ИЗВОД: Поред значаја који има као шумска врста, европска буква (Fagus sylvatica L.) је позната и као декоративна врста, због својих бројних култивара. Декоративни култивари букве имају примену у зеленим просторима различитих намена, али је у Србији констатован мал подуж број оваквих стабала. Производња култивара букве је, за сада, застуњена у веома малом броју расадника, са незнатним учешћем ових садница у њиховом укупном асортиману. Циљ рада је испитивање ставова произвођача украсног дрвећа и жбуња о расадничкој производњи декоративних култивара букве и могућностима њеног унапређења у Србији. Као истраживачке технике, коришћени су анкета “од врата до врата” и појединачни, усмерени интервју. У првој фази прикупљања података, анкетирани су представници 65 расадника на подручју Србије (у одабраном статистичком региону Шумадија и Западна Србија), а у другој, представници 10 расадника, који су, приликом анкетирања, истакли да производе декоративне култиваре букве. Ставови расадничара указују да постоји могућност унапређења производње декоративних култивара букве у Србији, уз одговарајуће мере подршке и повећање заинтересованости купаца на тржишту, односно, обезбеђивање субвенција за производњу ових садница и већу примену култивара од стране комуналних предузећа у градовима Србије.

КЛЮЧНЕ РЕЧИ: декоративни култивари букве, расадничка производња, ставови расадничара, калемљење

УВОД

За уређивање урбаних зелених простора различитих намена потребан је, између осталих, и висококвалитетан садни материјал различитих врста и култивара дрвећа и жбуња. Расадници украсног дрвећа и жбуња могу директно утицати на снабдевеност тржишта овом врстом садног материјала, јер је њихов задатак да произведу квалитетне саднице, за потребе урбаног озелењавања, са правилно развијеним кореновим системом и надземним делом (Grbić, 2010).

У Србији се производњом украсног дрвећа и жбуња баве јавне предузеће за газдовање шумама, јавна комунална предузећа, покрети
горана и расадници из приватног сектора. Са развојем процеса приватизације, последњих децении, дошло је и до раста броја приватних произвођача украсног садног материјала и раскошу расадничке производње у целини (Ješić, 2015).

За производњу садница украсног дрвећа, веома је важна технологија саме производње (Stilinović, Grbić, 1992; Grbić, 2010), услови за развој производње (климатски, геотермални и сл.), који су у Србији повољни, али и познавање најдеккативнијег начина размножавања за одабрану врсту или култивар.

Расадничка производња украсног дрвећа и жбуња обухвата размножавање различитих лишћарских и четинарских врста и култивара, међу којима су и култивари европске букве (Fagus sylvatica L.), који имају примену у парковима, ботаничким баштама, арборетумима, приватним двориштима, резиденцијалним вртовима, као солитерна стабла, групе стабала, у виду живих ограда, итд.

Универзитет Харвард је, још 1964. године, издао листу назива култивара букве (енгл. Registration list of cultivar names of Fagus L.), која је тада прелазила 100 различитих култивара (Wyman, 1964).

Кључ за одређивање украсних култивара европске букве су представили Puschner, Brus (2008), у коме су описали 76 различитих култивара, а основу за израду кључа пронашли су у раду Dönig-a, који је у својој књизи (Dönig, 1994), описао парковске и баштенске сорте букве, које се налазе у његовом породичном арборетуму у Немачкој. Детаљан опис већине култивара букве (више од 115) дао је Hatch (2007).

Декоративни култивари европске букве су веома релевантни у Србији, а њихове вредности мали број, констатован је и на самој територији града Београда: Fagus sylvatica ‘Pendula’, Fagus sylvatica ‘Purpurea’, Fagus sylvatica ‘Tricolor’, Fagus sylvatica ‘Purpurea Tricolor’ и Fagus sylvatica ‘Dawyck’ (Nonić M., 2016).

Досадашња истраживања везана за декоративне култиваре букве, код нас и у иностранству, бавила су се различитом тематиком.

Поред генеративног размножавања, у Србији су, до сада, примењени и различити начини вегетативног размножавања мезијске букве, које омогућава да се комбинација неких особина трајно фиксира. Међутим, детаљних научних истраживања о вегетативном размножавању декоративних култивара европске букве у Србији није било, све до недавно (Nonić M., 2016).

Вегетативни начин производње је погодан за украсне култиваре (Đukić et al., 2006), али је веома битан и правилан избор полазног материјала, на бази фенотипског испољавања полажних особина. Избор матичних стабала на територији Србије може бити погоднији од избора полазног материјала ван Србије, јер су ова стабла добро адаптирани на услове средине у нашој земљи (Nonić M., 2016).

Претпоставља се да би производња култивара европске букве у нашем условима, дошли и до побољшања примене букве као декоративне врсте.

2 Нека од досадашњих истраживања, везаних за култиваре букве, односила су се на: опис култивара (Wyman, 1964; Dönig, 1994; Tošić, 2005, 2006/a, 2006/b; Hatch, 2007; Puschner, Brus, 2008), анализе морфо-анатомских карактеристика листова (Vilóti et al., 2006; Čaňová et al., 2008; Nonić M. et al., 2012/a, 2012/b), анализе фенотипског испољавања по пигмената у листовима (Hrkić Ilić et al., 2012), анализе морфолошких карактеристика у стаблу (Nonić M. et al., 2014/a), анализе пигмената у листовима у стаблу (Nonić M. et al., 2014/b), анализе морфолошких карактеристика у стаблу (Nonić M. et al., 2014/c, 2014/b, 2015; Nonić M., 2016).

3 Размножавањем Fagus moesiaca (Domin, Maly Czeczott. у Србији се дәтљино бави Jovanović (1966, 1971), који је у својој истраживању применио и анализира различите методе вегетативног (хетерогенетивног и аутовегетативног) размножавања, при чему се увише користило калемљење (Isojev, 2005). Размножавање букве резницама било је неуспешно, док су добри резултати постигнути калемљењем и аутовегетативним размножавањем (Jovanović, 1971). На основу истраживања Grbića (1988), констатована је и могућност успешног размножавања мезијске букве култивам-тваром тивам.
Циљ рада је испитивање ставова произвођача украсног дрвећа о расадничкој производњи декоративних култивара букве и могућностима њеног унапређења у Србији. Сврха рада је да се, на основу анализе стања производње декоративних култивара букве у Србији и ставова расадничара, дају одређене препоруке за њено унапређење.

Предмет истраживања у овом раду су ставови представника расадника украсног дрвећа и жбуња о производњи декоративних култивара букве у Србији.

МЕТОД РАДА

У овом раду су, од основних научних метода, примењене анализи и синтезе, као и индукција и дедукција. Као општа научна метода коришћена је статистичка метода, приликом обраде података прикупљених анкетирањем, док је квалитативна анализа употребљена приликом анализе података прикупљених интервјуисањем (Mihailović, 2012).

Као истраживачке технике, за прикупљање података, коришћени су анкета „од врата до врата“ и појединачни, усмерени интервју (Mihailović, 2012). Да би се испитали фактори окружења (унутрашњи и спољашњи) производње декоративних култивара букве у Србији, примењена је SWOT анализа, као техника стратешког менаџмента.

Прикупљање подataka је обављено у две фазе, у периоду од јула до новембра, 2013. године. У првој фази прикупљања података (јул, 2013. године), испитивани су ставови расадничара о производњи декоративних култивара букве на подручју одабраног региона. Након спровођења прве фазе, одабрани су представници расадника у којима је заступљена производња декоративних култивара букве и са њима је реализована друга фаза прикупљања података (новембар, 2013. године), појединачним, усмереним интервјуом.

У истраживању су коришћени стратификован случајни узорак и попис. За избор расадника, чији су представници анкетирани у првој фази прикупљања података, коришћен је стратификовани случајни узорак, при чему је критеријум за поделу популације на стратуме била пријава за контролу^4 производње.

У том периоду (јул, 2013. године), послове контроле производње репродуктивног материјала шумског и украсног дрвећа и жбуња врши Институт за шумарство из Београда. У табели 1, приказан је укупан број расадника украсног дрвећа и жбуња по статистичким регионима5 у Србији.

Табела 1. Укупан број расадника украсног дрвећа и жбуња по статистичким регионима у Србији (2013. год.)

Статистички регион	Број расадника
Војводина	57
Београдски регион	22
Шумадија и Западна Србија	145
Јужна и Источна Србија	31
Косово и Метохија	-
УКУПНО	255

Извор: интерна документа Министарства пољопривреде и заштите животне средине и калкулације аутора

4 У складу са Законом о репродуктивном материјалу шумског дрвећа (члан 21), „...прописи о репродуктивном материјалу дужан је да поднесе министарству пријаву за контролу производње најкасније до 30. априла текуће године“ (2004). Контролу производње репродуктивног материјала врши Министарство, које „...страчне послове контроле производње (...) може да повери предузећу или другом правном лику...“ (2004). Основни подаци (назив, седиште, контакт) о расадницима добијени су из интерних документа Министарства пољопривреде и заштите животне средине-Управе за шуме, као и у моменту истраживања, било надлежно за контролу производње у расадницима. Према поднетим пријавама за контролу производње, води се евиденција расадника, тако да се подаци, коришћени за потребе овог истраживања, односно на расаднике који су, у моменту истраживања (јул, 2013. године), евиденцирани у интерној документацији надлежног Министарства.

5 Према члану 5 Закона о регионалном развоју (2009), територија Републике Србије је подељена на 5 статистичких региона: Војводина, Београдски регион, Шумадија и Западна Србија, Јужна и Источна Србија, Косово и Метохија.
Табела 2. Основни подаци о расадницима, чији су представници интервјуисани у другој фази истраживања

Шифра расадника	Позиција испитаника	Величина расадника (ha)	Број запослених	Локација расадника
Р-1	власник	1-5	6-10	Велики Шиљеговац
Р-2	власник	1-5	1-5	Велики Шиљеговац
Р-3	власник	5,1-10	6-10	Велики Шиљеговац
Р-4	власник	5,1-10	1-5	Велики Шиљеговац
Р-5	власник	1-5	1-5	Велики Шиљеговац
Р-6	власник	1-5	6-10	Велики Шиљеговац
Р-7	власник	< 1	6-10	Селиште (Трстеник)
Р-8	власник	5,1-10	1-5	Почековина
Р-9	власник	5,1-10	1-5	Ћуприја
Р-10	власник	< 1	1-5	Врњачка бања

Извор: оригинал

Највећи број расадника, у периоду истраживања (тabela 1), налазио се у региону Шумадије и Западне Србије, због чега је овај статистички регион и одабран као подручје за испитивање ставова расадничара о производњи декоративних култивара букве. У периоду прве фазе прикупљања подataka, контрола производње репродуктивног материјала извршена је у 73 од 145 евидентираних расадника. Анкетирање је спроведено са представницима 65 расадника, који су пристали да учествују у прикупљању података.

У другој фази прикупљања подataka, спроведен је попис. Одабрани су они представници расадника који су, у првој фази истраживања истакли да производе култиваре букве, односно, критеријум за издвајање представника расадника, за уучешће у другој фази прикупљања података, био је постојање производње декоративних култивара букве.

Прикупљање подата, у овој фази истраживања, спроведено је у 10 расадника7, који су обележени ознакама од Р-1 до Р-10 (табела 2).

За потребе прикупљања подата, креирана су два различита упитника, који су коришћени за прикупљање подataka путем анкете и интервјуа, као техника истраживања. Образац Упитника за анкету, састојао се од 21 питања, распоређених у 3 групе:
1. Општи подаци о испитанику;
2. Општи подаци о расаднику;
3. Подаци о производњи декоративних култивара букве.

Образац Упитника за интервју, садржао је 40 питања, груписаних у 6 целина:
1. Општи подаци о испитанику;
2. Подаци о производњи декоративних култивара букве калемљењем;
3. Подаци о подлогама за калемљење;
4. Подаци о племкама за калемљење;
5. Подаци о станишту за производњу и калемљење;
6. Подаци о економским карактеристикама производње и калемљења.

6 Од укупног броја расадника (73), у којима је, у периоду овог истраживања, вршена контрола производње, представници 65 расадника су пристали да учествују у анкетирању, док представници осам расадника нису били заинтересовани да учествују у истраживању.

7 Обрадом подата прикупљених у првој фази, утврђено је да се декоративни култивари букве производе у 11 расадника. Контактирани су представници тих расадника, од којих само један није био заинтересован да учествује у другој фази испитивања, тако да је укупно интервјуисано 10 испитника.
5. Подаци о успеху калемљења и даљој нези калемова;
6. Подаци о продаји калемова и унапређењу производње.

У оквиру обраде подataka, попуњени упитници су, најпре, кодирани и формирана је база података у програму за унакрсна табеларна израчунавања, а затим су подаци пренети у програм SPSS ver. 20 (2011), у коме је извршена статистичка обрада.

За утврђивање учесталости вредности категоријских променљивих, коришћена је анализе фреквенција, док је, ради испитивања разлике у добијеним и очекиваним фреквенцијама, примењен χ² тест значајности пропорција (Malhotra, 2007). Претпостављено је, у свим случајевима, да је очекивани распоред фреквенција 50% : 50%, односно, нулта хипотеза је била да су вредности једнаке (не постоји статистички значајна разлика у пропорцијама) (Pallant, 2011).

Подаци прикупљени током спровођења квалитативних интервјуа су обрађени коришћењем анализе садржаја докумената, а добијени резултати су коришћени за спровођење SWOT анализе.

Мултидисциплинарни приступ, који је у овом истраживању изложен применом упитника и спровођењем интервјуа, значајно је допринео сагледавању стања производње декоративних култивара букве, као основе за њено даље унапређење.

РЕЗУЛТАТИ ИСТРАЖИВАЊА

У овом поглavlju су представљени резултати испитивања ставова производиоца украсног дрвећа и жбуња о производњи декоративних култивара букве и могућностима њеног унапређења у Србији. Приказани су резултати обраде подataka прикупљених анкетирањем, као и резултати квалитативне анализе обављених интервјуа, како би се пружио увид у стање производње декоративних култивара букве у Шумадији и Западној Србији, као одабраном статистичком региону. Поред тога, приказани су и анализирани резултати SWOT анализе.

Квантитативна анализа ставова расадничара

На основу резултата обраде подataka прикупљених анкетирањем, констатовано је да је производња декоративних култивара букве заступљена у свега 16,9% од укупног броја анализираних расадника. Највећи део (96,9%) асортимана у свим расадницима представљају саднице украсног дрвећа и жбуња (табела 3).

Поређењем општих подataka између расадника у којима је заступљена производња декоративних култивара букве, са онима у којима није присутна, уочавају се и разлике у величини расадника. Производња декоративних култивара букве реализује се, углавном, у расадницима веће површине, од којих се 36,4% простире на површини од 5,1 до 10 ha, а нешто мање од половине (45,5%), на површини од 1 до 5 ha. С друге стране, више од половине (58,5%) свих анализираних расадника (табела 3), заузима површину мању од 1 ha.

У већини расадника је запослено од 1 до 5 радника. При томе је, у погледу образовне структуре, око ¾ запослених (75,4%) са средишњом стручном спремом, док је учешће ових кадрова на нивоу расадника који производе декоративне култиваре букве, још веће и износи 81,8%.

Нешто више од половине укупног броја испитаника (52,3%) показује заинтересованост за производњу већег обима (за коју ће се у даљем тексту рада користити израз „обимнија производња”), у односу на постојећу производњу декоративних култивара букве.

Представници свих расадника који се баве производњом култивара букве, показују заинтересованост да их у будућем периоду обимније производе. Са друге стране, мање од половине (44,4%) представника расадника, који у свом асортиману немају декоративне култиваре букве, истакло је да би, у наредном периоду, били заинтересовани за обимнију производњу ових садница.

8 Да би се резултати χ² теста могли тумачити, неопходно је да најмање 80% ћелија има очекиване учесталости 5 или више.
Општи подаци о расаднику	Сви анализирани расадници	Расадници који произведе декоративне култиваре букве	Расадници који не произведе декоративне култиваре букве								
Учешће %	χ²	df	p*	Учешће %	χ²	df	p*	Учешће %	χ²	df	p*
Саднице за пошумљавање	7,7 46,538 1	0,000	18,2 4,455 1	0,035	5,6 42,667 1	0,000					
Саднице украсног дрвећа и жбуња	96,9 57,246 1	0,000	100,0 /	96,3 46,296 1	0,000						
Саднице воћака	4,6 53,554 1	0,000	9,1 7,364 1	0,007	3,7 46,296 1	0,000					
Цвеће (сезонско и вишегодишње)	1,5 61,062 1	0,000	0,0 /	1,9 50,074 1	0,000						
Друго	3,1 57,246 1	0,000	0,0 /	3,7 46,296 1	0,000						
Највећи део асортимана у расаднику											
Саднице за пошумљавање											
Саднице украсног дрвећа и жбуња											
Саднице воћака											
Цвеће (сезонско и вишегодишње)											
Друго											
Величина расадника	<1 ha	58,5 25,138 2	0,000	18,2	45,5 **	31,5					
1–5 ha	33,8 25,138 2	0,000	36,4	**	1,9						
5,1–10 ha	7,7 25,138 2	0,000	0,0	**	34,111 2	0,000					
>10 ha	0,0 25,138 2	0,000	0,0	**	0,0						
Број стално запослених	1–5	89,2 91,969 2	0,000	63,6	94,4						
6–10	9,2 91,969 2	0,000	36,4	81,8	74,1						
>10	1,5 91,969 2	0,000	0,0	42,6	90,778 2	0,000					
Образовна структура запослених	Основна школа	41,5 1,862 1	0,172	36,4	0,818	0,366	3,7	90,778 2	0,000		
Средња школа	75,4 16,754 1	0,000	81,8	4,455	0,035	74,1	12,519 1	0,000			
Виша школа	7,7 46,538 1	0,000	9,1	7,364	0,007	7,4	39,185 1	0,000			
Факултет	16,9 28,446 1	0,000	27,3	2,273	0,132	14,8	26,741 1	0,000			
Заинтересованост за обимнију производњу декоративних култивара букве	Да	52,3 100	0,000	44,4	0,000						
Не	47,7 0,385 1	0,535	0,000	55,6 0,667 1	0,414						

* уколико је <0,05, постоји статистички значајна разлика између посматраних група расадника
** нарушен је претпоставка о најмањој очекиваној учесталости у свим ћелијама (100% ћелија има очекиване учесталости мање од 5)
Извор: оригинал
У тајлу 3 су приказани резултати χ² теста значајности пропорција, спроведеног за укупан број расадника (χ²=0,385, df=1, p=0,535), као и за расаднике који не произведе декоративне култиваре букве (χ²=0,667, df=1, p=0,414). Они указују да постоји статистички значајна разлика између посматраних група одговора у свим случајевима, осим када су у питању ставови о заинтересованости за обимнију производњу декоративних култивара букве, у будућности. Са друге стране, резултати истог теста урађеног за расаднике који произведе декоративне култиваре букве, указују да статистичка значајност између група одговора постоји само када је у питању део одговора у вези са асортиманом и образовном структуром запослених.

На основу сагледавања резултата који се односе на податке о производњи декоративних култивара букве (табела 4), може се уочити да је, у највећем броју расадника (90,9%) који се баве њиховом производњом, заступљен култивар жалосног хабитуса (Fagus sylvatica ‘Pendula’). Црвенолисни култивар (Fagus sylvatica ‘Purpurea’) је заступљен у 72,7% расадника, док је црвенолисни култивар жалосног хабитуса (Fagus sylvatica ‘Purpurea Pendula’), евидентиран у 54,5% расадника. Остали култивари су заступљени у мање од половине расадника, при чему је присутна и производња стубастог култивара (Fagus sylvatica ‘Dawyck’)9.

Три типа подлога10 се користе за калемљење букве, у анализираним расадницима:
1. подлоге произведене у расаднику из семена познатог порекла;
2. подлоге произведене у расаднику из семена непознатог порекла;
3. подлоге из шуме (природни подмладак букве).

На основу резултата који су приказани у табели 4, може се констатовати да се приликом калемљења букве, најчешће (90,9%), употребљавају подлоге старости 2-3 године, док се подлоге старје од 5 година, користе у мање од 10% расадника. Произвођачи, највећим

9 Овај култивар се није налази на списку у анкети, већ је наведен од стране испитника, у рубрици „друго“.
10 Производња култивара се у свим расадницима обавља калемљењем, уз потребу букве као подлоге.
Табела 4. Подаци о производњи декоративних култивара букве

Декоративни култивари букве који се произведе у расаднику	Подаци о производњи %	Учешће	χ^2 тест значајности пропорција	
		χ^2	df	p^*
Fagus sylvatica ‘Purpurea’	72,7	2,273	1	0,132
Fagus sylvatica ‘Tricolor’	27,3	2,273	1	0,132
Fagus sylvatica ‘Purpurea Tricolor’	27,3	2,273	1	0,132
Fagus sylvatica ‘Zlatia’	18,2	4,455	1	0,035
Fagus sylvatica ‘Dawyck Gold’	27,3	2,273	1	0,132
Fagus sylvatica ‘Dawyck Purple’	45,5	0,091	1	0,763
Fagus sylvatica ‘Pendula’	90,9	7,364	1	0,007
Fagus sylvatica ‘Purpurea Pendula’	54,5	0,091	1	0,763
Fagus sylvatica ‘Purple Fountain’	36,4	0,818	1	0,366
Друго	36,4	0,818	1	0,366

Тип подлоге која се користи за калемљење

Подлоге геолим кореном	36,4		**
Подлоге у посудама	45,5		
И једне и друге	18,2		

Порекло подлога

Произведене у расаднику, из семена познатог порекла	27,3	2,273	1	0,132
Произведене у расаднику, из семена непознатог порекла	36,4	0,818	1	0,366
Из шуме	54,5	0,091	1	0,763

Старост подлога

1 година	18,2	4,455	1	0,035
2–3 године	90,9	7,364	1	0,007
4–5 година	54,5	0,091	1	0,763
више од 5 година	9,1	7,364	1	0,007

Извор за сакупљање племки

Матичњак у расаднику	72,7	2,273	1	0,132
Школоване саднице	9,1	7,364	1	0,007
Набавка са стране, паркови, вртови	36,4	0,818	1	0,366

Заинтересованост купаца за култиваре букве

Велика	9,1		**
Не знам	9,1		
Мала	81,8		

Исплативост производње декоративних култивара букве

Веома много	9,1		
Много	9,1		
Не знам	9,1		**
Мало	72,7		
Никако	0,0		

Препреке за обимнију производње декоративних култивара букве

Мали успех калемљења	18,2	4,455	1	0,035
Осетљивост биљака након калемљења	27,3	2,273	1	0,132
Високи трошкови производње	18,2	4,455	1	0,035
Мала заинтересованост за куповину култивара букве	81,8	4,455	1	0,035
Нема препрека	0,0			

* уколико је $p<0,05$, постоји статистички значајна разлика између посматраних група расадника
** нарушења је претпоставка о најмањој очекиваној учесталости у свим ћелијама (100% ћелија има очекиване учесталости мање од 5)

Извор: оригинал
да употребљавају подлоге из шуме (природни подмладак), док је 5 представника навео да користе и подлоге произведене у расаднику, из семена непознатог порекла. Представник расадника Р-4, за подлоге из шуме (природни подмладак), истиче да је „...покушао са оваквим Јодлама, али су слабо најстрадале (можда због корена)“, тако да је подлоге „...куповао у расаднику Србијашуме (у Пожеги), али они више немају“. Планира да их набави из Мађарске, јер „...они имају одличне саднице по доброј цени“. Представник расадника Р-10 је навео да подлоге набавља „...из сопствене шуме, која је у близини расадника, близу реке, на надморској висини од око 230 m“. Он истиче да подлогама одговара ово станиште, јер „...су из шуме која није на већој надморској висини“. Подлоге које се користе за калемљење су, најчешће, старости 2-3 године. Међутим, није исти тип подлога погодан за све култиваре букве, већ постоје разлике (најчешће у старости подлога), у односу на култивар који се производи. Представник расадника Р-1 је објаснио да, нпр. „...за жалосну букву (Fagus sylvatica ‘Pendula’), која се калеми на већој висини, узимамо Јодлоле из Јапанске Јодламија сийаре бар 3-4 године, које морају да буду код нас засадене 2 године једног калемљења“. У расаднику Р-3 наведено је да постоји разлика у старости за поједине врсте култивара, па тако „...за калемљење Purpurea и Tricolor, Јодлоле су сийароскун 2 године, а за осицање калемљење 3-4 године“. У већини анализираних расадника (7 од 10 расадника), примењивано је калемљење на подлоге у земљишту, чији је предност у томе што су подлоге овог типа, углавном, са добро развјеним кореновим системом и прилагођене условима спољашњег средине. У преостала 3 расадника, калемљење су подлоге у посудама или подлоге са гиром кореновим системом. Њихова употреба може убрзати и олакшати сам процес калемљења, због већег развоја манипулације подлогама приликом калемљења. Такође, употреба подлога у посудама може допринети уштеди простора у самом расаднику (условноста отвореног простора за садњу биљака на одговарајућем размаку). У скоро свим расадницима (9 од 10 расадника), као извор за сакупљање племки користе се матична стабла у расаднику, која су испитаници сами произвели или купили у другим земљама. Постојање матичьака у расадницима је веома значајно, не само са аспекта обезбеђивања племки за калемљење, већ и због смањења времена чувања калем-граничца до тре- нутка калемљења (могу се сакупљати и непосредно пре калемљења, што спречава њихово исушивање). Представник расадника Р-2 навео је следеће: „...раније сам донесо незначајноим калемљење, али је мање времена чувања у расаднику Р-3 наведено је да постоји разлика у старости за поједине врсте култивара, па тако „...за калемљење Purpurea и Tricolor, подлоге су старости 2 године, а за остале култиваре 3-4 године“. У већини анализираних расадника (7 од 10 расадника), примењивано је калемљење на подлоге у земљишту, чија је предност у томе што су подлоге овог типа, углавном, са добро развјеним кореновим системом и прилагођене условима спољашњег средине. У преостала 3 расадника, калемљење су подлоге у посудама или подлоге са гиром кореновим системом. Њихова употреба може убрзати и олакшати сам процес калемљења, због већег развоја манипулације подлогама приликом калемљења. Такође, употреба подлога у посудама може допринети уштеди простора у самом расаднику (условноста отвореног простора за садњу биљака на одговарајућем размаку).
његовом ставу, представник расадника P-2 је нагласио да „...све зависи од карактеристика године, и не зависи од карактеристике облика калемљења“. Већина испитаника је истичу да ”...три колор одрасли су различито од генералних тренутних стандарда“ (представник расадника R-7). У расаднику R-3 наводе да ”...само уколико би постојао сигуран купац, било би исплативо да се култивари букве обимније производе“. Сви испитаници су показали интересовање да производе декоративне култиваре букве у већем обиму, у односу на постојећу производњу у њиховом расаднику, а неки од њих су изнели и своје планове за производњу ових

Марина Нонић, Јелена Недељковић, Драган Нонић, Миријана Шијачић-Николић

146
саднице у будућности. Тако су, нпр. у расаднику Р-1 истакли да се надају бољој потражњи и да је у плану „...да се Јочне са јроизводњом веће обима“. Према мишљењу већине испитаника (7 расадника), главна препрека за производњу декоративних култивара букве у већем обиму је проблем пласмана, односно, непостојање тржишта, као и слаба потражња. У расаднику Р-3, истакнуто је да за производњу „...морају да се обезбеде адекватни услови (оришавање, можда, и засена, да би саднице боље расле и биле квалитетније и веће)“. Такође, представник расадника Р-6 је навео да су основне препреке: „...мали успех калемљења, велика осећањивост биљака након калемљења, високи јирошкови јроизвођења, малу заинтересованост за кућевину саднице“, док у расаднику Р-5 као препреку сматрају „...недостатак квалитетних подлога“. У погледу препорука за унапређење производње декоративних култивара букве калемљењем, представни расадника Р-3 је навео да је потребно „...увести субвенции за производњу, како би се мотивисали јроизвођачи, који су заинтересовани да јроизводе ове култиваре“. Посред тога, истакнуто је, да би, у оквиру струке, требало да буде више заступљена промоција декоративних култивара букве, односно да би „...гилиомишићни инжењери и дејзажне архимекаје требало чешће да користе декоративне култиваре букве, крило јројектирања“ (представник расадника Р-3). Све ово указује да је у расадничкој производњи, већином, заступљен индивидуални приступ, као и самостални наступ производођача на тржишту, што намеће потребу за организованом производњом, развојем тржишних потенцијала и повећањем заједничког учешћа на тржишту.

Табела 5. SWOT анализа производње култивара букве у Србији

Предности	Слабости
1. Производња различитих култивара букве у анализираним расадницима	1. Мала заступљеност декоративних култивара букве у укупним асортирама расадника
2. Велики успех калемљења	2. Матичњаци су непроверени, што не обезбеђује аутентичност, односно генетичку униформност
3. Постојање сопствених матичњака у расадницима	

Могућности	Претње
1. Заинтересованост расадничара за обимнију производњу декоративних култивара букве	1. Немогућност набавке одшколованих подлога букве у расадницима у земљи
2. Повећање обима пласмана обезбеђивањем стабилнијег тржишта за декоративне култиваре букве и производњом за познатог купца	2. Зависност успеха производње од климатских услова
3. Развој финансијских мера подршке за производњу декоративних култивара букве	3. Nedовољна информисаност и мала заинтересованост купца за декоративне култиваре букве
4. Неисплативост производње декоративних култивара букве, због непостојања тржишта и слабе потражње	

Извор: оригинал
лизе производње култивара букве у Србији (табела 5).

Позитивни унутрашњи фактори (предности) обухватају, пре свега, карактеристике које се односе на саму технологију производње декоративних култивара букве калемљењем:

- производња различитих култивара (10 различитих култивара);
- велики успех калемљења (у просеку око 70% на нивоу свих култивара);
- употреба племки из сопственог матичњака (9 од 10 испитаника као извор за сакупљање племки користе матична стабла у свом расаднику).

Са друге стране, негативни унутрашњи фактори (слабости) обухватају:

- заступљеност украсних култивара букве у укупном асортиману расадника (веома мала заступљеност, свега око 5%, у укупним асортиманима анализираних расадника);
- употребу племки из непроверених матичњака (што не обезбеђује генетичку униформност садница). Представници расадника (9 од 10 расадника) су, као одговор на питање о извору за сакупљање племки, навели да поседују матична стабла, углавном, допремљена из иностранских расадница (из Италије, Мађарске, Холандије, итд.), при чему не знају њихово тачно порекло и да ли су настала вегетативним или генеративним размножавањем (што знатно утиче на генетичку униформност садница).

Позитивни спољашњи фактори (могућности) обухватају:

- позитивне ставове расадничара о обимној производњи декоративних култивара букве (свих 10 представника расадника је позитивно одговорило на питање о заинтересованости да у будућности производе декоративне култиваре букве у већем обиму);
- повећање обима пласмана, обезбеђивањем стабилног тржишта и производњом за познатог купца (уколико би, на пример, комунална предузећа више куповала ове саднице за уређивање зелених простора различитих намена);
- развој финансијских мера подршке (на пример, кроз доделу субвенција за производњу ових култивара, ради повећања заступљености букве као декоративне врсте на јавним зеленим површинама у Србији). Негативни спољашњи фактори (претње) обухватају:

- карактеристике пласмана, где спадају: - неинформисаност и мала заинтересованост купца (свих 10 испитаника је навело да су купци незаинтересовани за декоративне култиваре букве и да нису довољно информисани о великом броју ових култивара и њиховим карактеристикама);
- непостојање стабилног тржишта и слаба потражња (испитаници су указали на пропријетествованихй домашњег тржишта у Србији, као и на непостојање сигурног купца);
- карактеристике производње декоративних култивара букве калемљењем, где спадају: - недостатак квалитетних подлога производњи у расадницима у земљи (5 од 10 испитаника је навело да је куповало једногодишње подлоге у расадницима у Србији, а даље су их школовали у својим расадницима, док су 2 испитаника увозила школоване подлоге из Мађарске, а сви испитаници су навели да користе подлоге из природног подмлатка);
- питање исплативости производње (72,7% испитаника су изјавили да је исплативост производње мала);
- зависност успеха производње од услова спољашње средине (мразеви, високе температуре и сл.).

Поред успеха калемљења у расадницима и могућности употребе племки из сопствених матичњака, уз претходнину проверу њихове аутентичности, важни су и позитивни ставови расадничара о технологији производње декоративних култивара букве и њихова заинтересованост да се повећа обим ове производње. Већом применом декоративних култивара букве у јавним зеленим просторима, јавила би се већа потреба за њиховом производњом. Производња би била исплативија, а тржиште стабилније.

Планска производња подлога букве у расадницима из српских матичњака, уз претходну проверу њихове аутентичности, важни су и позитивни ставови расадничара о технологији производње декоративних култивара букве и њихова заинтересованост да се повећа обим ове производње. Већом применом декоративних култивара букве у јавним зеленим просторима, јавила би се већа потреба за њиховом производњом. Производња би била исплативија, а тржиште стабилније.
ДИСКУСИЈА

На основу анализе ставова расадничара, примећене су извесне сличности између посту- пака који се спроводе у пракси, приликом про- изводње букве калемљењем, са резултатима до којих се дошло у истраживањима са слич- ном проблематиком (Jovanović, 1966, 1971; Cerar, 2010; Nonić M. et al., 2012/c, 2014/b, 2015; Nonić M., 2016).

На пример, према анализираним ставовима расадничара, подлоге букве које су засађене у лејама, бар две године пре калемљења, давале су боље резултате у поређењу са подлогама које се калеме са голим кореновим системом. Слично је констатовано и у резултатима истра- живања Nonić M. (2016).

Расадничари су наводили да примењују метод обичног спајања, који је употребљен и у истраживањима Nonić M. (2016), као и Nonić M. et al. (2012/c, 2014/b, 2015). Јовановић је у својим истраживањима (Jovanović, 1966, 1971), користио четири методе калемљења одвојеном гранчицом. Све три методе бочног спајања показале су преко 50% успеха, а метода клин-настог спајања око 26% (Jovanović, 1971), је констатовао да је најбољи успех забележен код употребе непревршеног подлога. Расадничари су препоруčили и окулирање у августу, које је примењено у истраживањима Jovanović (2016), где је, такође, показало задовољавајуће резултате (око 33% приљубљених калемова). Калемљење четири различита култивара европске букве: Fagus sylvatica ‘Pendula’, Fagus sylvatica ‘Atropunicea’, Fagus sylvatica ‘Zlatia’ и Fagus sylvatica ‘Tricolor’, обављено је у Словенији, како би се утврдио утицај различитих култивара (извора племки) на успех калемљења (Cerar, 2010). Анализиран је утицај дебљине подлоге, дужине и ширине племке на успех калемљења, при чему је констатовано да не постоји значајан утицај ових параметара на успех калемљења. Успех калемљења је зависио од култивара, а као је сакупљено племке, што су наводили и испитаници у овом истраживању. Највећи успех калемљења у истраживању Cerar (2010) био је када су употребљене племке са култивара Fagus sylvatica ‘Pendula’ (80%) и Fagus sylvatica ‘Zlatia’ (78%). Успех калемљења култивара Fagus sylvatica ‘Atropunicea’ износио је 50%, а најмањи успех је забележен код кале- мљења племкама са култивара Fagus sylvatica ‘Tricolor’ (свега 2%). Просечан успех калем- љења, на нивоу сва четири култивара, износио је 52,5%.

Такође, испитаници су истакли да су време- нске прилике током године веома важне за успех калемљења свих култивара, што је потврђено и истраживањима Nonić M. (2016). Један од расадничара је напоменуо да је 2013. године имао изузетно слаб пријем, мањи од 10%, због неповољне године, што је у сагла- сности са слабим пријемом садница приликом калемљења, у огледу постављеном исте годи- не, у истраживањима Nonić M. (2016). Зави- сност од временских услова је проблем са ко- јим се и предузећа у сектору шумарства често сусрећу (Ranković et al., 2012; Stojanovska et al., 2012; Nonić D., 2015; Nedeljković, 2015). Ово је веома важна карактеристика њиховог послова- вања, посебно ако се има у виду да успех пре- дузећа често „зависи од окружења и јерисују- важним ресурсима“ (Boter, Lundström, 2005).

Иако се, на основу ставова расадничара, може констатовати да се украсни култивари бу- кве у свим анализираним расадницима про- изводе вегетативним путем - калемљењем, постоје истраживања која указују и на могућност генеративног размножавања појединих култивара букве.

На пример, Heinze, Geburek (1995) су при- казали резултате анализе ДНК маркера, у вези са геном задуженим за контролу боје листа код црвенолисне букве (Fagus sylvatica ‘Purpurea’), при чему су применили генеративно раз- множавање овог култивара. Од укупног броја клијаваца, 500 клијаваца је било са црвеним листовима, а 509 са зеленим листовима. Међу младим садницама које су имале црвене листове, констатована је варијабилност у интензитету црвене боје, која се кретала у рангу од изразито тамно црвене до зеленкасте са црвено- нерватуrom, на листовима који су били у сенци.

Највећи успех калемљења у истраживању Cerar (2010) био је када су употребљене племке са култивара Fagus sylvatica ‘Pendula’ (80%) и Fagus sylvatica ‘Zlatia’ (78%). Успех калемљења култивара Fagus sylvatica ‘Atropunicea’ износио је 50%, а најмањи успех је забележен код калемљења племкама са култивара Fagus sylvatica ‘Tricolor’ (свега 2%). Просечан успех калемљења, на нивоу сва четири култивара, износио је 52,5%.
Такође, Тошић (2005; 2006/a; 2006/b), који је детаљно писао о култивару букве са жутим листовима, Fagus sylvatica ‘Luteofolia’ (Тошић, 2006/b) и новом варијетету букве Fagus moesiaca (K. Malý) Czecz., са златно-жутим листовима, констатовао је да генеративним размножавањем жутолисне букве код Котор Вароши, потомство у великом проценту наслеђује жуту боју листова (Тошић, 2006/а).

Као препреку обимнијој производњи украоусних култивара букве, испитаници су навели неупућеност и незаинтересованост купаца и недостатак познатог тржишта, што указује на јасну потребу за промоцијом ових култивара.

Истраживање спроведено са произвођачима и трговцима цвећа и других украсних биљака указује да ”многи од њих, током свог рада (производње или продаје), наилазе на различите проблеме, а један од најбитнијих је покрене развој о веома развијеним тржиштима и несвештеност производних капацитета” (Маринковић et al., 2011). Проблем неразвијености тржишта се среће и у пословању других предузећа у сектору шумарства, као што су, нпр. недрвни шумски производи (Нонић D. et al., 2014). Једно од могућих решења проблема пласмана и неразвијености тржишта је оснивање удружења или кластера, који би омогућили да се покрене развој и унапређење производа (Маћар, 2015).

Удружење за пејзажну хортикултуру Србије је основано 2004. године, када су се удре-

13 Удружење има преко 150 чланова и бави се онима и њиховим представницима, који се срећу у различитим проблемима свих врста у облику манифестација (активности удружења) и програмских радова (Маћар, 2015). Проблем неразвијености тржишта се среће и у пословању других предузећа у сектору шумарства, као што су, нпр. недрвни шумски производи (Нонић D. et al., 2014). Једно од могућих решења проблема пласмана и неразвијености тржишта је оснивање удружења или кластера, који би омогућили да се покрене развој и унапређење производа (Маћар, 2015).

Удружење за пејзажну хортикултуру Србије је основано 2004. године, када су се удре-

13 Удружење има преко 150 чланова и бави се овим асасинима и њиховим представницима, који се срећу у различитим проблемима свих врста у облику манифестација (активности удружења) и програмских радова (Маћар, 2015). Проблем неразвијености тржишта се среће и у пословању других предузећа у сектору шумарства, као што су, нпр. недрвни шумски производи (Нонић D. et al., 2014). Једно од могућих решења проблема пласмана и неразвијености тржишта је оснивање удружења или кластера, који би омогућили да се покрене развој и унапређење производа (Маћар, 2015).

Удружење за пејзажну хортикултуру Србије је основано 2004. године, када су се удре-
• најчешће (72,7%) испитаници сакупљају племке из сопственог матичњака или их набављају у вртовима, парковима, и сл.;
• у свим расадницима, кутивари букве се производе калемљењем, при чему се при-
менjuју различите методе: обично спајање, енглеско спајање, калемљење у процеп и
калемљење пупољком;
• просечан успех калемљења, на нивоу свих кутивара, износи око 70%, при чему су
испитаници истакли да он зависи како од кутивара, тако и од методе калемљења и
временских услова у току године;
• најчешћи проблеми приликом калемљења су, према ставовима испитаника: неквали-
tетне подлоге, мразеви, високе температуре или штеточине;
• већина испитаника (81,8%), сматра да је заинтересованост купаца за кутиваре бу-
kве веома мала, као и да је исплативост производње ових кутивара ниска (72,7% испитаника);
• око ½ свих испитаника (52,3%) показује заинтересованост за обимнијом произво-
дњом декоративних кутивара букве, док представници свих расадника који се већ баве производњом ових садница, показују заинтересованост за већим обимом про-
изводње, у наредном периоду;
• основне препреке за обимнијом произво-
dњом декоративних кутивара букве су: незаинтересованост купаца и проблем пла-
сmana (непостојање тржишта и слаба потражња).

На основу резултата SWOT анализе, може се констатовати да је, за реализацију обимније производње декоративних кутивара букве у Србији, потребно унапредити информисање потенцијалних купаца о кутиварима букве, као и јавне промоције ових садница на сајмо-
вима и продажним изложбама.

На основу квантитативне и квалитативне анализа ставова расадничара о могућности унапређења производње декоративних кути-
вара букве у Србији, може се закључити да за то постоје реални услови.

Представници расадника сматрају да би до значајнијег повећања обима производње де-
коративних кутивара букве могло доћи, уко-
лико би било већег интересовања на тржишту (кроз обезбеђивање стабилнијег тржишта и
већу примену кутивара од стране градских комуналних предузећа), као и развој одгова-
рајућих мер подршке (кроз обезбеђивање субвенција за производњу ових садница).

Препоруке за унапређење производње и пласmana декоративних кутивара букве, које су навели испитаници, могу се груписати кроз:
1. препоруке у вези са технологијом производње:
• примена метода енглеског спајања или
окулирања;
• производња калемова на већој надмо-
рској висини;
• редовно заливање и прихрана биљака;
• употреба квалитетног семенског мате-
ријала за производњу подлога;
• употреба здравих племки (уколико се
располаже добром матичним биљкама);
2. препоруке у вези са унапређењем пла-
сmana:
• обезбеђивање стабилнијег тржишта у
дужем временском периоду;
• додела субвенција за производњу.

У даљим истраживањима, требало би испи-
tати ставове одабраних расадничара, као и
експерата и доносилаца одлука у шумарству и
хортикултури, о могућностима даљег развоја и
примене наведених мера, оснивања центра за
набавку квалитетних племки појединих деко-
ративних кутивара дрвенастих врста, као и,
eventualног, укључивања надлежних институ-
ција које би пратиле производњу, давале стру-
чне савете и гарантовале квалитет садница, што
би омогућило и унапређење њиховог пласмана.

Напомена: Рад је финансиран средствима
пројекта „Шумски засади у функцији повећања
пошумљености Србије“ (ТП 31041), Министа-
рства просвете и науке Републике Србије.
INTRODUCTION

High-quality planting material of different species and cultivars of trees and shrubs is, among other things, required for the management of various urban green spaces. Nurseries of ornamental trees and shrubs can directly affect the market supply of this type of planting material, because it is their task to produce quality seedlings for urban greening, with a properly-developed root system and the above-ground part (Grbić, 2010).

In Serbia, public forest enterprises, utility companies, environmental movement NGOs and nurseries in the private sector\(^1\) are engaged in the production of ornamental trees and shrubs. With the development of the privatization process, in recent decades, there has been an increase in the number of private producers of ornamental planting material and development of nursery production as a whole (Ješić, 2015).

For the production of ornamental trees seedlings, very important are the production technology itself (Stilinović, Grbić, 1992; Grbić, 2010), the conditions for the development of production (climate, geothermal, etc.), which are favourable in Serbia, but also the knowledge of the most appropriate type of propagation of the selected species or cultivar.

Nursery production of ornamental trees and shrubs includes the propagation of various deciduous and coniferous species and cultivars, including cultivars of European beech (Fagus sylvatica L.), which are planted in parks, botanical gardens, arboreta, private gardens, residential gardens, as

\(^{1}\) The first nursery of ornamental plants in Serbia was founded in Topčider in 1864, for the purpose of establishing of the Topčider Park (Grbić, 2010).
individual trees, groups of trees, in the form of hedges, etc.

In 1964, Harvard University published a Registration list of cultivar names of *Fagus L.*, which, even at that time included more than 100 different cultivars (Wyman, 1964).

The determination key for ornamental cultivars of European beech was presented by Puschner and Brus (2008), who described 76 different cultivars. They found the basis for developing the key in the work of Dönig, who described in his book the park and garden varieties of beech, which could be found in his family arboretum in Germany (Dönig, 1994). Hatch (2007) gave a detailed description of the majority of beech cultivars (more than 115).

Ornamental cultivars of European beech are very rare in Serbia, and their relatively small number was also identified on Belgrade territory: *Fagus sylvatica ‘Pendula’, Fagus sylvatica ‘Purpurea’, Fagus sylvatica ‘Tricolor’, Fagus sylvatica ‘Purpurea Tricolor’, Fagus sylvatica ‘Dawyck’* and *Fagus sylvatica ‘Dawyck Purple’* (Nonić M., 2016).

Previous studies of ornamental beech cultivars, here and abroad, dealt with various topics.

In addition to generative propagation, different types of vegetative propagation of beech have been applied in Serbia. Such propagation allows permanently fixation of the combination of certain characteristics. However, until recently, detailed scientific researches on the vegetative propagation of ornamental beech cultivars in Serbia (Nonić M., 2016) were missing.

The vegetative way of producing plants is suitable for ornamental cultivars (Đukić et al., 2006), but an appropriate selection of starting material, based on the phenotypic manifestation of desirable characteristics, is also very important. The selection of parent trees in Serbia could be more suitable than a selection of starting material outside Serbia, because such trees are well adapted to the environmental conditions in this country (Nonić M., 2016).

The aim of this paper is to study the attitudes of the producers of ornamental trees and shrubs towards the nursery production of ornamental beech cultivars, and possibilities of its improvement in Serbia. The purpose of this paper is to give certain recommendations for the improvement of ornamental beech cultivars production, based on the analysis of its state and nurserymen's attitudes. The subject of this research are the attitudes of the representatives of the nurseries of ornamental trees and shrubs towards the production of ornamental beech cultivars in Serbia.

METHODS

The basic research methods applied in this paper were: analysis and synthesis, as well as induction and deduction. As a research scientific method, a statistical method was used for the processing of data collected by survey, while the qualitative analysis was applied in the analysis of data collected through interviews (Mihailović, 2012).

“Door to door” survey and in-depth interview were used as research techniques for data collection (Mihailović, 2012). SWOT analysis, as a technique of strategic management, was employed to investigate internal and external factors of production of ornamental beech cultivars in Serbia.

Data collection was conducted in two phases, in the period from July to November 2013. In the first phase of data collection (July 2013), the atti-
strategies of nurserymen towards the production of ornamental beech cultivars in the selected region were examined. Thereafter the representatives of nurseries where the production of ornamental beech cultivars was present were selected. In the second phase of data collection (November 2013), those nurserymen were interviewed.

Stratified random sample and census were used in the research. For the selection of the nurseries, whose representatives were surveyed in the first phase of data collection, a stratified random sample was used, whereby the criteria for the division of the population into strata were an application for production control4.

In that period (July 2013), control of the production of reproductive material of forest and ornamental trees and shrubs was conducted by the Institute of Forestry from Belgrade.

The total number of nurseries of ornamental trees and shrubs, by statistical regions5 in Serbia is shown in Table 1.

In the period of research, the largest number of the nurseries (Table 1) was in the region of Šumadija and Western Serbia, which is the reason why this statistical region was selected as an area for testing the attitudes of nurserymen towards the production of ornamental beech cultivars. During the first phase of data collection, control of the production of reproductive material was performed in 73 out of 145 registered nurseries. “Door to door” survey was conducted with representatives of 65 nurseries, who agreed6 to participate in data collection.

The census was carried out in the second phase of data collection. The representatives of the nurseries who, in the first phase of the data collection, stated they produce beech cultivars were chosen for this phase. This means that the criterion for the selection of nursery representatives for the second phase of data collection was the existence of production of ornamental beech cultivars.

Data collection, in this research phase, was conducted in 10 nurseries7 marked with codes R-1 to R-10 (Table 2).

For the purposes of data collection, two different questionnaires were created, and those were used to collect data through surveys and interviews as research techniques.

Statistical region	Number of nurseries
Vojvodina	57
Belgrade region	22
Šumadija and Western Serbia	145
Southern and Eastern Serbia	31
Kosovo and Metohija	-
TOTAL	**255**

Source: Internal documentation of the Ministry of agriculture and environmental protection and the author’s calculation

4 In accordance with the Law on Forest Reproductive Material (§21), “…producer of reproductive material shall submit to the Ministry an application for production control no later than 30 April of the current year” (2004). Control of the reproductive material production is done by the Ministry, which “…can entrust the expert tasks of production control to a company or other legal entity” (2004). Basic information (name, address, contact) of the nurseries were obtained from the internal documents of the Ministry of Agriculture and Environmental Protection-Directorate for Forests, which, at the time of the research, was responsible for production control in nurseries. According to the submitted applications for production control, the Directorate keeps records on nurseries. The data used for this research are related to nurseries which, at the time of research (July 2013) were recorded in the internal documents of the relevant ministry.

5 According to §5 of the Law on Regional Development (2009), the territory of the Republic of Serbia is divided into five statistical regions: Vojvodina, Belgrade region, Šumadija and Western Serbia, Southern and Eastern Serbia, Kosovo and Metohija.

6 From the total number of nurseries (73), in which, during the period of this research, production control was conducted, representatives of 65 nurseries have agreed to participate in the survey, while representatives of 8 nurseries were not interested in participating in the research.

7 Analysis of the data collected in the first phase showed that ornamental beech cultivars were produced in 11 nurseries. All the representatives of those nurseries were contacted, and only one was not interested in participating in the second phase of research. So, in total 10 respondents were interviewed.
Questionnaire used for the survey consisted of 21 questions, divided into 3 groups:
1. General information about the respondent;
2. General information about the nursery;
3. Data on production of ornamental beech cultivars.

Questionnaire used for the interview included 40 questions, grouped into 6 sections:
1. General information about the respondent;
2. Data on the production of ornamental beech cultivars;
3. Data on rootstocks for grafting;
4. Data on scions for grafting;
5. Data on the success of grafting and further care of grafted plant;
6. Data on the sales of grafts and production improvement.

In the context of data processing, the completed questionnaires were primarily coded and a database was set in the program for cross-spreadsheet. Afterwards, the data were transferred to the SPSS ver. 20 (2011) program, in which statistical analysis was performed.

Frequency analysis was used to determine the frequency of categorical variables. \(\chi^2 \) test goodness-of-fit\(^8\) was applied to examine the differences in the obtained and expected frequencies (Malhotra, 2007). In all cases, it was assumed that expected (hypothetical) frequency distribution was 50% : 50%, i.e. null hypothesis was that all proportions were equal (there is no statistically significant difference between the proportions) (Pallant, 2011).

Data collected with qualitative interviews were analyzed with content analysis, and the obtained results were used for the SWOT analysis.

A multidisciplinary approach, which in this study was obtained by questionnaires and conducting surveys and interviews with producers of ornamental planting material in Serbia, significantly contributed to the perception of the state of ornamental beech cultivars production, as the basis for its further improvement.

RESULTS

This section presents the results of research of the attitudes of producers of ornamental trees and shrubs towards the production of ornamental beech cultivars and possibilities of its improvement in Serbia. The results of analysis of data collected by surveying are presented here, as well as the results of the qualitative analysis of the interviews, in order to provide an insight into the production of beech cultivars in Šumadija and Western Serbia. In addition, the results of a SWOT analysis are presented and analyzed.

\(^8\) Results of \(\chi^2 \) test goodness-of-fit can be interpreted, if at least 80% of cells have the expected frequency of 5 or more.
Table 3. Basic data on nurseries

BASIC DATA ON THE NURSERY	All analysed nurseries	Nurseries that produce ornamental beech cultivars	Nurseries that do not produce ornamental beech cultivars										
	FREQUENCY	χ^2 TEST GOODNESS-OF-FIT	FREQUENCY	χ^2 TEST GOODNESS-OF-FIT	FREQUENCY	χ^2 TEST GOODNESS-OF-FIT							
	%	χ^2	df	p^*	%	χ^2	df	p^*	%	χ^2	df	p^*	
The largest part of the assortment in the nursery	Seedlings for reforestation	7.7	46.538	1	0.000	18.2	4.455	1	0.035	5.6	42.667	1	0.000
	Seedlings of ornamental trees and shrubs	96.9	57.246	1	0.000	100.0	/	/	96.3	46.296	1	0.000	
	Seedlings of fruit-trees	4.6	53.554	1	0.000	9.1	7.364	1	0.007	3.7	46.296	1	0.000
	Flowers (seasonal and perennial)	1.5	61.062	1	0.000	9.1	7.364	1	0.007	3.7	46.296	1	0.000
	other	3.1	57.246	1	0.000	0.0	/	/	3.7	46.296	1	0.000	
Size of nursery	<1 ha	**58.5**	**	**	**18.2**	**	**	**	**66.7**	**	**		
	1–5 ha	33.8	25.138	2	0.000	**45.5**	**	**	**31.5**	**	**		
	5.1–10 ha	7.7	25.138	2	0.000	**36.4**	**	**	**34.111**	**	**		
	>10 ha	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Number of full-time employees	1–5	**89.2**	**	**	**63.6**	**	**	**94.4**	**	**			
	6–10	9.2	91.969	2	0.000	36.4	0.818	1	0.366	3.7	90.778	2	0.000
	>10	1.5	0.0	0.0	0.0	0.0	0.0	0.0					
Educational structure of employees	Elementary school	41.5	1.862	1	0.172	36.4	0.818	1	0.366	42.6	1.185	1	0.276
	High school	**75.4**	**	**	**81.8**	**	**	**74.1**	**	**			
	Higher school	7.7	46.538	1	0.000	9.1	7.364	1	0.007	7.4	39.185	1	0.000
	Faculty	16.9	28.446	1	0.000	27.3	2.273	1	0.132	14.8	26.741	1	0.000
Interest in a large scale production of ornamental beech cultivars	Yes	52.3	100	**	**	**	**	**	**	**	**	**	
	No	47.7	0.385	1	0.535	0	/	/	55.6	0.667	1	0.414	

* if <0.05, there is statistically significant difference between the observed groups of nurseries

** violated the assumption of minimum expected frequency in all cells (100% cells has expected frequency less than 5)

Source: original
Quantitative analysis of nurseries' attitudes

Based on the results of the processing of data collected by survey, it was noted that the production of ornamental beech cultivars is represented in only 16.9% of the total number of analyzed nurseries. The majority (96.9%) of assortments in all nurseries are seedlings of ornamental trees and shrubs (Table 3).

There are differences in the size of nurseries that produce and those which do not produce ornamental beech cultivars. Production of these cultivars is implemented mainly in larger nurseries, of which 36.4% cover an area of 5.1-10 ha, and a little less than one half (45.5%) cover an area of 1-5 ha. On the other hand, more than a half (58.5%) of all analyzed nurseries (Table 3), occupy an area of less than 1 ha.

Most nurseries employ 1-5 workers. In terms of educational structure, about ¾ of employees (75.4%) have secondary education. The share of this staff in the nurseries that produce ornamental beech cultivars is even higher and amounts to 81.8%.

Slightly more than a half of the respondents (52.3%) showed interest in large scale production, compared to the current production of ornamental beech cultivars.

Representatives of all the nurseries that produce beech cultivars show interest in its large scale production in future. On the other hand, less than half (44.4%) of representatives of nurseries, which do not have ornamental beech cultivars in their assortment, pointed out their interest in large scale production of these plants in future.

Table 3 shows the results of an \(\chi^2 \) test goodness-of-fit employed for the total number of nurseries (\(\chi^2=0.385, \text{df}=1, p=0.535 \)), as well as for the nurseries that do not produce ornamental beech cultivars (\(\chi^2=0.667, \text{df}=1, p=0.414 \)). Those results indicate that there is a statistically significant difference between the observed groups of answers in all cases, except in the case of interest in large scale production of ornamental beech cultivars in the future. On the other hand, the results of the same test, applied for nurseries which produce ornamental beech cultivars, indicate that statistical significance between the answer groups exists only in the relation to product assortment and the educational structure of employees.

Based on the results related to production of ornamental beech cultivars (Table 4), it can be observed that the weeping beech (\(Fagus sylvatica \) ‘Pendula’) is present in most nurseries (90.9%) engaged in such production. Copper beech (\(Fagus sylvatica \) ‘Purpurea’) is present in 72.7% of nurseries, while weeping purple beech (\(Fagus sylvatica \) ‘Purpurea Pendula’) was recorded in 54.5% of the nurseries. Other cultivars are present in less than half the nurseries, where fastigate beech (\(Fagus sylvatica \) ‘Dawyck’) 9 production is also present.

Three types of rootstock10 are used for grafting of beech in analysed nurseries:
1. rootstocks produced in a nursery from a seed of known origin;
2. rootstocks produced in a nursery from a seed of unknown origin;
3. rootstocks from a forest (natural offspring of beech).

Based on the results shown in Table 4, it can be noted that 2-3-years-old rootstocks are mostly used (90.9%) for the grafting of beech, while the rootstocks older than 5 years are used in less than 10% of nurseries. Producers mostly (72.7%) collect scions from their own stoolbeds or procure them in gardens, parks, etc.

Most respondents (81.8%) stated that the interest of customers in ornamental beech cultivars is very small and that profitability of their production is low (72.7%). The main obstacle for large scale production of beech cultivars is the lack of customer’s interest (81.8%). Other statistically significant obstacles (Table 4) are high costs of production (18.2%) and small grafting success (18.2%).

The results of the \(\chi^2 \) goodness-of-fit test (Table 4) indicate that there is a statistically significant difference between the groups of answers to the questions regarding: the assortment (Fagus sylvatica ‘Zlatia’, Fagus sylvatica ‘Pendula’), the age of rootstocks (1, 2-3, and more than 5 years), the source for the collection of scions (lined out seed-

9 This cultivar was not included on the survey list, but it was listed by the respondents, under the option “Other”.

10 Production of cultivars in all nurseries is done by grafting using a beech as the rootstock.
Table 4. Data on the production of ornamental beech cultivars

Data on production %	Frequency	χ^2 test goodness-of-fit		
	χ^2	df	p^*	
Ornamental beech cultivars that are produced in the nursery				
Fagus sylvatica ‘Purpurea’	72.7	2.273	1	0.132
Fagus sylvatica ‘Tricolor’	27.3	2.273	1	0.132
Fagus sylvatica ‘Purpurea Tricolor’	27.3	2.273	1	0.132
Fagus sylvatica ‘Zlatia’	18.2	4.455	1	0.035
Fagus sylvatica ‘Dawyck Gold’	27.3	2.273	1	0.132
Fagus sylvatica ‘Dawyck Purple’	45.5	0.091	1	0.763
Fagus sylvatica ‘Pendula’	90.9	7.364	1	0.007
Fagus sylvatica ‘Purpurea Pendula’	54.5	0.091	1	0.763
Fagus sylvatica ‘Purple Fountain’	36.4	0.818	1	0.366
Other	36.4	0.818	1	0.366
Type of rootstock used for grafting				
Bare root rootstocks	36.4			
Rootstocks in containers	45.5		**	
Both	18.2			
Origin of rootstocks				
Produced in a nursery, from seeds of known origin	27.3	2.273	1	0.132
Produced in a nursery, from seeds of unknown origin	36.4	0.818	1	0.366
From forest	54.5	0.091	1	0.763
Age of rootstocks				
1 year	18.2	4.455	1	0.035
2–3 years	90.9	7.364	1	0.007
4–5 years	54.5	0.091	1	0.763
More than 5 years	9.1	7.364	1	0.007
Source for collection of scions				
Stoolbed in nursery	72.7	2.273	1	0.132
Lined out seedlings	9.1	7.364	1	0.007
Supply from side, parks, gardens	36.4	0.818	1	0.366
Interest of customers in beech cultivars				
Big	9.1		**	
I do not know	9.1			
Small	81.8			
Profitability of ornamental beech cultivars production				
Very much	9.1			
Much	9.1		**	
I do not know	9.1			
Little	72.7			
Not at all	0.0			
Obstacles for large scale production of ornamental beech cultivars				
Small success of grafting	18.2	4.455	1	0.035
Sensitivity of plants after grafting	27.3	2.273	1	0.132
High production costs	18.2	4.455	1	0.035
Little interest in buying beech cultivars by customers	81.8	4.455	1	0.035
No obstacles	0.0			

* if <0.05, there is statistically significant difference between the observed groups of nurseries
** violated the assumption of minimum expected frequency in all cells (100% cells has expected frequency less than 5)

Source: original
lings), and the obstacles for large scale production of ornamental beech cultivars (small grafting success, high production costs, low interest in buying beech cultivars). This means that, when interpreting only these answers, one can talk about majority of them with statistical significance.

Qualitative analysis of nurserymen’s attitudes

Based on the analysis of data collected through interviews with representatives of the nurseries which produce ornamental beech cultivars, it can be concluded that the share of these cultivars is very low (about 5%) in the total assortment of those nurseries. They are the most common in the assortment of nursery R-1 (about 10%), and the least common in nurseries R-9 and R-10 (only 1% of the total assortment).

The most common beech cultivar is *Fagus sylvatica* ‘Pendula’, which is produced in 9 nurseries, while the cultivar *Fagus sylvatica* ‘Purpurea Pendula’ is produced in 8 nurseries. The production of the cultivar *Fagus sylvatica* ‘Purpurea Tricolor’ is low in the analyzed nurseries, so “...only 2-3 pieces” were recorded in one nursery (R-3). In addition to the above, the analyzed nurseries produce columnar cultivars: *Fagus sylvatica* ‘Dawyck Gold’ and *Fagus sylvatica* ‘Dawyck Purple’, which are found in 3 nurseries, while the *Fagus sylvatica* ‘Dawyck’ is present in the assortment of 5 nurseries. Cultivar *Fagus sylvatica* ‘Purple Fountain’ is produced in 3 nurseries, while the production of cultivar *Fagus sylvatica* ‘Golden’ has been recorded in only one nursery (R-3), whose representative said that the production is not for sale, but “...exclusively for their own purposes”.

Beech cultivars are produced by grafting in all nurseries. Grafting is done by using a detached twig (“copulation”) and by using a bud (“budding”), whereby various methods (Tucović, Stilinović, 1969; Grbić, 2004; Isajev, Šijačić-Nikolić, 2011) are applied. The choice of grafting method depends on the thickness of the grafting components, their physiological activity, weather and graper’s skill (Isajev, Šijačić-Nikolić, 2011).

The commonly used method of copulation is the whip and tongue grafting method (in 6 analyzed nurseries), which proved to be adequate. The splice grafting method is successfully used in 2 nurseries, while cleft grafting was applied in only one nursery (R-10), whose representative pointed out that it “…it showed excellent reception”.

Budding is rarely practiced (in 3 nurseries), but with pretty good success. It was usually performed in early spring (March), and depending on the used methods, there was also a certain difference in the time of grafting.

In most nurseries (7 of 10 nurseries), grafting was performed by the owners, while the representatives of 3 nurseries declared to hire a professional graper.

Representatives of all nurseries confirmed that they use beech (*Fagus sylvatica* L.) as a root stock for grafting. All respondents stated that they use rootstocks from the forest (natural offspring), while 5 representatives said they also use rootstocks produced in the nursery from seeds of unknown origin. For rootstocks from forest (natural offspring), the representative of nursery R-4 points out that he “…tried with these rootstocks, but there was poor progress (perhaps because of a root)”, so that he was “…buying the rootstocks in nursery of “Srbijašume” (in Požega), but they no longer have it”. He is planning to obtain them from Hungary, because “…they have excellent seedlings at a good price”. Representative of nursery R-10 stated that he acquired rootstocks from “…own forest, which is near the nursery, near the river, at an altitude of about 230 m”. He points out that this habit fits rootstocks because “…they come from the forest which is not at a higher altitude”. Rootstocks used for grafting are mostly 2-3 years old. However, the same type of rootstocks is not suitable for all beech cultivars. There are differences (mainly in the age of rootstocks), in relation to the cultivar that is produced. The representative of nursery R-1 explained that, for example, “…for the weeping beech (*Fagus sylvatica* ‘Pendula’), which is being grafted higher onto rootstocks, we take rootstocks...
from the natural offspring at least 3-4 years old, which must be planted in the nursery for at least 2 years prior to grafting”. In the nursery R-3, it was stated that there is a difference in age for certain types of cultivars, so “...for the cultivars ‘Purpurea’ and ‘Tricolor’ rootstocks are 2 years old, and for other cultivars 3-4 years old”.

In the majority of nurseries (7 out of 10), grafting was applied on rootstocks which have been produced directly in the field. The advantage is that the rootstocks of this type generally have a well-developed root system and are adapted to environmental conditions. In the other 3 nurseries, rootstocks in containers or bare root rootstocks are grafted. Their use can speed up and facilitate the grafting process itself due to easier manipulation with rootstocks during the grafting. In addition, the use of rootstocks in containers can contribute to saving space in a nursery (due to the lack of open space for planting seedlings at appropriate distances).

Mother trees planted in the nursery, self-produced or purchased in other countries, are used as a source for collecting the scions in almost all nurseries (9 out of 10 nurseries). The existence of high-quality stoolbeds in nurseries is very important, not only in terms of providing adequate scions for grafting, but also due to the reduction of storage time of scionwoods (scionwoods can be collected immediately prior to grafting, which prevents them from drying). The representative of nursery R-2 stated that “...in the past, I was bringing the scions from Slovenia, Austria and the Netherlands”, and now, “...I use plants from my own nursery”. In 4 nurseries, the scions are collected immediately before grafting, while in other nurseries they keep them in different ways (they usually tie them in bundles and store them in refrigerators).

Regarding the grafts planting, 2 respondents stated that they graft bare root rootstocks and then plant the grafts in a nursery bed, while in 2 nurseries they plant them in containers. The representative of nursery R-3 stated that grafts remain in containers for 1-2 years and after this period they take them to a nursery plot intended for planting. In the nursery R-1 it was pointed out that the best results were achieved “...when the rootstocks are planted in containers (one year before grafting) and are grafted there”, which is “...better than using the rootstocks growing in nursery beds, because of the lower grafts success rate (not even 10-15%)”. The same respondent pointed out that rootstocks in nursery beds “...must be planted at least a year ahead”. This was confirmed by the representative of nursery R-2, who noted that “...it is the best to graft the rootstocks that are already in the nursery beds”.

Respondents have different opinions on the grafting success. Average success in 10 nurseries, at the level of all mentioned cultivars is around 70%. In addition, it was pointed out that success depends both on the cultivar, grafting methods and weather conditions during the year in which the grafts are produced.

The representative of nursery R-3 stated that “...the grafting of cultivar ‘Tricolor’ is a little more difficult, and grafting of cultivar ‘Purpurea’ is good”, while the grafting success of “...weeping and fastigiate beech (‘Pendula’ and ‘Dawyck’) is about 90%, and for purple weeping beech and purple fastigiate beech (‘Purpurea Pendula’ and ‘Dawyck Purple’) about 60%”. In contrast to this attitude, the representative of nursery R-2 noted that “...it all depends on the characteristics of the year, first of all, on the humidity”. He points out that “...the best success shows the cultivar ‘Tricolor’, around 70%”. Similarly, in the nursery R-4, it was said that “...the ‘Tricolor’ is best produced (the grafting success >50%), and other cultivars have lower success (<40%)”. In nursery R-1 it was also explained that “...the percentage varies greatly from year to year (whether the scions were much exposed to sunlight, etc.)”, and that “...if the year is good, the reception can be up to 90%, and that in the next year, it can be less than 40%”, although the grafters, conditions and the way of grafting remained the same. The representative of nursery R-6 pointed out that the success until 2013 “...was more than 60-70%”, but, in that year, “...the reception was not even 20%”. In nursery R-8 it was stated that the success was high (80-90%), but also that the grafts were “...once ruined by a very high temperature”. In addition, success depends on the grafting method. The representative of nursery R-7 pointed out that, in their nursery, “...the success of budding is about 50%, and of whip and tongue grafting method sometimes only 10%”.

Marina Nonić, Jelena Nedeljković, Dragan Nonić, Mirjana Šijačić-Nikolić

160
Most of the respondents (6 nurseries) agreed with the view that, in terms of survival at the end of the first year and later, about 10% of grafts died. The same number of respondents said they encountered some problems during grafting, such as poor quality rootstocks, frost, high temperatures or pests, while in 4 nurseries they pointed out that there were no problems in the production of ornamental beech cultivars.

In all nurseries dropwise irrigation system, which is set in relation to weather conditions or adequate sprinklers. Different types of organic and chemical fertilizers are used for fertilization. Neither additional shade in summer nor extra protection in winter was provided for the plants.

Representatives of all nurseries believe that the interest of customers in ornamental beech cultivars is low. As the reasons, they stated unawareness of customers and their unfamiliarity with these cultivars, which all results in low demand in the market. The representative of nursery R-1 stated that “...the most customers are not familiar with beech cultivars until they see them in the nursery”, and that “...there are not many of these seedlings, so even the landscape architects do not take them into account in the design”. In nursery R-2 it was noted that the lack of interest is probably the result of “…the price because the seedlings are expensive” and that, perhaps, they could be sold, “...through utility companies”. i.e. “…to have beech cultivars more planted on public green areas”. The respondent from nursery R-5 stated that “…there is, mainly, demand for Copper beech”, and the customers are usually “...the landscape architecture engineers, who design parks and gardens”, which was confirmed by the respondent from nursery R-4, who noted that cultivars are required “…only by those who want to privately plant 1-2 trees or by professionals”. The representative of nursery R-10 mentioned that “…the customers sometimes show an interest in cultivars ‘Purpurea’ and ‘Tricolor”, as well as that he would produce significantly more beech cultivars “…if the customers showed greater interest”.

The respondents had different opinions in relation to the profitability of production of ornamental beech cultivars. On the one hand, they believe that the production itself is profitable, but that “…selling does not exist in our market” (representative of nursery R-2), as well as “…there are no well-known customers” (representative of nursery R-9), i.e. that they are “…hoping for a growing demand” (representative of nursery R-4). The representative of nursery R-10 stated that the production is profitable, perhaps, “…only for export and beech cultivars should be kept in assortment”, although “…it cannot be estimated how many, because there are no known customers”. The representative of nursery R-8 believes that “…it is profitable to grow larger plants, which are lined out (for example, up to 3 m in height, which are 6-8 years old)”. In nursery R-3 it was stated that “…it would be profitable to have large scale production of beech cultivars, only if there was a secured customer”.

All respondents have shown interest in large scale production of ornamental beech cultivars, and some of them gave their plans for the production of these plants in future. Thus, for instance, in the nursery R-1 it was stated that they hope for a higher demand and that they have a plan “…to start with the large scale production”. According to the majority of respondents (7 nurseries), the main obstacle for the large scale production of ornamental beech cultivars is the problem of selling, i.e. the absence of market as well as weak demand. In nursery R-3, it was pointed out that the production “…requires adequate conditions (sprinkling, perhaps and shade, so the seedlings will have better growth and quality and be higher)”. In addition, the representative of nursery R-6 stated that the main obstacles are: “…low grafting success, great sensitivity of the plants after grafting, high production costs, low interest in buying seedlings”, while in nursery R-5 “…the lack of quality rootstocks” is considered an obstacle.

In terms of recommendations for improving the production of ornamental beech cultivars by grafting, the representative of nursery R-3 stated that it is necessary “…to introduce subsidies for production in order to motivate the producers who are interested to produce these cultivars”. In addition, it was pointed out that ornamental beech cultivars should be more promoted among nursery professionals i.e. that “…the landscape architecture engineers should more often use ornamental beech cultivars in designing” (the representative of nursery R-3).
All this indicates that an individual approach in nursery production and the independent performance of producers in the market are mainly represented, which imposes the need for organized production, development of market potentials and an increase in joint participation in the market.

SWOT analysis of beech cultivars production in Serbia

The results of SWOT analysis of beech cultivars production in Serbia were determined on the basis of qualitative analysis of nurserymen’s attitudes (Table 5).

The positive internal factors (strengths) include, above all characteristics relating to the technology of production of ornamental beech cultivars by grafting:
- production of different beech cultivars (10 different cultivars);
- high grafting success (an average of 70% for all cultivars);
- use of scions from own stoolbeds (9 of 10 respondents as a source for collection of scions use mother trees in their own nursery).

On the other hand, negative internal factors (weaknesses) include:
- representation of ornamental beech cultivars in the total assortment of nursery (very small representation, only about 5% in total assortments in analysed nurseries);
- use of scions from unchecked stoolbeds (which does not ensure genetic uniformity of seedlings). Representatives of nurseries (9 of 10 nurseries), as a response to the question about the source of collecting scions, have indicated that they grow mother trees, mostly delivered from foreign nurseries (from Italy, Hungary, the Netherlands, etc.), and that they do not know their true origin and whether they are produced by generative or vegetative propagation (which significantly affects the genetic uniformity of seedlings).

Positive external factors (opportunities) are:
- positive attitudes of nurserymen towards the large scale production of ornamental beech cultivars (all 10 representatives of nurseries answered positively to the question about the interest in production of ornamental beech cultivars on a larger scale in the future);
- an increase of the sale volume, by providing a more stable market and production for a known customer (if, for example, utility companies buy more of the seedlings for management of various green spaces);
- development of financial support measures (for example, the allocation of subsidies for production of ornamental beech cultivars, in order to increase the representation of beech

Strengths	**Weaknesses**
1. The production of different beech cultivars in the analyzed nurseries	1. The small representation of ornamental beech cultivars in the total assortment of nursery
2. The high success of grafting	2. The stoolbeds are unchecked, which does not ensure the authenticity, or genetic uniformity
3. The existence of own stoolbeds in nurseries	

Opportunities	**Threats**
1. Interest of nurserymen in a large scale production of ornamental beech cultivars	1. Inability to purchase lined out beech rootstocks in nurseries in the country
2. The increase of sales volume by providing a more stable market for ornamental beech cultivars and production for a known customer	2. Dependence of production success on climatic conditions
3. Development of financial support measures for the production of ornamental beech cultivars	3. The lack of information and low interest of customers in ornamental beech cultivars
	4. Unprofitable production of ornamental beech cultivars, due to lack of markets and weak demand

Source: original
as ornamental species in public green areas in Serbia).

Negative external factors (threats) include:

- characteristics of sales, which include:
 - lack of information within customers and their low interest (all 10 respondents stated that customers are not interested in ornamental cultivars beech and that they are not sufficiently informed about the large number of these cultivars and their characteristics);
 - lack of markets and weak demand (respondents pointed to the problem of underdevelopment of the domestic market as well as the lack of secure customer);
- characteristics of the production of ornamental beech cultivars by grafting, which include:
 - lack of high-quality rootstocks produced in nurseries in the country (5 of 10 respondents stated that they bought a 1-year old rootstocks in nurseries in Serbia, and were lining out them in their own nursery, while 2 respondents imported lined out rootstocks from Hungary, while all respondents indicated they also use rootstocks from the natural offspring);
 - issue of production profitability (72,7% of respondents believe that the profitability of production is low);
 - dependence of production success on environmental conditions (frost, high temperatures, etc.).

In addition to the grafting success in nurseries and the possibility of using scions from their own stoolbeds, with prior verification of their authenticity, positive attitudes of nurserymen towards the technology of ornamental beech cultivars production and their interest to increase the scale of production are also important. Greater application of beech cultivars in public green spaces would influence the growing need for their production. Thus, the production would be more profitable and the market more stable.

Planned production of beech rootstocks in nurseries in Serbia (from seed of known origin) can solve the problem of the lack of high-quality rootstocks, which represent an important component of production by grafting. This would be a better option than the purchase of beech seedlings from Hungary and other countries, which is now performed by nurserymen.

DISCUSSION

Based on the analysis of nurserymen’s attitudes, certain similarities between the procedures implemented in practice, during the production of beech by grafting, with results that were obtained in studies with similar issues were observed (Jovanović, 1966, 1971; Cerar, 2010; Nonić M. et al., 2012/c, 2014/b, 2015; Nonić M., 2016).

As an example, it can be stated that, according to the analyzed nurserymen’s attitudes, beech rootstocks planted in the nursery beds for at least two years prior to grafting, gave better results compared to rootstocks that were grafted with bare root system. Similar was noted in the results of the previous research (Nonić M., 2016).

Nurserymen stated they apply splice grafting method, which was used in the research of Nonić M. (2016), and Nonić M. et al. (2012/c, 2014/b, 2015). Jovanović in his research (Jovanović, 1966, 1971) used four separate methods of grafting with a detached twig.

All three side grafting methods have shown more than 50% of success, and a method of wedge grafting about 26%. Jovanović (1971) concluded that the best success was recorded by using the rootstocks which were not cut at their top. The nurserymen recommended budding in August, which was applied in the studies of the same author, where it also showed satisfactory results (about 33% of grafts).

Grafting four different cultivars of European beech: *Fagus sylvatica* ‘Pendula’, *Fagus sylvatica* ‘Atropunicea’, *Fagus sylvatica* ‘Zlatia’ and *Fagus sylvatica* ‘Tricolor’, was done in Slovenia, in order to determine the impact of different cultivars (source of scions) on the grafting success (Cerar, 2010). The author analysed the influence of the thickness of the rootstock, as well as the length and width of the scion on the grafting success. She concluded that there was no significant effect of these parameters on grafting success. The success of grafting is dependent on the cultivar, from which the scion were collected, as stated by respondents in this study. Cerar (2010) on the basis of her research, states that the greatest grafting success was when the scions from cultivar *Fagus sylvatica* ‘Pendula’ (80%) and *Fagus sylvatica* ‘Zlatia’ (78%) were used. The grafting success of cul-
tivar *Fagus sylvatica* ‘Atropunicеa’ was 50\%, and the lowest success was noted for grafting with the scions of cultivar *Fagus sylvatica* ‘Tricolor’ (only 2\%). Average grafting success at the level of all four cultivars was 52.5\%.

In addition, the respondents noted that weather conditions during the year are very important for the grafting success of all cultivars, which was confirmed by a research of Nonić M. (2016). One nurseryman noted that in 2013 there was a very bad grafts success rate, less than 10\%, due to an unfavorable year, which is consistent with a weak success rate of seedlings produced by grafting in a field experiment formed the same year, in the research of Nonić M. (2016). Dependence on weather conditions is a problem that companies in the forestry sector (Ranković et al., 2012; Stojanovska et al., 2012; Nonić D., 2015; Nedeljković, 2015) frequently experience. This is a very important feature of their business, especially if one bears in mind that the success of the enterprise often “...depends on the environment and access to important resources” (Boter, Lundström, 2005).

Although it can be concluded, based on the attitudes of nurserymen, that the ornamental beech cultivars are produced by vegetative propagation (grafting) in all the nurseries, there are studies that indicate the possibility of generative propagation of certain beech cultivars.

For example, Heinze, Geburek (1995) presented the results of an analysis of DNA markers, in conjunction with the gene responsible for the control of leaf color of Copper beech (*Fagus sylvatica* ‘Purpurea’), whereby they applied generative propagation of this cultivar. Of the total number of young seedlings, 500 young seedlings were with red leaves, and 509 with green leaves. Among the young seedlings that had red leaves, variability in the intensity of the red color was found, which ranged in rank from extremely dark red to greenish with purple veins in shaded leaves.

In addition, Tošić (2005; 2006/a; 2006/b), who wrote in detail about the beech cultivar with yellow leaves, *Fagus sylvatica* ‘Luteofolia’ (Tošić, 2006/b) and a new variety of beech *Fagus moesiaca* (K. Mały) Czecz., with golden-yellow leaves (Tošić, 2005), stated that with generative propagation of yellow-leaf beech near Kotor Varoš, a large percentage of the offspring inherits yellow leaves (Tošić, 2006/a).

As a barrier for large scale production of ornamental beech cultivars, respondents stated the lack of knowledge and lack of interest of customers, as well as the lack of a well-known market, which indicates a clear need for greater promotion of these cultivars. Similar results are reached by examining the attitudes of nurserymen involved in the production and sales of paulownia (Mačar, 2015). Respondents indicated that the main obstacles to more extensive nursery production of paulownia are “...large investments, the lack of information about the paulownia as a species, the lack of professional research to improve the production of paulownia seedlings, and low market demand” (Mačar, 2015).

Research conducted with manufacturers and retailers of flowers and other ornamental plants indicates that “...many of them in their work (production and sales) face different problems, particularly selling and positioning in domestic and international markets” (Marinković et al., 2011). The problem of underdevelopment of the market is present within other companies in the forestry sector, such as, for example, small and medium enterprises based on non-wood forest products (Nonić D. et al., 2014). The establishment of an association (Nedeljković et al., 2014; Nedeljković, 2015) or cluster (Marinković et al., 2011; Nonić D. et al., 2012; Nedeljković et al., 2014), which would enable development and improvement of entrepreneurial business, was proposed as one of the possible solutions to the problem of selling and underdevelopment of the market.

The Society of Landscape Horticulture of Serbia13 was founded in 2004 by various owners of

13 The association has over 150 members and is engaged in “...the protection of the quality of production and landscape horticulture activities; working on connecting professionals and producers; improving the professional and ethical standards; development of standards in the production of ornamental plants seedlings; cooperates with other organizations and associations of landscape horticulture and related activities in the country and abroad, who pursue at the same objectives and principles; organizes seminars, professional and scientific meetings, exhibitions and competitions of local and international character; organize publishing activities in the field of activities of the association” (Glavendekić, 2013).
nurseries and experts in the field of landscape horticulture. In addition to this Society in Serbia founded the first Cluster of producers and retailers of ornamental plants “Plants United” in 2009. However, despite the presence of a large number of ornamental trees and shrubs nurseries and their interconnection, based on the analysis of nurserymen’s attitudes, it can be concluded that the utilization of production capacity and market development remains insufficient.

In previous studies (Mačar, 2015), it was found that for the improvement of paulownia production “…critical is the expertise and knowledge of nursery production, as well as favorable loans for this activity”. That was confirmed by this research, where respondents also emphasized the need to provide financial support measures for ornamental beech cultivars production.

CONCLUSIONS

Based on the analysis of nurserymen’s attitudes towards the production of ornamental beech cultivars in Serbia, the following conclusions can be drawn:

- production of ornamental beech cultivars is realized mainly in larger nurseries (45.5%, in the area of 1-5 ha);
- in most nurseries (90.9%) which produce beech cultivars weeping beech cultivar (Fagus sylvatica ‘Pendula’) is present;
- rootstock for grafting in all nurseries is beech, and scions produced in nurseries from the seed of known and unknown origin, and from a forest are used for grafting;
- respondents most commonly (72.7%) collect scions from their own stoolbeds or they purchase them in gardens, parks, etc.;
- in all nurseries, beech cultivars are produced by grafting and different methods are applied: splice grafting method, whip and tongue grafting method, cleft grafting method, budding);
- average grafting success, at the level of all cultivars, is around 70%, where the respondents pointed out that it depends on the cultivar, grafting methods and weather conditions during the year;
- the most common problems in grafting, according to the respondents’ views, are: low quality of rootstocks, frost, high temperatures or pests;
- the majority of respondents (81.8%) believes that the interest of customers for beech cultivars is very small, and that the profitability of production of these cultivars is low (72.7% of respondents);
- about ⅔ of all respondents (52.3%) showed an interest in the large scale production of ornamental beech cultivars, while the representatives of all nurseries, which are already engaged in the production of these plants, show an interest in large scale production in the future;
- the basic obstacles to large scale production of ornamental beech cultivars are: the lack of interest of customers and the problem of selling (lack of markets and low demand).

Based on the results of the SWOT analysis, it can be concluded that, for the realization of a large scale production of ornamental beech cultivars in Serbia, it is necessary to improve the awareness of potential customers of beech cultivars and public promotion of these plants at fairs and sales exhibitions.

Based on quantitative and qualitative analysis of nurserymen’s attitudes towards the possibility of improving the production of ornamental beech cultivars in Serbia, it can be concluded that there are realistic conditions for that.

The representatives of nurseries believe that the significant increase in production of ornamental beech cultivars could happen, if there would be a greater interest in the market (through a more stable market and greater application of cultivars by city utility companies), as well as the development of appropriate support measures (through the provision of subsidies for the production of these seedlings).

Recommendations for improving the production and selling of ornamental beech cultivars, given by respondents can be grouped by:

1. recommendations regarding production technology:
 - application of whip and tongue grafting method or budding;
 - production at a higher altitude;
• regular watering and fertilization of plants;
• use of good seed material for the production of rootstock;
• use of healthy scions (if one has good mother plants);

2. recommendations regarding the improvement of selling:
• providing more stable market for the longer period of time;
• allocation of subsidies for the production;

Further research should examine the attitudes of selected nurserymen, as well as experts and decision makers in forestry and horticulture, towards the possibilities of further development and implementation of measures, establishment of a center for the procurement of quality scions of selected individual ornamental cultivars of tree species, as well as possible involvement of competent institutions that would monitor the production, give expert advice and guarantee for the quality of seedlings, which would allow for the improvement of their sales.

Acknowledgment: The research was financed by the project: „Establishment of forest plantations to increase the afforested areas in Serbia“ (TP 31041), Ministry of education and science of the Republic of Serbia.

ЛИТЕРАТУРА / REFERENCES

Boter H., Lundström A. (2005): SME perspectives on business support services: The role of company size, industry and location, Journal of Small Business and Enterprise Development 12 (2), Emerald Group Publishing Limited, Cambridge (244-258)

Cerar T. (2010): Cepljenje različnih sort navadne bukve (Fagus sylvatica L.), Dipl. delo, Univerza v Mariboru, Fakulteta za kmetijstvo in biosistemské vede, Maribor (51)

Čaňová I., Ďurkovič J., Hladká D. (2008): Stomatal and chlorophyll fluorescence characteristics in European beech cultivars during leaf development, Biologia Plantarum 52(3) (577-581)

Dönig G. (1994): Die Park- und Gartenformen der Rotbuche – Fagus sylvatica L. Rinteln, Gartenbild Heinz Hansmann (286)

Đukić M., Grbić M., Škočajić D., Đunisijević D. (2006): Spontane promene kao osnova za dobijanje novih kultivara ukrasnih sadnica, Glasnik Šumarskog fakulteta 93, Univerzitet u Beogradu - Šumarski fakultet, Beograd (71-81)

Glavendekić M. (2013): Proizvodnja i promet ukrasnih biljaka u Srbiji, Biljni lekar, 41 (6), Društvo za zaštitu bilja Srbije, Univerzitet u Novom Sadu - Poljoprivredni fakultet, Novi Sad (605-610)

Grbić M. (1988): Razmnožavanje bukve (Fagus moesiaca (Maly) Czeczott.) i kitnjaka (Quercus sessilis Ehrh.) in vitro kao osnove za intenziviranje naučnoistraživačkog rada i proizvodnje sadnica željenih osobina. U: Propadanje šumskih ekosistema - uzroci, posledice i mere (II sveska), Igman (104-108)

Grbić M. (2004): Proizvodnja sadnog materijala - Vegetativno razmnožavanje ukrasnog drveća i žbunja, Ne&Bo, Beograd (482)

Grbić M. (2010): Proizvodnja sadnog materijala - Tehnologija proizvodnje ukrasnih sadnica, Univerzitet u Beogradu - Šumarski fakultet, Beograd (427)

Hatch L. (2007): Cultivars of Woody Plants, Volume I: A-G. TCR Press, Raleigh.. Digital PDF e Book (906-927)

Heinze B., Geburek T. (1995): Searching for DNA Markers Linked to Leaf Colour in Copper Beech, Fagus sylvatica L. var. Atropunicea, Silvae Genetica 44(5-6), J.D. Sauerländer's Verlag, Bad Orb (339-343)

Hrkić Ilić Z., Oljača R., Šumatić N., Kapović M., Bodružić M. (2012): Concentration of pigments in the leaves of yellow beech (Fagus moesiaca (K. Male) Czecz. var. aurea serbica Tošić) in the vicinity of Kotor Varoš in Republic of Srpska, In: Proceedings of International Scientific Conference - Forestry science and practice for the purpose of sustainable development of forestry, 1-4 November 2012, Banja Luka (299-307) (2011): IBM SPSS Statistics 20 Core System User's Guide, SPSS Inc., Chicago.

Isajev V. (2005): Varijabilitet i oplemenjivanje bukve u Srbiji, Monografija „Bukva (Fagus moesiaca /Domín, Mally/ Czeczott.) u Srbiji”, ured. Stojanović Lj., Udruženje šumarskih inženjera i tehničara Srbije, Beograd i Šumarski fakultet Univerziteta u Beogradu, Beograd (139-176)
Isajev V., Šijačić-Nikolić M. (2011): Praktikum iz genetike sa oplemenjivanjem biljaka, Šumarski fakultet, Univerziteta u Beogradu, Beograd (241)

Ješić K. (2015): Proizvodnja ukrasnog sadnog materijala i štetni insekti u rasadnicima Vojvodine, Master rad u rukopisu. Univerzitet u Novom Sadu - Poljoprivredni fakultet, Novi Sad (75)

Jovanović M. (1966): Oplemenjivanje bukve (Fagus moesiaca (Domin, Maly) Czeczott.) Doktorska disertacija u rukopisu, Univerzitet u Beogradu - Šumarski fakultet, Beograd (76)

Jovanović M. (1971): Oplemenjivanje bukve (Fagus moesiaca (Domin, Maly) Czeczott.) u SR. Srbiji, Doktorska disertacija u rukopisu, Univerzitet u Beogradu - Šumarski fakultet, Beograd (316)

Mačar V. (2015): Proizvodnja i plasman paulovnije u Srbiji-stanje i mogućnosti, Diplomski rad u rukopisu, Univerzitet u Beogradu - Šumarski fakultet, Beograd (43)

Malhotra N. (2007): Marketing research – an applied orientation, Pearson Prentice Hall, Upper Saddle River (811)

Marinković M., Jovanović M., Grašić T. (2011): Possibilities of appliance and development of clusters in forestry and horticulture in Serbia, In: Ristić R., Medarević M., Popović Z. (Eds.) CD ROM Proceedings from „First Serbian Forestry Congress: Future with Forests”, University of Beograd-Faculty of Forestry, Belgrade (368-377)

Mihailović D. (2012): Metodologija naučnih istraživanja, Fakultet organizacionih nauka, Beograd (288)

Nedeljković J., Nonić D., Ranković N., Dragović N. (2014): Oblici saradnje i povezivanja preduzeća koja posluju sa nedrvnim šumskim proizvodima u centralnoj Srbiji, Glasnik Šumarskog fakulteta 110, Univerzitet u Beogradu - Šumarski fakultet, Beograd (121-144)

Nedeljković J. (2015): Mala i srednja preduzeća za otkup, preradu i plasman nedrvnih šumskih proizvoda, kao činilac razvoja šumarstva privatnog sektora u Srbiji, Doktorska disertacija u rukopisu, Univerzitet u Beogradu-Šumarski fakultet, Beograd (404)

Nonić D., Nedeljković J., Ranković N., Marinković M., Glavonjić P., Weiss G. (2012): Analysis of factors influencing cluster establishment in the Timok forest area in Serbia, Austrian Journal of Forest Science 129 (3), BOKU and BFW, Vienna (202-227)

Nonić D., Avdibegović M., Nedeljković J. (2014): Organization of non-wood forest products selling in small and medium enterprises in central Serbia, In: Marković A., Barjaktarović Rakоčević S. (Eds.): XIV International symposium SymOrg2014 proceedings: New Business Models and Sustainable Competitiveness, Faculty of organizational sciences, Belgrade (526-534)

Nonić D. (2015): Organizacija i poslovanje u šumarstvu - udžbenik, Elektronski izvor, Univerzitet u Beogradu, Šumarski fakultet, Beograd (398)

Nonić M., Jokanović D., Knežević R. (2012a): Comparative research of size and number of stoma of different beech cultivars, In: CD ROM Proceedings from International Scientific Conference „Forests in Future - Sustainable Use, Risks and Challenges“, Institute of Forestry, Belgrade, October 4-5, 2012, Belgrade (179-185)

Nonić M., Knežević R., Šijačić-Nikolić M. (2012b): Morfometrijske karakteristike listova različitih kultivara Evropske bukve (Fagus sylvatica L.) i mezijske bukve (Fagus moesiaca (Domin, Maly) Czeczott.), Šumarstvo 2012, No. 1-2, Beograd (107-119)

Nonić M., Šijačić-Nikolić M., Knežević R. (2012c): Analysis of survival and vitality of beech plants grafted by method of splice grafting, In: CD ROM Proceedings from International Scientific Conference „Forests in Future - Sustainable Use, Risks and Challenges“, Institute of Forestry, Belgrade (425-432)

Nonić M., Devetaković J., Ivetić V., Šijačić-Nikolić M. (2014a): Morphometric characteristics of buds of different European beech cultivars, Book of abstracts of the 2014 IUFRO Forest Tree Breeding Conference, August 25–29, 2014, Prague, Czech Republic (p. 73)

Nonić M., Grbić M., Šijačić-Nikolić M. (2014b): Analysis of grafting success in production of ornamental beech cultivars, Book of abstracts of V Congress of the Serbian Genetic Society, September 28th – October 2nd 2014, Kladovo – Belgrade, Serbia (p. 334)
Nonic M., Šijačić-Nikolić M., Grbić M., Vilotić D. (2015): *Nursery production of purple beech (Fagus sylvatica ‘Purpurea’) by grafting*, Book of abstracts of the 2nd International Conference on Plant Biology and 21th Symposium of the Serbian Plant Physiology Society, June 17-20, Petnica Science Center, Serbia (p. 27)

Nonic M. (2016): *Unapređenje masovne proizvodnje lisno-dekorativnih kultivara bukve kalemljenjem*. Doktorska disertacija u rukopisu, Univerzitet u Beogradu-Šumarski fakultet, Beograd (281)

Pallant J. (2011): *SPSS Priručnik za preživljavanje: Postupni vodič kroz analizu podataka pomoću SPSS-a*, prevod 4. izdanja, Mikro knjiga, Beograd (349)

Puschner M., Brus R. (2008): *Okrasne sorte bukve (Fagus sylvatica L.) v Sloveniji*, Gozdarski Vestnik 66(2), Zveza gozdarskih društev Slovenije, Ljubljana (121-129)

Ranković N., Nonić D., Nedeljković J., Marinković M., Glavonijč P. (2012): *Mala i srednja preduzeća u Timočkom šumskom području-sistem mera podrške i model organizovanja*, Monografija, Univerzitet Beogradu-Šumarski fakultet, Beograd (270)

Stilinović S., Grbić M. (1992): *Proizvodnja sadnica ukrasnih vrsta drveća i žbunja. Šumarstvo i prerada drveta u Srbiji kroz vekove*, Monografija „Šumarstvo i prerada drveta u Srbiji kroz vekove“, Savez inženjera i tehničara šumarstva i industrije za preradu drveta Srbije, Beograd (293-301)

Stojanovska M., Nedanovska V., Stojanovski V., Nedeljković J., Nonić D. (2012): The Basic Characteristics of NTFPs-based Enterprises’ Business in Macedonia and Serbia. CD ROM Proceedings from International Scientific Conference „Forests in Future - Sustainable Use, Risks and Challenges“, Institute of Forestry, Belgrade (757-765)

Tošić M. (2005): *Novi varijet bukve Fagus moesiaca (K. Mally) Czecz. sa zlatno-žutim lišćem*, U: Zbornik radova 8. Simpozijuma o flori jugoistočne Srbije i susednih regiona, Niš (135-141)

Tošić M. (2006/a): *Bukva sa žutim lišćem u Republici Srpskoj, značajna prirodna retkost*, Glasnik Šumarskog fakulteta Univerziteta u Banjoj Luci 5, Univerzitetu Banjoj Luci - Šumarski fakultet, Banja Luka (23-35)

Tošić M. (2006/b): *Novi dekorativni kultivar žutolisne bukve (Fagus silvatica L. ‘Luteofolia’)*, Zbornik abstrakata trećeg simpozijuma selekcije za oplemenjivanje organizama Društva genetičara Srbije, Zlatibor (s. 112)

Tucović A., Stilinović S. (1969): *Kalemljenje šumskog i ukrasnog drveća i žbunja*, Jugoslovenski poljoprivredno-šumarski centar-Služba šumske proizvodnje, Beograd (68)

Vilotić D., Tošić M., Radošević G. (2006): *Morpho-anatomic characters of the leaves of yellow-leaf and red-leaf beech cultivars*, In: Proceedings of the IUFRO Division 2 Joint Conference: Low Input Breeding and Conservation of Forest Genetic Resources: Antalya, IUFRO (36-40)

Wyman D. (1964): *Registration list of cultivar names of Fagus L.*, Arnoldia - a continuation of the Bulletin of popular information of the Arnold Arboretum 24(1), Harvard University, Cambridge (1-8)

(2004): *Zakon o reproduktivnom materijalu šumskog drveća*, Službeni glasnik 135/04, 8/05-ispravka i 41/09, Beograd

(2009): *Zakon o regionalnom razvoju*, Službeni glasnik RS, br. 51/2009 i 30/2010, Beograd