Extracellular Vesicle-Mediated RNA Release in Histoplasma capsulatum

Lysangela R. Alves,a Roberta Peres da Silva,b David A. Sanchez,c Daniel Zamith-Miranda,c Samuel Goldenberg,a Rosana Puccia,b Joshua D. Nosanchukc

a Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
b Departamento de Microbiologia, Imunologia e Parasitologia da Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo, Brazil
c Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
d Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

ABSTRACT Eukaryotic cells, including fungi, release extracellular vesicles (EVs). These lipid bilayered compartments play essential roles in cellular communication and pathogenesis. EV composition is complex and includes proteins, glycans, pigments, and mRNA. The mRNAs with putative roles in pathogenesis have been described in EVs produced by fungi. Here we describe the RNA content in EVs produced by the G186AR and G217B strains of Histoplasma capsulatum, an important human-pathogenic fungal pathogen. A total of 124 mRNAs were identified in both strains. In this set of RNA classes, 93 transcripts were enriched in EVs from the G217B strain, whereas 31 were enriched in EVs produced by the G186AR strain. This result suggests that there are important strain-specific properties in the mRNA composition of fungal EVs. We also identified short fragments (25 to 40 nucleotides in length) that were strain specific, with a greater number identified in EVs produced by the G217B strain. Remarkably, the highly enriched processes were stress responses and translation. Half of these fragments aligned to the reverse strand of the transcript, suggesting the occurrence of microRNA (miRNA)-like molecules in fungal EVs. We also compared the transcriptome profiles of H. capsulatum with the RNA composition of EVs, and no correlation was observed. Taking the results together, our study provided information about the RNA molecules present in H. capsulatum EVs and about the differences in composition between the strains. In addition, we found no correlation between the most highly expressed transcripts in the cell and their presence in the EVs, reinforcing the idea that the RNAs were directed to the EVs by a regulated mechanism.

IMPORTANCE Extracellular vesicles (EVs) play important roles in cellular communication and pathogenesis. The RNA molecules in EVs have been implicated in a variety of processes. EV-associated RNA classes have recently been described in pathogenic fungi; however, only a few reports of studies describing the RNAs in fungal EVs are available. Improved knowledge of EV-associated RNA will contribute to the understanding of their role during infection. In this study, we described the RNA content in EVs produced by two isolates of Histoplasma capsulatum. Our results add this important pathogen to the current short list of fungal species with the ability to use EVs for the extracellular release of RNA.

KEYWORDS Histoplasma capsulatum, RNA, extracellular vesicles

Histoplasma capsulatum is a major human fungal pathogen on the global stage that causes disease in both immunocompetent and immunocompromised individuals, albeit the risk for severe disease increases with compromised immunity (e.g., in patients with HIV infection or cancer as well as in individuals receiving steroids or tumor necrosis

March/April 2019 Volume 4 Issue 2 e00176-19

mSphere®
Molecular Biology and Physiology
factor alpha (TNF-α) blockers). In the United States, it is the most common cause of fungal pneumonia (1). *H. capsulatum* is of particular concern in certain developing regions (2), especially in Latin American countries, including Brazil (3, 4), Guatemala (5), and French Guiana, where it is considered the “first cause of AIDS-related death” (6).

Despite its clear importance, enormous gaps exist in our understanding of the pathogenesis of histoplasmosis, the disease caused by *H. capsulatum*. An interesting facet of the biology of *H. capsulatum* is its ability to release extracellular vesicles (EVs) (7, 8).

EVs are bilayered lipid structures released by remarkably diverse cells across all kingdoms (9). We have demonstrated that EVs are present in both ascomycetes and basidiomycetes (7, 10–14). This observation implies that mechanisms for EV production and release are truly ancient, as they appear to predate the divergence of these branches 0.5–1.0 billion years ago. Fungal EVs can carry biologically active proteins, carbohydrates, lipids, pigments and nucleic acids (15, 16), many of which are constituents of the fungal cell wall and diverse others are associated with stress response and pathogenesis.

EV-mediated transport of fungal RNA was recently shown in both commensal and opportunistic fungi. EV RNA molecules, mostly smaller than 250 nucleotides (nt), were identified in *Cryptococcus neoformans, Paracoccidioides brasiliensis, Candida albicans, Saccharomyces cerevisiae*, and *Malassezia sympodialis* (17, 18). Since *H. capsulatum* packages diverse compounds within EVs, we postulated that it too would use these compartments to export RNA. In this study, the EV-associated RNA components were characterized in two different isolates of *H. capsulatum*. As described in other fungi, *H. capsulatum* EVs carry both mRNAs and noncoding RNAs (ncRNAs). In addition, proteomic data allowed the identification of 139 RNA-binding proteins (RBPs) in the EVs, suggesting that proteins involved in RNA metabolism might play an important role in cell communication through the EVs. Our results add this important pathogen to the list of fungal species with the ability to use EVs for the extracellular release of RNA.

RESULTS

Histoplasma capsulatum EVs contain RNA. We characterized the RNA molecules contained in EVs isolated from culture supernatant samples of *H. capsulatum* strains G186AR and G217B. These strains belong to distinct clades, and G217B has been shown to be more virulent than G186AR in experimental models (19, 20). The best-known difference between these two strains is that G217B lacks alpha-1,3-glucan on the yeast form cell wall (19, 20).

The reads obtained from the mRNA libraries (reads of >200 nt) were aligned with each strain-specific genome available at the NCBI (G186AR ABBS02 and G217B ABBT01). For data validation, we considered only sequences with expression values of transcripts per million (TPM) of ≥100 in all biological replicates and transcripts with reads covering at least 50% of the coding DNA sequence (CDS). The small RNA (sRNA) fraction was analyzed for the presence of different species of noncoding RNAs (ncRNAs) by aligning the sRNA fraction (reads of <200 nt) with the *H. capsulatum* G186AR strain. These RNA molecules were compared between the strains in order to gain insights into the role of the EV RNA in this fungus and also to determine if there were differences with respect to composition between the two strains with distinct phenotypes.

Strain-specific content of EV RNA in *H. capsulatum*. We identified a total of 124 mRNA sequences in EV samples from the two strains and carried out paired comparisons between the G186AR and G217B samples. We applied the statistical negative binomial test with filters corresponding to TPM values of ≥100, log2 values of ≥2, and false-discovery-rate (FDR) values of ≤0.05. We observed 93 transcripts enriched in EVs derived from the G217B strain, while 31 transcripts were enriched in the G186AR strain (see Table S1 in the supplemental material). In the G217B-associated transcripts, we observed enrichment in biological processes for vesicle-mediated transport (18%), oxidation-reduction mechanisms (12%), transmembrane transport (11%), and translation (8%) (Fig. 1). In the G186AR strain, the mRNA sequences were enriched only in general cellular and metabolic processes (59%). These results suggest that there are
important differences with respect to the mRNA composition of EVs derived from these two strains of *H. capsulatum*.

H. capsulatum EVs contain mRNA fragments and microRNA (miRNA)-like molecules. In addition to the identification of full-length transcripts in EVs, we also detected short reads of averages of 25 to 40 nt in length that aligned consistently in the CDS but at specific positions of the mRNAs (3’ end, 5’ end, or middle sequence); about 50% of these short fragments aligned to the reverse strand, including 172 (G217B) and 80 (G186AR) sequences of this type (Table 1). A total of 172 fragments were represented in the G217B sample compared to only 80 in the G186AR EVs (Table 1). About 47% of the reference mRNA translate proteins of unknown biological processes; this could be explained by the fact that around 33% of the genes annotated in *H. capsulatum* genome code hypothetical proteins and/or do not present a conserved domain, which impedes our current ability to determine specific biological activities. Those associated with DNA metabolism/biogenesis were the second most abundant for both EV samples (22 for G217B versus 16 for G186AR), followed by transport for G217B and by protein modification for both strain EVs. Other processes related to short RNAs identified in both strain EVs were oxidation-reduction, signaling, and carbohydrate and lipid metabolism (Table 1). RNA fragments associated with translation were highly enriched in G217B (n = 11) but not in G186AR (n = 2) EVs, while those related to response to stress were found exclusively in the G217B sample. The corresponding proteins are stress response protein whi2, DNA repair protein rad5, and a thermotolerance protein (Table 1). Analysis of translation-related sequences allowed identification of mRNA fragments associated with distinct steps of the translation process, such as ribosome biogenesis and processing. Other metabolic pathways identified in both strains were protein modification, carbohydrate, and lipid metabolism, signaling, oxidation-reduction, and transmembrane transport, among others (Table 1).
Feature ID	G217B alignment	G186AR alignment	Sequence description	GO
HCBG_03026	5’R	5’R	Tetrameric peptide-like helical	Amino acid metabolic process
HCBG_05660	MR	CMGC SRPK protein kinase	Amino acid metabolic process	
HCBG_05782	MF	Dihydrofolate synthetase fol3	Cofactor metabolic process	
HCBG_06582	MF	Aspartic aminopeptidase	Peptidase activity	
HCBG_09127	3’R / 3’F	Proteasome component C5	Peptidase activity	
HCBG_09175	5’F	5’F	Aspartic-type endopeptidase	Peptidase activity
HCBG_09182	MR	Protein kinase	Protein modification process	
HCBG_09116	5’F	Oxidative stress-induced growth inhibitor 2	Peptidase activity	
HCBG_00058	5’R	Mannosyl-oligosaccharide alpha-mannosidase	Catabolic process	
HCBG_00633	3’R / 3’NS	Class V chitinase	Catabolic process	
HCBG_03251	3’F	Tim-barrel enzyme family protein	Oxidoreductase activity	
HCBG_04580	5’R	Prenyl cysteine carboxyl methyltransferase Ste14	mRNA processing	
HCBG_00544	MF	Ubiquitin conjugating enzyme	Ligase activity	
HCBG_05116	3’R	General stress response protein Whi2	Response to stress	
HCBG_01169	3’R	DNA repair protein Rad5	Response to stress	
HCBG_04793	5’R	US small nuclear protein	Chromosome organization	
HCBG_04436	5’F	Flavin-containing monooxygenase	Oxidoreductase activity	
HCBG_00763	3’R / 3’NS	MinD kinetochore complex component Nnf1	Signal transduction	
HCBG_03086*	5’R / F	Ste20 paka protein kinase	Reproduction	
HCBG_04646*	3’R	Protein Ras-2	Signal transduction	
HCBG_00485	3’R	Vacular ABC heavy-metal transporter	Transmembrane transport	
Feature ID	G217B alignment	G186AR alignment	Sequence description GO	
--------------	----------------	-----------------	--	
HCBG_00680	3’F		Arsenine resistance protein Transmembrane transport	
HCBG_00850	MR		MFS monooxygenase Transmembrane transport	
HCBG_01089	5’F / 5’NS	5’R / 5’NS	Mitochondrial carrier Transport	
HCBG_02374	5’R		Endosomal cargo receptor Vesicle-mediated transport	
HCBG_02985	5’R	5’R	V-type proton ATPase proteolipid subunit Vesicle-mediated transport	
HCBG_03067	5’R	5’R	Mitochondrial dicarboxylate carrier Transport	
HCBG_03738	MF		Exocyst complex component Sec10 Vesicle-mediated transport	
HCBG_04312	3’F		Nonrepetitive nucleoporin Nucleocytoplasmic transport	
HCBG_04317	5’F		mRNA transport regulator Transport	
HCBG_04719	5’F		Nucleoporin	
HCBG_04608	3’R		MFS transporter Transmembrane transport	
HCBG_05671	MR		Actin-associated protein Vesicle-mediated transport	
HCBG_05941	5’F	5’R	Potassium uptake protein Transmembrane transport	
HCBG_05942	MR		MFS transporter Transmembrane transport	
HCBG_06437	MF		Oligopeptide transporter Transport	
HCBG_06658	MR		PX domain-containing protein Vesicle-mediated transport	
HCBG_07112	MF		Ap-2 adaptor complex subunit Vesicle-mediated transport	
HCBG_07566	3’R	3’R / MR	Actin cytoskeleton-regulatory complex protein Pan1	
HCBG_08252*	5’F		MFS multidrug transporter Transmembrane transport	
HCBG_09093	5’R		Kinetoplast-associated protein Kap Transmembrane transport	
HCBG_09150	5’R / 3’R		Cap binding protein Transport	
HCBG_04513	5’F		3-Oxoacyl-acyl-carrier-protein synthase	

DNA metabolism or biogenesis

Feature ID	G217B alignment	G186AR alignment	Sequence description GO
HCBG_00397	MF		PHD finger domain Chromosome organization
HCBG_00799	5’F	5’F	C6 zinc finger domain-containing protein Biosynthetic process
HCBG_05511	3’R	3’R	Transcription factor SteA Reproduction
HCBG_05417	MF		Elongator complex protein 3 Biosynthetic process
HCBG_05986	5’F		G1/S regulator DNA metabolic process
HCBG_05814	3’R	3’R	Histone H2a Chromosome organization
HCBG_06244	MF		Double-strand-break repair protein DNA metabolic process, reproduction
HCBG_07395	MR		CP2 transcription factor Biosynthetic process
HCBG_07428	3’F		C1f family ribonuclease
HCBG_09164	MF		C2H2 finger domain transcription factor Biosynthetic process
HCBG_09046	5’F		Transcription factor Tau55-like protein DNA metabolic process
HCBG_01340	3’R	3’R	Formamidopyrimidine-DNA glycosylase Ion binding, lipid binding
HCBG_01534	MF		Telomere length regulation protein Elg1 DNA metabolic process
HCBG_06146	5’R / 5’F	5’R / 5’F	Telomerase-binding protein Est1a Ion binding, lipid binding
HCBG_07560	5’R / 5’F	5’R / 5’F	DNA repair protein protein
HCBG_05625	3’R	3’R	p60-like cell wall
HCBG_09024	MR		Hlh transcription factor
HCBG_06915	5’F	5’F	Proline-rich protein-15

Other/unknown function

Feature ID	G217B alignment	G186AR alignment	Sequence description GO	
HCBG_00048	5’R		Hypothetical protein HCBG_00048 Ion binding	
HCBG_00453	5’R		MIZ zinc finger protein Ion binding	
HCBG_00947	3’F		Predicted protein	
HCBG_00975	5’R	5’R	ATPase AAA-5 protein Ion binding	
HCBG_01015	MF		Predicted protein	
HCBG_01082	3’R / 3’F	3’R	Zinc knuckle domain protein	
HCBG_01086	5’R		Predicted protein	
HCBG_01127	5’R / 3’R		Predicted protein	
HCBG_01146	MF		Predicted protein	
HCBG_01161	MF		Predicted protein	
Feature ID	G217B alignment	G186AR alignment	Sequence description	GO
----------------	-----------------	-------------------	---------------------	----
HCBG_01256	3'R		Conserved hypothetical protein	
HCBG_01258	MR		Predicted protein	
HCBG_01500	MR		Predicted protein	
HCBG_01656	MF		Predicted protein	
HCBG_01888	3'R	3'R	Conserved hypothetical protein	
HCBG_01952	3'F		Conserved hypothetical protein	
HCBG_02098	5'R		Protein	
HCBG_02107	5'F		Predicted protein	
HCBG_02158	3'F		Conserved hypothetical protein	
HCBG_02464	3'R / 3'F	3'F / 3'R / 3'N5	Carbohydrate-binding module family 48 protein	
HCBG_02569	MR / MF	MF	Predicted protein	
HCBG_02659	MR / MF	MR	Predicted protein	
HCBG_02697	3'R	3'R	Conserved hypothetical protein	
HCBG_02981	MF		Phosphotransferase enzyme family protein	
HCBG_02986	MF	5'F	Predicted protein	
HCBG_03093	MR		PH domain protein	
HCBG_03374	MF	MF	Glutathione transferase	
HCBG_03658	3'R / 3'F		Conserved hypothetical protein	Helicase activity
HCBG_03692	3'R / 3'F		Predicted protein	
HCBG_03693	MR / MF	MR / MF	Predicted protein	
HCBG_03805	MF	MF	mtDNA inheritance protein	
HCBG_03899	MR	MR / 3'R	WD repeat protein	
HCBG_03911	3'R	3'R	Protein	
HCBG_03913	MR		Hypothetical protein HCBG_03913	
HCBG_03980	MR		Phosphatidylethanolamine decarboxylase	
HCBG_04009	MR		Hypothetical protein HCBG_04009	
HCBG_04186	MR		Conserved hypothetical protein	
HCBG_04193	3'R	3'R	Conserved hypothetical protein	
HCBG_04201	3'F	3'R	Hypothetical protein HCBG_04201	
HCBG_04208	3'F	3'F	Conserved hypothetical protein	
HCBG_04365	MF		Hypothetical protein HCBG_04365	
HCBG_04371	5'R / 5'F		Bifunctional uridylyltransferase uridylyl-removing enzyme	
HCBG_04380	3'R	3'R	Predicted protein	
HCBG_04393	3'R		Protein	
HCBG_04452	3'R	3'R	Predicted protein	
HCBG_04780	5'R	5'R	Bromodomains-containing protein	
HCBG_04887	MR		Predicted protein	
HCBG_05336	5'R		UPF0160 domain protein	
HCBG_05404	3'R / 3'F		Predicted protein	
HCBG_05580	3'R		Methyltransferase domain-containing protein	
HCBG_05638	5'R		Predicted protein	
HCBG_05703	5'R		Conserved hypothetical protein	
HCBG_05744	5'F		T-complex protein 1 subunit beta	
HCBG_05763	3'R	3'F	Conserved hypothetical protein	
HCBG_05878	3'F		Hypothetical protein HCBG_05878	
HCBG_06018	5'F		Cytomegalovirus GH-receptor family	
HCBG_06054	MR		Phosphotransferase family protein	Ion binding, kinase activity
HCBG_06071	MF	MF	Protein	
HCBG_06082	MR		Conserved hypothetical protein	
HCBG_06114	3'F		Protein	
HCBG_06176	3'F		KH domain protein	RNA binding
HCBG_06239	5'R		Nonsense-mediated mRNA decay protein	
HCBG_06270	MR		Predicted protein	
HCBG_06364	MR		F-box domain-containing protein	
HCBG_06436	MF		Predicted protein	
HCBG_06611	5'NS		Predicted protein	
HCBG_06677	3'F		Predicted protein	
HCBG_06927	3'R / 3'F		Predicted protein	
HCBG_07002	5'R / 5'F	5'R / 5'F	Ketoreductase	
HCBG_07065	5'F		Predicted protein	
HCBG_07214	5'R	5'R	Predicted protein	
HCBG_07247	MR		Acryltransferase 3	Transferring acyl groups
HCBG_07296	MR	MR	Hypothetical protein HCBG_07296	

(Continued on next page)
To gain further insight into the role of EV RNAs, to determine if they could be derived from a miRNA-like pathway, and to assess if they could play a biological role in the recipient cell, we searched for RNA secondary structures, since they are fundamental for gene expression regulation (21). A broad study of RNA structures in distinct cells revealed regulatory effects of the RNA structure throughout mRNA life cycle such as polyadenylation, splicing, translation, and turnover (22, 23). Using the entire range of EV RNA sequencing (RNA-seq) data, a total of 33 RNAs with putative structures were generated by a probability distribution, using a free energy (ΔG) value of less than or equal to \(-7.0\) (Table S2). On the basis of this parameter, we identified transcripts for U3 small nucleolar RNA-associated protein, L-isoaspartate O-methyltransferase, serine/threonine-protein kinase, proteasome component C5, pre-rRNA processing protein Utp22, C-x8-C-x5-C-x3-H zinc finger protein, fungus-specific transcription factor domain-containing protein, and DNA damage-responsive transcriptional repressor RPH1 (Fig. 2; see also Table S2).

Comparison of EV ncRNA classes in *H. capsulatum* EVs. We used the ncRNA database from *H. capsulatum* to identify the classes of ncRNA present in EV RNAs. The data analysis revealed 73 different sequences of ncRNA in *H. capsulatum* EVs from the G186AR strain and 38 from the G217B isolate. A total of 33 molecular species were common to both strains, 40 were exclusively identified in the G186AR strain, and the most abundant class of ncRNA found in *H. capsulatum* EVs consisted of tRNAs (Table 2).

Analysis of proteins putatively associated with RNA metabolism in the EVs. As a rule, cellular RNAs are covered with proteins and exist as ribonucleoprotein (RNP) complexes. The proteins associated with RNAs are named RNA-binding proteins (RBPs). These proteins participate in several biological processes, ranging from transcription to RNA decay (24). In this context, we investigated the presence of RBPs in the *H. capsulatum* EVs. We analyzed the proteomic EV data available for the G217B strain (25), and we identified 139 proteins related to RNA metabolism (8) (Table 3; see also Table S3). We found many RBPs, such as poly(A) binding protein (PABP), Nrd1, Prp24, and Snd1; splicing factors, exosome complex components, and ribosomal proteins (Table 3; see also Table S3) were identified. In addition, we also found quelling-deficient protein 2 (QDE2), an Argonaute protein important in the RNA machinery in fungi. Because we identified the QDE2 in EVs, we searched for the components of the RNA interference (RNAi) machinery in *H. capsulatum* and compared them with the proteins from *Neurospora crassa* and *Schizosaccharomyces pombe*, which are the fungal species for which the RNAi machinery was best described previously (26, 27). *H. capsulatum* EVs contained one Argonaute protein (QDE2), two Dicer-like proteins, the QIP (quelling interaction protein), and the RNA-dependent RNA polymerase (QDE1) (Table 4).

TABLE 1 (Continued)

Feature ID	G217B alignment	G186AR alignment	Sequence description	GO
HCBG_07377	MF	MR	Predicted protein	
HCBG_07484	3’F	MR	Rhomboid family membrane protein	Peptidase activity
HCBG_07611	MR / MF	MR / MF / MNS	Protein	
HCBG_07676	3’R / 3’F	3’R / 3’F	Lyr family protein	
HCBG_07802	3’R / 3’F	3’R / 3’F	Predicted protein	
HCBG_07811	3’F	3’F	Predicted protein	
HCBG_08059	MR	MF	DUF833 domain protein	Protein complex assembly
HCBG_08505	3’F	MF	Sucrase ferredoxin domain-containing protein	
HCBG_08661	MF	MF	Predicted protein	
HCBG_08693	3’R	Set domain protein		
HCBG_08838	5’R	WW domain		
HCBG_08850	5’R	Integral membrane protein		
HCBG_09013	5’F	5’F	Predicted protein	
HCBG_09099	5’R	5’R	Conserved hypothetical protein	
HCBG_09144	MF	MF	Predicted protein	

For some transcripts, there was an alignment in specific positions of the mRNA, not covering the entire sequence. 5’, 3’, or M (middle of the mRNA) followed by an “F” or an “R” represents forward (F) or reverse (R) orientation. GO, gene ontology; GPI, glycosylphosphatidylinositol; ID, identifier; mtDNA, mitochondrial DNA.
Comparisons of cellular RNA versus EV RNA showed a distinct enrichment of molecules in the vesicles. We next assessed the composition of cellular RNA from *H. capsulatum* yeast cells (28) and compared this information to that obtained from analyses of EV-associated RNA composition under the same conditions. There was no correlation between the transcripts with highest expression levels and their presence in the EVs (Table S4). Examples of highly expressed cellular transcripts included histones 4, 2B, and 2A, allergen Aspf4, chaperones, and translation factors, among others (Table S4). In contrast, zinc knuckle domain-containing protein, vacuolar ATP synthase subunit C, Gr15 regulator, thermotolerance protein, histone variant H2A.Z, and proteasome component C5 had an enrichment value of greater than 7,000 in the EVs, while they showed low expression values in the cell (Table S4). The differences in composition between cells and EVs were also evaluated by grouping the transcripts into biological categories.
TABLE 2 Classes of ncRNA sequences identified in EV preparations from *H. capsulatum* strains G186AR and G217B

RNA category and ncRNA	G186AR	G217B
rRNA		
15S_rRNA		X
NTS1-2	X	
RDN18-1		
RDN18-2	X	
RDN25-1		
RDN25-2	X	
RDN37-1		
RDN37-2	X	
RDN5-1	X	X
RDN5-2	X	X
RDN5-3	X	X
RDN5-4	X	X
RDN5-5	X	
RDN5-6	X	X
RDN58-1	X	X
RDN58-2	X	X
ncRNA		
RUF21	X	X
snoRNA		
snR54	X	X
tRNA		
tRNA-Ser		X
tRNA-Met		X
tRNA-Gln		X
tRNA-Cys		X
tRNA-Ser	X	X
tRNA-Pro	X	X
tRNA-Ala	X	X
tRNA-Thr	X	X
tRNA-Ala	X	X
tRNA-Phe	X	X
tRNA-Ala	X	X
tRNA-Asn	X	X
tRNA-Met	X	X
tRNA-Arg	X	
tRNA-Trp	X	X
tRNA-Gly	X	X
tRNA-Asp	X	
tRNA-Pro	X	X
tRNA-Thr	X	
tRNA-His	X	X
tRNA-Glu	X	X
tRNA-Gln	X	X
tRNA-Tyr	X	
tRNA-Gln	X	
tRNA-Gly	X	
tRNA-Lys	X	
tRNA-Ile	X	
tRNA-Leu	X	
tRNA-Met	X	
tRNA-Gly	X	
tRNA-Ile	X	
tRNA-Thr	X	
tRNA-Lys	X	
tRNA-Met	X	
tRNA-Val	X	
tRNA-Phe	X	
tRNA-Ile	X	
tRNA-Sec	X	
tRNA-Asp	X	
tRNA-Thr	X	

(Continued on next page)
processes (Fig. 3). For the yeast cells, the main pathways were associated with transport, translation, and general metabolic processes (Fig. 3). For the EVs, the enriched pathways were transmembrane transport, protein phosphorylation, and transcription regulation (Fig. 3). This result demonstrates the low levels of correlation between the most highly expressed cellular mRNAs and EV cargo, providing evidence that there might be a mechanism directing the RNA molecules to the EVs.

DISCUSSION

As previously described (17, 18), RNA molecules associated with fungal EVs are remarkably diverse. For instance, mRNAs, tRNA fragments, snoRNAs, small nucleolar RNAs (snRNAs), and miRNA-like molecules were characterized in EVs from *C. albicans*, *C. neoformans*, *P. brasiliensis*, and *S. cerevisiae* (17). We observed similar distributions of RNA molecules in *H. capsulatum* EVs. The comparison between the G186AR and G217B EVs revealed important differences in the variety of mRNAs identified. When the mRNA composition was compared to what was described for other fungi, important similarities were observed. For example, the most abundant biological process identified in G217B EVs was vesicle-mediated transport, which was also the most abundant process in *C. albicans* EVs (17). Molecules required for ribosome biogenesis, which were observed in G217B EVs, belonged to the most highly enriched process in *S. cerevisiae* EVs (17). However, in the comparisons of the ncRNA molecules, different profiles were observed. Most of the ncRNAs in *H. capsulatum* strains derived from tRNAs; a similar profile was obtained with *C. albicans* (17). In addition, almost no snoRNAs were identified in *H. capsulatum*, but this class of ncRNAs was one of the most abundant in the EVs of other fungi (17). Differences in EV composition were observed previously in *C. neoformans*; the EV-associated RNA produced by mutant cells with defective unconventional secretion differed considerably from similar samples produced by wild-type cells (29).

In our study, we identified short reads that aligned specifically to exons; however, these sequences did not correspond to complete mRNAs in the EVs. They instead corresponded to 25-nt-long fragments that were enriched in specific exons of the transcript. These fragments of mRNAs were previously described in human cells (30), where most of the transcripts identified in the EVs corresponded to a fraction of the mRNA with an enrichment of the 3′ UTR of the transcript (30). The results of that human study led to the hypothesis that the mRNA fragments had a role in gene expression regulation in the recipient cells as the secreted mRNA could act as competitors to

TABLE 2 (Continued)

RNA category and ncRNA	G186AR	G217B
tRNA-Ile	X	—
tRNA-Ser	X	—
tRNA-Ser	X	—
tRNA-Arg	X	—
tRNA-Lys	X	—
tRNA-Leu	X	—
tRNA-Ser	X	—
tRNA-Leu	X	—
tRNA-Ala	X	—
tRNA-Cys	X	—
tRNA-Thr	X	—
tRNA-His	X	—
tRNA-Tyr	X	—
tRNA-Ser	X	—
tRNA-Leu	X	—
tRNA-Lys	X	—
tRNA-Ala	X	—
tRNA-Arg	X	—
tRNA-Glu	X	—

X, present; —, absent.
Majority protein ID	Protein name	Gene name
C0NMG7	QDE2 protein	HCBG_03944
C0P170	Cap binding protein	HCBG_09150
C0U23	Exosome complex exonuclease RRP4	HCBG_03153
C0NMO3	Exosome complex exonuclease RRP45	HCBG_04533
C0CT3	KH domain RNA-binding protein	HCBG_00929
C0UH0	KH domain RNA-binding protein	HCBG_07001
C0UJ5	KH domain-containing protein	HCBG_02352
C0UJS5	mRNA 3’-end-processing protein RNA14	HCBG_06689
C0NNW0	mRNA cleavage and polyadenylation factor CLP1	CLP1 HCBG_04840
C0NP91	mRNA decapping enzyme	HCBG_04971
C0NC87	mRNA export factor Mex67	HCBG_00733
C0UJ33	Nuclear and cytoplasmic polyadenylated RNA-binding protein Pub1	HCBG_03163
C0QQQ9	Poly(A)+ RNA export protein	HCBG_05339
C0SSS5	Polyadenylate-binding protein (PABP)	HCBG_06205
C0NK4	Ribonucleoprotein	HCBG_03744
C0SY4	RNA binding domain-containing protein	HCBG_06205
C0WH9	RNA-binding protein	HCBG_07509
C0N22	RNA-binding protein	HCBG_00318
C0P3A1	RNA-binding protein Nrd1	HCBG_04981
C0ZI9	RNA-binding protein Prp24	HCBG_08569
C0T25	RNA-binding protein Snd1	HCBG_06625
C0NMQ0	RNP domain-containing protein	HCBG_04027
C0NLQ4	RRM domain-containing protein	HCBG_04434
C0UJ27	Transcription elongation factor Spt6	HCBG_03157
C0TQ1	Transcription initiation factor TFIID complex 60-kDa subunit	HCBG_06531
C0RU6	U1 snRNP-associated protein Usp106	HCBG_05876
C0Z2	U1 snRNP-associated protein Usp107	HCBG_08722
C0BS3	U2 snRNP auxiliary factor large subunit	HCBG_00569
C0AD4	U3 small nuclear RNA-associated protein	HCBG_00080
C0ZA3	U3 small nuclear RNA-associated protein 22	HCBG_08483
C0NLW4	U3 snoRNP-associated protein Rrp5	HCBG_04494
C0P0R0	U6 snRNA-associated Sm-like protein L5m2	HCBG_08990
C0P041	30S ribosomal protein S10	HCBG_08883
C0FV8	40S ribosomal protein S15	HCBG_01774
C0X47	40S ribosomal protein S18	HCBG_08039
C0ZD2	40S ribosomal protein S20	HCBG_08512
C0BD0	40S ribosomal protein S21	HCBG_00426
C0UD0	40S ribosomal protein S3	HCBG_06961
C0NL3	40S ribosomal protein S4	HCBG_04423
C0F40	40S ribosomal protein S5A	HCBG_01506
C0NLR5	40S ribosomal protein S9	HCBG_04445
C0TH6	5’–3’ exoribonuclease 1 (EC 3.1.13.--)	HCBG_06456
C0K12	60S ribosomal protein L1	HCBG_03662
C0NL2	60S ribosomal protein L3	HCBG_04742
C0CP3	60S ribosomal protein L30	HCBG_00889
C0RD6	60S ribosomal protein L5	HCBG_05566
C0QR6	60S ribosomal protein L9b	HCBG_05346
C0PCC0	Acyl-RNA-complex subunit	HCBG_05000
C0KLB	Alanine-tRNA ligase (EC 6.1.1.7) (alanyl-tRNA synthetase) (AlaRS)	ALA1 HCBG_03698
C0C50	Alternative oxidase (EC 1.1.1.1)	HCBG_00916
C0D66	Arginyl-tRNA synthetase	HCBG_01062
C0T82	Asparagine-rich protein	HCBG_06362
C0P94	Asparaginyl-tRNA synthetase	HCBG_04974
C0GY7	Aspartyl-tRNA synthetase	HCBG_02609
C0NJ3	ATP-dependent helicase NAM7	HCBG_04723
C0IT7	ATP-dependent RNA helicase DOB1	HCBG_02344
C0AN2	ATP-dependent RNA helicase EIF4A	HCBG_00178
C0FC7	Cell cycle control protein	HCBG_01593
C0T49	Cleavage and polyadenylation specific factor 5	HCBG_06329
C0W18	Clustered mitochondria protein homolog (protein TIF31 homolog)	CLU1 TIF31 HCBG_07348
C0TW5	Cysteinyl-tRNA synthetase	HCBG_06595
C0Z4E	d-Aminoacyl-tRNA deacylase (EC 3.1.1.1) (EC 3.1.1.96)	HCBG_08524
C0SH0	DNA-directed RNA polymerase II polypeptide	HCBG_06100
C0B61	DNA-directed RNA polymerase subunit beta (EC 2.7.7.6)	HCBG_00357
C0KS3	Elicitor protein	HCBG_03753
C0RY6	Eukaryotic peptide chain release factor GTP-binding subunit	HCBG_05916

(Continued on next page)
Majority protein ID	Protein name	Gene name
C0PO × 7	Eukaryotic translation initiation factor 3 subunit D (EIF3D)	HCBG_09057
CONE9	Fibrillarin	HCBG_01425
CONNZ8	Glutaminyl-tRNA synthetase	HCBG_08668
CONKS5	Glutamyl-tRNA synthetase	HCBG_03755
CONE28	Glycyl-tRNA synthetase	HCBG_02121
CONNZ5	Histidyl-tRNA synthetase	HCBG_04162
CONL64	Isoleucyl-tRNA synthetase, cytoplasmic	HCBG_03896
CONZPR	Leucyl-tRNA synthetase	HCBG_08644
CONH95	Leucyl-tRNA synthetase	HCBG_02717
CONI62	Lysine-tRNA ligase (EC 6.1.1.6) (lysyl-tRNA synthetase)	HCBG_03034
CONM58	Mitotic control protein dis3	HCBG_04055
CONBJ8	mRNA splicing protein PRP8	HCBG_00494
CONY83	NAM9+ protein	HCBG_07877
CONG69	Nucleic acid-binding protein	HCBG_01885
CONUD1	Phenylalanyl-tRNA synthetase subunit beta	HCBG_06962
CONBD1	Phenylalanyl-tRNA synthetase subunit beta cytoplasmic	HCBG_00427
CONUP1	Polymerase II polypeptide D	HCBG_06655
CONNC4	Pre-mRNA-processing factor 39	HCBG_04251
CONUB4	Pre-mRNA-processing protein prp40	HCBG_03244
CONXM8	Pre-mRNA-splicing factor	HCBG_08220
CONWL7	Prolyl-tRNA synthetase	HCBG_04497
CONW72	Ribonuclease T2-like protein	HCBG_07402
CONEF9	Ribonuclease Z	HCBG_01127
CONIJ3	Ribosomal biogenesis protein Gar2	HCBG_02250
CONHN4	Ribosomal protein L14	HCBG_02856
CONI43	Ribosomal protein L6	HCBG_03015
CONVX9	Ribosomal protein S5	HCBG_07309
CONNB2	RNA helicase (EC 3.6.4.13)	HCBG_04209
CONEY2	RNA polymerase II largest subunit	HCBG_01448
CONL28	RNA polymerase subunit	HCBG_03585
CONYA7	RNase H domain-containing protein	HCBG_07901
CONH14	RNP domain-containing protein	HCBG_02636
CONDP9	RNP domain-containing protein	HCBG_01992
CONCA9	SAM domain-containing protein	HCBG_00745
CONIEEE	Seryl-tRNA synthetase	HCBG_02184
CONSR2	Signal recognition particle subunit SRP68 (SRP68)	HCBG_06192
CONDB1	Small nuclear ribonucleoprotein	HCBG_01107
CONTA0	Splicing factor 3A subunit 3	HCBG_06380
CONUB9	Splicing factor 3B	HCBG_06950
CONBR2	Splicing factor 3B subunit 1	HCBG_00558
CONGZ9	Threonyl-tRNA synthetase	HCBG_02621
CONSB0	Transfer RNA-Trp synthetase	HCBG_06040
CONL23	tRNA (cytosine-5-)-methyltransferase NCL1	HCBG_03853
CONUP2	tRNA [guanine(37)-N1]-methyltransferase (EC 2.1.1.228)	TRMS HCBG_06656
CONEY10	tRNA guanylyltransferase	HCBG_01446
CONJ2	tRNA ligase (EC 6.5.1.3)	HCBG_03322
CONM44	tRNA pseudouridine synthase	HCBG_04574
CONSG9	Tyrosine-tRNA ligase (EC 6.1.1.1) (Tyrosyl-tRNA synthetase)	HCBG_06099
CONP46	Uncharacterized protein	HCBG_04926
CONZF6	Uncharacterized protein	HCBG_08536
CONIA9	Uncharacterized protein	HCBG_03081
CONMF3	Uncharacterized protein	HCBG_04683
CONIP9	Uncharacterized protein	HCBG_05069
CONK6	Uncharacterized protein	HCBG_03666
CONAF7	Uncharacterized protein	HCBG_01563
CONAE1	Uncharacterized protein	HCBG_01307
CONEC3	Uncharacterized protein	HCBG_01239
CONJ9	Uncharacterized protein	HCBG_03369
CONYC3	Uncharacterized protein	HCBG_07917
CONIB5	Uncharacterized protein	HCBG_03087
CONYN4	Uncharacterized protein	HCBG_08264
CONBT4	Uncharacterized protein	HCBG_00580
CONKE4	Uncharacterized protein	HCBG_03624
CONGB7	Uncharacterized protein	HCBG_02389
CONMM1	Uncharacterized protein	HCBG_04531

(Continued on next page)
regulate stability, localization, and translation of mRNAs in target cells (30). In *Mucor circinelloides* cells, the presence of the RNA silencing pathway (sRNA) resulted in the production of both sense and antisense sRNAs (31–33). Sequencing analysis of the sRNA content of this fungus showed the existence of exonic small interfering RNAs (exo-siRNAs) as a new type of sRNA. They were produced from exons of the same genes that are later regulated through the repression of the corresponding mRNA (34). This result agrees with our observation of short reads in the exonic regions of the transcripts. We therefore hypothesize that, similarly to what was described for *M. circinelloides* cells, *H. capsulatum* EV fragments can regulate expression of their own mRNAs.

Of note, we also found a highly represented population of putative exonic RNA in *Paracoccidioides* strains (R. Peres da Silva, L. V. G. Longo, J. P. C. da Cunha, T. J. P. Sobreira, H. Faoro, M. L. Rodrigues, S. Goldenberg, L. R. Alves, and R. Puccia, unpublished data).

As *H. capsulatum* EVs contain different RNA molecules, it is reasonable to hypothesize that proteins that regulate RNA metabolism are also present in the EVs, probably associated with RNA. If validated, this hypothesis could indicate how the RNAs in a specific subset are directed to the vesicles and exported. RNA-binding proteins (RBPs) participate in several biological processes, from RNA transcription to decay (24). We detected a number of RNA-binding proteins in *H. capsulatum* EVs (25). These proteins were also identified in association with EVs in other systems. For example, in the EVs produced by human epithelial cells, 30 RBPs were identified (35), including heterogeneous nuclear ribonucleoproteins (hnRNPs). These proteins are responsible for directing pre-mRNAs in the maturation processes that culminate in transcriptional regulation, alternative splicing, transport, and localization (35). In addition, RBPs in EVs were identified in distinct models as hepatocytes, human embryonic kidney (HEK) cells, and mouse myoblast cells (35–37). Interestingly, one of the RBPs identified in EVs was SND1 (staphylococcal nuclease domain-containing protein 1), which is a main component of the RNA-induced silencing complex (RISC) that plays an important role in miRNA function (37).

Another example of a protein identified in the EVs of *H. capsulatum* and distinct organisms is an endonuclease of the Ago2 family. An infection model with *Plasmodium falciparum* demonstrated that infected red blood cells released EVs containing functional miRNA-Argonaute 2 complexes (38). Moreover, endothelial cells internalized the

TABLE 3 (Continued)

Majority protein ID	Protein name	Gene name
C0NG47	Uncharacterized protein	HCBG_01863
C0NEU7	Uncharacterized protein	HCBG_01413
C0NG27	Valyl-tRNA synthetase	HCBG_01843
C0P019	Vip1 protein	HCBG_08749
C0NG23	Ribosome biogenesis protein	HCBG_01839
C0NGE8	Ribosome biogenesis protein	TSR3 HCBG_02420
C0NAE4	Ribosome biogenesis protein	YTM1 HCBG_00090

TABLE 4

Proteins associated with the RNAi machinery in *H. capsulatum* G186AR EVs compared to *S. pombe* and *N. crassa*

Protein	*H. capsulatum* product	G186AR ID	E value	% identity	% positives
NP_587782.1 (argonaute)	QDE2 protein	HCBG_03944	1.00E − 85	28	45
ESA421221.1 (posttranscriptional silencing protein QDE-2)	QDE2 protein	HCBG_03944	1.00E − 178	37	53
NP_588215.2 (dicer)	Dicer-like protein	HCBG_01751	1.00E − 113	28	44
EAA434023.3 (dicer-like protein 2 (Neurospora crassa OR74A))	Dicer-like protein 2	HCBG_01136	3.00E − 97	31	49
XP_959047.1 (RNA-dependent RNA polymerase (Neurospora crassa OR74A))	RNA-dependent RNA polymerase	HCBG_06604	3.00E − 92	31	46
XP_964030.3 (RecQ family helicase (Neurospora crassa OR74A))	Dicer-like protein	HCBG_01751	0.00E + 00	45	60
ABQ45366.1 (QDE-2-interacting protein (Neurospora crassa))	QDE-2-interacting protein (QIP)	HCBG_07373	2.00E − 50	27	43
P. falciparum EVs, and the miRNA-Argonaute 2 complexes were transferred to the cells and acted in regulation of gene expression and in the barrier properties of the recipient cells (38). The Argonaute protein named QDE2 in *H. capsulatum* was identified as enriched in the EVs of the G217B strain. The small silencing RNAs include a variety of molecules, such as microRNAs (miRNAs) and various small interfering RNAs (siRNAs), including exo-siRNAs, endogenous siRNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs) (39). Previous studies of small RNAs in fungi identified the RNAi machinery in the fission yeast species *Schizosaccharomyces pombe*, in the budding yeast species *Saccharomyces castellii* and *C. albicans*, and in filamentous fungi (26, 27, 40). One of the best-characterized models is represented by the filamentous fungus *N. crassa* (27, 41–45). The RNAi machinery in that organism functions in defense against transposons (46). A similar process has been described in *C. neoformans*, where RNAi is involved in the regulation of transposon activity and genome integrity during vegetative growth (47). In *N. crassa*, the QDE2 gene encodes an Argonaute protein that is homologous to the rde-1 gene in *C. elegans*, encoding a protein required for double-stranded RNA (dsRNA)-induced silencing (27). The characterization of RNAs associated with QDE2 in *N. crassa* led to the identification of miRNA-like RNAs (miRNAs) in this organism (48). The identification of QDE2 in *H. capsulatum* EVs in association with the small RNAs indicated that the QDE2-miRNA complex might be directed to the EVs and possibly delivered to recipient cells, with the potential to interfere with gene expression regulation and/or cell-cell communication.

Fungal EVs have been implicated in a number of communication processes, including transfer of virulence (49) and antifungal resistance (50). In *Cryptococcus gattii*, pathogen-to-pathogen communication via EVs resulted in reversion of an avirulent phenotype through mechanisms that required vesicular RNA (49). The sequences

FIG 3 Gene ontology analysis. The pie charts present the gene ontology of mRNA sequences enriched in *H. capsulatum* cells (A) and in EVs isolated from *H. capsulatum* (B).
required for this process, however, remained unknown. This is an efficient illustration of the potential derived from the characterization of EV-associated RNA in fungi. In this context, our study results provide information from the *H. capsulatum* model that will allow the design of pathogenic experimental models aiming at characterizing the role of extracellular RNAs in fungal pathogenesis.

MATERIALS AND METHODS

Fungal strains and growth conditions. The *H. capsulatum* strains were subjected to long-term storage at −80°C. Aliquots were inoculated into Ham’s F-12 media (Gibco; catalog no. 21700-075) supplemented with glucose (18.2 g/liter), l-cysteine (8.4 mg/liter), HEPES (6 g/liter), and glutamic acid (1 g/liter) and cultivated at 37°C with constant shaking at 150 rpm. Viability assessments were performed using Janus green 0.02%, and all aliquots used had >99% live yeast cells. EVs were then isolated from fungal culture supernatants as previously described (12).

sRNA isolation. Small RNA-enriched fractions were isolated using a mirNeasy minikit (Qiagen) and were then treated with an RNaseasy MinElute cleanup kit (Qiagen), according to the manufacturer’s protocol, to obtain small RNA-enriched fractions. The sRNA profile was assessed in an Agilent 2100 Bioanalyzer (Agilent Technologies).

RNA sequencing. Purified sRNA (100 ng) was used for RNA-seq analysis with two independent biological replicates. The RNA-seq analysis was performed using a SOLID 3 Plus platform and an RNA-Seq kit (Life Sciences) according to the manufacturer’s recommendations.

In silico data analysis. The sequencing data were analyzed using version 10.1 of CLC Genomics Workbench. The reads were trimmed on the basis of quality, with a threshold Phred score of 25. The reference genomes used for mapping were obtained from the NCBI database (*H. capsulatum* G186AR strain ABB502 and G217B strain ABBT01). The alignment was performed using the following parameters: additional number of bases of upstream and downstream sequences, 100; minimum number of reads, 10; maximum number of mismatches, 2; nonspecific match limit, −2, minimum fraction length, 0.7 for the genome mapping or 0.8 for the RNA mapping. The minimum proportion of read similarity mapped on the reference genome was 80%. Only uniquely mapped reads were considered in the analysis. The libraries were normalized per million, and the expression values for the transcripts were recorded in RPKM (reads per kilobase per million). We also analyzed other expression values, including TPM (transcripts per million) and CPM (counts per million). The statistical test applied was the DGE (differential gene expression) test. For the ncRNA analysis, the database used was the ncRNA database from *Histoplasma capsulatum* (EnsemblFungi G186AR GCA_000150115 assembly ASM15011v1). The secondary structure analysis was performed using the PPFold plugin in CLC Genomics Workbench v. 10.1 and the default parameters. The entire RNA-seq database was subjected to PPFold analysis, and the putative structures were determined. Analysis of the relationship between the profile of RNA sequences detected in this study and the protein composition of *H. capsulatum* EVs was based on results recently obtained with strain G217B using a proteomic approach (25). The cellular RNA used in this analysis was assessed using the Sequence Read Archive (SRA) database (accession numbers SRR2015219 and SRR2015223) (28).

Data availability. The data were deposited into the SRA database under study accession number PRJNA514312.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mSphere.00176-19.

TABLE S1, XLSX file, 1.4 MB.
TABLE S2, XLSX file, 0.01 MB.
TABLE S3, XLSX file, 0.1 MB.
TABLE S4, XLSX file, 2.1 MB.

ACKNOWLEDGMENTS

J.D.N. was supported in part by NIH R01AI052733 and R21AI124797. M.L.R. is currently on leave from the position of Associate Professor at the Microbiology Institute of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. He was supported by grants from the Brazilian agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grants 405520/2018-2, 440015/2018-9, and 301304/2017-3) and Fiocruz (grants VPPCB-007-FIO-18 and VPPIS-001-FIO18). R.P. was supported by FAPESP (grant 13/25950-10). We also acknowledge support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Finance Code 001) and the Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Nêgligen- ciadas (INCT-IDPN).

We declare that we have no conflicts of interest.
facilitated transport of RNAs into exosomes. PLoS One https://doi.org/10.1371/journal.pone.0195969.

36. Alonzi T, Weisz A, Battistelli C, Tarallo R, Tripodi M, Giurato G, Montaldo C, Santangelo L, Cicchini C, Mancone C. 2016. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling MicroRNA sorting. Cell Rep 17:799–808. https://doi.org/10.1016/j.celrep.2016.09.031.

37. Sork H, Corso G, Krjutskov K, Johansson HJ, Nordin JZ, Wiklander OPB, Lee YXF, Westholm JO, Lehtiö J, Wood MJA, Mäger I, El Andaloussi S. 17 July 2018. Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Sci Rep https://doi.org/10.1038/s41598-018-28485-9.

38. Marti M, Padmanabhan P, Ghiran I, Walsh M, Kuo WP, Nilsson S, Brancucci NM, Ravel D, Trachtenberg A, Ma S, Mantel P-Y, Filgueira L, Huttenhower C, Hjelmqvist D, Ankerslev J, Ribeiro S, Duraisingham MT, Kharoubi-Hess S, Martinelli R. 10 October 2016. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun https://doi.org/10.1038/ncomms12727.

39. Ghildiyal M, Zamore PD. 1 February 2009. Small silencing RNAs: an expanding universe. Nat Rev Genet https://doi.org/10.1038/nrg2504.

40. Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Bartel DP. 2009. RNAi in budding yeast. Science 326:544–550. https://doi.org/10.1126/science.1176945.

41. Pallotta M, Cogoni C, Sachs MS, Catalanotto C, Macino G, Vaysse L, ReFalco P. 2004. Redundancy of the two Dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Mol Cell Biol 24:2536–2545.

42. Choudhary S, Liu Y, Cheng P, Maiti M, Lee H-C, Liu Q, He Q. 2007. A double-stranded-RNA response program important for RNA interference efficiency. Mol Cell Biol 27:3995–4005. https://doi.org/10.1128/MCB.00186-07.

43. Cogoni C, Macino G. 1999. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166–169. https://doi.org/10.1038/20215.

44. Cogoni C, Macino G. 1999. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286:2342–2344. https://doi.org/10.1126/science.286.5448.2342.

45. Chicas A, Cogoni C, Macino G. 2004. RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa. Nucleic Acids Res 32:4237–4243. https://doi.org/10.1093/nar/gkh764.

46. Nolan T, Braccini L, Azzalin G, De Toni A, Macino G, Cogoni C. 2005. The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotansposon in Neurospora crassa. Nucleic Acids Res 33:1564–1573. https://doi.org/10.1093/nar/gki300.

47. Jiang N, Yang Y, Janbon G, Pan J, Zhu X. 2012. Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS One 7:e52734. https://doi.org/10.1371/journal.pone.0052734.

48. Selker EU, Lewis ZA, Gu W, Mello CC, Li L, Xue Z, Crosthwaite SK, Pertsemidis A, Freitag M, Liu Y, Lee H-C. 2010. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 38:803–814. https://doi.org/10.1016/j.molcel.2010.04.005.

49. Bielska E, Sisquella MA, Aldeieg M, Birch C, O’Donoghue EJ, May RC. 19 April 2018. Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nat Commun https://doi.org/10.1038/s41467-018-03991-6.

50. Mitchell KF, Azadi P, Jaromin A, Sanchez H, Dominguez E, Andes DR, Mitchell A, Zarnowski R, Bernhardt J, Heiss C, Covelli AS. 2018. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol 16:e2006872. https://doi.org/10.1371/journal.pbio.2006872.