Supplement of

Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling

Nestor Kamdem et al.

Correspondence to: Hartmut Oschkinat (oschkinat@fmp-berlin.de)

The copyright of individual parts of the supplement might differ from the article licence.
Tables of contents

1. Structure-based alignment of the amino acid sequences of Dvl-1,2,3 PDZ ; PSD95-PDZ-1,2,3 ; Af-6 and Syn PDZ domains. (S.2)
2. 1H-15N HSQC spectra of Dvl-3 PDZ domain alone and in the presence of varying concentrations of compound 3. (S.3)
3. Detailed views of diverse compounds bound to the Dvl-3 PDZ domain. (S.4)
4. Cell viability assays of compounds 3, 7,8, 9, 10, (A) and 18, 20, 21 (B). (S.5)
5. ITC binding assays of compound 18 with Dvl-3 PDZ (A) and with Dvl-1 PDZ (B). (S.5)
6. Structures of selected compounds used for comparison to our compounds. (S.6)
7. ITC data of selected compounds used for comparison to our compounds. (S.7)
8. NMR binding assay with compound 322338/3289-8625. (S.8)
9. Purity check of compounds. (S.9)
 – Purity check of NPL-1011 compound. (S.9)
 – Purity check of Sulindac compound. (S.10)
 – Purity check of CalBioChem-322338 compound. (S.11)
 – Purity check of NSC668036 compound. (S.12)
 – LCMS of intermediate compound 8. (S.13)
 – LCMS of intermediate compound 14. (S.13)
10. Chemical shift perturbation values of Dvl-3 PDZ and Dvl-1 PDZ for compounds (2-21). (S.14)
11. Data collection and refinement statistics of compounds 3, 5, 6, 7. (S.15)
12. Data collection and refinement statistics of compounds 11, 12, 18. (S.16)
13. Selectivity of ligands derived from chemical shift perturbation of compounds tested at other PDZ domains. (S.17)
14. Details of Multifilter routines. (S.17)
15. Smiles codes and Compounds ID. (S.18)
16. NMR characterization of synthesized compounds (8 , 11 , 13 , 14 , 15 , 16 , 17). (S.21)
1. Structure-based alignment of the amino acid sequences of Dvl-1,2,3 PDZ; PSD95-PDZ-1,2,3; Af-6 and Syn PDZ domains.

Figure S1: Structure-based alignment of the amino acid sequences of Dvl1,2 and 3 PDZ, Psd-1,2,3 PDZ, Af-6 and Syn PDZ domains. For Dvl PDZ, differences are highlighted in blue and similarities are highlighted in purple. UNIPROT codes: O14640 (Dvl-1 PDZ); O14641 (Dvl-2 PDZ); Q92997 (Dvl-3 PDZ); P78352 (Psd-1, Psd-2, Psd-3 PDZ); Q13424 (Alpha-1 Sytr PDZ); P55196 (Af6 PDZ); Q4ACU6 (mShank-3 PDZ)
2. 1H-15N HSQC spectra of Dvl-3 PDZ domain alone and in the presence of varying concentrations of compound 3

Figure S2: 1H-15N HSQC spectra of Dvl-3 PDZ domain alone (concentration of 50 µM) and in the presence of varying concentrations of compound 1 (25, 75, 100, 150, 200, 300, 400 µM). The arrows indicate the gradual change of chemical shifts with increasing ligand concentration for residues surrounding the binding pocket of Dvl-3 PDZ.
3. Detailed views of diverse compounds bound to the Dvl-3 PDZ domain

Figure S3: Detailed views of diverse compounds bound to the Dvl-3 PDZ domain. **A)** Surface representation of the Dvl-3 PDZ binding pocket with bound compound 3. Positively charged amino acids are highlighted in blue and negatively charged amino acids in red. The hydrophobic Dvl-3 residues, contributing to compound binding, are colored yellow. **B-E), G) and I)** show detailed views of the binding pocket with bound compounds 3 (B), 5 (C), 6 (D), 7 (E), and 12 (G). Here, all Dvl-3 PDZ molecules per AU with their bound compounds are superimposed per species to demonstrate the binding variations per compound. Panels **F** and **H** present the additional unspecific compound binding to the Dvl-3 PDZ complex structures observed with compound 11 (F) and compound 12 (H). Compound 18 (I) The non-specifically bound compounds are presented with grey sticks for covalent bonds to carbon atoms, and compounds bound to the canonical binding pocket of Dvl-3 PDZ domain are shown as green stick models enclosed in 2Fo-Fc electron density contoured at 1 sigma.
4. Cell viability assays of compounds 3, 7, 8, 9, 10, (A) and 18, 20, 21 (B)

Figure S4: Cell viability assays of compounds 3, 7, 8, 9, 10, (A) and 18, 20, 21 (B). Three independent biological replicas were performed in each case and error bars represent standard deviations.

5. ITC binding assays of compound 18 with Dvl-3 PDZ (A) and with Dvl-1 PDZ (B)

Figure S5: ITC binding assays of compound 18 with Dvl-3 PDZ (A) and with Dvl-1 PDZ (B). A 200 µM ligand solution containing 2% DMSO was injected 30 times in 10 µL aliquots at 120 s intervals with a stirring speed of 1000 rpm into a 1.4 mL sample cell containing the Dvl PDZ domain at a concentration of 20 µM and 2% DMSO. The data in A and B fitted to a one-site binding model with \(K_D \) determined by \(1/K_A \) and \(\Delta K_D = \Delta K_A/K_c^2 \) and with \(n=1.14 \) and 1.12, respectively.
6. Structures of selected compounds used for comparison to our compounds

Compound	Reference(s)
3-((3-[(2-carboxyphenyl)sulfamoyl][phenyl]sulfamoyl)benzoic acid (NPL-1011); (Hori et al., 2018)	
NSC668036; (Shan et al., 2005)	
Ethyl 5-hydroxy-1-(2-oxo-2-((2-(piperidin-1-yl)ethyl)amino)ethyl)-1H-indole-2-carboxylate (KY-02327); (Kim et al., 2016)	
Ethyl 1-(2-ethoxy-2-oxoethyl)-5-(tosyloxy)-1H-indole-2-carboxylate (KY-02061); (Kim et al., 2016)	
2-((3-(2-Phenylacetyl)amino)benzoyl)amino)benzoic acid, (CBC-322338/3289-8625); (Grandy et al., 2009, Hori et al., 2018)	
NSC668036; (Shan et al., 2005)	
Ethyl 1-(2-ethoxy-2-oxoethyl)-5-(tosyloxy)-1H-indole-2-carboxylate (KY-02061); (Kim et al., 2016)	
Ethyl 5-hydroxy-1-(2-oxo-2-((2-(piperidin-1-yl)ethyl)amino)ethyl)-1H-indole-2-carboxylate (KY-02327); (Kim et al., 2016)	
Ethyl 1-(2-ethoxy-2-oxoethyl)-5-(tosyloxy)-1H-indole-2-carboxylate (KY-02061); (Kim et al., 2016)	

Figure S6: Structures of selected compounds used for comparison to our compounds.
7. ITC data of selected compounds used for comparison to our compounds

Figure S7: ITC data of A) NPL-1011 (Hori et al., 2018), B) Sulindac (Lee et al., 2009a); C) CBC-322338/3289-8625 (Grandy et al., 2009, Hori et al., 2018) and D) NSC668036 (Shan et al., 2005), A) NPL-1011 revealed a binding of 79.7 ± 53.3 µM to DVL3-PDZ with N= 0.90 ± 0.08, ΔH = -2.7 ± 1.2 kcal/mol, ΔG = -5.5 kcal/mol, ΔS = -2.8 kcal/mol, whereas Sulindac shown in B) displayed an KD = 8.3 ± 2.5 µM with N=0.97 ±0.14, ΔH1 = -31.9 ± 5.3 kcal/mol, ΔS1 = 24.9 kcal/mol. C) Compound CBC-322338/3289-8625 and D) NSC668036 did not show any binding to the Dvl-3-PDZ domain under the assay conditions applied.
8. NMR binding assay with 8-fold excess of reference compound 3289-8625

Figure S8: 1H15N HSQC spectra of Dvl-3 PDZ domain alone (black, concentration of 50 µM) and in the presence of eight-fold excess of compound 3289-8625. For a comparison of effect strength see Figure S2 (8-fold excess is the maximum ligand concentration used there), Table S1 and Table 1.
9. Purity check of compounds

Figure S9a: Purity check of NPL-1011 compound
Figure S9b: Purity check of Sulindac compound
Figure S9c: Purity check of CBC-322338/3289-8625 compound
Figure S9d: Purity check of NSC668036 compound
Figure S9c: LCMS of intermediate compound 8: Peak at 1.1 refer to the instrumental signal prior to sample injection

Figure S9f: LCMS of intermediate compound 14: Peak at 1.1 refer to the instrumental signal prior to sample injection
10. Chemical shift perturbation values of Dvl-3 PDZ and Dvl-1 PDZ for compounds (2-21)

ID	R₁	R₂	ΔCSP(ppm) Dvl-3PDZ	ΔCSP(ppm) Dvl-1 PDZ
2	F		0.18	0.2
3	F		0.27	0.086
4	F		0.26	0.3
5	F		0.23	0.15
6	F	CH₃	0.11	
7	Br		0.23	0.3
8	CF₃		0.38	0.26
9	Cl		0.28	0.34
10	CH₃		0.26	0.31
11	Br		0.31	0.18
12	Br		0.21	0.29
13	Br		0.2	0.22
14	Br		0.31	0.26
15	CF₃		0.28	0.24
16	CF₃		0.36	0.08
17	CF₃		0.21	0.23
18	CH₃		0.30	0.36
19	CH₃		0.36	0.32
20	CH₃		0.35	0.36
21	CH₃		0.34	0.34

Table S1: Chemical shift perturbation values of Dvl-3 PDZ and Dvl-1 PDZ for compounds (2 – 21). ΔCSP is the mean value of 3 amino acid residues showing strong chemical shift perturbations.
11. Data collection and refinement statistics of compounds 3, 5, 6, 7

Dvl3 with compound	3	5	6	7
Data collection				
Space group	I4	P2₁₂₂₁	P6₁	I4
a, b, c (Å)	76.3, 76.3, 72.4	56.8, 70.0, 87.2	87.3, 87.3, 57.8	76.3, 76.3, 72.6
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 120.0	90.0, 90.0, 90.0
Resolution (Å)*	30.0-1.43 (1.47-1.43)	34.6-1.60 (1.64-1.60)	34.8-1.67 (1.71-1.67)	30.9-1.85 (1.90-1.85)
R_{meas}*	4.4 (57.9)	3.8 (80.0)	5.5 (77.4)	5.8 (105.0)
< I / σ(I) >*	22.1 (3.2)	23.6 (2.3)	19.1 (2.5)	20.5 (2.1)
Completeness (%)*	100 (100)	99.7 (99.8)	99.9 (100)	99.8 (99.6)
Redundancy*	5.4 (5.3)	4.8 (4.8)	5.7 (5.7)	7.4 (7.3)

Refinement				
No. total reflections	207003 (15053)	223464 (16344)	165069 (12220)	133118 (9391)
No. unique reflections	38358 (2826)	46555 (3405)	29202 (2161)	17796 (1282)
R_{work} / R_{free}	0.160 / 0.204	0.199/0.249	0.179/0.218	0.197/0.246
Mean B factor (Å²)	16.1	24.3	21.4	20.6
Bond lengths (Å)	0.016	0.017	0.018	0.018
Bond angles (°)	1.867	1.753	1.762	1.805
Molecules in AU	2	4	2	2

Ramachandran				
Favoured region (%)	97.0	98.0	96.6	96.4
Outlier region (%)	0	0.3	0	0

* Data in highest resolution shell are indicated in parenthesis.

Table S2: Data collection and refinement statistics.
12. Data collection and refinement statistics of compounds 11, 12, 18

Dvl3 with compound	11	12	18
Data collection			
Space group	I422	P6$_1$	P6$_3$22
a, b, c (Å)	78.6, 78.6, 77.8	85.3, 85.3, 58.9	89.3, 89.3, 131.6
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 120.0	90.0, 90.0, 120.0
Resolution (Å)*	32.0-1.58 (1.62-1.58)	34.6-1.48 (1.52-1.48)	34.8-2.76 (2.83-2.76)
R_{meas}*	6.4 (69.0)	6.7 (80.5)	14.2 (82.6)
$<I/\sigma(I)>$*	18.1 (2.9)	18.4 (3.2)	21.4 (4.1)
Completeness (%)*	99.5 (100)	100 (100)	99.9 (100)
Redundancy*	7.1 (7.2)	8.0 (8.0)	12.6 (13.3)
Refinement			
No. total reflections	120373.4 (8848.8)	326040 (24096)	107037 (8073)
No. unique reflections	16954 (1229)	40755 (3012)	8495 (607)
$R_{\text{work}} / R_{\text{free}}$	0.182 / 0.221	0.148/0.178	0.242/0.299
Mean B factor (Å2)	23.0	22.7	36.6
Bond lengths (Å)	0.021	0.019	0.013
Bond angles (°)	2.028	1.933	1.442
Molecules in AU	1	2	2
Favoured region (%)	98.0	97.8	98.0
Outlier region (%)	0	0.0	0

* Data in highest resolution shell are indicated in parenthesis.

Table S3: Data collection and refinement statistics.
13. Selectivity of ligands derived from chemical shift perturbation of compounds tested at other PDZ domains

CP Id	Dvl-1	Dvl-3	PSD95-1	PSD95-2	PSD95-3-	Shank-3	a-1-Syn	AF-6
18	0.32	0.30	0.05	0.1	0.05	0.01	0.08	0.01
20	0.3	0.36	0.06	0.09	0.06	0.05	0.07	0.01
21	0.3	0.36	0.07	0.09	0.1	0.05	0.08	0.01

Table S4: Selectivity of ligands derived from chemical shift perturbation of compounds tested at other PDZ domains. The PDZ domain set includes PSD95-1, PSD95-2, PSD95-3, Shank-3, α-1 Syn and AF-6. ΔCSP is the mean value of 3 amino-acid residues showing chemical shift perturbation.

14. Details of Multifilter routines

PDB structure ID	Distance from a ligand atom to PDZ atom	H-bond threshold	Resulting number of compounds		
	2.5 Å	4 Å			
2os6, model 8	Gly21 HN	Leu22 HN	Leu22 CD1	3	228
2dlu, model 1	Gly29 HN	Phe30 HN	Phe30 CE1	4	204
2o2t, chain B	Gly149 HN	Phe150 HN	Phe150 CE1	4	332
1va8, model 3	Gly40 HN	Ala41 HN	Leu93 CG	4	284
1uhp, model 8	Gly22 HN	Phe23 HN	Phe86 CD2	3	329
3lnx, chain A	Leu18 HN	Gly19 HN	Ile20 CG1	4	220

Table S5: Details of Multifilter routines.
MOLECULE	MW	COMPANY ID	SMILES CODE		
$C_6H_7FNO_2S$	364.3	ENAMINE T58 630 40	$CN1C(=O)CC2=C1C=CC(=C2)S(=O)(=O)NC3=C(C=C(C3)F)C(=O)O$		
$C_7H_8FNO_2S$	349.4	ENAMINE T6324911	$O=C(O)c1ccc(F)cc1NS(=O)(=O)c3eee2CCCCc2c3$		
$C_{13}H_{14}FNO_2S$	335.4	ENAMINE T6324915	$O=C(O)c1ccc(F)cc1NS(=O)(=O)c3eee2CCCCc2c3$		
$C_{17}H_{16}FNO_2S$	349.4	ENAMINE T6305470	$C1CCC2=C(C1)C=CC(=C2)S(=O)(=O)NC3=C(C=C(C3)F)C(=O)O$		
$C_6H_7FNO_2S$	233.22	FMP	$CS(=O)(=O)c1ccc(F)cc1C(=O)O$		
$C_{17}H_{16}BrNO_2S$	410.3	ENMINE 28744264	$O=C(O)c1ccc(Br)cc1NS(=O)(=O)c3eee2CCCCc2c3$		
$C_{13}H_{14}FNO_2S$	399.383	FMP	$O=C(O)c1ccc(F)cc1NS(=O)(=O)c3eee2CCCCc2c3$		
$C_{17}H_{18}ClNO_2S$	365.8	ENAMINE 28775339	$O=C(O)c1ccc(Cl)cc1NS(=O)(=O)c3eee2CCCCc2c3$		
Compound	Formula	MW	Name	Structure	
----------	---------	-----	------	-----------	
C₁₀H₁₀NO₅S	345.4	ENAMINE	Cc3ee(N(S(=O)=O)c2ee1CCCe1c2)c(C(=O)O)c3		
C₁₀H₆BrNO₅S	406.3	FMP	O=C(O)c1ee(Br)ce1NS(=O)(=O)ce3cc2eeccc2c3		
C₁₀H₆BrNO₅S	370.22	FMP	O=C(O)c1ee(Br)ce1NS(=O)(=O)ce3cc2eeccc2c3		
C₁₀H₆BrNO₅S	462.314	FMP	O=C(O)c1ee(Br)ce1NS(=O)(=O)ce3cc2eeccc2c3		
C₁₀H₆BrNO₅S	398.3	FMP	O=C(O)c1ee(Br)ce1NS(=O)(=O)ce3cc2eeccc2c3		
C₁₀H₆BrNO₅S	398.3	FMP	O=C(O)c1ee(Br)ce1NS(=O)(=O)ce3cc2eeccc2c3		
C₁₀H₆BrNO₅S	387.329	FMP	O=C(O)c1ee(Br)ce1NS(=O)(=O)ce3cc2eeccc2c3		
C₁₀H₆BrNO₅S	403.329	FMP	O=C(O)c1ee(Br)ce1NS(=O)(=O)ce3cc2eeccc2c3		
C₁₀H₆BrNO₅S	387.372	FMP	O=C(O)c1ee(Br)ce1NS(=O)(=O)ce3cc2eeccc2c3		
Chemical Structure	Formula	Molecular Weight	Database	Code	Structure
--------------------	---------	------------------	----------	------	-----------
![Chemical Structure 1](image1.png)	C₃₂H₆₄Cl₅N₁₀O₁₉S₁₀	498,939	ENAMINE	Z1098340488	Cc4ee(NS(=O)(=O)c3ee(CNC(=O)c1n[nH]e2eeec12)e(Cl)c3)hc(C(=O)O)hc4
![Chemical Structure 2](image2.png)	C₃₂H₆₄Cl₅N₁₀O₁₉S₁₀	497,952	ENAMINE	Z1098340555	Cc4ee(NS(=O)(=O)c3ee(CNC(=O)c1n[nH]e2eeec12)e(Cl)c3)hc(C(=O)O)hc4
![Chemical Structure 3](image3.png)	C₃₂H₆₄Cl₅N₁₀O₁₉S₁₀	526,788	ENAMINE	Z1098340559	Cc3ee(NS(=O)(=O)c2ee(cNC(=O)c1c[nH]c2)c(Cl)c2)c(C(=O)O)c3
![Chemical Structure 4](image4.png)	C₃₂H₆₄Cl₅N₁₀O₁₉S₁₀	482,337	ENAMINE	Z1098340560	Cc3ee(NS(=O)(=O)c2ee(cNC(=O)c1c[nH]c2)c(Cl)c2)c(C(=O)O)c3
![Chemical Structure 5](image5.png)	C₃₂H₆₄Cl₅N₁₀O₁₉S₁₀	476.5	ENAMINE	EN300-245381	Cl=CC(c(C(=C1)C(=O)O)NS(=O)(=O)c2=CC=CC(=C2)NS(=O)(=O)c3=C=C(=C3)C(=O)O)
![Chemical Structure 6](image6.png)	C₃₂H₆₄Cl₅N₁₀O₁₉S₁₀	374.4	MERCK	322338-10MG	Cl=CC(c(C(=C1)C(=O)N)c2=CC=CC(=C2)C(=O)N)c3=CC=c(C(=O)N)
![Chemical Structure 7](image7.png)	C₃₂H₆₄Cl₅N₁₀O₁₉S₁₀	460.5	SIGMA	SML0046	C(c(C(=O)N)c(C(=O)N)c(O)c(C(=O)N)c(O)c(C(=O)N)c(O)c(C(=O)N)c(C(=O)N)c(O)c(C(=O)N)c(O)c(C(=O)N)c(O)
![Chemical Structure 8](image8.png)	C₃₂H₆₄Cl₅N₁₀O₁₉S₁₀	356.4	SIGMA	S8139-5G	CC1=C(C(=C1)C(=O)O)NC(=O)c(=O)c(C(=O)N)c(O)c(C(=O)N)c(O)c(C(=O)N)c(O)c(C(=O)N)c(O)c(C(=O)N)c(O)c(C(=O)N)c(O)

CBC-322338/3289-8625 (Grandy et al., 2009, Hori et al., 2018)

NSC568036 (Shan et al., 2005)

Sulindac (Lee et al., 2009a)
Table S6: Smiles codes and Compounds ID. Compounds containing literature indication are those used for comparison to our compounds.

16: NMR characterization of synthesized compounds (8, 11, 13, 14, 15, 16, 17)

2-(5,6,7,8-tetrahydronaphthalene-2-sulfonamido)-5- (trifluoromethyl) benzoic acid (8)

C₁₈H₁₆F₃NO₄S
M=399.4 g/mol

(0.52 g, 74% yield) ¹H-NMR (300 MHz, DMSO-d6): δ = 11.77 [s, 1H, COOH], 8.13 [s, 1H, NH], 7.85 [d, ⁴J₁₋₃= 2.1 Hz , 1H , 1'⁻-H₉], 7.62 [d, ⁴J₁₋₃= 2.1 Hz , 1H , 1'⁻-H₉], 7.53 [dd, ³J₄₋₃= 7.1 Hz, ⁴J₄₋₆= 2.1 Hz, 4-H₉], 7.36 [dd, ³J₃₋₂= 7.5 Hz, ⁴J₃₋₂= 2.4 Hz, 1H, 3'⁻-H₉], 7.15 [d, ³J₃₋₂= 7.5Hz, 1H,4'-H₉],
6.90 [d, J = 7.1 Hz, H, 3-HAr] 2.73 (m, 4H, CH$_2$); 1.6 (m, 4H, CH$_2$). ¹³C-NMR (75 MHz, DMSO-d6): δ = 169.1 (C, C$_{Ar}$-8), 152.7 (C, C$_{Ar}$-2), 143.8 (C, C$_{Ar}$-4a’), 138.7 (C, C$_{Ar}$-2’), 135.9 (C, C$_{Ar}$-8a’), 130.4 (CH, C$_{Ar}$-4), 128.7 (CH, C$_{Ar}$-6), 127.5 (CH, C$_{Ar}$-1’), 124.0 (CH, C$_{Ar}$-4’), 121.6 (C, C-6), 118.2 (C, C$_{Ar}$-5), 116.9 (C, C$_{Ar}$-3), 29.0 (CH$_2$, C-8’), 28.8 (CH$_2$, C-5’), 22.3 (CH$_2$, C-6’), 22.2 (CH$_2$, C-7’); mp: 177°C; MS (ESI) m/z: calcd. for C$_{18}$H$_{16}$F$_3$NO$_4$S, 399; found, 400 [M+H].

5-bromo-2-(naphthalene-2-sulfamido) benzoic acid (11)

(0.13 g, 67% yield) ¹H-NMR (300 MHz, DMSO-d6): δ = 10.2 [s, 1H, COOH], 9.8 [s, 1H, NH] 8.59 [d, J = 8.9 Hz, H, 3-HAr], 8.26 [d, J = 8.9 Hz, H, 4-HAr], 8.13 [d, J = 8.9 Hz, H, 5-HAr], 7.99 [d, J = 2.4 Hz, H, 6-HAr], 7.77 [dd, J = 8.8 Hz, J = 1.6 Hz, H, 1-H], 7.72 – 7.65 [m, 3H, 4-HAr, 6’-HAr, 7’-HAr], 7.51 [d, J = 8.9 Hz, H, 3-HAr]. ¹³C-NMR (75 MHz, DMSO-d6): δ = 168.2 (C, C-7), 138.8 (C, C$_{Ar}$-2), 136.8 (CH, C$_{Ar}$-4), 135.3 (C, C$_{Ar}$-4a’), 134.4 (C, C$_{Ar}$-8a’), 133.4 (CH, C$_{Ar}$-6), 131.4 (CH, C$_{Ar}$-6’), 129.3 (CH, C$_{Ar}$-4’), 128.5 (CH, C$_{Ar}$-8’), 127.8 (2xCH, C$_{Ar}$-5’, C$_{Ar}$-7’) 121.6 (CH, C$_{Ar}$-3’), 120.6 (CH, C$_{Ar}$-3), 119.0 (C, C$_{Ar}$-1), 114.9 (C, C$_{Ar}$-5). Mp: 199°C; (ESI) m/z: calcd. for C$_{17}$H$_{12}$BrNO$_4$S, 403.9560; found, 403.9613 [M-H].
5-bromo-2-(phenylmethylsulfonamido)benzoic acid (12)

\[
\text{C}_{14}H_{12}BrNO_4S
\]

\[M=370.2 \text{ g/mol}\]

(0.07 g, 42% yield) \(^1\text{H-NMR}\) (300 MHz, DMSO-d6): \(\delta = 10.57 \text{ [s, 1H, COOH], 8.05 [d, } ^4\text{J}_{6,4} = 2.4 \text{ Hz, 1H, } \text{H-6}], 7.75 \text{ [dd, } ^3\text{J}_{4,3} = 8.9 \text{ Hz, } ^4\text{J}_{6,4} = 2.4 \text{ Hz ,1H, } \text{H-4}], 7.49 \text{ [d, } ^3\text{J}_{3,4} = 8.9 \text{ Hz,1H, } \text{H-3}], 7.33 – 7.28 \text{ [m, 3H, 3´-H}_{\text{Ar}], 7.23 – 7.20 \text{ [m, 2H, 4´-H}_{\text{Ar}], 5.75 [s, 1H, NH], 4.72 [s, 2H, 1´-H].}\]

\(^{13}\text{C-NMR}\) (75 MHz, DMSO-d6): \(\delta = 168.3 \text{ (C, C-7) , 139.9 (C, C}_{\text{Ar}-2), 137\text{(CH, C}_{\text{Ar}-4), 133.4 (CH, C}_{\text{Ar}-6), 130.7 (CH, C}_{\text{Ar}-3´), 128.6 (C, C}_{\text{Ar}-2´), 128.4 (CH, C}_{\text{Ar}-5´), 128.3 (CH, C}_{\text{Ar}-4´), 119.5 (CH, C}_{\text{Ar}-3), 117.5 (C, C}_{\text{Ar}-1) , 113.9 (C, C}_{\text{Ar}-5) , 57.4 (CH}_{2}, C-1´). \text{Mp: 216°C; (ESI) m/z: calcd.for C}_{14}H_{12}BrNO_4S^-, 367.9860; found , 367.9878 [M-H].}\]

5-bromo-2-(4-(phenoxy)methyl)phenylsulfonamido)benzoic acid (13)

\[
\text{C}_{20}H_{16}BrNO_5S
\]

\[M=462.3 \text{ g/mol}\]

(0.6 g, 29% yield) \(^1\text{H-NMR}\) (300 MHz, DMSO-d6): \(\delta = 7.97 \text{ [d, } ^4\text{J}_{6,4} = 2.4 \text{ Hz, 1H, 6-H]}, 7.85 (d, ^3\text{J}_{2,3} = 8.3 \text{ Hz, 2H, 3´-H}_{\text{Ar}], 7.73 [dd, } ^3\text{J}_{4,3} = 8.9 \text{ Hz, } ^4\text{J}_{6,4} = 2.4 \text{ Hz ,1H, } \text{H-4}], 7.63 [d, } ^3\text{J}_{2,3} = 8.3 \text{ Hz, 2H, 2´-H}_{\text{Ar}], 7.47 [d, } ^3\text{J}_{4,3} = 8.9 \text{ Hz, 1H, 3-H]}, 7.29 [dd, ^3\text{J}_{3,4} = 7.3 \text{ Hz, } ^3\text{J}_{3,4} = 7.3 \text{ Hz, 2H, 3´-H}_{\text{Ar}], 7.00 – 6.92 [m, 3H, 4´-H}_{\text{Ar}], 5.17 [s, 2H, 5´-H]. \text{13C-NMR}\) (75 MHz, DMSO-d6): \(\delta = 168.2 \text{ (C, C-7) , 157.9 (C, C}_{\text{Ar}-1), 143.2 (C, C}_{\text{Ar}-4´), 138.8 (C, C}_{\text{Ar}-2), 137.5 (C, C}_{\text{Ar}-1´) , 136.9 (CH, C}_{\text{Ar}-4), 133.5 (CH, C}_{\text{Ar}-6), 129.4(CH, C}_{\text{Ar}-3´), 128.1(CH, C}_{\text{Ar}-2´),127.0 (CH, C}_{\text{Ar}-3´), 120.9 (CH, C}_{\text{Ar}-4´), 120.5 (CH, C}_{\text{Ar}-3), S. 23}
5-bromo-2-(2,4,6-trimethylphenylsulfoamido)benzoic acid (14)

\[
\begin{align*}
\text{C}_{16}\text{H}_{16}\text{BrNO}_4\text{S} \\
M=398.3 \text{ g/mol}
\end{align*}
\]

(0.6 g, 78% yield) 1H-NMR (300 MHz, DMSO-d\text{6}): $\delta = 11.77$ [s, 1H, COOH], 9.98 [s, 1H, NH], 7.68 [d, $^4J_{6,4} = 2.4$ Hz, 1H, 6-H\text{Ar}], 7.51 [d, $^3J_{J,3} = 7.1$ Hz, 1H 4-H\text{Ar}], 7.17 [d, 2H, 4'-H\text{Ar}, 6'-H\text{Ar}], 7.14 [d, $^3J_{J,3} = 1\text{H}, 3$-H\text{Ar}], 2.56 [s, 6H, CH\text{3}, 9'-H, 7'-H], 2.21 [s, 3H, CH\text{3}, 8'-H]. 13C-NMR (300 MHz, DMSO-d\text{6}): $\delta = 168.8$ (C, C-7), 143.3 (C, C\text{Ar}-2), 139.5 (C, C\text{Ar}-2'), 139.0 and 139.0 (2xC, C\text{Ar}-3', C\text{Ar}-1') 137.3 (CH, C\text{Ar}-4), 134.0 (CH, C\text{Ar}-6'), 133.0 (CH, C\text{Ar}-6), 132.5 and 132.5 (2xC, C\text{Ar}-4', C\text{Ar}-6') 119.1(CH, C\text{Ar}-3), 117.9(C, C\text{Ar}-5), 114.3 (C, C\text{Ar}-1), 22.5 and 22.5 (2 x CH\text{3}, C-7', C-9') 20.7 (CH\text{3}, C-8'); mp: 185; MS (ESI): m/z calcd for C\text{16}H\text{16}BrNO\text{4}S, 397; found, 398 [M+H]\text{+}.

2-(4-acetylphenylsulfoamido)-5-(trifluoromethyl)benzoic acid (15)

\[
\begin{align*}
\text{C}_{16}\text{H}_{12}\text{F}_3\text{NO}_5\text{S} \\
M=387.3 \text{ g/mol}
\end{align*}
\]

(0.4 g, 63% yield) 1H-NMR (300 MHz, DMSO-d\text{6}): $\delta = 12.28$ [s, 1H, COOH], 12.10 [s, 1H, NH], 8.11 [d, $^4J_{6,4} = 2.5$ Hz, 1H, 6-H\text{Ar}], 8.08 [d, $^3J_{J,3} = 7.5$ Hz, 2H, 3'-H\text{Ar}], 7.86 [dd, $^4J_{4,6} = 2.5$ Hz, $^3J_{J,3} = 7.3$Hz, 1H, 4-H\text{Ar}], 7.64 [d, $^3J_{J,3} = 7.3$ Hz, 1H, 3-H\text{Ar}], 7.56 [dd, $^4J_{J,3} = 7.5$Hz, $^4J_{2,6} = 2.3$Hz, 2H, 2'-H\text{Ar}, 6'-H\text{Ar}] 7.22 [dd, $^3J_{J,3} = 7.5$Hz, $^4J_{J,3} = 2.1$Hz, 2H, 3'-H\text{Ar}, 5'-H\text{Ar}] 2.50 [s, 3H, CH\text{3}, 8'-H]. 13C-NMR
(75 MHz, DMSO-d6): $\delta = 197.9$ (C, C-7'), 169.1(C, C-8), 151.8 (C, C_Ar-2) 143.5 (C, C_Ar-1'), 142.5 (C, C_Ar-3), 140.6 (2xCH, C_Ar-4), 131.4 (CH, C_Ar-5), 129.6 (2xCH, C_Ar-6, C_Ar-5'), 128.6 (2xCH, C_Ar-2', C_Ar-6'), 128.4 (2xCH, C_Ar-3, C_Ar-4'), 127.6 (C, C_Ar-6), 123.0 (C, C_Ar-5), 118.7 (CH, C_Ar-3), 7.89 (d, $J_{6,4}=2.5$ Hz, 1H, 6-HAr) ; mp: 178°C; MS (ESI) m/z calcld. for C_{16}H_{12}F_3NO_6S, 403; found, 404 [M+H]^+.

2-(2,3-dihydrobenzo[b][1,4]dioxine-6-sulfonamido)-5-(trifluoromethyl)benzoic acid (16)

^{1}H-NMR (300 MHz, DMSO-d6): $\delta = 11.48$ [s, 1H, COOH], 8.13 [s, 1H, NH], 7.89 [d, $J_{6,4}=2.5$ Hz, 1H, 6-HAr], 7.66 [d, $J_{4,3}=7.2$ Hz, $J_{4,6}=2.5$ Hz, 1H, 4-HAr], 7.23 [d, $J_{4,3}=8.1$ Hz 1H, 3-HAr], 7.11 [dd, $J_{2,3}=7.3$Hz, $J_{2,8}=3.2$Hz, 1H, 2'-HAr] 6.95 [d, $J_{2,8}=3.2$ Hz, 1H, 8'-HAr]. ^{13}C-NMR (75-MHz, DMSO-d6): $\delta = 168.9$(C, C-8), 148.3(C, C-4'), 143.8(C, C-2), 143.5(C, C-7'), 131.3(C, C-1'), 130.8(CH, C-4), 128.6(CH, C-6), 125.7(C, C-7), 122.1(C, C-5), 120.9(CH, C-2'), 118.3(CH, C-3), 118.1(CH, C-3'), 116.8(CH, C-8'), 64.7(CH_2, C-5') 64.3 (CH_2, C-6'); mp: 178°C; MS (ESI) m/z: calcld. for C_{16}H_{12}F_3NO_6S, 403; found, 404 [M+H]^+.

S. 25
5-(trifluoromethyl)-2-(2,4,6-trimethylphenylsulfoamido)benzoic acid (17)

\[
\begin{align*}
\text{C}_{17}\text{H}_{16}\text{F}_{3}\text{NO}_{4}\text{S} \\
M=387.4\text{g/mol}
\end{align*}
\]

(0.38 g, 62% yield) \(^1\text{H-NMR}\) (300 MHz, DMSO-d6): \(\delta = 12.28 \text{[s, 1H, COOH]}, 11.60 \text{[s, 1H, NH]}, 8.15 \text{[d, } \^4J_{6,4}=2.1 \text{Hz, 1H, } 6\text{-H}\text{Ar}]) 7.92 \text{[dd, } \^3J_{4,3}=7.9 \text{Hz, } \^4J_{4,6}=2.1 \text{Hz, 1H, } 4\text{-H}\text{Ar}]) 7.87 \text{[d, } \^4J_{6',4}=1.9 \text{Hz, 2H, } 4'\text{-H}\text{Ar, 6'}\text{-H}\text{Ar}]), 7.48 \text{[d, } \^3J_{3,4}=7.9 \text{Hz, 1H, } 3\text{-H}\text{Ar}], 2.60 \text{[s, 6H, } \text{CH}_3\text{, 9'-H, 7'-H}], 2.23 \text{[s, 3H, } \text{CH}_3\text{, 8'-H}]. \(^{13}\text{C-NMR}\) (75 MHz, DMSO-d6): \(\delta = 169.3 \text{(C, C-7), 154.2 (C, C-2), 143.6 (C, C-2'), 139.1 and 139.1 (2xC, C-1', C-3')}\), 132.9 (C, C-5'), 132.5 (CH, C-4), 131.5 and 131.5 (2xCH, C-4', C-6'), 130.1(CH, C-6), 128.7 (C, C-8), 122.5 (C, C-5), 117.0 (CH, C-3), 109.0 (C, C-1), 22.4 and 22.4 (2xCH\text{, C-7', C-9'}), 20.8 (CH\text{, C-8'}) \text{; mp:184°C; MS (ESI) } m/z: \text{calcd. for } \text{C}_{17}\text{H}_{16}\text{F}_{3}\text{NO}_{4}\text{S, 387; found, 388 [M+H]^+}.\]