Detection of GHR|AluI gene polymorphism and its association with body weight of Madura cattle in Indonesian Beef Cattle Research Station

Hartati1, N H Krisna1, F Firdaus1, S P Rahmadani1 and B D P Soewandi2

1 Indonesia Beef Cattle Research Station, Pahlawan Rd. No. 2 Grati, Pasuruan, East Java, Indonesia 67184
2 Indonesia Research Institute for Animal Production (IRIAP), Ciawi, Bogor – Indonesia

Corresponding author e-mail: hartatifakhri16@gmail.com

Abstract. Madura cattle is a native cattle that are genetically tolerant of tropical climates. Madura cattle are one of the beef cattle breeds in Indonesia. Madura cattle can be a superior breed, but improving growth trait in Madura cattle needs to be conducted. The early step that was needed was for detecting the genes which were involved in growth traits. The purpose of this research was for detecting GHR gene polymorphisms and its association with body weight of Madura cattle population in Indonesian Beef Cattle Research Station. This study used 110 DNA samples of Madura cattle that was collected from the experimental barn at Indonesian Beef Cattle Research Station. DNA samples were extracted by DNA extraction kit. Genotype of GHR gene was detected by PCR-RFLP method using AluI restriction enzymes. In this study, association genotype and body weight was analysed by univariate GLM method. The birth weight, weaning weight, yearling weight and 18 months weight of Madura cattle were 16.8±0.3 kg; 82.4±2.3 kg; 124.6±3.7 kg and 166.7±5.0 kg, respectively. The GHR genes of Madura cattle had 3 genotypes AA, AG and GG and genotype frequencies of GHR gene were 0.273 (AA), 0.373 (AG), 0.355 (GG), respectively. Whereas the allele frequencies of A was 0.459 and the allele frequencies of G was 0.541. Based on Chi-square (X2) analysis showed that the population sample was not disequilibrium. The result of association analysis was significant (P <0.05) on weaning weight, yearling weight and 18 month weight. It was concluded that the GHR gene has potential as a genetic marker for growth traits and can be used as MAS in Madura cattle in Indonesian Beef Cattle Research Station.

Keywords: GHR|AluI gene, polymorphism, body weight, association analysis, Madura cattle

1. Introduction

Madura cattle is a native cattle that are genetically tolerant of tropical climates and marginal environments and are resistant to disease attacks. Madura cattle have a large contribution as beef cattle, which is predicted to reach 24% of the demand for beef cattle originating from East Java. So far, Madura cattle breeding activities have been more focused on producing superior breeds through selection. One of the characteristics of production which has important economic value is growth trait.

Selection of growth traits can be carried out both conventionally and by molecular approaches. One of the genes associated with the growth trait is the GHR (Growth Hormone Receptor) gene. The GHR gene acts as a cell surface receptor that played a role as conductor GH on somatic cell growth. GH has
a role in growth and metabolism through interaction with a specific receptor that was called growth hormone receptor (GHR) on the surface of target cells [1] so that GHR has a role the biological metabolism of GH on target cells. The position of GHR gene is on chromosome 20 [2] and in exon 10, SNPs that change amino acid are found at 200 bp was Ala / Thr and 257 bp was Ser / Gly [3]. The SNPs at 257 bp in more research that had been reported were studied and detected by the PCR-RFLP method using the AluI restriction enzyme. Based on more the report of The GHR | AluI that Bos taurus [4][5][6] and Bos indicus [7] was found polymorphism, but Bos javanicus (Bali cattle) [5] was found monomorphism.

GHR | AluI gene was associated with final weight and meat quality traits had been reported in Bos taurus [1][4][8]. The research from Said et al. [9] found that weaning weight and daily gain is associated significantly with weaning weight and daily gain in Pasundan cattle. Based on this information, the GHR gene has the potential to be a genetic marker in local Indonesia beef cattle. The purpose of this study is for detecting the polymorphism of the GHR gene and its association with body weight of Madura cattle in Indonesian Beef Cattle Research Station (IBCRS)

2. Materials and methods

2.1. DNA sample

Samples for DNA use 110 heads Madura cattle calves in research station of Indonesian Beef Cattle Research Station, Grati Pasuruan. DNA was extracted from blood of Madura cattle that were collected from the jugular vein (3-5mL) using a vaccutainer tube containing K3 EDTA.DNA and the blood sample stored at -20°C. DNA extraction use DNA extraction kit (zymo merck). On the other hand, the data of birth, weaning, yearling and 18 month weight from 110 heads Madura cattle calves were collected.

2.2. PCR-RFLP analysis

The GHR | AluI gene were amplified using primer pairs designed by [1] (Genbank number AF140284.1). The primer information used was given in Table 1. PCR reaction was performed in a total volume of 20 µL. The PCR reaction contained 3 µl DNA (approximately 20 ng/µL of DNA), 0.4 µl of each primers, 10 µL PCR mix (MyTaq™ HS Red Mix (Bioline, USA)), and 6.2 µl double destilation water (DDW) to a final volume of 20 µl. the PCR condition was 95°C for 1 min (pre-denaturation), 95°C for 15 s (denaturation), 53.8°C for 15 s (anneling), 72°C for 10 s (extension) and 72°C for 5 min (final extention) and the PCR condition was followed by 35 cycles. PCR products were electrophoresed on 1.5% agarose gels, stained with GelRed®10,000X in water (Biotium, USA) and visualized under a G-BOX Gel Documetation System (Syngene, UK). AluI restriction enzyme (New England Biolabs, USA) was used to digest the PCR products of GHR. The digested fragments were electrophorezed on 2% agarose gels, stained with GelRed®10,000X in water (Biotium, USA) and visualized under a G-BOX Gel Documetation System (Infiity VX2).

Table 1. The primers used to amplify specific fragments of GHR gene in Madura cattle.

Gene	Amplicon Size (bp)	Location	Primer Sequences (5'-3')
GHR	342	Exon 10	F:5'-GCT AAC TTC ATC GTG GAC AAC-3'
			R : 5'-CTA TGG CAT GAT TTT GTT GTT CAG-3'

2.3 Data analysis

Genotype and alleic frequency were analyzed according to the formula Nei & Kumar [10]. Hardy-Weinberg (H-W) equilibrium was calculated according to the formula Kaps and Lamberson [11] and heterozigosity in the Madura cattle were analyzed according to Weir [12]. formula and the Polymorphism Information Content (PIC) value of GHR gene were analyzed according to [13] formula. Analisys of association on the genotype data of GHR gene with the birth weight, weaning weight, yearling weight and 18 month weight were performed by general linier model (GLM) model by IBM SPSS ver 20.0 software.
3. Results and discussion

3.1. Body weight performance of Madura cattle in IBCRS.
Descriptive analysis of body weight performance of Madura cattle in IBCRS is shown in Table 2 below:

Table 2. Body weight of Madura cattle in Indonesian Beef Cattle Research Station.

Sex	N	BW ± SE	WW ± SE	YW ± SE	18 MW ± SE
Male	54	17.6 ± 0.4ª	82.7 ± 3.2ª	128.9 ± 5.4ª	175.6 ± 7.2ª
Female	56	16.1 ± 0.4ᵇ	82.1 ± 3.2ª	120.5 ± 5.1ª	158.4 ± 6.7ª
Total	110	16.8 ± 0.3	82.4 ± 2.3	124.6 ± 3.7	166.7 ± 5.0

n = number of observation; BW : birth weight; WW : weaning weight; YW : yearling weight; 18 MW: 18 month weight; SE: standard error.
ªᵇ the different superscripts in same column showed significantly (P < .05).

According to Table 2, the result showed that the average of birth weight, weaning weight, yearling weight and 18 months weight of Madura cattle were 16.8 ± 0.3 kg ; 82.4 ± 2.3 kg; 124.6 ± 3.7 kg and 166.7 ± 5.0 kg, respectively. The results of this research showed that sex had a significant effect (P<0.05) on birth weight of Madura Cattle. The birth weight of male calves was higher than the birth weight of female calves were 17.6 ± 0.4 kg and 16.1 ± 0.4 kg, respectively. The birth weight of Madura cattle in this study was higher than the birth weight of male and female Madura cattle in Bangkalan Madura Regency were 15.42 kg and 13.60 kg, respectively [14] but lower than birth weight and weaning weight at Madura cattle on the island of Madura [15] [16]. According to Table 2, weaning weight, yearly weight and body weight at 18 months of Madura cattle was not affected by sex (P > .05), although in this period the growth is strongly influenced by the environment because the age of 7 months of calves has begun to wean and learn to consume finished feed until mature.

3.2. Genotype and allele frequencies, X2 tes, He, Ho, PIC and Ne values of GHR|AluI gene
The results of genotype and allele frequencies analysis of the GHR | AluI gene in Madura cattle in IBCRS can be seen in Table 2.

Table 3. Genotype and allele frequencies, X2 tes, He, Ho, PIC and Ne values of the GHR | AluI gene in Madura cattle.

Gene	Sex	n	Genotype Frequency	Allele Frequency	χ²test	He	Ho	PIC	Ne			
			AA	AG	GG	A	G	A	G			
GHR	Male	54	0.352	0.333	0.315	0.519	0.481	5.967	0.499	0.504	0.375	1.997
	Female	56	0.196	0.411	0.393	0.402	0.598	1.187	0.481	0.485	0.365	1.926
	Total	110	0.273	0.373	0.355	0.459	0.541	6.849	0.497	0.499	0.373	1.987

n : number of observation; χ² test : chi-square value; He : heterozigosity expected; Ho: heterozigosity observed; PIC: polymorphic information content; Ne: number of effective allele.

According to Table 3, The genotype of GHR | AluI genes of Madura cattle in IBCRS was found AA, AG and GG. The AG and GG genotypes frequency in the GHR | AluI genes of Madura cattle were found at almost the same frequency, were 37.3% and 35.5%, while genotype AA was found in lower frequencies than AG and GG was 27.3%. In male Madura cattle, the A allele is the common allele while in female Madura cattle the common allele is the G allele were 51.9% and 59.8%, respectively. Several previous research results also reported that in most Indonesia local beef cattle allele A is a common allele were Pasundan cattle with allele frequency A = 0.67 and B = 0.33 [17], PO cattle with allele frequency A = 0.788 and allele B = 0.212 [7], Bali cattle with an allele frequency of A = 0.991 and G =
0.009 [5] and in Simmental bull with an allele frequency of A = 0.716 and G = 0.248 [6]. Thus the GHR | AluI gene in most local Indonesia beef cattle are polymorphic as well as the Madura cattle in IBCRS.

The results of Hardy-Weinberg Equilibrium (HWE) analysis showed that the genotype frequency of the GHR | AluI gene in Madura cattle was disequilibrium condition, especially in the male calves population, while the female calves population was equilibrium condition. This condition described that the frequency of alleles and genes in the Madura cattle population is not constant from generation to generation, especially in males that have selection and have mating arrangements, causing gene frequencies to change. Statement from Vasconcellos et al. [18] that the disequilibrium condition was caused by inbreeding, selection, genetic drift and the population that was divided. Selection, mutation, migration, genetic drift and evolution was factors that could change the frequency of genes [19] [20].

The genetic diversity of Madura cattle is shown in Table 3. The genetic diversity of a gene can be evaluated by the heterozygosity value (Ho, He, Ne) and the level of informative marker (PIC). The results of this analysis showed that the expected heterozygosity (He) and observed heterozygosity (Ho) values in the GHR | AluI gene were 0.497 and 0.499, respectively. These condition that the Madura cattle had high genetic diversity. Based on [13] that the PIC value category was low (≤0.25), moderate (0.25 <PIC <0.5), and high (≥0.5). According to this category, the GHR | AluI gene has a PIC value of 0.373 and is in the moderate category. The PIC value in the moderate category indicates that the marker on the GHR | AluI gene is very informative so that it can be associated with growth traits in Madura cattle population in IBCRS to become marker assisted selection (MAS) candidates.

3.3. Association of GHR | AluI genes with body weight of Madura cattle in IBCRS

The analysis results of the genotype association of the GHR | AluI gene with birth weight, weaning weight, yearling weight and 18 month weight for Madura cattle are presented in Table 4 below:

Genotype	n	BW ± SE	n	WW ± SE	N	WY ± SE	n	18 MW±SE
Male (M)								
AA	19	16.7±2.6	18	91.5±23.1	18	144.3±34.6	18	192.7±45.7
AG	18	18.5±3.8	18	75.2±20.1	18	111.9±34.3	18	156.8±56.3
GG	17	17.7±2.9	15	81.5±24.6	15	130.9±44.0	15	176.9±51.9
Total	54	17.6±3.2	51	82.8±23.2	51	128.9±39.1	51	175.4±52.7
Female (M)								
AA	11	16.2±3.3	11	90.1±13.4	11	137.7±18.4	11	186.2±34.3
AG	23	16.3±2.1	22	80.3±23.6	22	120.0±39.4	22	163.2±45.6
GG	22	15.8±3.5	21	79.7±27.4	21	112.1±37.3	21	138.9±53.4
Total	56	16.1±2.9	54	82.1±23.6	54	120.5±37.3	54	158.4±49.5
M + F								
AA	30	16.5±2.8a	29	90.9±19.7b	29	141.8±29.3b	29	190.2±41.2b
AG	41	17.2±3.1a	40	78.0±22.0a	40	116.4±36.9a	40	160.3±50.1a
GG	39	16.6±3.4a	36	80.4±25.9ab	36	119.9±42.5a	36	154.7±55.4a
Total	110	16.8±3.1	105	82.4±23.3	105	124.6±38.3	105	166.7±51.5

ab the different superscripts in same column showed significantly (P < .05).
association of the GHR gene on weaning weight and daily gain of Pasundan cattle. Curi et al. [21] who reported a significant association of GHR genes on daily gain and carcass weight of Nellore cattle (Bos indicus) and their crosses, but had no significant effect on reproductive performance in Friesian Holstein cattle [22]. In Bos taurus cattle, the GHR | AluI gene besides having a significant effect on birth weight is also polymorphic on final weight and several characteristics of meat quality [1] [4] [8]. Garret et al. [23] also reported that in Brangus bulls cattle the GHR gene had an effect on rib fat.

Based on Table 4, it can be seen that genotype AA in Madura cattle in IBCRS has the highest body weight performance at weaning weight, yearling weight and body weight at 18 months and then GG and AG genotypes. Based on the results of this study, genotype-based selection can be carried out on individuals with genotype AA with the selection criteria for weaning weight or yearling weights. Weaning weight and yearling weight are two growth traits that high economic value. Weaning weight that high value illustrates the mother's good mothering ability in raising calves and has good milk production [24]. In addition, the highest genetic correlation in Madura cattle in IBCRS was also obtained between weaning weight and yearly weight of 0.78, while the lowest genetic correlation was obtained at birth weight with a year weight of 0.27 [25].

This is also accordance with the heritability value obtained in these two traits, where the highest heritability is obtained at weaning weight and yearling weight were 0.85 ± 0.4 and 0.74 ± 0.4, respectively [26]. Thus, it can be stated that the GHR gene is very potential and can be used as a marker assisted selection (MAS) candidate of Madura cattle in IBCRS for exeleration genetic quality improvement and selection of superior breeds.

4. Conclusion
The GHR | AluI gene is polymorphic and was significantly associated with body weight of Madura cattle in Indonesia Beef Cattle Research Station (Grati, Pasuruan). GHR | AluI gene can become as a marker assisted selection (MAS) candidate in Madura cattle in Indonesia Beef Cattle Research Station (Grati, Pasuruan) to accelerate genetic quality improvement and selection of superior breeds.

5. Suggestion
Detection of GHR gene polymorphisms in Grati-Madura cattle population needs to be continued to the validation stage in a larger number of samples, so that it has a potential as marker assisted selection (MAS).

References
[1] Di Stasio L, Destefanis G, Brugiapaglia A, Albera A and Rolando A 2005 Polymorphism of the GHR gene in cattle and relationships with meat production and quality Anim. Genet. 36 138–40
[2] Moody D E, Pomp D, Barendse W and Womack J E 1995 Assignment of the growth hormone receptor gene to bovine chromosome 20 using linkage analysis and somatic cell mapping Anim. Genet. 26 341–3
[3] Ge W, Davis M E, Hines H C and Irvin K M 2000 Rapid communication: single nucleotide polymorphisms detected in exon 10 of the bovine growth hormone receptor gene J. Anim. Sci. 78 2229–30
[4] Han S H, Cho I C, Kim J H, Ko M S, Jeong H Y, Oh H S and Lee S S 2009 A GHR polymorphism and its associations with carcass traits in Hanwoo cattle Genes and Genomics 31 35–41
[5] Zulkharnaim, Jaakaria and Noor R R 2010 Identification of genetic diversity of growth hormone receptor (GHR|Alu I) gene in Bali cattle Media Peternak. 33 81–7
[6] Ardici S, Dincel D, Samli H and Balci F 2017 Effects of polymorphisms at LEP, CAST, CAPN1, GHR, FABP4 and DGAT1 genes on fattening performance and carcass traits in Simmental bulls Arch. Anim. Breed. 60 61–70
[7] Hartati, Soewandi B D P, Hapsari A A R, Anwar S and Pamungkas D 2019 Identification of GH|MspI and GHR|AluI gene polymorphism and its association with calf birth weight of
Grati-PO cattle IJAVS 24 49

[8] Reardon W, Mullen A M, Sweeney T and Hamill R M 2010 Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus Meat Sci. 86 270–5

[9] Said S, Agung P P, Putra W P B, Anwar S, Wulandari A S and Sudiro A 2016 Estimation of most probable producing ability value for calf birth’s performance in sumba Ongole cows J. Indones. Trop. Anim. Agric. 41 53–60

[10] Nei M and Kumar 2000 Molecular Evolution and Phylogenetics (Oxford: Oxford University Press)

[11] Kaps M and Lamberson W R 2004 Biostatistics for Animal Science (Cambridge: CABI Publishing)

[12] Weir B S 1991 Genetic Data Analysis II: Methods for Discrete Population Genetic Data (Sunderland: Inc Publisher)

[13] Botstein D, White R L, Skolnick M and Davis R W 1980 Construction of a genetic linkage map in man using restriction length polymorphisms Am J Hum Genet 32 314–31

[14] Karnaan 2007 Curve model growth female and male madura cattle pre wearing period J. ilmu ternak 7 48–51

[15] Kutsiyah F, Kusmartono and Susilawati T 2002 Comparative study of the productivity of Madura. Cattle and Its crossbreed with Limousin in Madura island JITV 8 98–106

[16] Sulistyoningtyas I, Nurgiartiningsih V M A and Ciptadi G 2017 Evaluation of Performance for Body Weight and Vital Statistic of Madura Cattle based on Year of Birth JIPT 5 40

[17] Putra W P B, Agung P P, Anwar S and Said S 2019 Polymorphism of Bovine growth hormone receptor gene (g.3338A > G) and its association with body measurements and body weight in Pasundan Cows Trop. Anim. Sci. J. 42 90–6

[18] Vasconcellos L P D M K, Tambasco-Talhari D, Pereira A P, Coutinho L L and Regitano L C de A 2003 Genetic characterization of Aberdeen Angus cattle using molecular markers Genet. Mol. Biol. 26 133–7

[19] Warwick E J, Astuti J M and Hardjosubroto W 1994 Pemuliaan Ternak (Yogyakarta: Gadjah Mada University Press)

[20] Hardjosubroto W 1999 Pengantar Genetika Hewan (Yogyakarta: Universitas Gajah Mada)

[21] Curi R A, De Oliveira H N, Silveira A C and Lopes C R 2005 Effects of polymorphic microsatellites in the regulatory region of IGF1 and GHR on growth and carcass traits in beef cattle Anim. Genet. 36 58–62

[22] Hadi Z, Atashi H, Dadpasand M, Derakhshandeh A and Ghahramani Seno M M 2015 The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductive performance in Holstein dairy cows Iran. J. Vet. Res. 16 244–8

[23] Garrett A J, Rincon G, Medrano J F, Elzo M A, Silver G A and Thomas M G 2008 Promoter region of the bovine growth hormone receptor gene: Single nucleotide polymorphism discovery in cattle and association with performance in Brangus bulls J. Anim. Sci. 86 3315–23

[24] Falconer D S and Mackay T F C 1996 Introduction to Quantitative Genetics (Malaysia: Longman)

[25] Hartati 2016 Genetic improvement of Peranakan Ongole Cattle through phenotypic and whole genome mapping (IPB University)

[26] Hartati, Aryogi, Prihandini P, Khrisna N, Soewandi B and Widiyawati, R and Frediansyah F 2019 Final report the identification of growth traits in Madura cattle in effort to accelerate formation superior breeds (Grati)