Human T-Cell Lymphotropic Virus Type 1 (HTLV-1) and HTLV-1–Associated Myelopathy/Tropical Spastic Paraparesis

Graham P. Taylor
Department of Medicine, Imperial College, London, United Kingdom
(See the Major Article by Tanajura et al on pages 49-56.)

Keywords. HTLV-1–associated myelopathy; cohort study; incidence

The human T-cell lymphotropic virus type 1 (HTLV-1) is an oncogenic retrovirus that is transmitted from mother to child, particularly through prolonged breastfeeding; between sexual partners through unprotected intercourse; and from donors to recipients through transfusion and transplantation. Thirty-five years after its discovery, screening for HTLV-1 infection is at best patchy and mostly nonexistent. There are 2 main reasons for this: first, the most recent estimate of the prevalence of HTLV-1 is 5–10 million persons worldwide, with the important caveat that 86% of the global population is data poor in this regard [1]; second, there is a perception that disease related to this virus, which has coexisted with humankind for 60,000 years, is uncommon. Whether this reputation is justified requires up-to-date and reliable sero- and clinical epidemiology.

The lifetime risk, among carriers, of adult T-cell leukemia/lymphoma is 2%–6% regardless of the region of study. However, for HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP), more varied risks are reported with strong hints that, apart from the route of infection, ethnicity and human leukocyte antigen (HLA) types impact significantly on risk. Furthermore, HTLV-1 has been associated with a range of other inflammatory manifestations affecting many organs but particularly eyes, lungs, and thyroid and with increased susceptibility to a number of infections, most notably Strongyloides stercoralis hyperinfection syndrome. (Given the high mortality of this latter condition, it is our policy to screen all HTLV-1 carriers who have resided in endemic areas for S. stercoralis.) These diseases are much less well recognized even than HAM/TSP, with no data on incidence or prevalence among carriers. How, then, are we to judge the global disease burden of HTLV-1 infection?

In this edition of Clinical Infectious Diseases, Tanajura et al report on a longitudinal study of 414 HTLV-1–infected individuals in Brazil [2]. There are a number of striking findings. First, among study participants not previously diagnosed with HAM/TSP, 18.4% had, at baseline assessment, symptoms, signs, and investigations consistent with a definite diagnosis of HAM/TSP. Second, an additional 21%, again at baseline, had possible or probable HAM/TSP on the basis of having either 1 motor sign consistent with HAM/TSP or a neurogenic bladder (probable) or a clinical diagnosis of HAM/TSP without exclusion of other possible diagnoses (possible). Third, during up to 8 years of follow-up, 5 subjects (all from the probable HAM/TSP category) were diagnosed with definite HAM, an incidence of 1.5%. Finally, very high incidences of a range of neurological symptoms were documented, particularly sensory, including upper limb, even though the median person follow-up was only 2 years.

These findings are notable because they differ by an order of magnitude from most previous reports. Using data from the mid-1980s, Kaplan et al estimated a 0.25% lifetime risk of HAM in HTLV-1–infected Japanese individuals, based on an average of 24.3 new cases reported per year among approximately 794,800 seropositive individuals (3/100,000 cases per annum) [3]. These data have undoubtedly affected some public health decisions outside Japan.
However, in the Caribbean, Murphy et al diagnosed myelopathy in 0.5% of HTLV-1 carriers in a case-control study [4], whereas Maloney et al estimated the lifetime risk of HAM/TSP at 1.9% with an age-standardized annual incidence of 17.3 per 100,000 infected males and 24.7 per 100,000 infected females [5]. In the United States, Murphy et al diagnosed myelopathy in 2.4% (4/166) newly diagnosed HTLV-1 infected controls. Although there is an important, this study included matched uninfected controls. Therefore, the proviral load in this cohort may be higher than in other cohorts that cite a median of 1% for asymptomatic carriers. Even so, this does not fully account for the exceptionally high prevalence and incidence of definite HAM/TSP as assuming a lifetime risk of HAM/TSP of up to 3%, even subjects with proviral loads >1% have only a 6% lifetime risk.

Because only 59% of the cohort was identified through screening, with 32% self-referred and the remainder identified by the neurology service or by having HTLV-1 in the family, further breakdown of the data from the blood donors only would be more comparable with other studies and potentially contribute to understanding the role, if any, of selection bias. In particular, the high rate of sensory symptoms of the upper limbs are difficult to explain from previous reports of HAM/TSP and raise various possibilities, including overreporting by study participants and the presence of additional factors or alternative etiologies.

It is difficult to comment on the contribution of environment (clinical and community), but there is now an urgent need to test these findings in a new study with HTLV-1–uninfected matched controls. If confirmed, at least in some infected communities, the disease burden of HTLV-1 is considerably higher than previously reported, and this should stimulate broader and more effective prevention programs and greater interest and financial support for research into the treatment of HAM/TSP.

Note

Potential conflict of interest. Author certifies no potential conflicts of interest.

The author has submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol 2012; 3:388.

2. Tanajura D, Castro N, Oliveira P, et al. Neurological manifestations in human T-cell lymphotropic virus (HTLV-1)–infected individuals without HTLV-1–associated myelopathy/tropical spastic paraparesis: a longitudinal cohort study. Clin Infect Dis 2015; 61: 49–56.

3. Kaplan JE, Osame M, Kubota H, et al. The risk of development of HTLV-I associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Acquir Immune Defic Syndr 1990; 3:1096–101.

4. Murphy EL, Wilks R, Morgan OS, et al. Health effects of human T-lymphotropic virus type I (HTLV-I) in a Jamaican cohort. Int J Epidemiol 1996; 25:1090–7.

5. Maloney EM, Cleghorn FR, Morgan OS, et al. Incidence of HTLV-I–associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Jamaica and Trinidad. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 17:167–70.

6. Murphy EL, Friddy J, Smith JW, et al. HTLV–associated myelopathy in a cohort of HTLV-I and HTLV-II infected blood donors. The REDS investigators. Neurology 1997; 48:315–20.

7. Jennel D, Garin B, Kazadi K, Singa L, de Thé G. The risk of tropical spastic paraparesis differs according to ethnic group among HTLV-I carriers in Inongo, Zaire. J Acquir Immune Defic Syndr 1993; 6:840–4.

8. Nagai M, Usuku K, Matsumoto W, et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 1998; 4:586–93.

9. Abtahi A, Mueller NE, Okayama A, Stuver S. Lack of evidence for a role of HTLV-1 infection in the occurrence of subclinical HAM/TSP in the Miyazaki Cohort Study. J Acquir Immune Defic Syndr 2000; 24:86–7.