SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844–7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ~ 7 GALAXIES

YOSHIKI ONO1, MASAMI OUCHI2,3, BAHRAM MOBASHER4, MARK DICKINSON5, KYLE PENNER6, KAZUHIRO SHIMASAKU1,7, BENJAMIN J. WEINER8, JEHAN S. KARTALTEPE9, KIMIHIKO NAKAJIMA1, HOOSANG NAYYERI3, DANIEL STERN9, NOBUNARI KASHIKAWA10, AND HYRON SPINRAD11

1 Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; ono_at_astron.s.u-tokyo.ac.jp
2 Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
3 Institute for the Physics and Mathematics of the Universe (IPMU), TODIAS, University of Tokyo, Chiba 277-8583, Japan
4 Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
5 National Optical Astronomical Observatories, Tucson, AZ 85719, USA
6 Department of Astronomy, University of Arizona, Tucson, AZ 85721, USA
7 Research Center for the Early Universe, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
8 Steward Observatory, University of Arizona, Tucson, AZ 85721, USA
9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
10 Optical and Infrared Astronomy Division, National Astronomical Observatory of Japan, Tokyo 181-8588, Japan
11 Department of Astronomy, University of California, Berkeley, CA 94720, USA

Received 2011 July 15; accepted 2011 November 15; published 2011 December 15

ABSTRACT

We present the results of our ultra-deep Keck/DEIMOS spectroscopy of z-dropout galaxies in the Subaru Deep Field and Great Observatories Origins Deep Survey’s northern field. For 3 out of 11 objects, we detect an emission line at ~1 μm with a signal-to-noise ratio of ~10. The lines show asymmetric profiles with high weighted skewness values, consistent with being Lyα, yielding redshifts of z = 7.213, 6.965, and 6.844. Specifically, we confirm the z = 7.213 object in two independent DEIMOS runs with different spectroscopic configurations. The z = 6.965 object is a known Lyα emitter, IOK-1, for which our improved spectrum at a higher resolution yields a robust skewness measurement. The three z-dropouts have Lyα fluxes of 3 × 10^{-17} erg s^{-1} cm^{-2} and rest-frame equivalent widths EW_{Lyα} = 33–43 Å. Based on the largest spectroscopic sample of 43 z-dropouts, which is the combination of our and previous data, we find that the fraction of Lyα-emitting galaxies (EW_{Lyα} > 25 Å) is low at z ~ 7; 17% ± 10% and 24% ± 12% for bright (M_{UV} ≲ −21) and faint (M_{UV} ≲ −19.5) galaxies, respectively. The fractions of Lyα-emitting galaxies drop from z ~ 6 to 7 and the amplitude of the drop is larger for faint galaxies than for bright galaxies. These two pieces of evidence would indicate that the neutral hydrogen fraction of the intergalactic medium increases from z ~ 6 to 7 and that the reionization proceeds from high- to low-density environments, as suggested by an inside-out reionization model.

Key words: cosmology: observations – galaxies: evolution – galaxies: formation – galaxies: high-redshift

Online-only material: color figures

1. INTRODUCTION

Over the last two years, we have witnessed an explosion of activities aimed at searching for very high redshift (z > 7) galaxies. This has been made possible with the installation of the Wide-Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST; e.g., Oesch et al. 2010, 2011; Bouwens et al. 2010a, 2011a, 2011b; McLure et al. 2010, 2011; Wilkins et al. 2010, 2011; Bunker et al. 2010; Yan et al. 2010, 2011; Lorenzoni et al. 2011), the Hawk-I instrument on the Very Large Telescope (VLT; Castellano et al. 2010a, 2010b), and improvement in the red-end sensitivity of the Suprime-Cam on the Subaru telescope (Ouchi et al. 2009). These studies have identified over a hundred candidates at z > 6.5 through the Lyman break dropout technique (e.g., Steidel et al. 1996; Giavalisco 2002), showing a decrease in the number density of bright high-redshift galaxies with redshift (e.g., Ouchi et al. 2009; McLure et al. 2010; Castellano et al. 2010a; Bouwens et al. 2010a; Wilkins et al. 2010), bluer UV continua (e.g., Bouwens et al. 2010b),12 and relatively smaller stellar masses compared to lower redshift galaxies selected by similar techniques (e.g., Labbé et al. 2010; Schaerer & de Barros 2010; Finkelstein et al. 2010; Ono et al. 2010). Study of the intrinsic properties of high-redshift galaxies at epochs close to the dark ages is essential for understanding one of the most outstanding questions in modern astronomy—when did the universe become reionized and what sources were responsible for it? This can be accomplished by studying the state of the intergalactic medium (IGM) through estimates of the ionizing photon budget and Lyα escape fraction.

Several independent studies of the reionization process in recent years have yielded different results. By measuring the polarization of the cosmic background radiation, Dunkley et al. (2009) estimated the optical depth to reionization and concluded that, if it was a sudden event, reionization occurred at z = 11.0 ± 1.4 (see also, Komatsu et al. 2011; Larson et al. 2011). However, investigating the spectra of Sloan Digital Sky Survey quasars, Fan et al. (2006) studied the evolution of the Gunn–Peterson optical depth and demonstrated that the IGM reionization may have ended as late as z ~ 6. The result from

12 See also Dunlop et al. (2011), who question this result.
this study is questioned by Goto et al. (2011), who have shown that for quasars at $z > 6$, a statistically large number is needed in $\Delta z = 0.1$ bins to constrain cosmic variance and trace the evolution of the optical depth.

Another useful tool for studying reionization is the Lyα luminosity function of high-redshift galaxies selected by narrowband imaging (e.g., Hu et al. 1998; Rhoads et al. 2000); these galaxies are called Lyα emitters (LAEs). Since neutral hydrogen in the IGM resonantly scatters Lyα photons, the transmission of Lyα is sensitive to the ionization state of the IGM. Therefore, we expect a decrease in the number density of LAEs close to the reionization epoch (e.g., Haiman & Spans 1999; Malhotra & Rhoads 2004; Santos et al. 2004; Mesinger et al. 2004; Stern et al. 2005; Haiman & Cen 2005; Furlanetto et al. 2006; McQuinn et al. 2007; Dijkstra et al. 2007; Kobayashi et al. 2007; Mesinger & Furlanetto 2008; Iliev et al. 2008; Dayal et al. 2008, 2009, 2011). Ouchi et al. (2010) found a decrease in the Lyα luminosity function of LAEs, corresponding to an upper limit of the IGM neutral fraction $\xi = 0.2 \pm 0.2$ at $z = 6.6$, which indicates that the major reionization process took place at higher redshift. This result has been further supported by Kashikawa et al. (2011), who studied the evolution of the LAE luminosity function in the Subaru Deep Field (SDF; Kashikawa et al. 2004) and found an increase in the neutral fraction of the IGM from $z = 5.7$ to 6.5. Nakamura et al. (2011) have also found a large deficit in the number density of $z = 6.5$ LAEs in the SSA22 field, and attributed it to significant field-to-field variance of the neutral fraction of the IGM. The effect of cosmic variance was quantified by Ouchi et al. (2010), who claimed a factor of 2–10 range in the number density of LAEs in an extensive survey covering an area of 1 deg2.

Measuring the fraction of LAEs among Lyman-break galaxies (LBGs; Giavalisco 2002), the Lyα fraction, provides complementary information to understand the reionization process (e.g., Stark et al. 2010). Since LBGs are selected over a broader range of redshifts compared to observations with a narrowband filter, their number density is less sensitive to cosmic variance. Searching for Lyα emission from samples of LBGs with available spectra at $4 < z < 6$, Stark et al. (2011) showed that lower luminosity LBGs have larger Lyα fractions, and that the fraction increases with redshift (see also, Vanzella et al. 2009; Stark et al. 2010; Douglas et al. 2010). However, it is not yet clear if this trend continues at $z > 6$. To explore this, we require spectroscopy of dropout candidates at $z > 7$.

The real challenge in estimating the number density of $z > 6$ galaxies and the intensity of ionizing Lyα photons is the spectroscopic confirmation of these candidates. They are extremely faint, and the only detectable feature is Lyα emission shifted to near-infrared wavelengths (e.g., Iye et al. 2006; Lehnert et al. 2010; Fontana et al. 2010; Vanzella et al. 2011). Despite significant efforts to spectroscopically confirm $z > 6$ candidates, the number of confirmed sources is still very limited. Fontana et al. (2010) reported the detection of one LBG with Lyα emission at $z = 6.97$ in ultra-deep spectroscopy of seven z-dropout candidates selected from VLT/Hawk-I imaging of the Great Observatories Origins Deep Survey’s southern (GOODS-S) field (Castellano et al. 2010a). They found a significant decline in the fraction of LBGs with Lyα emission between $z \sim 6$ and 7, reversing the increasing trend with redshift found at $z < 6$. Furthermore, Vanzella et al. (2011) spectroscopically confirmed two z-dropout galaxies at $z \sim 7.1$ selected from VLT/Hawk-I imaging of the BDF4 field (Castellano et al. 2010b). With the small number of z-dropout galaxies with available spectroscopic redshifts, any measure of their Lyα photon budget or number density will be seriously affected by statistical uncertainties and cosmic variance.

In this study, we present results from ultra-deep spectroscopy with Keck/DEIMOS for a sample of 11 z-dropout galaxies. To maximize the spectroscopic success, we designed the photometric survey to identify dropout candidates at the bright end of the UV luminosity function. The aim is to derive the fraction of LBGs with Lyα emission and to study its evolution to $z \sim 7$.

In the next section, we present the photometric selection of z-dropout candidates that are the targets for our spectroscopic observations here. The spectroscopic observations are described in Section 3. This is followed by redshift identification and the measurement of spectroscopic properties in Section 4. In Section 5, we discuss the implications for reionization. The conclusions are presented in Section 6. Throughout this paper, we use magnitudes in the AB system (Oke & Gunn 1983) and assume a flat universe with $(\Omega_m, \Omega_\Lambda, h) = (0.3, 0.7, 0.7)$.

2. PHOTOMETRIC SELECTION OF z-DROPOUT CANDIDATES

In order to achieve successful spectroscopy of high-redshift LBGs, we need to identify a sample of bright candidates. However, the bright end of the luminosity function exponentially decreases. Therefore, we need to cover a large area to find a sufficient number of LBGs bright enough for spectroscopy.

We carried out a wide-area photometric survey aimed at identifying z-dropout galaxies (i.e., galaxy candidates at $z \sim 7$) using Suprime-Cam on the Subaru telescope, outfitted with a custom-made filter (y-band) with effective wavelength at 1 μm (Ouchi et al. 2009). This combination is ideal for identifying the bright population of LBGs at high redshifts. We covered an area of 1568 arcmin2 to $y \simeq 26.0$ mag (4σ limit) for two fields: the SDF and the GOODS northern (GOODS-N) field (Giavalisco et al. 2004). We identified 22 z-dropout candidates with $y = 25.4–26.1$ mag, i.e., $M_{UV} < -21$. This includes a galaxy which was already identified to be at a spectroscopic redshift of 6.96 (Iye et al. 2006). These provide the targets for the spectroscopic observations in this paper.

3. SPECTROSCOPIC OBSERVATIONS

We used the DEep Imaging Multi-Object Spectrograph (DEIMOS; Faber et al. 2003) at the Nasmyth focus of the 10 m Keck II telescope to perform spectroscopic observations of the z-dropout candidates discovered in Ouchi et al. (2009). The data were taken on UT 2010 February 13, April 14–15, and 2011 April 1–3. We observed 11 out of the 22 z-dropout candidates. We also observed the standard stars G191B2B and Wolf 1346 for flux calibration. The seeing was in the range 0.5–0.7. We used a total of six DEIMOS masks, as listed in Table 1. For five masks, we used the OG550 filter and the 830 lines mm$^{-1}$ grating, which is blazed at 8640 Å and was tilted to place a central wavelength of 9000 Å on the detectors. This configuration provided a spectral coverage between 7000 Å and 10400 Å. For the remaining mask (HDF1C) we used the GG455 filter and the 600 lines mm$^{-1}$ grating, blazed at 7400 Å. This was tilted to place a central wavelength of 7500 Å on the detector. The spectral coverage was between 5200 Å and 10200 Å. The spatial pixel scale was $0'.1785$ pixel$^{-1}$, and the spectral dispersion was 0.47 Å pixel$^{-1}$ and 0.65 Å pixel$^{-1}$ for the 830 lines mm$^{-1}$ and 600 lines mm$^{-1}$ grating, respectively. The slit widths were 1″.
For objects filling the slit, the FWHM resolution of the 830 and 600 grating was ≃3.3 Å and ≃4.7 Å, respectively. Details of the observations, the filters, gratings, and the total exposure time used are listed in Table 1.

We used the GG455 filter for HDF11C, although this filter allows transmission of second-order light redward of ~9100 Å. This filter was used because some of the targets on those masks were z ~ 3 ultraluminous infrared galaxy candidates, which would have spectral signatures below 5000 Å. Although this configuration allowed contamination from second-order light of an emission line whose wavelength is longer than ≃4500 Å, the targeted z-dropouts in the HDF11C mask were also observed in other configurations without such contaminations in the red wavelength range.

The reduction was performed using the spec2d IDL pipeline developed by the DEEP2 Redshift Survey Team (Davis et al. 2003). We used a modified version of the spec2d (P. Capak et al., in preparation) for the data taken with HDF11D, since those data were dithered. Wavelength calibration was achieved by fitting to the arc lamp emission lines. The spectra were flux calibrated with the standard stars G191B2B and Wolf 1346. We applied no correction for slit-loss effects, since the same slit width was used for both the standard stars and science targets. We estimate the uncertainty due to the slit-loss correction by comparing the fluxes of the two-dimensional spectra in the slit width with total fluxes and find this to be less than 10%. We measure the 1σ sky noises from the pixel distributions around 9600 Å, the wavelength corresponding to that of Lyα at z ≈ 6.9, the expected peak of the redshift distribution for z-dropout selection (Figure 6 of Ouchi et al. 2009). In the measurements, we do not avoid the wavelength ranges significantly affected by strong OH lines. We find the 1σ sky noise to be (1.4–5.7) × 10^{-18} erg s^{-1} cm^{-2} (for details, see Section 4.2). We summarize the 1σ flux limits in Table 2.

4. RESULTS

4.1. Redshift Identification

Figure 1 shows a prominent emission line in the spectra of SDF-63544 and SDF-46975. We fit Gaussian profiles to these lines using the IDL MPFIT routine (Markwardt 2009) and find that the emission lines correspond to the observed central wavelengths 9683 Å (SDF-63544) and 9536 Å (SDF-46975). One z-dropout galaxy, SDF-63544, was previously identified as an LAE, IOK-1, whose redshift was confirmed spectroscopically by Lye et al. (2006). However, the signal-to-noise ratio (S/N) of the Lyα line in their spectrum was lower than that of the red side, as a better approximation of the observed profiles but with an additional free parameter.

Note. * Numbers of observed z-dropouts. Some objects were observed on multiple masks (see Table 2).

Table 1

Mask ID	Field	Date (UT)	Total Exposure (s)	Nz	Grating (lines mm^{-1})	Central wavelength (Å)	Filter
SDFZD1B	SDF	2010 Feb 13	19350	5	830	9000	OG550
SDFZD3	SDF	2010 Apr 14–15	30000	2	830	9000	OG550
SDFZD4	SDF	2010 Apr 15	7200	4	830	9000	OG550
GNZD1B	GOODS-N	2010 Feb 13, Apr 14–15	18000	2	830	9000	OG550
HDF11C	GOODS-N	2011 Apr 1–2	14600	2	600	7500	GG455
HDF11D	GOODS-N	2011 Apr 3	7200	2	830	8100	OG550

Note. The flux limits of the objects with Lyα detections (GN-108036, SDF-63544, and SDF-46975) were estimated using the sky-noise distribution in the vicinity of the Lyα line, while those of objects lacking Lyα detections were estimated using the sky-noise distribution between 9400 and 9800 Å. The EW_Lyα limits of the Lyα-detected objects were estimated by dividing their Lyα flux limits by their UV continuum flux densities and (1 + zspec), while those of objects without Lyα detection were estimated assuming their redshifts are equal to 6.9.

Table 2

Object	Mask	Total Exposure (s)	Flux Limit (1σ) (erg s^{-1} cm^{-2})	y^{(total)} (mag)	EW_Lyα Limit (3σ) (Å)
GN-152505	GNZD1B, HDF11C, HDF11D	39800	3.0 × 10^{-18}	25.2	10
GN-108036	GNZD1B, HDF11C, HDF11D	39800	4.2 × 10^{-18}	25.5	7.1
SDF-63544	SDFZD1B, SDFZD3	49350	2.1 × 10^{-18}	25.1	5.8
SDF-83878	SDFZD1B	19350	3.3 × 10^{-18}	31.4	12
SDF-46975	SDFZD1B, SDFZD3	49350	1.9 × 10^{-18}	25.2	7.1
SDF-76507	SDFZD1B	19350	2.4 × 10^{-18}	25.2	5.8
SDF-123919	SDFZD2	7200	5.3 × 10^{-18}	25.4	31
SDF-75298	SDFZD1B	19350	1.4 × 10^{-18}	25.5	6.5
SDF-121418	SDFD4	7200	4.5 × 10^{-18}	25.6	31
SDF-107344	SDFZD4	7200	5.7 × 10^{-18}	25.7	53
SDF-136726	SDFD4	7200	5.1 × 10^{-18}	25.7	45

Notes. The flux limits of the objects with Lyα detections (GN-108036, SDF-63544, and SDF-46975) were estimated using the sky-noise distribution in the vicinity of the Lyα line, while those of objects lacking Lyα detections were estimated using the sky-noise distribution between 9400 and 9800 Å. The EW_Lyα limits of the Lyα-detected objects were estimated by dividing their Lyα flux limits by their UV continuum flux densities and (1 + zspec), while those of objects without Lyα detection were estimated assuming their redshifts are equal to 6.9.

13 http://www2.keck.hawaii.edu/inst/deimos/specs.html
14 The pipeline was developed at UC Berkeley with support from NSF grant AST-0071048. Downloaded at http://astro.berkeley.edu/~cooper/deep/spec2d/
is only \(\gtrsim 5 \). We deemed it worthwhile to detect the line at higher S/N and with higher resolution in order to verify the line detection and identify the line based on line-profile analysis. We confirm that the central wavelength of the emission line is almost the same as that derived previously (9682 Å).

For one of the targets in GOODS-N, GN-108036, we detect an emission line at about 9980 Å (Figure 2). We confirm the line detection in three independent DEIMOS observations, performed in 2010 and 2011, with different configurations. In 2010, we obtained the spectrum using mask GNZD1B, the 830 lines mm\(^{-1}\) grating, and the OG550 filter (first two-dimensional spectrum in the top panel in Figure 2). In the 2011 run, we used a different setup with the 600 lines mm\(^{-1}\) grating, the GG455 filter, and a different mask (HDF11C) to locate the spectrum on a different position on the DEIMOS CCD (second one in the top panel in Figure 2). The HDF11D data were obtained over two nights of observing, and the line is detected in independent reductions of each night’s data, as well as in the combined spectrum. We also used a third configuration for our 2011 run, with the 830 lines mm\(^{-1}\) grating, the OG550 filter, and an entirely new mask HDF11D (third one in the top panel in Figure 2). Although the grating and the filter here are the same as those used in the 2010 observation, the mask is different. The 2011 observations with the 830 grating were also dithered, whereas the 2010 observations with the 830 grating were undithered, and the pipeline processing was correspondingly different for the two data sets. The three observations of GN-108036 independently confirm that the line is detected at three different positions on the DEIMOS CCDs, with two different spectroscopic setups. This strongly argues against the observed feature being an artifact. We fit Gaussian functions to the line profile in Figure 2, using the \textsc{mpfit} routine, and find a central wavelength of 9984 Å.

We investigate the possibility that the observed lines are something other than Ly\(\alpha \) (i.e., H\(\alpha \), H\(\beta \), [O\(ii \)], or [O\(iii \)]). The main argument in favor of the observed lines being Ly\(\alpha \) is their morphology and the clear asymmetry of the lines (see below). Furthermore, the lines are unlikely to be H\(\beta \) or [O\(iii \)] at \(z \sim 0.9–1.0 \), since, in this case, we expect to detect additional lines. If the detected line were H\(\beta \), the [O\(iii \)]\(\lambda 5007 \) line would fall at 9972 Å for SDF-63544, 9822 Å for SDF-46975, and 10284 Å for GN-108036. However, none of the objects show the corresponding detections, implying the line ratio [O\(iii \)]\(\lambda 5007 / H\beta \) of \(\lesssim 0.2–0.5 \) (3\(\sigma \) upper limit). Galaxies with \(12 + \log (O/H) \gtrsim 8.8–9.0 \) meet these low ratios (e.g., Nagao et al. 2006), but our objects are unlikely to be so metal rich, because if they were, they should be very massive (from the mass-metallicity relation) and thus their broadband magnitudes would be much brighter than observed. In the case that the detected line were [O\(iii \)]\(\lambda 5007 \), the H\(\beta \) line would be seen at 5998 Å in the spectra of GNZD1B and HDF11C, whose exposure times are 5 hr and \(\lesssim 4 \) hr, respectively, while the line is marginally seen in the spectrum of HDF11D, whose exposure time is 2 hr. In the bottom panel, we show the one-dimensional spectra. The gray solid lines are spectra obtained with individual masks. The composite spectrum is shown as the black solid line. All the one-dimensional spectra illustrate a line detection at around 9980 Å, and the S/N of the line in the composite spectrum is \(\gtrsim 6 \).
to subsolar oxygen abundances (~7.0–8.7; see Figure 17 of Nagao et al. 2006), which may be typical of low-mass galaxies. Thus, unfortunately, the non-detection of Hβ cannot strongly rule out the possibility of our objects being [O iii]Å5007 emitters. In addition, the lines are unlikely to be [O ii]. If the lines were [O ii] emitters at z ~ 1.6, the FWHM resolution of 3 Å would have distinguished the two components of the doublet, separated by ~7 Å. In their Figure 10, Hu et al. (2004) showed the spectra of emission-line objects with the [O ii] doublet signature, which were obtained with Keck/DEIMOS using the same configuration as ours (the 830 grating and the OG550 filter). The fact that the detected lines in our spectra are singlet strongly argues against the possibility that they are z ~ 1.6 [O ii] emitters. Moreover, the non-detection of the galaxies in the deep i-band images17 strongly disfavors the possibility that these galaxies are actually at z ~ 1.6. For GN-108036, if the detected line were He z at z = 0.521, then we might also expect to detect [O iii] or Hβ, which is actually not detected as shown in Figure 3. For SDF-63544 and SDF-46975, we cannot check the detection of [O iii]Å5007 since their spectra do not cover the wavelength range blueward of 7500 Å.

To quantify the asymmetry of the lines, we introduce the weighted skewness parameter, S_w, following Kashikawa et al. (2006). This can be used to distinguish Lyα from other emission lines. S_w is defined as the product of the skewness (the third moment of flux distribution) and the width of the line. Lyα emission lines at high redshifts typically have large positive S_w values, while other possible lines, He z, Hβ, and [O iii], are nearly symmetric and have almost zero values of S_w. When the [O ii] line is not resolved, its S_w value is expected to be small, since the [O ii]Å3726 line is weaker than [O ii]Å3729 (e.g., Rhoads et al. 2003). The S_w values of the three z-dropouts are estimated to be S_w = 12.6 ± 0.4 Å for SDF-63544, S_w = 8.6 ± 0.7 Å for SDF-46975, and S_w = 4.1 ± 0.7 Å for GN-108036, which means that all three lines have an asymmetric profile with a sharp decline on the blue side and a long tail on the red side, as is commonly seen in Lyα at high redshifts (e.g., Shimasaku et al. 2006; Kashikawa et al. 2006). Kashikawa et al. (2006) empirically set S_w = 3 Å as a critical value to distinguish Lyα emission from other emission lines for galaxies at z > 5.7 (see also, Shimasaku et al. 2006). Our objects have higher S_w than the criterion, which would suggest that the detected lines are Lyα.

Note that the asymmetric line profile in the spectra of GN-108036 might be caused by oversubtractions of OH lines blueward of the detected line. However, there is a window of OH lines near the detected line at the blue side. If the line had a symmetric profile, then we would expect to see faint emission in this window, similar to that seen on the red side of the line profile, but none is actually detected. The sky subtraction might affect the line profile to some extent, but the asymmetric line profile is likely to be real. In addition, there is no line detected other than the one at z ~9980 Å. Furthermore, the galaxy is not detected in the deep optical broadband images from either Subaru or HST/ACS. Its colors (z − y > 1.6 (2σ), y − m_{F160W} = 0.3) are consistent with those expected for an LBG at z = 7.2. All of these factors support the interpretation that the detected line is redshifted Lyα.

Thus, we conclude that all of the detected lines are redshifted Lyα. The redshifts derived from the Lyα emission centroids are z_{spec} = 6.965 for SDF-63544, z_{spec} = 6.844 for SDF-46975, and z_{spec} = 7.213 for GN-108036. These redshifts might be overestimated since the Lyα emission lines of LBGs are typically shifted redder of their systemic redshifts (e.g., Pettini et al. 2001; Shapley et al. 2003; Steidel et al. 2010). The velocity offsets are typically less than ~1000 km s^{-1}, which correspond to a difference between the systemic redshift (z_{sys}) and that estimated from the Lyα line (z_{Lyα}) of Δz = z_{sys} − z_{Lyα} ≳ −0.027. Nv λ1240 is the only high-ionization metal line, indicative of active galactic nucleus (AGN) activity, which would fall within our spectral range. The line would fall at 9876 Å for SDF-63544, 9727 Å for SDF-46975, and 10184 Å for GN-108036. None of the objects shows this emission line, placing a 3σ lower limit to the line ratio Lyα/Nv of >4 for SDF-63544, >5 for SDF-46975, and >2 for GN-108036. However, since a typical high-z AGN has a line ratio of Lyα/Nv = 4–20 (e.g., McCarthy 1993), these lower limits are mostly not useful to exclude the possibility that the objects are AGN hosts; to do so much deeper spectroscopy is needed. Throughout this paper, we assume that the light of our objects is not contaminated by AGNs.

4.2. Line Flux Measurement

We compute the Lyα line flux by summing flux densities around the line, neglecting the minor contribution of UV continuum. This corresponds to the range 9677–9699 Å for SDF-63544, 9526–9551 Å for SDF-46975, and 9977–9997 Å for GN-108036. The estimated fluxes are summarized in Table 3. SDF-63544 was previously discovered by Iye et al. (2006) who report Lyα fluxes of 2.0 × 10^{-17} erg s^{-1} cm^{-2} and 2.7 × 10^{-17} erg s^{-1} cm^{-2} from their spectrum and narrowband image, respectively. Our estimated Lyα flux of SDF-63544 is 2.8 × 10^{-17} erg s^{-1} cm^{-2}, consistent with those previous measurements.

In order to estimate flux limits for the objects without Lyα detections, for each object we sample the one-dimensional spectra in 25 Å bins, comparable to the width of Lyα lines. We then estimate the 1σ flux limit by fitting Gaussian functions to the flux distribution over the wavelength range 9400–9800 Å. The 1σ flux limits for individual objects are listed in Table 2.

4.3. Equivalent Width Measurement

We do not directly detect continuum in the spectra of the z-dropout galaxies. We can only estimate their continuum flux densities from their y-band magnitudes measured over a 1.8 diameter aperture (Table 3 of Ouchi et al. 2009), allowing for aperture corrections, IGM absorption, and Lyα emission.
The galaxy is not significantly detected in any of these MOIRCS bands, with 5σ photometric upper limits of 24.9 (J), 24.4 (H), and 24.6 (K), marginally consistent with the WFC3 photometry. The WFC3 F140W magnitude of GN-108036, $m = 25.17$, translates to a rest-frame 1700 Å luminosity $M_{1700} = -21.81$ at $z = 7.213$. There have been many recent estimates of the UV luminosity function at $z = 7$ (e.g., Ouchi et al. 2009; Oesch et al. 2010; McLure et al. 2010; Grazian et al. 2011). These have consistently found values of the characteristic luminosity M^* in the range -19.9 to -20.3. GN-108036 is therefore an impressively luminous galaxy, with $L_{UV} \approx 4 \times L^{*};$ indeed, it is roughly twice as bright as an L^{*}_{UV} LBG at $z = 2–3$ ($M_{UV} \approx -21.0$; Reddy et al. 2008). The exponential cutoff of a Schechter luminosity function would imply that galaxies this luminous would be rare indeed. For example, the best-fit Schechter parameterization of the $z = 7$ luminosity function from Bouwens et al. (2011b) yields a space density 2×10^{-7} Mpc$^{-3}$ for galaxies with $M_{UV} \lesssim -21.81$. For a redshift interval $\Delta z = 1$ at $z = 7$, we would expect to find only 0.1 galaxies luminous within the 160 arcmin2 GOODS-N ACS/WFC3/InfraRed Array Camera (IRAC) field, or about 1 galaxy over the 1568 arcmin2 covered by our Suprime-Cam survey in the combined SDF and GOODS-N fields. In fact, the redshift selection function for z-dropouts in our $z - y$ survey is significantly narrower than $\Delta z = 1$ (see Ouchi et al. 2009), making the large UV luminosity of GN-108036 still more remarkable. It is impossible to judge based on a posteriori statistics from a single object, but either we were quite lucky to find and spectroscopically confirm such a bright galaxy or perhaps the bright end of the UV luminosity function at $z = 7$ has been underestimated in studies to date. In fact, the observational constraints on the bright end of the luminosity function come from just a few ground-based surveys, including our own (Ouchi et al. 2009) and that of Castellano et al. (2010a, 2010b). Evidently, more deep imaging and spectroscopic studies over wider fields are needed to provide better measurements. The y-band itself becomes an unreliable indicator of luminosity for galaxies at $z > 7$ without exact measurements of the galaxy redshift and Lyα line flux, so deep near-infrared data at longer wavelengths (such as that from HST/WFC3) will be essential for a robust determination of the luminosity function.

GN-108036 also falls within the field covered by the extremely deep IRAC imaging from the GOODS Spitzer Legacy program (PI: M. Dickinson). As was noted in Ouchi et al. (2009), the galaxy is faintly detected in the IRAC 3.6 μm and 4.5 μm images, which roughly sample the rest-frame B and V band light at $z = 7.2$, although it is partially blended with a foreground galaxy located 1″ to the east (Figure 5). In order to extract reliable IRAC fluxes, we measure the positions of the two galaxies in the WFC3 F140W image, and then position unit-normalized IRAC point-spread function (PSF) images at these locations in the background-subtracted 3.6 μm and 4.5 μm images. We then fit these PSF templates to the IRAC data, minimizing χ^2 to

Table 3

Object	R.A. (J2000)	Decl. (J2000)	Redshift	$f^{Ly\alpha}_{5σ}$ (erg s$^{-1}$ cm$^{-2}$)	$L^{Ly\alpha}_{5σ}$ (erg s$^{-1}$)	m_{cont} (mag)	M_{UV} (mag)	$EW^{Ly\alpha}_{5σ}$ (Å)	S_{α} (Å)	$FWHM$ (Å)	V_{FWHM} (km s$^{-1}$)
GN-108036	12:36:22.68	62:08:07.49	7.213	2.5 × 10$^{-17}$	1.5 × 1043	25.2	−21.8	33	4.1$^{+0.7}_{-0.3}$	15	442
SDF-63544	13:23:59.76	27:24:55.83	6.965	2.8 × 10$^{-17}$	1.6 × 1043	25.4	−21.6	43	12.6$^{+0.4}_{-0.3}$	6.7	207
SDF-46975	13:23:43.88	27:20:29.97	6.844	2.7 × 10$^{-17}$	1.5 × 1043	25.4	−21.5	43	8.6$^{+0.6}_{-0.7}$	12	374

Figure 4. Images of GN-108036 taken by Subaru/Suprime-Cam (y) and HST/WFC3 (F140W). The size of each panel is 5″ × 5″. North is up and east is to the left.

To estimate the aperture correction for our z-dropouts, we select bright, non-saturated, and isolated sources in the y-band images, and perform multi-aperture photometry to construct the curve of growth. We then determine the aperture correction by measuring the difference between magnitude over the 1″ diameter aperture and the total magnitude (the asymptote of the growth curve). The median aperture correction is 0.344 mag for GOODS-N and 0.349 mag for the SDF.

The flux in the y-band is affected by Lyα emission and IGM absorption shortward of rest-frame 1216 Å. We correct for the contribution due to Lyα emission using the estimated Lyα flux from Section 4.2 for objects with strong Lyα emission, and the 3σ flux limit for the z-dropouts without Lyα detection. The IGM absorption is taken into account on the assumption of flat UV continuum in f_ν and using Madau (1995). The 3σ α limits for the 11 galaxies in the spectroscopic sample are listed in Table 2. In Table 3, we list our estimates for the continuum magnitude m_{cont} at the Lyα wavelength and the corresponding EWs that we derived for the Lyα emission lines.

4.4. Photometry and Stellar Population Properties of the $z = 7.213$ Galaxy

The Subaru y-band photometry for the $z = 7.2$ galaxy GN-108036 is difficult to interpret because the flux measurement is strongly affected both by the Lyα emission line and the Lyα forest IGM absorption, which should suppress roughly 65% of the intrinsic continuum flux from the galaxy within the y bandpass. Fortunately, GN-108036 has been imaged with the HST/WFC3-IR camera (B. J. Weiner et al., in preparation; HST program 11600). The image has a total exposure time of 1217 s and was obtained with the F140W filter, whose central wavelength is approximately 1.4 μm, sampling 1700 Å in the rest-frame UV continuum. The Suprime-Cam y-band and WFC3 F140W images of GN-108036 are shown in Figure 4. Photometry in the HST image measures a total magnitude of 25.17 ± 0.07 mag. GN-108036 was also observed in the Subaru MOIRCS JHK survey of the GOODS-N field (Kajisawa et al. 2011). The galaxy is not significantly detected in any of these MOIRCS bands, with 5σ photometric upper limits of 24.9 (J),
derive the best-fitting fluxes and their uncertainties. The middle panels in Figure 5 show the best-fit model and the right panels are the residual images. In this way, we obtain the total magnitudes of GN-108036 of \(m_{3.6\mu m} = 25.44 \pm 0.13 \) and \(m_{4.5\mu m} = 24.86 \pm 0.13 \), respectively.

We fit models to the photometry of GN-108036 to infer its stellar population properties. The procedure is the same as that of Ono et al. (2010), except that redshift is fixed at \(z = 7.213 \). We use the stellar population synthesis model GALAXEV (Bruzual & Charlot 2003) for the stellar component of the spectral energy distributions (SEDs), and consider two extreme cases for nebular emission: \(f^{ion}_{esc} = 0 \), where ionizing photons are all converted into nebular emission (the "stellar + nebular" case), and \(f^{ion}_{esc} = 1 \), where all ionizing photons escape from the galaxy (the "pure stellar" case). Nebular spectra (lines and continua) are calculated following the procedure given in Schaerer & de Barros (2009). We adopt the Salpeter initial mass function (IMF; Salpeter 1955), a constant rate of star formation, and stellar and gas metallicities \(Z = 0.2 Z_\odot \). For dust attenuation, we use the functional form of Calzetti et al. (2000) with the assumption that \(E(B-V)_{gas} = E(B-V)_{stars} \), as proposed by Erb et al. (2006).

The model SEDs are fit to the observed flux densities in the WFC3 F140W and IRAC 3.6\(\mu m \) and 4.5\(\mu m \) bands, and its MOIRCS JHK magnitudes. We do not use the \(y \)-band photometry since it is strongly affected by IGM attenuation and Ly\(\alpha \) emission. The free parameters in the fitting are stellar mass, age, and dust extinction, with three degrees of freedom.

The results of SED fitting are summarized in Table 4, and the best-fitting SEDs are shown in Figure 6. The best-fit models have small stellar masses, \(4 \times 10^8 M_\odot \) to \(3 \times 10^9 M_\odot \), very young ages, \(4-32 \) Myr, and modest color excesses \(E(B-V)_{\text{gas}} = 0.02 \) to 0.12.\(^{18} \) Deeper \(K \)-band photometry would be needed to reliably constrain the amplitude of the Balmer break, but the blue rest-frame UV-to-optical color \(m_{F140W} - m_{3.6\mu m} = -0.27 \) suggests that the break is small and that the light from the galaxy is dominated by very young and relatively unreddened stars.

If the flux in the IRAC bands has a significant contribution from nebular emission, then the intrinsic stellar SED would be even bluer than the directly measured WFC3-to-IRAC color would suggest (see Figure 6, left). There is evidence that this is the case. The very red IRAC 3.6\(\mu m \) to 4.5\(\mu m \) color is not easily reproduced by stellar emission alone, but can be explained by a strong contribution of nebular emission in the 4.5\(\mu m \) bandpass. At \(z = 7.2 \), the IRAC 3.6\(\mu m \) band is mostly free of strong emission lines, but the IRAC 4.5\(\mu m \) band includes \([\text{O}\text{III}]\lambda\lambda 4959, 5007 \) (H\(\beta \) is largely excluded). Several recent studies have suggested that strong nebular emission lines can significantly affect IRAC photometry for high-redshift galaxies (e.g., Schaerer & de Barros 2009; Vanzella et al. 2010; Raiter et al. 2010; Ono et al. 2010; Shim et al. 2011), and galaxies with extremely strong \([\text{O}\text{III}] \) (EW\(\lambda 5007 > 1000 \) \(\AA \)) have been identified at \(z < 1 \) (e.g., Kakazu et al. 2007) and \(z = 1-1.5 \) (Atek et al. 2010). Here we see evidence for strong \([\text{O}\text{III}] \) at \(z = 7.2 \); in the best-fit stellar+nebular model, the \([\text{O}\text{III}] \) lines contribute ~60% of the flux in the IRAC 4.5\(\mu m \) band.

Using the conversion from UV continuum luminosity density to star formation rate (SFR) from Madau et al. (1998) for a Salpeter IMF, and assuming no extinction, the 1700\(\AA \) luminosity of GN-108036 implies an SFR of \(29 M_\odot \) yr\(^{-1} \). However, the best-fitting stellar population models give larger SFR \(\approx 100 M_\odot \) yr\(^{-1} \) (Table 4). In part this is due to extinction in the models, and in part to the very young ages that are implied by the SED fitting. The standard conversion factors of UV luminosity per unit SFR (e.g., from Madau et al. 1998 or Kennicutt 1998) assume star formation timescales \(> 10^8 \) years. At younger ages, the UV continuum is still building toward its

\(^{18} \) The uncertainties should be larger if star formation history and metallicity are varied, although we fix them due to the small number of the data points.
steady-state value, and SFRs derived using the standard conversion factors will be underestimated. For comparison, the Ly\(\alpha\) line luminosity (\(1.5 \times 10^{43} \text{ erg s}^{-1}\)) yields another estimate of SFR(Ly\(\alpha\)) = 13.6 \(M_\odot\) yr\(^{-1}\), again adopting a standard Salpeter IMF conversion factor (Kennicutt 1998) and assuming Case B recombination for the H\(\alpha\)/Ly\(\alpha\) flux ratio. This SFR is significantly smaller than either estimate from the continuum SED, as expected since Ly\(\alpha\) is subject to strong attenuation from dust extinction and by the IGM.

Because the unusual IRAC color of GN-108036 strongly favors the results from the “stellar + nebular” modeling, we conclude that the stellar mass of this galaxy is most likely smaller than \(10^9 \, M_\odot\). This value is not atypical compared to other published estimates for galaxies at \(z \sim 7\) (e.g., Finkelstein et al. 2010; González et al. 2011). However, when combined with the bright UV luminosity and the large derived SFR, it implies an extremely high specific SFR (SSFR) \(>10^{-7} \text{ yr}^{-1}\). This is at least 50 times higher than the mean values that have been estimated for samples of LBGs at \(4 < z < 7\) (González et al. 2010), and suggests that GN-108036 is seen at a special moment in its life cycle when it is undergoing a very strong starburst, presumably with a short duration.

Although the IRAC color favors “stellar + nebular” modeling, the very young age derived may be in conflict with a simple expectation that the duration of star formation cannot be shorter than the dynamical time of the system, since it will take around the dynamical time to have the gas of the system collapse to form stars. GN-108036 has an FWHM of 0.30 in the F140W image and an Ly\(\alpha\) line width of \(4.4 \times 10^3 \text{ km s}^{-1}\). Dividing the former by the latter gives a rough estimate of the dynamical time of \(\sim 4\) Myr, which is marginally consistent with the age from SED fitting. Although this possible problem is not directly related to the discussion and conclusions of this paper, similar conflicts between stellar age and dynamical time are found in other papers (e.g., Schaerer & de Barros 2009, 2010; Ono et al. 2010), highlighting the need for further research.

Assuming a flat \(f_i\) UV spectral slope, we derive an equivalent width for Ly\(\alpha\) EW\(_{0}\)\(\alpha\) = 33 Å. Another galaxy from our sample, SDF-63544, was also observed with HST/WFC3 in the F125W, F140N, and F160W bandpasses (Cai et al. 2011; E. Egami et al., in preparation). A fit to this photometry yields a UV continuum slope \(f_3 \propto \lambda^{-2.46}\) (Cai et al. 2011) and a continuum flux magnitude of 25.5 \pm 0.1 at 9683 Å, the wavelength of Ly\(\alpha\), consistent with our estimate from the \(y\)-band photometry in Section 4.3.

4.5. Ly\(\alpha\) Fraction

In order to infer the ionizing state of the IGM, we study the evolution of the Ly\(\alpha\) fraction by measuring its value at \(z \sim 7\) and comparing it with previous measurements at \(4 < z < 6\). For \(4 < z < 6\) dropout galaxies, Stark et al. (2011) divided their sample into two UV luminosity bins, \(-21.75 < M_{\text{UV}} < -20.25\) and \(-20.25 < M_{\text{UV}} < -18.75\), and estimated their Ly\(\alpha\) fractions. Since the UV absolute magnitudes of our \(z\)-dropouts are in the brighter range, in the following analysis for our sample we focus only on the Ly\(\alpha\) fraction of dropout galaxies at \(-21.75 < M_{\text{UV}} < -20.25\).

We define the Ly\(\alpha\) fraction as the ratio of the number of \(z\)-dropout galaxies with strong Ly\(\alpha\) emission measured from their spectra to the total number of spectroscopically observed \(z\)-dropouts:

\[
X^{\text{EW}}_{\text{Ly}\alpha} = \frac{\sum_i a_i^{\text{Ly}\alpha} p_i}{\sum_i p_i},
\]

where \(a_i^{\text{Ly}\alpha}\) is 1 if any \(i\)th galaxy has an Ly\(\alpha\) EW larger than a critical EW (EW\(_c\)) and 0 otherwise. \(p_i\) is the probability that the Ly\(\alpha\) wavelength of the \(i\)th dropout candidate is within the observable wavelength range, i.e., the range not contaminated by OH airglow lines, and is given by \(p_i = \int C(z)dz/\int C(z)dz\), where \(C(z)\) is the probability distribution for \(z\)-dropouts as a function of redshift and \(C(z)\) is the effective redshift probability distribution function of \(z\)-dropout candidates when corrected for OH emission. Such a statistical analysis of the \(p_i\) parameter is needed since, at the wavelength range \(\sim\)9000–10100 Å, where we expect to detect their Ly\(\alpha\) line, our \(z \sim 7\) candidates may not always satisfy the EW\(_c\) criterion (i.e., \(p_i = 1\)), as the atmospheric OH airglow lines will significantly affect the spectrum in that wavelength range.

In order to compute \(C(z)\), we perform Monte Carlo simulations by generating mock Ly\(\alpha\) emission lines with EW\(_0\) = 50 Å or 100 Å and \(y\)-band magnitudes of 25.24 and 25.57 mag. These magnitudes correspond to the central values of two bins into which the \(y\)-band total magnitudes of our \(z\)-dropouts are divided in order of their brightness. We add the mock Ly\(\alpha\) lines to an observed two-dimensional spectrum, following the redshift distribution, \(C(z)\) (Figure 6 in Ouchi et al. 2009). We then inspect the mock two-dimensional spectrum, searching for an Ly\(\alpha\) feature. Figure 7 shows examples of two-dimensional spectra apparently with and without Ly\(\alpha\) detected (left and right plots, respectively). We perform a number of trials and evaluate the recovery rate of mock Ly\(\alpha\) lines. The \(C(z)\) is then estimated by computing the weighted mean of Ly\(\alpha\) EWs, assuming this to be a Gaussian function (Ouchi et al. 2008). We find that over 90% of the mock Ly\(\alpha\) lines are successfully recovered in our extremely deep spectra (i.e., \(C(z) \approx C(z)\)). Therefore, we choose not to correct for this effect in the following analysis. When computing the Ly\(\alpha\) emission fraction, \(X^{\text{EW}}_{\text{Ly}\alpha}\), above a certain equivalent width threshold EW\(_c\), we divide the number of galaxies with detected EW(Ly\(\alpha\)) \(\geq\) EW\(_c\) by the number of galaxies for which the 3\(\sigma\) upper limits to the EW detectability are smaller than EW\(_c\) (i.e., those galaxies for which Ly\(\alpha\) lines stronger than EW\(_c\) could have been detected).

From the sample of 11 \(z\)-dropout galaxies with spectroscopic data studied here, we detect Ly\(\alpha\) emission lines for three sources,
all with Ly\(\alpha\) EWs larger than 25 Å. However, we do not include GN-108036 at \(z = 7.2\), since it is brighter than \(-21.75\) in the rest-frame UV. We find four objects with Ly\(\alpha\) EW limits larger than this, giving an Ly\(\alpha\) fraction, \(X_{\alpha}^{25} = 33\% \pm 27\%\) (2/6).

If we set the EW\(_\alpha\) = 55 Å, the two objects with Ly\(\alpha\) detection have smaller EW\(_\alpha\) than the criterion. The Ly\(\alpha\) EW upper limits of eight \(z\)-dropout candidates without Ly\(\alpha\) detection are lower than the EW\(_\alpha\).

We thus obtain an upper limit of Ly\(\alpha\) fraction: \(X_{\alpha}^{25} < 10\%\) (0/10).

5. DISCUSSION: IMPLICATIONS FOR REIONIZATION

Since neutral hydrogen in the IGM resonantly scatters Ly\(\alpha\) photons, the transmission of Ly\(\alpha\) photons is sensitive to the ionization state of the IGM. Thus, the fraction of Ly\(\alpha\)-emitting \(z\)-dropout galaxies can be used as a diagnostic for the ionization state of the IGM. In Section 4.5, we estimated the Ly\(\alpha\) fraction of bright \(z\)-dropout galaxies to be \(X_{\alpha}^{25} = 33\% \pm 27\%\) (2/6) and \(X_{\alpha}^{35} < 10\%\) (0/10). In order to study evolution of the Ly\(\alpha\) fraction to \(z \sim 7\), we compare our estimates for the bright (\(-21.75 < M_{UV} < -20.25\), or \(M_{UV} \approx -21\)) \(z\)-dropout galaxies with those at \(z \approx (4, 5, 6)\), \(X_{\alpha}^{25} = (12\% \pm 3\%, 24\% \pm 5\%, 20\% \pm 8\%)\) and \(X_{\alpha}^{35} = (5.5\% \pm 1.8\%, 7.2\% \pm 2.8\%, 7.5\% \pm 5.0\%)\) and their extrapolations to \(z \sim 7\), \(X_{\alpha}^{25} = 33\% \pm 10\%\) and \(X_{\alpha}^{35} = 9\% \pm 6\%\), which are derived on the assumption of a linear relationship between Ly\(\alpha\) fraction and redshift (Stark et al. 2011). For faint (\(-20.25 < M_{UV} < -18.75\), or \(M_{UV} \approx -19.5\)) galaxies at \(z \sim (4, 5, 6)\), Stark et al. (2011) obtained their Ly\(\alpha\) fractions of \(X_{\alpha}^{25} = (35\% \pm 5\%, 48\% \pm 9\%, 54\% \pm 11\%)\) and \(X_{\alpha}^{35} = (22\% \pm 4\%, 22\% \pm 7\%, 27\% \pm 8\%)\) and their extrapolations to \(z \sim 7\), \(X_{\alpha}^{25} = 67\% \pm 10\%\) and \(X_{\alpha}^{35} = 27\% \pm 13\%\).

For an independent check on the values from Stark et al. (2011), we refer to Dow-Hygelund et al. (2007) and Stanway et al. (2007), who presented the results of spectroscopy for \(i\)-dropout galaxies at \(z \sim 6\). Dow-Hygelund et al. (2007) reported a total of 12 LBGs with bright UV continuum (\(-21.75 < M_{UV} < -20.25\)). Three (one) of these galaxies are found to have Ly\(\alpha\) EWs larger than 25 Å (55 Å). In an independent study, Stanway et al. (2007) found one such bright galaxy (ID 1042) with Ly\(\alpha\) EW of 23 Å. Combining these results, we estimate an Ly\(\alpha\) fraction of \(X_{\alpha}^{25} = 23\% \pm 15\%\) (3/13) and \(X_{\alpha}^{35} = 8\% \pm 8\%\) (1/13) at \(z \sim 6\), consistent with Stark et al. (2011). Since they would not change so much the extrapolations derived by Stark et al. (2011) due to the large statistical uncertainties of the combined results, we do not calculate extrapolations using the combined results as well as the results of Stark et al. (2011).

Fontana et al. (2010) reported spectroscopic observation of seven \(z\)-dropout galaxies, with six having bright UV continua (\(-21.75 < M_{UV} < -20.25\)) and the other one having faint UV continuum (\(-20.25 < M_{UV} < -18.75\)). One of their galaxies shows Ly\(\alpha\) emission with EW\(_\alpha\) = 13 Å. Furthermore, Vanzella et al. (2011) performed spectroscopic observations of two \(z\)-dropout candidates. Both of them have \(M_{UV} < -20.25\) and the two galaxies show Ly\(\alpha\) emission with EWs of 64 Å and 50 Å. Schenker et al. (2011) showed the results of spectroscopic observations of 19 galaxy candidates at \(6.3 < z < 8.8\) selected by their photometric redshift technique (McLure et al. (2011)).

Table 5

Properties of z-dropouts Spectroscopically Observed in the Previous Studies

Object	Redshift^a	m_{cont}^b (mag)	M_{LV}^a (mag)	f_{Lyα}^d (erg s⁻¹ cm⁻²)	EW_{Lyα}^e (Å)	Comments
G2_1408	6.972	26.37	−20.49	3.4 × 10^{−18}	13	S/N(Lyα) = 13, Castellano et al. (2010a), Y_{OPEN} Hawk-I
G2_2370	6.8	25.56	−21.27	<2.5 × 10^{−18}	8.4	Castellano et al. (2010a), Y_{OPEN} Hawk-I
G2_4034	6.8	26.35	−20.50	<2.5 × 10^{−18}	9.7	Castellano et al. (2010a), Y_{OPEN} Hawk-I
G2_6173	6.8	26.53	−20.33	<2.5 × 10^{−18}	11	Castellano et al. (2010a), Y_{OPEN} Hawk-I
H_9136	6.8	25.90	−20.94	<2.5 × 10^{−18}	6.4	Hickey et al. (2010), Y_{OPEN} Hawk-I
W_6	6.8	26.93	−20.38	<2.5 × 10^{−18}	11	Wilkins et al. (2010), Y_{OPEN} WFC3-ERS
O_5	6.8	27.52	−19.67	<2.5 × 10^{−18}	21	Oesch et al. (2010), Y_{OPEN} WFC3-HUDF

Vanzella et al. (2011)

Object	m_{cont} (mag)	M_{LV} (mag)	f_{Lyα} (erg s⁻¹ cm⁻²)	EW_{Lyα} (Å)	Comments	
BDF-521	7.008	25.86	−20.63	1.62 × 10^{−17}	64	S/N(Lyα) = 18
BDF-3299	7.109	26.15	−20.56	1.21 × 10^{−17}	50	S/N(Lyα) = 16

Schenker et al. (2011)

Object	m_{cont} (mag)	M_{LV} (mag)	f_{Lyα} (erg s⁻¹ cm⁻²)	EW_{Lyα} (Å)	Comments	
ERS5847	6.48	26.6	−20.22	
ERS7376	6.79	27.0	−19.89	
ERS7412	6.38	27.0	−19.79	
ERS8119	6.78	27.1	−19.79	
ERS8290	6.52	27.1	−19.73	
ERS8496	6.441	27.3	−19.51	9.1 × 10^{−18}	65	S/N(Lyα) > 5
ERS10270	7.02	27.4	−19.54	
ERS10373	6.44	27.4	−19.41	
A1703_zD1	6.75	24.1	−20.39	
A1703_zD3	6.89	25.5	−19.25	
A1703_zD6	7.045	25.8	−19.36	2.8 × 10^{−17}	65	Magnification factor μ = 5.2^f, S/N(Lyα) > 5
A1703_zD7	8.80	26.8	−18.74	
A2261_1	7.81	26.9	−18.85	
BoRG_4	8.27	25.8	−21.39	
EGS_K1	8.27	25.3	−21.89	
HUDF09_799	6.88	27.7	−19.21	
HUDF09_1584	7.17	26.7	−20.27	
HUDF09_1596	6.905	26.8	−20.12	
MS0451-03_10	7.50	26.7	−16.10	

Pentericci et al. (2011)

Object	m_{cont} (mag)	M_{LV} (mag)	f_{Lyα} (erg s⁻¹ cm⁻²)	EW_{Lyα} (Å)	Comments	
NTTDF-474	6.623	26.50	−20.35	3.2 × 10^{−18}	16	S/N(Lyα) = 7
NTTDF-1479	6.8	26.12	−20.77	
NTTDF-1632	6.8	26.44	−20.45	
NTTDF-1917	6.8	26.32	
NTTDF-2916	6.8	26.64	−20.25	
NTTDF-6345	6.701	25.46	−21.41	7.2 × 10^{−18}	15	S/N(Lyα) = 11
NTTDF-6543	6.8	25.75	−21.14	
BDF4-2687	6.8	26.15	−20.74	
BDF4-2883	6.8	26.15	−20.74	
BDF4-5583	6.8	26.65	−20.24	
BDF4-5665	6.8	26.64	−20.25	

Notes. The upper limits of Lyα flux and equivalent width are 5σ.

^a The redshift of objects without spec-z is set at 6.8.

^b For the objects of Fontana et al. (2010), Y-band magnitudes are taken from their Table 1, respectively. For the objects of Schenker et al. (2011), f_{Lyα} magnitudes are taken from their Table 1.

^c Objects from Fontana et al. (2010) are taken from their Table 1. For the objects of Vanzella et al. (2011), it is calculated from the Y-band magnitude corrected for Lyα contribution and IGM attenuation, Y_{cont}. For the objects of Schenker et al. (2011) and Pentericci et al. (2011), it is calculated from the continuum magnitude m_{cont} and redshift. The magnification factors are considered for the Schenker et al. (2011) objects.

^d For the objects of Fontana et al. (2010), the upper limit is estimated from the 1σ limiting flux at 9485 Å, corresponding to z ∼ 6.8 Lyα, around which the redshift distribution of their z-dropouts peaks (Figure 1 in Castellano et al. 2010a).

^e The photometric redshift estimated by Schenker et al. (2011) or McLure et al. (2011).

^f These are estimated by Bradley et al. (2011).

^g The EW detection limits are well below EW = 25 Å (Pentericci et al. 2011).
Figure 8. Evolution in the fraction of strong LAEs in LBGs with $-21.75 < M_{UV} < -20.25$ (top panels) and $-20.25 < M_{UV} < -18.75$ (bottom panels) over $4 < z < 7$. The left panels show the fraction of galaxies with EW larger than 25 Å, while the right panels show the fraction of those with EW larger than 55 Å. The filled square is our result, the open square is the result of Fontana et al. (2010) and Schenker et al. (2011), the cross is from Vanzella et al. (2011) and Pentericci et al. (2011), and the filled circle is the composite result. The filled diamonds are the results of Stark et al. (2011) and open triangle is the composite result of Dow-Hygelund et al. (2007) and Stanway et al. (2007). The filled square, open square, cross, and open triangle are shifted in redshift for clarity. The shaded area is derived by extrapolating the trend seen in lower redshifts to $z ∼ 7$ (Stark et al. 2011). (A color version of this figure is available in the online journal.)

Table 6

Summary of the Samples

$EW_{Lyα} > 25$ Å	$EW_{Lyα} > 55$ Å	
$-21.75 < M_{UV} < -20.25$	$-20.25 < M_{UV} < -18.75$	
This Study	2/6*	0/10
Fontana et al. (2010)	0/6	0/6
Vanzella et al. (2011)	2/2	1/2
Schenker et al. (2011)	0/2	0/2
Pentericci et al. (2011)	0/7	0/7

Notes. For the sample of Schenker et al. (2011), objects at $6.3 < z < 7.3$ are considered.

* In our sample, four objects have Lyα EW limits larger than 25 Å.

dependence of $X_{Lyα}^{25}$ evolution could be explained by different halo masses of galaxies and the surrounding IGM. Given that the clustering strength of dropout galaxies increases with their UV luminosity (e.g., Giavalisco & Dickinson 2001; Ouchi et al. 2004; Adelberger et al. 2005; Lee et al. 2006), our results imply that the ionizing state of the IGM around galaxies hosted by less-massive dark matter halos changes later than that around galaxies hosted by massive dark matter halos. This would suggest that reionization proceeds from high- to low-density environments (inside-out; e.g., Ciardi & Madau 2003; Iliev et al. 2006, cf. Finlator et al. 2009) rather than from low- to high-density regions (outside-in; e.g., Gnedin 2000; Miralda-Escudé et al. 2000).

We compare our composite results with those of model predictions derived by Dijkstra et al. (2011), which quantify the probability distribution function (PDF) of the fraction of Lyα photons transmitted through the IGM, by combining galactic outflow models with large-scale seminumeric simulations of reionization. They assume that the IGM at $z = 6$ was fully transparent to Lyα photons, and that the observed PDF for $EW_{Lyα}^{25}$ at $z = 7$ is different only because of evolution of the ionization state of the IGM. Figure 9 compares their models with our composite results. Our results can be explained by an evolution of the neutral hydrogen fraction x_{HI} between $z = 6$ and 11.
and 7; \(\text{HI} \) is roughly 0.6 – 0.9 at \(z \sim 7 \), which is similar to those reported by Schenker et al. (2011) and Pentericci et al. (2011).

The above discussion assumes that the dropout samples at different redshifts have similarly low-contamination fractions from interlopers. We should, however, keep in mind that this assumption has not yet been justified well, although for the \(z = 4–6 \) UV-faint samples, Stark et al. (2010) estimated the contamination rate to be only 2%-5% (cf. Stanway et al. 2008; Douglas et al. 2009). Another possible source of systematic errors in our \(\alpha \)-line fraction analysis is inhomogeneities among the dropout samples in the spectroscopic detection limit and in the quality of the photometry used to estimate UV continua, both of which are difficult to fully take into account in our analysis. To reduce such inhomogeneities, a systematic spectroscopic survey over an entire redshift range combined with deep photometry redward of \(\alpha \)-line wavelength is desirable.

6. CONCLUSIONS

In this paper, we have presented Keck/DEIMOS spectroscopic observations of 11 \(z \)-dropout galaxies found in the SDF and GOODS-N fields. An emission line has been detected at 9500 – 10000 Å in the spectra of three objects, one of which is the previously reported \(\alpha \)-emitting \(z \)-dropout spectroscopic studies (Fontana et al. 2010; Vanzella et al. 2011) including very recent ones (Schenker et al. 2011; Pentericci et al. 2011). We have obtained the \(z \sim 7 \) \(\alpha \)-emitting \(\alpha \)-fraction of \(X_{\alpha}^{25} \) \(= 17 \% \pm 10 \% \) and \(X_{\alpha}^{55} \) \(= 4 \% \pm 4 \% \) for UV-bright galaxies \((21.75 < M_{\text{UV}} < -20.25, \text{or } M_{\text{UV}} \sim -21)\), and \(X_{\alpha}^{25} \) \(= 24 \% \pm 12 \% \) and \(X_{\alpha}^{55} \) \(= 16 \% \pm 9 \% \) for UV-faint galaxies \((20.25 < M_{\text{UV}} < -18.75, \text{or } M_{\text{UV}} \sim -19.5)\). These low values indicate that the fraction of \(\alpha \)-emitting galaxies drops from \(z \sim 6 \) to 7 in contrast to the reported increasing trend from \(z \sim 4 \) to 6. We have also found that \(X_{\alpha}^{25} \) drops more strongly in UV-faint galaxies than in UV-bright galaxies. These findings would suggest that the neutral fraction of the IGM significantly increases from \(z \sim 6 \) to 7, and that the increase is stronger around galaxies with fainter UV luminosities, which is consistent with inside-out reionization models where reionization proceeds from high- to low-density environments.

We thank the anonymous referee for valuable comments and suggestions which improved the manuscript. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. We thank Michael Cooper and Yousuke Utsumi for giving us helpful advices to reduce DEIMOS spectra. We are also thankful to Richard Ellis for giving us helpful comments on an early draft of this paper, and to Mark Dijkstra for providing us with the machine-readable table of their simulation results. Y.O. acknowledges support from the Japan Society for the Promotion of Science (JSPS) through the JSPS Research Fellowship for Young Scientists. The work of D.S. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. H.S. acknowledges the support of the National Science Foundation during the earlier phases of his spectroscopic program at the Keck Observatory.

Facilities: Subaru (Suprime-Cam) and Keck:II (DEIMOS)

REFERENCES

Adelberger, K. L., Steidel, C. C., Pettini, M., et al. 2005, ApJ, 619, 697
Atek, H., Malkan, M., McCarthy, P. et al. 2010, ApJ, 723, 104
Bouwens, R. J., Illingworth, G. D., Labbé, I., et al. 2011, Nature, 469, 504
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2010a, ApJ, 709, L133
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2010b, ApJ, 708, L69
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2011b, ApJ, 737, 90
Bradley, L. D., Bouwens, R. J., Zitrin, A., et al. 2011, arXiv:1104.2055
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Bunker, A. J., Wilkins, S., Ellis, R. S., et al. 2010, MNRAS, 409, 855
Cai, Z., Fan, X., Jiang, L., et al. 2011, ApJ, 736, L28
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Castellano, M., Fan, C., Boultia, K., et al. 2010a, A&A, 511, A20
Castellano, M., Fontana, A., Parisi, D., et al. 2010b, A&A, 524, A28
Ciardi, B. & Madau, P. 2003, ApJ, 596, 1
Davis, M., Faber, S. M., Newman, J., et al. 2003, Proc. SPIE, 4834, 161
Dayal, P., Ferrara, A., Galli, R., et al. 2008, MNRAS, 389, 1683
Dayal, P., Ferrara, A., Saro, A., et al. 2009, MNRAS, 400, 2000
Dayal, P., Maselli, A., & Ferrara, A. 2011, MNRAS, 410, 830
Dijkstra, M., Lidz, A., & Wyithe, J. S. 2007, MNRAS, 377, 1175
Dijkstra, M., Mesinger, A., & Wyithe, J. S. B. 2011, MNRAS, 414, 2139
Douglas, L. S., Bremer, M. N., Lehmann, M. D., et al. 2010, MNRAS, 409, 1155
Douglas, L. S., Bremer, M. N., Stanway, E. R., & Milvang-Jensen, B. 2011, MNRAS, 409, 1155
Douglas, L. S., Bremer, M. N., Stanway, E. R., Lehmann, M. D., & Clowe, D. 2009, MNRAS, 400, 561
Downs, H.-H., Hold, C. C., Bold, B. P., Bouwens, R. J., et al. 2007, ApJ, 660, 47
Dunkley, J., Komatsu, E., Nolta, M. R., et al. 2009, ApJS, 180, 306
Dunlop, J. S., McLure, R. J., Robertson, B. E., et al. 2011, arXiv:1102.5005
