Axial-torsional fatigue and cyclic deformation of 304L stainless steel at room temperature

Cainã Bemfica, Edgar Mamiya, and Fábio Castro

Department of Mechanical Engineering, University of Brasilia, 70910-900 Brasília, DF, Brazil

Abstract. This work investigates the axial-torsional fatigue and cyclic deformation behaviour of 304L stainless steel at room temperature. Four fully reversed strain-controlled loading paths (axial, torsional, proportional axial-torsional, and 90° out-of-phase axial-torsional) and a fully reversed shear strain-controlled with static axial stress loading were investigated. For axial, torsional, torsional with static stress and few proportional experiments, an initial cyclic softening was followed by secondary hardening related to martensitic transformation. Secondary hardening was not observed for non-proportional loading nor for some proportional experiments. The influence of the non-stabilized cyclic deformation behaviour on the fatigue life estimates of two multiaxial critical plane fatigue models (Smith–Watson–Topper and Fatemi–Socie) was investigated. Life estimates based on the stress-strain hysteresis loops corresponding to the maximum softening and to the half-life were similar for the two models.

1 Introduction

Stainless steels are used in a wide range of industrial applications that usually involve cyclic multiaxial loading, such as nuclear reactors, pipelines, and pressure vessels. Multiaxial loading can be more damaging for stainless steels than the uniaxial condition, especially for nonproportional loading. Hence, an investigation of the cyclic stress-strain response and of the fatigue behaviour under multiaxial loading of these materials is important for safer engineering design.

Stainless steels may undergo martensitic transformation induced by plastic strain during cyclic loading at room temperature [1,2]. Under strain-controlled loading conditions, this phase transformation may lead to an increase in the stress amplitude throughout the loading cycles, known as secondary hardening. The influence secondary hardening on fatigue life estimates have been addressed by few works: Vincent and co-workers [3] observed that fatigue life estimates calculated using the hysteresis loop at the minimum stress amplitude (i.e. the maximum softening cycle) were significantly better than those obtained from the half-life loop. This work was limited to uniaxial stress and strain-controlled loading with mean stress. For multiaxial loading, however, this influence is yet to be understood.

This work is an experimental investigation of secondary hardening and of the fatigue behaviour of the 304L stainless steel at room temperature under axial-torsional loading. The

1 Corresponding author: cainabemfica@gmail.com
The testing programme included four fully reversed strain-controlled strain paths (tension-compression, torsional, proportional axial-torsional, and 90° out-of-phase) and a fully reversed shear strain with static axial stress path. The experiments were carried out at equivalent strain amplitudes ranging from 0.20% to 1.00%, resulting in fatigue lives from 10^2 to 10^6 cycles. The usual fatigue analysis based on the half-life hysteresis loop was compared with the one based on the maximum softening cycle for two multiaxial critical plane fatigue models (Smith–Watson–Topper [4,5] and Fatemi–Socie [6]).

2 Experimental programme

The 304L stainless steel was received as extruded bars with a diameter of 19.05 mm. The chemical composition of the material in weight percentage is 0.018 C, 1.34 Mn, 0.034 P, 0.028 S, 0.43 Si, 18.16 Cr, 8.3 Ni, 0.22 Mo, 0.081 N, and Fe as balance. The bars were normalized at 1050 ºC for 1 h to remove dislocation structures and twins produced by the extrusion process. From the normalized bars, two types of specimens were machined for fatigue tests: cylindrical solid specimens (Fig. 1a) for axial loading, and thin-walled tubular specimens (Fig. 1b) for torsional and axial-torsional loading. The outer surface of the gauge section of each specimen was ground using sandpapers with 220 up to 2500 grit. This procedure resulted in a surface roughness less than 0.2 μm, as specified in the ASTM Standard E2207 [7].

The testing system used in the present work allows the application of axial-torsional (mode I/III) loading on thin-walled tubular specimens, both under proportional and nonproportional conditions. Further work is still required to understand the fatigue behaviour of the 304L stainless steel under mixed mode I/II/III loading conditions. Such tests could be done, in principle, by means of a fixture similar to that employed in [8].

Fig. 1. Geometries of the (a) cylindrical solid specimens and (b) thin-walled tubular specimens used in the fatigue tests. Dimensions in mm.

All tests were performed at room temperature using an MTS 809 axial-torsional servo-hydraulic machine. The testing system has a capacity of ±100 kN for axial force and ±1100 N·m for torque. The axial and shear strains at the outer surface of the specimens were obtained from an MTS axial/torsional extensometer, model 632.80F-04. The extensometer has a gauge length of 25 mm, an axial range of -2.0% to 4.8%, and a torsional range of ±5°.

Four fully reversed axial-torsional strain paths (Fig. 2a) were investigated: tension-compression (Path I), torsional (Path II), proportional axial-torsional (Path III), and 90° out-of-phase nonproportional axial-torsional (Path IV). The loading amplitudes of these tests were chosen based on the equivalent strain amplitude, $\Delta \varepsilon_{eq}/2$, defined as the radius of the minimum circle which circumscribes the strain path in the $\varepsilon - \gamma/\sqrt{3}$ space. Paths III and IV had a ratio between the axial and shear strain ranges, $\Delta \gamma/\Delta \varepsilon$, equal to $\sqrt{3}$. In addition to these strain-controlled paths, tests combining fully reversed shear strain with static axial stress (Path V) were carried out (Fig. 2b). All fatigue tests were conducted until the appearance of a macroscopic fatigue crack—detected by visual inspection or by a load drop of 5% of either force or torque—or were stopped after at least 10^6 cycles (run-out tests).
The rate-dependent stress-strain behaviour of 304L stainless steel [9,10] is not addressed in the present work. Hence, all fatigue tests were carried out at a near constant von Mises equivalent strain rate [11] of 10^{-2} s$^{-1}$. The only exception was the axial test at $\Delta \varepsilon / 2 = 0.20\%$, which was performed at a strain rate of 5×10^{-2} s$^{-1}$ to shorten the test duration. For this strain amplitude, a higher strain rate is not expected to influence the stress-strain behaviour nor fatigue life [12].

![Diagram of loading paths](image)

Fig. 2. Loading paths used in the fatigue tests.

3 Results and discussion

The fatigue test data is presented in Table 1. The stress amplitudes were obtained from the stress-strain hysteresis loops corresponding to approximately half of the fatigue lives. For the same equivalent strain amplitude, torsional tests lasted longer than axial ones. Fatigue lives under nonproportional loading were significantly lower than those of the other loading paths. For path V at $\Delta \varepsilon_{eq} / 2 = 0.35\%$, the compressive stress of -50 MPa resulted in a nearly thirteenfold increase in fatigue life with respect to the test with a tensile stress of 50 MPa.

To investigate the cyclic hardening and softening behaviour of the 304L stainless steel, the variation of the equivalent stress amplitude, $\bar{\sigma}_a$, with number of loading cycles is plotted in Fig. 3 for the investigated loading conditions. The equivalent stress amplitude was defined as the radius of the minimum circle that circumscribes the deviatoric stress path [13]. For some experiments, the stress response during the first cycles was not shown since transient effects related to testing control might be confused with the actual cyclic softening/hardening behaviour.

For all loading paths and amplitudes, the 304L stainless steel exhibited cyclic hardening during the first few cycles, followed by cyclic softening. For some loading conditions, cyclic softening was followed by a secondary hardening, which is generally attributed to a strain-induced phase transformation from austenite to martensite [1,2]. Since secondary hardening is preceded by cyclic softening, its initiation was defined as the cycle associated with the minimum equivalent stress amplitude. Henceforth, this cycle will be termed the maximum softening cycle [3]. In addition, a test was said to exhibit secondary hardening if a noticeable increase in the equivalent stress amplitude with respect to the maximum softening cycle was detected. For practical purposes, a 5% increase was adopted. Based on this criterion, all axial, torsional, and torsional with static stress tests exhibited secondary hardening, while it was not observed for nonproportional tests. For proportional loading, secondary hardening occurred only for $\Delta \varepsilon_{eq} / 2 \geq 0.80\%$.

Due to secondary hardening, fatigue damage per loading cycle may vary for the investigated loading conditions. Hence, a detailed integration of the fatigue damage cycle-by-cycle should be made over the loading history. However, for simplicity, fatigue analyses of stainless steels under constant amplitude loading are often done using the fatigue damage
corresponding to a reference stress-strain hysteresis loop [3,14]. This reference stress-strain hysteresis loop is often the one corresponding to half of the fatigue life. For the 304L stainless steel, the half-life stress-strain hysteresis loop may be related to a microstructure modified by martensitic transformation. Therefore, tests involving different microstructures would be compared if this cycle is selected as the reference cycle. This does not occur if the stress-strain hysteresis loop at maximum softening is adopted since martensitic transformation is almost negligible prior to this cycle. In this work, fatigue life estimates obtained from both the half-life (HL) and the maximum softening (MS) hysteresis loops will be compared for two multiaxial critical plane fatigue models: the Smith–Watson–Topper parameter with a critical plane interpretation [5] and the Fatemi–Socie parameter [6].

Table 1. Fatigue test data for 304L stainless steel.

Path	Spec. ID	\(\frac{\Delta \varepsilon_{eq}}{2}\) [%]	\(\Delta \varepsilon/2\) [%]	\(\Delta \gamma/2\) [%]	\(\Delta \sigma/2\) [MPa]	\(\Delta \tau/2\) [MPa]	\(\sigma_{stat}\) [MPa]	\(f\) [Hz]	\(N_f\) [cycles]
I	UN14	1.00	1.00	–	451	–	–	0.15	643
	UN19	0.80	0.80	–	413	–	–	0.18	1,635
	UN06	0.50	0.50	–	253	–	–	0.50	4,218
	UN17	0.35	0.35	–	206	–	–	1.40	33,880
	UN24	0.28	0.28	–	200	–	–	2.00	88,900
	UN56	0.26	0.26	–	195	–	–	2.75	180,000
	UN55	0.24	0.24	–	204	–	–	3.50	>1,069,768
	UN12	0.20	0.20	–	206	–	–	7.00	>1,901,074
II	TU20	1.00	–	1.73	–	228	–	0.15	855
	TU29	1.00	–	1.73	–	267	–	0.15	1,800
	TU26	0.75	–	1.30	–	204	–	0.30	2,007
	TU21	0.50	–	0.87	–	186	–	0.50	18,230
	TU23	0.35	–	0.61	–	160	–	1.40	132,071
	TU28	0.28	–	0.48	–	182	–	2.00	>1,889,057
	TU22	0.20	–	0.35	–	132	–	2.00	>2,017,640
III	TU40	1.00	0.71	1.22	304	128	–	0.30	461
	TU37	0.80	0.57	0.98	266	112	–	0.40	780
	TU33	0.60	0.42	0.73	235	99	–	0.60	830
	TU41	0.60	0.42	0.73	234	97	–	0.60	1,200
	TU32	0.50	0.35	0.61	209	90	–	0.80	2,000
	TU35	0.40	0.28	0.49	197	85	–	1.00	5,100
	TU36	0.30	0.21	0.37	186	80	–	1.20	35,000
	TU42	0.24	0.17	0.29	180	78	–	1.75	70,000
	TU38	0.20	0.14	0.24	156	74	–	2.00	148,700
IV	TU43	0.35	0.35	0.61	435	234	–	0.50	612
	TU44	0.30	0.30	0.53	397	211	–	0.60	1,200
	TU46	0.28	0.28	0.48	384	206	–	0.60	5,800
	TU45	0.25	0.25	0.43	349	187	–	0.70	9,700
	TU47	0.20	0.20	0.35	273	146	–	0.90	62,000
V	TU50	1.00	–	1.73	–	253	50	0.15	1,400
	TU51	1.00	–	1.73	–	–	–50	0.15	>1,400*
	TU49	0.75	–	1.30	–	–	250	50	2,200
	TU52	0.35	–	0.61	–	142	50	1.40	72,000
	TU53	0.35	–	0.61	–	190	–50	1.40	908,000

\(\Delta \varepsilon_{eq}/2\), equivalent strain amplitude; \(\Delta \varepsilon/2\), axial strain amplitude; \(\Delta \gamma/2\), shear strain amplitude; \(\Delta \sigma/2\), axial stress amplitude; \(\sigma_{stat}\), static axial stress; \(\Delta \tau/2\), shear stress amplitude; \(\theta\), surface crack angle; \(f\), loading frequency; \(N_f\), number of cycles to failure; * failure due to buckling.
The Smith, Watson, and Topper (SWT) parameter was originally developed to consider the mean stress effect under uniaxial loading [4]. For materials and loading conditions that result in tensile failure mode, a multiaxial version of the SWT parameter based on the critical plane concept was proposed by Socie [5]. The SWT parameter has the following form:

\[\text{FP} = \frac{\Delta \varepsilon}{2} \sigma_{n\text{max}} \] (1)
where $\Delta \varepsilon / 2$ is the normal strain amplitude and $\sigma_{n, \text{max}}$ is the maximum normal stress in a loading cycle.

Fatemi and Socie [6] developed a critical plane fatigue parameter for failures dominated by shear cracking, which is expressed as

$$\text{FP} = \frac{\Delta \gamma}{2} \left(1 + k \frac{\sigma_{n, \text{max}}}{\sigma_y}\right)$$

where $\Delta \gamma / 2$ and $\sigma_{n, \text{max}}$ denote the shear strain amplitude and the maximum normal stress at a material plane, respectively. k is a material constant and σ_y is the yield stress.

For each of the parameters, fatigue damage per loading cycle can be calculated according to the following expression [16]:

$$\Delta D = \frac{(\text{FP} - \text{FP}_0)^\xi}{C}$$

where FP_0, ξ and C are material constants. Using the Palmgren–Miner rule for the accumulation of damage throughout the loading history, fatigue failure is predicted to occur when the cumulative damage at a material plane reaches unity. The critical plane is the material plane at which the cumulative damage first reaches unity.

As previously discussed, the fatigue damage per loading cycle may vary due to secondary hardening. Nevertheless, fatigue life estimates can be obtained based on a reference stress-strain hysteresis loop [3,14]. Within this framework, the predicted number of cycles to failure based on either the Smith–Watson–Topper or Fatemi–Socie parameter can be estimated as

$$N_{\text{pred}} = \frac{1}{\Delta D_{\text{ref}}} = \frac{(\text{FP}_{\text{ref}} - \text{FP}_0)^\xi}{C}$$

where ΔD_{ref} and FP_{ref} are the fatigue damage and the fatigue parameter corresponding to a reference loading cycle, respectively.

Fatigue life predictions for the two models are shown in Fig. 4, in which the dashed and the dotted lines represent factor-of-two and factor-of-four boundaries, respectively. Life estimates based on either the half-life or the maximum softening cycles were similar, most of them within the factor-of-four boundaries. Note that the constants corresponding to the two reference cycles are related to different microstructures. Therefore, the similarity of the fatigue life estimates for the proportional and nonproportional tests was not expected since mild or no secondary hardening was observed under such loading conditions. This result may be attributed to the similarity between material constants obtained from these two reference cycles (Table 2). Indeed, it was observed that if constants obtained from the maximum softening are used for the half-life loops, life predictions for proportional and nonproportional experiments are almost identical.
Fatigue life predictions based on the half-life (HL) and the maximum softening (MS) hysteresis loops: (a) Smith–Watson–Topper and (b) Fatemi–Socie.

Observed fatigue lives of torsional and torsional with tensile static stress were similar for the same shear strain amplitude, whilst the compressive static stress greatly increased fatigue life. Note that life estimates obtained for torsional with tensile static stress tests are within factor-of-four boundaries for the two investigated models, which did not occur for the torsional with compressive static stress test. These results suggest that these models fail to capture the fatigue damage mechanism in the presence of compressive stresses, at least for the investigated loading condition. The effect of compressive stress/strain may also depend on the strain amplitude: for the 304L at \(\Delta \varepsilon / 2 = 0.25\% \), Colin et al.\[12\] observed lives around \(10^5 \) cycles for tension-tension tests, while no failure (>7,817,714 cycles) occurred for compression-compression tests; conversely, similar fatigue lives were observed for compression-compression and tension-tension tests at \(\Delta \varepsilon / 2 = 0.40\% \). Hence, reasonable fatigue life estimates can be difficult to obtain for these loading conditions. Further experiments involving compressive loading would be valuable to give insight into damage mechanisms and to enhance fatigue models.

Table 2. Material constants used in the fatigue models.

	Smith–Watson–Topper	Fatemi–Socie
Half-Life	\(FP_0 = 0.38 \)	\(k = 1.00 \)
Max. Softening	\(\xi = 1.49 \)	\(\sigma_y = 210 \text{ MPa} \)
\(C = 5.23 \times 10^3 \)	\(C = 4.24 \times 10^3 \)	\(\xi = 1.73 \)

4 Conclusions

In this work, secondary hardening and the fatigue behaviour of 304L stainless steel were investigated under strain-controlled fully reversed axial, torsion, proportional axial-torsional, 90° out-of-phase nonproportional tests and under fully reversed shear strain-controlled with static axial stress tests. For the investigated loading conditions, secondary hardening occurred...
for all axial, torsional and torsional with static stress tests and for proportional tests at \(\Delta \varepsilon_{eq}/2 \geq 0.80\% \). Neither proportional tests at \(\Delta \varepsilon_{eq}/2 < 0.80\% \) nor nonproportional loading exhibited secondary hardening. Fatigue life estimates obtained from both the half-life and the maximum softening hysteresis loops were similar for the Smith–Watson–Topper and the Fatemi–Socie models. Life estimates obtained for the torsional with compressive static axial stress were significantly worse than those obtained for torsional with tensile static stress for both models and reference cycles.

Cainã Bemfica, Edgar Mamiya and Fábio Castro would like to thank the support from National Council for Scientific and Technological Development – CNPq (contracts 131847/2017-1; 304083/2013-5; 308126/2016-5 and 420677/2018-6). Cainã Bemfica also acknowledges the support from Coordination for the Improvement of Higher Education Personnel – CAPES. The support provided by Centro Universitário do Distrito Federal (UDF) is also greatly acknowledged.

References

1. D. Henessy, G. Steckel, C. Altstetter. Phase transformation of stainless steel during fatigue. Metall. Trans. A 7, 415 (1976)
2. G. Baudry, A. Pineau. Influence of strain-induced martensitic transformation on the low-cycle fatigue behaviour of stainless steel. Mater. Sci. Eng. 28, 229 (1977)
3. L. Vincent, J-C. Le Roux, S. Taheri. On the high cycle fatigue behavior of a type 304L stainless steel at room temperature. Int. J. Fatigue 38, 84 (2012)
4. K.N. Smith, P. Watson, T.H. Topper. Stress-strain function for the fatigue of metals. J. Mater. 5, 767 (1970)
5. D. Socie. Multiaxial fatigue damage models. J. Eng. Mater. Technol. 109, 293 (1987)
6. A. Fatemi, D.F. Socie. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 11, 149 (1988)
7. ASTM. Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled Tubular Specimens. Annual Book of ASTM Standards 03.01 (2008).
8. A. Zeinedini. A novel fixture for mixed mode I/II/III fracture testing of brittle materials. Fatigue Fract. Eng. Mater. Struct. 42, 838 (2019)
9. E. Kreipl. An experimental study of room-temperature rate-sensitivity, creep and relaxation of AISI type 304 stainless steel. Mech. Phys. Solids. 27, 363 (1979).
10. G. Kang, Q. Kan, J. Zhang, Y. Sun. Time-dependent ratchetting experiments of SS304 stainless steel. Int. J. Plast. 22, 858 (2006)
11. E. Kreipl, H. Lu, J. Hardening and rate-dependent behavior of fully annealed AISI type 304 stainless steel under biaxial in-phase and out-of-phase strain cycling at room temperature. Eng. Mater. Technol. Trans. ASME 106, 376 (1984)
12. J. Colin, A. Fatemi, S. Taheri. Fatigue behavior of stainless steel 304L including strain hardening, prestraining, and mean stress effects. J. Eng. Mater. Technol. 132, 021008 (2010)
13. Y. Jiang, P. Kurath. Nonproportional cyclic deformation: critical experiments and analytical modeling. Int. J. Plast. 13, 743 (1997)
14. S. Kalnaus, Y. Jiang. Fatigue of AL6XN stainless steel. J. Eng. Mater. Technol. 130, 031013 (2008)
15. Y. Jiang, P. Kurath. An investigation of cyclic transient behavior and implications on fatigue life estimates. J. Eng. Mater. Technol. 119, 161 (1997)