Pleiotropic effects of sitagliptin versus voglibose in patients with type 2 diabetes inadequately controlled via diet and/or a single oral antihyperglycemic agent: a multicenter, randomized trial

Yukiko Matsushima,1,2,3 Yumie Takeshita,1,2,3 Yuki Kita,1,3 Toshiki Otoda,1,3 Ken-ichiro Kato,1,3 Hitomi Toyama-Wakakuri,1,3 Hiroshi Akahori,3 Akiko Shimizu,3 Erika Hamaguchi,3 Yasuyuki Nishimura,3 Takehiro Kanamori,1,3 Shuichi Kaneko,2 Toshinari Takamura1,2,3

ABSTRACT

Purpose: A step-up strategy for diet therapy and/or single oral antihyperglycemic agent (OHA) regimens has not yet been established. The aim of this study was to evaluate hemoglobin A1c (HbA1c) as a primary end point, and the pleiotropic effects on metabolic and cardiovascular parameters as secondary end points, of sitagliptin versus voglibose in patients with type 2 diabetes with inadequate glycemic control while on diet therapy and/or treatment with a single OHA.

Methods: In this multicenter, randomized, open-label, parallel-group trial, a total of 260 patients with inadequately controlled type 2 diabetes (HbA1c levels $>$6.9%) were randomly assigned to receive either sitagliptin (50 mg, once daily) or voglibose (0.6 mg, thrice daily) for 12 weeks. The primary end point was HbA1c levels.

Results: Patients receiving sitagliptin showed a significantly greater decrease in HbA1c levels (-0.78 \pm0.69%) compared with those receiving voglibose (-0.30\pm0.78%). Sitagliptin treatment also lowered serum alkaline phosphatase levels and increased serum creatinine, uric acid, cystatin-C and homeostasis model assessment-β values. Voglibose increased low-density lipoprotein-cholesterol levels and altered serum levels of several fatty acids, and increased Δ-5 desaturase activity. Both drugs increased serum adiponectin. The incidence of adverse events (AEs) was significantly lower in the sitagliptin group, due to the decreased incidence of gastrointestinal AEs.

Conclusions: Sitagliptin shows superior antihyperglycemic effects compared with voglibose as a first-line or second-line therapy. However, both agents possess unique pleiotropic effects that lead to reduced cardiovascular risk in Japanese people with type 2 diabetes.

Trial registration number: UMIN 00003503.

Key messages

- This study directly compared a hemoglobin A1c and the pleiotropic effects of sitagliptin with voglibose added to concurrent treatment in Japanese patients with type 2 diabetes who could not achieve adequate glycemic control through diet therapy or a single OHA. Compared to voglibose, sitagliptin was superior to voglibose in lowering Hb1Ac levels in monotherapy and in combination therapy.
- Sitagliptin, but not voglibose, might impair renal function. Sitagliptin significantly increased serum Cr and cys-C decreased estimated glomerular filtration rate average.
- Sitagliptin significantly decreased polyunsaturated fatty acids, especially e6 fatty acids, whereas voglibose altered serum levels of many kinds of fatty acids. Voglibose, but not sitagliptin, increased Δ-5 desaturase activity. Both sitagliptin and voglibose exert significant unique pleiotropic effects on surrogate cardiovascular risks.

INTRODUCTION

Recent large-scale clinical trials have suggested that intensive antidiabetic therapies that cause unnecessary hyperinsulinemia do not achieve satisfactory cardiovascular outcomes in people with type 2 diabetes, as they may lead to hypoglycemia and weight gain.1 To avoid these problems, incretin-based agents that do not provoke unnecessary hyperinsulinemia have been developed, and are generally used as second- or third-line therapies, in addition to metformin, in Western countries.2 However, to date, limited
clinical evidence is available regarding incretin-based agents as first-line or second-line antihyperglycemic therapies.

Sitagliptin is an inhibitor of dipeptidyl peptidase-4 (DPP-4), which subsequently prevents enzymatic inactivation of endogenous glucagon-like peptide-1 (GLP-1) and thus improves glycemic control in type 2 diabetes. Sitagliptin has proven effective both as a monotherapy and in combination with other oral antihyperglycemic agents, although it is thought to be more effective in Asian patients than in Caucasian patients. However, the majority of studies on sitagliptin monotherapy and combination therapy are based on non-Japanese patients, and its pleiotropic effects have not been investigated extensively, especially in Japanese patients.

Voglibose is an α-glucosidase inhibitor widely used to improve postprandial hyperglycemia. The antidiabetic actions of voglibose may be mediated, at least in part, by endogenous incretins because an α-glucosidase inhibitor may increase GLP-1 levels both by inhibiting DPP-4 activity and by delaying intestinal absorption of a meal. However, the differences between sitagliptin and voglibose are unknown from the perspective of understanding pleiotropic effects.

The aim of this study was to evaluate hemoglobin A1c (HbA1c) as a primary end point, and the pleiotropic effects on metabolic and cardiovascular parameters as secondary end points, of sitagliptin versus voglibose in Japanese patients with type 2 diabetes who were unable to achieve adequate glycemic control via diet therapy and/or OHA monotherapy. Notably, dynamic randomization was used to adjust for demographic differences between the groups.

RESEARCH DESIGN AND METHODS

Overview

This was a randomized, parallel-group study conducted on Japanese patients. The study was designed in accordance with the principles stated in the Declaration of Helsinki, and the protocol was reviewed and approved by the appropriate institutional review board for each study site. All patients provided written informed consent before participation.

A total of 260 type 2 diabetes patients who were unable to achieve adequate glycemic control via diet therapy and/or OHA monotherapy were recruited from 19 centers in Japan between May 2011 and August 2012. Type 2 diabetes was diagnosed according to WHO criteria, based on a 2 h plasma glucose value of >11.1 mmol/L. Inadequate disease control was defined as having a HbA1c level >6.9%. The trial was registered with the University Hospital Medical Information Network (UMIN) Clinical Trials Registry (registration number UMIN000003503).

Patient eligibility

Participants were eligible if they were at least 20 years old, had type 2 diabetes mellitus, poorly controlled diabetes (HbA1c levels >6.9% within 12 weeks before screening), and had been treated with diet therapy and/or a single OHA, such as sulfonylurea (SU), biguanide (BG) or thiazolidinedione (TZD) class drugs, for 12 weeks or longer.

Exclusion criteria were: (1) hypersensitivity or a contraindication to sitagliptin or voglibose; (2) history of type 1 diabetes; (3) history of ketoacidosis; (4) having experienced symptoms of hypoglycemia; (5) treatment with sitagliptin or voglibose within 12 weeks before screening; (6) treatment with insulin within 12 weeks before screening; (7) concomitant corticosteroid therapy; (8) poorly controlled or unstable diabetes (the state with ketoacidosis or with an increase in HbA1c >3% in the 12 weeks before screening); (9) alanine aminotransferase and/or aspartate aminotransferase levels more than 2.5-fold the upper limit of normal; (10) poorly controlled hypertension or systolic blood pressure >160 mm Hg or diastolic blood pressure >100 mm Hg; (11) presence of a severe health problem not suitable for the study; (12) pregnancy or breastfeeding; or (13) inability to participate in the study due to psychiatric or psychosocial status as assessed by the investigators.

Efficacy endpoints

A computer-generated randomization sequence was used to assign participants in a 1:1 ratio to either the sitagliptin or voglibose treatment group. Dynamic randomization was used to adjust for demographic differences (age, previous treatment for type 2 diabetes and HbA1c level) between the groups. In this active-comparator, parallel-group trial, eligible patients received either sitagliptin or voglibose in addition to their previous treatment for 12 weeks. Sitagliptin (Merck & Co, Inc, New Jersey, USA) was initiated and maintained at 50 mg once daily. Voglibose (Takeda Pharmaceutical Company Limited, Osaka, Japan) was initiated and maintained at 0.6 mg (0.2 mg with each meal). Other medications were unchanged during the study period.

The primary efficacy end point was the change in Hb1Ac levels from baseline over the 12-week period. Secondary end points recorded at baseline and week 12 included: fasting plasma glucose (FPG); serum creatinine (Cre); uric acid; alkaline phosphatase (ALP); bone alkaline phosphatase (BAP); cystatin-C (cys-C), 1,5-anhydroglucitol (1,5-AG), fasting serum insulin (IRI), fasting serum proinsulin, fasting C-peptide immunoreactivity (CPR), factors related to fasting lipid profile (including small dense low-density lipoprotein, low-density lipoprotein-cholesterol, adiponectin, tumour necrosis factor α (TNF-α) and leptin); blood pressure; and physical measures (waist circumference, body mass index (BMI)). The estimated glomerular filtration rates based on serum Cre (eGFRcreat) and serum cys-C (eGFRcys), and the average estimated glomerular filtration rate (eGFRaverage), were calculated using the following formulas:

\[eGFRcreat = 194 \times (\text{Cre})^{-1.094} \times \text{Age}^{-0.287} \]

\[eGFRcys = 0.85 \times eGFRcreat \]

\[eGFRaverage = (eGFRcreat + eGFRcys) / 2 \]
eGFRcys=(104×Cystatin C−wascalculatedas(IRI(μL/mmol/L)/22.5).12

was used as a conventional index for insulin resistance and stasis model assessment of insulin resistance (HOMA-IR).12 To assess basic insulin secretion by β cells, CPR index (CPI), homeostasis model assessment-β (HOMA-β), secretory unit of islet in transplantation index (SUIT index) and quantitative insulin sensitivity check index (QUICKI), were calculated as follows: CPI=(100×fasting CPR (ng/mL))/ FPG (mg/dL))13

HOMA-β=(IRI (IU/L)×20/FPG(mg/dL)−63)).14

SUIT index=(1500×CPR (ng/mL)/ (FPG (mg/dL) −63))15 and QUICKI=(1/[log IRI(IU/L)+log FPG (mg/dL)]).16

Serum fatty acid levels were measured as a secondary outcome. A serum sample (approximately 0.2 mL) and 2 mL of a chloroform-methanol solution (2:1) were placed in a Pyrex centrifuge tube, homogenized with a Polytron homogenizer (PCU-2110; KINEMATICA GmbH, Switzerland) and centrifuged at 3000 rpm for 10 min. An aliquot of the chloroform-methanol extract was transferred to another Pyrex tube and dried under a stream of nitrogen gas. The dried sample was dissolved in 100 µL of 0.4 M potassium methoxide methanol/14% boron trifluoride-methanol solution, and the fatty acid concentrations were measured at SRL Inc (Tokyo, Japan), using a gas chromatograph (Shimizu GC 17A, Kyoto, Japan). Desaturase activities were estimated as follows: Δ5 desaturase, C20:4ω6/C20:3ω6; Δ6 desaturase, 18:3ω6/18:2ω6.17

Medication adherence and adverse events were monitored throughout the study, and were rated by investigators for intensity and relationship to study drug.

Statistical analysis
The sample size required to detect a ~0.6% change in HbA1c levels in the sitagliptin group, and a ~0.4% change in the voglibose group, with a power of 80% (α=0.05, one-tailed; β=0.20) and standardized effect size of 0.6, was 112 participants in each group. Taking into account a dropout rate of 15%, we aimed to recruit 260 participants. All analyses used the full analysis set, which included all patients who received at least one dose of study drug and for whom data were available at baseline and from at least one postrandomization time point. Missing data were replaced by the last observed value of each variable in this analysis. Data were expressed as the mean±SD. The Statistical Package for the Social Sciences (SPSS) V22.0 (SPSS Inc, Chicago, Illinois, USA) was used for the statistical analyses. Parameters were analyzed using the Wilcoxon signed-rank test in the internal group comparison, the χ² test or the Mann-Whitney U-test, or the Kruskal-Wallis test, in the intergroup comparison. Associations between variables were assessed using Spearman’s rank correlation coefficient. Multiple regression analysis was carried out to determine independent factors for changes in HbA1c by sitagliptin or voglibose. p Values <0.05 were considered statistically significant.

RESULTS

Patient characteristics

A total of 260 patients were screened and randomly assigned to either the sitagliptin or voglibose regimen, and 241 participants (mean age, 63.2±12.7 years; mean BMI, 25.0±4.5 kg/m²) were enrolled in this study (table 1). Nineteen patients were removed after randomisation before the intervention because they withdrew consent (n=17) or did not meet inclusion criteria (n=2; see online supplementary figure S1). No participants took EPA or docosahexaenoic acid (DHA) before or during the study and other subject medications remained unchanged during the study period. One hundred and sixteen patients received diet therapy; 61 patients received SU, 57 patients received BG and seven patients received TZD. FPG and HbA1c levels were 154.7±35.1 mg/dL and 7.9±0.78%, respectively. Baseline demographics and disease characteristics of the two groups did not differ significantly (table 1). The serum TNF-α levels at baseline included two outliers in the sitagliptin group. The median was similar in the two groups (Sitagliptin versus Voglibose, 1.20 vs 1.10 (pg/mL)) and there was no significant difference in the Mann-Whitney U test (p=0.166).

Clinical outcomes

Compared to baseline, FPG and HbA1c levels decreased significantly in both groups at the end of the study (table 2). Sitagliptin was superior to voglibose in lowering HbA1c levels (~0.78±0.69 vs ~0.30±0.78%, respectively) and FPG concentrations (~16.2±26.4 vs ~4.4 ±38.7 mg/dL, respectively) relative to baseline. There was no significant difference of medication adherence between the groups (table 1). In addition, in the stratified analysis on good (>80%) and poor (≤80%) adherence, adherence rate did not affect these results (see online supplementary table S1).

Both agents significantly increased 1,5-AG concentrations, but voglibose was superior to sitagliptin in this regard. Sitagliptin, but not voglibose, increased indices for insulin secretion such as HOMA-β, SUIT and CPI. Both agents lowered proinsulin levels and both agents exerted marked effects on the insulin sensitivity index, QUICKI.

Sitagliptin significantly reduced the counts of lymphocytes (p=0.007) and significantly increased the counts of neutrophils (p=0.008) at week 12, whereas voglibose had no effect on them (table 2). Sitagliptin significantly lowered ALP levels from 290±71 IU/L at baseline to 226 ±76 IU/L at week 12 (p=0.000) without changing bone alkaline phosphatase (BAP), whereas voglibose had no effect on ALP levels. Both agents were almost neutral in their effects on liver enzymes, except that voglibose
Changes in fatty acid composition in serum lipids

Sitagliptin, but not voglibose, significantly decreased serum levels of total polyunsaturated fatty acids, including linoleic acid and total ω6 fatty acids. Voglibose, but not sitagliptin, significantly decreased total saturated fatty acids (including palmitic acid and stearic acid), total monounsaturated fatty acids (including palmitoleic acid and oleic acid) and some polyunsaturated fatty acids (such as γ-linolenic acid, 5,8,11-eicosatrienoic acid, dihomo-γ-linolenic acid, docosatetraenoic acid and docosapentaenoic acid). Voglibose significantly decreased the activity of Δ-6 desaturase and increased that of Δ-5 desaturase (table 4). No correlation was observed between ΔHbA1c and eicosapentaenoic acid (EPA) levels at baseline in the sitagliptin group (table 3).

Adverse events

The incidence of AEs was significantly lower in the sitagliptin group. This difference was attributable to the decreased incidence of gastrointestinal AEs, such as heartburn, abdominal pain, constipation, loose stool, diarrhea, meteorism and flatulence. Most AEs were mild or moderate but one patient in the voglibose group discontinued the treatment due to diarrhea. The incidence of hypoglycemia was low and similar in both groups. All incidences of hypoglycemia in this study were mild or moderate in severity, but one patient in the sitagliptin group discontinued the treatment due to hypoglycemia. Four serious adverse events (SAEs)—inguinal hernia, heart failure, pancreatitis and urinary tract infection—occurred in the voglibose group, but were considered not related to the study. Due to these SAEs, three patients discontinued the agents (see online supplementary table S2).

DISCUSSION

This study directly compared HbA1c and the pleiotropic effects of sitagliptin with voglibose added to concurrent treatment decreased γ-GTP levels from 49±57 IU/L at baseline to 47±51 IU/L at week 12 (p=0.011). Sitagliptin, but not voglibose, increased serum Cre, uric acid and cys-C. Both agents lowered serum triglyceride levels, whereas voglibose, but not sitagliptin, significantly increased LDL-C. Voglibose significantly increased TNF-α levels, whereas sitagliptin, rather, tended to decrease TNF-α levels. Both agents significantly increased adiponectin levels. In stratified analyses on each concomitant therapy, there was no significant difference in glycemic parameters (see online supplementary figure S2). SU significantly increased neutrophils and decreased diastolic blood pressure compared to BG in the sitagliptin group (data not shown).

Factors predicting the effects of sitagliptin and voglibose are shown in table 3. In the sitagliptin group, there was a significant correlation between ΔHbA1c and baseline levels of 1,5-AG (rs=0.338, p=0.000), HbA1c (rs=0.589, p=0.000) and adiponectin (rs=0.223, p=0.015; supplementary table S2). There was no predicting factor in the voglibose group. In a multiple regression analysis, only baseline HbA1c was the independent factor of ΔHbA1c in the sitagliptin group (β=−0.0525, p=0.000, adjusted R²=0.268).

Changes in fatty acid composition in serum lipids

Sitagliptin, but not voglibose, significantly decreased serum levels of total polyunsaturated fatty acids, including linoleic acid and total ω6 fatty acids. Voglibose, but not sitagliptin, significantly decreased total saturated fatty acids (including palmitic acid and stearic acid), total monounsaturated fatty acids (including palmitoleic acid and oleic acid) and some polyunsaturated fatty acids (such as γ-linolenic acid, 5,8,11-eicosatrienoic acid, dihomo-γ-linolenic acid, docosatetraenoic acid and docosapentaenoic acid). Voglibose significantly decreased the activity of Δ-6 desaturase and increased that of Δ-5 desaturase (table 4). No correlation was observed between ΔHbA1c and eicosapentaenoic acid (EPA) levels at baseline in the sitagliptin group (table 3).
Parameter	Sitagliptin	Voglibose	p Value*	p Value†
	Baseline	12-week		
Body weight (kg)	63.8±13.6	63.7±13.3	0.842	
BMI	24.9±4.5	24.9±4.4	0.777	
Waist (cm)	88.7±10.5	88.2±10.0	0.195	
SBP (mm Hg)	130.0±16.8	129.5±17.1	0.998	
DBP (mm Hg)	76.0±12.1	75.4±12.1	0.576	
WBC (10^3/mm^3)	5815±1362	6057±1590	0.050	
Neutrophils (/mm^3)	3279±1015	3570±1096	0.008	
Eosinophils (/mm^3)	156±120	151±120	0.359	
Basophils (/mm^3)	30±23	31±23	0.395	
Lymphocytes (/mm^3)	1951±607	1866±586	0.007	
Monocytes (/mm^3)	323±113	345±122	0.004	
PLT (10^4/mm^3)	21.0±5.5	20.8±5.6	0.281	
RBC (10^5/mm^3)	458.4±43.7	459.2±45.4	0.723	
Hb (g/mL)	13.9±1.6	14.0±1.8	0.943	
AST (IU/L)	26±13	26±13	0.554	
ALT (IU/L)	32±25	30±21	0.459	
ALP (IU/L)	236±71	226±76	0.000	
BAP (μg/L)	12.6±5.6	12.3±5.6	0.140	
γ-GTP (IU/L)	44±50	49.2±87.6	0.836	
CK (IUL)	105.5±71.6	105.2±68.0	0.920	
BUN (mg/dL)	14.9±4.1	15.0±4.6	0.838	
Cr (mg/dl)	0.7±0.19	0.74±0.19	0.000	
UA (mg/dL)	5.08±1.4	5.30±1.24	0.001	
Cystatin C (mg/L)	0.82±0.18	0.85±0.19	0.001	
eGFRcreat (ml/min/1.73 m^2)	85.0±28.4	80.6±26.5	0.000	
eGFRcys (ml/min/1.73 m^2)	91.1±23.2	91.1±29.3	0.969	
eGFRaverage (ml/min/1.73 m^2)	88.0±23.3	85.6±24.6	0.006	
TC (mg/dL)	185.1±33.4	184.9±39.0	0.910	
HDL-C (mg/dL)	52.7±15.4	52.3±14.8	0.873	
Triglyceride (mg/dL)	130.0±83.1	129.8±85.5	0.098	
LDL-C (mg/dL)	104.9±29.6	106.5±34.1	0.499	
sdLDL (mg/dL)	36.8±15.4	34.9±15.1	0.134	
IRI (μI/L)	8.46±8.20	8.69±9.37	0.342	
CPR (ng/mL)	2.10±0.88	2.04±0.84	0.421	
HMW adiponectin (μg/dL)	3.17±2.30	3.50±2.57	0.000	
Leptin (ng/mL)	8.26±6.90	8.27±7.17	0.561	
Hypersensitive TNF-α (pg/mL)	3.11±12.47	2.23±5.21	0.079	
Leptinogenic index	3.30±3.44	2.98±3.02	0.056	
HOMA-IR	36.0±32.8	47.2±57.6	0.000	
HOMA-β	39.5±30.4	45.9±28.3	0.000	

Continued
Table 2 Continued

Parameter	Sitagliptin		p Value*	Voglibose		p Value*	p Value†		
	n Baseline	12-week		n Baseline	12-week				
CPI	117	1.41±0.67	1.52±0.71	0.001	118	1.38±0.68	1.43±0.78	0.207	
QUICKI	112	0.34±0.04	0.34±0.04	0.003	116	0.34±0.05	0.34±0.05	0.080	
Proinsulin (pM)	112	26.9±17.2	22.5±14.3	0.010	104	26.5±17.9	25.3±17.4	0.036	
Proinsulin/Insulin Ratio	101	0.70±0.67	0.54±0.33	0.000	91	0.63±0.39	0.65±0.49	0.698	0.015
HbA1c (%)	120	7.94±1.03	7.15±0.88	0.000	121	7.86±0.78	7.56±1.02	0.000	0.000
1.5AG (μg/mL)	109	6.45±4.16	10.55±5.96	0.000	105	7.43±5.29	12.6±8.12	0.000	0.047
FPG (mg/dL)	119	156.3±35.1	140.0±31.7	0.000	119	153.2±35.2	148.0±43.0	0.000	0.006

Data are expressed as means±SD.
* p Value for the intragroup comparison (baseline vs 12 weeks).
† p Value for the intergroup comparison (difference in changes from baseline between groups).

ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransferase; BAP, bone alkaline phosphatase; BMI, body mass index; BUN, blood urea nitrogen; CK, creatinine kinase; CPI, CPR index; CPR, C-peptide immunoreactivity; Cr, creatinine; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; FPG, fasting plasma glucose; Hb, hemoglobin; HDL-c, low-density lipoprotein cholesterol; HMW, high molecular weight; HOMA-IR, homeostasis model assessment of insulin resistance; HOMA-β, homeostasis model assessment-β; IRI, fasting serum insulin; LDL-C, low-density lipoprotein-cholesterol; PLT, platelet; QUICKI, quantitative insulin sensitivity check index; RBC, red blood cell; SBP, systolic blood pressure; sdLDL, small dense low-density lipoprotein; SUIT, secretory unit of islet in transplantation index; TC, total cholesterol; TNF-α, tumour necrosis factor α; UA, uric acid; WBC, white blood cell count.

T2D therapy is as follows: First, dynamic randomization is performed. If, after institution of diet therapy or a single OHA, patients could not achieve adequate glycemic control, we compared sitagliptin with voglibose, not only as a parallel-group study but also as an add-on therapy to SU-26 or TZD. Second, pleiotropic effects of sitagliptin and voglibose include previously yet-recognized actions related to severe renal insufficiency status over the course of the study.30 31

© 2016 BMJ Publishing Group. All rights reserved. Downloaded from http://drc.bmj.com/ on December 16, 2023 by guest. Protected by copyright.
Both sitagliptin and voglibose significantly increased plasma adiponectin levels, as stated in previous reports. There was a negative correlation between ΔHbA1c and Δadiponectin (table 3), suggesting that glycemic control at least partly contributes to the increase in adiponectin levels. The increased adiponectin levels might improve endothelial function and likely yield antiatherosclerotic effects. In addition, baseline levels of adiponectin were negatively correlated with ΔHbA1c only in the sitagliptin group, suggesting that adiponectin level might be a predictive maker for the effect of sitagliptin in glycemic control. Serum EPA concentrations are reported to be associated with the glucose-lowering effect of DPP-IV inhibitors in Japanese patients with type 2 diabetes. However, in our study, baseline EPA levels were not correlated with the change in HbA1c in the sitagliptin group (table 3). On the other hand, sitagliptin significantly decreased polyunsaturated fatty acids, especially ω-6 fatty acids, whereas voglibose altered serum levels of many kinds of fatty acids, unlike in a previous study with acarbose. Notably, voglibose, but not sitagliptin, increased Δ-5 desaturase activity.

Table 3 Factors associated with a change in HbA1c

	Sitagliptin	p Value	Voglibose	p Value
Baseline Body weight (kg)	0.051	0.577	0.082	0.374
Baseline Body mass index	0.142	0.126	0.08	0.390
Baseline Fasting plasma glucose (mg/dL)	0.113	0.222	0.107	0.246
Baseline 1.5 AG (%)	0.338	0.000	0.034	0.714
Baseline HbA1c (%)	0.589	0.000	0.121	0.185
Baseline Total cholesterol (mg/dL)	0.050	0.588	0.009	0.948
Baseline Fasting serum insulin (IU/L)	0.092	0.328	0.079	0.392
Baseline CPR (ng/mL)	0.101	0.275	0.004	0.965
Baseline HMW adiponectin (µg/mL)	0.223	0.015	0.137	0.137
Baseline CPI	0.048	0.609	0.038	0.684
Baseline HOMAIR	0.128	0.171	0.114	0.222
Baseline HOMA-β	0.016	0.861	0.033	0.722
Baseline EPA (ng/mL)	0.064	0.490	0.062	0.502
Baseline DHA (ng/mL)	0.077	0.118	0.078	0.396

Change from baseline

	rs	p Value	rs	p Value
ΔFPG	0.386	0.000	0.421	0.000
ΔBW	0.212	0.020	0.047	0.609
ΔBMI	0.206	0.025	0.058	0.533
ΔALP	0.269	0.003	0.187	0.042
ΔTC	0.231	0.011	0.062	0.502
ΔLDLC	0.266	0.004	0.151	0.103
ΔTG	0.084	0.362	0.152	0.098
ΔHMW adiponectin	0.310	0.001	0.346	0.000
ΔHOMA-IR	0.233	0.012	0.105	0.262
ΔHOMA-β	0.304	0.001	0.222	0.016
ΔSUIT index	0.377	0.000	0.261	0.004
ΔQUICKI	0.185	0.047	0.175	0.060
ΔCPI	0.235	0.011	0.156	0.091
ΔProinsulin insulin ratio	0.199	0.046	0.177	0.094
ΔEPA	0.010	0.914	0.062	0.502
ΔDHA	0.073	0.430	0.065	0.482

AG, anhydroglucitol; ALP, alkaline phosphatase; BMI, body mass index; BW, body weight; CPR, C-peptide immunoreactivity; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; HOMA-IR, homeostasis model assessment of insulin resistance; HOMA-β, homeostasis model assessment-β; HMW, high molecular weight; LDLC, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.
Parameter	Sitagliptin	Voglibose
Lauric acid C12:0 (ng/mL)	2.3±1.2	2.3±1.2
Myristic acid C14:0 (ng/mL)	29.3±18.9	28.5±19.3
Palmitic acid C16:0 (ng/mL)	74.6±259.6	709.8±254.1
Palmitoleic acid C16:1ω7 (ng/mL)	80.3±46.2	77.0±51.6
Stearic acid C18:0 (ng/mL)	214.7±53.6	212.0±28.7
Oleic acid C18:1ω9 (ng/mL)	565.2±236.6	653.2±260.1
Linoleic acid C18:2ω6 (ng/mL)	774.4±182.1	736.3±188.6
γ-linolenic acid C18:3ω6 (ng/mL)	11.4±6.5	10.8±6.0
α-Linolenic acid C18:3ω3 (ng/mL)	27.6±12.5	25.9±11.1
Arachidic acid C20:0 (ng/mL)	7.2±1.3	7.3±1.6
Eicosanoic acid C20:1ω9 (ng/mL)	5.5±2.0	5.3±2.2
Eicosadienoic acid C20:2ω6 (ng/mL)	5.9±1.8	5.9±2.0
5-8-11Eicosatrienoic acid C20:3ω9 (ng/mL)	2.2±1.4	2.2±1.6
Dihomo-γ-linolenic acid C20:3ω6 (ng/mL)	38.8±13.2	39.7±16.4
Arachidonic acid C20:4ω6 (ng/mL)	173.2±46.7	172.0±51.3
Eicosapentaenoic acid C20:5ω3 (ng/mL)	80.6±48.3	79.7±43.5
Behenic acid C22:0 (ng/mL)	17.6±3.3	17.9±3.6
Erucic acid C22:1ω9 (ng/mL)	1.6±0.8	1.6±0.7
Docosatetraenoic acid C22:4ω6 (ng/mL)	5.2±2.2	5.1±2.6
Docosapentaenoic acid C22:5ω3 (ng/mL)	25.2±10.0	24.3±9.4
Lignoceric acid C24:0 (ng/mL)	16.3±2.8	16.3±3.3
Docosahexaenoic acid C22:6ω3 (ng/mL)	175.2±65.3	164.5±58.7
Nervonic acid C24:1ω9 (ng/mL)	34.8±7.5	34.5±7.5
EPA+DHA (ng/mL)	255.9±107.5	249.2±92.6
EPA/AA ratio	0.49±0.31	0.49±0.30
Total ω3 fatty acids (ng/mL)	308.7±121.9	299.0±105.3
Total ω6 fatty acids (ng/mL)	1008.7±224.8	968.9±237.7
Total ω9 fatty acids (ng/mL)	700.2±39.2	696.8±263.6
ω3/ω6 ratio	0.32±0.13	0.32±0.11
Total saturated fatty acids (ng/mL)	1034.9±330.7	994.1±330.3
Monounsaturated fatty acids (ng/mL)	778.3±276.8	771.7±305.2
Polyunsaturated fatty acids (ng/mL)	1319.5±277.3	1270.9±289.2
δ-5desaturase (20:4ω6/20:3ω6)	4.73±1.42	4.72±1.62
δ-6desaturase (18:3ω6/18:2ω6)	0.015±0.008	0.015±0.007

Data are expressed as means±SD.

*p Value for the intragroup comparison (baseline vs 12 weeks).

†p Value for the intergroup comparison (difference in changes from baseline between groups).

AA, arachidonic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid.
the study duration may be insufficient to evaluate some of the pleiotropic effects. In the subgroup analysis, concomitant antidiabetic agents did not affect the results in glycomic parameters.

In summary, we showed that sitagliptin is superior to voglibose in terms of improving glycomic control as a glycemic parameter.

Contributors TT is the guarantor of this study and, as such, had full access to all of the data, and takes responsibility for the integrity and accuracy of the data and the analysis. YM designed the study, analysed and interpreted the data. The manuscript was written, analysed and interpreted the data, and wrote the manuscript. YT designed the study, recruited the patients, collected clinical information, analysed and interpreted the data, and wrote the manuscript. YK, TO, KK, HT-W, HA, AS, EH, YN and TK collected clinical information, analysed and interpreted the data and wrote the manuscript. YM designed the study, analysed and interpreted the data and wrote the manuscript.

Funding This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and Research grants from ONO Pharmaceutical Co, Ltd (to TT and SK).

Competing interests None declared.

Patient consent Obtained.

Ethics approval Kanazawa University Hospital Institutional Review Board.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

1. Ray KK, Seshasai SRK, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009;373:1765–72.
2. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012;35:1364–79.
3. Kirby M, Yu DMT, O'Connor S, et al. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin Sci (Lond) 2010;118:31–41.
4. Karaskis A, Aschner P, Katzeff H, et al. Sitaglaptin, a DPP-4 inhibitor for the treatment of patients with type 2 diabetes: a review of recent clinical trials. Curr Med Res Opin 2008;24:489–96.
5. Raz I, Hanefeld M, Xu L, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 2006;49:2564–71.
6. Iwamoto Y, Taniguchi T, Nonaka K, et al. Dose-ranging efficacy of sitagliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus. Endocr J 2010;57:383–94.
7. Mornoth Y, Takeuchi K, Hazama M. Clinical Administration of Voglibose, an α-Glucosidase Inhibitor, Increases Active Glucagon-Like Peptide-1 Levels by Increasing Its Secretion and Decreasing Dipeptidyl Peptidase-4 Activity in db/db Mice. J Pharmacol Exp Ther 2009;329:669–76.
8. Ranganath LMV. Delayed gastric emptying occurs following carboxamide administration and is a further mechanism for its anti-hyperglycaemic effect. Diabet Med 1998:15:120–4.
9. [No authors listed]. Report of the expert committee on the classification and diagnosis of diabetes mellitus. Diabetes Care 1997;20:1183–97.
10. Japanese Society of Nephrology, ed. Clinical practice guidebook for diagnosis and treatment of chronic kidney disease 2012. Tokyo: Tokyo-igakusha, 2012.
11. I-Horio M. [Development of evaluation of kidney function and classification of chronic kidney disease (CKD)—including CKD clinical practice guide 2012]. Rinsho Byori 2013:61:616–21.
12. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004;27:1487–95.
13. Ikawa M, Maeda S, Kamura Y, et al. Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among Japanese individuals. Diabetes Care 2012;35:1763–70.
14. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–19.
15. Yamada Y, Futakawa K, Fujimoto S, et al. SUT1, secretory units of islets in transplantation: an index for therapeutic management of islet transplanted patients and its application to type 2 diabetes. Diabetes Res Clin Pract 2006;74:222–6.
16. Katz A. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 2000;85:2420–2.
17. Corpeleijn E, Feskens EJM, Jansen EHHM, et al. Improvements in glucose tolerance and insulin sensitivity after lifestyle intervention are related to changes in serum fatty acid profile and desaturase activities: the SLIM study. Diabetes Care 2006;29:2392–401.
18. Nonaka K, Kakikawa T, Sato A, et al. Efficacy and safety of sitagliptin monotherapy in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract 2008;79:291–8.
19. Iwamoto Y, Tajima N, Kadowaki T, et al. Efficacy and safety of sitagliptin monotherapy compared with voglibose in Japanese patients with type 2 diabetes: a randomized, double-blind trial. Diabetes Obes Metab 2010;12:613–22.
20. Cai X, Han X, Luo Y, et al. Efficacy of dipeptidyl-peptidase-4 inhibitors and impact on j-cell function in Asian and Caucasian type 2 diabetes mellitus patients: a meta-analysis. J Diabetes 2015;7:347–59.
21. Holst JJ, Deacon CF. Glucagon-like peptide 1 and inhibitors of dipeptidyl peptidase IV in the treatment of type 2 diabetes mellitus. Curr Opin Pharmacol 2004;4:589–96.
22. Hotta JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 2004;287:E199–206.
23. Pospisilik JA, Martin J, Doty T, et al. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 2003;52:741–50.
24. Gerich J. DPP-4 inhibitors: what may be the clinical differentiations? Diabetes Res Clin Pract 2010;90:131–40.
25. Pratley RE, Schweizer A, Rosenstock J, et al. Robust improvements in fasting and prandial measures of beta-cell function with...
vildagliptin in drug-naïve patients: analysis of pooled vildagliptin monotherapy database. *Diabetes, Obes Metab* 2008;10:931–8.

26. Charbonnel B, Karasik A, Liu J, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. *Diabetes Care* 2006;29:2638–43.

27. Aso Y, Fukushima M, Sagara M, et al. Sitagliptin, a DPP-4 inhibitor, alters the subsets of circulating CD4+ T cells in patients with type 2 diabetes. *Diabetes Res Clin Pract* 2015;110:250–6.

28. Kubota A, Maeda H, Kanamori A, et al. Pleiotropic effects of sitagliptin in the treatment of type 2 diabetes mellitus patients. *J Clin Med Res* 2013;36:1067–73.

29. Aarjona Ferreira JC, Marre M, Barzilai N, et al. Efficacy and safety of sitagliptin versus glipizide in patients with type 2 diabetes and moderate-to-severe chronic renal insufficiency. *Diabetes Care* 2006;29:2632–7.

30. Aso Y, Sakamoto M, Nishimura R, et al. Comparison of glycemic variability in patients with type 2 diabetes given sitagliptin or voglibose: a continuous glucose monitoring-based pilot study. *Diabetes Technol Ther* 2013;15:378–85.

31. Fujitaka K, Otani H, Jo F, et al. Comparison of metabolic profile and adiponectin level with pioglitazone versus voglibose in patients with type-2 diabetes mellitus associated with metabolic syndrome. *Endocr J* 2011;58:425–32.

32. Fisman EZ, Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? *Cardiovasc Diabetol* 2014;13:103.

33. Senmanu T, Fukui M, Kobayashi K, et al. Dipeptidyl-peptidase IV inhibitor is effective in patients with type 2 diabetes with high serum eicosapentaenoic acid concentrations. *J Diabetes Investig* 2012;3:498–502.

34. Inoue I, Shinoda Y, Nakano T, et al. Acarbose ameliorates atherogeneity of low-density lipoprotein in patients with impaired glucose tolerance. *Metab Clin Exp* 2006;55:946–52.

35. Vessby B, Gustafsson I-B, Tengblad S, et al. Desaturation and elongation of Fatty acids and insulin action. *Ann N Y Acad Sci* 2002;967:183–95.

36. Warenjö E, Rosell M, Hellenius M-L, et al. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. *Lipids Health Dis* 2009;8:37.

37. Kröger J, Schulze MB. Recent insights into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes. *Curr Opin Lipidol* 2012;23:4–10.

38. Mayneris-Perxachs J, Guerendiain M, Castellote AI, et al. Plasma fatty acid composition, estimated desaturase activities, and their relation with the metabolic syndrome in a population at high risk of cardiovascular disease. *Clin Nutr* 2014;33:90–7.

39. Lu Y, Vaarhorst A, Merry AHH, et al. Markers of endogenous desaturase activity and risk of coronary heart disease in the CAREMA cohort study. *PLoS ONE* 2012;7:e41681.