Arginine metabolic control of airway inflammation

Kewal Asosingh,1 Chris D. Lauruschkat,1 Mario Alemagno,1 Matthew Frimel,1 Nicholas Wanner,1 Kelly Weiss,1 Sean Kessler,1 Deborah A. Meyers,2 Carole Bennett,1 Weiling Xu,1 and Serpil Erzurum1,3

1Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA. 2Division of Genetics, Genomics and Precision Medicine, Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA. 3Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA

Introduction

Genetic and environmental factors are important to the genesis and progression of asthma (1). Over the past few years, accumulating evidence suggests that changes in metabolism regulates inflammation and T cell function (2). Current concepts suggest that arginine metabolism affects immune cell function via both mitochondrial and nonmitochondrial mechanisms of action (3, 4). Recently, our group identified that arginine metabolism is a key driver of Th2 airway inflammation (4). Arginase-2 (ARG2) shares a common substrate, arginine. Higher expression of iNOS and exhaled NO are linked to airway inflammation in patients. iNOS deletion in animal models suggests that eosinophilic inflammation is regulated by arginine metabolism. Moreover, ARG2 is a regulator of Th2 response, as shown by the development of severe eosinophilic inflammation in ARG2–/– mice. However, potential synergistic roles of iNOS and ARG2 in asthma have not been explored. Here, we hypothesized that arginine metabolic fate via iNOS and ARG2 may govern airway inflammation. In an asthma cohort, ARG2 variant genotypes were associated with arginase activity. ARG2 variants with lower arginase activity, combined with levels of exhaled NO, identified a severe asthma phenotype. Airway inflammation was present in WT, ARG2–/–, iNOS–/–, and ARG2–/–iNOS–/– mice but was greatest in ARG2–/– mice. Eosinophilic and neutrophilic infiltration in the ARG2–/– mice was abrogated in ARG2–/–iNOS–/– animals. Similarly, angiogenic airway remodeling was greatest in ARG2–/– mice. Cytokines driving inflammation and remodeling were highest in lungs of asthmatic ARG2–/– mice and lowest in the iNOS–/–. ARG2 metabolism of arginine suppresses inflammation, while iNOS metabolism promotes airway inflammation, supporting a central role for arginine metabolic control of inflammation.
ARG2 –/– mice in HDME-exposed cell number (Figure 2B) and number of eosinophils (Figure 2C) and neutrophils (Figure 2D) were high-lungs (Figure 2A). Quantification of bronchoalveolar lavage (BAL) cellular content showed that total 1). There were no differences in severity, lung function, inflammation, and F ENO across different alleles, for age, sex, and smoking history was 1.82, with \(P<0.01\) (Table 1). Among asthmatics, the comparison of AA vs. GG was significant (\(P<0.02\)). Arginase activity tended to be the lowest in asthmatics with A/A allele (arginase activity, \(\mu\text{mol/mL/h}: \text{GG}, 0.63 \pm 0.13; \text{AA}, 0.37 \pm 0.05; P=0.04\) (Table 1). There were no differences in severity, lung function, inflammation, and F ENO across different alleles, but BMI and IgE trended to be higher in the AA genotype asthmatics (Table 1). ARG2 rs742869 genotypes have been related to phenotypes of obesity, airflow obstruction, hyperreactivity, and blood eosinophils and IgE levels. We further analyzed asthmatics dichotomized by high and low F ENO levels (Figure 1, A–F). A subgroup phenotypic group of patients with low F\(\text{ENO} \) and ARG2 G/G allele (with highest arginase activity) had the highest BMI (\(P<0.001\), 2-tailed ANOVA, Figure 1A), the highest PC_{20} (provocative concentration of methacholine causing a 20% fall in FEV_{1}); \(P=0.01\), 2-tailed ANOVA, Figure 1C), and the lowest blood eosinophil levels (\(P<0.0001\), 2-tailed ANOVA, Figure 1D). Asthmatics with high F\(\text{ENO} \) and the ARG2 A/A genotype (with low arginase activity) had the highest blood IgE levels (\(P=0.0002\), 2-tailed ANOVA, Figure 1E). No sex differences were observed in our cohort. IgE levels, percent eosinophils, and F\(\text{ENO} \) were higher in male asthmatics compared with female, while lung function was lower (male vs. female asthmatics: IgE, 249 \pm 406 male, 177 \pm 263 female, \(P<0.001\); percent eosinophils, 4.3 \pm 2.9 male, 3.6 \pm 3.0 female, \(P<0.001\); F\(\text{ENO} \), 44.2 \pm 38 male, 39.2 \pm 43 female, \(P<0.01\); baseline forced expiratory volume in 1 second (FEV_{1}) percent predicted, 67.4 \pm 22.9 male, 76.6 \pm 21.9 female, \(P<0.001\); FEV_{1}/forced vital capacity (FVC), 0.64 \pm 0.12 male, 0.72 \pm 0.12 female, \(P<0.001\)). Overall, the findings suggest that genotypes associated with arginase activity may interact with F\(\text{ENO} \) levels to manifest as different asthma phenotypes. These findings prompted us to study ARG2 and iNOS pathway interactions in a mouse model of airway inflammation.

\[\text{iNOS}^-/-/\text{ARG2}^-/- \text{mice are viable and fertile.} \text{iNOS}^-/-/\text{ARG2}^-/- \text{animals were generated by crossbreeding } \text{iNOS}^-/-/ \text{mice with } \text{ARG2}^-/- \text{mice as described in Methods.} \text{iNOS}^-/-/\text{ARG2}^-/- \text{mice were viable and fertile, and they did not exhibit any apparent phenotype. WT, } \text{ARG2}^-/-, \text{iNOS}^-/-, \text{and } \text{iNOS}^-/-/\text{ARG2}^-/- \text{were used in a HDME model described below. Plasma levels of arginine quantified in na} \text{i} \text{ve WT and } \text{ARG2}^-/- \text{mice were significantly increased in } \text{ARG2}^-/- \text{animals, consistent with the genotype (plasma arginine levels [μM/L]; WT, } n=8, 119 \pm 7; \text{ARG2}^-/-, n=9, 244 \pm 27; P<0.002).} \]

The greater airway inflammation in \text{ARG2}^-/- mice is modulated by iNOS. Inflammatory cells were not observed in naive or saline exposed WT, \text{ARG2}^-/-, \text{iNOS}^-/-, and \text{iNOS}^-/-/\text{ARG2}^-/- in lung tissue sections stained with H&E (Figure 2A). All 4 genotypes developed airway inflammation upon exposure to HDME, but \text{ARG2}^-/- mice consistently had the highest numbers of inflammatory cell influx into the lungs (Figure 2A). Quantification of bronchoalveolar lavage (BAL) cellular content showed that total cell number (Figure 2B) and number of eosinophils (Figure 2C) and neutrophils (Figure 2D) were higher in HDME-exposed \text{ARG2}^-/- mice than other genotypes. There were no differences in inflammatory cells between WT and \text{iNOS}^-/- animals (Figure 2, B–D). Macrophages and lymphocytes were similar across genotypes in allergen exposed groups (Figure 2, E and F). Deletion of \text{iNOS} attenuated the airway inflammation in \text{ARG2}^-/- mice so that levels were similar to WT levels (Figure 2, A–D). These data show that deletion of the mitochondrial arginine-consuming enzyme ARG2 results in exaggerated eosinophilic and neutrophilic airway inflammation, which was nullified to WT levels by the deletion of the other major arginine metabolizing enzyme iNOS.
Increased angiogenic remodeling and elevated eosinophilic and neutrophilic and angiogenic cytokines in ARG2−/− mice. The effect of arginine metabolism on CD4+ T cell differentiation in naive and allergen-exposed mice was analyzed using splenic T cells. IL-4–expressing CD4+ T cells (Th2) increased in all allergen-exposed genotypes compared with naive mice (Figure 3A). IL-17–expressing CD4+ T cells (Th17) were elevated in HDME-exposed WT mice, confirming that this airway inflammation model consists of mixed Th2/Th17 inflammation (Figure 3B). Th17 cells were suppressed in ARG−/− mice, independently of allergen exposure. Naive iNOS−/− mice exhibited increased Th17 differentiation, as reported previously (29); however, the levels were suppressed in HDME-exposed iNOS−/−. Conversely, naive iNOS−/−/ARG2−/− had low Th17 cells, and the percentage peaked after allergen challenge, demonstrating that an intact arginine pathway inhibits Th17 differentiation in allergen-exposed mice. IFN-γ+CD4+ T cells (Th1) were high in naive iNOS−/− or iNOS−/−/ARG2−/− mice, indicating that ARG2 is required to decrease the Th1 response in allergen-exposed iNOS−/− mice. Deletion of ARG2 increased Foxp3+CD4+ T cells (Tregs), while iNOS had no effect (Figure 3D). The findings indicate that iNOS and ARG2 have contrasting effects on the polarization of CD4 effector T cells in naive and allergen-exposed mice. ARG2 deletion favors Tregs and inhibits Th17; however, this effect was insufficient to attenuate the exaggerated asthma phenotype.

Angiogenic remodeling is one of the most consistent characteristics of asthma airway remodeling, and it occurs in mild, moderate, and severe asthma patients (30). There is a consistent significant correlation between bronchial wall microvessel density and asthma severity in patients, which is linked mechanistically to atopic airway inflammation (30–34). Microvessel density was quantified on lung tissue sections stained for the endothelial cell marker von Willebrand Factor (vWF). Compared with saline-exposed mice, HDME increased angiogenesis in all 4 genotypes (Figure 3E). Lung microvessel density was highest in the ARG2−/− animals but was dampened in iNOS−/−/ARG2−/− to levels found in WT (Figure 3F). The data demonstrate that deletion of ARG2 fuels angiogenic airway remodeling upon allergen exposure in the presence of an intact iNOS pathway.

To understand underlying mechanisms of the increased airway inflammation and remodeling in HDME-exposed ARG2−/− mice, cytokine profiles in lung tissue protein extracts or BAL, including GM-CSF, CCL20, IL-1α, Eotaxin-1, Eotaxin-2, IL-5, IL-1, VEGF, and IL-17, were quantified. IL-5 and eotaxin-2 are critical for eosinophilopoiesis and recruitment of eosinophils (35), while eotaxin-2.
in-2 also exerts angiogenic activity via CCR3 on bronchial endothelial cells (36). IL-17 mediates neutrophilic airway inflammation and induces angiogenesis (37). IL-5, eotaxin-2, and IL-17 were differentially expressed among WT, ARG2–/–, iNOS–/–, and iNOS–/–/ARG2–/– mice exposed to HDME (Figure 3, G–I).

IL-5 was significantly lower in iNOS–/– and iNOS–/–/ARG2–/– mice compared with ARG2–/–, and a similar trend was observed in WT animals (P < 0.073 WT vs. ARG2–/–). ARG2–/– animals had the highest levels of eotaxin-2 and IL-17, which returned to WT levels in iNOS–/–/ARG2–/–. Levels were comparable between WT and iNOS–/– mice. Other neutrophil-specific chemokines KC, MIP-2, and LIX were significantly elevated in the HDME group compared with saline-exposed mice (Figure 3, J–L). Levels were similar across the different genotypes within each group. No differences were observed in airway hyperreactivity and mucus cell metaplasia (data not shown). The results suggest that mitochondrial ARG2–mediated arginine metabolism regulates expression of pulmonary eosinophilic/neutrophilic and angiogenic cytokines.

Discussion

This study shows that arginine metabolism is a critical modulator of severity of inflammation and remodeling in eosinophilic and neutrophilic asthma. Early GWAS showed a strong association of asthma and ARG1 and ARG2 gene variants (8, 10, 38, 39). Increased serum arginase activity was also quantitatively related to airflow limitation, as measured by FEV₁ (40). Here, we show that arginase activity depends on specific ARG2 SNPs. Common ARG2 variants that were associated with lower arginase activity, combined with high levels of FENO, identified a more severe asthma phenotype. We modeled this severe asthma phenotype in the HDME ARG2–/– mouse models to investigate the underlying arginine metabolic pathways. ARG2–/–, iNOS–/–, and crossbreeds of these KOs were used to decipher the roles of iNOS and mitochondrial ARG2–dependent arginine metabolism.

![Figure 1. ARG2 rs742869 single nucleotide polymorphism (SNP) related to phenotypes of obesity, airflow obstruction, hyperreactivity, and blood eosinophils and IgE levels in asthmatics dichotomized by high and low fractional exhaled nitric oxide (FENO) levels. Each dot represents data from 1 patient; gray indicates low FENO, and black represents high FENO. (A) BMI was significantly different among genotypes of ARG2 rs742869 SNP in asthmatics dichotomized by high FENO (≥ 35 ppb) and low FENO (< 35 ppb). *P = 0.0008 low FENO and G/G vs. low FENO and A/A, *P = 0.002 low FENO and G/G vs. high FENO and G/G, and *P < 0.0001 low FENO and G/G vs. high FENO and A/A. (B) Ratio of forced expiratory volume in 1 second (FEV₁)/forced vital capacity (FVC) tended to be different among genotypes in asthmatics dichotomized by FENO. *P = 0.03 low FENO and A/A vs. high FENO and G/G, and *P = 0.03 low FENO and G/G vs. high FENO and A/A. (C) PC₂₀ was significantly different. *P = 0.002 low FENO and G/G vs. high FENO and G/G, *P = 0.0007 low FENO and G/G vs. high FENO and A/A, and *P = 0.04 low FENO and G/G vs. high FENO and A/A. (D) Blood eosinophil levels were significantly different. *P = 0.01 low FENO and G/G vs. high FENO and G/G, *P = 0.005 low FENO and G/G vs. high FENO and A/A, *P = 0.01 low FENO and A/A vs. high FENO and G/G, and *P = 0.0001 low FENO and G/G vs. high FENO and A/A. (E) Blood IgE levels were significantly different. *P = 0.01 low FENO and G/G vs. high FENO and G/G, *P = 0.0001 low FENO and A/A vs. high FENO and A/A, and *P = 0.001 low FENO and A/A vs. high FENO and G/G. (F) Serum arginase activity tended to be different among genotypes in asthmatics dichotomized by FENO. *P = 0.04 low FENO and G/G vs. low FENO and A/A, *P = 0.01 low FENO and A/A vs. high FENO and G/G, and *P = 0.04 low FENO and A/A vs. high FENO and A/A. Student’s t test was used for group comparisons and 1-way ANOVA was used for comparisons of more than 2 groups.](https://doi.org/10.1172/jci.insight.127801)
Figure 2. Increased airway inflammation in ARG2−/− mice. WT, ARG2−/−, iNOS−/−, and iNOS−/−/ARG2−/− mice were exposed to HDME or saline as control. (A) Lung tissue sections stained for H&E demonstrated that all 4 genotypes exposed to HDME developed airway inflammation, but the influx of inflammatory cells was the highest in ARG2−/− mice. Black arrow heads indicate foci of inflammatory cells around the airways; a, airway. Representative tissue sections are shown. Scale bar: 100 μm. (B–D) Differential hematopoietic cell counts in BAL showing increased total cell count (B), eosinophils (C), and neutrophils (D) in HDME exposed ARG2−/− mice were inhibited in the iNOS−/−/ARG2−/− mice. (E and F) Macrophages (E) and lymphocytes (F) were not different across HDME exposed groups. *P < 0.05 between HDME and saline groups. Student’s t test was used for group comparisons. Each dot represents data from 1 mouse and mean ± SEM values are shown.
Figure 3. Increased angiogenic airway remodeling, inflammatory, and angiogenic cytokines in ARG2−/− mice. (A–D) CD4+ T cell polarization in ARG2−/− mice analyzed using splenic T cells. Splenocytes were isolated and analyzed for effector T cell polarization. (E) vWF staining for blood vessels in paraffin-embedded lung tissue sections. Representative low- and high-power lung images from WT mice exposed to saline or HDME as shown. Original magnification ×200. (F) Quantification of the microvessel density in WT, ARG2−/−, iNOS−/−, and iNOS−/−/ARG2−/− mice exposed to HDME. The number of vessels per 2500 μm2 area is shown. (G) IL-5 levels in BALF. (H) Eotaxin-2 levels in BALF. (I–L) IL-17, KC, MIP-2, and LIX levels in lung tissue protein extract. *P < 0.05 between respective genotypes in HDME vs. saline groups. #P < 0.05 between WT and ARG2−/−, *P < 0.05 between ARG2−/− and ARG2−/−/iNOS−/−, *P < 0.05 between iNOS−/− and ARG2−/−/iNOS−/−, *P < 0.05 between iNOS−/− and ARG2−/−, #P < 0.05 between WT and iNOS−/− or WT and ARG2−/−/iNOS−/−. Each dot represents data from 1 mouse, and mean ± SEM values are shown. Wilcoxon test was used in A–D, and Student’s t test was used in F–L for group comparisons.
All NOS isoforms are present in the airways: neuronal NOS (nNOS; NOS1) in nerves, iNOS (NOS2) in airway epithelium, and endothelial nitric oxide synthase (NOS3) in lung endothelium and in very small amounts in the airway epithelium. Genetic deletion of each of the 3 genes in mice provides information of their individual contributions. iNOS is the only NOS that is induced in the OVA allergen airway inflammation model and is associated with increased expired NO. More than 90% of \(F_2 \)NO is attributable to iNOS using the NOS-deleted mice (41), and this parallels findings in patients in which iNOS induction occurs in allergen challenge of human asthmatics that also leads to increased \(F_2 \)NO (42). iNOS-deleted mice have less eosinophilic inflammation than WT in the OVA model, yet continue to have airway hyperresponsiveness (43). Conversely, nNOS-deleted mice have less airway hyperreactivity but no decrement in airway inflammation. In humans, airway inflammation of many asthmatics is typified by high \(F_2 \)NO, which decreases with corticosteroids (14, 15).

Respiratory exposure of WT mice to HDME induces a combined eosinophilic and neutrophilic airway inflammation, along with angiogenic remodeling of the lungs. Recently, we have shown that mice lacking ARG2 have worsened Th2-driven eosinophilic airway inflammation compared with WT mice in an OVA mouse model (4). The OVA model, unlike HDME, is eosinophil dominated with little to no neutrophilic inflammation. iNOS–/– mice in the OVA model had lower eosinophilic inflammation compared with WT animals (41). In contrast, our data show that iNOS–/– and WT mice in the HDME model had similar levels of airway inflammation, suggesting that iNOS metabolism of arginine has lesser effects on inflammation generated via IL-17 pathways. ARG2 deficiency increased both eosinophilic and neutrophilic airway inflammation and angiogenic remodeling. While the deletion of iNOS alone had no major effect on the asthma phenotype, double deletion of iNOS and ARG2 attenuated eosinophilic/neutrophilic airway inflammation and angiogenic remodeling. The findings reveal that (a) arginine metabolism regulates eosinophilic and neutrophilic airway inflammation and remodeling, and (b) ARG2 is a critical checkpoint in modulating inflammation and angiogenesis.

ARG2 and iNOS have a common substrate arginine, but the interactions between these 2 enzymes are more complex than substrate competition (4). We previously showed that iNOS and ARG2 interactions are not controlled by the competition for arginine but through interaction of arginine metabolism and the TCA cycle (4).

Prior studies of asthmatic patients suggested that mitochondria were more oxidative (12). ARG2 gives rise to ornithine from arginine, which can be converted to glutamate that is transformed to \(\alpha \)-ketoglutarate (\(\alpha \)KG) to enter the TCA cycle. Arg2 is increased in asthmatics (4). Increased TCA cycle activity in asthma increases ATP production and levels of TCA cycle intermediates to other pathways (4). For example, \(\alpha \)KG transported outside of the mitochondria serves as substrate for prolyl hydroxylase domain enzymes and inhibits hypoxia-inducible factor (HIF), an upstream regulator of Th2 cytokines (4). ARG2 deletion has previously been linked to higher HIF levels and increased Th2-driven eosinophilic inflammation and Th2 cytokine levels of IL-13 and eotaxin-1, along with increasing activation of pSTAT6 (4). Eotaxin-2, IL-5, and angiogenic remodeling of the airways in the HDME model are regulated by HIF (44). Human asthma involves Th2 (eosinophilic) with IL-17 (neutrophilic) inflammation, and IL-17 inflammation is increasingly recognized as an endotype of severe asthma (45). Eotaxin-2, mainly expressed by alveolar macrophages and proangiogenic hematopoietic progenitors, is a key driver in airway eosinophilia in mouse models of airway inflammation (7, 36). The induction of eotaxin-2, but not eotaxin-1, by arginine metabolism suggests a specific effect on these cells. Overexpression of eotaxin-2 and IL-5 in mice resulted in spontaneous severe eosinophilic asthma (35). IL-17 is a key mediator of severe neutrophilic asthma (46). Eotaxins and IL-17 are also potent angiogenic factors in asthma, cancer, and other inflammatory disorders (36, 38, 47–53). IL-17 levels were increased in ARG2–/– lungs, but Th17 differentiation was lower in these mice, suggesting a non-Th17 source of IL-17. Several other immune cells, including innate lymphoid cells, B cells, neutrophils, NKT cells, and γδ T cells, also produce IL-17 (54). In obesity-associated asthma, type III innate lymphoid cells (ILC3) is a significant source of IL-17 (55). A recent report demonstrated that alveolar macrophages, and not Th17 cells, are the major source of pulmonary IL-17 in the OVA mouse model and in patients with allergic asthma (56). The non-Th17 source of the increased IL-17 levels in lungs of ARG2–/– mice is tipping the balance toward an unfavorable phenotype. Alternatively, splenic T cells may not represent pulmonary T cell polarization. The findings are in keeping with our previous publication, showing that WT BM transplantation reduces IL-17 levels in the BAL in an OVA model (4).

The asthma population in this study was exclusively White, which limits extrapolation of the findings to the broader asthmatic population in general. Another limitation of this study is that SNP rs742869 is associated with lower arginase activity, but whether this results from reduced protein expression and/or lower enzymatic activity is unknown.
Collectively, our findings reveal that eosinophilic and neutrophilic immune pathways that control severity of inflammation are regulated by arginine metabolism (Figure 4). Arginine metabolism via ARG2 suppresses inflammation and, via iNOS, promotes airway inflammation. New therapeutic strategies to enhance arginine metabolism by the mitochondrial ARG2 may provide benefit to patients with severe asthma.

Methods

Human participants. Adult (≥ 18 years old) healthy controls and asthma patients were recruited in the Severe Asthma Research Program (SARP 1 and 2) from 2002–2011 (27, 28, 57, 58). Asthmatics were classified by cut-off point of 35 ppb F2ENO (16, 42) and GW AS data on ARG2 variants.

Animals and generation of iNOS−/−/ARG2−/− mice. Female mice on a C57BL/6 background between the ages of 6 and 8 weeks were used in this study. WT and iNOS−/− mice (59) were purchased from the Jackson Laboratory. ARG2−/− mice were donated by Bill O’Brain (Baylor College of Medicine, Houston, Texas, USA) (60). iNOS−/−/ARG2−/− were generated in-house by crossbreeding iNOS−/− and ARG2−/−. For genotyping, genomic DNA was isolated from mouse tissue utilizing the Bioline MyTaq Extract-PCR Kit (Bioline USA Inc.). To determine the ARG2 genotype, 35 PCR cycles were performed on 1 μL of extracted DNA in a 25-μL reaction volume as follows: 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 1 minute. A 1.1-kb DNA fragment, indicating the presence of the ARG2 mutant allele, was generated with the primer set: ARG2 duel (5′-TCCTTTCTCTCTTCTATAATTC-3′) and Neo 2 (5′-GCCAACGCTATGTCCTGATA-3′). A 540-bp DNA fragment indicating the presence of the ARG2 WT allele was generated with the primer set: ARG2 WT (5′-CTAGCATCATTGAGTAGTCCG-3′) and ARG2 duel (5′-TCCTTTCTCTCTTCTATAATTC-3′). The iNOS genotype was determined in a separate PCR reaction by performing 35 cycles on 1 μL of extracted DNA in a 25-μL reaction volume as follows: 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 30 seconds; 94°C, 30 seconds; 59°C, 30 seconds; 72°C, 30 seconds. A 275-bp DNA fragment indicating the presence of the iNOS mutant allele was generated with the primer set: iNOS mutant (5′-AATATGCGAAGTGGAACCTCG-3′) and iNOS common (5′-ACATGCAGAATGAGTACCGG-3′). A 108-bp DNA fragment indicating the presence of the iNOS WT allele was generated with the primer set: iNOS WT (5′-CTACAGACGCTGGAACCTCG-3′) and iNOS common (5′-ACATGCAGAATGAGTACCGG-3′). All DNA fragments were resolved on a 1.5% agarose gel in TAE buffer (40 mM Tris [pH7.6], 20 mM acetic acid, 1 mM EDTA). All chemicals were purchased from Sigma-Aldrich. Gel images were captured with the Thermo Fisher Scientific My ECL Imager system and Adobe Photoshop CS2 Software (Adobe Systems Inc.). DNA fragment size ladders (50 bp, 100 bp, and 1 kb) were also obtained from Thermo Fisher Scientific. Representative genotyping gels are shown in Figure 5A.

![Figure 4. Arginine metabolism regulates exaggerated eosinophilic/neutrophilic asthma.](image-url)
HDME model. A standard mouse model of HDME-induced airway inflammation was used, as illustrated in Figure 5B (61, 62). Isoflurane-anesthetized female mice between the ages of 8 and 11 weeks were sensitized with a single dose of 100 μg/50 μL HDME (*D. pteronyssinus*, RMB84M, Greer Laboratories) in saline by nasal aspiration. Five days after the allergen sensitization, animals were challenged daily for 5 successive days with 10 μg/50 μL HDME. Analyses were performed 3 days after the final allergen challenge. Animals sensitized and challenged with saline were used as controls.

BAL fluid collection and processing. Animals were euthanized by an overdose of pentobarbital (Akorn), and the lungs were lavaged with 700 μL sterile saline via a cannula inserted into the trachea. The BAL fluid (BALF) was centrifuged at 300 g for 10 minutes. The supernatant was collected and stored at –20°C for cytokine analyses, and the cell pellet was resuspended in 500 μL of 2% FBS (Atlanta Biologicals) in PBS (prepared in house). BAL cell concentration was determined by counting a mixture of 10 μL cell suspension, 10 μL of Live/Dead and nuclear stain (20 μg/mL Ethidium Bromide [Sigma-Aldrich], and 20 μg/mL Acridine Orange [Sigma-Aldrich] dissolved in PBS) under a fluorescent microscope (Olympus CKX41) using a hemocytometer (Hausser Scientific). Cytospins were prepared by centrifugation of 20,000 cells in 100 μL of 2% FBS loaded into Shandon Cytospin 3 instrument (400 g for 4 minutes). Air-dried cytospins were stained with Kwik-Diff (Dade Behring) and mounted using Cytoseal mounting medium. A differential count of hematopoietic cells, including macrophages, neutrophils, eosinophils, and lymphocytes, was performed under a microscope. At least 200 cells were counted based on standard morphologic criteria.

Lung tissue harvest and IHC. The lung vascular bed was perfused with warm PBS via the right heart to flush out remaining blood cells. The dissected left lobe was fixed in 10% formalin and processed for paraffin embedding and tissue sectioning. The right lung was snap frozen, stored in liquid nitrogen, and later used for cytokine quantification. Left lung tissue sections were stained with H&E. vWF staining and microvessel quantification were performed as described previously (36, 63).

Cytokine quantification. Tissues of the right lobes were homogenized in PBS and subjected to repeated freeze/thaw cycles. The suspension was centrifuged to pellet debris and supernatant — the latter was used for lung protein extract. IL-17 and GM-CSF (both from Abcam), along with CCL20, IL-1α, KC, MIP-2, and LIX (all from R&D Systems), levels in BAL and lung protein extract were measured using quantitative ELISA kits. Eotaxin-1/2, IL-5, and IL-13 levels in lung and BAL were quantified using Super-X Plex cytokine assay (Antigenix America) according to the instructions of the manufacturer on a LSRII flow cytometer (Becton Dickinson).

Amino acid analysis. Amino acids were measured by high-performance liquid chromatography (HPLC) using precolumn derivatization with o-phthalaldehyde (OPA). OPA is a fluorophore, which — when combined with an amino acid — forms an isoindole that can easily be detected and quantified. Plasma
samples were deproteinized with an equal volume of 6% sulfosalicylic acid containing 50 μM ethionine as an internal standard. After 5 minutes of centrifugation at 1,000 g, the supernate was placed into an autosampler, where it was mixed with OPA and injected onto the column according to an injector program. The HPLC system was an Agilent 1100 with ChemStation (Agilent Technologies) consisting of a binary pump, degasser, fluorescence detector, and autosampler. Chromatographic separations were carried out using a Supelcosil LC-18 column 150 cm × 4.6 mm, 5 μm (Sulpelco), which was protected by an appropriate guard column. All reagents were HPLC grade and prepared with 18 MΩ water. The mobile phase consisted of 20 mM sodium acetate, pH 5.7, with 4.0% tetrahydrofuran. Buffer B was methanol. All chemicals are from Sigma-Aldrich. A gradient was used with percent B increasing to 100% over 44 minutes at 280°C. Twenty-one amino acid standards at appropriate concentrations were used for calibration and measured by fluorescence detector using excitation 340 nm and emission 455 nm (64).

CD4 T cell polarization. Splenocytes were harvested to analyze Th cell differentiation. IL-4−, IL-17A−, IFN-γ−, and Foxp3-expressing CD4+ T cells were quantified by flow cytometry using the mouse Th1/Th2/Th17/Treg phenotyping kit (BD Biosciences).

Statistics. Logistic regression analyses were used to estimate ORs of asthma patients for a comparison of AA with GG. A multivariable logistic regression model provided an adjusted OR estimate, with age, sex, and smoking history as covariates. Males and females were compared with respect to the frequency of asthma and other categorical characteristics using χ² tests, and they were compared with respect to quantitative characteristics using the Wilcoxon rank sum test. One-way ANOVA was used for comparison across groups.

Data are shown as mean ± SEM unless described differently. Statistical analysis was performed using JMP 7 software program. Two-tailed Student’s t test for parametric and a Wilcoxon test for non-parametric data were used as appropriate. A log transformation was performed on skewed data for statistical analysis. P values smaller than 0.05 were considered significant. Bonferroni method was used to account for multiple comparisons.

Study approval. All animal experiments were approved by the Cleveland Clinic IACUC (Cleveland, Ohio). Local IRB approval and informed consent from all human participants was obtained.

Author contributions
KA and SE designed the research studies. CB, CDL, MA, MF, NW, KW, SK, and WX performed the experiments. CB, CDL, MA, MF, NW, KW, SK, and WX acquired data. CB, KA, CDL, MA, MF, NW, KW, SK, and WX analyzed the data. KA, DAM, WX, and SE wrote the manuscript.

Acknowledgments
The authors thank Kimberly Queisser for excellent technical assistance, the Lerner Research Institute Imaging Core for assistance with histology and immunohistochemistry and the Flow Cytometry Core for assistance with cytokine bead assay. We also thank Jeff Hammel for assistance with statistical analyses. Supported by NIH grants HL103453, HL081064, HL 60917, and HL109250, and the Alfred Lerner Memorial Chair in Innovative Biomedical Research at the Cleveland Clinic.

Address correspondence to: Kewal Asosingh, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, NC22, 9500 Euclid Ave, Ohio 44195, USA. Phone: 216.445.6625; Email: asosink@ccf.org.

1. Mukherjee AB, Zhang Z. Allergic asthma: influence of genetic and environmental factors. *J Biol Chem.* 2011;286(38):32883–32889.
2. DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? *Cell.* 2012;148(6):1132–1144.
3. Geiger R, et al. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. *Cell.* 2016;167(3):829–842.e13.
4. Xu W, et al. Increased mitochondrial arginine metabolism supports bioenergetics in asthma. *J Clin Invest.* 2016;126(7):2465–2481.
5. Morris SM. Arginine metabolism: boundaries of our knowledge. *J Nutr.* 2007;137(6 Suppl 2):1602S–1609S.
6. Zimmermann N, et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. *J Clin Invest.* 2003;111(12):1863–1874.
7. Pope SM, et al. Identification of a cooperative mechanism involving interleukin-13 and eotaxin-2 in experimental allergic lung inflammation. *J Biol Chem.* 2005;280(14):13952–13961.
8. Vonk JM, Postma DS, Maarsingh H, Bruinenberg M, Koppelman GH, Meurs H. Arginase 1 and arginase 2 variations associate with asthma, asthma severity and bet2 agonist and steroid response. *Pharmacogenet Genomics.* 2010;20(3):179–186.
9. Li H, et al. Genetic polymorphisms in arginase I and II and childhood asthma and atopy. *J Allergy Clin Immunol.*
47. Du JW, Xu KY, Fang LY, Qi XL. Interleukin-17, produced by lymphocytes, promotes tumor growth and angiogenesis in a...
46. Lambrecht BN, Hammad H. The immunology of asthma.
45. Fahy JV. Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies.
44. Byrne AJ, Jones CP, Gowers K, Rankin SM, Lloyd CM. Lung macrophages contribute to house dust mite driven airway remod-
43. Naura AS, et al. Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but...
42. Dweik RA, et al. NO chemical events in the human airway during the immediate and late antigen-induced asthmatic response.
41. De Sanctis GT, et al. Contribution of nitric oxide synthases 1, 2, and 3 to airway hyperresponsiveness and inflammation in a...
40. Morris CR, Poljakovic M, Lavrisha L, Machado L, Kuypers FA, Morris SM. Decreased arginine bioavailability and increased...
39. Duan QL, et al. Regulatory haplotypes in ARG1 are associated with altered bronchodilator response.
38. Honorati MC, Neri S, Cattini L, Facchini A. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts.
37. Wang YH, Wills-Karp M. The potential role of interleukin-17 in severe asthma.
36. Asosingh K, et al. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asth-
35. Ochkur SI, et al. Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflamma-
34. Imaoka H, et al. Lung homing of endothelial progenitor cells in humans with asthma after allergen challenge.
33. Pascual RM, Peters SP. Airway remodeling contributes to the progressive loss of lung function in asthma: an overview.
32. Salvato G. Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and...
31. Li X, Wilson JW. Increased vascularity of the bronchial mucosa in mild asthma.
30. Jarjour NN, et al. Severe asthma: lessons learned from the National Heart, Lung, and Blood Institute Severe Asthma Research...
29. Moore WC, et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program.
28. Leaf CD, Wishnok JS, Tannenbaum SR. L-arginine is a precursor for nitrate biosynthesis in humans.
27. Guo FH, Erzurum SC. Characterization of inducible nitric oxide synthase expression in human airway epithelium. Environ Health Perspect. 1998;106 Suppl 5:1119–1224.
26. Larsen FJ, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13(2):149–159.
25. Kobaik L. Translating NO biology into clinical advances: still searching for the right dictionary? Am J Respir Cell Mol Biol. 2009;41(1):9–13.
24. Guo FH, et al. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. J Immunol. 2000;164(11):5970–5980.
23. Guo FH, Erzurum SC. Characterization of inducible nitric oxide synthase expression in human airway epithelium. Environ Health Perspect. 1998;106 Suppl 5:1119–1224.
22. Guo FH, et al. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. J Immunol. 2000;164(11):5970–5980.
21. Guo FH, et al. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. J Immunol. 2000;164(11):5970–5980.
20. Green LC, et al. Nitrate biosynthesis in man. Proc Natl Acad Sci USA. 1981;78(12):7764–7768.
19. Gladwin MT, Kim-Shapiro DB. Storage lesion in banked blood due to hemolysis-dependent disruption of nitric oxide homeostasis. Curr Opin Hematol. 2009;16(6):515–523.
18. Ghosh S, et al. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J Immunol. 2006;176(9):5587–5597.
17. Gaston B, Singel D, Doctor A, Stamlrer JS. S-nitrosothiol signaling in respiratory biology. Am J Respir Crit Care Med. 2006;173(11):1186–1193.
16. Dweik RA, et al. Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Invest. 1998;101(3):660–666.
15. Comhair SA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2010;12(9):93–124.
14. Barnes PJ. Nitric oxide and asthma. Nat Immunol. 2005;162(9):698–702.
13. Ochkur SI, et al. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthma Murine Model. Am J Respir Crit Care Med. 2004;170(2):148–153.
12. Xu W, et al. Arginine metabolic endotypes related to asthma severity. PLoS One. 2017;12(8):e0183066.
11. Hakonarson H, et al. A major susceptibility gene for asthma maps to chromosome 1q42.4. Am J Hum Genet. 2002;71(3):483–491.
10. Salam MT, Islam T, Gauderman WJ, Gilliland FD. Roles of arginine variants, atopy, and ozone in childhood asthma. J Allergy Clin Immunol. 2009;123(3):596–602.e1.
9. Duan QL, et al. Regulatory haplotypes in ARG1 are associated with altered bronchodilator response. J Allergy Clin Immunol. 2011;127(1):119–126.
8. Salam MT, Islam T, Gauderman WJ, Gilliland FD. Roles of arginine variants, atopy, and ozone in childhood asthma. J Allergy Clin Immunol. 2009;123(3):596–602.e1.
7. Warnica D, et al. Bioenergetic Differences in the Airway Epithelium of Lean Versus Obese Asthmatics Are Driven by Nitric Oxide and Reflect ed in Circulating Platelets. Antioxid Redox Signal. 2019;31(10):673–686.
6. Barnes PJ. Nitric oxide and asthma. Res Immunol. 1995;146(9):698–702.
5. Combair SA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2010;12(9):93–124.
4. Byrne AJ, Jones CP, Gowers K, Rankin SM, Lloyd CM. Lung macrophages contribute to house dust mite driven airway remod-
3. Naura AS, et al. Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but...
2. Dweik RA, et al. NO chemical events in the human airway during the immediate and late antigen-induced asthmatic response. Proc Natl Acad Sci USA. 2001;98(5):2622–2627.
1. Naura AS, et al. Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but not inflammation. J Immunol. 2010;185(5):3076–3085.

mouse model of breast cancer. *Mol Med Rep.* 2012;6(5):1099–1102.

48. Numasaki M, et al. Interleukin-17 promotes angiogenesis and tumor growth. *Blood.* 2003;101(7):2620–2627.

49. Pickens SR, Volin MV, Mandelin AM, Kolls JK, Pope RM, Shahraja S. IL-17 contributes to angiogenesis in rheumatoid arthritis. *J Immunol.* 2010;184(6):3233–3241.

50. Murugaiyan G, Saha B. Protumor vs antitumor functions of IL-17. *J Immunol.* 2009;183(7):4169–4175.

51. Takeda A, et al. CCR3 is a target for age-related macular degeneration diagnosis and therapy. *Nature.* 2009;460(7252):225–230.

52. Asosingh K, Hanson JD, Cheng G, Aronica MA, Erzurum SC. Allergen-induced, eotaxin-rich, proangiogenic bone marrow progenitors: a blood-borne cellular envoy for lung eosinophilia. *J Allergy Clin Immunol.* 2010;125(4):918–925.

53. Amerio P, et al. Eotaxins and CCR3 receptor in inflammatory and allergic skin diseases: therapeutical implications. *Curr Drug Targets Inflamm Allergy.* 2003;2(1):81–94.

54. Chesné J, Braza F, Mahay G, Brouard S, Aronica M, Magnan A. IL-17 in severe asthma. Where do we stand? *Am J Respir Crit Care Med.* 2014;190(10):1094–1101.

55. Kim HY, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperresponsiveness. *Nat Med.* 2014;20(1):54–61.

56. Song C, et al. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. *J Immunol.* 2008;181(9):6117–6124.

57. Hawkins GA, et al. The IL6R variation Asp(358)Ala is a potential modifier of lung function in subjects with asthma. *J Allergy Clin Immunol.* 2012;130(2):510–5.e1.

58. Li X, et al. Genome-wide association studies of asthma indicate opposite immunopathogenesis direction from autoimmune diseases. *J Allergy Clin Immunol.* 2012;130(4):861–8.e7.

59. Laubach VE, Shesely EG, Smithies O, Sherman PA. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. *Proc Natl Acad Sci USA.* 1995;92(23):10688–10692.

60. Shi O, Morris SM, Zoghbi H, Porter CW, O’Brien WE. Generation of a mouse model for arginase II deficiency by targeted disruption of the arginase II gene. *Med Cell Biol.* 2001;21(3):811–813.

61. Klein Wolterink RG, et al. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. *Eur J Immunol.* 2012;42(5):1106–1116.

62. Willart MA, et al. Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. *J Exp Med.* 2012;209(8):1505–1517.

63. Asosingh K, et al. Nascent endothelium initiates Th2 polarization of asthma. *J Immunol.* 2013;190(7):3458–3465.

64. Wu G, Morris SM. Arginine metabolism: nitric oxide and beyond. *Biochem J.* 1998;336(Pt 1):1–17.