INS-1 cells undergoing caspase-dependent apoptosis enhance the regenerative capacity of neighboring cells

Bonner, C; Bacon, S; Concannon, C G; Rizvi, S R; Baquié, M; Farrelly, A M; Kilbride, S M; Dussmann, H; Ward, M W; Boulanger, C M; Wollheim, C B; Graf, R; Byrne, M M; Prehn, J H M

Abstract: Our results suggest that apoptosing INS-1 cells shed microparticles that may stimulate PSP/reg induction in neighboring cells, a mechanism that may facilitate the recovery of -cell mass in HNF1A-MODY.

DOI: https://doi.org/10.2337/db09-1478

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-45904
Journal Article
Accepted Version

Originally published at:
Bonner, C; Bacon, S; Concannon, C G; Rizvi, S R; Baquié, M; Farrelly, A M; Kilbride, S M; Dussmann, H; Ward, M W; Boulanger, C M; Wollheim, C B; Graf, R; Byrne, M M; Prehn, J H M (2010). INS-1 cells undergoing caspase-dependent apoptosis enhance the regenerative capacity of neighboring cells. Diabetes, 59(11):2799-2808.
DOI: https://doi.org/10.2337/db09-1478
INS-1 Cells Undergoing Caspase-Dependent Apoptosis Enhance the Regenerative Capacity of Neighbouring Cells

Caroline Bonner1,*, Siobhán Bacon2,*, Caoimhín G. Concannon1, Syed R. Rizvi2, Mathurin Baquié3, Angela M. Farrelly2, Seán M. Kilbride1, Heiko Dussmann1, Manus W. Ward1, Chantal M. Boulanger4, Claes B. Wollheim3, Rolf Graf5, Maria M. Byrne2,#, Jochen H. M. Prehn1,#

1Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; 2Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland; 3Department of Cell Physiology and Metabolism, University Medical Center, 1211 Geneva 4, Switzerland; 4Paris-Cardiovascular Research Centre; INSERM U970, Hopital Européen Georges Pompidou, 56 rue Leblanc, 75015 Paris, France, 5Department of Visceral and Transplantation Surgery, Zurich, Switzerland.

*C. B. and S. B. contributed equally as first authors.
M.M.B. and J.J.M.P. contributed equally as senior authors.

To whom correspondence should be addressed:
Prof. Jochen H. M. Prehn
E-mail: prehn@rcsi.ie

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

Submitted 6 October 2009 and accepted 20 July 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: In diabetes, beta cell mass is not static but in a constant process of cell death and renewal. Inactivating mutations in transcription factor 1 (tcf-1)/hepatocyte nuclear factor1a (hnf1a) result in decreased beta cell mass and HNF1A-maturity-onset-diabetes-of-the-young (HNF1A-MODY). Here we investigated the effect of a dominant-negative HNF-1A mutant (DN-HNF1A) induced apoptosis on the regenerative capacity of INS-1 cells.

Research design and methods: DN-HNF1A was expressed in INS-1 cells using a reverse tetracycline-dependent transactivator system. Gene(s)/protein(s) involved in beta cell regeneration were investigated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Pancreatic stone protein/regenerating protein (PSP/reg) serum levels in human subjects were detected by ELISA.

Results: We detected a prominent induction of PSP/reg at gene and protein level during DN-HNF1A-induced apoptosis. Elevated PSP/reg levels were also detected in islets of transgenic HNF1A-MODY mice and in the serum of HNF1A-MODY patients. The induction of PSP/reg was glucose dependent and mediated by caspase activation during apoptosis. Interestingly, the supernatant from DN-HNF1A-expressing cells, but not DN-HNF1A-expressing cells treated with zVADfmk, was sufficient to induce PSP/reg gene expression and increase cell proliferation in naïve, untreated INS-1 cells. Further experiments demonstrated that Annexin-V-positive microparticles (MPs) originating from apoptosing INS-1 cells mediated the induction of PSP/reg. Treatment with recombinant PSP/reg reversed the phenotype of DN-HNF1A-induced cells by stimulating cell proliferation and increasing insulin gene expression.

Conclusion: Our results suggest that apoptosing INS-1 cells shed microparticles that may stimulate PSP/reg induction in neighbouring cells, a mechanism that may facilitate the recovery of beta cell mass in HNF1A-MODY.

Maturity-onset diabetes of the young (MODY) is a familial form of non-insulin dependent diabetes characterized by early onset of disease, autosomal dominant inheritance and insulin secretory defects (1). MODY type 3, results from mutations in the gene encoding transcription factor-1 / hepatocyte nuclear factor1a (tcf-1/hnf1a) (2), recently denoted as HNF1A-MODY. HNF1A belongs to a network of transcription factors controlling organ-specific gene expression during embryonic development and in adult tissues (3). Previous studies demonstrated that HNF1A is expressed in adult beta cells and regulates genes involved in glucose and lipid homeostasis as well as beta cell specific genes (4-10).

Transgenic mice carrying a deletion of the hnf1a gene have defective glucose-stimulated insulin secretion without insulin resistance in target tissues (3), similar to individuals with HNF1A-MODY (11). Findings from animal and cellular models of HNF1A-MODY suggest a decline in functional beta cell mass as the primary mechanism of this defect (8; 12; 13). Previous studies from our and other laboratories have shown that gene knock-out of HNF-1A or expression of DN mutants of HNF1A (DN-HNF1A) inhibits AKT signaling, decreases cell proliferation, and renders cells susceptible to apoptosis (8; 14; 15). Evidence is growing that beta cell mass is
not static but in a constant process of cell death and renewal (16). However, it remains unclear in these models how increased beta cell apoptosis is linked to a compensatory stimulation of regenerative processes. The Regenerating (Reg) gene family belong to the calcium-dependent lectin gene superfamily (17). Pancreatic stone protein (PSP) was identified from extracts of calcified pancreatic concrements (18). Regenerating protein (reg) was independently identified in a screen of a regenerating islet-derived cDNA library taken from 90% depancreatized rats (19) and was found to be identical to PSP (20). Subsequent studies highlighted the potential role for the Reg gene family in pancreatic regeneration (21). We investigated the expression of the PSP/reg gene during DN-HNF1A-induced apoptosis and found PSP/reg to be prominently upregulated. We also provide biochemical evidence that apoptotic cells shed microparticles (MPs) that may stimulate PSP/reg induction in neighbouring cells, thereby linking beta cell apoptosis with beta cell regeneration.

RESEARCH DESIGN AND METHODS

INS-1 cells overexpressing HNF1A in an inducible system. Rat insulinoma INS-1 cells overexpressing wild-type HNF1A (WT-HNF1A) or a dominant-negative mutant of HNF1A (DN-HNF1A) under control of a doxycycline-dependent transcriptional activator have been described previously (4; 8). Cells were cultured in RPMI 1640 at 6 mM glucose supplemented with 10% FBS (PAA, Cölbe, Germany), 2 mmol/l L-glutamine, 1 mmol/l pyruvate, penicillin (100 U/ml), streptomycin (100 µg/ml), 10 mmol/l HEPES (pH 7.4) and 50 µmol/l 2-mercaptoethanol (Sigma, Dublin, Ireland). For experiments investigating glucose dependence of PSP/reg induction, expression of DN-HNF1A was induced for 24 h and continued for a further 2 h in medium supplemented with glucose at 3, 6, 12 and 18 mmol/l. For caspase inhibition, cells were pre-incubated with 100 µmol/l of the broad-spectrum caspase inhibitor zVAD.fmk (Bachem, St. Helen’s, UK) for 45 mins prior to induction.

Real-time quantitative RT-PCR (qPCR). cDNA synthesis was performed using 1.5 µg total RNA as template and Superscript II reverse transcriptase (Invitrogen, Paisley, UK) primed with 50 pmol random hexamers (New England Biolabs, Ipswich, MA, USA). Real-time PCR was performed using the LightCycler 2.0 (Roche Diagnostics, Indianapolis, IN, USA) and the QuantiTech SYBR Green PCR kit (Qiagen). Specific PCR primers were designed using Primer3 software (sequences available on request). For absolute quantification of hnf1a copy number a gene-specific PCR amplicon of known concentration was prepared as a standard. Melting curve analysis and gel electrophoresis was utilized to verify specificity of all PCR products. The data were analysed using LightCycler Software 4.0® with all samples normalized to β-actin.

Western Blotting. For Western blotting analysis, 25 µg protein lysates were obtained from INS-1 cells overexpressing WT-HNF1A and DN-HNF1A as described (9). The rabbit polyclonal anti-PSP/reg antibody (22) was diluted 1:20,000 in Tris-buffered saline containing 1% bovine serum. The primary mouse monoclonal anti-β-actin antibody was utilized at a 1: 10,000 dilution (Sigma). HRP-conjugated secondary antibodies were obtained from Pierce and detected using using SuperSignal West Pico Chemiluminescent Substrate (Pierce) and imaged using a FujiFilm LAS-3000 imaging system (Fuji, Sheffield, UK).

Immunohistochemistry. Paraffin-embedded pancreatic sections from rat insulin promoter (RIP)-DN-HNF1A and control wild-type C57BL/6J BomTac mice (13) were deparaffinized and incubated overnight at 4 °C with the rabbit polyclonal anti-PSP/reg
antibody diluted 1:20 (22). Specificity of the antibody was confirmed by Western blotting experiments using recombinant human PSP/reg protein as a control. Slides were incubated for 1 h at RT in Rhodamine labeled anti-rabbit secondary antibody (Jackson Immunoresearch, UK) (1:100). Slides were incubated again overnight at 4 °C with the second primary guinea pig anti-insulin antibody (DakoCytomation A0564; 1:20) followed by 1 h at RT in FITC labeled anti-goat secondary antibody (Jackson Immunoresearch; 1:100) and mounted in Vectashield with DAPI (Vector Shield, Vector Labs; Burlingame, CA). Images were taken with a Zeiss LSM710 confocal microscope equipped with a 40 x 1.3NA oil immersion objective (Carl Zeiss, Jena, Germany). FITC was excited at 488 nm with an argon laser, using a 488/543 nm multi chroic beam splitter, the emission was collected at a 490- to 550-nm spectral band. Rhodamine was excited at 543 nm with a helium neon laser, using the same beam splitter, and the emission was collected at 570-650nm spectral band. DAPI was excited using the 405 nm DPSS laser, and a 405nm dichroic beam splitter. DAPI fluorescence was detected in the 420-480nm spectral band. Images were processed using Zeiss LSM 4.2 software (Carl Zeiss, Germany). Rhodamine positive cells in the periphery and interior of the islet were quantified as a percentage of total islet cells using Image J software.

Detection of caspase-3-like protease activity. INS-1 cells were seeded at 1 x 10^5 per ml on a 24 well plate and allowed to settle overnight. Following treatment cells were lysed in 200 µl lysis buffer (10 mM Hepes, pH 7.4, 42 mM KCl, 5 mM MgCl2, 1 mM PMSF, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, 1 µg/ml pepstatin A, 1 µg/ml leupeptin, 5 µg/ml aprotinin, 0.5 % CHAPS). Fifty µl of this lysate was then added to 150 µl reaction buffer (25mM Hepes, 1 mM EDTA, 0.1 % CHAPS, 10 % sucrose, 3 mM DTT, pH 7.5) containing 10 µM Ac-DEVD-AMC which is efficiently cleaved by the apoptotic executioner caspases 3, and 7 among others (23). Cleavage of the substrate DEVD-AMC resulting in the accumulation of fluorescent AMC was measured on a Genios fluorescence plate reader (Tecan) using 355 nm excitation and 460 nm emission wavelengths as previously described (9). Protein content was determined using the Pierce Coomassie Plus Protein assay reagent (Perbio) and activity expressed as change in fluorescent units/µg of protein/h.

Detection of nuclear apoptosis. Cells were stained using DAPI to visualize nuclear morphology. Condensed and/or fragmented nuclei were considered apoptotic and observed using an Eclipse TE 300 inverted microscope (Nikon, Dusseldorf, Germany) and a 20 x dry objective, with DAPI excited at 340 ± 25 nm and the emission collected between 450-500 nm.

BrdU Cell Proliferation assay. Cellular proliferation was assessed by means of Bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU) incorporation using the BrdU Cell Proliferation Assay (Calbiochem). BrdU was added to cells for 24 h and cells were fixed following treatment. Following incubations with the primary and secondary antibodies the peroxidase labeled secondary antibody was detected by addition of substrate solution for 15 min and the reaction stopped. Absorbance was read using a Bio-Rad 550 microplate reader at dual wavelengths of 450/540 nm. The values for the background wells were subtracted from all values. The data was normalized to non-induced control.

Microparticle Isolation and Purification. Cell supernatants were centrifuged (500 g; 15 min) to remove floating cells and medium containing MPs released from INS-1 cells collected following an established protocol (24). The medium was filtered using 0.2 µm filters (VWR International, Dublin, Ireland) in order to remove MPs. MPs were analyzed on
a Coulter EPICS XL flow cytometer (Beckman Coulter, Villepinte, France) as previously described (25). Regions corresponding to MPs were identified in forward light scatter (FCS) and side-angle light scatter (SSC) dot plots using a logarithmic gain. The gate for MPs was defined as events with a 0.1-1 μm diameter, in comparison with calibrator beads (Megamix fluorescent beads of 0.5, 0.9 and 3 μm in diameter; Biocytex, Marseille, France), and plotted on a FL/FSC dot plot to determine the MPs. MPs were defined as membrane vesicles smaller than 1 μM in diameter and expressing externalized phosphatidylserine (PS). PS was labelled using Fluoroisothiocyanate-conjugated Annexin V (Roche Diagnostics, France) in the presence or absence (negative control) of CaCl2 (5 mM) as reported earlier (25).

Preparation of recombinant human PSP/reg protein. The recombinant human PSP/reg protein was generated as previously described (22; 26). Briefly, the coding region of PSP/reg was cloned into a transfer vector (pPIC9, Invitrogen) containing the signal sequence of the yeast α-mating factor to drive the protein into the secretory pathway.

Subjects and clinical and laboratory measurements. Sixteen diabetic subjects with mutations in the HNF-1A gene (P291fsinsC, n=8 and p.Ser353fs, n=7) were identified from an Irish MODY collection. Sequencing of the HNF1A gene was performed by IntegraGen GmbH (Bonn, Germany). Control subjects were first degree relatives of HNF1A positive subjects who were non-diabetic and negative for the known HNF1A mutation in their pedigree (n=7). In addition, 10 GAD and/or islet antibody positive patients with type 1 diabetes were recruited in the Mater Misericordiae University Hospital. Anthropometric measurements including weight, height, and BMI were obtained. The plasma glucose concentration was measured using an YSI analyser (Roche, France). Haemoglobin A 1c was determined using HPLC (Menarini HA81-10, Italy). Anti-glutamic acid decarboxylase (GAD) was analysed using competitive fluid phase RIA by the Neuroscience group in John Radcliffe Hospital, Oxford and Islet Cell Antibodies (ICA) by UCL Medical School, London by similar means. Study groups were matched for age sex and BMI as shown in Table 1 and approved by the Mater Misericordiae University Hospital Ethics committee.

PSP/reg ELISA. The ELISA to quantify human PSP/reg was performed using anti-sera from rabbits and guinea pigs immunized with recombinant human PSP/reg protein as previously described (22; 27). Serum was prepared by centrifugation and the IgG were purified by affinity chromatography on Protein A columns. Subsequently, a sandwich ELISA was designed on 96-well ELISA plates. Antibody of the first species (Guinea pig) was coated to the bottom, blocked with BSA and aliquots of serum were then incubated for two hrs. After washing, antibodies of the other species (Rabbit) was incubated. Finally, a phosphatase coupled anti-rabbit IgG was used. Patient serum PSP/reg levels were compared with standard amounts of protein of recombinant human PSP/reg.

Statistical Analysis. Results were expressed as means ± SEM. Statistical analysis was conducted using the SPSS v.15.0 software package for Windows (SPSS Inc.). Differences between treatments were analyzed by Student’s t-test, as well as one-way analysis of variance (ANOVA) and subsequent Tukey’s tests. Non-parametric data were analyzed by Mann-Whitney U-test. Differences were considered to be significant at \(P<0.05 \).

RESULTS

The inducible expression of DN-HNF1A leads to a potent induction of PSP/reg mRNA and protein. Inducible, dominant
negative suppression of HNF1A function in INS-1 cells reduces the expression of HNF1A target genes involved in glucose and lipid homeostasis (4), and induces a caspase-dependent apoptosis (8). To investigate the relationship between DN-HNF1A expression, activation of apoptosis, and induction of the regenerative PSP/reg gene in particular, INS-1 cells stably transfected with respective rtTA systems were induced to express either DN-HNF1A or WT-HNF1A. We observed a time-dependent induction of DN-HNF1A or WT-HNF1A mRNA in the respective INS-1 cells (Fig. 1A). This correlated with a significant reduction in mRNA levels of pdh1, a known HNF1A target gene (7) in response to DN-HNF1A expression but not WT-HNF-1A (Fig. 1B). Examination of the expression of the Reg family of genes in INS-1 cells demonstrated that DN-HNF1A led to a potent induction of the PSP/reg gene at 24 h (~ 15 fold) and 48 h (~ 30 fold). Induction of WT-HNF1A for up to 48 h did not significantly regulate PSP/reg expression (Fig. 1C).

We next investigated PSP/reg protein levels after induction of DN-HNF1A. Cleavage of PSP/reg converts the 16-kDa proteins into a 14-kDa insoluble fibrillar protein (28). Western blot analysis demonstrated a significant upregulation of the PSP/reg protein (16 kDa) following DN-HNF1A induction, and a time-dependent increase in the 14 kDa form of PSP/reg (Fig. 1D).

High extracellular glucose levels potentiates PSP/reg mRNA induction. We next determined whether the induction of PSP/reg mRNA was glucose dependent. Interestingly, we found that the DN-HNF1A induction of PSP/reg mRNA expression was modulated by varying extracellular glucose concentrations for 2 hr following DN-HNF1A induction. The increase in PSP/reg mRNA expression was potentiated in a concentration-dependent with the highest induction evident at 18 mmol/l (Fig. 2A).

Elevated PSP/reg levels in a HNF1A-MODY animal model and in the serum of HNF1A-MODY patients. We analyzed paraffin-embedded pancreatic sections from 5 month old diabetic (Fig. 2B) mice expressing DN-HNF1A in beta cells and compared them to wild-type C57BL/6JBom1ac mice. Sections were co-stained for PSP/reg and Insulin. PSP/reg was expressed at low levels in wild-type islets (36 ± 1 PSP/reg positive cells per islet; n = 8 islets from n = 2 animals) and was found almost exclusively in peripheral islet cells. In contrast, DN-HNF1A islets showed significantly elevated PSP/reg-positive islet cells (82 ± 2 PSP/reg positive cells per islet; n = 8 islets from n = 2 animals). Moreover, PSP/reg positive cells were found to be widespread throughout the transgenic islets and were also detectable in insulin-negative islet cells. Strong expression was also observed in the surrounding acinar cells (Fig. 2B). Interestingly, high magnification analysis suggested that many islet cells with elevated PSP/reg immunoreactivity were positioned in the vicinity of cells displaying apoptotic nuclear morphology (Fig. 2C).

We next sought to determine whether increased PSP/Reg1a levels could also be detected in HNF1A-MODY diabetic subjects. We analyzed serum PSP/Reg1a levels in a group of 16 diabetic subjects with HNF1A-MODY using ELISA. Results were compared with serum levels in 7 HNF1A-MODY negative, non-diabetic family members. PSP/Reg1a levels were significantly elevated in HNF1A-MODY subjects (Fig. 2D). Interestingly, we also detected elevated PSP/Reg1a serum levels in the serum of patients with type 1 diabetes (n = 10 patients; Fig. 2D).

Induction of PSP/reg mRNA and protein by DN-HNF1A function involves the activation of caspases. Previously we demonstrated that DN-HNF1A-induced apoptosis of INS-1 cells required caspases
and involved the activation of the mitochondrial apoptosis pathway (8). To assess whether the activation of executioner caspases influenced DN-HNF1A-induced PSP/reg mRNA induction, we first determined the time course of DEVDase activation (indicative of executioner caspase 3/7 activity) by monitoring the cleavage of a fluorogenic caspase substrate. In agreement with our earlier report (8), there was a significant caspase activity in the time frame of 24-48 h post induction. Expression of WT-HNF1A or doxycycline treatment of parental INS-1 cells did not activate caspases (Fig. 3A). Furthermore, DN-HNF1A induction mediated nuclear morphological changes indicative of apoptosis with condensation and fragmented nuclei. Pre-treatment with the pan-caspase inhibitor zVAD.fmk inhibited the occurrence of this apoptotic morphology confirming the caspase dependence (Fig. 3B). Given the similar kinetics of PSP/reg mRNA induction and caspase activation, we explored the possibility that caspase activation regulated PSP/reg expression. Indeed, DN-HNF-1A induction of PSP/reg expression was completely inhibited by pre-treatment with zVAD.fmk (Fig. 3C, D). Next we addressed whether DN-HNF1A induction of PSP/reg mRNA could be sufficiently explained by its ability to activate apoptosis. Indeed, induction of apoptosis in INS-1 cells with the topoisomerase inhibitor, etoposide, was sufficient to increase PSP/reg mRNA levels in a caspase dependent manner (Fig. 3E).

Conditioned medium from DN-HNF1A–induced INS1 cells results in a prominent increase in PSP/reg mRNA expression in naïve INS-1 Cells. Executioner caspases such as caspase-3 inactivate transcription and translation processes (29), suggesting that apoptosing cells were unlikely to be the source of increased PSP/reg mRNA during DN-HNF1A-induced apoptosis. We investigated whether this increased expression was due to apoptosing cells sending a paracrine signal to neighbouring cells. After 48 h of DN-HNF1A induction in the presence and absence of zVAD.fmk, the conditioned medium was added directly to naïve INS-1 cells resulting in a 16 fold increase in PSP/reg mRNA levels in the naïve INS1-cells (Fig. 4A). This induction was absent in cultures incubated with the conditioned medium of zVAD.fmk pre-treated DN-HNF1A-induced cells (Fig. 4A) or heat inactivated conditioned medium (Fig. 4B), supporting the hypothesis that apoptotic cells secrete (a) heat-sensitive factor(s) which stimulate(s) PSP/reg gene induction in neighbouring cells.

Removal of Microparticles (MPs) inhibits PSP/reg gene induction. MPs are small (100 nm) membrane vesicles, originating from blebbing membranes of apoptotic cells and can be identified by Annexin V staining. These MPs may contain nuclear proteins as well as nucleic acids (30; 31). We examined if MPs were present in our conditioned medium, and if so, whether these could modulate PSP/reg expression. After 48 h of DN-HNF1A induction in the presence and absence of zVAD.fmk, we enriched for MPs in the supernatant (25) and applied either filtered or unfiltered medium to naïve INS-1 cells for a further 24 h. Naïve INS1-cells treated with the unfiltered conditioned medium from DN-HNF1A-induced cells had increased PSP/reg mRNA levels which was abolished by filtration of this conditioned medium, or by using unfiltered medium from DN-HNF1A-induced cultures in the presence of zVAD.fmk (Fig. 4C). Importantly, flow cytometry identified increased MPs levels in the unfiltered compared with the filtered conditioned medium from the same experiment, indicating that MPs were not generated by the isolation procedure (Fig. 4D). Indeed, MPs were at least 150 fold more abundant in unfiltered compared to filtered conditioned medium with a significantly reduced level in zVAD.fmk pre-treated unfiltered medium (Fig. 4D). These results
suggest that caspases are required for MP formation, and their removal abolishes the conditioned medium induced PSP/reg mRNA expression in naïve INS-1 cells.

Treatment of INS-1 cells with recombinant PSP/reg protein reverses the DN-HNF1A-induced decrease in cell proliferation and increases insulin mRNA levels. Animal models of diabetes have demonstrated that recombinant PSP/reg (rPSP/reg) increases beta cell mass and beta and ductal cell proliferation (21; 32). DN-HNF1A induction led to significant decreases in cell proliferation as detected by BrdU incorporation which was reversed by rPSP/reg treatment (Fig. 5A). Decreased cell proliferation has been attributed to DN-HNF1A induced expression of the cell cycle inhibitor p27Kip1 (8; 9). Induction of DN-HNF1A led to increased p27Kip1 mRNA expression, but did not affect p21WAF1 expression (data not shown), with rPSP/reg co-treatment reducing DN-HNF1A induced p27Kip1 expression (Fig. 5C). Furthermore, the rPSP/reg treatment rescued the decrease in insulin gene expression induced by DN-HNF1A expression (Fig. 5B). Taken together our data suggest that rPSP/reg treatment reverses the DN-HNF1A induced phenotype. Indeed, BrdU incorporation was also significantly elevated in naïve INS-1 cells treated with conditioned cultured medium from DN-HNF1A induced cells compared to those induced in the presence of zVAD.fmk (Fig. 5D).

DISCUSSION

The present study provides evidence that beta cell apoptosis may stimulate beta cell regeneration. We demonstrate: (i) that dominant negative suppression of HNF1A leads to apoptosis and a potent induction of PSP/reg; (ii) this induction was potentiated by increased extracellular glucose concentrations; (iii) the induction of PSP/reg was inhibited by the broad-spectrum caspase inhibitor, zVAD.fmk, which also inhibited DN-HNF1A-induced apoptosis; (iv) conditioned medium from DN-HNF1A-induced cells was sufficient to induce PSP/reg expression in naïve INS-1 cells, suggesting that apoptosing INS-1 cells secrete factors that stimulate PSP/reg induction in neighbouring cells; (v) removal of MPs from this conditioned medium inhibited PSP/reg induction, suggesting that MPs released from blebbing membranes mediated this effect; (vi) treatment of INS-1 cells with rPSP/reg protein reversed the DN-HNF1A-induced decrease in cell proliferation and insulin mRNA, (vii) moreover, PSP/reg serum levels were significantly elevated in HNF1A-MODY patients and type 1 diabetics compared to HNF1A-MODY-negative, non-diabetic family members.

Regulation of beta cell mass in HNF1A-MODY. Evidence is growing that functional beta cell mass is decreased in animal models of MODY and in type 2 diabetes, with an increased apoptosis rate largely contributing to this decrease (12; 13; 33). However, a decrease in beta cell mass does not necessarily implicate that new beta cells are not generated during disease progression. Indeed, beta cell mass is a result of a homeostatic balance between the generation of new beta cells and the rate of their apoptosis (34). As HNF1A-MODY and Type 2 diabetes evolve over several years or decades, the destruction or apoptosis rate of beta cells may eventually exceed the rate of beta cell generation during disease progression.

Although beta cell regeneration may occur during disease progression, it is not clear whether this happens through self-replication of mature beta cells, through neogenesis of progenitor cells residing in the pancreas or recruited from other tissues, or through transdifferentiation. Here we supply to our knowledge for the first time evidence that the interaction of beta cell apoptosis and
regeneration is more complex, and in fact that both processes may be mechanistically linked. In our study, we observed that DN suppression of HNF1A or apoptosis induced by genotoxic stress (etoposide) led to caspase-dependent apoptosis of INS-1 cells, associated with the induction of the regenerative PSP/reg gene. Furthermore, conditioned medium from apoptosing cells was sufficient to stimulate PSP/reg mRNA expression and BrdU incorporation in naïve INS-1 cells. These findings allow for the conclusion that apoptosing beta cells secrete factor(s) that can stimulate regenerative gene induction and cellular proliferation in neighboring cells. Finally we demonstrate that administration of rPSP/reg reversed the DN-HNF1A-induced decrease in cell proliferation; supporting the concept that beta cell replication may be positively regulated by beta cell apoptosis. The ability of apoptotic cells to provide signaling cues for their environment has been demonstrated in other settings, such as inhibition of inflammation. Interestingly, recent studies have demonstrated that caspase activation is required for tissue regeneration during wound healing and planarian regeneration (35; 36), suggesting that tissue regeneration in response to caspase-dependent apoptosis may be an evolutionary conserved process.

PSP/reg: Biological effects and role in HNF1A-MODY. The Reg family of proteins constitute a multigene family in humans and rodents (19). PSP/reg increases beta cell mass and stimulates beta cell proliferation under physiological conditions and in 90% depancreatized and nicotinamide-injected rats (19; 37). Studies in mice lacking the gene Reg1, the mouse homologue of PSP/reg, revealed that Reg1 is involved in cell cycle progression and normal islet growth (37). Reg1 knockout mice have significant reductions in islet cell mass and rate of DNA synthesis in isolated islet cells (37; 38). We identified that rPSP/reg reversed the DN-HNF1A induced upregulation of p27Kip1 gene expression and the concomitant decrease in insulin expression. Previous studies have shown that PSP/reg induces ERK1/2 signalling in MKN45 gastric cancer cells (39). However, the signal transduction pathways activated by PSP/reg in pancreatic islets warrant further investigation. Interestingly, we observed that elevated extracellular glucose concentrations rapidly potentiated PSP/reg gene expression. This may represent an important physiological feed-back loop for the regulation of beta cell mass.

PSP/reg is physiologically secreted from pancreatic acinar cells (20). In the adult rat, PSP/reg has been shown to be present only in small amounts in beta cells (20; 40). We detected increased expression of PSP/reg in insulin-positive islet cells in 5 month old transgenic HNF1A-MODY mice, confirming previous findings that PSP/reg is expressed in islets during injury and regeneration processes (17; 19). Moreover, PSP/reg was also found in insulin-negative islet cells (Fig. 2B). In this context, a recent study has suggested alpha cells to be the major source of beta-cell regeneration/conversion in mice in vivo (41). We also detected increased PSP/reg levels in the serum of HNF1A-MODY patients. We can only speculate whether the source of PSP/reg in the serum of HNF1A-MODY patients was the endocrine or exocrine pancreas, i.e. islet or acinar cells. We can likewise not exclude that these levels came from other organs potentially affected in HNF1A-MODY such as the liver where PSP/reg is also expressed (42). However, we also detected elevated levels of PSP/reg in subjects with Type 1 diabetes, arguing for a role for pancreatic injury and beta cell apoptosis as a source for elevated PSP/reg serum levels.

Microparticles as signal transducers or enablers. In our study we detected that apoptotic INS-1 cells released Annexin V-positive MPs into the medium in a caspase-
dependent manner. MPs are being increasingly described as efficient vehicles for the release of signaling molecules. MPs enable communication between different cell types (43), and also deliver proteins to cells that do not normally express them (44). MPs deriving from apoptotic cells have been shown to carry nuclear proteins as well as nucleic acids (31; 45). Filtration experiments suggested that the absence of MPs abolished the effect of the conditioned medium to induce *PSP/reg* mRNA in naïve INS-1 cells. This suggested that cytokines, peptide hormones or other soluble messengers present in the conditioned medium did not mediate this effect. Interestingly, heat inactivation of the conditioned medium was sufficient to inhibit *PSP/reg* mRNA expression in naïve INS-1 cells. It is therefore tempting to speculate that MPs may contain signaling molecules or nuclear proteins which, upon uptake by neighboring cells, enhanced *PSP/reg* gene expression in these cells.

CONCLUSION

In conclusion, our study demonstrates that the execution of caspase-dependent apoptosis in INS-1 cells stimulates the induction of regenerative genes in neighboring cells, suggesting a role for MPs and PSP/reg in this process. These findings provide new mechanistic insights into a fundamental aspect of beta cell mass regulation.

Author Contributions. C.B researched data and wrote manuscript. S.R.R., S.B., M.B., A.M.F., H.D., M.W.W., S.M.K and C.M.B. researched data. C.G.C. reviewed/editing manuscript and contributed to discussion. C.B.W., R.G. and M.M.B. researched data and reviewed/editing manuscript. J.H.M.P. wrote manuscript and contributed to discussion.

ACKNOWLEDGEMENTS

This study was supported by grants from Science Foundation Ireland (08/IN1/1949) and the Health Research Board (RP/2008/14) to J.H.M.P., and grants from the Health Research Board (RP/2007/316), the Mater Foundation co-funded by the Medical Research Charity Groups/ Health Research Board, and a Mater College Grant to M.M.B, and the Swiss National Foundation (grant no. 32-66907.01) to C.B.W. We would like to thank M. Bain (Department of Cell Physiology and Metabolism, University Medical Center, 1211 Geneva 4, Switzerland) for excellent assistance and advice.

REFERENCES

1. Fajans SS: Scope and heterogeneous nature of MODY. *Diabetes Care* 13:49-64, 1990
2. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI: Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). *Nature* 384:458-460, 1996
3. Shih DQ, Screenan S, Munoz KN, Philipson L, Pontoglio M, Yaniv M, Polonsky KS, Stoffel M: Loss of HNF-1alpha function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. *Diabetes* 50:2472-2480, 2001
4. Wang H, Maechler P, Hagenfeldt KA, Wollheim CB: Dominant-negative suppression of HNF-1alpha function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic beta-cell line. *Embo J* 17:6701-6713, 1998
5. Ben-Shushan E, Marshak S, Shoshkes M, Cerasi E, Melloul D: A pancreatic beta-cell-specific enhancer in the human PDX-1 gene is regulated by hepatocyte nuclear factor 3beta (HNF-3beta), HNF-1alpha, and SPs transcription factors. *J Biol Chem* 276:17533-17540, 2001
6. Wang H, Maechler P, Antinozzi PA, Hagenfeldt KA, Wollheim CB: Hepatocyte nuclear factor 4alpha regulates the expression of pancreatic beta-cell genes implicated in glucose metabolism and nutrient-induced insulin secretion. *J Biol Chem* 275:35953-35959, 2000

7. Servitja JM, Pignatelli M, Maestro MA, Cardalda C, Boj SF, Lozano J, Blanco E, Lafuente A, McCarthy MI, Sumoy L, Guigo R, Ferrer J: Hnf1alpha (MODY3) controls tissue-specific transcriptional programs and exerts opposed effects on cell growth in pancreatic islets and liver. *Mol Cell Biol* 29:2945-2959, 2009

8. Wobser H, Dussmann H, Kogel D, Wang H, Reimertz C, Wollheim CB, Byrne MM, Prehn JH: Dominant-negative suppression of HNF-1 alpha results in mitochondrial dysfunction, INS-1 cell apoptosis, and increased sensitivity to ceramide-, but not to high glucose-induced cell death. *J Biol Chem* 277:6413-6421, 2002

9. Farrelly AM, Wobser H, Bonner C, Anguissola S, Rehm M, Concannon CG, Prehn JH, Byrne MM: Early loss of mammalian target of rapamycin complex 1 (mTORC1) signalling and reduction in cell size during dominant-negative suppression of hepatic nuclear factor 1-alpha (HNF1A) function in INS-1 insulinoma cells. *Diabetologia* 52:136-144, 2009

10. Akpinar P, Kuwajima S, Krutzfeldt J, Stoffel M: Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. *Cell Metab* 2:385-397, 2005

11. Byrne MM, Sturis J, Menzel S, Yamagata K, Fajans SS, Dronsfield MJ, Bain SC, Hattersley AT, Velho G, Froguel P, Bell GI, Polonsky KS: Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. *Diabetes* 45:1503-1510, 1996

12. Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, Doyen A, Pick AJ, Baldwin A, Velho G, Froguel P, Levisetti M, Bonner-Weir S, Bell GI, Yaniv M, Polonsky KS: Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice. *J Clin Invest* 101:2215-2222, 1998

13. Hagenfeldt-Johansson KA, Herrera PL, Wang H, Gijovoci A, Ishihara H, Wollheim CB: Beta-cell-targeted expression of a dominant-negative hepatocyte nuclear factor-1 alpha induces a maturity-onset diabetes of the young (MODY)3-like phenotype in transgenic mice. *Endocrinology* 142:5311-5320, 2001

14. Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, Satoh T, Li M, Uenaka R, Okita K, Iwahashi H, Zhu Q, Cao Y, Imagawa A, Tochino Y, Hanafusa T, Miyagawa J, Matsuzawa Y: Overexpression of dominant-negative mutant hepatocyte nuclear factor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. *Diabetes* 51:114-123, 2002

15. Wobser H, Bonner C, Nolan JJ, Byrne MM, Prehn JH: Downregulation of protein kinase B/Akt-1 mediates INS-1 insulinoma cell apoptosis induced by dominant-negative suppression of hepatocyte nuclear factor-1alpha function. *Diabetologia* 49:519-526, 2006

16. Dor Y, Brown J, Martinez OI, Melton DA: Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. *Nature* 429:41-46, 2004

17. Terazono K, Uchiyama Y, Ide M, Watanabe T, Yonekura H, Yamamoto H, Okamoto H: Expression of reg protein in rat regenerating islets and its co-localization with insulin in the beta cell secretory granules. *Diabetologia* 33:250-252, 1990

18. De Caro A, Lohse J, Sarles H: Characterization of a protein isolated from pancreatic calculi of men suffering from chronic calcifying pancreatitis. *Biochem Biophys Res Commun* 87:1176-1182, 1979

19. Terazono K, Yamamoto H, Takasawa S, Shiga K, Yonemura Y, Tochino Y, Okamoto H: A novel gene activated in regenerating islets. *J Biol Chem* 263:2111-2114, 1988
20. Rouquier S, Verdier JM, Iovanna J, Dagorn JC, Giorgi D: Rat pancreatic stone protein messenger RNA. Abundant expression in mature exocrine cells, regulation by food content, and sequence identity with the endocrine reg transcript. J Biol Chem 266:786-791, 1991
21. Watanabe T, Yonemura Y, Yonekura H, Suzuki Y, Miyashita H, Sugiyama K, Moriiizumi S, Unno M, Tanaka O, Kondo H, et al.: Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg protein. Proc Natl Acad Sci U S A 91:3589-3592, 1994
22. Graf R, Schiesser M, Lussi A, Went P, Scheele GA, Bimmler D: Coordinate regulation of secretory stress proteins (PSP/reg, PAP I, PAP II, and PAP III) in the rat exocrine pancreas during experimental acute pancreatitis. J Surg Res 105:136-144, 2002
23. Garcia-Calvo M, Peterson EP, Rasper DM, Vaillancourt JP, Zamboni R, Nicholson DW, Thornberry NA: Purification and catalytic properties of human caspase family members. Cell Death Differ 6:362-369, 1999
24. Canault M, Leroyer AS, Peiretti F, Lesche G, Tedgui A, Bonardo B, Alessi MC, Boulanger CM, Nalbone G: Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. Am J Pathol 171:1713-1723, 2007
25. Leroyer AS, Isobe H, Lesche G, Castier Y, Wassef M, Mallat Z, Binder BR, Tedgui A, Boulanger CM: Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 49:772-777, 2007
26. Schiesser M, Bimmler D, Frick TW, Graf R: Conformational changes of pancreatitis-associated protein (PAP) activated by trypsin lead to insoluble protein aggregates. Pancreas 22:186-192, 2001
27. Bimmler D, Angst E, Valeri F, Bain M, Scheele GA, Frick TW, Graf R: Regulation of PSP/reg in rat pancreas: immediate and steady-state adaptation to different diets. Pancreas 19:255-267, 1999
28. Graf R, Schiesser M, Scheele GA, Marquardt K, Frick TW, Ammann RW, Bimmler D: A family of 16-kDa pancreatic secretory stress proteins form highly organized fibrillar structures upon tryptic activation. J Biol Chem 276:21028-21038, 2001
29. Taylor RC, Cullen SP, Martin SJ: Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231-241, 2008
30. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S: Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309-7318, 2001
31. Schiller M, Bekeredjian-Ding I, Heyder P, Blank N, Ho AD, Lorenz HM: Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. Cell Death Differ 15:183-191, 2008
32. Zenilman ME, Chen J, Magnuson TH: Effect of reg protein on rat pancreatic ductal cells. Pancreas 17:256-261, 1998
33. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC: Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102-110, 2003
34. Bonner-Weir S: beta-cell turnover: its assessment and implications. Diabetes 50 Suppl 1:S20-24, 2001
35. Pellettieri J, Fitzgerald P, Watanabe S, Mancuso J, Green DR, Sanchez Alvarado A: Cell death and tissue remodeling in planarian regeneration. Dev Biol 338:76-85
36. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY: Apoptotic cells activate the "phoenix rising" pathway to promote wound healing and tissue regeneration. Sci Signal 3:ra13
37. Unno M, Nata K, Noguchi N, Narushima Y, Akiyama T, Ikeda T, Nakagawa K, Takasawa S, Okamoto H: Production and characterization of Reg knockout mice: reduced proliferation of pancreatic beta-cells in Reg knockout mice. *Diabetes* 51 Suppl 3:S478-483, 2002
38. Unno M, Yonekura H, Nakagawara K, Watanabe T, Miyashita H, Morizumi S, Okamoto H, Itoh T, Teraoka H: Structure, chromosomal localization, and expression of mouse reg genes, reg I and reg II. A novel type of reg gene, reg II, exists in the mouse genome. *J Biol Chem* 268:15974-15982, 1993
39. Kadowaki Y, Ishihara S, Miyaoka Y, Rumi MA, Sato H, Kazumori H, Adachi K, Takasawa S, Okamoto H, Chiba T, Kinoshita Y: Reg protein is overexpressed in gastric cancer cells, where it activates a signal transduction pathway that converges on ERK1/2 to stimulate growth. *FEBS Lett* 530:59-64, 2002
40. Iovanna JL, Keim V, Michel R, Dagorn JC: Pancreatic gene expression is altered during acute experimental pancreatitis in the rat. *Am J Physiol* 261:G485-489, 1991
41. Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL: Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. *Nature* Apr 4. [Epub ahead of print], 2010
42. Graf R, Schiesser M, Reding T, Appenzeller P, Sun LK, Fortunato F, Perren A, Bimmler D: Exocrine meets endocrine: pancreatic stone protein and regenerating protein--two sides of the same coin. *J Surg Res* 133:113-120, 2006
43. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C: Acid sphingomyelinase activity triggers microparticle release from glial cells. *EMBO J* 28:1043-1054, 2009
44. Boulanger CM, Tedgui A: Dying for attention: microparticles and angiogenesis. *Cardiovasc Res* 67:1-3, 2005
45. Orozco AF, Jorgez CJ, Horne C, Marquez-Do DA, Chapman MR, Rodgers JR, Bischoff FZ, Lewis DE: Membrane protected apoptotic trophoblast microparticles contain nucleic acids: relevance to preeclampsia. *Am J Pathol* 173:1595-1608, 2008

Figure Legends

Figure 1: The inducible expression of DN-HNF1A leads to a potent induction of PSP/reg mRNA and protein. (A) The time-course of *hnf1a* gene induction in DN-HNF1A and WT-HNF1A induced INS-1 cells, represented by absolute quantitative PCR (qPCR). Data are presented as cDNA copy number per µl of the *hnf1a* gene expression. Data are represented as means ± SEM from *n* = 3 cultures. The experiment was repeated 3 times with similar results.* p<0.05 indicates the difference from non-induced controls.

(B) Quantification of pyruvate dehydrogenase kinase (Pdk1) gene expression. DN-HNF1A and WT-HNF1A INS-1 cells were induced with doxycycline from 0 to 48 h. *Pdk1* mRNA expression was examined using real-time qPCR relative to β-actin. Data shown are the means ± SEM of *n=3* cultures. The experiment was repeated 4 times with similar results.* p<0.05, difference from non-induced controls. (C) **Quantification of PSP/reg gene expression following DN-HNF1A and WT-HNF1A induction in INS-1 cells.** INS-1 cells were treated with 500 ng / ml doxycycline from 0 to 48 h. mRNA expression of *PSP/reg* was examined using real-time qPCR relative to β-actin. Expression levels were normalized to control cells and data represent means ± SEM from *n* = 3 cultures.* p<0.05 difference from non induced controls.
Experiments were repeated 6 times with similar results (D). Whole cell lysates (25 μg) were analysed by Western blotting on 15% SDS-PAGE. Membranes were probed with a polyclonal antibody recognizing PSP/reg. The 14 kDa fragment represents a PSP/reg cleavage product. β-actin served as a loading control. Approximate molecular weights are provided on the right side of the figure. Similar results were obtained in two separate experiments.

Figure 2: High extracellular glucose potentiates PSP/reg mRNA induction in DN-HNF1A expressing INS-1 cells. (A) INS-1 cells were induced to express DN-HNF1A for 24 h. Cultures were continued for 2 h at either 3, 6, 12 and 18 mmol/l glucose concentrations. After this period, mRNA expression of PSP/reg was analyzed by real time qPCR. Expression levels were normalized to non-induced control cells and data are represented as means ± SEM from n = 3 cultures. *p<0.05 for difference from non induced controls; # p<0.05, difference from induced cultures at 3 mmol/l glucose. Experiment was repeated 3 times with similar results. (B) PSP/reg immunoreactivity in islet cells in an in vivo mouse model of DN-HNF1A-induced apoptosis. Paraffin-embedded pancreatic sections on slides from 5 month old wild-type C57BL/6J BomTac control mice and RIP-DN-HNF1A transgenic mice were double stained using antibodies against PSP/reg and Insulin. Primary antibodies were recognised by secondary antibodies coupled to Rhodamine (red) for PSP/reg and to FITC (green) for insulin respectively. Cell nuclei were stained with DAPI (blue). Bar = 10 μm. (C) PSP/reg immunoreactivity in islets in proximity to cells showing apoptotic nuclear morphology. High magnification images of PSP/reg immunoreactivity and DAPI staining in islets of DN-HNF1A mice. Arrows indicate cells exhibiting apoptotic nuclear morphology. Bar = 10 μm. (D) PSP/reg protein is detectable in the serum of HNF1A-MODY subjects and type 1 diabetics. Serum from HNF1A-MODY patients, their MODY-negative family members and type 1 diabetes patients were analyzed by a specific ELISA detecting human PSP/reg. The square indicates the normal range (Rolf Graf, historic data). Individual values, the average as well as the standard deviation are plotted. PSP/reg levels in HNF1A-MODY and type 1 diabetics were significantly different from MODY-negative, control family members (* p<0.05).**

Figure 3: Activation of caspases during DN-HNF1A induced apoptosis triggers PSP/reg induction. (A) Time course of caspase-3-like protease activity in whole cell extracts. INS-1 cells were induced to overexpress WT-HNF1A or DN-HNF1A for 0, 16, 24 and 48 h. As a control, parental INS-1 cells were treated with doxycycline for 0, 16, 24 and 48 h. Caspase protease activity was measured by cleavage of the fluorogenic substrate Ac-DEVD-AMC (10 μM). Activities are represented as increase in AMC fluorescence (in A.U.) per 1 h per μg of protein. Data represent means ± SEM from n=6 cultures. Experiments were repeated 2 times with similar results. * p<0.05 difference from non induced controls. (B) Treatment with the broad spectrum caspase inhibitor zVAD.fmk (100 μM) inhibits apoptosis after induction of DN-HNF1A. Cultures were simultaneously pre-treated with doxycycline and zVAD.fmk or vehicle (dimethylsulfoxide; zVAD.fmk) for 48. Apoptotic cell morphology was assessed by DAPI staining of nuclear chromatin. (C) zVAD.fmk inhibits PSP/reg mRNA induction. The mRNA expression of PSP/reg was examined using real-time qPCR. Expression levels were normalized to non-induced plus non-induced zVAD.fmk treated control cells. Data are represented as means ± SEM from n = 3 cultures. * p<0.05 for difference from non-induced controls. # p<0.05, difference compared to doxycycline alone treated cultures. The experiment was repeated three times with similar results. (D) PSP/reg protein expression was detected by Western blotting. A duplicate experiment showed similar results. Membrane was stripped and reprobed with anti- β-actin as a loading control. (E) PSP/reg gene induction in parental INS-1 cells treated with
etoposide is caspase dependent. INS-1 cells were simultaneously treated with etoposide (3 μM) or vehicle (0.1% DMSO) for 24 h in the presence and absence of zVAD.fmk (100 μM). Following treatment, mRNA expression of PSP/reg was examined using real-time qPCR. Expression levels were normalized to control cells. Data are represented as means ± SEM from n = 3 separate cultures. * p<0.05 for difference from non induced controls. # p<0.05, difference compared to etoposide alone treated cultures. Data shown are the mean of n=3 separate experiments.

Figure 4: Conditioned medium from DN-HNF1A-induced INS1 cells results in a prominent increase in PSP/reg mRNA expression in naïve INS1 Cells. (A) INS-1 cells were induced with 500 ng/ml of doxycycline in the presence and absence of zVAD.fmk (100 μM) at 0.05% serum in 6 mM glucose for 48 h. The conditioned culture medium was added to the non-induced, naïve cells for a further 24 h. After treatment, mRNA expression of PSP/reg was analyzed by real-time qPCR. Expression levels were normalized to non-induced controls. Data are represented as means ± SEM from n = 3 cultures. * p<0.05 for difference from non induced controls; # p<0.05, difference from doxycycline alone treated cultures. Experiments were repeated 6 times with similar results. (B) Duplicate experiments of INS-1 cells were induced for 48 h Conditioned culture medium was heat-inactivated at 95 °C for 15 minutes and added to the naïve cells for a further 24 h. PSP/reg gene expression was analyzed by real-time qPCR. Data are represented as means ± SEM from n =3 cultures. * p<0.05 for difference from non induced controls. Experiments were repeated 4 times with similar results. (C) The conditioned medium from cells treated as described in (A) above was centrifuged and filtered through 0.20 μM filters and added to naïve INS-1 cells for 24 h. Unfiltered conditioned medium served as a control. PSP/reg gene expression was analyzed by real-time qPCR. Data are represented as means ± SEM from n =3 cultures. * p<0.05 for difference from non induced controls. Experiments were repeated 3 times with similar results. (D) INS-1 cells were induced with doxycycline in the presence and absence of zVAD.fmk. The conditioned culture medium was added to naïve cells for a further 24 h. Supernatants were collected and detached cells were precipitated at (300 X g), followed by additional 800 X g centrifugation. MPs were quantified as described in Materials and Methods.

Figure 5: Treatment of INS1 cells with recombinant PSP/reg protein reverses the phenotype of HNF1A-MODY cells.

(A) INS-1 cells were induced to express DN-HNF1A for 24 h before being cultured for a further 24 h in the presence and absence of 10 ng/ml of rPSP/reg for 24 h. Proliferation was assessed by BrdU incorporation into the cells. Data are a mean ± SEM from n=6 cultures. Experiments were repeated 3 times with similar results. * p<0.05 for difference from non induced controls. #p<0.05, difference compared to doxycycline alone treated cultures. (B, C) DN-HNF1A INS-1 cells were treated as described in (A) above. Insulin (B) and p27Kip1 (C) gene expression was analyzed by real-time qPCR. Data are represented as means ± SEM from n = 3 cultures. * p<0.05 for difference from non induced controls. #p<0.05, difference compared to doxycycline alone treated cultures. Experiments were repeated 3 times with similar results. (D) The supernatant of apoptosing INS-1 cells induced by DN-HNF1A overexpression is sufficient to stimulate cell proliferation in naïve INS-1 cells. Cells were induced with 500 ng / ml of doxycycline in the presence and absence of zVAD.fmk (100 μM) in 0.05% serum at 6 mM glucose for 48 h. The conditioned culture medium was added to the non-induced, naïve cells for a further 24 h. After treatment, cell proliferation was assessed by BrdU incorporation. Data are a mean ± SEM from n=6 cultures. Experiments were repeated 3 times with similar results. * p<0.05 for difference from non induced controls. #p<0.05, difference compared to doxycycline alone treated cultures.
Table 1. Summary of the study groups used for ELISA measurement of PSP/reg levels. Patients were age, sex and BMI matched. Data is represented as mean +/- SEM. * p<0.05 compared to HNF-1A MODY negative group.

Group	HNF 1A-MODY	HNF 1A-MODY Negative	T1DM	p value
N	16	7	10	
Sex (F:M)	10:6	4:3	6:4	
Age (years)	35.8±20	27.9±11	31.8±4.9	n.s.
BMI (kg/m²)	24.4±4	26.6±7.9	25.5±1.3	n.s.
HbA1c (%)	7.6±0.3*	5.4±0.3	7.8±0.3*	*p<0.05
PSP (ng/ml)	18.8±2.7*	8.3±3.8	17.3±1.7*	*p<0.05

Figure 1
Figure 2

A

![Graph showing N-fold expression of PSP/reg mRNA (DN-HNF1A) under different conditions of Doxycycline and Glucose].

B

(RIP) DN-HNF1A Transgenic Mice

![Imaging of (WT-HNF1A) C57BL/6J and RIP DN-HNF1A Transgenic Mice showing DAPI, insulin, and PSP/reg staining].

C

(RIP) DN-HNF1A Transgenic Mice

![Imaging showing DAPI and PSP/reg staining].

D

![Graph showing PSP/reg levels (ng/ml) across HNF1A-MODY patients, negative family members, and T1DM].

Normal Reference Range
Figure 3

A

Caspase-3-like Protease Activity [A.U. x 10^4 µg Protein] vs. Time (h)

- parental INS-1
- WT-HNF1A
- DN-HNF1A

B

DN-HNF1A (DAPI)

- Dox
- + Dox
- + Dox + zVad

D

PSP/reg [16 kDa]

- β-Actin [42 kDa]

- Dox
- + zVad

zVAD.fmK

- +

E

PSP/reg mRNA (DN-HNF1A)

- Dox
- +
- -

- zVAD.fmK
- +
- -

24 hr

48 hr

Parental INS-1 Cells

PSP/reg mRNA

- Etoposide
- +
- -

- zVAD.fmK
- +
- -

Time (16 h)
Figure 5

A. Cell Proliferation Assay (DN-HNF1A)

B. p27 mRNA (DN-HNF1A)

C. Insulin mRNA (DN-HNF1A)

D. Cell Proliferation Assay Naïve INS-1 Cells plus Conditioned Medium

Doxycycline	rPSP/reg	BrdU Incorporation (A.U.)
-	-	1.0
+	-	0.8
-	+	1.2
+	+	1.0

Doxycycline	rPSP/reg	N-fold expression
-	-	1.0
+	-	2.0
-	+	1.0
+	+	3.0

Doxycycline	rPSP/reg	N-fold expression
-	-	1.0
+	-	2.0
-	+	1.0
+	+	3.0

Doxycycline	rPSP/reg	zVAD.fmk	BrdU Incorporation (A.U.)
-	-	-	0.2
+	-	-	0.3
-	+	-	0.1
+	+	-	0.4

©