Phylogeny of *Megasporoporia s.lat.* and related genera of Polyporaceae: New genera, new species and new combinations

Lira CRS¹, Alvarenga RLM¹*, Soares AMS², Ryvarden L³ and Gibertoni TB¹

¹Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Av. Avenida da Engenharia, s/n, CEP 50740-600, Recife, Pernambuco, Brazil
²Universidade Federal Rural da Amazônia, Centro de Ciências Biológicas, Campus Tomé-Açu, Rodovia PA-451, Km 03 CEP 68.680-000, Tomé-Açu, Pará, Brazil
³Department of Biosciences, University of Oslo, Blindern, N-0316, P. O. Box 1045, Oslo, Norway

Lira CRS, Alvarenga RLM, Soares AMS, Ryvarden L, Gibertoni TB – Phylogeny of *Megasporoporia s.lat.* and related genera of Polyporaceae: New genera, new species and new combinations. Mycosphere 12(1), 1158–1185, Doi 10.5943/mycosphere/12/1/16

Abstract

Several resupinate poroid Polyporaceae with dextrinoid skeletal hyphae and cylindrical, thin-walled basidiospores have been placed in *Dichomitus* and *Megasporoporia*. With the inclusion of DNA sequences, mostly from Chinese material, in the phylogeny of the genera, new genera were recognized, i.e., *Megasporoporiella* and *Megasporia*. In the current study, *Jorgewrightia* and *Mariorajchenbergia* are described as new genera in the Polyporaceae based on phylogenetic analyses of four gene regions: nuc rDNA ITS1-5.8S-ITS (ITS) and partial Large Subunit (28S), Translation Elongation Factor 1-alpha (TEF1), and RNA polymerase II second largest subunit (RPB2), mostly from Brazilian material. These new genera currently accommodate species formerly placed in *Cerioporus*, *Dichomitus*, *Megasporia*, *Megasporoporiella* and *Pachykytospora*. *Dichomitus*, *Jorgewrightia*, *Mariorajchenbergia*, *Megasporia* and *Megasporoporia* have mostly resupinate pale-colored basidiomata, poroid hymenophore, usually dextrinoid branched skeletal hyphae, and cylindrical basidiospores. These genera are difficult to differentiate on morphology alone and analyses based on sequences from at least two regions (ITS and 28S), as well as information about geographical distribution, are needed to separate them. *Megasporia variabilicolor* and *Megasporoporia neosetulosa* are described as new species, and one neotype and 20 new combinations are proposed. Synoptic tables including characteristics for 27 species from the five genera is presented.

Keywords – Agaricomycetes – diversity – neotropics – Polyporales

Introduction

In recent years, circumscription of genera in Polyporaceae has been much improved due to broader sampling, morphological reassessments and phylogenies based in DNA analyses (Binder et al. 2013, Justo et al. 2017, Cui et al. 2019). Multiloci phylogenetic treatments have been provided for large, widespread genera, such as *Dichomitus* D.A. Reid, typified by *Trametes squalens* P. Karst., and *Megasporoporia* Ryvarden & J.E. Wright, typified by *Poria setulosa* Henn., which include several species of resupinate, more rarely pileate, poroid fungi with dextrinoid skeletal hyphae and cylindrical, thin-walled basidiospores (Ryvarden et al. 1982, Masuka & Ryvarden 1999, Dai & Wu 2004, Zhou & Dai 2008, Du & Cui 2009, Gomes-Silva et al. 2012, Li & Cui
Initially, *Dichomitus* was considered to be allied to *Antrodia* P. Karst. based on similar morphological characteristics except for the presence of arboriform skeletal hyphae (Ryvarden & Johansen 1980) in the former. Later, *Dichomitus* was reevaluated as closer to *Polyporus* P. Micheli ex Adans. because of the arboriform skeletal hyphae and similar basidiospore morphology (Ryvarden 1991).

Megasporoporia was first assumed to be related to *Grammothele* Berk. & M.A. Curtis (Ryvarden et al. 1982) due to the presence of dextrinoid skeletal hyphae, similar basidiospore morphology and presence of dendrohyphidia. However, Ryvarden (1991) suggested a closer alliance to *Dichomitus* because of the similar basidiomata and basidiospore features. *Megasporoporia* was eventually reduced to a synonym of *Dichomitus*, after the dextrinoid reaction was considered a “chemical character of doubtful taxonomic importance at the generic level” (Masuka & Ryvarden 1999). This synonymization was either accepted (Gomes-Silva et al. 2012) or rejected by other authors (Dai & Wu 2004, Zhou & Dai 2008, Du & Cui 2009, Li & Cui 2013b, Yuan 2013, Wang et al. 2021).

With the use of analyses of DNA sequences, the separation of *Dichomitus* and *Megasporoporia* became evident (Ghobad-Nejhad & Dai 2010, Binder et al. 2013, Li & Cui 2013a). Moreover, new clades were delimited and included species with similar characteristics as existing genera, i.e., mostly resupinate, poroid Polyporaceae, with branched and variably dextrinoid skeletal hyphae, variable presence of dendrohyphidia, crystals and hyphal pegs, and cylindrical, thin-walled, non-dextrinoid, non-amyloid basidiospores (Ghobad-Nejhad & Dai 2010, Li & Cui 2013a). Thus, two new genera were described. *Megasporoporiella* B.K. Cui, Y.C. Dai & Hai J. Li, with *Polyporus cavernulosus* Berk. as type, included five species characterized by large pores, skeletal hyphae dominating the trama, and presence of crystals in the hymenium. *Megaspora* B.K. Cui, Y.C. Dai & Hai J. Li, was described with *Poria hexagonoides* Speg. as type and included seven species similar to those of *Megasporoporia*, but without hyphal pegs (Li & Cui 2013a). Recently, five new species were added to *Megaspora*, one to *Megasporoporia* and one to *Megasporoporiella*, mostly from China (Yuan et al. 2017, Wang et al. 2021), while Zmitrovich (2018) synonymized *Megasporoporiella*, among other genera, to *Cerioporus* Quél.

Li & Cui (2013a) admitted that the characteristics were insufficient to morphologically distinguish the new genera, i.e., *Megasporoporiella* and *Megaspora*, from each other, and from *Megasporoporia*. Li & Cui (2013a) concluded that variation in pore size, basidiospore morphology, hyphal system type, and skeletal hyphae reaction in Melzer’s reagent could be used to distinguish *Megaspora*, *Megasporoporia* and *Megasporoporiella* from other genera in what is recognized today as Polyporaceae. Species, however, could be distinguished by the presence of dendrohyphidia, hyphal pegs, cystidioles and crystals, even though Li & Cui (2013a) suggested these features are homoplastic. Later, Yuan et al. (2017) observed that *Megasporoporia* had dimitic hyphal structure and strongly dextrinoid skeletal hyphae, while *Megasporoporiella* and *Megaspora* had dimitic hyphal structure and weakly to moderately dextrinoid skeletal hyphae. In addition, *Megasporoporiella* was distributed in temperate areas, while *Megaspora* was present in the subtropics and tropics. Nevertheless, Cui et al. (2019) and Wang et al. (2021) could not separate these three genera in their keys.

Brazilian material with the characteristics of *Dichomitus s.lat.* and *Megasporoporia s.lat.* has been collected in several biomes in the past years. After morphological and DNA analyses, some of them could not be assigned to known taxa and description of new species and reclassification at the genus level became necessary. Here, we discuss the taxonomic and phylogenetic positions of several resupinate fungi previously placed in *Cerioporus*, *Dichomitus*, *Megaspora*, *Megasporoporia*, *Megasporoporiella*, *Pachykytospora* and in two new genera delimited after the inclusion of Brazilian collections, as well as one from Tanzania.
Materials & Methods

Area of study and morphological studies

The specimens were collected in Brazilian Amazonia, Caatinga and Atlantic Rain Forest. Other samples previously deposited in the Herbaria of the Departamento de Micologia of UFPE (URM), Departamento de Botânica of UFSC (FLOR), Instituto de Pesquisas Ambientais de São Paulo (SP) and University of Oslo (O) were revised and partly used in molecular analyses.

Specimens were identified or confirmed based on macro- (measures, shape and color of the basidiomata) and micro-morphology (slide preparations with 5% KOH, stained with 1% aqueous phloxine, Melzer’s reagent and Cotton Blue to analyze the hyphal system, dextrinoid or cyanophytic reaction, presence/absence and measurements of sterile structures and basidiospores) (Ryvarden 1991). The designation of color followed Watling (1969). The following abbreviations are used: IKI = Melzer’s reagent, IKI– = no reaction, IKI+ = dextrinoid, KOH = potassium hydroxide, CB = Cotton Blue, CB+ = cyanophilous, CB– = acyanophilous, L = mean spore length (arithmetic average of all measured spores), W = mean spore width (arithmetic average of all measured spores), Q = variation in the L/W ratios between the specimens studied, and n (a/b) = number of spores (a) measured from a given number (b) of specimens.

DNA extraction, PCR amplification and sequencing

Fragments (1–2 mg) from the basidiomata were removed and placed in tubes of 1.5 ml and stored at -20°C until extraction. The DNA was extracted according to the method described in Goés-Neto et al. (2005). The nuc rDNA Internal Transcribed Spacer (ITS) and partial Large Subunit (nLSU), the Translation Elongation Factor 1-alpha (TEF1) and the RNA Polymerase II Second Largest Subunit (RPB2) were amplified for the sequences generated here using the primer pairs ITS4-ITS5, LR0R-LR5, RPB2 5F-RPB2 7.1R and Ef DF-EF1 2218 R, respectively (White et al. 1990, Moncalvo et al. 2000, Rehner & Buckley 2005, Frøslev et al. 2005, Smith & Sivasithamparam 2000). Negative controls containing all components of the reaction mix, but exchanging DNA by water, were used in each procedure to detect possible contamination. The amplification products were purified with GenJET PCR Purification Kit (Thermo Scientific) and sequenced at the Plataforma Tecnológica de Genômica e Expressão Gênica do Centro de Biociências, UFPE, Brazil, and at the Stab Vida, Portugal, both using the Sanger method. Cycle sequencing was carried out with the same primers as the amplification reactions (Moncalvo et al. 2000). All obtained sequences were deposited in GenBank (National Center for Biotechnology Information, Maryland, USA) (Table 1).

Phylogenetic analyses

The chromatograms were analyzed to check their quality and edited using the STADEN Package 2.0 software (Bonfield et al. 1995). Then, the newly generated sequences were compared with sequences deposited in GenBank (https://www.ncbi.nlm.nih.gov/genbank/). For alignment, we followed the results of Li & Cui (2013a), Justo et al. (2017), Yuan et al. (2017), and Wang et al. (2021), as well as the most similar sequence from GenBank (Table 1). One data set was prepared with ITS4+28S+RPB2+TEF1. Sequence alignment was deposited at TreeBase (submission ID 29066, link to reviewers: http://purl.org/phylo/treebase/phylows/study/TB2:S29066?x-access-code=23438728876fa258df1c0a366f69c4b6&format=html). Each locus was aligned using the MAFFT v.7 online interface, under the auto mode strategy (http://mafft.cbrc.jp/alignment/server/, Katoh & Toh (2008)), then manually improved using MEGA7 (Kumar et al. 2016).

Phylogenetic reconstructions were performed using Maximum Likelihood (ML) and Bayesian Inference (BI) analyses. Nucleotide substitution models for each gene fragment were estimated based on Bayesian Information Criterion (BIC) on W-IQ-TREE (Kalyaanamoorthy et al. 2017) and used for ML and BI analyses.

ML analysis was run in W-IQ-TREE (Trifinopoulos et al. 2016), with 1000 bootstrap replicates (Nguyen et al. 2015) and Ultrafast bootstrap (UFBoot2, Hoang et al. 2017).
BI analysis was performed using MrBayes v.3.1.2 (Ronquist & Huelsenbeck 2003), for two independent runs, each with four Markov chains Monte Carlo (MCMC) independent runs for 5×10^6 generations (split frequencies = 0.011). Statistical support for branches was considered informative with Bayesian posterior probabilities (pp) ≥0.90 and bootstrap (bs) and UFBoot2 (ub) values ≥80%. The tree was visualized using FigTree (Rambaut 2014) and the final layout made in Inkscape 2020.

Table 1 Specimens used in this study with vouchers and GenBank accession numbers for the ITS, nLSU, RPB2 and TEF1 sequences. The sequences in bold were generated in this study.

Species	Sample no.	Geographic origin	GenBank	References			
Cerioporus squamosus	Cui 10394	China	KX851635 KX851688 KX851766 KX851789	Cui et al. (2019)			
Cerioporus squamosus	AFTOL-ID 704	USA	DQ267123 AY629320 DQ408120 DQ028601	Genbank			
Cerioporus squamosus	Cui 10595	China	KU189778 KU189809 KU189988 KU189925	Zhou et al. (2016)			
Crassispore imbricatus	Dai 10788	China	KC867350 KC867425 – –	Cui et al. (2019)			
Crassispore imbricatus	Cui 6556	China	KC867351 KC867426 – –	Cui et al. (2019)			
Crassispore macroporporus	Cui 14465	China	MK116485 MK116494 MK122990 MK122983	Cui et al. (2019)			
Crassispore macroporporus	Cui 14468	China	MK116486 MK116495 MK122991 MK122984	Cui et al. (2019)			
Daedaleopsis confragosa	Cui 6556	China	KU892428 KU892448 KU892507 KX838418	Cui et al. (2019)			
Daedaleopsis confragosa	Cui 9756	China	KU892438 KU892451 KU892508 –	Cui et al. (2019)			
Daedaleopsis hainanensis	Dai 9268	China	KU892434 KU892458 KU892496 –	Li et al. (2016)			
Daedaleopsis hainanensis	Cui 5178	China	KU892435 KU892462 KU892495 KX838441	Li et al. (2016)			
Daedaleopsis purpurea	Dai 13583a	China	KX832054 KX832063 KX838480 KX838440	Cui et al. (2019)			
Daedaleopsis purpurea	Dai 8060	Japan	KU892442 KU892475 KU892498 KX838438	Li et al. (2016)			
Dattronia mollis	Dai 11456	China	JX559253 JX559292 JX559307 KX838424	Li et al. (2014)			
Dattronia mollis	Dai 11253	China	JX559258 JX559289 JX559306 –	Li et al. (2014)			
Dattronia subtropica	Dai 12885	China	KC415185 KC415192 KC415199 KX838428	Li et al. (2014)			
Dattronia subtropica	Dai 12883	China	KC415184 KC415191 KC415198 KX838427	Li et al. (2014)			
Dichomitus ecuadoriensis	Ryvarden 44728 (Holotype)	Ecuador	–	–	Li & Cui (2013a)		
Dichomitus squalens	–	Sweden	JQ518275 – – –	Carlsson et al. (2012)			
Dichomitus squalens	LY-AD-421-SS1	France	KP135330 – – –	Floudas & Hibbett (2015)			
Dichomitus squalens	A-670	Finland	AM988624 – – –	Genbank			
Dichomitus squalens	Cui 9639	China	JQ780407 JQ780426 KX838478 KX838436	Li & Cui (2013a)			
Dichomitus squalens	Cui 9725	China	JQ780408 JQ780427 – KX838435	Li & Cui (2013a)			
Dichomitus squalens	LE 258894	Russia	KM411455 KM411471 – KM411486	Zmitrovich & Kovalenko (2016)			
Echinochaete russiceps	Dai 13868	China	KX832051 KX832060 KX838479 KX838437	Cui et al. (2019)			
Species	Sample no.	Geographic origin	GenBank ITS	GenBank nLSU	GenBank RPB2	GenBank TEF1	References
---------------------------------	------------	-------------------	--------------------------	--------------	--------------	--------------	-----------------------------
Echinochaete russiceps	Dai 13866	China	KX832050	KX832059	–	–	Cui et al. (2019)
Favolus acervatus	Cui 11053	China	KU189774	KU189805	KU189994	KU189920	Zhou & Cui 2017
Favolus acervatus	Dai 10749b	China	KX548953	KX548979	KX549073	KX549043	Zhou & Cui 2017
Favolus niveus	Cui 11129	China	KX548955	KX548981	KX549074	KX549045	Zhou & Cui 2017
Favolus niveus	Dai 13276	China	KX548956	KX548982	–	KX549046	Zhou & Cui 2017
Favolus pseudoemerici	Cui 11079	China	KX548958	KX548984	KX549075	KX549048	Zhou & Cui 2017
Favolus pseudoemerici	Cui 13757	China	KX548959	KX548985	–	KX549049	Zhou & Cui 2017
Hexagonia glabra	Dai 12993	China	KY948738	KY948842	–	–	Justo et al. (2017)
Hexagonia glabra	Cui 11367	China	KX900638	KX900684	KX900798	KX900824	Cui et al. (2019)
Hexagonia tenuis	Niemela-9032	Zambia	KY948738	KY948842	–	–	Cui et al. (2019)
Hornodermoporus latissimus	Dai 12054	China	KX900639	KX900686	–	KF286303	Cui et al. (2019)
Hornodermoporus latissimus	Cui 6625	China	HQ876604	JF706340	–	KF181134	Zhao & Cui (2012)
Hornodermoporus martius	Cui 4055	China	KX900641	KX900688	–	–	Cui et al. (2019)
Jorgewrightia bambusae	Dai 20064	China	MW694885	MW694928	–	–	Wang et al. (2021)
Jorgewrightia bambusae	Dai 22106 (Holotype)	China	MW694884	–	–	–	Wang et al. (2021)
Jorgewrightia cystidiolophora	Cui 2642	China	JQ780390	JQ780432	–	–	Li & Cui (2013a)
Jorgewrightia cystidiolophora	Cui 2688 (Paratype)	China	JQ780389	JQ780431	–	–	Li & Cui (2013a)
Jorgewrightia ellipsoidea	Cui 5222 (Holotype)	China	JQ314367	JQ314390	–	–	Li & Cui (2013a)
Jorgewrightia ellipsoidea	Dai 19743	China	MW694879	MW694923	–	–	Wang et al. (2021)
Jorgewrightia fusiformis	Dai 18596 (Holotype)	Malaysia	MW694892	MW694935	–	–	Wang et al. (2021)
Jorgewrightia fusiformis	Dai 18578	Malaysia	MW694892	MW694936	–	–	Wang et al. (2021)
Jorgewrightia guangdongensis	Cui 13986	China	MG847208	MG847217	MG867680	MG867699	Cui et al. (2019)
Jorgewrightia guangdongensis	Cui 9130 (Holotype)	China	JQ314373	JQ780428	–	–	Li & Cui (2013a)
Jorgewrightia hengduanensis	Cui 8076 (Holotype)	China	JQ780392	JQ780433	KX900805	KF286337	Li & Cui (2013a)
Jorgewrightia hengduanensis	Cui 8176	China	JQ314370	KX900697	KX900806	MG867700	Li & Cui (2013a)
Jorgewrightia major	Cui 10253	China	JQ314366	JQ780437	JX559314	–	Li & Cui (2013a)
Jorgewrightia major	Yuan 1183	China	JQ314365	–	–	–	Li & Cui (2013a)
Jorgewrightia rimosa	Dai 21997	China	MW422262	–	–	–	Wang et al. (2021)
Jorgewrightia rimosa	Dai 15357 (Holotype)	China	KY449436	KY449447	–	–	Yuan et al. (2017)
Jorgewrightia sp.	Cui 6592	China	JQ780402	JQ780438	–	–	Li & Cui (2013a)
Jorgewrightia sp.	Cui 13855	China	MG847209	MG847218	MG867681	MG867701	Li & Cui (2013a)
Jorgewrightia sp.	He 2608	China	JQ314368	JQ314388	–	–	Li & Cui (2013a)
Jorgewrightia sp.	Cui 13853	China	MW694880	MW694924	–	–	Wang et al. (2021)
Jorgewrightia tropica	Cui 13740	China	KY449438	KY449449	–	–	Yuan et al. (2017)
Species	Sample no.	Geographic origin	GenBank ITS	GenBank nLSU	GenBank RPB2	GenBank TEF1	References
-------------------------------	-----------------------	-------------------	-----------------	----------------	----------------	-----------------	---------------------
Jorgewrightia tropica	Cui 13660 (Holotype)	China	KY449437	KY449448	–	MZ618630	Yuan et al. (2017)
Jorgewrightia violacea	Cui 13845	China	MG847211	MG847220	MG867683	MG867703	Cui et al. (2019)
Jorgewrightia violacea	Cui 13838	China	MG847210	MG847219	MG867682	MG867702	Cui et al. (2019)
Jorgewrightia violacea	Cui 6570 (Holotype)	China	JQ780393	–	–	–	Li & Cui (2013a)
Jorgewrightia yunnanensis	Dai 13870 (Holotype)	China	KY449443	KY449454	–	–	Yuan et al. (2017)
Mariorajchenbergia australiae	Dai 18657 (Holotype)	Australia	MW694888	MW694931	MW694932	MZ618634	Wang et al. (2021)
Mariorajchenbergia hubeiensis	Wei 2045 (Holotype)	China	JQ780387	JQ780421	–	–	Cui et al. (2019)
Mariorajchenbergia hubeiensis	Dai 18102	China	MW694890	MW694933	–	MZ618636	Wang et al. (2021)
Mariorajchenbergia pseudocavernulosa	Yuan 1270 (Holotype)	China	JQ314360	JQ314394	–	–	Li & Cui (2013a)
Mariorajchenbergia rhododendri	Dai 4226 (Holotype)	China	JQ314356	JQ314392	–	–	Li & Cui (2013a)
Mariorajchenbergia rhododendri	Cui 12432	China	MW694883	MW694927	–	MZ618627	Wang et al. (2021)
Mariorajchenbergia subcavernulosa	Cui 14247	China	MG847213	MG847222	MG867685	MG867705	Cui et al. (2019)
Mariorajchenbergia subcavernulosa	Cui 9252	China	JQ780378	JQ780416	–	–	Li & Cui (2013a)
Megasporia amazonica	URM 85601	Brazil	KX584455	KX619579	MT984345	MW161494	Present study
Megasporia amazonica	URM 87859	Brazil	MW989394	MW965595	–	–	Wang et al. (2021)
Megasporia anecnotopora	URM 86947	Brazil	KX584456	KX619577	MT984346	MW045831	Present study
Megasporia anecnotopora	URM 83928	Brazil	KX584457	KX619580	MT984347	MW161495	Present study
Megasporia anecnotopora	URM 83838	Brazil	–	KX619572*	–	–	Present study
Megasporia anecnotopora	URM 83837	Brazil	–	KX619583*	–	–	Present study
Megasporia cavernulosa	JV 0904/52J	USA	JF894107	–	–	–	Genbank
Megasporia cavernulosa	JV 0904/50J	USA	JF894105	–	–	–	Genbank
Megasporia cavernulosa	JV 0904/81	USA	MW989395	–	–	–	Genbank
Megasporia cavernulosa	URM 83867	Brazil	KX584458	KX619582	MT984341	–	Present study
Megasporia cylindrospora	Ryvarden 45186	Belize	–	JQ780439	–	–	Li & Cui (2013a)
Megasporia hexagonoides	CBS 464.63	Argentina	–	AY333802	–	–	Genbank
Megasporia mexicana	JV 1806/4J	Honduras	MW989396	–	–	–	Wang et al. (2021)
Megasporia variabilicolor	URM 88369	Brazil	KX584449	KX619578	MT984342	MW045833	Present study
Megasporia variabilicolor	URM 84769	Brazil	KX584450	KX619570	MT984343	MW045834	Present study
Megasporia variabilicolor	URM 88368	Brazil	KX584448	KX619574	MT984344	MW161496	Present study

(Holotype)
Species	Sample no.	Geographic origin	GenBank	References
Megasporia variabilicolor	URM 86249	Brazil	ITS: KX584454	Present study
	URM 83930	Brazil	ITS: KX584453	Present study
	URM 83982	Brazil	ITS: KX584451	Present study
	URM 88366	Brazil	ITS: KX584452	Present study
	URM 83930	Brazil	nLSU: KX619581	Present study
	URM 83982	Brazil	nLSU: KX619569	Present study
	URM 88366	Brazil	RPB2: KX619574	Present study
Megasporoporia bannaensis	Dai 13596	China	ITS: KX900653	Cui et al. (2019)
	Dai 12306	China	ITS: JQ314362	Li & Cui (2013a)
	Dai 17882	Malaysia	ITS: MW694886	Wang et al. (2021)
	Dai 17478	Malaysia	ITS: MW694887	Wang et al. (2021)
Megasporoporia minor	Dai 12170	China	ITS: JQ314363	Li & Cui (2013a)
	Dai 18322	Vietnam	ITS: MW694881	Wang et al. (2021)
Megasporoporia minuta	Zhou 120	China	ITS: JX163055	Genbank
	Cui 13945	China	ITS: MW989397	Wang et al. (2021)
	JV1008/51J	USA	ITS: JF894109	Li & Cui (2013a)
	JV1008/102J	USA	ITS: JF894110	Li & Cui (2013a)
Megasporoporia neosetulosa	URM 85113	Brazil	ITS: KX584460	Present study
	URM 85679	Brazil	ITS: KX584459	Present study
	URM 85679	Brazil	ITS: OL684780	Present study
	(Holotype)		ITS: OL684780	Present study
	LR 9907	Tanzania	ITS: OL67808	Present study
Microporus affinis	Wu 9806-33	Taiwan	ITS: –	Genbank
Neodatronia gaoligongensis	Cui 8186	China	ITS: JX559268	Li et al. (2014)
	Cui 8055	China	ITS: JX559269	Li et al. (2014)
	Cui 10998	China	ITS: KX548973	Li et al. (2014)
Polyporus arcularius	Cui 11398	China	ITS: KU189766	Li et al. (2014)
	Yuan 3880	China	ITS: KU189797	Li et al. (2014)
	Yuan 3874	China	ITS: –	Li et al. (2014)
Polyporus megasporoporus	Dai 12462	China	ITS: KU507580	Wang et al. (2021)
	Dai 11271	China	ITS: KU189797	Wang et al. (2021)
	Dai 12249	China	ITS: KU507583	Wang et al. (2021)
Trametes hirsuta	Dai 13874	China	ITS: KU189777	Wang et al. (2021)
	RLG 5133T	USA	ITS: JN164941	Li & Cui (2013a)
Truncospora macrospora	Cui 8106	China	ITS: JX941573	Li & Cui (2013a)
Trametes ochracea	HHB 13445sp	USA	ITS: JN164954	Li & Cui (2013a)

*Sequences not used in phylogenetic analysis
Results

Phylogeny

Sixteen specimens were sequenced, generating 14 ITS, 14 nLSU, seven RPB2 and seven TEF1 sequences. The concatenated alignment resulted in 3012 positions including gaps, of which 1652 are constant sites and 1191 parsimony-informative. The best-fit models selected were TPM2u+F+I+G4 for ITS, SYM+I+G4 for nLSU, TN+F+I+G4 for RPB2, and TIMe+I+G4 for TEF1.

Five different datasets, one for each locus and the concatenated one, were analyzed using ML and BI analyses. No strong conflicts were detected among the datasets, consequently only the analyses from the concatenated data set are presented here. The results of the phylogenetic analyses generated from ML and BI showed similar tree topologies. Thus, the BI trees with bootstrap support values (BS), UFBBoot2 (UB) and posterior probabilities (PP) were used to show the results (Fig. 1).

The newly generated sequences are placed in two clades of Polyporaceae: three in Megasporoporia s.str. and nine in a redefined Megasporia, both with strong support (BS = 99.9%; UB = 83%; PP = -- and BS = 99.5%; UB = 100; PP = 0.91, respectively). The results also support the description of two new species (Fig. 1). In addition, several sequences of species previously placed in Cerioporus, Dichomitus, Megasporia, Megasporoporiella and Pachykytospora are recovered in two strongly supported clades that could not be assigned to known taxa of Polyporaceae (Fig. 1) and are described below as new genera.

Li & Cui (2013a) typified Megasporoporiella with M. cavernulosa based on the placement of a 28S sequence from Chinese material identified as M. cavernulosa (Wu 9508-328). However, the type of M. cavernulosa originated from Brazilian Amazonia. In our analyses, the ITS, 28S and TEF1 sequences of what we consider the true M. cavernulosa recently collected in Brazilian Amazonia were placed in the Megasporia clade (Fig. 1). This makes Megasporoporiella a synonym of Megasporia and renders nameless the clade that corresponds to Megasporoporiella sensu Li & Cui (2013a). Recently, Wang et al. (2021), without further notice, selected M. pseudocavernulosa with the type species of Megasporoporiella, because they had discovered that the type specimen (Wu 9508-328) selected by Li & Cui (2013a) actually represents M. subcavernulosa. This typification does not follow the procedures for changing a genus type outlined in the International Code of Nomenclature for algae, fungi, and plants (Turland 2018), neither has the typification been registered, as required by the same Code. Consequently, the solution suggested by Wang et al. (2021) for Megasporoporiella is not valid. Instead, the new genus Mariorajchenbergia is described below to include M. australiae, M. hubeiensis, M. pseudocavernulosa, M. rhododendri and M. subcavernulosa.

Megasporia was typified by M. hexagonoides Li & Cui (2013a), and the species was represented in the phylogeny by sequences from Chinese collections (He 2608 and Cui 6592). The type specimen of M. hexagonoides, however, is from Argentina and the inclusion of an Argentinean sequence of M. hexagonoides (CBS 464.63, deposited by J.E. Wright) revealed that the clade that corresponds to Megasporia is a different one (Fig. 1). The species placed in Megasporia sensu Li & Cui (2013a) are now referred to the new genus Jorgewrightia including J. bambusae, J. cystidiophora, J. ellipsoida, J. fusiformis, J. guangdongensis, J. major, J. rimosa, J. hengduanensis, J. tropica, J. violacea and J. yunnanensis as well the Chinese specimens misidentified as M. hexagonoides (He 2608, Cui 6592, Cui 13853 and Cui 13855), whose identity should be re-examined (Fig. 1).

The addition of the Argentinean sequence of M. hexagonoides also indicated that a revised Megasporia includes the neotropical M. amazonica, M. anoectopora, M. cavernulosa, M. cylindrospora, M. hexagonoides and the new species M. variabilicolor (described below) (Fig. 1).

At last, Megasporoporia sensu Li & Cui (2013a) included a specimen identified as M. setulosa (MG38, only nLSU), as well as M. bannaensis and M. minor, all from China. With the inclusion of the neotype of M. setulosa (designated below), collected in north Tanzania close to the
type locality, *Megasporoporia* currently includes, besides the neotype and the Chinese species, the neotropical, new species *M. neosetulosa* (described below) (Fig. 1). Also, the identity of *M. setulosa* (MG38) should be re-examined.

Figure 1 – Phylogenetic reconstruction of *Dichomitus*, *Jorgewrightia*, *Mariorajchenbergia*, *Megasporia* and *Megasporoporia* from a combined dataset (ITS + nLSU + RPB2 + tef1)
sequences. Branches are labeled with ML bootstrap and UFBoot2 (≥ 80%) and BA posterior probabilities (≥ 0.90) are shown along the branches, respectively. The sequences in bold were generated for this study.

Taxonomy

Jorgewrightia Gibertoni & C.R.S. Lira, gen. nov.

MycoBank number: MB832804

Etym. – *Jorgewrightia*, in honor of the late Jorge Eduardo Wright renowned Argentinean mycologist.

Basidiomata annual, resupinate. Pore surface white, cream, pale yellowish, honey yellow, salmon, pinkish, ash gray, greyish violet or violet or brown. Pores round to angular, 2–7 per mm. Hyphal system dimitic with clamped generative hyphae, skeletal hyphae non-dextrinoid to strongly dextrinoid, CB+, unbranched to frequently branched. Basidiospores cylindrical, ellipsoid in one species, hyaline, thin-walled, smooth, IKI-, CB-. Polyhedric crystals in the subhymenium and hymenium present in all species except for *J. yunnanensis*. Hyphal pegs present in two species. Dendrohyphidia present in all but four species. Causing white rot on angiosperms. So far, known only from tropical and subtropical China.

Type species – *Megasporia guangdongensis* B.K. Cui & Hai J. Li, Mycologia 105: 371. 2013.

Observations – The description above is updated from *Megasporia sensu* Li & Cui (2013a) and Yuan et al. (2017), which included *M. cystidiolophora*, *M. elipsoidea*, *M. guangdongensis*, *M. hengduanensis*, *M. hexagonoides*, *M. major*, *M. rimosa*, *M. tropica* and *M. violacea*.

Jorgewrightia bambusae (Y.C. Dai, Yuan Yuan & Ya.R. Wang) Gibertoni, comb. nov.

MycoBank number: MB842097

Basionym – *Megasporia bambusae* Y.C. Dai, Yuan Yuan & Ya.R. Wang, Mycosphere 12:1020, 2021.

Observations – According to Wang et al. (2021), *J. bambusae* is distinguished from other species in *Megasporoporia s.lat.* by its fairly thick-walled basidiospores and by growing on bamboo.

Jorgewrightia cystidiolophora (B. K. Cui & Y. C. Dai) Gibertoni & C.R.S. Lira, comb. nov.

MycoBank number: MB832806

Basionym – *Megasporoporia cystidiolophora* B.K. Cui & Y.C. Dai, Mikologiya i Fitopatologiya 41: 512, 2007.

Observations – According to Cui & Dai (2007), this species is distinct by its sterile margin, salmon coloured pore surface when dry, and microscopically by the subulate or ventricose cystidioles, and by lacking hyphal pegs and dendrohyphidia.

Jorgewrightia elipsoidea (B.K. Cui & P. Du) C.R.S. Lira & Gibertoni, comb. nov.

MycoBank number: MB832790

Basionym – *Megasporoporia elipsoidea* B.K. Cui & P. Du, Mycotaxon 110: 132. 2009.

Megasporia elipsoidea (B.K. Cui & P. Du) B.K. Cui & Hai J. Li, Mycologia 105: 375. 2013.

Observations – According to Du & Cui (2009), this species is characterized by its cream to orange yellow pore surface and large pores, calabash-shaped gloeocystidia and ellipsoid basidiospores.

Jorgewrightia fusiformis (Y.C. Dai, Yuan Yuan & Ya.R. Wang) Gibertoni, comb. nov.

MycoBank number: MB842098

Basionym – *Megasporia fusiformis* Y.C. Dai, Yuan Yuan & Ya.R. Wang, Mycosphere 12: 1022, 2021.
Observations – According to Wang et al. (2021), *J. fusiformis* is distinguished by the fusiform basidiospores. They report both IKI- and IKI+ for the skeletal hypha of this new species.

Jorgewrightia guangdongensis (B.K. Cui & Hai J. Li) Gibertoni & C.R.S. Lira, comb. nov.
MycoBank number: MB832807
Basionym – *Megasporia guangdongensis* B.K. Cui & Hai J. Li, Mycologia 105: 371, 2013.
Observations – According to Li & Cui (2013a), this species is characterized by the cream, ash gray, honey yellow or grayish violet pore surface and special cystidioles with collapsed tips and secondary septa.

Jorgewrightia hengduanensis (B.K. Cui & Hai J. Li) Gibertoni & C.R.S. Lira, comb. nov.
MycoBank number: MB832808
Basionym – *Megasporia hengduanensis* B.K. Cui & Hai J. Li, Mycologia 105: 374, 2013.
Observations – According to Li & Cui (2013a), this species is characterized by the cream to cream buff pore surface, large pores, almost unbranched skeletal hyphae, and presence of calabash-shaped basidia in the hymenium.

Jorgewrightia major (G.Y. Zheng & Z.S. Bi) C.R.S. Lira & Gibertoni, comb. nov.
MycoBank number: MB832792
Basionym – *Pachykytospora major* G.Y. Zheng & Z.S. Bi, Acta Mycologica Sinica 8:198, 1989.
Megasporia major (G.Y. Zheng & Z.S. Bi) B.K. Cui & Hai J. Li, Mycologia 105: 375, 2013.
Observations – According to Dai & Li (2002), this species is characterized by the cream pore surface, large pores, oblong ellipsoid to subcylindrical basidiospores and presence of hyphal pegs, dendrohyphidia and crystals.

Jorgewrightia rimosa (Y. Yuan, X.H. Ji & Y.C. Dai) C.R.S. Lira & Gibertoni, comb. nov.
MycoBank number: MB832793
Basionym: *Megasporia rimosa* Y. Yuan, X.H. Ji & Y.C. Dai, MycoKeys 20: 42, 2017.
Observations: According to Yuan et al. (2017), this species is characterized by the extremely thin and cracked basidioma (less than 0.5 mm thick) when dry.

Jorgewrightia tropica (Y. Yuan, X.H. Ji & Y.C. Dai) Gibertoni & C.R.S. Lira, comb. nov.
MycoBank number: MB832809
Basionym – *Megasporia tropica* Y. Yuan, X.H. Ji & Y.C. Dai, MycoKeys 20: 44, 2017.
Observations – According to Yuan et al. (2017), this species is characterized by the strongly dextrinoid skeletal hyphae, and by lacking dendrohyphidia, cystidioles and hyphal pegs.

Jorgewrightia violacea (B.K. Cui & P. Du) Gibertoni & C.R.S. Lira, comb. nov.
MycoBank number: MB832810
Basionym – *Megasporoporia violacea* B.K. Cui & P. Du, Mycotaxon 110: 134, 2009.
Megasporia violacea (B.K. Cui & P. Du) B.K. Cui, Y.C. Dai & Hai J. Li, Mycologia 105:374, 2013
Observations – According to Du & Cui (2009), this species is unique by its distinct sterile margin, violet to greyish violet pore surface, small pores, presence of both cystidioles and dendrohyphidia, but absence of hyphal pegs.

Jorgewrightia yunnanensis (Y. Yuan, X.H. Ji & Y.C. Dai) C.R.S. Lira & Gibertoni, comb. nov.
MycoBank number: MB832794
Basionym – *Megasporia yunnanensis* Y. Yuan, X.H. Ji & Y.C. Dai, MycoKeys 20: 44, 2017.
Observations – According to Yuan et al. (2017), this species is characterized by the brownish tints on the pore surface and by the absence of tetrahedric or polyhedric crystals.
Mariorajchenbergia Gibertoni & C.R.S. Lira, gen. nov.

MycoBank number: MB832795

Etym. – *Mariorajchenbergia* (Latin), in honor of Mario Rajchenberg, renowned Argentinean mycologist.

Basidiomata annual, resupinate. Pore surface cream, pale yellowish to honey yellow or gray. Pores angular, 1–5 per mm. Hyphal system dimitic with clamped generative hyphae, skeletal hyphae non-dextrinoid to strongly dextrinoid, CB+ (except in *M. hubeiensis*), moderately to frequently branched. *Basidiospores* cylindrical to oblong-ellipsoid, ellipsoid in one species, hyaline, thin-walled, smooth, IKI-, CB-. Polyhedric crystals in the subhymenium and hymenium of three species. Hyphal pegs present in three species. Dendrohyphidia present in two species. Causing white rot on angiosperms. So far, known from temperate and subtropical China.

Type species – *Megasporoporia subcavernulosa* Y.C. Dai & Sheng H. Wu, Mycotaxon 89: 384. 2004.

Observations – The description above is updated from *Megasporoporiella sensu* Li & Cui (2013a), which included *M. cavernulosa, M. hubeiensis, M. lacerata, M. pseudocavernulosa, M. rhododendri* and *M. subcavernulosa*.

The dextrinoid reaction may be present or absent in the species of *Mariorajchenbergia* and the reaction is observable right after the preparation of the slides, as usual for species of *Megasporoporia s.lat.* Cyanophily should be carefully analyzed, not only in *Mariorajchenbergia*, to certify that the blue coloration takes place in walls and ornamentations of the microstructures and not in the cytoplasm (Lira et al. 2016).

Mariorajchenbergia australiae (Y.C. Dai, Yuan Yuan & Ya.R. Wang) Gibertoni, comb. nov.

MycoBank number: MB 842172

Basionym – *Megasporoporiella australiae* Y.C. Dai, Yuan Yuan & Ya.R. Wang, Mycosphere 12: 1027, 2021.

Observations – According to Wang et al. (2021), this species and *M. hubeiensis* lack dextrinoid skeletal hyphae. From *M. hubeiensis, M. australiae* can be distinguished by smaller pores.

Mariorajchenbergia hubeiensis (Hai J. Li & B.K. Cui) Gibertoni & C.R.S. Lira, comb. nov.

MycoBank number: MB832796

Basionym – *Dichomitus hubeiensis* Hai J. Li & B.K. Cui, Nordic Journal of Botany 31: 118, 2013.

Megasporoporiella hubeiensis (Hai J. Li & B.K. Cui) Y.C. Dai, Yuan Yuan & Ya.R. Wang, Mycosphere 12: 1029, 2021.

Observations – According to Li & Cui (2013b), this species is distinct by its cream to straw-yellow pore surface and large pores, indextrinoid skeletal hyphae, presence of cystidioles and dendrohyphidia in the hymenium, and more or less ellipsoid basidiospores.

Mariorajchenbergia pseudocavernulosa (B.K. Cui & Hai J. Li) Gibertoni & C.R.S. Lira, comb. nov.

MycoBank number: MB832799

Basionym – *Megasporoporiella pseudocavernulosa* B.K. Cui & Hai J. Li, Mycologia 105: 378, 2013.

Cerioporus pseudocavernulosus (B.K. Cui & Hai J. Li) Zmitr., Folia Cryptogamica Petropolitana (Sankt-Peterburg) 6: 47, 2018.

Observations – According to Li & Cui (2013a), this species is easily recognized by its white to cream basidiomata and large and shallow pores.

Mariorajchenbergia rhododendri (Y.C. Dai & Y.L. Wei) Gibertoni & C.R.S. Lira, comb. nov.

MycoBank number: MB832801
Basionym – *Megasporoporia rhododendri* Y.C. Dai & Y.L. Wei, Annales Botanici Fennici 41: 323, 2004.
Megasporoporiella rhododendri (Y.C. Dai & Y.L. Wei) B.K. Cui & Hai J. Li, Mycologia 105:378, 2013.
Cerioporus rhododendri (Y.C. Dai & Y.L. Wei) Zmitr., Folia Cryptogamica Petropolitana (Sankt-Peterburg) 6:47, 2018.

Observations – According to Dai et al. (2004), this species is characterized by the lack of hyphal pegs, dendrohyphidia and polyhedric crystals. In addition, generative hyphae dominate the trama structure, the basidiospores are ellipsoid and it grows in boreal forests on fallen trunks and dead trees of *Rhododendron*.

Mairiorajchenbergia subcavernulosa (Y.C. Dai & Sheng H. Wu) Gibertoni & C.R.S. Lira, comb. nov.
MycoBank number: MB832803
Basionym – *Megasporoporia subcavernulosa* Y.C. Dai & Sheng H. Wu, Mycotaxon 89: 384, 2004.
Megasporoporiella subcavernulosa (Y.C. Dai & Sheng H. Wu) B.K. Cui & Hai J. Li, Mycologia 105: 379, 2013.
Cerioporus subcavernulosus (Y.C. Dai & Sheng H. Wu) Zmitr., Folia Cryptogamica Petropolitana (Sankt-Peterburg) 6: 47, 2018.

Observations – According to Dai & Wu (2004), this species has both hyphal pegs and dendrohyphidia, and basidiospores distinctly smaller than in *Megasporia cavernulosa*.

Megasporia B.K. Cui, Y.C. Dai & Hai J. Li
Basidiomata annual, resupinate. Pore surface white, cream, ochraceous, pale brown, pale purplish brown or with lavender tints; pores mostly angular, rarely round, 0.5–5 per mm. Hyphal system dimitic with clamped generative hyphae, skeletal hyphae non-dextrinoid to strongly dextrinoid and CB-, unbranched to sparingly branched. Basidiospores cylindrical to ellipsoid, hyaline, thin-walled, smooth, IKI-, CB-. Polyhedric crystals in subhymenium and hymenium in two species, observed in KOH, Melzer’s reagent and CB. Hyphal pegs absent, except for few observed in *M. mexicana*. Dendrohyphidia in *M. cavernulosa*, difficult to observe. Causing white rot on angiosperms. So far, known from the neotropics.

Type species – *Poria hexagonoideae* Speg., Anales del Museo Nacional de Historia Natural de Buenos Aires 6: 170, 1898 (1899).

Observations – The description above is updated from *Megasporia sensu* Li & Cui (2013a) and Yuan et al. (2017). *Megasporia* can be characterized by the acyanophilous, non-dextrinoid hyphae, which are also unbranched to sparingly branched, usually lack of hyphal pegs and of dendrohyphidia, and the neotropical distribution.

Megasporia variabilicolor C.R.S. Lira & Gibertoni, sp. nov.
MycoBank number: MB816410
Etym. – variabilis (Latin), color (Latin), referring to the variable color of basidiomata.
Basidiomata annual, resupinate, easily detachable from the substrate, 1.1–6.2 × 0.4–2.8 × 0.2–0.3 mm. Pore surface greyish brown, beige to cream (30 Clay Pink, 32 Clay Buff, 52 Buff), angular pores, (2)3–4(5) per mm, dissepiments thin and entire. Margin sterile, up to 3 mm width, lighter than the pore surface (5 E to 6 F). Context very thin, invisible to naked eye, 0.1 mm. Tubes concolorous to the pore surface, up to 3 mm deep.

Hyphal system dimitic, generative hyphae hyaline, clamped, thin, 2–3 μm diam., thin-walled; skeletal hyphae dominant, dichotomously and moderately branched, weakly to strongly dextrinoid, 2.5–3.5 μm diam., CB-. Large, pyramidal crystals present in the trama and hymenium, 3–5 μm. Dendrohyphidia, cystidia, cystidiols and hyphal pegs absent. Basidia clavate to cylindrical, four-sterigmate and clamped at the base, 22–30 × 5–8 μm.
Basidiospores cylindrical, hyaline, thin-walled, smooth, (11–)12–13 × (2–)3–4(–5) μm (L = 10.62, W = 3.42, Q = 3.10, n = 29), IKI-, CB-.

Figure 2 – *Megasporia variabilicolor*. A–E Basidiomata. A URM 88368 (holotype). B URM 83982. C URM 84769. D URM 88369. E URM 88366. F Pores (URM 88369). G Basidiospores
and crystals (URM 88369). H Crystals. I Basidiospores. Scale bars: A–E = 2 cm, F = 2 mm, G–I = 10 μm.

Type specimen – BRAZIL. Paraíba: Areia, Reserva Ecológica Estadual Mata do Pau-Ferro, in dead branch, 17 Jul. 2013, C. R. S. Lira 1095 (URM 88368! – holotype of Megasporia variabilicolor, isotype SP).

Specimens examined – BRAZIL. Ceará: Fortaleza, Parque Botânico do Ceará, 01 Nov. 2010, R.S. Chikowski 09 (URM 88164). Paraíba: Areia, Reserva Ecológica Estadual Mata do Pau-Ferro, 16 Apr. 2012, C. R. S. Lira 624, 630 (URM 83982, URM 83930); 21 Jul. 2012, CRS Lira 206 (URM 84769); 17 Jul. 2013, C. R. S. Lira 1073, 1078 (URM 88369, URM 88366). Pernambuco: Jaqueira, Reserva do Patrimônio Natural Frei Caneca, 08 Mar. 2013, GSN Melo 472 (URM 86249). Rio Grande do Norte, Nísia Floresta, Floresta Nacional de Nísia Floresta, Nov. 2002, T. B. Gibertoni s/n (URM 78071). Sergipe: Itabaiana, Serra de Itabaiana, Jan. 2002, T. B. Gibertoni s/n (URM 78048, 78049).

Additional specimens examined – BRAZIL. Alagoas: Barra de São Miguel, RPPN Rosa do Sol, Oct. 2000, T. B. Gibertoni s/n (URM 78059). Bahia: Abaíra, Parque Nacional Chapada da Diamantina, 10 Nov. 2015, C.R.S. Lira 03 (URM 87859). Ceará: Baía Formosa, RPPN Senador Antonio Farias – Mata Estrela, Jan. 2002, TB Gibertoni s/n (URM 78079), Mar. 2002, TB Gibertoni s/n (URM 78080), as Dichomitus cavernulosus.

Ecology and distribution – Found on fallen branches of angiosperms in Atlantic Rain Forest and “brejos nordestinos” in Northeast Brazil.

Observations – The phylogeny places this species as a member of the polyporoid clade (Justo et al. 2017) and close to M. hexagonoides, the type of the genus (Li & Cui 2013a) (Fig. 1). Morphologically, M. variabilicolor is very similar to M. cavernulosa, from which it differs by the slightly larger pores (2–4 per mm) and basidiospores [(10)12–16 × 5–7 μm], presence of dendrohyphidia and unbranched hyphae (Table 2, 3). Additionally, M. cavernulosa seems to have a Northern distribution (Brazilian Amazonia), while M. variabilicolor is so far distributed in the Atlantic Rain Forest and “Brejos Nordestinos” in Northeast Brazil. However, specimens with intermediate characters were found (URM 78059, URM 78079, URM 78080) and should be sequenced for an accurate identification.

Megasporia amazonica (Gomes-Silva, Ryvarden & Gibertoni) C.R.S. Lira & Gibertoni, comb. nov.

MycoBank number: MB832797

Basionym – Dichomitus amazonicus Gomes-Silva, Ryvarden & Gibertoni, Mycological Progress 11: 882, 2012.

Specimens examined – BRAZIL. Amazonas: Manaus, Reserva Ducke, 28 Oct. 2009, L. Ryvarden 48295 (URM 83054 – holotype of Megasporia amazonica). Bahia: Abaíra, Parque Nacional Chapada da Diamantina, 10 Nov. 2015, C.R.S. Lira 03 (URM 87859). Ceará: Tianguá, Serra de Ibiapaba, 18 Apr. 2012, C. R. S. Lira PPBio 704 (URM 83965). Paraíba: Areia, Reserva Ecológica Estadual Mata do Pau-Ferro, 09 Nov. 2010, CRS Lira 12 (URM 84733). Pernambuco: Buíque, Parque Nacional do Catimbau, 31 Jul. 2013, CRS Lira 677 (URM 85601).

Observations – This species is characterized by cream to light brown basidiomata, large pores, and large, ellipsoid to subcylindrical basidiospores (Table 2, 3). It is macroscopically similar to M. cavernulosa, which has larger, cylindrical basidiospores. Megasporia amazonica was also collected in Costa Rica (http://mykoweb.prf.jcu.cz/polypores/list_dtof.html). The sequenced collections do not group together (Fig. 1) and, despite being compared and shown to be similar to the type, the Brazilian material should be reevaluated, as well as JV1407/47 from Costa Rica, when sequences from the type or material from the type locality are obtained.

Megasporia anoectopora (Berk. & M.A. Curtis) C.R.S. Lira & Gibertoni, comb. nov.

MycoBank number: MB832800
Basionym – *Polyporus anoectoporus* Berk. & M.A. Curtis, Botanical Journal of the Linnean Society 10: 318, 1869.

Poria anoectopora (Berk. & M.A. Curtis) Sacc., Syllogose Fungorum 6: 326, 1888.

Dichomitus anoectoporus (Berk. & M.A. Curtis) Ryvarden, Mycotaxon 20: 331, 1984.

Specimens examined – BRAZIL. Pará: Portel, Floresta Nacional de Caxiuanã, 15 Apr. 2014, A. M. Soares-Brandão 562 (URM 86947).

Paraíba: Areia, Reserva Ecológica Estadual Mata do Pau-Ferro, 24 Apr. 2013, CRS Lira 570 (URM 85602).

Piauí: Caracol, Parque Nacional Serra das Confusões, 15 Mar. 2012, CRS Lira 592, 600 (URM 83838, URM 83928).

Observations – *Megasporia anoectopora* is characterized by beige to purplish brown basidiomata, large pores and ellipsoid, oblong-ellipsoid basidiospores (Table 2, 3). It is reported from the Caribbean area (Ryvarden 2015) and Brazil (Gomes-Silva et al. 2012).

Megasporia cavernulosa (Berk.) C.R.S. Lira & Gibertoni, comb. nov.

MycoBank number: MB832802

Basionym – *Polyporus cavernulosus* Berk., Hooker’s Journal of Botany and Kew Garden miscellany 8: 235, 1856.

Poria cavernulosa (Berk.) Sacc., Syllogose Fungorum 6: 324, 1888.

Coriolus cavernulosus (Berk.) Pat., Essai taxonomique sur les familles et les genres des Hyménomyctèes (Lons-le-Saunier): 94, 1900.

Megasporoporia cavernulosa (Berk.) Ryvarden, Mycotaxon 16: 174, 1982.

Dichomitus cavernulosus (Berk.) Masuka & Ryvarden, Mycological Research 103: 1127, 1999.

Megasporoporiella cavernulosa (Berk.) B.K. Cui, Y.C. Dai & Hai J. Li, Mycologia 105: 378, 2013.

Specimens examined – BRAZIL. Rondônia: Porto Velho, Estação Ecológica de Cuniã, 12 Mar. 2012, A. C. Gomes-Silva and T. B. Gibertoni 17 (URM 83867).

Observations – *Megasporia cavernulosa* is characterized by pale cream basidiomata, strongly dextrinoid hyphae, and presence of dendrohyphidia (Tables 2, 3). The type specimen of this species is from the Brazilian Amazonia, thus reports elsewhere should be revaluated (Ryvarden et al. 1982, Li & Cui 2013a, Yuan et al. 2017, Cui et al. 2019, Wang et al. 2021). In the phylogeny (Fig. 1), this species clusters with *M. cylindrospora* and *M. hexagonoides*. For the latter, two only LSU sequences are available, which possibly makes the genetic delimitation less reliable. *Megasporia cavernulosa*, *M. cylindrospora* and *M. hexagonoides* are all morphologically distinct (Tables 2, 3) and were originally collected in different ecosystems. In addition, specimens identified as *M. cavernulosa* and collected in Florida (USA) (JV 0904/52J, JV 0904/50J, JV 0904/81, ITS only) do not cluster with the Brazilian *M. cavernulosa* and may represent another species.

Megasporia cylindrospora (Ryvarden) C.R.S. de Lira & Gibertoni, comb. nov.

MycoBank number: MB832805

Basionym – *Dichomitus cylindrosporus* Ryvarden, Synopsis Fungorum 23: 40, 2007.

Specimens examined – BRAZIL. Santa Catarina: Blumenau, Parque Nacional da Serra do Itaiá, 06 Nov. 2011, M. A. B. Silva, E. R. Drechsler-Santos, F. M. Freire and V. F. Lopes 191 (FLOR 49196); ibid, 13 Sep. 2012, M. A. B. Silva, D. H. Costa-Rezende, C. Salvador-Montoya, V.F. Lopes, F.M. Freire, and Demetrio 291 (FLOR 49277), São Paulo: Cananéia, Ilha do Cardoso, 05 Feb. 1987, L. Ryvarden, K. Hjortstam and D. Pegler 24802 (SP-Fungi 466096), São Luiz do Piraitinga, Parque Estadual da Serra do Mar, 29 Jul. 2013, R. M. Pires RP31, RP93 (SP446261, SP213600).

Observations – According to Ryvarden (2007), this species is characterized by narrow, cylindrical basidiospores (8–10 × 2.5–3 μm). Of the examined specimens, only FLOR 49277 had basidiospores, which were slightly longer than originally described (10–12 × 2.5–3.5 μm). Except for SP-Fungi 466096, mostly conical (25–35 × 25–35 μm), occasionally cylindrical (37 × 12 μm) or globose (35 × 35 μm) hyphal pegs were observed, which were not reported in the original
description. So far, it is known from the type locality in Belize and possibly South and Southeast Brazil.

Megasporia hexagonoides (Speg.) B.K. Cui, Y.C. Dai & Hai J. Li.

MycoBank number: MB801185

Basionym – *Poria hexagonoides* Speg., Anales del Museo Nacional de Historia Natural de Buenos Aires 6: 170, 1898, 1899.

Megasporoporia hexagonoides (Speg.) J.E. Wright & Rajchenb., Mycotaxon 16: 176, 1982.

Dichomitus hexagonoides (Speg.) Robledo & Rajchenb., Mycotaxon 100: 7, 2007.

Specimens examined – ARGENTINA.

- Salta: La Viña, 1897, Carlo Spegazzini (O-F-450306, SP);
- camiño de Rosario de la Frontera a Gobernador Garmendia, Aug. 1963, A. Okada (O-F-910699, BAFC 27919).

Observations – This species is characterized by ash grey basidiomata with lavender tints, large and hexagonal pores, and cylindrical to slightly allantoid basidiospores (Ryvarden et al. 1982).

Megasporia mexicana (Ryvarden) Gibertoni, comb. nov.

MycoBank number: MB842099

Basionym – *Megasporoporia mexicana* Ryvarden, Mycotaxon 16: 178, 1982.

Dichomitus mexicanus (Ryvarden) Ryvarden, Synopsis Fungorum 23: 42, 2007.

Observations – This species has the largest basidiospores in the genus and basidiomata with hyphal pegs, although usually few (Ryvarden et al. 1982).

Megasporoporia Ryvarden & J.E. Wright

MycoBank number: MB18028

Basidiomata annual, resupinate. Pore surface white, cream, ochraceous or pale brown, pores angular, 0.5–7 per mm. Hyphal system dimitic with clamped generative hyphae, skeletal hyphae strongly dextrinoid, CB+, unbranched to sparingly branched. Basidiospores cylindrical to ellipsoid, hyaline, thin-walled, smooth, IKI-, CB-. Polyhedric crystals in subhymenium and hymenium absent in one species, observed in KOH, Melzer’s reagent and CB. Hyphal pegs absent in one species. Dendrohyphidia absent. Causing white rot on angiosperms. So far, known from tropical and subtropical areas.

Type species – *Poria setulosa* Henn., Botanische Jahrbücher fur Systematik, Pflanzeneschichte und Pflanzengeographie 28:321. 1900.

Neotype – TANZANIA. Arusha province: Arusha National Park, Lake Kusare, Ngorudoto Crater, alt. 1500–1700 m, 3°13’S and 36°53’E, L. Ryvarden 9907, 7–9 Feb. 1973 (neotypus hic designatus: O-F-503664!, designated here, MBT391367).

Observations – The description above is updated from *Megasporoporia sensu* Ryvarden et al. (1982), typified by *Poria setulosa* Henn., collected in Usambara, Tanga Region in Tanzania, and deposited at herbarium B. Ryvarden et al. (1982) stated that the type is lost, probably during World War II. Upon our request, R. Lücking [current curator for cryptogams (lichens, fungi, bryophytes) in herbarium B, pers. comm.] confirmed that the material or similar is absent from herbarium B. Material identified as *Megasporoporia setulosa* (Henn.) Rajchenb. and also collected in north Tanzania had its DNA sequenced and selected here to be the neotype of *P. setulosa*.

Megasporoporia is characterized by strongly dextrinoid, cyanophilous hyphae, which are also unbranched to sparingly branched, lack of dendrohyphidia, presence of hyphal pegs in most of species, and tropical and subtropical distribution.

Megasporoporia neosetulosa C.R.S. de Lira & Gibertoni sp. nov.

MycoBank number: MB835041

Etym. – *neosetulosa* (Latin), referring to a new species being similar to *M. setulosa*.
Basidiomata annual, resupinate, easily detachable from the substrate, 1.8–5.1 × 0.4–1.6 × 0.1–0.2 mm. Pore surface beige to cream (52 Buff), angular pores, 1.5–2 per mm, dissepiments thin and entire. Margin sterile, up to 1 mm width, lighter than the pore surface (6 F). Context very thin, invisible to naked eye, 0.1–0.2 mm. Tubes concolorous to the pore surface, up to 2 mm deep.

Hyphal system dimitic, generative hyphae hyaline, clamped, thin, 2–3 µm diam., thin-walled; skeletal hyphae dominant, rarely branched, strongly dextrinoid, 2.5–3.5 µm diam., CB+. Pyramidal crystals present in the trama and hymenium, 3–5 µm. Dendrohyphidia, cystidia and cystidiols absent. Hyphal pegs present in the hymenium, conical, 62.5–87.5 × 20–30 µm. Basidia not seen. Basidiospores rare, cylindrical, hyaline, thin-walled, smooth, 10–12 × 3–4 µm, IKI-, CB-.

Figure 3 – Megasporoporia neosetulosa (URM 85679, holotype). A Basidiomata. B Hyphal pegs. C Crystals. D, E Crystals. F Basidiospores. Scales bars: A = 1 cm, B = 100 µm, C–F = 10 µm.
Type specimen – BRAZIL. Ceará: Crato, Floresta Nacional do Araripe, 17 May 2012, C. R. S. Lira 934 (URM 85679! – holotype of Megasporoporia neosetulosa, isotype SP).

Specimens examined – [most identified as M. setulosa or Dichomitus setulosus (Henn.) Masuka & Ryvarden]: BRAZIL. Amazonas: Humaitá, 23 Apr. 2013, A. C. Gomes-Silva et al. 109 (URM 87778). Ceará: Crato, Floresta Nacional do Araripe, 25 Jan. 2011, C. R. S. Lira 63 (URM 85111, 85678); ibid, 17 May 2012, C. R. S. Lira PPBio 929 (URM 87861); ibid, 17 May 2012, C. R. S. Lira PPBio 939 (URM 87862), Quixadá, RPPN Não Me Deixes, 01 Apr. 2014, CRS Lira 1170 (URM 85680). Amazonas: Humaitá, 23 Apr. 2013, A. C. Gomes-Silva et al. 109 (URM 87778). Pará: Melgaço, Estação Científica Ferreira Penna, Aug. 2007, T. B. Gibertoni w/n (URM 79700), Portel, Floresta Nacional de Caxiuanã, Jan. 2014, AM Soares 1242 (URM 89574); ibid, Sep. 2014, AM Soares 1731 (URM 89575). Pará: Melgaço, Estação Experimental do IPA, 10 Mar. 2008, ER Drechsler-Santos 52PE (URM 80530); Igarassu, 26 Mar. 2015, R. C. Chikowski 13 (URM 90141); ibid, date unknown, R. C. Chikowski 2 (URM 90142); Tamandaré, Reserva Biológica Saltinho, Feb. 2012, L. S. Araujo-Neta and G. S. Nogueira-Melo D18 (URM 87597); ibid, 30 Apr. 2014, R. J. Rento-Freitas et al. RF22 (URM 87598); Triunfo, Sítio Carro Quebrado, 20 May 2014, C. R. S. Lira 930 (URM 87904). Piauí: Caracol, Parque Nacional Serra das Confusões, 13 Mar. 2012, CRS Lira 512 (URM 85112). Rondônia: Porto Velho, Parque Circuito, 11 Mar. 2012, A. C. Gomes-Silva and T. B. Gibertoni TB03 (URM 83906, as Grammothele setulosa (Henn.) Ryvarden); ibid, Fazenda Macauã, 27 Jan. 2015, A. M. Soares and S. G. Soares ASR16 (URM 89573); ibid, Sítio Primavera, 10 Nov. 2014, R. C. Chikowski 805 (URM 90174); ibid, Base de Selva Guararapes, 05 Nov. 2015, R. C. Chikowski 1013 (URM 90175).

Ecology and distribution – Found on fallen branches of angiosperms in Amazonia, Atlantic Rain Forest, “Brejos nordestinos” and “Caatinga” in northeast Brazil, but it may be present in other regions of the neotropics as well.

Observations – The phylogeny places this species as a member of Megasporoporia (Fig. 1). Morphologically, M. neosetulosa is very similar to M. setulosa due to the presence of hyphal pegs; however, they differ in the size of basidiospores, slightly larger in the latter (11–17 × 4–6 µm). In addition, M. neosetulosa seems to have a neotropical distribution, while M. setulosa seems to be restricted to Africa so far.

Table 2 Main morphological characteristics of the sequenced species of Dichomitus, Jorgewrightia, Mariorajchenbergia, Megasporia and Megasporoporia. The species in bold represent the type of each genera.

Genus	Species	Color	Pores (mm)/shape	Skeletal hyphae reactions
Dichomitus	squalens	surface white to cream, bay to almost blackish from the base; pore surface cream to greyish	4–5/round to angular	arboriform and usually dichotomously branched IKI-/CB-
	bambusae	white to cream when fresh, cream to buff when dry	4–5/angular	frequently branched weakly IKI+/CB+
	cystidiolophora	cream to pale pinkish brown to salmon coloured	3–5/round to angular	occasionally branched IKI+/CB+
	ellipsoidea	cream buff when fresh, becoming buff to orange yellow when dry	1–1.5/round to angular	rare- to frequently branched IKI- to weakly +/CB+
Table 2 Continued.

Genus	Species	Color	Pores (mm)/shape	Skeletal hyphae reactions
	Fusiformis	cream when fresh, cream to buff-yellow when dry	3.5–4/angular	frequently branched
				IKI- or +/-CB+
	guangdongensis	cream, ash gray, honey yellow or grayish violet when dry	4–5/angular	occasionally branched
				IKI+/CB+
	hengduanensis	cream to cream buff when dry	2–3/round to angular	rarely branched
				IKI+/CB+
	major	cream to wood-colored	1–1.5/angular	occasionally branched
				IKI+/CB+
	rimosa	white to cream when fresh, cream when dry	3–4/angular	moderately branched in subiculum, unbranched in tubes
				IKI weakly +/-CB+
	tropica	clay-pink to fawn when dry	2–3/round	Unbranched
				IKI+/CB+
	violacea	violet	5–7/round to angular	frequently branched
				IKI+/CB+
	yunnanensis	white to cream but with brownish tints when dry	2–3/round	occasionally branched
				IKI weakly +/-CB+
	Mariorajchenbergia			
	australiae	white to cream	3–4/round to angular	frequently branched
				IKI+/CB+
	hubeiensis	cream to straw-yellow	1–2/angular	frequently branched
				IKI-/CB-
	pseudocavernulosa	white to cream	1.5–2.5/angular	moderately branched
				IKI+/CB+
	rhododendri	greyish	4–5/angular	moderately branched
				IKI+/CB+
	subcavernulosa	cream to pale grayish pore surface	2–4/angular	frequently branched
				IKI+/CB+
	Megaspuria			
	amazonica	pale cream	2/angular to hexagonal	sparingly branched
				IKI-/CB-
	anoectopora	white, tan to pale purplish brown	1–2/round to angular	rarely branched
				IKI-/CB-
	cavernulosa	white to cream	2–4/angular and shallow	unbranched and flexuous
				IKI+/CB-
Table 2 Continued.

Genus	Species	Color	Pores (mm)/shape	Skeletal hyphae reactions
	cylindrospora	pale brown to ochraceous	3–4/angular	arboriform, sparingly branched
	hexagonoides	ash grey with lavender tints	0.5–1/hexagonal	branched or not
	mexicana	white to pale cream	2–3/angular to round	unbranched, sinuous to
	variabilicolor	beige to cream	3–4(5)/angular	dichotomously branched
Megasporoporia	bannaensis	cream to buff when dry	1–2/angular	almost unbranched skeletal hyphae
	inflata	cream to clay buff	2.5–3/round to angular	moderately branched
	minor	cream to buff when fresh, turn to pale brown when bruised	6–7/angular	rarely branched
	neosetulosa	beige to cream	1.5–2/angular	rarely branched
	setulosa	cream to ochraceous	0.5–2/angular	Unbranched

Table 3 Main morphological characteristics and distribution of the sequenced species of *Dichomitus*, *Jorgewrightia*, *Mariorajchenbergia*, *Megasporia* and *Megasporoporia*. The species in bold represent the type of each genera.

Genus	Species	Spore size (µm)/shape	Crystals, hyphal pegs and dendrohyphidia	Distribution	Selected references
	squalens	7–10 × 2.5–3.5/cylindrical to oblong–ellipsoid	None	Europe, possibly North America	Ryvarden & Gilbertson (1993)
Jorgewrightia	bambusae	(10.5–)11.8–14(–14.8) × (5.5–)5.8–6.8(– 7.5)/ellipsoid	Crystals, dendrohyphidia	China	Wang t al. (2021)
	cystidiolophora	(10–)11.7–14.9(–15.5) × (4–)4.1–5.6(– 6)/cylindrical	Crystals	China	Cui & Dai (2007)
Genus	Species	Spore size (µm)/shape	Crystals, hyphal pegs and dendrohyphidia	Distribution	Selected references
-------------------	--------------------------	---------------------------------------	--	--------------	-----------------------------------
ellipsoidea	*fusiformis*	(14.1–15–19.8(–20.2) × (4–4.2–6.8(–7)/fusiform	Crystals, dendrohyphidia	Malaysia	Wang et al. (2021)
	guangdongensis	(10–11–14.9(–15) × (3–)3.4–4.5(–4.9)/cylindrical	Crystals	China	Li et al. (2014)
	hengduanensis	(10.8–11–15(–16.5) × (4–4.2–5.2(–6.2)/cylindrical	Crystals	China	Li et al. (2014)
	major	15.2–20 × 5.5–7.1/cylindrical	All	China	Dai & Li (2002)
	rimosa	(16.5–16.8–20.2(–21) × (4.1–4.3–5.5(–5.9)/cylindrical	Crystals, dendrohyphidia	China	Yuan et al. (2017)
	troica	(14.2–14.7–18.8–19.7(–4.9–)5–6.5(–7.1)/cylindrical	Crystals	China	Yuan et al. (2017)
	violacea	(10–11–14.9–15.2(–3–)3.2–5(–5.2)/cylindrical	Crystals, dendrohyphidia	China	Li et al. (2014)
	yunnanensis	(15.1–16.5–20.8(–21.5) × (5.1–5.5–7.1(–7.5)/cylindrical	Dendrohyphidia	China	Yuan et al. (2017)
Mariorajchenbergia	*australiae*	(11.5–11.8–15(–16.5) × (3.5–)3.6–6(–6.5)/cylindrical	Crystals	Australia	Wang et al (2021)
	hubeiensis	(9–10–14(–15) × (5–)5.6–7(–7.2)/cylindrical to oblong-ellipsoid	Hyphal pegs, dendrohyphidia	China	Li & Cui (2013b)
	pseudocavernulosa	(9.4–10.8–14(–14.8) × (5–)5.3–6.5(–7)/cylindrical to ellipsoid	Crystals, hyphal pegs	China	Li & Cui (2013a)
	rhododendri	11–14 × 6–8/ellipsoid	None	China	Dai et al. (2004)
	subcavernulosa	9–12.1 × 4.2–5.2/cylindrical	All	China	Dai et al. (2004)
Megasporia	*amazonica*	(9–10–12 × 3.5–4/ellipsoid to subcylindrical	None	Brazil, Costa Rica	Gomes-Silva et al. (2012)
	anoectopora	15–19 × 6–8/oblong-ellipsis to ellipsoid	None	Brazil, Cuba, Porto Rico	Ryvarden (1984)
	cavernulosa	(10–12–16 × 5–7/cylindrical	Dendrohyphidia, difficult to observe in old samples	Brazil, possibly neotropical	Masuka & Ryvarden (1999)
	cylindrospora	8–10 × 2.5–3/cylindrical	None	Belize, Brazil	Ryvarden (2007)
Table 3 Continued.

Genus	Species	Spore size (µm)/shape	Crystals, hyphal pegs and dendrohyphidia	Distribution	Selected references
hexagonoides	*Poria hexagonoides*	16.6–21.8 × 5.5–6.8/cylindrical to slightly allantoid	Crystals	Argentina	Ryvarden et al. (1982)
mexicana	*Poria mexicana*	20–26 × 6–9/cylindrical to allantoid	Hyphal pegs (few)	Belize, Honduras and Mexico	Ryvarden et al. (1982)
variabilicolor					
Megasporoporia	*Megasporoporia bannaensis*	(11–)12–13 × (2–)3–4(–5)/cylindrical to allantoid	Crystals	Brazil	This work
	Poria inflata	(9.8–)10–14 (–15) × (3.7–)3.9–4.6(–5)/cylindrical to allantoid	Crystals	China	Li & Cui (2013a)
	Poria minor	6–7.8(–8) × (2.5–)2.6–4/cylindrical to oblong-ellipsoid	Hyphal pegs	China	Li & Cui (2013a)
	Poria neosetulosa	10–12 × 3–4/cylindrical	Crystals, hyphal pegs	Brazil, possibly neotropical	This work
	Poria setulosa	11–17 × 4–6/cylindrical to oblong ellipsoid	Crystals, hyphal pegs	Tanzania, reported as common in Africa	Ryvarden et al. (1982)

Discussion

When studying the taxonomy and phylogeny of *Megasporoporia* and related genera, Li & Cui (2013a) delimited four clades: *Dichomitus s.str.*, *Megasporia*, *Megasporoporia s.str.* and *Megasporoporiella*. However, the taxonomical arrangement proposed by Li & Cui (2013a) failed due to the inadequate choice of generic types for the new genera *Megasporia* and *Megasporoporiella*. In both cases, the specimens representing the type species were misidentified, neither did they originate from the type localities. For the present study, we included material of the type species for *Megasporia* and *Megasporoporiella* from the vicinity of the type localities. With correctly identified sequences of the type species in the dataset, our analyses show that *Megasporoporiella* becomes a synonym of *Megasporia*. For the *Megasporoporiella* clade, excluding the type, we instead introduce the new genus *Mariorajchenbergia*. Our analyses also show that a redefined *Megasporia* presently contains only species from the Americas. The species, excluding the type, placed in *Megasporia* by Li & Cui (2013a) are here referred to the new genus *Jorgewrightia*. The species here selected as type of *Jorgewrightia* and *Mariorajchenbergia* were described as new species (Li & Cui 2013a) and only *M. subcavernulosa* had been placed in other genera, i.e., *Megasporoporiella* and *Cerioporus*, but not fitted in these taxa according to our results (Fig. 1). *Poria hexagonoides*, the type species of *Megasporia*, had been placed in *Dichomitus, Hexagonia* and *Megasporoporia*, while *Poria setulosa*, type of *Megasporoporia*, had been placed in...
Antrodia (a brown-rot genus), Dichomitus, Elmerina (Auriculariaceae), Grammothele and Trametes. These previous placements in the polyporoid clade, as well in others, were not supported by our results (Fig. 1).

Besides genetically separated, Dichomitus, Jorgewrightia, Mariorajchenbergia, Megasporia and Megasporoporia appear to have a delimited geographical distribution. Dichomitus seems restricted to temperate and boreal areas in Eurasia and Megaspora to the neotropics, while Megasporoporia is apparently a widespread genus in tropical and subtropical regions. Jorgewrightia and Mariorajchenbergia occur above all in subtropical and temperate China, but the former also in Australia and the latter also in Malaysia.

Morphologically, Dichomitus can be differentiated from the other genera by the absence of dextrinoid and cyanophilous hyphae, lack of crystals, hyphal pegs and dendrohyphidia. The neotropical Megasporia can be distinguished from the tropical and subtropical Megasporoporia by the acyanophilous hyphae and lack of hyphal pegs in all but one species. Jorgewrightia and Mariorajchenbergia are difficult to separate, but skeletal hyphae are usually branched in the latter, while more occasionally branched in the former (Table 2). Also, dendrohyphidia and crystals are most commonly found in Jorgewrightia, while hyphal pegs are more common in Mariorajchenbergia (Table 3).

The distinction between Dichomitus and Megasporoporia s.lat. is confirmed and, thus, the synonymization of Megasporoporia to Dichomitus not supported, which is in line with previous works (Li & Cui 2013a, b, Yuan 2013). The Dichomitus clade includes so far only the type species D. squalens (P. Karst.) D.A. Reid (Ryvarden 1991). The type is from Finland and the sequences used are from materials collected in China and Russia (Table 1), but ITS sequences from materials collected in France (KP135330) and probably Finland (AM988622, AM988623, AM988624), France (FJ349622) and Sweden (JQ518275) are also D. squalens when verified doing BLASTn searches, suggesting that the species and possibly the genus have a north temperate and boreal distribution and is absent in the tropics. However, sequences from North America that could confirm this hypothesis are lacking in GenBank.

So far, no other species belonging to Dichomitus s.str. has been sequenced, although several are still morphologically identified as such, as D. citricremeus Masuka & Ryvarden and D. ecuadorensis Ryvarden both recorded in Brazil (Maia et al. 2015). Dichomitus citricremeus was described from Cameroon, in tropical Africa, while the Brazilian specimen (FLOR 11808) was collected in a subtropical region in south Brazil. The Brazilian material was deteriorated and, thus, the presence of the species in the country is dubious. Dichomitus ecuadorensis was described from Ecuador and recorded twice in Brazil (FURB 55087 and URM 83056). Both the type LR 44728 (O) and URM 83056 were examined and may belong to Megasporia. The specimen URM 83056 was not sequenced, however, the 28S sequence from LR 44728 is available in GenBank (JQ780440) and clustered without support with the type material of Truncospora macrospora (JX941596) (Fig. 1). It also had high LSU similarity (98.52%) with T. macrospora (JX941596). Sequencing the ITS region from the type is needed to evaluate the real identity of D. ecuadorensis.

Besides the new genera and the rearrangements here proposed for Megaspora and Megasporoporia, two new species were introduced. A possible name for the new Megasporoporia neosetulosa would be Trametes subserpens Murrill, a species recorded in the Americas and listed as a synonym of M. setulosa, the African counterpart of M. neosetulosa, in Index Fungorum. Trametes subserpens, however, was not validly published according to the Article 38.1 (a) of Turland et al. (2018), since a description or diagnosis of the taxon was lacking. Among the synonyms listed to Megaspora cavernulosa that would fit M. variabilicolor neotropical distribution, Hexagonia heteropora Pat. was possibly collected in the Amazonian Venezuela (Puerto Zamuro, High Orinoco), while Poria linearis Murrill was collected in Panama, both distant from the type locality of M. variabilicolor and from different phytogeographical domains. In addition, M. variabilicolor is distantly related to H. tenuis (Fig. 1), the type species of Hexagonia.

Several species that belonged to Megasporoporia sensu Ryvarden et al. (1982) and Megasporoporiella sensu Li & Cui (2013a) and Wang et al. (2021) have been recently transferred
to Cerioporus Quél. (Zmitrovich 2018): Megasporoporiella cavernulosa, M. lacerata, M. pseudocavernulosa, M. rhododendri, and M. subcavernulosus, but the author did not present a clear explanation for these decisions. Through his circumscription, Cerioporus became morphologically a rather heterogeneous genus. Cerioporus is typified by Boletus squamosus Huds. (better known as Polyporus squamosus) from Germany (based on B. juglandis Schaeff.) or Hungary (according to Ryvarden 1991). The sequences used in the present work are from the USA (AFTOL ID-704) and China (Cui 10394, Cui 10595) (Table 1), but ITS sequences from materials collected in Bulgaria (HQ439363), Denmark (AF516587.1), Germany (AF516588, AF516589), Sweden (AF516590) and Russia (KM411467.1) also represent Cerioporus squamosus (Huds.) Quél. when verified doing BLASTn searches. Polyporus squamosus (AFTOL ID-704) is distantly related to Dichomitus, Jorgewrightia, Mariorajchenbergia, Megasporia and Megasporoporia (Fig. 1). By contrast, Zmitrovich (2018) kept several species in Dichomitus that now clearly belong to other genera, including D. amazonicus (≡ Megasporia amazonica), D. anoectoporus (≡ Megasporia anoectopora), D. cylindrosporus (≡ Megasporia cylindrospora), D. hubeiensis (≡ Mariorajchenbergia hubeiensis) and D. mexicanus (≡ Megasporia mexicana) and, similarly to the reassignments suggested to Cerioporus, the author did not present reasons for these choices. Therefore, the taxonomical rearrangements proposed by Zmitrovich (2018) were not supported by our results.

This is the first molecular study of Megasporoporia s.lat. using sequences from materials collected in Brazil and Tanzania. The results provide a more natural placement for several specimens and species collected in the neotropics and support the guidelines proposed by Vellinga et al. (2015), that include (1) monophyletic genera with sufficient statistical support and based on more than one gene, (2) wide number of species, geographic coverage and type species of the studied genera, and (3) discussion of possible taxonomical rearrangements. Regarding the second guideline, we would like to emphasize that even more important is the inclusion of type specimens or at least reference specimens from or close to the type locality and similar habitat, since the use of type species based in unsuitable material has proven to cause misunderstandings in taxonomical delimitation.

Acknowledgements

We would like to thank the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), the Instituto Brasileiro de Meio Ambiente (IBAMA) for support during the field trips; Ellen Larsson and Karl-Henrik Larsson for sequencing the neotype of Poria setulosa; Angelina M. Ottoni, Carla Santos and Nelson C. Lima-Junior for their help with DNA extraction and sequence analyses; João Oliveira, from URM, for helping with the exsiccates; Konstaze Bensch, from MycoBank, for helping with the nomenclatural changes; and the reviewers and editors of other journals who contributed with the several versions of this manuscripts in the past four years. The authors specially acknowledge Karl-Henrik Larsson for inestimable suggestions in the final version of the manuscript and for the English revision. The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship of CRSL and AMSS, RLMA to FACEPE (BFP 0207-2.03/20), CNPq [PPBio Semi-Árido (558317/2009-0), PROTAX (562106/2010-3), Sisbiota (563342/2010-2), PQ (307601/2015-3, 302941/2019-3)], FACEPE (ATP 0021-2.03/18), CAPES (PRINT 88887.311891/2018-00) and the Pós-Graduação em Biologia de Fungos for financing this research.

References

Binder M, Justo A, Riley R, Salamov A et al. 2013 – Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105: 1350–1373.
Bonfield JK, Smith KF, Staden R. 1995 – A new DNA sequence assembly program. Nucleic Acids Research 23: 4992–4999.
Carlsson F, Edman M, Holm S, Eriksson AM, Jonsson BG. 2012 – Increased heat resistance in mycelia from wood fungi prevalent in forests characterized by fire: a possible adaptation to forest fire. Fungal Biol:116(10):1025–1031. Doi 10.1016/j.funbio.2012.07.005

Cui BK, Dai YC. 2007 – Polypores from Tianmushan Nature Reserve Zhejiang Province, eastern China. Mikologiya i Fitopatologiya. 41(6): 506–514.

Cui BK, Li HJ, Ji X, Zhou JL et al. 2019 – Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97(1): 137–392.

Dai YC, Li TH. 2002 – Megasporoporia major (Basidiomycota), a new combination. Mycosistema 21: 519–521.

Dai YC, Wei YL, Wang Z. 2004 – Wood-inhabiting fungi in southern China 2. Polypores from Sichuan Province. Annales Botanici Fennici 41, 319–329.

Dai YC, Wu SH. 2004 – Megasporoporia (Aphyllophorales, Basidiomycota) in China. Mycotaxon 89: 379–388.

Du P, Cui BK. 2009 – Two new species of Megasporoporia (Polyporales, Basidiomycota) from tropical China. Mycotaxon 110: 131–138.

Floudas D, Hibbett DS. 2015 – Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biol.: 119(8): 679–719. Doi 10.1016/j.funbio.2015.04.003

Frøslev TG, Matheny PB, Hibbett DS. 2005 – Lower-level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): a comparison of RPB1, RPB2 and ITS phylogenies. Molecular Phylogenetics and Evolution 37: 602–618.

Ghobad-Nejhad M, Dai YC. 2010 – Diplomitoporus rimosus is found in Asia and belongs to the Hymenochaetales. Mycologia 102: 1510–1517

Gomes-Silva AC, Gibertoni TB, Ryvarden L. 2012 – Resupinate poroid fungi from tropical rain forests in Brazil: two new species and new records. Mycological Progress 11: 3–9.

Hoang DT, Chernomor O, Haeseler A von, Minh BQ, Vinh LS. 2017 – UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol, in press. Doi 10.1093/molbev/msx281

Justo A, Miettinen O, Floudas D, Ortiz-Santana B et al. 2017 – A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biology 121: 798–824.

Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler A von, Jermiin LS. 2017 – ModellFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14: 587–589. Doi 10.1038/nmeth.4285

Katoh K, Rozewicki J, Yamada KD. 2019 – MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. Doi 10.1093/bib/bbx108

Kumar S, Stecher G, Tamura K. 2016 – MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.

Li HJ, Cui BK, Dai YC. 2014 – Taxonomy and multi-gene phylogeny of Datronia (Polyporales, Basidiomycota). Persoonia 32: 170–182.

Li HJ, Cui BK. 2013a – Taxonomy and phylogeny of the genus Megasporoporia and its related genera. Mycologia 105(2): 368–383.

Li HJ, Cui BK. 2013b – Dichomitus hubeiensis sp nov and a new record of Dichomitus (Basidiomycota) from China. Nordic Journal of Botany 31(1): 118–121.

Li HJ, Si J, He SH. 2016 – Daedaleopsis hainanensis sp. nov. (Polyporaceae, Basidiomycota) from tropical China based on morphological and molecular evidence. Phytotaxa 275, 294–300.

Lira CRS, Ryvarden L, Gibertoni TB. 2016 – Morphological and molecular evidences for a new species of Datroniella (Polyporales, Basidiomycota) from Brazil. Phytotaxa 280, 173–178.
Maia LC, Junior AAC, Cavalcanti LH, Gugliotta AM et al. 2015 – Diversity of Brazilian Fungi. Rodriguésia 66(4): 1033–1045.

Masuka AJ, Ryvarden L. 1999 – Dichomitus in Africa. Mycological Research 103(9): 1126–1130.

Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R. 2000 – Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Systematic Biology 49: 278–305.

Nguyen L-T, Schmidt HA, Haeseler A von, Minh BQ. 2015 – IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol, 32: 268–274. Doi 10.1093/molbev/msu300

Rambaut A. 2014 – FigTree v. 1.4.2. Available at http://tree.bio.ed.ac.uk/software/figtree/

Rehner SA, Buckley E. 2005 – A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98.

Ronquist F, Huelsenbeck JP. 2003 – Mrbayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. Doi 10.1093/bioinformatics/btg180

Ryvarden L. 1984 – Type studies in the Polyporaceae 16. Species described by J.M. Berkeley either alone or with other mycologists from 1856 to 1886. Mycotaxon 20(2): 329–363.

Ryvarden L. 1991 – Genera of Polypores. Synopsis Fungorum 5. Fungiflora.

Ryvarden L. 2007 – Studies in Neotropical polypores 23. New and interesting wood-inhabiting fungi from Belize. Synopsis Fungorum 23: 32–50.

Ryvarden L. 2015 – Neotropical Polypores Part 2. Synopsis Fungorum 34: 315–324.

Ryvarden L, Gilbertson RL. 1993 – European Polypores: Abortiporus – Lindtneria. Fungiflora.

Ryvarden L, Johansen I. 1980 – A Preliminary Polypore Flora of East Africa. Oslo: Fungiflora. 587–596.

Ryvarden L, Wright JE, Rajchenberg M. 1982 – Megasporoporia, a new genus of resupinate polypores. Mycotaxon 16(1): 172–182.

Smith BJ, Sivasithamparam K. 2000 – Isozymes of Ganoderma species from Australia. Mycol. Res. 104(8): 952–961.

Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016 – W-IQ-TREE: a fast-online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44(W1): W232–W235. Doi 10.1093/nat/gkw256

Turland NJ, Wiersema JH, Barrie FR, Greuter Wet al. 2018 – (eds.). International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China. July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. Doi 10.12705/Code.2018

Vellinga EC, Kuyper TW, Ammirati J, Desjardin DE et al. 2015 – Six simple guidelines for introducing new genera of fungi. IMA Fungus 6(2): 65–68.

Wang YR, Wu YD, Vlasák J, Yuan Y, Dai YC 2021 – Phylogenetic analysis demonstrating four new species in Megasporoporia sensu lato (Polyporales, Basidiomycota). Mycosphere 12(1), 1012–1037. Doi 10.5943/mycosphere/12/1/11

Watling R. 1969 – Colour identification chart. Her Majesty’s Stationary Office, Edinburgh (Scotland).

White TJ, Bruns T, Lee S, Taylor JW. 1990 – Amplification and direct sequencing of ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 8: 315–322.

Yuan H-S. 2013 – Dichomitus sinuolatus sp nov (Basidiomycota, Polyporales) from China and a key to the genus. Nova Hedwigia 97(3–4): 495–501.

Yuan Y, Ji XH, Chen JJ, Dai YC. 2017 – Three new species of Megaspora (Polyporales, Basidiomycota) from China. MycoKeys 20: 37–50. Doi 10.3897/mycokeys.20.11816

Zhao CL, Cui BK. 2012 – A new species of Perenniporia (Polyporales, Basidiomycota) described from southern China based on morphological and molecular characters. Mycological Progress 11, 555–560. Doi 10.1007/s11557-011-0770-1
Zhou JL, Cui BK. 2017 – Phylogeny and taxonomy of *Favolus* (Basidiomycota). Mycologia 109, 766–779. Doi 10.1080/00275514.2017.1409023

Zhou JL, Zhu L, Chen H, Cui BK. 2016 – Taxonomy and Phylogeny of *Polyporus* Group Melanopus (Polyporales, Basidiomycota) from China. PLoS One 11(8):e0159495.

Zhou XS, Dai, YC. 2008 – A new species of *Megasporoporia* (Polyporales, Basidiomycota) from China. Mycological Progress 7(4): 253–255.

Zmitrovich IV, KovalenkoAE. 2016 – Lentinoid and Polyporoid Fungi, Two Generic Conglomerates Containing Important Medicinal Mushrooms in Molecular Perspective. IntJMedMushrooms 18: 23–38.

Zmitrovich IV. 2018 – Conspectus systematis Polyporacearum v. 1.0. Folia Cryptogamica Petropolitana 6: 3–145.