Dynamics of Gut Microbiota According to the Delivery Mode in Healthy Korean Infants

Eun Lee,1 Byoung-Ju Kim,1,2 Mi-Jin Kang,3 Kil Yong Choi,4 Hyun-Ju Cho,5 Yeongho Kim,5 Song I Yang,6 Young-Ho Jung,7 Hyung Young Kim,6 Ju-Hee Seo,9 Ji-Won Kwon,10 Hyo-Bin Kim,11 So-Yeon Lee,6 Soo-Jong Hong5

1Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
2Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
3Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
4Department of Environmental Health Research, Seoul Medical Center, Seoul, Korea
5Department of Pediatrics, Childhood Asthma and Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
6Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
7Department of Pediatrics, CHA University School of Medicine, Seongnam, Korea
8Department of Pediatrics, Pusan National University Yangsan Hospital, Pusan National University College of Medicine, Yangsan, Korea
9Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
10Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
11Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Microbial colonization of the infant gut is unstable and shows a wide range of diversity between individuals. Gut microbiota play an important role in the development of the immune system, and an imbalance in these organisms can affect health, including an increased risk of allergic diseases. Microbial colonization of young infants is affected by the delivery mode at birth and the consequent alterations of gut microbiota in early life affect the development of allergic diseases. We investigated the effects of the delivery mode on the temporal dynamics of gut microbiota in healthy Korean infants. Fecal samples were collected at 1-3 days, 1 month, and 6 months after birth in six healthy infants. Microbiota were characterized by 16S rRNA shotgun sequencing. At the first and third days of life, infants born by vaginal delivery showed a higher richness and diversity of gut microbiota compared with those born by cesarean section. However, these differences disappeared with age. The Bacteroides genus showed convergent dynamics with age. This study demonstrated the effect of delivery mode on the dynamics of gut microbiota profiles in healthy Korean infants.

Key Words: Delivery mode; gut; microbiota

INTRODUCTION

The prevalence of immune-mediated chronic diseases, such as allergic diseases, has increased over the last 50 years.1 Changes in lifestyle and environmental factors may have contributed to an imbalance in gut microbiota,2,4 which can affect the host immune responses, nutritional status and metabolic status, resulting in systemic chronic inflammation.5 This chronic low-grade inflammation can cause various noncommunicable diseases, including allergic diseases.2

The composition of gut microbiota is influenced by various factors, such as age, ethnicity, and environmental factors.4,5 Given that gut microbiota profiles tend to fluctuate until 3 years of age,6,9 and that allergic diseases occur earlier in life compared with other non-communicable diseases, it is essential to characterize early gut microbiota profiles for identification of the mechanisms underlying their relationship to immune-mediated diseases.

Correspondence to: Soo-Jong Hong, MD, PhD, Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olimpic-ro 43 gil, Songpa-gu, Seoul 05505, Korea. Tel: +82-2-3010-3379; Fax: +82-2-473-3725; E-mail: sjhong@amc.seoul.kr

Received: August 3, 2015; Revised: November 8, 2015; Accepted: November 13, 2015
• There are no financial or other issues that might lead to conflict of interest.
Environmental factors, such as perinatal antibiotic administration, mode of delivery, type of infant feeding, gestational age, and probiotic administration affect the composition of the gut microbiota. Among the modifying factors, mode of delivery has been reported to strongly affect the development of allergic diseases. This association may be attributable to the lack of contact with maternal gut microbiota during cesarean section. The aim of our current study was to identify the effects of delivery mode on the composition of gut microbiota in infants after controlling for confounding factors such as antibiotic usage and a single specimen collection.

The study population consisted of six healthy infants enrolled from January 2012 to December 2013. Fecal samples were collected 1-3 days, 1 month, and 6 months after birth. Three of the six infants were born by caesarean section and the other three were born vaginally (Table 1). To control for external factors that might influence the composition of gut microbiota, we selected subjects with no history of antibiotic use, probiotic use, or infection during the first six months of life and no history of antibiotics during pregnancy. All subjects were fed with a combination of breastmilk and formula during the study period.

This study protocol was approved by the institutional review boards (IRBs) of the Asan Medical Center (IRB No. 2012-1137). Informed consent forms were confirmed by each IRB and obtained from the parents of each infant.

Genomic DNA extraction
Parents collected fecal samples into feces tubes and immediately placed them at -20°C. The samples were then rapidly delivered to Asan Institute for Life Science and stored at -70°C.

Metagenomic DNA was isolated from fecal samples using a DNA extraction kit (MP Biomedicals, Santa Ana, CA, USA) in accordance with the manufacturer’s instructions. DNA was eluted in 50 µL of elution buffer and stored at -20°C prior to use. Genomic DNA concentration and purity was assessed by spectrophotometry. After removing humic acid with the PowerClean DNA Clean-Up Kit (MO BIO Laboratories, Carlsbad, CA, USA), polymerase chain reaction (PCR) was performed on each fecal specimen.

Sequencing of the 16S rRNA Gene
16S rRNA gene analysis was performed by 454 pyrosequencing of the V1-V3 regions. Details of this gene analysis are described elsewhere.

Statistical analysis
The CLcommunity software program was used to analyze the pyrosequencing sequences of the gut microbiota. Comparisons of the richness, diversity, and relative abundance of gut microbiota between infants born by caesarean section and those born vaginally were performed using the Mann-Whitney U test. All statistical analyses were performed with SAS version 9.3 for Windows (SAS Inc., Cary, NC, USA). P values ≤ 0.05 were considered statistically significant.

RESULTS
General characteristics of the study population
The general characteristics of the study population are summarized in Table 1. There were no significant differences in gestational age or birth weight between infants born by vaginal delivery and those born by cesarean section.

Pyrosequences of gut microbiota
Operational taxonomic units (OTUs) were significantly increased in infants born by vaginal delivery compared with those born by caesarean section at 1-3 days of life (P=0.024). OTUs continuously increased over time in infants delivered by caesarean section. However, OTUs decreased at 1 month of age.

Table 1. Characteristics of the study infants

Sample ID	Gestational age (week)	Sex	Mode of delivery	Use of antibiotics & probiotics during the first 6 months of age	Use of antibiotics & probiotics during pregnancy	Maternal sensitization on skin prick tests	Paternal sensitization on skin prick tests	Family history of allergic diseases
CD 1	40.0	F	CD	No	No	Not done	No	No
CD 2	38.5	F	CD	No	No	Yes	No	No
CD 3	40.3	F	CD	No	No	No	Yes	Yes
VD 1	38.5	M	VD	No	No	No	Yes	Yes
VD 2	38.2	F	VD	No	No	Not done	Not done	No
VD 3	39.2	M	VD	No	No	No	No	No

CD, cesarean delivery; F, female; M, male; VD, vaginal delivery.
in infants born by vaginal delivery, although they subsequently increased (Table 2).

Comparisons of gut microbiota richness and diversity

The Chao1 and Shannon indexes, which represent alpha-diversity and microbiota richness, decreased from 1-3 days to 1 month of life in infants born by vaginal delivery, with the exception of one infant that showed an increase in the Shannon index (Fig. 1). Conversely, infants born by cesarean section showed a pattern of continuous increases in these indexes with age.

Comparisons of gut microbiota composition

In both study groups, the most dominant bacteria for the first six months of life were of the Firmicutes phylum (cesarean section, 78.96%; vaginal delivery, 48.07%; P=0.005) and the Clostridia class (cesarean section, 48.52%; vaginal delivery, 28.30%; P=0.627) (Figs. 2 and 3).

At birth, levels of the Bacilli class were significantly higher in infants born by cesarean section (Table 3). However, the Bacilli class consistently decreased over time in these infants. The Bacteroidetes phylum was nearly undetectable at 1-3 days of life in infants born by cesarean section, but increased with age, while it showed fluctuation with age in those born by vaginal delivery.

The relative proportion of both the uncultured *Bifidobacterium* and *Bifidobacterium longum* species was higher in infants born by vaginal delivery for the first six months of life. The *Clostridium difficile* species was higher in infants born by cesarean section compared with those born by vaginal delivery. The *Clostridium g4* genus increased with age in infants born by cesarean section, but remained at low levels in infants born by vaginal delivery. The Firmicutes phylum and *Bacteroides* genus showed a convergent pattern with age between the 2 groups (Fig. 4).

DISCUSSION

In our present study, we evaluated the temporal pattern of the diversity and composition of gut microbiota according to delivery mode in healthy Korean infants during the first six months of life after controlling for confounding factors. The richness and diversity of gut microbiota in vaginally delivered infants were higher at birth, decreased at 1 month, and then subsequently increased. In infants born by cesarean section, the richness and diversity of gut microbiota were low at birth, but con-
continuously increased with age. This chronological pattern of gut microbiota may reflect differences in the maturation course of gut microbiota according to delivery mode.

Previous studies have shown a lower diversity and lower abundance of gut microbiota during early life, especially in infants born by cesarean section. Under the influence of the mother’s gut microbiota during delivery, the diversity and richness of gut microbiota after birth were greater in infants born vaginally but subsequently decreased by 1 month of age, which was also observed in the previous studies. Although the underlying meaning has not been established, the increased diversity immediately after birth may be attributable to the transmission of maternal gut microbiota, even including noncolonizable microbiota in vaginally delivered infants. After 1 month of life, the diversity and richness of the gut microbiota increased by six months of age. Although there was a wide variety between individuals, the variability in richness and diversity of gut microbiota during early life might reflect the transitional state between the sterile infant gut and the mature adult gut microbiota.

Differences in the composition of gut microbiota immediately after birth are attributable to mother-related factors such as intestinal microflora, especially in infants born vaginally. The representative gut microbiota in infants delivered vaginally include *Lactobacillus*, *Prevotella*, and *Sneathia* species, which are abundantly present in the mother’s vagina. On the other hand, the *Staphylococcus*, *Corynebacterium*, and *Propionibacterium* species, which are present on the skin surface, have been identified as the main gut microbiota in infants born by...
cesarean section. In our present study, the relative proportions of the Bacteroides genus and the Bacteroidetes phylum at 1-3 days after birth were higher in infants born vaginally. Considering that the Bacteroides is thought to be the main component of the adult gut microbiota, the increased proportion of Bacteroides in infants born vaginally might be partially attributable to the maternal transmission of gut microbiota during delivery. Some species of the Bacteroides genus can activate T cell-dependent immune responses with homeostasis of the host immune response and thereby contribute to health.

The Clostridium difficile species and Clostridium g4 genus increased with age in the infants in our study born by cesarean section, while consistently lower levels were observed in infants born vaginally during the first 6 months of life. This result is in agreement with the previous findings of a Netherlands birth cohort study performed on infants at 1 month of age. Our present study provides new evidence for a common and characteristic composition pattern of gut microbiota during early life in infants born by cesarean section, regardless of ethnicity.

Clostridium has been reported to be increased in infants born by cesarean section. Also, colonization with Clostridium in the gut was shown to be associated with increased risk of wheeze and eczema. Based on these previous findings as well as our own, we conclude that the delivery mode may affect the development of allergic diseases through immune-modulatory effects resulting from changes in the composition of gut microbiota.

Even at 6 months of age, the Bacteroides genus and Clostridia class, which are abundant in gut microbiota of mature adults, did not dominate either infant group in our current study. The relative abundance of the Firmicutes phylum and Bacteroides genus seemed to converge towards a similar level with age in both groups. As these bacteria are dominant in the adult gut, this convergent pattern might reflect a maturation process in the gut microbiota of healthy infants.

One strength of our study is that we attempted to avoid confounding factors that affect the composition of gut microbiota, such as administration of probiotics and antibiotics in both infants and mothers. We also enrolled infants who were undergo-
ing mixed feeding of breast milk and formula during the first six months of life. Differences in the concentration and composition of gut microbiota might be partially affected by different ratios between breast milk and formula.

Our study was limited by the small number of participants and short follow-up period. However, it has value in its presentation of chronological changes in the diversity and composition of gut microbiota during early life in healthy Korean infants after controlling for several important confounding factors. Also, our current findings provide fundamental new information on the dynamics of gut microbiota in healthy Korean infants for further studies.

In conclusion, the increased richness and diversity of gut microbiota at birth gradually decrease at 1 month of age in infants born by vaginal delivery. Thereafter, an increasing pattern of diversity is observed with age. The richness and diversity of gut microbiota steadily increase with age in infants born by cesarean section. The convergent temporal pattern of specific gut microbiota with age in infants according to delivery mode might suggest effects on human health via several mechanisms, including immune-modulation early in life.

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea.

Table 3. Comparisons of fecal microbiota in the infant subjects by the mode of delivery

Sampling period	Class/Genus/Species	Microbiota	Vaginal delivery (n=3)	Cesarean section delivery (n=3)	P value*			
	Mean	SEM	Mean	SEM	Mean	SEM		
1-3 days								
Class			Bacilli	5.409	4.564	99.441	0.529	<0.001
Genus			Clostridium	0.547	0.598	0.030	0.053	0.210
			Lactobacillus	0.365	0.190	33.300	33.300	0.817
			Staphylococcus	1.459	0.329	4.430	3.717	0.507
Species			Bacteroidetes	11.942	19.186	0.003	0.005	0.046
			Uncultured Bifidobacterium	NA	NA	NA	NA	
			Bifidobacterium longum	0.699	0.699	0.334	0.334	0.796
			Clostridium difficile	0.000	0.000	0.030	0.030	0.317
			Staphylococcus epidermidis	0.729	0.329	33.090	33.090	0.507
1 month			Bacilli	40.412	38.307	20.858	19.632	0.475
Class			Clostridium	0.038	0.065	33.082	57.300	0.423
Genus			Lactobacillus	4.474	2.567	4.154	4.126	0.513
			Staphylococcus	4.430	3.717	0.100	0.600	0.275
Species			Bacteroidetes	0.408	0.462	1.255	2.174	0.507
			Uncultured Bifidobacterium	0.038	0.019	0.000	0.000	0.026
			Bifidobacterium longum	48.739	18.810	2.297	2.297	0.046
			Clostridium difficile	0.000	0.000	33.020	33.020	0.317
			Staphylococcus epidermidis	3.765	3.450	0.044	0.044	0.246
6 months			Bacilli	1.583	1.747	0.931	0.788	0.587
Class			Clostridium	0.121	0.139	43.236	16.409	0.045
Genus			Lactobacillus	0.037	0.033	0.000	0.000	0.121
			Staphylococcus	0.011	0.006	0.004	0.004	0.246
Species			Bacteroidetes	0.007	0.007	1.885	3.248	0.376
			Uncultured Bifidobacterium	0.019	0.032	0.004	0.006	0.510
			Bifidobacterium longum	5.203	1.999	0.798	0.278	0.050
			Clostridium difficile	0.093	0.093	19.250	10.017	0.246
			Staphylococcus epidermidis	0.003	0.003	0.000	0.000	0.317

*Mann-Whitney U test.
SEM, standard error of mean; NA, not applicable.
Changes in Gut Microbiota by the Delivery Mode

AAIR

(NRF), funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A1015308).

REFERENCES

1. Kim WK, Kwon JW, Seo JH, Kim HY, Yu J, Kim BJ, et al. Interaction between IL13 genotype and environmental factors in the risk for allergic rhinitis in Korean children. J Allergy Clin Immunol 2012; 130:421-6.e5.

2. West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ, Vuillermin P, et al. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol 2015;135:3-13; quiz 4.

3. Kim BJ, Lee SY, Kim HB, Lee E, Hong SJ. Environmental changes, microbiota, and allergic diseases. Allergy Asthma Immunol Res 2014;6:389-400.

4. Lee SY, Kang MJ, Kwon JW, Park KS, Hong SJ. Breastfeeding Might Have Protective Effects on Atopy in Children With the CD14C-159T CT/CC Genotype. Allergy Asthma Immunol Res 2013;5:239-41.

5. Renz H, von Mutius E, Brandtzæg P, Cookson WO, Autenrieth IB, Haller D. Gene-environment interactions in chronic inflammatory disease. Nat Immunol 2011;12:273-7.

6. Bønnelykke K, Stokholm J. Immune-mediated diseases and microbial exposure in early life. Clin Exp Allergy 2014;44: 475-81.

7. Biagi E, Nylund L, Candela M, Ostán R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 2010;5:e10667.

8. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012;489:220-7.

9. Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy 2008;38: 634-42.

10. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev 2010;86 Suppl 1:13-5.

11. Russell SL, Gold MJ, Reynolds LA, Willing BP, Dimitriu P, Thorson L, et al. Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. J Allergy Clin Immunol 2015;135:100-9.

12. Penders J, Thijs C, Vink C, Stelma FF, Sniijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118:511-21.

13. Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy 2008;38: 634-42.

14. Pistiner M, Gold DR, Abdulkerim H, Hoffman E, Celedón JC. Birth by cesarean section, allergic rhinitis, and allergic sensitization among children with a parental history of atopy. J Allergy Clin Immunol 2008;122:274-9.

15. Seo JH, Kim HY, Jung YH, Lee E, Yang SI, Yu HS, et al. Interactions between innate immune genes and early-life risk factors in allergic rhinitis. Allergy Asthma Immunol Res 2015;7:241-8.

16. Lee SY, Yu J, Ahn KM, Kim KW, Shin YH, Lee KS, et al. Additive effect between IL-13 polymorphism and cesarean section delivery/ prenatal antibiotics use on atopic dermatitis: a birth cohort study (COCOA). PLoS One 2014;9:e96603.

17. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014;63:559-66.

18. van Nimwegen FA, Penders J, Stobberingh EE, Postma DS, Koppelman GH, Kerkhof M, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol 2011;128:948-55 e1-3.

19. Andersson AE, Lindberg M, Jakobsson H, Bäckhed E, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by bar-coded pyrosequencing. PLoS One 2008;3:e2836.