A hidden–variables version of Gisin’s theorem

Koichiro Umetsu
(Nihon University)

in collaboration with Kazuo Fujikawa (RIKEN)

Based on

K. Fujikawa and K. Umetsu,
arXiv: 1410.1702 [quant-ph]
ベルの不等式:

局所実在論と量子力学を明確に区別するcriterion

局所実在論 (local realism):

文脈依存性のない局所的な隠れた変数理論によって記述
(Non-contextual and local hidden variables models)

局所実在論の予言（CHSH inequality）:

\[
\left| \langle \psi | B | \psi \rangle_{CHSH} \right| = \left| \langle \psi | a \cdot \sigma \otimes b \cdot \sigma | \psi \rangle + \langle \psi | a \cdot \sigma \otimes b' \cdot \sigma | \psi \rangle + \langle \psi | a' \cdot \sigma \otimes b \cdot \sigma | \psi \rangle - \langle \psi | a' \cdot \sigma \otimes b' \cdot \sigma | \psi \rangle \right| \leq 2,
\]

量子力学はCHSH inequality の破れを予言する:

\[
\langle \psi | B | \psi \rangle_{QM} = \langle \psi | a \cdot \sigma \otimes b \cdot \sigma | \psi \rangle + \langle \psi | a \cdot \sigma \otimes b' \cdot \sigma | \psi \rangle + \langle \psi | a' \cdot \sigma \otimes b \cdot \sigma | \psi \rangle - \langle \psi | a' \cdot \sigma \otimes b' \cdot \sigma | \psi \rangle
\]

\[
\Rightarrow \left| \langle \psi | B | \psi \rangle_{QM} \right| \leq 2\sqrt{2}.
\]
CHSH inequality and Aspect’s experiment

\[\langle B \rangle = \langle a \cdot \sigma \otimes b \cdot \sigma \rangle + \langle a \cdot \sigma \otimes b' \cdot \sigma \rangle + \langle a' \cdot \sigma \otimes b \cdot \sigma \rangle - \langle a' \cdot \sigma \otimes b' \cdot \sigma \rangle. \]

Aspect et.al., PRL (1982)

この対決の最終的な決着は1982年のAspect et.al.の実験において、\(\langle B \rangle \)の量が2を超えることが実証された。

\[\langle B \rangle_{\text{exp}} = 2.697 \pm 0.015 \]
Gisin’s Theorem の対偶:

全ての a, a', b, b' に対して常にCHSH 不等式が成立するならば，その状態は separable state である。

\[
|\langle \psi | a \cdot \sigma \otimes b \cdot \sigma | \psi \rangle + \langle \psi | a \cdot \sigma \otimes b' \cdot \sigma | \psi \rangle + \langle \psi | a' \cdot \sigma \otimes b \cdot \sigma | \psi \rangle - \langle \psi | a' \cdot \sigma \otimes b' \cdot \sigma | \psi \rangle| \leq 2,
\]

\[
| \psi \rangle = | + \rangle \otimes | - \rangle
\]

※ CHSH 不等式と量子状態の関係を理解する上で，非常に意義深い。
A hidden-variables version of Gisin’s Theorem

\[\langle \psi | a \cdot \sigma \otimes b \cdot \sigma | \psi \rangle = \langle \psi | a \cdot \sigma \otimes 1 | \psi \rangle \langle \psi | 1 \otimes b \cdot \sigma | \psi \rangle \]

Non-contextual and local hidden variables models の範囲内で満たされる等式.

この等式の証明は次の要請に基づく（詳細は時間の制限により省略）:

The known concrete hidden-variables models in d=2 satisfy the relation:

\[\langle 1 \otimes (b + b') \cdot \sigma \rangle = \langle 1 \otimes b \cdot \sigma \rangle + \langle 1 \otimes b' \cdot \sigma \rangle \]

\[d=4 でも成立することを要請 \]

\[\langle a \cdot \sigma \otimes (b + b') \cdot \sigma \rangle = \langle a \cdot \sigma \otimes b \cdot \sigma \rangle + \langle a \cdot \sigma \otimes b' \cdot \sigma \rangle \]

\[\langle \psi | a \cdot \sigma \otimes b \cdot \sigma | \psi \rangle = \int \rho_1(\lambda_1) d\lambda_1 a(\psi, \lambda_1) \int \rho_2(\lambda_2) d\lambda_2 b(\psi, \lambda_2). \]
Gisin’s example:

• 测定器の設定:
 \[a_y = b_y = 0, \quad a_x = \sin \theta, \quad a_z = \cos \theta, \quad b_x = \sin \phi, \quad b_z = \cos \phi. \]

• 波動関数の設定:
 \[|\psi\rangle = \frac{1}{\sqrt{|\alpha|^2 + |\beta|^2}} \left[|\alpha| +\rangle_1 |\alpha|-\rangle_2 - |\beta|-\rangle_1 |\beta|+\rangle_2 \right] \quad (0 \leq \alpha \leq 1, \quad \beta = \sqrt{1 - \alpha}. \)

局所実在論の予言:

• CHSH inequality:
 \[|\langle \psi | B | \psi \rangle_{CHSH}| \leq 2, \]

• Hidden-variables version of Gisin’s theorem:
 \[G(a, b) \equiv \langle \psi | a \cdot \sigma \otimes b \cdot \sigma | \psi \rangle - \langle \psi | a \cdot \sigma \otimes 1 | \psi \rangle \langle \psi | 1 \otimes b \cdot \sigma | \psi \rangle = 0, \]
\[\langle B \rangle = \langle a \cdot \sigma \otimes b \cdot \sigma \rangle + \langle a \cdot \sigma \otimes b' \cdot \sigma \rangle + \langle a' \cdot \sigma \otimes b \cdot \sigma \rangle - \langle a' \cdot \sigma \otimes b' \cdot \sigma \rangle. \]

\[a = (\sin \theta, 0, \cos \theta), \quad b = (\sin \phi, 0, \cos \phi) \]

Case A: \(\left(\frac{\pi}{3}, \frac{\pi}{8}, \frac{\pi}{4}, \frac{\pi}{6} \right) \)

Case B: \(\left(\frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, 0 \right) \)

Case C: \(\left(\frac{\pi}{6}, \frac{3\pi}{4}, \pi, 0 \right) \)

\[G(a, b) \equiv \langle \psi | a \cdot \sigma \otimes b \cdot \sigma | \psi \rangle - \langle \psi | a \cdot \sigma \otimes 1 | \psi \rangle \langle \psi | 1 \otimes b \cdot \sigma | \psi \rangle \]
Aspect’s Experiment

Notations 1:

- \(S \): 光源 （光子対を放出）
- \(I_a, I_b \): 偏光板 （\(a, b \) は調節可能なパラメータ）
- PM: Photomultiplier
 （光子が飛んで来れば+1, 飛んで来なければ -1 の値を取る.）
- 同時検出が観測される.

Freedman et.al. PRL (1972), Aspect et.al., PRL (1981)
Hidden-variable version of Gisin’s theorem

Aspect’s experimental values

\[
G(\varphi) = 4\left[\frac{R(\varphi)}{R_0} - \frac{R_1 R_2}{R_0^2}\right] = (0.971 - 0.029)(0.968 - 0.028)0.984 \cos 2\varphi
\]

この実験結果は局所実在論の予言を明確に破る.
CHSH inequality

\[-1 \leq S = \frac{1}{R_0} \left[R(a, b) + R(a, b') + R(a', b) - R(a', b') - R_1(a) - R_2(b) \right] \leq 0.\]

\[\varphi(a,b) = \varphi(a,b') = \varphi(a',b) = \varphi, \quad \text{and} \quad \varphi(a',b') = 3\varphi,\]

\[S(\varphi) = \frac{3R(\varphi)}{R_0} - \frac{R(3\varphi)}{R_0} - \frac{R_1 + R_2}{R_0},\]
CHSH inequality

\[S(\varphi) = \frac{3R(\varphi)}{R_0} - \frac{R(3\varphi)}{R_0} - \frac{R_1 + R_2}{R_0}, \]
Summary

• Hidden-variables version of Gisin’s theorem を定式化:

\[\langle \psi | a \cdot \sigma \otimes b \cdot \sigma | \psi \rangle = \langle \psi | a \cdot \sigma \otimes 1 | \psi \rangle \langle \psi | 1 \otimes b \cdot \sigma | \psi \rangle \]

• CHSH inequality と比べ, Hidden-variables version of Gisin’s theorem は量子力学と隠れた変数理論を区別できる領域が広い.

• 実験を行う立場からも, 扱うパラメータが少ないため実験の手間は軽減される.

• このHidden-variables version of Gisin’s theorem はCHSH inequality に代わる量子力学と局所実在論を区別する新しいcriterionになるかもしれない．
CHSH inequality and Aspect’s experiment

Aspect et.al., PRL (1982)

\[\langle B \rangle = \langle a \cdot \sigma \otimes b \cdot \sigma \rangle + \langle a \cdot \sigma \otimes b' \cdot \sigma \rangle + \langle a' \cdot \sigma \otimes b \cdot \sigma \rangle - \langle a' \cdot \sigma \otimes b' \cdot \sigma \rangle. \]
Hidden-variables version of Gisin’s theorem and Aspect’s experiment

Freedman et.al. PRL (1972), Aspect et.al., PRL (1981)

\[G(a, b) \equiv \langle \psi | a \cdot \sigma \otimes b \cdot \sigma | \psi \rangle - \langle \psi | a \cdot \sigma \otimes 1 | \psi \rangle \langle \psi | 1 \otimes b \cdot \sigma | \psi \rangle \]