In conclusion, Diascan® is a useful tool to assess HDD without evidence of an increased sodium load related to the conductivity pulses during haemodialysis treatment.

Conflict of interest statement. None declared.

1Department of Internal Medicine Karin Moret1
Maxima Medical Centre, Veldhoven Diana C.
2Department of Clinical Grootendorst2
Epidemiology, Leiden University Charles Beerenhout1
Medical Center
3Department of Internal Medicine Jeroen P. Kooman3
University Hospital, Maastricht
The Netherlands
E-mail: K.Moret@mmc.nl

1. Mercadal L, Petitclerc T, Jaudon MC et al. Is ionic dialysance a valid parameter for quantification of dialysis efficiency? Artif Organs 1998; 22: 1005–1009
2. Lindsay R, Bene B, Goux N et al. Relationship between effective ionic dialysance and in vivo urea clearance during haemodialysis. Am J Kidney Dis 2001; 38: 565–574
3. McIntyre CW, Lambie SH, Taal MW et al. Assessment of haemodialysis adequacy by ionic dialysance: intra-patient variability of delivered treatment. Nephrol Dial Transplant 2003; 18: 559–563
4. Moret K, Beerenhout CH, Van Den Wall Bake AWL et al. Ionic dialysance and the assessment of Kt/V: the different estimates of V on method agreement. Nephrol Dial Transplant 2007; 22: 2276–2282
5. Gotch FA, Panlilio FM, Buyaki RA et al. Mechanisms determining the ratio of conductivity clearance to urea clearance. Kidney Int Suppl 2004; 89: S3–S24
6. Moret K, Hassell D, Kooman JP et al. Ionic mass balance and blood volume preservation during a high, standard, and individualized dialysate sodium concentration. Nephrol Dial Transplant 2002; 17: 1463–1469

doi: 10.1093/ndtplus/sfp059

Advance Access publication 3 June 2009

Assessment and reduction of fluid overload using a body composition monitor

Sir,
Assessment and reduction of fluid overload is a major clinical problem in haemodialysis (HD) patients which should be assessed by objective methods [1]. Non-invasive bioimpedance spectroscopy with a body composition model has been validated against other methods to assess fluid status [2,3] and fluid changes accurately [4]. Our study investigated whether the application of a new bed-side bioimpedance spectroscopy device BCM (body composition monitor, Fresenius Medical Care, Germany) was feasible in a normal clinical setting. A single pre-dialytic measurement provides the body composition of the patient and quantifies his fluid overload.

The fluid status of HD patients from three centres was measured with BCM. The study consisted of a cross-sectional study (fluid status was assessed once) and a longitudinal study (fluid status was measured repeatedly, and potential fluid overload reduced following the target defined by BCM).

A total of 139 HD patients were investigated with BCM. The patients were grouped concerning their pre-dialytic fluid overload in quartiles with −0.14 ± 1.04 L in the lowest quartile (Q1) and 4.13 ± 1.50 L in the highest quartile (Q4).

In Q4 we found predominantly men (77% versus 43% in Q1, P < 0.01). The incidence of hypertension was at maximum in Q4 (94% versus lowest in Q2 with 76%, P < 0.05). The highest ultrafiltration volumes were observed in Q4 (3.1 ± 0.8 L versus the lowest in Q2 with 2.6 ± 0.8 L, P < 0.02). Patients with a high fluid overload had a lower body mass index (25.0 ± 4.3 kg/m² in Q4 versus 27.8 ± 4.5 kg/m² in Q1, P < 0.01).

For the longitudinal study, a sub-group of 34 patients was selected predominantly according to fluid overload and blood pressure values outside the reference region for healthy persons at the start of the study (fluid load <−1.1 L or >1.1 L and systolic blood pressure values <100 mmHg or >140 mmHg; see Figure 1); they were repeatedly investigated with BCM during 5.9 ± 1.7 months. The mean fluid overload was reduced by 0.62 L; in patients with fluid overload >1.1 L, it even was reduced by 0.81 L (see Table 1).

The observed mean pulse pressure decrease of 3 mmHg did not reach statistical significance (P = 0.146); pulse pressure has been associated with risk of death [5].

Changes in the prescription of antihypertensive medication were not significant either.

In the sub-group of fluid overloaded patients with high blood pressure, a non-significant reduction of blood pressure was observed (BP, pre-dialytic systolic/diastolic BP: 165 ± 18/77 ± 13 mmHg at the start of the study versus 157 ± 26/73 ± 11 mmHg at the end of the study, P = 0.140/P = 0.286). Moreover, a significantly higher UF volume was observed (2.5 ± 1.0 L at the start of the study versus 2.8 ± 0.9 L at the end of the study, P = 0.013).

Fluid overload is present in many HD patients, often unexpected. The analysis shows that special patient groups
Table 1. Longitudinal study data: fluid overload (FO) at the start and the end of the study

Patients	N	Fluid overload (L)		
		At the start of the study	At the end of the study	P (Wilcoxon’s)
All	34	2.33 ± 1.82	1.71 ± 1.61	0.001
With fluid overload > 1.1 L	24	3.14 ± 1.42	2.33 ± 1.40	0.001
With systolic blood pressure >140 mmHg	19	2.37 ± 2.09	1.70 ± 1.80	0.018
With FO > 1.1 L and systolic BP >140 mmHg	14	3.19 ± 1.68	2.32 ± 1.61	0.013

N = number of patients; BP = blood pressure; values = mean ± standard deviation.

deserve particular attention (male, hypertensive, high interdialytic weight gain).

Bioimpedance spectroscopy allows detecting fluid overload easily, providing the basis to initiate the appropriate measures to normalize the fluid status. In our study, a reduction of fluid overload was successfully achieved. This technique should be applied more often in the normal clinical setting.

Conflict of interest statement. All authors are employees of Fresenius Medical Care.

1Centro Médico National S.A. Fresenius Medical Care Miratejo, Portugal
2Dialyzacni stredisko Fresenius Medical Care DS Prague, Czech Republic
3Dialyzacni stredisko Fresenius Medical Care DS, Sokolov Czech Republic
E-mail: petr.taborsky@fmc-ag.com

1. Kooman J, Basci A, Pizzarelli F et al. EBPG guideline on haemodynamic instability. *Nephrol Dial Transplant* 2007; 22(Suppl 2): ii22–ii44
2. Chamney PW, Wabel P, Moissl UM et al. A whole-body model to distinguish excess fluid from the hydration of major body tissues. *Am J Clin Nutr* 2007; 85(1): 80–89
3. Moissl UM, Wabel P, Chamney PW et al. Body fluid volume determination via body composition spectroscopy in health and disease. *Physiol Meas* 2006; 27: 921–933
4. Wabel P, Rode C, Moissl U et al. Accuracy of bioimpedance spectroscopy (BIS) to detect fluid status changes in hemodialysis patients. *Nephrol Dial Transplant* 2007; 22(Suppl 6): VI 129
5. Klassen PS, Lowrie EG, Reddan DN et al. Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. *JAMA* 2002; 287: 1548–1555
doi: 10.1093/ndtplus/fsf063