Environmental Research Communications

PAPER

Metal accumulation in muscle and oxidative stress response in the liver of juvenile Oreochromis niloticus from contaminated sediment under a simulation of increasing temperature

O C Ihunwo and M U Ibezim-Ezeani

1 Niger Delta Aqua Research Group, Department of Biochemistry and Chemistry Technology, School of Science Laboratory Technology, University of Port Harcourt, Port Harcourt, P. M. B. 5323, Choba, Rivers State, Nigeria
2 Department of Pure and Industrial Chemistry, University of Port Harcourt, P. M. B. 5323, Choba, Rivers, Nigeria

E-mail: millicent.ibezim-ezeani@uniport.edu.ng

Keywords: global climate change, increasing temperature, contaminated sediment, Niger Delta, oxidative stress, tilapia

Supplementary material for this article is available online

Abstract

In the present study, a mesocosm experiment with contaminated sediment and clean groundwater using juvenile Oreochromis niloticus was set up to assess the effect of increasing temperature on bioaccumulation of metal in fish muscles (cadmium, chromium, nickel, and lead) and enzymatic activities in fish liver [reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione transferase (GST), and glutathione peroxidase (GSH Px)]. The trend of temperature variation was Control 1 (0 Watts) < 60 Watts < 100 Watts < Control 2 (200 Watts). After 72 h, there was no observed mortality in Controls 1 and 2; however, the % Survival in 0 Watts reduced to 90.0 ± 4.0%. Furthermore, 60, 100 and 200 Watts had lower rates of survival at 46.0 ± 6.9, 36.0 ± 13.1, and 24.0 ± 11.1% respectively. The calculated bioaccumulation factors (BAFs) for metals was in the trend: Pb > Cd > Cr > Ni. Mean metal pollution index (MPI) in fish muscles was lowest at 0 watts (24 h – 7.86 ± 1.72, 72 h – 25.77 ± 4.56) and highest at 100 watts (24 h – 39.45 ± 1.91, 72 h – 55.82 ± 1.05). Controls 1 and 2 showed no significant difference in the concentration of GSH and GR while showing a significant difference in GST and GSH Px concentrations after 24 and 72 h. Pearson’s correlation showed that GSH was inhibited by water temperature and, Cd, Cr, and Pb concentrations in surface water and fish. Therefore, an increase in ambient temperature in an already contaminated environment will increase the bioavailability of metal contaminants leading to an increase in bioaccumulation and exacerbation of oxidative stress in juvenile tilapia.

1. Introduction

An aquatic environment could be considered an open system since matter and energy are exchangeable across the boundary between the system and its surrounding [1, 2]. In an aquatic ecosystem contaminated with metallic particulates, an increase in temperature constitutes physical disturbance which disrupts the state of dynamic equilibrium balance at the sediment–water interface; thereby impacting negatively on sediment–water condition [3]. Hence, the sediment which acted initially as a compartment for these metallic pollutants then reverses to function as a metallic source where they experience transformations as a result of this overturn; and are made more available in compatible status and migratable forms. The mechanism of transfer and release of these metallic forms into the water column to cause pollution involves the combination of processes such as ion exchange, dissolution, desorption, advection, diffusion, resuspension, dispersion, and bio-transfer by organisms, degradation of particulate organic matter and so on [4, 5].

© 2022 The Author(s). Published by IOP Publishing Ltd
Metals occur naturally in the environment and are released in nature through the weathering of rocks [6]. However, anthropogenic activities such as metallurgy, smelting, drilling, mining, landfill dumping, metal-based industries, metal scrapping and lack of proper waste management, also lead to increased metal concentration in the environment [7]. At certain concentrations, some metals could be essential to the proper functioning of living organisms; but exceeding these concentrations, these metals become toxic to life. Some other metals such as Cr, Ni, Pb, and Cd are non-essential and can be toxic at trace amounts [8]. In an aquatic environment, temperature also affects the toxicity of metals [9]; therefore, increasing the temperature will consequently increase toxicity.

Some non-essential metals, such as cadmium, can affect the absorption of essential metals, for example, zinc leading to zinc deficiency [10]. According to Blanc (2016) [11] metals primarily responsible for clinical lung injury are nickel, cadmium and mercury. Cadmium has been associated with neurotoxicity through the induction of neuron cell apoptosis and reactive oxygen species (ROS), hence leading to oxidative damage [12]. Cadmium has also been associated with damage to the kidney (nephrotoxicity) [13] and bone fragility [14].

Some metals such as chromium can be essential in small amounts when they exist in a particular oxidative state (Cr(III)) and can be extremely toxic in another oxidative state (Cr(VI)) [15, 16]. Human exposure to Cr could lead to respiratory issues [17], damage to renal systems [18], hepatic effects [19], cardiovascular damage [20], gastrointestinal damage [21], dermal problems [22], immunological interference [23] and, reproductive and developmental disruption [24, 25]. Similar effects have been observed in non-humans [26].

The system most vulnerable when exposed to lead is the nervous system and its organs [27]. Chronic exposure to lead may lead to paralysis, delirium, coma, ataxia, convulsion and death [28, 29]. Exposure to lead can also cause blood-related diseases such as hypochromic, normocytic, and sideroblastic anaemia [30]. This happens through a lead-induced inhibition of heme synthesizing enzymes and iron transport [27]. Pb exposure can also lead to kidney damage [31], cardiovascular diseases [32, 33], endocrine disruption [34, 35] and bone disease [36] among other negative effects [37, 38].

Through inhalation exposure, nickel toxicity particularly puts the lungs and brain at risk [39, 40]. Dermal contact with Ni can also cause dermatitis and other skin allergies [41, 42]. According to Hauptman et al (1993) [43], ocular exposure to Ni2+ causes lesions and retinal malformations in Xenopus embryos. Furthermore, Ni exposure increases the risk of endocrine disruption [44, 45].

Oxidative stress is the disparity between the generation of free radicals and reactive metabolites, so-called oxidants or reactive oxygen species (ROS), and antioxidants which are the protective mechanisms for eliminating them [46]. Hence, when ROS are produced in excess relative to the antioxidant defence, oxidative stress is said to have occurred [47]. This pro-oxidant-antioxidant imbalance can lead to damage to DNA molecules and other cellular components [48]. Metal ion-induced oxidative stress occurs by the binding of metal ions to biological thiols (particularly glutathione and metallothionein) thereby leading to the depletion of cellular reductants [49]. The catalysis by metal–protein complexes of redox reactions can also occur between biomolecules and H2O2 leading to oxidative stress [30, 51]. Another mechanism of metal-induced oxidative stress can be based on the allergenic activities of these metals leading to inflammation in cells, resulting in an increased release of ROS as a response [52–54].

Some antioxidant enzymes include glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GST), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). GSH is a tripeptide commonly found in the liver, although it exists in other tissues, and is produced to protect the liver from damage, i.e., it can serve as a biomarker for liver damage [55]. GR is a protein that contains two polypeptide chains and aids in glutathione recycling by catalysing the reduction of oxidised glutathione (glutathione dismutase [GSSG]) to GSH; a reaction driven by NADPH [56]. GSH-Px is a cytosolic enzyme responsible for the catalytic reduction of the peroxide radical and hydrogen peroxide into less toxic substances [57, 58]. GST also serves as a defence mechanism against ROS by catalysing the reaction GSH sulfydryl group which reacts with xenobiotic electrophilic sites, forming easily excretable and less toxic conjugates [59, 60]. SOD catalyses the dismutation reaction of superoxide radicals (O2−) to form hydrogen peroxide and oxygen [61].

Global climate change is predicted to increase the environmental temperature by 1.5 °C–2.0 °C by the year 2050 [62]; this increase in ambient temperature will consequently cause an increase in water temperature [63]. According to Echeverría et al (2005) [64] and Echeverría et al (2005) [65] sorption of metals is increased when the temperature increases. Temperature increases metabolism in fish, thereby increasing biochemical activities which enhances the accumulation of environmental substances such as metals [66]. Coupled with pH and electrode potential, temperature also increases the bioavailability of metals in surface water leading to an ease in epidermal adsorption [67–70].

Temperature affects water chemistry; it is known that increasing temperature increases the rate of chemical reactions. Studies have shown that an increasing ambient temperature has resulted in river temperature rise [63, 71]. Temperature is an intensive variable of a system, which quantifies the average degree of heat energy flowing in or out of a system [72]. An increase in atmospheric temperature raises the inflow of heat into a system,
producing sufficient energy which is acquired by reactant particulates to surmount the energy of activation to raise the reaction rate [73].

The temperature of the water plays an important role in water quality; the concentration of dissolved oxygen and metabolic activities in water organisms are dependent on the surface water temperature [74]. The kind of organisms that live in rivers and lakes are governed by the temperature variation; as temperature increases beyond conducive levels, the number of individuals that live in an environment reduces [74, 75]. Studies have also reported that aquatic organisms give physiological and behavioural responses to temperature changes [76, 77]. Wilcock et al (1998) [78] recorded a negative correlation between increasing temperature and dissolved oxygen in surface water. Blumberg and Di Toro (1990) [79] predicted that an increase in temperature due to global warming will lead to losses of 1 mg L−1 of dissolved oxygen in the upper layers and of 1–2 mg L−1 in the lower layers of Lake Erie’s central basin. Depression of oxygen concentration in polluted surface water increases the effects of pollutants [80].

Kingsolver and Woods (2016) [81] explored the effects of heat shock proteins on larval growth rates and larval growth rate of Manduca sexta. They observed that the maximal growth rate declined with the increasing duration of high-temperature exposure. They also observed that mean growth rates decline with time in diurnally fluctuating temperatures at higher mean temperatures; similar results were also obtained by Martin et al (2018) [82]. Ouellet et al (2013) [83] recorded that temperature increase can lead to fish kill through immunosuppression. On a community level, Porcelli et al (2017) [84] reported that thermal stress can negatively affect the fertility of aquatic organisms. Turschwell et al (2017) [85] also stated that thermal habitat restricts patterns of occurrence in multiple life stages of a headwater fish.

In the Niger Delta region of Nigeria, studies have shown that the increased industrial activities and lack of proper environmental management practices have led to an increase in sediment contamination with heavy metals [86, 87]. As earlier stated, studies have shown that an increase in ambient temperature has resulted in river temperature rise [63, 71]. It is, therefore, important to understand how the global increase in temperature may affect fishes and the aquatic ecosystems in regions with already contaminated sediment.

Thus, this study was designed to assess the mobility of metal concentrations (Cd, Cr, Ni and Pb) from contaminated sediment sampled from the Niger Delta region of Nigeria and their accumulation in tissues of juvenile Oreochromis niloticus due to increasing temperature, as well as assess the concentrations of GSH, GR, SOD, GST, and GSH Px in fish liver.

2. Materials and method

2.1. Sample collection

This study was carried out in February 2021. The collection of samples was within the axes of Woji bridge and situated at 4°48′51.6″N 7°02′47.0″E of Woji Creek in Ohio/Akpor Local Government Area of Rivers State, Nigeria (figure 1). A study carried out from August to October 2019 revealed that sediment studied in this location had a pollution load index of 2.58 × 1015 contributed by Cd, Ni, Fe, Pb and Cu [88]. The sample location is situated under the Woji bridge and potential sources of metal pollution may include deposition of waste from traffic emissions, Port Harcourt Zoo waste effluent, atmospheric depositions from burning, market waste dump, abattoir waste effluent, rusting abandoned scrap metals, construction works waste, abandoned and rusting boats and barges, sewage disposal, urban and industrial effluent discharge, and upstream water flow. Results of earlier studies have shown the accumulation of metals in flora [89] and fauna [90].

Samples were collected perimetrically within 100 m of this location at a depth of ≈5cm using stainless steel Van Veen grab sediment sampler (content 0.5 litres, surface covered 126 cm²). The sediment samples were placed in well-covered plastic buckets (20 litres each) and carefully moved for a mesocosm experimental setup in the laboratory.

2.2. Experimental species

The tilapia species used for this experiment was Oreochromis niloticus (Supplementary Fig. 1 (available online at stacks.iop.org/ERC/4/075008/mmedia)); the species is commonly found in fresh and brackish waters within the Niger Delta region and is a common fish species found in fish markets [91]. The length of the fish was ≈10 cm, while the width was ≈4 cm.

Juvenile fishes were obtained from the African Regional Aquaculture Centre (ARAC), University of Port Harcourt—Aluu in Rivers State. Three days before the experimental setup, the fishes were brought to the laboratory and ambient environmental conditions were maintained for acclimation (12 h in light and 12 h in dark, representing an approximate day and night hours in Nigeria). The fishes were fed throughout this process. In the laboratory, the temperature was provided by the natural environment (without air conditioners).
2.3. Experimental design

The experimental design involved six setups: 0, 60, 100, and 200 Watts, and Controls 1 and 2, set up in triplicate (figure 2). The 60, 100, and 200 Watts represent the wattage of the tungsten bulb used to generate the heat needed within the aquarium. Control 2 also had a 200 Watts bulb; Control 1 and 0 Watts had no external temperature added, hence, representing the ambient temperature. This experimental setup was designed to assess the

Figure 1. Satellite image of the location for sample collection.

Figure 2. Mesocosm experiment setup of aquariums. A, B and C are replicates of the experimental setup.
difference in the effect of temperature alone (Control 2), different temperature variations in the presence of contaminated sediment (60, 100, and 200 Watts), the ambient temperature in the presence of contaminated sediment (0 Watt) and ambient temperature in the presence of a clean environment (Control 1). The bulbs were installed on the cover of the aquariums and connected to an alternating current (AC) power source.

Each aquarium had a capacity of 70L in volume. In aquariums 0, 60, 100, and 200 Watts, \(\approx 20L \) of sediment from the contaminated site was added; using a hose, \(\approx 30L \) of clean tap water was slowly put into each aquarium. However, in Control 1 and 2 aquariums, \(\approx 50L \) of tap water was added. Aeration pumps were used to introduce air into each aquarium through a silicon tube and air stones.

The temperature increases i.e., switching on the bulbs, were done between 14:00 – 18:00 (2 – 6 pm); this time was chosen after observing the trend of water temperature rise in an aquarium due to ambient environmental conditions. Temperature observation was done every 30 min and the experiment ran for 72 h due to the increasing rate of mortality observed.

A total of 50 juveniles were put into each aquarium for the experiment; three fishes were collected for metal (Cd, Cr, Pb, Ni) and biochemical (GSH, GST, SOD, GR, and GSH Px) analyses. The number of dead fishes was observed and recorded in each aquarium to assess the mortality rate.

The sediment used for the experiment was thoroughly mixed before the experiment was set up; samples were collected and analysed for metal concentration. The three fishes and water samples were collected from each aquarium after 24 h and 72 h of the experimental setup. Using scalpel and forceps, the liver in the fish was removed and put into sterile vials and put into a thermo-flask with liquid nitrogen; while the fish muscles were dried in an oven.

2.4. Metal analysis

Dried fishes were homogenised in a blender for digestion. Approximately 0.5 g of sediment and fish was weighed and put into digestion bottles. The reagents 65% Nitric acid (HNO\(_3\)) Extra Pure [company: INEOS CHLOR LIMITED], 37% Hydrochloric acid (HCl) Extra Pure [company: INEOS CHLOR LIMITED], and distilled water (H\(_2\)O) were used for the digestion of the samples. Approximately 100 ml of water, 0.5 ml of HNO\(_3\), and 5 ml of HCl were added to the bottle and reduced to \(\approx 15ml \) by heating in an oven. The reduced mixture is kept to cool and then filtered into vials [92]. Water samples were analysed by the direct injection method. The GBC SensAA Atomic Absorption spectrophotometer was used to analyse the samples, this equipment has a detection limit of 0.001 ppm and involves the use of a flame lamp for each metal analysed. Sample analysis was carried out in triplicates using GBC SensAA Atomic Absorption Spectrophotometer (serial no. A7935Sn) with an instrument detection limit of 0.001 mg/l. To assess the analytical methodology, atomic absorption spectroscopy (AAS) Sigma-Aldrich certified reference materials (CRMs) for each metal were used [93].

A Matrix Spike (MS) was the process used to assess the rate of recovery. This was generated by adding a known amount (a spike) of the analyte to a sample, testing the spiked sample, and determining the amount added that was recovered. The recovery rate of the laboratory analytical method was assessed using two sediment and water samples, to which a spiking solution was added. Percentage recovery (%R) for metals were calculated to be: Pb - 98.7%, Ni - 98.9%, Cd - 100% and Cr - 98.3%. Calibration, blank and spiked sample analysis results can be found in the supplementary file.

2.5. Analysis of fish liver for biochemical activities

Fish liver samples were weighed and homogenised in Phosphate-buffered saline (PBS) of buffer pH 7.0. By the means of centrifugation at 4000 G for 30 min using universal 320 Hettich Zentrifugen, the serum was then separated. Separated serum was prepared for analysis using the Elabscience Biochemical Kits [94]. Elabscience Biochemical Kits were produced in Houston, Texas, United States of America. The analysis was done spectrophotometrically using Contec BC300 Semi-auto Biochemistry Analyzer developed in Hebei Province, People’s Republic of China.

2.6. Data analysis

Using Past statistics [95], an analysis of variance was performed to analyse the statistically significant difference between Control 1 and other treatments in the experiment (i.e. Control 2, 0, 60, 100, and 200 Watts). Pearson’s correlation was performed to assess the relationship between all variables using Python by ANACONDA [96]. Non-metric Multidimensional Scaling (NMDS) was used to give a 2D representation of each treatment and present similarity data using Euclidean distance; hierarchical cluster analysis, an algorithm that groups similar objects into groups called clusters, was used to assess Euclidean similarity between treatments. Both NMDS and hierarchical cluster analysis was performed after data was normalised using PRIMER 6 Version 6.1.6 from PRIMER-E Limited [97].
The mean temperature for the experiment is presented in Table 1. The trend of temperature variation was from 27 to 37 °C, while the minimum temperature ranges from 21.6 °C to 29.7 °C, this is similar to the measured temperature in Port Harcourt ranges from 29.0 °C–32.3 °C, while the minimum temperature ranges from 21.6 °C–23.1 °C; the maximum range of temperature in water is 27.1 °C–29.7 °C [101], this is similar to the measured temperature in 0 Watts and Control 1.

Time	0 Watts	60 Watts	100 Watts	200 Watts	Control 1	Control 2 (+ 200 Watts)
14:00	29.13 ± 0.12	29.03 ± 0.06	29.13 ± 0.06	29.17 ± 0.06	29.07 ± 0.06	29.23 ± 0.12
14:30	29.13 ± 0.12	29.03 ± 0.06	29.13 ± 0.05	29.17 ± 0.06	29.07 ± 0.06	29.23 ± 0.12
15:00	29.13 ± 0.12	29.03 ± 0.06	29.13 ± 0.05	29.17 ± 0.06	29.07 ± 0.06	29.23 ± 0.12
15:30	29.27 ± 0.06	30.13 ± 0.06	30.20 ± 0.54	31.87 ± 0.06	29.50 ± 0.29	30.23 ± 0.12
16:00	28.90 ± 0.20	31.27 ± 0.12	32.83 ± 1.65	34.27 ± 0.12	29.88 ± 0.06	32.13 ± 0.12
16:30	29.23 ± 0.12	32.07 ± 0.06	33.73 ± 1.59	37.83 ± 0.06	29.53 ± 0.06	34.35 ± 0.07
17:00	29.10 ± 0.00	33.17 ± 0.06	33.87 ± 0.49	38.73 ± 0.12	29.00 ± 0.12	38.70 ± 0.20
17:30	28.90 ± 0.00	33.73 ± 0.06	34.33 ± 0.28	39.77 ± 0.15	28.55 ± 0.06	39.73 ± 0.12
18:00	27.77 ± 0.06	31.07 ± 0.06	31.27 ± 1.43	37.3 ± 0.10	28.18 ± 0.12	37.30 ± 0.35
18:30	27.37 ± 0.12	28.17 ± 0.06	28.57 ± 2.50	28.97 ± 0.60	27.70 ± 0.12	28.50 ± 0.10
19:00	27.30 ± 0.00	27.23 ± 0.12	27.30 ± 1.76	28.60 ± 1.41	27.33 ± 0.00	27.50 ± 0.35
Mean	28.66 ± 0.77	30.36 ± 2.08	30.86 ± 2.46	33.17 ± 4.50	28.81 ± 0.79	32.38 ± 4.42

Percentage mortality (% Mortality) was assessed with equation (1):

\[
\% \ \text{Survival} = \frac{\text{Number of alive fishes}}{\text{Total number of fishes}} \times 100\% \quad (1)
\]

Bioaccumulation factors (BAFs) were calculated using equation (2) [98, 99]:

\[
\text{BAF} = \frac{[M_{\text{biota}}]}{[M_{\text{water}}]} \quad (2)
\]

Metal pollution index (MPI) was assessed for metals accumulated in fish tissues for each power source using equation 3 adopted from Keshavarzi et al. (2018)[100]:

\[
\text{MPI} = ([\text{Cd}] \times [\text{Cr}] \times [\text{Pb}] \times [\text{Ni}])^{0.5} \quad (3)
\]

3. Results and discussion

3.1. Temperature

The mean temperature for the experiment is presented in Table 1. The trend of temperature variation was Control 1 (0 Watts) < 60 Watts < 100 Watts < Control 2 (200 Watts). The highest ambient temperature (Control 1 and 0 Watts) was observed at 17:00 (29.10 ± 0.00 and 29.00 ± 0.12 for Control 1 and 0 Watts respectively). Mean temperatures for Control 2 (200 Watts) ranged from 39.73 ± 0.12–27.50 ± 0.35 (39.77 ± 0.15–28.60 ± 1.41). According to public data, the maximum weather temperature in the City of Port Harcourt ranges from 29.0 °C–32.3 °C, while the minimum temperature ranges from 21.6 °C–23.1 °C; the maximum range of temperature in water is 27.1 °C–29.7 °C [101], this is similar to the measured temperature in 0 Watts and Control 1.

3.2. Fish survival rate

After 72 h, there was no observed mortality in Controls 1 and 2 (at 200 watts); however, the % Survival in 0 Watts reduced from 100% to 90.0 ± 4.0%. Furthermore, 60, 100 and 200 Watts had lower rates of survival amounting to 46.0 ± 6.9, 36.0 ± 13.1, and 24.0 ± 11.1% respectively. There was no statistically significant difference between Control 1 and 2; and Control 1 and 0 Watts (p > 0.05). However, ANOVA revealed a statistically significant difference between Control 1 and 60, 100 and 200 Watts (p < 0.001) (figure 3).

The results revealed that only temperature increase (Control 2) did not lead to mortality of fishes; however, in the presence of contaminants, increasing temperature led to a significantly low rate of survival. At higher temperatures, metabolic cellular enzymatic activities increase [102]. High temperatures disrupt hydrogen and disulphide bonds in DNA; it also reduces hydrophobic stabilization due to base-stacking [103, 104].

In a study that assessed the effects of water temperature on the growth and sex ratio of juvenile Oreochromis niloticus; it was noted that although an increase in temperature to 36.9 °C affected growth rate, it did not affect the survival rate of fishes [105]. This result is similar to those observed in the present study. However, according to Pandit et al. (2010) [106], the survival rate of fries and juvenile Nile tilapia (9 and 50 days after hatching) reduced from 96 to 57%, and the growth rate reduced from 0.04 to 0.01 g day−1, as water temperature increased from 27 to 37 °C.
3.3. Metal concentration

3.3.1. Sediment

Mean concentrations of metals in sediment used for the experiment were as follows: Cd — 5.29 ± 0.13 mg/kg, Cr — 136.6 ± 2.7 mg/kg, Pb — 13.97 ± 1.62 mg kg\(^{-1}\) and Ni — 0.955 ± 0.021 mg kg\(^{-1}\) (figure 4). Similar results from the same location were obtained by Ibezim-Ezeani et al. (2020) [88] and Ibezim-Ezeani and Ihunwo (2020) [86]. Mean concentrations of Cd and Cr in surface sediment sampled from Pearl River Estuary in China (0.46 and 78.37 mg kg\(^{-1}\) respectively) were below those measured in the sediment sample used for this experiment, while the mean concentration of Pb (49.66 mg kg\(^{-1}\)) was higher [107].

Although the concentration of metals in sediment porewater was not analysed, it is important to note that pore water plays an important role in the bioavailability of contaminants in aquatic ecosystems. The pore acts as an interphase between the solid sediment and the water column for the movement of contaminants in the system [108, 109].

3.3.2. Surface water and fish

The concentrations of metals in surface water and fish tissues resulting from the experiment are presented in table 2.

ANOVA for metal concentrations in surface water and fish tissues revealed that the differences in the mean values among the treatment groups for all metals were greater than would be expected by chance, hence revealing a statistically significant difference (p < 0.05).

In the present study, the trend of metal concentrations in the surface water and fish (Pb > Ni > Cr > Cd) is similar to a study carried out by Huang et al (2017) [110]. Another study carried out to assess the effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals released from storm sewer sediments showed a similar trend (Pb > Cr > Cd) [111].

The concentrations in the fish muscles were much higher than those measured in the surface water. Cd concentration in fish had the lowest concentration across all power conditions and Pb has the highest concentration in fish tissues. There was an observed increase of metals in fish tissues from 24 h to 72 h across all power conditions. Cd, Cr, and Pb showed an increasing trend in concentration from 0 to 100 Watts; however, Ni
Table 2. Mean metal concentrations in surface water fish tissues.

Metals	0 Watts 24 h	0 Watts 72 h	60 Watts 24 h	60 Watts 72 h	100 Watts 24 h	100 Watts 72 h	200 Watts 24 h	200 Watts 72 h
Surface water (mg/L)								
Cd	0.029 ± 0.020	0.039 ± 0.007*	0.052 ± 0.015**	0.021 ± 0.005	0.066 ± 0.047**	0.053 ± 0.026**	0.020 ± 0.007	0.002 ± 0.002**
Cr	0.008 ± 0.008	0.063 ± 0.009**	0.176 ± 0.046**	0.047 ± 0.050**	0.024 ± 0.013	0.094 ± 0.079**	0.114 ± 0.012**	0.109 ± 0.051**
Pb	0.046 ± 0.040	0.264 ± 0.057**	0.396 ± 0.171**	0.439 ± 0.194**	0.359 ± 0.101**	0.286 ± 0.072**	0.544 ± 0.314**	0.304 ± 0.173**
Ni	0.101 ± 0.044	0.057 ± 0.012**	0.127 ± 0.055**	0.289 ± 0.247**	0.068 ± 0.008**	0.153 ± 0.132**	0.125 ± 0.061**	0.131 ± 0.143**
Fish (mg/kg, dw)								
Cd	2.11 ± 0.81	3.59 ± 0.46	4.93 ± 0.64*	6.07 ± 0.09*	5.51 ± 1.12*	8.32 ± 0.44**	6.18 ± 2.22*	9.25 ± 0.40**
Cr	7.71 ± 0.12	9.38 ± 0.14	15.03 ± 2.48	13.93 ± 5.73	35.82 ± 3.52**	47.95 ± 2.81**	27.56 ± 3.65**	34.42 ± 18.09**
Pb	14.75 ± 14.04	310.67 ± 12.73**	530.70 ± 52.26**	609.60 ± 7.99**	549.07 ± 63.86**	620.96 ± 15.60**	474.18 ± 40.15**	590.49 ± 64.8**
Ni	29.45 ± 17.43	50.15 ± 26.03	29.30 ± 11.45	73.63 ± 3.03*	23.31 ± 3.81	39.30 ± 0.98	26.01 ± 4.39	40.74 ± 0.96

Asterix - represents multiple comparisons versus 0 Watts 24 h (Holm-Sidak method): Overall significance level = 0.05, * - p < 0.05, ** - p < 0.001.
showed an increase from 0 to 60 Watts which were lower in 100 and 200 Watts (table 2). Similar to this study, Li et al (2013) [111] observed an increase in the release of Cr and Pb from storm sewer sediments under aerobic conditions at higher temperatures (20 °C–35 °C). Therefore, temperature affected the dissolution of metals and consequently increased the bioavailability of the metals in this experiment. According to another study carried out by Başyığıt and Tekin-özan (2013) [112], although metal concentrations in surface water increased in summer corresponding to an increase in surface water temperature, Ni accumulation in fish muscles, gills, and liver was higher in winter than in summer; while the concentration of Cd and Cr were higher in summer than winter.

Metals are taken up by fishes either through dietary means or through the permeation of the epidermis by dissolved metals. According to Förstner (1981) [113], chromium and lead are not readily soluble in water but adhere to particulate matter in aquatic systems and settle to sediment. Hence the higher concentration observed could have been contributed by the fishes feeding on sediment particulate. A similar trend observed in metal concentrations dissolved in surface water and accumulated in fish muscles suggested that the means of uptake by the fish was majorly through the permeation of the fish epidermis. Temperature is one of the factors that affect metal speciation and this could also affect the toxicity of metals [114]. The higher accumulation of metals observed from 60–200 Watts, therefore, could account for the higher rate of mortality in these experimental conditions compared to Control 2 which was exposed to 200 Watts.

3.3.3. Bioaccumulation factors (BAFs)

Results of the estimated BAFs for each metal are presented in figure 5.

The calculated BAF for metals was in the trend: Pb > Cd > Cr > Ni (figure 6), this trend was similar to a study carried out by Ahmed et al (2019) [115]. According to Arnot and Gobas (2006) [99], BAF < 1000 means that there is no probability of accumulation, 1000 < BAF < 5000 indicates bioaccumulation and BAF > 5000 is indicative of extreme bioaccumulation. In the present study, BAFs for Cd were all below 1000, except for fish in 200 Watts after 72 h. For Cr, BAFs > 1000 for fishes in 60 watts and 100 watts aquarium after 24 h; however, after 72 h, BAFs < 1000. BAFs calculated for Cr after 24 h were below 1000 except for fishes in 100 watts aquarium; however after 72 h BAFs were all below 1000. BAFs for Ni were all below 1000 after 24 h; after 72 h BAFs values were < 1000 at 60, 100 and 200 watts except for 0 watts with BAFs > 1000 (figure 6). In fishes, Pb binds with Na⁺-K⁺-ATPase leading to a non-competitive inhibition of Na⁺ and Cl⁻ influx [116, 117]. This can lead to high mortality in fishes as their homeostasis is disrupted.

Figure 5. Bioaccumulation factors for each metal.
3.3.4. Metal pollution index
Mean MPI in fish muscles was lowest at 0 watts (24 h = 7.86 ± 1.72, 72 h = 25.77 ± 4.56) and highest at 100 watts (24 h = 39.45 ± 1.91, 72 h = 55.82 ± 1.05) (figure 6). Usero et al (1997) [118] suggested that higher values of MPI indicate a higher degree of contamination. In the present study, the temperature played a major role in the estimated value of MPI as values increased from 0 watts to 200 watts.

3.4. Oxidative stress
Reduced glutathione (GSH) concentrations were similar in Control 1 and Control 2 after 24 and 72 h; however, in 0, 60 and 200 Watts, there was an initial drop after 24 h and a significant increase after 72 h. GSH concentrations at 100 Watts did not increase from 24- to 72 h; however, the concentration reduced from 10.5 ± 0.55–9.84 ± 0.06 mg/L. This trend was also observed in GR (24 h = 88.16 ± 7.34, 72 h = 65.91 ± 4.30 U/mg), GST (24 h = 43.78 ± 1.26, 72 h = 35.28 ± 1.57 U/mg) and GSH Px (24 h = 14.03 ± 0.07 72 h = 12.62 ± 0.45 μmol/L) (table 3). SOD concentration reduced from 24–72 h in Controls 1 and 2; however, concentration increased was observed from 24–72 h in 0 Watts (7.50 ± 0.43–13.24 ± 0.39 U mL⁻¹), 60 Watts (7.28 ± 0.45–12.62 ± 0.47 U mL⁻¹), 100 Watts (7.28 ± 0.32–12.51 ± 0.53 U mL⁻¹) and 100 Watts (7.57 ± 0.50–13.97 ± 0.76 U mL⁻¹) (table 3). ANOVA revealed statistically significant difference (p < 0.05) for all treatment groups (GSH, GR, SOD, GST and GSH Px).

Reactive oxygen species (ROS) are formed when molecular oxygen partially reduces in cells; in the presence of environmental toxins, ROS are formed as by-products of aerobic metabolism [119]. Some of these ROS include superoxide (O₂•⁻) and hydroxyl radicals (OH•), as well as hydrogen peroxide (H₂O₂) [56]. ROS are generated during the process of cellular oxidative phosphorylation [120]. In cells, superoxidase is one of the most frequently generated ROS [121]; it is highly reactive and also leads to the formation of even more reactive hydroxyl radicals [120]. SOD catalyses the conversion of O₂•⁻ to O₂ or H₂O₂ which is further converted to OH• and H₂O, a reaction catalysed by GSH Px [122]. Similarly, GSH can aid cells in the detoxification of hydrogen peroxide; in a reaction that used Nicotinamide adenine dinucleotide phosphate (NADPH) as a source of reducing electrons and catalysed by glutathione reductase (GR), the cell generates GSH. Furthermore, catalysed by GSH Px, the generated GSH converts H₂O₂ to H₂O and generates oxidized glutathione (GSSG) [120]. Glutathione transferase enzymes facilitate the conjugation of glutathione which assists in detoxification by binding electrophiles that could otherwise bind to proteins or nucleic acids [123]. In cells, glutathione binds to metals and fat-soluble toxins, hence making them water-soluble and easy for excretion [124]. When there is a disturbance in the cellular balance between the production of ROS and antioxidant defences, oxidative stress is said to have occurred and this can lead to cell damage and death [125].

In the present study, SOD concentration varied from one treatment to the other and from 24 to 72 h. In Control 1 and 2, SOD concentration reduced from 24 to 72 h, this can be attributed to acclimatisation to the new environment and a balance between the production of ROS and antioxidant defences [125]. However, in 0, 60 and 200 Watts, there is an observed increase between 24 and 72 h, indicating the continuous release of metals into the water column and sorption into the fish muscles. GSH and GR concentrations showed an initial drop in...
Table 3. Mean concentrations of Reduced glutathione (GSH), Glutathione reductase (GR), Superoxide dismutase (SOD), Glutathione transferase (GST), and Glutathione peroxidase (GSH Px) in fish liver.

Activity	Control 1 24 h	Control 1 72 h	Control 2 24 h	Control 2 72 h	0 Watts 24 h	0 Watts 72 h	60 Watts 24 h	60 Watts 72 h	100 Watts 24 h	100 Watts 72 h	200 Watts 24 h	200 Watts 72 h
GSH (mg/L)	18.15 ± 0.14	18.36 ± 0.51	17.26 ± 0.24	19.82 ± 0.45	14.12 ± 0.11 *	29.7 ± 0.51 **	6.84 ± 1.05 *	21.06 ± 0.14 *	10.5 ± 0.55 **	8.94 ± 0.06 **	12.11 ± 0.17 *	24.35 ± 0.43 **
GR (U/mg)	124.95 ± 1.29	122.79 ± 0.34	115.36 ± 3.5	117.56 ± 4.34	104.06 ± 6.03 *	173.68 ± 3.36 **	98.52 ± 0.86 **	142.31 ± 1.49 *	88.16 ± 7.34 **	65.91 ± 4.30 **	103.83 ± 3.88 **	206.39 ± 5.1 **
SOD (U/mL)	11.69 ± 0.86	10.86 ± 0.66	10.64 ± 0.41	10.10 ± 0.99 **	7.50 ± 0.43 *	13.24 ± 0.39 **	7.28 ± 0.45 **	12.62 ± 0.47 *	7.28 ± 0.32 **	12.51 ± 0.53 **	7.57 ± 0.50 **	13.97 ± 0.76 **
GST (U/mg)	41.56 ± 0.76	39.39 ± 0.29	54.73 ± 0.46 **	49.84 ± 0.78 **	63.47 ± 1.19 **	71.57 ± 1.00 **	26.37 ± 1.27 **	49.4 ± 0.56 **	43.78 ± 1.26 **	35.28 ± 1.57	74.69 ± 2.70 **	93.91 ± 3.06 **
GSH Px (μmol/L)	16.96 ± 1.02	15.99 ± 0.71	19.02 ± 0.41 *	21.46 ± 0.92 *	21.31 ± 1.25 **	24.16 ± 1.91 **	14.23 ± 0.33 *	16.98 ± 0.05 *	14.03 ± 0.07 *	12.62 ± 0.45 **	17.29 ± 0.38 *	24.24 ± 0.63 **

Asterix - represents multiple comparisons versus Control 1 24 h (Holm-Sidak method); Overall significance level = 0.05, * - p < 0.05, ** - p < 0.001.
0, 60, and 200 Watts when compared to Controls 1 and 2 after 24 h; however, after 72 h, the concentrations showed an increase. Similarly, research showed that zinc oxide nanoparticles inhibited the generation of GSH in the muscle of Nile Tilapia \[126\]. According to Eroglu et al. (2015) \[127\], after a day’s exposure, Cr and Pb significantly inhibited the generation of GSH in the liver of Oreochromis niloticus, while Cd caused a significant increase. However, another study reported that when African Catfish (Clarias gariepinus) is exposed to a combination of Cd and Pb, the concentration of GSH in the liver increased significantly \[128\]. Therefore, it can be suggested that the most dominant metals in the muscle (Pb) may have caused the initial inhibition observed after 24 h and a combination of metals in the fish caused the later increase observed.

Min et al. (2016) \[129\] recorded that the concentration of GSH in the mullet (Mugil cephalus) increased as exposure to Cr6+ concentrations increased from 25–400 μg/l. In the 100 Watts set up with mean temperature exposure of 30.86 ± 2.46 °C, there was an observed decline in the concentrations of GSH, GST, GR and GSH Px. Inhibition of GSH will cause an increase in the release of H\textsubscript{2}O\textsubscript{2}, a free radical, hence causing cellular oxidative stress in the fish \[130\].

A study carried out by Atli & Canlı (2008) showed similar results to the present study; results from their study showed that exposure to metals (cadmium, copper and zinc) significantly increased the levels of Oreochromis niloticus liver GSH except for lead \[131\]. Similarly, another study that investigated oxidative stress response in Cat Fish (Clarias gariepinus) from Nigeria Ogun River, Nigeria impacted by metal pollution showed significantly higher concentrations of GSH, GST and SOD in the fish liver compared to those in the control site \[132\].

Oreochromis niloticus (Tilapia fish) sampled from the Hadejia- Nguru wetlands, Jigawa State, Nigeria, impacted by metals through the discharge of waste from agricultural, sewage and industrial sources, was assessed for SOD and GR \[133\]. The results obtained from the study showed similar trends to the present study, i.e., significantly higher concentrations of the oxidative stress biomarkers. Another study also showed that Labeo rohita exposed to Cr showed a significantly increased activity of SOD and GR in all fish tissues \[134\].

3.5. Statistical analysis
Pearson’s correlation of parameters (figure 7) showed a positive correlation between GSH, GST, SOD, GR, and GSH Px. GSH showed a strong correlation with GST (r = 0.890, p < 0.05), SOD (r = 0.764, p < 0.05), GR (r = 0.657, p < 0.05) and GSH Px (r = 0.856, p < 0.05). GST showed a strong positive correlation with SOD (r = 0.678, p < 0.05), GR (r = 0.743, p < 0.05) and GSH Px (r = 0.846, p < 0.05). GR also showed a positive and strong correlation with GSH Px (r = 0.831, p < 0.05), while SOD showed positive but weak correlation with GR (r = 0.394, p > 0.05) and GSH Px (r = 0.480, p > 0.05). Hence, the same process drives the
production of GSH, GST, SOD, GR and GSH Px. GSH in the fish liver showed a negative but weak correlation with temperature in surface water \((r = -0.033, p > 0.05)\). However, GST, SOD, GR and GSH Px, as well as the concentrations of Cr, Pb and Ni in the water, and Cd, Cr and Pb in the fish, showed positive correlations with water temperature. This may be because an increase in water temperature which in turn caused an increase in metal accumulation by the fish over time reduces the efficiency of the generation of GSH in the fish liver; however, the cycle of detoxification which led to the production of GST, GR, and GSH Px was maintained before fish death. The positive correlation between metals in the surface water and fish muscles show that as the amount of dissolved metals in the surface water increase due to a corresponding increase in water temperature, the concentration of adsorbed metals in fish tissues also increases. Hence, this confirms that the major source of metal intake in the experiment was dermal absorption.

Results of NMDS (figure 8) and hierarchical cluster analysis (figure 9) showed that at a Euclidean distance of 14, there were four groups: 1 - Control 24 h and 72 h, 2–0 Watts 24 h, 3–0 Watts 72 h, 4–60 Watts 24 h and 72 h, 100 Watts 24 h and 72 h and 100 Watts 24 h and 72 h.

Both analyses further confirmed that increasing temperature intensified the severity of oxidative stress in a contaminated. This is supported by another study designed to assess the effects of increased temperature on metabolic activity and oxidative stress in the first life stages of marble trout \((Salmo marmoratus)\) [135]. Therefore, an increase in ambient temperature in an already contaminated environment will increase the bioavailability of metal contaminants leading to an increase in bioaccumulation and exacerbation of oxidative stress in juvenile tilapia.

4. Conclusion

The present research was designed to study the effect of increasing temperature on the rate of metal accumulation in fish muscles, and the oxidative stress response in fish liver. It involved the setting up of a mesocosm experiment for 72 h as follows: 0, 60, 100, and 200 Watts, and Controls 1 and 2, set up in triplicate. The 60, 100, and 200 Watts represent the wattage of the tungsten bulbs used to generate the heat needed within the aquarium; Control 2 also had 200 Watts bulb. A quantity of the contaminated sediment and natural tap water from groundwater boreholes were put into 0, 60, 100 and 200 Watts aquariums; while only water was put into Controls 1 and 2 aquariums. Metals (Cd, Cr, Ni, and Pb) and biochemical activities (GSH, GR, SOD, GST, and GHS Px) were analysed in fish muscles and liver respectively. Results showed that metal accumulation in fish muscles was enhanced by increasing temperature. Results also showed that increasing temperature caused an increase in antioxidant enzymatic activities. Therefore, this study revealed that an increase in ambient
temperature in an already contaminated environment will increase the bioavailability of metal contaminants leading to an increase in bioaccumulation and oxidative stress in juvenile tilapia. This study calls for a need for the clean-up of aquatic systems contaminated with metals and proper environmental management of inland aquatic systems and estuaries. Most importantly, this study calls for an urgent need for countries to work hand-in-hand to mitigate global climate change.

Acknowledgments

The authors wish to appreciate the support of field and laboratory personnel of the Niger Delta Aqua Research Group.

Data availability statement

No new data were created or analysed in this study.

Conflicts of interest/Competing interests

The authors have no conflict of interest/competing interests to declare.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

ORCID iDs

O C Ihunwo https://orcid.org/0000-0003-0676-6886
M U Ibezim-Ezeani https://orcid.org/0000-0003-1496-9755

References

[1] Sandler S I 2003 Thermodynamics Encyclopedia of Physical Science and Technology. (Reference Module in Chemistry, Molecular Sciences and Chemical Engineering) ed Robert Meyers 3rd (New York, NY: Academic Press) pp 639–57978-0-12-227410-7
[2] Sanctuary B 2011 Open, closed and isolated systems in physical chemistry [internet] Foundation of quantum mechanics and physical chemistry. Available from: https://quantummechanics.mcmultimedia.com/2011/undergraduate-teaching/physical-chemistry/open-closed-and-isolated-systems-in-chemistry/

[3] Zhang Y et al 2018 pH Effect on Heavy Metal Release from a Polluted Sediment Journal of Chemistry. 2018 1–7

[4] Nguyen L T, Lundgren T, Häkansson K and Svensson B H 2009 Release of metals from contaminated sediments under simulated redox changes International Journal of Sustainable Development and Planning. 4 1–17

[5] Ibezim–Ezeani M U and Okon A F 2016 Sorption mechanism of metal ions uptake from aqueous medium by chemically modified red onion (Allium cepa) skin extract Research Journal of Chemical Sciences. 6 89–94

[6] Forstner U 1981 Metal concentrations in river, lake, and ocean waters Metal Pollution in the Aquatic Environment. (Springer Study Edition (SSE)) ed U Forstner and G T W Wittmann 2 (Berlin, Heidelberg; Springer) Ch 8C pp 71–10978–3-540–12856–4

[7] Gautam P K, Gautam R K, Banerjee S, Chattopadhyaya M C and Pandey J D 2016 Heavy metals in the environment: fate, transport, toxicity and remediation technologies In: Heavy Metals: Sources, Toxicity and Remediation Techniques. 101–30

[9] Yilmaz A B, Sangün M K, Yağlıküllü D and Turan C 2010 Metals (major, essential to non-essential) composition of the different tissues of three demersal fish species from İskenderun Bay, Turkey Food Chem. 123 410–5

[10] Wang W 1987 Factors affecting metal toxicity to (and accumulation by) aquatic organisms - overview Environ. Int. 13 437–57

[11] Plante Kontonie H. 2004 Metals and Minerals Clinical Veterinary Toxicology. (Saint Louis: Mosby) Ch 22 pp 193–23978–9 323–01125–9

[12] Blanc P D 2016 Acute Responses to Toxic Exposures Murray and Nadel’s Textbook of Respiratory Medicine ed Courtney V. Broaddus et al 2 (Philadelphia: Elsevier) Ch 75 pp 1343–1353 e7978–1 4557–3383–5

[13] Wang B and Du Y 2013 Cadmium and its neurotoxic effects Santos R, editor. Oxidative Medicine and Cellular Longevity. 2013 898034

[14] Pels L M 1999 Risk assessment of nephrotoxicity of cadmium Renal Failure. 21 275–81

[15] Staessen JA et al 1999 Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study Lancet 353 1140–4

[16] Vincent JB 2019 Effects of chromium supplementation on body composition, human and animal health, and insulin and glucose metabolism Current Opinion in Clinical Nutrition & Metabolic Care. 226

[17] Vincent JB 2017 New evidence against chromium as an essential trace element The Journal of Nutrition. 147 2212–9

[18] Kitamura F et al 2003 Increase of olfactory threshold in plating factory workers exposed to chromium in Korea Industrial Health. 41 279–85

[19] Wang T et al 2011 Renal impairment caused by chronic occupational chromium exposure International Archives of Occupational and Environmental Health. 84 393–401

[20] Baresić M, Gorniški S, Radonić R, Zlopaša O, Gabarev N and Gasparyević V 2009 Survival after severe acute chromic acid poisoning complicated with renal and liver failure Internal Medicine. 48 711–5

[21] Clochney JM 1984 Chromium ingestion: a case report Journal of Emergency Nursing. 10 281–2

[22] Gomes E R 1972 Incidence of chromium-induced lesions among electroplating workers in Brazil IMS Ind Med Surg. 41 21–5

[23] Gibb H J, Lees P S J, Pinsky P F and Rooney B C 2000 Clinical findings of irritation among chromium chemical production workers Am. J. Ind. Med. 38 127–31

[24] Walters G I, Moore V C and Robertson A S 2012 Burge CBSG, Vellore AD, Burge PS. An outbreak of occupational asthma due to chromium and cobalt Occupational Medicine. 62 533–40

[25] Kumar S et al 2005 Semen quality of industrial workers occupationally exposed to chromium Journal of Occupational Health. 47 424–30

[26] Remy L L, Byers V and Clay T 2017 Reproductive outcomes after non-occupational exposure to hexavalent chromium, Willits California, 1983–2014 Environmental Health. 16 18

[27] Liu Shan and Costa M 2022 Carcinogenicity of metal compounds Handbook on the Toxicology of Metals. ed Gunnar F. Nordberg and Max Costa 2 (New York, NY: Academic Press) Ch 23 pp 507–542978–0 12–823292–7

[28] Bergdahl I A and Skerfving S L 2002 Lead Handbook on the Toxicology of Metals ed Gunnar F. Nordberg and Max Costa 2 (New York, NY: Elsevier) Ch 19 pp 427–9378–0 12–822946–0

[29] Byers R K and Lord E E 1943 Late effects of lead poisoning on mental development Indian Pediatrics. 66 471–94

[30] Shih R A, Hu H, Weisskopf M G and Schwartz B S 2007 Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead Environ. Health Perspect. 115 88–93

[31] EFSA Panel on Contaminants in the Food Chain (CONTAM) 2010 Scientific Opinion on Lead in Food EFSA Journal 8 151 www.efsa.europa.eu

[32] Dolan L C et al 2020 A review of the evidence to support interim reference level for dietary lead exposure in adults Regul. Toxicol. Pharm. 111 104579

[33] Obi–Ezeani C, Dioka C, Meludu S, Onuora I, Usman S and Onyema-Iloh O 2019 Blood pressure and lipid profile in automechanics in relation to lead exposure Indian Journal of Occupational and Environmental Health. 23 28–31

[34] Li L, Guo L and Chen X 2017 The changes of lead exposed workers’ ECG and blood pressure by testing the effect of CaNa2EDTA on blood lead Pak J Pharm Sci. 30 1837–42

[35] Cai H, Xu X, Zhang Y, Cong X, Lu X and Huo X 2019 Elevated lead levels from e-waste exposure are linked to sensory integration difficulties in preschool children NeuroToxicology. 71 150–8

[36] Tamayo y Ortiz M et al 2017 Maternal stress modifies the effect of exposure to lead during pregnancy and 24-month old children’s neurodevelopment Environ. Int. 98 191–7

[37] Yang H, Huo X, Yekeen T A, Zheng Q, Zheng M and Xu X 2013 Effects of lead and cadmium exposure from electronic waste on child physical growth Environmental Science and Pollution Research. 20 4441–7

[38] Shamseddin A A, Mohamed F Y, El-Okda E S and Ahmed A B 2015 Blood lead levels and childhood asthma Indian Pediatrics. 52 503–6

[39] Fenga C, Gangemi S, Di Salvatore V, Falzone L and Libra M 2017 Immunological effects of occupational exposure to lead (Review) Molecular Medicine Reports. 15 3355–60

[40] Rusin D, Nickeson D and Tustin A W 2019 A fatal workplace nickel carbonyl exposure Clinical Toxicology. 57 63–4

[41] Scott I K, Grier L R, Arnold T C and Conrad S A 2002 Respiratory failure from inhalational nickel carbonyl exposure treated with continuous high-volume hemofiltration and diafiltration Inhalation Toxicol. 14 1103–9

[42] Scherman A et al 2020 Relative Prevalence of Contact Allergens in North America in 2018 Dermatitis. 31 112–21

[43] Gergovska M, Darlenksi R and Kazandjieva J 2020 Nickel allergy of the skin and beyond Endocrine, Metabolic and Immune Disorders - Drug Targets. 20 1003–9
[43] Hauptman O, Albert D M, Plowman M C, Hopfer S M and Sunderman F W Jr 1993 Occlus malformations of Xenopus laevis exposed to nickel during embryogenesis Annals of Clinical and Laboratory Science. 23 397–406
[44] Togawa K et al 2016 Parental occupational exposure to heavy metals and welding fumes and risk of testicular germ cell tumors in offspring: A registry-based case-control study Cancer Epidemiology Biomarkers and Prevention. 25 1426–34
[45] Ashrap P et al 2019 In utero and peripartal metals exposure in relation to reproductive hormones and sexual maturation and progression among girls in Mexico City Environ. Res. 127 106360
[46] El Golli-Bennour E and Bacha H 2011 Hsp70 expression as biomarkers of oxidative stress: Mycotoxins’ exploration Toxicology. 287 1–5
[47] Shankar K and Mehendale H M 2014 Oxidative stress Encyclopedia of Toxicology. (Reference Module in Biomedical Sciences) ed William J. Lennarz and Daniel M. Lane Charlene A. McQueen 2nd ed Richard Harding and Kent E. Pinkerton 2nd ed. (Boston: Academic) Ch 1 pp 45–66
[48] Srivastava S and Flora S J S 2020 Arsenicals: toxicity, their use as chemical warfare agents, and possible remedial measures Handbook of Toxicology of Chemical Warfare Agents. ed Ramesh C. Gupta 3rd ed. (Boston: Academic) Ch 21 pp 303–19978–0–12-819090-6
[49] Kitchin K T and Wallace K 2008 The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity J. Inorg. Biochem. 102 532–9
[50] Bal W and Kasprzak K S 2002 Induction of oxidative DNA damage by carcinogenic metals Toxicol. Lett. 127 55–62
[51] Kasparkz K S and Salnikow K 2007 Nickel Toxicity and Carcinogenesis Nickel and Its Surprising Impact in Nature. ed A Sigel et al 2 (Hoboken, New Jersey: Wiley) Ch 17 pp 619–69878–0–470-01671-8
[52] Winterbourn C C, Hampton M B, Liverye J H and Kettle A J 2006 Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: Implications for microbial killing J. Biol. Chem. 281 39860–9
[53] Scott B L, McLeskey T M, Chaudhary A, Hong-Geller E and Gnanakaran S 2008 The bioinorganic chemistry and associated immunology of chronic beryllium disease Chem. Sci. 25 2837–47
[54] Thierie H J et al 2004 Metal-Protein Complex-Mediated Transport and Delivery of Ni2+ to TCR/MHC Contact Sites in Nickel-Specific Human T Cell Activation Journal of Immunology. 172 1926–34
[55] Gupta P K 2016 Biotransformation Fundamentals of Toxicology: Essential Concepts and Applications. (New York, NY: Academic Press) Ch 8 pp 73–85
[56] Kehrer J P, Robertson J D and Smith C V 2010 Free radicals and reactive oxygen species Comprehensive Toxicology. ed Charlene A. McQueen 2nd ed (Oxford: Elsevier) pp 277–307 978–0–08-046884-8
[57] Fanucchi M V 2014 Development of antioxidant and xenobiotic metabolizing enzyme systems The Lung: Development, Aging and the Environment. ed Richard Harding and Kent E. Pinkerton 2nd ed. (Boston: Academic) Ch 11 pp 223–31978–0–12-799941-8
[58] Ursini F and Maiorino M 2013 Glutathione peroxidases Biocatalysis: Science and Applications. ed William J. Lennarz and Daniel M. Lane (Waltham: Academic) pp 99–401978–0–12-443710-4
[59] Zhang J, Grek C, Ye Z W, Manevich Y, Tew K D and Townsend D M 2014 Pleiotropic functions of glutathione s-transferase P Redox and Cancer Part A ed Danyelle M. Townsend and Kenneth D. Tew 122 (New York, NY: Academic) Ch 4 pp 143–75978–0–12- 420120–7
[60] Gertsch J 2007 Glutathione–S-Transferase.xPharm: The Comprehensive Pharmacology Reference. ed S J Enna and David B. Bylund (New York, NY: Elsevier) 1–17978–0–08-055232-3
[61] Siddique T, Deng H X and Arjoud-Schissler S 2013 Motor neuron disease Emery and Rimoin’s Principles and Practice of Medical Genetics ed David Rimoin, Reed Pyeritz and Bruce Korf 6th ed. (Oxford: Academic Press) Ch 1 pp 227–29978–0–12-383834-6
[62] Rogel J D et al 2018 Mitigation pathways compatible with 1.5°C in the context of sustainable development Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, ed M Delmonte, V P Zhai, D Portier et al (The Intergovernmental Panel on Climate Change (IPCC))
[63] Van V M T H, Ludwig F, Zwozden J J G, Weedon G P and Kabat P 2011 Global river temperatures and sensitivity to atmospheric warming and changes in river flow Water Resour. Res. 47 (W02544) 1–19
[64] Echeverria J, Indurain J, Chario E and Garrido J 2003 Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite Colloids Surf., A 218 175–87
[65] Echeverria J, C Zarranz I, Estella J and Garrido J 2005 Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite Appl. Clay Sci. 30 103–15
[66] Sokolova I and Lanzing G 2008 Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: Implications of global climate change Climate Research. 37 181–201
[67] Hedberg Y, Gustafsson J, Karlsson H L, Möller L and Wallinder I O 2010 Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective Part. Fibre Toxicol. 7 1–14
[68] Jun H H and Zhong Y X 2016 The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge Bioresour. Technol. 200 991–8
[69] Turner A and Mawji E 2004 Hydrophobicity and octanol-water partitioning of trace metals in natural waters Environ. Sci. Technol. 38 3081–91
[70] Andersson E and Kupper H 2013 Cadmium toxicity in plants Cadmium: From Toxicity to Essentiality. Dordrecht ed A Sigel, H Sigel and R K O Sigel (Netherlands: Springer) pp 395–413
[71] Lammers R B, Pundas M W and Shlikmanov A I 2007 Variability in river temperature, discharge, and energy flux from the Russian pan-Arctic landmass Journal of Geophysical Research. 112 1–15
[72] Hobbs B and Ord A 2015 Energy flow—thermodynamics Structural Geology: The Mechanics of Deforming Metamorphic Rocks. ed Bruce Hobbs and Alison Ord (Oxford: Elsevier) 111–45
[73] Piskulich Z A, Mesele O O and Thompson W H 2019 Activation energies and beyond J. Phys. Chem. A 123 7185–94
[74] Jungelmaat A and Jakimavičius D 2014 Prediction of river water temperature and its dependence on hydro-meteorological factors Environmental Research, Engineering and Management. 2 5–14
[75] USGS (https://www.usgs.gov/special-topic/water-science-school/science/temperature-and-water?qt-science_center_objects=0) (Internet). Science of a changing world. 2020 [cited 2020 Dec 8]
[76] Isaac D J and Rieman B E 2013 Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms Global Change Biol. 19 742–51
[77] Moore R D, Neltiz M and Parkinson E 2013 Empirical modelling of maximum weekly average stream temperature in British Columbia, Canada, to support assessment of fish habitat suitability Canadian Water Resources Journal. 38 135–47
[78] Wilcock R J et al 1998 Characterisation of lowland streams using a single-station diurnal curve analysis model with continuous monitoring data for dissolved oxygen and temperature N.Z. J. Mar. Freshwater Res. 32 67–79
[79] Blumberg A F, Di and Toro D M 1990 Effects of climate warming on dissolved oxygen concentrations in lake Eric Trans Am Fish Soc. 119 210–23
[80] Wilcock R J et al 2010 Water quality in a polluted lowland stream with chronically depressed dissolved oxygen : causes and effects New Zealand Journal of Marine and Freshwater Research ISSN 29 277–88
[81] Kingsolver J G and Woods H A 2016 Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates The American Naturalist. 187 283–94
[82] Martin B T, Pike A, John S N, Hamda N and Roberts J 2018 Phenomenological versus biophysical models of thermal stress in aquatic eggs Ecological Letters. 20 50–9
[83] Ouelfet V, Piauorn P, Meevilleg M, Fournier M, Fournier M and Couture P 2013 Thermal stress effects on gene expression and phagocytosis in the common carp (Cyprinus carpio): a better understanding of the summer 2001 st Lawrence River Fish Kill. The Open Fish Science Journal. 6 99–106
[84] Porcelli D, Gaston K J, Butlin R K and Snook R R 2017 Local adaptation of reproductive performance during thermal stress Journal of Evolutionary Biology. 30 422–9
[85] Turschwell M P, Balcombe S R, Steel E A, Sheldon F and Peterson E E 2017 Thermal habitat restricts patterns of occurrence in multiple life-stages of a headwater fish Freshwater Science. 36 802–14
[86] Ibezim–Ezeani M U and Ihunwo O C 2020 Ecological risk assessment of Cd, Cr, Ni and Pb metals in Sambreiro river estuary sediment in the Niger Delta Region of Nigeria Int. J. Environ. Anal. Chem. 90 1–14
[87] UNEP 2011 Environmental Assessment of Ogomiland. (Kenya: Nairobi)
[88] Ibezim–Ezeani M U, Dibofofi–Orji A N, Solomon U D and Ihunwo O C 2020 Assessment of metal contamination in sediment from Woji creek, Niger Delta region of Nigeria Int. J. Environ. Anal. Chem. 1 1–12
[89] Ibezim–Ezeani M U and Ihunwo O C 2020 Assessment of Pb, Cd, Cr and Ni in water and water hyacinth (Eichhornia crassipes) Journal of Applied Science and Environmental Management. 24 719–27
[90] Ihunwo O C, Dibofofi–Orji A N, Okowo C and Ibezim–Ezeani M U 2020 Distribution and risk assessment of some heavy metals in surface water, sediment and grey mullet (Mugil cephalus) from contaminated creek in Woji, southern Nigeria Mar. Pollut. Bull. 154 1–2
[91] Moslen M and Miebaka C A 2017 Length-weight relationship and condition factor of Mugil cephalus and Oreochromis niloticus from a tidal creek in the Niger Delta, Nigeria Archives of Agriculture and Environmental Science. 2 87–92
[92] ASTM D1971-16 2016 Standard practices for digestion of water samples for determination of metals by graphite furnace atomic absorption
[93] Blumberg A F, Di and Toro D M 1990 Effects of climate warming on dissolved oxygen concentrations in lake Eric Trans Am Fish Soc. 119 210–23
[94] Hammer Ø 2020
[95] NIST 2015
[96] ARNOT J A and GOBAS F A P C 2006 A review of bioconcentration factor
[97] ASTm D1971-16 2016 Standard practices for digestion of water samples for determination of metals by graphite furnace atomic absorption
[98] Ibezim–Ezeani M U, Dibofofi-Orji A N, Solomon U D and Ihunwo O C 2020 Assessment of metal contamination in sediment from Woji creek, Niger Delta region of Nigeria Int. J. Environ. Anal. Chem. 1 1–12
[99] Ibezim–Ezeani M U and Ihunwo O C 2020 Assessment of Pb, Cd, Cr and Ni in water and water hyacinth (Eichhornia crassipes) Journal of Applied Science and Environmental Management. 24 719–27
[100] Ihunwo O C, Dibofofi-Orji A N, Okowo C and Ibezim–Ezeani M U 2020 Distribution and risk assessment of some heavy metals in surface water, sediment and grey mullet (Mugil cephalus) from contaminated creek in Woji, southern Nigeria Mar. Pollut. Bull. 154 1–2
[101] Moslen M and Miebaka C A 2017 Length-weight relationship and condition factor of Mugil cephalus and Oreochromis niloticus from a tidal creek in the Niger Delta, Nigeria Archives of Agriculture and Environmental Science. 2 87–92
[102] ASTM D1971-16 2016 Standard practices for digestion of water samples for determination of metals by graphite furnace atomic absorption Plasma Emission Spectroscopy, or Plasma Mass Spectrometry (West Conshohocken PA: ASTM International)
[103] NIST 2015 Standard Reference Materials catalogue. (Washington, DC)
[104] Elabscience 2021 Biochemical Kits [Internet]. Kits Available fromhttps://elabscience.com/Products-biochemical_kits-111.html
[105] Hammer Ø 2020 PAST: Paleontological Statistics. Vol. 1, Reference manual. (Oslo: Natural History Museum, University of Oslo) pp 280
[106] Anaconda Inc. ANACONDA 2021
[107] Clarke R T and Gorley R N 2006 PRIMER v6: User Manual Tutorial. (Plymouth, UK: PRIMaRe- E Ltd)
[108] Zhang L, Shi Z, Jiang Z, Zhang J, Wang F and Huang X 2015 Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China Mar. Pollut. Bull. 101 930–7
[109] Arnot J A and Gobas F A P C 2006 A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms Environmental Review. Trent University, Peterborough, ON K9J 7B8 (Canada: NRC Research Press) pp 257–97
[110] Keshavarzi B et al 2018 Heavy metal contamination and health risk assessment in three commercial fish species in the Persian gulf Mar. Pollut. Bull. 129 245–52
[111] Climate-Data.Org 2020 [https://en.climate-data.org/afrika/nigeria/rivers/port-harcourt-528/#//text=The]
[112] Dou X and Li T 2017 Sediment transport in estuarine Handbook of Coastal and Ocean Engineering: Expanded Edition. 2–2 1139–63
[113] Pelly J W 2007 Structure and properties of biologic molecules Elsevier’s Integrated Biochemistry. ed John W. Pelly (Philadelphia: Mosby) Ch 2 pp 1–8978–0:323-03410–4
[114] Mauer L 2003 Protein heat treatment for food proteins Encyclopedia of Food Sciences and Nutrition ed Benjamin Caballero 2nd ed. (Oxford: Academic Press) 4068–487978–0:12–22055–0
[115] Azaza M S, Dhaief M N and Krabem M M 2008 Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis nilotica (Linnaeus) reared in geothermal waters in southern Tunisia J. Therm. Biol 33 98–105
[116] Pandit N P and Nakamura M 2010 Effect of High Temperature on Survival, Growth and Feed Conversion Ratio of Nile Tilapia, Oreochromis niloticus. 219–24
[117] Zhao G, Ye S, Yuan H, Ding X and Wang J 2017 Surface sediment properties and heavy metal pollution assessment in the pearl river estuary, China Environmental Science and Pollution Research. 24 2966–79
[118] Besser J M, Brumbaugh B and Ingersoll C Ecotoxicology-studies with sediment, pore water, and surface water from the Palmetron Zinc site [Internet]. Available fromhttp://digitalcommons.unl.edu/usgsstaffpubhttp://digitalcommons.unl.edu/usgsstaffpub/871
[119] Hammond D 2001 Pore water chemistry Steele JH, editor Encyclopedia of Ocean Sciences. (Oxford: Academic Press) pp 2263–71 Available fromhttp://sciedirect.com/science/article/pii/S012274300001811
[120] Huang Y, Zhang D, Xu Z, Yuan S, Li Y and Wang L 2017 Effect of overlying water pH, dissolved oxygen and temperature on heavy metal release from river sediments under laboratory conditions Archives of Environmental Protection. 43 28–36
[121] Li H, Shi A, Li M and Zhang X 2013 Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metal release from storm sewer sediments Journal of Chemistry. 2013 1–11
[122] Baysigiz B and Tekin-özun S 2013 Concentrations of some heavy metals in water, sediment, and tissues of pikeperch (Sander lucioperca) from karataj lake related to physico-chemical parameters, fish size, and seasons Polish Journal of Environmental Studies. 22 633–44
[123] Förster U 1981 Metal pollution assessment from sediment analysis Metal Pollution in the Aquatic Environment. (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 110–96
[124] Bonnail E, Sarmiento A M, DeValls T A, Nieto J M and Riba I 2016 Assessment of metal contamination, bioavailability, toxicity and bioaccumulation in extreme metallic environments (Iberian Pyrite Belt) using Corbicula fluminea Sci. Total Environ. 544 1031–44
[125] Ahmed A S et al 2019 Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults PlaS One 14 e0219336
[116] Rogers J T, Patel M, Gilmour K M and Wood C M 2005 Mechanisms behind Pb-induced disruption of Na + and Cl– balance in rainbow trout (Oncorhynchus mykiss) American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 289 R463–72

[117] Rogers J T, Richards J G and Wood C M 2003 Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss) Aquat. Toxicol. 64 215–34

[118] Usero I, Gonzalez-Regalado E and Gracia I 1997 Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the atlantic coast of southern Spain Environ. Int. 23 291–8

[119] Champe P 2008 Pentose phosphate pathway and NADPH Champe PC, Harvey RA, editors Lippincott’s Illustrated Reviews : Biochemistry. 4th ed. (Philadelphia, US.: Lippincott Williams & Wilkins) pp 145–56

[120] Nelson D L and Cox M M 2008 Oxidative phosphorylation and photophosphorylation Lehninger Principles of Biochemistry. 5th ed. (New York, NY (United States): W.H. Freeman and Company) pp 707–72

[121] Jaeschke H 2010 Antioxidant Defense Mechanisms Comprehensive Toxicology. ed Charlene A. McQueen 2nd ed. (Oxford: Elsevier) Ch 9 pp 319–37 978-0-08-046884-6

[122] Messner D J, Murray K F and Kowdley K V 2012 Mechanisms of hepatocyte detoxification Physiology of the Gastrointestinal Tract. ed Hamid M, Said 2 5th ed. (Boston: Academic Press) Ch 43 pp 1507–27 978-0-12-809954-4

[123] Gad C 2014 Glutathione Encyclopedia of Toxicology. (Reference Module in Biomedical Sciences) ed Philip Wexler 3rd ed. (Oxford: Academic Press) pp 731978-0-12-386455-0

[124] Salguero M L 2007 Detoxification Rakel DBTIM (Second E, editor) Integrative Medicine. 2nd ed. (Philadelphia: W. B. Saunders) pp 1123–35

[125] Tripathy A 2016 International journal of current research in biosciences and plant biology International Journal of Current Research in Biosciences and Plant Biology. 3 79–89

[126] Abdelaziz A M, Saedeldin I M, Swelum A A A, Afifi M M and Alkaladi A 2018 Oxidative Stress in the Muscles of the Fish Nile Tilapia Caused by Zinc Oxide Nanoparticles and Its Modulation by Vitamins C and E Bungalu SG, editor Oxidative Medicine and Cellular Longevity. 2018 926712

[127] Erogul A, Dogan Z, Kanak E G, Atli G and Canli M 2015 Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism Environmental Science and Pollution Research. 22 3229–37

[128] Elarabany N and Bahnasawy M 2019 Comparative and interactive biochemical effects of sub-lethal concentrations of cadmium and lead on some tissues of the African catfish (Clarias gariepinus) Toxilogical Research. 35 249–55

[129] Min E Y, Ahn T Y and Kang J C 2016 Bioaccumulation, alterations of metallothionein, and antioxidant enzymes in the mullet Mugil cephalus exposed to hexavalent chromium Fisheries and Aquatic Sciences. 19 19

[130] Bul R F and Hill K E 2010 Glutathione peroxidases Comprehensive Toxicology. ed Charlene A. McQueen 2nd ed. (Oxford: Elsevier) pp 229–242

[131] Atli G and Canli M 2008 Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures Environ. Toxicol. Pharmacol. 25 33–8

[132] Farombi E O, Adelowo O A and Ajimoko Y R 2007 Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun river Vol. 4, International Journal of Environmental Research and Public Health. (https://doi.org/10.3390/ijerph2007040011)

[133] Musa I M and Imam T S 2021 Bio-concentration of some heavy metals and oxidative stress enzymes in Oreochromis niloticus (Tilapia fish) from the Hadejia - Nguru wetlands Jigawa State. Duste Journal of Pure and Applied Sciences. 7 168–80

[134] Kumari K, Khare A and Dange S 2014 The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the Fish Labeo rohita BioMed Res. Int. 2014 782493

[135] Simčić T, Jesenšek D and Brancelj A 2015 Effects of increased temperature on metabolic activity and oxidative stress in the first life stages of marble trout (Salmo marmoratus) Fish Physiology and Biochemistry. 41 1005–14