September 2008

Search for scalar leptoquarks and T-odd quarks in the acoplanar jet topology using 2.5 fb⁻¹ of pp collision data at \(\sqrt{s} = 1.96 \) TeV

V. M. Abazov
Joint Institute for Nuclear Research, Dubna, Russia

Kenneth A. Bloom
University of Nebraska-Lincoln, kbloom2@unl.edu

Gregory Snow
University of Nebraska-Lincoln, gsnow1@unl.edu

DØ Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the *Physics Commons*

Abazov, V. M.; Bloom, Kenneth A.; Snow, Gregory; and Collaboration, DØ, "Search for scalar leptoquarks and T-odd quarks in the acoplanar jet topology using 2.5 fb⁻¹ of pp collision data at \(\sqrt{s} = 1.96 \) TeV" (2008). *Kenneth Bloom Publications*. 248.
http://digitalcommons.unl.edu/physicsbloom/248

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Search for scalar leptoquarks and T-odd quarks in the acoplanar jet topology using 2.5 fb$^{-1}$ of $p\bar{p}$ collision data at $\sqrt{s} = 1.96$ TeV

D0 Collaboration

V.M. Abazova, B. Abbottbw, M. Abolinsbm, B.S. Acharyaac, M. Adamsay, T. Adamsaw, E. Aguilof, M. Ahsanbg, G.D. Alexeeva, G. Alkhazovan, A. Alton$^{bi, i}$, G. Alversonbk, G.A. Alvesb, M. Anastasioai, L.S. Ancuai, T. Andeenba, B. Andrieuq, M.S. Anzelcb, A. Ansariaq, P. Ansorgead, M. Antonn, M. Aromh, M. Arthaudf, A. Ashokeaw, B. Asmanao, A.C.S. Assisjs, O. Atramentovaw, C. Avilah, F. Badaudm, L. Bagbyax, B. Baldinax, D.V. Bandurinbg, P. Banerjeeac, S. Banerjeeac, E. Barberisbk, A.-F. Barfusso, P. Bargassacb, P. Baringerbf, J. Barretop, J.F. Bartlettu, U. Basslerf, D. Baueraq, S. Bealef, A. Beanf, M. Begalic, M. Begelbu, C. Belanger-Champagneao, L. Bellantoniax, A. Bellavanceax, J.A. Benitezbm, S.B. Beriaz, G. Bernardiq, R. Bernhardw, I. Bertramp, M. Besançonr, R. Beuselinckaq, V.A. Bezzubovam, P.C. Bhattacharyabm, V. Bhatnagaras, C. Biscarrotg, G. Blazejax, F. Bleekmanao, S. Blessingaw, K. Bloombo, A. Boehleinax, D. Bolinebj, T.A. Boltonbg, E.E. Boosal, G. Borossip, T. Boseby, A. Brandtbz, R. Brockbm, G. Broojmansb, A. Brossax, D. Browncc, X.B. Bug, N.J. Buchananaw, D. Buchholzba, M. Buehlercc, V. Buescherv, V. Bunichevai, S. Burdin$^{ap, 2}$, T.H. Burnettcd, C.P. Buszelloaq, J.M. Butlerbp, P. Calfayany, S. Calvetp, J. Camminbs, E. Carreraaw, W. Carvalhoc, B.C.K. Caseyax, H. Castillo-Valdezae, S. Chakrabortyaz, M.-C. Cousinao, S. Crépé-Renaudin, V. Cudellby, D. Cudellby, M. Cupatp, S.R. Dugasac, D. Dugganaw, A. Duperrino, J. Dyerbm, A. Dyshkantaz, M. Eadsbo, D. Edmundsbm, J. Ellisonav, V.D. Elviraax, Y. Enariby, S. Enobi, P. Ermolov$^{al, s}$, H. Evansbb, A. Evdokimovbu, V.N. Evdokimovam, A.V. Feronpt, T. Ferbelbs, F. Fiedlerx, F. Filthautax, W. Fisekax, M. Fortnerax, H. Foxbp, S. Fuax, S. Fuessax, T. Gadfortbr, C.F. Galeaai, C. Garcíabs, A. Garcia-Bellidobs, V. Garavoloap, P. Gaym, W. Geists, W. Geng$^{eo, bm}$, C.E. Gerberby, Y. Gershteinw, D. Gillbergg, G. Ginterhs, N. Gollubas, B. Gómezd, A. Goussioucd, P.D. Grannisbt, H. Greenleeax, S. Greenwoodbh, E.M. Greigorescud, G. Grenierd, Ph. Griessm, J.-F. Grivazp, A. Grosjeany, S. Grünendahlas, M.W. Grünwaldaf, F. Guobt, J. Guobt, G. Gutierrezax, P. Gutierrezbw, A. Haasbr, N.J. Hadleybi, P. Haefnery, S. Hagopianaw, J. Haleybp, I. Hallbm, R.E. Hallau, L. Hansg, K. Harderar, A. Harelbs, J.M. Hauptmanap, J. Hayesad, T. Hebbekerd, U. Hedinaz, J.G. Hegemanah, A.P. Heinsonav, U. Heintzbj, C. Henselvi, K. Hernerbt, G. Heskethbk, M.D. Hildrethbc, R. Hiroskycc, J.D. Hobbsbt, B. Hoeneiseni, H. Hoethx, M. Hohlfeldy, H. Hossainaww, P. Houbenab, Y. Hubt, Z.Hubaceki, V. Hyneki, I. Iashvilibq, R. Illingworthax, A.S. Itoax, S. Jabeenbj, M. Jaffrébj, P. Jainbw, K. Jakobsaw, C. Jarvisbq, R. Jesikaq, K. Johnsas, C. Johnsonbr, M. Johnsonbo, D. Johnstonao, A. Jonckheereax, P. Jonssoneq, A. Justeax, E. Kajfaszo, J.M. Kalkbh, D. Karmanoval, P.A. Kasperax, I. Katsanosbr, D. Kauaw, V. Kausbh, R. Kehoeca, S. Kermichen, N. Khalatyanax, A. Khanovbx, A. Kharchilavaaq, Y.M. Kharzheevaj, D. Khadzhiaj, T.J. Kimae, M.H. Kirbyba, M. Kirschu, B. Klimaas, J.M. Kohlia, J.-P. Konrathw, A.V. Kozelovam, J. Krausbm, T. Kuhlf, A. Kumarbq, A. Kupcok, T. Kurčat, V.A. Kuzminal, J. Kvitai, F. Lacroixm, D. Lambc, S. Lammsbergbr, G. Landsbergby, P. Lebrunf, W.M. Leeax, A. Leflatd, J. Lellouchq, J. Li$^{bi, s}$, L. Liav, Q.Z. Liax, S.M. Liettie, J.K. Limax, J.G.R. Limaax, D. Lincolnax, J. Linnemannbm, V.V. Lipaevam, R. Liptonax, Y. Liuz, Z. Liui, A. Lobdenkom, M. Lokajícekk, P. Loveap, H.J. Lubatticd, R. Lunac, A.L. Lyonax, A.K.A. Macield, D. Mackincb, R.J. Madarasat, P. Màttigc, C. Magassu, A. Magerkurthbl, P.K. Malcd, H.B. Malbouissonas, S. Malikbo, V.L. Malyshevaj, Y. Maravinav, B. Martinb, R. McCarthybt, A. Melnikouchln, L. Mendozab, P.G. Mercadantee, M. Merkinal, K.W. Merrittax, A. Meyeru, J. Meyer$^{v, 3}$, J. Mitrevskib, R.K. Mommsenar,
DØ Collaboration / Physics Letters B

Search for scalar leptoquarks and T-odd quarks in the acoplanar jet topology using √s = 1.96 TeV

Physics Letters B (2008), doi:10.1016/j.physletb.2008.09.014

Please cite this article in press as: DØ Collaboration, Search for scalar leptoquarks and T-odd quarks in the acoplanar jet topology using 2.96 TeV, Physics Letters B (2008), doi:10.1016/j.physletb.2008.09.014
A search for new physics in the acoplanar jet topology has been performed in 2.5 fb$^{-1}$ of data from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, recorded by the DØ detector at the Fermilab Tevatron Collider. The numbers of events with exactly two acoplanar jets and missing transverse energy are in good agreement with Standard Model expectations. The result of this search has been used to set a lower mass limit of 205 GeV at the 95% C.L. on the mass of a scalar leptoquark when this particle decays exclusively into a quark and a neutrino. In the framework of the Little Higgs model with T-parity, limits have also been obtained on the T-odd quark mass as a function of the T-odd photon mass.

© 2008 Elsevier B.V. All rights reserved.
of 136 GeV [2] for $\beta = 0$ was obtained by the DØ Collaboration with 310 pb$^{-1}$ of Run II data. The CDF Collaboration also set a lower mass limit of 117 GeV [3] with 191 pb$^{-1}$ of Run II data. Those limits, as well as the results presented in this Letter, apply for first- and second-generation scalar leptoquarks. For the third-generation, tighter limits were obtained by increasing the signal sensitivity using heavy-flavor quark tagging [4].

The second category is the Little Higgs (LH) model [5], which provides an interesting scenario for physics at the TeV scale, predicting the existence of additional gauge bosons, fermions, and scalar particles with masses in the 100 GeV–5 TeV range. Electro-weak precision constraints are satisfied by introducing a discrete symmetry called T-parity [6]. This symmetry is constructed such that all the SM states are even, while most new states of the LH model with T-parity (LHT) are odd. In the LHT model, six new Dirac T-odd quarks (T-quarks or \tilde{q}) are the partners of the left-handed T-even quarks of the SM. In most of the parameter space, the lightest T-odd particle (LTP) is the so-called “heavy photon” (\tilde{A}_L) which is stable and weakly interacting. From SM precision measurements, it is possible to set a lower mass limit of ~ 80 GeV on the mass of \tilde{A}_L [7]. The new particle spectrum of the LHT model has similar properties to spectra of supersymmetric models. The LTP, just as the Lightest Supersymmetric Particle in SUSY models with R-parity conservation, is a dark matter candidate which escapes undetected. There are, however, important differences: the new T-odd particles have the same spin as their SM partner; and with respect to the proton beam direction.

LQ mass in the MC simulation was calculated using Monte Carlo (MC) generators and passed through a full GEANT3-based [12] simulation of the detector geometry and response. They were subsequently processed with the same reconstruction chain as the data. The parton distribution functions (PDFs) used in the MC generators are the CTEQ6L1 [13] PDFs. A data event from a randomly selected beam crossing was overlaid on each event to simulate the additional minimum bias interactions and detector noise. The ALPGEN generator [14] was used to simulate $W/Z +$ jets and $t\bar{t}$ production. It was interfaced with PYTHIA [15] for the simulation of initial and final state radiation (ISR/FSR) and of jet hadronization. Pairs of vector bosons and electroweak top quark production were simulated with PYTHIA and COMPPHEP [16], respectively. The next-to-leading order (NLO) cross sections were computed with MCFM5.1 [17]. The QCD background was not simulated, since it can be conservatively neglected in the final stage of this analysis.

Leptoquark pair production and decays were simulated with PYTHIA and the CTEQ6L1 PDFs. The LQ mass in the MC simulation ranged from 60 to 240 GeV. The NLO cross sections of this process were computed from a program based on [18] with a renormalization and factorization scale (μ_R,μ_F) equal to the LQ mass, and using the CTEQ6.1M PDF sets.

Leptoquark pair production and decay to $q\tilde{A}_L$ is very similar to squark pair production and decay to $q\tilde{g}$. In the LH model, it has been shown in [9] that T-quark pair production and decay to $q\tilde{A}_L$ is similar to squark pair production and decay to $q\tilde{g}$. However, the charged lepton can escape detection in uninstrumented regions of the detector, fail identification criteria, or be a tau lepton decaying hadronically. To further suppress that background, events containing an isolated high p_T track are rejected. The events from SM processes and signal events were simulated using Monte Carlo (MC) generators and passed through a full GEANT3-based [12] simulation of the detector geometry and response. They were subsequently processed with the same reconstruction chain as the data. The parton distribution functions (PDFs) used in the MC generators are the CTEQ6L1 [13] PDFs.

The trigger requirements for the LHT model were performed to cover the $Q - \tilde{A}_L$ mass plane accessible at the Tevatron. Concerning the signal normalization, the cross section of first and second generation T-quark pair production is equal to four times the cross section of heavy quark pair production, if no other new particles predicted by the LHT model are involved in the T-quark production. The NLO cross sections of this signal were therefore calculated using using MCFM5.1, with μ_R,μ_F equal to the T-quark mass, and the CTEQ6.1M PDF sets.

The analysis strategy follows closely the “dijet” analysis from Ref. [19]. Events were recorded using triggers requiring two acoplanar jets and large E_T or H_T, where H_T is the vector sum of the jet transverse momenta ($H_T = \sum_j p_T^j$). The trigger requirements were typically the following: (1) E_T or H_T greater than 30 GeV and their separation from all jets greater than 25$^\circ$; (2) an azimuthal angle between the two highest p_T jets less than 170$^\circ$. Offline, events where E_T was greater than 40 GeV were then selected.
where CPF0 is the fraction of track azimuthal angle ated tracks [19]. This was accomplished by requiring CPF0 the assumption that the jet originates from the detector center.

ter.

To further reject those events, the selection criteria on jets were required to be in the central region of the detector, with |ηdet| < 0.95. Then, the two leading jets, jet1 and jet2, ordered by decreasing transverse momentum, were required to be greater than 50 degrees and lower than 170 degrees, respectively. To further reject those events, the selection criteria on jets were required to be in the central region of the detector, with |ηdet| < 0.95. Then, the two leading jets, jet1 and jet2, ordered by decreasing transverse momentum, was required to be less than 165 degrees. Then, the two leading jets were required to be in the central region of the detector, with |ηdet| < 0.8, where ηdet is the jet pseudorapidity calculated under the assumption that the jet originates from the detector center. After this preselection, the transverse momenta of the two leading jets had to be higher than 35 GeV. Finally, jets were required to originate from the best vertex, based on their associated tracks [19]. This was accomplished by requiring CPFO > 0.75, where CPFO is the fraction of track pT sum associated with the jet which comes from PV0, CPFO= ∑pTtrack/PV0/ ∑pTtrack (any PV).

At this stage, the QCD multijet background is still largely dominant. To further reject those events, the selection criteria on ET was increased to 75 GeV. The requirement that the azimuthal angle between the ET and jet1, Δφ(ET, jet1), exceeds 90 degrees, was used to remove events where a jet was mismeasured and generating ET aligned to that jet. Also, the minimal azimuthal angle Δφmin(ET, any jet) and the maximal azimuthal angle Δφmax(ET, any jet) between jets and ET directions had to be greater than 50 degrees and lower than 170 degrees, respectively.

To suppress W (→ lν) + jets events, a veto on events containing an isolated electron or muon with pT > 10 GeV was applied. Events with an isolated track were then rejected to further reduce that background. Isolated tracks were required to have pT > 5 GeV, to originate from PV0 with DCA(z) < 5 cm and DCA(r) < 2 cm, where DCA(z) and DCA(r) are the positions of the projection of the distance of closest approach between the track and PV0 on the beam direction and in the plane transverse to the beamline, respectively. The number of hits in the CFT used to reconstruct the track was required to be at least 8. Finally, good quality tracks were selected by requiring the χ2/dof of the track-fit reconstruction to be lower than 4. A hollow cone with inner and outer radii of 0.06 and 0.5 was constructed around each track that passed those criteria. If no other track with pT > 0.5 GeV and the same quality criteria as above was found in this hollow cone, the track was considered isolated. The use of a hollow, rather than full cone also allowed rejection of tau leptons decaying into three charged particles.

Events with exactly two jets with pT > 15 GeV and |ηdet| < 2.5 in the final state were then selected. This criterion rejects a large fraction of the remaining ττ events, and increases the signal sensitivity at large T-quark and leptoquark masses once large ET and HΤ are required, with HΤ = ∑pTjet, where the sum is also over all jets with pT > 15 GeV and |ηdet| < 2.5. Table 1 summarizes the number of events observed and expected from MC simulations at each stage of the analysis. Fig. 1 shows comparisons between data and MC simulations; the distribution of the number of jets, and the ET and HΤ distributions after applying all the selection criteria described above.

Finally, the two final cuts on ET and on HΤ were optimized for different signals by minimizing the expected upper limit on the cross section in the absence of signal. To this end and also for

Table 1

Cut applied	Data	Background	Signal	Signal efficiency
Preselection	208.055	30.752 ± 5350	166 ± 21	0.302 ± 0.037
1st leading jet pT > 35 GeV	122.456	25.352 ± 4410	152 ± 19	0.276 ± 0.034
2nd leading jet pT > 35 GeV	79.985	14.538 ± 2530	144 ± 18	0.262 ± 0.032
ET > 75 GeV	65.09	5.219 ± 909	125 ± 16	0.228 ± 0.028
Δφ(ET, jet1) > 90°	638.5	5.418 ± 897	124 ± 15	0.226 ± 0.028
ΔφET, any jet > 50°	3857	13.453 ± 602	93 ± 12	0.170 ± 0.021
Δφmax(ET, any jet) < 170°	2855	25.68 ± 448	81 ± 10	0.147 ± 0.018
Isolated electron veto	2347	21.29 ± 371	79 ± 9.8	0.144 ± 0.018
Isolated muon veto	2007	18.80 ± 328	79 ± 9.8	0.144 ± 0.018
Isolated track veto	1472	13.98 ± 244	73 ± 9.1	0.133 ± 0.017
Exactly two jets	957	8.58 ± 150	40 ± 6.1	0.089 ± 0.011
Final HT cut	optimized			
Final ET cut	optimized			

First and second jets are also required to be central (|ηdet| < 0.8), with an electromagnetic fraction below 0.95, and to have CPFO ≥ 0.75.

The best primary vertex (PV0) was defined as the vertex with the smallest probability to be due to a minimum bias interaction [20]. The longitudinal position of PV0 was required to be less than 60 cm from the detector center to ensure efficient vertex reconstruction. Good jets were defined as jets with a fraction of energy in the electromagnetic layers of the calorimeter lower than 0.95. The acoplanarity, i.e. the azimuthal angle between the two leading jets, jet1 and jet2, ordered by decreasing transverse momentum, was required to be less than 165 degrees. Then, the two leading jets were required to be in the central region of the detector, with |ηdet| < 0.95, where ηdet is the jet pseudorapidity calculated under the assumption that the jet originates from the detector center. After this preselection, the transverse momenta of the two leading jets had to be higher than 35 GeV. Finally, jets were required to originate from the best vertex, based on their associated tracks [19]. This was accomplished by requiring CPFO > 0.75, where CPFO is the fraction of track pT sum associated with the jet which comes from PV0, CPFO= ∑pTtrack/PV0/ ∑pTtrack (any PV).

At this stage, the QCD multijet background is still largely dominant. To further reject those events, the selection criteria on ET was increased to 75 GeV. The requirement that the azimuthal angle between the ET and jet1, Δφ(ET, jet1), exceeds 90 degrees, was used to remove events where a jet was mismeasured and generating ET aligned to that jet. Also, the minimal azimuthal angle Δφmin(ET, any jet) and the maximal azimuthal angle Δφmax(ET, any jet) between jets and ET directions had to be greater than 50 degrees and lower than 170 degrees, respectively.

To suppress W (→ lν) + jets events, a veto on events containing an isolated electron or muon with pT > 10 GeV was applied.
the final limit computation, the CLs modified frequentist method has been used [21]. For the leptoquark search, two benchmarks were defined corresponding to low ($M_{LQ} = 140$ GeV) and high ($M_{LQ} = 200$ GeV) leptoquark masses. As summarized in Table 2, the optimized values were determined to be $H_T > 150$ GeV and $E_T > 75$ GeV for the low mass selection, and $H_T > 300$ GeV and $E_T > 125$ GeV for the high mass selection. In the T-quark search, five H_T cut combinations were used to optimally scan the (Q, A_H) mass plane as summarized in Table 2. In all cases, the contribution of the QCD multijet background was estimated to be small enough to be conservatively neglected. The number of events observed are in good agreement with the SM expectations.

The uncertainty coming from the JES corrections on the SM backgrounds and signal predictions ranges from 5% for lower H_T and E_T cuts to 10% for high H_T and E_T cuts. The uncertainties due to the jet energy resolution, to the jet track confirmation, and to jet reconstruction and identification efficiencies range between 2% and 4%. The systematic uncertainty due to the isolated track effects were added in quadrature, and yield a total uncertainty of 6%, using the forty-eigenvector basis of the CTEQ6.1M PDF set [13]. Finally, the effects of ISR/FSR on the signal efficiencies were studied by varying the PYTHIA parameters controlling the QCD scales and the maximal allowed virtualities used in the simulation of the space-like and time-like parton showers. The uncertainty on the signal efficiencies was determined to be 6%.

The nominal NLO signal cross sections, σ_{nom}, were computed with the CTEQ6.1M PDF and for the renormalization and factorization scale $\mu_{R,F} = Q$, where Q was taken to be equal to the leptoquark or T-quark mass. The uncertainty due to the choice of PDF was determined using the full set of CTEQ6.1M eigenvectors, with the individual uncertainties added in quadrature. The effect of the renormalization and factorization scale was studied by calculating the signal cross sections for $\mu_{R,F} = Q$, $\mu_{R,F} = Q/2$ and $\mu_{R,F} = 2 \times Q$. The PDF and $\mu_{R,F}$ effects were added in quadrature to compute minimum, σ_{min}, and maximum, σ_{max}, signal cross sections.

For the leptoquark search, Fig. 2 shows the 95% C.L. observed and expected upper limits on scalar leptoquark production cross sections. The intersection with the minimal NLO cross section gives a lower mass limit of 205 GeV for $\beta = 0$. The corresponding expected upper limits on scalar leptoquark production cross sections are also shown for $\beta = 0$, with shaded bands corresponding to the PDF and renormalization and factorization scale uncertainties.

For the T-quark search, Fig. 3 shows the 95% C.L. observed and expected upper limits on scalar leptoquark production cross sections. The intersection with the minimal NLO cross section gives a lower mass limit of 205 GeV for $\beta = 0$. The corresponding expected upper limits on scalar leptoquark production cross sections are also shown for $\beta = 0$, with shaded bands corresponding to the PDF and renormalization and factorization scale uncertainties.

Table 2

M_{LQ} or M_{Q} (GeV)	σ_{nom} (pb)	(H_T, E_T) (GeV)	N_{obs}	N_{back}	N_{sig}	$\sigma_{5\%}$ (pb)
Leptoquark search						
140	2.38	(150, 75)	353	328 ± 11.26	229 ± 8.22	1.79
200	0.268	(300, 125)	12	10.6 ± 1.740	13.7 ± 0.61.8	0.240
T-quark search						
(150, 100)	59.6	(125, 75)	566	513 ± 14.286	879 ± 167.338	17.0
(250, 175)	3.18	(175, 100)	147	140 ± 7.256	83 ± 12.220	2.42
(300, 200)	0.868	(225, 125)	44	40 ± 4.73	25.7 ± 3.42	0.780
(350, 200)	0.242	(275, 150)	15	13.1 ± 1.126	16.4 ± 1.583	0.69
(400, 150)	0.0666	(325, 175)	7	4.2 ± 1.0129	10.1 ± 0.61.12	0.0593
expected limit is 207 GeV. Those limits are 214 GeV and 222 GeV, respectively, for the nominal signal cross section.

For the T-quark search, Fig. 3 shows the 95% C.L. excluded regions in $\tilde{Q} - \tilde{A}_H$ mass plane assuming that the branching fraction of the decay $Q \rightarrow q\tilde{A}_H$ is 100%. The largest excluded T-quarks mass, 404 GeV, is obtained for large mass difference between the T-quarks and the LTP.

In summary, a search for scalar leptoquarks and for T-quarks produced in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV has been performed with a 2.5 fb$^{-1}$ data sample. This search was conducted in events containing exclusively two jets and large missing transverse energy. The results are in good agreement with the SM background expectations, and 95% C.L. limits have been set on the leptoquark and T-quark masses. For a single-generation scalar leptoquark, a lower mass limit of 205 GeV has been obtained for $\beta = 0$, improving the previous limit by 69 GeV. In the LHT model, limits on T-quark mass were obtained as a function of the \tilde{A}_H mass assuming 100% branching ratio for the decay $\tilde{Q} \rightarrow q\tilde{A}_H$. T-quark masses up to 404 GeV are excluded when the mass difference between T-quarks and the LTP is large. Those are the most stringent direct limits to date on the T-quarks mass.

Acknowledgements

We thank M. Carena, J. Hubisz, and M. Perelstein for their valuable help with the LHT model, the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

References

[1] J.C. Pati, A. Salam, Phys. Rev. D 10 (1974) 275; H. Georgi, S. Glashow, Phys. Rev. Lett. 32 (1974) 438; B. Schrempp, F. Schrempp, Phys. Lett. B 153 (1985) 301.
[2] V.M. Abazov, et al., DØ Collaboration, Phys. Lett. B 640 (2006) 230.
[3] D.E. Acosta, et al., CDF Collaboration, Phys. Rev. D 71 (2005) 112001;
[4] D.E. Acosta, et al., CDF Collaboration, Phys. Rev. D 71 (2005) 119901, Erratum.
[5] V.M. Abazov, et al., DØ Collaboration, Phys. Rev. Lett. 99 (2007) 061801.
[6] N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, JHEP 0207 (2002) 034.
[7] H.C. Cheng, L. Low, JHEP 0309 (2003) 051;
[8] H.C. Cheng, L. Low, JHEP 0408 (2004) 061.
[9] J. Hubisz, P. Meade, A. Noble, M. Perelstein, JHEP 0601 (2006) 135.
[10] A. Heister, et al., ALEPH Collaboration, Phys. Lett. B 537 (2002) 5;
[11] P. Achard, et al., L3 Collaboration, Phys. Lett. B 580 (2004) 37.
[12] M.S. Carena, J. Hubisz, M. Perelstein, F. Verdi, Phys. Rev. D 75 (2007) 091701.
[13] V.M. Abazov, et al., DØ Collaboration, Nucl. Instrum. Methods Phys. Res. A 565 (2006) 463.
[14] G.C. Blazey, et al., hep-ex/0005012.
[15] R. Brun, F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished).
[16] J. Pumplin, et al., JHEP 0207 (2002) 012;
[17] D. Stump, et al., JHEP 0310 (2003) 046.
[18] M.L. Mangano, et al., JHEP 0307 (2003) 001, versions 2.05 and 2.11 were used.
[19] T. Sjöstrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026, versions 6.323 and 6.409 were used.
[20] E. Boos, et al., CompHEP Collaboration, Nucl. Instrum. Methods Phys. Res. A 534 (2004) 250.
[21] J.M. Campbell, R.K. Ellis, Phys. Rev. D 60 (1999) 113006.
[22] M. Kramer, et al., Phys. Rev. Lett. 79 (1997) 341.
[23] V.M. Abazov, et al., DØ Collaboration, Phys. Lett. B 660 (2008) 449.
[24] T. Junk, Nucl. Instrum. Methods Phys. Res. A 434 (1999) 435;
[25] A. Read, in: 1st Workshop on Confidence Limits, CERN Report No. CERN-2000-005, 2000;
[26] W. Fisher, FERMILAB-TM-2386-E (2007).
[27] T. Andeen, et al., FERMILAB-TM-2365 (2007).