Research Article

Individual and combined effects of \textit{GSTM1} and \textit{GSTT1} polymorphisms on colorectal cancer risk: an updated meta-analysis

Liang Song1,*, Chen Yang2,* and Xiao-Feng He3

1Endoscopy Room, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi, 046000, People’s Republic of China; 2Teaching Reform Class of 2016, First Clinical College, Changzhi Medical College, Shanxi, Changzhi, 046000, People’s Republic of China; 3Department of Science and Education, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi, 046000, People’s Republic of China

Correspondence: Xiao-Feng He (393120823@qq.com)

Background. The presence or absence of glutathione S-transferase M1 gene (\textit{GSTM1}) and glutathione S-transferase T1 gene (\textit{GSTT1}) polymorphisms, and their combined effects have been suggested as a risk factor for colorectal cancer (CRC). However, the results are inconsistent.

Objectives. An updated meta-analysis was performed to solve the controversy.

Methods. Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines were used.

Results. Overall, the \textit{GSTM1} null genotype was associated with an increased CRC risk in Caucasians (odds ratio (OR) = 1.14, 95% confidence interval (CI): 1.05–1.23), Asians (OR = 1.19, 95% CI: 1.08–1.32), high-quality studies (OR = 1.12, 95% CI: 1.06–1.18). Moreover, the \textit{GSTM1} null genotype was also associated with an increased colon cancer risk (OR = 1.32, 95% CI: 1.16–1.51). The \textit{GSTT1} null genotype was also associated with an increased CRC risk in Asians (OR = 1.08, 95% CI: 1.02–1.15) and Caucasians (OR = 1.24, 95% CI: 1.09–1.41). Moreover, The \textit{GSTT1} null genotype was associated with an increased rectal cancer risk (OR = 1.13, 95% CI: 1.01–1.27, $I^2 = 8.3\%$) in subgroup analysis by tumor location. Last, the \textit{GSTM1} null/\textit{GSTT1} null genotype was associated with an increased CRC risk in Asians.

Conclusion. This meta-analysis indicates that the \textit{GSTM1} and \textit{GSTT1} null genotypes are associated with increased CRC risk in Asians and Caucasians, and the \textit{GSTM1} null/\textit{GSTT1} null genotype was associated with increased CRC risk in Asians.

Introduction

Colorectal cancer (CRC) is a common form of cancer, with more than 1.5 million new patients diagnosed every year worldwide [1]. It is a complex chronic disease whose development is affected by genetic and environmental factors [2,3]. CRC incidence rates differ between countries indicating that environmental factors may be associated with an increased cancer risk, although. A twin study indicated that the role of genetic factors is around 35% in CRC [4]. A previous genome-wide association study also indicated that single-nucleotide polymorphisms are important risk factors [5].

Glutathione S-transferases (\textit{GSTs}) are a large family of enzymes that catalyze the conjugation of electrophiles to glutathione and the conversion of toxic compounds to hydrophilic metabolites [6,7]. \textit{GSTM1} maps to chromosome 1p13.3 contains 10 exons, while \textit{GSTT1} maps to chromosome 22q11.23 and contains six exons. \textit{GSTM1} present/null and \textit{GSTT1} present/null polymorphisms have been reported in human [8–11]. The null genotypes are the most common polymorphisms in \textit{GSTM1} and \textit{GSTT1}, and have been proven to be associated with the loss of enzyme activity [12,13].
To date, many studies have evaluated the association between \textit{GSTM1} present/null and \textit{GSTT1} present/null polymorphisms, and their combined effects with CRC risk [14–107,108–114]. Additionally, 13 meta-analyses [115–125,126,127] have been conducted. However, a lot of studies have been published on these associations with CRC risk, therefore, an updated meta-analysis was performed to explore the association between \textit{GSTM1} present/null, \textit{GSTT1} present/null, and their combined effects on CRC risk in all populations.

Materials and methods

Search strategy

Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines were used [128]. PubMed, Chinese Biomedical Medical databases (CBM), China National Knowledge Infrastructure (CNKI), and WanFang databases (up to March 15, 2020) were searched to identify eligible studies that analyzed the \textit{GSTM1} present/null, \textit{GSTT1} present/null, and their combined effects with CRC risk. The following keywords were used: (\textit{GSTT1} OR glutathione S-transferase T1 OR \textit{GSTM1} OR glutathione S-transferase M1) AND (polymorphism OR variant OR mutation) AND (colorectal OR rectal OR rectum OR colon). The search strategy was designed to be sensitive and broad. We first carefully reviewed the title and abstract of the search results, and then downloaded full articles to identify possible articles. These were evaluated in detail to identify relevant articles. The reference lists of identified articles and reviews was also examined as appropriate. The corresponding author may be contacted by e-mail if only the abstract was available online or the data was incomplete.
Inclusion and exclusion criteria

Inclusion criteria were as follows: (1) articles on the \textit{GSTM1} present/null, \textit{GSTT1} present/null, and their combined effects with CRC risk; (2) sufficient genotype data to calculate ORs and 95% CIs; and (3) case–control studies. Exclusion criteria were as follows: (1) no raw data; (2) no control; (3) review articles, case reports, editorials, or animal research; (4) duplicate and insufficient data.

Data extraction and quality score assessment

Two investigators independently extracted data using Excel. Any disagreement was solved by iteration, discussion, and consensus. The following data were extracted from eligible studies: (1) first author’s name, (2) publication year, (3) country, (4) source of controls (hospital-based and population-based case–control studies), (5) sample size, (6) genotyping method, and (6) genotype distribution of the \textit{GSTM1}, \textit{GSTT1}, and their combined effects in cases and controls.
controls. Different ethnicities included “Caucasians”, “Asians”, “Indians”, and “Africans”. If ethnicity was not stated or if the sample size could not be separated, the term “Mixed populations” was used. Two investigators independently assessed the quality of each individual study. The quality assessment criteria (Table 1) were obtained from two previous meta-analyses [129,130]. The highest value is obtained from the quality assessment was nine; studies of quality scoring ≥ 6 were considered as high quality.

Statistical analysis

We used crude odds ratios (ORs) and 95% confidence intervals (CIs) to estimate the association on the above issues. The genetic model of the individual GSTM1 and GSTT1 polymorphisms was null vs. present. Their combined effects used the following five genetic models: −− vs. + +, −− vs. + −, −− vs. − +, −− vs. (+ −) + (− +), and −− vs. (+ −) + (− +) + (+ +). −− referred to the GSTM1 null/GSTT1 null genotype, −− referred to the GSTM1 null/GSTT1 null genotype, − + referred to the GSTM1 null/GSTT1 present genotype, and ++ referred to the GSTM1 present/GSTT1 present genotype. Heterogeneity among studies was tested using the I^2 value [131]. A fixed-effects model (Mantel–Haenszel method) was used when $I^2 \leq 50\%$ [132]; otherwise, a random-effects model (DerSimonian and Laird method) was considered [133] if $I^2 > 50\%$. However, these studies cannot be pooled into

Figure 3. Forest plot of the association between GSTM1 present/null polymorphism and CRC risk in Asians

Study	OR (95% CI)	% Weight
Luo [93] 2006	1.10 (0.58, 2.10)	1.83
Yang [103] 2003	2.76 (1.32, 5.79)	1.48
Yoshida [37] 2007	1.14 (0.63, 2.08)	2.05
Katch [75] 1996	1.54 (0.91, 2.60)	2.49
Lee [73] 1996	0.79 (0.54, 1.14)	3.76
Yang ZF [48] 2008	2.99 (1.64, 5.46)	2.04
Huang [107] 2007	2.22 (1.06, 4.65)	1.49
Huang [92] 2003	2.46 (1.31, 4.63)	1.90
Zhang [105] 2001	0.79 (0.37, 1.72)	1.58
Zhou [96] 2000	1.42 (0.68, 2.98)	1.49
Gao [106] 1998	1.05 (0.37, 3.01)	0.81
Guo [74] 1996	1.65 (0.44, 6.17)	0.54
Zeng [101] 2016	1.93 (1.20, 3.11)	2.81
Hu [98] 2012	1.15 (0.68, 1.94)	2.47
Lin LM [95] 2006	1.71 (1.09, 2.70)	2.98
Xia [61] 2007	1.82 (1.10, 3.01)	2.62
Zhu [59] 2002	0.66 (0.38, 1.15)	2.32
Yoshioka [69] 1999	1.55 (0.89, 2.68)	3.23
Cong [35] 2014	1.57 (1.13, 2.18)	4.21
Zhang SS [52] 2010	1.18 (0.83, 1.66)	4.03
Fan [43] 2006	1.11 (0.74, 1.65)	3.46
Yeh [49] 2005	0.98 (0.80, 1.21)	5.79
Chen [130] 2004	0.99 (0.66, 1.49)	3.34
Fu [100] 2006	0.97 (0.70, 1.34)	4.24
Vogtmann [33] 2014	1.03 (0.78, 1.34)	4.93
Koh [21] 2011	1.16 (0.94, 1.43)	5.69
Yang [26] 2010	1.01 (0.79, 1.30)	5.21
Nisa [80] 2010	0.92 (0.75, 1.13)	5.79
Probst-Hensch [41] 2006	0.96 (0.75, 1.24)	5.12
Seow [58] 2002	1.25 (0.83, 1.87)	4.65
Piao [79] 2009	1.02 (0.90, 1.17)	6.75
Overall (I-squared = 52.7%, p = 0.000)	1.19 (1.08, 1.32)	100.00

NOTE: Weights are from random effects analysis.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
Table 1 Scale for quality assessment

Criteria	Score
Representativeness of cases	
Selected from cancer registry or multiple cancer center sites	2
Selected from oncology department or cancer institute	1
Selected without clearly defined sampling frame or with extensive inclusion/exclusion criteria	0
Source of controls	
Population or community based	2
Both population-based and hospital-based/healthy volunteers/blood donors	1.5
Hospital-based controls without colorectal cancer	1
Cancer-free controls without total description	0.5
Not described	0
Ascertainment of colorectal cancer	
Histological or pathological confirmation	2
Diagnosis of colorectal cancer by patient medical record	1
Not described	0
Sample size	
>1000	2
200–1000	1
<200	0
Quality control of genotyping methods	
Clearly described a different genotyping assay to confirm the data	1
Not described	0

together when I^2 value > 75%. Subgroup analyses were performed by ethnicity, source of controls, tumor location, smoking history, gender, quality score, and tumor site. Then, a sensitivity analysis was carried out to assess the stability, a single study was excluded one at a time. Publication bias was tested by using Begg's funnel and Egger's test (significant publication bias was considered if $P < 0.05$). A nonparametric "trim and fill" method was applied to accredit missing studies if publication bias was detected. Finally, a meta-regression analysis was applied to assess the heterogeneity source. All results were calculated using Stata version 9.0 (Stata Corporation, College Station, TX, U.S.A.).

Results

Study characteristics

A flowchart of study selection is shown in Figure 1. Overall, 472 articles were identified by electronic database searching. Of these, 115 full-text articles were selected after carefully screening titles and abstracts. Fourteen articles were excluded because they were not case-control studies, while the data of fourteen articles [18,25,37,43,61,79,84,92,94,95,100,110] overlapped with those of another nine articles [26,41,47,48,93,105,107,108,114]. Hence, a total of 87 articles were included in the present meta-analysis.

The main study characteristics are listed in Tables 2 and 3. Eighty-five publications involving eighty-six case–control studies [14–17,19–24,26–36,38–42,44–60,62–64,67–70,73,74,76–78,80–82,87–90,93,96–99,102,105,109,111–114] were included on the GSTMI present/null polymorphism (24,931 cases and 36,537 controls; 44 studies on Caucasians, 31 on Asians, one on Africans, one on Indians, and nine on mixed populations) with CRC risk. Sixty-three articles of sixty-four case–control studies [15–17,19,21–24,26,27,30,31,33,34,36,38–42,45,47,48–52,54–58,62–64,67–70,73,74,76–78,80–82,87–90,93,96–99,102,105,109,111–114] were eligible concerning the GSTT1 present/null polymorphism (19,725 cases and 28,725 controls; 34 studies on Caucasians, 23 on Asians, one on Indians, one on Africans, and five on mixed populations) with CRC risk. Thirty-two publications of thirty-three case–control studies [15,19,22–24,26,27,31,33,38,39,41,42,45,49,52,55–57,63,67,68,70–76,78,90,96,97,99,105,109,112] were included regarding their combined effects (8270 cases and 14,381 controls; 11 studies on Caucasians, 17 on Asians, one on Indians, one on Africans, and three on mixed populations) with CRC risk. Fifty-five studies had a quality score ≥ 6 and the remaining 31 had a quality score < 6 regarding the GSTMI present/null polymorphism; 48 high-quality studies were examined and the remaining 16 were low-quality concerning the GSTT1 present/null polymorphism; a total of 25 high-quality and eight low-quality studies were included on their combined effects with CRC risk.
Table 2 The data between the GSTM1 and GSTT1 polymorphisms and colorectal cancer risk

First author/Year	Country	Ethnicity	SC	Sample size (case/control)	Genotyping methods	GSTM1 genotype distribution	GSTT1 genotype distribution	Quality scores	
Stojkovic [111]	Serbia	Caucasian	HB	509/399	Multiplex PCR	Present: 249 Null: 260	Present: 204 Null: 195	145: 364 91: 308	6
Rodrigues-Fleming	Brazil	Mixed	HB	232/378	Multiplex PCR and PCR-RFLP	Present: 100 Null: 132	Present: 385 Null: 353	192: 40 573: 165	6.5
Wang [113]	Poland	Caucasian	HB	279/233	PCR	Present: 151 Null: 128	Present: 133 Null: 100	220: 59 189: 44	6
Klusek [114]	Poland	Caucasian	HB	197/104	TaqMan	Present: 105 Null: 92	Present: 57 Null: 47	166: 31 83: 21	6
Gorukmez [49]	Turkey	Caucasian	HB	92/116	Multiplex PCR	Present: 65 Null: 27	Present: 67 Null: 49	58: 34 91: 25	4
Khabaz [32]	Saudi Arabia	Caucasian	HB	83/35	PCR	Present: 14 Null: 69	Present: 12 Null: 23	NA: NA NA: NA	3
Zeng [99]	China	Asian	HB	108/215	PCR	Present: 38 Null: 70	Present: 110 Null: 105	48: 60 117: 98	6
Dnjegasurova [34]	Kazakhstan	Mixed	HB	249/245	Site-specific PCR	Present: 124 Null: 125	Present: 158 Null: 87	171: 78 164: 81	4.5
Cong [33]	China	Asian	PB	264/317	Multiplex PCR	Present: 122 Null: 142	Present: 182 Null: 135	125: 139 190: 127	6
Procopciuc [85]	Romania	Caucasian	HB	150/162	PCR-RFLP	Present: 60 Null: 90	Present: 97 Null: 65	NA: NA NA: NA	6
Vogtmann [81]	China	Asian	PB	340/673	Real-time PCR	Present: 134 Null: 201	Present: 259 Null: 379	164: 173 350: 318	8
Kassab [76]	Tunisia	Caucasian	HB	147/128	Multiplex PCR	Present: 43 Null: 104	Present: 41 Null: 87	90: 57 65: 63	6
Saeed [14]	Saudi Arabia	Caucasian	HB	100/79	PCR	Present: 98 Null: 2	Present: 79 Null: 0	NA: NA NA: NA	5
Chhila [15]	Romania	Caucasian	HB	19/19	Multiple PCR	Present: 14 Null: 5	Present: 15 Null: 4	15: 4 16: 3	3
Hezova [16]	Czech	Caucasian	HB	197/218	Duplex PCR	Present: 97 Null: 100	Present: 117 Null: 101	157: 40 179: 39	6.5
Rudolph [17]	Germany	Caucasian	PB	1796/1806	Multiplex PCR	Present: 822 Null: 932	Present: 844 Null: 923	1433: 313 1459: 308	6
Huang [96]	China	Asian	HB	130/100	PCR	Present: 71 Null: 59	Present: 58 Null: 42	63: 67 52: 48	6
Darazi [20]	Lebanon	Lebanese	HB	67/70	PCR	Present: 32 Null: 25	Present: 58 Null: 12	NA: NA NA: NA	3.5
Wang [23]	India	Indian	PB	302/291	Multiplex PCR	Present: 202 Null: 100	Present: 215 Null: 76	245: 57 247: 44	6
Koh [19]	China	Asian	PB	480/1167	TaqMan	Present: 246 Null: 234	Present: 641 Null: 526	294: 186 691: 476	8
Cleary [21]	Canada	Caucasian	PB	1174/1293	Multiplex PCR	Present: 550 Null: 616	Present: 608 Null: 684	953: 213 1,067: 223	9
Yang [24]	China	Asian	PB	322/1251	Real-time PCR	Present: 133 Null: 189	Present: 521 Null: 730	158: 164 639: 612	8
Nisa [78]	Japan	Asian	PB	685/778	Multiplex PCR	Present: 328 Null: 357	Present: 356 Null: 422	347: 338 435: 343	8
Zhang SS [50]	China	Asian	PB	197/599	Multiplex PCR	Present: 83 Null: 114	Present: 184 Null: 215	150: 47 310: 89	6
Hlavata [22]	Czech	Caucasian	PB	495/495	PCR-RFLP	Present: 228 Null: 267	Present: 254 Null: 241	392: 103 396: 100	6
Csepei [28]	Hungary	Caucasian	HB	102/97	PCR	Present: 42 Null: 60	Present: 51 Null: 46	68: 34 77: 20	4
Piao [77]	Korea	Asian	PB	1829/1699	Real-time PCR	Present: 825 Null: 1,004	Present: 776 Null: 923	879: 950 841: 858	9
Matakova [27]	Slovakia	Caucasian	PB	183/402	PCR	Present: 83 Null: 100	Present: 202 Null: 220	142: 41 329: 93	6
Zuupa [28]	Italy	Caucasian	HB	92/121	PCR	Present: 31 Null: 61	Present: 53 Null: 68	NA: NA NA: NA	5
Curtin [29]	U.S.A.	Caucasian	PB	750/1201	PCR	Present: 310 Null: 323	Present: 465 Null: 545	NA: NA NA: NA	8

Continued over
Table 2 The data between the GSTM1 and GSTT1 polymorphisms and colorectal cancer risk (Continued)

First author/Year	Country	Ethnicity	SC	Sample size (case/control)	Genotyping methods	GSTM1 genotype distribution	GSTT1 genotype distribution	Quality scores	
Epplein [30] 2009	U.S.A.	Mixed	PB	173/313	TaqMan	82 91	166 147	127 46	
Lin LM [93] 2008	China	Asian	HB	120/204	Multiplex PCR	51 69	114 90	56 64	
Yang ZF [46] 2008	China	Asian	HB	84/112	PCR	24 60	61 51	67 68	
Cotterchio [88] 2008	Canada	Caucasian	PB	836/1249	Multiplex PCR	395 441	588 661	679 157	
Kury [87] 2008	France	Caucasian	PB	1023/1121	TaqMan	479 544	553 568	840 183	
Skjelbred [36] 2007	Norway	Caucasian	PB	108/299	Multiplex PCR	53 55	148 151	93 15	
Yoshida [33] 2007	Japan	Asian	PB	66/121	PCR	30 36	59 62	NA NA	
Xia [59] 2007	China	Asian	HB	112/140	PCR	45 67	77 63	NA NA	
Huang [105] 2007	China	Asian	HB	57/68	PCR	17 40	33 35	33 24	
Martinez [38] 2006	Spain	Caucasian	PB	144/329	Multiplex PCR	55 87	180 149	68 74	
Probst-Hensch [39] 2006	China	Asian	PB	300/1169	TaqMan	168 132	643 525	200 100	693 475
Little [40] 2006	U.K.	Caucasian	PB	241/383	PCR	110 131	162 221	192 49	
Fan [41] 2006	China	Asian	PB	140/343	PCR	58 80	151 188	113 25	
Huang [42] 2006	China	Caucasian	PB	315/547	Multiplex PCR	135 180	258 289	241 74	
Huang [42] 2006	China	African	PB	239/327	Multiplex PCR	162 77	245 82	187 56	
Fu [98] 2006	China	Asian	PB	315/439	PCR	86 229	117 321	141 174	
Luo [91] 2006	China	Asian	HB	56/143	PCR	36 20	95 48	NA NA	
Rajagopal [39] 2005	U.K.	Caucasian	HB	361/881	PCR	NA NA	NA NA	265 96	
Landi [44] 2005	Spain	Caucasian	HB	176/162	PCR	77 99	66 96	NA NA	
Atge [45] 2005	Turkey	Caucasian	HB	181/204	Real-Time PCR	83 98	116 88	118 63	
Yeh [47] 2005	China	Asian	HB	727/736	Multiplex PCR	325 402	326 410	331 396	
van der Logt [51] 2004	U.S.A.	Caucasian	PB	371/415	PCR	186 184	212 203	299 72	
Kiss [49] 2004	Hungary	Caucasian	HB	500/500	PCR	209 291	258 242	369 131	
Chen [109] 2004	China	Asian	HB	125/399	PCR	56 69	151 188	102 23	
Smits [52] 2003	Multiple	Caucasian	PB	724/1743	PCR	381 343	821 922	NA NA	
van der Hel [54] 2003	U.S.A.	Caucasian	PB	212/1756	PCR	124 88	396 369	154 58	
Slattery [107] 2003	U.S.A.	Mixed	PB	801/1013	PCR	397 404	467 546	NA NA	
Nascimento [55] 2003	Brazil	Mixed	HB	102/300	Multiplex PCR	52 50	166 134	85 17	

Continued over
Table 2 The data between the GSTM1 and GSTT1 polymorphisms and colorectal cancer risk (Continued)

First author/Year	Country	Ethnicity	SC	Sample size (case/control)	Genotyping methods	GSTM1 genotype distribution	GSTT1 genotype distribution	Quality scores
Huang [90] 2003	China	Asian	HB	82/82	Multiplex PCR	Present 36, Null 46	Present 54, Null 28	41 41
Yang [101] 2003	China	Asian	HB	58/65	PCR-RFLP	Present 18, Null 40	Present 36, Null 29	42 40
Zhu [57] 2002	China	Asian	HB	104/101	Multiplex PCR	Present 56, Null 48	Present 44, Null 57	55 49
Ye [58] 2002	U.K.	Caucasian	HB	41/82	Specific PCR	Present 21, Null 20	Present 49, Null 33	39 2
Tiemersma [60] 2002	U.S.A.	Mixed	PB	102/537	PCR	Present 44, Null 58	Present 252, Null 285	NA NA
Sachse [81] 2002	U.K.	Caucasian	PB	490/593	PCR	Present 206, Null 264	Present 291, Null 302	306 184
Zhang [103] 1999	China	Asian	HB	52/52	Multiplex PCR	Present 30, Null 22	Present 27, Null 25	NA NA
Loktionov [64] 2001	U.K.	Caucasian	HB	104/176	Multiplex PCR	Present 125, Null 133	Present 246, Null 263	133 116
Ye [58] 2002	China	Asian	HB	41/82	Multiplex PCR	Present 21, Null 20	Present 49, Null 33	39 2
Zou [97] 2000	China	Asian	HB	55/62	PCR	Present 21, Null 34	Present 29, Null 33	24 31
Loktionov [64] 2001	U.K.	Caucasian	HB	52/52	Multiplex PCR	Present 30, Null 22	Present 27, Null 25	NA NA
Butler [82] 2001	Australia	Caucasian	PB	219/200	PCR	Present 97, Null 106	Present 92, Null 108	123 67
Saadat [83] 2001	Iran	Caucasian	HB	46/131	PCR	Present 21, Null 25	Present 78, Null 53	28 18
Abdel-Rahman [88] 1999	U.K.	Caucasian	PB	196/178	PCR	Present 94, Null 102	Present 88, Null 90	157 39
Zou [97] 2000	China	Asian	HB	55/62	PCR	Present 21, Null 34	Present 29, Null 33	24 31
Loktionov [64] 2001	U.K.	Caucasian	HB	104/176	Multiplex PCR	Present 125, Null 133	Present 246, Null 263	133 116
Yoo [85] 2001	China	Asian	HB	104/176	Multiplex PCR	Present 125, Null 133	Present 246, Null 263	133 116
Deakin [52] 1996	U.K.	Caucasian	HB	252/577	PCR	Present 117, Null 135	Present 261, Null 316	189 63
Gao [72] 1999	U.K.	Caucasian	HB	19/23	PCR	Present 12, Null 7	Present 17, Null 6	17 9
Chenevix-Trench [74] 1995	Australia	Caucasian	HB	132/200	NA	Present 68, Null 64	Present 99, Null 101	79 15
Zhong [75] 1993	U.K.	Caucasian	PB	196/225	PCR	Present 86, Null 110	Present 131, Null 94	NA NA
Strange [106] 1991	U.K.	Caucasian	HB	19/502	HSE	Present 5, Null 14	Present 249, Null 253	NA NA

Abbreviations: HB, hospital-based study; HSE, horizontal starch gel electrophoresis; PB, population-based study; SC, source of control.
Table 3 The data between combined effects of GSTM1 and GSTT1 polymorphisms and colorectal cancer risk

First author/Year	Country	Ethnicity	SC	Sample size	+−	+−	−−	+−	++	++	−−	−−	++	+− or ++	++ +−, or +−	Quality scores	
Rodrigues-Fleming [112] 2018	Brazil	Mixed	HB	232/738	19	82	97	270	14	83	68	303	116	352	184	655	6.5
Gorukmez [49] 2016	Turkey	Caucasian	HB	92/116	31	11	24	35	3	14	34	56	55	46	89	102	4
Zeng [99] 2016	China	Asian	HB	108/215	25	64	35	71	35	34	13	46	60	135	73	181	6
Kassab [76] 2014	Tunisia	Caucasian	HB	147/128	NA	NA	NA	NA	45	26	NA	NA	NA	NA	102	102	6
Cong [33] 2014	China	Asian	PB	264/317	22	54	23	44	119	83	100	136	45	98	145	234	6
Vogtmann [31] 2014	China	Asian	PB	332/633	NA	NA	NA	NA	106	169	67	128	159	336	226	464	8
Chirila [15] 2013	Romania	Caucasian	HB	19/19	NA	NA	NA	NA	2	3	3	15	14	1	17	16	3
Huang [96] 2012	China	Asian	HB	130/100	NA	NA	NA	NA	15	12	46	42	NA	NA	115	88	6
Wang [23] 2011	India	Indian	PB	302/291	42	37	85	69	15	7	160	178	127	106	287	284	6
Koh [19] 2011	China	Asian	PB	480/1167	NA	NA	NA	NA	163	421	108	263	209	483	317	746	8
Yang [24] 2010	China	Asian	PB	322/1247	NA	NA	NA	NA	96	326	65	234	161	687	226	921	8
Nisa [78] 2010	Japan	Asian	PB	685/778	NA	NA	NA	NA	183	189	NA	NA	NA	NA	502	589	8
Hlavata [22] 2010	Czech	Caucasian	HB	495/495	NA	NA	NA	NA	61	46	186	200	248	249	434	449	6
Piao [77] 2009	Korea	Asian	PB	1829/1699	428	391	477	456	393	467	391	385	905	847	1296	1232	9
Matakova [27] 2009	Slovak	Caucasian	PB	183/422	20	35	83	162	19	58	61	167	103	197	164	264	6
Huang [105] 2007	China	Asian	PB	57/88	3	13	19	24	19	24	14	20	22	37	36	57	5
Martinez [38] 2006	Spain	Caucasian	PB	142/329	NA	NA	NA	NA	40	24	21	128	81	177	102	305	6
Probst-Hensch [39] 2005	China	Asian	PB	300/1168	NA	NA	NA	NA	45	222	NA	NA	NA	NA	255	946	9
Fan [41] 2006	China	Asian	PB	138/339	5	33	60	152	20	36	53	118	65	185	118	303	6
Huang [42] 2006	U.S.A.	Caucasian	PB	315/547	36	79	142	206	38	83	99	179	178	285	277	464	6
Huang [42] 2006	U.S.A.	Caucasian	PB	239/227	37	82	58	55	19	27	125	163	95	137	220	300	6
Ateş [45] 2005	Turkey	Caucasian	PB	180/204	36	34	71	69	27	19	46	82	107	103	150	185	6
Chen [106] 2004	China	Asian	PB	125/339	5	32	51	152	18	35	51	119	56	184	107	303	7
Nascimento [55] 2003	Brazil	Mixed	HB	102/300	NA	NA	NA	NA	9	24	44	138	49	138	93	276	6
Huang [90] 2003	China	Asian	HB	82/82	15	26	20	14	26	14	21	28	35	40	56	68	5
Zhu [57] 2002	China	Asian	HB	104/101	35	37	31	36	28	11	10	17	66	73	76	90	6
Seow [56] 2002	China	Asian	PB	213/1190	NA	NA	NA	NA	39	224	NA	NA	NA	NA	174	966	9
Saadat [63] 2001	Iran	Caucasian	HB	46/131	9	27	16	39	9	14	12	51	25	66	37	117	5
Zhou [97] 2000	China	Asian	PB	55/62	14	14	17	16	17	27	7	15	31	30	38	45	5
Yoshida [67] 1999	Japan	Asian	PB	106/100	20	22	25	23	31	19	30	36	45	45	75	81	6
Abdela-Rahman [68] 1999	Egypt	Caucasian	HB	56/49	10	4	18	17	12	17	16	11	28	21	44	32	4
Gertig [70] 1998	U.S.A.	Mixed	PB	208/220	NA	NA	NA	NA	24	23	83	75	101	122	184	197	7
Deakon [52] 1996	U.K.	Caucasian	HB	218/448	38	37	89	207	26	42	65	162	127	244	192	406	4

Abbreviations: HB hospital-based studies; NA not available; PB population-based studies; SC, source of controls.
Meta-analysis results

GSTM1 present/null polymorphisms

Table 4 lists the summary ORs and 95% CIs on the GSTM1 null genotype with CRC risk. The GSTM1 null genotype was associated with an increased CRC risk (OR = 1.17, 95% CI: 1.10–1.23, $I^2 = 55.8\%$) in the overall population. In subgroup analyses by ethnicity, source of controls, and quality score, a significantly increased CRC risk was observed in Caucasians (OR = 1.14, 95% CI: 1.05–1.23, $I^2 = 56.7\%$, Figure 2) and Asians (OR = 1.19, 95% CI: 1.08–1.32, $I^2 = 52.7\%$, Figure 3), hospital-based studies (OR = 1.32, 95% CI: 1.20–1.46, $I^2 = 51.4\%$), high-quality studies (OR = 1.12, 95% CI: 1.06–1.18, $I^2 = 20.4\%$) and low-quality studies (OR = 1.38, 95% CI: 1.17–1.62, $I^2 = 55.8\%$). Moreover, the GSTM1 null genotype was also associated with an increased colon cancer risk (OR = 1.37, 95% CI: 1.00–1.88, $I^2 = 73.0\%$; Figure 2) and Asians (OR = 1.26, 95% CI: 1.09–1.46, $I^2 = 57.7\%$).

GSTT1 present/null polymorphisms–

Table 5 lists the summary ORs and 95% CIs on the GSTT1 present/null polymorphism and CRC risk. The included studies could not be merged together because $I^2 > 75\%$ was found between the GSTT1 present/null polymorphism and CRC risk in the overall analysis and Caucasians. In subgroup analysis by ethnicity and quality score, a significantly increased CRC risk was observed in Asians (OR = 1.08, 95% CI: 1.02–1.15, $I^2 = 43.6\%$, Figure 4) and low-quality studies (OR = 1.33, 95% CI: 1.16–1.53, $I^2 = 17.3\%$). The GSTT1 null genotype was also associated with an increased rectal cancer risk (OR = 1.13, 95% CI: 1.01–1.27, $I^2 = 8.3\%$) in subgroup analysis by tumor location.

Combined effects of GSTM1 and GSTT1 present/null polymorphisms

Table 6 lists the summary ORs and 95% CIs on their combined effects with CRC risk. The GSTM1 null/GSTT1 null genotype was associated with an increased CRC risk in the overall analysis ($−−$ vs. $++$: OR = 1.42, 95% CI: 1.17–1.73, $I^2 = 68.6\%$; $−−$ vs. $+−$: OR = 1.37, 95% CI: 1.00–1.88, $I^2 = 73.0\%$; $−−$ vs. $(+−) + (+−)$: OR = 1.26, 95% CI: 1.05–1.51, $I^2 = 70.4\%$; $−−$ vs. $(+−) + (+−) + (+−)$: OR = 1.26, 95% CI: 1.09–1.46, $I^2 = 69.0\%$).

In subgroup analyses by ethnicity, source of controls, and quality score, the GSTM1 null/GSTT1 null genotype was associated with an increased CRC risk in Asians ($−−$ vs. $++$: OR = 1.41, 95% CI: 1.15–1.73, $I^2 = 54.4\%$, Figure 5; $−−$ vs. $+−$: OR = 1.38, 95% CI: 1.17–1.62, $I^2 = 58.9\%$; Figure 6).
and colorectal cancer risk analysis did not reveal a source of heterogeneity under any genetic model. Additionally, concerning the

Heterogeneity and sensitivity analyses

Significant heterogeneity was detected in the meta-analysis, as shown in Tables 4-6. A meta-regression analysis revealed that sample size (P=0.002) was the source of heterogeneity for the GSTM1 present/null polymorphism. Concerning the GSTT1 present/null polymorphism and the combined effects of GSTM1 and GSTT1, meta-regression analysis did not reveal a source of heterogeneity under any genetic model. Additionally, I² > 75% as shown in Tables 4-6.

When the study of Laso et al. [82] was excluded, the values of heterogeneity dropped and the GSTT1 null genotype was associated with an increased CRC risk in the following subgroups: Caucasians (OR = 1.24, 95% CI: 1.09–1.41, I² = 70.8%) and hospital-based studies (OR = 1.19, 95% CI: 1.06–1.35, I² = 54.5%). When the study of Martínez et al. [38] was excluded, the I² value dropped and no significant association was found between the combined effects of GSTM1 and GSTT1 polymorphisms and CRC risk in Caucasians (OR = 1.22, 95% CI: 0.83–1.78, I² = 55.6%; −− vs. (+−) + (−+): OR = 0.81, 95% CI: 0.53–1.26, I² = 68.1%; −− vs. (+−) + (−+) + (+−): OR = 0.99, 95% CI: 0.69–1.41, I² = 57.0%) and population-based studies (OR = 1.22, 95% CI: 0.89–1.78, I² = 55.6%; −− vs. (+−) + (−+): OR = 0.81, 95% CI: 0.53–1.26, I² = 68.1%; −− vs. (+−) + (−+) + (+−): OR = 0.99, 95% CI: 0.69–1.41, I² = 57.0%) and population-based studies (−− vs. +−: OR = 1.11, 95% CI: 0.99–1.24, I² = 28.9%; −− vs. (+−) + (−+): OR = 1.16, 95% CI: 0.93–1.45, I² = 73.9%; −− vs. (+−) + (−+) + (+−): OR = 1.08, 95% CI: 0.93–1.26, I² = 63.5%). When the study of Gorukmez [49] was deleted, the I² value dropped and no significant association was observed between the combined effects of GSTM1 present/null and GSTT1 present/null polymorphisms and CRC risk in population-based studies (−− vs. +−: OR = 1.13, 95% CI: 0.98–1.30, I² = 45.6%; −− vs. (+−) + (−+): OR = 1.29, 95% CI: 1.10–1.51, I² = 73.0%).

Table 5: Odds ratios and 95% confidence intervals for the association between GSTT1 present/null polymorphism and colorectal cancer risk

Variable	No. of studies	No. of cases/controls	No. of GSTT1 null cases/controls	Test of association	Test of heterogeneity				
				OR	95% CI	Z	P	Chi-square	I² (%)
Overall	64	19,725/28,725	6512/8888	−	−	−	−	260.28	75.8
Ethnicity				−	−	−	−	188.52	82.5
Caucasian	34	11,337/14,632	2896/3205	−	−	−	−	39.03	43.6
Asian	23	6878/11,659	3286/5069	1.08	1.02−1.15	2.49	0.013	90.02	70.0
Source of controls				−	−	−	−	154.05	77.3
HB	36	6801/8894	2459/2552	−	−	−	−	18.14	17.3
PB	28	12,924/19,831	4053/6336	1.05	0.95−1.16*	0.96	0.337	9.81	8.3
Quality score				4.09	<0.001	−	−	234.52	80.0
≥6	48	17,832/26,262	5903/8253	−	−	−	−	16.48	39.3
<6	16	1893/2463	609/635	1.33	1.16−1.53	4.09	<0.001	18.14	17.3
Location				−	−	−	−	21.46	48.7
Colon cancer				1.11	0.94−1.32	1.22	0.224	23.33	57.1
Rectal cancer				1.13	1.01−1.27	2.09	0.036	9.81	8.3
Smoking				1.04	0.83−1.30	0.36	0.721	23.33	57.1
Smokers	12	2007/2405	537/641	0.96	0.74−1.25	0.28	0.777	3.12	0.0
Non-smokers				1.13	0.98−1.30	1.71	0.087	3.51	0.0
Gender				0.96	0.78−1.39	0.27	0.786	3.51	0.0
Males	5	1900/2401	615/752	1.10	0.95−1.28	1.24	0.217	10.99	45.4
Females	5	1467/2436	493/930	1.24	0.91−1.69	1.34	0.179	5.09	25.0
Site				1.04	0.78−1.39	0.27	0.786	3.51	0.0
Distal	7	723/1677	194/388	1.24	0.91−1.69	1.34	0.179	10.99	45.4
Proximal	7	340/1677	83/368	1.24	0.91−1.69	1.34	0.179	10.99	45.4

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
Table 6 Combined genotype analysis of the GSTM1 and GSTT1 polymorphisms on risk of colorectal cancer

Variables	No. of studies	No. of cases/controls	Test of association	Test of heterogeneity			
			OR	95% CI	Z	P	Chi-squared I² (%)
−− vs. ++	29	3543/5647	1.42	1.17–1.73*	3.50	<0.001	89.24 68.6
Ethnicity							
Caucasian	10	780/1371	−	−	−	−	52.35 82.8
Asian	14	2202/3255	1.41	1.15–1.73*	3.29	0.001	28.51 54.4
Source of controls							
HB	18	1193/1954	1.53	1.28–1.83	4.66	<0.001	31.24 45.6
PB	11	2350/3337	−	−	−	−	51.81 80.7
Quality score							
≥ 6	21	3257/5144	1.43	1.15–1.77	3.19	0.001	75.95 73.7
< 6	8	286/503	1.38	0.85–2.24*	1.32	0.187	12.76 45.1
−− vs. −+	20	2469/3221	1.15	0.92–1.44*	1.21	0.226	46.25 58.9
Ethnicity							
Caucasian	7	577/982	0.89	0.61–1.28*	0.64	0.522	11.35 47.1
Asian	10	1604/1728	1.28	1.11–1.48	3.42	0.001	17.16 47.6
Source of controls							
HB	14	878/1392	1.21	0.99–1.48	1.89	0.059	24.25 46.4
PB	6	1591/2829	−	−	−	−	20.28 75.3
Quality score							
≥ 6	13	2154/2727	1.20	0.91–1.60*	1.28	0.199	40.26 70.2
< 6	7	315/494	1.07	0.77–1.47	0.39	0.693	5.99 0.0
−− vs. +−	20	1878/2218	1.37	1.00–1.88*	1.98	0.048	70.50 73.0
Ethnicity							
Caucasian	7	314/474	0.66	0.37–1.17*	1.42	0.154	18.89 68.2
Asian	10	1418/1426	−	−	−	−	36.61 75.4
Source of controls							
HB	14	582/790	1.32	0.83–2.09*	1.18	0.239	44.80 71.0
PB	6	1296/1428	−	−	−	−	24.47 79.6
Quality score							
≥ 6	13	1646/1944	1.60	1.15–2.22*	2.82	0.005	39.67 69.7
< 6	7	232/274	1.07	0.77–1.47	0.39	0.693	5.99 0.0
−− vs. (−+) + (+−)	28	4842/7564	1.26	1.05–1.51*	2.45	0.014	91.18 70.4
Ethnicity							
Caucasian	10	1203/1709	−	−	−	−	41.23 78.2
Asian	13	3070/4836	1.50	1.20–1.86*	3.60	<0.001	40.06 70.0
Source of controls							
HB	17	1563/2293	1.23	0.92–1.63*	1.40	0.162	39.44 59.4
PB	11	3279/5271	−	−	−	−	50.60 80.2
Quality score							
≥ 6	20	4391/6934	1.33	1.09–1.62*	2.85	0.004	71.8 73.6
< 6	8	451/630	0.91	0.53–1.54	0.36	0.715	18.80 62.8
−− vs. (−+) + (+−) + (++)	33	8270/14,381	1.26	1.09–1.46*	3.08	0.002	103.11 69.0
Ethnicity							
Caucasian	8	1893/2888	−	−	−	−	47.52 79.0
Asian	17	5328/9617	1.30	1.10–1.53*	3.14	0.002	47.75 66.5
Source of controls							
HB	19	2620/3998	1.38	1.19–1.60	4.17	<0.001	35.47 49.3
PB	14	5650/10,383	−	−	−	−	61.31 78.8

Continued over
Table 6 Combined genotype analysis of the GSTM1 and GSTT1 polymorphisms on risk of colorectal cancer (Continued)

Variables	No. of studies	No. of cases/controls	Test of association	Test of heterogeneity					
			OR	95% CI	Z	P	Chi-squared	I^2 (%)	
Quality score	< 6	8	623/988	1.10	0.72–1.70*	0.45	0.656	14.27	0.047
Quality score	≥ 6	25	7647/13,393	1.29	1.10–1.51*	3.08	0.002	88.88	73.0

+ +: GSTM1 present/GSTT1 present; + −: GSTM1 present/GSTT1 null; − +: GSTM1 null/GSTT1 present; − −: GSTM1 null/GSTT1 null; HB Hospital-based studies; PB Population-based studies

Figure 4. Forest plot of the association between GSTT1 present/null polymorphism and CRC risk in Asians

+ +: OR = 1.13, 95% CI: 0.78–1.65, I^2 = 54.4%; + −: OR = 0.88, 95% CI: 0.65–1.19, I^2 = 55.3%). A single study was excluded each time to assess the stability of the results. Figures 6–12 suggest that the results are stable in the present meta-analysis.

Publication bias

Begg’s funnel plot and Egger’s test were used to assess publication bias in the meta-analysis. The Begg’s funnel plot shape and Egger’s test (P < 0.001) revealed obvious publication bias between the GSTM1 present/null polymorphism
Figure 5. Forest plot of the association between the combined of \textit{GSTM1} present/null and \textit{GSTT1} present/null polymorphisms and CRC risk in Asians

and CRC risk in the overall analysis. Figure 13 shows the Begg's funnel plots by the trim and fill method; 24 missing studies should be added to this. Notably, log OR and 95% CI did not alter significantly when the trim and fill method was used. No significant publication bias was observed for the \textit{GSTT1} present/null polymorphism ($P=0.195$). Concerning their combined effects, no publication bias was detected under any genetic model ($P=0.093$ for $--$ vs. $++$; $P=0.398$ for $--$ vs. $+-$; $P=0.764$ for $--$ vs. $-+$; $P=0.643$ for $--$ vs. $(+ -) + (++)$; $P=0.280$ for $--$ vs. $(+ -) + (++)$).

Discussion

Strange et al. [106] in 1991 first reported an association between the \textit{GSTM1} null genotype and colon adenocarcinoma risk. Chenevix-Trench et al. [21] first analyzed the association between the \textit{GSTT1} null genotype and CRC risk in 1996. Deakin et al. [52] first examined their combined effects with CRC risk in 1996. Since then, many case-control studies have investigated the associations but the results are still inconsistent. Hence, an updated meta-analysis was performed to explore the \textit{GSTM1} null genotype, \textit{GSTT1} null genotype, and their combined effects with CRC risk.

Overall, this meta-analysis indicates that the \textit{GSTM1} and \textit{GSTT1} null genotypes are associated with increased CRC risk in Asians and Caucasians, and the \textit{GSTM1} null/\textit{GSTT1} null genotype was associated with increased CRC risk in Asians, but not in Africans and Indians. In addition, the \textit{GSTM1} null genotype was associated with colon cancer risk but not rectal cancer, while conversely that the \textit{GSTT1} null genotype was associated with rectal cancer but not colon cancer.

Actually, it may not be uncommon that the same polymorphism played different roles in cancer risk among different ethnic population, because cancer is a complicated multi-genetic disease, and different genetic backgrounds...
Figure 6. Sensitive analysis of the null genotype of \textit{GSTM1} on CRC risk in overall population.

Figure 12. Sensitive analysis of the combined effects of \textit{GSTM1} and \textit{GSTT1} on CRC risk in overall population ((+ −) + (− +) + (+ +))
Figure 7. Sensitive analysis of the null genotype of \textit{GSTT1} on CRC risk in overall population.

Figure 8. Sensitive analysis of the combined effects of \textit{GSTM1} and \textit{GSTT1} on CRC risk in overall population (−− vs. + +).
Figure 9. Sensitive analysis of the combined effects of GSTM1 and GSTT1 on CRC risk in overall population (−− vs. +−)

Study	Year	Effect
Abdel-Rahman [70]	1999	
Gorukmez [51]	2016	
Deakin [54]	1996	
Huang [107]	2007	
Huang [92]	2003	
Zhou [99]	2000	
Saadat [65]	2001	
Zeng [101]	2016	
Zhu [59]	2002	
Yoshioka [69]	1999	
Ate? [47]	2005	
Wang [25]	2011	
Huang [44]	2006	
Cong [35]	2014	
Fan [43]	2006	
Matakova [29]	2009	
Huang [44]	2006	
Rodrigues-Fleming [133]	2018	
Chen [130]	2004	
Piao [79]	2009	

Figure 10. Sensitive analysis of the combined effects of GSTM1 and GSTT1 on CRC risk in overall population (−− vs. −+)

Study	Year	Effect
Abdel-Rahman [70]	1999	
Gorukmez [51]	2016	
Deakin [54]	1996	
Huang [107]	2007	
Huang [92]	2003	
Zhou [99]	2000	
Saadat [65]	2001	
Zeng [101]	2016	
Zhu [59]	2002	
Yoshioka [69]	1999	
Ate? [47]	2005	
Wang [25]	2011	
Rodrigues-Fleming [133]	2018	
Chen [130]	2004	
Huang [44]	2006	
Cong [35]	2014	
Fan [43]	2006	
Matakova [29]	2009	
Huang [44]	2006	
Piao [79]	2009	
Figure 11. Sensitive analysis of the combined effects of GSTM1 and GSTT1 on CRC risk in overall population (−− vs. (+−) + (−+))

Figure 13. The Duval and Tweedie nonparametric "trim and fill" method's funnel plot of the GSTM1 present/null polymorphism
may contribute to the discrepancy [134]. In addition, the differences might arise by chance because studies in Indians and Africans with small sample size may have insufficient statistical power to generate an authoritative risk estimate [135]. Therefore, a large population-based case-control study is required to confirm the GSTM1, GSTT1 and their combined effects with CRC risk in Indians and Africans. Nine [32,33,46,59,90,93,99,101,105] and seven [38,45,48,75,81,83,85] studies indicated that the GSTM1 null genotype was associated with an increased CRC risk in Asians and Caucasians, respectively. Five [33,47,78,93,102] and eight [26,38,49,52,62,80,82,89] studies indicated that the GSTT1 null genotype had a significantly increased CRC risk in Asians and Caucasians, respectively. Moreover, five studies [33,41,57,90,99] reported a significant association between their combined effects and CRC risk in Asians. The results of present study strongly supported these findings.

Subgroup analysis by source of control found a significant association in hospital-based studies, but not in population-based studies in the present meta-analysis. However, hospital-based controls are not likely to replace the general population because they may have more bias than population-based studies [136]. Therefore, the results of hospital-based controls should be carefully explained. Heterogeneity is a common problem in meta-analyses. The present study observed several high levels of heterogeneity ($I^2 > 75\%$), and the results of meta-regression analysis indicated that sample size was the source of heterogeneity between the GSTM1 null genotype and CRC risk. Small sample size studies may be important confounding bias in molecular epidemiological studies, because random error and bias were common in the studies with small sample sizes, and the results were unreliable [137]. Furthermore, small sample studies were easier to accept if there was a positive report as they tend to yield false-positive results because they may be not rigorous and are often of low-quality. In addition, several value of $I^2 > 75\%$ dropped when a single study was excluded, the results indicate that source of heterogeneity also may be from one or multiple small sample or low quality studies. Figure 13 indicates that the asymmetry of the funnel plot was caused by studies with low-quality small samples.

A total of 13 meta-analyses [115–125,126,127] were conducted between 2010 and 2019 on the associations between the GSTM1 present/null and/or GSTT1 present/null polymorphisms with CRC risk. Cai et al. [115] examined 17 studies that included 5907 CRC cases and 9726 controls to explore the association between the GSTM1 null genotype and CRC risk in Asians, reporting that the GSTM1 null genotype was associated with an increased CRC risk. Liao et al. [116] examined 23 studies including 5058 cases and 5999 controls to show that the GSTT1 null genotype was associated with an increased CRC risk in Caucasians and Asians. Wan et al. [117] identified 30 studies of 7635 cases and 12,911 controls in all races, and demonstrated that the GSTT1 null genotype was associated with an increased CRC risk in Caucasians. Teng et al. [118] examined 13 studies (including 2225 cases and 3990 controls) to assess the GSTM1 null genotype with CRC risk and they found that the GSTM1 null genotype was associated with an increased CRC risk in Chinese. Gao et al. [119] assessed the association of the GSTM1 null genotype with CRC risk in all races (including 10,009 cases and 15,070 controls from 36 studies) and indicated that the GSTM1 null genotype was associated with an increased risk of CRC, especially in Caucasians. Qin et al. [120] selected 46 studies including 15,373 cases and 21,238 controls to show that the GSTT1 null genotype may contribute to an increased CRC risk in Asians and Caucasians. Wang et al. [121] (19 studies including 3130 cases and 6423 controls) found that the null genotypes of GSTM1 and GSTT1 and the dual null genotype of GSTM1/GSTT1 were not associated with CRC risk in Chinese population. The examination of 44 studies of GSTM1 (11,998 CRC cases and 17,552 controls) and 34 studies of GSTT1 (8596 CRC cases and 13,589 controls) by Economopoulos and Sergentanis [122] indicated that the GSTM1 and GSTT1 null genotypes were associated with an increased CRC risk in Caucasians. Li et al. [123] analyzed 33 studies (including 8502 CRC Asian cases and 13,699 controls) and indicated that the GSTM1 null genotype conferred susceptibility to CRC, especially in Chinese population. Xu et al. [124] examined 13 publications of 4832 cases and 7045 controls, demonstrating that the GSTT1 null genotype was associated with an increased CRC risk in Asians. Zhong et al. [125] conducted an association of 12 studies involving 4517 cases and 6607 controls, and suggested that the GSTT1 null genotype contributed to an increased CRC risk in Asians. Du et al. [126] examined 12 studies of GSTM1 and 8 studies of GSTT1, and found no association on the GSTM1 or GSTT1 null genotype with CRC risk. Huang et al. [127] selected 55 studies including 17,498 cases and 26,441 controls to show that the GSTM1 null genotype was a risk factor for CRC.

The current meta-analysis has several advantages over previous meta-analyses [115–125,126,127]. First, the sample size was much larger, with 86 case-control studies including 24,931 CRC cases and 36,537 controls evaluated for the GSTM1 present/null polymorphism, 64 case-control studies including 19,725 CRC cases and 28,725 controls for the GSTT1 present/null polymorphism, and 33 case-control studies including 8306 CRC cases and 14,369 controls for their combined effects in all races. Second, this is the first meta-analysis to explore their combined effects in overall population. Third, we used a meta-regression analysis method to explore the source of heterogeneity. Finally, the current meta-analysis included the most recent relevant publications to produce more accurate results.
Similar to previous meta-analyses, our study also has several limitations. First, only published articles were selected. Hence, publication bias may be found as shown in Figure 13. Moreover, positive results are known to be published more readily than negative ones. If negative results were included, an underestimation of the effect may be observed. Second, some case–control studies were based on hospital-based controls. These controls with non-cancerous disease may influence the pooled results in this study. Therefore, the use of population-based control studies may be more appropriate than hospital-based control studies. Third, only one study on Africans and Indians were included in the present study. Further new original studies were need on these issues in Africans and Indians.

In summary, the present study indicates that the GSTM1 null genotype is associated with increased CRC risk in Asians and Caucasians, the GSTT1 null genotype is associated with increased CRC risk in Asians, and the GSTM1 null/GSTT1 null genotype was associated with increased CRC risk in Asians. Further investigations involving large population-based studies should be conducted to explore the associations on the GSTM1 null genotype, GSTT1 null genotype and their combined effects with CRC risk.

Data Availability
All relevant data are within the paper.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
The authors declare that there are no sources of funding to be acknowledged.

Author Contribution
Liang Song: performed research, collected data, check data, and wrote manuscript. Chen Yang: performed research, collected data, check data, and revised manuscript. Xiao-Feng He: designed research, analyzed data, and revised manuscript.

Abbreviations
CBM, Chinese Biomedical Medical; CI, confidence interval; CNKI, China National Knowledge Infrastructure; CRC, colorectal cancer; GSTM1, glutathione S-transferase M1; GSTT1, glutathione S-transferase T1; MOOSE, Meta-analyses of Observational Studies in Epidemiology; OR, odds ratio.

References
1 Brenner, H., Kloor, M. and Pox, C.P. (2014) Colorectal cancer. Lancet 383, 1490–1502, https://doi.org/10.1016/S0140-6736(13)61649-9
2 Potter, J.D. (1999) Colorectal cancer: molecules and populations. J. Nati. Cancer Inst. 91, 916–932, https://doi.org/10.1093/jnci/91.11.916
3 Hemminki, K. and Czene, K. (2002) Attributable risks of familial cancer from the family-cancer database. Cancer Epidemiol. Biomarkers Prev. 12, 1638–1644
4 Lichtenstein, P. et al. (2000) Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85, https://doi.org/10.1056/NEJM200007133430201
5 Tomlinson, I.P. et al. (2008) A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat. Genet. 40, 623–630, https://doi.org/10.1038/ng.111
6 Hayes, J.D. and Pulford, D.J. (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30, 445–600, https://doi.org/10.3109/10409239509083491
7 Strange, R.C., Spiteri, M.A., Ramachandran, S. and Fryer, A.A. (2001) Glutathione-Stransferase family of enzymes. Mutat. Res. 482, 21–26, https://doi.org/10.1016/S0168-1661(01)00206-8
8 Board, P.G., Webb, G.C. and Coggan, M. (1989) Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. Ann. Hum. Genet. 53, 205–213, https://doi.org/10.1111/j.1469-1809.1989.tb01786.x
9 Pemble, S. et al. (1994) Human glutathione S-transferase theta (GSTT): cDNA cloning and the characterization of a genetic polymorphism. Biochem. J. 300, 271–276, https://doi.org/10.1042/bj3000271
10 Chenevix-Trench, G., Young, J., Coggan, M. and Board, P. (1995) Glutathione S-transferase M1 and T1 polymorphisms: susceptibility to colon cancer and age of onset. Carcinogenesis 16, 1655–1677, https://doi.org/10.1093/carcin/16.7.1655
11 Board, P.G., Baker, R.T., Chevalayagam, G. and Jermim, L.S. (1997) Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem. J. 328, 929–935, https://doi.org/10.1042/bj3280929
12 Hayes, J.D. and Strange, R.C. (2000) Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61, 154–166, https://doi.org/10.1159/000028396
13 Pearson, W.R., Vorachek, W.R., Xu, S.J., Berger, R., Hart, I., Vannais, D. et al. (1993) Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13. Ann. J. Hum. Genet. 53, 220–233
102 Zhang, Y.C., Deng, C.S., Zhu, Y.Q., Zhou, X., He, X.L. and Xu, L.H. (2003) Relationship between genetic polymorphisms of glutathione-S-transferase T1 and the clinico-pathological features of sporadic colorectal adenocarcinoma in the elderly. Chin J Geriatr 22, 400–402

103 Zhang, Y.C., Deng, C.S., Zhu, Y.Q., Zhou, X. and He, X.L. (2001) Relationship between GSTM1 null genotypes and genetic susceptibility to colonic cancers. Med. J. Wuhan Univ. 26, 131–133

104 Gao, J.R., Chen, C.F. and Zhang, Q. (1998) Study on the relationship between GSTM1 genetic polymorphism and lung cancer, colon cancer susceptibility. J. Zhenjiang Med. Coll. 8, 446–447

105 Huang, L.R. (2007) Strategic use of Sniffer: an integrated tool for bacterial genomics. Bioinformatics 23, i3–i8

106 Strange, R.C., Matharoo, B., Faulder, G.C., Jones, P., Cotton, W., Elder, J.B. et al. (1991) The human glutathione S-transferases: a case-control study of the incidence of the GST1 0 phenotype in patients with adenocarcinoma. Carcinogenesis 12, 25–28, https://doi.org/10.1093/carcin/12.1.25

107 Slattery, M.L., Edwards, S., Curtin, K., Schaffer, D. and Neuhausen, S. (2003) Associations between Smoking, Passive Smoking, GST1, and Rectal Cancer. Cancer Epidemiol. Biomarkers Prev. 12, 882–889

108 Slattery, M.L., Curtin, K., Ma, K., Schaffer, D., Potter, J. and Samowitz, W. (2002) GSTM1 and GSTT2 and genetic alterations in colon tumors. Cancer Causes Control 13, 527–534, https://doi.org/10.1023/A:1016376016716

109 Chen, K., Jiang, Q.T., Ma, X.Y., Yao, K.Y., Leng, S.G., Yu, W.P. et al. (2004) Associations between genetic polymorphisms of glutathione S-transferase T1 and smoking and susceptibility to colorectal cancer: a case-control study. Zhonghua Zhong Liu Za Zhi 26, 645–648

110 Klusek, J., Nasierowska-Guttmejer, A., Kowalik, A., Wawrzycka, I., Chrpaek, M., Lewitowicz, P. et al. (2019) The Influence of Red Meat on Colorectal Cancer Occurrence Is Dependent on the Genetic Polymorphisms of S-Glutathione Transferase Genes. Nutrients 11, E1682, pii:
https://doi.org/10.3390/nu11071682

111 Stojkovic Lalosevic, M.L., Coric, V.M., Pekmezovic, T.D., Simic, T.P., Pijeska Ercoglovac, M.S., Pavlovic Markovic, A.R. et al. (2019) Deletion and Single Nucleotide Polymorphisms in 226 Common Glutathione-S Transferases Contribute to Colorectal Cancer Development. Pathol. Oncol. Res. 25, 1579–1587, https://doi.org/10.1007/s12253-019-00589-1

112 Rodrigues-Fleming, G.H., Fernandes, G.M.M., Russo, A., Biselli-Chicote, P.M., Netinho, J.G., Pavarino, ÉC et al. (2018) Molecular evaluation of glutathione S transferase family genes in patients with sporadic colorectal cancer. World J Gastroenterol. 24, 4462–4471, https://doi.org/10.3748/wjg.v24.i39.4462

113 Wiś, J., Karasiwicz, M., Bogacz, A., Dziekan, K., Górska-Paukszta, M., Kamiriński, M. et al. (2018) The diagnostic potential of glutathione S-transferase GSTM1 polymorphisms in patients with colorectal cancer. Adv. Clin. Exp. Med. 27, 1561–1566, https://doi.org/10.17219/acem/74682

114 Klusek, J., Nasierowska-Guttmejer, A., Kowalik, A., Wawrzycka, I., Lewitowicz, P., Chrpaek, M. et al. (2018) GSTM1, GSTT1, and GSTP1 polymorphisms and colorectal cancer risk in Polish nonsmokers. Oncotarget 9, 21224–21230, https://doi.org/10.18632/oncotarget.25031

115 Cai, X., Yang, L., Chen, H. and Wang, C. (2014) An updated meta-analysis of the association between GSTM1 polymorphism and colorectal cancer in Asians. Tumour Biol. 35, 940–953, https://doi.org/10.1007/s13277-013-1125-0

116 Liao, C., Cao, Y., Wu, L., Huang, J. and Gao, F. (2010) An updated meta-analysis of the glutathione S-transferase T1 polymorphisms and colorectal cancer risk: a HuGE review. Int. J. Colorectal Dis. 25, 25–37, https://doi.org/10.1007/s00384-009-0605-0

117 Wang, H., Zhou, Y., Yang, P., Chen, B., Jia, G. and Wu, X. (2010) Genetic polymorphism of glutathione S-transferase T1 and the risk of colorectal cancer: a meta-analysis. Cancer Epidemiol. 34, 66–72, https://doi.org/10.1016/j.canep.2009.12.006

118 Teng, Z., Wang, L., Zhang, J., Cai, S. and Liu, Y. (2014) Glutathione S-transferase M1 polymorphism and colorectal cancer risk in Chinese population. Tumour Biol. 35, 2117–2121, https://doi.org/10.1007/s13277-013-1281-2

119 Gao, Y., Cao, Y., Tan, A., Liao, C., Mo, Z. and Gao, F. (2010) Glutathione S-transferase M1 polymorphism and sporadic colorectal cancer risk: An updating meta-analysis and HuGE review of 36 case-control studies. Ann. Epidemiol. 20, 108–121, https://doi.org/10.1016/j.annepidem.2009.10.003

120 Qin, X.P., Zhou, Y., Chen, Y., Li, N.N., Chen, B., Yang, P. et al. (2013) Glutathione S-transferase T1 gene polymorphism and colorectal cancer risk: an updated analysis. Clin. Res. Hepatol. Gastroenterol. 37, 626–635, https://doi.org/10.1016/j.clinre.2013.04.007

121 Wang, D., Zhang, L.M., Zhai, J.X. and Liu, D.W. (2012) GSTM1 and GSTT1 polymorphisms and colorectal cancer risk in Chinese population: a meta-analysis. Int. J. Colorectal Dis. 27, 901–909, https://doi.org/10.1007/s00384-011-1406-2

122 Economopoulos, K.P. and Sargentinidis, T.N. (2010) GSTM1, GSTT1, GSTP1 and colorectal cancer risk: A comprehensive meta-analysis. Eur. J. Cancer 46, 1617–1631, https://doi.org/10.1016/j.ejca.2010.02.009

123 Li, J., Xu, W., Liu, F., Huang, S. and He, M. (2015) GSTM1 polymorphism contribute to colorectal cancer in Asian populations: a prospective meta-analysis. Sci. Rep. 5, 12514, https://doi.org/10.1038/srep12514

124 Xu, D., Yan, S., Yin, J. and Zhang, P. (2011) Null genotype of GSTT1 contributes to colorectal cancer risk in Asian populations: evidence from a meta-analysis. Asian Pac. J. Cancer Prev. 12, 2279–2284

125 Zhong, S., Yang, J.H., Liu, K., Jiao, B.H. and Chang, Z. (2012) Null genotype of glutathione S-transferase T1 contributes to colorectal cancer risk in the Asian population: a meta-analysis. J. Gastroenterol. Hepatol. 27, 231–237, https://doi.org/10.1111/j.1440-1746.2011.06920.x

126 Du, L. et al. (2018) The Interaction of Smoking with Gene Polymorphisms on Four Digestive Cancers: A Systematic Review and Meta-Analysis. J. Cancer 9, 1506–1517, ecollection 2018, https://doi.org/10.7150/jca.22797

127 Huang, M., Zeng, Y., Zhao, F. and Huang, Y. (2018) Association of glutathione S-transferase M1 polymorphisms in the colorectal cancer risk: A meta-analysis. J. Cancer Res. Ther. 14, 176–183, https://doi.org/10.4103/jcrt.JCRT-446-16

128 Stroup, D.F., Berlin, J.A., Morton, S.C., Ollik, I., Williamson, G.D., Rennie, D. et al. (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283, 208–2012, https://doi.org/10.1001/jama.283.15.2008

129 Peng, Q., Lu, Y., Lao, X., Chen, Z., Li, R., Sui, J. et al. (2014) The NQO1 Pro187Ser polymorphism and breast cancer susceptibility: evidence from an updated meta-analysis. Diagn Pathol 9, 100, https://doi.org/10.1186/1746-1596-9-100
130 Peng, Q., Chen, Z., Lu, Y., Lao, X., Mo, C., Li, R. et al. (2014) Current evidences on XPC polymorphisms and gastric cancer susceptibility: a meta-analysis. _Diagn. Pathol._ 9, 96, https://doi.org/10.1186/1746-1596-9-96

131 Higgins, J.P., Thompson, S.G., Deeks, J.J. and Altman, D.G. (2003) Measuring inconsistency in meta-analyses. _BMJ_ 327, 557–560, https://doi.org/10.1136/bmj.327.7414.557

132 Mantel, N. and Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. _J. Natl. Cancer Inst._ 22, 719–748

133 DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. _Control. Clin. Trials_ 7, 177–188, https://doi.org/10.1016/0197-2456(86)90046-2

134 Hirschhorn, J.N., Lohmueller, K. and Byrne, E. (2002) A comprehensive review of genetic association studies. _Genet. Med._ 4, 45–61, https://doi.org/10.1097/00125817-200203000-00002

135 Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L. and Rothman, N. (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. _J. Natl. Cancer Inst._ 96, 434–442, https://doi.org/10.1093/jnci/djh075

136 Wacholder, S., Silverman, D.T., McLaughlin, J.K. and Mandel, J.S. (1992) Selection of controls in case-control studies. II. Types of controls. _Am J Epidemiol._ 135, 1029–1041, https://doi.org/10.1093/oxfordjournals.aje.a116397

137 Attia, J., Thakkinstian, A. and D’Este, C. (2003) Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. _J. Clin. Epidemiol._ 56, 297–303, https://doi.org/10.1016/S0895-4356(03)00011-8