Original Article

The role of simulation-based training in healthcare-associated infection (HAI) prevention

Minji Kang MD1,3 , Madhuri B. Nagaraj MD, MS2 , Krystle K. Campbell MS2, Ian A. Nazareno BFA2, Daniel J. Scott MD2, Doramarie Arocha PhD3 and Julie B. Trivedi MD1,3

Abstract

Objectives: To perform a review of the literature on the role of simulation-based training (SBT) in healthcare-associated infection (HAI) prevention and to highlight the importance of SBT as an educational tool in infection prevention.

Methods: We reviewed English language publications from PubMed to select original articles that utilized SBT as the primary mode of education for infection prevention efforts in acute-care hospitals.

Results: Overall, 27 publications utilized SBT as primary mode of education for HAI prevention in acute-care hospitals. Training included the following: hand hygiene in 3 studies (11%), standard precaution in 1 study (4%), disaster preparedness in 4 studies (15%), central-line–associated blood stream infection (CLABSI) prevention in 14 studies (52%), catheter-associated urinary tract infection (CAUTI) prevention in 2 studies (7%), surgical site infection prevention in 2 studies (7%), and ventilatory associated pneumonia prevention in 1 study (4%). SBT improved learner’s sense of competence and confidence, increased knowledge and compliance in infection prevention measures, decreased HAI rates, and reduced healthcare costs.

Conclusion: SBT can function as a teaching tool in day-to-day infection prevention efforts as well as in disaster preparedness. SBT is underutilized in infection prevention but can serve as a crucial educational tool.

(Received 26 October 2021; accepted 8 December 2021)

Simulation-based training (SBT) utilizes artificial representation of real-world processes to allow for learning with approximation of practice. It is an educational technique, not a technology, that facilitates learning through immersion, reflection, feedback, and practice in a controlled environment with minimal risk to patients. The Institute of Medicine’s “To err is human” highlighted medical errors and their consequences, emphasizing the need for patient safety through the design of a safer health system.1 Common root causes of preventable medical errors were communication breakdowns, faulty systems of care, lack of standardization in practice, and insufficient knowledge.1,2 By allowing practice in a realistic and interactive setting with minimal risk to patients, SBT can help minimize medical errors by acquiring clinical skills through practice, improving communication skills, defining team structures, and refining protocols.3,4

According to the Centers for Disease Control and Prevention (CDC), 1 in 31 hospitalized patients developed at least 1 healthcare-associated infection (HAI) in 2018.5 Most HAIs are related to invasive devices or procedures: catheter-associated urinary tract infection (CAUTI), central-line–associated bloodstream infection (CLABSI), surgical site infection (SSI), and ventilator-associated pneumonia (VAP). Evidence-based prevention strategies can reduce HAIs but are insufficiently implemented. Education is a key component of infection prevention efforts and traditional methods of teaching include lectures, videos, and fact sheets with some opportunities for hands-on practice.6 With growing recognition of SBT in healthcare education, SBT can also be used as an important adjunct to traditional teaching and assessment methods in infection prevention. In this study, we performed a focused literature review on the use of SBT in HAI prevention and highlight the importance of SBT as an educational tool in infection prevention.

Methods

We reviewed English language publications from PubMed using combinations of keywords “simulation,” “infection prevention,” “healthcare-acquired infections,” and “disaster preparedness.” From this, we selected original articles that utilized SBT as the primary mode of education for infection prevention efforts in acute care hospitals. We defined simulation as the mode of training that utilized imitation or representation of one act or system by
Infection Prevention Measure	Trainer	Learner	Training	Outcome	Reference	
General						
Hand Hygiene	Critical care physicians, hygienist nurses	Second- and third-year medical students	Application of fluorescent alcohol-based hand rub under UV-C	Improvement in complete application of alcohol hand rub	Dray et al⁷	
Does not specify	Residents, nurses, nursing assistants				Ghazali et al⁸	
Chief nurses	Healthcare workers				Lehotsky et al⁹	
Standard precautions	Does not specify	Nursing students	Donning and doffing of PPE; performing nursing practices on standardized patients or peer role play	Increase in knowledge, awareness of standard precaution and infection control performance	Kim et al¹⁰	
Disaster/outbreak preparedness						
PPE	Educator, director of infection control	Nurses, physicians, respiratory therapists	Cardiac arrest scenario in patient with SARS	Identified errors in infection control measures	Abrahanson et al¹¹	
Does not specify	Physician, nurses, technicians			Improvement in post-intervention score	Abualenain et al¹²	
Physicians	Multidisciplinary healthcare workers	Application of PPE; practice of various procedures on patient with Ebola		Increasing sense of security, predisposition, and confidence	Carvalho et al¹³	
Hand Hygiene, PPE	Nursing champions, simulation team	Nurses, physicians, respiratory therapists	Tracking of surface contamination using UV-C luminescent spray during MRSA outbreak	No new episodes of colonization or infection	Gibbs et al¹⁴	
CAUTI						
Urinary catheter Insertion	Nurse educator	Medical students	Aseptic technique during insertion of urinary catheter	Lowest CAUTI rate among medical students	Barnum et al¹⁵	
Simulation fellow, senior general surgery residents	Second year medical students	Simulated germs for hand washing, maintenance of aseptic technique during urinary catheterization	Maintained better sterility and had higher technical proficiency score during urinary catheterization	Mittal et al¹⁶		
CLABSI						
Central venous catheter insertion	Vascular access nurse or physician	Attending physicians, residents	Hands-on practice of insertion of central venous catheter	Decrease in CLABSI rate	Allen et al¹⁷	
Critical care fellows, attending physician	Residents				Burden et al¹⁸	
Neonotologists	Attending physicians, residents				Steiner et al¹⁹	
Does not specify	Internal medicine emergency medicine residents			Fewer CLABSI after intervention	Barsuk et al²⁰	
Does not specify	Residents in anesthesia			Increased cost savings	Cohën et al²¹	
Emergency medicine and critical care attendings	Emergency medicine residents			Improvement in compliance on catheter insertion checklist	Cartier et al²²	
Does not specify	Second- and third-year medical residents			Improvement in sterile technique performance scores	Hoskote et al²³	
Anesthesiologist, Pulmonary/critical care physician	Interns, residents, nurse anesthetists			Improvement in sterile technique score	Khouli et al²⁴	
Infection control practitioners, hospital epidemiologist	Medical students, interns			Increase in Likert-scale ratings on aseptic technique	Latif et al²⁵	
					Increased use of full-size sterile drapes, decrease in rate of catheter-related infection, cost savings	Sherertz et al²⁶

(Continued)
another. The references for each relevant paper were additionally reviewed.

Results

We retrieved 138 English language publications from PubMed, of which 111 were excluded because simulation was not utilized for infection prevention education in acute-care hospitals. We then performed a detailed review of 27 publications that utilized simulation as primary mode of education for HAI prevention in acute care hospitals (Table 1).

Trainers included the following: physicians in 8 studies (30%), nurses in 7 studies (26%), infection preventionists in 3 studies (11%), and simulation center staff in 2 studies (7%). Learners included the following: residents in 10 studies (37%), nurses in 9 studies (33%), medical students in 7 studies (26%), and physicians in 5 studies (19%). Nursing students, technicians, and respiratory therapists made up a minority of learner types.

Furthermore, 3 studies focused on SBT for hand hygiene using the application of fluorescent alcohol-based hand rub under ultraviolet C light with all studies demonstrating improvement in complete application of alcohol hand rub7–9. In addition, 3 studies used SBT to recreate clinical scenarios pertaining to suspected Ebola and severe acute respiratory syndrome (SARS) cases11–13 with identification of errors in infection control measures11 and improvement in both postintervention score12 and learners’ sense of confidence.13 Also, 13 studies utilized SBT for CLABSI prevention, and 10 studies focused on aseptic technique pertaining to central venous catheter (CVC) insertion17–26 with improvement in skin preparation20–27 and CLABSI rate.17–19 We identified 4 studies that focused on CVC maintenance27–30 with improvements in compliance in bundle usage28 and decrease in CLABSI rates.30–32 We identified 2 studies that utilized SBT for Foley catheter insertion15,16 with improvement in sterile technique16 and decreased CAUTI rates.15 Finally, 2 studies focused on SSI prevention with surgical hand washing technique and preparation of the surgical field.31,32

Discussion

SBT is underutilized in infection prevention, but it can serve as an important adjunct to traditional educational tools. It can target learners ranging from students to nurses, physicians, and other ancillary staff. SBT programs in infection prevention can vary widely from disaster preparedness of high acuity to low-frequency clinical scenarios to day-to-day infection prevention measures. SBT can improve learner’s sense of competence and confidence,11–13 increase patient safety through improved compliance in infection prevention measures16,22–26,28,32 and increase in knowledge29,33 improve HAIs rates15,17–20 and reduce healthcare costs.21 Simulation modalities can offer a realistic imitation under test conditions. Different simulation modalities and environments are classified as low fidelity, medium fidelity, and high fidelity, with the highest fidelity modality or environment most accurately representing the real environment. Various simulation modalities have been integrated into infection prevention efforts, each with its own advantages and disadvantages (Table 2). Task trainers (low-fidelity simulators) have been predominantly utilized to help learners practice specific psychomotor skills such as aseptic technique in the insertion of central venous catheters17–26 and indwelling urinary catheters.15,16 Standardized patients, which are real people portraying the role of patients, have been utilized to practice standard precautions and interpersonal skills.10 Virtual reality (high fidelity) has also taught healthcare personnel to safely don and doff PPE, as virtual reality help learners to gain knowledge on the proper process of a procedure in a scalable fashion. In prior outbreaks, mid- and high-fidelity manikins, which are full-body manikins, were utilized to mimic patient encounters with rare communicable diseases like Ebola and SARS, aiding in the identification of errors in infection control measures.11–13

Table 1. (Continued)

Measure	Trainer	Learner	Training	Outcome	Reference
Central venous catheter maintenance	Nurses	Student nurses	Hands-on practice of maintenance of central venous catheter	No difference in posttest score for lecture-based vs simulation based	Aloush et al27
Investigator	Nurses			Improvement in compliance bundle score	Hebbard et al28
Nurses	Parents of children with cancer			Difference in knowledge score pre-and post-test	Rosenberg et al29
Clinical educators	Nurses			Decrease in CLABSI rate	Scholtz et al30

SSI

| Surgical hand disinfection, preparation of surgical field | Surgical nurse, infection preventionist | Medical students, operating room technician trainees | Hands-on practice of operating room entry procedure, surgical hand disinfection, skin preparation | High satisfaction among learners | Breckwoldt et al31 |

| Surgical hand rub technique | Does not specify | Medical students | Fluorescent solution, hands placed under UV-C light | Improvement in compliance and efficacy of surgical hand rub | Vanylos et al32 |

VAP

| Oral care | Does not specify | Critical care nurses | Hands-on practice of ventilator bundle related to oral care practices | Increase in knowledge score | Jansson et al33 |

Note. UV-C, ultraviolet C; PPE, personal protective equipment; SARS, severe-acute respiratory syndrome; MRSA, methicillin-resistant Staphylococcus aureus; CAUTI, catheter-associated urinary tract infection; CLABSI, central-line-associated bloodstream infection; SSI, surgical site infection; VAP, ventilator acquired pneumonia.
These simulators can replicate a patient’s physiology modeling through the programming of vitals, breathing, or other patient presentations. They enable a team to work collectively to deliver care (eg, intensive care unit setting with in full hazmat suit) while performing a certain set of procedural tasks (eg, intubation) in a physical environment. This enables teams to practice not only individual skills, but also critical teamwork and communication skills.

Ultimately, simulation experts match the learning objectives to the most effective modality. For effective learning, SBT should be offered as part of a curriculum to supplement and complement other educational methods with clearly defined objectives and benchmarks for learners to achieve. The program should provide individualized and team learning and should allow for repetitive practice with clinical variation such as varying levels of difficulty if feasible. Expert trained facilitators should provide feedback during or after a learning experience through rapid cycle deliberate practice to develop procedural competence and immediate constructive debriefing, based on learning objectives.

SBT in infection prevention has predominantly focused on central venous catheter insertion and maintenance with various studies reporting significant improvement in compliance with sterile techniques and decrease in CLABSI rate. However, despite its proven effectiveness in CLABSI prevention, SBT has remained underutilized in other realms of infection prevention. Through repetitive and deliberate practice to develop procedural competence and immediate constructive debriefing by an expertly trained debriefer, SBT can allow for standardization of routine infection prevention measures and proper implementation of evidence-based prevention strategies to reduce HAI rates. In addition, SBT can play a role in understanding and optimizing workflows and bottlenecks in high-acuity, low-frequency encounters for disaster preparedness. Centralized SBT that promotes competency-based education can yield a large return on investment by reducing overall healthcare costs through improved quality of care, reduced HAI penalties, mitigation of readmissions, and decreased lengths of stay.

In summary, SBT is underutilized in infection prevention but can serve as a crucial educational tool. The coronavirus disease 2019 (COVID-19) pandemic has exposed our inadequacy in infection prevention teaching and argues for continued innovation.

Acknowledgments.

Financial support. No financial support was provided relevant to this article.

Conflicts of interest. All authors report no conflicts of interest relevant to this article.

References

1. Institute of Medicine. To Err Is Human: Building a Safer Health System. Washington, DC: The National Academies Press; 2000.
2. Makary MA, Daniel M. Medical error—the third leading cause of death in the US. BMJ 2016;353:i2139.
3. Dawson S, Gould DA. Procedural simulation’s developing role in medicine. Lancet 2007;369:1671–1673.
4. Issenberg SB, McGaghie WC, Hart IR, et al. Simulation technology for healthcare professional skills training and assessment. JAMA 1999;282:861–866.
5. National and state healthcare-associated infections progress report. Centers for Disease Control and Prevention website. www.cdc.gov/hai/data/portal/progress-report.html. Published 2018. Accessed November 11, 2020.
6. Safdar N, Abad C. Educational interventions for prevention of healthcare-associated infection: a systematic review. *Crit Care Med* 2008;36:933–940.

7. Dray S, LeHINGUE S, Valera S, et al. Using an ultraviolet cabinet improves compliance with the World Health Organization’s hand hygiene recommendations by undergraduate medical students: a randomized controlled trial. *Antimicrob Resist Infect Control* 2020;9:147.

8. Ghazali AD, Dehies E, Thomas J, et al. Impact of a simulation-based training in hand hygiene with alcohol-based hand rub in emergency departments. *Infect Control Hosp Epidemiol* 2018;39:1347–1352.

9. Lehotsky A, Sülzgy L, Ferenci T, et al. Quantitative impact of direct, personal feedback on hand hygiene technique. *J Hosp Infect* 2015;91:81–84.

10. Kim E, Kim SS, Kim S, et al. Effects of infection control education for nursing students using standardized patients vs peer role-play. *Int J Environ Res Public Health* 2020;18:107.

11. Abrahamson SD, Cazian S, Brunet F. Using simulation for training and to change protocol during the outbreak of severe acute respiratory syndrome. *Crit Care* 2006;10(1):R3.

12. Abualenain JT, Al-Alawai MM. Simulation-based training in Ebola personal protective equipment for healthcare workers: experience from King Abdulaziz University Hospital in Saudi Arabia. *J Infect Public Health* 2018;11:796–800.

13. Carvalho E, Castro P, Leon E, et al. Multiprofessional simulation and risk perception of health care workers caring for Ebola-infected patients. *Nurs Crit Care* 2019;24:256–262.

14. Gibbs K, DeMaria S, McKinsey S, et al. A novel in situ simulation intervention used to mitigate an outbreak of methicillin-resistant *Staphylococcus aureus* in a neonatal intensive care unit. *J Pediatr* 2018;194:22–27.

15. Barnum T, Tatebe LC, Halverson AL, et al. Outcomes associated with insertion of indwelling urinary catheters by medical students in the operating room following implementation of a simulation-based curriculum. *Acad Med* 2020;95:435–441.

16. Mittal MK, Morris JB, Kelz RR. Germ simulation: a novel approach for raising medical student awareness toward asepsis. *Simul Healthc* 2011;6:65–70.

17. Allen GB, Mililer V, Nicholas C, et al. A multitiered strategy of simulation training, kit consolidation, and electronic documentation is associated with a reduction in central-line–associated bloodstream infections. *Am J Infect Control* 2014;42:643–648.

18. Burden AR, Torjman MC, Dy GE, et al. Prevention of central venous catheter-related bloodstream infections: is it time to add simulation training to the prevention bundle? *J Clin Anesth* 2012;24:555–560.

19. Steiner M, Langgattert M, Cardona F, et al. Significant reduction of catheter-associated bloodstream infections in preterm neonates after implementation of a care bundle focusing on simulation training of central-line insertion. *Pediatr Infect Dis J* 2015;34:1193–1196.

20. Barsuk JH, Cohen ER, Feinglass J, et al. Use of simulation-based education to reduce catheter-related bloodstream infections. *Arch Intern Med* 2009;169:1420–1423.

21. Cohen ER, Feinglass J, Barsuk JH, et al. Cost savings from reduced catheter-related bloodstream infection after simulation-based education for residents in a medical intensive care unit. *Simul Healthc* 2010;5:98–102.

22. Cartier V, Inan C, Zang W, et al. Simulation-based medical education training improves short- and long-term competency in, and knowledge of central venous catheter insertion: a before and after intervention study. *Eur J Anaesthesiol* 2016;33:568–574.

23. Hoskote SS, Khouri L, Lanoix R, et al. Simulation-based training for emergency medicine residents in sterile technique during central venous catheterization: impact on performance, policy, and outcomes. *Acad Emerg Med* 2015;22:81–87.

24. Khouri H, Jahnse K, Shapiro J, et al. Performance of medical residents in sterile techniques during central vein catheterization: randomized trial of efficacy of simulation-based training. *Chest* 2011;139:80–87.

25. Latif RK, Bautista AF, Memon SB, et al. Teaching aseptic technique for central venous access under ultrasound guidance: a randomized trial comparing didactic training alone to didactic plus simulation-based training. *Anesth Analg* 2012;114:626–633.

26. Sherrertz RJ, Ely EW, Westbrook DM, et al. Education of physicians-in-training can decrease the risk for vascular catheter infection. *Ann Intern Med* 2000;132:641–648.

27. Aloush SM. Lecture-based education versus simulation in educating student nurses about central line-associated bloodstream infection–prevention guidelines. *J Vasc Nurs* 2019;37:125–131.

28. Hebbar KB, Cunningham C, McCracken C, et al. Simulation-based paediatric intensive care unit central venous line maintenance bundle training. *Intensive Crit Care Nurs* 2015;31:44–50.

29. Rosenberg CE, Terhaa MF, Ascenzi JA, et al. Becoming parent and nurse: high-fidelity simulation in teaching ambulatory central line infection prevention to parents of children with cancer. *Jt Comm J Qual Patient Saf* 2017;43:251–258.

30. Scholtz AK, Manaohino AM, Nishiaki A, et al. Central venous catheter dress rehearsals: translating simulation training to patient care and outcomes. *Simul Healthc* 2013;8:341–349.

31. Breckwoldt J, Knecht M, Massie R, et al. Operating room technician trainees teach medical students—an interprofessional peer teaching approach for infection prevention strategies in the operation room. *Antimicrob Resist Infect Control* 2019;8:75.

32. Vanylos E, Petko K, Viszla A, et al. Usage of ultraviolet test method for monitoring the efficacy of surgical hand rub technique among medical students. *J Surg Educ* 2015;72:530–535.

33. Jansson MM, Syrjala HP, Ohtonen PP, et al. Effects of simulation education on oral care practices—a randomized controlled trial. *Nurs Crit Care* 2017;22:161–168.

34. Ragazzoni L, Ingrassia PL, Echeverri L, et al. Virtual reality simulation training for Ebola deployment. *Disaster Med Public Health Prep* 2015;9:543–546.

35. Al-Elq AH. Simulation-based medical teaching and learning. *J Fam Commun Med* 2010;17:35–40.