Primers for Castilleja and their Utility Across Orobanchaceae: I. Chloroplast Primers

Authors: Latvis, Maribeth, Mortimer, Sebastian M. E., Morales-Briones, Diego F., Torpey, Samuel, Uribe-Convers, Simon, et. al.

Source: Applications in Plant Sciences, 5(9)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1700020
PRIMERS FOR CASTILLEJA AND THEIR UTILITY ACROSS OROBANCHACEAE: I. CHLORPLAST PRIMERS

MARIBETH LATVIS2,8, SEBASTIAN M. E. MORTIMER3,4, DIEGO F. MORALES-BRIONES3,4,5, SAMUEL TORPEY3, SIMON URIBE-CO NVER5,6, SARAH J. JACOB3,4,5, SARAH MATHEWS7, AND DAVID C. TANK3,4,5

2Department of Natural Resource Management, South Dakota State University, 1390 College Avenue, Brookings, South Dakota 57007 USA; 3Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA; 4Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, Idaho 83844-1133 USA; 5Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA; 6Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, Michigan 48109 USA; and 7Australian National Herbarium, CSIRO National Research Collections, Canberra, Australia

Premise of the study: Chloroplast primers were developed from genomic data for the taxonomically challenging genus Castilleja. We further tested the broader utility of these primers across Orobanchaceae, identifying a core set of chloroplast primers amplifying across the clade.

Methods and Results: Using a combination of three low-coverage Castilleja genomes and sequence data from 12 Castilleja plastomes, 76 primer combinations were specifically designed and tested for Castilleja. The primers targeted the most variable portions of the plastome and were validated for their applicability across the clade. Of these, 38 primer combinations were subsequently evaluated in silico and then validated across other major clades in Orobanchaceae.

Conclusions: These results demonstrate the utility of these primers, not only across Castilleja, but for other clades in Orobanchaceae—particularly hemiparasitic lineages—and will contribute to future phylogenetic studies of this important clad of parasitic plants.

Key words: Castilleja; chloroplast; hemiparasite; high-throughput sequencing; microfluidic PCR; Orobanchaceae.

The plastome is heavily relied upon in plant systematics, owing to its conserved nature and orthology, particularly for the study of deeper evolutionary divergences. Moreover, discordance between the uniparentally inherited plastome and the biparentally inherited nuclear genome may provide insights into introgression events and their direction (Twyford and Ennos, 2012). However, the low rate of molecular evolution in the plastome can become a hindrance when reconstructing relationships between closely related taxa, requiring large amounts of data to resolve these relationships (Uribe-Convers et al., 2016). In an attempt to alleviate this problem, several recent studies have leveraged available high-throughput sequencing data for the development of variable taxon-specific plastid (and nuclear) regions (e.g., Uribe-Convers et al., 2016).

Castilleja L. (Orobanchaceae; “the paintbrushes”) is a taxonomically challenging clade that includes ~200 hemiparasitic species, many of which have a complicated history of polyploidy and/or hybridization (Heckard and Chuang, 1977). Microsatellite markers have been developed in Castilleja for population genetic studies (Fant et al., 2013), and broader, genus-wide phylogenetic reconstructions within Castilleja used two chloroplast regions (trnL-F and the rps16 intron), nuclear ribosomal spacers (ITS and ETS), and a low-copy nuclear gene (waxy) (Tank and Olmstead, 2008, 2009). However, species-level relationships lacked resolution in Tank and Olmstead (2008, 2009), limiting conclusions regarding diversification and hybridization. Here, we follow Uribe-Convers et al. (2016) for primer design and validation of the most highly variable chloroplast regions in Castilleja. Because these primers were designed for the Fluidigm Access Array microfluidic PCR system (Fluidigm, South San Francisco, California, USA), annealing temperature specifications are consistent across all primer combinations; this allows for parallelization of PCR and is ideal for high-throughput sequencing platforms (see Uribe-Convers et al., 2016 for application of this approach). Although our initial focus was the development of Castilleja-specific primers, we evaluated their utility in silico in three other lineages of Orobanchaceae to obtain a subset of “core” chloroplast primers with the potential to amplify across the clade. Once identified, we surveyed this set of core primers to assess their

1 Manuscript received 27 February 2017; revision accepted 10 April 2017. This research was supported by resources at the Institute for Bioinformatics and Evolutionary Studies (IBEST; NIH/NCRR P20RR16448 and P20RR016454) and by the following awards from the National Science Foundation: DEB-1253463 (awarded to D.C.T.), DEB-1502061 (awarded to D.C.T. for S.J.J.), and DEB-1210895 (awarded to D.C.T. for S.U.C.).

2† Deceased 21 May 2017.

8 Author for correspondence: Maribeth.Latvis@sdstate.edu

doi:10.3732/apps.1700020

Applications in Plant Sciences 2017 5(9): 1700020; http://www.bioone.org/loi/apps © 2017 Latvis et al. Published by the Botanical Society of America. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC-SA 4.0), which permits unrestricted noncommercial use and redistribution provided that the original author and source are credited and the new work is distributed under the same license as the original.
Table 1. All primer pair sequences designed for Castilleja (names and region amplified), amplicon lengths, and validation results for Orobanchaceae and outgroup taxon Paulownia. All pairs were designed for an annealing temperature of 60 °C (±1 °C). Combinations are listed from most variable to least variable, according to our prioritization scheme (see text). Boldfaced rows correspond to core Orobanchaceae primers, defined by successful amplification in two or more major clades in Orobanchaceae (see Fig. 1).

Locus (Region)	Primer sequences (5′-3′)	Amplicon length (bp)	Clade I: Lindernbergia sp.	Clade II: Schwalbavia americana	Clade III: Orobanche californica	Clade IV: Castilleja lineariloba, C. pumila, C. Lemmonii	Clade IV: Lamourouxia virgata	Clade IV: Pedicularis filiformis	Clade V: Neobartsia alectorolophus	Clade V: Rhinanthus minor	Clade VI: Harveya purpurea	Clade VI: Physocalyx major	Paulowniaceae: Paulownia elongata (outgroup)	
Cas_120561_F, Cas_121371_R	ndhF-ndhG	810	X	X	X	X	X	X						
Cas_119970_F, Cas_112790_R	ndF-ycf1	819	X											
Cas_129351_F, Cas_130126_R	ndhF-ycf1	795	X	X	X									
Cas_112854_F, Cas_113746_R	ndhF-ycf1	892	X	X										
Cas_126859_F, Cas_127713_R	ndhF-ycf1	854	X	X										
Cas_5866_F, Cas_6062_R	ndhF-ycf1	758	X	X	X	X	X	X						
Cas_127891_F, Cas_128420_R	ndhF-ycf1	529	X											
Cas_130168_F, Cas_130760_R	ndhF-ycf1	592	X	X										
Cas_126110_F, Cas_126868_R	ndhF-ycf1	758	X											
Cas_32159_F, Cas_32745_R	psbM-psbE	586	X	X	X	X	X	X	X					
Cas_57140_F, Cas_79035_R	psbH-petB	894	X											
Cas_40778_F, Cas_11525_R	rps16-trnG	747	X	X										
Cas_46472_F, Cas_47162_R	ycf3-rps4	690	X											
Cas_47778_F, Cas_46638_R	rps16-trnL	880	X											
Cas_17609_F, Cas_18412_R	rps2-rpoC2	803	X											
Cas_67504_F, Cas_68343_R	psbE-petL	932	X	X	X	X	X							

Downloaded From: https://bioone.org/journals/Applications-in-Plant-Sciences on 20 Apr 2020
Terms of Use: https://bioone.org/terms-of-use
Locus (Region)	Primer sequences (5′–3′)a	Amplicon length (bp)b	Clade I: Lindenbergia sp.	Clade II: Schwalbaumea americanus	Clade III: Oneotricha californica	Clade IV: Lamourousyia virgata	Clade IV: Pedicularis sp.	Clade V: Neobartsia filiformis	Clade VI: Physocalyx major	Paulowniaceae: Paulownia elongata (outgroup)
Cas_65707_F, Cas_66654_R	F: CTCGGAAAATCTCCCTTACC, R: TCCGATATTCATCTCTACCA	927	X	X	X	X	X	X	X	X
Cas_19454_F, Cas_20174_R	F: CACTCTAGCCACCTTATTAAATCA, R: TACTCCGCATCTCTTCCT	718	X	X	X	X	X	X	X	X
Cas_4537_F, Cas_5319_R (matK)	F: GGTCTTCTGACCAACCAACGAC, R: TGGTTATGCTGCTGCTGCTG	782	X	X	X	X	X	X	X	X
Cas_48611_F, Cas_49252_R (trnL-TrnF)	F: GTGATTCTGCTGCTGCTGCTG, R: TGGTTATGCTGCTGCTGCTG	909	X	X	X	X	X	X	X	X
Cas_3029_F, Cas_3029_R (rpl20-psbA)	F: GTTCTTCTGACCAACCAACGAC, R: TGGTTATGCTGCTGCTGCTG	866	X	X	X	X	X	X	X	X
Cas_125001_F, Cas_125309_R	F: AAAATCATCACCACCTTACC, R: TGGTTATGCTGCTGCTGCTG	858	X	X	X	X	X	X	X	X
Cas_21290_F, Cas_22036_R (rpoC2)	F: TGTTCTGATTCTACATATTGATCGTTT, R: CGTGAAGGGCTTTCTTTAACA	746	X	X	X	X	X	X	X	X
Cas_20851_F, Cas_21307_R (trnG-atpA)	F: CTGGGAAATCTCCCTTACC, R: TCCGATATTCATCTCTACCA	456	X	X	X	X	X	X	X	X
Cas_11589_F, Cas_12461_R (trnG-atpA)	F: AGCTCTACAGCATCTACAGAT, R: CTGGATAGGGGCTTTCTTTAACA	872	X	X	X	X	X	X	X	X
Cas_47139_F, Cas_48611_R	F: GTGATTCTGCTGCTGCTGCTG, R: TGGTTATGCTGCTGCTGCTG	550	X	X	X	X	X	X	X	X
Cas_14074_F, Cas_20174_R (trnL-TrnF intron)	F: TGGTTCTGATTCTACATATTGATCGTTT, R: CGTGAAGGGCTTTCTTTAACA	651	X	X	X	X	X	X	X	X
Cas_124276_F, Cas_123331_R (ndhA intron)	F: CCCATTCATTTCCTTTAATTCG, R: TTAGCTCAACAGTTTGATTAAGCTTG	797	X	X	X	X	X	X	X	X
Cas_71554_F, Cas_72431_R (rpl20-rps12)	F: ATAAACCGCGTAATCGCAAGR, R: TGTCATCCCAGTCAATCCAA	551	X	X	X	X	X	X	X	X
Cas_85769_F, Cas_86417_R (rpl22)	F: CATCAGGATATACCATAGTTGCCTTTR, R: TGCTGTTAAAGGAATTCAATCTCA	798	X	X	X	X	X	X	X	X
Cas_36699_F, Cas_37444_R (psbC-psbZ)	F: GCGGTCCGCAGAATATATGAR, R: TTATTTCACAAATGGGAATCCTG	746	X	X	X	X	X	X	X	X
Cas_61880_F, Cas_62831_R (psaI-ycf4)	F: GCATGCTCCTCCTCTCTCTCTC, R: GCCCTGGAGATTCATCATTATA	951	X	X	X	X	X	X	X	X
Cas_73947_F, Cas_74498_R (clpP)	F: TCTTGTTCCTGAATGGGTCTCR, R: GTTACGTTTCCACATCAAAGTGA	551	X	X	X	X	X	X	X	X
Cas_123306_F, Cas_124104_R (ndhH)	F: AATGAGATTGAATTCCTTTAACAGCR, R: TGAAATTGGCTGATATTATGACG	798	X	X	X	X	X	X	X	X
Cas_124276_F, Cas_123331_R (ndhA intron)	F: ATAAACCGCGTAATCGCAAGR, R: TGTCATCCCAGTCAATCCAA	781	X	X	X	X	X	X	X	X
Cas_20851_F, Cas_21307_R (trnG-atpA)	F: CTGGGAAATCTCCCTTACC, R: TCCGATATTCATCTCTACCA	648	X	X	X	X	X	X	X	X
Cas_48611_F, Cas_49252_R (trnL-TrnF)	F: GTGATTCTGCTGCTGCTGCTG, R: TGGTTATGCTGCTGCTGCTG	745	X	X	X	X	X	X	X	X
Cas_61880_F, Cas_62831_R (psaI-ycf4)	F: GCAATGGCTTCTTTATTTCTCTCA, R: GCCCTGGAGATTCATCATTATA	951	X	X	X	X	X	X	X	X
Cas_5508_F, Cas_6230_R (trnK-rps16)	F: AATGAGATTGAATTCCTTTAACAGCR, R: TGAAATTGGCTGATATTATGACG	551	X	X	X	X	X	X	X	X

Table 1. Continued.
Table 1. Continued.

Locus (Region)	Primers sequences (5’-3’)*	Clade I: Lindenbergia sp.	Clade II: Schwallia americana	Clade III: Orobanche californica	Clade IV: Castilleja lineariloba, C. pumila, C. lemmonii	Clade IV: Lamourouxia virgata	Clade IV: Pedicularis sp.	Clade V: Rhinanthus alectorolophus	Clade V: Paulownia elongata (outgroup)	Clade VI: Physocalyx major
Cas_13394_F	F: CGGGCAATAGCTAGGCCTAC	X	X	X	X	X	X	X	X	
Cas_13466_R	R: TTAGTGGGAGGGAGTTT									
Cas_19976_F	F: TCTGATAGCTGGCAAGAAC	1700 X X X X X X X X X X X								
Cas_14062_R	R: CTTTTTTGGAATAGGGCGAAA									
Cas_52327_F	F: TGAAATACTACAGTACCCAAATACA	593 X X								
Cas_55488_F	F: TCCATTAGCTACAAATATGCCTCA	866 X X								
Cas_20009_F	F: TTCTTCTGCTCCCAATGATAC	804 X X X X X X X X X X X	X	X	X	X	X	X	X	X
Cas_20813_R	R: TCATCTTCACCCTCAATCG									
Cas_48210_F	F: ACACCCTCTGCCTCAAGACTTT	889 X X X X X X X X X X X	X	X	X	X	X	X	X	X
Cas_45699_R	R: CTCGCAAGCGGGTGGAGTGG									
Cas_21273_F	F: CCCGGACTAGTGTTTTCTT	752 X X								
Cas_21224_F	R: CGGGGCTCGTATGAGGTMAAA									
Cas_39851_F	F: CGGAGCTGAGAGGCTAATCT	749 X X								
Cas_94606_R	R: CTCCGAGGAGCAACAAAGA									
Cas_54595_F	F: GGGAGCTTGGCTCAGACTCC	862 X X								
Cas_55457_R	R: GGGCCCTATCTACCAACCCCTTT									
Cas_94705_F	F: CGGAGTACATGCTCGGTCTAATGGGA	591 X X X X X X X X X X X	X	X	X	X	X	X	X	X
Cas_95300_R	R: TCGTGAGATAACTGCTCAATGGA									
Cas_14428_F	F: GGAACGAAAGAGAGGAGGAGA	838 X X								
Cas_14427_R	R: AGGCAGAGAGAGAGAGAGAGG									
Cas_79223_F	F: CTCTAGCTGCAATGCTGCAATGCA	769 X X								
Cas_79222_R	R: CATCGCGAGAGAGAGAGAGAGG									
Cas_80388_F	F: TTTTACTATGCTGCACTGCTT	854 X X								
Cas_81995_F	R: AAGGGCAGACATGCTGCAATGCA									
Cas_82887_R	F: GCGCTACGACAGGCTACGAC	892 X X								
Cas_85146_F	R: GTATCCGAGAGAGAGAGAGAGG									
Cas_85794_F	F: TCGGACATGTAGAGGACAACTATACCA	645 X X								
Cas_85794_R	R: GGGAACTTGTAGAGGACTCTGAGTGG									

amplicon lengths (bp)
Locus (Region)	Primer sequences (5′-3′)	Amplicon length (bp)	Clade I: \textit{Lindenbergia} sp.	Clade II: \textit{Schwalleria} americanus	Clade III: \textit{Onobancha} californica	Clade IV: \textit{Castilleja} lineariloba, \textit{C. pumila}, \textit{C. lemmonii}	Clade IV: \textit{Pedicularis} sp.	Clade V: \textit{Rhinanthus} alectorolophus	Clade VI: \textit{Physocalyx} major	Poulseniaae: \textit{Paulownia} elongata (outgroup)
Cas_96241_F, Cas_97030_R (ppC-psbE)	F: TCCGAGATCTCTTATTGAATTGC									
R: TTCCCATGATGATGATGATGTT	789	X	X	X	X	X	X	X	X	
Cas_38180_F, Cas_38949_R (rrnG-gpsL)	F: CCGCCAAGTACAGATGAAAA									
R: ACCGAACTATTGGCAAGA	769	X	X	X	X	X	X	X	X	
Cas_21932_F, Cas_22735_R (rpsC2-rpsC1)	F: CCGCTGAGATTCAGCAGCAT									
R: TCTCAGCCTTGTACATGCT	803	X	X	X	X	X	X	X	X	
Cas_12587_F, Cas_13399_R (rpsA1)	F: AGGGCGTACATCCGCTTCA									
R: TGCTGAATTACCGCTCTTG	832	X	X	X	X	X	X	X	X	
Cas_28585_F, Cas_26657_R (rpsB)	F: GCCATATGTCCTCAGGAAG									
R: AAGGCCTGAAAGATCACA	802	X	X	X	X	X	X	X	X	
Cas_51793_F, Cas_62733_R (pca-psbE)	F: TAAACCCCTGATATATGAG									
R: AAATGGTACAGGGATTTC	939	X	X	X	X	X	X	X	X	
Cas_23417_F, Cas_24195_R (rpsA1)	F: TTCTGTAGATTTCTCCCAATC									
R: CTATACATTCGCACTGAG	778	X	X	X	X	X	X	X	X	
Cas_66023_F, Cas_67525_R (psbA-psbE)	F: ACCTAATCGGATATGAGAACA									
R: TCTAAGATGCGCTTGACTACA	902	X	X	X	X	X	X	X	X	
Cas_90084_F, Cas_90885_R (pca-psbE)	F: AGATCGAGCTTATCCCCGAAAA									
R: TGGCTCTCATGATGTTGGG	801	X	X	X	X	X	X	X	X	
Cas_18394_F, Cas_19186_R (rpsC2)	F: TGTCTGCAGGATATGAGAACA									
R: TGGCCCATATGGGAAATCC	792	X	X	X	X	X	X	X	X	
Cas_42062_F, Cas_42897_R (psbA)	F: GGGGAAAGGATTGATTTTT									
R: TGGGTGACATTATTTTTACCG	835	X	X	X	X	X	X	X	X	
Cas_92905_F, Cas_92935_R (pca-psbE)	F: CCAAGTGGATACAGCATCACC									
R: TGGTCAGATGAGATACC	840	X	X	X	X	X	X	X	X	
Cas_97508_F, Cas_98852_R (pca-psbE)	F: TGCTGCGGTATCTCTTCAG									
R: ACAGAATGCGTTGATAGTATCCA	923	X	X	X	X	X	X	X	X	
Cas_104111_F, Cas_104945_R (trnL-trnF)	F: TGGTTGTACACGCTTCTTCA									
R: ATTTCACGCTCTTCCTTTCG	834	X	X	X	X	X	X	X	X	
Cas_34914_F, Cas_35729_R (psbA-psbE)	F: GAGCTTGCTCGATCTGTTCA									
R: TCAGGTCATGAGACAGCAG | 815 | X | X | X | X | X | X | X | X |

\(^a\) Primer sequence for the “\textit{Castilleja}—specific primer.” To make the target-specific primer for subsequent microfluidic PCR, conserved sequence tags CS1 (5′-ACACTGACGACATGGTTCTACA) and CS2 (5′-TACGGTAGCAGAGACTTGGTCT) were added to each forward and reverse primer, respectively.

\(^b\) Amplicon length (bp) estimated from \textit{Castilleja} plastome alignments.

\(^c\) PCR validations using DNAs from Bennett and Mathews (2006).

\(^d\) PCR validations were considered successful for \textit{Castilleja} when amplification occurred for all three taxa, representing one annual lineage (\textit{C. lineariloba}) and two perennial lineages (\textit{C. pumila} and \textit{C. lemmonii}).

\(^e\) Taxa that both were PCR validated and had primer combinations evaluated in silico against their respective plastome assemblies (raw read files available in the NCBI Sequence Read Archive submission SRP100222).
METHODS AND RESULTS

Three species of Castilleja were selected for genome skimming (C. cusickii Greenm., C. foliolaris Hook. & Arn., C. tenuis (A. Heller) T. I. Chuang & Heckard; Appendix 1), with taxa chosen to include both annual and perennial lineages (National Center for Biotechnology Information [NCBI] Sequence Read Archive [SRA] accession SRP1002222). DNA extraction, purification, Illumina library construction, and subsequent cleaning of reads followed Uribe-Convers et al. (2016). Samples were sequenced as 100-bp single-end reads on an Illumina HiSeq 2000 (Illumina, San Diego, California, USA) at the University of Oregon, and cleaned reads were assembled against a reference genome (Sesamum indicum L. JN637766) using the Alignreads pipeline version 2.25 (Straub et al., 2011). In addition to these three low-coverage genomes, we also used existing data for 12 Castilleja plastomes generated by Uribe-Convers et al. (2014) using a long-PCR approach. Fifteen plastomes in total were aligned using MAFFT version 7.017b under the default settings (Katoh and Standley, 2013). We used a custom R script (Uribe-Convers et al., 2016) to identify the most variable regions of the alignment spanning 400–1000 bp that were flanked by conserved regions, enabling prioritization based on predicted amplicon size and variability. Regions containing ambiguous bases were discarded, and those missing from one or more taxa in the alignment, particularly in the plastomes generated through the long-PCR method, were given lesser priority. We used Primer3 (Untergasser et al., 2012) to design primer pairs for the selected regions with an annealing temperature of 60°C (±1°C), and allowing no more than three continuous nucleotides of the same base, following the specifications of the Fluidigm Access Array System protocol.

We validated each primer combination using PCR with three high-quality Castilleja DNA isolations chosen to represent major lineages, sensu Tank and Omlstead (2008) (C. lineariloba (Benth.) T. I. Chuang & Heckard, C. tenuis, A. Gray, and C. pumila Wedd.; Appendix 1), but different than those selected for genome skimming and primer design, and a negative control. Because we followed the approach of Uribe-Convers et al. (2016), it was necessary for our validation conditions to simulate the four-primer reaction of the Fluidigm microfluidic PCR using a standard thermocycler. Therefore, our target-specific primers include a 5′ conserved sequence (CS) tag, obtained from the Fluidigm Access Array System protocol, which provides an annealing site for Illumina sequencing adapters and sample-specific barcodes. PCR amplification followed Uribe-Convers et al. (2016), and amplicons were visualized on a standard agarose gel. In total, 76 primer combinations were successfully designed and validated (Table 1).

To test the broader utility of our Castilleja-specific primers, we searched for matches in two published plastome assemblies for Lamourouxia virgata Kunth (Pedicurideae, Clade IV; Fig. 1) and Neobartsia stricta (Kunth) Uribe-Convers & Tank (Rhinanthaceae, Clade V) (NCBI SRA accessions SRK1023133 and SRK1023130, respectively; Uribe-Convers et al., 2014). We assembled the plastome for a third taxon, Physocalyx major Mart. (Buchneraceae, Clade VI; NCBI SRA accession SRP1002222), to include in our comparison. Physocalyx major was sequenced on an Illumina HiSeq 2000 at the University of Oregon as 100-bp paired-end reads. Cleaned reads for P. major were mapped to three reference plastomes with one copy of the inverted repeat region removed (Sesamum indicum JN637766, Neobartsia inequalis (Benth.) Uribe-Convers & Tank KP922717, Castilleja parviflora (F. González & Pabón-Mora KT999111) using Bowtie2 (Langmead and Salzberg, 2012). Consensus sequences of the resultant contigs were obtained and used as final references. Contigs were then imported into Geneious R7 version 7.0.6 (Kearse et al., 2012), and a consensus sequence was obtained by calling regions with less than 5X coverage as “N” and using the “Highest Quality” as a threshold. Separate BLAST databases were created for Lamourouxia Kunth, Neobartsia Uribe-Convers & Tank, and Physocalyx Pohl assemblies (makeblastdb), and blastn_short was used to search for matching hits with the list of Castilleja chloroplast primers. Hits were further considered if both primer pairs (1) occurred on the same contig and (2) had predicted amplicon sizes between 350–1000 bp. Once we obtained a set of primer hits for the three taxa, they were validated with PCR using L. virginica, P. major, and Neobartsia filiformis (Wedd.) Uribe-Convers & Tank (Appendix 1), as described above. Primer pairs with amplification in at least two out of three taxa above were chosen for another round of PCR validation with expanded taxon sampling that represented all major lineages of Orobanchaceae (sensu McNeal et al., 2013; Appendix 1): Lindenbergia sp. Lehm. (Clade I), Schwalbea americana L. (Cymbarbieae, Clade II), Orobanche californica Cham. & Schltdl. (Orobanchaceae, Clade III), Pedicularis sp. L. (Pedicurideae, Clade IV), Rhinanthus aclectorophlophus (Scop.) Pollich (Rhinanthaceae, Clade V), Harveya purpurea Harv. (Buchneraceae, Clade VI), and Paulownia Siebold & Zucc. (Paulowniaceae; outgroup). As a positive control, we included CS-tagged “universal” primers for the trnl-F region (“trn-c” and “trn-f”) of Taberlet et al., 1991, in Tank and Omlstead, 2008). Out of the 76 primer pairs designed and validated for Castilleja, we identified 36 pairs with applicability across Orobanchaceae (referred to as core Orobanchaceae primers; these are boldfaced in Table 1). These were chosen based on amplification across a large phylogenetic breadth of the clade, but allowing for some failures. For example, Orobanche, a holoparasite, failed for most primer combinations, a result that is likely due to the reduction and modification of the plastome in this lineage (see Bennett and Mathews, 2006). Higher success rates were noted for hemiparasites.
CONCLUSIONS

We report 76 primer pairs designed to target the most variable regions of the chloroplast genome in *Castilleja*. We further demonstrate their utility across other major clades in Orobanchaceae, particularly with hemiparasitic taxa, and present a subset of 38 core Orobanchaceae primers. Although these primer combinations target similar highly variable plastid regions as in other angiosperm-wide studies (e.g., Ebert and Peakall, 2009), few of the primers reported here overlap directly with them. Two exceptions are Cas_11589 F (trnG) and Cas_61880 F (psaI) (Table 1), which were also developed by Ebert and Peakall (2009). Notably, our primer combinations were designed with the same annealing temperature to take advantage of the Fluidigm microfluidic PCR system and high-throughput sequencing platforms, but will also be useful for traditional PCR and Sanger sequencing.

LITERATURE CITED

Bennett, J. R., and S. Mathews. 2006. Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. *American Journal of Botany* 93: 1039–1051.

Ebert, D., and R. Peakall. 2009. A new set of universal de novo sequencing primers for extensive coverage of noncoding chloroplast DNA: New opportunities for phylogenetic studies and cpSSR discovery. *Molecular Ecology Resources* 9: 777–783.

Fant, J. B., H. Wolf-Weinberg, D. C. Tank, and K. A. Skogee. 2013. Characterization of microsatellite loci in *Castilleja sessiliflora* and transferability to 24 *Castilleja* species (Orobanchaceae). *Applications in Plant Sciences* 1: 1200564.

Heckard, L. H., and T. I. Chuang. 1977. Chromosome numbers, polyploidy, and hybridization in *Castilleja* (Scrophulariaceae) of the Great Basin and Rocky Mountains. *Brittonia* 29: 159–172.

Katoi, K., and D. M. Standley. 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. *Molecular Biology and Evolution* 30: 772–780.

Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics (Oxford, England)* 28: 1647–1649.

Langmead, B., and S. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. *Nature Methods* 9: 357–359.

McNeal, J. R., J. R. Bennett, A. D. Wolfe, and S. Mathews. 2013. Phylogeny and origins of holoparasitism in Orobanchaceae. *American Journal of Botany* 100: 971–983.

Straub, S. C. K., M. Pfeiffer, T. Livshultz, Z. Foster, M. Parks, K. Weitemier, R. C. Cronn, and A. Liston. 2011. Building a model: Developing genomic resources for common milkweed (*Asclepias syriaca*) with low-coverage genome sequencing. *BMC Genomics* 12: 211.

Tank, D. C., and R. G. Olmstead. 2008. From annuals to perennials: Phylogeny of subtribe Castillejinae (Orobanchaceae). *American Journal of Botany* 95: 608–625.

Tank, D. C., and R. G. Olmstead. 2009. The evolutionary origin of a second radiation of annual *Castilleja* (Orobanchaceae) species in South America: The role of long distance dispersal and allopolyploidy. *American Journal of Botany* 96: 1907–1921.

Twyford, A. D., and R. A. Ennos. 2012. Next-generation hybridization and introgression. *Heredity* 108: 179–189.

Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Farelloch, M. Reim, and S. G. Rozen. 2012. Primer3–New capabilities and interfaces. *Nucleic Acids Research* 40: e115.

Uribe-Verdier, S. J. R. Duke, M. J. Moore, and D. C. Tank. 2014. A long-PCR based method for chloroplast genome enrichment and phylogenomics in angiosperms. *Applications in Plant Sciences* 2: 1300063.

Uribe-Verdier, S. M. L. Settles, and D. C. Tank. 2016. A phylogenomic approach based on PCR target enrichment and high throughput sequencing: Resolving the diversity within the South American species of *Bartsia* L. (Orobanchaceae). *PLoS ONE* 11: e0148203.

APPENDIX 1. Voucher information for species used in this study.

Species	Voucher accession no. (Herbarium)*	Collection locality	Geographic coordinates
Castilleja cewickii Greenm.	Tank 2009-01 (ID)	Idaho, USA	45.884241° N, 116.230195° W
Castilleja foliolosa Hook. & Arn.	A. Colwell 03-09 (YM)	California, USA	35.3926° N, 120.3522° W
Castilleja lemmonii A Gray	Jacobs 2015-088 (ID)	California, USA	37.907982° N, 119.258583° W
Castilleja lineatiloba (Benth.) T. I. Chuang & Heckard	Tank 2002-04 (WTU)	California, USA	37.41387° N, 120.10833° W
Castilleja pumila Wedd.	Urife-Convers 2011-120 (ID)	La Libertad, Peru	7.99506° S, 78.44197° W
Castilleja tenais (A. Heller) T. I. Chuang & Heckard	Tank 2001-13 (WTU)	Washington, USA	46.118133° N, 121.5158° W
Harveya purpurea Harv.	Randle 79 (OS)	Chiapas, Mexico	16.713611° N, 92.614722° W
Lamourouxia virgata Kunth	Mejia 581 (CAS)	Armstrong 1163 (ISU)	NA
Lindenbergia sp. Kunth	Armstrong 1163 (ISU)	NA	NA
Neobartsia filiformis (Wedd.) Uribe-Convers & Tank	Urife-Convers 13-027 (ID)	La Paz, Bolivia	16.32796° S, 67.9457° W
Orobanchus californica Cham. & Schltdl.	Bennett 72 (A)	Cultivated	Cultivated
Paulownia elongata Siebold & Zucc.	s.n. (A)	Cultivated	(https://shefieldsc.com)
Pedicularia sp. L.	Krajsek and Bennett s.n. (A)	NA	NA
Physocalyx major Mart.	G. O. Romlo 2529 (ESA)	Minas Gerais, Brazil	19.2635° S, 43.5508° W
Rhinanthus alectorolophus (Scop.) Pollich	Bennett 85 (A)	NA	NA
Schwalbea americana L.	Kirkman s.n. (PAC)	NA	NA

Note: NA = not available.
*Herbarium acronyms are per Index Herbariorum (http://sweetgum.nybg.org/science/ih/).

http://www.bioone.org/loi/apps

7 of 7