Ozone Measurements with Meteors: A Revisit

Quan-Zhi Ye,1,2,3⋆ and Summer Xia Han4,5

1Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
2Astronomy Department, California Institute of Technology, Pasadena, CA 91125, U.S.A.
3Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, U.S.A.
4Department of Biological Sciences, National University of Singapore, 117543 Singapore
5Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, U.S.A.

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Understanding the role of ozone in the Mesosphere/Lower Thermosphere (MLT) region is essential for understanding the atmospheric processes in the upper atmosphere. Earlier studies have shown that it is possible to use overdense meteor trails to measure ozone concentration in the meteor region. Here we revisit this topic by comparing a compilation of radar observations to satellite measurements. We observe a modest agreement between the values derived from these two methods, which confirm the usefulness of the meteor trail technique for measuring ozone content at certain heights in the MLT region. Future simultaneous measurements will help quantifying the performance of this technique.

Key words: Earth – meteorites, meteors, meteoroids

1 INTRODUCTION
A meteor is the visible streak of light produced by an interplanetary dust particle (a meteoroid) at the entry of the Earth’s atmosphere. Meteoroids are directly linked to the primitive materials in the early solar system: they are either leftovers of the planet formation era in the early solar system, or are linked to primitive bodies (asteroids and comets), and therefore they attract intense interests in the astrophysics and planetary science communities.

The atmospheric science community, on the other hand, has used the meteor phenomenon as a tool to study the atmospheric properties and dynamics of the so-called “meteor region” within the Mesosphere/Lower Thermosphere (MLT) since the 1950s. This is a region 70–120 km above Earth’s surface is generally difficult to study with in situ techniques. Radar meteor techniques, in particular, have been used to infer atmospheric properties such as high-altitude temperature and winds (e.g. Fraser 1965; Cervera & Reid 1995; Hocking 1999; Younger et al. 2008, 2014, and many others), planetary-scale features (Cevolani 1991; Baggaley et al. 2001), and ozone concentration (e.g. Jones et al. 1990; Jones & Simek 1995; Hajduk et al. 1999; Cevolani & Pupillo 2003). Determination of the ozone concentration uses the fact that the duration of overdense meteor trails are concurrently limited by ambipolar diffusion at high altitudes and oxidation due to the presence of ozone at lower heights as first recognized by Baggaley (1972).

Ozone plays a major role at high altitudes (50–100 km) in the chemistry of the upper atmosphere (c.f. Allen et al. 1984, and references therein), yet measurements of ozone in the MLT remain relatively scarce. Stellar occultation technique has been routinely used to measure mesospheric ozone content since 1970s (e.g. Hays & Roble 1973; Bevilacqua et al. 1996; Kaufmann et al. 2003; Kyrölä et al. 2006), but only a handful of these surveys extend their measurements to MLT and even if they do, the uncertainty in the MLT region is considerably higher. The 1.27 µm airglow emission is another technique that has been used to derive MLT ozone content (e.g. Sica & Lowe 1993; Gumbel et al. 1998), but it depends on the assumption of a steady state photochemical model which does not always holds in the MLT region (Zhu et al. 2007). An alternative technique will be helpful in providing an independent measurement of the ozone content in the MLT region.

Jones et al. (1990) were the first to suggest a method whereby the distribution of overdense meteor echo durations could be used to estimate ozone levels at a particular height. In the absence of chemistry-limiting reactions, the cumulative distribution of echo duration should be a power-law reflecting the distribution in the masses of incoming meteoroids, as the duration of an overdense echo subject to ambipolar diffusion is directly related to the mass of the original meteoroid (e.g. Ceplecha et al. 1998). Chemical reactions remove electrons from the trail and this process exceeds diffusion at longer durations. Therefore, the resulting cumulative distribution shows a break or inflection in the original power-law. The location of this inflection is a direct
2 Ye & Han

estimate of the ozone concentration at the height appropriate to the knee in the distribution.

Several dedicated, long-term meteor radar systems, such as the Advanced Meteor Orbit Radar in 1990–1999 (Baggaley 1995), the Canadian Meteor Orbit Radar (CMOR) from 2002 onward (Jones et al. 2005), and meteor radars at Antarctica from 2006 onward (Holdsworth et al. 2008; Younger et al. 2009), each have collected orders of magnitude more data than their predecessors. However, unlike temperature and wind measurements, which rely on underdense meteor trails that are relatively easy to identify with automatic algorithms, determination of ozone concentration relies on the precise measurement of the duration of overdense meteor trails, a process that is difficult to automate. Therefore, ozone study takes little advantage from the dramatic increase of meteor data.

Here, we revisit this topic combining results of a number of earlier studies, including several CMOR datasets that are recently analyzed and published (Ye et al. 2013b,a, and others). Our goal is to compare the resulting ozone estimates with more recent satellite estimates of ozone with overlapping temporal coverage, updated reaction rate coefficients, and critically review the utility of this technique for providing ozone concentrations at specific heights.

2 THEORY: A REVISIT

The mass distribution index is defined such that the number of meteoroids in the mass interval \((m, m + dm)\) follows \(m^{-q}\) (McKinley 1961; Grun et al. 1985). In most cases, the assumption of a power-law distribution of meteoroid number as a function of mass holds for a wide mass range, although in practice, most streams are found to have a unique \(q\).

It is difficult to directly measure the mass of an individual meteoroid, but following classic radar meteor theory, we expect the mass of a meteoroid to be linearly proportional to the (peak) electron line density \(q\) of the trail formed (for underdense meteor trails) or the height-corrected \((\text{Simk 1987})\) duration \(\tau\) (for overdense meteor trails) as seen by the radar. Therefore, the distribution of \(q\) or \(\tau\) can be used to constrain \(q\).

This can be done by simply counting the cumulative number of meteoroids \(N\) beyond a certain value of \(q\) or \(\tau\) and measure the slope of the linear portion to derive \(q\) (McIntosh 1968):

\[
N \propto q^{1-q}
\]

for underdense trails, or

\[
N \propto \tau^{3(1-q)/4}
\]

for overdense trails.

Equation 2 provides the theoretical duration of an overdense meteor trail when the decay process is dominated by ambipolar diffusion. Larger/slower meteoroids can survive to lower heights (below \(\sim 100\) km), where the duration can be limited by the reaction rate of a two-body attachment process between meteoric electrons, called the chemistry-limited regime. Diffusion of meteor trails above \(\sim 100\) km are predominately controlled by ambipolar process and is not considered susceptible to chemistry-limited regime.

The duration in the chemistry-limited regime is expressed as follow (Jones et al. 1990, §1), although it has been recognized that the change of power beam collecting area can alter its slope (Pecina 1984; Pecinová & Pecina 2005):

\[
N \propto \tau^{9(1-q)/2}
\]

However, the derived \(q\) values showed large discrepancies with values derived from independent techniques (e.g. optical measurements), possibly due to the non-negligible contributions from other factors, such as gravity waves or charged dust particles (e.g. Kelley 2004). Nonetheless, the transition between diffusion-limited regime and chemically-limited regime is marked by the “characteristic” duration, \(\tau_c\) (Figure 1). Trails with duration greater than \(\tau_c\) are predominantly in the chemistry-limited regime and vice versa.

Baggaley & Cummack (1974) attribute the cause of chemistry-limited regime to rapid dissociative recombination between meteoric ions and ozone molecules, which was later supported by observational evidence (Jones et al. 1990). The key reactions removing electrons from the trail are:

\[
M^+ + O_3 \rightarrow MO^+ + O_2
\]

(4)

\[
MO^+ + e \rightarrow M + O
\]

(5)

Where \(M^+\) is the meteoric ion. The reaction constant of Reaction 4 is 2–3 orders of magnitude slower than Reaction 5 (Whalley et al. 2011; Plane & Whalley 2012), which limits the de-ionization process. We should note that this reaction is only dominant above \(\sim 88\) km (Ferguson & Fehsenfeld 1968; Rowe et al. 1981; Whalley et al. 2011), hence limiting the heights that the meteor trail technique can be applied.

Readers may also wonder about the reaction

\[
MO^+ + O \rightarrow M^+ + O_2
\]

(6)

which dominates over Reaction 5 in the background MLT. However, it should be noted that in overdense meteor trails, the electron density (\(\sim 10^{20}\) m\(^{-3}\), e.g. Foschini 1999) is much higher than the ambient atomic oxygen density (\(\sim 10^{18}\) m\(^{-3}\), e.g. Lednys’kyt et al. 2015) and therefore, Reaction 5 will dominate over Reaction 6 in the overdense meteor trails.

Taking the reaction constant of Reaction 4 to be \(k\), the ozone concentration can be calculated by

\[
[O_3] = \frac{1}{k \cdot \tau_c}
\]

(7)

as applicable to the knee height of the meteors, namely the “knee” height where \(\tau_c\) applies.

For simplicity, Mg\(^{+}\) has been used as the representative species for major meteoric ions (e.g. Cervera & Reid 2000; Younger et al. 2014). However, it is known that other species that participate the oxidation process, such as Si\(^{+}\) and Fe\(^{+}\), are also major ion species in meteoroids (Baggaley & Cummack 1974). Although oxidation with Mg\(^{+}\) ion is slightly more efficient than that of Si\(^{+}\) and Fe\(^{+}\) (Table 1), some meteoroid streams (such as \(\eta\)-Aquariids and Orionids) are known to be Si-rich.
(Jessberger et al. 1988). If we take the whole process as a simple stoichiometric reaction, we have

\[k = \sum_{i=1}^{N} w_i k_i \]

where \(w_i \) and \(k_i \) denote the weight and reaction constant, respectively, of the \(i \)-th chemical species, which is either Mg\(^{+}\), Si\(^{+}\) or Fe\(^{+}\) in our work. The weight is derived using relative abundance and fraction of ionization reported in earlier papers (Jones 1997; Vondrak et al. 2008) for each meteoroid stream. We follow Baggaley & Cummack (1974)’s suggestion that Mg\(^{+}\), Si\(^{+}\) and Fe\(^{+}\) make up 93% of meteoric ions and assume Mg\(^{+}\), Si\(^{+}\) and Fe\(^{+}\) are fully responsible for oxidation process (the remaining 7% is attributed to Na\(^{+}\) which does not take part in the oxidation process).

3 DATA COLLECTION AND RESULTS

We compiled a total of 9 reported height-corrected characteristic times \(t_c \), including data from nine meteoroid streams recorded by five radar systems with observations dating back to 1957. Unfortunately, most of the works do not report the uncertainty of their data. Moreover, the process of fitting is not always clearly documented, making the results difficult to reproduce. Hence, we re-measure and re-fit all the dataset using a linear piecewise function which will also give us the fitting error. All re-measured \(t_c \) agree the original values within \(\sim 30\% \). We then converted \(t_c \) to ozone concentration using Equation 7 and Equation 8 with weights and combined reaction constants for the corresponding meteoroid stream. The results are shown in Table 2 and Figure 2.

With regard to the determination of the knee height, or the knee height of the meteors, there are three approaches:

(i) Interferometric observations, which the specular height of every observed meteor is measured directly by the radar. The knee height can therefore be taken as the mean inflection height of the meteors in the sample.

(ii) Simultaneous radar-visual observations (Jones et al. 1990), in which meteors are simultaneously observed by radar and a set of visual observers, the knee height is derived using the relation between meteor luminosity and its radio duration (McKinley 1961, §8-13).

(iii) Photographic observations, which applies to the radar systems with no interferometer or simultaneous visual observations. The average meteor luminosity is taken from other photographic or video meteor surveys (e.g. Jacchia et al. 1967; Brown et al. 2002), allowing knee height to be derived using luminosity-duration relation. Jones & Simek (1995) shows that the uncertainty of this method is \(\sim 3 \text{ km} \).

CMOR is equipped with an interferometer, Springhill is accompanied by visual observers. The other two radar systems (Ondrejov and Kharkov) use photographic mean determined by Jacchia et al. (1967) and Brown et al. (2002, for Leonids) to derive the knee height.

We then compared our results to those derived from SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on the TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics) satellite which measures ozone profile using star occultation by Earth’s atmosphere. The 9.6 \(\mu \text{m} \) ozone data obtained by SABER in March, June, September and December in 2002-2013 within 10° longitude and 5° latitude around CMOR site are extracted from the level 2 V2.0 datasets as available through the SABER website (http://saber.gats-inc.com/index.php).

As shown in Figure 2, we observe a modest agreement between the meteor-derived values and SABER measurements within the region which the meteor trail method is valid (88–100 km); all meteor-derived data points are within the range of diurnal variation of ozone as measured by SABER. This confirms earlier studies that meteor trail technique is effective. Beyond the 88–100 km region, the meteor-derived value still show some trend of agreement with the SABER values, but it is difficult to judge how far this agreement extend beyond the valid region and whether it can be trusted.

However, the lack of time information of the meteor data prevent us to compare the meteor data and SABER data more directly (i.e. data taken at the same time). This prompts us to focus on data from meteor outbursts only. There are three meteor outburst events in our dataset: the Draconid outbursts in 2011 Oct 8 (16-20 h UT) and 2012 Oct 8 (15–19 h UT) (Ye et al. 2013b,a), and the Camelopardalid outburst in 2014 May 24 (4–12 h UT) (Ye & Wiegert 2013). Meteor outburst is a phenomenon in which meteor rate from a particular meteoroid stream increases significantly, usually just in a few hours. The increase of meteor rate helps to improve the statistics, while the short duration helps by reducing the potential blur caused by temporal variation of ozone content. However, this introduces another difficulty as SABER do not always have observations in the desired time period. To increase the statistics at the SABER end, we include SABER data taken in the same hours within five days from the outburst dates. Still, the SABER data taken at both Draconid dates were 4-6 h too early for the outbursts, which would translate to an ozone level about 2 times lower compared to the ozone level at the outburst times which were both at local noon (Huang et al. 2008, Figure 8b).

As shown in Figure 3, the results are unfortunately suffered from low statistics, as well as suffered from the fact that most data points are beyond the valid zone for the meteor trail technique. Future campaigns aiming at collecting more simultaneous measurements will be useful to evaluate the performance of the meteor trail technique.

We also note that the compositional difference among the streams seems to have minor impact on the derivation of ozone. Our sample covers a wide range of compositions, from Mg-rich (such as Draconids) to Si-rich (such as Perseids), but the resulting combined rate constants are within \(\sim 5\% \) from each other. These showers are major annual showers that can be considered to be representative to shower meteors. Despite Mg\(^{+}\) having a higher rate constant, the ionization fraction of Mg is always lower than that of Si and Fe within the entire speed range, thus the Mg\(^{+}\) reaction will not dominate under any circumstance.
4 SUMMARY

We revisited the technique of using overdense meteor trails to measure ozone content in the MLT region. The technique was examined by comparing data derived from radar meteor observations to the ones derived from satellite observations. We observe a modest agreement between the two, confirming the results reported by earlier studies. However, the lack of simultaneous measurements made by different techniques prevent further evaluation about the performance of the meteor technique. Future campaigns focused in collecting more simultaneous measurements of the meteor technique and other techniques would be useful to resolve this issue.

ACKNOWLEDGMENTS

We thank several anonymous referees for their comments, as well as Peter Brown, Chen Hai-Sheng, Wang Hong-Lei, and Jia Shi-Guo for the discussion. We also thank the SABER team for their work in preparing the SABER dataset (available through http://saber.gats-inc.com/index.php) and making it readily available.

REFERENCES

Allen M., Lunine J. I., Yung Y. L., 1984, Journal of Geophysical Research: Atmospheres (1984–2012), 89, 4841
Anders E., Grevesse N., 1989, Geochimica et Cosmochimica Acta, 53, 197
Baggaley W. J., 1972, Monthly Notices of the Royal Astronomical Society, 159, 203
Baggaley W. J., 1995, Earth, Moon, and Planets, 68, 127
Baggaley W. J., Cummauck C. H., 1974, Journal of Atmospheric and Terrestrial Physics, 36, 1759
Baggaley W. J., Marsh S. H., Bennett R. G. T., Galligan D. P., 2001, in Warnbein B., ed., ESA Special Publication Vol. 495, Meteoroids 2001 Conference, pp 387–391
Bivilacqua R. M., et al., 1996, Geophysical Research Letters, 23, 2317
Borovička J., 2005, in Modern Meteor Science An Interdisciplinary View, Dordrecht, Netherlands: Springer, pp 245–253
Borovička J., Spurný P., Koten P., 2007, Astronomy & Astrophysics, 473, 661
Brown P., Campbell M. D., Hawkes R. L., Theijsmeijer C., Jones J., 2002, Planetary and Space Science, 50, 45
Cepela Z., Borovička J., Elford W. G., Reveille D. O., Hawkes R. L., Porubčan V., Šimek M., 1998, Space Science Reviews, 84, 327
Cervera M. A., Reid I. M., 1995, Radio Science, 30, 1245
Cervera M. A., Reid I. M., 2000, Radio Science, 35, 833
Cevolani G., 1991, Geophysical research letters, 18, 1987
Cevolani G., Pupillo G., 2003, Annals of Geophysics, 46
Ferguson E., Fesenfeld F., 1968, J. Geophys. Res., 73, 6215
Foschini L., 1999, Astronomy & Astrophysics, 341, 634
Fraser G., 1965, Journal of Atmospheric Sciences, 22, 217
Gomez Martin J. C., Plane J. M. C., 2011, Phys. Chem. Chem. Phys., 13, 3764
Grun E., Zook H. A., Fechtig H., Giese R. H., 1985, Icarus, 62, 244
Gumbel J., Murtagh D. P., Esyp F. J., Witt G., Schmidlin F. J., 1998, Journal of Geophysical Research: Space Physics, 103, 23399
Hajduk A., Hajduković M., Porubčan V., Cevolani G., Grassi G., 1999, in Baggaley W. J., Porubčan V., eds, Proceedings of the International Conference held at Tatranska Lomnica, Slovakia, August 17–21, 1998, p. 91
Hays P. B., Roble R. G., 1973, Planetary and Space Science, 21, 273
Hocking W., 1999, Geophysical Research Letters, 26, 3297
Holdsworth D. A., Murphy D. J., Reid I. M., Morris R. J., 2008, Advances in Space Research, 42, 143
Huang F. T., Mayr H. G., Russell J. M., Mlynczak M. G., Reber C. A., 2008, Journal of Geophysical Research (Space Physics), 113, 4307
Jacchia L., Verniani F., Briggs R. E., 1967, Smithsonian Contributions to Astrophysics, 10, 1
Jussiberger E. K., Christoforidis A., Kissel J., 1988, Nature, 332, 691
Jones W., 1997, Monthly Notices of the Royal Astronomical Society, 288, 995
Jones J., Simek M., 1995, Earth Moon and Planets, 68, 329
Jones J., McIntosh B. A., Simek M., 1990, Journal of Atmospheric and Terrestrial Physics, 52, 253
Jones J., Brown P., Ellis K., Webster A., Campbell-Brown M., Kraemenski Z., Weryk R., 2005, Planetary and Space Science, 53, 413
Kasuga T., Watanabe J., Ebizuka N., 2005, Astronomy & Astrophysics, 438, L17
Kaufmann M., Gusev O. A., Grossmann K. U., Martínez-Torres F. J., Marsh D. R., Kutepov A. A., 2003, Journal of Geophysical Research: Atmospheres, 108
Kelley M. C., 2004, Radio Sci., 39, RS2015
Kyrölä E., et al., 2006, J. Geophys. Res., 111, D24306
Ledvya’ky O., von Savigny C., Eichmann K.-U., Mlynczak M. G., 2015, Atmospheric Measurement Techniques, 8, 1021
McIntosh B. A., 1968, in Kresak L., Millman P. M., eds, IAU Symposium Vol. 33, Physics and Dynamics of Meteors, p. 343
McKinley D. W. R., 1961, Meteor science and engineering,. New York, McGraw-Hill
Pecina P., 1984, Bulletin of the Astronomical Institutes of Czechoslovakia, 35, 183
Pecinová D., 2003, Bulletin of the Astronomical Institutes of Czechoslovakia, 35, 183
Rowe B., Fahey D., Ferguson E., Fesenfeld F., 1981, The Journal of Chemical Physics, 75, 3325
Sica R., Lowe R., 1993, J. Geophys. Res., 98, 1051
Simek M., 1987, Bulletin of the Astronomical Institutes of Czechoslovakia, 38, 80
Simek M., 1994, Astronomy & Astrophysics, 284, 276
Vondrak T., Plane J. M. C., 2008, Astrophysical Journal Letters, 681, 113
Ye Q., Wiegert P. A., 2013, Monthly Notices of the Royal Astronomical Society, pp 3283–3287
Ye Q., Wiegert P. A., Brown P. G., Campbell-Brown M. D., Weryk R. J., 2013a, Monthly Notices of the Royal Astronomical Society, p. stt2178
Ye Q., Brown P. G., Campbell-Brown M. D., Weryk R. J., 2013b, Monthly Notices of the Royal Astronomical Society, 436, 675
Ye Q.-Z., Hui M.-T., Brown P. G., Campbell-Brown M. D., Pokorný P., Wiegert P. A., Gao X., 2016, Icarus, 264, 48
Younger J. P., Reid I. M., Vincent R. A., Holdsworth D. A., 2008, Geophysical Research Letters, 35
Younger J. P., Reid I. M., Vincent R. A., Holdsworth D. A., Murphy D. J., 2009, Monthly Notices of the Royal Astronomical Society, 398, 350

Ye & Han MNRAS 000, 1–10 (2015)
Younger J., Lee C., Reid I., Vincent R., Kim Y., Murphy D., 2014, Journal of Geophysical Research: Atmospheres, 119, 10027
Zhu X., Yee J.-H., Talaat E. R., 2007, Journal of Geophysical Research: Atmospheres, 112
Figure 1. The determination of the characteristic duration, t_c, presented as a turnover point from diffusion-limited regime to chemistry-limited region. This illustrative figure does not involve real data.
Figure 2. Ozone mixing ratio (in part per million volumes) derived from meteor trails and SABER. Uncertainty bars indicate the standard deviation of the SABER and meteor-derived data. Shaded area indicates region that the meteor technique is theoretically invalid.
Figure 3. Semi-simultaneous ozone measurements by CMOR (circles) and SABER during Draconids outbursts in 2011 and 2012 (left) and Camelopardalis outburst in 2014 (right). CMOR measurements are appropriated to 2011 Oct 8 at 16–20 h UT and 2012 Oct 8 at 15–19 h UT for the Draconids, and 2014 May 24 at 4–12 h UT for the Camelopardalis. SABER observations are conducted at similar hours within five days from the outburst dates. SABER profiles adapted for the Draconid outbursts are plotted in dashed lines, as the observations are 4–6 h too early for the meteor-derived value. Uncertainty bars for SABER profile and CMOR data indicate the standard deviation of the data. Shaded area indicates region that the meteor technique is theoretically invalid.
Table 1. Weight and combined rate constant (k) derived for each meteoroid stream. For abundance ratio, numbers in brackets indicate that ratio for the respective stream is unknown, therefore generalize value from carbonaceous (CI) chondrite (Anders & Grevesse 1989) is used. Rate constants for oxidation of individual species are: $(1.17 \pm 0.19) \times 10^{-15}$ m$^3 \cdot$ mol$^{-1} \cdot$ s$^{-1}$ for Mg$^++$O$_3$ (Whalley et al. 2011), $(6.5 \pm 2.1) \times 10^{-16}$ m$^3 \cdot$ mol$^{-1} \cdot$ s$^{-1}$ for Si$^++$O$_3$ (Gomez Martin & Plane 2011), and $(7.1 \pm 2.3) \times 10^{-16}$ m$^3 \cdot$ mol$^{-1} \cdot$ s$^{-1}$ for Fe$^++$O$_3$ (Rollason & Plane 1998).

Shower	Element	Abundance (fraction)	Weight w_i	k (m$^3 \cdot$ mol$^{-1} \cdot$ s$^{-1}$)	Reference
Camelopardalids	Mg	(0.36)	0.16	7.76×10^{-16}	Anders & Grevesse (1989)
	Si	(0.34)	0.15		
	Fe	(0.30)	0.68		
Perseids	Mg	0.37	0.29	8.09×10^{-16}	Borovička (2005)
	Si	0.52	0.55		
	Fe	0.11	0.16		
Draconids	Mg	0.42	0.18	7.79×10^{-16}	Borovička et al. (2007)
	Si	(0.31)	0.27		
	Fe	0.27	0.55		
Geminids	Mg	0.52	0.31	8.36×10^{-16}	Kasuga et al. (2005)
	Si	(0.25)	0.27		
	Fe	0.23	0.42		
Table 2. Summary of characteristic time measurements and the derived ozone concentrations (in part per million volumes).

Shower	Radar	Year of obs	t_c (s)	Knee (km)	$[O_3]$ ppmv	Reference
Camelopardalids	CMOR	2014	1.6 ± 0.1	85	3.72 ± 0.22	Ye et al. (2016)
Perseids	Ondrejov	1991	21.1 ± 2.5	96	2.43 ± 0.26	Jones & Simek (1995)
	Springhill	1957–1982	34.6 ± 4.5	97	1.78 ± 0.20	Jones & Simek (1995)
Draconids	CMOR	2011	2.7 ± 0.2	87	3.93 ± 0.27	Ye et al. (2013b)
	CMOR	2012	2.5 ± 0.2	89	6.07 ± 0.45	Ye et al. (2013a)
	Springhill	1985	13.1 ± 0.9	94	2.83 ± 0.18	Simek (1994)
Geminids	Ondrejov	1958–1991	5.0 ± 0.4	83	1.01 ± 0.07	Jones & Simek (1995)
	Kharkov	1958	4.6 ± 0.3	83	1.10 ± 0.07	Jones & Simek (1995)
	Springhill	1957–1982	13.8 ± 0.6	86	0.60 ± 0.02	Jones & Simek (1995)

This paper has been typeset from a TeX/LaTeX file prepared by the author.