Supporting information

Polymer tube nanoreactors by DNA-origami templated synthesis

Yu Tokura,ab Sean Harvey, b Xuemei Xu,c Chaojian Chen,ab Svenja Morsbach, b Katrin Wunderlich, b George Fytas, b Yuzhou Wu, b,c,* David Y.W. Ng, b,* and Tanja Weilab,*

Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018
Table of Contents

General methods

Materials and Instruments
Fabrication of DNA tile with multiple DNA handles
Transformation to DNA tube
Synthesis of DNA tube / initiator
Surface initiated atom transfer radical polymerization
Atomic force Microscopy (AFM)
Agarose gel electrophoresis
Transmission electron microscopy (TEM)
Dynamic and static light scattering (DLS and SLS)
Nuclease digestion assay
Kinetics of polydopamine formation on G4/hemin DNA nanotile

Supplementary figures and tables

Figure S1 DNA tile
Figure S2 Relaxation functions Cvv(q,t) for the translational diffusion dynamics in aqueous solution of DNA tile (black filled squares) and DNA tube (red filled circles) at 20°C at a scattering wave vector (q=0.009 nm-1) represented by a stretched exponential function (solid lines)
Figure S3 Normalized field correlation functions Cvv(q,t) at a scattering wave vector q=0.009 nm-1 (black filled squares) and q=0.024 nm-1 (red filled circles) for the translational diffusion dynamics in aqueous solution of polymer coated DNA tube at 20°C
Figure S4 TEM image of stacking polymer tube
Figure S5 Stability of different DNA origami structure against nuclease.
Figure S6 DNAzyme-incorporated DNA tile
Table S1 Summary of dimensions of the DNA tile, DNA tube and polymer tube from theoretical, AFM, and DLS
Figure S7 ABTS activity of DNAzymes in polymer tubes before / after nuclease addition (50 mU)
Table S2 Detail of staple DNA sequences

References

General methods
Materials and instruments

All solvents and reagents were purchased from commercial sources and were used without further purification. DNA staple strands and ATRP initiator modified DNA (DNA-initiator) were either synthesized by 12-Column DNA Synthesizer from POLYGEN GmbH and purified by Agilent 1260 Infinity HPLC system with Agilent Eclipse XDB-C18 column or purchased from Sigma-Aldrich. Agarose gel electrophoresis was performed using Bio-Rad Mini-Sub Cell GT horizontal electrophoresis system. Bio-Rad MyCycler™ Thermal Cycler was used for annealing of MP13mp18
phage DNA and DNA staple strands to form DNA origami. Concentration of DNA origami was determined by Spark ® 20M with Nanoquant plate™.

Fabrication of DNA tile with multiple DNA handles

DNA tile with multiple DNA handles was assembled respectively by mixing M13mp18 phage DNA of 7k nt with desired staple strands and modified staple strands in 1 × TAE / Mg buffer (5 mM Tris, 1 mM EDTA, 5 mM NaCl, and 12 mM MgCl₂, pH 8.0) and annealing from 65 °C to 20 °C over 2 h, followed by purification with polyethylene glycol (PEG) precipitation method. Briefly, the DNA tile was treated with 15% PEG(8000) (w/v), 5 mM Tris, 1 mM EDTA, and 505 mM NaCl. The solution was mixed well and centrifuged at 12000 g, at room temperature (RT) for 25 min. The supernatant was removed and the pellet was dissolved in 1 × TAE / Mg buffer. The same procedure was conducted twice to remove all the remaining staple DNA sequences.

Transformation to DNA tube

To DNA tile (0.5 pmol) solution was added a set of folding DNA strands (250 pmol each) and the mixture was incubated at 32 degree for overnight. The obtained DNA tube was purified again with PEG precipitation method.

Synthesis of DNA tube / initiator

DNA tubes (0.75 pmol in 1 × TAE / Mg buffer) were incubated with DNA-initiator [2] (1 nmol in 0.2 μL aqueous solution) at room temperature for 4 h and they were used as DNA tube / initiator without any purification. 1.5 μL of 20 × TAE / Mg buffer was added to the reaction mixture to keep the constant concentration of Mg²⁺. The excess amount of DNA initiators serves as sacrificial initiator in the ATRP reaction.

Surface initiated atom transfer radical polymerization

A catalyst stock solution of CuBr₂ (0.45 mg, 0.002 mmol) and Tris (2-pyridylmethyl) amine (TPMA, 4.64 mg, 0.016 mmol) were prepared in 100 μL of N,N-Dimethylformamide (DMF) and MilliQ water (1 to 1 volume) mixture. The ascorbic acid stock solution, which can generate the active catalyst species, was prepared at 5 mM in 50 mM NaCl, followed by degassing with argon bubbling for 40 mins. To conduct the polymerization reaction, PEGMEMA (Mn = 300l), PEGDMA (Mn = 750), DNA tube / initiator, the catalyst stock solution (1 μL), 20 x TAE buffer (4 μL) were added with the ratio of PEGMEMA: PEGDMA: Initiator = 7200: 800: 1. The reaction solution was degassed with three freeze–pump–thaw cycles and then filled with argon. Ascorbic acid solution (36μL) was feed into the reactor by a syringe pump at the speed of 0.3 μL/min under stirring. The pump was turned off after 2 h and the reactor was incubated for another 4 h. The reaction mixture
after polymerization was purified by 15 % PEG precipitation to obtain the polymer tube.

Atomic force Microscopy (AFM)
Imaging was performed with a Bruker Dimension FastScan Bio AFM equipped with the ScanAsyst mode. The sample solution was deposited onto freshly cleaved mica surface, and left for 5 min at room temperature to allow adsorption of the DNA origami structures. After addition of 70 μL of 1 x TAE / Mg buffer, the sample was scanned with the scan rates between 1 and 3 Hz. Several AFM images were acquired at different areas of the mica surface to ensure the reproducibility of the results. All images were analyzed by using the NanoScope Analysis 1.50 and Gwyddion 2.38 software.

Agarose gel electrophoresis
5 uL of sample (1.5 nM) was mixed with 1 uL of 6 x loading buffer and run with 0.8 % agarose gel in 0.5 x TBE / Mg for 120 minutes in ice bath. After running, the gel was stained by SYBR Gold for 30 minutes and the image was taken by G: Box Chemi (Syngene).

Transmission electron microscopy (TEM)
5 uL of sample (1 nM) was applied on carbon coated copper grid with hydrophilic treatment. After 10 minutes incubation, the remaining solution was removed and the sample grid was stained with 2 % uranyl formate solution for 20 seconds. The stained grid was washed with filtered water for three times and dried in air. Imaging was done with JEOL 1400 instrument and obtained images were analyzed by ImageJ software.

Dynamic and static light scattering (DLS and SLS)
Light scattering measurements were performed with an ALV/CGS3 compact goniometer system with a He/Ne laser (632.8 nm), ALV/LSE-5004 multiple-tau full-digital correlator and ALV5000 software. For temperature controlled measurements, the light scattering instrument was equipped with a thermostat from Julabo. Measurements were performed at 20 °C at 13 angles ranging from 30° to 150°. All DNA origami solution samples were adjusted to a concentration of 3.5 nM in in TAE / Mg / K (0.3 mM Tris, 0.2 mM acetic acid, 0.06 mM EDTA, 0.6 mM MgCl2, 10 mM KCl, pH 5.3). The solutions were then filtered through Hydrophilic Durapore® filters with a pore size of 0.22 μm (Merck Millipore, Billerica, USA) and transferred into dust-free quartz light scattering cuvettes (Hellma, Müllheim, Germany), which were cleaned before in sagewith acetone in a Thurmont-apparatus. The scattering wave vector q is defined as $q = \frac{4\pi n}{\lambda} \sin \frac{\theta}{2}$ with n=1.333 being the water refractive index. The relaxation function, $C(q,t) = [G(q,t0)-1]^{1/2}$ computed from the
experimental scattering intensity autocorrelation function \(G(q,t) \) was represented either by an inverse Laplace transform (ILT) analysis using the CONTIN algorithm.

In dilute solutions, the relaxation rate \(\Gamma(q) = 1/\tau(q) \) is usually diffusive defining the diffusion coefficient \(D = \Gamma(q)/q^2 \). For species with small size \(R \), \(\Gamma(q) = 1/\tau(q) \) and \(D = D_0 \) are q-independent with \(I ~ cM \) and \(D = D_0 = k_BT/(6\pi\eta_0 R_h) \) where \(c, M, R_h, \eta_0, k_B, \) and \(T \) are the probed species concentration, its molecular weight and hydrodynamic ratio, the solvent viscosity, the Boltzmann constant and the absolute temperature, respectively. For \(qR \sim 1 \), both \(I(q) \) and \(D(q) \) depend on \(q \) defining the probing length \((2\pi/q)\). The former, known as the form factor, yields (at low \(qR_g \)) the radius of gyration \(R_g \),

\[
I(q)^{-1} = I(0)^{-1}(1 + q^2 R_g^2/3)
\]

whereas the effective \(D \) is given by,

\[
D = D_0(1 + Aq^2)
\]

with \(A \) is a parameter characterizing the shape of the diffusing species.

Nuclease digestion assay

DNA tile, DNA tube, and polymer tube were labeled with 0.5 x SYBR-safe solution by during 30 min of incubation. Different amounts (0-50 mU) of nuclease were added to the labeled DNA origami structures and incubated at 37 degree for 30 min. The fluorescence intensity of SYBR-safe was checked by Spark® 20M with Nanoquant plate™ and compared to the sample, to which no nuclease was added.

ABTS assay

To 0.3 nM G4-DNA tile, G4-DNA tube, and G4-polymer tube in the buffer composition (97 uL, 20 mM Tris, 1 mM EDTA, 12 mM MgCl₂, pH 5.3 by addition of acetic acid) was added 1 uL of 100 nM hemin. The assay was performed by mixing the hemine added DNA origami solution with 1 uL of freshly prepared 50 mg/ml ABTS solution and 1 uL of 0.1M H₂O₂. Immediately after \(H_2O_2 \) addition, the absorbance spectrum was measured by using a Tecan Spark® 20M plate reader.

Kinetics of polydopamine formation on G4/hemin DNA nanotile

G4-DNA tube (3.5 nM) in TAE / Mg / K (0.3 mM Tris, 0.2 mM acetic acid, 0.06 mM EDTA, 0.6 mM MgCl₂, 10 mM KCl, pH 5.3) was mixed with hemin (70 nM) for 30 min at rt. 98 uL of the solution was added to a 384 well UV transparent plate. To G4/hemin DNA nanotile solution was added 1 uL of a freshly prepared 1M dopamine solution and 1 uL of 1M H₂O₂. Immediately after \(H_2O_2 \) addition, the absorbance spectrum was measured every 5 minutes for a duration of 12 hours using a Tecan Spark® 20M plate reader.
Supplementary figures and tables

Figure S1 DNA tile. The design of DNA tile\cite{3} and the position of DNA handles to attach ATRP initiator moieties (dark blue circle) chosen from Cadnano software\cite{4}. The details of all staple strand DNA sequences are listed in Table S2.
Figure S2 Relaxation functions $C_{vv}(q,t)$ for the translational diffusion dynamics in aqueous solution of the DNA tile (black filled squares) and DNA tube (red filled circles) at 20°C at a scattering wave vector ($q=0.009 \text{ nm}^{-1}$). Inverse Laplace transformation of experimental data yielded the distribution of one population for both the DNA tile and the DNA tube. Upper inset: The diffusion coefficient D vs q^2, $R_h(\text{tile}) = 55 \text{ nm}$ and $R_h(\text{tube}) = 73 \text{ nm}$. Lower inset: Light scattering intensity $1/I(q)$ as a function of q^2 for the DNA tile (black squares) and the DNA tube (red circles). $R_g(\text{tile})=54 \text{ nm}$ $R_g(\text{tube}) = 83 \text{ nm}$.
Figure S3 Normalized field correlation functions $C_{vw}(q,t)$ at a scattering wave vector $q=0.009$ nm$^{-1}$ (black filled squares) and $q=0.024$ nm$^{-1}$ (red filled circles) for the translational diffusion dynamics in aqueous solution of polymer coated DNA tube at 20°C. Inverse Laplace transformation of experimental data yielded to distribution of two populations for both wave vectors. Upper right inset: Double logarithmic plot of the diffusion coefficient D, $R_h=122$ nm. Lower right inset: $1/I(q)$ versus q^2 for the polymer coated DNA tube (black squares). From equation 1, R_g was calculated. $R_g=108$ nm.
Figure S4 TEM image of stacking polymer tube.
Figure S5 Stability of different DNA origami structures against nuclease digestion. DNA tile, tube, and polymer tube were labeled with SYBR-safe for 30 min. SYBR safe is a cyanine-based organic dye, which shows high fluorescence signal when it is intercalated into dsDNA. Thus, the degradation of DNA origami causes SYBR safe release from DNA origami resulting in decrease of the fluorescence intensity. Different amounts of nuclease (0-50 mU) were added to the labeled DNA origami structures and incubated at 37 degrees for 30 min. The fluorescence intensity of SYBR-safe was recorded and plotted as fluorescence intensity compared to the non-nuclease treated sample (the columns with amount of Dnase “0”). Since both ends of the DNA tubes are open, nucleases could in principle access the tube from both ends, which might explain the 30 % decrease of fluorescence intensity. However, after polymer coating, about 60 % to 70 % emission was observed for the polymer tube, compared to the DNA tube, for which only 20 % to 30 % emission intensity was recorded.
Figure S6 DNAzyme-incorporated DNA tile. (a) 20 DNAzyme moieties are positioned onto the surface opposite to DNA handle-introduced surface (Figure S1). (b) DNA handles are introduced to staple DNA sequence by extending its 3’ that are exposed on to the surface (left). To introduce DNAzyme to the opposite side to DNA handle, DNA handle extended sequences (blue, left) are divided into two sequences; DNA handle-extended part (dashed blue, right) and DNAzyme incorporated part (orange, right).
Table S1 Summary of dimensions of the DNA tile, DNA tube, polymer tube, G4-incorporated DNA tube before / after ATRP (G4-tube / G4-polymer tube) from theoretical, AFM, and DLS.

Construct	Theoretical (nm)	AFM (nm)	DLS, R_h (nm)
DNA Tile			
L	100	99.0 ± 2.2	55 ± 3
W	70	78.0 ± 4.0	
H	2	3.1 ± 0.1	
DNA Tube			
L	100	97.0 ± 4.9	83 ± 2
W	22	36.0 ± 6.0	
H	22	5.0 ± 0.7	
Polymer Tube	-	91.0 ± 6.4	122 ± 13
		44.0 ± 6.0	
		7.0 ± 0.5	
G4-Tube		93.3 ± 3.9	
L	100		
W	22	37.0 ± 4.0	
H	22	7.2 ± 1.0	
G4-Polymer Tube	-	95.7 ± 5.7	
		55.0 ± 10	
		11.1 ± 1.9	

Figure S7 ABTS activity of DNAzymes in polymer tubes before / after nuclease addition (50 mU). 80 % of the DNAzyme activity was maintained even in nuclease presence.
Table S2 Detail of staple DNA sequences. Each number corresponds to the position shown in Figure S1. The Sequences extended with sticky DNA handle sequence at 3’ are named as “3stX (X = position number)”. Folding DNA sequences to transform DN tile to DNA tube are named as “FX”. For preparing DNAzyme-introduce DNA tile, the sequences are separated into DNA handle-extended part (3stX half) and DNAzyme-extended part (g4-X half)

No.	Sequence
1	CAAGCCCAATAGGAAACCACATGTACAACACAGTT
3st2	AATGCCCCGTAAACATGGCCGTATCTCCCTCATTTTTTTAGGTGAGGAG
3st3	TGCCTTAGCTGCTATTTTCCGAACAGGAGTGTTTTTAGGTGAGGAG
3st4	GAGCGGCCACCAGGCAGAAACAGGCAGAGTTTTTTAGGTGAGGAG
3st5	ACCAGAGACCCCTCCAGAAACCGCCAGGGTGACTTTTTTAGGTGAGGAG
3st6	TATTTTACAGGAAATTTTACATTACAGATTACATATTACACAGGAG
3st7	CATAAACCAGGGAATAGTAAGAGTTTTTTAGGTGAGGAG
3st8	ATGGAGGTAAGAGTAAATTATCATATACCCAGGTTTTTTAGGTGAGGAG
3st9	AAAAGTAAATATCTTACCAGAACCCTCTCAGAGTTTTTTAGGTGAGGAG
3st10	CCAATAGCGCAGATGGGAGAGTTTTTTAGGTGAGGAG
3st11	CCAATTTTACAGGAAGCGGTCTCAATCAATATTTTTTTAGGTGAGGAG
3st12	TCTTACAGGACATTTACAAATAATGAATATTATTTTTAGGTGAGGAG
3st13	ACGGCTGACAGATGGAATACCAAGAATTATTTTTTTAGGTGAGGAG
3st14	CTAATTTATCTTTCTTTACATTACCACTCTAGTTTTTTAGGTGAGGAG
3st15	GGTTATAGAAAAGGAGCGCTTATGGAAAGGAGGCTTTTTTAGGTGAGGAG
3st16	GCTCATTTTACGTTAATTTTTTGAGGTTTTTTAGGTGAGGAG
3st17	AATTACCTAATTTTTTTATTACTGGGCTATATTACACAGGAGTTTTTTAGGTGAGGAG
3st18	TTAAGACGTGAAACATACCGAGTTAAGAATGTTTTTTATTACTGGGCTGAGGAG
3st19	TAGAATGCGAAATTTTTATTACTGGGCTATATTACACAGGAGTTTTTTAGGTGAGGAG
3st20	CTTTACACAGTAGTACATACAGAATATTAAAAATTTTTTTATTACTGGGCTGAGGAG
3st21	TTTAAGGTTTCCGGAAGAAACACAAATATTTCTTTTCTTTTTTTATTACTGGGCTGAGGAG
3st22	CGACAACTAAGTATGACTTTTACAAATACGCTTTTTTATTACTGGGCTGAGGAG
3st23	GGATTAGCGTAATTTAATTTCACTGGGCTATTACATTTCTTTTATTACTGGGCTGAGGAG
3st24	ACGAACAAATACCCCGAGATTTTTTTATTACTGGGCTATTACATTTCTTTTATTACTGGGCTGAGGAG
25	GAACGGTGGGCAAAAGGAAAAAGGAACAAACTAT
3st26	TAGCCCTACGCGAAGATATAAAGGAGTTTTTTATTACTGGGCTGAGGAG
---	-----
27	CGGCCTTGCTGGTAATATCCAGAACGAACTGA
28	CTCAGAGCCACCACCCTCATTTCCTATTATT
3st29	CTGAAACAGGTAAATAGTTTAAACCCCTCAGATTTTTTTAGTAGGTGTAGAG
3st30	AGTGTACTTGAAGTTAAGAGGCCGCCACCTTTTTTTATGAGGTGTAGAG
3st31	GCCACCAGCTCTTTTCTATAATACACCGTACCTTTTTTTATGAGGTGTAGAG
3st32	GTTTGCACCTCAGAGCCAGCCACCATAGGTGTTTTTTAGTAGGTGTAGAG
3st33	GACTTGAGAGACAAAAAGGGGCCAAGTTACCTTTTTTAGTAGGTGTAGAG
3st34	AGCGCCACCATTTGGGAATTATATTTAGCTTTTTTAGTAGGTGTAGAG
3st35	GAAGGAAAAATAGAGCAAGAAGAAACACGCCATTTTTTTAGTAGGTGTAGAG
3st36	GCCCAATACCAGGAAACGCCAATAGGTTTACCTTTTTTAGTAGGTGTAGAG
3st37	ATTTTTAAACCCAGCTCTAATTTCTAAAGACGGTTTTTTTAGTAGGTGTAGAG
3st38	TTATTTGCTCCCAATCCAAATAAGTGAGTTAATTTTTTAGTAGGTGTAGAG
3st39	GCTTTACAGCTTTGCTAATTTTTAGTAGGTGTAGAG
3st40	GAAGGAAAATAAGAGCAAGAAACAACAGCTTTTTTTAGTAGGTGTAGAG
3st41	GCCCAATACCGAGGAAACCGCAATAGGTTTACCTTTTTTAGTAGGTGTAGAG
3st42	ATTATTTAACCCAGCTACAATTTTCAAGAACGTTTTTTTAGTAGGTGTAGAG
3st43	TATTTTGCTCCCAATCCAAATAAGTGAGTTAATTTTTTAGTAGGTGTAGAG
3st44	AGCGCCAACCATTTGGGAATTATATTTAGCTTTTTTAGTAGGTGTAGAG
3st45	CCTGATTGAAAGAAATTTGGCTAGACCCCAACCAGTTTTTTTAGTAGGTGTAGAG
3st46	ACAGAAATCTTTGAAATACCAAGTTTCACTTTTTTTAGTAGGTGTAGAG
3st47	TTATTTATGCGCTAAATGATTAGTTAATTTTTTAGTAGGTGTAGAG
3st48	AGATTAGATTTAAAGGTTTGAGTACAGTAAATTTTTTAGTAGGTGTAGAG
3st49	GAATGGCTAGTATTAACACCGCCTCAAATTTTTTAGTAGGTGTAGAG
3st50	GCCCAAGCCCATTGCAACAGAAATAATTTTT
51	CCGCCCAGCCATTTGGCAACAGAAATAATTTTT
52	CCCTCAGAAAGCGCCACCTCAGAAGAGACT
3st53	CCTCAAGAATACATGGCTTTTGTAGAACCACCTTTTTTAGTAGGTGTAGAG
3st54	TAACGATGGGACAGTTGGAATTTTAGACCGCTTTTTTTAGTAGGTGTAGAG
3st55	CACCCAGGTTTGCTATAGGCTGGCCCTCAAATTTTTTAGTAGGTGTAGAG
3st56	TGCGCATCCGCCAGCATTTAGGTGCAGTTTCTAGTTTTTTAGTAGGTGTAGAG
3st57	ATCAACCAATAGAAATTTTGGAATTTTAGCTTTTTTAGTAGGTGTAGAG
3st58	TGACAAACCAAGGCTGCTGGAGATTGATTTTTTAGTAGGTGTAGAG
3st59	ATACCAAGATAAACCCACAAAGAAATAACAGTTTTTTTAGTAGGTGTAGAG
3st60	ATCAGAGAAAGAATGCTGGCTATTAGTTTTTTTAGTAGGTGTAGAG
3st61	TTTTGGTTTAAGCCTTAATCAAGAATCGGAAATTATTTGATAGGTGTTGAGAG
3st62	AGGTTTGGACGTCAAAATGAAAGCGCTTAATTTTTTTAGTAGGTGTTGAGAG
3st63	CAAGCAAGACGCGCCTGGTTTATCAAGAATCGGTTTTTTTTAGTAGGTGTTGAGAG
3st64	AATGCAGACCGTTTTTATTTTCATCTTGCGGGTTTTTTTTAGTAGGTGTTGAGAG
3st65	CATATTTAGAAATACCGACCGTGTTACCTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st66	AATGGTTTCAAACGCCAAATGATGTCAGCTTTTTTTTTAGTAGGTGTTGAGAG
3st67	TAACCTCCATATGTGATAGCTGAAATAAACAATTTTTTTTTAGTAGGTGTTGAGAG
3st68	AAATCAATGGCTTAGGTTGGGTTACTAAATTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st69	GCAGCAGAGTATGAAAAATTATGGCACATTATTCTTTTTTTTTTAGTAGGTGTTGAGAG
3st70	AACCTACGCCGAATTATTTCACTTTTCAGTACATTATTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st71	ATTTTTGCGCTTTTAAAGAGCAGCATAGCAACAGTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st72	CTTAAATAGAGAAAAAACGCCCAGGTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st73	GCCACGCTATACGGACAGAACAGCTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st74	GCCGTAAGAGAGGAGGGAGGAGCTGATTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st75	GGAAATACCTACATTTTTGACGCTACCTGAAA
3st76	TATCACGGTACTCAGGAGGTTTGGGGGTTT
3st77	TGCTCAGTCAGTCTCTGAAATTACAGGAGGTTTTTTTTTTTAGTAGGTGTTGAGAG
3st78	GAAAGGGGCAACAGGCGGATAGTAAAGTGGTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st79	TGAGGCAGGCGTGACCTGAGATAGGCAAGGTGTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st80	TGCCTTTAGTCAGACGATTGGCTGACGAGTAAATTAGGTGTTGAGAG
3st81	CCGAAACACACCACGGAATAAGTAAGACTCCTTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st82	ACGCAAGGGTCACCAAATGAACCAACACTCAAGTTTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st83	TTATACAGGTGCAAGGGTAAATTGAATGACGCTTTTTTTTTTAGTAGGTGTTGAGAG
3st84	TGAAACAACAGTATGTTGACCAAAACTAAAGAATTTTTTTTTTTTAGTAGGTGTTGAGAG
3st85	CTTTACAGGTTAGGCAAGCCGACCTCCGAGTGAGAGATTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st86	GAGGCGTTAGAGAAATAACATAAAAGAACACCTTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st87	TCATTACCCGACAAATACACATATTTTAGGCTTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st88	CCAGACGAGCGCCCAATAGCAAGCAAGACGCTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st89	AGAGGCATAATTCTTCTCAGCTATAACTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st90	TTTTAGTTTTTCAGCGCAATATAAATTCTGTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st91	TATGTAACCTTTTTTTTAATGGAAAAATTACCTTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st92	TTGAATTATGCTGATGCAAATCCACAAATTTTTTTTTTTTTTTTAGTAGGTGTTGAGAG
3st93	GAGCAAAAACTTCTGAAATATGGAAGAGGAGATTTTTTTTTTTAGTAGGTGTTGAGAG
3st94	TGGATTATGAAGATGGAACAAATATTTTTTTTTTAGTAGGTGTTGAGAG
3st95	CGGAATTATTGAAAGGAATTGAGGAAAAATTTTTTTTGATTAGGTGTTAGAG
3st96	ATCAACAGTACATATTTCTCTGATTGATTTGTTTTTTTTAGTGTTAGTGTTAGAG
3st97	CTAAAGCAAGATAGAACCCTCTTCTGAATCTTTTTTTTAGTGTTAGTGTTAGAG
3st98	GCGAACAGTCACCTTTGCTGAACCTGTTTGGCAATTTTTTTAGTAGGTGTTAGAG
99	GAAATGGGATTATTACATTTGCGAGACATCTCT
100	TTTTATAAGTGATACCCGGCGCTGAG
101	AGGTTGGATTATTTAATATCTCCTCAATAGATTATTTT
102	ACAAACAAATTTTATCAATGAGGACAGATCGATAGC
103	AGCACCCTTTTTAAAAGGTGGCAGCAGATAGTAGAAAA
104	TACATAACATTTTGACCGGAAATATACACAGGGAA
105	GCGCATATTATTGTTATACGATTTCTAAATCAGA
106	TATAGAAGTTTTTGCACAAAAAGGTAAAGTAGAGAATA
107	TAAAGTACTTTTCCCGGAGAAGAAATTATTTTATGCAAG
108	ACAAAGAATTTTATAATTACATTTAACAATCAAG
109	AAAACAAATTTTTCATCATATAATATCTCTATCAGAT
110	GATGGCAATTATTTATCAATATGTCGTCAGAATAATC
111	AAAACCTCTTTTACCAGTATAAAAGGGATTCAGATAGCAGTTTT
3st112	CCGAAATCGGAAATTCTCAGTTGGAACCGGAATTTTTTTTGAGTGGTGTTAGAG
3st113	CCAGCAGGGGAAATACCCCTTTTATATAGGCCGGCCTTTTTTTAGTAGGGTTAGAG
3st114	GCATAAAAATTTCCACACAAACACAGAAGGCGCAATTTTTTTAGTAGGGTTAGAG
3st115	GCTCAACATGTAAGCCTGGGTGTTGCTTCTTTTATTAGTGGTGTTAGAG
3st116	TTTGCGCACTTTAACTCAGGCAGAAGTACATTTTTTTTTTTAGTAGGGTTAGAG
3st117	GCTTCTGTGAGGCGGCAACTGTTATTATCCTTTTTTTTAGTAGGGTTAGAG
3st118	GTAAAAATTTTAAACCAATAGGAACCAGCCACCTTTTTTTAGTAGGGTTAGAG
3st119	AGACAGTCATTTAAAAAGGTTGAGAAGCTATATTTTTTTTTTAGTAGGGTTAGAG
3st120	AGTAAAAGAAAATACACCAGTATAATATATTTTTTTTTTAGTAGGGTTAGAG
3st121	TTTCAATTTGCGTCAATAACCTGTTATATCGCGTTTTTTTTAGTAGGGTTAGAG
3st122	TCGCAAAATGGGCAGCGAGCAGTGAATAATGTTGTTTTTTTTTAGTAGGGTTAGAG
3st123	TTTAATTTCGCGCAGAGCTTAAAAACATATTATTTTTTTTAGTAGGGTTAGAG
3st124	AAGAGGACGAGCTTCAAGAGGCAAGATACATTTTTTTTTAGTAGGGTTAGAG
3st125	GAAATACACTCTTTTACCAGGGCAAGCAAAAGGTTATTTTTTTTAGTAGGGTTAGAG
3st126	GAATAAGAACGCAAGAAGCTGCTCTAAAGACATTATTTTTTTTAGTAGGGTTAGAG
3st127	CCAGGATCCTTTGCGAGGAAATAGGTTTTTTTTTTTAGTAGGGTTAGAG
3st128	CTGACTTCTGAGGCAAAGAATACAGTGGAATTTTTTTTTAGTAGGGTTAGAG
3st163	GTTTGAGGGAAAGGGGATGTGCTAGAGGATCTTTTTTAGTAGGTTGAGG
3st164	CTTTCACTCCCAAAAAACAGGAGACCCGAGAGTTTTTTTAGTGAGGGTGTAGG
3st165	AGAAAAAGCACATTAAATGAGCAGTCTGAGGAGTTTTTTTAGTGAGGGTGTAGG
3st166	GTTAGCTAGGATAAATTTTTGATTTAATCTTTTTTTAGTTAGGTGTTAGG
3st167	CAACGCCAATTTTTGAGAGATCTTCTGATAATTTTTTTAGTAGGTGTAGG
3st168	CAATAAAATAGTTGATTTCCAATTTAGAGAGTTTTTTTAGTAGGTGTAGG
3st169	TCCATATACATAACGAAAGGCAACTTTATTATTTTTTTTAGTAGGTGTAGG
3st170	TACCTTTTAAGGTCTTTACCCTGACAAAGGAAATTTTTTTAGTAGGTGTAGG
3st171	CAAAAATCATTTGCTCTTTTTGATAAGTTTTTCTTTTTTTAGTAGGTGTAGG
3st172	TTGGCCAGACTCAGTGTAGATTTGTTGTTAATTCTTTTTTAGTAGGTGTAGG
3st173	AAGAGTTCACTGGGGGTAAATGCTCAAACATTTTTTTATTAGTTAGGTGTAGG
3st174	TTTCAACTATAGCGCTCGACTCTGATACCTTTTTTTAGTAGGTGTAGG
3st175	CCAGCGCTTTAATCTTTGCTATCAGGTTACAGGATTTTTTTTAGTAGGTGTAGG
3st176	CGGCTATGCAAAGTTTTTTTACCTTTATTTTTTTTATTAGTTAGGTGTAGG
3st177	TTTTCTGAAAAAGGCTGAAATCTCTACAGGTTTTTTTTAGTAGGTGTAGG
3st178	ATATATTCTTTTTTCAGCTGAAAAATGGATTTTTTTTAGTAGGTGTAGG
3st179	AATAAATAGGTCAGTGGGGAGGTGTATGTTATTTTTTTTAGTAGGTGTAGG
180	CGTAACGATCTAAGGTTTTGTCGTAAGG
181	ACCCAAAATCAAGGTTTTTGGGTGTAAGG
3st182	TGGACCTCTTTTCACCGTGAACCTTGCTGTTTTTTTTTAGTAGGTGTAGG
3st183	TGGTTTATACGTCACGTTGAGAGTCTCTCCTTTTTTTTAGTAGGTGTAGG
3st184	GGCCAGCTGCGCTGAGGTGCTTAGCTGCAAGGTTTTTTTTAGTAGGTGTAGG
3st185	TCTTGCGATAGCAATTTGAATGCGCGCTGCGAGTTTTTTTTAGTAGGTGTAGG
3st186	ATTAAGTTTGTAGCAGAACCTGCGAGTAAACATCTTTTTTTAGTAGGTGTAGG
3st187	TAGATGGGGGTAAACGCAAGGCTGTGCACTTTTTTTTAGTAGGTGTAGG
3st188	ACCCGGTGCTGCTATAGTGACCCTCCTGTTTTTTTTAGTAGGTGTAGG
3st189	CATGTCAAGATTCTCCGTTGAAAGCAGTTGTTTTTTTTAGTAGGTGTAGG
3st190	TCAGGTTCACTTTTCGCGGAAGGACAATGAGGTTTTTTTTAGTAGGTGTAGG
3st191	CTGTAAATATGCTGAGGCTGCTGCTGCTGCTGCTGGAAACTGTTTTTTTTAGTAGGTGTAGG
3st192	CAAAATTAAAGTACGTTGCTGAGGAAGGCTGATTCTTTTTTTTAGTAGGTGTAGG
3st193	TGGAACTAAAGCATCCACTTTGCTGAGGCTAGCTTTTTTTTAGTAGGTGTAGG
3st194	TTTTTTGCGCAGAAAACACGAAATGAAAGTTTTTTTAGTAGGTGTAGG
3st195	AAAAAAGTTGAGGTTACTAGGCTTATTTTTTATTAGTAGGTGTAGG
3st196	ACTGGATAACCGAAACACATTTATGACTTTTTTTTAGTAGGTGTAGG
3st197	ACGAACTAGCGTCAATAACTGCGGAATGGTTTTTTTTTTAAGTTAGGGGTAGAG
3st198	CGATTTTAGAGGAGGATGGAAACGGACCCGCTGGAATGGAGGGTGGAGAG
3st199	CTTTGAAAGAAGACTGCTATTATTTAAATAATAATTTTTTATAGGTTGAGAG
3st200	GCTGCACTAGAGGCTTGGAGAATGAGGGTTTTTTTTTTGTTAGGGGTAGAG
3st201	ACGGCTACTATCTATGCGCGGAAACGTGGAACCACATTTTTTTATAGGGGTAGAG
3st202	AAAGGCCAAGGAAAGGAACCTAAGCTTTTCCAGTTTTTTATAGGTTGAGAG
3st203	GAGAATAGCTTTTTGGGGGATCGCGGTCAGCATTTTTTTATAGGGGTAGAG

204	ACGTTAGTAAATGAAATTTCTGTAAGCGGAG
205	TTTTCGATGCCCACCTACGTAAACCGTC
206	TATCAGGTTTTTGCTGGATTGGGAAACGGCG
207	GGGAGAGGTTTTTGTAAAGCTAGGAGGCCAATTCCAG
208	CAACGACGTTTTTGTAAATGGGATAGGGTAATAACGGG
209	GATTGACCTTTTTAGTAAAGCTGGTTGAAACAGCAAAAC
210	AGAGAATCTTTTTGTCTTACAAAAAACAAGCATAAA
211	GCTAAATCTTTTCTGTAGCTACATGTATTGCTGA
212	ATATAATTTTTCTATGGAATCCCCCCTCCCCTAAAAGTCA
213	TAAATATTTTTGGTAAAGAAAAATCTACGACCAGTCA
214	GACGTTTTTTTTTTTATAAGGGAAAGGCGGCGAG
215	ACGTCAATTTTTGAGCAGCTCGGAACGAACCCTCA
216	CACGCCAAGTTTTCTTTTCAAGCTTTTTGTTTGCCATTTTTT
217	AACATCACTTGCGTCTAGTAAAGGAGT
218	TGTAACATTTCTGTGATAGTAAT
219	AGTCTGTCCATCGGAAATTTAAGCCT
220	ATATAGTGGATGACACCGGTAAAGG
221	AGCCGAAATCTGAGATAAGGTGTGTTTTT
222	TAAAGGGGTAAATGAGCAAGGACG
223	AGAGCCGGAGCTAACCAGGAGGCCG
224	TATAACGTGGTTTTCTGGTTGAATC
225	GACTATGTTGGTTTCGACGAGCAG
226	GCGCTAATGCGCGCTCACGGCG
F1	ATATAATAATACGTAGCCGGAATAGGAGGACCATGTCAGAAGCTTT
F25	ATATAATAATACGTAGCCGGAATAGGAGGACCATGTCAGAAGCTTT
F27	CAAGGCCCAGTGGTAATACCTCAGAAGCGAAGT
F28	CGGCCGACCACCCTGATTTTTCTATTAT
F51	CTCAGAGCCATTGCAACAGGAAAAATATTTTT
F52	GGAATACACCGCCACCCTCAGAAGTQAGACT
F75	CTCCTAGACTACATTTTGACGTCACCTGAAA
F76	GAAATGGATACCGGGTATGCTAGCAGGTTT
F99	TATCACCGTTATTTACATTGGCAGATTTCTG
F132	GAACGTGGGTCACCAGTACAAAACCTTAATTGTA
F133	TGTAAGCATTAGAGGCCTCGACGGGAATCTCAAA
F156	CCCCGATTTCCACAGCAGCCCTACATCTTCGAA
F157	CGTAACGACTAAATCGGACCCCTAGTTGTTCC
F180	GAAAGCATCTAAAGTTTTGTGGAATTGCAAGT
F181	ACCTGGCTGCAGCATGTTTGGGTAGGGCGGGTTGG
g4-6half	TTATTCTACGAAGAGGGTTTGGGTCAGGTTGG
3st6half	TAAATATTCATTCAGTTTTTTTAGTGAGGTGAG
g4-13half	ATCGGCTGAGCATGTTTGGGTCAGGTTGG
3st13half	TAGAAACCTACATCATTTTTTTAGTGAGGTGAG
g4-18half	TTAAGACGTTGAAAATTTTTTTTAGTGAGGTGAG
3st18half	ATAGCGATAACAGTACTTTTTTTAGTGAGGTGAG
g4-36half	GCCCAATACCGAGGAACTTTTTTTAGTGAGGTGAG
3st36half	ACGCAATACGGTACCTTTTTTAGTGAGGTGAG
g4-37half	GATATTTAACCCAGCTTTTTTTAGTGAGGTGAG
3st37half	ACAAATTTCAGAGAGGTTTTTTTAGTGAGGTGAG
g4-63half	CAAGCAAGACCGCGCTTTTTTTAGTGAGGTGAG
3st63half	GTTTATCAGAATAAGGTTTTTTTAGTGAGGTGAG
g4-67half	TAACTCCCATATGTATTGGGTCAGGCGGGTTGG
3st67half	GTGAAATAAAGGAAACTTTTTTTAGTGAGGTGAG
g4-84half	TGAACCAAAAAGGTATTGGGTCAGGCGGGTTGG
3st84half	TACAAACTAAAGGAACTTTTTTTAGTGAGGTGAG
g4-85half	CTTTGAGTTCGCAAATTTTTTATTGGTGGGTCAGGCGGGTTGG
3st85half	CCTCCCGACGTAGGAAATTTTTTATTGGTGGGTCAGGCGGGTTGG
g4-90half	TTTTAGTTTTTGAGCTTTTTTTATTGGTGGGTCAGGCGGGTTGG
3st90half	CAGTAAATTCTCATTTTTTATTGGTGGGTCAGGCGGGTTGG
g4-94half	TGGATTATGAAAGTGAATTTTTTTATTGGTGGGTCAGGCGGGTTGG
3st94half	TGAACCAAAAATTTTTATTGTTTTTATTGGTGGGTCAGGCGGGTTGG
g4-121half	TTTCATTGGTCAATAAATTTTTTTATTGGTGGGTCAGGCGGGTTGG
3st121half	ACCTTTTATATGCCTTTTTTAGTAGGTGGTAGAG
g4-141half	GCAAATATCGCTGTGTTTTTGTAGTAGGTGGAG
3st141half	GCCCTCTGCTGCCTCATTTTATGAGGTGGTAGAG
g4-142half	ACCGTCTTAATGCAA TTTTGGTAGGGCCGGTGGG
3st142half	TGCTTQAGAGGTGCA TTTTTTAGTAGGTGGTAGAG
g4-168half	CAATAATACAGTGT AGTTTTGATTGAGGTGTTAGAG
3st168half	TTCCCAATTTTAGAGAG TTTTTTTAGTAGGTGGTAGAG
g4-172half	TTTGCCAGATCGTTG TTTTGGTAGGGCAGGGTGGG
3st172half	AGATTAGGTTTAAA TTTTTTAGTAGGTGGTAGAG
g4-189half	CATGTCAGAgATCTCC TTTTGGTAGGGCCGGTGGG
3st189half	GGGGAAACCTGTTGTTG TTTTTTTAGTAGGTGGTAGAG
g4-190half	TCAAGTCACTTTTGGCG TTTTGGTAGGGCCGGTGGG
3st190half	GGGAGGCAAGCAGAT TAGTTTTAGTAGGTGGTAGAG
g4-195half	ACAAAGTGGATGCTT TTTTGGTAGGGCCGGTGGG
3st195half	AGAGGTATTTAAATA TTTTTTTAGTAGGTGGTAGAG
g4-199half	CTTGAAAAGAACCTGG TTTTGGTAGGGCCGGTGGG
3st199half	CTCTTTATTAAATA TTTTTTTAGTAGGTGGTAGAG

References

[1] E. Stahl, T. G. Martin, F. Praetorius, H. Dietz, Angew. Chem. Int. Ed. 2014, 53, 12735-12740.
[2] S. E. Averick, S. K. Dey, D. Grahacharya, K. Matyjaszewski, S. R. Das, Angew. Chem. Int. Ed. 2014, 53, 2739-2744.
[3] P. W. Rothemund, Nature 2006, 440, 297-302
[4] S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church, W. M. Shih, Nucleic Acids Res. 2009, 37, 5001–5006