A comprehensive review on phytochemical, pharmacological and therapeutic properties of *Agrimonia eupatoria* L.

Mozhgan Ghobadi Pour1, Naser Mirazi1*, Shirin Moradkhani2, Mahmoud Rafieian-Kopaei3, Mohammad Rahimi-Madiseh3

1Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
2Department of Pharmacognosy, Faculty of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
3Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

*Corresponding author: Naser Mirazi, Email: Mirazi@basu.ac.ir, Mirazi205@gmail.com

Implication for health policy/practice/research/medical education: This review offers a comprehensive insight into the phytochemical, pharmacological, therapeutic activities, and safety of *Agrimonia eupatoria* L., and demonstrates that it can be used as a reliable source for preparation of new drugs.

Please cite this paper as: Ghobadi Pour M, Mirazi N, Moradkhani Sh, Rafieian Kopaei M, Rahimi-Madiseh M. A comprehensive review on phytochemical, pharmacological and therapeutic properties of *Agrimonia eupatoria* L. J Herbmed Pharmacol. 2021;10(1):14-30. doi: 10.34172/jhp.2021.02.

Article Type: Review

Article History:
Received: 3 August 2020
Accepted: 10 October 2020

Keywords:
Agrimonia eupatoria
Agrimony
Flavonoid
Medicinal plant
Oxidative stress
Rosaceae

Article Info

Abstract

Agrimonia eupatoria is a perennial herb belonging to the Rosaceae family that all its parts are used to treat various diseases. In this article, we aimed to present a comprehensive review on the phytochemical, pharmacological, and therapeutic effects of this plant. We searched various databases and summarized the data documented in literature from 1976 to 2020. *Agrimonia eupatoria* has effects on various kinds of cancer, oxidative stress, diabetes mellitus, hepatitis B, and liver damage. It also has anti-adhesive, antibacterial, antimicrobial, and wound healing properties. It induces nitric oxide and inhibits pro-inflammatory cytokines production. Phytochemical studies related to this plant has led to isolation and identification of tannins, coumarins, and flavonoids as the most active chemicals with biological effects. Based on this comprehensive review about *Agrimonia eupatoria*, there will be more opportunities for investigators to search and discover ways to use bioactive agents of this herb to develop new Agrimony based medicines.

Introduction

Compared to conventional drugs, medicinal plants usually have low toxicity. Furthermore, in spite of the availability of all kinds of medicines and all health facilities, due to the high costs of hospital care or because of cultural beliefs and historical customs in most of the undeveloped countries, people still trust herbal medicines and some of the herbs still have kept their popularities (1).

Agrimonia eupatoria from the Rosaceae family, known as "Common Agrimony", is an erect perennial plant (30–60 cm in height). It is native to mainland Europe and found across Asia Minor and North Africa (2).

It is traditionally used as an antiadhesive, antibacterial (3,4), antioxidant, astringent (5,6), anti-inflammatory (7-9), and hepatoprotective (10) agent. It is also used for bed-wetting (11), treatment of hemorrhagic colitis, liver and urinary diseases (6,12), cancer (13), acute diarrhea, diabetes mellitus, inflammation of oral and pharyngeal mucosa (14,15), and the hepatitis B virus (16). In this article we aimed to present a comprehensive review on phytochemical, pharmacological, and therapeutic properties of this plant.

Botany

Scientific Classification

The scientific classification of *A. eupatoria* (Figure 1) is as follows:

- Super kingdom: Eukaryota
- Kingdom: Viridiplantae
- Phylum: Streptophyta
- Subphylum: Streptophytina
- Class: Magnoliopsida
A review on *Agrimonia eupatoria* L.

Order: Rosales
Family: Rosaceae
Subfamily: Rosoideae
Tribe: Sanguisorbeae
Subtribe: Agrimoniinae
Genus: Agrimonia
Species: *Agrimonia eupatoria*

Names of Aigremoine eupatoria in different languages
Names of *A. eupatoria* in different languages are as follows:
Anglo-Saxon: Garclive.
Arabic: Eufātorion, Shajarat ol barāghith, Shawkat Montenah, A 'rang, Aghremun, Ghāfath, Hashisht ol ghāfath.
Chinese: Da Hua Long Y a Cao.
English: Common Agrimony, Cocklebur, Stickle wort, Liver Wort, Church, Steeples, Beggar's Ticks, White Tansy, Wild Tansy.
Farsi: Moshkaniyeh, Dava-ye- Jegar, Gole Khole, Gol Roghane Kaah, Gole, Chasbak, Alafe Geloo Dard.
French: Herbe d' eupatoire, Aigremoine commune, Eupatoire des anciens, Thé des bois, Souberiette, Aigremoine eupatoire, Herb de Saint Guillaume, Herb de la mère.
Germany: Kleiner odermenning, Leberkraut, Agremomen.
Greek: Eupatarios.
Italian: Erba vetoonica, Santonia, Erba da andata, Agrimonia Eupatoria.
Russian: Repenjček Aptechnyi (17).
Slovak: Repik lekaršky, Repik, repiček, starček, konopínc, útrobnik, boží bič (18).
Spanish: Agrimonia, Hierba bacera, Hierba del podabor.
Swedish: Smáborre.
Turkish: Egir otu, Kasik otu, Kızıl yaprak, Koyun otu (17).

In Iranian traditional medicine (ITM), there are two plants that are called Ghafath; the amateur users usually do not notice this. Users should look for a description of the plant in each book before using it and should notice which one the writer means. The agrimonium sp. (Rosaceae) Ghafath has yellow flowers, but the second one has pink or reddish flowers with the scientific name of *Eupatorium cannabinum* L. (Asteraceae) (19). The second Ghafath named Ghafath e kanafi which means “hemp agrimony” in Persian (20), “hemp agrimony” is *Eupatorium cannabinum* common name in English.

Description
Agrimonia eupatoria is a plant with bear pinnate, toothed alternate, leaves with undersides like velvet and small pairs between larger pairs with erect, reddish and pubescent stems (50–150 cm high). It has basal leaves as a rosette, and on its long, slender spikes grow five small petals of bright yellow flowers. The fruits are small, cone-shaped, enclosed in a calyx-tube with bristle. The bristles with hook enable the dispersal of the seeds on animal fur. It also spreads vegetatively by stout, woody, deep-lying rhizomes (21).

Some insects associate only with this herb like an eriophyoid mite, *Aculus castriferrei* n. sp (22) and *Stigmella aeneofasciella* Larvae (23). This is why Agrimony is called “Shajarat ol barāghith” in Arabic, which means the tree of fleas in English.

Related species
Agrimonia pilosa and *A. viscidula* Bunge are used in China for comparable conditions (24). The German Commission E Pharmacopoeial Monograph enables the use of *A. procera* as a second precious source of Agrimoniae herba. Granica et al. have shown, based on their collected data, that a legitimate source of plant materials for drug preparation is *A. procera* (Fragrant agrimony) (25).

Cultivation and habitat
Agrimony is a native European herb mostly found in marshes, on wasteland, and wet meadows (1). It is one of the most common species of dry grasslands in the ex-arable land of the SE Czech Republic (26) and Slovak Republic (18). Thus, it has been found in the Hindu Kush Mountains of Pakistan (27), as well as Western Himalaya, and India (28). It is harvested during its flowering stage in summer (1). *Agrimonia eupatoria* does not reach the edge of its distribution. It displayed dynamic changes in leaf morphology in response to tree shade and in elongation of stems and inflorescences because of herbaceous shade. Because of *A. eupatoria*’s high active plasticity, it can maintain constant shoot growth in a variety of light conditions (29). The normal distance in cultivation on seed yield is 4/m-2 (30). *A. eupatoria* best germination results obtained at 20°C at 12-hour daily photoperiod, 5.5 cm root cuttings develop stems and/or roots at 15°C and 25°C (31).

![Figure 1. Agrimonia eupatoria.](http://www.herbmedpharmacol.com)
Macroscopic Types
Agrimonia eupatoria’s characters are given in Table 1 (24).

Microscopic characters
Agrimonia eupatoria’s characters are given in Table 2 (32).

Ethnopharmacology
The plant has a “cool” and “drying” characteristics. All parts, mostly the aerial parts of the plant are used for various diseases (33).

History and folklore
Agrimonia eupatoria was named by Mithridates Eupator, a king of Pontus, a famous plant collector and botanical text author in Greek. Thus, Pliny records, ‘it has gotten credit and reputation by a king, as may appear by the name’. Many centuries later, Fuchs named it ‘Hepatorium’, because of its protective effects on the liver. Until the 18th century Agrimony was known in the Linnaean classification under the title ‘Eupatorion’, so Dioscorides (IV 41) named it the same (21).

Traditional uses
Agrimonia eupatoria was worshiped in the Kysuce region (18). Since then, people have found various methods for using Agrimony for almost all parts of the body illnesses as shown in Table 3. *A. eupatoria* has been used since Saxon times. It was the primary ingredient of a battlefield cure for bullet wounds called “Arquebusade water” in the 15th century. Agrimony healing power is now credited with the herb’s high silica content (33). *A. eupatoria*, known as Ghafath in Iranian traditional medicine (ITM), has been repeatedly used for liver strengthen and it was well documented as an outstanding liver tonic. It is very useful and extensively recommended in Iranian medical literature (34), and used mainly to treat liver disorders (35). It is one of the most important ingredients of ITM tablets like “Qurse Rewand” which means “Rhubarb tablet” in Iranian dialect. Its effects on rats have been recently documented as significant hepatocurative agent and showed signs of recovery and regeneration in damaged liver cells (36).

It is used as antibacterial, astringent, aggregant, antipyretic, diuretic, anti-inflammatory, antisepic, antiviral, candidicide, vermifuge, tonic, uricolytic, deputative, chologogue, emmenagogue, fungicide, hemostat, litholytic, stomachic, sedative, and vulnerary remedy (37).

Aerial parts/leaves applications of *A. eupatoria* are given in Table 3 (33). It has been reported that giving Tisane (cold) to lambs has an antidiarrhoeal effect and Tisane (hot) has laxative effects in lambs (38).

3.3 Recommendations on safety
It should be used with caution when there is a constipation (21,33). Side effects of nausea and constipation with excessive doses are likely (21).

Phytochemistry
The Agrimony plant contains tannins, volatile oil and coumarins (1), gum, a phytosterol (24), polysaccharides, etc.
and flavonoids such as luteolin. From its dried aerial parts, the polyphenolic-poly saccharide complex was isolated with 55×10^3 g/mol molecular weight. It consisted mainly of pectin-like polysaccharides and polyphenolic moieties, composed of lignin-related units, with the dominance of dimethoxyphenyl structures. Agrimonia complex specific carbohydrate composition rich in highly esterified galacturonic acid, constituting thus highly methylated pectin network in which, besides arabinogalactan type II, the highly esterified homogalacturonan and rhamnogalacturonan type I are present, while some units being partially methylated (39). Investigated samples have been shown to contain about 8.2–10.9 mg/g of various flavonoids, 6.3–10.9 mg/g of various tannins (mostly agrimoniin, 2.6–5.4 mg/g), and 0.6–0.9 mg/g of phenolic acids (40). The value of flavonoids determined in the leaves of agrimony (Agrimonia eupatoria) was 1.05 RU (41). Total phenolic compounds of more than 19.61 mg galic acid equivalent (GAE)/g to 220.31 mg GA (gallic acid)/g, flavonoids of 20.58 mg RU (rutin)/g to 97.06 mg RU/g, total tannins of 3.06 mg GA/g to 207.27 mg GA/g, and pro-anthocyanidins of 4.15 CChE (Cyanidin chloride equivalent)/g to 103.72 CChE/g have been identified (42), claiming that phenol compounds were the major group of constituents of this plant (40).

The primary metabolites
From the primary metabolites, the amino acid composition has been determined. Seventeen amino acids and their respective amounts were identified in A. eupatoria, which is shown in Table 4 (43).

The second metabolites
Sixty-eight out of 87 separated constituents of the volatile oil were quantified, which were more than 87.03% of the total contents. Isolated compounds from the leaf and root of A. eupatoria are shown in Table 5, isolated compounds from the leaf of A. eupatoria are shown in Table 6 (44), and the phenolic and flavonoid compounds isolated from free or glycosides of the leaf of A. eupatoria are shown in Table 7.

Antioxidant potential and scavenging activity
Agrimony’s anti-inflammatory ability may be clarified by its antioxidant activity. The plant has polyphenolic compounds capable of activating endogenous antioxidant defense mechanisms (51). The tests done on A. eupatoria extract and its polyphenol-enriched fractions against reactive species are shown in Table 8.

Application	Method	For
Infusion	A gentle remedy, especially in infants and children. Can be taken by breastfeeding mothers.	Diarrhea
Eyewash	A weak infusion (10 g herb to 500 mL water)	Conjunctivitis
Gargle	Use the infusion	Sore throats
		Nasal catarrh
Tincture	More potent and drying than the infusion, and effective	Condition involves excess phlegm or mucus
Poultice	Of the leaves	Migraines
Wash		Wounds

Table 4. Amino acid content of Agrimonia eupatoria herb

Substance	General formula	Content, mg/100 mg of the raw material	No.	Substance	General formula	Content, mg/100 mg of the raw material
Aspartic acid	C4H6O4N	0.93	10	Methionine	C5H10O2N5	0.31
Threonine	C4H9O2N	0.39	11	Isoleucine	C6H13O2N	0.46
Serine	C3H7O3N	0.62	12	Leucine	C6H13O2N	0.46
Glutamic acid	C5H8O4N	0.15	13	Tyrosine	C9H10O2N	0.23
Proline	C5H9O2N	0.47	14	Phenylalanine	C9H12O2N	0.33
Cysteine	C6H12N2O4S2	0.08	15	Histidine	C6H11O2N3	0.23
Glycine	C2H5O2N	0.93	16	Lysine	C6H13O2N2	0.53
Alanine	C3H7O2N	0.69	17	Arginine	C6H15O2N4	0.15
Valine	C5H11O2N	0.69				
Table 5. The compounds isolated from the leaf and root essence of *Agrimonia eupatoria*

No.	Compound Name	Molecule structure	No.	Compound Name	Molecule structure
1	1-(2-Furyl)-1-hexanone	C10H14O2	35	Geraniol acetate	C12H20O2
2	2,4-Dimethylbenzaldehyde	C9H10O	36	Geranyl acetone	C13H22O
3	2-Cyclopropylidene-1,7,7-trimethyl-bicyclo[2,2,1]heptane	C13H20	37	Hexanal	C6H12O
4	2-Methyl-4-hydroxyacetophenone	C9H20O2	38	L-Camphor	C10H16O
5	3,4-Dimethylbenzaldehyde	C9H10O	39	Linalool	C10H18O
6	3-Octanol	C10H18O	40	Longofolene	C15H24
7	4-Terpineol	C10H18O	41	Murolol	C15H26O
8	6,10,14-Trimethyl-2-pentadecanone	C18H36O	42	Myristicin	C11H12O3
9	Acoradiene	C15H24	43	Neryl acetate	C12H20O2
10	Anethole	C10H12O	44	Nonanoic acid	C9H18O2
11	Aromadendrene	C15H24	45	Patchoulool	C15H26O
12	Bergamot oil	C12H20O2	46	P-Menth-1-en-4-ol	C10H18O
13	Borneol	C10H18O	47	Pulegone	C10H14O
14	Bornyl acetate	C12H20O2	48	Phelipone	C15H24
15	Camphene	C10H16	49	Torreyol	C15H26O
16	Carvacrol	C10H14O	50	Trans-Nerolidol	C15H26O
17	Caryophyllene	C15H24	51	α-Bisabolene	C15H24
18	Caryophyllene oxide	C15H24O	52	α-Cadinol	C15H26O
19	Cedrol	C15H26O	53	α-Campholenal	C10H16O
20	Cedryl acetate	C17H28O2	54	α-Cedrene	C15H24
21	Copaeene	C15H24	55	α-Eudesmol	C15H26O
22	Cubenol	C15H26O	56	α-Guaiene	C15H24
23	Cuparene	C15H24	57	α-Himachalene	C15H24
24	Curcumene	C15H22	58	α-Longipinene	C15H24
25	Cymene	C10H14	59	α-Pinene	C10H16
26	Decanoic acid	C10H20O2	60	α-Selinene	C15H24
27	D-Limonene	C10H16	61	α-Terpineol	C10H18O
28	E-Cadinen	C15H24	62	α-trans-Ocimene	C10H16
29	Epi-Cedrol	C15H26O	63	β-Cedrene	C15H24
30	Epiglobulol	C15H26O	64	β-Pinene	C10H16
31	Eucalyptol	C10H18O	65	β-Selinene	C15H24
32	Eugenol methyl ether	C11H14O2	66	δ-Cadinene	C15H24
33	Farnesyl acetate	C17H28O2	67	δ-Guaiene	C15H24
34	Furan,2,5-dibutyl-	C12H20O	68	γ-Cadinene	C15H24

Table 6. The compounds isolated from the leaf essence of *Agrimonia eupatoria*

No.	Compound Name	Molecule structure	No.	Compound Name	Molecule structure
1	1-Hexanol	C6H14O	8	Germacrene D	C15H24
2	4,4-Dimethyladamantan-2-ol	C12H20O	9	Hexahydrofarnesyl acetone	C18H36O
3	4-Hydroxy-3-methylacetophenon	C9H10O2	10	Isomenthone	C10H18O
4	Cadala-1[10],3,8-triene	C15H22	11	Longipinocarvone	C15H28O
5	Carvone	C10H14O	12	Phenmethyl acetate	C9H10O2
6	Cis-7-Tetradecen-1-ol	C14H28O	13	Prenal	C5H8O
7	Costunolide	C15H20O2	14	β-Damascone	C13H18O
Table 7. The phenolic and flavonoid compounds isolated in a form of free or glycosidic from leaf of *Agrimonia eupatoria*.

No.	Compound Name	Reference
1	1-O-Caffeoylquinic acid	(40)
2	3-O-Caffeoylquinic acid	(40)
3	3-O-p-Coumaroylquinic acid	(25)
4	3-O-p-Coumaroylquinic acid	(40)
5	4-O-caffeoylquinic acid	(25, 40)
6	5-Caffeoylquinic acid	(46)
7	5-O-caffeoylquinic acid (chlorogenic acid)	(25, 40)
8	Agrimonin	(25, 40, 46)
9	Apigenin 7-O-glucoside (apigetrin)	(25, 40, 46)
10	Apigenin 7-O-β-D-glucuronide	(25, 40, 45, 47)
11	Apigenin derivative	(45)
12	Apigenin O-glucuronide	(46)
13	Astragalin (Kaempferol 3-O-glucoside)	(25, 40, 46-49)
14	Caffeoyl-hexoside	(45)
15	Catechin	(25, 40, 45, 46, 48)
16	Ellagic acid	(46)
17	Hexahydroxydiphenoyl-glucose	(50)
18	Isovitexin = Apigenin 6-C-glucoside	(25, 40, 46, 48)
19	Kaempferide	(49)
20	Kaempferide 3-rhamnoside	(49)
21	Kaempferide O-rhamnoside	(46)
22	Kaempferol	(49)
23	Kaempferol 3-O-6'-O-p-coumaroyl-glucoside, (tiliroside)	(46-48)
24	Kaempferol 3-O-β-D-(2''-O-acetyl-6''- (E)-p-coumaroyl)-glucopyranoside (2''-acetyl-tiliroside)	(47)
25	Kaempferol 3-O-β-D-(2''-O-acetyl) glucopyranoside	(47)
26	Kaempferol 3-rhamnoside	(49)
27	Kaempferol 3-rutinoside	(49)
28	Kaempferol hexoside	(25, 40)
29	Kaempferol malonylhexoside	(25, 40)
30	Kaempferol O-acetyhexosyl-rhamnoside	(46)
31	Kaempferol Oacetyhexosyl-O-rhamnoside	(46)
32	Kaempferol O-(coumaroyl)-hexoside	(50)
33	Kaempferol O-malonylhexoside	(46)
34	Kaempferol-p-coumaroyl-hexoside	(45)
35	Keampferol 3-O-rutinosid	(50)
36	Luteolin 7-O-glucoside (cynaroside)	(25, 40, 46)
37	Luteolin 7-O-B-D-glucopyranoside	(47)
38	Luteolin 7-O-B-D-glucuronide	(25, 40, 45, 47)
39	Luteolin glucuronide isomer	(25, 40)
40	Luteolin malonylhexoside	(25)
41	Luteolin-acetyl-hexoside	(45)
42	P-Coumaric acid	(45, 46, 48)
43	p-Coumaroil quinic acid	(45)
44	p-Coumaroyl acid hexoside	(40)
45	Procyanidin B-1	(45)
46	Procyanidin B3= Procyanidin dimer B3= catechin-(4β→8)-catechin (B3)	(25, 40, 45, 48)
47	Procyanidin dimer B1= epicatechin-(4β→8)-catechin (B1)	(48)
48	Procyanidin dimer B2= epicatechin-(4β→8)-epicatechin (B2)	(48)
49	Procyanidin dimer B6= catechin-(4β→6)-catechin (B6)	(48)
50	Procyanidin dimer B7= epicatechin-(4β→6)-catechin (B7)	(48)
51	Procyanidin tetramer	(46, 48)
Table 7. Continued

No.	Compound Name	Reference
52	Procyanidin tetramer-B	(45)
53	Procyanidin trimer	(25, 40, 46, 48)
54	Procyanidin trimer C1= epicatechin-(4→8)-epicatechin-(4→8)-epicatechin (C1)	(48)
55	Procyanidin trimer C2= catechin- [4→ 8]-catechin- [4→ 8]- catechin (C2)	(48)
56	Procyanidin trimer EEC= epicatechin- [4→ 8]- epicatechin- [4→8]-catechin (EEC)	(48)
57	Procyanidin-trimer-B	(45)
68	Quercetin 3-O-galactoside (hyperoside)	(25, 40, 48)
69	Quercetin 3-O-glucoside (isoquercitrin) (isoquercetin)	(25, 40, 45-48)
70	Quercetin 3-O-rhamnoglucoside (rutin)	(25, 40)
71	Quercetin O-galloyl-hexoside	(46)
72	Quercetin 7-O-rhamnoside	(25, 40)
73	Quercetin-acetyl-hexoside	(45)
74	Quercetin-acetil-glucoside	(45)
75	Quercitrin	(47)
76	Quinic acid	(45)
77	Rutin	(25, 45, 47)
78	Vitexin (Apigenin 8-C-glucoside)	(40, 46)

Table 8. Ex vivo measurements of antioxidant activity of Agrimonia eupatoria

Phytochemical test	Reagent	Result
Free radical scavenging activity or the antioxidant activity	DPPH (2,2-diphenyl-1-picrylhydrazyl) method	Indicating a general radical scavenging activity, with a dose-dependent ability (9.1-97.5%) [5,8], quite similar to ascorbic acid (EC\textsubscript{50} = 17 μg) and much higher than Catechin (EC\textsubscript{50} = 140 μg) [50]. The MeOH extract and two Sep–Pak fractions (30 and 60%) showed prominent free radical scavenging activity. RC\textsubscript{50}s were determined as 4.64×10-4, 5.13×10-3 and 4.73×10-4 mg/mL (4). The antioxidant activity was highest for the acetone extract and ranged from 97.13% to 27.73% (42).
Reducing power	Extracts of A. eupatoria showed moderate reducing power compared with the positive control, and showed activity in all examined concentrations. Hence, concluded that reducing power depends on concentration (42).	
Superoxide anion scavenging effect	Detected by Nitro Blue Tetrazolium (NBT) reduction	Inhibited the NBT reduction in a dose-dependent manner
Peroxyl and hydroxyl radicals	A very good scavenging capacity. The extract is an efficient scavenger of peroxyl radicals.	
Oxidant species	Hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) assay	Exhibited H\textsubscript{2}O\textsubscript{2} scavenging activity (8). Agrimony extract (AE) decreased both the superoxide dismutase (SOD) and catalase (CAT) expressions (45).
Hypochlorous acid (Elastase (E) + α\textsubscript{1}-antitrypsin (α\textsubscript{1}) + Hypochlorous acid (HOCl)) and inhibition of Elastase	Extract abolished elastase activity; affected the α\textsubscript{1}-antitrypsin activity, but promoted some inhibition of Elastase activity.	
Peroxynitrite	Inhibited the dihydrorhodamine 123 oxidation (8)	
2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) [ABTS] (+) radical decolourisation reaction system	6.7-79.5% (5, 53) and RC\textsubscript{50} were determined as Agrimony = 0.79 mg/mL (45).	
Trolox equivalent antioxidant capacity (TEAC)	Showed the scavenging activities (48), (TEAC 3.76+/-0.5mM/QE 702.29+/-6.82 microM) (6).	
Thiobarbituric acid reactive substances (TBARS) method	The lipid peroxidation inhibition (48), 104.8±11.4 (% control) (53)	
A review on *Agrimonia eupatoria* L.

The relevant content of phenols and significant antioxidant activities were observed for the aqueous-alcoholic extract (49). Ascertained by High-performance liquid chromatography-diode array detection (HPLC-DAD) (55) ranged from 19.61 mgGA/g to 220.31 mgGA/g (43). Achieved by HPLC-PDA-ESI/MS\(^n\) (46).

Chlorogenic acid remained stable after the stomach phase, Rutin was decreased after the stomach phase (52).

In vitro digestion upon Caco-2 cells via LC-MS/MS

3,4,5-Trihydroxybenzaldehyde was stable throughout the digestive process, whereas Xanthine oxidase activity Reacted 86.8±3.7 (% control)

Table 8. Continued
Phytochemical test

The phenolic content
The effect of in vitro digestion upon Caco-2 cells via LC-MS/MS
Capacity to inhibit lipid peroxidation
Carbonyl content
8-ohdg
Oxidative damage
Cytotoxicity test
Skin flap viability

Pharmacological activities

Agrimonia eupatoria’s physio-pharmacological activities are shown in Table 10.

Toxicity

The safety and efficacy of *A. eupatoria* have been confirmed during a very long period of its traditional application. Recent studies have shown that *A. eupatoria* aqueous extract (AEE) consumption by subjects was safe and generally well-tolerated without severe adverse events (65). Agrimony is an herbal medicine, which its safety is comparable with coffee (37). But, since Agrimony is an indication of geogenic contamination of flysch soils, elements like Ni, Co, Mn, Cu, Cr, V, and Mo typically concentrate in the roots and shoots of the plant. So, high uptake of these elements by Agrimony growing on similar soils is possible (69).

Conclusion

This review presents *A. eupatoria* description, history, and advances in phytochemistry and other aspects. Pharmacological studies carried out on its extracts and traditional uses revealed that it could be an important source for new drugs.

Authors’ contributions

MGP and NM conceived of the presented idea; MGP developed the article, performed the computations, wrote, and prepared the manuscript; NM encouraged; while author NM and SHM supervised the research and critical revision of the article. MRK and MRM made the final version. All authors read the manuscript and confirmed the publication of the final version.

Conflict of interests

There is no conflict of interest

Ethical considerations

Ethical issues including text plagiarism, misconduct, manipulation or appropriation, data fabrication,
Physio-pharmacological activities of *Agrimonia eupatoria*

Plant part/extract	Dose/model	Worked on	Standard drug	Result
Aerial parts/Aqueous extract + extraction with ethyl acetate	For the aqueous extract single-dose of 199.18 mg/kg (mice) and 99.59 mg/kg (rats); for the fraction, single dose of 36.24 mg/kg (mice) and 18.12 mg/kg (rats)	Mice and rats		The anti-inflammatory and peripheral analgesic properties of agrimony were confirmed. No signals of renal or hepatic toxicities detected (55).
Aerial parts/water infusion and ethyl acetate fraction	The mouse carrageenan-induced paw edema model for *in vitro* anti-inflammatory activity (rats received 99.59 mg/kg, and 199.18 mg/kg doses of infusion and 18.12 mg/kg, and 36.24 mg/kg for the fraction). The acetic acid-induced writhing and hot-plate tests for peripheral and central analgesic potential (mice received 199.18 mg/kg, and 398.26 mg/kg, for infusion and 36.24 mg/kg, and 72.48 mg/kg for the fraction) and formalin assay to assess both activities (mice received 72.48 mg/kg of the fraction).	Male Wistar rats and male mice	Diclofenac sodium and morphine	*In vivo* anti-inflammatory and analgesic activities were verified (46).

Analgesic and anti-inflammatory activity

Physio-pharmacological activities of *Agrimonia eupatoria*					
Antiadhesive activity	Ethanol extract	Against *Campylobacter jejuni*	*Campylobacter jejuni*	No significant antiadhesion activity (IC$_{50}$ value >35 mg/mL) was found for *Agrimonia eupatoria* (56).	
Antibacterial activities	Hydro ethanol extract	Modified microdilution assay	*Helicobacter pylori* and *Campylobacter jejuni*	Antibiotics	*Agrimonia eupatoria* was among the most active herbal extracts in inhibiting the growth of *Helicobacter pylori* (3).
	Seeds	n-Hexane, DCM and MeOH extracts and four Sep–Pak fractions of the MeOH extract.	*Bacillus cereus*, *Bacillus subtilis*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Salmonella goldcoast*, and *Staphylococcus aureus*		The n-Hexane extract showed an inhibitory effect against *Bacillus cereus* and *Bacillus subtilis*. Sep–Pak fractions eluted with 30, 60, and 80% MeOH in water showed significant antibacterial activity (4).
	Areal parts/aqueous extract and crude ethanolic extract	10 mg/mL	*Staphylococcus aureus*, *Pseudomonas aeruginosa*, and *Escherichia coli*	Fucidin ointment	The ethanolic extract was more effective in inhibiting tested bacteria (57).
Antibiofilm activity	Aerial parts/ethanol, diethyl ether, water, and acetone extracts		*P. mirabilis* and *P. aeruginosa*	Tetracycline	Biofilm inhibitory concentration required to reduce biofilm coverage by 50% values for acetone extract was 4315 mg/mL for *P. mirabilis* and 4469.5 mg/mL for *P. aeruginosa* (42).
Anticholinesterase activity	Aerial flowering parts/ Aqueous extracts			Displayed inhibition of butyrylcholinesterase (BuChE), acetylcholinesterase (AChE), and inhibition of cholinesterases by apigenin, luteolin, and quercetin glycosides (50).	
Anticoagulant activity

Dried aerial parts

Human plasma-derived from healthy donors

The *A. eupatoria* complex prevents the development of plasma clots, primarily in the intrinsic blood coagulation cascade pathway. It is primarily an indirect inhibitor of thrombin, mediated by antithrombin or by heparin cofactor II (39).

Anti-diabetic

Aqueous extract

Into the diet (62.5 g/kg) and drinking water (2.5 g/L) or (1 mg/mL) on the abdominal muscle, 0.25-1 mg/mL on BRIN-BD11 cells/Streptozotocin (STZ)-diabetic

The presence of antihyperglycemic, insulin-releasing and insulin-like activity in *Agrimonia eupatoria* demonstrated (15).

Water infusion

Streptozotocin-induced diabetes mellitus (DM) rat model/200 mg/L Male Wistar rats

In the avoidance and/or adjuvant treatment of developing cardiovascular problems linked to DM and sicknesses related to oxidative stress, *A. eupatoria* extract suggests its higher clinical potential (58).

Treatments for diabetes mellitus

Dried leaves

Supplied in the diet (6.25% by weight) or as decoctions or infusions (1 g/400 mL) in place of drinking water/Streptozotocin (200 mg/kg i.p.) for 12 days Mice

Treatment with agrimony reduced the level of hyperglycemia during the development of streptozotocin diabetes but did not reduce the rate of body weight loss. Certain traditional plant treatment for diabetes, namely *Agrimonia* (14).

Hydro-alcoholic extract and a polyphenol-enriched fraction

Against the reactive species/ 96-well microplate-based broth dilution assay

Agrimonia eupatoria anti-inflammatory activity mechanism could be its significant scavenging capacity of reactive species by its polyphenols (8).

Anti-inflammatory Activity

Enzyme-linked immunosorbent assay, nitric oxide assay, and Western blotting. BV2 microglial cells

Agrimoniae herba suppressed lipopolysaccharide-induced nitric oxide production in BV2 microglial cells and lipopolysaccharide-induced production of proinflammatory cytokines such as interleukin 1 beta, tumor necrosis factor, and interleukin 6 in a dose-dependent manner had no cytotoxicity and inhibited the expression of inducible nitric oxide synthase. It may be used as a form of pharmaceutical acupuncture therapy in the treatment of brain inflammation (9).

Table 10. Continued
Plant part/ extract
Anticoagulant activity
Anti-diabetic
Anti-diabetic
Treatments for diabetes mellitus
Anti-inflammatory Activity
Anti-inflammatory Activity
Antimicrobial activity

Extracts

From 2 to 0.004 mg/mL/ 96 well plate microdilution method (200, 40, and 8
μg/mL)

Selected gram-positive *Staphylococcus aureus* and gram-
negative *Pseudomonas aeruginosa* and *Escherichia coli*
bacteria of relevance in wounds

Moderate activity for *Potentilla reptans* L (59).

Aerial parts/ Hot water, aqueous extract

Primary human skin fibroblasts (line C688)

Escherichia coli ATCC 25922, *E. coli* O44, *Vibrio cholerae* O395-tacCTB strain, and *Lactobacillus rhamnosus*

Displayed modest bacteriostatic potentials. Suppressed the
binding of cholera toxin subunit B to the cell surface and
immobilized GM$_1$ ganglioside (60).

Antimicrobial and antifungal activity

Aerial parts /ethanol, diethyl ether, water, and acetone extracts
the acetone extract demonstrated the highest activity

The antimicrobial activity was tested by
determining the minimum inhibitory
conzentration (MIC) using the
microdilution method with resazurin

24 microorganisms including 18 strains of bacteria (probiotics
strains: *Lactobacillus rhamnosus*, *Bacillus subtilis* IP 5832,
and *Bifidobacterium animalis* subsp. *lactis*; standard strains:
Staphylococcus aureus ATCC 25923, *Enterococcus faecalis*
ATCC 29212, *Escherichia coli* ATCC 25922, *B. subtilis* ATCC
6633, and *P. aeruginosa* ATCC 27853; and clinical isolates
S. aureus, *E. faecalis*, *Bacillus cereus*, *B. subtilis*, *E. coli*,
Salmonella enterica, *Salmonella typhimurium*, *Klebsiella
pneumoniae*, *P. mirabilis*, and *P. aeruginosa*) and six strains
of fungi (*Aspergillus niger*, *Aspergillus flavus*, *Penicillium
chrysogenum*, *Penicillium italicum*, *C. albicans* ATCC 10231,
and *Candida albicans*)

Tetracycline, ampicillin, amphotericin B, and itraconazole

The strongest antimicrobial activity was detected on G$^+$
bacteria, especially on probiotic species. The acetone
extract demonstrated the highest activity (42).

Anti-nociceptive effect

Aerial part/ Ethanolic extract

200 mg/kg/ cisplatin-induced neuropathic pain model

Male Sprague-Dawley rats

Gabapentin

In the pin-prick test and plantar test, *A. eupatoria* extract
displayed an antinociceptive property with a lower
withdrawal time and a higher withdrawal threshold in the
paw-withdrawal threshold test as compared to control
animals. In the case of cold-allodynia, increased paw-
withdrawal duration in the chemical test, and showed
superior activity to gabapentin. *A. eupatoria* extract found
to possess therapeutic potential for the treatment of
neuropathic pain (61).
A review on *Agrimonia eupatoria* L.

Journal of Herbmed Pharmacology, Volume 10, Number 1, January 2021

http://www.herbmedpharmacol.com

Table 10. Continued

Physio-pharmacological activities of *Agrimonia eupatoria*	Plant part/ extract	Dose/ Model	Worked on	Standard drug	Result
Antioxidant activity	Acetone, methanol, aqueous, acetone-hexane, acetone-t-butyl methyl ether, acetone-n-BuOH, acetone-aqueous extracts	In DPPH radical scavenging, ABTS(+) radical decolorization reaction systems	Honeybush, rooibos, black and green tea	As compared to the foreign plants examined, it can be considered a rich source of water-soluble antioxidants (6).	
Tea	Trolox equivalent antioxidant capacity (TEAC)				
Aerial flowering parts/Aqueous extracts					
Arial parts/water, acetone, ethanol, and diethyl ether extracts	In DPPH radical scavenging and Reducing power	Ascorbic acid	Higher concentrations of acetone extract and vitamin C operated in a similar way, confirming the high antioxidant activity of *Agrimonia*. All tested extracts showed a concentration-dependent antiradical activity. Reducing the power of acetone extract was found to be the most active, followed by ethanol, water, and diethyl ether extracts (acetone > ethanol > water > diethyl ether) (42).		
Arial parts/infusion and ethyl acetate fraction	DPPH, superoxide anion, hydroxyl radical, and SNAP assays		Showed a significant antiradical activity against all tested radicals. Decreased NO levels in vitro. Fraction being more active than infusion. They are potential sources of antiradical and anti-inflammatory polyphenols (46).		
Anti-oxidative potential	Tea	One month	Healthy humans	Has potential in improving markers oxidative status in healthy adults (7).	
Antioxidant status	0.1% & 0.2% agrimony extract	Supplied through drinking water	Broiler chickens	Can beneficially influence the antioxidant status of thigh meat thus improve meat quality (62).	
0.2% agrimony extract	Supplied with drinking water/(2:1000)	Broiler chickens at the age of 42 days	Clove (*Syzygium aromaticum* L.) Powder	It has a potential to increase the antioxidant status (63).	
Anti-tumor

Aqueous and methanol extracts of *Agrimonia eupatoria* at concentrations of 6.0, 12.0, 24.0, 48.0, and 96.0 µg/mL showed concentration-dependent anti-tumor properties. The methanol extract reported better growth inhibition percentage (PGI) values than the aqueous extract in human cervical cancer (Hela) and RD cell lines, while MEF cells reported lower PGI values. Among these concentrations, 96.0 µg/mL was the best in generating PGI in RD and Hela cancer cell lines.

Antiviral activity

Aerial parts (stems and leaves) of *Agrimonia eupatoria* showed antiviral activity against Hepatitis B virus (HBV). The extract prepared at 60 °C had the greatest effect, and the inhibitory activity was highest in mid-July.

Enzymatic and non-enzymatic antioxidants

Extracts from the crop tops of *Agrimonia eupatoria* were administered in water at a final concentration of 0.1% after 42 days of feeding. The level of reduced glutathione was measured in the plasma and in liver, heart, and kidney mitochondria. The activity of superoxide dismutase had a significant decrease, indicating the antioxidant effect against peroxidation of gamma-linolenic acid.

Growth performance, and selected indices of lipid profile

Aqueous extracts of *Agrimonia eupatoria* at 0.2% concentration were supplied with drinking water to broiler chickens at the age of 42 days. It was found that the extract failed to influence selected lipid metabolism indices or the growth performance.

Hepatic oxidative stress

Aqueous extracts of *Agrimonia eupatoria* at 10, 30, 100, and 300 mg/kg/day were administered by chronic ethanol-induced liver injury. Mice were used in this experiment, and it was observed that *Agrimonia eupatoria* water extract enhanced chronic ethanol-induced liver damage, likely because of oxidative stress suppression and Toll-like receptor (TLR)-mediated inflammatory signals.

Hepatoprotective effects

Water extracts of *Agrimonia eupatoria* at 10, 30, 100, and 300 mg/kg/day were administered to rats with chronic ethanol-induced liver injury. Aqueous extract at 160 mg/d for 8 weeks was given to subjects aged between 20 and 70 years who were diagnosed with mild to moderately elevated ALT levels. A significant reduction in elevated alanine transaminase (ALT) and serum triglyceride (TG) was observed.

Table 10. Continued

Physio-pharmacological activities of *Agrimonia eupatoria*	Plant part/extract	Dose/Model	Worked on	Standard drug	Result
Anti-tumor	Aqueous and methanol extracts	6.0, 12.0, 24.0, 48.0 and 96.0 µg/mL	Human cervical cancer; Hela and Rhabdomyosarcoma (RD); RD cell lines and a primary cell culture; mouse embryo fibroblast; MEF	Five plant extracts concentrations showed concentration-dependent anti-tumor properties, and the methanol extract reported better growth inhibition percentage (PGI) values than aqueous extract in Hela and RD cell lines, while MEF cells reported lower PGI values. Among these concentrations, the three examined timespans, 96.0 µg/mL was the best in generating PGI in RD and Hela cancer cell lines (13).	
Antiviral activity	Aerial parts (stems and leaves)/ Aqueous extract		Hepatitis B virus (HBV)	The extract prepared at 60 °C has the greatest effect. The inhibitory activity was the highest at mid-July. *Agrimonia* genus plants contain potential antiviral activity against HBV (16).	
Enzymatic and non-enzymatic antioxidants	Extracts from the crop tops	Administered in the water at a final concentration of 0.1% after 42 days of feeding the level of reduced glutathione was measured in the plasma and in liver, heart, and kidney mitochondria	120 one-day-old broilers COBB500	The activity of superoxide dismutase had a significant decrease. The application of agrimony extract appears to be suitable for the antioxidant effect against peroxidation of gamma-linolenic acid (63).	
Growth performance, and selected indices of lipid profile	0.2% agrimony extract	Supplied with drinking water/ (2:1000)	Broiler chickens at the age of 42 days	Clove (*Syzygium aromaticum*) L. powder	It fails to influence either the selected lipid metabolism indices or the growth performance (64).
Hepatic oxidative stress	Aqueous extracts (leaves)	For 4 weeks	Mice	Water	Led to a decrease in catalase activity produced a decrease in SOD activity. In general, agrimony appeared to be a promising extract in protection; and was even slightly toxic (53).
Hepatoprotective effects	Water extract	10, 30, 100, and 300 mg/kg/d/ chronic ethanol-induced liver injury	Rats	*Agrimonia eupatoria* water extract enhanced chronic ethanol-induced liver damage, likely because of oxidative stress suppression and Toll-like receptor (TLR) -mediated inflammatory signals (10).	
	Aqueous extract	(160 mg/d)/ two capsules twice a day for 8 weeks	Subjects aged between 20 and 70 years who were diagnosed with mild to moderately elevated ALT levels (between 45 and 135 IU/L).	A significant reduction in elevated alanine transaminase (ALT) and serum triglyceride (TG) was observed (65).	
A review on Agrimonia eupatoria L.

Irritable bowel syndrome (IBS)

Aerial parts

The diarrhea-predominant and alternating bowel habit IBS (DA-IBS) formula containing Agrimony was tested on patients who fulfilled the Rome II criteria for irritable bowel syndrome. The DA-IBS formula was not effective in alternating bowel habit IBS or improving bowel habit in individuals with diarrhea-predominant but it improved a number of IBS symptoms significantly (66).

Neuroprotective

Methanolic extract

Glutamate-injured HT22 cells

HT22 hippocampal cells

Astragalin, isoquercitrin, querctin, and luteolin 7-O-β-D-glucuronide compounds showed neuroprotective effects on glutamate-induced toxicity in HT22 cells (47).

Oxidative stability

0.1% & 0.2% agrimony extract

Supplied with drinking water

Broiler chickens

Can beneficially influence the oxidative stability of thigh meat thus improve meat quality (62).

Oxidative stress

Aqueous-alcoholic extract

1%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15% /24 h

Cell culture model 3T3-L1 pre-adipocytes

Pretreatment of cells with extract significantly reduced the stimulatory effect of the oxidizing agent on gene expression (6).

Wound healing activity

Areal parts/aqueous extract and crude ethanolic extract

10 mg/mL

Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli

Fucidin ointment

The wound healing was completed in 10 days by using the ethanolic extract ointment (57).

Wound healing scar formation inhibition

Pulverized in combination with three more herbs Agrimonia eupatoria (A) & Nelumbo nucifera Gaertn (N) & Boswellia carterii (B) and Pollen Typhae angustifolii (P) (ANBP)

New Zealand white rabbits

ANBP plays dual roles, promoting wound healing and alleviating scar formation (68).

Physio-pharmacological activities of Agrimonia eupatoria	Plant part/extract	Dose/Model	Worked on	Standard drug	Result
Irritable bowel syndrome (IBS)	Aerial parts	The diarrhea-predominant and alternating bowel habit IBS (DA-IBS) formula containing Agrimony	Patients who fulfilled the Rome II criteria for irritable bowel syndrome.	The DA-IBS formula was not effective in alternating bowel habit IBS or improving bowel habit in individuals with diarrhea-predominant but it improved a number of IBS symptoms significantly (66).	
Neuroprotective	Methanolic extract	Glutamate-injured HT22 cells	HT22 hippocampal cells	Astragalin, isoquercitrin, querctin, and luteolin 7-O-β-D-glucuronide compounds showed neuroprotective effects on glutamate-induced toxicity in HT22 cells (47).	
Oxidative stability	0.1% & 0.2% agrimony extract	Supplied with drinking water	Broiler chickens	Can beneficially influence the oxidative stability of thigh meat thus improve meat quality (62).	
Oxidative stress	Aqueous-alcoholic extract	1%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15% /24 h	Cell culture model 3T3-L1 pre-adipocytes	Pretreatment of cells with extract significantly reduced the stimulatory effect of the oxidizing agent on gene expression (6).	
Wound healing activity	Areal parts/aqueous extract and crude ethanolic extract	10 mg/mL	Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli	Fucidin ointment	The wound healing was completed in 10 days by using the ethanolic extract ointment (57).
Wound healing scar formation inhibition	Pulverized in combination with three more herbs Agrimonia eupatoria (A) & Nelumbo nucifera Gaertn (N) & Boswellia carterii (B) and Pollen Typhae angustifolii (P) (ANBP)		New Zealand white rabbits	ANBP plays dual roles, promoting wound healing and alleviating scar formation (68).	
falsification, redundant publication as well as duplicate submissions have been carefully observed by authors.

Funding/Support
This research did not receive any specific grant from funding agencies in the public, commercial, or profit sectors. There has been no financial support for this work.

References
1. Chevallier A. The Encyclopedia of Medicinal Plants. London: Dorling Kindersley; 1996. p. 336.
2. GRIN Taxonomy for Plants, Taxon: Agrimonia eupatoria L. [Internet]. United States Department of Agriculture. 2014. Available from: http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?1786.
3. Cwikla C, Schmidt K, Matthias A, Bone KM, Lehmann R, Tiralongo E. Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytother Res. 2010;24(5):649-56. doi: 10.1002/ptr.2933.
4. Copland A, Nahar L, Tomlinson CT, Hamilton V, Middleton M, Kumarasamy Y, et al. Antibacterial and free radical scavenging activity of the seeds of Agrimonia eupatoria. Fitoterapia. 2003;74(1-2):133-5. doi: 10.1016/s0367-326x(02)00317-9.
5. Venskutonis PR, Skemaite M, Ragazinskiene O. Radical scavenging capacity of Agrimonia eupatoria and Agrimonia procer a. Fitoterapia. 2007;78(2):166-8. doi: 10.1016/j.fitote.2006.10.002.
6. Ivanova D, Gerova D, Chervenkov T, Yankova T. Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J Ethnopharmacol. 2005;96(1-2):145-50. doi: 10.1016/j.eph.2004.08.033.
7. Ivanova D, Vankova D, Nashar M. Agrimonia eupatoria tea consumption in relation to markers of inflammation, oxidative status and lipid metabolism in healthy subjects. Arch Physiol Biochem. 2013;119(1):32-7. doi: 10.3109/13813455.2012.729844.
8. Correia HS, Batista MT, Dinis TC. The activity of an extract and fraction of Agrimonia eupatoria L. against reactive species. Biofactors. 2007;29(2-3):91-104. doi: 10.1002/biof.552029209.
9. Bae H, Kim HJ, Shin M, Lee H, Yin CS, Ra J, et al. Inhibitory effect of Agrimoniae Herba on lipopolysaccharide-induced nitric oxide and proinflammatory cytokine production in BV2 microglial cells. Neurol Res. 2010;32 Suppl 1:53-7. doi: 10.1111/j.1440-1758.2010.01495.x.
10. Yoon SJ, Koh EJ, Kim CS, Zee OP, Kwak JH, Jeong WJ, et al. Agrimonia eupatoria protects against chronic ethanol-induced liver injury in rats. Food Chem Toxicol. 2012;50(7):2335-41. doi: 10.1016/j.fct.2012.04.005.
11. Coady Y, Boylan F. Ethnopharmacology in Ireland: an overview. Rev Bras Farmacogn. 2014;24(2):197-205. doi: 10.1016/j.rbpj.2014.04.002.
12. Copland A, Nahar L, Tomlinson CT, Hamilton V, Middleton M, Kumarasamy Y, et al. Antibacterial and free radical scavenging activity of the seeds of Agrimonia eupatoria. Fitoterapia. 2003;74(1-2):133-5. doi: 10.1016/s0367-326x(02)00317-9.
13. Ad’hiah AH, Al-Debeiri ONH, Al-Sammarrae KW. Cytotoxic effects of Agrimonia eupatoria L. against cancer cell lines in vitro. J Assoc Arab Univ Basic Appl Sci. 2013;14(1):87-92. doi: 10.1016/j.jaubas.2013.01.003.
14. Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia. 1990;33(8):462-4. doi: 10.1007/bf00405106.
15. Gray AM, Flatt PR. Actions of the traditional antidiabetic plant, Agrimonia eupatoria (agrimony): effects on hyperglycaemia, cellular glucose metabolism and insulin secretion. Br J Nutr. 1998;80(1):109-14. doi: 10.1017/ s0007114598001834.
16. Kwon DH, Kwon HY, Kim HJ, Chang EJ, Kim MB, Yoon SK, et al. Inhibition of hepatitis B virus by an aqueous extract of Agrimonia eupatoria L. Phytother Res. 2005;19(4):355-8. doi: 10.1002/ptr.1689.
17. Soltani A. Encyclopedia of Traditional Medicine (Dictionary of Medicinal Plants). Tehran: Iran University of Medical Sciences and Health Services; 2011. p. 1-3.
18. Jarmila E, Juraj C, Jana S. Medicinal Herbs in Folk Medicine and Magic from Slovak Region Kysuce versus Their Current Usage. American Journal of Ethnomedicine. 2015;2(1):68-78.
19. Gahreman A, Okhovvat AR. Matching the Old Medicinal Plant Names with Scientific Terminology. University of Tehran Press; 2004.
20. Zargar A. Medicinal Plants. Tehran: Institute of Tehran University Press; 1999. p. 19-24.
21. Tobyn G, Denham A, Whitelegg M. The Western Herbal Tradition E-Book: 2000 Years of Medicinal Plant Knowledge. Elsevier Health Sciences; 2010. doi:10.1016/b978-0-443-10344-5.00011-2.
22. Rıpka G. Eriophyoid mites (Acaris: Prostigmata: Eriophyoidea) from Hungary: a new species on Agrimonia eupatoria (Rosaceae) and new record on Convolvulus arvensis (Convolvulaceae). Zootaxa. 2014;3900(2):263-70. doi: 10.11646/zootaxa.3900.2.5.
23. Anisimovas E, Diškus A, Stonis JR. First Survey of Nipticoidea (Insecta: Lepidoptera) in Čepkeliai state nature reserve, Lithuania. Acta Zool Litu. 2006;16(3):221-8. doi: 10.1080/13921657.2006.10512735.
24. Keys JD. Chinese Herbs. Tuttle Publishing; 2011.
25. Granica S, Kluge H, Horn G, Matkowski A, Kiss AK. The phytochemical investigation of Agrimonia eupatoria L. and Agrimonia procer a Wallr. as valid sources of Agrimoniae herba--The pharmacopeial plant material. J Pharm Biomed Anal. 2015;114:272-9. doi: 10.1016/j.jpba.2015.05.027.
26. Sojneková M, Chytrý M. From arable land to species-rich semi-natural grasslands: succession in abandoned fields in a dry region of central Europe. Ecol Eng. 2015;77:373-81. doi: 10.1016/j.ecoleng.2015.01.042.
27. Ali K, Khan N, Rahman IU, Ahmad H, Jury S. Multivariate analysis and vegetation mapping of a biodiversity hotspot in the Hindu Kush Mountains. Int J Adv Res. 2015;3(6):990-1006.
28. Dar JA, Sundarapandian S. Patterns of plant diversity in seven temperate forest types of Western Himalaya, India. J Asia Pac Biodivers. 2016;9(3):280-92. doi: 10.1016/j.jpab.2016.03.018.
29. Magí M, Semchenko M, Kalamees R, Zobel K. Limited phenotypic plasticity in range-edge populations: a comparison of co-occurring populations of two Agrimonia species with different geographical distributions. Plant Biol (Stuttg). 2011;13(1):177-84. doi: 10.1111/j.1438-
A review on Agrimonia eupatoria L.

30. Najafpour Navaei M, Golipour M, Parsa E. The effects of densities and planting dates on seed yield of Agrimonia eupatoria L. Iranian Journal of Medicinal and Aromatic Plants. 2008;24(2):198-206.

31. Póvoa O, Monteiro A. Geographic Distribution and Propagation of Agrimonia eupatoria L. and Melissa officinalis L. from Portugal. I International Medicinal and Aromatic Plants Conference on Culinary Herbs 826; 2007. p. 185-92. doi: 10.17660/ActaHortic.2009.826.25.

32. Kumar P, Rana PK, Himshikha,Singhal VK, Gupta BC. Chromosome numbers, characterization of chromosomal pairing during meiosis, origin and natural propagation in polyloid cytotypes (4x, 5x and 6x) of Agrimonia eupatoria L. (Rosaceae) in northwest Himalayas (India). Protoplasma. 2014;251(4):781-95. doi: 10.1007/s00709-013-0581-0.

33. Ody P. The Complete Guide to Medicinal Herbal: Herbal Remedies for Common Ailments. London: Dorling Kindersley, 2000.

34. Akbarzadeh T, Sabourian R, Saeedi M, Rezaeizadeh H, Khanavi M, Shams Ardekan MR. Liver tonics: review of plants used in Iranian traditional medicine. Asian Pac J Trop Biomed. 2015;5(3):170-81. doi: 10.1016/s1674-4962(14)62722-2.

35. Asadi-Samani M, Kafash-Farkhad N, Azimi N, Fashti A, Alinia-Ahanda N, Rafieian-Kopaei M. Medicinal plants with hepatoprotective activity in Iranian folk medicine. Asian Pac J Trop Biomed. 2015;5(2):146-57. doi: 10.1016/1674-4962(14)62722-2.

36. Alam S, Khan N, Nasiruddin M. Evaluation of Curative potential of Qurs-e-Rewand (a Unani Formulation) against CCl4 induced hepatotoxicity in Rats. Int J Basic Med Clin Res. 2015;48(1):5. doi: 10.1186/0717-6287-48-5.

37. Duke JA. Handbook of Medicinal Herbs. CRC Press; 2002.

38. Bonet MA, Valles J. Ethnobotany of Montseny biosphere reserve (Catalonia, Iberian Peninsula): plants used in veterinary medicine. J Ethnopharmacol. 2007;110(1):130-47. doi: 10.1016/j.jep.2006.09.016.

39. Tsirigotis-Maniecka M, Pawlaczyk-Graja I, Ziewiecki R, Balicki S, Matulová M, Capek P et al. The polyphenolic-polysaccharide complex of Agrimonia eupatoria L. as an indirect thrombin inhibitor - isolation and chemical characterization. Int J Biol Macromol. 2019;125:124-32. doi: 10.1016/j.ijbiomac.2018.12.017.

40. Granica S, Krupa K, Kłębowska A, Kiss AK. Development and validation of HPLC-DAD-CAD-MS(3) method for qualitative and quantitative standardization of polyphenols in Agrimoniae eupatoriae herba (Ph. Eur.). J Pharm Biomed Anal. 2013;86:112-22. doi: 10.1016/j.jpba.2013.08.006.

41. Sytar O, Bruckova K, Hunkova E, Zivcak M, Konate K, Brestic M. The application of multiplex fluorimetric sensor for the analysis of flavonoids content in the medicinal herbs family Asteraceae, Lamnaceae, Rosaceae. Biol Res. 2015;48(1):5. doi: 10.1186/s0117-6287-48-5.

42. Muruzović M, Miladenović KG, Stefanović OD, Vasić SM, Ćomić LR. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J Food Drug Anal. 2016;24(3):539-47. doi: 10.1016/jjfda.2016.02.007.

43. Huzio NM, Grytsyk AR. Research of the amino acid composition of Agrimonia eupatoria. The Pharma Innovation Journal. 2015;4(2):28-9.

44. Feng XL, He YB, Liang YZ, Wang YL, Huang LF, Xie JW. Comparative analysis of the volatile components of Agrimonia eupatoria from leaves and roots by gas chromatography-mass spectrometry and multivariate curve resolution. J Anal Methods Chem. 2013;2013:246986. doi: 10.1155/2013/246986.

45. Kuczmannová A, Gál P, Varinska L, Treml J, Kovač L, Novotný M, et al. Agrimonia eupatoria L. and Cynara cardunculus L. water infusions: phenolic profile and comparison of antioxidant activities. Molecules. 2015;20(11):20538-50. doi: 10.3390/molecules201115715.

46. Santos TN, Costa G, Ferreira JP, Liberal J, Francisco V, Paranhos A, et al. Antioxidant, anti-inflammatory, and analgesic activities of Agrimonia eupatoria L. Infusion. Evid Based Complement Alternat Med. 2017;2017:8309894. doi: 10.1155/2017/8309894.

47. Lee KY, Hwang L, Jeong EJ, Kim SH, Kim YC, Sung SH. Effect of neuroprotective flavonoids of Agrimonia eupatoria on glutamate-induced oxidative injury to HT22 hippocampal cells. Biosci Biotechnol Biochem. 2010;74(8):1704-6. doi: 10.1271/bibi.100200.

48. Correia H, González-Paramás A, Amaral MT, Santos-Buelga C, Batista MT. Polyphenolic profile characterization of Agrimonia eupatoria L. by HPLC with different detection devices. Biomed Chromatogr. 2006;20(1):88-94. doi: 10.1002/bmc.533.

49. Bilia AR, Palme E, Marsili A, Pistelli L, Morelli I. A flavonol glycoside from Agrimonia eupatoria. Phytochemistry. 1993;32(4):1078-9. doi: 10.1016/0031-9422(93)85262-P.

50. Kubinová R, Švajdlenka E, Jankovská D. Anticholinesterase, antioxidant activity and phytochemical investigation into aqueous extracts from five species of Agrimonia genus. Nat Prod Res. 2016;30(10):1174-7. doi: 10.1080/14786419.2015.1043552.

51. Ivanova D, Tasinov O, Vankova D, Kiselova-Kaneva Y. Antioxidative potential of Agrimonia eupatoria L. Medicine. 2011;1(1):20-4.

52. Gião MS, Gomes S, Madureira AR, Faria A, Pestana D, Calhau C, et al. Effect of in vitro digestion upon the antioxidant capacity of aqueous extracts of Agrimonia eupatoria, Rubus idaeus, Salvia sp. and Satureja montana. Food Chem. 2012;131(3):761-7. doi: 10.1016/j.foodchem.2011.09.030.

53. Gião MS, Pestana D, Faria A, Guimarães JT, Pintado ME, Calhau C, et al. Effects of extracts of selected medicinal plants upon hepatic oxidative stress. J Med Food. 2010;13(1):131-6. doi: 10.1089/jmf.2008.0323.

54. Bajer T, Adam M, Galla L, Ventura K. Comparison of various extraction techniques for isolation and determination of isoflavonoids in plants. J Sep Sci. 2007;30(1):122-7. doi: 10.1002/jssc.200600306.

55. Santos T, Ferreira JP, Costa G, Caramona M, Batista T, Vitória I, et al. Evaluation of Agrimonia eupatoria L. as analgesic and anti-inflammatory on in vivo models. 6th European Congress of Pharmacology (EPHAR); 336P Granada Congress and Exhibitions Centre; 2012.

56. Bensch K, Tiralongo J, Schmidt K, Matthias A, Bone KM, Lehmann R, et al. Investigations into the antiadhesive activity of herbal extracts against Campylobacter jejuni. Phytother Res. 2011;25(8):1125-32. doi: 10.1002/ptr.3384.

57. Ghaima KK. Antibacterial and wound healing activity of some Agrimonia eupatoria extracts. Baghdad Sci J. 2013;10(1):152-60.
58. Kuczmannová A, Balažová A, Račanská E, Kameníková M, Fialová S, Majerník J, et al. *Agrimonia eupatoria* L. and *Cynara cardunculus* L. water infusions: comparison of anti-diabetic activities. Molecules. 2016;21(5). doi: 10.3390/molecules21050564.

59. Watkins F, Pendry B, Sanchez-Medina A, Corcoran O. Antimicrobial assays of three native British plants used in Anglo-Saxon medicine for wound healing formulations in 10th century England. J Ethnopharmacol. 2012;144(2):408-15. doi: 10.1016/j.jep.2012.09.031.

60. Komiazyk M, Palczewska M, Sitkiewicz I, Pikuła S, Groves P. Neutralization of cholera toxin by Rosaceae family plant extracts. BMC Complement Altern Med. 2019;19(1):140. doi: 10.1186/s12906-019-2540-6.

61. Lee KH, Rhee KH. Anti-nociceptive effect of *Agrimonia eupatoria* extract on a cisplatininduced neuropathic model. Afr J Tradit Complement Altern Med. 2016;13(5):139-44. doi: 10.21010/ajtcam.v13i5.18.

62. Supuka P, Marcinčák S, Popelka P, Petrovič V, Molnár L, Maskalová I, et al. The effects of adding agrimony and sage extracts to water on blood biochemistry and meat quality of broiler chickens. Acta Vet Brno. 2015;84(2):119-24. doi: 10.2754/avb201584020119.

63. Fejerčáková A, Vašková J, Bača M, Vaško L, Marcinčák S, Hertelyová Z, et al. Effect of dietary microbially produced gamma-linolenic acid and plant extracts on enzymatic and non-enzymatic antioxidants in various broiler chicken organs. J Anim Physiol Anim Nutr (Berl). 2014;98(5):860-6. doi: 10.1111/jpn.12146.

64. Petrović V, Marincak S, Popelka P, Simkova J, Martonova M, Buleca J, et al. The effect of supplementation of clove and agrimony or clove and lemon balm on growth performance, antioxidant status and selected indices of lipid profile of broiler chickens. J Anim Physiol Anim Nutr (Berl). 2012;96(6):970-7. doi: 10.1111/j.1439-0396.2011.01207.x.

65. Cho YM, Kwon JE, Lee M, Lea Y, Jeon DY, Kim HJ, et al. *Agrimonia eupatoria* L. (*Agrimonia*) extract alters liver health in subjects with elevated alanine transaminase levels: a controlled, randomized, and double-blind trial. J Med Food. 2018;21(3):282-8. doi: 10.1089/jmf.2017.4054.

66. Hawrelak JA, Myers SP. Effects of two natural medicine formulations on irritable bowel syndrome symptoms: a pilot study. J Altern Complement Med. 2010;16(10):1065-71. doi: 10.1089/acm.2009.0090.

67. Ivanova D, Tasinov O, Vankova D, Kislova-Kaneva Y. *Agrimonia eupatoria* L. extract modulates glutamate-cysteine ligase and glutathione peroxidase expression in 3T3-L1 cells. Bulg J Agric Sci. 2013;19(2):171-4.

68. Hou Q, He WJ, Hao HJ, Han QW, Chen L, Dong L, et al. The four-herb Chinese medicine ANBP enhances wound healing and inhibits scar formation via bidirectional regulation of transformation growth factor pathway. PLoS One. 2014;9(12):e112274. doi: 10.1371/journal.pone.0112274.

69. Čurlík J, Kolesár M, Ďurža O, Hiller E. Dandelion (*Taraxacum officinale*) and Agrimony (*Agrimonia eupatoria*) as indicators of geogenic contamination of flysch soils in Eastern Slovakia. Arch Environ Contam Toxicol. 2016;70(3):475-86. doi: 10.1007/s00244-015-0206-z.