Acute Kidney Injury Post Cardiac Catheterization: Does Vascular Access Route Matter?

Pradhum Ram¹*, Benjamin Horn¹, Kevin Bryan U. Lo¹, Gregg Pressman² and Janani Rangaswami¹

¹Department of Medicine, Einstein Medical Center, Philadelphia, PA 19141, USA; ²Heart and Vascular Institute, Division of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA

Abstract: Background: Acute Kidney Injury as a complication of cardiac catheterization is associated with increased length of hospital stay and mortality. In recent years, the use of the radial artery for cardiac catheterization is increasing in frequency.

Objective: The objective of this concise review was to evaluate the method of cardiac access site and its impact on Acute Kidney Injury following cardiac catheterization.

Methods: After a thorough search on Medline, Google Scholar and PubMed, we included all the literature relevant to Acute kidney injury following transradial and transfemoral cardiac catheterization.

Results: While acute kidney injury was caused due to a variety of reasons, it was important to consider each case on an individual basis. We found a trend towards increased use of transradial approach in patients at high risk of developing kidney injury. However, limitations such as operator experience, anatomical challenges and so on do exist with this approach.

Conclusion: Transradial access offers several advantages to a patient at high risk of acute kidney injury undergoing cardiac catheterization. Further large studies are needed to establish this trend in the years ahead.

Keywords: Transradial, transfemoral, catheterization, kidney injury, vascular access, anatomical challenges.

1. INTRODUCTION

The development of Acute Kidney Injury (AKI) following cardiac catheterization or Percutaneous Coronary Interventions (PCI) is a serious complication. Around 10% to 15% of patients develop AKI after coronary interventions [1]. The mechanisms by which patients develop AKI following an angiographic procedure are multifactorial. These occur from a combination of contrast-induced acute kidney injury (CI-AKI), atheroembolic kidney disease, and ischemic kidney injury in the setting of hemodynamic instability during the procedure [1-4]. AKI as a complication of cardiac catheterization, not only results in significantly increased costs and length of hospital stay but is also associated with increased short as well as long-term mortality [5-7].

Although the femoral artery has traditionally been the route of access for cardiac catheterization, more recently, the use of the radial artery for cardiac catheterization is increasing in frequency. One recent report found that Trans-Radial (TR) access was used in over two-thirds of cases [8, 9].

Despite being more technically challenging, peri-procedural patient comfort is significantly increased in this method [10]. More recently the landmark Acute Kidney Injury- Minimizing Adverse Hemorrhagic Events by Transradial Access Site and Systemic Implementation of Angiox Trial (AKI-MATRIX) demonstrated a renoprotective effect using the TR approach [11]. In this focused review, we summarize the effect of vascular access route during cardiac catheterization and its impact on kidney function.

After a thorough search on Medline, Google Scholar and PubMed where studies through August 2018 were searched and all literature relevant to Acute kidney injury following transradial and transfemoral cardiac catheterization was included.

2. PATHOPHYSIOLOGY OF AKI DEVELOPMENT POST CATHETERIZATION

AKI is defined as an acute rise in serum creatinine by 0.3 mg/dL within 48 hours, an increase to 1.5 times the baseline creatinine within one week of index event, or a urine volume <0.5ml/kg/hour for 6 hours [12]. Development of cardiac catheterization-related AKI is multifactorial and can be influenced by a myriad of factors, most of which can be classi-
Acute Kidney Injury Post Cardiac Catheterization

TR vascular access has been found to have a significant reduction in major bleeding leading to a reduced risk of hemodynamic instability and less ischemic injury to the kidney [18]. This is significant to consider because vascular access site-related bleeding accounted for over half of the bleeding complications post catheterization [19]. Achieving hemostasis with a femoral puncture site is more challenging due to its anatomic location. Pressure below the optimal site can lead to ineffective compression against the femoral head, whereas pressure above the optimal site, where the artery runs predominantly retroperitoneal, can also lead to poor hemostasis and may result in retroperitoneal bleeding [20]. The location of the femoral puncture site, whether low or high, was associated with up to 70% of all vascular access complications in one study [21]. In contrast, the radial artery site is more superficial and readily accessible to compression, so hemostasis can be achieved without the introduction of a foreign body such as a vascular closure device [22]. The Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome (RIFLE-STEACS) study demonstrated that the use of TR access reduced clinically relevant access site bleeding by over 60% with a corresponding decreased need for transfusion [23]. This is significant as the need for transfusion was identified as the strongest risk factor for post catheterization AKI among patients with diabetes and normal baseline kidney function [24].

CI-AKI represents another important pathway for the development of post-catheterization AKI. Several patients and procedural risk factors are known to be associated with an increased risk of CI-AKI [25]. CI-AKI develops due to a combination of renal medullary hypoxia from alterations in the levels of vaso-reactive factors and from free radical-mediated injury from contrast exposure [25, 26]. Given the confounding nature of operator expertise, conflicting reports
exist regarding the amount of contrast used based on the method of access [17]. However, a recent prospective propensity-matched trial done in patients with STEMI who received either a PCI or thrombolysis or conservative management which showed no difference in the rates of AKI in patients who did or did not receive contrast [27]. Thus, conflicting evidence continues to emerge on the effects of contrast on renal function. A detailed synopsis of the pathophysiology of CI-AKI is beyond the scope of this review.

3. RADIAL VERSUS FEMORAL ACCESS IN CORONARY ARTERY DISEASE (CAD): FROM OBSERVATIONAL STUDIES TO RANDOMIZED CLINICAL TRIALS

Although various studies have been done to compare both TR and TF vascular access, not many studies have looked specifically at their effect on renal function. Vuurmans et al. found in a retrospective analysis of large British registry of over 60,000 patients, that a TR approach was associated with less risk of developing Chronic Kidney Disease (CKD) within 6 months [17]. However, in this study, the population that underwent a TF approach had higher comorbidities and a lower baseline Glomerular Filtration Rate (GFR) to begin with [17]. A retrospective analysis of a large registry in Japan was done analyzing the impact of periprocedural bleeding on CI-AKI post-catheterization. They found that CI-AKI was more likely to develop in patients with major bleeding complications and correlated with the degree of hemoglobin drop (OR 2.23; CI [1.37-3.63]; p=0.001) [28]. Of note, they found that CI-AKI was more common in the TF intervention group; however, the majority of the patients in this study had TF interventions making comparisons difficult [28]. Therefore, additional work was needed to prove the conclusion that TR access results in decreased AKI. This was thought to be due to the fact that TR has less vascular and/or major bleeding complications.

A retrospective propensity-matched study was using the Blue Cross Blue Shield of Michigan Cardiovascular Consortium involving over 80,000 patients showed that the TR approach had lower risk of AKI even after adjustment for periprocedural bleeding (OR 0.76 (P=0.03)), with periprocedural bleeding in itself being independently associated with AKI (OR, 2.86; CI [1.75-4.66]; P<0.001) [29]. Another retrospective propensity-matched analysis involving mainly high-risk patients in high volume centers undergoing primary PCI for STEMI showed that TF group was associated with a higher risk of AKI (OR 1.65; CI [1.084-2.524]; P=0.02). In this study, contrast use was significantly less with the TF group (188.9±71.6 vs. 207.0±73.6, p <0.0001) [30] suggesting other mechanisms in play leading to the AKI risk aside from contrast alone. Finally, a prospective (high volume radial) single-center study using stricter criteria for the definition of AKI found that although AKI was lower in TR compared to TF (2.5% vs. 4.5%, p<0.001), after adjusting for other confounders, it was no longer significant [31].

A subanalysis of a study was done to evaluate the amount of contrast related to the incidence of AKI among STEMI patients which showed a nonsignificant trend toward reduced CI-AKI with radial access (OR, 0.27; 95% CI, 0.07-1.05; P=0.06) [32]. In 2015, a meta-analysis was done including all the observational studies available at that time comparing radial versus femoral access [33]. Utilizing a sample total of over 20,000 patients included in the meta-analysis, there was less risk of AKI, favoring the radial approach (RR 0.52, 95% CI [0.38-0.73], p < 0.001) [33]. Some of the limitations in this meta-analysis were the individual studies themselves, as they were all observational. At the same time, there were different characteristics of the study population, with some populations predominantly presenting as STEMI, and lastly the lack of a standard definition of AKI amongst the studies.

Several recent retrospective studies analyzed the effect of vascular access site on renal outcomes and are summarized in Table I. One retrospective study done by Feldkamp et al. included consecutive patients who underwent catheterization regardless of reason (whether acute coronary syndrome (ACS) or not) to mimic real-world conditions. They found that radial access led to less risk of AKI (OR 0.65 (CI [0.51-0.83] <0.001). What was unique about this study was the subgroup analysis for patients with ACS and baseline CKD who were deemed at greater risk for AKI to begin with, had a stronger reduction in risk with TR [OR 0.52 (CI [0.34-0.81] p=0.003)] vs. TF [0.60 (CI [0.41-0.87] p=0.007)] [34]. This implies that the higher the risk for AKI the higher the potential benefit in terms of vascular access effect on kidney function. Another retrospective study by Vora et al. in 2017 found similar results in the presence of baseline CKD. The initial hypothesis for this study was that patients with baseline CKD had a higher risk of bleeding complications and AKI, and that the more advanced the CKD, the higher the risk for both. Eventually, this study found that although fluoroscopy time was longer in the TR approach, the amount of contrast used was not different than TF. There was also a significantly lower rate of transfusion with the effect more pronounced with more advanced CKD stage (OR 0.43 CI [0.2-0.9] for those with GFR 15-29). In addition, among all patients, the risk for dialysis was also lower with the effect extending even to those with baseline CKD with an OR 0.80 (CI [0.68-0.94]; P=0.008) [35].

Two similar retrospective propensity-matched studies also recently came out from single centers in efforts to identify and help determine the relationship of vascular access to AKI using existing real-world single center hospital registries. The study done in Pennsylvania used the AKI definition of both >0.5 mg/dl or >25% increase in serum creatinine level from baseline at 48 to 72 hours after the catheterization and also observed decreased rates of AKI with TR access with OR 0.57 (CI [0.35-0.91] p= 0.018) [36]. In contrast, the study conducted out of Washington used different criteria for AKI defined as an increase of ≥0.3 mg/dl post catheterization or 25% reduction of creatinine clearance. They found a strikingly different incidence rate of approximately 17% and found a decrease in AKI after TR access with OR 0.28 (CI [0.19-0.59], p<0.001) [37]. This presents a common theme seen in previous studies where the lack of a standardized AKI definition, makes it harder to incorporate all the conflicting results into a single meta-analysis. It is worthwhile to note that a recent study which looked into different definitions for AKI post catheterization and mortality showed that the incidence of CI-AKI is somewhere between 6 to 15.7%. Here, AKI was defined as an absolute increase in serum
creatinine of >0.5 mg/dL (44 mmol/L) or 0.3 mg/dL (27 mmol/L), in line with most of the studies above. In this recent study, mortality risk was predicted based on the AKI definition used [38]. A recent single-center retrospective study involving over 4000 patients failed to demonstrate an association between CI-AKI and angiographic approach, despite adjusting for confounders [39].

This affirms that the usual definitions for AKI used in past studies can serve as good predictors of outcomes such as mortality and likely reflects an accurate assessment of renal function.

4. AKI-MATRIX

The first large, pre-specified, multi-center, randomized controlled MATRIX [40] trial described data in 8000 patients randomized to either TR or TF access. A subanalysis called AKI-MATRIX included several definitions of AKI, including absolute (>0.5 mg/dL) or a relative (>25%) increase in serum creatinine, which was incorporated into this intention to treat trial. Baseline pre-procedural GFR was comparable for both groups. A >25% increase in serum creatinine was observed in 15.4% with TR and 17.3% with the TF group (RR 0.87 CI [0.77 to 0.98]; p= 0.0195), and a >0.5 mg/dL absolute increase in serum creatinine was observed in 4.3% in the TR group vs 5.4% in the TF group (RR 0.77, CI [0.63-0.95]; p= 0.0131) [11](Fig. 2). This beneficial effect was further increased among patients deemed at higher risk for AKI, including those with ACS and reduced GFR specifically KDIGO 3, high Mehran score, and advanced Killip class. Multivariate analyses performed with the individual components of the Mehran score (risk factors for CI-AKI), resulted in TR access retaining its significance in predicting subsequent AKI. However, when the multivariate analysis was done together with bleeding, hemoglobin levels, and the need for blood transfusions, TR was no longer significant. However, TR did exhibit a trend towards significance, while bleeding, hemoglobin and transfusions (bleeding related parameters) exhibited a two to three-fold risk of AKI [11]. This implies that a majority of the effect of a TR approach in reducing AKI is predominantly from a reduction in periprocedural bleeding. Bleeding might not be the only driving factor for AKI in this patient population. Atheroembolism might still play a role as its incidence in patients undergoing angiography can range from 18 to 96% in some studies [3].
5. LIMITATIONS OF THE TR APPROACH

TR interventions, however, are not without limitations. Operator skill as stated previously plays a significant part in these interventions, although, familiarity with the use of TR access is increasing. Further, utilizing the upper extremity arteries could potentially be detrimental to future fistula placement and maturation [41]. Given that a significant proportion of these patients may have underlying CKD, a pre-procedural discussion is most certainly warranted. As of now, no large studies have addressed the potential detrimental effects of radial access on subsequent Arteriovenous Fistula (AVF) creation. Another limitation is the issue of multiple punctures causing subsequent radial artery stenosis with resultant difficulty in reusing the same radial site in future PCIs [42]. Complex coronary artery lesions such as complex bifurcation lesions that require larger catheter sheaths and PCI on bypass grafts are more readily accessible/feasible via femoral access [43]. Possible use of the radial artery as a graft for coronary bypass surgery should also be taken into consideration as the radial artery has similar outcomes compared to the left internal mammary artery [44]. Lastly, there are concerns of increased risk of stroke with the TR approach due to anatomic proximity, increased catheter exchanges due to the small caliber, and longer procedure times. A trial in 2012 comparing TR with TF access found nominally higher, but not statistically significant rates of strokes detected by magnetic resonance imaging (MRI) (17.5% vs. 11.7%, p = 0.31) [45]. However, a recent meta-analysis of 11,000 patients and 13 studies found no significance between the risk of stroke between TR and TF [46].

Additional causes of TR failure as described by Dehghani et al., can be observed in elderly patients over 75 years of age, prior to the coronary artery bypass graft surgery, and short stature [47]. Lastly, anatomical abnormalities in the upper extremity arterial system, although a rare occurrence, pose contraindications to TR access.

CONCLUSION AND FUTURE DIRECTIONS

Each case should be undertaken on an individual basis, but it is clear that there are several advantages when utilizing TR access. For patients at high risk of AKI, TR approach is probably preferable, presuming operator competency [48]. More extensive studies are needed to confirm whether TR intervention does, in fact, prevent or hinder fistula formation if a future need for dialysis develops. More work is needed to understand the incidence of renal atheroembolic events during PCI as a cause of procedural AKI. At the same time, there should be a continued search for other factors that can contribute to AKI. This will help reduce the morbidity and cost of care for AKI in the setting of cardiac catheterization while optimizing coronary revascularization outcomes.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The author declares no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] McCullough PA, Adam A, Becker CR, et al. Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol 2006; 98(6A): 5K-13K.
[2] Scolari F, Ravani, P, Gaggi R, et al. The challenge of diagnosing atheroembolic renal disease: Clinical features and prognostic factors. Circulation 2007; 116: 298-304.
[3] Scolari F, Ravani P. Atheroembolic renal disease. Lancet 2010; 375(9726): 1650-60.
[4] Ram P, Mezue K, Pressman G, Rangaswami J. Acute kidney injury post-transcatheter aortic valve replacement. Clin Cardiol 2017; 40(12): 1357-62.
[5] Silver SA, Chertow GM. The economic consequences of acute kidney injury. Nephron 2017; 137(4): 297-301.
[6] Best PJ, Lennorn R, Ting HH, et al. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol 2002; 39: 1113-9.
[7] Andó G, Costa F, Trio O, Orteo G, Valgimigli M. Impact of vascular access on acute kidney injury after percutaneous coronary intervention. Cardiovasc Revasc Med 2016; 17(5): S33-8.
[8] Rao SV, Ou FS, Wang TY, et al. Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention: A report from the National Cardiovascular Data Registry. JACC Cardiovasc Interv 2008; 1: 379-86.
[9] Rigattieri S, Valsecchi O, Sciabassi A, et al. Current practice of transradial approach for coronary procedures: A Survey by the Italian Society of Interventional Cardiology (SICI-GISE) and the Italian Radial Club. Cardiovasc Revasc Med 2017; 18(3): 154-9.
[10] Biachi R, D’Acìemo L, Crisci M, et al. From femoral to radial approach in coronary intervention: Review of literature and 6 years single-center experience. Angiology 2017; 69(4): 281-7.
[11] Ando G, Cortese B, Russo F, et al. MATRIX Investigators. Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management: AKI-MATRIX. J Am Coll Cardiol 2017; S0735-1097(17)68997-9090. [Epub ahead of print].
[12] Kellum JA, Lameire N, Aspelin P, et al. Kidney disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int 2012; 2(1): 1-138.
[13] Tsai TT, Patel UD, Chang TI, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: Insights from the NCDR Cath-PCI Registry. JACC Cardiovasc Interv 2014; 7(1): 1-9.
[14] Fukumoto Y, Tsutsui H, Tsuchihashi M, Masumoto A, Takeshita A. Cholesterol Embolism Study I. The incidence and risk factors of cholesterol embolization syndrome, a complication of cardiac catheterization: A prospective study. J Am Coll Cardiol 2003; 42: 211-6.
[15] Bhat FA, Changal KH, Raina H, Tramboo NA, Rather HA. Transradial versus transfemoral approach for coronary angiography and angioplasty–A prospective, randomized comparison. BMC Cardiovasc Disord 2017; 17(1): 23.
[16] Eggebrecht H, Oldenburg B, Dirsch O, et al. Potential embolization by atherosclerotic debris dislodged from aortic wall during cardiac catheterization: histological and clinical findings in 7,621 patients. Catheter Cardiovasc Interv 2000; 49(4): 389-94.
[17] Vuurmans T, Byrne J, Fretz E, et al. Chronic kidney injury in patients after cardiac catheterisation or percutaneous coronary intervention: A comparison of radial and femoral approaches (from the British Columbia Cardiac and Renal Registries). Heart 2010; 96: 1538-42.
[18] Nikolsky E, Mehran R, Lasic Z, et al. Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int 2005; 67: 706-13.
[19] Mehta SK, Frukin AD, Lindsey JB, et al. Bleeding in patients undergoing percutaneous coronary intervention: The development of a clinical risk algorithm from the National Cardiovascular Data Registry. Circ Cardiovasc Interv 2009; 2(3): 222-9.
Acute Kidney Injury Post Cardiac Catheterization

[20] Bhatty S, Cooke R, Shetty R, Jovin IS. Femoral vascular access-site complications in the cardiac catheterization laboratory: diagnosis and management. Inter J Cardiol 2011; 3(4): 503-14.

[21] Sherev DA, Shaw RE, Brent BN. Angiographic predictors of femoral access site complications: Implication for planned percutaneous coronary intervention. Catheter Cardiovasc Interv 2005; 65(2): 196-202.

[22] Fischman AM, Swinburne NC, Patel RS. A technical guide describing the use of transradial access technique for endovascular interventons. Tech Vasc Interv Radiol 2015; 18(2): 58-65.

[23] Romagnoli E, Biondi-Zoccai G, Sciabasai A, et al. Radical versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: The RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol 2012; 60(24): 2481-9.

[24] Roy P, Raya V, Okabe T, et al. Incidence, predictors, and outcomes of post- percutaneous coronary intervention nephropathy in patients with diabetes mellitus and normal baseline serum creatinine levels. J Am Coll Cardiol 2008; 101(11): 1544-9.

[25] McCullough PA, Wolyn R, Rocher LL, Levin RN, O'Neill WW. Acute renal failure after coronary intervention: Incidence, risk factors, and relationship to mortality. Am J Med 1997; 103(5): 368-75.

[26] Mohammed NMA, Mahfouz A, Achkar K, Rafie JM, Hajar R. Contrast-induced Nephropathy. Heart Views 2013; 14(3): 106-16.

[27] Caspi O, Habib M, Cohen Y, et al. Acute kidney injury after primary angioplasty: Is contrast-induced nephropathy the culprit? J Am Heart Assoc 2017; 6(6): 1-10.

[28] Ohno Y, Moeaka Y, Miyata H, et al. Impact of periprocedural bleeding on incidence of contrast-induced acute kidney injury in patients treated with percutaneous coronary intervention. J Am Coll Cardiol 2013; 62(14): 1260-6.

[29] Kooiman J, Seth M, Dixon S, et al. Risk of acute kidney injury after percutaneous coronary interventions using radial versus femoral vascular access: Insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. Circ Cardiovasc Interv 2014; 7(2): 190-8.

[30] Cortese B, Sciabasai A, Sekir B, et al. Comparison of risk of acute kidney injury after primary percutaneous coronary interventions with the transradial approach versus the transfemoral approach (from the PRIPITENA urban registry). Am J Cardiol 2014; 114(6): 820-5.

[31] Damluji A, Cohen MG, Smaarit R, Steckbeck R, Moscucci M, Gilchrist IC. The incidence of acute kidney injury after cardiac catheterization or PCI: A comparison of radial vs. femoral approach. Int J Cardiol 2014; 173(3): 595-7.

[32] Andò G, de Gregorio C, Morabito G, Tiro O, Saporto F, Oreto G. Renal function-adjusted contrast volume redefines the baseline estimation of contrast-induced acute kidney injury risk in patients undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv 2014; 7(4): 465-72.

[33] Andò G, Costa F, Boretti I, Tiro O, Valgimigli M. Benefit of radial approach in reducing the incidence of acute kidney injury after percutaneous coronary intervention: A meta-analysis of 22,108 patients. Int J Cardiol 2015; 179: 309-11.

[34] Feldkamp T, Luedemann M, Spehlimann ME, et al. Radial access protects from contrast media induced nephropathy after cardiac catheterization procedures. Clin Res Cardiol 2018; 107(2): 148-57.