Experimental Constraints on Polarizability Corrections to Hydrogen Hyperfine Structure

Vahagn Nazaryan,1,2 Carl E. Carlson,2 and Keith A. Griffioen2
1Department of Physics, Hampton University, Hampton, Virginia 23668, USA
2Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
(Received 21 December 2005; published 24 April 2006)

We present a state-of-the-art evaluation of the polarizability corrections—the inelastic nucleon corrections—to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value $\Delta_{\text{pol}} = 1.3 \pm 0.3$ ppm. This is 1–2 ppm smaller than the value of Δ_{pol} deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits.

DOI: 10.1103/PhysRevLett.96.163001 PACS numbers: 31.30.Gs, 13.40.Gp, 13.88.+e, 14.20.Dh

Hyperfine splitting in the hydrogen ground state is measured to 13 significant figures [1],

$$E_{\text{hfs}}(e^- p) = 1420.4057517667(9) \text{ MHz}. \tag{1}$$

Theoretical understanding of hydrogen hyperfine splitting is far less accurate, being at about the part-per-million (ppm) level. The main theoretical uncertainty lies in proton structure corrections, which are not presently calculable from fundamental theory. However, proton structure corrections can be calculated as functionals of quantities measurable in other experiments, specifically as integrals [2] over proton form factors measured in elastic electron-proton scattering plus integrals [3–7] over structure functions measured in inelastic polarized electron-proton scattering. The quality of the data for the latter has improved greatly in recent times, especially in the lower momentum transfer region which is important for proton hyperfine corrections. In this article, we present a state-of-the-art evaluation of the polarizability corrections using analytic fits to the most recent data, in particular, using lower momentum transfer data [8–10] from Jefferson Lab.

The proton structure corrections, ΔS, below, can be isolated by taking the experimental values for the hyperfine splitting (hfs) and subtracting the other corrections, which include QED corrections Δ_{QED}, recoil corrections ΔR, as well as some smaller terms due to hadronic vacuum polarization Δ_{hvp}, muonic vacuum polarization Δ_{muvp}, and weak interactions Δ_{weak}. One has [11–13]

$$E_{\text{hfs}}(e^- p) = (1 + \Delta_{\text{QED}} + \Delta R + \Delta_{\text{hvp}} + \Delta_{\text{muvp}} + \Delta_{\text{weak}} + \Delta S)E_F. \tag{2}$$

where the scale is set by the Fermi energy, given by

$$E_F = \frac{8\pi}{3\alpha^3} \mu_B \mu_p \frac{m_e^3 m_p^3}{(m_p + m_e)^3}, \tag{3}$$

for an electron of mass m_e bound to a proton of mass m_p, magnetic moment $\mu_p = (g_p/2)(e/2m_p)$, Landé g-factor g_p, and fine structure constant α. By convention, the exact magnetic moment μ_p is used for the proton, but only the lowest order term, the Bohr magneton μ_p, is inserted for the e^-. The proton structure correction inferred from atomic hyperfine splitting data by removing other corrections is

$$\Delta_S = \Delta_Z + \Delta_{\text{pol}} = -38.58(16) \text{ ppm}. \tag{4}$$

The uncertainty comes mainly from Δ_{Z}^p; we used 5.84 ± 0.15 ppm. The central value [12] uses the CODATA [14] charge radius and the dipole magnetic radius. The uncertainty encompasses a spread due to other choices of these radii. A discussion is in [15]. Other quantities were taken from [12]. Eliminating the large QED corrections by using both hydrogen and muonium hfs [15] leads to a similar result, with an uncertainty limit 0.18 ppm.

The structure-dependent correction Δ_S is conventionally split into two terms, ΔZ and Δ_{pol}. The bulk of the first term was calculated by Zemach [2] long ago, and the modern expression is

$$\Delta_S = -2\alpha m_e r_Z(1 + \delta_Z^\text{rad}), \tag{5}$$

where the Zemach radius is

$$r_Z = -\frac{4}{\pi} \int_0^\infty dq \frac{dQ^{(2)}}{Q^2} \left[G_E(Q^2) \frac{G_M(Q^2)}{1 + \kappa_p} - 1 \right]; \tag{6}$$

G_E and G_M are the electric and magnetic form factors of the proton, normalized so that $G_E(0) = G_M(0) / (1 + \kappa_p) = 1$, $\kappa_p = (g_p - 2)/2$. The radiative correction δ_Z^rad is estimated in [11] and calculated in [16] for form factors that are represented by dipole forms: $\delta_Z^\text{rad} = (\alpha/3\pi) \times [2\ln(\Lambda^2/m_e^2) - 4111/420]$. For $\Lambda^2 = 0.71$ GeV2, one finds $\delta_Z^\text{rad} = 0.0153$; for a Λ^2 corresponding to the relatively large charge radius in [17], one would instead get 0.0150, or a 0.01 ppm change in the hyperfine splitting.

The second term, Δ_{pol}, involves contributions where the proton is excited [3–7]. In the limit where the electron mass is neglected except for one overall factor,

$$\Delta_{\text{pol}} = \frac{\alpha m_e}{\pi g_p m_p} (\Delta_1 + \Delta_2), \tag{7}$$

(the prefactor is 0.2265 ppm) with
\[\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2(Q^2) + \frac{8m_p^2}{Q^2} B_1(Q^2) \right\}, \]
\[\Delta_2 = -24m_p^2 \int_0^\infty \frac{dQ^2}{Q^4} B_2(Q^2). \]

Here \(F_2 \) is the Pauli form factor of the proton,
\[B_1 = \int_0^{\infty} dx \beta(x) g_1(x, Q^2), \]
\[B_2 = \int_0^{\infty} dx \beta(x) g_2(x, Q^2). \]

\[\beta(x) = \frac{4}{3} \left[-3\tau + 2\tau^2 + 2(2 - \tau) \sqrt{\tau(\tau + 1)} \right] \]

and \(\beta_2(\tau) = 1 + 2\tau - 2\sqrt{\tau(\tau + 1)} \),

in which \(\tau = \frac{\nu^2}{Q^2}, \nu \) is the lab-frame energy transfer, \(Q^2 \) is the squared four-momentum transfer, \(x_{th} = Q^2/(2m_p m_\pi + m_\pi^2 + Q^2) \), \(m_\pi \) is the pion mass, and \(g_1 \) and \(g_2 \) are the spin-dependent structure functions, measured in doubly polarized electron-proton inelastic scattering.

Reference [7] was to our knowledge the first to use \(g_{1,2} \) data to obtain results not consistent with zero for the polarizability corrections. However, \(\Delta_1 \) and \(\Delta_2 \) are sensitive to the behavior of the structure functions at low \(Q^2 \). Hence with new low \(Q^2 \) data available [8,10], there is a significant possibility that the numerical results for \(\Delta_{pol} \) could require noticeable revision.

The integrands of Eq. (8) converge because there are factors that cancel the poles at \(Q^2 = 0 \). The function \(\beta_2 \) has limiting behavior
\[\beta_2(\tau) = \begin{cases} 1/4\tau = Q^2/4\nu^2 & \tau \to \infty, Q^2 \to 0 \\ 1 & \tau \to 0, Q^2 \to \infty \end{cases}, \]

Given that \(\nu \) is never zero for inelastic processes, even for \(Q^2 \to 0 \), and noting that the width of the integration region for the \(B_i \) is proportional to \(Q^2 \) for small \(Q^2 \), one sees that the integral for \(\Delta_2 \) is well behaved for finite \(g_2 \).

For the integral \(\Delta_1 \) to be finite, given
\[\beta(\tau) = \begin{cases} 1 - 5/18\tau & \tau \to \infty \\ 0 & \tau \to 0 \end{cases}, \]

one needs a cancellation that follows from the Gerasimov-Drell-Hearn (GDH) [18,19] sum rule,
\[\lim_{Q^2 \to 0} \frac{8m_p^2}{Q^2} \int_0^{x_{th}} dx g_1(x, Q^2) = -\kappa_p^2; \]

\(\kappa_p = F_2(0) \) is the proton anomalous magnetic moment.

Further, regarding \(\Delta_2 \), there is little \(g_2 \) data for the proton—there is some from SLAC E155 at higher \(Q^2 \) [20] and there is some Jefferson Lab Hall C data at \(Q^2 = 1.3 \) GeV\(^2\) under analysis [21]. Hence, the \(g_2 \) results rely on models. However, the \(g_2 \) contributions to the polarizability corrections are small because the weighting factor \(\beta_2 \) in the \(\Delta_2 \) integral is generally small within the integral. The weighting factor \(\beta \) by contrast is on average close to 1.

Our main results for \(\Delta_{pol} \) are detailed in Table I. We evaluated \(\Delta_{pol} \) using two different fits to \(g_1 \) and \(g_2 \) and several different parameterizations of \(F_2(Q^2) \).

The current best and most up-to-date parameterization is the one developed by CLAS EGI [8,9]. This fit begins with the most recent published data [8], which has \(Q^2 \cong 0.15 \) GeV\(^2\), and is based on AO [22] and MAID [23] parameterizations of the resonances, the E155 fit [24] in the deep-inelastic scattering (DIS) region, and the Wandzura-Wilczek [25] form \(g_{2\text{WW}} = -\bar{g} + \int_x^1 g(y)dy/y \) for \(g_2 \) in the DIS region. This fit also gives a good account of the new data [10], which has \(Q^2 \) down to 0.05 GeV\(^2\). The other structure function fit is that of Simula et al. [26], which is based on data available through the year 2001. Our results using this fit are shown in the last column of Table I, for one \(F_2(Q^2) \).

For \(F_2 \), we show results using the parameterizations of Kelly [27] and of Sick [17], and include the dipole fit \(F_2(Q^2) \) as a benchmark. Although the dipole fit is a traditional standard, it does not fit modern data well and results obtained from it are not reliable. The Kelly parameterization fits form factor data well overall, and for \(g_E \) elects to fit the polarization transfer results [28]. (There has been a discrepancy between the Rosenbluth and polarization transfer determinations of the proton \(F_2 \). Theoretical analysis [29] is resolving this by suggesting that two-photon corrections to the Rosenbluth determination at non-zero \(Q^2 \) will give agreement with the polarization method.)

The continued fraction parameterization of [17] concentrates on the low \(Q^2 \) data, and is valid for \(0 \leq Q^2 \leq 0.62 \) GeV\(^2\). Beyond this, the \(F_2(Q^2) \) contributions to the integrals are small and we substituted the dipole form. This procedure was also used by Friar and Sick [30] in their analysis of the Zemach radius. Substituting the Kelly parameterization instead made no difference on a scale set by our uncertainty limits.

We show our numerical results in Table I. We have split the \(Q^2 \) integration into segments [0–0.05] GeV\(^2\) (where no data exist), [0.05–20] GeV\(^2\), and >20 GeV\(^2\), and show contributions from these regions separately. We also separate, except for the lowest \(Q^2 \) region for \(\Delta_1 \), the contributions from \(F_2, g_1, \) and \(g_2 \).

Three columns in Table I use the CLAS EGI model [8] for \(g_1 \) and \(g_2 \). Errors were assigned to the \(F_2 \) contribution to \(\Delta_1 \) using the parameter uncertainties that coherently gave the largest error. For \(Q^2 < 0.05 \) GeV\(^2\) this error was added in quadrature with a 10% overall systematic uncertainty as a guess about the absolute accuracy of the data at low \(Q^2 \). The contribution from \(g_1 \) was given a 10% error for the deep-inelastic region (\(Q^2 > 20 \) GeV\(^2\)), and a 50% error (0.05 < \(Q^2 \) < 20) dominated by the uncertainties in the preliminary CLAS data near \(Q^2 = 0.05 \) GeV\(^2\). The
We find that $\Gamma_2^{(N)} = -N \Gamma_1^{(N)}/(N + 1)$. Therefore, if we naively extrapolate this relation to low Q^2, we get $\Delta_1[0, 0.05] = -0.40 \pm 0.05$ using y_0 from above. From Ref. [31], keeping terms to $O(Q^4)$, we find that $\Delta_1[0, Q^2]$ = $3m^2_p Q^2 \gamma_0 - \delta_{LT}/2x$. Using the MAID π-channel estimate [31] $\delta_{LT} = 1.35 \times 10^{-4} \text{ fm}^{-2}$, we obtain $\Delta_2[0, 0.05] = -1.4$. Both of these values would lower the final Δ_{pol}. We quote the CLAS EG1 model (-0.24 ± 0.24) in Table I.

For the low Q^2 contributions in the Simula et al. [26] fit, we straightforwardly integrated the analytic form. The numerical differences from the EG1 result arise because a Taylor expansion of $\Gamma_1^{(N)}(Q^2)$ from Ref. [26] leads to a small curvature parameter c_1.

For all Q^2, the g_1 and g_2 fits of [26] have available error bands for the g_i. To evaluate uncertainties in the polarizability corrections due to uncertainties in the g_i, we recalculated the Δ_1 using consistently the largest g_1 and smallest g_i. This gives an uncertainty estimate for Δ_1 from g_2 of ± 0.37 units, as quoted in Table I. The uncertainty estimate for Δ_1 due to g_1 and F_2 is ± 2.48 units.

The uncertainty limits involving g_2 on the proton may appear remarkable considering the amount of existing data. However, one expects that much of g_2 is due to the Wilezek-Wandzura term, which is gotten directly from g_1. This can be verified from the much larger body of data for g_2 on the neutron (using polarized ^3He targets).

Table II shows Δ_pol and the Zemach radius calculated from the form factor sets used above. Table II also gives $\Delta_3(\text{data}) - \Delta_2(\text{calc})$, i.e., the value of Δ_{pol} “desired” for consistency between measurement and proton structure corrections calculated using a given form factor set.

In summary, we quote our best value as

$$\Delta_{\text{pol}} = (1.3 \pm 0.3) \text{ ppm}.$$

The earlier value of Faustov and Martynenko [7] was

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Term & Q^2 (GeV2) & From & CLAS EG1 & Using Simula et al. g_1, g_2 fit \\
\hline
\hline
Δ_1 & $[0, 0.05]$ & F_2 and g_1 & 0.45 \pm 0.30 & 0.49 \pm 0.30 & 0.60 \pm 0.28 & -1.78 \pm 0.67 \\
& $[0.05, 20]$ & F_2 & 7.01 \pm 0.22 & 6.86 \pm 0.27 & 7.12 & 7.01 \pm 0.22 \\
& g_1 & & -1.10 \pm 0.55 & -1.10 \pm 0.55 & -1.10 \pm 0.55 & -1.78 \pm 1.86 \\
& $[20, \infty]$ & F_2 & 0.00 & 0.00 & 0.00 & 0.00 \\
& g_1 & & 0.12 \pm 0.01 & 0.12 \pm 0.01 & 0.12 \pm 0.01 & 0.10 \pm 0.01 \\
total Δ_1 & & & 6.48 \pm 0.89 & 6.38 \pm 0.92 & 6.74 \pm 0.84 & 3.55 \pm 2.48 \\
Δ_2 & $[0, 0.05]$ & g_2 & -0.24 \pm 0.24 & -0.24 \pm 0.24 & -0.24 \pm 0.24 & -0.72 \pm 0.14 \\
& $[0.05, 20]$ & g_2 & -0.33 \pm 0.33 & -0.33 \pm 0.33 & -0.33 \pm 0.33 & -1.14 \pm 0.23 \\
total Δ_2 & & & -0.57 \pm 0.57 & -0.57 \pm 0.57 & -0.57 \pm 0.57 & -1.86 \pm 0.37 \\
$\Delta_1 + \Delta_2$ & & & 5.91 \pm 1.06 & 5.81 \pm 1.08 & 6.18 \pm 1.02 & 1.69 \pm 2.51 \\
Δ_{pol} & & & 1.34 \pm 0.24 ppm & 1.32 \pm 0.24 ppm & 1.40 \pm 0.23 ppm & 0.38 \pm 0.57 ppm \\
\hline
\end{tabular}
\caption{Contributions to Δ_{pol} using various models.}
\end{table}
It is remarkable that this value, based on few data, agrees with the determination using fits to the extensive CLAS data set. We thus corroborate extractions of hadronic quantities from data as done in [12,13].

We should now focus on modern form factor parameterizations represented by [17] or [27], which fit low Q^2 data well. Accepting these and Table II could lead one to desire fits that could give a more suitable Zemach radius.

We cannot, in our opinion, anticipate that new proton g_1 or g_2 data will change the evaluation of Δ_{pol} by enough to reconcile the proton structure corrections with the measured hydrogen hyperfine splittings. For example, to get the requisite Δ_{pol} by changing the curvature parameter we called c_1, would require making it about 5 times larger than the value we used. This is essentially unthinkable given data already available. A further look at elastic form factor fits that could give a more suitable Zemach radius r_2 could well be warranted.

We thank Sebastian Kuhn, Ingo Sick, Silvano Simula, and Marc Vanderhaeghen for helpful discussions. This work was supported by the National Science Foundation under Grants No. PHY-0245056 (C.E.C. and V.N.) and No. PHY-0400332 (V.N.), and the Department of Energy under Contract No. DE-FG02-96ER41013 (K.A.G.).

[1] S. G. Karshenboim, Can. J. Phys. 77, 241 (1999).
[2] A. C. Zemach, Phys. Rev. 104, 1771 (1956).
[3] C. K. Iddings, Phys. Rev. 138, B446 (1965).
[4] S. D. Drell and J. D. Sullivan, Phys. Rev. 154, 1477 (1967).
[5] E. De Rafael, Phys. Lett. B 37, 201 (1971).
[6] P. Gnädig and J. Kuti, Phys. Lett. B 42, 241 (1972).
[7] R. N. Faustov and A. P. Martynenko, Eur. Phys. J. C 24, 281 (2002); R. N. Faustov and A. P. Martynenko, Phys. At. Nucl. 65, 265 (2002); Yad. Fiz. 65, 291 (2002).
[8] R. Fatemi et al. (CLAS Collaboration), Phys. Rev. Lett. 91, 222002 (2003).
[9] J. Yun et al., Phys. Rev. C 67, 055204 (2003); S. Kuhn (private communication).
[10] A. Deur, AIP Conf. Proc. 792, 969 (2005).
[11] G. T. Bodwin and D. R. Yennie, Phys. Rev. D 37, 498 (1988).
[12] A. V. Volotka, V. M. Shabaev, G. Plunien, and G. Soff, Eur. Phys. J. D 33, 23 (2005).
[13] A. Dupays, A. Beswick, B. Lepeitig, C. Rizzo, and D. Bakalov, Phys. Rev. A 68, 052503 (2003).
[14] P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 72, 351 (2000); Rev. Mod. Phys. 77, 1 (2005) [2002 CODATA].
[15] S. J. Brodsky, C. E. Carlson, J. R. Hiller, and D. S. Hwang, Phys. Rev. Lett. 94, 022001 (2005); Phys. Rev. Lett. 94, 169902(E) (2005); see also [34].
[16] S. G. Karshenboim, Phys. Lett. A 225, 97 (1997).
[17] I. Sick, Phys. Lett. B 576, 62 (2003); See also C. E. Hyde-Wright and K. de Jager, Annu. Rev. Nucl. Part. Sci. 54, 217 (2004).
[18] S. B. Gerasimov, Sov. J. Nucl. Phys. 2, 430 (1966) [Yad. Fiz. 2, 598 (1966)].
[19] S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966).
[20] P. L. Anthony et al. (E155 Collaboration), Phys. Lett. B 553, 18 (2003).
[21] M. K. Jones (private communication).
[22] V. Burkert and Z. Li, Phys. Rev. D 47, 46 (1993).
[23] D. Drechsel, O. Hanstein, S. S. Kamalov, and L. Tiator, Nucl. Phys. A645, 145 (1999).
[24] P. L. Anthony et al. (E155 Collaboration), Phys. Lett. B 493, 19 (2000).
[25] S. Wandzura and F. Wilczek, Phys. Lett. B 72, 195 (1977).
[26] S. Simula, M. Osipenko, G. Ricco, and M. Taitui, Phys. Rev. D 65, 034017 (2002). We thank Silvano Simula for providing us with an updated version of the code, including error estimates.
[27] J. J. Kelly, Phys. Rev. C 70, 068204 (2004).
[28] O. Gayou et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 88, 092301 (2002); O. Gayou et al., Phys. Rev. C 64, 038202 (2001); M. K. Jones et al., Phys. Lett. B 518, 1398 (2000).
[29] P. G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev. Lett. 91, 142304 (2003); Y. C. Chen, A. Afanasev, S. J. Brodsky, C. E. Carlson, and M. Vanderhaeghen, Phys. Rev. Lett. 93, 122301 (2004); A. V. Afanasev, S. J. Brodsky, C. E. Carlson, Y. C. Chen, and M. Vanderhaeghen, Phys. Rev. D 72, 013008 (2005); J. Arrington, Phys. Rev. C 71, 015202 (2005).
[30] J. L. Friar and I. Sick, Phys. Lett. B 579, 285 (2004). We also used the dipole fit for a small region 0.0505 < Q^2 < 0.0551 GeV2, where there is a peculiarity in the G_{E2} fit.
[31] C.-W. Kao, T. Spitzenberg, and M. Vanderhaeghen, Phys. Rev. D 67, 016001 (2003); C.-W. Kao, D. Drechsel, S. Kamalov, and M. Vanderhaeghen, Phys. Rev. D 69, 056004 (2004).
[32] D. Drechsel, B. Pasquini, and M. Vanderhaeghen, Phys. Rep. 378, 99 (2003).
[33] X. D. Ji, C. W. Kao, and J. Osborne, Phys. Lett. B 472, 1 (2000).
[34] J. L. Friar and I. Sick, Phys. Rev. Lett. 95, 049101 (2005); S. J. Brodsky, C. E. Carlson, J. R. Hiller, and D. S. Hwang, Phys. Rev. Lett. 95, 049102 (2005).