Strongly regular graphs with parameters \((81, 30, 9, 12)\) and a new partial geometry

Dean Crnković\(^1\) · Andrea Švob\(^1\) · Vladimir D. Tonchev\(^2\)

Received: 6 October 2020 / Accepted: 2 January 2021 / Published online: 30 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

Twelve new strongly regular graphs with parameters \((81, 30, 9, 12)\) are found as graphs invariant under certain subgroups of the automorphism groups of the two previously known graphs that arise from 2-weight codes. One of these new graphs is geometric and yields a partial geometry with parameters \(pg(5, 5, 2)\) that is not isomorphic to the partial geometry discovered by J. H. van Lint and A. Schrijver [13] in 1981.

Keywords Strongly regular graph · Partial geometry · Automorphism group

Mathematics Subject Classification 05E30 · 51E14 · 05E18

1 Introduction

A strongly regular graph with parameters \((v, k, \lambda, \mu)\) (or \(srg(v, k, \lambda, \mu)\) for short) is an undirected graph with \(v\) vertices, having no multiple edges or loops, such that every vertex has exactly \(k\) neighbours, every two adjacent vertices have exactly \(\lambda\) common neighbours, and every two nonadjacent vertices have exactly \(\mu\) common neighbours.

A partial geometry with parameters \(s, t, \alpha\), or shortly, \(pg(s, t, \alpha)\), is a pair \((P, L)\) of a set \(P\) of points and a set \(L\) of lines, with an incidence relation between points and lines, satisfying the following axioms:
(1) A pair of distinct points is not incident with more than one line.
(2) Every line is incident with exactly \(s + 1 \) points \((s \geq 1)\).
(3) Every point is incident with exactly \(t + 1 \) lines \((t \geq 1)\).
(4) For every point \(p \) not incident with a line \(l \), there are exactly \(\alpha \) lines \((\alpha \geq 1)\) which are incident with \(p \), and also incident with some point incident with \(l \).

Partial geometries and strongly regular graphs were introduced by R. C. Bose [2]. In the original Bose’s notation, the number \(t + 1 \) of lines incident with a point is denoted by \(r \), and the number \(s + 1 \) of points incident with a line is denoted by \(k \). A survey on strongly regular graphs is given by Brouwer in [5], and for a survey on partial geometries, see Thas [15].

In terms of \(s, t, \alpha \), the number \(v = |P| \) of points and the number \(b = |L| \) of lines of a partial geometry \(pg(s, t, \alpha) \) are given by Eq. (1).

\[
v = \frac{(s + 1)(st + \alpha)}{\alpha}, \quad b = \frac{(t + 1)(st + \alpha)}{\alpha}.
\]

If \(G = (P, L) \) is a partial geometry \(pg(s, t, \alpha) \), the incidence structure \(G' \) having as points the lines of \(G \), and having as lines the points of \(G \), where a point and a line are incident in \(G' \) if and only if the corresponding line and a point of \(G \) are incident, is a partial geometry \(pg(t, s, \alpha) \), called the dual of \(G \).

If \(G = (P, L) \) is a partial geometry \(pg(s, t, \alpha) \) with point set \(P \) and line set \(L \), the point graph \(\Gamma_p \) of \(G \) is the graph with vertex set \(P \), where two vertices are adjacent if the corresponding points of \(G \) are collinear. The line graph \(\Gamma_L \) of \(G \) is the graph having as vertices the lines of \(G \), where two lines are adjacent if they share a point. Both \(\Gamma_p \) and \(\Gamma_L \) are strongly regular graphs [2]. The parameters \(v, k, \lambda, \mu \) of \(\Gamma_p \) are given by (2).

\[
v = (s + 1)(st + \alpha)/\alpha, \quad k = s(t + 1), \quad \lambda = s - 1 + t(\alpha - 1), \quad \mu = \alpha(t + 1).
\]

A strongly regular graph \(\Gamma \) whose parameters \(v, k, \lambda, \mu \) can be written as in Eq. (2) for some integers \(s, t, \alpha \) is called pseudo-geometric, and \(\Gamma \) is called geometric if there exists a partial geometry \(G \) with parameters \(s, t, \alpha \) such that \(\Gamma \) is the point graph of \(G \). A pseudo-geometric strongly regular graph \(\Gamma \) with parameters (2) is geometric if and only if there exists a set \(S \) of \(b = (t + 1)(st + \alpha)/\alpha \) cliques of size \(s + 1 \) such that every two cliques from \(S \) share at most one vertex [2].

A partial geometry \(pg(s, t, \alpha) \) with \(\alpha = s + 1 \) is a Steiner 2-\((v, s + 1, 1)\) design, or dually, if \(\alpha = t + 1 \), then the dual geometry is a Steiner 2-\((b, t + 1, 1)\) design. If \(\alpha = s \), or dually, \(\alpha = t \), then \(G \) is a net of order \(s + 1 \) and degree \(t + 1 \) [2]. A partial geometry with \(\alpha = 1 \) is a generalized quadrangle [2,14].

A partial geometry \(pg(s, t, \alpha) \) is called proper if \(1 < \alpha < \text{min}(s, t) \).

The known proper partial geometries are divided into eight types, four of which are infinite families, and there are four sporadic geometries that do not belong to any known infinite family [[15], Theorem 41.31]. One of the four sporadic examples is a partial geometry \(pg(5, 5, 2) \) discovered by van Lint and Schrijver [13]. The point graph of the van Lint–Schrijver geometry has parameters \(v = 81, \ k = 30, \lambda = 9, \mu = 12, \) and is invariant under the elementary abelian group of order 81 acting regularly on
the set of vertices. By a result of Delsarte [10], any graph with these parameters that is invariant under the elementary abelian group of order 81 acting regularly on the set of vertices can be obtained from a ternary linear \([30, 4, 9]\) two-weight code with weight distribution \(a_9 = 50, a_{12} = 30\) (see also [6], [4], [8]). Up to equivalence, there are exactly two such codes (Hamada and Helleseth [11]) that give rise to two nonisomorphic \(srg(81, 30, 12, 9)\): a graph \(\Gamma_1\), being isomorphic to the van Lint–Schrijver graph and having full automorphism group of order 116640, and a second graph \(\Gamma_2\) having full automorphism group of order 5832. According to [4,6,7], \(\Gamma_1\) and \(\Gamma_2\) appear to be the only previously known strongly regular graphs with parameters \(v = 81, k = 30, \lambda = 9, \mu = 12\).

In this paper, we use a method for finding strongly regular graphs based on orbit matrices that was developed in [1] and [9], to show that there are exactly three nonisomorphic graphs \(srg(81, 9, 12)\) which are invariant under a subgroup of order 360 of the automorphism group of \(\Gamma_1\), and exactly eleven nonisomorphic graphs \(srg(81, 30, 9, 12)\) which are invariant under a subgroup of order 972 of the automorphism group of \(\Gamma_2\). One of the newly found graphs invariant under a group of order 972 gives rise to a new partial geometry \(pg(5, 5, 2)\) that is not isomorphic to the van Lint–Schrijver partial geometry. An isomorphic partial geometry was simultaneously and independently constructed by V. Krčadinac [12] by using a different method. The adjacency matrices of the two previously known graphs and the twelve newly found graphs are available online at http://www.math.uniri.hr/~asvob/SRGs81_pg552.txt

The lines of the new partial geometry \(pg(5, 5, 2)\) are given in Appendix.

2 New strongly regular graphs \(srg(81, 30, 9, 12)\)

The graphs \(\Gamma_1\) and \(\Gamma_2\) described in the introduction have full automorphism groups \(G_1\) and \(G_2\) of order 116640 and 5832, respectively. In this section, we construct twelve new strongly regular graphs with parameters \((81, 30, 9, 12)\). These new graphs are constructed by expanding orbit matrices with respect to the action of certain subgroups of \(G_1\) or \(G_2\). We have checked subgroups of \(G_1\) or \(G_2\) that act on graphs \(\Gamma_1\) and \(\Gamma_2\) in a small number of orbits, and present the results obtained by subgroups that gave us new strongly regular graphs. For more information on orbit matrices of strongly regular graphs, we refer the reader to [1,9]. We used Magma [3] for all computations involving groups and codes in this paper.

2.1 Graphs invariant under subgroups \(A_6\) of \(\text{Aut}(\Gamma_1)\)

There are exactly four conjugacy classes of subgroups of order 360 in the group \(G_1 = \text{Aut}(\Gamma_1)\) of order 116640, the representatives of which will be denoted by \(H_1^1, \ldots, H_4^1\). Each of these four representatives is isomorphic to the simple group \(A_6\).
The subgroup H_1^1 is acting in two orbits on the set of vertices of Γ_1, one of size 36 and the other of size 45, giving an orbit matrix OM_1^1 (3).

$$OM_1^1 = \begin{pmatrix} 15 & 15 \\ 12 & 18 \end{pmatrix}$$ (3)

The orbit matrix OM_1^1 expands to the (0,1)-adjacency matrices of two nonisomorphic strongly regular graphs: the graph Γ_1 and a new graph denoted by Γ_{14} with full automorphism group of order 360.

The subgroup H_2^1 is acting in three orbits of sizes 6, 15 and 60, respectively, giving an orbit matrix OM_2^1.

$$OM_2^1 = \begin{pmatrix} 0 & 0 & 30 \\ 0 & 6 & 24 \\ 3 & 6 & 21 \end{pmatrix}$$

The orbit matrix OM_2^1 gives rise to two nonisomorphic strongly regular graphs, Γ_1, and a second graph Γ_{13} having full automorphism group of order 720.

The subgroup H_3^1 is acting in three orbits with sizes 6, 15 and 60, and orbit matrix OM_3^1.

$$OM_3^1 = \begin{pmatrix} 5 & 5 & 20 \\ 2 & 8 & 20 \\ 2 & 5 & 23 \end{pmatrix}$$

The orbit matrix OM_3^1 can be expanded to only one (up to isomorphism) strongly regular graph, namely the original graph Γ_1.

The subgroup H_4^1 acts in four orbits, with sizes 1, 20, 30 and 30, and orbit matrix OM_4^1.

$$OM_4^1 = \begin{pmatrix} 0 & 0 & 0 & 30 \\ 0 & 9 & 9 & 12 \\ 0 & 6 & 12 & 12 \\ 1 & 8 & 12 & 9 \end{pmatrix}$$

Up to isomorphism, the matrix OM_4^1 is the orbit matrix of only one strongly regular graph, that is, Γ_1.

2.2 Graphs invariant under subgroups of order 972

There are exactly five conjugacy classes of subgroups of order 972 in the group $G_2 = \text{Aut}(\Gamma_2)$ of order 5832, with representatives H_1^2, \ldots, H_5^2.

The subgroups H_1^2 and H_2^2 act transitively on the 81 vertices and produce two nonisomorphic strongly regular graphs, isomorphic to Γ_1 and Γ_2.

@ Springer
The subgroup H_2 partitions the set of vertices of Γ_2 in three orbits of length 27 and gives an orbit matrix OM_2^2.

$$OM_2^2 = \begin{pmatrix} 12 & 9 & 9 \\ 9 & 12 & 9 \\ 9 & 9 & 12 \end{pmatrix}$$

The orbit matrix OM_2^2 gives rise to two nonisomorphic strongly regular graphs, the graph Γ_2 and a new graph Γ_4, having full automorphism group of order 1944.

The subgroups H_2^4 and H_2^5 are acting in the same way, with two orbits of size 27 and 54, respectively, and gives an orbit matrix OM_4^2.

$$OM_4^2 = \begin{pmatrix} 12 & 18 \\ 9 & 1 \\ 2 & 9 \end{pmatrix}$$

The subgroup H_2^4 leads to four nonisomorphic strongly regular graphs, including Γ_2. Two of these graphs, Γ_5 and Γ_6, have full automorphism groups of order 972, and Γ_4 has full automorphism group of order 1944. The group H_2^5 gives rise to 12 nonisomorphic strongly regular graphs, among them Γ_1, Γ_2 and Γ_4. Eight of these graphs, denoted by $\Gamma_5, \ldots, \Gamma_{12}$, have full automorphism groups of order 972, and Γ_3 has full automorphism group of order 3888.

The graph Γ_{12} is geometric and produces a new partial geometry $pg(5, 5, 2)$.

3 A new partial geometry $pg(5, 5, 2)$

The results presented in Sect. 2 can be summarized as follows.

Theorem 3.1

1. Up to isomorphism, there are exactly 3 strongly regular graphs with parameters $(81, 30, 9, 12)$ invariant under a subgroup of order 360 of the automorphism group of the graph Γ_1.
2. Up to isomorphism, there are exactly twelve strongly regular graphs with parameters $(81, 30, 9, 12)$ invariant under a subgroup of order 972 of the automorphism group of the graph Γ_2.
3. One of the twelve graphs from part (2) yields a new partial geometry $pg(5, 5, 2)$.

Details about these strongly regular graphs are given in Table 2: the order of the full automorphism group of the graph, the 3-rank of the $(0, 1)$-adjacency matrix, the maximum clique size and the number of 6-cliques. For every graph Γ_i that contains at least 81 6-cliques, we define a graph Γ_i^* having as vertices the 6-cliques of Γ_i, where two 6-cliques are adjacent if they share at most one vertex. The last but one column of Table 2 contains the maximum clique size of Γ_i^*, and if this maximum clique size is 81, the last column contains the total number of 81-cliques in Γ_i^*.

Only two of the fourteen graphs, Γ_1 and Γ_{12}, are geometric. The graph Γ_1^* contains two 81-cliques, each consisting of 81 6-cliques of Γ_1 that are the lines of a partial geometry $pg(5, 5, 2)$ with full automorphism group of order 58320 acting transitively.
Table 1 New partial geometry \(pg^* (5, 5, 2) \)

A generator \(f \) of order 6

\[
(1, 4, 3)(2, 6, 9, 18, 7, 13)(5, 20, 10, 21, 11, 12)(8, 24, 19, 16, 15, 27)
(14, 17, 23, 26, 22, 25)(28, 29, 32)(30, 47, 42, 39, 36, 34)(31, 33, 35, 46, 37, 38)
(40, 41, 54, 49, 50)(43, 48, 51, 53, 44, 52)(55, 71, 72, 65, 59, 57)
(56, 67, 77, 68, 63, 73)(58, 60, 75, 74, 62, 61)(64, 78, 66)(69, 81, 76, 79, 70, 80)
\]

Line orbit representatives

\[
\{ 4, 15, 24, 28, 31, 46 \}, \{ 32, 51, 52, 64, 70, 81 \}, \{ 4, 17, 22, 57, 72, 78 \},
\{ 31, 39, 41, 58, 67, 71 \}, \{ 2, 11, 24, 66, 71, 72 \}, \{ 7, 14, 20, 36, 43, 54 \},
\{ 5, 13, 26, 36, 44, 50 \}, \{ 29, 43, 52, 68, 71 \}, \{ 9, 11, 27, 68, 74, 80 \},
\{ 33, 42, 49, 71, 73, 75 \}, \{ 35, 41, 47, 66, 76, 81 \}, \{ 1, 19, 24, 30, 44, 54 \},
\{ 9, 10, 24, 56, 62, 70 \}, \{ 4, 14, 25, 56, 69, 75 \}, \{ 11, 13, 25, 32, 37, 46 \}
\]

Table 2 Strongly regular graphs with parameters \((81, 30, 9, 12)\)

| Graph \(\Gamma \) | \(| Aut(\Gamma) | \) | 3-rank | Max. clique size of \(\Gamma \) | # 6-cliques | Max. clique size of \(\Gamma^* \) | # 81-cliques |
|----------------|----------------|-------|-------------------|------------|-------------------|-------------|
| \(\Gamma_1 \) | 116640 | 19 | 6 | 162 | 81 | 2 |
| \(\Gamma_2 \) | 5832 | 19 | 4 | 0 | | |
| \(\Gamma_3 \) | 3888 | 21 | 6 | 54 | | |
| \(\Gamma_4 \) | 1944 | 21 | 6 | 108 | 54 | |
| \(\Gamma_5 \) | 972 | 21 | 6 | 54 | | |
| \(\Gamma_6 \) | 972 | 21 | 6 | 108 | 54 | |
| \(\Gamma_7 \) | 972 | 21 | 6 | 54 | | |
| \(\Gamma_8 \) | 972 | 21 | 6 | 54 | | |
| \(\Gamma_9 \) | 972 | 20 | 6 | 81 | 54 | |
| \(\Gamma_{10} \) | 972 | 20 | 6 | 81 | 54 | |
| \(\Gamma_{11} \) | 972 | 21 | 6 | 108 | 54 | |
| \(\Gamma_{12} \) | 972 | 21 | 6 | 108 | 81 | 1 |
| \(\Gamma_{13} \) | 720 | 21 | 6 | 90 | 45 | |
| \(\Gamma_{14} \) | 360 | 25 | 6 | 21 | | |

on the sets of points and lines, and is isomorphic to the van Lint–Schrijver partial geometry [13].

The graph \(\Gamma_{12}^* \) contains only one 81-clique and yields a new partial geometry \(pg^* (5, 5, 2) \) that is not isomorphic to the van Lint–Schrijver partial geometry. The full automorphism group of the new partial geometry is of order 972 and partitions the set of points, as well as the set of lines, in two orbits of length 54 and 27. An automorphism \(f \in Aut(\Gamma_{12}) \) of order 6 and a set of orbit representatives of the lines of \(pg^* (5, 5, 2) \) under the action of \(< f > \) are listed in Table 1, where the first three orbits are of length 3, and the remaining 12 orbits are of length 6. The set of all 81 lines of \(pg^* (5, 5, 2) \) is given in Appendix.

The data in Table 2 distinguish as nonisomorphic all but the three graphs \(\Gamma_5, \Gamma_7, \Gamma_8 \), the graphs \(\Gamma_6 \) and \(\Gamma_{11} \), and the two graphs \(\Gamma_9 \) and \(\Gamma_{10} \). Let \(D_1 \) be the design on 81 points.
having as blocks the 6-cliques in Γ_i. We checked with Magma [3] that $|Aut(D_9)| = 972$, while $|Aut(D_{10})| = 1944$; hence, Γ_9 and Γ_{10} are nonisomorphic. Moreover, $|Aut(D_6)| = 972$, while $|Aut(D_{11})| = 1944$; hence, Γ_6 and Γ_{11} are nonisomorphic. Similarly, $|Aut(D_5)| = 972$, $|Aut(D_7)| = |Aut(D_8)| = 1944$ shows that Γ_5 is not isomorphic to Γ_7 or Γ_8. Finally, Γ_7 and Γ_8 can be shown to be nonisomorphic by comparing the weight distributions of the ternary linear codes spanned by their adjacency matrices. The ternary code of Γ_7 contains 32400 code words of weight 33, while the code of Γ_8 contains 44550 code words of weight 33.

Acknowledgements D. Crnković and A. Švob were supported by Croatian Science Foundation under the project 6732.

Author contributions This is a joint collaboration with all three authors contributing substantially throughout.

Funding This work has been supported in part by Croatian Science Foundation under the project 6732.

Availability of data and material Data generated and analysed during this study are included in this article, and additional data are available online at http://www.math.uniri.hr/ asvob/SRGs81_pg552.txt.

Compliance with ethical standards

Conflicts of interest The authors declare no conflict of interest.

Code availability Not applicable.

Appendix

Lines of the new partial geometry $pg^*(5, 5, 2)$
References

1. Behbahani, M., Lam, C.: Strongly regular graphs with non-trivial automorphisms. Discrete Math. 311, 132–144 (2011)
2. Bose, R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math. 13, 389–419 (1963)
3. Bosma, W., Cannon, J.: Handbook of Magma Functions. University of Sydney, Department of Mathematics (1994). (http://magma.maths.usyd.edu.au/magma)
4. Bouyukliev, I., Fack, V., Willems, W., Winne, J.: Projective two-weight codes with small parameters and their corresponding graphs. Des. Codes Cryptogr. 41, 59–78 (2006)
5. Brouwer, A. E.: Strongly Regular Graphs. In: Colbourn, C. J., Dinitz, J. H. (Eds.), Handbook of Combinatorial Designs, 2nd ed., Chapman & Hall/CRC, Boca Raton, 2007, pp. 852–868
6. Brouwer, A. E.: Parameters of Strongly Regular Graphs, http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
7. A. E. Brouwer, private communication
8. Calderbank, R., Kantor, W.M.: The geometry of two-weight codes. Bull. London Math. Soc. 18, 97–122 (1986)
9. Crnković, D., Maksimović, M.: Construction of strongly regular graphs having an automorphism group of composite order. Contrib. Discrete Math. 15, 22–41 (2020)
10. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Phillips Res. Rep. Suppl. 10 (1973)
11. Hamada, N., Helleseth, T.: A characterization of some $\{3v_2 + v_3, 3v_1 + v_2; 3, 3\}$-minihypers and some $[15, 4, 9; 3]$-codes with $B_2 = 0$, Special issue on orthogonal arrays and affine designs, Part I. J. Statist. Plan. Inference 56, 129–146 (1996)
12. Krčadinac, V.: A new partial geometry $pg(5, 5, 2)$, (https://arxiv.org/abs/2009.07946)
13. van Lint, J.H., Schrijver, A.: Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields. Combinatorica 1, 63–73 (1981)
14. Payne, S.E., Thas, J.A.: Generalized Quadrangles. Pitman, New York (1985)
15. Thas, J.A.: Partial Geometries. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 557–561. Chapman & Hall/CRC, Boca Raton (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.