Role of Oligosaccharides As Biological Additives In Cultured Oreochromis Niloticus

Mohamed, S. Marzouk, Magdy I. Hanna, Olfat A. Mahdy, Ebtsam, A. Tantawy, Samia F. Mohamed and Nesreen, S. Yousef

Department of Fish Diseases & Management, Faculty of Vet. Med., Cairo Univ.
Department of Parasitology, Faculty of Vet. Med., Cairo Univ.
Department of Fish Diseases & Management, Animal Health Research Institute, Dokki, Giza.
Department of Biochemistry, Animal Health Research Institute. Chemistry Department, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia

ABSTRACT

The present study was carried out on 150 Oreochromis niloticus randomly collected alive from private freshwater fish farms at Eltal Elkbir- Sharkia governorate. The fish were subjected to clinical, postmortem and parasitological examination. The efficacy of mannan-oligosaccharides (Bio-Mos®) as a biocontrol agent was evaluated on growth performance, haematological parameters, total proteins content and the Serum Lysozyme activity. The isolated parasites were subjected to identification and appeared to be belonging to the protozoa of genera Trichodina, Epistylis and Chilodonella, as well as monogenea of genera Cichlidogyrus and Ancyrocephalus. The results proved that Bio-Mos® has a growth promoting effect at level of 4 g/Kg of fish diet, with consequent improving the general fish health and increasing the total fish gain.

Key words: Oreochromis niloticus, serum lysozymes, haematological parameters, total proteins content, growth performance, mannan-oligosaccharides.

Introduction

In Egypt, external parasites of freshwater fish may be described as the most important parasitic problems facing cultured freshwater fish. External protozoa and monogenetic trematodes of freshwater fish could be considered as the most prevalent causes of diseases affecting skin and gills. External parasites cause gill inflammation and distortion of normal anatomy which impairing their respiratory foundation (Kuperman and Matey, 2000). Also, they cause skin irritation, inflammation and loss of the surface epithelium which in turn open the way for secondary invaders (Tantawy, 2001). The control of diseases can be achieved by many methods, including the judicious use of drugs and antibiotics either prophylactically or therapeutically, good management practices, genetic selection or stress and disease tolerant strains, as well as prevention by use of vaccines. Prevention of diseases is much more desirable than intervention to stop and reverse disease processes once they have begun (Howes, 1994). There has been heightened research in developing new dietary supplementation strategies in which various health and growth-promoting compounds as probiotics, prebiotics, synbiotics, phytobiotics and other functional dietary supplements have been evaluated (Denev, 2008). According to FAO experts “A prebiotic is a non-viable food component that confers a health benefit on the host associated with modulation of the microbiota” (FAO, 2007). There are several recognized functional prebiotic oligosaccharides in use around the world: Fructo-oligosaccharides (FOS), manna-oligosaccharides (MOS), Xylo-oligosaccharides (XOS), Inulin and β-glucan (Qiang et al., 2009). Mannan-oligosaccharides obtained from the cell wall of Saccharomyces cerevisiae. In theory, pathogenic, growth-inhibiting bacteria that normally adhere to mannans on the mucosal surface of the intestine may instead bind to the mannann component of Bio-Mos®. Because these pathogens do not attach to the mucosal surface of the intestine, they are flushed from the intestinal tract, so elimination of pathogens would presumably enhance the health and growth. Another possible mode of action of Bio-Mos® is an effect on the immune system by increasing the level of antibody titres, immunoglobulins, and macrophage activity (Davis et al., 2004). So this work was planned to study some common external parasitic diseases in cultured O.niloticus and to evaluate the effect of mannan-oligosaccharides on growth and health conditions of O.niloticus.

Material and Methods

Fish:

A total number of 200 O.niloticus were randomly collected from freshwater aquaculture at private fish farms at Eltal Elkbir- Sharkia governorate. The collected fish specimens were with average body weight range 28.0 ± 1 g .The fish were transported alive to the laboratory of fish diseases at Animal Health Research Institute,

Corresponding Author: Samia F. Mohamed, Department of Biochemistry, Animal Health Research Institute. Chemistry Department, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
E-mail: samiafm11@yahoo.com
Dokki, Giza, Egypt, in large tanks filled with water of the same sources supplied with battery air pumps and examined as soon as possible. Six full glass aquaria 100 x 50 x 50 cm were used for fish holding. Chlorine free tap water was used according to (Innes, 1966). Aquaria were supplied with air pumps. Fish were fed on commercial diet locally prepared according the table referred by the Association of Official Analytical Chemists (AOAC) (1975). Biomoss was added within the ratio of 2 and 4 g/kg.

Bio-Mos®:

Mannan-oligosaccharides derived from the cell wall of the yeast *Saccharomyces cerevisiae*. It is a product manufactured by Alltech, Inc. UK.

Experimental design:

one hundred and fifty alive randomly collected *Oreochromis niloticus* were divided according to the parasitological examination into 6 groups. The parasitic positive fish with external parasites were redivided into 3 groups (25 for each). The first group was kept as control (infected, not fed on Bio-Mos®). The second group fed on Bio-Mos® 2 g/kg feed. The third group fed on Bio-Mos® 4 g/kg feed. Both the second and the third groups were treated for 6 weeks. The parasitic negative fish were divided into 3 groups (25 for each). The first group was kept as control (non-infected, not fed on Bio-Mos®).The second group fed on Bio-Mos® 2 g/kg feed. The third group fed on Bio-Mos® 4 g/kg feed. Both the second and the third groups were treated for 6 weeks. The parasitic negative fish after 3 weeks of feeding Bio-Mos® were experimentally infected with external parasites and divided into 2 groups (25 for each). The first group fed on Bio-Mos® 2 g/kg feed. The second group fed on Bio-Mos® 4 g/kg feed for another 3 weeks.

Clinical examination:

The clinical examination of the collected alive fishes was performed as described by Amlacher (1970). Any clinical abnormalities of naturally infected fishes were recorded.

Parasitological examination:

The specimens under investigation were grossly examined for detection of any external lesions or visible cysts and microscopically for isolation and identification of external parasites according to Noga (2010).

Growth parameters determination:

a. **Body weights**: weighed after 2, 4 and 6 weeks.

b. **Body weight gain**: Final fish weight (g) – Initial fish weight (g) according to Annet, (1985).

c. **Specific Growth Rate %**: It was calculated as the percentage increase in weight per fish per day as suggested by Pouomonge and Mbonglang (1993), using the following equation:

\[
SGR% = \frac{(\ln WT – \ln Wt)}{(T-t)} \times 100
\]

Where:

SGR%: percentage increase in body weight per fish per day.

\(\ln WT\): natural log of weight at time T.

\(\ln Wt\): natural log of initial weight.

T: time, t: initial time, Ln: natural logarithm

Haematological examination:

Blood samples were collected from living fish from the caudal vessel according to Noga (2010). The fish were anesthetized using MS-222 and blood was withdrawed using small caliper needles.

The collected blood samples were subjected to:

a-**Haematological examinations:**

namely Total and Differential Leucocytic count according to (Kanaev, 1985).

b-**Serum Total Protein (g %) examination:**

Assay of total protein was carried by a test kit [Spectrum Diagnostics] according to biuret method described by Gornall *et al.* (1949).
Lysozymes activity examination:

Lysozyme activity was measured by agarose gel lysis assay according to the method described by Schultz (1987).

Statistical analysis:

Mean value (x), standard deviation (S.D.), standard error and test of significance (t-test or student’s test) were carried out according to the method of Snedecor and Cochran (1976).

Results and Discussion

There are several food ingredients mainly carbohydrates used as prebiotic nowadays, but for a food that can be classified as a probiotic, must have some characteristics. Gibson et al. (2004) noted a food ingredient that most fulfill the following criteria: resistance to gastric acidity, hydrolysis by digestive enzymes and gastrointestinal absorption, fermentation by intestinal microflora and selective stimulation of the growth and / or the activity of intestinal bacteria associated with health to be classified as prebiotic. Therefore, the use of prebiotic such as mannanoligosaccharide (Bio-Mos), concentrated from the cell wall of Saccharomyces cerevisiae, to improve growth and health performance in the aquaculture industry is increasingly important as consumers demand eco-friendly production practices (Dimitroglou et al., 2009).

The results of the examination of 150 fish randomly collected alive from private freshwater fish farms at Eltal Elkibir- Sharkia governorate indicated that 75 Oreochromis niloticus were naturally infected with external parasites (Trichodina, Epistylis, Chilodonella and monogenea). Fish infected with ciliated protozoa namely Trichodina, Chilodonella and Epistyli showed slimy pale skin with sever blood spots scattered on the body surface especially at the base of fins with detached scales in Oreochromis niloticus . Signs of skin irritation manifested as rubbing the bodies against the side of the aquarium were also recorded. Signs of asphyxia manifested as increased opercular movements were also noticed in some fishes photo (1). Monogenea infected fishes showed loss of appetite and sluggish movements. Infected fishes swammed near the surface of the water with increased opercular movement, stretched gills covers and expanded pale and sticky gills. Infected Oreochromis niloticus were anaemic and exhibited sluggish feeding reflex and detached scales photo (2).

The results of the examination for different parasites isolated from skin, fins, gills and eyes revealed Trichodina mutabilis (Noga, 2010), Epistyli (Lome,1995), Chilodonella hexastichita (Post,1987) and Monogenetic trematodes : Cichlidogyrus halli (Lome,1995) and Ancyrocephalus pellonullae (Lome,1995)) with high infection rate. Isolated parasites are demonstrated in micrograph 1,2,3,4,5 & 6 successively.

Concerning the results of morphological identification of isolated parasites revealed that Trichodina mutabilis was medium to large disc shaped cell. Denticle blade oblong, largely parrel to radial of disc. With squared distal end, central part narrow with oblong to rounded overlapping end. Projection of central part not visible. Central disc without inclusions, nuclear apparatus not observed, this result agree with Noga (2010).

Epistylis species were observed as a sessile contractile ciliate, stalk was long and non contractile, often form a branched colony, the distal end of the organism was surrounded by rapidly moving cilia which appear as a blur, this result agree with Lome (1995).

Chilodonella hexasticha was typically heart shaped, with broader posterior end. The ventral side was flat with parallel ciliary rows. The dorsal surface was slightly convex and lacked cilia except in the oral groove at the extreme anterior end. 37 µm (35 – 39 µm) in length and 24 µm (23 – 25 µm) in width. There were contractile vacuoles spreading all over the cell. The macronucleus was rounded. The morphological characters of these parasites were nearly similar to descriptions given by Meyer (1966), Kabata (1985), and Post (1987).

Concerning the monogenetic trematode Cichlidogyrus halli was a small elongated worm of 0.211-0.230 mm. in length. The anterior end had 4 pairs of the head organ, and 1 pair of dark eye spots. At the posterior end opishaptor had 2 pairs of medium hooks and 6-7 pairs of marginal hooks. Copulatory organ and vetilinle gland were well developed. The morphological characters of these parasites were nearly similar to description given by Lome (1995).

Ancyrocephalus pellonullae was a small elongated monogentic trematode worm, the anterior end had 4 pairs of the head organ, and 1 pair of dark eye spots. The posterior end opishaptor had 2 pairs of medium hooks and 6 pairs of marginal hooks. Copulatory organ and vetilinle gland were well developed. The morphological characters of these parasites were nearly similar to description given by Lome (1995). Concerning the statistical analysis of different growth parameters in O.niloticus groups(table,1). Fish infected with external parasites fed on diet supplemented with Bio-Mos® 2 and 4 g/Kg feed revealed significant increase in weight and weight gain in both concentrations. In O.niloticus groups non-infected with external parasites the addition of Bio-Mos® 4g/Kg feed in diets showed significant increase in weight and weight gain, but no significance difference among both concentrations in SGR% in all groups was shown. This result may be related with enhanced amino acid
absorption Lij et al. (2001), and it is suggested by the improvement in the functional integrity of the enterocyte membrane in MOS fed animals Spring et al. (2000) and Shane (2001). Also Gaskins (2001) argued that decreasing the total bacterial population in the intestine would decrease the inflammation of the intestinal tissue, which in turn would decrease the use of energy and amino acids by that tissue and improve productive performance. These findings supported those recorded by Zhou and Li (2004) who stated that juvenile Jian carp Fish fed the diet with addition of 0.24% Bio-Mos® had highest (P<0.05) weight gains and lowest (P<0.05) feed/gain value. Also, with that of Torrecillas et al. (2007) who recorded that European sea bass (Dicentrarchus labrax) of 35 g were fed during 67 days at 0‰, 2‰ and 4‰ dietary mannooligosaccharide (Bio-Mos®) level of inclusion in a commercial sea bass diet. Growth significantly increased at both MOS dietary inclusion levels.

Concerning the effect of addition of Bio-Mos® with 2 and 4 g/Kg on the hematological parameters of O. niloticus (tables 2, 3 &4). The results in O.niloticus groups infected with external parasites revealed significant increase in WBCs count. Neutrophil and Lymphocytes, while Esinophil and Monocytes revealed significant changes only after 14-days post infection. WBCs count and Neutrophil showed significant increase in both concentrations. Esinophil had no significant change, but in the 4 g/Kg concentration there were significant increases. Monocytes had both significant increase and decrease compared to the control in each concentration. In O.niloticus groups experimentally infected with external parasites WBCs count. Lymphocytes and Monocytes revealed the significant changes only after 14-days post infection. WBCs count revealed significant increase in 2 g/Kg and significant decrease in 4 g/Kg concentration. Lymphocytes showed significant increase in 2 g/Kg concentration. Monocytes in concentration 2g/Kg showed significant decrease and significant increase in 4 g/Kg concentration.

These results agree with Andrews et al. (2009), who recorded that Labeo rohita fingerlings were fed mannooligosaccharide (MOS) with three graded levels (1%, 2% or 4%) had an increase in leucocyte count. Also, Dimitroglou et al. (2010), who observed increased total leucocyte levels when gilthead sea bream (Sparus aurata) were fed MOS (0%, 0.2% and 0.4%) in diet. And these findings disagree with Ricardo et al. (2008), who reported that Nile tilapia, Oreochromis niloticus juveniles (13.62 g) were fed during 45 d with a commercial diet supplemented with 0, 0.2, 0.4, 0.6, 0.8, and 1% dietary MOS, showed no significant differences in hematological parameters between fish fed control and MOS supplementation diets. Also, Razeghi et al. (2011), who recorded that there were no significant differences in hematological parameters between control and MOS treatment groups in giant sturgeon juvenile (Huso huso).

The increase in the total leucocyte count may be due to that, Bio-Mos® activate the complement system via the alternative pathway Spring (2002), the complement work to trigger the recruitment of inflammatory cells and attract phagocytes, especially neutrophils. Neutrophils then trigger other parts of the immune system by releasing factors that summon other leucocytes and lymphocytes Viera et al. (1995). Also, Mannooligosaccharide was reported to stimulate non specific components of the immune system Dobrescu (2002), for example, the protective effects of MOS have been shown to be associated with the granular cells having the ability to be bound to mannose and to be involved in triggering cellular and humoral defense mechanism in response to a pathogen.

Concerning the effect of Bio-Mos® on serum total proteins, Albumin, Globulin and A/G ratio of O. niloticus fish (tables,5,6 &7). In O.niloticus groups infected with external parasites, total protein in 2g/Kg concentration showed significant decrease all over the 6 weeks and in 4g/Kg concentration showed significant decrease after 21, 35 and 42 days. Albumin, revealed significant decrease after 9 days in 2g/Kg concentration and in 4g/Kg concentration showed significant increase after 6 days. Globulin showed significant decrease along the 6 weeks of the experiment in both concentrations. A/G ratio showed significant increase in 2g/Kg concentration except after 9 days and in 4g/Kg concentration showed significant increase after 6, 9, 35 and 42 days. In O. niloticus groups non-infected with external parasites total protein showed significant decrease in the 2g/Kg and 4g/Kg concentrations. Albumin, revealed in 2g/Kg concentration significant decrease after 14 days, while in 4g/Kg concentration revealed significant decrease after 42 days and significant increase after 3 days. Globulin showed significant decrease in 2 g/Kg concentration after 3, 9, 14, 21 days and 35 days, while in 4g/Kg concentration revealed significant decrease after 3, 9, 14 and 21 days. A/G ratio had significant increase after 14 and 35 days in the 2g/Kg concentration and in 4g/Kg concentration after 3, 9, 14 and 21 days. In O. niloticus experimentally infected with external parasites total proteins and Albumin showed significant decrease after 14 days post infection in the 4g/Kg concentration. Globulin and A/G ratio showed no significance.

These results nearly agree with Razeghi et al. (2011), who recorded that the protein remained unaffected between control and MOS treatment groups in giant sturgeon juvenile (Huso huso). These results disagree with Yilmaz et al. (2007), who recorded that the body protein concentration increased as the level of MOS was increased in the diet from 1.5 to 4.5 g kg-1 in rainbow trout (Oncorhynchus mykiss).

The decrease of total protein, Albumin and globulin may be due to that Bio-Mos® may improve gain by allowing nutrients to be utilized for growth rather than for activation of the specific immune system Miguel et
The increase in Albumin concentrations can be due to stronger non-specific responses in fish Andrews et al. (2009).

Concerning the effects of Bio-Mos® on Serum Lysozyme activity. Results were demonstrated in tables (8,9&10) and in photo (3). In O. niloticus groups infected with external parasites, Serum Lysozyme activity in 4g/Kg concentration showed significant increase after 3, 14, 35 and 42 days. In O. niloticus groups non-infected with external parasites Serum Lysozyme activity in 2g/Kg concentration showed significant decrease after 6 and 9 days and at the rest of the 6 weeks the lysozyme was increased but no significant difference was seen, in 4g/Kg concentration showed significant increase after 6 days and significant decrease after 9 and 35 days. These findings agree with Alejandro et al. (2010), who recorded that serum lysozyme was significantly (P<0.05) enhanced by mannanoligosaccharide (MOS) in diet of juvenile red drum. Also Zhou et al. (2010), who documented that serum lysozyme activity was significantly lower (P < 0.05) in juvenile red drum (Sciaenops ocellatus) fed the basal diet compared with those fed the diets supplemented with Bio-Mos®.

In O. niloticus groups experimentally infected with external parasites Serum Lysozyme activity in 2g/Kg concentration revealed significant decrease after 14 days post infection, and revealed significant increase after 21 days post infection. In 4g/Kg concentration showed no significant change.

Lysozyme is an enzyme present in mucus secretion, blood and other areas of virtually all eukaryotic organisms, and it is an important component of the non-specific immune system in fish.

It is claimed that this enzyme, released from the lysozymic structures, enters plasma and measures of its activity constitute a phagocytic index. Therefore, it is a vital component of humoral immune response and its activity is related mainly to lysis of the affected cells. This increase in lysozyme activity may be evidence of immune system modulation by mannanoligosaccharide, as suggested by work by Ott (2005). Also mannan activates the complement system via the alternative pathway. It is generation of the reaction products of the complement that increases the effectiveness of phagocytic (killer) cells Sisak (1995). MOS enhanced the immune functions (phagocytic activity of leucocytes) Torrecillas et al. (2007).

Photo 1: Naturally infected Oreochromis spp. with Trichodina and Chilodonella Showing detached scales, haemorrhage and tail erosion.

Photo 2: Naturally infected Oreochromis spp. with Cichlidogyrus halli showing gill congestion.

Micrograph 1: Trichodina mutabilis stained with Giemsa stain (X100).

Micrograph 2: Trichodina mutabilis with silver imprgnation (X40).

Micrograph 3: Epistylis articulata stained with Giemsa stain (X40).

Micrograph 4: Chilodonilla hexasticha stained with Giemsa stain (X100).

Micrograph 5: Cichlidogyrus halli stained with Carmine stain (X100).

Micrograph 6: Ancyrocephalus pellomulae stained with Carmine stain (X100).
Table 1: Effect of Bio-Mos® on growth performance of *O. niloticus* during 6 weeks experimental period.

Group / parameters	Infected	Mannan – oligosaccharides in ration	Non-infected
Weight (g) + SE			
0 time	29.6±0.9	28.1±1.3	29.1±1.4
2 weeks	31.1±1.1	32.3±0.8	34.5±0.9
4 weeks	35.5±0.6	39.9±0.5**	42.1±0.8***
6 weeks	39.5±1	42.8±0.5**	44.2±0.8**

Weight gain (%)			
2 weeks	1.5±0.2	4.2±0.5***	5.4±0.5***
4 weeks	5.9±0.3	11.8±0.8**	13±0.6***
6 weeks	9.9±0.1	14.7±0.8**	15.1±0.6**

Data are represented as means of 10 sample ± S.E.

* Slightly significant different from control P<0.05
** Moderately significant different from control P<0.01
*** Highly significant different from control P<0.001

Table 2: Effect of Bio-Mos® on WBCs and differential leukocytic count of *O. niloticus*, infected with external parasites: (Mean ± SE).

Time	WBCs x10^3 / mm / μl	Neutrophil %	esinophil %	Lymphocyte %	monocyte %
Control + ve	22±20.89	9.8±0.8	22.2±2.35	57.4±0.87	12.2±1.28

After	18.5±	16.8±	14.0±	10.4±	6.4±	7.2±	74.5±	78.6±	4.4±	4±	2g/Kg
3 days	0.97±*	1±**	1.49*	0.98	0.98***	1.02***	1.80***	2.49***	1.03***	1.26***	2g/Kg
After	29.6±	20.3±	25±	22±	8.2±	7.6±	59.2±	58.6±	7.2±	12.4±	66.2±
6 days	0.79***	0.94***	1.48***	0.99**	0.49***	1.21***	1.29	1.53	0.37***	1.33	66.2±
After	34.5±	28.6±	22±	24.8±	4.4±	3.6±	66.8±	64.6±	6.2±	6.1±	6.2±
14 days	0.81***	0.93***	0.87***	0.8***	0.74***	1.03***	1.46***	1.89***	0.73***	0.49***	6.2±
After	40±	40.4±	23.4±	20.8±	3.2±	5.6±	66.4±	64.4±	5.4±	6.4±	6.4±
21 days	0.99***	1.29***	1.08***	0.8***	0.49***	0.75**	0.75	0.75***	0.75	0.74**	6.4±
After	25.6±	38.2±	21±	22.8±	5.8±	4.8±	64.2±	66.6±	9± 0.89	5.8±	6.8±
35 days	0.6***	0.8**	0.63***	1.39***	0.8**	0.58***	1.18**	2.09**	2.09**	1.28**	66.2±
After	29.7±	36.1±	14.8±	22.8±	2.4±	1.6±	78.2±	70.4±	4.4±	5.2±	6.2±
42 days	0.99***	1.54***	0.73***	0.86***	0.51***	0.75***	0.49***	0.51***	0.24***	0.49***	6.2±
After	29.5±	34.4±	21±	22.4±	0.6±	1.6±	70±	67.2±	7± 0.89	8.8±	7± 0.89
56 days	1.1±	0.68***	0.75**	1.17***	0.4±	0.75**	1.16**	1.85***	0.49*	2.6±	7± 0.89

N=10 Control + ve =infected with external parasites
* Slightly significant different from control P<0.05
** Moderately significant different from control P<0.01
*** Highly significant different from control P<0.001

Table 3: Effect of Bio-Mos® on WBCs and differential leukocytic count of *O. niloticus* non-infected with external parasites: (Mean ± SE).

Time	WBCs x10^3 / mm / μl	Neutrophil %	esinophil %	Lymphocyte %	monocyte %
Control -ve	23±1.3	13.6±0.75	1.6±0.75	75.6±2.48	7±6±0.75

After	22.5±	22.8±	11.6±	9.6±	3.2±	3±	79±	78.8±	6.2±	8.6±	2g/Kg
3 days	1.66	1.66	0.98	0.75	1.36	0.45	2.28	0.86	0.8	1.08	2g/Kg
After	26.5±	21±	23.6±	19.8±	3.6±	0.89**	63±	65.6±	9± 0.89	8.6±	66.2±
6 days	1.2	1.14	0.75***	0.88***	0.75	0.89**	1.94**	1.21**	1.17	0.75	66.2±
After	37±	28.7±	26±	22.2±	2.8±	4.2±	55.2±	61.8±	13± 11.8	13± 11.8	66.2±
9 days	1.06***	0.73**	1.05***	0.66***	0.49	0.66*	1.07**	1.11***	0.75***	1.11**	66.2±
After	36.6±	26.3±	15.8±	18.2±	4.8±	2.4±	74.4±	76.6±	5±	3.4±	66.2±
14 days	1.86***	1.86	1.11	0.66***	0.8	1.17	1.12	2.01	0.89*	1.08**	66.2±
After	46±	36.1±	20.8±	20.4±	1.8±	3±	72.4±	71±	4.2±	5.6±	66.2±
21 days	1.49***	1.67***	1.22***	2.31*	0.58	1	2.84	1.41	0.66*	0.75	66.2±
After	35.5±	38.8±	22.6±	18.8±	1.4±	0.75**	0.48	0.49	0.75	0.24*	66.2±
35 days	1.44***	1.16***	0.75***	0.73***	0.68	0.45	1.91*	0.89	2.01	0.63	66.2±

N=10 Control – ve =infected with external parasites
* Slightly significant different from control P<0.05
** Moderately significant different from control P<0.01
*** Highly significant different from control P<0.001
Table 4: Effect of Bio-Mos® on WBCs and differential leukocytic count of O.niloticus, experimentally infected with external parasites: (Mean ± SE).

Time	WBC x10^6 mm^-3 /µl	Neutrophil%	Eosinophil %	Lymphocyte%	Monocyte%
Control	2.4 ± 0.4a	40.8 ± 1.7a	21.4 ± 0.6a	8.8 ± 0.2a	1.8 ± 0.5a
14 d. post infection	40.5 ± 0.79***	21.9 ± 1.38***	20.8 ± 0.37	8 ± 1.05*	9.8 ± 0.4 ± 0.37
** Moderately significant different from control P<0.01**					
Control	3.5 ± 1.1a	38.8 ± 1.4a	22.6 ± 0.7a	8 ± 0.6a	0.7 ± 0.6a
21d. post infection	38.4 ± 2.6a	36.4 ± 2.87	20.4 ± 0.6a	9.8 ± 0.3a	0.5 ± 0.6a

N= 10 Control = non-infected with external parasites
* Slightly significant different from control P<0.05
** Moderately significant different from control P<0.01
*** Highly significant different from control P<0.001

Table 5: Effect of Bio-Mos® on total proteins, Albumin, Globulin and A/G ratio of O. niloticus infected with external parasites: (Mean ± SE).

Time	Total protein (gm/dl)	Albumin (gm/dl)	Globulin (gm/dl)	A/G ratio
Control +ve	4.28 ± 0.09	1.22 ± 0.11	3.06 ± 0.08	0.4 ± 0.04
2g/Kg	4.2 ± 0.11	1.25 ± 0.09	3.07 ± 0.08	0.42 ± 0.04
After 3 d	2.68 ± 0.26**	3.26 ± 0.63	1.45 ± 0.07	1.54 ± 0.19
Control +ve	3.14 ± 0.03	4.24 ± 0.19	1.49 ± 0.08	1.84 ± 0.07**
After 6 d	1.95 ± 0.33**	3.24 ± 0.55	0.64 ± 0.12**	1.25 ± 0.22
After 9 d	3.27 ± 0.56	1.19 ± 0.27	1.14 ± 0.17	1.81 ± 0.26**
Effect of Bio Mos® on total proteins, Albumin, Globulin and A/G ratio of O. niloticus infected with external parasites: (Mean ± SE).				

N= 10 Control = infected with external parasites
* Slightly significant different from control P<0.05
** Moderately significant different from control P<0.01
*** Highly significant different from control P<0.001

Table 6: Effect of Bio-Mos® on total proteins, Albumin, Globulin and A/G ratio of O. niloticus non-infected with external parasites: (Mean ± SE).

Time	Total protein (gm/dl)	Albumin (gm/dl)	Globulin (gm/dl)	A/G ratio
Control -ve	4.28 ± 0.09	1.22 ± 0.11	3.06 ± 0.08	0.4 ± 0.04
2g/Kg	3.02 ± 0.13**	2.54 ± 0.17***	1.24 ± 0.11	1.65 ± 0.06*
After 3 d	3.52 ± 0.24	3.66 ± 0.12	1.31 ± 0.21	1.48 ± 0.18
After 6 d	1.99 ± 0.13**	1.73 ± 0.23**	0.81 ± 0.12	0.87 ± 0.12
Effect of Bio Mos® on total proteins, Albumin, Globulin and A/G ratio of O. niloticus non-infected with external parasites: (Mean ± SE).				

N= 10 Control = –ve =infected with external parasites
* Slightly significant different from control P<0.05
** Moderately significant different from control P<0.01
*** Highly significant different from control P<0.001
Table 7: Effect of Bio-Mos® on total proteins, Albumin, Globulin and A/G ratio of *O. niloticus* experimentally infected with external parasites: (Mean ± SE).

Time	Control	2g/Kg	4g/Kg	2g/Kg	4g/Kg	2g/Kg	4g/Kg	2g/Kg	4g/Kg
		3.21±0.62	3.31±0.67	1.61±0.28	1.3±0.18	1.59±0.34	1.98±0.62	1.84±0.07	0.8±±0.19
14 d. post		2.69±0.68	1.08±0.09***	1.48±0.32	0.43±0.07***	1.2±0.37	0.66±0.06	1.47±0.29	0.67±0.12
post infection		3.57±0.39	3.14±0.13	1.19±0.06	0.87±0.02	2.38±0.35	2.26±0.14	0.52±0.07	0.39±0.03
		2.82±0.28	3.44±0.17	1.14±0.04	0.9±0.04	1.67±0.26	2.3±0.13	0.72±0.08	0.36±0.02

*N= 10 Control = non-infected with external parasites
*Slightly significant different from control P<0.05
**Moderately significant different from control P<0.01
***Highly significant different from control P<0.001

Table 8: Effect of Bio-Mos® on Lysozymes activity of *O. niloticus* infected with external parasites: (Mean ± SE).

Time	Conc. µg / ml	Control	+ve	2g/Kg	4g/Kg
				569±16	
After 3 days	650.2±30.58*				
After 6 days	634.2±36.45				
After 9 days	601±19.59				
After 14 days	617.6±30.42				
After 21 days	537.6±35.40				
After 35 days	569±16				
After 42 days	585±19.59				

*N= 10 Control + ve =infected with external parasites
*Slightly significant different from control P<0.05
**Moderately significant different from control P<0.01
***Highly significant different from control P<0.001

Table 9: Effect of Bio-Mos® on Lysozymes activity of *O.niloticus* non-infected with external parasites: (Mean ± SE).

Time	Conc. µg / ml	Control	-ve	2g/Kg	4g/Kg
				585±19.59	
After 3 days	650.2±30.58			585±19.59	
After 6 days	634.2±36.45			649±16.60*	
After 9 days	522.2±18.86*			506.8±18.86*	
After 14 days	585±19.59			601±19.59	
After 21 days	601±19.59			523±30	
After 35 days	601±19.59			403.8±22.46***	
After 42 days	601±19.59			538.2±29.29	

*N= 10 Control = non-infected with external parasites
*Slightly significant different from control P<0.05
**Moderately significant different from control P<0.01
***Highly significant different from control P<0.001

Table 10: Effect of Bio-Mos® on Lysozymes activity of *O. niloticus* experimentally infected with external parasites: (Mean ± SE).

Time	Conc. µg / ml	Control	2g/Kg	4g/Kg
			601±19.59	403.8±22.46
14 days post	633±28.50***			
post infection				
control	601±19.59		538.2±29.29	
21 days post	682.8±20.33*			
post infection				

*N= 10 Control = non-infected with external parasites
*Slightly significant different from control P<0.05
**Moderately significant different from control P<0.01
***Highly significant different from control P<0.001

References

Alejandro, J., W. Neill and D. Gatlin, 2010. Effects of dietary prebiotics on the growth, feed efficiency and non-specific immunity of juvenile red drum *Sciaenops ocellatus* fed soybean-based diets. Aquaculture Research, 41: 411-418.
Amlacher, E., 1970. Textbook of fish diseases. T.F.S. Publication, pp. 117-135, New Jersey, USA.
Andrews, S.R., N.P. Sahu, A.K. Pal and S. Kumar, 2009. Haematological modulation and growth of *Laboe rohita* fingerlings: effect of dietary mannan oligosaccharide, yeast extract, protein hydrolysate and chlorella. Aquaculture Research, 41(1): 61-69.
Association of Official Analytical Chemists, AOAC, 1975. Official methods of analysis. 12th Ed. Washington D.C.20044.
Davis, M.E., C.V. Maxwell, G.F. Erf, D.C. Brown and T.J. Wistuba, 2004. Dietary supplementation with phosphorylated mannanimproves growth response and modulates immune function of weanling pigs. J. Anim. Sci., 82: 1882-1891.
Denev, S.A. 2008. Ecological Alternatives of Antibiotic Growth Promoters in the Animal Husbandry and Aquaculture. DSc. Thesis, Department of Biochemistry Microbiology, Trakia University, Stara Zagora, Bulgaria, pp: 294.
Dimitroglou, A., D.L. Merrifield, P. Spring, J. Sweetman, R. Moate and S.J. Davies, 2010. Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilization, intestinal histology and gut microbiota of gilthead sea bream (*Sparus aurata*). Aquaculture, 300(1-4): 182-188.
Dimitroglou, A., D.L. Merrifield, R. Moate, S.J. Davies, P.S pring, J. Sweetman and G. Bradley, 2009. Dietary mannan-oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, *Oncorhynchus mykiss* (Walbaum). J. Anim. Sci., 87: 3226-3234.
Dobrescu, G., 2002. Mannose and Lipopolysaccharide Receptors on the Surface of Granular Hemocytes from the Crayfish Procambarus clarkia. Master of Science Thesis in Biology. Health Sciences. East Tennessee State University, pp: 58.
FAO. 2007. Technical Meeting on Prebiotics. September 15-16, FAO, Rome, Italy, 11.
Gibson, G.R., H.M. Probert, J. Van Loo, R.A.R astall, M.B. Roberfroid, 2004. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev., 17: 259-275.
Gornall, A.G., C.J. Bardawill and M.M. David, 1949. Determination of serum protein by means of the biuret reagent. J. Biol Chem., 177: 751.
Howes, 1994. Effect of mannan-oligosaccharide feed to add on growth performance and survival of North American Trout. Poster presented at the 10th Annual Symposium on Biotechnology in the Feed Industry. Iji, P.A., A.A. Saki and D.R. Tivey, 2001. Intestinal structure and function of broiler chickens on diets supplemented with a mannanoligosaccharide. J Sci Food, 1: 1186-92.
Innes, W.T., 1966. Exotic Aquarium Fishes. 19th Ed., Aquarium in Corporated New Jery.
Kabata, Z., 1985. "Parasites and diseases of fish cultured in the tropics." Taylor & Francis London and Philadelphia, pp: 127-161.
Kanaev, A.E., 1985. Veterinary Hygiene in Fish Farming. pp: 140-194, Moscow.
Kuperman, B.I. and V.E. Matey, 2000. Ectoparasites of fish and invertebrates of the salton sea. Center for Inland waters and Department of Biology, San Diego state University, San Diego.
Lome, J., 1995. Trichodinidae and other ciliates fish disease and disorders protozoan and metazoan infections. 1: 229-262.
Meyer, F.P., 1966. Parasites of fresh water fishes. IV. Miscellaneous 6 parasites of catfish. Fish. Dis. Leafi. Bur. Spoi. Fish. Wildi. (FDL - 5).
Miguel, J.C., S.L. Rodriguez-Zas and J.E. Pettigrew, 2004. Efficacy of a mannan oligosaccharide (Bio-Mos) for improving nursery pig performance. J Swine Health Prod., 12(6): 296-307.
Noga, E.J., 2010. Text Book of Fish diseases, diagnosis and treatment. Blackwell Publishing Co., U. S. A.
Ott, E.A., 2005. Influence of Bio-Mos®, a mannan oligosaccharide supplement, on the immune system of the mare and neonatal foal. In: Nutritional Biotechnology in the Feed and Food Industries, Proceedings of Alltech’s 21st Annual Symposium (T.P. Lyons and K.A. Jacques, eds). Notthingham University Press, UK, pp: 447-454.
Post, G., 1987. Text book of fish Health. T. F. H. Publications, Inc Neptune city, New Jersey, pp: 159-214.
Pouomonge, V. and J. Mbongang, 1993. Effect of feeding rate on the growth of tilapia (*O. niloticus*) in earthen ponds. Bamidegh, 45: 147-153.
Qiang, X., C. Yong Lie and W. QianBing, 2009. Health benefit application of functional oligosaccharides. Carbohydrate Polymers., 77: 435-441.
Razeghi, M., R. Akrami, S. Ghobadi, K. Amani, N. Ezatrahimi and A. Gharaei, 2011. Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (*Huso huso*). Fish Physiology and Biochemistry, pp: 1-7.
Ricardo, Y.S., J. Alvaro and E. Jose, 2008. Feeding Dietary Mannan- Oligosaccharides to Juvenile Nile Tilapia, *Oreochromis niloticus*, has no effect on hematological parameters and showed decreased feed consumption. Journal of the World Aquaculture Society, 39(6): 821-826.
Schultz, L.A., 1987. Methods in clinical chemistry. The C.V Mosby Cost lauris., pp: 742-746.
Shane, S., 2001. Mannanoligosaccharides in poultry nutrition: mechanisms and benefits. In: Jacques KA, Lyons TP, editors. Biotechnology in the feed industry, proceedings of Alltech’s 17th annual symposium. Nottingham, UK: Nottingham University, pp: 65-77.

Sisak, F., 1995. Stimulation of phagocytosis as assessed by luminol-enhanced chemiluminescence and response to salmonella challenge of poultry fed diets containing mannan-oligosaccharides. In: Lyons TP, Jacqus KA, editors. Biotechnology in the feed industry, proceedings of Alltech’s 10 th annual symposium. Nottingham, UK: Nottingham University Press.

Snedecor, G.W., and W.G. Cochran, 1976. Statistical methods. 6th ed. Iowa state Uni. Press. Ames, Iowa.

Spring, P., 2002. Manipulating gut microflora through phosphorylated mannan-oligosaccharides. Proceedings of Alltech’s 16th Annual European Lecture Tour, pp: 13-25.

Spring, P., C. Wenk, K.A. Dawson and K.E. Newman, 2000. The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the caeca of Salmonella-challenged broiler chicks. Poult. Sci., 79: 205-211.

Tantawy, A.A., 2001. Efficacy of Bio-clean for control of some ectoparasities infesting Orechromis niloticus in aquaculture. Vet. Med. J. Giza, 49(4): 497-506.

Torrecillas, S., A. Makol, M.J. Caballero, D. Montero, L. Robaina, F. Real, J. Sweetman, L. Tort and M.S. Izquierdo, 2007. Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish & Shellfish Immunology, 23(5): 969-981.

Viera, S., J. Jakubovský and I. Hulín, 1995. Inflammation and Fever from Pathophysiology: Principles of Disease. Computing Centre, Slovak Academy of Sciences: Academic Electronic Press.

Yilmaz, E., M.A. Genc, E. Genc, 2007. Effects of dietary mannan oligosaccharides on growth, body composition, intestine and liver histology of rainbow trout, Oncorhynchus mykiss. Israeli J. Aquac., 59: 182-188.

Zhou, X.Q., J. Alejandro and D.M. Gatlin, 2010. Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture, 309(1-4): 253-257.