Impact of endo- and exogenous estrogens on heart rate variability in women: a review

J. J. von Holzen, G. Capaldo, M. Wilhelm and P. Stute

Department of Obstetrics and Gynecology, Inselspital, University of Bern, Switzerland; Department of Cardiology, Inselspital, University of Bern, Switzerland

ABSTRACT
Measurement of heart rate variability (HRV) is an established method to assess the activity of the autonomic nervous system. The aim of this review was to examine the link between HRV, reproductive life stages and menopausal hormone therapy. A literature review was performed using the Medline database. Based on title and abstract, 45 studies were extracted out of 261 citations screened. Due to different study designs and evaluation methods, HRV indices were not directly comparable. Qualitative comparisons in between the vast majority of studies, however, demonstrated a decrease of the vagal dominance on the heart from the follicular to the luteal cycle phase, although some studies asserted no change. The intake of oral contraceptives appeared not to alter the vagal modulation of the heart. All investigations agreed on a decline of HRV towards higher sympathetic control after menopause. Different menopausal hormone therapy approaches showed a supporting impact of estrogen on HRV in most studies. A combined therapy of estrogen and progestogens revoked this benefit. Further research is needed to demonstrate how this process might be attenuated by different menopausal hormone therapies.

Introduction
Cardiovascular disease (CVD) is the leading cause of death in women and increases exponentially with aging. In particular, postmenopausal women with hot flushes seem to have an increased risk of CVD events compared to asymptomatic women. The main reason for initiating menopausal hormone therapy (MHT) is vasomotor symptom control. Considerable evidence suggests that estrogen contributes to delaying the onset of atherosclerotic coronary heart disease (CHD) events in postmenopausal women, especially if MHT was initiated close to menopause. This phenomenon is referred to as the timing hypothesis. Estrogen receptor-mediated vasodilatation and inhibition of inflammatory processes are thought to be the main mechanisms that slow down the progression of coronary artery atherosclerosis. The activity of the autonomic nervous system (ANS), however, may also contribute to CHD pathogenesis. A surrogate marker for ANS activity is heart rate variability (HRV), the recording of in-between heartbeat variations that are modulated by parasympathetic and sympathetic inputs. The aim of this review was to examine the link between HRV, reproductive life stages and MHT.

Heart rate variability
The cardiac sinuatrial (SA) node generates an intrinsic, autonomic and constant heartbeat, responsible for the sinus rhythm. However, it can be modulated and adjusted to internal and external stimuli, mainly by the ANS, resulting in beat-to-beat changes. The respiratory sinus arrhythmia assumes a crucial role in this mechanism. These fluctuations are called HRV. The sympathetic and parasympathetic parts of the ANS regulate the electrical and contractile activity of the myocardium. The resulting HRV stand as a surrogate marker for the ANS. Importantly, parasympathetic changes affect the heart rate faster than sympathetic effects, which appears to be the result of receptor processes and postsynaptic responses. HRV assessment requires a normal sinus rhythm and reasonable signal quality. There are two ways to measure HRV. First, HRV can be assessed under controlled laboratory conditions with short-term measurements using drugs, controlled ventilation, before and after tilt or other maneuvers selected to challenge the ANS. Second, HRV can also be assessed from 24-h electrocardiographic (ECG) recordings made while subjects perform their usual daily activities. HRV quantification can be categorized as a ‘time domain method’ or ‘spectral or frequency domain method’, as well as geometric and non-linear measures of intervals between QRS complexes. HRV quantification can be categorized as a ‘time domain method’ or ‘spectral or frequency domain method’, as well as geometric and non-linear measures of intervals between QRS complexes. The ‘time domain method’ detects all intervals between QRS complexes resulting from SA depolarization (NN intervals). A variety of statistical variables can be calculated from the intervals directly, and others are derived from the differences between the NN intervals (Table 1).
Table 1. Time domain measures of heart rate variability calculated over 24 h

Time domain measures	Description
SDNN (ms)	Standard deviation of all normal-to-normal (NN) intervals; reflects all the cyclic components responsible for variability in the period of recording
SDANN (ms)	Standard deviation of the average of NN intervals in all 5-min segments of the entire recording
SDNN index (ms)	Mean of the standard deviations of all NN intervals for all 5-min segments of the entire recording
rMSSD	Square root of the mean of the squares of successive NN interval differences
NN50	The absolute number of NN intervals differing by >50 ms from the preceding interval
pNN50	The percentage of NN intervals >50 ms different from the preceding interval

for ANS function evaluation with a reduction in HRV having been reported in various cardiac and non-cardiac disorders.

In cardiology, for example, HRV is used as a predictor for arrhythmias and sudden cardiac death in patients after myocardial infarction, as an increased sympathetic tone would increase the risk by cardiac electrical instability. Furthermore, reduced HRV has been found to predict overall mortality in the general population.

Methods

Inclusion criteria

The studies chosen had to be published between the years 1997 and 2015. The year 1997 was chosen because in 1996 the guidebook Task Force Of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology was published that set the standards for measurement, physiological interpretation and clinical use of HRV. Furthermore, studies were only included if the full text was available in English. Only healthy participants were included, excluding participants with hypertension, heart rhythm disorders, liver or kidney disease, diabetes, carcinomas, cerebrovascular disease, and severe osteoporosis, respectively. Participants with premenstrual syndrome (PMS) or premenstrual dysphoric disorders (PMDD) and climacteric symptoms, however, were included. Studies investigating changes of HRV across the menstrual cycle had to measure at least one ECG during the follicular and one during the luteal phase.

Search strategy

A literature search was done using the Medline database. We combined the MeSH term “heart rate variability” with “menopause”, “hormone replacement therapy”, “estrogen” and “menstrual cycle”, always using the logical connection AND. The term “hormone replacement therapy” was chosen since the new term “menopause hormone therapy (MHT)” has been introduced only recently. A total of 48 studies were included out of 281 hits (Table 3). There was a certain overlap of studies after each search with a new MeSH term combination. Those were not listed again.

Results

Impact of endogenous estrogens on HRV

HRV across the menstrual cycle

During the reproductive life stage, serum steroid hormones fluctuate across the menstrual cycle affecting cardiac electrical stability, as the prevalence of arrhythmias has been shown to be higher during the luteal cycle phase.
In total, 15 studies were found investigating the impact of the different menstrual cycle phases on HRV indices\(^{20–34}\) (see Supplemental Table S1: http://dx.doi.org/10.3109/13697137.2016.1145206). None of the female participants took oral contraceptives. One study compared women in different cycle phases in a cross-sectional study design\(^{20}\). The other studies used a prospective study design, where the participants were examined several times during their menstrual cycle\(^{21–34}\). Sato and Miyake\(^{21}\) included men in comparison with age-matched women. The mean age of the women ranged from 20.2 years\(^{21}\) to 38.5 years\(^{22}\) and the sample size ranged from six\(^{23}\) to 62\(^{24}\) participants.

The time point of the ECG was during the follicular and luteal phases. Most measurements in the follicular phase were performed during cycle days 4–12\(^{20,22,24–29}\), in the luteal phase during cycle days 16–28\(^{20,23,28–30}\), or 3–8 days prior to the next menstruation\(^{21,24–27}\), respectively. Some authors also assessed HRV during menstruation\(^{20,23,30,35}\) or at ovulation\(^{30,32,35}\); these results will not be further discussed.

Similarly, methods for HRV assessment varied. While two investigators used 24-h ECG recordings\(^{20,25}\) or an ECG during the sleep stages\(^{26,33}\), the majority preferred ECG recordings of several minutes\(^{21–24,27–32,34}\).

Due to the different study designs and statistical analysis, absolute values of time and frequency domain HRV indices were not comparable. However, qualitative comparisons in between studies provided a good impression of HRV changes across the menstrual cycle.

Most investigators came to the conclusion that there was a decrease of the vagal dominance on the heart from the follicular to the luteal phase with higher LF power and LF/HF power ratio toward the luteal phase and HF power decreasing from the follicular to the luteal phase\(^{20–22,25,28–29,32,34}\). One study came to the opposite conclusion\(^{23}\). They found an increase of TP and HF power indices from the follicular to the luteal phase, whereas the LF power component decreased in the luteal phase and therefore increased cardiac vagal control. Finally, two investigators asserted no change across the menstrual cycle\(^{30,31}\).

Furthermore, five studies focused on the changes of the HRV between groups of women with PMS\(^{24,26,27,33}\) or PMDD\(^{22,24}\) in comparison to controls who showed no such symptoms. Three studies\(^{24,26,27}\) described a decrease of cardiac vagal activity in the symptomatic luteal phase of severe PMS, whereas no change in the control group was seen across the whole menstrual cycle. De Zambotti and colleagues\(^{33}\) observed no difference between the HRV indices of women with or without PMS, since both groups showed a decrease of the cardiac vagal activity in the luteal phase. Two studies compared women with PMDD and symptom-free controls and observed either no significant difference\(^{22}\) or decreased HRV indices across the whole cycle\(^{24}\) in these women.

HRV after menopause

In comparison to premenopause, HRV indices have not been found to change significantly during perimenopause\(^{46}\). Alterations in HRV, however, emerged 1 year after menopause in MHT non-users and changed little in the following years\(^{36}\). A total of 14 studies focused on the changes of the cardiac vagal activity measured by HRV across the menopausal transition\(^{36–49}\) (see Supplemental Table S1: http://dx.doi.org/10.3109/13697137.2016.1145206). Nine studies were identified that focused on the differences in HRV between pre- and postmenopausal women\(^{36–44}\). There are four additional studies investigating perimenopausal women\(^{45–47}\) or postmenopausal women, respectively, that focused on how HRV was affected by the presence of climacteric symptoms. All but one study\(^{48}\) had a cross-sectional set-up. The mean age of the postmenopausal women ranged from 48.5\(^{39}\) to 64.2\(^{38}\) years and the sample size ranged from 11\(^{35}\) to 930\(^{38}\) participants.

The investigators used different HRV assessments. All but four studies\(^{37,42,45,49}\) chose an ECG of a few minutes. The others used a 24-h ECG\(^{42,49}\) or 8-h ECG during the day\(^{37}\), while one used an ECG during sleep\(^{45}\).

The frequency domain was measured by most\(^{36,38,39,41,45–47}\), frequency and time domain by some\(^{37,40,42,48,49}\), and two measured time domain only\(^{36,43}\).

All investigators comparing the HRV of pre- and postmenopausal women agreed that there was a significant reduction in cardiac vagal activity toward a higher sympathetic control after menopause. This was reflected by a reduced TP, higher LF power, and lower HF power components, respectively, and thus an increased LF/HF power ratio\(^{39,41}\). Similarly, in time domain analysis, lower SDNN and RMSSD indicated a decrease in overall and parasympathetic activity in postmenopausal women\(^{36,43}\). Once the menopause-related HRV decline has been established, HRV seems to remain stable: time since last menstruation has not been shown to have any impact on HRV\(^{36,47}\). Changes in HRV may be caused by both aging and hormonal changes, as aging itself has been found to be associated with a gradual reduction of the overall fluctuation in autonomic input to the heart, and a reduced HRV vagal index, respectively, leading to a sympathetic predominance\(^{39}\).

As menopausal hot flushes have been shown to be associated with an increased CVD risk\(^{2,3}\), one might expect different HRV profiles in symptomatic and asymptomatic postmenopausal women. A total of four studies differentiated between women with and without menopausal symptoms such as hot flushes\(^{45–48}\) and sweating\(^{46}\). The results were conflicting. While two studies did not find any differences between symptomatic and asymptomatic postmenopausal women\(^{47,48}\), one study\(^{46}\) reported a decreased parasympathetic dominance in women with hot flushes. An interesting observation was made, when assessing HRV and polysomnography in undisturbed sleep. A decreased cardiac autonomic vagal activity was seen specifically during hot flushes, supporting the hypothesis that the parasympathetic branch of the autonomic nervous system is involved in the cardiac response to a hot flush\(^{45}\).
HRV in MHT users

After menopause, exogenous hormones are primarily used to alleviate climacteric complaints such as hot flushes. MHT contains estrogen only in hysterectomized women, and estrogen combined with a progestogen in women with an intact uterus. There are various dosages of systemic estrogens available that are mostly applied orally or transdermal. In a total of 24 studies, the impact of MHT on HRV in postmenopausal women has been investigated. Some investigators used up to 24-h ECG recording, respectively, and analyzed by either frequency domain or time and frequency domain. Oral contraceptives contained ethinylestradiol combined with drospirenone or a variety of different progestins, respectively. Both investigators did not find any significant differences in ANS control when comparing HRV between healthy premenopausal women taking oral contraceptives and their controls.

Discussion

The results arbitrated an approximate summary of how HRV changes across a woman’s fertile period and continuing to menopause and postmenopause. The results were separated between women taking estrogens such as in oral contraceptives or MHT, and non-users. The investigators partly had conflicting conclusions on the same issues. These discrepancies will be discussed as well as the strengths and limitations of this review.
In addition, the time points at which HRV was assessed during the menstrual cycle varied enormously. Oral contraceptive use, however, did not seem to have any impact on HRV, although the search criteria produced only two studies.

HRV in women after the menopause
All studies identified agreed on a significant decline of the vagal HRV parameters towards a sympathetic dominance after menopause. This finding was highlighted by the observation that, in surgically menopausal women, there was a significantly decreased cardiac vagal modulation compared to women with hysterectomy but ovarian preservation as soon as 5 weeks after surgery. However, after 3 months of estrogen replacement therapy, their HRV parameters reached pre-surgical levels. Yet, study results on MHT have not always been that clear. Most studies revealed a positive impact of exogenous estrogens on the vagal cardiac activity, while others did not find any HRV changes in response to estrogen therapy. As only one in 21 studies revealed a deleterious effect of estrogen-containing MHT, those results must be considered with skepticism. On the other hand, the benefit observed with estrogens only is not detectable when combining estrogens with progestins. However, the reason why combining a progestin might abolish the beneficial effect of estrogens on the cardiac vagal activity has not been explored.

Discussion of the method
A literature review is a recognized option to give an overview of the large amount of published studies in recent years. The strength of this summary is the detailed research with specific MeSH terms and the subsequently precise analysis of the content of the studies and classification of their results. One drawback is that relevant studies were not found and therefore not included if they were not recorded in the Medline database, not published in English, or outside the specific time period. The study designs differed considerably, which impeded a quantitative comparison of the results, but enabled a content analysis. In addition, only studies investigating healthy women were included. It is therefore not possible to transfer those results to women with diseases such as CVD, hypertension, or neuromuscular diseases, as they alter the autonomic regulation.

Conclusion
We illustrated the link between HRV, reproductive life stages, and exogenous hormone therapy. Menstrual cycle phase is crucial when assessing HRV in fertile women. Cardiac vagal activity decreases from the follicular to the luteal phase. Premenstrual syndrome might have a negative impact on cardiac vagal activity. Oral contraceptives do not seem to alter the vagal modulation of the heart.

As reduced HRV is associated with a higher cardiovascular risk profile, women with hot flushes probably have a higher risk and may specifically benefit from estrogens. Further research is needed to elucidate the differences between estrogens and various estrogen–progestogen combinations on HRV.

Acknowledgements
The authors are grateful for the support of Ramona Guelpa, secretary at the Department of Obstetrics and Gynecology, Section on Gynecological Endocrinology and Reproductive Medicine, Inselspital Bern, Switzerland, for her help with ordering the identified publications.

Conflict of interest
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Source of funding
The authors have received no funding for this article.

References
1. Rich-Edwards JW, Manson JE, Hennekens CH, Buring JE. The primary prevention of coronary heart disease in women. N Engl J Med 1995;332:1758–66
2. Szmuilowicz ED, Manson JE, Rossouw JE, et al. Vasomotor symptoms and cardiovascular events in postmenopausal women. Menopause 2011;18:603–10
3. Gambacciani M, Pepe A. Vasomotor symptoms and cardiovascular risk. Climacteric 2009;12(Suppl 1):32–5
4. The 2012 hormone therapy position statement of The North American Menopause Society. Menopause 2012;19:257–71
5. Grady D, Rubin SM, Petitti DB, et al. Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med 1992;117:1016–37
6. Salpeter SR, Walsh JME, Greyber E, Salpeter EE. Brief report: Coronary heart disease events associated with hormone therapy in younger and older women. A meta-analysis. J Gen Intern Med 2006;21:363–6
7. Rossouw JE, Prentice RL, Manson JE, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 2007;297:1465–77
8. Clarkson TB, Meléndez GC, Appt SE. Timing hypothesis for postmenopausal hormone therapy: its origin, current status, and future. Menopause 2013;20:342–53
9. Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science 2005;308:1583–7
10. Buccelletti E, Gilardi E, Scaini E, et al. Heart rate variability and myocardial infarction: systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci 2009;13:299–307
11. Bigger JT, Eckberg DL, Grossman P, et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 1997;34:623–48
12. Kleiger RE, Stein PK, Bigger JT. Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol 2005;10:88–101
13. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998;351:478–84
14. Huikuri HV, Mäkipää TH, Airaksinen KE, et al. Power-law relationship of heart rate variability as a predictor of mortality in the elderly. *Circulation* 1998;97:2031–6

15. Dekker JM, Schouten EG, Klooftvijk P, Pool J, Swenne CA, Kromhout D. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study. *Am J Epidemiol* 1997;145:899–908

16. Tsuji H, Venditti FJ, Manders ES, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. *Circulation* 1994;90:878–83

17. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. *Circulation* 1996;93:1043–65

18. de Villiers TJ, Pines A, Panay N, et al. Updated 2013 International Menopause Society recommendations on menopausal hormone therapy and preventive strategies for midlife health. *Climacteric* 2013;16:316–37

19. Marchlini FE, Deely MP, Zado ES. Sex-specific triggers for right ventricular outflow tract tachycardia. *Am Heart J* 2000;139:1009–13

20. Vallejo M, Márquez MF, Borja-Aburto VH, Cárdenas M, Hermosilla AG. Age, body mass index, and menstrual cycle influence young women’s heart rate variability – a multivariable analysis. *Clin Auton Res* 2005;15:292–8

21. Sato N, Miyake S. Cardiovascular reactivity to mental stress: relationship with menstrual cycle and gender. *J Physiol Anthropol Appl Hum Sci* 2004;23:215–23

22. Landén M, Wennerblom B, Tygesen H, et al. Heart rate variability in premenstrual dysphoric disorder. *Psychoneuroendocrinology* 2004;29:733–40

23. Princi T, Parco S, Accardo A, Radillo O, Seta F de, Guaschino S. Parametric evaluation of heart rate variability during the menstrual cycle in young women. *Biomed Sci Instrum* 2005;41:340–5

24. Matsumoto T, Ushiroyama T, Kimura T, Hayashi T, Moritani T. Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder. *Biopsychosoc Med* 2007;1:24

25. McKinley PS, King AR, Shapiro PA, et al. The impact of menstrual cycle phase on cardiac autonomic regulation. *Psychophysiology* 2009;46:904–11

26. Baker FC, Colrain IM, Trinder J. Reduced parasympathetic activity during sleep in the symptomatic phase of severe premenstrual syndrome. *J Psychosom Res* 2008;65:13–22

27. Matsumoto T, Ushiroyama T, Morimura M, et al. Autonomic nervous system activity in the late luteal phase of eumenorrheic women with premenstrual symptomatology. *J Psychosom Obstet Gynaecol* 2006;27:131–9

28. Bai X, Li J, Zhou L, Li X. Influence of the menstrual cycle on nonlinear properties of heart rate variability in young women. *Am J Physiol Heart Circ Physiol* 2009;297:H765–74

29. Yildirim A, Kabagci G, Akgul E, Tokgozoglu L, Oto A. Effects of menstrual cycle on cardiac autonomic innervation as assessed by heart rate variability. *Ann Noninvasive Electrocardiol* 2002;7:60–3

30. Leicht AS, Hirning DA, Allen GD. Heart rate variability and endogenous sex hormones during the menstrual cycle in young women. *Exp Physiol* 2003;88:441–6

31. Weissman A, Lowenstein L, Tal J, Ohel G, Calderon I, Lightman A. D. Heart rate variability by estrogen in young women undergoing induction of ovulation. *Eur J Appl Physiol* 2009;105:381–6

32. Tenan MS, Brothers RM, Tweedell AJ, Hackney AC, Griffin L. Changes in resting heart rate variability across the menstrual cycle. *Psychophysiology* 2014;51:996–1004

33. de Zambotti M, Nicholas CL, Colrain IM, Trinder JA, Baker FC. Autonomic regulation across phases of the menstrual cycle and sleep stages in women with premenstrual syndrome and healthy controls. *Psychoneuroendocrinology* 2013;38:2618–27

34. Saeki Y, Atogami F, Takahashi K, Yoshizawa T. Reflex control of autonomic function induced by posture change during the menstrual cycle. *J Auton Nerv Syst* 1997;66:69–74

35. Weissman A, Lowenstein L, Porat M, Geva A, Rosenberg Y. The effect of hormone replacement therapy cessation on heart rate variability in postmenopausal women. *Clin Auton Res* 2005;15:411–19

36. Brockbank CL, Chatterjee F, Bruce SA, Woledge RC. Heart rate and its variability change after the menopause. *Exp Physiol* 2000;85:327–30

37. Virtanen I, Kalleinen N, Urrila AS, Leppänen C, Polo-Kantola P. Cardiac autonomic changes after 40 hours of total sleep deprivation in women. *Sleep Med* 2015;16:250–7

38. Yang S, Milček M, Kittnar O. Estrogen can modulate menopausal women’s heart rate variability. *Physiol Res* 2013;62(Suppl 1):S165–71

39. Moodithaya SS, Avadhany ST. Comparison of cardiac autonomic activity between pre and post menopausal women using heart rate variability. *Indian J Physiol Pharmacol* 2009;53:227–34

40. Neves VFC, Silva de Sá, M F, Gallo L, et al. Autonomic modulation of heart rate of young and postmenopausal women undergoing estrogen therapy. *Braz J Med Biol Res* 2007;40:491–9

41. Liu CC, Kuo TBJ, Yang CCH. Effects of estrogen on gender-related autonomic differences in humans. *Am J Physiol Heart Circ Physiol* 1996;271:H1198–H1203

42. Mercuro G, Podda A, Pitzalis L, et al. Evidence of a role of endogenous estrogen in the modulation of autonomic nervous system. *Am J Cardiol* 2000;85:787–9, A9

43. Ribeiro TF, Azvedo GD, Crescêncio JC, et al. Heart rate variability under resting conditions in postmenopausal and young women. *Braz J Med Biol Res* 2001;34:871–7

44. Saeki Y, Atogami F, Hiraishi M, Furuta N, Yoshizawa T. Impairment of autonomic function induced by posture change in postmenopausal women. *J Womens Health* 1998;7:575–82

45. de Zambotti M, Colrain IM, Sassoon SA, Nicholas CL, Trinder J, Baker FC. Vagal withdrawal during hot flashes occurring in undisturbed sleep. *Menopause* 2013;20:1147–53

46. Akiyoshi M, Kato K, Owa Y, et al. Relationship between estrogen, vasomotor symptoms, and heart rate variability in climacteric women. *J Med Dent Sci* 2011;58:49–59

47. Hautamäki H, Piirilä P, Haapalahi P, et al. Cardiovascular autonomic responsiveness in postmenopausal women with and without hot flushes. *Maturitas* 2011;68:368–73

48. Hautamäki H, Mikkola TS, Sovijärvi ARA, Piirilä P, Haapalahi P. Menopausal hot flushes do not associate with changes in heart rate variability in controlled testing: a randomized trial on hormone therapy. *Acta Obstet Gynecol Scand* 2013;92:902–8

49. Magri F, Gabellieri E, Busconi L, et al. Cardiovascular, anthropometric and neurocognitive features of healthy postmenopausal women: effects of hormone replacement therapy. *Life Sci* 2006;78:2625–32

50. Nisenbaum MG, Melo NR de, Giribela CRG, et al. Effects of a contraceptive containing drospirenone and ethinyl estradiol on blood pressure and autonomic tone: a prospective controlled clinical trial. *Eur J Obstet Gynecol Reprod Biol* 2014;175:62–6

51. Wilczak A, Marciniak K, Klapciński M, Rydlewska A, Danel D, Jankowska EA. Relations between combined oral contraceptive therapy and indices of autonomic balance (baroreflex sensitivity and heart rate variability) in young women. *Gynecol Pol* 2013;84:915–21

52. Lantto H, Haapalahi P, Tuomikoski P, et al. Vasomotor hot flashes and heart rate variability: a placebo-controlled trial of postmenopausal hormone therapy. *Menopause* 2012;19:82–8

53. Virtanen I, Ekelom E, Polo-Kantola P, Hiekkanen H, Huikuri H. Postmenopausal estrogen therapy modulates nocturnal nonlinear heart rate dynamics. *Menopause* 2008;15:693–7

54. Chao H, Kuo C, Su Y, Chuang S, Fang Y, Ho L. Short-term effect of transdermal estrogen on autonomic nervous modulation in postmenopausal women. *Fertil Steril* 2005;84:1477–83

55. Fernandes EO, Moraes RS, Ferlin EL, Wender MCO, Ribeiro JP. Hormone replacement therapy does not affect the 24-hour heart rate variability in postmenopausal women: results of a randomized,
placebo-controlled trial with two regimens. *Pacing Clin Electrophysiol* 2005;28(Suppl 1):S172–7

56. Kaya D, Cevrioglu S, Onrat E, Fenkci IV, Yilmazer M. Single dose nasal 17beta-estradiol administration reduces sympathovagal balance to the heart in postmenopausal women. *J Obstet Gynaecol Res* 2003;29:406–11

57. Manzella D, Fornaro F, Carbonella M, Picardi C, Paolisso G, Colacurci N. Effect of tibolone administration on heart rate variability and free fatty acid levels in postmenopausal women. *Fertil Steril* 2002;78:1005–9

58. Farag NH, Nelesen RA, Parry BL, Loredo JS, Dimsdale JE, Mills PJ. Autonomic and cardiovascular function in postmenopausal women: the effects of estrogen versus combination therapy. *Am J Obstet Gynecol* 2002;186:954–61

59. Virtanen I, Polo O, Polo-Kantola P, Kuusela T, Ekholm E. The effect of estrogen replacement therapy on cardiac autonomic regulation. *Maturitas* 2000;37:45–51

60. Virtanen I, Polo-Kantola P, Erkkola R, Polo O, Ekholm E. Climacteric vasomotor symptoms do not imply autonomic dysfunction. *Br J Obstet Gynaecol* 1999;106:155–64

61. Zhang H, Bai W, Guo J, Zheng S, Zhao J. Effect of hormone replacement therapy on heart rate variability in postmenopausal women. *Chin Med J* 2000;113:592–4

62. Yildirir A, Kabakci G, Yanali H, et al. Effects of hormone replacement therapy on heart rate variability in postmenopausal women. *Ann Noninvasive Electrocardiol* 2001;6:280–4

63. Rosano GM, Patrizi R, Leonardo F, et al. Effect of estrogen replacement therapy on heart rate variability and heart rate in healthy postmenopausal women. *Am J Cardiol* 1997;80:815–17

64. Gökgöz M, Karahan B, Yilmaz R, Orem C, Erdöl C, Ozdemir S. Long term effects of hormone replacement therapy on heart rate variability, QT interval, QT dispersion and frequencies of arrhythmia. *Int J Cardiol* 2005;99:373–9

65. Carnethon MR, Anthony MS, Casco WE, et al. Prospective association between hormone replacement therapy, heart rate, and heart rate variability. The Atherosclerosis Risk in Communities study. *J Clin Epidemiol* 2003;56:565–71

66. Christ M, Seyffart K, Wehling M. Attenuation of heart-rate variability in postmenopausal women on progestin-containing hormone replacement therapy. *Lancet* 1999;353:1939–40

67. Perseguini NM, de Medeiros Takahashi AC, Milan JC, et al. Effect of hormone replacement therapy on cardiac autonomic modulation. *Clin Auton Res* 2014;24:63–70

68. Pautasso M. Ten simple rules for writing a literature review. *PLoS Comput Biol* 2013;9:e1003149