Lawrence Berkeley National Laboratory
Recent Work

Title
Nitrogen Isotope Fractionation During Archaeal Ammonia Oxidation: Coupled Estimates From Measurements of Residual Ammonium and Accumulated Nitrite.

Permalink
https://escholarship.org/uc/item/8qr2m62k

Authors
Mooshammer, Maria
Alves, Ricardo JE
Bayer, Barbara
et al.

Publication Date
2020

DOI
10.3389/fmicb.2020.01710

Peer reviewed
Nitrogen Isotope Fractionation During Archaeal Ammonia Oxidation: Coupled Estimates From Measurements of Residual Ammonium and Accumulated Nitrite

Maria Mooshammer1†, Ricardo J. E. Alves2†, Barbara Bayer2†, Michael Melcher2, Michaela Stieglmeier2, Lara Jochum1, Simon K.-M. R. Rittmann3, Margarete Watzka1, Christa Schleper2, Gerhard J. Herndl2,4 and Wolfgang Wanek2,4

OPEN ACCESS

The naturally occurring nitrogen (N) isotopes, 15N and 14N, exhibit different reaction rates during many microbial N transformation processes, which results in N isotope fractionation. Such isotope effects are critical parameters for interpreting natural stable isotope abundances as proxies for biological process rates in the environment across scales. The kinetic isotope effect of ammonia oxidation (AO) to nitrite (NO2−), performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), is generally ascribed to the enzyme ammonia monooxygenase (AMO), which catalyzes the first step in this process. However, the kinetic isotope effect of AMO, or εAMO, has been typically determined based on isotope kinetics during product formation (cumulative product, NO2−) alone, which may have overestimated εAMO due to possible accumulation of chemical intermediates and alternative sinks of ammonia/ammonium (NH3/NH4+). Here, we analyzed 15N isotope fractionation during archaeal ammonia oxidation based on both isotopic changes in residual substrate (RS, NH4+) and cumulative product (CP, NO2−) pools in pure cultures of the soil strain Nitrososphaera viennensis EN76 and in highly enriched cultures of the marine strain Nitrospumila adriaticus NF5, under non-limiting substrate conditions. We obtained εAMO values of 31.9–33.1‰ for both strains based on RS (δ15NH4+) and showed that estimates based on CP (δ15NO2−) give larger isotope fractionation factors by 6–8‰. Complementary analyses showed that, at the end of the growth period, microbial biomass was 15N-enriched (10.1‰), whereas nitrous oxide (N2O) was highly 15N depleted (−38.1‰) relative to the initial substrate. Although we did not determine the isotope effect of NH4+ assimilation (biomass formation) and N2O production by AOA, our results nevertheless show that the discrepancy between εAMO estimates based on RS and CP might have derived from the incorporation of 15N-enriched residual NH4+ after AMO reaction into microbial biomass and that N2O production did not affect isotope fractionation estimates significantly.

Keywords: ammonia oxidation, nitrification, nitrous oxide, stable isotope fractionation, Thaumarchaeota
INTRODUCTION

Knowledge of natural 15N abundances and of nitrogen (N) isotope fractionation associated with key microbial N transformation processes has contributed greatly to our understanding of the marine N cycle (Casciotti and Buchwald, 2012; Buchwald and Casciotti, 2013) and of terrestrial gaseous N emissions (Houlton and Bai, 2009), namely atmospheric N$_2$O sources and sinks (Yoshida and Toyoda, 2000), and biological N fixation (Vitousek et al., 2013). The oxidation of NH$_4^+$ to NO$_2^−$—the first and rate-limiting step in nitrification—is a central process in the marine and terrestrial N cycles, as well as the major driver of a large N isotope effect that leads to formation of 15N-depleted products such as NO, N$_2$O, NO$_2^−$, and NO$_3^−$, while residual NH$_4^+$ becomes 15N-enriched during that process (Mariotti et al., 1981; Sigman and Casciotti, 2001). A detailed understanding of N isotope effects of the range of N transformation processes is thus critical for adequate biological interpretation of natural 15N isotope patterns in the environment (Casciotti, 2016).

Besides the recently discovered comammox bacteria (Daims et al., 2015; van Kessel et al., 2015), ammonia oxidation is catalyzed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), with different relative contributions across ecosystems and environmental conditions (Prosser and Nicol, 2012; Prosser et al., 2019). On a cellular level, ammonia oxidation is a multi-step process that comprises different enzymatic reactions and chemical equilibrium processes, which can all contribute to the N isotope fractionation effects inferred from extracellular N pools (Casciotti et al., 2011; Santoro and Casciotti, 2011). The isotopic fractionation effect (ε) of ammonia oxidizers has been typically inferred based on changes in $δ^{15}$N of the cumulative product (CP) NO$_2^−$ ($ε_{CP}$), and attributed to the initial enzymatic step catalyzed by the ammonia monoxygenase (AMO) enzyme, defined as $ε_{AMO}$. However, $ε_{CP}$ estimates reflect the combined fractionation effects of the isotope equilibrium between NH$_4^+$ and NH$_3$ (NH$_3$, the proposed substrate for ammonia oxidation, is depleted in 15N relative to NH$_4^+$ (Hermes et al., 1985)), the AMO-catalyzed reaction, and accumulation of several intermediates derived from subsequent enzymatic processes (Casciotti et al., 2003). For instance, $ε_{CP}$ estimates may be affected by the accumulation of essential intermediates, such as hydroxylamine (NH$_2$OH) and by the production of gaseous N by-products (nitric oxide, NO; and nitrous oxide, N$_2$O), which may represent further 15N fractionation steps. Consequently, this could result in a difference of kinetic isotope effect estimates derived from residual substrate (RS) and CP (Casciotti et al., 2003). Not only could these “leakage” processes alter CP-based estimates of $ε_{AMO}$, but their different contributions to ammonia utilization and to $ε_{CP}$ may also underlie the large differences observed in $ε_{AMO}$ between ammonia-oxidizing organisms (Mariotti et al., 1981; Yoshida, 1988; Casciotti et al., 2003; Santoro and Casciotti, 2011).

Estimates of isotope effects based on the change in $δ^{15}$N of NH$_4^+$ ($ε_{RS}$) can circumvent many of the expected biases associated with $ε_{CP}$, as they are not affected by the multiple subsequent equilibria, enzymatic transformations, and intermediate N pools, as discussed but not quantified previously (Casciotti et al., 2003; Santoro and Casciotti, 2011). However, to our knowledge, only one study has determined the isotope fractionation factors based on concurrent measurements of changes in isotopic composition of RS and CP of ammonia oxidation, namely in cultures of the AOB Nitrosomonas europaea (Mariotti et al., 1981). This study found no difference between $ε_{RS}$ and $ε_{CP}$, suggesting that ammonia oxidation can be effectively regarded as a “one-step process,” where the AMO-catalyzed reaction constitutes the rate-limiting and sole isotope fractionation step. On the other hand, AOB and AOA seem to harbor fundamentally distinct ammonia oxidation pathways and exhibit different yields of gaseous N compounds per mole of NH$_4^+$ consumed (Walker et al., 2010; Kozlowski et al., 2016). Importantly, the enzyme hydroxylamine dehydrogenase (HAO), which performs the second step in ammonia oxidation of AOB, has not been identified in AOA, and thus it remains unclear how NH$_2$OH is converted to NO$_2^−$ in AOA (Walker et al., 2010; Kerou et al., 2016). Moreover, a recent study has provided evidence that the bacterial HAO oxidizes NH$_2$OH to NO rather than to NO$_2^−$, as generally assumed, with the latter resulting from non-enzymatic oxidation of NO by oxygen (Caranto and Lancaster, 2017). Previous studies have shown that NO is also an essential intermediate in ammonia oxidation by AOA, as their growth and activity is highly sensitive to exposure to an NO scavenger (Shen et al., 2013; Kozlowski et al., 2016). Here, we tested whether the kinetic isotope effect of archaeal ammonia oxidation based on CP ($δ^{15}$NO$_2^−$) alone might be biased, by comparing the isotope fractionation factors inferred from both RS and CP pools. For this, we determined the kinetic isotope effects during growth of two phylogenetically and ecologically distinct AOA: the axenic strain Nitrosopumilus viennensis EN76 (Stieglmeier et al., 2014a), isolated from soil, and the highly enriched marine strain Nitrosopumilus adriaticus N5 (Bayer et al., 2016). This is also the first study of 15N isotope fractionation of ammonia oxidation by an AOA strain in pure culture. All previous studies of kinetic isotope effects of AOA have been performed with enrichment cultures with varying degrees of enrichment (Santoro and Casciotti, 2011; Nishizawa et al., 2016) and bacterial contaminants that may have contributed to the variation in isotope effects through consumption of and inputs to the same N pools.

MATERIALS AND METHODS

Pure cultures of N. viennensis EN76 were cultivated in freshwater medium and incubated at 37°C, as described by Tourna et al. (2011). In a first experiment, quadruplicate cultures were supplemented with 1 mM NH$_4^+$ and 0.1 mM pyruvate; in a second experiment, quadruplicate cultures were supplemented with 2 mM NH$_4^+$ and 0.5 mM pyruvate to generate higher cell biomass and sufficient N$_2$O concentrations for isotopic analysis, in order to determine their potential effect on $ε_{AMO}$. Quadruplicate enrichment
cultures of *N. adriaticus* NF5 were cultivated in Synthetic Crenarchaeota Medium (SCM) at 30°C as described by Bayer et al. (2016). The medium was supplemented with 1 mM NH$_4^+$ and 5% (v/v) autoclaved seawater, which was sterile-filtered (0.22 µm GTP, Millipore). Kanamycin at a final concentration of 100 µg ml$^{-1}$ was used to inhibit bacterial contaminants. At the time of the experiment (January 2013), the enrichment level of strain NF5 was ~95%, as it contained a heterotrophic non-nitrifying/non-denitrifying contaminant of the alphaproteobacterial species *Oceanicaulis alexandrii* (Bayer et al., 2019).

Ammonia-oxidizing archaea growth was monitored by measuring nitrite production using the Griess method (Hood-Nowotny et al., 2010), coupled to NH$_4^+$ consumption determined using the Berthelot method for *N. viennensis* cultures (Hood-Nowotny et al., 2010) and the o-Pthalaldehyde (OPA) method for *N. adriaticus* cultures (Goyal et al., 1988). δ^{15}NH$_4^+$ was quantified by microdiffusion (Sorensen and Jensen, 1991) with subsequent analysis on a continuous-flow isotope ratio mass spectrometer consisting of an elemental analyzer (EA1110, CE Instruments) coupled via a ConFlo III interface (Finnigan MAT, Thermo Fisher Scientific) to the isotope ratio mass spectrometer (IRMS; DeltaPLUS, Finnigan MAT, Thermo Fisher Scientific). δ^{15}NO$_2^-$ was determined based on the reduction of NO$_2^-$ to N$_2$O by azide under acidified conditions (Lachouani et al., 2010). Concentrations and isotopic ratios of N$_2$O were determined using a purge-and-trap GC/IRMS system (PreCon - GasBench II headspace analyzer, Delta Advantage V IRMS; Thermo Fischer Scientific, Vienna, Austria). For NH$_4^+$ and NO$_2^-$ isotope measurements, we included blanks, concentration standards, and isotope standards varying in natural 15N abundance together with the samples through the full microdiffusion and azide procedures to allow corrections for blank contribution, incomplete reaction, and procedural isotope fractionation (Lachouani et al., 2010). Nitrogen content and 15N signature of AOA biomass were determined by EA-IRMS as described above. 15N signatures [% vs. AIR] were calculated relative to the ratio R (15N/14N) of the atmospheric N$_2$ standard (AIR), as δ^{15}N = ($R_{sample}/R_{standard} - 1$) × 1000.

Isotope fractionation factors (ε) were calculated based on the Rayleigh closed system isotope fractionation, based on the isotopic compositions of RS (i.e., NH$_4^+$) and CP (i.e., NO$_2^-$) (Mariotti et al., 1981):

$$10^3\ln\left(\frac{10^{-3}\delta_{RS} + 1}{10^{-3}\delta_{S0} + 1}\right) = \varepsilon \ln(f)$$

$$\delta_{CP} - \delta_{S0} = -\varepsilon f \frac{\ln(f)}{(1 - f)},$$

where δ_{S0} is δ^{15}N of initial NH$_4^+$, δ_{RS} is δ^{15}NH$_4^+$, δ_{CP} is δ^{15}NO$_2^-$ and f is the fraction of the initial [NH$_4^+$] remaining in the culture. Plots of $10^3 \frac{\ln(f)}{f}$ versus $\ln(f)$ and of $\delta_{CP} - \delta_{S0}$ versus $\frac{\ln(f)}{(1 - f)}$ yield linear relations, with the slope representing the kinetic isotope effect based on the isotopic change in substrate (ε_{RS}) and product (ε_{AP}), respectively. Uncertainties of ε are expressed as standard error of the slope. Differences in isotope fractionation effects between cultures were assessed by testing significant differences between their regression plots, using R (R Development Core Team, 2012).

RESULTS AND DISCUSSION

Based on the oxidation of NH$_3$/NH$_4^+$ to NO$_2^-$—a typical proxy for ammonia oxidizer growth, as it strongly correlates with growth rates (Stieglmeier et al., 2014a; Bayer et al., 2016)—all cultures showed growth curves typical for batch cultures of AOA, reaching stationary phase after 7 days for *N. adriaticus*, and after 3–4 days for *N. viennensis* cultures (Figures 1A–C). Nitrogen isotope fractionation was reflected in both the substrate (i.e., NH$_4^+$) and the product (i.e., NO$_2^-$) of ammonia oxidation, and followed typical Rayleigh isotope fractionation kinetics for closed systems (Figures 1D–F): NH$_4^+$ became increasingly 15N-enriched with the fraction of NH$_4^+$ oxidized, while NO$_2^-$ was strongly 15N-depleted after correction for NO$_2^-$ deriving from the inoculum. With an increasing fraction of NH$_4^+$ oxidized, δ^{15}NO$_2^-$ converged toward the isotopic signature of the initial NH$_4^+$. Both *N. adriaticus* and *N. viennensis* (including cultures grown on 1 and 2 mM NH$_4^+$) exhibited 15N isotope fractionation factors based on substrate (ε_{RS}) between 31.9 and 33.1‰, and based on product (ε_{CP}) between 37.7 and 49.1‰ (Figures 2A–F). We found no significant difference between the isotope fractionation factors of the different AOA cultures studied here based on δ^{15}N evolution of the substrate (ε_{RS}; comparison of slopes, $df = 2$, $F = 0.519$, $p = 0.598$) or the product (ε_{CP}; comparison of slopes, $df = 2$, $F = 2.380$, $p = 0.102$). The N isotope fractionation factors based on δ^{15}NO$_2^-$ (ε_{CP}) were larger than those based on δ^{15}NH$_4^+$ (ε_{RS}) by 8.0, 5.8, and 5.9‰ for *N. adriaticus*, and for *N. viennensis* grown on 1 mM or 2 mM NH$_4^+$, respectively.

Nitrogen isotope fractionation has been studied in several AOB strains, but only in three marine and one thermophilic AOA enrichment cultures. These AOA enrichment cultures showed average N isotope fractionation factors between 22 and 25‰ at low substrate concentrations, and up to 32.0‰ at higher ammonium concentrations (Santoro and Casciotti, 2011; Nishizawa et al., 2016, measured via the isotopic composition of the product nitrite; see Table 1). These estimates are in the same range as the reported average isotope effects for different AOB strains, i.e., 14–38‰ (Delwiche and Steyn, 1970; Mariotti et al., 1981; Casciotti et al., 2003). 15N isotope fractionation factors of *N. viennensis* and *N. adriaticus* are in the upper range, or higher, than those previously reported for AOA, which might be due to the higher ammonia concentrations applied in our study (1–2 mM in our study vs. 200 µM in Nishizawa et al., 2016; 10–75 µM in Santoro and Casciotti, 2011). Previous studies have indicated that higher initial ammonia concentrations lead to more stable
and higher 15N isotope fractionation (Casciotti et al., 2003; Santoro and Casciotti, 2011).

We also measured ϵ_{AMO} based on changes in 15NH$_4^+$ (i.e., the residual substrate) to both circumvent and assess potential biases associated with estimates based on 15NO$_2^-$ (i.e., the cumulative product). It should be noted, however, that different apparent isotope effects in whole cells may also be observed in the NH$_4^+$ pool, despite constant AMO enzyme-level isotope effects, depending, for example, on the balance between ammonia oxidation rates and ammonia diffusion across the S-layer (i.e., outermost cell envelope component in AOA) (Casciotti et al., 2003; Li et al., 2018). Published models of AOA and AOB metabolism favor the hypothesis of a (pseudo-)periplasmic location of the ammonia oxidation process (Arp and Stein, 2003; Walker et al., 2010; Simon and Klotz, 2013). However, AOA and AOB harbor very distinct NH$_3$/NH$_4^+$ transport systems (Offre et al., 2014), whose role in ammonia oxidation and contribution to observed differences in 15N isotope fractionation remain unclear (Arp and Stein, 2003). At low ammonia concentrations, ammonia oxidation rates are expected to become limited by NH$_4^+$ transport/NH$_3$ diffusion, resulting in the convergence of the isotope effect toward that of NH$_4^+/\text{NH}_3$ equilibrium (if NH$_3$ is mainly taken up by the cells) or NH$_4^+/\text{NH}_3$ transport. The NH$_4^+/\text{NH}_3$ equilibrium isotope effect has been estimated to be 19.2‰ in aqueous solution (Hermes et al., 1985), whereas secondary active ammonium (AMT) transporters, which are highly expressed in AOA (Carini et al., 2017), have been shown to exert isotope fractionation of around 13–15‰, due to deprotonation of NH$_4^+$ during transport (Ariz et al., 2018).

It is unlikely that ammonia oxidation has been limited by NH$_3$ availability in our study, because of the high substrate concentrations used, which are well above the K_m of the AMO of N. viennensis (5.4 µM NH$_3$ + NH$_4^+$; Kits et al., 2017) and that of the marine strain Nitrosopumilus maritimus strain SCM1 (0.13 µM NH$_3$ + NH$_4^+$; Martens-Habbena et al., 2009), which is closely related to N. adriaticus. Furthermore, Nishizawa et al. (2016) estimated that, when NH$_3$ concentrations in the pseudo-periplasm are lower than in the medium under laboratory conditions, cell-specific NH$_3$ diffusion rates into the pseudo-periplasm are higher than cell-specific ammonia oxidation rates. It has also been proposed that the charged S-layer proteins of AOA enhance the diffusion of charged solutes, such as NH$_4^+$, which concentrates NH$_4^+$ in the pseudo-periplasmic space near the active site of the AMO (Li et al., 2018), where then the equilibrium reaction between NH$_4^+$ and NH$_3$ is relatively fast and considered not to be rate-limiting.

Even if ammonia oxidation was not limited by periplasmic NH$_3$ availability, the apparent isotope effect of the AMO can
also be underestimated due to concurrent \(\text{NH}_4^+\) assimilation, which has a smaller isotope effect. This process would alter observed \(\varepsilon_{RS}\) estimates in proportion to the amount of \(\text{NH}_4^+\) assimilated and the isotope effect for \(\text{NH}_4^+\) assimilation (4–27\%; Hoch et al., 1992). Therefore, we also measured \(\delta^{15}\text{N}\) of the cell biomass at the end of incubation of \(N.\ viennensis\) grown on 2 mM \(\text{NH}_4^+\) (Figures 1F, 3). Although it is impossible to infer directly the contribution of \(N\) assimilation to \(\varepsilon_{RS}\) from just one end-point measurement, we propose that \(N\) assimilation substantially contributed to the decrease of \(\varepsilon_{RS}\) relative to \(\varepsilon_{CP}\) in our study, as biomass was \(^{15}\text{N}\)-enriched by \(\sim10\%_{\text{o}}\) compared to initial \(\text{NH}_4^+\). Biomass \(\text{N}\) represented 3.1\% (±0.3 SE) of ammonia oxidized by \(N.\ viennensis\) grown on 2 mM \(\text{NH}_4^+\). Although dissolved inorganic \(\text{N}\) (DIN) concentrations (sum of [\(\text{NH}_4^+\)] and [\(\text{NO}_2^-\)]) were relatively constant over the course of ammonia oxidation, we recovered only 81.9\% (±1.5 SE) of the initial DIN by the end of incubation of \(N.\ adriaticus\), and 94.7\% (±3.4 SE) and 90.7\% (±1.1 SE) of \(N.\ viennensis\) grown on 1 mM \(\text{NH}_4^+\) or 2 mM \(\text{NH}_4^+\), respectively. In \(N.\ adriaticus\) cultures, assimilation of \(N\) by contaminant bacteria likely did not contribute substantially to the lower \(\varepsilon_{RS}\) relative to \(\varepsilon_{CP}\), due to the high enrichment level of the culture (95%) at the time of the experiment, and the fact that \(\varepsilon_{RS}\) of \(N.\ adriaticus\) was similar to that of \(N.\ viennensis\) in pure culture. In addition, the \(^{15}\text{N}\)-enrichment of \(N.\ viennensis\)’ biomass shows that AMO preferentially, and primarily, reacts on pseudo-periplasmatic \(\text{NH}_3\), causing \(^{15}\text{N}\)-enrichment of the residual ammonia, which is subsequently assimilated into biomass. We thus propose that under substrate replete conditions, the observed isotope effects of \(\varepsilon_{RS}\) of 31.9–33.1\% primarily reflect the kinetic isotope effect of the AMO-catalyzed reaction, modified by the \(\text{NH}_4^+\)/\(\text{NH}_3\) equilibrium isotope effect (19.2\%; Hermes et al., 1985) and decreased by the contribution of the lower kinetic isotope effect of \(\text{NH}_4^+\) assimilation for anabolic purposes (4–27\%; Hoch et al., 1992). Moreover, it should be noted that some ammonia oxidizers use distinct pathways of \(\text{NH}_4^+\) assimilation, even among just AOA, which may contribute to different kinetic isotope effects. For instance, some members of the AOA genus \(\text{Candidatus}\) \(\text{Nitrosocosmicus}\) appear to assimilate \(\text{NH}_4^+\) via glutamate synthase (GOGAT), whereas all other known AOA use the glutamate dehydrogenase (GDH) pathway (Alves et al., 2019).

Despite these potential isotope fractionation effects on the RS level, a higher \(\varepsilon_{CP}\) relative to \(\varepsilon_{RS}\) may also result from accumulation of metabolic intermediates, allowing for at least
Mooshammer et al. Isotope Fractionation by Ammonia-Oxidizing Archaea

TABLE 1 | Compilation of published kinetic isotope effects of AOA and AOB.

Source	AOA/OB	Strain	Initial [NH$_4^+$] (mM)	Other conditions	ε_{RS}	ε_{CP}
	AOA	Nitrosopumilus Adriaticus NF5	1		32.1	40.1
	AOA	Nitrososphaera viennensis EN76	1		31.9	37.7
	AOA	Nitrososphaera viennensis EN76	2		33.1	39.0
Santoro and Casciotti (2011)	AOA	Marine AOA enrichment CN25†	0.01–0.075		22	5
	AOA	Marine AOA enrichment CN75			21	10
	AOA	Marine AOA enrichment CN150			22	5
Nishizawa et al. (2016)	AOA	Candidatus Nitrospacalidus sp.	0.2		22.0	5.0
	AOA	Candidatus Nitrospacalidus sp.	14		24.7	2.1
Mariotti et al. (1981)	AOB	Nitrosomonas europaea	4.7–25		34.7	31.9
Delwiche and Steyn (1970)	AOB	Nitrosomonas europaea			26.0	5.6
Yoshida (1988)	AOB	Nitrosomonas europaea	38	PO_2 low	24.6	
	AOB	Nitrosomonas europaea	38	PO_2 medium	29.0	
	AOB	Nitrosomonas europaea	38	PO_2 high	32.0	
Casciotti et al. (2003)	AOB	Nitrospacalidus marina	2		14.2	3.6
	AOB	Nitrospacalidus sp. C-113a	2		19.1	1.2
	AOB	Nitrospacalidus sp. C-113a	1		24.6	1.4
	AOB	Nitrospacalidus eutropha	1		32.8	1.7
	AOB	Nitrospacalidus europaea	1		38.2	1.6
Casciotti et al. (2010)	AOB	Nitrospacalidus sp. C-113a	0.005–0.05		30–46	
	AOB	Nitrospacalidus oceani	0.005–0.05		30–46	
	AOB	Nitrospacalidus briensis	0.005–0.05		30–46	

†Currently designated as Candidatus Nitrospacalidus brevis CN25 (Santoro et al., 2015).

FIGURE 3 | Schematic overview of processes and isotope fractionation effects involved in ammonia oxidation, growth and intermediate formation of the soil AOA N. viennensis. δ^{15}N values are given for endpoint measurements of N$_2$O and biomass, while average kinetic isotope effects of ammonia oxidation are presented for substrate (NH$_4^+$, ε_{RS}) and product (NO$_2^-$, ε_{CP}). Literature values for isotope fractionation of NH$_3$/NH$_4^+$ equilibration (ε_{eq}; causing δ^{15}N depletion of NH$_3$), for secondary active NH$_4^+$ uptake (ε_{upt}) and ammonia assimilation (ε_{aa}) are presented as well. The identity of the enzyme oxidizing NH$_2$OH to NO$_2^-$ and its inherent isotope fractionation are currently unknown for AOA.
Mooshammer et al. Isotope Fractionation by Ammonia-Oxidizing Archaea

The missing N pool is N that was not present at NH_4^+ and NO_2^- at the last sampling time point when biomass and N_2O was collected for isotope analysis. We used a mass balance approach to calculate $\delta^{15}N$ of the missing and unaccounted N pool. Standard errors are given in parentheses.

Table 2 | Nitrogen pools for *N. viennensis* culture grown on 2 mM NH_4^+.

N pool (µM)	$\delta^{15}N$ of N pool (%)	Percent of missing N pool	Percent of ammonia oxidized	
Missing	204.4 (±25.2)	−7.6 (±5.2)		
Biomass	38.8 (±3.4)	10.1 (±0.1)	22.8 (±4.1)	3.1 (±0.3)
N_2O-N	6.5 (±0.2)	−38.1 (±0.3)	3.5 (±0.4)	0.5 (±0.1)
Unaccounted	139.2 (±27.1)	−18.5 (±1.7)	73.7 (±4.5)	

In conclusion, our results show that, under non-limiting substrate conditions, the ε_{AMO} of two phylogenetically and ecologically distinct AOA strains was 31.9–33.1‰ based on $\delta^{15}NH_4^+$, whereas the more commonly estimated ε_{AMO} based on $\delta^{15}NO_2^-$ was higher (37.7–40.1‰). Thus, NH_4^+ assimilation, but not N_2O production, significantly affected the isotope fractionation factor of AMO estimated for *N. viennensis* (Figure 3). Although the potential role of NO in this context remains to be tested, isotopic analysis of this molecule is difficult and therefore future measurements of ε_{AMO} may rely on coupled estimates from $\delta^{15}NH_4^+$ and $\delta^{15}NO_2^-$.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article have been deposited at DRYAD (doi: 10.5061/dryad.0gb5mkkz1).

AUTHOR CONTRIBUTIONS

WW designed the study. MMO, RA, BB, MMe, MS, LJ, SR, and MW performed the experiments. MMO, RA, BB, MS, and LJ analyzed the data. GH and CS provided the resources and strains. MMO, RA, and WW wrote the manuscript with contributions from all co-authors.

FUNDING

This study was funded by the Austrian Science Fund (FWF; project P28037-B22). Open access funding was provided by University of Vienna.

ACKNOWLEDGMENTS

We thank the students of the course “Stable Isotopes in Ecology” of the years 2012–2014 at the University of Vienna, who contributed to the sample analyses and discussion of the data.
Mooshammer et al. Isotope Fractionation by Ammonia-Oxidizing Archaea

determination. Anal. Chim. Acta 252, 201–203. doi: 10.1016/0003-2670(91)87215-s
Stieglmeier, M., Klingl, A., Alves, R. J. E., Rittmann, S. K.-M. R., Melcher, M., Leisch, N., et al. (2014a). Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int. J. Syst. Evol. Microbiol. 64, 2738–2752. doi: 10.1099/ijs.0.063172-0
Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., et al. (2014b). Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J. 8, 1135–1146. doi: 10.1038/ismej.2013.220
Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., et al. (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. U.S.A. 108, 8420–8425. doi: 10.1073/pnas.1013488108
van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., den Camp, H. J. M. O., Kartal, B., et al. (2015). Complete nitrification by a single microorganism. Nature 528, 555–559. doi: 10.1038/nature16459
Vitousek, P. M., Menge, D. N. L., Reed, S. C., and Cleveland, C. C. (2013). Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 368:20130119. doi: 10.1098/rstb.2013.0119
Walker, C. B., De La Torre, J. R., Klotz, M. G., Urakawa, H., Pinel, N., Arp, D. I., et al. (2010). Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.

Proc. Natl. Acad. Sci. U.S.A. 107, 8818–8823. doi: 10.1073/pnas.0913533107
Yoshida, N. (1988). 15N-depleted N2O as a product of nitrification. Nature 335:528. doi: 10.1038/335528a0
Yoshida, N., and Toyoda, S. (2000). Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 405, 330–334. doi: 10.1038/35012558

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Citation: Mooshammer M, Alves RJE, Bayer B, Melcher M, Stieglmeier M, Jochum L, Rittmann SK-MR, Watzka M, Schleper GJ, and Wanek W (2020) Nitrogen Isotope Fractionation During Archaeal Ammonia Oxidation: Coupled Estimates From Measurements of Residual Ammonium and Accumulated Nitrite. Front. Microbiol. 11:1710. doi: 10.3389/fmicb.2020.01710

Copyright © 2020 Mooshammer, Alves, Bayer, Melcher, Stieglmeier, Jochum, Rittmann, Watzka, Schleper, Herndl and Wanek. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.