SOME OPTIMAL METHODS
WITH EIGHTH-ORDER CONVERGENCE
FOR THE SOLUTION OF NONLINEAR EQUATIONS

WEONBAE KIM* AND CHANGBUM CHUN**

Abstract. In this paper we propose a new family of eighth order optimal methods for solving nonlinear equations by using weight function methods. The methods of the family require three function and one derivative evaluations per step and has order of convergence eight, and so they are optimal in the sense of Kung-Traub hypothesis. Precise analysis of convergence is given. Some members of the family are compared with several existing methods to show their performance and as a result to confirm that our methods are as competitive as compared to them.

1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. To solve nonlinear equations, iterative methods such as Newton’s method are usually used. Throughout this paper we consider iterative methods to find a simple root \( \xi \), i.e., \( f(\xi) = 0 \) and \( f'(\xi) \neq 0 \), of a nonlinear equation \( f(x) = 0 \), where \( f : I \subset \mathbb{R} \to \mathbb{R} \) for an open interval \( I \).

Newton’s method for the calculation of \( \xi \) is the most widely used iterative method defined by

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.
\]

It is well known (see e.g. Traub [1]) that this method is quadratically convergent.

---

Received September 20, 2016; Accepted October 13, 2016.
2010 Mathematics Subject Classification: Primary 41A25, 65D99.
Key words and phrases: Newton’s method, iterative methods, nonlinear equations, order of convergence, root-finding methods, extraneous fixed points.
Correspondence should be addressed to Changbum Chun, cbchun@skku.edu.
This work is supported by the Daejin University Research Grants in 2016.
Many modified methods of the Newton’s method have been proposed to improve the convergence order and computational efficiency, which is of practical importance, in recent years, see [2] and references therein. This was mainly motivated by the aim to achieve as high as possible order of convergence when using a fixed number of function evaluations per step, which is closely related to the optimal order of convergence in the conjecture introduced by Kung and Traub in 1974 [3]. A method using \( d \) evaluations is optimal if the order is\( 2^d - 1 \). Newton’s method (1.1) is optimal of order two. Optimal methods of order four were discussed in [2]. Optimal methods of order eight have been suggested and compared in the literature, see e.g. the books by Ostrowski [4], Traub [1] and Neta [2]. See also more results by Kim [5, 6], Cordero et al. [7, 8], and J. Džunić et al. [9, 10] who discussed a wide collection of eighth order methods.

In this paper, we develop a new family of optimal eighth-order methods based on weight functions approach. Each member of the family requires three evaluations of the function and one evaluation of its first derivative per iteration which is thus optimal in the sense of Kung-Traub conjecture. In the next section the family of methods is constructed and it is then proved that the family is of order eight. Numerical comparisons are made with several other existing eighth-order methods by experimenting with as many as 500 initial points and through numerical computations to demonstrate the efficiency and the performance of the presented methods.

2. A new family of optimal eighth-order methods

We consider here the new family of methods of the form

\[
\begin{align*}
  y_n &= x_n - \frac{f(x_n)}{f'(x_n)}, \\
  z_n &= x_n - q(r_n) \frac{f(x_n)}{f'(x_n)}, \\
  x_{n+1} &= z_n - \psi(r_n, t_n) \frac{f(z_n)}{f'(x_n)},
\end{align*}
\]

where \( r_n = \frac{f(y_n)}{f(x_n)} \), \( t_n = \frac{f(z_n)}{f(y_n)} \), and \( q(t) \) and \( \psi(t, s) \) are real-valued weight functions to be determined later.

For the methods defined by (2.1), we have the following analysis of convergence.
Some optimal methods with eighth-order convergence 665

Theorem 2.1. Let $\xi \in I$ be a simple zero in an open interval $I$ of a sufficiently differentiable function $f : I \to \mathbb{R}$. Let $e_n = x_n - \xi$. Then the new family of methods defined by (2.1) is of optimal eighth-order when

$$q(0) = 1, q'(0) = 1, q''(0) = 4, \psi(0, 0) = 1, \psi_{r_n}(0, 0) = 2, \psi_{r_n+t_n}(0, 0) = 2 + (1/3) q^{(3)}(0), q^{(4)}(0) = -8 q^{(3)}(0) + 96.$$

Proof. Let $e_n = x_n - \xi, e_n^y = y_n - \xi, e_n^z = z_n - \xi$ and $q^{(3)}(0) = \theta$. Using the Taylor expansion of $f(x)$ around $x = \xi$ and taking $f(\xi) = 0$ into account, we get

$$f(x_n) = f'(\xi) \left[ c_n + c_2 e_n^2 + c_3 e_n^3 + c_4 e_n^4 + c_5 e_n^5 + c_6 e_n^6 + c_7 e_n^7 + c_8 e_n^8 \right] + O(e_n^9),$$

and

$$f'(x_n) = f'(\xi) \left[ 1 + 2c_2 e_n + 3c_3 e_n^2 + 4c_4 e_n^3 + 5c_5 e_n^4 + 6c_6 e_n^5 + 7c_7 e_n^6 + 8c_8 e_n^7 \right] + O(e_n^8).$$

Dividing (2.2) by (2.3) gives

$$u_n = \frac{f(x_n)}{f'(x_n)} = e_n^2 - c_2 e_n^2 + (-2c_3 + 2c_3^2) e_n^3 + (-3c_4 + 7c_2 c_3 - 4c_3^3) e_n^4 + (10c_2 c_4 - 4c_5 + 6c_3^2 - 20c_3 c_2^2 + 8c_4^2) e_n^5 + (17c_4 c_3 - 28c_4^2 + 13c_2 c_3 - 5c_5 - 33c_2 c_3^2 + 52c_3 c_2^2 - 16c_5^2) e_n^6 + (-92c_3 c_2 e_4 + 22c_3 c_5 - 18c_5^3 + 126c_3 c_2^2) e_n^7 + (-7c_4 - 118c_5 c_2 c_3 + 348c_4 c_3 c_2^2 + 19c_2 c_7 - 64c_2 c_4^2 + 31c_4 c_5 - 75c_4 c_3^2 - 176c_4^2 c_2 + 92c_3 c_2^2 + 27c_6 c_3 - 44c_6 c_2^2 + 135c_2 c_3^2 - 408c_3 c_2^2 + 304c_3 c_2^2 - 64c_2^2) e_n^8 + O(e_n^9),$$

from which, we get

$$e_n^y = c_2 e_n^2 - (2c_2^2 - 2c_3) e_n^3 + (3c_4 - 7c_2 c_3 + 4c_3^3) e_n^4 + (10c_2 c_4 - 4c_5 + 6c_3^2 - 20c_3 c_2^2 - 8c_4^2) e_n^5 + (17c_4 c_3 - 28c_4^2 + 13c_2 c_3 - 5c_5 - 33c_2 c_3^2 + 52c_3 c_2^2 - 16c_5^2) e_n^6 + (92c_3 c_2 c_4 - 22c_3 c_5 + 18c_5^3 - 126c_3 c_2^2 + 128c_3 c_2^4) e_n^7 + (-12c_4^2 - 72c_4 c_2^2 + 36c_4 c_3^2 + 6c_7 - 16c_2 c_6 - 32c_3^2) e_n^8 + (64c_2^3 + 7c_3 + 118c_5 c_2 c_3 - 348c_4 c_3 c_2^2 - 19c_2 c_7 + 64c_2 c_4^2 - 31c_4 c_5 + 75c_4 c_3^2 + 176c_4 c_2^2 - 92c_3 c_2^3) e_n^9 - 27c_5 c_3 + 44c_6 c_2^2 - 135c_2 c_3^2 + 408c_3 c_2^2 - 304c_3 c_2^2 e_n^8 + O(e_n^9).$$

Writing the Taylor’s expansion for $f(y_n)$ and using (2.5), we obtain
This then yields Taylor’s expansion of \(q(0) = 1, q'(0) = 1, q''(0) = 4, q^{(3)}(0) = \theta, q^{(4)}(0) = 96 - 8\theta\) in (2.7) gives

\[
\begin{align*}
\frac{r_n}{f(x_n)} &= c_2e_n + (2c_3 - 3c_4^2)c_4 + (3c_4 - 10c_2c_3 + 8c_2^2)c_4^3 \\
&\quad + (-14c_2c_4 + 4c_5 - 8c_3^3 + 37c_3^2c_2 - 20c_3^3)c_4^4 \\
&\quad + (-22c_3c_4 + 51c_4 c_2 - 18c_2c_5 + 55c_3^2c_2^2 - 118c_3c_2^3) e_5 \\
&\quad + 5c_6 + 48c_3^2) e_5^5 + (6c_7 + 150c_4 c_2c_3 - 22c_2c_6 \\
&\quad - 15c_4^2 - 163c_3c_2^2 - 28c_5c_3 + 65c_3^2c_2^2 - 252c_3c_2^4 \\
&\quad + 344c_3c_4^2 + 26c_3^2 - 112c_6^2)e_6 + O(e_6^3).
\end{align*}
\]

Using \(q(0) = 1, q'(0) = 1, q''(0) = 4, q^{(3)}(0) = \theta, q^{(4)}(0) = 96 - 8\theta\) in (2.7) gives

\[
\begin{align*}
q(r_n) &= 1 + r_n + 2r_n^2 + \frac{\theta}{6} r_n^3 + \frac{96 - 8\theta}{24} r_n^4 + O(r_n^5).
\end{align*}
\]

This then yields

\[
\begin{align*}
e_5 &= c_5 - q(r_n)u_n \\
e_5 &= ze_4e_4^4 + z e_5 e_5^5 + ze_6 e_6^6 + ze_7 e_7^7 + ze_8 e_8^8 + O(e_9^9),
\end{align*}
\]

where

\[
\begin{align*}
ze_4 &= (5 - (1/6)\theta)c_2^3 - c_2c_3, \\
ze_5 &= -2c_2^3 + (-\theta + 32)c_2^3c_3 + (2\theta - 40)c_3^3 - 2c_2c_4, \\
ze_6 &= (-7c_3 + (48 - (3/2)\theta)c_2^2)c_4 + (-2\theta + 66)c_2c_3 + (15\theta - 294)c_3^2c_3 \\
&\quad + (-44/3)\theta + 222)c_3^2 - 3c_2c_5, \\
ze_7 &= (-10c_3 + (-2\theta + 64)c_2^2)c_5 - 6c_2^3 + ((22\theta - 424)c_3^3 + (-6\theta + 96)c_2c_3)c_4
\end{align*}
\]
where

\[ + (44 - (4/3)\theta)e_3^3 + (42\theta - 800)c_2^2 c_3 + (1928 - (394/3)\theta)c_2^2 c_3 
+ (84\theta - 1060)e_2^3 - 4c_2 c_6, \]

so that, after elementary calculation,

\[ f(z_n) = f'(\xi)[e_n^2 + c_2(e_n^2)^2 + O((e_n^2)^3)] \]

where

\[ f(z) = (5 - (1/6)\theta)e_2^3 - c_2 c_3, \]
\[ f(z_5) = -2c_2^2 + (-\theta + 32)c_3^2 c_3 + (2\theta - 40)c_2^2 - 2c_2 c_4, \]
\[ f(z_6) = (-\theta + 66)c_2^2 c_3 + ((15\theta - 294)c_3^2 - 7c_4)c_3 + (-44/3\theta + 222)c_2^2 
+ (48 - (3/2)\theta)c_4 e_2^2 - 3c_2 c_5, \]
\[ f(z_7) = (44 - (4/3)\theta)c_3^3 + (42\theta - 800)c_2^2 c_3 + ((-6\theta + 196)c_4 c_2 - 10c_5 
+ (1928 - (394/3)\theta)c_2 c_3 + (84\theta - 1060)c_2^2 - 4c_2 c_6 
+ (22\theta - 424)c_4 c_2^2 + (-2\theta + 64)c_5 c_2^2 - 6c_2^2. \]

An easy calculation then produces

\[ t_n = \frac{f(z_n)}{f(y_n)} = T_2 e_n^3 + T_3 e_n^3 + T_4 e_n^4 + + T_5 e_n^5 + T_6 e_n^6 + O(e_n^7), \]

where

\[ f(z) = (5 - (1/6)\theta)e_2^3 - c_3, \]
\[ f(z_3) = (20 - (2/3)\theta)c_2 c_3 + ((5/3)\theta - 30)c_3^2 - 2c_4, \]
\[ f(z_4) = (29 - \theta)c_2 c_4 + ((-2/3)\theta + 19)c_3^2 + (-154 + (55/6)\theta)c_2^2 c_3 
+ (-21/2)\theta + 137)c_3^2 - 3c_5, \]
\[ f(z_5) = (38 - (4/3)\theta)c_2 c_5 + ((-216 + (40/3)\theta)c_2^2 + (54 - 2\theta)c_3)c_4 
+ ((50/3)\theta - 260)c_2^2 c_3 - 73\theta + 904)c_3^2 c_3 - 4c_4 + ((158/3)\theta - 576)c_2, \]
\[ f(z_6) = ((-279 + (35/2)\theta)c_2^2 + (70 - (8/3)\theta)c_3)c_5 + (38 - (3/2)\theta)c_2^3. \]
and 

\[(2.15) \quad \frac{f(z_n)}{f'(x_n)} = A_4\varepsilon_n^4 + A_5\varepsilon_n^5 + A_6\varepsilon_n^6 + A_7\varepsilon_n^7 + O(\varepsilon_n^8),\]

where

\[(2.16)\]
\[A_4 = (5 - (1/6)\theta)c_2^3 - c_2c_3,\]
\[A_5 = -2c_3^2 + (-\theta + 34)c_2^3c_3 + ((7/3)\theta - 50)c_1^4 - 2c_2c_4,\]
\[A_6 = (-7c_3 + (-3/2)\theta + 52)c_2^3c_4 + (73 - 2\theta)c_2^3c_3 + (-377 + (35/2)\theta)c_2^3c_3 + (322 - (58/3)\theta)c_2^5 - 3c_2c_3,\]
\[A_7 = (-10c_3 + (-\theta + 70)c_2^3)c_5 - 6c_2^2 + ((77/3)\theta - 548)c_2^3 + (220 - 6\theta)c_2c_3 + ((-4/3)\theta + 50)c_3^2 + (-1048 + 49\theta)c_2^2c_3^2 + ((-520/3)\theta + 2832)c_2^3c_3 + ((368/3)\theta - 1704)c_2^5 - 4c_2c_6.\]

Using \(\psi(0, 0) = 1, \psi_t(0, 0) = 2, \psi_{tt}(0, 0) = 1, \psi_{rt}(0, 0) = 4, \psi_{rr} = 2 + \frac{1}{2}\theta\) in Taylor’s expansion of \(\psi(r_n, t_n)\) about \((0, 0)\) gives

\[(2.17) \quad \psi(r_n, t_n) = \frac{1}{2}(2 + \frac{1}{3}\theta)r_n^2 + 4r_n t_n + \frac{1}{2}\psi_{tt}(0, 0)t_n^2 + 2r_n t_n + 1 + O(r_n^3, t_n^3).\]

Therefore, from (2.9), (2.15) and (2.17) with \(r_n\) and \(t_n\) replaced with (2.7) and (2.13), respectively, we obtain

\[(2.18) \quad \varepsilon_{n+1} = \frac{e_n^2 - \psi(r_n, t_n)f(z_n)}{f'(x_n)} = E_8\varepsilon_n^8 + O(\varepsilon_n^9),\]

where

\[(2.19) \quad E_8 = \frac{1}{332}c_2[6c_3 + (\theta - 30)c_2^2][\psi_{tt}(0, 0)(6c_3 + (\theta - 30)c_2^2)^2 + 12(-6c_3^2 - 6c_2c_4 - (\theta - 114)c_2^2c_3 + (13\theta - 318)c_2^4)],\]

which completes the proof. \(\square\)

By Theorem 2.1, our iteration scheme (2.1) with weight functions \(q\) and \(\psi\) satisfying the conditions
Some optimal methods with eighth-order convergence

(2.20) \[ q(0) = 1, q'(0) = 1, q''(0) = 4, q^{(3)}(0) = \theta, q^{(4)}(0) = -8\theta + 96, \]
\[ \psi(0,0) = 1, \psi_r(0,0) = 2, \psi_t(0,0) = 1, \psi_{rt}(0,0) = 4, \]
\[ \psi_{rr}(0,0) = 2 + (1/3)\theta, \]
where \( \theta \) is arbitrary number, produces a family of optimal eighth-order methods. Such \( q \) and \( \psi \) can take many forms.

For the weight \( q \) we consider the rational function form given by

(2.21) \[ q(t) = \frac{(-12\theta + 144 + \theta^2)t^2 + (-30\theta + 288)t - 6\theta + 144}{(24\theta - 288 + \theta^2)t^2 + (-24\theta + 144)t - 6\theta + 144}. \]

For the weight \( \psi \) we consider two forms, one, which is given by

(2.22) \[ \psi(r,t) = \frac{6(1 + (\lambda + 2)r)}{(12\lambda + 6 + \theta)r^2 + (-6\lambda + 6\lambda t + 12t)r - 6 + 6t}, \]
and, the other, which is given by

(2.23) \[ \psi(r,t) = -\frac{12 + 18r - r\theta}{(-6 - 18t + \theta - \theta)r + 12 + 12\lambda t^2 - 12t}. \]

We can easily check that one combination of \( q \) with (2.21) and \( \psi \) with (2.22), and the other of \( q \) with (2.21) and \( \psi \) with (2.23) satisfy (2.20), so the first one is denoted OM1, and the second OM2.

In solving a nonlinear equation iteratively we are looking for fixed points which are zeros of the given nonlinear function. Many multipoint iterative methods have fixed points that are not zeros of the function of interest called extraneous fixed points. The parameters \( \theta \) and \( \lambda \) can be chosen to position the extraneous fixed points on the imaginary axis or, at least, close to that axis.

In order to find the extraneous fixed points, we rewrite the methods of interest in the form

(2.24) \[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} H_f(x_n, y_n, z_n), \]
where the function \( H_f \) for method (2.1) is given by

(2.25) \[ H_f(x_n, y_n, z_n) = q(r_n) + \psi(r_n, t_n) \frac{f(z_n)}{f(x_n)} \]
with \( q(t) \) and \( \psi(r,t) \) are given in (2.21) and (2.22) or (2.23), respectively.

To choose the parameters in the methods, the following criterion can be used, which was developed in [11] and is defined below.
Let \( E = \{z_1, z_2, \ldots, z_{n_0, \lambda}\} \) be the set of the extraneous fixed points corresponding to the values given to \( \theta \) and \( \lambda \). We define

\[
(2.26) \quad d(\theta, \lambda) = \max_{z_i \in E} |\text{Re}(z_i)|.
\]

We have looked for the parameters \( \theta \) and \( \lambda \) which attain the minimum of \( d(\theta, \lambda) \). This minimum occurs at \( \theta = 9.1, \lambda = -4 \) for method OM1, and at \( \theta = 8.6, \lambda = -0.3 \) for method OM2.

3. Numerical examples

In this section we give a numerical comparison of our methods OM1, OM2 with other well known optimal eighth order methods. For this purpose, we shall consider the following nonlinear equations.

\[
\begin{align*}
  f_1(x) &= e^x \sin(x) + \log(x^2 + 1); \quad \xi = 0 \\
  f_2(x) &= x^6 - x^4 - x^3 - 1; \quad \xi = 1.403602124874216, \quad \xi = -1 \\
  f_3(x) &= e^x - 4x^2; \quad \xi = 0.714805912362777 \\
  f_4(x) &= \tan^{-1}(x) - x + 1; \quad \xi = 2.132267725272885 \\
  f_5(x) &= e^{-x} + \cos(x); \quad \xi = 1.746139530408012
\end{align*}
\]

The following optimal eighth-order methods, which are considered in [17] for numerical experiments, are considered for the comparison.

\[
\begin{align*}
  y_n &= x_n - \frac{f(x_n)}{f'(x_n)} \\
  z_n &= y_n \left[ \frac{f(x_n)}{f(x_n) - 2f(y_n)} \right] \frac{f(y_n)}{f'(x_n)} \\
  x_{n+1} &= z_n + \frac{f(x_n)f(z_n)(f(x_n) + 2f(z_n))(f(y_n) + f(z_n))}{f'(x_n)f(y_n)(2f(x_n)f(y_n) - f(x_n)^2 + f(y_n)^2)}
\end{align*}
\]
\[
\begin{align*}
  u_n &= x_n + \alpha f(x_n), \quad \alpha \in \mathbb{R}, \\
y_n &= x_n - \frac{\alpha f(x_n) f(x_n)}{f(u_n) - f(x_n)}, \\
z_n &= y_n - \frac{f(y_n)}{f(x_n) - f(y_n)} + \frac{\alpha f(x_n) f(x_n)}{f(u_n) - f(x_n)} - \frac{f(y_n) f(x_n) - 2x_n - 2y_n}{f(x_n) - f(y_n)}, \\
x_{n+1} &= z_n - \frac{f(z_n)(u_n - x_n)(u_n - y_n)(y_n - z_n)(y_n - z_n)}{a_1 - a_2 f(z_n)(u_n - x_n)(u_n - y_n)(x_n - z_n)},
\end{align*}
\]

where \(a_1 = f(y_n)(u_n - x_n)(u_n - z_n)^2(x_n - z_n)^2 + f(y_n)(u_n - x_n)(u_n - z_n)^2(x_n - z_n)^2 + (y_n - z_n)^2(f(y_n)(u_n - y_n)(x_n - z_n)^2 - f(x_n)(u_n - y_n)(u_n - z_n)^2), a_2 = (u_n(x_n + y_n - 2z_n) + x_n(y_n - 2z_n) + z_n(3z_n - 2y_n)),

\[
\begin{align*}
  y_n &= x_n - \frac{f(x_n)}{f'(x_n)}, \\
z_n &= y_n - \left[ \frac{2f(x_n) - f(y_n)}{2f(x_n) - 5f(y_n)} \right] f(y_n) - \frac{f(y_n)}{f(x_n)}, \\
x_{n+1} &= z_n - \frac{f(z_n)}{2f(z_n, x_n) - f'(x_n)} \left[ 1 + \frac{f(z_n)}{f(y_n)} + \left( \frac{f(y_n)}{f(x_n)} \right)^2 - \frac{2f(z_n)}{f'(x_n)} \right] \\
  &- \frac{31}{4} \left( \frac{f(y_n)}{f(x_n)} \right)^4 - \frac{3}{2} \left( \frac{f(y_n)}{f(x_n)} \right)^3 + \left( \frac{f(y_n)}{f(x_n)} \right)^2 + \left( \frac{f(y_n)}{f(x_n)} \right)^2 \right];
\end{align*}
\]

\[
\begin{align*}
  w_n &= x_n + \beta f(x_n), \quad \beta \in \mathbb{R}, \\
y_n &= x_n - \frac{\beta f(x_n) f(x_n)}{f(w_n) - f(x_n)}, \\
z_n &= y_n - \frac{f(w_n) f(y_n)(y_n - x_n)}{(f(w_n) - f(y_n))(f(y_n) - f(x_n))}, \\
x_{n+1} &= z_n - \frac{f(w_n) f(y_n) \left( \frac{f(x_n)(z_n - x_n)}{f(z_n) - f(x_n)} - x_n + y_n \right)}{(f(w_n) - f(z_n))(f(y_n) - f(z_n))} + \frac{f(y_n)(z_n - y_n)}{f(z_n) - f(y_n)}.
\end{align*}
\]
We have averaged performance results for the methods in comparison in Tables 1-3 across the 5 test functions. Based on Table 1 we find that the minimum number of divergent points on average is achieved by KS (7.2 out of 500 points) followed by OM1 (38.8 points), DP (45.2 points) and HM (82.8
Some optimal methods with eighth-order convergence

| Method | $f_1(x)$ | $f_2(x)$ | $f_3(x)$ | $f_4(x)$ | $f_5(x)$ | average | Divergence Percentage |
|--------|----------|----------|----------|----------|----------|---------|-----------------------|
| OMI    | 35       | 87       | 17       | 48       | 6        | 38.8    | 7.72%                 |
| OM2    | 50       | 375      | 21       | 65       | 19       | 106     | 21.2%                |
| DP     | 7        | 32       | 2        | 179      | 6        | 45.2    | 9.04%                |
| KS     | 19       | 9        | 2        | 0        | 6        | 7.2     | 1.44%                |
| SM     | 83       | 136      | 37       | 180      | 118      | 110.8   | 22.16%               |
| KT     | 77       | 500      | 0        | 24       |          | 220.2   | 44.04%               |
| CM     | 123      | 500      | 0        | 500      | 329      | 65.8%   |                      |
| HM     | 72       | 137      | 33       | 134      | 38       | 82.8    | 16.56%               |

Table 1. Number of points requiring more than 14 iterations for each test function (1–5) and each of the methods and divergence percentage

| Method | $f_1(x)$ | $f_2(x)$ | $f_3(x)$ | $f_4(x)$ | $f_5(x)$ | average | CPU time (in seconds) |
|--------|----------|----------|----------|----------|----------|---------|-----------------------|
| OMI    | 11.406   | 2.359    | 3.328    | 5.672    | 7.000    | 5.953   |                      |
| OM2    | 4.172    | 2.454    | 4.078    | 4.188    | 5.344    | 4.047   |                      |
| DP     | 5.406    | 3.094    | 2.860    | 2.578    | 8.578    | 4.503   |                      |
| KS     | 6.328    | 5.156    | 3.219    | 5.375    | 6.203    | 5.256   |                      |
| SM     | 4.594    | 2.860    | 1.875    | 4.891    | 4.781    | 3.800   |                      |
| KT     | 12.297   | 17.250   | 27.500   | 24.625   | 20.890   | 20.512  |                      |
| CM     | 14.047   | 3.609    | 9.360    | 12.188   | 10.094   | 9.859   |                      |
| HM     | 8.250    | 2.875    | 4.313    | 5.906    | 9.063    | 6.081   |                      |

Table 2. CPU time (in seconds) required for each test function (1–5) and each of the methods

| Method | $f_1(x)$ | $f_2(x)$ | $f_3(x)$ | $f_4(x)$ | $f_5(x)$ | average |
|--------|----------|----------|----------|----------|----------|---------|
| OMI    | 3.24     | 5.35     | 2.96     | 3.13     | 2.19     | 3.37    |
| OM2    | 3.58     | 11.15    | 3.00     | 3.47     | 2.63     | 4.76    |
| DP     | 2.61     | 3.73     | 2.48     | 6.23     | 2.55     | 3.52    |
| KS     | 3.04     | 3.97     | 2.74     | 1.64     | 1.66     | 2.61    |
| SM     | 4.25     | 5.75     | 3.22     | 6.30     | 4.87     | 4.87    |
| KT     | 6.42     | 14       | 14       | 6.37     | 5.88     | 9.33    |
| CM     | 5.52     | 14       | 13.41    | 9.19     | 14       | 11.22   |
| HM     | 4.01     | 5.82     | 3.21     | 5.33     | 3.02     | 4.28    |

Table 3. Average number of iterations per point for each test function (1–6) and each of the methods points). All the others have 106 – 329 number of points requiring more than 14 iterations on average. Since KT and CM have more than 44 percent of
divergence, we will remove these methods from further consideration for looking for best performers.

In terms of CPU time (see Table 2), the fastest method is SM (3.8 seconds) followed by OM2 (4.047 seconds), DP (4.503 seconds) and KS (5.256 seconds). The slowest is KT (20.512 seconds), which was removed from further discussion. We note that although SM is the fastest of all the methods considered, it will no longer be considered since it is one of the methods having more than 22 percent of initial points diverged. Consulting the average number of iterations per point on average (see Table 3), we find that KS is best (2.61) followed by OM1 (3.37) and DP (3.52). The worst is CM (11.22).

Considering the top 3 performers in each category and in view of our analysis of the results in Tables 1-3 given above, the best method overall is DP, followed by OM1. KS and OM2.

4. Conclusions

In this paper we presented a new optimal eighth-order family of methods and they have been compared to several existing methods of the same order. Our proposed methods are found to be as competitive as existing methods based on 3 quantitative criteria.

References

[1] J. F. Traub, *Iterative Methods for the Solution of Equations*, Chelsea Publishing Company, New York, (1977).
[2] M. S. Petković, B. Neta, L. D. Petković, and J. Đumić, *Multipoint Methods for Solving Nonlinear Equations*, Elsevier, (2012).
[3] H. T. Kung and J. F. Traub, *Optimal order of one-point and multipoint iterations*, J. Assoc. Comput. Math. **21** (1974), 643-651.
[4] A. M. Ostrowski, *Solution of Equations and Systems of Equations*, Academic Press, New York, London, (1966).
[5] Y. H. Geum and Y. I. Kim, *A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots*, Appl. Math. Lett. **24** (2011), 929-935.
[6] Y. H. Geum and Y. I. Kim, *A biparametric family of eighth-order methods with their third-step weighting function decomposed into a one-variable linear fraction and a two-variable generic function*, Comput. Math. Appl. **61** (2011), 708-714.
[7] A. Cordero, J. R. Torregrosa, and M. P. Vassileva, *Three-step iterative methods with optimal-order convergence*, J. Comput. Appl. Math. **235** (2011), 3189-3194.
[8] A. Cordero, J. R. Torregrosa, and M. P. Vassileva, *A family of modified Ostrowski’s methods with optimal eight order of convergence*, Appl. Math. Lett. **24** (2011), 2082-2086.
Some optimal methods with eighth-order convergence

[9] J. Džunić, M. S. Petković, and L. D. Petković, A family of optimal three-point methods for solving nonlinear equations using two parametric functions, Appl. Math. Comput. 217 (2011), 7612-7619.

[10] J. Džunić and M. S. Petković, On generalized multipoint root-solvers with memory, J. Comput. Appl. Math. 236 (2012), 2909-2920.

[11] C. Chun and B. Neta, An analysis of a King-based family of optimal eighth-order methods, Amer. J. Algorithms and Computing 217 (2015).

[12] C. Chun, Some variants of King’s fourth-order family of methods for nonlinear equations, Appl. Math. Comput. 190 (2007), 57–62.

[13] R. Thukral, A new eighth-order iterative method for solving nonlinear equations, Appl. Math. Comput. 217 (2010), 222–229.

[14] L. Liu and X. Wang, Eighth-order methods with high efficiency index for solving nonlinear equations, J. Comput. Appl. Math. 215 (2010), 3449–3454.

[15] R. Behl, V. Kanwar, and K. K. Sharma, Optimal equi-scaled families of Jarratt’s method, Int. J. Comput. Math. 90 (2013), 408–422.

[16] J. R. Sharma, R. K. Guha, and P. Gupta, Improved King’s methods with optimal order of convergence based on rational approximations, Appl. Math. Lett. 26 (2013), 473–480.

[17] R. Behl, C. Chun, and S. S. Motsa, A general way to construct a new optimal scheme with eighth-order convergence for nonlinear equations, Submitted for publication.

[18] J. Džunić and M. Petković, A family of three-point methods of Ostrowski’s type for solving nonlinear equations, J. Appl. Math. 2012 (2012), Article ID 425867, 9 pages, http://dx.doi.org/10.1155/2012/425867.

[19] S. K. Kang and T. Steihaug, Algorithm for forming derivative-free optimal methods, Numer. Algor. 65 (2014), 809–824.

[20] F. Soleymani, S. K. Vanani, M. Khan, and M. Sharifi, Some modifications of King’s family with optimal eighth-order of convergence, Math. Comput. Model. 55 (2012), 1373-1380.

[21] A. Cordero, J. R. Torregrosa, and M. P. Vassileva, Three-step iterative methods with optimal eighth-order convergence, J. Comput. Appl. Math. 235 (2011), 3189-3194.

[22] M. Heydari, S. M. Hosseini, and G. B. Loghmani, On two new families of iterative methods for solving nonlinear equations with optimal order, Appl. Anal. Disc. Math. 5 (2011), 93-109.
Weonbae Kim and Changbum Chun

* Department of Mathematics
  Daejin University
  Pocheon 11159, Republic of Korea
  E-mail: wbkim@daejin.ac.kr

** Department of Mathematics
  Sungkyunkwan University
  Suwon 16419, Republic of Korea
  E-mail: cbchun@skku.edu