THE EQUIVALENCE OF TWO DISCRETENESSES OF TRANGULATED CATEGORIES

LINGLING YAO AND DONG YANG

Abstract. Given an ST-triple \((\mathcal{C}, \mathcal{D}, M)\) one can associate a co-\(t\)-structure on \(\mathcal{C}\) and a \(t\)-structure on \(\mathcal{D}\). It is shown that the discreteness of \(\mathcal{C}\) with respect to the co-\(t\)-structure is equivalent to the discreteness of \(\mathcal{D}\) with respect to the \(t\)-structure. As a special case, the discreteness of \(\mathcal{D}^b(\text{mod } A)\) in the sense of Vossieck is equivalent to the discreteness of \(K^b(\text{proj } A)\) in a dual sense, where \(A\) is a finite-dimensional algebra.

1. Introduction

Derived-discreteness of a finite-dimensional algebra was introduced by Vossieck in [20]. It is defined by counting the number of indecomposable objects in the bounded derived category. Recently this notion has been generalised by Broomhead, Pauksztello and Ploog in [10] to a notion of discreteness of a triangulated category with respect to (the heart of) a bounded \(t\)-structure. In [10] they also introduced a dual notion, namely, the notion of discreteness of a triangulated category with respect to a bounded co-\(t\)-structure (equivalently, a silting subcategory).

It turns out that ST-triples introduced in [1] provide a nice framework to study the interplay between \(t\)-structures and co-\(t\)-structures. Let \(\mathcal{C}\) and \(\mathcal{D}\) be triangulated categories and \(M\) a silting object of \(\mathcal{C}\) such that \((\mathcal{C}, \mathcal{D}, M)\) is an ST-triple. Then on \(\mathcal{D}\) there is a natural bounded \(t\)-structure, say, with heart \(\mathcal{H}\). Our main result is

Theorem (4.1). The category \(\mathcal{C}\) is \(M\)-discrete if and only if the category \(\mathcal{D}\) is \(\mathcal{H}\)-discrete.

In the literature there are another two notions of discreteness of triangulated categories, namely, silting-discreteness [2] and \(t\)-discreteness [1], defined by counting the number of silting objects and bounded \(t\)-structures, respectively. In [1] it is shown that \(\mathcal{C}\) is silting-discrete if and only \(\mathcal{D}\) is \(t\)-discrete, and that if \(\mathcal{D}\) is \(\mathcal{H}\)-discrete then \(\mathcal{D}\) is \(t\)-discrete. Together with these results Theorem [1.1] implies the following corollary, which completes the picture.

Corollary (4.2). If \(\mathcal{C}\) is \(M\)-discrete, then \(\mathcal{C}\) is silting-discrete.

Date: November 12, 2018.

Lingling Yao acknowledges support from the National Natural Science Foundation of China under Grant No.11601077 and the National Natural Science Foundation of Jiangsu Province BK20160662.
The paper is structured as follows. In Section 2 we fix the notion and briefly recall the definitions of t-structure, silting object and co-t-structure. In Section 3 we recall the definitions of ST-triple and discreteness of triangulated categories. In Section 4 we prove Theorem 4.1. In the final section we apply Theorem 4.1 to finite-dimensional algebras to recover a result of Qin [19] stating that derived-discreteness in the sense of Vossieck [20] is preserved under decollement.

Throughout let k be an algebraically closed field. We use Σ to denote the shift functors of all triangulated categories.

2. Preliminaries

The aim of this section is mainly to briefly recall the definitions of t-structures, silting object and co-t-structure and fix the notation we will use in the paper.

2.1. Triangulated categories. Let A be a finite-dimensional k-algebra. Denote by $\text{mod} A$ the category of finite-dimensional (right) A-modules and by $\text{proj} A$ its full subcategory of finitely generated projective A-modules. Denote by $K^b(\text{proj} A)$ the bounded homotopy category of $\text{proj} A$ and by $D^b(\text{mod} A)$ the bounded derived category of $\text{mod} A$. These are two triangulated k-categories with shift functor being the shift of complexes.

Let \mathcal{T} be a triangulated k-category. For two subcategories \mathcal{A} and \mathcal{B}, let $\mathcal{A} \ast \mathcal{B}$ be the full subcategory of \mathcal{T} consisting of objects X with a triangle $X' \to X \to X'' \to \Sigma X'$, where $X' \in \mathcal{A}$ and $X'' \in \mathcal{B}$. We will often identify an object with the full subcategory consisting of this unique object. A full subcategory of \mathcal{T} is said to be thick if it is closed under shifts, cones and direct summands. For an object X of \mathcal{T} denote by $\text{add}(X)$ the smallest additive subcategory of \mathcal{T} containing X and closed under direct summands, and by $\text{thick}(X)$ the smallest thick subcategory of \mathcal{T} containing X. Assume that \mathcal{T} has arbitrary coproducts. An object X of \mathcal{T} is said to be compact if the canonical map $\bigoplus_{i \in I} \text{Hom}_\mathcal{T}(X,Y_i) \to \text{Hom}_\mathcal{T}(X,\bigoplus_{i \in I} Y_i)$ is an isomorphism for any set $\{Y_i| i \in I\}$ of objects of \mathcal{T}; it is called a compact generator if in addition \mathcal{T} coincides with its smallest triangulated category containing X and closed under coproducts.

2.2. Grothendieck groups. Let \mathcal{H} be an abelian k-category with only finitely many isoclasses (=isomorphism classes) of simple objects such that all objects of \mathcal{H} are filtered by simple objects (e.g. $\text{mod} A$, where A is a finite-dimensional k-algebra). The Grothendieck group $K_0(\mathcal{H})$ of \mathcal{H} is the abelian group generated by isoclasses of objects in \mathcal{H} modulo the relations $[M] + [N] - [L]$ whenever there is a short exact sequence $0 \to M \to L \to N \to 0$. For $M \in \mathcal{H}$ denote by $\text{dim}(M)$ the class of M in $K_0(\mathcal{H})$. Let $K_0(\mathcal{H})^+$ be the subset of $K_0(\mathcal{H})$ consisting of classes of objects in \mathcal{H}. Then $K_0(\mathcal{H})$ is a free abelian group with basis the classes of simple objects, and in terms of this basis elements of $K_0(\mathcal{H})^+$ are precisely those with non-negative coefficients.
Let \mathcal{A} be a Hom-finite Krull–Schmidt additive k-category such that $\mathcal{A} = \text{add}(M)$ for some $M \in \mathcal{A}$ (e.g. $\text{proj} \mathcal{A}$, where A is a finite-dimensional k-algebra). The split Grothendieck group $K_0^{sp}(\mathcal{A})$ of \mathcal{A} is the abelian group generated by the isoclasses of objects of \mathcal{A} modulo the relations $[L] + [N] - [L \oplus N]$. For $N \in \mathcal{A}$, denote by $\text{sum}(N)$ the class of N in $K_0^{sp}(\mathcal{A})$. Let $(K_0^{sp}(\mathcal{A}))^+$ be the subset of $K_0^{sp}(\mathcal{A})$ consisting of classes of objects of \mathcal{A}. Then $K_0^{sp}(\mathcal{A})$ is a free abelian group with basis the classes of indecomposable direct summands of M, and in terms of this basis elements of $K_0^{sp}(\mathcal{A})^+$ are precisely those with non-negative coefficients.

2.3. t-structures. Let \mathcal{T} be a triangulated k-category.

A t-structure on \mathcal{T} ([6]) is a pair $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ of strict (that is, closed under isomorphisms) and full subcategories of \mathcal{T} such that, putting $\mathcal{T}^{p} = \Sigma^{-p} \mathcal{T}^{0}$ and $\mathcal{T}^{p} = \Sigma^{-p} \mathcal{T}^{0}$ for $p \in \mathbb{Z}$, we have

1. $\mathcal{T}^{\leq -1} \subseteq \mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 1} \subseteq \mathcal{T}^{\geq 0}$;
2. $\text{Hom}(X, Y) = 0$ for $X \in \mathcal{T}^{\leq 0}$ and $Y \in \mathcal{T}^{\geq 1}$,
3. for each $X \in \mathcal{T}$ there is a triangle $X' \to X \to X'' \to \Sigma X'$ in \mathcal{T} with $X' \in \mathcal{T}^{\leq 0}$ and $X'' \in \mathcal{T}^{\geq 1}$.

The heart $\mathcal{T}^{0} := \mathcal{T}^{\leq 0} \cap \mathcal{T}^{\geq 0}$ is always abelian. The t-structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is said to be bounded if

$$\bigcup_{p \in \mathbb{Z}} \mathcal{T}^{\leq p} = \mathcal{T} = \bigcup_{p \in \mathbb{Z}} \mathcal{T}^{\geq p},$$

or equivalently, $\mathcal{T} = \text{thick}(\mathcal{T}^{0})$.

Let A be a finite-dimensional k-algebra. Let $\mathcal{D}^{\leq 0}$ (respectively, $\mathcal{D}^{\geq 0}$) be the full subcategory of the bounded derived category $\mathcal{D}^b(\text{mod} \ A)$ consisting of complexes with vanishing cohomologies in positive degrees (respectively, in negative degrees). Then $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ is a bounded t-structure on $\mathcal{D}^b(\text{mod} \ A)$ with heart the full subcategory of complexes with cohomology concentrated in degree 0, which is canonically equivalent to $\text{mod} \ A$.

It is easy to see that for every integer p, the pair $(\mathcal{T}^{\leq p}, \mathcal{T}^{\geq p})$ is also a t-structure and the category $\mathcal{T}^p := \mathcal{T}^{\leq p} \cap \mathcal{T}^{\geq p}$ is the heart. By the condition (3) in the above definition, for $X \in \mathcal{T}$ there is a triangle $X' \to X \to X'' \to \Sigma X'$ with $X' \in \mathcal{T}^{\leq p}$ and $X'' \in \mathcal{T}^{\geq p+1}$. This triangle is unique up to a unique isomorphism, so the correspondences $X \mapsto X'$ and $X \mapsto X''$ extend to functors

$$\sigma^{\leq p} : \mathcal{T} \to \mathcal{T}^{\leq p} \quad \text{and} \quad \sigma^{\geq p+1} : \mathcal{T} \to \mathcal{T}^{\geq p+1},$$

respectively, called the truncation functors. Moreover, we have the set of cohomology functors

$$\{\sigma^p = \Sigma^p \sigma^{\leq p} \sigma^{\geq p} : \mathcal{T} \to \mathcal{T}^0 \mid p \in \mathbb{Z} \},$$

which is cohomological, i.e. takes triangles to long exact sequences. The next result follows directly from the definition of $\sigma^{\geq p}$ on morphisms.

Lemma 2.1. The map $\sigma^{\geq p}(X, Y) : \text{Hom}_\mathcal{T}(X, Y) \to \text{Hom}_\mathcal{T}(\sigma^{\geq p}X, \sigma^{\geq p}Y)$
4 LINGLING YAO AND DONG YANG

- is injective if $\text{Hom}_T(X, \sigma^{\leq p-1}Y) = 0$;
- is surjective if $\text{Hom}_T(X, \Sigma \sigma^{\leq p-1}Y) = 0$;
- has kernel $\{f : X \to Y | f$ factors through the morphism $\sigma^{\leq p-1}(Y) \to Y\}$.

2.4. Silting objects and co-t-structures. Let T be a triangulated k-category.

An object M of T is said to be presilting if $\text{Hom}_T(M, \Sigma^p M) = 0$ for all positive integers p, and silting if in addition $T = \text{thick}(M)$. See [16, 5, 3]. Let A be a finite-dimensional k-algebra. Then the free A-module A_A of rank 1 is a silting object of the bounded homotopy category $K^b(\text{proj} A)$.

A co-t-structure on T ([8, Definition 2.4]) is a pair $(T_{\geq 0}, T_{\leq 0})$ of strict and full subcategories of T such that, putting $T_{\geq p} = \Sigma^{-p} T_{\geq 0}$ and $T_{\leq p} = \Sigma^{-p} T_{\leq 0}$ for $p \in \mathbb{Z}$, we have

(0) both $T_{\geq 0}$ and $T_{\leq 0}$ are additive and closed under taking direct summands;
(1) $T_{\geq 1} \subseteq T_{\geq 0}$ and $T_{\leq -1} \subseteq T_{\leq 0}$;
(2) $\text{Hom}(X, Y) = 0$ for $X \in T_{\geq 1}$ and $Y \in T_{\leq 0}$;
(3) for each $X \in T$ there is a triangle $X' \to X \to X'' \to \Sigma X'$ in T with $X' \in T_{\geq 1}$ and $X'' \in T_{\leq 0}$.

The intersection $T_{\geq 0} \cap T_{\leq 0}$ is called the co-heart of the co-t-structure $(T_{\geq 0}, T_{\leq 0})$. A co-t-structure $(T_{\leq 0}, T_{\geq 0})$ is said to be bounded ([9]) if

$$\bigcup_{p \in \mathbb{Z}} T_{\leq p} = T = \bigcup_{p \in \mathbb{Z}} T_{\geq p},$$

or equivalently, $T = \text{thick}(T_{\geq 0} \cap T_{\leq 0})$.

Let A be a finite-dimensional k-algebra. Let $P_{\geq 0}$ (respectively, $P_{\leq 0}$) be the full subcategory of $K^b(\text{proj} A)$ consisting of objects isomorphic to complexes with trivial components in negative degrees (respectively, in positive degrees). Then $(P_{\geq 0}, P_{\leq 0})$ is a bounded co-t-structure on $K^b(\text{proj} A)$ with co-heart $\text{add}(A)$, which is canonically equivalent to $\text{proj} A$.

3. ST-triples and discreteness

In this section we recall the definition of ST-triple from [11] and two notions of discreteness of triangulated categories from [10]; moreover, we show that ‘compact silting objects’ naturally produce ST-triples, and establish some auxiliary results which we will use in Section 4.

3.1. ST-triples. Let T be a triangulated k-category.

An ST-triple inside T ([11, Definition 4.3]) is a triple (C, D, M), where C and D are thick subcategories of T and M is a silting object of C, such that

(ST1) $\text{Hom}_T(M, T)$ is finite-dimensional for any object T of T,
(ST2) $(T_{\leq 0}, T_{\geq 0})$ is a t-structure on T, where for an integer p

$$T_{\leq p} := \{X \in T | \text{Hom}_T(M, \Sigma^m X) = 0 \forall m > p\},$$

$$T_{\geq p} := \{X \in T | \text{Hom}_T(M, \Sigma^m X) = 0 \forall m < p\}.$$
(ST3) \(\mathcal{T} = \bigcup_{p \in \mathbb{Z}} \mathcal{T}^{\leq p} \) and \(\mathcal{D} = \bigcup_{p \in \mathbb{Z}} \mathcal{T}^{\geq p} \).

A prototypical example of an ST-triple is the triple \((\text{R}^b(\text{proj} \ A), \text{D}^b(\text{mod} \ A), A_A)\) inside \(\text{D}^b(\text{mod} \ A) \). Note, however, that in general \(C \) and \(D \) are not comparable, see [1, the paragraph after Definition 4.3].

Let \(A \) be a triangulated \(k \)-category with arbitrary coproducts. Assume that \(M \) is a compact generator of \(A \) such that \(\text{Hom}_A(M, \Sigma^p M) \) is finite-dimensional for all \(p \in \mathbb{Z} \) and vanishes for all \(p > 0 \). Put

\[
A^c = \text{thick}(M),
\]
\[
A_{fd} = \{ X \in A \mid \bigoplus_{p \in \mathbb{Z}} \text{Hom}_A(M, \Sigma^p X) \text{ is finite-dimensional} \},
\]
\[
A^{-fd} = \{ X \in A \mid \text{Hom}_A(M, \Sigma^p X) \text{ is finite-dimensional for all } p \in \mathbb{Z}
\text{ and vanishes for } p \gg 0 \}.
\]

All \(A^c, A_{fd} \) and \(A^{-fd} \) are thick subcategories of \(A \). By [15, Theorem 3.4], the category \(A^c \) is precisely the subcategory of compact objects of \(A \). Thus it is independent of the choice of \(M \). It follows that \(A_{fd} \) and \(A^{-fd} \) are independent of the choice of \(M \) as well. Note that \(A^c \) and \(A_{fd} \) are contained in \(A^{-fd} \).

Proposition 3.1. Keep the notation and assumptions in the preceding paragraph. Then

(a) both \(A^c \) and \(A_{fd} \) are Hom-finite and Krull–Schmidt,

(b) \((A^c, A_{fd}, M)\) is an ST-triple inside \(A^{-fd} \).

Proof. (a) follows from (b) by Theorem 3.3(a) below. It is clear that \(M \) is a silting object of \(A^c \). Let us prove (b) by verifying the three conditions in the definition of an ST-triple.

(ST1) This is true by the definition of \(A_{fd} \).

(ST2) Put

\[
A^{<0} = \{ X \in A \mid \text{Hom}_A(M, \Sigma^p X) = 0 \forall p > 0 \},
\]
\[
A^{\geq 0} = \{ X \in A \mid \text{Hom}_A(M, \Sigma^p X) = 0 \forall p < 0 \}.
\]

Then by [11, Theorem 1.3] (cf. also [7, Proposition 2.8] and [3, Corollary 4.7]), \((A^{<0}, A^{\geq 0})\) is a t-structure on \(A \). For \(X \in A \), consider the triangle

\[
X' \rightarrow X \rightarrow X'' \rightarrow \Sigma X'
\]

with \(X' \in A^{<0} \) and \(X'' \in A^{\geq 1} \). Then by applying the functor \(\text{Hom}_A(M, ?) \) to this triangle we obtain isomorphisms

\[
\text{Hom}_A(M, \Sigma^p X) \cong \text{Hom}_A(M, \Sigma^p X'') \forall p \geq 1,
\]
\[
\text{Hom}_A(M, \Sigma^p X) \cong \text{Hom}_A(M, \Sigma^p X') \forall p \leq 0.
\]
As a consequence, if X belongs to \mathcal{A}_{d_t}, so do X' and X''. Therefore $(\mathcal{A}_{d_t}^{-\leq 0}, \mathcal{A}_{d_t}^{-\geq 0})$ is a t-structure on \mathcal{A}_{d_t}, where $\mathcal{A}_{d_t}^{-\leq 0} = \mathcal{A}_{d_t}^{-} \cap \mathcal{A}^{\leq 0}$ and $\mathcal{A}_{d_t}^{-\geq 0} = \mathcal{A}_{d_t}^{-} \cap \mathcal{A}^{\geq 0}$ are the categories defined in the definition of an ST-triple.

(ST3) This is clear from the definitions of the involved categories. \qed

For a dg (=differential graded) k-algebra A, it is known that the derived category $\mathcal{D}(A)$ of dg A-modules \cite{9} has arbitrary coproducts and is compactly generated by A_A, see \cite{15} Section 3.5. Put \[
\per(A) = \text{thick}(A_A),
\]
\[
\mathcal{D}_{fd}(A) = \{ X \in \mathcal{D}(A) \mid \bigoplus_{p \in \mathbb{Z}} H^p(X) \text{ is finite-dimensional} \},
\]
\[
\mathcal{D}_{fd}(A) = \{ X \in \mathcal{D}(A) \mid H^p(X) \text{ is finite-dimensional for all } p \in \mathbb{Z} \text{ and vanishes for } p \gg 0 \}.
\]

Proposition 3.2 \cite{1, Proposition 6.12}. Let A be a dg k-algebra satisfying

\begin{enumerate}
\item[(N)] $H^p(A) = 0$ for any $p > 0$,
\item[(F)] $H^p(A)$ is finite-dimensional for any $p \in \mathbb{Z}$.
\end{enumerate}

Then

\begin{enumerate}
\item[(a)] both $\per(A)$ and $\mathcal{D}_{fd}(A)$ are Hom-finite and Krull–Schmidt,
\item[(b)] $(\per(A), \mathcal{D}_{fd}(A), A_A)$ is an ST-triple inside $\mathcal{D}_{fd}(A)$.
\end{enumerate}

Proof. This follows from Proposition \ref{p:derived} since $H^p(M) = \text{Hom}_{\mathcal{D}(A)}(A, \Sigma^p M)$ for a dg A-module M. \qed

Let $(\mathcal{C}, \mathcal{D}, M)$ be an ST-triple inside \mathcal{T}. Let $\mathcal{T}_{\geq 0}$ be the smallest strict and full subcategory of \mathcal{T} which contains M and is closed under extensions, direct summands and negative shifts, and let

\[
\mathcal{T}_{< 0} = \Sigma^{-1} \{ X \in \mathcal{T} \mid \text{Hom}_\mathcal{T}(Y, X) = 0 \forall Y \in \mathcal{T}_{\geq 0} \}.
\]

We collect some useful results in the following theorem.

Theorem 3.3. Let $(\mathcal{C}, \mathcal{D}, M)$ be an ST-triple inside \mathcal{T}.

\begin{enumerate}
\item[(a)] \cite{1, Remark 4.4(d)] Both \mathcal{C} and \mathcal{D} are Hom-finite and Krull–Schmidt.
\item[(b)] \cite{1, Proposition 4.6(e)] $\bigcap_{p \in \mathbb{Z}} \mathcal{T}^{-p} = 0$.
\item[(c)] \cite{1, Proposition 4.6] $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0}) := (\mathcal{T}^{< 0} \cap \mathcal{D}, \mathcal{T}^{> 0})$ is a bounded t-structure on \mathcal{D} with heart $\mathcal{D}^{0} = \mathcal{T}^{0}$. The object $\sigma^0(M)$ is a projective generator of \mathcal{D}^{0}, which is equivalent to $\text{mod End}_\mathcal{T}(M)$.
\item[(d)] $(\mathcal{T}_{\geq 0}, \mathcal{T}_{< 0})$ is a co-t-structure on \mathcal{T} with co-heart $\text{add}(M)$ and $\mathcal{T}_{\leq 0} = \mathcal{T}^{< 0}$.
\item[(e)] \cite{1, Remark 4.18] $(\mathcal{C}_{\geq 0}, \mathcal{C}_{< 0}) := (\mathcal{T}_{\geq 0}, \mathcal{T}_{< 0} \cap \mathcal{C})$ is a bounded co-t-structure on \mathcal{C} with co-heart $\text{add}(M)$.
\end{enumerate}

The following result is \cite{1, Proposition 4.9}. By (ST3), there exists $r \in \mathbb{Z}$ such that $Y \in \mathcal{T}^{< r}$.
Lemma 3.4. Let $r \geq l$ be integers. For $Y \in \mathcal{T}^{\leq r}$, there exist $\beta_{\geq l}(Y) \in \mathcal{T}_{\geq l}$ and $\beta_{< l-1}(Y) \in \mathcal{T}^{\leq l-1}$ and a triangle

$$\beta_{\geq l}(Y) \xrightarrow{f_Y} Y \xrightarrow{g_Y} \beta_{< l-1}(Y) \xrightarrow{\Sigma} \beta_{\geq l}(Y)$$

with the following properties:

(a) $\beta_{\geq l}(Y) \in \Sigma^{-r}M^r \cdots \Sigma^{-l}M^l$ for some $M^r, \ldots, M^l \in \text{add}(M)$;
(b) for any simple object S in \mathcal{D}^0 and for all $p \geq l$ the map

$$\text{Hom}_\mathcal{T}(Y, \Sigma^{-p}S) \xrightarrow{f_Y} \text{Hom}(\beta_{\geq l}(Y), \Sigma^{-p}S)$$

is an isomorphism and the two spaces are isomorphic to $\text{Hom}_\mathcal{T}(M^p, S)$;
(c) for any simple object S in \mathcal{D}^0 and for all $p \leq l-1$ the map

$$\text{Hom}_\mathcal{T}(\beta_{< l-1}(Y), \Sigma^{-p}S) \xrightarrow{g_Y} \text{Hom}_\mathcal{T}(Y, \Sigma^{-p}S)$$

is an isomorphism.

The objects $\beta_{\geq l}(Y)$ and $\beta_{< l-1}(Y)$ are constructed inductively. The first step goes as follows: Take a minimal right $\text{add}(\Sigma^{-r}M)$-approximation $f: \Sigma^{-r}M^r \to Y$ and form a triangle

$$\Sigma^{-1}Y' \xrightarrow{h} \Sigma^{-r}M^r \xrightarrow{f} Y \xrightarrow{g} Y'.$$

Then $Y' \in \mathcal{T}^{\leq r-1}$ because M is silting. The ‘minimality’ and uniqueness of $\beta_{\geq l}(Y)$ is established by inductively applying the following lemma. This is crucial in the definition of Sum in Section 3.2.2. The ‘limit’ of $\beta_{\geq l}(Y)$ can be considered as a generalisation of minimal projective resolutions. Note, however, that in general $\beta_{\geq l}$ and $\beta_{< l-1}$ cannot be extended to functors.

Lemma 3.5. Let $Y \in \mathcal{T}^{\leq r}$. Assume that there is a triangle

$$\Sigma^{-1}Y'' \xrightarrow{h'} \Sigma^{-r}N^r \xrightarrow{f'} Y \xrightarrow{g'} Y''$$

with $N^r \in \text{add}(M)$. Then f' is a right $\text{add}(\Sigma^{-r}M)$-approximation if and only if $Y'' \in \mathcal{T}^{\leq r-1}$. If these conditions hold, then h' is the direct sum of h with an isomorphism in $\text{add}(\Sigma^{-r}M)$ and (3.2) is the direct sum of (3.1) with a trivial triangle.

Proof. By inspection on the long exact sequence obtained by applying $\text{Hom}_\mathcal{T}(M, ?)$ to (3.2) we obtain the first statement. If the conditions hold, then f' is the direct sum of f with a morphism $\Sigma^{-r}L^r \to 0$ with $L^r \in \text{add}(M)$. The second statement follows.

Repeatedly applying Lemma 3.4, we obtain the following corollary.

Corollary 3.6. Let $Y \in \mathcal{T}^{\leq r}$. Assume $N^r, \ldots, N^l \in \text{add}(M)$ and $Y'' \in \mathcal{T}^{\leq l-1}$ with $Y \in \Sigma^{-r}N^r \cdots \Sigma^{-l}N^l \ast Y''$. Then M^r, \ldots, M^l and $\beta_{< l-1}(Y)$ in Lemma 3.4 are direct summands of N^r, \ldots, N^l and $Y'' \in \mathcal{T}^{\leq l-1}$, respectively.
3.2. Discretenesses. Let \mathcal{T} be a triangulated k-category and $(\mathcal{C}, \mathcal{D}, M)$ an ST-triple inside \mathcal{T}. We recall two notions of discreteness introduced in [10].

Recall that M is a silting object of \mathcal{C} and on \mathcal{D} there is a bounded t-structure $(\mathcal{D}^{<0}, \mathcal{D}^{\geq 0})$ with heart \mathcal{D}^0.

3.2.1. Discreteness with respect to the t-structure. For $X \in \mathcal{D}$, define

$$\text{Dim}(X) = (\dim_{\sigma^p}(X))_{p \in \mathbb{Z}} \in (K_0(\mathcal{D}^0)^+)_{\leq \mathbb{Z}}.$$

Lemma 3.7. Let $X' \rightarrow X \rightarrow X'' \rightarrow \Sigma X'$ be a triangle in \mathcal{T}. Then

$$\text{Dim}(\sigma^{\geq p}(X)) \leq \text{Dim}(\sigma^{\geq p}(X')) + \text{Dim}(\sigma^{\geq p}(X''))$$

for any $p \in \mathbb{Z}$.

Proof. This is because $\{\sigma^p | p \in \mathbb{Z}\}$ is cohomological. \qed

For $x = (x^p)_{p \in \mathbb{Z}}, y = (y^p)_{p \in \mathbb{Z}} \in K_0(\mathcal{D}^0)^{\leq \mathbb{Z}}$ define $y \leq x$ if $x^p - y^p \in K_0(\mathcal{D}^0)^+$ for all $p \in \mathbb{Z}$. For $x \in K_0(\mathcal{D}^0)^{\leq \mathbb{Z}}$, let $\text{Ind}^x \mathcal{D}$ (respectively, $\text{Ind}^{<x} \mathcal{D}$) be the isoclasses of indecomposable objects X of \mathcal{D} with $\text{Dim}(X) = x$ (respectively, $\text{Dim}(X) \leq x$).

Definition 3.8 ([10, Definition 2.1]). The category \mathcal{D} is called \mathcal{D}^0-discrete if the set $\text{Ind}^x \mathcal{D}$ is finite for any $x \in K_0(\mathcal{D}^0)^{\leq \mathbb{Z}}$.

Example 3.9. Let A be a finite-dimensional k-algebra. For $X \in D^b(\text{mod } A)$, define $\text{Dim}(X) = (\dim H^i(X))_{i \in \mathbb{Z}}$, which belongs to the cone $(K_0(\text{mod } A)^{\leq \mathbb{Z}})$. The algebra A is called derived-discrete [20] if the number of isoclasses of indecomposable objects X of $D^b(\text{mod } A)$ with $\text{Dim}(X) = x$ is finite for any $x \in K_0(\text{mod } A)^{\leq \mathbb{Z}}$. It is clear that this is exactly the $(\text{mod } A)$-discreteness in the sense of Definition 3.8. There is a classification of derived-discrete algebras in [20] and a description of the AR quivers of $K^b(\text{proj})$ and $D^b(\text{mod})$ in [8] (see also [13]).

Example 3.10. Let $A = k[t]$ with $\text{deg}(t) = -1$. We consider it as a dg algebra with trivial differential. Then A satisfies the conditions (N) and (F) in Proposition 3.2. Take the ST-triple $(\mathcal{C}, \mathcal{D}, M) = (\text{per } A, \mathcal{D}_{fd}(A), A_A)$ inside $\mathcal{D}_{fd}(A)$. Then \mathcal{D}^0 is the semisimple abelian category with a unique simple object $S = A/(t)$ (up to isomorphism).

According to [17, Theorem 4.1(ii)] (see also [12, Lemma 8.8]), all indecomposable objects of $\mathcal{D}_{fd}(A)$ are of the form $\Sigma^m A/(t^l)$ ($m \in \mathbb{Z}$ and $l \in \mathbb{N}$). Put $x(m,l) = \Sigma_{p=m}^{m+l-1} \text{Dim}(\Sigma^p S)$. Then $\text{Dim}(\Sigma^m A/(t^l)) = x(m,l)$. Therefore we have

$$\#\text{Ind}^x \mathcal{D} = \begin{cases} 1 & \text{if } x = x(m,l) \text{ for some } m \in \mathbb{Z} \text{ and } l \in \mathbb{N}, \\ 0 & \text{otherwise}. \end{cases}$$

As a consequence, \mathcal{D} is \mathcal{D}^0-discrete.

Lemma 3.11. The category \mathcal{D} is \mathcal{D}^0-discrete if and only if the set $\text{Ind}^{<x} \mathcal{D}$ is finite for any $x \in K_0(\mathcal{D}^0)^{\leq \mathbb{Z}}$.

Proof. The “if” part is obvious. The “only if” part follows from the equality
\[\text{Ind}^{x}D = \bigcup_{0 \leq y \leq x} \text{Ind}^{y}D \]
and the fact that the number of \(y \) satisfying \(0 \leq y \leq x \) is finite. \(\square \)

3.2.2. Discreteness with respect to the silting object. Take \(Y \in \mathcal{C} \). Then there exists
\(l \in \mathbb{Z} \) such that \(\beta_{l-1}(Y) = 0 \). Take \(M^{r}, \ldots, M^{l} \in \text{add}(M) \) as in Lemma 3.4
and put \(M^{p} = 0 \) if \(p > r \) or \(p < l \). Define
\[\text{Sum}(Y) = (\sum(M^{p}))_{p \in \mathbb{Z}} \in (K_{0}^{\text{sp}}(\text{add}(M))^{+})^{\mathbb{Z}}, \]
where \(\sum \) is defined in Section 2.2.

Lemma 3.12. Let \(Y' \to Y \to Y'' \to \Sigma Y' \) be a triangle in \(\mathcal{T} \). Then for any \(l \in \mathbb{Z} \)
\[\text{Sum}(\beta_{l}(Y)) \leq \text{Sum}(\beta_{l}(Y')) + \text{Sum}(\beta_{l}(Y'')). \]

Proof. According to Lemma 3.3 there exist \(L^{r}, \ldots, L^{l} \) and \(N^{t}, \ldots, N^{l} \) such that \(Y' \in \Sigma^{-t}L^{r} \cdots \Sigma^{-l}L^{l} * \beta_{l-1}(Y') \) and \(Y'' \in \Sigma^{-t}N^{r} \cdots \Sigma^{-l}N^{l} * \beta_{l-1}(Y'') \). It follows by induction that
\[Y \in Y' \ast Y'' \subseteq \Sigma^{-t}(L^{r} \oplus N^{r}) \cdots \Sigma^{-l}(L^{l} \oplus N^{l}) \ast (\beta_{l-1}(Y') \ast \beta_{l-1}(Y'')), \]
because \(\beta_{l-1}(Y') \ast \Sigma^{-p}N^{p} = \beta_{l-1}(Y') \ast \Sigma^{-p}N^{p} \subseteq \Sigma^{-p}N^{p} \ast \beta_{l-1}(Y') \) and \(L^{p} \ast N^{p} = L^{p} \oplus N^{p} \) for \(l \leq p \leq r \). By Corollary 3.6 we obtain the desired result. \(\square \)

For \(u = (w^{p})_{p \in \mathbb{Z}}, v = (v^{p})_{p \in \mathbb{Z}} \in K_{0}^{\text{sp}}(\text{add}(M))^{\mathbb{Z}} \), define \(v \leq u \) if \(w^{p} - v^{p} \in K_{0}^{\text{sp}}(\text{add}(M))^{+} \) for all \(p \in \mathbb{Z} \). For \(u \in K_{0}^{\text{sp}}(\text{add}(M))^{\mathbb{Z}} \), let \(\text{Ind}_{u}\mathcal{C} \) (respectively, \(\text{Ind}_{<u}\mathcal{C} \)) be the set of isoclasses of indecomposable objects \(Y \) of \(\mathcal{C} \) with \(\text{Sum}(Y) = u \) (respectively, \(\text{Sum}(Y) \leq u \)).

Definition 3.13. The category \(\mathcal{C} \) is called \(M \)-discrete if the set \(\text{Ind}_{u}\mathcal{C} \) is finite for
any \(u \in K_{0}^{\text{sp}}(\text{add}(M))^{\mathbb{Z}} \).

Example 3.14. Let \(A = k[t] \) with \(\text{deg}(t) = -1 \) and consider it as a dg algebra with
trivial differential. Take the ST-triple \((\text{per}(A), D_{fd}(A), A_{A}) \) inside \(D_{fd}(A) \).

According to [17, Theorem 4.1(ii)], all indecomposable objects of \(\text{per}(A) \) are of the form \(\Sigma^{m}A/(t^{l}) \) \((m \in \mathbb{Z} \text{ and } l \in \mathbb{N}) \) or \(\Sigma^{m}A_{A} \) \((m \in \mathbb{Z}) \). Put \(u(m) = \text{Sum}(\Sigma^{m}A_{A}) \) and put \(u(m, l) = u(m) + u(m + l) \). Then \(\text{Sum}(\Sigma^{m}A/(t^{l})) = u(m, l) \). Therefore we have
\[\#\text{Ind}_{u}\text{per}(A) = \begin{cases} 1 & \text{if } u = u(m, l) \text{ for some } m \in \mathbb{Z} \text{ and } l \in \mathbb{N}, \\ 1 & \text{if } u = u(m) \text{ for some } m \in \mathbb{Z}, \\ 0 & \text{otherwise}. \end{cases} \]

As a consequence, \(\text{per}(A) \) is \(A_{A} \)-discrete.

The following result is dual to Lemma 3.11 and its proof is similar.

Lemma 3.15. The category \(\mathcal{C} \) is \(M \)-discrete if and only if the set \(\text{Ind}_{<u}\mathcal{C} \) is finite
for any \(u \in K_{0}^{\text{sp}}(\text{add}(M))^{\mathbb{Z}} \).
Remark 3.16. Using Lemma 3.15 one can show that C is M-discrete if and only if it is discrete with respect to the co-t-structure $(C_{\geq 0}, C_{\leq 0})$ in the sense of [10] Definition 4.1.

4. THE TWO DISCRETENESSES ARE EQUIVALENT

Let \mathcal{T} be a triangulated k-category and (C, D, M) an ST-triple inside \mathcal{T}. In Section 3 we recalled two notions of discreteness in [10], one for C and one for D. The following main result of this paper states that these two notions are equivalent. This has the flavour of Koszul duality.

Theorem 4.1. The category C is M-discrete if and only if the category D is D^0-discrete.

Corollary 4.2. If C is M-discrete, then it is silting-discrete.

Proof. Assume that C is M-discrete. Then D is D^0-discrete by Theorem 4.1. The statement then follows from [1, Theorems 7.9 and 7.1].

We split Theorem 4.1 into two propositions and prove them in Sections 4.1 and 4.2 respectively. In Section 4.3 we discuss the relation between discreteness and cone-finiteness.

Recall that there is a triple $(\mathcal{T}_{\geq 0}, \mathcal{T}_{\leq 0} = \mathcal{T}_{\leq 0}, \mathcal{T}_{\geq 0}, \mathcal{T}_{\geq 0})$, where $(\mathcal{T}_{\geq 0}, \mathcal{T}_{\leq 0})$ is a co-t-structure and $(\mathcal{T}_{\leq 0}, \mathcal{T}_{\geq 0})$ is a t-structure. The two proofs below are almost dual to each other. The subtle but serious difference comes from the fact that truncations associated to t-structures are functorial while truncations associated to co-t-structures are not. However, the interplay between these truncations is interesting and plays an important role in the proofs.

4.1. M-discreteness implies D^0-discreteness. The aim of this subsection is to prove the following implication.

Proposition 4.3. If C is M-discrete, then D is D^0-discrete.

The following result is a direct consequence of Lemma 2.1.

Proposition 4.4. Let $p \in \mathbb{Z}$. The functor $\sigma^{\geq p}: \mathcal{T} \to \mathcal{T}^{\geq p}$ restricts to a fully faithful functor

$$\sigma^{\geq p}: \mathcal{T}_{\geq p} \to \mathcal{T}^{\geq p}.$$

Proof. Take $X, Y \in \mathcal{T}_{\geq p}$. Since $\sigma^{\leq p-1}(Y)$ and $\Sigma \sigma^{\leq p-1}(Y)$ belong to $\mathcal{T}^{\leq p-1}$, we have $\text{Hom}_{\mathcal{T}}(X, \sigma^{\leq p-1}(Y)) = 0 = \text{Hom}_{\mathcal{T}}(X, \Sigma \sigma^{\leq p-1}(Y))$. The desired result follows from Lemma 2.1.

We immediately obtain the following corollary, taking into account that $\mathcal{T}_{\geq p} \supseteq \mathcal{T}_{\geq l}$ for $p \leq l$.

Corollary 4.5. For $Y \in \mathcal{T}_{\geq l}$, the following are equivalent:

(i) Y is indecomposable,
(ii) \(\sigma^{>p}(Y) \) is indecomposable for some \(p \leq l \),
(iii) \(\sigma^{>p}(Y) \) is indecomposable for all \(p \leq l \).

Moreover, for \(Y, Z \in T_{\geq l} \), the following are equivalent:

1. \(Y \cong Z \),
2. \(\sigma^{>p}(Y) \cong \sigma^{>p}(Z) \) for some \(p \leq l \),
3. \(\sigma^{>p}(Y) \cong \sigma^{>p}(Z) \) for all \(p \leq l \).

For \(l \in \mathbb{Z} \), consider the group homomorphism

\[
\varphi_l : K_{0}^{sp}(\text{add}(M))^{\oplus \mathbb{Z}} \rightarrow K_{0}(D^{0})^{\oplus \mathbb{Z}}
\]

defined by \(\sum(\Sigma^p N) \mapsto \dim(\sigma^{>l}(\Sigma^p N)) \) for \(N \in \text{add}(M) \) and \(p \in \mathbb{Z} \). It restricts to a map

\[
\varphi_l : (K_{0}^{sp}(\text{add}(M))^{+})^{\oplus \mathbb{Z}} \rightarrow (K_{0}(D^{0})^{+})^{\oplus \mathbb{Z}}.
\]

Proof of Proposition 4.3. Assume that \(D \) is \(D^{0} \)-discrete.

Take \(u \in (K_{0}^{sp}(\text{add}(M))^{+})^{\oplus \mathbb{Z}} \). Then there exist \(r, l \in \mathbb{Z} \) such that \(u^p = 0 \) for \(p < l \) and for \(p > r \). Put \(x = \varphi_l(u) \in (K_{0}(D^{0})^{+})^{\oplus \mathbb{Z}} \).

Let \(Y \in \text{Ind}_u C \), i.e. \(\sum(Y) = u \). Then by Lemma 3.4 there exist \(M^r, \ldots, M^l \in \text{add}(M) \) with \(\sum(M^p) = u^p \) such that \(Y \in \Sigma^{-r}M^r \ast \cdots \ast \Sigma^{-l}M^l \). By repeatedly applying Lemma 3.7, we obtain

\[
\dim(\sigma^{>l}(X)) \leq \dim(\sigma^{>l}(\Sigma^{-r}M^r)) + \cdots + \dim(\sigma^{>l}(\Sigma^{-l}M^l)) = \varphi_l(u) = x.
\]

Therefore by Corollary 4.3, there is an injective map

\[
\text{Ind}_u C \longrightarrow \text{Ind}^{<x} D.
\]

By Lemma 3.11, the \(D^{0} \)-discreteness of \(D \) implies that \(\text{Ind}^{<x} D \) is finite. It follows that \(\text{Ind}_u D \) is finite, as desired.

\[
\square
\]

4.2. \(D^{0} \)-discreteness implies \(M \)-discreteness. The aim of this subsection is to prove the following implication.

Proposition 4.6. If \(D \) is \(D^{0} \)-discrete, then \(C \) is \(M \)-discrete.

The key point of our proof is the following result, which, specialising to the ST-triple \((K^b(\text{proj} A), D^b(\text{mod} A), A_A)\), strengthens \cite[Proposition 2]{21}.

Proposition 4.7. Let \(l \in \mathbb{Z} \). For \(X \in D^{>l} \), there is a surjective algebra homomorphism

\[
\text{End}_T(\beta_{>l-1}(X)) \longrightarrow \text{End}_T(X),
\]

whose kernel is contained in the radical of \(\text{End}_T(\beta_{>l-1}(X)) \). As a consequence, the following are equivalent:

(i) \(X \) is indecomposable,
(ii) \(\beta_{>p}(X) \) is indecomposable for some \(p \leq l - 1 \),
(iii) $\beta_{2p}(X)$ is indecomposable for all $p \leq l - 1$.
Moreover, if $X, Y \in \mathcal{D}^{\leq l}$ satisfy $\beta_{2l-1}(X) = \beta_{2l-1}(Y)$, then $X \cong Y$.

Proof. Rotate the triangle in Lemma 3.4 we obtain a triangle
$$\Sigma^{-1}\beta_{\leq l-2}(X) \xrightarrow{h_X} \beta_{\leq l-1}(X) \xrightarrow{f_X} X \xrightarrow{g_X} \beta_{\leq l-2}(X).$$
Since $\Sigma^{-1}\beta_{\leq l-2}(X) \in T^{\leq l-1}$ and $X \in \mathcal{D}^{\leq l} = T^{\geq l}$, this is the canonical triangle of $\beta_{\leq l-1}(X)$ associated to the t-structure $(T^{\leq l-1}, T^{\geq l-1})$. In particular, $X \cong \sigma^p \beta_{\leq l-1}(X)$ and $\Sigma^{-1}\beta_{\leq l-2}(X) \cong \sigma^{\leq l-2}\beta_{\leq l-1}(X)$. The ‘Moreover’ part follows immediately.

Consider the algebra homomorphism induced by the functor σ^p
$$\text{End}_T(\beta_{\leq l-1}(X)) \rightarrow \text{End}_T(\sigma^p \beta_{\leq l-1}(X)) \cong \text{End}_T(X).$$

By Lemma 2.1 this homomorphism is surjective, because $\beta_{\leq l-1}(X) \in T^{\leq l-1}$ and $\Sigma \sigma^{\leq l-1}\beta_{\leq l-1}(X) \in T^{\leq l-2}$. Moreover, the kernel of this map is
$$I := \{a: \beta_{\leq l-1}(X) \rightarrow \beta_{\leq l-1}(X) \mid a \text{ factors through } h_X\}.$$ If $a \in I$ and S is a simple object of \mathcal{D}^0, then $\text{Hom}(a, \Sigma^p S) = 0$ for all $p \leq -l + 1$ because $\text{Hom}(h_X, \Sigma^p S) = 0$. Moreover, $\text{Hom}_T(\beta_{\leq l-1}(X), \Sigma^p S) = 0$ for all $p > -l + 1$ because $\beta_{\leq l-1}(X) \in T_{\leq l-1}$. Therefore $\text{Hom}(a, \Sigma^p S) = 0$ for all $p \in \mathbb{Z}$. We claim that a belongs to the radical. Otherwise, write $\beta_{\leq l-1}(X) = Y_1 \oplus \ldots \oplus Y_s$ with Y_1, \ldots, Y_s indecomposable. Then a has a summand $\lambda \cdot \text{id}_{Y_i}$ with $\lambda \in k^x$ for some $i = 1, \ldots, s$. Thus restricting $\lambda^{-1}a$ to Y_i we obtain id_{Y_i}. It follows that $\text{Hom}(\text{id}_{Y_i}, \Sigma^p S) = 0$ for all $p \in \mathbb{Z}$, which implies that $Y_i \in \bigcap_{p \in \mathbb{Z}} T^{\leq p} = 0$, a contradiction. \hfill \square

For $l \in \mathbb{Z}$, consider the group homomorphism
$$\psi_l: K_0(\mathcal{D}^0)^{\oplus \mathbb{Z}} \rightarrow K_0^p(\text{add}(M))^{\oplus \mathbb{Z}}$$
defined by $\text{Dim}(\Sigma^p S) \mapsto \text{Sum}(\beta_{\leq l-1}(\Sigma^p S))$ for any simple object S of \mathcal{D}^0 and any $p \in \mathbb{Z}$. It restricts to
$$\psi_l: (K_0(\mathcal{D}^0)^{\oplus \mathbb{Z}}) \rightarrow (K_0^p(\text{add}(M))^+)^{\oplus \mathbb{Z}}.$$

Proof of Proposition 4.6 Assume that \mathcal{C} is M-discrete.

Take $x \in (K_0(\mathcal{D}^0)^{\oplus \mathbb{Z}})$. Let l be the maximal integer such that $x^p = 0$ for all $p < l$ and put $u = \psi_l(x)$. We will define a map
$$h: \text{Ind}^x \mathcal{D} \rightarrow \text{Ind} u \mathcal{C}$$
and show that it is injective. By Lemma 3.15 the M-discreteness of \mathcal{C} implies that $\text{Ind} u \mathcal{C}$ is finite. It follows that $\text{Ind}^x \mathcal{D}$ is finite, as desired.

Step 1: The definition and injectivity of h. Let $X \in \mathcal{D}$ be indecomposable with $\text{Dim}(X) = x$. Define $h(X) = \beta_{\leq l-1}(X)$. By Proposition 4.7, $h(X)$ is indecomposable and h is injective.

Step 2: The well-definedness of h. Let $X \in \mathcal{D}$ be indecomposable with $\text{Dim}(X) = x$. We show by induction on x that $\text{Sum}(\beta_{\leq l-1}(X)) \leq u$. If X is a shift of a simple
object of \mathcal{D}^0, the inequality holds by the definition of ψ_l. Otherwise, take a simple subobject S of $\sigma^l(X)$, consider the composition

$$\Sigma^{-l}S \rightarrow \Sigma^{-l}\sigma^l(X) \rightarrow X,$$

and form a triangle

$$\Sigma^{-l}S \rightarrow X \rightarrow X' \rightarrow \Sigma^{-l+1}S.$$

It follows from the octahedron axiom that $x = x' + x''$, where $x' = \text{Dim}(X')$ and $x'' = \text{Dim}(\Sigma^{-l}S)$. Thus

$$\text{Sum}(\beta_{\geq l-1}(X)) \leq \text{Sum}(\beta_{\geq l-1}(\Sigma^{-l}S)) + \text{Sum}(\beta_{l-1}(X'))$$

$$\leq \psi_l(x'') + \psi_l(x') = \psi_l(x) = u,$$

where the first inequality follows from Lemma 3.12 and the second one follows from induction hypothesis. □

4.3. Cone-finiteness. Following [10], we say that a triangulated category is \textit{cone finite} if for any two objects X and Y, the subcategory $X \ast Y$ has only finitely many isoclasses of objects. Note that this is a property that passes to subcategories.

Corollary 4.8. The following conditions are equivalent:

(i) C is M-discrete,
(ii) C is cone finite,
(iii) D is D^0-discrete,
(iv) D is cone finite.

Proof. (i)\iff(ii) is [10] Theorem 4.2, (i)\iff(iii) is Theorem 4.1 and (iii)\Rightarrow(iv) is [10] Theorem 2.5(iii)].

(iv)\Rightarrow(iii): Assume that D is cone finite. We claim that for any $x \in K_0(\mathcal{D}^0)$ the number of isoclasses of objects X in \mathcal{D}^0 with $\text{dim}(X) = x$ is finite, \emph{i.e.} \mathcal{D}^0 is abelian discrete in the sense of [10] Section 2. Then it follows from [10] Corollary 2.6 that \mathcal{D} is \mathcal{D}^0-discrete.

We prove the claim by induction on x. If x is a standard basis element of $K_0(\mathcal{D}^0) \cong \mathbb{Z}^n$, then X must be simple and the claim is true. In general, take a simple subobject S of X and form the short exact sequence $0 \rightarrow S \rightarrow X \rightarrow X' \rightarrow 0$. Then $x = \text{dim}(S) + \text{dim}(X')$. Moreover, the above short exact sequence yields a triangle $S \rightarrow X \rightarrow X' \rightarrow \Sigma S$ in \mathcal{D}, and hence $X \in S \ast X'$. Thus all objects X of \mathcal{D}^0 with $\text{dim}(X) = x$ belong to the subcategory $\mathcal{X} = \bigcup S \ast X'$, where the union is over all isoclasses of simple objects S of \mathcal{D}^0 and all isoclasses of objects X' with $\text{dim}(X') = x - \text{dim}(S)$.

By induction hypothesis, this is a finite union. Since \mathcal{D} is cone finite, each $S \ast X'$ has finitely many isoclasses of objects. It follows that \mathcal{X} has only finitely many isoclasses of objects and the claim is true. □

Corollary 4.8 shows the validity of [10] Conjecture 2.7(iv)] in our setting.
5. Derived-discreteness along decollements

In this section we recall the notion of derived-discreteness of a finite-dimensional algebra due to Vossieck [20], and apply Theorem 4.1 to recover the following result due to Qin [19]. For basics on recollements, we refer to [4].

Proposition 5.1 ([19, Proposition 6]). Let A, B, C be finite-dimensional k-algebras and assume that there is a recollement of $\mathcal{D}(A)$ by $\mathcal{D}(B)$ and $\mathcal{D}(C)$. If A is derived-discrete, then so are B and C.

5.1. Derived-discreteness. Let A be a finite-dimensional k-algebra.

For $X \in K^b(\text{proj} A)$, take Y minimal such that $Y \simeq X$ in $K^b(\text{proj} A)$. Define $\text{Sum}(X) = (\sum(Y^p))_{p \in \mathbb{Z}}$, which belongs to $(K^0(\text{proj} A)^+)_{\mathbb{Z}}$. The algebra A is called $K^b(\text{proj})$-discrete if the number of isoclasses of indecomposable objects of $K^b(\text{proj} A)$ with $\text{Sum}(X) = u$ is finite for any $u \in K^0(\text{proj} A)^{\mathbb{Z}}$. It is easy to see that this is exactly the A_A-discreteness in the sense of Definition 3.13.

Applying Corollary 4.8 to the ST-triple $(K^b(\text{proj} A), D^b(\text{mod} A), A_A)$, we immediately obtain the following corollary which completes [10, Corollary 4.4].

Corollary 5.2. The following conditions are equivalent:

(i) A is $K^b(\text{proj})$-discrete,
(ii) $K^b(\text{proj} A)$ is cone finite,
(iii) A is derived-discrete,
(iv) $D^b(\text{mod} A)$ is cone finite.

5.2. Derived-discreteness is preserved along decollements. In this subsection we prove Proposition 5.1.

Proof of Proposition 5.1. Assume that A is derived-discrete. By Corollary 5.2, both $D^b(\text{mod} A)$ and $K^b(\text{proj} A)$ are cone finite. In the given recollement the middle left functor restricts to a fully faithful triangle functor $D^b(\text{mod} B) \to D^b(\text{mod} A)$ and the upper right functor restricts to a fully faithful triangle functor $K^b(\text{proj} C) \to K^b(\text{proj} A)$. Hence both $D^b(\text{mod} B)$ and $K^b(\text{proj} C)$ are cone finite. By Corollary 5.2 again, both B and C are derived-discrete. \qed

In the rest of this subsection we give an alternative proof of Proposition 5.1 using the equivalence Corollary 5.2(i) \iff (iii) only. Note that using the full Corollary 5.2 both Lemma 5.3 and Lemma 5.4 are easy to obtain.

The alternative proof for B being derived-discrete is the same as that in [19], which relies on the following result appeared in the paragraph before [19, Proposition 6]. The idea of the proof is the same as Vossieck’s proof of the fact that derived-discreteness is preserved under derived equivalence ([20, Proposition 1.1]). Here we give full details. Let A and B be finite-dimensional k-algebras in the next two lemmas.

Lemma 5.3. Assume that $F : D^b(\text{mod} B) \to D^b(\text{mod} A)$ is a fully faithful triangle functor. If A is derived-discrete, so is B.
Proof. The triangle functor F induces a group homomorphism
\[f: K_0(\text{mod}B)\otimes\mathbb{Z} \rightarrow K_0(\text{mod}A)\otimes\mathbb{Z} \]
such that $f(\text{dim}(\Sigma^pS_i^B)) = \text{dim}(\Sigma^pF(S_i^B))$ for a complete set $\{S_i^B\}$ of simple B-modules and $p \in \mathbb{Z}$.

We claim that $\text{dim}F(X) \leq f(\text{dim}(X))$ for any $X \in \mathcal{D}^b(\text{mod}B)$. It follows that F induces an injective map $\text{Ind}^\omega\mathcal{D}^b(\text{mod} B) \rightarrow \text{Ind}^\omega f(\mathcal{D}^b(\text{mod} A))$, which is a finite set due to the derived-discreteness of A and Lemma 3.11. Thus B is derived-discrete.

We prove the claim by induction on $x := \text{dim}(X)$. Recall from Step 2 of the proof of Proposition 4.6 that there is a triangle in $\mathcal{D}^b(\text{mod} A)$:
\[\Sigma^{-1}X' \xrightarrow{g} \Sigma^{-1}S \xrightarrow{f} X \rightarrow X' \]
such that $x = x' + x''$, where $x' = \text{dim}(X')$ and $x'' = \text{dim}(\Sigma^{-1}S)$. By applying F to this triangle and inspecting the associated long exact sequence of cohomologies, we obtain an inequality
\[\text{dim}F(X) \leq \text{dim}F(\Sigma^{-1}S) + \text{dim}F(X'). \]

By induction hypothesis we have $\text{dim}F(X') \leq f(x')$. Since $\text{dim}F(\Sigma^{-1}S) = f(x'')$, it follows that $\text{dim}F(X) \leq f(x)$, as claimed. □

The following result is dual to Lemma 5.3.

Lemma 5.4. Assume that $G: K^b(\text{proj} B) \rightarrow K^b(\text{proj} A)$ is a fully faithful triangle functor. If A is $K^b(\text{proj})$-discrete, so is B.

Proof. The triangle functor $G: K^b(\text{proj} B) \rightarrow K^b(\text{proj} A)$ induces a group homomorphism
\[g: K^b_0(\text{proj} B)\otimes\mathbb{Z} \rightarrow K^b_0(\text{proj} A)\otimes\mathbb{Z} \]
such that $g(\text{sum}(\Sigma^pP_i)) = \text{sum}(\Sigma^pG(P_i))$ for a complete set $\{P_i^B\}$ of indecomposable projective B-modules and $p \in \mathbb{Z}$.

We claim that $\text{sum}G(X) \leq g(\text{sum}(X))$ for any $X \in K^b(\text{proj} B)$. It follows that G induces an injective map $\text{Ind}_{\omega}K^b(\text{proj} B) \rightarrow \text{Ind}_{\omega}G(K^b(\text{proj} A))$, which is a finite set due to the $K^b(\text{proj})$-discreteness of A and Lemma 3.15. Thus B is $K^b(\text{proj})$-discrete.

We prove the claim by induction on $u := \text{sum}(X)$. We may assume that X is minimal. Let r be the minimal integer such that $X^i = 0$ for all $i > r$ and take an indecomposable direct summand P of X^r. Then $\Sigma^{-r}P$ is a subcomplex of X and there is a triangle
\[\Sigma^{-r}P \rightarrow X \rightarrow X' \rightarrow \Sigma^{-r+1}P \]
with $\text{sum}(X') = \text{sum}(X) - \text{sum}(\Sigma^{-r}P)$. Applying G to this triangle yields a triangle in $K^b(\text{proj} A)$
\[G(\Sigma^{-r}P) \rightarrow G(X) \rightarrow G(X') \rightarrow G(\Sigma^{-r+1}P). \]
Therefore
\[
\text{Sum} G(X) \leq \text{Sum}(G(\Sigma^{-r} P)) + \text{Sum}(G(X')) \\
\leq g(\text{Sum}(\Sigma^{-r} P)) + g(\text{Sum}(X')) \\
= g(\text{Sum}(\Sigma^{-r} P) + \text{Sum}(X')) \\
= g(\text{Sum}(X)).
\]

Here the first inequality follows from Lemma 3.12 and the second one is by induction hypothesis.

Alternative proof of Proposition 5.1. The middle left functor in the given recollement restricts to a fully faithful triangle functor \(D^b(\text{mod } B) \to D^b(\text{mod } A) \). So by Lemma 5.3, \(B \) is derived-discrete.

Similarly, there is a fully faithful triangle functor \(K^b(\text{proj } C) \to K^b(\text{proj } A) \). By Corollary 5.2(i)⇔(iii), \(A \) is \(K^b(\text{proj}) \)-discrete. It follows from Lemma 5.4 that \(C \) is \(K^b(\text{proj}) \)-discrete. By Corollary 5.2(i)⇔(iii) again, \(C \) is derived-discrete. \(\square \)

References

[1] Takahide Adachi, Yuya Mizuno, and Dong Yang, *Discreteness of silting objects and t-structures of triangulated categories*, Proc. Lond. Math. Soc., in press, doi:10.1112/plms.12176.
[2] Takuma Aihara, *Tilting-connected symmetric algebras*, Algebr. Represent. Theory 6 (2013), no. 3, 873–894.
[3] Takuma Aihara and Osamu Iyama, *Silting mutation in triangulated categories*, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668.
[4] Lidia Angeleri Hügel, Steffen Koenig, Qunhua Liu, and Dong Yang, *Ladders and simplicity of derived module categories*, J. Algebra 472 (2017), 15–66.
[5] Ibrahim Assem, María José Souto Salorio, and Sonia Trepode, *Ext-projectives in suspended subcategories*, J. Pure Appl. Algebra 212 (2008), no. 2, 423–434.
[6] Alexander A. Beilinson, Joseph Bernstein, and Pierre Deligne, *Faisceaux pervers*, Astérisque, vol. 100, Soc. Math. France, 1982 (French).
[7] Apostolos Beligiannis and Idun Reiten, *Homological and homotopical aspects of torsion theories*, Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207.
[8] Grzegorz Bobiński, Christof Geiß, and Andrzej Skowroński, *Classification of discrete derived categories*, Cent. Eur. J. Math. 2 (2004), no. 1, 19–49 (electronic).
[9] Mikhail V. Bondarko, *Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)*, J. K-Theory 6 (2010), no. 3, 387–504.
[10] Nathan Broomhead, David Pauksztello, and David Ploog, *Discrete triangulated categories*, Bull. London Math. Soc. 50 (2018), 174–188.
[11] Mitsuo Hoshino, Yoshiaki Kato, and Jun-Ichi Miyachi, *On t-structures and torsion theories induced by compact objects*, J. Pure Appl. Algebra 167 (2002), no. 1, 15–35.
[12] Peter Jørgensen, *Auslander-Reiten theory over topological spaces*, Comment. Math. Helv. 79 (2004), no. 1, 160–182.
[13] Martin Kalck and Dong Yang, *Derived categories of graded gentle one-cycle algebras*, J. Pure Appl. Algebra 222 (2018), 3005–3035.
[14] Bernhard Keller, *Deriving DG categories*, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102.
[15] ______, *Tilting and derived categories*, Contribution to the Handbook of Tilting Theory, edited by L. Angeleri, D. Happel and H. Krause, to appear.

[16] Bernhard Keller and Dieter Vossieck, *Aisles in derived categories*, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253.

[17] Bernhard Keller, Dong Yang, and Guodong Zhou, *The Hall algebra of a spherical object*, J. Lond. Math. Soc. (2) 80 (2009), no. 3, 771–784.

[18] David Pauksztello, *Compact corigid objects in triangulated categories and co-t-structures*, Cent. Eur. J. Math. 6 (2008), no. 1, 25–42.

[19] Yongyun Qin, *Jordan–Hölder theorems for derived categories of derived discrete algebras*, J. Algebra 461 (2016), 295–313.

[20] Dieter Vossieck, *The algebras with discrete derived category*, J. Algebra 243 (2001), no. 1, 168–176.

[21] Chao Zhang and Yang Han, *Brauer-Thrall type theorems for derived module categories*, Algebr. Represent. Theory 19 (2016), no. 6, 1369–1386.

School of Mathematics, Southeast University, Nanjing 210096, China
E-mail address: llyao@seu.edu.cn

Department of Mathematics, Nanjing University, Nanjing 210093, China
E-mail address: yangdong@nju.edu.cn