Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/c in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

The CMS Collaboration

Abstract

The Fourier coefficients v_2 and v_3 characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, $1 < p_T < 100$ GeV/c. The analysis focuses on the $p_T > 10$ GeV/c range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60% most central events. The v_2 coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to initial-state fluctuations. The values from both methods remain positive up to $p_T \sim 60$–80 GeV/c, in all examined centrality classes. The v_3 coefficient, only measured with the scalar product method, tends to zero for $p_T \gtrsim 20$ GeV/c. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations.

Published in Physics Letters B as doi:10.1016/j.physletb.2017.11.041.
1 Introduction

Several observations made at RHIC in AuAu collisions at center-of-mass energy per nucleon pair $\sqrt{s_{NN}} = 200$ GeV [1–4] and at the LHC in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV [5–10] establish that high-energy partons lose a significant fraction of their energy while traversing the hot and dense medium created in these collisions. Measurements of the nuclear modification factor (R_{AA}), a ratio that quantifies the modification of particle spectra between pp and heavy ion collisions, show a large suppression of high transverse-momentum (p_T) charged hadrons at RHIC [11–16] and at LHC [7–10]. Also, a strong asymmetry is observed in the energies of the two jets in dijet events in PbPb collisions [5, 6]. These observations have triggered much progress in the understanding of jet quenching phenomena, but do not provide sufficient information for a detailed understanding of how the parton energy loss depends on the distance traversed by the partons in the medium. The study of anisotropies in the azimuthal angle distributions of high-p_T hadrons can provide revealing information that is complementary to previous measurements. These anisotropies are characterized by the v_n coefficients of a Fourier expansion in the distributions of azimuthal angle measured with respect to the event plane, defined by the direction of maximum particle density in the transverse plane [17]. Such studies have been performed at RHIC [18] and at the LHC [19–21] up to $p_T \approx 10$ and 60 GeV/c, respectively. Most jet quenching models are unable to simultaneously reproduce the R_{AA} and v_2 measurements [22–24]. Nevertheless, recent attempts to solve this puzzle have shown promise by considering initial-state collision geometry asymmetries and fluctuations [25, 26], which are predicted to strongly affect the high-p_T v_n coefficients, but not the R_{AA} values. In particular, the fluctuations generate odd harmonics [27] and the measurement of the v_3 coefficient up to very high p_T is expected to clarify the importance of considering initial-state fluctuations in the modeling of parton energy loss [25, 26].

In this Letter, the azimuthal anisotropy of charged particles produced in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV is measured up to $p_T \approx 100$ GeV/c. The scalar product (SP) method [28, 29] is used to determine the v_2 and v_3 coefficients as a function of p_T and collision centrality in the pseudorapidity range $|\eta| < 1$. The unprecedented statistical reach of the $\sqrt{s_{NN}} = 5.02$ TeV PbPb sample for high-p_T particles allows for the first precise measurement of the v_2 and v_3 coefficients at high p_T. Furthermore, v_2 is also measured with the multiparticle cumulant analysis method [30], using 4-, 6- and 8-particle correlations.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter providing a 3.8 T field. Within the solenoid volume there are a silicon pixel and strip tracker detector, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The silicon tracker measures charged particles within $|\eta| < 2.5$ and provides a p_T resolution of about 1.5% for 100 GeV charged particles. Furthermore, the track impact parameter resolution is about 25–90 (45–150) μm in the transverse (longitudinal) dimension, depending on η and p_T [31]. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the range $2.9 < |\eta| < 5.2$ on either side of the interaction region. The granularity of the HF towers is $\Delta\eta \times \Delta\phi = 0.175 \times 0.175$ radians, allowing an accurate reconstruction of the heavy ion event plane. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [32]. The detailed Monte Carlo simulation of the CMS detector response is based on GEANT4 [33].
3 Event and track selections

The analysis of PbPb collisions is based on a data set corresponding to an integrated luminosity of $404 \mu b^{-1}$, collected in 2015. Events were collected with several trigger algorithms, composed of a hardware-based level 1 (L1) trigger, followed by a software-based high-level trigger (HLT). The p_T region up to 14 GeV/c is covered by a minimum-bias trigger, which requires energy deposits in both HF calorimeters above a predefined threshold of approximately 1 GeV. This minimum-bias trigger was prescaled during data taking. To extend the measurement to higher order coefficients and higher p_T (e.g., up to 100 GeV/c), a dedicated trigger that selects events containing a high-p_T particle was used. The L1 trigger requirement was based on the transverse energy (E_T) of the highest E_T calorimeter region ($\Delta \eta \times \Delta \phi = 0.348 \times 0.348$) in the barrel region ($|\eta| < 1.044$). In the HLT farm, a fast version of the offline tracking algorithms was employed and the highest p_T track was required to pass the strict selection criteria described hereafter, resulting in a trigger efficiency of nearly 100%. Different E_T and p_T thresholds [10] were used at L1 and HLT, respectively, to enrich the data sample with events that contain high-p_T tracks.

In the offline analysis, an additional selection of hadronic collisions is applied by requiring at least three towers with an energy deposit of more than 3 GeV per tower in each of the HF detectors. The events are required to have a reconstructed primary vertex, formed by two or more tracks and required to have a distance from the nominal interaction point of less than 15 cm along the beam axis and less than 0.15 cm in the transverse plane. The collision centrality in PbPb events, i.e. the degree of overlap of the two colliding nuclei, is determined from the E_T deposited in both HF calorimeters. Collision centrality bins are given in percentage ranges of the total hadronic cross section, 0–5% corresponding to the 5% of collisions with the largest overlap of the two nuclei [34].

A standard CMS high-purity track selection [31, 35] is used to select primary tracks (tracks associated with the primary vertex). Additional requirements are applied to enhance the purity of these primary tracks. The track must be consistent with originating from the primary vertex by less than 3 standard deviations when estimating both the longitudinal and transverse distances of closest approach. The relative uncertainty of the p_T measurement, $\sigma(p_T)/p_T$, must be less than 10%. To ensure high tracking efficiency and reduce the rate of misreconstructed tracks, primary tracks are restricted to the $|\eta| < 1$ and $p_T > 1$ GeV/c region. Furthermore, tracks with $p_T > 20$ GeV/c are required to match a compatible energy deposit in the calorimeters (ECAL + HCAL). The tracking efficiency and detector acceptance in PbPb collisions are evaluated using simulated HYDJET 1.9 [36] minimum bias and HYDJET-embedded PYTHIA [37] dijet events. The combined geometrical acceptance and efficiency for primary track reconstruction, for $p_T > 1$ GeV/c and $|\eta| < 1$, is 60–75%, depending on centrality. Finally, the rate of misreconstructed tracks reaches its maximum in the most central events, where it approaches 10%.

4 Analysis technique

The anisotropies of the particle azimuthal angle distributions are characterized by the v_n Fourier coefficients, determined by the expansion $dN/d\phi \sim 1 + 2 \sum_{n} v_n \cos[n(\phi - \Psi_n)]$, where N is the number of particles and Ψ_n is the nth harmonic symmetry plane angle. Event-by-event variations in the initial energy density of the collision lead to the measured event plane fluctuations about the (experimentally inaccessible) symmetry plane [38]. The SP method is used to measure azimuthal correlations and extract Fourier coefficients. In this method, the v_n coefficients
can be expressed in terms of Q_n-vectors,

\[
v_n \{SP\} \equiv \sqrt{\frac{\langle Q_n Q_{nA}^* \rangle}{\langle Q_{nA} Q_{nB} \rangle}} \text{, with } Q_n, Q_{nA}, Q_{nB}, Q_{nC} \equiv \sum_{k=1}^{M} \omega_k e^{i\phi_k},
\]

where M represents the number of tracks or HF towers with energy above a certain threshold in each event, ϕ_k is the azimuthal angle of the k^{th} track or HF tower, and ω_k is a weighting factor equal to unity for Q_n, p_T for the tracks (Q_{nC}), and E_T for the HF towers (Q_{nA} and Q_{nB}). The angular brackets $\langle \rangle$ denote averages over all events. The Q_n vector is based on the particles of interest, i.e., tracks with $|\eta| < 1$. The Q_{nA} and Q_{nB} vectors are determined from the two HF calorimeters, covering the range $3 < |\eta| < 5$, while the Q_{nC} vector is obtained using tracks with $|\eta| < 0.75$. If the particle of interest comes from the positive-η side of the tracker, then Q_{nA} is calculated using the negative-η side of HF, and vice versa. The large η gap imposed between Q_{nA} and Q_n suppresses few-particle correlations, such as those induced by high-p_T jets and particle decays, which do not depend on the event plane direction Ψ^E. The real part is taken for all averages of Q-vector products over the events. Azimuthal asymmetries that arise from the acceptance and other detector-related effects are taken into account using a two-step process, where the Q-vector is first recentered and subsequently flattened. These corrections and their effects on the results are negligible for the CMS detector. Since the measurements include correlations between low- and high-p_T particles, the recently established event-plane decorrelation effect cannot be neglected. It is expected to reduce the v_n values in comparison to those determined if the event planes would be established exclusively using high-p_T particles. The model calculations that include fluctuations in the initial state take into account this effect.

The multiparticle cumulant method is also used to measure v_2 from genuine 4-, 6-, and 8-particle correlations, with the advantage of being less sensitive to few-particle correlations, e.g., jet fragmentation. The cumulants are expressed in terms of the corresponding Q_n vectors. We first define the 2-, 4-, 6-, and 8-particle correlators as

\[
\begin{align*}
\langle \langle 2 \rangle \rangle &= \langle \langle e^{i(\phi_1 - \phi_2)} \rangle \rangle, \\
\langle \langle 4 \rangle \rangle &= \langle \langle e^{i(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle, \\
\langle \langle 6 \rangle \rangle &= \langle \langle e^{i(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)} \rangle \rangle, \\
\langle \langle 8 \rangle \rangle &= \langle \langle e^{i(\phi_1 + \phi_2 + \phi_3 + \phi_4 - \phi_5 - \phi_6 - \phi_7 - \phi_8)} \rangle \rangle,
\end{align*}
\]

where the double average symbol $\langle \langle \rangle \rangle$ indicates that the average is taken over all particle combinations and for all events. The unbiased estimators of the reference multiparticle cumulants, $c_n \{ \}$, are defined as

\[
\begin{align*}
c_n \{4\} &= \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2, \\
c_n \{6\} &= \langle \langle 6 \rangle \rangle - 9 \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle + 12 \langle \langle 2 \rangle \rangle^3, \\
c_n \{8\} &= \langle \langle 8 \rangle \rangle - 16 \langle \langle 6 \rangle \rangle \langle \langle 2 \rangle \rangle - 18 \langle \langle 4 \rangle \rangle^2 + 144 \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle^2 - 144 \langle \langle 2 \rangle \rangle^4.
\end{align*}
\]

In order to perform a measurement differential in p_T in the multiparticle cumulant framework, one of the particles in Eq. (3) is restricted to belong to a certain p_T bin. Denoting by $\langle \langle 2' \rangle \rangle$, etc., the modified particle correlators, the differential multiparticle cumulants are defined in
Ref. [43] and can be derived as described in Ref. [41],

\[d_n\{n\} = \langle\langle 4^n\rangle\rangle - 2 \langle\langle 2^n\rangle\rangle \langle\langle 2\rangle\rangle, \]
\[d_n\{6\} = \langle\langle 6^n\rangle\rangle - 6 \langle\langle 4^n\rangle\rangle \langle\langle 2^n\rangle\rangle - 3 \langle\langle 2^n\rangle\rangle \langle\langle 4\rangle\rangle + 12 \langle\langle 2^n\rangle\rangle \langle\langle 2\rangle\rangle^2, \]
\[d_n\{8\} = \langle\langle 8^n\rangle\rangle - 12 \langle\langle 6^n\rangle\rangle \langle\langle 2^n\rangle\rangle - 4 \langle\langle 2^n\rangle\rangle \langle\langle 6\rangle\rangle - 18 \langle\langle 4^n\rangle\rangle \langle\langle 4\rangle\rangle + 72 \langle\langle 4^n\rangle\rangle \langle\langle 2^n\rangle\rangle^2 \]
\[+ 72 \langle\langle 4^n\rangle\rangle \langle\langle 2^n\rangle\rangle + 144 \langle\langle 2^n\rangle\rangle^3 \].

Finally, with respect to the reference multiparticle cumulants, the differential 4-, 6-, and 8-particle \(v_n(p_T, \eta)\) coefficients are derived as

\[v_n\{4\}(p_T, \eta) = - d_n\{4\} \left(-c_n\{4\} \right)^{-3/4}, \]
\[v_n\{6\}(p_T, \eta) = d_n\{6\} \left(c_n\{6\} \right)^{-5/6} 4^{-1/6}, \]
\[v_n\{8\}(p_T, \eta) = - d_n\{8\} \left(-c_n\{8\} \right)^{-7/8} 33^{-1/8}. \]

The statistical uncertainties are evaluated with a data-driven method, as previously employed in Ref. [42]. The data set is divided into 10 subsets with roughly equal numbers of events and the standard deviation of the resulting distribution of the cumulant is used to estimate the uncertainties.

5 Systematic uncertainties

At low \(p_T\), the relative systematic uncertainties for \(v_2\{SP\}\) and \(v_3\{SP\}\) are found to be similar. At high \(p_T\), the \(v_3\{SP\}\) statistical uncertainties are too large to properly disentangle statistical fluctuations from systematic effects. Therefore, the \(v_2\) systematic uncertainties, expressed in terms of relative values in \%, are applied to \(v_3\), with the exception of the uncertainties due to the few-particle correlations, discussed below. The systematic uncertainties due to the vertex position selection and to the \(p_T\) dependence of the tracking efficiency corrections are common to the SP and cumulant analyses. They are found to be less than 1% and independent of \(p_T\) and centrality. The systematic uncertainties due to misreconstructed tracks are derived by changing the track selection criteria. The results are found to depend on \(p_T\) but not centrality, and are also different for the cumulant and SP methods. The track selection uncertainties have been found to gradually increase from \(\sim\)2% at low \(p_T\) to \(\sim\)50% for \(p_T > 60\text{ GeV}/c\) for the SP method, and from \(\sim\)2% to \(\sim\)12% for the cumulant analysis. The SP results have an additional uncertainty arising from few-particle correlations. This uncertainty is determined by varying the \(\eta\) gap and contributes differently to the \(v_2\) and \(v_3\) measurements. It is found to depend on both \(p_T\) and centrality, and ranges in absolute value from 0 to 0.022 for \(v_2\) and from 0 to 0.030 for \(v_3\).

6 Results

Figure [1] shows the \(v_2\) and \(v_3\) results obtained from the SP method as a function of \(p_T\), up to about \(100\text{ GeV}/c\), in seven collision centrality ranges. From low- to high-\(p_T\), the \(v_2\) and \(v_3\) values first increase with increasing \(p_T\), up to a maximum near \(p_T \approx 3\text{ GeV}/c\), before decreasing again. In most centrality ranges, \(v_2\) remains positive up to \(p_T \sim 60–80\text{ GeV}/c\), becoming consistent with zero at higher \(p_T\). Positive \(v_3\) values are found up to \(p_T \approx 20\text{ GeV}/c\) over the 0–40% centrality range. At higher \(p_T\), the measured \(v_3\) value is consistent with zero within the experimental uncertainties. Given the systematic uncertainties, the measured values are compatible with zero. Some negative \(v_3\) values are seen at high \(p_T\) in the 40–50% centrality range, but such
Peripheral events are the most contaminated by back-to-back jet correlations. This is confirmed by studying the η gap dependence of the results in both measured and simulated events, where the latter include dijets embedded into HYDJET events with zero input anisotropy. In the centrality range 50–60%, v_3 is only measured up to 20 GeV/c because of lack of events containing higher p_T particles.

![Figure 1: The v_2 and v_3 results from the SP method as a function of p_T, in seven collision centrality ranges from 0–5% to 50–60%. The vertical bars (shaded boxes) represent the statistical (systematic) uncertainties. The curves represent calculations made with the CUJET3.0 [44] and the SHEE models [26] (see text).](image)

Over the full centrality range, the CUJET3.0 calculations describe qualitatively the trend observed in the v_2 data for $p_T > 10$ GeV/c, but fail to quantitatively reproduce the results. For instance, in the centrality range 0–30% and for $10 < p_T < 40$ GeV/c, v_2 is overestimated by 10–50%, while the model largely underestimates it in the peripheral bins. The SHEE calculations of both v_2 and v_3 are in good agreement with the data for $p_T > 10$ GeV/c over the full centrality range. The success of the SHEE framework suggests that modeling the initial-state fluctuations may be a crucial ingredient to describe the experimental data related to parton energy loss. Although not shown in the figure, a scenario in the SHEE framework with a quadratic path-length dependence of the energy loss, inspired by gauge-gravity duality [49, 50], was also tested and seen to disagree with the data. As just one example, this alternative path-length dependence is found to overestimate the data by 30–40% for $p_T > 20$ GeV/c in the 20–30% centrality range.
The v_2 values are also obtained from 4-, 6-, and 8-particle cumulant analyses, as shown in Fig. 2 where the SP v_2 results are also included for comparison. For $p_T < 3 \text{ GeV}/c$, the results follow the expectation from Bessel-Gaussian or elliptic power v_2 distributions, which predict $v_2\{\text{SP}\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$ \cite{51-53}. The observation that the multiparticle cumulant values remain similar up to $p_T = 100 \text{ GeV}/c$ ($v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$), further suggests that the azimuthal anisotropy is strongly affected by the initial-state geometry and its event-by-event fluctuations \cite{25, 26}. At higher p_T, the difference between SP and multiparticle cumulant results shows a tendency to decrease. Nevertheless, the uncertainties are too large to draw a firm conclusion. This tendency might be due to p_T dependence of flow vector fluctuations, which depends on the shear viscosity over entropy density ratio of the medium \cite{26, 54}. Therefore, the results presented in Fig. 2 provide important information to constrain the QGP shear viscosity in PbPb collisions.

![Figure 2: Comparison between the v_2 results from the SP and the 4-, 6-, and 8-particle cumulant methods, as a function of p_T, in six centrality ranges from 0–5% to 50–60%. The vertical bars (shaded boxes) represent the statistical (systematic) uncertainties.](image)

Figure 3 shows the correlation between high-p_T and low-p_T v_2 values, for investigating the connection between the azimuthal anisotropies induced by hydrodynamic flow and the path-length dependence of parton energy loss \cite{25, 26}. The most peripheral $v_2\{\text{SP}\}$ and $v_2\{4\}$ data points are the ones with the largest error bars. Linear fits to the centrality dependent v_2 correlation between the low- and high-p_T regions are shown in the figure. Here a zero intercept is assumed. The corresponding χ^2 over the number of degree of freedom values are found to be near 1–1.5, except for the $26 < p_T < 35 \text{ GeV}/c$ range, where a positive intercept is indicated for the $v_2\{\text{SP}\}$ results. The non-zero intercept might reflect a centrality dependent event-plane decorrelation that increases going to higher p_T. The slope values for $v_2\{\text{SP}\}$ and $v_2\{4\}$ are found to be compatible within statistical uncertainties and to decrease when selecting higher p_T particles. This suggests that the initial-state geometry and its fluctuations are likely to be the
7 Summary

The azimuthal anisotropy of charged particles produced in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV has been studied using data collected by the CMS experiment. The v_2 and v_3 coefficients are determined, as a function of collision centrality, over the widest transverse momentum range studied to date (from 1 up to 100 GeV/c). For the first time, the multiparticle cumulant method is used for $p_T > 20$ GeV/c. Over the measured centrality range, positive v_2 values are found up to $p_T \sim 60$–80 GeV/c, while the v_3 values are consistent with zero for $p_T > 20$ GeV/c. For $p_T < 3$ GeV/c, v_2 (SP) $\approx v_2\{4\}$, consistent with a collective behavior arising from the hydrodynamic expansion of a quark-gluon plasma. The similarity of v_2 (SP), $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$ at high p_T suggests that v_2 originates from the path-length dependence of parton energy loss associated with an asymmetric initial collision geometry. In addition, a common trend in the centrality dependence of v_2 is observed over the full p_T range, further supporting a common connection to the initial-state geometry and its fluctuations. A model calculation (SHEE) incorporating initial-state fluctuations with a linear path-length dependence of parton energy loss is found to be in good agreement with the data, over the wide p_T and centrality ranges probed in this analysis.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing...
Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COlCIENTIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

[1] PHENIX Collaboration, “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, Nucl. Phys. A 757 (2005) 184, doi:10.1016/j.nuclphysa.2005.03.086, arXiv:nucl-ex/0410003.

[2] STAR Collaboration, “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A 757 (2005) 102, doi:10.1016/j.nuclphysa.2005.03.085, arXiv:nucl-ex/0501009.

[3] BRAHMS Collaboration, “Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment”, Nucl. Phys. A 757 (2005) 1, doi:10.1016/j.nuclphysa.2005.02.130, arXiv:nucl-ex/0410020.
[4] PHOBOS Collaboration, “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A 757 (2005) 28,[do:i:10.1016/j.nuclphysa.2005.03.084][arXiv:nucl-ex/0410022].

[5] ATLAS Collaboration, “Observation of a centrality-dependent dijet asymmetry in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector at the LHC”, Phys. Rev. Lett. 105 (2010) 252303,[do:i:10.1103/PhysRevLett.105.252303][arXiv:1011.6182].

[6] CMS Collaboration, “Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy $= 2.76$ TeV”, Phys. Rev. C 84 (2011) 024906,[do:i:10.1103/PhysRevC.84.024906][arXiv:1102.1957].

[7] ALICE Collaboration, “Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Lett. B 696 (2011) 30,[do:i:10.1016/j.physletb.2010.12.020][arXiv:1012.1004].

[8] CMS Collaboration, “Study of high-p_T charged particle suppression in PbPb compared to pp collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Eur. Phys. J. C 72 (2012) 1945,[arXiv:1202.2554].

[9] ATLAS Collaboration, “Measurement of charged-particle spectra in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector at the LHC”, JHEP 09 (2015) 050,[do:i:10.1007/JHEP09(2015)050][arXiv:1504.04337].

[10] CMS Collaboration, “Charged-particle nuclear modification factors in PbPb and pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, (2016).[arXiv:1611.01664]

[11] BRAHMS Collaboration, “Transverse momentum spectra in Au+Au and d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and the pseudorapidity dependence of high p_T suppression”, Phys. Rev. Lett. 91 (2003) 072305,[do:i:10.1103/PhysRevLett.91.072305][arXiv:nucl-ex/0307003].

[12] PHENIX Collaboration, “Suppression of hadrons with large transverse momentum in central Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV”, Phys. Rev. Lett. 88 (2002) 022301,[do:i:10.1103/PhysRevLett.88.022301][arXiv:nucl-ex/0109003].

[13] PHENIX Collaboration, “Suppressed π^0 production at large transverse momentum in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV”, Phys. Rev. Lett. 91 (2003) 072301,[do:i:10.1103/PhysRevLett.91.072301][arXiv:nucl-ex/0304022].

[14] PHOBOS Collaboration, “Charged hadron transverse momentum distributions in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV”, Phys. Lett. B 578 (2004) 297,[do:i:10.1016/j.physletb.2003.10.101][arXiv:nucl-ex/0302015].

[15] STAR Collaboration, “Centrality dependence of high p_T hadron suppression in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV”, Phys. Rev. Lett. 89 (2002) 202301,[do:i:10.1103/PhysRevLett.89.202301][arXiv:nucl-ex/0206011].

[16] STAR Collaboration, “Transverse momentum and collision energy dependence of high-p_T hadron suppression in Au+Au collisions at ultrarelativistic energies”, Phys. Rev. Lett. 91 (2003) 172302,[do:i:10.1103/PhysRevLett.91.172302][arXiv:nucl-ex/0305015].
[17] A. M. Poskanzer and S. A. Voloshin, “Methods for analyzing anisotropic flow in relativistic nuclear collisions”, Phys. Rev. C 58 (1998) 1671, doi:10.1103/PhysRevC.58.1671, arXiv:nucl-ex/9805001

[18] PHENIX Collaboration, “Azimuthal anisotropy of π⁰ production in Au+Au collisions at √s_{NN} = 200 GeV: Path-length dependence of jet quenching and the role of initial geometry”, Phys. Rev. Lett. 105 (2010) 142301, doi:10.1103/PhysRevLett.105.142301, arXiv:1006.3740

[19] CMS Collaboration, “Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at √s_{NN} = 2.76 TeV”, Phys. Rev. Lett. 109 (2012) 022301, doi:10.1103/PhysRevLett.109.022301, arXiv:1204.1850

[20] ATLAS Collaboration, “Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at √s_{NN} = 2.76 TeV with the ATLAS detector”, Eur. Phys. J. C 74 (2014) 3157, doi:10.1140/epjc/s10052-014-3157-z, arXiv:1408.4342

[21] ALICE Collaboration, “Anisotropic flow of charged particles in Pb-Pb collisions at √s_{NN} = 5.02 TeV”, Phys. Rev. Lett. 116 (2016) 132302, doi:10.1103/PhysRevLett.116.132302, arXiv:1602.01119

[22] D. Molnar and M. Gyulassy, “Saturation of elliptic flow and the transport opacity of the gluon plasma at RHIC”, Nucl. Phys. A 697 (2002) 495, doi:10.1016/S0375-9474(01)01224-6, arXiv:nucl-th/0104073 [Erratum: doi:10.1016/S0375-9474(02)00859-X].

[23] J. Noronha, M. Gyulassy, and G. Torrieri, “Conformal holography of bulk elliptic flow and heavy quark quenching in relativistic heavy ion collisions”, Phys. Rev. C 82 (2010) 054903, doi:10.1103/PhysRevC.82.054903, arXiv:1009.2286.

[24] B. Betz and M. Gyulassy, “Constraints on the path-length dependence of jet quenching in nuclear collisions at RHIC and LHC”, JHEP 08 (2014) 090, doi:10.1007/JHEP08(2014)090, arXiv:1404.6378 [Erratum: doi:10.1007/JHEP08(2014)090].

[25] J. Noronha-Hostler, B. Betz, J. Noronha, and M. Gyulassy, “Event-by-event hydrodynamics + jet energy loss: A solution to the R_{AA} ⊗ v_2 puzzle”, Phys. Rev. Lett. 116 (2016) 252301, doi:10.1103/PhysRevLett.116.252301, arXiv:1602.03788

[26] B. Betz et al., “Cumulants and nonlinear response of high p_T harmonic flow at √s_{NN} = 5.02 TeV”, Phys. Rev. C 95 (2017) 044901, doi:10.1103/PhysRevC.95.044901, arXiv:1609.05171

[27] B. Alver and G. Roland, “Collision geometry fluctuations and triangular flow in heavy-ion collisions”, Phys. Rev. C 81 (2010) 054905, doi:10.1103/PhysRevC.81.054905, arXiv:1003.0194 [Erratum: doi:10.1103/PhysRevC.82.039903].

[28] STAR Collaboration, “Elliptic flow from two and four particle correlations in Au+Au collisions at √s_{NN} = 130 GeV”, Phys. Rev. C 66 (2002) 034904, doi:10.1103/PhysRevC.66.034904, arXiv:nucl-ex/0206001

[29] M. Luzum and J.-Y. Ollitrault, “Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions”, Phys. Rev. C 87 (2013) 044907, doi:10.1103/PhysRevC.87.044907, arXiv:1209.2323
References

[30] A. Bilandzic, R. Snellings, and S. Voloshin, “Flow analysis with cumulants: Direct calculations”, *Phys. Rev. C* **83** (2011) 044913, [doi:10.1103/PhysRevC.83.044913](https://doi.org/10.1103/PhysRevC.83.044913), [arXiv:1010.0233](https://arxiv.org/abs/1010.0233).

[31] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, *JINST* **9** (2014) P10009, [doi:10.1088/1748-0221/9/10/P10009](https://doi.org/10.1088/1748-0221/9/10/P10009), [arXiv:1405.6569](https://arxiv.org/abs/1405.6569).

[32] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, [doi:10.1088/1748-0221/3/08/S08004](https://doi.org/10.1088/1748-0221/3/08/S08004).

[33] Geant4 Collaboration, “Geant4 — a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, [doi:10.1016/S0168-9002(03)01368-8](https://doi.org/10.1016/S0168-9002(03)01368-8).

[34] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, “Glauber modeling in high energy nuclear collisions”, *Ann. Rev. Nucl. Part. Sci.* **57** (2007) 205, [doi:10.1146/annurev.nucl.57.090506.123020](https://doi.org/10.1146/annurev.nucl.57.090506.123020), [arXiv:nucl-ex/0701025](https://arxiv.org/abs/nucl-ex/0701025).

[35] CMS Collaboration, “Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *JHEP* **01** (2016) 006, [doi:10.1007/JHEP01(2016)006](https://doi.org/10.1007/JHEP01(2016)006), [arXiv:1509.09029](https://arxiv.org/abs/1509.09029).

[36] I. P. Lokhtin and A. M. Snigirev, “A model of jet quenching in ultrarelativistic heavy ion collisions and high-\(p_T\) hadron spectra at RHIC”, *Eur. Phys. J. C* **45** (2006) 211, [doi:10.1140/epjc/s2005-02426-3](https://doi.org/10.1140/epjc/s2005-02426-3), [arXiv:hep-ph/0506189](https://arxiv.org/abs/hep-ph/0506189).

[37] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “A brief introduction to PYTHIA 8.1”, *Comput. Phys. Commun.* **178** (2008) 852, [doi:10.1016/j.cpc.2008.01.036](https://doi.org/10.1016/j.cpc.2008.01.036), [arXiv:0710.3820](https://arxiv.org/abs/0710.3820).

[38] S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions”, *Z. Phys. C.* **70** (1996) 665, [doi:10.1007/s002880050141](https://doi.org/10.1007/s002880050141), [arXiv:hep-ph/9407282](https://arxiv.org/abs/hep-ph/9407282).

[39] E877 Collaboration, “Proton and pion production relative to the reaction plane in Au+Au collisions at AGS energies”, *Phys. Rev. C* **56** (1997) 3254, [doi:10.1103/PhysRevC.56.3254](https://doi.org/10.1103/PhysRevC.56.3254), [arXiv:nucl-ex/9707002](https://arxiv.org/abs/nucl-ex/9707002).

[40] CMS Collaboration, “Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions”, *Phys. Rev. C* **92** (2015) 034911, [doi:10.1103/PhysRevC.92.034911](https://doi.org/10.1103/PhysRevC.92.034911), [arXiv:1503.01692](https://arxiv.org/abs/1503.01692).

[41] A. Bilandzic et al., “Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations”, *Phys. Rev. C* **89** (2014) 064904, [doi:10.1103/PhysRevC.89.064904](https://doi.org/10.1103/PhysRevC.89.064904), [arXiv:1312.3572](https://arxiv.org/abs/1312.3572).

[42] CMS Collaboration, “Evidence for collective multiparticle correlations in $p – Pb$ collisions”, *Phys. Rev. Lett.* **115** (2015) 012301, [doi:10.1103/PhysRevLett.115.012301](https://doi.org/10.1103/PhysRevLett.115.012301), [arXiv:1502.05382](https://arxiv.org/abs/1502.05382).

[43] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “Flow analysis from multiparticle azimuthal correlations”, *Phys. Rev. C* **64** (2001) 054901, [doi:10.1103/PhysRevC.64.054901](https://doi.org/10.1103/PhysRevC.64.054901), [arXiv:nucl-th/0105040](https://arxiv.org/abs/nucl-th/0105040).
[44] J. Xu, J. Liao, and M. Gyulassy, “Bridging soft-hard transport properties of Quark-Gluon Plasmas with CUJET3.0”, *JHEP* **02** (2016) 169, [doi:10.1007/JHEP02(2016)169](https://doi.org/10.1007/JHEP02(2016)169), arXiv:1508.00552

[45] J. Noronha-Hostler et al., “Bulk viscosity effects in event-by-event relativistic hydrodynamics”, *Phys. Rev. C* **88** (2013) 044916, [doi:10.1103/PhysRevC.88.044916](https://doi.org/10.1103/PhysRevC.88.044916), arXiv:1305.1981

[46] J. Noronha-Hostler, J. Noronha, and F. Grassi, “Bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics at energies available at the BNL Relativistic Heavy Ion Collider”, *Phys. Rev. C* **90** (2014) 034907, [doi:10.1103/PhysRevC.90.034907](https://doi.org/10.1103/PhysRevC.90.034907), arXiv:1406.3333

[47] B. Betz, M. Gyulassy, and G. Torrieri, “Fourier harmonics of high-pT particles probing the fluctuating initial condition geometries in heavy-ion collisions”, *Phys. Rev. C* **84** (2011) 024913, [doi:10.1103/PhysRevC.84.024913](https://doi.org/10.1103/PhysRevC.84.024913), arXiv:1102.5416

[48] B. Betz and M. Gyulassy, “Examining a reduced jet-medium coupling in Pb+Pb collisions at the Large Hadron Collider”, *Phys. Rev. C* **86** (2012) 024903, [doi:10.1103/PhysRevC.86.024903](https://doi.org/10.1103/PhysRevC.86.024903), arXiv:1201.0281

[49] S. S. Gubser, D. R. Gulotta, S. S. Pufu, and F. D. Rocha, “Gluon energy loss in the gauge-string duality”, *JHEP* **10** (2008) 052, [doi:10.1088/1126-6708/2008/10/052](https://doi.org/10.1088/1126-6708/2008/10/052), arXiv:0803.1470

[50] F. Dominguez et al., “Comparing energy loss and \(p_T\)-broadening in perturbative QCD with strong coupling N = 4 SYM theory”, *Nucl. Phys. A* **811** (2008) 197, [doi:10.1016/j.nuclphysa.2008.07.004](https://doi.org/10.1016/j.nuclphysa.2008.07.004), arXiv:0803.3234

[51] L. Yan, J.-Y. Ollitrault, and A. M. Poskanzer, “Azimuthal anisotropy distributions in high-energy collisions”, *Phys. Lett. B* **742** (2015) 290, [doi:10.1016/j.physletb.2015.01.039](https://doi.org/10.1016/j.physletb.2015.01.039), arXiv:1408.0921

[52] S. A. Voloshin, A. M. Poskanzer, A. Tang, and G. Wang, “Elliptic flow in the Gaussian model of eccentricity fluctuations”, *Phys. Lett. B* **659** (2008) 537, [doi:10.1016/j.physletb.2007.11.043](https://doi.org/10.1016/j.physletb.2007.11.043), arXiv:0708.0800

[53] CMS Collaboration, “Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions”, *Phys. Lett. B* **724** (2013) 213, [doi:10.1016/j.physletb.2013.06.028](https://doi.org/10.1016/j.physletb.2013.06.028), arXiv:1305.0609

[54] ALICE Collaboration, “Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC”, arXiv:1707.05690 Submitted to JHEP.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz

Institute for Nuclear Problems, Minsk, Belarus
O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov

National Centre for Particle and High Energy Physics, Minsk, Belarus
N. Shumeiko

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang

Ghent University, Ghent, Belgium
A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöbeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, C. Beluffi3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz

Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custódio, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Szajder, E.J. Tonelli Manganote4, F. Torres Da Silva De Araujo, A. Vilela Pereira
Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahuja a, C.A. Bernardes a, S. Dogra a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, C.S. Moon b, S.F. Novaes a, Sandra S. Padula a, D. Romero Abad b, J.C. Ruiz Vargas a

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang b

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen 7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. González Hernández, J.D. Ruiz Alvarez, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger 8, M. Finger Jr. 8

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A. Ellithi Kamel 9, M.A. Mahmoud 10,11, A. Radi 11,12

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras17, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel19, H. Jung, A. Kalogeropoulos, O. Karacheban19, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Hoffmann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo16, T. Peiffer, A. Perieau, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Giffels, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann16, S.M. Heindl, U. Husemann, I. Katkov14, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
N. Filipovic, G. Pasztor

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi22, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen
M. Bartók21, P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc)
J.R. Komaragiri
National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati23, S. Bhowmik24, S. Choudhury25, P. Mal, K. Mandal, A. Nayak26, D.K. Sahoo23, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumder, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity24, G. Majumder, K. Mazumdar, T. Sarkar24, N. Wickramage27

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani28, E. Eskandari Tadavani, S.M. Etesami28, M. Khakzad, M. Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29, F. Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Universit`a di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b, C. Calabriaa,b, C. Caputoa,b, A. Colaleoa, D. Creanzaa,c, L. Cristellaa,b, N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia, G. Minielloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, R. Radognaa,b, A. Ranieria, G. Selvaggia,b, A. Sharmaa, L. Silvestrisa,b,16, R. Vendittia,b, P. Verwilligena

INFN Sezione di Bologna a, Universit`a di Bologna b, Bologna, Italy
G. Abbiendia, C. Battilana, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b, A. Perrottaa, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia,b,16
INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergò, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D'Alessandro, E. Focardi, P. Lenzi, M. Meschini, S. Paoletti, L. Russo, G. Sguazzoni, D. Strom, L. Viliani

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genoa, Italy
V. Calvelli, F. Ferro, M.R. Monge, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
L. Brianza, F. Brivio, V. Ciriolo, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, R.A. Manzoni, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Pigazzini, S. Ragazzi, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy
S. Buontempo, N. Cavallo, G. De Nardo, S. Di Guida, M. Esposito, F. Fabozzi, F. Fienga, A.O.M. Iorio, G. Lanza, L. Lista, S. Meola, P. Paolucci, C. Sciaccà, F. Thyssen

INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy
P. Azzi, N. Bacchetta, L. Benato, D. Bisello, A. Boletti, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, M. Gulmini, S. Lacaprara, M. Margoni, G. Maron, A.T. Meneguzzo, M. Michelotto, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Zanetti, P. Zotto, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
A. Braghieri, F. Fallavolita, A. Magnani, P. Montagna, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
L. Alunni Solestizi, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, G. Mantovani, V. Mariani, M. Menichelli, A. Saha, A. Santocchia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, R. Castaldi, M.A. Ciocci, R. Dell’Orso, S. Donato, G. Fedi, A. Giassi, M.T. Grippo, F. Ligabue, T. Lomtadze, L. Martinelli, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini

INFN Sezione di Roma, Università di Roma, Roma, Italy
L. Barone, F. Cavallari, M. Cipriani, D. Del Re, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, P. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, M. Costa, R. Covarelli, A. Degano, N. Demaria,
L. Fincoa,b, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b, M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, A. Zanettia

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

Chonbuk National University, Jeonju, Korea
A. Lee

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim

Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, T.J. Kim

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea
J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali34, F. Mohamad Idris35, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz36, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magaña Villalba, J. Mejia Guisao, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck
University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadrucio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Votyshin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
M. Chadeeva, E. Popova, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, Y. Skovpen, D. Shtol
The CMS Collaboration

P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov, V.R. Tavolaro, K. Theofilatos, R. Wallny

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Yang, A. Zucchetta

National Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushkin, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Paganis, A. Psallidas, J.f. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhoph, G. Singh, N. Srimalnabhas, N. Suwonjandee

Cukurova University - Physics Department, Science and Art Faculty
A. Adiguzel, M.N. Bakirci, S. Cerci, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir, B. Tali, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
A. Belyaev, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Ftytan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko, J. Pela, B. Penning,
M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta67, T. Virdee16, J. Wright, S.C. Zenz

\textbf{Brunel University, Uxbridge, United Kingdom}
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

\textbf{Baylor University, Waco, USA}
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

\textbf{Catholic University of America}
R. Bartek, A. Domínguez

\textbf{The University of Alabama, Tuscaloosa, USA}
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

\textbf{Boston University, Boston, USA}
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

\textbf{Brown University, Providence, USA}
G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, R. Syarif

\textbf{University of California, Davis, Davis, USA}
R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi

\textbf{University of California, Los Angeles, USA}
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev, M. Weber

\textbf{University of California, Riverside, Riverside, USA}
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates

\textbf{University of California, San Diego, La Jolla, USA}
J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech68, C. Welke, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

\textbf{University of California, Santa Barbara - Department of Physics, Santa Barbara, USA}
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo

\textbf{California Institute of Technology, Pasadena, USA}
D. Anderson, J. Bendavid, A. Bornheim, J. Bunn, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu

\textbf{Carnegie Mellon University, Pittsburgh, USA}
M.B. Andrews, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg
University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir†, M. Cremonesi, V.D. Elvira, F. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Nahn, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, Y. Wu

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA
S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Bein, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, H. Prosper, A. Santra, R. Yohay

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colarescheschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, J.D. Sandoval Gonzalez, N. Varela, H. Wang, Z. Wu, M. Zakaria, J. Zhang

The University of Iowa, Iowa City, USA
B. Bilki†, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmiradov, O. Khristenko, J.-P. Merlo, H. Mermerkaya†, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok†, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You
The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, L. Forthomme, R.P. Kenny III, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, A. Apyan, V. Azzolini, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. McGinn, C. Mironov, S. Narayanan, X. Ni, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, J. Kaiser, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbehani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, A. Kumar, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA
N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko, M. Planer, A. Reinsvold, R. Ruchti, N. Rupprecht, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin
Princeton University, Princeton, USA
S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, T. Medvedeva, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, A. Svyatkovskiy, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, F. Wang, W. Xie

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA
O. Bouhali72, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon73, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamlchhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sithuprarasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, J. Sturdy

University of Wisconsin - Madison, Madison, WI, USA
D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Now at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Now at British University in Egypt, Cairo, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
15: Also at Ilia State University, Tbilisi, Georgia
16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
24: Also at University of Visva-Bharati, Santiniketan, India
25: Also at Indian Institute of Science Education and Research, Bhopal, India
26: Also at Institute of Physics, Bhubaneswar, India
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at Yazd University, Yazd, Iran
30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy
33: Also at Purdue University, West Lafayette, USA
34: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
36: Also at Consejo Nacional de Ciencia y Tecnologia, Mexico city, Mexico
37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
38: Also at Institute for Nuclear Research, Moscow, Russia
39: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
41: Also at University of Florida, Gainesville, USA
42: Also at P.N. Lebedev Physical Institute, Moscow, Russia
43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
45: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
46: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
47: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
48: Also at National and Kapodistrian University of Athens, Athens, Greece
49: Also at Riga Technical University, Riga, Latvia
50: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
51: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
52: Also at Gaziosmanpasa University, Tokat, Turkey
53: Also at Adiyaman University, Adiyaman, Turkey
54: Also at Istanbul Aydin University, Istanbul, Turkey
55: Also at Mersin University, Mersin, Turkey
56: Also at Cag University, Mersin, Turkey
57: Also at Piri Reis University, Istanbul, Turkey
58: Also at Ozyegin University, Istanbul, Turkey
59: Also at Izmir Institute of Technology, Izmir, Turkey
60: Also at Marmara University, Istanbul, Turkey
61: Also at Kafkas University, Kars, Turkey
62: Also at Istanbul Bilgi University, Istanbul, Turkey
63: Also at Yildiz Technical University, Istanbul, Turkey
64: Also at Hacettepe University, Ankara, Turkey
65: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
66: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
67: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
68: Also at Utah Valley University, Orem, USA
69: Also at Argonne National Laboratory, Argonne, USA
70: Also at Erzincan University, Erzincan, Turkey
71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
72: Also at Texas A&M University at Qatar, Doha, Qatar
73: Also at Kyungpook National University, Daegu, Korea