FUNDAMENTAL SOLUTIONS TO SOME ELLIPTIC EQUATIONS WITH DISCONTINUOUS SENIOR COEFFICIENTS AND AN INEQUALITY FOR THESE SOLUTIONS.

A.G.Ramm

Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA
email: ramm@math.ksu.edu

Abstract. Let \(Lu := \nabla \cdot (a(x)\nabla u) = -\delta(x-y) \) in \(\mathbb{R}^3 \), \(0 < c_1 \leq a(x) \leq c_2 \), \(a(x) \) is a piecewise-smooth function with the discontinuity surface \(S \) which is smooth. It is proved that in a neighborhood of \(S \) the behavior of the function \(u \) is given by the formula:

\[
u(x,y) = \begin{cases} (4\pi a_+)^{-1}[r_{xy}^{-1}bR^{-1}], & y_3 > 0, \\ (4\pi a_-)^{-1}[r_{xy}^{-1}-bR^{-1}], & y_3 < 0. \end{cases} \tag{\star}
\]

Here the local coordinate system is chosen in which the origin lies on \(S \), the plane \(x_3 = 0 \) is tangent to \(S \), \(a_+(a_-) \) is the limiting value of \(a(x) \) on \(S \) from the half-space \(x_3 > 0, \ (x_3 < 0) \), \(r_{xy} := |x-y|, \ R := \sqrt{\rho^2 + (|x_3| + |y_3|)^2}, \ \rho := \sqrt{(x_1-y_1)^2+(x_2-y_2)^2}, \ b := (a_+-a_-)/(a_++a_-). \) If \(S \) is the plane \(x_3 = 0 \) and \(a(x) = a_+ \) in \(x_3 > 0, \ a(x) = a_- \) in \(x_3 < 0 \), then (\star) is the global formula for \(u \) in \(\mathbb{R}^3 \). Inequality for the fundamental solution for small and large \(|x-y| \) follows from formula (\star).

1. INTRODUCTION.

There are many papers on the behavior, as \(x \to y \), of the fundamental solutions to the elliptic equations of the form

\[
Lu := \sum_{i,j=1}^{n} \partial_{ij} [a_{ij}(x)u_{ij}(x,y)] = -\delta(x-y) \text{ in } \mathbb{R}^n, \ u_{ij} := \frac{\partial u}{\partial x_j} = \partial_j u \tag{1.1}
\]

for smooth coefficients \(a_{ij} \). Methods of pseudo-differential operators theory give expansion in smoothness of the solution to (1). In [LSW] existence of the unique solution to (1) with the properties

\[
0 < c_1 r^{2-n} \leq u(x,y) \leq c_2 r^{2-n}, \ u \in H^1_{\text{loc}}(\mathbb{R}^n), \ r := |x-y|, \tag{1.2}
\]

is obtained under the assumption that \(a_{ij} \) are bounded real-valued measurable functions such that

\[
a_1 \sum_{i=1}^{n} t_i^2 \leq \sum_{i,j=1}^{n} a_{ij}(x)t_i t_j \leq a_2 \sum_{i=1}^{n} t_i^2, \ a_1, a_2 = \text{const} > 0. \tag{1.3}
\]

Our purpose is to give an analytical formula for the fundamental solution of the basic model operator (1.1), namely the operator with

\[
a_{ij}(x) = \delta_{ij} a(x), \quad d(x) = \begin{cases} a_+, & x_3 > 0, \\ a_-, & x_3 < 0. \end{cases} \tag{1.4}
\]
Here a_+ and a_- are positive constants,

$$
\delta_{ij} = \begin{cases}
1, & i = j \\
0, & i \neq j,
\end{cases}
$$

and $u(x, y)$ is the unique solution of the problem:

$$
Lu := \sum_{i=1}^{n} \partial_i (a(x)u_i) = -\delta(x-y) \text{ in } \mathbb{R}^n,
$$

$$
[u]_S = 0, \quad [a(x)u_N]_S = 0,
$$

the symbol $[u]_S$ denotes the jump of u across S, that is,

$$
[u] = u_+ - u_-, \quad u_{\pm} := \lim_{\varepsilon \to 0} u(s \pm \varepsilon N),
$$

s is a point on S, N is the unit normal to S directed along x_3, u_N is the normal derivative on S, S is the plane $x_3 = 0$, $[au_N] := a_+u_{N}^+ - a_-u_{N}^-$.

Problem (1.5)-(1.6) is important in many applications and is called a transmission problem. The solution to (1.5)-(1.6) is sought in the class $H^1_{\text{loc}}(\mathbb{R}^n \setminus y) \cap W^{1,1}_{\text{loc}}(\mathbb{R}^n)$, where $H^1 := W^{1,2}$ and $W^{\ell,p}_{\text{loc}}$ is the Sobolev space of functions whose distributional derivatives up to the order ℓ belong to L^p_{loc}. If

$$
a_{ij}(x) = \begin{cases}
a_{ij}^+, & x_3 > 0, \\
a_{ij}^-, & x_3 < 0,
\end{cases}
$$

and the constant matrices a_{ij}^\pm are positive definite, then there exists an orthogonal coordinate transformation which reduces a_{ij}^+ to δ_{ij} and a_{ij}^- to $\lambda_j \delta_{ij}$, $\lambda_j > 0$. We do not give the formula for $u(x, y)$ in this more general case.

Finally note that for discontinuous coefficients equation (1.5) is understood in the weak sense, namely as the identity:

$$
\int_{\mathbb{R}^n} a(x)u_i(x,y)\phi_i(x) \, dx = \phi(y),
$$

The identity (6) for $u \in H^1_{\text{loc}}(\mathbb{R}^n \setminus y) \cap W^{1,1}_{\text{loc}}(\mathbb{R}^n)$ implies conditions (1.6).

Let $n = 3$. The formula for the solution to problem (1.4)-(1.6), or the equivalent problem (1.4), (1.7) is given in Theorem 1.1.

Theorem 1.1. The unique solution to problem (1.4)-(1.6) is:

$$
u(x, y) = \begin{cases}
\frac{1}{4\pi a_+} \left[\frac{b}{r} + \frac{b}{R} \right], & y_3 > 0, \\
\frac{1}{4\pi a_-} \left[\frac{b}{r} - \frac{b}{R} \right], & y_3 < 0
\end{cases}
$$

where $R := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (|x_3| + |y_3|)^2}$.

2
Corollary 1.1. The following inequality holds for \(r \to 0 \):

\[
|u(x, y)| < c|x - y|^{-1},
\]

where the constant \(c > 0 \) does not depend on \(x \) and \(y \).

Thus, the fundamental solution of the equation (1.1) with discontinuous senior coefficients has a different representation than the fundamental equation for the similar operator with continuous coefficients, but satisfies similar inequality for small \(|x - y|\).

A formula, similar to (1.8) can be derived by the same method for \(n > 3 \) as well. Formula (1.8) allows one to get asymptotics of \(u(x, y) \) and of \(\nabla_x u(x, y) \) as \(|x - y| \to 0\). Such asymptotics are useful in the study of inverse problems for discontinuous media [3].

In section 2 we prove Theorem 1.1. In section 3 various generalizations and applications are discussed.

2. PROOF OF THEOREM 1.

The proof is given for \(n = 3 \), but it holds with obvious small changes for \(n > 3 \).

The idea of the proof is to take the Fourier transform of equation (1.5) with respect to the variables \(\hat{x} := (x_1, x_2) \), to solve the resulting problem for an ordinary differential equation analytically, and then to Fourier-invert the solution of this problem.

Let us go through the steps.

Step 1. Let \(y_1 = y_2 = 0 \) without loss of generality (since \(u \) is translation-invariant in the plane \((x_1, x_2)\)). Denote

\[
w(\xi, x_3, y_3) := \int_{\mathbb{R}^2} e^{i\xi \cdot \hat{x}} u(\hat{x}, x_3, y) d\hat{x}; \quad u = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} w e^{-i\xi \cdot x} d\xi.
\]

\(\xi := (\xi_1, \xi_2) \), \(\xi^2 = |\xi|^2 = \xi^2_1 + \xi^2_2 \). Denote \(w' := \frac{\partial w}{\partial x_3} \).

Let us Fourier-transform equation (1.5), with \(a(x) \) given in (1.4), and get

\[
w''(\xi, x_3, y_3) - \xi^2 w(\xi, x_3, y_3) = \begin{cases} -\frac{1}{a_+} \delta(x_3 - y_3), & x_3 > 0, \\ -\frac{1}{a_-} \delta(x_3 - y_3), & x_3 < 0, \end{cases}
\]

\[
w(\xi, +0, y_3) - w(\xi, -0, y_3) = 0, \quad a_+ w'(\xi, +0, y_3) - a_- w'(\xi, -0, y_3) = 0.
\]

In what follows we omit \(\xi \) in the variables of \(w \), and write \(w(x_3, y_3) \) for brevity. Thus, \(w \) solves problem (2.2)-(2.3) and satisfies the condition

\[
w(\pm \infty, y_3) = 0.
\]
Assume that \(y_3 \neq 0 \). Then problem (2.2)-(2.4) has a solution and this solution is unique. A lengthy but straightforward calculation yields the formula for \(w \):

\[
 w = \begin{cases}
 \frac{\exp(-|\xi|x_3-y_3)}{2|\xi|a_+} + b \frac{\exp(-|\xi|(x_3+|y_3|))}{2|\xi|a_+}, & y_3 > 0 \\
 \frac{\exp(-|\xi||x_3-y_3|)}{2|\xi|a_-} - \frac{\exp(-|\xi|(x_3+|y_3|))}{2|\xi|a_-}, & y_3 < 0
 \end{cases}
\]

where \(b := \frac{a_+ - a_-}{a_+ + a_-} \), \(a_-, a_+ > 0 \). (2.5)

Step 2. The function \(u(x, y) \) is obtained from \(w \) by the second formula (2.1). Let us denote \(|\xi| := v, \rho := |\hat{x}| = \sqrt{x_1^2 + x_2^2} \), and remember that \(y_1 = y_2 = 0 \). Since \(w \) depends on \(|\xi| \) and does not depend on the angular variable, \(|\xi| := v \), we have

\[
 u = \frac{1}{(2\pi)^2} \int_0^\infty d\nu \int_0^{2\pi} e^{-iv\rho \cos \phi} w d\phi = \frac{1}{2\pi} \int_0^\infty ds \nu w J_0(\nu\rho)
\]

where \(J_0(x) \) is the Bessel function and we have used the known formula:

\[
 \frac{1}{2\pi} \int_0^{2\pi} e^{iv\rho \cos \phi} d\phi = J_0(v\rho).
\]

We need another well-known formula:

\[
 \int_0^\infty e^{-\nu t} J_0(\nu\rho) d\nu = \frac{1}{\sqrt{\rho^2 + t^2}}, \quad t > 0
\]

From (2.5), (2.7) and (2.8) we get (1.8) with \(y_1 = y_2 = 0 \). Therefore, recalling the translation invariance of \(u \) in the horizontal directions, we get (1.8).

Theorem 1.1 is proved. □

Remark 2.1 Note that the limits of \(u(x, y) \) as \(y_3 \rightarrow \pm 0 \) exist and are equal:

\[
 u(x, \hat{y}, +0) = u(x, \hat{y}, -0) = \frac{1}{2\pi\tau(a_+ + a_-)}.
\]

A result similar to (2.9) is mentioned in [K, p.318], however the argument [K] is not clear: the differentiation is done in the classical sense but the functions involved have no classical derivatives: they have a jump.

3. GENERALIZATIONS, APPLICATIONS.

This section contains some remarks.
Remark 3.1 First, note that if \(a(x) \) is a piecewise-smooth function with a smooth discontinuity surface \(S \), \(s \in S \), \(a_\pm = \lim_{s \to 0} a(s \pm \varepsilon N) \), where \(N \) is the exterior normal to \(S \) at the point \(s \), then the main term of the asymptotics of the fundamental solution \(u(x,y) \) in a neighborhood \(U_s \) of the point \(s \in S \) is given by formula (1.8) in which \(x, y \in U_s \). This follows from the fact that the main term in smoothness of the solution to an elliptic equation in \(U_s \) is the same as to the equation with constant coefficients which are limits of \(a(x) \) as \(x \to s \).

In our case, this “frozen-coefficients” model problem is given by equations (1.4)-(1.6). This argument shows that the same conclusion holds if the coefficient \(a(x) \) in \(\mathbb{R}^3 \) and in \(\mathbb{R}^3 \) is not smooth but just Lipschitz-continuous.

Remark 3.2 In principle, our method for calculation of \(u(x,y) \) for the model problem (1.4)-(1.6) is applicable for the model problem (1.4) with anisotropic matrix.

Remark 3.3 We only mention that our result concerning asymptotics of \(u(x,y) \) as \(|x-y| \to 0 \) for piecewise-smooth coefficients is applicable to inverse problems of geophysics and inverse scattering problems for acoustic and electromagnetic scattering by layered bodies.

For example, if the governing equation is [R, p.14]:

\[
\nabla \cdot [a(x)\nabla u] + k^2 q(x)u = \delta(x-y) \quad \text{in } \mathbb{R}^3,
\]

\(k = \text{const} > 0\), say \(k = 1\), \(q(x) = 1 + p(x)\), where \(p(x) \) is a compactly supported real-valued function, \(p(x) \in L^2_{\text{loc}}(\mathbb{R}^3)\), \(\text{supp}(p(x)) \subset \mathbb{R}^3 := \{ x : x_3 < 0 \} \), \(a(x) = 1 + A(x)\), where \(A(x) \) is compactly supported piecewise-smooth function with finitely many closed compact smooth surfaces \(S_j \subset \mathbb{R}^3 \) of discontinuity. Across these surfaces the transmission conditions (1.6) hold, and at infinity \(u \) satisfies the radiation condition. Then \(u(x,y) \) is uniquely determined.

An inverse problem is: given \(g(x) \) and \(u(x,y) \) for all \(x, y \in S := \{ x : x_3 = 0 \} \) and a fixed \(k = 1\), can one uniquely determine \(a(x)\), in particular, the discontinuity surfaces \(S_j \)?

To explain how Theorem 1.1 can be used in this inverse problem, note that if two systems of surfaces \(S_j^{(1)} \) and \(S_j^{(2)} \) and two functions \(a_1 \) and \(a_2 \) produce the same surface data on \(S \) for all \(x, y \in S \), then an orthogonality relation [R, pp. 65, 86] holds:

\[
\int v(x)\nabla u_1(x,y)\nabla u_2(x,z) \, dx = 0, \quad \forall y, z \in D_{12}', \quad (3.1)
\]

where \(v(x) = a_1 - a_2\), \(u_m(x,y)\), \(m = 1, 2\), are the fundamental solutions corresponding to the obstacle \(D_m \) (i.e., to \(a_m \) and \(S_j^{(m)}m\), \(D_{12}' := \mathbb{R}^3 \setminus D_{12}, D_{12} := D_1 \cup D_2\).

Let us prove, e.g., that \(\partial D_1 = \partial D_2\), using (3.1). If there is a part of \(\partial D_1 \) which lies outside \(D_2\), and \(s \) is a point at this part, then, assuming (for simplicity only) that \(v(x) \) is piecewise-constant and using for \(\nabla u_1 \) and \(\nabla u_2 \) formulas, which follow from (1.8) as \(y = z \to s\), we conclude that the left-hand side of (3.1) is an integral which contains a part, unbounded as \(y = z \to s \in \partial D_1\): \(c \int |x-y|^{-1} \, dx\), \(c = \text{const} \neq 0\). This contradicts to (3.1). Therefore there is no part of \(\partial D_1 \) which lies outside \(D_2\). Likewise, there is not part of \(\partial D_2 \) which lies outside \(\partial D_1\). Thus, \(\partial D_1 = \partial D_2\). Similarly one proves that \(S_j^{(1)} = S_j^{(2)} \) for all \(j\), provided (3.1) holds.

A detailed presentation of such an argument is given in the paper by C. Athanasiadis, A.G. Ramm and I. Stratis, Inverse acoustic scattering by layered obstacle (in preparation).
REFERENCES

[K] Kozlov, S., *Asymptotics of the fundamental solutions of differential equations of second order*, Matem. Sbornik 113 (1980), no. N2, 302-323, (Russian).

[LSW] Littman, W., Stampacchia, G., Weinberger, H., *Regular points for elliptic equations with discontinuous coefficients*, Ann. Scuola Norm. Super. Pisa 17 (1963), 43-77.

[R] Ramm, A.G., *Multidimensional Inverse Scattering Problems*, Longman/Wiley, New York, 1992, pp. 1-496, expanded Russian edition, MIR, Moscow, 1994, pp. 1-496.