Experimental 70% Al₂O₃ - 30% ZrO₂ composites: structural, topographical and mechanical characterization before and after aging
Experimental 70% Al₂O₃ - 30% ZrO₂ composites: structural, topographical and mechanical characterization before and after aging

Compósitos experimentais 70%Al₂O₃-30%ZrO₂: caracterização estrutural, topográfica e mecânica antes e após envelhecimento

Tese constituída por artigos apresentada a Faculdade de Odontologia de Bauru - Universidade de São Paulo para obtenção do título de Doutor em Ciências no Programa de Ciências Odontológicas Aplicadas, na área de concentração Reabilitação Oral.

Orientador: Prof. Dr. Estevam A. Bonfante

Coorientador: Prof. Dr. Paulo F. Cesar

BAURU
2021
Benalcázar Jalkh, Ernesto Byron
Experimental 70% Al_2O_3 - 30% ZrO_2 composites: structural, topographical and mechanical characterization before and after aging/ Ernesto Byron Benalcázar Jalkh. -- Bauru, 2021.
42 p.: il. ; 30cm.

Tese (doutorado) -- Faculdade de Odontologia de Bauru, Universidade de São Paulo, 2021.

Orientador: Prof. Dr. Estevam A. Bonfante
FOLHA DE APROVAÇÃO
DEDICATÓRIA

À Deus, que em sua infinita graça me conduz, protege e ampara. “Nada acontece que Deus não tenha previsto desde toda a eternidade.”

À minha amada família. Ao meu pai Byron Benalcázar, exemplo de humildade, de esforço e de amor. À minha mãe Renata Jalkh: exemplo de força, de luta, de resiliência e de vida. Sua capacidade de amar tem um poder transformador e me faz acreditar que para tudo existe uma solução. Obrigado por fazer dos meus sonhos os seus e por nunca desistir; vocês são a minha força, o meu motivo, meu tudo. Amo vocês infinitamente e lhes dedico esta e todas as realizações da minha vida.

Às minhas irmãs Andrea e Soraya. A família é a raiz de quem somos, representa o amor que recebemos e a alegria do que vivemos. Todos os dias agradeço a Deus pelo maior presente que Ele poderia me dar. Mis princesas, jamás podre agradecerles sufrimento por todo su amor y apoyo, senti su presencia en cada paso, aún en la distancia. Las amo!

Às minhas sobrinhas e princesas Samira e Julieta, não vejo a hora de ter vocês nos meus braços.

À minha avó Hildegarde, sei que logo poderei te abraçar, a saudade não cabe no meu peito. Aos meus avôs Antonio e René, e a minha avó Beatriz. Vocês vivem sempre no meu coração.
AGRADECIMENTOS

À minha família pelo suporte em cada passo e em cada sonho. Vocês são a minha força para lutar dia a dia.

Ao meu orientador, Prof. Dr. Estevam A. Bonfante. Obrigado por todos estes anos de convivência e aprendizado, é uma honra ser seu aluno, orientado e especialmente amigo. Serei eternamente grato pelas inúmeras horas de trabalho no laboratório, na sua sala, em reuniões de pesquisa, em atendimentos clínicos, atividades laboratoriais e especialmente pelo tempo que compartilhamos fora da vida acadêmica; em todos esses momentos aprendi muito do seu lado. Quero te agradecer de forma especial pelo seu apoio constante em todos os desafios que se apresentaram nessa caminhada, tive o seu conselho, e senti a sua preocupação e positivismo em cada passo. Sua presença fez uma enorme diferença no meu caminho, obrigado por ser sempre motivação para continuar firme na luta. Esses anos aprendendo do seu lado reafirmaram a minha percepção de que para ser docente é necessário ter uma enorme vocação de serviço, assim como integridade para ensinar com o exemplo. Obrigado por ser esse exemplo dentro e fora das clínicas e salas de aula, por transmitir a sua vontade de crescer, aprender, contribuir e servir aos outros e à sua comunidade; por ser exemplo de humildade, de bom coração e por jamais mensurar esforços para ajudar aos seus alunos.

Tenho um orgulho enorme de ser seu aluno e serei eternamente grato por ter como meu amigo.

Obrigado Soraya, Arthur e Alice por serem a minha família no Brasil, por abrirem as portas do seu lar e me receberem sempre com um sorriso. Amo vocês!
Ao meu Coorientador **Prof. Paulo F. Cesar** e a sua equipe no Departamento de Biomateriais e Biologia Oral da FO-USP. Obrigado por todas as oportunidades de aprendizado, pela parceria e generosidade.

Ao meu Coorientador no exterior, **Prof. Paulo G. Coelho** e toda a equipe de trabalho da NYU encabeçada pelo **Prof. Lukasz Witek**. Gratidão pelas inúmeras oportunidades, pela confiança no meu trabalho e pela parceria que desenvolvemos no meu tempo na NYU. **Paulo**, obrigado por ser esse cavaleiro de coração enorme, pelo seu suporte, apoio e amizade. **Lukasz**, thanks for all the opportunities, for the guidance, laughs, and friendship. It has been an honor to work with you. **BLT**.

Aos companheiros de caminho, colegas de equipe e amigos **Edmara, Everardo, Adolfo, Abbas, Lucas e Karina**. O CRANIUM Lab obrigado por compartilhar trabalho e amizade.

Aos co-autores dos trabalhos que conformam essa tese de doutorado: **Prof. Genova, Prof. Paulo Lisboa-Filho, Prof. Ana Flavia, Kelli, Erick, Tiago e Abbas**. Obrigado pela parceria e pela confiança para desenvolvermos trabalhos em conjunto. Por abrirem as portas dos seus laboratórios e pelo apoio constante para atingir os nossos objetivos.

À minha pequena família em NY, **Carlina, Karen, Fredy e Valentina**. Obrigado por serem apoio em todo momento, pelo suporte quando o mundo parecia estar caindo, por ser mãe, irmãos, e família de coração. Deus me abençoou ao me colocar na sua casa e foi um privilégio compartilhar com vocês o dia a dia. Obrigado sempre!

A minha companheira, **Beatriz**, por deixar tudo mais leve, por me acompanhar em todo momento, sem importar o difícil que for. Obrigado pela força, positivismo e fé.
Aos primos em NY; Henry, Colleen, Sabi, Maria, e as suas famílias. Conhecer mais da história da família, e sentir o carinho e apoio de vocês em cada passo tem sido um privilégio. Tia Ingar está cuidando da gente desde o céu, que a força e o exemplo dela nos acompanhe sempre! Obrigado Tia Germania, e tios Chech e Arcangelo por me fazer sentir em família sempre.

Às amigas de coração que o Brasil me deu de presente. Bruna Ferrairo Mota, Camila Machado e Edmara Bergamo, obrigado por estarem sempre comigo, na distância, nas risadas, nos momentos bons e especialmente nos ruins. Serei sempre grato pela sua presença, carinho e amizade.

Aos irmãos de vida com os que a NYU me abençoou, João Abreu, JP de Bortoli e Marcelo Parra, obrigado por mostrar que amizade verdadeira não reside na presença física, mas no sentimento que se compartilha no coração. Até as horas mais difíceis foram motivo de risada perto de vocês!

Ao casal mais bonito que conheci em NYC, Camila e Pablo, obrigado pela amizade, parceria e apoio sempre! Camila obrigado pela sintonia, pela paz do seu abraço e pela força que transmite em cada sorriso. Por sempre me ajudar ver o lado positivo e me apoiar na luta nos momentos mais complicados. Você, o Pablito e o pequeno Mateo moram no meu coração sempre!

Aos amigos que tive a sorte de encontrar em NYU, Camila, Larissa, Vasudev, Nick, Greg, Maria Jesus, Cristóbal, Leticia, Angel, Soni, Shruti, Sayli, Kritica, Ana e Chandra. Obrigado por me permitirem descobrir NYC com vocês, pela sua educação, carinho e amizade.

Aos amigos e companheiros de pós, Patrick, Henrique, Rodrigo, Oscar, Ilana, Fernanda, Verena, Samira, Lucas, Jeff, Isa e Ana, será sempre um prazer crescer, aprender e compartilhar com vocês!

Aos amigos de vida, do Ecuador e do Brasil: Miguel, Rodrigo, Jhonny, Cheo, Julio, Silvio e Fernanda. Obrigado pela amizade que transcende tempo e distancias.

À equipe do Departamento de Biomateriais da NYU: Ms Champa, Dindo e Chandra. Obrigado pela excelência no desenvolvimento do seu trabalho, por sempre estar dispostos a ajudar e pela sua qualidade humana.
À equipe médica que me permitiu atingir esse objetivo: Dr. Jhon Allan, Dr. Koen Van Besien, Dr. Grace Suhu, Dr. Allan Dosik, Dr. Fleure Gallant, Dr. Sebron Harrison, Dr. Natalia Chernichenko, Dr. Tiffany Yeh. E a equipe de Weill Cornell, especialmente para Tori e Emily, Deus colocou pessoas realmente especiais para iluminar o meu caminho, obrigado sempre pelo seu profissionalismo, atenção e cuidados.

Aos professores orientadores da Clínica da Pós-graduação em Reabilitação Oral: Prof. Dr. Luiz Fernando Pegoraro e Prof. Dr. Accácio Lins do Valle. Dos senhores recebi inúmeras oportunidades e ensinamentos que sem dúvida me tornaram um melhor reabilitador, professor e ser humano. Obrigado pela paciência e generosidade para ensinar, sua vocação é um exemplo para todos os que tivemos a honra de aprender dos senhores.

Ao Prof. Dr. Gerson Bonfante e sua esposa Elenice, por construir uma família formada em valores e por me acolher como parte dela. Obrigado Professor por ser sempre um exemplo de docente, clínico e ser humano.

Ao Departamento de Prótese da FOB/USP, representado pela Profa. Dra. Ana Lúcia Pompéia Fraga de Almeida, junto aos professores doutores: Paulo César Rodrigues Conti, Carlos dos Reis Pereira de Araujo, Gerson Bonfante, Karin Hermana Neppelenbroek, Lucimar Falavinha Vieira, Pedro César Garcia de Oliveira, Renato de Freitas, Simone Soares, Vinícius Carvalho Porto e Wellington Cardoso Bonachela. Agradeço infinitamente por compartilharem seus conhecimentos.

À secretária do Departamento de Prótese Déborah Andrea Riêra Blasca, por toda paciência, dedicação e simpatia. Aos técnicos e funcionários: Reivanildo, Marcelo, Ziley, Valquiria e Cleide, pela atenção e solicitude de sempre.
À querida amiga, Hebe, que com um sorriso e um abraço ajudou sempre para que os atendimentos da clínica de pós-graduação fluam da melhor forma possível. Seu positivismo foi fundamental para facilitar o nosso aprendizado. Obrigado sempre Hebinha! Às secretárias Ana Letícia, Leila e Fátima (in memoriam), pela presteza e carinho.

Aos pacientes que pude acompanhar durante esta trajetória. Obrigado pela generosidade, compreensão e colaboração.

À Faculdade de Odontologia de Bauru, Universidade de São Paulo, na pessoa do seu Diretor Prof. Dr. Carlos Ferreira dos Santos, por quem sinto uma profunda admiração. A generosidade do senhor e a sensibilidade para atender e cuidar dos seus alunos é ímpar. Serei eternamente grato com o senhor e com a instituição que o senhor representa pelas inúmeras oportunidades de crescimento que me foram apresentadas. Sinto a FOB como um segundo lar, levarei sempre o nome da instituição com muito orgulho e gratidão.

Aos alunos da Faculdade de Odontologia de Bauru, que tive a honra de acompanhar durante a graduação. Obrigado pela confiança e amizade. Aprendi muito com vocês durante os laboratórios e as clínicas.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa durante o meu primeiro ano de doutorado. À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Processo 2018/03072-6, e BEPE 2019/00452-5, vinculados ao Auxílio Jovem Pesquisador 2012/19078-7, EMU 2016/18818-8, pela competência, humanidade, e pelo auxílio indispensável para a realização deste trabalho. À CNPq, processos 304589/2017-9 e 434487/2018-0, pelo apoio constante à pesquisa e inovação.

Aos professores integrantes da banca examinadora, pelo tempo dedicado à leitura e avaliação do presente trabalho, serei eternamente grato pelas suas contribuições.
A todos que contribuíram para que esta etapa tão importante da minha vida fosse concluída, o meu sincero obrigado!
“Alimenta tu fe y tus miedos se morirán de hambre”
RESUMO

Compósitos experimentais 70%Al₂O₃-30%ZrO₂: caracterização estrutural, topográfica e mecânica antes e após envelhecimento

Objetivo: Avaliar o efeito do envelhecimento na estrutura cristalina, topografia de superfície e propriedades mecânicas de um compósito experimental de alumina reforçada com zircônia (ZTA) composto por 70% de Al₂O₃ e 30% de uma zircônia de segunda geração, em comparação com os seus materiais individuais.

Materiais e métodos: Espécimes em formato de discos foram divididos em quatro grupos (n = 10 / material): 1) 3YSB-E (3Y-TZP de primeira geração), 2) Zpex (3Y-TZP de segunda geração), 3) Alumina e 4) ZTA-Zpex 70/30. Difração de raios X (DRX) e microscopia eletrônica de varredura (MEV) foram usados para caracterizar o conteúdo cristalino e a microestrutura dos materiais. Testes de refletância foram realizados para determinar a razão de contraste (RC) e o parâmetro de translucidez (PT). As propriedades mecânicas foram avaliadas pelo teste de resistência à flexão biaxial (RFB) para determinar os parâmetros de Weibull. ZTA, Zpex e Alumina foram adicionalmente testados sob nanoindentação para obter módulo de elasticidade (E) e dureza (H); e por Interferometria para avaliar parâmetros de rugosidade superficial 3D (Sa, Sq). Todas as análises foram realizadas antes e após o envelhecimento artificial (20h, 134°C, 2,2 bar). Os dados de propriedades ópticas foram avaliados por meio da análise de variância de medidas repetidas e testes de Tukey (p <0,05); os dados da RFB foram analisados pela estatística de Weibull (IC95%); e dados de nanoindentação e resultados topográficos foram analisados usando modelos lineares mistos e testes pos-hoc de diferença de mínimos quadrados (α = 5%).

Resultados: Valores de alta densidade foram encontrados para todos os materiais e as imagens de MEV exibiram uma microestrutura densa. Os padrões de XRD revelaram a preservação do conteúdo cristalino no compósito ZTA, enquanto um aumento nos picos monoclinicos foi observado para zircônias puras após envelhecimento. Maior RC e menor PT foram observados para o compósito ZTA, seguido por alumina, 3YSB-E e Zpex. O maior estresse característico foi registrado para 3YSB-E, seguido por valores intermediários entre Zpex e ZTA, e o menor para Alumina. Al₂O₃ apresentou os maiores valores de H e E, seguido por ZTA-70/30 e Zpex, todos significativamente diferentes. O envelhecimento afetou as propriedades ópticas e mecânicas de ambas as zircônias, enquanto se manteve estável para o compósito ZTA e
alumina. O envelhecimento não afetou os parâmetros de rugosidade da superfície de ZTA-70/30 e Al₂O₃, embora um aumento significativo de Sa tenha sido registrado para Zpex após o envelhecimento.

Conclusão: A síntese experimental do compósito ZTA 70-30% foi bem-sucedida e sua relevância para aplicações odontológicas está em sua maior capacidade de mascaramento, resistência ao envelhecimento em todos os parâmetros testados e resistência semelhante à zircônia. O envelhecimento aumentou significativamente o conteúdo monoclínico das zircônias puras e afetou as suas propriedades ópticas e mecânicas, bem como sua rugosidade superficial.

Palavras Chave: Compósitos; ZrO₂-Al₂O₃; Propriedades Mecânicas; Propriedades Ópticas; Nanoindentação; Topografia.
ABSTRACT

Experimental 70% Al₂O₃ - 30% ZrO₂ composites: structural, topographical and mechanical characterization before and after aging

Objectives: To evaluate the effect of aging on the crystalline structure, surface topography and mechanical properties of an experimental zirconia-toughened-alumina (ZTA) composite comprised by 70% Al₂O₃ and 30% of a 2nd-generation 3mol% yttria tetragonal zirconia polycrystal (3Y-TZP), compared to its individual counterpart materials.

Materials and Methods: Disc-shaped ceramic specimens were divided in four groups (n=10/material): 1) 3YSB-E (1st-generation 3Y-TZP), 2) Zpex (2nd-generation 3Y-TZP), 3) Alumina, and 4) ZTA-Zpex 70/30. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the crystalline content and microstructure. Reflectance tests were performed to determine the contrast-ratio (CR) and translucency-parameter (TP). Mechanical properties were assessed by biaxial-flexural-strength (BFS) test to determine Weibull parameters. ZTA and its isolated materials were tested under nanoindentation to record elastic modulus (E) and hardness (H); and Interferometry to assess 3D surface roughness parameters (Sa, Sq). All analyses were conducted before and after autoclave aging (20h, 134°C, 2.2bar). Optical parameters were evaluated through repeated-measures analysis of variance and Tukey tests (p<0.05), BFS data were analyzed using Weibull statistics (95% CI); and nanoindentation and topographic results were analyzed using linear mixed-model and least square difference pos-hoc tests (α=5%).

Results: High density values were found for all materials and SEM images exhibited a dense microstructure. While XRD patterns revealed the preservation of crystalline content in the ZTA composite, an increase in the monoclinic phase was observed for pure zirconias after aging. Higher CR and lower TP values were observed for ZTA, followed by Alumina, 3YSB-E, and Zpex. The highest characteristic stress was recorded for 3YSB-E, followed by intermediate values between ZTA and Zpex, and the lowest for Alumina. Conversely, Al₂O₃ yielded the highest H and E values, followed by ZTA-70/30 and Zpex. Aging affected the optical and mechanical properties of both zirconias, while remained stable for ZTA and alumina. Aging did not affect the surface roughness parameters of ZTA and Alumina, although a significant increase in Sₐ was recorded for Zpex following aging.
Conclusion: The synthesis of the experimental 70-30% ZTA composite was successful and its relevance for dental applications relies on its higher masking ability, aging resistance, and strength similar to zirconia.

Keywords: Composites; ZrO$_2$–Al$_2$O$_3$; Mechanical properties; Optical properties; Nanoindentation; Topography.
TABLE OF CONTENTS

1 INTRODUCTION.. 15

2 ARTICLES .. 21
 2.1 ARTICLE 1 .. 21
 2.2 ARTICLE 2 .. 37

3 DISCUSSION .. 63

4 CONCLUSIONS ... 69

REFERENCES ... 73
1 Introduction
1 INTRODUCTION

Yttria stabilized tetragonal zirconia polycrystals (3mol%, 3Y-TZP) have been widely used in dentistry due to its high flexural strength (900 - 1,300 MPa), fracture toughness (6 - 9 MPa m$^{1/2}$) and excellent biocompatibility.(1) Zirconia occurs naturally in three distinct temperature-dependent crystalline structures: monoclinic (m) stable at room temperature up to 1170°C, tetragonal (t) stable up to 2370°C, and cubic (c) stable from 2370°C up to the melting point.(2) In order to keep the tetragonal phase stabilized at room temperature, it is necessary to add stabilizing oxides to pure zirconia, such as magnesium, calcium, cerium or yttrium oxide (3mol%), being the last one widely used in dentistry due to its extensive range of solubility in the tetragonal and cubic phases.(3, 4)

3Y-TZP’s outstanding mechanical properties rely on the transformation toughening mechanism, which is determined by the capability of tetragonal zirconia grains to undergo a stress-mediated phase transformation to monoclinic phase, phenomenon known as R-curve behavior.(5) Thus, first generation 3Y-TZP have been used in prosthodontics and implant dentistry for the manufacture of infrastructures of dental and implant supported crowns and fixed dental prostheses (FDPs) in the anterior and posterior regions, implant supported fixed full-arch prostheses and implant abutments.(6-12) Nevertheless, 3Y-TZP metastability makes it susceptible to low temperature degradation (LTD), a steady and continued tetragonal to monoclinic (t-m) phase transformation due to stress and moist environment exposition.(13) LTD may be accompanied by the appearance of micro cracks resulting from stress accumulation within the material eventually leading to loss of mechanical properties. (14)

While first generation 3Y-TZP, presents high success rate as framework for bilayered dental supported single crowns,(11) its clinical performance as infrastructure for FDP have revealed a high rate of mechanical complications, where cohesive fractures of the veneered porcelain emerged as the main finding.(8) Such complication seems to be crucial in implant supported prostheses, where fracture rates of up to 22.8 and 34.8% in 5 years (for partial and full-arch FDP, respectively) led to the latest European Academy for Osseointegration (EAO) consensus of 2018 to consider veneered zirconia prostheses as clinically unacceptable for implant supported reconstructions. (7)

In an effort to eliminate chipping of the veneered porcelain, modifications in the Alumina content and grain size of first generation 3Y-TZP, led to the development of the
translucent second generation 3Y-TZP, intended to be used as monolithic restorative material. (15) While a modest increase in translucency was achieved, the optical properties of second generation 3Y-TZP were reported to be insufficient for esthetic treatments in the anterior region, especially compared with highly esthetic glass ceramics. (16, 17) Furthermore, the reduction of alumina content, a metallic oxide used as a stabilizer of the tetragonal phase, leave the material more susceptible to the effects of phase transformation in the oral environment. Therefore, the limited light transmission and the potential hydrothermal instability of second generation 3Y-TZPs, led to the development of a third generation of dental zirconias, classified as “ultra-translucent” systems (18).

The third generation of dental zirconias is characterized by a predominant presence of optically isotropic cubic phase in its composition (more than 50%), where the partial stabilization of zirconia (Y-PSZ) is achieved by increasing yttria content to ~4-5 mol%. While the presence of cubic phase in Y-PSZ improved significantly the optical behavior of the material, a notable reduction on its mechanical properties was also observed. (16) The partial stabilization of zirconia limits the stress-induced transformation toughening of tetragonal 3Y-TZP, which compromise its mechanical properties. (15) Therefore, the indications for ultra-translucent systems are limited to anterior and posterior single crowns, similar to several glass-ceramics, (15, 19) that present additional advantages for its clinical application, including well-established bonding protocols, (20, 21) favorable esthetic outcomes, (22, 23) and high success rates in the long term. (11, 24)

In light of the well documented limitations of 3Y-TZP systems currently used in dentistry, innovation in the synthesis of polycrystalline ceramic composites of zirconia and alumina for dental applications has been proposed. (25-28) Such composites intend to improve the mechanical performance of pure alumina and provide high hydrothermal stability when compared to stabilized zirconia. (13) In the orthopedic field, composites of alumina reinforced with zirconia particles, (Zirconia-toughened-Alumina or ZTA) have been describe since early 2000s due to the dramatic failure of over 800 zirconia femoral head prostheses, associated with an accelerated process of low-temperature degradation. (29, 30) Since then, ZTA composites have been widely used in orthopedics, and are the current standard for orthopedic prostheses. (31)

ZTA composites are comprised by an Al₂O₃ matrix and a secondary phase of disperse 3Y-TZP grains, combining the advantageous properties of both materials through a trade-off
between enhanced toughening by crack-shielding, favorable tribochemical properties, and LTD resistance. (32-37) While it has been suggested that the maximum 3Y-TZP fraction to limit the spread of transformation may be related to the interconnectedness of the zirconia phase, (38) studies have suggested favorable mechanical properties when 15-30% of 3Y-TZP particles were uniformly dispersed within an Al₂O₃ matrix, (39-41) as well as favorable resistance to t-m phase transformation after hydrothermal aging. (40, 42) Furthermore, it has been reported that the mechanical properties of ZTA composites tend to proportionally vary as the weight percentage of 3Y-TZP increase, as postulated by the rule of mixtures (33).

Seeking innovation, the aim of this work was to evaluate the effect of aging on the crystalline structure, surface topography and mechanical properties of an experimental zirconia-toughened alumina (ZTA) composite comprised by 70% Al₂O₃ and 30% of a second-generation 3Y-TZP, compared to its individual counterpart materials. The mechanical behavior of ZTA composites was analyzed before and after aging and compared to a first- and second-generation dental zirconia to further elucidate potential applications of polycrystalline composites for oral rehabilitation. A crucial stage of the innovation process comprises the extensive structural and mechanical characterization by systematic methods that may provide tools for exploring the properties of innovative biomaterials and potentially compare them with other experimental or commercially available products. Based on structural, topographical, and mechanical characterizations, this doctoral thesis presents the validation of a synthesis method of ZTA composites as well as a discussion on the effects of aging in zirconia-based dental materials and its potential implications in the performance of dental reconstructions.
2 ARTICLES
2 ARTICLES

2.1 ARTICLE 1

The article listed below was published on *Dental Materials* and can not be reproduced in this thesis for copyright reasons. The text is available at the publisher site:

DOI: 10.1016/j.dental.2020.05.011

Benalcazar Jalkh, E. B., K. N. Monteiro, P. F. Cesar, L. A. Genova, E. T. P. Bergamo, A. C. O. Lopes, E. Lima, P. N. Lisboa-Filho, T. M. B. Campos, L. Witek, P. G. Coelho, A. F. S. Borges and E. A. Bonfante (2020). "Aging resistant ZTA composite for dental applications: Microstructural, optical and mechanical characterization." *Dent Mater*, Sep;36(9):1190-1200.
2.2 ARTICLE 2

Nanoscale physico-mechanical properties of an aging resistant ZTA composite

The article listed below was published on the Journal of the Mechanical Behavior of Biomedical Materials and can not be reproduced in this thesis for copyright reasons. The text is available at the publisher site:

DOI: 10.1016/j.jmbbm.2021.104690

Benalcázar Jalkh E. B., Coelho P. G., Witek L., Bergamo E.T.P., Lopes A.C.O., Monteiro K. N., Cesar P. F., Genova L. A., Lisboa-Filho P. N., Abreu J.L.B., Campos T.M.B., Canteenwala A., Bonfante E. A. (2021) “Nanoscale physico-mechanical properties of an aging resistant ZTA composite” J Mech Behav Biomed Mater.
3 DISCUSSION
3 DISCUSSION

Long-term stability of the physical-mechanical properties of biomedical materials plays a crucial role in the clinical success. For this reason, it is important not only to develop materials with high strength but also with high degradation stability. In the orthopedic field, the development of stable materials to replace LTD susceptible 3Y-TZP started in the early 2000s, due to the dramatic failure of several zirconia femoral head prostheses. However, first and second generation 3Y-TZP are still broadly used in dentistry, probably because of the limited understanding of the LTD process among clinicians, and to the lower criticality of a dental device failure when compared to hip replacement failures. The manuscripts presented in this thesis propose a method for the synthesis of an aging resistant zirconia-toughened alumina (ZTA) composite in a weight ratio of 70% alumina and 30% zirconia intended for dental applications. The microstructural, topographical and mechanical characterization, as well as the effect of accelerated laboratory aging in autoclave were analyzed for all materials and discussed in light of its relevance to the field.

Overall, the synthesis of the experimental composite was successful, providing a dense microstructure and homogeneous distribution of zirconia particles within the alumina matrix, which was a consistent finding in the presented manuscripts. SEM imaging of ZTA depicted spherical and dense zirconia and alumina particles with few microstructural pores and defects distributed along the ceramic surface, commonly related to the ceramic processing. Such microstructure was similar to previous findings of our research group for ZTA composites synthesized with similar protocols but comprised by 85 and 80% of Al₂O₃, reinforced with 15 and 20% of 3Y-TZP, respectively. (26, 28) Grain measurements presented in Article 2 depict a similar grain size of zirconia particles in both, the ZTA composite and the pure formulation (~0.44 µm). Conversely, Al₂O₃ showed a smaller particle size in the composite (~0.95 µm) when compared with the pure formulation (3.96 µm). This finding may be explained due to the interaction of the matrix with the zirconia particles during the densification process, where the different sintering temperatures of both phases, along with the homogeneous distribution of the secondary phase within the matrix may have contributed to effectively control the grain growth of the alumina particles during sintering. (43)

The x-ray diffraction spectra and monoclinic phase percentage calculation in both studies confirmed the hydrothermal stability of ZTA composites formulated with 70% of Al₂O₃ and 30% 3Y-TZP. Our findings demonstrated a significant lower transformation after aging for
ZTA (∼3.45%), compared to first and second generation 3Y-TZPs (∼8.5 and ∼22.36%, respectively). The hydrothermal stability of ZTA was expected through the limited interconnectivity of tetragonal 3Y-TZP grains provided by the Al₂O₃ matrix. Furthermore, as discussed in Article 2, the high hardness and stiffness of the Al₂O₃ particles compared to the secondary phase, may also be responsible for the high hydrothermal stability of the composite. In this scenario, it has been suggested that the constraint that the matrix exerts on the Y-TZP particles may maintain them in the metastable tetragonal state, acting as a mechanical stabilizer,(43, 44) and enhancing the energy threshold for t-m transformation in the vicinity of zirconia grains. (36) Thereby, the accumulation of higher tensile stresses is necessary to trigger the transformation in ZTA composites. (44) Previous studies have reported a broad variation in the phase transformation susceptibility and its detrimental effects among 3Y-TZP systems. This variation has been related with differences in the composition, microstructure, grain size, manufacturing, processing methods, and different aging protocols (26, 29, 45-52). In Article 1, first and second generation 3Y-TZP presented a significant tetragonal to monoclinic phase transformation (8.53% and 23.66%, respectively). The monoclinic percentage difference between both materials was expected due to the reduced Aluminum oxide content in second generation 3Y-TZP, that have demonstrated higher susceptibility to LTD,(53) where phase transformation was almost threefold higher than first generation 3Y-TZPs, altering optical and mechanical properties after laboratory aging.

The optical properties presented in Article 1 were described in a previous Master’s dissertation (54) and are consistent with the findings reported by our research group for other ZTA compositions. (26, 28) The optical behavior of these composites may be explained due to the refractive index mismatch between the two polycrystalline phases that hampers light transmission, along with the presence of pores and defects associated with ceramic processing. (53, 55) First and second generation 3Y-TZP presented intermediate and higher values of translucency regarding the ZTA composite. However, aging significantly affected the optical behavior of both pure 3Y-TZP compositions, where a notable increase in translucency was observed. The improved light transmission as a consequence of the crystalline morphology rearrangement, and the possible sealing of defects as a result of the volumetric expansion associated with tetragonal-to-monoclinic phase transformation,(53, 56) may be critical in the clinical performance of esthetic restorations for both monolithic and bilayered prostheses. While it has been suggested that the optical changes in aged 3Y-TZP monolithic restorations may not be clinically perceptible during the clinical life of dental restorations (57), more recent
in and \textit{ex-vivo} studies have demonstrated aging kinetics to be remarkably faster than commonly observed in \textit{in-vitro} studies.\,(47, 58, 59) Therefore, the stability of the optical behavior of ZTA composites is desirable to assure the results of esthetic treatments in the long term.

The mechanical characterization through biaxial flexural strength test presented in Article 1 evidenced a favorable characteristic stress and Weibull modulus for ZTA composites. The high flexural strength reported in Article 1 is compatible with published literature in the orthopedic field,\,(41) and with our previous work\,(26, 28) where advantageous flexural strength for ZTA composites with reinforcements ranging from 15 to 30\% of zirconia particles has been reported. The characteristic stress reported for the formulation with 30\% of zirconia evaluated in the present work (914 MPa) was slightly higher to the results reported by Lopes et al\,(2020) for a ZTA reinforced with 20\% of zirconia particles (860 MPa).\,(28) Moreover, it has been reported that the mechanical properties of ZTA composites tends to vary proportionally to the modifications in weight percentage of 3Y-TZP, as postulated by the rule of mixtures.\,(33) Therefore, as the zirconia ratio increase in the composition, the flexural strength of the ZTA composite is expected to raise.

The probability of survival calculated for ZTA composites at 300 and 500 MPa, makes it an interesting alternative for anterior and posterior three-unit FDP frameworks according to ISO 6872:2015 biaxial flexural strength recommendation for fixed dental prostheses. Promising advantages for ZTA composites as infrastructure material include higher strength regarding pure alumina, remarkable hydrothermal stability when compared to first and second generation 3Y-TZPs, and a less challenging scenario from an esthetic perspective when compared to metallic frameworks. Nevertheless, further research towards the optimization of the processing parameters with the aim to obtain a finer microstructure are encouraged in order to improve the mechanical performance of ZTA composites under higher loads, aiming the indication as larger span fixed dental prostheses frameworks. Among recent innovations regarding aging-resistant zirconia based composites, it is noteworthy the development of ceria-stabilized zirconia containing two second phases, α-alumina and strontium hexa-aluminate proposed by Reveron et al\,(2017)\,(60). This composite primarily composed by zirconia has resulted in high strength (~ 1100 MPa), fracture toughness (>10 MPa\sqrt{m}) and remarkably high Weibull modulus\,(60). Although initial characterizations evidenced promising results for such materials, further characterizations for specific dental applications and clinical evaluations are warranted.
Although nanomechanical testing in Article 2 did not evidence significant alterations either in the hardness or elastic modulus of aged 3Y-TZP, the increase in surface roughness is alarming considering the clinical indication of second generation 3Y-TZPs as a monolithic restorative material, (18) where an increase in surface roughness may have a potential impact on antagonist wear (61, 62), biofilm adhesion (63, 64) as well as the potential effects on the long-term performance of these rehabilitations.

In a nutshell, the findings of the presented manuscripts demonstrated that aging significantly affected the crystalline structure, optical, mechanical and topographical properties of stabilized zirconia, which raise concerns about the integrity of 3Y-TZP microstructure, increasing defect population, and its effects on the esthetic, biological and mechanical performance of monolithic prostheses. The laboratory simulation of hydrothermal degradation using autoclave has been effective to promote zirconia tetragonal-to-monoclinic (t-m) phase transformation (51) and is considered a standard method according to ISO 13356:2015 requirements. (65)

The ISO protocol, comprised by autoclave aging at 134°C, 2.2 bar, for five hours has been reported in orthopedic literature to be roughly equivalent to 2–4 years in vivo aging (37 °C). (29) However, recent evidence concerning the in vivo effects of LTD on 3Y-TZP systems have suggested that aging kinetics can be almost three times faster than the conventionally accepted in vitro-in vivo extrapolations. (58) Furthermore, in a prospective clinical study with ex vivo monitoring of monolithic 3Y-TZP dental prostheses, Koenig, Bekaert et al. (2021) demonstrated that along with the effects of LTD, the tribological stresses generated in the occlusal surface of the prostheses produce surface crushing and grain pull-out, which suggest an underestimation of the aging process when characterization tests are limited to monoclinic phase quantification. (59) Based on the current evidence that in vivo aging kinetics can be remarkably faster than in vitro studies, aging resistant materials, such as ZTA composites, are highly desirable, especially when considering the range of stresses levels required for dental prostheses’ applications.

Single load-to-failure tests, as the ones presented in this work, have been frequently used in dental research to compare and characterize the mechanical properties of restorative materials. However, during function, dental prostheses are subjected to repetitive lower-intensity stresses that lead to cumulative damage and slowly compromise the integrity of the restoration. (66) Such mechanisms seem critical in yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) based restorative materials, where the metastability of the tetragonal
Discussions: phase may be affected by mechanical stress, humidity and relatively low temperature, including body temperature.\(^{(58, 67)}\) Therefore, studies including fatigue characterization and/or clinical evaluation are warranted to further assess the effects of cyclic loading and LTD in the mechanical and hydrothermal degradation of 3Y-TZP and ZTA composites.
4 Conclusions
4 CONCLUSIONS

The synthesis of experimental 70-30% ZTA composite was successful and its relevance for dental applications relies on its higher masking ability, aging resistance in all tested parameters, and strength similar to zirconia. Aging significantly increased the monoclinic content of first and second generation zirconias and affected their optical and mechanical properties as well as surface roughness. Further investigations including fatigue characterization and clinical evaluations are warranted, as well as continued innovations in the development of aging-resistant polycrystalline ceramics for large-span dental applications.
REFERENCES

1. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dental materials : official publication of the Academy of Dental Materials. 2008;24(3):299-307.
2. Garvie RCH, R. H. Pascoe, R.T. Ceramic steel. Nature. 1975;258:703-4.
3. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. The Journal of prosthetic dentistry. 1996;75(1):18-32.
4. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dental materials : official publication of the Academy of Dental Materials. 2008;24(3):289-98.
5. Lutz EH, Claussen N, Swain MV. K R - Curve Behavior of Duplex Ceramics. Journal of the American Ceramic Society. 1991;74(1):11-8.
6. Manicone PF, Rossi lommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. Journal of dentistry. 2007;35(11):819-26.
7. Pieralli S, Kohal RJ, Rabel K, von Stein-Launsitz M, Vach K, Spies BC. Clinical outcomes of partial and full-arch all-ceramic implant-supported fixed dental prostheses. A systematic review and meta-analysis. Clin Oral Implants Res. 2018;29 Suppl 18:224-36.
8. Pjetursson BE, Sailer I, Makarov NA, Zwahlen M, Thoma DS. Corrigendum to "All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs" [Dental Materials 31 (6) (2015) 624-639]. Dental materials : official publication of the Academy of Dental Materials. 2017;33(1):e48-e51.
9. Pjetursson BE, Valente NA, Strasding M, Zwahlen M, Liu S, Sailer I. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic single crowns. Clinical oral implants research. 2018;29 Suppl 16:199-214.
10. Rabel K, Spies BC, Pieralli S, Vach K, Kohal RJ. The clinical performance of all-ceramic implant-supported single crowns: A systematic review and meta-analysis. Clinical oral implants research. 2018;29 Suppl 18:196-223.
11. Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. Corrigendum to "All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs)" [Dental Materials 31 (6) (2015) 603-623]. Dental materials : official publication of the Academy of Dental Materials. 2016;32(12):e389-e90.
12. Sailer I, Strasding M, Valente NA, Zwahlen M, Liu S, Pjetursson BE. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clinical oral implants research. 2018;29 Suppl 16:184-98.
13. Chevalier J, Grandjean S, Kuntz M, Pezzotti G. On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications. Biomaterials. 2009;30(29):5279-82.
14. Chevalier J, Gremillard L, Virkar AV, Clarke DR. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. Journal of the American Ceramic Society. 2009;92(9):1901-20.
15. Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. Journal of dental research. 2018;97(2):140-7.
16. Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta biomaterialia. 2019;91:24-34.
17. Halanawala HH, Kheur MG, Apte SK, Kale BB, Sethi TS, Kheur SM. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont. 2014;6(6):456-61.
18. Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. Journal of dental research. 2017;22034517737483.
19. Fathy SM, Al-Zordk W, M EG, M VS. Flexural strength and translucency characterization of aesthetic monolithic zirconia and relevance to clinical indications: A systematic review. Dent Mater. 2021;37(4):711-30.
20. Blatz MB, Sadan A, Maltezos C, Blatz U, Mercante D, Burgess JO. In vitro durability of the resin bond to feldspathic ceramics. American journal of dentistry. 2004;17(3):169-72.
21. Blatz MB. Long-term clinical success of all-ceramic posterior restorations. Quintessence Int. 2002;33(6):415-26.
22. Hatai Y. Extreme masking: achieving predictable outcomes in challenging situations with lithium disilicate bonded restorations. Int J Esthet Dent. 2014;9(2):206-22.
23. Poggio CE, Bonfiglioli R, Dosoli R. A patient presentation: Planning and executing a difficult case in a full digital workflow. Journal of esthetic and restorative dentistry: official publication of the American Academy of Esthetic Dentistry [et al]. 2021;33(1):135-42.
24. Malament KA, Margvelashvili-Malament M, Natto ZS, Thompson V, Rekow D, Att W. 10.9-year survival of pressed acid etched monolithic e.max lithium disilicate glass-ceramic partial coverage restorations: Performance and outcomes as a function of tooth position, age, sex, and the type of partial coverage restoration (inlay or onlay). The Journal of prosthetic dentistry. 2020.
25. Arena A, Prete F, Rambaldi E, Bignozi MC, Monaco C, Di Fiore A, et al. Nanostructured Zirconia-Based Ceramics and Composites in Dentistry: A State-of-the-Art Review. Nanomaterials (Basel). 2019;9(10).
26. Benalcazar Jalkh EB, Bergamo ETP, Monteiro KN, Cesar PF, Genova LA, Lopes ACO, et al. Aging resistance of an experimental zirconia-toughened alumina composite for large span dental prostheses: Optical and mechanical characterization. Journal of the mechanical behavior of biomedical materials. 2020;104:103659.
27. Bergamo ETP, Cardoso KB, Lino LFO, Campos TMB, Monteiro KN, Cesar PF, et al. Alumina-toughened zirconia for dental applications: Physicochemical, mechanical, optical, and residual stress characterization after artificial aging. Journal of biomedical materials research Part B, Applied biomaterials. 2021;109(8):1135-44.
28. Lopes ACO, Coelho PG, Witek L, Benalcazar Jalkh EB, Genova LA, Monteiro KN, et al. Microstructural, mechanical, and optical characterization of an experimental aging-resistant zirconia-toughened alumina (ZTA) composite. Dental materials : official publication of the Academy of Dental Materials. 2020;36(12):e365-e74.
29. Chevalier J, Cales B, Drouin JM. Low - Temperature Aging of Y - TZP Ceramics. Journal of the American Ceramic Society. 1999;82(8):2150-4.
30. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res. 2007;37:1-32.
31. Chevalier J, Gremillard L. Zirconia as a biomaterial. Compr Biomater II, Elsevier. 2017:122-44.
32. Schneider JB, S. Kriegel, R. Kaps, C. Glien, W. Oberbachy, T. Low-Temperature Aging Behavior of Alumina-Toughened Zirconia. J Am Ceram Soc. 2008;11:3613-8.
33. Sequera S, Fernandes MH, Neves N, Almeida MM. Development and characterization of zirconia-alumina composites for orthopedic implants. Ceramics International. 2016;43(1):693-703.
34. Zhao YJ, L. Liao, Y. Wang, C. Lu, J. Zhang, J. Li, W. Low Temperature Degradation of Alumina toughened Zirconia in Artifcial Saliva. Journal of Wuhan University of Technology-Mater Sci Ed. 2013;28(4):844-8.
35. Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. Journal of the European Ceramic Society. 2009;29(7):1245-55.
36. Zhao Y, Jiang L, Liao Y, Wang C, Lu J, Zhang J, et al. Low temperature degradation of alumina-toughened zirconia in artificial saliva. Journal of Wuhan University of Technology-Mater Sci Ed. 2013;28(4):844-8.
37. Wang J, Stevens R. Zirconia-toughened alumina (ZTA) ceramics. Journal of Materials science. 1989;24(10):3421-40.
38. Kurtz SM, Kocagoz S, Arnhold C, Huet R, Ueno M, Walter WL. Advances in zirconia toughened alumina biomaterials for total joint replacement. Journal of the mechanical behavior of biomedical materials. 2014;31:107-16.
39. Casellas D, Rafols I, Llanes L, Anglada M. Fracture toughness of zirconia–alumina composites. International Journal of Refractory Metals and Hard Materials. 1999;17(1):11-20.
40. Pezzotti G, Saito T, Padeletti G, Cossari P, Yamamoto K. Nano-scale topography of bearing surface in advanced alumina/zirconia hip joint before and after severe exposure in water vapor environment. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2010;28(6):762-6.
41. Tang D, Lim H-B, Lee K-J, Lee C-H, Cho W-S. Evaluation of mechanical reliability of zirconia-toughened alumina composites for dental implants. Ceramics International. 2012;38(3):2429-36.
42. Lopes ACO, Coelho PG, Witek L, Jalkh EBB, Gênova LA, Monteiro KN, et al. Nanomechanical and microstructural characterization of a zirconia-toughened alumina composite after aging. Ceramics International. 2019.
43. Gutknecht D, Chevalier J, Garnier V, Fantozzi G. Key role of processing to avoid low temperature ageing in alumina/zirconia composites for orthopaedic application. Journal of the European Ceramic Society. 2007;27(2-3):1547-52.
44. Fabbri P, Picconi C, Burresi E, Magnani G, Mazzanti F, Mingazzini C. Lifetime estimation of a zirconia-alumina composite for biomedical applications. Dental materials : official publication of the Academy of Dental Materials. 2014;30(2):138-42.

45. Benalcazar Jalh EB, Monteiro KN, Cesar PF, Genova LA, Bergamo ETP, Lopes ACO, et al. Aging resistant ZTA composite for dental applications: Microstructural, optical and mechanical characterization. Dental materials : official publication of the Academy of Dental Materials. 2020.

46. Borchers L, Stiesch M, Bach FW, Buhl JC, Hubsch C, Kellner T, et al. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta biomaterialia. 2010;6(12):4547-52.

47. Miragaya LM, Guimarães RB, Souza ROA, Botelho Gds, Guimarães JGA, Silva EMDS. Effect of intra-oral aging on t→m phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics. Journal of the mechanical behavior of biomedical materials. 2017;72:14-21.

48. Schubert H, Frey F. Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations. Journal of the European Ceramic Society. 2005;25(9):1597-602.

49. Camposilvan E, Leone R, Gremillard L, Sorrentino R, Zarone F, Ferrari M, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dental materials : official publication of the Academy of Dental Materials. 2018;34(6):879-90.

50. Pereira GK, Muller C, Wandscher VF, Rippe MP, Kleverlaan CJ, Valandro LF. Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics. Journal of the mechanical behavior of biomedical materials. 2016;60:324-30.

51. Pereira GK, Venturini AB, Silvestri T, Dapieve KS, Montagner AF, Soares FZ, et al. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. Journal of the mechanical behavior of biomedical materials. 2015;55:151-63.

52. Prado P, Monteiro JB, Campos TMB, Thim GP, de Melo RM. Degradation kinetics of high-translucency dental zirconias: Mechanical properties and in-depth analysis of phase transformation. Journal of the mechanical behavior of biomedical materials. 2019;102:103482.

53. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dental Materials. 2014;30(10):1195-203.

54. Benalcazar Jalh EB. Desenvolvimento e processamento de compósitos de Al2O3-ZaO2 parapróteses CAD/CAM: caracterização óptica e microestrutural: Universidade de São Paulo; 2017.

55. Walczak K, Meissner H, Range U, Sakkas A, Boening K, Wieckiewicz M, et al. Translucency of Zirconia Ceramics before and after Artificial Aging. Journal of prosthodontics : official journal of the American College of Prosthodontists. 2019;28(1):e319-e24.

56. Pekkan G, Pekkan K, Bayindir BC, Ozcan M, Karasu B. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective. Dent Mater J. 2019.

57. Papageorgiou-Kyranza K, Fasoula M, Kontonasaki E. Translucency of Monolithic Zirconia after Hydrothermal Aging: A Review of In Vitro Studies. Journal of prosthodontics : official journal of the American College of Prosthodontists. 2020;29(6):489-500.

58. Kocjan A, Cotic J, Kosmac T, Jevnikar P. In vivo aging of zirconia dental ceramics - Part I: Biomedical grade 3Y-TZP. Dental materials : official publication of the Academy of Dental Materials. 2020.

59. Koenig V, Bekaert S, Dupont N, Vanheusden A, Le Goff S, Douillard T, et al. Intraoral low-temperature degradation of monolithic zirconia dental prostheses: Results of a prospective clinical study with ex vivo monitoring. Dental materials : official publication of the Academy of Dental Materials. 2021.

60. Reveron H, Fornabaio M, Palmero P, Furderer T, Adolfsson E, Lughv I, et al. Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability. Acta biomaterialia. 2017;48:423-32.

61. Passos SP, Torrealba Y, Major P, Linke B, Flores-Mir C, Nychka JA. In vitro wear behavior of zirconia opposing enamel: a systematic review. J Prosthodont. 2014;23(8):593-601.

62. Yang SW, Kim JE, Shin Y, Shim JS, Kim JH. Enamel wear and aging of translucent zirconias: In vitro and clinical studies. The Journal of prosthetic dentistry. 2019;121(3):417-25.

63. Ammar Y, Swales D, Bridgens B, Chen J. Influence of surface roughness on the initial formation of biofilm. Surface and Coatings Technology. 2015;284:410-6.

64. Lee DH, Mai HN, Thant PP, Hong SH, Kim J, Jeong SM, et al. Effects of different surface finishing protocols for zirconia on surface roughness and bacterial biofilm formation. J Adv Prosthodont. 2019;11(1):41-7.
65. International-Standard-Organization. ISO 13356:2015 Implants for surgery — Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). 2015.
66. Bonfante EA, Coelho PG. A Critical Perspective on Mechanical Testing of Implants and Prostheses. Adv Dent Res. 2016;28(1):18-27.
67. Cotic J, Kocjan A, Panchevska S, Kosmac T, Jevnikar P. In vivo ageing of zirconia dental ceramics - Part II: Highly-translucent and rapid-sintered 3Y-TZP. Dental materials : official publication of the Academy of Dental Materials. 2021;37(3):454-63.
DECLARATION OF EXCLUSIVE USE OF THE ARTICLE IN THESIS

As co-authors, we hereby declare that we are aware that the article "Aging resistant ZTA composite for dental applications: Microstructural, optical and mechanical characterization" published in Dental Materials, will be included in the thesis of the PhD candidate Ernesto Byron Benalcázar Jalkh. We also declare that this manuscript was not used and may not be used in other graduation or postgraduation works for any Program in or out the Bauru School of Dentistry, University of São Paulo.

Bauru, July 8th, 2021

Ernesto B. Benalcázar Jalkh
Kelli N. Monteiro
Paulo F. Cesar
Luis A. Genova
Edmara T.P. Bergamo
Adolfo C. O. Lopes
Erick Lima

Paulo Noronha Lisboa-Filho
Tiago M.B. Campos
Lukasz Witek
Paulo G. Coelho
Ana Flavia Sanches Borges
Estevam A. Bonfante
DECLARATION OF EXCLUSIVE USE OF THE ARTICLE IN THESIS

As co-authors, we hereby declare that we are aware that the article ""Nanoscale physico-mechanical properties of an aging resistant ZTA composite” published in the Journal of the Mechanical Behavior of Biomedical Materials, will be included in the thesis of the PhD candidate Ernesto Byron Benalcázar Jalkh. We also declare that this manuscript was not used and may not be used in other graduation or postgraduation works for any other Program in or out the Bauru School of Dentistry, University of São Paulo.

Bauru, July 8th, 2021

Ernesto B. Benalcázar Jalkh
Paulo G. Coelho
Lukasz Witek
Edmara T.P. Bergamo
Adolfo C. O. Lopes
Kelli N. Monteiro
Paulo F. Cesar

Luis A. Genova
Paulo Noronha Lisboa-Filho
João L. B. Abreu
Tiago M.B. Campos
Abbas Canteenwala
Estevam A. Bonfante