Automatic differentiation of non-holonomic fast marching for computing most threatening trajectories under sensors surveillance

07/11/2017

Auteurs : Jean-Marie Mirebeau, Johann Dreo

Publication GSI2017

OAI : oai:www.see.asso.fr:17410:22600

Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit

Abstract

Mots-clés: Anisotropic fast-marching, game theory, motion planning, optimization, sensors placement

Résumé:
We consider a two player game, where a rst player has to install a surveillance system within an admissible region. The second player needs to enter the monitored area, visit a target region, and then leave the area, while minimizing his overall probability of detection. Both players know the target region, and the second player knows the surveillance installation details. Optimal trajectories for the second player are computed using a recently developed variant of the fast marching algorithm, which takes into account curvature constraints modeling the second player vehicle maneuverability. The surveillance system optimization leverages a reverse-mode semi-automatic differentiation procedure, estimating the gradient of the value function related to the sensor location in time O(N lnN).
We consider a two player game, where a rst player has to install a surveillance system within an admissible region. The second player needs to enter the monitored area, visit a target region, and then leave the area, while minimizing his overall probability of detection. Both players know the target region, and the second player knows the surveillance installation details. Optimal trajectories for the second player are computed using a recently developed variant of the fast marching algorithm, which takes into account curvature constraints modeling the second player vehicle maneuverability. The surveillance system optimization leverages a reverse-mode semi-automatic differentiation procedure, estimating the gradient of the value function related to the sensor location in time $O(N \ln N)$.
La SEE (Société de l'Electricité, de l'Electronique et des Technologies de l'Information et de la Communication – Association reconnue d’utilité publique, régie par la loi du 1er juillet 1901) met à la disposition des adhérents et des abonnés à ses publications, un ensemble de documents numériques accessibles à partir de son portail des publications. Ces documents incluent notamment les articles des revues REE, 3 EI et e-STA disponibles sous forme numérique ainsi que des publications additionnelles regroupées dans l’espace eREE. Les présentes conditions précisent les conditions de diffusion et d’utilisation de ces documents et des informations qu’ils contiennent. L’accès à ces documents, qu’il se fasse de façon gratuite ou dans le cadre d’abonnements ou d’achats faits à titre onéreux, implique l’acceptation sans restriction de ces dispositions.

Droits de propriété et de diffusion des contenus téléchargés sur le portail des publications

Les contenus rendus accessibles sur le portail des publications sont, en règle générale, protégés par le droit d'auteur. En tant que producteur, et le cas échéant d’auteur, des informations rassemblées dans les contenus accessibles par ce portail, SEE se réserve l’exclusivité des droits de copie et de diffusion de tout ou partie de ces contenus.

Les contenus sont rendus accessibles à titre individuel, pour les besoins de la personne en détenant des droits d’accès en cours de validité. Aussi, la modification, la reproduction et/ou la diffusion via Internet ou le Web, intranet, extranet ou toute autre forme numérique ou imprimée, de tout ou partie des contenus téléchargés sont interdites. Une tolérance est consentie quant à la reproduction d’extraits limités de ces contenus, dans le cadre de travaux ou d’activités auxquels ils sont utiles, à la condition que l’origine de ces reproductions partielles soit mentionnée de façon lisible et sans ambiguïté. Figureraient en particulier : la REE (ou toute autre revue accessible sur le portail) en tant que la source, la référence de la publication et le nom de l’auteur (s’il figure dans la revue).

Ces dispositions s’appliquent également aux figures, illustrations, logos ou images.

Publication externe des contenus du portail des publications

Tout extrait des contenus du portail destiné à être utilisé dans des publicités, des communiqués de presse ou du matériel de promotion nécessite un accord préalable écrit de la SEE. Une version préliminaire du document proposé contenant ces extraits doit accompagner chacune de ces demandes. SEE se réserve le droit de refuser un tel usage externe pour quelque raison que ce
soit.

Responsabilités

La SEE apporte tout le soin possible à la préparation des informations délivrées dans les contenus produits. Cependant elle ne peut être tenue pour responsable d'aucune perte ou frais qui pourrait résulter d'imprécisions, d'inexactitudes, d'erreurs ou de possibles omissions portant sur des informations publiées, ni des résultats obtenus par l'utilisation et la pratique des informations délivrées.

Utilisation des informations recueillies lors du téléchargement de contenu

Le portail des publications est susceptible d'utiliser des « cookies » afin notamment de permettre l'utilisation de paniers d'achat et de personnaliser les parcours sur le site. SEE se réserve la possibilité d'utiliser les informations recueillies lors des téléchargements pour ses besoins internes et notamment pour l'amélioration de ses services, sans qu'elles puissent être cédées à des partenaires commerciaux. Conformément à la loi "informatique et libertés" du 6 janvier 1978, chaque utilisateur du portail dispose d'un droit d'accès et de rectification aux informations qui le concernent. Pour exercer ce droit, les utilisateurs doivent s'adresser à SEE – 17 rue de l’amiral Hamelin – 75783 Paris Cedex 16, par simple lettre ou en utilisant le formulaire de contact disponible sur son site.

Paris, le 28 avril 2013

Sponsors

Platinum sponsors

!logothales.jpg

Bronze sponsor

Scientific sponsors
Automatic differentiation of non-holonomic fast marching for computing most threatening trajectories under sensors surveillance Jean-Marie Mirebeau¹ and Johann Dreo² ¹ University Paris-Sud, CNRS, University Paris-Saclay, jean-marie.mirebeau@math.u-psud.fr ² THALES Research & Technology, johann.dreo@thalesgroup.com Abstract. We consider a two player game, where a first player has to install a surveillance system within an admissible region. The second player needs to enter the monitored area, visit a target region, and then leave the area, while minimizing his overall probability of detection. Both players know the target region, and the second player knows the surveillance installation details. Optimal trajectories for the second player are computed using a recently developed variant of the fast marching algorithm, which takes into account curvature constraints modeling the second player vehicle maneuverability. The surveillance system optimization leverages a reverse-mode semi-automatic differentiation procedure, estimating the gradient of the value function related to the sensor location in time $O(N \ln N)$. Keywords: Anisotropic fast-marching, motion planning, sensors placement, game theory, optimization

1 Introduction

This paper presents a proof of concept numerical implementation of a motion planning algorithm related to a two player game. A first player selects, within an admissible class Ξ, an integral cost function on paths, which takes into account their position, orientation, and possibly curvature. The second player selects a path, within an admissible class Γ, with prescribed endpoints and an intermediate keypoint. The players' objective is respectively to maximize and minimize the path cost $C(\Xi, \Gamma) := \sup_{\xi \in \Xi} \inf_{\gamma \in \Gamma} C(\xi, \gamma)$, where $C(\xi, \gamma) := \int_T^0 C(\xi(t), \gamma(t)) dt$, (1) where the path γ is parametrized at unit Euclidean speed, and the final time $T(\gamma)$ is free. From a game theoretic point of view, this is a non-cooperative zero-sum game, where player Ξ has no information and player Γ has full information over the opponent's strategy. The game (1) typically models a surveillance problem [20], and $\exp(-C(\Xi, \Gamma))$ is the probability for player Γ to visit a prescribed keypoint without being detected by player Ξ. For instance player Ξ is responsible for the installation of radar [1] or sonar detection systems [20], and would like to prevent vehicles sent by player Γ from spying on some objectives without being detected. The dependence of the cost $C(\xi)$ w.r.t. the path tangent $y_0(t)$ models the variation of how detectable the target is (radar cross section,
The relative positions and orientations of the target and sensor. The dependence of C_ξ on the path curvature $y_0(t)$ models the airplane maneuver-variability constraints, such as the need to slow down in tight turns [9], or even a hard bound on the path curvature [8]. Strode [20] has shown the interplay of motion planning and game theory in a similar setting, on a multistatic sonar network use case, but using isotropic graph-based path planning. The same year, Barbaresco [2] used fast-marching for computing threatening paths toward a single radar, but without taking into account curvature constraints and without considering a game setting. The main contributions of this paper are as follows: 1. Anisotropy and curvature penalization: Strategy optimization for player Γ is an optimal motion planning problem, with a known cost function. This is addressed by numerically solving a generalized eikonal PDE posed on a two or three dimensional domain, and which is strongly anisotropic in the presence of a curvature penalty and a detection measurement that depends on orientation. A Fast-Marching algorithm, relying on recent adaptive stencil constructions, based on tools from lattice geometry, is used for that purpose [9, 14, 15]. In contrast, the classical fast marching method [17] used in [5] is limited to cost functions $C_\xi(y(t))$ independent of the path orientation $y_0(t)$ and curvature $y_0''(t)$. 2. Gradient computation for sensors placement: Strategy optimization for player Ξ is typically a non-convex problem, to which various strategies can be applied, yet gradient information w.r.t. the variable $\xi \in \Xi$ is usually of help. For that purpose, we implement efficient differentiation algorithms, forward and reverse, for estimating the gradient of the value function of player $\Xi = \Xi C_\xi(\xi, y)$, where $\xi \in \Xi$ is known and fixed. Their discretization is discussed in §3. We distinguish two cases, depending on whether the path local cost function $C_\xi(x, \dot{x}, x)$ appearing in (1) depends on the last entry \dot{x}, i.e. on path curvature. 2.1 Curvature independent cost Let $\Omega \subseteq \mathbb{R}^2$ be the time domain, and let the source set γ and target set Θ be disjoint subsets of Ω. For each $x \in \Omega$, let $\gamma(x)$ denote the set of all paths $y \in C_1([0, T], \Omega)$, where $T = T(y)$ is free, such that $y(0) \in \gamma$, $y(T) = x$ and $\nu \in [0, T]$, $y_0(\nu) = 1$. The problem description states that the first player needs to go from $y \in \gamma$ to x and back, hence its set of strategies is $\Gamma = S x \in T \to x = x \to x$, where $\gamma(x) \in \Gamma$. (2) Here and below, the symbol $\#x$ must be successively replaced with $+x$ and then $-x$. We denoted by Ξx the path cost defined in terms of the local cost $C_\xi(x, \dot{x}, x)$. In practice though, we only consider symmetric local costs, obeying $\Xi C_\xi(x) = \Xi C_\xi(-x, -\dot{x}, x)$, hence the forward and return paths are identical and we denote $u_\xi := u_\xi \dot{x} = -u_\xi \dot{x}$. Define the 1-homogeneous metric $F_\xi : \mathbb{R} \to [0, \infty]$, the Lagrangian L_L and the Hamiltonian H_L by $F_\xi(x, \dot{x}) := k_k(k_\xi C_\xi(x, \dot{x}, k) + l_k(x, \dot{x}) := \sup \#x \in \mathbb{R}_+ \dot{x} \xi - \dot{x} \xi$. Here and below, symbols denoting tangent vectors are distinguished with a “dot”, e.g. x and co-variables with a “hat”, e.g. \hat{x}. Under mild assumptions [3], the function $u_\xi : \Omega \to -\dot{R}$ is the unique viscosity solution to a generalized eikonal equation $V \xi \in \Omega \\Rightarrow H_L(x, \dot{x}, V_\xi u_\xi(x)) = 1/2, \forall x \in \Omega, \dot{x} = 0$, with outflow boundary conditions on $\partial \Omega$. The discretization of this PDE is discussed in §3. We limit in practice our attention to isotropic costs $C_\xi(x)$, and Riemannian costs $C_\xi(x, \dot{x}) = \#h \xi, M_\xi(x, \dot{x})$, where $M_\xi(x)$ is symmetric positive definite, for which efficient numerical strategies have been developed [12, 14]. 2.2 Curvature dependent cost Let $\Omega \subseteq \mathbb{R}^2 \times S_1$ be a bounded domain, within the three dimensional spaces of cost C_ξ. As before, let $y, \gamma, \Xi \subseteq \Omega$. For all $x \in \Omega$ let $\gamma(x)$ be the collection of all $y \in C_2([0, T], \Omega), such that $\eta \in \{y, \#y\}$ satisfies $\eta(0) = y, \eta(T) = x$ and $\nu \in [0, T]$, $y_0(\nu) = 1$. Since the first player needs to go from $y \in \gamma$ to x and back, its set of strategies is $\Gamma = S x \in T \to x = x \to x$. Equation (3) holds, where C_ξ denotes the path cost defined in terms of the local cost $C_\xi(p, \dot{p}, \dot{p})$. Consider the 1-homogeneous metric $F_\xi : \mathbb{R} \to [0, \infty]$, defined on the tangent bundle to $\Omega \subseteq \mathbb{R}^2 \times S_1$ by $F_\xi((x, \dot{x}), (\dot{p}, \dot{p})) := (1 < 3$ if $\dot{p} \neq k_p k_p$; $k_p C_\xi(p, \dot{p}, \dot{p})$, else, where $p \in \mathbb{R}^2$, $n \in S_1$ is a unit vector, and the tangent vector satisfies $p \in \mathbb{R}^2$, $n \in S_1$. This choice is motivated by the fact that $R T \supset \mathbb{R} F_\xi((\xi), (\xi))$ is infinite iff $\eta : [0, T] \to \Omega$ is of the form $(y, \dot{y}(y))$, and then it equals $R T \supset \mathbb{R} C_\xi((\eta)^t, (\eta)^t)$. Introducing the Lagrangian $L_L = 1/2 F_\xi(x, \dot{x}, \dot{x})$, its Legendre-Fenchel dual the Hamiltonian H_L, one can again under mild assumptions assume $u_\xi \eta$ as the unique viscosity solution to the generalized eikonal PDE $H_L \xi \eta (x, \dot{x}) = 1/2$ with appropriate boundary conditions [3]. In practice, we choose own costs $C_\xi(p, \dot{p}, \dot{p}) := C_C(p, \dot{p}) \#(p, \dot{p})$.
solution $U: \mathbb{X} \rightarrow \mathbb{R}$ to this system of equations is computed in a single pass with $O(N \ln N)$ complexity [17], using a variant of the Fast-Marching algorithm. This is possible since the I.h.s. of (5) is a non-decreasing function of the positive parts of the finite differences $(U_{x}(x) - U_{y}(y)) \eta_{X}$. Note that the eikonal PDE discretization (5), based on upwind finite differences, differs from the semi-Lagrangian approach [18], which can also be solved in a single pass but is usually less efficient due to the large cardinality and radius of its stencils. Image segmentation techniques relying on the numerical solutions to anisotropic eikonal PDEs were proposed in [6] using Riemannian metrics, and in [4, 7] based on the reversible Reeds-Shepp and Euler elastica curvature penalized models respectively. However these early works rely on non-causal discretizations, which have super-linear complexity $O(N^{1+d})$ where the unspecified constant is large for strongly anisotropic and non-uniform metrics. This alternative approach yields (much) longer solve times, incompatible our application - where strongly anisotropic three dimensional eikonal PDEs are solved as part of an inner loop of an optimization procedure. To be able to use the gradient to solve the problem (1), we need to differentiate the cost $C(\xi, \Gamma)$ w.r.t. the first player strategy $\xi \in \Xi$. In view of (3), this only requires the sensitivity of the discrete solution values $U(\xi)(x, y)$ at the few points $x, y \in \mathbb{X} \cap \partial \mathcal{D}$, w.r.t. variations in the weights $c_{x}(x, y), x, y \in \mathbb{X}$. For that purpose we differentiate (5) w.r.t. ξ at an arbitrary point $x \in \mathbb{X} \cap \partial \mathcal{D}$, and obtain $X_{\xi}U(x, y)(dU_{x}(x) - dU_{y}(y) + (U_{x}(x) - U_{y}(y)) \in \mathbb{C}(c_{x}(x, y), y) = 0$, where $c_{x}(x, y) := c_{2}(x, y)(U_{x}(x) - U_{y}(y))$. Therefore $dU_{x}(x) = X_{\xi}U(x, y)Y_{\xi}dU_{y}(y) + X_{\xi}Y_{\xi}U_{y}(y)(x, y)Y_{\xi}dU_{y}(y), x, y \in \mathbb{X}$, where $c_{x}(x, y) := c_{2}(x, y)/P y \omega_{\xi}(x, y)$, and $\beta(\xi) := c_{2}(x, y)/\eta_{X}(x, y)$. We first choose $x = x^{*}$ in (6), and then recursively eliminate the terms $dU_{y}(y)$ by applying the same formula at these points, except for points in the source set $y \in \mathcal{D}$ for which one uses the explicit expression $dU_{y}(y) = 0$ (since $U_{y}(y) = 0$ is in this case independent of ξ). This procedure terminates: indeed, whenever $dU_{x}(x)$ depends on $dU_{y}(y)$ in (6), one has $c_{x}(x, y) > 0$, thus $\omega_{\xi}(x, y) > 0$, hence $U_{x}(x) > U_{y}(y)$. It is closely related to automatic differentiation by reverse accu-mulation [11], and has the modest complexity $O(N)$. 4 Numerical results The chosen physical domain \mathbb{D} is the rectangle $[0, 2] \times [0, 1]$ minus some obstacles, as illustrated on Figure 1. Source point is $(0.2, 0.5)$ and target keypoint $(1.8, 0.5)$. The computational domain is thus $\mathbb{X} := \mathbb{D} \cup \{r \leq 0.1 \}$. The main cost function is $C(\theta, \rho, \kappa)$, which efficiency at detecting the second Curvature independent Reeds-Shepp car, forward only Dubins car Fig. 2. Top: Optimal trajectory for the Dubins model is dangerous in practice, since any small deviation is typically impossible to correct locally, and may drive into an obstacle; these trajectories are also easier to detect due to the large circular arc motions. Curvature independent Reeds-Shepp car, forward only Dubins car Fig. 1. Shortest path from the blue point (left) to the red keypoint (right) and back. Next we study three games where player one aims to detect player two along its way from the source set \mathcal{D} to the target θ and back, using different means. If the first player does not intervene, see Figure 1, or if its strategy is not optimized, see Figure 3, then there is typically a unique optimal path (optimal loop in our games) for player two. In contrast, an interesting qualitative property of the optimal strategy $\xi \in \Xi$ for the first player is that it has a large number of optimal responses from player two, see Figure 4, in some cases even a continuum, see Figure 2 (bottom) and [5]. This is typical of two player games. Fresh paint based detection. In this toy model, see Figure 2, the first player spreads some fresh paint over the domain, and the second player is regarded as detected if he comes back covered in it from his visit to the keypoint. The cost function is $C(\xi, \rho, \kappa) = \xi(\rho)C(\ast(\beta))$, where $\xi: \mathbb{D} \rightarrow \mathbb{R}^{+}$ is the fresh paint density, decided by the first player, and $C(\ast(\beta))$ is as above. For wellposedness, we impose upper and lower bounds on the paint density, namely $0.1 \leq \xi(\rho) \leq 1$, and subtract the paint supply cost $R \rho(\xi(\rho))d\rho$ to (1). The main interest of this specific game, also considered in [5], is that $C(\xi, \Gamma)$ is concave w.r.t. $\xi \in \Xi$. The observed optimal strategy for player ξ is in the curvature independent case to make some “fences” of paint between close obstacles, and in the curvature penalized models to deposit paint at the edges of obstacles, as well as along some specific circular arcs for the Dubins model. Visual detection. The first player places some cameras, e.g. with 360-degree field of view and mounted at the ceiling, which efficiency at detecting the second Curvature independent Reeds-Shepp car, forward only Dubins car Fig. 2. Top: Optimal distribution of paint, to mark a path from the blue point (left) to the red keypoint (right) and back. Bottom: Geodesic density at the optimal paint distribution. player decreases with distance and is blocked by obstacles, see Figure 3. The cost function is $C(\xi, \rho, \kappa) = C(\ast(\beta)) \eta_{X}(\xi, \rho)q^{2} + \rho^{2}h_{\rho}.n.l. p_{q}q^{2} + qk(8)$ where $q_{k} := (q/p)q^{2}$. The first player strategy ξ contains the positions of three radars, constrained to lie in the subdomain [0.4, 1.6][0, 1]. The parameter δ is set to 1 for an isotropic radar cross section (RCS), or to 0.2 for an anisotropic RCS. In the latter case a plane showing its side to radar is five times less likely to be detected than a plane showing its nose or back, at the same position. Green arrows on Figure 4 point from the original position to the (locally) optimized position for player ξ. At this position, several paths are optimal for player Γ, shown in red on Fig 4. Curvature independent Reeds-Shepp forward Dubins car Curvature independent Reeds-Shepp forward Dubins car Curvature independent Reeds-Shepp forward Dubins car Fig. 3. Field of view of the cameras (black gradients), optimal furtive paths (red lines), local direction of improvement of the camera position (green arrows). Radar based detection. The first player places some radars on the domain $\mathbb{D} = [0, 2] \times [0, 1]$, here devoid of obstacles, and the second player has to fly by under-tected. The cost function is $C(\xi, \rho, \kappa) = C(\ast(\beta)) \eta_{X}(\xi, \rho)q_{k}q^{2} + \rho^{2}h_{\rho}.n.l. p_{q}q^{2} + qk(8)$ where $q_{k} := (q/p)q^{2}$. The first player strategy ξ contains the positions of three radars, constrained to lie in the subdomain [0.4, 1.6][0, 1]. The parameter δ is set to 1 for an isotropic radar cross section (RCS), or to 0.2 for an anisotropic RCS. In the latter case a plane showing its side to radar is five times less likely to be detected than a plane showing its nose or back, at the same position. Green arrows on Figure 4 point from the original position to the (locally) optimized position for player ξ. At this position, several paths are optimal for player Γ, shown in red on Fig 4. Curvature independent Reeds-Shepp forward Dubins car Curvature independent Reeds-Shepp forward Dubins car Curvature independent Reeds-Shepp forward Dubins car Fig. 4. Optimal radar placement with an isotropic (top) or anisotropic (bottom) radar cross section. Computational cost On a standard Laptop computer (2.7Ghz, 16GB ram), optimizing the second player objective, by solving a generalized eikonal equation, takes ≈ 1 s in the curvature dependent case, and ≈ 60 times less in the curvature independent case thanks to the absence of angular discretization of
the domain. Optimizing the first player objective takes \(\approx 100\) L-BFGS iterations, each one taking at most 8s. For the stability of the minimization procedure, the problems considered were slightly regularized by the use of soft-minimum functions and by “blurring” the target keypoint over the 3 x 3 box of adjacent pixels.

Conclusion We have modeled a motion planning problem that minimize an anisotropic prob-ability of detection, taking into account navigation constraints while computing the gradient of the value function related to the sensors location. This model is thus useful for surveillance applications modeled as a two-player zero-sum game involving a target that tries to avoid detection. References 1. F. Barbaresco and B. Monnier, Minimal geodesics bundles by active contours: Radar application for computation of most threatening trajectories areas & corridors, 10th European Signal Processing Conference, Tampere, 2000, pp. 1–4.

2. F. Barbaresco, Computation of most threatening radar trajectories areas and cor-riders based on fast-marching & Level Sets, IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Paris, 2011, pp. 51–58. 3. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Bikhauser, 1997. 4. E. Bekkers, R. Duits, A. Mashtakov, and G. Sanguinetti, Data-Driven Sub-Riemannian Geodesics in SE(2), In Proc. SSVM 2015, pages 613-625, 2015. 5. F. Benmansour, G. Carlier, G. Peyré, and F. Santambrogio, Derivatives with respect to metrics and applications: subgradient marching algorithm, Numerische Mathemati- matik, vol. 116, no. 3, pp. 357-381, May 2010. 6. F. Benmansour and L. Cohen, Tubular Structure Segmentation Based on Minimal Path Method and Anisotropic Enhancement. International Journal of Computer Vi- sion, 92(2), pages 192-210, 2011. 7. D. Chen, J.-M. Mirebeau and L. D. Cohen, A New Finsler Minimal Path Model with Curvature Penalization for Image Segmentation and Closed Contour Detection, in Proc. CVPR 2016, Las Vegas, USA. 8. L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents, Amer. J. Math., vol. 79, pp. 497-516, 1957. 9. R. Duits, S.P.L. Meesters, J.-M. Mirebeau, J. M. Portegies, Optimal Paths for Variants of the 2D and 3D Reeds-Shepp Car with Applications in Image Analysis, Preprint available on arXiv 10. J. Fehrenbach and J.-M. Mirebeau, Sparse Non-negative Stencils for Anisotropic Diffusion, Journal of Mathematical Imaging and Vision, pp. 1-25, 2013. 11. A. Griewank, A. Walther, Evaluating derivatives: principles and techniques of al-gorithmic differentiation. Society for Industrial and Applied Mathematics, 2008. 12. J.-M. Mirebeau, Anisotropic Fast-Marching on cartesian grids using Lattice Basis Reduction, SIAM J. Numer. Anal., vol. 52, no. 4, pp. 1573-1599, Jan. 2014. 13. J.-M. Mirebeau, Minimal stencils for discretizations of anisotropic PDEs preserving causality or the maximum principle, SIAM J. Numer. Anal., vol. 54, no. 3, pp. 1582-1611, 2016. 14. J.-M. Mirebeau, Anisotropic fast-marching on cartesian grids using Voronoi first reduction of quadratic forms, preprint available on HAL 15. J.-M. Mirebeau, Fast Marching methods for Curvature Penalized Shortest Paths, preprint available on HAL 16. D. Mumford, Elasticas and Computer Vision, no. 31, New York, NY: Springer New York, pp. 491-506, 1994. 17. E. Rouy and A. Tourin, A Viscosity Solutions Approach to Shape-From-Shading, SIAM J. Numer. Anal., vol. 29, no. 3, pp. 867-884, Jul. 1992. 18. J. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations. Proceedings of the National Academy of Sciences, 98(20), 2001. 19. A. Schürmann, Computational geometry of positive definite quadratic forms, Uni- versity Lecture Series, 2009. 20. C. Strode, Optimising multistatic sensor locations using path planning and game theory, IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Paris, 2011, pp. 9–16.