New optical soliton solutions for coupled resonant Davey-Stewartson system with conformable operator

Mohammed Alabedalhadi1 · Mohammed Al-Smadi2 · Shrideh Al-Omari3 · Shaher Momani4,5

Received: 13 November 2021 / Accepted: 3 April 2022 / Published online: 5 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This paper investigates the novel soliton solutions of the coupled fractional system of the resonant Davey-Stewartson equations, which is a notable and significant model in dynamics of fluids for characterizing the 3-dimensional wave packet evolution of finite depth on water within weak nonlinearity. The fractional derivatives are considered in terms of conformable sense. Accordingly, we utilize a complex traveling wave transformation to reduce the proposed system to an integer-order system of ordinary differential equations. The phase portrait and the equilibria of the obtained integer-order ordinary differential system will be studied. Using ansatz method, the new types of bright, singular, and dark soliton solutions are derived and established in view of the hyperbolic, trigonometric, and rational functions of the governing system. To achieve this, illustrative examples of the fractional Davey-Stewartson system are provided to demonstrate the feasibility and reliability of the procedure used in this study. The trajectory solutions of the traveling waves are shown explicitly and graphically. The effect of conformable derivatives on behavior of acquired solutions for different fractional orders is also discussed. By comparing the proposed method with the other existing methods, the results show that the execute of this method is concise, simple, and straightforward. The results are useful for obtaining and explaining some new soliton phenomena.

Keywords Soliton phenomena · Fractional-order resonant system · Davey-Stewartson equation, Conformable operator · Hyperbolic and trigonometric

* Shrideh Al-Omari
shridehalomari@bau.edu.jo

1 Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan
2 College of Commerce and Business, Lusail University, Lusail, Qatar
3 Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan
4 Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 20550, UAE
5 Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan
1 Introduction

Since the advent of the concept of fractional calculus, fractional differential equations (FDEs) have attracted the interest of many researchers due to their importance in accurately demonstrating the dynamics of abundant real-world systems in various fields of sciences such as physics, diffusion, biology, chaos theory, chemistry, engineering, economics, commerce, and many others (Ross 1977; Mainardi 1997; Baleanu et al. 2012; Choo et al. 2017; Al-Smadi et al. 2021a; Formato et al. 2017; Al-Smadi 2021; Alweikat and Rjoub 2020; Ozyurt et al. 2021; Da’ie 2021; Mikhailov and Chachkov 2020; Noori et al. 2021). In particular, more and much attention has been paid to constructing exact and approximate solutions to Des in fractional sense. Anyhow, in contemporary literature, various analytical and numerical methods have been developed and implemented to obtain approximate, exact, traveling wave, and soliton solutions to FDEs. For instance, the variational iteration method, residual power series method, multi-step generalized differential transform method, homotopy perturbation method, homotopy analysis method, extended trial equation method, \((G'/G)\)-expansion method, undetermined coefficients method, Riccati-Bernoulli Sub-ODE method, and among others (Al-Smadi et al. 2017, 2020a, 2021b; Al-Smadi and Abu Arqub 2019; He 2003; Bulut et al. 2014; Wang et al. 2008; Alabedalhadi et al. 2020; Hasan et al. 2022; Jawad et al. 2019; Koç et al. 2021; Darvishi et al. 2018; Baskonus et al. 2021). Moreover, some of the important aspects of FDEs have been studied in many studies including the Cauchy problems and solution stability (Baskonus et al. 2021; Saadatmandi and Dehghan 2010). On the other hand, not like the differential derivatives of integer order, there are many different fractional operators that are used in dealing with biological, physical, and engineering systems. Riesz–Caputo, Caputo-Hadamard, Grünwald-Letnikov, Erdélyi-Kober, Sonin-Letnikov, Caputo-Fabrizio, Marchaud, Weyl, and Atangana-Baleanu, are some of these fractional operators (Zhou et al. 2009; Al-Smadi et al. 2020b, c; Abu Arqub and Al-Smadi 2020; Hasan et al. 2021; Zhou 2018; Babaoglu 2008).

Davey and Stewartson introduced the Davey–Stewartson (DS) equation in 1974, that is a notable and significant model in dynamics of fluids to characterize 3-dimensional wave packet evolution of finite depth on water within weak nonlinearity. Furthermore, the DS equation is a model for short and long- waves resonances, and other types of propagating waves. The DS system originates from multi-scale test respecting propagate of surface waves along horizontally sea surface. A coupled pair of nonlinear DS equations in two dependent variables can be reduced to the \((1+1)\)-dimensional nonlinear Schrödinger (NLS) equation via a suitable dimensional reduction (Al-Smadi et al. 2021c). There are several studies which have been introduced to investigate the exact and approximate solutions for DS system. In particular, we have the inverse scattering transform (Sung 1994), Exp-function method (Zhang et al. 2021), Jacobi elliptic function method (Yan 2003), direct algebraic method (Gilson and Nimmo 1991), homotopy perturbation method (Zedan and Tantawy 2009), \((G'/G)\)-expansion method (Zedan and Tantawy 2009), spectral transform (Ebadi and Biswas 2011), Darboux transformation (Boiti et al. 1989), and among others.

This paper investigates new optical soliton solutions for a conformable coupled resonant Davey-Stewartson (CCRDS) system. To reach this end, we apply the ansatz method that depends on a suitable mathematical assumptions in terms of important functions, like hyperbolic, rational and trigonometric functions. We seek to explore two types of bright soliton solutions using two different formulas in terms of hyperbolic and rational functions.
In addition, we establish singular and dark soliton solutions in terms of trigonometric and hyperbolic, respectively. The novelty of this paper lie in all inferred soliton solutions are new and diverse in three types of solitons that constructed through concise, simple, and straightforward method. We consider the CCRDS system in the form (Aghdaei and Manafian 2016):

\[i T_t^\alpha \phi + \gamma^2 T_x^{2\alpha} \phi + T_y^{2\alpha} \phi - 2\gamma^2 \frac{T_x^{2\alpha} |\phi|}{|\phi|} \phi - 2\gamma^4 \frac{T_y^{2\alpha} |\phi|}{|\phi|} \phi - \phi \psi + \lambda |\phi|^2 = 0, \]

\[T_x^{2\alpha} \psi - \gamma^2 T_y^{2\alpha} \psi - 2\lambda T_x^{2\alpha} |\phi|^2 = 0, \]

where \(\phi \equiv \phi(x, y, t) \) represents amplitude of a surface wave packet and real quantity \(\psi \equiv \psi(x, y, t) \) may be regarded the velocity potential of the mean flow interacting with the surface wave, while the independents variables \(x, y \) and \(t \) is the dimensionless variable, propagation coordinate and time, respectively. Also, \(\gamma^2 = -1 \) dictates the hyperbolic nature, and \(\gamma^2 = 1 \) dictates the elliptic nature of the system (1), while \(\lambda \) is a constant coefficient. It is worthy that the system (2) at integer derivative orders, \(\alpha = 1 \), reduces to the following resonant NLS equation (Pashaev and Lee 2002):

\[i \phi_t + \gamma^2 \phi_{xx} - 2\gamma^2 \frac{|\phi|_{xx}}{|\phi|} \phi - \lambda |\phi|^2 = 0. \]

The main contributions of the paper are to investigate the optical soliton solutions for coupled resonant fractional Davey-Stewartson system via ansatz method and to design algorithm for proposed technique. Motivated by these ideas, the rest of the paper will be organized as follows: Sect. 2 presents the definition of the conformable derivative and their properties. The analysis of the governing system via a complex transformation is formulated in Sect. 3. In the same section, the dynamical system and the classification of its equilibria are studied. In Sect. 4, the bright, singular, and dark soliton solutions are established for the CCRDS system. Some conclusions that be gained throughout the paper have been presented in Sect. 5.

2 Conformable fractional derivative overview

The conformable fractional derivative is a new simple definition of a derivative of fractional order analogous to the definition of the ordinary derivative introduced by Khalil et al. (2014). Given a function \(f(t) : (0, +\infty) \to \mathbb{R} \). Then the conformable fractional derivative of order \(\alpha \) of \(f \) is given as

\[T_t^\alpha f(t) = \lim_{\varepsilon \to 0} \frac{f(t+\varepsilon^{1-a}) - f(t)}{\varepsilon}, \]

for all \(t > 0, \alpha \in (0, 1] \). The function \(f \) is \(\alpha \)-conformable differentiable at a point \(t \) if the limit in (3) exists. The conformable derivative accomplishes many renowned required properties (Abdeljawad 2015).

Theorem 2.1. Abdeljawad 2015 *If the functions \(f_1 = p_1(t) \) and \(f_2 = p_2(t) \) are \(\alpha \)-conformable differentiable at any point \(t > 0 \), for \(\alpha \in (0, 1] \), then:*
(i) \(T^a_i (c_1 f_1 + c_2 f_2) = a T^a_i f_1 + b T^a_i f_2, \forall c_1, c_2 \in \mathbb{R}. \)

(ii) \(T^a_i (t^n) = nt^{n-a}, \forall n \in \mathbb{R}. \)

(iii) \(T^a_i (c) = 0, \) where \(c \) is any constants.

(iv) \(T^a_i (f_1 f_2) = f_1 T^a_i f_2 + f_2 T^a_i f_1. \)

(v) \(T^a_i \left(\frac{\partial f}{\partial \xi} \right) = \frac{f_2 T^a_i - f_1 T^a_i}{\xi^2}. \)

(vi) If \(f_1 \) is differentiable, then we have \(T^a_i \left(f_1 \right) (t) = t^{1-a} \frac{df_1}{dt}. \)

The conformable differential operator obeys some important crucial properties like the chain rule.

Theorem 2.2. Abdeljawad 2015 Suppose \(f_1(t) \) is \(\alpha \)-conformable differentiable function and \(f_2(t) \) is differentiable and well-defined in the range of \(f_1(t) \). Then, we have

\[
T^a_i \left(f_1(t) f_2(t) \right) = t^{1-a} \frac{df_2}{dt} \frac{d}{dt} \left(f_1 \left(f_2(t) \right) \right). \tag{4}
\]

3 Complex traveling wave transformation and equilibria classifications

In this section we seek to utilize a suitable complex traveling wave transformation for the CCRDS system (2) to translate it into integer-order ordinary differential equation (ODE) system. Furthermore, we study the planner dynamical system that corresponds to the integer-order ODE, then determine its equilibrium points and classification. The governing system (2) can be reduced into integer-order differential system via the following complex traveling wave transformation:

\[
\phi(x, y, t) = \Phi(\xi(x, y, t)) e^{\Sigma(x, y, t)}, \psi(x, y, t) = \Psi(\xi(x, y, t)), \tag{5}
\]

where \(\Phi(\xi) \) and \(\Psi(\xi) \) gives the structure of the wave profile with

\[
\xi(x, y, t) = i\theta \left(\frac{x}{\alpha} + \frac{y}{\alpha} - \mu \frac{t}{\alpha} \right), \Sigma(x, t) = \rho \frac{x}{\alpha} + \delta \frac{y}{\alpha} + \sigma \frac{t}{\alpha}, \tag{6}
\]

where \(\mu \) refers to the velocity of soliton, \(\rho \) and \(\sigma \) are the soliton frequency, and \(\sigma \) represents the wave number of the soliton. Substitute the transformation (5) with (6) into the CCRDS system (1) together using the above properties of the conformable derivative, then simplify the result to obtain

\[
\theta^2 (\gamma^2 + 2\gamma^4 - 1) \frac{d^2 \Phi}{d\xi^2} + \theta (\mu - 2\rho \gamma^2 - 2\delta) \frac{d\Phi}{d\xi} - (\sigma - \rho^2 \gamma^2 - \delta^2) \Phi - \Phi \Psi + \lambda \Phi^3 = 0,
\]

\[
-\theta^2 (1 - \gamma^2) \frac{d^2 \Psi}{d\xi^2} + 4\lambda \theta^2 \frac{d^2 \Phi}{d\xi^2} \Phi + 4\lambda \theta^2 \left(\frac{d\Phi}{d\xi} \right)^2 = 0. \tag{7}
\]

By integrating twice the second equation in (7) with respect to \(\xi \) and considering the integration constants to be zero, we get the following relation

\[
\Psi = \frac{2\lambda}{1 - \gamma^2} \Phi^2. \tag{8}
\]
Using the relation (8) in the first equation of (7), we reach to the following integer-order ODE
\[
\theta^2(\gamma^2 + 2\gamma^4 - 1) \frac{d^2\Phi}{d\xi^2} + \theta(\mu - 2\rho\gamma^2 - 2\delta) \frac{d\Phi}{d\xi} - (\sigma - \rho^2\gamma^2 - \delta^2)\Phi - \lambda \frac{1 + \gamma^2}{1 - \gamma^2}\Phi^3 = 0.
\] (9)

In the context of the classification of equilibria, we introduce the assumption \(\Phi = \frac{d\Phi}{d\xi} \) to get the planner dynamical system that corresponds to the integer-order ODE (9) in the form
\[
\frac{d\Phi}{d\xi} = \Phi, \quad \frac{d\Phi}{d\xi} = \frac{-\theta(\mu - 2\rho\gamma^2 - 2\delta)\Phi + (\sigma - \rho^2\gamma^2 - \delta^2)\Phi + \lambda \frac{1 + \gamma^2}{1 - \gamma^2}\Phi^3}{\theta^2(\gamma^2 + 2\gamma^4 - 1)}.
\] (10)

The system (10) can be written as
\[
\frac{-\theta^2(\gamma^2 + 2\gamma^4 - 1)}{\theta(\mu - 2\rho\gamma^2 - 2\delta)\Phi - (\sigma - \rho^2\gamma^2 - \delta^2)\Phi - \lambda \frac{1 + \gamma^2}{1 - \gamma^2}\Phi^3} \frac{d\Phi}{d\xi} = \frac{d\Phi}{d\xi}.
\] (11)

Cross the multiplication of (11) and integrate both sides. The Hamiltonian function of the system (10) becomes
\[
\mathcal{H}(\Phi, \dot{\Phi}) = 2\theta^2(\gamma^2 + 2\gamma^4 - 1)\dot{\Phi}^2 + 4\theta(\mu - 2\rho\gamma^2 - 2\delta)\Phi\dot{\Phi} - 2(\sigma - \rho^2\gamma^2 - \delta^2)\Phi^2
- \lambda \frac{1 + \gamma^2}{1 - \gamma^2}\Phi^4 = h \in \mathbb{R}.
\] (12)

The investigation of the equilibrium points, \((\Phi, \dot{\Phi})\), for the dynamical system (10) can be listed as follows:

case I There are unique equilibrium point, \(E_1(0, 0)\), if one of the conditions is satisfied: \(|\gamma| = 1\), or \(|\gamma| > 1\) and \(\sigma \geq \rho^2\gamma^2 + \delta^2\), or \(|\gamma| < 1\) and \(\sigma \leq \rho^2\gamma^2 + \delta^2\).

case II There are three equilibrium points \(E_1(0, 0)\) and \(E_{2,3} \pm \sqrt{(1 - \gamma^2)(1 + \gamma^2)(\frac{\delta^2 + \rho^2 - \sigma}{\gamma})}, 0\).

if one of the conditions is satisfied: \(|\gamma| > 1\) and \(\sigma < \rho^2\gamma^2 + \delta^2\), or \(|\gamma| < 1\) and \(\sigma > \rho^2\gamma^2 + \delta^2\).

The linearized system of the dynamical system (10) has the following coefficients matrix
\[
C(\Phi, \dot{\Phi}) = \begin{bmatrix}
0 & 1 \\
-\delta^2 - \rho^2 + \sigma & \frac{3(1 + \gamma^2)\delta}{-1 + \gamma^2 + 2\gamma^4}\Phi^2 \\
(-1 + \gamma^2 + 2\gamma^4)\delta^2 & -\delta^2 - \rho^2 + \sigma \\
(-1 + \gamma^2 + 2\gamma^4)\delta^2 & -\delta^2 - \rho^2 + \sigma
\end{bmatrix}.
\] (13)

The matrix \(C\) in (12) have the determinant, \(\mathcal{J}(\Phi, \dot{\Phi})\), and trace, \(T(\Phi, \dot{\Phi})\), as the follows:
\[
\mathcal{J}(\Phi, \dot{\Phi}) = \frac{\delta^2 + \rho^2 - \sigma - \frac{3(1 + \gamma^2)\delta}{-1 + \gamma^2 + 2\gamma^4}\Phi^2}{(-1 + \gamma^2 + 2\gamma^4)\delta^2}, \quad T(\Phi, \dot{\Phi}) = \frac{-2\delta + \mu - \rho^2\gamma^2}{(-1 + \gamma^2 + 2\gamma^4)\delta}.
\] (14)

Accordingly, we can obtain the values of \(\mathcal{J}(\Phi, \dot{\Phi})\) at the observed equilibrium points to have
Using the planar dynamical system theory of a planar integrable system, the equilibrium points can be classified as: if $J < 0$, then it’s a saddle, if $T^2 - 4J > 0$, $T > 0$ and $J > 0$, then it’s unstable node, if $T^2 - 4J > 0$, $T < 0$ and $J > 0$, then it’s stable node, if $T^2 - 4J < 0$, $T > 0$, then it’s unstable spiral, if $T^2 - 4J < 0$, $T < 0$, then it’s stable spiral, if $T = 0$ and $J > 0$, then it’s a center, if $J = 0$ with zero Poincar’e index, then the equilibrium point is cusp.

Figure 1 shows the phase portrait for the dynamical system (10) at selected parameters values. The color points in Fig. 1 represent the equilibrium points at the selected parameters. We found that the classification of the equilibria can listed as: (a) $E_1(0, 0)$, $\mathcal{J}(E_1) \equiv 1.6 > 0$, $T[E_1] \equiv 3.04 > 0$, $T[E_1]^2 - 4\mathcal{J}[E_1] \equiv 2.8 > 0$;
unstable node, and \(E_{2,3}(\pm 1.37833, 0), \mathcal{J}[E_{2,3}] \approx -3.2 < 0 \); saddle,
(b) \(E_1(0, 0), \mathcal{J}[E_1] \approx -0.9 < 0 \); saddle, and
\(E_{2,3}(\pm 3.158, 0), \mathcal{J}[E_{2,3}] \approx 1.9 > 0 \), \(\mathcal{T}[E_{2,3}] \approx -1.8 < 0 \), \(\mathcal{T}[E_{2,3}]^2 - 4\mathcal{J}[E_{2,3}] \approx -4.7 < 0 \); stable spiral,
(c) \(E_1(0, 0), \mathcal{J}[E_1] \approx -1.02 < 0 \); saddle, and
\(E_{2,3}(\pm 3.146, 0), \mathcal{J}[E_{2,3}] \approx 2.04 > 0 \), \(\mathcal{T}[E_{2,3}] = 0 \); center,
(d) \(E_1(0, 0), \mathcal{J}[E_1] \approx 1.6 > 0 \), \(\mathcal{T}[E_1] = 0 \); center, and \(E_{2,3}(\pm 1.378, 0), \mathcal{J}[E_{2,3}] \approx -3.2 < 0 \); saddle points. Consequently, that clearly appears in the Fig. 1.

4 Exact traveling wave solutions for CCRDS system

In this section, we look to deducing exact traveling wave solutions for the governing system (2) using direct method via appropriateness assumptions to solutions for the integer-order ODE (9). We will construct two types of bright soliton solutions with aid two various formulas in terms of hyperbolic and rational functions. Furthermore, singular, and dark soliton have will obtain using suitable formulas.

4.1 Bright-I soliton solutions

Assume that the integer-order ODE (9) has a solution in terms of hyperbolic functions as

\[
\Phi(\xi) = \frac{\Pi_1 \text{sech}(\omega \xi)}{\sqrt{1 + \Pi_2 \text{sech}^2(\omega \xi)}},
\]

(16)

where \(\Pi_1, \Pi_2 \) and \(\omega \) are constants to be determined. Substitute the formal solution (16) into the integer-order ODE (9) and simplify the result, then group the coefficients of the similar terms in the numerator and set it are to zero, we get an algebraic system. Solve the obtained algebraic system to get:

Case 1

\[
\mu = 2(\rho \gamma^2 + \delta), \omega^\pm = \pm \sqrt{\frac{-\delta^2 - \gamma^2 \rho^2 + \sigma}{\rho \gamma^2 + 2 \gamma^4}}; \Pi_1^\pm = \pm \sqrt{\frac{-2(\delta^2 + \gamma^2 \rho^2 - \sigma)(1 - \gamma^2)}{\lambda(1 + \gamma^2)}}, \Pi_2 = -1.
\]

(17)

Case 2

\[
\mu = 2(\rho \gamma^2 + \delta), \omega^\pm = \pm \sqrt{\frac{-\delta^2 - \gamma^2 \rho^2 + \sigma}{\rho \gamma^2 + 2 \gamma^4}}; \Pi_1^\pm = \pm \sqrt{\frac{2(\delta^2 + \gamma^2 \rho^2 - \sigma)(1 - \gamma^2)}{\lambda(1 + \gamma^2)}}, \Pi_2 = 0.
\]

(18)

Using the given values in the solutions sets (17) and (18) in the formal solution (16) along the relation (9), then inserting the results into (5) with aid of (6), we get the following bright-I soliton solutions for the governing system (2) that correspond to case 1.:
\[
\phi_{1,2,3,4}(x,y,t) = \pm \sqrt[\lambda]{\frac{-2(\delta^2 + \gamma^2 \rho^2 - \sigma) (1 - \gamma^2)}{\lambda (1 + \gamma^2)}} \sech \left(\pm \sqrt[\lambda]{\frac{-\delta^2 - \gamma^2 \rho^2 + \sigma}{(1 - \gamma^2) \beta^2}} \left(i \theta \left(\frac{x^a}{a} + \frac{y^a}{a} - \mu^a_{a} \right) \right) \right) \\
\times \exp \left(i \left(\frac{\rho x^a}{a} + \frac{\gamma y^a}{a} + \sigma \frac{\mu^a}{a} \right) \right)
\]

\[
\psi_{1,2,3,4}(x,y,t) = \frac{2\lambda}{1 - \gamma^2} \\
\left(\pm \sqrt[\lambda]{\frac{-2(\delta^2 + \gamma^2 \rho^2 - \sigma) (1 - \gamma^2)}{\lambda (1 + \gamma^2)}} \sech \left(\pm \sqrt[\lambda]{\frac{-\delta^2 - \gamma^2 \rho^2 + \sigma}{(1 - \gamma^2) \beta^2}} \left(i \theta \left(\frac{x^a}{a} + \frac{y^a}{a} - \mu^a_{a} \right) \right) \right) \right)^2.
\]

Consequently, the bright-I soliton solutions for the governing system (2) that correspond to case 2 are given as:

\[
\phi_{5,6,7,8}(x,y,t) = \pm \sqrt[\lambda]{\frac{2(\delta^2 + \gamma^2 \rho^2 - \sigma) (1 - \gamma^2)}{\lambda (1 + \gamma^2)}} \sech \left(\pm \sqrt[\lambda]{\frac{-\delta^2 - \gamma^2 \rho^2 + \sigma}{(1 - \gamma^2) \beta^2}} \left(i \theta \left(\frac{x^a}{a} + \frac{y^a}{a} - \mu^a_{a} \right) \right) \right) \\
\times \exp \left(i \left(\frac{\rho x^a}{a} + \frac{\gamma y^a}{a} + \sigma \frac{\mu^a}{a} \right) \right)
\]

\[
\psi_{5,6,7,8}(x,y,t) = \frac{2\lambda}{1 - \gamma^2} \\
\left(\pm \sqrt[\lambda]{\frac{2(\delta^2 + \gamma^2 \rho^2 - \sigma) (1 - \gamma^2)}{\lambda (1 + \gamma^2)}} \sech \left(\pm \sqrt[\lambda]{\frac{-\delta^2 - \gamma^2 \rho^2 + \sigma}{(1 - \gamma^2) \beta^2}} \left(i \theta \left(\frac{x^a}{a} + \frac{y^a}{a} - \mu^a_{a} \right) \right) \right) \right)^2.
\]

To illustrate the physical naturalness for the deduced solutions in (19) and (20), we depicted the profile of surfaces for the gotten solutions. Figures 2 and 3 presents the 3D and 2D of \(\phi_5(x,y,t) \) and \(\psi_3(x,y,t) \), respectively, at \(\omega^- \) and \(\Pi^+ \), where the derivatives are considered at integer and fractional orders.

To more illustrates, Fig. 4 shows the 2D plots of \(\phi_8(x,0,0) \) and \(\psi_8(x,0,0) \) at \(\omega^+ \) and \(\Pi^+ \), where the derivatives orders considered in various fractional sense, that give more understand of their effect on the behavior of bright-I solitons.

4.2 Bright-II soliton solutions

The bright-II soliton solution for the governing system (2) can be obtained through the following rational term assumption of the solution for the integer-order ODE (9):

\[
\Phi(\xi) = \frac{1}{\sqrt{\Pi_3 + \Pi_4 \xi^2}},
\]

where the constants \(\Pi_3 \) and \(\Pi_4 \) can be determined by inserting the assumption (21) into the integer-order ODE (9), simplifying the result, then collecting the coefficients of similar terms in the numerator and setting are to be zero. We are falling into the following cases

Case 1
The bright-II soliton solution that corresponds to these values \((22)\) is given by

\[
\mu = 2(\rho \gamma^2 + \delta), \quad \Pi_3 = -\frac{1}{2}, \quad \Pi_4 = -\frac{(-1 + \gamma^2)(\delta^2 + \gamma^2 \rho^2 - \sigma) + 2(1 + \gamma^2)\lambda}{10(-1 + \gamma^2)(-1 + \gamma^2 + 2\gamma^4)\theta^2}.
\] (22)

The bright-II soliton solution that corresponds to these values \((22)\) is given by

\[
\phi_1(x, y, t) = \frac{1}{\sqrt{-\frac{1}{2} + \left(\frac{(-1 + \gamma^2)(\delta^2 + \gamma^2 \rho^2 - \sigma) + 2(1 + \gamma^2)\lambda}{10(-1 + \gamma^2)(-1 + \gamma^2 + 2\gamma^4)\theta^2}\right)^2}} \times \text{Exp}\left(i\left(\rho \frac{x^a}{\alpha} + \delta \frac{y^a}{\alpha} + \sigma \frac{r^a}{\alpha}\right)\right),
\]

\[
\psi_1(x, y, t) = \frac{2\lambda}{1 - \gamma^2} \times \left(\frac{1}{\sqrt{-\frac{1}{2} + \left(\frac{(-1 + \gamma^2)(\delta^2 + \gamma^2 \rho^2 - \sigma) + 2(1 + \gamma^2)\lambda}{10(-1 + \gamma^2)(-1 + \gamma^2 + 2\gamma^4)\theta^2}\right)^2}} \times \text{Exp}\left(i\left(\rho \frac{x^a}{\alpha} + \delta \frac{y^a}{\alpha} + \sigma \frac{r^a}{\alpha}\right)\right)^2.\right)
\] (23)

Case 2

Fig. 2 The bright-I soliton solution at: \(\gamma = 0.03, \lambda = 0.03, \theta = 0.1, \rho = 0.1, \delta = 0.02\) and \(\sigma = 1\) where \(x \in [-10, 10]\) and \(t \in [0, 1]\) such that: \(a\) 3D plot of \(|\phi_1(x, 0, t)|\) at \(\alpha = 1; \ b\) 2D plot of \(|\phi_1(x, 0, 0)|\) at \(\alpha = 1; \ c\) 3D plot of \(|\phi_1(x, 0, 0)|\) at \(\alpha = 0.7; \ d\) 2D plot of \(|\phi_1(x, 0, 0)|\) at \(\alpha = 0.7.\)
Fig. 3 The bright-I soliton solution at: \(\gamma = 0.03, \lambda = 0.03, \theta = 0.1, \rho = 0.1, \delta = 0.02 \) and \(\sigma = 1 \) where \(x \in [-10, 10] \) and \(t \in [0, 1] \) such that: a 3D plot of \(|\psi(x, 0, t)| \) at \(\alpha = 1 \); b 2D plot of \(|\psi(x, 0, 0)| \) at \(\alpha = 1 \); c 3D plot of \(|\psi(x, 0, t)| \) at \(\alpha = 0.7 \); d 2D plot of \(|\psi(x, 0, 0)| \) at \(\alpha = 0.7 \).

Fig. 4 Effect of fractional derivatives on the behavior of bright-I soliton at: \(\gamma = 0.03, \lambda = 0.02, \theta = 0.1, \rho = 0.3, \delta = 0.02 \) and \(\sigma = 1 \) where \(x \in [-20, 10] \), red: \(\alpha = 0.8 \), blue: \(\alpha = 0.6 \), orange: \(\alpha = 0.55 \) and green: \(\alpha = 0.4 \) such that: a 2D plot of \(|\phi(x, 0, 0)| \), b 2D plot of \(|\psi(x, 0, 0)| \). (Color figure online)
\[\mu = 2(\rho^2 + \delta), \quad \sigma = \rho^2 \gamma^2 + \delta^2, \quad \Pi_3 \neq 2, \quad \Pi_4 = -\frac{(1 + \Pi_3)(1 + \gamma^2)\lambda}{(-2 + \Pi_3)(1 - \gamma^2)(-1 + \gamma^2 + 2\gamma^4)\theta^2}. \]

(24)

Accordingly, we have the following bright-II soliton solution

\[\phi_2(x, y, t) = \frac{1}{\sqrt{\Pi_3 + \left(-\frac{(1+\Pi_3)(1+\gamma^2)\lambda}{(-2+\Pi_3)(1-\gamma^2)(-1+\gamma^2+2\gamma^4)\theta^2}\right)^2}} \times \exp\left(i\left(\rho\frac{x^\alpha}{\alpha} + \delta\frac{y^\alpha}{\alpha} + \sigma\frac{t^\alpha}{\alpha}\right)\right), \]

\[\psi_2(x, y, t) = \frac{2\lambda}{1 - \gamma^2} \left(\frac{1}{\sqrt{\Pi_3 + \left(-\frac{(1+\Pi_3)(1+\gamma^2)\lambda}{(-2+\Pi_3)(1-\gamma^2)(-1+\gamma^2+2\gamma^4)\theta^2}\right)^2}}\right)^2. \]

(25)

Figure 5 and 6 present the graphical representation of the bright-II soliton solutions \(\phi_1(x, y, t) \) and \(\psi_1(x, y, t) \) in (23), respectively, at selected parameters in 3D and 2D plots where the derivatives are considered in integer and fractional orders. Moreover, the profile of the obtained bright-II soliton solutions in (25) for the CCRDS system (2) are plotted in 3D and 2D in Figs. 7 and 8, respectively, at various fractional derivatives orders.

4.3 Singular soliton solutions

The singular soliton solution for the CCRDS system (2) deduced upon the integer-order ODE (9) has a solution involving hyperbolic function in the form:

\[\Phi(\xi) = \frac{\Pi_5}{\sqrt{1 + \Pi_6 \sinh(\omega \xi)}}, \]

(26)

where \(\omega, \Pi_5 \) and \(\Pi_6 \) are constants to be determined. Applying the same above approach leads to the following solution set

\[\mu = 2(\rho^2 + \delta), \quad \omega^2 = \pm 2\sqrt{\frac{(\delta^2 + \gamma^2\rho^2 - \sigma)}{(-1 + \gamma^2 + 2\gamma^4)\theta^2}}, \quad \Pi_5^\pm = \pm 2\sqrt{\frac{(\delta^2 + \gamma^2\rho^2 - \sigma)(\gamma^2 - 1)}{(1 + \gamma^2)\lambda}}, \quad \Pi_6^\pm = \pm i. \]

(27)
We exhibited the constructed singular soliton solutions (28), graphically, to show their physical characteristics at integer and fractional derivatives orders by utilizing suitable

\[
\phi_{1\ldots 8}(x, y, t) = \pm 2 \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)(\gamma^2 - 1)}{(1+\gamma^2)\lambda}} \left[1 \pm \sin \left(\pm 2 \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)}{(-1+\gamma^2+2\gamma^2)\theta^2}} \left(\theta \left(\frac{\chi^2}{\alpha} + \frac{\gamma^2}{\alpha} - \frac{\mu^2}{\alpha} \right) \right) \right) \right] \\
\times \exp \left(i \left(\rho \frac{x^\mu}{\alpha} + \delta \frac{y^\mu}{\alpha} + \sigma \frac{t^\mu}{\alpha} \right) \right)
\]

\[
\psi_{1\ldots 8}(x, y, t) = \frac{2\lambda}{1 - \gamma^2} \left(\left[\pm 2 \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)(\gamma^2 - 1)}{(1+\gamma^2)\lambda}} \left[1 \pm \sin \left(\pm 2 \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)}{(-1+\gamma^2+2\gamma^2)\theta^2}} \left(\theta \left(\frac{\chi^2}{\alpha} + \frac{\gamma^2}{\alpha} - \frac{\mu^2}{\alpha} \right) \right) \right) \right] \right)^2 \right).
\]

(28)
Fig. 6 The bright-II soliton solution at: $\gamma = 0.01$, $\lambda = 0.001$, $\theta = 0.1$, $\rho = 1$, $\delta = 0.3$ and $\sigma = 0.0002$ where $x \in [-50, 50]$ and $t \in [0, 5]$ such that: a 3D plot of $|\psi_2(x, 0, t)|$ at $\alpha = 1$; b 2D plot of $|\psi_2(x, 0, t)|$ at $\alpha = 1$ and $t \in \{0, 5, 10, 15, 20, 25\}$; c 3D plot of $|\psi_2(x, 0, t)|$ at $\alpha = 0.85$; d 2D plot of $|\psi_2(x, 0, t)|$ at $\alpha = 0.85$ and $t \in \{0, 5, 10, 15, 20, 25\}$.

Fig. 7 Effect of fractional derivatives on the behavior of bright-II soliton at: $\gamma = 0.1$, $\lambda = 0.005$, $\theta = 0.2$, $\rho = 1$, $\delta = 0.7$ and $\Pi_3 = 0.8$ where $x \in [-100, 500]$ and $t \in [0, 1]$. red; $\alpha = 0.99$, blue; $\alpha = 0.9$, green; $\alpha = 0.8$ and yellow; $\alpha = 0.62$ such that: a 3D plot of $|\phi_2(x, 0, t)|$, b 2D plot of $|\phi_2(x, 0, t)|$. (Color figure online)
Fig. 8 Effect of fractional derivatives on the behavior of bright-II soliton at: $\gamma = 0.1, \lambda = 0.005, \theta = 0.2, \rho = 1, \delta = 0.7$ and $\Pi_1 = 0.8$ where $x \in [-100, 100]$ and $t \in [0, 1]$. red: $\alpha = 0.99$, blue: $\alpha = 0.86$, green: $\alpha = 0.73$ and yellow: $\alpha = 0.63$ such that: a 3D plot of $|\psi(x, 0, t)|$, b 2D plot of $|\psi(x, 0, 0)|$. (Color figure online)

Fig. 9 The singular soliton solution at: $\gamma = 0.9, \lambda = 1, \theta = 1, \rho = 0.1, \delta = 0.1$ and $\sigma = 0.1$ where $x \in [2, 5]$ and $t \in [0, 5]$ such that: a 3D plot of $|\phi(x, 0, t)|$ at $\alpha = 1$; b 3D plot of $|\phi(x, 0, t)|$ at $\alpha = 0.75$; c 3D plot of $|\psi(x, 0, t)|$ at $\alpha = 1$; d 3D plot of $|\psi(x, 0, t)|$ at $\alpha = 0.75$
parameters in 3D and 2D plots. For example, the singular soliton solution $\phi_s(x, y, t)$ and $\psi_s(x, y, t)$, that obtained by considered ω^+, Π_5^\pm and Π_6^\pm, depicted in Fig. 9.

In the following, Fig. 10 presents the profile, in 2D, of the singular soliton solution $\phi_s(x, y, t)$ and $\psi_s(x, y, t)$, that obtained by considered ω^-, Π_5^\pm and Π_6^\pm, at fractional orders of derivatives.

4.4 Dark soliton solutions

This soliton kind observed using the following hyperbolic function hypothesis of the solution of integer-order ODE (9):

$$\Phi(\xi) = \Pi_7 \tanh(x \omega),$$

(29)

where ω, χ and Π_7 are constants to be determined. Using the assumption (29) into the integer-order ODE (9) gives

\[
\begin{align*}
\Pi_7\theta^2 \chi \omega^2 (-1 + \gamma^2 + 2\gamma^4)(\chi - 1) \tanh(\xi \omega)^{2+\chi} \\
+ \Pi_7 \left((\delta^2 + \gamma^2 \rho^2 - \sigma) - 2(-1 + \gamma^2 + 2\gamma^4)\theta^2 \chi \omega^2 \right) \tanh(\xi \omega)^{2+\chi} \\
+ \Pi_7 \theta^2 \chi \omega^2 (-1 + \gamma^2 + 2\gamma^4)(\chi + 1) \tanh(\xi \omega)^{2+\chi} \\
+ \Pi_7 \theta \chi \omega (-2\delta + \mu - 2\gamma^2 \rho) \tanh(\xi \omega)^{-1+\chi} \\
- \Pi_7 \theta \chi \omega (-2\delta + \mu - 2\gamma^2 \rho) \tanh(\xi \omega)^{1+\chi} - \frac{(1 + \gamma^2)\lambda}{1 - \gamma^2} \Pi_7^3 \tanh(\xi \omega)^{3\chi} = 0.
\end{align*}
\]

(30)

By applying the balancing principle on the expression (30), we get the exponent χ that falls to be 1. Substitute $\chi = 1$ in (30), then group the coefficients of the same linearly independent terms and set it to be zero, we have the following solutions for ω and Π_7

\[
\begin{align*}
\mu &= 2(\rho \gamma^2 + \delta), \omega^\pm = \pm \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)}{2(-1 + \gamma^2 + 2\gamma^4)\theta^2}}, \\
\Pi_7^\pm &= \pm \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)(1 - \gamma^2)}{(1 + \gamma^2)\lambda}}.
\end{align*}
\]

(31)
Insert these gained values into (29) along with (5) to get the dark soliton solutions for the CCRDS system in the form

\[
\phi_{1,2,3,4}(x, y, t) = \pm \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)(1 - \gamma^2)}{(1 + \gamma^2)\lambda}} \tanh\left(\pm \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)}{2(-1 + \gamma^2 + \gamma^4)\theta^2}} \left(i\theta \left(\frac{x^\mu}{a} + \frac{y^\mu}{a} - \frac{\mu^\nu}{\alpha} \right) \right) \right) \\
\times \exp\left(i\left(\frac{x^\mu}{a} + \frac{y^\mu}{a} + \frac{\mu^\nu}{\alpha} \right) \right). \\
\psi_{1,2,3,4}(x, y, t) = \frac{2\lambda}{1 - \gamma^2} \\
\pm \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)(1 - \gamma^2)}{(1 + \gamma^2)\lambda}} \tanh\left(\pm \sqrt{\frac{(\delta^2 + \gamma^2 \rho^2 - \sigma)}{2(-1 + \gamma^2 + \gamma^4)\theta^2}} \left(i\theta \left(\frac{x^\mu}{a} + \frac{y^\mu}{a} - \frac{\mu^\nu}{\alpha} \right) \right) \right)^2. \\
\]

(32)

Interpretation of physical behavior for the obtained dark soliton solutions are done via graphical representation for \(\phi_1(x, y, t)\) and \(\psi_1(x, y, t)\) at \(\omega^+\) and \(\Pi^+_7\). Figure 11 shows the profile of \(|\phi_1(x, 0, t)|^2\) and \(|\psi_1(x, 0, t)|^2\) at suitable parameters where the orders of derivatives are considered in integer and fractional orders.

![Fig. 11 The dark soliton solution at: \(\gamma = 0.0009, \lambda = 1, \theta = 1, \rho = 0.001, \delta = 0.7\) and \(\sigma = 0.1\) where \(x \in [-10, 10]\) and \(t \in [0, 1]\) such that: a 3D plot of \(|\phi_1(x, 0, t)|^2\) at \(\alpha = 1\); b 3D plot of \(|\phi_1(x, 0, t)|^2\) at \(\alpha = 0.75\); c 3D plot of \(|\psi_1(x, 0, t)|^2\) at \(\alpha = 1\); d 3D plot of \(|\psi_1(x, 0, t)|^2\) at \(\alpha = 0.75\)](image_url)
Furthermore, we plotted the surface of $\phi_2(x, 0, t)$ and $\psi_2(x, 0, t)$ in 3D and 2D at different fractional derivatives orders and the reason due to understand the impress of the fractional derivatives on the physical naturality of the obtained dark soliton solution (Fig. 12).

5 Conclusion

This article investigated the soliton solutions of the coupled fractional resonant Davey-Stewartson system. The fractional derivative has been described by means of conformable derivative concept. The governing system is translated to integer-order ODE using complex transformation. The phase portrait and equilibria has been profitably studied for the fractional RDS system. Three types of soliton solutions have constructed, which are bright, singular, and dark solitons in terms of hyperbolic, trigonometric, and rational functions. The dynamic features of different types of traveling waves are analyzed in detail through numerical simulation. Meanwhile, the profiles of the surface for the deduced solutions have been depicted in 2D and 3D for several fractional derivatives orders. From the acquired results, it can be concluded that the procedures followed in this analysis can be
implemented in a simple and straightforward manner to create new exact solutions of many other partial fractional differential equations in terms of conformable operator.

Acknowledgements Authors would like to thank Springer Nature for their support.

Author contributions The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Funding No funding sources to be declared.

Declarations

Conflict of interest Authors declare they have no competing interests regarding the publication of the article.

Data availability Please contact author for data requests.

References

Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
Abu Arqub, O., Al-Smadi, M.: An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator. Phys. A 540, 123257 (2020)
Aghdai, M.F., Manafian, J.: Optical soliton wave solutions to the resonant Davey-Stewartson system. Opt. Quantum Electron. 48(8), 1–33 (2016)
Alabedalhadi, M., Al-Smadi, M., Al-Omari, S., Baleanu, D., Momani, S.: Structure of optical soliton solution for nonlinear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term. Phys. Scr. 95(10), 105215 (2020)
Al-Smadi, M.: Fractional residual series for conformable time-fractional Sawada–Kotera–Ito, Lax, and Kaup-Kupershmidt equations of seventh order. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7507
Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integro-differential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)
Al-Smadi, M., Freihat, A., Khalil, H., Momani, S., Khan, R.A.: Numerical multistep approach for solving fractional partial differential equations. Int. J. Comput. Methods 14(3), 1750029 (2017)
Al-Smadi, M., Abu Arqub, O., Momani, S.: Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense. Phys. Scr. 95(7), 075218 (2020a)
Al-Smadi, M., Abu Arqub, O., Hadid, S.: An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative. Commun. Theor. Phys. 72(8), 085001 (2020b)
Al-Smadi, M., Abu Arqub, O., Hadid, S.: Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Phys. Scr. 95(10), 105205 (2020c)
Al-Smadi, M., Dutta, H., Hasan, S., Momani, S.: On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space. Math. Model. Nat. Phenom. 16, 41 (2021a)
Al-Smadi, M., Abu Arqub, O., Gaith, M.: Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math. Methods Appl. Sci. 44(10), 8472–8489 (2021b)
Al-Smadi, M., Abu Arqub, O., Zeidan, D.: Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applications. Chaos Solitons Fractals 146, 110891 (2021c)
Alwreikat, A.A., Rjoub, H.: Impact of mobile advertising wearout on consumer irritation, perceived intrusiveness, engagement and loyalty: a partial least squares structural equation modelling analysis. S. Afr. J. Bus. Manag. 51(1), 11 (2020)
Babaoglu, C.: Long-wave short-wave resonance case for a generalized Davey-Stewartson system. Chaos Solitons Fractals 38(1), 48–54 (2008)

Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods, vol. 3. World Scientific, Singapore (2012)

Baskonus, H.M., Osman, M.S., Ramzan, M., Tahir, M., Ashraf, S.: On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber. Opt. Quantum Electron. 53(10), 1–17 (2021)

Boiti, M., Leon, J.P., Pempinelli, F.: A new spectral transform for the Davey-Stewartson I equation. Phys. Lett. A 141(3–4), 101–107 (1989)

Bulut, H., Pandir, Y., Tuluce Demiray, S.: Exact solutions of nonlinear Schrodinger’s equation with dual power-law nonlinearity by extended trial equation method. Waves Random Complex Media 24(4), 439–451 (2014)

Choo, K.Y., Muniandy, S.V., Woon, K.L., Gan, M.T., Ong, D.S.: Modeling anomalous charge carrier transport in disordered organic semiconductors using the fractional drift–diffusion equation. Org. Electron. 41, 157–165 (2017)

Da’ie, A.B.: Developing mathematical models for global solar radiation intensity estimation at Shakardara, Kabul. Int. J. Innov. Res. Sci. Stud. 4(2), 133–138 (2021)

Darvishi, M.T., Najaﬁ, M., Seadawy, A.R.: Dispersive bright, dark and singular optical soliton solutions in conformable fractional optical fiber Schrödinger models and its applications. Opt. Quantum Electron. 50(4), 1–16 (2018)

Ebadi, G., Biswas, A.: The G’ G method and 1-soliton solution of the Davey-Stewartson equation. Math. Comput. Model. 53(5–6), 694–698 (2011)

Formato, A., Ianniello, D., Villecco, F., Lenza, T.L.L., Guida, D.: Design optimization of the plough working surface by computerized mathematical model. Emir. J. Food Agric. 29(1):36–44 (2017)

Gilson, C.R., Nimmo, J.J.C.: A direct method for dromion solutions of the Davey-Stewartson equations and their asymptotic properties. In: Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 435(1894), 339–357 (1991)

Hasan, S., Al-Smadi, M., El-Ajou, A., Momani, S., Hadid, S., Al-Zhour, Z.: Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system. Chaos Solitons Fractals 143, 110506 (2021)

Hasan, S., Al-Smadi, M., Dutta, H., Momani, S., Hadid, S.: Multi-step reproducing kernel algorithm for solving Caputo-Fabrizio fractional stiff models arising in electric circuits. Soft. Comput. 26, 3713–3727 (2022)

He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135(1), 73–79 (2003)

Jawad, A.J.M., Al Azzawi, F.J.I., Biswas, A., Khan, S., Zhou, Q., Moshokoa, S.P., Belic, M.R.: Bright and singular optical solitons for Kaup-Newell equation with two fundamental integration norms. Optik 182, 594–597 (2019)

Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

Koç, E., Ekici, M., Biswas, A.: Optical soliton perturbation in magneto-optic waveguides by extended G’G–expansion. Opt. Quantum Electron. 53(6), 1–64 (2021)

Mainardi, F.: Fractional calculus. In: Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, Vienna (1997)

Mikhailov, O.V., Chachkov, D.V.: Molecular structure models of Al2Ti3 and Al2V3 clusters according to DFT quantum-chemical calculations. Eur. Chem. Bull. 9(2), 62–68 (2020)

Noori, A.W., Royen, M.J., Haydary, J.: Thin-layer mathematical modeling of apple slices drying, using open sun and cabin solar drying methods. Int. J. Innov. Res. Sci. Stud. 4(2), 43–52 (2021)

Ozyurt, M., Kan, H., Kiyikci, A.: The effectiveness of understanding by design model in science teaching: a quasi-experimental study. Eurasian J. Educ. Res. 94, 1–24 (2021)

Pashaev, O.K., Lee, J.H.: Resonance solitons as black holes in Madelung fluid. Mod. Phys. Lett. A 17(24), 1601–1619 (2002)

Ross, B.: The development of fractional calculus 1695–1900. Hist. Math. 4(1), 75–89 (1977)

Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59(3), 1326–1336 (2010)

Sung, L.Y.: An inverse scattering transform for the davey-Stewartson-II equations, I. J. Math. Anal. Appl. 183(1), 121–154 (1994)

Wang, M., Li, X., Zhang, J.: The (G’G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)
Yan, Z.: Abundant families of Jacobi elliptic function solutions of the (2+ 1)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fractals 18(2), 299–309 (2003)
Zedan, H.A., Tantawy, S.S.: Solution of Davey-stewartson equations by homotopy perturbation method. Comput. Math. Math. Phys. 49(8), 1382–1388 (2009)
Zhang, S., Zhang, Y., Xu, B.: Exp-function method and reduction transformations for rogue wave solutions of the Davey-Stewartson equations. J. Appl. Comput. Mech. 7(1), 102–108 (2021)
Zhou, Z.X.: Darboux transformations and global explicit solutions for nonlocal Davey-Stewartson I equation. Stud. Appl. Math. 141(2), 186–204 (2018)
Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. Theory Methods Appl. 71(7–8), 2724–2733 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.