Antibacterial activity of functional bioactive peptides derived from fish protein hydrolysate

N Baco¹, S N H Oslan¹, R Shapawi², R A M Mohhtar³, W N M Noordin⁴ and N Huda¹.⁵,*

¹Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia.
²Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia.
³Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia.
⁴Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia.
⁵Fisheries Research Institute, Batu Maung, Penang 11960, Malaysia.

*Corresponding author: drnurulhuda@ums.edu.my

Abstract. By-product removal in fish processing is estimated to be between 25 and 70% due to improper fish production handling and significant problems in the fish industry today. Therefore, one of the ways to manage the raw material of by-product is through protein hydrolysis. However, one of the most effective methods for managing this raw material, which includes skin, bones, heads, and viscera, is to convert their protein into peptides via hydrolysis methods, resulting in fish protein hydrolysate (FPH). FPH has been shown to have bioactive properties such as antibacterial, antihypertensive, antioxidative, anticancer, and anticoagulant properties. Bioactivity could be fully utilised in the future in both the nutraceutical and food industries. Numerous studies have been published on the acceptability of FPH in obtaining bioactive properties from various fish, particularly antibacterial activity. For example, the antibacterial peptide was identified as FPIGMGHGSRPA, consisting of 12 amino acids. Its antibacterial activity was tested against B. subtilis using 800 g/mL ampicillin. The inhibition zone increased with peptide concentration. This review discusses functional bioactive peptides derived from fish protein hydrolysate that can be used as antibacterial agents by inhibit Gram-positive and Gram-negative bacterial growth. It also covers fish species, parts, and hydrolysis methods to maximise yields.

Keywords: antibacterial activity; bioactive peptides; fish protein hydrolysate; food industry; different fish species

1. Introduction

In 2025, many countries worldwide the world's fish production is expected to be around with a total of 196 million tonnes of fish processed [1]. As a result, fish processing from by-products ranges from 25 to 70% of heads, skins, viscera, backbone, trimmings, and blood [2]. Malaysia's annual waste disposal is estimated to be around 20 million tonnes, accounting for approximately 25% of total production [3]. The majority of fish waste is dumped, with no effort made to reduce the harmful effects on the environment, which will also cause disposal issues. To solve the problem, effective methods for converting fish by-product wastes into essential nutrients that can improve human health and nutritional value, such as producing Fish Protein Hydrolysate (FPH), are required [4,5]. Furthermore, FPH has been reported to have a wide range of bioactive properties such as antibacterial activity, antihypertensive, antioxidant, anticancer, and anticoagulant, which could be fully utilised in the nutraceutical and food industries [5].
Furthermore, the crude protein content of fish by-products ranges from 8 to 35% and can be used as a source of collagen, gelatin, polyunsaturated lipids, enzymes, and essential amino acids [1]. According to Petrova et al. [6], FPH is a product made from fish by-products using a protein hydrolysis method, which involves the breakdown of protein into a minor part of peptide and then into amino acid. Compared to raw protein, the protein hydrolysate produced contained peptides and amino acids that were easily absorbed [7]. Several methods have been used to extract proteins and peptides from fish by-products, including acidic or alkaline hydrolysis, bacterial fermentation, and enzymatic hydrolysis. There are various advantages; enzymatic and chemical hydrolysis is the most commonly used methods [8]. Ennaas et al. [9] reported using protamex protein hydrolysate, which successfully hydrolyses four antibacterial peptides (SIFIQRFTT, RKSGDPLGR, AKPGDGA, and GLPGPLPAGPK) derived from marine organisms. Furthermore, Bi et al. [10] discovered an antibacterial peptide Sm-A1 (GITDLRGM-KRLKKMK) from turbot (Scophthalmus maximus) that has excellent antibacterial activity against both Gram-positive and Gram-negative bacteria by compromising cell membrane integrity. The bioactive antibacterial activity obtained from FPH inhibits the growth of microorganisms, which may increase the life expectancy of a product. This review discusses the acceptability of FPH in obtaining bioactive properties from various fish and parts, using a different method of hydrolysis to obtain bioactive properties. This review also discussed the potential of bioactive antibacterial peptides that function as antibacterial agents by inhibiting the growth of Gram-positive and Gram-negative bacteria.

2. Source of fish protein hydrolysate (FPH)

2.1. Fish species and parts of fish

Numerous studies have successfully confirmed the antibacterial activity of FPH, such as by using tilapia (Oreochromis niloticus), half-fin anchovies (Setipinna taty), and sardin (Sardinella aurita) as the main fish that has been used as antibacterial activity [11-14]. While Barbel (Barbus callensis), Japanese eel fish (Anguilla japonica) silver grouper fish (Hypophthalmichthys molitrix), grouper fish (Ctenopharyngodon idella), Atlantic inflatable fish (Scomber scombrus), and Atlantic cod fish (Morhua girl) also main selection in producing of antibacterial activity through antibacterial peptides. The second preferred fish in the study of antibacterial activity is the large-headed fish (Hypophthalmichthys nobilis) and shark hound (Mustellus mustellus) [9, 15, 16]. Thus, other fish species used in antibacterial activity include tuna (Thunnini) [17], barb fish (Barbonymus schwenfeldii) [18], anchovies (Engraulis japonicus) [19] and rainbow trout (Oncorhynchus mykiss) [20]. Bioactive peptides can be obtained from various fish parts, including the muscle, skin, viscera, and bone. However, the mucous or fluid layer is the primary source of antibacterial peptides. For effective use, the target part of fish sections must be considered [21]. Antibacterial peptides are found primarily in the mucous layer and prevent pathogenic bacteria from entering the skin layer, such as the hagfish (Eptatretus burgeri) [22]. Furthermore, antibacterial peptides also were successfully isolated pleurocidsins from the mucus of the winter flounder (Pleuronectes americanus), American plaice fish, (Hippoglossoides platessoides), and Atlantic halibut fish (Hippoglossus hippoglossus), have been discovered in several studies [23].

2.2. Hydrolysis methods efficiency

FPH can be produced using various techniques, including chemical hydrolysis (acid and alkaline hydrolysis), bacterial fermentation, and enzymatic hydrolysis. A specified chemical agent breaks the connection between different groups of peptides in the order of protein during the chemical hydrolysis process. This procedure is quick and produces a high level of protein recovery [6]. However, because this procedure is carried out under rather intense work conditions (high acid or alkaline concentration and high temperature), the hydrolysis process is nearly uncontrollable. Furthermore, there is minimal control over the uniformity of the hydrolyzed models, with significant fluctuations in the free amino acid profile as a result of non-specific peptide bond breaking. [8]. The hydrolysis of fish proteins produced via chemical hydrolysis has a relatively limited range of applications. Hence, for bacterial fermentation, hydrolysis is a procedure the growth of lactic acid bacteria produce acid and antimicrobial
substances that interrupt competing bacteria; however, this method does not allow for the removal of lipids. [24]. Enzymatic hydrolysis is a widely used technology that uses a shorter reaction time to produce precise hydrolysates while keeping the nutritional content of the source protein by concentrating on specific peptide bonds and amino acids that exhibit optimal activity under particular conditions [4]. Each step of the process involves substrate preparation, enzyme selection, determining the level of enzymatic hydrolysis, uniformity and thermal to inactivate endogenous enzymes, hydrolysis, and termination [21]. Numerous application enzymes are routinely used in enzymatic hydrolysis, including alcalase, neutrase, papain, pepsin, and trypsin [6]. During hydrolysis, conditions such as enzyme concentration, pH, time, and temperature must be tightly controlled and maintained and vary according to the type of enzyme used. Enzyme concentrations ranging from 0.01 to 5.00 % (w/w) and pH values ranging from 1.5 to 11 have been determined [21]. The final enzymatic hydrolysis products do not include any leftover organic solvents or hazardous compounds [25]. According to table 1, many fish species and parts contain protein hydrolysate. They discovered several hydrolysis methods and antibacterial activity by correlating Gram-positive and Gram-negative bacteria.

3. Potential bioactive antibacterial peptides
Antibacterial peptides are amino acid chains of less than 10 kDa and 50 amino acids, nearly half of which are hydrophobic. The charge or hydrophobic ratio of this antibacterial cationic peptide can also change its activity [10]. These peptides can form pores or block membrane ion gradients, causing bacterial cell death. Furthermore, some peptides can cause bacterial depletion without membrane lysis by altering cell metabolism [20]. Furthermore, it can be used as an antibacterial peptide that is possible against Gram-negative and Gram-positive bacteria and subsequently used to make modern antibiotics and antibacterial agents for the food industry [44].

Antibacterial peptides from FPH were analysed using the ‘Agar well diffusion method using Gram-negative or positive strain [26]. Recently, Bi et al. [10] have investigated Sm-A1, Sm-A2 and Sm-A3 are positively charged peptides from the turbot fish (Scopthalmus maximus) that inhibit Gram E. coli, S. aureus, and B. subtilis, and formation of biofilm very well through assessment of salmon fish preservation. For instance, an antibacterial peptide from fish waste using membrane ultrafiltration resulted that the lowermost molecular weight fraction (< 3 kDa) had the highest (P < 0.05) percentage of bacteria inhibition against pathogenic Gram-positive (Listeria and Staphylococcus) and Gram-negative (E. coli and Pseudomonas) [44] significantly. According to Aissaoui et al., [38], the peptide with the highest antibacterial activity was identified, resulting in the sequence FPIGMHGSRPA, consisting of 12 amino acids. Its antibacterial activity was tested against the B. subtilis strain using ampicillin at an 800 μg/mL concentration. It was discovered that as the amount of peptide increased, so did the inhibition zone increase. The structure of the activity has been studied, and it appears that the positively charged amino acids will bind to the negatively charged molecule on the pathogen’s membrane, resulting in the formation of a pore that will decompose or damage the pathogen membrane. Furthermore, the antibacterial activity of hound shark (Mustellus mustellus) from peptides SHVH-E9, SHVH-EE, and SHVH-P were successfully against M. luteus [45]. In addition, the mucous crust of the large-headed grouper (Hypophthalmichthys nobilis) has antibacterial activity against S. epidermidis and E. coli [16]. The Argentine croaker protein antibacterial peptide (Umbrina canosa) showed inhibition of Gram-positive such as L. innocua, L. monocytogenes and S. aureus, and Gram-negative, followed by Gram-negative A. hydrophilia and Y. enterocolitica. Interestingly, this hydrolysate does not show inhibition of some microorganisms such as probiotics, namely B. bifidum, L. acidophilus and L. helviticus. Thus, this hydrolysate can be used in food formulations containing this microorganism [26]. Hence, the peptide sequences SIFIQRFTT, RKSHPDLGR, AKPGAGSGPR, and GLPGPLPGAPPK inhibited E. coli and L. innocua [9]. In addition, collengin also is an antifungal peptide of inflatable fish protein hydrolysis [46].
Table 1. Summarises study of various fish species producing antibacterial activity by inhibiting the growth of gram positive and gram negative bacteria.

Fish species	Type of ecosystem	Part	Hydrolysis	Tested Bacterial Strain	Country	References
Tuna	Saltwater	Viscera	Papain	Gram (-) E. coli, S. Tipymirium, V. parahaimoliticus	Indonesia	[17]
Turbot \((Scopthalmus maximus)\)	Saltwater	Viscera	Trypsin and pepsin	Gram (+) B. subtilis, Listeria monocytogens, S. aureus, Gram (-) E. coli, Salmonella Typhimurium	China	[10]
Pacific chub mackerel \((Scomber japonicus)\)	Saltwater	Fin	Papain, pepsin, trypsin and Protease Alcalase and protamex	Gram (-) E. Coli, Salmonella	Sri Lanka	[26]
Argentine croaker \((Umbrina canosai)\)	Saltwater	Muscle	Alcalase, flavourzyme and trypsin	Gram (+) B. thermosphacta, L. innocua, L. monocytogenes, S. aureus, Gram (-) A. hydrophila, Y. enterocolitica	Brazil	[27]
Yellowfin tuna \((Thunnus albacares)\)	Saltwater	Muscle	Pepsin	Gram (+) S. aureus, Gram (-) E. coli	Italy	[28]
Silver carp \((Hypophthalmichthys molitrix)\)	Freshwater	Muscle	Papain, alacase, flavourzyme and trypsin	Gram (+) S. aureus, Gram (-) E. coli	China	[29]
Tuna fish \((Sardinella aurita)\)	Saltwater	Muscle	Protease from Bacillus subtilis A26	Gram (+) S. aureus B. cereus, Micrococcus luteus, Enterococcus faecalis	Tunisia	[30]
Fish species	Type of ecosystem	Part	Hydrolysis	Tested Bacterial Strain	Country	References
---------------------------------------	-------------------	-----------------------	---------------------------------	--	---------	------------
Short nosed tripod fish (Triacanthus biaculeatus)	Saltwater	Muscle	Methanol and acetone	Gram (-) *E. coli*, *Pseudomonas aeruginosa*, *K. pneumoniae*, *S. enterica*, *S. typhi*	India	[31]
Carp (Hypophthalmichthys nobilis, Ctenopharyngodon idella, Cyprinus carpio)	Saltwater	Skin mucus	Alkaline-Sodium chloride	Gram (+) *Micrococcus Leteus*, Gram (-) *Edwardsiella tarda*, *Aeromonas sp.*, *A. hydrophila*	India	[32]
Giant mudskipper (Periophthalmodon srxlosseri)	Brackish water	Skin mucus	Ethanol	Gram (-) *Proteus mirabilis*, *P. aeruginosa*, *E. coli*, *S. aureus*, *S. typhi*, *Vibrio cholerae*, *B. anthracis*, *K. pneumoniae*	India	[33]
Anchovy (Engraulis japonicus)	Saltwater	Whole part	Enzymatic with protamex	Gram (+) *S. aureus*, *B. subtilis*, *S. pneumoniae*	China	[19]
Nile Tilapia (Oreochromis niloticus)	Freshwater	Head, frame, fin, belly flap meat, Alkaline followed by	Gram (+) *Listeria monocytogene*, *S. aureus*		Thailand [12]	
Fish species	Type of ecosystem	Part	Hydrolysis	Tested Bacterial Strain	Country	References
--------------	------------------	------	------------	-------------------------	---------	------------
Indian major carp *(Cirrhinus mrigala)*	Saltwater	Skin mucus	Acetic acid	Gram (-) *S. Typhimurium, E. coli*, Gram (+) *S. aureus*	India	[34]
Half-fin anchovy *(Setipinna taty)*	Saltwater	Whole part	Pepsin	Gram (-) *E. coli*	China	[14]
Oblong Blowfish *(Takifugu oblongus)*	Saltwater	Skin, Muscle, Liver and Gonads	Acetic acid	Gram (-) *E. coli, Pseudomonas aeruginosa, S. aureus, K. pneumoniae, B. subtilis*	India	[35]
Atlantic mackerel *(Scomber scombrus)*	Saltwater	Viscera, digestive gland, stomach gonads, heart, intestines, liver and spleen	Protamex	Gram (+) *Listeria innocua*	Canada	[9]
Indian major carps *(Labeo rohita, Catla catla)* Chinese carps *(Hypophthalmichthys molitrix, Ctenopharyngodon idella)*	Saltwater	Mucus	Trypsin	Gram (-) *Aeromonas hydrophila, Aeromonas sobria, Pseudomonas fluorescens, Vibrio anguillarum*	Bangladesh	[15]
African catfish *(Clarias gariepinus)*	Saltwater	Gill, suprabranchial organ and viscera	Protease K, pepsin and trypsin	Gram (+) *S. aureus*	United State	[36]
Fish species	Type of ecosystem	Part	Hydrolysis	Tested Bacterial Strain	Country	References
-----------------------------------	-------------------	--	-----------------------------------	---	-----------	------------
Japanese eel (Anguilla japonica)	Saltwater	Skin mucus, gill, kidney, liver and spleen	Acid-acetic acid; and acetone	Gram (-) Edwardsiella tarda, Aeromonas sp., A. hydrophila, Micrococcus Leteus	China	[37]
Small red scorpionfish (Scorpaena notata)	Saltwater	Viscera	Protease from *Trichoderma harzianum*	Gram (+) B. cereus, B. subtilis, Staphylococcus aureus	Tunisia	[38]
Big Head Carp (Hypophthalmichthys nobilis)	Fresh water	Skin mucus	Sodium chloride	Gram (+) S. aureus, S. epidermidis and B. Cereus	India	[16]
Clown barb fish (Barbodes everetti)	Fresh water	Skin mucus	Alkaline-Sodium chloride	Gram (-) B. cereus, E. coli, *Listeria monocytogenes*, P. aeruginosa, A. hydrophilla	Malaysia	[39]
Channel catfish (Ictalurus punctatus)	Saltwater	Bone	Alcalase, neutrase, papain, pepsin and trypsin	Gram (-) E. coli	China	[40]
Tilapia (Oreochromis niloticus)	Freshwater	Head, frames and viscera	Protamex	Gram (+) *Bacillus megaterium*	France	[41]
Fish species	Type of ecosystem	Part	Hydrolysis	Tested Bacterial Strain	Country	References
------------------------------	-------------------	-----------------	------------	--	-----------	------------
Barbe *(Barbus callensis)*	Freshwater	Muscle	Alcalase	Gram (+) *B. cereus, L. monocytogenes, S. aureus, Micrococcus Luteus* Gram (-) *E. coli, Enterobacter sp.*	Tunisia	[42]
Tilapia *(Oreochromis niloticus)*	Freshwater	Frame and head	Papain	Gram (+) *S. aureus, B. subtilis* Gram (-) *E. coli*	India	[13]
Tinfoil barb fish *(Barbonymus schwanenfeldii)*	Freshwater	Skin mucus	Ethanol	(+)*Staphylococcus sp., B. cereu* Gram (-) *Shigellaboydii, E.coli*	India	[18]
Rainbow trout *(Oncorhynchus mykiss)*	Saltwater	Viscera	Pepsin	Gram (+) *(R. salmoninarum, W. minor, W. paramesentoides, Micrococcus luteus, B. cereus, Ent. Faecalis)* Gram (-) *(A. media, A. salmonicida, F. auraucaanum, F. psychrophilum, C. freundii, E. Coli, Pro. Mirabilis, P. flureszens)*	Jerman	[20]
Japanese eel *(Anguilla japonica)*	Saltwater	Liver	Chymotrypsin	Gram (-) *E. tarda,*	China	[43]
Fish species	Type of ecosystem	Part	Hydrolysis	Tested Bacterial Strain	Country	References
--------------	------------------	------	------------	-------------------------	---------	------------
Aeromonas sp., A. hydrophila						

Note: Gram (+): Gram-positive bacteria; Gram (-): Gram-negative bacteria

4. Conclusions
In conclusion, FPH from fish by-products including skin, mucus, bones, heads, and viscera demonstrated significant antibacterial action against Gram-positive and Gram-negative bacteria by disrupting the cell membrane integrity. Short-chain peptides with lower molecular weight have diverse, active chemicals that contribute to their antibacterial activity by forming an inhibitory zone. Furthermore, enzymatic hydrolysis is a promising, safe process and does not contain any organic solvents or hazardous substances in the end products. However, by chemical hydrolysis, the varying nutritional composition may provide issues in producing a consistent end-product and treated at high temperatures. This high temperature may cause amino acid degradation and racemisation. This knowledge can be used to optimise production conditions, increase the yield of selected peptides, and gain a better understanding of the beneficial bioactive peptides involved in the development of antibacterial activity on a diverse selection of fish species and parts.

Acknowledgements
The authors are grateful to the Universiti Malaysia Sabah and Ministry of Higher Education Malaysia for the Fundamental Research Grant Scheme (FRGS) funds with a grant number FRGS/1/2019/STG03/UMS/02/5. Also, Universiti Malaysia Sabah (UMS) for the support to accomplish this review.

References
[1] Gao R, Yu Q, Shen Y, Chu Q, Ge C, Fen S, Yang M, Yuan L, McClements DJ and Sun Q 2021 Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges Trends Food Sci. Technol. 110 687–699.
[2] Idowu A T, Igiehon O O, Idowu S, Olatunde O O and Benjakul S 2021 Bioactivity Potentials and General Applications of Fish Protein Hydrolysates Int. J. Pept. Res. Ther. 27 109-118.
[3] Food and Agriculture Organization of the United Nations 2019 FAO Fisheries & Aquaculture Country Profile http://www.fao.org/fishery/facp/MYS/en
[4] Zamora-Sillero J, Gharsallaoui A and Prentice C 2018 Peptides from fish by-product protein hydrolysates and its functional properties: An overview Mar. Biotechnol. 20 118-30.
[5] Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J and Barba FJ 2021 Functional and bioactive properties of peptides derived from marine side streams Mar. Drugs 19 71.
[6] Petrova I, Tolstobrov I and Eikevik T M 2018 Production of fish protein hydrolysates step by step: Technological aspects, equipment used, major energy costs and methods of their minimising Int. Aquat. Res. 10 223-241.
[7] Irianto H E and Fawzya Y N 2018 Fish protein hydrolysate: Their potential application of prevention stunting Med. Res. Innov. 2 1-2.
[8] Siddik M A, Howieson J, Fotedar R and Partridge G J 2021 Enzymatic fish protein hydrolysates in finfish aquaculture: a review Rev. Aquac. 13 406-430.
[9] Ennaas N, Hammami R, Beaulieu L and Fliss I. 2015 Purification and characterisation of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products Biochem. Biophys. Res. Commun. 462 195-200.
[10] Bi J, Tian C, Jiang J, Zhang G L, Hao H and Hou H M. 2020 Antibacterial Activity and Potential Application in Food Packaging of Peptides Derived from Turbot Viscera Hydrolysate J Agric Food Chem. 68 9968-9977.

[11] Jemil I, Abdelhedi O, Mora L, Nasri R, Aristoy M C, Jridi M, Hajji M, Toldrá F and Nasri M 2016 Peptidomic analysis of bioactive peptides in zebra benny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21 Process. Biochem. 51 2186-2197.

[12] Trang H T H and Pasuwan P 2018 Screening antimicrobial activity against pathogens from protein hydrolysate of rice bran and Nile Tilapia by-products Int. Food Res. J. 25 2157-2163.

[13] Srikantha A, Dhanapal K, Sravani K, Madhavi K, Yeshudas B and Kumar P G. 2018. Antioxidant and antimicrobial activity of protein hydrolysate prepared from tilapia fish waste by enzymatic treatment Int. J. Curr. Microbiol. and Appl. Sci. 7 2891-2899.

[14] Song R, Jia Z, Shi Q, Wei R and Dong S 2019. Identification of bioactive peptides from half-fin anchovy (Setipinna taty) hydrolysates and further modification using Maillard reaction to improve antibacterial activities J. Func. Foods 58 161-170.

[15] Islam M M, Hossain M M M, Islam M S, Khondoker S and Khatun M A 2013 Competitive antibacterial activity of two Indian major carps and two Chinese carps fish mucus against common pathogenic bacteria at aquaculture pond Int. J. Fish. Aquat. Stud. 2 158-162.

[16] Anil K T and Sunil K 2016 Biochemical characterisation and antibacterial properties of fish skin mucus of freshwater fish (Hypophthalmichthys nobilis) Int. J. Pharm. Pharm. Sci 8 132.

[17] Wattimena M L, Thenu J L, Wenno M R and Soukotta D. 2020. Physico-chemical and microbial characteristics and antibacterial activities of the fermented viscera fish sauce Food Chem. 11 1-6.

[18] Subhashini S, Lavanya J, Jain S and Agihotri T. 2013. Screening of antibacterial and cytotoxic activity of extracts from epidermis and epidermal mucus of Barbonymus schwanenfeldii (Tinfoil barb fish) Int. J. Res. Eng. Technol. 2 492-497.

[19] Tang W, Zhang H, Wang L, Qian H and Qi X 2015 Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis Food Chem. 168 115-23.

[20] Wald M, Schwarz K, Rehbein H, Bußmann B and Beermann C 2016 Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin Food Chem. 205 221-228.

[21] Abuine R, Rathnayake AU and Byun HG 2019 Biological activity of peptides purified from fish Cskin hydrolysates Fish Aquatic Sci. 22 1-14.

[22] Hwang E Y, Geo J K, Kim C H, Go H J, Kim E J, Chung J K, Rye H S and Park N G 1999 Purification and characterisation of novel antimicrobial peptide from the skin of the Hagfish, Eptatretus burgeri J. Food Sci. Nutr. 4 28-32.

[23] Cole A M, Weis P and Diamond G 1997 Isolation and characterisation of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder J. Biol. Chem. 272 12008-12013.

[24] Kristinsson H G and Rasco B A 2000 Fish protein hydrolysates: production, biochemical, and functional properties Crit. Rev. Food Sci. Nutr. 40 43-81.

[25] Najafian L and Babji A S 2012 A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications Peptides 33 178-185.

[26] Ediriweera T K, Aruppal A L Y H and Abeyrathne E D N S 2019 Analysis of bioactive properties of fish protein hydrolysates from Scomber japonicus fin wastes J. Technol. Value Add. 1 31-35.

[27] Da Rocha M, Alemán A, Baccan G C, López-Caballero M E, Gómmez-Guillen C, Montero P and Prentice C 2018 Anti-inflammatory, antioxidant and antimicrobial effects of underutilised fish protein hydrolysate J. Aquat. Food Prod. Technol. 27 592-608.
[28] Cerrato A, Capriotti A L, Capuano F, Cavaliere C, Montone A M I, Montone C M, Piovesana S, Zenezini Chiozzi R and Laganà A 2020 Identification and antimicrobial activity of medium-sized and short peptides from yellowfin tuna (Thunnus albacares) simulated gastrointestinal digestion Foods 9 1185.

[29] Jiang L, Wang B, Li B, Wang C and Luo Y 2014 Preparation and identification of peptides and their zinc complexes with antimicrobial activities from silver carp (Hypophthalmichthys molitrix) protein hydrolysates Food Res. Int. 64 91-98.

[30] Jemil I, Abdelhedi O, Nasri R, Mora L, Jridi M, Aristoy M C, Toldrá F and Nasri M 2017 Novel bioactive peptides from enzymatic hydrolysate of Sardinelle (Sardinella aurita) muscle proteins hydrolysed by Bacillus subtilis A26 proteases Food Res. Int. 100 121-133.

[31] Jyothi K, Krishna N M, Rao V G and Geetha S 2017 Antimicrobial activity studies from poisonous short nosed tripod fish, Triacanthus biaculeatus (Bloch, 1786) from Visakhapatnam Coastal Waters, India J. Med. Chem. Toxicol. 2 24-27.

[32] Kumari S, Tyor A K and Bhatnagar A 2019 Evaluation of the antibacterial activity of skin mucus of three carp species Int.Aquat. Res. 11 225-239.

[33] Mahadevan G, Mohan K, Vinoth J and Ravi V 2019 Biotic potential of mucus extracts of giant mudskipper Periophthalmodon schlosseri (Pallas, 1770) from Pichavaram, southeast coast of India J. Basic Appl. Zool. 80 1-7.

[34] Nigam A K, Kumari U, Mittal S and Mittal A K 2017 Evaluation of antibacterial activity and innate immune components in skin mucus of Indian major carp, Cirrhinus mrigala Aquac. Res. 48 407-418.

[35] Indumathi S M, Manigandan V and Khora S S 2016 Antimicrobial and larvicidal activities of the tissue extracts of oblong blowfish (Takifugu oblongus) from South-East Coast of India Int. J. Toxic. Pharm. Res. 8 312-319.

[36] Li T, Wang X, Wang Y, Fan T, Xu Y and Fan Z 2017 Characterisation of antimicrobial peptides isolated from the processing by-products of African catfish Clarias gariepinus Int. J. Pep. Res. Ther. 23 227-233.

[37] Liang Y, Guan R, Huang W and Xu T 2011 Isolation and identification of a novel inducible antibacterial peptide from the skin mucus of Japanese eel, Anguilla japonica Protein J. 30 413-421.

[38] Aissaoui N, Chobert J M, Haertlé T, Marzouki M N and Abidi F 2017 Purification and biochemical characterisation of a neutral serine protease from Trichoderma harzianum Use in antibacterial peptide production from a fish by-product hydrolysate Appl. Biochem. Biotechnol. 182 831-845.

[39] Lim J, Lee Y, Sulaiman B, Bilung L M and Chong Y L 2018 Antibacterial activity of the epidermal mucus of Barbodes everetti Trends Undergrad. Res. 1 40-44.

[40] Ren X, Ma L, Chu J, Wang Y, Zhuang Y, Zhang S, Yang H and An H 2012 Optimisation of enzymatic hydrolysis of channel catfish bones for preparing antimicrobial agents J. Aquat. Food Prod. Technol. 21 99-110.

[41] Robert M, Zatylny-Gaudin C, Fournier V, Corre E, Le Corguillé G, Bernay B and Henry J 2015 Molecular characterisation of peptide fractions of a Tilapia (Oreochromis niloticus) by-product hydrolysate and in vitro evaluation of antibacterial activity Process Biochem. 50 487-492.

[42] Sila A, Nedjar-Aroume N, Hedhili K, Chataigné G, Balti R, Nasri M, Dhusler P and Bougatef, A 2014 Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria LWT-Food Sci. Technol. 55 183-188.

[43] Zhang D L, Guan R Z, Huag ng W S and Xiong J 2013 Isolation and characterisation of a novel antibacterial peptide derived from hemoglobin alpha in the liver of Japanese eel, Anguilla japonica Fish Shellfish Immunol. 35 625-631.
[44] Pezeshk S, Ojagh S M, Rezaei M and Shabanpour B 2019 Fractionation of protein hydrolysates offish waste using membrane ultrafiltration: investigation of antibacterial and antioxidant activities Probiotics Antimicrob. Proteins 11 1015-1022.

[45] Abdelhedi O, Jridi M, Jemil I, Mora L, Toldrá F, Aristoy M C, Boulga A, Nasri M and Nasri R 2016 Combined biocatalytic conversion of smooth hound viscera: protein hydrolysates elaboration and assessment of their antioxidant, anti-ace and antibacterial activities Food Res. Int. 86 9–23.

[46] Ennaas N, Hammami R, Gomaa A, Bédard F, Biron É, Subirade M, Beaulieu L and Fliss I 2016 Collagencin, an antibacterial peptide from fish collagen: activity, structure and interaction dynamics with membrane Biochem. Biophys. Res. Commun. 473 642–647.