Multifrequency Forcing of a Hopf Oscillator Model
of the Inner Ear

K.A. Montgomery
Mathematics Department,
University of Utah, Salt Lake City, UT

October 31, 2018

1 Corresponding author. Address: Mathematics Department, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112, U.S.A., Tel.: (801)419-1520
Abstract

In response to a sound stimulus, the inner ear emits sounds called otoacoustic emissions. While the exact mechanism for the production of otoacoustic emissions is not known, active motion of individual hair cells is thought to play a role. Two possible sources for otoacoustic emissions, both localized within individual hair cells, include somatic motility and hair bundle motility. Because physiological models of each of these systems are thought to be poised near a Hopf bifurcation, the dynamics of each can be described by the normal form for a system near a Hopf bifurcation. Here we demonstrate that experimental results from three–frequency suppression experiments can be predicted based on the response of an array of noninteracting Hopf oscillators tuned at different frequencies. This supports the idea that active motion of individual hair cells contributes to active processing of sounds in the ear. Interestingly, the model suggests an explanation for differing results recorded in mammals and nonmammals. Key words: Hair Cells; Inner Ear; Hopf Bifurcation; Otoacoustic Emissions
Introduction

The inner ear is more than a passive recorder of sounds. It also actively processes sounds using metabolic energy to spectrally analyze and amplify the stimulus (1, 2, 3, 4, 5). One consequence of the inner ear’s active sound processing is that it produces sounds called otoacoustic emissions. Otoacoustic emissions, which consist of combinations of sounds at discrete frequencies, can occur either in the absence or in the presence of a sound stimulus (6). The exact mechanism responsible for the active processing of sounds and the related production of otoacoustic emissions within the ear is not well known (2, 4, 7). Recording the emissions spectrum provoked by a stimulus provides a way to probe the physiological systems responsible for active processing of sound.

In nonmammals, active sound processing is thought to occur within individual hair cells (8, 9). Hair cells are mechanotransduction cells responsible for translating sound-induced mechanical motion into an electrical signal that is received by the auditory nerve (1, 7). Each hair cell consists of a cell body which is contacted by the auditory nerve and a bundle of actin-supported fibers called stereocilia. When sound stimulates the auditory organ, the hair bundle is set into motion, causing transduction channels to be mechanically pulled open. Potassium ions flow through the transduction channels depolarizing the cell and ultimately causing the firing of the auditory nerve. In nonmammals, each hair cell responds preferentially at a specific frequency, a quality that makes the hair cell a prime suspect in the search for the source of the discrete-frequency otoacoustic emissions.
Active motion of the hair bundle is considered to be a possible mechanism for active sound processing in both the mammalian and nonmammalian ear (10, 11, 12, 13, 14, 15, 16, 17). Experiments have shown that the hair bundle responds with more energy than the stimulus energy if stimulated near its resonance frequency (18). It has been proposed that when the hair bundle is displaced, calcium enters through the transduction channels and binds to a site inside the hair bundle (18, 19). This binding causes a change in the tension of the transduction channels which results in the motion of the hair bundle. In mammals, there is another source of active hair cell motion. In response to depolarization, the cell bodies of outer hair cells contract due to the action of the protein prestin (20, 21, 22).

Either the hair bundle motility or the outer hair cell somatic motility could be involved in the production of otoacoustic emissions. Interestingly, a physiologically–based model for hair bundle motion has been shown to be poised near a Hopf bifurcation for physiologically reasonable parameters (14). The motion of the outer hair cells also displays a resonance response (23) that is suspected to arise from a physiological system that is tuned near a Hopf bifurcation (24).

Assuming both the hair cell bundle motion and the outer hair cell motion is produced by a system poised near a Hopf bifurcation, the dynamics either system can be described by the normal form for a system near a Hopf bifurcation (25),

\[
\frac{dA}{dt} = (a + ib)A - (c + id)|A|^2A. \tag{1}
\]
The response properties of Eq. 1 have been shown to reproduce qualitatively many of the amplification and tuning properties of the inner ear (26, 27).

The otoacoustic emissions produced by the ear in response to multifrequency stimuli provide ample data concerning the active processing properties of the inner ear (6). Here, we consider the predictions of the Hopf oscillator model for three–frequency forcing experiments. It is of interest to determine whether observed otoacoustic emissions can be explained by an array of Hopf oscillators, each modeled by Eq. 1 and, if so, whether coupling between the motion of the oscillators is required to obtain observed otoacoustic emissions results. We find that an array of noninteracting Hopf oscillators, perhaps describing the motion of the hair bundles or outer hair cells, is adequate to qualitatively explain the results of the three–frequency forcing experiments in both nonmammals and mammals.

Analysis

Assuming both the motion of the hair bundle and the motion of the outer hair cell body can be modeled by a system tuned near a Hopf bifurcation, the dynamics of each can be described by the normal form for a system near a Hopf bifurcation, Eq. 1. In the normal form, the parameter a is a measure of proximity to the bifurcation point. When a is small in magnitude and negative, the ‘cell’ is tuned slightly below the Hopf bifurcation and responds to brief disturbances with decaying oscillations. If a is greater than zero, the ‘cell’ is tuned above the Hopf bifurcation and the hair bundle oscillates spontaneously. The parameter b is the natural frequency of the
Multifrequency Forcing

cell at the onset of oscillation and d is a measure of the shift in the frequency of the cell as the response amplitude increases. The parameter c determines whether the system is supercritical ($c > 0$) or subcritical ($c < 0$). Here, we will concentrate on the supercritical case because it allows for small-amplitude, spontaneous oscillations near the bifurcation point similar to the spontaneous hair bundle oscillations that are observed experimentally (28).

If a small time-dependent forcing is applied the system (27, 29, 30), the normal form must be modified to include a forcing term, F,

$$\frac{dA}{dt} = (a + ib)A - (c + id) |A|^2 A + F.$$ \hspace{1cm} (2)

In the case of single–frequency forcing, $F = fe^{i\omega t}$, the system can be analyzed by considering hair bundle motions responding at the same frequency as the forcing frequency. Substituting $A = Re^{i\omega t + i\phi}$ into Eq. 2 yields the following simple relationship between forcing amplitude and response amplitude,

$$(aR - cR^3)^2 + (b - \omega)R - dR^3 = f^2$$ \hspace{1cm} (3)

Using this relationship, Eguíluz et al. and Camalet et al. (26, 27) each demonstrated that a generic system poised near a Hopf bifurcation displays many of the amplification and tuning properties that are observed in the auditory system.

Two-frequency forcing experiments have been useful in studying the properties of otoacoustic emissions and determining their source. In suppression experiments (31, 32), the cochlea is stimulated by a primary tone
as well as a second softer tone, referred to as a suppressor tone. The addition of the softer tone has an effect on the magnitude of the cochlear response at the primary frequency. Specifically, as the frequency of the suppressor tone approaches the frequency of the primary tone, the magnitude of the component of the otoacoustic emission at the primary tone decreases. The biological interpretation of this is that since the maximum suppression occurs when the suppressor tone is near the primary frequency, it is likely that the otoacoustic emission originates near the part of the cochlea tuned at the primary frequency. Analysis of a Hopf oscillator tuned at the primary frequency and forced by a primary and suppressor tone supports the biological interpretation. Recently, Stoop et al. (33), by analyzing a Hopf oscillator model showed that the effect of adding a second frequency close to the primary frequency is to increase the effective damping of the oscillator’s response at the primary frequency. Thus a single cell, tuned near a Hopf bifurcation point and near the primary frequency is adequate to reproduce the main qualitative features of two-frequency suppression experiments.

When the ear is stimulated by sound containing a linear combination of two primary frequencies ω_1 and ω_2, the otoacoustic emissions spectrum is more complicated to analyze because distortion product otoacoustic emissions (DPOAE’s) occur at linear combinations of the stimulus frequencies (6, 34, 35). In experiments, the largest DPOAE response is observed to occur at the $2\omega_1 - \omega_2$ and $2\omega_2 - \omega_1$ frequency components. The presence of DPOAE’s allows for more complicated multifrequency forcing experiments in which the amplitudes of the distortion products are considered. For instance, suppression experiments can be performed in which the cochlea is
stimulated at a combination of two primary frequencies as well as a smaller amplitude suppressor tone. Then the effect of the suppressor tone on the response at each of the primary frequencies and the distortion product frequencies can be recorded.

In nonmammals, multifrequency forcing experiments, including two primary frequencies ω_1 and ω_2 ($\omega_1 < \omega_2$) and a suppressor frequency, indicate that maximum suppression of the $2\omega_1 - \omega_2$ distortion product frequency occurs when the suppressor tone is near the ω_1 frequency (36, 37, 38). Oddly, in mammals, the reverse trend is observed and maximum suppression of $2\omega_1 - \omega_2$ occurs when the suppressor frequency is near the ω_2 frequency (39, 40). If active hair cell motion is responsible for the production of otoacoustic emissions, there must be an explanation for the discrepancy between emissions in mammals and nonmammals.

Here, we consider the response properties of a Hopf oscillator under three-frequency forcing, $F = F_1 e^{i\omega_1 t} + F_2 e^{i\omega_2 t} + F_3 e^{i\omega_3 t}$. Because the system is nonlinear, the response contains an infinite number of frequencies, a small number of which will be represented prominently. If one substitutes $A = A_1 e^{i\omega_1 t} + A_2 e^{i\omega_2 t} + A_3 e^{i\omega_3 t}$ into the nonlinear term from the normal form, $|A|^2 A$, the result contains only certain frequency combinations. We will assume that those frequencies dominate the response, and thus consider a response, A, that is a linear combination of those frequency components,
A = \[R_1 e^{i\omega_1 t + i\phi_1} + R_2 e^{i\omega_2 t + i\phi_2} + R_3 e^{i\omega_3 t + i\phi_3} \\
+ R_{112} e^{i(2\omega_1 - \omega_2) t + i\phi_{112}} + R_{221} e^{i(2\omega_2 - \omega_1) t + i\phi_{221}} \\
+ R_{113} e^{i(2\omega_1 - \omega_3) t + i\phi_{113}} + R_{223} e^{i(2\omega_2 - \omega_3) t + i\phi_{223}} \\
+ R_{332} e^{i(2\omega_3 - \omega_2) t + i\phi_{332}} + R_{331} e^{i(2\omega_3 - \omega_1) t + i\phi_{331}} \\
+ R_{123} e^{i(\omega_1 + \omega_2 - \omega_3) t + i\phi_{123}} + R_{231} e^{i(\omega_2 + \omega_3 - \omega_1) t + i\phi_{231}} \\
+ R_{312} e^{i(\omega_3 + \omega_1 - \omega_2) t + i\phi_{312}} \] (4)

Substituting Eq. 4 into Eq. 2 yields algebraic expressions relating the response amplitudes, response phases, and the forcing amplitudes, \(F_1 \), \(F_2 \), and \(F_3 \). Frequency components not represented in Eq. 4 are neglected. This provides an analytical description for the response of the Hopf oscillator to three-frequency forcing.

Under the assumption that the cells tuned near the primary frequencies, \(\omega_1 \) and \(\omega_2 \) and the distortion product frequencies, \(2\omega_1 - \omega_2 \) and \(2\omega_2 - \omega_1 \) are likely produce the greatest response at \(2\omega_1 - \omega_2 \), we concentrate on the response of those four cells. Figure 1 a.-b. shows the relationship between the magnitude of the component of the response at the \(2\omega_1 - \omega_2 \) frequency, \(R_{112} \), and the frequency of the suppressor tone, \(\omega_3 \), for the two cells generated the greatest response, the cells tuned at \(\omega_1 = 300 \) and \(2\omega_1 - \omega_2 = 270 \). In figure 1 a.-b., as observed in the two frequency suppression case, maximum suppression occurs when the suppressor frequency is tuned near the natural frequency of the cell. In this example, the component of the response
of the ω_1 cell at the distortion product frequency is much louder than the
distortion product component of the response for the other three cells. So, a
plot of the total response of the four cells shows that maximum suppression
occurs when the suppressor tone is tuned near ω_1 (figure 1c.). For larger
values of the forcing frequency, or larger values of the nonlinear coefficients c and d, substantial suppression may also occur at the $2\omega_1 - \omega_2$ frequency
(figure 1d.). This result is consistent with suppression curve experiments
in nonmammals which indicate that maximum suppression of the response
at the distortion product frequency, $2\omega_1 - \omega_2$, occurs when the suppressor
frequency is near the ω_1 frequency (6, 34, 35, 36). Some experiments also
show a secondary dip near the distortion product frequency, as predicted by
the model (36).

Data recorded in suppression experiments is slightly different than that
shown in figure 1c.-d., where the forcing amplitude was held constant for
each curve. Typically in suppression experiments, the magnitude of forcing
needed to reduce the component of the response at $2\omega_1 - \omega_2$ by a specified
amount is recorded as the suppressor frequency is changed. A single Hopf os-
cillator tuned at $\omega_1 = 300$ yields results similar to suppression experiments,
again with maximum suppression occurring near ω_1 (figure 2) (6, 34, 35, 36).

While the Hopf oscillator model qualitatively predicts the response prop-
erties for three-frequency suppression experiments in nonmammals, it does
not reproduce mammalian suppression results. Recall, in mammals, it is
observed that maximum suppression of the $2\omega_1 - \omega_2$ frequency occurs when
the suppressor tone is tuned near the ω_2 frequency not the ω_1 frequency
as in nonmammals. Over many trials, the Hopf oscillator model never pre-
Multifrequency Forcing

dicted maximum suppression near the ω_2 frequency. The probable reason for the discrepancy lies in differences in physiology between mammals and nonmammals. In nonmammals, the hair cells are embedded in a membrane that lacks tuning properties, while in mammals, the hair cells are embedded in the basilar membrane (1). The basilar membrane performs much of the frequency filtering in the mammalian inner ear. When sound of a given frequency strikes the inner ear, a traveling wave is set into motion along the basilar membrane. This traveling wave reaches its maximum amplitude at different places along the membrane depending upon the frequency of the stimulus. For a high frequency stimulus, the wave reaches its maximum amplitude closer to the base of the cochlea than it would for lower frequency stimulus. After the wave passes through its preferred frequency, vibrations at that frequency are damped.

If the mammalian cochlea is forced at two frequencies, ω_1 and ω_2 with $\omega_1 < \omega_2$, the hair cells tuned near the higher frequency, ω_2 will feel both frequency components of the stimuli. Because higher frequency stimuli will have dissipated by the time the traveling wave reaches the hair cell tuned at ω_1, that cell will feel mainly the ω_1 component of the stimulus. While in nonmammals, the cell tuned near ω_1 is responsible for generating the largest portion of the distortion product otoacoustic emission, in mammals the cell tuned near the ω_1 frequency does not receive the full stimulus at both frequency components and cannot produce as great a response at the distortion product frequency. Therefore, it would not be surprising if most of the $2\omega_1 - \omega_2$ distortion product frequency was generated at the ω_2 cell and not the ω_1 cell in mammals, causing maximum suppression to occur
near ω_2.

Conclusions

A model consisting of a set of noninteracting oscillators tuned near a Hopf bifurcation was successful in qualitatively predicting the results of three-frequency forcing experiments observed in mammals and nonmammals. In the case of nonmammals, only two Hopf oscillators tuned near ω_1 and $2\omega_1 - \omega_2$ were necessary to predict the results of three-tone suppression experiments. In mammals, a Hopf oscillator tuned near the ω_2 frequency correctly predicted experimental results. Which cell contributes the most is dictated by important differences in mammalian and nonmammalian physiology. Notably, it was not necessary to assume coupling between cells of different frequencies in order to qualitatively reproduce experimental data. Though more complicated biophysically–based models would be needed to produce a more quantitative agreement with the experiments, it is interesting that such a simple model can explain the main experimental features. These results lend support to the idea that an array of oscillators tuned near a Hopf bifurcation could be responsible for otoacoustic emissions and active sound processing in the ear. Because both the somatic motility of the outer hair cell and the motion of the hair bundle are thought to be modeled by systems poised near a Hopf bifurcation, either could play the role of the Hopf oscillator.

K.A.M. is grateful for fellowship support through NSF-RTG grant 0354259.
References

1. Kandel, E. R., J. H. Schwartz, and T. M. Jessell, 2000. Principles of Neural Science, Fourth Edition. McGraw-Hill, New York.

2. Hudspeth, A. J., and V. S. Markin, 1994. The ear’s gears - Mechano-electrical transduction by hair cells. *Phys. Today* 47(2):22–28.

3. Dallos, P., 1992. The active cochlea. *J. Neurosci.* 12(12):4575–4585.

4. Fettiplace, R., A. J. Ricci, and C. M. Hackney, 2001. Clues to the cochlear amplifier from the turtle ear. *Trends Neurosci.* 24(3):169–175.

5. Manley, G. A., 2001. Evidence for an active process and a cochlear amplifier in nonmammals. *J. Neurophysiol.* 86(2):541–549.

6. Probst, R., B. L. Lonsbury-Martin, and G. K. Martin, 1991. A review of otoacoustic emissions. *J. Acoust. Soc. Am.* 89(5):2027–2067.

7. Robles, L., and M. A. Ruggero, 2001. Mechanics of the mammalian cochlea. *Physiol. Rev.* 81(3):1305–1352.

8. Smotherman, M. S., and P. M. Narins, 1999. The electrical properties of auditory hair cells in the frog amphibian papilla. *J. Neurosci.* 19(13):5275–5292.

9. Magnasco, M. O., 2003. A wave traveling over a Hopf instability shapes the cochlear tuning curve. *Phys. Rev. Lett.* 90:058101.

10. Manley, G. A., and L. Gallo, 1997. Otoacoustic emissions, hair cells, and myosin motors. *J. Acoust. Soc. Am.* 102(2):1049–1055.
11. Manley, G. A., D. L. Kirk, C. Köppl, and G. K. Yates, 2001. In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. *P. Natl. Acad. Sci.* 98(5):2826–2831.

12. Hudspeth, A. J., Y. Choe, A. D. Mehta, and P. Martin, 2000. Putting ion channels to work: Mechanoelectrical transduction, adaptation, and amplification by hair cells. *P. Natl. Acad. Sci.* 97(22):11765–11772.

13. Martin, P., A. D. Mehta, and A. J. Hudspeth, 2000. Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. *P. Natl. Acad. Sci.* 97(22):12026–12031.

14. Martin, P., and A. J. Hudspeth, 1999. Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. *P. Natl. Acad. Sci.* 96(25):14306–14311.

15. Ricci, A. J., A. C. Crawford, and R. Fettiplace, 2002. Mechanisms of active hair bundle motion in auditory hair cells. *J. Neurosci.* 22(1):44–52.

16. Martin, P., D. Bozovic, Y. Choe, and A. J. Hudspeth, 2003. Spontaneous oscillation by hair bundles of the bullfrog’s saccus. *J. Neurosci.* 23(11):4533–4548.

17. Jaramillo, F., V. S. Markin, and A. J. Hudspeth, 1993. Auditory illusions and the single hair cell. *Nature* 364:527–529.

18. Choe, Y., M. O. Magnasco, and A. J. Hudspeth, 1998. A model for amplification of hair-bundle motion by cyclical binding of Ca^{2+}
Multifrequency Forcing

to mechanoelectrical-transduction channels. *P. Natl. Acad. Sci.* 95(26):15321–15326.

19. Cheung, E. L. M., and D. P. Corey, 2006. Ca$^{2+}$ changes the force sensitivity of the hair cell transduction channel. *Biophys. J.* 90:124–139.

20. Kachar, B., W. E. Brownell, R. Altschuler, and J. Fex, 1986. Electrokinetic shape changes of cochlear outer hair cells. *Nature* 322:365–368.

21. Ashmore, J. F., 1987. A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. *J Physiol* 388:323–247.

22. Zheng, J., W. Shen, D. Z. Z. He, K. B. Long, L. D. Madison, and P. Dallos, 2000. Prestin is the motor protein of cochlear outer hair cells. *Nature* 405:149–155.

23. Rabbitt, R. D., H. E. Ayliffe, D. Christensen, K. Pamarthy, C. Durney, S. Clifford, and W. E. Brownell, 2005. Evidence of piezoelectric resonance in isolated outer hair cells. *Biophys. J.* 88:2257–2265.

24. Ospeck, M., X. Dong, and K. H. Iwasa, 2003. Limiting frequency of the cochlear amplifier based on electromotility of outer hair cells. *Biophys. J.* 84:739–749.

25. Wiggins, S., 1990. Introduction to Applied Nonlinear Dynamical Systems and Chaos, volume 2 of *Texts in Applied Mathematics*. Springer-Verlag, New York.
26. Eguíluz, V. M., M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O. Magnasco, 2000. Essential nonlinearities in hearing. *Phys. Rev. Lett.* 84(22):5232–5235.

27. Camalet, S., T. Duke, F. Jülicher, and J. Prost, 2000. Auditory sensitivity provided by self-tuned critical oscillations of hair cells. *P. Natl. Acad. Sci.* 97(7):3183–3188.

28. Crawford, A. C., and R. Fettiplace, 1985. The mechanical properties of ciliary bundles of turtle cochlear hair-cells. *J. of Physiol. (Lond.)* 364:359–379.

29. van Dijk, P., M. J. Mason, and P. M. Narins, 2002. Distortion product otoacoustic emissions in frogs: Correlation with middle and inner ear properties. *Hearing Res.* 173:100–108.

30. Montgomery, K. A., M. Silber, and S. A. Solla, 2007. Amplification in the auditory periphery: The effect of coupling tuning mechanisms. *Phys. Rev. E* 75(5):051924.

31. Ruggero, M. A., L. Robles, and N. C. Rich, 1992. Two-tone suppression in the basilar membrane of the cochlea: Mechanical basis of auditory-nerve rate suppression. *J. Neurophysiol.* 68:1087–1099.

32. Frishkopf, L. S., and M. H. Goldstein, 1963. Responses to acoustic stimuli from single units in the eighth nerve of the bullfrog. *J. Acoust. Soc. Am.* 35:1219–1228.

33. Stoop, R., and A. Kern, 2004. Two-tone suppression and combination
tone generation as computations performed by the Hopf cochlea. Phys. Rev. Lett. 93:268103.

34. Manley, G. A., C. Köppl, and B. M. Johnstone, 1993. Distortion-product otoacoustic emissions in the bobtail lizard. I: General characteristics. J. Acoust. Soc. Am. 93(5):2820–2833.

35. Meenderink, S. W. F., and P. van Dijk, 2005. Characteristics of distortion product otoacoustic emissions in the frog from L_1, L_2 maps. J. Acoust. Soc. Am. 118(1):279–286.

36. Taschenberger, G., and G. A. Manley, 1998. General characteristics and suppression tuning properties of the distortion-product otoacoustic emission $2f_1 - f_2$ in the barn owl. Hearing Res. 123(1-2):183–200.

37. Köppl, C., and G. A. Manley, 1993. Distortion-product otoacoustic emissions in the bobtail lizard. II: Suppression tuning characteristics. J. Acoust. Soc. Am. 93(5):2834–2844.

38. Kettembeil, S., G. A. Manley, and E. Siegl, 1995. Distortion-product otoacoustic emissions and their anaesthesia sensitivity in the European Starling and the chicken. Hearing Res. 86:47–62.

39. Brown, A. M., and D. T. Kemp, 1984. Suppressibility of the $2f_1 - f_2$ stimulated acoustic emissions in gerbil and man. Hearing Res. 13:29–37.

40. Kummer, P., T. Janssen, and W. Arnold, 1995. Suppression tuning characteristics of the $2f_1 - f_2$ distortion product otoacoustic emission in humans. J. Acoust. Soc. Am. 98(1):197–210.
Figure 1: Figures a.-b. show the magnitude of the response at the $2\omega_1 - \omega_2$ frequency, R_{112}, for two different cells tuned at different frequencies as the frequency of the suppressor tone, ω_3 was varied. For a.-c. parameter values were set at $a = -1, c = 100, d = 100, F_1 = .01, F_2 = .01, F_3 = .001$. (a) Cell 1, Natural Frequency, $b = 2\omega_1 - \omega_2 = 270$. (b) Cell 2, Natural Frequency, $b = \omega_1 = 300$. (c) The total $2\omega_1 - \omega_2$ component of the response for four cells tuned at 270, 300, 330, and 360. (d) The total $2\omega_1 - \omega_2$ component of the response for the four cells tuned at 270, 300, 330, and 360, with $c = d = 500$ and other parameters the same as a.-c.
Figure 2: Each curve shows the amplitude of the suppressor tone, F_3, needed to suppress the response of a single Hopf oscillator at the distortion product frequency, R_{112}, by a fixed amount. For the lowest curve in the diagram, the response, $\log(R_{112})$ is reduced by 0.5 from its unsuppressed value. Each consecutive curve shows the forcing needed to reduce the response by an additional 0.5. Parameters were set at $a = -1$, $b = 300$, $c = 100$, $d = 100$, $F_1 = .01$, and $F_2 = .01$.