Bcl-2 family controls mitochondrial outer membrane permeabilization by performing non-trivial pattern recognition.

Tomas Tokar, Jozef Ulicny
Department of Biophysics, University of P. J. Safarik in Kosice, Jesenna 5, 040 01, Kosice, Slovakia

Abstract

Interactions between individual members of the B-cell lymphoma 2 (Bcl-2) family of proteins form a regulatory network governing mitochondrial outer membrane permeabilization (MOMP). Bcl-2 family initiated MOMP causes release of the inter-membrane pro-apoptotic proteins to cytosol and creates a cytosolic environment suitable for the executionary phase of apoptosis. Using mathematical modeling and computational simulation, we have analyzed the response of this regulatory network caused by the up-/downregulation of each individual member of the Bcl-2 family. As a result, a non-linear stimulus-response emerged, the characteristics of which are associated with bistability and switch-like behavior. Using the principal component analysis (PCA) we have shown that the Bcl-2 family classifies the random combinations of inputs into two distinct classes, and responds to these by one of the two qualitatively distinct outputs. As we showed, the emergence of this behavior requires specific organization of the interactions between particular Bcl-2 proteins.

Keywords: apoptosis, Bcl-2, bistability, pattern recognition, mitochondria

Introduction

Programmed cell death (PCD), often denoted as a cellular suicide, plays an important role in the homeostasis of every multi-cellular organism [1]. One of the main forms of PCD is called apoptosis [2, 3, 1], a process which is well distinguished by its characteristic morphology [4]. Defects in apoptosis regulation may cause a variety of serious diseases, including the neurodegenerative disorders [5], autoimmune diseases [6], or cancer [7, 8, 9]. Apoptosis can be initiated by either extracellular stimuli or by signals originating from a cell’s internal space [10, 9]. Signals initiating apoptosis then proceed through the apoptotic signaling pathways, which contain several control points [10, 9]. One of the most important of such points, integrating a multitude of incoming apoptotic (and antiapoptotic) signals is formed by a family of Bcl-2 (B-cell lymphoma 2) proteins [11, 12]. The Bcl-2 family controls mitochondrial outer membrane permeabilization (MOMP) [13, 14], the crucial event of apoptosis.

MOMP allows the release of key apoptotic players - Smac/DIABLO and cytochrome c, from a mitochondrial intermembrane space to cytosol [13, 14]. In the presence of ATP, released cytochrome c binds to a cytosolic protein Apaf-1, causing Apaf-1 oligomerization and recruitment of an inactive pro-caspase-9, leading to formation of a multi-protein complex known as an apoptosome [15, 16, 17]. Within the apoptosome, pro-caspase-9 subsequently undergoes processing and activation [15, 16, 17]. The active caspase-9 proteolytically activates caspase-3 [18]. Smac/DIABLO, once released to the cytosol, inhibits XIAP (X-linked inhibitor of apoptosis) - the most prominent suppressor of caspases-3 and -9 [19]. Caspase-3 and other effector caspasess (caspases-6 and -7) are the primary executioners of the apoptosis [20, 9]. Activation of effector caspases signifies the point of no-return, after which apoptosis irreversibly occurs [21].

Bcl-2 family members are functionally classified as either antiapoptotic, or proapoptotic. Structurally, Bcl-2 proteins can be categorized according to the number of Bcl-2 homology domains (BH) in their α-helical regions [22, 9]. Antiapoptotic members (Mcl-1, A1, Bcl-xL, Bcl-2, Bcl-w and Bcl-B) are characterized by the presence of four BH domains (BH1-4) [23, 24]. Their role is to prevent MOMP by inhibition of proapoptotic family members [23, 24]. Proapoptotic members can be divided to BH3-only proteins and multidomain proteins - effectors [9]. BH3-only proteins can be further subdivided based on their role in apoptotic signaling. BH3-only subgroup members, termed sensitizers, or enablers (Noxa, Bad, Puma, Hrk, Bmf and Bik) can only bind to proapoptotic Bcl-2 proteins, forming inactive dimers [22]. Members of another BH3 subgroup, termed activators (Bim and Bid), can act in the same way [22], but in addition, activators can directly activate effectors [23, 25]. Effectors, once activated, undergo oligomerization and form pores – mitochondrial apoptosis channels (MAC) in the mitochondrial outer membrane (MOM), leading eventually to MOMP [26, 14]. Therefore, effectors are the primary target of inhibition by their antiapoptotic relatives [25].

Individual Bcl-2 family members are regulated by wide-variety of factors, e.g. growth factor deprivation, cytokine withdrawal, heat shock, DNA damage, hypoxia, death receptors stimulation and many others [23]. Mechanisms of regulation include transcription control and/or post-translational modifications by phosphorylation, or proteolytic cleavage [23]. Bcl-2...
family thus integrates a multitude of converging signals to decide whether to commit MOMP or not. This decision is carried in an all or nothing manner, giving no possibility of intermediate MOMP. This interesting behavior has made the Bcl-2 family an attractive subject of mathematical modeling and computer simulations.

There are several works regarding modeling and simulation of the Bcl-2 family and the control of MOMP, revealing and examining a variety of non-linear system behaviors such as robustness, stimulus-response ultrasensitivity \[^{[27]}\] and steady-state bistability \[^{[28, 29, 30]}\]. Besides these, the Bcl-2 family was involved in several other, more general models of apoptosis signaling \[^{[31, 32, 33]}\].

In the above mentioned works, the authors reduce the complexity of their model by grouping of several functionally similar species together. Usually, the Bcl-2 family’s members are assigned into four groups according to their structural and functional classification. The most prominent group’s member is taken as the model’s representation of the whole group of species. Previous models of the Bcl-2 regulatory network differ by level of details, nevertheless they all adopt such simplification. Although, such simplification provides an attractive trade-off between the model’s complexity and plausibility, functional specificities of Bcl-2 family’s individuals are being omitted.

In the proposed work we provide a literature-based mathematical model in which interactions between individual Bcl-2 family members are distinguished. Our goal was to investigate the behavior of the detailed model, in particular to prove/disprove the switching properties obtained by models based on functional grouping. In the process we obtained additional insight into the decision mechanism of the Bcl-2 control of MOMP. The non-trivial pattern-recognition emerged as a consequence of functional specificities of Bcl-2 family individuals. In addition, an explicit model of pair interactions allowed us to probe the pro- and anti-apoptotic potency of individual members of the Bcl-2 family and to rank them according to their ability to promote or prevent the MOMP event.

Results

Bistability of the Bcl-2 family regulation of MOMP

Several previous works \[^{[28, 29, 30]}\] have been focused on the analysis of bistable behavior of the Bcl-2 family mediated regulation of MOMP. Similarly, we performed a variation of the single stimulus parameter of the model to analyze steady state stimulus-response of the model. The production rate of the tBid (kpBak) was considered as the stimulus and the steady state concentration of MAC (MACss) was the measure of response. The stimulus – kpBak was varied through the chosen range of values, while the other parameters of the model remained unchanged.

Using the parameters of the model listed in the Table 3 we have obtained the stimulus-response dependence depicted in the figure 1. The obtained steady state stimulus-response forms hysteresis, the typical hallmark of bistability of the dynamic system. The two thresholds (Fig[1]) marked by the left and right vertical dashed lines) enclose the bistable region. Within the bistable region, the system under the same value of the stimulus may occur in one of two stable steady states, depending on the initial conditions. These steady states are separated by the unstable steady states (marked by dashed curve). Such systems are often described as the mechanism of a “toggle switch” \[^{[34]}\].

Previous works limited themselves to the response of the Bcl-2 family induced by activators tBid/Bim solely. In the presented work we have explored the model’s response to variation of all components, including both activators, all the anti-apoptotic proteins, enablers and effectors. Utilizing individual production rates as the input stimuli, we performed set of analyses analogous to the previous one.

In addition to tBid, we have observed that steady state stimulus-response hysteresis resulted also from stimulation by the second of activators – Bim (data not shown), as well as by the the anti-apoptotic proteins. Surprisingly, even a variation of the production rates of enablers Puma and Bad & Bmf yields stimulus-response hysteresis (see Fig 2).

Variation of the Hrk & Bik productions yields hysteresis as well, but the obtained range of bistability is extremely narrow, close to ultrasensitive sigmoid curve. Similarly to bistability, sigmoid curve means that modeled system is insensitive to low levels of the given input, but it can respond significantly to its high levels. In contrast to bistability, sigmoidal response is not discretized, as the response is continuously increasing/decreasing with the growing/reducing input strength. While the bistability can be compared to mechanism of “toggle switch” sigmoid, the model’s response can also be achieved by significant upregulation of the effecter proteins.

Interestingly, variation of the production rate of the Noxa produced a hyperbolic response. Hyperbolic dependence, in contrast to hysteresis and sigmoid response, indicates sensitivity to even a small increase of input stimuli. Therefore, stimulation of the model through the production of Noxa can “tune” the model’s sensitivity to other incoming stimuli (see Fig 3).

Monte-Carlo variation of production rates results in bimodal distribution of steady-state abundance of MAC

In the previous section, we analyzed the dependence of the steady state concentration of MAC on the production of individual proteins. In what follows, we performed Monte-Carlo analysis of the dependence of the steady state concentration of MAC on the simultaneous variation of multiple production rates.

In each iteration, the values of all the production rates (kpMcl1, kpA1, kpBclXl, kpBcl2, kpBclw, kpBclB, kpHrk, kp-Bik, kpBak, kpPuma, kpBim, kpBad, kpBmf, kpNoxa, kpBax, kpBak) of the model were varied according to following rule:

\[
k_p = k_p^* \cdot \eta
\] \(^{(1)}\)

where \(k_p\) is the varied production rate, \(k_p^*\) is its default value and \(\eta\) is the random, uniformly distributed real number chosen...
from \((-2, 2)\) interval. Other parameters of the model were kept at their default values. Similar to the analysis of bistability, the steady state concentration of MAC, was used as the output.

We have plotted the distribution of the model’s response obtained for \(10^4\) iterations. The results (see Fig. 4) show clear bimodal distribution of the model’s response. The bimodal distribution of the response proves that the Bcl-2 regulatory network can turn random combinations of inputs into two qualitatively distinct outputs [35, 36, 37, 29].

The minimum located between the local maxima of the response distribution (Fig. 4 marked by vertical dashed line) was considered as the threshold value of steady state concentration of MAC, separating the pro-survival (colored blue) and MOMP (colored red) responses. Hereafter, the steady state concentrations of the MAC below this threshold are considered as pro-survival, while the concentrations above the threshold are considered as MOMP initiating (pro-MOMP). It is worth mentioning, that the value of the threshold intersects all the hysteresis curves (Fig. 1 and 2), within the bistable range. The value of this threshold \(\sim 350\), assumes that MOMP occurs once the number of effector dimers in mitochondria surrounding environment exceeds 350. This is remarkably good agreement with experimental estimations made by Martinez-Caballero et al. [38].

Bcl–2 family performs non-trivial pattern recognition.

Using the same sets of the production rates as were used in the previous analysis we arranged the matrix of stimuli. Each row of this matrix – stimuli vector corresponds to one iteration of the Monte-Carlo analysis from the previous section and each of its columns corresponds to the one of the production rates, defining the size of the stimuli matrix to \(10^4 \times 16\). Each column was normalized to its mean. Then we performed the principal component analysis (PCA) of the matrix of stimuli and plotted the input vectors within the plane defined by principal components.

The results (see Fig. 5, left) show that when the random input stimuli vectors are plotted in the PCA–defined plane, they form a randomly scattered cloud. But, when the each vector is colored based on the associated response, it appears that the stimuli associated with the given response are clustered. This shows, that the Bcl-2 regulatory network is capable of taking a wide range of random combinations of incoming signals and classifying them into two sharply defined responses of distinct biological relevance. Such functionality defines what is in the field of machine learning and neural networks known as non-trivial pattern recognition [39, 40, 41, 42].

In following, we created ten alternative models of the Bcl-2 family, by mutating the topology of the default model. By mutation we mean random addition of non-existing or deletion of existing inhibitory interactions between anti-apoptotic and pro-apoptotic proteins and/or activations of effectors by activators. Such mutations allow alteration of the Bcl-2 family model on its detailed level, but preserve the interactions between the functional groups consistent with the default model.

For each of the alternative models we have performed a total of five of such mutations. We then performed Monte-Carlo analysis of these models by generating the \(10^4\) random combinations of input stimuli. For each alternative model we then identified the threshold value of the effectors activity and subsequently performed the PCA of the stimuli matrix.

As a result we have found that all the alternative models produced bimodal distribution of response, but none of them clustered input stimuli similarly to the default model (see Fig. 5 right side). This indicate that, while the bistability can emerge from alternative topologies of the Bcl-2 family interaction network, the pattern recognition is strictly associated with this particular topology of this regulatory network.

Pivotal pro- and anti-apoptotic Bcl-2 family members

In the following we wanted to answer the naturally arising question: Which of the production rates are pivotal regarding the determination of the model’s response?

The model’s response varies over several orders of magnitude. However, all the response values below/above the threshold, regardless of the value itself, are considered to be qualitatively equal – pro-survival/pro-MOMP, providing the same biological consequences. Therefore, we were interested in correlation of the values of the production rates with the response quality (pro-survival/pro-MOMP), instead of the correlation with the response quantity.

We utilized the point-biserial correlation coefficient (PBCC) \(r_{pb}\) as the measure of the correlation between the value of the production rate and quality of the model’s response (pro-survival/pro-MOMP). PBCC is frequently used to measure the correlation between the two variables, one of which is dichotomous (either naturally, or artificially dichotomized) [43]. PBCC for each production rate was calculated as follows:

\[
r_{pb} = \frac{M - S}{\sigma} \sqrt{\frac{n_M \cdot n_S}{n^2}},
\]

where the \(M\) and \(S\) are the means of values of the given production rate corresponding to pro-MOMP and pro-survival responses respectively. \(n_M\) and \(n_S\) are the number of values of the given production rate, corresponding to pro-MOMP and pro-survival responses respectively. \(n\) is the total number of the values of the given production rate and \(\sigma\) is its standard deviation.

The results we obtained (figure 6) prove the role of the tBid and Bim – the only activators of effector dimers – as the primary pro-apoptotic proteins. Similarly, the Puma is the most efficient MOMP promoter among the enabler proteins. On the other hand, the most efficient MOMP preventers are proteins A1 and Bcl-XI, followed by Mcl-1 and Bcl-w.

Discussion

The Bcl-2 family of proteins consists of sixteen (excluding tissue-specific Bcl-2 ovarian killer – Bok) proteins that differ in their upstream regulation as well as in their interactions with other family members. We translated current biological knowledge of these interactions into mathematical model, which was
utilized to study the regulation of the MOMP – crucial apoptotic event, which is maintained by the Bcl-2 family.

Analysis of the model’s response to variation of productions of individual proteins, revealed that the system property called steady-state bistability emerges as a robust feature of the modeled system. Our results indicate that the most of the Bcl-2 proteins can serve as bistable “toggles”, up- or downregulation of these cause “switching on” the MOMP. Steady-state bistability is currently being „the favorite framework for thinking about the switch between life and death” [44]. Therefore, the abovementioned results were expected. However, we have also found that other Bcl-2 proteins act as a “push-buttons” – alternative switching mechanisms with very narrow or missing bistable range and one of them as a “tuner” of the model’s sensitivity – upregulation of which results in hyperbolic model’s response.

We have shown that the model is able to process random combinations of inputs to produce output that has bimodal distribution. This strongly suggests that orchestration of these “toggles”, “push-buttons” and “tuners” constitutes a molecular device whose function is to integrate multitude of incoming, continuous inputs into binary outcomes. Bimodal distribution was previously observed by Sun et al [29] in the flow cytometry of Bax activation as the response to staurosporine treatment of the HeLa cells population, supporting our finding.

Moreover, our results further suggest that this molecular device can perform pattern recognition – which is non-trivial functionality, often associated with neural networks and machine learning algorithms. This functionality is impaired by deletion of a relatively small number of reactions, as well as by addition of artificial interactions, even for interactions which are consistent with the relationships between the functional groups of the family.

Measurements of the correlation between the individual signals and the model’s response predict that the most potent inputs of this network are associated with the regulation of activators tBid and Bim, enabler protein Puma and the anti-apoptotic sentinels A1, Bcl-Xl, Bcl-w and Mcl-1.

Finally, to outline the directions in which the proposed work could be extended, we would like to point out the necessity of utilization of more sophisticated, machine-learning based approaches to better analyze the synergy of the Bcl-2 family regulation of MOMP. We believe that its understanding can be crucial in development of novel anti-cancer drugs and/or treatment of the serious neurodegenerative diseases.

Model and its biological relevance

In the proposed work, we modeled the MOMP regulatory network formed by the interactions of the members of the Bcl-2 family of proteins (see Table 1). Our model of the Bcl-2 family is defined by the extensive set of reactions which are listed in Table 2 and the respective set of reaction rates 3 which were estimated in accordance with the previously published coarse-grained models of Bcl-2 family.

In each simulation, the initial abundance of each protein was either set to zero for a protein that is not produced from external sources (reactions 46–61), otherwise defined by following rule:

\[a(t_0) = \frac{k_p}{k_{\text{deg}}} \]

setting the initial abundance to balance the production (reactions 46–61) and degradation (catch-all reaction 62) of the given protein at the initial conditions. Default values of the reaction rates (listed in the Table 2) were estimated in accord with previously published models of the Bcl-2 family [27, 28, 29, 30]. The abundance of the mitochondrial apoptosis channels – MACs of the detailed model was calculated as the sum of the abundances of the aBax~aBax, aBak~aBak, aBax~aBak dimers.

Protein interactions were modeled using mass action kinetics, translated into a set of ordinary differential equations. The model was implemented and all the analyses were performed within Python programming language, by using the PySCes (Python Simulator for Cellular Systems) [45] module.

Acknowledgments

This work was supported by the Slovak Research and Development Agency (contracts: APVV-0242-11, SEPO I ITMS code 26220120024 and SEPO II ITMS code 26220120039) and Scientific Grant Agency of the Ministry of Education of Slovak Republic under the grant VEGA-1/4019/07. Authors appreciate this support.
Figure Legends
Figure 1: Steady state concentration of the MAC (MAC_{ss}) is plotted as a function of the production rate of tBid (kptBid). MAC_{ss} is increasing with increasing value of kptBid. The MAC_{ss} remains at very low levels (pro-survival – the blue solid curve), until the production rate exceeds the threshold (right vertical dashed line). Exceeding the threshold value causes sudden increase of the MAC_{ss} (onset of MOMP – red solid curve). The subsequent decrease of the production of tBid cause only slow decrease of MAC_{ss}, until the another threshold is crossed (left vertical dashed line). Then the MAC_{ss} suddenly drops back to very low levels. Vertical dashed lines are enclosing the bistable region. Within this region system can persist in one of the two stable steady states (solid curves), which are separated by unstable steady states (dashed curve).
Figure 2: Steady state concentration of the MAC plotted as a function of indicated production rates.

Figure 3: Steady state concentration of the MAC is plotted as a function of the production rate of Noxa. Hyperbolic curve indicates response sensitivity to event a small levels of stimulation.
Figure 4: **Distribution of steady state concentrations of MAC produced by 10^4 random variations of the model’s production rates.** Vertical dashed line denotes the minimum between two local maxima, defining the threshold value of the steady state concentration of the MAC, distinguishing pro-survival and pro-MOMP responses.

Figure 5: **Scatter plot of all input combinations, plotted in the plane defined by the principal components analysis.** Inputs associated with pro-MOMP response are colored red, remaining inputs are colored blue. The clusterization of inputs according to response quality is apparent for reference model (a), but obviously absent when altering the model’s topology (b).
Figure 6: Point-biserial correlation coefficients (r_{pb}) as the measure of correlation between the values of the production rates and the model’s response.
Tables
Table 1: Interactions between individual members of the Bcl-2 family of proteins.

Group & Member	Binds to & inhibits:	Activates:	Ref.
Antiapoptotic proteins:			
Mcl-1	Noxa, Bim, Puma, Bax, Bak		46
Bcl-2	Bad, Bim, Puma, Bmf, Bax		46
A1	Noxa, Bim, Puma, Bcl, Hrk, Bik, Bax, Bak		46
Bcl-xl	Bad, Bim, Puma, Bid, Hrk, Bmf, Bik, Bak, Bax		46
Bcl-w	Bad, Bim, Puma, Bid, Hrk, Bmf, Bik, Bax		46
Bcl-B	Bax		47
Enablers:			
Noxa	Mcl-1, A1		46
Bad	Bcl-xl, Bcl-w, Bcl-2		46
Puma	Bcl-xl, Bcl-w, Bcl-2, Mcl-1, A1		46
Hrk	Bcl-xl, Bcl-w, A1		46
Bmf	Bcl-xl, Bcl-w, Bcl-2		46
Bik	Bcl-xl, Bcl-w, A1		46
Activators:			
Bim	Bcl-xl, Bcl-w, Bcl-2, Mcl-1, A1	Bax, Bak	46
tBid	Bcl-xl, Bcl-w, A1	Bax, Bak	46
Effectors:			
Bak	Bcl-xl, Mcl-1, A1		46
Bax	Bcl-xl, Bcl-w, Bcl-2, Bcl-B, Mcl-1, A1		46
Table 2: List of reactions of the model of the Bcl–2 family of proteins. Reactions no. 46 – 61 denote production of the correspondent species, while the reaction no. 62 denotes degradation of all the species of the model.

No.	Reaction	Forward rate	Reverse rate
1	tBid + Bax → tBid + aBax	ka	
2	tBid + Bak → tBid + aBak	ka	
3	Bim + Bax → Bim + aBax	ka	
4	Bim + Bak → Bim + aBak	ka	
5	McI1 + Puma = McI1–Puma	ks	km
6	McI1 + Bim = McI1–Bim	ks	km
7	McI1 + Noxa = McI1–Noxa	ki	km
8	A1 + Hrk = A1–Hrk	ki	km
9	A1 + Bik = A1–Bik	ki	km
10	A1 + tBid = A1–tBid	ks	km
11	A1 + Puma = A1–Puma	ks	km
12	A1 + Bim = A1–Bim	ks	km
13	A1 + Noxa = A1–Noxa	kw	km
14	BclXI + Hrk = BclXI–Hrk	ks	km
15	BclXI + Bik = BclXI–Bik	ki	km
16	BclXI + tBid = BclXI–tBid	ki	km
17	BclXI + Puma = BclXI–Puma	ks	km
18	BclXI + Bim = BclXI–Bim	ks	km
19	BclXI + Bad = BclXI–Bad	ks	km
20	BclXI + Bmf = BclXI–Bmf	ks	km
21	Bcl2 + Hrk = Bcl2–Hrk	kw	km
22	Bcl2 + Bik = Bcl2–Bik	kw	km
23	Bcl2 + Puma = Bcl2–Puma	ks	km
24	Bcl2 + Bim = Bcl2–Bim	ks	km
25	Bcl2 + Bad = Bcl2–Bad	ki	km
26	Bcl2 + Bmf = Bcl2–Bmf	ks	km
27	Bclw + Hrk = Bclw–Hrk	ki	km
28	Bclw + Bik = Bclw–Bik	ki	km
29	Bclw + tBid = Bclw–tBid	ki	km
30	Bclw + Puma = Bclw–Puma	ks	km
31	Bclw + Bim = Bclw–Bim	ks	km
32	Bclw + Bad = Bclw–Bad	ki	km
33	Bclw + Bmf = Bclw–Bmf	ks	km
34	Mcl1 + aBax = Mcl1–aBax	ks	km
35	Mcl1 + aBak = Mcl1–aBak	ks	km
36	A1 + aBax = A1–aBax	ks	km
37	A1 + aBak = A1–aBak	ks	km
38	BclXI + aBax = BclXI–aBax	ks	km
39	BclXI + aBak = BclXI–aBak	ks	km
40	Bcl2 + aBax = Bcl2–aBax	ks	km
41	Bclw + aBax = Bclw–aBax	ks	km
42	BclB + aBax = BclB–aBax	ks	km
43	aBax + aBax = aBax–aBax	kd	km
44	aBak + aBak = aBak–aBak	kd	km
45	aBax + aBak = aBax–aBak	kd	km
46	→ Hrk	kpHrk	
47	→ Bik	kpBik	
48	→ tBid	kptBid	
49	→ Puma	kpPuma	
50	→ Bim	kpbBim	
51	→ Bad	kpBad	
52	→ Bmf	kpbBmf	
53	→ Noxa	kpNox	
54	→ Mcl1	kpMcl1	
55	→ A1	kpa1	
56	→ BclXI	kpbclXI	
57	→ Bcl2	kpbcl2	
58	→ Bclw	kpbclw	
59	→ BclB	kpbclB	
60	→ Bax	kpbax	
61	→ Bak	kpbak	
62	(All) →	kdeg	
Table 3: Detailed model – list of parameters.

Parameter	Default value	Ref.
ks	1.0×10^{-4}	
ki	1.0×10^{-5}	
kw	1.0×10^{-6}	
ka	1.0×10^{-4}	
kd	1.0×10^{-4}	
km	1.0×10^{-2}	
kdeg	1.0×10^{-3}	
kpHrk	$1.0/6$ of 6.0	[48, 49]
kpBik	$1.0/6$ of 6.0	[48, 49]
kptBld	$0.1/2$ of 0.2	[48, 49]
kpPuma	$1.0/6$ of 6.0	[48, 49]
kpBim	$0.1/2$ of 0.2	[48, 49]
kpBad	$1.0/6$ of 6.0	[48, 49]
kpBmf	$1.0/6$ of 6.0	[48, 49]
kpNoxa	$1.0/6$ of 6.0	[48, 49]
kpMc1l	$10.0/6$ of 60.0	[50, 51]
kpA1	$10.0/6$ of 60.0	[50, 51]
kpBclXl	$10.0/6$ of 60.0	[50, 51]
kpBcl2	$10.0/6$ of 60.0	[50, 51]
kpBclw	$10.0/6$ of 60.0	[50, 51]
kpBclB	$10.0/6$ of 60.0	[50, 51]
kpBax	$60.0/2$ of 120.0	[50, 51]
kpBak	$60.0/2$ of 120.0	[50, 51]