Distribution and abundance of ticks infesting livestock population along Karakorum highway from Mansehra to Gilgit, Pakistan

SAJID MUHAMMAD
Department of Parasitology, 2U.S. Pakistan Center for Advanced Studies in Agriculture and Food Security (USPCASAFS), University of Agriculture

IQBAL ZAFAR
Department of Parasitology, 2U.S. Pakistan Center for Advanced Studies in Agriculture and Food Security (USPCASAFS), University of Agriculture

SHAMIM ASIM
Department of Parasitology, 2U.S. Pakistan Center for Advanced Studies in Agriculture and Food Security (USPCASAFS), University of Agriculture

SIDDIQUE RAO
Department of Parasitology, 2U.S. Pakistan Center for Advanced Studies in Agriculture and Food Security (USPCASAFS), University of Agriculture

UL HASSAN MUHAMMAD
Department of Parasitology, 2U.S. Pakistan Center for Advanced Studies in Agriculture and Food Security (USPCASAFS), University of Agriculture

RIZWAN HAFIZ
Department of Parasitology, 2U.S. Pakistan Center for Advanced Studies in Agriculture and Food Security (USPCASAFS), University of Agriculture

https://doi.org/10.12681/jhvms.15556
To cite this article:

SAJID, M., IQBAL, Z., SHAMIM, A., SIDDIQUE, R., UL HASSAN, M., & RIZWAN, H. (2018). Distribution and abundance of ticks infesting livestock population along Karakoram highway from Mansehra to Gilgit, Pakistan. Journal of the Hellenic Veterinary Medical Society, 68(1), 51-58. doi:https://doi.org/10.12681/jhvms.15556
Distribution and abundance of ticks infesting livestock population along Karakorum highway from Mansehra to Gilgit, Pakistan

Muhammad Sohail Sajid*1, 2, Zafar Iqbal1, Asim Shamim1, Rao Muhammad Siddique1, Muhammad Jawad ul Hassan1, Hafiz Muhammad Rizwan1

1Department of Parasitology, 2U.S. Pakistan Center for Advanced Studies in Agriculture and Food Security (USPCAS-AFS), University of Agriculture, Faisalabad, Pakistan

ABSTRACT. Ticks and tick-borne infections pose major economic threats to the livestock industry throughout the world. The present study reports the point prevalence of ticks in the free range livestock population of the plain and hilly areas of Khyber Pakhtunkhwa (Mansehra, Haripur, Shangala, Kohistan), and Gilgit Baltistan (Diamer, Gilgit, Astor) along the Karakoram highway. Through convenient and snowball sampling techniques, a total of 813 animals, consisting of 232 sheep, 163 cattle, 365 goats and 53 buffaloes were screened for their tick burden. During the study, the two tick species identified were *Hyalomma anatolicum* and *Rhipicephalus microplus*. The overall prevalence of tick infestation among the screened livestock was 75.03%, with the highest distribution in sheep (81.47%) followed, in order, by cattle (77.91%), goats (72.05%) and buffalo (58.49%). The district-wise prevalence of ticks was the highest in Haripur (85.58), followed, in order, by Gilgit (83.10%), Mansehra (81.14%), Batagram (81.05%), Shangala (77.78%), Kohistan (75.38%), Diamer (72.28%) and Astor (32.22%). The prevalence of ticks was found to be higher (85.67%) in younger livestock than adults (66.44%), and in females (80.33%) than males (66.44%). The present study provides the first report of the tick distribution in higher altitudes of northern Pakistan and confirms the presence of *Hyalomma* and *Rhipicephalus* ticks in the plains, as well as the hilly geoclimates of Pakistan. Furthermore, the data on risk factors allows us to make recommendations to restructure the existing husbandry system of northern areas of Pakistan with the aim of reducing the tick burden on livestock.

Keywords: Ticks; Khyber Pakhtunkhwa; Gilgit- Baltistan; Pakistan; *Hyalomma anatolicum*; *Rhipicephalus microplus*

INTRODUCTION

Ticks (Acari: Ixodidae), blood imbising ectoparasites of mammals, birds and reptiles, have an epidemic dissemination in tropical and sub-tropical regions (Gaisuddin et al., 1994; Vesco et al., 2011). Ticks are prevalent worldwide from Asia (Haque et al., 2011; Bilkis et al., 2011; Sajid et al., 2011; Razmi and Ramoon, 2012; Singh and Rath, 2013), Africa (Reye et al., 2012; Tiki and Mekonnen, 2011; Elghali and Hassan, 2012), North and South Americas (Guimaraes et al., 2001; Lohmeyer et al., 2011), Australia (Springell, 1974; Kamau, 2011) and Europe (Kirby et al., 2004; Scharlemann et al., 2008). Ticks not only cause direct losses, but also act as vectors for various pathogens of bacterial, rickettsial, protozoal, and viral origin (Petney et al., 2007). The direct production losses caused by ticks include loss of milk production, reduced weight gain (Peter et al., 2005; Sajid et al., 2007), low quality skins and hides (Jongejan and Uilenberg, 2004), and mortality (Niyonzema and Kiltz, 1986). Besides these production losses, ticks also cause clinical and sub-clinical infections such as anemia, dermatitis, paralysis, otocarriasis (Drummond, 1983; FAO, 1998) and secondary bacterial infections (Ambrose et al., 1999). Various diseases vectored by ticks are babesiosis, theileriosis, anaplasmosis, lyme...
disease, tick typhus, Rocky Mountain spotted fever and Crimean-Congo haemorrhagic fever (Otim, 2000; Bell-Sakyi et al., 2004). During the last three decades tick-borne infections have increased globally (Patz et al., 2005). Production and economic losses are proportional to the tick burden on the body of host, which results in increased irritation, restlessness, weight loss and disease transmission (Gosh et al., 2007; Agarwal and Gupta, 2010). It has been estimated that economic losses due to vector transmitted diseases and cost of tick control worldwide is 7.0 billion dollars annually (Harrow et al., 1991; Garcia, 2003).

The distribution of ticks in any region is closely associated with certain biotic and abiotic features (Sonenshine, 1993). Tick dispersal in any area depends upon the environmental factors (Estrada-Peña, 2003) e.g. temperature of 27-39 °C and relative humidity range of 60-80% render ticks more active (Rodriguez and Dominguez, 1998); however, ticks can also survive at temperatures down to -18.5˚C (Clark, 1995; Vandyk et al., 1996, Schulze et al., 2001). In the past few decades, due to global warming, ticks have been reported in areas of higher altitudes which were previously tick-free. In Pakistan, studies conducted on prevalence of tick species across the country report the frequency distribution within the range of 6.99 to 80% in small and large ruminant population. However, studies on the tick distribution in the northern areas of Khyber Pakhtunkhwa (KPK) and Gilgit Baltistan (GB) are not available except a single study by Khan (1993) in Kaghan valley, almost two decades ago. The present study was aimed to explore the northern area of Pakistan for the distribution of tick fauna in livestock population.

MATERIALS AND METHODS

Study Area

The present study was conducted in selected areas of the provinces of KPK and GB including: Haripur (33.988° N 72.955°E), Mansehra (34°20′N 73°12′E), Shangala and Batagram (34.41°N 73.1°E), Kohistan (34° 54′ and 35° 52′ N and 72°43′ and 73°57′ E), Astor (35° 22′ N, 74° 51′ E) and Gilgit (35°55′19″ N 74°18′31″ E). The average distance between each study area ranged from 30 to 100 kilometers. In these areas, animals are reared under a traditional management system (i.e. farmers followed practices of their forefathers and deal with animals according to traditional beliefs and knowledge) in which the livestock is entirely dependent upon grazing. Variation in temperature, rainfall, and humidity levels of the study districts depends upon the differences in the landscape, climate and elevation of these areas from sea level (Anonymous, 2011). The present study was conducted during June which is the hottest month of summer season in Pakistan.

Selection of Animals

Convenience and snowball sampling techniques were applied in order to select the sample animals/farms along the Karakoram Highway screened during this study. A questionnaire was designed to acquire essential information relating to animals (sex, age and species), qualitative and quantitative abundance of ticks and/or other parasites and the environmental conditions, including management (Thrusfield, 2007).

Collection and Identification of Ticks

For collection of ticks, the whole body of the animal was screened. Ticks were removed with the help of a fine tweezer with minimum damage to the mouth parts (Soulsby, 1982), transferred to McCartney sample collection bottles containing 70% ethanol and labelled appropriately. After collection, specimens were brought to the Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan for taxonomic identification. Ticks were identified using stereomicroscope (IM-SZ-500 IRMECO Germany) according to standard keys (Walker et al., 2007).

Statistical Analyses

Prevalence and association of determinants was analyzed by using multivariate analysis (multiple logistic regressions) and odds ratio. Pairwise comparison was carried out by keeping buffaloes (animal species), Rhipicephalus spp. (tick species), males (sex), adults (age) and the Astor district (area) in group 2 of the analysis (Schork and Remington, 2010). All statistical analyses were conducted using SAS software package (SAS, 2010).

RESULTS

The overall prevalence of tick infestation in the
Table 1. Frequency distribution of hard ticks (Ixodidae) in different livestock species of Khyber Pakhtunkhwa and Gilgit-Baltistan, Pakistan

Variables	Levels	Animals Screened	Tick Positive	Prevalence (%)	95% Confidence interval	Odds Ratio	P-value
Animal Species	Sheep	232	189	81.47	76.07 86.06	1.39	0.167
	Cattle	163	127	77.91	71.06 83.78	1.33	0.289
	Goats	365	263	72.05	67.28 76.48	1.23	0.378
	Buffalo	53	31	58.49	44.94 71.13	-	-
Tick Species	Hyalomma spp.	813	309	38.01	34.72 41.38	1.03	0.782
	Rhipicephalus spp.	813	301	37.02	33.75 40.39	-	-
Sex	Female	483	388	80.33	76.61 83.69	1.19	0.105
	Male	330	222	67.27	62.07 72.18	-	-
Age	Young	393	311	79.13	74.90 82.94	1.11	0.322
	Adult	420	299	71.19	66.72 75.37	-	-
Province	KPK	498	403	80.92	77.29 84.74	1.23	0.063
	GB	315	207	65.71	60.34 70.80	-	-
Districts	Manshera	162	132	81.14	74.94 86.91	2.53	0.000
	Haripur	104	89	85.58	77.82 91.38	2.66	0.000
	Batagram	95	77	81.05	72.24 88.00	2.52	0.000
	Shangala	72	56	77.78	67.11 86.25	2.41	0.002
	Kohistan	65	49	75.38	63.84 86.49	2.34	0.003
	Diamer	83	60	72.28	61.95 81.10	2.24	0.003
	Gilgit	142	118	83.10	76.26 88.60	2.58	0.000
	Astor	90	29	32.22	23.19 42.38	-	-

Table 2. Tick Abundance in Screened Livestock Species of Gilgit Baltistan and Khyber Pakhtunkhwa, Pakistan

Sr. No.	Livestock species	Range of tick burden	Average
	Sheep	Minimum: 6 Maximum: 145	40.16
	Cattle	Minimum: 25 Maximum: 125	31.53
	Goats	Minimum: 19 Maximum: 130	25.18
	Buffaloes	Minimum: 10 Maximum: 60	22.29

The prevalence of tick infestation in ruminants

DISCUSSION

The prevalence of tick infestation in ruminants was not found to be statistically associated (P>0.05) with the tick distribution in the study districts. Table 1 details the distribution of ticks by individual variables. Table 3 depicts the distribution of the two species of hard ticks infesting livestock in the various districts of KPK and GB.
is much higher in the developing countries of Asia (Siddiqi and Jan, 1986; Khan et al., 1993; Sajid et al., 2007, 2008, 2009, 2011; Yi-Lun et al., 2011; Iqbal et al., 2013; Ali et al., 2013; Sultana et al., 2015) and Africa (Walker and Koney, 1999; Walker, 2003), where control measures are infrequently applied, than in Australia (Springell, 1974; Kamau, 2011), Europe (Papadopoulos et al., 1996; Hostis and Seegers, 2002) and the Americas (Guimaraes et al., 2001; Lohmeyer et al., 2011). Extensive research studies have been conducted on the prevalence of the tick fauna and associated risk factors in various districts of Pakistan. Seven tick species have been reported from sixteen districts of Pakistan, with a prevalence ranging from 6.99% to 86.50% in the bovine and caprine populations of various study areas during 1971 to 2015 (Iqbal et al., 1971; Khan et al., 1993; Zaman, 1997; Kakar and Kakarsulemankhel, 2008; Sajid et al., 2008; Durrani and Shakoori, 2009; Irshad et al., 2010; Perveen, 2011; Atif et al., 2012; Ali et al., 2013; Iqbal et al., 2013; Tasawar et al., 2014; Mustafa et al., 2014; Sultana et al., 2015). However, the northern areas of the country have been ignored due to harsh climate and the very difficult access to small holder animal farmers in the remote hilly villages. This is the first attempt to conduct such a study in these areas. The two tick species, i.e. *H. anatolicum* and *R. microplus*, which were identified from the screened livestock population along the Karakaram highway, have also been reported earlier from other parts of the country (Ali, 1988; Khan et al., 1993, 1996; Wahid et al., 2004; Durrani, 2008; Sajid et al., 2008; Irshad et al., 2010; Atif et al., 2012; Iqbal et al., 2013; Mustafa et al., 2014; Tasawar et al., 2014). These two tick species have also been reported to infest deer, equine, swine, canine and humans. Further, these two ticks have been reported as vectors of viral, bacterial, rickesial and protozoal diseases of man and animals, including: Crimean-Congo hemorrhagic fever, babesiosis, theliriosis, Q fever, trypanosomiasis and ehrlichiosis (Morzaria et al., 1986; Jongejan and Uilenberg, 1994, Chinikar et al. 2009) as well as *Staphylococcus* spp., *Coxiella burnetti*, tick-borne encephalitis virus, and *Ehrlichia* spp. (Yang et al., 1993; Anbalagan et al., 2014).

Prevalence of these species of ticks has already been reported in wide range of farm animals from the hilly and plain areas of Malaysia (Mariana et al., 2008). The results of present study indicate a relatively higher prevalence of ticks in the livestock populations of the plain and hilly areas of Pakistan as compared to...
earlier studies conducted in other parts of the country in which the prevalence ranged from 14% to 54.76% (Iqbal et al., 1971; Sajid et al., 2007, 2008; Ramzan et al., 2008; Sajid et al., 2009; Irshad et al., 2010; Sajid et al., 2011; Atif et al., 2012; Iqbal et al., 2013).

The key factors which favour the growth and development of ticks in particular region are: temperature, humidity, rainfall (Greenfield et al., 2011), vegetation (Gray, 2002), host availability, season, habitat (Teel et al., 1996), altitude (Jouda et al., 2004; Burri et al., 2007; Cadenas et al., 2007), breed, age, sex, stage of lactation, gestation period, nutritional status of the animal (Swai et al., 2005; Alonso et al., 2007; Yacobi et al., 2008), body condition (Rony et al., 2010), method of application of acaricides (Bianchi et al., 2003) and husbandry practices (Sajid et al., 2011). In addition, tick survival and activity are dependent on many factors, primarily, humidity and moisture contents. To this end, mat depth (depth of soft soil which is usually measured by ruler) is another important factor which helps to maintain a better microclimatic condition suitable for tick survival, as more depth of mat retains more water (Milne, 1948) and provides more niches for ticks. Removal of mat layer/thickness causes desiccation of ticks thus reducing tick abundance. In addition to this, a humidity of above 80% is essential for tick survival and levels below this have a detrimental effect on tick survival (Macleod, 1934, 1935; Milne, 1948). It is therefore believable that humidity is an important determinant of tick survival. Humidity also has a profound effect on tick activity, primarily controlling the amount of time a tick can spend questing (Greenfield, 2011). Tick growth and development is temperature dependent and tick activity is greatly affected by changes in temperature. It has been reported that at temperatures ≤7°C, ticks remain inactive, only venturing out of the mat and up the vegetation to quest for a host when temperatures increase (Macleod, 1939). Further, an increase in temperature not only causes an increase in the distribution of ticks but is also linked to the encroachment of ticks into higher altitudes not previously colonized by ticks (Danielov et al., 2008). The increase and decrease in temperature is also associated with tick diapause and shift in nymph and adult activity. It is reported that lower temperatures (16.0–20.9°C) significantly reduced the number of ticks recovered during dragging. Increase and decrease in temperature, soil moisture and cloud coverage can also affect tick questing. Studies have shown that higher humidity is not favorable for ticks, as they become prone to over saturation, thus limiting their activities (Lee, 1946; Milne, 1948; Arthur, 1962). Gray (2002) reported that vegetation structure plays a large role in the presence and the absence of ticks. Ticks are often recorded in woodland habitats, as these provide a dense shrub layer; habitat with bracken, however, will also provide a suitable habitat. Vegetation height is also important factor which affects tick prevalence as higher heights are associated with a decrease in tick abundance. It is reported that the tick abundance is higher at 151-300mm high vegetation. Presence and absence of host in an area also affect occurrence of ticks. So, presence of ticks is not static as it depends on a number of factors.

The reasons of high prevalence of ticks in the livestock population nurtured along the Karakoram highway of Pakistan could be due to different factors. Geography and climate of the area are among those factors which are linked with variables such as: temperature, rainfall, humidity, vegetation, landscape and altitude and the role of these factors leading to a higher abundance of ticks has been reported (Estada-Pena, 2003). Recently, it has been reported that the height of the study area from the sea level has negative correlation with the tick distribution and abundance (Qviller et al., 2013). Probably, at the higher altitudes, environmental temperature does maintain the optimum range required for the growth and development of ticks (Perret et al., 2000; Jouda et al., 2004; Randolph, 2004). Further, at higher altitudes the microclimatic conditions diminish the body reserves of the ticks, which ultimately lead to delayed embryogenesis (Daniel, 1993). During the past decade, increases in the climatic temperature might have resulted in the higher abundance of ticks even at higher altitudes (Burri et al., 2007; Cadenas et al., 2007). Climate alteration is a believable justification for changes in the distribution and severity of tick infestation at higher altitude (Coulson et al., 2009). In other words, environmental changes favour settlement of ticks at higher altitude where they had not colonized earlier (Danielova et al., 2008). Vegetation and forest make another microclimatic component of the area that have significant role in higher distribution of ticks as it provides covering layer for lodging of ticks (Gray, 2002). Hilly areas of GB and KPK are densely shielded by shrubs, bushes and forests which provide appropriate resources for the exophphilic questing behaviour of ticks.

Season plays vital role in the tick distribution as has been reported from all over the globe with highest prev-
In Pakistan too, summer season has been reported most favorable for the growth, propagation and infestation of ticks on the livestock population from various regions of the country (Sajid et al., 2007; Durrani and Shakoori, 2009; Sajid et al., 2009, 2011; Atif et al., 2012; Iqbal et al., 2013) Current point prevalence was determined in the summer when the weather conditions are hot and humid which favour tick growth and development (Gosh et al., 2007). Probably, nomadism also contributes towards higher distribution of tick infestation in the area as in our country animal keepers/farmers from the warmer areas of Punjab, Sindh and KPK migrate with their livestock in summer season to the hilly areas like GB where temperature is much lower during summer season. This activity favours successful transmission of ticks from the immigrant livestock to the indigenous animals of the area.

Husbandry practices are also correlated with tick abundance and distribution. In this context, mixed grazing of different animal species on the same pasture and/or mixed housing provides maximum opportunity to ticks to infest a large population at one time. In Pakistan, animal sheds are made of bricks and stones with mud which provides cracks and crevices that is suitable for the nidiculous questing behaviour of ticks (Soulsby, 1982). Lack of awareness about the treatment of infested animals and lack of veterinary facilities are also noteworthy reasons for the higher tick infestation in these areas. Most of the interviewed farmers were illiterate and had a misconception that ticks do not impact on animal health and production. On the basis of the results of the present study, some recommendations for farmers and researchers are: (a) prophylactic treatment of the livestock populace must be administered at the start of warm season (March-April) (b) young and female animals need extra care (c) dairy and livestock development organizations must plan an awareness campaign in these areas to explain the possible threats of ticks and tick-borne diseases to the livestock. The present study is the first report of the successful adaptation and settlement of ticks at the high altitudes of northern Pakistan.

Acknowledgements

Financial assistance for this project was provided by the USAID through the Higher Education Commission Pak-US Science and Technology Cooperation Programme (Phase IV). The authors would like to thank Prof. Dr. Thomas J. Nolan, Laboratory of Parasitology, University of Pennsylvania, Philadelphia, USA for reviewing the manuscript. We would like to submit our gratitude towards farmers and staff of the Livestock and Dairy Development Department, of the study provinces for their pivotal cooperation during surveillance.

REFERENCES

Agarwal P, Gupta AR (2010) Management of ectoparasites of livestock. Department of Medicine, QUAF-Bhubaneswar, Orissa, India.

Ahmed W F (1988) Incidence and chemotherapy of ectoparasites of cattle, sheep, goat and poultry in Northern Areas. M.Sc, Thesis, Department of Parasitology, College of Veterinary Sciences, Lahore, Pakistan.

Ali Z, Maqbool A, Mahmood K, Khan MS, Younis M (2013) Prevalence of Thelotelota annulata infected hard ticks of cattle and buffalo in Punjab, Pakistan. J Anim Plant Sci 23:20-26.

Alons DMA, López SBJ Leme de Magalhaes LAC, Rodríguez VRI (2007) Infestación de genotipos de bovinos en el trópico húmedo de Veracruz, México. Veterinaria Méxic 38:503-509.

Anbalagan S, Vimalanathan A P, Mani K, Muthukalingan K (2014) The midgut bacterial flora of the hard tick Amblyomma varicollosum (Acari: Ixodidae) in two genotypes of bovins in the trópico húmedo of Veracruz, México. Veterinaria Mexicana 38:503-509.

Ashtabagun S, Vimalanathan A P, Mani K, Muthukalingan K (2014) The midgut bacterial flora of the hard tick Hyalomma anatolicum (Acari: Ixodidae) from South India as determined by molecular analyses. Turkish J Vet Anim Sci 38:520-525.

Anonymous (2011) Pakistan Meteorological Department, Lahore, Pakistan.

Arthur D R (1962) Ticks and disease. London Pergamon Press. pp 445.

Asif FA, Khan MS, Iqbal HJ, Ali Z, Ullah S (2012) Prevalence of cattle tick infestation in three districts of the Punjab, Pakistan. Pak J Sci 64:49-53.

Bell-Sakyi L, Koney EB, Dogboy O, Walker AR (2004) Incidence and prevalence of tick-borne haemoparasites in domestic ruminants in Ghana. Vet Parasitol 124:25-42.

Bianchi MW, Barre N, Messad S (2003) Factors related to cattle infestation level and resistance to acaricides in Boophilus microplus tick populations in New Caledonia. Vet Parasitol 112:75-89.

Bilisik MF, Mondal MMH, Rony SA, Islam MA, Begum N (2011) Host determinant based prevalence of ticks and lice in cattle (Bos indicus) at Bogra district of Bangladesh. Progress Agric 22:65-73.

Burks CS, Stewart RJ, Neudlam GR, Lee RE (1996) The role of direct chilling injury and inoculative freezing in cold tolerance of Amblyomma americanum. Dermacentor variabilis and Ixodes scapularis. Physiol Entomol 21:44-50.

Burri C, Cadenas FM, Douet V, Moret J, Germ L (2007). Ixodes ricinus density and infection prevalence of Borrelia burgdorferi sensu lato along a north-facing altitudinal gradient in the Rhone valley Switzerland. Vector Borne Zoonotic Dis 7:50-58.

Cadenas FM, Rain O, Jousa F, Douet V, Humanit PF, Moret J, Germ L (2007) Phenology of Ixodes ricinus and infection with Borrelia burgdorferi sensu lato along northsouth altitudinal gradient on Chaumont mountain, Switzerland. J Med Entomol. 44:683-695.
Chinkar EMS, Saher E, Fakhim BA, Amir MT, Sahar K (2012) Seroepidemiological survey of Crimean-Congo hemorrhagic fever among sheep in Mazandaran Province, Northern Iran. Vector Borne Zoonotic Disease 12: 739-742.

Clark DD (1995) Lower temperature limits for activity of several Isotidae ticks (Acari: Ixodidae): effects of body size and rate of temperature change. J Med Entomol 32: 449-52.

Coulson SJ, Lorenzeng E, Storn H, Gabriele CW (2009) The parasitic tick Ixodes uriae (Acari: Ixodidae) on seabirds from Spitsbergen, Svalbard. Polar Res 28:399-404.

Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126: 453-465.

Daniel M (1993) In Xueume of the microclimate on the vertical distribution of the tick Ixodes ricinus (L.) in central Europe. Actacum: 34:105-113.

Danileou V, Schwarmura L, Matereau J, Danileou M, Holobov J, Kriz B (2008) Tick-borne encephalitis virus expansion to higher altitudes correlated with climate warming. Int J Med Microbiol 298:68-72.

Drummond RD (1983) Tick-borne livestock diseases and their vectors, chemical control of ticks. World Animal Review 36:28-33.

Durrani AZ, Shakaor AR, Kamal N (2008) Bionomics of Hyalomma ticks in three districts of Punjab, Pakistan. Anim. Prod. Sci. 18:121-126.

Durrani HZ (1992) A study on the taxonomy and bionomics of genus Haemaphysalis in domestic animals. M.Sc. Thesis, College of Veterinary Sciences, Lahore, Pakistan.

Elghali AA, Hassan SM (2012) Ticks infesting animals in the Sudan and southern Sudan: Past and current status. Zoonoses Public Health 59:71-80.

Estrada-Peña A (2003) The relationships between habitat topography, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography 26:661-671.

FAO (1998) http://www.fao.org/ag/AGA/AGAH/PD/pages/tick01.htm.

Gaisuddin M, Haq M M, Sarkar N R, Rahman M L (1994) Seasonal incidence of Ixodid ticks grown in pasture of Bangladesh. A J A S 7:197-200.

Gray JS (2002) Biology of Ixodes in cattle. In: Proc. 11th Int. Congr. Int. Soc. for Animal Hygiene, Mexico City, Mexico.

Guimaraes JH, Tucci EC, Barros-Battestin, DM (2001) Ectoparasitos de importancia veterinaria. Editora Pleiade, Sao Paulo. 213.

Harrow ID, Gration KAF, Evans N (1991) Neurobiology of arthropod parasites. Parasitol Today 7:114-122.

Havas MA, Nonneman AG, Hermans HA (1986) The effect of body size and body temperature on the survival of ticks (Acari: Ixodidae) infestations detected in the United States along the Texas/Mexico border. J Med Entomol 23:494-506.

Havas MA, Nonneman AG, Hermans HA (1986) The effect of body size and body temperature on the survival of ticks (Acari: Ixodidae) infestations detected in the United States along the Texas/Mexico border. J Med Entomol 23:494-506.

Havas MA, Nonneman AG, Hermans HA (1986) The effect of body size and body temperature on the survival of ticks (Acari: Ixodidae) infestations detected in the United States along the Texas/Mexico border. J Med Entomol 23:494-506.

Kirby AD, Smith AA, Benton TG, Hudson PJ (2004) Rising burden of immature sheep ticks (Ixodes ricinus) on red grouse (Lagopus lagopus scoticus) chicks in the Scottish uplands. Med Vet Entomol 18:67-70.

Lee RE, Baust JG (1987) Cold-hardiness in the Antarctic tick, Ixodes rugosus. Physiol Zool 60: 499-506.

Lees A D (1946) Water balance in Ixodes ricinus and certain other species of ticks. Parasitology 37:1-20.

Lohmeyer KH, Pound JM, May MA, Kammlah DM, Davey RB (2011) Distribution of Rhipicephalus (Boophilus) microplus, Rhipicephalus (Boophilus) annulatus and certain other species of ticks. J. Zool. 249: 499-506.

Mariana A, Zuraidawati Z, Ho TM, Kulaimi BM, Saleh I, Shukor MN (2008) Ticks infesting bubaline population of district Toba Tek Singh, Punjab, Pakistan. Vet Parasitol 152:195-202.

Manan A, Khan Z, Ahmed B, Naseem A (1993) Prevalence of ticks on livestock in Faisalabad, Pakistan. Pak J Vет Res 13:118-184.

Milne A (1948) The ecology of the sheep tick, Ixodes ricinus in relation to its physical environment. Med Vet Entomol 18:67-70.

Mora A, Zaridawati Z, Hu TM, Kohimm BM, Salah I, Sheker MN (2008) Ticks (Ixodidae) and other ectoparasites in Ulu Muda Forest Reserve, Kedah, Malaysia. Southeast Asian J Trop Med Public Health 39:496-506.

Mwib M, Woodhull NE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367: 859-869.

Milne A (1948) The ecology of the sheep tick, Ixodes ricinus microhabitat economy of the adult tick. Proc 40:13-14.

Morozova SP, Latif AA, Jongejan F, Walker AR (1986) Transmission of a Trypanosoma species to cattle by the tick Hyalomma anatolicum anatolicum. Vet Parasitol 102:299-509.

Mustafa I, Kamran RA, Marghoob S, Ahmed I, Aleem R, Sadaif J, Hira M, Shabbir RG, Abdul G, Tahir M, Muhammad A, Mobshid BK, Saira A, Hiyat UM, Abu BMR, Mustafa I, Kamran RA, Marghoob S, Ahmed I, Aleem R, Sadaif J, Hira M, Shabbir RG, Abdul G, Tahir M, Muhammad A, Muhsrid BK, Saira A, Hiyat UM, Abu BMR, Khan MI (1993) Taxonomical study of ticks of genus Rhipicephalus and their relation to the incidence of haemoparasites and comparative efficacy of different acaricides on ticks in sheep and goats in Khashan valley. MSc Thesis. College of Veterinary Sciences, Lahore, Pakistan.

Nasr MM, Gohil S, Patel PR (1988) The prevalence of ticks (Ixodes ricinus) and certain other species on buffaloes in the semi-arid region of western India. Vest Parazitol 34:313-315.

Nasr MM, Gohil S, Patel PR (1988) The prevalence of ticks (Ixodes ricinus) and certain other species on buffaloes in the semi-arid region of western India. Vest Parazitol 34:313-315.

Naumov VI, Mironov LA, Petrova EP, Zemtsova TV (1974) On the biology of Ixodes ricinus L (Acari: Ixodidae) in livestock in the Chernobyl region. Vest Parazitol 34:313-315.

Pang MY, Tiong I, Zulfick H, Ismail R (2008) The effectiveness of various acaricides against Ixodes ricinus L (Acari: Ixodidae) on cattle in Malaysia. Zoonoses Public Health 55:222-229.

Patterson W, Mortimer P (1990) The biology of ticks in relation to their ecology and control. Parasitology 102:161-171.
