Construction of CTLA-4-Ig Fusion Gene in pBudCE4.1 Expression Vector

Mahsa Yazdanpanah-Samani 1, Elham Mahmoudi Maymand 1, Tayebeh Jahangeerfam 2, and Abbas Ghaderi 1,2

1. Shiraz Institute for Cancer Research, Faculty of Medicine, Shiraz University of Medical Science, Shiraz, Iran
2. Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: CTLA-4 inhibitory signals prevent cell cycle progression and IL-2 production, leading to a halt on an ongoing immune response. CTLA4-Ig fusion proteins contain the extracellular domain of CTLA-4 and Fc fragment of human IgG antibody. In this study we aimed to fuse the ctl4 gene encoding the extracellular domain of CTLA-4 molecule with igg1 gene encoding Fc region of human IgG.

Methods: After primer design, PCR reaction was performed using pfu polymerase enzyme and specific primers. PCR amplified fragment was ligated into the vector containing the human igg1 gene. The resulting fusion fragment of ctl4 and human igg1 genes was ligated to pBudCE4.1 expression vector.

Results: Extracellular domain of ctl4 gene was ligated to igg1 gene and then ctl4-Ig fragment was cloned into pBudCE4.1 vector. Construction of the expression vector was confirmed by restriction pattern analysis and sequencing.

Conclusion: By confirming the construct, in the next step, the recombinant DNA will be used to produce CTLA4-Ig recombinant protein for the clinical uses.

Keywords: Abatacept, CTLA-4 antigen, CTLA4-Ig, Recombinant DNA

Introduction

Following the T cell activation, cytotoxic T lymphocyte antigen-4 (CTLA-4), a negative regulatory molecule, will be expressed on T cells. 1-2. CTLA-4 is a homolog of CD28 but binds B-7 molecules with greater affinity. Inhibitory signals of this molecule inhibit cell cycle progression and IL-2 production, leading to a halt on an ongoing immune response. 3-6

Regarding the central role of CTLA-4 in down-regulation of the immune responses, co-stimulatory receptors became an important target for drug development. The best example is the CTLA4-Ig fusion protein, containing the extracellular domain of CTLA-4 and the constant region of human IgG antibody. This fusion protein can inhibit T cells dependent immune responses. 3-6

In this study we aimed to fuse extracellular domain of ctl4 gene to Fc region of human igg1 gene. This recombinant DNA could be used to produce CTLA4-Ig protein and studying its function in future studies.

Materials and Methods

Enzymes and chemicals

All chemicals and antibiotics were purchased from Sigma, Merck (Germany) and Invitrogen (France), unless stated otherwise. DNA-modifying enzymes and restriction enzymes were obtained from Fermentas.

Vectors, microorganisms and growth conditions

Escherichia coli DH5α (CinnaGen, Iran) as a host and pBudCE4.1 as an expression vector were used. IgG1 containing vector was provided kindly by Dr. Rabbani (Avicenna Research Institute, Iran). Escherichia coli (E. coli) were cultured in LB medium at appropriate temperature (37°C) with shaking (150 rpm).

PCR amplification and CTLA4-Ig fragment construction

Extracellular domain of ctl4 gene was amplified using specific primers (CTLA4-FOR/CTLA4-fuse) and pUCCTLA4 vector as template. For subsequent cloning of the PCR-derived fragments, SalI and BamHI restriction sites were added to the 5’-end of these primers, respectively (Table 1). pUCCTLA4-4 (synthetic construct) was used to amplify the ctl4 gene with pfu polymerase enzyme. PCR products were purified by High Pure PCR Product Purification Kit (Roche, Germany). The purified fragment was digested simultaneously with vector containing human igg1 gene using SalI/BamHI enzymes and then were ligated. E. coli DH5α cells were transformed using CaCl2 method. 9 Recombinant colonies were confirmed by PCR using...
Construction of CTLA4-Ig expression vector

Vector containing the ctl4-ig fragment digested by SalI/XbaI enzymes and subcloned into pBudCE4.1 SalI/XbaI cloning sites with the methods mentioned before. Recombinant colonies were confirmed by digestion with cloning enzymes and PCR pattern.

Sequence and computer analysis

Cloned DNA fragment in pBudCE4.1 (50-200 ng/μl) was sequenced by a Commercial Service (Bioneer, South Korea).

Results

cTLA-4 fragment was amplified using specific primers and pfu polymerase. A specific band about 483 bp showed the expected size (Figure 1). Extracellular domain of ctl4-4 gene was inserted into the SalI and BamHI pGEMIgG vector and designated as pGEMCTLA4-Ig. The new construct was confirmed by restriction pattern using SalI/BamHI and SalI/XbaI enzymes and PCR product pattern. According to the size of ctl4-4 gene external domain (483 bp) and igg1 gene (993 bp), the resulting fragment (1476 bp) confirmed the fusion of extracellular domain of ctl4-4 to human igg1 gene (Figure 2).

Table 1. Oligonucleotides (primers) used in present study (restriction sites were showed in bold)

| Primers | Sequence 5' to 3' | Orientation | 5' cloning site |
|---------|------------------|-------------|----------------|
| A) Primers used for amplification of ctl4-ig | | | |
| CTLA4-4 FOR | 5'-TTGTCGAAGCCACATCGGCTGCGT-3' | Sense | SalI |
| CTLA4-4 fuse | 5'-TGGATCCGTCAGAATCTGGGCA-3' | Anti-sense | BamHI |
| B) Universal primers | | | |
| T7f | 5'-GTAAAACGACGCTCAACTGATTTTTTT-3' | Sense | -- |
| pBudCE4.1r | 5'-CAGGAACAGCTATGACGATTTTTTT-3' | Anti-sense | -- |
| M13f | 5'-GTAAAACGACGGCCAGT-3' | Sense | -- |
| M13r | 5'-AAGCTATGACCATGAC-3' | Anti-sense | -- |

Figure 2. Confirmation of new construct with digestion pattern
A) 1: Digestion of vector containing igg1 gene with SalI/XbaI enzymes
2. Digestion of new construct with SalI/XbaI enzymes
B) 1: Digestion of new construct with SalI/BamHI enzymes.

Figure 3. pBudTJ1 schematic view.

To clone ctl4-ig fragment in pBudCE4.1 expression vector, pGEMCTLA4-Ig construct was digested and gel purified fragment was cloned into pBudCE4.1 vector. Construction of the expression vector was confirmed by restriction pattern analysis using SalI and XbaI. The cloned fragment was sequenced by T7f/pBudCE4.1r universal primers. DNA sequencing showed an open reading frame, 1476 bp in length, encoding a 492 amino acid polypeptide. The new construct designated pBudTJ1 is shown in figure 3.
Discussion

Co-stimulatory molecules play a critical role in controlling the immune response. The central role of CD28 family, especially the CTLA-4, makes it a useful tool for immunotherapy in autoimmune disease and transplant rejection.\textsuperscript{6,10}

Two approaches have been selected in respect to the potential clinical applications of CTLA-4 in immunotherapy, anti CTLA-4 antibody and CTLA4-Ig, respectively.\textsuperscript{7,11} CTLA4-Ig is a fusion protein containing the extracellular domain of CTLA-4 and the Fc portion of human IgG1. This protein is capable of preventing the stimulatory effect of CD28 through competing and binding to B-7s on APCs.\textsuperscript{12-14}

In this study, we have fused the extracellular domain of CTLA-4 to the Fc fragment of the human IgG1 antibody. The resulting construct was ligated to pBudCE4.1 expression vector and confirmed by sequencing. Analysis of the fusion sequence revealed an open reading frame encoding a protein of about 50 kDa without glycosylation (ExPASy). In subsequent study, this recombinant DNA can be used to produce CTLA4-Ig recombinant protein.

Acknowledgement

This work was supported by a grant from Shiraz University of Medical Sciences (grant number: 93-7146) and in part by Shiraz Institute for Cancer Research (grant number: ICR-100-506). This study was conducted as a requirement for the pharmacy student thesis defended by Tayebeh Jahangeerfam in Shiraz School of Pharmacy.

References

1. Zhu S, Liu S, Wan L, Yang G, Yang H, Cheng J, et al. Molecular cloning, expression and characterization of the functional domain of CTLA4 from the rhesus monkey, Macaca mulatta. Dev Comp Immunol 2011;35(7):736-744.
2. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166-182.
3. Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun 2013;13:5.
4. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001;19:565-594.
5. Chikuma S, Bluestone JA. CTLA-4 and tolerance: the biochemical point of view. Immunol Res 2003;28(3):241-253.
6. Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat immuno 2002;3(7):611-618.
7. Bluestone JA, St Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 2006;24(3):233-238.
8. Riehla LV, Liu T, Yang J, Chock S, Shimizu T, Mfarrej B, et al. Deleterious effect of CTLA4-Ig on a Treg-dependent transplant model. Am J Transplant 2012;12(4):846-855.
9. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. New York:Cold Spring Harbor Laboratory Press; 2001. P. 2100.
10. Silva MV, Machado JR, Rocha LP, Castellano LR, Reis MA, Corrêa RR. CD28 family and chronic rejection: "to belatacept...And beyond!". J Transplant 2012:2012:203780.
11. Thompson RH, Allison JP, Kwon ED. Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy for the treatment of prostate cancer. Urol Oncol 2006;24(5):442-447.
12. Ippoliti G, D’Armini AM, Lucioni M, Marjieh M, Viganò M. Introduction to the use of belatacept: a fusion protein for the prevention of posttransplant kidney rejection. Biologics 2012;6:355-362.
13. Chistiatkov DA, Turakulov RI. CTLA-4 and its role in autoimmune thyroid disease. J Mol Endocrinol 2003;31 (1):21-36.
14. Janeway Ch. Immunobiology Five: Garland Pub.; 2001.