Self-bumping of deformation spaces of hyperbolic 3-manifolds

K. Bromberg* and J. Holt†

September 4, 2000

Abstract

Let \(N \) be a hyperbolic 3-manifold and \(B \) a component of the interior of \(AH(\pi_1(N)) \), the space of marked hyperbolic 3-manifolds homotopy equivalent to \(N \). We will give topological conditions on \(N \) sufficient to give \(\rho \in \overline{B} \) such that for every small neighborhood \(V \) of \(\rho \), \(V \cap B \) is disconnected. This implies that \(\overline{B} \) is not manifold with boundary.

1 Introduction

In this paper we study aspects of the topology of deformation spaces of Kleinian groups. The basic object of study is \(AH(\pi_1(N)) \), the space of isometry classes of marked, complete hyperbolic 3-manifolds homotopy equivalent to \(N \), where \(N \) is a compact, orientable, irreducible, atoroidal 3-manifold with boundary. The study of the global topology of \(AH(\pi_1(N)) \) was begun by Anderson, Canary and McCullough in [8] for the case in which \(N \) has incompressible boundary. They described necessary and sufficient criteria for two components of the interior of \(AH(\pi_1(N)) \) to "bump"; that is, to have intersecting closures. We address the question of when a component of the interior "self-bumps"; that is, if \(B \) denotes such a component, then when is there an element \(\rho \) in the closure of \(B \) such that for any sufficiently small neighborhood \(V \) of \(\rho \) in \(AH(\pi_1(N)) \) the set \(V \cap B \) is disconnected? In this paper we will establish the following result:

* Partially supported by a grant from the Rackham School of Graduate Studies, University of Michigan and by the Clay Mathematics Institute
† Partially supported by a National Science Foundation Postdoctoral Fellowship
Theorem 4.5. Let N be a compact, orientable, atoroidal, irreducible 3-manifold with boundary. Suppose that N contains an essential, boundary incompressible annulus whose core curve is not homotopic into a torus boundary component of ∂N. Let B be a component of the interior of $AH(\pi_1(N))$. Then there is a representation $\rho \in B$ such that for any sufficiently small neighborhood V of ρ in $AH(\pi_1(N))$ the set $V \cap B$ is disconnected.

Note that this result applies even when N has compressible boundary. In [11] McMullen, using projective structures and ideas of Anderson and Canary, proved Theorem 4.5 when N is an oriented I-bundle over a surface. Our techniques avoid the use of projective structures, and furthermore, even in the I-bundle case we will find bumping representations that are not detected with McMullen’s methods. In a sequel, we will use the techniques developed here to study the topology of the space of projective structures with discrete holonomy.

We sketch the proof of Theorem 4.5 in the case where $N = S \times [0, 1]$ is an I-bundle over a closed surface of genus ≥ 2. In this case the interior of $AH(\pi_1(N))$ consists of a single component of quasifuchsian structures on $M = int N$, which is usually denoted $QF(S)$.

To construct the representation where bumping occurs we start with a hyperbolic structure on M with a curve removed. That is choose a simple closed curve c on S and let $\hat{M} = M - (c \times \{1/2\})$. Then give \hat{M} a geometrically finite hyperbolic structure. Now, $\pi_1(\hat{M})$ has many conjugacy classes of subgroups isomorphic to $\pi_1(S)$, for example $S \times \{1/4\}$ and $S \times \{3/4\}$ each define such a subgroup. However, to find our bumping representation we choose a non-standard subgroup of $\pi_1(\hat{M})$ by wrapping S around the removed curve (see Figure 1). Then the hyperbolic structure on \hat{M} defines a representation of $\pi_1(\hat{M})$ and our choice of subgroup defines a representation ρ_∞ of $\pi_1(S)$. The cover M_∞ associated to this subgroup will be homeomorphic to M.

The next step is to construct an immersion $f : N \to \hat{M}_\infty$ in the homotopy class associated to ρ_∞ and then use f to pull back a hyperbolic structure N_∞ on N. For each $\rho \in AH(\pi_1(N))$ there is a hyperbolic 3-manifold M_ρ homeomorphic to M. Given a small neighborhood V of ρ_∞, for each $\rho \in V$ a general theorem allows us to construct a smoothly varying family of hyperbolic structures N_ρ on the compact manifold N. Here N_ρ has holonomy ρ and $N_{\rho_\infty} = N_\infty$. Since N_ρ and M_ρ have the same holonomy there will be an isometric immersion f_ρ of N_ρ in M_ρ. If $\rho \in V \cap QF(S)$ then c will have a geodesic representative c_ρ in M_ρ and there will be a canonical homeomorphism between $M_\rho - c_\rho$ and \hat{M}. Furthermore, geometric consid-
erations will show that the image of f_ρ misses c_ρ so we can view f_ρ as a map to \hat{M}. In particular, we can compare the homotopy classes of the maps f_ρ in \hat{M}.

The heart of the proof is that we can find representations ρ_0 and ρ_1 in $V \cap QF(S)$, such that f_0 is homotopic in \hat{M} to the original immersion f while f_1 is homotopic to an embedding. If ρ_0 and ρ_1 are in the same component of $V \cap QF(S)$ then our smoothly varying family of hyperbolic structures N_ρ will define a homotopy between f_0 and f_1 in \hat{M}. This contradiction proves the theorem.

To find the representation ρ_0 we take a small deformation of \hat{M} that fills in the torus boundary to give a manifold homeomorphic to M. To find ρ_1 we take a small deformation of M_∞ that resolves the rank one cusp. In this case the homeomorphism type is preserved. Since M_0 is geometrically very close to \hat{M}, f_0 will have the same homotopy class as f. In M_∞, f lifts to an embedding and therefore f_1 will be an embedding in M_1.

It is worthwhile to compare this result with the bumping of distinct components examined in \cite{1} and \cite{2}. As mentioned above in \cite{3}, necessary and sufficient conditions are given for components to bump. We will not state them here, but at the very least we need a manifold with more topology than an I-bundle so that the interior of $AH(\pi_1(N))$ will have more than one component. The construction of the bumping representation is then very similar to the one above.
We first remove a suitably chosen simple closed curve c from $M = \text{int } N$ to obtain a new manifold \hat{M}. We then find a cover M_∞ of \hat{M} that is homotopy equivalent, but in this case not homeomorphic to, M. A hyperbolic structure on \hat{M} defines a hyperbolic structure on M_∞. As above we make a small deformation M_0 of \hat{M} that will be homeomorphic to M while a small deformation M_1 of M_∞ will be homeomorphic to M_∞. Although M_0 and M_1 are not homeomorphic, their holonomy representations ρ_0 and ρ_1 will both be near the holonomy representation ρ_∞ of M_∞. The next, and last, step is the real difference between the two arguments. As the components of the interior of $AH(\pi_1(N))$ are parameterized by the (marked) oriented homeomorphism types of N, ρ_0 and ρ_1 must be in distinct components that bump at ρ_∞.

Acknowledgments.

The authors would like to thank Jeff Brock and Dick Canary for interesting and helpful discussions.

2 Preliminaries

A *Kleinian group* is a discrete, torsion free subgroup of the orientation preserving isometries of hyperbolic 3-space, \mathbb{H}^3. In the upper-half-space model of \mathbb{H}^3 the orientation-preserving isometries are identified with the group $\text{PSL}_2(\mathbb{C})$, so that a Kleinian group can be considered a discrete, torsion free subgroup of $\text{PSL}_2(\mathbb{C})$.

Let Γ be a Kleinian group and set M to be the quotient manifold \mathbb{H}^3/Γ. The convex core of M is the smallest convex submanifold of M whose inclusion in M is a homotopy equivalence. If the convex core has finite volume, and Γ is finitely generated then Γ is called *geometrically finite*. In addition, a geometrically finite Kleinian group is *minimally parabolic* if every maximal parabolic subgroup is of rank 2. Let $R(\pi_1(N)) = \text{Hom}(\pi_1(N), \text{PSL}_2(\mathbb{C}))/\text{PSL}_2(\mathbb{C})$ be the space of conjugacy classes of representations of $\pi_1(N)$ in $\text{PSL}_2(\mathbb{C})$ where N is a compact, orientable, atoroidal 3-manifold. The subset $AH(\pi_1(N)) \subset R(\pi_1(N))$ consists of the discrete, faithful representations of $\pi_1(N)$, modulo conjugacy. It is a result of Jørgensen [1] that $AH(\pi_1(N))$ is a closed subset of $R(\pi_1(N))$. By work of Marden [10] and Sullivan [12] the interior of $AH(\pi_1(N))$ is $MP(\pi_1(N))$, the minimally parabolic representations.

A representation $\rho \in AH(\pi_1(N))$ determines an oriented hyperbolic manifold $M_\rho = \mathbb{H}^3/\rho(\pi_1(N))$ along with a homotopy equivalence, $f_\rho : N \to M_\rho$. While in general $MP(\pi_1(N))$ will have many components, in this paper
our interest is the topology of the closure of a single component \(B \). Note that \(AH(\pi_1(N)) \) is determined only by the homotopy type of \(N \). We can therefore assume that \(N \) is chosen such that if \(\rho \) is in \(B \) then there is a homeomorphism from \(M_\rho \) to the interior of \(N \) that is a homotopy inverse for \(f_\rho \). We can also orient \(N \) such that this homeomorphism is orientation preserving. Then \(B \) will be the unique component of \(MP(\pi_1(N)) \) satisfying these two properties.

We also need to work with hyperbolic structures on the compact manifold \(N \) that may not extend to complete hyperbolic structures on an open manifold containing \(N \). We let \(\mathcal{H}(N) \) be the space of hyperbolic metrics on \(N \). Given two hyperbolic metrics on \(N \) the identity map will be a biLipschitz map between the two metrics. Given a structure, \(N' \in \mathcal{H}(N) \), a neighborhood \(N'(\epsilon) \) of \(N' \) consists of those structures in \(\mathcal{H}(N) \) for which the identity map from \(N' \) is a \((1+\epsilon)\)-biLipschitz map. The \(N'(\epsilon) \) are a basis of neighborhoods for \(N' \).

Theorem 1.7.1 in [6] describes the local structure of a neighborhood of \(N' \). We will need the following simple consequence of this theorem:

Theorem 2.1 [6] The holonomy map \(\mathcal{H}(N) \rightarrow R(\pi_1(N)) \) is locally onto. Furthermore, for any neighborhood \(V \) of \(N' \), there exists a neighborhood \(U \subset V \), such that if \(N_0 \) and \(N_1 \) are hyperbolic structures in \(U \) with holonomy \(\rho_0 \) and \(\rho_1 \), respectively, and \(\rho_t, 0 \leq t \leq 1 \), is a path in the image of \(U \) then there is a path \(N_t \in U \), where each \(N_t \) has holonomy \(\rho_t \).

Now assume that \(\partial N \) contains at least one torus, \(T \). Choose a meridian and longitude for this torus such that elements of \(\pi_1(T) = \mathbb{Z} \oplus \mathbb{Z} \) are determined by a pair of integers. Let \((p, q) \) be a pair of relatively prime integers. Let \(N(p, q) \) denote the result of performing \((p, q) \)-Dehn filling on \(N \) along this torus; that is, there exists an embedding \(d_{p,q} : N \rightarrow N(p, q) \) such that \(\overline{N(p, q)} - d_{p,q}(N) \) is a solid torus bounded by \(d_{p,q}(T) \) and the image of the \((p, q)\) curve on \(T \) is trivial in \(N(p, q) \). Let \(\gamma \) denote the core curve of of the solid torus. If \(N \) and \(N(p, q) \) have complete hyperbolic structures, \(M \) and \(M(p, q) \), on their interiors then \(M(p, q) \) is a hyperbolic Dehn filling of \(M \) if \(M(p, q) - d_{p,q}(M) \) contains the geodesic representative of \(\gamma \). Note that a hyperbolic structure \(M(p, q) \) may not be a hyperbolic Dehn filling of \(M \) if \(\gamma \) is not isotopic to its geodesic representative. Also note that the holonomy representation \(\rho \) for \(M(p, q) \) induces a non-faithful, holonomy representation, \(\rho_{p,q} \), for \(N \) via pre-composition with \((d_{p,q})_* \).

If \(N \) has \(k \) torus boundary components, we can Dehn fill each of them. Let relatively prime integers, \((p_i, q_i) \), be the Dehn filling coefficients for the \(i \)-
th torus and let \((p, q) = (p_1, q_1; \ldots; p_k, q_k)\). Then \(N(p, q)\) is the \((p, q)\)-Dehn filling of \(N\).

The following theorem has an extensive history. The interested reader should also see [3], [13], [4], and [7].

Theorem 2.2 The Hyperbolic Dehn Surgery Theorem ([5])

Let \(M\) be a compact 3-manifold with \(k\) torus boundary components and assume \(M\) has a minimally parabolic hyperbolic structure with holonomy \(\rho\). We then have the following:

1. Except for a finite number of pairs for each \(i = 1, \ldots, k\), for each collection of relatively prime pairs \((p, q)\) there exist a geometrically finite hyperbolic \((p, q)\)-Dehn filling \(M(p, q)\) of \(M\).

2. \(\rho_{p, q} \to \rho\) as \(|p, q| \to \infty\) (\(|p, q| = |p_1| + |q_1| + \cdots + |p_k| + |q_k|\)).

3. If \(X\) is the complement of a neighborhood of the cusps and \(|p, q| > n\) then \(d_{p, q}|X\) is \(K_n\)-biLipschitz with \(K_n \to 1\) as \(n \to \infty\).

3 Wraps and twists

Let

\[X = [-1, 1] \times [-1, 1] \times S^1 \]

and

\[\hat{X} = X - ([-\frac{1}{3}, \frac{1}{3}] \times [-\frac{1}{3}, \frac{1}{3}] \times S^1). \]

We begin be defining maps of the annulus,

\[A = [-1, 1] \times S^1 \]

into \(\hat{X} \subset X\). First we define \(w : A \to \hat{X}\) by

\[w(x, \theta) = \left(-\frac{1}{2} \sin(\pi x), \frac{1}{2} \cos(\pi x), \theta \right). \]

We next define a sequence of maps \(w_n : A \to \hat{X}\) for each \(n > 0\). For each \(t\) and \(t'\) with \(-1 \leq t < t' \leq 1\) we let \(h_{t, t'} : ([t, t'] \times S^1) \to A\) be a homeomorphism that satisfies the conditions, \(h_{t, t'}(t, \theta) = (-1, \theta)\) and \(h_{t, t'}(t', \theta) = (1, \theta)\). To define \(w_n\) we choose real numbers, \(t_0, \ldots, t_n\) with \(-\frac{1}{3} = t_0 < t_1 < \cdots < t_n = \frac{1}{3}\), and let

\[
\begin{align*}
 w_n(x, \theta) &= \begin{cases}
 \left(\frac{3}{2}x + \frac{1}{2}, -\frac{1}{2}, \theta\right) & \text{if } -1 \leq x < -\frac{1}{3} \\
 w \circ h_{t_i, t_{i+1}} & \text{if } t_i \leq x < t_{i+1} \\
 \left(\frac{3}{2}x - \frac{1}{2}, -\frac{1}{2}, \theta\right) & \text{if } \frac{1}{3} \leq x \leq 1.
 \end{cases}
\end{align*}
\]

6
Figure 2: The image of A under the map w_1 in a cross section of \hat{X}.

The map w_n wraps the annulus n times around the missing core of \hat{X}. For $n = 0$, we define w_0 by $w_0(x, \theta) = (x, -1/2, \theta)$.

Our next family of maps, $t_{n,m} : \hat{X} \rightarrow \hat{X}$, are homeomorphisms which Dehn twist \hat{X}. They are defined by the following formula:

$$t_{n,m} = \begin{cases}
(x, y, \theta) & \text{if } -1 \leq x < -\frac{1}{3} \text{ or } \frac{1}{3} < x \leq 1 \\
(x, y, \theta + 3n\pi(x + \frac{1}{3})) & \text{if } -\frac{1}{3} \leq x \leq \frac{1}{3} \text{ and } y > \frac{1}{3} \\
(x, y, \theta + 3m\pi(x + \frac{1}{3})) & \text{if } -\frac{1}{3} \leq x \leq \frac{1}{3} \text{ and } y < -\frac{1}{3}.
\end{cases}$$

Lemma 3.1 The maps w_n and $t_{k(n+1),kn} \circ w_n$ are homotopic rel ∂A for any positive integer n and any integer k.

Proof

Let $\hat{X}_{\frac{1}{3}} = ([-\frac{1}{3}, \frac{1}{3}] \times [-1,1] \times S^1) \cap \hat{X}$ denote the middle-third of \hat{X}; it has two components, the upper half and the lower half. The image of A under the map w_n intersects $\hat{X}_{\frac{1}{3}}$, so that $w_n^{-1}(w_n(A) \cap \hat{X}_{\frac{1}{3}})$ consists of $2n + 1$ essential sub-annuli of A; n of the annuli map into the upper half of the middle third, while $n + 1$ of the annuli map into the lower half. On the each of the $n + 1$ annuli mapping into the lower half, $t_{k(n+1),kn}$ is a kn-Dehn twist, while on the n upper annuli $t_{k(n+1),kn}$ is a $-k(n + 1)$-Dehn twist. Therefore the total affect of $t_{k(n+1),kn}$ is a $kn(n + 1) - k(n + 1)n = 0$-Dehn twist and w_n is homotopic to $w_n \circ t_{k(n+1),kn}$ rel ∂A (see Figure 3).

[proof of Lemma 3.1]
Figure 3: By identifying the top and bottom of the squares on the left we obtain (two copies of) the annulus A. The preimage of the $w_1(A) \cap \hat{X}_{\frac{1}{2}}$ is the three dashed annuli. The effect of $t_{2,1}$ on A, is two dehn twists on the center annuli and a single dehn twist in the opposite direction on the two outside annuli. As we see from the picture in the lower left, the net effect on A is a map that is homotopic to the identity.

We now relate the maps $t_{n,m}$ to the Dehn filling of \hat{X}. As our coordinates for Dehn filling we choose the meridian to be the unique homotopy class that is trivial in X and the longitude to be the curve $\{\frac{1}{3}\} \times \{\frac{1}{3}\} \times S^1$. Recall the Dehn filling maps $d_{1,k}: \hat{X} \to \hat{X}(1,k)$.

Lemma 3.2 For each $t_{n,m}$ there exists a homeomorphism $h_{n,m}: \hat{X}(1,n-m) \to \hat{X}(1,0)$ such that $d_{1,0} \circ t_{n,m} = h_{n,m} \circ d_{1,n-m}$.

Proof

The map $t_{n,m}$ takes the $(1,n-m)$-curve to the $(1,0)$-curve so $d_{1,0} \circ t_{n,m}$ takes the $(1,n-m)$ to a trivial curve in $\hat{X}(1,0)$. On the image of \hat{X} in \hat{X}, we define $h_{n,m}$ to satisfy the equation, $d_{1,0} \circ t_{n,m} = h_{n,m} \circ d_{1,n-m}$. Since the
image of the $(1, n - m)$ curve is trivial in $\tilde{X}(1, n - m)$, $h_{n,m}$ extends to a homeomorphism.

Let

$$\partial_0 X = [-1, 1] \times \{-1, 1\} \times S^1 \subset X$$

and

$$\partial_1 X = \{1\} \times [-1, 1] \times S^1 \subset X.$$

Also assume that N is a compact manifold with boundary and that N contains an essential, boundary incompressible annulus. Then there is a pairwise embedding of $(X, \partial_0 X)$ in $(N, \partial N)$ such that $\partial_1 X$ is an essential, boundary incompressible annulus. Identify A with the lower half of $\partial_0 X$; that is, the annulus $[-1, 1] \times \{-1\} \times S^1$. Let $c = \{0\} \times \{0\} \times S^1$ be the core curve of X and let $\tilde{M} = M - c$ where M is the interior of N.

For each integer $n \geq 0$ we define an immersion $s_n : N \rightarrow M \subset N$ as follows. The map s_n is homotopic to the identity map and a homeomorphism onto its image outside of X. We also require that $s_n(N) \cap c = \emptyset$ and that s_n restricted to A is homotopic to w_n rel ∂A. This completely defines s_n up to homotopy in M. We call any map that satisfies these properties a **shuffle immersion**.

![Diagram](image.png)

Figure 4: The map s_1 immerses N in M and is not homotopic to an embedding in \tilde{M}.

Lemma 3.3 A shuffle immersion s_n satisfies the following properties:
1. If \(n \neq m \) then \(s_n \) and \(s_m \) are not homotopic in \(\hat{M} \).

2. For each integer \(k \), there is an orientation preserving homeomorphism \(h_k : \hat{M}(1, k) \rightarrow M \) such that \(s_n \) and \(h_k \circ d_{1,k} \circ s_n \) are homotopic in \(\hat{M} \). Here, \(M = \hat{M}(1, 0) \).

3. The cover of \(\hat{M} \) associated to \((s_n)_*(\pi_1(N)) \) is homeomorphic to \(M \) and \(s_n \) lifts to an embedding \(\hat{s}_n : N \rightarrow M \) which is homotopic to \(s_0 \) in \(\hat{M} \).

Proof

1. If \(n \neq m \), the maps \((s_n)_*(\pi_1(N)) \) and \((s_m)_*(\pi_1(N)) \) are non-conjugate subgroups of \(\pi_1(\hat{M}) \) and therefore the maps \(s_n \) and \(s_m \) are not homotopic.

2. On \(\hat{X}(1, k) \subset \hat{M}(1, k) \) we let \(h_k = h_k(n+1),kn \). Using Lemma 3.2, we see that \(h_k \) extends to a homeomorphism from \(\hat{M}(1, k) \) to \(M \). By Lemma 3.1, \(s_n \) and \(h_k \circ d_{1,k} \circ s_n \) are homotopic in \(\hat{M} \).

3. This is an easy exercise in 3-manifold topology which we leave to the reader.

proof of Lemma 3.3

4 Self-bumping

We now use the topology we developed in \(\S 3 \). With the same assumptions as in \(\S 3 \) we fix a shuffle immersion \(f = s_d \) with \(d > 0 \). Note that such a shuffle immersion exists if and only if \(N \) contains an essential, boundary incompressible annulus. However, for \(M \) and \(\hat{M} \) to support complete hyperbolic structures we need to make further topological restrictions. Namely, \(N \) must be irreducible and atoroidal and the simple closed curve \(c \) must be primitive and not homotopic to a torus boundary component of \(\partial N \). Then \(M \) and \(\hat{M} \) satisfies the conditions of Thurston’s hyperbolization theorem (see Lemma 2.5.10 in \(\S 3 \)) and we fix a minimally parabolic hyperbolic structure \(\hat{M}_\infty \) on \(\hat{M} \) with holonomy representation \(\hat{\rho}_\infty \). We also let \(N_\infty \) be the hyperbolic metric on \(N \) obtained as the pull-back by \(f \) of the metric \(\hat{M}_\infty \) on \(\hat{M} \).

We now set up a notational system that will hold for the remainder of the paper. For an index \(\alpha \), \(N_\alpha \) is a hyperbolic structure on \(N \) and \(\rho_\alpha \) will be the associated holonomy representation. Let \(M \) be the interior of
As we noted in the introduction, if \(\rho_\alpha \in AH(\pi_1(N)) \) then \(M_\alpha \) is a complete hyperbolic structure, marked by \(N \). As \(N_\alpha \) has the same holonomy as \(M_\alpha \) there will be an an isometric immersion, \(f_\alpha : N_\alpha \to M_\alpha \), with \(f_\alpha \) a homotopy equivalence. In other words, \(f_\alpha \) is the marking map. Let \(c_\alpha \) denote the geodesic representative of \(c \) in \(M_\alpha \).

Lemma 4.1 Let \(V \) be a small neighborhood of \(\rho_\infty \). Then for each \(N_\alpha \) near \(N_\infty \) with \(\rho_\alpha \in V \cap MP(\pi_1(N)) \), \(f_\alpha(N_\alpha) \cap c_\alpha = \emptyset \).

Proof

By compactness there exists a \(K \) such that for any \(p \in N \) we can find a non-trivial simple closed curve \(\gamma_p \) through \(p \), and not homotopic to \(c \), with length \(< K \) in \(N_\infty \). We choose \(V \) small enough such that all structures in the neighborhood are 2-biLipschitz from \(N_\infty \). The Margulis lemma implies that there exists an \(\epsilon \) such that, for any complete hyperbolic 3-manifold, if a homotopically non-trivial simple closed curve intersects a homotopically distinct geodesic of length \(< \epsilon \) it has length \(> 3K \). Furthermore, since the length of curves is continuous on \(R(\pi_1(N)) \), we can further shrink \(V \) so that the curve, \(c_\alpha \), has length \(< \epsilon \) and therefore \(f_\alpha(\gamma_p) \), which has length \(< 2K \), does not intersect \(c_\alpha \); implying that \(p \notin c_\alpha \).

proof of Lemma [4.1]

Recall that \(B \) is a component of \(MP(\pi_1(N)) \) so that the marking map \(f_\alpha \) has a homotopy inverse which is an orientation preserving homeomorphism between \(M_\alpha \) and \(M \) if and only if \(\rho_\alpha \in B \).

Lemma 4.2 For the shuffle immersion \(f \), there exists a sequence of hyperbolic structures \(N_k \) with holonomy representations \(\rho_k \), such that:

1. \(N_k \to N_\infty \).
2. \(\rho_k \to \rho_\infty \).
3. There exist homeomorphisms \(h_k : M_k \to M \) such that \(h_k \) is a homotopy inverse for \(f_k|_M \), \(h_k(c_k) = c \) and \(f \) and \(h_k \circ f_k \) are homotopic in \(\hat{M} \). In particular, \(\rho_k \in B \).

Proof

1. For large \(n \), let \(M_n = \hat{M}_\infty(1,n) \) be the manifolds obtained by performing hyperbolic Dehn surgery on \(\hat{M}_\infty \) as in Theorem [2.2]. Since
Proof of Lemma 4.2

The following lemma will be used to detect when two representations are not contained in the same component of $V \cap B$.

Lemma 4.3 Let U be a neighborhood of N_∞ that satisfies the conclusion of Theorem 2.1 and Lemma 4.1, and let V be the image of U under the holonomy map. Let N_0 and N_1 be hyperbolic structures in U with holonomy ρ_0 and ρ_1, both in $V \cap MP(\pi_1(N))$. Also assume that $h_i : M_i \to M$, $i = 0, 1$, are homeomorphisms that are homotopy inverses of $f_i|_M$ and $h_i(c_i) = c$. If ρ_t, $0 \leq t \leq 1$, is a path in $V \cap MP(\pi_1(M))$ then $h_0 \circ f_0$ and $h_1 \circ f_1$ are homotopic in M.

Proof

By Theorem 2.1 we have a path of structures N_t in V with holonomy ρ_t. The ρ_t are in the same component of $MP(\pi_1(M))$ as ρ_0 and ρ_1 are in, so there are homeomorphisms, $h_t : M_t \to M$, that are homotopy inverses of $f_t|_M$. We can assume that the push-forward of the hyperbolic metrics on M_t to M is a continuously changing family of metrics on M. Furthermore, as all the c_t are short geodesics, they will be simple. Hence $h_t(c_t)$ is an isotopy of c in M. We can therefore modify the h_t such that $h_t(c_t) = c$. Then $h_t \circ f_t$ will vary continuously in t. By Lemma 4.1, $f_t(N_t) \cap c_t = \emptyset$ so $h_t \circ f_t$ is a homotopy between $h_0 \circ f_0$ and $h_1 \circ f_1$ in M.

Proof of Lemma 4.3
We next apply Lemma 4.3 to show that distinct shuffle immersion force $V \cap B$ to be disconnected.

Lemma 4.4 Let $f, f' : N \to \hat{M} \subset M$, be distinct shuffle immersions. Assume that there exists minimally parabolic structures \hat{M}_∞ and \hat{M}'_∞ on \hat{M} such that the pulled-back hyperbolic structures N_∞ and N'_∞ are isometric and hence define the same holonomy representation, ρ_∞. Then for every small neighborhood V of ρ_∞, $V \cap B$ is disconnected.

Proof

Let $M_n, N_n, f_n, h_n,$ and ρ_n and $M'_n, N'_n, f'_n, h'_n,$ and ρ'_n be the hyperbolic structures, isometric immersions and holonomy representations given by Lemma 4.2 for f and f', respectively. Choose an open neighborhood V of ρ_∞ given by Lemma 4.1.

There exists integers n and m such that $\rho_n, \rho'_m \in V$. The intersection $V \cap B$ is an open subset of the manifold B so the connected components of $V \cap B$ are path connected. If ρ_n and ρ'_m are in the same component of $V \cap B$ then Lemma 4.3 implies that $h_n \circ f_n$ and $h'_m \circ f'_m$ are homotopic in \hat{M}. On the other hand, by Lemma 4.2, $h_n \circ f_n$ and $h'_m \circ f'_m$ are homotopic in \hat{M} to f and f', respectively. Since, f and f' aren’t homotopic in \hat{M} we have a contradiction.

We now prove our main theorem.

Theorem 4.5 Let N be a compact, orientable, atoroidal, irreducible 3-manifold with boundary. Suppose that N contains an essential, boundary incompressible annulus whose core curve is not homotopic into a torus boundary component of ∂N. Let B be a component of the interior of $AH(\pi_1(N))$. Then there is a representation ρ in \overline{B} such that for any sufficiently small neighborhood V of ρ in $AH(\pi_1(N))$ the set $V \cap B$ is disconnected.

Proof

We recall our standing assumption that if $\rho \in B$ then the marking map $f_\rho : N \to M_\rho$ has a homotopy inverse that is a homeomorphism onto the interior of N. If we want to show self-bumping at a different component B' we find a new manifold N' homotopy equivalent to N such that N' and B' have the above property. With the exceptions of N being irreducible and atoroidal, all of the topological assumptions we have made depend only on the homotopy type of N. Since a hyperbolic manifold is automatically irreducible and atoroidal, N' will also be atoroidal, irreducible and contain
an essential, boundary incompressible annulus. In particular if one component of $MP(\pi_1(N))$ self-bumps then every component of $MP(\pi_1(N))$ will self-bump.

By Lemma 3.3, there is a non-trivial shuffle immersion $f : N \rightarrow \hat{M} \subset M$ and f lifts to an embedding f' in the cover M' associated to $f_\ast(\pi_1(N))$, with M' homeomorphic to \hat{M}. Let \hat{M}_∞ be a minimally parabolic structure on \hat{M} which defines a hyperbolic structure M'_∞ on $M' = M$. We use f to pull back a hyperbolic structure N_∞ and then $f'_\infty : N_\infty \rightarrow M'_\infty$ is an isometric immersion and $f'_\infty : N_\infty \rightarrow M'_\infty$ is an isometric embedding. The holonomy, $\rho_\infty(c)$, of c will be parabolic so by an application of the second Klein-Maskit combination we can find another parabolic γ such that the free product of $\rho_\infty(\pi_1(N))$ and γ is a uniformization \hat{M}'_∞ of \hat{M} such that M'_∞ covers M'_∞ and f'_∞ descends to an embedding. Therefore f and f' satisfy the conditions of Lemma 4.4 which implies the theorem.

proof of Theorem 4.5

Corollary 4.6 \(\overline{B}\) is not a manifold.

Proof

If \(\overline{B}\) is a manifold then Theorem 4.5 implies that ρ_∞ is in the interior of \(\overline{B}\), since it cannot be in the boundary. However, in [12], Sullivan proves that the interior of \(\overline{B}\) is B. Since ρ_∞ is not in B, \(\overline{B}\) is not a manifold.

proof of Corollary 4.6

In Theorem 4.3 we characterized when the components of $MP(\pi_1(N))$ self-bump. To do so we constructed a representation where this self-bumping occurs. In our next theorem we describe a sufficient condition for a representation to be a point of self-bumping. To describe it we will assume some knowledge of Kleinian groups.

We now allow N to contain more than one copy of X. In particular, assume that there are m disjoint, pairwise embeddings of $(X, \partial X)$ in $(N, \partial N)$, labeled, X_1, \ldots, X_m. As before we assume that each $\partial_1 X_i$ is an essential, boundary incompressible annulus and that each core curve, c_i is primitive and not homotopic to a boundary torus. We further assume that the c_i are homotopically distinct. For each i, $1 \leq i \leq m$, choose an integer, $n_i \geq 0$. There is then a shuffle immersion, s_{n_1, \ldots, n_m}, that wraps N around c_i, n_i times.

Let $\hat{M} = M - C$. If $\hat{\rho}$ is a minimally parabolic, geometrically finite uniformization of \hat{M} then the space of all minimally parabolic hyperbolic
structures on \(\hat{M} \), with the same marking, is \(QD(\hat{\rho}) \), the quasiconformal deformation space of \(\hat{\rho} \). The image of \((s_{n_1, \ldots, n_m})_*(\pi_1(N)) \) in \(\pi_1(M) \) defines a Kleinian subgroup \(\Gamma = \hat{\rho}(\pi_1(\hat{M})) \) that uniformizes \(M \), and a representation \(\rho = \hat{\rho} \circ (s_{n_1, \ldots, n_m})_* \), with image \(\Gamma \). If \(\hat{\rho}' \) is another representation in \(QD(\hat{\rho}) \) then \(\hat{\rho}' \circ (s_{n_1, \ldots, n_m})_* \) is in \(QD(\rho) \), the quasiconformal deformation space of \(\rho \). Therefore \((s_{n_1, \ldots, n_m})_* \) defines a map between \(QD(\hat{\rho}) \) and \(QD(\rho) \).

Our previous work shows the following:

Theorem 4.7 All representations in \(QD(\rho) \) in the image of \(QD(\hat{\rho}) \) under \((s_{n_1, \ldots, n_m})_* \) are points of self-bumping for \(B \) if \(n_i \neq 0 \) for some \(i \).

Note that \(\rho \) will not be minimally parabolic, for the \(c_i \) will all be parabolic in \(\Gamma = \rho(\pi_1(N)) \). Let \(c'_i = \{0\} \times \{1\} \times S^1 \subset \partial_0 X_i \). The quotient of the domain of discontinuity for \(\Gamma \) will be a conformal structure on \(\partial N - \bigcup c'_i \). As the pinched curves in \(\partial N \) are determined by the embeddings of the \(X_i \), if \(s_{n'_1, \ldots, n'_m} \) is another shuffle immersion then the image of \((s_{n'_1, \ldots, n'_m})_* \) will be the same quasiconformal deformation space, \(QD(\rho) \). (While these maps have the same range, \((s_{n_1, \ldots, n_m})_*(\hat{\Gamma}) \neq (s_{n'_1, \ldots, n'_m})_*(\hat{\Gamma}) \). On the other hand, each \(X_i \) has an involution which swaps the two components of \(\partial_0 X_i \). By performing this involution on some (possibly all) of the \(X_i \) we get a new family of shuffle immersions. The bumping representations associated to these shuffle immersions will then lie in a different quasi-conformal deformation space.

We also remark that even in the case where \(N \) is an \(I \)-bundle, Theorem 4.7 is stronger than McMullen’s result in [11]. In McMullen’s theorem, all the \(c'_i \) must lie in the same component of \(\partial N \). Here we have no such restriction.

We close with the following conjecture.

Conjecture 4.8 A representation \(\rho \) is a point of self-bumping for \(B \) if and only if there is a non-empty collection of curves \(\mathcal{C} \) (as above) in \(M \), a shuffle immersion \(s \) with respect to \(\mathcal{C} \), and a uniformization \(\hat{\rho} \) of \(\hat{M} = M - \mathcal{C} \) so that \(\rho = \hat{\rho} \circ s_* \).

References

[1] J.W. Anderson and R. D. Canary. Algebraic limits of Kleinian groups which rearrange the pages of a book. *Invent. Math.*, 126:205–214, 1996.

[2] J.W. Anderson, R.D. Canary, and D. McCullough. On the topology of deformation spaces of Kleinian groups. to
be published in Annals of Math., preprint available from http://www.math.lsa.umich.edu/~canary/.

[3] R. Benedetti and C. Petronio. Lectures on hyperbolic geometry. Universitext. Springer-Verlag, 1992.

[4] F. Bonahon and J.P. Otal. Variétés hyperboliques à géodésiques arbitrairement courtes. Bull. L.M.S., 20:255–261, 1988.

[5] K. Bromberg. Hyperbolic Dehn surgery on geometrically infinite 3-manifolds. preprint, 2000.

[6] R. D. Canary, D. B. A Epstein, and P. Green. Notes on notes of Thurston. In D. B. A Epstein, editor, Analytical and geometric aspects of hyperbolic space, volume 111 of London Math. Soc. Lecture Note series, pages 3–92. Cambridge University Press, 1987.

[7] T.D. Comar. Hyperbolic Dehn surgery and convergence of Kleinian groups. PhD thesis, University of Michigan, 1996.

[8] J. Holt. The global topology of deformation spaces of Kleinian groups. PhD thesis, University of Michigan, 2000.

[9] T. Jørgensen. On discrete groups of Möbius transformations. Amer. J. Math., 98:739–749, 1976.

[10] A. Marden. The geometry of finitely generated Kleinian groups. Annals of Math., 99:383–462, 1974.

[11] C. McMullen. Complex earthquakes and Teichmüller theory. J. Amer. Math. Soc., 11(2):283–320, 1998.

[12] D.P. Sullivan. Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity of Kleinian groups. Acta Math., 155:243–260, 1985.

[13] W. Thurston. The geometry and topology of 3-manifolds. Princeton lecture notes, 1977.