Radiotherapy and “new” drugs-new side effects?

Maximilian Niyazi†, Cornelius Maihoefer†, Mechthild Krause2, Claus Rödel3, Wilfried Budach4 and Claus Belka1*

Abstract

Background and purpose: Targeted drugs have augmented the cancer treatment armamentarium. Based on the molecular specificity, it was initially believed that these drugs had significantly less side effects. However, currently it is accepted that all of these agents have their specific side effects. Based on the given multimodal approach, special emphasis has to be placed on putative interactions of conventional cytostatic drugs, targeted agents and other modalities. The interaction of targeted drugs with radiation harbours special risks, since the awareness for interactions and even synergistic toxicities is lacking. At present, only limited is data available regarding combinations of targeted drugs and radiotherapy. This review gives an overview on the current knowledge on such combined treatments.

Materials and methods: Using the following MESH headings and combinations of these terms pubmed database was searched: Radiotherapy AND cetuximab/trastuzumab/panitumumab/nimotuzumab, bevacizumab, sunitinib/sorafenib/lapatinib/gefitinib/erlotinib/sirolimus, thalidomide/lenalidomide as well as erythropoietin. For citation crosscheck the ISI web of science database was used employing the same search terms.

Results: Several classes of targeted substances may be distinguished: Small molecules including kinase inhibitors and specific inhibitors, antibodies, and anti-angiogenic agents. Combination of these agents with radiotherapy may lead to specific toxicities or negatively influence the efficacy of RT. Though there is only little information on the interaction of molecular targeted radiation and radiotherapy in clinical settings, several critical incidents are reported.

Conclusions: The addition of molecular targeted drugs to conventional radiotherapy outside of approved regimens or clinical trials warrants a careful consideration especially when used in conjunction in hypo-fractionated regimens. Clinical trials are urgently needed in order to address the open question in regard to efficacy, early and late toxicity.

Keywords: radiotherapy, molecular targeted drugs, antibodies, TKI, toxicity

Background and purpose

Several new anti-cancer drugs have recently entered clinical practice in oncology. Among those, especially targeted drugs are promising therapeutic candidates with a comparatively low toxicity profile. At present, these drugs are often applied in palliative treatment situations for metastasized diseases. In addition, targeted agents are a substantial part of many multimodal oncologic treatment schedules. Thus the risk of parallel use of both radiotherapy and targeted drug is given. With few exceptions, the toxicity of any combination of targeted drugs with radiotherapy has not yet been studied in detail.

Key cellular signalling pathways [1] are responsible for the response of normal tissue and tumour cells to radiation therapy [2]. Although some of the anti-cancer targets are specific for neoplastic signalling, there is considerable overlap between neoplastic signalling and normal cellular signalling. In this regard, several putative interactions with radiation triggered signalling in normal tissues exist and thus [3,4] influences of targeted drugs on normal tissue reactions cannot be excluded [5-7].

The present article reviews the existing data on the toxicity profile and efficacy (if available) of targeted drugs when applied concurrently to radiotherapy.

* Correspondence: claus.belka@med.uni-muenchen.de
† Contributed equally
1Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 München, Germany
Full list of author information is available at the end of the article

© 2011 Niyazi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Methods and materials
Using the following MESH headings and combinations of these terms, pubmed database was searched for randomized, prospective and retrospective trials as well as case reports (all sample sizes were considered):

1. Radiotherapy AND cetuximab/trastuzumab/panitumumab/nimotuzumab
2. Radiotherapy AND bevacizumab
3. Radiotherapy AND sunitinib/sorafenib/lapatinib/gefitinib/erlotinib/sirolimus
4. Radiotherapy AND thalidomide/lenalidomide.
5. Radiotherapy AND erythropoietin

For citation crosscheck, the ISI web of science database was used employing the same search terms. A focus was put on prospective or phase I/II trials; if available, some smaller case studies or case reports were included if higher toxicities were reported.

In general, grade III + IV toxicities are reported. For cetuximab, focus was set on larger phase III trials and those reporting trials specifically reporting toxicities. In addition, key reviews focusing on the use of targeted drug in oncology were screened in order to identify clinically relevant drugs [8].

Results
Antibodies
Cetuximab
Cetuximab is a monoclonal chimeric antibody directed against the epidermal growth-factor receptor (EGF-R). It has first been approved for treatment of locally advanced or metastatic colorectal cancer (k-ras wildtype) refractory to irinotecan [9]. Regarding radiotherapy, it has been approved for head-and-neck cancer as an alternative to concomitant chemoradiotherapy [10]; in the given phase III trial overall survival of patients who were treated by radiotherapy and cetuximab was improved compared to patients who underwent radiotherapy alone. Cetuximab also has a proven efficacy in locally advanced or metastatic head-and-neck cancer in combination with 5-FU/cisplatin [11].

Thus several pre-clinical and clinical studies have provided evidence for the efficacy of cetuximab in combination with radiotherapy [12-17]. Nevertheless, several reports are available pointing to increased skin toxicity after combining cetuximab with radiotherapy [18-27] (a complete overview is given in Table 1). The initial publication on the combined use by Bonner and colleagues reported an increased incidence of an acneiform rash [10]. However, in single cases more severe complications occurred [19]. A recent retrospective matched-pair evaluation of acute toxicity during cisplatinum-based radio-chemotherapy versus radiotherapy with simultaneous cetuximab treatment showed significantly higher grade 3 oral mucositis and dermatitis as well as a higher risk of weight loss (>10%) and of enteral feeding requirement in the cetuximab-group. However, this may be outweighed by the higher risk of haematological toxicity by radio-chemotherapy. In keeping with this, higher compliance rate with less treatment interruptions in the cetuximab-treated group was described [26]. In trials on thoracic [28,29] or pelvic radiotherapy with cetuximab increased rates of skin toxicity were not observed.

No other risks regarding additional or increased side effects concerning connective tissue, CNS [30-32] or peripheral nerves have been described so far in small early-phase clinical trials.

Panitumumab
Similar to cetuximab, panitumumab is a monoclonal antibody directed against EGF-R with a putatively higher affinity and less toxicity due to its non-chimeric design. It has been approved for stage IV colorectal cancer refractory to FOLFOX or FOLFIRI [33].

Only data from a single phase I study [34] and a single phase II trial described effects of a combination of panitumumab with a 5-FU/oxaliplatin-containing radio-chemotherapy for rectal cancer [35]. Pre-clinical data suggest a comparable efficacy to cetuximab [36]. Concerning toxicity, no additional toxicity was observed when combined with radiotherapy. The phase II trial reported one toxic death from diarrhea and a relatively high rate of grade III/IV diarrhea (39%) compared to the classical CAO/ARO/AIO-94 trial [37]. However, based on the design of the trial it is not possible to precisely attribute the side effects to any of the components of the given protocol.

Nimotuzumab
Nimotuzumab is another humanized therapeutic monoclonal antibody directed against EGF-R not yet been approved by the authorities in Europe. There are three small phase I trials testing radiotherapy and nimotuzumab in head-and-neck cancer as well as NSCLC patients; an increased rate of skin toxicity was observed [38-40]. The other larger phase II trial by Rodríguez and colleagues was prospectively randomized and 106 head-and-neck cancer patients were included [38]. No grade III or IV toxicity has been observed.

The data available suggest that the combination of cetuximab with radiation may lead to an increased rate of mucosal- and skin toxicity when applied together with radiation for the treatment of head-and-neck cancer. No such problems have been reported in other organ regions. It is unclear in how far this is an epitope-specific side effect-only limited data are available.
Table 1: Studies on monoclonal EGFR antibodies

Substance	Author(s)	Year	Study type	N	Tumour	RT dose/ChTx/technique	Toxicity
Cetuximab	Bonner et al. [10]	2006	Phase III	211	LA-HNSCC	70-78.8 Gy (hypofractionated)	Significant differences or trend in arms: 8% grade III-V acneiform rash, 1% grade III-V voice alteration, 1% grade III-V infusion reaction
Koutcher et al. [24]	2009	Retrospective	115	LA-HNSCC	66 Gy/69.96 Gy	3% grade IV radio-dermatitis, 19% grade III radio-dermatitis	
Studer et al. [25]	2011	Prospective	99	HNSCC	66-70 Gy, 30/99 switch from Cis	34% grade II/IV dermatitis	
Hallqvist et al. [28]	2010	Phase II	75	NSCLC	68 Gy, Ind. ChTx Doc/Cis + concomitant Cetux	1% grade V pneumonitis, 4% grade III pneumonitis, 5% grade III + IV hypersensitivity, 15% grade III + IV febrile neutropenia, 4% III skin reactions	
Jensen et al. [122]	2010	Retrospective	73	HNSCC	22 pts Re-RT (50-60 Gy), 66-70 Gy	5% grade III allergic reaction, 4% grade III acneiform rash	
Garcia-Huttenlocher et al. [123]	2009	Retrospective	65	HNSCC	Median 66 Gy (IMRT)	Grade III: skin toxicity 28%, mucositis 25%	
Rödel et al. [115]	2008	Phase I/II	12/48	Rectal cancer	50.4 Gy +Capecitabine + Oxaliplatin	Phase II only Grade IV/V: Leukopenia, thrombocytopenia, Diarrhea, Creatinine elevation, e-lyte derivation, infection each 2%	
Safran et al. [31]	2008	Phase II	60	Esophageal-gastric-cancer	Cetux/Carbo/Tax + 50.4 Gy	23% grade III rash, 15% grade III/V esophagitis, 5% III + IV hypersensitivity, 3% grade IV neutropenia (10% grade III), 2% IV anemia (8% grade III)	
Jatoi et al. [124]	2010	Phase II	57	NSCLC	60 Gy	2% grade IV each: dysphagia/ hypomagnesemia/dyspnea/headache/thrombosis/GL hemorrhage, 7% grade III rash	
Horisberger et al. [30]	2009	Phase II	50	Rectal cancer	50.4 Gy +Capecitabine + Irinotecan	Leukopenia 4% grade III and IV each Grade III: Diarrhea 60%, abdominal pain 8%, ALAT/ASAT elevation 20%, Acneiform skin rash 12%, anemia, nausea/vomiting, bilirubin elevation, proctitis each 4%	
Koutcher et al. [125]	2011	Retrospective	49	LA-HNSCC	69.96 Gy (IMRT) (comparison vs. concomitant Cis)	20% late grade III + IV toxicity	
Walsh et al. [26]	2011	Retrospective	48 (14 excluded because of SIB)	HNSCC	Cis vs. Cetux (66-70 Gy)	44% ≥ grade III skin toxicity, 52% ≥ grade III mucositis, 6% ≥ grade III acneiform rash	
Buiet et al. [126]	2010	Retrospective multicenter	46	HNSCC	Ind. ChTx Doc/Cis/S-FU, RT (70 Gy)	No grade IV toxicity	
Garcia-Huttenlocher et al. [127]	2008	Retrospective	46	HNSCC	Median 66 Gy (IMRT)	20% grade III skin toxicity, 4% grade III mucositis	
Merfano et al. [128]	2010	Phase II	45	HNSCC	Up to 70 Gy, three cycles Cis/S-FU, split course RT, RT + cetux	2% grade IV leukopenia (38% grade III), 7% grade IV neutropenia (33% grade III), 2% grade IV thrombopenia (13% grade III), 36% grade IV stomatitis (29% grade III), 73% grade III radiodermatitis, 7% grade III rash	
Koukourakis et al. [60]	2010	Phase I	43	LA-HNSCC	21 × 2.7 Gy (56.7 Gy) + amifostine + Cis	16% grade III + IV mucositis, 2% grade III + IV skin toxicity	
Suntharalingam et al. [129]	2011	Phase II	43	LA-HNSCC	70.2 Gy (3D/IMRT) + Paclitaxel, Carboplatin, Ind. FOLFOX4 + 50.4 Gy/Cetux	Grade 3 mucositis (79%), rash (9%), leukopenia (19%), neutropenia (19%), and RT dermatitis (16%)	
De Vita et al. [130]	2011	Phase II	41	Esophageal cancer	Significance differences or trend in arms: 8% grade III-V acneiform rash, 1% grade III-V voice alteration, 1% grade III-V infusion reaction	30% grade II/IV skin toxicity/neutropenia	
Study	Design	Number	Primary Tumor Site	Treatment	Toxicity		
-------------------------------	-----------------	--------	-------------------	---	--		
Bertolini et al. [117]	Phase II	40	LA rectal cancer	30-50.4 Gy + neoadj. Cetux/Cetux + 5-FU concomitant	8% grade III/IV skin rash, 8% grade III/IV hypersensitivity, 13% grade II/IV GI toxicity, 3% grade III/IV febrile neutropenia		
Kim et al. [98]	Phase II	40	Rectal cancer	Cetux/Cetux + 50-50.4 Gy + neoadj.	3% grade IV leukopenia, 3% grade III rash		
Machiels et al. [119]	Phase I/II	40	Rectal cancer	45 Gy + Cetux/Cetux	3% grade III/IV allergic reaction, 3% grade III/IV dermatitis		
Argris et al. [131]	Prospective	39	LA-HNC	Induction Docetaxel/Cis/Cetux + concurrent Cisplatin/Cetux/70-74 Gy-RT	Grade III/IV oral mucositis 46%, Anemia 21%, in-field dermatitis 23%, Dysphagia 41%, Thrombocytopenia 10%, Neutropenia 31%, febrile neutropenia 5%, infection 18%, fatigue 13%, nausea 10%, vomiting 3%, renal failure 3%, DVT 5%, bleeding 5%		
Velenik et al. [118]	Phase II	37	Rectal cancer	45 Gy RT + Cetux/Cetux	Grade III diarrhea 11%, anorexia 3%, hepatotoxicity 3%, in-field-dermatitis 16%, infection 3%, hypersensitivity 5%		
Heron et al. [132]	Matched pair retrospective	35	HNSCC	SBRT Re-RT	No significant increase grade III + IV		
Birnbaum et al. [133]	Phase I	32	LA-HNSCC	66-72 Gy, Ind. Cetux + Carbo/Tax/Cetux concomitant	3% grade III allergic reaction, 3% grade IV metabolic symptom, 69% grade III + IV mucositis, 3% grade IV dysphagia, 59% pts grade III + IV skin toxicity		
Jensen et al. [134]	Phase II	30	NSCLC	66 Gy (IMRT)	Pulmonary embolism 3% grade III + 3% grade V endocarditis and myocardial infarction grade V each 3%, 13% grade III/IV pneumonia esophagitis, diarreha, DVT, exacerbation of COPD, urosepsis, pericardial effusion, pneumonitis grade III each 3%		
Ruhstaller et al. [135]	Phase IB/II	28	Esophageal cancer	Induction ChTx Cis/docetaxel + neoadjuvant RCh-immunotherapy	25% grade III/IV esophagitis, 4% grade III/IV rash		
Pfister et al. [136]	Phase I	22	LA-HNSCC	70 Gy RT + Cisplatin	Study closed due to significant AEs.		
Hofheinz et al. [137]	Phase I	20	Rectal cancer	Cetux/Cetux + Irinotecan + 50.4 Gy	No grade IV, no rash, 20% grade III diarrhea		
Kühnt et al. [138]	Phase I	18 (16 eligible)	LA-HNSCC	HART (70.6 Gy) + Cis	56% grade III mucositis, 38% ≥ grade III radiodermatitis, 25% ≥ grade III neutropenia, 6% grade III rash		
Pryor et al. [22]	Prospective	13	HNSCC	70 Gy	46% ≥ grade III acerform rash, 77% ≥ grade III dermatitis		
Hughes et al. [29]	Phase I	12	NSCLC	64 Gy	Grade III fatigue, pneumonitis each 8%		
Zwicker et al. [139]	Phase II	10	NSCLC	IMRT 50.4 Gy Re-RT + Cetux	Grade V Infection 8%		
Jensen et al. [140]	Prospective	9	Adenoid cystic carcinoma of HN	5/9: re-RT: median 50.4 Gy, median 65 Gy otherwise (IMRT or C-12 boost)	Grade III Mucositis and Grade III Dysphagia		
Balermpas et al. [141]	Prospective	7	HNSCC	Re-irradiation 50.4 Gy-54.0 Gy	New acute side effects:		
Berger et al. [19]	Case report	1	HNSCC	72 Gy, regimen change to cetuximab from 5-FU/MMC	Grade IV Dermatitis		
regarding similar effects after the combined use of panitumumab and nimotuzumab.

Anti-Her2/neu antibody trastuzumab

Trastuzumab is a humanized monoclonal antibody directed against the epidermal growth-factor-receptor Her-2/neu. It is approved for the treatment of metastatic her-2/neu-positive breast cancer as well as for the adjuvant treatment of her-2/neu-positive breast cancer in combination with chemotherapy [41-44].

Cardiac toxicity is a rare, but well described adverse effect of trastuzumab—especially with or after the treatment with anthracyclins [45-47]. As cardiac toxicity is also of concern in thoracic radiotherapy, the question of an increased toxicity has been raised. The largest trial focusing on side effects of the combined use of radiotherapy and trastuzumab is the phase III NLCCTG trial N9831 for adjuvant trastuzumab and radiotherapy including 1503 patients [48]. The trial did not reveal any significant differences in toxicity regarding skin, pneumonitis or cardiac events. Also, a French multicentric study [49] including 146 patients did not observe an increased cardiac toxicity. Another study retrospectively investigated the combinational approach of trastuzumab and radiotherapy including the internal mammary lymph nodes [50]. Again, no increased cardiac toxicity has been observed.

Thus, at present there are no strong indicators for an increased cardiac toxicity. However, follow-up periods are only sufficient for an estimation of early cardiac toxicity caused by trastuzumab, but not for an in-depth assessment of late radiation-induced cardiac effects.

Altogether, the current data suggest that the use of trastuzumab in a close time frame with radiotherapy may be safe. However, the reported studies might still reveal an increased cardiac toxicity, as minor vascular changes might lead to an increased mortality in long-term follow-up [51].

Table 1 Studies on monoclonal EGFR antibodies (Continued)

Antibody	Study Details	Number of Patients (N)	Dose/Methods	Toxicity/BSR (%)
Trastuzumab	Halyard et al. [48] 2009	Phase III 1503	Breast cancer, Median 50 Gy, previous OP + ChTx	Skin toxicity
	Belkacemi et al. [49] 2008	Multicentric study 146	Breast cancer, Median 50 Gy	grade III
	Caussa et al. [142] 2011	Prospective 106	Breast cancer, 50 Gy (2 Gy) + 16 Gy boost	esophagitis
	Anderson [143] 2009 Matched case control study	85	Breast cancer	LVEF decrease
	Shaffer et al. [50] 2009	Prospective 44	Breast cancer, 40-50.4 Gy	(reversible)
	Chargari et al. [144] 2011	Phase I 31	Brain mets breast cancer, 50 Gy, ChTx refactory	grade III
	Horton et al. [145] 2010	Phase II 12	Locally recurrent breast cancer, 50 Gy, ChTx	skin toxicity
Panitumumab	Pinto et al. [35] 2011	Phase II 60	Rectal cancer, 5-fluorouracil-oxaliplatin + RT	grade 3-4
	Wirth et al. [34] 2010	Phase I 19	LA-HNSCC, 70 Gy + Carbo/Tax (2 Gy) IMRT	toxicity: diarhea, cutaneous reactions, nausea, neutropenia
Nimotuzumab (h-R3)	Rodriguez et al. [38] 2010	Prospective randomized 106	HNSCC	grade III
	Crombet et al. [146] 2004	Phase I 24	HNSCC, 66 Gy (2 Gy)	somnolence
	Bebb et al. [39] 2011	Phase I 18	NSCLC, 36/30 Gy (3 Gy)	grade III
	Choi et al. [40] 2010	Phase I 15	NSCLC, 36/30 Gy (3 Gy)	grade III

N-number of patients, pt(s)-patient(s), n. r.-not reported, ChTx-chemotherapy, HCC-hepatocellular carcinoma, RCC-renal cell cancer, GBM-glioblastoma multiforme, DVT-deep vein thrombosis, Fx-fractions, SRS-stereotactic radiosurgery, DLT-dose limiting toxicity, LA-locally advanced, Gem-gemcitabine, Taxol-paclitaxel, Tx-therapy, TMZ-temozolomide, PCP-Pneumocystis pneumonia, Cs-cisplatin, Eto-eto-toposide, Doc-docetaxel
Bevacizumab

Bevacizumab is a humanized monoclonal antibody against the vascular endothelial growth-factor (VEGF). So far, bevacizumab has been approved for the treatment of metastatic colorectal carcinoma, in combination with standard chemotherapy (5-FU, irinotecan, oxaliplatin or capecitabine). Bevacizumab has been approved for the treatment of metastatic non-squamous-cell bronchial carcinoma, for the treatment of renal cell cancer and for the treatment of glioblastoma multiforme (US only). The FDA has withdrawn the approval for first line treatment of metastatic HER-2/neu-negative breast cancer—however, the drug still is approved in Europe.

The most common side effects of bevacizumab alone include impaired wound healing, hypertension, bleeding problems as well as an increased risk of thromboembolic events.

One of the first publications to describe an increased risk of combining bevacizumab with radiotherapy reported on patients with ischemic bowel complications after the administration of radiotherapy followed by bevacizumab [52].

A phase II study combining neoadjuvant bevacizumab, capecitabine and radiotherapy for locally advanced rectal cancer revealed an increased rate of wound complications such as delayed healing and wound dehiscence [53]. The data are in line with a number of similar reports and case studies, supporting the interpretation that the combined use of bevacizumab with neoadjuvant radiotherapy is associated with an increased risk of postoperative complications [54-57]. However, this interpretation is not homogenously supported by all available data [58-61]. In terms of tumour response, the rate of pathological complete responses seems to be enhanced [53].

The use of bevacizumab, capecitabine and radiotherapy in patients with locally advanced pancreatic cancer was associated with an increased rate GI-bleeding and ulcerations (12%) [62]. These complications preferentially occurred in patients with a mucosal infiltration of the tumour. In a consecutive study -after excluding patients with mucosa infiltration-no such side effects were reported [63]. A similar study reported the combination of radiotherapy with bevacizumab—partly in a neoadjuvant setting- as “feasible” [64].

The combination of radiotherapy with simultaneous administration of bevacizumab was also tested for lung cancer [65,66]. In this setting, the occurrence of severe fistula leading to a discontinuation of both trials has been described [66].

In case of breast cancer the parallel combination of radiotherapy and bevacizumab had no significant side-effects in regard to lung and skin toxicity [65].

The treatment of malignant tumours of the brain has been subject to a variety of studies combining radiotherapy with bevacizumab with or without temozolomide; regarding progression-free survival, these trials suggest a benefit of the combined use [67]. No intra-cerebral bleeding has been reported, however cases of wound dehiscence of the previous operation have been documented [68-70]. A collection of case reports points towards increased late toxicity such as optic neuropathy and a single case of Brown-Séquard syndrome after a combination of bevacizumab with radiotherapy [71]. (a complete overview is given in Table 2).

Altogether, the combined use of bevacizumab and radiotherapy seems to be associated with a considerable risk of side effects (wound dehiscence, bleeding, fistula or GI complications). However, in selected cases the combination was feasible and even favourable concerning overall survival (retrospective) [69] and progression-free survival [72].

Anti CD20 monoclonal antibody-rituximab

Rituximab is a monoclonal antibody directed against the CD20 antigen. It was initially developed and approved as a targeted agent for the treatment of CD20-positive non-Hodgkin lymphoma. In this setting, rituximab is mostly used in combination with chemotherapy (e. g. CHOP). Apart from the use of rituximab in oncology, its use has been extended to the treatment of refractory autoimmune diseases (e. g. rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus and idiopathic thrombocytopenic purpura among others).

The application of rituximab in combination with or shortly before/after radiotherapy of non-Hodgkin lymphoma has been prospectively studied [73-75]. So far no significant additional toxicities have been reported. All side effects seen in the trials have been attributed to the individual therapeutic modalities respectively [76]. Thus, at present the combination of rituximab with radiation does not seem to harbour any relevant risks.

Small molecules/tyrosine-kinase inhibitors (TKI’s)

TKI’s are small molecules able to pass the cell membrane and to inhibit intracellular tyrosine kinases of several growth factor receptors. Relevant examples are sunitinib, sorafenib, erlotinib or gefitinib. At present, TKI are used for diverse cancer entities and various clinical settings. Key indications are: Metastasized lung cancer/renal cell cancer/pancreatic cancer, locally advanced and metastatic breast cancer as well as hepato-cellular carcinoma.

Up to now, no TKI has been approved for the simultaneous use with radiotherapy.

All toxicity data on combined toxicity are limited to case reports or studies with small numbers of patients.
Substance	Author(s)	Year	Study type	N	Tumour	RT dose/ChTxs/technique	Toxicity
Bevacizumab	Vredenburgh et al. [147]	2010	125	Glioblastoma	59.4 Gy/Temozolomide	Grade III Thromboembolic events: 2%	
Crane et al. [63]	2009	Phase II	82	Pancreatic Cancer	50.4 Gy/Capecitabine	Toxocities possibly attributable to bevacizumab: GI bleeding: 6%; GI perforation: 4%; DVT grade III + IV: 4%; grade III hypertension: 2%; Grade IV cerebrovascular ischemia: 9%; Grade III+IV CNS hemorrhage: 3%; Grade III+IV GI bleeding/perforation 6%; grade III optic neuropathy: 1%; Grade III+IV venous Thrombosis/PE: 19%	
Lai et al. [72]	2010	Phase II	70	Glioblastoma	60 Gy/Temozolomide	Grade IV cerebrovascular ischemia: 9%; Grade III+IV CNS hemorrhage: 3%; Grade III+IV GI bleeding/perforation 6%; grade III optic neuropathy: 1%; Grade III+IV venous Thrombosis/PE: 19%	
Crane et al. [62]	2006	Phase I	48	Pancreatic Cancer	50.4 Gy/Capecitabine	Toxocities possibly attributable to bevacizumab: grade III+IV ulceration with bleeding in RT field: 8%; (retrospectively fistulous connection identified in 4%) Grade III GI perforation: 4%; bleeding outside field: 4%; grade III hypertension: 2%	
Seiwert et al. [148]	2008	Phase I	43	Head & Neck	63-72 Gy/S-FU and Hydroxyurea	Grade V bleeding events: 5%; grade V infection/sepsis: 7%; 2% unknown cause of death; grade III+IV Thromboembolic events: 5% DVT, 2% stroke (leading to fatal sepsis, see above); fistula (due to radionecrosis or residual tumour): 12% Tissue necrosis 9%	
Spigel et al. [149]	2009	Phase II	A	SCLC	61.2 Gy/Carboplatin/Imatinib (A-limited stage B-locally advanced)	A Grade IV+V tracheoesophageal fistula: 7%. Grade V aerodigestive hemorrhage: B Grade III tracheoesophageal fistula: 40%. Both studies closed due to toxicity.	
Willet et al. [58]	2009	Phase II	32	Rectal Cancer	50.4 Gy/S-FU	Grade III toxicities: GI abscess 3%, Hypertension 9%, radiation dermatitis: 6%; wound separation 3%. No grade IV.	
Dipetrillo et al. [55]	2012	Phase I	26	Rectal Cancer	50.4 Gy/FOLFOX	Grade III + IV Diarrhea: 42%; Bleeding (g3): 4%; g3 neuropathy: 4%; Radiation dermatitis G3: 8%; postoperative wound complications: 35%-the study was discontinued due to this toxicity.	
Crane et al. [53]	2010	Phase II	25	Rectal Cancer	50.4 Gy/Capecitabine	grade III perianal desquamation: 4%; 12% major surgical complications such as anastomotic dehiscence (4%), wound dehiscence (8%)	
Gutin et al. [68]	2009	Phase I	25	Glioblastoma/Anaplastic Gliomas	30 Gy/S × 6 Gy	Grade IV Gastrointestinal bleeding: 4%; bowel perforation: 4%, wound healing complication: 4%. Grade III CNS hemorrhage: 4%.	
Koukourakis et al. [59]	2009	Phase II/II	22	Rectal Cancer	15 × 3,4 Gy/amifostine, capecitabine	Fistula: 9%, grade IV skin necrosis 5%.	
Niyazi et al. [69]	2010	Retrospective	20	Recurrent Glioblastoma	36 Gy	Grade IV wound healing complication: 5%. grade III DVT: 5%.	
Koukourakis et al. [150]	2011	Phase II	19	Rectal cancer	10 × 3, 4 Gy Amifostine/Capecitabine	Grade III diarrhea: 11%.	
Goyal et al. [65]	2010	Retrospective	14	Breast cancer	50 Gy + 10 Gy	No Grade III/IV toxicity (only acute toxicity assessed)	
Czito et al. [61]	2007	Phase I	11	Rectal Cancer	50.4 Gy/Oxaliplatin + Capecitabine	No grade III + toxicities attributable to bevacizumab: grade III-IV diarrhea: 27%, Discontinued due to tox after 8 Pt, Grade III GI bleeding: 25%; Grade III diarrhea: 25%	
Resch et al. [151]	2011	Phase II	8	Rectal cancer	45 Gy/Capecitabine	Optic neuropathy	
Kelly et al. [71]	2010	Case reports	3	Glioblastoma			
Vargo et al. [152]	2011	Case report	1	Glioblastoma		Dural venous thrombosis	

N-number of patients
The clinical indications and the most common adverse effects of clinically used TKI’s are summarized in Table 3.

When using sunitinib or sorafenib alone, mainly diarrhea, hypertension, fatigue, hand-foot syndrome, bleeding and hematotoxicity may occur as side effects. Concerning combined use with radiotherapy, one case report described a lethal small bowel perforation after 1x 8 Gy in a palliative setting; sorafenib had been stopped 2 days before and three days after radiotherapeutic treatment [77]. In another case, a lethal bronchial fistula occurred after radiation of the mediastinum [78]; as this phenomenon has been observed after sunitinib alone [79] no definite causality can be deduced. Furthermore, elevated bone-marrow toxicity was observed if large volumes of bones or liver were radiated; a phase I study concluded to avoid the combination with sunitinib when radiating volumes of more than 6 ccm of the liver. A dose reduction of sunitinib was advised for the following phase II study [80].

In patients with cerebral metastases increased intracerebral bleeding has been reported, this appears to happen with or without radiotherapy [81].

Concerning the simultaneous use of gefitinib/erlotinib and radiotherapy one case of fatal diarrhea after combining erlotinib with RT in the abdomen (2x8 Gy, q1w) has been reported [82]. And again, in patients with cerebral metastases increased intracerebral bleeding has been reported, however, this appears to happen with or without radiotherapy [83].

As long as no reliable data concerning the safety of the combination of TKI’s and radiotherapy are available, such therapies should be used very carefully, especially if the above reported organs received relevant radiation doses. So far it is unclear if the increased intracerebral bleeding rates are induced by the combined treatment or by the drug alone. However, because of the severity of this adverse effect, special caution is warranted for combined treatment schedules. The same applies for tumours that tend to bleed outside of the brain. Radiotherapy in the abdomen or the pelvis together with TKI’s might lead to an increased toxicity, including the occurrence of ulceration and bleeding.

mTOR inhibitors

According to pre-clinical data, an improvement of tumour growth by simultaneous administration of temsirolimus with radiotherapy seems possible [84-86]. However, the only study on long-term local tumor control revealed no beneficial effect regarding the combined treatment [84]. Preclinical data show an inhibition of vascular growth when combining everolimus with radiation, however a direct radio-sensitizing effect could not be consistently shown [85,86]. A recent study [87] showed evidence for a suppressed dsDNA break repair by everolimus.

Concerning toxicity, there is one phase I study using temsirolimus with topotecan in recurrent gynaecological malignancies [88]. Dose-limiting toxicity of this combination was myelo-suppression. Although this toxicity cannot be attributed to temsirolimus, we advise caution when combining mTOR-inhibitors with concomitant or sequential radiotherapy, especially if large volumes of bone are in-field as the latter is already known to potentially cause myelo-suppression.

Nevertheless there are no sufficient clinical data to adequately judge the risks and potential benefits of a combined use of mTOR-inhibitors with radiotherapy. As long as this is the case, it can be assumed that similar to anti-angiogenic substances-the combinational use may lead to wound healing deficits, increased bleeding and thrombosis.

Lenalidomide/thalidomide

Data on available studies combining radiotherapy and lenalidomide or thalidomide treatment are shown in Table 4. Thalidomide was initially used and approved as a sedative drug until the early 1960s when it became clear that the intake of “Contergan” during pregnancy could lead to severe deformities. It was only in the late 1990s that thalidomide was rediscovered for its anti-angiogenic properties in cancer therapy [89]. Thalidomide is clinically used in the treatment of multiple myeloma; other areas of possible clinical use and ongoing clinical trials include leprosy, erythema nodosum leprosum and myelodysplastic syndrome.

The most common side effects of thalidomide—besides somnolence—are thromboembolic events as well as peripheral polyneuropathy.

In vitro studies with cells of squamous cell carcinoma and of multiple myeloma showed no evidence for any radio-sensitizing quality of thalidomide. However, a radio-sensitizing effect has been observed in normal hematopoietic bone marrow [90]. Experiments in mice showed thalidomide induced tumour re-oxygenation pointing to a possible radio-sensitizing effect in vivo [91]. Experiments in rats indicate that thalidomide might be protective against radiation-induced proctitis when given 7 days after a single-RT [92].

In humans, thalidomide has been tested in combination with radiotherapy in phase I-III studies. Most data exist for radiation of the CNS combined with the administration of thalidomide.

The largest study so far was conducted by Knisely and co-workers [93]. In this phase III study 183 patients with multiple cerebral metastases were randomized for palliative WBRT (37.5 Gy in 15 fx) vs. WBRT (same...
Substance	Author(s)	Year	Study type	N	tumour	RT dose/ChTx/technique	Toxicity
Sunitinib	Chi et al. [153]	2010	Phase II	23	HCC	52.5 (15 Fx) IMRT/3D-CT	9% grade III upper GI bleeding, 4% hepatitis grade III/IV grade III pancreatitis, 26% grade III + IV thrombopenia, 4% grade III leukopenia
Sunitinib	Stähler et al. [154]	2010	Prospective, non-randomized	22	RCC (all sites)	Median 40 Gy (median 8 Fx)	5% grade IV hypertension, 14% grade III + IV nausea
Sunitinib	Kao et al. [80]	2009	Phase I	21	Oligometastases	40-50 Gy (10 Fx)	62% grade III + IV lymphopenia, 19% grade III neutropenia, 14% grade III + IV thrombopenia, 5% grade III rectal bleeding
Sunitinib	Hui et al. [155]	2010	Phase II	13	Nasopharyngeal carcinoma	Sunitinib after RT (60-70 Gy) and multiple Chx	15% fatal hemorrhages, 31% Grade IV hemorrhages, (among other toxicities)
Sorafenib	Peters et al. [77]	2008	Case study	1	RCC	8 Gy single dose	Grade V bowel perforation (stopped two days before, three days later recommenced)
Lapatinib	Harrington et al. [156]	2009	Phase I	31	LA-HNSCC	66-70 Gy + CisPt	35% grade III mucositis, 19% grade III dermatitis, 13% grade III + IV lymphopenia, 6% grade III neutropenia
Gefitinib	Cohen et al. [157]	2010	Phase I	69	LA-HNSCC	IC Carbo/Tax, hydroxyurea + 5-FU, 2 × 1.5 Gy/d	29% grade III + IV neutropenia, 86% grade III + IV mucositis, 33% grade III + IV dermatitis, 3% grade V infections, 17% grade III + IV infections, 4% grade III rash, 3% grade III neurotoxicity
Gefitinib	Pollack et al. [158]	2011	Phase II	43	Brainstem glioma in children	55.8 Gy	Grade III+IV: lymphopenia (21%), neutropenia (2%), GI (12%), infection (7%), n, pulmonary (5%), renal, skin (2%), metabolic (2%), intratumoral hemorrhage: 7%
Gefitinib	Valentini et al. [159]	2008	Phase I/II	41	Rectal cancer	45 Gy + 5.4 Gy + 5-FU	20% grade III + IV GI toxicity, 15% grade III + IV skin toxicity, 39% grade III + IV hepatic toxicity, 10% grade III + IV GU toxicity, 7% other toxicities grade III + IV
Gefitinib	Wang et al. [160]	2011	Prospective	26	Stage III/IV NSCLC	Median 70 Gy	Grade IV leukopenia 4%, grade IV thrombopenia 8%, grade III esophagitis 4%, grade III pneumonitis 4%
Gefitinib	Zhang et al. [161]	2009	Phase I	24	NSCLC	54-60 Gy	4% grade III nausea
Gefitinib	Chen et al. [162]	2007	Phase I	23	HNSCLC	Up to 72 Gy	13% grade III dermatitis, 57% grade III + IV mucositis, 39% grade III + IV dysphagia, 17% grade III + IV diarrhea, 30% grade III + IV neutropenia, 9% grade III + IV anemia, 4% grade III tumour hemorrhage, 4% grade III GI bleeding
Gefitinib	Maurel et al. [163]	2006	Phase I	18	Pancreatic cancer	45 Gy	No DLT, 11% grade III + IV neutropenia, 6% anemia grade III
Gefitinib	Czito et al. [164]	2006	Phase I	16	Pancreatic + rectal cancer	50.4 Gy (1.8 Gy) + capecitabine	31% grade III + IV diarrhea
Gefitinib	Center et al. [165]	2010	Phase I	16	NSCLC	70 Gy 3D-CT + docetaxel	27% grade III + IV hematotoxicity, 27% grade III + IV esophagitis, 20% grade III + IV pulmonary toxicity
Gefitinib	Schwer et al. [166]	2008	Phase I	15	Malignant glioma	SRS 18-36 Gy	No DLT, no grade > II
Gefitinib	Olsen et al. [167]	2009	Phase I	12	Pancreatic cancer	50.4 Gy (1.8 Gy)	45% grade III nausea
Gefitinib	Brown et al. [168]	2008	Phase I/II	79	GBM	60 Gy + TMZ	18% grade III/IV rash, 16% grade III/IV fatigue, 24% grade III/IV thrombopenia, 4% grade III nausea, 8% grade III diarrhea, 28% grade III/IV leukopenia, 3% grade III anorexia, 18% grade III/IV neutropenia, 6% grade III anemia, 14% grade III lymphopenia, 1% grade V infection without neutropenia, 5% grade III infection without neutropenia, 6% grade III/IV dyspnea, 1% grade III/IV keratitis, 1% grade V pneumonia, 6% grade III/IV pneumonia
Table 3: Studies on small molecules. (Continued)

Study	Year	Design	N	Treatment	Toxicity
Prados et al. [169]	2009	Phase II	65	GBM 59.4 Gy/60 Gy + TMZ	43% grade III lymphopenia, 3% grade IV neutropenia, 2% grade IV thrombopenia, 8% grade III/IV fatigue, 2% grade III diarrhea, 6% grade III rash
Herchenhorn et al. [170]	2010	Phase I/II	37	LA-HNSCC 70 Gy + Cis	No DLT
Choong et al. [171]	2008	Phase I	34	NSCLC Stage III 66 Gy (2 Gy), Arm A: Erlotinib + Cis/Eto, Arm B: Induction Carbo/Tax, Carbo/Tax + Erlotin	41% grade III + IV WBC, 32% grade III + IV neutropenia, 21% grade III + IV thrombopenia, 26% grade III + IV esophagitis, 3% grade III + IV vomiting, 6% grade III + IV diarrhea, 3% grade III/IV pneumonitis/ototoxicity
Peereboom et al. [172]	2010	Phase II	27	GBM 60 Gy + TMZ	7% grade V febrile neutropenia, 4% grade V sepsis without neutropenia, 4% grade V PCP, a pt grade III neutropenia, 15% grade III neutropenia, 30% grade III + IV thrombopenia, 56% pts grade III lymphopenia, 15% grade III + IV anemia, 7% grade III fatigue
Chang et al. [173]	2011	Retrospective	25	NSCLC 40-50 Gy	4% grade III rash, 4% grade III diarrhea/esophagitis/anemia, 8% grade III neutropenia/thrombopenia, 8% grade V pneumonitis, 4% grade III pneumonitis
Li et al. [174]	2010	Phase II	24	LA esophageal cancer 60 Gy + Carbo/Tax	17% ≥ grade III leukopenia, 8% thrombopenia ≥ grade III
Bronisier et al. [175]	2009	Phase I	23	GBM 54-59.4 Gy	39% grade III + IV lymphopenia, 4% grade III rash, 4% grade III diarrhea
Robertson et al. [176]	2009	Phase I	22	Pancreatic cancer Gem weekly, 30-38 Gy	5% grade III vomiting/fatigue/nausea, 5% grade III vomiting/diarrhea/nausea, 9% grade IV fatigue
Duffy et al. [177]	2008	Phase I	20	Pancreatic cancer 50.4 Gy + Gem	100% grade III lymphopenia, 25% grade III thrombopenia, 30% grade III neutropenia, 5% grade IV neutropenia, 10% grade III anemia, 5% grade III fatigue, 15% grade III diarrhea, 10% grade III rash
Krishnan et al. [178]	2006	Phase I	20	GBM 60 Gy	15% grade III stomatitis, 5% grade III fatigue/diarrhea
Iannitti et al. [179]	2005	Phase I	17	LA Pancreatic cancer 50.4 Gy + Tax/Gem	6% grade III nausea/fatigue/rash/small bowel stricture/thrombopenia (each), 18% grade III dehydration/thrombosis, 12% grade III diarrhea/hypersensitivity, 6% grade IV neutropenia
Nogueira-Rodrigues et al. [180]	2008	Phase I	15	LA cervical cancer 45 Gy + brachy/Tx + CisPt	7% grade IV hepatotoxicity, 7% grade III dermatitis, 20% III diarrhea, 13% grade III rash
Arias de la Vega et al. [181]	2011	Phase I	13	LA-HNSCC 63 Gy + Cis adjuvant	Grade III/IV. Mucositis 54%, Asthenia 15%, skin 23%, diarrhea 15%
Lind et al. [182]	2009	Phase I	11	NSCLC, brain metastases WBRT (30 Gy)	9% grade III rash/fatigue
Dobelbower et al. [183]	2006	Phase I	11	Esophageal cancer 50.4 Gy + 5-FU	36% pts grade III + IV leukopenia, 9% grade III anemia, 9% grade III thrombopenia, 18% grade III + IV neutropenia, 27% grade III dehydration, 9% grade III nausea, 9% grade III/9% grade IV esophagitis
Silvano et al. [82]	2008	Case report	1	NSCLC 2 × 8 Gy	Death caused by fatal diarrhea
Huang et al. [184]	2008	Case study	1	NSCLC WBRT 37.5 Gy	Death caused by exacerbated radiodermatitis and subdural hemorrhage
Sarkaria et al. [185]	2007	Phase I	7	NSCLC 60 Gy + CisPt weekly	14% grade III dysphagia, esophagitis, febrile neutropenia, pneumonia
Bourgier et al. [186]	2011	Case reports	3	Breast/prostate/ovary cancer 45 Gy/70 Gy, later	Gastrointestinal radiation recall syndrome with everolimus/temsirolimus

N-number of patients, pt(s)-patient(s), n. r.-not reported, ChTx-chemotherapy, HCC-hepatocellular carcinoma, RCC-renal cell cancer, GBM-glioblastoma multiforme, DVT-deep vein thrombosis, Fx-fractions, SRS-stereotactic radiosurgery, DLT-dose limiting toxicity, LA-locally advanced, Gem-gemcitabine, Tax-Taxol (paclitaxel), Tx-therapy, TMZ-temozolomide, PCP-Pneumocystis pneumonia, Cis-cisplatin, Eto-etoposide.
dose and number of fractions) with thalidomide. In this study, only the known side effects of thalidomide occurred in the usual frequency. Hints to a possible interaction with radiotherapy have not been reported. Nearly half of the patients discontinued the study in the thalidomide arm due to side effects. The major limiting side effect was somnolence [93].

In malignant glioma, thalidomide was used in combination with radiotherapy or radiotherapy plus temozolomide in primary or recurrent settings [94]. Intratumoural bleeding and thromboembolic complications have been reported. However, the rate of complications was not higher than the reported rates for thalidomide alone [95-97].

Other studies, combining radiotherapy of soft tissue/bone metastasis as well as pelvic tumours with thalidomide simultaneously or sequentially revealed no evidence for increased risks of acute or late side effects [99].

However, a single study using radiotherapy (66 Gy in 33 fx) combined with vinorelbine and thalidomide in NSCLC stage III was abrogated after 10 patients due to side effects (thromboembolic, 1 bradycardia II') [100]. As in this study only known side effects of thalidomide occurred, it still remains unclear whether radiation including the lung or the heart leads to increased side effects when combined with thalidomide.

Altogether the combination of thalidomide with simultaneous or sequential RT does not seem to be critical. Only in cases when large volumes of the heart or the lung are exposed, a certain level of cautiousness should be advised.

Lenalidomide

Lenalidomide is a derivative of thalidomide. Thus, the anti-angiogenic effect and the adverse effects are to a large extent similar to thalidomide. However, it largely lacks the sedative side effect, making it better tolerable for patients. Leukopenia and thrombocytopenia have also been reported.

In Europe and the US it is only approved in combination with dexamethasone for the treatment of multiple myeloma as 2nd line therapy. There is only very limited data regarding the combination of lenalidomide and radiotherapy. A single phase I trial [101] in glioblastoma used lenalidomide with RT (60 Gy, 30 fx). Thromboembolic events, pneumonitis and elevation of transaminases have been reported. The maximal tolerable dose was reported to be 15 mg/m², corresponding to the respective dose for monotherapy. Being chemically similar to thalidomide and having a similar profile of side effects, one can indirectly assume a similar pattern of interaction with radiation.

Imatinib

Imatinib is a tyrosine-kinase inhibitor (TKI) of bcr-abl, PDGFR alpha/beta and c-kit. The first successful clinical application of imatinib was in chronic myeloid leukaemia as the bcr-abl-fusion gene plays a crucial role in this disease. As GIS-tumours display a high number of c-kit-mutations, they are currently also treated with imatinib. Imatinib alone is usually well tolerated. Known adverse effects are diarrhea, nausea, vomiting, erythema, edema or the increase of transaminases; leukopenia or thrombocytopenia usually occur only in leukemic diseases. Grade III-IV toxicity is reported in fewer than 10% of the patients.

Several in vitro experiments showed a putative radiosensitizing effect of imatinib [102]. Additionally it has been shown, that the proliferation of fibroblasts can be slowed down in vitro by imatinib [103]. This leads to
speculations about a potential protective effect of imatinib with regard to radiation-induced fibrosis. Three in vivo experiments support this hypothesis [104-106].

Regarding the clinical use of radiotherapy and imatinib only limited data is available. Imatinib has been used in recurrent glioma after radiotherapy (one 112-patient trial with imatinib alone after radiotherapy and three 30-40-patient trials in combination with hydroxyurea). Unexpected adverse effects pointing to an increased toxic profile for the sequential use have not been reported [107-110]. In another trial, 27 patients have been treated with imatinib after radiotherapy in prostate cancer without unexpected side effects [111].

There is only one clinical phase I study regarding the simultaneous application of imatinib to radiotherapy (55.8 Gy in 21 fx) in children with brainstem-tumours. Retrospectively compared to a similar collective, subclinical bleeding seemed increased, but no other unexpected toxicities have been reported [112]. Additionally, there are two case reports for the combinational approach [113,114]. Again, in both cases no unexpected side effects have been reported.

Altogether, sequential application of imatinib with radiotherapy might not bear an increased risk for adverse effects. For the simultaneous application the limited amount of data does not allow a valid judgement about potentially increased side effects.

Discussion

Radiotherapy combined with molecular targeted agents may be associated with unforeseen yet specific toxicities. Based on putative interactions of radiotherapy and the given agent with the targeted signalling cascade, any interactions may not only interfere with any anti-tumour efficacy but may also increase side effects. On the other hand, also radio-protective effects for the tumour are possible if new combined treatment schedules are used. Examples are cetuximab in multimodal radio-chemotherapy regimens for rectal cancer [115-119] or erythropoietin, which was thought to increase the haemoglobin level in head-and-neck cancer patients, but decreased survival most likely due to EPO-receptors on the cancer cells which were not known as a proliferative factor for tumours before [120,121].

However, there are still clinical situations where patients may benefit from the application of a targeted drug in combination with radiotherapy outside approved treatment schedules or clinical trials. The best example is a palliative systemic treatment for disseminated metastases and at the same time an indication for palliative or symptomatic radiotherapy of a single region. In this case, interruption of the systemic treatment may lead to systemic progression under radiotherapy. The present work aims to provide a helpful tool for clinical treatment decisions in such situations.

At present, only limited data is available on the interactions of targeted agents and radiotherapy. Data on toxicity are mostly derived from small case series, retrospective analyses or at best cohort and few randomized studies. For most substances, mild complications are reported—however, rarely exceptional fatal complications have been documented.

Overall, for any of the drugs mentioned here indications for a combination with radiotherapy have to be made cautiously (is a sequential treatment possible?). Furthermore, patients have to be questioned very specifically regarding the intake of targeted drugs. Frequently patients have been advised that these drugs are not “classical cytostatic drugs”. Thus patients often do not self-report intake of targeted drugs when counselled for radiotherapy.

Simultaneous applications of targeted drugs during radiotherapy in non-established schedules should be an exception and reserved for those patients where the systemic tumour situation mandates rapid treatment. Whenever possible, large volume radiotherapy plus targeted drugs should be avoided. These remarks are especially important for hypo-fractionated regimens where high toxicities have been observed (in part with fatal consequences).

In conclusion, molecular targeted agents should only very cautiously in combination with radiotherapy. A meticulous and careful balancing of benefits and risks of increased toxicity is advised.

Abbreviation

CNS: central nervous system; CT: chemotherapy; DFS: disease-free survival; EBRT: external beam radiotherapy; EGFRi: epidermal growth factor receptor inhibitor; IGRT: image-guided radiotherapy; KPS: Karnofsky Performance Status; mo: months; mPFS: median progression-free survival; MST: median survival time; MTD: maximum tolerated dose; mTOR: mammalian target of rapamycin; mTTP: median time to progression; NTD: normalized total dose; OS: overall survival; PFS-6/-12: progression-free survival rate at 6/12 months; pt(s): patient(s); PTEN: phosphatase and tensin homolog deleted on Chromosome 10; QOL: quality of life; RCHT: radio-chemotherapy; RT: radiotherapy; VEGF-R: vascular endothelial growth factor receptor; WBRT: whole brain radiotherapy; wk: week.

Author details

1Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 München, Germany. 2Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsgelklinum Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany. 3Klinik für Strahlentherapie und Onkologie, Johann Wolfgang Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany. 4Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Heinrich Heine Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.

Authors’ contributions

MN and CM performed the literature search and wrote the manuscript. MK, CMR and WB performed critical revision. CB participated in the conception.
as well as the preparation of the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 13 December 2011 Accepted: 21 December 2011

Published: 21 December 2011

References

1. Streefer C: Strong association between cancer and genomic instability. *Radiat Environ Biophys* 2010, 49(2):125-131.

2. Brahim A, Lind BK: A systems biology approach to radiation therapy optimization. *Radiat Environ Biophys* 2010, 49(2):111-124.

3. Hille A, Gruger S, Christiansen H, Wolff HA, Vollmer B, Lehmann J, Dorr W, Rave-Frank M. Effect of tumour-cell-derived or recombinant keratinocyte growth factor (KGF) on proliferation and radiosensitivity of human epithelial tumour cells (hNHSCK) and normal keratinocytes in vitro. *Radiat Environ Biophys* 2010, 49(2):161-207.

4. Jacob P, Ron E. Late health effects of ionizing radiation: bridging the experimental and epidemiological divide. *Radiat Environ Biophys* 2010, 49(2):109-110.

5. Miller AC, Cohen S, Stewart M, Rivas R, Lison P: Radioprotection by the histone deacetylase inhibitor phenylbutyrate. *Radiat Environ Biophys* 2011, 50(4):585-596.

6. Soucy KG, Attarzadeh-DN, Ramachandran S, Soucy PA, Romer LH, Shoukas AA, Berkowitz DE: Single exposure to radiation produces early anti-angiogenic effects in mouse aorta. *Radiat Environ Biophys* 2010, 49(3):397-404.

7. Wolff HA, Rolle D, Rave-Frank M, Schirmer M, Echeler W, Doeffler A, Hille A, Hess CF, Matthias C, Rodel RM, et al: Analysis of chemokine and chemokine receptor expression in squamous cell carcinoma of the head and neck (SCCHN) cell lines. *Radiat Environ Biophys* 2011, 50(1):145-154.

8. Amr E, Seruga B, Martinez-Lopez J, Kwang R, Pandiella A, Tannock IF, Ocana A: Oncogenic targets, magnitude of benefit, and market pricing of antiangiogenic drugs. *J Clin Oncol* 2011, 29(18):2543-2549.

9. Cunningham D, Humbert Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueuer M, Harstkic A, Velsky C, et al: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. *N Engl J Med* 2004, 351(3):337-345.

10. Bonner JA, Harari PM, Giralt J, Azizova N, Shin DM, Cohen RB, Jones CJ, Suit R, Raben D, Jassenn J, et al: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. *The New England journal of medicine* 2006, 354:567-578.

11. Vermeulen JB, Mesia R, Rivera F, Remenar E, Kaakevi A, Rottey S, Enfant J, Zabolotny D, Kienzer HR, Cupissol D, et al: Platinum-based chemotherapy plus cetuximab in head and neck cancer. *N Engl J Med* 2008, 359(11):1116-1127.

12. Harari PM, Huang SM: Modulation of molecular targets to enhance radiation. *Clin Cancer Res* 2000, 6(2):323-325.

13. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L, Chen DJ, Kehlbach R, Rodemann HP: Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. *J Biol Chem* 2005, 280(33):31182-31189.

14. Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CJ, Suit R, Raben D, Baselga J, Spencer SA, Zhu J: Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. *The Lancet Oncology* 2010, 11:21-28.

15. Gunter K, Deuse Y, Butof R, Schaal K, Echeler W, Oertel R, Gremm R, Thames H, Yaromina A, Baumann M, et al: Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression. *Radiother Oncol* 2011, 99(3):323-330.

16. Krause M, Gunter K, Deuse Y, Baumann M: Heterogeneity of tumour response to combined radiotherapy and EGFR inhibitors: differences between antibodies and TK inhibitors. *Int J Radiat Biol* 2009, 85(11):943-954.

17. Toulany M, Dittmann K, Kruger M, Baumann M, Rodemann HP: Radiosensitivity of K-Ras mutated human tumor cells is mediated through EGFR-dependent activation of PI3K-AKT pathway. *Radiother Oncol* 2005, 76(2):143-150.

18. Budach W, Bolke E, Honye B: Severe cutaneous reaction during radiation therapy with concurrent cetuximab. *N Engl J Med* 2007, 357(3):514-515.

19. Berger B, Belk C: Severe skin reaction secondary to concomitant radiotherapy plus cetuximab. *Radiotherapy (London, England)* 2008, 3:5.

20. Bolle E, Gerber PA, Lamming R, Peiper M, Muller-Honey A, Pape H, Gori C, Matuschek C, Bruch-Gerharz D, Hoffmann TK, et al: Development and management of severe cutaneous side effects in head-and-neck cancer patients during concurrent radiotherapy and cetuximab. *Strahlentherapie und Onkologie: Organ der Deutschen Röntgengesellschaft* 2011, 184:105-110.

21. Billan S, Abdah-Bortnyak R, Kuten A: Severe desquamation with skin necrosis: a distinct pattern of skin toxicity secondary to head and neck irradiation with concomitant cetuximab. *J Med Assoc J* 2008, 10(3):247.

22. Prioy OX, Poroddu SV, Burmeister BH, Guminisai A, Thomson DB, Shepherdson K, Poulsen M: Enhanced toxicity with concurrent cetuximab and radiotherapy in head and neck cancer. *Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology* 2009, 90:172-176.

23. Gori C, Berger B, Bolle E, Cerini IF, Duprez F, Locati L, Maillard S, Ozaslan M, Pfeffer R, Robertson AG, et al: High rate of severe radiation dermatitis during radiation therapy with concurrent cetuximab in head and neck cancer: results of a survey in EORTC institutes. *Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology* 2009, 90:166-171.

24. Koutcher JD, Wolsten S, Lee N: Severe Radiation Dermatitis in Patients With Locally Advanced Head and Neck Cancer Treated With Concurrent Radiation and Cetuximab. *American journal of clinical oncology* 2009, 32:472-476.

25. Studer G, Brown M, Salgueiro EO, Schmückle H, Romancik N, Winkler G, Lee SJ, Sträuli A, Kissing B, Dummer R, et al: Grade 3/4 Dermatitis in Head and Neck Cancer Patients Treated with Concurrent Cetuximab and IMRT. *International journal of radiation oncology, biology, physics* 2011, 81(1):110-117.

26. Walsh L, Gillham C, Dunne M, Fraser I, Hollywood D, Armstrong J, Thirion P: Toxicity of cetuximab versus cisplatin concurrent with radiotherapy in locally advanced head and neck squamous cell cancer (LAHNSCC). *Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology* 2011, 98:38-41.

27. Kanakamedella MR, Parkianathan S, Vijayakumar S: Lack of Cetuximab Induced skin toxicity in a previously irradiated field: case report and review of the literature. *Radiat Oncol* 2010, 5:38.

28. Hallqvist a, Wagenius G, Rylander H, Brodin O, Holmberg E, Lüdén B, Evers S, Bergström S, Wichardt-Johansson G, Nilsson K, et al: Concurrent cetuximab and radiotherapy after docetaxel-cisplatin induction chemotherapy in stage III NSCLC-satellite–a phase II study from the Swedish Lung Cancer Study Group. *Lung cancer (Amsterdam, Netherlands)* 2010, 71:166-172.

29. Hughes S, Liong J, Miah A, Ahmad S, Leslie M, Harper P, Prendiville J, Shamash J, Subramaniam R, Gaya A, et al: A brief report on the safety study of induction chemotherapy followed by synchronous radiotherapy and cetuximab in stage III non-small cell lung cancer (NSCLC): SCRATCH study. *Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer* 2008, 3:649-651.

30. Horisberger K, Trehäler A, Mai S, Barreto-Miranda M, Kienle P, Strobel P, Erben P, Woerntle C, Dinter D, Kähler G, et al: Cetuximab in combination with cetapcitabine, irinotecan, and radiotherapy for patients with locally advanced rectal cancer: results of a Phase II MARGIT trial. *International journal of radiation oncology, biology, physics* 2009, 74:1487-1493.

31. Safari H, Suntharalingam M, Dipertillo T, Ng T, Doyle LA, Kraina M, Plett P, Evans D, Wanebo H, Akerman P, et al: Cetuximab with concurrent chemoradiation for esophagogastric cancer: assessment of toxicity. *International journal of radiation oncology, biology, physics* 2008, 70:391-395.

32. Hasselbalch B, Lassen U, Hansen S, Holmberg M, Sorensen M, et al: Cetuximab, radiotherapy and surgery for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. *The Lancet Oncology* 2010, 11:21-28.
trastuzumab with adjuvant radiotherapy in HER2-positive breast cancer patients: acute toxicity analyses from the French multicentric study. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 2008, 19(11):1110-1116.

54. Shaffer R, Tylleskyl S, Rolles M, Cha S, Mohammed I: Acute cardiotoxicity with concurrent trastuzumab and radiotherapy including internal mammary chain nodes: a retrospective single-institution study. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology 2009, 90:122-126.

55. Magné N, Védrine L, Chargan C: Impact on cardiac toxicity with trastuzumab and radiotherapy: the question is still ongoing. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2009, 27:e239; author reply e240-231.

56. Lordick F, Geintz H, Theisen J, Sendler A, Sarbia M: Increased risk of ischemic bowel complications during treatment with bevacizumab after pelvic irradiation: report of three cases. International journal of radiation oncology, biology, physics 2006, 64:1295-1298.

57. Crane CH, Eng C, Feig BW, Das P, Skibber JM, Chang GJ, Wolff RA, Krishnan S, Hamilton S, Janjan Na, et al: Phase II trial of neoadjuvant bevacizumab, capectabine, and radiotherapy for locally advanced rectal cancer. International journal of radiation oncology, biology, physics 2010, 76:824-830.

58. Velekin V, Oblik I, Andelrath F: Long-term results from a randomized phase II trial of neoadjuvant combined-modality therapy for locally advanced rectal cancer. Radiat Oncol 2010, 5:88.

59. Bege T, Leibong L, Viert F, Turini O, Guiramand J, Topart D, Moureau-Zabotto L, Giovannini M, Goncalves A, Delpero JR: Bevacizumab-related surgical site complication despite primary tumor resection in colorectal cancer patients. Ann Surg Oncol 2009, 16(4):856-860.

60. Velekin V, Devirik J, Musiz M, Bracko M, Andelrath F, Oblik I, Ethenovic I, Brecelj E, Kropivnik M, Omej M: Neoadjuvant capectabine, radiotherapy, and bevacizumab (CRAB) in locally advanced rectal cancer: results of an open-label phase II study. Radiat Oncol 2011, 6:105.

61. Willett CG, Duda DG, Di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, Lahdenranta J, Chung DC, Fischman AJ, Lauwers GY, et al: Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiotherapy, and fluorouracil in rectal cancer: a multicentre phase II trial. Ann Oncol 2010, 21:1290-1298a.

62. Velekin V, Tsoutsou PG, Karpouzi A, Tsakatiki M, Karapantzos I, Daniliou V, Koukoutsis C: Radiochemotherapy with cetuximab, cisplatin, and amifostine for locally advanced head and neck cancer: a feasibility study. International journal of radiation oncology, biology, physics 2009, 75:1721-1727.

63. Velekin V, Devirik J, Musiz M, Bracko M, Andelrath F, Oblik I, Ethenovic I, Brecelj E, Kropivnik M, Omej M: Neoadjuvant capectabine, radiotherapy, and bevacizumab (CRAB) in locally advanced rectal cancer: results of an open-label phase II study. Radiat Oncol 2011, 6:105.

64. Willett CG, Duda DG, Di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, Lahdenranta J, Chung DC, Fischman AJ, Lauwers GY, et al: Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiotherapy, and fluorouracil in rectal cancer: a multicentre phase II trial. Ann Oncol 2010, 21:1290-1298a.

65. Velekin V, Tsoutsou PG, Karpouzi A, Tsakatiki M, Karapantzos I, Daniliou V, Koukoutsis C: Radiochemotherapy with cetuximab, cisplatin, and amifostine for locally advanced head and neck cancer: a feasibility study. International journal of radiation oncology, biology, physics 2009, 75:1721-1727.

66. Czito BG, Benndell JC, Willett CG, Morse MA, Blob ME, Tyler DS, Thomas J, Ludwig K, Mantyh CR, Ashton J, et al: Bevacizumab, oxaliplatin, and capectabine with radiation therapy in rectal cancer: Phase I trial results. International journal of radiation oncology, biology, physics 2007, 68:472-478.

67. Czito BG, Ellis LM, Abbbuzzerie JL, Amos C, Xiong HQ, Ho I, Evans DB, Tamm EP, Ng C, Pisters PWT, et al: Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capectabine in locally advanced pancreatic cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2009, 27:3020-3026.

68. Velekin V, Tsoutsou PG, Karpouzi A, Tsakatiki M, Karapantzos I, Daniliou V, Koukoutsis C: Radiochemotherapy with cetuximab, cisplatin, and amifostine for locally advanced head and neck cancer: a feasibility study. International journal of radiation oncology, biology, physics 2009, 75:1721-1727.

69. Czito BG, Benndell JC, Willett CG, Morse MA, Blob ME, Tyler DS, Thomas J, Ludwig K, Mantyh CR, Ashton J, et al: Bevacizumab, oxaliplatin, and capectabine with radiation therapy in rectal cancer: Phase I trial results. International journal of radiation oncology, biology, physics 2007, 68:472-478.

70. Czito BG, Ellis LM, Abbbuzzerie JL, Amos C, Xiong HQ, Ho I, Evans DB, Tamm EP, Ng C, Pisters PWT, et al: Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capectabine in locally advanced pancreatic cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2009, 27:3020-3026.

71. Velekin V, Tsoutsou PG, Karpouzi A, Tsakatiki M, Karapantzos I, Daniliou V, Koukoutsis C: Radiochemotherapy with cetuximab, cisplatin, and amifostine for locally advanced head and neck cancer: a feasibility study. International journal of radiation oncology, biology, physics 2009, 75:1721-1727.
Radiation therapy after R-CHOP for diffuse large B-cell lymphoma. Kelly PJ, Dinkin MJ, Drappatz J, O'Regan KN, Weiss SE: Rationale and role of radiation therapy in the treatment of hematologic malignancies. Wirth A.

Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, Filka E, Yong WH, Farley C, BURNS HA, Greco FA: Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2010, 28(43-48).

Beal K, Abrey LE, Gutin PH: Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: analysis of single-agent and combined modality approaches. Radiat Oncol 2011, 6:2.

Gutin PH, Iwamoto FM, Beal K, Mohile NA, Karimi S, Hou BL, Lymberis S, Yamada Y, Chang J, Abrey LE: Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. International journal of radiation oncology, biology, physics 2009, 75:156-165.

Niyazi M, Ganswindt U, Schwarz SB, Kreth F-W, Tonn J-C, Geisler J, la Fougère C, Ertl L, Linn J, Sievert A, et al: Irradiation and Bevacizumab in High-Grade Glioma Retreatment Settings. International journal of radiation oncology, biology, physics 2010, 1-10.

Lai A, Filka E, McGibbon B, Nghiemphu PL, Graham C, Yong WH, Mishel P, Liu LM, Bergsneider M, Pope W, et al: Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int J Radiat Oncol Biol Phys 2008, 71(5):1372-1380.

Kelly PJ, Dinkin MJ, Drappatz J, O'Regan KN, Weiss SE: Unexpected late radiation neurotoxicity following bevacizumab use: a case series. J Neurooncol 2010, 102(3):485-490.

Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, Filka E, Yong WH, Mishel PS, Liu LM, et al: Phase II Study of Bevacizumab Plus Temozolomide During and After Radiation Therapy for Patients With Newly Diagnosed Glioblastoma Multiforme. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2010, 29.

Wirth A: The rationale and role of radiation therapy in the treatment of patients with diffuse large B-cell lymphoma in the Rituximab era. Leuk Lymphoma 2007, 48(11):2121-2136.

Yahalom J: Radiation therapy after R-CHOP for diffuse large B-cell lymphoma: the gain remains. J Clin Oncol 2010, 28(27):4105-4107.

Phan J, Mazloom A, Jeffrey Mediros L, Zrek TG, Wogan C, Shihadeh F, Rodriguez MA, Fayad L, Fowler N, Boed W, et al: Benefit of consolidative radiation therapy in patients with diffuse large B-cell lymphoma treated with R-CHOP chemotherapy. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2010, 28:4170-4176.

Pfeundschuh M, Trumper L, Osterborg A, Pettingell R, Tmemy M, Imrie K, Ma D, Gill D, Walewski J, Zinlani PL, et al: CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Cancer Lancet 2006, 7(5):379-391.

Peters Naß, Richard DJ, Veerhoff JJC, Stalpers LJA Bowel perforation after radiotherapy in a patient receiving sorafenib. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2008, 26:2405-2406.

Basilik D, Andrejak M, Bentaybeh H, Kanam M, Feurrier C, Lecuyer E, Bouterney M, Gaird R, Douadi Y, Dayen C: Bronchial fistula associated with sunitinib in a patient previously treated with radiation therapy. Ann Pharmacother 44(2):383-386.

Hurt H, Park KR, Jee SE, Jung SE, Kim W, Jeon HM: Perforation of the colon by invading recurrent gastrointestinal stromal tumors during sunitinib treatment. World J Gastroenterol 2008, 14(39):6096-6099.

Kao J, Packer S, Vu HL, Schwartz ME, Sung MW, Stock RG, Lo Y-C, Huang D, Chen S-H, Cesaretti JA: Phase I study of concurrent sunitinib and image-guided radiotherapy followed by maintenance sunitib for patients with oligometastases: acute toxicity and preliminary response. Cancer 2009, 115:3571-3580.

Pouessel D, Cule S: High frequency of intracerebral hemorrhage in metastatic renal carcinoma patients with brain metastases treated with tyrosine kinase inhibitors targeting the vascular endothelial growth factor receptor. Eur Urol 2008, 53(2):376-381.

Silvano G, Lazzari G, Lovechio M, Palazzo C: Acute and fatal diarhoea after erlotinib plus abdominal palliative hypofractionated radiotherapy in a metastatic non-small cell lung cancer patient: a case report. Lung cancer (Amsterdam, Netherlands) 2008, 61:270-273.

Yan DF, Yan SY, Yang JS, Wang YX, Xu XL, Liao XB, Liu JQ: Hemorrhagic brain metastasis from non-small cell lung cancer post gefitinib therapy: two case reports and review of the literature. BMC cancer 2010, 10:49.

Weppler SK, Krause M, Zytomska A, Lambin P, Baumann M, Wouters BG: Response of U87 glioma xenografts treated with concurrent rapamycin and fractionated radiotherapy: possible role for thrombosis. Radiother Oncol 2007, 82(1):96-104.

Shinohara E, Cao C, Niermann K, Mu Y, Zeng F, Hallahan D, Lu B: mTOR Inhibitors Are Safe and Effective Radiosensitizers in Glioblastoma Multiforme Pre-Clinical Models. International Journal of Radiation Oncology Biology Physics 2005, 63:172.

Manegold C: New options for integrating antiangiogenic therapy and platinum-based first-line chemotherapy for advanced non-small-cell lung cancer. Clin Lung Cancer 2008, 9(Suppl 3):S100-108.

Chen H, Ma Z, Vanderwaal RP, Feng Z, Gonzalez-Suarez I, Wang S, Zhang J, Roti Roti JL, Gonzalo S: The mTOR inhibitor rapamycin suppresses DNA double-strand break repair. Radiat Res 2010, 175(2):214-224.

Temkin SM, Yamada SD, Fleming GF: A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecologic oncology 2010, 117(4):473-476.

Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddleman P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, et al: Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999, 341(21):1565-1571.

Epperly MW, Greenberger EE, Franciosa D, Jacobs S, Greenberger JS: Thalidomide radiosensitization of normal murine hematopoietic but not squamous cell carcinoma or multiple myeloma tumor cell lines. In Vivo 2006, 20(3):333-339.

Ariasaus R, Baudete C, Jordan BF, Beehign N, Sorveaux P, De Wever J, Martinpive P, Grégoire V, Feron O, Galilee B: Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clinical cancer research: an official journal of the American Association for Cancer Research 2005, 11:743-750.

Kim KT, Chae HS, Kim JS, Kim HO, Cho YS, Choa W, Choi KY, Rho SY, Kang SJ: Thalidomide effect in endothelial cell of acute radiation proctitis. World J Gastroenterol 2006, 12(30):4779-4785.

Kotsezis JPS, Berman B, Chakravarti A, Aung WKM, Carusen WJ, Robbins HI, Mouvas B, Brachman DE, Henderson RH, Metha VP: A phase III study of conventional radiation therapy plus thalidomide versus conventional radiation therapy for multiple brain metastases (RTOG 0118). International journal of radiation oncology, biology, physics 2008, 71:79-86.

Niyazi M, Sievert A, Schwarz SB, Ganswindt U, Kreth F-W, Tonn J-C, Belka C: Therapeutic options for recurrent malignant glioma. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology 2011, 98:1-14.

Chang SM, Lamborn KR, Malec M, Larson D, Wara W, Sneed P, Rabbitt J, Page M, Nicholas MK, Prados MD: Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. International journal of radiation oncology, biology, physics 2004, 60:353-357.

Groves MD, Puduvalli VK, Chang SM, Conod CA, Gilbert MR, Tremont-Lukats M, Liu T-J, Peterson P, Schiff D, Cloughesy TF, et al: A North American brain tumor consortium (NABC) 99-04 phase II trial of temozolomide plus thalidomide for recurrent glioblastoma multiforme. J Neurooncol 2007, 81(3):271-281.

Turner CD, Chi S, Marcus K, MacDonald T, Packer R, Poussaint TY, Vajapeyam A, Ulrich N, Goumnerova LC, Scott RM, et al: Phase II study of thalidomide and radiation in children with newly diagnosed brain stem gliomas and glioblastoma multiforme. Journal of neuro-oncology 2007, 82:95-101.
98. Kim SY, Hong YS, Kim DY, Kim TW, Kim JH, Kim TW, Kim JH, Im SA, Lee KS, Yun T, Jeong S-Y, Choi H, et al. Preoperative Chemoradiation with Cetuximab, Irinotecan, and Cepacitabine in Patients with Locally Advanced Rectal Cancer: A Multicenter Phase II Study. International journal of radiation oncology, biology, physics. 2011, 81(3):677-683.

99. Kerst JM, Bex A, Mallo H, Dewitt L, Haenen J, Boogerd W, Teertstra H, de Gart GC. Prolonged low dose IL-2 and thalidomide in progressive metastatic renal cell carcinoma with concurrent radiotherapy to bone and/or soft tissue metastasis: a phase II study. Cancer Immunol Immunother. 2005, 54(9):926-931.

100. Ancier MS, Garst J, Warks LB, Larrier N, Dunphy F, Hromed JN, Clough R, Marino C, Vujaskovic Z, Zhou S, et al. Assessing the ability of the antiangiogenic and anticoagulat agent thalidomide to modulate radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 2006, 66(2):477-482.

101. Drappatz J, Wong ET, Schiff D, Kesari S, Batchelor TT, Doherty L, http://www.ro-journal.com/content/6/1/177

102. Topaly J, Fruehauf S, Ho AD, Zeller WJ:

103. Li M, Ping G, Plathow C, Trinh T, Lipson KE, Hauser K, Krempien R, Debus J, Imatinib and hydroxyurea in pretreated progressive growth factor signaling attenuates pulmonary fibrosis. J Exp Med. 2005, 201(6):925-933.

104. Thomas DM, Fox J, Haston CK. Imatinib therapy reduces radiation-induced pulmonary mast cell influx and delays lung disease in the mouse. Int J Radiat Biol. 2009, 85(6):436-444.

105. Li M, Abdollahi A, Grene HJ, Lipson KE, Belka C, Huber PE. Late treatment with imatinib mesylate ameliorates radiation-induced lung fibrosis in a mouse model. Radiat Oncol. 2009, 4:66.

106. Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PM, McMahon G, Grone HJ, Lipson KE, et al. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group. J Clin Oncol. 2008, 26(28):4659-4665.

107. Reardon DA, Egorin MJ, Quinn JA, Rich JN, Gurungaran S, Vredenburgh JJ, Desjardins A, Sathornsumetee S, Provenzale JM, Herndon JE, et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol. 2005, 23(36):9339-9348.

108. Diedermann D, Machtetschek D, Rutkowski T, Petulla S, Li P, Denmeade SR, Carducci MA, Eisenberger MA, DeWeese TL: Phase II study of imatinib mesylate in patients with prostate cancer with evidence of biochemical relapse after definitive radical retropubic prostatectomy or radiotherapy. Urology. 2007, 69(3):526-531.

109. Pollack IF, Jakacki R, Baney SM, Hancock ML, Kiernan MW, Phillips P, Kun LE, Friedman H, Packen R, Banerjee A, et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol. 2007, 9(2):145-160.

110. Ciresa M, D’Angiello RM, Ramella S, Cellini F, Gaudio D, Stitamo G, Fiore M, Greco C, Nudo R, Troddella L. Molecularly targeted therapy and radiotherapy in the management of localized gastrointestinal stromal tumor (GIST) of the rectum: a case report. Tumori. 2009, 95(2):236-239.

111. Boruban C, Sencan O, Akmanus M, Atik ET, Ozbek S. Metastatic gastrointestinal stromal tumor with long-term response after treatment with comitabine and imatinib mesylate. Anti-cancer drugs. 2007, 18:896-972.

112. Rodel C, Arnold D, Hipp M, Lersch T, Dellas K, Lesalnies I, Hermann RM, Lordick F, Hinke A, Hohenberger W, et al. Phase III trial of cetuximab, capecitabine, oxaliplatin, and radiotherapy as preoperative treatment in rectal cancer. International journal of radiation oncology, biology, physics. 2008, 70:1081-1086.

113. Weiss C, Arnold D, Dellas K, Lersch T, Hipp M, Fietkau R, Sauer R, Hinke A, Rodel C. Preoperative radiotherapy of advanced rectal cancer with capecitabine and oxaliplatin with or without cetuximab: A pooled analysis of three prospective phase III trials. Int J Radiat Oncol Biol Phys. 2010, 78(2):472-478.

114. Bertolini F, Chiara S, Bellinga C, Antognoni P, Deisal C, Zironi S, Malavasi N, Scolaro T, Deperrini R, Jovic G, et al. Neoadjuvant treatment with single-agent cetuximab followed by S-FU, cetuximab, and pelvic radiotherapy: a phase II study in locally advanced rectal cancer. International journal of radiation oncology, biology, physics. 2009, 73:466-472.

115. Velenik V, Ocvirk J, Oblak I, Anderluth F. A phase II study of cetuximab, capecitabine and radiotherapy in neoadjuvant treatment of patients with locally advanced resectable rectal cancer. European journal of surgical oncology: the journal of the European Society of Surgical Oncology. 2010, 36:244-250.

116. Machiels JP, Sempoux C, Scalliet P, Coche J-C, Humbert Y, Van Cutsem E, Kerger J, Canes J-L, Peeters M, Aydin S, et al. Phase III study of preoperative cetuximab, capecitabine, and external beam radiotherapy in patients with rectal cancer. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO. 2007, 18:734-744.

117. Henke M, Laszis R, Rube C, Schaefer U, Haase KD, Schlicher B, Mose S, Beer KT, Burger U, Dougherty C, et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet. 2003, 362:1255-1260.

118. Henke M, Matterm D, Pepe M, BeŸay C, Weissengerger C, Werner M, Pajonik F. Do erythropoietin receptors on cancer cells explain unexpected clinical findings? Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2006, 24:4708-4713.

119. Jensen AD, Bergmann 2P, Garcia-Huttenlocher H, Freier K, Debus J, Münter MW. Cetuximab and radiation for primary and recurrent squamous cell carcinoma of the head and neck (SCCHN) in the elderly and multi-morbid patient: a single-centre experience. Head & neck oncology. 2010, 2:34.

120. Garcia-Huttenlocher H, Timke C, Dinkel J, Huber PE, Debus J, Muenter MW. Acute Toxicity of Skin and Mucosa in Patients with Head and Neck Cancer Receiving Radiotherapy Alone or in Combination with Chemotherapy or Cetuximab. International Journal of Radiation Oncology BiologyPhysics. 2009, 75:S385-S386.

121. Jatoi a, Schild SE, Foster N, Henning GT, Dornfeld KJ, Flynn PJ, Fitch TR, Dahlil SR, Rowland KM, Stella PJ, et al. A phase II study of cetuximab and radiation in elderly and/or poor performance status patients with locally advanced non-small-cell lung cancer (N0422). Int J Radiat Oncol Biol Phys. 2008, 71:472-478.

122. Buerit G, Combe C, Favel P, Pommier P, Martin L, Eccolard R, Fontain J, Taritas S, Ramade A, Cérene P. A retrospective, multicenter study of the tolerance of induction chemotherapy with docetaxel, Cisplatin, and 5-Fluorouracil followed by radiotherapy with concomitant cetuximab in 46 cases of squamous cell carcinoma of the head and neck. International journal of radiation oncology, biology, physics. 2010, 77:430-437.

123. Garcia-Huttenlocher H, Steiber E, Timke C, Debus J, Münter MW. Skin Toxicity under Combined Radio-Immune-Therapy with Cetuximab in Head and Neck Cancer. International journal of radiation oncology, biology, physics. 2011, 81(4):915-922.

124. Merlano M, Russi E, Benasso M, Corvò R, Colantonio I, Vigna-Taglianti R, Vilco V, Bagialupi a, Numico G, Crosetto N, et al. Cisplatin-based chemoradiation plus cetuximab in locally advanced head and neck cancer: a phase II clinical study. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO. 2010, 1-6.
Pollack IF, Stewart CF, Kocak M, Poussaint TV, Broniscer A, Banerjee A, Douglas JG, Kun LE, Boyett JM, Geyer JR. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: A report from the Pediatric Brain Tumor Consortium. Neuro-oncology 2011, 13(3):290-297.

Valentini V, De Paoli A, Gambacorta MA, Mantini G, Ratto C, Vecchio FM, Barbaro B, Innocente R, Rossi C, Boz G, et al. Infusional 5-fluorouracil and ZD1839 (Gefitinib-Iressa) in combination with preoperative radiotherapy in patients with locally advanced rectal cancer: a phase I and II Trial (1839FL1009), International journal of radiation oncology, biology, physics 2008, 72:644-649.

Wang J, Xia TY, Wang YJ, Li HQ, Li P, Wang JD, Chang DS, Liu LY, Dy YP, Wang X, et al. Prospective Study of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors Concurrent With Individualized Radiotherapy for Patients With Locally Advanced or Metastatic Non-Small-Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2011, 81(3):e65-e69.

Zhang G, Xie L, Xu X, Chen J, Fu X, Jiang G, Fan M. Thoracic Radiation and Concurrent Gefitinib in Patients with III/B IV Non-small Cell Lung Cancer (NSCLC): Phase I Study. International Journal of Radiation Oncology Biology Physics 2009, 75:5455-5455.

Chen C, Kane M, Song J, Campana J, Raben A, Hu K, Harrison L, Quon H, Dancy J, Baron A, et al. Phase I trial of gefitinib in combination with radiation therapy for patients with locally advanced squamous cell head and neck cancer. Journal of clinical oncology. official journal of the American Society of Clinical Oncology 2007, 25:4880-4886.

Maurel J, Martin-Richard M, Collil C, Sanchez M, Petroiz L, Ginis A, Miquel R, Gallego C, Calaj R, Ayuso C, et al. Phase I trial of gefitinib with concurrent radiotherapy and fixed 2-h gemcitabine infusion, in locally advanced pancreatic cancer. International journal of radiation oncology, biology, physics 2005, 66:1391-1398.

Cato BG, Willett CG, Bendell JC, Morse MA, Tyler DS, Fernando NH, Mantyh CR, Bibe GC, Honeycutt W, Yu D, et al. Increased toxicity with gefitinib, capecitabine, and radiation therapy in pancreatic and rectal cancer: phase I trial results. Journal of clinical oncology. official journal of the American Society of Clinical Oncology 2006, 24:656-662.

Center B, Petty WJ, Ayala D, Hinson LV, Lovato J, Capeljir J, Oaks T, Miller Aa, Blackstock AW: A phase I study of gefitinib with concurrent dose-escalated weekly docetaxel and conformal three-dimensional thoracic radiation therapy followed by consolidative docetaxel and maintenance gefitinib for patients with stage III non-small cell lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer 2010, 5:696-74.

Schwer AL, Damek DM, Kavanagh BD, Lillehei K, Stuhr K, Chen C, Pollack IF, Stewart CF, Kocak M, Morse MA, et al. Phase II trial of erlotinib combined with cisplatin and radiotherapy for patients with locally advanced cervical squamous cell carcinoma. Journal of radiation oncology, biology, physics 2010, 75:1407-1412.

Broniscer A, Baker SJ, Stewart CF, Merchant TE, Lanningham FH, Schaquichevich P, Kocak M, Morris EB, Endersby R, Elsson DW, et al. Phase I and pharmacokinetic studies of erlotinib administered concurrently with concurrent chemoradiation for children with recurrent or refractory, and young adults with high-grade glioma. Clinical cancer research: an official journal of the American Association for Cancer Research 2009, 15:701-707.

Robertson J, Ballouz S, Jayesimi I, Jury R, Mangolis J: A Phase I Study of Dose Escalating Conformal Radiation Therapy with Concurrent Full-dose Gemcitabine and Erlotinib for Unresected Pancreatic Cancer. International Journal of Radiation Oncology Biology Physics 2009, 75:5270-5279.

Duffy a, Kortmansky J, Schwartz GR, Capanu M, Pulido S, Minsky B, Saltz L, Kelsen DP, O'Reilly EM: A Phase I study of erlotinib in combination with gemcitabine and radiotherapy in locally advanced, non-operative pancreatic adenocarcinoma. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 2008, 19:96-91.

Krishnan S, Brown PD, Ballman KV, Finves RJ, Uhm JH, Giannini C, Jaeckle KA, Geoffroy FJ, Nabors LB, Bundker IC. Phase I trial of erlotinib with radiation therapy in patients with glioblastoma multiforme: results of North Central Cancer Treatment Group protocol N0177. International journal of radiation oncology, biology, physics 2006, 65:1192-1199.

Iannitti D, Diperinillo T, Akerman P, Barnett JM, Maa-Acuna C, Cruff D, Miner T, Martinel D, Gottf W, Remis M, et al. Erlotinib and Chemoradiation Followed by Maintenance Erlotinib for Locally Advanced Pancreatic Cancer. American Journal of Clinical Oncology 2005, 28:570-575.

Nogueira-Rodrigues A, da Cama CC, Viegas C, Erlich F, Camisao C, Fontao K, Lima R, Herchenhorn D, Martins RG, Moreira GM, et al. Phase I trial of erlotinib combined with cisplatin and radiotherapy for patients with locally advanced cervical squamous cell cancer. Clinical cancer research: an official journal of the American Association for Cancer Research 2006, 12:1511-1517.

Lind JSW, Lagerwaard FJ, Smit EF, Senan S. Phase I study of concurrent whole brain radiotherapy and erlotinib for multiple brain metastases from non-small-cell lung cancer. International journal of radiation oncology, biology, physics 2009, 74:1391-1396.

Dobellbrower MC, Russa SM, Raisch KP, Seay LL, Clemons LK, Suter S, Posey L, Bonner JA. Epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib, and concurrent 5-fluorouracil, cisplatin and radiotherapy for patients with esophageal cancer: a phase I study. Anti-cancer drugs 2006, 17:95-102.

Huang F-J, Liu S-F, Wang C-J, Huang M-Y: Exacerbated radiodermatitis and bilateral subdural hemorrhage after whole brain irradiation combined with epidermal growth factor receptor tyrosine kinase inhibitors for brain metastases in lung cancer. Lung cancer (Amsterdam, Netherlands) 2008, 59:407-410.

Sarkaria JN, Schwingler P, Schild SE, Grogan PT, Mladec AC, Mandrek SJ, Tan AO, Kobayashi T, Marks RS, Kita H, et al. Phase I trial of sirolimus combined with radiation and cisplatin in non-small cell lung cancer.
186. Bourgier C, Massard C, Moldovan C, Soria JC, Deutsch E: Total recall of radiotherapy with mTOR inhibitors: a novel and potentially frequent side-effect? Ann Oncol 2011, 22(2):485-486.

187. Chang SM, Lamborn KR, Malec M, Wara W, Sneed P, Rabbitt J, Page M, Nicholas MK, Prados MD: Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2004, 60(2):353-357.

188. Atkins MB, Sosman Ja, Agarwala S, Logan T, Clark JI, Ernstoff MS, Lawson D, Dutcher JP, Weiiss G, Curti B, et al: Temozolomide, thalidomide, and whole brain radiation therapy for patients with brain metastasis from metastatic melanoma: a phase II Cytokine Working Group study. Cancer 2008, 113:2139-2145.

189. Chang H-J, Hsu C, Chen C-H, Chang Y-H, Chang J-S, Chen L-T: Phase II Study of Concomitant Thalidomide During Radiotherapy for Hepatocellular Carcinoma. International journal of radiation oncology, biology, physics 2011. doi:10.1186/1748-717X-6-177

Cite this article as: Niyazi et al.: Radiotherapy and “new” drugs-new side effects? Radiation Oncology 2011 6:177.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit