Use of *Aspergillus japonicas* culture filtrate as a feed additive in quail breeder’s nutrition

Mahmoud Alagawany, Zenat A. Ibrahim, Enaam A. Abdel-Latif and Fayiz M. Reda

Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt

ABSTRACT

This study was carried out to study the beneficial role of organic acids and other beneficial compounds produced by *Aspergillus japonicas* and their effects on the egg production, egg quality, fertility, and hatchability as well as blood metabolites of quail breeders. A number of 150 mature 8-week of age Japanese quails (100 females and 50 males) were used and divided into 5 groups. The 1st, 2nd, 3rd, 4th, and 5th groups were fed basal diet with 0 (control), 1, 2, 3, and 4 ml *Aspergillus japonicas* culture filtrate/kg diet, respectively. The use of *Aspergillus japonicas* filtrate improved egg number, egg mass and feed conversion ratio when compared to control. The use of *Aspergillus japonicas* filtrate quadratically improved feed conversion ratio when compared to control at all ages. Quail breeders fed 2 and 3 ml *Aspergillus japonicas* filtrate-treated diets consumed less feed than the other diets (0, 1, or 4 ml) during 8–12 week-old and the overall period. Supplementation of *Aspergillus japonicas* filtrate to quail diets improved fertility percentage during 12–16 and 8–16 week of age, the best level was 2 ml/kg of filtrate. Addition of *Aspergillus japonicas* filtrate to quail diets reduced the shell percentage and shell thickness, but increased the Haugh unit. The activity of SOD and TAC was higher in *Aspergillus japonicas* filtrate groups than the control. In conclusion, supplemental *Aspergillus japonicas* filtrate could improve productive and reproductive performance, lipid profile, immunity, and antioxidant indices.

Introduction

Natural and synthetic feed additives have been effectively used in livestock for increasing productivity and improving the public health and wellbeing (Hajiaghapour and Rezaeipour 2018; Alagawany et al. 2019a, 2019b, 2020d, 2020b; Nabi et al. 2020). Recently, in several countries, especially in the developed countries, there have been increasing desires for designer and organic poultry products, may be due to their ability to decline the problems of several ailments and improve the consumer health (Alagawany et al. 2018a, 2018b; Abdel-Latif et al. 2020; Alagawany et al. 2020a, 2020c). To provide industrial organic acids from species fungi aiming to adjust the fermentation, many factors must be analysed (carbon source, culture components, fermentation time, temperature and pH). In poultry nutrition, the application of agro-industrial wastes like bran, may contribute decreasing the production costs of organic acids and enzymes, generating a cheap final product (Alagawany et al. 2018c; Mohamed et al. 2019). Organic acids and other components of some fungal species are effectively used in industries including poultry industry due to their health benefits for biotechnological applications (Coban and Demirci 2017; Abd El-Hack et al. 2020; Ismail et al. 2020; Reda et al. 2020). *Aspergillus japonicus* is an excellent organic acid and enzyme producer in a culture medium using agricultural wastes and

Highlights

- Use of *Aspergillus filtrate* in quail diets improved egg production and egg mass.
- Use of *Aspergillus japonicas* filtrate to quail diets improved fertility percentage.
- Use of *Aspergillus filtrate* in quail diets improved immunity and antioxidant indices.
- Dietary addition of *Aspergillus filtrate* improved lipid profile.
inexpensive components (Maller et al. 2014). Dietary acids are divided into organic and inorganic acids, but the organic part is effectively and widely used in poultry feeds (Salah et al. 2019). There are several organic acid applications in poultry industry such as the short-chain organic acids (formic, acetic, butyric and propionic acids, in addition to others like lactic, fumaric, malic, tartaric and citric acids (Dibner and Buttin 2002; Pearlin et al. 2020). These feed additives gained considerable attention as excellent alternatives to growth and production enhancer antibiotics owing to its beneficial impact on pathogens; they lower the pH in the gastrointestinal tract, thus, enhancing the absorption of nutrients in livestock (Kil et al. 2011; Hazrati et al. 2020). The use of organic acids in poultry diets improved the performance, production, egg mass, feed efficiency, and resistance against several ailments (Islam 2012; Fouladi et al. 2018). Additionally, several studies showed that organic acids including formic acids and propionic have antimicrobial impact against pathogenic bacteria like Coliforms, Salmonella spp., and Escherichia coli in the intestine of poultry (Ruhnke et al. 2015; Gowda and Shivakumar 2019). Furthermore, Chowdhury et al. (2009) observed an improvement in the immunological indices of chickens fed citric acid at 0.5%. Abdel-Fattah et al. (2008) observed a similar improvement in the immune response of birds due to organic acids supplementation. It is hypothesised that the use of Aspergillus japonicas culture filtrate in the diets is expected to have beneficial impacts on quail breeders. Thus, the present study was planned to investigate the influence of dietary addition of Aspergillus japonicas culture filtrate (oxalic acid, citric acid, lactic acid, ascorbic acid, maleic acid, formic acid, and salicylic acid) on the egg production, egg quality, fertility and hatchability, liver and kidney functions, lipid profile, antioxidant, and immunity parameters of quail breeders.

Materials and methods

Experimental design and animal husbandry

A number of 150 mature 8-week of age Japanese quails (100 females and 50 males) were used. The birds were allotted to 5 experimental groups with 5 replications of 9 birds (2 male and 4 females). The duration of our study was 2 months (8–16 weeks). The treatments were the following: (1) basal diet without any supplements (control), (2) basal diet + 1 ml A. japonicas filtrate/kg diet; (3) basal diet + 2 ml A. japonicas culture filtrate/kg diet; (4) basal diet + 3 ml A. japonicas filtrate/kg diet; (5) basal diet + 4 ml A. japonicas filtrate/kg diet. The basal ration (Table 1) was formulated to meet the requirements of quail breeders (NRC 1994). Quails were reared in conventional type cage (50 × 30 × 50 cm³; 1500 cm² of floor space) with water and feed provided *ad libitum*. Quails were exposed to 17 h light:7 h dark cycle during the trail. Aspergillus japonicas (accession no. MN960315). Culture filtrate contained oxalic acid, citric acid, lactic acid, ascorbic acid, maleic acid, formic acid, and salicylic acid by GCMASS.

Table 1. Ingredients and nutrient contents of basal diet of Japanese quail.

Ingredient	Quantity (g/kg as-fed basis)
Yellow corn	602
Soybean meal (44%)	250
soybean oil	15.0
Corn gluten meal, 60%	57.0
Di-calcium phosphate	13.0
Limestone	55.0
NaCl	3.00
l-Lysine	2.00
Premix*	3.00
Composition (g/kg)	
Protein	199
Metabolizable energy (kcal/kg)	2918
Calcium	25.0
Available phosphorus	3.50
Methionine	3.50
Lysine	10.9
Methionine + cystine	7.10

*Provides per kg of diet: Vitamin A, 12,000 I.U; Vitamin D3, 5000 I.U; Vitamin E, 130.0 mg; Vitamin K3, 3.605 mg; Vitamin B1 (thiamin), 3.0 mg; Vitamin B2 (riboflavin), 8.0 mg; Vitamin B6, 4.950 mg; Vitamin B12, 17.0 mg; niacin, 60.0 mg; D-biotin, 200.0 mg; calcium D-pantothenate, 18.333 mg; folic acid, 2.083 mg; manganese, 100.0 mg; iron, 80.0 mg; zinc, 80.0 mg; copper, 8.0 mg; iodine, 2.0 mg; cobalt, 500.0 mg; and selenium, 150.0 mg.

Data collection

Feed intake (FI) was recorded weekly, while feed conversion ratio (FCR, g feed/g egg) was computed as the amount of FI divided by the egg mass. Egg weight and egg number were recorded every day to calculate the egg yield or mass. Egg quality indices were measured using 3 eggs per replicate at the end of each month. Yolk, albumen, and shell percentages; thick of shell; USSW (unit surface shell weight), ESI (shape index of egg), and Haugh unit) were measured (Romanoff and Romanoff 1949).

Fertility and hatchability

At 12 and 16 weeks of age, 50 fertile eggs from each treatment were incubated. After hatching, hatched chicks were counted and non-hatched eggs were checked and broken to compute the fertility and hatchability percentages (Alagawany and Attia 2015).
Blood parameters

At 16 weeks of age, after slaughter, blood samples were randomly collected from five quail breeders per treatment into heparinised tubes. Blood samples were centrifuged (G force rate = 2146.56 × g) for 900 s. Plasma total protein (g/dL), globulin (g/dL), albumin (g/dL), aspartate transaminase (AST; IU/L), alanine transaminase (ALT; IU/L), lactate dehydrogenase (LDH, IU/L), creatinine (mg/dL), urea (mg/dL), total cholesterol (TC; mg/dL), triglyceride (TG; mg/dL), high-density lipoprotein (HDL) cholesterol (mg/dL), and low-density lipoprotein (LDL) cholesterol (mg/dL) levels were determined spectrophotometrically using commercial kits from Biodiagnostic Company (Giza, Egypt). The level of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), total antioxidant capacity (TAC), and malondialdehyde (MDA) were determined in plasma using commercial kits and a spectrophotometer (Shimadzu, Tokyo, Japan). The level of immunoglobulin G (IgG; mg/dL), A (IgA; mg/dL), and M (IgM; mg/dL) and lysozyme (mg/dL) also were measured using commercial kits.

Statistics

All of the statistical methods were carried out using the SAS (2001). All data (productive and reproductive performance, egg quality, liver and kidney functions, immunity, antioxidant indices, and lipid profile) were analysed with one-way ANOVA. Orthogonal polynomial contrasts (linear and quadratic) were used to test the significance of the different levels of dietary Aspergillus japonicas filtrate.

Results and discussion

Productive performance

Based on the results in Table 2, in general, supplemental A. japonicas filtrate in the diets of quail breeders led to significant differences in productive performance. Apart from the period from 12 to 16 weeks of age, the use of A. japonicas filtrate in quail breeders quadratically improved egg number and mass when compared to control. Also, use of Aspergillus japonicas filtrate quadratically improved feed conversion ratio when compared to control at all ages. On the same trend, the best values of egg weight were recorded with 3 or 4 ml/kg feed, which is in agreement with Fouladi et al. (2018) who stated that the rations containing acetic acid or lactic acid or butyric acid considerably increased feed conversion ratio, egg weight, egg mass, and egg production (p < .01). On the same context, the use of organic acid in quail diets improved egg weight, weight of first egg and age of laying 50% egg laying intensity when compared to control (Alrahawi 2019).

Quail breeders fed 2 and 3 ml A. japonicas filtrate-treated diets consumed less feed than the other diets (0, 1, or 4 ml) during 8–12 week-old (quadratic, p = .0001) and the overall period (quadratic, p = .0020). The reduction of feed consumption in the groups of 2 and 3 ml filtrate can be returned to the strong taste of the content of organic acids in A. japonicas filtrate.
which would have lowered the palatability of the diets, thereby lowered feed intake. During 8–12 and 8–16 week of age, the quail breeders fed diets enriched with *A. japonicas* filtrate achieved the best feed conversion ratio when compared to control. The 1 ml *A. japonicas* filtrate-treated quails were the best feed conversion ratio, the improvement in the conversion of feed in our study could be attributed to better nutrient absorption and utilisation resulting in enhanced productive performance in the birds fed organic acid-diets such as lactic, butyric, and fumaric acids (Adil et al. 2011).

In broiler chickens, consistent with the present data, Paul et al. (2007) observed a decrease in the consumption of feed of broilers fed 3 g/kg of organic acids; but, this level improved the performance indices. According to Chamba et al. (2014) greater feed conversion ratio were observed when birds fed 700 mg/kg of organic acids. The enhancement in the performance traits may be due to the addition of organic acid, because these feed additives increase the ability of the intestinal wall to absorb nutrients (proteins, carbohydrates, and minerals) (Nair and Kollanoor 2019).

Reproductive (fertility and hatchability)

The impact of *A. japonicas* filtrate on reproductive performance is illustrated in Table 3. Supplemental *A. japonicas* filtrate to the diets of quail breeders quadratically improved the fertility percentage during 12–16 and 8–16 week of age ($p = .0031$ and .0050, respectively), the best level was 2 ml/kg of filtrate. No significant effect ($p > .05$) of dietary *A. japonicas* product on the fertility and hatchability (8–12 week of age; Table 3). Addition of *A. japonicas* filtrate up to 2 ml/kg to quail diets quadratically improved the hatchability percentage by 19.49% when compared to control ($p = .0089$); but, the high levels of filtrate (4 ml/kg diet) were similar to the control groups during the production phase (12–16 week of age). Our results are confirmed by those obtained by researchers (Zanaty et al. 2001; Garcia et al. 2005; Mohamed and Bahnas 2009). This improvement in fertility percentage might be due to diets containing acetic acid and lactic acid (Yakout et al. 2004; Garcia et al. 2005; Mohamed and Bahnas 2009). Anyway, several studies have shown a strong correlation between sexual maturity and live body weight (Chan and Decker 1994). The results of the present study also reported that rations containing 1 and 2 ml of organic acids and other compounds produced by *A. japonicas* had the most impact on the increase in total serum protein and globulin, respectively. So, it can be concluded that the improvement in serum levels of these proteins, increased the protein concentrations secreted to the eggs of Japanese quail by the reproductive system resulting in high egg weight that could have high fertility impact (Garcia et al. 2005; Mohamed and Bahnas 2009).

Egg quality

The impact of *A. japonicas* filtrate on egg quality is illustrated in Table 4. No polynomial effect ($p > .05$) of dietary *A. japonicas* filtrate on the parameters of egg quality except yolk, shell, shell thickness, Haugh unit, and USSW. The addition of *A. japonicas* filtrate to quail diets reduced the shell percentage and shell thickness when compared to control (quadratic, $p < .0001$ or .0120, respectively); but increased the yolk percentage and Haugh unit, the best values (33.80 and 84.38) were observed by quails fed diet enriched with 1 and 2 ml/kg diet, respectively. Also, the value of USSW was linearly improved ($p = .0391$) with dietary supplementation of *A. japonicas* filtrate. These results partially agreed with Fouladi et al. (2018) who found that the rations diets contained acetic and butyric acids affected ($p < .01$) some egg quality parameters like eggshell weight, eggshell thickness and shell surface. Also, the use of organic acid (lactic acid 2.5 mg/kg diet) in quail diets improved ($p < .05$) yolk weight, albumen weight, height of yolk, height of albumen,

Table 3. Reproductive performance of laying Japanese quail as affected by *Aspergillus japonicas* filtrate.

Items	*A. japonicas* filtrate (ml/kg diet)	p Value						
	0	1	2	3	4	SEM	Linear	Quadratic
Fertility %								
8–12 week	81.35	87.25	92.68	83.20	82.01	3.705	.8286	.0726
12–16 week	78.33	88.73	93.33	86.19	81.27	2.800	.7269	.0031
Hatchability %								
8–12 week	79.84	87.99	93.00	84.70	81.64	2.563	.9723	.0050
12–16 week	76.11	88.73	90.95	81.43	76.67	2.209	.3986	.0002

Means in the same raw with no superscript letters after them or with a common superscript letter following them are not significantly different ($p < .05$). SEM: standard error mean.
egg length, shape index, and yolk diameter when compared to control (Alrahawi 2019). The enhancement in egg quality indices may be returned to increase the secretion of albumin from magnum so that the albumin weight and egg weight were increased (Alrahawi et al. 2019).

Blood parameters

Liver and kidney functions

As shown in Table 5, apart from plasma albumin, A/G ratio, AST and creatinine, there were significant influences on plasma total protein, globulin, ALT, LDH, and urea with the A. japonicas filtrate ($p < .05$). The quail breeders received A. japonicas filtrate had significantly higher total protein (linear, $p = .0081$) and globulin (linear, $p = .0220$). ALT ($p < .0001$), LDH ($p = .0002$), and urea ($p = .0041$ or .0017) levels were decreased with A. japonicas filtrate suplementations. Liver function data of the present study partially agreed with the results of Ahmad et al. (2018) who found that ALT and AST insignificantly affected by addition of organic acid ($p > .05$; 40 g citric/kg diet). There was no polynomial effect of dietary supplementation of organic acid mixture (5% citric acid, 70% propionic acid, and 25% soft acid) on the liver functions (ALT, AST, total protein, and albumin) of hens ($p > .05$) (Kaya et al. 2014).

Abdel-Fattah et al. (2008) stated that liver enzymes (AST and ALT), and total protein and its fractions were not adversely influenced by citric, acetic, and lactic acids at 1.5% and 3.0% in poultry rations.

Lipid profile

As shown in Table 6, there were polynomial influences on plasma lipid parameters with the A. japonicas filtrate. The use of A. japonicas filtrate in quail breeder’s diets tended to decline total cholesterol, triglyceride, LDL, and VLDL in plasma. But, there was no significant ($p = .1024$ or .2019) difference due to A. japonicas filtrate regarding HDL-cholesterol. Our results were supported by the data obtained by Kamal and Ragaa (2014) who found that the lowest values of lipid profile indices including total lipids, cholesterol, and LDL-cholesterol were observed by birds received diets enriched with organic acids. Furthermore, inclusion of organic acids in rations of birds lowered serum cholesterol, LDL, and total lipid (Youssef et al. 2017; Naveenkumar et al. 2018). On the same context, dietary inclusion of citric acid in the diets of quail reduced ($p < .001$) cholesterol, LDL-cholesterol, and VLDL-

Table 4. Internal and external egg quality of laying Japanese quail as affected by A. japonicas filtrate.

Items	Aspergillus japonicas filtrate (ml/kg diet)	SEM	Linear	Quadratic
	01234 Linear Quadratic			
Albumin %	53.94 54.00 53.75 54.85 54.40	0.735	.5539	.9675
Yolk %	31.50 33.8 33.30 32.12 31.85	0.648	.4471	.0025
Shell %	15.80 12.25 12.94	0.559	.6213	<.0001
Shell thickness	0.24 0.19 0.20	0.007	.1817	.0120
Egg shape index	77.59 79.82 80.68 77.99 76.65	1.208	.3927	.0544
Yolk index	44.76 50.03 50.23	1.490	.1845	.1165
Haugh unit	80.88 83.18 84.38	0.744	.6228	.0061
USSW	46.99 47.53 47.53	0.310	.0391	.6638

Means in the same raw with no superscript letters after them or with a common superscript letter following them are not significantly different ($p < .05$). SEM: standard error mean; USSW: unit surface shell weight (mg/cm²).

Table 5. Liver and kidney functions of laying Japanese quail as affected by A. japonicas filtrate.

Itemsa	Aspergillus japonicas filtrate (ml/kg diet)	SEM	Linear	Quadratic
	01234 Linear Quadratic			
TP (g/dL)	3.68 3.95 4.39 4.08 3.85	0.085	.0081	.1975
ALB (g/dL)	2.30 2.33 2.23 2.37 2.32	0.041	.3081	.5585
GLOB (g/dL)	1.38 1.62 2.16 1.71 1.53	0.114	.2200	.4013
A/G (%)	1.70 1.45 1.04 1.42 1.65	0.139	.0892	.0547
AST (IU/L)	239 185 231 183 222	1.664	.0097	.0635
ALT (IU/L)	20.42 6.70 10.79 10.91 14.87	1.259	.1295	<.0001
LDH (IU/L)	321 242 301 152 210	1.471	.0002	.3415
Creatinine (mg/dL)	0.59 0.57 0.51 0.47 0.52	0.037	.0647	.3174
Urea (mg/dL)	2.96 1.48 1.54 1.41 1.74	0.204	.0041	.0017

Means in the same raw with no superscript letters after them or with a common superscript letter following them are not significantly different ($p < .05$). SEM: standard error mean

aTP: total protein; Alb: albumin; GLOB: globulin; A/G: albumin/globulin ratio; AST: aspartate aminotransferase; ALT: alanine aminotransferase and LDH: lactate dehydrogenase.
cholesterol (Ahmad et al. 2018). Also, Fouladi et al. (2018) found that the groups containing acetic and butyric acids decreased the contents of triglyceride in quail serum during the production phase ($p < .05$).

Immunity
Apart from IgA and IgM levels, inclusion of *A. japonicas* filtrate in diets of quail breeders linearly ($p = .0001$) and quadratically ($p = .0018$) improved the immune parameters (IgG and lysozyme, respectively) (Table 7). These results confirm that organic acids play an important role in improving the immunity (Dibner and Buttin 2002). Also, our results are similar with the data obtained by Chowdhury et al. (2009) who found that supplementation of citric acid at 0.5% in broiler rations enhanced the immunity. Dietary inclusion of organic acids positively affects the immune responses (Dibner and Buttin 2002; Abdel-Fattah et al. 2008). In line, there was a linear increase in the content of IgG of broiler due to the use of organic acid mixture (Nguyen et al. 2018). The enhancement in immunological indices can be supported by the results of Yang et al. (2018) who observed an improvement in the spleen size in birds that received 0.30 g/kg of organic acids plus thymol. On the other hand, the level of IgA of ileal mucosa was higher in the diets of organic acids (Liu et al. 2017).

Antioxidant parameters
In Table 7, there were polynomial differences among the treatments regarding the antioxidant indices ($p < .05$) except the level of reduced glutathione ($p = .2259$ or .3128). The activity of SOD ($p = .0128$ or .0102), CAT ($p = .0152$) and TAC ($p < .0001$) was higher in *A. japonicas* filtrate groups than the control. Plasma MDA was linearly decreased ($p = .0027$) in the quail fed *A. japonicas* filtrate when compared to the un-supplemented group. Our results regarding the antioxidant indices agreed with the outputs of Ahmad et al. (2018) who found that the antioxidant enzyme of GPX was higher in acidified group. Contrarily, no significant alterations were observed in TAC for birds fed organic acid rations than control (Abudabos et al. 2017).

Conclusions
From these results, it could be proposed that supplements with *A. japonicas* filtrate (oxalic acid, citric acid, lactic acid, ascorbic acid, maleic acid, formic acid, and salicylic acid) could improve productive and

Table 6. Lipid profile of laying Japanese quail as affected by *A. japonicas* filtrate.

Items	0	1	2	3	4	SEM	Linear	Quadratic
TC (mg/dL)	400	244	284	285	267	11.95	.0001	.0004
TG (mg/dL)	1258	917	932	820	924	32.57	<.0001	<.0001
HDL (mg/dL)	13.68	23.80	26.99	19.20	23.35	2.646	.0111	.0008
LDL (mg/dL)	135.21	37.54	70.90	108.90	59.13	5.557	.0001	.0001
VLDL (mg/dL)	251	183	186	164	184	6.515	<.0001	<.0001

Means in the same raw with no superscript letters after them or with a common superscript letter following them are not significantly different ($p < .05$). SEM: standard error mean.

Table 7. Antioxidant and immunological indices of laying Japanese quail as affected by *Aspergillus japonicas* filtrate.

Items	0	1	2	3	4	SEM	Linear	Quadratic
IgM (mg/dL)	0.32	0.52	0.35	0.33	0.49	0.030	.1326	.6091
IgG (mg/dL)	0.42	0.52	0.55	0.77	0.65	0.034	.0001	.0778
IgA (mg/dL)	0.32	0.32	0.38	0.40	0.32	0.047	.6500	.2986
Lysozyme (mg/dL)	0.11	0.22	0.20	0.21	0.14	0.019	.4438	.0018
SOD (U/mL)	0.10	0.23	0.20	0.18	0.21	0.016	.0128	.0102
MDA (nmol/mL)	0.08	0.29	0.23	0.42	0.23	0.027	.0027	.0512
TAC	0.10	0.26	0.24	0.18	0.19	0.013	.0526	<.0001
CAT (ng/mL)	0.10	0.14	0.19	0.18	0.21	0.027	.0152	.4747
GSH (ng/mL)	0.13	0.14	0.22	0.16	0.18	0.031	.2259	.3128

Means in the same raw with no superscript letters after them or with a common superscript letter following them are not significantly different ($p < .05$). SEM: standard error mean.

| IgG, IgM and IgA: immunoglobulin G, M and A; SOD: superoxide dismutase; MDA: malondialdehyde; TAC: total antioxidant capacity; CAT: catalase; GSH: reduced glutathione. |
reproductive performance, lipid profile, immunity, and antioxidant indices of quail breeders.

Ethical approval

Animal care and maintenance were performed in accordance with the guidelines of the Egyptian Research Ethics Committee and the guidelines specified in the Guide for the Care and Use of Laboratory Animals (2011).

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Mahmoud Alagawany http://orcid.org/0000-0002-8020-0971
Fayiz M. Reda http://orcid.org/0000-0002-2014-3418

References

Abd El-Hack ME, Alagawany M, Shaheen H, Samak D, Othman SI, Allam AA, Taha AE, Khafaga AF, Arif M, Osman A, et al. 2020. Ginger and its derivatives as promising alternatives to antibiotics in poultry feed. Animals. 10(3): 452.

Abdel-Fattah SA, El-Sanhoury MH, El-Mednay NM, Abdel-Azeem F. 2008. Thyroid activity, some blood constituents, organs morphology and performance of broiler chicks fed supplemental organic acids. Int J Poult Sci. 7(3):215–222.

Abdel-Latif EA, Ibrahim ZA, Reda FM, Alagawany M. 2020. Effect of Aspergillus japonicas culture filtrate on performance, carcass yield, digestive enzymes, intestinal microbiota and blood constituents of quail. Italian J Anim Sci. 19:896–904.

Abudabos AM, Alyemni AH, Dafalla YM, Al-Owaimer AN. 2017. Effect of organic acid blend and bacillus subtilis on growth, blood metabolites and antioxidant status in finishing broilers challenged with clostridium perfringens. J Anim Plant Sci. 27(4):1101–1107.

Adil S, Banday MT, Bhat GA, Qureshi SD, Wani SA. 2011. Effect of supplemental organic acids on growth performance and gut microbial population of broiler chicken. Livestock Res Rural Dev. 23(1).

Ahmad EAM, Abdel-Kader IA, Abdel-Wahab AA. 2018. Organic acids as potential alternate for antibiotic as growth promoter in Japanese quail. Egypt Poult Sci. 38: 359–373.

Alagawany M, Abd El-Hack ME, Farag MR, Shaheen HM, Abdel-Latif MA, Noreldin AE, Khafaga AF. 2020a. The applications of Origanum vulgare and its derivatives in human, ruminant and fish nutrition – a review. Ann Anim Sci. 3:73–84.

Alagawany M, Abd El-Hack ME, Farag MR. 2018a. Nutritional strategies to produce organic and healthy poultry products. In: Negm A., Abu-hashim M. (eds) Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry, vol 77. Springer, Cham. https://doi.org/10.1007/698_2018_289

Alagawany M, Attia AI. 2015. Effects of feeding sugar beet pulp and avizyme supplementation on performance, egg quality, nutrient digestion and nitrogen balance of laying Japanese quail. Avian Biol Res. 8(2):79–88.

Alagawany M, Elners SS, Farag MR, Abd El-Hack ME, Khafaga AF, Taha AE, Tiwari R, Yatoo MI, Bhatt P, Marappan G, et al. 2019a. Use of Licorice (Glycyrrhiza glabra) herb as a feed additive in poultry: current knowledge and prospects. Animals. 9(8):536.

Alagawany M, Elners SS, Farag MR. 2018c. The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iranian J Vet Res. 19(3): 157–164.

Alagawany M, Elners SS, Farag MR. 2019b. Use of liquorice (Glycyrrhiza glabra) in poultry nutrition: global impacts on performance, carcass and meat quality. World Poult Sci J. 75:293–304.

Alagawany M, Farag MR, Abdelnour SA, Elners SS. 2020b. A review on the beneficial effect of thymol on health and production of fish. Rev Aquac. doi: https://doi.org/10.1111/raq.12490

Alagawany M, Farag MR, Dhama K, Patra A. 2018b. A review on nutritional significance and health benefits of designer eggs. World Poult Sci J. 74(2):317–330.

Alagawany M, Farag MR, Salah AS, Mahmoud MA. 2020c. The role of oregano herb and its derivatives as immunomodulators in fish. Rev Aquac. doi: https://doi.org/10.1111/raq.12453

Alagawany M, Nasr M, Al-Abdullatif A, Alhotan RA, Azzam MMM, Reda FM. 2020d. Impact of dietary cold-pressed chia oil on growth, blood chemistry, hematology, and antioxidant and immunity status of growing Japanese quail. Italian J Anim Sci. 19:896–904.

Alrahawi GAM. 2019. Effect of adding organic acid to diet in some egg quality and intestinal environment for quail. Mesopotamia J Agric. 47(2):119–127.

Chamba F, Puyalto M, Ortiz A, Torrealba H, Mallo J, Riboty R. 2014. Effect of partially protected sodium butyrate on performance, digestive organs, intestinal villi and e. coli development in broilers chickens. Int J Poult Sci. 13(7): 390–396.

Chan KM, Decker EA. 1994. Endogenous skeletal muscle antioxidants. Crit Rev Food Sci Nutr. 34(4):403–426.

Chowdhury R, Islam KMS, Khan MJ, Karim MR, Haque MN, Khutan M, Pesti GM. 2009. Effect of citric acid, avilamycin, and their combination on the performance, tibia ash, and immune status of broilers. Poult Sci. 88(8):1616–1622.

Coban HB, Demirci A. 2017. Phytase as a diet ingredient: from microbial production to its applications in food and feed industry. Microb Prod Food Ingred Add. 2017:33–55.

Dibner JJ, Buttin P. 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poult Res. 11(4):453–463.

Fouldai P, Ebrahimnezhad Y, Aghdad Shahryar H, Maheri N, Ahmadzadeh A. 2018. Effects of organic acids supplement on performance, egg traits, blood serum biochemical parameters and gut microflora in female Japanese quail (Coturnixcoturnix japonica). Rev Bras Cienc Avic. 20(1): 133–144.
Garcia EA, Mendes AA, Pizzolante CC, Saldanha ESPB, Moreira J, Mori C, Pavan AC. 2005. Protein, methioni- ne + cysteine and lysine levels for Japanese quails during the production phase. Rev Bras Cienc Avic. 7(1):11–18.

Gowda V, Shivakumar S. 2019. Novel biocontrol agents: short chain fatty acids and more recently, polyhydroxyalkanoates. In: Biotechnological applications of polyhydroxyal- kanoates. Singapore: Springer; p. 323–345.

Hajiajaphour M, Rezaeiour P. 2018. Comparison of two herbal essential oils, probiotic, and mannan-oligosaccharides on egg production, hatchability, serum metabolites, intestinal morphology, and microbiota activity of quail breeders. Livest Sci. 210:93–98.

Hazrati S, Rezaeiour P, Asadzadeh S. 2020. Effects of phyto- genic feed additives, probiotic and mannan-oligosaccharides on performance, blood metabolites, meat quality, intestinal morphology, and microbial population of Japanese quail. Br Poult Sci. 61(2):132–139.

Islam K. 2012. Use of citric acid in broiler diets. World’s Poult Sci J. 68(1):104–118.

Ismail IE, Alagawany M, Taha AE, Puvaca N, Laudadio V, Tufarelli V. 2020. Effect of dietary supplementation of gar- lic powder and phenyl acetic acid on productive perform- ance, blood haematology, immunity and antioxidant status of broiler chickens. Asian-Australas J Anim Sci. doi: https://doi.org/10.5713/ajas.20.0140

Kamal AM, Ragaa NM. 2014. Effect of dietary supplementa- tion of organic acids on performance and serum biochem- istry of broiler chicken. Nat Sci. 12(2):38–45.

Kaya H, Kaya A, Gül M, Çelebi Ş, Timurkaan S, Apaydin B. 2014. Effects of supplementation of different levels of organic acids mixture to the diet on performance, egg quality parameters, serum traits and histological criteria of laying hens. Eur Poult Sci. 78:1–12.

Kil DY, Kwon WB, Kim BG. 2011. Dietary acidifiers in wean- ling pig diets: a review. Rev Colomb Cienc Pecu. 24: 231–247.

Liu Y, Yang X, Xin H, Chen S, Yang C, Duan Y, Yang X. 2017. Effects of a protected inclusion of organic acids and essential oils as antibiotic growth promoter alternative on growth performance, intestinal morphology and gut microflora in broilers. Anim Sci J. 88(9):1414–1424.

Maller A, Vici AC, Facchini FDA, da Silva TM, Kamimura ES, Rodrigues MI, Jorge JA, Terenzi HF, de Lourdes Teixeira de Moraes Poliz M. 2014. Increase of the phytose production by Aspergillus japonicus and its biocatalyst potential on chicken feed treatment. J Basic Microbiol. 54(51): S152–S160.

Mohamed LA, El-Hindawy MM, Alagawany M, Salah AS, El- Sayed SA. 2019. Effect of low- or high-CP diet with cold- pressed oil supplementation on growth, immunity and antioxidative indices of growing quail. J Anim Physiol Anim Nutr. 103(5):1380–1387.

Mohamed S, Bahnas S. 2009. Effect of using malic acid on performance of Japanese quail fed optimal and sub-opti- mal energy and protein levels. J Poult Sci. 29(1):263–286.

Nabi F, Arain MA, Hassan F, Umar M, Rajput N, Alagawany M, Syed S, Soomro J, Somroo F, Liu J. 2020. Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. World Poult Sci J. https://doi.org/10.1080/00439339.2020.1789535.

Nair DVT, Kollanoor JA. 2019. Salmonella in poultry meat production. In: Venkitanarayanan K, Thakur S, Ricke S, editors. Food safety in poultry meat production. Food microbiology and food safety. Cham: Springer.

Naveen Kumar S, Karthikeyan N, Narendra Babu R, Veeramani P, Sivarama Krishnani S, Srinivasan G. 2018. Effect of cal- cium propionate and coated sodium butyrate as an alter- native to antibiotic growth promoters on the serum profile of commercial broiler chicken. Int J Chem Stud. 6(1):36–39.

Nguyen DH, Lee KY, Mohammadighieiar M, Kim IH. 2018. Evaluation of the blend of organic acids and medium- chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poult Sci. 97(12):4351–4358.

NRC. National Research council. 1994. Nutrient requirements of poultry. Washington, DC: National Academic Press.

Paul S, Halder G, Mondal M, Samanta G. 2007. Effect of organic acid salt on the performance and gut health of broiler chicken. J Poult Sci. 44(4):389–395.

Pearlin BV, Muthuvel S, Govidasmmy P, Villavan M, Alagawany M, Farag MR, Dharma K, Marappan G. 2020. Role of acidifiers in livestock nutrition and health: a review. J Anim Physiol Anim Nutr (Berl). 104(2):558–569.

Reda FM, El-Saadony MT, Elness SS, Alagawany M, Tufarelli V. 2020. Effect of dietary supplementation of biological cur- cumin nanoparticles on growth and carcass traits, antioxi- dant status, immunity and caecal microbiota of Japanese quails. Animals. 10(5):754.

Romanoff AL, Romanoff AJ. 1949. Avian egg. New York: Johan Wiley and Sons, Inc.; p. 1–918.

Ruhinke I, Röhe I, Goedarzi Boroojieni F, Knorr F, Mader A, Hafeez A, Zentek J. 2015. Feed supplemented with organic acids does not affect starch digestibility, nor intesti- nal absorptive or secretory function in broiler chickens. J Anim Physiol Anim Nutr. 99:29–35.

Sahas AS, Ahmed-Farid OA, El-Tarabany MS. 2019. Carcass yields, muscle amino acid and fatty acid profiles, and anti- oxidant indices of broilers supplemented with symbiotic and/or organic acids. J Anim Physiol Anim Nutr (Berl). 103(1):41–52.

SAS. 2001. SAS user’s guide. Release 8.2. SAS Institute INC. CARY, NC.

Yakout HM, Omra ME, Marie Y, Hassan H. 2004. Effect of incorporating growth promoters and different dietary pro- tein levels into Mandaralhens layers diets. Egypt Poult Sci J. 24:977–994.

Yang X, Xin H, Yang C, Yang X. 2018. Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Anim Nutr. 4(4):388–393.

Youssef IM, Mostafa AS, Abdel-Wahab MA. 2017. Effects of dietary inclusion of probiotics and organic acids on per- formance, intestinal microbiology, serum biochemistry and carcass traits of broiler chickens. J World Poult Res. 7(2):57–71.

Zanaty GA, Rady AS, Abou-Ashour AM, Abdou FH. 2001. Productive performance of Norfa chickens as affected by dietary protein level, brooding system and season. Egypt Poult Sci J. 21:237–254.