Acinetobacter phage genome is similar to Sphinx 2.36, the circular DNA copurified with TSE infected particles

Toshisangba Longkumer1, Swetha Kamireddy1, Venkateswar Reddy Muthyala1, Shaikh Akbarpasha1, Gopi Krishna Pitchika1, Gopinath Kodeetham2, Murali Ayaluru3 & Dayananda Siddavattam1

1Department of Animal Sciences,2Dept. of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad – 500 046, India, 3Bioinformatics Centre, Pondicherry University, Puducherry - 605 014, India.

While analyzing plasmids of Acinetobacter sp. DS002 we have detected a circular DNA molecule pTS236, which upon further investigation is identified as the genome of a phage. The phage genome has shown sequence similarity to the recently discovered Sphinx 2.36 DNA sequence co-purified with the Transmissible Spongiform Encephalopathy (TSE) particles isolated from infected brain samples collected from diverse geographical regions. As in Sphinx 2.36, the phage genome also codes for three proteins. One of them codes for RepA and is shown to be involved in replication of pTS236 through rolling circle (RC) mode. The other two translationally coupled ORFs, orf106 and orf96, code for coat proteins of the phage. Although an orf96 homologue was not previously reported in Sphinx 2.36, a closer examination of DNA sequence of Sphinx 2.36 revealed its presence downstream of orf106 homologue. TEM images and infection assays revealed existence of phage AbDs1 in Acinetobacter sp. DS002.

Acinetobacter sp. are of great interest owing to the diverse habitats they colonize, the involvement of certain strains in epidemic outbreaks in hospitals and their various metabolic capabilities like aromatic catabolism, degradation of hydrocarbons in oil spills etc1–3. Acinetobacter baumannii is known to be an opportunistic pathogen and is implicated in nosocomial infections, bacteremia, secondary meningitis, urinary tract infections and ventilator-associated pneumonia etc4. Since 1970’s A. baumannii has been known to have a clear role in multi-drug resistance. The ever-increasing resistance of A. baumannii against many clinically important antibiotics has been attributed to its proclivity in acquiring the drug resistance genes from among the members of the microbial community5,6. Dissemination of the resistance genes occurs mainly through horizontal gene transfer (HGT)7–10. Plasmids play a predominant role in HGT and the existence of plasmids carrying genes of high ecological and physiological relevance has been reported for A. baumannii5,11–13. In view of its clinical significance, the complete genome sequence has been determined for a number of A. baumannii strains isolated from different geographical regions and in most of them the existence of multiple plasmids has been reported14–17.

Transmissible spongiform encephalopathies (TSEs) such as Creutzfeldt–Jakob Disease (CJD) and kuru in humans, scrapie in sheep, and BSE in cows are caused by a group of related, but incompletely characterized infectious agents. Prions are responsible for the TSE in a variety of mammals18,19. In all healthy animals, prions (PrP0) are found in the membranes of all the cells and distributed throughout the body. However, Prions (PrPSc) found in TSE-affected animals have an amyloid fold and are resistant to proteases18. Although the precise reasons for conversion of PrP0 to PrPSc are unknown, the PrPSc has been shown to induce conversion of PrP0 into PrPSc. The prion-only theory suggests that no external agent is involved in conversion of PrP0 to PrPSc. In contrast to this notion, a number of studies have implicated an environmental origin of TSE agents due to geographic prevalence and occurrence20–22. Studies have also indicated their transmission through the gastrointestinal tract and blood23–25. A recent study has identified two circular DNA molecules in the TSE particles purified from infected samples collected from diverse geographical regions26. These two circular DNA molecules were designated as SPHINX sequences using an acronym given for Slow Progressive Hidden Infections of variable (X) latency as they were enriched in infectious preparations. Of these two Sphinx sequences, Sphinx 1.76 has shown 70% sequence similarity to a plasmid, p1ABTCDC0715 isolated from A. baumannii TCDC-AB071527 and a comparable similarity to a plasmid, p2ABAYE found in A. baumannii AYE17. However, no good homologues were found for Sphinx 2.36, the second Sphinx sequence isolated from BSE-infected samples.
Sequence similarity was only seen in the DNA region that codes for a replication protein RepA^{26}. In the present study we report the existence of a circular double-stranded DNA in Acinetobacter sp. DS002, with high sequence similarity to Sphinx 2.36. Sequence similarity of 67% between these two DNA molecules was found both in coding and non-coding sequences. There was absolute sequence identity in the region containing replicative elements, such as the double-stranded origin of replication (DSO) and the RepA-coding sequence. The experimental evidence presented in this study suggests that the circular DNA is the genome of a phage capable of replicating via the rolling-circle mode.

Results

A number of Acinetobacter sp. have been shown to have multiple plasmids with different sizes^{17}. Some of them, especially strains of A. baylyi, have the ability to take up linear and circular DNA molecules under natural conditions^{29}. Such an unique ability is attributed to the acquisition of multiple plasmids and resistance genes for multiple drugs from microbial communities^6. We have been studying regulation and horizontal mobility of organophosphate-degrading (opd) genes among soil bacteria^{29,30}. Acinetobacter sp. DS002 was isolated from OP pesticide-polluted agricultural soils and the strain name was given based on 16 S rRNA gene sequence identity (100%) with the type strain Acinetobacter baumannii MDR-TJ. The culture deposited in Microbial Type Culture Collection Center (MTCC), IMTECH, Chandigarh, India is available as Acinetobacter sp. DS002 MTCC-C11451. Acinetobacter sp. DS002 was originally analyzed to detect extra chromosomal genetic material, to establish a link, if any, between the plasmids and OP pesticide degradation. Four indigenous plasmid molecules were detected (Fig. 1a) in this soil isolate and were designated as pTS13 (13 kb), pTS11 (11 kb), pTS5 (5 kb) and pTS236 (2.2 kb). Initial hybridization studies using a well-conserved organophosphate-degrading (opd) gene, gave no signal with any of the detected plasmids or with the chromosomal DNA suggesting that the OP degradation mechanism of Acinetobacter sp. DS002 might be novel. In the process of identifying opd plasmids through complementation, we rescue-cloned the plasmids of Acinetobacter sp. DS002 into E. coli pir116 cells after tagging with a mini-transposon (EZ-Tn5<R6K{ori}|KAN-2>), which has a R6K replicative origin. The unique restriction profiles and size indicated that rescue cloning of all identified circular DNA molecules from Acinetobacter sp. DS002 had been successful (Fig. 1, panel b). When sequenced, one of the rescue-cloned plasmids, pTS236, showed significant sequence similarity (67%) to the recently reported Sphinx sequence, Sphinx 2.36.

Sequence analysis of pTS236. The 2252 bp sequence of pTS236 is deposited in the EMBL GenBank and can be accessed with the number JN872565. The open reading frames (ORFs), putative promoter and inverted and imperfect repeats predicted in pTS236 are shown in Supplementary Fig. S1. Only three ORFs were identified in the sequence of pTS236. One of them showed sequence similarity to repA, which is generally found in plasmids that exhibit rolling-circle replication. The other two ORFs that code for proteins 106 and 96 amino acids in length had no sequence similarities to any known protein sequences available in the databases and hence were designated as orf106 and orf96. These two ORFs appear to be translationally linked, as the predicted translational stop codon of orf106 overlaps with the start codon of orf96. Moreover, a consensus 70-dependent promoter was identified only in the upstream region of orf106 and no predicted promoter sequences were found upstream of orf96 (Supplementary Fig. S1). The absence of promoter elements upstream of orf96 and the existence of translational coupling strongly suggested these two ORFs formed an operon (Supplementary Fig. S1). While gaining experimental evidence, the total RNA extracted from Acinetobacter sp. DS002 cells was used as template and RT-PCR was performed using orf106-specific forward and orf96 reverse primers. An amplicon equivalent to the size of these two ORFs was amplified indicating that these two adjacent ORFs are organized as an operon (Supplementary Fig. S2).

A 12 bp long sequence that matched perfectly the double-stranded origin of replication (DSO) typically found in rolling-circle (RC) replicating plasmids was found in the intergenic region between orf96 and repA (Supplementary Fig. S1). Indeed, the ~10 hexameric sequence of a putative sigma^{70}-dependent promoter of the repA gene was located in the middle of the DSO sequence motif (Supplementary Fig. S1).

RepA translation starts from the UUG codon. The bioinformatic tool GLIMMER, which is used to predict ORFs, has indicated that initiation of RepA translation occurs at an UUG start codon, which is located 21 bp downstream of the putative promoter element of repA. The first AUG codon was found 513 bp downstream of the putative

Figure 1 | In panel (a) an agarose gel shows the existence of multiple plasmids in Acinetobacter sp. DS002. Lane 1 and 2 represent a kilobase DNA ladder as standard and plasmid preparations from the plasmid-free E. coli strain used as negative control, respectively. The plasmids found in Acinetobacter sp. DS002 are shown in lane 3. Panel (b) shows the restriction profile of rescue-cloned plasmids of Acinetobacter sp. DS002 isolated from E. coli pir116 cells. The plasmids were independently digested with Xhol and BamHI and analyzed on 0.8% (w/v) agarose gels. The total size of the rescue-cloned plasmids was calculated based on the electrophoretic mobility of the DNA fragments generated upon restriction digestion. A portion of the mini transposon released as a Xhol and BamHI fragment is shown with an arrow. While calculating the total size of rescue-cloned plasmids a size of 2 kb based on the size of the mini transposon was deducted. Panel (c) shows the restriction map of the mini transposon EZ-Tn5<R6K{ori}|KAN-2> inserted into rescue-cloned plasmids. The open box represents the mini transposon and the lines flanking the open box indicate the rescue-cloned plasmid. The size of the mini transposon and the 1.0 kb portion released upon digesting with BamHI and Xhol is indicated with inverted arrows.
The predicted amino acid sequence coded by the DNA region present between these two codons shows strong sequence similarity to the N-terminal portion of the RepA sequence coded by a well-characterized RC plasmid pPP81, strengthening the supposition of a possible initiation of RepA synthesis from the UUG codon. As this is an unusual observation, we next determined whether RepA is indeed translated from the UUG codon. We initially collected all rescue-cloned pTS236 plasmids with a single mini-transposon insertion and established their restriction profile to locate precisely the point of mini-transposon insertion. In one of the rescue-cloned pTS236 derivatives, the mini-transposon was inserted between predicted start codon UUG of RepA and the conventional start codon AUG (Fig. 2a). This pTS236 variant, pTS236-K failed to replicate in pir negative E. coli cells (Fig. 2e). This derivative was therefore used to develop a complementation assay to assess the functional status of RepA expressed from these two putative translational start codons. Two expression plasmids were constructed by complementing with an expression plasmid encoding RepA either from the predicted start codon UUG (pTRW1) or from the conventional start codon AUG (pTRW2).

Initially these expression plasmids were transformed into E. coli BL21(DE3) cells and were used as host to co-transform with plasmid pTS236-K. When selected on kanamycin plates, which indicates the ability of pTS236-K to replicate, growth occurred only with E. coli BL21 (pTRW1) cells encoding RepA initiating from codon UUG (Fig. 2d, e). No growth was found in E. coli cells with RepA encoded from AUG, suggesting that the N-terminal portion of RepA specified by the sequence found upstream of the AUG is essential for the RepA function. Supporting this result, a signal similar to the size of RepA coded from codon UUG was obtained when total proteins of Acinetobacter sp. DS002 were probed with RepA specific antibodies (Fig. 2f).

Tyrosine 265 is essential for RepA function. Plasmids that replicate using the rolling-circle mechanism have a functionally conserved tyrosyl residue near the C-terminus (Supplementary Fig. S3). This invariant tyrosyl residue has been implicated in initiation of the replication process by generating a nick at DSO32. The RepA of pTS236, when aligned with the RepA of pPP81, a well-characterized RC plasmid, as well as with RepA proteins from other RC plasmids isolated from Staphylococcus aureus and Lactobacillus hilgardii, have a high similarity throughout the protein, particularly in the segment with the conserved tyrosyl residue (Supplementary Fig. S3). In order to assess if the conserved tyrosine of RepA plays a role in replication of pTS236, we performed a complementation assay by transforming plasmid pTS236-K into E. coli BL21 cells having expression plasmids coding for either wild type (pTRW1) or mutant (pTRM) RepA proteins (Fig 2d, e). Only BL21 with the plasmid pTRW1 exhibited kanamycin resistance suggesting that replication of plasmid pTS236-K was dependent on the invariant tyrosine residue. A similar complementation assay was performed to determine whether the ORFs orf106 and orf96 have any role in the replication process. Variants of pTS236-K with a translational termination codon incorporated immediately downstream of the predicted start codon of either orf106 or orf96 successfully replicated in E. coli BL21 cells (pTRW1) (Fig. 2e). This indicates that neither ORF is required for replication of pTS236-K.

RepA DSO interactions. In order to assess any interaction of RepA with the predicted DSO of pTS236, recombinant RepA6His was purified and used to perform two independent in vitro studies. Initially recombinant RepA6His was incubated with the supercoiled form of pTS236-K and the ability of it to form the OC species of the plasmid was analyzed. Generation of the OC form of pTS236-K increased both in a time- and concentration-dependent manner upon incubation with RepA and no conversion was seen in control samples prepared if RepA was omitted (Fig. 3a). Though the data clearly suggests a possible RepA-dependent generation of the OC species from the supercoiled plasmid, it does not indicate whether the generated nick was in the DSO region. Initially, about 100 bp of sequence flanking the predicted DSO was amplified using primers DS00101 and DS00102 and the 32P end-labeled amplicon was used to perform electrophoretic mobility shift assay (EMSA) by incubating with pure recombinant RepA6His. An apparent shift was observed in

Figure 2 | Panel (a) shows the pTS236-K map with a minitransposon insertion between the predicted start codon UUG and a single AUG codon of repA specifying 165-methionine residue. Arrows indicate the transcriptional orientation of repA, orf106 and orf96. The DSO found upstream of repA start codon UUG is shown as a filled square. Panel (b) shows the physical map of the DSO and repA region of pTS236. DSO is shown as a hatched box. The extent of repA cloned to generate expression plasmids coding RepA (pTRW1) from predicted start codon UUG and from the AUG specifying 165-methionine (pTRW2) are indicated with solid lines. Panel (c) shows an SDS-PAGE and the corresponding western blot probed using anti-His antibody. Lane 1 represents the protein molecular mass marker. Lanes 2 and 3 show protein extracts prepared from uninduced E. coli BL21(DE3) cells having either pTRW1 (lane 2) or pTRW2 (lane 3). Lanes 4 and 5 represent similar extracts prepared from induced cultures. RepA-specific signals seen in induced cultures are shown with arrows. Panel (d) and (e) represent replication of pTS236-K in permissive (E. coli pir116) and non-permissive (E. coli BL21) hosts. Panel (d) shows growth on LB with ampicillin and kanamycin plates of E. coli pir116 (pTS236-K) containing expression vector pET23b (sector 1), pTRW1 (sector 2), pTRW2 (sector 3), pTRM (sector 4). Sectors 5 and 6 represent growth of E. coli pir116 (pTRW1) having plasmids pT106M and pT96M, respectively. Growth of E. coli BL21 carrying the same plasmids is shown in panel (e). Panel (f) shows an SDS-PAGE and the corresponding western blots generated using RepA specific antibodies. Lane 1 represents total proteins of Acinetobacter sp. DS002. Lanes 2 and 3 are protein extracts prepared from E. coli BL21 cells expressing RepA from predicted start codon with or without C-terminal histidine tag, respectively.
with S1 nuclease. Since S1 nuclease treatment preferentially eliminated SS form of pTS236 no such signal was seen, giving a clear indication that pTS236 is a RC plasmid (Fig. 5).

The pTS236 is a homologue of Sphinx 2.36. Although database searches to find homologues of pTS236 identified repA genes from similar RC plasmids such as pPP81\(^{31}\), a clear overall sequence similarity was only seen with the recently reported Sphinx 2.36 DNA sequences. About 67% identity was found between these two circular DNA molecules. The DSO sequences of both plasmids were identical and they were found to be highly similar to the DSOs of other RC plasmids (Fig. 4a). Interestingly, the Sphinx 2.36 plasmid also codes for Orf106 and Orf96 homologues (Supplementary Fig. S4). Though existence of orf96 was not predicted in the reported sequence, a thorough analysis of the Sphinx 2.36 sequence revealed its presence immediately downstream of the orf106 gene. As seen in pTS236, the two ORFs in Sphinx 2.36 appear to be translationally coupled, suggesting functional conservation of the gene products.

Despite sharing identical DSO sequences, the RepA sequences were not so highly conserved between pTS236 and Sphinx 2.36 (Supplementary Fig. S1, S4). Only 61% similarity was seen between these two RepA amino acid sequences encoded by these two circular DNA molecules. This observation prompted us to reanalyze the repA sequence of Sphinx 2.36 to identify possible frame-shifts in the sequence. Initially, the proteins coded in all six frames of the repA sequence were aligned with the RepA sequence of pTS236. The protein encoded by frame + 2 was 47% similar to the N-terminal part of pTS236 RepA. Similarly, the protein encoded by frame + 1 was again similar (43%) but with the C-terminal portion of pTS236 RepA. The RepA sequence reported by Manuelidis was encoded by frame + 3 and it matched the RepA of pTS236 from amino acids 48 to 281\(^{26}\). Reconstruction of the RepA-coding sequences into a single frame by arbitrarily changing the sequence revealed a gene product with 57% identity to the RepA of pTS236. Interestingly, the Sphinx 2.36 repA also has a predicted UUG translation initiation codon, along with a putative promoter overlapping DSO (Supplementary Fig. S4). Taken together, these data suggest possible frame-shifts in the coding region, which could result either from sequencing errors or mis-incorporation of bases while amplifying the Sphinx 2.36 sequence by using ø29-polymerase from infected brain samples\(^{26}\). Although no data is available to prove that the predicted RepA of Sphinx 2.36 is functional, nevertheless, if the experimental evidence shown in this study is taken into consideration, it suggests that RepA initiated from the alternative UUG codon might be needed for replication of Sphinx 2.36 in neuronal cells. A better understanding will only be possible through a new analysis of the sequence of Sphinx 2.36 repA.

pTS236 is the genome of a phage. Due to existence of a pTS236 homologue in brain samples of TSE-infected animals we have done further experiments to determine whether pTS236 is a genome of a phage infecting Acinetobacter sp. DS002 cells. The PEG precipitate obtained from the culture supernatant was taken and immuno-purified (IP) by passing through a protein-A column conjugated
with polyclonal antibodies raised against Orf96. The pure affinity-purified particles were then examined by transmission electron microscopy (TEM). Figure 6 shows the electron micrograph of icosahedral virions (Panel - Ia). From among these virions, a total of about 50 isolated particles (some selected virions are shown in Fig. 6, panel Ic) were used for generating a class average using the EMAN software tool. The obtained signals were found to be bigger than the recombinant Orf96 and Orf106 specific antibodies (Fig. 6, panels II, III). The obtained signals were found to be bigger than the recombinant Orf96 and Orf106, indicating formation of SDS-resistant Orf96 and Orf106 multimers (Fig. 6, panels II, III). Multimerization of Orf96 and Orf106 was also evident when western blots were performed for cellular proteins extracted from Acinetobacter sp. DS002 cells. A Orf96-specific ladder-like signals were seen in westerns blots (Supplementary Fig. S5). Even the PCR reaction performed using immuno-purified phage particles as template gave pTS236-specific amplifications were seen when similar assays were performed using an unspecific anti-organophosphate hydrolase (OPH) antibody. All these results confirm the specificity of the PIP (phage immuno-purification) assays were repeated using Orf106 antibodies. However, neither phage particles nor pTS236-specific amplifications were seen when similar assays were performed using an unspecific anti-organophosphate hydrolase (OPH) antibody. All these results confirm the specificity of the PIP (phage immuno-purification) assays and clearly indicate that the Orf96 and Orf106 are the coat proteins of isolated phage.

While gaining further information on the infectivity of identified phage, the Acinetobacter sp. DS002 was transformed with pTS236 variant pTS236-K1. The immuno-purified phage particles from the culture supernatant of Acinetobacter sp. DS002 (pTS236-K1) cells were re-infected into wild type cells of Acinetobacter sp. DS002. The wild type Acinetobacter sp. DS002 gave kanamycin-resistant colonies after 11 hours of infection (Fig. 7b). No such colonies were observed in Acinetobacter sp. DS002 cells incubated with purified pTS236-K1 DNA even at a concentration of 1 μg/ml in LB medium.

Discussion

We initiated the current study to gain clearer insights into the plasmid profile of Acinetobacter sp. DS002 isolated from agricultural soils polluted with OP insecticides. The circular DNA, pTS236 was the smallest of the rescued plasmids of Acinetobacter sp. DS002. Analysis of its sequence led to the discovery of a link between pTS236 and Sphinx 2.36. The Sphinx 2.36 sequence matches throughout its length the sequence of pTS236 and shows an overall 67% match at the nucleotide sequence level. In a recent network analysis, only the pTS236 homologue, p4ABAYE, showed no apparent link with existing Acinetobacter plasmids. This lacking of evolutionary linkage prompted the question as to whether pTS236 might be a replicative form of a phage genome propagating using Acinetobacter sp. DS002 as a host. We have therefore examined a polyethylene glycol precipitate of the spent medium by TEM. Our initial observations under TEM gave no indication of the presence of phage particles and hence it was assumed that pTS236 is a unique plasmid found in Acinetobacter sp. DS002 cells. However, further purification steps of the PEG precipitate of the spent medium enriched phage particles and the existence of icosahedral phage particles was confirmed (Fig. 6, panel I). These pure phage particles have also been cross-reacted with Orf106 and Orf96 antibodies and the viral immune-precipitation (VIP) assay performed to amplify pTS236 from immune-purified viruses amplified pTS236-specific sequences (Fig. 6 II, III, IV). If all these results are taken into consideration, encapsulation of pTS236 DNA is evident in an icosahedral protein coat generated by Orf106 and Orf96.

Acinetobacter sp. are robust microbes that can adapt to a variety of habitats, including soil. They can easily gain entry into animals while grazing or drinking water. In fact, they were implicated in TSE due to the existence of high levels of Acinetobacter-specific antibodies in infected animals that tested BSE-positive. An amino acid sequence similarity has also been identified between a bovine prion sequence (RPVDQ) and uridine diphosphate-N-acetyl

Figure 5 | Detection of the single-stranded intermediate of pTS236: Lane 1 represents 1 kb DNA ladder, lanes 2 and 3 represent total plasmid preparation treated with (2) and without (3) S1 nuclease. Lanes 4 and 5 represent the corresponding autoradiogram developed using labelled pTS236 as probe. Single-stranded pTS236 is shown with an arrow mark.

Figure 6 | Panel I (a): TEM image of phage AbDs1. Out of the 50 isolated particles used for generating a class average, a few selected virions are shown in panel (c). The icosahedral features that are seen in the class average generated using the EMAN software tool, confirms the formation of virions (panel b). Panel (II) shows a western blot analysis of immune-purified phage AbDs1 using Orf96-specific antibodies. Lane 1 represents the molecular mass marker, lanes 2 and 3 are loaded with phage proteins and recombinant Orf96, respectively. Lanes 4 and 5 show the corresponding western blots. The western blot performed using Orf106-specific antibodies is shown in panel (III). Lanes 2 and 3 represent recombinant Orf106 and proteins of phage AbDs1, respectively. Lanes 4 and 5 show the corresponding western blots. Amplification of pTS236-specific ORFs from immune-purified AbDs1 phage particles is shown in panel (IV). Lane 1 represents kilo base ladder. Lanes 2, 3 and 4 show amplification of orf96, orf106 and repA, respectively.
glucosamine-1-carboxy-vinyl transferase of *A. calcoaceticus*. In further support of such an unusual observation, even the class specific antibodies were significantly elevated against structurally related synthetic peptides. Following these important observations, serious efforts were made to find a possible epidemiological link between BSE and *Acinetobacters*. However, no solid evidence was found to support this decade-old proposition.

Prion involvement in BSE has been proved beyond doubt, and in all TSE-infected animals, the prion protein has an amyloid fold resistant to proteases. A major unsolved question in BSE is the identification of the factor or factors responsible for its misfolding. Though a 'protein only' theory has gained wider acceptance, detection of nucleic acids in TSE preparations supported the hypothesis that contradicts this otherwise established notion. One school of thought which argues against the protein-only theory suggests involvement of a nucleic acid-based 'cofactor' during conversion of the cellular form of the prion, PrP, into the disease-causing, protease-resistant PrP^{Sc}. In support of this notion, a vertebrate single-stranded RNA was shown to act as a 'cofactor' for the *in vitro* amplification of PrP^{Sc}. Though no viral involvement is shown in BSE, virus-like particles were found associating with BSE-infected samples.

The present study was neither designed to gather evidence in support of a particular school of thought nor do the findings support any of the existing hypotheses. It rather provides strong evidence to link the Sphinx 2.36 sequence found in BSE-infected samples to the *Acinetobacter* Sphinx and TSE, the existence of a circular DNA in mammalian samples.

Methods

Bacterial culture and gene manipulations. Bacterial strains and plasmids used in this study are listed in Table 1. The primer sequences are given in Supplementary Table S1. *Escherichia coli* cells were grown at 37 °C in LB medium. *Acinetobacter* sp. DS002 was grown at 30 °C either in LB medium or in minimal medium prepared by dissolving 4.8 g of K₂HPO₄, 1.2 g of KH₂PO₄, 1 g of NH₄NO₃, 0.2 g of MgSO₄·7H₂O, 0.04 g of Ca(NO₃)₂·4H₂O and 0.001 g of Fe₂(SO₄)₃ in 1000 ml of distilled water. Sucinate (10 mM) was supplemented as a carbon source. When necessary, antibiotics ampicillin (100 μg/ml), kanamycin (30 μg/ml), streptomycin (20 μg/ml) and chloramphenicol (30 μg/ml) were added to the growth medium. Indigenous plasmids were isolated from *Acinetobacter* sp. DS002 essentially by following the Currier-Nester protocol. Molecular cloning, blotting techniques and electroporation of *E. coli* and *Acinetobacter* sp. DS002 were performed following procedures described elsewhere. Detection of a single-stranded intermediate of pTS236 in *Acinetobacter* sp. DS002 was done by following procedures described elsewhere. The 16 S rRNA gene cloning and phylogenetic tree construction was done as described previously.

Rescue-cloning of plasmids from *Acinetobacter* sp. DS002. Plasmids were rescued by tagging the mini-transposon with a R6K^{ori} replicative origin. The isolated plasmids were treated with plasmid safe (EPICENTRE Biotechnologies, USA) to remove linear DNA and were used to tag with EZ-Tn5TM using the Transposon Insertion Kit (EPICENTRE Biotechnologies, USA). A 10 μl reaction mixture contained 1 μl of 10 × buffer, 1 μg of plasmid DNA, an equimolar concentration of transposon and 1 U of transposase. The reaction mixture was incubated for 2 hours at 37 °C and the reaction was stopped by adding 1 μl of stop solution followed by incubation of the reaction mixture at 70 °C for 10 min. A 1 μl aliquot of the transposition mixture was then electroporated into *E. coli* EC100D pir-116 cells. The Kan^R colonies were isolated and subcultured in LB medium supplemented with arabinose (1 mM) and the rescued plasmids were isolated to obtain their restriction profile and those which gave an unique restriction profile were selected for sequence determination.

Direct sequencing of rescue-cloned plasmid pTS236. After isolating mini-transposon-tagged *Acinetobacter* sp.DS002 plasmids, the rescue-cloned plasmids were sequenced using transposon-specific primers followed by primer walking. The sequence was analyzed using bioinformatic tools available online. The NCBI GLIMMER programme was used to predict open reading frames (ORFs) and for promoter prediction, BPROM software (www.softberry.com/berry.phtml?topic=c) was used. NCBI BLASTTM, EBI ClustalWTM and REPFIND software were used for sequence similarity search, multiple sequence alignment and for finding repeat sequences, respectively. The double-stranded origin (DSO) of replication was identified by aligning the pTS236 DNA sequence with known sequences of other rolling-circle plasmids available in the database. DNA secondary structure was predicted using the Mfold programme.

Expression and purification of RepA. The strategy followed for expression of RepA from the predicted start codon UUG and from its first conventional AUG as shown in Fig. 2b. While expressing RepA from the predicted start codon UUG, the repA gene was amplified from plasmid pTS236 using the forward (DS00110) and reverse (DS00110) primers carrying EcoRI and Xhol restriction recognition sequences, respectively. The repA amplicon was then digested with EcoRI and Xhol and ligated into pET23b digested with the same enzymes. The cloning strategy places repA in-frame with the vector-encoded His-tag of pET23b and the recombinant plasmid pTRW1, which encodes RepA with a C-terminal His-tag. The RepA^{His} induced in *E. coli* BL21 (pTRW1) was affinity-purified by using a Ni-Sepharose High Performance column (XK16/20, GE Healthcare) following procedures described elsewhere. A similar strategy was followed when cloning of repA from its first AUG except that the
primers DS00111 and DS00110 were used as forward and reverse primers and the resulting expression plasmid is named as pTR2. In both the cases start and stop codons were modified to facilitate incorporation of EcoRI and Xhol sites at 5’ and 3’ ends of repA sequence.

Site-directed mutagenesis. Site-directed mutagenesis was performed following the protocol described elsewhere\(^5\). To replace the codon specifying tyrosine in Site-directed mutagenesis ends of 9\(^9\) primers DS00111 and DS00110 were used as forward and reverse primers and the precipitate. The precipitate was then re-dissolved in 20 mM sodium phosphate u to a final concentration of 10% PEG and 1 M sodium chloride. After leaving the cultures grown for 24 hrs were PEG-precipitated by bringing the culture supernatant into a protein-A column. The culture supernatant collected from Acinetobacter proteins were affinity purified and used for performing western blots and immunostandard procedures. The polyclonal antibodies raised against these two recombinant samples were analyzed on 0.8% (w/v) agarose gels. A similar analysis was made by Succesfully end-labeled following the standard protocols\(^46\). The following probes were synthesized.

Strains	Strain/Plasmid/Primer Name	Genotype/Phenotype/Sequence Description	Reference/Source/Remark
1	E. coli DH5\(\alpha\)	fluA2 Δ(argF-lacZIle169 phoA0 glnV44 φ80 Δ(lacZ)M15 tyrA96 recA1 relA3 endA1 thi-1 hsdR17	58
2	E. coli BL21 DE3	hsdS galE57 cI857 Δ1 sdam7 minDlac UV5 T7 gene 1	59
3	E. coli pir116	F’ mcrA Δ(mrr-hsdRMS-mcrBC) eBo0lacZ Δ15.1 lacX74 recA1 endA1 araD139 Δ ara, leu7697 galU galKΔ1 ampR (Str\(\alpha\)) supG pir-116 DHFR V	EPICENTRE Biotechnologies
4	Acinetobacter sp. DS002	Sm\(\beta\) and Cm\(\beta\)	This work
5	pET23b	Ap\(\beta\), Expression vector	Novogen
6	pTRW1	Ap\(\beta\), repA cloned in pET23b from predicted start codon TGG	This work
7	pTRW2	Ap\(\beta\), repA cloned in pET23b from its first ATG codon	This work
8	pTRW2	Expression plasmid coding for RepA Y265F	This work
9	pTS236K	Rescued cloned pTS236 having minitransposon in the intergenic region of repA and orf69	This work
10	pTS236K1	pTS236 having kanamycin cassette at unique Mlu I site found in the intergenic region of repA and orf106	This work
11	pTS236K	pTS236 having termination codon immediately downstream to the start codon of orf106	This work
12	pT96M	pTS236K having termination codon immediately downstream to the start codon of orf106	This work

| 1. Minas, W. & Gutnick, D. L. Isolation, characterization, and sequence analysis of cryptic plasmids from \(Acinetobacter\) \(calcoaceticus\) and their use in the construction of \(Escherichia coli\) shuttle plasmids. \(Appl Environ Microbiol\) 59, 2807–2816 (1993).
2. Reams, A. B. & Neidle, E. L. Genome plasticity in \(Acinetobacter\): new degradative capabilities acquired by the spontaneous amplification of large chromosomal segments. \(Mol Microbiol\) 47, 1291–1304 (2003).
3. Fischer, R., Bleichrodt, F. S. & Gerisch, U. C. Aromatic degradative pathways in \(Acinetobacter baumannii\) underlie carbon catabolite repression. \(Microbiology\) 154, 3095–3103 (2008).
4. Towner, K. J. \(Acinetobacter\): an old friend, but a new enemy. \(J Hosp Infect\) 73, 355–363 (2009).

Strains	Strain/Plasmid/Primer Name	Genotype/Phenotype/Sequence Description	Reference/Source/Remark
11	pTS236K	pTS236 having termination codon immediately downstream to the start codon of orf106	This work
5. Bergogne-Berezin, E. & Towner, K. J. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9, 148–165 (1996).

6. Woodford, N., Turton, J. F. & Livermore, D. M. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35, 736–755 (2011).

7. Valenzuela, J. K. et al. Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii. J Clin Microbiol 45, 453–460 (2007).

8. Nemec, A. et al. Emergence of carbapenem resistance in Acinetobacter baumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. J Antimicrob Chemother 62, 484–489 (2008).

9. Durante-Mangoni, E. & Zarilli, R. Global spread of drug resistant Acinetobacter baumannii: molecular epidemiology and management of antimicrobial resistance. Future Microbiol 6, 407–422 (2011).

10. Rumbo, C. et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother 55, 3084–3090 (2011).

11. Bennett, P. M. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. J Pharmocol 153 Suppl 1, S347–357 (2008).

12. Chen, C. C. Viral pathogenesis. J Neurovirol 32, 237–246 (2008).

13. Manuelidis, L. Transmissible encephalopathies: speculations and realities. Proc Natl Acad Sci U S A 100, 2253–2257 (2003).

14. Manuelidis, L. A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. J Cell Biochem 100, 897–915 (2007).

15. Prusiner, S. B. Prions. Proc Natl Acad Sci U S A 95, 13529–13534 (1998).

16. Smith, M. G. et al. Selective incorporation of poly-anionic molecules into bacterial prions. J Biol Chem 282, 36341–36353 (2007).

17. Manuelidis, L. Complete nucleotide sequence of pT181, a circle-replicating plasmid from Acinetobacter baumannii. Microbiology 144, 1111–1120 (1998).

18. Josson, K., Soetaert, P., Michiels, F., Joos, H. & Mahillon, J. Lactococciniella hilgardii plasmid pLAB1000 consists of two functional cassettes commonly found in other group I positive organisms. J Mol Biol 280, 431–441 (1976).

19. Khan, S. A. Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 53, 126–136 (2005).

20. Wilson, C. et al. Antibodies to prion and Acinetobacter peptide sequences in bovine spongiform encephalopathy. Vet Immunol Immunopathol 98, 1–7 (2004).

21. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).

22. Thompson, J. D., Gibson, D. G. & Higgins, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4636–4641 (1994).

23. Muller, W., Keppner, W. & Rasched, I. Versatile kanamycin-resistance cartridges for vector construction in Acinetobacter. Res Microbiol 148, 193–197 (1997).

24. Muller, W. G. & Keppner, W. Electrophoretic mobility shift assay (EMSA) for studying prion protein conversion. J Biol Chem 275, 34032–34039 (2000).

25. Mannella, C., Stricher, F., Alsens, C. & Langin, D. Naturally transformable Escherichia coli strain, TCDC-AB0715. J Mol Biol 303, 932–936 (2006).

26. Fukumi, T., Kato, Y., Arai, T. & Ishikura, H. Naturally transformable Escherichia coli strain, TCDC-AB0715. J Mol Biol 303, 932–936 (2006).

27. Hellman, L. M. & Fried, M. G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2, 1849–1861 (2007).

28. Muller, W., Keppner, W. & Rasched, I. Versatile kanamycin-resistance cartridges for vector construction in Escherichia coli. Gene 46, 131–136 (1986).

29. Hancock, D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580 (1983).

30. Studier, F. W. & Moffatt, B. A. Use of bacteriophage λ RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130 (1986).
Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Longkumer, T. et al. Acinetobacter phage genome is similar to Sphinx236, the circular DNA copurified with TSE infected particles. Sci. Rep. 3, 2240; DOI:10.1038/srep02240 (2013).

This work is licensed under a Creative Commons Attribution 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0