Meningitis in a Chinese adult patient caused by \textit{Mycoplasma hominis}: a rare infection and literature review

Menglan Zhou1,2*, Peng Wang1†, Sharon Chen3, Bin Du4, Jinlong Du5, Fengdan Wang6, Meng Xiao1, Fanrong Kong3 and Yingchun Xu1*

Abstract

\textbf{Background:} \textit{Mycoplasma hominis}, a well-known cause of neonatal infection, has been reported as a pathogen in urogenital infections in adults; however, central nervous system (CNS) infections are rare. We report here the first case of \textit{M. hominis} meningitis in China, post neurosurgical treatment for an intracerebral haemorrhage in a 71-year-old male.

\textbf{Case presentation:} We describe a 71-year-old man who developed \textit{M. hominis} meningitis after neurosurgical treatment and was successfully treated with combined azithromycin and minocycline therapy of 2 weeks duration, despite delayed treatment because the Gram stain of cerebrospinal fluid (CSF) yielded no visible organisms. The diagnosis required 16S rDNA sequencing analysis of the cultured isolate from CSF. Literature review of \textit{M. hominis} CNS infections yielded 19 cases (13 instances of brain abscess, 3 of meningitis, 1 spinal cord abscess and 1 subdural empyema each). Delay in diagnosis and initial treatment failure was evident in all cases. With appropriate microbiological testing, antibiotic therapy (ranging from 5 days to 12 weeks) and often, multiple surgical interventions, almost all the patients improved immediately.

\textbf{Conclusions:} Both our patient findings and the literature review, highlighted the pathogenic potential of \textit{M. hominis} together with the challenges prompted by rare infectious diseases in particular for developing countries laboratories with limited diagnostic resources.

\textbf{Keywords:} \textit{Mycoplasma hominis}, Post-operative infection, Meningitis, Hospital acquired pneumonia, Case report

Background

\textit{Mycoplasma hominis}, initially described as pleuropneumonia-like organism, is a commensal of the human oral cavity, respiratory tract, and genitourinary tract[1–3]. However, its role in the pathogenesis of infections in adult patients, especially extragenital infections such as central nervous system (CNS) infection, post-operative wound infections, mediastinitis, and septic arthritis[2, 4–7], has been difficult to determine. \textit{M. hominis}, which does not possess a cell wall and hence is not identifiable by Gram staining of clinical specimens, is difficult to detect[3, 8, 9]. Culturing \textit{M. hominis} which is fastidious in nature, is both resource- and time-consuming because specialized media and incubation conditions are required. Direct 16S rDNA PCR amplification/sequencing on clinical specimens may be performed but sensitivity is moderate at best, and not all laboratories perform this test[2, 3, 8]. The true incidence of \textit{M. hominis} infections is thus probably underestimated and delayed diagnosis leads to delayed treatment with suboptimal outcomes[10]. CNS infections due to \textit{M. hominis} are rare in patients other than neonates. To the best of our knowledge, only 19 cases of such infections have been reported in the English literature (Table 1). We herein report a case of \textit{M. hominis} meningitis in which the organism was detected in the cerebrospinal fluid (CSF) following
No.	Author & year	Pt age(years), sex	Pt Country	HU	Tr	SI	Clinical manifestation	Days to Dx after Ad	Dx basis	Antibiotics used prior to diagnosis	Final antibiotic regimen	Otc	Ref
1	Paine et al. [14]	20, M	USA	N	Y	Y	fever, headache, a stiff neck	18	C	S + P + St	Sm	CR	[14]
2	Payan et al. [15]	29, M	USA	Y	Y	Y	fever, loss of consciousness	23	C	O + Cp + N + C	T + E	CR	[15]
3	Madoff S et al. [16]	11, F	USA	N	N	Y	fever	26	GIt + IRT	V + E	Mc	De	[16]
4	McMahon et al. [24]	76, M	USA	N	N	Y	fever, unresponsive	18	C	P + G	none	De	[24]
5	Kersten RC et al. [17]	20, M	USA	Y	Y	Y	fever, comatose	19	C	A + M + Su + V + Cft	M + Cft + Az + Am + Cl	Re	[17]
6	Cohen & Kubak. [25]	18, F	USA	N	Y	Y	fever, altered mental status	20	C	E	D + Cft	CR	[19]
7	Zheng et al. [18]	22, F	USA	N	N	Y	fever, left-sided weakness and numbness	18	IRT + IBA	Ct + N + Ca + M	none	CR	[19]
8	Douglas et al. [19]	17, F	Australia	N	Y	Y	fever, headache, photophobia, nausea, vomiting	13	C + 16S	A + Ca + E	D + Cft	CR	[19]
9	House P et al. [20]	40, F	Spain	N	N	Y	headache, left facial weakness, nausea, afebrile	12	“several”	V + Cft + M	Ci + M	CR	[20]
10	Kupila L et al. [21]	40, M	Finland	N	Y	Y	haematuria and urine retention, confused	14	16S	none	T	CR	[21]
11	McCarthy & Looke. [3]	48, M	Australia	N	N	Y	fever	36	C + 16S	Cz + V	Ga + Cft	CR	[3]
12	McCarthy & Looke. [3]	17, F	Australia	N	Y	Y	fever	17	C	V + Me	Ga + Mo	CR	[3]
13	Al Masalma et al. [22]	41, F	Russia	N	N	Y	vertigo, coma headache, hemiparesis	10	16S	V + Me	D	CR	[22]
14	Lee et al. [8]	48, F	Netherlands	Y	Y	Y	fever	15	16S	F + V	Mo	CR	[8]
15	Henao-Martínez et al. [10]	40, M	Somalia	N	Y	Y	fever	17	16S	V + PT + Ct + M	D	CR	[10]
16	Paillotier 's et al. [23]	43, M	France	N	Y	Y	fever, delirium tremens	13	Vitek MS + 16S	Me + V + Fo	L + D	CR	[23]
17	Whiton WJ [2]	17, M	USA	Y	Y	Y	fever, bicep and deltoid weakness	32	C	PT + V + Ct + M	D + Mo	CR	[2]
18	Hos NJ [27]	21, F	Germany	N	N	Y	fever, neck pain, nausea, vomiting,	31	C + 16S	A + Ct	Mo	CR	[27]
19	Reissier S [26]	39, M	France	N	Y	Y	afibrile, loss of consciousness	33	C + 16S + RT-PCR	PT + Li + Ct + M + V	Mo	De	[26]
20	Present study	79, M	China	N	N	Y	fever, anepia and right-sided weakness	17	16S	Me + V + CF	Az + D + Mi	CR	

Ad admitted, C culture, CR clinical recovery, De death, Dx diagnosis, GIT growth inhibition test, HU hormone use, IBA immunoblot assay, IRT immunofluorescence test, Otc outcome, Re recurrence, Ref reference, SI surgical intervention, 16S 16S rDNA sequencing, RT-PCR real-time PCR, Tr trauma, yrs: years

Ampicillin, (A) amoxicillin, (Am) azithromycin, (Az) chloramphenicol, (C) cefazolin, (Cz) clindamycin, (Cd) cefotaxime, (Cf) ciprofloxacin, (Ct) clavulanate potassium, (Cp) cephalothin (Ct), ceftriaxone (Ct), cefazidime (Ct), cefoperazone/ sulbactam (Cf), doxycycline (D), erythromycin (E), fluoroquinolones (F), fosfomycin (Fo), gentamicin (G), gatifloxacin (Go), levofloxacin (L), linezolid (L), metronidazole (M), methacycline (Mc), meropenem (Me), minocycline (Mi), moxifloxacin (Mo), ofloxacin (Ox), piperacillin/tazobactam (PT), sulfadiazine (S), streptomycin (Sm), sulfathiazole (St), sulbactam (Su), tetracycline (T), vancomycin (V)
neurosurgical intervention for cerebral haemorrhage. This is the first reported case of meningitis in an adult caused by *M. hominis* from China.

Case presentation

History and first admission

The patient was a 71-year-old man with a history of hypertension for 2 years who suddenly developed aphasia, and right-sided weakness and numbness while lifting water and was sent to the local hospital immediately on 21 September 2014. A cerebral computed tomography (CT) scan identified a cerebral hemorrhage rupturing into the ventricular system. He underwent craniotomy and evacuation of the hematoma. One week after the surgery, the patient developed hospital-acquired pneumonia, which was complicated by respiratory failure despite treatment with broad-spectrum antibiotics of imipenem.

MICU admission

The patient was soon transferred to the medical intensive care unit (MICU) of Peking Union Medical College Hospital (PUMCH) on October 14. On admission, he was febrile, comatose (Glasgow Coma Score of 9), dyspneic, and hypotensive. Mechanical ventilation was started after endotracheal intubation.

Examination on MICU & anti-infectious therapy

Empiric antibiotic treatment consisting of meropenem (2.0 g intravenously q8h) and vancomycin (1.0 g intravenously q12h) was initiated for hospital-acquired pneumonia. A lumbar puncture showed an opening pressure > 33 cmH₂O, 1201 x 10⁶/L red cells, 201 x 10⁶/L white cells (79 % polymorphonuclear forms), an undetectable glucose concentration, protein 2.32 g/L, and chloride 128 mmol/L. No organisms were seen on Gram stain of the CSF. A cerebral CT showed an extensive left temporal hematoma and moderate lateral ventricle enlargement (Fig. 1a).

During his stay in ICU, repeated cultures of tracheal aspirates grew multidrug resistant (MDR) *Acinetobacter baumannii*, which was only susceptible to cefoperazone/sulbactam, and intermediate susceptible to tigecycline and minocycline. A follow-up chest CT scan revealed a thick-walled cavity in the right lower lobe (Fig. 1b). As a result, meropenem was changed to cefoperazone/sulbactam (3.0 g q8h), while the dose of vancomycin was increased to 1.5 g q12h to optimize the serum trough level (Fig. 2).

Fig. 1 Computed tomography (CT) scans of the patient’s brain and lung during hospitalization. **a**. Cerebral CT scan revealed an extensive left hematoma in the temporal region of the hemispheres and moderate lateral ventricle enlargement with a drainage tube in it. The hematoma was surrounded by brain edema, narrowed gyri and the right-shifted cranial midline. **b**. Thoracic CT scan (lung windows) revealed a cavity with a wall of 7-mm thick surrounded by patchy shadowing in the right lower lobe. **c**. After 30 days of therapy, resolving brain swelling was seen in the CT scan with decreased edema. **d**. After 30 days of therapy, thoracic CT scan (lung window) revealed that the area of cavitation had decreased substantially.
Etiological examination

Microbiology laboratory examination

CSF specimens were plated onto 5 % sheep blood agar and chocolate agar and were incubated at 37 °C under aerobic and anaerobic conditions, and in air with 5 % CO$_2$. On October 30, cultures revealed non-hemolytic, semi-translucent pinpoint colonies on sheep blood agar plate after 4 days of incubation under anaerobic conditions (Fig. 3). Gram-stain smears of the CSF sample showed no evidence of bacteria.

MALDI-TOF analysis of the cultured isolate

Two systems of the matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) were used, i.e. the MALDI Biotyper (Bruker) and VITEK MS IVD (bioMérieux) as instructed by the manufacturer. The spectra were analyzed by using the MALDI Biotyper database library V.3.3.1.2 and the VITEK* MS IVD v2.0 database respectively. Both MALDI Biotyper and VITEK MS IVD consistently yielded no identifying profile and assigned “no identification” to this isolate.

16S rDNA gene identification

Bacterial DNA was obtained from isolates by using QIAamp DNA minikit (Qiagen, Hilden, Germany) following the manufacturer’s instructions starting from 200 μL of bacterial pellet suspension about 2-3 McFarland followed by a series of extracting steps with different reagents. Amplification of the 16S rDNA gene was performed by broad-range bacterial polymerase chain reaction (PCR) assay using the universal primers: 27 F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1522R (5’-AAGGAGGTGATCCAGCAGC-3’) as described before [11, 12]. Purified PCR products and sequencing primers (the same as for amplification) were mixed and sent to Rubiotech (Beijing, China) for sequencing. Species identification was performed by comparing the obtained sequences against those in the GenBank database using the BLASTn software (http://www.ncbi.nlm.nih.gov/blast). By querying 16S rDNA sequences against those in the GenBank database, the isolate best matched with 3 M. hominis reference strains (GenBank accession numbers: CP011538.1, NR_041881.1 and CP009652.1) with an identity of 100 % (1385/1385), followed by *Mycoplasma equirhinis*, with an identity of 97 % (1314/1353). All M. hominis 16S rDNA nucleotide sequences available in GenBank till 2015 (n = 10) are summarized in Additional file 1.

Fig. 2 The correlation between the change of body temperature and the use of antibiotics during hospitalization.

Fig. 3 Non-hemolytic, semi-translucent pinpoint colonies of *M. hominis* were shown on 5 % blood sheep agar after 4 days of incubation.
Post-treatment course
On November 2, the microbiology laboratory reported isolation from the CSF sample of *M. hominis*, which was susceptible to doxycycline, and intermediately susceptible to azithromycin by the bioMérieux* SA Mycoplasma IST2 kit (Biomerieux, France). Combination therapy with azithromycin (0.5 g qd) and minocycline (100 mg q12h) was then started (Fig. 2). On November 16, 14 days after appropriate antimicrobial therapy was started, the patient was transferred back to the local hospital. Repeated brain and chest CT scans before discharge showed marked improvement of the cerebral edema and size of the brain swelling (Fig. 1c), and almost complete resolution of the pulmonary cavity and pleural effusion (Fig. 1d).

Discussion
A PubMed search was performed using the following key words: “*Mycoplasma hominis*” AND “encephalitis” OR “cerebritis” OR “cerebral abscess” OR “brain abscess” OR “meningitis” OR “meningococcal meningitis” OR “cerebrospinal fluid infection”. A total of 58 manuscripts were found, most reporting *M. hominis* infection in neonates, which most likely arising from contact with maternal genital flora [13]. By carefully reading all the papers, we found that there were only 19 reported non-neonatal-associated cases of CNS infection caused by *M. hominis*; none was reported from China (Table 1). Of these 20 cases, brain abscess was the most common CNS infections (n = 13) [3, 10, 14–23], followed by meningitis (n = 4) [8, 24–26], spinal cord abscess (n = 1) [2], subdural empyema (n = 1) [27], (Table 1).

Current microbiological analysis, mostly based on direct examination and culture of pus specimens, underestimate the role of fastidious microorganisms, such as *M. hominis* [22], in CNS infections. Predisposing host factors such as immunosuppression, malignancy, trauma, and manipulation or surgery of the genitourinary tract are considered to be risk factors for extra-genital infections caused by this microorganism [8, 15, 17, 18, 28]. In most *M. hominis* brain infections thus far described, patients usually presented with prior head trauma or had undergone neurosurgical procedures [8, 10, 14, 15, 17, 19, 21, 23–27]. This was also the case in our patient who had an intracerebral hematoma evacuated 7 days prior to developing meningitis.

Three routes of intracranial infection are typically considered: direct contamination during trauma, direct contamination during surgery, or seeding of the cerebral site secondary to bacteremia due to genitourinary manipulation [21, 23]. In traumatized brain tissue where CNS capillaries are damaged, *M. hominis* can easily reach the ischemic brain tissue through blood circulation. In our case, the patient was exposed to the aforementioned last 2 hypothetical sources. Cerebral hemorrhage was cured by a neurosurgical intervention, but he also underwent urinary catheterization after the coma during hospitalization. Therefore, we were unable to definitively identify the source of infection.

Identification of *M. hominis* infections by culture is challenging due to the slow growth of the colonies and the absence of cell wall, which contributes to a negative result on Gram staining [10], as in our patient. Moreover, even when culture is successful, it is difficult to rule out the possibility of contamination. Although *M. hominis*, being less fastidious than other mycoplasmas, is able to grow on conventional blood agar medium, specific laboratory methods are required for its identification. In most reports of cerebral infections, 16S rDNA sequencing is required for definitive identification as was the case here [8]. It has been recently highlighted that MALDI-TOF MS could be useful for the rapid identification of *M. hominis* [23, 29]. However, we were unable to identify *M. hominis* by MALDI TOF MS even though the spectra of this species is represented in the VITEK® MS IVD v2.0 database. In this regard, similar results were also found for the MALDI Biotyper by Nulens E and his colleges [30]. Thus, further improvement of *M. hominis* spectra database seems necessary. Nevertheless, neither the Bruker nor Vitek database misidentified the strain as another species.

Since cases of intracranial infections caused by *M. hominis* are rare, clinicians usually fail to consider the diagnosis in the absence of microbiological evidence. In addition, it is difficult to distinguish brain abscesses or meningitis caused by mycoplasmas from those caused by bacteria or viruses, due to the lack of specific clinical manifestations. This may lead to delayed initiation of antimicrobial therapy with serious clinical consequence [31], as *M. hominis* is not susceptible to most first-line antibiotics used to treat brain abscesses [21]. The possibility of a *M. hominis* infection should be suspected when Gram stain reveals abundant neutrophils but no bacteria, and empirical treatment shows poor efficacy during this period.

In all previously published case studies of *M. hominis* brain abscesses, treatment involved abscess drainage, debridement, and specific antimicrobial therapy. The importance of surgical treatment is evident from a case report of a patient who responded to surgical therapy alone [32]. Infections caused by *Mycoplasma spp.* (i.e. a microorganism lacking both cell wall and folic acid synthesis) require ad-hoc antibiotic treatment [33, 34]. There are no CLSI (Clinical and Laboratory Standards Institute) and EUCAST (European Committee on Antimicrobial Susceptibility Testing) breakpoints for *M. hominis* at present. Nevertheless, the organism is generally considered to be susceptible to tetracyclines, lincosamides, streptogramins and quinolones, but not to the macrolides although tetracyclines-resistant *M. hominis*
has been reported [10, 35–37]. However, poor passage through the blood brain barrier could lead to low antibiotic concentrations in the brain, with the possible major exception of fourth generation quinolones that, besides exhibiting low MICs for M. hominis, do possess reasonable CSF penetration [35–43]. Because of the tendency for chronic and often latent infection, long-term antimicrobial treatment against M. hominis is warranted. However, surgical drainage and debridement remain the key to recovery, since patients may respond to surgical treatment alone [29].

In our case, initial treatment with meropenem and vancomycin showed little efficiency since a low-grade fever still persisted (as shown in Fig. 2). MDR A. baumannii was also isolated from the lower respiratory tract possibly due to nosocomial infection. Persistent fever despite various antibiotic treatment with meropenem, vancomycin, and cefoperazone/sulbactam, as well as the satisfactory response to azithromycin and minocycline, strongly suggested that M. hominis, rather than A. baumannii was the primary pathogen in our patient.

Conclusions
The prevalence of brain infections caused by M. hominis may be increasing, presenting a diagnostic and therapeutic challenge to clinicians. We reported here the first case of meningitis caused by M. hominis in an adult in China, who was successfully treated with azithromycin and minocycline. The pathogenic potential of M. hominis, the need for early diagnosis, and the importance of initial appropriate chemotherapy must be highlighted also in developing countries, where the challenges in diagnostic capacity for clinical laboratories are greater.

Additional file

Additional file 1: Near complete length GenBank Mycoplasma hominis 16S rRNA sequences analysis. A summary of all the Mycoplasma hominis16S rRNA sequences deposited in GeneBank. (DOCX 16 kb)

Abbreviations
BBB: Blood brain barrier; CLSI: Clinical and laboratory standards institute; CNS: Central nervous system; CSF: Cerebrospinal fluid; CT: Computed tomography; EUCAST: European committee on antimicrobial susceptibility testing; MALDI-TOF MS: Matrix-assisted laser desorption/ionization–time of flight mass spectrometry; MDR: Multidrug resistant; MICU: Medical intensive care unit; PCR: Polymerase chain reaction; PUMCH: Peking union medical college hospital

Acknowledgements
We thank Dr. Zhihong Guan from the Department of neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China where the patient is in care.

Availability of data and materials
The Near Complete length GenBank Mycoplasma hominis 16S rRNA sequences supporting the conclusions of this article are included within the article (Additional file 1).

Authors’ contributions
MZ, PW, FK and YCX conceived and designed the experiments. MZ, PW, JD, MX and FW collected the information about the case, contributed to the acquisition, analysis and interpretation of data. MZ, SC, BD and FK wrote and revised the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Consent for publication
Written informed consent was obtained from the patient for publication of this Case report. A copy of the written consent is available for review by the Editor of this journal.

Ethics approval and consent to participate
The study protocol was approved by the Institutional Review Board of Peking Union Medical College Hospital (No. S-263). Written informed consent was obtained from the patient.

Author details
1Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, People’s Republic of China. 2Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China. 3Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West, Westmead Hospital, University of Sydney Darcy Road, Westmead, New South Wales 2145, Australia. 4Department of Medical Intensive Care Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China. 5Department of Clinical Laboratory, Fu Xing Hospital, Capital Medical University, Beijing, China. 6Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.

Received: 2 March 2016 Accepted: 1 October 2016

Published online: 12 October 2016

References
1. Dromer F, Eadsall G. Observations on the L-organism of Klinebeeger. Proc Soc Exp Biol Med. 1937;36:740–4.
2. Whitson WJ, Ball PA, Lollie SS, Balkman JD, Bauer DF. Post-operative Mycoplasma hominis infections after neurosurgical intervention. J Neurosurg Pediatr. 2014;14:212–8.
3. McCarthy RL, Looke DF. Successful treatment of post-neurosurgical intracranial Mycoplasma hominis infection using gatifloxacin. J Infect. 2008;57:344–46.
4. Pastural M, Audard V, Bralet MP, Rémy P, Salomon L, Tankovic J, et al. Mycoplasma hominis infection in renal transplantation. Nephrol Dial Transplant. 2002;17:495–6.
5. Mattila PS, Carlson P, Sivonen A, Savola J, Luosto R, Salo J, et al. Life-threatening Mycoplasma hominis mediastinitis. Clin Infect Dis. 1999;29:1529–37.
6. Plouat-Lachanette CH, Guidon J, Allain J, Poignard A. An uncommon case of Mycoplasma hominis infection after total disc replacement. Eur Spine J. 2012;22 Suppl 3:3594–8.
7. Taylor-Robinson D. Infections due to species of Mycoplasma and Ureaplasma: an update. Clin Infect Dis. 1996;23:671–82.
8. Lee EH, Winter HL, van Dijl JM, Metzemaekers JD, Arends JP. Diagnosis and antimicrobial therapy of Mycoplasma hominis meningitis in adults. Int J Med Microbiol. 2012;302:289–92.
9. Waites KB, Schelonka RL, Xiao L, Grigsby PL, Novy MJ. Congenital and opportunistic infections: Ureaplasma species and Mycoplasma hominis. Semin Fetal Neonatal Med. 2009;14:190–9.
10. Henao-Martinez AF, Young H, Nardi-Korver JJ, Burman W. Mycoplasma hominis brain abscess presenting after a head trauma: a case report. J Med Case Rep. 2012;6:253.
11. Kupila L, Rantakokko-Jalava K, Jalava J, Nikkari S, Peltonen R, Neumann O, et al. Aetiological diagnosis of brain abscesses and spinal infections: application of broad range bacterial polymerase chain reaction analysis. J Neurol Neurosurg Psychiatry. 2003;74:728–33.
12. Drancourt M, Berger P, Raoult D. Systematic 16S RNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J Clin Microbiol. 2004;42:2197–202.
13. Hata A, Honda T, Asada K, Sasaki Y, Kenri T, Hata D. Mycoplasma hominis meningitis in a neonate: case report and review. J Infect. 2008;57:338–43.
14. Paine TF, Muray R, Perlmutter J, Finland M. Brain abscess and meningitis associated with a pleuropneumonia-like organism: clinical and bacteriological observations in a case with recovery. Ann Intern Med. 1995;123:554–62.
15. Payan DG, Seigal N, Madoff S. Infection of a brain abscess of Mycoplasma hominis. J Clin Microbiol. 1981;14:571–3.
16. Madoff S, Hooper DC. Nongenitourinary infections caused by Mycoplasma hominis in adults. Rev Infect Dis. 1988;10:580–12.
17. Kersten RC, Haplin KE, Kuller LV, McClafferty M, DeConciliis C. Mycoplasma hominis orbital abscess. Arch Ophthalmol. 1995;113:1096–7.
18. Zheng X, Olson DA, Tully JG, Watson HL, Cassell GH, Gustafson DR, et al. Isolation of Mycoplasma hominis from a brain abscess. J Clin Microbiol. 1997;35:992–4.
19. Douglas MW, Fisher DA, Lum GD, Roy J. Mycoplasma hominis infection of a subdural haematoma in the peripartum period. Pathology. 2003;35:992–4.
20. House P, Dunn J, Carroll K, MacDonald J. Seeding of a cavernous angioma with Mycoplasma hominis: case report. Neurosurgery. 2003;53:749–52.
21. Kupila L, Rantakokko-Jalava K, Jalava J, Peltonen R, Marttila RJ, Kotilainen E, et al. Brain abscess caused by Mycoplasma hominis: a clinically recognizable entity? Eur J Neurol. 2006;13:550–1.
22. Al Masalma M, Drancourt M, Dufour H, Raoult D, Fournier PE. Mycoplasma hominis brain abscess following uterus curettage: a case report. J Med Case Rep. 2011;5:278.
23. Pailhories H, Rabier V, Eveillard M, Mahaza C, Joly-Guillou ML, Chennebault JM, et al. A case report of Mycoplasma hominis brain abscess identified by MALDI-TOF mass spectrometry. Int J Infect Dis. 2014;29:166–7.
24. McMahan DK, Dummer JS, Pasculle AW, Cassell G. Extragenital Mycoplasma hominis infections in adults. Am J Med. 2014;127:452–3.
25. House P, Dunn J, Carroll K, MacDonald J. Seeding of a cavernous angioma with Mycoplasma hominis: case report. Neurosurgery. 2003;53:749–52.
26. Reissier S, Masson R, Guérin F, Viquesnel G, Petitjean-Lecherbonnier J, Pereyre Sint J, et al. Fatal nosocomial meningitis caused by Mycoplasma hominis in an adult patient: case report and review of the literature. Infect Dis. 2016;48:813–9.
27. Hos NJ, Bauer C, Liebig T, Plum G, Selfert H, Hampl J. Autoinfection as a cause of postpartum subdural empyema due to Mycoplasma hominis. Infection. 2015;43(2):252–3.
28. Smitha J, Nigotiga T, Ishibashi Y. Clinical pharmacokinetics of sparflloxacin. Clin Pharmacokinet. 1993;25:358–69.
29. Lutsar I, McCracken Jr GH, Friedland R. Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis. 1998;27:1117–27.
30. Kersten RC, Haplin KE, Kuller LV, McClafferty M, DeConciliis C. Mycoplasma hominis infection of a brain abscess following uterus curettage: a case report. J Med Case Rep. 2011;5:278.
31. Scharf S, Garant MC, McKhann GM, van de Beek D. Brain abscess. N Engl J Med. 2014;371:447–56.
32. Mozaad SB, Rehm SJ, Tomford JW, Isada CM, Taylor PC, Rutherford I, et al. Stemotomy infection with Mycoplasma hominis: a case of "culture negative" wound infection. J Cardiovasc Surg. 1996;37:505–9.
33. McEwen DD, Burgos JG, Burgos MA, Burgos RA, Burgos ES. Antimicrobial susceptibility patterns of Ureaplasma species and Mycoplasma hominis in pregnant women. BMC Infect Dis. 2014;14:171.
34. Wells ST, Yansura DG, Drancourt M, Raoult D. Ureaplasma urealyticum as a cause of respiratory tract infections in children who have undergone tracheostomy: a case report and review of the literature. Clin Infect Dis. 1997;24:272–3.
35. Goulet J, Poutou C, Chabouis H, Courvalin P, Raoult D. Identification of Mycoplasma hominis from a forest soil using MALDI-TOF mass spectrometry. Int J Med Microbiol. 2011;301:234–7.
36. Pailhories H, Rabier V, Eveillard M, Mahaza C, Joly-Guillou ML, Chennebault JM, et al. A case report of Mycoplasma hominis brain abscess identified by MALDI-TOF mass spectrometry. Int J Infect Dis. 2014;29:166–7.
37. Mardassi BI, Assani N, Moalla I, Dahni D, Dridi A, Mili B. Evidence for the predominance of a single tet(M) gene sequence type in tetracycline-resistant Ureaplasma parvum and Mycoplasma hominis isolates from Tunisian patients. J Med Microbiol. 2012;61(Pt9):1254–61.
38. Cozzaglio G, Tauber MG. Fluoroquinolones in the treatment of meningitis. Curr Infect Dis. Rep. 2003;5:329–36.
39. Lutsar I, Friedland R, Wubbels L, McCoig CC, Jafri HS, Ng W, et al. Pharmacodynamics of gatifloxacin in cerebrospinal fluid in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1998;42:2650–5.
40. Scotton PG, Pea F, Grubba M, Baraldo M, Vaglia A, Furlanut M. Cerebrospinal fluid penetration of levofloxacin in patients with spontaneous acute bacterial meningitis. Clin Infect Dis. 2001;33:1057–110.
41. Shimada J, Nogita T, Ishibashi Y. Clinical pharmacokinetics of sparflloxacin. Clin Pharmacokinet. 1993;25:358–69.
42. Lutsar I, McCracken Jr GH, Friedland R. Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis. 1998;27:1117–27.
43. Kaneliakopoulou K, Pagoulatou A, Stroumpoulis K, Vafiadou M, Kranidioti H, Giamarelou H, et al. Pharmacokinetics of moxifloxacin in non-inflamed cerebrospinal fluid of humans: implication for a bactericidal effect. J Antimicrob Chemother. 2008;61:1328–31.