Magnetic and Transport Properties of Frustrated \(\gamma \)-MnPd alloys

T Higo\(^1\), N Kiyohara\(^1\), K Iritani\(^1\), A A Nugroho\(^2\), T Tomita\(^1\) and S Nakatsuji\(^1,3\)

\(^1\) Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
\(^2\) Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Jawa Barat 40132, Indonesia
\(^3\) PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

E-mail: tomoya@issp.u-tokyo.ac.jp

Abstract. We have synthesized \(\gamma \)-Mn\(_{1-x}\)Pd\(_x\) alloys with \(x = 0.22 \) and 0.24 and carried out the susceptibility and resistivity measurements. The \(\gamma \)-Mn\(_{1-x}\)Pd\(_x\) shows the Néel transition to the non-coplanar antiferromagnetic 3Q phase at \(\sim \) 290 K for \(x = 0.22 \) and at \(\sim \) 250 K for \(x = 0.24 \). Below the Néel temperature, two characteristic temperatures, which support the existence of the magnetic and structural phase transitions, were observed. These results were used to construct a phase diagram of the \(\gamma \)-Mn\(_{1-x}\)Pd\(_x\) alloys with high \(x \) concentrations where non-collinear and/or non-coplanar spin structures are expected.

1. Introduction

Geometrically frustrated magnets have attracted much interest because of the possible emergence of novel magnetic phases. Competing magnetic interactions imposed by the geometrical arrangement of magnetic moments suppress the formation of a conventional magnetic order [1–3]. The concept of geometrical frustration is often discussed by treating an antiferromagnet consisting of a two-dimensional triangular lattice of Ising spins. In this case, the disordered spin state is associated with a macroscopic degeneracy in the ground state of the spin arrangements. On the other hand, in the XY-type or Heisenberg-type spin systems, non-collinear or non-coplanar spin arrangements are expected in order to minimize the energy. Recently, an increasing interest has been devoted to studying the properties of non-collinear and non-coplanar spin configurations in geometrically frustrated magnets because the associated vector and/or scalar spin chirality may induce exotic phenomena such as multiferroicity [4], unconventional anomalous Hall transport [5–8] and chiral spin liquid states [5,9]. Especially, non-collinear and non-coplanar antiferromagnets have been intensively investigated because of zero or vanishingly small magnetization [8,10–13].

Mn-based alloys generally have antiferromagnetic interaction due to the occupation of 3d orbitals [14]. Mn-based alloys consisting of the face-centered-cubic (fcc) lattice, which is one of three dimensional geometrically frustrated lattices, are considered to have various spin structures depending on the synthesis condition [15]. Here, we focus on \(\gamma \)-Mn disordered alloys, which are known to have complex magnetic and crystal structures including non-collinear and non-coplanar antiferromagnetic spin arrangements. The magnetic and crystal structures of \(\gamma \)-Mn...
alloys have been investigated by neutron scattering, X-ray diffraction, Mössbauer, susceptibility, Young’s modulus measurements and theoretical calculations [14, 16–24]. These experimental and theoretical studies for γ-Mn alloys found that the 1Q (collinear), 2Q (non-collinear), 2Q’ (non-collinear) or 3Q (non-coplanar) spin structures basically become stable in the case of \(a = b > c \) (face-centered-tetragonal : fct), \(a = b < c \) (fct), \(a > b > c \) (face-centered-orthorhombic : fco) or \(a = b = c \) (fcc), respectively [16, 17, 19, 23, 25] (Fig. 1). As the results of the previous measurements, the lattice distortions seemed to be connected with the spin structures. However, recent detailed investigations of γ-Mn alloys revealed that the distortions are not always accompanied by the magnetic phase transition. For instance, γ-MnNi alloys show that the fct-fcc structural transition is not accompanied by the 2Q-3Q magnetic transition and exhibits another type of magnetic structure 3Q’ (54.7° < θ < 90°), which has spins tilted along the ab-plane from the 3Q (θ = 54.7°) spin structure, in the concentration range of \(a = b < c \) (fct) [25]. It is expected that a new kind of spin structures induced by geometrical frustration such as the 3Q’ spin structure appears in other γ-Mn alloys. To understand the essence of the physics of non-collinear and non-coplanar antiferromagnetic spin textures, it is significant to investigate the magnetic and crystal structures in γ-Mn disordered alloys.

Hori et al. have studied the magnetic and crystal structures of γ-Mn\(_{1-x}\)Pd\(_x\) alloys (0.08 ≤ \(x \) ≤ 0.17), which have a platinum group metal similarly to γ-MnNi alloys, by X-ray diffraction, neutron scattering and susceptibility measurements [22]. However, there are few results of the fcc phase with \(x > 0.15 \) where the non-collinear 2Q and/or non-coplanar 3Q spin structures may appear. In this paper, we have investigated the magnetic and transport properties for γ-Mn\(_{1-x}\)Pd\(_x\) disordered alloys with high \(x \) concentrations.

2. Experimental

Polycrystalline samples of γ-Mn\(_{1-x}\)Pd\(_x\) alloys were prepared by melting mixtures of Mn (4N) and Pd (4N) using a mono-arc furnace filled with Ar gas at 1 atm. Before the melting, the surface oxides on Mn flakes were removed by etching with 5% nitric acid solution. Single crystals of the γ-Mn\(_{1-x}\)Pd\(_x\) were grown by the Czochralski method using a tetra-arc furnace (TAC-5100, GES) filled with Ar gas at 1 atm. The polycrystalline samples were used as starting materials. From powder X-ray diffraction measurements using a X-ray diffractometer (RINT-2100, Rigaku), the polycrystals and single crystals were confirmed to be the single phase. A scanning electron microscopy with energy dispersive X-ray (SEM-EDX) analysis determined that the Pd concentrations of the samples are \(x = 0.22 \) and 0.24. The estimated error of our SEM-EDX analysis is within ±0.5 at.% Pd. The magnetic susceptibility was measured between 50 and 350 K under both zero-field-cooled (ZFC) and field-cooled (FC) conditions using a commercial SQUID magnetometer (MPMS, Quantum Design). The electrical resistivity was
3. Results and discussion

Results of magnetic and resistivity measurements for the γ-Mn$_{1-x}$Pd$_x$ alloys with x = 0.22 and 0.24 are shown in Fig. 2(a) and 2(b), respectively. The temperature dependence of the susceptibility exhibits a kink at \sim 290 K for x = 0.22 and at \sim 250 K for x = 0.24. Similar kink was observed in the previous study for γ-MnPd and other γ-Mn alloys [14,19,22,23,25]. Neutron scattering and Young’s modulus measurements confirmed that this kink is related to the Néel transition [14,19,22,24]. Therefore, the Néel temperature T_N of the γ-Mn$_{1-x}$Pd$_x$ alloys is determined by the kink in the susceptibility at \sim 290 K for x = 0.22 and at \sim 250 K for x = 0.24. Below T_N, the non-coplanar 3Q spin structure should be realized as observed in other γ-Mn alloys [14,16,17,23,25].

Furthermore, far below T_N, another kink in the susceptibility was observed at \sim 110 K for x = 0.22 and at \sim 130 K for x = 0.24, similarly observed in γ-MnNi and γ-MnIr alloys.
Fishman et al. pointed out that the magnetic phase transition from one Q-phase to another Q-phase can be marked by a small jump in the susceptibility of γ-Mn alloys [16]. Susceptibility, neutron scattering measurements and theoretical calculations for γ-MnNi alloys have revealed that the kink, which lies well below T_N, is ascribed to the 2Q-3Q(3Q') magnetic phase transition [25]. These results suggest that the magnetic phase transition between two different magnetic phases occurred at a characteristic temperature T_1, which is defined by the kink in the susceptibility observed at ~ 110 K for $x = 0.22$ and at ~ 130 K for $x = 0.24$ in the γ-Mn$_{1-x}$Pd$_x$ alloys. The hysteresis between the ZFC and FC susceptibility was also seen just below T_1. There are several possible origins for this hysteresis, which include spin glass freezing, spin canting or weak ferromagnetic moments arisen from the non-collinear or non-coplanar antiferromagnetic domain wall. To determine the origin of this hysteresis, more detailed measurements such as the AC and DC susceptibility measurements under various magnetic fields are needed.

The temperature dependence of the resistivity of the γ-Mn$_{1-x}$Pd$_x$ alloys shows metallic behavior, similarly observed in the previous study for γ-MnPd alloys [24]. The temperature derivative of the resistivity $d\rho/dT$ exhibits an obvious peak at ~ 250 K for $x = 0.22$ and at ~ 220 K for $x = 0.24$. According to the investigations for γ-MnNi and γ-MnPd alloys, two anomalies which have different origins can be observed in the resistivity measurements [24,25]. One is an anomaly derived from the Néel transition. The other is an anomaly originating from the fct-fcc structural phase transition well below T_N [25]. Since the peak temperature T_2 observed in $d\rho/dT$ is ~ 40 K ($x = 0.22$) or ~ 30 K ($x = 0.24$) lower than T_N, the peak would not be derived from the Néel transition. However, it is also difficult to conclude that the fct-fcc phase transition occurs at T_2 from our results and the previous study [22]. As another possibility, the other magnetic and/or structural phase transitions can be assumed. However, to confirm the detailed phase, further experiments with a microscopic probe are necessary, such as X-ray and neutron diffraction measurements.

As a result of the susceptibility and resistivity measurements in the γ-Mn$_{1-x}$Pd$_x$ disordered alloys with high x concentrations, three characteristic temperatures, T_1, T_2 and T_N were obtained. Here, we added these characteristic temperatures in the magnetic and structural phase diagram given by Hori et al. [22], which is presented in Fig. 3.

Figure 3. Magnetic and structural phase diagram of the γ-Mn$_{1-x}$Pd$_x$ disordered alloys, together with the previous study [22] (black circles). The purple diamonds represent the characteristic temperature T_1 determined by the low-temperature kink in the susceptibility. The light blue triangles represent the characteristic temperature T_2 determined by the anomaly in the resistivity. The red squares represent the Néel temperature T_N.

\[T_1 = \text{characteristic temperature} \]

\[T_2 = \text{characteristic temperature} \]

\[T_N = \text{Néel temperature} \]
4. Summary
We have synthesized γ-Mn$_{1-x}$Pd$_x$ alloys with $x = 0.22$ and 0.24, and carried out the susceptibility and resistivity measurements. The susceptibility shows the Néel transition to the 3Q phase at $T_N \sim 290$ K for $x = 0.22$ and at $T_N \sim 250$ K for $x = 0.24$. Below T_N, moreover, the temperature derivative of the resistivity exhibits a peak at ~ 250 K for $x = 0.22$ and at ~ 220 K for $x = 0.24$, which is presumably ascribed to the magnetic and/or structural phase transition. In addition, the low-temperature susceptibility suggests that the magnetic phase transition occurred at ~ 110 K for $x = 0.22$ and at ~ 130 K for $x = 0.24$. To investigate the detailed low-temperature magnetic and crystal structures of the γ-Mn$_{1-x}$Pd$_x$ alloys with high x concentrations, further experiments with a microscopic probe are needed.

Acknowledgements
We would like to thank M. Ikhlas for contributing the discussions. This work is partially supported by PRESTO, Japan Science and Technology Agency, Grants-in-Aid for Scientific Research (No. 25707030) and Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) from the Japanese Society for the Promotion of Science (JSPS), by Grants-in-Aids for Scientific Research on Innovative Areas (15H05882 and 15H05883) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and by the JSPS Research Fellowship for Young Scientists. The use of the facilities of the Materials Design and Characterization Laboratory at the Institute for Solid State Physics, the University of Tokyo, is gratefully acknowledged.

References
[1] Ramirez A P 1994 Annu. Rev. Mater. Sci. 24 453
[2] Moessner R and Ramirez A P 2006 Phys. Today 59 24
[3] Collins M F and Petrenko O A 1997 Can. J. Phys. 75 605
[4] Tokura Y, Seki S and Nagaosa N 2014 Rep. Prog. Phys. 77 076501
[5] Machida Y, Nakatsuji S, Onoda S, Tayama T and Sakakibara T 2010 Nature 463 210
[6] Neubauer A, Pfeiferer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602
[7] Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573
[8] Sürügers C, Fischer G, Winkel P and Löehneysen H V 2014 Nature Commun. 5 3400
[9] Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T, Dujin J V, Balicas L, Millican J N, Macaluso R T and Chan J Y 2006 Phys. Rev. Lett. 96 087204
[10] Ishikawa J J, O’Farrell E C T and Nakatsuji S 2012 Phys. Rev. B 85 245109
[11] Ueda K, Fujioka J, Takahashi Y, Suzuki T, Ishiwata S, Taguchi Y, Kawasaki M and Tokura Y 2014 Phys. Rev. B 89 075127
[12] Yamaura J, Ohgushi K, Ohsumi H, Hasegawa T, Yamauchi I, Sugimoto K, Takeshita S, Tokuda A, Takata M, Udagawa M, Takigawa M, Harima H, Arima T and Hiroi Z 2012 Phys. Rev. Lett. 108 247205
[13] Higo T and Nakatsuji S 2015 J. Phys. Soc. Jpn. 84 053702
[14] Fukamichi K, Umetu R Y, Sakuma A and Matussama C 2006 Handbook of Magnetic Materials vol 16 ed Buschow K H J (Amsterdam: North-Holland/Elsevier) p 209
[15] Krén E, Kádár G, Pál L, Solyom J, Szabó P and Tarnóczi T 1968 Phys. Rev. 171 574
[16] Fishman R and Liu S 1999 Phys. Rev. B 59 8672
[17] Fishman R and Liu S 1998 Phys. Rev. B 58 R5912
[18] Endoh Y and Ishikawa Y 1971 J. Phys. Soc. Jpn. 30 1614
[19] Yamauchi R, Morii Y, Funahashi S and Niida H 1995 Physica B 213 & 214 354
[20] Etheridge G, Cussen L and Kennedy S 1995 Physica B 213 & 214 351
[21] Hori T, Morii Y, Funahashi S and Niida H 1995 Physica B 213 & 214 351
[22] Hori T, Tsuchiya Y, Ishii Y and Hojou K 2002 Mater. Trans. 43 436
[23] Sasa K, Umetu R, Fukamichi K and Sakuma A 2003 J. Alloys Compd. 352 21
[24] Hicks T J, Pepp L R and Smith J H 1968 J. Phys. C: Solid State Phys. 1 1683
[25] Fishman R S and Lee W 2000 Phys. Rev. B 61 12159