Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities

Bethany Claridge1,2††, Jonathan Lozano2,3††, Qi Hui Poh1,2†† and David W. Greening1,2,4,5*†

1 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia, 2 Baker Heart and Diabetes Institute, Melbourne, VIC, Australia, 3 Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia, 4 Central Clinical School, Monash University, Melbourne, VIC, Australia, 5 Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia

Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields’ utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.

Keywords: extracellular vesicle therapeutics, drug and vector delivery, exosome-based therapeutics, nanomedicine, nanovesicles/microparticles, EV hybrids and mimetics, bioengineering, clinical trials and utility

INTRODUCTION

Extracellular vesicles (EVs) are nanosized, membranous cell-derived particles with important roles in exchanging molecular information between cells; they have been shown to contain and transfer proteins and nucleic acids (DNA, mRNA, miRNA) to recipient cells, modulating their functional activity through transcriptional and translational regulation (Luga et al., 2012; Xu et al., 2016; Thery et al., 2018; Flaherty et al., 2019; Kalluri and LeBlu, 2020);
are well underway (Table 1) wide range of pathologies for tissue repair and regeneration and application as delivery vectors (NCT01294072). Indeed, (Narita et al., 2015; Besse et al., 2016; Chen G. et al., 2018), (Gehrmann et al., 2014; Narita et al., 2015; Besse et al., 2016; Xu et al., 2016; van Niel et al., 2018; Jeppesen et al., 2019; Martinez-Greene et al., 2021; Rai et al., 2021). The International Society for EVs (ISEV) recommends the use of "EV" as a broad classifier term for these types of vesicles, due to the difficulty in assigning an EV to a particular biogenesis pathway, and instead recommends classifying EVs by their physical attributes (size, density), their differing biochemical composition, and surface charge (Thery et al., 2018). The nature and relative abundance of EV cargo is selectively determined during EV biogenesis (Palmulli and van Niel, 2018; van Niel et al., 2018; Clancy et al., 2021), and varies according to EV subtype and state/type of the producing cell (Kowal et al., 2016; Xu et al., 2016; Zabeo et al., 2017; Greening and Simpson, 2018; Martin-Jaular et al., 2021). Importantly, EVs, comprising of a lipid membrane and aqueous lumen (Cvjetkovic et al., 2016; Skotland et al., 2019), provide a pathway for the transfer of hydrophobic and hydrophilic components allowing for complex intercellular signaling (Luga et al., 2012; Cossetti et al., 2014; de Couto et al., 2017; Kamerkar et al., 2017; Nabet et al., 2017; Wang and Lu, 2017; Flaherty et al., 2019; Han et al., 2019).

Due to their nanoscale size, stability, biocompatibility, and propensity for cellular uptake, EVs have been recognized as viable vehicles for therapeutic application. Recent studies have highlighted the therapeutic potential of EVs, investigated in clinical trials (phase I/II) for their regenerative capacity (NCT04223622) (Niada et al., 2019), vaccine potential (Gehrmann et al., 2014; Narita et al., 2015; Besse et al., 2016; Coakley et al., 2017; Shehata et al., 2019; Nikfarjam et al., 2020; Andrews et al., 2021), immunotherapeutic activity (Narita et al., 2015; Besse et al., 2016; Chen G. et al., 2018), and application as delivery vectors (NCT01294072). Indeed, pre-clinical and therapeutic applications of EVs across a wide range of pathologies for tissue repair and regeneration are well underway (Table 1). Critically, stem cell-derived EVs can ameliorate the effects of various diseases in the liver (fibrosis, hepatitis, inflammation), brain (stroke), heart (myocardial infarction, contractility), kidney (renal ischemia, stenosis), and immune system [reviewed in Wiklander et al. (2019) and Yin et al. (2019)]. EVs have been shown in various mechanisms to regulate the immune system, enhancing or inhibiting the immune response depending on their parental cell source and of the immune context of the application site (Zhou et al., 2020), demonstrating a potential use in immunotherapy. Indeed, EVs exert specific and potent therapeutic effects on recipient cells because of complex bioactive properties and are an effective and efficient system of cell-cell communication, surmounting biological barriers.

The diverse beneficial effects of seemingly identical entities [i.e., mesenchymal stem cell (MSC)-EVs, bone marrow-derived stem cell (BM-MSC)-EVs (Kordelas et al., 2014; de Couto et al., 2017; Xue et al., 2018; Han et al., 2019; Lukomska et al., 2019; Williams A. M. et al., 2019)] suggests a complex repertoire of active cargo (Toh et al., 2018) working synergistically, as opposed to a single molecular component. As such, a global view of EV-based therapeutic action is needed. The biological cargo harbored by EVs, including proteins (Al-Nedawi et al., 2008; Yim et al., 2016; Yuan et al., 2017; Zhang G. et al., 2017; Roefs et al., 2020), nucleic acids (Ratajczak et al., 2006; Liang et al., 2016; Xiao G. Y. et al., 2016; Song et al., 2017; Gu et al., 2018; Shi et al., 2018; Gu Y. Y. et al., 2019; Basalova et al., 2020), and lipids (Lindemann, 1989; Fadok et al., 2000; Gurnani et al., 2004; Yuyama et al., 2014) [reviewed in Greening et al. (2017), Skotland et al. (2019), O’Brien et al. (2020)] (Table 2), greatly influence their clinical potential. The protein and lipid expression of EVs yield insights into their surface receptor mediated interactions with, and effects on recipient cells, including their fusion and uptake (Christianson et al., 2013; Purushothaman et al., 2016; Berenguer et al., 2018), while their genetic landscape sheds light on the EVs’ reprogramming potential through regulation of protein expression (Ratajczak et al., 2006; Skog et al., 2008; Abels et al., 2019). Findings from such studies have inspired strategies for EV-based therapeutic development, such as the modification of their contents to perform a specified function for a specific disease phenotype (Table 3) (Al-Nedawi et al., 2008; Hall et al., 2016; Yim et al., 2016; Greening et al., 2017; Yuan et al., 2017; Zhang G. et al., 2017; Chen R. et al., 2019; Shi et al., 2019; Skotland et al., 2019; O’Brien et al., 2020; Roefs et al., 2020). Comprehensive deciphering of EV biochemical and biophysical heterogeneity (Jeppesen et al., 2019), variable composition (Chen et al., 2016; Kowal et al., 2016; Greening et al., 2017; Jeppesen et al., 2019; Martin-Jaular et al., 2021), pharmacokinetic behavior (Gupta et al., 2020), and functional diversity needs to be addressed in order to harness their potential as next generation therapeutics.

Advances and applied technologies which can be used to reproducibly monitor form and function of EVs at molecular and structural levels will be instrumental in future development of EV research knowledge, and therapeutic design and application. Bioinspired engineered EVs/vesicles have emerged as an alternative to native EVs to address issues in production, purity, scalability, and economic viability, while maintaining key properties required for in vivo trafficking, biological function, and therapeutic efficiency. Recent advances in bioengineering have allowed the refinement of cargo loading, targeting capacity, and pharmacokinetic properties of EV-based therapeutics, both native and mimetic.

Here, we focus on recent advances in clinical utility of EVs, understanding the molecular complexity of bioactive cargo, avenues for bioengineering, and monitoring the form and function of EVs intended for clinical use. For further discussion on topics not covered in extensive detail here, we direct readers...
Table 1

EV-associated therapeutics, progressing to pre-clinical and clinical trials	Table 1

Recent years have seen significant development and translation of EV-associated therapeutics, progressing to pre-clinical and clinical studies (Table 1). Further, the capacity of EVs to transfer biological and pharmaceutical molecules to specific tissues and cell types has raised considerable interest in their development as biocompatible drug delivery systems [reviewed in Sluijter et al. (2018); Pirisinu et al. (2020); Herrmann et al. (2021); and Rankin-Turner et al. (2021)]. At present, https://www.clinicaltrials.gov lists 224 studies which include “exosome,” with “extracellularvesicle,” with “nanocarrier,” with “engineeredexosome,” and 2,101 with “liposome.” While a portion of these are diagnostic/biomarker studies, most are clinical trials based on pre-clinical therapeutic success in wound healing (NCT04761562, NCT04281901, and NCT04664738) (Jia et al., 2021; Zhao et al., 2021), heart disease (NCT04327635) (Aday et al., 2021; Hu S. et al., 2021), COVID-19 (NCT04657458, NCT04493242, NCT04276987, NCT04747574, NCT04389385, and NCT04969172) (Mitrani et al., 2021), infectious disease (NCT01478347, NCT01717638, and NCT04350138), diabetes (NCT02138331), stroke (NCT03384433), arthritis (NCT04223622), and drug delivery (NCT01294072, NCT02889822, and NCT04217096). While classified as EV therapies, such studies are more often comprised of a variety of secreted components (i.e., secretome containing soluble factors and EVs) than purified EVs (Table 1). Various terminology is used in the field (Thery et al., 2018), including “extracellularvesicles,” “exosomes,” “secretomes,” “nanoparticles,” or components “enriched in extracellular vesicles.” Regardless of terminology or composition, these therapies utilize the functional capacity EVs/secreted components have to mediate a recipient-cell response through the delivery of cargo including siRNAs (Shhtam et al., 2013), miRNAs (Li L. et al., 2019), proteins (Garave et al., 2021), small molecule drugs (Tian et al., 2014), and molecular toolkits (Ye et al., 2020; Luo et al., 2021; Yao X. et al., 2021).

Immunomodulation

Extracellular vesicles hold the potential for potent immunomodulation, both in eliciting and suppressing immune response (Zhou et al., 2020). EVs share structural similarities to viruses and recent findings demonstrate that viruses exploit mechanisms associated with EV uptake and release (Feng et al., 2013; Altan-Bonnet, 2016; van Dongen et al., 2016; Urbanelli et al., 2019). Previously, the ground-breaking application of EVs in anti-tumor immunotherapy (Zitvogel et al., 1998) led to two clinical trials where EVs activated patient immune response against tumor antigens (Escudier et al., 2005; Morse et al., 2005). Since then, refinements in EV production and modification have led to successful reduction in tumor size in various pre-clinical models (Lee et al., 2012; Mahaweni et al., 2013; Rao et al., 2016; Cheng et al., 2021) and additional clinical trials exploiting their immunomodulatory capabilities to target various cancer types (NCT01550523, NCT01159288, and NCT02507583) (Besse et al., 2016; Andrews et al., 2021). The use of EVs as antigen vehicles is an approach still under development (Cheng et al., 2021; Hu S. et al., 2021), but does represent the most successful translated application. The FDA approved Bexsero bacterial outer membrane vesicle (OMV)-containing meningococcal vaccine is administered to protect against meningococcal group B (Gorringe and Pajon, 2012). This vaccine exploits the complexity of bacterial OMVs to boost immunogenicity of multi-component formulas over those without OMVs (Gorringe and Pajon, 2012). Anti-viral EV-based vaccines are also in development (Sabanovic et al., 2021), with pre-clinical success against COVID-19 (Polak et al., 2020), influenza H1N1 (Rappazzo et al., 2016; Watkins et al., 2017; Shehata et al., 2019), influenza H3N2 (Watkins et al., 2017), and MERS-CoV (Shehata et al., 2019). In addition to immune-priming, EV therapeutics hold the potential for deactivation and suppression of over-active immune responses. Indeed, although results have yet to be released, a clinical trial is underway examining the therapeutic effect of MSC-derived EVs in the autoimmune disease Type I diabetes (NCT02138331). Pre-clinical success in the treatment of sepsis (Song et al., 2017), inflammatory bowel disease (Yang et al., 2015; Mao et al., 2017), and multiple sclerosis (Casella et al., 2018; Laso-Garcia et al., 2018) suggests EV-mediated treatment of inflammatory and autoimmune disorders (Coakley et al., 2017; Sharma et al., 2017; Fujita et al., 2018; Xu H. et al., 2019; Goodman and Davies, 2020; Kahmini and Shahgaldi, 2020; Xu et al., 2020; Horst et al., 2021) may soon expand further into patient trials.

Regeneration and Recovery

Extracellular vesicle therapeutics are also being explored to facilitate/promote recovery and regeneration following injury, surgery, and tissue damage, such as that arising from viral infections [i.e., pulmonary damage in COVID-19 (Borczuk et al., 2020)]. There are currently 13 clinical trials treating COVID-19 with “exosomes” or “extracellular vesicles” (NCT04902183, NCT04798716, NCT04602442, NCT04747574, NCT04491240, NCT04389385, NCT04276987, NCT04384445, NCT04623671, NCT04493242, NCT04657406, NCT04384445, and NCT04969172). Although no large studies have released results, a case report of three critically ill patients administered with amniotic fluid-derived nanoparticles (likely containing EVs or components “enriched in extracellular vesicles”) revealed the therapy had no adverse effects and the patients’ status improved (Mitrani et al., 2021). There are now clinical trials further evaluating the safety and efficacy of this treatment for COVID-19 (NCT04384445, NCT04457406). Another major application of EV therapies is in accelerated and improved healing and regeneration of damaged tissue (Dalirfardouei et al., 2021;
TABLE 1 | Clinical and preclinical applications of extracellular vesicles.

EV type/source*	Method of isolation/ components	Application	Dosage	Method of administration	Active component/mechanism of action	Outcome/Stage	Clinical trial number/ References
Delivery mechanism	Plant vesicles containing curcumin	Method of curcumin delivery to colon tumors	175 mg/m² body surface area	Intravenous infusion, once every 3 weeks	Phase I, active Phase IV	Gyorgy et al., 2017	NCT02603672, NCT014217096
Exosomes derived from LRP5 AV-16-plasmid transfected HEK293T cells	Ultrafiltration (20,000 g, 100,000 g)	Treatment of hereditary deafness in mice	Direct injection into the ear (single dose)	Restore LRP5 protein expression	Exosomes containing the plasmid were able to promote expression of LRP5 and partially restore hearing to mice	Goyen et al., 2017	
Exosomes derived from HEK293T cells expressing Lamp2b fused to IL3 fragment, loaded with Lmxm or siRNA	Ultrafiltration (10,000 g, 100,000 g)	Treatment of leukemia in mice	10 µg	Intraperitoneal injection, twice a week for 3 weeks	Drug/siRNA	Exosomes targeted IL3 receptor overexpressed on leukemia cells, and inhibited cancer cell growth	Bellavia et al., 2017
Exosomes containing β-Fluorouracil and miR-21 inhibitor	Ultrafiltration (10,000 g, 100,000 g)	Treatment of tumors in mice	2 mg	Intravenous injection 3 days a week for at least 6–7 weeks	Drug/miRNA inhibitor	Exosomes down regulated miR-21 expression and reduced tumor growth through reversal of drug resistance	Liang et al., 2020
Platelet-derived extracellular vesicles (white blood, platelet-rich plasma) loaded with TPCA-1 drug	Platelet activation, ultrafiltration	Delivery of anti-inflammatory agents to pneumonia (acute lung injury)	12.6 mg/kg	Intravenous injection (one time)	TPRA-1 (drug), anti-inflammatory response, lung (ALI-induced) specific	EVs containing anti-inflammation agent TPCA-1 reduced inflammation (CD45 immune cells infiltration) and cytokine storm syndrome (pro-inflammatory cytokines)	Mai et al., 2020
HEK293T-derived aptamer-modified exosomes carrying siRNA	Ultrafiltration (10,000 g, 100,000 g)	Treatment of orthotopic prostate cancer mouse model	Intravenous injection twice a week for 3 weeks	SRT16-31RNA, reduced tumor SRT16 (incl. Notch pathway)	Engineered exosomes impaired the proliferation and metastasis of prostate cancer	Yan et al., 2021	
Immuno-modulation	Human umbilical cord mesenchymal stem cell derived exosomes	Concentration (100 kDa cut-off), ultrafiltration with density cushion (100,000 g)	Treatment of inflammatory bowel disease in mice	Intravenous injection, three times over 9 days	Decreasing the expression of L.7	Evos reduced the severity of inflammatory bowel disease through decrease of inflammatory cytokines and macrophage infiltration	Mao et al., 2017
Bone marrow mesenchymal stem cell derived EVs	Ultrafiltration (100,000 g)	Treatment of colitis in mice	50-200 µg	Intravenous injection (one time)	EVs attenuated severity of colitis in mice through downregulation of inflammatory cytokines, regulation of antioxidant/oxidant balance, and moderation of apoptotic occurrence	Tang et al., 2016	
IL-1β pre-treated human umbilical cord mesenchymal stem cell derived exosomes	Ultrafiltration (10,000 g, 110,000 g)	Treatment of sepsis in mice	30 µg	Intravenous injection (one time)	miR-146a	Exosomes from mesenchymal stem cells increased survival rates of septic mice, possibly through immunomodulation	Song et al., 2017
Mesenchymal stem cell derived EVs	Ultrafiltration (18,000 g, 120,000 g) and filtration (0.22 µm)	Treatment of autoimmune encephalomyelitis in mice	60 µg	Intravenous injection (one time)	EVs attenuated the disease phenotype, T cell proliferative potency, leukocyte infiltration, and demyelination	Jafarinia et al., 2020	
Umbilical cord blood mesenchymal stem cell derived microvesicles	Type 1 diabetes mellitus	Intravenous infusion, two doses 1 week apart	Phase II/III, no results posted	EV reduced inflammation and levels of circulating cytokines, reduced brain atrophy, and promoted remyelination and motor function	Luco-Garcia et al., 2018		
Regeneration/healing	Human mesenchymal stem cell derived extracellular vesicles	Ultrafiltration (10,000 g, 100,000 g)	Treatment of a murine multiple sclerosis model	Intravenous injection (one time)	Delivery of anti-inflammatory agents to multiple sclerosis model	EVs reduced inflammation and levels of circulating cytokines, reduced brain atrophy, and promoted remyelination and motor function	NCT021380331
Autogous plasma rich in platelets and EVs (PVRP)	None, plasma enriched for platelets and extracellular vesicles	Healing from surgical treatment of chronic middle ear infections	Gelatin sponge soaked in PVRP applied to the wound (one time)	Recombining	NCT04761552		
Autogous plasma rich in platelets and EVs (PVRP)	None, plasma enriched for platelets and extracellular vesicles	Treatment of chronically infected post-surgical bone cavities (ear)	Ear wicks soaked in PVRP (one time)	PVRP patients had improved treatment outcomes (outcomes measured: health related quality of life questionnaire and surface area of inflammation)	NCT04281901		

(Continued)
TABLE 1 (Continued)

EV type/source*	Method of isolation/ components	Application	Dosage	Method of administration	Active component/ mechanism of action	Outcome/Stage	Clinical trial number/ References
Purified exosome product platelet derived, PEP, Piprin™	Combination of filtration and centrifugation	Treatment (safety) of acute myocardial infarction	Intracoronary infusion (one time), 5%, 10%, or 20% PEP over 5 min	Not yet recruiting	NCT04327635		
Purified exosome product platelet derived, PEP, Piprin™	Combination of filtration and centrifugation	Treatment (safety) of skin graft donor site wounds	Topical, 10% or 20% PEP, 10% or 20% PEP with TISSEEL (fibrin sealant)	Enrolling by invitation	NCT04664736		
Allogenic mesenchymal stem cell derived exosomes enriched with miR-124		Treatment of acute ischemic stroke	Stereotaxis/Intraparenchymal, (one time)	Phase III, recruiting	NCT03384433		
Adipose mesenchymal stem cell derived secretome	Concentration of conditioned media (3 kDa cut-off, whole secretome)	Treatment of arthritic osteochondral explants	ex vivo	Secretome reduced the pathological phenotype of explanted chondrocytes	NCT04223622 (Hada et al., 2019)		
Mesenchymal stem cell derived exosomes	Sequential ultracentrifugation	Treatment of macular holes	20–30 μg	Intraocular injection (one time)	Phase I, active	NCT03431759	
Autologous extracellular vesicles from serum	Treatment of various ulcers	Peri-wound injection, once a week for 3 weeks		Recruiting	NCT04652531		
Allogenic derived extracellular vesicles from mesenchymal stem cells (AGLE-102, AEGLE Therapeutics)		Treatment of dystrophic epidermolysis bullosa wounds		Phase III, not yet recruiting	NCT04173950		
Exosomes derived from bone mesenchymal stem cells (BMSC) and BMSCs overexpressing sonic hedgehog (Shh)	ExoQuick-TC kit	Treatment of spinal cord injuries in rats	40 μg	Intravenous injection, three injections total (once every other day)	Increased level of Shh in injured tissue	Both BMSC and BMSC-Shh exosomes promoted repair of spinal cord injuries, with BMSC-Shh exosomes more beneficial	Li et al., 2021
Human placental mesenchymal stem cell derived extracellular vesicles	Ultracentrifugation (10,000 g, 100,000 g)	Skin rejuvenation	75 μg	Chitosan hydrogel loaded with extracellular vesicles or extracellular vesicles alone, three injections over 2 weeks	EV treatment resulted in reversal of senescent stage of fibroblasts in aging skin, stimulating skin regeneration	Zhao et al., 2021	
Mesenchymal stem cell derived exosomes	Filtration (0.22 μm) and ultracentrifugation (100,000 g)	Treatment of vascular ulcer during stent placement	Coated onto stent, implanted for 4 weeks	Exosomes protected against cartilage damage and improved mobility	Exosome-coated stents accelerated re-endothelialisation and decreased in-stent restenosis. Promoted tissue repair	Xu et al., 2021	
Adipose mesenchymal stem cell derived exosomes	ExoQuick-TC kit or ultrafiltration (0.22 μm)	Treatment of osteoarthritis in mice	1 × 10⁷ particles	Intra-articular injection (one time)	Exosomes regulate mTOR signaling through miR-100-5p	Exosomes protected against cartilage damage and improved mobility	Wu et al., 2019
Bone marrow mesenchymal stem cell derived exosomes and microvesicles	Filtration (0.22 μm) and ultracentrifugation (18,000 g, 100,000 g)	Treatment of osteoarthritis in mice	250–500 ng	Intra-articular injection (one time)	Protected cartilage and bone from degradation	Cosenza et al., 2017	
Mesenchymal stem cell derived exosomes	Size exclusion and concentration (100 kDa cut-off)	Treatment of osteoarthritis in rats	100 μg	Intra-articular injection weekly for 2–8 weeks	Exosomes enhanced s-ESAP synthesis and suppressed NO and MMP13 production through AKT, ERK, and AMPK signaling pathways	Exosomes reduced pain levels, reversed degeneration, and alleviated bone deterioration	Zhang S. et al., 2019
Mesenchymal stem cell derived exosomes	Ultracentrifugation (10,000 g, 110,000 g)	Treatment of osteoarthritis in mice	Intra-articular injection every 3 days for 4 weeks	Exosomes impaired cartilage destruction	Exosomes inhibited cartilage destruction	Xiong et al., 2017	
Bone marrow mesenchymal stem cell derived exosomes	ExoQuick-TC kit	Treatment of osteoarthritis in rats	250 ng	Intra-articular injection (one time)	Potentially through miR-26a-5p targeting of PTEN	Exosomes loaded with miR-26a-5p slow osteoarthritic damage in rats	Jin et al., 2020
Mesenchymal stem cell derived exosomes	Concentration, dEV column, ultracentrifugation (100,000 g)	Treatment of spinal cord injuries in rats	100 μg	Adhesive hydrogel onto damaged tissue or intravenous injection	Mitigated inflammation and oxidation, promoting nerve recovery	L.J. et al., 2020	
EV type/source*	Method of isolation/ components	Application	Dosage	Method of administration	Active component/ mechanism of action	Outcome/Stage	Clinical trial number/ References
---	---	---	---	---	---	---	---
Neural stem cell derived extracellular vesicles	Ultracentrifugation with a density cushion (100,000 g) followed by concentration	Treatment of spinal cord injuries in rats	200 µg	Intravenous injection	Through induction of autophagy	Reduce neuronal apoptosis, neuroinflammation, and promote functional recovery	Nong et al., 2019
Neural stem cell derived extracellular vesicles	Filtration (0.22 µm), concentration (100 kDa cut off)	Treatment of stroke in pigs		Intravenous injection, three times over the 24 h following surgery	Extracellular vesicles improved stroked animal outcomes (decreased lesion volume, brain swelling, edema, and preserved white matter integrity, and improved behavioral and mobility outcomes)	Webb et al., 2018a	
Bone marrow mesenchymal stem cell derived exosomes	Ultracentrifugation (10,000 g, 100,000 g)	Treatment of central ischemia-reperfusion injury (stroke) in rats	80-120 µg	Intravenous injection one time	Inhibition of neuron pyroptosis	Improved cardiac function, vascular density, and smaller infarct size	Li et al., 2021
Hypoxia-preconditioned or normoxic mesenchymal stem cell derived extracellular vesicles (one group overexpressing miR-486-5p)	Ultracentrifugation (10,000 g, 120,000 g) and filtration (0.22 µm)	Treatment of myocardial infarction in mice and non-human primates	1 mg (non-human primates), 5 µg (mice)	Intracardiac injection (one time)	miR-486-5p promotes angiogenesis via downregulation of cardiac fibroblast MMP19-VEGFA cleavage	Exosomes reduced the brain infarct area and improved neurological function	Li et al., 2021
Exosomes derived from mesenchymal stem cells overexpressing miR-133b	Ultracentrifugation (10,000 g, 100,000 g) and filtration (0.22 µm)	Treatment of stroke in rats	100 µg	Intravenous injection (one time)	miR-133b	Exosomes from miR-133b overexpressing MSCs improved recovery following stroke beyond that of exosomes from control MSCs	Xie et al., 2017
Exosomes conjugated to a cardiac homing peptide	Filtration (0.22 µm) and concentration (100 kDa cut-off)	Treatment of myocardial infarction in mice	Intravenous injection (one time)		Exosomes improved cardiac outcomes, with reduced fibrosis and increased angiogenesis	Vandergrift et al., 2018	
Human neural stem cell-derived extracellular vesicles	Filtration (0.22 µm), ultrafiltration (100 K)	Thromboembolic preclinical stroke model without immunosuppression, murine embolic model	2.7 × 10^{11} ± 10% vesicles/kg	Intravenous injection, three times: two, fourteen and 38 h post stroke	Decreased tissue loss (TTC metabolic tissue staining), decreased pro-inflammatory effector Th17 response, EVs were neuroprotective, reduced lesion volume and improved functional outcomes	Vandergrift et al., 2018	
Bone marrow mesenchymal stem cell derived extracellular vesicles	Ultracentrifugation (12,000 g, 100,000 g)	Treatment of a murine model of rheumatoid arthritis	50 mg	Intravenous injection		EVs alleviated rheumatoid arthritis progression	Li et al., 2021b
Purified exosome product (platelet derived, PEP, RionTM)	Filtration, enrichment, and centrifugation	Treatment of ischemic wound healing in rabbits	0.6 mL 20% PEP (100% is 5 × 10^{12} particles/mL)	Intravenous injection twice a week	TGF-β, PEP regulated epithelial transdifferentiation, collagen reorganization, and guided tissue development	PEP biogel facilitated dermal wound healing	Shi et al., 2021
M2 macrophage-derived exosomes	Ultracentrifugation (10,000 g, 100,000 g)	Treatment of a murine model of asthma	20 µg	Intravenous injection in a row		EVs alleviated asthma progression	Li et al., 2021a
Human amniotic fluid mesenchymal stem cell derived exosomes	Ultracentrifugation (13,000 g, 100,000 g)	Treatment of isoproterenol induced cardiac fibrosis in rats	100 µg	Intravenous injection (one time)		Alleviated extracellular matrix deposition and promoted angiogenesis, reducing the level of cardiac remodeling	Hu J. et al., 2021
Vaccine	Drug treated tumor cells from patients	None, cell secretome	Immunotherapy for malignant glioma			Safety: well tolerated, increased progression free survival compared with historical controls.	NCT01500523
Tumor antigen loaded dendritic cell exosomes						Completed, no results posted	NCT02507763
Bacterial outer membrane vesicles	Deoxycholate extraction	Vaccine against meningococcal B	Intramuscular injection, multi-dose			Phase III, completed, in use globally	NCT01475647

(Continued)
EV type/source*	Method of isolation/ components	Application	Dosage	Method of administration	Active component/mechanism of action	Outcome/Stage	Clinical trial number/ References
Dendritic cell derived exosomes	Ultrafiltration (10,000 g, 100,000 g)	Treatment of tumors in mice	3–6 µg	Intradermal injection (one time)	Immune activation of T lymphocytes against tumor antigens	Suppression or eradication of established tumors	Clough et al., 1998
Patient-dendritic cell derived exosomes loaded with peptides for MHC	Filtration (3/0.8 µm) and concentration (500 kDa), density cushion	Treatment of melanoma patients	0.13–0.40 × 10¹⁰	Intradermal and subcutaneous injections, four vaccinations over 4 weeks	Phase I, exosome administration was not toxic and had variable immune response in patients	Escudier et al., 2005	
Patient-dendritic cell derived exosomes loaded with antigenic peptides	Filtration (3/0.8 µm) and concentration (500 kDa), density cushion	Treatment of non-small cell lung cancer patients	1.3 × 10¹⁵	Intradermal and subcutaneous injections, four vaccinations over 4 weeks	Phase I, exosome therapy well tolerated and variable immune response in patients	Morsia et al., 2005	
E. coli outer membrane vesicles (OMVs) through fusion or attachment of target proteins with surface protein	Filtration (0.45 µm, 0.22 µm), concentration (50 K), and ultrafiltration (150,000 g)	Promotion of immune response against tumors in mice	50 µg	Subcutaneous injection, twice (4 days apart)	OMVs delivered antigens to lymph nodes, stimulated dendritic maturation, promotes cytokine release	Elicited a strong T lymphocyte mediated anti-tumor immune response in mice, including immune memory	Hu S. et al., 2021
Dendritic cell derived exosomes loaded with antigenic peptides	Filtration (3/0.8 µm) and concentration (500 kDa), density cushion	Treatment of patients with non-small cell lung cancer	Intradermal injections, four vaccinations over 4 weeks	Dendritic cell exosomes increased activity of natural killer cells	Phase II, boosted natural killer cell activity against tumors in some patients	Bosse et al., 2016	
E. coli OMVs engineered to present influenza antigen-fused proteins	Filtration (0.22 µm) and ultrafiltration (121,560 g)	Vaccine against H1N1/H3N2 influenza A virus	20–40 µg	Subcutaneous injection, two injections 4 weeks apart	Influenza antigens	Mice vaccinated with generated OMVs are protected against H1N1 influenza A virus	Rappazzo et al., 2016; Volkinsi et al., 2017
E. coli OMVs engineered to present viral antigen-fused proteins	Filtration (0.22 µm), concentration (100 kDa cut-off) and ultrafiltration (150,000 g)	Vaccine against H1N1 influenza and MERS-CoV viruses	5 µg	Intramuscular injection, two injections 3 weeks apart	Viral antigens	H1N1 vaccine protected against H1N1 viral infection. MERS-CoV vaccine raised antibodies in vivo which neutralized inactivated MERS-CoV in vitro	Shafafy et al., 2019
CT-26 derived exosomes containing miR-124-3p mimic	Isolated using Exocib kit	Treatment of tumors in mice	20 µg	Subcutaneous injection three times with a 3-day interval mIR-124-3p mimic, elicited a strong anti-tumor immune response	Exosomes inhibited tumor growth and increased median survival time	Bosse et al., 2021	

COVID-19

Method of isolation/ components	Application	Dosage	Method of administration	Active component/mechanism of action	Outcome/Stage	Clinical trial number/ References
Allogenic adipose mesenchymal stem cell derived exosomes	Treatment of COVID-19 associated acute respiratory distress syndrome	2 × 10⁸ particles	Inhalation, once a day for 5 days	Phase I completed, results not posted	NCT04657458; NCT04932424	
CD04 overexpressing TLR9⁺,CD209⁺ cell derived exosomes	Treatment of COVID-19 pneumonia	1 × 10⁷, 5 × 10⁷, 1 × 10¹⁰ particles	Inhalation, once a day for 5 days	Phase I/II, recruiting	NCT04475774; NCT04932183	
Donor derived COVID-19 specific T-cell derived exosomes	Treatment of COVID-19	2 × 10⁷ particles	Inhalation, once a day for 5 days	Phase I/II, active	NCT04389385	
Zofin TM (Organicell) —nanoparticles derived from perinatal sources	Contains soluble factors as well as extracellular vesicles and nanoparticles	Treatment of COVID-19 associated acute respiratory distress syndrome	1–6 × 10¹⁰ particles	Intravenous infusion, once every 4 days (three doses total)	Therapy was safe for all three patients, and all were transferred out of ICU following treatment	NCT04384446; NCT04657406; NCT04902183

*Nomenclature presented is that used in study/trial.
Hu S. et al., 2021; Jia et al., 2021; Lou et al., 2021; Saludas et al., 2021; Zhao et al., 2021). There are promising results in the utilization of EVs to repair arthritic joints (NCT04223622) (Cosenza et al., 2017; Wang et al., 2017; Wu et al., 2019; Zhang S. et al., 2019; Jin et al., 2020) and spinal-cord injuries (Rong et al., 2019; Li L. et al., 2020; Jia et al., 2021), with tissue restoration in EV treatments exceeding that of untreated animals/tissue. As these are recent developments, mechanism of action and clinical translation are still underway. However, there are many clinical trials addressing the regenerative capacity of EVs in surgical and dermal wound healing and tissue regeneration (NCT04652531, NCT04173650, NCT04664738, NCT04761562, and NCT04281901). The regenerative capacity of EVs is also relevant in rescuing and restoring function in damaged organs, including brain (Galiева et al., 2019; Beard et al., 2020) and heart (Kennedy et al., 2020). Animal models of stroke treated with EVs show improved outcomes (Doepner et al., 2015; Otero-Ortega et al., 2017; Tian et al., 2018; Webb et al., 2018a; Spellicy et al., 2020; Liu et al., 2021), in particular those derived from MSCs overexpressing miR-133b (Xin et al., 2017). Indeed, overexpression of miRNAs in EVs represents a promising avenue, with a clinical trial administering EVs enriched with miR-124 for stroke recovery underway (NCT03384433). Cardiac damage following myocardial infarction is debilitating and currently un-preventable, however, there has been significant preclinical success using EVs in reducing infarct size and restoring cardiac function in various in vivo models (Barile et al., 2014; Bian et al., 2014; Chen C. W. et al., 2018; Vandergriff et al., 2018; Hu S. et al., 2021; Saludas et al., 2021; Zhu et al., 2021b). There is now a clinical trial treating patients with an EV product following acute myocardial infarction (NCT04327635). While we wait for results from these trials to be released, the applications and modulation of EV therapies will continue to be developed for the next phase.

Combination Therapies

The therapeutic and clinical potential of EVs is further elevated through their biocompatibility and capacity to be surface modified and coupled with other remedial approaches. As discussed, protein or nucleic acid landscape can be modulated in parental cells to generate vaccines (Rappazzo et al., 2016; Watkins et al., 2017; Shehata et al., 2019; Polak et al., 2020; Hu S. et al., 2021) or bio-modified (biosimilar) therapeutics (Xin et al., 2017). These combination therapies can also utilize the protection, stability, and targeting capacity that EVs provide to mediate the delivery of drugs or gene vectors which are otherwise degraded or cleared. Trials in vivo have proven the efficacy and feasibility of EV-mediated adeno-associated virus (AAV) and siRNA delivery when uptake levels of the component alone are sub-optimal (Gyorgy et al., 2017; Munagala et al., 2021). Indeed, in Lhfp5−/− hereditary deafness, EV-mediated delivery of AAV was more effective in rescuing hearing than AAV treatment alone (Gyorgy et al., 2017). Additionally, EVs delivering siRNA-KRAS were able to successfully silence KRAS in murine tumor tissues, reducing tumor size; the same technology also enabled the delivery of plasmids to successfully replace/restore genes (Munagala et al., 2021). Furthermore, the incorporation of drugs and molecular factors into EVs improves their bioavailability and delivery, increasing efficacy of treatment (Aqil et al., 2017; Bellavia et al., 2017; Luan et al., 2017; Liang et al., 2020, 2021). EVs containing curcumin (a natural anti-inflammatory compound) significantly inhibited tumor size when compared with either component alone by increasing curcumin’s bioavailability (Aqil et al., 2017). Indeed, the success of this treatment in vivo has led to an active clinical trial investigating the effect of curcumin-containing plant exosomes in the treatment of colon cancer (NCT01294072). While there are few clinical trials using EV-combination therapies (NCT04747574, NCT01294072, and NCT03384433), the pre-clinical success supports the translational potential of this approach.

Commercial Pursuit of Clinical Translation

Already the revolution of EV therapeutics is underway, with many emerging and established companies now focused on their development and application (Gimona et al., 2017; Zipkin, 2019). Ventures in treatments for dermatological disorders and skin repair (Aegle Therapeutics, XORstem Inc., Exogenus Therapeutics), as well as cancer (Aethlon Medical, Unicyte AG, TAVEC Pharmaceuticals, Puretech Health, EV Therapeutics Inc., Anjarium Biosciences, Codia Biosciences) and neurological disorders/diseases (Stemcell Medicine Ltd., Puretech Health, Evox Therapeutics, Codia Biosciences) dominate the commercial EV-based therapeutic landscape. Codia Biosciences have identified two EV-associated membrane proteins (internal/lumen or external orientated), which they use as scaffolds to link molecules of interest and engineer EVs for therapeutic application; this engineering platform (EngExTM) has been utilized to develop exoSTING (EVs enriched in stimulator of interferon genes in the lumen) (Jang et al., 2021), and exoIL12 (Lewis et al., 2021), currently in Phase 1/2 clinical trial (NCT04592484). Significant efforts in other areas include wound healing (RION Health), metabolic disorders (Evox Therapeutics), fibrotic and immunological conditions (Puretech Health), acute respiratory distress syndrome (Direct Biologics), kidney and liver disease (Unicyte AG), and inflammation (Direct Biologics, Cell-Factory BVBA, Puretech Health). Also in development are treatments for specific debilitating and/or life-threatening disorders (VivaZome Therapeutics), retinal disease (ReNeuron), genetic diseases (Anjarium Biosciences), diabetes (Unicyte AG), stroke (ReNeuron), lymphatic disorders (Puretech Health), and cystic fibrosis (OmniSpirant). With EV therapeutics being developed to combat a wide variety of diseases, understanding these membranous entities, their activities, and their engineering are all critical for achieving full therapeutic potential.

EVs AS NANOCARRIERS OF FUNCTIONAL CARGO

Native EVs are cell-derived, lipid-bound nanoparticles (30–1000 nm) that facilitate intercellular communication through targeted delivery of bioactive cargo to alter recipient cell
live-cell reporters (Chen M. et al., 2018; Sung et al., 2020). In this resolution microscopy, subcellular composition studies, or novel depth evaluation exploring subcellular analyses using high-resolution methods require more infusion (Mathieu et al., 2019). As such, uptake and intracellular interactions, phagocytosis, micropinocytosis and possibly direct receptor-mediated endocytosis, lipid raft interactions, clathrin entry routes of EVs are complex mechanisms ranging through mediated transcytosis. The mechanisms by which EVs are Hall et al., 2016; Kojima et al., 2018) through receptor-transversing biological barriers [e.g., BBB (Haney et al., 2015; Rana et al., 2011; Sobo-Vujanovic et al., 2014; Vinas et al., 2020) and direct signal transduction (Nazarenko et al., 2010; Rana et al., 2011; Sobo-Vujanovic et al., 2014; Vinas et al., 2018). Further, EV surface composition is important for traversing biological barriers [e.g., BBB (Haney et al., 2015; Hall et al., 2016; Kojima et al., 2018)] through receptor-mediated transcytosis. The mechanisms by which EVs are internalized by target cells are still poorly understood, often uptake is cell and context dependent. Currently known cellular entry routes of EVs are complex mechanisms ranging through receptor-mediated endocytosis, lipid raft interactions, clathrin interactions, phagocytosis, micropinocytosis and possibly direct fusion (Mathieu et al., 2019). As such, uptake and intracellular mechanisms of trafficking and localization requires more in-depth evaluation exploring subcellular analyses using high-resolution microscopy, subcellular composition studies, or novel live-cell reporters (Chen M. et al., 2018; Sung et al., 2020). In this section, we discuss EVs as carriers of functional cargo and their therapeutically promising characteristics.

Cell Reprogramming Using EVs

Preclinical development of EVs have focused on their ability to horizontally transfer bioactive components, eliciting transcriptional and translational modulation (Valadi et al., 2007), antigen presentation (Gurnani et al., 2004; Garcia et al., 2016), and functional regulation in recipient cells (Al-Nedawi et al., 2008; Skog et al., 2008; Alvarez-Erviti et al., 2011; Peinado et al., 2012; Kamerkar et al., 2017; Wu et al., 2019; Cocozza et al., 2020; Li et al., 2021b) [reviewed in Vater et al. (2016), Murphy et al. (2019), and Russell et al. (2019)]. EVs are involved in transferring molecular cargo, between animal cells (Valadi et al., 2007; Mittelbrunn et al., 2011; Ono et al., 2019), from parasite to its mammalian host (Buck et al., 2014; Coakley et al., 2017), and from plant to fungal cells (Cai et al., 2018). In addition to their role in communication between cells and organs, EVs are excellent therapeutic delivery systems due to their: (i) ability to protect bioactive cargo, (ii) inherent biocompatibility, (iii) small size and negative surface charge, (iv) ability to cross biological membranes, including blood-brain barrier (BBB), and (v) capacity to target specific cells. The rigid structured membranes [resulting from an abundance of sphingomyelin (Niemelä et al., 2004; Saeedimasine et al., 2019; Smith et al., 2020) and cholesterol (Needham and Nunn, 1990; Leflin et al., 2014)] of EVs protect biological macromolecules from degradation [i.e., nucleases (Skog et al., 2008; Cheng et al., 2014; Fernando et al., 2017) and protases (Haney et al., 2015; Cvjetkovic et al., 2016; Sterzenbach et al., 2017; Zaborowski et al., 2019)] and micro-environmental changes [i.e., pH (Parolini et al., 2009; Aoi and Marunaka, 2014) and osmolarity (Fathali et al., 2017)]. Therefore, compared to soluble factors, EVs more efficiently deliver a complex variety of active biomolecules (Obregon et al., 2009) resulting in greater potency (Mitchell et al., 2019; Cocozza et al., 2020; Gurung et al., 2020). As a result of their cellular origin, EVs are associated with low immunogenicity (Zhu et al., 2017; Sharma et al., 2020) and are capable of interacting with innate immune cells through surface-expressed components (Admire et al., 2003; Tietjen et al., 2014; Rao et al., 2015; Antes et al., 2018) [e.g., anti-phagocytic signals (Rodriguez et al., 2013; Gordon et al., 2017; Kamerkar et al., 2017; Hsu et al., 2018; Tang Y. et al., 2019; Cordonnier et al., 2020; Daassi et al., 2020] and opsonins (Miksa et al., 2009)]. EV-mediated crosstalk may occur unidirectionally or reciprocally or even via systemic communication, during which EVs target to various tissues and organs. Importantly, the EV surfaceome also facilitates inherent targeting properties/tropism (Nakamizo et al., 2005; Kidd et al., 2009; Hoshino et al., 2015; Wu et al., 2020) and direct signal transduction (Nazarenko et al., 2010; Rana et al., 2011; Sobo-Vujanovic et al., 2014; Vinas et al., 2018). Further, EV surface composition is important for traversing biological barriers [e.g., BBB (Haney et al., 2015; Hall et al., 2016; Kojima et al., 2018)] through receptor-mediated transcytosis. The mechanisms by which EVs are internalized by target cells are still poorly understood, often uptake is cell and context dependent. Currently known cellular entry routes of EVs are complex mechanisms ranging through receptor-mediated endocytosis, lipid raft interactions, clathrin interactions, phagocytosis, micropinocytosis and possibly direct fusion (Mathieu et al., 2019). As such, uptake and intracellular mechanisms of trafficking and localization requires more in-depth evaluation exploring subcellular analyses using high-resolution microscopy, subcellular composition studies, or novel live-cell reporters (Chen M. et al., 2018; Sung et al., 2020).
TABLE 2 | Evidence supporting the role of extracellular vesicle cargo in intercellular communication.

Concept	Reprogramming	Tropism	Donor cell	Recipient cell	Active cargo	Approach used to confirm cargo functionality	Key findings	References	
Protein-based	Y	N	EGFRvIII-positive gliomas (U373; human astrocytoma cells)	Brain microvascular endothelial cells (HMBVECs)	Angiogenin, IL-6, IL-8, TIMP-1, VEGF and TIMP-2	Knockdown of integrin expression using short hairpin RNAs (shRNAs) demonstrated threefold reduction of EVs in the lung compared with control EVs, and blocking of cognate ligands of specific integrins markedly reduced uptake by recipient cells	Validated natural and efficient homing capacity of EVs derived from three metastatic cancer cell lines to their corresponding primary sites of metastasis (see donor cells), demonstrated that EV with specific homing can induce metastasis in corresponding target organ, highlighted association of specific integrins to EV homing capacity, demonstrated selective uptake of EVs by specific cell types in target organ via expression of cognate ligands on recipient cells, observed EV treatment upregulated gene expression, particularly pro-inflammatory (St100) genes involved in metastasis, as demonstrated by an increase in proliferation and migration in recipient cells following EV treatment, proposed that integrin expression in plasma-derived EVs is good biomarker for organotropism	Costa-Silva et al., 2015	
	Y	N	Human U87 glioma cells	Brain microvascular endothelial cells (HMBVECs)	Angiogenin, IL-6, IL-8, TIMP-1, VEGF and TIMP-2	Demonstrated EV-mediated contribution to tumor growth and metastasis through transfer of MET to mobilized BMDCs to form a pre-metastatic niche, reduced tumor growth using EVs expressing low levels of MET	Reduced expression of IL-4 upregulated anti-inflammatory markers (arg1 and ym1) in myeloid cells in vitro, and in primary microglia and peritoneal macrophages, upregulated anti-inflammatory markers (COX2 and arg1), and decreased pro-inflammatory marker iNOS, both at the protein and mRNA levels, MIFGE8 inhibition via their corresponding integrin w6/8 significantly reduced the biological effect of IL-4 + EVs as well as downstream mRNA expression	Demonstrated silencing MET using shRNA and crizotinib (MET inhibitor)	Rehalo et al., 2015
	Y	N	Mouse microglia cell line (BV-2)	Myeloid cells, primary microglia and bone marrow and peritoneal macrophages, and female C57BL/6 mice and R26-stop-dTomato mice	IL-4, MIFGE8	Overexpression of IL-4 upregulated anti-inflammatory markers (arg1 and ym1) in myeloid cells in vitro, and in primary microglia and peritoneal macrophages, upregulated anti-inflammatory markers (COX2 and arg1), and decreased pro-inflammatory marker iNOS, both at the protein and mRNA levels, MIFGE8 inhibition via their corresponding integrin w6/8	Demonstrated silencing MET using shRNA and crizotinib (MET inhibitor)	Reduced expression of IL-4 upregulated anti-inflammatory markers (arg1 and ym1) in myeloid cells in vitro, and in primary microglia and peritoneal macrophages, upregulated anti-inflammatory markers (COX2 and arg1), and decreased pro-inflammatory marker iNOS, both at the protein and mRNA levels, MIFGE8 inhibition via their corresponding integrin w6/8	Costa-Silva et al., 2015
	Y	Y	Mouse bone marrow-derived cells (BMDCs)	Mouse and human liver Kupffer cells	MET	Silencing MET using shRNA and crizotinib (MET inhibitor)	Demonstrated silencing MET using shRNA and crizotinib (MET inhibitor)	Demonstrated silencing MET using shRNA and crizotinib (MET inhibitor)	Explorato et al., 2015
	Y	Y	Pancreatic ductal adenocarcinoma cells (PDACs)—Mouse (R6506B, PAN02) and human (PDAC-3)	Mouse and human liver Kupffer cells	MF	Silencing MF using shRNA	Demonstrated silencing MF using shRNA	Demonstrated silencing MF using shRNA	Costa-Silva et al., 2015
N	Y	N	Primary rat cardiomyocytes (1–2 days old rat pups), H9C2 (embryonic rat heart tissue)	HUVECs and primary adult cardiac rat microvascular ECs (CMVEC)	GLUT1, GLUT14	Western blot validation of GLUT1/4 presence in EVs, demonstrated EV-associated GLUT1/4-mediated glucose uptake by endothelial cells (function), and established EV-association with GLUT1/4 through co-localization of fluorescent EVs and GLUT1/4	Demonstrated EV-associated GLUT1/4-mediated glucose uptake by endothelial cells (function), and established EV-association with GLUT1/4 through co-localization of fluorescent EVs and GLUT1/4	Exploreda et al., 2016	
	N	N	Primary rat cardiomyocytes (1–2 days old rat pups), H9C2 (embryonic rat heart tissue)	HUVECs and primary adult cardiac rat microvascular ECs (CMVEC)	GLUT1, GLUT14	Western blot validation of GLUT1/4 presence in EVs, demonstrated EV-associated GLUT1/4-mediated glucose uptake by endothelial cells (function), and established EV-association with GLUT1/4 through co-localization of fluorescent EVs and GLUT1/4	Demonstrated EV-associated GLUT1/4-mediated glucose uptake by endothelial cells (function), and established EV-association with GLUT1/4 through co-localization of fluorescent EVs and GLUT1/4	Exploreda et al., 2016	
TABLE 2 (Continued)

Concept	Reprogramming Tropism	Donor cell	Recipient cell	Active cargo	Approach used to confirm cargo functionality	Key findings	References
Glycolipid-based	Y	Neuroblastoma (NB2), murine microglial cell line (NB2)	Neuro2a (N2a), murine microglial cell line (NB2)	Glycoproprotein (GSL) glycan	Cleavage of EV-associated GSL glycosidase sufficiently prevents the association of EVs with Aβ, an important factor in the pathogenesis of Alzheimer's disease.	(i) Demonstrated that N2a-derived EVs are associated with membrane glycolipid GMI ganglioside, and are incorporated into hippocampal (Aβ-monoclonal) plaques. (ii) High-mobility group protein 1 (HMGB1) associated with macrophages and inflammatory cytokines in the Alzheimer's disease brain. The interaction between GM1 ganglioside and Aβ is involved in the initiation of the inflammatory cascade. (iii) Identified the critical role of GM1 ganglioside in the development of Alzheimer's disease. (iv) Demonstrated the potential therapeutic effects of GM1 ganglioside treatment on the progression of Alzheimer's disease.	Gu et al., 2014
RNA-based	Y	Mouse embryonic stem cells (ESiC)	Mouse hematopoietic progenitor cells (mHPC), murine BMDMs	Oct4	Demonstrated enrichment of Oct-4 mRNA and protein in EVs compared to parental cells, and that upon treatment with EVs, recipient cell displayed increased expression of Oct-4 protein. Further demonstrated Oct-4 mRNA-mediated transcriptional reprogramming by pre-treating EVs with RNAase, which diminished Oct-4 expression in recipient cells.	(i) Demonstrated the enrichment of Oct-4 mRNA and protein in EVs compared to parental cells. (ii) Identified the role of Oct-4 mRNA in the transcriptional reprogramming of recipient cells. (iii) Demonstrated the potential therapeutic effects of Oct-4 mRNA-mediated transcriptional reprogramming on the repair of damaged tissues. (iv) Established the potential use of Oct-4 mRNA in regenerative medicine.	Natajczak et al., 2006
RNA-based	Y	Bone marrow-derived mesenchymal stem cells (BMSCs)	Mouse bone marrow-derived macrophages (BMDMs)	miR-146a	Overexpression of miR-146a showed the same effect as EV treatment whereas the inhibition of this miR (by transfection) abrogated the efficiency of M2 polarization.	(i) Demonstrated the enrichment of miR-146a in EVs compared to conditioned media and soluble fraction. (ii) Identified the role of miR-146a in the polarization of macrophages. (iii) Established the potential therapeutic effects of miR-146a in macrophage polarization.	Qi et al., 2017
RNA-based	Y	Mesenchymal stem cells (MSCs)	CTx-damaged granulosa cells	miR-10a and miR-146a	Inhibition of RNA activity through RNAase treatment of AFSC-EVs reduced protective function, attributed to function to miR-10a and miR-146a by using liposomes as nanocarriers, and demonstrated similar effects to EV treatment, and inhibition of miR-146a and miR-10a by transfection of parental cells suppressed rescue effects in recipient cells.	(i) Established enrichment of miR-10a and miR-146a in EVs derived from H2O2-treated cells, with mimic and inhibitor and observing respective effects. (ii) Demonstrated the role of miR-10a and miR-146a in the regulation of cell survival and proliferation in MSCs.	Xiao G. Y. et al., 2016
RNA-based	Y	Adipose derived mesenchymal stem cells (ADMSCs)	Human dermal fibroblasts (HDF)	miR-21 and miR-22c	Transfer of MSC-EV with the corresponding miR-21 and miR-22c resulted in the same carboxylic acid inhibition, and inhibition of PDCD4 downstream target of miR-21 resulted in a significant decrease in fibroblast proliferation.	(i) Compared to conditioned media and soluble fraction, ADMSC-EVs caused the most significant decrease in cell viability. (ii) Demonstrated the role of miR-21 and miR-22c in the inhibition of PDCD4 and cell proliferation. (iii) Established the potential therapeutic effects of miR-21 and miR-22c in the treatment of skin disorders.	Babasova et al., 2020
RNA-based	Y	Blood/sclerotic (mice, human)	In vitro—primary neocortical cardiac myocytes (NPCMs) and in vivo—intramyocardial injection	miR-21	Addition of miR-21 mimics to cells induced cardioprotective activity, and inhibition of PDCD4 downstream target of miR-21 resulted in the same cardioprotective effect.	(i) Demonstrated selective enrichment of miR-21 in EVs compared to conditioned media, and its inhibitory effects on PDCD4 expression as well as anti-apoptotic effects in recipient cells.	Qi et al., 2018
RNA-based	Y	Bone marrow-derived mesenchymal stem cells (BMSCs)	C-kit + cardiac stem cells	miR-21	Function of miR-21 highlighted through transfection with mimic and inhibitor and observing respective effects, where miR-21 mimic markedly decreased apoptosis and miR-21 inhibition increased apoptosis. Also observed expression of downstream regulators pAKT and PTEN which pathway is responsible for regulating apoptosis in recipient cells.	(i) Established enrichment of miR-21 in EVs derived from H2O2-treated cells, which prevented oxidative-stress induced apoptosis, and highlighted miR-21 as a apoptosis regulator through transfection with mimic and inhibitor. (ii) Demonstrated the role of miR-21 in the regulation of apoptosis in recipient cells.	Shi et al., 2018
RNA-based	N	Plant (Arabidopsis)	Fungal (Botrytis cinerea)	miR-1613	Transferred host shmiRNAs induce silencing of fungal genes critical for pathogenicity. Host shmiRNAs were protected from nuclease digestion, telaspanins associated with their transmembrane function with fungal cells, and the transferred host shmiRNAs silence fungal virulence genes and suppress fungal pathogenicity directly regulate virulonics not growth. Host mutant strain lacking target shmiRNAs showed reduced virulence.	(i) Established the targeting of miR-21 in EVs derived from H2O2-treated cells, which prevented oxidative-stress induced apoptosis, and highlighted miR-21 as a apoptosis regulator through transfection with mimic and inhibitor. (ii) Established the targeting of miR-21 in EVs derived from H2O2-treated cells, which prevented oxidative-stress induced apoptosis, and highlighted miR-21 as a apoptosis regulator through transfection with mimic and inhibitor. (iii) Demonstrated the potential therapeutic effects of miR-21 in the treatment of fungal infections.	Cai et al., 2018
TABLE 2 (Continued)

Concept	Reprogramming	Tropism	Donor cell	Recipient cell	Active cargo	Approach used to confirm cargo functionality	Key findings	References
Y	N	Nematode (Heligmosomoides polygyrus)	Murine intestinal epithelial (MODE-K) cells	Various microRNAs (miR-100, miR-10 and miR-200), Y RNA, and nematode Argonaute protein	Microarray analysis identified (128 genes differentially expressed upon treatment) with Il33 and Dusp1 as key suppressed genes, and Dusp1 repressed by nematode microRNAs, validated by RT-qPCR, and control EV (mouse intestinal cell) treatment. Identify microRNAs from filarial nematode in serum of infected mice	(i) mRNA sequestration into host tissues is conserved among parasitic nematodes, (ii) secreted nematode microRNAs that have identical seed sites to mouse microRNAs can downregulate DUSP1 through conserved sites in its 3’UTR, (iii) suppress an innate Type 2 response in vivo, (iv) mechanism by which helminths manipulate their hosts (combination of RNA- and protein-based regulatory function) and provide a mechanistic framework for RNA transfer between animal species	Buck et al., 2014	
Y	N	Nematode (Heligmosomoides polygyrus)	Bone marrow stem cells, bone marrow macrophages, MODE-K cells	N/A	Macrophage internalization of EVs causes downregulation of type 1 and type 2 immune-response-associated molecules (IL-6 and TNF, and Ym1 and RELMα) and inhibits expression of the IL-33 receptor subunit ST2. EV target antibodies abrogate suppression of alternative activation and associated with increased co-localization of intracellular EVs with lysosomes.	(i) Internalized EVs can induce alternative activation and IL-33-mediated (ii) EV target antibodies increase their co-localization with lysosome in macrophages (iii) targeting EVs by vaccination provide protective immunity against the parasite, highlighting their key role in establishing infection	Cookley et al., 2017	
Y	N	Raji B-cell line, Jurkat-derived J77 T cell line, and primary dendritic cells (DCs) derived from human monocytes	Antigen-presenting cells (APCs)	miR-335 and miR-92a	(i) Demonstrated miRNA transfer via immunological synapse (IS) through co-culture of J77 cells overexpressing miR-355 with Raji B cells following treatment of SEE which activates formation of IS, (ii) blocking EV production significantly impaired miRNA transfer via EVs, (iii) demonstrated miR-355 synaptic transfer downregulates its target SOX4 in recipient APCs	(i) Profilred and identified enrichment of small RNA species in EVs compared to parental cells, (ii) demonstrated that microRNAs are transferred via immunological synapse between immune cells and APCs through overexpression of miR-355, (iii) inhibition of EV production through nSMase2 significantly impaired transfer of EV-associated microRNAs, (iv) using luciferase assays, demonstrated synaptic transfer of miR-335 downregulates miR-335 downstream target SOX4 in the APC	Milbrunn et al., 2011	
Y	N	Mast-cell line (MC/9), primary bone marrow-derived mast cells (BM/MC) and human mast-cell line (HMC-1)	MC/9, BM/MC, HMC-1, mouse CD4 + T cells	miRNA coding for proteins (Cox5b, Hspa8, Shmt1, Ldh1, Zfp125, Gpi1 and Rad23b)	(i) In vitro translation assay was conducted, comprising of mRNA isolation and translation, then separation of resultant proteins by two-dimensional PAGE to identify seven new proteins which were excised and analyzed by LC-MS/MS, (ii) demonstrated and quantified EV-mediated miRNA transfer using radioactive labels and scintillation counting, (iii) demonstrated interspecies miRNA translation, where human mast cells translated two mouse proteins corresponding to the EV-associated mouse mRNA	(i) Identified multiple and heterogeneous microRNA species within BM/MC and MC/9 EVs using microarray assessment, (ii) function of EV-associated microRNA were demonstrated using a rabbit lysate in vitro translational assay, identifying seven proteins associated with the microRNA, including Cox5b, Hspa8, Shmt1, Ldh1, Zfp125, Gpi1 and Rad23b, (iii) through radioactive (3H-uracil) labeling of MC/9 EVs, demonstrated mRNA transfer to MC/9 cells and HMC-1 cells, but not CD4 cells, (iv) using species differences (mouse vs. human), identified three new mouse proteins in human recipient cells following EV treatment, two of which miRNAs were present in the microarray, suggesting that they were translated by recipient cells, (v) identified several microRNA species enriched in EVs compared to parental cells, with potential roles in angiogenesis, hematopoiesis, exocytosis and tumorigenesis	Tisahl et al., 2017	
Y	N	Adipose derived mesenchymal stem cells (ADMSCs)	HUVECs	miR-125a	Overexpression of miR-125a (i) inhibited expression of downstream target DLL4 (angiogenic repression), (ii) increased angiogenesis, (iii) increased pro-angiogenic genes and downregulated anti-angiogenic genes, whereas inhibition of miR-125a (by transfection) exerted the opposite effect on endothelial cells	(i) Demonstrated that EV treatment increased angiogenesis in vitro and in vivo, (ii) determined miR-125a enrichment in EVs compared to parental cells, (iii) established miR-125a functional influence on HUVECs to increase angiogenesis, and upregulation of pro-angiogenic and downregulation of anti-angiogenic gene expression (iv) inhibited downstream target of miR-125a (DLL4)—angiogenic repression and its influence on angiogenesis through endothelial tip formation	Lang et al., 2016	
Extracellular vesicles have also been shown to contain and transfer tyrosine kinase receptors (i.e., EGFRvIII) to increase downstream signaling events (MAPK, AKT) and expression of EGFRvIII-regulated genes (VEGF, Bcl-xL, p27) involved in tumor vascularization, survival and proliferation (Al-Nedawi et al., 2008). EV-mediated delivery of functional receptors can also be physiological, as demonstrated by the transfer of glucose transporters (GLUT) 1 and 4 between cardiomyocytes and endothelial cells during metabolic stress to increase glucose uptake by endothelial cells and mediate plasma glucose concentration (Garcia et al., 2016). In addition to their functional value, the presence of intact receptors in EVs can facilitate loading of bioactive ligands through their ligand-receptor interaction, increasing the efficacy of EV function on recipient cells. As a cerebral hypoxia/ischemia treatment, EV-bound transferrin receptor was exploited to load apotransferrin into EVs, which, when administered to animal demyelination models, conferred neuroprotection and reduced white matter damage, neuronal loss, and astrogliosis through apotransferrin-activated differentiation of oligodendroglial cells in the brain (Mattera et al., 2020).

This protective effect of EVs have also been shown to rescue adverse side-effects following chemotherapy-induced damage. EVs derived from amniotic fluid stem cells enriched in prosurvival miR-146a and miR-10a were directly injected into murine ovaries, where they promoted the survival and elevated the apoptotic resistance of granulosa cells in mice undergoing chemotherapy; side effects can otherwise cause premature ovarian failure and aberrant fertility (Xiao G. Y. et al., 2016). This is attributed to the apoptosis- and inflammation-related downstream targets of EV-associated and transferred miR-146a and miR-10a, including IRAK1 and TRAF6, and BIM respectively (Xiao G. Y. et al., 2016). However, if these anti-apoptotic EVs are trafficked to off-target sites (i.e., tumors), they can significantly reduce the sensitivity of tumor cells to chemotherapy treatment, as demonstrated by EV-mediated transfer of miR-19b (Gu Y. Y. et al., 2019). Therefore, stringent regulation of EV-associated bioactive cargo and components of interest is critical in developing EVs for therapeutic application.

For further streamlining of functional/therapeutic effect, EV donor cell source is a critical factor for consideration, particularly in the field of regenerative medicine, where MSCs, with unique multipotent differentiation potential (Sasaki et al., 2008; Sarugaser et al., 2009; Dos Santos et al., 2019), are expensively explored in various pathologies and regenerative applications. Importantly, MSC-derived EVs have been shown to alleviate CNS-associated disorders/injuries, including subcortical stroke [i.e., through axonal sprouting, tract connectivity, remyelination and oligodendrogenesis (Otero-Ortega et al., 2017)], and cerebral ischemic-reperfusion injury [i.e., by conferring neuroprotection through modulation of M1-M2 microglia toward an anti-inflammatory phenotype (Liu et al., 2021)]. They are also an avenue for treatment of physical ailments, such as osteoarthritis [i.e., by attenuating inflammation and regulating extracellular matrix synthesis/degradation (Cosenza et al., 2017; Wang et al., 2017; Zhang S. et al., 2019)], skeletal muscle injury [i.e., through promotion of skeletal muscle cell proliferation, differentiation and migration (Mitchell et al., 2019)], and ageing [i.e., by ameliorating dermal fibroblast senescence and promoting skin rejuvenation (Zhao et al., 2021)]. In models for cardiac injury, MSC-derived EVs have been shown to promote proliferation and differentiation of epicardial-derived cells and improve cardiac morphology (Arslan et al., 2013; Zhu et al., 2021b). In fact, improvements for sustained administration of MSC-EVs have been made to enhance their effects at sites of cardiac (Chen C. W. et al., 2018), spinal cord (Li L. et al., 2020), or hepatic injury (Mardpour et al., 2019), by loading them into biocompatible hydrogels which are then administered to target sites.

For therapeutic development, it must be noted that EV composition and release is influenced by environmental and signaling changes occurring in donor cells [i.e., hypoxia, stress [metabolic (Fan et al., 2020), heat, oxidative], infection (Pegtel et al., 2010) and cell activation (Gao et al., 2019, 2020)] as a mechanism of homeostatic maintenance (Takahashi et al., 2017) [reviewed in Desdin-Mico and Mittelbrunn (2017)], thus, EV donor cell culture conditions may be modified accordingly to suit various clinical applications. For instance, MSCs under high oxygen level-induced oxidative stress release depolarized mitochondria to remove accumulated reactive oxygen species (ROS) generated as a result of oxidative phosphorylation (Phinney et al., 2015). The EV-associated mitochondria are transferred to and metabolically reprogram recipient cells with potent regenerative effects, as observed in cardiomyopathy (Plotnikov et al., 2008; Ikeda et al., 2021), and renal (Plotnikov et al., 2010) and pulmonary (Islam et al., 2012) injury. Another key, yet not fully explored consideration in this study, is the synergistic function of EV cargo. For example, in a pulmonary silicosis-induced murine model, MSC-derived EVs transfer both mitochondria and anti-inflammatory and immunomodulatory miR-451 to macrophages; increasing their metabolic state while inhibiting their activation and protecting them from excessive inflammation caused by accumulated mitochondrial ROS (Phinney et al., 2015). The synergistic function performed in this study by EV-associated mitochondria and anti-inflammatory miRNA is therefore a well-balanced one, highlighting a need for in-depth EV composition characterization during their development as therapeutics. Modifying protein cargo loading into EVs can be manipulated in donor cells directly and exploiting endogenous protein sorting mechanisms. Ubiquitin-like 3 (UBL3) was identified as the protein sorting target which can interact with and post-translationally modify cargo proteins (i.e., Ras and tubulin) to enhance their loading into EVs (Ageta et al., 2018). Through donor cell transfection of mutated, oncogenic RasG12V, a binding partner of UBL3, this study demonstrated effective loading into released EVs and subsequent downstream signaling activation in target cells (Ageta et al., 2018). Development of loading proteins into EVs from the cytosol in a free form has been shown via optically reversible protein-protein interactions; EXPLORs (Yim et al., 2016). This approach is based on the selective interaction of cargo protein and tetraspanin CD9, allowing cargo proteins to be freely localized in the recipient cells. On the other hand, loading of specific miRNA can be achieved by exploiting the
short sequence motifs over-represented in miRNAs commonly enriched in EVs, and the sumoylation of their binding partner hnrNPA2B1, which is required to facilitate miRNA sorting into EVs (Villarroya-Beltri et al., 2013). Other loading RNA-based methods using RNA binding proteins include EXosomal transfer into cells (EXOtic) using the interaction between C/D box RNA structure and L7Ae ribosomal protein fused with tetraspanin CD63 (Kojima et al., 2018), and conjugated mRNA sequence with interaction between trans-activating response (TAR) sequence and trans-activator of transcription (Tar) protein (with membrane protein ARMMs) (Wang Q. et al., 2018), to load specific mRNAs into EVs. Further, this latter study demonstrated a highly versatile platform for packaging and intracellular delivery of therapeutic macromolecules, including protein, RNAs, and the genome-editing CRISPR-Cas9/guide RNA complex (Wang Q. et al., 2018). While the molecular mechanisms of cargo sorting into EVs are still being understood, it may be useful to consider the above characteristics of target molecules and their compatibility with endogenous donor cell cargo sorting machinery to improve their loading efficiency and consistency for EV-based therapeutic development.

Targeted Delivery of EVs

Specific components present in the EV surfaceome (selections of proteins presented on the external side of the lipid bilayer), allow for preferential uptake by specific cells, tissues, and organs (Peinado et al., 2012; Oksvold et al., 2014; Costa-Silva et al., 2015; Hoshino et al., 2015; Belov et al., 2016; Rodrigues et al., 2019; Wu et al., 2020). Although this capacity for tropism is supported by various reports, our understanding of the complexities behind this intrinsic targeting in native EVs remains incomplete, though they are widely attributed to their biological origin. Like their progenitor cells, platelet-derived EVs have an intrinsic affinity with inflammatory sites and atherosclerotic plaques, binding to activated/inflamed vascular walls and plaques through various receptors including CD40L (Mach et al., 1997; Lievens et al., 2010), glycoproteins Iba and allb (Guo et al., 2015; Pawlowski et al., 2017), and P-selectin (Dinkla et al., 2016; Pawlowski et al., 2017). Thus, platelet-derived EVs hold great potential to be exploited as nanocarriers of anti-inflammatory reagents to ameliorate inflammatory diseases including pneumonia (Ma et al., 2020) and atherosclerosis (Song et al., 2019). EV homing to specific organs also play roles in disease progression, such as those derived from pancreatic ductal adenocarcinoma cells (PDAC) (a cancer commonly associated with liver metastasis), which demonstrated natural homing to the liver upon in vivo administration, where they were selectively taken up by Kupffer cells (Costa-Silva et al., 2015). Though the molecular mechanism behind this liver tropism is unknown, the current hypothesis is that EVs express surface components to facilitate a specific interaction with target cells. Indeed, EVs derived from tumors with metastatic organ tropism (lung, liver, or brain) express different integrin complexes; lung-tropic: α6β4 and α6β1, liver-tropic: αvβ5, brain-tropic: ITGβ3 (Hoshino et al., 2015). EVs containing these integrin complexes bind to S100-A4-positive fibroblasts and surfactant protein C-positive epithelial cells in the lungs, Kupffer cells in the liver, or CD31-positive endothelial cells in the brain (Hoshino et al., 2015), respectively. Lung-tropism is also influenced by non-integrin proteins, with genetic knockdown of SLCO2A1, CD13, and CLC1 in cervical adenocarcinoma cells (HCA1) resulting in the decreased accumulation of EVs in lung tissue (Wu et al., 2020). EVs’ tropism to particular organs and cells may also be mediated by surface ligands that interact with cognate receptors on recipient cells to induce binding and subsequent uptake. This ligand-receptor interaction (i.e., EV chemokine receptor CXCR4 to recipient cell-expressed chemokine SDF-1α) mediated targeting of endothelial colony forming cell-derived EVs to the kidney, thus preventing kidney injury and neutrophil infiltration following ischemic injury through the transfer of PTEN-inhibitor miR-486-5p (Vinas et al., 2018).

Other surface-expressed molecules that mediate EV-cell interaction include glycosphingolipid glycan groups, which are present on neuroblastoma-derived EVs, facilitating their binding to and clearance of β-amyloid aggregates in the brain (Yuyama et al., 2014). Their ability to target the brain highlights the potential of EV-based treatments for brain cancer and Alzheimer’s disease. Other mechanisms for brain-tropism also exist, such as the natural homing capacity of EVs derived from specialized immune cells in the central nervous system (CNS) (i.e., microglia) to the brain, where they reduced multiple sclerosis-associated inflammation in myeloid cells and astrocytes through the transfer of anti-inflammatory cytokine IL-4 (Casella et al., 2018). These studies highlight the natural ability of EVs to transverse the BBB, an ability mediated in-part by surface components (i.e., heparan sulfate proteoglycans, mannose 6-phosphate receptor, CD46, integrin complexes αvβ6 and αvβ3, and endothelial- and leukocyte-associated transmembrane protein ICAM-1) which allow receptor-mediated transcytosis (Banks et al., 2020; Joshi and Zuhorn, 2021); a transcellular route allowing EVs to traverse brain endothelial capillary cells toward brain parenchyma. Further characterization of surface components which possess tropic-capacity will allow for refinement and selection of EV therapeutics.

Biodistribution and Clearance of Native EVs

As mediators of inter-organ communication, EVs must evade immune clearance for as long as possible to remain in circulation prior to cellular uptake (Smyth et al., 2015; Charoenviriyakul et al., 2017). The mononuclear phagocyte system (MPS) [previously termed reticuloendothelial system (RES)] encompasses monocytes, macrophages, and other cells present in liver, spleen, and lungs, and contributes to EV sequestration and clearance (Rao et al., 2015; Smyth et al., 2015). Indeed, following in vivo administration, EVs accumulate in the liver, spleen and/or lung; an occurrence widely observed in EVs derived from dendritic (Wei et al., 2017), MSCs (Grange et al., 2014), myoblasts (Wiklander et al., 2015; Charoenviriyakul et al., 2017), kidney (Lai et al., 2014), glial (Lai et al., 2014), melanoma (Peinado et al., 2012; Takahashi et al., 2013; Imai et al., 2015; Charoenviriyakul et al., 2017), macrophages (Charoenviriyakul et al., 2017), and placental (Tong et al., 2017; Nguyen et al., 2021) cells. With phagocytosis central to
clearance, EVs avoid engulfment through surface presentation of anti-phagocytic signals including immunomodulatory receptors, most commonly CD47 (Chao et al., 2012; Rodriguez et al., 2013; Kaur et al., 2014; Kamekar et al., 2017; Tang Y. et al., 2019), PD-L1 (Gordon et al., 2017; Hsu et al., 2018; Cordonnier et al., 2020; Daassi et al., 2020), CD24 (Barkal et al., 2019), CD31 (Brown et al., 2002), and CD44 (Vachon et al., 2007; Amash et al., 2016), that act as “don’t eat me” signals to phagocytic cells, potentially prolonging their EV half-life in circulation.

Conversely, internalization of EVs ensures the delivery of EV content into target cells, allowing them to exert their effector functions. Phosphatidylserine (PS) is a lipid located on the outer leaflet of EV membranes, forming lipid-receptor interactions [e.g., with immune regulatory receptor TIM4 (Tietjen et al., 2014)] to facilitate EV engulfment and internalization by recipient cells (Lindemann, 1989; Fadok et al., 2000; Gurnani et al., 2004). EVs also express opsonins [e.g., MFGE8 (Dasgupta et al., 2009; Miksa et al., 2009; Casella et al., 2018), β2-glycoprotein-1 (Abdel-Monem et al., 2010), developmental endothelial locus-1 (Dasgupta et al., 2012)] that facilitate their internalization through PS-dependent phagocytosis. Indeed, increasing the expression of MFGE8 on microglia-derived EVs elevated their uptake by macrophages and microglial cells in the CNS, facilitating the transfer of EV-loaded anti-inflammatory cytokine (i.e., IL-4) to significantly reduce clinical symptoms of neuro-inflammatory multiple sclerosis, and experimental autoimmune encephalomyelitis (EAE) in a murine model (Casella et al., 2018). Other factors that influence EV biodistribution and uptake in vivo is the microenvironment from which they are released. Tumor-derived EVs can bind to soluble secreted cytokines and chemokines (i.e., CCL2 and IL-6) in the tumor microenvironment through their surface-expressed glycosaminoglycan (GAG) side chains of proteoglycans, significantly increase their uptake in the liver, spleen, and lung (Lima et al., 2021). Through a similar mechanism, EVs expressing GAGs released by glioblastoma bind to, and are decorated with, chemokine ligand CCL18, facilitating their interaction with cognate receptor CCR8 on recipient glioblastoma cells (Berenguer et al., 2018) to increase uptake and induce a proliferative phenotype (Berenguer et al., 2018). Indeed, pharmacological inhibition of this interaction (via CCR8 inhibitor, R243) completely blocked EV-induced tumor growth, thus neutralizing EV-induced phenotypic remodeling (Berenguer et al., 2018).

Despite these insights into EV biodistribution and clearance, attempts to comprehensively define the pharmacokinetics of EVs in vivo have remained inconsistent, with results ranging from their rapid clearance within 2–4 min (Takahashi et al., 2013) (as monitored by fluorescence imaging) up to 7 days, with DiR-labeled EVs localized to the liver and spleen a week following administration (Liu H. et al., 2016). This variation may be resultant of EV labeling with lipophilic dyes, which have been found to remain in the system long after EVs have been degraded or recycled (Takov et al., 2017). Regardless of these uncertainties, EVs possess important qualities—highlighting them as promising modalities for therapeutic applications. Further development toward EV-based clinical application involves their engineering/modification to reduce their immune clearance and prolong their half-life in circulation, improve their biodistribution and tropism to sites of interest, and, enhance their functionality on recipient cells, tissues, and organs.

ENGINEERED EVs

Native EVs offer unique advantages for cellular regulation and the efficient delivery of therapeutic payloads. However, several studies have highlighted the intrinsic limitations of native EVs including long-term maintenance of parental cell culture with minimal metabolic/phenotypic variation (Lambshhead et al., 2018; Cherian et al., 2020; Escude Martinez de Castilla et al., 2021), biodistribution (i.e., organ targeting) (Escude Martinez de Castilla et al., 2021; Lazaro-Ibanez et al., 2021; Ullah et al., 2021; Witwer and Wolfram, 2021), clearance rates [complement and immune systems (RES-MPS system)] (Wiklander et al., 2015; Ha et al., 2016; Kwon, 2020; Lara et al., 2020; Buschmann et al., 2021; Escude Martinez de Castilla et al., 2021; Lazaro-Ibanez et al., 2021), and crucially, difficulties associated with large scale generation (i.e., processing times, variable potency between batches, good manufacturing practice; GMP) (Whitford and Guterstam, 2019; Cherian et al., 2020; Buschmann et al., 2021; Escude Martinez de Castilla et al., 2021; Ullah et al., 2021; Witwer and Wolfram, 2021). Moreover, the regulatory machinery of EVs and their distinct subtypes associated with production and cellular uptake remains largely unknown. Engineering therapeutics based on native EVs offers an alternative approach, employing their advantages while bypassing limitations. As such, the engineering of EVs for therapeutic application is a field undergoing rapid development with applications for regeneration/repair, immune disorders, wound healing and cancer (Comissio et al., 2013; Kordelas et al., 2014; Xitong and Xiaorong, 2016; Gyorgy et al., 2017; Wu et al., 2019; Li L. et al., 2020; Hu S. et al., 2021; Shi et al., 2021). Here, we discuss several strategies recently developed to address such limitations through modification or engineering of EVs including: (i) generation of mimetic EVs/nanovesicles (M-NVs), EV synthetics (synEVs), and EV hybrids (hEVs), (ii) improvement of targeting of native EVs and (iii) customized cargo loading (into native and engineered EVs) to enhance their functional properties (Table 3).

Engineering Alternatives to EVs

M-NVs simulate the biophysical properties of native EVs, including size (50–200 nm), which has been reported to influence half-life in circulation (i.e., nanoparticles smaller than 200 nm are able to evade RES uptake, and nanoparticles larger than 30 nm to avoid rapid renal elimination) (Ha et al., 2016; Murphy et al., 2019; Lara et al., 2020; Buschmann et al., 2021; Dooley et al., 2021; Escude Martinez de Castilla et al., 2021; Lazaro-Ibanez et al., 2021; Witwer and Wolfram, 2021). M-NVs can be generated by either top-down (extruding parental cells into nano-sized fragments) to obtain biological M-NVs, or bottom-up methods (selecting cargo and capsule materials i.e., liposomes or polymer nanoparticles) to obtain chemically-defined synEVs (Nasiri Kenari et al., 2020). Top-down M-NVs
Modification/Generation technique	Description	Advantages	Disadvantages	Pre-clinical applications	References	
Engineered EVs	Use of chemical reactions to couple molecules of interest (e.g., peptides, proteins) to the EV surface (i.e., Click Chemistry) to enhance targeted delivery or half-life in circulation.	High yield of EVs, improved targeting and delivery, reduction in side effects.	Requires additional purification steps, additional equipment or wash step may be required.	Pre-clinical applications	Alvarez-Erviti et al., 2011; Niu et al., 2021	
Modification of parental cells	Genome engineering of parental cells to modify produced EVs (i.e., surface protein that influences targeting).	Highly modified depending on application, can target a wide range of luminal molecules for functional modification of EVs, or surface molecules for targeting modification of EVs.	Requires extensive validation of the efficiency and off-target errors of genome engineering strategies, may alter the properties and structure of the EV.	Lentivirus transduced MSCs to overexpress mirRNA-lenti, known to possess anti-fibrotic properties, generated exosomes capable of transferring this cargo to renal cells in vivo.	Skog et al., 2008; Alvarez-Erviti et al., 2011; Wang et al., 2016	
Microfluidics	Fragmentation of cells/lipid micelles using microfluidic systems (pressure) to generate EV mimetics or liposomes of consistent size.	Fast, efficient, scalable, consistent, less manual handling.	Expensive, complex equipment.	Mimetics were generated from embryonic stem cells and used to deliver drugs/RNA in vitro.	Jo et al., 2014a	
Serial extrusion	Generation of EV-mimetics by fragmenting whole cells through micro-sized pores of descending size to obtain vesicles of similar size to EVs.	Consistent, scalable generation of EVs, requires less human resources, less variability in product.	Requires extensive manual handling, additional purification steps, quality assurance of progenitor cells.	Human MSCs treated with ion oxide nanoparticles (IONP) were extruded serially five times through 15, 5, and 1 µm and 400 nm, and demonstrated their feasibility for spinal cord-injury treatment.	Kim H. Y. et al., 2018	
Centrifugation	Use of centrifugal force to fragment cells through a membrane generating EV mimetics.	Fast, efficient, scalable, less manual handling compared to extrusion.	Relative scalability depending on equipment capacity.	Mouse embryonic stem cells were generated by this method and were able to transfer RNAs.	Jo et al., 2014b	
Post-EV production engineering	Passive loading	Incubation with molecule of interest for diffusion loading into EVs.	Efficient protocol, easily modified depending on application, scalable.	Low loading efficiency in comparison to other methods. Depends on Fick’s laws and hydrophobicity of the cargo.	Loading of anti-cancer drugs (Doxorubicin, Paclitaxel, Gemcitabine) into various EV systems showed tumor reduction/admiration in murine models.	Jang et al., 2013; Rani et al., 2013; Gao et al., 2017; Li Y. J. et al., 2020
Serial extrusion	Generation of EV-mimetics encapsulating target molecules by performing serial extrusion of cells in target molecule-containing buffer.	Efficient loading of drug molecules.	Requires rigorous optimization on to prevent compromising membrane integrity or cargo structure, increases EV instability; small RNA or EV aggregation; additional equipment or wash step may be required.	Comparison of biological EVs and mimetics VS free chemotherapeutic drug (Doxorubicin) for delivery and efficacy. The results showed a better effect and delivery to cancer cells using EVs and mimetics in a murine system.	Jang et al., 2013	
Sonication	Treatment with ultrasound produces transient pores in EV membranes that allow drug diffusion.	Efficient loading of drug molecules.	Requires rigorous optimization on to prevent compromising membrane integrity or cargo structure, increases EV instability; small RNA or EV aggregation; additional equipment or wash step may be required.	The lysosomal enzyme, tripeptidyl peptidase-1 (TTP1) was loaded into 10⁹ EVs (~70 µg), increasing stability and targeting to the brain in a murine model of brain disease.	Haney et al., 2019	
Microfluidics	Addition of cargo molecules to the system for loading after membrane disruption by forcing the EVs through microchannels.	Fast, efficient, scalable, consistent, less manual handling.	Expensive, complex equipment.	Drug and RNA delivery system.	Meng et al., 2021	
Electroporation	Temporary disruption of the EV membrane using electricity to allow incorporation of cargo.	Fast, well-established protocol, widely used to load small molecule drugs and nucleic acids.	Low loading efficiency (~15-20%), low scalability, requires standardization for cargo and target EVs, requires rigorous optimization to prevent compromising membrane integrity or cargo structure, increases EV instability; small RNA or EV aggregation; additional equipment or wash step may be required.	Utilized to load tumor suppressor miRNAs into fibroblast-derived EVs to treat ovarian cancer. Repeated intraperitoneal injections of miRNA-loaded EVs drastically inhibited parenchymal dissemination and reduced the tumor burden in a xenograft ovarian cancer mouse model.	Kobayashi et al., 2020	
Transient permeabilization	Use of detergents to allow the selective removal of membrane-bound cholesterol, creating transient holes/pores in the EV bilayers, and thus, promoting drug loading.	Simple, efficient, and modifiable protocol, scalable.	Low efficiency, requires standardization, use of detergents may degrade critical biomolecules that influence biological function, requires rigorous optimization on to prevent compromising membrane integrity or cargo structure, increases EV instability; small RNA or EV aggregation; additional equipment or wash step may be required.	Catalase was loaded by saponin permeabilization of macrophage- and monocyte-derived EVs to prevent neurodegeneration and neuroinflammation in mouse models of Parkinson’s disease.	Haney et al., 2015	

(Continued)
| Table 3 | (Continued) |

Modification/Generation technique	Description	Advantages	Disadvantages	Pre-clinical applications	References	
Freeze-thaw	Incorporation of target molecules/drugs into EVs by increasing membrane permeability through multiple freeze-thaw cycles.	Simple and efficient protocol, minimal handling, able to modify according to concentration of target molecule/drug.	Biological EV function, and membrane integrity may decrease or become compromised with increasing number of freeze-thaw cycles.	Curcumin was loaded into mouse embryonic stem cell-derived exosomes by freezing and thawing three successive times promoted neurovascular restoration following ischemia-reperfusion injury in mice.	Kalani et al., 2016	
Artificially stimulated	Overexpression of biogenesis-associated genes	Increases yield of EVs.	Low efficiency and off-target errors of genome engineering strategies. Influences proteome and potentially function of EVs, expensive, time consuming.	MSCs with a combination of N-methyl dopamine and norepinephrine robustly increased exosome production by three-fold without altering the ability of the MISC-exosomes to induce angiogenesis, polarize macrophages to an anti-inflammatory phenotype, or downregulate collagen expression.	Wang Y. et al., 2020	
Artificial blushing	Chemical induction of the blushing process (paranformaldehyde, dithiothreitol, N-ethyl maleimide).	Efficient and scalable.	Requires standardization, requires further processing for chemicals removal.	No applications thus far.	Thorne and Kwon, 2020	
Hybrids	EVs and liposomes	Fusing EV membranes with lipids.	Increase half-life and stability in circulation, modifiable based on lipid used, enhanced structural integrity, allows loading of target molecules.	May decrease biocompatibility and influence EV surface proteins important for specific organ targeting.	HEK293FT derived EVs were incubated with Lipofectamine 2000 and selected plasmids.	Lir et al., 2018
EV-modified scaffolds	Incorporating EVs onto scaffolds comprised of various polymers (i.e., extracellular matrix proteins, chitosan, silk fibroin, hydrogels).	Sustained release of EVs over longer periods of time, higher efficacy than free-EVs, easy to handle, high mechanical/thermal strength and controllable degradability which can be modified based on polymer’s used, higher biocompatibility if ECM-based.	Generally required to be in direct contact with target tissue/organ, which is invasive if targets are internal, toxicity of residual crosslinking agents from scaffold manufacturing, can be pH- or temperature-sensitive and cause plugging of needle during injection, unknown release rate in vivo.	Targeted regeneration of bone, heart, liver, skin, and vasculature.	Mantripur et al., 2019; Hu S. et al., 2021; Kim et al., 2021; Shi et al., 2021; Zhao et al., 2021	
Synthetics	Silicon	Modification of silicone nanoparticles to display or encapsulate target molecules and drugs for delivery.	Robust production, able to load target molecules, high structural integrity, able to modify porosity and surface chemistry to control degradation/drug release.	Can be toxic, lower biocompatibility lacks surface proteins for targeting and uptake by recipient cells.	Pre-clinical studies pSivida has shown that BioSilicon is both biodegradable and biocompatible, used for controlled release of substances without penetrating the cells.	O’Farrell et al., 2006
Iron	Coating of iron nanoparticles with proteins/other to target specific tissues.	Many methods of production to suit application, can cross BBB, increased structural integrity, FDA approved, suitable for anemic patients, allows magnetic guidance for specific site targeting, used as a label for scaffold-based therapies to allow for imaging, surface-modifiable by biocompatible coating.	Can be toxic, lower biocompatibility, depending on application, metal filings may interfere with imaging, disadvantages associated with production method (i.e., adverse side effects from residual surfactants, large-scale synthesis, cost, temperature regulation).	Medical imaging, cell labeling, iron replacement therapy for patients with kidney failure or anemia, macrophage polarization, magnetic drug targeting, theranostic applications.	Huber, 2005	
Lipids	Bottom-up generation of nanovesicles.	Scalable, time-efficient, customizable lipid composition and size depending on application, low cost, consistent generation.	Low targeting capabilities, lack of surface proteins, low uptake, low biocompatibility, faster systemic clearance.	PEG-DOPPE nanovesicle generation for chemotherapeutic delivery (Doxorubicin and tamoxifen) in a murine model.	Han et al., 2008; Cao et al., 2016	
Gold	Gold nanoparticles associated to PEGDOPPE other lipids by cross-linking reactions.	Robust production, chemically inert, stable, modifiable (size—which influences toxicity and biocompatibility properties), radiosensitizing, and anti-microbial properties.	Can be toxic, largely influenced by size (i.e., biocompatibility, renal clearance, tumor tissue permeability, cell uptake, entry into nuclei), more suitable for theranostic and imaging applications.	Photothermal therapy. Use of PEG-gold nanoparticles and drug adsorption for chemotherapeutics delivery.	Dymian and Khlebtsov, 2011	
Carbon nanotubes	Controlled carbon concentration reactions depending on the desired shape and size.	Robust production, stable, modifiable (size, tubules, rats, scaffolds—which influences toxicity and biocompatibility properties).	Can be toxic, lower biocompatibility lacks surface proteins for targeting and uptake by recipient cells.	Drug, protein, and DNA/RNA delivery systems by adsorption methods into biodegradable scaffolds that can penetrate the cells for cancer therapy, neurodegenerative diseases, tissue regeneration in murine and in vitro models.	Hu et al., 2013	
are generated by serial extrusion, ultracentrifugation, or pressure-based microfluidic approaches [reviewed in Mentkowski et al. (2018)]. Mechanical extrusion is achieved by forcing the cell suspension to pass through membranes of different pore size to cause cell disruption (Jang et al., 2013). After extrusion of parental cells, the membrane fragments form membrane-derived vesicles due to their physicochemical properties, engulfing the cellular components in suspension and generating mimetic EVs (Jo et al., 2014b). Following this method, M-NVs generated from macrophages through serial extrusion with concurrent loading of catalase (added to the cell suspension before extrusion) demonstrated elevated neuroprotective activity while increasing the yield ~100-fold, compared to native EVs (Haney et al., 2015).

MN-Vs can also be generated from MIN6 pancreatic β-cells by serial extrusion i.e., five passages through 10, 5 and 1 µm polycarbonate membrane filters using a mini extruder (Oh et al., 2015). In parallel, bone marrow MSCs isolated from femurs and tibias of BALB/c mice were embedded in Matrigel and implanted subcutaneously into NSG mice (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ). Into these subcutaneous patches, 10 µg/injection of MIN6 mimetics were administered for a total of four injections in 10 days. The authors demonstrated that the MSCs imbedded in Matrigel formed islet-like clusters with extensive capillary networks as a cause of M-NV administration, and that these were able to maintain the glucose levels of the mice for over 60 days (Oh et al., 2015). This work provided a key insight of the effectiveness of mimetics in vivo as delivery and signaling systems. To understand composition of M-NVs, Hill and collaborators (Nasiri Kenari et al., 2019) performed proteomic profiling of M-NVs and demonstrated their distinct composition from exosomes and parental cells. Although M-NVs shared many similarities with native EVs (physical attributes, key protein EV markers, proteins that overrepresented the original cell), differences were observed in protein post-translational modifications, specifically phosphorylation, ubiquitination, and thiophosphorylation. This raises an important consideration of using M-NVs as an alternative nanocarrier when spontaneous endosomal sorting of therapeutics is limited or when modulation of donor cells influences native EV generation. An important consideration of M-NV generation is that despite the 100 to 150-fold increase in yield, this method still relies in parental cells as raw materials which requires the surveillance of their long-term maintenance (genome stability, passage number, cell culture technologies) and culture conditions/media type and potential influence of non-model EV source [i.e., bovine-derived (Eitan et al., 2015; Lehrich et al., 2021; Pham et al., 2021)]

A different stream of research to solve upscaling as a key limitation for native EVs and M-NVs’ pharmaceutical use, focuses on the generation of bottom-up particles denominated synEVs. synEVs have demonstrated a high efficacy and high scalability as drug and vaccine-based delivery systems (Park et al., 2021). Generation of liposomes include extrusion over membrane filters [analogous to mimetic generation (Cao et al., 2016; Nele et al., 2019; Shah et al., 2019)], and hydrophilic microchannels [microfluidic systems (Shah et al., 2019; Kotoucek et al., 2020)]. The development of synEVs has gained immense interest due to COVID-19 vaccine research, including mRNA encapsulated in liposomes by Moderna/NIAID, BioNTech/Pfizer, Arcturus/Duke-NUS, PLA/Walvax Biotech, Imperial College London, and CureVac AG (Park et al., 2021). These synEVs (in particular Moderna/NIAID and Pfizer non-viral vaccines) have shown to be a highly efficient system for delivery and immunoregulatory response (Park et al., 2021). Furthermore, the methods for generation and encapsulation of cargo (i.e., mRNA) into synEVs has demonstrated high efficiency and yield; >72% encapsulation rates (Hassett et al., 2019). Although different approaches for generating synEVs with vaccine applications have been employed, in all cases their lipid composition provides key therapeutic advantages, including ability to encapsulate and condense mRNA, promote delivery to cytosol by increasing cellular uptake (due to their composition compatible with biological membranes i.e., PEGylated lipids, cholesterol and cationic or ionizable lipids), protect mRNA (or any other cargo) from degradation in extracellular spaces, and their components are easily manufactured with GMP in a large scale. The latter demonstrates synEVs represent a unique advantage in combining with production of native EVs, despite issues with their targeted delivery. Unlike cell-derived EVs, synEVs lack targeting and recognition molecules, therefore, their synthesis has been coupled with different functionalization techniques such as bioconjugation (Smyth et al., 2015; Lim et al., 2021 [reviewed in Murphy et al. (2019), Rayamajhi and Aryal (2020), Salmond and Williams (2021), Sharma et al. (2020), and Takayama et al. (2019)]) and cargo loading (Haney et al., 2015, 2019 [reviewed in Luan et al. (2017), Nasiri Kenari et al. (2020), Roberts et al. (2020), and Sterzenbach et al. (2017)]) to obtain use-specific synEVs (Garcia-Manrique et al., 2018), as well as their fusion with EVs (native or mimetics) to generate EV hybrids (hEVs).

hEVs are a recently developed method to generate vesicles—they comprise native EV components and synthetic liposomes (Gangadaran and Ahn, 2020). Hybrids could be a more effective alternate to both EVs and liposomes as drug delivery systems by combining the advantages of loading versatility (diverse molecular cargo), targeting capabilities (native EV tropism), and stability (structure stabilization, cargo protection, handling stability) [reviewed in Ou et al. (2021)]. Moreover, hEVs can be generated by different methods such as extrusion, sonication, co-incubation or freeze/thaw cycles, which makes them convenient for clinical development and diverse applications (Gangadaran and Ahn, 2020). Freeze/thaw cycle method was used in combination to surface modification techniques to fuse EVs expressing a specific surface protein produced by macrophages and different cancer cell lines (mouse fibroblast sarcoma-derived CMS7-wt, CMS7-HE, and Raw 264.7 macrophages) with liposomes (Sato et al., 2016). Hybrids have also been generated by sonication of an aqueous suspension of macrophage-derived EVs and L-α-phosphatidylcholine/Cholesterol liposomes (Rayamajhi et al., 2019). The resulting hybrids are a promising platform for tumor-targeted drug delivery, releasing Doxorubicin predominantly to macrophages, osteosarcoma cells and breast cancer cells (compared to normal fibroblasts) in vitro, demonstrating these hEVs have preferential targeting to parental cells and tumor cells (Rayamajhi et al., 2019). Furthermore,
a variant of hEVs using native EV sources [bone marrow MSC-derived EVs (purified from conditioned media) and platelet mimetics (generated by a combination of freeze/thaw and consecutive sonication)], were generated by co-extrusion and administered to mice (100 µg/mice, once a week for 4 weeks), demonstrated increased targeting and pro-angiogenic activity in a mouse model of myocardial infarction in mice (Li et al., 2021c). Here, tropism of platelets toward activated endothelium (which occurs during injury or stress) was inherited by the resulting hybrids enhancing their targeting and accumulation capabilities to the myocardium (compared to native MSC-derived EVs) allowing the targeted delivery of reparative cargo despite systemic administration.

Improved Targeting: Genome Engineering and Surface Functionalization

Modifying EVs to improve their specific delivery is a key requirement in therapeutic applications. Several engineering approaches have been developed and applied to EVs. Click chemistry, genetic modification, and glycoengineering have proven to be highly efficient methods to increase site-specific retention, thus reducing off target effects (Smyth et al., 2014; Williams et al., 2018; Rayamajhi and Ayal, 2020). EV composition and function are influenced by the cell source, a characteristic which can be exploited during EV-based therapeutic development (Kim et al., 2020).

Many technologies can modify progenitor cells to alter the functional capacity of their derived EVs; one of which is genome engineering, which involves either the knockout [i.e., siRNA, CRISPR (Horodecka and Duchler, 2021)] or overexpression [i.e., Lentiviral/Adenoviral, plasmid, or nucleic acids (siRNA, miRNA, anti-miR) transfections (Li et al., 2013; Zhang et al., 2014; Chen S. et al., 2019; Escude Martinez de Castilla et al., 2021)] of genes (Shi et al., 2020). The composition of EVs released from these modified cells are therefore customized, heavily influencing recipient cell function [i.e., immunomodulatory (Trivedi et al., 2016; Gomez-Ferrer et al., 2021), pro-angiogenic (Zuo et al., 2019; Zhang L. et al., 2021), anti-apoptotic (Wen et al., 2020) or anti-cancer (Kim R. et al., 2018)]. Thus, these strategies are applicable to a range of pathologies, including cardiovascular disease, tissue repair/regeneration, cancer, and immunological disorders. However, continuous improvements are required for these techniques due to their low mutation efficiency and potential off-target sequence error (CRISPR-Cas9) (Sidique, 2016) or low efficiency and variable expression levels by transfected cells (transfection) (Di Blasi et al., 2021) which may influence the biogenesis/yield/content/function of the produced EVs (Carli et al., 2021) or parental cell viability or proliferation (Lambshhead et al., 2018; Cherian et al., 2020; Escude Martinez de Castilla et al., 2021).

In this context, genetic manipulation strategies [e.g., plasmid transfection (Cho et al., 2018; Hong et al., 2019; Shi et al., 2020; Feng et al., 2021), pDisplay vector transfection (Ohno et al., 2013), retroviral transfection (Fan et al., 2013)] pre-EV isolation have been shown to modify the surface of EVs to enable site-specific delivery (Wan et al., 2018) (Table 3). For instance, overexpression of folate receptor α (FRα) on EV surface facilitated their specific binding to the brain parenchyma, crossing the BBB, demonstrating a mechanism of brain-specific drug delivery in vivo after an intraventricular injection (Grapp et al., 2013). Furthermore, genome engineering of cardiosphere-derived cells (CDC) using lentiviral particles to express LAMP2B fused to a cardiomyocyte specific peptide (CMP; W1SEAGPVVTVRALRGTSW) generated EVs displaying LAMP2B-CMP on their surface, increasing targeted time and improving targeted delivery to the heart (Mentkowski and Lang, 2019). Moreover, modification of mouse dendritic cells to express LAMP2B fused to the neuron specific RVG peptide was shown to target EVs with siRNA-BACE1 to neuronal cells (Alvarez-Erviti et al., 2011). The therapeutic potential of this system was demonstrated by mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimer’s disease. This strategy was also employed to modify BMSCs for the generation of EVs expressing LAMP2B coupled with ischemic myocardium-targeting peptide (IMTP; CSTSMLKAC), which caused a significant increase of EV accumulation in cardiac tissue when compared to peptide sequence (non-targeted) controls (Antes et al., 2018; Wang X. et al., 2018). Altogether, these studies highlight the capacity of genome engineering to generate surface modifications that enhance EV targeting capabilities. On the other hand, off-target errors during genome editing complicate validation and are time consuming/expensive, thus would impede upscaling. It was also observed that despite their targeting capabilities, engineered EVs accumulate in non-targeted tissue/organs, including liver and kidney (Wang X. et al., 2018); determination of the EVs’ effects at these sites and an improved understanding of EV-site interaction are required for clinical applications. Engineering methods can also be combined to refine EV-based therapeutics. Decoy mimetic EVs have been generated through mechanical extrusion of genetically engineered parental-cells overexpressing surface receptor ACE2 (Rao et al., 2020). These mimetic EVs were fused with human myeloid mononuclear THP-1 mimetics, to generate hEVs. Upon administration to a murine model of acute pneumonia, these hEVs suppressed immune disorder and decreased lung injury (Rao et al., 2020).

A different approach for surface engineering is modification post-EV isolation. These modifications can be performed through glycoengineering [attachment of glycans to proteins by generation of covalent bonds (Williams et al., 2018; Williams C. et al., 2019; Sharma et al., 2020; Della Rosa et al., 2021; Lim et al., 2021; Martins et al., 2021)] and click chemistry [reactions which involve conjugation of molecules in a modular fashion, for example, the bio-orthogonal copper-free azide alkyne cyclo-addition (Smyth et al., 2014; Ouyang et al., 2018; Murphy et al., 2019; Takayama et al., 2019)], and are used for targeting (Kooijmans et al., 2016) and cloaking strategies (Kooijmans et al., 2016; Suk et al., 2016), also known as “surface functionalization” (Rayamajhi and Ayal, 2020). For example, glycoengineering of anti-EGFR nanobody to the phosphatidylinositol (PS) of EVs derived from blood, or Neuro2A cells, promotes their uptake by EGFR+ cells in a dose-dependent manner and decreases their non-specific binding to other cells.
Further, this modification resulted in an increased circulation time of >60 min for engineered EVs in comparison to 10 min for native EVs (Suk et al., 2016). Together, these results provide an effective strategy for cloaking and targeting using glycoengineering.

A combination of glycoengineering and click chemistry has been employed as a highly- efficient and specific approach to modify the EV surface through irreversible bioconjugation (Smyth et al., 2014; Takayama et al., 2019). This allows EV surface functionalization for delivery of small molecules, large biomacromolecules, and polymers without altering particle size or function. Murine MSC- derived EVs were modified by copper-free click chemistry to generate an Ale-EVs system (EVs coupled with Alendronate, a medication used for osteoporosis) administered to an in vivo model of ovariectomy (OVX)-induced osteoporosis (Wang Y. et al., 2020). These Ale-EVs had an affinity to bone tissue and promoted regeneration under osteoporotic conditions with low toxicity. Similar methods, including genetic modification of parental cells and/or post-EV isolation methods can also be used to enrich surface-ligands on EVs, which can then induce/inhibit signaling or target specific recipient cells for delivery (Jafari et al., 2020). As a direct approach to modify the surface of MSC-derived EVs by click chemistry conjugation, c(RGDyK) peptide which exhibits affinity to integrin αvβ3 and expressed in reactive cerebral vascular endothelial cells after ischemia, was used for improved delivery (11-fold tropism to the lesion region of ischemic brain) and treatment of stroke (Tian et al., 2018). Additionally, surface modifications using click chemistry can be used to chemoenzymatically label EVs to visualize cellular uptake in real time. EVs isolated from conditioned media of human breast cancer MCF-7 cells were purified and an alkyn group (click chemistry target) substituted to the choline group from native EV phosphatidylcholine by an enzymatic reaction using phospholipase D (Jiang et al., 2020). Using the alkyn-azide click chemistry, fluorescent Cy5 dye was covalently fused and used to track cellular internalization in real time using fluorescent confocal microscopy in vitro (Jiang et al., 2020). Furthermore, the surface modification did not alter EV size (compared with native EVs by nanoparticle tracking analysis) (Jiang et al., 2020). This study provides an efficient method for tracking EVs that could be applied to monitor biodistribution, targeting and uptake of engineered EVs.

Cargo Loading Strategies

In addition to cargo loading via surface conjugation (Wang Y. et al., 2020), other strategies used to load cargo into EVs include parental cell modification, passive diffusion, and active loading. Overexpression of components in parental cells is an effective way to increase abundance in resulting EVs for greater function. Transfection of MSCs with miR-133b resulted in accumulation (~2.5-fold higher levels) of miR-133b in EVs (when compared to EVs from non-transfected MSCs), which subsequently improved functional recovery, reduced lesion volume, and increased neuron survival in an in vivo model of spinal cord injury (Li et al., 2018). Several other studies have modified either parental cells (pre-EV isolation) or EVs directly (post-EV isolation) for improved therapeutic response [reviewed in Lara et al. (2020), Nagelkerke et al. (2021), Ullah et al. (2021), and Witwer and Wolfram (2021)] such as in cancer (Zhang et al., 2014), neurodegeneration and Parkinson’s disease (Haney et al., 2015), and kidney fibrosis (Wang et al., 2016; Tang T. T. et al., 2019).

An alternative to modifying parental cells is the direct incorporation of specific molecules (i.e., miRNA, siRNA, protein, lipids, drugs) into EVs through passive or active methods (Luan et al., 2017; Sterzenbach et al., 2017; Nasiri Kenari et al., 2020; Nazimek and Bryniarski, 2020). Incubation of EVs with active components is a passive method of loading that involves the diffusion of drugs or molecules with varied encapsulation efficiency through the EV membrane. This approach has facilitated loading of siRNAs, miRNAs, proteins (i.e., catalase; an antioxidative enzyme, Parkinson’s disease treatment) (Haney et al., 2015), and anti-cancer drugs [i.e., Paclitaxel (Saari et al., 2015; Kim et al., 2016), Doxorubicin (Smyth et al., 2015), Imatinib (Bellavia et al., 2017)] into EVs for delivery. The loading efficiency is dependent on incubation time, cargo concentration and physicochemical properties of the cargo (i.e., solubility, surface area polarity, lipophilicity, hydrophobicity) (Liu C. et al., 2016; Luan et al., 2017; Kim et al., 2020). To address this variability, active loading methods have been implemented (co-incubation with membrane permeabilizers, i.e., saponin) to improve loading efficiency of specific molecules by up to 11-fold (Fuhrmann et al., 2015). This involves temporary and controlled disruption of EV membrane, usually accomplished by sonication, electroporation, membrane permeabilizers, freeze-thaw cycles, or cell extrusion (Table 3) to allow entry of cargo into EVs.

Sonication of EVs (using sonic waves) for therapeutic cargo loading is a widely used method for various clinical applications. Using this technique, macrophage-derived EVs were successfully loaded with Doxorubicin and Paclitaxel, allowing resulting vesicles to target cancer cells and inhibit tumor growth. These modified EVs are an attractive therapy for pulmonary metastases and triple negative breast cancer in murine models (Kim M. S. et al., 2018; Haney et al., 2020). Importantly, these studies observed that pH, temperature, and sonication configuration (time, power, probe, or water bath) affected loading efficiency, and required optimization (dependent on the cargo properties). Using an electrical pulse to temporarily disrupt the EV membrane, electroporation is a widely used method for loading small molecule drugs and nucleic acids into EVs to treat Alzheimer’s disease (Alvarez-Erviti et al., 2011), and breast (Ohno et al., 2013), lung (Takanaka et al., 2019), and ovarian (Kobayashi et al., 2020) cancers. The loading efficiency of nucleic acids (i.e., siRNA) through electroporation ranges between 15 and 20%, demonstrating a robust method for cargo loading (Jhan et al., 2020).

As an alternative to physical membrane disruption, incubation of EVs with chemical membrane permeabilizers also allows efficient loading of therapeutic cargo into EVs. Incubation of EVs with the detergent-like molecule saponin has been used to incorporate antioxidant catalase and the enzyme tripeptidyl peptidase-1 (TPP1) into bone marrow macrophage-derived EVs (up to 6.3 µg/10^11 particles for catalase, or 50 µg/10^11 particles for TPP1 were incorporated) (Haney et al., 2015, 2019). The loaded EVs significantly inhibit neurodegeneration.
and neuroinflammation in mouse models of Parkinson’s disease (Haney et al., 2015) and Batten disease (Haney et al., 2019). Other techniques used for EV cargo loading include multiple freeze-thaw cycles (Kalani et al., 2016), and serial extrusion of cell suspension through decreasing pore sizes in a buffer containing cargo of interest (Kim H. Y. et al., 2018). Studies comparing these processes highlight serial extrusion as the most efficient method for cargo loading, resulting in stable EVs with elevated functional effects (Fuhrmann et al., 2015; Haney et al., 2015; Kim et al., 2016; Le Saux et al., 2020). In the context of EV-based therapeutics, all cargo loading methods have intrinsic advantages and disadvantages that must be considered (Table 3). The methods applied should be modified according to the clinical/disease/model context (i.e., model and tissues of interest, biological/clinical question). Altogether, these advances in EV engineering provide highly customizable and combinatorial techniques to overcome current limitations of native EV as therapeutics, thus improving delivery, efficacy, and function. These advancements have allowed rapid development of EV-based therapeutics for transition to preclinical and clinical development.

CHALLENGES TO FURTHER DEVELOPMENT OF EV THERAPIES

With increasing attention on EV-based therapeutics, the need for further refinement and standardization of design, production, and clinical administration approaches is critical. Specifically, there remain several fundamental challenges the field must come to terms with; low yield of production, scalable and standardized EV generation, standardized dose and potency monitoring, determination and quantification of molecular bioactivity for regulatory purposes, and unsatisfactory targeting capacity. Fortunately, international efforts to address aspects of these are ongoing (Lener et al., 2015; Reiner et al., 2017; Witwer et al., 2019; Gandham et al., 2020; Nguyen et al., 2020; Nieuwland et al., 2020; Rankin-Turner et al., 2021). In this section, we outline the challenges faced in EV therapeutic development, with an emphasis on the updated research and technologies offering avenues for preclinical and clinical advancement (Figure 1).

Scalability and Standardization of EV Production

Clinical translation of EVs demands the development of standard, scalable, and cost-effective approaches for their production. For EV-based therapeutics, manufacturing requires high capacity and scalability without influencing the composition or potency of EVs (Whitford and Guterstam, 2019). A lack of clinical grade purification protocols suitable for large-scale production, and an incomplete understanding and standardization of variables influencing EV production represent main challenges in this area. Selection of an appropriate donor cell for native EVs (Charoenviriyakul et al., 2017) and monitoring variables such as growth state (epithelial, mesenchymal, or adherent/anchorage-dependent) (Tauro et al., 2013; Willms et al., 2016) can assist with this. Owing to significant functional advantages in regenerative medicine including wound healing and tissue repair, and therapeutic advantages in anti-inflammatory and low immunogenicity properties, amniotic and adipose cell-derived EVs are considered as a suitable candidates for therapeutic EV research and translation (Tan et al., 2018; Shukla et al., 2020). Aspects of culture influencing cell state include type of cell culture system [conventional and bioreactor systems (Mitchell et al., 2008; Mendt et al., 2018; Palviainen et al., 2019)] and media-supplements used (product and batch variance) (Quah and O’Neill, 2007; de Jong et al., 2012; Li et al., 2015; Patel D. B. et al., 2017; Thery et al., 2018; Zhu et al., 2021a). Moreover, modifications in culture parameters resultant of scaled-up systems, pH, mass transfer, and hydrodynamic (or shear) force, can result in modified cell state and growth, viability, expression, and activity of cell receptor/signaling, potentially impacting the composition and therapeutic efficacy of derived EVs. Further strategies exist to stimulate EV production and enhance yield have been reported, including N-methyl-dopamine and norepinephrine (Wang J. et al., 2020). However, the extent to which these factors impact EV composition, efficacy or other factors associated with their therapeutic use remains predominantly unknown (Colao et al., 2018; Adlerz et al., 2020) [reviewed in Whitford and Guterstam (2019)]. Therefore, as the therapeutic effects of EVs can be modulated by these variables, there is an emphasis on parental cell characteristics that should be carefully considered to exploit their clinical application (for example, therapeutic potency, immunogenicity, targeting selectivity), including their capacity to be manipulated (i.e., genetic engineering, transfection efficiency, genetic stability) or parental cell immortalization. For primary and immortalized cells, a thorough, risk-based analysis must be conducted, for the cells and their derived EVs, in addition to modified cells [reviewed in Rohde et al. (2019)]. In the context of EVs for therapeutic use, parental cell immortalization has been shown to enable sustainable production of EVs without influencing their therapeutic efficacy or immunosuppressive activity (Chen et al., 2011), however, safety concerns have been raised for the procedures and requirements to monitor oncogenicity and genetic drift [reviewed in Herrmann et al. (2021) and Xunian and Kalluri (2020)]. Recently, the production of therapeutic EVs has been amplified (Cha et al., 2018) by enhancing the biological functions of MSC-aggregates (spheroids) and their large-scale EV production (Cha et al., 2018). This study further highlighted key requirements in quality control (QC) monitoring cell source throughout changes in production and maintenance, monitoring morphological, size, and structural characteristics of derived EVs, their cytokine and miRNA expression and in vitro function, demonstrating they retained their stemness and marker gene expression during dynamic culture (Tan et al., 2018; Shukla et al., 2020). A safety concern with stem cells is the use of animal-derived serum for cell growth; the presence of such cross-species factors may cause issues from a regulatory standpoint in the production of therapeutics. Alternatively, using xeno-free culture media components or EV-depleted serum should be considered and influence on the compositions or physiological properties of derived EVs should be monitored. Accumulating evidence indicates that other naturally-derived EV
source, including plant-based (NCT01668849, NCT01294072) (Dad et al., 2021) and bovine-milk-derived EVs (Grossen et al., 2021) may be sustainable alternatives for large-scale utility of engineered EVs. Bacterial EVs from non-pathogenic or probiotic bacterial source may also be harnessed as potential EV-based delivery carriers for anti-inflammatory function (Kuhn et al., 2020), with further advantages in their versatility in being readily functionalized (Shehata et al., 2019; Cheng et al., 2021) and their scalable production (Gujrati et al., 2014; Cheng et al., 2021).

For EV-based therapeutics to be considered a viable option for clinical applications, large-scale commercial production is required. For small-scale manufacturing, cells can be expanded in multilayered flasks, spinners, wave bags or fixed-bed or hollow-fiber bioreactors depending on their growth characteristics, while for large-scale culture, cells can be grown in large-capacity enclosed (stirred-tank) bioreactors or platform-rocker wave bags (Whitford and Guterstam, 2019). Presently, large-scale production of functional homogeneous stem cell-derived EVs for therapeutic utility has been developed using filtration (0.2 µm) and conventional ultracentrifugation (Mendt et al., 2018), and size-based chromatography fractionation (Reiner et al., 2017). While large-scale production of GMP-grade EVs for clinical trialing employs a combined approach of ultrafiltration coupled with sucrose/deuterium oxide (with ultracentrifugation cushion) (Lamparski et al., 2002; Nikfarjam et al., 2020). Further, GMP-grade EVs from human cardiac progenitor cells for therapeutic application have been isolated from 8 L of bioreactor-derived culture medium using tangential flow filtration (TFF) (without ultracentrifugation) in an integrated closed circuit which encompasses the full downstream process (clarification, concentration, diafiltration, and final sterilizing filtration) (Andriolo et al., 2018). This approach provides a high product yield (≥58%, 3 × 10¹³ particles), formulated in a clinical grade solution (Plasma-Lyte A) with concomitant consistent reduction of contaminants (total protein removal 97–98%). Importantly, this study employed a characterization QC strategy, including monitoring with suitable sensitivity, precision, and accuracy, according to regulatory guidelines. Commercially, companies including Codik Biosciences employ TFF perfusion or alternating TFF perfusion to increase cell viability and isolate MSC-derived EVs using sequential filtration (0.8/0.45 µm), while others such as Evox Therapeutics Inc., use a combination of ultrafiltration and size-exclusion liquid chromatography. Larger-scale versions of other methods to isolate and enrich EVs (and subtypes within) may be possible with continuous-flow ultracentrifuges, size exclusion/ligand-activated core-bead technologies using distinct multimodal chemistry, microfluidics, field-flow fractionation, precipitation, continuous chromatography, and other industrial equipment, but feasibility of their use for EVs is limited (Li X. et al., 2019; Whitford and Guterstam, 2019; Yang et al., 2020; Martinez-Greene et al., 2021).

Profiling EV composition is a key strategy in understanding the influence had by modification and production variables. Technologies central to these efforts include mass spectrometry and nucleic acid sequencing. Indeed, proteomics can provide validation of modified (fusion) protein transfection in donor cells and act as a QC metric to evaluate the expression of donor cell and EV proteome and different EV/non-EV markers (Greening et al., 2017; Thery et al., 2018). Furthermore, proteomics can be employed with other biophysical/biochemical approaches to define and monitor the impact of culture media formulation from a single cell source on EV composition and surface protein epitope expression (Zhu et al., 2021a). Additionally, non-targeted metabolite profiling can assess how the metabolomic composition of EVs is influenced by conventional cell culture and bioreactor cell growth conditions (Palviainen et al., 2019). Proteomics and RNA sequencing has also been employed to indicate that cellular architecture (i.e., 2D vs. 3D) modifies transcriptomic and proteomic cargo of EVs (potentially altering overall function), the latter of which may affect efficiency of association and consequently uptake by recipient cells (Rocha et al., 2019). With significant therapeutic implications, the influence of engineered microtissues and immunosolation devices on EV composition has recently been reported (Kompa et al., 2021; Millan et al., 2021), where microtissue stem cells cultured in a TheraCyte device 3D environment increased EV yield while additional markers (not detectable in EVs secreted by cells cultured in standard 2D conditions) were identified using proteomic profiling. Such findings reveal that cell growth conditions and media formulations influence the
yield, surface epitopes (including tetraspanins), and broad (proteome/transcriptome/metabolome) composition of derived EVs. Thus, these are critical considerations in the scalable manufacture of clinical-grade EV therapeutics, as such variables may have profound impact on their utility. For instance, modifying the abundance of transmembrane proteins such as MHC complexes on their surface may affect their low immunogenicity (Petersen et al., 2011; Robbins and Morelli, 2014; Wahlund et al., 2017), a characteristic important for the utility of EVs as therapeutics.

As complex entities, EV therapeutics will require a suite of QC measures for successful clinical translation. A combination of discovery and pre-selected/targeted “omic” analyses will enhance our understanding of bioactive EV composition, cargo selection/loading; such knowledge could be translated to monitor generation, modification, and manufacture of EV-based therapeutic products with high throughput, sensitivity, and specificity. Indeed, in-depth monitoring is essential as EV preparations for preclinical application; often most studies use a combination of EVs (subtypes) in addition to various cell-derived and extracellular elements (i.e., secretomes) [reviewed in Rohde et al. (2019) and Witwer et al. (2019)]. For the successful translation of EVs to the clinic, the identification of critical quality attributes (e.g., size, purity, molecular composition) that impact the potency and stability of the product is essential (Figure 1). Considering the difficulties in standardized isolation and characterization of EVs, another strategy would be to prioritize therapeutic efficacy over purity (Wiklander et al., 2019; Herrmann et al., 2021). Recently, engineered recombinant EVs and reference particles have been suggested as reference materials to monitor technical variability of EV generation and their applications and promote intra- and inter-laboratory studies (Kim M. S. et al., 2018; Varga et al., 2018; Geeurickx et al., 2019, 2021). This could be applied to manufacturing and scalability in generating and monitoring EVs.

Increased and sustainable EV production is essential for the successful application and development of EV-based therapeutics. Recently, cellular nanoporation has been shown to increase production of exosomes as a universal nucleic-acid carrier for applications requiring transcriptional manipulation [up to 50-fold greater exosome yield and >103-fold increase in exosomal mRNA transcripts (Yang et al., 2020)]. Further, M-NVs generated by microfluidic and extrusion techniques have a high and consistent product yield, in comparison to native EVs, overcoming their incumbent production and isolation challenges and represent a promising alternative to native EVs for scalable and clinical application. Considerations of such approaches in terms of physical parameters may present new difficulties in establishing a standardized protocol for their generation, efficiency of molecular incorporation, modification, and storage (Shah et al., 2019; Meng et al., 2021). Further, M-NVs are comprised of diverse, undefined molecules derived from donor cells, which may cause potential safety concerns, similar to native EVs. As such, a careful screening of producer cells is essential—focused on the consistency of long-term cell growth, and specific therapeutic potency and bioactive effect. In addition, the ability of M-NVs post-generation to encapsulate drugs (i.e., hydrophilic, negatively charged macromolecular drugs) remains inefficient (generally < 30% incorporation), highlighting the need to further refine composition to enhance encapsulation efficiency (Yoon et al., 2015; Molinaro et al., 2016).

Key criteria in the development of EV-based therapeutics is the stability, preservation and storage of EV therapies (Jayaram and Jay, 2017; Kusuma et al., 2018). Recently, the effects of storage conditions on EVs for functional analysis and therapeutic use was investigated (Wu et al., 2021), evaluating temporal EV stability/quantity across various storage temperatures and freeze-thawing cycles. Importantly, storage alters EV size distribution and impacts cellular uptake and biodistribution, with −20°C (short-term) and −80°C (long-term) storage recommended. Further, for GMP-compliant EVs, several studies have reported native EV storage at −80°C in single-dose aliquots (preliminary stability studies indicate no loss of functional activity in up to 7 months) (Andriolo et al., 2018) and modified EVs storage at −80°C for up to 5 months with no change in potency or activity (Mendt et al., 2018).

Overall, challenges of industrial scale-up and specific variables that will impact transition to clinical development must be addressed and monitored in early development. The clinical and commercial demands of EV-based therapeutic production such as high, consistent yield, reproducible composition/purity, and efficiency can eventually be met with modifications to existing technologies for improved scalability (Colao et al., 2018; Adlerz et al., 2020).

Analytical Assessment of EVs: Potency and Molecular Insights for Regulatory Purpose

In delivering EV-based therapeutics dosing remains a significant challenge, with dose selection, assessment, and administration (route, frequency, time window) all factors in achieving therapeutic benefit without adverse effects. Development of appropriate potency assay that employ relevant functional end points (Nguyen et al., 2020), and demarcate in vitro potency (dependent on EV property and cell type) and in vivo efficacy is required (Willis et al., 2017; Witwer et al., 2019). Such potency assays need to be standardized and context-/disease-/model-dependent, which are unfortunately currently limited in their acceptance and utilization (Adlerz et al., 2020).

Analytical assessment and monitoring, and rigorous in vitro and in vivo testing for safety and efficacy must precede approval of EV-based therapeutics [as comprehensively discussed (Reiner et al., 2017; Nguyen et al., 2020)]. Several seminal clinical-grade EV studies have reported specific potency assessments including in vitro anti-/pro-activity, stability, in vivo pro-activity, and toxicity or immunogenicity assays (Andriolo et al., 2018; Mendt et al., 2018). Analytical assessments include: (i) molecular fingerprinting (identify bioactive/target molecule/s), monitoring of multiple components and influence of preparation/isolation method on donor and cell-derived product, (ii) potency assays (Nguyen et al., 2020) (monitoring therapeutic effect in vitro/in vivo), and (iii) mechanistic assays (identify mode of action) (Willis et al., 2017; Colao et al., 2018; Surman et al., 2017).
Such analytical assessments may provide quality control in the transition from research-grade to clinical (GMP)-grade EVs [reviewed in Adlerz et al. (2020) and Willis et al. (2017)]. At present there are no standardized methods in quantifying EV concentration and dosage. Moreover, comparative studies of EV monitoring techniques has shown that protein concentration is not relative to particle number (Lobb et al., 2015); consequently such criteria is insufficient to determine dosing. Quantitative EV analytical methods include reporting cell equivalents, protein concentration, and quantitative analytical measurement [dynamic light scattering (DLS), single-particle interferometric reflectance imaging sensing, tuneable resistive pulse sensing (RPS), nanoflow cytometry and nanoparticle tracking analysis (NTA)] (Arab et al., 2021). Significant concerns have recently been presented around existing single-particle analysis capabilities (e.g., sizing, counting, tetraspanin phenotyping) (Arab et al., 2021). Moreover, single-particle technologies will be required to separate heterogeneous EV populations into well-defined and easily recognized subgroups. Therefore, consideration of limitations in some analytical platforms is a key requirement [e.g., resolution and accuracy of the quantitative analysis of EVs using single-particle analysis capabilities (Welsh et al., 2020; Arab et al., 2021)]. In order to fully characterize a therapeutic nanoparticle preparation, it is imperative to consider particle size, particle size distribution, charge, number of particles or concentration, and the molecular composition (Nelson et al., 2020). Absolute values measured for particle or protein concentration thus need to be critically evaluated and compared to control condition, using calibration/standardized measurements at specific dose as required. Current methods have shown to be efficient in quantifying the biophysical parameters [light-scattering methods (multangle light scattering, DLS, NTA, particle interferometric reflectance imaging sensing), RPS, transmission- and cryogenic-electron microscopy, and small angle neutron scattering], hence providing the tools to validate and standardize nanoparticle therapeutics (Buzas et al., 2017). It should be noted, these technologies are not able to determine the particle type or chemical/molecular makeup of a sample, making it difficult to determine whether the sample contains EVs, protein aggregates, or other non-membranous particles (Arab et al., 2021). This limitation requires optimization of sample purity prior to size measurement.

Expectantly, EV heterogeneity confounds aspects of therapeutic application, with subtypes varying in composition and function. One of the challenges of EV biology is identification of specific EV-subtype markers (Thery et al., 2018). If aiming to purify EVs for stringent biochemical analysis (e.g., define cargo for regulatory purposes, quality control, therapeutic design) and specific functionality (e.g., identification of bioactive cargo, therapeutic screening), then rigorous purification and fractionation strategies are critical [reviewed in Gandham et al. (2020); Xu et al. (2016)]. Current research indicates that further subdivisions of EVs are needed to accurately differentiate subtypes (e.g., biogenesis, size, charge, molecular cargo), which may in turn offer unique therapeutic avenues. A key advantage here is the considerations of quality assessment and quantification of EV preparations based on recommendations of MISEV2018 and EVTRACK (Consortium et al., 2017; Thery et al., 2018). These considerations will be essential for generation of clinical-grade EVs or standardized engineered EVs (Lener et al., 2015; Merino-Gonzalez et al., 2016; Paganini et al., 2019; Meng et al., 2020; Salmond and Williams, 2021) (Figure 1).

To establish consistency in the therapeutic assessment of clinically translated EVs, effective dosing harmonization is a key requirement. It is recommended to consider the type of payload, whether it is a drug (Doxorubicin, Aspirin, Gemcitabine), an enzyme/protein (caspase, TTP1) or other biological component (nucleic acids, lipids). It is known these groups possess different pharmacokinetics and thus different units have been assigned to describe their activity or effect i.e., drug dosing is expressed in terms of mass of active substance (µg, mg, g) per pharmaceutical presentation unit (capsule, ampule, particles, grams) (Powell et al., 2021); enzymes and protein dosing is expressed in terms of enzymatic catalytic activity or IU (1 IU ≈ 16.67 nmol/s) (Units of Enzyme Activity, 1979; Iupac, 2018); lastly, biological payload such as nucleic acids and lipids could potentially be expressed in units of mass or activity depending on their function. Another consideration is the function and effect of the native/engineered EVs itself, aside from specified cargo. As vesicles interact with the host, proper controls should be established to determine their protective [i.e., RNAse-mediated degradation effect (Mendt et al., 2018)] and measured effect without the cargo of interest (Kennedy et al., 2020). Studies have shown that dosing variations of purified EV (from 30 to 300 µg of protein) did not present any adverse consequences and still exerted their desired effect in a myocardial infarction model in vivo (Barile et al., 2014). This suggests the key for dosing is not the particle itself but the cargo, especially if incorporated post-isolation.

As EVs are biological entities, their complex and variable nature challenges the highly regulated requirements for pharmaceutical production. A solution to this is functional assessment of each batch [cell source consistency (Viaud et al., 2011; Andriolo et al., 2018; Mendt et al., 2018) and EV production for specific patient-derived cell source based on EV yield (Mendt et al., 2018), positive/negative EV markers (Andriolo et al., 2018; Mendt et al., 2018), reviewed in Nguyen et al. (2020)]; identification and quantification of key markers indicating functional competency could aid this process (van Balkom et al., 2019) [i.e., tissue-based immunoregulation (Ma et al., 2020)]. Mapping specifically regulated proteins using microfluidic approaches (Zhao et al., 2016; Fang et al., 2017; Xu et al., 2018) or quantitative proteomics onto known protein networks has highlighted mechanism of action (Martin-Jaular et al., 2021) and is being applied to EV research (manufacture, composition, and function). Proteomic approaches allow researchers to understand protein signatures of native and engineered EVs (Nasiri Kenari et al., 2019; van Balkom et al., 2019), which may have implications in quality control platforms to confirm the identity and test for purity of therapeutic EVs. Proteomics has been used to assess plasma EVs after separation from
lipoproteins (i.e., lipoprotein particle depletion) (Karimi et al., 2018), tissue-derived stress/damage markers following cardiac-EV isolation (Claridge et al., 2021), and oncogenic mutations on EV proteome landscape (Al-Nedawi et al., 2008; Lobb et al., 2017; Emmanouilidi et al., 2019; Chennakrishnaiah et al., 2020; Shafiq et al., 2021; Tawil et al., 2021). Several key omic-based studies have provided direct insight into the composition and (re)classification of EVs, their biogenesis and content (Greening et al., 2015; Kowal et al., 2016; Jeppesen et al., 2019; Kugerański et al., 2021; Martinez-Greene et al., 2021; Rai et al., 2021). Moreover, an aptamer-based proteomic analysis (SOMAscan) has enabled multiplexed, highly-sensitive, and specific protein detection in human blood and other biomatrices, and applied to profile EVs (Welton et al., 2017). Other high-throughput MS approaches, such as multiple/parallel reaction monitoring MS (MRM/PRM-MS) enable rapid and accurate identification and quantification of protein biomarkers in broad dynamic range (Anwar et al., 2019; Makridakis et al., 2020). Indeed, MRM-MS has been used for identification of Mycobacterium tuberculosis peptides in patient derived exosomes (Kruh-Garcia et al., 2014), highlighting the sensitivity and specificity of this approach in EVs. Additionally, RNA profiling has been used to confirm the absence of inhibitory miRNAs (Rohde et al., 2019).

The application of multi-omic technologies, such as transcriptomics and proteomics are emerging as crucial for understanding how EVs perform therapeutic functions (Li et al., 2021d). In the wider drug development field, omics technologies are already in use to better understand mechanisms of action and identify off-target effects (Jia et al., 2019; Friman et al., 2021). Additionally, comprehensive profiling of patient and population proteomes/transcriptomes contribute to in silico predictions of drug efficacy [reviewed in El-Khateeb et al. (2019)]. Integration of cellular technologies [microphysiological systems or “tissue chips” (Ronaldson-Bouchard and Vunjak-Novakovic, 2018; Low et al., 2021; Zhang S. et al., 2021)] aimed to closely mimic in vivo conditions to assess the potency of experimental biological products and understanding of tissue-specific effect will be important future developments in clinical translation. The development of new technologies, such as machine learning and control algorithms, to interface with microphysiological systems may further advance their use in systems biology and precision medicine (Zhang Y. S. et al., 2017). For clinical translation, the FDA does not require any understanding of the mechanism by which a drug acts, moving directly to clinical trials without this knowledge may be a clear path. However, often limitations in understanding how the drug or biological regulator works may contribute to unfortunate outcomes, off-target/side effects, or poor/ineffective dosing; understanding mechanism of action may help to stratify/focus clinical trials to those patients most likely to respond (No Author, 2010). Significant changes in the FDA (Critical Path Initiative) now support development of patient screens to improve the chances for drug approval, and integration of pharmacogenomic data (proteomics, metabolomics, genome-wide association study data) in developing and evaluating medicines. In the context of EV-based therapeutics, identification of active components as a constituent of the total EV will enable optimization and improvements in dosing and effect (Xin et al., 2017; Jia et al., 2021).

Tissue Targeting and Delivery of Therapeutic EVs

Specific, targeted delivery presents a major challenge for EV-based therapeutics. Sophisticated solutions are required to minimize off-target accumulation and maximize efficacy through the targeted transport and delivery of cargo (Vargason et al., 2021). Indeed, a major obstacle preventing widespread usage of other types of regulatory therapeutics (i.e., nucleic acid polymers/oligonucleotides) is efficient delivery to target organs and tissues, minimizing off-target accumulation [reviewed in Roberts et al. (2020)]. In nanoparticle-based therapeutics, the pharmacokinetics, biodistribution and targeting are all influenced by design and biological factors of the nanoparticle constructs (Haun and Hammer, 2008; Calderon et al., 2009; Haun et al., 2011; Gu W. et al., 2019) [reviewed in Mitchell et al. (2021) and Wei et al. (2018)]. Additionally, different cell types and phenotypes internalize and traffic nano-carriers differently (MacParland et al., 2017; Patel S. et al., 2017; Brownlee and Selb, 2018) [reviewed in Biswas and Torchilin (2014) and Howard et al. (2014)]. This is especially relevant for EV therapeutics, as the heterogeneity of EVs can contribute to differential recognition and binding specificity and target cell uptake (Chivet et al., 2014; Choi et al., 2019) [reviewed in Mathieu et al. (2019)]. Characterization of such mechanisms will be essential in the field’s pursuit of accurate, potent, on-target delivery and uptake of EV therapeutics.

Drug targeted delivery can be passive, where circulating nanoparticles [e.g., coated with platelet or red blood cell membranes (Usman et al., 2018)], extravasate through leaky vasculature and accumulate in surrounding tissue via the enhanced permeability and retention (EPR) effect (Chan et al., 2010; Hu et al., 2011; Howard et al., 2014; Luk et al., 2016). Alternatively, targeting can be active, relying on membrane moieties to bind protein/peptide receptors/sequences on target cells or tissues (Peer et al., 2007; Bertram et al., 2009; Cheng et al., 2020; Yang et al., 2020). The relatively large surface area to volume ratio of EVs enables highly efficient surface interactions, highlighting the latter form of targeting as a promising avenue for development. Recently, the inflammation-targeting ability of platelet-derived EVs (PEVs) was verified, with drug-incorporated PEVs able to target inflamed lungs in vivo to precisely deliver and modify the immune response at the site of inflammation (Ma et al., 2020), revolutionizing the way inflammatory diseases can be treated. While effective, the molecular interactions (perhaps surface-based) behind this functional delivery are not yet understood. However, there are known protein signatures on EV surfaces which direct uptake in specific organs (Hoshino et al., 2015); unfortunately, very few targeting moieties have been identified and characterized on EVs. Defining additional signatures is essential for the refinement of targeted EV therapeutics, and will require analysis of their surfaceome and biodistribution, as well as the molecular signatures of proteins/peptides exposed in the targeted
tissue/cell pathology [reviewed in Howard et al. (2014) and Shao et al. (2018)].

The surface proteome of EV subtypes (exosomes) has been defined using various proteolytic and biotinylation approaches (Cvjetkovic et al., 2016; Williams C. et al., 2019; Xu R. et al., 2019) with their topology determined using similar methods (Jeppesen et al., 2019). This has provided insights into components exposed and available for cell-interaction. Recently, proteins with exposed regions on the EV surface, CD63 and LAMP2B, have been the base for topologically distinct scaffolds for fusion proteins containing targeting sequences, enabling the flexible engineering of EV surface for applications in disease-targeted drug delivery and therapy (Curley et al., 2020). Use of these fusion protein scaffolds of attachment of components with known binding partners enriched at target sites has successfully assisted in increased targeted uptake, but has not abolished non-specific uptake (Minagala et al., 2021). Development of new scaffolds is dependent on the display of a N- or C-terminal on the outer surface of EVs, with topology of the surface proteins essential (Jeppesen et al., 2019). However, the surface signature of EVs is highly heterogeneous, which presents a challenge in designing targeting scaffolds present on all EVs, rather than a subtype, and could reflect different basal functionalities (Koval et al., 2016; Xu R. et al., 2019). Furthermore, despite the high lipid content and diversity on EVs, the role of lipids (i.e., glycosphingolipids) in drug delivery, specific tissue-derived EVs (Flaherty et al., 2019), and how other surface moieties facilitate delivery (Zhu et al., 2018; Mentkowski and Lang, 2019) is still poorly understood. Comprehensive multi-omic surfaceome studies of homogeneous EVs will assist in understanding which effectors (e.g., tetraspanins, integrin receptors/ligands, glycoproteins, membrane lipids) facilitate direct functional content transfer and targeting, findings which will be critically important in exploiting EVs as drug delivery systems (Kooijmans et al., 2021; Richter et al., 2021). Combining surfaceome characterization with techniques to study tropism (Hoshino et al., 2015; Wu et al., 2020) and biodistribution (Wu et al., 2020) will assist in identification of components that determine targeting and interaction.

Understanding the biodistribution of EVs is critical for the identification of targeting-moieties and ensuring dosage at the intended site/tissue. While simple, fast, and relatively inexpensive to use, lipophilic dyes can present issues for biodistribution studies. Dyes can form micelles (Puzar Dominokus et al., 2018) and interfere with EV size, charge, uptake, biodistribution and clearance (Lai et al., 2014; Dehghani et al., 2020), raising questions about their suitability for this application (Takov et al., 2017). Indeed, EVs are likely degraded and/or recycled in vivo resulting in inaccurate spatiotemporal information (Takov et al., 2017)—a consideration when using such dyes is their capacity to interact with other membranes and remain visible in such tissues. Fortunately, alternatives to dye-based tracking are emerging; recent developments in live cell reporters allow visualization of EV biogenesis, uptake and intracellular trafficking (Sung et al., 2020). Fusing surface proteins to NanoLuc or ThermoLuc allow highly sensitive in vivo quantification or real time imaging, respectively, at low cost and in semi-high throughput (Kojima et al., 2018; Gupta et al., 2020). Additionally, other reporter systems have been used to label EVs for in vivo imaging, spatiotemporal dynamics, and pharmacokinetic analysis of administered EVs (Takahashi et al., 2013; Lai et al., 2014; Sung et al., 2020; Wu et al., 2020). Imaging technologies have shown EV biodistribution is influenced by route of administration (intravenous, intraperitoneal, and subcutaneous injection) and dosage (Ohno et al., 2013; Takahashi et al., 2013; Wiklander et al., 2015). Mode of delivery also effects the plasma pharmacokinetic patterns of EVs, while different subpopulations of EVs differ in their in vivo biodistributions (Gupta et al., 2020). This variation presents a challenge for the clinical application of systemically administered EV therapies, with altered biodistribution complicating potential dosage and off-target effects. However, non-systemic administration of EVs may bypass this challenge.

Delivery of EV-based therapeutics directly to the site of interest overcomes the limitations of current therapeutic delivery strategies and can ensure sequestration of the therapeutic. Lung-based pathologies are employing inhalation as the method of administration to ensure site-specific delivery (NCT04389385, NCT04747574, and NCT04276987). Injections of EVs to sites of damage are another method of focusing delivery, with therapeutic application of EVs directly to arthritic joints (Wang et al., 2017; Wu et al., 2019; Li et al., 2021b), venous ulcers (NCT04652531), inner ears (Gyorgy et al., 2017), eyes (NCT03437759), and heart [damaged myocardium (Yao J. et al., 2021)]. While suitable for individual treatments at injection-accessible sites, ongoing release of EV-based therapeutics at inaccessible sites raises a challenge. The injection or topical application of hydrogels and biogels offer a form of slow-release EV administration directly to the site of injury (Li L. et al., 2020; Shi et al., 2021; Zhao et al., 2021; Zhu et al., 2021b). Furthermore, the recent development of EV-coated scaffolds, such as cardiac stents and cardiac fibrin patches, allow for the therapeutics extended release at the site of damage (Hu S. et al., 2021; Yao J. et al., 2021). As a minimally-invasive direct therapeutic delivery strategy, EVs have been shown to be released in high capacity in vivo from human stem cells within a semi-permeable chamber inserted subcutaneously for cardiac therapy (Kompa et al., 2021). Coating implants for expedited healing and recovery is an area with great therapeutic potential, however, refinements and standardization will be required prior to clinical translation. Developments utilizing shape memory materials [e.g., smart or intelligent materials (Huang et al., 2019; Zhao et al., 2019)] and dynamic response composites which can adapt to external stimuli, could offer significant advantages in EV-coated implant/scaffold systems for wound treatment (Melocchi et al., 2021). Further improvements to EV-based therapeutic delivery will be made with additional molecular characterization of EV-tissue tropism, biodistribution, and delivery mechanism designs to ensure the specificity of therapeutic delivery for specific cell types.
CONCLUSION

Extracellular vesicle-based therapeutics hold the greatest clinical promise when a combination of native and engineered aspects are utilized. Native EVs hold innate therapeutic potential—they are biocompatible, stable, and due to their specific targeting, facilitate therapeutic use. However, there are significant challenges associated with their commercialization and clinical development, with engineered EVs allowing modified content, increased production, and targeting for improved therapeutic outcome. Regardless of native or engineered state, there are several aspects which must be considered prior to pharmaceutical translation and clinical application (Figure 1), primarily the source, standardized EV generation/isolation and characterization, defining composition/potency/dose/safety, understanding targeting and biodistribution, and elucidating mechanism of action in target cell(s). This review details diverse scalable processes/strategies for EV generation and isolation, and development/integration of methods for research/clinical grade quality control. In developing EV-based therapeutics, a quantitative analysis of pharmacokinetics, biodistribution, and influence of storage conditions on shelf life, are essential. Indeed, several seminal studies have reported a clinically feasible approach for EV production, scalability, and storage for therapeutic application (Gimona et al., 2017; Andriolo et al., 2018; Mendt et al., 2018; Witwer et al., 2019). Interestingly, for EV-based therapeutic development, as discussed (Granger et al., 2021), the most advanced scale-up strategies preferentially use abundant quantities of available biomaterials (biofluids, blood products including plasma, red blood cells, platelets) and produce engineered EVs or secretome-based products for translation. Such strategies may be the result of the clinical translation of prior regulatory requirements in the established, licensed use of these products as medicines, abundant supply, human origin, and biotechnology and cell therapy industry links to accelerate clinical translation. The use of these products has significantly inherent translational advantages for hemostasis, for regenerative medicine, and as drug-delivery vehicles (Johnson et al., 2021). Once quality control concerns have been addressed and applied by the field, clinical trials will be able to advance further (Gandham et al., 2020). Successful translation of EV therapeutics in immunomodulation, regeneration and repair, and combination therapies will provide desperately needed treatments globally, transforming the current bio-pharmaceutical landscape.

Considering that EVs carry and transfer various functional molecular cargo, quantitative global analyses to understand EV-associated components [e.g., EV-mediated transfer of proteins/lipids/RNAs between specific cell types and organs (Costa-Silva et al., 2015; Hoshino et al., 2015; Flaherty et al., 2019; Rodrigues et al., 2019; Kugers et al., 2021; Nguyen et al., 2021)] warrants further investigation. Increasingly, the field is shifting toward systems biology to understand EVs (Xu et al., 2016; Gezsi et al., 2019), integrating different analysis platforms to achieve multi-omic characterization of EVs for therapeutic application—their source (different donor origins, organ/tissue-derived), composition (including core and surfaceome/interactome landscape), and capacity to reprogram target cells and phenotype (Hoshino et al., 2015, 2020; Melo et al., 2015; Kowal et al., 2016; Xu et al., 2016; Figueroa et al., 2017; Greening et al., 2017; Flaherty et al., 2019; Rontogian et al., 2019; Xu H. et al., 2019; Jung et al., 2020; Bijnor et al., 2021; Kugers et al., 2021; Rai et al., 2021). Further development of these technologies will facilitate the advancement and refinement of EV-based therapeutics. Indeed, developments in EV-based function in cross-kingdom delivery [i.e., RNAs in trafficking from plant to regulate fungal pathogens (Cai et al., 2018)] may further develop effective delivery methods of pathogen-targeting regulatory RNAs for therapeutic and agriculture use.

Designing EV-based therapeutics is reliant on identification of components with a beneficial effect at a target site. Given their complex composition, mechanisms by which EVs induce their therapeutic effects remain incompletely understood. As a priority, a major challenge toward therapeutic utility of EVs is their heterogeneity in content and composition inherent in their biogenesis and generation. This heterogeneity currently complicates the design, dose, standardization, regulation, and delivery of EV-based therapeutics. Enrichment strategies that can distinguish between different EVs may help identify the functional sub-population and enrich for active components. Such an approach will not only result in more potent therapeutic applications but also allow decoding and translation of molecular insights and mechanisms of action underlying function. The design of simple, effective, and cost-efficient processes to assess the required purity of EVs will facilitate much-needed standardization in the field. Careful consideration and standardized/regulatory requirements for challenges raised in this and other key reviews (Willis et al., 2018; Whitford and Gutermant, 2019; Wiklander et al., 2019; Gandham et al., 2020; Nguyen et al., 2020; Rankin-Turner et al., 2021) will assist in development of EV-based therapeutics, bringing them closer to the clinic (Davis et al., 2008; Chan et al., 2010; Buss and Bhatia, 2020; Li et al., 2021c; Swingle et al., 2021; Yang et al., 2021).

AUTHOR CONTRIBUTIONS

BC, JL, and QP contributed equally to all aspects of the design, writing, figure generation, and editing of this manuscript. DG contributed to the design, writing, and editing of the manuscript. All authors approved the submitted version.

FUNDING

This work was supported by National Health and Medical Research Council project grant (DG: #1139489 and 1057741), and Helen Amelia Hains Fellowship (DG). This work is supported by the Victorian Government’s Operational Infrastructure Support Program. BC is supported by an Australian Government Training Program (RTP) scholarship and Baker Institute Bright Sparks Scholarship Top Up. JL and QP are supported by joint Baker Institute-La Trobe University Research Training Program scholarships.
REFERENCES

Abdel-Monem, H., Dasgupta, S. K., Le, A., Prakash, A., and Thiagarajan, P. (2010). Phagocytosis of platelet microvesicles and beta2-glycoprotein I. Thromb. Haemost. 104, 335–341. doi: 10.1160/th09-12-0849

Abels, E. R., Maas, S. L. N., Nieland, I., Wei, Z., Cheah, P. S., Tai, E., et al. (2019). Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular mxRf-21. Cell Rep. 28, 3105–3119.e3107. doi: 10.1016/j.celrep.2019.08.036

Aday, S., Hazan-Halevy, I., Chamorro-Jorganes, A., Anwar, M., Goldsmith, M., Beazley-Long, N., et al. (2021). Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol. Ther. [Preprint]. doi: 10.1038/s41390-021-01305-z

Adlerz, K., Patel, D., Rowley, J., Ng, K., and Ahsan, T. (2020). Strategies for scalable manufacturing and translation of MSC-derived extracellular vesicles. Stem Cell Res. 48:101978. doi: 10.1016/j.scr.2020.101978

Admyre, C., Grunewald, J., Thyberg, J., Gripenback, S., Tornling, G., Eklund, A., et al. (2003). Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur. Respir. J. 22, 578–583. doi: 10.1183/09031936.00.0041703

Ageta, H., Ageta-Ishihara, N., Hitachi, K., Karayel, O., Onouchi, T., Yamaguchi, H., et al. (2018). UBL3 modification influences protein sorting to small extracellular vesicles. Nat. Commun. 9:3936. doi: 10.1038/s41467-018-06197-y

Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A., et al. (2008). Intercellular transfer of the oncogenic receptor EGFRVIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624.

Altan-Bonnet, N. (2016). Extracellular vesicles are the Trojan horses of viral infection. Curr. Opin. Microbiol. 27, 72–81.

Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345. doi: 10.1038/nbt.1807

Amash, A., Wang, L., Wang, Y., Bhakta, V., Fairn, G. D., Hou, M., et al. (2016). CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcgamma Receptor- and Complement Receptor 3-Dependent Mechanisms. J. Immunol. 196, 3331–3340. doi: 10.4049/jimmunol.1502198

Andrews, D. W., Judy, K. D., Scott, C. B., Garcia, S., Harshyne, L. A., Kenyon, L., et al. (2021). Phase Ib Clinical Trial of IGV-001 for Patients with Newly Diagnosed Glioblastoma. Clin. Cancer Res. 27, 1912–1922. doi: 10.1158/1078-0432.CCR-20-3805

Andriolo, G., Provasi, E., Lo Ciceri, V., Brambilla, A., Soncin, S., Torre, T., et al. (2018). Exosomes From Human Cardiac Progenitor Cells for Therapeutic Applications: Development of a GMP-Grade Manufacturing Method. Front. Physiol. 9:1169. doi: 10.3389/fphys.2018.01169

Antes, T. J., Middleton, R. C., Luther, K. M., Ijichi, T., Peck, K. A., Liu, W. J., et al. (2016). Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J. Extracellular Vesicles 5:23553. doi: 10.3402/jev.v5.23553

Banks, W. A., Sharma, P., Bullock, K. M., Hansen, K. M., Ludwig, N., and Whiteside, T. L. (2020). Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. Int. J. Mol. Sci. 21:4407. doi: 10.3390/ijms21124407

Beazley-Long, N., et al. (2021). Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol. Ther. [Preprint]. doi: 10.1038/s41390-021-01305-z

Bertram, J. P., Williams, C. A., Robinson, R., Segal, S. S., Flynn, N. T., and Lavik, E. B. (2009). Intravenous hemostat: nanotechnology to halt bleeding. Sci. Transl. Med. 1:11ra22. doi: 10.1126/scitranslmed.3000397

Besse, B., Barillot, C., Lepore, V., Dansin, E., Lantz, O., Planchard, D., et al. (2014). Glioblastoma-Associated Microglia Reprogramming Is Mediated by CD24 signalling through macrophage Siglec-10 allowing for cellular uptake via chemokine receptor CCR8. J. Extracellular Vesicles 7:144660. doi: 10.1002/jev2.12079

Borkaczak, A. C., Salavatore, S. P., Seshan, S. V., Patel, S. S., Bussel, J. B., Mostyka, R. I., et al. (2014). Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. J. Extracellular Vesicles 3:28887. doi: 10.3402/jev.v3.28887

Brown, S., Heinisch, I., Ross, E., Shaw, K., Buckley, C. D., and Savill, J. (2009). Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin. AAPS J. 11.004

Buschmann, D., Mussack, V., and Byrd, J. B. (2021). Separation, characterization, and standardization of extracellular vesicles for drug delivery applications. Adv. Drug Deliv. Rev. 174, 348–368.

Claridge et al. Development and Considerations of Extracellular Vesicle Therapeutics
Buss, C. G., and Bhatia, S. N. (2020). Nanoparticle delivery of immunostimulatory oligonucleotides enhances response to checkpoint inhibitor therapies. *Proc. Natl. Acad. Sci. U.S.A.* 117, 13428–13436. doi: 10.1073/pnas.2001569117

Buzas, E. I., Gardiner, C., Lee, C., and Smith, Z. J. (2017). Single particle analysis: Methods for detection of plateaulet extracellular vesicles in suspension (excluding flow cytometry). *Platelets* 28, 249–257. doi: 10.1080/09537104.2016.1266704

Cai, Q., Qiao, L., Wang, M., He, B., Lin, F. M., Palmquist, J., et al. (2018). Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. *Science* 360, 1126–1129. doi: 10.1126/science.aar4142

Calderon, A. J., Muzikantov, V., Muro, S., and Eckmann, D. M. (2009). Flow dynamics, binding and detachment of spherical carriers targeted to ICAM-1 on endothelial cells. *Biochimie* 46, 323–341. doi: 10.3233/BIR-2009-0544

Cao, H., Dan, Z., He, X., Zhang, Z., Yu, H., Yin, Q., et al. (2016). Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer. *ACS Nano* 10, 7738–7748.

Carli, A. L. E., Afshar-Serle, S., Rai, A., Fang, H., O’Keefe, R., Tse, J., et al. (2021). Cancer stem cell marker DCLK1 reprograms small extracellular vesicles toward migratory phenotype in gastric cancer cells. *Proteomics* 2021:e2000098. doi: 10.1002/pmic.202000098

Casella, G., Colombo, F., Finardi, A., Descamps, H., Ill-Raga, G., Spinelli, A., et al. (2012). The CD47-SIRPalpha pathway promotes function after myocardial infarction. *Proc. Natl. Acad. Sci. U.S.A.* 109, 13428–13436. doi: 10.1073/pnas.2001569117

Chao, M. P., Weissman, I. L., and Majeti, R. (2012). Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. *Sci. Rep.* 2, 2018. doi: 10.1038/srep02018

Chen, G., Huang, A. C., Zhang, W., Zhang, G., Wu, M., Xu, W., et al. (2018). CD47-SIRPalpha promotes function after myocardial infarction. *J. Control Release* 279, 326–335. doi: 10.1016/j.jconrel.2018.04.037

Chen, R., Huang, H., Liu, H., Xi, J., Ning, J., Zeng, W., et al. (2019). Friend or Foe? Exosomal PD-L1 contributes to immunosuppression and is associated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer. *Proc. Natl. Acad. Sci. U.S.A.* 116, 6554. doi: 10.1038/s41565-020-0669-6

Chen, M., Qiu, T., Wu, J., Yang, Y., Wright, G. D., Wu, M., et al. (2017). Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. *J. Extracell Vesicles* 3:24722. doi: 10.1002/jexv.v3.24722

Chen, T. S., Arslan, F., Yin, Y., Tan, S. S., Lai, R. C., Choo, A. B., et al. (2011). Evidence Indicates Endogenous Exosomes Can Deliver Functional gRNA and mRNA. *Curr. Opin. Immunol.* 23, 225–232. doi: 10.1016/j.coi.2011.06.024

Chen, C., Wang, L. L., Zaman, S., Gordon, J., Arisi, M. F., Venkataraman, C. M., et al. (2018). Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrosols improves angiogenesis and promotes function after myocardial infarction. *Cardiovasc. Res.* 114, 1029–1040. doi: 10.1093/cvr/cvy067

Chen, G., Huang, A. C., Zhang, W., Zhang, G., Wu, M., Xu, W., et al. (2018). Exosomal PD-L1 contributes to immunosuppression and is associated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer. *Proc. Natl. Acad. Sci. U.S.A.* 109, 13428–13436. doi: 10.1073/pnas.2001569117

Chen, C., Wang, L. L., Zaman, S., Gordon, J., Arisi, M. F., Venkataraman, C. M., et al. (2018). Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrosols improves angiogenesis and promotes function after myocardial infarction. *Cardiovasc. Res.* 114, 1029–1040. doi: 10.1093/cvr/cvy067

Chen, M., Qiu, T., Wu, J., Yang, Y., Wright, G. D., Wu, M., et al. (2018). Extracellular anti-angiogenic proteins augment an endothosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUV-ECs. *Cell Death Differ.* 25, 1905–1920. doi: 10.1038/s41418-018-0092-9

Chen, M., Xu, R., Ji, H., Greening, D. W., Rai, A., Izumioka, K., et al. (2016). Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. *Sci. Rep.* 6, 38397. doi: 10.1038/srep38397

Chen, C., Huang, H., Liu, H., Xu, J., Ning, J., Zeng, W., et al. (2019). Friend or Foe? Evidence Indicates Endogenous Exosomes Can Deliver Functional gRNA and Cas9 Protein. *Small* 15, 1902686.

Chen, S., Tang, Y., Liu, Y., Zhang, P., Lv, L., Zhang, X., et al. (2019). Exosomes derived from mir-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. *Cell Profil.* 52:e21669. doi: 10.1111/cp.12699

Chen, T. S., Arslan, F., Yin, Y., Tan, S. S., Lai, R. C., Choo, A. B., et al. (2011). Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. *J. Transl. Med.* 9:47. doi: 10.1186/1479-5876-9-47

Cheng, K., Zhao, R., Li, Y., Qi, Y., Wang, Y., Zhang, Y., et al. (2021). Biowengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Play technology. *J. Immunol.* 12:2041. doi: 10.1038/s41467-021-22308-8

Cheng, L., Sharples, R. A., Scicluna, B. J., and Hill, A. F. (2014). Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. *J. Extracellular Vesicles* 3:25743. doi: 10.3402/jexv.v3.25743

Cheng, Q., Wei, T., Farbiak, L., Johnson, L. T., Dillard, S. A., and Siegwart, D. J. (2020). Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. *Nat. Nanotechnol.* 15, 313–320. doi: 10.1038/s41565-020-0669-6

Chennakrishnaih, S., Tering, T., Gregory, C., Tawil, N., Spinelli, C., Montermini, L., et al. (2020). Extracellular vesicles from genetically unstable, oncogene-driven cancer cells trigger micronuclei formation in endothelial cells. *Sci. Rep.* 10:8532. doi: 10.1038/s41598-020-65640-7

Cherian, D. S., Bhuvan, T., Meagher, L., and Heng, T. S. P. (2020). Biological Considerations in Scaling Up Therapeutic Cell Manufacturing. *Front. Pharmacol.* 11:654. doi: 10.3389/fphar.2020.00654

Chivet, M., Javallot, C., Laulagnier, K., Blot, B., Hemming, F. J., and Sadoul, R. (2014). Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. *J. Extracell Vesicles* 3:24722. doi: 10.1002/jexv.v3.24722
activate Stat1 signaling in target cells. Mol. Cell 56, 193–204. doi: 10.1016/j.molcel.2014.08.020
Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., et al. (2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826.
Curley, N., Levy, D., Do, M. A., Brown, A., Stickney, Z., Marriott, G., et al. (2020). Sequential deletion of CD63 identifies topologically distinct scaffolds for surface engineering of exosomes in living human cells. Nanoscale 12, 12014–12026. doi: 10.1039/d0nr00362j
Cvjetkovic, A., Jang, S. C., Konecna, B., Hoog, J. L., Sihlbom, C., Lasser, C., et al. (2016). Detailed Analysis of Protein Topology of Extracellular Vesicles-Evidence of Unconventional Membrane Protein Orientation. Sci. Rep. 6:36338. doi: 10.1038/srep36338
Dallafiordeu, R., Gholoobi, A., Vahabian, M., Mahdipour, E., and Afzaljavan, C. (2021). Systematic engineering of exosomes in living human cells. Mol. Ther. 29, 13–31. doi: 10.1016/j.jpmthe.2020.11.030
Dalirfardouei, R., Gholoobi, A., Vahabian, M., Mahdipour, E., and Afzaljavan, F. (2021). Therapeutic role of extracellular vesicles derived from stem cells in cutaneous wound models: A systematic review. Life Sci. 273:119271. doi: 10.1016/j.lfs.2021.119271
Dasgupta, S. K., Abdel-Monem, H., Niravath, P., Le, A., Berrera, R. V., Langlois, K., et al. (2009). Lactadherin and clearance of platelet-derived microvesicles. Blood 113, 1332–1339. doi: 10.1182/blood-2008-07-167148
Dasgupta, S. K., Le, A., Chavakis, T., Rumbaut, R. E., and Thiagarajan, P. (2012). Emerging treatment modalities for cancer. Nat. Rev. Drug Discov. 7, 771–782.
de Couto, G., Gallet, R., Cambier, L., Jaghatsapany, E., Makkar, N., Dawkins, J. F., et al. (2017). Exosomal MicroRNA Transfer Into Macrophages Mediates Cellular Postconditioning. Circulation 136, 200–214.
de Jong, O. G., Verhaar, M. C., Chen, Y., Vader, P., Gremmels, H., Posthuma, G., et al. (2012). Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J. Excretal Vesicles 1:18396. doi: 10.3402/evr.v1i10.18396
de Klein, E. D., de Groot, R., Lefebre, A. B., Labadie, J., van Limpt, C. J., Visser, I., et al. (2001). Prevention of meningococcal sepsis group B infections in children: a protein-based vaccine induces immunologic memory. J. Infect. Dis. 184, 98–102.
Dehghani, M., Gulvin, S. M., Flax, J., and Gaborski, T. R. (2020). Systematic Evaluation of PKH Labeling on Extracellular Vesicle Size by Nanoparticle Tracking Analysis. Sci. Rep. 10:9533. doi: 10.1038/s41598-020-664 34-7
Della Rosa, G., Ruggeri, C., and Aloi, A. (2021). From Exosome Glycobiology to Exosome Glycotechnobiology: The Role of Natural Occurring Polysaccharides. Polysaccharides 2, 311–338.
Desdin-Mico, G., and Mittelbrunn, M. (2017). Role of exosomes in the protection of cellular homeostasis. Cell Adh. Migr. 11, 127–134.
Di Blasio, R., Marbiah, M. M., Siciliano, V., Polizzi, K., and Ceroni, F. (2021). New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One 12:e0183915. doi: 10.1371/journal.pone.0183915
Fan, S. J., Kroeger, B., Marie, P. P., Bridges, E. M., Mason, J. D., McCormick, K., et al. (2020). Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J. 39:e103009. doi: 10.15222/embj.2019103009
Fan, W., Tian, X. D., Huang, E., and Zhang, J. J. (2013). Exosomes from CTITA-transfected CT26 cells enhance anti-tumor effects. Asian Pac. J. Cancer Prev. 14, 987–991. doi: 10.7314/apjcp.2013.14.2.987
Fang, S., Tian, H., Li, X., Jin, D., Li, X., Kong, J., et al. (2017). Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One 12:e0175050. doi: 10.1371/journal.pone.0175050
Fathali, H., Dunevall, J., Majdi, S., and CNS, A. S. (2017). Extracellular Osmotic Stress Reduces the Vesicle Size while Keeping a Constant Neurotransmitter Concentration. ACS Chem. Neurosci. 8, 368–375. doi: 10.1021/acschemneuro.6b00350
Feng, C., Xiong, Z., Wang, C., Xiao, W., Xiao, H., Xie, K., et al. (2021). Folic acid modified Exosomes-PH20 enhances the efficiency of therapy via modulation of the tumor microenvironment and directly inhibits tumor cell metastasis. Biosci. Mater. 6, 963–974. doi: 10.1016/j.biomact.2020.09.014
Feng, Z., Hensley, L. M., Kniberg, K. L., Hu, F., Madden, V., Ping, L., et al. (2013). A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496, 367–371.
Fernando, M. R., Jiang, C., Kryzhanowski, G. D., and Ryan, W. L. (2017). New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One 12:e0183915. doi: 10.1371/journal.pone.0183915
Figueroa, J. M., Skog, J., Akers, J., Li, H., Komoratz, K., Jensen, R., et al. (2017). Detection of wild-type EGFR amplification and EGFRVII mutation in CSF-derived extracellular vesicles of glioblastoma patients. Neuro Oncol. 19, 1494–1502. doi: 10.1093/neuonc/nox085
Flaherty, S. E. III, Grijalva, A., Xu, X., Ables, E., Nomanai, A., and Ferrante, A. W. Jr. (2019). A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science 363, 989–993. doi: 10.1126/science.aaw2586
Friman, T., Chernobrovkin, A., Martinez Molina, D., and Arnold, L. (2020). CETSA MS Profiling for a Comparative Assessment of FDA Approved Antivirals Repurposed for COVID-19 Therapy Identifies TRIP13 as a Remdesivir Off-Target. SLAS Discov. 26, 336–344. doi: 10.1177/2168844620937587
Fuhrmann, G., Serio, A., Mazo, M., Nair, R., and Stevens, M. M. (2015). Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release 205, 35–44. doi: 10.1016/j.jconrel.2014.11.029
Gomez-Ferrer, M., Villanueva-Badenas, E., Sanchez-Sanchez, R., Sanchez-Lopez, Garaeva, L., Kamyshinsky, R., Kil, Y., Varfolomeeva, E., Verlov, N., Komarova, E., Gandham, S., Su, X., Wood, J., Nocera, A. L., Alli, S. C., Milane, L., et al. (2020). Glutaminase 1 Regulates Neuroinflammation After Cerebral Ischemia Through Enhancing Microglial Activation and Pro-Inflammatory Exosome Release. *Front. Immunol.* 11:161. doi: 10.3389/fimmu.2020.00161

Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P., and Diez-Juan, A. (2016). HIF-1alpha and their derivatives–putative therapeutics in the management of autoimmune pancreatitis. *J. Exp. Med.* 12.010

Gurun, S., Shen, S., Wang, J., Wang, H., Li, M., Liu, Y., et al. (2015). Detection of high-risk arterosclerotic plaques with ultrasound molecular imaging of glycoprotein IIb/IIIa receptor on activated platelets. *Theranostics* 5, 418–430.

Gupta, D., Liang, X., Pavlova, S., Wiklander, O. P. B., Corso, G., Zhao, Y., et al. (2015). Detection of high-sensitive bioluminescence imaging. *J. Immunol.* 18:1190.

Grange, C., Tapparo, M., Bruno, S., Chatterjee, D., Quesenberry, P. J., Tetta, C., et al. (2014). Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. *Int. J. Mol. Med.* 33, 1055–1063. doi: 10.3892/ijmm.2014.1663

Granger, A., Branchu, J., Volatron, J., Piffoux, M., Gazeau, F., Wilhelm, C., et al. (2021). Technological advances towards extracellular vesicles mass production. *Adv. Drug Deliv. Rev.* 2021:113843. doi: 10.1016/j.addr.2021.113843

Grapp, M., Wrede, A., Schweizer, M., Huwel, S., Gallia, H. J., Snaidero, N., et al. (2013). Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. *Nat. Commun.* 4:2123. doi: 10.1038/ncomms3123

Greening, D. W., and Simpson, R. J. (2018). Understanding extracellular vesicle diversity - current status. *Expert Rev. Proteomics* 15, 887–910. doi: 10.1016/j.jbpe.2020.11.012

Greening, D. W., Xu, R., Gopal, S. K., Rai, A., and Simpson, R. J. (2017). Proteomic insights into extracellular vesicle biology - defining exosomes and shed microvesicles. *Expert Rev. Proteomics* 14, 69–95.

Greening, D. W., Xu, R., Ji, H., Tauro, B. J., and Simpson, R. J. (2015). A protocol for exosome isolation and characterization: evaluation of ultra centrifugation, density-gradient separation, and immunoaffinity capture methods. *Methods Mol. Biol.* 1295, 179–209. doi: 10.1007/978-1-4939-2550-6_15

Grossen, P., Portmann, M., Koller, E., Duschmale, M., Minz, T., Sewing, S., et al. (2021). Evaluation of bovine milk extracellular vesicles for the delivery of locked nucleic acid antisense oligonucleotides. *Eur. J. Pharm. Biopharm.* 158, 198–210. doi: 10.1016/j.ejpb.2020.11.012

Gu, H., Liu, Z., Li, Y., Xie, Y., Yao, J., Zhu, Y., et al. (2018). Serum-Derived Extracellular Vesicles Protect Against Acute Myocardial Infarction by Regulating miR-21/PCDC4 Signaling Pathway. *Front. Physiol.* 9:348. doi: 10.3389/fphys.2018.00348

Gu, W., Bobrin, V. A., Chen, S. R., Wang, Z., Schoning, J. P., Gu, Y., et al. (2019). Biodistribution of PNIPAM-Coated Nanostructures Synthesized by the TDMT Method. *Biomacromolecules* 20, 625–634. doi: 10.1021/acs.biomac.8b01196

Gu, Y. Y., Yu, J., Zhang, J. F., and Wang, C. (2019). Suppressing the secretion of exosomal miR-19b by g4w869 could regulate oxalipatin sensitivity in colorectal cancer. *Neoplasma* 66, 39–45. doi: 10.4149/ne_2018_180308N15

Gurjati, V., Kim, S., Kim, S. H., Min, J. J., Choy, H. E., Kim, S. C., et al. (2014). Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. *ACS Nano* 8, 1525–1537. doi: 10.1021/nn50724x

Guo, S., Shen, S., Wang, J., Wang, H., Li, M., Liu, Y., et al. (2015). Detection of high-risk atherosclerotic plaques with ultrasound molecular imaging of glycoprotein IIb/IIIa receptor on activated platelets. *Theranostics* 5, 418–430.

Han, H. D., Lee, A., Song, C. K., Hwang, T., Seong, H., Lee, C. O., et al. (2006). In vivo distribution and antitumor activity of heparin-stabilized doxorubicin-loaded liposomes. *Int. J. Pharm.* 313, 181–188. doi: 10.1016/j.ijpharm.2006.02.007
Han, Q., Xie, Q. R., Li, F., Cheng, Y., Wu, T., Zhang, Y., et al. (2021). Targeted inhibition of SIRT6 via engineered exosomes impairs tumor metastasis and tumorigenesis in prostate cancer. *Theranostics* **11**, 6526–6541. doi: 10.7150/thno.33886

Han, Y., Ren, J., Bai, Y., Pei, X., and Han, Y. (2019). Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGFR. *Int. J. Biochem. Cell Biol.* **109**, 59–68.

Haney, M. J., Klyachko, N. L., Harrison, E. B., Zhao, Y., Kabanov, A. V., and Batrakov, E. V. (2019). TPP1 Delivery to Lyosomes with Extracellular Vesicles and their Enhanced Brain Distribution in the Animal Model of Batten Disease. *Adv. Healthc. Mater.* 8:e1801271. doi: 10.1002/adhm.201801271

Haney, M. J., Klyachko, N. L., Zhao, Y., Gupta, R., Plotnikova, E. G., He, Z., et al. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. *J. Control Release* **207**, 18–30.

Haney, M. J., Zhao, Y., Jin, Y. S., L. S. M., Bago, J. R., Klyachko, N. L., et al. (2020). Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. *J. Neuroimmune Pharmacol.* **15**, 487–500. doi: 10.1007/s11481-019-09884-9

Hassett, K. J., Benenato, K. E., Jacquent, E., Lee, A., Woods, A., Yuzhakov, O., et al. (2019). Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. *Mol. Ther. Nucleic Acids* **15**, 1–11.

Haun, J. B., and Hammer, D. A. (2008). Quantifying nanoparticle adhesion mediated by specific molecular interactions. *Langmuir* **24**, 8821–8832.

Haun, J. B., Pepper, L. R., Boder, E. T., and Hammer, D. A. (2011). Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics. *Langmuir* **27**, 13701–13712. doi: 10.1021/la202926n

He, H., Pham-Huy, L. A., Dramou, P., Xiao, D., Zuo, P., and Pham-Huy, C. (2013). Carbon nanotubes: applications in pharmacy and medicine. *Biomed. Res. Int.* **2013**:578290.

Herrmann, I. K., Wood, M. J. A., and Fuhrmann, G. (2021). Extracellular vesicles as a next-generation drug delivery platform. *Nat. Nanotechnol.* **16**, 748–759.

Hong, Y., Kim, Y. K., Kim, G. B., Nam, G. H., Kim, S. A., Park, Y., et al. (2019). Degradation of tumour stromal hyaluronan by small extracellular vesicle-PH20 stimulates CD103+ dendritic cells and in combination with PD-L1 blockade boosts anti-tumour immunity. *J. Extracell. Vesic.* **8**:1670893. doi: 10.1080/20013078.2019.1670893

Horodecka, K., and Duchler, M. (2021). CRISPR/Cas9-Principle, Applications, and Delivery through Extracellular Vesicles. *Int. J. Mol. Sci.* **22**:6072.

Horst, A. K., Kumashie, K. G., Neumann, K., Diehl, L., and Tiegs, G. (2021). Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. *Cell Mol. Immunol.* **18**, 92–111.

Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Azimzadeh, M., Mahmoodi, M., et al. (2020). Therapeutic effects of extracellular vesicles from human adipose-derived mesenchymal stem cells on chronic experimental autoimmune encephalomyelitis. *J. Cell Physiol.* **235**, 8779–8790. doi: 10.1002/jcp.29721

Jang, S. C., Economides, K. D., Moniz, R. J., Sia, C. L., Lewis, N., McCoy, C., et al. (2021). ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. *Commun. Biol.* **4**:497. doi: 10.1038/s42003-021-00204-5

Jang, S. C., Kim, O. Y., Yoon, C. M., Choi, D. S., Roh, T. Y., Park, J., et al. (2013). Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. *ACS Nano* **7**, 6798–7110. doi: 10.1021/nn402232g

Jepseps, D. K., Fenix, A. M., Franklin, J. L., Higginbotham, J. N., Zhang, Q., Zimmerman, L. J., et al. (2019). Reassessment of Exosome Composition. *Cell* **177**, 428–445e418.

Jeyaram, A., and Jay, S. M. (2017). Preservation and Storage Stability of Extracellular Vesicles for Therapeutic Applications. *AAPS J.* **20**:1.

Jhan, Y. Y., Prasca-Chamorro, D., Palou Zuniga, G., Moore, D. M., Arun Kumar, S., Jafari, D., Shajari, S., Jafari, R., Mardi, N., Gomari, H., Ganji, F., et al. (2020). Optimization of Lipid Nanoparticles for Intramuscular Administration of ITPS2. *Int. J. Mol. Sci.* **21**:15078. doi: 10.3390/ijms210715078

Jiang, Y., Kim, J., Yoon, J., Jeong, H., et al. (2021). Exosomes secreted from sonic hedgehog-modified bone mesenchymal stem cells facilitate the repair of rat spinal cord injuries. *Acta Neurochir.* [Preprint]. doi: 10.1007/s00701-021-04829-9

Jiang, Y., Wang, L., Zhang, P., Liu, X., Di, H., Yang, J., et al. (2020). Chemoenzymatic Labeling of Extracellular Vesicles for Visualizing Their Cellular Internalization in Real Time. *Anal. Chem.* **92**, 2103–2111. doi: 10.1021/acs.analchem.9b04608

Jin, Z., Ren, J., and Qi, S. (2020). Human bone mesenchymal stem-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. *Int. Immunopharmacol.* **78**:105946. doi: 10.1016/j.intimp.2019.105946

Jo, W., Seong, D., Kim, J., Cho, S., Jang, S. C., Han, C., et al. (2014a). Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. *Lab. Chip* **14**, 1261–1269.

Jo, W., Kim, J., Yoon, J., Seong, D., Cho, S., Jeong, H., et al. (2014b). Large-scale generation of cell-derived nanovesicles. *Nanoscale* **6**, 12056–12064.

Johnson, J., Wu, Y. W., Blyth, C., Lichtfuss, G., Goubran, H., and Burnout, T. (2021). Prospective Therapeutic Applications of Platelet Extracellular Vesicles. *Trends Biotechnol.* **39**, 598–612. doi: 10.1016/j.tibtech.2020.10.004

Joshi, B. S., and Zuhorn, I. S. (2021). Heparan sulfate proteoglycan-mediated dynamic-transport dependent of neural stem cell exosomes in an in vitro blood-brain barrier model. *Eur. J. Neurosci.* **53**, 706–719. doi: 10.1111/ejn.14974
Jung, Y. J., Kim, H. K., Cho, Y., Choi, I. S., Woo, C. H., Lee, K. S., et al. (2020). Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes. Sci. Adv. 6:eay7621. doi: 10.1126/sciadv.aya7621

Kahmini, F. R., and Shahgaldi, S. (2020). Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles as novel cell-free therapy for treatment of autoimmune disorders. Exp. Mol. Pathol. 2020:104566. doi: 10.1016/j.yexmp.2020.104566

Kalani, A., Chaturvedi, P., Kamar, P. K., Maldonado, C., Bauer, P., Joshua, I. G., et al. (2016). Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int. J. Biochem. Cell Biol. 79, 360–369. doi: 10.1016/j.biocel.2016.09.002

Kalluri, R., and LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science 367:eaaz6977.

Kamerkar, S., LeBlanc, V. S., Sugimoto, H., Yang, S., Ruivo, C. F., Mello, S. A., et al. (2017). Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503. doi: 10.1038/nature22341

Karimi, N., Cvjetkovic, A., Jang, S. C., Crescitelli, R., Hosseinpour Feizi, M. A., Nouranian, S., et al. (2020). Glycosylation of extracellular vesicles is utilized for metastasis. Nat. Commun. 11:5595. doi: 10.1038/s41598-020-62500-2

Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J. P., Primald-Bengtson, B., et al. (2016). Protopicam comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. U.S.A. 113, E968–E977. doi: 10.1073/pnas.1521301113

Kruh-Garcia, N. A., Wolfe, L. M., Chaisson, L. H., Worodria, W. O., Nahid, P., Schorey, J. S., et al. (2014). Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS. PLoS One 9:e103811. doi: 10.1371/journal.pone.0103811

Kugershitski, F. G., Hodge, K., Lilla, S., McArdw, K. M., Zhou, X., Hwang, R. F., et al. (2021). Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat. Cell Biol. 23, 631–641. doi: 10.1038/s41556-021-00693-y

Kuhn, T., Koch, M., and Fuhrmann, G. (2020). Probionimetics-Novel Lactobacillus-Mimicking Microparticles Show Anti-Inflammatory and Barrier-Protecting Effects in Gastrointestinal Models. Small 16:e2003158. doi: 10.1002/smll.202003158

Kusuma, G. D., Barabadi, M., Tan, J. L., Morton, D. A. V., Frith, J. E., and Lim, R. (2018). To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front. Pharmacol. 9:1199. doi: 10.3389/fphar.2018.01199

Kwon, Y. J. (2020). Extracellular vesicles (EVs): Comprehensive packages with promises and complications for clinical translation and commercialization. Methods 177:1. doi: 10.1016/j.ymeth.2020.03.001

Lai, C. P., Mardini, O., Ericsson, M., Prabhakar, S., Maguire, C., Chen, J. W., et al. (2014). Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8, 483–494. doi: 10.1021/nn404945r

Lambrecht, J. W., Meagher, L., Goodwin, J., Labonne, T., Ng, E., Elefanty, A., et al. (2018). Long-Term Maintenance of Human Pluripotent Stem Cells on cRGDfK-Presenting Synthetic Surfaces. ACS Nano 8, 483–494. doi: 10.1021/nn404945r

Lamparski, H. G., Metha-Damani, A., Yao, Y. J., Patel, S., Hsu, D. H., Ruegg, C., et al. (2002). Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods 270, 211–226. doi: 10.1016/s0022-1759(02)00330-7

Lara, P., Chan, A. B., Cruz, L. J., Quest, A. F. G., and Kogan, M. J. (2020). Exploiting the Natural Properties of Extracellular Vesicles in Targeted Delivery towards Specific Cells and Tissues. Pharmaceuticals 12:1022. doi: 10.3390/pharmaceutics12110122

Lazo-Garcia, I., Ramos-Cejudo, J., Carrillo-Salinas, F. J., Otero-Ortega, L., Feliu, A., Gomez-de Frutos, M., et al. (2018). Therapeutic potential of extracellular vesicles in multiple sclerosis. PLoS One 13:e0202590. doi: 10.1371/journal.pone.0202590

Lazarro-Ibanez, E., Faruqui, F. N., Saleh, A. F., Silva, A. M., Tsu-Wen Wang, J., Rak, J., et al. (2021). Selection of Fluorescent, Bioluminescent, and Radioactive Tracers to Accurately Reflect Extracellular Vesicle Biodistribution in Vivo. ACS Nano 15, 3212–3227. doi: 10.1021/acsnano.0c09873

Le Saux, S., Aarrass, H., Lai-Kee-Him, J., Bron, P., Armengaud, J., Mieltou, G., et al. (2020). Post-production modifications of murine mesenchymal stem cell (mMSC) derived extracellular vesicles (EVs) and impact on their cellular interaction. Biomaterials 231:119675. doi: 10.1016/j.biomaterials.2019.119675

Lee, E. Y., Park, K. S., Yoon, Y. J., Lee, J., Moon, H. G., Jiang, S. C., et al. (2012). Therapeutic effects of autologous tumor-derived nanovesicles on melanoma growth and metastasis. PLoS One 7:e33330. doi: 10.1371/journal.pone.003330
Meng, W., He, C., Hao, Y., Wang, L., Li, L., and Zhu, G. (2020). Prospects and Challenges of Extracellular Vesicle-based Drug Delivery System: Considering Cell-to-cell Communication. *Front. Cell. Dev. Biol.* 8:1043. doi: 10.3389/fcell.2020.554929

Mao, F., Wu, Y., Tang, X., Kang, J., Zhang, B., Yan, Y., et al. (2017). Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Inflammatory Bowel Disease in Mice. *Biomed. Res. Int.* 2017:535670.

Mardpour, S., Ghanian, M. H., Sadeghi-Abandansari, H., Mardpour, S., Nazari, A., Shekari, F., et al. (2019). Hydrogel-Mediated Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic Liver Failure. *ACS Appl. Mater. Interf.* 11, 37421–37433. doi: 10.1021/acsami.9b10126

Martinez-Greene, J. A., Hernandez-Ortega, K., Quiroz-Baez, R., Resendis-Antonio, O., Pichardo-Casas, I., Sinclair, D. A., et al. (2021). Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. *J. Extracell. Vesicles* 10:e12017. doi: 10.1080/jev.2020.12017

Marti-Jaular, L., Nevo, N., Schesser, J. P., Tkach, M., Jouve, M., Dingli, F., et al. (2021). Unbiased proteomic profiling of host cell extracellular vesicle composition and dynamics upon HIV-1 infection. *EMBO J.* 40:e105492. doi: 10.15252/embj.2020105492

Martins, A. M., Ramos, C. F., Freitas, D., and Reis, C. A. (2021). Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications. *Cells* 10:109. doi: 10.3390/cells10010109

Mathieu, M., Marti-Jaular, L., Lavieu, G., and Thery, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. *Nat. Cell Biol.* 21, 9–17.

Mattera, V. S., Pereyra Gerber, K., Quiroz-Baez, R., Reis, C. A., Sanchez-Cabo, F., Gonzalez, M. A., et al. (2011). Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. *Nat. Commun.* 2:282. doi: 10.1038/ncomms1285

Molinaro, R., Corbo, C., Martinez, J. O., Taraballi, F., Evangelopoulos, M., Minardi, S., et al. (2016). Biomimetic proteolipid vesicles for targeted inflamed tissues. *Nat. Mater.* 15, 1037–1046. doi: 10.1038/nmat4644

Morse, M. A., Garst, J., Osada, T., Khan, S., Hobeika, A., Clay, T. M., et al. (2017). A phase I study of exosomes immunotherapy in patients with advanced non-small cell lung cancer. *J. Transl. Med.* 3:9. doi: 10.1186/1479-5876-3-9

Munagala, R., Aqlil, F., Jeyabal, R., Kandimalla, R., Wallen, M., Tyagi, N., et al. (2021). Exosome-mediated delivery of DNA and RNA for gene therapy. *Cancer Lett.* 505, 58–72.

Murphy, D. E., de Jong, O. G., Brouwer, M., Wood, M. J., Lavieu, G., Schifferels, R. M., et al. (2019). Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. *Exp. Mol. Med.* 51, 1–12. doi: 10.1038/s41672-019-0223-5

Nabet, B. Y., Qiu, Y., Shahbason, J. E., Wu, T. J., Yoon, T., Kim, B. C., et al. (2017). Exosome RNA Unshlding Couples Stromal Activation to Pattern Recognition Receptor Signaling in Cancer. *Cell* 170, 352–366e313. doi: 10.1016/j.cell.2017.06.031

Nagelkerke, A., Ojansivu, M., van der Koog, L., Whittaker, T. E., Cunnane, E. M., Silva, A. M., et al. (2021). Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. *Adv. Drug Deliv. Rev.* 175:113775.

Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., et al. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. *Cancer Res.* 65, 3307–3318.

Narita, M., Kanda, T., Abe, T., Uchiyama, T., Iwafuchi, M., Zheng, Z., et al. (2015). Immune responses in patients with esophageal cancer treated with SART1 peptide-pulsed dendritic cell vaccine. *Int. J. Oncol.* 46, 1699–1709. doi: 10.3892/ijo.2015.2846

Nasiri Kenari, A., Cheng, L., and Hill, A. F. (2020). Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles. *Methods* 177, 103–113.

Nasiri Kenari, A., Kastaniegaard, K., Greening, D. W., Shambrook, M., Stensballe, A., Cheng, L., et al. (2019). Proteomic and Post-Translational Modification Profiling of Exosome-Mimetic Nanovesicles Compared to Exosomes. *Proteomics* 19:e1800161. doi: 10.1002/pmic.201800161

Nazarenko, I., Rana, S., Baumann, A., McAleer, J., Hellwig, A., Trendelenburg, M., et al. (2010). Cell surface tetraspannins Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. *Cancer Res.* 70, 1668–1678. doi: 10.1158/0008-5472.CAN-09-2470

Nazimek, Z. and Bryniarski, K. (2020). Perspectives in Manipulating EVs for Therapeutic Applications: Focus on Cancer Treatment. *Int. J. Mol. Sci.* 21,4623.

Needham, D., and Nunn, R. S. (1990). Elastic deformation and failure of lipid bilayer membranes containing cholesterol. *Biophys. J.* 58, 997–1009. doi: 10.1016/S0006-3495(99)82449-4
Wei, Y., Quan, L., Zhou, C., and Zhan, Q. (2018). Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine 13, 1495–1512.

Welsh, J. A., van der Pol, E., Bettin, B. A., Carter, D. R. F., Hendrix, A., Lenassi, M., et al. (2020). Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration. J. Extracell. Vesicles 9:1816641. doi: 10.1080/20013078.2020.1861641

Welton, J. L., Loveless, S., Stone, T., von Ruhland, C., Robertson, N. P., and Clayton, A. (2017). Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis. J. Extracell. Vesicles 6:1369805. doi: 10.1080/20013078.2017.1369805

Wen, Z., Mai, Z., Zhu, X., Wu, T., Chen, Y., Geng, D., et al. (2020). Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res. Ther. 11:36. doi: 10.1186/s12938-020-1563-8

Whitford, W., and Guterstam, P. (2019). Exosome manufacturing status. Fut. Med. Chem. 11, 1225–1236.

Wiklander, O. P. B., Brennan, M. A., Matlov, J., Brekefeld, X. O., and El Andalousi, S. (2019). Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11:eaaq8521.

Wiklander, O. P., Nordin, J. Z., O’Loughlin, A., Gustafsson, Y., Corso, G., Mager, W., et al. (2015). Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 4:26316. doi: 10.3402/jev.v4.26316

Williams, C., Royo, F., González, E., Roura-Ferrer, M., Martínez, A., et al. (2019). Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Sci. Rep. 9:11920. doi: 10.1038/s41598-019-48499-1

Williams, C., Royo, F., Aizpurua-Olaizola, O., Pazos, R., Boons, G. J., Reichardt, N. C., et al. (2018). Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. J. Extracell. Vesicles 7:1442985. doi: 10.1080/20013078.2018.1442985

Willis, G. R., Kourembanas, S., and Mitsialis, S. A. (2017). Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Front. Cardiovasc. Med. 4:63. doi: 10.3389/fcvm.2017.00063

Willis, G. R., Mitsialis, S. A., and Kourembanas, S. (2018). “Good things come in small packages”: application of exosome-based therapeutics in neonatal lung injury. Pediatr. Res. 83, 298–307. doi: 10.1038/pr.2017.256

Willsms, E., Johansson, H. I., Mayer, S., Van, Y. Y., Blomberg, K. E., Sadik, M., et al. (2016). Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 6:22519

Witwer, K. W., and Wolfram, J. (2021). Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 126, 1152–1162.

Xue, C., Shen, Y., Li, X., Li, B., Zhao, S., Gu, J., et al. (2018). Exosomes Derived from Hypoxia-Treated Human Adipose Mesenchymal Stem Cells Enhance Angiogenesis Through the PKA Signaling Pathway. Stem Cells Dev. 27, 456–465. doi: 10.1089/scd.2017.0296

Xunian, Z., and Kalluri, R. (2020). Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci. 111, 3100–3110.

Yang, J., Liu, X. X., Fan, H., Tang, Q., Shou, Z. X., Zou, D. M., et al. (2015). Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Protect against Experimental Colitis via Attenuating Colon Inflammation, Oxidative Stress and Apoptosis. PLoS One 10:e0140551. doi: 10.1371/journal.pone.0140551

Yang, S., Sun, I. C., Hwang, H. S., Shim, M. K., Yoon, H. Y., and Kim, K. (2021). Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. J. Mater. Chem. B 9, 3983–4001. doi: 10.1039/d1tb00397f

Yang, Z., Shi, J., Xie, J., Wang, Y., Sun, J., Liu, T., et al. (2020). Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 4, 69–83.

Yao, J., Huang, K., Zou, D., Chen, T., Jiang, Y., Zhang, J., et al. (2021). A Minimally Invasive Exosome Spray Repair Heart after Myocardial Infarction. ACS Nano. [Preprint]. doi: 10.1021/acsnano.1c00628

Yao, X., Lu, Y., Poo, K., Yadoo, M. K., Singh, R., Atala, A., et al. (2021). Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing. J. Extracell. Vesicles 10:e12076. doi: 10.1002/jove.21076

Ye, Y., Zhang, X., Xie, F., Fu, B., Xie, P., Yang, T., et al. (2020). An engineered exosome for delivering sgRNA/Cas9 ribonucleoprotein complex and genome editing in recipient cells. Biomater. Sci. 8, 2966–2976. doi: 10.1039/d0bm00427

Yin, M., Ryu, S. W., Choi, K., Lee, K. R., Lee, S., Choi, H., et al. (2016). Exosome engineering for efficient intracellular delivery of soluble proteins using optimally reversible protein-protein interaction module. Nat. Commun. 7:12277. doi: 10.1038/ncomms12277

Yin, K., Wang, S., and Zhao, R. C. (2019). Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark. Res. 7:8. doi: 10.1186/s40364-019-0159-x
by ameliorating the senescence of dermal fibroblasts. Stem Cell Res. Ther. 12:196. doi: 10.1186/s13287-021-02262-4
Zhao, Z., Yang, Y., Zeng, Y., and He, M. (2016). A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab. Chip 16, 489–496. doi: 10.1039/c5lc01117e
Zhong, X., Xie, F., Wang, L., Zhang, L., Zhang, M., Fang, M., et al. (2020). The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol. Immunol. 17, 323–334.
Zhu, D., Fang, H., Kusuma, G. D., Schwab, R., Barabadi, M., Chan, S. T., et al. (2021a). Impact of chemically defined culture media formulations on extracellular vesicle production by amniotic epithelial cells. Proteomics 2021:e2000080. doi: 10.1002/pmc.2000080
Zhu, D., Li, Z., Huang, K., Caranasos, T. G., Rossi, S. J., and Cheng, K. (2021b). Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat. Commun. 12:1412. doi: 10.1038/s41467-021-21682-7
Zhu, L. P., Tian, T., Wang, Y. J., He, J. N., Chen, T., Pan, M., et al. (2018). Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 8, 6163–6177. doi: 10.7150/thno.28201
Zhu, X., Badawi, M., Pomeroy, S., Sutaria, D. S., Xie, Z., Baek, A., et al. (2017). Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J. Extracell. Vesicles 6:1324730. doi: 10.1080/20013078.2017.1324730
Zipkin, M. (2019). Exosome redux. Nat. Biotechnol. 37, 1395–1400. doi: 10.1038/ s41587-019-0326-5
Zitzovogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., et al. (1998). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600. doi: 10.1038/nm0598-594
Zuo, R., Kong, L., Wang, M., Wang, W., Xu, J., Chai, Y., et al. (2019). Exosomes derived from human CD34(+) stem cells transfected with miR-26a prevent glucocorticoid-induced osteonecrosis of the femoral head by promoting angiogenesis and osteogenesis. Stem Cell Res. Ther. 10:321. doi: 10.1186/s13287-019-1426-3

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Claridge, Lozano, Poh and Greening. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.