Brain Maturation Changes Characterized by Algorithmic Complexity (Lempel and Ziv Complexity)

J. G. Fernández, H. A. Larrondo, A. Figliola, E. Serrano, J. A. P. Rostas, M. Hunter, and O. A. Rosso

Citation: AIP Conference Proceedings 913, 196 (2007); doi: 10.1063/1.2746747
View online: http://dx.doi.org/10.1063/1.2746747
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/913?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Brain source localization: A new method based on MUltiple SIgnal Classification algorithm and spatial sparsity of the field signal for electroencephalogram measurements
Rev. Sci. Instrum. 84, 085117 (2013); 10.1063/1.4818966

On the non-randomness of maximum Lempel Ziv complexity sequences of finite size
Chaos 23, 023118 (2013); 10.1063/1.4808251

Common multifractality in the heart rate variability and brain activity of healthy humans
Chaos 20, 023121 (2010); 10.1063/1.3427639

Study of EEG Brain Maturation Signals with Multifractal Detrended Fluctuation Analysis
AIP Conf. Proc. 913, 190 (2007); 10.1063/1.2746746

Algorithmic complexity and randomness
AIP Conf. Proc. 568, 31 (2001); 10.1063/1.1381868
Brain Maturation Changes Characterized by Algorithmic Complexity (Lempel and Ziv Complexity)

J. G. Fernández*, H. A. Larrondo*, A. Figliola†, E. Serrano**, J. A. P. Rostas‡, M. Hunter§ and O. A. Rosso¶

*Facultad de Ingeniería, Universidad de Mar del Plata (UNMDP). Juan B. Justo 4302. (7600) Mar del Plata, Argentina
†Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento (UNGS). Campus Universitario J. María Gutíerrez 1150. Los Polvorines, Pcia. de Buenos Aires, Argentina
**Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín (UNGS). Campus Migueletes, Edificio Tornavías, Av. 25 de Mayo y Martín de Irigoyen, San Martín, Pcia. de Buenos Aires, Argentina.
‡School of Biomedical Sciences and Hunter Medical Research Institute, University of Newcastle. University Drive, Callaghan, NSW 2308, Australia.
§School of Behavioral Sciences and Hunter Medical Research Institute, University of Newcastle. University Drive, Callaghan, NSW 2308, Australia.
¶Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA). Pabellón II, 1428 Ciudad Universitaria, Buenos Aires, Argentina.

Abstract. Recent experimental results suggest that basal electroencephalogram (EEG) changes reflect the widespread functional evolution in neuronal circuits, occurring in chicken brain during the “synapse maturation” period, between 3 and 8 weeks posthatch. In present work a quantitative analysis based on the Algorithmic Complexity (Lempel and Ziv Complexity) is performed. It is shown that this complexity presents a peak at week 2 posthatch, and a tendency to stabilize its value after the week 5 posthatch.

Keywords: EEG; brain maturation; Lempel-Ziv complexity

PACS: 05.45.Df, 87.19.La, 89.75.Fb

INTRODUCTION

Literature on the use of the EEG in the chicken is not extensive. Research efforts have largely concerned the use of the EEG either as an indicator of the general integrity of the nervous system or as a measure of specific brain states, such as sleep cycles and other EEG rhythm defined states. In those studies using the EEG as a functional integrity measure of the chicken nervous system, a major interest has been to plot the embryonic development of the chicken brain. Synapse formation in the chicken brain occurs most rapidly around the time of hatching and it is complete by 10 to 14 days posthatch [1]. Subsequently, the immature synapses and neurons gradually attain adult ultrastructural and biochemical properties. These changes occur in the period between 3 and 8 weeks posthatch, during which neuronal circuits become fine-tuned, and has been termed the “maturation period” by Rostas, [2].

It may be assumed that these synaptic connections are maturing in response to both internal and environmental stimulation. In a previous work scalp-applied recording electrodes were used to monitor changes in chicken’s basal EEG patterns during posthatch development [3]. Frequency spectra produced by Fast Fourier Transform (FFT) show bifasic morphology in all chickens with peaks at about 7 Hz and 26 Hz. Changes in the lower frequency band show progressive development and provide a possible index of brain development. Both amplitude and dominant spectral frequency decrease between weeks 3 and 8 posthatch, reaching adult levels between weeks 5 and 7. The results suggest that modifications of basal EEG reflect the widespread functional changes in neuronal circuits occurring in chicken during the “synapse maturation” period, between 3 and 8 weeks’ posthatch. In the present work a quantitative analysis using the Lempel and Ziv Complexity [4, 5] of chicken EEG basal activity is presented. In particular, it shows that the proposed complexity quantifier presents a peak at week 2 and also a tendency to stabilize its value after week 5, in agreement with the previous description of synapse maturation.
EXPERIMENTAL DATA AND ARTIFACT REDUCTION

Twenty four chickens (*Gallus domesticus*) reared from hatching were the subjects in this experiment. All birds had free access to food and water throughout the experiment. The birds were reared initially in incubation boxes and then transferred to holding cages maintained at a constant temperature (21°C) with a 12:12 hr light:dark cycle.

Continuous EEG recordings (0.1 – 100 Hz with a 50 Hz notch filter) were made using small (6 mm) gold cup electrodes attached to the scalp with collodion glue and filled with electrode gel. The signal was sampled at a rate of 128 Hz, passed through amplifiers, and stored directly on computer. The total length of each record is 16368 data. Data acquisition was controlled by Strawberry Tree software. Four electrodes were placed over left and right frontal (LF and RF), and left and right posterior (LP and RP) areas of the scalp with an additional reference electrode placed at the back of the head. EEG recordings where taken at Day 7 posthatch and then each week for 6 weeks. For additional details of the acquisition protocol see [3].

In animals and also in human developmental changes are correlated with the presence of different rhythms. The raw EEG provides evidence of developmental change because there is a greater variance shown in the typical 1-week-posthatch recording (see Fig. 1.a) compare with the typical 6-week-posthatch recording (see Fig. 1.f) From Fig. 1 it
is clear that these EEG signals are nonstationary. They also present artifacts due to saccadic eye movements [3]. In order to avoid these problems and improve a subsequent quantitative analysis, each signal was pre-processed using a methodology based on Wavelets (for procedure details see [6]).

The procedure consisted in two steps:

- The Discrete Orthogonal Wavelet Transform of the signal was obtained considering $J_{\text{max}} = -10$ wavelet resolution levels with spline cubic mother wavelet. After that a cleaning and stationary signal was obtained by reconstruction (inverse wavelet transform) using the resolution wavelet levels corresponding to the frequency range $0.5 - 32.0 \text{ Hz}$ (see Fig. 3.b).
- Both the wavelet frequency bands at which the saccadic movement frequencies appears, and their time localization were identified. The corresponding wavelet coefficients were reduced in order that their contribution were below the noise-signal level. Finally the corresponding frequency band was reconstructed and the complete filtered signal was obtained by superposition of the all wavelet reconstructed frequency bands (see Fig. 3.c).

As an example, in Figs. 1 and 2, the raw and clean EEG signals corresponding to the Bird #8 are shown.

**FIGURE 2.** Cleaning EEG time series at left frontal electrode (LF) corresponding to Bird #8 for the 6 weeks’ posthatch.
FIGURE 3. Cleaning EEG time series process: a) Original time series; b) Stationary wavelet reconstructed time series for the frequency range 0.5 – 32.0 Hz; c) Cleaning EEG time series, without saccadic artifacts. The saccadic artifact are marked with dots line.

LEMPEL AND ZIV COMPLEXITY

The Algorithmic Complexity has shown its ability to distinguish evolutionary characteristics in many fields. For a string of characters it is defined as the length in bits of the smallest program that produces the string as output [7]. The problem with this definition is that it is impossible, even in principle, to find such a program. Nevertheless, the zippers or file compressors are algorithms conceived to do that job at least approximately. The Lempel and Ziv algorithm is used for most zippers and it is one of the best known file compressors [4, 5].

Let $l_{ik}^U$ be the string length of the time series for bird $i$, in week $j$, electrode $k$ (superscript $U$ for unzipped). Let $l_{ijk}^Z$ be the corresponding zipped string length (superscript $Z$ for zipped). The Zipping Complexity for this particular time series is given by:

$$C_{ijk} = \frac{l_{ijk}^Z}{l_{ijk}^U} .$$

In the case of Zipping Complexity it is also necessary to correct the effect of sampling rate and epoch length on the
algorithmic complexity. These effects were studied by P. E. Rapp and co-workers in [8]. This drawback is solved using surrogates: an ensemble of random nondeterministic data sets with the same mean, variance and power spectrum as the experimental time series. The quantifier proposed by Rapp et al. is the Relative Zipping Complexity:

$$C_{ijk} = \frac{c_{ijk}}{\langle c_{ijk}^S \rangle},$$

where $\langle c_{ij} \rangle$ corresponds to the Zipping Complexity mean value over all considered surrogates of the original time series. We used a hundred surrogates in our calculations.

There are several methods to generate surrogate data sets with the conditions stated above. In the present work we use the algorithm proposed by Henry, Novell and Camacho [9]. Essentially the method consists on the following steps:

- Evaluate the time series discrete Fourier transform $Z_{ijk}$;
- Add a random phase $\varphi$ to obtain $Z'_{ijk} = Z_{ijk} \exp \varphi$;
- Construct the inverse Fourier transform of $Z'$. This is one surrogate time series.
RESULTS AND DISCUSSION

As explained above, in the case of time series studied in this paper a pre-processing was required to eliminate undesired frequencies produced by a repetitive motion (saccadic movements) typical of the studied birds. This preprocessing was not straightforward (it can not be done with band pass filters) and was the object of a previous paper [6]. The cleaning EEG data sets were then characterized by means of their Relative Zipping Complexity (RZC) measure C.

In Figs. 4 and 5 the Relative Zipping Complexity evolution (in weeks) for the Bird #8 and the corresponding Grand Average value over 24 Birds are shown for each electrode. In the same figures, average over all electrodes are also displayed.

The RZC data obtained show a distinctive pattern of change during development through the synapse formation period (up to 3 weeks’ posthatch) and the synapse maturation period (from 2 to 6 weeks’ posthatch). It is interesting to note that the RZC present oscillatory behavior for a given Bird, however the mean RZC increases with time during weeks 3 to 5, showing a tendency to stabilize its value in the last weeks. Note also, that this behavior is associated with the “maturation period” described by Rostas and co-workers [2]. A peak appear in the RZC at week 2 (see Fig. 5) which can be associated with the complete synapse formation [1]. The EEG analysis for each individual electrode showed that the same developmental pattern occurred at each site but greater values are observed at posterior sites. Also some differences between hemisphere are founded. Whether the latter finding reflects the bilateral asymmetry of
brain function, which underlies many behaviors in chickens, remains to be established. In summary we can conclude that a good quantification of brain maturation changes can be done by the Relative Zipping Complexity and results are in good agreement with previous spectral and morphological studies [3].

ACKNOWLEDGMENTS

This work was supported by The University of Newcastle through a research visitor grant to OAR and by Hunter Medical Research Institute and the NSW Department of Health. Also supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 5687/05, 5569/05), Agencia Nacional de Promoción Científica y Tecnológica (PICT 20648/04, 21409/04) and University of Mar del Plata, Argentina.

REFERENCES

1. J. A. P. Rostas, J. M. Kavanagh, P. R. Dodd, J. W. Heath and D. A. Powis, Molecular Neurobiology 5, 203–215 (1992).
2. J. A. P. Rostas, “Molecular mechanisms of neuronal maturation: A model for synaptic plasticity,” in Neural and Behavioural Plasticity: The use of the domestic chicken as a model, edited by R. J. Andrew, Oxford University Press, London, 1991, pp. 177–211.
3. M. Hunter, M. Battilana, T. Bragg, J. A. P. Rostas, Developmental Psychobiology 36, 23–28 (2000).
4. J. Ziv and A. Lempel, IEEE Trans. Inf. Theory 22, 75–81 (1976).
5. J. Ziv and A. Lempel, IEEE Trans. Inf. Theory 24, 530–536 (1978).
6. A. Figliola, O. A. Rosso and E. Serrano, “Atenuación de frecuencias indeseadas usando transformada wavelet,” in Proceedings XII RPIC, edited by Grupo de Electrónica Aplicada, Guillermo García Electrónica Edition, Río Cuarto, 2005, pp. 28–32.
7. J. R. Sanchez, F. Family, C. M. Arizmendi, Phys. Lett. A 249, 281–285 (1998).
8. P. E. Rapp, C. J. Cellucci, K. E. Korshund, T. A. A. Watanabe, M. A. Jiménez-Montaño, Phys. Rev. E 64, 016209 (2001).
9. B. Henry, N. Lovell, F. Camacho, “Nonlinear Dynamics Time Series Analysis,” in Nonlinear Biomedical Signal Processing, edited by Metin Akay, IEEE Engineering in Medicine and Biology Society, 2004, pp. 1–39.