Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Formaggio, J.A. and Barrett, J. “Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment.” Physics Letters B 706, no. 1 (November 2011): 68–71. © 2011 Elsevier B.V.

As Published
http://dx.doi.org/10.1016/j.physletb.2011.10.069

Publisher
Elsevier

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/108390

Terms of Use
Creative Commons Attribution 3.0 Unported licence

Detailed Terms
http://creativecommons.org/licenses/by/3.0/
Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment

J.A. Formaggio *, J. Barrett

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

A R T I C L E I N F O

Article history:
Received 7 June 2011
Received in revised form 27 October 2011
Accepted 28 October 2011
Available online 4 November 2011
Editor: W. Haxton

A B S T R A C T

The KArlsruhe TRItium Neutrino experiment (KATRIN) combines an ultra-luminous molecular tritium source with an integrating high-resolution spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the electron neutrino mass is 200 meV at 90% C.L. With such unprecedented resolution, the experiment is also sensitive to physics beyond the Standard Model, particularly to the existence of additional sterile neutrinos at the eV mass scale. A recent analysis of available reactor data appears to favor the existence of such a sterile neutrino with a mass splitting of $|\Delta m^2_{\text{sterile}}| \geq 1.5 \text{ eV}^2$ and mixing strength of $\sin^2 2\theta_{\text{sterile}} = 0.17 \pm 0.08$ at 95% C.L. Upcoming tritium beta decay experiments should be able to rule out or confirm the presence of the new phenomenon for a substantial fraction of the allowed parameter space.

* Corresponding author.
E-mail address: josephf@mit.edu (J.A. Formaggio).

© 2011 Elsevier B.V. Open access under CC BY license.
2. Sterile neutrino signatures in beta decay

The most sensitive direct searches for the electron neutrino mass up to now are based on the investigation of the electron spectrum of tritium β-decay. In the presence of mixing, the electron neutrino is a combination of the mass eigenstates v_i with masses m_i such that $v_\ell = \sum_i U_{\ell i} v_i$. The corresponding electron energy spectrum is given by

$$\frac{dN}{dK_e} \propto F(Z, K_e) \cdot p_e \cdot (K_e + m_e) \cdot (E_0 - K_e) \times \sum_i |U_{ei}|^2 \sqrt{(E_0 - K_e)^2 - m_i^2} \cdot \Theta(E_0 - K_e - m_i)$$

where K_e denotes the electron kinetic energy, p_e is the electron momentum, m_e is the electron mass, E_0 is the endpoint energy of the $^3\text{H}_2 \rightarrow (^3\text{He}^4\text{H})^+ + e^- + \nu_e$ decay, $F(Z, K_e)$ is the Fermi function, taking into account the Coulomb interaction of the outgoing electron in the final state, Z is the atomic number of the final state, Θ is the step function imposed by energy conservation, and U_{ei} is the element from the PMNS mixing matrix. As both the matrix elements and $F(Z, K_e)$ are independent of the neutrino mass, the dependence of the spectral shape on m_i is given solely by the phase space factor. The bound on the neutrino mass from the tritium β-decay is independent of whether the neutrino is a Majorana or a Dirac particle.

It is possible to define an effective kinematic mass term, m_β, which is the incoherent sum of the neutrino masses, $m_\beta = \sum_i |U_{ei}|^2 m_i^2$. As a result, the electron spectrum becomes dependent upon a single, effective mass parameter. This approximation works well when the mass splittings are well below the resolution achievable by the experiment [8].

The reactor neutrino anomaly seems to indicate the possibility of a fourth sterile neutrino with a small (non-zero) mixing and relatively large mass splitting, at least compared to the active neutrinos. We can reformulate the above expression to better highlight the presence of such a splitting. Let us define an average lower and upper mass regime, \bar{m}_L and \bar{m}_U, as follows:

$$\bar{m}_L^2 = \frac{\sum_{i=1}^{N_L} |U_{ei}|^2 m_i^2}{\sum_{i=1}^{N_L} |U_{ei}|^2}$$

(1)

$$\bar{m}_U^2 = \frac{\sum_{i=N_L+1}^{N} |U_{ei}|^2 m_i^2}{\sum_{i=N_L+1}^{N} |U_{ei}|^2}$$

(2)

where N_L is the number of neutrino masses on the lower mass scale and N is the total number of neutrino species. Taking advantage of the unitarity condition, $\sum_{i=1}^{N} |U_{ei}|^2 = 1$, and letting $|U_S|^2 = \sum_{i=N_L+1}^{N} |U_{ei}|^2$, we can re-write the decay phase as:

$$\phi(|U_S|^2, \bar{m}_L, \bar{m}_U) \simeq z^2 \left(1 - |U_S|^2\right) \sqrt{1 - \frac{\bar{m}_L^2}{z^2}} \cdot \Theta(z - \bar{m}_L)$$

$$+ |U_S|^2 \sqrt{1 - \frac{\bar{m}_U^2}{z^2}} \cdot \Theta(z - \bar{m}_U)$$

(3)

where $z = (E_0 - K_e)$. We consider just the case where only one large splitting is present whose scale is dictated by $m_0^2 = \bar{m}_U^2 - \bar{m}_L^2 \simeq \Delta m_{32}^2$. Note that this formulation is relatively insensitive to the details of the splitting and ordering of the mass spectrum, as long as the smaller splittings are below the resolution of the experiment. For the case of one single sterile neutrino, such as posited by 3 + 1 models [9], it is possible to express the amplitude $|U_S|^2$ in terms of a mixing angle analogous to that of ordinary neutrino mixings:

$$\sin^2 2\theta_S = 4|U_S|^2(1 - |U_S|^2)$$

(4)

The mixing angle $\sin^2 2\theta_S$ mirrors that employed by Mention et al., though it should be stressed that tritium beta decay experiments are primarily sensitive to the effective mass splitting.

3. Analysis and discussion

In this Letter, we primarily focus on the sensitivity of the KATRIN neutrino mass experiment to the reactor neutrino anomaly. The KATRIN experiment is based on technology developed by the Mainz [10] and Troitsk [11] tritium beta decay experiments. These experiments used a so-called MAC-E-Filter (Magnetic Adiabatic Collimation combined with an Electrostatic filter). This technology draws the isotropic electrons from a decay or capture event along magnetic field lines through a decreasing magnetic field so that the cyclotron motion of the electrons around the magnetic field lines is transformed into longitudinal motion along the magnetic field lines. A retarding potential is applied such that only electrons with energy greater than the retarding potential are transmitted to an electron counting detector. Because the KATRIN experiment measures the integral beta decay spectrum above the retarding potential, the electron spectrum is really the convolution of the β electron spectrum and its transmission function of the detector. The energy resolution of KATRIN is projected to be 0.93 eV. The effective tritium source strength is equivalent to 3.8×10^{18} tritium molecules, or an equivalent mass of approximately $\sim 40 \mu g$. KATRIN also expects a small but finite background rate, of order 10 mHz in the signal region of interest. Further details on the experiment can be found within the KATRIN Design Report [12].

Since the source involves the presence of molecular $^3\text{T}_2$ gas, one must include any corrections to the endpoint energy due to interactions with the molecular daughter molecule following the tritium decay. An accounting of these states is given in [13]. Of most relevance are the effects of the rotational–vibrational contributions from decays to the ground state, which introduce a mean excitation energy of 1.7 eV with an inherent broadening of 0.36 eV. In this analysis, the final states are taken into account via a summation over the states of the He^+T molecule, each final state weighted by the probability for that state occurring. Ionization energy losses also impose a practical upper limit on the search for a large mass splitting above 13 eV.

The sensitivity of KATRIN to sterile neutrinos can be scaled directly from the experiment's sensitivity to the degenerate mass scale, σ_m; as the two mass scales $(m_0^2, |U_S|^2)$ are related roughly as $\sigma_m/(|U_S|^2)$ and σ_m/m_0^2, respectively. To calculate the sensitivity, however, we make use of a full simulation of the spectrum as seen by the experiment. Fig. 1 illustrates a sample convoluted spectrum. The spectrum is fit to a function of the same form as Eq. (3). An extended log-likelihood is calculated to compare a simulated 3-year KATRIN spectrum – with systematic variations – against a model beta decay spectrum. The data are fit from -15 eV to $+5 \text{ eV}$ from the endpoint kinetic energy, with the running time at each voltage dictated by the KATRIN optimal running scan, where the majority of the data is taken near the endpoint to provide enhanced statistical gain. The two mass scales $(\bar{m}_U$ and $\bar{m}_L)$, the sterile admixture $|U_S|^2$, the endpoint, the background rate and the overall decay amplitude are treated as free parameters. Dominant systematics errors such as high voltage stability, magnetic field precision, the effect of final states, and the error on the number of available tritium atoms are included in the analysis.
To determine the potential sensitivity of KATRIN to low mass sterile neutrinos, we compare the relative likelihood (\(\mathcal{L} \)) between the sterile and non-sterile models:

\[
\Delta \mathcal{L} = \mathcal{L}(U_S^2, \bar{m}_U, \bar{m}_L) - \mathcal{L}(m_\beta).
\]

The distortion caused by a non-zero \(|U_S|^2 \) is statistically distinguishable from both the zero mass case and the non-sterile scenario (\(|U_S|^2 = 0 \)). Although the best fit island suggested by the reactor anomaly data \((\Delta m^2_S > 1.5 \text{ eV}^2) \) is below the 90\% C.L. reach of KATRIN, the tritium measurement removes a substantial fraction of the allowed phase space. KATRIN is able to place a lower limit on the mixing angle \(\sin^2(2\theta_S) \geq 0.08 \) at the 95\% C.L. for mass splitting \(\Delta m^2_S \geq 4 \text{ eV}^2 \) after three years of data taking (see Fig. 2). The final sensitivity curves are somewhat sensitive to the data running model used, with the greatest sensitivity gained in the planned optimal running scenario (versus a more uniform run time distribution). These results are consistent with an earlier sterile neutrino sensitivity study proposed for present and next generation beta decay experiments [9,14].

4. Summary

An observation of a kink in the beta decay spectrum, combined with existing oscillation data, would indicate strong evidence for the existence of a light sterile neutrino. KATRIN is an relatively unique position to address the reactor neutrino anomaly. The nature of the measurement itself is essentially orthogonal to that provided by rate measurements obtained from reactor data. The KATRIN experiment is also able to provide results on the reactor anomaly in a relatively short time scale. Should a signal manifest itself in the data, the observation could be further confirmed by future beta decay experiments, such as MARE [15] and Project 8 [16]. It should be noted that if the MARE experiment were to employ the electron capture of \(^{163}\text{Ho}\) in place of beta decay of \(^{187}\text{Re}\), their measurement would also be able to probe differences between neutrino and antineutrinos in a model-independent manner. Other techniques, such as the study of coherent scattering using low energy intense mono-energetic neutrino sources also appears promising [17]. A more in-depth study of the reactor beta decay spectrum – essentially a follow-up to the ILL measurement program – would also strengthen the case for the observation.

Acknowledgements

The authors would like to thank Andre de Gouvea, Georgia Karagiorgi and the MIT Neutrino and Dark Matter Group for insightful discussions on the implications of the reactor anomaly. This work is supported by the U.S. Department of Energy under Grant No. DE-FG02-06ER-41420.

References

[1] K. Nakamura, et al., Particle Data Group, J. Phys. G 37 (2010) 075021.
[2] G. Mention, et al., arXiv:1101.2755 [hep-ex], 2011.
[3] P. Anselmann, et al., GALLEX Collaboration, Phys. Lett. B 357 (1995) 237.
[4] J. Abdurashitov, et al., Phys. Rev. C 73 (2006) 045805.
[5] A. Aguilar-Arevalo, et al., MiniBooNE Collaboration, Phys. Rev. Lett. 98 (2007) 231801, arXiv:0704.1500.
[6] A. Aguilar-Arevalo, et al., MiniBooNE Collaboration, Phys. Rev. Lett. 105 (2010) 181801, arXiv:1007.1150.
[7] J. Maricic, LBNE DUSEL Collaboration, J. Phys.Soc. Jpn. 80 (2011) 012109.
[8] Y. Farzan, A.Y. Smirnov, Phys. Lett. B 557 (2003) 224.
[9] A. de Gouvea, et al., Phys. Rev. D 75 (2007) 013003.
[10] C. Kraus, et al., Eur. Phys. J. C – Particles and Fields 40 (2005) 447.
[11] V. Lobashev, et al., Nucl. Phys. B (Proc. Suppl.) 91 (2001) 280.
[12] J. Angrik, et al., Wissenschaftliche Berichte FZKA 7090 (2005).
[13] A. Saenz, S. Jonsell, P. Froelich, Phys. Rev. Lett. 84 (2000) 242.
[14] A.S. Riis, S. Hannestad, JCAP 1102 (2011) 011.
[15] A. Alessandrello, et al., Phys. Rev. Lett. 82 (1999) 513.
[16] B. Monreal, J. Formaggio, Phys. Rev. D 80 (2009) 051301.
[17] J.A. Formaggio, E. Figueroa-Feliciano, A.J. Anderson, arXiv:1107.3512 [hep-ex], 2011.