Impact of Early Corticosteroids on 60-day Mortality in Critically Ill Patients with COVID-19: A Multicenter Cohort Study of the OUTCOMEREA Network

Claire Dupuis (cdupuis1@chu-clermontferrand.fr)
Centre Hospitalier Universitaire de Clermont-Ferrand

Etienne de Montmollin
Hôpital Bichat - Claude-Bernard: Hopital Bichat - Claude-Bernard

Niccolò Buetti
Inserm U1137 IAME

Dany Goldgran-Toledano
Centre Hospitalier Intercommunal Le Raincy-Montfermeil: Groupe Hospitalier Intercommunal Le Raincy-Montfermeil

Jean Reignier
CHU Nantes: Centre Hospitalier Universitaire de Nantes

Carole Schwebel
CHU Grenoble: Centre Hospitalier Universitaire Grenoble Alpes

Julien Domitile
CHU Clermont-Ferrand: Centre Hospitalier Universitaire de Clermont-Ferrand

Mathilde Neuville
Hôpital Foch: Hopital Foch

Moreno Ursino
INSERM PARIS

Shidasp Siami
CH Sud-Essonne Site d'Etampes: Centre Hospitalier Sud-Essonne Site d'Etampes

Stéphane Ruckly
ICUResearch Paris

Corinne Alberti
CHU Robert-Debre: Hopital Universitaire Mere-enfant Robert-Debre

Bruno Mourvillier
CHU Reims: Centre Hospitalier Universitaire de Reims

Sebastien Bailly
Université Grenoble Alpes: Universite Grenoble Alpes

Virginie Laurent
Hospital Centre Versailles: Centre Hospitalier de Versailles
Research Article

Keywords: COVID-19, Intensive care unit, corticosteroids, outcome

DOI: https://doi.org/10.21203/rs.3.rs-293856/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objectives

In severe COVID-19 pneumonia, the appropriate timing and dosing of corticosteroids (CS) is not known. Patient subgroups for which CS could be more beneficial also need appraisal. The aim of this study was to assess the effect of early CS in COVID-19 pneumonia patients admitted to the ICU on the occurrence of 60-day mortality, ICU-acquired-bloodstream infections (ICU-BSI), and hospital-acquired pneumonia and ventilator-associated pneumonia (HAP-VAP).

Methods

We included patients with COVID-19 pneumonia admitted to 11 ICUs belonging to the French OutcomeRea™ network from January to May 2020. We used survival models with ponderation with inverse probability of treatment weighting (IPTW). Inflammation was defined as Ferritin >1000 µg/l or D-Dimers >1000 µg/l or C-Reactive Protein >100 mg/dL.

Results

The study population comprised 302 patients having a median age of 61.6 (53-70) years of whom 78.8% were male and 58.6% had at least one comorbidity. The median SAPS II was 33 (25-44). Invasive mechanical ventilation was required in 34.8% of the patients. Sixty-six (21.8%) patients were in the Early-CS-subgroup. Most of them (n=55, 83.3%) received high doses of steroids. Overall, 60-day mortality was 29.4%. The risks of 60-day mortality \(\text{IPTW}HR =0.88; 95\% \ CI 0.55 \text{ to } 1.39, p=0.58 \), ICU-BSI and HAP-VAP were similar in the two groups. Importantly, early CS treatment was associated with a lower mortality rate in patients aged 60 years or more \(\text{IPTW}HR, 0.51; 95\% \ CI, 0.29 \text{ to } 0.91; p=0.02 \). But, CS was associated with an increased risk of death for the patients younger than 60 years without inflammation on admission \(\text{IPTW}HR =8.17; 95\% \ CI, 1.76, 37.85; p=0.01 \).

Conclusion

For patients with COVID-19 pneumonia, early CS treatment was not associated with patient survival. Interestingly, inflammation and age can significantly influence the effect of CS.

Introduction

Around five percent of COVID-19 patients developed a severe form of the disease and required intensive care unit (ICU) admission [1, 2]. Inflammation and cytokine storm were observed in most of these ICU patients [3, 4] prompting the investigation of corticosteroids (CS) as a therapeutic option [5].

CS were widely used during the outbreaks of severe acute respiratory syndrome (SARS)-CoV1 and Middle East respiratory syndrome (MERS)-CoV. However, studies yielded conflicting results, with some
observational data suggesting increased mortality and secondary infection rates and impaired clearance of SARS-CoV and MERS-CoV [5, 6].

In other clinical settings, studies reported beneficial effects of CS in septic shock [7, 8], and ARDS [9]. However, the results are not generalizable to COVID-19 patients owing to the low frequency of septic shock most of the time and because the ARDS phenotype is quite different [10].

Several randomized controlled trials (RCT) dealing with the impact of CS on COVID-19 patients have been published recently [11–15]. Most of them were collected in a meta-analysis by the REACT working group [16], which found a reduction in 28-day mortality in patients on CS. However, this result should be interpreted with caution for several reasons [17]. First, the study was based mainly on the UK Recovery trial, a large open-label RCT which found that treatment with dexamethasone (6 mg/d for 10 days) reduced mortality. Unfortunately, this result was only preliminary, the trial had a limited follow-up period of 28 days, the pragmatic design did not allow a strict balance between groups, and the adverse effects of CS were not monitored [11]. Second, all other studies included in the meta-analysis were stopped prematurely because of the Recovery trial results and were consequently underpowered with no significant endpoint results assessed before day 28 [12–14]. The final report of the Recovery trial finally confirmed the previous results[18]. The subsequent MEtCOVID trial did not show a difference in mortality at day 28 between treatment groups [15] but suggest a benefit of CS in the patients aged over 60. Finally, several observational studies yielded conflicting results [19–23].

In light of these considerations, no definitive conclusion should be drawn [24] and some issues are still pending such as the dosage and timing of CS. Furthermore, as one size dose rarely fits all, some subgroups of patients might benefit from CS more than others, including the older patients, the more severe ones or those with inflammation.

Against this background, the analysis of observational longitudinal studies could be a suitable alternative to randomized control trials [25, 26] and provide a truer picture of what impact certain measures have.

The aim of this study was to assess in critically ill COVID-19 patients the effect of early CS administration on 60-day mortality, ICU-bloodstream infections (ICU-BSI) and hospital-acquired pneumonia and ventilator-associated pneumonia (HAP-VAP) in various subgroups using a large multicentric observational cohort and applying an inverse probability of treatment weight (IPTW) weighted Cox survival model.

Methods

Data source

This study was performed with data from the French prospective multicenter (n = 11 ICUs) OutcomeRea™ database. The methods for data collection and quality of the database have been described in detail elsewhere [27]. In accordance with French law, the OutcomeRea™ database has been approved by the
French Advisory Committee for Data Processing in Health Research (CCTIRS) and the French Informatics
and Liberty Commission (CNIL, registration no. 8999262). The database protocol was submitted to the
Institutional Review Board of the Clermont-Ferrand University Hospital (Clermont-Ferrand, France), who
waived the need for informed consent (IRB no. 5891).

Study population

Patients over 18 years were eligible for inclusion in the analysis if they were admitted to one of the ICUs
belonging to the OutcomeRea™ network and if they developed a severe COVID-19 disease confirmed by a
positive SARS-CoV-2 test using reverse-transcriptase polymerase chain reaction (PCR).

Patients were excluded if they were referred from another ICU, if a decision was made to discontinue life-
sustaining treatments during the first two days after ICU admission, if their ICU length of stay was ≤ 2
days and if they had previously received CS before ICU admission.

Data collection

All data were prospectively collected and comprised details on ICU admission (demographics, chronic
disease/comorbidities as defined by the Knaus Scale [28], baseline severity indexes: SAPS II [29] and
SOFA [30] scores, treatments on admission including lopinavir-ritonavir, hydroxychloroquine, tocilizumab,
Anakinra and CS); several variables recorded throughout the ICU stay (clinical and biological parameters,
requirement for non-invasive ventilatory support and invasive mechanical ventilation (IMV) and other
organ support (vasopressors, renal replacement therapy)); and outcomes (occurrence of HAP-VAP and
ICU-BSI and ICU and hospital length of stay (LOS), vital status at ICU and hospital discharge and at day
60 after ICU admission).

Definitions, group assignment

The Early-CS-group comprised all patients who received corticosteroids for the first time during the first
two days after ICU admission. High doses of corticosteroids concerned patients receiving more than 10
mg of dexamethasone, and more than 200 mg of hydrocortisone. Inflammation was defined by a Ferritin
> 1000 µg/l or D-Dimers > 1000 µg/l or C-reactive protein (CRP) > 100 mg/dL [31, 32]. According to the
MetCOVID results[15] we also planned to evaluate the subgroups of patients aged over and under 60.

The presence or absence of HAP-VAP and ICU-BSI was documented according to the standard definitions
developed by the Centers for Disease Control and Prevention [33]. Quantitative cultures of specimens
were required to diagnose HAP-VAP or ICU-BSI.

Length of ICU and hospital stays was calculated from ICU admission.

The positive results of blood culture, pathogen identification and their susceptibility profile, the infection
source, and the antimicrobials received were prospectively recorded.

Statistical analysis
Patient characteristics were expressed as n (%) for categorical variables and median (interquartile range (IQR)) for continuous variables. Comparisons were made with exact Fisher tests for categorical variables and Wilcoxon tests for continuous variables.

The primary outcome measure was 60-day mortality. We used an IPTW estimator, which is the inverse of the patients’ predicted probability of being in the Early-CS group on the basis of their baseline covariates. The IPTW estimator creates a pseudo-population in which baseline patient differences are balanced between treatment groups. The impact of early CS on 60-day mortality was estimated by a two-step process: 1) weight estimation by the IPTW estimator, and 2) estimation of the impact of early CS on 60-day mortality using a weighted Cox model. Weighted Fine and Gray sub-distribution competing risk models [34] were used to estimate the risk of HAP-VAP and ICU-BSI, considering the competing ICU death and ICU discharge.

As a first step, the weight model, a non-parsimonious multivariable logistic regression model, was constructed to estimate each patient's predicted probability of being in the Early-CS group. We included in the weight model the following covariates: time since symptom onset and ICU admission, time between hospital and ICU admission, age, gender, comorbidities including presence of chronic cardio-vascular, respiratory and kidney chronic diseases, clinical and laboratory features on admission, renal SOFA item; PaO$_2$/FiO$_2$, lymphocyte, neutrophil, monocyte counts, ferritin, C-reactive protein and D-Dimers, treatments received on admission including Lopinavir-Ritonavir and Tocilizumab. All variables included in the weight model reflected knowledge available at baseline [35–37]. To avoid extreme weights, we used stabilized weights, and to ensure respect of the positivity assumption, weights were truncated at the 1-99th percentile [38] (online data supplement). For the second step, we used a weighted Cox proportional-hazard model to estimate the risk of death within the first 60 days of ICU stay of early CS. A hazard ratio > 1 indicated an increased risk of death. The proportionality of hazard risk for early CS was tested using martingale residuals. A further analysis using a raw (non-weighted) multivariable Cox proportional-hazard model was performed to confirm the results obtained with the IPTW. All models were stratified by center. The analyses were carried out similarly for the risks of HAP-VAP and ICU-BSI using subdistribution hazard models with ICU discharge as competing risk instead of Cox models.

Similar analyses were performed for the patients receiving high doses of corticosteroids.

We tested interactions between age, inflammation and mechanical ventilation and then subgroup analyses were performed among the patients with inflammation or not, older or younger than 60 years old, on mechanical ventilation or not on admission and among the patients admitted before and after day 7 following the first COVID symptoms and their potential subcategories depending on the presence of interactions[39].

For all tests, a two-sided α of 0.05 was considered as significant. Missing baseline variables were handled by multiple imputation with only one dataset using proc MI with SAS software. All statistical analyses were performed with SAS software, Version 9.4 (SAS Institute, Cary, NC).
Results

Database description

From February 15th to May 1st, 2020, 355 patients with laboratory confirmed COVID-19 were admitted to ICUs of the OutcomeRea™ network. Of these, 302 were included in the study (Fig. 1). Overall, 238 (78.8%) were male, with a median age (IQR) of 61 (53–70) years. The sex distribution and median age of included and excluded patients were similar (Table 1). One or more comorbidities were present in 177 patients (58.6%), with obesity and cardiovascular disease being the most frequently coexisting medical conditions, confirmed in 108 (35.8%) and 79 (26.2%) patients, respectively. Time from onset of symptoms to ICU admission was 10 (7–12) days, and time from hospital to ICU admission was 2 (1–4) days. On ICU admission, SAPS II was 33 (25–44). 224 (74.1%) patients had moderate to severe ARDS. Overall, 105 (34.8%) patients received IMV, 48 (15.9%) oxygen by mask or nasal prongs, 113 (37.4%) high-flow nasal cannula (HFNC) therapy, 24 (8%) continuous positive airway pressure (CPAP) and 12 (4%) non-invasive positive pressure ventilation (NIPPV). The median lymphocyte count on admission was 0.8 G/L [0.5; 1.1], and 254 (84%) patients had inflammation on admission. The median follow-up time was 11.6 days (7–20).
Table 1
Comparison of the baseline characteristics of patients with and without early CS after ICU admission

	All	Non-early CS	Early-CS
Number of patients	302	236	66
Baseline characteristics			
Age	61.6 [53; 70]	61 [53; 70]	62.5 [55; 71]
Gender (Male)	238 (78.8)	182 (77.1)	56 (84.8)
Body-mass index, kg/cm² * (miss = 10)	28.4 [25.6; 32.2]	28.4 [25.5; 32.2]	27.6 [25.1; 32.1]
Body-mass index ≥ 30	108 (35.8)	84 (35.6)	24 (36.4)
Comorbidities			
At least one comorbidity	177 (58.6)	131 (55.5)	46 (69.7)
Chronic Liver Failure	4 (1.4)	2 (0.8)	2 (3)
Chronic Cardiovascular Disease	79 (26.2)	61 (25.8)	18 (27.3)
Chronic Respiratory Failure	33 (11)	22 (9.3)	11 (16.7)
Chronic Kidney Disease	22 (7.2)	14 (5.9)	8 (12.1)
Immunosuppression§	11 (3.6)	5 (2.1)	6 (9.1)
Time between symptoms and ICU admission	10 [7; 12]	10 [7; 12]	10 [8; 13]
Treatment before admission			
Angiotensin converting enzyme inhibitor	59 (19.6)	46 (19.5)	13 (19.7)
Statin	35 (11.6)	28 (11.9)	7 (10.6)
Non-steroidal anti-inflammatory drug	12 (4)	10 (4.2)	2 (3)
Immunomodulatory treatments	9 (3)	7 (3)	2 (3)
Characteristics on admission			
SAPS II score	33 [25; 44]	32 [24; 43]	37 [29; 48]

Inflammation Ferritin > 1000 µg/l or D-Dimers > 1000 µg/l or C-Reactive Protein > 100 mg/dL

VFD: Ventilatory free days; BSI: Blood stream infection, HAP-VAP: hospital-acquired pneumonia and ventilator-associated pneumonia. LOS: Length of stay; HSHC: Hydrocortisone hemisuccinate ICU: intensive care unit
	All	Non-early CS	Early-CS	p-value
SOFA score	4 [3 ; 7]	4 [2 ; 6]	5 [3 ; 8]	< .01
SOFA respiratory item (> 2)	172 (57)	123 (52.1)	49 (74.2)	< .01
SOFA cardio-vascular item (> 2)	76 (25.2)	56 (23.7)	20 (30.3)	0.28
SOFA Kidney item (> 2)	35 (11.6)	23 (9.7)	12 (18.2)	0.06
Neurologic failure (GCS < 15)	40 (13.2)	27 (11.4)	13 (19.7)	0.08
Body temperature > 39°C	96 (31.8)	82 (34.7)	14 (21.2)	0.04
Severity of ARDS				
No ARDS PaO2/FiO2 > 300	36 (12)	34 (14.4)	2 (3)	< .01
Mild: PaO2/FiO2 200–300	42 (14)	37 (15.7)	5 (7.6)	
Moderate: PaO2/FiO2 100–200	146 (48.4)	113 (47.9)	33 (50)	
Severe: PaO2/FiO2 < 100	78 (25.8)	52 (22)	26 (39.4)	
Ventilatory support on admission				
Mechanical ventilation on admission	105 (34.8)	80 (33.9)	25 (37.9)	0.55
Non-invasive positive pressure ventilation	12 (4)	10 (4.2)	2 (3)	0.66
High flow nasal cannula	113 (37.4)	94 (39.8)	19 (28.8)	0.10
Continuous positive airway pressure	24 (8)	13 (5.5)	11 (16.7)	< 0.01
Oxygen by mask or nasal prongs	48 (15.9)	39 (16.5)	9 (13.6)	0.1
Laboratory features on admission				
Leucocytes (miss = 13)*	7830 [5870 ; 10680]	7700 [5670 ; 10350]	8745 [7000 ; 12200]	0.04
Neutrophils (miss = 39)	6760.8 [4600 ; 9830]	6700 [4350 ; 9260]	7415 [5240 ; 11600]	0.02
Lymphocytes (miss = 39)	800 [500 ; 1100]	800 [500 ; 1065]	775 [500 ; 1200]	0.59
Monocytes (miss = 47)	350 [210 ; 540]	330 [200 ; 510.6]	390 [250 ; 620]	0.29

Inflammation* Ferritin > 1000 µg/l or D-Dimers > 1000 µg/l or C-Reactive Protein > 100 mg/dL

VFD: Ventilatory free days; BSI: Blood stream infection, HAP-VAP: hospital-acquired pneumonia and ventilator-associated pneumonia. LOS: Length of stay; HSHC: Hydrocortisone hemisuccinate ICU: intensive care unit
Parameter	All	Non-early CS	Early-CS	
CRP (miss = 92)	157 [83.6 ; 238]	149.9 [83.7 ; 238]	162 [82 ; 232.9]	0.83
Ferritin (miss = 138)	1127 [592 ; 1960.2]	1107.4 [581.7 ; 1941]	1347.5 [720 ; 2210]	0.23
DDimers (miss = 130)	1743.4 [860 ; 5261.6]	1800 [901 ; 5347]	1640.5 [700 ; 4805.3]	0.27
Inflammation	254 (84)	199 (84)	55 (83)	0.64

Steroid characteristics on admission

- **Corticosteroids**: 66 (21.8) | 0 (0) | 66 (100) | -
- **High dose of corticosteroids**: 55 (18.2) | 0 (0) | 55 (83.3) | -
- **Low dose of corticosteroids**: 11 (3.6) | 0 (0) | 11 (16.7) | -
- **Dexamethasone**: 47 (15.6) | 0 (0) | 47 (71.2) | -
- **HSHC**: 8 (2.6) | 0 (0) | 8 (12.1) | -
- **Methylprednisolone**: 2 (0.6) | 0 (0) | 2 (3) | -
- **Prednisolone**: 9 (3) | 0 (0) | 9 (13.6) | -
- **First corticosteroids after Day 3**: 96 (31.8) | 96 (40.7) | 0 (0) | -
- **High dose of steroids after Day 3**: 89 (29.4) | 89 (37.7) | 0 (0) | -
- **Low dose of steroids after Day 3**: 7 (2.4) | 7 (3) | 0 (0) | -

Other treatments on admission

- **Lopinavir Ritonavir**: 109 (36) | 81 (34.3) | 28 (42.4) | 0.23 |
- **Hydroxychloroquine**: 33 (11) | 21 (8.9) | 12 (18.2) | 0.03 |
- **Tocilizumab**: 25 (8.2) | 17 (7.2) | 8 (12.1) | 0.20 |
- **Anakinra**: 22 (7.2) | 0 (0) | 22 (33.3) | -

LOS and Mortality

- **ICU LOS**: 11.6 [7 ; 20] | 12 [6 ; 20] | 11 [7 ; 19] | 0.88 |
- **ICU Death**: 85 (28.2) | 63 (26.7) | 22 (33.3) | 0.29 |

Inflammation* Ferritin > 1000 µg/l or D-Dimers > 1000 µg/l or C-Reactive Protein > 100 mg/dL

VFD: Ventilatory free days; BSI: Blood stream infection, HAP-VAP: hospital-acquired pneumonia and ventilator-associated pneumonia. LOS: Length of stay; HSHC: Hydrocortisone hemisuccinate ICU: intensive care unit
Early- versus non-early corticosteroids group

Sixty-six patients were in the early CS group including 47 patients receiving dexamethasone. In the non-early CS group, 96 patients (31%) received corticosteroids during their ICU stay (Fig S1 in additional file 1). Lopinavir-ritonavir was administered in 109 (36%) patients, hydroxychloroquine in 33 (11%), tocilizumab in 25 (8.2%), and anakinra in 22 (7.2%). The comparison of baseline characteristics between the Early- and the non-Early-CS groups is shown in Table 1. Both groups had similar ICU ventilatory-free days, ICU-LOS and 60-day mortality. The variables used to determine the risk for early CS administration and validity of the model are shown in Fig. 1, S2-S4 in additional file 1.

Primary endpoint

Overall, the 60-day mortality was 29.4% with no difference between the Early-CS subgroup and the Non-early-CS subgroup (34.8% versus 28%, p = 0.28). After weighted Cox model analysis, the risk of death at day 60 was similar in patients with and without early CS (HRw = 0.88, CI 95% 0.55 to 1.39, p = 0.58; Fig. 2). Similar results were observed in a sensitivity analysis using truncated weights (Table S1 in additional file 1). In a multivariable Cox survival model without weighting on IPTW, early CS therapy was not associated with the risk of mortality (Table S2 in additional file 1). Similar results were observed when limiting the analysis to patients of the Early CS-group receiving high doses of CS (IPTWHR=1.15, CI 95%, 0.76 to 1.75, p = 0.51, Fig; 2).
Subgroup analysis and secondary endpoints

Subgroup analysis showed that early CS administration was associated with a lower mortality rate in patients aged 60 years or more (\textit{IPTW} HR, 0.51; 95% CI, 0.29–0.91; \(p = 0.02\)). An interaction was found between age and inflammation. As a result, subgroup analyses were also achieved among older and younger patients, with and without inflammation.

CS therapy was associated with higher mortality in patients younger than 60 without inflammation on admission (\textit{IPTW} HR, 8.17; 95% CI, 1.76–37.85; \(p = 0.01\)) (Fig. 3).

Safety and healthcare associated infections

The main adverse events recorded are given in Table 1. The main differences observed between patients who received early CS or not were a higher rate of developing at least one hyperglycemia event: 46 (69.7%) vs. 59 (25%), \((p < 0.01)\) and a higher median daily dose of insulin: 27.2 Ui [4.4; 58.4] vs. 5.9 Ui [0 ; 36.3], \((p < 0.01)\), respectively. There were no differences between patients who received early CS or not in the rate of developing at least one episode of ICU-BSI: 13 (19.7%) vs. 28 (12%) \((p = 0.11)\), and at least one episode of HAP-VAP: 25 (37.9%) vs. 67 (28.8%) \((p = 0.16)\), respectively.

After weighted Fine & Gray subdistribution survival model analyses, the risk of ICU-BSI and the risk of HAP-VAP at day 60 did not differ between patients with and without early CS therapy (SubHRw = 1.01 for ICU-BSI, CI 95% 0.55 to 1.85, \(p = 0.97\) and SubHRw = 1.19 for HAP-VAP, CI 95% 0.74 to 1.92, \(p = 0.42\), respectively) (Fig. 2).

Discussion

We report a multicenter observational study involving 11 French ICUs in the Outcomerea© network that assessed the efficacy and safety of early CS therapy in patients admitted to the ICU for COVID-19 pneumonia.

Early administration of CS during the first two days after ICU admission was not significantly associated with 60-day mortality. Similar results were observed in patients who received high doses of corticosteroids. Importantly, early CS administration was beneficial in older ICU patients but not in patients younger than 60. Early CS seemed to be potentially disadvantageous in younger patients without inflammation on admission. It was also associated with a significant increase in the risk of hyperglycemia and insulin requirement and did not affect significantly the incidence of HAP-VAP and/or ICU-BSI.

The benefit in patients older than 65 had already been suggested by a subgroup analysis of the MetCOVID trial [15]. One explanation given by the authors was that older patients had more inflammation on admission. In our cohort, CRP and ferritin levels were similar in the two age groups. However, older patients had a lower lymphocyte count, a higher DDimer level and had a higher severity score (table S5 in
additional file 1). Another hypothesis could be therefore that the more severe the disease, the more effective are steroids. These results need confirmation, since the Recovery trial found a protective effect of steroids for patients younger than 70 years.

Our results suggested that steroids should be avoided in younger patients in the absence of inflammation. Such results could also be related to the severity of the pneumonia. Indeed, in our cohort, patients without inflammation had less severe pneumonia symptoms (table S5 in additional file 1). Our results are consistent with those of other studies which also found that steroids were beneficial in the subgroup of patients with inflammation [15, 19, 40]. Furthermore, in the Recovery trial and another meta-analysis, the less severe patients, i.e. those without oxygen, did not benefit from CS [11, 41]. The beneficial effects of steroids could be explained by their potential role in suppressing inflammatory storms, reducing inflammatory exudation, and preventing multiple organ injuries [3, 4, 42]. However, further studies of COVID-19 ARDS are needed to better understand the direct effect of steroids on this particular immune response [43], which is different from that of other bacterial sepsis [44, 45]. In contrast, steroids could have a deleterious effect in the absence of inflammation because they induce immunosuppression [46].

One of the potential consequences of immunosuppression is delayed SARS-CoV-2 RNA clearance [47], which had already been observed in SARS and MERS [6] but not observed in SARS-COV 2 patients[48]. In addition, the immunosuppression induced by steroids could also lead to a higher risk of superinfections [23, 45]. Several studies have already reported a high rate of ICU-acquired pneumonia in mechanically ventilated COVID-19 patients [49].

There are several reasons why our results are at variance with those of the Recovery trial, which support the use of corticosteroids to reduce death rates. First, our patients received high doses of steroids (20 mg of dexamethasone for 5 days and then 10 mg of dexamethasone for 5 days), which could have been more harmful than lower doses. To date, only a few studies have assessed high doses of steroids. One observational study reported that a higher dose was associated with harmful effects [50]. Only the CoDEX trial has assessed dexamethasone at a higher dose (up to 20 mg per day), reporting a positive effect measured as a composite of days alive and free of mechanical ventilation [13]. However, in the CoDEX trial, 28-day mortality was not different between high dose of steroids and placebo. Results from other clinical trials are pending before definitive conclusions can be drawn. Second, our patients received steroids from symptom onset, later than in the Recovery trials (10 days versus 8 days), which could have been too late to prevent or reverse the damage caused by extensive inflammation. Third, one third of the patients in the non-Early-CS group finally received steroids, which could have minimized differences between the two groups. Forth, the absence of benefit of CS in our study may be related to the significant increase in the rate of hyperglycemia and in the insulin use. Indeed the absence of glycemic control in critically ill patients is associated with a demonstrated increase risk of death[51]. Finally, other immunomodulatory treatments could have interfered with the effects of steroids. In our cohort, some patients also received tocilizumab or Anakinra. Such treatments are under evaluation and preliminary results of interleukin-6 or interleukin-1 blockade and/or anti-TNF are varying. Most studies of tocilizumab...
were gathered in a meta-analysis which showed that it did not reduce short-term mortality [52, 53]. Anakinra could reduce the risk of invasive mechanical ventilation and death [54] but results from randomized controlled trials are still pending.

The strength of our study resides in our subgroup analyses, the 60-day endpoint and the use of weighted models that minimize the weight of patients unlikely to have received corticosteroids. We also excluded all patients previously exposed to steroids to reduce immortality time bias. Our study has several limitations. First, despite the use of propensity score analyses to draw causal inferences the study was observational, and potential unmeasured confounders may still have biased our results. Second, our study dealt with heterogeneity in the prescription of corticosteroids in terms of drugs, doses, and duration but also in that of other immunomodulatory treatments. Furthermore, a part of the patients in the non-Early-CS received finally corticosteroids. We also only considered the first episode of BSI or HAP-VAP.

Conclusion

In conclusion, we were unable to identify a beneficial effect of steroids on 60-day mortality in critically ill COVID-19 pneumonia patients, mostly because of variations in the clinical characteristics of the patients and in the choice, dose and duration of steroids. However, we showed that inflammation and age could be important criteria to determine which patients would benefit the most from early steroid therapy. This finding should be confirmed prospectively. Personalization of the administration of steroids and other immunomodulatory treatments based on biomarkers warrants further investigation.

Declarations

Ethical Approval and Consent to participate

In accordance with French law, the OutcomeRea™ database has been approved by the French Advisory Committee for Data Processing in Health Research (CCTIRS) and the French Informatics and Liberty Commission (CNIL, registration no. 8999262).

Consent for publication

The database protocol was submitted to the Institutional Review Board of the Clermont-Ferrand University Hospital (Clermont-Ferrand, France), who waived the need for informed consent (IRB no. 5891).

Authors’ contributions

JFT, CD, NB, BS had the idea for and designed the study. JFT supervised the study. CD, SR, SB did the statistical analysis. All authors contributed to the acquisition, analysis, or interpretation of data. CD, JFT, NB wrote the manuscript. All authors revised the report and approved the final version before submission.

Availability of supporting data
The data are available from the corresponding author upon request.

Conflicts of interest/competing interests.

JFT declares no conflict of interest related to the submitted work. Outside the submitted work, JFT declares participation in advisory boards for Merck, Pfizer, Gilead, Nabriva and Paratek, lecture fees from Biomerieux, Pfizer and Merck, and research grants to his research unit from Merck, 3M, Astelas and Thermofisher.

Dr. Buetti is currently receiving a mobility grant from the Swiss National Science Foundation (grant number: P400PM_183865) and a grant from the Bangerter-Rhyner Foundation. These grants support his fellowship in Paris.

Funding

'Not applicable'

Acknowledgements

The OutcomeRea™ study group thank Jeffrey WATTS, MD for assistance in medical writing.

References

1. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020.

2. Xie J, Wu W, Li S, Hu Y, Hu M, Li J, et al. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: a retrospective multicenter study. Intensive Care Med [Internet]. 2020 [cited 2020 Aug 28]; Available from: http://link.springer.com/10.1007/s00134-020-06211-2.

3. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20:363–74.

4. Batlle D, Soler MJ, Sparks MA, Hiremath S, South AM, Welling PA, et al. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J Am Soc Nephrol JASN. 2020;31:1380–3.

5. Yang J-W, Yang L, Luo R-G, Xu J-F. Corticosteroid administration for viral pneumonia: COVID-19 and beyond. Clin Microbiol Infect. 2020;26:1171–7.

6. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. The Lancet. 2020;395:473–5.

7. Annane D, Renault A, Brun-Buisson C, Megarbane B, Quenot J-P, Siami S, et al. Hydrocortisone plus Fludrocortisone for Adults with Septic Shock. N Engl J Med. 2018;378:809–18.

8. Venkatesh B, Finfer S, Cohen J, Rajbhandari D, Arabi Y, Bellomo R, et al. Adjunctive Glucocorticoid Therapy in Patients with Septic Shock. N Engl J Med. 2018;378:797–808.
9. Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8:267–76.

10. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–102.

11. The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. N Engl J Med [Internet]. 2020 [cited 2020 Aug 1]; Available from: http://www.nejm.org/doi/10.1056/NEJMoa2021436.

12. Dequin P-F, Heming N, Meziani F, Plantefève G, Voiriot G, Badié J, et al. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19: A Randomized Clinical Trial. JAMA. 2020;324:1298.

13. Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA. 2020;324:1307.

14. The Writing Committee for the REMAP-CAP Investigators. Angus DC, Derde L, Al-Beidh F, Annane D, Arabi Y, et al. Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA. 2020;324:1317.

15. Jeronimo CMP, Farias MEL, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized With COVID-19 (Metcovid): A Randomised, Double-Blind, Phase IIb, Placebo-Controlled Trial. Clin Infect Dis [Internet]. 2020 [cited 2020 Aug 22]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1177/5891816.

16. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA. 2020;324:1330.

17. Prescott HC, Rice TW. Corticosteroids in COVID-19 ARDS: Evidence and Hope During the Pandemic. JAMA. 2020;324:1292.

18. RECOVERY Collaborative Group. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384:693–704.

19. Tran V-T, Mahévas M, Bani-Sadr F, Robineau O, Perpoint T, Perrodeau E, et al. Corticosteroids in patients hospitalized for COVID-19 pneumonia who require oxygen: observational comparative study using routine care data. Clin Microbiol Infect [Internet]. 2020 [cited 2021 Jan 9]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1198743X2030731X.

20. Liu J, Zhang S, Dong X, Li Z, Xu Q, Feng H, et al. Corticosteroid treatment in severe COVID-19 patients with acute respiratory distress syndrome. J Clin Invest. 2020;130:6417–28.
21. Nelson BC, Laracy J, Shoucri S, Dietz D, Zucker J, Patel N, et al. Clinical Outcomes Associated with Methylprednisolone in Mechanically Ventilated Patients with COVID-19. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020.

22. Fadel R, Morrison AR, Vahia A, Smith ZR, Chaudhry Z, Bhargava P, et al. Early Short-Course Corticosteroids in Hospitalized Patients With COVID-19. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020;71:2114–20.

23. Bartoletti M, Marconi L, Scudeller L, Pancaldi L, Tedeschi S, Giannella M, et al. Efficacy of corticosteroid treatment for hospitalized patients with severe COVID-19: a multicentre study. Clin Microbiol Infect. 2021;27:105–11.

24. De Backer D, Azoulay E, Vincent J-L. Corticosteroids in severe COVID-19: a critical view of the evidence. Crit Care [Internet]. 2020 [cited 2021 Jan 9];24. Available from: https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03360-0.

25. Ross JS. Randomized clinical trials and observational studies are more often alike than unlike. JAMA Intern Med. 2014;174:1557.

26. Anglemyer A, Horvath HT, Bero L. Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. In: The Cochrane Collaboration, editor. Cochrane Database Syst Rev [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2014 [cited 2017 Dec 11]. Available from: http://doi.wiley.com/10.1002/14651858.MR000034.pub2.

27. Zahar J-R, Timsit J-F, Garrouste-Orgeas M, François A, Vesim A, Descore-Declere A, et al. Outcomes in severe sepsis and patients with septic shock: Pathogen species and infection sites are not associated with mortality*. Crit Care Med. 2011;39:1886–95.

28. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100:1619–36.

29. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.

30. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26:1793–800.

31. Rubio-Rivas M, Ronda M, Padulles A, Mitjavila F, Riera-Mestre A, García-Forero C, et al. Beneficial effect of corticosteroids in preventing mortality in patients receiving tocilizumab to treat severe COVID-19 illness. Int J Infect Dis. 2020;101:290–7.

32. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020.

33. Calandra T, Cohen J. International Sepsis Forum Definition of Infection in the ICU Consensus Conference. The international sepsis forum consensus conference on definitions of infection in the
intensive care unit. Crit Care Med. 2005;33:1538–48.
34. Lau B, Cole SR, Gange SJ. Competing Risk Regression Models for Epidemiologic Data. Am J Epidemiol. 2009;170:244–56.
35. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34:3661–79.
36. Moore KL, Neugebauer R, Laan MJ, Tager IB. Causal inference in epidemiological studies with strong confounding. Stat Med. 2012;31:1380–404.
37. Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med. 2007;26:734–53.
38. Hernán MA, Robins JM. Causal inference. 2016.
39. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. Solomon CG, editor. N Engl J Med [Internet]. 2020 [cited 2020 Jul 22]; Available from: http://www.nejm.org/doi/10.1056/NEJMcp2009575.
40. Narain S, Stefanov DG, Chau AS, Weber AG, Marder G, Kaplan B, et al. Comparative Survival Analysis of Immunomodulatory Therapy for Coronavirus Disease 2019 Cytokine Storm. Chest [Internet]. 2020 [cited 2021 Jan 9]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0012369220349011.
41. Pasin L, Navalesi P, Zanigrillo A, Kuzovlev A, Likhvantsev V, Hajjar LA, et al. Corticosteroids for Patients With Coronavirus Disease 2019 (COVID-19) With Different Disease Severity: A Meta-Analysis of Randomized Clinical Trials. J Cardiothorac Vasc Anesth. 2021;35:578–84.
42. Meduri GU, Annane D, Confalonieri M, Chrousos GP, Rochwerg B, Busby A, et al. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS. Intensive Care Med. 2020;46:2284–96.
43. Arabi YM, Chrousos GP, Meduri GU. The ten reasons why corticosteroid therapy reduces mortality in severe COVID-19. Intensive Care Med. 2020;46:2067–70.
44. Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P. Cytokine Levels in Critically Ill Patients With COVID-19 and Other Conditions. JAMA. 2020;324:1565.
45. Jeannet R, Daix T, Formento R, Feuillard J, François B. Severe COVID-19 is associated with deep and sustained multifaceted cellular immunosuppression. Intensive Care Med. 2020;46:1769–71.
46. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260–8.
47. Li T, Cao Z, Chen Y, Cai M, Zhang L, Xu H, et al. Duration of SARS-CoV-2 RNA shedding and factors associated with prolonged viral shedding in patients with COVID-19. J Med Virol. 2021;93:506–12.
48. Buetti N, Wicky P-H, Le Hingrat Q, Ruckly S, Mazzuchelli T, Loiodice A, et al. SARS-CoV-2 detection in the lower respiratory tract of invasively ventilated ARDS patients. Crit Care Lond Engl. 2020;24:610.
49. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl.
50. for the COVID-HRC group. Monreal E, Sainz de la Maza S, Natera-Villalba E, Beltrán-Corbellini Á, Rodríguez-Jorge F, et al. High versus standard doses of corticosteroids in severe COVID-19: a retrospective cohort study. Eur J Clin Microbiol Infect Dis [Internet]. 2020 [cited 2021 Jan 9]; Available from: http://link.springer.com/10.1007/s10096-020-04078-1.

51. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354:449–61.

52. Tleyjeh IM, Kashour Z, Damlaj M, Riaz M, Tlayjeh H, Altannir M, et al. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2020.

53. Gupta S, Wang W, Hayek SS, Chan L, Mathews KS, Melamed ML, et al. Association Between Early Treatment With Tocilizumab and Mortality Among Critically Ill Patients With COVID-19. JAMA Intern Med. 2021;181:41–51.

54. Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2:e393–400.