Effects of supra-nutritional levels of vitamin E and vitamin C on growth performance and egg production traits of Japanese quails

Samantha Sigolo, Roshanak Khazaei, Alireza Seidavi, Antonio Gallo & Aldo Prandini

To cite this article: Samantha Sigolo, Roshanak Khazaei, Alireza Seidavi, Antonio Gallo & Aldo Prandini (2019) Effects of supra-nutritional levels of vitamin E and vitamin C on growth performance and egg production traits of Japanese quails, Italian Journal of Animal Science, 18:1, 480-487, DOI: 10.1080/1828051X.2018.1539628

To link to this article: https://doi.org/10.1080/1828051X.2018.1539628

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 01 Feb 2019.

Article views: 326

View related articles

View Crossmark data
Effects of supra-nutritional levels of vitamin E and vitamin C on growth performance and egg production traits of Japanese quails

Samantha Sigolo, Roshanak Khazaei, Alireza Seidavi, Antonio Gallo and Aldo Prandini

ABSTRACT
A study was conducted to evaluate growth performance and egg production traits of Japanese quails fed diets containing different supra-nutritional levels of vitamin E and C (600, 800 and 1000 mg/kg). A completely randomised design was adopted and main effects (vitamin E and C) were arranged in a 3^2 factorial approach. Throughout the study (42 to 105 d), the highest feed intake (vitamin C, $p = .01$) and weight gain (vitamin E and/or C, tendency $p = .06$) were obtained with vitamin E and/or C at 800 mg/kg whereas the highest dietary efficiency with 600 mg/kg of vitamin E plus 600 or 1000 mg/kg of C (vitamin E and C, tendency $p = .06$). The highest final body weight was achieved with 1000 mg/kg of both the vitamins (vitamin E and C, $p = .02$). Vitamin E and/or C at 1000 mg/kg increased egg production, weight of produced eggs (vitamin E and C, $p = .04$), number of produced eggs to feed ratio, weight of produced eggs to feed ratio (vitamin E and C, $p < .01$), average egg volume (vitamin E and C, $p = .03$), and egg shape index (vitamin E, $p < .01$; vitamin C, $p = .01$). Current findings showed that feeding vitamin E and C at supra-nutritional levels can be a good management practice in Japanese quail nutrition to promote growth performance and egg production traits under thermoneutral condition.

HIGHLIGHTS
- Supra-nutritional levels of vitamin E and C can promote growth performance and egg production traits of Japanese quails.
- Vitamin E plus C at high doses (1000 mg/kg) can synergistically act in promoting quail growth.
- Dietary supplementation with vitamin E at 800 or 1000 mg/kg plus vitamin C at 1000 mg/kg can improve egg production traits.

ARTICLE HISTORY
Received 6 August 2018
Revised 16 October 2018
Accepted 19 October 2018

KEYWORDS
Egg production traits; growth performance; Japanese quail; vitamin C; vitamin E

Introduction
The avian egg is an important source of nutrients containing all of the proteins, lipids, vitamins and minerals as well as growth and defence factors necessary for embryo development (Tolik et al. 2014). Moreover, eggs and egg components are of great importance for human health and in disease prevention and treatment thanks to their content in numerous substances with biological functions and activities (i.e. antioxidants, antimicrobials, immunomodulators, anticancer, etc.; Kovacs-Nolan et al. 2005). Although chicken eggs are most commonly eaten by humans, a lot of people, especially in Asian countries, consume quail eggs (Tunsaringkarn et al. 2013). Moreover, the consumption of quail eggs is becoming more popular also in Europe and America (Tolik et al. 2014) because quail eggs, despite their small size, have a nutritional value three or four times greater than chicken eggs (Tunsaringkarn et al. 2013). To meet the increasing demand for quail eggs as well as meat, the rearing of commercial quails, such as Japanese quail (Coturnix coturnix Japonica) selected for rapid growth and high body weight, has been raising worldwide (Hemid et al. 2010).

The birds’ survival rate, egg-laying level and egg physical traits are the most crucial factors in quail production (Lukaszewicz et al. 2007; Lin et al. 2004). Natural antioxidants are important in promoting the health of birds with high level of egg laying (Lukaszewicz et al. 2007). Vitamin E and vitamin C play...
a major role as antioxidants in biological systems and act individually or synergistically such that vitamin E explicates its antioxidant function in lipid phases whereas vitamin C in aqueous compartments by reacting with peroxyl radicals and by restoring the antioxidant properties of vitamin E (Cotelle et al. 2003). Studies on poultry have reported that dietary supplementation with vitamins E and C, alone or together, can improve growth performance (Sahin and Kucuk 2001; Ajakaiye et al. 2010), egg production and egg quality (Ajakaiye et al. 2011; Caurez and Olo 2013). Because the most of studies were conducted under heat stress condition, further research is necessary to study the effects of additional vitamin E and C in diet of quails reared under standard environmental condition.

Therefore, the aim of this work was to evaluate the effects of different supra-nutritional levels of vitamins E and C on growth performance and egg production traits of Japanese quail during the laying period under thermoneutral environmental condition.

Materials and methods

Birds, housing and diets

All procedures were approved by the Animal Care and Welfare Committee of Islamic Azad University.

The current work was conducted at a quail farm (Amol, Iran) during March–May 2016 and represents the continuation of our previous study (Sigolo et al. 2018). At the end of the trial described by Sigolo et al. (2018), the same quails (a total of 360 Japanese female quails (Coturnix coturnix Japonica), 6 weeks old) were used in the current study. Housing and experimental design were as reported by Sigolo et al. (2018). Briefly, there were 9 dietary treatments and birds were subdivided into 4 replicates for each dietary treatment (10 birds/replicate) for a total of 36 experimental units. Each replicate was housed in a ground cage (0.70 m × 0.50 m). The trial was conducted under controlled environmental conditions. Temperature and relative humidity were respectively maintained at 24 °C and 55–65% and were near to those used by Minvielle et al. (1999) and Şahin et al. (2001). Throughout the experimental trial, the lighting programme consisted of 17 h of light and 7 h of dark in accordance with Şahin et al. (2001) and Sahin et al. (2002a).

Quail responses to different dietary levels of vitamin E and C were evaluated from 42 to 105 d of age. The standard diet was formulated to meet the nutritional requirements of breeding Japanese quails as recommended by NRC (1994). Ingredients, chemical composition and energy of the standard diet are shown in Table 1. The standard diet was supplemented with vitamin E (DL-α-tocopheryl acetate) and C (l-ascorbic acid) at 3 different levels (600, 800 and 1000 mg/kg of diet) in a 3 × 3 factorial design. All the experimental diets were iso-energetic and iso-nitrogenous. Water and experimental diets were offered ad libitum.

Growth performance

Body weight and feed intake were measured at d 42, d 63, d 84, and d 105 by the cage. The average daily feed intake (ADFI), average daily gain (ADG), and gain to feed ratio (G:F) were calculated for each replicate and for the periods 42 to 63 d, 64 to 84 d, 85 to 105 d, and throughout the study (i.e. 42 to 105 d).

Egg production traits

At the farm, the eggs were manually collected two times per day. The number, weight and volume of eggs were recorded at d 63, d 84 and d 105 by the cage. The egg production, number of produced eggs to feed ratio (N:F), weight of produced eggs, weight of produced eggs to feed ratio (W:F), average egg weight and average egg volume were calculated for each replicate and for the periods 42 to 63 d, 64 to 84 d, 85 to 105 d and throughout the study (i.e. 42 to 105 d). For

Table 1. Ingredients, chemical composition, and energy of the standard quail diet (from 42 to 105d of age).

Ingredient	% of Diet	Calculated Analysis, % as Fed
Corn	50.00	ME, kcal/kg: 3000.00
Soybean meal, 44% protein	30.17	CP: 20.00
Wheat	4.42	Ca: 2.50
Barley	2.96	Available P: 0.55
Rapeseed oil	4.75	Met: 0.45
Salt	0.27	Met + Cys: 0.76
Mineral oysters	3.79	Lys: 1.15
Bone meal	2.91	
Vitamin and mineral premix¹	0.50	
α-methionine	0.10	
Lysine hydrochloride	0.08	
Enzyme	0.05	

¹ Supplied the following per kilogram of diet: Cu, 8 mg; Fe, 50 mg; Mn, 70 mg; Zn, 50 mg; I, 1.2 mg; Se, 0.2 mg; vitamin A, 14000 U; vitamin D₃, 4000 U; vitamin E, 10 mg; vitamin K₃, 3.2 mg; vitamin B₂, 6 mg; vitamin B₁₂, 16 μg; niacin, 40 mg; pantothenic acid, 10 mg; antioxidant, 30 mg.
the same periods, the egg shape index was also calculated by the following formula (Alkan et al. 2010):

\[
\text{shape index} = \frac{\text{eggwidth} (\text{mm})}{\text{egglength} (\text{mm})}
\]

Statistical analysis

Data were tested for normality with the Shapiro–Wilk test and variance homogeneity with the Levene’s test before statistical analysis. Then, data were analysed according to a completely randomised design using the GLM procedure of SAS (2003) according to the model reported below:

\[
Y_{ijk} = \mu + \text{vitamin E}_i + \text{vitamin C}_j + (\text{vitamin E} \times \text{vitamin C})_ij + e_{ijk}
\]

where \(Y_{ijk}\) is the response variable, \(\mu\) is overall mean, vitamin E\(_i\) is the fixed effect of dietary level of vitamin E \((i = 3; \text{being } 600, 800 \text{ and } 1000 \text{ mg/kg}), \text{vitamin C}_j\) is the fixed effect of dietary level of vitamin C \((j = 3; \text{being } 600, 800 \text{ and } 1000 \text{ mg/kg}), (\text{vitamin E} \times \text{vitamin C})_ij\) is first-order interaction of main tested fixed effects, and \(e_{ijk}\) is random residual error. The growth performance parameters and egg production traits were analysed both within experimental periods (i.e. 42 to 63 d, 64 to 84 d or 85 to 105 d) and on whole period (i.e. 42 to 105 d). Post hoc least-squares means tests were performed with the LSMEANS option of SAS (2003), using the Tukey method for multiple testing correction. The experimental unit was the pen. Significance was considered at \(p < 0.05\) and tendency was declared at \(0.05 < p \leq 0.10\).

Results

Growth performance

The effects of different supra-nutritional levels of vitamin E and C on growth performance of Japanese quails are shown in Table 2.

Effects of interaction between vitamin E and C were observed on BW, ADFI, ADG, and G:F. As reported by Sigolo et al. (2018), after 42 d of trial the highest BW \((p < .01)\) were obtained with 1000 mg/kg of both vitamin E and C. After 63 \((p < .01)\) and 84 d \((p = .05)\), the highest BW were achieved with levels of vitamin E plus C of 800 and/or 1000 mg/kg. However, the highest final BW \((i.e. 105 d; p = .02)\) was exclusively obtained with 1000 mg/kg of both the vitamins.

In the 42 to 63 d period, the highest ADFI \((i.e. 704.55 \text{ g}; p < .01)\) was observed at 800 mg/kg of vitamin E and 1000 mg/kg of vitamin C, whereas in the 64 to 84 d period at 800 mg/kg of both vitamin E and C \((i.e. 745.35 \text{ g}; p < .01)\). In the 85 to 105 d period, no treatment effects were observed on ADFI. Throughout the study \((i.e. 42 \text{ to } 105 \text{ d}), \text{a vitamin C effect} (p = .01)\) was found on ADFI with the highest value observed at 800 mg/kg level \((i.e. 2175.77 \text{ g})\).

The highest ADG were achieved with: 800 mg/kg of vitamin E plus 800 or 1000 mg/kg of vitamin C in the 42 to 63 d period \((p < .01)\); 600 mg/kg of vitamin E plus 600 or 800 mg/kg of vitamin C in the 64 to 84 d period \((i.e. 26.08 \text{ and } 25.55 \text{ g}; p = .04)\); 1000 mg/kg of vitamin E plus 600 mg/kg of vitamin C in the 85 to 105 d period \((i.e. 21.38 \text{ g}; \text{vitamin E} \times \text{C interaction, tendency } p = .06)\); and 800 mg/kg of both the vitamins throughout the study \((i.e. 100.63 \text{ g}; \text{vitamin E} \times \text{C interaction, tendency } p = .06)\).

The highest G:F values were observed at 800 mg/kg of vitamin E plus 800 or 1000 mg/kg of vitamin C in the 42 to 63 d period \((i.e. 0.094; p < .01)\) and at 600 mg/kg of both the vitamins in the 64 to 84 d period \((i.e. 0.037; p = .03)\). In the 85 to 105 d period, vitamin E and vitamin C effects \((p < .01)\) were found on G:F. In particular, the supplementation of the diet with vitamin E at 600 or 1000 mg/kg level or vitamin C at 600 mg/kg level resulted in the highest G:F. Throughout the study, a vitamin E \(\times C\) interaction effect \((tendency, p = .06)\) was found on G:F with the highest values observed at the following levels of vitamins: 600 mg/kg of vitamin E plus 600 or 1000 mg/kg of vitamin C \((i.e. 0.047)\) and 800 mg/kg of vitamin E plus 600 or 800 mg/kg of vitamin C \((i.e. 0.047 \text{ and } 0.046, \text{respectively})\).

Egg production traits

The effects of different supra-nutritional levels of vitamin E and C on egg production traits of Japanese quails are shown in Table 3.

In the 42 to 63 d period \((p = .03)\) and throughout the study \((p = .04)\), a vitamin E \(\times C\) interaction effect was found on egg production with the highest number of eggs achieved with 1000 mg/kg of both the vitamins \((i.e. 138 \text{ and } 504, \text{respectively})\). In the 64 to 84 d period, the highest number of eggs was obtained with 1000 mg/kg of vitamin E or C, whereas in the 85 to 105 d period with 1000 mg/kg of vitamin E \((i.e. 190)\) or 800 or 1000 mg/kg of vitamin C \((\text{vitamin E and vitamin C, } p < .01)\).

In the 42 to 63 d \((\text{vitamin E and vitamin C, } p < .01)\) and 85 to 105 d \((\text{vitamin E and vitamin C, } p = .01)\) periods, and throughout the study \((\text{vitamin E and vitamin C, } p < .01)\), the highest N:F ratios, were obtained with 1000 mg/kg of vitamin E \((i.e. 0.188, 0.258, \text{and } 0.224, \text{respectively in the three periods})\) or C \((i.e. 0.193, 0.259, \text{and } 0.228, \text{respectively})\). In the 64 to 84 d
Treatment	Vitamin E (mg/kg)	Vitamin C (mg/kg)	42d BW	63d BW	84d BW	105d BW	42 to 63d ADG	64 to 84d ADG	85 to 105d ADG	42 to 105d ADG	42d BW	63d BW	84d BW	105d BW	42 to 63d ADFI	64 to 84d ADFI	85 to 105d ADFI	42 to 105d ADFI	42d BW	63d BW	84d BW	105d BW	42 to 63d G:F	64 to 84d G:F	85 to 105d G:F	42 to 105d G:F
600	600	248.980	275.030	295.630	680.350	714.150	733.850	2128.35	53.330	99.980	99.980				20.580	20.580	99.980		0.0790	0.0790	0.0280	0.0470				
600	800	251.380	276.930	296.730	679.600	714.730	781.500	2173.83	54.630	99.980	99.980				19.800	19.800	99.980		0.0810	0.0810	0.0250	0.0460				
600	1000	257.280	278.800	297.030	674.400	723.030	739.280	2136.70	62.230	99.980	99.980				18.230	18.230	99.980		0.0890	0.0890	0.0250	0.0470				
800	600	263.730	282.800	298.850	693.700	743.500	735.200	2174.25	59.800	99.980	99.980				19.750	19.750	99.980		0.0870	0.0870	0.0270	0.0470				
800	800	278.150	282.800	298.850	693.700	743.500	735.200	2174.25	65.500	100.630	100.630				19.750	19.750	99.980		0.0940	0.0940	0.0220	0.0460				
800	1000	266.180	284.530	298.400	704.550	726.980	727.380	2158.90	66.580	98.800	98.800				13.880	13.880	98.800		0.0940	0.0940	0.0250	0.0460				
1000	600	258.330	278.150	299.530	691.150	736.380	712.950	2140.48	56.850	98.050	98.050				21.380	21.380	98.050		0.0820	0.0820	0.0300	0.0460				
1000	800	258.550	282.350	300.580	696.700	737.800	745.750	2177.23	57.300	99.530	99.530				23.800	23.800	99.530		0.0850	0.0850	0.0300	0.0460				
1000	1000	265.950	284.400	302.250	701.050	736.800	748.630	2180.35	60.480	98.800	98.800				19.150	19.150	98.800		0.0840	0.0840	0.0280	0.0460				

Main effect

Vitamin E

- 600: 196.480
- 800: 198.380
- 1000: 202.730

Vitamin C

- 600: 198.140
- 800: 198.740
- 1000: 200.710

SEM: 0.366, 0.690, 0.711, 0.315, 2.325, 2.254, 14.678, 15.50, 0.749, 0.968, 0.694, 0.412, 0.0012, 0.0014, 0.0010, 0.0003

p-values

Vitamin E

- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010

Vitamin C

- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010

Vitamin E × C

- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010
- <0.010: 0.0010

BW, body weight; ADFI, average daily feed intake; ADG, average daily gain; G:F, gain to feed ratio.

Means within a column with different superscript letters differ (p ≤ .05).
Egg production traits of Japanese quails fed diets with different dietary levels of vitamin E and C.

Treatment	Number of produced eggs	N:F	Weight of produced eggs, g	W:F
Vitamin C				
600	116.00	177.00	445.00	
800	124.00	183.00	465.00	
1000	129.00	186.00	475.00	
800	117.00	177.00	445.00	
1000	135.00	168.00	497.00	
1200	122.00	181.00	458.00	
1000	134.00	166.00	495.00	
1000	138.00	172.00	504.00	
Main effect				
Vitamin E				
600	123.00	156.00	462.00	
800	128.00	160.00	484.00	
1000	131.00	164.00	485.00	
Vitamin C				
600	118.00	153.00	449.00	
800	130.00	162.00	480.00	
1000	134.00	167.00	492.00	
SEM	1.1	2.0	3.60	
p-values				
Vitamin E	.01	.01	.01	.01
Vitamin C	.01	.01	.01	.01
Vitamin E x C	.03	.14	.04	.04

Average egg weight, g/egg

Treatment	Average egg volume, cc/egg	Egg shape index
Vitamin E		
600	12.030	12.130
800	12.010	12.120
1000	12.020	12.180
800	12.040	12.120
1000	12.060	12.080
800	12.090	12.140
1000	12.050	12.080
Main effect		
Vitamin E		
600	12.050	12.120
800	12.070	12.120
1000	12.070	12.120
Vitamin C		
600	12.040	12.110
800	12.090	12.110
1000	12.090	12.110
SEM	.038	.052
p-values	.450	.310

N:F, number of produced eggs to feed ratio; W:F, weight of produced eggs to feed ratio.
1Number of samples = 10 eggs/replicate.
2Egg width/egg length; number of samples = 5 eggs/replicate.
Means within a column with different superscript letters differ (p < 0.05).
period, a vitamin E × C interaction effect (p = .05) was found on N:F with the highest value (i.e. 0.235) observed at 1000 mg/kg of both the vitamins.

A vitamin E × C interaction effect was found on the weight of produced eggs in the 42 to 63 d period (p = .05) and throughout the study (p = .04) with the highest weights observed at 1000 mg/kg of both the vitamins (i.e. 1664 and 6088 g, respectively). In the 64 to 84 d and 85 to 105 d periods, there were vitamin E and vitamin C effects (p < .01) and the highest egg weights were obtained with 1000 mg/kg of vitamin E or C both at the level of 800 mg/kg. However, the quails fed the diet supplemented with both the vitamins at the highest tested dose (1000 mg/kg) raised the highest weights at the end of the trial. In agreement with our findings, Sahin and Kucuk (2001), and Ipek and Dikmen (2014) found that high dietary level of vitamin E and C resulted in increased body weight of quails. Previous studies have demonstrated that dietary supplementations with vitamin E and C, alone or in combination, may improve growth performance of quails reared under heat stress condition (Sahin et al. 2002b; Ipek et al. 2007; Hemid et al. 2010).

Stressful conditions, such as high environmental temperature, bring to the formation of cell-damaging cytotoxic free radicals, increased protein catabolism and reduced protein biosynthesis, and depletion of vitamin C (Ipek et al. 2007). Therefore, in poultry nutrition, vitamin E and C, thanks to their antioxidant properties, play a key role in the alleviating some of the physiological responses and improving thermo-tolerance (Sahin and Kucuk 2001; Çiftçi et al. 2005; Ipek et al. 2007). In particular, vitamin C promotes performance associated with the suppressed-stress responses as indicated by lowering the plasma corticosterone level and adrenocorticotropic hormone (Lin et al. 2006; Ahmadu et al. 2016). Nevertheless, it has been suggested that vitamin C effectiveness on poultry performance expresses only in environmental stress condition whereas is not detectable under normal temperature condition (Newman and Leeson 1999; Saki et al. 2010). However, there is growing evidence that the interaction between the two major antioxidant vitamins (i.e. E and C) is also of pathological importance (Subasree 2014). Oxidative lesions, leading to conformational modifications of proteins, could induce pancreatic enzyme inhibition and/or dietary protein resistance to digestion (Ahmadu et al. 2016). Consequently, antioxidants, such as vitamin E and/or C, could contribute in preserving the proteins from oxidative denaturation improving digestibility of nutrients and their metabolic utilisation (Panda et al. 2008; Ahmadu et al. 2016). As already observed in our previous study (Sigolo et al. 2018), under thermoneutral condition, vitamin E and C added together at high doses (1000 mg/kg) to quail diet seem to interact in promoting a general animals’ welfare which results in raised growth.

Discussion

Growth performance

Current results showed that dietary supplementation with vitamin E and C may positively affect the growth performance of Japanese quails during the egg production period under controlled environmental conditions. Taking into account all the parameters of growth performance obtained throughout the study (i.e. from d 42 to d 105), it emerges that feed intake, weight gain, and dietary efficiency were at the same time improved by using a combination of vitamin E and C both at the level of 800 mg/kg. However, the quails fed the diet supplemented with both the vitamins at the highest tested dose (1000 mg/kg) raised the highest weights at the end of the trial. In agreement with our findings, Sahin and Kucuk (2001), and Ipek and Dikmen (2014) found that high dietary level of vitamin E and C resulted in increased body weight of quails. Previous studies have demonstrated that dietary supplementations with vitamin E and C, alone or in combination, may improve growth performance of quails reared under heat stress condition (Sahin et al. 2002b; Ipek et al. 2007; Hemid et al. 2010). Stressful conditions, such as high environmental temperature, bring to the formation of cell-damaging cytotoxic free radicals, increased protein catabolism and reduced protein biosynthesis, and depletion of vitamin C (Ipek et al. 2007). Therefore, in poultry nutrition, vitamin E and C, thanks to their antioxidant properties, play a key role in the alleviating some of the physiological responses and improving thermo-tolerance (Sahin and Kucuk 2001; Çiftçi et al. 2005; Ipek et al. 2007). In particular, vitamin C promotes performance associated with the suppressed-stress responses as indicated by lowering the plasma corticosterone level and adrenocorticotropic hormone (Lin et al. 2006; Ahmadu et al. 2016). Nevertheless, it has been suggested that vitamin C effectiveness on poultry performance expresses only in environmental stress condition whereas is not detectable under normal temperature condition (Newman and Leeson 1999; Saki et al. 2010). However, there is growing evidence that the interaction between the two major antioxidant vitamins (i.e. E and C) is also of pathological importance (Subasree 2014). Oxidative lesions, leading to conformational modifications of proteins, could induce pancreatic enzyme inhibition and/or dietary protein resistance to digestion (Ahmadu et al. 2016). Consequently, antioxidants, such as vitamin E and/or C, could contribute in preserving the proteins from oxidative denaturation improving digestibility of nutrients and their metabolic utilisation (Panda et al. 2008; Ahmadu et al. 2016). As already observed in our previous study (Sigolo et al. 2018), under thermoneutral condition, vitamin E and C added together at high doses (1000 mg/kg) to quail diet seem to interact in promoting a general animals’ welfare which results in raised growth.
Egg production traits

Taking into account all the results related to the egg production traits obtained throughout the study (i.e. from d 42 to d 105), it emerges that dietary supplementation with a combination of vitamin E and C both at 1000 mg/kg level increased egg production, weight of produced eggs, N:F and W:F ratios, average egg volume, and egg shape index. However, similar results were also obtained by a combination of vitamin E at 800 mg/kg level and C at 1000 mg/kg level.

In agreement with our findings, several studies have reported increased egg production when Japanese quails fed diets supplemented with vitamin E and/or C (Bardakcioglu et al. 2005; Sahin et al. 2006; Ajakaiye et al. 2010; Caurez and Olo 2013; Abedi et al. 2017). In the current study, although the dietary addition of vitamin E plus C raised the total weight of produced eggs, no treatment effect was observed on the average egg weight in disagreement with Ipek and Dikmen (2014). Nevertheless, Bardakcioglu et al. (2005) suggested that vitamin C supplementation seems to have no prominent effect on egg weight. However, in our study higher average egg weights were obtained compared with those found by Bardakcioglu et al. (2005), and Ipek and Dikmen (2014). The increased egg shape indices, obtained throughout our study by supplementing quail diet with vitamin E or C, were in contrast with Chitra et al. (2016). The latter found no effect of dietary supplementation with vitamin E on egg shape index. The literature is still controversial about the effects of vitamin E and/or C on the egg production traits. However, the reported discrepancies could depend on the different conditions of work, such as dose of vitamin E and/or C used and environmental temperature. On the base of our results, it deduces that vitamin E and C, added together to the diet of quails at high doses, can improve egg production traits under thermoneutral environmental condition.

Conclusions

Current findings showed that feeding vitamin E and C at supra-nutritional levels can be a good management practice in Japanese quail nutrition to promote growth performance and egg production traits under thermoneutral environmental condition. When these vitamins are added together to quail diet, both at high doses (1000 mg/kg), they seem synergistically act in promoting animal growth. Dietary supplementation with vitamin E at 800 or 1000 mg/kg level plus vitamin C at 1000 mg/kg could improve egg production traits in terms of egg production, total weight of produced eggs, N:F and W:F ratios, average egg volume, and egg shape index.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Rasht Branch, Islamic Azad University under Grant number 17.16.4.8774.

ORCID

Samantha Sigolo http://orcid.org/0000-0001-9081-0565

Aldo Prandini http://orcid.org/0000-0002-8650-8766

References

Abedi P, Vakili ST, Mamouei M, Aghaei A. 2017. Effect of different levels of dietary vitamin E on reproductive and productive performances in Japanese quails (Coturnix coturnix japonica). Vet Res Forum. 8:353–359.

Ahmadu S, Mohammed AA, Buhari H, Auwal A. 2016. An overview of vitamin C as an antistress in poultry. Malays J Vet Res. 7:9–22.

Ajakaiye JJ, Perez-Bello A, Cuesta-Mazorra M, Polanco Expósito G, Mollineda-Trujillo A. 2010. Vitamins C and E affect plasma metabolites and production performance of layer chickens (Gallus gallus domesticus) under condition of high ambient temperature and humidity. Arch Anim. Breed. 53:708–719.

Ajakaiye JJ, Perez-Bello A, Mollineda-Trujillo A. 2011. Impact of heat stress on egg quality in layer hens supplemented with l-ascorbic acid and dl-tocopherol acetate. Veterinarski Archiv. 81:119–132.

Alkan S, Karabağ K, Galiç A, Karslı T, Balçioğlu MS. 2010. Effects of selection for body weight and egg production on egg quality traits in Japanese quails (Coturnix coturnix japonica) of different lines and relationships between these traits. Kafkas Univ Vet Fak Derg. 16:239–244.

Bardakcioglu HE, Turkyilmaz MK, Nazligul A. 2005. Effects of vitamin C supplementation on egg production traits and eggshell quality in Japanese quails (Coturnix coturnix japonica) reared under high ambient temperature. Turk J Vet Anim Sci. 29:1185–1189.

Caurez C, Olo C. 2013. Laying performance of Japanese quail (Coturnix Coturnix Japonica) supplemented with zinc, vitamin C and E subjected to long term heat stress. Int Conf Agr Biotechnol. 60:58–63.

Chitra P, Edwin SC, Moorthy M. 2016. Studies on production of vitamin E and selenium enriched Japanese quail egg. India. Journ. of Poul. Scien. 51:60–64.

Çiftçi M, Nihat Ertas O, Güler T. 2005. Effects of vitamin E and vitamin C dietary supplementation on egg production
and egg quality of laying hens exposed to a chronic heat stress. Revue Méd Vét. 156:107–111.

Cotelle P, Cotelle N, Teissier E, Vezin H. 2003. Synthesis and antioxidant properties of a new lipophilic ascorbic acid analogue. Bioorganic Med Chem. 11:1087–1093.

Hemid AEA, El-Gawad AHA, El-Wardany I, El-Daly EF, El-Azeem NAA. 2010. Alleviating effect of some environmental stress factors on productive performance in Japanese quail. Laying performance. World J Agri Sci. 6:517–524.

Ipek A, Canbolat O, Karabulut A. 2007. The effect of vitamin E and C on the performance of Japanese quails (Coturnix coturnix Japonica) reared under heat stress during growth and egg production period. Asian-Australas J Anim Sci. 20:252–256.

Ipek A, Dikmen BY. 2014. The effects of vitamin E and C on sexual maturity body weight and hatching characteristics of Japanese quails (Coturnix coturnix Japonica) reared under heat stress. Anim Sci Pap Rep. 32:261–268.

Kovacs-Nolan J, Phillips M, Mine Y. 2005. Advances in the value of eggs and egg components for human health. J Agric Food Chem. 53:8421–8431.

Lin YF, Chang SJ, Hsu AL. 2004. Effects of supplemental vitamin E during the laying period on the reproductive performance of Taiwan native chickens. Br Poult Sci. 45:807–814.

Lin H, Jiao HC, Buyse J, Decuypere E. 2006. Strategies for preventing heat stress in poultry. Worlds Poult Sci J. 62:71–86.

Lukaszewicz E, Kowalczyk A, Korzeniowska M, Jerysz A. 2007. Effect of feed supplementation with organic selenium and vitamin E on physical characteristics of Japanese quail (Coturnix Japonica) eggs. Pol J Food Nutr Sci. 57:377–381.

Minvielle F, Hirigoyen E, Boulay M. 1999. Associated effects of the roux plumage color mutation on growth, carcass traits, egg production, and reproduction of Japanese quail. Poult Sci. 78:1479–1484.

Newman S, Leeson S. 1999. The effect of dietary supplementation with 1,25-dihydroxycholecalciferol or vitamin C on the characteristics of the tibia of older laying hens. Poult Sci. 78:85–90.

NRC. 1994. Nutrient requirements of poultry. 9th ed. Washington (DC): National Academy Press.

Panda AK, Ramarao SV, Raju MVLN, Chatterjee RN. 2008. Effect of dietary supplementation with vitamins E and C on production performance, immune responses and antioxidant status of White Leghorn layers under tropical summer conditions. Br Poult Sci. 49:592–599.

Sahin K, Kucuk O. 2001. Effects of vitamin C and E on performance, digestion of nutrients and carcass characteristics of Japanese quails reared under chronic heat stress (34°C). J Anim Physiol Anim Nutr. 85:335–341.

Sahin K, Küçük O, Şahan N, Öz bey O. 2001. Effects of dietary chromium picolinate supplementation on egg production, egg quality and serum concentrations of insulin, corticosterone, and some metabolites of Japanese quails. Nutr Res. 21:1315–1321.

Sahin K, Öz bey O, Onderci M, Cikim G, Aysondu MH. 2002. Chromium supplementation can alleviate negative effects of heat stress on egg production, egg quality and some serum metabolites of laying japanese quail. J Nutr. 132:1265–1268.

Sahin K, Sahin N, Onderci M. 2002. Vitamin E supplementation can alleviate negative effects of heat stress on egg production, egg quality, digestibility of nutrients and egg yolk mineral concentrations of Japanese quails. Res Vet Sci. 73:307–312.

Sahin N, Sahin K, Onderci M, Karatepe M, Smith MO, Kucuk O. 2006. Effects of dietary lycopene and vitamin E on egg production, antioxidant status and cholesterol levels in Japanese quail. Asian-Australas. J Anim Sci. 19:224–230.

Saki AA, Rahmati MMH, Zamani P, Zaboli K, Matin HRH. 2010. Can vitamin C elevate laying hen performance, egg and plasma characteristics under normal environmental temperature? Ital J Anim Sci. 9:317.

SAS. 2003. SAS 9.2. Cary NC: SAS Institute Inc.

Sigolo S, Khazaei R, Seidavi A, Ayasan T, Gallo A, Prandini A. 2018. Effects of supra-nutritional levels of vitamin E and vitamin C on growth performance and blood parameters of Japanese quails. Ital J Anim Sci. DOI:10.1080/1828051X.2018.1500496.

Subasree S. 2014. Role of Vitamin C and Vitamin E in Health and Disease. J Pharm Sci Res. 6:52–55.

Tolik D, Polawska E, Charuta A, Nowaczeński S, Cooper R. 2014. Characteristics of egg parts, chemical composition and nutritive value of Japanese quail eggs-a review. Folia Biol (Krakow). 62:287–292.

Tunsaringkarn T, Tungjaroenchai W, Siriwong W. 2013. Nutrient benefits of quail (Coturnix coturnix Japonica) eggs. Int J Sci Res Publ. 3:1–8.