Implementation of the extraction method for the separation of Fe\(^{3+}\) and Ni\(^{2+}\) ions on cascade of mixing-settling extractors

Milevskii N.A., Klychevskikh Y.A., Solov’ev V.O., Zinov’eva I.V., Fedorova M.I.

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Russia, 117901, Moscow, Leninskii prosp., 31
milevskynikita@gmail.com

Abstract. Extraction processes are one of the most efficient methods of purification and separation of compounds. However, laboratory-developed methods commonly are not a complete technique that can be applied to the real manufacturing process with its extraction equipment. The extraction method for the separation of Fe\(^{3+}\) and Ni\(^{2+}\) ions using hydrochloric acid solution on a cascade of mixing-settling extractors has been determined. The extraction scheme chosen provides high efficiency of a cascade by using liquid pseudomembranes (LPM). Besides its extraction scheme simplicity, the LPM method is more economically beneficial compared to classical extraction methods. The process includes stages of Fe\(^{3+}\) ions extraction into the feed, followed by reextraction into the water and the feed purification for reusing it later on. The consumption of solvents and the stirring speed for the stable and efficient cascade work have been optimized. The described process is a complete technological solution for recycling processed battery waste.

Keywords: extraction, separation, reextraction, liquid pseudomembranes, tributylphosphate, Ni-MH batteries

1. Introduction

Compared to other separation methods, extraction processes have a number of significant advantages. To date plenty of fundamental studies demonstrating possibilities for applying extraction to such processes as a removal of organic compounds [1-3] and mineral acids [4] in industrial waste or radiochemical [5, 6] and rare earth metal [7, 8] productions have been carried out. At the moment there are some main directions of a modern extraction technologies development. Voshkin et al. have conducted researches on the new extraction systems, e.g., aqueous two-phase systems (ATPS) [9-11] that are able to reduce an environmental impact of metal ions separation processes [12-14]. New, more efficient extractants and their extraction mechanisms [15, 16] are being studied as well. There are a continuing development and perfecting of extraction equipment corresponding to the modern production processes requirements [17].

Extraction processes provide a solution to the important problem of electronic [18] and chemical current sources waste [19] separation and recycling. A growing amount of nickel metal hydride (NiMH) battery waste has attracted attention of many researches as it contains highly valuable metals such as Al,
Ni, Co, Fe, Zn [20, 21]. In this case classical separation methods using tributylphosphate (TBP) as an extractant [23, 24] are in favor since construction of mass-produced extraction equipment is made for more hydrodynamically stable systems that can be easily stripped.

At the moment different methods and technologies for extraction processes efficiency increase gain more popularity, e.g., Gradov and colleagues’ [25-27] studies show an expediency of ultrasound usage for extraction intensification. However, application of new methods often requires an acquisition of equipment with a new construction [28], which is both technologically and financially undesirable. Relatively new extraction method using LPM [29] lacks these disadvantages since it can be realized on a cascade of mixer-settlers that can be easily acquired commercially and have an affordable price.

The LPM method falls into the range of contactless interphase mass transfer processes and currently is being actively developed as an efficient technic for extraction, separation and purification of compounds [30]. Mass exchange between two or more liquid phases takes place as components transfer from one phase into another via an exchange medium. The benefits of the LPM method are the usage of a finite amount of the exchange medium and increased extraction effectiveness in comparison to classical extraction schemes for mixer-settler cascades.

Therefore, the aim of this study is to model and carry out the LPM method of separation of the solution containing Fe³⁺ and Ni²⁺ ions in amounts close to their concentrations in the leaching solution of Ni-MH batteries [31].

2. Experimental

2.1 Research materials

The standardized solution was prepared by dissolving the precise weights of FeCl₃ · 6 H₂O, NiCl₂ · 6 H₂O with the qualification of “chemical grade” in distilled water suspended on an analytical balance (AND HR-100AZ) following by addition of the precise volume of hydrochloric acid with the qualification of “chemical grade”.

The extractant was prepared by mixing 20 vol% of 1-octanol, 30 vol% of kerosene and 50 vol% of TBP with the qualification of “chemical grade”. Distilled water acts as the reextractant.

2.2 Research method

Modelling of a and b extraction schemes which are a combination of the LPM method and the countercurrent flow extraction has been carried out using following formulas (1), (2), (3) derivation of which is thoroughly reviewed in the paper [32]:

\[c_i = \frac{1}{D_i \cdot n} \] \hspace{1cm} (1)
\[\phi_i = 1 - \frac{c_i^O}{1 - c_i^O} \] \hspace{1cm} (2)
\[C_{ir} = C_i - \phi_i \cdot c_i \] \hspace{1cm} (3)

where \(V \) and \(O \) are the volumetric flow rates of the aqueous and organic phases respectively, \(D_i \) is the equilibrium distribution coefficient for the \(i \)th component, \(c_i \) is the extraction factor of the \(i \)th component, \(\phi_i \) is the recovery of the \(i \)th component in the extractant, \(C_o \) is the concentration of the \(i \)th component in the raffinate in the extraction and stripping, \(C_i \) is the concentration of the \(i \)th component in aqueous phase, \(n \) is the number of extractors.

Modelling of the LPM method extraction scheme c has been carried out using formulas (4), (5) derivation of which is thoroughly reviewed in Kostanyans’ study [30]:

\[F_i = \frac{v_i}{w \cdot m_i} \] \hspace{1cm} (4)
\[x''_1 = x'_1 \cdot \frac{1 - F_1 \cdot F_2}{\left[\frac{1 + F_1}{(1 + F_2) \cdot F_1}\right]^m - F_1 \cdot F_2} \] \hspace{1cm} (5)
where F_1 and F_2 are the mass-exchange factors in the extraction and stripping, respectively, v_1, v_2 and w are the volumetric flow rates of the phases, m_i is the equilibrium distribution coefficient for the ith component, x_i' is the concentration of the ith component in the raffinate or the reextractant.

Effectiveness evaluation was conducted using mole fraction (χ) calculated by the formula (6):

$$\chi_1 = \frac{x_1'}{x_1'' + x_2''}, \quad (6)$$

A cascade of LEU-12-1.0 mixer-settlers produced by GK “Rusredmet” was used as an extraction apparatus. Each extractor has a volume of 300 ml. Figure 1 shows flow sheets of a, b and c extraction schemes.

![Figure 1. Flow sheets of a, b and c extraction schemes.](image)

Aqueous phases flows were realized by peristaltic pumps with YZ2515x nozzles produced by Shenchen Pump, volumetric flow rates of the phases are of 0.5 liters per hour. Rotation frequency of turbine stirrers has been issued at 700 rpm (the power supply unit operating voltage is 8V).

Raffinate and reextractant samples have been collected three times after achieving hydrodynamical equilibrium, the obtained values have been averaged.

Metal ions concentrations in the feed solutions and in the aqueous phases after extraction were determined spectrophotometrically. For Fe(III) determination sulfosalicylic acid was used, the absorption maximum was at 420 nm. Nickel forms a complex with 4-(2-pyridylazo)resorcinol which has the absorption maximum at 492 nm. Optical density values were determined using Cary-60 (Agilent Tech.) spectrophotometer and quartz cuvettes $l = 10$ mm.

The presented experimental data is the result of a series of experiments and was processed by methods of mathematical statistics.

3. Results and discussion

The obtained data demonstrates efficient separation of hydrochloric acid solution containing nickel and iron chlorides using different extraction schemes. The results of the modelling correspond with the results of the experiment and confirm the LPM method to be more efficient than classical extraction scheme.

Table 1 and table 2 display the raffinate and reextractant compositions respectively obtained by calculation and by experiment. The experimental data validates the theoretical calculations of all extraction schemes which confirms the efficiency of calculation methods usage for technological processes designing.

Table 1 shows the results demonstrating a decrease of the mole fraction of iron ions in the raffinate from 0.256 to 0.122 in the transition from scheme a to scheme b due to the addition of two mixer-settlers to the scheme b. However, a decrease of the mole fraction from 0.122 to 0.082 can be observed in the transition from scheme b to scheme c despite the same number of extractors used which demonstrates the efficiency of the LPM method.
Table 1. Raffinate composition.

	С(Ni$^{2+}$), mol/l	С(Fe$^{3+}$), mol/l	χ(Fe$^{3+}$)
Calculation			
Scheme a	0.174	0.0524	0.256
Scheme b	0.168	0.0193	0.122
Scheme c	0.197	0.017	0.082

Experiment	0.1686	0.058	
	0.1589	0.022	
	0.1958	0.0176	

Table 2 also demonstrates an increase of the mole fraction of iron ions $\chi(\text{Fe}^{3+})$ from 0.859 to 0.966 with the LPM method usage.

Table 2. Reextractant composition.

	С(Ni$^{2+}$), mol/l	С(Fe$^{3+}$), mol/l	χ(Fe$^{3+}$)
Calculation			
Scheme a	0.022	0.124	0.859
Scheme b	0.0337	0.179	0.837
Scheme c	0.01	0.31	0.966

Experiment	0.018	0.11	
	0.0297	0.152	
	0.011	0.314	

4. Conclusion

In this study quantitative characteristics of iron and nickel ions extraction from the standardized solution using different extraction schemes were obtained. The efficiency of the LPM method compared to the countercurrent flow extraction is demonstrated both experimentally and theoretically. The benefits of the LPM method are that it can be easily carried out and does not require additional equipment or sophistication of technological process unlike countercurrent flow extraction. Moreover, the extractant in the LPM method is not removed from extraction cascade which is cost-effective. Therefore, the LPM method can be used as a complete technological scheme, for example for separation of the components of leach solutions.

References

[1] Sulaiman R, Adeyemi I, Abraham S R, Hasan S W and AlNashef I M 2019 Liquid-liquid extraction of chlorophenols from wastewater using hydrophobic ionic liquids J. Mol. Liq. 294 111680
[2] Zakhodyayeva Y A, Voshkin A A, Belova V V, Kostanyan A E and Khol’kin A I 2010 Extraction of lactic acid from technological (concentrated) solutions Theor. Found. of Chem. Eng. 44 782–3
[3] Zakhodyaeva Y A, Solov’ev V O, Zinov’eva I V, Rudakov D G, Timoshenko A V and Voshkin A A 2019 Theor. Found. of Chem. Eng. 53 550–5
[4] Belova V V, Kulichenkov S A, Voshkin A A, Khol’kin A I, Kuvaeva Z I and Soldatov V S 2007 Extraction of mineral acids with methyltriocylammonium dinonylnaphthalenesulfonate Russ. J. Inorg. Chem. 52 3 460–4
[5] Belova V V, Egorova N S, Voshkin A A and Khol’kin A I 2015 Extraction of rare earth metals, uranium, and thorium from nitrate solutions by binary extractants Theor. Found. of Chem. Eng. 49 4 545–9
[6] Egorova N S, Belova V V, Voshkin A A, Khol’kin A I, Pyartman A K and Keskinov V A 2008 Extraction of Uranil Nitrate with a Binary Extractant Based on Di(2,4,4-trimethylpentyl)phosphinic Acid Theor. Found. of Chem. Eng. 42 708–13
[7] Belova V V, Voshkin A A, Khol’kin A I and Payrtman A K 2009 Solvent extraction of some lanthanides from chloride and nitrate solutions by binary extractants Hydrometallurgy 97 3–4 198–203
[8] Belova V V, Voshkin A A, Egorova N S and Khol’kin A I 2012 Solvent extraction of rare earth metals from nitrate solutions with di(2,4,4-trimethylpentyl)phosphinate of methyltriocylammonium J. Mol. Liq. 172 144–6
[9] Voshkin A A, Zakhodyaeva Y A, Zinov’eva I V and Shkinev V M 2018 Interphase Distribution of Aromatic Acids in the Polyethylene Glycol–Sodium Sulfate–Water System. Theor. Found.
[10] Zakhodyaeva Y A, Rudakov D G, Solov'ev V O, Voshkin A A and Timoshenko A V 2019 Liquid-Liquid Equilibrium of Aqueous Two-Phase System Composed of Poly(Ethylene Oxide) 1500 and Sodium Nitrate J. Chem. Eng. Data 64 3 1250–5
[11] Zakhodyaeva Y A, Rudakov D G, Solov'ev V O, Voshkin A A and Timoshenko A V 2019 Liquid–Liquid Equilibrium in an Extraction System Based on Polyvinylpyrrolidone-3500 and Sodium Nitrate Theor Found Chem Eng 53 159–65
[12] Fedorova M I, Zinov’eva I V, Zakhodyaeva Y A and Voshkin A A 2020 Extraction of Fe(III), Zn(II), and Mn(II) Using a System with a Green Solvent for Trioctylmethylammonium Thiocyanate Theor. Found. Chem. Eng. 54 2 313–8
[13] Zakhodyaeva Y A, Zinovyeva I V, Tokar E S and Voshkin A A 2019 Complex extraction of metals in an aequous two-phase system based on poly(ethylene oxide) 1500 and sodium nitrate Molecules 24 4078
[14] Zakhodyaeva Y A, Zinov’eva I V and Voshkin A A 2019 Extraction of Iron(III) Chloride Complexes Using the Polypropylene Glycol 425–NaCl–H2O System Theor. Found. Chem. Eng. 53 735–40
[15] Guor-Tzo Wei, Zusing Yang and Chao-Jung Chen 2003 Room Temperature Ionic Liquid as a Novel Medium for Liquid/liquid Extraction of Metal Ions Anal. Chim. Acta 488 183–92
[16] Belova V V, Voshkin A A, Egorova N S and Kholl'kin A I 2010 Extraction of rare earth metals from nitrate solutions with a binary extractant based on Cyan 272 Russ. J. Inorg. Chem. 55 4 629–33
[17] Voshkin A A, Kodin N V and Kostanyan A E 2010 Column miniextractors with a vibrating nozzle Theor. Found. Chem. Eng. 44 616–8
[18] Khaqan A, Rhamdhani M A, Brooks G and Masood S 2014 Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective Resources 3 152–79.
[19] Zakhodyaeva Y A, Izyumova K V, Solov’eva M S and Voshkin A A 2017 Extraction Separation of the Components of Leach Liquors of Batteries Theor. Found. Chem. Eng. 51 5 883–7
[20] Zhang L and Xu Z 2016 A Review of Current Progress of Recycling Technologies for Metals from Waste Electrical and Electronic Equipment J. Clean. Prod. 127 19-36.
[21] Carla Lupi and Daniela Pilone 2002 Ni–MH spent batteries: a raw material to produce Ni–Co alloys Waste Manage. 22 871–4
[22] Daniela da Silveira Leite, Pablo Luis Gutierrez Carvalho, Leandro Rodrigues de Lemos, Aparecida Barbosa Mageste and Guilherme Dias Rodrigues 2017 Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems Hydrometallurgy 169 245–52
[23] Xintao Yi, Guangsheng Huo and Wei Tang 2020 Removal of Fe(III) from Ni-Co-Fe chloride solutions using solvent extraction with TBP Hydrometallurgy 192
[24] Chiraz Z, Rafik T, Mourad B and Mahmoud D 2010 Liquid–liquid extraction and transport across supported liquid membrane of phenol using tributyl phosphate J. Membr. Sci. 360 334–40
[25] Gradov O M, Zakhdoyaeva Y A and Voshkin A A 2018 Breakup of immiscible liquids at the interface using high-power acoustic pulses Chem Eng Process 131 125–30
[26] Gradov O M, Voshkin A A and Zakhdoyaeva Y A 2017 Estimating the parameters of ultrasonically induced mass transfer and flow of liquids in the pseudomembrane method Chem Eng Process 118 54–61
[27] Gradov O M, Zakhdoyaeva Y A, Zinov’eva I V and Voshkin A A 2019 Some Features of the Ultrasonic Liquid Extraction of Metal Ions Molecules 24 3549
[28] Voshkin A A, Kodin N V, Kondakov D F and Kostanyan A E 2010 Study of metal extraction in high-frequency vibration mini-columns Russ. J. Inorg. Chem. 55 794–7
[29] Zhong-Mao Gu 1990 A new liquid membrane technology — electrostatic pseudo liquid membrane J. Membr. Sci. 52 77–88
[30] Kostanyan A E, Egorova N S, Voshkin A A and Zonov S S 2008 Extraction of uranyl, ytterbium, and lanthanum nitrates in a three-compartment multiphase extractor Theor. Found. Chem. Eng. 42 718–23
[31] Larsson K, Ekberg C and Ødegaard-Jensen A 2013 Dissolution and characterization of HEV
NiMH batteries *Waste Manage.* 33(3) 689–98
[32] Robert E. Treybal 1951, Liquid Extraction, McGraw Hill Book Company Inc.

Acknowledgments
This work was supported by IGIC RAS state assignment.