Extending the Limits of Endoscopic Endonasal Surgery of the Skull Base

Carl H. Snyderman, MD, MBA1, Eric W. Wang, MD1, Georgios A. Zenonos, MD2, Paul A. Gardner, MD2

1) Departments of Otolaryngology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, Pennsylvania, USA
2) Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, Pennsylvania, USA

Endoscopic endonasal surgery (EES) of the skull base has evolved beyond the sella to include the entire ventral skull base. In the sagittal plane, surgical modules extend from the frontal sinus to the craniovertebral junction in a midline corridor. Access to the superior clivus is achieved with a pituitary transposition without loss of pituitary function. Coronal plane modules extend laterally to provide access to the anterior, middle and posterior cranial fossae. In the anterior coronal plane, a superomedial orbitotomy provides access to the anterior cranial base as far laterally as the mid-sagittal plane of the orbit. In the middle coronal plane, the transpterygoid approach provides access to the lateral recess of the sphenoid sinus and Meckel’s cave. In the posterior coronal plane, transjugular tubercle and transcondylar approaches extend beyond the hypoglossal canal in an infrapetrous plane. Access to the petrous apex for chondromatous tumors is limited by the internal carotid artery (ICA). A new approach, the contralateral transmaxillary approach, allows complete dissection of the petrous apex deep to the petrous ICA as far as the internal auditory canal and jugular foramen. Inferiorly, tumors of the parapharyngeal space may be dissected to the parapharyngeal ICA.

The limitations of EES are determined by multiple factors. Anatomical limits include the major neural and vascular structures of the skull base. Other limits are imposed by patient, surgeon, and institutional factors. EES may be applied to all patient populations; the principles are the same for young pediatric patients despite the unique challenges of the pediatric population (decreased pneumatization of sinuses, smaller blood volume, etc.). Vascular tumors including aneurysms can be managed safely with EES. Oncological principles can be preserved with the management of sinonasal malignancy, often with superior outcomes. Improved methods of reconstruction allow reliable repair of large dural defects with acceptable morbidity. In particular, the employment of vascularized flaps (nasoseptal flap, extracranial pericranial flap, lateral nasal wall flap) in combination with selective use of lumbar spinal drainage, has dramatically lowered the risk of postoperative cerebrospinal fluid leak. EES is also limited by the training of surgeons. A systematic approach to training based on increasing levels of complexity and risk has been validated and is correlated with clinical outcomes. Surgical simulation allows teams to train for rare events such as vascular injury.

Further improvements in anatomical knowledge, surgical technology, and enhanced surgical training will further extend the limits of EES of the skull base.

Key words: Endoscopic endonasal surgery, Limitations, Petrous apex, Skull base

(Received: April 8, 2020, Accepted: May 12, 2020)
Evolution of Skull Base Surgery

Endoscopic endonasal surgery (EES) of the skull base has evolved through multiple stages over the last few decades: (I) endoscopic sinus surgery, (II) endoscopic pituitary surgery, (III) parasellar approaches, (IV) sagittal plane approaches, and (V) coronal plane approaches. At the same time, there have been several distinct stages of development. In the first stage, the feasibility of endoneurosurgery was established through description of endonasal skull base anatomy, development of new instrumentation, and design of new surgical techniques. In the second stage, safety was addressed by investigating causes of mortality and morbidity. In the final stage, a critical analysis of outcomes has reported on recurrence and survival rates, and quality of life issues. Comparison of results with traditional open approaches allows skull base surgeons to select the best approach based on pathology and location.

The evolution of a discipline may occur incrementally or by giant leaps. Although we envision a timeline of progress as one of continuous improvement, some evolutionary paths are dead ends and one must take a step back to choose a different path in order to reach a higher level. Thus, many paradigm shifts may not appear to be an improvement at first glance; more time is needed to address early problems. This was the case with EES, with a high incidence of cerebrospinal fluid (CSF) leaks in early years.

Classification of Approaches

Endonasal approaches to the ventral skull base are classified into modules in sagittal and coronal planes, corresponding to radiological planes (Table 1). The sagittal plane extends from the frontal sinus to foramen magnum and upper cervical spine in a midline corridor. Coronal planes extend laterally corresponding to the cranial fossae (anterior, middle, posterior). Endonasal modules can be combined like building blocks to tailor the approach to the pathology. For example, an endonasal resection of the anterior cranial base for sinonasal malignancy combines transfrontal, transcribriform, and transplanum approaches.

Limits of Endonasal Surgery

Age

The limits of endoscopic endonasal surgery are not just anatomical. Age may be a consideration, especially for young pediatric patients. The most common pediatric conditions include angiofibroma, chordoma, craniopharyngioma, fibro-osseous lesion, meningo-encephalocele, and pituitary adenoma. Due to a small nasal aperture, there is less room for endoscopic instrumentation and a greater risk of injury to the nasal tissues (e.g., burn injury to the nasal sill from powered instrumentation). In practice, this has not been a limiting factor and a sublabial approach is seldom necessary. There is also poor pneumatization of the sinuses with few anatomical landmarks, requiring greater reliance on image-based navigation. Reconstructive options are limited due to less body fat and cosmetic concerns. Up until age 14, there is a growth disparity between the nasal septum and the anterior cranial base, resulting in a smaller nasoseptal flap. Although there have been concerns about delayed effects on facial growth, studies of facial growth following EES have not confirmed this.

Table 1 Classification of Endonasal Approaches to the Skull Base

Sagittal Plane	Coronal Plane
Transfrontal	Anterior (anterior cranial fossa)
Transcribriform	Supraorbital
Transplanum/transstuberculum (suprasellar)	Transorbital
Transsellar	Middle (middle cranial fossa)
Transclival	Medial Transcavernous
Superior: dorsum sellae, posterior clinoid processes	Medial petrous apex
Middle: mid clivus	Contralateral transmaxillary
Inferior: foramen magnum	Transpterygoid
Transodontoid/transcervical	Suprapetrous
Posterior cranial fossa	Supratubercular
“far medial”	Meckel’s cave
Infratemporal skull base	Lateral transcavernous
Parapharyngeal space	Infratemporal skull base

In a review of our youngest cohort of patients (<7 years old), we treated 36 patients with EES (4 staged EES; 2 combined endoscopic/open surgery)\(^7\). Most frequent diagnoses included 12 encephalocele/traumatic CSF leaks, 11 craniopharyngiomas, 3 dermoids, 3 chordomas, and 2 rhabdomyosarcomas. Reconstruction included 16 nasoseptal flaps and 2 other vascularized flaps (temporalis muscle and nasopharyngeal). Postoperative CSF leaks occurred in 8% of primary EES.

Pathology

EES offers a clear advantage for certain tumor types and locations. Superior results have been demonstrated for pituitary tumors, craniopharyngiomas, suprasellar meningiomas, petrous apex lesions, chordomas, and C1/C2 compression\(^8\). Advantages of EES include better access, improved oncologic resection, greater preservation of vision, and less morbidity.

One of the most controversial areas has been the management of sinonasal malignancy\(^9\). There are a wide variety of tumor types with different biologic behaviors and requiring different treatment strategies. The goal of most surgeries is a complete oncological resection. Although it has been shown that endoscopic resection of sinonasal malignancy is technically feasible and safe, questions remained regarding long-term oncological outcomes. For a proto-typical skull base malignancy such as olfactory neuroblastoma, systematic reviews with meta-analysis demonstrate equivalent (no difference in locoregional control and metastasis-free survival) or superior outcomes (improved overall survival and increased disease-specific survival)\(^10\).

Access (anatomy)

The golden rule of EES is to avoid crossing the plane of major vascular and neural structures (Figure 1). If tumor is on the other side of a vessel or nerve, an alternate approach or combination of approaches may be necessary. The risks of surgery increase inversely relative to the proximity of the tumor to the cerebral vessels. Tumor encasement of vessels generally precludes a complete resection and the goals of surgery are modified. An additional consideration with large olfactory groove meningiomas is the amount of brain manipulation that would be necessary to remove the tumor. Large vertical tumors with intervening frontal lobes are best managed with EES. Petroclival meningiomas are a particular challenge and often require multiple staged surgical approaches. The surgeon must not lose sight of the goals of surgery. Subtotal resection with observation/radiation therapy may be the best strategy in some patients, depending on multiple factors.

In the sagittal plane, the anterior limit of EES is the posterior table of the frontal sinus. If tumor is filling the sinus, a combined approach may be necessary. Inferiorly, the nasopalatine line (line tangential to the nasal bones and hard palate) is a rough estimate of the limit of endonasal access\(^11\). The use of curved drills and angled instrumentation reliably extends access to the body of C2. Tumor below the body of C2 necessitates a transoral or transcervical approach.

In the anterior coronal plane, access to the orbital roof is limited by the medial wall of the orbit and the ethmoidal arteries. A medial orbital decompression with sacrifice of the ethmoidal arteries allows dissection of the periorbita to the mid-sagittal plane of the orbital roof\(^12\). This provides an extended lateral margin for access to osteomas arising from the orbital roof, tumors with a dural tail such as meningiomas, or clearance of dural margins for malignant neoplasms such as olfactory neuroblastoma.

In the middle coronal plane, access to the petrous apex
is limited by the petrous segment of the internal carotid artery (ICA). Anatomical studies show that an endonasal approach provides superior access to all regions of the petrous apex (superior, anterior, posterior) compared to an infracocheal approach and provides a larger drainage pathway for lesions such as cholesterol granulomas. For tumors that involve the petroclival region such as chordomas, the most important prognostic factor is the ability to achieve a gross total resection. This is significantly less likely when there is tumor involvement of the lower third of the clivus with lateral extension. Although access to the petrous apex is enhanced with decompression and lateralization of the ICA, this poses additional risk to the ICA and exposure is still limited. The contralateral transmaxillary (CTM) approach was designed to provide access to the petrous apex without manipulation of the ICA. Anatomical studies demonstrate that the CTM approach improves the trajectory relative to the petrous ICA by approximately 25 degrees as well as a reach advantage (Figure 2). Anatomical limits are the jugular bulb inferiorly and the cochlea and internal auditory canal superiorly.

Reconstruction

In the early stage of EES, reconstruction of dural defects was a limiting factor, with unacceptable rates of postoperative CSF leaks. The introduction of the vascularized naso-septal flap (NSF), in combination with other measures, dramatically decreased the leak rate. For those cases where a NSF is not available, other local and regional flaps provide reconstructive options. The lateral nasal wall flap is well-suited for defects of the sellar region and clivus. For large defects of the anterior cranial base, the extracranial pericranial flap provides a large well-vascularized flap with minimal morbidity and avoids the need for a craniotomy. The reconstruction of large clival defects is a particular challenge. Transclival approaches have a higher incidence of postoperative CSF leak and are reconstructed using a 4-layer technique: inlay collagen graft, onlay fascia lata graft, fat graft, and vascularized flap. Interposition of the fat graft prevents pontine herniation with large dural defects.

Duration of Surgery

The duration of surgery may be a limiting factor in some patients, especially those with co-morbidities. Long surgeries increase the risk of pulmonary complications, blood loss requiring transfusion, and deep venous thrombosis. Operating late in the day with secondary operative staff is less efficient and increases the risk of errors. In some cases, an open approach may be more expedient (e.g., large olfactory groove meningioma). In other cases, staging of the surgery should be considered. Indication for staging of a surgery include: (I) uncertain diagnosis requiring pathologic confirmation, (II) excessive blood loss with coagulopathy, (III) complication such as a vascular injury, (IV) changes in neurologic status measured with neurophysiological monitoring, (V) allow descent of giant tumor (pituitary adenoma, meningioma), (VI) team issues (fatigue, unskilled personnel, lack of resources), and (VII) prevention of patient morbidity (pulmonary complications, deep venous thrombosis, pressure ulcers/neuropathy).

Blood Loss

A variety of techniques help to minimize intraoperative blood loss and prevent the development of coagulopathy. This is a critical issue with intradural dissection of tumor. Reverse Trendelenburg positioning to lower venous pressure, endoscopic bipolar electrocautery, application of hemostatic materials such as Surgiflo and Floseal for cavernous sinus bleeding, and warm saline irrigation (40–45°C) are standard during ESS. For vascular tumors, a variety of hemostatic instruments are available: Harmonic scalpel, Aquamantys...
irrigating bipolar, and coblation.

For highly vascular tumors such as angiofibromas, intraoperative blood loss is the limiting factor. Proper staging using the UPMC staging system better stratifies patients into high risk groups (Table 2). Those patients with residual tumor vascularity following tumor embolization of the external carotid branches have higher blood loss and are more likely to have residual/recurrent disease. Even advanced UPMC stage tumors can be effectively removed using EES through a combination of preoperative embolization, hemostatic techniques, sequential dissection of vascular territories, and staging of surgeries (if necessary). EES can also be used for treatment of vascular lesions such as arteriovenous malformations and selected aneurysms (Figure 3).

Morbidity/Complications

The morbidity of EES can be categorized as common, “almost never”, and unknown events. The most common event is a postoperative CSF leak. A time series plot (run chart) is a useful method for tracking results and detecting variations in outcomes. Further evaluation with a root cause analysis provides a learning opportunity and opportunity for quality improvement. A prospective randomized controlled trial has demonstrated the benefit of postoperative lumbar drainage, especially for large defects of the anterior cranial base and posterior fossa. In the event of a postoperative CSF leak, it is considered an emergency and warrants return to the operating room for endoscopic repair within 24 hours. Early repair minimizes the risk of meningitis.

Vascular injury is the most feared complication of EES and represents an almost never event. Surveys of skull base surgeons demonstrate that approximately 20% have had at least one ICA injury in the last 12 months. A root cause analysis is useful in identifying the possible contributing factors. A review of 2015 sequential EES demonstrated injury of the ICA in 0.3% of cases. Risk factors included left side (right-handed surgeons), chondromatous tumors, and paracloidal segment of ICA. There was no association with stage of the learning curve. Most injuries required sacrifice of the ICA without neurologic deficits. There is a significant risk of pseudoaneurysm when the vessel is preserved. Successful management of a vascular injury requires a team approach with neurophysiological monitoring and access to interventional neuroradiology. Training with a vascular model in the laboratory can improve the skills of the team for dealing with such an emergency.

Sinonasal morbidity is increased in EES and should be considered in the management of patients. In most cases, it is temporary with return to baseline quality of life measures within a few months. The use of a NSF has been associated with a saddle-nose deformity. Loss of olfaction is not a consistent feature of ESS. The biggest unanswered question is the impact of surgical approach on neurocognitive morbidity. A matched-pair comparison of EES and transcranial surgery for olfactory groove meningiomas demonstrated less radiographic brain injury with EES. Ongoing neurocognitive studies of

Table 2	UPMC Staging System for Angiofibroma
Stage	Stage Criteria
I	Nasal cavity, medial pterygopalatine fossa
II	Paranasal sinuses, lateral pterygopalatine fossa
	No residual vascularity
III	Skull base erosion, orbit, infratemporal fossa
	No residual vascularity
IV	Skull base erosion, orbit, infratemporal fossa
	Residual vascularity
	Intracranial extension
V	Residual vascularity
	M: Medial extension
	L: Lateral extension

Figure 3 Endoscopic view of clipping of an aneurysm of the left posterior cerebral artery. Notice temporary clamps for proximal and distal control and calcification of neck of aneurysm (yellow discoloration).
patients will help to answer this question.

Training

The ability to perform EES safely and effectively requires proper training. Transition from open transcranial surgery to EES requires relearning skull base anatomy from an endoscopic perspective, adapting to 2D visualization, learning to function as a team, and mastering new surgical techniques. An incremental training program for EES has been proposed based on level of technical difficulty, potential risk of vascular and neural injury, and unfamiliar endoscopic anatomy (Table 3). Advancement to higher levels (with extradural dissection) is predicated on a commitment to team surgery, sufficient volume of cases, and adequate resources. Recent validation of the training program in a clinical series demonstrated good correlation of training level with outcomes such as duration of surgery, blood loss, and major complications. Simulation training is an important aspect of training, especially for rare but serious events such as vascular injury.

Resources

Building a highly functioning team is the most important ingredient for success. More than any other type of surgery, EES is team surgery. This requires a commitment from the members of the team and willingness to make compromises. The benefits of a co-surgeon are many: improved visualization through dynamic endoscopy, increased efficiency, second opinion for problem solving, and modulation of enthusiasm.

There needs to be an adequate volume of cases to develop surgical expertise. A commitment on the part of the institution

Level	Description	Examples
I	Sinus surgery	Endoscopic sphenethmoidectomy
		Sphenopalatine artery ligation
II	Advanced sinus surgery	Endoscopic frontal sinusotomy
	Basic skull base surgery	Cerebrospinal fluid leaks
		Lateral recess sphenoid
		Sella/pituitary (intrasellar)
		Medial orbital decompression
III	Extradural skull base	Sella/pituitary (extrasellar)
		Optic nerve decompression
		Transsphenoidal approach (extradural)
		Transsclival approaches (extradural)
		Petrous apex (medial expansion)
IV	Intradural skull base	Petrous apex (exposure of carotid)
	Cortical cuff	Transplanum approach (intradural)
	No cortical cuff	Craniofacial resection
		Transsclival approaches
		Transsphenoidal approach (intradural)
		Supraclival carotid approach
V	Coronal plane	Infrapetrous carotid approach
	Vascular dissection	Parapharyngeal space
		Aneurysms
		Vascular malformations
		Highly vascular tumors
with dedication of adequate resources is necessary. This includes ancillary services such as neuroradiology, specialized pathology, interventional radiology, endocrinology, and critical care medicine. Obstacles to financial reimbursement need to be addressed such as coding issues and distribution of revenues.22

EES has been driven by advances in surgical technology, especially the introduction of the Hopkins rod lens endoscope. Technical limitations remain, however, and there is need for continued innovation in: visualization, navigation, soft tissue dissection, bone dissection, vascular surgery, reconstruction, and robotics.

Imagination

We are only limited by our imaginations. As Albert Einstein said, “If you always do what you always did, you will always get what you always got.”23 Necessary ingredients for creativity include knowledge, technical skills, and improvisation (innovation).24 Our thinking processes are limited by heuristics, brain short-cuts for making decisions. In order to make room for a new idea, it is necessary to destroy old ways of thinking: “Every act of creation is first an act of destruction” (Pablo Picasso).25 The use of psychedelics to open the mind to new experiences is an intriguing possibility.26

Conflict of Interest

Drs. Carl Snyderman and Paul Gardner are consultants for SPIWay, LLC

Presented as an Invited International Special Lecture at the 58th Annual Meeting of the Japanese Rhinologic Society, Tokyo, Japan, October 5, 2019

References

1) Kono Y, Prevedello DM, Snyderman CH, et al: One thousand endoscopic skull base surgical procedures demystifying the infection potential: Incidence and description of postoperative meningitis and brain abscesses. Infect Control Hosp Epidemiol 2011; 32 : 77-83.

2) Snyderman CH, Wang EW, Fernandez-Miranda JC, et al: Endoscopic transnasal approaches to the skull base and brain: Classifications and its applications. In: Stamm AC, Mangussi-Gomes J (eds): Transnasal Endoscopic Skull Base and Brain Surgery, 2nd Edition. Thieme, New York ; 2019 : p.93–103.

3) Chivukula S, Koutourouisi M, Snyderman CH, et al: Endoscopic endonasal skull base surgery in the pediatric population. J Neurosurg Pediatr 2013 ; 11 : 227–241.

4) Rastatter JC, Snyderman CH, Gardner PA, et al: Endoscopic endonasal surgery for sinonasal and skull base lesions in the pediatric population. Otolaryngol Clin North Am 2015 ; 48 : 79–99.

5) Shah RN, Surowitz JB, Patel MR, et al: Endoscopic pedicled nasoseptal flap reconstruction for pediatric skull base defects. Laryngoscope 2009 ; 119 : 1067–1075.

6) Chen W, Gardner PA, Branstetter BF, et al: Long-term impact of pediatric endoscopic endonasal skull base surgery on midface growth. J Neurosurge Pediatr 2019 ; 23 : 523–530.

7) McDowell M, Chiang M, Abou-Al-Shaar H, et al: Applications of endoscopic endonasal surgery in early childhood (unpublished data).

8) Wang EW, Zanation AM, Gardner PA, et al: ICAR: Endoscopic skull-base surgery. Int Forum Allergy Rhinol 2019 ; 9 : S145–S365.

9) Robbins KT, Ferlito A, Silver CE, et al: Contemporary management of sinonasal cancer. Head Neck 2011 ; 33 : 1352–1365.

10) Fu TS, Monteiro E, Muhanna N, et al: Comparison of outcomes for open versus endoscopic approaches for olfactory neuroblastoma: A systematic review and individual participant data meta-analysis. Head Neck 2016 ; 38 : E2306–E2316.

11) de Almeida JR, Zanation AM, Snyderman CH, et al: Defining the nasopalatine line: The limit for endonasal surgery of the spine. Laryngoscope 2009 ; 119 : 239–244.

12) Cardenas Ruiz-Valdepenas E, Kaen A, Gonzalez-Martinez E, et al: Endoscopic endonasal superomedial orbitectomy: How far is safe and possible? Laryngoscope 2019 Jun 17 [Online ahead of print] PMID: 31206702 DOI: 10.1002/lary.28080

13) Scopel TF, Fernandez-Miranda JC, Pinheiro-Neto CD, et al: Petrous apex cholesterol granulomas: Endonasal vs. infracochlear approach. Laryngoscope 2012 ; 122 : 751–761.
14) Koutourousiou M, Gardner PA, Tormenti MJ, et al: Endoscopic endonasal approach for resection of cranial base chordomas: Outcomes and learning curve. Neurosurgery 2012 ; 71 : 614–625.

15) Patel CR, Wang EW, Fernandez-Miranda JC, et al: Contralateral transmaxillary corridor: An augmented endoscopic approach to the petrous apex. J Neurosurg 2018 : 129 : 211–219.

16) Hadad G, Bassagasteguy L, Carrau RL, et al: A novel reconstructive technique after endoscopic expanded endonasal approaches: Vascular pedicle nasoseptal flap. Laryngoscope 2006 ; 116 : 1882–1886.

17) Lavigne P, Vega MB, Ahmed OH, et al: Lateral nasal wall flap for endoscopic reconstructive anterior skull base reconstruction: Clinical outcomes and radioanatomic analysis of preoperative planning. Neurosurgery 2010 ; 66 : 506–512; discussion 512.

18) Patel MR, Shah RN, Snyderman CH, et al: Pericranial flap for endoscopic anterior skull base reconstruction: Clinical outcomes and radioanatomic analysis of preoperative planning. Neurosurgery 2010 ; 66 : 506–512; discussion 512.

19) Koutourousiou M, Vaz Guimarães Filho F, Costacou T, et al: Pontine encephalocele and abnormalities of the posterior fossa following transcervical endoscopic endonasal surgery. J Neurosurg 2014 ; 121 : 359–366.

20) Vaz-Guimarães F, Su SY, Fernandez-Miranda JC, et al: Hemostasis in endoscopic endonasal skull base surgery. J Neurol Surg B 2015 ; 76 : 296–302.

21) Snyderman CH, Pant H: Endoscopic management of vascular sinonasal tumors, including angiofibroma. Otolaryngol Clin North Am 2016 ; 49 : 791–807.

22) Gardner PA, Vaz-Guimarães F, Jankowitz B, et al: Endoscopic endonasal clipping of intracranial aneurysms: Surgical technique and results. World Neurosurg 2015 ; 84 : 1380–1393.

23) Snyderman CH, Gardner PA: Quality control approach to cerebrospinal fluid leaks. Adv Otorhinolaryngol 2013 ; 74 : 130–137.

24) Zwagerman NT, Wang EW, Shin SS, et al: Does lumbar drainage reduce postoperative cerebrospinal fluid leak after endoscopic endonasal skull base surgery? A prospective, randomized controlled tri-

al. J Neurosurg 2019 ; 131 : 1172–1178.

25) Rowan NR, Turner MT, Valappil B, et al: Injury of the carotid artery during endoscopic endonasal surgery: Surveys of skull base surgeons. J Neurol Surg B 2018 ; 79 : 302–308.

26) Gardner PA, Tormenti MJ, Pant H, et al: Carotid artery injury during endoscopic endonasal skull base surgery: Incidence and outcomes. Neurosurgery 2013 ; 73 : ons261–ons270.

27) Gardner PA, Snyderman CH, Fernandez-Miranda JC, et al: Management of major vascular injury during endoscopic endonasal skull base surgery. Otolaryngol Clin North Am 2016 ; 49 : 819–828.

28) Pacca P, Jhawar SS, Seelen DV, et al: "Live cadaver" model for internal carotid artery injury simulation in endoscopic endonasal skull base surgery. Oper Neurosurg (Hagerstown) 2017 ; 13 : 732–738.

29) Bhenswala PN, Schlosser RJ, Nguyen SA, et al: Sinonasal quality-of-life outcomes after endoscopic endonasal skull base surgery. Int Forum Allergy Rhinol 2019 ; 9 : 1105–1108.

30) Rowan NR, Valappil B, Chen J, et al: Prospective characterization of postoperative nasal deformities in patients undergoing endoscopic endonasal skull base surgery. Int Forum Allergy Rhinol 2020 ; 10 : 256–264.

31) de Almeida JR, Carvalho F, Vaz Guimarães Filho F, et al: Comparison of endoscopic endonasal and bifrontal craniotomy approaches for olfactory groove meningiomas: A matched pair analysis of outcomes and frontal lobe changes on MRI. J Clin Neurosci 2015 ; 22 : 1733–1741.

32) Snyderman C, Kassam A, Carrau R, et al: Acquisition of surgical skills for endonasal skull base surgery: A training program. Laryngoscope 2007 ; 117 : 699–705.

33) Lavigne P, Faden D, Gardner PA, et al: Validation of training levels in endoscopic endonasal surgery of the skull base. Laryngoscope 2019 ; 129 : 2253–2257.

34) Snyderman CH, Wang EW, Fernandez-Miranda JC, et al: The making of a skull base team and the value of multidisciplinary approach in the management of sinonasal and ventral skull base malignancies. Otolaryngol Clin North Am 2017 ; 50 : 457–
35) Pollock KJ and the NASBS Best Practices for Coding & Billing Task Force, Casiano RR, Folbe AJ, et al: Coding and reimbursement for endoscopic endonasal surgery of the skull base. J Neurol Surg B Skull Base 2019; 80: S247–S254.
36) https://www.goodreads.com/quotes/1171726-if-you-always-do-what-you-always-did-you-will Accessed April 7, 2020
37) Snyderman CH: North American Skull Base Society 26th Annual Meeting: Innovation & creativity in skull base surgery. J Neurol Surg B 2016; 77: 279–282.
38) https://www.brainyquote.com/quotes/pablo_picasso_108723 Accessed April 7, 2020
39) Pollan M: How to change your mind. New York: Penguin Press; 2018.