Non-invasive monitoring of blood oxygenation in human placentas via concurrent diffuse optical spectroscopy and ultrasound imaging

Lin Wang1,2, Jeffrey M. Cochran1, Tiffany Ko1,2, Wesley B. Baker1,2, Kenneth Abramson1, Lian He1, David R. Busch1,2, Venki Kavuri1, Rebecca L. Linn4, Samuel Parry5, Arjun G. Yodh1 and Nadav Schwartz5

Direct assessment of blood oxygenation in the human placenta can provide information about placental function. However, the monitoring of placental oxygenation involves invasive sampling or imaging techniques that are poorly suited for bedside use. Here we show that placental oxygen haemodynamics can be non-invasively probed in real time and up to 4.2 cm below the body surface via concurrent frequency-domain diffuse optical spectroscopy and ultrasound imaging. We developed a multimodal instrument to facilitate the assessment of the properties of the anterior placenta by leveraging image-reconstruction algorithms that integrate ultrasound information about the morphology of tissue layers with optical information on haemodynamics. In a pilot investigation involving placentas with normal function (15 women) or abnormal function (9 women) from pregnancies in the third trimester, we found no significant differences in baseline haemoglobin properties, but statistically significant differences in the haemodynamic responses to maternal hyperoxia. Our findings suggest that the non-invasive monitoring of placental oxygenation may aid the early detection of placenta-related adverse pregnancy outcomes and maternal vascular malperfusion.

Abnormal placental development is widely accepted as the cause of common adverse pregnancy outcomes (APOs) such as hypertensive disorders, fetal growth restriction and stillbirth. Moreover, placental dysfunction has been associated with morbidities in offspring, including perinatal mortality and long-term neurodevelopmental and cardiovascular consequences. To better understand human placental dysfunction associated with these APOs, non-invasive methods that measure placental oxygen dynamics are needed. Ultrasound imaging is the primary clinical modality used for assessing pregnancy. Although ultrasound imaging can provide indirect information about flow resistance in large blood vessels, it is used primarily to derive morphological information. In fact, clinical ultrasound guidelines do not include direct functional assessment of the placenta.

Current knowledge about placental biology has been gleaned largely from ex vivo tissue and from animal research. Yet these models have limitations for the understanding of dynamical changes in placental pathophysiology during pregnancy. Similarly, the literature on placental oxygenation is derived largely from decades-old sheep studies and from scant human data using invasive sampling techniques that have yielded varying results. In addition, magnetic resonance imaging (MRI) approaches for assessing placental oxygenation are poorly suited for bedside monitoring and generally rely on indirect signals.

Here we report the development of an instrument and methodology based on diffuse optical spectroscopy (DOS) and ultrasound (US) that facilitate the measurement of oxygen haemodynamics in complex organs such as the placenta, which is buried far below the tissue surface amidst intervening layered tissues. DOS measures oxy-haemoglobin and deoxy-haemoglobin concentrations, and has been successfully employed for the assessment of tissue haemodynamics in clinical problems, such as breast cancer diagnosis and therapy monitoring, brain function and injury monitoring. In most of these applications, however, reflected light penetration is limited to less than 2 cm below the surface. The new instrument and algorithms that we report here provide improvements in methodology needed to measure the oxygen haemodynamics of the anterior placenta amidst intervening heterogeneous tissue layers. Our human clinical measurements probed placental tissue located as deep as 4.2 cm below the surface, albeit more typically in the 2.3–3.3 cm range. These improvements enable continuous data collection for functional studies of the placenta at the bedside and may create opportunities for the investigation of haemodynamics in other deep organs.

Continuous-wave diffuse optical spectroscopy (CW-DOS) has been explored for the non-invasive measurement of placental blood oxygenation, and some of this early research suggested that higher placental tissue oxygen at baseline can arise in patients with intrauterine growth restriction. Although encouraging, these early measurements had limitations. The instruments used comparatively short source-detector separations (~4 cm) on the tissue surface, which limited the penetration of light to ~2 cm. Furthermore, the analysis of CW data requires major assumptions about tissue homogeneity and tissue scattering that prevent the quantification of absolute oxy-haemoglobin and deoxy-haemoglobin concentrations and do not account for the layered morphology of
the abdomen. This early work also pointed to clear avenues for improvement. Our work benefits from a more accurate implementation of light-transport models, and from sophisticated frequency-domain and time-domain (FD-DOS, TD-DOS) optical instrumentation that permits the relaxation of assumptions about tissue scattering and homogeneity. Tissue-phantom experiments indicate signal-to-noise ratios (SNRs) sufficient to permit source-detector separations (SDSs) as large as 10 cm, which could enable light penetration of ~5 cm, thus improving on previous SDS records. Importantly, the optical instrument is integrated with ultrasound imaging in the same probe head. This multimodal FD-DOS/US combination facilitates the integration of anatomic ultrasound information about tissue-layer morphology with functional haemodynamic information about deep tissues from FD-DOS. The anatomic information enables tissue-specific and layered image reconstruction that separates the haemodynamic regions (left) and the corresponding three-layer model for optical-image reconstruction (right).

Results

FD-DOS instrumentation. To measure placental oxygen haemodynamics in vivo, we built a low-noise heterodyne instrument for frequency-domain diffuse optical spectroscopy (FD-DOS). Tissue-phantom experiments showed that the instrument has a sufficient dynamic range and SNR to perform accurate FD-DOS measurements at SDSs of 10 cm. In the clinic, these capabilities facilitated quantitative determination of $[\text{HbO}_2]$, [Hb] and $[\text{Hb}]_1$ concentrations as well as StO_2 of anterior placental tissue located as deep as 4.2 cm below the skin surface. Figure 1a shows key features of the custom heterodyne FD-DOS instrument (details in Methods). It employs three lasers with wavelengths of 785, 808 and 830 nm. The output of each laser is radiofrequency (RF) amplitude-modulated at $f_1 = 100$ MHz. A new technical feature of the instrument is its nearly 100% laser-modulation depth. To achieve this improvement, we divided the source driver signal into four sub-signals, amplified each sub-signal in multiple stages with low-noise linear amplifiers, and then recombined and impedance-matched the amplified sub-signals for input to the laser drivers. Each laser's RF driver power was individually optimized to achieve $>90\%$ light-modulation depth, thereby increasing the modulated diffuse-wave amplitude and decreasing the (unmodulated) background diffuse light. As a result, measurement SNRs were better than in previous work (specifically, by more than 20 dB for an SDS of 8 cm), enabling longer distance SDS measurements with low laser powers (~40 mW).

The optoelectronic components were fibre-coupled into a custom optical probe head, within which a commercial ultrasound
A custom probe was mounted. Optical source fibres in this probe offer 17 SDs for measurements ranging between 1 and 9 cm in humans (Fig. 1b). During measurements in the participants, 10 source-fibre locations were chosen to optimize coverage over the anatomic regions of interest for each woman, and we scanned sequentially through them. At the end of each cycle, a dark count measurement is made to correct for systemic noise. A high-transmission liquid light guide (detector fibre) with 5 mm in-core diameter collects and directs light to a photomultiplier tube (PMT) detector. The PMT electrical signal is mixed with another RF wave at $f_2 = 100.2$ MHz to generate heterodyne down-converted signals $(\Delta f = f_1 - f_2 = 0.2$ MHz). A high-sampling-rate lock-in amplifier captures amplitude and phase of the diffuse light waves.

Concurrent optical and ultrasound imaging. Custom integration of optics with a commercial ultrasound system (9L-D probe, Voluson E10, GE Healthcare) provides another substantial technical improvement over previous work\(^3\). The custom probe facilitates concurrent measurement of tissue layer morphology and tissue physiological properties. This concept has been employed in breast cancer research\(^1\), but much deeper light penetration is required for the placenta. The ultrasound transducer at the probe’s centre generates images (Fig. 1c) that we used to segment target tissue into distinct layers that constrain optical reconstruction algorithms.

Differently from previous placenta research\(^2\), we used tissue-layer morphology from ultrasound imaging to constrain the photon-diffusion tomographic inverse problem. In practice, we model the abdomen as three layers: adipose, rectus/uterus and placenta. We approximate each layer as homogeneous and employ the simplest analytical model for the measured data and the predictions of diffuse optical tissue models of increasing complexity.

Figure 2a outlines our three-step reconstruction procedure (details in Methods). Briefly, each step of the three-step reconstruction finds ‘best’ tissue properties by minimizing the differences between the measured data and the predictions of diffuse optical tissue absorption and scattering coefficients $(\lambda = 830$ nm). Step 1 assumes that the underlying tissue is semi-infinite and homogeneous, and employs the simplest analytical model for optical-property reconstruction. Step 2 uses solutions from Step 1 as initial guesses in a two-layer diffuse optical tissue reconstruction. Step 3 uses solutions from Step 2 as initial guesses in a three-layer diffuse optical tissue reconstruction. In all steps, layer thicknesses are fixed on the basis of ultrasound imaging, but other tissue properties are permitted to vary to determine the best physiological and optical property solutions for each layer. The 3-step reconstruction approach provides accurate determination of the optical haemoglobin properties for each layer while maintaining reasonable processing time. Moreover, the 3-step algorithm helps to prevent the fit-search from becoming trapped in local solution minima.

Importantly, the image reconstructions rely on the simultaneous fitting of data from all SDs and all wavelengths. This multispectral multSDS approach builds global constraints directly into the inverse problem and is critical for robust fitting\(^4\). To avoid reconstruction overfitting, Tikhonov regularization is employed to reduce ill-posedness (fitting and regularization procedures are detailed in Methods).

Validation and characterization with tissue-simulating phantoms. We first characterized the performance of the FD-DOS instrument and its SNR by using homogeneous liquid phantoms composed of ink and 20% Intralipid (Baxter) (Fig. 2b); the phantom’s optical properties are known on the basis of ink concentration (for absorption) and Intralipid concentration (for scattering)\(^4\).
In the first study, fittings based on semi-infinite homogeneous solutions of the diffusion equation were employed to reconstruct the phantom's optical properties (that is, the absorption coefficient μ_a (cm$^{-1}$) and the reduced scattering coefficient μ_s' (cm$^{-1}$))13. The data show good SNR at SDSs up to 10 cm (Fig. 2b), wherein the mean signal intensity was 28 times greater than the standard deviation of the measured intensity. The reconstructed optical properties at each wavelength had accuracies of 3%–9%.

In two-layer phantom experiments, a solid phantom with fixed optical properties was positioned inside a liquid phantom and the optical probe (Fig. 1b) was placed on the liquid surface (Fig. 2c). The optical properties of the liquid phantom are known on the basis of ink and Intralipid concentrations. The optical properties of the solid phantom were provided by the phantom manufacturer (INO). An absorption-titration experiment evaluated the instrument's sensitivity to the absorption coefficient, holding the overlay liquid phantom thickness (3 cm) constant while incrementally increasing the absorption coefficient of the top layer. A depth-changing experiment tested the sensitivity to superficial-layer thickness; here, the liquid phantom had fixed optical properties and the superficial-layer thickness was increased from 1.5 cm to 3.0 cm. A two-layer phantom experiment verified the instrument's ability to extract deep-layer optical properties for a superficial-layer thickness of 4.3 cm. Each measurement was repeated three times; the resultant means and standard deviations are reported in Supplementary Table 1. These experimental results from tissue-simulating phantoms show that the instrument and algorithms extract deep-layer optical properties accurately, with errors of <10% in absorption and <15% in scattering. Semi-infinite fitting also produces an estimate of the optical properties, but as a weighted average of both layers and with a stronger weighting of superficial layers.

Validation with finite-element simulations. We generated simulated experimental data using a finite-element simulation tool (TOAST)42 that facilitated the creation of a three-layer model with segmented optical properties based on the layer morphology extracted from a participant's ultrasound image (Fig. 1c). Since the participant's layer interfaces are curved, we generated test data extracted from a participant's ultrasound image (Fig. 1c). The optical properties of the solid phantom were provided by the phantom manufacturer (INO). An absorption-titration experiment evaluated the instrument's sensitivity to the absorption coefficient, holding the overlay liquid phantom thickness (3 cm) constant while incrementally increasing the absorption coefficient of the top layer. A depth-changing experiment tested the sensitivity to superficial-layer thickness; here, the liquid phantom had fixed optical properties and the superficial-layer thickness was increased from 1.5 cm to 3.0 cm. A two-layer phantom experiment verified the instrument's ability to extract deep-layer optical properties for a superficial-layer thickness of 4.3 cm. Each measurement was repeated three times; the resultant means and standard deviations are reported in Supplementary Table 1. These experimental results from tissue-simulating phantoms show that the instrument and algorithms extract deep-layer optical properties accurately, with errors of <10% in absorption and <15% in scattering. Semi-infinite fitting also produces an estimate of the optical properties, but as a weighted average of both layers and with a stronger weighting of superficial layers.

Placental oxygen dynamics in vivo. We performed a pilot clinical study of human placental oxygen-related haemodynamic properties (study design is detailed in Methods). The study enrolled women with singleton pregnancies in their third trimester and with anterior placentas. The central region of the placenta was targeted for monitoring. Adipose, rectus/uterus and placenta layers were characterized by ultrasound and FD-DOS.

Four experiments were conducted: (1) a reproducibility experiment ($n = 18$); (2) a stability experiment ($n = 24$); (3) a maternal left tilt experiment ($n = 5$); and (4) a maternal hyperoxia experiment ($n = 24$). The women in the hyperoxia study had a median (inter-quartile range (IQR)) gestational age of 34.5 (32.9, 35.4) weeks and pre-gravid BMI (body mass index) of 27.7 (24.6, 30.2). The median (IQR) depth of the anterior placentas was 2.7 (2.3, 3.3) cm beneath the skin surface and the nulliparity of the participants was 29.2%. Women in the maternal tilt study had gestational age of 37.0 (35.1, 37.3) weeks and pre-gravid BMI of 30.4 (29.2, 31.7); the median (IQR) depth of these anterior placentas was 2.3 (1.9, 2.4) cm beneath the skin surface.

Reproducibility was assessed by calculating the intra-class correlation coefficient (ICC) for 3 repeated measurements at the same placental location in 18 participants. Placental StO_2, [HbT] and $\text{[HbO}_2\text{]}$ were highly repeatable within participants (ICC ≥ 0.9).

Stability was assessed from the standard deviation (s.d.) of data derived during a continuous 10-frame (3.5 min) baseline measurement at the same location on each participant. This single-participant study was then averaged over all 24 participants to derive a mean measurement s.d., which served as our stability criterion. The resulting mean values of s.d. for placental StO_2, [HbT] and $\text{[HbO}_2\text{]}$ were small (2.2%, 0.9 μM and 0.8 μM, respectively). Optically derived haemodynamic properties were stable at baseline (Fig. 3a), and 88% of the 24 stability measurements had s.d. for placental StO_2, [HbT] and $\text{[HbO}_2\text{]}$ of less than 3%, 2.0 μM and 1.5 μM, respectively (Fig. 3b).

The maternal left tilt experiment is sensitive to positional changes in cardiac output and uteroplacental perfusion, which can lead to an increase in maternal cardiac output of up to 20% (ref. 43). We measured placental haemoglobin properties of 3 participants in the supine position and then had them tilt to the left lateral position without removing the probe. The averaged relative increases in StO_2, [HbT] and $\text{[HbO}_2\text{]}$ were 2.4%, 8.4% and 10.9%, respectively. Mean values of StO_2, [HbT] and $\text{[HbO}_2\text{]}$ for each participant before and after the maternal tilt are shown in Fig. 3c. Although the number of participants is small, we observed a trend; [HbT] and $\text{[HbO}_2\text{]}$ increased in the lateral position ($P = 0.05$ and $P = 0.02$, respectively, two-sided paired-sample t-test), suggestive of an accompanying increase in placental perfusion with oxygenated maternal blood.

Finally, we measured placental haemodynamic responses to maternal hyperoxia. The participants were given 100% FiO$_2$ via a facemask for 20 frames (~7 min). We monitored haemoglobin concentrations continuously before, during and after maternal hyperoxia. Figure 4a,b present a case example of variations in StO_2 and $\text{[HbO}_2\text{]}$. Overall ($n = 24$), the method easily resolved changes in placental blood oxygenation owing to maternal hyperoxia. StO_2 and $\text{[HbO}_2\text{]}$ were found to increase by a median (IQR) of 7.1 (4.9, 9.3)% and 1.9 (1.1, 3.3) μM, respectively.

Optical biomarkers of placental dysfunction. Another goal of the maternal-hyperoxia study was to examine associations
between placental oxygen dynamics and both APO and MVM. To this end, APO was defined as a composite of gestational hypertension (GHTN), preeclampsia or intrauterine growth restriction (IUGR), and MVM was determined from the examination of delivered placentas by a single placental pathologist (R.L.L.). None of the participants had clinical evidence of GHTN, preeclampsia or IUGR at the time of their ultrasound/FD-DOS measurement, and the mean time interval from optical measurement to delivery was 3.1 (2.1, 5.4) weeks. APO was found in 9 of the 24 participants; MVM was found in 8 of the 24 participants. Two of the 15 participants with normal pregnancy outcomes (NPOs) had MVM, and 3 of the 9 participants with APO had a normal placental pathology assessment (NPP).

We determined the absolute values of StO₂, [HbT] and [HbO₂], as well as their variation relative to baseline during maternal hyperoxia; that is, rStO₂, rHbT and rHbO₂. Relative data were obtained by normalizing their time-series values to the mean of the last four frames of the baseline period.

The 24 participants were categorized into two groups, according to their pregnancy outcomes: NPO or APO. Both rStO₂ and rHbO₂ increased substantially in response to maternal hyperoxia for the NPO group (Fig. 4c). However, the same parameters in participants with APO showed a more blunted response (Fig. 4d).

As for the participants’ placental histopathology, the same 24 participants were categorized into two groups: NPP or MVM. We observed significant, large and positive rStO₂ and rHbO₂ in the NPP group (Fig. 4e). These same parameters, however, showed a blunted response in the MVM group (Fig. 4f). rHbT was comparatively constant for all groups.

We next sought to quantitatively determine whether placental haemoglobin properties were significantly associated with APO. For this analysis, mean baseline StO₂, [HbT] and [HbO₂] were calculated using the final 4 frames of the baseline period. Hyperoxia-induced changes from baseline (that is, ΔStO₂, ΔHbT and ΔHbO₂) were defined using mean values in the 4-frame window wherein maximum StO₂ occurred. Baseline StO₂, [HbT] and [HbO₂] were not
associated with APO (Fig. 5a and Table 1). On the other hand, \(\Delta \text{HbO}_2 \) and \(\Delta \text{StO}_2 \) were significantly reduced in cases with APO compared with NPO (Fig. 5b and Table 1).

Similarly, we determined whether placental haemoglobin properties were significantly associated with MVM. Baseline \(\text{StO}_2 \), [HbT] and [HbO2] were not associated with MVM (Fig. 6a and Table 1). \(\Delta \text{HbO}_2 \) and \(\Delta \text{StO}_2 \) were significantly reduced in cases with MVM compared with NPP (Fig. 6b and Table 1).

As an additional check, we carried out the same univariate analysis with standard parameters such as maternal age, nulliparity, gestational age (GA) at study visit, maternal BMI, placental depth (d) and uterine-artery Doppler pulsatility index (UtA PI), the latter having been proposed as a surrogate indicator of trophoblastic invasion. We did not find any significant association between APO and/or MVM and either maternal age, nulliparity, GA at study visit or UtA PI (Table 2). However, we did observe a slight trend (not significant) towards larger d and BMI in participants with APO (P = 0.1, P = 0.1, respectively, two-sided Wilcoxon rank-sum test). Although our sample size is small and these variables are not necessarily uncorrelated, for completeness we ran binary logistic regressions with pairs of variables: d, \(\Delta \text{StO}_2 \); d, \(\Delta \text{HbO}_2 \); BMI, \(\Delta \text{StO}_2 \); and BMI, \(\Delta \text{HbO}_2 \). The results confirmed that a trend towards significant association between optically derived haemodynamic properties and outcomes of interest remained (Supplementary Table 4).

Lastly, our methodology permitted the study of adipose and rectus/uterus layers at baseline and during maternal hyperoxia (Supplementary Tables 3 and 5). The resultant adipose and rectus/uterus layer haemodynamic properties typically differed from those of the placenta. We did not find any statistically significant association of any overlayer haemodynamic property with APO or MVM (Supplementary Table 5). Collectively, these data suggest that without multilayer modelling, the computed placenta responses would have been attenuated; that is, the deep-tissue signal would have then been a weighted average of the placenta, rectus/uterus and adipose layers.

Discussion

Direct and non-invasive clinical methods to assess placental function in vivo and at the bedside would be desirable. The depth of the placenta below the skin surface and the variability in the properties of the overlying layers present substantial challenges for optical diagnostics. In this study, we report the development and performance of an instrument and methodology that substantially expand the capabilities of DOS to enable bedside dynamic monitoring of
the placenta and potentially of other organs buried far below the tissue surface.

Tissue-simulating phantom experiments showed that the instrument has sufficient dynamic range and SNR to perform measurements at long-distance SDSs (up to 10 cm), thereby suggesting that deep placental layers can be optically interrogated in the clinic. Moreover, by coupling FD-DOS instrumentation with ultrasound imaging, we directly mapped the morphology of overlying layers of the abdominal wall and uterus. This mapping permits multilayer modelling of tissue properties that effectively isolates the placenta’s optical and physiological properties. We validated the methodology using tissue phantoms and finite-element simulations, and carried out a pilot study of third-trimester pregnancies.

Placental \(\text{S}02 \), \([\text{HbT}]\) and \([\text{HbO}2]\) were non-invasively measured at the bedside, differentiating placenta from tissue overlayers. We also showed the repeatability and stability of the optical metrics. The baseline placenta properties between the normal and abnormal pregnancies were statistically similar. This finding agrees with a previous CW study27 but is different from observations of higher placental oxygenation level in IUGR participants from two early CW studies26,28 and from observations of lower placental oxygen level in women with pregnancy complications from a recent CW study45. Regarding study comparisons, it should be noted that, besides important differences in technical approach (such as layer averaging, light penetration, participant BMI and other assumptions), the adverse outcomes in our study were generally not as

Fig. 5 | Static (baseline) and dynamic (during maternal hyperoxia) placental haemoglobin properties for participants with NPO or APO. **a**, Baseline placental \(\text{S}02 \), \([\text{HbT}]\) and \([\text{HbO}2]\) illustrate that they are not associated with pregnancy outcome. The data show no significant differences between NPO and APO. \(P \) values are 0.37, 0.51 and 0.63, respectively. **b**, Placental \(\Delta \text{S}02 \), \(\Delta \text{HbT} \) and \(\Delta \text{HbO}2 \) during maternal hyperoxia. \(\Delta \text{S}02 \), \(\Delta \text{HbT} \) and \(\Delta \text{HbO}2 \) exhibit trending separation, no difference and clear separation, respectively, among participants with NPO versus APO. The \(P \) values are 0.03, 0.63 and 0.02, respectively. In the boxplots, the red centre line denotes the median value and the blue box shows the IQR (25% to 75% of dataset). The blue whiskers mark the non-outlier minimum and non-outlier maximum; outliers are marked with a ‘+’ symbol. Values of the median and IQR are presented in Table 1. \(P \) values were calculated via a two-sided Wilcoxon rank-sum test.

Table 1 | Correlations of haemodynamic variables with placental dysfunction

	\(\text{S}02(\%) \)	[\(\text{HbT} \)](\(\mu M \))	[\(\text{HbO}2 \)](\(\mu M \))	\(\Delta \text{S}02(\%) \)	\(\Delta \text{HbT}(\mu M) \)	\(\Delta \text{HbO}2(\mu M) \)
Between placental static and dynamic haemoglobin properties and APO						
NPO (n=15)	69.5 (67.6, 73.4)	26.6 (22.5, 39.1)	19.9 (15.6, 28.6)	7.6 (5.6, 10.2)	0.0 (−0.8, 1.1)	2.6 (1.8, 4.4)
APO (n=9)	75.9 (68.5, 77.3)	29.2 (15.4, 36.6)	23.2 (9.3, 26.0)	4.9 (3.9, 7.1)	−0.1 (−0.9, 0.5)	1.3 (0.8, 1.8)
\(P \) value	0.37	0.51	0.63	0.03	0.63	0.02
Between placental static and dynamic haemoglobin properties and MVM						
NPP (n=16)	69.5 (67.9, 75.2)	27.9 (23.6, 35.0)	20.8 (15.8, 24.7)	7.6 (5.7, 10.1)	0.2 (−0.8, 1.7)	2.8 (1.5, 4.1)
MVM (n=8)	73.5 (65.1, 76.5)	27.7 (14.8, 39.3)	19.3 (9.0, 30.1)	5.2 (3.7, 7.1)	−0.1 (−1.7, 0.2)	1.1 (0.7, 1.8)
\(P \) value	0.83	0.69	0.69	0.05	0.15	0.01

For all correlations, the total number of participants is 24. The parameters are summarized as median (with IQR in brackets) within each group. The \(P \) values were obtained using a two-sided Wilcoxon rank-sum test.
Moreover, we made assessments weeks before clinical disease and delivery. Hence, although studies with larger sample size are clearly warranted, the similar baseline placenta-tissue oxygen levels that we observed are not at odds with physiological expectations, even in the presence of underlying pathology.

Since gold-standard references for placental tissue haemoglobin values do not exist, we used functional perturbations to show sensitivity to expected physiologic changes. Maternal left lateral tilt positioning relieves caval compression and augments venous return to the heart, improving cardiac output. In pregnancy, ~20% of maternal cardiac output is directed to uteroplacental perfusion. Thus, this manoeuvre generally increases blood flow to the placenta. In fact, this position is used clinically as a fetal resuscitation manoeuvre during labour to maximize placental perfusion.

Despite the limited sample size (n = 3), the FD-DOS/US device detected an increase for both [HbT] and [HbO2], consistent with the expected increased maternal blood flow into the intervillous vascular spaces of the placenta.

More importantly, the maternal-hyperoxia experiments showed that the method can detect real-time changes in placental [HbO2] and StO2 owing to the inflow of oxygen-enriched maternal blood into the placenta, whereas [HbT] remained comparably stable.

Thus, this manoeuvre generally increases blood flow to the placenta. In fact, this position is used clinically as a fetal resuscitation manoeuvre during labour to maximize placental perfusion. Despite the limited sample size (n = 3), the FD-DOS/US device detected an increase for both [HbT] and [HbO2], consistent with the expected increased maternal blood flow into the intervillous vascular spaces of the placenta.

More importantly, the maternal-hyperoxia experiments showed that the method can detect real-time changes in placental [HbO2] and StO2 owing to the inflow of oxygen-enriched maternal blood into the placenta, whereas [HbT] remained comparably stable.

These perturbation experiments validated our clinical expectations...
and confirmed the sensitivity of the optical measures to underlying uteroplacental haemodynamics. They are also consistent with MRI findings; for example, this effect was demonstrated in normal fetuses and in those with congenital heart disease, and a similar delayed response in abnormal versus normal placentas in twin pregnancies was observed with hyperoxic BOLD (blood oxygenation leveldependent) MRI, again consistent with our observations.

We also studied how optical metrics obtained during maternal hyperoxia correlate with pregnancy outcome and placental pathology. APOs are significantly associated with both short-term and long-term morbidity and mortality. Similarly, MVM are associated with both APOs and long-term adverse outcomes, with prevalence estimates as high as 32% in term births and over 50% in preterm births. Our pilot study indicates that the non-invasive optical monitoring of placental responses to maternal hyperoxia is feasible and that it holds potential as a methodology to detect signs of poor placental perfusion weeks before delivery.

The adipose and rectus/uterus layer haemoglobin properties of healthy participants during baseline and during maternal hyperoxia were not significantly different from those of participants with APO or MVM (Supplementary Table 5). These null results for the overlayers are not necessarily surprising from a physiological perspective. For example, since MVM presents a recognizable pattern of placental injury related to altered uterine and intervillous blood flow, we would not expect a significant association between adipose haemoglobin properties and MVM. However, we noticed that a few overlayer parameters exhibited trending associations (P values as small as 0.06 for the rectus/uterus layer ΔStO2 and APO, two-sided Wilcoxon rank-sum test); this observation should encourage further study in a larger sample size; that is, one might hypothesize that subclinical vascular dysfunction may predispose to poor placenta- tion or be an indicator of placental dysfunction.

The need for new tools to assess placental function is well-known to clinicians. Critical knowledge gaps exist in obstetrical care as a result. For this reason, some investigators have turned to MRI to derive functional parameters related to placental oxygenation. MRI does not have the same issues of depth penetration that limit optics, and specialized MRI techniques such as T2* BOLD and magnetic resonance susceptibility are correlated with oxygen content. However, these correlations with oxygen have limitations, and MRI is not suitable for bedside measurements. DOS, by contrast, can directly measure deoxy-haemoglobin and oxy-haemoglobin concentrations at the bedside and non-invasively during clinical care. Here we have described a unique instrument that permits quantitative dynamic monitoring of the human placenta at the bedside, and the associations that we have found with APO and MVM support its continued development. However, our work thus far has some limitations: we have so far probed only anterior placentas within ~4 cm of the surface, and the placenta optical signals are due to a combination of maternal and fetal blood. Although the methodology holds clinical promise, a clinical study with larger sample sizes is desirable to corroborate the findings, and to enable more sophisticated statistical analyses that explore possible confounding variables and generate composite metrics with improved specificity and sensitivity.

The technology will need to be refined. With improved spatial information from ultrasound, such as 3D imaging, we may be able to improve on the uniform slab-layer tissue model and derive optical properties with greater fidelity. With improved time resolution, the temporal responses to functional activation could be explored as a test variable. Additionally, an improved time resolution would increase the sensitivity to changing conditions and would facilitate the efficient evaluation of multiple placental sites; the latter is especially important given the potential spatial heterogeneity of pathology within the placenta. Exploration of placental oxygenation at earlier gestational ages, although challenging, could lead to the identification of early signs of placental insufficiency, and comparisons of uterine and placental responses during hyperoxia could improve our understanding of maternal and fetal oxygen consumption. Real-time optical monitoring feedback could alert clinicians to suspicious data owing to contraction or movement and thus improve data-acquisition quality. Currently, it takes ~90 min to determine the regularization hyperparameters; three-layer reconstruction of each frame data takes ~90 s on our 3.2 GHz quad-core computer. These times can be reduced to ~12 min and ~12 s, respectively, with a 3.5 GHz 32-core workstation. Looking forward, with machine learning and information from large datasets, we believe that the regularization hyperparameter could be determined in ~1 min at the beginning of the measurement and thereby facilitate real-time layer model reconstructions. Moreover, the instrumentation and methodology that we have reported here are potentially suited for in vivo studies of oxygen function in other internal organs buried deep below the tissue surface, such as the uterus and the kidney.

Methods

FD-DOS instrumentation. The details of the construction and operation of the custom heterodyne FD-DOS instrument are schematically shown in Extended Data Fig. 1. Briefly, the CO2 modulated sinusoidal electromagnetic waves (f0 = 100MHz), that is, one for each laser diode and one sinusoidal wave at frequency (f1 = 100.2MHz), were generated from four low-noise, fractional-N phase-locked loop signal generators (HMC833, Hittite Microwave). The waves were synchronized by an ultra-low-jitter programmable reference clock (f0 = 50MHz, LM661E12, Texas Instruments). Each f1 wave from the signal generator was amplified (ZX60-P103LN+, Mini-Circuits), filtered (DC to 98MHz, SLP-100+, Mini-Circuits) and divided (2-way splitter, Z996C-62-S+, Mini-Circuits) into two f1 waves; one was prepared for the reference signal (reference f1) and the other was prepared for driving amplitude modulation for one laser (signal f1). Simultaneously, the f1 wave from the signal generator was also amplified, filtered and divided (4-way splitter, ZB4PD-52-20W-S+, Mini-Circuits) into four f1 waves; three of these were prepared for frequency-mixing with the three detected signals (signal f1) and the other was prepared for frequency-mixing with the reference signal (reference f1).

The three of ‘signal f1’ were further amplified and input into laser controllers (CLD7101LP, Thorlabs), which drive the light amplitude modulation of the three near-infrared lasers with wavelengths of 785 nm (LP785-SF1000, Thorlabs), 808 nm (LDPC-TC-808-625-125-M-35-3-3.5-70-150LD, OZ Optics) and 830 nm (LDPC-TC-830-625-125-M-35-3-3.5-70-150LD, OZ Optics). The laser controllers also maintain thermal stability using digital proportional-integral-derivative control. To enhance SNR, the achievement of a modulation depth or amplitude modulation index that is, the ratio of the modulation excursion of the RF signal to the level of unmodulated carrier, of greater than 90% for each laser is critically important. Achievement of these large modulation depths required individually optimized RF amplification according to each laser’s characteristics. Each laser has a specific threshold current, maximum current and optical power efficiency (mW mA−1). To minimize unmodulated background light and maximize SNR, each laser has a unique RF driver that drives its amplitude with modulation depth >90% (93% for 785 nm laser, 95% for 808 nm laser, and 98% for 830 nm laser). Specifically, each ‘signal f1’ wave was divided into four sub-signals via a 4-way power splitter. Each sub-signal was then amplified in one or two amplification stages (in each stage, the signal was amplified by ~8.6dB); the 830 nm channel had 2 amplification stages and the 785 and 805 nm channels had 1 amplification stage. The sub-signals were then combined via a 4-way power splitter. A custom-built circuit containing a low-noise amplifier (ZX60-P103LN+, Mini-Circuits) and low-pass filter (DC to 98 MHz, SLP 100+, Mini-Circuits) was used in each amplification stage.

The three amplitude-modulated laser diodes were fibre-coupled to an optical switch (MEMS 91545CA, Dicon), which was in turn connected to the 10 source fibres (400µm core, 0.5 NA,FP400URT-Custom, Thorlabs) on the probe head (see main text Fig. 1(b)). The optical switch sequentially cycled each laser diode through each source position and also a ‘dark count position’ (that is, a cycle of 3 s × 33 sequential measurements; 21 s per cycle). Of note, for the dark count measurement, no fibre was connected to the 11th position on the switch (that is, no light was delivered to the tissue).

Multiply scattered light emerging from the tissue at the detector position was collected by a high-transmission liquid light guide (5 mm core, 0.59 NA, LLG5-8F, Thorlabs) that was coupled to a high-sensitivity photomultiplier (PMT) detector (R12823, Hamamatsu). The PMT converts the diffuse light into a sum of electrical voltages, which is then amplified, and filtered by a high-speed current amplifier (DHPCA-100, FEMTO) and finally frequency-mixed (ZP-3-S+, Mini-Circuits) with one ‘signal f1’. Mixing produces
a heterodyne down-converted light signal, related to the diffusive light wave (that is, its amplitude and phase are proportional to those of the diffusive light wave) at frequency $\Delta f = f_1 - f_2 = 0.2$ MHz. This lower-frequency signal, which can be very accurately quantified, is the heterodyne detected signal.\(^{2,3}\) Simultaneously, a reference signal with the fixed frequency Δf, amplitude (A) and phase (ϕ) is generated by mixing the ‘reference’ f' and ‘reference’ f''.\(^{2,3}\)

A high-sampling-rate lock-in amplifier (MFLI 500 kHz, Zurich Instruments) compares reference and detected signals to derive the amplitude (A) and phase (ϕ) of the diffuse light wave (that is, the lock-in output in-phase $(I = I_{\text{A}} + I_{\text{C}})$ and quadrature $(Q = Q_{\text{A}} + Q_{\text{C}})$ signals, from which A and ϕ are calculated). Note that a 3-to-1 RF switch (G4F-520120, Charter Engineering) was employed to pair the correct reference signal with the corresponding detected wavelength. Note also that before computing A and ϕ, the Q and I for each wavelength at every source position were subtracted by the corresponding Q_{A} and I_{A} obtained from the dark count position in the same cycle. In summary, we collected diffuse light waves from 10 source-detector pairs with SDSs ranging from −1 to −9 cm in the human probe (and up to 10 cm in the tissue–phantom experiment); these data enable the depth-dependent optical determination of tissue properties.

Three-layer photon-diffusion model and Green’s function. The human abdomen is multilayered. We model it as a three-layer medium, wherein each layer is assumed homogeneous and laterally infinite in extent. The experimental geometry is described using cylindrical coordinates in the main text Fig. 1c; the depth is denoted by (cm) and the SDS is denoted by (cm). Both source and detector are positioned on the surface. In the diffuse light medium, sources on the tissue boundary are well-modelled as an isotropic point source in the medium at depth of $z_b = h_t$ (cm), which depends on tissue optical properties and is defined below. The diffusion equations (in the frequency-domain) for the spatially dependent amplitude of the diffuse waves in each of the three-layer medium are\(^{10,11,12}\):

\[
\nabla^2 U_1 (p, z) = - \left(\frac{\kappa_{\text{MS}}}{D_1} + \frac{\kappa_s}{v_1 D_1} \right) U_1 (p, z) - \frac{a_1}{v_1 D_1} \delta (p - \rho_{s, z} - z_b) ; \quad 0 \leq z < d_1; \quad (1-1)
\]

\[
\nabla^2 U_2 (p, z) = - \left(\frac{\kappa_{\text{MS}}}{D_2} + \frac{\kappa_f}{v_1 D_1} \right) U_2 (p, z) = 0; \quad d_1 \leq z < d_1 + d_2; \quad (1-2)
\]

\[
\nabla^2 U_3 (p, z) = - \left(\frac{\kappa_{\text{MS}}}{D_3} + \frac{\kappa_f}{v_1 D_1} \right) U_3 (p, z) = 0; \quad d_1 + d_2 \leq z; \quad (1-3)
\]

Here, the diffuse wave, $\Phi_{\text{MS}} (p, z, t) = U_1 (p, z) e^{i \omega t}$, is a complex representation of photon fluence rate within layer $k = 1, 2, 3$. $\Phi (W)$ is the time averaged power emitted by the light source, $f_l (Hz)$ and M (dimensionless) are the frequency ($f_l = 100 MHz$) and modulation depth of the source, respectively. The source is point-like and located at $(\rho_{s, z_1}, d_1, c_m)$ and ρ_{s, z_1} is the layer thickness, layer k light absorption coefficient and layer k is the scattered coefficient, respectively. $D_k = (1/3) h_t$ (cm) is the photon transport mean-free path and the diffusion coefficient of layer k, respectively. $v_1 = c_1 (cm^{-1})$ is the light velocity in layer k, where c (cm s$^{-1}$) is the speed of light in vacuum and n_1 is the refractive index of layer k. The boundary conditions for the photon fluence rate and its normal derivative across the interfaces are well-known and are used to derive solutions.\(^{16}\)

Assuming large SDS, the equations can be solved using a Fourier-transform approach and extrapolated-zero boundary conditions. The analytical Green’s function for the three-layer diffusion equation in the $z=0$ plane is\(^{10,11,12,15}\):

\[
G_{\text{MS}} ([p, z = 0], [p_1, \rho_{o, z} = z_b]) = \frac{1}{2\pi} \int_0^{\infty} \tilde{G}_{\text{MS}} (s) s f_b (s) \, ds; \quad (2-1)
\]

\[
\tilde{G}_{\text{MS}} (s) = \frac{Z_{\text{MS}} (s)}{Y_{\text{MS}} (s)} / \alpha_1 D_1; \quad (2-2)
\]

\[
Z_{\text{MS}} (s) = N_{\text{MS}} M_{\text{MS}} \exp (-a_1 d_1 + a_1 d_2 + a_1 z_b); \quad (2-3)
\]

\[
N_{\text{MS}} = \frac{\kappa_{\text{MS}}}{D_1} - \frac{\kappa_f}{v_1 D_1} + \frac{a_1}{v_1 D_1} \delta (p - \rho_{s, z} - z_b) \quad (2-4)
\]

\[
M_{\text{MS}} = \frac{\kappa_f}{v_1 D_1} + \frac{a_1}{v_1 D_1} \delta (p - \rho_{s, z} - z_b) \quad (2-5)
\]

Here, I_j is the Bessel function of the first kind and zero-order. $z_b = h_t (1 + R_{\text{MTF}} - R_{\text{MTF}})$ (cm) is the extrapolation length, where R_{MTF} is related to the indices of refraction of the media.\(^{16}\) In practice, we solve the integral in equation (2-1) numerically by applying Gauss-Laguerre quadrature of 5,000 points. Note that to minimize numerical errors, the hyperbolic functions are expanded and simplified.

Note that the analytical Green’s function for the two-layer diffusion equation in the $z=0$ plane can be derived from a special case of the three-layer model, where $\rho_{s, z_b} = \rho_{s, z_b} + \rho_{s, z_b} = \rho_{s, z_b} + \rho_{s, z_b}$.\(^{12,15,16}\)

\[
G_{\text{MS}} ([p, z = 0], [p_1, \rho_{o, z} = z_b]) = \frac{1}{2\pi} \int_0^{\infty} \tilde{G}_{\text{MS}} (s) s f_b (s) \, ds; \quad (3-1)
\]

\[
\tilde{G}_{\text{MS}} (s) = \frac{Z_{\text{MS}} (s)}{Y_{\text{MS}} (s)} / \alpha_1; \quad (3-2)
\]

\[
Z_{\text{MS}} (s) = \exp (-a_1 z_b) - \exp (-a_1 z_b - 2a_2 z_b) + \beta \cdot \exp (a_1 z_b - 2a_2 z_b) \quad (3-3)
\]

\[
Y_{\text{MS}} (s) = z_{b, c} + \frac{\beta_1}{\beta_2} \exp (-2a_2 z_b) \quad (3-4)
\]

\[
\beta = \frac{\alpha_1 D_1}{\alpha_1 D_1 + (n_1^2/n_2^2) \alpha_2 D_2}; \quad (3-5)
\]

The photon fluence rate measured on the tissue surface is essentially the Green’s function multiplied by the constant amplitude of the source MS. The detected signal intensity is directly proportional to this photon fluence rate:

\[
U_1 ([p, z = 0], [p_1, \rho_{o, z} = z_b]) = MS \cdot G ([p, z = 0], [p_1, \rho_{o, z} = z_b]); \quad (4-1)
\]

\[
I_n (p) = KU_1 ([p, z = 0], [p_1, \rho_{o, z} = z_b]); \quad (4-2)
\]

\[
A_n (p) = |I_n (p)|; \quad (4-3)
\]

Global optimization with multiple spectral/SDS channels. In practice, the two-layer or three-layer optical properties based on the photon-diffusion model were reconstructed by solving a global optimization problem. Specifically, we carried out the data inversion using all source-detector pairs and wavelengths simultaneously. This approach builds-in global constraints about chromophore absorption and layer geometry into the inverse problem and is critical for robust fitting. Note that the accuracy of our determination of [Hb] and [Hbo]δ concentration (and thus S_{O_2} of [Hb]δ) is superior to that based on independent determination of absorption and scattering coefficients as a function of wavelength. This is because the use of the known chromophore extinction coefficients, the Mie power-law model for scattering, and the full collection of

\[
Y_{\text{MS}} (s) = M_{\text{MS}} Z_{\text{MS}} \exp (-a_1 d_1 + a_1 d_2 + a_1 z_b) + N_{\text{MS}} M_{\text{MS}} \exp (-a_1 d_1 + a_1 d_2 + a_1 z_b) + N_{\text{MS}} M_{\text{MS}} \exp (-a_1 d_1 + a_1 d_2 + a_1 z_b) + M_{\text{MS}} N_{\text{MS}} \exp (-a_1 d_1 + a_1 d_2 + a_1 z_b) + N_{\text{MS}} M_{\text{MS}} \exp (-a_1 d_1 + a_1 d_2 + a_1 z_b) + M_{\text{MS}} N_{\text{MS}} \exp (-a_1 d_1 + a_1 d_2 + a_1 z_b) \quad (2-4)
\]
multispectral and multi-SDS data to fit to all wavelengths and SDSs simultaneously, effectively constrains the reconstruction problem\(^6\).

The multispectral fitting assumed that \(\mu_s(\lambda)\), the absorption coefficient at layer \(k\) at wavelength \(\lambda (J = 1, 2, 3, \lambda_j = 785, 808, 830\text{ nm})\), is due to the absorption of \([\text{HbO}_2]_k\), \([\text{Hb}]/_k\), and \([\text{lipid}]_k\).

\[
\mu_s(\lambda) = \varepsilon_{\text{HbO}_2}(\lambda) [\text{HbO}_2]_k + \varepsilon_{\text{Hb}}(\lambda) [\text{Hb}]_k + \varepsilon_{\text{lipid}}(\lambda) [\text{lipid}]_k .
\]

(5)

In equation (5), \(\varepsilon_{\text{HbO}_2}(\lambda)\), \(\varepsilon_{\text{Hb}}(\lambda)\), and \(\varepsilon_{\text{lipid}}(\lambda)\) are wavelength-dependent extinction coefficients for each chromophore, which are known\(^6\). \([\text{HbO}_2]_k\) and \([\text{Hb}]_k\) are the concentration of water and lipid in layer \(k\), which are assumed\(^5\). \([\text{HbO}_2]_k\) and \([\text{Hb}]_k\) are the concentration of oxy- and deoxy-haemoglobin in layer \(k\); they are determined by solving the inverse problem. Notice that the total haemoglobin concentration \([\text{Hb}]_k\) and the tissue blood oxygen saturation \(\text{StO}_2\) in layer \(k\) can also be readily obtained from:

\[
[\text{Hb}]_k = [\text{HbO}_2]_k + [\text{Hb}]_k; \quad \text{StO}_2 = [\text{HbO}_2]_k / [\text{Hb}]_k ; \quad k = 1, 2, 3.
\]

(6)

For multispectral fitting, we also assumed a Mie scattering model (equation just below) for the tissue scatterers\(^6\), wherein the scattering coefficient in layer \(k\) is a power-law function with scattering amplitude \(s_k\) and scattering power \(b_k\). Here, \(\lambda_s = 700\text{ nm}\) is a reference wavelength chosen based on the range of the three wavelengths.

\[
\mu_s' (\lambda) = \gamma_s (\lambda / \lambda_s)^{-b_k}.
\]

(7)

With equations (6), (6) and (7), \(\text{StO}_2\), \([\text{Hb}]_k\), and \([\text{Hb}]_k\) can be directly determined by global optimization using all data:

\[
\begin{align*}
\Psi (X) &= \left| r_{ij} (X) \right|^2 + \sum_{l=1}^{k} \sum_{j=1}^{3} \left| \left[A_{ij} (\lambda_l) \right] - b r \left(A_{ij} (\lambda_l) / A_{ij} (\lambda_m) \right) \right|^2 \\
&\quad + \left| \theta_{ij} (\lambda_l) - \theta_{ij} (\lambda_m) \right|^2 \right| ; \\
X &= \left[\text{StO}_2, [\text{Hb}]_k, Y_{i1}b_1 \text{StO}_2, [\text{Hb}]_k, Y_{i2}b_2 \text{StO}_2, [\text{Hb}]_k, Y_{i3}b_3 \right].
\end{align*}
\]

(8-3)

In this global optimization, \(X\) is an array of all fitting variables, including haemoglobin concentrations and variants thereof, and Mie scattering model parameters for scattering. The objective function \(\Psi (X)\) is a ‘residual function’ of \(X\); it is essentially a Chi-squared function that compares calculated to measured data. \(|| \cdot ||\) represents the \(L_2\) norm of the vector \(A_{ij}\), and \(\theta_{ij}\) are the calculated (predicted) amplitude and phase using the forward solver with estimated optical properties. \(A_{ij}\) and \(\theta_{ij}\) are the measured amplitude and phase. Subscripts \(l\) and \(j\) represent the \(l\)-th SDS and \(j\)-th wavelength, respectively. Notice that the normalization amplitude and phase factors are also incorporated into the objective function; these terms are denoted with the subscript \(l\).

Regularization and initialization of the optimization problem. To avoid overfitting in the reconstruction, regularization is employed to reduce the ill-posedness of the inverse problem. A Tikhonov regularization term is added to the original objective function to provide additional constraints. Thus, the new objective function \(\Psi (X)\) is the sum of the residual function in (8-2) and a weighted regularization term\(^7\):

\[
\Psi (X) = \sum_{l=1}^{k} \sum_{j=1}^{3} \left| r_{ij} (X) \right|^2 + \zeta R (X) ; \quad R (X) = \left\| X - X^{(0)} \right\|^2 .
\]

(9)

\(R (X)\) is the Tikhonov regularization term and \(\zeta\) is the regularization hyperparameter, which calibrates the relative weight of the residual function and regularization term. Tikhonov regularization, as used here, seeks to minimize the difference between the initial estimated value \(X^{(0)}\) and the reconstructed value \(X\).

The value for the regularization hyperparameter is determined using a L-curve method, which is a convenient graphical tool to find the optimized regularization parameter that balances the trade-off between fluctuation and smoothing. Once the \(\zeta\) is determined, the optimization problem to minimize \(\Psi (X)\) can be solved iteratively. In practice, the iterative algorithm is performed by the MATLAB ‘lmcurve’ function, with a parallel search function ‘multi-start’ for global minimum\(^8\).

The first and very important step in the iterative search is initialization, wherein a reasonable estimated value \(X^{(0)}\) is set. It is important that the initial guess is chosen to be reasonably close to the true value; otherwise, the iterative search may not converge to a meaningful solution. Main text Fig. 2a schematically outlines our three-step reconstruction procedure for initialization and determination of placental haemodynamic properties.
sections of the ultrasound image. The difference between the left, middle and right depths was thus determined to ensure effective reconstruction of tissue optical properties. If this difference was less than 0.5 cm, then we took data; on the rare occasion when the difference was larger than 0.5 cm, we repositioned the probe or adjust the probe angle to decrease the difference and then took data.

Pregnancy outcome. After delivery, medical records were reviewed and relevant data on outcomes were extracted by a reviewer blinded to the optical data. GHTN and preeclampsia were defined per American College of Obstetricians and Gynecologists criteria54; IUGR was defined as a birth weight below the 5th percentile for gestational age55.

Placental histopathology. The delivered placentas were evaluated using a standard procedure56 by a single placental pathologist (R.L.L.) who was blinded to the optical data. The placental pathologist defined as a gestational hypoplasia (small for gestational age), villous infarcts, retrolental haemorrhage (abruptio placentae), distal villous hypoplasia, villous agglutination, accelerated villous maturation and decidual arterio pathology. The minimum findings required for MVM diagnosis included decidual arterio pathology or at least 2 other features including accelerated villous maturation.

In vivo monitoring of placental oxygen dynamics. We designed a pilot clinical study of human placental oxygen-related haemodynamic properties. The study enrolled women with singleton pregnancies in the third trimester, anterior placenta (< 2 cm) and age < 35. A total of 40 participants were recruited. For each participant, the placenta was monitored in supine, semi-recumbent position and the central region of the placenta was monitored. Before proceeding with the study, approval by the Institutional Review Board (IRB) at the University of Pennsylvania was obtained. Each participant signed the resultant informed consent forms before participating in the study.

Four experiments were completed: (1) a reproducibility experiment wherein a 2-frame measurement was made both before and after lifting and placing the probe at approximately the same location three times (n = 18); (2) a stability experiment wherein continuous data was collected for 10 frames (~3.5 min) with participant breathing room air (n = 24); (3) a maternal left tilt experiment wherein 4 frames of data were collected, first in supine and then in left-lateral decubitus position to characterize haemodynamic changes related to increased maternal cardiac output and uterine perfusion (n = 5); (4) a maternal hyperoxia experiment (n = 24) wherein the placenta was monitored continuously for 10 frames (~3.5 min) of baseline at room air, 20 frames (~7 min) of maternal hyperoxia (100% FiO2) and 10 frames (~3.5 min) of recovery at room air again. Note that a single ‘optical frame’ corresponds to a measurement cycle through 11 light source-detector pairs and 3 wavelengths in ~21 s.

In total, n = 24 participants took part in this study. Detailed information about the participants is provided in Supplementary Table 6. Note that data from two other participants were excluded because their signals were either too small (tissue optical absorption coefficient was very large, μs < 0.2 cm−1) or too unstable (due to large fluctuations during the baseline period). Measurement reproducibility was evaluated using the ICC. We measured the haemoglobin properties multiple times at the same placental location in 18 participants.

The stability test (n = 24) results were represented by the s.d. during the continuous 10 frame measurements (Fig. 3b). Note that instability during data acquisition, substantial movement artefacts can occur, causing a single frame to exhibit >10% fluctuations in StO2, [HbT] or [HbO2] compared with the values of nearby frames. We identified these motion artefacts and filtered them out from the data.

To further validate the US/ED-DOS instrumentation and methodology in a physiological context, we performed a left tilt experiment (n = 3). In this experiment, the impact of increased maternal cardiac output on placental oxygen haemoglobin properties were determined. Briefly, in each participant, we measured StO2, [HbT] and [HbO2] for 4 frames both before and after the maternal tilt. Figure 3c presents the mean values of StO2, [HbT] and [HbO2] for each participant before and after the maternal tilt. The mean (and s.d.) of the mean (and s.d.) determined the ‘before/after’ difference in mean value of each parameter for each participant. Then we normalized this difference by the mean of the ‘before’ value. Finally, we averaged these fractional changes across all 3 participants (Fig. 3c).

To calculate the P values, the relative haemoglobin properties were obtained by normalizing the ‘after’ mean values to the ‘before’ mean values, and paired t-test analysis was applied to the relative ‘before/after’ values.

The placental haemodynamic response to maternal hyperoxia was examined by monitoring the placental haemoglobin properties ([HbT], [HbO2], [HbT] and StO2) before, during and after maternal hyperoxia. After an initial baseline period, participants were given 100% FiO2 via facemask for ~7 min (20 frames). Concurrent ultrasound and ED-DOS data were acquired throughout the process. Overall (n = 30), the experimental methodology easily resolved changes in placental blood oxygenation due to maternal hyperoxia, making use of all source-detector pairs. Nevertheless, in processing we identified and excluded specific SDs from our reconstructions. For example, an SD would occasionally saturate or become very unstable (owing to human movement), or occasionally, the longest SDs was very noisy (owing to large absorption); such SDs were excluded from further processing. Similarly, during the hyperoxia measurements, movement artefacts occasionally occurred, causing a single frame to exhibit unphysiologically large (negative) fluctuations compared with the nearby frames (and baseline); such a frame was excluded.

We investigated potential associations between placental oxygen dynamics during maternal hyperoxia (that is, ΔStO2, Δ[HbT] and Δ[HbO2]) and the APO/MVM outcomes. For these analyses, the mean baseline StO2, [HbT] and [HbO2] were calculated using the mean 4 frames of the baseline period. ΔStO2, Δ[HbT] and Δ[HbO2] were defined as the difference between these mean baseline values and the ‘peak’ values of the 4-frame window during maternal hyperoxia wherein maximum StO2 occurred. Each participant (N = 24) was then categorized into two groups based on pregnancy outcome: NPO or APO. We observed significantly larger ΔStO2 and ΔHbO2 in response to maternal hyperoxia in the NPO group compared with the APO group (Fig. 6a). After adjusting for maternal and placental factors (see main text Fig. 4b), we did not find significant association between placental haemoglobin properties and MVM.

Haemodynamic properties of adipose and rectus/uterus layers. Using the three-layer model, the optical and haemodynamic properties of adipose and rectus/uterus layers can also be reconstructed. Generally, we expect the accuracy of these optical properties to be less than that of the placenta baseline because the participants SDSs were optimized for the deepest placental tissue. Note also that due to very thin adipose or rectus/uterus layer thickness, the 4 of the 24 participants were processed with two-layer rather than three-layer model reconstruction; therefore, we excluded these 4 participants in the statistical analysis of adipose or rectus/uterus layer. The StO2 and [HbT] of adipose and rectus/uterus layers are reported in Supplementary Tables 2 and 3.

The adipose and rectus/uterus baseline haemoglobin properties of healthy participants were not significantly different from participants with APO or MVM (Supplementary Table 5). This finding parallels our baseline placenta results. We also analysed the adipose and rectus/uterus layer haemodynamic response to maternal hyperoxia, and we compared their differences across participant groups (Supplementary Table 5). We did not find significant association of the adipose layer haemoglobin properties in normal participants versus participants with APO or MVM. This finding is different from the placenta results during maternal hyperoxia. In total, these data provide in vivo evidence underscoring the importance of the multilayer modelling to separate layer responses. Without the multilayer model and associated instrumentation, quantitative estimates of placenta response are contaminated by signals from the other layers.

The null overlayer results are not necessarily surprising from a physiological perspective. For example, since MVM presents a recognizable pattern of placental insufficiency or intervillous blood pooling, we would expect significant association between adipose haemoglobin properties and MVM. However, we noticed that the rectus/uterine layer blunted response to maternal hyperoxia exhibited a trending but statistically non-significant association to APO (P = 0.06). Although it is possible that impaired uterine perfusion may be involved in the pathophysiology of placental dysfunction, in our view, further study in a larger sample size will be important to confirm and further elucidate these relationships.

Uterine-artery Doppler pulsatility index. Each uterine artery was identified using a transabdominal C1-5 ultrasound probe (GE Healthcare) via power Doppler mode and then used to obtain representative waveforms. PI was defined as the difference between peak systolic and end diastolic velocities divided by the mean velocity. The mean PI of the two uterine arteries was used for analysis. No association was found between UAI PI and APO or MVM (Table 2). Furthermore, when including UAI PI as a covariate, the associations between ΔStO2 and ΔHbO2, and our outcomes (that is APO and MVM) remained apparent (Supplementary Table 4).

Statistical analysis. Statistical analyses were performed using MATLAB 2019a. Accuracy in phantom experiments and simulations is defined as the difference between measured and expected values divided by the expected value. Depending on the data type, results from the clinical study are presented as mean (and s.d.) or median (with IQR). ICC in the reproducibility experiment was calculated by dividing the random effect variance by the total variance. Our study employed a relatively small sample size (<30 participants), and the data in the two groups were not normally distributed. In this case, a non-parametric test is appropriate (that is, a rank-sum test with continuous data). Thus, P values for studying
correlations between different variables and placental dysfunction were obtained using the two-sided Wilcoxon rank-sum test, a non-parametric test for two populations when samples are independent. \(P\) values for studying correlations between nulliparity and placental dysfunction were obtained by two-sided Fisher’s exact test. \(P\) values for studying the before/after difference in the maternal left tilt experiment were calculated by two-sided paired-sample t-test. Binary logistic regressions were also performed to study the correlation between APO/VMVm and \(\Delta\text{StO}_2\) or \(\Delta\text{HbO}_2\) but with control of other variables: Ua PI, placental depth (d) and pre-gravid BMI. We carried out this analysis for completeness, with caveats that the sample size is small and that different pairs of variables might be partially correlated (and if so, that future inclusion of interactions in the statistical models is desirable). Supplementary Table 4 shows the resultant \(P\) values of \(\Delta\text{HbO}_2\) and \(\Delta\text{StO}_2\) for prediction of APO or VMVm from the binary logistic regression models. The results confirm that there remained a trend towards significant association between optically derived haemodynamic properties and our outcomes of interest. For the future, a larger sample size will permit more sophisticated statistical analyses that explore the effects of possible confounding variables and generate composite metrics with improved specificity and sensitivity.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The main data supporting the results in this study are available within the paper and its supplementary information. All optical data generated in this study, including source data and the data used to make the figures, are available from figshare with identifiers at https://doi.org/10.6084/m9.figshare.19451867 and https://doi.org/10.6084/m9.figshare.19451879. The raw clinical and ultrasound data are available from the corresponding author, subject to approval from the Institutional Review Board of the University of Pennsylvania.

Code availability

The custom code employed for processing the optical data and for performing the statistical analysis are available from figshare with identifiers at https://doi.org/10.6084/m9.figshare.19451882, https://doi.org/10.6084/m9.figshare.19451879 and https://doi.org/10.6084/m9.figshare.19451876. The LabVIEW code and simulation code are also available from the corresponding author on request.

Received: 6 January 2021; **Accepted:** 27 June 2022; **Published online:** 15 August 2022

References

1. Burton, G. J., Fowden, A. L. & Thornburg, K. L. Placental origins of chronic disease. *Physiol. Rev.* **96**, 1509–1565 (2016).

2. Thornburg, K. L., O’Tierney, P. F. & Louey, S. Review: the placenta is a programming agent for cardiovascular disease. *Placenta* **31**, S54–S59 (2010).

3. Hodyl, N. A. et al. Child neurodevelopmental outcomes following preterm and term birth: what can the placenta tell us? *Placenta* **57**, 79–86 (2017).

4. AIUM-ACR-ACOG-SMFM-SRU practice parameter for the performance of diagnostic ultrasound in the third trimester. *Ultrasound Obstet. Gynecol.* **25**, 92–100 (2005).

5. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. *Nat. Methods* **7**, 603–610 (2010).

6. Kagiwada, J., Sumimoto, K., Kawamura, T., Minoura, S. & Kanayanagi, N. Noninvasive monitoring of placental oxygenation by near-infrared spectroscopy. *Am. J. Perinatol.* **27**, 463–468 (2010).

7. Hasegawa, J. et al. Evaluation of placental function using near infrared spectroscopy during fetal growth restriction. *J. Perinat. Med.* **38**, 29–32 (2010).

8. Kawamura, T. et al. Measurement of placental oxygenation by transabdominal near-infrared spectroscopy. *Am. J. Perinatol.* **24**, 161–166 (2007).

9. Scholkmann, F. et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. *NeuroImage* **85**, 6–27 (2014).

10. Boas, D. A., Pitris, C. & Ramanujam, N. (eds) *Handbook of biomedical optics* (CRC Press, 2016). https://doi.org/10.1201/9781439859051

11. Fantini, S. & Sassaroli, A. in *Handbook of Optical Biomedical Diagnostics 2nd edn* (ed Valery V. Tuchin) Ch. 7 (SPIE Press, 2016). https://doi.org/10.1117/3.2219603

12. Choi, J. et al. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. *J. Biomed. Opt.* **9**, 221–229 (2004).

13. Liebert, A. et al. Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation. *J. Biomed. Opt.* **16**, 046011 (2011).

14. Pifferi, A. et al. New frontiers in time-domain diffuse optics, a review. *J. Biomed. Opt.* **21**, 091310 (2016).

15. Wright, E. et al. Maternal vascular malperfusion and adverse perinatal outcomes in low-risk nulliparous women. *Obstet. Gynecol.* **130**, 1112–1120 (2017).

16. Ernst, L. M. Maternal vascular malperfusion of the placental bed. *APMIS* **126**, 551–560 (2018).

17. Hallacoglu, B., Sassaroli, A. & Fantini, S. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. *PLoS ONE* **8**, e64095 (2013).

18. Lietz, A. K. & Kienle, A. Light diffusion in N-layered turbid media: theory and experiments. *J. Opt. Soc. Am. A* **26**, 821–830 (2001).

19. Ntziachristos, V. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. *J. Biomed. Opt.* **11**, 041102 (2006).

20. Pogue, B. W. & Patterson, M. S. Review of optical parameters in multiple-layered diffusive media: theory and experiments. *J. Opt. Soc. Am. A* **18**, 821–830 (2001).

21. Corbella, A. et al. Diffuse optical tomography with spectral constraints and wavelength optimization. *Appl. Opt.* **44**, 2082–2093 (2005).

22. Pogue, B. W. & Patterson, M. S. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. *J. Biomed. Opt.* **11**, 041102 (2006).

23. Schreiber, M. & Arridge, S. The Toast++ software suite for forward and inverse modeling in optical tomography. *J. Biomed. Opt.* **19**, 040801 (2014).

24. Lee, S. Y. W., Khaw, K. S., Kee, V. D. N., Leung, T. Y. & Critchley, L. A. H. Haemodynamic effects from aortocaval compression at different angles of lateral tilt in non-labouring term pregnant women. *Br. J. Anaesth.* **109**, 950–956 (2012).

25. O’Gorman, N., Tampakoudis, G., Wright, A., Wright, D. & Nicolaides, K. H. Uterine artery pulsatility index at 12, 22, 32 and 36 weeks’ gestation in screening for pre-eclampsia. *Ultrasound Obstet. Gynecol.* **47**, 565–572 (2016).
45. Nguyen, T. et al. Non-invasive transabdominal measurement of placental oxygenation: a step toward continuous monitoring. *Biomed. Opt. Express* **12**, 4119–4130 (2021).
46. American College of Obstetricians and Gynecologists. Management of intrapartum fetal heart rate tracings. *Obstet. Gynecol.* **116**, 1232–1240 (2010).
47. Luo, J. et al. In vivo quantification of placental insufficiency by BOLD MRI: a human study. *Sci. Rep.* **7**, 3713 (2017).
48. Catov, J. M. et al. Neonatal outcomes following preterm birth classified according to placental features. *Am. J. Obstet. Gynecol.* **216**, e1–e14 (2017).
49. Liemert, A. Light diffusion in N-layered turbid media: steady-state domain. *J. Biomed. Opt.* **15**, 025003 (2010).
50. Haskell, R. C. et al. Boundary conditions for the diffusion equation in radiative transfer. *J. Opt. Soc. Am. A* **11**, 2727–2741 (1994).
51. Jacques, S. L. Optical properties of biological tissues: a review. *Phys. Med. Biol.* **58**, R37–R61 (2013).
52. Hansen, P. C. in *Computational Inverse Problems in Electrocardiology* Vol. 4 (ed P. Johnston, *Advances in Computational Bioengineering*) 119–142 (WIT Press, Southampton, 2000).
53. Ugray, Z. et al. Scatter search and local NLP solvers: a multistart framework for global optimization. *INFORMS J. Comput.* **19**, 328–340 (2007).
54. Fenton, T. R. & Kim, J. H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. *BMC Pediatr.* **13**, 59 (2013).
55. Khong, T. Y. et al. Sampling and definitions of placental lesions: Amsterdam Placental Workshop Group Consensus Statement. *Arch. Pathol. Lab. Med.* **140**, 698–713 (2016).
56. Taroni, P. et al. Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy. *PLoS ONE* **10**, e0128941 (2015).
57. Henry, B. et al. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise. *J. Biomed. Opt.* **20**, 125006 (2015).
58. Khare, S. M. et al. Evaluation of the human placenta optical scattering properties using continuous wave and frequency-domain diffuse reflectance spectroscopy. *J. Biomed. Opt.* **25**, 116001 (2020).

Acknowledgements
The work was supported by NIH U01HD087180. J.M.C. was partially supported by NIH P41EB015893. T.K. was partially supported by NIH F31HD085731 and NIH T32HL075915. W.B. was partially supported by R01NS113945. A.G.Y. acknowledges partial support from NIH R01NS060653 and NIH P41EB015893. We thank D. Licht, B. White, J. Strauss and Y. H. Ong for useful discussions, advice and support, as well as the clinic research coordinators of the Maternal and Child Health Research Center at Perelman School of Medicine, University of Pennsylvania.

Author contributions
L.W., A.G.Y. and N.S. designed the study. L.W. and T.K. developed the instrument with assistance from W.B.B., K.A., L.H., D.R.B. and V.K. L.W. and J.M.C. developed the three-layer reconstruction algorithm and conducted the computer simulations. L.W. and T.K. performed phantom experiments with help from W.B.B. and L.H. K.A. designed the optical probe with input from L.W. and W.B.B. L.W. collected and analysed the optical data. S.P. and N.S. advised on human participant data interpretation. N.S. collected and analysed the ultrasound data. R.L.L. performed placental histopathologic analysis. L.W., A.G.Y. and N.S. wrote the paper with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41551-022-00913-2.
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41551-022-00913-2.
Correspondence and requests for materials should be addressed to Lin Wang.
Peer review information *Nature Biomedical Engineering* thanks Carolyn Bayer, Christopher Contag and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2022
Extended Data Fig. 1 | Detailed schematic of the custom heterodyne FD-DOS instrument.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a
- Confirmed

☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
☐ The statistical test(s) used AND whether they are one- or two-sided
 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
☐ A description of all covariates tested
☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
☐ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.
☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
☐ Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

| Data collection | Custom LABVIEW codes were developed under LABVIEW 2014. Custom LABVIEW codes were used to collect optical data. A commercial ultrasound system (Voluson E10, GE Healthcare) with a 9L-D transabdominal linear probe was used to collect ultrasound data during the optical measurements. A C2-5 probe was used for uterine artery Doppler measurements. Clinical data were extracted from the electronic medical record by study coordinators blinded to the optical data. |
| Data analysis | Optical data and statistical analyses were processed by custom MATLAB codes (in MatLab 2018b). Finite-element simulation data were generated with commercial the software TOAST. The custom code for processing the optical data and for performing the statistical analysis are available, as follows:
 - FD-DOS raw data and multi-layer-reconstruction processing code: https://doi.org/10.6084/m9.figshare.19451882.
 - Stability / maternal-hyperoxia statistical-analysis code: https://doi.org/10.6084/m9.figshare.19451879.
 - Left-tilt experiment statistical-analysis code: https://doi.org/10.6084/m9.figshare.19451876.
 - The LabVIEW code and simulation code are also available from the corresponding author on request. |

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The main data supporting the results in this study are available within the paper and its supplementary information. All optical data generated in this study, including source data and the data used to make the figures, are available from figshare with the identifiers https://doi.org/10.6084/m9.figshare.19451882, https://doi.org/10.6084/m9.figshare.19451879 and https://doi.org/10.6084/m9.figshare.19451876. The raw clinical and ultrasound data are available from the corresponding author, subject to approval from the Institutional Review Board of the University of Pennsylvania.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☒ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see https://nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	For the pilot study, as it used a new device, no sample-size calculations were made. Rather, we opportunistically recruited patients with confirmed anterior placentas and who met inclusion and exclusion criteria and who consented to participation. The sample size was limited by the availability of the authors involved in obtaining the optical (L.W.) and ultrasound (N.S.) data, as well as of the study coordinators who would record the consent of the participants, and help administer the oxygen.
Data exclusions	Data from two other participants were excluded because their signals were too unstable (owing to large fluctuations during the baseline period).
Replication	Measurement reproducibility was evaluated by a reproducibility experiment, wherein a two-frame measurement was made both before and after lifting and placing the probe at approximately the same location for three times (n = 18). Placental oxygen saturation, total haemoglobin concentration, and oxyhaemoglobin concentration, were highly repeatable within subjects (intra-class correlation coefficient ≥ 0.9).
Randomization	This was an observational cohort study with no randomization to study arms or interventions.
Blinding	Optical-data collection and analysis was performed blinded to both the clinical pregnancy outcomes and to the placental histopathology findings. Inversely, the placental pathologist was blinded to the optical measurements when analysing the placentas.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	Involved in the study
☒	Antibodies
☒	Eukaryotic cell lines
☒	Palaeontology and archaeology
☒	Animals and other organisms
☒	Human research participants
☒	Clinical data
☒	Dual use research of concern
☒	Involved in the study
☒	ChIP-seq
☒	Flow cytometry
☒	MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics

The participants in the maternal-hyperoxia study had a median (interquartile range; IQR) gestational age of 34.5 (32.9, 35.4)
Population characteristics

Weeks and a median (IQR) pre-gravid BMI of 27.7 (24.6, 30.2). The median (IQR) depth of the anterior placentas was 2.7 (2.3, 3.3) cm beneath the skin surface, and the nulliparity of the subjects was 29%.

37.5% of the participants had adverse pregnancy outcomes, and 33.3% had maternal vascular malperfusion. 29.2% of the participants were white, 62.5% were African American, 4% Latino, and 4% American Indian.

Recruitment

The participants were recruited as part of a larger prospective cohort exploring various placental-imaging techniques. For this study, only participants with an anterior placenta that was within 4 cm of the skin surface were approached for optical imaging. The limitations of a high body mass index and placental depth are explicitly analysed and discussed in the paper.

The sample size was limited by the availability of the authors involved in obtaining the optical (L.W.) and ultrasound (N.S.) data, as well as of the study coordinators who would obtain the consent of the participants, record the data and help administer the oxygen.

Recruitment limitations were operational and logistical, without consideration of the characteristics of the subjects, and therefore should not bias the study population.

Ethics oversight

Prior to proceeding with the study, approval by the Institutional Review Board (IRB) at the University of Pennsylvania was obtained.

Note that full information on the approval of the study protocol must also be provided in the manuscript.