The complete chloroplast genome sequence of *Michelia macclurei* (Dandy, 1928) (Magnoliaceae), an important fire-resistant tree species

Shujing Wei, Sisheng Luo, Yingxia Zhong, Yufei Zhou and Zhao Song

Guangdong Academy of Forestry, Guangzhou, China

ABSTRACT

M. macclurei (Dandy, 1928) is an evergreen broad-leaved tree species native to South China. This species has great ecological and economic importance. However, the genomic study of *M. macclurei* has lagged far behind. Here, we reported the complete chloroplast genome sequence of *M. macclurei*. The chloroplast genome size of *M. macclurei* was 160,139 bp, consisting of a pair of inverted repeat (IR) regions (26,575 bp), which was separated by a large single copy (LSC) region (88,167 bp) and a small single copy (SSC) region (18,822 bp). A total of 113 unique genes were annotated, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The overall GC content was 39.2%. Phylogenetic analysis based on 16 whole chloroplast genome sequences of *Michelia* species suggested that *M. macclurei* and *M. maudiae* are sister to each other, and jointly sister to *M. chapensis*.

ARTICLE HISTORY

Received 21 October 2021
Accepted 20 March 2022

KEYWORDS

Michelia macclurei; chloroplast genome; Magnoliaceae; phylogeny
showed the chloroplast genomes within this genus are conserved in terms of genome size, genome structure, and gene content.

The phylogenetic relationship of *Michelia* was reconstructed using the maximum-likelihood (ML) method based on the multiple alignments of *M. macclurei* and other 15 previously reported chloroplast genomes of *Michelia*, with *Yulania denudata* (JN227740) as an outgroup. ML analysis was conducted based on two data sets: (1) the complete chloroplast genome sequences; and (2) a set of 79 common protein-coding genes, using RAxML-HPC v.8.2.8 (Stamatakis 2014) with 1000 bootstrap replicates on the CIPRES Science Gateway website (https://www.phylo.org/). The phylogenetic topologies based on these two data sets were completely consistent, with 100% bootstrap values at almost all nodes, and identically supported that *M. macclurei* and *M. maudiae* are sisters to each other, and jointly sister to *M. chapensis* (Figure 1).

Authors’ contributions

WSJ conceived the project. ZYF and SZ collected samples and performed research. LSS and ZYX analyzed data. WSJ wrote the manuscript. LSS, ZYX, ZYF and SZ revised the manuscript. All authors read and approved the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was supported by Guangdong Natural Science Foundation (2021A1515010946), the National Natural Science Foundation of China (31800312), Special Fund for Disaster Prevention and Emergency Management of Guangdong (2020-06), and Guangdong Forestry Science and Technology Innovation Project (2018KJCX003).

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under the accession no. OK046128. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA776621, SRS10788103, and SAMN22811516, respectively.

Figure 1. Phylogenetic tree inferred by maximum likelihood (ML) method based on complete chloroplast genomes of 16 *Michelia* species with *Yulania denudata* as an outgroup. Numbers near the nodes represent ML bootstrap values. The phylogenetic tree based on 79 protein-coding genes is completely consistent with this topology.
References

Deng Y, Luo Y, He Y, Qin X, Li C, Deng X. 2020. Complete chloroplast genome of *Michelia shiluensis* and a comparative analysis with four Magnoliaceae species. Forests. 11(3):267.

Fioretti F, Zuntini AR, Gaiarsa JW, Oliveira RS, Lohmann LG, Van Sluys MA. 2017. Complete chloroplast genome sequences contribute to plant species delimitation: a case study of the *Anemopaegma* species complex. Am J Bot. 104(10):1493–1509.

Hinsinger DD, Strijk JS. 2017. The chloroplast genome sequence of *Michelia alba* (Magnoliaceae), an ornamental tree species. Mitochondrial DNA B Resour. 2(1):9–10.

Jiang Q, Li Q, Chen Y, Zhong C, Zhang Y, Chen Z, Pinyoparsker K, Bush D. 2017. Arbuscular mycorrhizal fungi enhanced growth of *Magnolia maclurei* (Dandy) filiglare seedlings grown under glasshouse conditions. Forest Sci. 63(4):441–448.

Jin JJ, Yu WB, Yang JB, Song Y, DePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):1–31.

Li Y, Zhou M, Wang L, Wang J. 2021. The characteristics of the chloroplast genome of *Michelia chartacea* (Magnoliaceae). Mitochondrial DNA B Resour. 6(2):493–495.

Lu RS, Li P, Qiu YX. 2016. The complete chloroplast genomes of three *Cardiocrinum* (Liliaceae) species: comparative genomic and phylogenetic analyses. Front Plant Sci. 7:2054.

Niu D, Wang S, Ouyang Z. 2009. Comparisons of carbon storages in *Cunninghamia lanceolata* and *Michelia maclurei* plantations during a 22-year period in southern China. J Environ Sci. 21(6):801–805.

Sima Y, Li Y, Yuan X, Wang Y. 2020. The complete chloroplast genome sequence of *Michelia chapensis* Dandy: an endangered species in China. Mitochondrial DNA B. 5(2):1594–1595.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Wang J, Li Y, Wang Q, Fan W. 2019. Characterization of the complete chloroplast genome of *Michelia maudiae* (Magnoliaceae). Mitochondrial DNA B Resour. 4(2):2146–2147.

Wang Q, Wang S, Huang Y. 2008. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture *Cunninghamia lanceolata* and a mixed stand in southern China. Forest Ecol Manag. 255(3–4):1210–1218.

Xia ZC, Kong CH, Chen LC, Wang P, Wang SL. 2016. A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions. Ecology. 97(9):2283–2292.

Zhai M. 2020. The complete chloroplast genome sequence of *Michelia figo* based on landscape design, and a comparative analysis with other *Michelia* species. Mitochondrial DNA B Resour. 5(3):2723–2724.

Zheng BD. 2013. Analysis on the growth and fire retardant effects of *Michelia maclurei* in biological fire prevention forest belts at different altitudes. Anhui Forestry Sci Technol. 39:27–29.

Zhou D, Lu S, Hou Z, Yu J. 2020. The complete chloroplast genome sequence of *Michelia compressa*. Mitochondrial DNA Part B. 5(3):3274–3275.