Co-occurrence of 3 different resistance plasmids in a multi-drug resistant Cronobacter sakazakii isolate causing neonatal infections

Lining Shi1,2, Quanhui Liang3,4, Zhe Zhan5,6, Jiao Feng5, Yachao Zhao5, Yong Chen1, Mei Huang1, Yigang Tong1, Weili Wu1, Weijun Chen1, Xiaojun Liu7, Zhe Yin1, Jinglin Wang2, and Dongsheng Zhou2

1Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China; 2Department of Clinical Laboratory, The First People’s Hospital of Foshan, Foshan, China; 3State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; 4Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China

ABSTRACT

Cronobacter sakazakii 505108 was isolated from a sputum specimen of a neonate with severe pneumonia. C. sakazakii 505108 co-harbors 3 resistance plasmids of the IncHI2, IncX3, and IncFIB incompatibility groups, respectively. These 3 plasmids have acquired several accessory modules, which carry an extremely large number of resistance genes, especially including those involved in resistance to carbapenems, aminoglycosides, tetracyclines, and phenicol and sulphonamid/trimethoprim. These plasmid-borne antibiotic resistance genes were associated with insertion sequences, integrons, and transposons, indicating that the assembly and mobilization of the corresponding accessory modules with complex chimaera structures are facilitated by transposition and/or homologous recombination. This is the first report of fully sequence plasmids in clinical Cronobacter, which provides a deeper insight into plasmid-mediated multi-drug resistance in Cronobacter from hospital settings.

Introduction

Enterobacter sakazakii was initially defined in 1980 and reclassified into a new genus Cronobacter in 2007, currently composed of 7 species. Cronobacter species are motile, non-sporforming, perithrochous rods within the Enterobacteriaceae family and ubiquitously distributed in nature. Cronobacter can cause serious infections in neonates and infants, especially those premature or with low birth weight, and infections in elderly and immunocompromised adults have also been reported. C. sakazakii, C. malonaticus and C. turicensis are considered as opportunistic human pathogens and account for the majority of clinical isolates of Cronobacter. Cronobacter-induced neonatal infections manifest as necrotizing enterocolitis, meningitis, septicaemia and severe pneumonia with mortality rates of 40–80%, and in most cases are epidemiologically associated with ingestion of contaminated powdered infant formula. The number of Cronobacter infection cases is underestimated due to misidentification of Cronobacter as other species such as Enterobacter cloacae.

Cronobacter isolates are generally susceptible to the most commonly clinically used antimicrobial agents, but resistance to one or more old-generation antimicrobials such as cephalothin, streptomycin, gentamicin and tetracycline has developed in a few Cronobacter isolates. The production of chromosomal AmpC β-lactamases, including CSA-1 and CSA-2 in C. sakazakii, and CMA-1 and CMA-2 in C. malonaticus, confers the resistance exclusively to the first generation cephalosporins (e.g. cephalothin). The tet(A)(B) gene and additional unknown determinants for tetracycline resistance have been reported in an environmental tetracycline-resistant Cronobacter isolate. A multi-drug resistant (MDR) C. sakazakii isolate of animal origin co-harbors an IncI2 plasmid pWF-5–19C_mcr-1 (accession number KX505142) carrying mcr-1 (colistin resistance) and an IncB/O plasmid pWF-5–19C_NDM (accession number KX505142) containing fosA3 (fosfomycin resistance) and blaNDM (carbapenem resistance). pWF-5–19C_NDM is partially sequenced, while pWF-5–19C_mcr-1 represents the single fully sequenced antibiotic resistance plasmid in Cronobacter.

CONTACT

Dr. Zhe Yin, jerry9yin@163.com
State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing 100071; Dr. Jinglin Wang, wjwjli0801@sina.com; Dr. Dongsheng Zhou, dongshengzhou1977@gmail.com
State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing 100071, China.

These authors contributed equally to this paper.

Supplemental data for this article can be accessed on the publisher’s website.

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Coexistence of bla_{VEB-1} (extended-cephalosporin resistance), qnrA (quinolone resistance) and arr-2 (rifampin resistance) in a plasmid-borne class 1 integron has been identified in a nosocomial MDR Cronobacter isolate.13,14 These examples represent the few reports of plasmid-mediated MDR in clinical Cronobacter isolates, but neither the integron nor the plasmid has been fully sequenced.

This study deals with detailed genetic characterization of 3 resistance plasmids co-existing in a MDR C. sakazakii isolate causing severe neonatal pneumonia. These 3 plasmids carry a total of 22 non-redundant genes or gene loci involved in resistance to antimicrobials and heavy metals. This is the first report of fully sequenced antibiotic resistance plasmids in Cronobacter of clinical origin.

Results and discussion

Case report

On April 28 2016, a female neonate with hyperpyrexia, bradypnea, hyperspasmia, refusal to feed, recurrent apnea and severe skin jaundice was hospitalized in a public children’s hospital in Nanjing City, China, and diagnosed to have bilirubin encephalopathy accompanied with severe pneumonia. Once hospitalized, the patient received a series of symptomatic treatments, especially including nutrition support therapy, exchange transfusion, neonatal phototherapy, mechanical ventilation; in addition, empirical intravenous antimicrobial treatment with latamoxef. Bacterial isolates were repeatedly recovered from the sputum specimens during routine sampling and cultivation from April 30th to May 5th, and one of these isolates was designated 505108. Based on the antimicrobial susceptibility test results, the antibiotic therapy was switched to intravenous administration with erythromycin since May 1st. Her symptoms associated with bilirubin encephalopathy and pneumonia gradually improved.

C. sakazakii co-harboring 3 resistance plasmids

PCR detection, followed by PCR amplicon sequencing, disclosed that the 505108 isolate carried the 2 C. sakazakii signature sequences of cgcA and gyrB. The multilocus sequence typing (MSLT) showed that the 505108 isolate belonged to the C. sakazakii sequence type 1 (ST1), with an allelic profile 1–1–1–1–1–1 corresponding to the 7 housekeeping genes atpD, fiaA, glnS, gltB, gyrB, infB and pps. PCR screening indicated the presence of bla_{NDM-1}, but none of the other carbapenemase genes were found in C. sakazakii 505108.

The 505108 isolate was found to harbor 3 plasmids, designated p505108-MDR, p505108-NDM and p505108-T6SS, which had circularly closed DNA sequences of 312,880 bp, 53,793 bp and 139,553 bp in length with mean G+C contents of 47.7%, 49.0% and 56.4%, and contained 359, 62 and 126 predicted open reading frames (ORFs), respectively (Figure S1 and Table 1).

Each plasmid was composed of the backbone regions, together with the accessory modules that were recognized as acquired DNA regions associated with and bordered by mobile elements and inserted at different sites of the backbone (Figure S1). A total of 22 non-redundant genes or gene loci, which were involved in resistance to antimicrobials (β-lactams including carbapenems, quinolons, aminoglycosides, tetracyclines, phenicols, sulphonamides, trimethoprim, rifampicins, bleomycin and acriflavine) and heavy metals (arsenic, copper, mercury, nickel/cobalt and tellurium), were found not only in the accessory modules but also in the backbones of these 3 plasmids (Table 1 and 2).

p505108-NDM could be transferred into E. coli through conjugation, generating the transconjugant 505108-NDM-EC600 (Table 3). Repeated attempts failed to transfer p505108-MDR or p505108-T6SS into E. coli through conjugation and electroporation. Class B carbapenemase activity was observed in both

Table 1. Major features of plasmids analyzed.
Plasmids

Category	p505108-MDR	R478a	p505108-NDM	p505108-HN380a	p505108-T6SS	pESA3a
Incomparability group	IncH1	IncH1	IncK3	IncK3	IncK1	IncK1
Total length (bp)	312,880	274,762	53,793	54,035	139,553	131,196
Total number of ORFs	359	304	61	62	126	117
Mean G+C content, %	47.7	45.5	49.0	49.0	56.4	56.8
Length of the backbone (bp)	207,144	212,499	34,700	34,732	131,195	131,195
Accessory modules	The MDR-1 regiona, the MDR-2 regiona, the Tn6362a, the apha_{1a} regiona, the IS09-ISC\textsubscript{15} region, and 2 separate copies of Δ5039D	The Tn1696-Tn6322 regiona, the sil-cop regiona, Tin10a, IS1686, and IS150	The bla_{NDM-1} regiona, and ISK033 The apha_{1a} regiona	None		

Note. areference plasmids included in genomic comparison; aaccessory modules containing resistance genes as listed in Table 2.
505108 and 505108-NDM-EC600 (data not shown), which was due to production of NDM enzyme in these 2 strains.

The 505108 isolate was resistant to ampicillin, ceftazidime, meropenem, cefoxitin, aztreonam, amikacin, minocycline, chloramphenicol, trimethoprim and sulfamethoxazole, but remained susceptible to nitrofurantoin, ciprofloxacin, azithromycin, fosfomycin, tigecycline and colistin; as expected, the transconjugant 505108-NDM-EC600 was resistant to ampicillin, ceftazidime, meropenem, cefoxitin and aztreonam, but remained susceptible to all the other drugs tested (Table 3).

Table 2. Drug resistance genes in sequenced plasmids.

Plasmid	Resistance marker	Resistance phenotype	Nucleotide position	Region located
p505108-MDR	The ter locus	Tellurium resistance	62591..82538	The plasmid backbone
	The ars locus	Arsenic resistance	156203..159087	
	dfaA18	Trimethoprim resistance	124249..124818	
	strA18	Aminoglycoside resistance	126502..128231	
	The rcn locus	Nickel/cobalt resistance	142132..143642	
	blaoSHV-12	β-lactam resistance	239239..240099	The MDR-2 region
	blaoHCA-1	β-lactam resistance	247503..248642	
	aacC3	Aminoglycoside resistance	265953..266762	
	aacA27	Aminoglycoside resistance	268847..269428	
	aacA4cr	Quinolone and aminoglycoside resistance	235221..235775	
	qnrB4	Quinolone resistance	252763..253410	
	tetA(D)	Tetracycline resistance	224408..225592	
	catA2	Phenolic resistance	220639..221280	
	sulF	Sulphonamide resistance	245087..245926	
	sulC	Sulphonamide resistance	262128..262967	
	arr7	Rifampicin resistance	265412..265807	
	The mer locus	Mercuric resistance	10624..108678	Tn6362
	aphA1a	Aminoglycoside resistance	164776..165591	
	blaoTEM-1b	β-lactam resistance	13444..114304	Tn2
p505108-NDM	blaoNDM-1	Carbenem resistance	17827..18639	The blaoNDM-1 region
	blaoSHV-12	β-lactam resistance	9324..10184	
	blaoMBL	Bleomycin resistance	17560..17925	
p505108-T6SS	acrAB	Azciflavin resistance	13799..17998	
	The ars locus	Arsenic resistance	47576..49740	
	scsAB	Copper resistance	70758..73326	
	aphA1a	Aminoglycoside resistance	77928..78743	

505108 and 505108-NDM-EC600 (data not shown), which was due to production of NDM enzyme in these 2 strains.

The 505108 isolate was resistant to ampicillin, ceftazidime, meropenem, cefoxitin, aztreonam, amikacin, minocycline, chloramphenicol, trimethoprim and sulfamethoxazole, but remained susceptible to nitrofurantoin, ciprofloxacin, azithromycin, fosfomycin, tigecycline and colistin; as expected, the transconjugant 505108-NDM-EC600 was resistant to ampicillin, ceftazidime, meropenem, cefoxitin and aztreonam, but remained susceptible to all the other drugs tested (Table 3).

General features of p505108-MDR

The p505108-MDR backbone had 95% BLAST query coverage and 99% nucleotide identity to the reference IncHI2 plasmid R478, and these 2 plasmids shared the core IncHI2 backbone markers including repHI2A and repHI2B for replication initiation, parAB and parMR for partition, and the tra1 and tra2 regions for conjugal transfer (Figure S1 and S2).

Whole genome comparison of p505108-MDR and R478 disclosed 10 different regions (DFRs), designated DFR-1 to DFR-10 (Figure S2). A ΔIS903D element

Table 3. Antimicrobial drug susceptibility profiles.

Category	Antibiotics	MIC (mg/L)	505108	505108-NDM-EC600	EC600
Penicillin	Ampicillin	>1024/R	>1024/R	<4/S	
Cephalosporin	Cefazidime	>512/R	>512/R	<4/S	
Carbenem	Meropenem	16/R	8/R	<1/S	
Cephamycin	Cefoxitin	512/R	128/R	<8/S	
Monobactam	Aztreonam	128/R	128/R	<4/S	
Aminoglycoside	Amikacin	1024/R	<8/S	<8/S	
Tetracycline	Minocycline	32/R	<1/S	<1/S	
Phenicol	Chloramphenicol	512/R	<8/S	<8/S	
Folate pathway Inhibitors	Trimethoprim	>32/R	0.25/S	<0.25/S	
	Sulphamethoxazole	608/R	4.75/S	4.75/S	
Nitrofuran	Nitrofurantoin	32/S	16/S	8/S	
Fluoroquinolone	Ciprofloxin	<1/S	<1/S	<1/S	
Moxolide	Azithromycin	8/S	4/S	4/S	
Fosfomycin	Fosfomycin	<64/S	<64/S	<64/S	
Glycylccline	Tigecycline	<1/S	<1/S	<1/S	
Lipopeptide	Colistin	<1/S	<1/S	<1/S	

Note: S—sensitive; R—resistant.
(DFR-1) was inserted between parR and htdA within the tra2 region of p505108-MDR, probably making p505108-MDR non-conjugative. DFR-2 was located between orf564 and orf312 and organized as the hipB to orf411 backbone region, Tn6362, the orf189 to orf258 backbone region in p505108-MDR, but manifested as the Tn1696-Tn6322 region in R478; the acquisition of Tn1696-Tn6322 resulted in the loss of the above 2 small backbone regions from R478. Tn2 (DFR-3) was inserted into orf159 (splitting it into 2 separate parts) in p505108-MDR, which left 5-bp direct repeats (DRs; target site duplication signals of transposition) at both ends of Tn2. DFR-4 existed as the 11.4-kb sil-cop region (conferring resistance to silver and copper) that was inserted between the 2 backbone genes orf159 and orf189 in R478, but as the 25-kb MDR-1 region in p505108-MDR. The 6.9-kb apha1a region (DRF-5) was observed between int and mucAB in p505108-MDR, and its acquisition led to truncation of mucA and loss of the orf318 to reta region.

In R478, the class C tetracycline resistance transposon Tn10 (DFR-6) was inserted into orf300, while the IS186B element (DFR-7) existed between orf321 and ldrB. DFR-8 was composed of the relE to orf612 region and the ISCfr9-ISCfr15 region (both of which lacked resistance genes) in p505108-MDR, while it existed as an IS150 element flanked by 5-bp DRs in R478. The acquisition of ISCfr9-ISCfr15 by p505108-MDR and that of IS150 by R478 led to truncation of downstream orf606 and loss of the upstream relE to orf612 region, respectively. The 52.4 kb MDR-2 region (DFR-9) was inserted into klaB in p505108-MDR, leading to truncation of klaB as well as deletion of the downstream klaA-orf609 region. A second copy of IS903D (DFR-10) was inserted between orf2385 and orf450, leaving both of them truncated.

DFR-1, DFR-3 to DFR-7 and DFR-10 were entirely composed of accessory modules, while the other DFRs consisted of not only accessory modules but backbone regions; the acquisition of accessory modules induced deletion and/or truncation of surrounding backbone regions (Figure S2). Although p505108-MDR and R478 shared the overwhelming majority of their backbones, these 2 plasmids carried different profiles of accessory modules, most of which were inserted at different sites across the plasmid backbones.

There were in total 5 accessory modules containing resistance genes in p505108-MDR, namely the MDR-1 region (Fig. 1), the MDR-2 region (Fig. 2), Tn6362 (Fig. 3), the apha1a region (Fig. 4) and the blaTEM-1B-carrying Tn2 (Figure S4).

The MDR-1 region from p505108-MDR

The MDR-1 region (Fig. 1) was a derivative of, although dramatically genetically differed from, the sil-cop region of R478 because these 2 modules were located at the same site of the IncH12 backbone and had the same terminal regions. The sil-cop region of R478 carried a Tn7-like core transposition module tnsABCD and the silver (sil) and copper (cop) resistance loci. Various derivatives of the sil-cop region were found in several other IncH12 plasmids.16

Being dramatically distinct from the sil-cop region of R478, the MDR-1 region lost the entire sil and the most parts of tnsABCD and cop, but instead acquired several intact or residue mobile elements associated with resistance genes, especially including the dfrA18 region and an unusual In0 with paired terminal inverted repeats (TIRs). The dfrA genes were often associated with ISCR117 as observed in the dfrA18 region of p505108-MDR, in which ISCR1 was truncated due to its connection with upstream IS26. The prototype In0 was an empty class 1 integron, but a 1.9-kb Tns5393 remnant carrying the streptomycin resistance module strAB was integrated at a site downstream of the PcW_{TGN-10} promoter of In0 in p505108-MDR, interrupting In0 into 2 separate parts.

The MDR-2 region from p505108-MDR

The MDR-2 region (Fig. 2) had a complex chimera structure, which carried 5 resistance-conferring substructures, namely the chloramphenicol resistance unit IS26-cata2A-IS26, the tetracycline resistance unit IS26-tetR(D)-tetA (D)-IS26 [also designated Tn tetD18], the extended-spectrum β-lactam resistance unit IS26-blaSHV-12-IS26, In46 and In615. The 3 IS26-flanking units lacked short DR sequences at both ends and were identified as IS26-composite transposon-like mobile elements.19-21 A total of 7 copies of IS26 were found in the MDR-2 region, and the common IS26 component acts as an adaptor to mediate massive recombination and transposition events and thereby plays a pivotal role in assembly of large MDR regions with complex mosaic structures.22,23

In46 from the MDR-2 region contained the 5′-conserved segment (5′-CS) and the sole gene cassette aacA4cr, but lacked the inverted repeat at the integrase end (IRi) and the 3′-terminal region composed of 3′-CS and inverted repeat at the trn end (IRt), which was resulted from connection of In46 with upstream IS26 and downstream ISCfr8. In615 was a complex class 1 integron that contained 2 resistance gene-carrying variable regions (VRs: VR1 and VR2). ISCR1 mobilized the nearby VR1 together with 3′-CS2 from one integron to 3′-CS1 of another integron, facilitating the formation of complex class 1 integrons.17 The primary structure of VR1 from In615 was the gene cassette array aacA27-ereA2, in which ereA2 was interrupted into 2 separate parts by insertion of the IS1247-aacC3-arr7 transposition unit with 4-bp DRs at both ends.24 The qnrB4-blaTEM-1B region (VR2)
connected with ISCR1 was found several complex class 1 integrons carried on plasmids, including pCFI-1 (accession number JN215523), pCFI-2 (accession number JN215524), pCFI-3 (accession number JQ356870), pNMDHA (accession number GU943791), pRBDHA (accession number AJ971343) and pMPDHA (accession number AJ971344).25

Figure 1. The MDR-1 region from p505108-MDR and comparison with related regions. Genes are denoted by arrows. Genes, mobile elements and other features are colored based on function classification. Shading denotes regions of homology (> 95% nucleotide identity). Numbers in brackets indicate the nucleotide positions within the corresponding plasmids.

Tn6362 from p505108-MDR

Tn1696 (Fig. 3), a unit transposon of the Tn21 subgroup of Tn3 family, was assembled from insertion of class 1 integron In4 into the resolution (res) site of a backbone structure IRL (inverted repeat left)-tnpA (transposase)-tnpR (resolvase)-res-mer-IRR (inverted repeat right).26 As

Figure 2. The MDR-2 region from p505108-MDR and comparison with related regions. Genes are denoted by arrows. Genes, mobile elements and other features are colored based on function classification. Shading denotes regions of homology (> 95% nucleotide identity). Numbers in brackets indicate the nucleotide positions within the corresponding plasmids.
a derivative of Tn1696, Tn6362 (Fig. 3) retained the mer-IRR region but had 2 major modifications: i) IRL was interrupted by IS4321R (the IS1111 family members IS4321 and IS5075 target and are inserted at a specific position in the 38-bp TIRs of Tn21 subgroup transposons),27 which was further interrupted by IS102; and ii) a pbrR-zntA-lspA region, probably involved in zinc uptake, was acquired instead of the tnpAR-res:In4 region. Tn6362 was bracketed by 5-bp DRs, indicating that mobilization of Tn6362 into p505108-MDR was a transposition process requiring the core transposition determinants (TIRs, tnpAR and res), and that the lesion or loss of these core determinants occurred post transposition.

Comparison of p505108-NDM with closely related pNDM-HN380

pP10159–1 showed >99% BLAST query coverage and >99% nucleotide identity to the first fully sequenced blaNDM-carrying IncX3 plasmid pNDM-HN380.28 These 2 plasmids harbored 2 accessory modules, namely an ISKex3 element and an approximately 18-kb blaNDM-1 region containing 3 resistance genes blaNDM-1, bleMBL and blaSHV-12 (Figure S4). The blaNDM-1 regions of p505108-NDM and pNDM-HN380 might be generated from connection of the prototype blaNDM-1-carrying ISAba125-flanked composite transposon Tn12529 with the upstream IS3000-ΔTn3 region and the downstream composite transposon-like IS26-blaSHV-12-IS26 unit,21 making the truncation of Tn125 itself; moreover, an IS5 element was inserted into ISAba125 at the 5’-flank of Tn125, interrupting ISAba125 into 2 separate parts. These 2 blaNDM-1 regions slightly differed from each other by a 111-bp insertion at adjacent position between IS26-blaSHV-12-IS26 and ΔTn125 and also by a 304-bp deletion within the disrupted ISAba125.

Comparison of p505108-T6SS with closely related pESA3

p505108-T6SS and pESA330 had almost identical backbones (100% BLAST query coverage and >99% nucleotide identity) and carried a single IncFIB-type replication gene repA, the plasmid partition locus parAB, the toxinantitoxin system locus hipAB for post-segregational killing, 4 virulence loci [including cpa (plasminogen activator; serum resistance and invasion),31 eit and iuc (iron acquisition), and a type 6 secretion system (T6SS) locus] and 2 putative resistance loci acrAB and ars (Figure S5)

Figure 3. Tn6362 from p505108-MDR and comparison with related regions. Genes are denoted by arrows. Genes, mobile elements and other features are colored based on function classification. Shading denotes regions of homology (> 95% nucleotide identity). Numbers in brackets indicate the nucleotide positions within the corresponding plasmids.
The insertion of an 8.3-kb \textit{aphA1a} region (see below) at a site between \textit{ynal} and \textit{orf390} in p505108-T6SS accounted for the major modular difference between p505108-T6SS and pESA3 (Figure S5).

\textbf{The \textit{aphA1a} regions from p505108-MDR and p505108-T6SS}

The presence of 2 highly similar \textit{aphA1a} regions (Fig. 4) in the 2 co-existent plasmids p505108-MDR and p505108-T6SS were validated, although highly unusual, by a set of PCR amplifications that targeted several key jointing fragments of these 2 \textit{aphA1a} regions and their surrounding backbone regions, using genomic DNA of the 505108 isolate as template.

The \textit{aphA1a} region of p505108-MDR was generated from 2 different transposition events: i) insertion of an IS\textit{Kpn21} element (IRL-\textit{tnpAB}-IRR) into the p505108-MDR backbone, and ii) that of an IS\textit{903B}-flanked composite transposon Tn6363 carrying \textit{aphA1a} at a site between \textit{tnpB} and IRR of IS\textit{Kpn21}, interrupting IS\textit{Kpn21} 2 separate parts ΔIS\textit{Kpn21}–5' (IRL-\textit{tnpA-tnpB}) and ΔIS\textit{Kpn21}–3' (IRR). These 2 transposition events left 5-bp and 9-bp DRs bracketing IS\textit{Kpn21} and Tn6363, respectively.

The prototype \textit{aphA1a} region (as observed in p505108-MDR) was likely connected with an IS\textit{1R} element, which resulted from transposition or homologous recombination, generating the \textit{aphA1a} region of p505108-T6SS with deletion of ΔIS\textit{Kpn21}–5' relative to p505108-MDR. pESA3 and its close derivatives including

Figure 4. The \textit{aphA1a} regions from p505108-MDR and p505108-T6SS and comparison with related regions. Genes are denoted by arrows. Genes, mobile elements and other features are colored based on function classification. Shading denotes regions of homology (> 95% nucleotide identity). Numbers in brackets indicate the nucleotide positions within the corresponding plasmids. The arrowheads indicated the location of PCR primers and the expected amplicons. See Figure S6 for the PCR results.
p505108-T6SS have been widely identified as virulence plasmids in pathogenic C. sakazakii strains. Notably, acquisition of the aphA1a region by p505108-T6SS made it to be a carrier of not only virulence determinants but also antibiotic resistance markers.

Concluding remarks

Cronobacter species have the ability to survive in powdered infant formula, and *C. sakazakii, C. malonaticus* and *C. turicensis* represent dangerous opportunistic pathogens of neonates. *Cronobacter* species tend to be more sensitive to most antibiotics than other *Enterobacteriaceae* species. There are few reports describing the MDR in *Cronobacter* isolates of both environmental and clinical origins, and molecular mechanisms of antimicrobial resistance in *Cronobacter* are poorly understood. *C. sakazakii* 505108, causing severe neonatal pneumonia, co-harbors 3 resistance plasmids belonging to the IncHI2, IncX3 and IncFIB incomparability groups, respectively. These 3 plasmids carry an extremely large number of resistance genes, and most of these plasmid-borne resistance genes were associated with insertion sequences, integrons and transposons, constituting various large accessory modules with chimera structures. Mobilization of these accessory resistance modules into plasmid backbones are promoted by transposition and homologous recombination. MDR in *Cronobacter* isolates leads to limited choice of antibiotics for treatment, resulting in a greater risk of death. Therefore, surveillance of plasmid-mediated MDR in clinical *Cronobacter* isolates is of paramount importance.

Materials and methods

Bacterial strains and identification

Bacterial species identification was performed using 16S rRNA gene sequencing and PCR-detection of a 492-bp *cgcA* sequence and a 151-bp *gyrB* sequence specific for *C. sakazakii*. The MLST scheme for *C. sakazakii* was derived from the PubMLST database (https://pubmlst.org/cronobacter/). The major plasmid-borne carbapenemase genes were screened for by PCR. All the PCR amplicons were sequenced on ABI 3730 Sequencer (LifeTechnologies, CA, USA) with the same primers as used for PCR.

Sequencing and annotation

Genomic DNA was isolated from the 505108 isolate using a Qiagen large construct kit and sequenced from a mate-pair library with average insert size of 5,000 bp, using a MiSeq sequencer (Illumina, CA, USA). DNA contigs were assembled using Newbler 2.6. Gaps between contigs were filled using a combination of PCR and Sanger sequencing using an ABI 3730 Sequencer. Open reading frames and pseudogenes were predicted using RAST 2.0 combined with BLASTP/BLASTN searches against the UniProtKB/Swiss-Prot and RefSeq databases. Annotation of resistance genes, mobile elements and other features was performed using CARD, ResFinder, Isfinder and INTEGRALL. Multiple and pairwise sequence comparisons were performed using MUSCLE 3.8.31 and BLASTN, respectively. Gene organization diagrams were drawn in Inkscape 0.48.1.

Plasmid transfer

Plasmids were transferred in attempt from the 505108 isolate into *Escherichia coli* TOP10 and EC600 (highly resistant to rifampicin) through electroporation and conjugal transfer, respectively. For selection of the electroporant or transconjugant containing the markers repHI2A+strA (p505108-MDR), repB+blaNDM (p505108-NDM) and repA+aphA1a (p505108-T6SS), the antibiotics amikacin (20 μg/ml), imipenem (2 μg/ml) and rifampicin (1000 μg/ml) were used in accordance with specific circumstances.

Phenotypic assays

Activity of Ambler class A/B/D carbapenemases in bacterial cell extracts was determined by a modified CarbaNP test. Bacterial antimicrobial susceptibility was tested by the broth dilution method and interpreted as per CLSI guidelines.

Nucleotide sequence accession numbers

The p505108-MDR, p505108-NDM and p505108-T6SS sequences were submitted to GenBank under accession numbers KY978628, KY978629 and KY978630, respectively.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by the grants AWS15J006 and 2016YFC1202600 from the National Major Research & Development Program of China.
References

[1] Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H. The taxonomy of Cronobacter sakazakii: Proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov., Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonicus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol. 2007;7:64. https://doi.org/10.1186/1471-2148-7-64. PMID:17439656

[2] Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach LH, Chase HR, Fanning S, Tall BD. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulvuris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Francibacter gen. nov. and Siccibacter gen. nov. as Francibacter helveticus comb. nov., Francobacter pulvuris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int J Syst Evol Microbiol. 2014;64:3402-10. https://doi.org/10.1099/ijss.0.059832-0. PMID:25028159

[3] Holy O, Forsythe S. Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect. 2014;86:169-77. https://doi.org/10.1016/j.jhin.2013.09.011. PMID:24332367

[4] Norberg S, Stanton C, Ross RP, Hill C, Fitzgerald GF, Cotter PD. Cronobacter spp. in powdered infant formula. J Food Prot. 2012;75:607-20. https://doi.org/10.4315/0362-028X.JFP-11-285. PMID:22410240

[5] Joseph S, Forsythe SJ. Predominance of Cronobacter sakazakii sequence type 4 in neonatal infections. Emerg Infect Dis. 2011;17:1713-5. https://doi.org/10.3201/eid1709.110260. PMID:21888801

[6] Patrick ME, Mahon BE, Greene SA, Rounds J, Cronquist A, Wymore K, Boothe E, Lathrop S, Palmer A, Bowen A. Incidence of Cronobacter sakazakii sequence type 4 in neonatal infections. Emerg Infect Dis. 2007;13:221-7. https://doi.org/10.3201/eid1304.060992. PMID:17439656

[7] Muller A, Hacherl H, Stephan R, Lehner A. Presence of AmpC beta-lactamas, CSA-1, CSA-2, CMA-1, and CMA-2 conferring an unusual resistance phenotype in Cronobacter sakazakii and Cronobacter malonicus. Microb Drug Resist. 2014;20:275-80. https://doi.org/10.1089/mdr.2013.0188. PMID:24568164

[8] Miranda CD, Kehrenberg C, Ulep C, Schwarz S, Roberts MC. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother. 2003;47:883-8. https://doi.org/10.1128/AAC.47.3.883-888.2003. PMID:12604516

[9] Liu BT, Song FJ, Zou M, Hao ZH, Shan H. Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal. Antimicrob Agents Chemother. 2017;61:e01444-16. https://doi.org/10.1128/AAC.01444-16. PMID:27855074

[10] Poirel L, Van De Loo M, Mammeri H, Nordmann P. Association of plasmid-mediated quinolone resistance with extended-spectrum beta-lactamase VEB-1. Antimicrob Agents Chemother. 2005;49:3091-4. https://doi.org/10.1128/AAC.49.7.3091-3094.2005. PMID:15980408

[11] Girlich D, Poirel L, Leelaporn A, Karim A, Tribuddharat C, Fennewald M, Nordmann P. Molecular epidemiology of the integron-located VEB-1 extended-spectrum beta-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. J Clin Microbiol. 2001;39:175-82. https://doi.org/10.1128/JCM.39.1.175-182.2001. PMID:11136767

[12] Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE. The complete nucleotide sequence of the resistance plasmid R478. Defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid. 2004;52:182-202. https://doi.org/10.1016/j.plasmid.2004.06.006. PMID:15518875

[13] Toleman MA, Bennett PM, Walsh TR. ISCR elements: Novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70:296-316. https://doi.org/10.1128/MMBR.00048-05. PMID:16760305

[14] Celebrano S, Harmer CJ, Hall RM. p39R861-4, A type 2 A/C2 plasmid carrying a segment from the A/C1 plasmid RA1. Microb Drug Resist. 2015;21:571-6. https://doi.org/10.1089/mdr.2015.0133. PMID:26167918

[15] Kim MJ, Hirono I, Kurokawa K, Maki T, Hauke J, Kondo H, Santos MD, Aoki T. Complete DNA sequence and analysis of the transferable multiple-drug resistance plasmids (R Plasmids) from Photobacterium damselae subsp. piscicida isolates collected in Japan and the United States. Antimicrob Agents Chemother. 2008;52:606-11. https://doi.org/10.1128/AAC.01488-15. PMID:18070959

[16] Yang DR, Li JJ, Sheng ZK, Yu HY, Deng M, Bi S, Hu FS, Chen W, Xue XW, Zhou ZB, et al. Complete sequence of two fully sequenced multi-drug resistant plasmids pP10164-2 and pP10164-3 from Leclercia adecarboxylata. Sci Rep. 2016;6:33982. https://doi.org/10.1038/srep33982. PMID:27658354

[17] Telemark MA, Bennet PM, Walsh TR. ISCR elements: Novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70:296-316. https://doi.org/10.1128/MMBR.00048-05. PMID:16760305
[22] Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. MBio. 2014;5:e01801-14. https://doi.org/10.1128/mBio.01801-14. PMID:25293759

[23] Harmer CJ, Hall RM. IS26-mediated formation of transposons carrying antibiotic resistance genes. mSphere. 2016;1:e00038-16. https://doi.org/10.1128/mSphere.00038-16. PMID:27303727

[24] Verdet C, Benzerara Y, Gauthier V, Adam O, Ould-Hocine Z, Arlet G. Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: Genetic organization of the ampC and ampR genes originating from Morganella morganii. Antimicrob Agents Chemother. 2006;50:607-17. https://doi.org/10.1128/AAC.50.2.607-617.2006. PMID:16436717

[25] Franco AA, Kothary MH, Jarvis KG, Sathyamoorthy V, Jarvis KG, Gopinath G, Kim J, Kothary MH, et al. Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 2012;78:3255-67. https://doi.org/10.1128/AEM.02272-07. PMID:18296538

[26] Carter L, Lindsey LA, Grim CJ, Sathyamoorthy V, Jarvis KG, Gopinath G, Jarvis KG, Ngo T, Que T, Chow K. Identification of blaNDM-1 in Enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerging Microbes Infections. 2012;1:e39. https://doi.org/10.1038/emi.2012.37. PMID:26038408

[27] Partridge SR, Brown HJ, Stokes HW, Hall RM. Transposons Tn1696 and Tn21 and their integrins In4 and In2 have independent origins. Antimicrob Agents Chemother. 2001;45:1263-70. https://doi.org/10.1128/AAC.45.4.1263-1270.2001. PMID:11257044

[28] Poirel L, Bonnin RA, Boulanger A, Schrenzel J, Kaase M, Nèron M, et al. Comparative analysis of genome sequences covering the seven Cronobacter sakazakii species. PLoS One. 2012;7:e49455. https://doi.org/10.1371/journal.pone.0049455. PMID:23166675

[29] Joseph S, Desai P, Ji Y, Cummings CA, Shih R, Degoricia L, Rico A, Brzoska P, Hamby SE, Masood N, et al. Performance optimisation of the CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566-73. PMID:27789705; https://doi.org/10.1093/nar/gkw1004.
[44] Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640-4. https://doi.org/10.1093/jac/dks261. PMID:22782487

[45] Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32-6. https://doi.org/10.1093/nar/gkj014. PMID:16381877

[46] Moura A, Soares M, Pereira C, Leitao N, Henriques I, Correia A. INTEGRALL: A database and search engine for integrons, integrases and gene cassettes. Bioinformatics. 2009;25:1096-8. https://doi.org/10.1093/bioinformatics/btp105. PMID:19228805

[47] Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792-7. https://doi.org/10.1093/nar/gkh340. PMID:15034147

[48] Feng W, Zhou D, Wang Q, Luo W, Zhang D, Sun Q, Tong Y, Chen W, Sun F, Xia P. Dissemination of IMP-4-encoding pIMP-HZ1-related plasmids among Klebsiella pneumoniae and Pseudomonas aeruginosa in a Chinese teaching hospital. Sci Rep. 2016;6:33419. https://doi.org/10.1038/srep33419. PMID:27641711

[49] CLSI. Performance standards for antimicrobial susceptibility testing: Twenty-fifth informational supplement M100-S25. Wayne, PA, USA: CLSI; 2015