Genetic Variants and Drug Efficacy in Tuberculosis: A Step toward Personalized Therapy

Almas Khan1 Mohammad Abbas1 Sushma Verma1 Shrikant Verma1 Aliya Abbas Rizvi1 Fareya Haider3 Syed Tasleem Raza2 Farzana Mahdi1

1 Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
2 Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
3 Department of Microbiology, Era’s Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India

Glob Med Genet 2022;9:90–96.

Address for correspondence Mohammad Abbas, PhD, Department of Personalized and Molecular Medicine, Era University, Lucknow 226003, Uttar Pradesh, India (e-mail: rizvi.109@gmail.com).

Introduction

Tuberculosis (TB) continues to be a major infectious disease affecting individuals worldwide. Current TB treatment strategy recommends the standard short-course chemotherapy regimen containing first-line drug, i.e., isoniazid, rifampicin, pyrazinamide, and ethambutol to treat patients suffering from drug-susceptible TB. Although Mycobacterium tuberculosis, the causing agent, is susceptible to drugs, some patients do not respond to the treatment or treatment may result in serious adverse reactions. Many studies revealed that anti-TB drug-related toxicity is associated with genetic variations, and these variations may also influence attaining maximum drug concentration. Thus, inter-individual diversities play a characteristic role by influencing the genes involved in drug metabolism pathways. The development of pharmacogenomics could bring a revolution in the field of treatment, and the understanding of germline variants may give rise to optimized targeted treatments and refine the response to standard therapy. In this review, we briefly introduced the field of pharmacogenomics with the evolution in genetics and discussed the pharmacogenetic impact of genetic variations on genes involved in the activities, such as anti-TB drug transportation, metabolism, and gene regulation.

Abstract

Tuberculosis (TB) continues to be a major infectious disease affecting individuals worldwide. Current TB treatment strategy recommends the standard short-course chemotherapy regimen containing first-line drug, i.e., isoniazid, rifampicin, pyrazinamide, and ethambutol to treat patients suffering from drug-susceptible TB. Although Mycobacterium tuberculosis, the causing agent, is susceptible to drugs, some patients do not respond to the treatment or treatment may result in serious adverse reactions. Many studies revealed that anti-TB drug-related toxicity is associated with genetic variations, and these variations may also influence attaining maximum drug concentration. Thus, inter-individual diversities play a characteristic role by influencing the genes involved in drug metabolism pathways. The development of pharmacogenomics could bring a revolution in the field of treatment, and the understanding of germline variants may give rise to optimized targeted treatments and refine the response to standard therapy. In this review, we briefly introduced the field of pharmacogenomics with the evolution in genetics and discussed the pharmacogenetic impact of genetic variations on genes involved in the activities, such as anti-TB drug transportation, metabolism, and gene regulation.

Keywords
► mycobacterium tuberculosis
► germline variants
► anti-TB drug-related toxicity
► pharmacogenomics
► personalized medicine
lifestyle (diet, alcohol abuse, and smoking), concomitant therapy, or the presence of co-morbidity have been previously attributed to differences in the risk–benefit ratio among patients taking the same drug. Aside from these considerations, changes in patient genetic make-up are now understood to have a significant impact on treatment response. These variations among individuals are due to several factors including different allele frequency distributions of single nucleotide polymorphisms (SNPs) that have a functional impact on genes association with drug response. Hence, absorption, distribution, metabolism and excretion, pharmacokinetics (PK), and pharmacodynamics of drugs are influenced by a genetic variation which affects drug efficacy and drug-induced toxicity and, thus, leads to ADRs or therapeutic failure. All these factors due to variations are validated by genotypes, and therefore, pharmacogenetic implementation in the clinical setting has become an important aspect of targeted therapy. Pharmacogenomics research has a long-term purpose of the development of individualized medication based on the patient’s genetic sequence to achieve maximum response and avoid undesirable drug responses.

Isoniazid (INH), rifampicin (RF), pyrazinamide, and ethambutol are the first-line anti-TB drugs currently recommended by World Health Organization. INH and RF are the two key drugs used for the treatment of TB. Resistance offered to these drugs by the mycobacteria or adverse reaction caused by the drugs results in treatment prolongation from 6 to 9 months or sometimes treatment has to be stopped due to the excessive damaged caused by the adverse reaction. Efficacy and early antibacterial activity of the drugs are related to the dose or PK; therefore, the variation in the PK of INH and RF influences the clinical consequence of TB treatment. With beneficial effects, there are various adverse effects especially peripheral neuropathy and hepatotoxicity induced by INH therapies. We have outlined the emerging role of pharmacogenomics in this review and the way in which valuable tools for the determination of inter-individual variation are found. In this review, we focus on genes involved in RF and INH transport and metabolism, as well as the genes governing the transcription of transporter and metabolizing genes.

Genetics and Individualized Treatment (Personalized Medicine)

The idea of individualized medicine is an appealing concept for the future of treatment. It is divine to employ molecular research data to categorize disease and its susceptibility, aid the development and rationale of new therapeutic regimens, and help in patient treatment with greater specificity and potency with fewer side effects (► Fig. 1).

With the advancement in technology and development in biomedical sciences, research findings have unfolded several predictive sciences. Pharmacogenetics and pharmacogenomics are two among new predictive sciences that have emerged from the knowledge discovered in biomedical research. The research in these fields could promise a crucial step toward personalized treatment. It is necessary to understand the disposition and fate of drugs, i.e., PK and pharmacodynamics of drugs which include therapeutic outcomes with adverse effects. The PK and pharmacodynamics of drugs are determined by complicated processes involving the majority of proteins coded by a variety of genes, which determine drug transport, metabolism, potency, and drug detoxification. Variations in the coding region may induce amino acid substitution at the specific location of protein

Fig. 1 Concept of genotyping-based targeted/individualized therapy.
which consequently alters protein function. If the variation is found in the regulatory region, it may affect transcription and translational mechanisms with gene product modulation (mRNA and proteins) and their expression levels may differ.4,15 Variations in DNA sequence in population at or above 1% allele frequency are termed as polymorphism, whereas variations with lower frequencies are defined as mutations. Metabolic activities or drug affinity to its receptor and efficacy depends on enzymes coded by mutated or polymorphic genes, which can alter pharmacological response in individuals or in some ethnic groups, within population. Single-nucleotide polymorphisms (SNPs) are a type of genetic variants that occur mostly as a result of the substitution of a single base pair and they are commonly known.1,15 Studies revealed that variability among individuals in PK vulnerability to drug accounts for some unfortunate outcomes, also in those patients who do not miss doses. This has challenged the conventional concept that therapeutic failure, reoccurrence, and the emergence of antimicrobial resistance are primarily due to poor adherence.16

The severe and ubiquitous challenge in the TB management of patients is PK heterogeneity. \textit{SLCO1B1}, \textit{ABCB1}, \textit{PXR}, \textit{CAR}, and \textit{CES} genetic variations have drawn scientific attention because they have an impact on a broad spectrum of medications PK.17 Genetic changes in the acetylation status are linked to marked inter-individual variation in circulating INH concentration and clearance after medication. The differences in INH inactivation and elimination rates in various (fast and slow) acetylation phenotypes are principally attributable to differences in the rate of INH acetylation in the liver and small intestine by a genetically regulated polymorphic N-acetyltransferase (NAT) enzyme.18

Rifampicin

RF proved to be a cornerstone TB treatment by shortening the period of anti-tubercular therapy (ATT) from 18 to 9 months and enhanced recovery rates when it was introduced in combinational chemotherapy for TB during 1960s.19,20 RF diffuses freely in the tissues, living cells, and bacteria which make it easily available against the intracellular pathogens like MTB. It exhibits its anti-mycobacterial activity by arresting the RNA synthesis from MTB’s DNA through the β-subunit of RNA polymerase (RNA pol).21 RF action drives through the rpo β gene which codes for the β-subunit of RNA pol, and mutation in the rpo β gene is the reason behind the development of more than 95% of resistance against RF. Major mutation hotspots are found in 81bp-RF resistance-determining region (RRDR). Commonly known mutated codons in RRDR are rpo β 531, rpo β 526, and rpo β 516.22 Its antibacterial properties and resistance development are influenced by drug bioavailability (concentration), and higher doses of 1,200 mg or more daily may be effective.23 As a result, increasing the dose of RF from the standard dosing based on weight may aid in achieving desired plasma PK and pharmacodynamics.24 Few recent studies have shown that the high dosage of RF could result in better therapy outcomes in patients.25,26 Many studies reported a correlation between various genetic variants and significant changes in RF plasma levels in TB patients.27 RF hepatocellular uptake is typically performed by organic aniontransporting polypeptide 1B1 (OATP1B1)28 and metabolism is catalyzed by hepatic β esterases and arylacetamide deacetylsylase29 to its active metabolic form, 25-desacetylrifampicin, and then, it is excreted via bile and renal routes after first pass metabolism.30 OATP1B1 is main among the major influx transporter proteins, a 691 amino acid protein coded by solute carrier (SLC) organic anion transporter family member 1B1 (SLCO1B1)31 gene that predominantly presents at the basolateral membrane of hepatocytes32 and modulates the hepatic uptake of drug from bloodstream.33 OATP1B1 transporter protein has a strong affinity for RF.34 Membrane drug transporter superfamilies include SLC and adenosine triphosphate (ATP)-binding cassette (ABC) transporters.32 Around 400 transporters in membrane belong to SLC and ABC superfamily, with approximately 32 of them being clinically linked and potentially important drivers of drug PK and individual drug responses.35 The sinusoidal inflow transporter SLCO1B1 and the efflux transporter ABCB1 influence RF distribution36 while absorption in liver and biliary excretion.37 Fifteen exons and 190 known polymorphisms having minor allele of more than 5% frequency are found in the \textit{SLCO1B1} gene.38 rs4149056 T>C and rs2306283 G>A are two well-characterized variation in the \textit{SLCO1B1} gene39 (– Fig. 2).

According to studies, a common single nucleotide variant (rs4149056 c.521T>C p.V174A) reduces SLCO1B1 expression, resulting in lower OATP1B1 uptake/transport activity and higher plasma levels.40 Allegre et al reported high RF plasma concentration in TB patients with the SLCO1B1 rs4149056 variant, and analysis by multivariate linear regression also suggested that the SLCO1B1 rs4149056 variant can be considered as a positive predictive marker for raised RF concentration.41 Weiner et al observed decreased RF exposure in patients who had SLCO1B1 rs11045819 (c.463C >A p. Pro155Thr) polymorphism.42 When compared with patients with the wild-type allele (CC), patients having rs11045819 variant allele (CA) in SLCO1B1 showed 42% low RF exposure (25.6 µg h/mL), 34% reduced peak concentration (5 µg/L), and 63% detectable oral clearance (22 L/h).42 The functional effects of variation rs2306283 (c.388A>G p. Asn130Asp) have been observed to be inconsistent.40,43 A study by Dompreh et al observed that rs2306283 variant in SLCO1B1 was found to be related to decreased RF concentration in pediatric TB patients. In paired analysis, patients having SLCO1B1 homozygous variation (AA) exhibited significantly lesser RF concentration than patients having wild genotype (GG).44 In the African population, there is an elevation in the prevalence of the SLCO1B1 rs4149032 polymorphism in intron 2 haplotype tagging SNP (tSNP) which is associated with lower RF exposure.45 Patients with heterozygous and homozygous mutations had considerably lower RF bioavailability, with 18 and 28% declines in RF bioavailability, respectively.46 RF is a substrate of P-glycoprotein (Pgp) efflux pump.47 Pgp is a multi-domain integer membrane protein that uses
ATP energy to move solutes/ions across the membranes in eukaryotes (efflux pump).^{48-50} Pgp is the ABCB1 transporter protein constituting of 1,280 amino acids that is encoded by the ABC gene.^{51} The ABCB1 gene is present on chromosome number 7 and has 29 exons in a 251.3-kb genomic area. The most prevalent SNPs in this ABCB1 gene are rs1128503, rs2032582, and rs1045642.^{52} rs1128503 and rs1045642 variants are synonymous, while missense mutation is found in rs2032582.^{53} There was no statistically significant correlation between ABCB1 variants and RF PK in any of the studies. However, only few of ABCB1 variants were studied in relation to RF exposures. Rare ABCB1 mutations that could affect medication PK have yet to be thoroughly investigated in terms of their functional consequences.^{54} The transcription of SLC01B1 and ABCB1 genes is regulated by PXR and CAR genes. PXR and CAR are nuclear receptors in the group I family that regulate a variety of transcriptions, including those of medicinal enzymes and drug transporter genes.^{55} Few research studies have looked into the likelihood of SNPs in these genes being linked to RF plasma levels. The PXR gene has rs2472677 and rs1523130 variations in the intron 1 and 5′UTR regions, respectively. These areas illustrate the transcription factor binding sites of regulatory regions of PXR.^{53} rs2307424 variant is due to synonymous mutation in the 5′UTR region. The *PXR* gene has no effect on RF plasma levels. The shift of G from A in the *CES1* gene has no effect on plasma RF concentration.^{16} Song et al observed 10 SNPs: the promoter region variants c.2548 C > T and c.2263 A > G, as well as c.269–965 A > G, c.474–1527 C > T, c.615 +120 G > A, c.1612 +136 G > A, and c.1613–87 G > A variants in intronic region and c.1872’69 A > G, c.1872’302_304delGAA, c.1872’445 C > G variants in 3′UTR within the RF level. The CES2 c.-22263 A > G variation was linked to elevated concentration of RF in plasma in TB patients. Plasma RF concentrations in homozygous major, heterozygous, and homozygous minor allele were 8.9 ± 2.9, 10.5 ± 3.1, and 13.9 ± 7.4 mg/L, respectively, in homozygous major allele, heterozygous, and homozygous carrying minor allele. The shift of G from A in the CES2 c.-22263 A > G variant has been found linked with continuous fall in activity of luciferase, this may lead to low metabolism and higher plasma RF levels, according to the study.^{59} Dompreh et al, on the contrary, found no differences in exposures of RF with CES2 rs3759994 variation.^{9}

Isoniazid

Due to low molecular weight and high water solubility,^{18} INH can be easily absorbed from the gastrointestinal tract (GIT) and, thus, the peak plasma concentration reaches in 1 to 3 hours of drug intake.^{61} INH reaches all tissues and body fluids including cerebrospinal fluid, saliva, pleural, and peritoneal fluid and to lungs after absorption from GIT.^{64,65} INH also attains peak concentration in the breast milk of lactating mother within 1 hour of drug administration.^{66} INH metabolism mainly follows enzyme-dependent pathways such as acetylation through NAT2 enzyme and hydrolysis catalyzed by acyl amidase. INH-NAD adducts is also formed by the combined action of human neutrophil myeloperoxidase and catalase-peroxidase (*KAT G*) of MTB. In humans, INH is initially metabolized by a non-inducible hepatic and intestinal enzyme known as the NAT type 2 (NAT2)^{67} which is coded by highly polymorphic gene called NAT 2
Aromatic amines along with endogenous molecules such as accountable for Hz drug acetylation and many carcinogenic tissues, as well as in liver and GIT. The tissues along with endocrine tissues, blood cells, neural to liver and GIT, whereas NAT1 is expressed in the majority of inter-ethnic groups. NAT2 confer slow, intermediate, or result in slow, intermediate, or fast acetylation phenotypes with broad inter-ethnic varia-
tsions. There are 53 fast acetylation phenotypes with broad interethnic varia-
tions among the population is widely. As NAT2 enzyme is a dominant catalyzer in INH biotransformation (formation of AcINH), bio-activation (formation of ACHz) and detoxification (formation of DiAcHz), due to different allelic distributions of NAT2 gene, results in variation in the acetylation profile of drugs in the same population. The degree of acetylation has been associat-
ted with increased risk of INH hepatotoxicity in numerous clinical investigations. Individuals with slow acetylation had higher plasma levels of INH and ACHz than those with fast acetylation. According to Donald et al, in slow acetylation of INH, 3 mg/kg dose is sufficient to attain the expected therapeutic objectives of anti-TB treatment, but in the case of fast acetylation, a 6 mg/kg of dose is required to provide adequate bactericidal activity.

Conclusion

The genetic and molecular research has proved to be a cornerstone in personalized medicine and is indicative of its expanding importance in the field of health care. Heterogeneous drug response with anti-tubercular drug therapy is a severe problem in TB patients. So, here we emphasized the genetic association with the PK of ATT drug. Genetic polymorphism in drug transporter genes, regulatory genes like SLC01B, ABCB1, PXR, and CAR and drug-metabolizing genes such as CES and NAT2 which drive the response, has been found to be of keen interest to rule out disease predisposition. By implementing genotyping assays prior to treatment administration, clinicians could better determine the dose which could be the main prospect of precision medicine. Additional studies are required to gain the core knowledge of drug fate association with genetic variations within the population. With advances in knowledge and findings, pharmacogenetics and pharmacogenomics will have a greater impact on drug research and development, clinical trials, and clinical practice.

Funding
None.

Conflict of Interest
None declared.

References
1 Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg 2017;58(01):E9–E12
2 World Health Organisation report, 2020. Accessed September 27, 2021 at: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf
3 Ramamoorthy A, Pacanowski MA, Bull J, Zhang L. Racial/ethnic differences in drug disposition and response: review of recently approved drugs. Clin Pharmacol Ther 2015;97(03):263–273
4 Relling MV, Gaicomoni KM. Pharmacogenetics. In: Brunton LL, Lazo GS, Parker KL, eds. Goodman & Gilman’s. The Pharmacological Basis of Therapeutics, XI edizione. New York: McGraw-Hill Medical Publishing Division; 2006, chapter 4: 93–115
5 Bachtior M, Ooi BNS, Wang J, et al. Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms. Pharmacogenomics J 2019;19(06): 516–527
6 Barbarino JM, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB: a worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med 2018;10(04):e1417
7 O’Donnell PH, Dolan ME. Cancer pharmacoeconomics: ethnic differences in sustainability to the effects of chemotherapy. Clin Cancer Res 2009;15(15):4806–4814
8 Getahun H, Matteelli A, Abubakar I, et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J 2015;46(06): 1563–1576
9 Dompreh A, Tang X, Zhou J, et al. Effect of genetic variation of NAT2 on isoniazid and SLCO1B1 and CES2 on rifampin pharmacokinetics in Ghanaian children with tuberculosis. Antimicrob Agents Chemother 2018;62(03):e02099–17
10 Metushi IG, Cai P, Zhu X, Nakagawa T, Uetrecht JP. A fresh look at the mechanism of isoniazid-induced hepatotoxicity. Clin Pharmacol Ther 2011;89(06):911–914
11 Carlson HB, Anthony EM, Russell WF Jr, Middlebrook G. Phyto- laxis of isoniazid neuropathy with pyridoxine. N Engl J Med 1956; 255(03):119–122
12 Lander ES, Linton LM, Birren B, et al.; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001;409(6822):860–921
13 Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001;291(5507):1304–1351
14 Wilke RA, Lin DW, Roden DM, et al. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 2007;6(11):904–916
15 Court MH. A pharmacogenomics primer. J Clin Pharmacol 2007; 47(09):1087–1103
16 Sloan DJ, McCallum AD, Schipani A, et al. Genetic determinants of the pharmacokinetic variability of rifampin in Malawian adults with pulmonary tuberculosis. Antimicrob Agents Chemother 2017;61(07):e00210–e00217
17 Thomas L, Miraj SS, Surulivelrajan M, Varma M, Sanju CSV, Rao M. Influence of single nucleotide polymorphisms on rifampin pharmacokinetics in tuberculosis patients. Antibiotics (Basel) 2020;9(06):307
18 Weber WW, Hein DW. Clinical pharmacokinetics of isoniazid. Clin Pharmacokinet 1979;4(04):401–422
19 Murray JP, Schrafnagel DE, Hopewell PC. Treatment of tuberculosis. A historical perspective. Ann Am Thorac Soc 2015;12(12): 1749–1759
20 Maggi N, Pasqualucci CR, Ballotta R, Sensi P. Rifampicin: a new orally active rifamycin. Chemotherapy 1966;11(05):285–292
21 Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001; 104(06):901–912
22 Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J Infect Public Health 2018;11(05):605–610
23 Gumbo T, Louie A, Deziel MR, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother 2007;51(11): 3781–3788
24 Stott KE, Pertinez H, Sturkenboom MGC, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother 2018;73(09):2305–2313
25 Seijger C, Hoefsloot W, Bergsma-de Guchteneire I, et al. High-dose rifampicin in tuberculosis: experiences from a Dutch tuberculosis centre. PLoS One 2019;14(03):e0213718
26 Svensson EM, Svensson RJ, Te Brake LHM, et al. The potential for treatment shortening with higher rifampicin doses: relating drug exposure to treatment response in patients with pulmonary tuberculosis. Clin Infect Dis 2018;67(01):34–41
27 Kim RB. Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur J Clin Invest 2003;33 (Suppl 2):1–5
28 Tirona RG, Leake BF, Wolkoff AW, Kim RB. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnant X receptor activation. J Pharmacol Exp Ther 2003;304(01):223–228
29 Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci 2006;95(06):1177–1195
30 Nakajima A, Fukushima T, Kobayashi Y, Watanabe A, Nakajima M, Yoko T. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: rifampicin, rifabutin, and rifapentine. Biochem Pharmacol 2011;82(11):1747–1756
31 Boivin AA, Cardinal H, Barama A, Pichette V, Hébert MJ, Roger M. Organic anion transporting polypeptide 1B1 (OATP1B1) and OATP1B3: genetic variability and haplotype analysis in white Canadians. Drug Metab Pharmacokinet 2010;25(05):508–515
32 Giacomini KM, Huang SM, Tweedie DJ, et al; International Trans- porter Consortium. Membrane transporters in drug development. Nat Rev Drug Discov 2010;9(03):215–236
33 Niemi M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics 2007;8(07):787–802
34 Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 2002;36(01):164–172
35 Hillgren KM, Keppler D, Zur AA, et al; International Transporter Consortium. Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin Pharmacol Ther 2013;94(01):52–63
36 Guo YX, Xu XF, Zhang QZ, et al. The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin-induced hepatotoxicity. Toxicol Mech Methods 2015;25(05):382–387
37 Te Brake LH, Russel FG, van den Heuvel JJ, et al. Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis (Edinb) 2016;96:150–157
38 Internet source. Accessed on September 1, 2021 at: www.hap- man.com
39 Oshiro C, Mangravite L, Klein T, Altman R. PharmGKB very important pharmacogene: SLCO1B1. Pharmacogenet Genomics 2010;20(03):211–216
40 Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011;63(01): 157–181
41 Allegra S, Fatiguso G, Calcagno A, et al. Role of vitamin D pathway gene polymorphisms on rifampicin plasma and intracellular pharmacokinetics. Pharmacogenomics 2017;18(09):865–880
42 Weiner M, Peloquin C, Burman W, et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother 2010;54(10): 4192–4200
43 Lee HH, Ho RH. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br J Clin Pharmacol 2017;83(06):1176–1184
96 Genetic Variants and Drug Efficacy in Tuberculosis Khan et al.

44 Dompere A, Tang X, Zhou J, et al. Effect of genetic variation of NAT2 on isoniazid and SLCO1B1 and CES2 on rifampin pharmacokinetics in Ghanaian children with tuberculosis. Antimicrob Agents Chemother 2018;62(3):e02099–e17

45 Chigutz E, Visser ME, Swart EC, et al. The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother 2011;55(9):4122–4127

46 Gengiah TN, Botha JH, Soowamber D, Naidoo K, Abdool Karim SS. Low rifampicin concentrations in tuberculosis patients with HIV infection. J Infect Dev Ctries 2014;8(8):987–993

47 Schuetz EG, Schinkel AH, Relling MV, Schuetz JD. G-polyglycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci USA 1996;93(9):4001–4005

48 Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 2004;61(6):682–699

49 Gottesman MM, Hrycyna CA, Schoenlein PV, Germann UA, Pastan I. Genetic analysis of the multidrug transporter. Annu Rev Genet 1995;29:607–649

50 Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. The impact of genetic polymorphisms of ABCB1 (MRD1, P-Glycoprotein) on drug disposition and potential clinical implications: update of the literature. Clin Pharmacokinet 2015;54(7):709–735

51 Caraba A, Crişan V, Romoşan I, Mozoş I, Muruţiu M. Vitamin D status, disease activity, and endothelial dysfunction in early rheumatoid arthritis patients. Dis Markers 2017;2017:5241012

52 Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogenes: ABCB1 (MRD1, P-glycoprotein). Pharmacogenet Genomics 2011;21(3):152–161

53 Fung KI, Gottesman MM. A synonymous polymorphism in a common MRD1 (ABCB1) haplotype shapes protein function. Biochim Biophys Acta 2009;1794(3):496–502

54 Jinn H, Tanaka-Kagawa T, Haninka N, et al. Identification of novel alternative splice variants of human constitutive androstane receptor and characterization of their expression in the liver. Mol Pharmacol 2004;65(3):496–502

55 Jamis-Dow CA, Khati AG, Collins JM, Klecker RW. Rifampin and rifabutin and their metabolism by human liver esterases. Xenobiota 1997;27(10):1015–1024

56 Ross MK, Crow JA. Human carboxylesterases and their role in xenobiotic and endobiotic metabolism. J Biochem Mol Toxicol 2007;21(4):187–196

57 Wang D, Zou L, Jin Q, Hou J, Ge G, Yang L. Human carboxylesterases: a comprehensive review. Acta Pharm Sin B 2018;8(5):699–712

58 Merzli Z, Ross S, Paré G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol Drug Interact 2014;29(3):143–151

59 Song SH, Chang HE, Jun SH, et al. Relationship between CES2 genetic variations and rifampicin metabolism. J Antimicrob Chemother 2013;68(6):1281–1284

60 Mitchison DA. Plasma concentrations of isoniazid in the treatment of tuberculosis. In: Davies DS, Prichard BN, eds. Biological Effects of Drugs in Relation to their Plasma Concentrations. London: MacMillan; 1973:171–182

61 Ellard GA, Gammon PT. Pharmacokinetics of isoniazid metabolism in man. J Pharmacokin Biopharm 1976;4(2):83–113

62 Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid–solid lipid nanoparticles. Int J Pharm 2013;441(1-2):202–212

63 Hutchings AD, Menne RD, Spragg BP, Routledge PA. Saliva and plasma concentrations of isoniazid and acetylisoniazid in man. Br J Clin Pharmacol 1988;25(5):585–589

64 Jutte PC, Rutgers SR, Van Altena R, Uges DR, Van Horn JR. Penetration of isoniazid, rifampicin and pyrazinamide in tuberculous pleural effusion and psoas abscess. Int J Tuberc Lung Dis 2004;8(11):1368–1372

65 Conte JE Jr, Golden JA, McQuitty M, et al. Effects of gender, AIDS, and acetylator status on intrapulmonary concentrations of isoniazid. [published correction appears in Antimicrob Agents Chemother. 2002 Sep;46(9):3112.] Antimicrob Agents Chemother 2002;46(8):2358–2364

66 Singh N, Golani A, Patel Z, Maitra A. Transfer of isoniazid from circulation to breast milk in lactating women on chronic therapy for tuberculosis. Br J Clin Pharmacol 2008;65(3):418–422

67 Wang P, Pradhan K, Zhong XB, Ma X. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B 2016;6(5):384–392

68 Khan SR, Morgan AG, Michail K, et al. Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid–N(2)-adduct formation: a comparison of the reactivity of isoniazid with its known human metabolites. Biochem Pharmacol 2010;106:46–55

69 Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 1998;279(5437):98–102

70 Khan N, Pande V, Das A. NAT2 sequence polymorphisms and acetylation profiles in Indians. Pharmacogenomics 2013;14(3):289–303

71 Prezioso P. Isoniazid: metabolic aspects and toxicological correlates. Curr Drug Metab 2007;8(8):839–851

72 Cheng J, Krausz KW, Li F, Ma X, Gonzalez FJ. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid. Toxicol Appl Pharmacol 2013;266(2):245–253

73 Sim E, Payton M, Noble M, Minchin R. An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaroytes. Hum Mol Genet 2000;9(16):2435–2441

74 Blum M, Grant DM, McBride W, Heim M, Meyer UA. Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 1990;9(3):193–203

75 Ohsako S, Deguchi T. Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltransferases from human liver. J Biol Chem 1990;265(8):4630–4634

76 Windmill KF, Gaedigk A, Hall PM, Samarutanga H, Grant DM, McManus ME. Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. Toxicol Sci 2000;54(1):19–29

77 Sabbagh A, Darlu P, Crouau-Roy B, Poloni ES. Arylamine N-acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence: a worldwide population survey. PLoS One 2011;6(6):e18507

78 Boukouvala S, Sim E. Structural analysis of the genes for human arylamine N-acetyltransferases and characterisation of alternative transcripts. Basic Clin Pharmacol Toxicol 2005;96(5):343–351

79 Heir DW. N-acetyltransferase 2 genetic polymorphism: effects of carcinoma and haplotype on urinary bladder cancer risk. Oncogene 2006;25(11):1649–1658

80 Richardson M, Kirkham J, Dwan K, Sloan D, Davies G, Jorgensen A. Influence of genetic variants on toxicity to anti-tubercular agents: a systematic review and meta-analysis (protocol). Syst Rev 2017;6(1):142

81 Donald PR, Parkin DP, Seifart H, et al. The influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazid. Eur J Clin Pharmacol 2007;63(7):633–639