Parallel and Perpendicular Susceptibility Above T_c in La$_{2-x}$Sr$_x$CuO$_4$ Single Crystals

Gil Drachuck,1 Meni Shay,1,2 Galina Bazalitsky,1 Jorge Berger,2 and Amit Keren1

1Department of Physics, Technion - Israel Institute of Technology, Haifa, 32000, Israel
2Department of Physics and Optical Engineering, Ort Braude College, P.O. Box 78, 21982 Karmiel, Israel

(Dated: February 18, 2022)

We report direction-dependent susceptibility and resistivity measurements on La$_{2-x}$Sr$_x$CuO$_4$ single crystals. These crystals have rectangular needle-like shapes with the crystallographic “c” direction parallel or perpendicular to the needle axis, which, in turn, is in the applied field direction. At optimal doping we find finite diamagnetic susceptibility above T_c, namely fluctuating superconductivity (FSC), only when the field is perpendicular to the planes. In underdoped samples we could find FSC in both field directions. We provide a phase diagram showing the FSC region, although it is sample dependent in the underdoped cases. The variations in the susceptibility data suggest a different origin for the FSC between underdoping (below 10%) and optimal doping. Finally, our data indicates that the spontaneous vortex diffusion constant above T_c is anomalously high.

The superconducting and ferromagnetic phase transitions share a lot in common, but it is simpler to visualize the latter. The magnetic moment direction in a ferromagnet is analogous to the phase of the superconducting order parameter, and the magnetic field produced by the ferromagnet is equivalent to the lack of resistance of a superconductor. A ferromagnet produces a maximal magnetic field when all its domains are aligned. Similarly, a superconductor has no resistance only if the phase of the order parameter is correlated across the entire sample. However, a ferromagnet can have local magnetization, without global alignment of domains. Similarly, a superconductor can have local superconductivity, manifested in diamagnetism, without zero resistance across the entire sample. This situation is the hallmark of fluctuating superconductivity without global phase coherence. In a two dimensional system, where long range-order is forbidden, the role of domains is played by a vortex anti-vortex pair, which breaks the fabric of the phase. Detecting fluctuating superconductivity in a particular compound is essential for understanding the structure of its phase transition.

In the highly anisotropic cuprate superconductors, the presence of diamagnetism well above the resistance critical temperature, T_c, was demonstrated some time ago, with high magnetic field H perpendicular to the superconducting planes. This finding was, indeed, interpreted as persistence of the finite order parameter amplitude throughout the sample, but with short-range phase coherence above T_c. However, a completely different interpretation could be offered to the same effect, in which electrons are inhomogeneously localized due to the randomness of the dopant. There are several experimental indications for inhomogeneous localization. In this case, superconductivity can occur with finite order parameter amplitude only in three dimensional patches of the sample, leading to a local diamagnetic signal without a continuous resistance-free path at $T > T_c$. In the localization scenario, a diamagnetic signal should be detected above T_c for all directions of the applied field H.

In this work, we examine the fluctuating superconductivity of La$_{2-x}$Sr$_x$CuO$_4$ using magnetization (M) measurements with the field parallel and perpendicular to the CuO$_2$ planes. We work in the zero field limit, as required by the definition of susceptibility. We also perform resistivity measurements on the exact same samples. Our major finding, summarized in Fig. 1, is a diamagnetic susceptibility in the resistive phase of highly underdoped sample, for both the parallel and perpendicular field, supporting the localization scenario. Close to optimal doping, a diamagnetic signal in the resistive phase exists only when the field is perpendicular to the superconducting planes, in accordance with the phase fluctuation scenario.

We generate a phase diagram in Fig. 2 showing, for each doping, the temperatures at which resistivity vanishes, and the temperatures at which a diamagnetic signal appears for different field directions. We also compute the spontaneous vortex diffusion constant $D = \chi_0 \rho_{ab}/\rho_0$ using our DC data and find it to be anomalously high. The implications of such high D are discussed in Ref. 6.

The paper is organized as follows. In Sec. I we describe the experiment. In Sec. II we present our major findings in more details. We clarify which experimental variables are relevant for our findings in Sec. III using several control experiments. Finally, in Sec. IV we summarize our conclusions.

I. EXPERIMENTAL DETAILS

In magnetization experiments in the zero field limit, the measured susceptibility $\chi_m = \lim_{H \to 0} M/H$ depends on the sample geometry via the demagnetization factor (D), and is given by $\chi_m = \chi_i/(1 + D \chi_i)$ where χ_i is the intrinsic susceptibility. For needle-like samples, $D \approx 0$ and $\chi_m = \chi_i$. Therefore, in order to determine χ_i properly needle-like samples are needed. To achieve the $D \approx 0$ condition we utilize rod-like La$_{2-x}$Sr$_x$CuO$_4$ single crystals grown in an image furnace, which are oriented with a Laue camera and a goniometer. After the orientation, the goniometer with the rod is mounted on a saw and
In this figure we depict the normalized magnetization M/M_0 as a function of T_c, at a field of $H = 0.5$ Oe, for the $x = 15\%$ and 7% samples respectively, for two different orientations. M_A and M_C are measurements performed on the A- and C-needle, respectively. M_C shows a knee upon cooling. This knee exists in all C-needle measurements but its size and position appears to be random. Resistivity data, normalized to 1 at the peak, are also presented in this figure; ρ_A and ρ_C are the resistivities measured using the corresponding needles with the contacts along the needles. The resistivity results are similar to those previously reported. The superconducting transition of the 7% sample is wide. However, it is known that 8% and higher doping samples are superconductors, and 5% and lower doping samples are insulators. Therefore, it is not surprising that the resistivity of a 7% sample has a broad transition.

There is a small difference in the temperature at which zero resistivity appears, as determined by ρ_A or ρ_C. We define the critical temperature T_c^ρ as the smaller of the two. In contrast, a clear anisotropy is evident in the temperature at which the magnetization is detectable; this difference increases as the doping decreases. For the 15% sample: M_A is not detectable above $T_c^M = 35$ K, but M_C is finite up to 36.5 K. The critical temperature of the material T_c could be defined by one of two criteria: T_c^ρ, or the presence of three dimensional diamagnetism (finite M_A). For the 15% sample, the difference in T_c between the two criteria is on the order of our measurement accuracy discussed in Sec. III. The strong residual M_C above T_c^ρ without residual M_A was never detected before in such low fields. It could result from decoupled superconducting planes disordered by vortices.

In contrast, for the 7% case, both M_A and M_C are finite at temperatures well above $T_c^\rho = 7.0$ K. M_A is not detectable only above 13 K and M_C is finite up to 25 K. The sharpest transition is observed with the M_A measurement; this type of measurement could be used to define doping and sample quality. The dramatic difference between the 15% and 7% doping indicates that the fluctuating superconductivity above T_c^ρ at low doping is fundamentally different from optimal doping, and could be derived by electronic inhomogeneous localization.

The DC in-plane resistivity for the 7% and 15% samples is $\rho_{ab} = 2.5 \times 10^{-4}$ and 0.5×10^{-5} Ω-cm respectively, at the crossing point between the resistivity ρ_A and the magnetization M_c curves. The volume susceptibility of the 7% and 15% needles, also at the crossing point, is 0.48 and 0.12 of the saturation value respectively (see Fig. 4). This leads to an anomalously high spontaneous vortex diffusion constant $D = \chi_C\rho_{ab}/\mu_0 \sim 10^4$ and 10^2 cm2/sec for the 7% and 15%; which is much higher than previously reported.

We repeat the same measurements for several different dopings. For each doping we determine three temperatures: T_M^C and T_M^A are the temperatures at which the magnetization of the C- and A-needles become finite, and T_c^ρ. The three temperatures are plotted as a function of doping in Fig. 2. On the scale of the figure, T_c^ρ and T_M^A
are very close to each other for all doping, and are different from T_C^C. The difference between T_C^C and both T_C^A and T_c^A is small and roughly constant for doping higher than 10%, with the exception of the stripe ordered phase at 1/8 doping. Interestingly, at this phase T_M^C follows the general trend, while T_M^A and T_c^A are suppressed as if the stripes are affecting the interlayer coupling only. Below 10% this difference increases upon underdoping.

III. CONTROL EXPERIMENTS

In order to verify these results we perform several control experiments. First we examine the influence of the field on the susceptibility. In Fig. 2 (a) and (b) we plot $4\pi \chi_m$ for the 15% C- and A-needles respectively, as a function of temperatures, and for several applied magnetic fields. For the field range presented, the saturation value of the susceptibility is field-independent. At $T \rightarrow 0$, $4\pi \chi_m = -1.1$ and -1.0 for the C- and A-needles, respectively. For our rectangular C-needle, with dimensions of $1 \times 1 \times 5$ mm3, the demagnetization factor is $D \simeq 4\pi \times 0.09$, which explains well the measured susceptibility. For our rectangular A-needle with dimensions of $1 \times 1 \times 10$ mm3, $D \simeq 4\pi \times 0.045$ and we expect $4\pi \chi_m = -1.05$, which is slightly higher than the observed value χ. A more accurate analysis of the susceptibility of needles is given below. At the other extreme, when $T \rightarrow T_c$ we see field-dependent susceptibilities but only for fields higher than 1 Oe. Below 1 Oe, $\chi_m(T)$ converges to a field-independent function representing the zero field susceptibility. Therefore, all our measurements are done with a field of 0.5 Oe. Finally, the knee exists in the $M_C(T)$ data only for fields lower than 10 Oe.

In Fig. 2 we provide the field dependence of the susceptibility for the 7% needles. Here again, the susceptibility converges into a field-independent function at $H \rightarrow 0$, especially close to T_c.

We also examine the relevance of misalignment of the samples to our results by purposely tilting the needles by 7°. The measurements of a straight sample and a tilted one are shown in the insets of Fig. 3 and 4. Misalignment can lead to an error of 0.1 K per 1° in the estimate of the temperature at which the magnetization is null. This tiny effect again cannot account for the difference in the magnetization between the A- and C-needles. In addition, the tilt does not affect the knee.

To test the doping homogeneity of the grown crystal, we cut the 7% A-needle into 5 pieces, grinded them into powder to remove shape-dependent effects, and measure the magnetization of each piece. The data are presented in Fig. 4. Judging from the scatter of points at half of the full magnetization, there is a scatter in T_c of 2 K between the different pieces. This is much smaller than the difference between T_M^C and T_M^A. Therefore, the difference between T_M^C and T_M^A is not a result of using two different pieces of sample for each measurement.

Another concern is vortices. At a certain temperature close to T_c, the critical field H_{c1} must drop below the applied magnetic field and vortices can enter the sample. This puts a limit on the range of temperature where interpreting our data is simple. Therefore, it is important to understand the behavior of H_{c1} near T_c. Figure 3 shows the results of $M(H,T)$ for $x = 7\%$ A-needle using a 3D plot. The values of H_{c1} are determined by fitting $M(H)$ to a straight line around $H = 0$ (not shown), and extracting the field where the linearity breaks. $H_{c1}(T)$ is
FIG. 4: The measured susceptibility $\chi_m (\equiv M/H)$ as a function of temperature for the 7% (a) C-needle and (b) A-needle in various magnetic fields. Insets: measurements of a straight and tilted needles demonstrating the effect of misalignment.

FIG. 5: Magnetization as a function of temperature measurements performed on 5 different pieces cuts from the 7% A-needle. The pieces were ground into powder.

The measurements of H_{c1} for the other samples and directions are depicted in Fig. 7. As long as $H_{c1} > 0.5$ Oe the sample is free of vortices. In particular, this condition holds for the 7% C-needle up to 20 K [see Fig. 7(c)]. This finding rules out the possibility that the knee observed in our C-needle measurements at fields lower than 10 Oe are due to a lock-in unlock-in transition of flux lines. The knees of the 7% C-needle occur at temperatures of 15 K at which the applied field is well below H_{c1} and no vortices exist in the sample. With the lock-in mechanism ruled out, we can only speculate that the knees are due to the corners and edges of the sample. Put differently, if a C-needle could be polished into a long oval object without cleaving it, then the knee should have disappeared.

FIG. 6: A 3D plot of the magnetization as a function of magnetic field and temperature for the 7% A-needle. (floor): H_{c1} as a function of temperature. (wall): Magnetization as a function of T. The green solid line on the floor represents the applied field used in Fig. 1.

FIG. 7: H_{c1} as a function of temperature measured on (a) 15% A-needle (b) 15% C-needle (c) 7% C-needle.

Also, we investigate the impact of the sample geometry on the magnetization. Our motivation is to change the needle’s dimensions in terms of length-to-width ratio while maintaining needle-like aspect ratio. In Fig. 8 we present a multitude of 15% measurements for A- and C-needles. The inset is a zoom close to T_c. The details of the magnetization curve are shape-dependent. However,
the $2 \times 2 \times 10$ mm3 and $1 \times 1 \times 5$ mm3 A-needles have the same curve, demonstrating that the length-to-width ratio is the most significant parameter. The closer the samples are to an ideal needle-like form, the larger the difference in the magnetization between directions. This, of course, is expected since for a cubic or a spherical geometry, field lines cross the planes at an angle thus mixing the two susceptibilities leading to indistinguishable susceptibilities close to T_c.

FIG. 9: Magnetization versus temperature for several 7% A- and C-needles with different sample dimensions. Inset: A zoom-in close to the transition temperature.

Similar data for the 7% samples are given in Fig. 9. However, the 7% sample are not ideal for testing the impact of geometry on the magnetization. Each sample presented in the figure is cut from a different segment of the rod, which are a few centimeters apart. Since 7% doping is on the edge of the superconducting dome, small changes in the preparation conditions may lead to a severely different behavior, such as T_c variations of ~ 2 K (see Fig. 5). Consequently, in Fig. 9 not only the geometry varies. In contrast, T_c of the 15% samples is not sensitive to small doping variations.

FIG. 8: Magnetization versus temperature for several 15% A- and C-needles with different sample dimensions. Inset: A zoom-in close to the transition temperature.

Finally, we examine the reproducibility of our most striking result, namely, the observation that for the 7% A-needle $T_c^a < T_M^A < T_M^C$. This test is done by growing a new crystal, cutting new A- and C-needles, and repeating the measurement. The result is shown in Fig. 10.

FIG. 10: Reproducibility test using a second 7% crystal. Both resistivity and magnetization are shown. The data should be compared with the original 7% crystal depicted in Fig. 1(b).

All these tests support our observation that the magnetization of the A- and C-needle are fundamentally different by an amount larger than any possible experimental error. One might try to explain these differences as a finite size effect, namely, as the penetration depth diverges when $T \to T_c$, it might have different values for each of the two different directions. Our magnetometer detects a diamagnetic signal only when the penetration depth is similar to the sample width. This could occur at different temperatures, which also differ from T_c.

To address this possibility, we examine the London penetration depth (λ) in our original 7% sample (Fig. 4). In C-needle measurements, the screening currents run in the ab planes and the susceptibility is sensitive to the in-plane penetration depth λ_{ab}. In contrast, in the A-needle measurements, the screening currents run both in- and between-planes. Therefore, the susceptibility is sensitive to both λ_{ab} and the penetration length between planes λ_c. To extract these λ’s we solve an anisotropic London equation

\[b_A - \lambda_{ab}^2 \frac{\partial^2 b_A}{\partial x^2} - \lambda_c^2 \frac{\partial^2 b_A}{\partial y^2} = 0 \quad (1) \]

\[b_C - \lambda_{ab}^2 \frac{\partial^2 b_C}{\partial x^2} - \lambda_{ab}^2 \frac{\partial^2 b_C}{\partial y^2} = 0 \quad (2) \]

with the boundary condition $b_a = 1$, where b_A and b_C are the internal field divided by the applied field in the
A- and C-needles respectively. We define $\langle b_n \rangle$ as the cross section average of b_n. For the A-needle we find

$$\langle b_A \rangle = \sum_{n \text{ odd}} \left\{ \frac{2}{g} \sinh(\beta_n g) - \frac{2}{g} \tanh(\beta_n g) + \beta_n g \right\} \left(\frac{\pi}{j} \right)^2 + 1, \mu_n = \sqrt{\left(\frac{\pi}{j} \right)^2 + 1},$$

where $g = w_y/\lambda_c$, $j = w_x/\lambda_{ab}$, $\beta_n = \sqrt{\left(\frac{\pi}{j} \right)^2 + 1}$, $\mu_n = \sqrt{\left(\frac{\pi}{j} \right)^2 + 1}$, and $w_{x/y}$ is the sample width taken as 1 mm. $\langle b_C \rangle$ is obtained from Eq. 3 by $\lambda_c \to \lambda_{ab}$. The susceptibility is given by $\chi_C = \langle \lambda_{ab} \rangle/4\pi$. This provides an analytical solution for $\chi_C(\lambda_{ab})$ and $\chi_A(\lambda_{ab}, \lambda_c)$.

We obtain λ_{ab} by equating the analytical solution to the measured susceptibility of the C-needle. We then substitute this λ_{ab} into χ_A and extract λ_c by equating the analytical solution to the measured susceptibility of the A-needle. Figure 11 depicts the calculated $\lambda_{ab}(T)$ and $\lambda_c(T)$ for $x = 7\%$. The analysis is valid only far from magnetic saturation. Two arrows show the temperature where H_{c1} is on the order of our measurement field (0.5 Oe). Eq. 1 is valid at temperatures lower than indicated by the arrows. It is also clear that the magnetization is finite when the penetration depth reaches the sample’s dimensions.

![Graph](image_url)

FIG. 11: A semi-log plot of the penetration depths λ_{ab} and λ_c, as a function of T obtained by comparing the analytical solutions of Eq. 1 and 2 with the measured susceptibilities of the original 7% sample presented in Fig. 1. The horizontal line represents the sample’s width. The points at which H_{c1}, for each needle, equals the applied field are also shown by arrows.

The surprising result is that λ_{ab} and λ_c run away from each other as the sample is warmed beyond T_c^\parallel, and both reach the sample dimensions well above T_c^\parallel. Therefore, it had been possible to increase the samples thickness, while maintaining needle-like geometry, a larger difference between the temperature of zero magnetization and T_c^\parallel would be expected, in contrast to a finite size scenario.

IV. DISCUSSION AND CONCLUSIONS

It is important to mention other experimental and theoretical work showing a strong anisotropy in the temperature at which signals can be detected in LSCO. For example, Tranquada et al. measured the temperature dependence of ρ_{ab} and ρ_c with applied magnetic fields up to 9 T in a La$_{2-x}$Sr$_x$CuO$_4$ single crystal with $x = 9.5\%$. When H was applied perpendicularly to the planes, it significantly suppressed the temperature at which $\rho_c \to 0$ without affecting ρ_{ab}. Thus, the field generated two effective T_c^\parallel’s. Similarly, Schafgans et al. performed optical measurements in LSCO while applying a magnetic field up to 8 T parallel to the crystal c-axis. They found a complete suppression of the inter-plane coupling, while the in-plane superconducting properties remained intact. In addition, it was recently suggested theoretically that two dimensional-like superconductivity could be generated by frustration of the inter-layer coupling induced by stripe order, or by c-axis disorder. These experiments and theories show that seemingly two different critical temperatures are conceivable.

In this work we examine the anisotropy of the susceptibility in La$_{2-x}$Sr$_x$CuO$_4$ single crystals cut as needles. We find a different magnetic critical temperatures for measurements in two different directions. We also observe a diamagnetic susceptibility above T_c^\parallel for $H \parallel c$ at all doping, and a diamagnetic susceptibility above T_c^\perp for both $H \parallel c$ and $H \perp c$ at low doping. We suggest that at doping lower than 10%, electronic inhomogeneous localization is leading to local 3D superconducting patches, which provide diamagnetism without global superconductivity. Above 10% doping, vortices in an otherwise phase coherent state are responsible for finite resistivity coexisting with a diamagnetic signal in the $H \parallel c$ case. Our experimental configuration allows us to calculate the spontaneous vortex diffusion constant using DC measurements. It is found to be much higher than previously though.

We also provide a phase diagram showing T_c^\parallel and the temperature at which a diamagnetic signal appears for each direction. At doping higher than 10%, our data support the existence of fluctuating superconductivity only a few degrees above T_c^\parallel, namely, on a temperature scale much smaller than the pseudogap scale. This is in contrast to high field measurements, but in agreement with low field experiment. How the field affects the temperature range of superconducting fluctuations, and whether this range is related to disorder or frustrations remains an open question.

V. ACKNOWLEDGMENTS

We acknowledge helpful discussions with N. Peter Armitage. This work was supported by the Israeli Science Foundation, by the Nevet program of the RBNI center for nano-technology, and by the Posenansky research fund in high temperature superconductivity.
1 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
2 C. Torrón, A. Díaz, A. Pomar, J. A. Veira, and F. Vidal, Phys. Rev. B 49, 13143 (1994).
3 Y. Wang, L. Li, M. J. Naughton, G. D. Gu, S. Uchida, and N. P. Ong, Phys. Rev. Lett. 95, 247002 (2005); Lu Li, Yayu Wang, M. J. Naughton, S. Ono, Yoichi Ando, and N. P. Ong, Europhys. Lett. 72, 451-457 (2005); Lu Li, Yayu Wang, Seiki Komiya, Shimpei Ono, Yoichi Ando, G. D. Gu and N. P. Ong, Phys. Rev. B 81, 054510 (2010).
4 G. S. Boebinger et al., PRL 77, 5417 (1996); J. Hori, S. Iwata, H. Kurisaki, F. Nakamura, T. Suzuki, and T. Fuhita, J. Phys. Soc. Jpn. 71 (2002) 1346; S. Komiya and Y. Ando, PRB 70 (2004) 060503(R).
5 S. Komiya, Y. Ando, X. F. Sun, and A. N. Lavtov, Phys. Rev. B 65, 214535 (2002). Y. Ando, S. Komiya, K. Segawa, S. Ono, and Y. Kurita, Phys. Rev. Lett. 93, 267001 (2004).
6 L. S. Bilbro, R. Vakil Aguiar, G. Logvenov, I. Bozovic, and N. P. Armitage, Phys. Rev. B 84, 100511(R) (2011).
7 M. Sato and Y. Ishii J. Appl. Phys. 66, 983 (1989).
8 D. Feinberg et al., Phys. Rev. Lett. 65, 919 (1990); V. Vulcanescu et al., Phys. Rev. B 50 4139 (1994); P.A. Mansky et al., Phys. Rev. B 52 7554 (1995); Yu.V. Bugoslavsky et al., Phys. Rev. B 56, 5610 (1997); Y. Bruckental et al., Phys. Rev. B 73, 214504 (2006).
9 C. Panagopoulos et al., Phys. Rev. B 53, R2999 (1996); A. Gardchar, N. Mangkorntong, D. Hérisson, P. Nordblad, Physica C 439, 85 (2006).
10 Polyanin A D, 2002 Handbook of Linear Partial Differential Equations for Engineers and Scientists (London: Chapman and Hall).
11 Q. Li, M. Hucker, G.D. Gu, A. M. Tsvelik, J. M. Tranquada, Phys. Rev. Lett. 99, 067001 (2007).
12 A. A. Schafagans, A. D. LaForge, S. V. Dordevic, M. M. Qazilbash, W. J. Padilla, K. S. Burch, Z. Q. Li, Seiki Komiya, Yoichi Ando, and D. N. Basov, Phys. Rev. Lett., 104, 157002 (2010).
13 E. Berg et al., Phys. Rev. Lett. 99, 127033 (2007).
14 P. Mohan, P. M. Goldbart, R. Naryanan, J. Toner, and T. Vojta, Phys. Rev. Lett 105, 085301 (2010); D. Pekker, G. Refael, and E. Demler, Phys. Rev. Lett. 105, 085302 (2010).
15 M. C. Partick et al. Nature Physics 7, 455 (2011).
16 M. S. Grbić, M. Pöžek, D. Paar, V. Hinkov, M. Raichle, D. Haug, B. Keimer, N. Barišić, and A. Dulčić, Phys. Rev. B 83, 144508 (2011).