Omega_n$. If $\pi \notin D_n^-$ (when $G = \tilde{G}_n$) or $\pi \notin D_n^+$ (when $G = \tilde{A}_n$), then Propositions 4.1 and 4.3 imply that $X^\pm_x(z^kt_{\pi}) = 0$ for all $\lambda \in E_{\gamma', w}$, and $I(x, x') = 0$ by Equation\r\n(11). Hence, we can suppose that $\pi \subset D^-_n$ if $G = \tilde{G}_n$, or that $\pi \subset D^+_n$ if $G = \tilde{A}_n$. Therefore, $X^\pm_x(z^kt_{\pi}) \neq 0$ if and only if $\pi = \lambda$. Furthermore, if we write $\pi^{(\mathfrak{p})} = (\pi^0, \ldots, \pi^{(p-1)/2})$ for the \mathfrak{p}-quotient of π, then the parts divisible of π by p are $p \cdot \pi^0$ (see [21] p. 27]). Hence, the definition of Ψ gives $\pi^{(\mathfrak{p})} = \Psi(\pi^{(\mathfrak{p})})$, and $\Psi(\pi)$ has non-trivial parts divisible by p. It follows that $Y^\pm_{\Psi(\lambda)}(x') = Y^\pm_{\Psi(\lambda)}(x')$, because x' is p-regular. Using Equation\r\n(11), we obtain

$$\widehat{I}(x, x') = (X^+_{\pi}(z^kt_{\pi}) + X^-_{\pi}(z^kt_{\pi})) Y^+_{\Psi(\lambda)}(x) = 0$$

by Equations\r\n(12) and (40). Note that we derive from Remark\r\n(2.11) and a similar computation that, if x is p-regular and x' is p-singular, then $\widehat{I}(x, x') = 0$.

Finally, we show that \widehat{I} satisfies property (ii) of a Broué isometry.

First, we consider the case $G = \tilde{G}_n$. Take $\Phi \in \mathbb{Z}b_{\gamma', w}^\mathfrak{p}$, where b is a \mathbb{Z}-basis of $\mathbb{Z}\mathrm{Irr}(B_{\gamma', w})^{\tilde{G}_n}$. By Corollary\r\n(2.3) for $x \in \tilde{A}_n$, we have $\Phi(x) \neq 0$ only if x is p-regular. Thus, again by Corollary\r\n(2.3) (applied to the set of p-regular elements), $\mathrm{Res}_{\tilde{A}_n}(\Phi)$ is a projective character of \tilde{A}_n. Since $\Phi(x) = \mathrm{Res}_{\tilde{A}_n}(\Phi)(x)$, it follows that $\Phi(x)$ is the value of some projective character of \tilde{A}_n, and we conclude with the argument of the proof of Theorem\r\n(2.19) that $\widehat{I}(x, x')/|C_G(x')| \in \mathcal{R}$. Similarly, because of Remark\r\n(2.11) if $x' \in \tilde{A}_n$, then $\widehat{I}(x, x')/|C_{G'}(x')| \in \mathcal{R}$.

Assume now that $x \notin \tilde{A}_n$, and write $x = z^kt_{\pi}$ with $\pi \in D_n^-$ and $k \in \{0, 1\}$. Then by Equation\r\n(11), $\widehat{I}(x, x') \neq 0$ if only if $x' = z^lt_{\Psi(\pi)}$ for $l \in \{0, 1\}$, and in this case, Equation\r\n(11) gives

$$\widehat{I}(z^kt_{\pi}, z^lt_{\Psi(\pi)}) = \pm i^{\frac{(n' - t(\pi')) - (t(\pi') - 2)}{2}} \sqrt{\pi_1 \cdots \pi_r \pi_1' \cdots \pi_{r'}'},$$

where $\pi = (\pi_1, \ldots, \pi_r)$ and $\Psi(\pi) = (\pi_1', \ldots, \pi_{r'}')$. However, we derive from the proof of [21] Theorem 4.3] that $\nu_l(\pi_1 \cdots \pi_r) = p^{\pi_l} \nu_{\Psi}(\prod(\pi^0))$, where ν_l is the p-valuation, $\pi^{(\mathfrak{p})} = (\pi^0, \ldots, \pi^{(p-1)/2})$ is the \mathfrak{p}-quotient of π, and $\prod(\pi^0)$ is the
product of the lengths of the parts of π^0. Hence,
\begin{equation}
\nu_p(\pi_1 \cdots \pi_r) = \nu_p(\pi'_1 \cdots \pi'_{r'}) ,
\end{equation}
Furthermore,
\begin{align*}
|C_{\tilde{\Omega}_n}(z^kt_\pi)| &= 2 \prod_{i=1}^r \pi_i \quad \text{and} \quad |C_{\tilde{\Omega}_n}(z^t\pi'_r)| = 2 \prod_{i=1}^{r'} \pi'_i ,
\end{align*}
because $\pi, \pi' \in D^-$. By Equation (66), there are integers a and b prime to p such that $\prod \pi_i = \nu_p(\pi_1 \cdots \pi_r)a$ and $\prod \pi'_i = \nu_p(\pi_1 \cdots \pi_r)b$. Therefore, Equation (66) implies that
\begin{equation}
\left| \frac{\tilde{I}(z^kt_\pi, z^t\pi'_r)}{\tilde{I}(z^kt_\pi, z^t\pi'_r)} \right| = \pm i^{a + a' - (\sigma(\pi) - \sigma(\pi'))} \frac{\sqrt{ab}}{2a} .
\end{equation}
Since $\pm i^{a + a' - (\sigma(\pi) - \sigma(\pi'))} \sqrt{ab} \in \mathcal{R}$ and $2a$ is prime to p, we deduce that
\begin{equation}
\left| \frac{\tilde{I}(z^kt_\pi, z^t\pi'_r)}{\tilde{I}(z^kt_\pi, z^t\pi'_r)} \right| \in \mathcal{R} .
\end{equation}
Similarly, we have $\left| \frac{\tilde{I}(z^kt_\pi, z^t\pi'_r)}{\tilde{I}(z^kt_\pi, z^t\pi'_r)} \right| \in \mathcal{R}$. Assume now that $\tilde{G} = \tilde{A}_n$. Take $\Phi \in \mathbb{Z}b^\gamma_{\gamma, \nu}$, where b is a \mathbb{Z}-basis of $\mathbb{Z} \text{Irr}(B_{\gamma, \nu})_{\tilde{A}_n}$.
By Corollary 2.3 there are integers a_λ (for $\lambda \in E_{\gamma, \nu}$ with $\sigma(\lambda) = -1$) and a_λ^\pm (for $\lambda \in E_{\gamma, \nu}$ with $\sigma(\lambda) = 1$) such that
\begin{equation}
\Phi = \sum_{\sigma(\lambda) = -1} a_\lambda \zeta_\lambda + \sum_{\sigma(\lambda) = 1} (a_\lambda^+ \zeta_\lambda^+ + a_\lambda^- \zeta_\lambda^-) ,
\end{equation}
and Clifford theory gives
\begin{equation}
\text{Ind}_{\tilde{A}_n}^{\mathbb{Z}_n}(\Phi) = \sum_{\sigma(\lambda) = -1} a_\lambda (\xi_\lambda^+ + \xi_\lambda^-) + \sum_{\sigma(\lambda) = 1} (a_\lambda^+ + a_\lambda^-) \xi_\lambda .
\end{equation}
Let $x = z^kt_\pi$ be such that $\pi \in \mathcal{O}_n$ and $\pi \notin D^+_n$. In particular, for $\lambda \in D^+_n$, we have
\begin{equation}
\xi_\lambda(x) = \xi_\lambda^+(x) + \xi_\lambda^-(x) = 2\xi_\lambda^+(x) = 2\xi_\lambda^-(x) ,
\end{equation}
and it follows that
\begin{align*}
\text{Ind}_{\tilde{A}_n}^{\mathbb{Z}_n}(\Phi)(x) &= \sum_{\sigma(\lambda) = -1} a_\lambda (\xi_\lambda^+(x) + \xi_\lambda^-(x)) + \sum_{\sigma(\lambda) = 1} (a_\lambda^+ + a_\lambda^-) \xi_\lambda(x) \\
&= 2 \left(\sum_{\sigma(\lambda) = -1} a_\lambda \xi_\lambda(x) + \sum_{\sigma(\lambda) = 1} (a_\lambda^+ \xi_\lambda^+(x) + a_\lambda^- \xi_\lambda^-(x)) \right) \\
&= 2\Phi(x) .
\end{align*}
By Equation (68) and Corollary 2.3 $\text{Ind}_{\tilde{A}_n}^{\mathbb{Z}_n}(\Phi)$ is a projective character of $\tilde{\Omega}_n$. Hence, $2\Phi(x)$ is the value of a projective character of $\tilde{\Omega}_n$, and we conclude as above, because 2 is not divisible by p.
Suppose that $\pi \in \mathcal{O}_n \cap D^+_n$, and denote by H the centralizer of t_{π^2} in \tilde{A}_n. Then $H = \langle z \rangle \times \langle t_{\pi^1} \rangle \times \cdots \times \langle t_{\pi^2} \rangle$ contains no elements whose cycle structure has even parts. In particular, $\text{Res}_H^{\tilde{A}_n}(\Phi)$ is a projective character of H. Since $x \in H$, it
follows that $\Phi(x)$ is the value of a projective character of H, and we again conclude with the same argument as above.

Finally, it remains to show the property for $\pi \in D^+_n$ and $\pi \not\in \mathcal{O}_n$. However, $\hat{I}(z^k\pi, x') \neq 0$ if and only if $x' = z|t'_\Psi(\pi)$. In particular, $\pi' = \Psi(\pi) \in D^-_m$ and we have

$$\hat{I}(z^k\pi, z|t'_\Psi(\pi)) = \pm \sqrt{2i}^{n+m-m'-\gamma - 1} \sqrt{\pi_1 \cdots \pi_{r'} \cdots \pi_{r'}} .$$

We conclude as above using Equation (66). \hfill \Box

Corollary 4.16. If p is an odd prime, if $B_{\gamma,w}$ and $B_{\gamma',w}$ are p-blocks of \tilde{A}_n and \tilde{A}_m respectively, and if $\sigma(\gamma) = \sigma(\gamma')$, then the isometry I defined by Equation (63) is a Broué perfect isometry.

Proof. Let $\tilde{\gamma}$ be any \tilde{p}-core such that $\sigma(\tilde{\gamma}) = -\sigma(\gamma)$. Denote by $B_{\tilde{\gamma},w}$ the p-block of $\tilde{G}_{\tilde{\gamma},w}$ corresponding to $\tilde{\gamma}$. Since $\sigma(\gamma') = -\sigma(\tilde{\gamma})$, by Theorem 4.15, there are Broué perfect isometries $I_1 : \text{Irr}(B_{\gamma,w}) \to \text{Irr}(B_{\tilde{\gamma},w})$ and $I_2 : \text{Irr}(B_{\gamma',w}) \to \text{Irr}(B_{\tilde{\gamma},w})$, defined by Equation (63). Furthermore, we have

$$I = I_2^{-1} \circ I_1,$$

which proves the result. \hfill \Box

5. Some other examples

5.1. Notation. For any positive integers k and l, we denote by $\mathcal{MP}_{k,l}$ the set of k-tuples of partitions (μ_1, \ldots, μ_k) such that $\sum \mu_i = l$.

Let H be a finite group and w be a positive integer. We consider the wreath product $G = H \wr S_w$, that is, the semidirect product $G = H^w \rtimes S_w$ where S_w acts on H^w by permutation. Write $N = |\text{Irr}(H)|$ and $\text{Irr}(H) = \{\psi_i | 1 \leq i \leq N\}$, and denote by $g_i (1 \leq i \leq N)$ a system of representatives for the conjugacy classes of H.

The irreducible characters of G are parametrized by $\mathcal{MP}_{N,w}$ as follows. For $\mu = (\mu_1, \ldots, \mu_N) \in \mathcal{MP}_{N,w}$, consider the irreducible character ϕ_μ of $\text{Irr}(H^w)$ given by

$$\phi_\mu = \prod_{i=1}^N \psi_i^{\mu_i} \otimes \cdots \otimes \psi_i^{\mu_1} \text{ times},$$

which, by [11], p.154, can be extended to an irreducible character $\hat{\phi}_\mu = \prod_{i=1}^N \hat{\psi}_i^{\mu_i}$ of its inertia subgroup $I_G(\phi_\mu) = \prod_{i=1}^N H \wr S_{|\mu_i|}$. The irreducible character of G corresponding to μ is then given by

$$\theta_\mu = \text{Ind}_{I_G(\phi_\mu)}^G \left(\prod_{i=1}^N \hat{\psi}_i^{\mu_i} \otimes \chi_\mu \right),$$

where χ_μ denotes the irreducible character of $S_{|\mu_i|}$ corresponding to the partition μ_i of $|\mu_i|$. Let $(h_1, \ldots, h_w; \sigma) \in G$ with $h_1, \ldots, h_w \in H$ and $\sigma \in S_w$. For any k-cycle $\kappa = (j, \kappa j, \ldots, \kappa^{k-1}j)$ in σ, we define the cycle product

$$g((h_1, \ldots, h_w; \sigma); \kappa) = h_{\kappa^{-1}j} \cdots h_{\kappa^{-k+1}j}.$$
If σ has cycle structure π, then we form the N-tuple of partitions (π_1, \ldots, π_N) from π, where any cycle κ in π gives a cycle of the same length in π_i if $g((h_1, \ldots, h_w; \sigma); \kappa)$ is conjugate to g_i in H. The N-tuple
\begin{equation}
g((h_1, \ldots, h_w; \sigma)) = (\pi_1, \ldots, \pi_N) \in \mathcal{MP}_{N,w}
\end{equation}
describes the cycle structure of $(h_1, \ldots, h_w; \sigma)$, and two elements of G are conjugate if and only if they have the same cycle structure. In particular, the conjugacy classes of G are labelled by $\mathcal{MP}_{N,w}$.

5.2. Isometries between symmetric groups and natural subgroups. Let n be a positive integer and p be a prime. We denote by \mathcal{P}_n the set of partitions of n. Write χ_λ for the irreducible character of the symmetric group \mathfrak{S}_n corresponding to the partition $\lambda \in \mathcal{P}_n$. Recall that to every $\lambda \in \mathcal{P}_n$, we can associate its p-core $\lambda^{(p)}$ and its p-quotient $\lambda^{[p]} = (\lambda_1, \ldots, \lambda_p)$ (see for example [21, p. 17]). Moreover, two irreducible characters χ_λ and χ_μ lie in the same p-block if and only if λ and μ have the same p-core. For B_γ, the p-block of \mathfrak{S}_n corresponding to a fixed p-core γ, we define the p-weight w of B_γ by setting $w = (n - |\gamma|)/p$. Then $\text{Irr}(B_\gamma)$ is parametrized by $\mathcal{MP}_{p,w}$. Now, we set $G_{p,w} = (\mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}) \wr \mathfrak{S}_w$. We recall that $\text{Irr}(\mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}) = \{\psi_1, \ldots, \psi_p\}$ with the following convention. If p is odd (respectively $p = 2$), then put $p^* = (p + 1)/2$ (respectively $p^* = 2$). Then we can choose the labelling such that $\psi_i(1) = 1$ for $i \neq p^*$ and $\psi_{p^*}(1) = p - 1$. Fix now η and ω generators of \mathbb{Z}_{p-1} and \mathbb{Z}_p respectively. Write $g_i = \eta^i$ for $1 \leq i \leq p - 1$ and $g_p = \omega$. Then the elements $g_i \in \mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}$ form a system of representatives for the conjugacy classes of $\mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}$. As explained in [21, §1] the irreducible characters and conjugacy classes of $G_{p,w}$ are labelled by $\mathcal{MP}_{p,w}$. As above, for $\mu \in \mathcal{MP}_{p,w}$, we write θ_μ for the corresponding irreducible character of $G_{p,w}$.

Theorem 5.1. We keep the notation as above, and define the linear map $I : \mathbb{C} \text{Irr}(B_\gamma) \to \mathbb{C} \text{Irr}(G_{p,w})$ by
\begin{equation}
I(\chi_\lambda) = (-1)^{|\lambda^{(p)}|} |\delta_p(\lambda)| \theta_{\tilde{\lambda}^{(p)}},
\end{equation}
where $\tilde{\lambda}^{(p)}$ is obtained from the p-quotient $\lambda^{(p)}$ of λ replacing λ^{p^*} by its conjugate, and $\delta_p(\lambda)$ is the p-sign of λ. Then I is a generalized perfect isometry with respect to the p-regular elements of \mathfrak{S}_n and the set C'_γ of elements of $G_{p,w}$ with cycle structure $\pi = (\pi_1, \ldots, \pi_p)$ satisfying $\pi_p = \emptyset$.

Proof. Let S be the set of elements of \mathfrak{S}_n with cycle decomposition $\sigma_1 \cdots \sigma_r$ (where we omit trivial cycles), such that σ_i is a q_i-cycle for some positive integer q_i, and let C be the set of p'-elements of \mathfrak{S}_n. The sets S and C are union of \mathfrak{S}_n-conjugacy classes, and $1 \in S$. Moreover, $\tau_1 \cdots \tau_k$ is the cycle decomposition of $\tau \in C$ if and only if τ_i has p'-length. Hence the cycle decomposition with disjoint support in \mathfrak{S}_n proves that (1), (2) and (3) of Definition [21, §2] hold with $G_{\sigma C_\gamma} = G_\gamma$ whenever $\sigma = \sigma S \sigma C$ with $\sigma S \in S$ and $\sigma C \in C$, and J is the support of σS. Denote by Λ the set of classes consisting of elements of S and define
\begin{equation}
\Gamma_0 = \bigcup_{b \leq w} \mathcal{P}_b.
\end{equation}
Write Λ_0 for the classes of S parametrized by $p \cdot \Gamma_0$. For each $\beta \in \Gamma_0$, we choose a representative $s_\beta \in S$ in the class of Λ_0 labelled by $p \cdot \beta$ with support in $\{n - p|\beta| + 1, \ldots, n\}$. Then $G_{s_\beta} = \mathfrak{S}_{n-p|\beta|} \subseteq C_{\mathfrak{S}_n}(s)$. Denote by $\text{Irr}(B_\gamma(\mathfrak{S}_{n-p|\beta|}))$ the set of irreducible characters of $\mathfrak{S}_{n-p|\beta|}$ labelled by partitions with p-core γ, and
define \(r^\beta : \mathbb{C} \text{Irr}(B_\gamma) \rightarrow \mathbb{C} \text{Irr}(B_\gamma(\mathfrak{S}_{n-p[\beta]})) \) by applying [11, 2.4.7] to the cycles of \(p \cdot \beta \). Then \(\mathfrak{S}_n \) has an MN-structure with respect to \(C \) and \(B_\gamma \) in the sense of Definition 2.5.

Now, write \(S' \) (respectively \(C' \)) for the set of elements of \(G_{p,w} \) with cycle structure \((\pi_1, \ldots, \pi_p) \in \mathcal{M}_p \mathcal{P}_{p,b} \) for some \(b \leq w \), such that \(\pi_1 = \cdots = \pi_{p-1} = \emptyset \) (respectively \(\pi_p = \emptyset \)). In particular, the classes of \(S' \) are also parametrized by \(\Gamma_0 \). Let \(s'_\beta \in S' \) be with cycle structure \((\emptyset, \ldots, \emptyset, \beta) \) for \(\beta \in \Gamma_0 \). Assume that the support of \(s'_\beta \) is \(\{ w - |\beta| + 1, \ldots, w \} \). Then \(G_{p,w-[\beta]} \) lies in \(\text{C}_{G_{p,w}}(s) \), and we define \(r^\beta : \mathbb{C} \text{Irr}(G_{p,w}) \rightarrow \mathbb{C} \text{Irr}(G_{p,w-[\beta]}) \) by applying [23, Theorem 4.4] to the cycles of \(\beta \). Then \(G_{p,w} \) has an MN-structure with respect to \(C' \) and \(\text{Irr}(G_{p,w}) \).

Let \(q = pa \). Define the set \(M_\alpha(\lambda^{(p)}) \) of \(p \)-multipartitions of \(w - a \) obtained from \(\lambda^{(p)} \) by removing an \(a \)-hook. Recall that the canonical bijection \(f \) (defined in [11, Proposition 3.1]) induces a bijection \(M_q(\lambda) \rightarrow M_a(\lambda^{(p)}) \), \(\mu \mapsto \mu^{(p)} \). Write

\[
\tilde{\theta}_{\lambda^{(p)}} = (-1)^{|\lambda^{(p)}|} \theta_{\lambda^{(p)}},
\]

and assume \(\beta = (\beta_1) \). Then

\[
(71) \quad r^\beta (\tilde{\theta}_{\lambda^{(p)}}) = \sum_{\mu \in M_{p[\beta_1]}(\lambda)} \alpha^{\lambda}_{\mu} \tilde{\theta}_{\mu^{(p)}},
\]

where \(\alpha^{\lambda}_{\mu} = (-1)^{L(f(\gamma))} \). See the proof of [9, Proposition 3.8] for more details. For multiples \(q_1, \ldots, q_k \) of \(p \), define inductively the set \(M_{q_1, \ldots, q_k}(\lambda) \) of partitions \(\mu \) of \(n - \sum q_i \) such that \(\mu \in M_{q_1}(\nu) \) for some \(\nu \in M_{q_1, \ldots, q_{i-1}}(\nu) \). Let \(\beta = (\beta_1 \geq \cdots \geq \beta_k) \in \Gamma_0 \). Applying recursively formula (71) to the cycles of \(\beta \), we obtain

\[
(72) \quad r^\beta (\tilde{\theta}_{\lambda^{(p)}}) = \sum_{\mu \in M_{p[\beta_1, \ldots, p[\beta_k]]}(\lambda)} a'_{\lambda^{(p)}}(\mu) \tilde{\theta}_{\mu^{(p)}}.
\]

Similarly, the Murnaghan-Nakayama rule in \(\mathfrak{S}_n \) gives

\[
(73) \quad r^\beta (\chi_{\lambda}) = \sum_{\mu \in M_{p[\beta_1, \ldots, p[\beta_k]]}(\lambda)} a(\lambda, \mu) \chi_{\mu},
\]

Now, with the above notation, Equation (26) gives \(\alpha^{\lambda}_{\mu} = \delta_p(\lambda) \delta_p(\mu) \alpha^{\lambda}_{\mu} \), and by the same argument as in the proof of Theorem 3.9 we obtain

\[
a(\lambda, \mu) = \delta_p(\lambda) \delta_p(\mu) a'(\lambda, \mu).
\]

It follows that

\[
r^\beta (I(\chi_{\lambda})) = \delta_p(\lambda) \sum_{\mu} a'(\lambda, \mu) \tilde{\theta}_{\mu^{(p)}},
\]

\[
= \sum_{\mu} \delta_p(\lambda) \delta_p(\mu) a'(\lambda, \mu) \tilde{\theta}_{\mu^{(p)}},
\]

\[
= \sum_{\mu} a(\lambda, \mu) I(\chi_{\mu}),
\]

\[
= I \left(r^\beta (\chi_{\lambda}) \right).
\]

The result now follows from Corollary 2.16. \(\square \)

Corollary 5.2. Assume furthermore that \(p > w \). Then the isometry defined in Theorem 2.7 is a Broué isometry. In particular, Broué perfect isometry conjecture holds for symmetric groups.
Proof. We apply Theorem 2.19.

5.3. Osima’s perfect isometry. Using Theorem 2.19, we can also prove the following well-known result (see [14, Proposition 5.11]).

Theorem 5.3. Let \(n \) be an integer and \(p \leq n \) be a prime. Let \(B \) be a \(p \)-block of \(\mathfrak{S}_n \), labelled by the \(p \)-core \(\gamma \). Assume that \(B \) has weight \(w \). Then the map defined by

\[
I(\chi_\lambda) = \delta_p(\lambda)\theta_\lambda(p)
\]

between \(B \) and \(\text{Irr}(\mathbb{Z}_p \wr \mathfrak{S}_n) \) induces a generalized perfect isometry with respect to the \(p \)-regular elements of \(\mathfrak{S}_n \) and the set of elements \(x \in \mathbb{Z}_p \wr \mathfrak{S}_n \) with cycle structure \(g(x) \) satisfying \(g(x) = \emptyset \) (here, the first coordinate of \(g(x) \) correspond to the trivial class).

Proof. The proof is analogue to that of Theorem 5.1.

5.4. Isometries between blocks of wreath products. In this section, we fix a positive integer \(l \) and a prime number \(p \) such that \(p \) does not divide \(l \), and we consider the groups \(G_n = \mathbb{Z}_l \wr \mathfrak{S}_n \), where \(n \) is any positive integer. Write \(\mathbb{Z}_l = \{\zeta_1, \zeta_2, \ldots, \zeta_l\} \) and \(\text{Irr}(\mathbb{Z}_l) = \{\psi_1, \ldots, \psi_l\} \).

Following [22, Theorem 1], we recall that two irreducible characters \(\theta_\mu \) and \(\theta_\mu' \) corresponding to \(\mu = (\mu_1, \ldots, \mu_l) \) and \(\mu' = (\mu'_1, \ldots, \mu'_l) \) of \(G_n \) lie in the same \(p \)-blocks \(B \) if and only if, for every \(1 \leq i \leq l \), the partitions \(\mu_i \) and \(\mu'_i \) have the same \(p \)-core \(\gamma_i \) and same \(p \)-weight \(b_i \). The tuple \(b = (b_1, \ldots, b_l) \) (respectively \(\gamma = (\gamma_1, \ldots, \gamma_l) \)) is called the \(p \)-weight of \(B \) (respectively the \(p \)-core of \(B \)). We denote by \(\mathcal{E}_{\gamma,b} \) the set of \(l \)-multipartitions \(\mu = (\mu_1, \ldots, \mu_l) \) such that \((\mu_i)_p = \gamma_i \) and the \(p \)-weight of \(\mu_i \) is \(b_i \).

Theorem 5.4. Let \(n \) and \(m \) be any two positive integer. As above, we write \(\text{Irr}(G_n) = \{\theta_\mu; \mu \vdash n\} \) and \(\text{Irr}(G_m) = \{\theta_\mu; \mu \vdash m\} \) for the sets of irreducible characters of \(G_n \) and \(G_m \). Let \(B \) and \(B' \) be two \(p \)-blocks of \(G_n \) and \(G_m \), with \(p \)-cores \(\gamma = (\gamma_1, \ldots, \gamma_l) \) and \(\gamma' = (\gamma'_1, \ldots, \gamma'_l) \) respectively. Assume that \(B \) and \(B' \) have the same \(p \)-weight \(b = (b_1, \ldots, b_l) \). Define

\[
I(\theta_\mu) = \left(\prod_{i=1}^{l} \delta_p(\mu_i)\delta_p(\psi(\mu_i)) \right) \theta_\psi(\mu),
\]

where \(\psi \) is the map defined before Lemma 7.4, \(\psi(\mu) = (\Psi(\mu_1), \ldots, \Psi(\mu_l)) \), and \(\delta_p(\mu_i) \) is the \(p \)-sign of \(\mu_i \). Then \(I \) induces a Broué perfect isometry between \(B \) and \(B' \).

Proof. First, we notice that \(\mathcal{E}(\mathcal{E}_{\gamma,b}) = \mathcal{E}_{\gamma',b} \). Let \(\mathcal{D}_p \) denote the set of partitions all of whose parts are divisible by \(p \). Let \(g = (g_1, \ldots, g_n; \sigma) \in G_n \) be such that \(s(g) = (\pi_1, \ldots, \pi_t) \). Then we can write uniquely

\[
g = \prod_{i=1}^{l} \prod_{j=1}^{\ell(\pi_i)} g_{ij},
\]

where \(g_{ij} = (g_{ij,1}, \ldots, g_{ij,n}; \sigma_{ij}) \) is such that \(g_{ij,k} = g_{\sigma_{ij}^{-1}(k)} \) and \(\prod_{k \in \text{supp}(\sigma_{ij})} g_{ij,k} = \zeta_i \). Since the elements \(g_{ij} \) commute, if we define \(g_S \) (respectively \(g_C \)) as the product of all \(g_{ij} \) such that \(\sigma_{ij} \) has order divisible by \(p \) (respectively is prime to \(p \)), then

\[
g = g_S g_C = g_C g_S.
\]
Denote by S (respectively C) the set of elements g_S (respectively g_C) appearing in this way. We remark that C is the set of p-regular elements of G_n. For $g \in G_n$, write $g_p(g)$ for the p-multipartition in which the parts of $g_p(g)$ are the parts divisible by p of $s(g)$ for all $1 \leq i \leq l$. Let Λ be the set of l-multipartitions (π_1, \ldots, π_l) such that $\pi_i \in D_p$ and $\sum |\pi_i| \leq n$. Then Λ labels the G_n-classes of S. For any $\pi = (\pi_1, \ldots, \pi_l) \in \Lambda$, we denote by $g_\pi \in G_n$ a representative of the class labelled by π with support $\{n - \sum |\pi_i| + 1, \ldots, n\}$, and write $G_\pi = G_{n-\sum |\pi_i|}$. With the notation of Equation (74), we assume that $g_{l \pi}$ has support descreasing. In particular, the support of $g_{l \pi}$ is $\{n - \sum |\pi_i| + 1, n\}$.

Example 5.5. For example, assume that $l = 3$ and $n = 6$. Write $\zeta_1 = 1$ and consider $\pi = ((1, 1), (1), (3))$. Then the element

$$t_\pi = (1, 1, \zeta_2, \zeta_3, 1, 1; (4, 5, 6))$$

is a possible representative for the class of $\mathbb{Z}_3 \wr S_6$ labelled by π. With the notation of Equation (74), we have $g_{1,1} = (1, 1, 1, 1, 1; (1))$, $g_{1,2} = (1, 1, 1, 1, 1; (2))$, $g_{2,1} = (1, 1, \zeta_2, 1, 1, 1; (3))$ and $g_{3,1} = (1, 1, 1, \zeta_3, 1, 1; (4, 5, 6))$.

Thus, for all $x \in G_{n-\sum |\pi_i|}$ and $\mu \in \mathcal{E}_{\gamma,b}$, [23, Theorem 4.44] gives

$$\theta_\mu(g_{l \pi}x) = \sum_{s=1}^l \psi_s(\zeta_i) \sum_{\nu \in M_{l,i}(\pi_i)} (-1)^{L(\psi_\nu)} \theta_{\mu_s}(x),$$

where the parts in μ_s are the same as those in μ, except the s-th one which is equal to ν. Applying iteratively this process to the cycles of π, we define a linear map $r^\pi : \mathbb{C} \text{Irr}(B) \to \mathbb{C} \text{Irr}(B_{n-\sum |\pi_i|})$, where $B_{n-\sum |\pi_i|}$ denotes the union p-blocks of $G_{n-\sum |\pi_i|}$ with p-core γ and p-weight (a_1, \ldots, a_l) such that $0 \leq a_i \leq b_i$ and $\sum a_i = \sum |\pi_i|$. In particular, we have $r^\pi(\theta_\mu) = \theta_{\mu}(g_{\pi}x)$ for all $x \in G_{n-\sum |\pi_i|}$. This defines an MN-structure for G_n with respect to C and B.

Similarly, we define an MN-structure for G_m with respect to B' and the set of p-regular elements of G_m. Now, write $w = \sum b_k$, and denote by Λ_0 the set of $\pi \in \Lambda$ such that $\sum |\pi_i| \leq w$. By [23, Theorem 4.4], we have $r^\pi(\theta_\mu) = r^\pi(\theta_{\pi(\mu)}) = 0$ for every $\mu \in \mathcal{E}_{\gamma,b}$ and $\pi \in \Lambda_0 \setminus \Lambda_0$.

Let $\pi \in \Lambda_0$ and c be a part of π_c of length k. Then, by [23, Theorem 4.4] (see also Equation (75)), we have

$$r^c(I(\theta_\mu)) = \prod_{i=1}^l \delta_p(\mu_i) \delta_p(\psi(\mu_i)) \sum_{s=1}^l \psi_s(\zeta_i) \sum_{\nu \in M_k(\mu_s)} (-1)^{L(\psi_\nu)} \theta_{\psi(\mu_s)}$$

$$= \sum_{s=1}^l \psi_s(\zeta_i) \sum_{\nu \in M_k(\mu_s)} \delta_p(\nu) \psi(\nu) I(\theta_{\mu_s})$$

$$= \sum_{s=1}^l \psi_s(\zeta_i) \sum_{\nu \in M_k(\mu_s)} (-1)^{L(\psi_\nu)} I(\theta_{\mu_s})$$

$$= I(r^c(\theta_{\mu_s})).$$

Using the argument of the proof of Theorem 3.3 (see Equations (28), (29) and (30)), we conclude that $r^\pi(I(\theta_\mu)) = I(r^\pi(\theta_\mu))$ for all $\pi \in \Lambda_0$ and $\mu \in \mathcal{E}_{\gamma,b}$.

Hence, the hypotheses of Theorem (2.19) are satisfied, and the result holds.
Corollary 5.6. Let W_1 and W_2 be Coxeter groups of type B. Assume that p is odd. Then two p-blocks of W_1 and W_2 with the same p-weight are perfectly isometric (in the sense of Broué).

Proof. This is a direct consequence of Theorem 5.4 noting that a Coxeter group of type B_n is isomorphic to $\mathbb{Z}_2 \wr S_n$. □

5.5. Isometries between blocks of Weyl groups of type D. Let n be a positive integer and let W be a Weyl group of type B_n. We keep the notation of 5.3. We consider the linear character $\alpha = \theta(0, n) \in \text{Irr}(W)$, and denote by W' its kernel. Then W' is a Weyl group of type D_n, and one has that $g \in W$ belongs to W' if and only if its cycle structure is $\ell = (\pi_1, \pi_2)$ is such that $\ell(\pi_2)$ is even. Furthermore, the W'-class of such an element splits into two W'-classes if and only if $\pi_2 = \emptyset$ and π_1 has only parts of even length (i.e. if $\pi_1 = 2 \cdot \pi$ for some partition π of $n/2$). We fix representatives $t^{\pm}((2, \pi, 0))$ for the W'-classes whose elements have cycle structure $(2 \cdot \pi, 0)$ as follows. When each part of π is divisible by p, we assume that, in the writing of Equation (74), $t^{+}((2, \pi, 0))$ and $t^{-}((2, \pi, 0))$ differ only on the first part. Otherwise, there is at least a part of π which is prime to p, and we assume that the two representatives differ only on the corresponding part in the writing of Equation (74). For every 2-multipartition (μ_1, μ_2), one has $\alpha = \theta(\mu_1, \mu_2) = \theta(\mu_2, \mu_1)$ by Clifford theory, if $\mu_1 \neq \mu_2$, then $\chi_{\mu_1, \mu_2} = \text{Res}_{W'}^{W}(\theta(\mu_1, \mu_2)) = \text{Res}_{W'}^{W}(\theta(\mu_2, \mu_1))$ is irreducible. If $\mu = \mu_1 = \mu_2$, then $\text{Res}_{W'}^{W}(\theta(\mu, \mu))$ splits into two irreducible characters $\chi_{\mu, \mu}^{+}$ and $\chi_{\mu, \mu}^{-}$ of W', which we can label so that (see [23, Theorem 5.1])

\[
\chi_{\mu, \mu}^{\epsilon}(g^{\delta}((2, \pi, 0))) = \frac{1}{2} \left(\theta_{\mu, \mu}(g^{(2, \pi, 0)}) + \epsilon \delta 2^\ell(\pi) \chi_{\mu}(\pi) \right),
\]

where $\delta, \epsilon \in \{1, -1\}$ and χ_{μ} is the character of the symmetric group $S_{n/2}$ corresponding to μ.

Let p be an odd prime. The p-blocks of W' can be described as follows. Let B_{γ_1, γ_2} be a p-block of W labelled by the p-cores γ_1 and γ_2, and let $b = (b_1, b_2)$ be its p-weight; see 5.3. If $b \neq (0, 0)$ or $\gamma_1 \neq \gamma_2$, then B_{γ_1, γ_2} contains characters that are not self-conjugate. By [19, Theorem 9.2], B_{γ_1, γ_2} covers a unique p-block b_{γ_1, γ_2} of W'. Furthermore, when $\gamma_1 \neq \gamma_2$, B_{γ_1, γ_2} and B_{γ_2, γ_1} contain no self-conjugate character, and $b_{\gamma_1, \gamma_2} = b_{\gamma_2, \gamma_1}$ consists of the restrictions to W' of the irreducible characters lying in B_{γ_1, γ_2} and B_{γ_2, γ_1}. If $b = (0, 0)$, then $B_{\gamma_1, \gamma_2} = \{\theta(\gamma_1, \gamma_2)\}$ has defect zero. If $\gamma := \gamma_1 = \gamma_2$, then $b_{\gamma}^+ = \{\chi_{\gamma, \gamma}^+\}$ and $b_{\gamma}^- = \{\chi_{\gamma, \gamma}^-\}$ are two distinct p-blocks of W' with defect zero, except when $n = 0$. In this last case, $W = W' = \{1\}$ and $\theta(0, 0) = \chi_{0, 0}^+ = \chi_{0, 0}^- = 1\{1\}$.

Theorem 5.7. Assume p is odd. Let W'_1 and W'_2 be Coxeter groups of type D. Let b_{γ_1, γ_2} and $b_{\gamma', \gamma'}$ be p-blocks of W'_1 and W'_2 with the same p-weight (b, b). Then the isometry defined by

\[
I(\chi_{\mu_1, \mu_2}) = \left(\prod_{i=1}^{2} \delta_p(\mu_i) \delta_p(\Psi(\mu_i)) \right) \chi_{\Psi(\mu_1), \Psi(\mu_2)}^{\epsilon(\Psi(\mu_1)) \delta_p(\Psi(\mu_1))}
\]

and $I(\chi_{\mu, \mu}) = \chi_{\Psi(\mu), \Psi(\mu)}^{\epsilon(\Psi(\mu)) \delta_p(\Psi(\mu))}$, where the notation is as above, is a Broué perfect isometry between b_{γ_1, γ_2} and $b_{\gamma', \gamma'}$.

Proof. Assume that W'_1 and W'_2 are of type D_n and D_m, respectively. We denote by S and C the intersections of W'_1 with the sets S and C defined in the proof
of Theorem 5.4, and we write Ω (respectively Ω₀) for the set of bipartitions \(\pi = (\pi_1, \pi_2) \) with \(\pi_1, \pi_2 \in D_p \) and \(\ell(\pi_2) \) even, such that \(|\pi_1| + |\pi_2| \leq n \) (respectively \(|\pi_1| + |\pi_2| \leq 2b \)). When \(n \) is not a multiple of \(2p \), the set \(\Omega \) labels the set \(\Lambda_0 \) of \(W_1 \)-classes of \(S \). Otherwise, there are in \(\Omega_0 \) elements \(\pi \) that parametrize two \(W_1 \)-classes \(\pi^+ \) and \(\pi^- \). Such elements are the bipartitions \(\pi = (2 \cdot \pi, \emptyset) \in \Omega_0 \) with \(2|\pi| = n \). We denote by \(t^+_\pi \) and \(t^-_\pi \) representatives of the classes labelled by \(\pi^+ \) and \(\pi^- \), where we make the same choice as above. In the last case, the elements of \(\Lambda_0 \) are denoted by \(\hat{\pi} \) with \(\hat{\pi} = \pi \) when \(\pi \in \Omega_0 \) labels one class, and \(\hat{\pi} \in \{ \pi^+, \pi^- \} \) otherwise. Moreover, for \(\pi \in \Omega_0 \), we write \(G_{t_\pi} = D_{n-|\pi_1|+|\pi_2|} \).

Let \(\pi = (2 \cdot \pi, \emptyset) \in \Omega_0 \), and \(\mu \) be a partition of \(n/2 \). Write \(\Delta_\mu = \chi^+_{\mu, \mu} - \chi^-_{\mu, \mu} \). Therefore, Equation (77) gives

(78) \[\Delta_\mu(g_{1t(\pi)}x) = 2 \sum_{\nu \in M_{1t(\pi)}(\mu)} (-1)^{\ell(\nu)} \Delta_\nu(x), \]

for all \(x \in D_{n-|\pi_1|+|\pi_2|} \). Define \(r^\pi(\Delta_\mu)(x) = \Delta(t_\pi x) \) for all \(x \in G_{t_\pi} \). Applying iteratively Equation (78), we obtain

(79) \[r^\pi(\Delta_\mu) = 2\ell(\pi) \sum_\nu a(\mu, \nu) \Delta_\nu, \]

where the coefficients are those appearing in Equation (79).

Now, for \(\mu = (\mu_1, \mu_2) \in \mathcal{E}(\gamma, \gamma), (b, b) \) with \(\mu_1 \neq \mu_2 \), we define \(r^\pi(\chi_{\mu_1, \mu_2}) \) to be the restriction to \(W'_1 \) of \(r^\pi(\theta(\mu_1, \mu_2)) \), where \(r^\pi \) is the map defined in the proof of Theorem 5.4. For \(\mu = (\mu_1, \mu_2) \in \mathcal{E}(\gamma, \gamma), (b, b) \), define

(80) \[r^\pi(\chi_{\mu_1, \mu_2}) = \frac{1}{2} \left(\mathrm{Res}_{W'_1} r^\pi(\theta(\mu_1, \mu_2)) + r^\pi(\Delta_\mu) \right). \]

It is then straightforward to show that, if \(b_{\gamma, \gamma}(n-|\pi_1|+|\pi_2|) \) denotes the union of the \(p \)-blocks of \(G_{n-|\pi_1|-|\pi_2|} \) with \(p \)-core \((\gamma, \gamma) \) and \(p \)-weights \((b_1, b_2) \) such that \(0 \leq b_1 \leq b \) and \(b_1 + b_2 = |\pi_1| + |\pi_2| \), then the map \(r^\pi : \mathbb{C} \operatorname{Irr}(b_{\gamma, \gamma}) \to \mathbb{C} \operatorname{Irr}(b_{\gamma, \gamma}(n-|\pi_1|+|\pi_2|)) \) defines an MN-structure for \(W'_1 \) with respect to the set of \(p \)-regular elements and \(b_{\gamma, \gamma} \). Similarly, we define an MN-structure for \(W'_2 \) with respect to the set of \(p \)-regular elements of \(W_2 \) and \(b_{\gamma, \gamma} \). As we showed in the proof of Theorem 5.4, if \(\mu_1 \neq \mu_2 \) and \(I \) is defined on \(\operatorname{Irr}(b_{\gamma, \gamma}(n-|\pi_1|+|\pi_2|)) \) by the same formula, then we have

(81) \[I \left(r^\pi(\chi_{\mu_1, \mu_2}) \right) = r^\pi(\Delta_\mu). \]

Let now \(\pi = (2\pi, \emptyset) \) with \(p \)-core \(\gamma \), one has

(82) \[\Delta_\mu = \delta_p(\mu) \delta_p(\Psi(\mu)) \left(\chi^+_{\mu, \mu} - \chi^-_{\mu, \mu} \right) \]

In particular,

(83) \[I(\Delta_\mu) = \delta_p(\mu) \delta_p(\Psi(\mu)) \Delta_\mu. \]

Therefore, we deduce from the fact that \(I(\theta(\mu_1, \mu_2)) = \theta(\Psi(\mu_1), \Psi(\mu_2)) \) and Equations (80), (77), (26) and (20) that

(84) \[I \left(r^\pi(\chi^+_{\mu, \mu}) \right) = r^\pi(\Delta_\mu). \]

Assume first that \(|\Lambda_0| = |\Lambda'_0| \). Then Equations (83) and (84) hold and we derive from Theorem 2.19 that \(I \) is a Broué perfect isometry.
Assume, on the other hand, that $|\Lambda_0| > |\Lambda'_0|$. In particular, n is divisible by $2p$, and $\Lambda'_0 = \Omega_0$. Let $\pi \in \Omega_0$ be such that $\tilde{\pi} = \pi$. If we define I_π on $G_{\tilde{\pi}}$ in the same way as I, then by Equations (81) and (83), we have $I_{\tilde{\pi}} \circ r_{\pi} = r_{\tilde{\pi}} \circ I$. Let now $\pi = (2 \cdot \pi, \emptyset)$ be such that $2|\pi| = n$. Then $\tilde{\pi} \in \{\pi^+, \pi^\gamma\}$, and $G_{\tilde{\pi}^+}$ and $G_{\tilde{\pi}^-}$ are two copies of the trivial group. We set $\text{Irr}(G_{\tilde{\pi}^+}) = \{1_{\pi^+}\}$ and $\text{Irr}(G_{\tilde{\pi}^-}) = \{1_{\pi^-}\}$. Furthermore, $\text{Irr}(b_{\gamma', \gamma'}(m - n)) = \{\chi_{\gamma', \gamma'}, \xi_{\gamma', \gamma'}\}$. We define $I_\pi : \mathbb{C}\text{Irr}(G_{\tilde{\pi}^+}) \oplus \mathbb{C}\text{Irr}(G_{\tilde{\pi}^-}) \to \mathbb{C}\text{Irr}(b_{\gamma', \gamma'}(m - n))$ by setting $I_\pi(1_{\pi^+}) = \chi_{\gamma', \gamma'}^\delta$. Note that

$$
(84) \quad r_{\pi}^\pi(\chi_{\mu, \mu}^\pi) = \chi_{\mu, \mu}(t_{\pi}^\pi)1_{\pi^\pi} = \frac{1}{2}(\theta_{(\mu, \mu)}(t_{\pi}^\pi) + \epsilon 2^{\ell(\pi)}a(\mu, \gamma))1_{\pi^\pi}.
$$

Moreover, because of Equation (79), one has

$$
r_{\pi}^\pi(\delta_{\mu}(\psi(\mu)\Delta_{\psi(\mu)}) = 2^{\ell(\pi)}\delta_{\mu}(\psi(\mu))a(\psi(\mu), \gamma')\Delta_{\gamma'} = 2^{\ell(\pi)}a(\mu, \gamma)\Delta_{\gamma'},
$$

because $\delta_{\mu}(\gamma) = \delta_{\mu}(\gamma') = 1$. Since $r_{\pi}(\theta_{\mu, \mu}) = \theta_{\mu, \mu}(\pi)1_{\{1\}}$ and $I(r_{\pi}(\theta_{\mu, \mu})) = r_{\pi}(\theta_{\psi(\mu), \psi(\mu)})$, we obtain

$$
r_{\pi}(I(\chi_{\mu, \mu}^\pi)) = \left(\frac{1}{2}(\theta_{(\mu, \mu)}(t_{\pi}) + \epsilon 2^{\ell(\pi)}a(\mu, \gamma))\right)\chi_{\gamma', \gamma'}^\pi.
$$

When $\mu_1 \neq \mu_2$, a similar computation gives that $\chi_{\mu_1, \mu_2} = \chi_{\mu_1, \mu_2}(t_{\pi}^\pi)1_{\pi^\pi} + \epsilon 2^{\ell(\pi)}a(\mu, \gamma)\chi_{\gamma', \gamma'}^\pi$. Hence we have

$$
r_{\pi} \circ I = I_{\pi} \circ (r_{\pi^+} + r_{\pi^-}),
$$

and we conclude as in the proof of Theorem 3.9.

Theorem 5.8. Assume p is odd. Let W'_1 and W'_2 be Coxeter groups of type D. Assume that $\gamma_1 \neq \gamma_2$ and $\gamma'_1 \neq \gamma'_2$. If the p-blocks b_{γ_1, γ_2} and $b_{\gamma'_1, \gamma'_2}$ have the same p-weight, then they are perfectly isometric in the sense of Broué.

Proof. The isometry is the restriction to $\text{Irr}(b_{\gamma_1, \gamma_2})$ of that of Corollary 5.6.

5.6. Isometries between alternating groups and natural subgroups. It would be interesting to give an analogue of Osima’s perfect isometry between p-blocks of the alternating groups and the “alternating” subgroup of $\mathbb{Z}_p \wr S_w$. But such perfect isometries do not exist, as we can show in the following example.

Example 5.9. Consider the principal 3-block b of A_6. It contains 6 irreducible characters. Note that b is covered by the principal 3-block B of S_6 (which has 3-weight 2 and contains 9 irreducible characters). Let $G = \mathbb{Z}_3 \wr S_2$. Then G has 9 irreducible characters and by Theorem 5.3 B and G are perfectly isometric. Now, viewing G as a subgroup of S_6, we can restrict the sign character $\varepsilon : S_6 \to \{-1, 1\}$ to a linear character (also denoted by ε) of G, and we denote by H its kernel. Define the regular classes of H to be the classes whose elements have cycle structure $((\pi_1, \pi_3, \pi_3))$ with $\pi_1 = \emptyset$. There are 4 such classes (note that the regular elements of H are the products of 2 disjoint 3-cycles contained in H, when H is viewed as
a subgroup of \mathfrak{S}_b). Moreover, H has 9 irreducible characters that form a reg-block. In particular, b and $\text{Irr}(H)$ are not perfectly isometric.

However, when we replace $\mathbb{Z}_p \wr \mathfrak{S}_w$ by $G_{p,w}$ (see [8, Equation (4.1)] for the notation), we can show that the p-blocks of A_n are perfectly isometric with the “alternating” subgroup of $G_{p,w}$. In a way, we prove in this section an analogue of Osima’s isometries for the alternating groups.

Throughout, we keep the notation of [5,2] and view $G_{p,w}$ as a subgroup of \mathfrak{S}_{pw}. Moreover, we assume that p is odd, so that, in particular, $p^* = (p+1)/2$. Furthermore, we view $H = \mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}$ as the normalizer of some Sylow p-subgroup of \mathfrak{S}_p, and denote by ε_H the restriction of the sign character $\varepsilon_{\mathfrak{S}_p}$ to H. Note that only the irreducible character of degree $p-1$ of H is ε_H-stable. So we choose the labelling of $\text{Irr}(H) = \{\psi_1, \ldots, \psi_p\}$ so that $\psi_1 = \varepsilon_H$, $\psi_p = 1_H$, and $\psi_i = \psi_{p+1-i} \varepsilon_H$ for any $1 \leq i \leq p$ (in particular, $\psi_p(1) = p-1$). Recall that $\text{Irr}(G_{p,w})$ is labelled by $MP_{p,w}$, and, with the above choices, for every $\mu = (\mu_1, \ldots, \mu_p) \in MP_{p,w}$, we have (see [8, Proposition 4D])

$$\varepsilon \theta^* = \theta^*,$$

where ε again denotes the restriction of the sign character of \mathfrak{S}_{pw} to $G_{w,p}$, and $\mu^* = (\mu_1^*, \ldots, \mu_p^*)$ is as in Equation (20). Define the “alternating” subgroup of $G_{p,w}$ by setting

$$H_{p,w} = \ker(\varepsilon : G_{p,w} \to \{-1, 1\}).$$

Consider the set of partitions E (respectively OD) all of whose parts have even length (respectively whose parts are distinct and of odd length). We recall that (see for example [8, Lemma 4E]) the set

$$T = \{(\pi_1, \ldots, \pi_p) \in MP_{p,w} | \pi_{2i} = 0, \pi_{2i+1} \in E, \pi_p \in OD\}$$

labels the set of splitting classes of $G_{w,p}$ with respect to $H_{p,w}$.

Write \mathcal{S} for the set of $\mu \in MP_{p,w}$ such that $\mu^* = \mu$. Now, following [8], we define an explicit bijection $a : \mathcal{S} \rightarrow T$ as follows. Let $\mu = (\mu_1, \ldots, \mu_p) \in \mathcal{S}$. Then $\mu_{p+1-i} = \mu_i$ for all $1 \leq i \leq p$. In particular, $\mu_{p*i} = \mu_{p*}$. Write $\mu_i = \prod_j j^{p_j}$ for $1 \leq i \leq p^*$, and define $a(\mu) := (\pi_1, \ldots, \pi_p) \in T$ by setting $\pi_p = a(\mu_{p*})$, $\pi_{2i-1} = \prod_j (2j)^{p_j}$, and $\pi_{2i} = \emptyset$. Then a is a bijection. Indeed, if for $(\pi_1, \ldots, \pi_p) \in T$, we define $\nu = (\mu_1, \ldots, \mu_p)$ by setting $\nu_i = \prod_j j^{p_j}$ for $1 \leq i \leq p^*$, where $\pi_{2i-1} = \prod_j (2j)^{p_j}$, and $\mu_i = \mu_{p+1-i}$ for $p^* < i \leq p$, then the map $a(\pi_1, \ldots, \pi_p) \mapsto (\mu_1, \ldots, \mu_p)$ is the inverse map of a.

Lemma 5.10. The conjugacy class of $G_{p,w}$, labelled by $(\emptyset, \ldots, \emptyset, \beta) \in MP_{p,w}$ lies in $H_{p,w}$ if and only if β has an even number of even parts.

Proof. Because of [8, Equation (4.1)], for every $(h_1, \ldots, h_w; \sigma) \in G_{w,p}$ with $h_i \in H$ and $\sigma \in \mathfrak{S}_w$, we have

$$\varepsilon(h_1, \ldots, h_w; \sigma) = \varepsilon(\sigma) \prod_{i=1}^w \varepsilon(h_i).$$

Take for representative for the class of \mathfrak{S}_w labelled by β the element $\sigma_\beta = \sigma_1 \cdots \sigma_k$, where σ_i is a cycle of length $|\beta_i|$. Let $\{j_1, \ldots, j_{|\beta_i|}\}$ be the support of σ_i. Define $h_{j_1} = \omega$ and $h_{j_l} = 1$ for $2 \leq l \leq |\beta_i|$. If l doesn’t belong to the support of any β_i then put $h_l = 1$. Thus, the element $x_\beta = (h_1, \ldots, h_w; \sigma_\beta)$ is a representative for
the class of $G_{p,w}$ labelled by $(\emptyset, \ldots, \emptyset, \beta)$. By Equation \[(87),\] $\varepsilon(h_1, \ldots, h_w; \sigma) = 1$ if and only if $\varepsilon(\sigma) = 1$ (because $\varepsilon_H(\omega) = 1$), as required.

By Equation \[(85)\] and Clifford Theory, if $\mu \notin S$, then the restriction $\theta_\mu = \text{Res}_{H_{p,w}}(\theta_\mu) = \text{Res}_{H_{p,w}}(\theta_{\mu'})$ is irreducible. Otherwise, the restriction of θ_μ splits into a sum of two irreducible characters of $H_{p,w}$, denoted ϑ^+_μ and ϑ^-_μ.

Let $\mu = (\mu_1, \ldots, \mu_p) \in S$. In order to distinguish ϑ^+_μ and ϑ^-_μ, we need to introduce some notation. We associate to μ two multipartitions $\mu' \in \mathcal{MP}_{p,w-|\mu|^*}$ and $\mu'' \in \mathcal{MP}_{p,|\mu|^*}$ by setting

$$\mu' = (\mu_1, \ldots, \mu_{(p-1)/2}, 0, \mu_{(p+3)/2}, \ldots, \mu_p) \quad \text{and} \quad \mu'' = (\emptyset, \ldots, 0, \mu_p^*, \emptyset, \ldots, \emptyset).$$

Moreover, to μ' and μ'', we associate subgroups as follows. Write $E_{\mu'}' = \{1, \ldots, n - |\mu_p^*|\}$ and $E_{\mu''}' = \{n - |\mu_p^*| + 1, \ldots, n\}$, and define $G_{\mu'} = H \wr \Sigma(E_{\mu'})$ and $G_{\mu''} = H \wr \Sigma(E_{\mu''})$. Note that μ' and μ'' are self-conjugate.

In particular, by \[(5.1)\] μ' and μ'' label split irreducible characters $\vartheta_{\mu'}$ and $\vartheta_{\mu''}$ of $G_{\mu'}$ and $G_{\mu''}$ respectively.

Since μ' is self-conjugate, $a(\mu'')$ is a splitting class of $G_{\mu''}$, and thus labels two classes $a(\mu'')^\pm$ of $H_{\mu''} = \ker(\varepsilon_{G_{\mu''}})$. Now, we make the same choices for the labelling for the irreducible characters $\vartheta_{\mu'}$ and for the classes $a(\mu'')^\pm$ of $H_{\mu''}$ as in \[(5)\] Proposition 4F. Then

\[(88)\] \[
(\vartheta^+_\mu - \vartheta^-_\mu)(g) = \epsilon(\sqrt{\epsilon_p}, \sqrt{\epsilon_p})^{d} \frac{\varepsilon_{\mu_p^*} \text{ph}(\mu_p^*)}{f} \quad \text{for} \quad g \in a(\mu'')^\pm,
\]

where $\epsilon \in \{-1\}$, $\epsilon_p = (-1)^{(p-1)/2}$, d is the number of parts of $a(\mu_p^*)$, $\epsilon_{\mu_p^*} = (-1)^{|\mu_p^*|-d}/2$, and $\text{ph}(\mu_p^*)$ denotes the product of the lengths of the parts of $a(\mu_p^*)$.

Furthermore, fix any labelling for the irreducible characters $\vartheta_{\mu'}^\pm$, of $H_{\mu'} = \ker(\varepsilon_{G_{\mu'}})$ (which automatically gives a labelling for the classes $a(\mu')^\pm$). Labellings for μ' and μ'' being fixed as above, we can assume that the characters $\vartheta_{\mu'}^\pm$ are parametrized as in \[(5)\] Proposition 4H(ii)], and we always make this choice in the following. We can now show the following crucial result.

Lemma 5.11. Let $\mu \in \mathcal{MP}_{p,w}$ be such that $\mu = \mu^*$. Let $x \in G_{p,w}$. Assume that x has cycle structure $(\emptyset, \ldots, \emptyset, c)$ with c a cycle of odd length. Write $q = p|c|$. If c is a cycle of $a(\mu_p^*)$, then for any $g \in H_{p,w-|c|}$, we have

\[(89)\] \[
(\vartheta^+_\mu - \vartheta^-_\mu)(xy) = \sqrt{(-1)^{(q-1)/2} \epsilon_{(\mu_p^*)}} \left(\vartheta^+_\mu - \vartheta^-_\mu\right)(x),
\]

where $(\mu_p^*)_i = \mu_p$ if $i \neq p^*$, and $(\mu_p^*)_p$ is obtained from μ_p^* by removing a hook of length c.

Proof. Note that $x \in H_{p,w}$ by Lemma \[(5.10)\] and that $\vartheta_{\mu_p}^\pm$ are irreducible characters of $H_{p,w-|c|}$. Write μ' and μ'' for the multipartitions associated to μ as above. By construction, there are $y \in H_{\mu'}$ and $z \in H_{\mu''}$ such that $g = yz = zy$. Note that $s(y)_p = 0$ and $xz = xz$. Then \[(5)\] Proposition 4H implies that

\[(90)\] \[
(\vartheta^+_\mu - \vartheta^-_\mu)(xy) = (\vartheta^+_\mu - \vartheta^-_\mu)(y) (\vartheta^+_\mu - \vartheta^-_\mu)(xz).
\]

First, suppose that $xz \in a(\mu''^*)$. One has

\[(91)\] \[
\epsilon_{\mu_p^*} = (-1)^{|c|-1}/2 \varepsilon_{(\mu_p^*)}, \quad \text{and} \quad \text{ph}(\mu_p^*) = |c| \text{ph}(\mu_p^*).
\]
Moreover, we have $\mu' = \mu$ and $H_\mu' = H_\mu$. In particular, $\hat{\vartheta}^+_{\mu'} = \hat{\vartheta}^+_{\mu}$ and $\hat{\vartheta}^-_{\mu'} = \hat{\vartheta}^-_{\mu}$. Since $o((\mu_\epsilon)_p)$ has $(d - 1)$ parts, Equations (88), (89) and (90) give

\[
(\hat{\vartheta}^+_{\mu} - \hat{\vartheta}^-_{\mu})(g, x) = \left(\hat{\vartheta}^+_{\mu'} - \hat{\vartheta}^-_{\mu'}\right)(y) \epsilon((\sqrt{p}d)^{d} d^{d} e_{\mu'} \epsilon_{\mu'} \epsilon_{\mu'}(y) \epsilon(p)((-1)^{(|c| - 1)/2} \epsilon((\sqrt{p}d)^{d} d^{d} e_{\mu'} \epsilon_{\mu'} \epsilon_{\mu'}))
\]

Furthermore,

\[
(-1)^{(p - 1)/2}((-1)^{|c| - 1}) = (-1)^{((-1)^{|c| - 1})} = (-1)^{|c| - 1} = \epsilon(-1)^{(p - 1)/2},
\]

because $|c|$ is odd.

Now, if $xz \notin a(\mu')$, then $z \notin a(\mu')$ and $(\hat{\vartheta}^+_{\mu} - \hat{\vartheta}^-_{\mu})(xz) = 0 = (\hat{\vartheta}^+_{\mu'} - \hat{\vartheta}^-_{\mu'})(z).$ Hence, by Equation (89),

\[
(\hat{\vartheta}^+_{\mu} - \hat{\vartheta}^-_{\mu})(gx) = 0 = (\hat{\vartheta}^+_{\mu'} - \hat{\vartheta}^-_{\mu'})(g).
\]

This proves the result.

For $\lambda \neq \lambda^*$ and $\mu \neq \mu^*$, we write $\rho^+_\lambda = \rho^-_\lambda = \rho_\lambda$ and $\hat{\vartheta}^+_\epsilon = \hat{\vartheta}^-_\epsilon = \hat{\vartheta}_\epsilon$. Furthermore, an element $h \in H_{p,w}$ is said regular if its cycle structure $s(h)$ satisfies $s(h)_p = 0$.

Theorem 5.12. Let p be an odd prime number. Let γ be a self-conjugate p-core of \mathfrak{S}_n of p-weight $w > 0$. Denote by b_γ the corresponding p-block of A_n. Then the linear map $I : \mathbb{C} \mathfrak{Irr}(b_\gamma) \to \mathbb{C} \mathfrak{Irr}(H_{p,w})$ defined, for $\epsilon \in \{\pm 1\}$ and λ with p-core γ, by

\[
I(\rho^*_\lambda) = (-1)^{|\lambda^*|} \delta(p)(\lambda) \hat{\vartheta}^*_{\lambda^*}(\lambda),
\]

where the notation is as in Theorem 5.7, is a generalized perfect isometry with respect to the p-regular elements of A_n and the regular elements of $H_{p,w}$ (defined as above).

Proof. First, we consider the case $n = pw$. Let S and C be the sets that define an MN-structure for the principal p-block of A_{pw} with respect to the set of p-regular elements of A_{pw} (see the proof of Theorem 3.9). Write S' and C' as in the proof of Theorem 3.9 (but for elements of $H_{p,w}$), and denote by Ω^0 the set of cycle structures of elements of S'. By Lemma 5.10 if $(0, \ldots, 0, \beta) \in \Omega^0$, then the partition β has an even number of even parts. In particular, we have $(0, \ldots, 0, \beta) \in \Omega^0$ if and only if $p \cdot \beta \in \Omega^0$, where Ω^0 is the set defined in the proof of Theorem 3.9. Moreover, by Equation (90), a cycle structure $(0, \ldots, 0, \beta) \in \Omega^0$ labels two classes of $H_{p,w}$ if and only if $\beta \in \mathcal{OD}$. The labels for these classes are denoted $(0, \ldots, 0, \beta^\pm)$. Write Λ^0 for the set of labels parametrizing the $H_{p,w}$-classes of S'. For $\beta = (0, \ldots, 0, \beta) \in \Lambda^0$ with $\beta \in \{\beta, \beta^+, \beta^-\}$, we assume that the representative $s'_\beta = (h_1, \ldots, h_{pw}, \sigma^*_{\beta})$ of the $H_{p,w}$-class labelled by β is such that σ^*_{β} has support $\{w - |\beta| + 1, \ldots, w\}$. More precisely, if $\sigma^*_{\beta} = \sigma_{\beta_1}^* \cdots \sigma_{\beta_n}^*$ is the cycle decomposition of σ^*_{β}, then the support of
\(\sigma'_{\beta_i} \) is \(\{ w + 1 - \sum_{k=1}^{i} \beta_k, w - \sum_{k=1}^{i-1} \beta_k \} \). Moreover, if \(\widehat{\beta} = \beta^\pm \), then we suppose that \(\sigma'_{\beta_i^+} = \sigma'_{\beta_i^-} \) for \(1 \leq i \leq r - 1 \), and \(\sigma'_{\beta_r^+} \) and \(\sigma'_{\beta_r^-} \) are representatives of the \(A_{\beta^r} \)-classes parametrized by \(\beta_r^+ \) and \(\beta_r^- \). Hence, if we set \(G_\widehat{\beta} = H_{p,w-|\widehat{\beta}|} \), then \(G_\widehat{\beta} \) satisfies Definition 5.3.4.

Now, for every partition \(\lambda \) of \(pw \) with trivial \(p \)-core, and any \(\epsilon \in \{-1,1\} \), we define

\[
\overline{\varphi}_{\lambda}^\epsilon = (-1)^{\beta_0^\epsilon} \varphi_{\lambda}^\epsilon.
\]

Let \(\beta = (\beta_1, \ldots, \beta_r) \) and \(\widehat{\beta} = (0, \ldots, 0, \widehat{\beta}) \in A_{\beta^r} \). Assume that \(\beta_1 \) is odd. Then \(s'_{\beta_1} \in H_{p,w} \) and \((\overline{\varphi}_{\lambda}^+ - \overline{\varphi}_{\lambda}^-)(s'_{\beta_1} g) = 0 \) for \(g \in H_{p,w-|\beta_1|} \), except when \(\widehat{\beta} = \beta^\pm \) and \(\lambda = p \cdot \beta_0^\epsilon \) is the self-conjugate partition such that \(\overline{\varphi}_0 = \beta \). In this last case, recall that the \(p \)-quotient of \(\lambda \) is \((0, \ldots, 0, \beta_0, 0, \ldots, 0)\), so that \(\overline{\lambda}(p) = \lambda(p) \). Moreover, if \(c_1 \) denotes the diagonal hook of \(\beta_0 \) of length \(\beta_1 \), then Lemma 5.11 gives

\[
\begin{align*}
&\left(\overline{\varphi}_{\lambda(p)}^+ - \overline{\varphi}_{\lambda(p)}^-
ight)(s'_{\beta_1} g) = (-1)^{|\beta_0^\epsilon|} \left(\overline{\varphi}_{\lambda(p)}^+ - \overline{\varphi}_{\lambda(p)}^-\right)(s'_{\beta_1} g) \\
&\quad = (-1)^{|\beta_0^\epsilon|}\left|c_1\right| \left(\overline{\varphi}_{\lambda(p)/(\{c_1\})}^+ - \overline{\varphi}_{\lambda(p)/(\{c_1\})}^-
ight)(g) \\
&\quad = \left(\overline{\varphi}_{\lambda(p)/(\{c_1\})}^+ - \overline{\varphi}_{\lambda(p)/(\{c_1\})}^-
ight)(g),
\end{align*}
\]

where \(\lambda(p)/(\{c_1\}) = (0, \ldots, 0, 0, \beta_0, 0, \ldots, 0) \). Therefore, Equations (71), (74), and Clifford theory give, for \(\epsilon \in \{-1,1\} \) and \(g \in A_{\beta^r-|\beta_1|} \),

\[
\begin{align*}
\overline{\varphi}_{\lambda}^\epsilon(s'_{\beta_1} g) &= \sum_{\mu \in \mathcal{M}_{\beta_1}(\lambda)} b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon)(\overline{\varphi}_{\mu(p)}(g)) + \sum_{\mu \in \mathcal{M}_{\beta_1}(\lambda)} \left(b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon)^{\overline{\varphi}^+_{\mu(p)}}(g) + b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon)^{\overline{\varphi}^-_{\mu(p)}}(g)\right),
\end{align*}
\]

where \(M_{\beta_1}(\lambda) \) is defined in §3.3 and the complex numbers \(b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon) \) satisfy the following.

- If \(\mu^\epsilon \neq \mu \) and \(\mu^* \neq \mu^* \), then \(b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon) = \alpha(\lambda)(\alpha_{\mu^\epsilon}^{\epsilon} + \alpha_{\mu^*}^*). \)
- If \(\mu^\epsilon \neq \mu \) and \(\mu^* \neq \mu^* \), then \(b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon) = \alpha(\lambda)\alpha_{\mu^\epsilon}^{\epsilon}. \)
- If \(\mu^* = \mu \) and \(\mu = \mu^* \), then \(b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon) = \alpha(\lambda)\alpha_{\mu^\epsilon}^{\epsilon}. \)
- If \(\mu^* = \mu \) and \(\mu = \mu^* \) (this occurs if and only if \(\widehat{\beta} = \beta^\pm \) and \(\lambda = p \cdot \beta_0 \)), then \(b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon) = \alpha(\lambda)\alpha_{\mu^\epsilon}^{\epsilon}. \)

Note that, as in the proof of Theorem 5.11, we use that \(f \) induces a bijection between \(M_{p\beta_1}(\lambda) \) and \(M_{\beta_1}(\lambda(p)). \)

Assume now that \(\beta_1 \) and \(\beta_2 \) are even. We denote by \(b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon) \) the hermitian product of the class function \(x \rightarrow \overline{\varphi}_{\lambda(p)}(\sigma'_{\beta_1}, \sigma'_{\beta_2} x) \) with \(\overline{\varphi}_{\mu(p)}^\epsilon(\rho_{\mu(p)}^\epsilon) \in \text{Irr}(H_{p,w-\beta_1-\beta_2}). \)

Then, applying Equation (74) twice and Clifford theory, we obtain an analogue of Theorem 5.5. For \(\mu \in M_{\beta_1,\beta_2}(\lambda) \), the coefficient \(b(\overline{\varphi}_{\lambda(p)}^\epsilon, \overline{\varphi}_{\mu(p)}^\epsilon) \) is obtained from \(a(\rho_{\lambda}^\epsilon, \rho_{\mu}^\epsilon) \) by replacing \(\alpha_{\mu^\epsilon}^\epsilon \) by \(\alpha_{\mu^\epsilon}^\epsilon \) and \(\alpha_{\mu^*}^\epsilon \) by \(\alpha_{\mu^*}^\epsilon \) respectively.

Now, if we suppose that \(\beta = (\beta_1, \ldots, \beta_k, \ldots, \beta_r) \) is such that \(\beta_i \) is odd for \(1 \leq i \leq k \) and \(\beta_i \) is even for \(k + 1 \leq i \leq r \) (so that \(r - k \) is even), then, applying iteratively
the above process, as in the proof of Theorem 3.9 and using the fact that the $\tilde{\Gamma}^{\lambda}_{\nu}(p)$ give a basis of $\mathbb{C}\text{Irr}(H_{p,w})$, we can define a linear map $r^{\tilde{\beta}}: \mathbb{C} H_{p,w} \to \mathbb{C} H_{p,w - |\beta|}$ such that $r^{\tilde{\beta}}(\chi)(x) = \chi(s^{\tilde{\beta}}x)$ for all $\chi \in \mathbb{C}\text{Irr}(H_{p,w})$ and $x \in H_{p,w - |\beta|}$. In particular, $\text{Irr}(H_{p,w})$ has an MN-structure in the sense of Definition 2.3 with respect to C'.

Let $\beta \in \Lambda_0$. We define $I^{\beta}_{\beta}: \mathbb{C}\text{Irr}(b_\gamma(n - p|\beta|)) \to \mathbb{C} H_{p,w - |\beta|}$, where $b_\gamma(n - p|\beta|)$ is defined in §3.2, by setting

$$I^{\beta}_{\beta}(\rho^p_\mu) = (-1)^{|\mu|p - |\beta|}\delta_p(\mu)\tilde{\Gamma}_{\mu}(p)(-1)^{t(\beta)}$$

where $\eta \in \{\pm 1\}$ and μ is a partition of $p(\nu - |\beta|)$ with p-core γ. Note that $I^{(1)}_{1} = I$.

Write $b(\tilde{\Gamma}^{\lambda}_{\nu}(p), \tilde{\Gamma}^{\eta}_{\nu}(p)) = \langle \tilde{\beta}(\tilde{\Gamma}^{\lambda}_{\nu}(p), \tilde{\Gamma}^{\eta}_{\nu}(p)), H_{p,w - |\beta|} \rangle$. If either $\tilde{\beta} = \beta$ or $\tilde{\beta} = \beta^\pm$ and $\lambda \neq p \cdot \beta_0$, then a straightforward computation (see the proofs of Theorems 3.9 and of Theorem 5.11 gives

$$a(\rho^p_\mu, \rho^p_\nu) = b \left(I \left(\tilde{\Gamma}^{\lambda}_{\nu}(p), I^{\beta}_{\beta}(\rho^p_\mu) \right) \right).$$

Hence, the only case to consider is $\beta = (\beta_1, \ldots, \beta_r) \in \mathcal{OD}_w$ and $\lambda = p \cdot \beta_0$. Write (h_1, \ldots, h_r) for the diagonal hooks of $p \cdot \beta_0$ such that the hooklength of h_i is β_i. Furthermore, set $\beta(0) = \{1\}$ and $\beta(i) = \{\beta_1, \ldots, \beta_i\} \in \Omega_0$ for $1 \leq i \leq r$. Note that $e(\beta(i)) = i$.

Let $1 \leq i \leq r$. Write $\nu = p \cdot \beta_0 \backslash \{h_1, \ldots, h_{i-1}\}$ and $\mu = p \cdot \beta_0 \backslash \{h_1, \ldots, h_i\}$. Therefore, we have

$$b \left(I^{\beta(i-1)}_{\beta(i)}(\rho^p_\nu), I^{\beta(i)}_{\beta(i)}(\rho^p_\mu) \right) = \delta_p(\nu)\delta_p(\mu)b \left(\tilde{\Gamma}^{\lambda}_{\nu}(p)(-1)^{t(\beta)}\tilde{\Gamma}^{\lambda}_{\nu}(p)(-1)^{t(\beta)}, \tilde{\Gamma}^{\lambda}_{\mu}(p)(-1)^{t(\beta)}\tilde{\Gamma}^{\lambda}_{\mu}(p)(-1)^{t(\beta)} \right),$$

$$= \delta_p(\nu)\delta_p(\mu)\left(\alpha^{\nu}_{\mu} + e\eta \delta_p(\nu)\delta_p(\mu)(-1)^{2|1 - 1|} \sqrt{(-1)^{|q-1|/2|q|}} \right),$$

$$= \left(\alpha^{\nu}_{\mu} + e\eta \sqrt{(-1)^{|q-1|/2|q|}} \right),$$

$$= a(\rho^p_\nu, \rho^p_\mu).$$

Thus, using an argument similar to Equations 28 and 29, we conclude that

$$b(I(\rho^p_{\beta_0}, I^{\beta}_{\beta}(\rho^p_\mu)) = a(\rho^p_{\beta_0}, \rho^p_\mu).$$

It follows that

$$r^{\tilde{\beta}} \circ I = I^{\beta}_{\beta} \circ r^{\tilde{\beta}}$$

for every $p \cdot \beta \in \Lambda_0$, and Corollary 2.10 gives the result.

Now we return to the general case, that is, γ is any self-conjugate p-core of n with p-weight w. Let b' be the principal p-block of A_{pw}. We consider $I_n: \mathbb{C}\text{Irr}(b_\gamma) \to \mathbb{C}\text{Irr}(b')$ the perfect isometry obtained in Theorem 3.9 and $I_{pw}: \mathbb{C}\text{Irr}(b') \to \mathbb{C}\text{Irr}(H_{p,w})$ the perfect isometry obtained in the first part of the proof. Then $I_{pw} \circ I_n: \mathbb{C}\text{Irr}(b_\gamma) \to \mathbb{C}\text{Irr}(H_{p,w})$ is a perfect isometry. In order to prove the result, it is sufficient to show that $I = I_{pw} \circ I_n$. Let $\lambda \in \mathcal{P}_n$ be such that $\lambda^{(p)} = \gamma$ and $\epsilon \in \{\pm 1\}$. Then using that the p-quotient of $\Psi(\lambda)$ is $\lambda^{(p)}$, we derive that

$$I_{pw} \circ I_n(\rho^{\lambda}_\mu) = I_{pw} \left(\delta_p(\lambda)\delta_p(\Psi(\lambda)) \tilde{\Gamma}^{\lambda}_{\mu}(p)(-1)^{t(\lambda)} \right),$$

$$= \delta_p(\lambda)\delta_p(\Psi(\lambda))\delta_p(\Psi(\lambda))\tilde{\Gamma}^{\lambda}_{\mu}(p)(-1)^{t(\lambda)} \hat{\gamma}(\lambda^{(p)} \delta_p(\Psi(\lambda)))\delta_p(\Psi(\lambda)), $$

$$= \delta_p(\lambda)\tilde{\Gamma}^{\lambda}_{\mu}(p),$$

$$= I(\rho^{\lambda}_\mu).$$
Corollary 5.13. With the assumptions of Theorem 5.12 and if furthermore \(w < p \), then \(I \) is a Broué perfect isometry.

References

[1] M. Broué. Isométries parfaites, types de blocs, catégories dérivées. *Astérisque*, (181-182):61–92, 1990.
[2] O. Brunat and J. Gramain. A basic set for the alternating group. *J. Reine Angew. Math.*, 641:177–202, 2010.
[3] M. Cabanes. Local structure of the \(p \)-blocks of \(\tilde{S}_n \). *Math. Z.*, 198:519–543, 1988.
[4] J. Chuang and R. Rouquier. Derived equivalences for symmetric groups and \(\mathfrak{sl}_2 \)-categorification. *Ann. of Math. (2)*, 167(1), 2008.
[5] C. W. Eaton. Perfect isometries and the Alperin-McKay conjecture. pages 49–64, 2007.
[6] M. Engehard. Isométries parfaites entre blocs de groupes symétriques. *Astérisque*, (181-182):157–171, 1990.
[7] P. Fong and M. E. Harris. On perfect isometries and isotypies in finite groups. *Invent. Math.*, 114(1):139–191, 1993.
[8] P. Fong and M. E. Harris. On perfect isometries and isotypies in alternating groups. *Trans. Amer. Math. Soc.*, 349(9):3469–3516, 1997.
[9] J.-B. Gramain. On defect groups for generalized blocks of the symmetric group. *J. London Math. Soc.*, 78(1):155–171, 2008.
[10] J. F. Humphreys. Blocks of projective representations of the symmetric groups. *J. London Math. Soc. (2)*, 32:441–452, 1986.
[11] G. James and A. Kerber. *The representation theory of the symmetric group*, volume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., 1981.
[12] R. Kessar. Blocks and source algebras for the double covers of the symmetric and alternating groups. *J. Algebra*, 186(3):872–933, 1996.
[13] R. Kessar and M. Schaps. Crossover Morita equivalences for blocks of the covering groups of the symmetric and alternating groups. *J. Group Theory*, 9(6):715–730, 2006.
[14] B. Külshammer, J. Olsson, and G. Robinson. Generalized blocks for symmetric groups. *Invent. Math.*, 151(3):513–552, 2003.
[15] R. Leabovich and M. Schaps. Crossover morita equivalences of spin representations of the symmetric and alternating groups. *Preprint*, 2009.
[16] A. O. Morris. The spin representation of the symmetric group. *Proc. London Math. Soc.*, 12(3):55–76, 1962.
[17] A. O. Morris. The spin representation of the symmetric group. *Canad. J. Math.*, 17:543–549, 1965.
[18] A. O. Morris and O. J. B. On \(p \)-quotients for spin characters. *J. Algebra*, 119(1):51–82, 1988.
[19] G. Navarro. *Characters and blocks of finite groups*, volume 250 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 1998.
[20] J. B. Olsson. On the \(p \)-blocks of symmetric and alternating groups and their covering groups. *J. Algebra*, 128:188–213, 1990.
[21] J. B. Olsson. *Combinatorics and Representations of Finite Groups*. Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen, Helf 20, 1993.
[22] M. Osima. On the representations of the generalized symmetric group. II. *Math. J. Okayama Univ.*, 6:81–97, 1956.
[23] G. Pfeiffer. Character tables of weyl groups in gap. *Bayerl. Math. Schr.*, 47:165–222, 1994.
[24] R. Rouquier. Isométries parfaites dans les blocs à défaut abélien des groupes symétriques et sporadiques. *J. Algebra*, 168(2):648–694, 1994.
[25] I. Schur. Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. *J. Reine Angew. Math.*, 139:155–250, 1911.
Institut de Mathématiques de Jussieu, UFR de Mathématiques, 175, rue du Chevaleret, F-75013 Paris,
E-mail address: brunat@math.jussieu.fr

Institute of Mathematics, University of Aberdeen, King's College, Fraser Noble Building, Aberdeen AB24 3UE, UK
E-mail address: jbgramain@abdn.ac.uk