On effective solutions of the nonlinear Schrödinger equation

N Khatiashvili, R Shanidze and D Janjgava

I. Vekua Institute of Applied Mathematics, Iv. Javakhishvili Tbilisi State University, 2, University St. 0186 Tbilisi, Georgia
E-mail: ninakhatia@gmail.com

Abstract. Cubic nonlinear Schrödinger type equation with specific initial-boundary conditions in the infinite domain is considered. The equation is reduced to an equivalent system of partial differential equations and studied in the case of solitary waves. The system is modified by introducing new functions, one of which belongs to the class of functions of negligible fifth order and vanishing at infinity exponentially. For this class of functions the system is reduced to a nonlinear elliptic equation which can be solved analytically, thereby allowing us to present nontrivial approximated solutions of nonlinear Schrödinger equation. These solutions describe a new class of symmetric solitary waves. Graphics of modulus of the corresponding wave function are constructed by using Maple.

1. Introduction
Nonlinear Schrödinger equation describes a lot of physical processes, such as electron plasmatic waves, electromagnetic ion cyclotron waves, waves in cosmic gases, non-linear optics phenomena etc. [1-2, 17-22]. As a result, this equation has been considered by numerous authors and from different points of view (see for example [3-17, 20-22]).

In this paper the nonlinear Schrödinger equation equation is considered in the infinite domain and with specific initial-boundary conditions. We study the case of solitary waves vanishing at infinity and with the modulus of the wave function of the class $0(Re^{-D})$, $D \geq 3$, where D and R are some definite constants. By introducing new variables the equation is modified for this class of waves and non-trivial solutions are derived analytically. Consequently, a new class of localized approximated solutions is obtained.

2. Statement of the problem
In the coordinate system $0xyz$ we consider the following problem.

Problem 1. In the domain $Q_T = R^3 \times \{0 < t < T\}$, find continuous function Ψ satisfying the Schrödinger equation

$$i \frac{\partial \Psi}{\partial t} + \Delta \Psi + \lambda |\Psi|^2 \Psi = 0,$$

and the conditions

$$\lim_{|x|+|y|+|z| \to \infty} \Psi = 0, \quad |\Psi|_{t=0} = r(x, y, z),$$
where Ψ is a wave function, $\Psi = U + iV$, (U, V are real continuous functions having second order derivatives), λ is some parameter, and $r(x, y, z) \geq 0$ is a function also to be defined.

We will find the solutions of Equation (1) for which $|\Psi|$ is independent of t, vanishing at infinity exponentially, and $|\Psi|^5$ is negligible. This class describes some class of solitary waves. To achieve our goal, we will examine the auxiliary problem first. To this, let us consider the infinite domain

$$G_0 = \{x > 0, y > 0, z > 0\}$$

and the following problem.

Problem 2. In the domain $Q_0^T = G_0 \times \{0 < t < T\}$, find continuous function Ψ with the modulus of the class $0(Re^{-D})$, $D \geq 3$, satisfying the equation (1) and the condition (2).

It is obvious that equation (1) is equivalent to the following system of partial differential equations

$$\frac{\partial U}{\partial t} = -\Delta V - \lambda V (U^2 + V^2), \quad \frac{\partial V}{\partial t} = \Delta U + \lambda U (U^2 + V^2). \quad (3)$$

Consequently, Problem 2 can be reduced to the following problem.

Problem 3. In the domain $Q_0^T = G_0 \times \{0 < t < T\}$, find continuous functions U and V of the class $0(Re^{-D})$, $D \geq 3$, having second order derivatives, satisfying the system (3) and the condition

$$|U|^2 + |V|^2 = r^2(x, y, z).$$

3. **Modification of the Schrodinger equation and its solution**

Let us introduce the notation

$$U = r \cos \varphi; \quad V = r \sin \varphi, \quad (4)$$

where $r, r \geq 0$, and φ are unknown functions of the variables x, y, z, t. Taking into account (4), the system (3) becomes [7]

$$\frac{\partial r}{\partial t} \cos \varphi - r \sin \varphi \frac{\partial \varphi}{\partial t} = -\sin \varphi \Delta r - 2 \cos \varphi \left(\frac{\partial r}{\partial x} \frac{\partial \varphi}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial \varphi}{\partial y} + \frac{\partial r}{\partial z} \frac{\partial \varphi}{\partial z} \right) +$$

$$-r \left\{ - \sin \varphi \left(\left(\frac{\partial \varphi}{\partial x} \right)^2 + \left(\frac{\partial \varphi}{\partial y} \right)^2 + \left(\frac{\partial \varphi}{\partial z} \right)^2 \right) + \cos \varphi \Delta \varphi \right\} - \lambda r^3 \sin \varphi, \quad (5)$$

$$\frac{\partial r}{\partial t} \sin \varphi + r \cos \varphi \frac{\partial \varphi}{\partial t} = \cos \varphi \Delta r - 2 \sin \varphi \left(\frac{\partial r}{\partial x} \frac{\partial \varphi}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial \varphi}{\partial y} + \frac{\partial r}{\partial z} \frac{\partial \varphi}{\partial z} \right) +$$

$$-r \left\{ \cos \varphi \left(\left(\frac{\partial \varphi}{\partial x} \right)^2 + \left(\frac{\partial \varphi}{\partial y} \right)^2 + \left(\frac{\partial \varphi}{\partial z} \right)^2 \right) + \sin \varphi \Delta \varphi \right\} + \lambda r^3 \cos \varphi. \quad (6)$$

After simple transformations, Eqs. (5)-(6) yield [7]

$$\Delta r + \lambda r^3 = r \frac{\partial \varphi}{\partial t} + r \left\{ \left(\frac{\partial \varphi}{\partial x} \right)^2 + \left(\frac{\partial \varphi}{\partial y} \right)^2 + \left(\frac{\partial \varphi}{\partial z} \right)^2 \right\}, \quad (7)$$

$$\Delta \varphi = -\frac{\partial}{\partial t} \ln r - 2 \left\{ \frac{\partial}{\partial x} (\ln r) \frac{\partial \varphi}{\partial x} + \frac{\partial}{\partial y} (\ln r) \frac{\partial \varphi}{\partial y} + \frac{\partial}{\partial z} (\ln r) \frac{\partial \varphi}{\partial z} \right\} \quad (8)$$
Here we consider the case $\varphi = A_0 t + A_1$, where $A_0; A_1; A_0 > 0$; are some constants. From Eqs. (7)-(8) we get

$$\Delta r + \lambda r^3 - A_0 r = 0. \quad (9)$$

We seek the symmetric solutions of (9) in the form

$$r = R \sin \psi, \quad (10)$$

where R is a constant and $\psi(x, y, z)$ is a sufficiently small unknown function such that ψ^5 is negligible (in one dimensional case the exact solution of (9) can be obviously given in terms of elliptic functions [9, 21-22]). By virtue of (10), Equation (9) then turns into a non-linear partial differential equation for $\psi(x, y, z)$, i.e.

$$\cos \psi \Delta \psi - \sin \psi \left\{ \left(\frac{\partial \psi}{\partial x} \right)^2 + \left(\frac{\partial \psi}{\partial y} \right)^2 + \left(\frac{\partial \psi}{\partial z} \right)^2 \right\} + \lambda R^2 \sin^3 \psi - A_0 \sin \psi = 0. \quad (11)$$

Taking into the account that ψ^5 is sufficiently small, and putting into (11) the approximated formulas $\sin \psi \approx \psi - \frac{\psi^3}{6}$, and $\cos \psi \approx 1 - \frac{\psi^2}{2} + \frac{\psi^4}{24}$, it then results

$$\left(1 - \frac{\psi^2}{2} + \frac{\psi^4}{24} \right) \Delta \psi - \left(\psi - \frac{\psi^3}{6} \right) \left\{ \left(\frac{\partial \psi}{\partial x} \right)^2 + \left(\frac{\partial \psi}{\partial y} \right)^2 + \left(\frac{\partial \psi}{\partial z} \right)^2 \right\} +$$

$$+ \lambda R^2 \left(\psi - \frac{\psi^3}{6} \right)^3 - A_0 \left(\psi - \frac{\psi^3}{6} \right) = 0. \quad (12)$$

For the equation (12), we will solve the following problem.

Problem 3. In the domain \mathcal{G}_0 to find symmetric continuous function ψ of the class $0(e^{-D})$, $D \geq 3$, having second order derivatives and satisfying the equation (12).

Let us consider the function

$$\psi = e^{-\alpha x - \beta y - \gamma z - D}, \quad (13)$$

where $D, \alpha, \beta, \gamma > 0$ are some constants satisfying the following conditions

$$\alpha^2 + \beta^2 + \gamma^2 = A_0, \quad \lambda R^2 = \frac{4}{3} A_0, \quad (14)$$

and D is the constant chosen for the desired accuracy, in such a way that e^{-5D} is negligible (for example for $D = 3$, $e^{-15} \approx 10^{-7}$). It is clear from (13) that ψ belongs to the class $0(e^{-D}), D \geq 3$, and $|\psi| \leq e^{-D}$. Insertion of (13) into the left hand side of (12) yields

$$\left(1 - \frac{\psi^2}{2} + \frac{\psi^4}{24} \right) \Delta \psi - \left(\psi - \frac{\psi^3}{6} \right) \left\{ \left(\frac{\partial \psi}{\partial x} \right)^2 + \left(\frac{\partial \psi}{\partial y} \right)^2 + \left(\frac{\partial \psi}{\partial z} \right)^2 \right\} +$$

$$+ \lambda R^2 \left(\psi - \frac{\psi^3}{6} \right)^3 - A_0 \left(\psi - \frac{\psi^3}{6} \right) = A_0 \left(-\frac{\psi^5}{72} + \frac{\psi^7}{27} - \frac{\psi^9}{162} \right).$$

Since ψ^5 is negligible we can ignore the rhs term in this equation and the function ψ given by the formula (13) will solve equation (12). Hence we conclude that, if D is chosen accordingly, the function (13) is an effective solution of the equation (12) with the accuracy

$$\left| \left(1 - \frac{\psi^2}{2} + \frac{\psi^4}{24} \right) \Delta \psi - \left(\psi - \frac{\psi^3}{6} \right) \left\{ \left(\frac{\partial \psi}{\partial x} \right)^2 + \left(\frac{\partial \psi}{\partial y} \right)^2 + \left(\frac{\partial \psi}{\partial z} \right)^2 \right\} +$$

$$+ \lambda R^2 \left(\psi - \frac{\psi^3}{6} \right)^3 - A_0 \left(\psi - \frac{\psi^3}{6} \right) \right| \leq A_0 \frac{\psi^5}{72}.$$
Consequently, the solution of the Problem 2 will be given by
\[
\Psi = R e^{iA_0 t + iA_1} e^{-\alpha x - \beta y - \gamma z - D},
\]
where R is some constant, e^{-5D} is sufficiently small and the constants $\lambda, \alpha, \beta, \gamma > 0$ satisfy the conditions (14).

Having solved the Problem 2 it is now easy to find the solutions for the Problem 1. By direct verification, we recognize indeed that the symmetric solutions of the Problem 1 will be identified by means of the formula
\[
\Psi = R e^{iA_0 t + iA_1} e^{-\alpha |x| - \beta |y| - \gamma |z| - D},
\]
where the constants $A_0, \lambda, \alpha, \beta, \gamma > 0$ satisfy the conditions (14). Note that the first order derivatives of the function (15) have discontinuities at the planes $x = 0, y = 0,$ and $z = 0,$ but their squares and the second order derivatives are continuous at this planes and the equation (12) holds.
4. Conclusions
There exist solitary waves for which the wave function Ψ is of the form (15) and its modulus satisfies the inequality

$$|\Psi| \leq R e^{-D},$$

where R is the amplitude and D is the constant for which e^{-5D} is negligible. For given R and A_0, the constant λ is uniquely defined. The constants R, A_0 and any two of $\alpha, \beta, \gamma > 0$ can be chosen arbitrary. Representative graphics of $r = |\Psi|$ plotted using Maple are given in Figures 1-2.

Acknowledgments The designated project has been fulfilled by financial support of the Georgia Rustaveli Scientific Foundation (Grant #GNSF/ST08/3-395).

References
[1] Alexandrov A, Bogdankevich L and Rukhadze A 1984 Principles of Plasma Electrodynamics (Germany, Heidelberg: Springer)
[2] Anderson B J and Hamilton D C 1993 Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions J. Geophys. Res. 98 369-382
[3] Bourgain J and Wang W 1998 Construction of blow up solutions for the nonlinear Schrödinger equation with critical nonlinearity Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 197-215
[4] Cazenave T and Wiessler F 1987 Some Remarks on the Nonlinear Schrödinger Equation in the Critical Case. In: Nonlinear semigroups, partial differential equations and attractors Lecture Notes in Math. 1394 (Berlin, Springer) 18-29
[5] Crosta M, Fratalocchi A and Trillo S 2011 Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrodinger equation Phys. Rev. 84 763-809
[6] Ginibre J and Velo G 1979 On a class of nonlinear Schrödinger equations. The Cauchy problem, general case J. Funct. Anal. 32 826
[7] Gurevich A V and Shwartsburg A B 1973 Nonlinear Theory of Radiowave Propagation in the Ionosphere (Moscow: Science)
[8] Gurevich A V and Krylov A L 1987 Dissipationless shock waves in media with positive dispersion J. Sov. Phys. 65 944
[9] Khatiashvili N, Shanidze R and Komurjishvili O 2012 International J. of Physics and Math. Sciences, CBTECH 2 206-213
[10] Kwong M K 1998 Uniqueness of positive solutions of $\Delta u - u + u^p = 0$ in \mathbb{R}^n Arch. Rati. Mech. Anal. 105 243-266
[11] Laptev A, Naboko S and Sfaronov O 2005 Absolutely continuous spectrum of Schrödinger operators with slowly decaying and oscillating potentials Commun. Math. Phys. 253 611-631
[12] Lions J L 1969 Quelques methodes de resolution des problemes aux resolution des problemas aux limites non lineares (Paris)
[13] Merle F and Raphael P 2005 Profiles and quantization of the blow up mass for critical Nonlinear Schrödinger equation Commun. Math. Phys. 253 675-704
[14] Perelman G 2001 On the blow up phenomenon for the critical nonlinear Schrödinger equation Ann. Henri. Poincare 2 605-673
[15] Safronov O 2004 On the absolutely continuous spectrum of multi-dimensional Schrödinger operators with slowly decaying potentials Commun. Math. Phys. 107
[16] Simon B 2000 Schrödinger operators in the twenties century J. Math. Phys. 41 3523-35551998
[17] Sulem C and Sulem P 1999 The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied mathematical sciences 139 (New York: Springer-Verlag)
[18] Summers D R, Thorne M and Xiao F 1998 Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere J. Geophys. Res. 103 487-500
[19] Tsintsadze N L, Kaladze T D, Van Dam J, Horton W, Fu X R and Garner T W 2010 Nonlinear dynamics of the electromagnetic ion cyclotron structures in the inner magnetosphere J. Geophys. Res. 115 1-72
[20] Weinstein M 1989 The nonlinear Schrödinger equation singularity formation Contemp.Math. Providence, RI: Amer. Math. Soc. 99 213-232
[21] Whitham G B 1974 Linear and Nonlinear Waves (JOHN Wiley-SONS)
[22] Zakharov V and Shabat A 1972 Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media Sov. Phys. 34 62-69