Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey

A. Solarz1, R. Thomas1, F. M. Montenegro-Montes1, M. Gromadzki2, E. Donoso3,4, M. Koprowski5, L. Wyrzykowski2, C. G. Diaz3,6, E. Sani1, and M. Bilicki7

1 European Southern Observatory, Ave. Alonso de Córdova 3107, Vitacura, Santiago, Chile
e-mail: asolarz@eso.org
2 Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
3 Instituto de Ciencias Astronómicas, de la Tierra, y del Espacio (ICATE), CONICET, San Juan, Argentina
4 Universidad Nacional de San Juan (UNJS), Mitre Oeste 396, J5402 San Juan, Argentina
5 Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń, Poland
6 Gemini Observatory, Southern Operations Center, La Serena, Chile
7 Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

Received 18 May 2020 / Accepted 14 August 2020

ABSTRACT

We present the results of a programme to search and identify the nature of unusual sources within the All-sky Wide-field Infrared Survey Explorer (WISE) that is based on a machine-learning algorithm for anomaly detection, namely one-class support vector machines (OCSVM). Designed to detect sources deviating from a training set composed of known classes, this algorithm was used to create a model for the expected data based on WISE objects with spectroscopic identifications in the Sloan Digital Sky Survey. Subsequently, it marked as anomalous those sources whose WISE photometry was shown to be inconsistent with this model. We report the results from optical and near-infrared spectroscopy follow-up observations of a subset of 36 bright (\(g_{AB} < 19.5\)) objects marked as “anomalous” by the OCSVM code to verify its performance. Among the observed objects, we identified three main types of sources: (i) low redshift (\(z \sim 0.03-0.15\)) galaxies containing large amounts of hot dust (53%), including three Wolf-Rayet galaxies; (ii) broad-line quasi-stellar objects (QSOs) (33%) including low-ionisation broad absorption line (LoBAL) quasars and a rare QSO with strong and narrow ultraviolet iron emission; (iii) Galactic objects in dusty phases of their evolution (3%). The nature of four of these objects (11%) remains undetermined due to low signal-to-noise or featureless spectra. The current data show that the algorithm works well at detecting rare but not necessarily unknown objects among the brightest candidates. They mostly represent peculiar sub-types of otherwise well-known sources. To search for even more unusual sources, a more complete and balanced training set should be created after including these rare sub-species of otherwise abundant source classes, such as LoBALs. Such an iterative approach will ideally bring us closer to improving the strategy design for the detection of rarer sources contained within the vast data store of the AllWISE survey.

Key words. infrared: galaxies – infrared: stars – galaxies: active

1. Introduction

In recent years, astronomy has seen rapid growth in the amount and complexity of the information collected by multi-wavelength surveys. Currently available databases of astronomical observations already contain vast amounts of data. The Sloan Digital Sky Survey (SDSS, York et al. 2000) has provided the community with the photometry and spectra of over 4 million sources covering almost 30% of the sky totalling to 273 TB1. Wide Field Survey Explorer (WISE, Wright et al. 2010), which performed a photometric all-sky survey in near- and mid-infrared passbands delivered over 23 TB2 (excluding multi-epoch and reject catalogues). Soon, facilities that are currently under development, such as the Square Kilometre Array (SKA; Dewdney et al. 2009) and the Large Synoptic Survey Telescope (LSST; Ivezic et al. 2008) will provide even larger volumes of data: the LSST is expected to deliver in total 60 PB of raw images3, while the SKA would give over 5 ZB (Farnes et al. 2018). Such an exponential growth in the quantity of data has compelled astronomers to develop automatic tools for extracting knowledge about known objects as well as to discover new information. A new possibility for efficient data extraction from surveys has been made possible thanks to the advent of machine learning (ML) algorithms, a tool of artificial intelligence that is designed to learn from the provided data set itself. There are two main branches of ML. On the one hand, “supervised” learning algorithms are designed to create a model that can recognise specific patterns within the data based on training examples provided by the user (supervisor). On the other hand, “unsupervised” learning algorithms search for similarities between input data points without any a priori input knowledge from the user. From a practical point of view, both approaches have different applications and suffer from various handicaps. Supervised ML can only recognise data with properties that are similar to the training set. For that reason, any rare or unseen data structures

1 Based on observations collected at the European Southern Observatory, Chile. Programme IDs 0101.A-0539 and 0102.A-0305.
2 https://www.sdss.org/dr16/data_access/volume/
3 https://www.lsst.org/scientists/keynumbers
would be lost and the output catalogues would lack purity (e.g. Kurcz et al. 2016). Unsupervised ML, on the other hand, produces an output which has to be verified by the user, as the similarity of the data chosen by the algorithm must be of physical significance to interpret the results. This verification process makes unsupervised ML applications a time-consuming procedure of trial and error. A fusion of the two approaches, known as “semi-supervised” learning, combines the best aspects of both methods. Semi-supervised algorithms are designed to recognise typical data structures based on training examples. However, they have the freedom to pinpoint all those data points which are inconsistent with the known patterns in the data. Thanks to the increasing depth and sensitivity of present and future surveys, we should expect to encounter lesser known or rare phenomena more frequently. Therefore, the semi-supervised approach works well for detecting “anomalies” in the data, especially in large photometric surveys which lack spectroscopic follow-up observations. This approach is of crucial importance for statistical studies, as we want our samples to be as pure and as complete as possible.

Currently, more and more attention is drawn towards data mining for unique objects. Meusinger et al. (2012) used Kohonen self-organising maps (Kohonen 1982) to search for the most unusual quasi-stellar objects (QSOs), within the SDSS survey. Baron & Poznanski (2017) used unsupervised machine learning methods, such as random forest (RF, Breiman 2001), to search for peculiar objects in the SDSS database by finding abnormal spectral features. Reis et al. (2018) used RF similarity matrix for detection of stellar spectra, which otherwise would remain hidden when using classical modelling methods. Hocking et al. (2018) used an assembly of unsupervised ML algorithms to label galaxies in astronomical imaging surveys using only pixel data. This technique can also facilitate the search for rarer objects in the data sets. Other automated anomaly detection algorithms are applied to other tasks, for example, photometric redshift estimation meant to reject any bad data that may be present within the training set (Hoyle et al. 2015).

Solarz et al. (2017), henceforth S17, created a catalogue of AllWISE objects (Cutri et al. 2013), which exhibit unusual mid-IR behaviour with respect to the optical source population. The catalogue is a result of the application of a semi-supervised anomaly detection algorithm called the one-class support vector machine (OCSVM, Schölkopf et al. 2000), designed to find objects deviating from user-defined known sources. The model for the expected data was created based on AllWISE objects with spectroscopic identifications found in the SDSS DR13 (Albareti et al. 2017). In this study, we aim to characterise the bright end of the S17 catalogue by performing a pilot spectroscopic programme. The observations are performed using the ESO Faint Object Spectrograph and Camera (EFOSC2, Buzzoni et al. 1984) and Son of ISAAC (Sof, Moorwood et al. 1998). Both instruments are mounted on the New Technologies Telescope (NTT) at the La Silla Observatory. The full-scale project intends to “close the loop” of the machine learning process, where we study the nature of the underrepresented objects flagged as “anomalies” by the algorithm. Ultimately it will lead to improving underrepresented populations within the sample of known objects. The physical characterisation of the anomaly detection algorithm output is a crucial step in an iterative search of truly abnormal or perhaps even new phenomena registered in wide-angle photometric surveys.

This paper is organised as follows. Section 2 presents the description of the original catalogue of S17. Details about the spectroscopic observations and data reduction are included in Sect. 3, while Sect. 4 presents the results. We summarise the paper in Sect. 5.

2. Anomaly selection

We searched for abnormal sources present within the AllWISE catalogue. The AllWISE contains more than 747 million sources detected over the whole sky, measured in four passbands (W1, W2, W3, W4) covering near- and mid-IR wavelengths centred at 3.4, 4.6, 12, and 22 µm with an angular resolution of the filters of 6.1″, 6.4″, 6.5″, and 12.0″, respectively. The sensitivity to point sources at the 5σ detection limit is estimated to be at least (depending on sky position) 0.054, 0.071, 0.73, and 5 mJy for the W1, W2, W3, and W4 bands (equivalent to 16.6, 15.6, 11.3, and 8.0 Vega mag). The sensitivity of AllWISE allows for the construction of extragalactic catalogues that extend at least twice as deep as earlier all-sky datasets (e.g. Bilicki et al. 2016; Jarrett et al. 2017), such as the ones provided by Infrared Astronomical Satellite (IRAS) or Two Micron All-Sky Survey (2MASS). The WISE satellite provided a database of significant depth but without any spectroscopic information for most of its sources. As an infrared photometric all-sky survey, AllWISE extends the spectral information of objects enabling to study their dust properties. Also, due to its sky coverage and depth, the AllWISE database may contain rare or unusual objects which have been missed by optical surveys or can reveal an unexpected behaviour of otherwise regular source. When searching for unusual sources, it is preferable to predict the appearance of the known types of objects. When the “ordinary” object types can be distinguished successfully, we can find unusual objects as those that are inconsistent with all known sorts of objects. However, sometimes a unique source can mimic the appearance of a regular object and remain unrecognised as a novelty.

To find outliers in the AllWISE data, we used the OCSVM algorithm, a semi-supervised method designed to find outlying data points (the anomalies) based on a sample of a user-defined training set of objects with known properties. Each training object must contain an N-dimensional feature vector, composed from N observables, such as flux, colour, morphology, etc. Then OCSVM projects the data through a nonlinear function, Φ, to space with a higher dimension, called the feature space, F. Based on F, the OCSVM attempts to find the best separation boundary that will enclose the training sample (in a two-dimensional space, this boundary would be a circle or an ellipse, which would encompass the majority of the training set). In other words, the algorithm estimates a probability distribution function which makes most of the known data more likely than the rest and a decision rule that creates the largest possible margin to separate these known observations from the outliers. Once obtained, the boundary serves as a decision function and new objects are classified according to their location: if the point lies within the boundary, it is classified as an object with features that resemble those of the known objects. If it falls outside of the frontier, then it is classified as an outlier: an object with characteristics that differ from the training sample. The outcome of the decision function relies on the dot-product of the vectors in the F (i.e. all the pairwise distances for the vectors). The distance between the boundary and the outlying points can be treated as a measure of how anomalous a given source is: the further the object is from the decision boundary, the more uncharacteristic it is with respect to the training set. S17 aimed for the detection of such sources in the AllWISE survey provided that they differ from those observed by the SDSS. The SDSS was chosen as a database for known sources, as it is
the most comprehensive wide-angle survey to spectroscopically label various source types (stars, galaxies, QSOs). The training set was based on SDSS DR13 and any source with a measured redshift (velocity for stars) was included in the training sample. The input parameter space was constructed using the following descriptive characteristics: W1 magnitude, W1–W2 colour and \(w1 \text{mag1} - w1 \text{mag3} \) concentration parameter (defined as the difference between flux measurements in two circular apertures in the W1 passband in radii equal to 5.5\(^\prime \) and 11.0\(^\prime \); Bilicki et al. 2014). We used the W1–W2 colour instead of W2 magnitude alone to ensure the maximum coverage of the parameter space by known sources. The concentration parameter \(w1 \text{mag1} - w1 \text{mag3} \) was chosen as an input parameter as it serves as a proxy for morphological information: point-like sources typically have smaller \(w1 \text{mag1} - w1 \text{mag3} \) values than extended ones. For more details, see S17.

Once applied to the full catalogue of AllWISE data, the OCSVM algorithm selected \(~33,000\) objects with very "red" mid-IR colours, namely, with very large \(\Delta W1 \), for which we employed the OCSVM algorithm selected by S17. We used the W1–W2 colour instead of W2 magnitude alone to ensure the maximum coverage of the parameter space by known sources. The concentration parameter \(w1 \text{mag1} - w1 \text{mag3} \) was chosen as an input parameter as it serves as a proxy for morphological information: point-like sources typically have smaller \(w1 \text{mag1} - w1 \text{mag3} \) values than extended ones. For more details, see S17.

3. Spectroscopic follow-up observations

We designed a pilot spectroscopic programme targeting objects from the anomaly catalogue which have an optical counterpart within a radius of 2.0 arcsec from the WISE position and with apparent magnitude \(\text{AB} < 19.5 \) mag. This magnitude limit is required for spectroscopy with a high enough signal-to-noise ratio (S/N) on a 4-m class telescope. We find 4543 objects with optical counterparts for \(\text{AB} < 19.5 \text{[mag]} \) (see Table 1).

As the nature of the sources in the S17 catalogue is unverified, the selection of the observed targets was based on observing conditions and visibility: airmass <1.5, the maximum distance from the Moon and weather. The observations were performed on the NTT in August-December 2018 in visitor mode (Programme ID: 0101.A-0539 and 0102.A-0305). During these runs, we observed the total of 36 objects using the EFOSC2 and SofI instruments. The EFOSC2 was operating in long-slit mode (width equal to 1 arcsec), with the Grism #13 delivering spectra from 3650 to 9250 Å with average resolving power \(R = \lambda/\Delta \lambda \sim 355 \). No blocking filter was used. The SofI was operating in long-slit mode (width equal to 1 arcsec), with the blue grism delivering spectra from 9350 to 16450 Å with
spectral resolving power \(R = \lambda/\Delta \lambda \sim 550 \). The first run in August 2018 was conducted during the bright time with a fraction of lunar illumination (FLI) \(\sim 0.97 \), but the average seeing was below 1 arcsec. The run in December was conducted during the “dark time”, with FLI \(\sim 0.06 \) but seeing was higher (\(\sim 1.45^{\prime\prime} \)). The details of the observed sources are summarised in Table 2.

Table 1. Summary of the search for optical counterparts in photometric surveys within 2\(^{\prime} \) matching radius.

Survey	\(N_{g_{AB}<19.5} \)	\(N_{\text{unique}} \)	\(N_{\text{obs}} \)
PamSTARRs DR1	13881	1446	1446
Gaia DR2	8370	2926	1603
SkyMapper DR1	702	171	37

Notes. \(N_{g_{AB}<19.5} \) denotes how many objects from all counterparts have \(g_{AB} \) brighter than limiting 19.5 mag; \(N_{\text{unique}} \) shows how many objects are unique to a given survey; \(N_{\text{obs}} \) denotes how many objects from a given survey we have observed.

Starting and ending airmasses for each exposure are listed in Tables A.1 and A.2.

The redshift determination for the observed objects was based on visual inspection of the spectral features. Then wavelength measurements of the features via Gaussian profile fitting was performed, using the IRAF task \texttt{splot}. We did not include emission lines which were located near the edge of the wavelength range. Similarly, the spectral features contaminated by sky emission lines and significant residuals left by the sky subtraction were excluded. For most line centres, the typical formal statistical errors are \(\sim 1^{\prime\prime} \) and they translate into redshift errors of less than 0.001, ignoring the wavelength calibration error. To evaluate the redshift uncertainties, we compared the redshifts derived from different lines of the same object. For objects with multiple lines, we adopted the average difference as redshift error.

4. Results

The sample of 36 targets observed in this campaign includes the following objects:
- Nineteen galaxies at \(z < 0.15 \).
- Twelve broad-line QSOs located at redshifts \(1.3 < z < 2.6 \) including two broad absorption line (BAL) QSOs and one with strong and narrow iron emission lines.
- One young stellar object (YSO).
- Four unidentified objects due to a very low S/N for the spectra.

Table 2 lists all observed objects with identified features in their spectra, which we used to determine their redshifts and classification. The left panel of Fig. 2 shows the positions of the observed objects on a colour-colour diagram for WISE passbands. The right panel shows the distribution of the apparent optical brightness in \(g_{AB} \)-band relative to the \(W1 \). Figure 3 presents the distribution of the \(W1-W2 \) colour as a function of their respective distance from the OCSVM decision boundary for all observed objects. The distance measurement indicates how uncharacteristic the outlier is with respect to the training objects. We can see that there is a correlation between these two values, especially for the observed galaxies, which are both the reddest and the most uncharacteristic. What is more, the QSO with strong iron emission is also more anomalous than other observed QSOs and BAL QSOs. In the following subsections, we describe in more detail the different classes of the observed objects.

\[6\] https://www.eso.org/sci/facilities/lasilla/instruments/sofi/doc/manual/sofiman_2p40.pdf

\[7\] The PESSTO Pipeline for EFOSC2 and SOFI reductions http://wiki.pessuto.org/pessto-operation-groups/data-reduction-and-quality-control-team

\[8\] With the exception of four objects described further in the following sections.

\[9\] The Image Reduction and Analysis Facility is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
contours and points mark the position of all OCSVM anomalies contained in the S17 catalogue which have optical detection with asterisks, BAL QSOs as diamonds, a YSO as a triangle, galaxies as crosses, a Seyfert galaxy as a square, and unidentified objects as plus signs.

Table 2. Targets observed and the features identified in their spectra (Col. 4), which were used for redshift measurement (Col. 5) and object classification (Col. 6).

Object ID	RA Dec	Spectral features	Redshift	Classification	
J232450.80	23:24:50.90	−35:37:15.80	Si IV+OIV], C IV, C III]	1.962 ± 0.010	Broadline QSO
J201747.34	20:17:47.30	−50:45:32.30	C IV, C III], Mg II]	1.639 ± 0.004	Broadline QSO
J191725.48	19:17:25.50	−69:42:27.70	C IV, C III]	1.586 ± 0.001	Broadline QSO
J12458.64	21:46:58.60	−66:36:31.60	C IV, C III], Mg II]	1.452 ± 0.006	Broadline QSO
J204635.56	20:46:35.60	−57:08:30.60	Lyα, Si IV+OIV], C IV	2.605 ± 0.022	Broadline QSO
J190137.97	19:01:38.00	−62:08:02.90	C III], Mg II]	1.278 ± 0.001	Broadline QSO
J231638.59	23:16:38.60	−44:48:56.70	C III], Mg II]	1.310 ± 0.005	Broadline QSO
J072450.77	07:24:50.77	−68:49:49.90	C IV, C III]	1.578 ± 0.002	Broadline QSO
J061858.03	06:18:58.04	−03:33:44.90	C III], Mg II]	1.409 ± 0.003	Broadline QSO
J084059.57	08:40:59.57	−22:10:00.50	Si IV+OIV], C IV, C III], Mg II]	1.755 ± 0.009	BAL QSO
J040840.58	04:08:40.59	−17:40:41.50	Si IV+OIV], C IV, C III], Mg II]	1.687 ± 0.007	BAL QSO
J040754.75	04:07:54.76	−65:22:35.00	Mg II], Hβ, [O III]], Hα]	1.356 ± 0.006	Fe rich QSO
J204544.00	20:45:44.00	−35:39:41.30	[O II]], [O III]], Hα]	0.108 ± 0.006	Seyfert 2
J195131.19	19:51:31.20	−67:22:09.70	[O II]], Hβ, [O III]], Hα]	0.067 ± 0.001	SF
J062035.99	06:20:35.99	−56:57:56.50	[O II]], Hβ, [O III]], Hα]	0.080 ± 0.001	SF
J070647.77	07:06:47.77	−39:34:14.00	[O II]], Hβ, [O III]], Hα]	0.078 ± 0.001	SF
J205821.02	20:58:21.02	−14:44:22.00	[O II]], Hβ, [O III]], Hα]	0.114 ± 0.001	SF
J052522.78	05:25:22.79	−07:04:19.10	[O II]], Hβ, [O III]], Hα]	0.148 ± 0.001	SF
J022908.52	02:29:08.52	−00:38:19.60	[O II]], Hα]	0.069 ± 0.001	SF
J053520.86	05:35:20.87	−25:34:42.40	[O II]], Hβ, [O III]], Hα]	0.073 ± 0.001	SF
J040051.83	04:00:51.83	−66:50:34.30	Hβ, [O III]], Hα]	0.032 ± 0.001	SF
J022718.11	02:27:18.11	−07:06:14.30	[O II]], Hβ, [O III]], Hα]	0.105 ± 0.001	SF
J164737.38	16:47:37.39	−00:57:52.80	Ca K & H, Hα]	0.088 ± 0.001	S0
J021049.21	01:04:09.22	−43:17:36.80	Ca K & H, Hα]	0.030 ± 0.001	S0
J060434.96	06:40:43.96	−08:32:57.40	Ca K & H, Hα]	0.138 ± 0.002	S0
J060127.78	06:01:27.79	−53:22:06.70	Ca K & H, Hα]	0.033 ± 0.002	S0
J071734.84	07:17:34.84	−54:23:03.00	Ca K & H, Hα]	0.077 ± 0.001	S0
J211637.73	21:16:37.74	−35:38:51.00	Ca K & H, Hα]	0.073 ± 0.001	S0
J191825.52	19:18:25.53	−71:53:13.70	Ca K & H, Hα]	0.041 ± 0.001	S0
J185020.05	18:50:20.05	−51:23:13.70	Ca K & H]	0.078 ± 0.001	E
J141606.17	14:16:06.18	−36:09:34.70	Ca K & H]	0.041 ± 0.002	E
J155603.92	15:56:03.92	−23:23:09.40	–	–	YSO
J062245.36	06:22:45.37	−45:10:24.30	–	–	Unknown
J185103.11	18:51:03.12	−17:46:45.00	–	–	Unknown
J183949.54	18:39:49.40	−50:49:16.70	–	–	Unknown
J173122.32	17:31:22.33	−22:25:16.60	–	–	Unknown

Fig. 2. Left panel: colour-colour diagram with the classes of observed anomalies marked as different symbols: broadline QSOs as diamonds, a YSO as a triangle, galaxies as crosses, a Seyfert galaxy as a square, and unidentified objects as plus signs. Right panel: W1 magnitude in Vega plotted against g−AB magnitude for the targeted sources (same colour and symbol coded as for left panel). Grey contours and points mark the position of all OCSVM anomalies contained in the S17 catalogue which have optical detection with g−AB < 19.5.
4.1. Low redshift galaxies

Nineteen of the observed objects are galaxies located at $z < 0.15$ and displaying very red W_1-W_2 colours (>1.7), which can indicate the presence of hot dust, which is heated during an active galactic nucleus (AGN) phase or a violent star-forming (SF) phase, or combination of the two phenomena. The observed spectra are divided into specific classes depending on their spectral features and are presented in Figs. 4–6. Local galaxies with extremely red mid-IR colours are a particularly interesting source population. Usually, such galaxy colours are thought to be indicative of AGN activity in massive galaxies (e.g. Stern et al. 2012). However, for low-mass galaxies observational evidence reports a lack of AGN signatures in either broad or narrow optical emission lines (e.g. Izotov et al. 2011; Sartori et al. 2015; Hainline et al. 2016; O’Connor et al. 2016; Kaufmann 2018). In nine of these sources, we detect multiple emission lines (see Table 2), such as Hβ, [O III] $λ5008.24$, Hα, [N II] $λ6583.27$, and [S II] $λ6718.29$. We employ the BPT diagram (Baldwin et al. 1981), along with the selection criteria of Kaufmann et al. (2003) and Kewley et al. (2001, 2006), to identify the class of these sources (see Fig. 7). All of the observed galaxies lie just below the separation line between SF and composite galaxies.

As we do not detect any apparent signatures of AGN activity within these sources (i.e. broad emission lines or corresponding emission line ratios), we consider two possible explanations for the extreme dust heating in these galaxies. On the one hand, these galaxies could contain AGNs which are heavily obscured and optically invisible. On the other hand, they might not contain AGN and the dust heating that results in high W_1-W_2 colour could be caused by stars alone.

In looking for evidence for the presence of an AGN within our objects, we first searched for counterparts in publicly available astronomical databases of soft and hard X-rays: Chandra (Evans et al. 2010), XMM-Newton (Rosen et al. 2016), Swift/BAT (Baumgartner et al. 2013), and INTEGRAL/IBIS (Winkler et al. 2003). We used a maximum search radius of 30′. X-ray emission traces the accretion history of the Universe, offering a highly efficient method of detecting growing black holes in galaxies over a wide range of redshifts. X-ray surveys with XMM-Newton and Chandra at energies <10 keV are sensitive to all but the most heavily obscured AGN (e.g. Della Ceca et al. 2008). Hard X-ray emission is thought to be the most unbiased AGN selection technique (e.g. Baumgartner et al. 2013), as it is less affected by the obscuring material (up to $N_H \sim 10^{23.5} - 10^{24}$ cm$^{-2}$, Ricci et al. 2015). Also, a large number of X-ray sources have been confirmed to be regular galaxies without any obvious optical signatures of the AGN presence (e.g. Caccianiga et al. 2007; Smith et al. 2014). We find that our “red” galaxies have no X-ray counterparts. We note, however, that all-sky surveys have a lower sensitivity, so the X-ray emission might be still present in these systems. Additionally, we searched for radio counterparts of our objects in The NRAO VLA Sky Survey (NVSS, Condon et al. 1998) and Faint Images of the Radio Sky at Twenty-cm (FIRST, Becker et al. 1995) surveys, with no success. For this search, we adopted a 0.09 for the maximum matching radius. Ten out of the 19 objects appear in the area of the sky covered by these radio surveys; however, no radio emission is detected. We cannot determine the radio emission for the remaining objects, as they fall outside of the coverage of these surveys. Finally, in the work of Satyapal et al. (2018), a colour cut was derived to distinguish the SF contribution from that of an AGN in red galaxies. Objects fulfilling the following criteria are considered to have a significant AGN contribution: $W_1-W_2 \geq 0.52$ and $W_1-W_2 \geq 5.78 \times (W_2-W_3) - 24.50$. All but three of our galaxies fulfill this AGN criterion. Objects J070647.77, J040051.83, and J053520.86 could, therefore, turn out to be purely SF galaxies. Their optical spectra are shown in Fig. 4. They show clear signatures of Wolf-Rayet (WR) stars manifested by series of broad emission lines in the optical wavelength range such as the broad He I $λ4686$, N III $λ4640$, or C III/IV $λ4650$, features originating in the expanding atmospheres of the most massive stars (Crowther et al. 2007). This spectral region manifesting the existence of the WR population within a galaxy is often referred to as “WR bump” (bottom panels of Fig. 4). Such WR stars, initially identified by Wolf and Rayet in 1867, evolve from O-type stars with an initial mass of 25 M_\odot or larger. Galaxies hosting living high-mass stars during their WR phase are reported to be very rare, as WR stars present a small fraction of the stellar population in a galaxy and have a short lifetime (e.g. Liang et al. 2020). The high dust temperatures, as indicated by the large W_1-W_2 colours could arise from very young, hot stars hosted in low-metallicity environments (Griffith et al. 2011; Izotov et al. 2014). To estimate the oxygen abundance, where possible, we use the R_{23} index introduced by Fagel et al. (1979):

$$R_{23} = \frac{\text{[OIII]}λ5007 + \text{[OII]}λ6583 + \text{[OII]}λ6300}{Hβ}.$$

The R_{23} abundance relation has two solutions, a low and high metallicity estimate for most values of R_{23} (e.g. Kobulnicky & Kewley 2004). For that reason, we use an additional line ratio, [N II] $λ6583/\text{[O III]} λ5007$, to break this degeneracy. The upper and lower branches of the R_{23} calibration bifurcates at log([N II]/[O III]) ~ -1.2 for the SDSS galaxies (Kewley & Ellison 2008), which corresponds to a metallicity of $12 + \log(O/H) \sim 8.4$. To estimate the $12 + \log(O/H)$ we use the empirical calibration method for R_{23} presented by Pilyugin & Thuan (2005) based on electron temperature (T_e) metallicities for a sample of H II regions. They derive the relationship between R_{23} and T_e-metallicities that includes an excitation parameter P that corrects for the effect of the ionisation parameter, defined as: $P = ((\text{[O III]} λ4959 + \text{[O III]} λ5007)/Hβ)/R_{23}$. Their calibration has an upper branch that is applicable to metallicities $12 + \log(O/H) > 8.25$, and a lower branch that is valid for metallicities $12 + \log(O/H) < 8.0$. We use the [N II]/[O III] ratio to discriminate between the upper and lower branches, and we apply the appropriate upper and lower-branch calibrations:
Fig. 4. Observed targets with Wolf-Rayet signature (WR). Top: all observed objects with line identifications. The WR signature is indicated by the grey span. Bottom: close-up on the WR region for each object.

Fig. 5. Observed local star-forming galaxies.

The metallicity estimates for our galaxies are summarised in Table 3. All three WR galaxies have low metallicities, as their average is $12 + \log(O/H) \sim 8.28$. Their low measured metallicities coupled with the presence of WR bump could indicate that the extreme MIR colours could be a result of purely SF processes. The metallicity of the remaining SF galaxies is measured to be slightly higher (average $12 + \log(O/H) \sim 8.5$). As we do not detect an Hβ line in object J04544.00, we cannot estimate its metallicity.

In the next step, we study the physical properties of the observed galaxies by performing a spectral energy distribution (SED) modelling. For this purpose we use the Code...
Investigating GALaxy Emission (CIGALE)10. We combine all available photometric information from public databases to fit the SEDs: using Pan-STARRS and SkyMapper Southern Survey (Wolf et al. 2018) with WISE photometry and the AKARI Far-infrared Surveyor (FIS) AllSky Survey (Kawada et al. 2007) catalogue. Only nine of the observed galaxies have a counterpart in AKARI FIS within 15 arcsec search radius (corresponding to the PSF of AKARI, Pepliak et al. 2014), providing far-infrared photometric data points at 65, 90, 140, and 160\,µm. Only nine of the observed galaxies have an FIR counterpart, so to get reliable star formation rates (SFR) and dust estimates, we must focus on those objects alone. CIGALE uses a χ^2 minimisation technique over a broad array of model templates covering the wavelength range from ultraviolet (UV) to FIR (Noll et al. 2009). To perform SED fitting for the observed “red” galaxies, we combined Bruzual & Charlot (2003) models with assumed solar metallicities11. We adopt a Chabrier initial mass function (IFM, Chabrier 2003) and account for the dust reddening using Calzetti’s law (Calzetti et al. 2000). Star formation history is modelled as exponentially delayed:

$$\text{SFR}(t) \propto t^{\alpha}e^{-t/\tau_{\text{main}}}$$

where t is time and τ_{main} is the time since the onset of SF to the peak of the history. We use values of the old stellar ages covering the range between 100 and 5000 Myr and ϵ-folding time of the main stellar population to vary from 100 to 2000 Myr. We also include the dust reddening parameterised by the colour excess $E(B-V)$, set to vary between 0 and 1 with a 0.05 step. The CIGALE code includes a possibility to model a dusty torus emission heated by a central AGN component (Fritz et al. 2006). The model is described by six parameters related to the geometrical configuration of the dusty torus, properties of the dust and radiative transfer equation. To avoid the degeneracy of the SED fitting due to the limited photometric data we currently have, we fix several parameters of the AGN contribution to average values found by Hatziminaoglou et al. (2008). We set the outer-to-inner radius ratio to 60, dust density parameters to -0.5 and 0, and opening angle to 100\,°, and we allow the optical depth at 9.7\,µm to vary between two values: 1 and 6, corresponding to low and high optical depth. CIGALE allows to fit templates for different values of the angle between the line of sight and the axis of the torus, denoted by ψ. However, Ciesla et al. (2015) proved that only extreme values of the angle between the AGN axis and the line of sight could provide reliable results. Therefore we allow the ψ parameter to assume only two values: 0° and 90°, corresponding to Type II and Type I AGNs, respectively. We let the contribution of the AGN to the total infrared (IR) luminosity (frac$_{\text{AGN}}$) to assume the following values: 0.001\%, 0.1\%, 10\%, 15\%, 30\%, 40\%, and 49\%. Table 4 summarises the range of parameters used for the SED fitting.

Table 5 shows the physical parameters derived from the fitting procedure and Fig. 8 shows SED fit plots for four red galaxies from the OCSVM sample. SEDs for the remaining five objects are shown in Fig. B.1. SED fitting shows that the AGN component dominates on short wavelengths 3.4 and 4.5\,µm, while cold dust models explain the emission at longer wavelengths well. We find a significant AGN fraction (15\% and higher) for most of the sources despite the lack of typical AGN features in their optical spectra. In addition, we find that eight galaxies (J195131.19, J204544.00, J141606.17, J010409.21, J071734.84, J052522.78, J205821.02, and J022718.11) have stellar masses estimated as lower than

\begin{table}[h]
\centering
\begin{tabular}{lll}
\hline
OBID & log([N II]/[O II]) & 12 + log(O/H) \\
\hline
J040051.83 & -1.12 ± 0.06 & 8.29 ± 0.07 \\
J053520.86 & -0.68 ± 0.02 & 8.28 ± 0.09 \\
J070647.77 & -0.81 ± 0.03 & 8.28 ± 0.03 \\
J062035.99 & -0.63 ± 0.02 & 8.36 ± 0.04 \\
J022718.11 & -0.32 ± 0.03 & 8.54 ± 0.04 \\
J052522.78 & -0.99 ± 0.05 & 8.61 ± 0.03 \\
J058210.21 & -0.66 ± 0.03 & 8.41 ± 0.05 \\
J195131.19 & -1.13 ± 0.04 & 8.45 ± 0.03 \\
\hline
\end{tabular}
\caption{Values of 12+log(O/H) determined from the Pilyugin & Thuan (2005) calibrations together with log([N II]/[O II]) values used to break the R$_{21}$ metallicity degeneration.}
\end{table}

Notes. Asterisks denote the WR galaxies in the sample.

10 For a detailed description of the code, please refer to the CIGALE webpage \texttt{cigale.lam.fr}

11 CIGALE has a fixed set of discrete metallicities. The closest metallicity value available for our galaxies, where we could determine the oxygen abundances, is solar.
Table 4. Input parameter ranges for the SED fitting with CIGALE for the spectroscopically confirmed galaxies.

Parameter	Range
τ e-folding time of main stellar population/Myr	100–2000
Age (old stellar population)/Myr	100–5000
Metallicity	0.02
Colour excess of the stellar continuum light of the young population	0.1–1
Ratio of the maximum to minimum radii of the dust torus	60
Optical depth at 9.7 μm	1.0, 6.0
Radial dust distribution of the torus	−0.5
Angular distribution of dust in the torus	0.0
Full opening angle of the dust torus	100.0
Angle between equatorial axis and the line of sight [$^\circ$]	0.001 and 89.990
Fractional contribution of AGN	0.001–0.49
Mass fraction of PAH	0.47–4.58

Table 5. Summary of the SED modelling for the observed galaxies at $z < 0.15$ with FIR detection.

Name	χ^2	AGN$_{frac}$	$E(B−V)$	log(L_{dust}/L_o)	SFR/M$_o$ yr$^{-1}$	log(M_I/M_o)
J195131.19	0.80	0.40 ± 0.04	0.10 ± 0.01	10.89 ± 0.03	20.19 ± 2.57	8.37 ± 0.06
J204544.00	0.72	0.15 ± 0.08	0.60 ± 0.05	11.56 ± 0.04	45.80 ± 8.23	9.27 ± 0.04
J141606.17	0.73	0.30 ± 0.04	0.15 ± 0.01	10.23 ± 0.06	3.12 ± 0.72	8.82 ± 0.03
J164737.38	0.63	0.30 ± 0.05	0.45 ± 0.16	10.51 ± 0.10	2.29 ± 0.27	9.86 ± 0.08
J010409.21	0.60	0.45 ± 0.20	0.50 ± 0.04	10.76 ± 0.02	8.21 ± 1.49	8.40 ± 0.01
J071734.84	1.50	0.15 ± 0.05	0.45 ± 0.07	11.01 ± 0.03	6.53 ± 0.32	9.48 ± 0.06
J052522.78	0.72	0.49 ± 0.06	0.30 ± 0.14	11.49 ± 0.08	58.57 ± 9.28	8.83 ± 0.64
J205821.02	1.23	0.30 ± 0.05	0.50 ± 0.17	9.36 ± 0.06	0.29 ± 0.05	7.08 ± 0.13
J022718.11	0.64	0.30 ± 0.06	1.00 ± 0.05	11.26 ± 0.03	15.72 ± 1.15	9.34 ± 0.05

that of the Large Magellanic Cloud ($M_\ast < 3 \times 10^8 M_\odot$, van der Marel et al. 2002). As the possible AGNs may be heavily obscured, we tested whether assuming average values for the AGN contribution is justified. To this aim, we released the geometrical parameters of the AGN model (outer-to-inner radius ratio, radial and angular dust distribution, and the opening angle) while retaining the previously defined grid of other parameters for each object. We find that while the best fit SED models with free AGN parameters tend to have different values than the fixed ones, the resultant physical properties do not differ in a significant way. The differences in the SFR, L_{dust} and M_\ast are ~0.091 dex, ~0.053 dex, and ~0.320 dex, respectively. Releasing the AGN parameters has the most significant impact on the stellar mass estimation. However, these results do not impact the final classification.

4.2. Broad Absorption Line QSOs

Among the observed OCSVM anomalies, we identified two BAL QSOs (Fig. 9). Overall, BAL QSOs are observed in 15% of the optically selected QSOs (e.g. Hewett & Foltz 2003; Gibson et al. 2009), but the intrinsic fraction might be as high as ~40% (Allen et al. 2011). Also, 15% of all BAL QSOs exhibit absorption lines from low-ionisation species such as AlIII and MgII in addition to absorption lines from more highly ionised species like CIV and SiIV+OIV]. These are referred to as LoBAL QSOs. Two observed objects, J040840.58 and J084059.57, show absorption features from low-ionisation species. We compare the WISE colour distribution of the observed BAL QSOs to the publicly available catalogues (see Fig. 10) of such sources from Allen et al. (2011) and Trump et al. (2006) selected from the SDSS survey. SDSS QSO spectroscopic selection algorithm does not include the reddest QSOs (Allen et al. 2011). We can see that the BAL QSOs selected by the anomaly catalogue have much redder MIR colours than the majority of the objects of this class reported in the literature. This could indicate higher dust masses contained within these QSOs; however, without additional FIR data, we cannot verify this assumption.

4.3. Type I QSOs

Figure 11 presents the spectra of 9 QSOs observed from the OCSVM sample, classified as Type I based on the broad emission lines seen in their spectroscopy. Where measured, the mean line widths12 are FWHM(MgII) ~ 2243.31 ± 76.79 km s$^{-1}$ and FWHM(CIV) ~ 2430.98 ± 42.33 km s$^{-1}$. The spectra of eight objects show blue continua while one (J061858.03) is reddened and shows strong iron emission. Rest-frame UV spectra for these objects do not display any abnormal properties. The average W1−W2 colour of these sources is 1.3 – a typical value of the SDSS Type-I QSOs detected by AllWISE at similar redshifts (e.g. Assef et al. 2010; Stern et al. 2012).

The reason why the algorithm failed while filtering out unobscured QSOs, which are present in the training sample, stems from its initial construction. The initial training sample in S17 was created to include all objects found in both AllWISE and SDSS databases, even though SDSS contains 59% galaxies, 18% stars and 23% of QSOs. Additionally, a W1 magnitude cut at 16 [Vega mag] was applied to the training (matched databases of SDSS and WISE) and test (AllWISE full-sky only) sets, as

12 All FWHMs values are given in rest-frame.
Fig. 8. Examples of SED fitting for four of the observed galaxies, with detected FIR emission in AKARI survey. Error bars are smaller than the data points.

the completeness of the galaxy sample drops off beyond this brightness limit. This action was performed to ensure uniform parameter space coverage by the known sources. It resulted in the exclusion of ~61% of all SDSS QSO, which severely under-represented broadline QSOs in the training dataset. In the future, we will increase the weight of this particular class to compensate for the lower number of training examples of sources belonging to this class.

4.4. QSO with strong and narrow UV Fe emission

We did not identify any new type of unusual QSO spectra. However, we detected one peculiar QSO, J040754.75, showing strong and narrow UV Fe emission lines (Fig. 12). It exhibits emission from the multiplets Fe II λ1785 (UV67,UV191), Fe III λ1926 (UV34), Fe III λ2070 (UV48), Fe II λ2400 (UV2), Fe II λ2600 (UV1), and Fe II λ2750 (UV62,UV63). The positions of these lines, as well as the positions of the typical QSO emission lines (Al III λ1854.7,1862.8, C III] λ1908.7, Mg II λ2796.3,2803.5), are marked by the vertical lines.

The Fe II emission strongly influences the energy balance of broad emission line regions in AGNs. Currently, theoretical models are unable to fully reproduce the strength and shape of the observed iron complexes. For that reason, the identification of new systems with both strong and narrow Fe II is important for improving the models and defining the areas of parameter space occupied by broad emission line regions. Similar objects were found by Hall et al. (2002) and Meusinger et al. (2012) in the SDSS survey to a limited extent.

4.5. Galactic objects

Object J155603.92 was observed with the SofI instrument only, as the optical flux is too small to be observed by EFOSC2. The NIR spectrum is shown in Fig. 13. This particular object has a counterpart in Gaia DR2 (Gaia Collaboration 2016, 2018).
where its parallax is measured to be \(\pi = 4.2705 \pm 0.7170 \) mas and with relatively high proper motion (\(\mu_\alpha \cos \delta \sim 14 \) mas yr\(^{-1}\) and \(\mu_\delta \sim 29 \) mas yr\(^{-1}\)), placing this object at a very close distance of \(246^{+64}_{-42} \) pc, according to Bailer-Jones et al. (2018). Based on these measurements, we find that this object has a 60% probability of being a part of Upper Scorpius OB association (Gagné et al. 2018).

Object J173122.32 was followed-up with the SofI instrument (see Fig. 15); however, the spectrum shows no additional clues of what the nature of this source is. This source is detected in \textit{Gaia} DR2 with proper motions (\(\mu_\alpha \cos \delta \sim 4.8 \) mas yr\(^{-1}\), \(\mu_\delta \sim 2.4 \) mas yr\(^{-1}\)) as well as the distance estimate from Bailer-Jones et al. (2018) (5.5\(^{+4.0}_{-2.5} \) kpc) that is consistent with the Galactic bulge. It is located in (\(l \sim 4 \) deg, \(b \sim 6 \) deg).

Object J183949.54 has a \(S/N \sim 10 \), however, there are no apparent clues about its nature visible in the spectrum. The \textit{Gaia} DR2 catalogue matches two sources to this object, separated by about three arcsec, hence probably not resolved in AllWISE. The first \textit{Gaia} source (ID = 6655455826956741248 of \(G = 18.9 \) mag) is probably a Galactic disk source (\(b \sim 19 \) deg) with proper motions of \(\mu_\alpha \cos \delta \sim 4.3 \) mas yr\(^{-1}\) and \(\mu_\delta \sim 3.0 \) mas yr\(^{-1}\) and distance estimate of \(4.0^{+1.6}_{-1.0} \) kpc from Bailer-Jones et al. (2018). The second \textit{Gaia} source (ID = 6655455831252327424) is fainter in \textit{Gaia} (\(G = 20 \) mag); however, its parallax is large, \(\pi = 1.48 \pm 0.87 \) mas, indicating possibly a nearby source.
Fig. 12. Combined EFOSC2 and SofI spectra for J040754.75 QSO.

Fig. 13. Object J155603.92 was observed by SofI instrument only. No optical spectrum was obtained as the object is too faint to be targeted by EFOSC2.

Fig. 14. Spectra of objects with unidentified nature observed with EFOSC2: J183949.54, J173122.32, and J185103.11.

(2.7^{+3.3}_{-1.8} \text{kpc}) with the lower bound for a distance of only 850 pc (Bailer-Jones et al. 2018). This could indicate a possible nearby brown dwarf, however, given the faintness and possible blending, it is too early to conclude on its true nature.

Object J062245.36 was observed with SofI only, as the lunar phase and proximity of the object to the Moon did not allow for optical observations. The spectrum shows a blue continuum slope and no emission/absorption lines. This may be another low-redshift galaxy, as in NIR we do not observe any spectral lines beyond Hα. On the other hand, its Gaia DR2 proper motions ($\mu_\alpha \cos \delta \sim 3.6 \text{ mas yr}^{-1}$, $\mu_\delta \sim 3.1 \text{ mas yr}^{-1}$) and parallax ($\pi = 0.44 \pm 0.09$) are very well constrained and indicate a Galactic source at 2.0^{+0.4}_{-0.3} kpc.

These objects could appear in the anomaly catalogue because the training sample was constructed without including signatures of Galactic objects. We expect a significant contamination of the anomaly catalogue with the Galactic objects in dusty phases of their evolution.

5. Summary
We performed pilot spectroscopic follow-up observations of objects catalogued as “anomalous” by the OCSVM algorithm applied to the IR photometry from the AllWISE survey. We observed 36 objects with a limiting brightness of $g_{\text{AB}} < 19.5$ [mag] and found several different source populations. We describe our observations in the following points:
1. Nineteen “red” ($W1-W2 > 1.7$) local galaxies containing hot dust (due to either an AGN or extreme starburst contribution): three WR galaxies; six regular SF galaxies; ten galaxies showing no or only one emission line (Hα).
2. Two LoBALs.
3. One QSO with strong and narrow UV Fe emission.
4. One YSO.
5. Nine regular broad-line type I QSO.
6. Four sources with S/N too low to disentangle their nature.

Among the nineteen galaxies with extreme mid-infrared colour excess, we found seven low-mass objects which do not display any optical signatures of AGN activity. SED modelling shows that mid-infrared colour excess can be well explained by hot dust emission from an AGN. This hypothesis does not exclude the existence of extreme starbursts, which could produce similar colours in low-metallicity environments. Such systems remain elusive and of significant astrophysical interest, as pinpointing AGNs in low-mass galaxies can give us insights about the primordial black holes that were formed in the early Universe. “Seed” black holes must exist at high redshifts; however, finding such objects is a challenge. Nearby dwarf galaxies are thought to be analogues of low-mass black hole hosts.
algorithm learning process. The study of the behaviour of the code with respect to training sample composition will be addressed in Solarz et al. (in prep).

Acknowledgements. We are grateful for the comments and suggestions by the anonymous referee, which helped to improve the manuscript. This paper is based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 0101.A-0539 and 0102.A-0305. AS was supported by the ESO grant 20D/19/13 and MNiSW grant 212727/E-78/M/2018. MG is supported by the Polish NCN MAESTRO grant 2014/14/A/ST9/00121. LW acknowledges support from the Polish NCN HARMONIA grant 2018/06/M/ST9/00311. Special thanks to Romain Thomas for the Photon (Thomas 2019) software and Mark Taylor for the TOPCAT (Taylor 2005) software. CGD acknowledges the support of the Consejo de Investigaciones Científicas y Técnicas (CONICET). MPK acknowledges support from the First TEAM grant of the Foundation for Polish Science No. POIR.04.00-00-SD21/18-00.

References

Albareti, F. D., Allende Prieto, C., Almeida, A., et al. 2017, ApJS, 233, 25
Allen, J. T., Hewett, P. C., Maddox, N., Richards, G. T., & Belokurov, V. 2011, MNRAS, 410, 860
Assaf, R. J., Kochanek, C. S., Brodwin, M., et al. 2010, ApJ, 713, 970
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., & Andrae, R. 2018, AJ, 156, 58
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
Baron, D., & Poznanski, D. 2017, MNRAS, 465, 4530
Baumgartner, W. H., Trüller, J., Markwardt, C. B., et al. 2013, ApJS, 207, 19
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Bruzual, G., Jarrett, T. H., Peacock, J. A., Cluver, M. E., & Steward, L. 2014, ApJS, 210, 9
Bilicki, M., Peacock, J. A., Jarrett, T. H., et al. 2016, ApJS, 225, 5
Breiman, L. 2001, Mach. Learn., 45, 5
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Buzonni, B., Delabre, B., Dekker, H., et al. 1984, The Messenger, 38, 9
Caccianiga, A., Severgnini, P., Della Ceca, R., et al. 2007, A&A, 470, 12
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Chabrier, G. 2003, PASP, 115, 763
Chambers, K. C., Majmudar, E. A., Metcalfe, N., et al. 2016, ArXiv e-prints [arXiv:1612.05560]
Ciesla, L., Charmandaris, V., Georgakakis, A., et al. 2015, A&A, 576, A10
Clough, S. A., Sheepard, M. W., Mlaver, E. J., et al. 2005, J. Quant. Spectr. Rad. Transfer, 91, 233
Colless, M. 1999, Large-scale Structure in the Universe (London: Royal Society), 105
Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693
Crowther, L. A., Cardona, S., Hadfield, L. J., & Pollock, A. M. T. 2007, A&A, 469, L31
Cutri, R. M., Wright, E. L., Conrow, T., et al. 2013, Explanatory Supplement to the AllWISE Data Release Products
Della Ceca, R., Caccianiga, A., Severgnini, P., et al. 2008, A&A, 487, 119
Dewdney, P. E., Hall, P. J., Schilizzi, R. T., & Lazio, T. J. L. W. 2009, IEEE Proc., 97, 1482
Drinkwater, M. J., Jurek, R. J., Blake, C., et al. 2010, MNRAS, 401, 429
Evans, I. N., Primini, F. A., Glotfelty, K. J., et al. 2010, ApJS, 189, 37
Farnes, J., Mort, B., Dulwich, F., Salvin, S., & Armour, W. 2018, Galaxies, 6, 120
Fischer, W. J., Padgett, D. L., Stapelfeldt, K. L., & Sewiło, M. 2016, ApJ, 827, 96
Fritz, J., Franceschini, A., & Hatziminaoglou, E. 2006, MNRAS, 366, 767
Gagné, J., Mamajek, E. E., Malo, L., et al. 2018, ApJ, 856, 23
Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1
Gaia Collaboration (Brown, A. G. A., et al.) 2018, A&A, 616, A1
Gibson, R. R., Jiang, L., Brandt, W. N., et al. 2009, ApJ, 692, 758
Giovannoli, E., Buat, V., Noll, S., Burgarella, D., & Magnelli, B. 2011, A&A, 525, A150
Griffith, R. L., Tsai, C.-W., Stern, D., et al. 2011, ApJ, 736, L22
Hainline, K. N., Reines, A. E., Greene, J. E., & Stern, D. 2016, ApJ, 832, 119
Hall, P. B., Anderson, S. F., Strauss, M. A., et al. 2002, ApJS, 141, 267
Hamblry, N. C., MacGillivray, H. T., Read, M. A., et al. 2001, MNRAS, 326, 1279
Hatziminaoglou, E., Fritz, J., Franceschini, A., et al. 2008, MNRAS, 386, 1252
Hewett, P. C., & Foltz, C. B. 2003, AJ, 125, 1784
Hocking, A., Geach, J. E., Sun, Y., & Davey, N. 2018, MNRAS, 473, 1108

A103, page 13 of 17
Appendix A: Observing logs for the spectroscopic observations

Here, we provide the observing logs for EFOSC2 (Table A.1) and SofI (Table A.2) observations.

Table A.1. EFOSC2 observing log for the spectroscopic observations.

Object ID	UT at start of obs./yyyy-mm-ddThh:mm:ss	Exp./s	Airmass
J232450.80	2018-08-29T07:28:47.984	2700	1.094–1.194
J201747.34	2018-08-30T02:37:33.719	2700	1.075–1.092
J191725.48	2018-08-30T23:31:23.723	2700	1.384–1.339
J214658.64	2018-08-30T04:33:11.646	2700	1.262–1.290
J204635.56	2018-08-30T04:22:25.801	2700	1.139–1.173
J190137.97	2018-08-28T03:10:06.460	2700	1.257–1.331
J231638.59	2018-08-29T05:45:39.234	2700	1.039–1.061
J084059.57	2018-12-06T07:06:57.812	2535	1.057–1.017
J040840.58	2018-12-06T04:13:56.953	2700	1.026–1.025
J061858.03	2018-12-06T04:21:09.302	2700	1.225–1.143
J040754.75	2018-12-05T03:52:24.945	2700	1.236–1.246
J072450.77	2018-12-05T05:43:42.439	2700	1.337–1.306
J211637.73	2018-08-29T01:13:13.994	1800	1.152–1.091
J195131.19	2018-08-30T00:22:37.455	1800	1.323–1.295
J204540.00	2018-08-28T04:04:35.377	2700	1.031–1.087
J141606.17	2018-08-28T23:38:21.992	1800	1.295–1.428
J164737.38	2018-08-29T00:20:54.295	2700	1.203–1.320
J010409.21	2018-08-29T06:47:03.921	1800	1.037–1.030
J185020.05	2018-08-30T01:01:54.922	1800	1.079–1.085
J064043.96	2018-12-06T07:58:01.625	1800	1.156–1.231
J071734.64	2018-12-05T07:29:32.988	2700	1.108–1.134
J060127.78	2018-08-29T09:13:08.802	2500	1.319–1.220
J022908.52	2018-12-06T01:20:51.724	2700	1.252–1.170
J191825.52	2018-08-29T01:51:39.432	1800	1.358–1.368
J053520.86	2018-12-05T07:21:27.381	2700	1.044–1.118
J040051.83	2018-12-06T02:36:06.998	2700	1.301–1.245
J062035.99	2018-12-05T03:00:31.713	2700	1.361–1.255
J070647.77	2018-12-05T04:45:21.550	2700	1.137–1.064
J052522.78	2018-12-06T05:12:53.551	2700	1.080–1.103
J183949.54	2018-08-30T01:44:41.830	2700	1.092–1.136
J205821.02	2018-08-28T01:57:08.425	2700	1.091–1.044
J022718.11	2018-12-06T01:45:06.816	2700	1.252–1.247
J083104.69	2018-12-06T06:35:28.730	1800	1.138–1.077
J185103.11	2018-08-27T23:52:39.108	1800	1.072–1.039

Notes. Columns contain data as follows: starting times, exposure times, starting and ending airmasses, and slit position angles for each exposure are listed on separate successive lines.

Table A.2. SofI observing log for the spectroscopic observations.

Object ID	UT at start of obs./yyyy-mm-ddThh:mm:ss	Exp./s	Airmass
J155603.92	2018-08-27T00:04:37:9206	4450	1.096–1.424
J173122.32	2018-08-27T01:55:27.9576	4450	1.132–1.347
J040754.75	2018-12-07T00:40:51.6056	4450	1.441–1.293
J062245.36	2018-08-27T08:49:35.3248	4450	1.518–1.195

Notes. Columns show starting times, exposure times, and starting and ending airmasses. Slit position angles for each exposure are listed on separate successive lines.
Appendix B: SED fitting results and reliability check

CIGALE is using reduced \(\chi^2 \) (\(\chi^2/N_{\text{data}} \), hereafter \(\chi_r^2 \)). Linear models can be used to estimate the number of degrees of freedom. With nonlinear models, the number of degrees of freedom is nontrivial and whether or not it can be calculated properly is questionable. The best model can be selected by the \(\chi_r^2 \) value for the galaxy from the grid of all models created by the input parameters. However, due to the varied number of observed fluxes and an unknown number of the free parameters, the \(\chi_r^2 \) alone is not the only estimator of the best fits. To test the reliability of the parameters, we create a mock catalogue of galaxies, where each object is generated from the best-fit model to the real objects (e.g. Giovannoli et al. 2011; Lo Faro et al. 2017). The mock fluxes are created by deviating the flux of the best-fit model in each passband with a random Gaussian error. Finally, we run CIGALE on the simulated sample using the same set of input parameters as for the original catalogue and compare the physical output parameters of the artificial catalogue with the real ones.

Figure B.1 shows the comparison between the value estimated by the code and true value of the output parameter provided by the best-fit model for the mock catalogue. We estimate the reliability for the following parameters: AGN fraction, stellar mass, dust luminosity, attenuation, and SFR. The blue line represents the regression line with the equation given in the legend. The Pearson product-moment correlation coefficient is given as an \(r \) value. We find very good correlations (\(r > 0.95 \)) for all estimated parameters.

![Figure B.1](image-url)

Fig. B.1. Mock catalogue SED fitting results for each parameter evaluated in this work. The x-axis shows the model values, while the y-axis shows the SED fitting of the mock data. Standard error given by the Bayesian analysis is over-plotted as an error bar for each value.
Fig. B.2. SED fitting results for anomalies identified as local \((z < 0.15)\) galaxies. Errorbars are smaller than the point size used in the plot.