Chagas chronic cardiomyopathy: Report of two cases in Coahuila, Mexico

José Gerardo Martínez-Tovar, Ildefonso Fernández-Salas, Eduardo A. Rebollar-Téllez

ABSTRACT

Introduction: Chronic cardiomyopathy is a fatal form of the Chagas disease without specific treatment. It is a frequent type of dilated cardiomyopathy usually not recognized by the health team in non-endemic areas. The cases presented here represent the first autochthonous cases of the disease in Coahuila, Mexico.

Case Series: Two cases of dilated cardiomyopathy with positive antibodies to Trypanosoma cruzi are presented, one of them with progressive heart failure and another with conduction disorders.

Conclusion: Even in areas of low endemicity, all cases of dilated cardiomyopathy, Chagas disease should be rule out as one of the etiologies.
Chagas chronic cardiomyopathy: Report of two cases in Coahuila, Mexico

José Gerardo Martínez-Tovar, Ildefonso Fernández-Salas, Eduardo A. Rebollar-Téllez

ABSTRACT

Introduction: Chronic cardiomyopathy is a fatal form of the Chagas disease without specific treatment. It is a frequent type of dilated cardiomyopathy usually not recognized by the health team in non-endemic areas. The cases presented here represent the first autochthonous cases of the disease in Coahuila, Mexico. Case Series: Two cases of dilated cardiomyopathy with positive antibodies to Trypanosoma cruzi are presented, one of them with progressive heart failure and another with conduction disorders. Conclusion: Even in areas of low endemicity, all cases of dilated cardiomyopathy, Chagas disease should be ruled out as one of the etiologies.

Keywords: Dilated cardiomyopathy, Chronic cardiomyopathy, Chagas disease, Trypanosoma cruzi

INTRODUCTION

Chagas disease is caused by the protozoan Trypanosoma cruzi. It affects about 10 million people worldwide, while it is estimated that 90 million are at risk of infection [1]. Parasites are transmitted by hematophagous bugs of the family reduviidae, and the subfamily triatominae. The main route of infection of T. cruzi to humans is during defecation after blood-feeding. Although, other mechanisms of transmission have been documented, e.g., blood transfusions and organ transplantation from T. cruzi infected individuals [2], meat eating undercooked parasitized or drink contaminated with Triatomine feces [3], transplacental route and breast feeding [4], laboratory accidents [5], and skinning of wild animals [6]. The natural history of Chagas disease has three stages, acute illness, indeterminate and chronic state. The chronic disease mainly affects the nervous system, digestive system and the heart. Chagas cardiomyopathy has a prevalence rate of 17.9/100,000 in the general population with an annual mortality rate ranging from 69–95% being the most common chronic form [6]. An estimated 20–30% of the people who initially progressed with the indeterminate form of the disease will progress over a period of a few years or decades to cardiac or gastrointestinal form [7]. Chronic Chagas cardiomyopathy is characterized by a chronic inflammatory process involving all cardiac chambers, damaging the conduction system, and sometimes producing an apical aneurysm. It is thought, that in its pathogenesis there are parasite persistence in
the myocardial tissue and additional immunologic injury [8]. Clinical manifestations include thromboembolic phenomena, chest pain, heart blocks, malignant ventricular arrhythmias, sudden cardiac death and chronic systolic heart failure [6]. Early signs are usually conduction abnormalities and the most frequent are right bundle branch block and left anterior hemiblock as well as abnormal motility of the left ventricle [9]. These abnormalities may lead to palpitations, syncope and to a high risk of sudden death [10]. Chronic Chagasic cardiomyopathy is a fatal form of the disease, for which there is no specific treatment. It is characterized by scattered or focal inflammatory infiltrates, myocytolysis, myonecrosis and progressive deposits of fibrous tissue. The mechanisms responsible for cardiomyopathy are not yet clearly understood, but the presence of chronic myocardial injury in the absence of parasitemia suggesting involvement of autoimmunity [11]. From July 2008, the blood banks of the Mexican Institute of Social Security (IMSS) began the screening of antibodies to T. cruzi to volunteer donors [12]. In the General Hospital Family Medicine No 24 “Dr. Felix Oyervides Pinales” since 2011 we extended the study to patients with cardiomyopathies. The cases reported herein are part of these clinical inspections.

CASE SERIES

Case 1: A sixty-year-old female from Sabinas Coahuila, Mexico who had not visited areas of high endemicity for American trypanosomiasis. She was found to have primary hypothyroidism treated for four years with levothyroxine. Two years before the present admission, she received a blood transfusion due to uterine bleeding. She had been asymptomatic until three years ago when she began to experience progressive dyspnea and edema of lower limbs. The electrocardiogram showed left atrial enlargement and generalized low voltage. The chest X-ray showed grade IV cardiomegaly with a cardiothoracic index 0.7. Basic laboratory tests were within normal limits. Cardiac ultrasound showed severe atrial and moderate ventricular dilation with an ejection fraction of 35%. Gammagram cardiac showed scattered perfusion defects so that cardiac catheterization was performed which was reported as normal. The ventriculography revealed abnormal global and segmental abnormal mobility also severe generalized hypokinesis. Dilated cardiomyopathy was diagnosed initiating treatment with digoxin, furosemide, spironolactone, isosorbide and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, captopril, isosorbide and acetylsalicylic acid and pravastatin. He had been stable with digoxin, furosemide, capto...
To the best of our knowledge, these patients are the first two cases of chronic Chagas cardiomyopathy reported in the state of Coahuila, Mexico. We suggest that they represent autochthonous cases because there is no history of travel or residence in endemic areas and that all their life has been in Coahuila, and based on the clinical histories of patients. We are aware that conclusive evidence is lacking to fully demonstrate the presence of endemic foci of Chagas disease in northern Mexico. Nonetheless, we can put forward several facts that strongly support our suggestion. Firstly, a previous study conducted by our research team showed a seroprevalence of antibodies to *Trypanosoma cruzi* in patients with dilated cardiomyopathy to be as high as 21.14% even in areas of low endemicity [13] and these estimates were obtained and confirmed by two different tests [14]. Seroprevalence as such is an estimator at community level and represents some degree of contact with the parasite. Since, only one of the two cases gave a history of recent blood transfusion, and as the disease occurs ten to twenty years after the initial infection, a vectorial transmission is more likely to have occurred. Secondly, in the context of this investigation, we have also shown that two Triatomine species— *Triatoma gerstaeckeri* and *Triatoma rubida*— are present in the region. These two species have been reported to harbor *T. cruzi* parasites [15]. Thirdly, there are reports suggesting that Chagas disease may actually be present in the state of Coahuila since ancient times [14]. Finally, it is important to highlight the urgent need to trained health teams in non-endemic areas, because they are not accustomed to the presence of Chagas disease. As this disease represents a potentially emerging treat, it is very important to continue the detection antibodies against *T. cruzi* in all blood banks, organ as well as the screening in pregnant women and patients with heart diseases. If a systematic surveillance program is established, it would be possible to diagnose acute positive cases in order to undertake specific antiparasitic treatment. In addition, vector ecology and surveillance studies are needed to evaluate the transmission potential of *T. cruzi* to inhabitants of the region.

CONCLUSION

The diagnosis of Chagas chronic cardiomyopathy is based on the presence of antibodies to *Trypanosoma cruzi* by serological techniques as Enzyme-Linked Immunosorbent Assay (ELISA), indirect hemagglutination and immunofluorescence in a patient with dilated cardiomyopathy. It is very important to continue to detection of antibodies to *T. cruzi* in all blood banks and organ donors in general, as well as the screening in pregnant women and patients with heart diseases. The finding of acute positive cases represents an opportunity to undertake specific antiparasitic treatment.

Acknowledgements

The first author is grateful to the support given by Conacyt through a scholarship for doctoral studies # 392195. He also wishes to thank the staff of the General Hospital No. 24 of the Mexican Social Security Institute in Nueva Rosita, Coahuila for the facilities granted.

Author Contributions

José Gerardo Martínez-Tovar – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Ildefonso Fernández-Salas – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Eduardo A. Rebollar-Téllez – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.
REFERENCES

1. WHO. Working to overcome the global impact of neglected tropical diseases. First WHO report on neglected tropical diseases 2010 (online). http://whqlibdoc.who.int/publications/2010/9789241564090_eng.pdf.

2. Ponce C. Transfusion transmission of Chagas disease in Honduras and other Central American countries. Medicina (B. Aires) 1999;59(Suppl 2):135–7. [Article in Spanish].

3. Toso AM, Vial FU, Galanti N. Oral transmission of Chagas’ disease. Rev Med Chile 2011;139:258–66. [Article in Spanish].

4. Muñoz J, Portús M, Cortachan M, Fumadó V, Gascon J. Congenital Trypanosoma cruzi infection in a non-endemic área. Trans R Soc Trop Med Hyg 2007;101(11):1161–2.

5. Herwaldt BL. Laboratory acquired parasitic infection from accidental exposures. Clin Microbiology Reviews 2001;14(4):659–88.

6. Hanford EJ, Zhan FB, Lui Y, Giordano A. Chagas disease in Texas: Recognizing the significance and implications of evidence on the literature. Soc Sci Med 2007;65(1):60–79.

7. Barbosa AP, Cardinalli Neto A, Otaviano AP, Rocha BF, Bestetti RB. Comparison of outcome between Chagas’ heart disease and idiopathic dilated cardiomyopathy. Arq Bras Cardiol2011;97:517–25. [Article in English, Portuguese].

8. Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375(9723):1388–402.

9. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV. Pathogenesis of Chronic Chagas Heart Disease. Circulation 2007;115(9):1109–23.

10. Maguire JH, Hoff R, Sherlock I, et al. Cardiac morbidity and mortality due to Chagas’ disease: Prospective electrocardiographic study of a Brazilian community. Circulation 1987;75(6):1140–5.

11. Rassi A Jr, Rassi A, Little WC. Chagas’ Heart Disease. Clin Cardiol 2000;23(12):883–9.

12. García S, Ramos CO, Senra JF, et al. Treatment with benznidazole during the chronic phase of experimental Chagas’ disease decreases cardiac alterations. Antimicrob Agents Chemother 2005;49(4):1521–8.

13. Novelo-Garza BA, Benítez-Arvizu G, Peña-Benítez A, Galván-Cervantes J, Morales-Rojas A. Detection of Trypanosoma cruzi in blood donors. Rev Med Inst Mex Seguro Soc 2010;48(2):139–44. [Article in Spanish].

14. Martínez-Tovar JG, Rebollar-Téllez EA, Fernández Salas I. Seroprevalence of T. cruzi infection in blood donors and Chagas cardiomyopathy in patients from the coal mining region of Coahuila, Mexico. Rev Inst Med Trop Sao Paulo 2014;56(2):169–74.

15. Martínez-Tovar JG, Rodríguez-Rojas JJ, Arquez-Chunga W, et al. New geographic records and notes of infection of Triatoma gerstaeckeri (Stal) and Triatoma rubida (Uhler) in Nuevo Leon and Coahuila, Mexico. Acta Zoológica Mexicana (n.s.) 2013;29(1):227–33.
ABOUT THE AUTHORS

Article citation: Martínez-Tovar JG, Fernández Salas I, Rebollar-Téllez EA. Chagas chronic cardiomyopathy: Report of two cases in Coahuila, Mexico Int J Case Rep Images 2014;5(8):533–537.

Jose Gerardo Martínez-Tovar is Head of Internal Medicine Department at Hospital General de Zona No 24 “Dr. Jesus Felix Oyervides Pinales” of the Instituto Mexicano del Seguro Social in Nueva Rosita, Coahuila México. He earned the Medical Degree from Universidad Autónoma de Nuevo León and Internal Medicine Speciality from Secretaria de Salud in Monterrey, México. He is a doctoral student at Medical Entomology Laboratory in the Biology School of Universidad Autónoma de Nuevo León. He has published three research papers in national and international academic journals. His research interests include Chagas disease, leishmaniasis, dengue fever and insects of medical importance. He intends to pursue a postdoc in new treatments and diagnosis tools of Chagas disease in future.

Ildefonso Fernández-Salas is Director of Regional Center for Public Health at National Institute of Public Health in Tapachula, Chiapas, Southern Mexico. He earned the doctoral degree (Medical Entomology, PhD) from The Uniformed Services University of the Health Sciences/Bethesda, Maryland-USA. He has published 78 research papers in national and international academic journals and authored 2. His research interests include Epidemiology and control on dengue fever, malaria, and West Nile Virus mosquito vectors.

Eduardo A. Rebollar-Téllez is Lecturer/Researcher at Medical Entomology Lab, Department of Invertebrate Zoology, Biological Sciences Faculty/ Autonomous University of Nuevo Leon/ Monterrey / Mexico). He earned the undergraduate degree (BSc Biology) from the Biological Sciences Faculty/ Autonomous University of Nuevo Leon, a Master degree in Medical Entomology (Biological Sciences Faculty/Autonomous University of Nuevo Leon) and a PhD from the Centre for Applied Entomology and Parasitology, School of Biological Sciences, Keele University, Staffordshire, United Kingdom). He has been granted several scholarships from Conacyt (Mexico), The Wellcome Trust (UK), WHO/ TDR (Switzerland). John D. & Catherine T. MacArthur Foundation (USA), EULEISH/ International Centre for Engineering and Biotechnology ICBEG (Trieste, Italy) and the Japan International Cooperation Agency (JICA) (Tokyo, Japan). He has published 43 research papers in national and international academic journals and authored 2 book chapters. His research interests include the epidemiology and dynamics of transmission of leishmaniasis, Chagas disease and other zoonotic diseases. He intends to pursue a postdoc or sabbatical leave to further strengthen his career as a medical entomologist.

Access full text article on other devices

Access PDF of article on other devices
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Mentored Review Articles (MRA)
Our academic program “Mentored Review Article” (MRA) gives you a unique opportunity to publish papers under mentorship of international faculty. These articles are published free of charges.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

We sincerely invite you to submit your valuable research for publication to Edorium Journals.

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Mentored Review Articles (MRA)
Our academic program “Mentored Review Article” (MRA) gives you a unique opportunity to publish papers under mentorship of international faculty. These articles are published free of charges.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

Edorium Journals et al.