Amphibians and reptiles of the state of Hidalgo, Mexico

J. A. Lemos-Espinal
Geoffrey R. Smith

Follow this and additional works at: https://digitalcommons.denison.edu/facultypubs

Part of the Biology Commons

Recommended Citation
Lemos-Espinal, J., & Smith, G. (2015). Amphibians and reptiles of the state of Hidalgo, Mexico. Check List. doi:10.15560/11.3.1642

This Article is brought to you for free and open access by Denison Digital Commons. It has been accepted for inclusion in Denison Faculty Publications by an authorized administrator of Denison Digital Commons.
Amphibians and reptiles of the state of Hidalgo, Mexico

Julio A. Lemos-Espíñal1* and Geoffrey R. Smith2

1 Laboratorio de Ecología-UBIPRO, FES Iztacala UNAM. Avenida los Barrios 1, Los Reyes Iztacala, Tlalnepantla, edo. de México, Mexico - 54090
2 Department of Biology, Denison University, Granville, OH, USA 43023
* Corresponding author. E-mail: lemos@unam.mx

Abstract: We compiled a checklist of the amphibians and reptiles of the state of Hidalgo, Mexico. The herpetofauna of Hidalgo consists of a total of 175 species: 54 amphibians (14 salamanders and 40 anurans); and 121 reptiles (one crocodile, five turtles, 36 lizards, 79 snakes). These taxa represent 32 families (12 amphibian families, 20 reptile families) and 87 genera (24 amphibian genera, 63 reptile genera). Two of these species are non-native species (Hemidactylus frenatus Duméril and Bibron, 1836 and Indotyphlops braminus (Daudin, 1803)). This herpetofauna represents a mixture of species from both the Sierra Madre Oriental and the Transvolcanic Belt. In addition, 26% of all categorized amphibian and reptile species in Hidalgo are considered Vulnerable, Near Threatened, Endangered, or Critically Endangered by the IUCN Red List. Thus, Hidalgo represents a relatively unique and threatened diversity of amphibians and reptiles.

Key words: amphibians, reptiles, Hidalgo, Mexico

INTRODUCTION

Hidalgo is one of the smallest states in Mexico; ranking 26th out of 31 states, with a surface area of 20,905 km², which represents 1.1% of the surface area of the country. The topography of Hidalgo is very rugged, its lowest point is a few meters above sea level and its highest point is over 3,300 m above sea level. Parts of three physiographic provinces are found in the state: the Sierra Madre Oriental; the Transvolcanic Belt; and the North Gulf Coastal Plain.

Much of Hidalgo is subject to severe human pressures such as extraction of timber, agriculture, animal husbandry, and expansion of human settlements, so that more than 60% of the native vegetation has been transformed into some kind of anthropogenic habitat. Almost the entire southern half of the state (i.e., the area occupied by the Transvolcanic Belt province) has been modified by the establishment of agricultural crops. At higher elevations in the provinces of Sierra Madre Oriental and the Transvolcanic Belt, there are conifer forests of pine (Pinus spp.), oak (Quercus spp.), and Mexican Fir (Abies religiosa (Kunth) Schléchtendahl and Chamisso, 1830), among other species. In the lower areas of these provinces is mountain cloud forest characterized by the most diverse vegetation type per unit area of the country (Rzedowski 1996). The cloud forest of the mountains on the outskirts of the village of La Mojonera is home to the most important Fagus grandifolia spp. mexicana (Martínez) forest in the country. Fagus grandifolia spp. mexicana (Martínez) is a relict taxon whose distribution in Mexico represents relictual areas worthy of greater attention in biogeographic and conservation studies (Alcántara-Ayala and Luna-Vega 2001). Such cloud forests in Mexico are also under threat from climate change (Ponce-Reyes et al. 2012).

The complex topography of Hidalgo, along with the climates and vegetation types present, has resulted in great faunal diversity that has caught the attention of biologists. In recent years there have been important contributions that have attempted to summarize and describe some groups of reptiles or the entire herpetofauna of Hidalgo (e.g., Bryson and Mendoza-Quijano 2007; Valencia-Hernández et al. 2007; Ramírez-Bautista et al. 2010, 2014), of specific areas, habitats or localities within Hidalgo (e.g., Fernández-Badillo and Goyenechea Mayer-Goyenechea, 2010; Vite-Silva et al., 2010; Huittzel-Mendoza and Goyenechea Mayer-Goyenechea 2011; Cruz-Elizalde and Ramírez-Bautista 2012; Hernández-Salinas and Ramírez-Bautista 2013). Indeed, there appears to be a new interest in the herpetofauna of Hidalgo, as epitomized by several recent range extensions or rediscoveries of snakes (Roth-Monzon et al. 2011; Berrioza-Abel-Islas et al. 2012; Ramírez-Bautista et al. 2013; Badillo-Saldaña et al. 2014; Lara-Tufino et al. 2014), salamanders (Badillo-Saldaña et al. 2015) and crocodilians (Mejenes-López and Hernández-Bautista 2013), and the description of a new species of lizard in the genus Xenosaurus (Woolrich-Piña...
Lemos-Espinal and Smith | Herpetofauna of Hidalgo, Mexico

The province of the Sierra Madre Oriental in Hidalgo is represented by the subprovince of Carso Huasteco, so named for possessing features of a major karst topography (INEGI 2009). This province is divided by important rivers, such as Acoyoapa, Amajac, Atlapexco, and Candelaria, flowing through it. The highest elevations in this region exceed 2,000 m above sea level. This region is dominated by limestone. Within the state of Hidalgo, this province covers approximately 9,713 km² (46.46% of the state surface area) and occupies approximately the northern half of the state. In this portion of the Carso Huasteco, mountain ranges dominate. Its lowest areas are localized in the north and northeastern part of the

MATERIALS AND METHODS

Study site

Hidalgo is located in the central part of Mexico, between latitudes 21°24’ and 19°36’ N and longitudes 097°58’ and 099°53’ W (Figure 1). To the north it is bordered by Querétaro, San Luis Potosi, and Veracruz; to the south by Puebla, Tlaxcala, and México; to the east by Veracruz and Puebla; and, to the west, by México and Querétaro.

The province of the Sierra Madre Oriental in Hidalgo is represented by the subprovince of Carso Huasteco, so named for possessing features of a major karst topography (INEGI 2009). This province is divided by important rivers, such as Acoyoapa, Amajac, Atlapexco, and Candelaria, flowing through it. The highest elevations in this region exceed 2,000 m above sea level. This region is dominated by limestone. Within the state of Hidalgo, this province covers approximately 9,713 km² (46.46% of the state surface area) and occupies approximately the northern half of the state. In this portion of the Carso Huasteco, mountain ranges dominate. Its lowest areas are localized in the north and northeastern part of the

Figure 1. Topographical map of the state of Hidalgo, Mexico (CONABIO 2004). The * refer to the locations of the North Gulf Coastal Plains within the state of Hidalgo.
state and constitute the region known as Huasteca Hidalguense, where the topographical systems classified as “lying valley slopes” are common (INEGI 2009).

In Hidalgo, the Transvolcanic Belt province occupies a surface area of approximately 11,136 km² and represents 53.27% of the state’s surface area. It occupies slightly more than the southern half of the state and contains two subprovinces: 1) Coastal and Mountain Regions of Querétaro and Hidalgo. This subprovince runs from west to east as low hills of volcanic material, < 2,000 m elevation, which is essentially enclosed on all sides by a system of mountains, plateaus, and hills, almost all of which have a volcanic origin. Only one peak, the Nopala, has an altitude > 3,000 m; and 2) Lakes and Volcanoes of Anáhuac that enters the southern part of Hidalgo and occupies 15.86% of the state’s surface area (INEGI 2009).

The province of the North Gulf Coastal Plains covers approximately 56 km² of the surface area of Hidalgo (= 0.27%). It occupies a small portion of the northeastern corner of the state in parts of the municipalities of Huautla and Huehuetla (INEGI 2009).

Data collection
We obtained the list of amphibians and reptiles of the state of Hidalgo from the following sources: (1) specimens from the Laboratorio de Ecología-UBIPRO (LEUBIPRO) collections; (2) databases from the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (National Commission for the Understanding and Use of Biodiversity; CONABIO), that were the results of various scientific projects undertaken by this institution in Hidalgo and includes museum records from the principal museum collections in Mexico and the United States which include the following 22 collections: Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, I.P.N. (ENCB); Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution (USNM); Division of Amphibians and Reptiles, Field Museum of Natural History (FMNH); Fort Worth Museum of Science and History (FWMSH); Herpetology Department, American Museum of Natural History (AMNH); Herpetology Section, Natural History Museum of Los Angeles County (LACM); Monte Leaf Bean Life Science Museum, Brigham Young University (BYU); Museo de Zoología Alfonso L. Herrera, Facultad de Ciencias UNAM – MZFC-UNAM; Museum of Comparative Zoology, Harvard University, Cambridge (MCZ-HU); Museum of Michigan State University (MSU); Museum of Natural History, Division of Herpetology, Kansas University (KU); Museum of Natural History, University of Illinois at Urbana-Champaign (UIMNH); Museum of Vertebrate Zoology, Division of Biological Sciences, University of California – Berkeley (MVZ-UCB); Museum of Zoology, Biological Sciences Division, Louisiana State University (LSUMZ); Museum of Zoology, University of Michigan, Ann Arbor (UMMZ); Southern Illinois University Carbondale; Texas Cooperative Wildlife Collections, Texas A & M University (TCWC); University of Arizona (UA); University of Colorado Museum (UCM); University of Illinois Museum of Natural History (UIMNH); University of Texas at Arlington (UTA); (3) a thorough examination of the available literature on amphibians and reptiles in the state such as: Badillo-Saldaña et al. (2014); Berrioza-Iselas et al. (2012); Bryson and Mendoza-Quijano (2007); Goyenechea Mayer-Goyenechea (2003); Huitzil-Mendoza and Goyenechea Mayer-Goyenechea (2011); Lemos-Espinal and Dixon (forthcoming); Rabb (1958); Ramírez-Bautista et al. (2010); Roth-Monzon et al. (2011); Valencia-Hernández et al. (2007); Woodall (1941); and (4) our personal field work, primarily focused around the municipalities of Molango, San Agustín Metzquititlán, Tlanchinol, and Zacualtipán. We visited this region periodically from 2002 to 2014, taking notes on the amphibians and reptiles observed during visual encounter surveys. All relevant Mexican laws and regulations pertaining to observation and collection of reptiles and amphibians were followed during these surveys.

Species were included in the checklist only if we were able to confirm the record, either by direct observation or through documented museum records or vouchers in the state. Species with a questionable distribution in Hidalgo, or those that are mentioned in the literature without documented support of their presence in the state were not included in our list. In addition, we recorded the conservation status of each species based on three sources: 1) the IUCN Red List, 2) Environmental Viability Scores from Wilson et al. (2013a,b), and 3) listing in SEMARNAT (2010). For those neighboring states for which a recent checklist exists (México, Aguilar Miguel et al. 2009; Puebla, García-Vázquez et al. 2009; Querétaro, Dixon and Lemos-Espinal 2010; San Luis Potosí, Lemos-Espinal and Dixon 2013), we determined the number of overlapping species.

RESULTS
The herpetofauna of Hidalgo consists of a total of 175 species (Tables 1 and 2): 54 amphibians (14 salamanders and 40 anurans); and 121 reptiles (one crocodile, five turtles, 36 lizards, 79 snakes). These taxa represent 32 families (12 amphibian families, 20 reptile families) and 87 genera (24 amphibian genera, 63 reptile genera). Two of these species are non-native species (Hemidactylus frenatus Duméril and Bibron, 1836 and Indotyphlops braminus (Daudin, 1803)).

Ninety-two of the 175 species that inhabit Hidalgo are endemic to Mexico, four of those 92 are endemic to Hidalgo, three salamanders and one lizard. Nineteen of the 92 endemics have a narrow distribution in
Table 1. Checklist of amphibians and reptiles of Hidalgo. We also provide the extent of global distribution (1 = Endemic to Hidalgo, 2 = Endemic to Mexico, 3 = Non-endemic shared with North America, 4 = Non-endemic shared with South America, 5 = Broad range shared with both North America and South America), IUCN Status (DD = Data Deficient; LC = Least Concern, V = Vulnerable, NT = Neat Threatened; E = Endangered; CE = Critically Endangered), population trend (+ = Increasing, = = Stable, - = Decreasing, ? = Unknown) according to the IUCN Red List (The IUCN Red List of Threatened Species, Version 2014.2; www.iucnredlist.org; accessed 12-14 November 2014), and Environmental Vulnerability Score (EVS; the higher the score the greater the vulnerability) from Wilson et al. (2013a,b), and conservation status in Mexico according to SEMARNAT (2010) (P = in danger of extinction, A = threatened; Pr = subject to special protection, NL – not listed). Source denotes whether the species was observed in the field by the authors (A), documented in the CONABIO data base and/or museum collections (C/M), or found in the literature (citation of source).

Class Amphibia	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Order Caudata						
Family Ambystomatidae						
Ambystoma velasci (Dugès, 1888)	2	LC	?	10	Pr	A
Family Plethodontidae						
Bolitoglossa platydactyla (Gray, 1831)	2	NT	-	15	Pr	C/M
Chirotterotriton arboreus (Taylor, 1941)	2	CE	-	18	Pr	C/M
Chirotterotriton chiropus (Cope 1863)	2	CE	-	16	Pr	A
Chirotterotriton chondrostegus (Taylor, 1941)	2	E	-	17	Pr	C/M
Chirotterotriton dimidatus (Taylor, 1939)	1	E	-	17	Pr	C/M
Chirotterotriton mosaueri (Woodall, 1941)	1	DD	?	18	Pr	Woodall (1941); Rabb (1958)
Chirotterotriton multidentatus (Taylor, 1938)	2	E	-	15	Pr	C/M
Chirotterotriton terrestris (Taylor, 1941)	1	CE	?	18	NL	Rabb (1958)
Pseudoeurycea bellii (Gray, 1850)	2	V	-	12	A	A
Pseudoeurycea cephalica (Cope, 1889)	2	NT	-	14	A	A
Pseudoeurycea gigantea (Taylor, 1939)	2	CE	-	16	NL	Badillo-Saldaña et al. (2015)
Pseudoeurycea leprosa (Cope, 1869)	2	V	-	16	A	A
Family Salamandridae						
Notophthalmus merridionalis (Cope, 1880)	3	E	-	12	P	Ramirez-Bautista et al. (2010)
Order Anura						
Family Bufonidae						
Anaxyrus punctatus Baird & Girard, 1852	3	LC	=	5	NL	A
Incilius marmoreus (Wiegmann, 1833)	2	LC	=	11	NL	A
Incilius nebularis Girard, 1854	3	LC	=	6	NL	A
Incilius occidentalis Camerano, 1879	2	LC	=	11	NL	A
Incilius valliceps (Wiegmann, 1833)	4	LC	=	6	NL	A
Rhinella marina (Linnaeus, 1758)	5	LC	+	3	NL	A
Family Craugastoridae						
Craugastor augusti (Dugès, 1879)	3	LC	=	8	NL	C/M
Craugastor berkenbuschi (Peters, 1870)	2	NT	-	14	Pr	C/M
Craugastor decoratus (Taylor, 1942)	2	V	?	15	Pr	C/M
Craugastor rhodopus (Cope, 1867)	2	V	-	14	NL	C/M
Family Eleutherodactylidae						
Eleutherodactylus cystignathoides (Cope, 1878)	3	LC	=	12	NL	C/M
Eleutherodactylus longipes (Baird, 1869)	2	V	?	15	NL	C/M
Eleutherodactylus nitidus (Peters, 1870)	2	LC	=	12	NL	C/M
Eleutherodactylus verrucipes Cope, 1865	2	V	=	16	Pr	C/M
Family Hylidae						
Charadrahyla taeniopus (Günther, 1901)	2	V	-	13	A	C/M
Economiophyyla molotympanum Cope, 1863	2	NT	-	9	NL	C/M
Hyla arenicolor Cope, 1886	3	LC	=	7	NL	A
Hyla euphorbiacea Günther, 1859	2	NT	-	13	NL	Ramirez-Bautista et al. (2010)
Hyla eximia Baird, 1854	2	LC	=	10	NL	A
Hyla plicata Brocchi, 1877	2	LC	=	11	A	A
Plectrohyla aborescandens (Taylor, 1939)	2	E	-	11	Pr	C/M
Plectrohyla bicolorata (Cope, 1877)	2	E	-	9	Pr	Ramirez-Bautista et al. (2010)
Plectrohyla chundricola (Duellman, 1964)	2	E	-	14	A	C/M
Plectrohyla richardsonii (Taylor, 1940)	2	E	-	13	A	C/M
Scinax stauferi (Cope, 1865)	4	LC	=	4	NL	C/M
Smilisca baudinii (Duméril & Bibron, 1841)	4	LC	=	3	NL	A
Tilamolophyta picta (Günther, 1901)	4	LC	+	8	NL	A
Trachycephalus typhonius (Linnaeus, 1758)	4	LC	=	4	NL	C/M

Continued
Table 1. Continued.

Family Leptodactylidae	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Leptodactylus fragilis (Brocchi, 1877)	4	LC	=	5	NL	Ramírez-Bautista et al. (2010)
Leptodactylus melanomus (Hallowell, 1861)	4	LC	=	6	NL	C/M
Family Microhylidae						
Hypopachus variolosus (Cope, 1866)	4	LC	=	4	NL	C/M
Family Ranidae						
Lithobates berlandieri (Baird, 1859)	3	LC	=	7	Pr	A
Lithobates catesbeianus (Shaw, 1802)	3	LC	+	10	NL	C/M
Lithobates johni (Blair, 1965)	2	E	-	14	P	Ramírez-Bautista et al. (2010)
Lithobates montezumae (Baird, 1854)	2	LC	-	13	Pr	C/M
Lithobates neovolcanicus (Hillis & Frost, 1985)	2	NT	-	13	A	C/M
Lithobates spectabilis (Hillis & Frost, 1985)	2	LC	-	12	NL	C/M
Family Rhinophrynidae						
Rhinophrynus dorsalis Duméril & Bribon, 1841	4	LC	=	8	Pr	C/M
Family Scaphiopodidae						
Scaphiopus couchi Baird, 1854	3	LC	=	3	NL	C/M
Spea multiplicata (Cope, 1863)	3	LC	=	6	NL	C/M
Class Reptilia						
Order Crocodylia						
Family Crocodylidae						
Crocodylus moreletii Duméril & Bibron, 1851	4	LC	=	13	Pr	Mejenes-López and Hernández-Bautista (2013)
Order Testudines						
Family Emidyidae						
Trachemys venusta (Gray, 1855)	4	?	?	13	NL	Lemos-Espinal and Dixon (in press)
Family Kinosternidae						
Kinosternon hererai (Stejneger, 1925)	2	NT	-	14	Pr	Lemos-Espinal and Dixon (in press)
Kinosternon hirtipes (Wagler, 1830)	3	LC	-	10	Pr	C/M
Kinosternon integrum Le Conte, 1854	2	LC	=	11	Pr	Lemos-Espinal and Dixon (in press)
Kinosternon scorpioides (Linnaeus, 1766)	4	? (LC)	?	10	Pr	C/M
Order Squamata						
Suborder Lacertilia						
Family Anguidae						
Abronia taeniata (Wiegmann, 1828)	2	V	-	15	Pr	A
Barisia imbricata (Wiegmann, 1828)	2	LC	?	14	Pr	A
Gerrhonotus infernalis Baird, 1859¹	3	LC	=	13	NL	A
Gerrhonotus ophiurus Cope, 1866¹	2	LC	?	12	NL	A
Family Corytophanidae						
Basiliscus vittatus Wiegmann, 1828	4	?	?	7	NL	C/M
Laemanctus serratus Cope, 1864	4	LC	=	8	Pr	Ramírez-Bautista et al. (2010)
Family Dactyloidae						
Anolis laevisventris (Wiegmann, 1834)	4	?	?	9	NL	C/M
Anolis femurinus Cope, 1861	4	?	?	8	NL	C/M
Anolis nafragus (Campbell, Hillis & Lamar, 1989)	1	V	-	13	Pr	C/M
Anolis petersii Bocourt, 1873	4	?	?	9	NL	Ramírez-Bautista et al. (2010)
Anolis sericeus Hallowell, 1856	4	?	?	8	NL	C/M
Family Dibamidae						
Anelytropsis papillosus Cope, 1885	2	LC	-	10	A	Lemos-Espinal and Dixon (in press)
Family Geckonidae						
Hemidactylus frenatus Duméril andBribon, 1836	6	N/A	N/A	N/A	N/A	Lemos-Espinal and Dixon (in press)
Family Iguanidae						
Ctenosaura acanthura (Shaw, 1802)	2	?	?	12	Pr	Ramírez-Bautista et al. (2010)
Family Phrynosomatidae						
Phrynosoma orbiculare (Linnaeus, 1758)	2	LC	=	12	A	A
Sceloporus aeneus Wiegmann, 1828	2	LC	=	13	NL	A
Sceloporus bicanthalis Smith, 1937	2	LC	=	13	NL	A
Sceloporus grammicus Wiegmann, 1828	3	LC	=	9	Pr	A
Sceloporus megalepidurus Smith, 1934	2	V	-	14	Pr	C/M
Sceloporus minor Cope, 1885	2	LC	=	14	NL	A
Sceloporus mucronatus Cope, 1885	2	LC	=	13	NL	A

Continued
Table 1. Continued.

Species	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Sceloporus parvus Smith, 1934	2	LC	=	15	NL	A
Sceloporus scalaris Wiegmann, 1828	2	LC	=	12	NL	A
Sceloporus serrifer Cope, 1866	3	LC	=	6	NL	Ramírez-Bautista et al. (2010)
Sceloporus spinosus Wiegmann, 1828	2	LC	=	12	NL	A
Sceloporus torquatus Wiegmann, 1828	2	LC	=	11	NL	A
Sceloporus variabilis Wiegmann, 1834	4	LC	=	5	NL	A

Family Scincidae

Species	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Plestiodon lynxe (Wiegmann, 1834)	2	LC	=	10	Pr	A
Plestiodon tetragrammus Baird, 1859	3	LC	=	12	NL	C/M
Scincella gemmingeri (Cope, 1864)	2	LC	=	11	Pr	C/M
Scincella silvicola (Taylor, 1937)	2	LC	=	12	A	C/M

Family Teiidae

Species	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Aspidoscelis gularis (Baird & Girard, 1852)	3	LC	=	9	NL	C/M
Holcosus undulatus (Wiegmann, 1834)	4	LC	=	7	NL	C/M

Family Xantusidae

Species	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Lepidophyma gaigeae Mosauer, 1936	2	LC	=	13	Pr	C/M
Lepidophyma sylvaticum Taylor, 1939	2	LC	=	11	Pr	A

Family Xenosauridae

Species	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Xenosaurus tzacualtipantecus Woolrich-Piña & Smith, 2012	2	?	?	17	NL	A

Order Squamata

Suborder Serpentes

Family Boidae

Species	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Boa constrictor Linnaeus, 1758	4	?	?	10	A	Lemos-Espinal and Dixon (in press)

Family Colubridae

Species	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Adelphicos quadridvagatum Jan, 1862	4	LC	=	10	Pr	Lemos-Espinal and Dixon (in press)
Amastridium margaritiferum (Schlegel, 1837)	4	LC	=	10	NL	Lemos-Espinal and Dixon (in press)
Chersodromus rubiventris (Taylor, 1949)	2	E	-	14	Pr	Ramírez-Bautista et al. (2013)
Coluber constrictor Linnaeus, 1758	4	LC	=	10	A	Ramírez-Bautista et al. (2010)
Coniophanes fissidens (Günther, 1858)	4	LC	=	8	NL	Lemos-Espinal and Dixon (in press)
Coniophanes imperialis (Baird, 1859)	4	LC	=	7	NL	Lemos-Espinal and Dixon (in press)
Coniophanes piceivittis Cope, 1869	4	LC	=	11	Pr	A
Conopsis lineata (Kennicott, 1859)	2	LC	=	13	NL	A
Conopsis nasus Günther, 1858	2	LC	=	11	NL	A
Diadophis punctatus Linnaeus, 1766	4	LC	=	4	NL	C/M
Drymarchon melanuran (Duméril, Bibron & Duméril, 1854)	4	LC	=	6	NL	C/M

Species	Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source
Drymobius chloroticus (Cope, 1886)	4	LC	=	8	NL	Badillo-Saldaña et al. (2014)
Drymobius marginiferus (Schlegel, 1837)	4	LC	=	6	NL	C/M
Ficimia hardyi Mendoza-Quijano & Smith, 1993	2	E	-	13	NL	C/M
Ficimia olivacea Gray, 1849	2	?	?	9	NL	C/M
Hypsiglena jani (Dugès, 1865)	3	?	?	6	NL	C/M
Imantodes cenchoa Linnaeus, 1758	4	?	?	6	Pr	C/M
Imantodes gemmistratus Cope, 1885	4	?	?	6	Pr	C/M
Lampropeltis ruthveni Blanchard, 1920	2	?	?	16	A	Roth-Monzón et al. (2011)
Lampropeltis triangulum (Lacépède, 1789)	4	?	?	7	A	A
Leptodeira maculata (Hallowell, 1861)	2	LC	=	7	NL	C/M
Leptodeira septentrionalis (Kennicott, 1859)	4	?	?	8	NL	C/M
Leptisphinis diplomatris (Günther, 1872)	2	LC	=	14	A	Berriozabal-Islas et al. (2012)
Leptisphinis mexicanus Duméril & Bibron, 1854	4	LC	=	6	A	A
Masticophis flagellum Shaw, 1802	3	LC	=	8	A	A
Masticophis montanus (Duméril, Bibron & Duméril, 1854)	4	?	?	6	A	C/M
Masticophis schotti Baird & Girard, 1853	3	LC	=	13	NL	C/M
Mastigodryas melanolomus (Cope, 1868)	4	LC	=	6	NL	Lemos-Espinal and Dixon (in press)
Nerodia rhombifer (Hallowell, 1852)	3	LC	=	10	NL	C/M
Ninia diademata Baird & Girard, 1863	4	LC	=	9	NL	C/M

Continued
Table 1. Continued.

Global Distribution	IUCN Status	Population Trend	EVS Score	SEMARNAT listing	Source	
Oxybelis aeneus (Wagler, 1824)	4	?	?	5	NL	Lemos-Espinal and Dixon (in press)
Pantherophis emoryi (Baird & Girard, 1853)	3	LC	=	13	NL	Lemos-Espinal and Dixon (in press)
Pitvophis dejpeg (Dumériel, 1853)	2	LC	=	14	A	C/M
Plicercus elapoides Cope, 1860	4	LC	=	10	NL	C/M
Rhinaea decorata (Günther, 1858)	4	?	?	9	NL	C/M
Rhinaea gaigeae Bailey, 1937	2	DD	?	12	NL	C/M
Rhinaea hesperia Bailey, 1940	2	LC	=	10	Pr	Lemos-Espinal and Dixon (in press)
Radinaea marcellae Taylor, 1949	2	E	-	12	Pr	C/M
Salvadori Baird Jan, 1860	2	LC	=	15	Pr	C/M
Salvadori grahamiae Baird & Girard, 1853	3	LC	=	10	NL	C/M
Scaphiodontophis annulatus (Dumériel, Bibron & Dumériel, 1854)	4	LC	=	11	NL	C/M
Senticolis triaspis (Cope, 1866)	4	LC	=	6	NL	C/M
Spilotes pullatus (Linnaeus, 1758)	3	LC	=	11	NL	C/M
Storera decayi (Holbrook, 1839)	4	LC	=	7	NL	C/M
Storera hidalgoensis Taylor, 1942	2	V	-	13	NL	C/M
Storera storerioides (Cope, 1866)	2	LC	=	11	NL	A
Tantilla rubra Cope, 1876	4	LC	?	5	Pr	C/M
Thamnophis cyrtopsis (Kennicott, 1860)	4	LC	=	7	A	C/M
Thamnophis eques (Reuss, 1834)	3	LC	=	8	A	A
Thamnophis marcianus (Baird & Girard, 1853)	4	LC	?	10	A	Ramírez-Bautista et al. (2010)
Thamnophis melangaster (Wiegmann, 1830)	2	E	-	15	A	A
Thamnophis proximus (Soy, 1823)	4	LC	=	7	A	C/M
Thamnophis scalaris Cope, 1863	2	LC	=	14	A	C/M
Thamnophis scalarig (Jan, 1863)	2	V	-	15	A	C/M
Thamnophis sumichrasti (Cope, 1866)	2	LC	?	15	A	A
Trimerodon tau Cope, 1870	2	LC	?	13	NL	C/M
Tropidodipsas sartorii Cope, 1863	4	LC	=	9	Pr	C/M
Family Elapidae						
Micrurus bernardi (Cope, 1887)	2	LC	=	15	NL	Lemos-Espinal and Dixon (in press)
Micrurus ten Baird & Girard, 1853	3	LC	=	11	NL	Lemos-Espinal and Dixon (in press)
Family Leptotyphlopidae						
Epictia goudotii (Dumériel & Bibron, 1844)	4	?	?	3	NL	Lemos-Espinal and Dixon (in press)
Rena dulcis Baird & Girard, 1853	3	LC	?	13	NL	C/M
Rena myopica (Garman, 1884)	2	LC	=	13	NL	C/M
Family Typhlopidae						
Indotyphlops bairdii (Daudin, 1803)	6	N/A	N/A	N/A	N/A	Ramírez-Bautista et al. (2010)
Family Viperidae						
Agkistrodon taylori Burger & Robertson, 1951	4	LC	?	17	A	Bryson and Mendoza-Quijano (2007)
Atropoides nummifer (Ruppell, 1845)	2	LC	=	13	A	C/M
Bothrops asper (Garman, 1883)	4	?	?	12	NL	C/M
Crotalus aquilus Klauber, 1952	2	LC	=	16	Pr	A
Crotalus atrox Baird & Girard, 1853	3	LC	=	9	Pr	Valencia-Hernández et al. (2007)
Crotalus intermedius Troschel, 1865	2	LC	=	15	A	Valencia-Hernández et al. (2007)
Crotalus molossus Baird & Girard, 1853	3	LC	=	8	Pr	C/M
Crotalus raus Cope, 1865	2	LC	=	14	A	A
Crotalus scutulatus (Kennisott, 1861)	3	LC	=	11	Pr	Valencia-Hernández et al. (2007)
Crotalus totonacus Gloyd & Kauffeld, 1940	2	?	?	17	NL	C/M
Crotalus triseriatus (Wagler, 1830)	2	LC	=	16	NL	A
Ophryulus undulatus (Jan, 1859)	2	V	-	15	Pr	A

1. We regard the presence of *Pseudoeurycea altamontana* (Taylor, 1939) as unlikely in El Chico, Hidalgo, and as limited to the Distrito Federal and Morelos.
2. We regard the presence of *Bromeliohyla dendroscarta* (Taylor, 1940) as likely in the state of Hidalgo; however, at this time we regard this species as a species not occurring in this state until a voucher specimen is available.
3. All *Gerrhonotus* populations in Hidalgo are either *G. infernalis* Baird, 1859 or *G. ophiurus* Cope, 1866. We follow Good (1994) in the distribution of the *G. liocephalus* Wiegmann, 1828 complex. *Gerrhonotus liocephalus* Wiegmann, 1828 is limited to areas in Puebla and Veracruz and south to these states along the Atlantic slope, with a disjunct population in Jalisco and Aguascalientes.
4. We regard the only available record for *Conopsis biserialis* Taylor & Smith, 1942 (5 km SE of Pachuca) as an error that has been reported through the years (I. Goyenechea, pers. comm.). We have been recording snakes of this genus in Hidalgo and have never encountered a single specimen of *C. biserialis*.
5. We regard the record of *Lampropeltis mexicana* (Garman, 1884) reported in Ramírez-Bautista et al. (2010) as a misinterpretation of Bryson et al. (2007), who did not mention the presence of *L. mexicana* in Hidalgo (confirmed by R.W. Bryson, pers. comm.).
Table 2. Summary of species present in Hidalgo by family, order or suborder, and class. Distribution summary indicates the number of species for each taxon found in each distribution category in the order 1,2,3,4,5,6 (see Table 1 for details of each range). Trend summary indicates the number of species having found in each IUCN conservation status in the order DD, LC, V, NT, E, CE (see Table 1 for abbreviations; in some cases species have not been assigned a taxon found in each distribution category in the order 1,2,3,4,5,6 (see Table 1 for details of each range). Status summary indicates the number of species having each population trend (according to the IUCN Red List) in the order negative, stable, positive, unknown. Mean EVS is the mean Environmental Vulnerability Score, scores > 14 are considered high vulnerability (Wilson et al., 2013a,b) and conservation status in Mexico according to SEMARNAT (2010) in the order NL, Pr, A, P (see Table 1 for abbreviations).

Class	Order/ Suborder	Family	Genera	Species	Distribution Summary	Status Summary	Trend Summary	Mean EVS	SEMARNAT
Amphibia	Caudata		5	14	3,10,1,0,0,0	1,1,2,2,4,4	11,0,3	15,3	2,8,3,2
			1	1	0,1,0,0,0,0	0,1,0,0,0,0	0,0,0,1	10	0,1,0,0
			3	12	3,9,0,0,0,0	1,0,2,2,3,4	10,0,0,2	16	2,7,3,1
			1	1	0,0,1,0,0,0	0,0,0,0,1,0	1,0,0,0	12	0,0,0,1
			19	40	0,21,9,9,1,0	0,27,5,4,4,0	13,22,3,2	9,4	26,8,5,1
			3	6	0,2,2,1,1,0	0,6,0,0,0,0	0,5,1,0	7	6,0,0,0
			1	4	0,3,1,0,0,0	0,1,2,1,0,0	2,1,0,1	12,8	2,2,0,0
			1	4	0,3,1,0,0,0	0,2,2,0,0,0	0,3,0,1	13,8	3,1,0,0
			8	14	0,9,1,4,0,0	0,8,1,2,3,0	7,6,1,0	9,2	8,2,4,0
			1	2	0,0,0,2,0,0	0,2,0,0,0,0	0,2,0,0	5,5	2,0,0,0
			1	1	0,0,0,1,0,0	0,1,0,0,0,0	0,1,0,0	4	1,0,0,0
			1	6	0,4,2,0,0,0	0,4,0,1,1,0	4,1,1,0	11,5	2,2,1,1
			1	1	0,0,0,1,0,0	0,1,0,0,0,0	0,1,0,0	8	0,1,0,0
			2	2	0,0,2,0,0,0	0,2,0,0,0,0	0,2,0,0	4,5	2,0,0,0
		SUBTOTAL	24	54	3,31,10,9,1,1	1,27,7,6,8,4	24,22,2,5	11	28,16,8,3
Reptilia	Crocodylia		1	1	0,0,0,1,0,0	0,1,0,0,0,0	0,1,0,0	13	0,1,0,0
			1	1	0,0,0,1,0,0	0,1,0,0,0,0	0,1,0,0	13	0,1,0,0
		Testudines	2	5	0,2,1,2,0,0	0,3,0,1,0,0	2,1,0,2	11,6	1,4,0,0
			1	1	0,0,0,1,0,0	--	0,0,0,1	13	1,0,0,0
		Kinosternidae	1	4	0,2,1,1,0,0	0,3,0,1,0,0	2,1,0,1	11,2	0,4,0,0
		Squamata	60	115	9,52,18,43,0,2	2,76,7,0,4,2	14,63,0,36	10,6	62,27,24,0
		Lacertilia	17	36	1,21,5,8,0,1	0,24,4,0,0,2	6,20,9,0	11,1	21,11,3,0
			3	4	0,3,1,0,0,0	0,3,1,0,0,0	1,1,0,2	13,5	2,2,0,0
		Anguidae	2	2	0,0,0,2,0,0	0,1,0,0,0,0	0,1,0,1	7,5	1,1,0,0
		Testudines	1	5	1,0,0,4,0,0	0,0,1,0,0,0	1,0,4,0	9,4	4,1,0,0
			1	1	0,0,1,0,0,0	0,1,0,0,0,0	1,0,0,0	10	0,1,0,0
		Gekkonidae	1	1	0,0,0,0,0	--	--	--	--
		Iguanidae	1	1	0,0,0,1,0,0	0,19,2,0,2	0,0,0,1	12	0,1,0,0
		Phrynosomatidae	2	13	0,10,2,1,0,0	0,12,1,0,0	1,1,2,0	11,5	10,2,1,0
		Scincidae	2	4	0,3,1,0,0,0	0,4,0,0,0,0	0,4,0,0	12	1,2,1,0
		Teiidae	2	2	0,0,1,1,0,0	0,2,0,0,0,0	0,2,0,0	8	2,0,0,0
		Xantusidae	1	2	0,0,2,0,0,0	0,1,1,0,0,0	2,0,0,0	12	0,2,0,0
		Xenosauridae	1	1	0,1,0,0,0,0	--	0,0,0,1	17	1,0,0,0
		Serpentes	43	79	8,31,33,34,0,1	2,52,3,0,4,0	8,43,0,27	10,4	41,16,21,0
		Boidae	1	1	0,0,0,1,0,0	--	0,0,0,0,1	10	0,0,1,0
		Colubridae	33	60	0,12,8,30,0,0	2,39,2,0,1,0	6,33,0,21	9,8	33,11,16,0
		Elapidae	1	2	0,1,1,0,0,0	0,2,0,0,0,0	0,2,0,0	13	2,0,0,0
		Leptotyphlopidae	2	3	0,1,1,0,0,0	0,2,0,0,0,0	0,1,0,2	9,7	3,0,0,0
		Typhlopidae	1	1	0,0,0,0,0	--	--	--	--
		Viperidae	5	12	0,7,3,2,0,0	0,0,0,1,0,0	2,0,7,3	13,6	3,5,4,0
	SUBTOTAL	63	121	1,54,19,45,0,2	2,80,7,1,4,2	16,65,0,38	10,7	63,32,24,0	
	TOTAL	87	175	4,85,29,54,1,3	3,107,14,7,12,6	40,87,2,43	9,1	94,83,2,3	
1969)), one anuran (Hyla plicata Brochii, 1877), and one lizard (Sceloporus mucronatus Cope, 1885). Another 30 of the 92 endemic species have a wide distribution in eastern Mexico, ranging from states north of Hidalgo such as Tamaulipas or San Luis Potosi to states south of Hidalgo such as Oaxaca or Chiapas, these species include four salamanders (Bolitoglossa platyacantha (Gray, 1831), Chiropteronitriton chondrostegus (Taylor, 1941), C. multidentatus (Taylor, 1938), and Pseudoourycea cephalica (Cope, 1889)); seven anurans (Craugastor berkenbuschi (Peters, 1870), C. decoratus (Taylor, 1942), C. rhodophis (Cope, 1867), Eleutherodactylus longipes (Baird, 1869), E. verrucipes Cope, 1865, Ecnomiohyla miotympanum Cope, 1863, and Plectrohyla ahorescandens (Taylor, 1939)); one turtle (Kinosternon herreeri (Stejnegeri, 1925)); eleven lizards (Abronia taeniata (Wiegmann, 1828), Gerrhonotus ophiurus (Taylor, 1939), Anolis sericeus Hallowell, 1856, Anelytropis papillosus Cope, 1885, Ctenosaura acanthura (Shaw, 1802), Sceloporus bicanthalis Smith, 1937, S. minor Cope, 1885, S. parvus Smith, 1934, Plestiodon lynxe (Wiegmann, 1834), Scinella silvicola (Taylor, 1937), and Lepidophymina sylvicolum (Taylor, 1939)); and seven snakes (Ficimia olivacea Gray, 1849, Geophis multitorques (Cope, 1885), Rhadinariae gaigeae Bailey, 1937, Storeria hidalgoensis Taylor, 1942, Rena myopica (Garman, 1884), Agkistrodon taylori Burger & Robertson, 1951, and Crotalus totonacus Gloyd & Kauffeld, 1940).

Five more of the endemic species are distributed mainly in the Mexican Plateau and parts of the Transvolcanic Belt: one salamander (Ambystoma velasci (Dugès, 1888)), one anuran (Lithobates neovolcanicus (Hillis & Frost, 1985)), two lizards (Sceloporus spinosus Wiegmann, 1828 and S. torquatus Wiegmann, 1828), and one snake (Lampropeltis ruthveni Blanchard, 1920).

Fourteen more of the species endemic to Mexico that are found in Hidalgo have a peculiar distribution occupying the Sierra Madre Occidental as well as the Sierra Madre Oriental and parts of either the Mexican Plateau or the Transvolcanic Belt. They consist of one salamander (Pseudoourycea belli (Gray, 1850)), three anurans (Incilius marmoreus (Wiegmann, 1833), Eleutherodactylus nitidus (Peters, 1870) and Plectrohyla bistincta (Cope, 1877)), two lizards (Phrynosoma orbiculare (Linnaeus, 1758) and Sceloporus scalaris Wiegmann, 1828), and eight snakes (Leptodeira maculata (Hallowell, 1861), Leptophis diplotropis (Günther, 1872), Pituophis degei (Duméril, 1853), Rhadinaria hesperia Wiegmann, 1828, Storeria storerioides (Cope, 1866), Thamnophis melanoagaster (Wiegmann, 1830), Trimorphodon tau Cope, 1870, and Crotalus aquilus Klauber, 1952). Five more of the endemic species (two frogs, Hyla eximia Baird, 1854 and Incilius occidentalis Camerano, 1879; one turtle, Kinosternon integrum Le Conte, 1854; two snakes, Conopsis nasus Günther, 1858 and Salvadora bairdi Jan, 1860) are found in parts of the Sierra Madre Occidental as well as in the Mexican Plateau and/or the Transvolcanic Belt. Eight other endemic species are typically found in the Transvolcanic Belt and parts of the Mexican Plateau or the Sierra Madre Oriental: two frogs (Lithobates montezumae (Baird, 1854 and L. spectabilis (Hillis & Frost, 1985)), two lizards (Barisia imbricata (Wiegmann, 1828) and Sceloporus aeneus Wiegmann, 1828), and four snakes (Conopsis lineata (Kennicott, 1859), Thamnophis scalaris Cope, 1861, T. scaliger (Jan, 1863), and Crotalus triseriatus (Wagler, 1830)). Three pit vipers (Crotalus intermedius Troeschel, 1865, C. raus Cope, 1865, and Ophryacus undulatus (Jan, 1859)) from Hidalgo that are endemic to Mexico have disjunct distributions with populations in Guerrero, Hidalgo, Oaxaca, and Veracruz.

The other 83 of the 175 species that inhabit Hidalgo have distributions that extend beyond Mexico. Twenty-nine of these 83 species are distributed from Canada or the United States and have their southernmost distribution in central or southern Mexico. These species consist of one salamander, nine anurans, one turtle, four lizards, and 14 snakes.

Thirty-three of the 83 non-endemic species reach their northernmost distribution in Mexico and their southernmost distribution in Central America or South America, including four anurans, one crocodile, two turtles, six lizards, and 20 snakes.

Another 19 species found in Hidalgo have a wide distribution that ranges from Canada or the United States to Central America or South America. These taxa represent five anurans, two lizards, and 12 snakes. Two species that inhabit Hidalgo are not native to the Western Hemisphere: one lizard introduced from southeastern Asia (Hemidactylus frenatus Duméřil and Bibron, 1836), and one snake introduced from southern Asia (Indotyphlops braminus (Daudin, 1803)).

When comparing the species list of Hidalgo with those of neighboring states for which recent checklists are available, we found substantial overlap of species. Hidalgo and Puebla share 118 total species (40 amphibians and 78 reptiles), representing 48.2% of the total species, 49.4% of the amphibians, and 47.6% of the reptiles found in Puebla. There were 65 total species shared between Hidalgo and Mexico, with 21 amphibian species and 44 reptile species shared. These represent 45.4%, 42%, and 47.3% of the total species, amphibian species, and reptile species of México, respectively. San Luis Potosi and Hidalgo share 132 total species, or 72.9% of the species found in San Luis Potosi. These two states share 36 species of amphibians and 96 species of reptiles, which represent 85.7% and 69.1% of the amphibian and reptile species found in San Luis Potosi, respectively. Querétaro shares 101 total species, 24 amphibian species and 77 reptile species with Hidalgo. These represent high percentages of the species found in Querétaro (86.3% total species, 82.8% amphibian species, 87.5% reptile species).
Twelve percent of all categorized herpetofaunal species in Hidalgo are either Critically Endangered or Endangered, and 26.2% are categorized as Vulnerable, Near Threatened, Endangered, or Critically Endangered by the IUCN. Using the EVS of Wilson et al. (2013a, b), 24.8% (43 of 173) were placed in the high vulnerability category (EVS > 14). According to the SEMARNAT (2010) list, 1.7% of Hidalgo’s species are in danger of extinction (P), 18.4% are threatened (A), 27.6% are subject to special protection (Pr), and 52.3% are not listed. In addition, of those species for which population trends were described, 31% had declining populations according to the IUCN Red List.

DISCUSSION

The list of species of amphibians and reptiles we have generated for Hidalgo demonstrates the potential importance of this small state for the Mexican herpetofauna. More than half of the species of amphibians and reptiles found in Hidalgo are endemic to Mexico, including four that are endemic to Hidalgo. Several of these endemics have a relatively narrow distribution in Mexico; thus, Hidalgo represents an important component of their range. Our compilation of the conservation status and population trends of its herpetofauna also confirms that Hidalgo is of potential importance for several taxa. For example, 12 salamanders in the family Plethodontidae occur in Hidalgo, of which 3 are endemic to Hidalgo and the other 9 are endemic to Mexico. Four of the 12 species are listed as Critically Endangered and 3 are listed as Endangered by the IUCN (see Tables 1, 2). One of the 3 Hidalgo endemic species are listed as Critically Endangered, one as Endangered, and one as Data Deficient by the IUCN. All but one of the Plethodontidae has an EVS that places them in the high vulnerability category (Table 1; Wilson et al. 2013a). Three are listed as threatened (A) and one as in danger of extinction (P) in SEMARNAT (2010). In addition, ten of the plethodontid species have a negative population trend (the remaining 2 have unknown trends). Although the salamanders in the family Plethodontidae are in particular danger, as they are elsewhere in Mexico (see Frias-Alvarez et al. 2010; Wilson et al. 2013a), Hidalgo is home to several other Endangered and Critically Endangered species (see Tables 1, 2). The herpetofauna of Hidalgo therefore includes many species of conservation concern, with taxa of particular concern (based on IUCN listing and EVS) including Plethodontidae, Eleutherodactylidae, Crocodylia, Emydidae, Anguidae, Xenosauridae, Elapidae, and Viperidae (see Table 2). Our compilation also found many species for which no IUCN or SEMARNAT (2010) classification were given and many other species (43 of the 173 native species; 24.8%) had no information on population trends. However, all of these species have received EVS scores from Wilson et al. (2013a, b). It is therefore critical that the herpetofauna of Hidalgo be studied further to establish population status and trends.

Hidalgo also appears to represent a “mixing-pot” for species whose distributions are from the Sierra Madre Occidental and the Transvolcanic Belt, as is evidenced by the overlap in species found in neighboring states, especially Querétaro and San Luis Potosí. Unfortunately, much of Hidalgo has been or is being converted to human-dominated or human-altered habitats. We hope that this checklist, along with other recent works describing and studying the herpetofauna of Hidalgo (see Introduction), will help highlight the diversity of reptiles and amphibians that can be found in this small but biologically important Mexican state.

ACKNOWLEDGEMENTS

We thank Irene Goyenechea and Robert W. Bryson for sharing their opinions on the distributions of Conopsis biserialis Taylor & Smith, 1942 and Lampropeltis mexicana (Garman, 1884). The manuscript was improved by the comments of anonymous reviewers.

LITERATURE CITED

Aguilar Miguel, X., G. Casas Andreu, P.J. Cárdenos Ramos and E. Cantellano de Rosas. 2009. Análisis espacial y conservación de los anfibios y reptiles del Estado de México. Ciencia Ergo Sum 16(2): 171–180. http://www.redalyc.org/articulo.oa?id=1041350008

Aklántara-Ayala, O. and I.Luna Vega. 2001. Análisis florístico de dos áreas con bosque mesófilo de montaña en el estado de Hidalgo, México: Eloxochitlán y Tlahuelompa. Acta Botanica Mexicana 54: 51–67. http://www.redalyc.org/articulo.oa?id=57405405

Badillo-Saldana, L.M., C. Berrioza-Isla and A. Ramírez-Bautista. 2014. New record of the snake Drymobius chloroticus (Squamata: Colubridae) from Hidalgo, Mexico. Check List 10(1): 199–201. doi: 10.15560/10.1.159

Badillo-Saldana, L.M., A. Ramírez-Bautista, C. Berrioza-Isla and C.I. Beteta-Hernández. 2015. Range extension of the Giant Salamander, Pseudoeurycea gigantea (Taylor 1938) (Caudata: Plethodontidae [(sic)]), and some aspects of its natural history within Hidalgo State, Mexico. Check List 11(1): 1521. doi: 10.15501/11.1.1521

Berrioza-Isla, C., A. Ramírez-Bautista, L. M. Badillo-Saldaña and R. Cruz-Elizalde. 2012. New records of the snake Leptophis diplotropis (Günther, 1872) (Squamata: Colubridae) from Hidalgo State, México. Check List 8(6): 1370–1372. http://www.checklist.org/br/getpdf?NGD115-12

Bryson, R.W. and F. Mendoza-Quijano. 2007. Cantills of Hidalgo and Veracruz, Mexico, with Comments on the Validity of Agkistrodon bilineatus lemosinipilus. Journal of Herpetology 41(3): 536–539.

Bryson, R.W., J. Pastorini, F.T. Burbrink and M.R.J. Forstner. 2007. A phylogeny of the Lampropeltis mexicana complex (Serpentes: Colubridae) based on mitochondrial DNA sequences suggests evidence for species-level polyphyly within Lampropeltis. Molecular Phylogenetics and Evolution 43(2): 674–684. doi: 10.1016/j.ympev.2006.11.025

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). 2004. “Estado de Hidalgo en imagen de satélite”. México. Editor: Conabio. Imagen de satélite Landsat, bandas 3,2,1 (RGB), sobre un modelo digital del terreno.

Cruz-Elizalde, R. and A. Ramírez-Bautista. 2012. Diversidad de reptiles en tres tipos de vegetación del estado de Hidalgo, México.
Revista Mexicana de Biodiversidad 83(2): 458–467. http://www.scielo.org.mx/pdf/rmbiodiv/v83n2/v83n2a17.pdf

Cruz-Elizalde, R., A. Ramirez-Bautista, L.D. Wilson and U. Hernández-Salinas. 2015. Effectiveness of protected areas in herpetofauna conservation in Hidalgo, Mexico. Herpetological Journal 25(1): 41–48.

Dixon, J.R. and J.A. Lemos-Espinal. 2010. Anfibios y reptiles del Estado de Querétaro, México. México, Texas A&M University, Universidad Nacional Autónoma de México, and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

Fernández-Badillo, L. and I. Goyenechea-Mayer Goyenechea. 2010. Anfibios y reptiles del valle del Mezquital, Hidalgo, México. Revista Mexicana de Biodiversidad 81(3): 705–712. http://www.scielo.org.mx/pdf/rmbiodiv/v81n3/v81n3a12.pdf

Frias-Alvarez, P., J.J. Zúñiga-Vega and O. Flores-Villela. 2010. A general assessment of the conservation status and decline trends of Mexican amphibians. Biodiversity and Conservation 19(15): 3699–3742. doi: 10.1007/s10531-010-9923-9

García-Vázquez, U.O., L. Canseco-Márquez, G. Gutiérrez-Mayén and M. Trujano-Ortega. 2009. Actualización del conocimiento de la fauna herpetológica en el Estado de Puebla, México. Boletín de la Sociedad Mexicana 17(1): 12–36.

Good, D.A. 1994. Species limits in teh genus Gerrhonotus (Squamata: Anguidae). Herpetological Monographs 8: 180–202.

Goyenechea Mayer-Goyenechea, I. 2003. Conopsis lineata. Brood Size. Herpetological Review 34: 63.

Hernández-Salinas, U. and A. Ramirez-Bautista. 2013. Distribución de la herpetofauna en cuatro tipos de vegetación del estado de Hidalgo, México; pp. 5–12, in: G. Pulido-Flores and S. Monks (eds.). Estudios Científicos en el Estado de Hidalgo y Zona Aldeñas, Volumen II. Lincoln: Zea Books.

Huitzil-Mendoza, J. C. and I. Goyenechea Mayer-Goyenechea. 2011. Primeros registros de herpetozos en Zimapán, Hidalgo, México. Revista Mexicana de Biodiversidad 82: 717–720. http://www.scielo.org.mx/pdf/rmbiodiv/v82n2/v82n2a31.pdf

INEGI (Instituto Nacional de Geografía, Estadística e Informatica — Dirección General de Geografía). 2009. El INEGI en tu entidad. Hidalgo — Geografía. http://www.inegi.org.mx/inegi/default.aspx?seg=geo&ee=22

Lara-Tufino, D., R. Hernández-Austria, L.D. Wilson, C. Berriozabal-Islas and A. Ramirez-Bautista. 2014. New state record for the snake Acanthophis sappari (Squamata. Dipodidae) from Hidalgo, México. Revista Mexicana de Biodiversidad 85(2): 654–657. doi: 10.7550/rmb.40543

Lemos-Espinal, J.A. and J.R. Dixon. 2013. Amphibians and reptiles of San Luis Potosí. Eagle Mountain, Eagle Mountain Publishing. Lemos-Espinal, J.A. and J.R. Dixon. [In press]. Anfibios y reptiles de Hidalgo México/ Amphibians and reptiles of Hidalgo Mexico. CONABIO, México.

Mejenes-López, S. M. and M. Hernández-Bautista. 2013. Primer registro de Crocodylus moreletii (Reptilia: Crocodylia) para Hidalgo, México. Revista Mexicana de Biodiversidad 84(5): 999–1001. doi: 10.7550/rmb.23508

Ponce-Reyes, R., V.H. Reynoso-Rosas, J.E.M. Watson, J. VanDerWal, R.A. Fuller, R.L. Pressey and H.P Possingham. 2012. Vulnerability of cloud forest reserves in Mexico to climate change. Natura Climate Change 2: 448–452. doi: 10.1038/NCLIMATE1453

Rabb, G.B. 1958. On certain Mexican salamanders of the plethodontid genus Chiropteran. Occasional Papers of the Museum of Zoology, University of Michigan 587: 1–37. http://deepblue.lib.umich.edu/bitstream/handle/2027.42/5702/OP587.pdf

Ramírez-Bautista, A., C. Berriozabal-Islas, R. Cruz-Elizalde, U. Hernández-Salinas and L. Badillo-Saldana. 2013. Rediscovery of the snake Chersodromus rubriventris (Squamata: Colubridae) in cloud forest of the Sierra Madre Oriental, México. Western North American Naturalist 73(3): 392–398. 10.3398/064.073.0303

Received: December 2014
Accepted: April 2015

Editorial responsibility: Natan Medeiros Maciel

Authors’ contribution statement: JL conducted fieldwork, JL and GS compiled and analyzed the data, JL and GS wrote the text.

Authors’ contribution statement: JL conducted fieldwork, JL and GS compiled and analyzed the data, JL and GS wrote the text.