Roles of pectin in biomass yield and processing for biofuels

Chaowen Xiao1,2 and Charles T. Anderson1,2*

1 Department of Biology, The Pennsylvania State University, University Park, PA, USA
2 Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA, USA

INTRODUCTION

In a society with an increasing demand for renewable energy, plant species as diverse as switchgrass, sugarcane, Miscanthus, Jatropha, poplar, willow, and Agave have been put forward as candidates for lignocellulosic feedstocks to produce liquid biofuels with low net greenhouse gas emissions (Carroll and Somerville, 2009; Somerville et al., 2010). However, many challenges and limitations remain for the economical and efficient conversion of biomass to biofuel (Somerville et al., 2010). Two central challenges are the recalcitrance of biomass to degradation by enzymes into its component sugars, and the fact that plant biomass contains many different hemicelluloses and pectose monosaccharides, all of which must be converted into useful products in order to capture the full energy content and value of lignocellulosic feedstocks.

Pectin is a component of the primary cell walls of dicotyledonous plants and is also present in smaller amounts in the secondary walls of dicots and both types of cell walls in monocots (Vogel, 2008). Pectins are highly complex polysaccharides and are composed of at least four subclasses: homogalacturonan (HG), rhamnogalacturonan (RG-I), RG-II, and xylogalacturonan (XGA; Mohnen, 2008). The backbones of HG, RG-II, and XGA consist of α-1,4-linked galacturonic acid (GalA) residues that can be methyl-esterified at the C6 carboxyl group and/or acetylated at O2 or O3, whereas the backbone of RG-I is composed of alternating rhamnose and GalA residues. RG-I possesses complex side chains with at least 12 different types of sugars, the secondary walls of dicots and both types of cell walls in monocots (Vogel, 2008). Pectins are highly complex polysaccharides and are composed of at least four subclasses: homogalacturonan (HG), rhamnogalacturonan (RG-I), RG-II, and xylogalacturonan (XGA; Mohnen, 2008). The backbones of HG, RG-II, and XGA consist of α-1,4-linked galacturonic acid (GalA) residues that can be methyl-esterified at the C6 carboxyl group and/or acetylated at O2 or O3, whereas the backbone of RG-I is composed of alternating rhamnose and GalA residues. RG-I possesses complex side chains with at least 12 different types of sugars, the secondary walls of dicots and both types of cell walls in monocots (Vogel, 2008). Pectins are highly complex polysaccharides and are composed of at least four subclasses: homogalacturonan (HG), rhamnogalacturonan (RG-I), RG-II, and xylogalacturonan (XGA; Mohnen, 2008). The backbones of HG, RG-II, and XGA consist of α-1,4-linked galacturonic acid (GalA) residues that can be methyl-esterified at the C6 carboxyl group and/or acetylated at O2 or O3, whereas the backbone of RG-I is composed of alternating rhamnose and GalA residues. RG-I possesses complex side chains with at least 12 different types of sugars, the secondary walls of dicots and both types of cell walls in monocots (Vogel, 2008).
status of pectin can thus have complex effects on plant growth (Peaucelle et al., 2012).

Intriguingly, overexpression of a PME inhibitor (PMEI) has resulted in increased biomass in transgenic Arabidopsis, as well as slightly increased biomass in transgenic wheat, although the latter difference was not significant (Lozetti et al., 2010). Taken together, the above results suggest that the timing and extent of pectin crosslinking likely influence the growth rate, persistence of expansion, final size, and/or growth robustness of plant tissues, which could in turn influence overall crop yields. Further analysis and manipulation of the links between pectin modification and biomass yield will be an important future research avenue.

PECTIN AND SECONDARY WALL FORMATION

In addition to its well-established role in primary wall biosynthesis and expansion, some studies have provided evidence for the importance of pectin in secondary cell wall biosynthesis and modification. PME genes are expressed in the expanding wood cells of poplar (Siedlecka et al., 2008) and in the stem, phloem, and xylem of southern blue gum (Eucalyptus globulus; Gaulao et al., 2011). In E. pilularis, single-nucleotide polymorphisms (SNP) alleles of PME6 associate with cellulose, lignin, and pulp yield, whereas alleles of PME7 associate with cellulose, pulp yield, and wood shrinkage (Sexton et al., 2012). Pectin-associated β-1,4-galactans have also been detected in the secondary walls of tension and compression wood (Mellerowicz and Gorschlova, 2012), and upregulation of both pectin-modifying and secondary wall biosynthetic genes has been detected in Arabidopsis plants placed under mechanical load (Koizumi et al., 2009). However, these analyses only provide correlative evidence, and genetic, biochemical, and mechanical experiments are required to establish a clearer link between pectin modification and secondary wall formation. In a pioneering study along these lines, Arabidopsis mutants lacking PME30 gene function displayed reduced mechanical integrity in their stem interfascicular fibers (Hongo et al., 2012). Interestingly, all of the above studies highlight pectin-modifying or -degrading genes rather than pectin biosynthetic genes, implying that pectin modification, instead of its synthesis, is an important aspect of secondary wall development.

Among plant lineages, the presence of RG-II correlates with upright growth, and an increased amount of borate crosslinked RG-II in the cell walls has been postulated to have facilitated the evolution of lignified secondary walls in vascular plants (Matsumaga et al., 2004), implying that pectin might continue to play a role in the early stages of secondary wall deposition. Finally, lignin polymerization, which is an important phase of secondary wall formation in many cell types, has been postulated to initiate in the pectin-rich middle lamella that lies between the walls of adjacent cells (Figure 1A), suggesting that there may be a functional connection between these polymers (Westermark et al., 1998). Support for this hypothesis is provided by the finding that addition of pectin affects the in vitro dispersion and polymerization of lignin in cellulose networks produced by Gluconacetobacter xylinus (Touzel et al., 2003). However, additional evidence will be required to establish a clear and direct connection between pectin biosynthesis and/or modification and secondary wall formation.

PECTIN AND CELL ADHESION

Intercellular adhesion is a basic feature of plant development and contributes to plant morphogenesis (Knox, 1992). Cell adhesion occurs primarily at the middle lamella, which contains abundant pectins, especially in the reinforcing zones (Jarvis et al., 2003). However, the exact makeup of pectin in the middle lamella is unclear, with some evidence indicating that pectin in this region is mainly composed of RG-I (Moore and Raine, 1988) and other work describing a preponderance of HG (Knox et al., 1990; Willats et al., 2004; Bouton et al., 2006). ricinus mutants lacking functional copies of the QUASIMODO (QUA1) gene, which encodes the putative GalA transferase GALACTURONOSYLTRANSFERASE 8 (GAUT8), display reduced stature, pectin content, and cell adhesion (Bouton et al., 2002; Lebourou et al., 2005). Mutants lacking another Arabidopsis putative glycosyltransferase, UCTOPICALLY PARTING CELLS 1 (EPC1), also display defective cell adhesion (Singh et al., 2005). However, direct evidence of the role of EPC1 in pectin biosynthesis and cell adhesion is lacking. Mutation in a putative pectin methyltransferase gene, QUASIMODO SHOOT DEVELOPMENT2 (TSD2), causes reduced cell adhesion and inhibition of shoot development (Krupkova et al., 2007; Mouille et al., 2007). In addition, it has also been shown that polygalacturonases (PGs), which cleave de-methyl-esterified HG, can affect cell adhesion: overexpression of a PG gene in apple trees led to altered cell wall adhesion, resulting in abnormal cell separation and plant morphology (Atkinson et al., 2002).

The opposite of cell adhesion, controlled cell separation, occurs in specific tissues and developmental stages in plants and involves the selective degradation of pectin in the middle lamella (Lewis et al., 2006). Artificially controlling cell separation processes might enhance the degradability of engineered biomass feedstocks by increasing the ease with which their cells can be separated by mechanical and/or enzymatic treatments, exposing more surface area to wall-degrading enzymes. However, plants displaying increased cell separability must also maintain growth robustness and disease resistance; thus, inducibly controlled cell separation might be preferable to constitutive activation of this process in future biomass feedstocks (Figure 1B).

PECTIN AND BIOMASS PROCESSING

To efficiently produce biofuels from raw biomass feedstocks, the optimization of methods for pectin extraction and degradation is necessary (Visser et al., 2011; Min et al., 2011). This is true for two reasons: first, pectin can affect the accessibility of other cell wall components to enzymatic degradation, and second, the
FIGURE 1 | Location and roles of pectins in biomass. (A) Schematic of plant cell showing arrangement of cell wall's pectin is abundant in the primary walls synthesized by growing cells (brown) and the middle lamella that adheres adjacent cells (blue), but is also present in lower amounts in secondary walls produced after the cessation of growth (gray). Inset at lower right is a simplified model of the primary cell wall showing one possible arrangement of cellulose microfibrils (green), hemicellulose (red), and pectin. (B) Pectin-rich biomass can be derived from lignocellulosic feedstocks or naturally pectin-rich plant material, after which it can be processed into pectin-derived high-value bioproducts and/or saccharified and fermented into biofuel. (C) Potential positive impacts of pectin modification in bioenergy crop plants on biomass processing. In some cases, pectin modification might allow for the elimination of processing steps, such as pectin extraction (curved arrow in B). sugars contained in pectin itself represent captured photosynthetic energy. In most biomass processing schemes, biomass is first pretreated to disrupt cell wall structure, then saccharified by enzymatic, chemical, or thermal treatment. However, the architectural properties of cell walls, which have been modeled as a cellulose–hemicellulose network embedded in a pectin matrix (Figure 1A; Cosgrove, 2000; Dick-Perez et al., 2011), suggest that pectins might mask cellulose and/or hemicellulose (Marcus et al., 2008, 2010), blocking their exposure to degradative enzymes. In fiber hemp processing, pectinase treatment has recently been shown to increase yields of GaA and neutral monosaccharides, and removal of pectin led to increased cell wall surface, improving the accessibility of cellulose to degradative enzymes (Pulakinen et al., 2012). Moreover, modification of pectin by expressing a PG or a PMEI to reduce the total amount of de-methyl-esterified HG in Arabidopsis, tobacco, or wheat significantly increased the efficiency of enzymatic saccharification (Lionetti et al., 2010), although PG expression, but not PMEI expression, also led to reduced biomass accumulation in transgenic plants.

The acetyl groups contained in pectin are generally thought to increase biomass recalcitrance by reducing the susceptibility of pectin to enzymatic degradation (Gille and Pauly, 2012). However, surprising results in a recent study (Gou et al., 2012) showed that reduction of pectin acetylation in tobacco by overexpression of a poplar (Populus trichocarpa) pectin acetyl esterase (Pt PAE1) in fact led to lower susceptibility of pectin to degradation, throwing the conventional view into question. Interestingly, the floral styles and filaments of transgenic plants displayed reductions in monosaccharides associated with pectins and increases in monosaccharides associated with cellulose and hemicelluloses.
(Gou et al., 2012), suggesting that compensatory changes in cell wall composition took place in these tissues. In another study, heterologous expression of a mung bean PME in potato tubers resulted in stiffer tuber tissue, implying that the cell walls of transgenic tubers were mechanically stronger (Oryfla et al., 2012). The generation and analysis of biomass crop plants overexpressing PMEs should indicate whether manipulating pectin acetylation levels will in fact enhance biomass for biofuel production. The accumulation of acetate in saccharified biomass, which is derived mainly from de-acetylation of xyloses but also arises partly from pectin de-acetylation, can act as a potent inhibitor of biofuel conversion (Gille and Pauly, 2012), and the partial reduction of cell wall acetylation by modulating pectin acetytransferase and/or acetyltransferase activities might therefore improve microbial viability during fermentation and enhance the conversion efficiency of biomass to biofuel (Figure 1B).

Because of its crosslinking and water-complexation properties, pectin is also a determinant of cell wall porosity (Williams et al., 2001). In one study, treatment with pectin-degrading enzymes such as endo-PGs increased wall pore size and the ability of larger molecules to pass through the wall (Baron-Epel et al., 1988); however, treatment with cellulyasin or protease did not affect porosity, implying that pectin rather than cellulose is a major mediator of wall porosity. Wall porosity is also regulated by borate diester-coupled RG-II linkages (ONeil et al., 1996; Fleischer et al., 1999). In the walls of pollen tubes, which have unique composition and mechanical properties, pectin influences both cell wall porosity and mechanical strength (Derksen et al., 2011). Because the average pore size in cell walls is similar to that of many globular proteins (Carpita et al., 1979), increased wall porosity should correlate with higher diffusion rates and accessibility to wall components for degradative enzymes during biomass processing. A relatively unexplored idea is the extent to which the aforementioned effects of pectin on wall rigidity might influence the physical properties of biomass during pretreatment. Conceivably, stiffening cell walls by the manipulation of Ca2+-mediated pectin crosslinks might enhance the fracturability of biomass, but experimental support for this idea is currently lacking.

BIOFUELS FROMPECTIN-RICH FEEDSTOCKS

Although lignocellulosic biofuels are a promising renewable energy resource, the recalcitrance of biomass to degradation presents a major roadblock to their production. To increase biofuel yields, one strategy is to improve the conversion efficiency of plant cell walls to bioethanol (Jordan et al., 2012). The conversion process can be simplified by altering lignocellulosic composition in bioenergy crop plants through genetic and molecular engineering (Demura and Ye, 2010; Pauly and Kongtra, 2010). Another strategy is to exploit existing plants with large amounts of easily digestible biomass (Somerville et al., 2010). At present, bioethanol is mainly produced from corn in the United States (Jordan et al., 2012), where the government has set a goal to reduce the usage of degradative enzymes (Edwards and Dorian-Peterson, 2012). So far, several pectin-rich materials, including sugar beet pulp (Rorick et al., 2011), citrus waste (Lopez et al., 2010; Pourbratani et al., 2010), and apple pomace (Canteri-Schemin et al., 2005) have been analyzed as bioenergy feedstocks. Recent research has also indicated that potato pectin is an attractive raw material for bioethanol production since it contains abundant polysaccharides (Lesiecki et al., 2012). The use of pectin-rich resources as bioenergy feedstocks will require saccharification and fermentation methods that are optimized for the suite of sugars they contain, and efforts are already underway to generate microbial bioconverting strains tailored to these materials (Edwards et al., 2011).

PECTIN AS A HIGH-VALUE BIOMASS CO-PRODUCT

As a natural complex polysaccharide, pectin plays important industrial roles in several fields. Its physical and chemical properties make it a valuable material in the food and pharmaceutical industries (May, 1990). As a food additive, pectin is mainly used as a gelling agent in jams, a thickening and stabilizing agent in drinks, and as a gelatin substitute in baked foods (Srivastava and Malviya, 2011). Recent work has shown that the field application of pectin-derived oligosaccharides (PDOs) improves the coloration and anthocyanin content of seedless grapes (Ochoa-Villarreal et al., 2011), and recombinant PME has been used to increase the hardness of fruit products and reduce the turbidity of fruit juices (Jiang et al., 2012b).

Pectin is part of the soluble dietary fiber that exists in all fruits and vegetables and is thus beneficial for human health. Pectin consumption has been demonstrated to reduce blood cholesterol levels in humans, although the pectins used in these studies were administered at high doses and were not precisely characterized (Brouns et al., 2012). Modified citrus pectin (MCP) has been shown to enhance the immune system’s ability to prevent metastasis (Hurd, 1999) and inhibit cancer cell growth (Nangia-Makker et al., 2002; Jackson et al., 2007; Yan and Katz, 2010; Maxwell et al., 2012). The MCP functions synergistically with other compounds in inhibiting cancer cell growth (Jiang et al., 2012a), which is a promising result for the development of anti-metastatic drugs (Glinsky and Raz, 2009). Specifically, the RG-I component of pectin might contribute to its anticancer activity (Cheng et al., 2012). Because of its structural malleability, biodegradability; and tunable porosity, pectin is also used as a surface modifier for medical devices (Morea et al., 2004) and a material for biomedical applications including drug delivery, gene delivery, and tissue engineering (Musarano et al., 2011, 2012). These applications make pectin, either in its unmodified or derivatized forms, a potentially high-value component of biomass (Figure 1C).

CONCLUSION

Pectins are one of the most structurally complex classes of molecules in nature, and it is perhaps due to this complexity that they serve a multitude of functions during plant growth and development. Depending on the feedstock, processing regime, and desired end products, pectin can be viewed either as a hindrance...
to biomass degradability, a source of fermentable sugars in its own right, or a potentially valuable co-product of biofuel production. A more comprehensive understanding of pectin structure and the mechanisms of its synthesis, modification, and degradation will allow for the enhancement of efforts to grow and utilize plants as renewable sources of food, materials, and energy.

REFERENCES

Atkinson, R. G., Schroder, R., Hallett, I. C., Cohon, D., and Macrae, E. A. (2010). Overexpression of polycalic-bound glycosytransferases required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 22, 145–152.

Brouns, F., Theuwissen, E., Adam, A., Bohlmann, J., Schmid, B., and Delmer, D. P. (1979). Localization of cellulose synthase activity in young root tips of Arabidopsis thaliana. J. Plant Physiol. 110, 1017–1020.

Bush, M. S., Merry, M., Hart, M. M., Jarvis, M. C., and Macinn, M. C. (2001). Developmental regulation of pectic epitopes during potato tuberization. Pflug. 213, 865–870.

Carr, R. M., Schut, A., Patalino, C., and Delmer, D. P. (1989). Evidence for direct regulation of pectin biosynthesis in Arabidopsis roots. J. Cell Biol. 107, 319–328.

Carroll, A., and Somerville, C. (2009). Cellulose biosynthesis. Annu. Rev. Plant Biol. 60, 143–167.

Cheng, H., Zhang, Z., Long, J., Liu, D., Han, M., Gao, X., et al. (2012). The inhibitory effects and mechanisms of rhododendron L. pectin in prostate cancer cells. PLoS One 7, e30562.

Coppens, D. J. (2000). Low-density of plant cell walls by superfractals. Nature 407, 523–526.

Domeni, T., and Yu, Z. H. (2010). Regulation of plant biomass production. Curr. Opin. Plant Biol. 13, 289–294.

Ehwald, R. (1999). The pore size of non-graminaceous plant cell walls is rapidly decreased by borate and energy. Plant Cell 11, 299–304.

Ehwald, R. (1999). Borate-locating properties of different pectins types in mildly hypertonic-chloroethanol men and women. Eur. J. Clin. Nutr. 66, 595–599.

F. Sablani, S. M., Merry, M., Hart, M. M., Jarvis, M. C., and Macinn, M. C. (2001). Developmental regulation of pectic epitopes during potato tuberization. Pflug. 213, 865–870.

Hao, M., Gao, X., et al. (2012). The三维化构象下的pectin and biomass characteristics from apple pomace. Sci. China Life Sci. 55, 894–909.

Kobayashi, M., Matoh, T., and Azuma, J. (2009). Mechanical load induces apoptosis in human prostate cancer cells. Cell Environ. 26, 989–997.

Knox, J. P. (2003). Intercellular adhesion and cell separation in plants. Plant Cell Environ. 26, 989–997.

Leydecker, M. T., Talbot, J., Granier, E., et al. (2011). Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum. Plant J. 68, 495–509.

Mccann, M. C. (2001). Developmental regulation of pectic epitopes during potato tuberization. Pflug. 213, 865–870.

Scheller, H. (2010). Biosynthesis of hemicellulose and pectin-modifying enzymes in Arabidopsis thaliana. J. Plant Res. 122, 651–659.

Schindler, M. (1988). Pectins as plant cell wall polysaccharides. Plant Physiol. 869–880.

Schindler, M. (1992). Cell adhesion, cell separation and plant morphogenesis. Plant J. 2, 137–141.

Schindler, M. (1992). Cell adhesion, cell separation and plant morphogenesis. Plant J. 2, 137–141.

Schröder, R., and Yeo, Z. H. (2010). Carbohydrate processing in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. Plant Physiol. 151, 384–395.

Tecgner, M., Zhang, X. A., Hayes, J., Sekaran, A., Zaltron, O. A., and Hong, M. (2011). Structure and interactions of plant cell-wall polysaccharides by two- and threedimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 999–1000.

Tomlinson, P. I., Fisk, P. D., Buchala, A., and Glinsky, V. V. (2009). Modulation of the primary wall by pectin and cellulose building blocks in Arabidopsis thaliana. J. Cell Sci. 122, 695–704.

Turek-Vaught, S., and Jacks, P. A. (2011). Association ofHEMALG and pectin-modifying enzymes with the primary cell wall of Arabidopsis stems. Plant Cell 24, 2624–2634.

Vicre-Gibouin, M., et al. (2011). Pectin-rich biomass as feedstock for fuel ethanol production. Biofuels Bioprod. Biorefin. 5, 65–76.

Xiao and Anderson Pectin and biomass characteristics

Yoono, L. P., Gardner, B. C., and Ovecka, M., et al. (2011). Pectin-rich biomass as feedstock for fuel ethanol production. Biofuels Bioprod. Biorefin. 5, 65–76.

Zabotina, O. A., Salazar, A., and Turon, A. (2012). Pectin-rich biomass as feedstock for fuel ethanol production. Biofuels Bioprod. Biorefin. 5, 65–76.

Zou, Y. U., Miller, L. M., Hao, G., Yu, X. H., Chen, X. Y., and Liu, C. J. (2012). Acetyltransferase-induced cross-linking of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 24, 50–63.

Zou, Y. U., Vierro, S., and Jacks, P. A. (2011). Association of hemagglutinin and pectin-modifying enzymes with the primary cell wall of Arabidopsis stems. Plant Cell 24, 2624–2634.

ACKNOWLEDGMENTS

Thanks to Thomas McCarthy and Daniel McCloudy for helpful comments. Support for this work was provided as part of the Center for Lignocellulosic Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0010980.

The work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0010980. The authors thank Thomas McCarthy and Daniel McCloudy for helpful comments. Support for this work was provided as part of the Center for Lignocellulosic Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0010980.
Pectin polysaccharides from spruce fibers. *Holzforschung* 53, 4246–4250.

O'Neill, M. A., Warrenfeltz, D., Kates, K., Morra, M., Cassinelli, C., Cascardo, L., and Viikari, L. (2012). Restricted access of pectic enzymes to agricultural byproducts. *Bioresour. Technol.* 103, 276–284.

Sivasankar, M., Higuchi, M., Darvill, A., Albertsen, H. L., et al. (2008). Pectic cell wall antibodies without hairy regions. *BMC Plant Biol.* 8:60. doi: 10.1186/1471-2229-8-60.

Baker, A. W., Benians, T. M., and Viikari, L. (2010). Enzymatic accessibility of fibrous hemp cell wall. *Bioresour. Technol.* 102, 79–99.

Maijala, P., and Viikari, L. (2012). Cell wall mechanics and growth control in plants: the role of pectins revisited. *Plant Physiol.* 159, 1542–1555.

O'Neill, M. A., Warrenfeltz, D., Kates, K., Morra, M., Cassinelli, C., Cascardo, L., and Viikari, L. (2012). Restricted access of pectic enzymes to agricultural byproducts. *Bioresour. Technol.* 103, 276–284.

Sivasankar, M., Higuchi, M., Darvill, A., Albertsen, H. L., et al. (2008). Pectic cell wall antibodies without hairy regions. *BMC Plant Biol.* 8:60. doi: 10.1186/1471-2229-8-60.

Baker, A. W., Benians, T. M., and Viikari, L. (2010). Enzymatic accessibility of fibrous hemp cell wall. *Bioresour. Technol.* 102, 79–99.

Maijala, P., and Viikari, L. (2012). Restricted access of pectic enzymes to agricultural byproducts. *Bioresour. Technol.* 103, 276–284.

Sivasankar, M., Higuchi, M., Darvill, A., Albertsen, H. L., et al. (2008). Pectic cell wall antibodies without hairy regions. *BMC Plant Biol.* 8:60. doi: 10.1186/1471-2229-8-60.

Baker, A. W., Benians, T. M., and Viikari, L. (2010). Enzymatic accessibility of fibrous hemp cell wall. *Bioresour. Technol.* 102, 79–99.

Maijala, P., and Viikari, L. (2012). Restricted access of pectic enzymes to agricultural byproducts. *Bioresour. Technol.* 103, 276–284.

Sivasankar, M., Higuchi, M., Darvill, A., Albertsen, H. L., et al. (2008). Pectic cell wall antibodies without hairy regions. *BMC Plant Biol.* 8:60. doi: 10.1186/1471-2229-8-60.

Baker, A. W., Benians, T. M., and Viikari, L. (2010). Enzymatic accessibility of fibrous hemp cell wall. *Bioresour. Technol.* 102, 79–99.

Maijala, P., and Viikari, L. (2012). Restricted access of pectic enzymes to agricultural byproducts. *Bioresour. Technol.* 103, 276–284.
immunization: generation and use of de-esterified homogalacturonan
block-specific antibodies from a naïve phage display library. Plant J. 18, 57–65.
Williams, W. G., Macartney, L., Mackie, W., and Knox, J. P. (2001). Pectin: cell biology and prospects for
functional analysis. Plant Mol. Biol. 47, 9–27.
Wolff, S., Moudilou, G., and Pelloux, J. (2008). Homogalacturonan methyl-
esterification and plant development. Mol. Plant 2, 853–860.
Yan, J., and Katz, A. (2010). Pectisol-C modified citrus pectin induces apoptosis and inhibition of
proliferation in human and mouse androgen-dependent and - independent prostate cancer cells. J. Natl. Cancer
Inst. 92, 195–205.
Zhao, Q., Yuan, S., Wang, X., Zhang, X., Zhu, H., and Lu, C. (2008). Restoration of mature etiolated cucumber
hypocotyl cell wall susceptibility to expansion by pretreatment with fungal pectinases and EGTA in vitro. Plant
Physiol. 147, 1874–1885.
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-
mercial or financial relationships that could be construed as a potential conflict of interest.
Received: 14 January 2013; accepted: 10 March 2013; published online: 27 March 2013.
Citation: Xiao C and Anderson CT (2013) Roles of pectin in biomass yield and processing for biofuels. Front.
Plant Sci. 4:67. doi: 10.3389/fpls.2013.00067
This article was submitted to Frontiers in Plant Biotechnology, a specialty of Frontiers in Plant Science.
Copyright © 2013 Xiao and Anderson. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided
the original authors and source are credited and subject to any copy-
right notices concerning any third-party graphics etc.