The demand for postsecondary and online classes is rising, requiring higher education institutions (HEIs) to turn to technology to keep up with the trend. According to the National Center for Education Statistics (NCES, n.d.), enrollment in university and college courses increased by 17% from 2003 to 2017, and by 2028, enrollment might increase by another 3%. Moreover, in 2020, the COVID-19 pandemic accelerated the transition by colleges and universities to online teaching, where adequate technology skills are indispensable for facilitating learning. Therefore, many instructors had no choice but to learn to use technology and teach simultaneously (Sims & Baker, 2021). Using technology to transition to remote learning posed some challenges for many instructors (Barton, 2020; Chen, 2021). Clearly, HEIs have relied on educational technology to meet students’ needs and remain competitive. Despite this reliance on technology and its importance for promoting student-centered teaching, many colleges and universities face challenges in equipping their faculty with the necessary skills to succeed in technology-driven teaching environments. Training faculty on technology use remains a challenge in higher education (Belt & Lowenthal, 2020; Kukulska-Hulme, 2012; Thompson et al., 2007). As a result, many faculty members are not proficient in using technology to facilitate learning (Govindarajan & Srivastava, 2020; Zellweger, 2007), and others hesitate to use technology to teach (Belt & Lowenthal, 2020). As Gonzales and Thompson (1998) argued, faculty working in education are not well trained in technology implementation, due to a lack of or poor quality of training. Traditional training in many contexts fails to motivate and equip faculty to teach with technology. The reason is that integrating technology into teaching requires time and continual guidance (Callaway et al., 2001) that traditional technology training and workshops do not provide.

In response to this challenge, some HEIs have turned to technology mentoring (TM) as an alternative or a support to their traditional training because TM “assures the faculty members receive individualized attention focusing on what they want to learn, a self-paced approach to learning, a comfortable setting, flexible times, and ongoing support during...
the learning experience” (Callaway et al., 2001, p. 2). TM is a process in which a more proficient technology user guides another user to learn and apply technology to complete specific tasks. In essence, using TM seems an effective way to close faculty technology skill gaps in the immediate teaching context (Thompson et al., 2007). More importantly, multiple studies (Arslantas & Kocaoz, 2021; Boulay & Fulford, 2009; Giles et al., 2020; Larson, 2009; Thompson et al., 2007) indicate that TM programs and services seem to positively impact how faculty learn and integrate technologies in their courses.

This paper, informed by three components of the Technological Pedagogical Content Knowledge (TPACK) Framework, a technology integration framework developed by Koehler et al. (2013), and drawing on the literature on TM, will briefly describe the TPACK Framework and discuss why and how HEIs can leverage various types of TM to equip their faculty with technological knowledge (TK), pedagogical knowledge (PK), and technological pedagogical knowledge (TPK) for the benefit of student learning. The paper will also share some recommendations for future research in TM.

Literature Review

Barriers to Technology Integration

Despite technology being ubiquitous in higher education, faculty members have faced challenges in learning and teaching with technologies, and past research (Arslantas & Kocaoz, 2021; Daher & Lazarevic, 2014; Filiz et al., 2013; Georgina & Hosford, 2009; Haber & Mills, 2008; Lloyd et al., 2012) has described various roadblocks to technology integration. An investigation by Lloyd et al. (2012) reported that online instructors cited time demand, high amount of work, low salary, and recurring technology issues as common roadblocks to their technology integration efforts. Likewise, research by Arslantas and Kocaoz (2021) and Filiz et al. (2013) noted that participants faced scheduling issues. Furthermore, Georgina and Hosford (2009) argued that inadequate technology literacy skills limit faculty members in their efforts to use technologies. Similarly, Daher and Lazarevic (2014) found lack of faculty training opportunities to be the main barrier to using Web 2.0 technologies with their investigation of 202 instructors at a large community college in the Midwest of the United States that used Web 2.0, which includes technology tools used to facilitate collaboration, communication, and learning. In addition, Haber and Mills (2008) asserted that teaching in isolation represents one of the biggest obstacles online faculty members face on the job. In sum, faculty members face barriers that they cannot remove. Clearly, colleges and universities need to help faculty learn technology and work around the technology integration issues cited above. Furthermore, although lack of training has been a reported issue, some HEIs have relied on traditional training to promote technology integration (Holmes & Kozlowski, 2015; Pomerantz & Brooks, 2017).

Importance and Limitations of Technology Training

Training seems a critical factor in faculty development and institutional success (Almala, 2006; Kenney et al., 2010; Pomerantz & Brooks, 2017), and technology training is essential in developing faculty members’ skills (Daher & Lazarevic, 2014) to integrate technology in their teaching. However, the impact of technology training on faculty’s efforts to use technology seems inadequate in other contexts (Callaway et al., 2001; Gonzales & Thompson, 1998; Zellweger, 2007). As Batts et al. (2010) argued, “The teaching abilities of online faculty and the preparation they receive are key to the success of their academic program, and, ultimately, their institution” (p.28). Technology integration is seen as somehow linked to instructors’ participation in technology training and their technology literacy skill levels (Daher & Lazarevic, 2014; Georgina & Hosford, 2009). For instance, Pomerantz and Brooks (2017) collected data over three months from 11,141 part-time and full-time faculty from 131 4-year colleges, community colleges, and universities located in seven countries, including 37 states in the United States. Their findings revealed that about 50% of respondents admitted that being proficient in using more technologies would increase the quality of their online courses. Keengwe et al. (2009) examined what impacted how 25 faculty members integrated new information communication technology (ICT) in their teaching, and their findings indicated that faculty needed technology training.

Furthermore, Holmes and Kozlowski’s (2015) study concurred that training is critical to faculty development and technology integration. They studied how a professional development initiative centered on developing technology skills influenced 13 faculty members’ perceptions of online teaching and how they integrated technology tools into their teaching strategies. The findings indicated that, upon completing a 10-h professional development program, the participants developed a higher comfort level with technology and a more positive view of technology integration, and therefore integrated more technologies into their teaching (Holmes & Kozlowski, 2015). Technology training seems helpful in enabling faculty to use technology in some contexts.

Other researchers (Callaway et al., 2001; Gonzales & Thompson, 1998; Zellweger, 2007) argued that colleges and universities still struggle to develop their faculty members’ proficiency in technology implementation. Training in many contexts does not seem to meet faculty members’ needs. For example, Gonzales and Thompson (1998) found that technology training has been lacking or poorly implemented,
with the only training available on some campuses being through their computer science department or computer center where the technology is taught, rather than its application to education. Zellweger (2007) shares this view and argues that many instructors are not proficient in using technology to facilitate learning. Furthermore, as stated by Callaway et al. (2001), integrating technology in teaching requires time and continual guidance that traditional technology workshops do not provide and they may not be able to assist faculty in developing technology skills and overcoming barriers to technology integration. Therefore, many institutions have turned to alternatives to meet their faculty technology learning needs. One of these alternatives is technology mentoring (TM) or mentoring for technology. As evidenced in our next section, research indicates that many faculty members seem to have a high opinion of TM. So, it is worth looking into the effectiveness and potential of TM in enabling HEIs to prepare faculty to teach with technology.

Effectiveness of Technology Mentoring

TM has positively impacted faculty members’ efforts to learn and use technology in their classes in various contexts (Belt & Lowenthal, 2020; Boulay & Fulford, 2009; Giles et al., 2020; Larson, 2009). As an example, Boulay and Fulford (2009) evaluated the impact of a TM program on seven 2-year college campuses that belong to the University of Hawaii system. Although all the faculty members did not develop technology skills at the same pace, most of them made progress in learning and using new technology tools (Boulay & Fulford, 2009). Likewise, Larson (2009) evaluated the effectiveness of a TM program that assisted faculty in integrating technology tools in their instruction and concluded that the participants found the model effective. Additionally, Giles et al. (2020) led a mixed-methods study to examine how peer-mentoring influenced the way pre-service teachers developed technology proficiency and how they viewed peer-mentoring and its impact on their technology proficiency levels. The findings reported that the mentees gained adequate support from their peers in completing technology-based tasks. In addition, a literature review by Belt and Lowenthal (2020) concluded that mentoring faculty to use technology is an effective strategy, especially when it is used in peer-mentoring. Based on the research cited above, large technology mentoring programs have assisted faculty in learning technology, integrating tools in their classes, and building relationships and learning communities.

Small TM services are also promising in several teaching contexts. Numerous studies suggest that small-scale TM programs and services can contribute to improving participants’ technology skills and facilitating their technology integration practices (Beisser, 2000; Franklin et al., 2001; Gonzales & Thompson, 1998; Koh, 2020; Konca & Tasdemir, 2018; Sahin, 2006; Silva et al., 2010; Wang & Hutchison, 2009; Yu & Karakaya, 2018). Gonzales and Thompson (1998) examined the effectiveness of a pilot TM program at New Mexico State University and reported that four out of the five mentees improved their technology skills. The mentees, as a result, increased their technology use and encouraged their students to do the same (Gonzales & Thompson, 1998). Beisser (2000) studied a similar TM program at Iowa State University and concluded that the one-on-one TM services effectively developed the mentee’s technology skills. Beisser (2000), therefore, asserted that “One-to-one mentorships can provide cost-effective, personally-rewarding experiences for faculty with motivation and freedom to progress at their own pace” (p. 8). That is, the mentee received personalized guidance in the process.

Sahin (2006) and Wang and Hutchison (2009) studied a TM program in the same context and reported that TM positively impacted participants. Sahin’s (2006) research captured the experience of a graduate student who mentored a faculty in learning and integrating technology in classroom instruction. The results suggested the mentoring experience was successful. Wang and Hutchison (2009) conducted a single case study to examine how graduate students who were technology mentors used Rogers’s (2003) Innovation-Decision Process to guide faculty members to use technology tools that facilitate social networking in their courses. The findings indicated that the TM program was successful because the student-mentor played an essential role in promoting faculty technology integration (Wang & Hutchison, 2009).

Additional studies showed TM positively influenced how participants learned and used technology and built connections in the workplace. Silva et al. (2010) described a faculty mentoring project where one mentor and two mentees worked together for four months to learn to use a virtual environment technology (called Second Life) for teaching languages. The results suggest that the mentor and the mentees enjoyed meaningful interactions and a good experience in the program. Moreover, in a case study, Konca and Tasdemir (2018) described a 4-month-long faculty TM initiative at Ahi Evran University. The data collected revealed that the mentor and the mentee developed a close relationship. Post-questionnaire data showed that mentoring positively impacted how the mentee learned and used technology. Likewise, in a multi-case study, Yu and Karakaya (2018) investigated how three faculty mentees viewed the influence of receiving one-on-one TM on how they applied technology in their instruction to prepare student-teachers. The findings revealed the faculty members: 1) increased their technical knowledge and confidence, 2) received appropriate individual technical guidance, and 3) developed productive relationships with their student-mentors. Lastly, Koh (2020) used the TPACK framework to assess the impact of one-to-one instructional consultation services, and the data collected showed that consultations were helpful to faculty members.
More importantly, TM also seems a practical way to close faculty technology skills gaps. As Gonzales and Thompson (1998) observed, one-on-one TM is a practical way to promote technology learning and integration because its features meet faculty’s needs and interests and enable them to learn technology faster. Similarly, Callaway et al. (2001) opined that TM ensures that faculty receive the individualized attention they need in order to focus on what they want to learn, with a self-paced approach, in a comfortable setting with flexible times, and ongoing support during the period of learning. TM addresses individual faculty’s learning needs in their teaching context instead of focusing on what a group of faculty needs. Furthermore, the literature shows that TM enables some institutions to influence faculty technology integration practices in a practical and timely manner (Yu & Karakaya, 2018).

Despite TM’s potential benefits for improving faculty technology skills, past research has also reported that TM services encountered multiple obstacles, such as technical issues (Yu & Karakaya, 2018), logistics issues (Filiz et al., 2013), and limited access to computers and wireless internet (Konca & Tasdemir, 2018). Thus, using TM does not automatically eliminate the obstacles to technology integration. However, TM done well, coupled with institutional support, can effectively remove these barriers (Callaway et al., 2001; Gonzales & Thompson, 1998). In other words, some qualified and skilled mentors seem to enable participants to remove and navigate barriers to technology integration (Franklin et al., 2001; Gonzales & Thompson, 1998). In other words, some qualified and skilled mentors seem to enable participants to remove and navigate barriers to technology integration (Franklin et al., 2001; Gonzales & Thompson, 1998). In other words, some qualified and skilled mentors seem to enable participants to remove and navigate barriers to technology integration (Franklin et al., 2001; Gonzales & Thompson, 1998).

Research suggests that TM has the potential to enable educational institutions to develop and reinforce faculty technology skills and allow them to build workplace connections and work around barriers to technology integration. Therefore, HEI administrators who desire to improve how they equip faculty to teach with technology may find TM helpful if they are not already implementing TM services.

Why Colleges and Universities Should Leverage Technology Mentoring

HEIs should consider using TM to complement their technology training offering, because, as Belt and Lowenthal (2020) argued, TM is effective in supporting faculty to teach with technology. Not only does offering TM services enable faculty to learn technology, but it also allows them to practice and adapt technology to their curriculum to address their immediate teaching needs (Thompson et al., 2007). What follows are some key TM’s benefits and features. Implementing TM programs and services can enable HEIs to:

1. Motivate faculty to learn and integrate more technology tools in their teaching practices as they become more proficient and comfortable using educational technology (Dittmar & Mccracken, 2012).

2. Offer faculty continual support and immediate feedback in their teaching context, and promote learning communities and peer-learning that benefit faculty (Belt & Lowenthal, 2020; Chuang et al., 2003; Kopcha, 2010; Vaill & Testori, 2012).

3. Meet faculty’s immediate needs by providing technical and instructional support (Callaway et al., 2001; Vaill & Testori, 2012).

4. Offer ongoing support to enable faculty to keep up with the changing nature of educational technology.

5. Increase faculty members’ technology skills and confidence to teach with technology (Thompson et al., 2007).

6. Reach faculty members where they are by accommodating their schedules and catering to their immediate needs (Beisser, 2000; Callaway et al., 2001).

7. Provide faculty members with just-in-time support to overcome some technology integration barriers (Beisser, 2000; Callaway et al., 2001; Wang & Hutchison, 2009).

8. Increase faculty members’ technology skills and confidence to teach with technology (Thompson et al., 2007).

9. Bring practical solutions to faculty challenges, addressing individual needs and offering the opportunity to observe how technology is used, and creating space for faculty to learn by doing (Thompson et al., 2007).

In brief, TM inherently offers a number of ways that colleges and universities can utilize to reinforce their faculty technology integration efforts.

Theoretical Framework

Informed by the three components of the TPACK Framework of Koehler et al. (2013), this paper outlines how HEIs can leverage existing research to start offering TM to equip faculty better to teach with technology. It is therefore helpful to discuss the three components of the TPACK Framework (Fig. 1).

Koehler et al. (2013) stated that there are three core components at the heart of effective teaching with technology: content, pedagogy, and technology. Technology in teaching includes an understanding of how to use computer hardware and software, but is seen as something well beyond this. It is to be used to design meaningful learning experiences for specific content and contexts. Teachers must understand the complex relationships among and between the three types of knowledge. The TPACK Framework promotes the development of technological, pedagogical, and content or the subject matter knowledge (Koehler et al., 2013) and provides guidance for the appropriate use of technology in the classroom. The three components can interact with each other to create additional components. For instance, technology and pedagogy can interact to
create technological pedagogical knowledge. Moreover, they can be influenced by the context in which technologies are being implemented. The framework has been widely used in educational technology and tested by multiple researchers in various contexts (Koehler et al., 2013).

Each component of the TPACK Framework addresses a specific aspect of teaching with technology in the classroom. According to Koehler et al. (2013), content knowledge (CK) relates to what extent instructors master the subject they are teaching. (However, CK is beyond the scope of this article and the work of technology trainers.) Pedagogical knowledge (PK) describes instructors’ understanding and knowledge of learning facilitation, teaching strategies, and methods (Koehler et al., 2013). Technological knowledge goes beyond having basic technology skills. Instead, it requires that instructors understand how and why they use technologies. That is, instructors should understand how technologies can hinder or facilitate learning. Specifically, instructors should “recognize when information technology can assist or impede the achievement of a goal and continually adapt to changes in information technology” (Koehler et al., 2013, p. 14). Lastly, according to Koehler et al. (2013), TPK relates to how technology impacts what kind of pedagogical principles instructors use to teach their content. Different technology tools can be appropriate to support the application of some pedagogical principles, depending on the teaching context at hand. Instructors should be aware that combining pedagogy and technology tools can create limitations or opportunities for teaching and learning facilitation. The next section will describe various types of TM that HEIs can use to develop TK, PK, and TPK.

Leveraging Technology Mentoring to Develop TK, PK, and TPK

According to Leslie and Johnson-Leslie (2014), universities are responsible for finding their faculty appropriate training opportunities, as technology increasingly influences their work. Using TM can be a viable option for HEIs to support faculty. A review of TM research has indicated that multiple types of TM can facilitate the development of TK, PK, and TPK. A detailed step-by-step description of how to build each TM model is beyond the scope of this paper, since TM services should reflect HEIs’ size, needs, and contexts.
Instead, the following section describes the TM options that HEIs can leverage to develop faculty’s TK, PK, and TPK to promote technology integration. The more flexible and cost-effective options are described first. Table 1 summarizes the different types of TM.

Peer-Mentoring

Technology peer-mentoring services are a cost-saving option that institutions new to TM can try before committing to investing time and energy into building a well-structured program. Peer-mentoring happens when colleagues who are proficient technology users mentor their fellow instructors in learning new technologies. Colleges and universities may create and facilitate peer-mentoring services to foster an environment where faculty can develop and strengthen their TK, PK, and TPK. This model can enable faculty to build community of practice and establish support systems that benefit their learning process. For instance, Giles et al. (2020) led a mixed-methods research that examined how similar services influence participants’ technology proficiency levels. The findings indicated that mentees gained adequate support from their peers to complete their technology-based tasks.

Reverse Mentoring

Using reverse mentoring is another cost-saving option HEIs can use to promote TK, PK, and TPK development. Reverse mentoring consists of using students who are proficient technology users to mentor faculty. Discussing how institutions can use reverse mentoring to reduce technological barriers, Frey (2021) stated, “Reverse mentoring can help students learn to disseminate their technological expertise while simultaneously aiding their instructors who may be unfamiliar or out-of-touch with technologies that appeal to today’s students” (p. 7). The process offers potential benefits to both students and faculty. Reverse mentoring can take various forms in higher education. It can be offered through courses, internships, or service learning.

Reverse Mentoring through Internships

This TM model can offer faculty much-needed support to develop their TK, PK, and TPK. It recruits technology proficient student-mentors from a mentoring program. For example, a New Mexico state university department recruited graduate students as mentors through an internship to help faculty learn and integrate technology into their teaching practices (Gonzales & Thompson, 1998). It was reported that the mentees sharpened their technology skills, increased their technology use, and encouraged their students to do the same. Callaway et al. (2001) studied a similar program for teacher education faculty where the mentors were paid students. Their findings indicated that the TM services increased mentees’ technology knowledge and skills and motivated them to use technology in their courses.

Reverse Mentoring through Graduate Courses

Several studies have indicated that this model could be effective in various contexts. TM services within a graduate course at Ahi Evran University recruited a student from the course to mentor a faculty in technology use and integration. The mentee gained practical classroom experience in

Table 1 Summary of different types of technology mentoring

Types of Technology Mentoring	Who is the Mentor?	Key Features
Peer-Mentoring	Faculty members who are proficient technology users	Informal and flexible, appropriate for promoting peer-learning
Reverse Mentoring	Students who are proficient technology users	Structured, flexible, and appropriate for fostering student and faculty collaboration
Reverse Mentoring through Internships or Courses	Technology proficient students enrolled in internships or service-learning programs	Structured, flexible, and appropriate for fostering student and faculty collaboration
Technology Mentoring Programs	Technology support staff	Formally structured or semi-structured and requires fixed schedule and commitment. Appropriate for fostering support staff and faculty collaboration
Faculty Development Models/Approaches that Include TM	Technology support staff or students who are proficient technology users	Semi-structured and flexible. Appropriate for fostering support staff or student and faculty collaboration
Faculty Development Projects that Include TM	Technology support staff or students who are proficient technology users	Formally structured or semi-structured and requires fixed schedule and commitment. Appropriate for fostering support staff or student and faculty collaboration
Technology Mentoring within Programs

The literature shows that HEIs can create various TM programs based on their faculty’s needs, available resources, and teaching context. It also shows that TM programs can be formally structured, semi-structured, or flexible. Some rely on institutional resources and capacity, while others are supported by grant funding. The following section discusses some examples that have contributed to developing faculty’s TK, PK, and TPK.

Technology Mentoring Programs

Higher education institutions with adequate resources and budgets can build a formal TM program to develop and strengthen their faculty technology proficiency. This type of program uses a formal structure to recruit mentors, mentees, and support staff. Those programs also require that faculty commit to participating for a fixed time and meet a set of requirements. Boulay and Fulford’s (2009) study of a program covering seven 2-year college campuses belonging to the University of Hawaii system indicated that most faculty members improved their technical knowledge, used technology in their classes and modeled technology tools for their students (Boulay & Fulford, 2009). The TM program facilitates the faculty’s TK and PK development. An example of a flexible one-to-one instructional consultation program was implemented by the Teaching and Learning Center at a university in New Zealand. The program allowed faculty to schedule and attend 1-h sessions wherever available, and an investigation by Koh (2020) suggested that the consultations successfully addressed the faculty’s technological and pedagogical knowledge.

Faculty Development Models/Approaches that Include TM

A popular option is for HEIs to integrate TM services in their current or whatever faculty development model or approach they are using. Doing so will enable them to use TM to complement their training sessions, course development, or workshops. Using TM to reinforce existing professional development programs is an effective way to motivate faculty to reinforce their TK, PK, and TPK. Dittmar and McCracken (2012) described a META Model that has four components: Mentoring, Engagement, Technology, and Assessment, and was developed and used with faculty who work in an undergraduate program within Capella University. The model includes mentoring networks that facilitate new faculty to receive different types of guidance from veteran faculty mentors. The authors reported that using the META Model improved course development and offerings, instructional practices, and faculty and student engagement.

Similarly, Fulford and Ho (2002) described how the Learning Enhancements through Innovation (LEI) Aloha Project used technology training and mentoring to enable students and faculty members to develop their technology skills. In the program, student-mentors guided faculty in creating technology-driven courses, and the study by Fulford and Ho (2002) suggested that faculty who received technology mentoring increased their confidence and refined their skills in using technology. Another example is the Bay Path College professional development approach that includes training and orientation, peer-mentoring, and continual guidance to prepare its faculty for teaching online. The program was effective in preparing faculty to teach online, and participants reported a high level of satisfaction with the continual support they received (Vaill & Testori, 2012).

Faculty Development Projects that Include TM

Integrating TM services in faculty professional development projects can also lead to the development of TK, PK, and TPK. The projects may vary in length, offer incentives to faculty and mentors, depending on the available budget, and be funded by internal funds or external grants. Jones et al. (2004) described a technology integration project implemented by the College of Education at Towson University that prepared teacher education faculty to learn and model new technologies in their courses. The institution-wide initiative, called “Preparing Tomorrow’s Teachers to Use Technology” (PT3), was supported by a federal grant. The project paid the mentors to work with faculty on technology integration. Faculty mentees who applied and were accepted into the program were also given a stipend. According to Jones et al. (2004), the mentees developed and improved their skills in at least one technology area, due to their participation in the project. The mentees improved their technical knowledge and integrated more technology into their instructional practices. Interestingly, some mentees became mentors in years 2 and 3 of the PT3 project.

Likewise, Callaway et al. (2001) investigated a PT3 technology integration project in a different context and concluded the project increased faculty’s technical knowledge and skills. Larson (2009) examined the performance of a similar PT3 project, and the findings revealed the mentees
learned effective technology integration strategies, including how to develop technology projects and teach to engage students. This type of project can add value to HEIs’ technology integration interventions.

In sum, HEIs have some options in terms of selecting a type of TM that matches their teaching context. However, TM implementation can be complicated (Thompson et al., 2007). HEIs’ administrators should be intentional in building their TM services. To be successful, TM services need strong institutional support. To echo Turville (2004), successful TM programs have an administration that supports the activities, provides participants with enough time to attend, and purchases necessary technologies. In those programs, mentors foster an environment of collaboration and peer learning and provide ongoing timely support (Turville, 2004). To benefit participants, Thompson et al. (2007) recommend those programs create and promote learning communities, match compatible pairs (mentors and mentees), use incentives to motivate participants, celebrate success, and acquire appropriate technologies.

Conclusion and Implications

In conclusion, this paper draws on the literature on TM to discuss TM as a viable faculty development model to support faculty to use technology in their teaching. It argues that colleges and universities that are not using TM should consider trying it, since past research has indicated TM has positively impacted how faculty learn and integrate technology in their classes in multiple contexts. In addition, the paper discusses several types of TMs that HEIs can implement, depending on their needs, size, and teaching setting. Hopefully, HEIs’ administrators and technology trainers will find this discussion on TM beneficial as their institutions continue to seek better ways to create and foster a better technology learning culture. Future research should investigate how technology mentoring impacts faculty evaluation outcomes and students’ learning and satisfaction to produce additional information to motivate HEIs to do more to offer TM to their teaching team.

Declarations

Conflict of Interest Gusman (Teddy) Edouard I have no conflicts of interests to disclose.

References

Almala, A. (2006). The community college leadership perspectives of quality e-learning. *Distance Learning, 3*, 9–14.

Arslan, T. K. A. K., & Kocaöz, O. E. (2021). Examining the mentoring process in collaborative project-based learning of preservice instructional technology teachers. *Education Reform Journal, 6*(1), 47–61.

Barton, D. C. (2020). Impacts of the COVID-19 pandemic on field instruction and remote teaching alternatives: Results from a survey of instructors. *Ecology and Evolution, 10*(22), 12499–12507.

Batts, D., Pagliari, L., Mallett, W., & McFadden, C. (2010). Training for faculty who teach online. *Community College Enterprise, 16*(2), 21–32.

Beisser, S. R. (2000). Technology mentorships in higher education: An optimal match forexposing educational computing skills. In *Society for Information Technology & Teacher Education International Conference* (pp. 441–447). Association for the Advancement of Computing in Education (AACE).

Belt, E., & Lowenthal, P. (2020). Developing faculty to teach with technology: Themes from the literature. *TechTrends, 64*(2), 248–259.

Boulay, R. A., & Fulford, C. P. (2009). Technology mentoring: Research results across seven campuses. In *IFIP World Conference on Computers in Education* (pp. 273–281). Springer.

Callaway, R., Letendre, C., Kimbell-Lopez, K., Matthew, K. & Stephens, E. (2001). Faculty Technology Coaches. In J. Price, D. Willis, N. Davis, & J. Willis (Eds.), *Proceedings of SITE 2001–Society for Information Technology & Teacher Education International Conference* (pp. 2023–2028). Norfolk, VA: Association for the Advancement of Computing in Education (AACE).

Chen, S. (2021). Interpersonal communication instruction during COVID-19: Challenges and opportunities. *Frontiers in Communication, 6*, 652241.

Chuang, H. H., Thompson, A., & Schmidt, D. (2003). Faculty technology mentoring programs: Major trends in the literature. *Journal of Computing in Teacher Education, 19*(4), 101–106.

Daher, T., & Lazarevic, B. (2014). Emerging instructional technologies: Exploring the extent of faculty use of Web 2.0 tools at a midwestern community college. *TechTrends, 58*(6), 42–50.

Dittmar, E., & Mccracken, H. (2012). Promoting continuous quality improvement in online teaching: The meta model. *Journal of Asynchronous Learning Networks JALN, 16*(2), 163–176.

Filiz, O., Yurdakul, I. K., & İzmirlı, ÖŞ. (2013). Changes in professional development needs of faculty members according to stages of technology use and field differences. *Procedia, Social and Behavioral Sciences, 93*, 1224–1228. https://doi.org/10.1016/j.sbspro.2013.10.019

Franklin, T., Turner, S., Kariuki, M., & Duran, M. (2001). Mentoring overcomes barriers to technology integration. *Journal of Computing in Teacher Education, 18*(1), 26–31.

Frey, T. K. (2021). Overcoming technological barriers to instruction: Situating Gen Z students as reverse mentors. *Frontiers in Communication, 2*(6), 6–8.

Fulford, C. P., & Ho, C. P. (2002). Creating a model for technology mentoring programs: Major trends in the literature. *TechTrends, 46*(4), 248–259.

Giles, M., Baker, S. F., & Willis, J. M. (2020). Pre-service teachers’ peer mentoring experience and its influence on technology proficiency. *Mentoring & Tutoring: Partnership in Learning, 28*(5), 602–624.

Gonzales, C. L., & Thompson, V. (1998). Reciprocal mentoring in technology use: Reflecting with a literacy educator. *Journal of Information Technology for Teacher Education, 7*(2), 163–178.

Govindarajan, V., & Srivastava, A. (2020). What the shift to virtual learning could mean for the future of higher ed. *Harvard Business Review, 31*(1), 3–8.

Haber, J., & Mills, M. (2008). Perceptions of barriers concerning effective online teaching and policies: Florida community college faculty. *Community College Journal of Research and Practice, 32*(4–6), 266–283.
Holmes, C. M., & Kozlowski, K. A. (2015). “Tech support”: Implementing professional development to assist higher education faculty to teach with technology. *Journal of Continuing Education and Professional Development, 2*(1), 9–20.

Jones, P., Profitt, T., & Banerjee, T. (2004). Mentoring to master technology integration at Towson University. In *EdMedia+ Innovate Learning* (pp. 4770–4773). Association for the Advancement of Computing in Education (AACE).

Keengwe, J., Kidd, T., & Kyei-Blankson, L. (2009). Faculty and technology: Implications for faculty training and technology leadership. *Journal of Science Education and Technology, 18*(1), 23–28.

Kenney, J. L., Banerjee, P., & Newcombe, E. (2010). Developing and sustaining positive change in faculty technology skills: Lessons learned from an innovative faculty development initiative. *International Journal of Technology in Teaching and Learning, 6*(2), 89–102.

Koehler, M. J., Mishra, P., & Cain, W. (2013). What is technological pedagogical content knowledge (TPACK)? *Journal of Education, 193*(3), 13–19.

Koh, J. H. L. (2020). Three approaches for supporting faculty technological pedagogical content knowledge (TPACK) creation through instructional consultation. *British Journal of Educational Technology, 51*(6), 2529–2543.

Konca, A. S., & Tasdemir, A. (2018). Faculty technology mentoring program facilitates: A case study. *Malaysian Online Journal of Educational Technology, 6*(3), 38–51.

Kopcha, T. J. (2010). A systems-based approach to technology integration using mentoring and communities of practice. *Educational Technology Research and Development, 58*(2), 175–190.

Kukulska-Hulme, A. (2012). How should the higher education workforce adapt to advancements in technology for teaching and learning? *Internet and Higher Education, 15*(4), 247–254.

Larson, L. (2009). A descriptive study of mentoring and technology integration among teacher education faculty. *International Journal of Evidence Based Coaching & Mentoring, 7*(1), 119–135.

Leslie, H., & Johnson-Lee, N. (2014, March). Technology mentoring: A model for professional development. In *Society for Information Technology & Teacher Education International Conference* (pp. 119–135). Association for the Advancement of Computing in Education (AACE).

Lloyd, S. A., Byrne, M. M., & McCoy, T. S. (2012). Faculty-perceived barriers of online education. *Journal of Online Learning and Teaching, 8*(1), 1–12.

National Center for Education Statistics (NCES). (n.d.). *Student enrollment: What is the percent of students enrolled in distance education courses in post-secondary institutions in the fall?* United States Department of Education. https://nces.ed.gov/ipeds/TrendGenerator/app/build-table/2?42?rid=6&cid=85

Pomerantz, J., & Brooks, D. C. (2017). *ECAR study of faculty and information technology*. EDUCAUSE. https://library.educause.edu/-/media/files/library/2017/10/facultyitstudy2017.pdf

Rogers, E. M. (2003). *Diffusion of innovations*. The Free Press.

Sahin, I. (2006). Mentoring program: The bridge between faculty and technology integration. In *Society for Information Technology & Teacher Education International Conference* (pp. 1322–1327). Association for the Advancement of Computing in Education (AACE).

Sims, S. K., & Baker, D. M. (2021). Faculty perceptions of teaching online during the COVID-19 university transition of courses to an online format. *Journal of Teaching and Learning with Technology, 10*, 337–353.

Silva, K., Correia, A. P., & Pardo-Ballester, C. (2010). A faculty mentoring experience: Learning together in Second Life. *Journal of Computing in Teacher Education, 26*(4), 149–159.

Thompson, A. D., Chuang, H. H., & Sahin, I. (Eds.) (2007). *Faculty mentoring: The power of students in developing technology expertise*. IAP.

Turville, J. (2004). *Characteristics of successful technology mentoring programs* (Publication No. MQ95677) [Doctoral dissertation, University of Alberta]. ProQuest Dissertations and Theses Global.

Vailt, A. L., & Testori, P. A. (2012). Orientation, mentoring and ongoing support: A three-tiered approach to online faculty development. *Journal of Asynchronous Learning Networks, 16*(2), 111–119.

Wang, W., & Hutchison, A. (2009). Using a mentoring model to facilitate technology integration into teacher education courses. *The Association for Educational Communications and Technology (AECT)*, 331–334.

Yu, J., & Karakaya, O. (2018, March). Examination of the impact of a one-on-one technology mentoring program: Multiple case studies on the mentees’ perspectives. In *Society for Information Technology & Teacher Education International Conference* (pp. 594–599). Association for the Advancement of Computing in Education (AACE).

Zellweger, F. (2007). Faculty adoption of educational technology. *EDUCAUSE Quarterly, 30*(1), 66–69.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under publication agreement. Author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.