Suprabasal Mitotic Index: A Cell Kinetic Aid in Psoriasis Diagnosis

Susan Maria Mendonca, Sumanth Devaraju

Department of Pathology, Kanachur Institute of Medical Sciences, Derlakatte, †Department of Pathology, Father Muller Medical College, Mangalore, Karnataka, India

Abstract

Background: Psoriatic cell kinetic studies attribute psoriatic hyperplasia to increased germinative cell layer and increased mitotic rate causing rapid cell turnover, resulting in suprabasal mitotic activity. The significant Ki-67 and p53 positivity in psoriatic suprabasal layers as opposed to basal layers in normal skin corroborates this finding. Morphology holds importance in differentiating psoriasis among plaque forming lesions as they clinically mimic each other. In this study, the significance of morphologically derived suprabasal mitotic index was evaluated in the diagnosis of psoriatic lesions. Methods: H and E stained paraffin sections of histopathology confirmed cases of psoriasis and its variants \(n = 52 \) were retrieved from archives and studied. For comparison, control group \(n = 30 \) comprising normal skin and other plaque lesions was used. Suprabasal mitoses/100 basal keratinocytes were calculated in both groups and evaluated using Student’s t-test and receiver operator characteristics. Results: The suprabasal mitotic index was significantly higher in psoriatic lesions as compared to controls \((P < 0.001) \) with lower counts in palmoplantar psoriasis \(n = 14 \). The cutoff of suprabasal mitoses for non-palmoplantar psoriasis was 1/100 keratinocytes with sensitivity, specificity, positive, and negative predictive value of 94.9%, 86.7%, 90.2%, and 92.9%, respectively. The diagnostic accuracy was 91.3%. Palmoplantar psoriasis had comparatively lower values and a diagnostic accuracy of 70.45%. Conclusion: The morphological evaluation of suprabasal mitoses is a reliable and cost-effective cell kinetic tool in diagnosing psoriasis and its variants. This will aid in the differential diagnosis of plaque forming lesions.

Keywords: Palmoplantar, plaque lesions, psoriasis, psoriatic cell kinetics, suprabasal mitoses

Introduction

Psoriasis is a genetically determined, chronic inflammatory, and proliferative disease of the skin that is commonly known to relapse.\(^1\) Psoriasis is characterized by hyperplasia with increased cell turnover.\(^1‑3\) Studies have shown that psoriatic epidermis replaces itself 6-7 times faster than normal skin. Hyperplasia is attributed to increase in germinative cell layer and increased mitotic rate.\(^4\) Histopathological diagnosis can be difficult when psoriatic variants and other plaque lesions are to be differentiated.\(^5\) Ki-67 and p53 studies on psoriatic epidermis have shown that positive keratinocytes were distributed throughout the epidermis as compared to the normal skin where only basal layer showed positivity.\(^5,6\) Suprabasal mitosis is a known morphological feature of psoriasis.\(^1‑2\) The aim of this study is to assess the suprabasal mitotic count and to find its significance as a diagnostic tool in psoriatic skin biopsies.

Methods

Histopathologically diagnosed cases of psoriasis \(n = 52 \) with clinical treatment response correlation were included in the study group, taking note of lesion site. Care was exercised to exclude patients with prior treatment history. Palmoplantar psoriasis cases were chosen based on site and clinical features (well demarcated palmar and/or plantar plaques characterized by erythema and desquamation. Deep, red plaques with adherent and silvery white scales that tend to remain stable for months were the gold standard for the clinical diagnosis of psoriasis.)\(^7‑9\) as well as response to treatment biology. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

How to cite this article: Mendonca SM, Devaraju S. Suprabasal mitotic index: A cell kinetic aid in psoriasis diagnosis. Indian J Dermatopathol Diagn Dermatol 2017;4:2-7.
on follow-up. Hematoxylin and Eosin stained 3-4 u thick paraffin sections were retrieved from archives. Thirty controls were taken comprising normal skin and other plaque forming lesions. Dysplastic/neoplastic skin lesions were excluded from the control group. Two pathologists, who were blinded to clinical history, performed mitotic counting individually. The basal keratinocyte count was estimated by counting basal keratinocytes per high power field and multiplying by the number of high power fields covering the length of the lesion. The suprabasal mitoses were counted for the entire length of lesion. The number of suprabasal mitoses/100 basal keratinocytes was calculated to get suprabasal mitotic index. The same method was used for assessing mitoses in control slides. The average was taken after counting by both pathologists on Penta-Head. The significance of the data was assessed statistically by Student’s t-test, and receiver operator characteristics were used to arrive at a significant cutoff for suprabasal mitotic index.

Results

The age group of our patients ranged from 17 to 72 years [Table 1] and included 27 males and 25 females [Table 2]. Psoriasis group [Figures 1-3] comprised 38 cases [Tables 3 and 4] while palmoplantar psoriasis group [Figures 4 and 5] comprised 14 cases [Tables 3 and 5]. Control group comprised thirty cases [Table 6].

The mean value of suprabasal mitoses/100 high power field was 2.86 for psoriasis and 0.47 for controls [Figure 6]. The significant P value as obtained by Student’s t-test was <0.001. Suprabasal mitoses in psoriasis were significantly higher compared to controls. Using receiver operator curve, the cut-off of suprabasal mitoses for psoriasis was calculated to be 1/100 keratinocytes. The sensitivity of this value was 94.9%, and specificity was 86.7%. The positive predictive value was 90.2%, and negative predictive value was 92.9%. The diagnostic accuracy was found to be 91.3% [Table 7].

Table 1: Age distribution
Age distribution (years)
17-72

Table 2: Sex distribution
Sex distribution
Males
Females

Table 3: Case distribution
Case distribution
Psoriasis
Palmoplantar psoriasis
The diagnostic accuracy was found to be 70.45%. Hence, palmodplantar psoriasis cutoff was not as good as psoriasis. The morphological evaluation has been the most dependable tool in the diagnosis of skin lesions as they have varied reaction patterns. The psoriatic lesions are no exception with biopsy examination being the mainstay in confirming the diagnosis. The other plaque forming lesions can mimic psoriasis clinically. Hence, histopathological correlation is confirmatory.

Dilated blood vessels, regular epidermal hyperplasia, presence of Munro’s microabscess and/or spongiform pustule of Kogoj have been described to be characteristic features to diagnose psoriasis. However, the presence of marked spongiosis, focal acantholysis, broad globular thickened and confluent rete ridges, blood and fibrin in corneal layer rises diagnostic dilemma.

The psoriatic skin shows a definite transit time of 7 days as compared to 53 days of normal squamous epithelium from basal layer to uppermost layer. The major pathologies in psoriasis are epidermal hyperproliferation with abnormal differentiation and inflammatory infiltration of epidermis and dermis.

The latter pathology correlates with Munro’s microabscess and spongiform pustule of Kogoj, significant diagnostic morphological findings in psoriasis. The former pathology

Table 4: Psoriasis case details

Age	Sex	Site	Diagnosis	Mitotic count	Cells/HPF	Cells counted	Mitotic count/100 cells
25	M	Chest	Psoriasis	24	150	1800	1.3
21	F	Elbow	Psoriasis	18	120	2000	0.9
38	M	Arm	Psoriasis	18	120	2000	0.9
46	M	Forearm	Psoriasis	46	130	2200	2.09
19	M	Back	Psoriasis	13	70	700	1.85
25	F	Leg	Psoriasis	25	60	700	3.5
61	M	Leg	Psoriasis	25	75	1000	2.5
42	M	Leg	Psoriasis	21	40	600	3.5
61	M	Leg	Psoriasis	12	60	500	2.4
44	M	Leg	Psoriasis	28	75	2000	1.4
54	M	Site not specified	Psoriasis	54	50	750	7.2
47	F	Back	Psoriasis	15	60	500	3
48	M	Chest	Psoriasis	69	50	1000	6.9
29	F	Site not specified	Psoriasis	19	45	500	3.8
53	F	Abdomen	Psoriasis	12	50	700	1.7
24	M	Back	Psoriasis	42	45	900	4.66
74	M	Forearm	Psoriasis	14	80	1200	1.16
40	F	Forearm	Psoriasis	6	80	500	1.2
44	M	Arm	Psoriasis	7	60	750	0.9
23	F	Forearm	Psoriasis	29	110	1200	2.41
29	F	Leg	Psoriasis	80	50	800	10
42	M	Forearm	Psoriasis	40	60	1000	4
25	M	Back	Psoriasis	35	90	1300	2.69
27	M	Chest	Psoriasis	7	60	500	1.4
48	F	Leg	Psoriasis	50	60	1000	5
42	M	Leg	Psoriasis	16	50	800	2
62	M	Arm	Pustular Psoriasis	18	50	900	2
50	F	Abdomen	Pustular Psoriasis	28	60	650	4.3
38	M	Site not specified	Psoriasis	18	50	850	2.1
67	M	Site not specified	Psoriasis	18	100	1500	1.2
23	F	Thigh	Psoriasis	12	100	700	1.7
19	M	Back	Psoriasis	13	90	900	1.44
20	F	Site not specified	Psoriasis	9	50	500	1.8
38	M	Leg	Psoriasis	18	50	500	3.6
42	M	Leg	Psoriasis	19	70	1200	1.58
50	F	Site not specified	Psoriasis	13	70	500	2.6
35	F	Elbow	Psoriasis	18	65	800	2.25
is represented morphologically by suprabasal mitosis. Although consistently mentioned in many texts, the diagnostic significance of this particular finding is not well documented in the literature. This prompted us to undertake this study on suprabasal mitosis.

Mitosis has been mainstay of evaluation of tumor pathology. It is helping pathologist to diagnose neoplasms and as a part of many grading systems (van Diest et al.)[13] Further works by Doger et al. and Baran et al. had observed by immunohistochemistry that psoriatic epidermis have Ki-67 positive keratinocytes distributed throughout the epidermis as compared to basal layer only positivity in normal skin.[4-6] Mitosis is an indicator of proliferation, and the morphological recognition of mitosis has clear-cut criteria. Hence, morphological evaluation of mitosis can very well replace ancillary studies such as immunohistochemistry and with no additional cost.

Table 5: Palmoplantar psoriasis case details

Age	Sex	Site	Diagnosis	Mitotic count	Cells/HPF	Cells counted	Mitotic count/100 cells
60	M	Foot	Psoriasis	38	90	1900	2
65	M	Foot	Psoriasis	27	60	1400	1.9
52	F	Foot	Psoriasis	22	110	1900	1.1
72	M	Foot	Psoriasis	17	120	2000	0.85
45	F	Hand	Psoriasis	4	60	550	0.72
42	F	Sole	Psoriasis	12	60	1300	0.9
49	M	Hand	Psoriasis	8	100	1000	0.8
53	F	Foot	Psoriasis	8	80	2100	0.38
44	F	Foot	Psoriasis	9	70	1100	0.8
28	F	Foot	Psoriasis	8	120	1800	0.44
52	F	Foot	Psoriasis	2	80	500	0.4
47	M	Foot	Psoriasis	23	120	2400	0.95
35	M	Foot	Psoriasis	22	120	2300	0.95
62	F	Hand	Psoriasis	16	50	1000	1.6

Table 6: Control details

Age	Sex	Site	Diagnosis	Mitotic count	Cells/HPF	Cells counted	Mitotic count/100 cells
29	M	Arm	Chronic eczema	3	80	1000	0.1
52	F	Chest	Normal	4	50	1900	0.21
20	F	Forearm	Chronic eczema	3	70	800	0.3
23	M	Back	Normal	13	60	1000	1.3
72	F	Forearm	Lichen planus	4	70	1700	0.23
46	F	Abdomen	Epidermal cyst	2	40	1600	0.12
70	M	Temporal area	Seborrheic Keratosis	6	70	700	0.8
54	F	Chest	Normal	7	65	2400	0.29
60	M	Back	Erythroderma secondary to chronic eczema	7	70	1300	0.53
28	F	Chest	Normal	3	70	1100	0.27
54	F	Forearm	Hypertrophic lichen planus	4	60	800	0.5
49	F	Abdomen	Morphea	1	40	500	0.2
50	F	Chest	Epidermal cyst	7	60	1800	0.38
48	F	Chest	Normal	3	100	2800	0.001
48	F	Dorsum hand	Lichen planus	4	120	1800	0.002
60	F	Chest	Normal	0	60	1700	0
25	F	Axilla	Linear epidermal nevus	0	110	8000	0
59	F	Back	Epidermal nevus	6	80	2700	0.2
53	F	Back	Epidermal cyst	3	45	500	0.6
49	F	Leg	Lichen planus	8	50	600	1.33
48	M	Forearm	Midborderline leprosy	5	60	600	0.83
48	F	Chest	Normal	1	110	2200	0.04
60	M	Forearm	Erythroderma Secondary to Air borne contact dermatitis	10	80	1300	0.76
33	F	Neck	Lichen planus actinicus	11	45	800	1.3
22	M	Axilla	Striae distensae	19	50	800	2.3
38	F	Legs	Hypertrophic lichen planus	9	80	1500	0.6
47	F	Dorsum Hand	Tuberculoid leprosy	2	70	500	0.4
13	M	Arm	Lichen planus	1	50	400	0.25
60	M	Knee	Lichen planus	2	70	1000	0.2
41	M	Forearm	Lichen planus	2	80	1500	0.13
Studies by Ralfs et al. on pityriasis rubra pilaris cases, showed a similar rate of epidermal cell production as psoriasis. But as our controls did not comprise this disease entity, it did not affect our observations.

The psoriatic skin changes have no site specificity and show no diurnal variation. Hence, we analyzed lesion from different regions [Figure 8]. However, the consistently lower counts during evaluation in palmoplantar psoriasis prompted us to examine this particular category separately. The absence of sample from palmoplantar region in the study by Fry and McMinn substantiated our observation.

Altered keratin expression is seen in psoriatic epidermis, and changes in keratin gene expression may lead to hyperproliferative status. Thewes et al. found down-regulation of K1 and K10 and upregulation of K6 and K16 in psoriatic epidermis. Leigh IM found K16 and K17 as markers of hyperproliferation in psoriasis. According to them, K16 expression was the most sensitive indicator of psoriasis, with K17 distribution also found in suprabasal mitosis. Swensson et al. had observed specialized keratin expression pattern in human palm and sole (ridged skin) as an adaptation to high physical stress. They found K17-positive, possible stem cells sequester in deeper regions. Taking clue from this finding, the low

Table 7: Analytical table of psoriasis group

Group	Psoriasis
Suprabasal mitotic index	2.86
Controls	0.47
\(P \)	<0.001
Sensitivity (%)	94.9
Specificity (%)	86.7
Positive predictive value (%)	90.2
Negative predictive value (%)	92.9
Diagnostic accuracy (%)	91.3

Table 8: Analytical table of palmoplantar psoriasis group

Group	Palmoplantar psoriasis
Suprabasal mitotic index	0.96
Controls	0.47
\(P \)	0.009
Sensitivity (%)	92.9
Specificity (%)	60
Positive predictive value (%)	52
Negative predictive value (%)	94.7
Diagnostic accuracy (%)	70.45
mitotic count found in palmoplantar psoriasis in our study may be due to deep sequestration.

CONCLUSION

The pathogenesis of psoriasis is complex, and understanding of pathogenesis helps in identifying the morphological correlates. This in turn, helps in developing diagnostic criteria. The suprabasal mitotic index represents one such entity and increased suprabasal mitotic index will aid in the histological diagnosis of psoriasis, including palmoplantar psoriasis.

Financial support and sponsorship

Nil

Conflicts of interest

There are no conflicts of interest

REFERENCES

1. Mckee PH, Calonje E, Brenn T, Lazar A. Spongiotic, psoriasiform and pustular dermatoses. Mckee’s Pathology of the Skin with Clinical Correlations. 4th ed., Ch. 6. USA: Elsevier, Saunders; 2012. p. 201-10.
2. Weedon D. The psoriasiform reaction pattern. Skin Pathology. 3rd ed., Ch. 4. Edinburgh, London: Churchill Livingstone; 1997. p. 72-81.
3. Mehta S, Singal A, Singh N, Bhattacharya SN. A study of clinicohistopathological correlation in patients of psoriasis and psoriasiform dermatitis. Indian J Dermatol Venereol Leprol 2009; 75:100.
4. Weinstein GD, Van Scott EJ. Autoradiographic analysis of turnover times of normal and psoriatic epidermis. J Invest Dermatol 1965; 45:257-62.
5. Doger FK, Dikicioglu E, Ergin F, Unal E, Sendur N, Uslu M. Nature of cell kinetics in psoriatic epidermis. J Cutan Pathol 2007; 34:257-63.
6. Baran W, Szepejowski JC, Szybejko-Machaj G. Expression of p53 protein in psoriasis. Acta Dermatovenerol Alp Pannonica Adriat 2005; 14:79-83.
7. Aydin O, Ergin B, Oğuz O, Ilvan S, Demirkesen C. Non-pustular palmoplantar psoriasis: Is histologic differentiation from eczematous dermatitis possible? J Cutan Pathol 2008; 35:169-73.
8. Venkatesan A, Aravamudhan R, Perumal SK, Kannan R, Thirunavukkarasu V, Shukla S. Palmoplantar psoriasis – A head in the race – A prospective study from a tertiary health care centre in South India. J Clin Diag Res 2015; 9:WC01-3.
9. Khandpur S, Singhal V, Sharma VK. Palmoplantar involvement in psoriasis: A clinical study. Indian J Dermatol Venereol Leprol 2011; 77:625.
10. Younas M, Haque A. Spectrum of histopathological features in non-infectious erythematous and papulosquamous diseases. Int J Pathol 2004; 2:24-30.
11. Elder DE, Elenitsas R, Johnson BL, Murphy GF, Xu X. Noninfectious erythematous, papular, and squamous diseases. Lever’s Histopathology of the Skin. 10th ed., Ch. 7. New Delhi, India: Wolters Kluwer Health/ Lippincott Williams and Wilkins; 2009. p. 169-204.
12. Chaudhari U, Romano P, Mulcahy LD, Dooley LT, Baker DG, Gottlieb AB. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: A randomised trial. Lancet 2001; 357:1842-7.
13. van Diest PJ, Baak JP, Matze-Coek P, Wisse-Brekelmans EC, van Galen CM, Kerker PH, et al. Reproducibility of mitosis counting in 2,469 breast cancer specimens: Results from the Multicenter Morphometric Mammary Carcinoma Project. Hum Pathol 1992; 23:603-7.
14. Ralfs IG, Dawber RP, Ryan TJ, Wright NA. Pityriasis rubra pilaris: Epidermal cell kinetics. Br J Dermatol 1981; 105:249-52.
15. Fry L, McMinn RM. Observations on mitosis in psoriatic epidermis. Br J Dermatol 1970; 82:19-22.
16. Rao KS, Babu KK, Gupta PD. Keratins and skin disorders. Cell Biol Int 1996; 20:261-74.
17. Theowes M, Studler R, Korge B, Mischke D. Normal psoriatic epidermis expression of hyperproliferation-associated keratins. Arch Dermatol Res 1991; 283:465-71.
18. Leigh IM, Navsaria H, Purkis PE, McKay IA, Bowden PE, Riddle PN. Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. Br J Dermatol 1995; 133:501-11.
19. Swansson O, Langbein L, McMillan JR, Stevens HP, Leigh IM, McLean WH, et al. Specialized keratin expression pattern in human ridged skin as an adaptation to high physical stress. Br J Dermatol 1998; 139:767-75.