Viscum album L. extracts in breast and gynaecological cancers: a systematic review of clinical and preclinical research
Gunver S Kienle*1, Anja Glockmann1, Michael Schink2 and Helmut Kiene1

Address: 1Institute for Applied Epistemology and Medical Methodology, Zechenweg 6, D-79111 Freiburg, Germany and 2Verein Filderklinik e.V, Research Department, Im Haberschläi 7, D-70794 Filderstadt, Germany
Email: Gunver S Kienle* - gunver.kienle@ifaemm.de; Anja Glockmann - anja.glockmann@ifaemm.de; Michael Schink - m.schink@filderklinik.de; Helmut Kiene - helmut.kiene@ifaemm.de
* Corresponding author

Abstract

Background: Viscum album L. extracts (VAE, European mistletoe) are a widely used medicinal plant extract in gynaecological and breast-cancer treatment.

Methods: Systematic review to evaluate clinical studies and preclinical research on the therapeutic effectiveness and biological effects of VAE on gynaecological and breast cancer. Search of databases, reference lists and expert consultations. Criteria-based assessment of methodological study quality.

Results: 19 randomized (RCT), 16 non-randomized (non-RCT) controlled studies, and 11 single-arm cohort studies were identified that investigated VAE treatment of breast or gynaecological cancer. They included 2420, 6399 and 1130 patients respectively. 8 RCTs and 8 non-RCTs were embedded in the same large epidemiological cohort study. 9 RCTs and 13 non-RCTs assessed survival; 12 reported a statistically significant benefit, the others either a trend or no difference. 3 RCTs and 6 non-RCTs assessed tumour behaviour (remission or time to relapse); 3 reported statistically significant benefit, the others either a trend, no difference or mixed results. Quality of life (QoL) and tolerability of chemotherapy, radiotherapy or surgery was assessed in 15 RCTs and 9 non-RCTs. 21 reported a statistically significant positive result, the others either a trend, no difference, or mixed results. Methodological quality of the studies differed substantially; some had major limitations, especially RCTs on survival and tumour behaviour had very small sample sizes. Some recent studies, however, especially on QoL were reasonably well conducted. Single-arm cohort studies investigated tumour behaviour, QoL, pharmacokinetics and safety of VAE. Tumour remission was observed after high dosage and local application. VAE application was well tolerated. 34 animal experiments investigated VAE and isolated or recombinant compounds in various breast and gynaecological cancer models in mice and rats. VAE showed increase of survival and tumour remission especially in mice, while application in rats as well as application of VAE compounds had mixed results. In vitro VAE and its compounds have strong cytotoxic effects on cancer cells.

Conclusion: VAE shows some positive effects in breast and gynaecological cancer. More research into clinical efficacy is warranted.

Published: 11 June 2009
Background
Breast and gynaecological cancers (i.e. ovarian, endometrial, cervical, vaginal, vulval, and fallopian cancers) account for a significant amount of morbidity and mortality in women. In Europe an estimated 429,900 cases were diagnosed as breast cancer in 2006 (13.5% of all cancer cases) and 131,900 died from it, despite substantially improved treatment options (surgery, chemotherapy, radiation, hormonal and targeted therapies) [1]. Of female cancer survivors more than half had suffered from breast or gynaecological cancer [2].

40% to 80% of these patients use complementary therapies additionally to well-established treatments [3-8]. This includes a variety of medicinal plants, but also acupuncture, psychosocial support, yoga, art therapies and others. These are supportive measures to control symptoms, improve quality of life, boost the immune system, and possibly prolong life. Sufficient evaluation is often lacking, however, of the extent to which these therapeutic goals are achieved, as well as of issues relating to safety and mode of action. Medicinal plants in particular have a long history in the treatment of cancer and other conditions connected with tumours, and also play a major role in the development of new drugs today. Over 60% of currently used anti-cancer agents originally derive from natural sources such as plants, marine organisms and microorganisms [9].

Across Europe, *Viscum album* L. extracts (VAE or European mistletoe, not to be confused with the *Phoradendron* species or "American mistletoe") are among the most common herbal extracts applied in cancer treatment [3,7,8,10]. *Viscum album* is a hemi-parasitic shrub and contains a variety of biologically active compounds. Mistletoe lectins (ML I, II and III) have been most thoroughly investigated. MLs consist of two polypeptide chains: a carbohydrate-binding B-chain that can bind to cell surface receptors, which enables the protein to enter the cell [11-13]; and the catalytic A-chain which can subsequently inhibit protein synthesis, due to its ribosome-inactivating properties, by removing an adenine residue from the 28S RNA of the 60S subunit of the ribosome [11]. Other pharmacologically relevant VAE compounds are viscositosins and other low molecular proteins, VisalbCBA (*Viscum album* chitin-binding agglutinin) [14], oligo- and polysaccharids [15,16], flavonoids [17], vesicles [18], triterpene acids [19], and others [20,21]. Whole VAE as well as several of the compounds are cytotoxic and the MLs in particular have strong apoptosis-inducing effects [22-24]. MLs also display cytotoxic effects on multidrug-resistant cancer cells (e.g. MDR+ colon cancer cells [25]) and enhance cytotoxicity of anticancer drugs [26,27]. In mononuclear cells VAE also possess DNA-stabilizing properties. VAE and its compounds stimulate the immune system (*in vivo* and *in vitro*) activation of monocytes/macrophages, granulocytes, natural killer (NK) cells, T-cells, dendritic cells, induction of a variety of cytokines such as IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, GM-CSF, TNF-α, IFN-γ (overview see [20,21]). The cytotoxicity of human natural and lymphokine-activated killer cells, for instance, can be markedly enhanced *in vitro* by VAE rhamnogalacturonans, which bridge these killer cells with NK-sensitive or insensitive tumour cells [28,29]. Furthermore, VAE seem to interfere with tumour angiogenesis [30,31]. Injected into tumour-bearing animals, VAE and several of their compounds (MLs, a 5 kDa protein not specified further, protein complexes isolated by Vester and colleagues, oligosaccharids) display growth-inhibiting and tumour-reducing effects [20,21]. Despite extensive experimental analyses of their biological properties, many questions regarding the precise mode of action of VAE still remain.

For clinical application VAE are made from mistletoes grown on different host trees [Host trees of VAE: Fir (*Abies*, A); maple (*Acer*, Ac); almond tree (*Amygdalus*, Am); birch (*Betula*, B); whitethorn (*Crataegus*, C); ash tree (*Fraxinus*, F); apple/pear tree (*Malus*, M); pine (*Pinus*, P); poplar (*Populus*, Po); oak (*Quercus*, Qu); willow (*Salix*, S); lime (*Tilia*, T); elm (*Ulmus*, U)]. The drug is currently being developed and tested in clinical trials [32,33].

Clinical effects of VAE in cancer have been investigated in a variety of studies and assessed in systematic reviews [34-39]. These reviews, however, had inconsistent results, they are outdated, incomplete or concentrate on partial aspects. No review has yet assessed clinical and preclinical effects specifically and comprehensively for breast and gynaecological cancer, although there is widespread usage in these patients [3,7]. Our primary aim was therefore to assess the potential therapeutic effectiveness of VAE, and their potential biological effects on breast and gynaecological cancer in clinical and preclinical studies.

Methods
Design
Systematic review of clinical and preclinical studies investigating the influence of VAE on breast or gynaecological cancer.

Search strategy
We used a systematic process to search the following databases for clinical trials – AMED, Biosis Previews, Cochrane Library (Cochrane Database of Systematic Reviews,
Cochrane Controlled Trials Register, The NHS Economic Evaluation Database, Health Technology Assessment Database). Embase, Medline/Premedline, NLM Gateway, private databases – from inception of these databases to December 2008 using the terms (MISTLETOE OR VISCUM? OR MISTEL? OR ISCADOR? OR ISCAR OR HELIXOR OR ABNOBA? OR ISCUCIN OR ISOREL OR VISOREL? OR WELEDA OR WALA OR EURIXOR OR LEKTINOL OR PLENO SOL OR AVISCUMINE) AND (STUDY? OR STUDIE? OR TRIAL OR EVALUAT? OR RANDOM? OR INVESTIG? OR COHORT? OR KOHORT? OR OUTCOME?). The reference list from each potentially eligible study, relevant review article and textbook was checked, and experts in the field and manufacturers of mistletoe preparations were contacted for additional reports.

Regarding in vitro or in vivo (animal) experiments on antitumor effects, we checked title and abstract, and, where necessary, the whole article of each VAE-related reference in the databases (Medline/Pubmed and comprehensive private databases, using above mentioned terms but without restriction to clinical studies) and in major surveys.

Selection

The following selection criteria were used for inclusion of studies in the analysis: (I) prospective randomized or non-randomized controlled clinical trial, or prospective single-arm cohort study (e.g. phase II trial) or pharmaco-epidemiological cohort study; (II) study population with breast or gynaecological cancer, i.e. ovary, uterus, cervix, genital cancer, or cervical intraepithelial neoplasm (CIN); (III) intervention group treated with VAE preparation; (IV) clinically relevant outcome (i.e. survival, disease-free interval, remission, relapse, QoL, or reduction of side effects or immune suppression during cytoreductive therapy); (V) completion of study; (VI) published or unpublished. Studies were excluded if they: only measured toxicity or tolerability (phase I trial), only on cancer sites other than breast or gynaecological, with retrospective evaluation, without quantification of results, or only investigating complex treatment regimes, or describing studies already published elsewhere, 48 potential studies were identified that met the inclusion criteria. Two trials [42,43], conducted in Poland, were excluded because of severe validity concerns: a collaborating scientist questioned the alleged randomization of treatment allocation, and no information could be obtained from the authors to clarify this question. One further RCT (on Lektinol® and breast cancer by Schwiersch et al.) might have met the inclusion criteria but was unpublished and unavailable. Thus it was possible to include 46 studies in this review: 19 RCTs, 16 non-RCTs, and 11 single-arm cohort studies. Of the 46 studies, 43 were published (4 of these only as an abstract), 1 study was retrieved as a doctoral dissertation, and 2 were unpublished reports.

1632 VAE-related references were checked by title, abstract or whole article, book chapter, or book regarding in vitro or animal studies. Experiments meeting the inclusion criteria were excluded if they were described in another publication, were not published in a scientific journal, scientific book or as a scientific dissertation, were unavailable (some dissertations from the 1950s and 60s), or if they did not present sufficient information.

Validity assessment and data abstraction

Criteria-based analysis was performed on the selected clinical studies to assess their methodological quality. Analyses were performed independently by two reviewers (GK, HK). There were no major differences in study assessment; disagreements were resolved by discussion. Criteria for assessing strength of evidence in controlled trials were adapted from the National Health Service Centre for Reviews and Dissemination [40] and from criteria for good methodology as already applied in earlier reviews on VAE trials [34,36,41]. Quality criteria were adjusted for cohort studies [36]. Data were abstracted by one reviewer (GK) and checked by a second reviewer (AG). When necessary, primary authors of the trials were contacted for additional information.

Regarding animal experiments we extracted data on study size, animal model, tumour type, tumour transfer, intervention, treatment schedule, outcome, physiological monitoring, side effects, dose-response, randomization, control treatment, blinding of outcome assessment, publication in a peer-reviewed journal, and funding source.

Results

Result of literature search

The literature search identified 306 references describing potential clinical studies (after deletion of duplicates). After deleting references only describing studies on immune modulation or toxicity or tolerability (phase I trial), only on cancer sites other than breast or gynaecological, with retrospective evaluation, without quantification of results, or only investigating complex treatment regimes, or describing studies already published elsewhere, 48 potential studies were identified that met the inclusion criteria. Two trials [42,43], conducted in Poland, were excluded because of severe validity concerns: a collaborating scientist questioned the alleged randomization of treatment allocation, and no information could be obtained from the authors to clarify this question. One further RCT (on Lektinol® and breast cancer by Schwiersch et al.) might have met the inclusion criteria but was unpublished and unavailable. Thus it was possible to include 46 studies in this review: 19 RCTs, 16 non-RCTs, and 11 single-arm cohort studies. Of the 46 studies, 43 were published (4 of these only as an abstract), 1 study was retrieved as a doctoral dissertation, and 2 were unpublished reports.

For in vitro and animal experiments the criteria were adapted accordingly; unpublished material was not included however. In vitro experiments were restricted to cancer cells originating from human tumours.

Characteristics of included clinical studies

Tables 1, 2, 3, 4, 5, and 6 show characteristics of the clinical studies. Settings of the studies were mostly academic hospitals, large community hospitals, and specialized
cancer hospitals. The studies were mainly conducted in Germany, but also in Austria, Switzerland, USA, Serbia, Russia, Bulgaria, Ukraine, Italy, Egypt, Israel, China, South Korea. Most studies were conducted in more than one centre. In 31 of the 32 studies published since 2000, the funding source was identifiable: three studies had public funding [44-46], 17 a combination of public and industry funding, and 11 industry funding alone.

Controlled studies
The 19 RCTs [47-63] (Table 1) encompassed 2420 participants, 16 non-RCTs [49-53,59,64-72] (Table 2) encompassed over 6399 participants (the sample size of one control group was not published). Cancer sites studied were breast (n = 20), uterus (n = 4), ovary (n = 6), cervix (n = 4), and genital (n = 1). One RCT investigated malignant pleural infusion. 4 studies not only investigated gynaecological or breast cancer but other cancer types as well.

Stages ranged from early-detected to advanced disease. 33 studies had two arms, one trial had three, and one four arms. Endpoints were: survival (22 studies), tumour remission, recurrence or time to recurrence or metastases (8 studies), pleurodesis (1 study), QoL or coping with disease (11 studies), QoL or tolerability of concomitant chemotherapy, radiotherapy or surgery (13 studies). Length of follow-up varied from three days in one trial to – usually – months or years.

All treatment groups received conventional care when indicated, and most patients had undergone prior surgery. In 16 studies (9 RCTs and 7 non-RCTs) the combination of VAE treatment and concurrent chemotherapy, radio-

Table 1: Randomized Controlled Clinical VAE Trials on Breast and Gynaecological Cancer: Quality Assessment

Author, Year	Quality Criteria Fulfilled in Studies	Participants	AR%								
	A) Protection against selection bias, especially by adequate randomization	B) Minimization of heterogeneity by pre-stratification or matching	C) Protection against observer bias by blinding of patient, care provider, and outcome assessor	D) Protection against performance (treatment) bias by standardization of care protocol, documentation of all co-interventions, blinding of patients and care providers	E) Protection against measurement (detection) bias by standardization of outcome assessment	F) Protection against attrition (exclusion) bias, lost patients <10% or by intention-to-treat analysis (including non-adherers as randomized) plus per-protocol analysis (excluding non-adherers) in combination with sensitivity analysis, and by comparison of prognostic characteristics of lost patients and compliers	G) Effect measurement relevant and well described	H) Well-described intervention, patient characteristics, disease (diagnosis, stage, duration), previous therapy	I) Well-described study design	J) Well-described results	K) Data quality assured by ICH-GCP guidelines, especially by monitoring
--------------	+ (adequately fulfilled), (+) = partly fulfilled, (-) = little fulfilled, - = not fulfilled										
Tröger 2009 [47]	+ - - (+) + + + (+) (+) + 95 6%										
Büssing 2008 [48]	- (-) - - (-) - - - - - - - - - - - - - - 65 No data										
Grossarth 2008a [49]	+ + - (-) + (-) + (+) + - 76 21%										
Grossarth 2008b [49]	+ + - (-) + + (+) + + - 52 0%										
Grossarth 2007a [50]	+ + - (-) + (-) + (+) + - 50 16%										
Grossarth 2007b [50]	+ + - (-) + (-) + (+) + - 48 17%										
Grossarth 2007c [51]	+ + - (-) + + (+) + + - 38 0%										
Grossarth 2006a [52,53]	+ + - (-) + + (+) + + - 118 36%										
Semiglasov 2006 [54]	+ - (+) + + - + (+) + (+) + 352 4%										
Auerbach 2005 [55]	+ + - (+) + + - + (+) + (+) + 23 30%										
Piao 2004 [56]	+ + - (-) + + - + (+) + + - 233 4%										
Semiglasov 2004 [57]	+ - (+) + + - + + + + + + 272 4%										
Borrelli 2001 [58]	+ - (+) + + (+) + (+) + - 30 0%										
Grossarth 2001a [59]	+ + - (-) + + (+) + - - + + 34 0%										
Grossarth 2001b [59]	+ + - (-) + + (+) + - - + + 98 20%										
Kim 1999 [60]	+ - - - - (-) - (+) (+) (-) (-) - 30 13%										
Heiny 1991 [61]	+ - (-) - + (+) + (+) + + - 46 13%										
Gutsch 1988 [62]	+ - (+) + - + + (+) + + 692 20%										
Lange 1985 [63]	+ + - (-) + + (+) + + - 68 35%										

1 A) Protection against selection bias, especially by adequate randomization
B) Minimization of heterogeneity by pre-stratification or matching
C) Protection against observer bias by blinding of patient, care provider, and outcome assessor
D) Protection against performance (treatment) bias by standardization of care protocol, documentation of all co-interventions, blinding of patients and care providers
E) Protection against measurement (detection) bias by standardization of outcome assessment
F) Protection against attrition (exclusion) bias, lost patients <10% or by intention-to-treat analysis (including non-adherers as randomized) plus per-protocol analysis (excluding non-adherers) in combination with sensitivity analysis, and by comparison of prognostic characteristics of lost patients and compliers
G) Effect measurement relevant and well described
H) Well-described intervention, patient characteristics, disease (diagnosis, stage, duration), previous therapy
I) Well-described study design
J) Well-described results
K) Data quality assured by ICH-GCP guidelines, especially by monitoring
+ = adequately fulfilled, (+) = partly fulfilled, (-) = little fulfilled, - = not fulfilled
AR: attrition rate (dropouts, protocol deviations, withdrawals, patients did not receive treatment as allocated).
Assessment based only on an abstract
Discrepancy in patient numbers in two presentations (30 and 33), with corresponding discrepancy of results
therapy or surgery was investigated. 13 of these studies assessed reduction of side effects from these cytoreductive therapies. Three trials directly compared VAE treatment versus chemotherapy treatment or versus radiation and hormones [60,62,66]. In most studies VAE therapy was used at least partly in an adjuvant setting after surgery or radiotherapy.

The commercial VAE applied were Iscador®, Helixor®, Eurixor® or Lektinol®. VAE dosage mostly followed general recommendations, starting with low doses and increasing to an individually still well-tolerated dosage, or treating according to lectin-content (in 6 trials) or leaving treatment modalities to the physician’s discretion, which, it can likewise be assumed, followed general recommendations. VAE was injected subcutaneously except in three trials employing intravenous infusion or intrapleural instillation [48,60,65]. Treatment duration was often not specified and depended on primary endpoint and related follow-up, ranging from one single application (in one trial [65]) to repeated applications over months and years. Control groups either received no further comparison treatment (n = 27), additional placebo application (n = 5), doxycycline (n = 1), Lentinan (n = 1) or radiation and hormones (n = 1). 4 trials had double-blinded treatment application.

Single-arm studies

11 prospective cohort studies [32,44-46,73-80] (Table 6) included 1,130 patients. Cancer sites studied were breast (n = 6), ovary (n = 1), CIN (n = 1), malignant pleural effusion (n = 2) and malignant ascites (n = 2). 8 studies investigated several cancer types. Tumour stages were advanced or inoperable except in three studies. In most studies patients had received conventional treatment some time previously. Directly preceding or concurrent anti-cancer treatment had been applied in two studies (gemcitabine [44], surgery [45]). Nine studies assessed tumour remission; seven

Table 2: Non-Randomized Controlled Clinical VAE Studies on Breast and Gynaecological Cancer: Quality Assessment

Author, Year	Quality Criteria Fulfilled in Studies\(^1\)	Participants	AR\(^2\)	Design/control for confounding
Grossarth 2008c \[49\]	(+) + - (-) + + (+) + + - 200	5%	Prospective pair-matching	
Grossarth 2008d \[49\]	(+) + - (-) + + (+) + + - 282	27%	Prospective pair-matching	
Loewe-Mesch 2008 \[64\]	- - - (-) + + (+) + + - 82	20%	Self-selected treatment allocation, no adjustment	
Grossarth 2007d \[50\]	(+) + - (-) + + (+) + + - 198	24%	Prospective pair-matching	
Grossarth 2007e \[50\]	(+) + - (-) + + (+) + + - 132	6%	Prospective pair-matching	
Grossarth 2007f \[51\]	(+) + - (-) + + (+) + + - 212	4%	Prospective pair-matching	
Grossarth 2007g \[51\]	(+) + - (-) + + (+) + + - 140	6%	Prospective pair-matching	
Grossarth 2006b \[52,53\]	(+) + - (-) + + (+) + + - 210	20%	Prospective pair-matching	
Büssing 2005 \[65\]	(-) - - (-) + + (+) (+) + + - 105	7%	Comparison of two different hospitals. Pair-matching for analysis	
Grossarth 2001c \[59\]	(+) + - (-) + + - - 792	4%	Prospective pair-matching	
Salzer 1987 \[66\]	(+) - - (-) + + - - 155	not shown	Alternating treatment allocation	
Fellner 1966 \[67\]	- - (-) + + + - - 924	15%	Treatment allocation by neutral attending physician	
Majewski 1963 \[68\]	(+) - - (-) + + + - - 115	not shown (15%)\(^IV\)	Alternating treatment allocation	

\(^I\)Abbreviations as in Table 1.
\(^II\)Number of study patients not indicated; mistletoe group included 155 patients.
\(^IV\)Numbers given only for mistletoe group.
\(^V\)Not applicable for retrolective studies.
Table 3: Controlled Clinical Studies on VAE Treatment in Breast and Gynaecological Cancer: Survival

Site	Stage	Intervention (evaluable patients)	Survival Outcomes	Author, year, reference			
Breast	T1a-3, N0, M0	Iscador (38)	14.8	0.65	0.2	0.34–1.25	Grossarth 2006a [52,53,135]
		None (38)	13.8				
	IIA–IIB	Iscador (17)	6.3	0.46	0.13	0.16–1.31	Grossarth 2001a [59,135,166]
		None (17)	2.3				
	T1-3, N0-3, M0, local recurrence	Surgery, radiation, Helixor (192)	Not applicable	69.1% 5-year survival	0.048		Gutsch 1988 [62]
		Surgery, radiation, CMF (177)	67.7% 5-year survival	0.025			
		Surgery, radiation, CMF (274)	59.7% 5-year survival				
Breast, others	All stages	Iscador (39)	3.5 (mean)	0.04			Grossarth 2001b [59]
		None (39)	2.5 (mean)				
Cervix	IVA-B	Iscador (19)	1.83	0.46	0.12	0.18–1.21	Grossarth 2007c [51]
		None (19)	1.92				
Uterus	IA-C	Iscador (30)	6.29	0.36	0.014	0.16–0.82	Grossarth 2008a [49]
		None (30)	5.17				
	IVA-B	Iscador (26)	1.5	1	0.99	0.46–2.16	Grossarth 2008b [49]
		None (26)	2.0				
Ovary	IA–IC	Iscador (21)	6.75	0.40	0.058	0.15–1.03	Grossarth 2007a [50]
Table 3: Controlled Clinical Studies on VAE Treatment in Breast and Gynaecological Cancer: Survival (Continued)

Stage	Tumor Type	Treatment	Survival Rate	p Value	95% CI	Reference
IV	Iscador (20)	2.75	0.33	0.033	0.12–0.92	Grossarth 2007b [50]
None (20)	1.58					

Non-randomized controlled studies

Stage	Tumor Type	Treatment	Survival Rate	p Value	95% CI	Reference
T1-3, N0, M0	Iscador (84)	11.75	0.42	0.0002	0.27–0.68	Grossarth 2006b [52,53,135]
None (84)	10.13					
Local recurrence, N0, M0	Iscador (29)	5.17		0.0025		Grossarth 2001b [59,135]
None (29)	4.33					
T1-4, N>1, M0	Iscador (38)	4.04		0.0516		Ø same study
None (38)	3.17					
TX, NX, M1	Iscador (53)	3.08		0.0056		Ø same study
None (53)	2.17					
I–III	Iscador (76)				29% alive 1985, after 11–14 years	Salzer 1987 [66]
Radiation, hormone (79)					24% alive 1985, after 11–14 years	
Cervix IB-IVA	Iscador (102)	7.17	0.41	<0.0001	0.27–0.63	Grossarth 2007f [51]
None (102)	5.92					
IV	Iscador (66)	2.33	0.54	0.015	0.32–0.89	Grossarth 2007g [51]
None (66)	1.83					
I–III	Radiation, Iscador (81)				83% 5-year survival	Fellmer 1966 [67]
Radiation (709)					69% 5-year survival	
Table 3: Controlled Clinical Studies on VAE Treatment in Breast and Gynaecological Cancer: Survival (Continued)

Disease	Stage	Treatment (n)	Cycle 1	Cycle 2	p-value	95% CI (confidence interval)	Reference
Uterus	IIIA–IVB	Iscador (95)	2.75	0.61	0.025	0.39–0.93	Grossarth 2008c [49]
		None (95)	1.67				
	IA–C	Iscador (103)	8.75	0.41	<0.0001	0.26–0.63	Grossarth 2008d [49]
		None (103)	6.67				
Ovary	IA–IC	Iscador (75)	6.83	0.47	0.0002	0.31–0.69	Grossarth 2007d [50]
		None (75)	5.83				
	IV	Iscador (62)	1.79	0.62	0.077	0.37–1.05	Grossarth 2007e [50]
		None (62)	1.17				
Genital	All stages	Surgery¹, radiation¹, Iscador (155)			Disease-specific survival partly improved	not shown	Majewski 1963 [68]
Retrolective pharmaco-epidemiological cohort studies							
Breast	I–III	Conventional therapy, Iscador (710)	0.46	0.038	0.22–0.96	Bock 2004 [70]	
		Conventional therapy (732)					
	I–IV	Conventional therapy, Eurixor (219)	No difference observed⁴			Schumacher 2003 [71,72]	
		Conventional therapy (470)					

¹ Co-intervention (i.e. radiation) applied to part of the group
² Not applicable since more than 50% alive at study termination
³ Data from complete set of patient pairs reported
⁴ Data only from patient pairs with strict matching reported
⁵ No difference could be found due to limited observation time (median < 10 months)
CMF: Cyclophosphamide, methotrexate, 5-fluorouracil
P-value, 95% CI (confidence interval): Statistical significance of difference between mistletoe (or other verum) and control group.
Table 4: Controlled Clinical Studies on VAE Treatment in Breast and Gynaecological Cancer: Tumour Behaviour or Pleurodesis

Site	Stage	Intervention (evaluable patients)	Outcome	P-value	95% CI	Author, year, reference
REMISSION						
Randomized controlled trials						
Breast, ovary, lung	T1–4, N0–3, M0–1	Chemotherapy1, Helixor A (115)	Remission rate: no difference	Piao 2004 [56]		
		Chemotherapy1, Lentinan (109)				
Ovary, others	Inoperable	Radiation, cisplatin, holoxan, Helixor (23)	10% complete remission	Lange 1985 [63]		
		Radiation, cisplatin, holoxan (21)	17% complete remission			
Pleural effusionII	Advanced	Helixor (11)	82% complete remission	<0.05 [61]		
		Doxycycline, meperidine, lidocaine (15)	40% complete remission			

DISEASE-FREE INTERVAL, TIME TO EVENT, RECURRENCE (HAZARD RATIO)

Site	Stage	Intervention (evaluable patients)	Outcome	P-value	95% CI	Author, year, reference
Randomized controlled trials						
Breast	T1–3, N0, M0	Iscador (38)	Time to local recurrences: 0.44	0.18	0.14–1.44	Grossarth 2006a [52,53]
			lymphatic metastases: 0.27	0.0048	0.11–0.67	
			distant metastases: 0.50	0.061	0.24–1.03	
			all events (incl.death) 0.65	0.012	0.47–0.91	
Non-randomized controlled trials						
Breast	T1–3, N0, M0	Iscador (84)	Time to local recurrences: 0.42	0.21	0.21–0.83	Grossarth 2006b [52,53]
			lymphatic metastases: 0.22	0.10–0.47	0.21–0.62	
			distant metastases: 0.36	0.07–5.39	n.a.	
			all event (incl.death) 0.66	n.a.	n.a.	
Cervix	IB-IVA	Iscador (102)	Time to local recurrences: 1.42	0.61	0.37–5.39	Grossarth 2007f [51]
			lymphatic metastases: None	n.a.	n.a.	
			distant metast.: 1 in Iscador group	n.a.	n.a.	
			all event (incl.death) 0.32	<0.0001	0.22–0.48	

Note: CI = confidence interval; n.a. = not available; n.s. = not significant.
reported QoL or symptomatic relief. Two studies primarily investigated the toxicity profile, pharmacokinetics and potential interactions of either the combination of gemcitabine and VAE [44,73] or of rML [32], and secondarily assessed tumour behaviour. The commercial VAE remedies were Abnobaviscum®/Viscum fraxini, Iscador, Helixor, Lektinol or Aviscumine® (rML). VAE were applied subcutaneously (n = 6), intratumourally (n = 1), intrapleurally (n = 2), intraperitoneally (n = 2) or as an intravenous infusion (n = 1). Dosage depended on the preparation and mode of application; some treated according to lectin content, others started with a low dosage and increased successively, or started with high dosage and applied it consistently once weekly. For intrapleural and intraperitoneal (repeated) application, VAE was diluted in 5 to 15 ml or 100 ml solution. Treatment duration and follow-up ranged from weeks to, most commonly, months or years.

Quality assessment

Table 1, 2 and 6 summarize the validity assessment. Methodological quality differed substantially in the reviewed studies. 19 trials had randomized treatment allocation. The RCTs were mostly small (median sample size n = 60, range 23–692), particularly when investigating survival (median n = 52). Although RCTs investigating QoL were only slightly larger (median n = 68), they nevertheless encompass 4 trials that largely met modern standards of clinical trials and three of them had a sample size above 200. In four of the RCTs the patients and physicians were blinded; three further RCTs had an active or a placebo control-treatment. – 16 studies were non-randomized (median sample size n = 203, range 82–1442), 15 of them had controlled for confounding by close prospective (in one case retrospective) pair matching, by alternating treatment allocation and by multivariate analysis or propensity score (though in one study only for the main outcome parameter [69]). – Assurance of data quality according to ICH-GCP ("Good Clinical Practice") or GEP ("Good Epidemiological Practice") guidelines was reported in 5 RCTs and 4 non-RCTs. Eight of the RCTs and 8 of the non-RCTs were embedded in the same large epidemiological cohort study. Most studies did not present a clear documentation of co-interventions. Regarding the other quality aspects, most studies – especially the more recent ones – were reasonably well designed and conducted.

In the single-armed studies, study quality was reasonably good except in an unpublished report [80] and in an abstract publication [75] with too little information. Two studies had applied VAE in combination with or subsequent to conventional cancer treatment and one study had explored CIN, which has high spontaneous remission rates.

Characteristics of the preclinical studies

The in vitro cytotoxicity of different VAEs as well as isolated or recombinant lectins or their A-chain, viscotoxins, or other protein fractions were tested with different methods in a variety of human breast, ovarian, uterine, vulvar and cervical cancer cells [12,20,22,81-110] (Table 7).
Site	Stage	Intervention (evaluable patients)	Reduction of side effects of chemotherapy, radiation or surgery	QoL (*during chemotherapy, radiation)	Author, year, reference	
Randomized controlled trials						
Breast	**T1–3, N0–2, M0**	CAF, Iscador or Helixor (59)	Neutropenia 15%	0.195	EORTC QLQ-C30* (Pain*, diarrhoea*, role*, insomnia*, nausea/vomiting*)	
		CAF (30)	27%			
No data		(F)EC, Iscador M (32)	EC-associated inhibition of granulocyte function: no difference. Reduction of EC-related side effects (nausea, constipation, pain, stomatitis). Lymphocytes, retching, emesis: no difference	>0.27	EORTC QLQ-C30*, BR 23*, Rhodes Index*: no difference	
					No data No data	
	T1a–3, N0, M0	Iscador (38)	Haematological parameters, hospitalization, paracetamol, metoclopramide: no difference. Leucopenia ↓ (trend)	FACT-G* ↓ 4.4 GLQ-8* sum ↓ 28.9 Spitzer uniscale* ↓ 12.2	Grossarth 2006a [52,53]	
	T1–3, N0–N+, M0	CMF, Lektinol 15 ng ML (169)	Hematological parameters, hospitalization, paracetamol, metoclopramide: no difference. Leucopenia ↓ (trend)	FACT-G* ↓ 5.11 GLQ-8* sum ↑ 94.8 Spitzer uniscale* ↑ 10.8	Semiglasov 2006 [54]	
		CMF, placebo (168)				
	T1–2, N0–1, M0	CMF, radiation, Helixor A (11)	CMF-induced NK-cell decrease ↓ SCE-increase ↓ other immune markers: no difference	0.005 n.s.	EORTC QLQ-C30* No difference, data not shown	Auerbach 2005 [55]
Table 5: Controlled Clinical Studies on VAE Treatment in Breast and Gynaecological Cancer: Reduction of side effects of chemotherapy, radiation or surgery; QoL (Continued)

Group	Treatment/Placebo	T1–3, N0-N+, M0	GLQ-8* sum	Spitzer uniscale*	QLQ C-30*	p-value	Reference		
CMF, placebo (9)									
T1–3, N0-N+, M0	CMF, Lektinol 5 ng ML (66)	Hematological parameters, hospitalization, paracetamol, metoclopramide; no difference. Immune markerers: CD4, CD4/CD8, NK-cell activity: significant ↑	GLQ-8* sum	No difference	Spitzer uniscale*	No data	<0.05	Semiglasov 2004 [57]	
CMF, Lektinol 15 ng ML (65)		Superior 60.8mm	GLQ-8* sum	Superior 16.4mm	Spitzer uniscale*	No data			
CMF, Lektinol 35 ng ML (64)									
CMF, placebo (66)									
IIIA–IIIB	Iscador (17)	Self-regulation questionnaire (score 1–6)	2.92 → 3.7	0.13	Grossarth 2001a [59]				
None (17)									
IV	Iscador speczial (20)	Spitzer score questionnaire	~5 → 7.2	<0.05	Borrelli 2001 [58]				
Placebo (10)									
Advanced	VEC, Eurixor (21)	Leukopenia ↓ Platelets: no difference	≤ 0.001	QoL index* (superior)	Anxiety scale* (superior)	≤ 0.01	Heiny 1991 [61]		
VEC, placebo (19)									
Cancer Type	Stage	Treatment	FLIC-score*	TCM-score*	KPS* Increase in % of Patients	FLIC 0.014	TCM 0.0007	KPS 0.002	
-------------	-------	-----------	-------------	------------	-------------------------------	-----------	------------	-----------	
Breast, others	All stages	Iscador (39)	Self-regulation questionnaire, (score 1–6)	3.41 → 3.87	0.02	Grossarth 2001b [59]			
Breast, ovary, lung	T1–4, N0–3, M0–1	Chemotherapy with Lentinan, Helixor A (115)	Chemotherapy-related adverse events not shown	FLIC-score* ↑ 9	TCM-score* ↑ -1	KPS* Increase in % of Patients 50%	FLIC 0.014	TCM 0.0007	KPS 0.002
Ovary	IA–IC	Iscador (21)	Self-regulation questionnaire, (score 1–6) median difference	0.58	0.0002	0.30–0.90	Grossarth 2007a [50]		
Ovary, others	Inoperable	Radiation, cisplatin, holoxan, Helixor (23)	Nausea ↓, vomiting ↓, depression of leucopoiesis ↓	0.005, 0.08, 0.003	KPS* 67% → 76% (p = 0.0008*)	FLIC 0.014	TCM 0.0007	KPS 0.002	
Cervix	IVA-B	Iscador (19)	Self-regulation questionnaire, (score 1–6) median difference	0.7	0.014	0.15–1.05	Grossarth 2007c [51]		
Uterus	IA-C	Iscador (30)	Self-regulation questionnaire, (score 1–6) median difference	0.4	0.0012	0.15–0.70	Grossarth 2008a [49]		

* FLIC-score: Fear of Losing Independence Questionnaire (score range: 0–8)
* TCM-score: Treatment Concerns Questionnaire (score range: 0–8)
* KPS: Karnofsky Performance Status (scale: 0–100)

Grossarth 2001b [59] - None (39)
Grossarth 2007a [50] - Ovary, others
Piao 2004 [56] - Breast, ovary, lung
Lange 1985 [63] - Ovary, others
Grossarth 2007c [51] - Cervix
Tumor Type	Stage	Treatment	Iscador	Self-regulation Questionnaire, (score 1–6) median difference	p-value	Reduction of side effects of chemotherapy, radiation or surgery	QoL	Study Reference
Breast	T1-3, N0, M0	Iscador (84)	Self-regulation questionnaire	Hazard-ratio	0.20	0.031	0.00–0.35	Grossarth 2006 ^b [52,53]
Breast	I–II	Iscador (33)	CMF/EC-induced lymphocyte decrease ↑, platelet decrease ↓	n.s., 0.01	EORTC QLQ-C30[®], BR 23[®]	Reduced increase of nausea/vomiting, general side effects of CMF/EC	0.02	Loewe-Musch [64]
Breast	(suspected)	Iscador M spezial (47)	Prevention of surgery-associated inhibition of granulocyte function (PMA- and E.coli-stimulated oxidative burst)	<0.0001, <0.01				Büssing 2005 [65]
Ovary	IA–IC	Iscador (75)	Self-regulation questionnaire	<0.026	0.10–0.60		Grossarth 2007 ^d [50]	
Cervix	IB–IVA	Iscador (102)	Self-regulation questionnaire	<0.0005	0.15–0.35		Grossarth 2007 ^f [51]	
Uterus	IA–C	Iscador (103)	Self-regulation questionnaire	<0.0005	0.4–0.95		Grossarth 2008 ^d [49]	
Table 5: Controlled Clinical Studies on VAE Treatment in Breast and Gynaecological Cancer: Reduction of side effects of chemotherapy, radiation or surgery; QoL (Continued)

Retrolective pharmaco-epidemiological cohort study

Breast	I–III	Conventional therapy, Helixor (167)	Odds ratio for occurrence of disease- or treatment associated symptoms: 0.508	0.319–0.811	Beuth 2008 [69]	
	I–III	Conventional therapy, Iscador (710)	Adverse drug reactions ↓, Odds ratio: 0.47, 95% CI 0.32–0.67	Odds ratio for being symptom-free 3.56 (vomiting, headache, exhaustion, depression, concentration, sleep, dizziness, irritability) ↑	2.03–6.27	Bock 2004 [70]
	I–IV	Conventional therapy, Eurixor (219)	Symptom mean score improved (nausea, appetite, stomach pain, tiredness, depression, concentration, irritability, sleep)	<0.0001	Schumacher 2003 [71,72]	

1 Chemotherapy (referring to the study by Piao et al.) – breast cancer: CAP, CAF (CAP: Cyclophosphamide, doxorubicin, cisplatin; CAF: Cyclophosphamide, doxorubicin, 5-fluorouracil); ovarian cancer: CP, IcP (CP: Cyclophosphamide, cisplatin, IcP: Ifosfamid, carboplatin); non-small cell-lung cancer: VP, MViP (VP: Vinorelbine, cisplatin; MViP: Mitomycin, vindesine, cisplatin).

2 Statistical significance of pre-post difference within each group

QoL: Quality of life; KPS: Karnofsky Performance Status Scale SCE: Sister chromatid exchange; ↑: increase; ↓: decrease. P-value, 95% CI: Statistical significance of difference between mistletoe (or other verum) and control group; n.s.: not statistically significant; EC: Epirubicin, cyclophosphamide (F: 5-fluorouracil); VEC: Vindesine, epirubicin, cyclophosphamide; CMF: Cyclophosphamide, methotrexate 5-fluorouracil; CAF: Cyclophosphamide, doxorubicin, 5-fluorouracil.
Table 6: Single-Arm Cohort Studies (e.g. Phase II Trials) on VAE Treatment in Breast and Gynaecological Cancer

Author, Year	Treatment	Site	Outcome	N	Quality Criteria Fulfilled													
	Preparation	Injection site	Dosage	Escalating dosage	Duration	CR	PR	NC	PD	QoL	L	M	N	O	P	Q		
Mansky 2008	Helixor (& gemcitabine)	sc	Up to 250 mg, daily	Yes	9 w	Breast, others	0%	10%	47%	43%	27	(+)	+	+	V	(+)	(+)	
Schink 2006	Helixor (& surgery)	sc	3/week, varying individually	Yes	Up to 2 years	Breast, colon	-	-	-	-	â	40	+	+	(+)	(+)^V	(+)	
Schöffski 2004	Aviscumine	iv	10 – 6400 ng/kg, 2/w	Yes	3–24 w, median 6 w	Ovary, breast, others	0%	0%	30%	70%	37	+	(+)	+	+	+	+	
Mahfouz 1999	Viscum fraxini	sc or it	1 × 45 mg/w	No	16–136 w	Breast	8%	54%	35%	4%	â	26	(+)	(+)	(+)	+	+	
Mahfouz 1998	Abnobaviscum Fr	sc	1 × 45 mg/w	No	17 w	Breast	0%	44%	33%	22%	â	9	-	(-)	(+)	-	-	(+)
Finelli 1998	Lektinol	sc	2.5 μl/kg, 2/w	No	Up to 12 w	Breast, others	-	-	-	-	â	884	+	+	+	-	+	+
Portalupi 1995	Iscador M	sc	2 × 1 ng MLI/kg bw × w	No	16 w	CIN I–III	41%	27%	27%	5%	22	+	+	+	+	(+)		
Table 6: Single-Arm Cohort Studies (e.g. Phase II Trials) on VAE Treatment in Breast and Gynaecological Cancer (Continued)

Malignant effusion

Study Year	Study Name	Study Drug(s)	Study Formulation	Study Dose	Study Route	Study Duration	Study Site	Study Effectiveness	Study Conclusion	
2006	Bar-Sela	Iscador M	ip	10 mg	No	repeatedly	Ascites (ovary, others)	Increase of interval between two successive paracenteses from 7 to 12 days, \(p = 0.001 \^{1b} \)	\(\text{â}^{1bc} \) 23 (+) (+) (+) (+) + +	
1999	Werner	Abnobavicium Fr	ipl	1 × 75 mg/w	No	3–8 w	Pleural effusion (breast, others)	88%	\(\text{â} \) 32 + + + - (+) (+)	
1994	Stumpf	Helixor A, M or P	ipl	100–1000 mg	Yes	repeatedly	Pleural effusion (breast, others)	61%	11% 22%	18 + + + (+) + +
1995	Friedrichson	Helixor A, M	ip	100–1000 mg, 2/	Yes	repeatedly	Ascites (ovary, others)	70%	\(\text{â} \) 12 (+) (-) + - (-) +	

\(^1\) sc: subcutaneous, it: intratumoural, ipl: intrapleural, ip: intraperitoneal; iv: intravenous infusion; bw: body weight; w: week

\(^2\) CIN: cervical intraepithelial neoplasia. Stage: advanced, except in Portalupi 1995, and partly Schink 2006 and Finelly 1998; plural effusion and ascites indicates treatment site

\(^3\) CR: complete, PR: partial remission, NC: no change, PD: progredient disease, QoL: quality of life, \(\text{â} \): improved, \(\text{ä} \): impaired

\(^4\) Especially physical functioning, role, fatigue, appetite

\(^5\) Median values, comparable abdominal circumference and symptom score or drained fluid before or during each paracentesis respectively

\(^6\) Trend improvement in symptom score, especially abdominal pain, abdominal pressure, and waking up at night due to shortness of breath

\(^7\) N: Number of participants

\(^8\) Concomitant conventional oncological cytoreductive therapies in some of the patients

\(^9\) L: Well-described patient characteristic and disease (diagnosis, stage, duration), prognostic factors

\(M\) Outcome parameter relevant and well described

\(N\) Well-described intervention

\(O\) Concomitant therapies well described

\(P\) Outcome clearly described, temporal relationship between applied therapy and observed outcome precisely described

\(Q\) Selection of patients excluded

\(\pm\) adequately fulfilled, (+) partly fulfilled, (-) little fulfilled, - = not fulfilled
Animal studies

43 studies were found. 9 of these were excluded as they investigated: tumour-bearing eggs [111], pre-incubation of tumour cells with VAE [112,113], different cancer types without differentiating the results accordingly [114], or isolated VAE proteins that were unstable [115]. Of the remaining 34 experiments [96,111,116-134] (Tables 8 and 9), 28 had been conducted in mice and 6 in rats. 22 experiments had included 788 animals, (5–20 per treatment group), one included 282 VAE-treated animals (number of control animals were not reported), the other reports gave no details. 32 experiments investigated breast tumours (15 of these Ehrlich carcinoma, ECa), one uterus epithelioma and one ovarian cancer. 28 had used murine tumour models, 5 were of human origin and 1 an autochthonous model (methylnitrosurea-induced tumourigenesis). 24 experiments investigated whole VAE (two of these VAE-activated macrophages), two investigated isolated MLs, two rMLs, two investigated other isolated proteins, and four investigated polysaccharides (“Viscumsäure”). VAE were applied systemically in 17 experiments (subcutaneous, intraperitoneal, intratumoural on opposite site, intramuscular), local at the tumour site in 15 experiments (intraperitoneal, intratumoural, intramuscular), and without specification in two studies.

These experiments had been conducted in Germany, Switzerland, Austria, USA, India, Croatia and Serbia. 9 of the 34 experiments reported the funding source, 8 of these had public funding and one a combination of public and industry funding. 19 had been published since 1990 and 15 before (1938–1989). 21 were published in peer-reviewed and 2 in other journals, 6 were published in scientific reference books, 1 as a conference abstract, and 4 in a patent specification. Published information was often insufficient and sometimes extremely sparse. 6 experiments reported randomized treatment allocation. Regarding the control group, placebo treatment was described in 13 experiments – five of these with identical application schedule to the verum treatment-, no treatment in 11 experiments, and 9 experiments gave no information. None of the experiments reported a blinded outcome assessment (but randomized treatment allocation and blinded outcome assessment are generally routine practice).

Outcome

We found substantial heterogeneity of the studies in terms of intervention, patient characteristics, clinical diagnosis, measured outcomes, design, methodological quality and potential positive and negative biases. We therefore regarded quantification of effect size by combining results as unreliable and decided on a non-quantitative synthesis and discussion. A subgroup of studies (2 RCTs, 2 non-RCTs on breast cancer), with a comparable design (all originating in the same epidemiological cohort study) had already been analysed in a quantitative meta-analysis [135].

Results of controlled clinical studies are shown in Table 3 (survival), Table 4 (tumour behaviour) and Table 5 (QoL and tolerability of conventional cancer treatment); results of single-arm studies are shown in Table 6.

Results of the preclinical studies are presented in Tables 7, 8 and 9.

Breast cancer

Clinical studies

Survival (Table 3) was investigated by 4 RCTs and 3 non-RCTs (one of these is shown with three subgroups in Table 3): Two RCTs reported a statistically significant benefit of VAE (of these one also included other tumour sites, and the other suffered from a major attrition rate without preventing bias by an intention-to-treat analysis), and two RCTs reported a small positive trend. The results of the latter two RCTs were also combined in an individual patient data meta-analysis; the result just missed significance (HR: 0.59, 95% CI: 0.34–1.02, p = 0.057) [135]. Two non-RCTs had observed a statistically significant benefit, and one a small positive trend. The results of two non-RCTs were additionally combined in an individual patient data meta-analysis, and showed highly significant results (HR: 0.43, 95% CI: 0.34–0.56, p < 0.0005) [135]. Tumour behaviour (Tables 4 and 6) was investigated by two RCTs, four non-RCTs and 4 single-arm studies. Four of the controlled studies combined VAE and conventional cancer treatment. These studies partly reported a benefit regarding disease recurrence and time to disease relapse and partly no difference; none found a disadvantage. Two single-arm studies reported tumour remission in 44–62% of patients after local application of high dosage VAE. Another study found no remission after the application of rML. QoL and the reduction of side effects of chemotherapy, radiation and surgery (Tables 5 and 6) were assessed by 11 RCTs, 6 non-RCTs and 4 single-arm studies: 19 of these 21 studies reported a benefit, mostly statistically significant, one study reported no QoL-benefit but a reduction of side effects, and the smallest of these studies found no difference. Three major pharmaco-epidemiological studies investigated patient charts and found reduced disease- and therapy-associated symptoms in VAE-treated groups.

In preclinical studies (Tables 7, 8, and 9) VAE and VAE compounds showed cytotoxic effects in cancer cells. VAE also counteracted growth factor-induced proliferation and migration in breast cancer cells [95]. In mice, VAE inhibited tumour growth in most cases, especially when applied locally and in high dosage. Survival was prolonged in most cases, and numbers of metastases and
Tumour cell	VAE	Result	Reference
Breast cancer			
MFM-223	Iscador Qu, M, A		
Iscador P			
ML I	IC$_{50}$	0.05–0.12 mg/ml	
1.89 mg/ml			
38 ng/ml	[22]		
	Iscador M, Qu,		
Abnobaviscum Fr	Inhibition of proliferation	0.1–1 mg/ml	
0.01–1 mg/ml	[81]		
KPL-1	Iscador Qu, M, A		
Iscador P			
ML I	IC$_{50}$	0.1–0.3 mg/ml	
1.94 mg/ml			
141 ng/ml	[22]		
	Iscador M, Qu,		
Abnobaviscum Fr	Inhibition of proliferation	1 mg/ml	
0.1–1 mg/ml	[81]		
	Iscucin® A, M, P, C, Po, T, Qu, S	Cytotoxicity	0.1 mg/ml
	Iscador M		
ML I	No stimulation of cell proliferation	0.05–5 ng ML/ml	
0.01–5 ng/ml	[83]		
MCF-7	Iscador Qu, M, A		
Iscador P			
ML I	IC$_{50}$	0.09–0.12 mg/ml	
1.61 mg/ml			
410 ng/ml	[22]		
Lektinol		IC$_{50}$	>10 ng ML l/ml
	Iscador Qu, M, P		
(max. 1 or 1.5 mg/ml)	Inhibition of S-phase progression		
Induction of apoptosis	[85-87]		
	Iscador M		
Iscador P			
ML I			
Iscador Qu	IC$_{50}$		
No influence	185 µg/ml		
no activity			
0.003 µg/ml			
0.0015–15 µg/ml	[88,89]		
	Viscotoxin isoforms		
(A1, A2, A3, B, 1-PS)			
Viscotoxin isoform U-PS	GI$_{50}$		
LC$_{50}$	0.02–0.8 µg/ml		
0.6 to > 1 µg/ml			
no activity	[90]		
	ML I A chain	Inhibition of proliferation	0.5 µg/ml
	ML I, ML II, ML III	Inhibition of proliferation	1–10 ng/ml
	TNF & ML I (100 ng/ml)	Potentiation of TNF-cytotoxicity	
	Lektinol	IC$_{50}$	0.003 µg/ml
	Helixor P		
ML I	IC$_{50}$	> 150 µg/ml	
0.086 µg/ml	[94]		
	Iscucin M, P, C, Po, T, Qu, S		
Iscucin A, Pi	Cytotoxicity	0.1 mg/ml	
no activity	[82]		
MCF-7/ADR			
Lektinol		IC$_{50}$ (SRB assay)	0.3 E-4 µg/ml
MAXF 401NL			
Helixor P			
ML I		IC$_{50}$	0.66 µg/ml
0.003 µg/ml	[94]		
Iscador M			
Iscador P
ML I
Iscador Qu | IC$_{50}$
>70% growth inhibition | < 3 µg/ml
no activity
0.353 E-4 µg/ml
10 µg/ml | [88,89] |
| **MAXF 40I** |
| Lektinol | | IC$_{50}$ | < 0.1 E-4 µg/ml | [93] |
Table 7: In-vitro Studies on Cytotoxicity of VAE in Human Breast or Gynecological Cancer Cells (Continued)

Source	Treatment	IC₅₀	Concentration	Reference	
MAXF 1162	Lektinol	IC₅₀	< 0.1 E-4 µg/ml	[93]	
MAXF 449	Lektinol	IC₅₀	0.2 E-4 µg/ml	[93]	
MAXF MX1	Lektinol	IC₅₀	< 0.1 E-4 µg/ml	[93]	
MDA-MB-231	Lektinol	IC₅₀	0.7 E-4 µg/ml	[93]	
MDA-MB-468	Helixor P ML I	IC₅₀	135 µg/ml 0.041 µg/ml	[94]	
MDA-MB-486-HER2	Iscador M	Inhibition of epidermal growth factor-induced proliferation	0.5 µg/ml	[95]	
Colo-824	Iscador M ML I	No stimulation of cell proliferation	0.05–5 ng ML/ml 0.01–5 ng/ml	[83]	
HCC-1937	Iscador Qu, M, A ML I	IC₅₀	0.1 to 0.3 mg/ml 2.14 mg/ml 320 ng/ml	[22]	
Iscucin A, M, P, C, Po, T, Qu, S	Cytotoxicity	0.1 mg/ml	[82]		
BT474	Helixor M, A	Cytotoxicity (WST-1) Maximum (80 and 100%) with 25 mg/ml	[96]		
Primary breast cancer	Iscador M, Qu Abnobaviscum Fr	Mitochondrial activity (MTT)	50–80% with 0.1–0.001 mg/ml	[81]	
Abnobaviscum M	Inhibition of proliferation	0.5–50 µg/ml	[97]		
ML I	Inhibition of proliferation	1–50 ng/ml	[20, 98]		
T47D	ML I, II, III IC₅₀	> 0.1 – 1 ng/ml	[99]		
ML I A-chain	Inhibition of proliferation	10 ng/ml	[91]		
BT549	ML I A-chain	Inhibition of proliferation	500 ng/ml	[91]	
HBL100	ML I A-chain	Inhibition of proliferation	100 ng/ml	[91]	
Breast cancer cells	ML II, ML III, viscotoxins	Cytotoxicity		[100]	
Ovarian cancer					
OVXF 1619L	Helixor P ML I	IC₅₀	119 µg/ml 0.100 E-3 µg/ml	[94]	
OVXF 899L	Helixor P ML I	IC₅₀	>150 µg/ml 0.229 µg/ml	[94]	
SKOV-3 (HER-2 expression)	Recombinant ML I	IC₅₀	Induction of apoptosis	0.033 ng/ml	[101]
OVCAR3	Iscador Qu, M (max. 1 or 1.5 mg/ml)	Inhibition of S-phase progression, Induction of apoptosis	No clear effect	[87]	
OVXF 899	Lektinol	IC₅₀	0.3 E-3 µg/ml	[93]	
OVXF 1353	Lektinol	IC₅₀	0.01 µg/ml	[93]	
OVXF 1023	Lektinol	IC₅₀	< 0.1 E-4 µg/ml	[93]	
SKOV3	Lektinol	IC₅₀	< 0.1 E-4 µg/ml	[93]	
Table 7: *In-vitro* Studies on Cytotoxicity of VAE in Human Breast or Gynecological Cancer Cells (Continued)

Primary cancer	Abnobaviscum M	Inhibition of proliferation	5 μg/ml	[97]
Uterine cancer				
UXF 113BL	Iscador M	\(IC_{50} \) Growth inhibition >30%	6.8 μg/ml	[88,89]
	Iscador P		No activity	
	ML I		0.16 E-4 μg/ml	
	Iscador Qu		15 μg/ml	
UCL SK-UT-1B	Helixor P	\(IC_{50} \)	> 150 μg/ml	[94]
	ML I		0.038 μg/ml	
SK-UT-1B	Lektinol	\(IC_{50} \)	0.6–5.5 ng ML I/ml	[84]
	ML I	Inhibition of proliferation	0.5–500 ng/ml	[98,102]
	Iscador M	ML I	No stimulation of cell proliferation	
			0.05–5 ng ML/ml	[83]
			0.01–5 ng/ml	
SK-UT-I	ML I	Inhibition of proliferation	0.5–500 ng/ml	[98,102]
MES-SA	ML I	Inhibition of proliferation	0.5–500 ng/ml	[98,102]
Vulvar cancer				
SK-MLS-1	Lektinol	\(IC_{50} \)	2 to >5 ng ML I/ml	[84]
	ML I	Inhibition of proliferation	0.5–500 ng/ml	[98,102]
	Iscador M	ML I	No stimulation of cell proliferation	
			0.05–5 ng ML/ml	[83]
			0.01–5 ng/ml	
Cervical cancer				
HeLa	TNF & ML I (100 ng/ml)	Potentiation of TNF-cytotoxicity		[92]
	ML I	Inhibition of protein synthesis	100 μg/ml	[12,103]
	Protein fractions	Complete inhibition of DNA-, RNA-synthesis		
		Proliferation	1 μg/ml	[104]
			no effect	
Viscotoxins	\(IC_{50} \)	0.2–1.7 μg/ml		[105]
Helixor M	Growth inhibition	≥ 0.01 mg/ml		[106]
Isorel®	Cytotoxicity	30 μg/μl		[107]
Isorel A, M, P, ML I	Cytotoxicity	> 1 μl/ml		[108]
		> 1 μg/ml		
Iscador M	Helixor M	LC_{50}	16 μg/ml	[109,110]
	VAE M		35.4 μg/ml	
			3.9 μg/ml	
Iscador M, Qu	Abnobaviscum Fr	Growth inhibition	0.1–1 mg/ml	[81]
			0.01 mg/ml	

Glc_{50}: 50% growth inhibitory concentration
LC_{50}: 50% lethal concentration
IC_{50}: 50% inhibitory concentration
MCF-7/ADR: adriamycin(doxorubicin)-resistant MCF-7 cell line
HER: human epidermal growth factor receptor
Tumour, site	Animal	VAE, application and dosage	Tumour growth T/C	Survival ILS	Other outcomes	Reference
Human breast						
MAXF 449, sc	Nude mice	Local Abnobaviscum Qu 8 or 4 or 2 mg/kg, it, qd *3	6 to 20%			[116]
		Systemic Abnobaviscum Qu 8 mg/kg, it, qd *3	78%			
MAXF 449, sc	Nude mice	Abnobaviscum M 8 mg/kg, sc, qd *3 + 2 w	68%			[116]
BT474, sc	Mice (BALB/c)	Helixor M or A 5 mg, it, qd *3 + 2 w	29 to 52%			[96]
Murine breast						
Carcinoma, sc, iv	Mice (CBA/HZgr)	Isorel M, 3 mg, sc, qod *21	No difference	Lung-metastases: VAE vs. control: 13.4 vs. 37.5		[117]
Carcinoma, sc	Mice (CBA/HZgr)	Isorel M, 1400 mg/kg, 2 w	20%			[118]
Carcinoma, sc	Mice (CBA/HZgr)	Isorel M, 140 mg/kg		Recurrence after resection, VAE vs. control: 47% vs. 78%		[118]
Carcinoma, iv	Mice (CBA/HZgr)	Isorel M, 140 mg/kg, ip	52 lung-metastases			[118]
		Endoxan, 50 mg/kg	23 lung-metastases			
		Isorel M, 140 mg/kg & Endoxan 50 mg/kg	10 lung-metastases			
		Control	76 lung-metastases			
C3H adenocarcinoma, 16/C	Mice (B6C3F1)	Iscador M, 50 or 100 mg/kg, ip, qd, day 1–14	28%	15 to 20%		[119]
RC adenocarcinoma, sc	Mice (DBA)	VAE I, sc	20 to 40%			[111]
ECa, ip	Mice (NMRI)	VAE (supercritical CO₂ extraction), 2 mL/kg, ip, qd, starting day -7, day 0, or day 7	65 to 100%			[120]
ECa, ip	Mice (BALB/c)	Iscador, 15 μg, ip, day -1	108%			[121]
		Sodium caseinate & Iscador, 15 μg, ip, day -1	no death			
		Sodium caseinate, day -1	0%			
ECa, ip	Mice (BALB/c)	Iscador, 15 μg, ip, day 6	82%			[121]
		Sodium caseinate, day 6	7%			
ECa, ip	Mice (BALB/c)	Iscador-activated macrophages, ip, day 6	49%			[121]
Table 8: Animal Studies of VAE on Breast or Gynaecological Cancer (transplanted human or murine tumours or primary autochthonous tumour) (Continued)

Treatment	Tumour Model	Route of Administration	Dose	Response	
ECa, ip	Mice (BALB/c)	Iscador activated macrophages, ip, day 6, 10, 14	98%	[121]	
		Non-activated macrophages, ip, day 6, 10, 14	9%		
ECa, sc	Mice (BALB/c)	Iscador, 15 μg, it, day 7	Severe necrosis, infiltration of lymphocytes and macrophages	[122]	
ECa, sc	Mice (Swiss)	Iscador M, 1.66 mg, im, qod # 5 or 10	3 to 10%	[123]	
ECa, ip	Mice (Swiss)	Iscador M, 1.66 mg, ip, qod # 10	76%	[123]	
ECa, ip	Mice (Swiss)	Iscador M, 25 or 50 mg/kg, ip, qd # 14	69 to 97%	No tumour-free mice	[119]
ECa, ip	Mice (Swiss)	Iscador M, sc, cumulative dose 4, 5, 150, or 200 mg	-4 to 0%	[124]	
ECa, sc	Mice	VAE, it, 0.1–0.2 ccm, qod # 6–10	Complete remission & no recurrence: 27%	[125,126]	

Murine breast

Treatment	Tumour Model	Route of Administration	Dose	Response	
Walker carcinosarcoma 256; sc	Rats (Sprague Dawley)	Iscador M, sc, cumulative dose 11, 16, 500, or 750 mg or combination of Iscador M, sc, cumulative dose 11 or 500 mg & Cetraria praeparata, cumulative dose 3 or 164 mg	93 to 115%	-16 to 8%	[124]
Dunning DMBA-5A; sc	Rats	Iscador M, 2.5–15 mg, ip, qd	No difference	Less tumour viability	[127]
Walker carcinosarkoma 256	Rats	Iscador M, 0.005–0.5 mg, im, qd	No difference	Metastases: no difference	[128]

Autochthonous

Treatment	Tumour Model	Route of Administration	Dose	Response	
MethylNitrosourea-induced	Rats (Sprague Dawley)	Iscador M c. Arg., sc, 0.2 ml/day, 50 mg/week # 6 weeks	75%	-16%	[124]

sc: subcutaneous; im: intramuscular; it: intratumoural; ip: intraperitoneal; iv: intravenous; w: week; qod: every other day; qd: every day; T/C: treated tumour/control tumour; ILS: increase in life span

All experiments did have control groups, but these were only mentioned if necessary for results

I Part of a screening programme for substances with anticancer activity (1,000 plant extracts from 107 plant species)

II Relating to volume of ascites; effects greatest with therapy started on day -7
Tumour, site	Animal	VAE	Tumour growth T/C (%)	Survival	Other outcomes	Reference
Human breast tumour						
Breast	Mice	rML 0.3 ng/kg – 3 μg/kg, ip, qd * 5 * 2–4 w	No effect			[129]
Murine breast tumour in mice						
C3L5, adenocarcinoma; sc	Mice (C3H7HeJ)	ML I, 1 ng/kg, sc, q3d, day 7–19	160	27.6 lung-metastases		[130]
		IL-2, twice 6 × 104 IU/mouse, ip q8h 2 * qd * 5	43	2.3 lung-metastases		
		Combination of ML I & IL-2	37	2.3 lung-metastases		
		Control	7.5 lung-metastases			
	ECa, ip	Mice (ICR)	ML I, 80 ng, ip, day 1	70% died after 50 days		[131]
		A-chain of ML I, 100 μg, ip, day 1	80% died after 57 days			
		B-chain of ML I, 10 μg, ip, day 1	80% died after 58 days			
		Control	100% died after 20 days			
ECa, sc	Mice (BALB/c)	VAE 5 kDa peptides, 2 μg, it, day 7		Severe necrosis, infiltration of lymphocytes and macrophages		[122]
ECa, ip	Mice (CD-1)	Vester’ Proteins, ip, 0.1 or 1 or 10 μ/kg, qd * 10	ILS: 0, 33, and -33%I			[132]
ECa	Mice	Polysaccharide („Viscumsäure”), ip, qd * 6	Slight effect			[133]
Adenocarcinoma EO 771	Mice	Polysaccharide („Viscumsäure”), ip, qd * 6	Moderate effect			[133]
Murine breast tumour in rats						
Walker Carcinosarcoma	Rats	Polysaccharide („Viscumsäure”), ip, qd * 6	Moderate effect			[133]
local recurrences were reduced after application of VAE or of VAE-activated macrophages; one study found no benefit. All experiments using local VAE application found a benefit in relation to survival and tumour-growth inhibition. In rats, no clear benefit of VAE could be seen. Results from applying isolated or recombinant VAE compounds were inconsistent: some moderate effects of proteins (e.g. lectins) or polysaccharides were observed in relation to survival and tumour growth, while others observed none or possibly also adverse outcomes.

Cervical cancer

Clinical studies: Survival (Table 3) was investigated by one RCT and three non-RCTs: all four reported a beneficial outcome which, however, was statistically significant only in the non-RCTs. Tumour behaviour (Table 4) was investigated by one non-RCT, which could not find an effect on disease recurrence or metastases mainly because these events scarcely occurred. One single-arm study reported 41% complete and 27% partial remissions in CIN after VAE application. QoL (Table 5) was assessed in one RCT and one non-RCT; both reported a statistically significant benefit.

Regarding preclinical studies (Table 7), only HeLa cells were investigated; here VAE and protein fractions showed cytotoxic effects.

Uterus cancer

Clinical studies: Survival (Table 3) was investigated by two RCTs and two non-RCTs; three reported a statistically significant benefit while one found no difference. QoL (Table 5) was assessed by one RCT and one non-RCT; both found a statistically highly significant benefit.

Regarding preclinical studies (Tables 7 and 9), VAE and isolated ML I showed cytotoxic effects in different human uterus cancer cells. Concerning animal experiments, a patent specification mentions "moderate" effects of mistletoe polysaccharides on tumour growth in uterusepithelioma.

Ovarian cancer

Clinical studies: Two RCTs and two non-RCTs investigated the influence of VAE on survival (Table 3) and reported a benefit, one of each with statistical significance. Tumour behaviour (Table 4) was investigated by two RCTs, each combining VAE and chemotherapy (plus radiotherapy in one study): these reported comparable outcomes. The influence of VAE on QoL and tolerability of chemotherapy and radiation (Table 5) was investigated by three RCTs and one non-RCT; all of them reported a statistically significant positive effect. In one trial using an aggressive chemotherapy protocol, higher dosages of Cisplatin and Holoxan could be given in the VAE group as the side effects were less intense [63]. One single-arm study applied recombinant lectins in ovarian cancer but found no remission.

Regarding preclinical studies (Tables 7 and 9), VAE showed cytotoxic effects in various ovarian cancer cells. In SCID mice, tMLs led to increased survival and to more tumour-free animals at the highest and lowest dosage, while no effect was observed at the medium dosage.

Genital cancer

Clinical studies: One non-RCT (published in 1963) reported partly improved disease-specific survival (Table 3). Regarding preclinical studies (Table 7), VAE showed cytotoxic effects in vulvar cancer cells.

Table 9: Animal Studies of VAE Compounds in Breast or Gynaecological Cancer (transplanted human or murine tumours) (Continued)

Tumour Model	Species	Treatment	Dose	Number of Mice Alive	Tumour-Free Mice
Ovary, SoTu 3, ip Mice (SCID)	rML 30 ng/kg, ip, qd * 5 * 12	35% alive at day 84	40% tumour-free mice at day 84	[134]	
Ovary, SoTu 3, ip Mice (SCID)	rML 150 ng/kg, ip, qd * 5 * 12	10% alive at day 84	10% tumour-free mice at day 84		
Ovary, SoTu 3, ip Mice (SCID)	rML 500 ng/kg, ip, qd * 5 * 12	75% alive at day 84	65% tumour-free mice at day 84		
Uterusepithelioma, T-8 Guérin Rats Polysaccharide ("Viscumsäure"), ip, qd * 6	Moderate effect	15 mice alive at day 84	10% tumour-free mice at day 84	[133]	

All experiments did have control groups, but these were only mentioned if necessary for results.

sc: subcutaneous; it: intratumoural; ip: intraperitoneal; iv: intravenous; w: week; qod: every other day; qd: every day; T/C: treated tumour/control tumour; ILS: increase in life span.

1 Application of 10 μg/kg of proteins had toxic effects.
Malignant effusion

Clinical studies: One RCT and four single-arm studies investigated treatment of malignant pleural effusion and ascites (originating from breast or ovarian cancer, among other cancer sites), and all reported substantial remission rates (Tables 4 and 6).

Safety

Tolerability was generally good. One case of urticaria and angioedema [56] and one case of “generalized reaction” [69] were described. Otherwise no major side effects or toxicity were reported. Frequent minor, dose-dependent and spontaneously subsiding symptoms included reactions at the injection site (swelling, induration, erythema, pruritis, local pain) and mild flu-like symptoms or fever. In one study, local reactions intensified during concomitant chemotherapy [64]. A higher prevalence of depression was documented in the unadjusted data of a retrospective non-RCT [69] in VAE-treated patients; these patients also had a higher prevalence of other treatments such as hormones. After intrapleural instillation, VAE induced significantly fewer side effects than doxycycline [60]. No indication for an interaction of VAE and chemotherapy could be found (i.e. remission rate) and VAE had no influence on the plasma concentration of gemcitabine [44,73]. No toxicity was observed in animal studies, except after application of high doses of an isolated protein complex with unknown constituents [132].

Discussion

A variety of clinical studies and experiments have investigated the potential therapeutic effects of VAE and its compounds in breast and gynecological cancer, and predominantly reported positive effects. Nevertheless they have to be interpreted with caution and within their context.

The strongest and most consistent results from VAE in clinical studies concern QoL and improved tolerability of conventional treatment. QoL questionnaires included mostly well established and validated QoL instruments and one on psychosomatic self-regulation. The latter is a 16 item QoL instrument that measures competence and autonomy, in terms of the ability to actively adapt to stressful life situations and to restore well-being. [136] This tool has so far been exclusively used in studies focusing on complementary cancer treatments. Improvement was seen especially in relation to self-regulation, fatigue, sleep, nausea/vomiting, appetite, diarrhoea, energy, ability to work, enjoyment of life, depression, anxiety, pain, and general physical, emotional, and functional well-being (for more details see Kienle GS, Kiene H: Influence of mistletoe treatment on quality of life in cancer patients. A systematic review of controlled clinical studies. Submitted). Regarding the side effects of conventional oncology treatments, reduced hematopoietic damage (i.e. leukopenia) and immuno-suppression was reported by some, but not by all studies. Similar, less chemotherapy-related events were observed in some but not in all studies. Validity of this evidence is quite good. 15 RCTs are available, four of them double-blinded (three of them showing a positive result) and one with an active control treatment. 5 RCTs reported following ICH-GCP guidelines and three of them comprised more than 200 patients each. Questions remain regarding observation or reporting bias, which is of major importance in relation to subjectively assessed outcomes such as QoL and subjective symptoms. Treatment should therefore be blinded; but blinded subcutaneous VAE application can easily be correctly identified by doctors and patients [55,137], due to its local reactions and mild flu-like symptoms. In the four blinded trials reviewed here, a considerable degree of unblinding was detected by asking patients and physicians in one study [55]; and can be presumed in two other of these trials where substantially more VAE-treated patients reported local reactions than control patients [54,57]. Other RCTs did not blind treatment application, as blinding is unreliable. Therefore questions will remain in "blinded" as well as in open trials even though in general cancer or non-cancer trials could not detect relevant improvements of QoL or disease symptoms due to suggestive administration of inert substances [138-140]. Nevertheless, the frequency, magnitude, duration and conditions of QoL or symptomatic improvement in the course of VAE treatment should be clarified in more detail. Especially relevant might be the further elucidation of possible effects on cancer-related fatigue (see also [141]), which is one of the most disabling conditions in cancer patients, with only few therapeutic options for influencing it effectively [142-144]. Regarding simple pre-post assessments of QoL in single-arm studies, it is probably unnecessary to state that they are generally not appropriate for judging influences on QoL, since it is affected by many factors.

Concerning survival (Table 3), some of the RCTs show a statistically significant benefit while others show a statistical trend or no difference. Most of the non-RCTs (which included larger patient numbers) show a major impact. The validity of the studies is limited because of their small sample size (median only 52 participants per RCT), and because 8 of the 9 RCTs were imbedded in the same (large) epidemiological cohort study. This study was started in the 1970s, before modern standards of data quality control (ICH-GCP, GEP) were established, and it therefore does not fulfil modern standards in this respect. The 9th RCT had enrolled more patients but was conducted even earlier, and suffers from a major attrition rate due to protocol violation [62]; the subsequent analysis followed the "as treated" instead of the "intention-to-treat" principle [145]. Hence bias cannot be excluded. None of the survival studies was blinded, but survival is
generally not easily affected by observer bias or suggestive effects [138-140]. Seen altogether, although results were consistent, questions regarding survival remain and validity of evidence is moderate at best. An independent, GCP-conform trial with sufficient power would be desirable to further evaluate potential survival benefit.

Regarding **tumour behaviour**, evidence from RCTs is scanty; most benefits were shown in non-randomized studies. In single-arm studies of patients with no concomitant conventional cancer treatment, high-dose or local application of whole VAE led to substantial remission of tumour or malignant effusion. This was also observed in animal studies: local application resulted in tumour-growth inhibition and increased survival. However, this application and dosage is not standard and cannot be recommended widely due to potential risks of high dose or local application. With ordinary VAE application, schedule and dosage, spectacular tumour remissions tend to be the exception [20,36]. No tumour remission was observed after application of rMLs. Remission in CIN cannot be distinguished from spontaneous remission rates, which are frequent in this indication.

Apart from the discussed issues, the following validity aspects have to be considered: An attrition rate above 10% was present in 10 RCTs. In 5 of these RCTs [49-51,53], patients were excluded before baseline assessment. Here the patients were provisionally enrolled into the matching and pairwise randomization procedure; subsequently they were asked for informed consent, and were excluded from the study if they declined, together with their matched twin. Even though the risk of bias with this procedure is small, as the complete randomization unit (patient pair) is excluded, the preferred conservative quality assessment in this review assessed these studies as not having excluded a drop-out bias. Of the remaining 5 trials, one had protocol violations in about 20% of patients as discussed above [62], and one trial used an aggressive chemotherapy that inevitably had to be halted in several patients [63]. Three trials did not report details.

To reduce publication bias we also included unpublished studies and conducted a thorough literature search with extensive expert consultations. One unpublished RCT (Lektinol in breast cancer by Schwiersch et al.) could not be included as it was not released by the manufacturer. Beyond this, we cannot rule out the existence of unpublished and unknown RCTs, but we presume that no well-conducted, large-size and valid trials escaped our attention. – Regarding preclinical studies achieving completeness is nearly impossible. These experiments are usually explorative, for instance when plant extracts are chemically analysed for active compounds or for cytotoxic effects; in general only relevant results are published, but not results of non-relevant or non-working models or unstable chemicals. (Even in the reviewed experiments, often not all but only the noteworthy results were presented in detail.)

Regarding funding, 27 of 28 controlled studies published since 2000 reported their funding source: 11 studies received funding from the pharmaceutical industry alone, 16 studies (all by Grossarth et al.) had both industry and public funding. There was no difference of results depending on funding source.

Regarding non-RCTs, bias by self-selecting the treatment is usually present in raw data. In particular, patients who choose complementary treatments differ substantially from patients not choosing them [70,146]. It is therefore indispensable to conduct careful adjustment of baseline imbalances or matching [147-149]. This has been done to a varying degree in most studies except in one without any adjustment [64], and in another which only adjusted for the main outcome parameter but not for the other reported results [69]. Without any adjustment, no conclusions can be drawn regarding the applied treatment. When conducted and analysed carefully, non-RCTs can provide valuable information regarding external validity and effectiveness, as they can investigate treatment effectiveness under routine conditions without distortion by the artificial and selective conditions of an RCT’s experimental situation [150].

In preclinical studies, VAE show substantial cytotoxic effects in cells originating from breast and gynaecological cancer, and display tumour-growth inhibition in animal studies. Cytotoxicity, especially of the MLs (which bind on human breast cancer cells [151]), may be the cause of tumour reduction after local, intratumoural application of VAE. If systemically applied, the cytotoxicity of the MLs is of less relevance, as it is inhibited by serum glycoproteins [152] and by anti-ML antibodies [153] which are produced after a few weeks of VAE application. Therapeutic effects of the MLs were inconsistent and not very impressive in the reviewed experiments. However, in other tumour types, MLs have also shown substantial growth-inhibiting effects (e.g. [154-157]). Interestingly, in two experiments, the application of VAE-activated macrophages in mice not directly treated with VAE also showed tumour-growth inhibiting effects, while the application of non-activated macrophages had no effects [121]. Similarly in melanoma, the application of VAE-activated splenocytes inhibited metastasis [158,159].

In general, the predictive reliability of the preclinical studies for clinical application is fairly limited in most instances. Clinical cancer disease is insufficiently mimicked by animal models, with major differences regarding age, general condition, co-morbidity, invasiveness, metastases, antigenicity, immune system etc. The results of pre-
clinical screening, especially for treatment of solid tumours, have therefore been largely disappointing. The models currently regarded as best for cytotoxic substances use patient-derived tumours that grow subcutaneously or orthotopically in nude mice, as in several cases reviewed here. Immuno-active substances may however still be insufficiently assessed in immune-deficient animals, as the main components of the immune system are missing (nude mice, for instance, cannot generate mature T-lymphocytes). Nevertheless, these preclinical experiments can provide important additional information for detecting the possible anti-cancer effects of medicinal plants, their active compounds, their mode of action and potential risks [20,160-162].

Safety aspects
Mistletoe therapy was well tolerated in the reviewed studies. Mild flu-like symptoms and local reactions at the injections sites are frequent, dose-dependent and self-limited. Allergic reactions can occur, and a few case reports of anaphylacthic reactions exist [163-166]. A phase I study, conducted at the NCCAM/NCI, investigated safety, toxicity and drug interactions between VAE and gemcitabine [73] and reported good tolerability, with neither dose-limiting toxicity of the VAE nor any effects on the plasma concentration of gemcitabine [44]. Combination of VAE with chemotherapy or radiotherapy did not negatively influence remission rate in clinical and in animal studies [56,63,118]. A higher prevalence of depression in VAE-treated patients in one study was observed in raw data of a self-selected population, without adjustment of baseline imbalances. This difference can be ascribed to variations in the patient population; for instance, they differed markedly in the prevalence of hormone treatment. No toxicity was observed in animal experiments.

Conclusion
Preclinical and clinical studies investigating the influence of VAE and its isolated compounds on breast or gynaecological cancer suggest a benefit, with the strongest evidence in relation to QoL and tolerability of conventional anti-cancer treatments. Regarding survival, evidence is less conclusive; most of the clinical studies had a very small sample size (RCTs) and were embedded in the same large cohort study; therefore an independent trial would be needed. Tumour-growth inhibition has been insufficiently assessed in prospective clinical trials. Tumour regression seems not to have been connected with regular low-dose subcutaneous VAE treatment, but with high dose and local application. The latter has not yet been thoroughly assessed and is not generally recommended.

Abbreviations
AMED: Allied and Complementary Medicine; CI: confidence interval; CIN: cervical intraepithelial neoplasia; DNA: deoxyribonucleic acid; ECa: Ehrlich carcinoma; EORTC QLQ-C30: European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Cancer; EORTC QLQ-BR23: European Organization for Research and Treatment of Cancer Quality of Life Breast Cancer Questionnaire; FACT-G: Functional Assessment of Cancer Therapy-General; FLIC: Functional Living Index – Cancer; GCP: Good Clinical Practice; GEP: Good Epidemiological Practice; GLQ-8: Global Life Quality; GM-CSF: granulocyte macrophage colony-stimulating factor; HeLa cells: immortal cell line from Henrietta Lacks; HR: hazard ratio; ICH: International Conference on Harmonisation; IFN-γ: interferon-gamma; IL: interleukin; kDa: kilodalton; KPS: Karnofsky performance status scale; MDR+: multidrug resistant; ML: mistletoe lectin; NCCAM: National Center for Complementary and Alternative Medicine; NCI: National Cancer Institute; NHS: National Health Service; NK: neutral killer (cell); NLM: National Library of Medicine; non-RCT: non-randomized controlled trial; QoL: quality of life; RCT: randomized controlled trial; rML: recombinant mistletoe lectin; SCE: sister chromatid exchange; SCID mice: Severe Combined Immunodeficiency mice; T-cells: lymphocytes matured in thymus; TCM: Traditional Chinese Medicine Index; TNF-α: tumor necrosis factor-alpha; TM: tumor, node, metastasis; VAE: Viscum album extracts; VisalbCBA: Viscum album chitin-binding agglutinin.

Competing interests
IFAEMM has received restricted research grants from Weleda, Abnoba and Helixor for other projects not connected to this review.

Authors’ contributions
The study protocol was written by GK and HK. Studies were read by GK, HK, AG. Study quality was assessed by GK and HK. Data were extracted by GK and checked by AG and HK. MS contributed substantially to data acquisition, analysis and interpretation of preclinical studies. GK wrote the paper which was critically revised and finally approved by HK, MS and AG.

Acknowledgements
This review was funded by the Gesellschaft für Biologische Krebsabwehr and the Software AG Stiftung. We thank Dr. Renatus Ziegler for providing additional data on the studies by Grossarth-Maticek & Ziegler.

References
1. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P: Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007, 18:581-592.
2. Stat Bit, Number of Cancer Survivors by Site, 2003. J Natl Cancer Inst 2006, 98(21):1514.
3. Fasching PA, Thiel F, Nicolaisen-Murmann K, Rauh C, Engel J, Lux MP, Beckmann MW, Bani MR: Association of complementary methods with quality of life and life satisfaction in patients with gynecologic and breast malignancies. Support Care Cancer 2007, 15(5):1277-1284.
4. Helyer LK, Chin S, Chui M, Fitzgerald B, Verma S, Rakovich E, Dranitsaris G, Clemons M: The use of complementary and alter-
native medicines among patients with locally advanced breast cancer – a descriptive study. BMC Cancer 2006, 6:39.
5. DiGianni LM, Garber JE, Whiner EP: Complementary and alternative medicine use among women with breast cancer. J Clin Oncol 2002, 20:3438-38.
6. Boon HS, Olatunde F, Zick SM: Trends in complementary/alternative medicine use by breast cancer survivors: comparing survey data from 1998 and 2005. BMC Cancer 2007, 7:4.
7. Molassiotis A, Scott JA, Kearney N, Pud D, Magri M, Selvekerova S, Bruns I, Fernandez-Ortega P, Panteli V, Margulis A, Gudmundsdottir G, Milovic L, Ozden G, Platin N, Patiraki E: Complementary and alternative medicine use in breast cancer patients in Europe: Supportiv Care Cancer 2006, 14:260-267.
8. Molassiotis A, Browall M, Milovic L, Panteli V, Patiraki E, Fernandez-Ortega P: Complementary and alternative medicine use in patients with gynecological cancers in Europe. International Journal of Gynaecological Cancer 2006, 16:219-224.
9. Cragg GM, Newman DJ: Plants as a source of anti-cancer agents. Ethnopharmacology. Encyclopedia of Life Support Systems (EOLSS), developed under the Auspices of the UNESCO 2006 [http://www.eolss.net]. Oxford, UK, Eols Publishers
10. Molassiotis A, Fernandez-Ortega P, Pud D, Ozden G, Scott JA, Panteli V, Margulis A, Browall M, Magri M, Selvekerova S, Bruns I, Fernandez-Ortega P, Panteli V, Margulis A, Gudmundsdottir G, Milovic L, Ozden G, Platin N, Kearney N, Patiraki E: Use of complementary and alternative medicine in cancer patients: a European survey. Ann Oncol 2005, 16:653-663.
11. Endo Y, Tsurugi K, Franz H: The site of action of the A-chain of mistletoe lectin I on eukaryotic ribosomes. FEBS Letters 1988, 231:378-380.
12. Stipre F, Sandvig K, Olsnes S, Phil A: Action of viscumia, a toxic lectin from mistletoe, on cells in culture. The Journal of Biological Chemistry 1983, 258:13271-13277.
13. Stipre F, Barbieri L, Battelli MG, Soria M, Lippi DA: Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (N Y) 1992, 10(4):405-412.
14. Peumans WJ, Vervoort T, Pfüller U, Van Damme EJM: Isolation and partial characterization of a small chitin-binding lectin from mistletoe (Viscum album). FEBS Letters 1996, 396:261-265.
15. Klest CT, Anderer FA: Activation of natural killer cell cytotoxicity of human blood monocytes by a low molecular weight component from mistletoe album extract. Arzneimittelforschung 1989, 39(12):1580-1585.
16. Mueller EA, Anderer FA: A Viscum album oligosaccharide activating human natural cytotoxicity is an interferon gamma inducer. Cancer Immuno Immunother 1990, 32:221-227.
17. Ohn H, Kusumoto K, Ueki S, Yatada S, Endo Y: Secretion and antineoplastic activity of flavonoids isolated from VISCUM ALBUM ssp. ALBUM. Fresenius Z Naturforsch C 2006, 61(1-2):26-30.
18. Winkler K, Lenewieit G, Schubert R: Characterization of membrane vesicles in plant extracts. Colloids and Surfaces B, Biointerfaces 2005, 45:57-65.
19. Jager S, Winkler K, Pfüller U, Scheffer A: Solubility studies of olea nol acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L. Planta Med 2007, 73:157-162.
20. Kienle GS, Kiene H: Complementary and alternative medicine use among women with breast cancer. Ann Oncol 2004, 15:1816-1824.
21. Schoffski P, Breidenbach I, Krauter J, Bolte O, Stadler M, Ganser A, Wilhelm-Ongubi K, Lenzhen H: Weekly 24 h infusion of viscumia (Viscum) in patients with solid tumours: a study of the German Organization for Research and Treatment of Cancer New Drug Development Group. Phase I trial on intravenous viscumia (Viscum) in patients with solid tumours. Eur J Cancer 2005, 41:1431-1438.
22. Kienle GS, Berrino F, Büssing A, Portaletu E, Rosenzweig S, Kiehn H: Mistletoe in cancer – a systematic review on controlled clinical trials. Eur J Med Res 2003, 8(10):119.
23. Stauder H, Kreuser E-D: Mistletoe extracts standardized in terms of mistletoe lectins (ML I) in oncology: current state of controlled trials in humans. Onkologie 2002, 25:374-380.
24. Kienle GS, Kiehn H: Complementary Cancer Therapy: A Systematic Review of Prospective Clinical Trials on Anthroposophic Mistletoe Extracts. Eur J Med Res 2007, 12:103-119.
25. Ernst E, Schmidt K, Steurer-Vogt MK: Mistletoe for cancer? A systematic review of randomized clinical trials. Int J Cancer 2003, 107:162-267.
26. Horneber MA, Bueschel G, Huber R, Linde K, Rostock M: Mistletoe therapy in oncology. Cochrane Database Syst Rev 2008, CD0003297.
27. Lange-Lindberg AM, Velasco Garrido M, Busse R: Mistletoetherapie als begleitende Behandlung zur Reduktion der Toxizität der Chemotherapie maligner Erkrankungen. GMS Health Technol Assess 2006; 2:Doc18 (20060619) 2006.
28. Khan KS, ter Riet G, Glanville J, Sowden AJ, Kleijnen J: Undertaking Systematic Reviews of Research on Effectiveness. CRD'S Guidance for those Commissioned to Undertake Systematic Reviews. CRD, University of York: NHS Centre for Reviews and Dissemination; 2003.
29. Kleijnen J, Knipschild P: Mistletoe treatment for cancer – review of controlled trials in humans. Phytomedicine 1994, 1:255-260.
30. Jac H, Basta A: Iscador QxS and human recombinant interferon alpha (Intron A) in cervical intraepithelial neoplasia (CIN). Przegl Lekarski 1999, 56:58-68.
31. Jach R, Basta A, Szczudrawa A: Role of immunomodulatory treatment with Iscador QxS and Intron A of women with CIN with concurrent HPV infection. Ginekol Pol 2003, 74:723-735.
32. Mansky PJ, Wallerstedt DB, Monahan BP, Lee C, Sannes T, Stagl J, Blackman MA, Swain SL, Grem J: Phase I study of mistletoe extract/gemcitabine combination treatment in patients with advanced solid tumors. Onkologie 2008, 31:200.
45. Schink M, Tröger W, Goyert A, Scheuerlecker H, Seibtmann K, Glaser F: Zusammenhang der NK-Zellaktivität gegen autologe Tumor- und K562-Zellen mit dem klinischen Verlauf unter Misteltherapie. Forsch Komplementärmed 2006, 13:147-155.
46. Bar-Sela G, Goldberg H, Beck D, Amit A, Kuten A: Reducing malignant ascites accumulation by repeated intraperitoneal administrations of a Viscum album extract. Anticancer Res 2006, 26:709-714.
47. Tröger W, Matiâševič M, Ždrale Z, Tisma N, Jezdúc J: Additional therapy with mistletoe extracts in breast cancer patients receiving chemotherapy: a prospective randomized open label pilot study. In Die Mistel in der Tumortherapie. 2. – Aktueller Stand der Forschung und klinische Anwendung Edited by: Scherer R, Albañ S, Becker H, Holzgrabe U, Kemper FH, Kreis W, Matthies H, Schilcher H. Essen, KVC-Verlag; 2009:509-521.
48. Büssing A, Bruckner U, Enser-Weis U, Schnellen M, Schumann A, Schiefer M, Hartmann W, Hackmann J: Modulation of chemotherapy-induced immunosuppression by intravenous application of Viscum album L. extract (Iscadore): a randomised phase II study. European Journal for Integrative Medicine 2008, 1:544-554.
49. Grossarth-Maticek R, Ziegler R: Randomized and non-randomised prospective controlled cohoerent study in matched pair design for the long-term therapy of corpus uteri cancer patients with a mistletoe preparation (Iscador). Eur J Med Res 2008, 13:107-120.
50. Grossarth-Maticek R, Ziegler R: Prospective controlled cohort studies on long-term therapy of ovarian cancer patients with mistletoe (Viscum album L.) extracts Iscador. Arzneimittelforschung 2007, 57(10):665-678.
51. Grossarth-Maticek R, Ziegler R: Prospective controlled cohort studies on long-term therapy of cervical cancer patients with a mistletoe preparation (Iscador®). Forsch Komplementärmedizin 2007, 14:140-147.
52. Grossarth-Maticek R, Ziegler R: Prospective controlled cohort studies on long-term therapy of breast cancer patients with a mistletoe preparation (Iscador) – Supplementary materials. 2006.
53. Grossarth-Maticek R, Ziegler R: Prospective controlled cohort studies on long-term therapy of breast cancer patients with a mistletoe preparation (Iscador). Forsch Komplementärmedizin 2006, 13:285-292.
54. Semiglasov VF, Stepula VV, Dudov A, Schnittek J, Mengs U: Quality of life is improved in breast cancer patients by Standardised Mistletoe Extract PS76A2 during chemotherapy and follow-up: a randomised, placebo-controlled, double-blind, multi-centre clinical trial. Anticancer Res 2006, 26:1519-1530.
55. Auerbach L, Dostal G, Živáková-Fleck I, Václavík-Fleck I, Kubista E, Rosenberger A, Semiglasov VF, Stepula VV, Dudov A, Lehmacher W, Mengs U, Selbmann K, Glaser H. Essen, KVC-Verlag; 2009:509-521.
56. Heiny B-M: Additive Therapie mit standartisiertem Mistelextrakt reduziert die Leukopenie und verbessert die Lebensqualität von Patientinnen mit fortgeschrittenem Mammakarzinom unter palliativer Chemotherapie (VESC-Schema). Krebsmedizin 1991, 12:1-14.
57. Gutsch J, Berger H, Scholz G, Denck H: Prospektive Studie beim radikal operierten Mammakarzinom mit Polychemotherapie, Helixor und unbehandelter Kontrolle. Dtsch Zschr Onkol 1988:94-100.
58. Lange O, Scholz G, Gutsch J: Modulation der subjektiven und objektiven ToXizität einer aggressiven Chemotherapie mit Helixor. Unpublished Report. 1985.
59. Loewe-Mesch A, Kuehn JH, Bonho K, Abel U, Bauer C, Gerhard I, Schnieke A, Sohn C, Strowitzki T, Hagens C: Adjunctive simulation of granulocyte function by intravenous application of a fermented extract from Viscum album L. in breast cancer patients. Anticancer Res 2005, 25:4753-4758.
60. Salzer G: 30 Jahre Erfahrung mit der Misteltherapie an operativ operierten Krebskranken. In Misteltherapie. Eine Antwort auf die Herausforderung Krebs Edited by: Leroi R. Stuttgart, Verlag Freies Geistesleben; 1987:173-215.
61. Fellmer Ch, Fellmer KE: Nachbehandlung bestrahlter Genitalkarzinome mit dem Viscum-album-Präparat ‘Iscador’. Krebszusatzt 1966, 21:174-185.
62. Majewski A, Bentele W: Über Zusatztbehandlung beim weiblichen Genitalkarzinom. Zentralbl Gynäkol 1963, 85:696-700.
63. Beuth J, Schneider B, Schierholz JM: Impact of complementary treatment of breast cancer patients with standardized mistletoe extract during aftercare: a controlled multicenter comparative epidemiological cohort study. Anticancer Res 2008, 28:523-528.
64. Bock PR, Friedel WE, Hanisch J, Karasman M, Schneider B: Wirkzusammenhänge bei der komplementären Langzeitbehandlung mit einem standardisierten Extrakt aus Europäischem Mistel (Viscum album L.) zusätzlich zur konventionellen adjuvanten onkologischen Therapie beiprimärem, nicht metastasiertem Mammakarzinom. Ergebnisse einer multizentrischen, randomisierten, epidemiologischen Kohortenstudie in Deutschland und der Schweiz. Arzneim – Forsch/Drug Res 2004, 54:456-466.
65. Schumacher K, Schneider B, Reich G, Stiefel T, Stoll G, Bock PR, Hanisch J, Beuth J: Influence of postoperative complementary treatment with lectin-standardized mistletoe extract on breast cancer patients. A controlled epidemiological multicentric retrospective cohort study. Anticancer Res 2003, 23:5081-5088.
66. Schumacher K, Schneider B, Reich G, Stiefel T, Stoll G, Bock PR, Hanisch J, Beuth J: Postoperative komplementäre Therapie des primären Mammakarzinoms mit lektinnormiertem Mistelextrakt – eine epidemiologische, multizentrische retrospektive Kohortenstudie. Dtsch Zschr Onkol 2002, 34:106-114.
67. Mansky PJ, Grem J, Wallerstedt DB, Monahan BP, Blackman MR. Mistel- and Gemcitabine in patients with advanced cancer: A model for the phase I study of botanicals and botanical-drug interactions in cancer therapy. Integr Cancer Ther 2003, 2:345-352.
68. Mahfouz MM, Ghaibel HA, Hamza MR, Fares L, Moussa L, Moustafa A, El-Za Wawy A, Kourashy L, Mobarak L, Saeid S, Fouad F, Tony O, Tohamy A: Multicenter open labeled clinical study in advanced breast cancer patients. A preliminary report. Journal of the Egyptian Nat Cancer Inst 1999, 11:221-227.
69. Mahfouz MM, Ghaibel HA, Zawawy A, Schiefer A: Significant tumor reduction, improvement of pain and quality of life and normalization of sleeping patterns of cancer patients treated with a high dose of mistelote. Ann Oncol 1998, 9:129.
89. Maier G, Fiebig HH: Neoadjuvant treatment in HPV-related CIN with Mistletoe preparation (Iscador). Dissertation Universität Pavia 1991/1992 1995.

90. Werner H, Mahfouz MM, Fares L, Fouad F, Ghaleb HA, Hamza MR, Kourazy L, Mobarak AL, Moustafa A, Sedd S, Zaky O, Zawawi A, Fischer S, Scheer R, Scheffler A: Zur Therapie des malignen Pueraugssuges mit einem Mistelpräparat. Der Merkurkast 1999, 52:298-301.

91. Stumpf C, Schietzel M: Intrapleural Instillation of an Extract from Viscum album L. [L.] to the Behandlung maligner Pueraugsgüsse. Tumoradiagnost u Therapie 1994:57-62.

92. Friedrichson UKH: Intraperitoneal instillation of Viscum album (L.) extract (mistletoe) for therapy and malignant ascites. Unpublished. Department of Radiology/Oncology, Community Hospital of Herdecke, University Witten/Herdecke, 1995.

93. Knöpf-Sidler F, Viviani A, Rist L, Hensel A: Human cancer cells exhibit in vitro individual receptiveness towards different mistletoe extracts. Pharmazie 2005, 60:448-454.

94. Lutzek T, Rzehak A, Eaggenschwiler J, Mol C, Rieger U, Meyer U: Das Mistelpräparat Isciscin® - Herstellung, Analytik, Wirkung in vitro. Der Merkurkast 2004, 57:467-473.

95. Bussing A, Schiezel D, Schietzel M, Schink M, Stein GM: Keine Stimulazione in vitro kultivierter Tumorzellen durch Mistelkultur. Dtsch Zschr Onkol 2004, 36:6-70.

96. Burger AM, Mongs U, Scheer J, Fiebig HH: Activity of an aqueous mistletoe extract in human tumor cell lines and xenografts in vitro. Anticancer Res 2000, 20:697-706.

97. Kelter G, Schiezel M, Fischer IU, Fiebig HH: Cytotoxic activity and absence of tumor growth stimulation of standardized mistletoe extracts in human tumor models in vitro. Anticancer Res 2007, 27:223-233.

98. Kopp J, Körner I-J, Pflüger U, Gockeritz W, Elffler R, Fiebig K, Franz H: Toxicity of mistletoe lectins I, II and III on normal and malignant cells. In: Lectins: Biochemistry, Clinical Biochemistry Volume 8. Edited by: Van Driessche E, Franz H, Beeckmans S, Pflüger U, Kittlhorn A, Bog-Hansen TC. Hellerup (Denmark): Textop, 1993:41-47.

99. Wagner H, Jordan E, Zänker KS: Cell-mediated and direct cytotoxicity of purified ingredients of Viscum album. J Cancer Res Clin Oncol 1987, 25:3801-3806.

100. Albersheid S, Apel J, Sander M, Fiedler B, Langer M, Zuurarte ML, Czubayko F, Aigner A: Cytotoxicity of the novel anti-cancer drug rViscum depends on HER levels in SKOV-3 cells. Biochem Biophys Res Commun 2004, 321:403-412.

101. Kienle GZ, Kiehe H: Stehendwert, Dosierung und Gefährlichkeit (Tumorenchanzktionstum) des ML-I immunologischer Schlußfolgerungen und experimentelle Untersuchungen. In Die Mistel in der Onkologie. Fakten und konzeptionelle Grundlagen Stuttgart, New York, Schattauer Verlag, 2003:301-332.

102. Franz H: The in vivo toxicity of toxic lectins is a complex phenomenon. In: Lectins: Biochemistry, Clinical Biochemistry Volume 8. Edited by: Van Driessche E, Franz H, Beeckmans S, Pflüger U, Kittlhorn A, Bog-Hansen TC. Hellerup (Denmark): Textop, 1995:3-9.

103. Klamerth O, Vester F, Kellner G: Inhibitory effects of a protein complex from Viscum album on fibroblasts and HeLa cells. Hoppe-Seylers Z Physiol Chem. 1968, 349(6):863-864.

104. Koneapa J, Wojnarowski JM, Lewandowska-Gumiennik M: Isolation of Viscotoxins - Cytotoxic basic polypeptides from Viscum album L. Hoppe-Seylers Z Physiol Chem 1980, 361(10):1525-1533.

105. Ulrich W, Meckelke F, Reaktion der In-vitro-Kulturen von menschlichen Fibroblasten, HeLa-Zellen und von murinen L-Zellen bei Applikationen eines Präparats aus Viscum album L. Arzneim-Forsch/Drug Res 1980, 30(II):1722-1725.

106. Ulrich W, Meckelke F: Antikanzierende und immuno- modulatorische Effekte des Viscum album L. vor melanoma B16 F10. Cancer Biother Radiopharm 1998, 13:121-131.

107. Fritz B, Ulrich W: Flow cytometric Analysis of human cell lines after exposure to preparations from Viscum album. Pflug Med 1989, 55:100-101.

108. Fritz B: Einfluss von Viscum album L. Präparaten und allopathischen Zytostatika auf Proliferation, Zellzyker und DNA-Gehalt menschlicher Zellen in vitro. In PhD Thesis Universität Hohenheim, 1989.

109. Taylor A, McKenna GF, Burlage HM: Anticancer activity of plant extracts. Texas reports on Biology and Medicine 1956, 1:538-556.

110. Franz H: Mistletoe lectins and their A and B chains. In: Complexes from Viscum album L. preparation Iscador. 1993:114-126.

111. Taylor A, McKenna GF, Burlage HM: Anticancer activity of plant extracts. Texas reports on Biology and Medicine 1956, 1:538-556.

112. Selawry OS, Schwartz MR, Haar H: Tumor inhibitor activity of products of Loranthaceae (mistletoe). Proceedings of the American Association for Cancer Research 1959:62-63.
160. Teicher BA, ed: Tumor models in cancer research Totowa, New Jersey: Humana Press; 2001.

161. Srivastava PK: Immunotherapy of human cancer: lessons from mice. Nature Immunology 2000, 1:363-366.

162. Céspedes MV, Casanova I, Parreño M, Mangues R: Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol 2006, 8:318-329.

163. Stein GM, Berg PA: Adverse effects during therapy with mistletoe extracts. In Mistletoe: The Genus Viscum Edited by: Bussing A. Amsterdam, Hardwood Academic Publishers: 2000:195-208.

164. Bauer C, Oppel T, Rueff F, Przybilla B: Anaphylaxis to viscotoxins of mistletoe (Viscum album) extracts. Ann Allergy Asthma Immunol 2003, 94:86-89.

165. Hutt N, Kopferschmitt-Kubler M, Cabalion J, Purohit A, Alt M, Pauli G: Anaphylactic reactions after therapeutic injection of mistletoe (Viscum album L.). Allergol Immunopathol (Madr) 2001, 29:201-203.

166. Grossarth-Maticek R, Ziegler R: Randomised and non-randomised prospective controlled cohort studies in matched-pair design for the long-term therapy of breast cancer patients with a mistletoe preparation (Iscador): a re-analysis. Eur J Med Res 2006, 11:485-495.