TESTING DISSIPATIVE MAGNETOSPHERE MODEL LIGHT CURVES AND SPECTRA WITH FERMI PULSARS

Gabriele Brambilla1,2, Constantinios Kalapotharakos3,3, Alice K. Harding2, and Demosthenes Kazanas2

1 Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; gabriele.brambilla@nasa.gov, gabriele.brambilla1@studenti.unimi.it
2 Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
3 University of Maryland, College Park (UMD)/CRESST, College Park, MD 20742, USA

Received 2014 September 29; accepted 2015 March 2; published 2015 May 5

ABSTRACT

We explore the emission properties of a dissipative pulsar magnetosphere model introduced by Kalapotharakos et al. comparing its high-energy light curves and spectra, due to curvature radiation, with data collected by the Fermi LAT. The magnetosphere structure is assumed to be near the force-free solution. The accelerating electric field, inside the light cylinder (LC), is assumed to be negligible, while outside the LC it rescales with a finite conductivity (σ). In our approach we calculate the corresponding high-energy emission by integrating the trajectories of test particles that originate from the stellar surface, taking into account both the accelerating electric field components and the radiation reaction forces. First, we explore the parameter space assuming different value sets for the stellar magnetic field, stellar period, and conductivity. We show that the general properties of the model are in good agreement with observed emission characteristics of young γ-ray pulsars, including features of the phase-resolved spectra. Second, we find model parameters that fit each pulsar belonging to a group of eight bright pulsars that have a published phase-resolved spectrum. The σ values that best describe each of the pulsars in this group show an increase with the spin-down rate (E) and a decrease with the pulsar age, expected if pair cascade processes are providing the magnetospheric conductivity. Finally, we explore the limits of our analysis and suggest future directions for improving such models.

Key words: acceleration of particles – pulsars: general – radiation mechanisms: non-thermal

1. INTRODUCTION

Pulsars are collapsed cores of massive stars spinning at periods in the range \(\sim 10^{-3} \text{–} 10 \text{ s}\). They are capable of radiating at almost all spectral wavelengths (from radio to \(\gamma\)-rays), although only a small subset have detected \(\gamma\)-ray pulsations. Their emission is highly anisotropic, originating from particles accelerated along the open magnetic field lines by intense electric fields induced by their magnetic field rotation. When pulsars display \(\gamma\)-ray emission, most of their luminosity is emitted in \(\lesssim 100 \text{ MeV} \) \(\gamma\)-rays. As such they have been one of the major classes of objects studied by the Fermi \(\gamma\)-ray Space Telescope (Fermi), using the Large Area Telescope (LAT) (Atwood et al. 2009). The release of the 2nd Fermi Pulsar catalog (2PC) (Abdo et al. 2013) presents light curves and spectra of 117 \(\gamma\)-ray pulsars. Of these, 41 are radio-loud \(\gamma\)-ray pulsars discovered through radio timing, 36 are new pulsars discovered through their \(\gamma\)-ray pulsations alone, and a surprising 40 are radio-loud millisecond pulsars. We note that for all the radio-loud Fermi pulsars the radio luminosity is orders of magnitude smaller than that of \(\gamma\)-rays. Nonetheless, since the number of radio photons far exceeds the number of the \(\gamma\)-ray photons, radio detection is easier, while \(\gamma\)-ray detection is efficient for the nearer and more energetic objects (Abdo et al. 2013).

Pulsar radiation has been studied over the years with a variety of models employing different assumptions about the location and geometry of emission zones, such as the Polar Cap (PC) (Daugherty & Harding 1996), the Outer Gap (OG) (Cheng et al. 1986; Romani & Yadigaroglu 1995), the Slot Gap (SG) (Arons 1983; Muslimov & Harding 2004), Separatrix Layer (Bai & Spitkovsky 2010), and current sheet (Contopoulos & Kalapotharakos 2010; Kalapotharakos et al. 2012b, 2014; Pétri 2012b; Uzdensky & Spitkovsky 2014). Many models, such as SG and OG, implement curvature radiation (CR) (as in this paper) to describe the GeV radiation, while others implement synchrotron radiation powered by the reconnection in the current sheet (Lyubarskii 1996; Uzdensky & Spitkovsky 2014). The increased sensitivity of the Fermi LAT, with its first observations of a simple exponential cutoff of the Vela pulsar spectrum (Abdo et al. 2009), ruled out the PC emission model, which predicted a super-exponential cutoff, due to magnetic pair attenuation near the neutron star surface. This result, later confirmed for a number of other pulsars, established that the pulsar \(\gamma\)-ray emission originates in the outer magnetosphere, with the OG and the SG models better fitting observations. However, none of these outer magnetosphere emission models can currently account for the entire pulsar light-curve phenomenology (for example, see Romani & Watters 2010; Pierbattista et al. 2012, 2015). Furthermore, none of these models are consistent with global magnetosphere properties, such as current closure.

The recent development of 3D, global, force-free electrodynamics (FFE) (Spitkovsky 2006; Kalapotharakos et al. 2009; Pétri 2012a), magnetohydrodynamical (Komissarov 2006; Tchekhovskoy et al. 2013), and particle in cell (Chen & Beloborodov 2014; Philippov & Spitkovsky 2014; Cerutti et al. 2015) pulsar magnetosphere models gave an impetus to the study of pulsar magnetospheres by providing a more realistic picture of their outer field geometry than the vacuum model previously assumed. However, because the ideal MHD FFE regime precludes the existence of electric fields parallel to the magnetic field (\(E_{\parallel} = 0\)) and thus the acceleration of particles and the emission of radiation, more realistic dissipative MHD magnetosphere models have been developed (Kalapotharakos et al. 2012c; Li et al. 2012). These models allow for \(E_{\parallel} \neq 0\) and therefore can accommodate the
production of radiation. They are constructed by numerically evolving the time-dependent Maxwell’s equations, while at the same time employing a form of Ohm’s law to relate the current density J to the fields. This has the general form

$$J = c \rho \frac{E \times B}{E_0^2 + B^2} + \sigma E_B,$$

(1)

where J is the current density, E and B are the electric and magnetic field, and E_0 is defined by $B_0^2 - E_0^2 = B^2 - E^2$. $E_0B_0 = E \cdot B$, $E_0 \geq 0$. E_0 is a term that prevents the drift velocity and hence the current from becoming superluminal, while σ is a phenomenological conductivity, used to relate E_B to the current density J, measured in units of the pulsar rotation frequency Ω, the fundamental frequency in the problem. The macroscopic spatial σ distribution should be consistent with the underlying microphysics. However, the dependence of the conductivity on the microphysics is still not understood. Thus, the goal of the recent study of global dissipative MHD magnetosphere models is to explore the main properties of various σ values and distributions. In our first studies (Kalapotharakos et al. 2012a, 2012c) a conductivity that is mainly uniform (in space) and constant in time was assumed. In Kalapotharakos et al. (2014), we have started to implement a broad range of conductivity values along the open magnetic field lines, while the FFE (in reality highly conductive) condition was applied in the “closed” region.

We have employed these dissipative magnetosphere models to generate model \(\gamma\)-ray light curves (Kalapotharakos et al. 2012c, 2014) due to CR. To this end, we calculate the trajectories and Lorentz factors γ of radiating particles, under the influence of both the accelerating magnetospheric electric fields and CR reaction. This approach allowed us to relate the observed pulsar emission properties to those of the model magnetospheres. Such observables are the separation (in phase) of the \(\gamma\)-ray light-curve peaks Δ and also the lag δ between the radio emission and the first peak of the \(\gamma\)-ray light curve. It was found (Kalapotharakos et al. 2014) that matching the model $\delta - \Delta$ distribution with that obtained in the 2PC (Abdo et al. 2013) cannot be achieved with a σ constant across the entire magnetosphere but requires essentially FFE (infinite conductivity, $E_0 = 0$) conditions interior to the light cylinder (LC), with radius $R_{LC} = c/\Omega$, and large ($\sigma \gtrsim 30 \Omega$) but finite conductivity outside the LC giving these models the nomenclature FFE Inside, Dissipative Outside (FIDO).

In the current paper we expand our study by considering the FIDO models that were presented in Kalapotharakos et al. (2014) by exploring their energetic and spectral properties under certain simple assumptions. We attempt to compare the detailed luminosities and spectra of the dissipative magnetosphere models to those obtained by observations. To this end, rather than perform a statistical comparison of the FIDO model with the entire \textit{Fermi} population, we decided to compare the phase-averaged and phase-resolved spectra predicted by the FIDO model with a few very luminous pulsars that have published phase-resolved spectra. This being the first comparison of spectra predicted by dissipative models with data, we chose to focus on individual pulsars by which we can better understand the model comparison. This comparison will provide the trends and will reveal the limitations of this model and its assumptions in describing the entire high-energy pulsar phenomenology depicted by \textit{Fermi}.

In Section 2 we describe the methods employed in our modeling of the pulsar magnetospheres and the production of the phase-resolved spectra, and in Section 3 we present our results. We conclude in Section 4 with a discussion of the importance of the results and directions to be followed in the future studies.

2. METHODS

2.1. The Magnetosphere Structure

The magnetosphere structure is obtained by numerically solving the time-dependent Maxwell equations

$$\frac{\partial B}{\partial t} = -c \nabla \times E$$

(2)

$$\frac{\partial E}{\partial t} = c \nabla \times B - 4\pi J$$

(3)

with a 3D finite difference time domain technique (Kalapotharakos & Contopoulos 2009). We consider the presence of a dipole magnetic moment μ at the center of the star and that the star itself is a perfect conductor; then the boundary condition on the stellar surface for the electric field is the FFE condition for a corotating magnetosphere:

$$E + (\Omega \times R) \times B = 0.$$

(4)

The closure of the system requires a prescription for the current density J in terms of the fields (Equation (1)), as in Kalapotharakos et al. (2014). When σ is very close to the FFE case ($\sigma \rightarrow \infty$, $E || \rightarrow 0$, $\frac{\partial E}{\sigma \partial t} \rightarrow 0$), taking the parallel component of Equation (3), it is possible to approximate the electric field parallel to the magnetic field as (Kalapotharakos et al. 2014)

$$E || = \frac{c}{4\pi \sigma} \left(\frac{(\nabla \times B)_{\perp}}{E_{\perp}}\right)_{\text{FFE}},$$

(5)

where the FFE indication implies the corresponding FFE value.\footnote{This equation comes from a simplified Maxwell equation in which the term $\partial E_{||}/\partial t$ is neglected.}

As in Kalapotharakos et al. (2014), we start with an FFE global magnetosphere model implementing the FFE current density J prescription (Gruzinov 1999)

$$J = \frac{c \rho E \times B}{B^2} + \frac{c \rho B \cdot \nabla \times B - E \cdot \nabla \times E}{4\pi} - \frac{E}{B^2}$$

(6)

and then compute E_0 only outside the LC, located at radius $R_{LC} = c/\Omega$, using the approximation in Equation (5) of the prescription of Equation (1) for $\sigma = 0.3$, 1, 3, 5, 10, 30, 60 Ω ($\sigma = 30 \Omega$ was used for the original FIDO model). We did not test higher σ values since for these the corresponding cutoff energies (E_{cut}) and total γ-ray luminosities (L_{γ}) are well below the ones observed by \textit{Fermi}. In our FFE simulations we use a stellar radius $r_* = 0.2R_{LC}$. Our computational domains extend up to 5R_{LC}, and the spatial resolution (i.e., the grid cell size) is
Each simulation has been evolved for two stellar rotations. Here we would like to note that ideal (of infinite resolution) FFE simulations would lead to infinitesimally thin current sheets and hence to infinitely large $\nabla \times \mathbf{B}_{\text{syn}}$, and E_γ values lying within infinitesimally small volumes. However, in dissipative solutions (finite σ) the thickness of the current sheet is expected to be of the order of c/σ. In our FFE simulations the resolution is finite ($0.01R_{\text{LC}}$) and the corresponding current sheet is resolved within a few grid cells. This behavior mimics the finite thickness of the current sheet in dissipative solutions. This “artificial” FFE thickness of the current sheet is similar to that corresponding to “real” dissipative solutions with $\sigma = 30\,\Omega$. Our base FIDO solution is the one with $\sigma = 30\,\Omega$ presented in Kalapotharakos et al. (2014). We have checked that the results corresponding to FFE solutions with a spatial distribution of E_γ based on Equation (5) (assuming $\sigma = 30\,\Omega$) and those of “true” dissipative solutions (using explicitly prescription (1)) with uniform $\sigma = 30\,\Omega$ provide very similar results.

We also checked the validity of this approximation by simulating a few FIDO magnetospheres for $\sigma = 0.3, 5\,\Omega$, and $10\,\Omega$ and various magnetic moment inclination angles with respect to the rotational axis, α (fixing the period, P, and B); we found that especially for $\alpha < 45^\circ$ and for $\alpha \leq 5\,\Omega$ the field structure deviates substantially from the FFE field structure on which our approximation is based. This is primarily because σ has been assumed to be uniform outside the LC. However, the important region for the particle acceleration in the FIDO model is near the equatorial current sheet outside the LC (Kalapotharakos et al. 2014). In the case of small σ values, a more accurate treatment is needed (e.g., application of the smaller σ values only near the equatorial current sheet). This study is beyond the scope of the current paper and will be addressed in a future work (see Section 4). In the rest of the paper we consider the FFE numerical models employing an E_γ that rescales according to Equation (5). This treatment, though simplistic, allows the exploration of the main trends and correlations among the various parameters taking into account a broad range of properties of the observed phenomenology (e.g., light curves, spectra).

2.2. Simulation of the Emission

To simulate the γ-ray emission of the model pulsar magnetospheres, we neglect the inverse Compton (IC) and synchrotron radiation (SR) contribution and consider only CR (Jackson 2001). In some models, where particles are energized by reconnection in the current sheet (Uzdensky & Spitkovsky 2014), SR is produced by high-temperature particles up to $100\,\text{GeV}$. In the type of model we are considering here, where particles are energized only by the induced electric field parallel to the magnetic field, the particles can emit SR only if they acquire some pitch angles. In such “gap” models (Harding et al. 2008; Tang et al. 2008) SR does not give photons more energetic than $100\,\text{MeV}$. IC requires a high-altitude non-thermal X-ray emission component that is present only for a few Fermi pulsars such as the Crab. To save computational time in calculating the emission, a random subset of 1.5×10^6 initial particle orbit positions were selected on the pulsar PC. Their orbits were integrated under the influence of the local parallel electric field E_\parallel and losses due to CR to compute their Lorentz factor γ, as a function of position, in the non-rotating inertial frame. Then we selected randomly 5×10^{10} particles with positions along these trajectories between the star surface and 2.5 times the LC radius R_{LC}, where we computed the
spectrum of the locally emitted CR and its direction \(\zeta \), taking into account the time delays and assuming that the CR photons are emitted in the direction of particle motion \(\zeta \) is the observer’s inclination relative to the pulsar rotation axis and \(\phi \) the azimuth.

For each particle we calculated the number of photons emitted per second by CR and stored them in a 3D matrix: 100 bins of resolution for the azimuth \(\phi \) (between 0\(^\circ\) and 360\(^\circ\)), 180 bins of resolution for \(\zeta \) (between 0\(^\circ\) and 180\(^\circ\)), and 114 energy bins equally spaced logarithmically between 0.01 and 50 GeV.

We calculated the luminosity by rescaling the area of the PC according to the period of the star and to a fixed radius of 10 km (in the simulation of the FIDO model the radius was at 0.2 \(R_{LC} \) and the flux of particles from the surface with the Goldreich–Julian (GJ) density \(\rho_{\text{GJ}} \) (Goldreich & Julian 1969), assuming that the PC is small enough to consider the GJ charge density constant.\(^5\) The adopted \(\rho_{\text{GJ}} \) flux assumes that the multiplicity of the accelerated particles in the regions with high \(E \) is small (\(\sim 1 \)). This assumption is reasonable given that much higher multiplicity leads to screening of the \(\rho_{\text{GJ}} \) fluxes of accelerated particles.

This 3D grid allows us to calculate sky maps, light curves, and phase-resolved spectra. The sky maps are produced by summing up over the photon energy and plotting the resulting intensity in photons/s in \((\zeta, \phi) \) coordinates. Summing over energy for a particular viewing angle \(\zeta \) of the sky map produces a light curve. Phase-averaged spectra can be obtained by averaging the photon distribution in energy over \(\phi \) for a chosen \(\zeta \). Finally, phase-resolved spectra are obtained by collecting the spectra in each \((\zeta, \phi) \)-bin. We applied this procedure to pulsar magnetospheres with a number of inclination angles \(\alpha \) between the rotation and magnetic axes (\(\alpha = 15^\circ, 30^\circ, 45^\circ, 60^\circ, 75^\circ, 90^\circ \)), different rotation periods (0.01, 0.03, 0.1, 0.3, 1 s), and different magnetic fields at the stellar surface (\(5 \times 10^{11}, 10^{12}, 2 \times 10^{12}, 4 \times 10^{12}, 8 \times 10^{12}, 3 \times 10^{13} \) G) assuming each time all the different conductivity values (\(\sigma = 0.3, 1, 3, 5, 10, 30, 60 \Omega \)) mentioned in the previous section. Thus, we tested \(6 \times 7 \times 5 \times 6 = 1260 \) different magnetosphere configurations.

The sky maps and light curves shown in Kalapotharakos et al. (2014) were computed for the bolometric luminosity, while here we computed sky maps and light curves in photons/s

\(^5\) This condition is broken in millisecond pulsars because their PC size is a significant fraction of their radius.
in the energy band 0.1–50 GeV in order to compare with observed Fermi light curves and spectra. Our light curves in Figure 1 show some extra secondary peaks that do not appear in the bolometric light curves, due to relative spectral differences with phase. We generated sky maps and light curves in bolometric luminosity, and they are very similar to those of Kalapotharakos et al. (2014) except for small differences in the relative heights of the light-curve peaks (the maximum difference is $\approx 20\%$). This kind of difference is due to differences in sampling and/or binning. In addition, we smoothed the profiles (with a Gaussian smoothing with $Q = 3.6$) to reduce the numerical noise.

2.3. Comparison with the Fermi Pulsars

We used the data from the 2PC, gathered with 3 yr of observations acquired by the LAT on the Fermi satellite, except for the phase-resolved spectra that have appeared in different papers (Abdo et al. 2010a, 2010b; DeCesar 2013). These different works use data collected over different amounts of time (generally less than the 3 yr of data used for 2PC), but they all analyze photons in the same energy range (between 100 MeV and 50 GeV like in the 2PC).

We study some particularly luminous γ-ray pulsars, in particular the ones that have a published phase-resolved spectrum. This set of eight pulsars contains J0007+7303 (CTA1 pulsar), J0534+2200 (Crab pulsar), J0633+1746 (Geminga pulsar), J0835-4510 (Vela pulsar), J1057-5226, J1709-4429, J1836+5925, and J1952+3252. We identified a candidate light curve and its associated phase-resolved spectrum produced by our model for a combination of α, ζ, σ that best describes those of each pulsar. We made a first selection using the number of peaks in the light curve. The sample of model light curves were generated at different viewing angles ζ (equivalent of the latitude) between 5° and 90° with a step of 5°. These 18 light curves were generated for each inclination angle and for $\sigma = 1, 5, 30 \Omega$. This grid was fine enough to resolve the single/double-peaked attribute of the light curves, identifying the best values of α, ζ. We then used simulated magnetosphere models for the whole range of σ noted above, selecting the closest P and B values to those of the real pulsars. For each combination of α and ζ selected we matched the cutoff energy E_{cut} from the phase-averaged spectra (an example in Figure 2) using the same form\footnote{This expression is the same as used in Abdo et al. (2013) with $b = 1$.} as was used to fit the pulsar spectra of the 2PC (Abdo et al. 2013),

$$
\frac{dN}{dE} = K \left(\frac{E}{E_0} \right)^{-1} \exp \left(-\frac{E}{E_{\text{cut}}} \right),
$$

We looked for a candidate (considering the whole range of σ values) with an E_{cut} that was within a factor of 2 of that observed. We then matched the separation between the gamma-ray peaks (with a tolerance of 0.08 in phase, where 1.0 is the...
Figure 6. FIDO model luminosity over the set of parameters ($\alpha = 45^\circ$, σ, P, B) (red) and the luminosity of the pulsars in the 2PC (blue), obtained by assuming the flux correction factor, $\xi = 1$ (Abdo et al. 2013). The horizontal axes are the \log_{10} of periods and the \log_{10} of magnetic field values at the pole: the first are measured in s, the second in G. The vertical axis is the \log_{10} of luminosity measured in erg s$^{-1}$. The luminosities are similar for other inclination angles.

Figure 7. Evolution of E_{cut} for a pulsar with $P = 0.1$ s and $B = 2 \times 10^{12}$ G for different (α, ζ, σ). On the left there is a linear scale, on the right logarithmic. The six panels are the different α starting from the top to the bottom: 15°, 30°, 45°, 60°, 75°, 90°. Line colors denote different σ (in units of Ω), according to the legend at the side of the plot. The x-axis is ζ from 0° to 90°; the y-axis is the E_{cut} in GeV. The dashed lines are the maximum and minimum E_{cut} measured for the Fermi young γ-ray pulsars. In the linear scale panel the minimum E_{cut} is not plotted.
Figure 8. Evolution of the fluxes for a pulsar with $P = 0.1 \, \text{s}$, $B = 2 \times 10^{12} \, \text{G}$, and distance 1 kpc for different (α, ζ, σ). The six panels are the different α starting from the top to the bottom: 15°, 30°, 45°, 60°, 75°, 90°. Line colors denote different σ (in units of Ω), according to the legend at the side of the plot. On the x-axis different ζ from 0° to 90°; the y-axis is the flux in erg s$^{-1}$ cm$^{-2}$. The dashed lines are the minimum and maximum flux measured by Fermi for young γ-ray pulsars, rescaled to a distance of 1 kpc.

Figure 9. Phase-resolved spectra for Vela. Left panels: data from DeCesar (2013). Right panels: model candidate light curves (blue) and model spectral index (top) and E_{cut} (bottom) (green) as a function of pulsar phase. The horizontal blue line marks the E_{cut} of the phase-resolved spectrum.
The evolution of light curves with energy predicted by the model, and the flux, in comparison with that observed in the 2PC. The distances used are those reported in the 2PC. Considering the maximum error in the distance measures, the maximum variation in the flux of the simulated light curves with respect to α, and the assumed multiplicity of 1 in the particle flux, we accept a flux within a factor of 10 of the observed value. These were the primary features we considered in selecting candidate light curves and spectra. The other features we considered were the “half-power width” of the light-curve peaks and the trend of the phase-resolved E_{cut}. We did not give as much importance to the spectral index Γ because it is more strongly influenced by possible contributions from SR and IC emission. We note that the discrepancies in the model flux that we would have obtained considering the observed spectral index (Γ) value in the phase-averaged spectrum were always less than 15%.

3. RESULTS

3.1. General Properties of the Model

As was reported in Kalapotharakos et al. (2014), the FIDO model has the interesting property of reproducing the...
The correlation between δ and Δ presented in the 2PC (Abdo et al. 2013). The simulated light curves in Figure 1 look similar to the observed light curves, except for some additional smaller peaks. In Figure 5 we show the luminosity skymaps of an FIDO magnetosphere with $P = 0.1$ s, $B = 4 \times 10^{12}$ G, and $\sigma = 5 \Omega$; we also plotted the trends in flux and E_{cut} with α, ζ, and σ. We notice that the flux and the E_{cut} generally increase with ζ, and decrease with σ, for fixed α. They also increase with decreasing P and increasing B. The physical causes of these trends are that increasing ζ more closely approaches the more energetic main caustic (as we can see in Figure 5). Increasing σ decreases the value of E_{cut}, the maximum value of the particle Lorentz factor γ_p (as we noted in Section 2.1), and hence the value of E_{cut}.

Increasing B also increases E_{\parallel} (fixing σ), while decreasing P reduces the LC radius and thus on the one hand decreases the radius of curvature of the particle trajectories (in absolute units) and on the other hand increases the absolute E_{\parallel} values (the closer to the star the emitting region is, the higher the corresponding field values are). These effects, in general, increase the γ_p values, the corresponding photon energies (E_{cut}), and the total power emitted. Increasing α results in a decrease of E_{cut} and of the flux: this is due to both E_{\parallel} being smaller and the GJ charge density (Goldreich & Julian 1969) at the surface of the PC decreasing with α, reaching 0 at $\alpha = 90^\circ$.

In Figure 6 we show the dependence of the luminosity of our models on the pulsar period and magnetic field (red dots), as well as the observations of 2PC (blue dots). In Figure 7 we show the dependence of E_{cut} for a pulsar with $P = 0.1$ s and $B = 2 \times 10^{12}$ G as a function of α, ζ, σ, while in Figure 8 we show the dependence of flux of the same pulsar on the same parameters assuming a distance of 1 kpc. Generally, the model E_{cut} values for $\sigma \geq 3 \Omega$ match the observed values, while for $\sigma < 3 \Omega$ the model E_{cut} values are larger than observed. The model flux values for all σ are within the observed range, except for the largest σ values at the smallest α and ζ. Although the model fluxes are about a factor of 10 below the highest observed fluxes at the largest α, even for the lowest σ values, Figure 8 is only plotted for one value of P and B and does not show model fluxes for the full range of these values in the observed population.

Another feature we investigate is the general trend of the phase-resolved spectra. From the phase-resolved spectra that are available it seems that the E_{cut} is always higher in the second light-curve peak or in the right part of a broad single-peaked light curve. This behavior is followed by $\sim 55\%$ of our model light curves, 23% do not show a significant difference in E_{cut} between the two peaks, while 22% exhibit the opposite behavior. So, according to the FIDO model, obtaining phase-resolved spectra from more pulsars should show some that do not follow the trend of higher E_{cut} in the second peak.

In a few of the magnetosphere models, the luminosity exceeds E. Since this cannot happen physically, the problem is linked to the following cause. The approximation of Equation (5) forces the E_{\parallel} to change linearly with respect to σ. Nonetheless, we found through full simulations using low σ that this process is not exactly linear and the E_{\parallel} saturates for low σ values. Thus, whenever the E_{\parallel} is higher than it should
have been, this can contribute to an overestimation of the luminosity. Finally, this effect is probably due to the overestimation of the distances of the given pulsars.

3.2. Model γ-ray Pulsar Identification

First, we performed a blind search to find the parameters giving light curves and spectra that best match those of the Fermi pulsars, disregarding any constraints from other wavelengths. We note that on the one hand the light-curve form is the most important feature for the determination of each pulsar’s α value and the Earth’s ζ value. On the other hand, the E_{cut} and L_* values determine the corresponding σ value. We found from one to three candidates per pulsar. But of the eight pulsars for which we found model candidates with this blind search, two did not have a good match with other wavelength constraints (taken from Pierbattista et al. 2015). Looking for candidates again in the zone indicated by these constraints, we found one possible candidate per pulsar, with a less-than-perfect light-curve match but still reasonable. This fact shows that our model is not always able to identify in an unambiguous way a candidate that satisfies all our criteria simultaneously.

We report the geometry and conductivity information of our candidates in Table 1, while the fluxes and the E_{cut} are shown in Table 2.

We find a correlation between the σ of the candidates and their E and the age estimate obtained through the period and period deviative (excluding the candidate for J1057-5226, since it seems to be an outlier). We fit these two correlations with a power law, using the large intervals we had on the σ grid as errors:

$$y = a + b \cdot x^c.$$ \hspace{1cm} (8)

We obtained for the relation $\sigma -$ age

$$a = -1 \pm 3, \quad b = 32 \pm 23, \quad c = -0.36 \pm 0.01,$$ \hspace{1cm} (9)

while for the relation $\sigma -$ E

$$a = -6 \pm 30, \quad b = (7.80 \pm 0.02) \times 10^{-5}, \quad c = 0.146 \pm 0.004,$$ \hspace{1cm} (10)

both with $\chi^2_{\text{red}} \simeq 0.2$, where χ^2_{red} is the reduced χ^2, that highlight the large error bar assumed. These relations are shown in Figures 3 and 4. These two correlations are expected if higher σ results from more efficient screening of $E_\|$, by pairs that are produced in greater numbers by younger, more energetic pulsars (Daugherty & Harding 1982; Harding & Muslimov 2011). Our eight candidates do not reproduce all of the observed characteristics of these pulsars: two had a bit smaller flux than observed (within a factor of factor 15, J1709-4429, and 40, J0633+1746, instead of 10), and two of them do not reproduce the observed bridge emission in the light curve.
or the off-peak emission present in the observed light curve (J1836+5925). For the candidate of radio-quiet pulsar Geminga (J0633+1746) having a 0.5 peak separation, we interchanged the model peaks in order to match the observed relative peak heights, which we are free to do since our model light curve has no bridge emission. The J0007+7303 candidate has a smaller peak width than observed (the tolerance is ±0.06), and two candidates have phase-resolved spectra that do not show the observed trends (J0007+7303, J1836+5925). In the Appendix, we show observed and model light curves and phase-resolved spectra for three of the pulsars, Vela, Crab, and J1952+3252.

4. CONCLUSION

We have computed light curves, luminosities, and phase-resolved and phase-averaged spectra for a large number of FIDO models (which were shown to reproduce the δ−Δ distribution of 2PC) for different values of α, P, B, σ, and ζ. All of these emission characteristics of the model were compared with light curves, and phase-averaged and phase-resolved spectra of eight bright pulsars studied with Fermi. In particular, we explored whether the common trends found in the eight published phase-resolved spectra, such as a higher E_{cut} in the second peak, are absolute predictions of the FIDO model. We found that this is in fact a common trend, but not absolute since the reverse trend (higher E_{cut} in the first peak) or similar E_{cut} in both peaks is also predicted for a subset of parameters. It would therefore be of interest to produce phase-resolved spectra for a larger number of pulsars.

This work shows that the FIDO dissipative model merits further exploration, particularly with respect to the correlations seen in Figures 3 and 4. If these correlations are confirmed, it would strengthen the expected connection between screening of E_{\parallel} by efficient pair production and high conductivity.

The major limitations of the present model are the assumption of FFE scaling of E_{\parallel} with conductivity outside the LC, and the assumption that the magnetosphere inside the LC is completely FFE. The choice of spatial variation of the conductivity (infinite inside and finite outside the LC) was imposed by the need to reproduce the pulsar δ−Δ (radio lag—peak separation) correlations. Consistency of the models with these correlations requires no (or very little) emission from within the LC, hence the FFE approximation for this region. Clearly, emission of radiation requires finite conductivity and non-zero E_{\parallel} somewhere in the magnetosphere, necessarily outside the LC. A more realistic distribution of σ likely requires its variation with distance along the field lines and from one line to another. This variation prescription should be eventually consistent with the related microphysical mechanisms (the
details of which are not well understood, at present at least. Nonetheless, the overall distribution cannot be much different than that proposed in Kalapotharakos et al. (2014), or else it would be inconsistent with the γ-ray light-curve correlations.

We have also explored the validity of the FIDO model by making some test simulations with low σ outside the LC, still assuming FFE conditions inside. It was found that the Φ_{E} in these simulations does not drop linearly with σ for $s<5\Omega$ and $\alpha<45^\circ$, primarily because there is significant departure from FFE field structure. Therefore, the fluxes and luminosities are somewhat overestimated for the candidates with smaller σ.

However, we have also begun to explore models with low σ only near the open field boundary, extending outside the LC along the current sheet. This distribution is more realistic since screening by pair cascades is expected for most of the interior field lines. In this case, the FFE field structure is present even for lower σ values, indicating that the FFE scaling of Φ_{E} is more valid for a gap-like distribution of σ.

After having explored the possibilities of FIDO-like models, we will continue necessary improvements. First, the magneto- sphere simulations should be calculated exactly and not assuming the linear behavior of Equation (5). Second, an increase in the grid of simulated values is warranted, in particular for the α values, because it is the primary source of error in the determination of the simulated flux. Producing a large atlas with more light curves would better track rapid changes through the grid values. A further step would be to try to understand the origin of the σ parameter and its spatial variation, in particular the underlying pair production process at different sites, such as the PCs (Timokhin & Arons 2013), OGs (Cheng et al. 1986), or the current sheet.

APPENDIX

We show here some figures illustrating the data/model comparison. The first figure for each pulsar shows the observed and model profile and the superimposed phase-resolved spectra for Γ and E_{cut}. The second figure shows the evolution of the observed and model light curve in the energy bins $100-300$ MeV, $0.3-1$ GeV, $1-3$ GeV, >3 GeV, and >10 GeV. On the right are the FIDO predictions, on the left the data.

VELA—J0835-4510

The Vela pulsar has $P=0.089$ s and $B=3.4 \times 10^{12}$ G. The $\Delta=0.43$, the peaks' “half-height width” is 0.003 and 0.005. The spectrum has $E_{\text{cut}}=3.0$ GeV, $\Gamma=1.5$, and the flux observed is 9.1×10^{-9} erg (s cm$^{-2}$)$.^-1$.

The model candidate has period $P=0.1$ s and $B=4 \times 10^{12}$ G. It is for $\alpha=60^\circ$, $\zeta=50^\circ$ and $\sigma=10\Omega$. The
Δ = 0.42, the peak’s “half-height width” is 0.06 and 0.07, where the accuracy is ±0.03 due to the smoothing. Our candidate has $E_{\text{cut}} = 4.1 \text{ GeV}$, $\Gamma = 1.4$ and a flux of $1.9 \times 10^{-9} \text{ erg (s cm}^{-2}\text{)}^{-1}$. The comparison between observed and simulated phase-resolved spectra is shown in Figure 9. The comparison between observed and simulated light-curve energy evolution is shown in Figure 10.

CRAB—J0534+2200

The Crab pulsar has $P = 0.033 \text{ s}$ and $B = 3.8 \times 10^{12} \text{ G}$. The Δ = 0.40, the peak’s “half-height width” is 0.04 and 0.10. The spectrum has $E_{\text{cut}} = 4.2 \text{ GeV}$, $\Gamma = 1.9$, and the flux observed is $1.3 \times 10^{-9} \text{ erg (s cm}^{-2}\text{)}^{-1}$. The model candidate has period $P = 0.03 \text{ s}$ and $B = 4 \times 10^{12} \text{ G}$. It is for $\alpha = 75^\circ$, $\zeta = 63^\circ$, and $\sigma = 30 \Omega$. The Δ = 0.41, the peak’s “half-height width” is 0.04 for the first peak where the accuracy is ±0.03 due to the smoothing. The candidate’s second peak is too broad or too low. Our candidate has $E_{\text{cut}} = 3.4 \text{ GeV}$, $\Gamma = 1.3$, and a flux of $1.6 \times 10^{-9} \text{ erg (s cm}^{-2}\text{)}^{-1}$. The comparison between observed and simulated phase-resolved spectra is shown in Figure 11. The comparison between observed and simulated light-curve energy evolution is shown in Figure 12.

J1952+3252

J1952 has $P = 0.04 \text{ s}$ and $B = 0.5 \times 10^{12} \text{ G}$. The Δ = 0.48, the peak’s “half-height width” is 0.04 and 0.1. The spectrum has $E_{\text{cut}} = 2.5 \text{ GeV}$, $\Gamma = 1.5$, and the flux observed is $1.4 \times 10^{-10} \text{ erg (s cm}^{-2}\text{)}^{-1}$. The model candidate has period $P = 0.03 \text{ s}$ and $B = 0.5 \times 10^{12} \text{ G}$. It is for $\alpha = 75^\circ$, $\zeta = 85^\circ$, and $\sigma = 10 \Omega$. The Δ = 0.5, the peaks “half-height width” is 0.06 and 0.06 where the accuracy is ±0.03 due to the smoothing. Our candidate has $E_{\text{cut}} = 2.2 \text{ GeV}$, $\Gamma = 1.4$, and a flux of $7.4 \times 10^{-11} \text{ erg (s cm}^{-2}\text{)}^{-1}$. The comparison between observed and simulated phase-resolved spectra is shown in Figure 13.

The comparison between observed and simulated light-curve energy evolution is shown in Figure 14.

REFERENCES

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010a, ApJ, 712, 1209
Abdo, A. A., Ackermann, M., Atwood, W. B., et al. 2009, ApJ, 696, 1084
Abdo, A. A., Ajello, M., Allafort, A., et al. 2013, ApJS, 208, 17
Abdo, A. A., Ajello, M., Antonini, E., et al. 2010b, ApJ, 720, 26
Arons, J. 1983, ApJ, 266, 215
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071
Bai, X.-N., & Spitkovsky, A. 2010, ApJ, 715, 1282
Cerutti, B., Philippov, A., Parfrey, K., & Spitkovsky, A. 2015, MNRAS, 448, 606
Chen, A. Y., & Beloborodov, A. M. 2014, ApJL, 795, L22
Cheng, K. S., Ho, C., & Ruderman, M. 1986, ApJ, 300, 500
Contopoulos, I., & Kalapotharakos, C. 2010, MNRAS, 404, 767
Daugherty, J. K., & Harding, A. K. 1982, ApJ, 252, 337
Daugherty, J. K., & Harding, A. K. 1996, ApJ, 458, 278
DeCesar, M. 2013, PhD thesis, Univ. Maryland
Goldreich, P., & Julian, W. H. 1969, ApJ, 157, 869
Gruzinov, A. 1999, arXiv:astro-ph/9902288
Harding, A. K., & Muslimov, A. G. 2011, ApJ, 743, 181
Harding, A. K., Stern, J. V., Dyks, J., & Frackowiak, M. 2008, ApJ, 680, 1378
Jackson, J. D. 2001, Classical Electrodynamics (3rd ed.; New York: Wiley)
Kalapotharakos, C., & Contopoulos, I. 2009, A&A, 496, 495
Kalapotharakos, C., Contopoulos, I., & Kazanas, D. 2012a, MNRAS, 420, 2793
Kalapotharakos, C., Harding, A. K., & Kazanas, D. 2014, ApJ, 793, 97
Kalapotharakos, C., Harding, A. K., Kazanas, D., & Contopoulos, I. 2012b, ApJL, 754, L1
Kalapotharakos, C., Kazanas, D., Harding, A., & Contopoulos, I. 2012c, ApJ, 749, 2
Komissarov, S. S. 2006, MNRAS, 367, 19
Li, J., Spitkovsky, A., & Tchekhovskoy, A. 2012, ApJ, 746, 60
Lyubarskii, Y. E. 1996, A&A, 311, 172
Muslimov, A. G., & Harding, A. K. 2004, ApJ, 606, 1143
Pétri, J. 2012a, MNRAS, 424, 605
Pétri, J. 2012b, MNRAS, 424, 2023
Philippov, A. A., & Spitkovsky, A. 2014, ApJL, 785, L33
Pierbattista, M., Grenier, I. A., Harding, A. K., & Gonthier, P. L. 2012, A&A, 545, A42
Pierbattista, M., Harding, A. K., Grenier, I. A., et al. 2015, A&A, 575, 3
Romani, R. W., & Watters, K. P. 2010, ApJ, 714, 810
Romani, R. W., & Yadigaroglu, I.-A. 2004, ApJ, 606, 1143
Spitkovsky, A. 2006, ApJL, 648, L51
Tang, A. P. S., Takata, J., Jia, J. J., & Cheng, K. S. 2008, ApJ, 676, 562
Tchekhovskoy, A., Spitkovsky, A., & Li, J. G. 2013, MNRAS, 435, L1
Timokhin, A. N., & Arons, J. 2013, MNRAS, 448, 20
Uzdensky, D. A., & Spitkovsky, A. 2014, ApJ, 780, 3