Benchmarking mixed-mode PETSc performance on high-performance architectures

Michael Langea,, Gerard Gormana, Michèle Weilandb, Lawrence Mitchellb, Xiaohu Guoc, James Southernd

aApplied Modelling and Computation Group, Imperial College London, London, UK
bEPCC, The University of Edinburgh, Edinburgh, UK
cScience and Technology Facilities Council, Daresbury Laboratory, Warrington, UK
dFujitsu Laboratories of Europe Ltd., Hayes, Middlesex, UK

Abstract

The trend towards highly parallel multi-processing is ubiquitous in all modern computer architectures, ranging from handheld devices to large-scale HPC systems; yet many applications are struggling to fully utilise the multiple levels of parallelism exposed in modern high-performance platforms. In order to realise the full potential of recent hardware advances, a mixed-mode between shared-memory programming techniques and inter-node message passing can be adopted which provides high-levels of parallelism with minimal overheads. For scientific applications this entails that not only the simulation code itself, but the whole software stack needs to evolve.

In this paper, we evaluate the mixed-mode performance of PETSc, a widely used scientific library for the scalable solution of partial differential equations. We describe the addition of OpenMP threaded functionality to the library, focusing on sparse matrix-vector multiplication. We highlight key challenges in achieving good parallel performance, such as explicit communication overlap using task-based parallelism, and show how to further improve performance by explicitly load balancing threads within MPI processes.

Using a set of matrices extracted from Fluidity, a CFD application code which uses the library as its linear solver engine, we then benchmark the parallel performance of mixed-mode PETSc across multiple nodes on several modern HPC architectures. We evaluate the parallel scalability on Uniform Memory Access (UMA) systems, such as the Fujitsu PRIMEHPC FX10 and IBM BlueGene/Q, as well as a Non-Uniform Memory Access (NUMA) Cray XE6 platform. A detailed comparison is performed which highlights the characteristics of each particular architecture, before demonstrating efficient strong scalability of sparse matrix-vector multiplication with significant speedups over the pure-MPI mode.

Keywords: PETSc, hybrid MPI/OpenMP, strong scaling, task-based parallelism, hierarchical load balancing, sparse matrix-vector multiply

1. Introduction

Recent development in High Performance Computing (HPC) architectures has been driven by a clear trend towards greater numbers of lower power cores and a decreasing memory to core ratio. Numerical algorithms and scientific software have to adapt to these changes to efficiently utilise the available memory and network bandwidth. Hybrid programming techniques, where shared memory programming is combined with inter-node message passing, can be used to exploit the multiple levels of parallelism inherent in modern architectures in order to achieve sustainable scalability on massively parallel systems.

In this paper we describe the addition of OpenMP thread parallelism to the Portable Extensible Toolkit for Scientific Computation (PETSc) \cite{petsc}. PETSc is a widely used library for the scalable solution of partial differential equations and is often used as a key component of large scientific applications.

Sparse matrix-vector multiplication (SpMV) is by far the most computationally expensive component of sparse iterative linear solvers \cite{petsc}. Therefore we focus on optimising SpMV within PETSc using hybrid programming techniques and evaluate strong scaling performance on large numbers of compute nodes. We demonstrate that using task-based parallelism to hide communication latency can provide significant speedups over naive OpenMP parallelisation. Further, explicit thread-level load balancing can be used to gain an additional performance increase, resulting in significantly improved scalability over pure-MPI implementations in the strong scaling limit.

The matrices used for benchmarking our implementation are extracted from the open source, general-purpose, multi-phase computational fluid dynamics (CFD) code Fluidity \cite{fluidity}. Fluidity solves the Navier-Stokes equations and accompanying field equations on arbitrarily unstructured finite-element meshes. It is used in areas including geophysical fluid dynamics, computational fluid dynamics and ocean modelling \cite{fluidity}.

1.1. Sparse Matrix-Vector Multiplication

PETSc offers a wide range of high-level components required for linear algebra, such as linear and non-linear solvers as well as preconditioners. These are based on a suite of parallel data structures which implement basic vector and matrix
operations. The most computationally expensive operation for solvers and preconditioners alike is the multiplication of sparse matrices with an input vector. PETSc represents distributed MPI matrices by dividing them into diagonal and off-diagonal parts, which on each process are stored as sequential matrices. The diagonal sub-matrix corresponds to the part of the input vector that is stored locally by the process. As a consequence of this storage strategy, as shown in Figure 1, the matrix-vector multiplication is implemented in two phases:

- First, each process multiplies its diagonal sub-matrix with the local elements of the input vector, while vector elements that reside off-process are gathered into the local memory of the executing process.
- Off-diagonal matrix elements are then multiplied with the formerly remote vector elements and added to the partial solution.

1.2. Related Work

Sparse matrix multiplication is one of the most heavily used kernels in scientific computing and has therefore received attention from several groups \[6, 7, 8, 9\]. Multiple storage formats, optimisation strategies and even auto-tuning frameworks exist to improve SpMV performance on a wide range of multi-core architectures \[7\]. On modern HPC architectures hybrid programming methods are being investigated to better utilise the hierarchical hardware design by reducing communication needs, memory consumption and improved load balance \[9\]. In particular, task-based threading methods have been highlighted by several researchers, where dedicated threads can be used to overlap MPI communication with local work \[10, 9, 3\].

2. Hybrid MPI/OpenMP Parallelism

Multi-core processors are now ubiquitous in HPC and programmers are effectively presented with three levels of parallelism \[11\]:

- Between nodes, distributed memory parallelism is required to connect separate processors. This is most commonly implemented using explicit message passing via MPI.
- Inside a compute node, cores share a contiguous memory address space and they can exchange information by directly manipulating this memory space.
- Inside a core SIMD instructions may be applied to process multiple data items simultaneously, increasing the level of parallelism. For the purpose of this paper, however, we will not consider SIMD parallelism.

Exposing and expressing both intra- and inter-node parallelism can be achieved using a hybrid programming approach, where message passing between multiple compute nodes is complemented with thread-level parallelism inside a node.

One motivation for moving away from MPI-only parallelised applications is given by memory limitations. While the number of cores is steadily increasing in modern HPC architectures, the memory available to each core is decreasing \[9\]. By exploiting thread-level parallelism, the same number of cores can be utilised within a single node while reducing the MPI memory footprint \[12\]. For scientific applications based on domain decomposition, reducing the MPI process granularity also reduces data replication due to halos or ghost cells.

Performance gains may also be expected from using fewer MPI processes, since it not only reduces communication overheads, but also improves the load balance between individual processes \[8, 9\]. However, reducing process-level imbalance may have a negative effect on the load balance among threads, which in turn can be compensated for by node-level scheduling strategies, as discussed in section 2.3.

2.1. NUMA Architecture

Non-Uniform Memory Access (NUMA) refers to multiprocessor systems whose memory is divided into multiple memory nodes. This architecture was designed to overcome the scalability limits of the symmetric multiprocessing (SMP) architecture. However, this hierarchical memory model for multi-core processors means that it takes longer for a process or thread to access some parts of the memory than others.

It is therefore important to consider data locality in threaded applications, since regular off-domain memory access can be detrimental to the performance of already memory-bound applications. In order to minimise bus contention a parallel first touch memory initialisation is often used on NUMA architectures to bind data to the memory bank that is closest to the core subsequently using the data block \[9\]. In addition, thread and process pinning is required to optimise memory utilisation for all bandwidth-bound algorithms.

When multiplying sparse matrices a master-only approach is most often used to parallelise the local computation steps using threads (see section 1.1). However, threaded SpMV across multiple NUMA domains requires random but frequent off-domain memory access to fetch input vector elements. In order to avoid the high-latencies associated with off-domain data fetch NUMA domains can be treated as single address spaces connected by multiple MPI tasks within a compute node. This approach restricts threads to accessing a single NUMA domain as demonstrated in section 4.

2.2. MPI-Communication Overlap

As described in section 1.1, PETSc splits parallel SpMV into two phases in order to allow the multiplication of the diagonal submatrix to be overlapped with the MPI communication required to fetch off-core vector elements. Nevertheless, Schubert et al. \[3\] showed that few MPI implementations provide truly asynchronous communication and significant performance gains can be achieved by using task-based threading, where a single thread is dedicated to actively perform the localisation of global vector elements. This approach not only overlaps MPI transfer latencies with computation but also hides any sequential overhead incurred from moving data to and from the required MPI buffer space.
Task-based threading stands in contrast to traditional vector-based threading, where all threads share the computational load evenly. In order to utilise the task-based variant the thread-parallel section needs to be lifted to enclose the vector scatter-gather operation to localise input vector elements. This prohibits the use of OpenMP parallel for pragmas to distribute the local row-wise computation among threads and requires the explicit computation of thread partition boundaries.

2.3. Thread-level Load Balance

Traditional vector-based threading with OpenMP divides the number of matrix rows approximately evenly among threads by applying parallel for pragmas to the outer loop. This, however, ignores the fact that individual rows may incur varying amounts of computational work, creating a potential load imbalance within individual thread groups. Instead, thread-level load balance may be improved statically by dividing the number of non-zeros approximately equally between threads, as pointed out by Williams et al. [7].

It is important to note that the matrix stencil does not change during the solve. Thus, an explicit thread partitioning scheme may be computed after the matrix has been assembled and cached with the matrix object. This turns the load balance optimisation into a one-off cost, allowing, in principle, the use of load balancing schemes of arbitrary complexity.

The method used in this paper starts with an initial greedy allocation, where each worker thread receives a block of continuous rows. This is followed by an iterative local diffusion algorithm, which further balances the number of non-zeros allocated to each thread. This procedure balances the thread-level work load and memory bandwidth requirement according to floating point operations required for the solution.

3. Benchmark

The matrices used for benchmarking the hybrid MPI/OpenMP implementations have been generated by Fluidity from a global baroclinic ocean simulation, which is representative of a range of three-dimensional multi-scale oceanographic problems [5]. The unstructured mesh is based on two-dimensional high-resolution coastline data that is extruded vertically using constant spacing. By changing the vertical resolution of the extruded mesh the size of the problem can be scaled linearly, allowing a controlled quasi-linear increase in work load for the extracted matrices.

The benchmark matrices used in this work are pressure field solves extracted after five timesteps. The resulting matrices are solved using the Conjugate Gradient method with a Jacobi preconditioner and the number of iterations was limited to 10,000.

3.1. Cray XE6

One of the benchmarking systems used for the work presented here is HECToR, a Cray XE6 based on the AMD Opteron 6200 Interlagos processor series and Crays Gemini interconnect [13]. The Interlagos compute nodes are based on two AMD Bulldozer processors, each with 16 cores at 2.3 GHz paired into two modules providing a theoretical peak performance of 163.7 GFlop/s per module and 327.4 GFlop/s per node. Each module has its own associated memory bank, which provides a peak memory bandwidth of 51.2 GB/s, resulting in four separate memory nodes per compute node [14].

3.2. Fujitsu PRIMEHPC FX10

The second benchmarking system available to us is a 96-node Fujitsu PRIMEHPC FX10 system. The PRIMEHPC FX10 is a UMA (Uniform Memory Access) architecture based on the SPARC64 IXfx processor. A single compute node has 16 cores at 1.848 GHz and a peak memory bandwidth of 85 GB/s, providing a theoretical peak performance of 236.5 GFlop/s [15].

3.3. IBM BlueGene/Q

The third system benchmarked in this paper is an IBM BlueGene/Q, a UMA architecture based on the PowerPC A2 processor. Each node provides access to 16 cores running at 1.6 GHz and a memory bandwidth of 42.6 GB/s, providing a theoretical peak performance of 204.8 GFlop/s [16]. Each PowerPC A2
core also provides 4-way simultaneous multi-threading (SMT) in hardware, where each core executes up to four threads with little context switching overhead.

4. Results: Hardware Utilisation

Hybrid programming offers a complex set of choices on how to best utilise a given hardware set. We therefore start our investigation by analysing various process-to-thread ratios for fixed numbers of cores, focusing on specific hardware features such as UMA/NUMA memory architectures as well as simultaneous multi-threading (SMT) on the BlueGene/Q architecture. This provides insights into the resource utilisation of each algorithm and provides an estimate for the best hybrid configuration to be used during the subsequent strong scalability study on large numbers of compute nodes.

Figure 2 shows the performance of varying hybrid process-thread combinations on the Cray XE6 and Fujitsu PRIMEHPC FX10 systems. The left-most entry of the vector-based configuration constitutes the MPI-only baseline configuration. OpenMP overheads have been verified to be negligible for the given problem size using microbenchmarks [17].

4.1. Cray XE6

On the Cray XE6 the task-based algorithms with and without explicit thread-level load balancing perform best when running 8 threads wrapped by 4 MPI processes per node. This correlates with NUMA alignment, where threads are used only inside individual NUMA domains and MPI tasks connect separate memory nodes. A significant performance reduction can then be observed with 16 and 32 threads per process, which coincides with NUMA traffic being incurred due to fetching input vector elements (see section 2.1).

However, with an increasing number of cores, as highlighted with 4096 cores in Figure 2(c) the performance penalty incurred due to NUMA traffic with 16 and 32 threads per process is less severe for all threading models. We can conclude that the algorithm is now bound by memory bandwidth rather than latency. Moreover the performance penalty incurred by going from 16 to 32 threads per process using the explicit thread balancing method is greater due to the computed thread allocation contradicting the original first touch memory allocation and therefore causing additional NUMA traffic.

Furthermore, both task-based modes significantly outperform the vector-based threading approach on 4096 cores, demonstrating the performance loss due to MPI communication overheads. Although vector-based threading provides better memory bandwidth utilisation on small numbers of cores due to having an extra worker thread, on large numbers of compute nodes the approach struggles to utilise the given memory bandwidth, as shown in Figure 2(c). Here the performance is greatest with only four threads per process, indicating that the algorithm’s performance is bound by an unmasked communication overhead that increases with the number of MPI processes.
profiles exhibit properties similar to the 4096-core XE6 results. The vector-based mode is limited by inter-process communication and performs best with two threads per process, while the overall best performance is achieved by the thread-balancing approach using eight threads per process.

4.3. Multi-Threading on BlueGene/Q

When analysing the performance of the different threading models with varying thread-to-core ratios on the BlueGene/Q architecture we also have to consider the number of threads running on each core (SMT depth). In Figure 5 the number of threads per process is therefore multiplied with the SMT depth to align the plots, so that, for example, a run with a thread-to-process ratio of 16 and SMT depth of four uses 64 threads per BlueGene/Q node. A breadth-first thread layout is hereby used to avoid unused cores with under-utilised node configurations.

Using 1024 cores (64 BlueGene/Q nodes, Figure 3b) all threading models exhibit a clear speedup when using more than one thread per core. The speedup is particularly strong with small thread-to-process ratios, indicating that the algorithm is indeed bound by memory latency which can be masked by increasing the SMT depth. This furthermore highlights the importance of utilising the SMT feature of the BlueGene/Q hardware.

The difference in performance between four threads per core (fully populated nodes) and two threads per core (half populated nodes) on the other hand is not as clear. On 1024 cores (Figure 3a) all threading models perform slightly better with increasing nodes when using half populated nodes. However, using 4096 cores (256 BlueGene/Q nodes, Figure 3b) the vector-based approach and the task-balancing method without explicit load balancing perform constantly better when using four threads per core, whereas the load-balanced implementation shows a growing performance advantage when using half populated nodes with an increasing thread-to-process ratio. The overall best performance is achieved with the explicit thread-balancing scheme and a thread-to-process ration of eight on a half populated hybrid node configuration.

5. Results: Strong Scaling

In this section we analyse the strong scalability of the described hybrid algorithms on the Cray XE6 and IBM BlueGene/Q system and compare their performance to a pure-MPI approach. On the Cray XE6 all hybrid modes were run using four MPI processes per compute node with eight threads each in order to prevent NUMA traffic as described in section 4.1.

The matrix used in Figure 4 has a dimension of 13,491,933 rows and columns and 371,102,769 non-zero elements and was generated by a parallel Fluidity simulation decomposed into 1024 sub-domains. For the hybrid modes the number of MPI processes used in the strong limit therefore matches the number of processes used during the original decomposition. For more than 1024 cores, however, the pure-MPI mode uses more processes than the matrix was originally optimised for, resulting in a potential slowdown due to load imbalance. Therefore, an equivalent matrix which has been optimised for 8192 MPI processes has also been included in the benchmark (dashed line).
Figure 4: Strong scaling results for the pressure matrix on up to 256 XE6 nodes (8192 cores). All hybrid modes use 4 MPI ranks per node and 8 threads per rank.

Figure 5: Strong scaling results for a larger pressure matrix on up to 1024 XE6 nodes (32768 cores). All hybrid modes use 4 MPI ranks per node and 8 threads per rank. Runs with less than 256 cores (8 XE6 nodes) have been omitted due to insufficient memory per MPI process.
5.1. Cray XE6

At the low end of the scaling curve no significant performance differences can be noted. For more than 512 cores (16 XE6 nodes) the task-based hybrid methods show a better scalability over the vector-based approach. The thread-balancing implementation performs best, maintaining a nearly constant parallel efficiency of > 88% between 512 and 2048 cores, and even experiences slightly super-linear scaling between 1024 and 2048 cores.

On the same matrix, the pure-MPI performance decreases significantly faster than the hybrid algorithms for more than 512 cores (16 XE6 nodes). The equivalent MPI runs using a more finely decomposed matrix, on the other hand, closely match the performance of the task-based mode without thread-balancing up to 2048 cores. However, in the strong limit the thread-balancing mode outperforms the optimised MPI runs.

Furthermore, between 2048 and 4096 cores (64 and 128 XE6 nodes) we observe strong super-linear scaling for both task-based methods. Since the final runtime in the strong limit is below 4 seconds, we can deduce that scalability ceases at this point due to a lack of computational work and that the super-linear scaling effects are due to favourable cache effects.

Figure 5 shows scalability on up to 32,768 cores (1024 XE6 nodes) when the workload of the matrix multiplication is increased by a factor of 4 by changing the vertical extrusion of the parent mesh (see section 3). This matrix has a dimension of 52,040,313 rows and columns and 1,462,610,289 non-zero elements and is based on a 4096-domain partitioning. The results follow the same general trend, with significant differences in performance observable in the strong end of the scalability curve. The pure-MPI performance starts to deteriorate earlier and the super-linear scaling in the high end is more pronounced for all approaches.

5.2. BlueGene/Q

The large version of the matrix used in Figure 5 has also been used to evaluate the scalability of the varying approaches on the BlueGene/Q architecture. Since the performance evaluation performed in section 4.3 did not highlight an optimal SMT configuration the scaling runs have been performed with two and four threads per core. In addition to pure-MPI performance using a single rank per core an equivalent set of runs was performed which uses 64 MPI ranks per node to fully saturate all available hardware threads.

In the low end of the scaling curve, up to around 1024 cores, the vector-based approach and the task-based approach without load-balancing provide the fastest runtime on the BlueGene/Q. However, with increasing numbers of cores the task-based approach with explicit thread-balancing maintains high scalability, whereas all other approaches suffer from a steadily decreasing parallel efficiency.

Moreover, the scalability of the thread-balancing method in the high end is improved even further by using only half saturated cores. For more than 8192 cores the super-linear scaling effects observed in Figure 5 are also achieved, in addition to super-linear scaling in the low end. An overall parallel efficiency of > 90% is maintained throughout, clearly outperforming all other approaches on 16384 cores. The performance improvement from using only two threads per core stems from reduced cache thrashing, where competing threads cause the premature eviction of data from the shared L1 cache due to the low computations-to-data-access ratio of the SpMV algorithm.

6. Architecture Comparison

In this section we provide a comparison of the achieved performance on all three architectures under consideration in this paper. In Figure 7 the achieved performance is shown for each threading model on 1024 cores of each benchmark architecture using the benchmark matrix described in section 5. All hybrid runs were aligned with the memory domains, using a single MPI instance on both UMA architectures and four MPI ranks on the Cray XE6.

The most significant performance improvement of the optimised task-based threading models over a pure MPI implementation can be observed on the Cray XE6. The PRIMEHPC FX10 also shows improved performance when using the task-based variant without explicit thread-balancing. However, it should be kept in mind that, as shown in Figure 6, a similar performance can be achieved with the thread-balancing option when using fewer threads per MPI process. The same is true for the BlueGene/Q architecture, where, although no clear advantage from using the advanced threading models can be seen in Figure 7, Figure 5a shows that an even larger percentage of the peak performance is attainable with less threads per MPI rank.

Overall the Fujitsu PRIMEHPC FX10 obtains highest performance. This is largely due to the large memory bandwidth provided on this architecture. It should be noted here that, although our comparison is not an exhaustive benchmark, it does

![Figure 7: Comparison of achieved performance in GFlop/s on 1024 cores across all architectures. The Cray XE6 runs use 8 threads per MPI process and the BlueGene/Q results use two threads per core.](image-url)
Figure 6: Strong scaling results for the large pressure matrix on up to 1024 BlueGene/Q nodes. All hybrid modes use a single MPI process and 32 threads (SMT = 2) or 64 threads (SMT = 4) per node. The MPI (SMT = 4) runs use 64 MPI ranks per node.

give an indication into the value of each architecture for scientific computing, where the solution of sparse linear systems is one of the most common operations. Since sparse linear algebra has different hardware requirements than more common benchmarks, such as High Performance Linpack (HPL), due to its low computation-to-data-access ratio and irregular memory accesses SpMV provides a valuable benchmarking alternative, as proposed by Heroux and Dongarra [18].

7. Summary and Discussion

In this paper we present an analysis of the scaling properties of SpMV using a hybrid MPI/OpenMP extension to the PETSc library. We compare hybrid vector-based and task-based algorithms with a pure-MPI variant using large matrices generated by the open-source CFD code Fluidity. We describe an extension to the traditional task-based approach, where the load balance among threads is optimised a-priori according to the number of non-zeros in each row.

The thread-balancing extension is shown to give superior performance when scaled to large numbers of compute nodes on a Cray XE6 and on moderate numbers of nodes of a Fujitsu PRIMEHPC FX10 system. On an IBM BlueGene/Q system the optimised implementations is the only approach capable of sustaining a parallel efficiency of > 90% on up to 16384 cores. The algorithm achieves this by improving the memory bandwidth utilisation within a given compute node and by hiding MPI communication latency. This comes at the cost of increased memory latency effects on small numbers of cores, since the algorithm creates an imbalance in input vector elements per thread. However, once the main resource limitation of the algorithm shifts to memory bandwidth the thread-balancing approach can improve performance significantly.

Furthermore, the thread-balancing approach enhances one of the fundamental advantages of hybrid programming: By reducing the number of MPI processes the inherent load imbalance among processes is reduced at the expense of load imbalance among threads. This is desirable, however, since we can deal with the thread imbalance explicitly by caching an optimised thread partitioning with the matrix. As a result, this approach improves work load balance and memory bandwidth utilisation at the compute node level in order to increase overall performance.

Acknowledgements

The work presented here was funded by Fujitsu Laboratories of Europe Ltd. and the European Commission in FP7 as part of the APOS-EU project (grant agreement 277481).

This work made use of the facilities of HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through EPSRC’s High End Computing Programme.

We acknowledge use of Hartree Centre resources in this work. The STFC Hartree Centre is a research collaboratory in association with IBM providing High Performance Computing platforms funded by the UK’s investment in e-Infrastructure. The Centre aims to develop and demonstrate next generation
software, optimised to take advantage of the move towards exa-scale computing.

References

[1] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc users manual,” Tech. Rep. ANL-95/11 - Revision 3.3, Argonne National Laboratory, 2012.

[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management of parallelism in object oriented numerical software libraries,” in Modern Software Tools in Scientific Computing (E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.), pp. 163–202, Birkhäuser Press, 1997.

[3] G. Schiabert, H. Fehske, G. Hager, and G. Wellein, “Hybrid-parallel sparse matrix-vector multiplication with explicit communication overlap on current multicore-based systems,” Parallel Processing Letters, vol. 21, no. 3, pp. 339–358, 2011.

[4] Applied Modelling and Computation Group, Fluidity Manual, version 4.1.8.2 ed., June 2013. http://launchpad.net/fluidity/4.1/4.1.8.2/+download/fluidity-manual-4.1.8.2.pdf.

[5] M. D. Piggott, G. J. Gorman, C. C. Pain, P. A. Allison, A. S. Candy, B. T. Martin, and M. R. Wells, “A new computational framework for multiscale ocean modelling based on adapting unstructured meshes,” International Journal for Numerical Methods in Fluids, vol. 56, no. 8, pp. 1003–1015, 2008.

[6] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris, “Performance evaluation of the sparse matrix-vector multiplication on modern architectures,” The Journal of Supercomputing, vol. 50, pp. 36–77, 2009.

[7] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, “Optimization of sparse matrix-vector multiplication on emerging multicore platforms,” Parallel Computing, vol. 35, no. 3, pp. 178 – 194, 2009.

[8] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on throughput-oriented processors,” in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC’09, (New York, NY, USA), pp. 18:1–18:11, ACM, 2009.

[9] A. Robinson, G. Hager, and G. Jost, “Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-Core SMP Nodes,” in Parallel, Distributed and Network-based Processing, 2009 17th Euromicro International Conference on, pp. 427 –436, 2009.

[10] G. Wellein, G. Hager, A. Basermann, and H. Fehske, “Fast sparse matrix-vector multiplication for teraflop/s computers,” in High Performance Computing for Computational Science VECPAR 2002 (J. Palma, A. Sousa, J. Dongarra, and V. Hermedez, eds.), vol. 2565 of Lecture Notes in Computer Science, pp. 287–301, Springer Berlin Heidelberg, 2003.

[11] A. D. Robison and R. E. Johnson, “Three layer cake for shared-memory programming,” in Proceedings of the 2010 Workshop on Parallel Programming Patterns, ParalLoP ’10, (New York, NY, USA), pp. 5:1–5:8, ACM, 2010.

[12] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk, R. Thakur, and J. L. Träff, “MPI on a Million Processors,” in Proceedings of the 16th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, (Berlin, Heidelberg), pp. 20–30, Springer-Verlag, 2009.

[13] “Cray XE6 Specifications,” June 2013. http://www.cray.com/Products/Computing/XE/Specifications/specifications-XE6.aspx.

[14] M. Butler, L. Barnes, D. Sarma, and B. Gelinas, “Bulldozer: An approach to multithreaded compute performance,” Micro. IEEE, vol. 31, pp. 6 –15, April 2011.

[15] “Fujitsu PRIMEHPC FX10,” June 2013. http://www.fujitsu.com/global/services/solutions/xe/hpc/products/primehpc/spec/.

[16] M. Gilge, “IBM System Blue Gene Solution: Blue Gene/Q Application Development,” tech. rep., June 2013. http://www.redbooks.ibm.com/redbooks/pdfs/sg247948.pdf.

[17] F. J. L. Reid and J. M. Bull, “OpenMP microbenchmarks version 2.0,” in European Workshop on OpenMP, EWOMP, 2004.

[18] M. Heroux and J. Dongarra, “Toward a New Metric for Ranking High Performance Computing Systems,” Tech. Rep. SAND2013-4744, Sandia National Labs, June 2013.