Introduction

Lung inflammation is a pivotal event in the pathogenesis of chronic obstructive pulmonary disease and asthma [1]. Cyclooxygenases (COXs) are responsible for the formation of prostaglandins (PGs), which are involved in inflammatory responses [2]. COX-2 is primarily an inducible isoform whose expression can be up-regulated by cytokines, mitogens, and endotoxins in many cell types [2]. It is highly expressed in inflamed tissues and believed to produce PGs involved in inflammatory processes [3]. Moreover, the physiological relevance of the purinergic signaling network for airway defenses is emerging through cumulative reports of abnormal ATP and adenosine levels in the airway secretions of patients with asthma and chronic pulmonary obstructive diseases. The consequences for airway defenses range from abnormal clearance responses to the destruction of lung tissue by inflammation [4]. Thus, to clarify the mechanisms of COX-2 induction by ATP in lung epithelium was recognized as a new therapeutic approach in the management of respiratory diseases.

ATP transports chemical energy within cells, is produced by cellular respiration and is used by enzymes and structural proteins in many cellular processes [5]. Extracellular ATP is an important mediator of intercellular communication via the activation of purinergic P2X and P2Y receptors mediated through ion channels and GTP binding protein coupled receptors, respectively [6]. Growing evidence indicates the involvement of ATP and purinoceptors in the pathogenesis of lung diseases [5,6]. ATP has been shown to induce COX-2 expression [7,8], and then causes the inflammatory responses. However, the mechanisms by which ATP induced COX-2 expression in A549 cells are not completely understood.

Oxidative stress is an important factor in the pathogenesis of respiratory diseases. Excessive ROS can directly damage cellular macromolecules, resulting in cell cycle arrest and/or cell death [9].

Abstract

Background: Up-regulation of cyclooxygenase (COX)-2 and its metabolite prostaglandin E2 (PGE2) are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE2 release remain unclear.

Principal Findings: Here, we showed that ATP/S induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin), PKC (Go6983, Go6976, Ro318220, and Rottlerin), ROS (Edaravone), NADPH oxidase [diphenyleneiodonium chloride (DPI) and apocynin], Jak2 (AG490), and STAT3 [cucurbitacin E (CBE)] and transfection with siRNAs of PKCs, PKC, PKC, p47phox, Jak2, STAT3, and cPLA2 markedly reduced ATP/S-induced COX-2 expression and PGE2 production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATP/S. Moreover, ATP/S-induced ROS generation and p47phox translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATP/S stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Go6983, Go6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells.

Significance: Taken together, these results showed that ATP/S induced COX-2 expression and PGE2 production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA2 signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.

Citation: Cheng S-E, Lee I-T, Lin C-C, Wu W-L, Hsiao L-D, et al. (2013) ATP Mediates NADPH Oxidase/ROS Generation and COX-2/PGE2 Expression in A549 Cells: Role of P2 Receptor-Dependent STAT3 Activation. PLoS ONE 8(1): e54125. doi:10.1371/journal.pone.0054125

Editor: Joao P.B. Viola, National Cancer Institute (INCA), Brazil

Copyright: © 2013 Cheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NSC98-2321-B-182-004, NSC99-2321-B-182-003, NSC98-2314-B-182-021-MY3, and NSC98-2320-B-255-001-MY3 from National Science Council, Taiwan; EMRDP1A0831, EMRDP1A0841, EMRDP1B0311, and EMRDP1B0321 from Ministry of Education, Taiwan; and CMRPG391032, CMRPG381523, CMRDP170493, CMRDP1B0372, CMRDP1B0381, and CMRPG3B1091 from Chang Gung Medical Research Foundation, Taiwan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: chuenmao@mail.cgu.edu.tw
Figure 1. ATPγS regulates COX-2 expression via PKCs in A549 cells. Cells were pretreated with Go6983, Go6976, Ro318220, or Rottlerin for 1 h, and then incubated with ATPγS for (A) 6 h or (B) 2 h. The levels of COX-2 (A) protein and (B) mRNA were analyzed by western blot and real-time PCR, respectively. (A) The media were collected and analyzed for PGE2 release. (C) Cells were treated with ATPγS (100 μM) for the indicated time
NADPH oxidase is an enzymatic source for the production of ROS under various pathologic conditions [10]. Activated NADPH oxidase is a multimeric protein complex consisting of at least three cytosolic subunits of p47phox, p67phox, and p40phox. The p47phox regulatory subunit plays a critical role in acute activation of NADPH oxidase; phosphorylation of p47phox is thought to relieve inhibitory intracellular interactions and permit the binding of p47phox to p22phox, thereby increasing NADPH oxidase activation [10]. ROS have been shown to regulate COX-2 expression and induce inflammation [11]. In addition, protein kinase C (PKC) has been involved in the transduction of signals for cell proliferation and differentiation [12]. Some studies have indicated that the expression of COX-2 is mediated by the activation of PKC [13,14]. PKC has also been shown to stimulate NADPH oxidase activity and ROS generation [15]. Here, we investigated the role of PKC in ATP-induced ROS generation and COX-2 expression.

Signal transducer and activator of transcription (STAT)3 belongs to the STAT family. STAT3 was first identified and cloned from mouse liver cDNA library in the study of IL-6 signaling [16]. Like its relatives, STAT3 is inactive in nonstimulated cells, but is rapidly activated by various cytokines and growth factors [16]. The phosphorylation of STAT3 at Tyr705 is most commonly mediated by Janus kinases (Jaks), especially Jak2 [17]. COX-2 expression has also been shown to be mediated via Jak2/STAT3 activation in various cell types [18,19]. These findings imply that these signaling components Jak2/STAT3 might be also implicated in the expression of COX-2 induced by ATP in A549 cells.

Therefore, ATP may play a potential role in regulation of expression of inflammatory genes, such as COX-2 and thereby promote inflammatory responses. We report here for the first time that ATP\textsubscript{S}-induced COX-2 expression was mediated through a \textit{P2} receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3-dependent pathway in A549 cells.

Methods

Materials

- Anti-cPLA\textsubscript{2}, anti-PKC\textsubscript{x}, anti-PKC\textsubscript{z}, anti-PKC\textsubscript{\mu}, anti-PKC\textsubscript{\iota}, anti-Jak2, anti-\textit{\beta}-actin, and anti-p\textit{47}\textit{phox} antibodies were from Santa Cruz (Santa Cruz, CA).
- Anti-COX-2 antibody was from BD Transduction Laboratories (San Diego, CA).
- Adenosine 5'-O-(3-thiotriphosphate) (ATP\textsubscript{S}), Go6983, Go6976, GF109203X, Ro31-8220, Rottlerin, PPADS, suramin, AG490, CBE, and arachidonic acid were from Biomol (Plymouth Meeting, PA). All other chemicals and enzymes were obtained from Sigma (St. Louis, MO). Edaravone (MCI-186) was from Tocris Bioscience (Ellisville, MO).
- CellROXSM Deep Red Reagent and CM-H\textsubscript{2}DCFDA were from Invitrogen (Carlsbad, CA).

Cell Culture

A549 cells [human alveolar epithelial cell carcinoma] were purchased from the American Type Culture Collection (Manassas, VA) and grown as previously described [20].

Western Blot Analysis

Growth-arrested A549 cells were incubated with ATP\textsubscript{S} at 37°C for the indicated time intervals. The cells were washed, scraped, collected, and centrifuged at 45000 \textit{g} at 4°C for 1 h to yield the whole cell extract, as previously described [20]. Samples were denatured, subjected to SDS-PAGE using a 12% running gel, transferred to nitrocellulose membrane, incubated with an anti-COX-2 or anti-cPLA\textsubscript{2} antibody for 24 h, and then incubated with an anti-mouse horseradish peroxidase Ab for 1 h. The immunoreactive bands were detected by ECL reagents and analyzed by using a UN-SCAN-IT Gel 6.1 program (Silk Scientific, Inc., Orem, UT).

Isolation of Cell Fractions

Cells were harvested, sonicated for 5 s at output 1.5 with a sonicator (Misonix Inc., Farmingdale, NY), and centrifuged at 8000 rpm for 15 min at 4°C. The pellet was collected as the nuclear fraction. The supernatant was centrifuged at 140000 rpm for 60 min at 4°C to yield the pellet (membrane fraction) and the supernatant (cytosolic fraction).

Determination of NADPH Oxidase Activity by Chemiluminescence Assay

Cells grew onto 6-well culture plates, after exposure to ATP\textsubscript{S} for the indicated time intervals, were gently scraped and centrifuged at 400 \textit{g} for 10 min at 4°C. The cell pellet was re-suspended in 35 \textit{\mu}l per vial of ice-cold RPMI-1640 medium (Gibco BRL, Grand Island, NY), and the cell suspension was kept on ice. To a final 200 \textit{\mu}l volume of pre-warmed (37°C) RPMI-1640 medium containing either NADPH (1 \textit{\mu}M) or lucigenin (20 \textit{\mu}M), 5 \textit{\mu}l of cell suspension (0.2 \times 105 cells) was added to initiate the reaction followed by immediate measurement of chemiluminescence in an Appliskan luminometer (ThermoTM in out-of-coincidence mode. Appropriate blanks and controls were also studied, and chemiluminescence was recorded. Neither NADPH nor NADH enhanced the background chemiluminescence of lucigenin alone (30–40 counts per minute). Chemiluminescence was measured continuously for 12 min, and the activity of NADPH oxidase was expressed as counts per million cells.

Measurement of Intracellular ROS Accumulation

The intracellular H\textsubscript{2}O\textsubscript{2} levels were determined by measuring fluorescence of DCF-DA. A549 cells were washed with warm HBSS and incubated in HBSS containing 10 \textit{\mu}M DCFH-DA at 37°C for 45 min. Subsequently, HBSS containing DCFH-DA was removed and replaced with fresh cell medium. Cells were then incubated with various concentrations of ATP\textsubscript{S}. Cells were
ATP Induces ROS-Dependent COX-2 Expression

A. Fold of basal

Inhibitors	Edaravone (μM)	ATPγS (μM)
	10	10
	0.1	1
	1	100

Fold of basal	1.1	4.9	1.3	1.4	1.1
COX-2	β-actin				
ATPγS (μM)	100				

B. COX-2 mRNA expression

Inhibitors	Edaravone	ATPγS (μM)
	—	100

C. Relative DCF fluorescence (fold of basal)

D. Relative DCF fluorescence units (fold of basal)

E. Time (min)

F. Basal | ATPγS | APO

G. Time (min)

p47phox	GAPDH	p47phox	Cox2
0	(CE)	(CE)	(ME)
5			
15			
30			
60			
120			

H. siRNA

Fold of basal	0.9	4.1	4.2	1.1
COX-2	β-actin			
siRNA	scrb	p47phox		
ATPγS (μM)	100			

I. PGES production (pg/ml)

si-RNA	scrb	p47phox
		—
		ATPγS (μM)
		100
washed twice with PBS and detached with trypsin/EDTA, and the fluorescence intensity of the cells was analyzed using a FACScan flow cytometer (BD Biosciences, San Jose, CA) at 495-nm excitation and 529-nm emission for DCF. In addition, CellROX™ Deep Red Reagent is a fluorogenic probe designed to reliably measure ROS in living cells. The cell-permeable CellROX™ Deep Red dye is nonfluorescent while in a reduced state and upon oxidation exhibits excitation/emission maxima at 640/665 nm. A549 cells were treated with ATP for the indicated time intervals, CellROX™ Deep Red Reagent was added at a final concentration of 5 μM to the cells, and then incubated for 30 min at 37°C. Subsequently, medium was removed and the cells were washed thrice with PBS. The resulting fluorescence was measured using a fluorescence microscope (Zeiss, Axiovert 200M).

Transient Transfection with siRNAs
The small interfering RNA (siRNA) duplexes corresponding to human cPLA2α, PKCα, PKCβ1, PKCδ, p47phox, Jak2, and STAT3 and scrambled siRNA were from Invitrogen (Carlsbad, CA). Transient transfection of siRNAs was carried out using Metafectene transfection reagent. siRNA (100 nM) was formulated with Metafectene transfection reagent according to the manufacturer’s instructions (Biontex Lab. GmbH, Planegg/Martinsried, Germany).

Measurement of PGE2 Generation
A549 cells were cultured in 6-well culture plates. After reaching confluence, growth-arrested cells were treated with ATP, and then incubated with ATP for the indicated time intervals at 37°C. The medium were collected and stored at −80°C until being assayed. PGE2 was assayed using a PGE2 enzyme immunoassay kit (Cayman) according to the manufacturer’s instructions.

Analysis of Data
All the data were estimated using the GraphPad Prism Program (GraphPad, San Diego, CA). Data were expressed as the mean ± SEM and analyzed with a one-way ANOVA followed with Tukey’s post-hoc test at p < 0.05 level of significance. All the experiments were performed at least three times.

Results
ATPγS Induces COX-2 Expression via a PKCs Signaling
PKCs have been shown to be involved in proliferation and differentiation [12]. Some studies have indicated that the expression of COX-2 is mediated by the activation of PKCs [13,14]. Here, we investigated the role of PKCs in ATPγS-induced COX-2 expression. As shown in Fig. 1A, pretreatment with the inhibitor of non-selective PKC (Ro318220, Ca2+ dependent PKC (Go6983 and Go6976), or selective PKCδ (Rottlerin) markedly attenuated ATPγS-induced COX-2 expression in A549 cells. COX-2 is the enzyme which converts arachidonic acid to PGE2, which can be further metabolized to prostanoids, including PGE2, prostacyclin (PGI2), and thromboxane A2 (TXA2) [21]. Pretreatment with these inhibitors also attenuated ATPγS-induced COX-2 mRNA expression and PGE2 generation (Fig. 1B). Translocation of PKC from the cytosol to the membrane is necessary to activation of PKC [12]. Next, we investigated whether ATPγS could stimulate PKCs translocation in A549 cells. As shown in Fig. 1C, ATPγS and PMA (a PKCs activator) stimulated the translocation PKCα, PKCβ1, and PKCδ from the cytosol to the membrane in a time-dependent manner. Moreover, to further ascertain the role of PKCs in ATPγS-induced COX-2 protein expression, as shown in Figs. 1D and E, transfection with siRNAs of PKCα, PKCβ1, and PKCδ downregulated PKCα, PKCβ1, and PKCδ protein expression, respectively, and then reduced ATPγS-induced COX-2 expression and PGE2 production. These data demonstrated that PKCs play an important role in ATPγS-induced COX-2 expression in A549 cells.

NADPH Oxidase/ROS are Involved in ATPγS-induced COX-2 Expression
NADPH oxidase is an enzymatic source for the production of ROS under various pathological conditions [11]. ROS has been shown to induce COX-2 expression associated with inflammation [11]. Thus, the role of NADPH oxidase/ROS generation in ATPγS-induced COX-2 expression was investigated. As shown in Fig. 2A, pretreatment of A549 cells with NADPH oxidase inhibitors [DPI and apocynin (APO)] or a ROS inhibitor (Edaravone) significantly abrogated ATPγS-induced COX-2 protein expression. In addition, pretreatment with these inhibitors also attenuated ATPγS-induced COX-2 mRNA expression and PGE2 generation (Fig. 2B). To further ascertain that generation of ROS was involved in ATPγS-induced COX-2 expression, a fluorescent probe, DCFH-DA, was used to determine the generation of ROS in A549 cells. As illustrated in Figs. 2C and D, ATPγS induced a significant increase in NADPH oxidase activity and ROS generation within 15 min, reached a peak within 60 min, and slightly declined within 120 min. Pretreatment with Edaravone, DPI, and APO attenuated ATPγS-induced NADPH oxidase/ROS generation. On the other hand, we used CellROX™ Deep Red Reagent to confirm the generation of ROS in ATPγS-stimulated A549 cells. As shown in Figs. 2E and F, ATPγS induced ROS generation in a time-dependent manner, which was also attenuated by pretreatment with Edaravone, DPI, or APO in these cells. Activated NADPH oxidase is a multimeric protein...
Figure 3. ATPγS induces PKC-dependent ROS generation in A549 cells. (A) Cells were labeled with DCF-DA (10 μM), pretreated with Gö6983 (10 μM), Gö6976 (10 μM), GF109203X (3 μM), Ro318220 (10 μM), or Rottlerin (10 μM) for 1 h, and then incubated with ATPγS for 1 h. The fluorescence intensity (relative DCF fluorescence) was measured (gray bar). In addition, NADPH oxidase activity was determined (white bar). (B) Cells were pretreated with Gö6983 (10 μM), Gö6976 (10 μM), GF109203X (3 μM), Ro318220 (10 μM), or Rottlerin (10 μM) for 1 h, and then incubated with ATP Induces ROS-Dependent COX-2 Expression

| Inhibitors | — 6983 6976 GF Ro rott |
| ATPγS (μM) | — 100 |

(B)
ATP$_7^S$ for 1 h. After incubation, ROS generation was determined by using CellROXTM Deep Red Reagent as described in Fig. 2E. (C) Cells were pretreated with Go6983 (10 μM), Go6976 (10 μM), GF109203X (3 μM), Ro318220 (10 μM), or Rottlerin (10 μM) for 1 h, and then incubated with ATP$_7^S$ for 1 h. The membrane and cytosolic fractions were prepared and analyzed by western blot using an anti-p47phox antibody. Data are expressed as mean±S.E.M. of three independent experiments. *p<0.01, as compared with the cells exposed to ATP$_7^S$ alone.

doi:10.1371/journal.pone.0054125.g003

Figure 4. ATP$_7^S$ induces P2 receptor-dependent COX-2 expression, PKC translocation, and ROS generation in A549 cells. Cells were pretreated with PPADS or suramin for 1 h, and then treated with ATP$_7^S$ for (A) 6 h or (B) 2 h. The levels of COX-2 (A) protein and (B) mRNA were analyzed by western blot and real-time PCR, respectively. (A) The media were collected and analyzed for PGE$_2$ release. (C) Cells were labeled with DCF-DA (10 μM), pretreated with PPADS or suramin for 1 h, and then incubated with ATP$_7^S$ for 1 h. The fluorescence intensity (relative DCF fluorescence) was measured (gray bar). In addition, NADPH oxidase activity was determined (white bar). (D) Cells were pretreated with PPADS or suramin for 1 h, and then treated with ATP$_7^S$ for 1 h. After incubation, ROS generation was determined by using CellROXTM Deep Red Reagent as described in Fig. 2E. (E) Cells were pretreated with PPADS (10 μM) or suramin (10 μM) for 1 h, and then incubated with ATP$_7^S$ for 1 h. The membrane and cytosolic fractions were prepared and analyzed by western blot using an anti-p47phox antibody. (F) Cells were pretreated with PPADS (10 μM) or suramin (10 μM) for 1 h, and then treated with ATP$_7^S$ for 15 min. The cytosolic and membrane fractions were prepared and analyzed by western blot using an anti-PKCα, anti-PKCδ, or anti-PKCμ antibody. Data are expressed as mean±S.E.M. of three independent experiments. *p<0.01, as compared with the cells exposed to ATP$_7^S$ alone.

doi:10.1371/journal.pone.0054125.g004
Figure 5. ATP$_4$:S induces COX-2 expression via Jak2/STAT3 in A549 cells. Cells were pretreated with AG490 or CBE for 1 h, and then incubated with ATP$_4$:S for (A) 6 h or (B) 2 h. The levels of COX-2 (A) protein and (B) mRNA were analyzed by western blot and real-time PCR, respectively. (A) The media were collected and analyzed for PGE$_2$ release. (C) Cells were treated with ATP$_4$:S (100 μM) for the indicated time intervals. The cell lysates were analyzed by western blot using an anti-phospho-Jak2, anti-phospho-STAT3, anti-STAT3, or anti-β-actin antibody. Cells were pretreated (D) without or (E) with AG490 (10 μM), CBE (10 μM), PPADS (10 μM), or suramin (10 μM) for 1 h, and then incubated with ATP$_4$:S (100 μM) for (D) the indicated time intervals or (E) 60 min. The cytosolic and nuclear fractions were prepared and analyzed by western blot using an anti-
complex consisting of at least three cytosolic subunits of p47^{phox}, p67^{phox}, and p40^{phox}. It has been demonstrated that p47^{phox} organizes the translocation of other cytosolic factors, hence its designation as “organizer subunit” [22]. Here, we found that ATP_{cS} induced a significant translocation of p47^{phox} from the cytosol to the membrane (Fig. 2G). The role of p47^{phox} in ATP_{cS}-mediated responses was also confirmed by transfection with p47^{phox} siRNA which down-regulated p47^{phox} protein expression, and then attenuated COX-2 expression and PGE₂ production induced by ATP_{cS} in A549 cells (Figs. 2H and I). These results indicated that NADPH oxidase activation and ROS generation play critical roles in ATP_{cS}-induced COX-2 expression in A549 cells.

ATP_{cS} Induces NADPH Oxidase Activation and ROS Production via PKCs

PKCs have also been shown to stimulate NADPH oxidase activity and ROS generation [15]. Thus, we investigated

Figure 6. ATP_{cS} regulates PKC/ROS-dependent Jak2 and STAT3 activation in A549 cells. (A) Cells were pretreated with APO (100 μM), DPI (10 μM), Edaravone (10 μM), G6983 (10 μM), GF109203X (3 μM), Ro318220 (10 μM), or Rottlerin (10 μM) for 1 h, and then incubated with ATP_{cS} for 1 h. The cytosolic and nuclear fractions were prepared and subjected to Western blot analysis using an anti-phospho-STAT3 or anti-STAT3 antibody. GAPDH and Lamin A were used as a marker protein for cytosolic and nuclear fractions, respectively. (F) Cells were transfected with siRNA of scrambled, Jak2, or STAT3, and then incubated with ATP_{cS} for 6 h. The levels of Jak2, STAT3, and COX-2 expression were analyzed by western blot. The media were collected and analyzed for PGE₂ release. Data are expressed as mean±S.E.M. of three independent experiments. *p<0.01, as compared with the cells exposed to ATP_{cS} alone (A, B), the cells exposed to vehicle alone (C), or the cells transfected with scrambled siRNA and exposed to ATP_{cS} alone (F, G).

doi:10.1371/journal.pone.0054125.g005

Inhibitors	—	APO	DPI	Eda
ATP_{cS} (μM)	—	100		

Inhibitors	—	6983	6976	GF	Ro	rott
ATP_{cS} (μM)	—	100				

Table 1. ATP_{cS} regulates PKC/ROS-dependent Jak2 and STAT3 activation in A549 cells. The fold of basal expression of p-Jak2, p-STAT3, β-actin, and GAPDH was calculated using relative quantification software (Applied Biosystems). Data are expressed as mean±S.E.M. of three independent experiments. *p<0.01, as compared with the cells exposed to scrambled siRNA + ATP_{cS}.

doi:10.1371/journal.pone.0054125.g006
whether ATP$_{cS}$ stimulated NADPH oxidase activation and ROS production via PKCs activation in A549 cells. As shown in Figs. 3A and B, pretreatment with Ro318220, GF109203X, Go6983, Go6976, or Rottlerin markedly inhibited ATP$_{cS}$-stimulated NADPH oxidase activity and H$_2$O$_2$ and/or ROS generation. In addition, pretreatment with these inhibitors also reduced p47phox translocation from the cytosol to the membrane (Fig. 3C). These data suggested that PKC plays a key role in ATP$_{cS}$-stimulated NADPH oxidase activation and ROS production in A549 cells.

Figure 7. ATP$_{cS}$ induces COX-2 expression via a cPLA$_2$/AA signaling. (A) Cells were treated with ATP$_{cS}$ for the indicated times. The expression of cPLA$_2$, COX-2, or COX-1 was determined by Western blot. (B) Cells were transfected with cPLA$_2$ or COX-2 siRNA, and then treated with ATP$_{cS}$ for 24 h or 6 h. The expression of cPLA$_2$ or COX-2 was determined by Western blot. (C) Cells were treated with AA for the indicated times. The expression of COX-2 or COX-1 was determined by Western blot. (D) Cells were treated with ATP$_{cS}$ or AA for the indicated times. The production of PGE$_2$ was measured. (E) Cells were transfected with cPLA$_2$ or COX-2 siRNA, and then treated with ATP$_{cS}$ for 6 h. The production of PGE$_2$ was measured. Data are expressed as mean±S.E.M. of three independent experiments. *p<0.01, as compared with the cells exposed to vehicle alone (D) or scrambled siRNA+ATP$_{cS}$ (E).

doi:10.1371/journal.pone.0054125.g007

ATP$_{cS}$ Induces COX-2 Expression via P2 Receptors

Extracellular nucleotides regulate ion transport and inflammatory responses of the lung epithelium by activation of P2 receptors [12]. To investigate whether ATP$_{cS}$ could induce COX-2 expression, PKCs translocation, and ROS generation via P2 receptors, the P2Y and P2X receptor antagonists, suramin and PPADS were used. As shown in Figs. 4A and B, pretreatment with PPADS or suramin markedly inhibited ATP$_{cS}$-induced COX-2 protein and mRNA expression and PGE$_2$ production. ATP$_{cS}$-stimulated ROS production, NADPH oxidase activity, and p47phox translocation was also inhibited by pretreatment with PPADS or suramin in A549 cells (Figs. 4C–E). In addition, pretreatment with
translocation from the cytosol to the membrane in response to COX-2 expression via P2 receptors in A549 cells. Moreover, (AG490) and STAT3 (CBE) reduced ATP shown in Figs. 5A and B, pretreatment with the inhibitors of Jak2 [17]. Thus, we also evaluated whether Jak2 and STAT3 were involved in ATP-induced COX-2 expression and PGE2 generation in A549 cells.

Figure 8. Schematic diagram illustrating the proposed signaling pathway involved in ATP-induced COX-2 expression and PGE2 generation in A549 cells. ATP stimulates the P2 receptor/PKC/NADPH oxidase pathway to enhance ROS generation, which in turn initiates the activation of Jak2 and STAT3, and ultimately induces COX-2-dependent PGE2 generation in A549 cells.

doi:10.1371/journal.pone.0054125.g008

PPADS or suramin also reduced PKC\alpha, PKC\beta, and PKC\eta translocation from the cytosol to the membrane in response to ATP [Fig. 4F]. These data demonstrated that ATP induces COX-2 expression via P2 receptors in A549 cells.

Jak2/STAT3 are Involved in ATP-induced COX-2 Expression

STAT3 is a transcription factor that is activated by many cytokines and growth factors and plays a key role in cell survival, proliferation, and differentiation [23]. The phosphorylation of STAT3 at Tyr705 is most commonly mediated by Jaks, especially Jak2 [17]. Thus, we also evaluated whether Jak2 and STAT3 were involved in ATP-induced COX-2 expression in A549 cells. As shown in Figs. 5A and B, pretreatment with the inhibitors of Jak2 (AG490) and STAT3 (CBE) reduced ATP-induced COX-2 protein and mRNA expression and PGE2 production. Moreover, ATP-induced COX-2 expression was inhibited by transfection with siRNA of Jak2 or STAT3. Here, we showed that ATP-induced COX-2 expression and PGE2 generation was reduced by transfection with siRNA of Jak2 or STAT3 (Figs. 5F and G). These results showed that ATP induces COX-2 expression via a P2 receptor/Jak2/STAT3 signaling in A549 cells.

ATP\gammaS Stimulates Jak2/STAT3 Activation via a PKCs/ROS Signaling

We further investigated whether PKCs and NADPH oxidase/ROS were involved in ATP-induced Jak2 and STAT3 activation in A549 cells. We found that ATP stimulated Jak2 and STAT3 translocation and phosphorylation was reduced by pretreatment with Edaravone, APO, DPI, Ro318220, GF109203X, Go6983, Go6976, or Rottlerin and transfection with siRNAs of p47phox, PKC\alpha, PKC\beta, and PKC\eta (Figs. 6A and B). These results demonstrated that ATP stimulates Jak2 and STAT3 activation via PKC/NADPH oxidase/ROS in A549 cells.

ATP\gammaS Induces COX-2/PGE2 Expression via a cPLA2/AA Pathway

Indeed, cytosolic phospholipase \textalpha (cPLA2) is also involved in PGE2 production. As shown in Fig. 7A, ATP\gammaS markedly induced cPLA2 and COX-2 expression in a time-dependent manner in A549 cells. However, ATP\gammaS had no effect on COX-1 expression in A549 cells. We also found that ATP\gammaS-induced COX-2 expression was inhibited by transfection with siRNA of cPLA2 or COX-2 (Fig. 7B). Moreover, COX-2 siRNA had no effects on ATP\gammaS-induced PGE2 protein expression (Fig. 7B). These data suggested that ATP\gammaS induced COX-2 expression via a cPLA2-dependent pathway. We further found that arachidonic acid (AA) markedly enhanced COX-2, but not COX-1 expression in A549 cells (Fig. 7C). Finally, we observed that AA and ATP\gammaS induced PGE2 production (Fig. 7D). Moreover, ATP\gammaS-induced PGE2 production was reduced by transfection with siRNA of cPLA2 or COX-2 (Fig. 7E). These results suggested that ATP\gammaS induced PGE2 production via a cPLA2/AA/COX-2 pathway in A549 cells. On the other hand, we found that ATP\gammaS-induced cPLA2 expression was reduced by the inhibitors of PKCs, ROS, Jak2, and STAT3 in A549 cells (data not shown). Thus, we suggested that ATP\gammaS induced PGE2 production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA2/AA/COX-2 pathway in A549 cells.

Discussion

Asthma and COPD are pulmonary disorders characterized by various degrees of inflammation and tissue remodeling. ATP is a major signaling molecule in the patients with asthma and COPD [4,5]. ATP elicits its actions by engaging cell surface purinoceptors, and substantial preclinical evidence suggests that targeting these receptors will provide novel approaches for the treatment of asthma and COPD [4,5]. Patients with COPD show evidence of increased release of ROS leading to oxidative stress [24]. On the other hand, several lines of evidence suggest that high levels of PGs, synthesized by COX-2, are involved in inflammatory responses [25]. The molecular mechanisms by which ATP induces COX-2-dependent PGE2 generation are not fully understood in A549 cells. The present study clearly demonstrated that COX-2 expression induced by ATP\gammaS was mediated through a P2 receptor/PKC/NADPH oxidase/Jak2/STAT3/cPLA2 pathway.
Genetic silencing through transfection with siRNA of cPLA₂, PKCζ, PKCα, PKCδ, p47^{phox}, Jak2, or STAT3 or pretreatment with the inhibitors of P2 receptors, PKCs, NADPH oxidase, Jak2, and STAT3 abrogated ATPɛS-induced COX-2 expression and PGE₂ release. Therefore, P2 receptor activation by ATPɛS causes inflammatory responses through ROS and PGE₂ production. Moreover, PKC, NADPH oxidase, Jak2, and STAT3 were also involved in ATPɛS-induced COX-2 expression in A549 cells (Fig. 7). Extracellular adenosine 5’-triphosphate (eATP) is ubiquitously used for cell-to-cell communication [5]. The low level of eATP that exists in a “halo” surrounding resting cells signals the presence of neighboring living cells. Larger increases in eATP that are associated with cell death serve as a key “danger” signal in inflammatory processes [26]. Various aspects of purinergic signaling have been demonstrated in different cell types [12,27,28]. PKC represents a family of more than 11 phospholipid-dependent Ser/Thr kinases that are involved in a variety of pathways that regulate cell growth, death, and stress responsiveness [29]. PKC isoforms are divided into three categories according to the cofactors that are required for optimal phospholipid-dependent catalytic activity [29]. ATP has been shown to regulate PKC activation [12,30]. In addition, PKC plays a key role in regulating COX-2 induction [14,31]. Indeed, we showed that COX-2 expression and PGE₂ production in response to ATPɛS were significantly reduced by transfection with siRNAs of PKCζ, PKCα, and PKCδ or pretreatment with the inhibitors of PKCs in A549 cells. Translocation to the membrane is necessary to activate PKC [12]. This notion is confirmed by our observation that ATPɛS-stimulated PKCs translocation from the cytosol to the membrane. These results suggested that ATPɛS plays an important role in PKCs activation leading to COX-2/PGE₂ expression in A549 cells.

Cells and tissues are routinely subjected to sublethal doses of various oxidants, either exogenously through environmental exposure or endogenously through inflammatory processes [24,29]. The biological function of NADPH oxidase enzymes might be attributable to the production of ROS [24]. Activation of the NADPH oxidase, i.e., activation of gp91^{phox}, requires stimulation-induced membrane translocation of cytosolic proteins, including the small GTPase Rac and the two specialized cytosolic proteins p67^{phox} and p47^{phox}, each containing two SH3 domains [32,33]. In this process, p47^{phox} translocates to the membrane by itself, whereas p67^{phox} is recruited via p47^{phox} [34,35]: they constitutively associate via the interaction of the C-terminal SH3 domain of p67^{phox} with the p47^{phox} C-terminus [36,37]. Thus, p47^{phox} plays a central role in the membrane translocation. Indeed, our results confirmed that ATPɛS-induced COX-2 expression and PGE₂ synthesis was reduced by pretreatment with a ROS inhibitor (Edaravone) and the inhibitors of NADPH oxidase (DPI or APO) or transfection with p47^{phox} siRNA. Pretreatment with DPI or APO inhibited ATPɛS-induced ROS generation. These results suggested that NADPH oxidase-dependent ROS generation was involved in ATPɛS-induced COX-2/PGE₂ expression. Although the signaling pathways underlying ATPɛS-regulated NADPH oxidase have not been completely defined, involvement of PKC in NADPH oxidase activation has been reported in various cell types [15,38,39]. This notion is confirmed by our observation that ATPɛS-induced NADPH oxidase activity, ROS generation, and p47^{phox} translocation was inhibited by pretreatment with the inhibitors of PKCs.

Among the purinoreceptors, P1Rs (now known as A₁, A₂, and A₃ receptors) respond to adenosine but not to ATP, whereas all P2Rs (P2XR or P2YR) respond to ATP, some also respond to ADP, uridine 5’-triphosphate, or uridine 5’-diphosphate [5,26]. In the present study, we found that ATPɛS regulated COX-2/PGE₂ expression, PKG activation, and ROS generation via P2 receptor in A549 cells by pretreatment with the inhibitors of P2 receptors. These data suggested that ATPɛS may cause lung and airway inflammation via the P2 receptor-dependent COX-2/PGE₂ induction.

STATs are a class of transcription factors bearing SH2 domains that become activated upon tyrosine phosphorylation [23,40]. STAT3 is a transcription factor that is activated by many cytokines and growth factors and plays a key role in cell survival, proliferation, and differentiation [23,40]. The phosphorylation of STAT3 at Tyr^{705} is most commonly mediated by Jaks, especially Jak2 [17]. COX-2 expression has also been shown to be mediated via STAT3/Jak2 activation [18,19]. Moreover, this is confirmed by our data that pretreatment with the inhibitor of Jak2 or STAT3 markedly inhibited ATPɛS-induced COX-2 expression and PGE₂ generation in A549 cells. Oxidative stress has been shown to increase the activity of transcription factors, such as STAT3 [40]. Here, we found that NADPH oxidase-dependent ROS production was involved in ATPɛS-stimulated Jak2 and STAT3 phosphorylation. Thus, ROS may be critical for the inflammatory responses triggered by ATPɛS, through the up-regulation of redox-sensitive transcription factors and hence the expression of proinflammatory genes. Further understanding of the effects and roles of ROS in cellular functions as amplification of proinflammatory and immunological responses, signaling pathways, activation of transcription factors, and gene expression will provide important information regarding pathological processes contributing to chronic lung diseases. In summary, as depicted in Fig. 6, our results showed that ATPɛS-induced ROS production through a P2 receptor/PKCα/NADPH oxidase signaling, in turn initiated the activation of Jak2 and STAT3. Activated STAT3 was recruited to the promoter region of COX-2 leading to an increase of COX-2 expression associated with PGE₂ release. Therefore, the inhibitors of P2 receptors may be proven useful in diminishing ATPɛS-induced lung inflammation and chronic pathology.

Acknowledgments

We thank Ms. Chi-Yin Lee for her technical assistance.

Author Contributions

Conceived and designed the experiments: SEC ITL CCL CMY. Wrote the paper: SEC ITL CCL CMY.

References

1. Lin CC, Lee CW, Chu TH, Cheng CY, Luo SF, et al. (2007) Transactivation of Src, PDGF receptor, and Akt is involved in IL-1β-induced ICAM-1 expression in A549 cells. J Cell Physiol 211: 771–780.

2. Li H, Bradbury JA, Dackor RT, Edin ML, Graves JP, et al. (2011) Cyclooxygenase-2 regulates Th17 cell differentiation during allergic lung inflammation. Am J Respir Crit Care Med 184: 37–49.

3. Carey MA, Germolec DR, Langenbach R, Zeldin DC (2003) Cyclooxygenase enzymes in allergic inflammation and asthma. Prostaglandins Leukot Essent Fatty Acids 69: 157–162.

4. Esther CR Jr, Alexis NE, Picher M (2011) Regulation of airway nucleotides in chronic lung diseases. Subcell Biochem 55: 75–93.

5. Mortaz E, Folkerts G, Nijkamp FP, Henriks PA (2010) ATP and the pathogenesis of COPD. Eur J Pharmacol 638: 1–4.
6. Polousa R, Blackburn MR. (2009) Adenosine receptors as targets for therapeutic intervention in asthma and chronic obstructive pulmonary disease. Trends Pharmacol Sci 30: 528–535.

7. Lin CC, Lin WN, Wang WJ, Sun CC, Tong WH, et al. (2009) Functional coupling expression of COX-2 and eP450s induced by ATP in rat vascular smooth muscle cells: role of ERK1/2, p38 MAPK, and NF-κB. Cardiovasc Res 82: 522–531.

8. Lin CC, Lin WN, Cheng SE, Tong WH, Wang HH, et al. (2011) 5-Arachidonyl-2′-deoxyuridine induces COX-2 expression in rat vascular smooth muscle cells: role of ERK1/2, p38 MAPK, and NF-κB. Cardiovasc Res 82: 522–531.

9. Cacciatore MA, Trinh L, Lumpkin JA, Rado G. (1995) Hypoxia induces DNA damage in mammalian cells. Free Radic Biol Med 14: 267–276.

10. Lin CC, Yang YL, Lee CW, Kou YR, et al. (2010) Induction of COX-2/PGE_2/IL-6 is crucial for cigarette smoke extract-induced airway inflammation: Role of TLR1-dependent NADPH oxidase activation. Free Radic Biol Med 48: 249–254.

11. Lin WN, Lin CC, Cheng HY, Yang CM. (2011) Regulation of cyclooxygenase-2 and cytosolic phospholipase A2 gene expression by lipopolysaccharide through the RNA-binding protein HuR: involvement of NADPH oxidase, reactive oxygen species and mitogen-activated protein kinases. Br J Pharmacol 163: 1691–1706.

12. Scodelaro BP, Boland R, Santillan G. (2010) ATP modulates transcription factors through P2Y_g and P2Y_1 receptors via PKC/MAPKs and PKC/Src pathways in MCF-7 cells. Arch Biochem Biophys 494: 7–14.

13. Liao PC, Chien SC, Ho CL, Wang El, Lee SC, et al. (2010) Osthole regulates inflammatory mediator expression through modulating NF-κB, mitogen-activated protein kinases, protein kinase C, and reactive oxygen species. J Agric Food Chem 58: 10445–10451.

14. Machida T, Ohta A, Onoguchi A, Iizuka K, Sakai M, et al. (2011) 5-Hydroxytryptamine induces cyclooxygenase-2 in rat vascular smooth muscle cells: Mechanisms involving Src, PKC, and MAPK activation [corrected]. Eur J Pharmacol 656: 19–26.

15. Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M, et al. (2003) Protein factor-κB, mitogen-activated protein kinases, and cytochrome b558. J Clin Invest 87: 352–356.

16. Zhong Z, Wen Z, Darnell JE Jr. (1994) Stat3: a STAT family member activated by interleukin-6. Science 264: 95–98.

17. Wen Z, Zhong Z, Darnell JE Jr. (1995) Maximal activation of transcription factor-3 phosphorylation. J Cereb Blood Flow Metab 15: 241–250.

18. Kim HS, Cho HH, Kim JE, Shim YJ, Jeon JH, et al. (2000) Ethyl pyruvate has an anti-inflammatory effect by inhibiting ROS-dependent STAT signaling in activated microglia. Free Radic Biol Med 45: 950–963.

19. Kim EJ, Raval AP, Perez-Pinzon MA. (2006) Preconditioning mediated by sublethal oxygen-glucose deprivation-induced cyclooxygenase-2 expression via the signal transducers and activators of transcription 3 phosphorylation. J Cereb Blood Flow Metab 26: 1329–1340.

20. Lin CC, Tseng HW, Hsieh HL, Lee CW, Wu CY, et al. (2008) Tumor necrosis factor-α induces MMP-9 expression via p42/p41 MAPK, JNK, and nuclear factor-κB in A549 cells. Toxicol Appl Pharmacol 229: 386–396.

21. Qadri SS, Wang JH, Redmond KC, O’Donnell AF, Aherne T, et al. (2002) The role of COX-2 inhibitors in lung cancer. Ann Thorac Surg 74: 1648–1652.

22. Lee IT, Wang SW, Lee CW, Chang CC, Lin CC, et al. (2000) Lipopolysaccharide induces HO-1 expression via the TLR2/MyD88/c-Src/NADPH oxidase pathway and Nrf2 in human tracheal smooth muscle cells. J Immunol 164: 5100–5110.

23. Wang H, Laidf F, Kong X, Gao B. (2011) Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. Int J Biol Sci 7: 536–550.

24. Lagerve V, Planta JP, Leclerq O, Schmidlin F, Bertrand CP. (2000) Oxidative stress is an important component of airway inflammation in mice exposed to cigarette smoke or lipopolysaccharide. Clin Exp Pharmacol Physiol 35: 601–605.

25. Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38: 1654–1661.

26. Trautmann A. (2009) Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2: e6.

27. Burnstock G. (2008) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 56: 38–86.

28. Schwiebert EM, Ziembery A. (2003) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615: 7–32.

29. Gopalakrishna R, Jaken S. (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28: 1349–1361.

30. Heo JS, Han HJ. (2006) ATP stimulates mouse embryonic stem cell proliferation through protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells 24: 2637–2648.

31. Tzeng JJ, Chen BC, Chung HM, Wang JJ, Shureishah B, et al. (2010) Involvement of phosphatidylinositol-phospholipase C and protein kinase C in peptidylglycine-induced nuclear factor-κB activation and cyclooxygenase-2 expression in RAW 264.7 macrophages. Pharmacol Res 61: 162–166.

32. Bolchoz GM, Diewald BA. (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100: 2692–2696.

33. Clark RA. (1999) Activation of the neutrophil respiratory burst oxidase. J Infect Dis 179: S309–S317.

34. Dusi S, Donini M, Rossi F. (1996) Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox. Biochem J 314: 407–412.

35. Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, et al. (1991) Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47phox and p67phox requires interaction between p47phox and cytochrome b558. J Clin Invest 87: 352–356.

36. Finan P, Shimizu Y, Gout I, Hsuan J, Truong O, et al. (1994) An SH3 domain and proline-rich sequence mediate an interaction between two components of Neutrophil nicotinamide adenine dinucleotide phosphate oxidase. Cell 82: 522–531.

37. Kami K, Takeya R, Sumimoto H, Kohda D. (2002) Diverse recognition of non-oxidative stress stimuli by the Rac1/2 GTPase. Biol Chem 383: 1741–1750.

38. Qadri SS, Wang JH, Redmond KC, O’Donnell AF, Aherne T, et al. (2002) The role of COX-2 inhibitors in lung cancer. Ann Thorac Surg 74: 1648–1652.