Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Current perspectives

Promising approaches for the treatment and prevention of viral respiratory illnesses

Nikolaos G. Papadopoulos, MD, PhD, Spyridon Megremis, PhD, Nikolaos A. Kitsioulis, MD, Olympia Vangelatou, MSc, Peter West, PhD, and Paraskevi Xepapadaki, MD, PhD

Manchester, United Kingdom, and Athens, Greece

Viral respiratory tract infections are the most common human ailments, leading to enormous health and economic burden. Hundreds of viral species and subtypes have been associated with these conditions, with influenza viruses, respiratory syncytial virus, and rhinoviruses being the most frequent and with the highest burden. When considering prevention or treatment of viral respiratory tract infections, potential targets include the causative pathogens themselves but also the immune response, disease transmission, or even just the symptoms. Strategies targeting all these aspects are developing concurrently, and several novel and promising approaches are emerging. In this perspective we overview the entire range of options and highlight some of the most promising approaches, including new antiviral agents, symptomatic or immunomodulatory drugs, the re-emergence of natural remedies, and vaccines and public health policies toward prevention. Wide-scale prevention through immunization appears to be within reach for respiratory syncytial virus and promising for influenza virus, whereas additional effort is needed in regard to rhinovirus, as well as other respiratory tract viruses. (J Allergy Clin Immunol 2017;140:921-32.)

Key words: Influenza, bronchiolitis, common cold, respiratory syncytial virus, rhinovirus, vaccine, monoclonal, antiviral, natural products, public health

Discuss this article on the JACI Journal Club blog: www.jaci-online.blogspot.com.

The respiratory system is one of the main portals of entry for human pathogens. Although precise calculations are challenging because of methodology and inherent variability, the number of potentially infectious viruses we breathe every day can be in the range of many thousands.1 Thus it is not surprising that viral respiratory tract infections (vRTI) are the most common human diseases, leading to enormous health and economic burden.2 A wide variety of conditions fall within the spectrum of vRTIs. Many of these are by themselves major public health concerns: influenza, acute bronchiolitis, viral pneumonia, and common colds. Together with their downstream effects (ie, acute exacerbations of asthma and chronic obstructive pulmonary disease [COPD]), all result in vast amounts of morbidity, mortality, and health care costs, including primary care visits, hospitalizations, and deaths but also inappropriate use of antibiotics, loss of productivity, and effects on quality of life.3-5

Respiratory tract viruses have been isolated and characterized during the last century, starting from influenza virus (IFV) in the 1930s and followed by respiratory syncytial virus (RSV), coronaviruses, adenoviruses, and rhinoviruses in the 1950 to 1960s; nevertheless, “new” viruses or subtypes, such as human metapneumovirus or rhinovirus C, are still being identified.6,7 Even though several of these viruses are typically associated with a clinicopathologic entity (eg, IFV with influenza, RSV with bronchiolitis, and rhinovirus with the common cold), there is also extensive overlap, and it is often difficult to identify the etiologic agent based on clinical grounds alone.8 Consequently, when considering prevention and treatment of vRTI, potential targets include specific pathogens, the immune response, disease transmission, or just symptoms.

Here we provide an overview of the options and highlight some of the most promising approaches in vRTI treatment, including symptomatic medication, immunomodulatory drugs, antiviral agents, and natural products, as well as in vRTI...
prevention, ranging from vaccines to immunostimulators and public health policies. This is a vast field, and thus we emphasize advances that might be relevant in tackling the virus-induced aspects of allergic disease, such as asthma exacerbations.

**TREATMENT**

**Symptom medications**

Most mild viral respiratory illnesses are managed symptomatically with over-the-counter medications, such as nasal decongestants, antipyretics/analgesics, antitussives, or expectorants, on which no major improvements are foreseen. Although generally well tolerated for short-term relief, some agents can have adverse effects, especially in young children. Therefore the US Food and Drug Administration has issued a warning against the use of over-the-counter cough and cold products in children younger than 4 years of age.27 Furthermore, the use of decongestants should be minimized, especially in children, whereas codeine has been restricted in children by the European Medical Agency since 2015.10 Selective COX inhibitors, such as celecoxib and mesalazine, have been widely used in clinics for their antipyretic, analgesic, and anti-inflammatory properties in patients with airway diseases, whereas their combination with neumainidase inhibitors (NAIs) has significantly improved the survival of IFV-infected mice.13

Recent studies have revealed a new genus of specialized proresolving lipid mediators (SPMs), including lipoxins, resolvins, protectins, and maresins, enhancing anti-inflammatory, antiviral, and proresolving mechanisms.28 Medications interfering with prostanoid and lipoxigenase biosynthesis and signaling, thus affecting resolution and SPM switching, such as aspirin and nonsteroidal anti-inflammatory drugs, have been suggested as potential agents modulating antiviral immunity.13,15,16 whereas several SPM resolution agonists are in clinical development programs.

Symptomatic relief can also be sought in severe cases. Noninvasive ventilation can reduce respiratory distress in patients with acute viral bronchiolitis.20 Very recently, new devices delivering totally conditioned gas (37°C at 100% relative humidity) through a very high-flow nasal cannula (up to 60 L/min) have been indicated for bronchiolitis mainly as rescue therapy to reduce the need for admission to the intensive care unit.15

**Immune and antiviral pathway modulators**

Although vRTIs are most often short-lived events, impaired antiviral clearance and/or activation of inflammatory pathways lead to important downstream complications, such as exacerbations of asthma or COPD.19 The immune and antiviral mechanisms leading from infection to exacerbation have been scrutinized, and medications targeting these pathways are being evaluated as promising candidates to reduce disease burden. Impaired interferon production has been observed in patients with various obstructive respiratory diseases, potentially contributing to enhanced susceptibility to and/or severity of virus-induced acute airway exacerbations.24 Although inhaled IFN-β supplementation has not shown a clear effect in preventing virus-induced symptom worsening in patients with mild asthma, subanalysis in patients with severe asthma showed a protective effect.25 Interestingly, in an experimental model exogenous administration of IFN-λ1 induced a strong and more prolonged antiviral state than IFN-β.26 Moreover, experimental studies in an allergic asthma model showed that IFN-λ supplementation enhanced Th1 immunity by inducing IFN-γ and suppressing Th2 and Th17 responses through modulation of lung CD11c+ dendritic cell function.24,25 Novel antibody-based drugs with antirhinovirus and immunomodulatory effects act through IFN-β induction and suppression of Th2 responses in experimental models.26

The prototype synthetic Toll-like receptor (TLR) 4 antagonist Eritoran (E5564) and anti-TLR4 IgG therapy have been shown to block IFV lethality in mice by suppressing lung pathology, clinical symptoms, and viral titers.27,28 Other innate immune receptors, such as TLR2, also have potential for host-targeted therapeutic approaches.21

Interestingly, omalizumab, an anti-IgE mAb, prevents asthma exacerbations either by decreasing the duration and shedding of rhinovirus infection or by blocking the synergistic effect of rhinovirus infection on allergy.29,30 Because high-affinity IgE receptor (FceRI) cross-linking on plasmacytoid dendritic cells reduces IFN-α responses after viral infections, it is plausible that omalizumab enhances virus-induced IFN-α production in asthmatic patients, thus limiting virus spreading and infection severity.31

“Severe cytokine storm,” an entity associated with markedly higher levels of proinflammatory cytokines, has been associated with severe influenza infections; immunomodulatory agents have been proposed as potential therapeutic strategies.32 Peroxisome proliferator-activated receptor γ agonists (eg, rosiglitazone and pioglitazone) are critical regulators of inflammation and have been promising in improving the clinical outcome of severe influenza infections.33 Their development slowed down from 2000 to 2005 because of possible cardiovascular side effects; however, in 2015, the US Food and Drug Administration lifted restrictions based on new safety data.34 Moreover, sphingosine-1-phosphate receptor 1 agonists 1, which are located mainly on pulmonary endothelial cells, exhibit cytokine storm–blunting activity by suppressing both innate cellular and cytokine/chemokine responses, particularly when combined with antiviral agents.35

There is increasing interest in the use of macrolides to treat or prevent virus-induced asthma exacerbations, although microbial resistance remains a major hurdle, and therefore they are not currently indicated. Early in vivo evidence suggested that azithromycin has anti-inflammatory and antiviral effects through induction of interferon-stimulated gene mRNA expression and reduced viral replication and release in patients with asthma and chronic obstructive lung disease.36,37 In a randomized clinical trial including wheezing preschool-aged children, early azithromycin administration significantly reduced the likelihood of a severe lower respiratory tract infection.38 Novel macrolides (Mycobacterium avium complex 5) with anti-inflammatory, antibacterial, and, more importantly, interferon-augmenting activity in airway epithelium have been identified.39 Finally, in vitro models have demonstrated that α1-antitrypsin exerts anti-inflammatory effects in airway epithelial cells from rhinovirus-infected patients with COPD, potentially through inhibition on caspase-1 activity, suggesting α1-antitrypsin as a potential anti-inflammatory agent.40

**Antivirals**

vRTIs are usually characterized by an acute and self-limiting course, which means that the peak of viral replication usually precedes or parallels the appearance of clinical symptoms. As a result, the time window from verification and/or typing of the pathogen, allowing a specific therapeutic intervention, is
extremely narrow. Additional challenges need to be overcome, such as the structural variation of viral proteins, multiple genotypes, and high mutation rates. Accordingly, only a very limited number of specific antiviral drugs are currently licensed, and promising approaches mostly aim to control severe complications, reduce disease burden, or transmission. Antiviral strategies aim to block particular stages of the viral lytic cycle, including attachment and entry to the host cell, replication, transcription, and translation (Fig 1).41

In principle, preventing a viral pathogen from entering the host cell represents the ideal antiviral strategy because the virus is not allowed to “hack” the host: IFV NAIs have been successfully used to competitively bind the sialic acid–binding pocket of neuroaminidase and are good examples of this approach. Oseltamivir and zanamivir have been used as anti-flu therapies42, whereas laninamivir and peramivir show antiviral activity against wild-type but also against oseltamivir-resistant and NAI-resistant strains, respectively.43,44 The nonenveloped rhinoviruses use viral capsid structures to bind their receptors (intercellular adhesion molecule 1 [ICAM-1], low-density lipoprotein receptor, and cadherin-related family member 3).45 Even though more than 50% of rhinovirus strains use ICAM-1 for cell entry, an ICAM-1 competitor, tremacamra, did not make it into the clinic despite initially promising results,46 and no anti–ICAM-1 drugs are currently available.

Another strategy is to prevent capsid uncoating and further assembly of new virions. This strategy has been successfully used against IFV and severe acute respiratory syndrome (SARS)–coronavirus, which use a class 1 fusion mechanism.47 DAS181 (Fludase, NexBio, Inc, San Diego, Calif) is a fusion construct that cleaves the sialic acid receptors on host cells, and its antiviral spectrum includes IFV and parainfluenza viruses (PIVs).48 Nonenveloped viruses, such as rhinovirus, release their genomes through a conformational shift of the capsid proteins accompanied by an expansion of the viral shell along with the opening of symmetry-related channels (pores) from which the genome is released (virus uncoating).49,50 Various capsid-binding compounds against rhinoviruses have been tested (R and WIN series) without ultimate success.51 Pleconaril, BTA798 (vapendavir), and pocapavir (V-073) are still under clinical evaluation.52 Of note, a major drawback of capsid binders is the rapid emergence of resistance.52 Several fusion inhibitors are being developed for the treatment of RSV and have been reviewed elsewhere.3,53

Because of their limited coding capacity, viruses rely on the production of polyproteins that need to be cleaved into functional subunits by viral proteases. The enterovirus polyprotein is cleaved by a family of cysteine proteases, which are highly conserved among different subtypes but lack homology with human proteases. Unfortunately, after failed attempts with ruprintrivir (AG7088) and AG7404, which showed antiviral activity in vitro but not in vivo, no similar agents are being pursued currently.52 The use of HIV protease inhibitors, such as lopinavir and ritonavir, in patients with SARS has not been associated with any proved benefit, although retrospective studies reported that severe outcomes (acute respiratory distress syndrome or death) occurred less often in those receiving a combination of lopinavir/ritonavir and ribavirin with corticosteroids.54

FIG 1. Viral infection cycle and antiviral medication targets. New antiviral agents have been designed to target most aspects of the viral lifecycle, including receptor binding, fusion, uncoating, translation, and replication. Examples of agents under development are listed alongside each function.
Polymerase inhibitors (nucleoside/nucleotide analogs) act by leading to termination of the polynucleotide chain elongation. Ribavirin has been used for the treatment of severe RSV-related disease in high-risk infants and in combination with protease inhibitors in patients with SARS, but its use has been limited because of cost and unconfirmed efficacy toward severe outcomes. ALS-008176 is a promising orally bioavailable produg of the novel RSV replication inhibitor ALS-008112 (a cytidine nucleoside analogue), which inhibits RSV replication. Other promising polymerase inhibitors include amiloride (competitive inhibitor of coxsackie virus B3 RNA polymerase) and GPC-N114 (multiple genera in Picornaviridae) but are still in the early stages. Favipiravir (T-705) is an antiviral drug that selectively inhibits the RNA-dependent RNA polymerase of IFV, as well as several other viruses.

Umifenovir has been shown to inhibit various human respiratory RNA viruses, including several strains of IFV-A and IFV-B, RSV, PIV3, and rhinovirus B14. It also demonstrates inhibitory activity against other viruses, enveloped or not, responsible for emerging or globally prevalent infectious diseases.

Finally, a most promising but also challenging antiviral approach is through use of antisense oligonucleotides. Antisense oligonucleotides are single-stranded deoxyribonucleotide oligomers with a sequence complementary to a target mRNA transcript. Thus viral genomic RNA or viral mRNA can be targeted directly. Antisense technology and RNA interference have been experimentally explored in targeting measles virus, SARS-coronavirus, coxsackievirus, enteroviruses and rhinoviruses, PIV, human metapneumovirus, IFV, and RSV genomes. The RNA inhibition–based therapeutic that is furthest advanced in clinical development at this time is against RSV. ALN-RSV01 is an unmodified, naked, small interfering RNA designed to inhibit the replication of RSV by interrupting the synthesis of the viral N protein. The sequence of the target is well conserved throughout naturally occurring RSV A and B genotypes.

In all, new antivirals are being explored continuously, particularly for life-threatening viruses, such as IFV (influenza) and RSV. Rhinoviruses, even though simple in terms of genome organization and protein coding, have proved extremely difficult to target, mostly because of their high diversity and immune-evading strategies but also to some extent to the underestimation of rhinovirus infection clinical consequences.

### Natural products

Within the past few years, scientific communities all over the world have shown renewed interest in the search for novel immune-stimulating or antiviral agents of plant origin for either treatment or prevention, often using ethnomedicinal approaches. Natural compounds are widely recognized as privileged structures trimmed by evolutionary processes to interact with macromolecular targets. Plants use a diverse set of biochemical pathways to generate several secondary metabolites representing ecosystem adaptations to help plants to survive various environmental stresses and protect them from infections and infestations. The antiviral potential of plant extracts or compounds varies among viruses. Natural compounds occupy an equally large and complex chemical space as synthetic compounds. In the case of antiviral agents, 80% of 46 entities registered in the last approximately 30 years (1981-2010) can be classified as natural product botanicals, synthetic but natural product mimics, natural product pharmacophores, or a combination of the latter 2. Oseltamivir, a success story in IFV drug synthesis, has its roots in nature: the abundant plant constituents quinic acid and shikimic acid are used as its starting materials.

A screening strategy was applied to investigate crude extracts from 260 plant species on their inhibiting potential toward NAIs of Clostridium perfringens. Moreover, 14 bioactive compounds from Cleistocalyx opercularus buds were discovered by using an anti-IFV screening approach. The Chinese Academy of Medical Sciences tested more than 10,000 plants. Among them, a pronounced neuroaminidase-inhibiting effect was observed for the herb extract of Elsholtzia rugulos. Some extracts from Agrimonia pilosa, Echinacea purpurea, and Prunus mume or the multicomponent mixtures polyphenol fractions from Punica granatum or secoiridoid glucosides from Ligustrum lucidum have shown a significant reduction of virus-induced cytopathic effects and in general antiviral or anti-influenza activity.

A 10% to 20% risk reduction of common cold incidence with the use of Echinacea species supplements has been shown. Moreover, a recent meta-analysis demonstrated benefit on long-term (2-4 months) prevention with Echinacea species on recurrent respiratory tract infections (RTIs). Another promising compound is BNO 1016, a fixed combination of 5 herbal substances that significantly reduced symptoms and led to faster recovery in patients with acute viral rhinosinusitis.

Reported antiviral effects from natural products, regardless of whether obtained from clinical trials or empiric knowledge, can only give clues for further research. However, it appears that we are entering a new golden age of natural product drug discovery.

### PREVENTION

Prevention of viral respiratory illness is attempted by either avoiding exposure or strengthening immune defenses, either nonspecifically with immunostimulators or specifically with vaccines. Often, but not always, interventions are targeted toward high-risk groups for a particular infection (eg, RSV in infants and the elderly and IFV in patients with asthma).

### Immunostimulators

A variety of compounds (of microbial, herbal, or synthetic origin) have been used and are still being developed as nonspecific immunomodulatory agents to enhance or modulate the immune response against respiratory pathogens in a preventive or sometimes also therapeutic context. The effectiveness of these agents is usually moderate, and therefore they are only used as secondary supportive measures. As such, however, their potential should not be underestimated.

Among several agents based on bacterial components (OM-85 BV, LW 50020, PMBL, D53, and RU 41740), OM-85 BV, a lyophilisate of water-soluble fractions of bacteria commonly detected in patients with RTIs, has been extensively studied, and a role in the prevention of both acute and recurrent RTIs has been shown. Mechanistic studies have confirmed pleiotropic immunomodulating effects on both innate and adaptive immunity.
Pidotimod, a synthetic dipeptide molecule, induces a variety of immunomodulatory effects and has shown some efficacy in preventing RTIs, although this was not always confirmed. Probiotic supplementation has been shown to reduce the incidence, duration, and severity of upper respiratory tract infections through immune modulation and in particular rhinovirus infection through altering nasal innate inflammatory responses. Vitamin D (25-hydroxyvitamin D) has a modulatory role in host defense, inflammation, immunity, and epithelial repair after respiratory tract infections. A recent meta-analysis has confirmed that vitamin D supplementation reduces the overall risk of acute respiratory tract infections. Data from \textit{in vitro} rhinovirus-infected human primary bronchial epithelial cells showed that exogenous vitamin D can reduce rhinovirus replication through increasing interferon and cathelicidin gene expression. A significant amount of research is still dedicated to the efficacy of vitamin D supplementation, although not without controversy. Hopefully, specific indications will be consolidated soon.

Despite widespread use and a multitude of studies, the role of vitamins C or zinc supplements is still inconclusive in relation to their action against the common cold.

Interestingly, meditation and exercise might significantly contribute to the reduction of RTI burden, suggesting that the immunostimulatory capacity of nonpharmacologic measures should also be considered.

**Public health measures**

The high transmission rate and epidemic nature of respiratory tract viruses indicate that effective public health measures to reduce transmission can have a substantial role in the overall prevention of these infections. A plethora of studies and meta-analyses delineated the important contribution of health policies in reducing transmission of epidemic respiratory tract viruses. In an elegant randomized control trial, an automated Web-based intervention that maximized handwashing intention was associated with fewer episodes of influenza-like illness, shorter duration of symptoms, and fewer antibiotic prescriptions in the intervention group. Although similar results regarding handwashing have been confirmed in a Cochrane meta-analysis, hand hygiene interventions in educational settings were not as unequivocally effective. Low adherence to hand hygiene recommendations was correlated with higher incidence of IFV infection among health care workers during the 2009 pandemic. The use of face masks has been shown to be highly effective in the interruption of respiratory viral spread. This has been demonstrated further in a cluster randomized trial in which a reduced odds ratio of influenza infection secondary attack was observed in the intervention group. Face masks are now regularly worn in some communities, especially in Asia, but much less so in western societies. Taken together, it seems that public health measures might provide a valuable ally in decreasing the burden of respiratory tract infections in the community.

**Vaccines and mAbs**

Both vaccines and mAbs (passive immunization) are relevant interventions. Vaccines for IFV, rhinovirus, and RSV were initially developed as long ago as the 1940s to 1960s, although with mixed success, mostly because of rapid virus evolution. Improved understanding of vaccine immunology and technologic developments place us now closer than ever to developing highly effective vaccines against the major respiratory tract viruses.

mAb therapies to viral infections, such as EBV (rituximab) or RSV (palivizumab), provide passive immunization and are licensed, whereas similar agents targeting influenza and other viruses are in preclinical development. Neutralizing antibodies can bind and inactivate viruses, inhibit viral cell entry (blocking receptor binding or conformational changes), prevent the release of virions from the cell, or modulate immune effector functions. Engineering and production strategies to produce antibody fragments, higher-affinity binding, and longer half-life are contributing to a lower overall cost for therapy, although vaccines are still considered preferable in most cases. It is notable that effective neutralizing mAb epitopes can also inform the rational design of vaccines.

Different types of vaccines to respiratory viruses exist, and these are shown in Fig 2. Traditionally, either live attenuated or inactivated vaccines are used. More recently, subunit vaccines made of detergent-disrupted whole viruses or purified viral proteins are also common. Furthermore, promising approaches use microparticle/nanoparticle material and recombinant technologies to produce broadly immunogenic, often self-adjuvanting, reproducible, and safe vaccine responses. These delivery systems include synthetic polymers, virosomes, virus-like particles (VLPs), liposomes, lipid nanoparticles, proteins, emulsions, and immune-stimulating complexes.

Currently, naturally occurring particles are favored because of safety concerns, even though synthetic polymers, such as polyactic-co-glycolic acid, are in use, and gold nanoparticles have shown promising results. Self-assembling protein nanoparticles, such as ferritin cages and vaults, have also shown promising preclinical data. Layer-by-layer peptide-fabricated vaccine containing alternately charged poly-L-glutamic acid and poly-L-lysine layers with RSV peptides added have been efficacious in animals.

A virosomal adjuvanted vaccine composed of reconstituted IFV envelope, effectively removing the core proteins and RNA, has been available for years with excellent tolerability and efficacy. Several VLP vaccines based on hepatitis B virus surface antigen have been approved for viral infections, such as human papilloma virus and other microbes (eg, malaria), although an IFV candidate has not progressed. Nevertheless these and other VLPs offer promise because of their valency, similar immune presentation to pathogens, and antigenic preservation.

Adjuvants form a vital part of many vaccines; however, only aluminum hydroxide and oil in water emulsions are currently approved. A number of novel adjuvants, such as microparticles, tyrosine, Matrix M, pathogen-associated molecular patterns, and chitosans, are in development.

DNA and RNA vaccines induce an immune response to the nucleic acid–encoded antigen. Impressive results have been reported in animals for a single low-dose intradermal, nonreplicating DNA vaccine for RSV; however, whether this will translate effectively to human subjects is not yet known. To enhance immunogenicity, RNA vaccines have been encapsulated in nanoparticles, achieving sterilizing immunity
for Zika virus in mice,\textsuperscript{117} as well as being incorporated into virus-based self-replicating constructs known as replicons.\textsuperscript{118,119} Active IFV vaccination already forms the core of the global strategy against severe seasonal and pandemic influenza. Trivalent and more recent quadrivalent vaccines are largely efficacious in healthy adults provided an adequate match between circulating and vaccine strains.\textsuperscript{120} Higher-dose (60 mg) and MF59-adjuvanted vaccines are available for elderly patients.\textsuperscript{121,122} Similarly, pandemic vaccines can offer greater cross-clade protection because of the presence of improved (AS03 or MF59) adjuvants.\textsuperscript{123}

The current frontier of IFV vaccine development is “universal” vaccines (Table I).\textsuperscript{124-146} Ideally, these would protect not only from circulating and pandemic strains but also from novel epitopes that might evolve in the future. Many such vaccines are currently in preclinical and early clinical stages. Heterosubtypic cross-reactive antibodies to IFV-A against the hemagglutinin (HA) stalk\textsuperscript{147} have been isolated from immune subjects,\textsuperscript{148} leading to mAbs now in phase 2.\textsuperscript{98,124} Similar multilinesage HA-stalk antibodies to IFV-B have also been reported.\textsuperscript{150} Other conserved proteins have also been targeted, and an anti-M2e antibody is in development.\textsuperscript{150} Therefore passive immunization or postinfection treatment might soon become another tool to combat IFV.\textsuperscript{125,126,151}

HA-stalk and chimeric head/stalk-based vaccines have also shown encouraging preclinical results.\textsuperscript{103,152-154} A further vaccine strategy based on conserved epitopes in proteins, such as M1, NP, and PB1, involves induction of CD4\textsuperscript{+} and CD8\textsuperscript{+} T-cell immunity,\textsuperscript{155} leading to development of a promising MVA viral vector vaccine. Other vaccines use multiepitope peptides to induce IFV-specific T-cell responses, reducing viral shedding in human subjects.\textsuperscript{127,133} Self-replicating RNA nanoparticles also encoding multiple proteins and hepatitis B virus–based VLPs expressing M2e and HA epitopes also appear promising.\textsuperscript{156}

There are currently no licensed vaccines and only 1 mAb (palivizumab) approved for the prevention of RSV infection. However, there are numerous candidates in clinical trials, as recently reviewed.\textsuperscript{3}

Suptavumab, an anti-F mAb,\textsuperscript{157} has reached phase III trials in preterm infants. MEDI8897 offers 9-fold greater potency than palivizumab and has extended half-life in primates, suggesting a once per season dosing.\textsuperscript{128}

Candidate vaccines are based on live attenuated strains, subunit, vector, and nanoparticle technologies with a range of adjuvants. Chimeric and combination vaccines using expression vectors in VLPs show much promise.\textsuperscript{158} Recent preclinical results exhibit effective neutralization of RSV.\textsuperscript{159-163} The most advanced of these is the Novavax F-protein VLP nanoparticle vaccine with aluminum hydroxide adjuvant, which is in phase III for maternal vaccination.\textsuperscript{29,130} Transplacental transmission of neutralizing antibodies has been demonstrated in preclinical studies, although this has not conferred significant protection from RSV.\textsuperscript{164}

Recombinant DNA vaccines are also promising because of their apparent ability to induce a balanced Th1/Th2 response, with a broad IgG/IgA profile mimicking live RSV challenge.\textsuperscript{165} Intranasal and oral vaccine formulations are now in the early stages of clinical studies.\textsuperscript{166}
### TABLE I. IFV and RSV vaccines and mAbs currently in clinical trials

| Phase       | Type                          | Registration no.     | Study sponsor                                    | References                              | Comments |
|-------------|-------------------------------|----------------------|--------------------------------------------------|-----------------------------------------|----------|
| **Influenza** |                               |                      |                                                  |                                         |          |
| **Standard vaccines** |                               |                      |                                                  |                                         |          |
| Topical imiquimod in immunocompromised patients | Phase 2, pilot ID and IM vaccination (Intanza/Mutagrip) | NCT02960815 | University of Lausanne Hospitals | TLR7 adjuvant |          |
| H7N9 with AS03 adjuvant | Phase 1 | NCT02957656 | NIAID | |          |
| H7N9 with MF59 | Phase 1 | NCT02251288 | NIAID | |          |
| H5N8 with AS03 or M59 | Phase 1 | NCT03014310 | NIAID | |          |
| IVACFLU-A/H5N1 | Phase 2/3 | Inactivated vaccine | NCT02612909 | Institute of Vaccines and Medical Biologicals, Vietnam | |          |
| GC3110B | Phase 3 | Multidose quadrivalent | NCT02915809 | Green Cross Corporation | |          |
| V118.18 | Phase 3 | Quadrivalent MF59 adjuvanted | EudraCT: 2015-000728-27 | Sequiris | |          |
| **Heterotypic vaccines** |                               |                      |                                                  |                                         |          |
| FLU-v004 | Phase 2b | Broad-spectrum synthetic epitope mixture: M1, NP, and M2 | NCT02962908 | PepTcell | 131-133 | H1N1 challenge model |
| MVA-NP+M1 | Phase 2a | MVA viral vector vaccine | EudraCT: 2009-010334-21, NCT00942071 (Phase I study) | University of Oxford/Wellcome Trust | 134,135 | Completed 2010, reported 2017 |
| M-001 | Phase 2b | Recombinant multimeric protein – 9 conserved epitopes from HA stem, M1, NP | EudraCT: 2015-001979-46 | BiondVax Pharmaceuticals | 127,136-138 |          |
| Multimeric M-001 followed by H7N9 with M59 | Phase 2 | | NCT03058692 | NIAID | |          |
| **Passive immunization** |                               |                      |                                                  |                                         |          |
| MEDI8852 | Phase 2a | | NCT03028909 | MedImmune | Monoclonal IgG1κ against type A influenza—targets conserved HA stalk group 1 and 2 |
| VIS410 | Phase 2a | | NCT03040141 | Visterra | 126 | Anti-HA monoclonal for type A influenza group 1 and 2 |
| CR6261 | Phase 2 | | NCT02371668 | NIAID | 98 | Anti-HA monoclonal for type A influenza; targets helical region in the stem; group 1 only |
| MHAA4549A | Phase 2 | | NCT02623322, NCT02293863 | Genentech | 124 | Monoclonal IgG1 against type A influenza —targets conserved HA stalk group 1 and 2 |
| CTP27 | Phase 2 | | NCT02071914, EudraCT: 2013-004544-32, KCT0002211 | Celltrion | Mixed antibodies to group 1 and 2 |
| TCN-032 | Phase 2a (completed 2012) | | NCT01719874 | Theraclone Sciences | 125 | M2e monoclonal type A influenza |
| **RSV** |                               |                      |                                                  |                                         |          |
| RSV vaccine GSK3389245A | Phase 2 | RSV viral proteins in chimpanzee-derived adenovector | NCT02927873, EudraCT: 2016-000117-76 | GlaxoSmithKline | Phase 2 started recruiting in January 2017 IM in infants 12-17 mo |          |

(Continued)
Initial vaccination attempts\(^{167}\) and more recent preclinical experiments show that inactivated rhinovirus vaccines are type specific and not cross-neutralizing.\(^{8}\) However, although in animals\(^{168}\) rhinovirus antibody responses might be weakly cross-neutralizing, data from human subjects suggest that responses are mainly misdirected to internal epitopes.\(^{169}\) Understanding the full extent of rhinovirus diversity would probably be required to develop a panspecies vaccine.

**CONCLUSION**

Multiple strategies are being developed to reduce the burden of viral respiratory illnesses. It is likely that many of these strategies will find a relevant indication: antiviral strategies will most probably make sense in severe life-threatening situations or when a window of opportunity is clearly present, such as in specific virus seasons and susceptible populations. Ideally, prevention at a wide scale through immunization will be able to reduce the overall burden of respiratory infections with a huge effect. This appears to be within reach for RSV and IFV, whereas additional effort is needed toward rhinovirus. Public health measures should be expanded because they can be critical in reducing the effect and contain potential epidemics.

**REFERENCES**

1. Herfst S, Bohringer M, Karo B, Lawrence P, Lewis NS, Mina MJ, et al. Drivers of airborne human-to-human pathogen transmission. Curr Opin Virol 2017;22:22-9.
2. Tang JW, Lam TT, Zaraket H, Lipkin WI, Drews SJ, Hatchette TF, et al. Global epidemiology of non-influenza RNA respiratory viruses: data gaps and a growing need for surveillance. Lancet Infect Dis 2017 [Epub ahead of print].
3. Mazur NI, Martinon-Torres F, Baraldi E, Fauroux B, Greenough A, Heikkinen T, et al. Lower respiratory tract infection caused by respiratory syncytial virus: current management and new therapeutics. Lancet Respir Med 2015;3:888-900.
4. Matias G, Taylor R, Haguinet F, Schuck-Paim C, Lustig R, Shinde V. Estimates of hospitalization attributable to influenza and RSV in the US during 1997-2009, by age and risk status. BMC Public Health 2017;17:271.
5. Papadopoulos NG, Androutsopoulou A, Akdis C, Dahlen SE, Djukanovic R, Edwards J, et al. Asthma research in Europe: a transformational agenda for innovation and competitiveness. Eur Respir J 2017;49:1602294.
6. Van Epps HL. Influenza: exposing the true killer. J Exp Med 2006;203:803.
7. Berry M, Gamieldien J, Fielding BC. Identification of new respiratory viruses in the new millennium. Viruses 2015;7:9966-99.
8. Lee S, Nguyen MT, Currier MG, Jenkins JB, Strobert EA, Kajon AE, et al. A polyvalent inactivated rhinovirus vaccine is broadly immunogenic in rhesus macaques. Nat Commun 2016;7:12838.
9. Lowry JA, Leeder JS. Over-the-counter medications: update on cough and cold preparations. Pediatr Rev 2015;36:286-98.
10. Laccourreye O, Werner A, Giroud JP, Couligner V, Bonfils P, Bondon-Guittot E. Benefits, limits and danger of ephedrine and pseudoephedrine as nasal decongestants. Eur Ann Otorhinolaryngol Head Neck Dis 2015;132:31-4.
11. Morte A, Kandos P. Comprehensive evidence-based review on European antitussives. BMJ Open Respir Res 2016;3:e000137.
12. Rumzhum NN, Ammit AJ. Cycloxygenase 2: its regulation, role and impact in airway inflammation. Clin Exp Allergy 2016;46:397-410.
13. Zheng BJ, Chan KW, Lin YP, Zhao QY, Chan C, Zhang HJ, et al. Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Natl Acad Sci U S A 2008;105:8091-6.
14. Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin Immunol 2015;27:200-15.
15. Coulombe F, Jaworska J, Verway M, Tzelepis F, Massoud A, Gillard J, et al. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity 2014;40:554-68.
16. Shirey KA, Lai W, Pletneva LM, Karp CL, Divanovic S, Blanco JC, et al. Role of the lipoxigenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal Immunol 2014;7:549-57.
17. Combret Y, Prieur G, Le Roux P, Medrinal C. Non-invasive ventilation improves respiratory distress in children with acute viral bronchiolitis: a systematic review. Minerva Anestesiol 2017;83:624-37.
18. Kepreotes E, Whitehead B, Attia J, Oldmeadow C, Collison A, Searles A, et al. Multicentre randomised controlled trial. Lancet 2017;389:930-9.
19. Ritche AJ, Farre HA, Singanayagu A, Jackson DJ, Mallia P, Johnston SL. Pathogenesis of viral infection in exacerbations of airways disease. Ann Am Thorac Soc 2012;12(suppl 2):S15-32.
20. Papadopoulos NG, Christodoulou I, Rohde G, Agache I, Almapqvist C, Bruno A, et al. Viruses and bacteria in acute asthma exacerbations—a GA(2) LEN-DARE systematic review. Allergy 2011;66:458-68.
21. Shirey KA, Lai W, Patel MC, Pletneva LM, Pang C, Kurt-Jones E, et al. Novel strategies for targeting innate immune responses to influenza. Mucosal Immunol 2016;9:1173-82.
22. Djukovanic R, Harrison T, Johnston SL, Gabby F, Wark P, Thomson NC, et al. The effect of inhaled IFN-beta on worsening of asthma symptoms caused by viral infections. A randomized trial. Am J Respir Crit Care Med 2019;190:145-54.
23. Gulraiz F, Bellingham C, Dentener MA, Reynaert NL, Gajaartan GR, Beuken EV, et al. Efficacy of IFN-lambda1 to protect human airway epithelial cells against human rhinovirus 1B infection. PLoS One 2014;9:e95134.
24. Kolsdsia O, Hausdorff M, Stavropoulos A, Koch S, Tselepis G, Ubil C, et al. IL-28A (IFN-lambdalpha) modulates lung DC function to promote Th1 immune skewing and suppress allergic airway disease. EMBO Mol Med 2013;5:1348-61.
25. Toussaint M, Jackson DJ, Swieboda D, Guedan A, Tseukostogoulo TD, Ching YM, et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 2017;23:681-91.
26. Pettova NV, Emelyanova AG, Gorbonov EA, Edwards MR, Walton RP, Bartlett NW, et al. Efficacy of novel antibody-based drugs against rhinovirus infection: in vitro and in vivo results. Antiviral Res 2017;142:185-92.
27. Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 2013;497:498-502.
28. Younan P, Ramanathan P, Graber J, Guosvsky F, Bukreyev A. The toll-like receptor 4 antagonist Eritoran protects mice from lethal flavivirus infection. MBio 2017;8:e00226-17.
29. Teach SJ, Gill MA, Togias A, Sorkness CA, Arbex SJ Jr, Calatroni A, et al. Preseasional treatment with either osalmizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol 2015;136:1476-85.
60. Helmstadter Axel SC. Traditional use of medicinal agents. Drug Discov Today 2014;19:1-7.

61. Leonov A, Arlia-Ciommo A, Piano A, Svistkova V, Lutchman V, Medkour Y, et al. Longevity extension by phytochemicals. Molecules 2015;20:6584-72.

62. Lu Q, Ye X, Xu X, Yang C. Efficacy and safety of pidotimod in reducing natural killer T cells in peripheral blood and alleviates asthma in children. Pharmacology 2015;95:139-49.

63. Ferrario BE, Garuti S, Braido F, Canonica GW. Pidotimod: the state of art. Clin Mol Allergy 2015;13:8.

64. Bozzetto S, Pirillo P, Carraro S, Berardi M, Cesca L, Stocchero M, et al. Metabolomic profile of children with recurrent respiratory infections. Pharmacol Res 2017;115:162-7.

65. Mameli C, Pasinato A, Picca M, Bedogni G, Pisanelli S, Zuccotti GV. Pidotimod and their inhibitory effects on novel H1N1 antibodies. Nature 2013;499:102-6.

66. Kortz AM, Coe NA, Ciceran A, Alter AJ. Clinical and immunological benefits of OM-85 Bacteroides fragilis vaccine in children with recurrent respiratory tract infections. Vaccine 2014;32:2546-52.

67. Namazova-Baranova LS, Aksyeeva AA, Khairat SM, Kozhevnikova TN, Taranoshenko TE, Tuzinka IA, et al. Efficacy and safety of pidotimod in the prevention of recurrent respiratory infections in children: a multi-centre study. Int J Immunopathol Pharmacol 2014;27:413-9.

68. Hsieh JY, Wang WC, Chen KL, Lin SL, et al. The action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol J 2009;6:197.

69. Ploschka S, Stein M, Schoop R, Hudson JB. Anti-viral properties and mode of action of standardized Echinacea purpurea extract through highly pathogenic avian influenza virus (H5N1) neuraminidase. J Nat Prod 2010;73:1636-42.

70. Ma SC, He ZD, Deng XL, But PP, Ooi VE, Xu HX, et al. In vitro evaluation of purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine 2009;16:1127-36.

71. Ma SC, He ZD, Deng XL, But PP, Ooi VE, Xu HX, et al. In vitro evaluation of secoiridoid glucosides from the fruits of Ligustrum lucidum as antiviral agents. Biol Pharm Bull 2008;31:511-5.

72. Haidari M, Ali M, Ward Cassells S 3rd, Madjid M. Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine 2009;16:1127-36.

73. Schapoval A, Klein P, Johnston SL. Echinacea reduces the risk of recurrent respiratory tract infections and complications: a meta-analysis of randomized controlled trials. Adv Ther 2015;32:187-200.

74. Esposito S, Marchisio P, Prada E, Daleno C, Porretti L, Carsetti R, et al. Impact of Echinacea purpurea L. extract on the upper respiratory tract infection. Vaccine 2014;32:2546-52.

75. Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009;9:325-41.

76. Herzenberg C, Hartmann K, Kunzi V, Kursteiner O, Mischler R, Lazar H, et al. Eleven layer-by-layer nanoparticle vaccines carrying the G protein CX3C motif protect against H1N1, H3N2 and H5N1 influenza A viruses. Antiviral Res 2017;141:66-76.

77. Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, Stanciu LA. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 2015;386:31-45.

78. Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017, 356:i6853.

79. Chen PY, Chiu JT, Tsai CD, et al. Taranushenko TE, Tuzankina IA, et al. Efficacy and safety of pidotimod for the prevention of acute respiratory infections in healthy children entering into daycare: A double blind randomized placebo-controlled study. Pharmacol Res 2015;97:79-83.

80. Namazova-Baranova LS, Alekseeva AA, Kharit SM, Kozhevnikova TN, Taranoshenko TE, Tuzinka IA, et al. Efficacy and safety of pidotimod in the prevention of recurrent respiratory infections in children: a multi-centre study. Int J Immunopathol Pharmacol 2014;27:413-9.

81. Hsu SY, Dong BR, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev 2015;(2):CD006895.

82. Turner RB, Woodfolk JA, Borish L, Steinek JW, Patrie JT, Muehling LM, et al. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection—a randomised controlled trial. Benef Microbes 2017;8:207-15.

83. Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, Stanciu LA. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol 2017;27:e1909.

84. Mariniene AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017, 356:i6853.

85. Telckian AG, Zderrenga MT, Edwards MR, Lazza-Stanca V, Malilla P, Johnston SL, et al. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral Res 2017;137:93-101.

86. Allan GM, Arroll B. Prevention and treatment of the common cold: making sense of the evidence. CMAJ 2014;186:190-9.

87. Barrett B, Haynek MS, Muller D, Rakel D, Ward A, Obasi CN, et al. Meditation or exercise for preventing acute respiratory infection: a randomized controlled trial. Ann Fam Med 2012;10:337-46.

88. Little P, Stuart B, Hobbs FD, Moore M, Barnett J, Popoola D, et al. An internet-delivered handwashing intervention to modify influenza-like illness and respiratory infection transmission (PRIMITT): a primary care randomised trial. Lancet 2015;386:1631-9.

89. Jefferson T, Del Mar CB, Dooley L, Ferroni E, Al-Ansary LA, Bawazer GA, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev 2011;(7):CD006207.

90. Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009;9:324-65.

91. Komatsu H, Tsuboi S, Kajiyama K, et al. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 2015;386:31-45.
109. Fiers W, De Filete M, El Bakker M, Schepens B, Roose K, Schotsaert M, et al. M2e-based universal influenza A vaccine. Vaccine 2009;27:6280-3.

110. Kushnir N, Streetfield SJ, Yusubov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 2012;31:58-65.

111. Heath MD, Swan NJ, Marriott AC, Silman NJ, Hallis B, Prevosto C, et al. Comparison of a novel microcrystalline tyrosine adjuvant with aluminium hydroxide for enhancing vaccination against seasonal influenza. BMC Infect Dis 2017;17:232.

112. Cox RJ, Major DJ, Pedersen G, Pathiranza RD, Hochuler K, Guiloffy K, et al. Marboviruses M H5N1 vaccine induces cross-H5 clade humoral immune responses in a randomized clinical trial and provides protection from highly pathogenic influenza challenge in ferrets. PLoS One 2015;10:e0131652.

113. Turley CB, Rupp RE, Johnson C, Taylor DN, Wolfsen J, Tussel L, et al. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine 2011;29:5145-52.

114. Dash M, Chellini F, Ottenbeire R, Chellini E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polymer Sci 2011;36:981-1014.

115. Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992;356:152-4.

116. Smith TRF, Schultheis K, Morrow MP, Kraynyak KA, McCoy JR, Yim KC, et al. Development of an intradermal DNA vaccine delivery strategy to achieve single dose immunity against respiratory syncytial virus. Vaccine 2017;35:2840-7.

117. Richter JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017;168:1114-25.e10.

118. Leitner WW, Ying H, Restifo NP. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 1999;18:765-77.

119. Lundstrom K. Replicon RNA viral vectors as vaccines. Vaccines (Basel) 2016;4:951.

120. Bedke N, Sammut D, Green B, Kehagia V, Dennison P, Jenkins G, et al. Transforming growth factor-beta promotes rhinovirus replication in bronchial epithelial cells by suppressing the innate immune response. PLoS One 2012;7:e44580.

121. Wilkinson K, Wei Y, Swijegers A, Rabbani R, Zarychanski R, Abou-Setta AM, et al. Efficacy and safety of high-dose influenza vaccine in elderly adults: a systematic review and meta-analysis. Vaccine 2017;35:2775-80.

122. Domnich A, Arata L, Amicizia D, Puig-Barbera J, Gasparini R, Panatto D. Effectiveness of MF59-adjuvanted seasonal influenza vaccine in the elderly: a systematic review and meta-analysis. Vaccine 2017;35:513-20.

123. Chada KE, Forshee R, Golding H, Anderson S, Yang H. A systematic review and meta-analysis of cross-reactivity of antibodies induced by oil-in-water emulsion adjuvanted influenza H5N1 virus monovalent vaccines. Vaccine 2017;35:3162-70.

124. Gupta P, Kamath AV, Park S, Chiu H, Lutman J, Maia M, et al. Preclinical pharmacokinetics of MHA4459A, a human monoclonal antibody to influenza A virus, and the prediction of its efficacious clinical dose for the treatment of patients hospitalized with influenza A. MAbs 2016;8:991-7.

125. Ramos EL, Lillie PJ, Berthoud TK, Spencer AJ, McLaren JE, Ladell K, et al. A Phase IIA study to assess the safety and efficacy of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine 2011;29:5145-52.

126. Wollacott AM, Boni MF, Szretter KJ, Sloan SE, Yousofshahi M, Viswanathan K, et al. T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP+M1 in adults aged over 50 years. PLoS One 2012;7:e48322.

127. Lillie P. A Phase IIA study to assess the safety and efficacy of a new influenza candidate vaccine MVA-NP+M1 in healthy adults—Flu002 Clinical Study Report. Available at: https://www.clinicaltrialsregister.eu/ctr-search/rest/download/result/attachment/2009-010334-21/118311. Accessed 31 July, 2017.

128. van Doorn E, Liu H, Ben-Yedidia T, Hassin S, Visconti I, Norby S, et al. Evaluating the immunogenicity and safety of a BiondVax-developed universal influenza vaccine (Multimeric-001) either as a standalone vaccine or as a prime to H5N1 influenza vaccine. Medicine (Baltimore) 2017;96:e6339.

129. Leffler GH, Ziv S, Brazili S, Babcock G, Ben-Yedidia T. Back to the future: immunization with M-001 prior to trivalent influenza vaccine in 2011/12 enhanced protection against 2014/15 epidemic strain. Vaccine 2017;35:715-5.

130. Atsmon J, Kate-livovski E, Shaikevich D, Singer Y, Volokhov L, Haim KY, et al. Safety and immunogenicity of multimeric-001—a novel universal influenza vaccine. J Clin Immunol 2012;32:595-603.

131. Yang CF, Wang CK, Malkin E, Schickli JH, Shambagh C, Zuo F, et al. Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in Phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine. Vaccine 2013;31:2822-7.

132. Gomez M, Mufson MA, Dubovsky F, Knightly C, Zeng W, Losonsky G. Phase-I study MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and parainfluenza-3 virus in seropositive children. Pediatr Infect Dis J 2009;28:655-8.

133. Glenn GM, Fries LF, Thomas DN, Smith G, Kropmejan E, Liu H, et al. A randomized, blinded, controlled, dose-ranging study of a respiratory syncytial virus recombinant fusion (F) nanoparticle vaccine in healthy women of childbearing age. J Infect Dis 2016;213:411-22.

134. O’Brien KL, Chandran A, Weatherholz R, Jafri HS, Griffin MP, Bellamy T. Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomized double-blind placebo-controlled trial. Lancet Infect Dis 2015;15:1398-408.

135. Carbone-Franzy X, Simões EA, Dagan R, Hall CB, Harris B, Hultquist M, et al. Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial. Pediatrics 2010;125:e53-51.

136. Palomo C, Maa V, Detalle L, Depla E, Cano O, Vázquez M, et al. Trivalency of a manoeuvre specific for the human respiratory syncytial virus fusion glycoprotein drastically enhances virus neutralization and impacts escape mutant selection. Antiviral Res 2014;105:45-56.

137. Boulvainova M, Blanco JC, Falsey AR, Mond J. Treatment with novel RSV Ig RI-002 controls viral replication and reduces pulmonary damage in immunocompromised Sigmodon hispidus. Bone Marrow Transplant 2016;51:119-26.

138. Corti D, Cameroni E, Guarino B, Kallwalid NL, Zhu Q, Lanzavecchia A. Tackling infection with broadly neutralizing antibodies. Curr Opin Virol 2017;24:60-9.

PAPADOPOULOS ET AL 931

J ALLERGY CLIN IMMUNOL VOLUME 140, NUMBER 4

---

**Evaluation of the immunogenicity and safety of different doses and formulations of a BiondVax-developed universal influenza vaccine (Multimeric-001) either as a standalone vaccine or as a prime to H5N1 influenza vaccine. Medicine (Baltimore) 2017;96:e6339.**

---

**Antimicrob Agents Chemother 2016;60:6498-509.**

---

**Evaluating the immunogenicity and safety of a BiondVax-developed universal influenza vaccine (Multimeric-001) either as a standalone vaccine or as a prime to H5N1 influenza vaccine. Medicine (Baltimore) 2017;96:e6339.**

---

**Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in Phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine. Vaccine 2013;31:2822-7.**

---

**Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial. Pediatrics 2010;125:e53-51.**

---

**Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomized double-blind placebo-controlled trial. Lancet Infect Dis 2015;15:1398-408.**

---

**Achieving high titer neutralizing antibody to RSVand other respiratory viruses in sub-2.8.**
152. Steel J, Lowen AC, Wang TT, Yondola M, Gao Q, Haye K, et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 2010;1: e00018-10.

153. Krammer F, Pica N, Hai R, Margine I, Palese P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol 2013;87:6542-50.

154. Ermler ME, Kirkpatrick E, Sun W, Hai R, Amanat F, Chromikova V, et al. Chimeric hemagglutinin constructs induce broad protection against influenza B virus challenge in the mouse model. J Virol 2017;91:e00286-17.

155. He W, Tan GS, Mullarkey CE, Lee AJ, Lams MM, Krammer F, et al. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytoxicity against influenza A virus. Proc Natl Acad Sci U S A 2016;113:11931-6.

156. Liu H, Frijlink HW, Huckriede A, van Doorn E, Schmidt E, Leroy O, et al. Influenza vaccine research funded by the European Commission FP7-Health-2013-Innovation-1 project. Vaccine 2016;34:5845-54.

157. Reichert JM. Antibodies to watch in 2017. MAbs 2017;9:167-81.

158. Kohlmann R, Schwannecke S, Tippler B, Ternette N, Temchura VV, Tenbusch M, et al. Protective efficacy and immunogenicity of an adenoviral vector vaccine encoding the codon-optimized F protein of respiratory syncytial virus. J Virol 2009;83:12601-10.

159. Eroglu E, Singh A, Bawage S, Tiwari PM, Vign K, Pillai SR, et al. Immunogenicity of RSV F DNA vaccine in BALB/c Mice. Adv Virol 2016;2016:7971847.

160. Wu H, Dennis VA, Pillai SR, Singh SR. RSV fusion (F) protein DNA vaccine provides partial protection against viral infection. Virus Res 2009;145:39-47.

161. Qiao L, Zhang Y, Chai F, Tan Y, Huo C, Pan Z. Chimeric virus-like particles containing a conserved region of the G protein in combination with a single peptide of the M2 protein confer protection against respiratory syncytial virus infection. Antiviral Res 2016;131:131-40.

162. Lee JS, Kwon YM, Hwang HS, Lee YN, Ko BJ, Yoo SE, et al. Baculovirus-expressed virus-like particle vaccine in combination with DNA encoding the fusion protein confers protection against respiratory syncytial virus. Vaccine 2014;32:5866-74.

163. Hwang HS, Kwon YM, Lee JS, Yoo SE, Lee YN, Ko BJ, et al. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis. Antiviral Res 2014;110: 115-23.

164. Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev 2017;30:277-319.

165. Ternette N, Tippler B, Uberla K, Grunwald T. Immunogenicity and efficacy of codon optimized DNA vaccines encoding the F-protein of respiratory syncytial virus. Vaccine 2007;25:7271-9.

166. Yang K, Varga SM. Mucosal vaccines against respiratory syncytial virus. Curr Opin Virol 2014;6:78-84.

167. Mitchison DA. Prevention of colds by vaccination against a rhinovirus: a report by the scientific committee on common cold vaccines. BMJ 1965;1:1344-9.

168. Glanville N, Johnston SL. Challenges in developing a cross-serotype rhinovirus vaccine. Curr Opin Virol 2015;11:83-8.

169. Niespodziana K, Napora K, Cabauatan C, Focke-Tejkl M, Keller W, Niederberger V, et al. Misdirected antibody responses against an N-terminal epitope on human rhinovirus VP1 as explanation for recurrent RV infections. FASEB J 2012;26:1001-8.