Difference L operators and a Casorati determinant solution to the T-system for twisted quantum affine algebras

Zengo Tsuboi

Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, Japan

Abstract

We propose factorized difference operators $L(u)$ associated with the twisted quantum affine algebras $U_q(A^{(2)}_{2n}), U_q(A^{(2)}_{2n-1}), U_q(D^{(2)}_{n+1}), U_q(D^{(3)}_4)$. These operators are shown to be annihilated by a screening operator. Based on a basis of the solutions of the difference equation $L(u)w(u) = 0$, we also construct a Casorati determinant solution to the T-system for $U_q(A^{(2)}_{2n}), U_q(A^{(2)}_{2n-1})$.

Journal-ref: J. Phys. A: Math. Gen. 35 (2002) 4363-4373
DOI: 10.1088/0305-4470/35/19/316

1 Introduction

In [1], a class of functional relations, a T-system, was proposed for commuting transfer matrices of solvable lattice models associated to twisted quantum affine algebras $U_q(X_r^{(r)}_{N}) \ (r > 1)$. For $X_N^{(r)} = A^{(2)}_{N}$, it has the following form:

For $U_q(A^{(2)}_{2n})$ case:

\[
T^{(a)}_m(u-1)T^{(a)}_m(u+1) = T^{(a)}_{m-1}(u)T^{(a)}_{m+1}(u) + T^{(a-1)}_m(u)T^{(a+1)}_m(u)
\]

for $1 \leq a \leq n - 1,$ (1.1)

\[
T^{(n)}_m(u-1)T^{(n)}_m(u+1) = T^{(n)}_{m-1}(u)T^{(n)}_{m+1}(u) + T^{(n-1)}_m(u)T^{(n)}_m(u + \frac{\pi i}{2\hbar}).
\]
For $U_q(A_{2n-1}^{(2)})$ case:

$$T_m^{(a)}(u - 1)T_m^{(a)}(u + 1) = T_m^{(a)}(u)T_{m+1}^{(a)}(u) + T_m^{(a-1)}(u)T_{m+1}^{(a+1)}(u)$$

for $1 \leq a \leq n - 1$, \hspace{1cm} (1.2)

$$T_m^{(a)}(u - 1)T_m^{(a)}(u + 1) = T_{m-1}^{(a)}(u)T_m^{(a)}(u) + T_{m-1}^{(a-1)}(u)T_m^{(a+1)}(u)$$

Here $\{T_m^{(a)}(u)\}_{a \in I_a, m \in \mathbb{Z}_+; u \in \mathbb{C}}$ ($I_a = \{1, 2, \ldots, n\}$) are the transfer matrices with the auxiliary space labeled by a and m. We shall adopt the boundary condition $T_1^{(a)}(u) = 0, T_0^{(a)}(u) = 1$, which is natural for the transfer matrices. This T-system (1.1), (1.2) is a kind of discrete Toda equation, which follows from a reduction of the Hirota-Miwa equation [2],[3]. The original T-system [1] contains a scalar function $g_T^{(a)}(u)$ in the second term of rhs of (1.1), (1.2). Throughout this paper, we set $g_T^{(a)}(u) = 1$. This corresponds to the case where the vacuum part is formally trivial. However, structure of the solution of (1.1), (1.2) is essentially independent of the function $g_T^{(a)}(u)$. In this paper, we briefly report on a new expression to the solution of (1.1), (1.2) motivated by the recently found interplay [4] between factorized difference operators and the q-characters for non-twisted quantum affine algebras [5, 6].

In section 2, we propose factorized difference operators $L(u)$ for $U_q(A_{2n}^{(2)})$, $U_q(A_{2n-1}^{(2)})$, $U_q(D_{n+1}^{(2)})$, $U_q(D_4^{(3)})$. $L(u)$ generates functions $\{T^{(a)}(u)\}_{a \in \mathbb{Z}, u \in \mathbb{C}}$ which are Laurent polynomials in variables $\{Y^{(a)}(u)\}_{a \in I_a, u \in \mathbb{C}}$. Moreover $Y^{(a)}(u)$ is expressed by a function $Q_a(u)$ which corresponds to the Baxter Q-function. When $Q_a(u)$ is suitably chosen in the context of the analytic Bethe ansatz [7, 8, 11, 11], $T^{(a)}(u)$ corresponds to an eigenvalue formula of the transfer matrix in the dressed vacuum form (DVF). In particular for $1 \leq a \leq b$ ($U_q(A_{2n}^{(2)})$, $U_q(A_{2n-1}^{(2)})$): $b = n$; $U_q(D_{n+1}^{(2)})$: $b = n - 1$; $U_q(D_4^{(3)})$: $b = 2$), the auxiliary space for this transfer matrix is expected [11] to be a finite dimensional irreducible module of the quantum affine algebra [10, 11], which is called the Kirillov-Reshetikhin module $W^{(a)}_1(u)$ (see also, section 5 in [12]). One of the intriguing properties of $L(u)$ is that $L(u)$ is annihilated by a screening operator $\{S_a\}_{a \in I_a}$, from which $(S_a \cdot T^{(a)})(u) = 0$ results. In the context of the analytic Bethe ansatz, this corresponds to the pole-freeness of $T^{(a)}(u)$ under the Bethe ansatz equation. For the non-twisted case $U_q(X_N^{(1)})$, one may identify S_a with the Frenkel-Reshetikhin screening operator [5] if $Q_a(u)$ is suitably chosen.

For $U_q(A_N^{(2)})$ case, $L(u)$ becomes order of $N + 1$. By using a basis of the solutions of the difference equation $L(u)w(u) = 0$, in section 3, we give a solution (Theorem 3.5) of the T-system for $U_q(A^1_N)$ (1.1), (1.2) as a ratio of two Casorati determinants whose matrix size is constantly $(N + 1) \times (N + 1)$. On solving this T-system, a duality relation (Proposition 2.7)
plays an important role. There is another expression of the solution to the $U_q(A^{(2)}_N)$ T-system \([14, 12]\) which is described by semi-standard tableaux with rectangular shape \([1]\). This solution follows from a reduction of the Bazhanov and Reshetikhin’s Jacobi-Trudi type formula \([13]\) (see (3.4)). In contrast to the Casorati determinants case, the size of the matrix for this determinant is $m \times m$ and thus increases as m increases. Lemma \([3.3]\) connects these two types of solutions.

In contrast to $U_q(A^{(2)}_N)$ case, $L(u)$ for $U_q(D^{(2)}_{n+1}), U_q(D^{(3)}_4)$ contain factors which have a negative exponent -1, thus their order become infinite. Therefore we can not straightforwardly extend the analysis to get the Casorati determinant type solution for $U_q(A^{(2)}_N)$ to this case. However Jacobi-Trudi type formulae are still available in this case as reductions of the solutions in \([14, 15]\). This situation is parallel to the non-twisted case \([4]\).

The deformation parameter q is expressed by a parameter \hbar as $q = e^{\hbar}$. The parameter \hbar often appears as a multiple of $\frac{\pi}{n}. However we note that our argument in this paper is also valid even if one formally set $\frac{\pi}{n} = 0$. In this case, the T-system \([11]\) is equivalent to the one for the superalgebra $B^{(1)}(0|n)$ \([16]\).

In this paper, we omit most of the calculations and proofs, which are parallel with those in the non-twisted case \([4]\).

2 Difference L Operators

Let X_N be a complex simple Lie algebra of rank N, σ a Dynkin diagram automorphism of X_N of order $r = 1, 2, 3$. The affine Lie algebras of type $X^{(r)}_N = A^{(1)}_n$ $(n \geq 1)$, $B^{(1)}_n$ $(n \geq 2)$, $C^{(1)}_n$ $(n \geq 2)$, $D^{(1)}_n$ $(n \geq 4)$, $E^{(1)}_n$ $(n = 6, 7, 8)$, $F^{(1)}_4, G^{(1)}_2, A^{(2)}_{n-1}$ $(n \geq 1)$, $A^{(2)}_{n-1}$ $(n \geq 2)$, $D^{(2)}_{n+1}$ $(n \geq 2)$, $E^{(2)}_6$ and $D^{(3)}_4$ are realized as the canonical central extension of the loop algebras based on the pair (X_N, σ). We write the set of the nodes of the Dynkin diagram of X_N as $I = \{1, 2, \ldots, N\}$, and let $I_\sigma = \{1, 2, \ldots, n\}$ be the set of σ-orbits of I. In particular, $N = n$ and $I = I_\sigma$ for the non-twisted case $r = 1$. We define numbers $\{r_a\}_{a \in I}$ such that $r_a = r$ if $\sigma(a) = a$, otherwise $r_a = 1$. In our enumeration of the notes of the Dynkin diagram (see, Figure \([1]\)), r_a is 1 except for the case: $r_a = 2$ for $A^{(2)}_{2n-1}$, $r_a = 2$ $(1 \leq a \leq n - 1)$ for $D^{(2)}_{n+1}$, $r_3 = r_4 = 2$ for $E^{(2)}_6$, $r_2 = 3$ for $D^{(3)}_4$. Let $\{\alpha_a\}_{a \in I}$ be the simple roots of X_N with a bilinear form $\langle \cdot | \cdot \rangle$ normalized as $\langle \alpha | \alpha \rangle = 2$ for a long root α. Let I_{ab} be an element of the incidence matrix of X_N: $I_{ab} = 2\delta_{ab} - 2(\alpha_a | \alpha_b) / (\alpha_a | \alpha_a)$.

Let $U_q(X^{(r)}_N)$ be the quantum affine algebra. We introduce functions $\{Q_a(u)\}_{a \in I_\sigma, u \in \mathbb{C}}$ which correspond to the Baxter Q functions for $U_q(X^{(r)}_N)$,
Figure 1: The Dynkin diagrams of X_N for $r > 1$: The enumeration of the nodes with I is specified under or the right side of the nodes. The filled circles denote the fixed points of the Dynkin diagram automorphism σ of order r.

$X_N^{(r)}$	X_N	automorphism σ
$A_{2n}^{(2)}$![Diagram](Circles)	$\sigma(2n - a + 1) = a$ for $1 \leq a \leq 2n$
$A_{2n-1}^{(2)}$![Diagram](Circles)	$\sigma(2n - a) = a$ for $1 \leq a \leq 2n - 1$
$D_{n+1}^{(2)}$![Diagram](Circles)	$\sigma(a) = a$ for $1 \leq a \leq n - 1$; $\sigma(n) = n + 1$; $\sigma(n + 1) = n$
$E_6^{(2)}$![Diagram](Circles)	$\sigma(7 - a) = a$ for $a = 1, 2, 5, 6$; $\sigma(3) = 3$; $\sigma(4) = 4$
$D_4^{(3)}$![Diagram](Circles)	$\sigma(1) = 3$; $\sigma(2) = 2$; $\sigma(3) = 4$; $\sigma(4) = 1$

and define functions $\{Y_a(u)\}_{a \in I; u \in \mathbb{C}}$ as

$$Y_a(u) = \frac{Q_a(u - \frac{(a_a|a_a|)}{2})}{Q_a(u + \frac{(a_a|a_a|)}{2})}. \quad (2.1)$$

We formally set $Y_0(u) = 1$; $Q_n+1(u) = Q_n(u + \frac{\pi i}{2})$ and $Y_{n+1}(u) = Y_n(u + \frac{\pi i}{2})$ for $X_N^{(r)} = A_{2n}^{(2)}$; $Q_n+1(u) = 1$ and $Y_{n+1}(u) = 1$ for $X_N^{(r)} \neq A_{2n}^{(2)}$. For the twisted case $r > 1$, we assume quasi-periodicity $Q_a(u + \frac{\pi i}{2}) = h_a Q_a(u)$ ($h_a \in \mathbb{C}$), which induces periodicity $Y_a(u + \frac{\pi i}{2}) = Y_a(u)$. For the non-twisted case $r = 1$, one can identify $Y_a(u)$ with the Frenkel-Reshetikhin variable $Y_{a,q}$ denoted as $Y_a(u)$ in [4] if $Q_a(u)$ is suitably chosen. We shall also use notations $Q_a^k(u) = \prod_{j=0}^{k-1} Q_a(u + \frac{\pi i}{2})$ and $Y_a^k(u) = \prod_{j=0}^{k-1} Y_a(u + \frac{\pi i}{2})$.

Next we introduce screening operators $\{S_a\}_{a \in I; u \in \mathbb{C}}$ whose action is given by

$$(S_a \cdot Y_b)(u) = \delta_{ab} Y_a(u) S_a(u). \quad (2.2)$$
Here we assume \(S_a(u) \) satisfies the following relation
\[
S_a(u + (\alpha_a|\alpha_a)) = A_a \left(u + \frac{(\alpha_a|\alpha_a)}{2} \right) S_a(u),
\]
\[
A_a(u) = \prod_{b=1}^{n'} Q_b^{a*}(u - (\alpha_a|\alpha_b)) \frac{Q_b^{a*}(u + (\alpha_a|\alpha_b))}{Q_b^{a*}(u - (\alpha_a|\alpha_b))},
\]
where \(r_{ab} = \max(r_a, r_b) \); \(n' = n+1 \) for \(X_N^{(r)} = A_{2n}^{(2)} \) and \(n' = n \) for \(X_N^{(r)} \neq A_{2n}^{(2)} \). We assume \(S_a \) obeys the Leibniz rule. The origin of (2.4) goes back to the Reshetikhin and Wiegmann’s Bethe ansatz equation [17] (cf. (4.1)). For the non-twisted case \(r = 1 \) case, (2.4) reduces to the corresponding equation in [4]. We have a formal solution of (2.3) (see also, section 5 in [5]):
\[
S_a(u) = \prod_{b=1}^{n'} K_{ab}(u) \frac{Q_b^{a*}(u - \frac{(\alpha_a|\alpha_a)}{2})Q_b^{a*}(u + \frac{(\alpha_a|\alpha_a)}{2})}{Q_b^{a*}(u)},
\]
where
\[
K_{ab}(u) = \begin{cases}
1 & \text{if } I_{ab} = 0 \\
Q_b^{a*}(u) & \text{if } I_{ab} = 1 \\
Q_b(u - \frac{1}{2})Q_b(u + \frac{1}{2}) & \text{if } I_{ab} = 2 \\
Q_b(u - \frac{1}{2})Q_b(u) & \text{if } I_{ab} = 3.
\end{cases}
\]
Owing to the Leibniz rule, we have
\[
(S_a \cdot Y_b^k)(u) = \delta_{ab} Y_a^k(u) \sum_{j=0}^{k-1} S_a(u + \frac{\pi ij}{\hbar}).
\]
We shall use the following variables for each algebra; the origin of these variables goes back to the analytic Bethe ansatz calculation of DVF [8, 9, 1]. For \(U_q(A_{2n}^{(2)}) \) case:
\[
z_a(u) = \frac{Y_a(u + a)}{Y_{a-1}(u + a + 1)} \quad \text{for} \quad 1 \leq a \leq n,
\]
\[
z_0(u) = \frac{Y_n(u + n + 1 + \frac{\pi i}{2\hbar})}{Y_n(u + n + 2)},
\]
\[
z_{a}(u) = \frac{Y_{a-1}(u + 2n - a + 2 + \frac{\pi i}{2\hbar})}{Y_a(u + 2n - a + 3 + \frac{\pi i}{2\hbar})} \quad \text{for} \quad 1 \leq a \leq n.
\]
We also use the variables: \(x_a(u) = z_a(u) \) and \(x_{2n-a+2}(u) = z_a(u) \) for \(1 \leq a \leq n; x_{n+1}(u) = z_0(u) \).
For $U_q(A_{2n-1}^{(2)})$ case:

\[
\begin{align*}
 z_a(u) &= \frac{Y_a(u + a)}{Y_{a-1}(u + a + 1)} \quad \text{for} \quad 1 \leq a \leq n - 1, \\
 z_n(u) &= \frac{Y^n_a(u + n)}{Y_{n-1}(u + n + 1)}, \\
 z_{\pi}(u) &= \frac{Y_{n-1}(u + n + 1 + \frac{\pi i}{2\hbar})}{Y^n_a(u + n + 2)}, \\
 z_{\pi}(u) &= \frac{Y_{a-1}(u + 2n - a + 1 + \frac{\pi i}{2\hbar})}{Y^n_a(u + 2n - a + 2 + \frac{\pi i}{2\hbar})} \quad \text{for} \quad 1 \leq a \leq n - 1.
\end{align*}
\]

(2.9)

We also use the variables: $x_a(u) = z_a(u)$ and $x_{2n-a+1}(u) = z_{\pi}(u)$ for $1 \leq a \leq n$.

For $U_q(D_{n+1}^{(2)})$ case:

\[
\begin{align*}
 z_a(u) &= \frac{Y^n_a(u + a)}{Y_{a-1}(u + a + 1)} \quad \text{for} \quad 1 \leq a \leq n, \\
 z_{n+1}(u) &= \frac{Y_n(u + n + \frac{\pi i}{2\hbar})}{Y_n(u + n + 2)}, \\
 z_{n+1}(u) &= \frac{Y_n(u + n)}{Y_n(u + n + 2 + \frac{\pi i}{2\hbar})}, \\
 z_{\pi}(u) &= \frac{Y_{a+1}(u + 2n - a + 1)}{Y^n_a(u + 2n - a + 2)} \quad \text{for} \quad 1 \leq a \leq n.
\end{align*}
\]

(2.10)
For $U_q(D_4^{(3)})$ case:

\[z_1(u) = Y_1(u + 1), \]
\[z_2(u) = \frac{Y_3(u + 2)}{Y_1(u + 3)}, \]
\[z_3(u) = \frac{Y_3(u + 3)}{Y_1(u + 3)Y_2(u + 4)}, \]
\[z_4(u) = \frac{Y_1(u + 3 - \frac{\pi i}{3\hbar})}{Y_1(u + 5 + \frac{\pi i}{3\hbar})}, \]
\[z_7(u) = \frac{Y_1(u + 3 + \frac{\pi i}{3\hbar})}{Y_1(u + 5 - \frac{\pi i}{3\hbar})}, \]
\[z_8(u) = \frac{Y_1(u + 5)Y_2(u + 4)}{Y_3(u + 5)}, \]
\[z_9(u) = \frac{1}{Y_1(u + 7)}. \]

(2.11)

Let D be a difference operator such that $Df(u) = f(u + 2)D$ for any function $f(u)$. We shall use notations: $\prod_{k=1}^{m} g_k = g_1g_2 \cdots g_m$ and $\prod_{k=1}^{m} g_k = g_mg_{m-1} \cdots g_1$. By using the variables (2.8)-(2.11), we introduce a factorized difference L operator for each algebra.

For $U_q(A^{(2)}_{2n})$ case:

\[L(u) = \prod_{a=1}^{n}(1 - z_a(u)D)(1 - z_0(u)D) \prod_{a=1}^{n}(1 - z_a(u)D) \]
\[= \prod_{a=1}^{2n+1}(1 - x_a(u)D). \]

(2.12)

For $U_q(A^{(2)}_{2n-1})$ case:

\[L(u) = \prod_{a=1}^{n}(1 - z_a(u)D) \prod_{a=1}^{n}(1 - z_a(u)D) = \prod_{a=1}^{2n}(1 - x_a(u)D). \]

(2.13)

For $U_q(D^{(2)}_{n+1})$ case:

\[L(u) = \prod_{a=1}^{n+1}(1 - z_a(u)D)(1 - z_{n+1}(u)z_{n+1}(u + 2)D^{-1}) \prod_{a=1}^{n+1}(1 - z_a(u)D)(2.14) \]
For $U_q(D_4^{(3)})$ case:

$$L(u) = \prod_{a=1}^{4} (1 - z_a(u)D)(1 - z_4(u)z_4(u + 2)D^2)^{-1} \prod_{a=1}^{4} (1 - z_a(u)D). \quad (2.15)$$

In general, $L(u) \quad (2.12)-(2.15)$ are power series of D whose coefficients lie in $\mathbb{Z}[Y_a(u)^{\pm 1}]_{a \in I_\sigma; u \in \mathbb{C}}$. We assume S_a acts on these coefficients linearly.

Proposition 2.1. For $a \in I_\sigma$, we have $(S_a \cdot L)(u) = 0$.

The proof is similar to the non-twisted case [4]. So we just mention the lemmas which are necessary to $U_q(D_4^{(3)})$ case.

Lemma 2.2. For $U_q(D_4^{(3)})$ case, let

$$H_1(u) = Y_1(u) + \frac{Y_2^3(u + 1)}{Y_1(u + 2)}, \quad H_2(u) = Y_2^3(u) + \frac{Y_1^3(u + 1)}{Y_2^3(u + 2)},$$

$$K_1(u) = \frac{1}{Y_1(u)} + \frac{Y_1(u - 2)}{Y_2^3(u - 1)}, \quad K_2(u) = \frac{1}{Y_2^3(u)} + \frac{Y_1^3(u - 2)}{Y_1(u - 1)},$$

then $(S_a \cdot H_a)(u) = (S_a \cdot K_a)(u) = 0$ for $a = 1, 2$.

Lemma 2.3. For $U_q(D_4^{(3)})$ case, one can rewrite $L(u) \quad (2.15)$ as follows:

$$L(u) = (1 - K_1(u + 7)D + \frac{1}{Y_1^2(u + 8)}D^2)$$

$$\times (1 - \sum_{j=0}^{\infty} A_j(u)D^{2j+1} + \sum_{j=0}^{\infty} B_j(u)D^{2j+2})(1 - H_1(u + 1)D + Y_2^3(u + 2)D^2),$$

where

$$A_j(u) = K_1(u + 4j + 5 + \frac{\pi i}{3\hbar})H_1(u + 3 - \frac{\pi i}{3\hbar})$$

$$+ (1 - \delta_{j0})K_1(u + 4j + 5 - \frac{\pi i}{3\hbar})H_1(u + 3 + \frac{\pi i}{3\hbar}),$$

$$B_j(u) = K_1(u + 4j + 7 + \frac{\pi i}{3\hbar})H_1(u + 3 + \frac{\pi i}{3\hbar})$$

$$+ K_1(u + 4j + 7 - \frac{\pi i}{3\hbar})H_1(u + 3 - \frac{\pi i}{3\hbar}) - \delta_{j0} \frac{Y_2^3(u + 4)}{Y_2^3(u + 6)}.$$
Lemma 2.4. For $U_q(D_4^{(3)})$ case, one can expand the Y_2 dependent part in $L(u)$ (2.13):

$$(1 - z_2(u)D)(1 - z_3(u)D) = 1 - Y_1(u + 5)K_2(u + 6)D + \frac{Y_1(u + 5)Y_1(u + 7)}{Y_1^2(u + 7)}D^2,$$

$$(1 - z_3(u)D)(1 - z_2(u)D) = 1 - \frac{H_2(u + 2)}{Y_1(u + 3)}D + \frac{Y_3^2(u + 3)}{Y_1(u + 3)Y_1(u + 5)}D^2.$$ We shall expand $L(u)$ as

$$L(u) = \sum_{a=0}^{\infty} (-1)^a T^a(u + a)D^a. \quad (2.16)$$

In particular, we have $T^0(u) = 1$ and $T^a(u) = 0$ for $a \in \mathbb{Z}_{<0}$. For $U_q(A_N^{(2)})$ case, (2.16) becomes a polynomial in D of order $N + 1$ and $T^a(u) = 0$ for $a \in \mathbb{Z}_{\geq N+2}$.

Remark 2.5. There is a homomorphism β analogous to the one in [5].

$$\beta : \mathbb{Z}[Y_a(u)^{\pm 1}]_{a \in I_\alpha} \cap \mathbb{Z} \rightarrow \mathbb{Z}[e^{\pm \frac{\pi i}{2\hbar} \Lambda_a}]_{a \in I_\alpha}; \quad \beta(Y_a(u)^{\pm 1}) = e^{\pm \frac{\pi i}{2\hbar} \Lambda_a},$$

where $\{\Lambda_a\}_{a \in I_\alpha}$ are the fundamental weights of a rank n subalgebra \mathfrak{g} of $X_N^{(r)}$: $(X_N^{(r)}, \mathfrak{g}) = (X_n^{(1)}, X_n), (A_2^{(2)}, C_n), (A_2^{(2)}, C_n), (D_n^{(2)}, B_n), (D_4^{(2)}, G_2), (E_6^{(2)}, F_4)$. Note that the image of β is independent of the parameter \hbar. In particular, $\beta(T^a(u)) \in \mathbb{Z}[e^{\pm \Lambda_a}]_{a \in I_\alpha}$ is a linear combination of \mathfrak{g} characters (cf. section 6 in [13]). For $1 \leq a \leq b$ (or $U_q(A_2^{(2)}), U_q(A_2^{(2)}): b = n; U_q(D_n^{(2)}): b = n - 1; U_q(D_4^{(2)}): b = 2$), $T^a(u)$ contains a term $Y_a^{\tau_a}(u) = \prod_{k=1}^{a} z_k(u + a - 2k); \beta(Y_a^{\tau_a}(u)) = e^{\Lambda_a}$. In the context of the analytic Bethe ansatz [9] (resp. the theory of q-characters [5]), $Y_a^{\tau_a}(u)$ corresponds to the top term of DVF (resp. the highest weight monomial of the q-character) for the Kirillov-Reshetikhin module $W^a_{n}(u)$ over $U_q(X_N^{(r)})$.

From the Proposition 2.1 we obtain:

Corollary 2.6. For $a \in I_\alpha$ and $b \in \mathbb{Z}$, we have $(S_a \cdot T^b)(u) = 0$.

For $U_q(A_N^{(2)})$ case, there is a duality among $\{T^a(u)\}_{a \in \mathbb{Z} \cup \{0\}}$.

Proposition 2.7. For $U_q(A_N^{(2)})$ case, we have

$$T^a(u) = T^{N+1-a}(u + \frac{\pi i}{2\hbar}), \quad a \in \mathbb{Z}.$$
This relation is given in [1] as ‘modulo σ relation’. The proof of this proposition is similar to the \(B^{(1)}(0|n)\) case [16], which corresponds to \(N = 2n\) and \(\frac{\pi i}{\hbar} \to 0\).

One can show

\[
L(u)Q_1^1(u) = 0. \tag{2.17}
\]

A \(T - Q\) relation follows from (2.17):

\[
\sum_{a=0}^{\infty} (-1)^a T^a(u + a)Q_1^1(u + 2a) = 0. \tag{2.18}
\]

We shall expand \(L(u)^{-1}\) as

\[
L(u)^{-1} = \sum_{m=0}^{\infty} T_m(u + m)D^m. \tag{2.19}
\]

In particular, we have \(T_0(u) = 1\) and \(T_m(u) = 0\) for \(m \in \mathbb{Z}_{<0}\). From the relation \(L(u)L(u)^{-1} = 1\), we obtain a \(T - T\) relation

\[
\sum_{a=0}^{m} (-1)^a T_{m-a}(u + m + a)T^a(u + a) = \delta_{m0}. \tag{2.20}
\]

From the relation \(L(u)^{-1}L(u) = 1\), we also have

\[
\sum_{a=0}^{m} (-1)^a T_{m-a}(u - m - a)T^a(u - a) = \delta_{m0}. \tag{2.21}
\]

In particular for \(U_q(A_N^{(2)})\) case, the \(T - Q\) relation (2.18) reduces to

\[
\sum_{a=0}^{N+1} (-1)^a T^a(u + a)Q_1(u + 2a) = 0. \tag{2.22}
\]

From the Proposition 2.7, one can rewrite this as follows

\[
\sum_{a=0}^{N+1} (-1)^a T^a(u - a)Q_1(u - 2a + g + \frac{\pi i}{2\hbar}) = 0, \tag{2.23}
\]

where \(g = N + 1\) is the dual Coxeter number of \(A_N^{(2)}\). If one assume \(\lim_{m \to \infty} T_m(u + m)\) (resp. \(\lim_{m \to \infty} T_m(u - m)\)) is proportional to \(Q_1(u)\) (resp. \(Q_1(u + g + \frac{\pi i}{2\hbar})\)), then one can recover the \(T - Q\) relation (2.22) (resp. (2.23)) from the \(T - T\) relation (2.20) (resp. (2.21)).
3 Solution of the T-system

The goal of this section is to give a Casorati determinant solution to the $U_q(A^{(2)}_N)$ T-system \(^{(1.1), (1.2)}\). Consider the following difference equation

$$L(u)w(u) = 0,$$ \hspace{1cm} (3.1)

where $L(u)$ is the difference L operator \(^{(2.12), (2.13)}\) for $U_q(A^{(2)}_N)$. By using a basis \(\{w_1(u), w_2(u), \ldots, w_{N+1}(u)\}\) of the solutions of (3.1), we define a Casorati determinant:

\[
\begin{vmatrix}
 w_1(u + 2i_1) & w_1(u + 2i_2) & \cdots & w_1(u + 2i_{N+1}) \\
 w_2(u + 2i_1) & w_2(u + 2i_2) & \cdots & w_2(u + 2i_{N+1}) \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{N+1}(u + 2i_1) & w_{N+1}(u + 2i_2) & \cdots & w_{N+1}(u + 2i_{N+1})
\end{vmatrix}
\]

Setting $w = w_1, w_2, \ldots, w_{N+1}$ in (3.1) and noting the relation $T^{N+1}(u) = 1$, we obtain the following relation:

\[[0, 1, \ldots, N] = [1, 2, \ldots, N + 1]. \] \hspace{1cm} (3.2)

Owing to the Cramer’s formula, we also have:

Proposition 3.1. For $a \in \{0, 1, \ldots, N + 1\}$, we have

$$T^a(u + a) = [0, 1, \ldots, a - 1, a + 1, \ldots, N + 1]_{[0, 1, \ldots, N]}.$$

Lemma 3.2. For $U_q(A^{(2)}_N)$ case, one can rewrite $L(u)$ \(^{(2.12), (2.13)}\) as

\[
L(u) = \prod_{a=1}^{N+1} (x_a(u + N + 1 - 2a + \frac{\pi i}{2\hbar}) - D).
\]

Let $\xi_m^{(a)}(u) = [0, 1, \ldots, a - 1, a + m, a + m + 1, \ldots, N + m]$ and $\xi(u) = \xi_0^{(1)}(u) = [0, 1, \ldots, N]$. Note that $\xi_m^{(0)}(u) = \xi(u)$ follows from (3.2). For $1 \leq a \leq N + 1$, we introduce a difference operator

\[
L_a(u) = \prod_{b=N+2-a}^{N+1} (D - x_b(u + N + 1 - 2b + \frac{\pi i}{2\hbar})). \hspace{1cm} (3.3)
\]

In particular we have $L_{N+1}(u) = (-1)^{N+1}L(u)$. We choose a basis of the solutions of (3.1) so that it satisfies $L_a(u)w_b(u) = 0$ for $1 \leq b \leq a \leq N + 1$: $w_a \in \text{Ker}L_a$. For this basis, the following lemma hold.
Lemma 3.3. Let \(\{i_k\} \) be integers such that \(0 = i_0 < i_1 < \cdots < i_N, \mu = (\mu_k) \) the Young diagram whose \(k \)-th row is \(\mu_k = i_{N+1-k} + k - N - 1 \), and \(\mu' = (\mu'_k) \) the transposition of \(\mu \). We assign coordinates \((j,k)\) \(\in \mathbb{Z}^2 \) on the skew-Young diagram \((\mu_1^{N+1})/\mu\) such that the row index \(j \) increases as we go upwards and the column index \(k \) increases as we go from the left to the right and that \((1,1)\) is on the bottom left corner of \((\mu_1^{N+1})/\mu\).

\[
\frac{[i_0, i_1, \ldots, i_N]}{[0, 1, \ldots, N]} = \sum_b \prod_{(j,k) \in (\mu_1^{N+1})/\mu} x_{b(j,k)}(u + 2j + 2k - 4)
\]

where the summation is taken over the semi-standard tableau \(b \) on the skew-Young diagram \((\mu_1^{N+1})/\mu\) as the set of elements \(b(j,k) \in \{1, 2, \ldots, N+1\} \) labeled by the coordinates \((j,k)\) mentioned above.

The proof is similar to the \(U_q(C_n^{(1)}) \) case \([4]\), where we use a theorem in \([19]\) and Proposition 2.7. Note that Lemma 3.3 reduces to the Proposition 3.1 if we set \(i_b = b \) for \(0 \leq b \leq a - 1 \) and \(i_b = b + 1 \) for \(a \leq b \leq N \). From Proposition 2.7 and Lemma 3.3 one can show:

Lemma 3.4. For \(a \in \{0, 1, \ldots, N+1\} \), we have \(\frac{\xi^{(a)}(u)}{\xi(u)} = \frac{\xi^{(N-a+1)}(u+2a-N-1+\frac{\pi i}{2\hbar})}{\xi(u+2a-N-1+\frac{\pi i}{2\hbar})} \).

The following relation is a kind of Hirota-Miwa equation \([2, 3]\), which is a Plücker relation and used in a similar context \([20, 21, 22, 4]\).

Lemma 3.5. \(\xi^{(a)}_m(u)\xi^{(a)}_m(u+2) = \xi^{(a)}_{m+1}(u)\xi^{(a)}_{m}(u+2) + \xi^{(a-1)}_m(u)\xi^{(a+1)}_m(u+2) \).

From Lemma 3.4 and Lemma 3.5 we finally obtain:

Theorem 3.6. For \(a \in I_a \) and \(m \in \mathbb{Z}_{\geq 1} \), \(T^{(a)}_m(u) = \frac{\xi^{(a)}(u-a-m+1)}{\xi(u-a-m+1)} \) satisfies the \(T \)-system for \(U_q(A_N^{(2)}) \) \((1.1), (1.2)\).

There is another expression to the solution to the \(U_q(A_N^{(2)}) \) \(T \)-system \((1.1), (1.2)\), which follows from a reduction of the Bazhanov and Reshetikhin’s Jacobi-Trudi type formula \([13]\) (cf. section 5 in \([11]\)).

\[
T^{(a)}_m(u) = \det_{1 \leq j, k \leq m} (T^{a-j+k}(u + j + k - m - 1)) \tag{3.4}
\]

where \(T^a(u) \) obeys the following condition:

\[
T^a(u) = \begin{cases}
0 & \text{if } a < 0 \text{ or } a > N + 1 \\
1 & \text{if } a = 0 \text{ or } a = N + 1 \\
T^{(a)}_1(u) & \text{if } 1 \leq a \leq n \\
T^{(N-a+1)}_1(u + \frac{\pi i}{2\hbar}) & \text{if } n + 1 \leq a \leq N.
\end{cases} \tag{3.5}
\]
Through the identification $T^a(u) = T^a(u)$ and Lemma 3.3 (3.4) reproduces the solution in Theorem 3.6 and also the tableaux sum expression in [1].

4 Discussion

In this paper, we have dealt with the T-system without the vacuum part. On applying our results to realistic problems in solvable lattice models or integrable field theories, we must specify the Baxter Q-function, and recover the vacuum part whose shape depends on each model. We can easily recover the vacuum part by multiplying the vacuum function $\psi_a(u)$ by the function $z_a(u)$ so that $\psi_a(u)$ is compatible with the Bethe ansatz equation of the form (cf. [17, 23])

$$\Psi_a(u_j) = \prod_{b=1}^{n'} \frac{Q_{ab}^{(a)}(u_j^{(a)} + (\alpha_a | \alpha_b))}{Q_{ab}^{(a)}(u_j^{(a)} - (\alpha_a | \alpha_b))}, \quad a \in I_\sigma.$$

In the case of the solvable vertex model, it was conjectured [23] that $\Psi_a(u)$ is given as a ratio of Drinfeld polynomials.

A remarkable connection between DVF and the q-character was pointed out in [5]. It was also conjectured [4] that q-characters of Kirillov-Reshetikhin modules over $U_q(X^{(r)}_N)$ satisfy the T-system [24]. It is natural to expect that similar phenomena are also observed for the twisted case $U_q(X^{(r)}_N)$ ($r > 1$).

We can also easily construct difference L operators associated with superalgebras by using the results on the analytic Bethe ansatz [26, 27, 28, 16]. However their orders are infinite as $U_q(B_n^{(1)}), U_q(D_n^{(1)}), U_q(D_{n+1}^{(2)}), U_q(D_4^{(3)})$ case. Thus we will need some new ideas to construct Casorati determinant like solutions to the T-system for superalgebras.

Acknowledgments

The author would like to thank Professor A. Kuniba for explaining the results on [4]. He is financially supported by Inoue Foundation for Science.
References

[1] A. Kuniba and J. Suzuki, *J. Phys. A: Math. Gen.* **28** (1995) 711.

[2] R. Hirota, *J. Phys. Soc. Jpn.* **50** (1981) 3785.

[3] T. Miwa, Proc. *Japan. Acad.* **58** (1982) 9.

[4] A. Kuniba, M. Okado, J. Suzuki and Y. Yamada, arXiv:math.QA/0109140; *J. Phys. A: Math. Gen.* **35** (2002) 1415.

[5] E. Frenkel and N. Reshetikhin, *Contemporary Math.* **248** (1999) 163.

[6] E. Frenkel and E. Mukhin, *Commun. Math. Phys.* **216** (2001) 23.

[7] N. Yu. Reshetikhin, *Sov. Phys. JETP* **57** (1983) 691.

[8] N. Yu. Reshetikhin, *Lett. Math. Phys.* **14** (1987) 235.

[9] A. Kuniba and J. Suzuki, *Commun. Math. Phys.* **173** (1995) 225.

[10] V. Chari and A. Pressley, *Canadian Math. Soc. Conf. Proc.* **16** (1995) 59.

[11] V. Chari and A. Pressley, *Commun. Math. Phys.* **196** (1998) 461.

[12] A. Kuniba, T. Nakanishi and Z. Tsuboi, arXiv:math.QA/0105145; *Commun. Math. Phys.* **227** (2002) 155.

[13] V. Bazhanov and N. Reshetikhin, *J. Phys. A: Math. Gen.* **23** (1990) 1477.

[14] A. Kuniba, S. Nakamura and R. Hirota, *J. Phys. A: Math. Gen.* **29** (1996) 1759.

[15] Z. Tsuboi and A. Kuniba, *J. Phys. A: Math. Gen.* **29** (1996) 7785.

[16] Z. Tsuboi, *J. Phys. A: Math. Gen.* **32** (1999) 7175.

[17] N. Yu. Reshetikhin and P. Wiegmann, *Phys. Lett.* B**189** (1987) 125.

[18] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Z. Tsuboi, arXiv:math.QA/0102113; *Prog. Math. Phys.* **23** (2002) 205.

[19] J. Nakagawa, M. Noumi, M. Shirakawa and Y. Yamada, p.180 in Physics and Combinatorics 2000: Proceedings of the Nagoya 2000 International Workshop, (ed) A.N. Kirillov and N. Liskova, (Singapore: World Scientific).
Difference L operators

[20] I. Krichever, O. Lipan, P. Wiegmann and A. Zabrodin, Commun. Math. Phys. 188 (1997) 267.

[21] J. Suzuki, RIMS Kokyuroku 1221 (2001) 21; nlin.SI/0009006.

[22] P. Dorey, C. Dunning and R. Tateo, J. Phys. A. Math. Gen. 33 (2000) 8427.

[23] A. Kuniba, Y. Ohta and J. Suzuki, J. Phys. A Math. Gen. 28 (1995) 6211.

[24] A. Kuniba, T. Nakanishi and J. Suzuki, Int. J. Mod. Phys. A9 (1994) 5215.

[25] E. Frenkel and N. Reshetikhin, Commun. Math. Phys. 197(1998) 1.

[26] Z. Tsuboi, J. Phys. A: Math. Gen. 30 (1997) 7975.

[27] Z. Tsuboi, Physica A252 (1998) 565.

[28] Z. Tsuboi, Physica A267 (1999) 173.