Inactivation of α₂-macroglobulin by activated human polymorphonuclear leukocytes

G. Deby-Dupont, 1,2, CA J.-L. Croisier, 3
G. Camus, 2, D. Brumioul, 4 M. Mathy-Hartert, 2
D. Sondag, 4 C. Deby 2 and M. Lamy 1,2

1Department of Anesthesiology, Centre Hospitalier Universitaire, B35, 2Center for the Biochemistry of Oxygen, Institut de Chimie, B6, 3Institut Supérieur d'Education Physique et de Kinésithérapie, B21, 4Institut Provincial d'Enseignement Supérieur Paramédical, Liège and 5Centre de Transfusion Sanguine, Centre Hospitalier Universitaire, B35, Université de Liège, Sart Tilman, 4000 Liège, Belgium

Corresponding Author

Introduction

During activation, the polymorphonuclear leukocytes (PMNL) release numerous potent substances, such as active oxygen species, mediators of inflammation and enzymes. 1,2 One of these enzymes, myeloperoxidase (MPO), is included in the primary granules of the polymorphonuclear neutrophils and produces hypochlorous acid from hydrogen peroxide and chloride anion. This oxidant molecule is able to generate chloramines and to destroy bacterial structures resistant to proteinases. 3,4 These potent substances, released by the activated PMNL, normally benefit the host by destroying foreign organisms, and the role of the proteinases would be to allow PMNL to traverse connective tissue barriers by local destruction strictly controlled by antiproteinases. 5

Matheson et al. 6 have discovered that α₂-proteinase inhibitor (α₂-PI), one of the main plasmatic antiproteinases particularly active against elastase, can be inactivated by MPO in the presence of hydrogen peroxide and chloride anion and that this inactivation results from oxidation into sulphone of the two methionyl residues of the reactive site of α₂-PI. So, during excessive activation, the neutrophils will release proteinases and MPO together in high concentrations; the oxidative inactivation of α₂-PI by MPO-generated factors will result in increasing proteolytic destruction of tissues by proteinases, particularly by free elastase. 7

α₂-Macroglobulin (α₂-M) is another important plasma antiproteinase presenting a broad reactivity with serine-, cysteine-, aspartic- and metalloproteinases. Its structure and antiproteinase activity have been studied extensively in the past few years. It possesses four identical subunits linked in pairs by disulphide bonds forming two half molecules which are associated by non-covalent bonds. α₂-M contains a bait area of about 35 different amino acids, each being specifically attacked by a particular proteinase. 8-11 By proteolysis of a specific peptide bond of the bait region and cleavage of a thioester bond, the binding of a proteinase leads to a change of α₂-M conformation, so that the complex proteinase–α₂-M will be recognized quickly by macrophage receptors and rapidly eliminated by the reticulo-endothelial system. 12 This conformational change of α₂-M leads to the trapping of the enzyme, which then remains active only against low molecular weight substrates, since by steric inhibition the access to the trapped proteinase is prohibited for high molecular weight substrates. 13,15 It has been demonstrated that α₂-M is vulnerable to ammonium salts, which cause the transition of α₂-M from the S-form to the F-form that differ in electrophoretic mobility (‘slow’ for S, and ‘fast’ for F) and that this transition renders α₂-M unable to protect large molecular weight substrates from proteolysis. 14,15 To test the antiproteinase activity of α₂-M, Barrett et al. 14 assayed the proteolytic activity of
trypsin against a large molecular weight substrate in the presence of α₂-M, so that the trapping of trypsin by α₂-M reduced or totally inhibited the enzymatic activity. But the pre-treatment of α₂-M by ammonium salts (such as methyl ammonium chloride) impaired the inhibitory power of α₂-M on trypsin.

The purpose of this study was to demonstrate that α₂-M is highly sensitive to oxidation and that activated PMNL or some of their products of activation can destroy its antiproteinase activity, as they do for α₁-PI.⁶ Thus, the results are in agreement with those reported previously by Reddy et al.⁶ Taken together, these findings confirm Weiss' hypothesis of a possible oxidation of α₂-M by activated neutrophils with possible dramatic consequences on tissue destruction during acute inflammation.⁵

Materials and Methods

Materials: The chemicals reagents (analytical grade) were purchased as follows: trihydroxyl methyl amino methane (Tris), sodium and potassium chloride, calcium and magnesium chloride, sodium dihydrogen and potassium monohydrogen phosphate, ammonium sulphate, hydrogen peroxide (H₂O₂), hypochlorous acid (HOCl), dimethylsulphoxide, glucose, toluene and Brij 35 from Merck Chemical; methylammonium chloride from Janssen Chemical; N-formyl L-methionyl L-leucyl-t-phenylalanine (FMLP), cytochalasin B, tetrazolium nitroblue, superoxide dismutase, cetyltrimethylammonium bromide, thiourea and hide powder azure from Sigma; bovine trypsin, soybean trypsin inhibitor (SBTI), bovine α₂-macroglobulin and Chromozym TRY (carbobenzoxy-t-valyl-t-glycyl-t-arginyl-p-nitroanilide) from Boehringer; Dextran T500, Ficoll-Paque; Sephadex SP50 from Pharmacia Fine Chemical; and Aca 34 from IBF.

The bovine trypsin preparation was standardized by active site titration⁷ and was found to contain 83% active enzyme. The trypsin concentrations in the assays are expressed as active trypsin. The purity of trypsin, α₂-macroglobulin and myeloperoxidase were controlled by SDS-polyacrylamide gel electrophoresis (3-15%).

Preparation and activation of polymorphonuclear leukocytes: Polymorphonuclear leukocytes (PMNL) were isolated from human blood of healthy donors following the technique of Borgcat and Samuelsson.⁸ After a first centrifugation (25 min at 200 x g), the plasma was discarded and the ‘buffy coat’ was resuspended in one volume of saline and a half volume of 6% Dextran T 500 in saline, until erythrocytes settled down. The ‘foamy coat’ was layered over Ficoll–Paque. The PMNL pellets were collected after centrifugation (100 x g, 20 min at 20°C) and briefly exposed to Tris (2.06%)-ammonium chloride (0.83%) at pH 7.4, to lyse any remaining erythrocytes. After a last centrifugation (15 min at 20°C, 200 x g), the cells were adjusted to 20 x 10⁶ cells/ml of phosphate buffered saline (PBS: Na₂HPO₄, 10⁻² M; KH₂PO₄, 1.5 x 10⁻³ M; KCl, 2.7 x 10⁻³ M; NaCl, 0.14 M; glucose, 7.5 x 10⁻³ M, pH 7.3) for further use.

For activation, 2 x 10⁶ cells (in 0.1 ml PBS) were treated with 10 µl of FMLP (100 µg/ml), 10 µl of cytochalasin B (250 µg/ml) and 10 µl of a 200 mM CaCl₂–50 mM MgCl₂ solution in PBS. In order to prove the PMNL activation by FMLP and cytochalasin B, we used the superoxide dismutase inhibitable reduction of either tetrazolium nitroblue (NBT) or ferricytochrome C to measure the rate of superoxide anion generation by activated cells.ⁱ⁹

2 x 10⁶ PMNL in 0.1 ml PBS and 0.9 ml of either a 10⁻³ M NBT or ferricytochrome C solution were incubated for 5 min at 37°C. After addition of FMLP and cytochalasin B, the absorbance at 522 or 550 nm was followed and compared with the same assay in the presence of 60 µg of superoxide dismutase, the specific enzyme destroying the superoxide anion.

Before the test on the activity of trypsin, α₂-M was preincubated with PMNL for 20 min at 37°C in a final volume of 1 ml (α₂-M final concentration, 800 µg/ml). Control assays were made by incubation of α₂-M in the same conditions but with non-activated PMNL. After centrifugation (600 x g, 5 min at 20°C), the supernatants were pipetted and used for trypsin activity measurement. Control experiments of the direct action of activated or non-activated PMNL on trypsin activity were carried out.

To rule out a possible release of a trypsin-like enzyme by activated PMNL, which would interfere with the release of the dye from the substrate, we looked at a possible trypsin-like activity in the supernatant of PMNL by using a low molecular weight chromogenic substrate, Chromozym TRY® (carbobenzoxy-t-valyl-t-glycyl-t-arginyl-p-nitroanilide).⁹ Trypsin cleaves this substrate releasing p-nitroaniline, the absorbance of which is determined at 405 nm. The working solution of Chromozym TRY® was prepared by dilution of 2 ml of a concentrated solution (1.5 mg/ml of dimethylsulphoxide) in 25 ml of Tris–HCl buffer (0.1 M, pH 8.0) added to CaCl₂ (0.02 M). In the assay tube, 1 ml of the working solution of Chromozym TRY® is mixed with 0.8 ml of Tris–HCl buffer and 0.2 ml of the supernatant from activated PMNL. After 10 min of reaction, the absorbance was measured against the same test without supernatant (control test). A standard curve was established with concentrations of bovine trypsin ranging from 2 to 100 ng/ml.

Effects of various substances on α₂-macroglobulin activity: MPO was purified from PMNL isolated from 30 l of blood from healthy donors, according to the
method described previously. The purity of the final preparation was checked by the ratio of absorbance at 430 nm vs. 280 nm and by analytical electrophoresis either on 9% polyacrylamide gel at pH 4.6 or on gradient polyacrylamide gel (7-15%) in the presence of 0.1% sodium dodecyl sulphate and 2-mercapto-ethanol, in 0.1 M Tris–glycine buffer at pH 8.3.22

To demonstrate a possible role played by MPO in \(\alpha_2 \)-M inactivation, the following experiments were carried out. Forty \(\mu l \) of MPO (1.25 \(\times \) 10\(^{-4} \) M in phosphate buffer 0.1 M, NaCl 0.2 M), 10 \(\mu l \) of \(\mathrm{H}_2\mathrm{O}_2 \) (10\(^{-4} \) M) and 50 \(\mu l \) of \(\alpha_2 \)-M (1600 \(\mu g/ml \) in Tris–HCl buffer) were incubated for 10 min at 37°C. 100 \(\mu l \) of trypsin (14 \(\mu g/ml \) in Tris–HCl buffer) were then added, the volume of the assay tube was adjusted to 0.5 ml with Tris–HCl buffer and a new incubation was performed for 10 min at 37°C. Next, the proteolytic activity of trypsin was assayed as described above. To test that the trypsin activity was not directly inhibited by MPO or \(\mathrm{H}_2\mathrm{O}_2 \), the same assays were performed in the absence of \(\alpha_2 \)-M (control assay).

The enzymatic activity of MPO produces oxidant chlorinated species, particularly hypochlorous acid (HOCl) which could play a role in \(\alpha_2 \)-M inactivation. So, its direct action on \(\alpha_2 \)-M was tested. In each assay, 50 \(\mu l \) of \(\alpha_2 \)-M (1600 \(\mu g/ml \)) and 50 \(\mu l \) of HOCl (10\(^{-4} \) M) were incubated for 5 min at 37°C. One hundred \(\mu l \) of trypsin (14 \(\mu g/ml \) in Tris–HCl buffer) were added to the assay tube and the volume adjusted to 0.5 ml with Tris–HCl buffer. After 10 min incubation at 37°C, the proteolytic activity of trypsin was tested. Control assays were made without \(\alpha_2 \)-M.

The effects of thiourea, an inhibitor of MPO activity, was assessed by incubating PMNL (20 \(\times \) 10\(^6 \) cells/ml) for 5 min at 37°C with 10 \(\mu l \) of a thiourea solution (10\(^{-4} \) M). The cells were then activated in the presence of \(\alpha_2 \)-M (see above). After incubation for 20 min at 37°C, the supernatants were used to test the remaining inhibiting activity of \(\alpha_2 \)-M on trypsin activity. Control tests were made in the same manner with all the reagents except \(\alpha_2 \)-M.

Assay of proteinase inhibitory activity of \(\alpha_2 \)-macroglobulin. The activity of \(\alpha_2 \)-M was determined as its inhibition on the proteolytic activity of trypsin against a large molecular weight substrate, hide powder azure. Free trypsin breaks the link between the hide powder and a dye, Remazol Brilliant Blue, releasing it in the supernatant where its absorbance is determined at 595 nm (\(A_{595} \)). When complexed by \(\alpha_2 \)-M, trypsin is inactive against this substrate.

All the assays were prepared in triplicate and the reagents were dissolved in the test buffer, 0.1 M Tris–HCl at pH 8.1 added to 0.02 M CaCl\(_2\) and 0.1% Brij 35. In each of the triplicate assay tubes, 0.1 ml of trypsin (14 \(\mu g/ml \)) was incubated for 10 min at 37°C with 0.1 ml of \(\alpha_2 \)-M (800 \(\mu g/ml \)) in a total volume of 0.5 ml made up with the test buffer. Water (0.5 ml) was then added to the tube, followed by 0.8 ml of the substrate suspension (12.5 mg of hide powder azure per ml in 0.6 M sucrose, 0.1% Brij 35, 0.03% toluene). After an incubation of 20 min at 37°C with continuous shaking, 1 ml of water was added and after centrifugation (2 000 \(\times \) g for 5 min), the \(A_{595} \) of the supernatant was determined.

To verify the existence of a linear relationship between increasing concentrations of trypsin and the amount of the dye released from a constant concentration of the substrate, a standard curve of 4 to 20 \(\mu g \) of trypsin/ml was determined in the absence of \(\alpha_2 \)-M. In the same manner, to verify the existence of a linear relationship between increasing amounts of \(\alpha_2 \)-M and the inhibition of trypsin activity, a constant concentration of trypsin was incubated with increasing amounts of \(\alpha_2 \)-M from 100 to 1 000 \(\mu g/ml \).

Soybean trypsin inhibitor (SBTI) is an efficacious inhibitor of trypsin that blocks the active centre of the enzyme. Consequently, when preincubated with trypsin (5 min at 20°C), it has to prevent the enzyme action on the hide powder azure substrate. SBTI was used in these experiments to prove the validity of the test assay of trypsin enzymatic activity.

Methylammonium chloride causes the cleavage of the thioester bonds which link the four sub-units of \(\alpha_2 \)-M. This cleavage changes the \(\alpha_2 \)-M conformation, leading to \(\alpha_2 \)-M inactivation.\(^{14,15} \) Methylammonium chloride (in concentrations between 20 and 400 mM) was preincubated with \(\alpha_2 \)-M (800 \(\mu g/ml \)) for 30 min at 20°C. Trypsin activity was then tested in the presence of this inactivated \(\alpha_2 \)-M, following the previously described technique. Control assays were carried out in the absence of \(\alpha_2 \)-M to measure the direct influence of methylammonium chloride on trypsin activity.

Results

Using the technique of Barrett,\(^{14} \) a linear relationship was found between the amount of trypsin incubated in the presence of a fixed concentration of the substrate (10 mg) and the amount of the released dye, for trypsin concentrations ranging from 2 to 20 \(\mu g/ml \) (\(A_{595} \) from 0.05 to 0.32). For further assays, a fixed trypsin concentration of 14 \(\mu g/ml \) was chosen giving a reproducible \(A_{595} \) of 0.22 ± 0.02 (\(n = 30 \)). The \(A_{595} \) obtained for this trypsin concentration in the absence of \(\alpha_2 \)-M was taken as 100% of trypsin activity (Fig. 1, Column 1). The enzyme assay was affected by the trypsin inhibitor SBTI, and the trypsin activity (14 \(\mu g/ml \)) was completely inhibited for an SBTI concentration of 15 \(\mu g/ml \), which represents an SBTI/trypsin molar ratio of 1.1 (Fig. 1, Column 6). A linear relationship was observed between increasing...
FIG. 1. Role of \(\alpha_2 \)-macroglobulin (\(\alpha_2 \)-M) and soybean trypsin inhibitor (SBTI) on trypsin activity. Column 1, trypsin alone (14 \(\mu \)g/ml); Columns 2, 3, 4 and 5, increased concentrations of \(\alpha_2 \)-M (200, 400, 600, 800 \(\mu \)g/ml); Column 6, soybean trypsin inhibitor (15 \(\mu \)g/ml); Column 7, \(\alpha_2 \)-M (800 \(\mu \)g/ml) inactivated by methylammonium chloride (400 mM).

concentrations of \(\alpha_2 \)-M (from 200 to 800 \(\mu \)g/ml) and the activity of trypsin (fixed concentration of trypsin, 14 \(\mu \)g/ml) (Fig. 1, Columns 2, 3, 4 and 5). The enzyme activity was completely abolished for an \(\alpha_2 \)-M concentration of 800 \(\mu \)g/ml, which represents a trypsin/\(\alpha_2 \)-M ratio of 2 on the basis of the trypsin and \(\alpha_2 \)-M molecular weights of 23 and 725 kDa, respectively. This concentration (800 \(\mu \)g/ml \(\alpha_2 \)-M) was chosen for further assay. When preincubated with \(\alpha_2 \)-M, methylammonium chloride blocks the antiproteinase activity of \(\alpha_2 \)-M. A complete inactivation of \(\alpha_2 \)-M (800 \(\mu \)g/ml) was observed for a methylammonium chloride concentration of 400 mM (Fig. 1, Column 7). At the same concentration, methylammonium chloride was totally inactive on trypsin alone.

Fig. 2 shows the increasing production of superoxide anion by PMNL activated by FMLP and cytochalasin B. The absorbance of formazan blue (produced by reaction of tetrazolium nitroblue with the superoxide anion generated by PMNL) increased with time for activated PMNL, remaining very low for non-activated cells. Fig. 2 also shows the progressive reduction of ferricytochrome C by anion superoxide produced by activated PMNL after a short period of latency. The production of superoxide anion by non-activated cells is given as comparison. For some PMNL preparations, superoxide anion was produced (at low levels) without further addition of FMLP and cytochalasin B, indicating a possible unexpected activation of the cells during their isolation from blood. PMNL preparations with this unexpected activation were not used for our experiments of \(\alpha_2 \)-M inactivation.

Using the chromozym TRYR technique, proteolytic activity sufficient for interfering with the assay conditions could not be detected. Additionally, by themselves, supernatants of activated or non-activated PMNL were unable to release the dye from the substrate. Moreover they did not decrease the release of the dye from the substrate, which indicates that no trypsin inhibitor was produced (Fig. 3, Columns 2 and 3). Activated PMNL destroyed the antiproteinase activity of \(\alpha_2 \)-M (Fig. 3, Column 5) since trypsin activity was completely recovered after treatment of \(\alpha_2 \)-M by activated PMNL. This \(\alpha_2 \)-M inactivation was dependent on the activation of PMNL, for non-activated PMNL did not affect the inhibitory power of \(\alpha_2 \)-M on trypsin (Fig. 3, Column 6). When thiourea was added (at the concentration of 10\(^{-4}\) M) to the incubation medium of \(\alpha_2 \)-M with activated PMNL, it prevented the inactivation of \(\alpha_2 \)-M, resulting in a complete recovery of \(\alpha_2 \)-M inhibition on trypsin activity (Fig. 3, Column 7).

The treatment of \(\alpha_2 \)-M by MPO in the presence of \(\text{H}_2\text{O}_2 \) and \(\text{Cl}^- \) inactivated \(\alpha_2 \)-M since all the activity of trypsin was recovered (Fig. 3, Column 10), while the enzyme was not directly affected by the activity of MPO (Fig. 3, Column 8). Hypochlorous acid, HOCl,
PMNL inactivate α₁-macroglobulin

Table 1. Role of H₂O₂ and HOCl on trypsin activity

Concentration of oxidant (M)	Trypsin activity (%)				
H₂O₂	0 100	10⁻⁷ 100	10⁻⁶ 100	10⁻⁵ 100	
HOCl	0 100	10⁻⁷ 90	10⁻⁶ 72	10⁻⁵ 0	10⁻⁴ 0

the direct product of MPO activity, was tested alone. At a concentration of 10⁻⁷M, it destroyed the activity of α₁-M (Fig. 3, Column 11). However, as HOCl is very oxidant, it was tested directly on trypsin activity. At concentrations of 10⁻⁵ and 10⁻⁴M, it destroyed the enzyme (Table 1). But in our assay conditions HOCl (10⁻⁷M), had little effect on trypsin activity (Fig. 3, Column 9). Hydrogen peroxide, at concentrations between 10⁻⁷ and 10⁻⁴M, did not inactivate trypsin (Table 1).

When α₁-M is inactivated, its antigenic activity shows little change. Using the immunoprecipitin analysis technique (immunoelectropherogram), a difference in mobility of the inactive human α₁-M, compared with its native active form (Fig. 4), was observed. A similar effect was observed by Hubbard et al. for complexed α₁-M and by Barrett et al. who, using immunoprecipitin analysis, also found a slight difference. The heights of rockets for the F-α₁-M (fast form or complexed by proteinases) were lower (12 to 25%) than those for the S-α₁-M (uncomplexed form), depending on the antiserum.

Discussion

α₁-Macroglubulin (about 1.1 x 10⁹ M) was inactivated by 2 x 10⁶ PMNL. This inactivation was complete, with a total loss of antiproteinase activity, but needed an activation of the cells, since α₁-M treated by non-activated PMNL conserved its antiproteinase activity. The control assays allowed us to exclude the capture of α₁-M by the cells or the release of an inhibitor directly acting on trypsin. The activation of PMNL can release proteinases (such as elastase) which, by binding to α₁-M, could have rendered it inactive towards trypsin. But it seems difficult to admit that 2 x 10⁶ cells would have released sufficient amounts of proteinases to completely complex the amount of α₁-M used in these assays.

When PMNL are activated, they undergo the ‘respiratory burst’, triggering the activity of membrane NADPH oxidase leading to the production of excited forms of oxygen, particularly O₂ (superoxide anion) from which H₂O₂ can be generated. PMNL activation also leads to degranulation with the release of proteolytic and hydrolytic enzymes from granules. MPO is an important enzyme present in the azurophilic granules. It uses H₂O₂ and halide anions (Cl⁻, I⁻ etc.) for its enzymatic activity, which generates various strong oxidants, such as HOCl and chloramines. The inactivation of α₁-M by excited PMNL can be due to the excited forms of oxygen or the action of the granulocytic enzymes. It is unlikely that O₂ is responsible for α₁-M inactivation. To attack α₁-M, O₂ needs to reach this molecule, but, in our assay conditions, its access to α₁-M is limited by its instability in aqueous media. Moreover, the effects of O₂ on α₁-M were tested using the production of O₂ by an acetaldehyde-xanthine oxidase system in buffer with added α₁-M. In these conditions, the antiproteinase activity of α₁-M remained unaffected. Consistent with the conclusion that O₂ was not the primary species involved are the results of a previous study by Reddy et al. where neutrophil cytoplasts, able to generate O₂ and H₂O₂ but not HOCl, failed to inactivate α₁-M in the absence of exogenous MPO. By dismutation, O₂ produces H₂O₂ which could directly act on α₁-M. However, the use of H₂O₂ concentrations between 10⁻⁷ and 10⁻⁵M failed to inactivate α₁-M.

Since neither O₂ nor H₂O₂ appears responsible for the destruction of α₁-M antiproteinase activity, attention was therefore focused on the role of MPO. The activation of PMNL leads to their degranulation, with activation of many enzymes. In presence of H₂O₂ produced from O₂ dismutation, MPO generates potent oxidant compounds, particularly HOCl. It has been shown that the activity of MPO inactivates α₁-PI. This study demonstrates that α₁-M is inactivated in a similar manner by MPO and that the main product of MPO activity, HOCl, is responsible for this inactivation.

FIG. 4. Immunoprecipitin analysis (immunoelectropherogram) of human α₁-M (anode at right). Troughs, rabbit antiserum obtained against human α₁-M. Panel A, upper well, normal human plasma; lower well, pure native α₁-M. Panel B, upper well, α₁-M treated by activated PMNL; lower well, α₁-M treated by human myeloperoxidase. Note the difference in mobility between the slow native α₁-M and the fast inactive form after PMNL or myeloperoxidase treatment.
inactivation. The results are in agreement with those obtained by Reddy et al. These authors showed that human α2-M incubated in the presence of activated PMNL rapidly lost the ability to inhibit neutrophil and pancreatic elastase activity. They also showed that PMNL inactivate α2-M by a HOCI dependent process.

However, it appears from our observations that this inactivation of α2-M by HOCI is nonspecific, since trypsin itself can be totally destroyed by HOCl, but only at higher concentrations (10-5 M) of this molecule. In the same manner, H2O2 also has a destroying effect on α2-M, but hydrogen peroxide at concentrations of 10-4 M is needed for this destruction. It is probable that inactivation of α2-M occurs by the destruction of the S-S bonds between the four subunits of the protein, leading to their dissociation. The limited reduction of α2-M produces monomers which reassociate after proteinase treatment but do not prevent proteinases from cleaving hide powder azure. Larsson et al. found that enzymatic treatment of α2-M cleaves the disulphide bonds inhibiting the further binding of trypsin. Moncino et al. found by chemical reduction of α2-M with diithiotreitol, obtained α2-M monomers retaining their proteinase binding capacity, but becoming unable to inhibit the enzymatic activity of the bound proteinases. By electrophoresis, we confirmed that, after treatment by activated PMNL or MPO, the electrophoretic pattern of α2-M was modified with the disappearance of the 720 000 kDa band and the presence of new bands localized around 180 000 kDa. These assays were carried out using bovine α2-M, as well as α2-M purified from human plasma. This human α2-M, when treated by activated PMNL or MPO, loses its trypsin inhibitory capacity in the same manner as bovine α2-M.

In our experimental conditions, α2-M (10-9 M) was completely inactivated by a 20 min incubation in the presence of excited PMNL, but 2 x 106 cells per assay were used. Moreover, these cells remained in close contact with α2-M for a long time. While PMNL can exert strong destructive effects on host tissues, our experimental conditions are far from being comparable to a normal in vivo situation, where plasma protectors will counteract any PMNL destroying activity on α2-M. Therefore, the extent to which in vivo α2-M inactivation by triggered PMNL could occur and contribute to tissue destruction through imbalance between proteases and antiproteases is still obscure and requires further studies. It is worth remembering, however, that we have measured important plasma concentrations of MPO in inflammation states associated with ARDS, sepsis or acute pancreatitis. On the other hand, decreased plasma and serum concentrations of α2-M have been reported in ARDS and septic patients. Furthermore, these decreased plasma or serum concentrations of α2-M are measured by routine immunological or immunoelectrophoresis techniques that are unable to easily differentiate the active from the inactive form of α2-M, so that the plasma or serum concentrations of the protein measured by these techniques do not reflect the capacity of α2-M to inhibit proteases. Taken together, these findings indicate that in vivo inactivation of α2-M cannot be ruled out, but as suggested above the occurrence of this phenomenon and its possible involvement in tissue destruction by active protease in inflammatory diseases remain to be firmly demonstrated.

References

1. Habrer BM, Klippen RN, Curmutter JT. Biological defense mechanisms: the production by leukocytes of superoxide, a potent bactericidal agent. J Clin Invest 1975; 52: 761-764.
2. Henson PM, Henson JR, Flitschen G, Kitnani G, Braunston DL, Riches DWH. Phagocytic cells: degradation and secretion. In: Gallin I, Goldstein BM, Szymreddy R, eds. Inflammation: Basic Principles and Clinical Correlations, New York: Raven Press, 1988; 362-390.
3. Klebanoff SJ. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacterial 1966; 95: 2151-2158.
4. Weiss SJ, Langert MB, Test ST. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science 1985; 222: 625-628.
5. Weiss SJ. Tissue destruction by neutrophils. Neu Engl J Med 1989; 320: 365-376.
6. Matheson NR, Wsng JS, Travis J. Enzymatic inactivation of human α1-proteinase inhibitor. Biochem Biophys Res Comm 1978; 88: 402-409.
7. Clark RA, Stone PJ, Hig AG, Calvo JD, Pranzblau C. Myeloperoxidase-catalyzed inactivation of α1-proteinase inhibitor by human neutrophils. J Biol Chem 1981; 256: 3548-3553.
8. Barrett AJ, Storkey PM. The interaction of α1-M with proteases. Biochem J 1973; 135: 709-724.
9. Roberts BC, Hall FF. Specificity of proteinases for the bait region of α1-M. In: Feinman RD, ed. Chemistry and Biology of α1-M, Vol 421. New York: Annals of the New York Academy of Sciences, 1985, 61-68.
10. Berzitard P, Tapon-Berzitard J, Scoops JK. Structure of native α1-M and its transformation to the proteinase bound form. Proc Natl Acad Sci USA 1986; 83: 1437-1441.
11. Storup Jensen L, Loshab R, Stepanak TM, Peterson TE, Mugnsson S, Jornvall H. Primary structure of the 'tail' region for proteinases in α1-macroglobulin. FEBS Lett 1981; 127: 167-173.
12. Debanne MT, Belel R, Dolovich J. Uptake of proteinase-α1-M complexes by macrophages. Biochem Biophys Acta 1975; 421: 295-304.
13. Bieth JG, Kandel M, Zoella M. Interaction of protein substrate and inhibitors with α1-M-bound proteinase. In: Feinman RD, ed. Chemistry and Biology of α1-M. Vol 421. New York: Annals of the New York Academy of Sciences, 1982; 209-217.
14. Barrett AJ, Brown AA, Sayers CA. The electrophoretic slow and fast forms of the α1-macroglobulin molecule. Biochem J 1979; 181: 401-418.
15. Steinbuch M, Pfaujagier L, Quentin M, Martin V. Molecular alteration of α1-macroglobulin by aliphatic amines. Biochem Biophys Acta 1968; 154: 228-231.
16. Reddy VY, Fizno SV, Weiss SJ. Functional inactivation and structural disruption of α1-macroglobulin by neuraminidase and ecosinopin. J Biol Chem 1989; 264: 187-189.
17. Chase T, Shaw E. p-Nitrophenyl-p'-guanidinbenzoate HCI: activesite titrant. Biochem Biophys Acta 1968; 154: 228-231.
18. Balenci J, Bech JG, Zreika M. Interaction of proteinsubstrate and inhibitors with α1-M-bound proteinases. In: Feinman RD, ed. Chemistry and Biology of α1-M, Vol 421. New York: Annals of the New York Academy of Sciences, 1985; 741-744.
19. Badwey JA, Curnutte JT, Karnovsky ML. Cis-polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils. J Biol Chem 1981; 256: 12640-12643.
20. Callman W, Dick W. A chromogenic assay for evaluation of α1-macroglobulin in serum and cerebrospinal fluid. J Clin Chem Clin Biochem 1981; 19: 287-290.
21. Gebenist AJ, Wever R, Veltman T, Platt H, Van Gelder F. Isolation procedure and some properties of myeloperoxidase from human leukocytes. Biochem Biophys Acta 1978; 524: 45-54.
22. Deby-Dupont G, Provenzal J, Thirion A, Delby C, Lamy P, Franchi-Le P. Selfinhibition of myeloperoxidase from human leucocytes. Biochim Biophys Acta 1969; 126: 506-514.
23. Borgert P, Samuelsson B. Arachidonic acid metabolites in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci USA 1979; 76: 2148-2152.
24. Judt WP, Curnutte JT, Kohn E, Haskins RJ. Arachidonic acid: effect on leukocyte adherence and migration. J Immunol 1981; 126: 1264-1265.
25. Curnutte JT, Feinman RD, ed. Chemistry and Biology of α1-M, Vol 421. New York: Annals of the New York Academy of Sciences, 1985; 209-217.
26. Bieth JG, Kandel M, Zoella M. Interaction of protein substrate and inhibitors with α1-M-bound proteinase. In: Feinman RD, ed. Chemistry and Biology of α1-M. Vol 421. New York: Annals of the New York Academy of Sciences, 1982; 209-217.
27. Barrett AJ, Brown AA, Sayers CA. The electrophoretically slow and fast forms of the α1-macroglobulin molecule. Biochem J 1979; 181: 401-418.
28. Steinbuch M, Pfaujagier L, Quentin M, Martin V. Molecular alteration of α1-macroglobulin by aliphatic amines. Biochem Biophys Acta 1968; 154: 228-231.
29. Reddy VY, Fizno SV, Weiss SJ. Functional inactivation and structural disruption of α1-macroglobulin by neuraminidase and ecosinopin. J Biol Chem 1989; 264: 187-189.
30. Chase T, Shaw E. p-Nitrophenyl-p'-guanidinbenzoate HCI: activesite titrant. Biochem Biophys Acta 1968; 154: 228-231.
PMNL inactivate α1-macroglobulin

27. Balkens RJ, De Boer JEG, Plat H, Wever R. The halide complexes of myeloperoxidase and the mechanism of the halogenation reactions. Biochim Biophys Acta 1980; 613: 357-367.

28. Thomas EI, Grisham MB, Melton DF, Jefferson MJ. Evidence for a role of taurine in the intracellular oxidative toxicity of neutrophils towards erythrocytes. J Biol Chem 1985; 260: 3320-3329.

29. Edgington EW, Fridovich I. Superoxide, hydrogen peroxide and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 1975; 250: 8812-8817.

30. Larsson Lj, Holmgren A, Medvedov B, Lindblom T, Björk I. Subunits of α1-macroglobulin produced by specific reduction of interchain disulfide bonds with dithiothreitol. Biochemistry 1988; 27: 983-991.

31. Moretto MD, Roche PA, Pizzo SV. Characterization of human α1-macroglobulin monomers obtained by reduction with dithiothreitol. Biochemistry 1991; 30: 1545-1553.

32. Warren JS, Warth PA, Johnson JH. Mechanisms of damage to pulmonary endothelium. In: Ryan US, ed. Pulmonary Endothelium in Health and Disease, Vol 32. New York: Marcel Dekker, 1987; 107-120.

33. Vercellotti M. Role of neutrophils in endothelial injury. In: Bihari DJ, Cerra FB, eds. Multiple Organ Failure, Vol 5. Fullerton: The Society of Critical Care, 1990; 77-91.

34. Piccinni J, Delay-Rouget G, Lamy M. Role of neutrophils in critically ill patients: myeloperoxidase, a specific marker of their activation. In: Vincenzi JL, ed. Update in Intensive Care and Emergency Medicine, Vol 8. Berlin: Springer-Verlag, 1989; 24-32.

ACKNOWLEDGEMENTS. The authors would like to thank Mrs M. Dister, Mrs J. Nouray and Mrs Dethier for their excellent technical assistance and Mrs V. Casentino and Mr D. Jeuniaux for their secretarial help. This work was supported by the Fonds National de la Recherche Scientifique (FRS) grants nos. 3.4505.89 and 3.4574.89.

Received 21 October 1993; accepted in revised form 20 December 1993