EFFECT OF VOLUNTARY EXERCISE ON PHYSIOLOGICAL FUNCTION AND FEEDING BEHAVIOR OF MICE ON A 20% CASEIN DIET OR A 10% CASEIN DIET

Masanori YASHIRO and Shuichi KIMURA

Laboratory of Nutrition, Faculty of Agriculture, Tohoku University, Sendai, Miyagi 980, Japan
(Received August 21, 1978)

Summary The effects of voluntary exercise on growth and food intake, body composition, organ weight, and fatty acid composition of adipose tissue of mice fed on a 20% casein diet or a 10% casein diet were examined. The weight gain was greater for the 20% casein nonexercise group (20% NE) than that for the 20% casein exercise group (20% E), 10% casein exercise group (10% E) and 10% casein nonexercise group (10% NE). There were no significant differences between the groups except the 20% NE. In 20% E and 10% E, body fats decreased markedly. On the other hand, a very high ratio of protein was present in the body composition of both groups. In the 20% and 10% casein diet groups, food intake was increased by voluntary exercise, but there was no significant difference between 10% E and 10% NE except occasional periods during these experiments. After 6 weeks of age, 10% E had a tendency to undertake more voluntary exercise than 20% E, though the difference was not statistically significant. Development of the heart and gastrocnemius muscles was accelerated by voluntary exercise and epididymal fat tissue was markedly decreased.

Keywords voluntary exercise, low protein diet, growth, food intake, caloric intake, body composition

In recent years, it has been emphasized that physical exercises are necessary to maintain physical fitness and to prevent obesity or senescence. It seems that the main factors affecting physical fitness and health are dietary regimen and physical exercise. The problem of the relationship between nutrition and health or life-span has been studied by many researchers among whom the studies of MacCay et al. (1) and Berg and Simms (2) were excellent. Nevertheless, there are still many uncertainties with regard to the relationship between physical exercise and longevity.

1 山田正正，木村修一
or health from a nutritional point of view. Notably, there are very few reports about
the correlation between the protein: calorie ratio in diets, physical exercise and
health. It is, however, an interesting research problem.

Andik et al. reported that rats fed a 4.3% protein diet transferred into the cold
not only survived during the experimental period but also gained weight, though
rats on a 4.3% protein diet at room temperature failed to gain weight and all died
towards, or shortly after the end of the 6th week (3). Meyer and Hargus noted that
rats fed a 10% casein diet gained more weight in the cold (2°C) than at 26°C, whereas
the reverse was observed in rats fed a 25% casein diet (4). It may be postulated that a
cold environment allows animals to adapt to low protein diets because the increased
energy expenditure increases food intake and consequently raises the protein
content.

In addition, physical exercises possible increase energy expenditure and food
consumption. Therefore, it is expected in this context, that physical exercise,
especially voluntary exercise, may be able to modify the nutritional effect of dietary
protein levels in an animal. The present paper describes an investigation undertaken
as basic research for the effect of voluntary exercises on feeding behavior and
physiological function.

EXPERIMENTAL

Animals and diets. Weaning, male JCL: ICR mice (Japan Clea Inc., Tokyo),
weighing 13 to 15 g, were used in this experiment. For the experimental diet, the 20%
casein diet consisted of 20% casein, 56% potato starch, 13% sucrose, 5% soybean oil,
4% salt mixture, 1.8% vitamin mixture and 0.2% choline chloride. The 10% casein
diet was the same composition as the 20% casein diet except for 10% casein, 64%
potato starch and 15% sucrose. The two diets were isocaloric.

All mice were housed individually in wire net cages and fed a 20% casein diet for
one week. After this period, they were divided into four groups, designated
nonexercise group (20% NE) or exercise group (20% E) on the 20% casein diet and
nonexercise group (10% NE) or exercise group (10% E) on the 10% casein diet. The
number of mice in each group was ten. Both exercise groups were housed
individually in wire net cages with a revolving cage. The animals were kept
individually on the experimental diets for about 60 days. Throughout the
experiment, fresh diet and water were supplied ad libitum. Lighting was regulated to
provide 12 hr light and 12 hr darkness. Room temperature was maintained at
24°C ± 1°C.

The weight of every animal was measured on alternate days in the afternoon.
The food intake was measured twice a week.

Measurement of the amount of voluntary exercises. A revolving cage
(circumference: 44 cm, width: 6 cm) allowed the animals to exercise voluntarily. The
amount of voluntary exercise (running distance) was measured by an electric
counter, which records the rotation numbers of the revolving cage.
Removal of the organs and tissues. After the body length and tail length were measured, all mice were killed by ethyl ether anesthesia, and dissected. The heart, liver, kidneys, adrenals, stomach, spleen, epididymal fat tissue and gastrocnemius muscle were removed and weighed. At the same time, the length of the femur was measured with precision calipers. The eviscerated carcass and epididymal fat tissue were frozen at -20°C in a refrigerator until required for the analyses of carcass composition and fatty acid composition, respectively.

Analysis of eviscerated carcass composition. Water content was determined by the freeze-drying method. The crude fat was analyzed by the Soxhlet method. The nitrogen was analyzed according to the semimicro-Kjeldahl method.

RESULTS

The effects of voluntary exercise on the weight gains of mice fed a 20% or 10% casein diet

The weight gains of four groups during 5 weeks are shown in Fig. 1. The 20% NE group had a larger weight gain than the other three groups. The weight gains of the 20% E group and 10% E group were similar and that of the 10% NE group was...
the smallest of the four groups. The 20% NE group had significantly larger body weights than the 10% NE group from 6 to 7 weeks of age \((p < 0.05) \), but apart from that period no significant differences between the body weights of any group were observed.

Amount of voluntary exercise of mice fed a 20% or 10% casein diet

As shown in Fig. 2, until 6 weeks of age the running distance was short in both groups. Whereas after 6 weeks of age, the running distances showed a tendency to be twice as far as at 6 weeks of age in both groups. The running distances of the 10% E group had a tendency to be longer than the 20% E group. It was found that the running distances for both groups were longer in the dark than in the light.

Fig. 2. The amount of voluntary exercise in light and dark. ◊, 20% E (light); ■, 20% E (dark); ○, 10% E (light); ●, 10% E (dark)

The effect of voluntary exercise on food intake, calorie intake and protein intake

The food intake, calorie intake and protein intake of mice are shown in Table 1 and Fig. 3. During the experimental period, the average daily food intake of both diet groups was larger in the exercise groups than in the nonexercise groups. Food intake per 100 g body weight was similar. The 20% E group was significantly greater than the 20% NE group \((p < 0.01) \), but there were no significant differences between the 10% E and 10% NE groups. When food intake per 100 g body weight of the 20% casein diet groups was compared with the 10% casein diet groups, the 10% E and
Table 1. Effect of voluntary exercise on food intake, calorie intake and protein intake.

Group	Initial body weight (g)	Final body weight (g)	Average daily food intake g	Food intake g/100 g B.W.	Average daily calorie intake Cal	Cal/100 g B.W.	Average daily protein intake g	Protein intake g/100 g B.W.
20% E	15.7±1.0 (10)	31.2±3.2 (8)	5.1±0.6	21.5±1.3 * b	18.7±2.1	77.6±4.2 * b	1.02±0.10 * b	4.28±0.28 * b
20% NE	15.5±1.3 (10)	35.8±3.1 (8)	4.6±0.5 * a	19.2±0.9 * a	17.7±1.1	69.3±3.2 * a	0.92±0.10 * a	3.81±0.16 * a
10% E	15.9±1.8 (10)	31.7±2.5 (8)	5.5±0.5	24.6±2.6	20.1±1.8	89.7±8.8	0.55±0.06	2.45±0.22
10% NE	15.7±0.7 (10)	31.7±2.1 (8)	3.1±0.5	23.0±2.2	18.5±1.9	83.5±8.3	0.31±0.05	2.31±0.21

20% E, 20% casein diet exercise group; 20% NE, 20% casein diet nonexercise group; 10% E, 10% casein diet exercise group; 10% NE, 10% casein diet nonexercise group.

Number of mice is in parenthesis.

* p<0.05, * p<0.01 Between both diets.
 b p<0.05, b p<0.01 Between nonexercise and exercise groups.
10% NE group exceeded the 20% E and 20% NE groups (10% E vs. 20% E; p < 0.01, 10% NE vs. 20% NE; p < 0.01). In the results of food intake twice weekly, as shown in Fig. 3, food intake in both groups tended to be greater in the exercise groups than in the nonexercise groups and significant differences between both diet groups or nonexercise and exercise groups were observed for several periods. Food intake per 100 g body weight was similar. Calorie intake per 100 g body weight of the 20% E group was significantly greater than that of the 20% NE group (p < 0.01) and there were significant differences between the 20% casein diet groups and the 10% casein diet groups (20% E vs. 10% E; p < 0.01, 20% NE vs. 10% NE; p < 0.01). Protein intake was significantly greater in the 20% E group than in the 20% NE group (p < 0.05); protein intake per 100 g body weight was similar. When protein intake and protein intake per 100 g body weight of the 20% casein diet groups were compared with those of the 10% casein diet groups, the 20% E and 20% NE groups were found to greatly exceed the 10% E and 10% NE groups.

The effect of voluntary exercise on the carcass composition of mice fed a 20% or 10% casein diet

Table 2 shows the contents of crude proteins, crude fats and water in the four groups. The exercise groups had lower percentages of body fat and higher percentages of protein and water than the nonexercise groups. These differences were statistically significant.

The effect of voluntary exercise on body length, tail length, bone length and organ or tissue weights

As shown in Table 3, there were no significant differences in body, tail and
Table 2. Effect of voluntary exercise on the body composition.

Group	Final body weight (g)	Eviscerated carcass weight (g)	% of wet eviscerated carcass		
			Protein	Fat	Water
20% E	31.2 ± 3.2	22.0 ± 2.2	20.4 ± 0.9b	9.6 ± 3.4b	62.5 ± 2.4b
20% NE	35.8 ± 3.1	25.1 ± 2.5	17.2 ± 1.4	21.2 ± 2.4	53.8 ± 4.9
10% E	31.7 ± 2.5	21.2 ± 2.1	20.4 ± 2.0b	11.2 ± 3.7b	60.9 ± 4.2a
10% NE	31.7 ± 2.1	21.7 ± 1.6	17.8 ± 1.2	20.8 ± 3.6	55.7 ± 3.0

Values are mean ± S.D. of eight mice.

Table 3. Effect of voluntary exercise on weights of organs, muscle and fat tissue.

	20% casein diet	10% casein diet		
	Nonexercise	Exercise	Nonexercise	Exercise
Heart (g)				
	0.12 ± 0.01	(0.35 ± 0.03)	0.15 ± 0.04	(0.47 ± 0.09)
Lung (g)	0.17 ± 0.01	(0.48 ± 0.05)	0.18 ± 0.02	(0.58 ± 0.03)
Kidney (g)	0.46 ± 0.06	(1.29 ± 0.13)	0.55 ± 0.15	(1.77 ± 0.35)
Spleen (g)	0.08 ± 0.21	(0.21 ± 0.04)	0.11 ± 0.04	(0.36 ± 0.09)
Liver (g)	1.34 ± 0.18	(3.77 ± 0.48)	1.20 ± 0.16	(3.87 ± 0.53)
Adrenals (mg)	3.0 ± 0.9	(8.2 ± 2.1)	3.3 ± 1.1	(11.1 ± 3.4)
Gastrocnemius (g)	0.14 ± 0.04	(0.39 ± 0.09)	0.18 ± 0.02	(0.59 ± 0.07)
Epididymal (g)	1.23 ± 0.33	(3.41 ± 0.66)	0.58 ± 0.14	(1.85 ± 0.41)
Body length (cm)	10.2 ± 0.3	10.1 ± 0.3	10.1 ± 0.1	10.0 ± 0.3
Tail length (cm)	9.8 ± 0.5	9.5 ± 0.4	9.9 ± 0.4	9.5 ± 0.4
Femur (cm)	1.56 ± 0.04	1.60 ± 0.07	1.54 ± 0.05	1.57 ± 0.06

Values are mean ± S.D. of eight animals.

femur lengths among four groups. The 20% E and 10% E groups tended to have larger hearts than the 20% NE and 10% NE groups. Heart weight per 100 g body weight was significantly heavier in the 20% E group than in the 20% NE group (20% E vs. 20% NE; p < 0.01). With regard to the kidneys, those of the 20% casein diet
groups were significantly larger than those of the 10% casein diet groups (20% E vs. 10% E; \(p < 0.05 \), 20% NE vs. 10% NE; \(p < 0.01 \)). The spleens of the 20% E group were significantly greater than those of the 20% NE group (\(p < 0.05 \)); when the 20% E group was compared with the 10% E group, there was a significant difference (\(p < 0.05 \)). The adrenals of the 10% casein diet groups were heavier than those of the 20% casein diet groups. For adrenals and adrenals per 100 g body weight, there were significant differences between the 20% NE and 10% NE groups (\(p < 0.01 \)). When epididymal fat tissues of the 10% E and 20% E groups were compared with those of the 10% NE and 20% NE groups, epididymal fat tissues of the E groups were significantly less than those of the NE groups (20% E vs. 20% NE; \(p < 0.01 \), 10% E vs. 10% NE; \(p < 0.01 \)). The proportion of decrease in fat tissue in the 20% E group was 53% and that in the 10% E group was 40%. Fat tissues per 100 g body weight showed similar results. In both diet groups, the gastrocnemius muscle showed markedly heavier values in the exercise groups than in the nonexercise groups.

DISCUSSION

Previously, it has been found that the body weight gains of rats are decreased by training (5, 6). In the present study, the 20% E group had smaller body weight gains than the nonexercise group. As for the reason for reduced body weight gains, it is thought that the deposition of fat was less because the calorie consumption was increased by exercise. The strongest proof appears to be that, in the present study, the carcass fat content and adipose tissue were at low levels in the exercise group, whereas there was no difference between the body weight gains of the 10% E and NE groups. This may be due to the fact that the deposition of fat in adipose tissue was less in the 10% NE group than in the 20% NE group and body protein in the 10% E group was significantly greater than in the 10% NE group. Formerly, there have been observations demonstrating that enforced exercise by treadmill depresses food intake in spite of the increased energy expenditure (7, 8). Nevertheless, Suzuki et al. (9) have reported that voluntary exercise of rats increased food intake in accordance with the amount of exercise. The present study also showed that, generally, the food intake of the exercise groups tended to be larger than that of the nonexercise groups and, furthermore, that it was larger in the 10% casein diet groups than in the 20% casein diet groups. Moreover, the body weight gains of the 10% E group increased at levels approaching those of the 20% E group. Therefore, it is surmised that a low protein diet at the 10% casein level does not exert a serious influence on the growth of animals if food intake or calorie intake increases. In our experiments, it was observed that body weight gains in all four groups increased rapidly until 6 weeks of age and thereafter became slower. On the other hand, the results showed that the amount of voluntary exercise in both groups increased rapidly after 6 weeks of age. This fact suggests that animals during the development of organs, tissues and bones, namely animals in the growing period, have no
physiological functions adequate for strenuous physical exercise. As mentioned in Results, the amount of physical exercise of the 10% E group tended to be larger than that of the 20% E group after 6 weeks of age. Fuge et al. (10) reported that rats fed an 8% casein diet were able to run significantly further than rats fed a 22% casein diet in an all-out exercise test and they suggested the possibility that the lower body weight of rats fed an 8% casein diet may have played a role in enabling them to outrun rats fed a 22% casein diet; more rapid diffusion of lactate from the muscles of the protein-deficient animals may be a factor contributing to their larger capacity for prolonged running. Therefore, factors as mentioned above seem to be the cause of the present experimental result, but a precise explanation could not be obtained.

In the present investigation, it was found that the development of organs and muscles of exercise groups was better than that of nonexercise groups. Particularly, development of the gastrocnemius was accelerated by physical exercise. It has also been reported that the development of organs and bones of rats is retarded by exercise (11). The discrepancy with the above results may be due to disparity of species and the distinction between enforced exercise and voluntary exercise.

As described in Results, it was found that the weight of epididymal fat tissue and the ratio of body fat were decreased markedly by physical exercise. However, Suzuki and Koyanagi (11) noted that epididymal fat tissue was not affected by training, although subcutaneous fat tissue, perirenal fat tissue, etc. were decreased. In the present investigation, since adipose tissues except for epididymal fat tissue were not examined, the effect of physical exercise on those fat tissues was not shown. The two results on epididymal fat tissue above contradict each other; this discrepancy may result from the amount of exercise, disparity of species, or the distinction between voluntary and enforced exercise, etc.

The facts described above suggested that animals fed a low protein diet at the 10% casein level may easily adapt to physical exercise and increasing food intake. At the same time, it is expected that physical exercise may become a factor contributing to the growth and development of animals in a state of malnutrition. Currently, the problems concerned with more severe protein-deficient diets are being examined.

REFERENCES

1) McCay, C. M., Crowell, M. F., and Maynard, L. A. (1935): The effect of retarded growth upon the length of life-span and upon the ultimate body size. J. Nutr., 10, 63–79.
2) Berg, B. N., and Simms, H. S. (1960): Longevity and onset of disease with different levels of food intake. J. Nutr., 71, 255–263.
3) Andik, I., Donhoffer, S., Farkas, M., and Schmidt, P. (1963): Ambient temperature and survival on a protein-deficient diet. Br. J. Nutr., 17, 257–261.
4) Meyer, J. H., and Hargus, W. A. (1959): Factors influencing food intake of rats fed low-protein rations. Am. J. Physiol., 197, 1350–1352.
5) Fukuda, N., and Sugano, M. (1976): Effect of the combination of exercise and dietary fats on plasma and liver lipids in rats. Nippon Nogeikagaku Kaishi (J. Agric. Chem. Soc. Jpn.), 50, 247–251.
6) SUZUKI, M., and KOYANAGI, T. (1966): Effects of short duration training on adipose tissues and the lipid composition of cardiac and skeletal muscles of rats. *Eiyo To Shokuryo (J. Jpn. Soc. Food Nutr.).* 19, 26–29.

7) STEVENSON, J. A. F., BOX, B. M., FELEKI, V., and BEATON, J. R. (1966): Bout of exercise and food intake in the rat. *J. Appl. Physiol.*, 21, 118–122.

8) THOMAS, M. B., and MILLER, A. T., Jr. (1958): Adaptation to forced exercise in the rat. *Am. J. Physiol.*, 193, 350–354.

9) SUZUKI, S., OSHIMA, S., OHTA, F., TSUJI, K., TSUJI, E., and MITSUISHI, R. (1969): Experimental studies on the interrelationships of nutrition, physical exercise and health component. *Annu. Rep. Nat. Inst. Nutr. Tokyo*, 13, 3–10.

10) FUGE, K. W., EUGENE, L. C., III., PAUL, K. P., HOLLOSZY, J. O., and ROBERT, E. S. (1968): Effects of protein deficiency on certain adaptive responses to exercise. *Am. J. Physiol.*, 215, 660–663.

11) SUZUKI, M., and KOYANAGI, T. (1968): Effect of long duration training on several organs, adipose tissues and fatty acid composition of adipose tissue lipid in rats. *Eiyo To Shokuryo (J. Jpn. Soc. Food Nutr.).* 21, 55–59.