The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells

Hye-Jin Boo1, Hye-Young Min1,2, Hyun-Ji Jang1, Hye Jeong Yun1, John Kendall Smith3, Quanri Jin3, Hyo-Jong Lee3, Diane Liu4, Hee-Seok Kweon5, Carmen Behrens3, J. Jack Lee4, Ignacio I. Wistuba3,6, Euni Lee7, Waun Ki Hong3 & Ho-Young Lee1,2,7

Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, \(\alpha1 \) subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis.
lung cancer is the leading cause of cancer-related death worldwide. Much effort has been directed towards developing effective lung cancer therapies, but without great success; thus, the need to develop novel strategies to block lung carcinogenesis is urgent. Lung cancer develops in a multistep process; it usually occurs because of years of tobacco smoking that induces genetic and epigenetic alterations in specific proto-oncogenes and tumour suppressor genes. Previous studies have demonstrated that exposure to the tobacco-specific carcinogen 4-(methylnitrosamo)-1-(3-pyridyl)-1-butane (NNK) promotes lung carcinogenesis not only through genocentric mechanisms but also through the activation of various signalling pathways that protect cells carrying damaged DNA from apoptosis. We have demonstrated overexpression of insulin-like growth factors (IGFs) and deregulated activation of insulin-like growth factor 1 receptor (IGF-1R), a key mechanism for cell survival and transformation, at an early-stage of human lung carcinogenesis. IGFs stimulated transformation of lung epithelial cells and development of lung cancer. These findings have highlighted the role of the IGF expression and the resulting IGF-1R activation in lung cancer development; however, the mechanisms that mediate the cooperation between tissue-derived IGFs and NNK and consequently promote lung cancer development remain largely unidentified. Elucidating the biological question as to how IGFs act jointly with NNK in lung epithelial cells may provide a valuable insight that could present novel strategies for lung cancer prevention.

Previous studies have shown that NNK is a high-affinity agonist for nicotinic acetylcholine receptors (nAChRs) that are grouped into either heteromeric (comprising both \(\alpha\) and \(\beta\) subunits) or homomeric (comprising only \(\alpha\) subunits) receptors. The nAChRs are widely expressed in the brain, although some studies have shown that they can be expressed in other tissues. Indeed, expression of nAChRs, especially \(\alpha 3\) and \(\alpha 7\) nAChR, has been observed in human bronchial epithelial cells. The activation of nAChRs is known to affect numerous intracellular pathways involved in cell proliferation and survival. nAChR and activation of voltage-dependent Ca\(^{2+}\) channels (VDCCs) leads to exocytosis of IGF2 and activation of IGF-1R, which is known to affect numerous intracellular pathways involved in cell proliferation and survival.

NNK activates the IGF-1R pathway in lung epithelial cells. To investigate the impact of IGF-1R activation in tobacco smoking-induced lung carcinogenesis, we tested the effects of NNK, a nicotine-derived, tobacco-specific nitrosamine with high carcinogenic potential, on human lung epithelial cells. NNK induced a time-dependent IGF-1R phosphorylation in primary cultured normal human lung epithelial cells derived from large airways (NHBE), the precursor cells for squamous cell carcinomas, or small airway epithelial cells, the precursor cells for adenocarcinomas, and in various immortalized, normal human bronchial epithelial cell (HBE) cell lines, including HB56B and BEAS-2B. The NNK treatment induced propagation of NNK-induced IGF-1R phosphorylation in NHBE cells and the NNK-induced IGF-1R phosphorylation was also confirmed in the A/J and FVB mouse embryonic fibroblast (Akt), the mammalian target of rapamycin, and ribosomal protein S6. Chronic exposure to NNK-induced sustained IGF-1R activation along with transformed phenotypes in BEAS-2B cells as shown by increased IGF-1R and Akt phosphorylation and colony formation. Compared with these normal lung epithelial cells, premalignant HBE cell line (HBEL) carrying loss of p53 showed a prominently rapid IGF-1R and Akt phosphorylation as early as 15 min after 10 \(\mu\)M NNK exposure (Supplementary Fig. 1). We also confirmed NNK-induced activation of the downstream signalling cascades of the IGF-1R pathway in HBE cell lines (Fig. 2c,d). We then determined dose-dependent response of HBE cells to NNK. Activation of IGF-1R was evident in HBE cells with NNK doses as low as 10\(^{-3}\) \(\mu\)M, but maximal phosphorylation was observed at 10\(^{-2}\) \(\mu\)M (Fig. 2e, Supplementary Fig. 2). These concentrations are physiologically relevant, as average steady-state serum concentration of NNK in active smokers has been reported to be 2 \(\times\) 10\(^{-4}\) \(\mu\)M and acute increases to 10 to 100 \(\mu\)M in serum or to 1 \(\mu\)M at the mucosal surface immediately after smoking have been reported.

Immunofluorescence staining (Fig. 2f) revealed that pIGF-1R staining was mainly observed at the membrane at early time points (up to 4 h treatment) and then at the perinuclear region or in the nucleus at later time points (8–20 h). We additionally confirmed the NNK-induced IGF-1R activation by utilizing R\(^-\) (IGF-1R-null mouse embryonic fibroblast) and R\(^+\) (R\(^-\) transfected with IGF-1R) cells. Western blot (Supplementary Fig. 3) and immunoprecipitation (Supplementary Fig. 4) analyses revealed that NNK increases IGF-1R phosphorylation in R\(^+\) cells, but not in R\(^-\) cells, in a time- and dose-dependent manner. NNK-induced IGF-1R phosphorylation was also confirmed in vivo in the lung tissues of A/J and FVB mice (Fig. 2g, Supplementary Fig. 5).

NNK induces IGF2-dependent IGF-1R phosphorylation. We investigated the mechanisms underlying NNK-induced IGF-1R phosphorylation. Because the NNK treatment induced no change
in IGF-1R levels (Fig. 2), we assessed the main NNK-derived secretion of growth factors responsible for the IGF-1R phosphorylation. We performed a proteomic-based screening of conditioned media (CM) from BEAS-2B cells exposed to NNK versus control by using a human growth factor antibody array. The protein profile revealed multiple soluble factors (Fig. 3a). Among them, IGF2 production showed the most prominent increase in CM from NNK-treated cells compared with the CM from vehicle-treated control cells. We then monitored the kinetics of IGF production in NNK-exposed BEAS-2B cells. Western blot analysis revealed that the NNK-induced extracellular increase in IGF2 amount was evident within 30 min (Fig. 3b). In contrast, intracellular IGF2 levels decreased slightly during the NNK exposure. IGF1 production measured as a control under the same experimental conditions remained unchanged. When treated with NNK, BEAS-2B cells, in which IGF2 overexpression was achieved by transient transfection of green fluorescent protein (GFP)-conjugated IGF2 (designated BEAS-2B/GFP-IGF2), also showed GFP-IGF2 production along with decreases in cytosolic GFP-IGF2 levels (Supplementary Fig. 6a).
Figure 2 | Activation of the IGF-1R signalling cascade by the tobacco carcinogen NNK in lung epithelial cells. (a) Normal human epithelial (top) and small airway epithelial (bottom) cells were exposed to NNK for the indicated times. Cell lysates from these cells were subjected to western blot (WB) analysis. (b,d) Time-dependent activation of IGF-1R signalling cascades in HB56B, BEAS-2B (b) and HBEL/p53i (d) cells by treatment with NNK, determined by WB analysis. (c) Top: BEAS-2B cells were exposed to NNK for 75 and 90 d. Activation of the IGF-1R signalling cascades were determined by WB analysis. Bottom: Anchorage-independent colony formation of BEAS-2B cells treated with NNK for 75 and 90 days (n = 3, mean ± s.d.). The statistical significance of differences was determined with the Student’s t-test. **P < 0.01; ***P < 0.001, compared with the NNK-untreated group. (e) HBEL/p53i cells were exposed to NNK (0.001, 0.01, 0.1, 1 and 10 μM) for 4 h. NNK-activated IGF-1R signalling cascades were determined by WB analysis. (f) Representative fluorescence images of pIGF-1R (green), and DAPI (blue) in HBEL/p53i cells treated with NNK for the indicated times. IGF1 was used as the positive control. Yellow arrow indicates the membraneous localization and pink arrow indicates the nuclear localization. Scale bar, 10 μm. (g) WB analysis for IGF-1R phosphorylation in the lung from vehicle- or NNK-treated A/J mice.
Consistent with the NNK induced IGF-1R phosphorylation (Fig. 2e), 10 nM and 10 μM NNK induced similar levels of IGF2 production (Supplementary Fig. 6b). Confocal microscopy further confirmed the NNK-induced redistribution of IGF2 from vesicle-like cytoplasmic compartment to perimembranous regions (Fig. 3c).
We noted that HBEL/p53i cells, which showed rapid IGF-1R phosphorylation in response to NNK treatment (Supplementary Fig. 1), revealed greater basal mRNA expression levels of IGF2, but not IGF1, IGF1R and INSR, compared with the non-immortalized and immortalized normal lung epithelial cells (Fig. 3d). In accordance with greater IGF2 transcription, NNK exposure induced greater levels of IGF-1R phosphorylation in HBEL/p53i cells than in HBEL cells. The NNK-induced IGF-1R phosphorylation in HBEL/p53i and BEAS-2B cells was attenuated by transfection with IGF2 siRNA or by treatment with a neutralizing antibody against IGF2 (zIGF2) (Fig. 3e; Supplementary Fig. 7). When added to untreated HBEL cells, the conditioned media (CM) from NNK-treated HBEL/p53i cells induced a prominent IGF-1R phosphorylation compared with those from NNK-treated HBEL cells (Fig. 3f, left). Moreover, the CM from the NNK-stimulated HBEL/p53i cells induced a markedly decreased IGF-1R phosphorylation in untreated HBEL cells in the presence of zIGF2 (Fig. 3f, right). When analysed with enzyme-linked immunosorbent assay, HBEL/p53i cells revealed significantly higher levels of IGF2 secretion compared with HBEL cells when treated with NNK (Fig. 3g). In contrast, neither HBEL/p53i nor HBEL cells showed a significant change in IGF1 production after NNK exposure. We finally confirmed that the NNK-induced viability (Fig. 3b) and anchorage-dependent colony-forming ability of BEAS-2B cells were suppressed by transfection with siRNA against IGF2 (Fig. 3i). In contrast, depleting EGF or FGF by siRNA transfection had no detectable effects on the NNK-induced IGF-1R phosphorylation in untreated HBEL cells (Supplementary Fig. 8a) and cell viability (Supplementary Fig. 8b) in BEAS-2B cells. These findings indicated that NNK-induced IGF-1R phosphorylation and transformation of lung epithelial cells were dependent on the secretion of IGF, particularly IGF2.

Ca2+ is a key regulator of NNK-induced IGF2 secretion. We investigated the mechanisms underlying NNK-induced IGF2 secretion. The transmission electron microscopy revealed distinct round-shaped granules without fusion with the plasma membrane in HBEL/p53i cells (Supplementary Fig. 9). Upon NNK exposure, HBEL/p53i cells showed several granules attached to the plasma membrane and secretory pods unsealed up into the extracellular space. To assess whether the released vesicles contain IGF2, we performed immuno-electron microscopy (immuno-EM). As shown in Fig. 4a, IGF2 secretion was clearly observed in NNK-treated HBEL/p53i cells. Quantification of IGF2 secretion after visualization of the NNK-induced IGF2 exocytosis by confocal microscopy using FM 1-43 dye also displayed significant increase in IGF2 exocytosis by NNK treatment (Fig. 4b).

Subcellular fractionation of NNK-treated cells by differential ultracentrifugation revealed a time-dependent increase in IGF2 protein levels in vesicles, and pretreatment with the exocytosis inhibitor Exo1 decreased IGF2 levels localized in the vesicles (Fig. 4c). Western blot (Fig. 4d) and live cell time-lapse imaging (Fig. 4e) analyses further revealed suppression of the NNK-induced GFP-IGF2 by treatment with exocytosis inhibitors, nimodipine, diazoxide or Exo1 (ref. 16), in BEAS-2B/GFP-IGF2 cells.

We then determined whether IGF2 secretion occurred through the regulated pathway. We first verified endogenous expression of various vesicular trafficking curators, including target- and vesicle-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (t- and v-SNAREs), and synaptotagmins (Syts), especially Syt2 and Syt7 in the HBE cells used in our studies (Supplementary Fig. 10). We also observed the expression of two small guanosine triphosphatases (GTPases), Ras-related protein 3A (Rab3A) and Rab27A, which play a major role in the late stages of vesicle exocytosis37. We then assessed the impact of loss of SYT2, SYT7, RAB3A and RAB27A by siRNA-mediated knockdown in the NNK-induced IGF2 secretion. Obvious decreases in NNK-induced GFP-IGF2 secretion were confirmed in the siSYT2- and siSYT7-transfected BEAS-2B/GFP-IGF2 cells compared with those transfected with the control siRNA (Fig. 4f).

Immunofluorescence staining of NNK-treated HBEL/p53i cells revealed an obvious decrease in IGF2 fused to the cell membrane when transfected with siRNA against RAB3A or RAB27A (Fig. 4g). NNK-induced GFP-IGF2 secretion (Fig. 4h) and IGF-1R activation (Fig. 4i) were also decreased by loss of the Rab expression. Together, these findings suggested that exposure to NNK stimulated the regulatory pathway of IGF2 secretion, leading to IGF-1R activation in lung epithelial cells.

Figure 3 | NNK-mediated IGF-1R phosphorylation is IGF2 dependent. (a) Secreted growth factors in the conditioned media (CM) from NNK-treated cells were determined by using human growth factor antibody array. (b) BEAS-2B cells were exposed to NNK for the indicated time intervals. Whole-cell lysates (WCL) or conditioned media (CM) were prepared, and NNK-induced and IGF2 secretion was determined by Western blot (WB) analysis. Coomassie Brilliant Blue staining (CB) was used as the loading control. (c) Representative images of HBEL/p53i cells stained with IGF2 (green), phalloidin (red) and DAPI (blue) following 24 h culture with or without NNK (left). Graph shows the quantitative analyses of perimembranous IGF2 per cell (right; mean ± s.d.). Scale bar, 5 μm. (d) Real-time PCR analysis for determining the basal mRNA expression of IGF1, IGF2, IGFIR, and IR in NHBE, HBEL, HBEL/p53i, and BEAS-2B cells. The relative mRNA expression by comparison with the expression level in NHBE cells is depicted (*p < 0.05; ***p < 0.001). (e) HBEL/p53i cells were pretreated with IGF1- or IGF2-neutralizing antibodies (left) or transfected with IGF2 siRNAs (right). Cells were then exposed to NNK for 15 min. Cell lysates were subjected to WB analysis. (f) Protein lysates from HBEL or HBEL/p53i cells untreated or treated with NNK for 15 min, HBEL cells unstimulated or stimulated with CM from HBEL or HBEL/p53i cells treated with NNK for 15 min (left), and HBEL cells stimulated with CM from NNK-treated HBEL/p53i cells in the presence or absence of IGF2-neutralizing antibody for 15 min (right) were subjected to WB analysis. (g) The protein amounts of IGF1 and IGF2 in CM from HBEL or HBEL/p53i cells were determined by ELISA (n = 3, mean ± s.d.) (h) Modulation of cell viability (n = 4, mean ± s.d.) (i) BEAS-2B cells stably transfected with control or IGF2 shRNAs and then treated NNK. The statistical significance of differences was determined with the Student's t-test. *P < 0.05; ***P < 0.001.
Based on the previous findings indicating the role of β-AR and nAChRs in calcium signals, we postulated that NNK-stimulated Ca\(^{2+}\) influx could have been involved in the NNK-induced IGF2 secretion and IGF-1R phosphorylation. Indeed, 10 nM and 10 μM NNK increased intracellular Ca\(^{2+}\) amount in a similar level (Supplementary Fig. 13a). The NNK-induced increase in IGF-1R phosphorylation, IGF2 secretion, and intracellular Ca\(^{2+}\) level were inhibited by treatment with the...
AChR inhibitor mecamylamine (MCA) (Fig. 5a; Supplementary Fig. 13b) or by transfection with CHRNA7-specific siRNA (Fig. 5b). Consistently, boosting the intracellular Ca\(^{2+}\) levels by treatment with ionomycin (a Ca\(^{2+}\) ionophore)\(^{21}\) or thapsigargin (a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase)\(^{22}\) increased IGF-1R and Akt phosphorylation in HBEl/p53i cells (Fig. 5c). Moreover, HBEl cells exposed to NNK in medium supplemented with Ca\(^{2+}\) showed a prominent IGF-1R phosphorylation compared to those exposed to NNK in Ca\(^{2+}\)-free medium (Fig. 5d). Conversely, treatment with the intracellular (BAPTA-AM) and extracellular (EGTA) Ca\(^{2+}\) chelators suppressed NNK-induced increases in pIGF-1R and extracellular IGF2 levels below control levels (Fig. 5e). The complete abolition of NNK-induced IGF2 release and IGF-1R phosphorylation by extracellular EGTA (Fig. 5e) suggested that the NNK-induced Ca\(^{2+}\) signal was from influx of extracellular Ca\(^{2+}\) and not release of internal stores. However, we reasoned that NNK-induced Ca\(^{2+}\) signal could be resulting in part from the intracellular Ca\(^{2+}\) that could have been released from intracellular storage in response to extracellular Ca\(^{2+}\)-induced intracellular messengers. Indeed, the NNK-induced IGF2 secretion and IGF-1R phosphorylation were partially decreased by pretreatment with 2-APB (an IP\(_3\) receptor antagonist) (Supplementary Fig. 14). Therefore, it is likely that release of Ca\(^{2+}\) from internal stores contributes at least in part to the NNK-induced IGF2 secretion and IGF-1R phosphorylation in lung epithelial cells. We also observed that addition of BAPTA-AM reduced IGF2 and pIGF-1R below control levels (Fig. 5e) and decreased pIGF-1R and extracellular IGF2 levels even in the absence of NNK (Supplementary Fig. 15). These findings suggest that IGF2 release and IGF-1R activation can be induced by basal intracellular Ca\(^{2+}\) levels, indicating the crucial role of Ca\(^{2+}\) signal in the regulation of IGF-1R activation mediated by IGF2 secretion.

Because the nAChRs belong to the ligand-gated ion channel superfamily and mediate Ca\(^{2+}\) influx directly through nAChRs and indirectly through voltage-dependent Ca\(^{2+}\) channels (VDCCs) upon nAChR-induced depolarization\(^{19}\), we assessed the potential implication of VDCC in NNK-induced IGF2 secretion. VDCC channels have been found in excitable cells, such as nerve and muscle cells, but are mostly excluded from nonexcitable cells\(^{23}\). Hence, we analysed the expression of VDCC components in lung epithelial cells. VDCC is composed of five subunits: z1 subunit forms central pore of VDCC; z2 subunit is connected with \(\delta\) subunits as a disulfide-linked glycoprotein dimer and attached to the membrane; \(\beta\) subunit is an intracellular subunit and has no transmembrane segments; \(\gamma\) subunit is a glycoprotein and has four transmembrane segments\(^{24,25}\). We detected transcripts of several VDCC subunits in HBE cells (Supplementary Fig. 16). Because z1 subunit is a principal transmembrane subunit\(^{21}\), we focused on z1 subunit for further analysis. The expression profiling followed by sequencing confirmation revealed expression of L-type (Ca\(_{1,3}\); CACNA1D) and P/Q-type (Ca\(_{2,1}\); CACNA1A) of z1 subunit in all of the HBE cell lines used in the study. We found that siRNA-mediated depletion of CACNA1D, but not CACNA1A, completely suppressed NNK-induced IGF-1R phosphorylation and IGF2 secretion (Fig. 5f). Time-lapse imaging analyses of BEAS-2B/GFP-IGF2 cells further revealed that the CACNA1D depletion completely suppressed NNK-induced IGF2 secretion (Supplementary Fig. 17). Treatment with the clinically available L-type-specific calcium channel blockers (nifedipine and amlodipine) also induced an almost complete suppression of NNK-induced IGF-1R phosphorylation and IGF2 secretion (Fig. 5g,h; Supplementary Fig. 18a) at the dose that suppressed the NNK-induced increase in cytoplasmic Ca\(^{2+}\)\(^{22}\) (Fig. 5i; Supplementary Fig. 18b). These data suggested that Ca\(^{2+}\) entry via L-type VDCC is crucial for triggering IGF2 exocytosis. While the \(\alpha\)2 isoform of the nAChR is a highly permeable Ca\(^{2+}\) channel, the Ca\(^{2+}\) entry through activated nAChR may be insufficient to trigger exocytosis. We tested the notion by using a high-[K\(^{+}\)] to elicit IGF2 exocytosis. Incubation of cells with a high-[K\(^{+}\)] led to increases in IGF2 secretion and IGF-1R phosphorylation, which were completely suppressed by pretreatment with amlodipine or nifedipine (Supplementary Fig. 19). These findings suggest that the key role of NNK-induced nAChR activation is to activate VDCCs by depolarization of the cell membrane, and the Ca\(^{2+}\) entry through activated nAChR may be insufficient to trigger IGF2 exocytosis. In addition, increase of intracellular [Ca\(^{2+}\)] through VDCC was likely to stimulate the regulatory pathway of IGF2 secretion, leading to IGF-1R activation in lung epithelial cells. It is known that intracellular Ca\(^{2+}\) activates various downstream signalling pathways\(^{26}\). Key players for Ca\(^{2+}\)-mediated signalling are a calcium binding protein calmodulin and Ca\(^{2+}\)/calmodulin-dependent protein kinases (CaMKs)\(^{27}\). Calmodulin, CaMK II, as well as Src, a downstream of \(\alpha\)2nAChR known to be activated by interaction with calmodulin or CaMK II (refs 6,28,29), have been implicated in the regulation of exocytosis\(^{30-32}\). We found that treatment with W-7 (a calmodulin antagonist) or KN-93 (a CaMK inhibitor) suppressed the NNK-induced IGF-1R phosphorylation and IGF2 secretion (Supplementary Fig. 20). Thus, in contrast to the Src-mediated negative regulation of exocytosis at the nerve terminal\(^{33}\), activation of the calmodulin-CaMK II-Src signalling seemed to mediate IGF2 exocytosis.

Figure 4 | NNK-induced IGF2 secretion by regulated exocytosis. (a) Immuno-EM analysis of IGF2 localization in HBEl/p53i cells exposed to NNK (10\(\mu\)M) for 30 min. Yellow arrow indicates the IGF2 localization (left). The secreted IGF2 was quantified and normalized to untreated with NNK as a percentage in the graph (right). Er, endoplasmic reticulum; Mi, mitochondria; PM, plasma membrane. Scale bar, 200 nm. (b) Confocal images of IGF2 (green), FM1-43 (red), and DAPI (blue) in HBEl/p53i cells stimulated with NNK for 15 min. White arrows indicate perinuclear IGF2 within vesicles. Graph shows the quantitative analyses of perinuclear IGF2 within vesicles per field. Scale bar, 5\(\mu\)m. (c) BEAS-2B cells were exposed to NNK for the indicated times (left) or stimulated with NNK for 15 min with or without pretreatment with Exol for 3 h (right). Vesicles containing IGF2 were isolated by differential centrifugation, and IGF2 levels were determined by western blot (WB) analysis. Hsp70 was used as the loading control. (d) BEAS-2B/GFP-IGF2 cells were pretreated with the indicated inhibitors for 3 h, and then stimulated with NNK for 15 min. CM from these cells were subjected to WB analysis. Nimo: nimodipine; Diazo: diazoxide. (e) Left: BEAS-2B/GFP-IGF2 cells were pretreated with Exol for 3 h and then stimulated with NNK. A time-lapse imaging analysis was performed. White arrows indicate secreted GFP-IGF2. Right: secreted GFP-IGF2 out of 25 BEAS-2B cells treated with NNK or NNK and Exol at 30 min after NNK treatment was quantified using Harmony high content imaging and analysis software. Scale bar, 20 \(\mu\)m. (f,h,i) BEAS-2B/GFP-IGF2 cells were transfected with siRNAs targeting indicated genes, and then stimulated with NNK for 15 min. CM or WCL from these cells were subjected to WB analysis. (g) Confocal images of IGF2 (green), phalloidin (red) and DAPI (blue) in HBEl/p53i cells transfected with the indicated siRNAs and then treated with NNK for 15 min. White arrow indicates the secreted IGF2. Scale bar, 10 \(\mu\)m. Data are presented as the mean \pm s.d. Statistical significance was determined by Student’s t-test. *\(P<0.05\); **\(P<0.001\).
Blockade of Ca\(^{2+}\) influx prevents lung tumorigenesis. We assessed the effects of inhibiting the nAChR-VDCC-mediated increase in cytosolic [Ca\(^{2+}\)] on NNK-induced promotion of lung tumour formation. HBEL/p53i cells exposed to NNK showed acquisition of transformed phenotypes, as shown by significantly increased anchorage-dependent colony formation (Fig. 6a), foci formation (Supplementary Fig. 21), viability (Fig. 6b), and anchorage-independent colony formation (Fig. 6c) compared to WCL

siCon	siCHRNA7
NNK	+
plGF-1R	100 kDa
IGF-1R	100 kDa
Actin	48 kDa
GFP-IGF2	48 kDa

Iono	Thapsi (μM)
NNK	+
plGF-1R	100 kDa
IGF-1R	63 kDa
pAkt	48 kDa
Actin	48 kDa
GFP-IGF2	48 kDa

Amlo	Nife (μM)
NNK	+
plGF-1R	100 kDa
IGF-1R	100 kDa
Actin	63 kDa
GFP-IGF2	48 kDa

Figure 6:

- **a**: Western blot analysis showing the expression of plGF-1R, IGF-1R, Actin, and GFP-IGF2 under different conditions.
- **b**: Western blot analysis showing the effects of siRNA on the expression of plGF-1R, IGF-1R, pAkt, Actin, and GFP-IGF2.
- **c**: Western blot analysis showing the effects of ionomycin (Iono) and Thapsigargin (Thaps) on the expression of plGF-1R, IGF-1R, pAkt, Actin, and GFP-IGF2.
- **d**: Western blot analysis showing the effects of Ca\(^{2+}\) concentration on the expression of plGF-1R, IGF-1R, pAkt, Actin, and GFP-IGF2.
- **e**: Western blot analysis showing the effects of BAPTA and EGTA on the expression of plGF-1R, IGF-1R, Actin, and GFP-IGF2.
- **f**: Western blot analysis showing the effects of siCACNA1D (L-type) and siCACNA1A (P/Q type) on the expression of plGF-1R, IGF-1R, pAkt, Actin, and GFP-IGF2.
- **g**: Western blot analysis showing the effects of Amlo and Nife on the expression of plGF-1R, IGF-1R, Actin, and GFP-IGF2.
- **h**: Images showing the secretion of GFP-IGF2 under different conditions.
- **i**: Graph showing the secretion of GFP-IGF2 over time under different conditions.
those of vehicle-treated control cells. These NNK-induced transformed phenotypes were suppressed by treatment with a nAChR antagonist (mecamylamine), a Ca2+ chelator (BAPTA-AM), or CCB (nifedipine and amlodipine) (Fig. 6a–c; Supplementary Fig. 21). The capacities of CCBs to suppress NNK-induced intracellular calcium level, IGF-1R phosphorylation, and IGF2 secretion were well retained even at the low concentration within the therapeutic range (Supplementary Fig. 22).

Next, we determined the antitumour activities of CCBs in NNK-induced tumour formation in FVB mice, which have been extensively used in chemoprevention studies34. Figure 6d shows the treatment schedule for this experiment. FVB mice were untreated (group 1) or treated with NNK. The NNK-treated mice were subdivided into three groups, and vehicle (group 2), amlodipine (group 3) (0.8 mg kg-1 once a day) or nifedipine (group 4) (10 mg kg-1 once a day) was administered 1 week after the first dose of NNK (group 2). Twelve weeks after the first dose of NNK, we analysed representative mice from each group with In Vivo Imaging System (IVIS) Spectrum computed tomography (CT) to monitor lung tumour formation. The lung tumour nodule was easily detected in mice treated with NNK, but not in mice from the other groups (Fig. 6e). Gross evaluation of the lungs after all mice were killed humanely revealed no tumours in the lungs of control mice and 100% lung tumour formation in NNK-treated mice. In contrast, amlodipine- and nifedipine-treated mice had obviously decreased lung tumour nodules. Microscopic evaluation of the lungs revealed statistically significant decreases in tumour multiplicity, tumour volume, and tumour burden in the amlodipine- or nifedipine-treated mice compared to the NNK-treated mice (Fig. 6f). We observed no significant changes in body weight (Fig. 6g) and any detectable levels of organ toxicity after drug treatment. The observed antitumour activities of the drugs were associated with statistically significant decreases in IGF-1R and Akt phosphorylation in the lungs of mice exposed to NNK (Supplementary Fig. 23). Overall, these results suggested that blockade of blocking calcium channel is an effective strategy to suppress lung epithelial cell transformation and thus to prevent lung cancer development in smokers.

CCB intake and risk of lung cancer. Up to this point, the results suggest that regulation of intracellular Ca2+ plays a major role in NNK-induced lung cancer development. We further analysed the Korean Health Insurance Review and Assessment Service-National Patient Sample (HIRA-NPS) database collected between 2010 and 2011 for a quantitative assessment of the cross-sectional association between CCB prescription and lung cancer diagnosis. During the 2-year study period, the estimated average number of patients from the HIRA-NPS database was 45.48 million per year (Supplementary Table 2). Of these, our study population was \(\sim 7.53 \) million per year. The mean age of the study population was 62.3 years (s.d. 12.8 years) and \(\sim 46.90\% \) were men; 56.36% of patients were prescribed dihydropyridine (Supplementary Table 3). The most frequently prescribed CCB was amlodipine followed by nifedipine and the prevalence of lung cancer diagnosis was 0.60%. Gender, age, insurance scheme and presence of CCB prescription were significant predictors of lung cancer diagnosis. Women were less likely to be associated with lung cancer diagnosis (adjusted odds ratio (OR\textsubscript{adj}) = 0.38; 95% confidence interval (CI): 0.35–0.41) than men (Table 1). Compared with 20–34 year old patients, those who were older than 50 years were more likely to be associated with a diagnosis of lung cancer. Beneficiaries of Medicaid (OR\textsubscript{adj} = 1.23; 95% CI: 1.07–1.40) or recipients of Veterans insurance (OR\textsubscript{adj} = 1.93; 95% CI: 1.32–2.82) were more likely to be associated with a diagnosis of lung cancer. Patients who had a dihydropyridine CCB prescription were less likely to be associated with lung cancer diagnosis (OR\textsubscript{adj} = 0.67; 95% CI: 0.62–0.73). These findings indicated an inverse association between CCB prescription and lung cancer diagnosis.

Discussion

In the present study, we show a unique mechanism whereby the NNK-mediated Ca2+ signalling stimulates activation of the IGF-1R pathway, resulting in lung tumour development. NNK-induced IGF-1R activation appeared as a strictly Ca2+-dependent IGF2 release from lung epithelial cells: NNK-induced activation of nAChR results in depolarization of the cells, activation of VDCCs, leading to secretagogue-induced IGF2 secretion (Fig. 6h). Our study further revealed the efficacy of antagonizing Ca2+ channels in preventing NNK-induced transformation of lung epithelial cells in vitro and lung tumour formation in vivo. Moreover, clinically available CCB medication reduced lung cancer diagnosis in our study population. As smoking is the most prominent risk factor for lung cancer, our findings may offer new opportunities for designing interventions in clinical lung cancer chemoprevention trials. Several prospective epidemiological studies have implied circulating IGFs in an increased risk of diverse human cancers35,36. However, prior studies have shown controversial findings for the role of circulating IGFs in lung cancer37–39. We have identified overexpression of IGFs and activation of IGF-1R in lung airway epithelial cells as early biochemical events in human lung carcinogenesis40. Our current data, with which we analysed the previously studied populationa, showed a significant correlation between lung epithelial IGF expression and IGF-1R...
activation in a population of smokers, implying the importance of tissue-derived IGFs in lung cancer development. These findings also suggest the presence of mechanisms whereby tobacco components link IGF expression to IGF-1R activation. The tobacco-specific carcinogen NNK has been suggested to promote lung carcinogenesis not only through genocentric mechanisms but also through nAChRs-mediated activation of the Akt signalling mechanism\(^3,4\). Activation of a Src family member
mediated calcium influx. In light of our present findings, NNK can increase intracellular Ca$_{2+}$ 4, 8 and 12 weeks of treatment. (IVIS Spectrum CT images of mice treated with NNK (group 2), NNK and amlodipine (group 3), or NNK and nifedipine (group 4). Bottom: representative homologue (PTEN) have been suggested for NNK-induced Akt

Our results appear to be novel and distinct from the previously reported mechanisms underlying NNK-mediated Akt activation.

Our study provided direct evidence that NNK-induced activation of the IGF-1R pathway is mediated by regulated secretion of IGF2. Our RT-PCR analyses clearly identified lung epithelial cell expression of the various isoforms of t- and v-SNAREs that mediate the ultimate step of vesicular fusion with the outer membrane, and Syts, particularly Syt2 and Syt7, which regulate membrane fusion and membrane budding reactions. Syts have been shown to undertake Ca$_{2+}$-dependent conformational changes that allow them to bind syntaxin on the cell membrane for granule fusion and membrane budding reactions. Previous studies have shown that Syt2 and Syt7 are involved in insulin secretion and diabetes. It has been suggested that IGF2 is localized in insulin granules, and correct processing of proIGF2 into its mature form is mediated by the proconvertases that are present in insulin granules. Thus, it is plausible that the same regulated pathway for insulin secretion modulates NNK-induced release of IGF2. This notion is supported by our observation that IGF2 secretion was suppressed by siRNA-mediated silencing of Syt2 and SYT7 or by treatment with nimodipine and diazoxide that inhibited insulin secretion.

Furthermore, siRNA-mediated silencing of RAB3A and RAB27A, which played a key role in the late stages of the insulin secretory pathway, substantially reduced the NNK-induced exocytotic events of IGF2 and IGF-1R activation. RAB3A and RAB27A, small GTPases of the Ras superfamily, regulate the multiple steps of vesicular transport, including vesicular motility, vesicular docking to specific compartments in cells, and a membrane fusion process.

Therefore, a logical extension of our work is that NNK may cause insulin and IGF2 secretion. In this context, it is interesting to note the epidemiological data showing the association of cigarette smoking with insulin resistance and an increased risk for type 2 diabetes. Notably, activation of nAChR leads to insulin resistance by increasing insulin receptor substrate-1 (SiR636) phosphorylation. Future studies are warranted to provide the mechanistic insight to NNK-mediated insulin signalling.

We also observed the possible involvement of the β-adrenergic receptor (β-AR) in NNK-induced IGF2 secretion. The binding affinity to each receptor, shown as a EC$_{50}$ value, were 5.8 nM for β1-AR, 128 nM for β2-AR and 30 nM for z7nAChR. It is likely that NNK triggers activation of both β-ARs and nAChRs, and their downstream signalling collectively operates NNK-mediated tumorigenic events. Our results clearly indicate the collaborative association of β-AR and nAChR with NNK-induced IGF2 exocytosis. Interestingly, β-AR also induces VDCC-mediated calcium influx via PKA. Hence, these findings underscore that VDCC could be a common and important signalling node for NNK-induced IGF-1R activation and consequent lung tumorigenesis.

The nAChR signalling pathways generally, but not invariably, stimulate Ca$_{2+}$ influx. Intracellular [Ca$_{2+}$] has been implicated in exocytosis in addition to multiple mitogenic or apoptotic signalling pathways. Our data suggest that activation of VDCCs in response to membrane depolarization caused by NNK binding to the nAChR in smokers may be responsible for the increased cytosolic [Ca$_{2+}$] and subsequent secretagogue-induced IGF2 release and IGF-1R stimulation in lung epithelial cells. Most importantly, suppression of the Ca$_{2+}$ influx via blockade of nAChR or VDCC effectively suppressed the NNK-stimulated IGF2-IGF-1R axis, transformation of lung epithelial

Table 1 | Analysis of predictive factors associated with lung cancer diagnosis using the HIRA-NPS database NPS 2010-2011.

Gender	OR$_{adj}$ (95% CI)	OR$_{adj}$ (95% CI)
Male	0.48 (0.44-0.52)*	0.38 (0.35-0.41)*
Female	Reference	Reference

Age group	Reference	Reference
20–34	1.82 (0.80-4.15)	1.96 (0.86-4.48)
35–49	4.75 (2.13-10.59)*	5.65 (2.53-12.62)*
50–64	11.20 (5.04-24.92)*	14.66 (6.57-32.72)*
65–79	13.48 (6.04-30.11)*	20.02 (8.92-44.91)*
80 and older	1.35 (1.18-1.55)*	1.23 (1.07-1.40)*

Public Insurance Scheme	Reference	Reference
Health insurance	1.35 (1.18-1.55)*	1.23 (1.07-1.40)*
Medicaid	3.86 (2.65-5.63)*	1.93 (1.32-2.82)*
Veteran healthcare	0.71 (0.65-0.76)*	0.67 (0.62-0.73)*

CCB, calcium channel blocker; CI, confidence interval; OR, odds ratio.

*P<0.05, determined by two-sided Student’s t-test or analysis of variance.

Figure 6 | Suppression of NNK-induced acquisition of transformed phenotypes in vitro and lung tumour formation in vivo by blockade of Ca$_{2+}$ influx.

(a–c) Anchorage-dependent colony formation (n = 3, mean ± s.d.) (a), cell viability (n = 3, mean ± s.d.) (b), and anchorage-independent colony formation (n = 4, mean ± s.d.) (c) of BEAS-2B cells treated with NNK in combination with BAPTA-AM (BAP), mecamylamine (MCA), nifedipine (Nife), or amloidipine (Amlo). *P<0.05; **P<0.01; ***P<0.001, Student’s t-test. (d) Schematic representation of NNK and CCBs (amloidipine and nifedipine) treatment schedule. Mice were treated with NNK (n = 10) alone or in combination with amloidipine (n = 10) or nifedipine (n = 10) for 12 weeks. (e) Top: representative IVIS Spectrum CT images of mice treated with NNK (group 2), NNK and amloidipine (group 3), or NNK and nifedipine (group 4). Bottom: representative images of the lung from groups 2, 3 and 4. (f) Tumour multiplicity, volume, or load of groups 1, 2, 3 and 4 at 12 weeks of treatment (n = 6, mean ± s.d.). *P<0.05; **P<0.01; ***P<0.001, Student’s t-test. (g) Body weight changes in groups 1 (Control), 2 (NNK), 3 (NNK + amloidipine) and 4 (NNK + nifedipine) at 4, 8 and 12 weeks of treatment. (h) Schematic model for the NNK-induced lung tumorigenesis via regulation of the IGF-1R signalling by the nAChR-VDCC-mediated calcium influx. In light of our present findings, NNK can increase intracellular Ca$_{2+}$ level via z7nAChR and VDCC, leading to IGF2 secretion by exocytosis. Syt2, Syt7, Rab3A and Rab27A are thought to play a major role in NNK-induced exocytosis of IGF2. Finally, secreted IGF2 can activate IGF-1R signalling that promotes lung cancer formation.
cells, and lung tumour formation in mice. Finally, cross-sectional evaluation of the insurance claims data in Korea showed a significant inverse association between CCB prescription and diagnosis of lung cancer among patients with hypertension or hypertension-associated disorders. Although additional epidemiological and translational studies using longitudinal data from a large population are needed to ensure relationships between CCB medication and clinical outcomes, these findings suggest the biological plausibility of blocking Ca\(^{2+}\)-mediated activation of the IGF-1R signalling cascade in lung cancer prevention.

In conclusion, we have identified a novel signalling mechanism in which the tobacco-specific carcinogen NNK stimulates transactivation of the nAChR-VDCC-IGF-1R pathway, providing premalignant lung epithelial cells with survival potential and thus inducing lung tumour formation. Given that 15% of all cancers worldwide are tobacco-related, NNK activation of the IGF-1R pathway may also help us understand the biology of these cancers. We also show the potential clinical utility of CCBs in individuals whose lung epithelial cells have overexpression of IGFs. The fact that most of the current therapies have weak efficacy in lung cancer highlights the need to identify better targets and new strategies for preventing the disease. Currently, CCBs are considered a cornerstone therapy for the treatment of hypertension\(^{58}\). Therefore, our study has important clinical implications for the development of novel cancer chemopreventive strategies for smokers. Our data has shed new light on the emerging concept that repositioning calcium signalling-blocking drugs, such as CCBs, as an entirely novel class of IGF-1R-targeting chemopreventive agents without the potential deleterious toxicities of metabolic disorders.

Methods

Cell culture. Non-immortalized normal human bronchial epithelial cells (NHBEa) and small airway epithelial cells were purchased from LifeLine Cell Technology (Frederick, MD, USA). Immortalized HBE cells including HB86B\(^{59}\) and BEAS-2B\(^{60}\), were kindly provided from Dr. R Reddel (National Cancer Institute, Bethesda, MD, USA) and Dr. A. Klein-Szanto (Fox Chase Cancer Center, Philadelphia, PA, USA), respectively. HBEL\(^{61}\) and HBEL cells carrying p53 short interfering RNA (siRNA) (HBEL/p53)\(^{62,63}\) were kindly provided by Dr. John D. Minna (The University of Texas Southwestern Medical Center, Dallas, Texas, USA). Cells were cultured in K-SFM (Invitrogen, Grand Island, NY, USA) with 5% bovine serum and antibiotics (all from Welgene, Daegu, Republic of Korea). Cells were maintained in 5% CO\(_2\) in a humidified atmosphere. In general, before NNK stimulation, cells were starved with supplements (for HBE cells) or serum (for (R- and R\(^+\)) cells) for 1–2 days.

Reagents. Dimethyl sulfoxide, methylcellulose, insulin, thapsigargin, iodonium, crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 1,2-bis-(2-aminophenoxymethoxy) ethane-N,N,N',N'-tetracetic acid tetra- kis(acetoxymethyl ester) (BAPTA-AM), ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), 4',6-diamino-2-phenylindole (DAPI), anti-\(\alpha\)-tubulin antibody (Cat. No. T5168; 1:1,000 dilution) and chemicals unless otherwise indicated were purchased from Sigma-Aldrich (St. Louis, MO, USA). NNK was purchased from Toronto Research Chemicals (Toronto, Canada) or Sigma-Aldrich. Mecamylamine, Exo1, and nifedipine were purchased from Tocris Bioscience (Bristol, UK). Nonspecific, IGF-1R, and ERK1 antibodies were purchased from Enzo Life Sciences (Farmdale, NY, USA). Neutralizing antibodies against IGF1 and IGF2 were purchased from R&D Systems (Minneapolis, MN, USA). Fluoro-4 AM and rhodamine-phalloidin were purchased from Invitrogen. Antibodies against phosphorylated IGF-1R (pIGF-1R) at Y1135/36 (Cat. No. 3021; 1:1,000 dilution) or Y1135/36 (Cat. No. 3024; 1:1,000 dilution), Akt (pAkt) at Y216/217 (1:1,000 dilution), mTOR (Cat. No. 2983; 1:1,000 dilution), S6 (Cat. No. 2126; 1:1,000 dilution), and \(\beta\)-tubulin (Cat. No. 2128; 1:1,000 dilution) were purchased from Cell Signaling Technology (Danvers, MA, USA). Antibodies against IGF-1 (Cat. No. sc-711; 1:1,000 dilution), IGF1 (Cat. No. sc-9013; 1:1,000 dilution), IGF2 (Cat. No. sc-7435; 1:1,000 dilution), ERK1 (Cat. No. sc-94; 1:1,000 dilution), and phospho-tyrosine (Cat. No. sc-508; 1:1,000 dilution), were purchased from Cell Signaling Technology (Danvers, MA, USA). Akt (pAkt) at Y216/217 (1:1,000 dilution), Src (pSrc) at Y416 (Cat. No. 2109; 1:1,000 dilution), IGF1R (Cat. No. 3027; 1:1,000 dilution), Akt (Cat. No. sc-2772; 1:1,000 dilution), and ERK1 (Cat. No. 9102; 1:1,000 dilution), were purchased from Cell Signaling Technology (Danvers, MA, USA). Phospho-Akt (pAkt) at S473 (Cat. No. 4060; 1:1,000 dilution), Akt (pAkt) at S473 (Cat. No. 2591; 1:1,000 dilution), ERK1 (Cat. No. 2022; 1:1,000 dilution), and \(\beta\)-tubulin (Cat. No. 2128; 1:1,000 dilution) were purchased from Cell Signaling Technology (Danvers, MA, USA). Antibodies against IGF-1R (Cat. No. sc-711; 1:1,000 dilution), IGF1 (Cat. No. sc-9013; 1:1,000 dilution), IGF2 (Cat. No. sc-7435; 1:1,000 dilution), GFP (Cat. No. sc-8334; 1:1,000 dilution), Hsp70 (Cat. No. sc-1060; 1:1,000 dilution), and actin (Cat. No. sc-1615; 1:1,000 dilution) were purchased from Cell Signaling Technology (Danvers, MA, USA).

Cell viability assay. BEAS-2B cells (2 \(\times\) 10\(^5\) cells per well) were seeded into 6-well plates and then were treated with NNK (10 \(\mu\)M) with or without inhibitors for 2 weeks. Colonies were fixed with 100% methanol and stained with 0.002% crystal violet. Stained colonies were photographed and counted with Image J software (National Institute of Health, Bethesda, MD, USA).

Western Blot analysis and immunoprecipitation. Cell lysates were prepared using modified RIPA lysis buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.25% sodium deoxycholate, 1% Triton X-100, 1 mM EDTA, 100 mM NaF, 5 mM Navoie, 1 mM PMSF, 1 \(\mu\)g/ml aprotinin, 1 \(\mu\)g/ml leupeptin, and 1 \(\mu\)g/ml 1 pepstatin), and equivalent amounts of total cell lysate were separated by SDS–PAGE and transferred onto a PVDF membrane. Membranes were blocked with blocking buffer (3% BSA in Tris-buffered saline (TBS) containing 0.1% Tween-20 (TBST)) for 1 h at room temperature, and then were incubated with primary antibodies diluted in blocking buffer overnight at 4°C. After washing three times with TBST, membranes were further incubated with appropriate secondary antibodies (Santa Cruz) diluted in 3% non-fat dry milk in TBST (1:5000 dilution) for 1 h at room temperature. Membranes were washed several times with TBST and were visualized using an enhanced chemiluminescence (ECL) detection kit (Thermo Fisher Scientific, Grand Island, NY, USA or Abclon, Seoul, Republic of Korea). For analysis of the tyrosine phosphorylation status of IGF-1R or IR by immunoprecipitation, total cell or tissue lysate was incubated with specific anti-phospho-tyrosine (Santa Cruz) antibodies overnight. Protein G-Sepharose (Millipore, Temecula, CA) was then added, incubated for 4 h at 4°C, washed five times with lysis buffer, boiled in SDS sample buffer, and the subjected to SDS–PAGE. To determine the level of IGF2 secretion in the CM, CM was prepared by concentrating the media using Amicon-Ultra (Millipore Corp., Bedford, MA, USA) and then separated by Tricine–SDS–PAGE. The uncropped scan of important blots are shown in Supplementary Fig. 24.

Vesicle isolation. Vesicle isolation performed as previously described\(^{62}\). In brief, BEAS-2B cells were trypsinized and resuspended in PBS. Cells were washed three times with PBS. Cells were then sonicated in ice, and vesicles were isolated by differential ultracentrifugation using TLA100.3 rotor (Beckman Coulter, Indianapolis, IN, USA).

Reverse transcription PCR. Total RNA from cells was isolated by a phenol-chloroform extraction using Iso-RLA Lysis Reagent (5 Prime, Hilden, Germany). cDNA was synthesized from 1 \(\mu\)g of total RNA as a template using PrimeScript II 1st strand cDNA synthesis kit (Takara Bio Inc, Japan) and further analysed by RT-PCR or a SYBR Green-based real-time PCR with at least three replicates per group (LightCycler 480 real-time PCR system, Roche Applied Science, Penzberg, Germany). The cycling parameters for RT-PCR were as follows: initial denaturation at 94°C for 5 min; 28–35 cycles of 95°C for 0 s; 20–30 s, 55–68°C for 20–30 s; and 72°C for 30–45 s; final elongation at 72°C for 5–7 min. The thermocycler conditions for real-time PCR were as follows: pre-incubation at 95°C for 5 min, 50–70 cycles of
Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s instructions. The primers sequences used for PCR analysis were described in Supplementary Table 5.

Transfection. Transient transfection was performed using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Brieﬂy, cells were ﬁxed either in 4% paraformaldehyde and 0.05% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). The ﬁxed cells were embedded in 10% gelatin and small blocks were infused with 2.3 M sucrose overnight and then frozen in liquid nitrogen. Ultrathin cryosections (50 nm) were cut at −120 °C with a cryo-ultramicrotome (UC77, Leica, Vienna, Austria). The goat polyclonal antibody recognizing IGF2 (sc-7435, diluted 1:10) and protein G (Aurion, the Netherlands) that detect primary polyclonal antibody were used. All antibodies and gold conjugates were diluted in 0.1% BSA-c (Aurion, the Netherlands) in PBS.

Time-lapse live cell imaging. Time-lapse imaging was performed using the Operetta high content screening system (PerkinElmer).

Analysis of tissue specimens. Immunohistochemical analysis of tissue microarray comprising lung biopsy specimens was performed as described previously. In brief, IHC staining was performed as described above using primary antibodies against IGF1 (Santa Cruz; Cat. No. sc-9018), IGF2 (Millipore; Cat. No. 05-166), IGF-1R (Cell Signalling; Cat. No. 3027), pIGF-IR (Cell Signalling; Cat. No. 3024). The expression level of IGF1, IGF2, IGF-1R, and pIGF-1R was blindly analysed and quantiﬁed using a four-value intensity score (0, 1+, 2+, and 3+) and a percentage (0–100%) of the extent of reactivity. A ﬁnal score expression was obtained by multiplying the intensity value by the extent of reactivity (range, 0–300).

Animal experiment. All animal experiments were performed using protocols approved by the Seoul National University Institutional Animal Care and Use Committee. The mice were given food and water ad libitum and housed at 22 ± 2 °C on a 12:12-h light:dark cycle in a conventionally maintained facility. 2-months-old FVB mice were randomly grouped (n = 10 per group), comprised of both genders, and exposed to the treatment. After 1–2 weeks, drugs (0.8 or 10 mg kg⁻¹, dissolved in water) were treated with or without 4% paraformaldehyde for 10 s, and serial sections were cut on an ultramicrotome and examined with a JEOL 1010 TEM set to 80 kV (JEOL, Akishima, Japan). The mice were given food and water ad libitum and housed at 22 ± 2 °C on a 12:12-h light:dark cycle in a conventionally maintained facility. 2-months-old FVB mice were randomly grouped (n = 10 per group), comprised of both genders, and exposed to the treatment. After 1–2 weeks, drugs (0.8 or 10 mg kg⁻¹, dissolved in water) were treated with or without 4% paraformaldehyde for 10 s, and serial sections were cut on an ultramicrotome and examined with a JEOL 1010 TEM set to 80 kV (JEOL, Akishima, Japan).

Immuno-electron microscopy. Cryoimmuno-EM labelling was performed as previously described. Brieﬂy, cells were ﬁxed either in 4% paraformaldehyde and 0.05% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). The ﬁxed cells were embedded in 10% gelatin and small blocks were infused with 2.3 M sucrose overnight and then frozen in liquid nitrogen. Ultrathin cryosections (50 nm) were cut at −120 °C with a cryo-ultramicrotome (UC77, Leica, Vienna, Austria). The goat polyclonal antibody recognizing IGF2 (sc-7435, diluted 1:10) and protein G (Aurion, the Netherlands) that detect primary polyclonal antibody were used. All antibodies and gold conjugates were diluted in 0.1% BSA-c (Aurion, the Netherlands) in PBS.

Measurement of intracellular calcium levels. HBE/293 cells were plated on glass coverslips and incubated in complete medium for 24 h. After overnight serum starvation, cells were treated with NNNK. Cells were washed three times with PBS, ﬁxed in 4% paraformaldehyde for 30 min at room temperature, permeabilized with 0.1% Triton X-100 for 15 min, and blocked in blocking solution (Dako) at 4 °C for 1 h. Cells were incubated with primary antibody (pIGF-1R (Cell Signalling; Cat. No. 3024; 1:200 dilution); pAKT (Cell Signalling; Cat. No. 4060; 1:200 dilution)) overnight at 4 °C. Slides were then washed with phosphate buffered saline (PBS), incubated with biotinylated secondary antibody (Dako, Carpinteria, CA, USA; Cat No. E0432; 1:500 dilution), and developed with an avidin/biotin complex kit (Vector Laboratories, Burlingame, CA, USA) and DAB detection reagents (Enzo Life Sciences). The slides were counterstained with hematoxylin.

Immunofluorescence staining. Cells were seeded on glass coverslips and incubated in complete medium for 24 h. After overnight serum starvation, cells were treated with NNNK. Cells were washed three times with PBS, ﬁxed in 4% paraformaldehyde for 30 min at room temperature, permeabilized with 0.1% Triton X-100 for 15 min, and blocked in blocking solution (Dako) at 4 °C for 1 h. Cells were incubated with primary antibody (pIGF-1R (Cell Signalling; Cat. No. 3024; 1:200 dilution); pAKT (Cell Signalling; Cat. No. 4060; 1:200 dilution)) overnight at 4 °C. Slides were then washed with phosphate buffered saline (PBS), incubated with biotinylated secondary antibody (Dako, Carpinteria, CA, USA; Cat No. E0432; 1:500 dilution), and developed with an avidin/biotin complex kit (Vector Laboratories, Burlingame, CA, USA) and DAB detection reagents (Enzo Life Sciences). The slides were counterstained with hematoxylin.

Measurement of intracellular calcium levels. HBE/293 cells were plated on glass coverslips. Cells were loaded with the Ca²⁺ indicator fluorescent dye Fluo-4 AM (Invitrogen) according to the manufacturer’s instructions. Brieﬂy, cells were ﬁxed either in 4% paraformaldehyde and 0.05% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). The ﬁxed cells were embedded in 10% gelatin and small blocks were infused with 2.3 M sucrose overnight and then frozen in liquid nitrogen. Ultrathin cryosections (50 nm) were cut at −120 °C with a cryo-ultramicrotome (UC77, Leica, Vienna, Austria). The goat polyclonal antibody recognizing IGF2 (sc-7435, diluted 1:10) and protein G (Aurion, the Netherlands) that detect primary polyclonal antibody were used. All antibodies and gold conjugates were diluted in 0.1% BSA-c (Aurion, the Netherlands) in PBS.

Immunofluorescence staining. Cells were seeded on glass coverslips and incubated in complete medium for 24 h. After overnight serum starvation, cells were treated with NNNK. Cells were washed three times with PBS, ﬁxed in 4% paraformaldehyde for 30 min at room temperature, permeabilized with 0.1% Triton X-100 for 15 min, and blocked in blocking solution (Dako) at 4 °C for 1 h. Cells were incubated with primary antibody (pIGF-2 (Santa Cruz; Cat. No. sc-7435; 1:100 dilution); pIGF-1R (Cell Signalling; Cat. No. 3021; 1:200 dilution)) overnight at 4 °C, washed three times with PBS, and incubated for 1 h with Alexa 488-conjugated secondary antibodies (Invitrogen; Cat. Nos. A11078 or A21203; 1:1000 dilution) in the absence or presence of Alexa Fluor 594-phalloidin (Invitrogen; Cat. No. A12381; 1:500 dilution). After washing four times with PBS, cells were mounted with mounting solution containing the nuclear dye DAPI. Images were acquired with a confocal microscope (LSM 700; Carl Zeiss Microscopy, Jena, Germany).

Transmission electron microscopy. Cells were ﬁxed by immersion in Karnovsky ﬁxative for 3 h at room temperature. Fixed cells were washed with 0.05 M sodium cacodylate buffer and post-ﬁxed in 2% osmium tetroxide and 0.1 M cacodylate buffer for 2 h at 4 °C. The cells were then dehydrated in increasing concentrations of ethanol, inﬁltrated with propylene oxide and embedded in Spurr’s resin.
Calcium channel blockers (CCB) included any prescription records with single or combination products composed of dihydropyridines (amlodipine, nitrendipine, nifedipine, benidipine, bendroflumethiazide, felodipine, isradipine, lacidipine, lercanidipine, manidipine, nicardipine, nilvadipine, nimodipine, nisoldipine and nitrendipine) and non-dihydropyridines (diltiazem and verapamil).

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files.
46. Portela-Gomes, G. M. & Hoog, A. Insulin-like growth factor II in human fetal pancreas and its co-localization with the major islet hormones: comparison with adult pancreas. J. Endocrinol. 165, 245–251 (2000).

47. Buchanan, C. M., Phillips, A. R. & Cooper, G. J. Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insulin secretion. Biochem. J. 360, 431–439 (2001).

48. Modi, H., Cornu, M. & Thorens, B. Glutamine stimulates biosynthesis and secretion of insulin-like growth factor 2 (IGF2), an autocrine regulator of beta cell mass and function. J. Biol. Chem. 289, 31972–31982 (2014).

49. Cheviet, S., Coppola, T., Haynes, L. P., Burgoyne, R. D. & Regazzi, R. The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol. Endocrinol. 18, 117–126 (2004).

50. Waselle, L. et al. Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis. Mol. Biol. Cell 14, 4103–4113 (2003).

51. Pfeffer, S. R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11, 487–491 (2001).

52. Segev, N. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol. 13, 500–511 (2001).

53. Matsumoto, M. et al. Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells. Proc. Natl Acad. Sci. USA 101, 8313–8318 (2004).

54. Willi, C., Bodenmann, P., Ghali, W. A., Faris, P. D. & Cornuz, J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 298, 2654–2664 (2007).

55. Bajaj, M. Nicotine and insulin resistance: when the smoke clears. Diabetes 61, 3078–3080 (2012).

56. Muntwyler, J. & Follath, F. Calcium channel blockers in treatment of hypertension. Prog. Cardiovasc. Dis. 2274–2280 (2001).

57. Schwarz, E. C., Qu, B. & Hoth, M. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. Biochim. Biophys. Acta 1833, 1603–1611 (2013).

58. Muntyler, J. & Follath, F. Calcium channel blockers in treatment of hypertension. Prog. Cardiovasc. Dis. 44, 207–216 (2001).

59. Reddel, R. R. et al. A human bronchial epithelial cell strain with unusual in vitro growth potential which undergoes neoplastic transformation after SV40 T antigen gene transfection. Int. J. Cancer 48, 764–773 (1991).

60. Reddel, R. R. et al. Transformation of human bronchial epithelial cells by infection with SV40 or adeno-virus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res. 48, 1904–1909 (1988).

61. Sato, M. et al. Multiple oncogenic changes (K-RAS(V12), p53 knockdown, gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

62. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

63. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

64. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to Image): 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

65. Hendrix, A. et al. Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J. Natl Cancer. Inst. 102, 866–880 (2010).

66. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25, 402–408 (2001).

67. Kwon, H. S. et al. Golgi enzymes are enriched in perforated zones of golgi cisternae but are depleted in COPI vesicles. Mol. Biol. Cell 15, 4710–4724 (2004).

68. Martinez-Menarguez, J. A. et al. Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J. Cell Biol. 155, 1213–1224 (2001).

69. Yuan, P. et al. Sex determining region Y-Box 2 (SOX2) is a potential cell-lineage gene highly expressed in the pathogenesis of squamous cell carcinomas of the lung. PLoS ONE 5, e9112 (2010).

Acknowledgements
This work was supported by a grant from the National Research Foundation of Korea (NRF), the Ministry of Science, ICT & Future Planning (MSIP), Republic of Korea (No. NRF-2016R1A3B1908631). The current study used HIRA sample data (HIRA-NPS-2010-0084, HIRA-NPS-2011-0110). Findings from the study reflect the views of the author and should not be construed to represent views or policies of the Ministry of Health & Welfare or the Health Insurance Review & Assessment Service.

Author contributions
H.-J.B., H.-Y.M., H.-J.L, H.I.Y., J.K.S., Q.J. and H.-J.L. conducted in vitro assays. H.-J.B performed in vivo and immunohistochemical experiments. H.-Y.M. performed analysis of the GEO datasets. H.-S.K. performed immune-electron microscopy. D.L., J.J.L and E.L. performed biostatistical analyses. C.B., I.I.W. and W.K.H. performed or contributed to the GEO datasets. H.-Y.M. performed analysis of the GEO datasets. H.-S.K. performed immune-electron microscopy. D.L., J.J.L and E.L. performed biostatistical analyses. C.B., I.I.W. and W.K.H. performed or contributed to immunohistochemical analysis of human tissue specimens. H.-Y.L. conceived and designed the study and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Boo, H.-I. et al. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat. Commun. 7, 12961 doi: 10.1038/ncomms12961 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.

© The Author(s) 2016