In vivo cerebral blood flow autoregulation studies using rheoencephalography

M. Bodo¹, F. Pearce, A. Garcia, S. Van Albert, T. Settle, J. Szebeni, L. Baranyi, J. Hartings, R. Armonda²
Walter Reed Army Institute of Research, Silver Spring, MD; ²National Naval Medical Center, Bethesda, MD, USA

E-mail: michael.bodo@med.navy.mil

Abstract. Acute management of patients with traumatic brain/blast injury is a challenge. To minimize secondary injury and improve outcome, it is critical to detect neurological deterioration early, when it is potentially reversible. One potential monitoring method is cerebral electrical impedance (rheoencephalography-REG) because of its non-invasiveness and good time resolution. Reported here are the results of cerebral blood flow (CBF) manipulations comparing electroencephalogram (EEG) with REG (both intra-cerebral) and measuring with surface and skull REG electrodes. Our hypothesis was that REG would reflect spreading depression and CBF autoregulation. Animal experiments were performed using one rat (four trials with intracerebral electrodes), monkeys (n=8, with surface electrodes) and pigs (n = 24 pigs with skull electrodes; 57 trials, 19 types of liposomes). Challenges included intracranial pressure (ICP) elevation, liposome infusion, and hemorrhage. Data were stored on a PC and evaluated off line. CBF autoregulation was evaluated both by visual inspection and by a Matlab script. These studies confirmed that REG reflects CBF autoregulation and that REG is useful for detecting spreading depression (SD), vasospasm and the lower limit of CBF autoregulation. These findings have clinical relevance for use in noninvasive neuro-monitoring in the neurosurgery intensive care and during transportation of patients with brain injury.

1. Introduction

The goal of neurocritical care is the prevention of secondary brain injury. Currently, there is no single modality that can monitor for hypoxia, ischemia, elevated ICP, edema, intracranial hemorrhage, vasospasm, and lack of CBF autoregulation [1]. Monitoring needs to be non-invasive, continuous and convenient. Current brain mapping methods (SPECT, PET scan, MRI) do not address these needs. Measuring brain electrical impedance is a potential technique for neuro-monitoring [2]. In previous studies we reported results of correlative studies indicating that REG has potential for use in neuro-monitoring [3-5]. Here we present results from three additional REG studies (rat, monkey, pig).

2. Methods

Animal experiments were performed using a rat (four trials under anesthesia; Ag/AgCl intracerebral electrodes; ICP elevation was by intra-cerebral probe/balloon inflation); monkeys (n=8, with surface EKG electrodes); and pigs (n = 24 pigs with skull, stainless steel electrodes; 57 trials, 19 types of liposomes). Challenges included elevation of ICP, intravenous liposome infusion, and lethal...
hemorrhage. Data were stored on a PC and evaluated off line. Two types of REG devices were used: 1) KR -Ea Rheo Preamp, excitation frequency of 45 kHz, time constant 3 s (OTE Galileo, Italy); 2) Cerberus: excitation frequency of 125 kHz, time constant 0.3 s, Quintlab, Hungary.

To calculate the lower limit of CBF autoregulation, waveform data (arterial pressure - SAP, and REG) were averaged in 10 second epochs, and the Pearson correlation coefficient was computed on 30 consecutive points (5 min) and updated every minute with a sliding window. For further details, see [6].

3. Results

3.1. Rat - Spreading depression

![Figure 1](image1.png)

Figure 1. SD was elicited by ICP elevation. ICP elevation caused SD shown as amplitude fluctuation of DC EEG trace. REG showed close identical fluctuation.

3.2. Monkey – Lower limit of CBF autoregulation

![Figure 2](image2.png)

Figure 2. Relationship of REG to systemic arterial pressure during lethal hemorrhage. The lower limit of CBF autoregulation is at about 50 mmHg.
3.3. Pig – Vasospasm

Figure 3. After the liposome injection, a transient decrease in REG pulse amplitude was observed. This result indicates the involvement of a cerebrovascular reaction during liposome/Doxil injection.

4. Discussion

Detection of spreading depression, of the lower limit of CBF autoregulation, and of vasospasm would provide clinical personnel in the ICU unit with information to prevent secondary brain damage in neurosurgery patients. The following in vivo studies of REG monitoring modeled these three clinical conditions.

4.1. Spreading depression

Measurement of spreading depression, an early warning sign of disturbed brain metabolism, would be ideal for neuro-monitoring if it could be measured non-invasively. In humans, EEG measurements showing SD cannot be accomplished by placing electrodes on the scalp; such measurements require intra- or epicortical electrodes with the concomitant hazard of infection. In the present rat study, REG detected spreading depression with such intra-cerebral electrodes. However, in human measurements, REG can be used to measure non-invasively with surface electrodes, thus eliminating the hazard of infection. The relationship between SD and impedance was described by Olsson et al [7].

4.2. Lower limit of CBF autoregulation

If a patient’s CBF autoregulation is impaired, administering of infusion by ICU neurosurgery staff may cause secondary brain damage. Too much infusion may lead to brain edema; too little infusion may cause brain ischemia/hypoxia. The lower limit of CBF autoregulation is typically obtained invasively by measuring such modalities as ICP and SAP [8] to determine the phase relationship of slow oscillations of SAP (transfer analysis). REG conducted on monkeys with surface electrodes on the skin proved that slow wave oscillations were present in the REG signal and were not filtered out by the skull. Therefore, with a specialized algorithm developed for this purpose, REG can be used to detect the lower limit of CBF autoregulation.

4.3. Vasospasm

Vasospasm, the constriction of brain arteries, causes brain ischemia/hypoxia, which may lead to secondary brain injury [9]. Vasospasm after traumatic brain/blast injury can be present without physical impact or visible injury and may develop any time after the blast incident, even weeks later [10]. The present pig study showed that REG measurements can detect vasospasm. Cerebral vascular symptoms (nausea, dizziness, headache) have been described in humans following infusion with the cancer treatment Doxil (doxorubicin), a liposome encapsulated drug. In this study, REG detected transient vasospasm following Doxil infusion. A possible explanation is the release of vasoactive mediators causing a cerebrovascular reaction [11].
5. Conclusion

Brain injured patients are known to experience spreading depression, impaired CBF autoregulation, and vasospasm. Currently there is no non-invasive method in use to assess the risk of implementing a hypotensive resuscitation strategy in brain- injured patients. Measurements with REG can be used to identify the autoregulatory breakpoint for individual patients to determine their limit for permissive hypotension or to adequately administer infusion to increase cerebral perfusion pressure. The results reported here support the application of REG as a neuro-monitoring modality. Additional correlative studies of REG as a non-invasive modality for brain monitoring are required and are in progress.

Acknowledgements

The author thanks former and recent members of Departments of Resuscitative and Veterinary Medicine, and Janice Meer for editorial assistance.

Disclaimer: Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author, and are not to be construed as official, or as reflecting true views of the Department of the Army or the Department of Defense. Research was conducted in compliance with the Animal Welfare Act and other federal statutes and regulations relating to animals and experiments involving animals and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals, NRC Publication, 1996 edition.

References

[1] Czosnyika M, Hutchinson P, Kirkpatrick P J, Pickard J D 2009 Monitoring of the brain: pressures, flows, and brain tissue probes. Neurotrauma and Critical Care of the Brain, ed J Jallo, C M Loftus (New York: Thieme) p 66-86
[2] Rubin M, Yo M, Agostini M A, Madden J, Diaz-Arrastia R R 2009 Noninvasive monitoring. Neurotrauma and Critical Care of the Brain. ed J Jallo, CM Loftus (New York: Thieme) p 53-65
[3] Bodo M, Pearce F J, Armonda R A 2004 Cerebral blood flow changes: rat studies in rheoencephalography. Physiol Meas, 25 1371-1384
[4] Bodo M, Pearce F J, Baranyi L, Armonda R A 2005 Changes in the intracranial rheoencephalogram at lower limit of cerebral blood flow autoregulation. Physiol Meas, 26 S1-S17
[5] Bodo M, Pearce F, Van Albert S, Armonda R 2007 Rheoencephalogram reflects cerebral blood flow autoregulation in pigs ed H Scharfetter, R Merva ICEBI 2007, IFMBE Proceedings 17 (Berlin: Springer) p 695–698
[6] Czosnyka M, Smielewski P, Kirkpatrick P, Laing R J, Menon D, Pickard J D 1997 Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41 11-7
[7] Olsson T, Broberg M, Pope K J, Wallace A, Mackenzie L, Blomstrand F, Nilsson M, Willoughby J O 2006 Cell swelling, seizures and spreading depression: an impedance study. Neuroscience 140 505-15
[8] ICM+ Brain monitoring for neurosurgery and intensive care; web site; http://www.neurosurg.cam.ac.uk/icmplus/index.html
[9] Mendelow A D, Crawford P J. 2005 Primary and secondary brain injury ed P L Reilly, R Bullock Head injury (London; Arnold)
[10] Armonda R A, Bell R S, Vo A H, Ling G, DeGraba T J, Crandall B, Ecklund J, Campbell W W 2006 Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery 59 1215-25
[11] Bodo M, Szebeni J, Baranyi J, Savay S, Pearce F J, Alving C R, Bünger R 2005 Cerebrovascular involvement in liposome – induced cardiopulmonary distress in pigs. J. Liposome Res. 15 3-14