On the first Robin eigenvalue of a class of anisotropic operators

Nunzia Gavitone∗, Leonardo Trani†

October 18, 2018

Abstract

The paper is devoted to the study of some properties of the first eigenvalue of the anisotropic p-Laplace operator with Robin boundary condition involving a function β which in general is not constant. In particular we obtain sharp lower bounds in terms of the measure of the domain and we prove a monotonicity property of the eigenvalue with respect the set inclusion.

Keywords: Eigenvalue problems, nonlinear elliptic equations, Faber-Krahn inequality, Wulff shape, Robin boundary condition

Mathematics Subject Classifications (2010): 35P15, 35P30, 35J60

1 Introduction

Let F be a norm in \mathbb{R}^n, that is a convex, even, 1-homogeneous and non negative function defined in \mathbb{R}^n. Moreover we will assume that $F \in C^2(\mathbb{R}^n \setminus \{0\})$, and strongly convex that is for $1 < p < +\infty$, it holds

$$[F^p]_\xi(\xi) \text{ is positive definite in } \mathbb{R}^n \setminus \{0\}.$$

For $1 < p < +\infty$ the so-called anisotropic p-Laplacian is defined as follows

$$Q_p u := \text{div} \left(\frac{1}{p} \nabla F^p(\nabla u) \right).$$

The assumptions on F ensure that the operator Q_p is elliptic. The paper concerns the study of the following Robin eigenvalue problem for Q_p

$$\begin{cases}
- Q_p v = \ell_1(\beta, \Omega)|v|^{p-2}v & \text{ in } \Omega \\
F^{p-1}(\nabla v)F_\xi(\nabla v) \cdot \nu + \beta(x)F(\nu)|v|^{p-2}v = 0 & \text{ on } \partial\Omega,
\end{cases}$$

(1.1)

where $\Omega \subset \mathbb{R}^n$ is a bounded open set with $C^{1,\alpha}$ boundary, $\alpha \in]0,1[$, ν is the Euclidean unit outer normal to $\partial\Omega$ and the function $\beta: \partial\Omega \to]0, +\infty[$ belongs to $L^1(\partial\Omega)$ and verifies

$$\int_{\partial\Omega} \beta(x)F(\nu) \, d\mathcal{H}^{n-1} = m > 0.$$

∗Università degli studi di Napoli Federico II, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Via Cintia, Monte S. Angelo - 80126 Napoli, Italia. Email: nunzia.gavitone@unina.it

†Università degli Studi di Napoli Federico II, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Via Cintia, Monte S. Angelo - 80126 Napoli, Italia. Email: leonardo.trani@unina.it
Here $\ell_1(\beta, \Omega)$ is the first Robin eigenvalue of Q_p and it has the following variational characterization

$$\ell_1(\beta, \Omega) = \inf_{v \in W^{1,p}(\Omega), v \neq 0} \frac{\int_{\Omega} F^p(\nabla v) dx + \int_{\partial \Omega} \beta(x)|v|^p F(\nu) dH^{n-1}}{\int_{\Omega} |v|^p dx},$$

and the minimizers of (1.2) are weak solutions to the problem (1.1) (see section 3 for the precise definition). When $F(\xi) = |\xi|$ is the Euclidean norm, this problem has been studied for instance in [9, 13, 8, 22, 13, 20]. In particular in [9] and [8] when $\beta(x) = \beta$ is a nonnegative constant and for any p, $1 < p < \infty$, the authors prove a sharp lower bound for $\ell_1(\beta, \Omega)$, keeping fixed the measure of the domain Ω. More precisely, they prove the following Faber-Krahn type inequality

$$\ell_1(\beta, \Omega) \geq \ell_1(\beta, B_R),$$

where B_R is a ball having the same measure than Ω. To prove this result they need mainly two key properties of $\ell_1(\beta, \Omega)$, that is a level set representation formula and the decreasing monotonicity of $\ell_1(\beta, \Omega)$ with respect to the radius when Ω is a ball that is

$$\ell_1(\beta, B_r) \leq \ell_1(\beta, B_s), \quad r > s > 0.$$

Despite to the Dirichlet eigenvalue, in general $\ell_1(\beta, \Omega)$ is not monotone decreasing with respect the set inclusion. For instance, in [20] when $p = 2$ and $\beta = \overline{\beta}$, the authors prove a sort of monotonicity property (1.4) for suitable convex domains which are not necessary balls and they prove that

$$\ell_1(\beta, \Omega_2) \leq \ell_1(\beta, \Omega_1),$$

where $\Omega_1, \Omega_2 \subset \mathbb{R}^n$ are bounded, Lipschitz and convex domains such that $\Omega_1 \subset B_r \subset \Omega_2$. Our aim is to prove (1.3) and (1.5) in the anisotropic case for any p, $1 < p < \infty$ and for a suitable function β which is in general, not necessary constant. In particular, regarding (1.3), we will prove the following anisotropic Faber-Krahn inequality

$$\ell_1(\beta, \Omega) \geq \ell_1(\beta, W_R),$$

where $W_R = \{ F^o(\xi) < R \}$, with F^o polar norm of F, such that $|W_R| = |\Omega|$ and the function $\beta(x) = w(F^o(x))$ with w non negative continuous function in \mathbb{R} such that

$$w(t) \geq C(R)t,$$

where C is a suitable constant. To do this we need to establish a representation formula for $\ell_1(\beta, \Omega)$, for not constant β. As a consequence of this formula, we also obtain the following anisotropic weighted Cheeger inequality for $\ell_1(\beta, \Omega)$

$$\ell_1(\beta, \Omega) \geq h_\beta(\Omega) - (p - 1)\|\beta_1'(\Omega)\|_{L^\infty(\Omega)},$$

where $p' = \frac{n}{n-1}$, β_Ω is a function defined in the whole Ω having trace on $\partial \Omega$ equals to β and $h_\beta(\Omega)$ is the anisotropic weighted Cheeger constant defined in section 6. This result was proved in the Euclidean case in [22] for $p = 2$ and $\beta = \overline{\beta}$ constant.

Our paper has the following structure.

In section 2 we recall notation and preliminary results. In section 3 we prove some basic properties of $\ell_1(\beta, \Omega)$. In section 4 we prove some useful properties of the anisotropic radial problem. In section 5 we state and show the quoted monotonicity result for $\ell_1(\beta, \Omega)$ and finally in section 6 we prove the representation formula for level set in the general case of variable coefficients β proving as applications the quoted Faber-Krahn inequality (1.6) and the anisotropic weighted Cheeger inequality (1.8).
2 Notation and preliminaries

2.1 Finsler norm

Let F be a convex, even, 1-homogeneous and non negative function defined in \mathbb{R}^n. Then F is a convex function such that

$$F(t\xi) = |t|F(\xi), \quad t \in \mathbb{R}, \xi \in \mathbb{R}^n,$$ \hspace{1cm} (2.1)

and such that

$$a|\xi| \leq F(\xi), \quad \xi \in \mathbb{R}^n,$$ \hspace{1cm} (2.2)

for some constant $a > 0$. The hypotheses on F imply there exists $b \geq a$ such that

$$F(\xi) \leq b|\xi|, \quad \xi \in \mathbb{R}^n.$$ \hspace{1cm} (2.3)

Moreover, throughout the paper we will assume that $F \in C^2(\mathbb{R}^n \setminus \{0\})$, and $[F^p]_{\xi\xi}(\xi)$ is positive definite in $\mathbb{R}^n \setminus \{0\}$, \hspace{1cm} (2.4)

with $1 < p < +\infty$.

The polar function $F^o: \mathbb{R}^n \to [0, +\infty]$ of F is defined as

$$F^o(v) = \sup_{\xi \neq 0} \frac{\langle \xi, v \rangle}{F(\xi)}.$$ \hspace{1cm}

It is easy to verify that also F^o is a convex function which satisfies properties (2.1) and (2.2). Furthermore,

$$F(v) = \sup_{\xi \neq 0} \frac{\langle \xi, v \rangle}{F^o(\xi)}.$$ \hspace{1cm}

The above property implies the following anisotropic version of the Cauchy Schwartz inequality

$$|\langle \xi, \eta \rangle| \leq F(\xi)F^o(\eta), \quad \forall \xi, \eta \in \mathbb{R}^n.$$ \hspace{1cm}

The set

$$\mathcal{W} = \{ \xi \in \mathbb{R}^n : F^o(\xi) < 1 \}$$

is the so-called Wulff shape centered at the origin. We put $\kappa_n = |\mathcal{W}|$, where $|\mathcal{W}|$ denotes the Lebesgue measure of \mathcal{W}. More generally, we denote by $\mathcal{W}_r(x_0)$ the set $r\mathcal{W} + x_0$, that is the Wulff shape centered at x_0 with measure $\kappa_n r^n$, and $\mathcal{W}_r(0) = \mathcal{W}_r$.

The following properties of F and F^o hold true:

$$\langle F_\xi(\xi), \eta \rangle = F(\xi), \quad \langle F^o_\xi(\xi), \xi \rangle = F^o(\xi), \quad \forall \xi \in \mathbb{R}^n \setminus \{0\},$$

$$F(F^o_\xi(\xi)) = F^o(F_\xi(\xi)) = 1, \quad \forall \xi \in \mathbb{R}^n \setminus \{0\},$$

$$F^o(\xi)F^o_\xi(F_\xi(\xi)) = F(\xi)F^o_\xi(F^o_\xi(\xi)) = \xi, \quad \forall \xi \in \mathbb{R}^n \setminus \{0\}.$$ \hspace{1cm}

2.2 Anisotropic perimeter

We recall the definition of anisotropic perimeter for a bounded, Lipschitz open set:

Definition 2.1. Let K be a bounded open subset of \mathbb{R}^n with Lipschitz boundary. The anisotropic perimeter of K is:

$$P_F(K) = \int_{\partial K} F(\nu) \, d\mathcal{H}^{n-1}$$

where ν denotes the unit outer normal to ∂K and \mathcal{H}^{n-1} is the $(n-1)$-dimensional Hausdorff measure.
Clearly, the perimeter of K is finite if and only if the usual Euclidean perimeter of K, $P_E(K)$ is finite. Indeed, by the quoted properties of F we obtain that

$$aP_E(K) \leq P_F(K) \leq bP_E(K).$$

Furthermore, an isoperimetric inequality for the anisotropic perimeter holds (see for instance [3, 11, 17]). Namely let K be a bounded open subset of \mathbb{R}^n with Lipschitz boundary, then

$$P_F(K) \geq n \kappa_n \frac{1}{n} |K|^{1\frac{1}{n}},$$

where κ_n is the Lebesgue measure of the unit Wulff shape. In particular, the equality in (2.5) holds if and only if the set K is homothetic to a Wulff shape. We recall the following so-called weighted anisotropic isoperimetric inequality (see for instance [3] and [4])

$$\int_{\partial \Omega} f(F'(x)) F(\nu) dH^{n-1} \geq \int_{\partial W_R} f(F'(x)) F(\nu) dH^{n-1} = f(R) P_F(W_R),$$

(2.6)

where W_R is a Wulff shape such that $|\Omega| = |W_R|$ and $f : [0, R] \to [0, +\infty]$ is a nondecreasing function such that $g(z) = f(z^{\frac{1}{n}})z^{1\frac{1}{n}}$, $0 \leq z \leq R^n$, is convex with respect to z.

If $\Omega \subset \mathbb{R}^n$ is a bounded open set, the anisotropic Cheeger constant of Ω is defined as follows

$$h_F(\Omega) = \inf_{U \subset \Omega} \frac{P_F(U)}{|U|},$$

(2.7)

In [10] the authors prove that

$$\frac{1}{R_F} \leq h_F(\Omega) \leq \frac{n}{R_F},$$

(2.8)

where R_F is the anisotropic inradius that is the radius of the biggest Wulff shape contained in Ω.

2.3 Anisotropic p-Laplacian

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set and $u \in W^{1,p}(\Omega)$. For $1 < p < +\infty$ the anisotropic p-Laplacian is defined as follows

$$Q_p u := \text{div} \left(\frac{1}{p} \nabla \xi [F^p](\nabla u) \right).$$

The hypothesis (2.4) on F ensures that the operator is elliptic, hence there exists a positive constant γ such that

$$\frac{1}{p} \sum_{i,j=1}^n \nabla \xi_{ij} [F^p](\eta) \xi_i \xi_j \geq \gamma |\eta|^{p-2}|\xi|^2,$$

for any $\eta \in \mathbb{R}^n \setminus \{0\}$ and for any $\xi \in \mathbb{R}^n$.

For $p = 2$, Q_2 is the so-called Finsler Laplacian, and when $F(\xi) = |\xi| = \sqrt{\sum_{i=1}^n x_i^2}$ is the Euclidean norm, Q_p reduces to the well known p-Laplace operator.

Let Ω be a bounded open set in \mathbb{R}^n, $n \geq 2$, $1 < p < +\infty$, and consider the following eigenvalue problem with Dirichlet boundary conditions related to Q_p

$$\left\{ \begin{array}{ll}
-Q_p u = \lambda |u|^{p-2}u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega.
\end{array} \right.$$

4
The smallest eigenvalue, denoted by $\lambda_D(\Omega)$, has the following well-known variational characterization:

$$\lambda_D(\Omega) = \min_{\varphi \in W^{1,p}_0(\Omega) \setminus \{0\}} \frac{\int_\Omega F^p(\nabla \varphi) \, dx}{\int_\Omega |\varphi|^p \, dx}.$$

For the first eigenvalue of the anisotropic p-Laplacian with Dirichlet boundary conditions, the following isoperimetric inequality holds (see [2]).

Theorem 2.1. Let $\Omega \subset \mathbb{R}^n$, be a bonded domain with $n \geq 2$ then

$$|\Omega|^\frac{2}{n} \lambda_D(\Omega) \geq \kappa_n^\frac{2}{n} \lambda_D(W).$$

Moreover, the equality holds if and only if Ω is homothetic to a Wulff shape.

Finally we recall that for a given bounded open set in \mathbb{R}^n, the anisotropic Cheeger inequality states that (see for instance [7, 10, 21])

$$\lambda_D(\Omega) \geq \left(\frac{h_F(\Omega)}{p} \right)^p, \quad 1 < p < \infty. \quad (2.9)$$

3 The first Robin eigenvalue of Q_p

In this section we will investigate some properties of the first Robin eigenvalue related to Q_p, $1 < p < \infty$. From now on we assume that

$\Omega \subset \mathbb{R}^n$ is a bounded open set with $C^{1,\alpha}$ boundary and $\alpha \in]0,1[$. \quad (3.1)

Let us consider the following Robin eigenvalue problem for Q_p

$$
\begin{aligned}
- Q_p u &= \ell |u|^{p-2} u & \text{in } \Omega \\
F^{p-1}(\nabla u) F_\xi(\nabla u) \cdot \nu + \beta(x) F(\nu) |u|^{p-2} u &= 0 & \text{on } \partial \Omega,
\end{aligned}
$$

(3.2)

where $u \in W^{1,p}(\Omega)$, ν is the Euclidean unit outer normal to $\partial \Omega$ and the function $\beta : \partial \Omega \to [0, +\infty[$ belongs to $L^1(\partial \Omega)$ and verifies

$$
\int_{\partial \Omega} \beta(x) F(\nu) \, d\mathcal{H}^{n-1} = m > 0.
$$

(3.3)

From now on we will write $\bar{\beta}$ instead of β when β is a positive constant.

Definition 3.1. A function $u \in W^{1,p}(\Omega)$, $u \not\equiv 0$ is an eigenfunction to (3.2) if $\beta(\cdot)|u|^p \in L^1(\partial \Omega)$ and

$$
\int_{\Omega} F^{p-1}(\nabla v) F_\xi(\nabla v) \cdot \nabla \varphi \, dx + \int_{\partial \Omega} \beta(x) |u|^{p-2} u \varphi F(\nu) \, d\mathcal{H}^{n-1} = \ell \int_{\Omega} |u|^{p-2} u \varphi \, dx
$$

(3.4)

for any test function $\varphi \in W^{1,p}(\Omega) \cap L^\infty(\partial \Omega)$. The corresponding number ℓ, is called Robin eigenvalue.

The smallest eigenvalue of (3.2), $\ell_1(\beta, \Omega)$ has the following variational characterization

$$
\ell_1(\beta, \Omega) = \inf_{v \in W^{1,p}(\Omega) \setminus \{0\}} \inf_{v \not\equiv 0} J[\beta, v] := \inf_{v \in W^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} F^p(\nabla v) \, dx + \int_{\partial \Omega} \beta(x) |v|^p F(\nu) \, d\mathcal{H}^{n-1}}{\int_{\Omega} |v|^p \, dx}.
$$

(3.5)
By definition we have
\[\ell_1(\beta, \Omega) \leq \lambda_D(\Omega), \]
where \(\lambda_D(\Omega) \) is the first Dirichlet eigenvalue of \(Q_p \). Indeed choosing as test function in \((3.5) \), the first Dirichlet eigenfunction \(u_D \) of \(\lambda_D(\Omega) \) in the Reileigh quotient, we get
\[
\ell_1(\beta, \Omega) = \min_{v \in W^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} [F(\nabla v)]^p \, dx + \int_{\partial \Omega} \beta |v|^p F(\nu) \, dH^{n-1}}{\int_{\Omega} |v|^p \, dx} \]
\[
\leq \frac{\int_{\Omega} [F(\nabla u_D)]^p \, dx + \int_{\partial \Omega} \beta |u_D|^p F(\nu) \, dH^{n-1}}{\int_{\Omega} |u_D|^p \, dx} = \lambda_D(\Omega). \]

The following existence result holds.

Proposition 3.1. Let \(\beta \in L^1(\partial \Omega) \), \(\beta \geq 0 \) be such that \((3.3) \) holds. Then there exists a positive minimizer \(u \in C^{1,\alpha}(\Omega) \cap L^\infty(\Omega) \) of \((3.5) \) which is a weak solution to \((3.2) \) in \(\Omega \) with \(\ell = \ell_1(\beta, \Omega) \). Moreover \(\ell_1(\beta, \Omega) \) is positive and it is simple, that is the relative eigenfunction \(u \) is unique up to a multiplicative constant.

Proof. Let \(u_k \in W^{1,p}(\Omega) \) be a minimizing sequence of \((3.5) \) such that \(\|u_k\|_{L^p(\Omega)} = 1 \). Then, being \(u_k \) bounded in \(W^{1,p}(\Omega) \) there exists a subsequence, still denoted by \(u_k \) and a function \(u \in W^{1,p}(\Omega) \) with \(\|u\|_{L^p(\Omega)} = 1 \), such that \(u_k \to u \) strongly in \(L^p(\Omega) \) and \(\nabla u_k \rightharpoonup \nabla u \) weakly in \(L^p(\Omega) \). Then \(u_k \) converges to \(u \) in \(L^p(\partial \Omega) \) and then almost everywhere on \(\partial \Omega \) to \(u \). Then by the weak lower semicontinuity and Fatou’s lemma we get
\[
\ell_1(\beta, \Omega) = \lim_{k \to +\infty} J[\beta, u_k] \geq J[\beta, u],
\]
then \(\beta(\cdot)|u|^p \in L^1(\partial \Omega) \) and \(u \) is an eigenfunction related to \(\ell_1(\beta, \Omega) \) by definition. Moreover \(u \in L^\infty(\Omega) \). To see that, we can argue exactly as in \[11\] in order to get that \(u \in L^\infty(\Omega) \).

Now the \(L^\infty \)-estimate, the hypothesis \((2.4) \) and the properties of \(F \) allow to apply standard regularity results (see \[16\], \[27\]), in order to obtain that \(u \in C^{1,\alpha}(\Omega) \).

In order to prove that \(\ell_1(\beta, \Omega) > 0 \), we proceed by contradiction supposing that there exists \(\beta_0 \) which verifies \((3.3) \) and such that \(\ell_1(\beta_0, \Omega) = 0 \). Then there exists \(u_{\beta_0} \in C^{1,\alpha}(\Omega) \cap L^\infty(\Omega) \) such that \(u_{\beta_0} \geq 0 \), \(\|u_{\beta_0}\|_{L^p(\Omega)} = 1 \) and
\[
0 = \ell(\beta_0, \Omega) = \int_{\Omega} F^p(\nabla u_{\beta_0}) \, dx + \int_{\partial \Omega} \beta_0 u_{\beta_0}^p \, F(\nu) \, dH^{n-1}.
\]
Then \(u_{\beta_0} \) has to be constant in \(\overline{\Omega} \) and then \(u_{\beta_0}^p \int_{\partial \Omega} \beta_0 F(\nu) = u_{\beta_0}^p m = 0 \). Being \(m > 0 \), then \(u_{\beta_0} = 0 \) in \(\overline{\Omega} \), and this is not true. Hence \(\ell_1(\beta_0, \Omega) > 0 \).

Finally to prove the simplicity of the eigenfunctions we can proceed exactly as in \[11\]. For completeness we recall the main steps. Let \(u, w \) be positive minimizers of the functional \(J \) defined in \((3.5) \) such that \(\|u\|_p = \|w\|_p = 1 \), and let us consider the function \(\eta_t = (tu^p + (1 - t)w^p)^{1/p} \), with \(t \in [0,1] \). Obviously, \(\|\eta_t\|_p = 1 \). Clearly it holds:
\[
J[\beta, u] = \ell_1(\beta, \Omega) = J[\beta, w]. \tag{3.6}
\]
In order to compute \(J[\beta, \eta_t] \) we observe that by using the homogeneity and the convexity of \(F \) it is not hard to prove that (see for instance \[11\] for the precise computation)
\[
F^p(\nabla \eta_t) \leq t F^p(\nabla v) + (1 - t) F^p(\nabla w). \tag{3.7}
\]
Hence recalling (3.6), we obtain
\[
J[\beta, \eta] \leq tJ[\beta, u] + (1-t)J[\beta, w] = \ell_1(\beta, \Omega),
\]
and then \(\eta\) is a minimizer for \(J\). This implies that the equality holds in (3.7), and as showed in [11], this implies that \(u = w\) that is the uniqueness.

The following result characterizes the first eigenfunctions.

Proposition 3.2. Let \(\beta \in L^1(\partial \Omega), \beta \geq 0\) be such that (3.3) holds. Let \(\eta > 0\) and \(v \in W^{1,p}(\Omega)\), \(v \not\equiv 0\) and \(v \geq 0\) in \(\Omega\) such that
\[
\begin{align*}
- \frac{\eta}{p} v &= \eta v^{p-1} & \text{in } \Omega \\
F^{p-1}(\nabla v)F(v) \cdot \nu + \beta F(v)v^{p-1} &= 0 & \text{on } \partial \Omega
\end{align*}
\]
in the sense of Definition 3.7. Then \(v\) is a first eigenfunction of (3.1), and \(\eta = \ell_1(\beta, \Omega)\).

Proof. Let \(u \in W^{1,p}(\Omega)\) be a positive eigenfunction related to \(\ell_1(\beta, \Omega)\). Choosing \(u^p/(v+\varepsilon)^{p-1}\), with \(\varepsilon > 0\), as test function in the Definition 3.1 for the solution \(v\), and arguing exactly as in [11], we get the claim.

Remark 3.1. We observe that Propositions 3.1 and 3.2 generalize the results proved respectively in [13] for the Euclidean norm and in [11] when \(\beta(x) = \beta\) is a positive constant.

Theorem 3.1. Let \(\beta \in L^1(\partial \Omega), \beta \geq 0\) and such that (3.3) holds. The following properties hold for \(\ell_1(\beta, \Omega)\):

(i) \(\forall t > 0, \ell_1(\beta(t\nu), t\Omega) = t^{-p}\ell_1(\beta(y), \Omega), \quad x \in \partial(t\Omega), y \in \partial \Omega\);

(ii) \(\ell_1(\beta, \Omega) \leq \frac{m}{|\Omega|}\);

(iii) \(a^p\ell_\epsilon(a^{1-p}\beta, \Omega) \leq \ell_1(\beta, \Omega) \leq b^p\ell_\epsilon(b^{1-p}\beta, \Omega), \quad \) where \(a, b\) are defined in (2.2), (2.3) and \(\ell_\epsilon(a^{1-p}\beta, \Omega), \ell_\epsilon(b^{1-p}\beta, \Omega)\) are the first Robin eigenvalue for the Euclidean \(p\)-Laplacian corresponding respectively to the function \(a^{1-p}\beta\) and \(b^{1-p}\beta\);

(iv) If \(\beta(x) \geq \bar{\beta} > 0\), for almost \(x \in \partial \Omega\), then
\[
\sup_{|\Omega|=k} \ell_1(\beta, \Omega) = +\infty
\]

Proof. By the homogeneity of \(F\), we have:
\[
\ell_1\left(\beta \left(\frac{x}{t}\right), t\Omega\right) = \min_{\varphi \in W^{1,p}(\Omega) \setminus \{0\}} \frac{\int_\Omega F_p(\nabla \varphi(x))dx + \int_{\partial(t\Omega)} \beta \left(\frac{x}{t}\right) \varphi(x) |F(\nu(x))d\mathcal{H}^{n-1}(x)}{\int_\Omega |\varphi(x)|^pdx}
\]
\[
= \min_{\varphi \in W^{1,p}(\Omega) \setminus \{0\}} \frac{t^{-p} \int_\Omega F_p(\nabla v(\frac{x}{t})) dy + \int_{\partial(t\Omega)} \beta \left(\frac{x}{t}\right) |v(\frac{x}{t})|^p F\left(\nu(\frac{x}{t})\right) d\mathcal{H}^{n-1}(y)}{t^n \int_\Omega |v(y)|^p dy}
\]
\[
= \min_{\varphi \in W^{1,p}(\Omega) \setminus \{0\}} \frac{t^{n-p} \int_\Omega F_p(\nabla v(y)) dy + t^{-n} \int_{\partial \Omega} \beta(y) |v(y)|^p F(\nu(y)) d\mathcal{H}^{n-1}(y)}{t^n \int_\Omega |v(y)|^p dy}
\]
\[
= t^{-p}\ell_1(\ell_1^{p-1}(\beta(y), \Omega)).
\]
In order to obtain the second property, it is sufficient to consider a non-zero constant as test function in (3.5).

Now we prove the inequality in the right-hand side in (iii). The proof of the other inequality is similar. By using (3.5) and (2.3), we obtain that

$$\ell_1(\beta, \Omega) = \inf_{v \in W^{1,p}(\Omega)} \frac{\int_\Omega F_p(\nabla v) dx + \int_{\partial\Omega} \beta(x)|v|^p F(\nu) d\mathcal{H}^{n-1}}{\int_\Omega |v|^p dx} \geq \ell_1(\bar{\beta}, \Omega) = \inf_{v \in \mathbb{R}} \frac{b^p \int_\Omega |\nabla v|^p dx + \int_{\partial\Omega} b^{1-p} \beta(x) |v|^p d\mathcal{H}^{n-1}}{\int_\Omega |v|^p dx} = b^p \ell_2(b^{1-p} \beta, \Omega),$$

where last equality follows, by definition of $\ell_2(b^{1-p} \beta, \Omega)$.

Finally we give the proof of (iv). Clearly $\ell_1(\beta, \Omega) \geq \ell_1(\bar{\beta}, \Omega)$, then by [11] Proposition 3.1, we know that

$$\ell_1(\bar{\beta}, \Omega) \geq \left(\frac{p-1}{p} \right)^p \frac{\bar{\beta}}{R_F \left(1 + \bar{\beta}^{\frac{p-1}{p}} R_F \right)}$$

(3.8)

where R_F is the anisotropic inradius of the subset Ω. The claim follows constructing a sequence of convex sets Ω_k with $|\Omega_k| = 1$ and such that $R_F(\Omega_k) \to 0$, for $k \to \infty$. Let $k > 0$, proceeding as in [10] [12], it is possible to consider the n-rectangles $\Omega_k = \left[-\frac{k^\frac{1}{p-1}}{2}, \frac{k^\frac{1}{p-1}}{2} \right]^{n-1}$ and suppose that $R_F(\Omega_k) = \frac{1}{2k} F^\circ(e_1)$. Then we obtain

$$\ell_1(\bar{\beta}, \Omega_k) \geq \left(\frac{p-1}{p} \right)^p \frac{4k^2 \bar{\beta}}{F^\circ(e_1) \left(2k + \bar{\beta}^{\frac{p-1}{p}} F^\circ(e_1) \right)} \to +\infty \quad \text{for} \quad k \to \infty.$$
Theorem 4.1. Let \(v_p \in C^{1,\alpha}(W_R) \cap C(\overline{W_R}) \) be a positive solution to problem \((\ref{e1})\). Then \(v_p(x) = \varrho_p(F^o(x)) \), with \(x \in \overline{W_R} \), where \(\varrho_p(r), \ r \in [0,R], \) is a decreasing function such that \(\varrho_p \in C^{\infty}(0, R) \cap C^1([0, R]) \) and it verifies

\[
\begin{aligned}
-(p-1)(-\varrho'_p(r))^{p-2} \varrho''_p(r) + \frac{n-1}{r} (-\varrho'_p(r))^{p-1} &= \ell_1(\beta, W_R) \varrho_p(r)^{p-1}, \quad r \in]0, R[,
\varrho_p(0) = 0,
-(\varrho''_p(R))^{p-1} + \beta(\varrho_p(R))^{p-1} = 0.
\end{aligned}
\]

(4.3)

Remark 4.1. We observe that the first eigenvalue in the Wulff \(W_R = \{F^o(x) < R\} \) is the same for any norm \(F \). In particular it coincides with the first Robin eigenvalue in the Euclidean ball \(B_R \) for the \(p \)-Laplace operator. Finally we emphasize that in this case the eigenfunctions have more regularity because \(\beta \) is a positive constant.

Theorem 4.1 as in \([5, 11]\), suggests to consider, for every \(x \in W_R \), the following function

\[
f(r_x) = \frac{\left(-\varrho'_p(r_x)\right)^{p-1}}{(\varrho_p(r_x))^{p-1}} = \frac{[F(\nabla v_p(x))]^{p-1}}{v_p(x)^{p-1}} = \frac{[F(\nabla v_p(x))]^{p-1} F'(Dv_p(x)) \cdot \nu}{v_p(x)^{p-1} F(\nu)},
\]

(4.4)

where

\[r_x = F^o(x), \quad 0 \leq r_x \leq R.\]

Let us observe that \(f \) is nonnegative, \(f(0) = 0 \) and

\[
f(R) = \frac{(-\varrho'_p(R))^{p-1}}{\varrho_p(R)^{p-1}} = \frac{[F(\nabla v_p(x))]^{p-1}}{v_p(x)^{p-1}} = \frac{[F(\nabla v_p(x))]^{p-1} F'(\nabla v_p(x)) \cdot \nu}{v_p(x)^{p-1} F(\nu)} = \beta
\]

The following result proved in the Euclidean case in \([5]\) and in \([11]\) in the anisotropic case, states that the first Robin eigenvalue is monotone decreasing with respect the set inclusion in the class of Wulff shapes.

Lemma 4.1. The function \(r \to \ell_1(\beta, W_r) \) is strictly decreasing in \(]0, \infty[\).

In \([5]\) and \([11]\) the authors prove also the following monotonicity property for the function \(f \) defined in \((\ref{f})\).

Lemma 4.2. Let \(f \) be the function defined in \((\ref{f})\). Then \(f(r) \) is strictly increasing in \([0, R]\).

In the next result we prove a convex property for the function \(f \).

Theorem 4.2. Let \(f \) be the function defined in \((\ref{f})\). Then the function

\[
g(z) = f\left(z^{\frac{1}{n}}\right) z^{1-\frac{1}{n}}, \quad 0 \leq z \leq R^n,
\]

is convex with respect to \(z \).

Proof. We first observe that by \((\ref{f})\) it holds

\[
f'(r) = \frac{d}{dr} \left(-\frac{\varrho'_p(r)}{\varrho_p(r)} \right)^{p-1} = (p-1) f^{\frac{p-2}{p-1}} \left(\frac{-\varrho''_p}{\varrho_p} + \frac{\varrho'_p}{\varrho_p} \right)^2
\]

\[
= \ell_1(\beta, W_R) - \frac{(n-1)}{r} f + (p-1) f^{\frac{p-2}{p-1}} \quad \forall r \in]0, R[.
\]

(4.5)
Then

\[g'(z) = \frac{1}{n} f'(\frac{z}{n}) + \frac{(n-1)}{n} f(\frac{z}{n}) \]

\[= \frac{1}{n} \left(\ell_1(\bar{\beta}, W_R) - \frac{(n-1)}{n} f\left(\frac{z}{n}\right) + (p-1) f^{\frac{n}{p-1}}\left(\frac{z}{n}\right) \right) + \frac{(n-1)}{n} f\left(\frac{z}{n}\right) \]

\[= \frac{\ell_1(\bar{\beta}, W_R)}{n} + \frac{(p-1)}{n} f^{\frac{n}{p-1}}\left(\frac{z}{n}\right), \]

which is increasing and this implies the thesis.

Finally the following comparison result for \(f \) holds

Theorem 4.3. Let \(f \) be the function defined in (4.4). Then there exists a positive constant \(C = C(R) \) such that

\[f(0) \leq r C(R), \quad \text{for} \quad 0 \leq r \leq R \]

Proof. By (4.4) and by Lemma 4.2 we obtain that \(f \) verifies the following equation

\[f'(r) = \ell_1(\bar{\beta}, W_R) - \frac{(n-1)}{r} f(r) + (p-1) f^{\frac{n}{p-1}}(r) \leq C(R) - \frac{(n-1)}{r} f(r) \] (4.6)

where

\[C(R) = \ell_1(\bar{\beta}, W_R) + (p-1) f(R)^{\frac{n}{p-1}} = \ell_1(\bar{\beta}, W_R) + (p-1) \bar{\beta}^{\frac{n}{p-1}} \] (4.7)

Then by (4.6) multiplying both sides by \(r^{n-1} \) we get

\[f'(r) r^{n-1} + (n-1) r^{n-2} f(r) \leq C(R) r^{n-1}, \]

and

\[\frac{d}{dr} (r^{n-1} f(r)) \leq C(R) r^{n-1} \]

Then the claim follows integrating both sides between 0 and \(r \).

Remark 4.2. The results contained in Lemma 4.2 and Theorem 4.2 ensures that \(f(r) \) is an admissible weight for the weighted anisotropic isoperimetric inequality quoted in (2.6)

5 **A monotonicity property for \(\ell_1(\bar{\beta}; \Omega) \)**

In this section we assume that \(\beta = \bar{\beta} \) is a positive constant. The first Robin eigenvalue \(\ell_1(\bar{\beta}, \Omega) \) has not, in general, a monotonicity property with respect the set inclusion. For instance in [15] in the Euclidean case, for the Laplace operator, the authors give a counterexample. More precisely, they construct a suitable sequence of sets \(\Omega_k \) such that \(P_1(\Omega_k) \to \infty, B_1(0) \subset \Omega_k \subset B_{1+\epsilon}(0) \) which verify

\[\ell_1(\bar{\beta}, \Omega_k) > \ell_1(\bar{\beta}, B_1(0)) > \ell_1(\bar{\beta}, B_2(0)). \]

Here \(B_r(x_o) \) denotes the Euclidean ball with radius \(r \) and centered at the pint \(x_o \) and \(\lambda_1(B_{1+\epsilon}(0)) \) is the Euclidean first Dirichlet eigenvalue of the Laplacian of the ball \(B_{1+\epsilon}(0) \). In what follows we prove a monotonicity type property for the first Robin eigenvalue of the operator \(Q_p \) with respect the set inclusion. In the Euclidean case for the Laplace operator we refer the reader for instance to [20].
Theorem 5.1. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with $C^{1,\alpha}$ boundary, $\alpha \in]0,1[$. Let \mathcal{W}_R be a Wulff shape such that $\Omega \subset \mathcal{W}_R$ and β a positive constant. Then

$$\ell_1(\beta, \mathcal{W}_R) \leq \ell_1(\beta, \Omega).$$

Proof. Let v_p be the positive eigenfunction associated to $\ell_1(\beta, \mathcal{W}_R)$ and let Ω be a subset of \mathcal{W}_R.

Then for every $x \in \partial \Omega$, we can consider $f(x)$ as in (4.3) in order to get that the following Robin boundary condition on $\partial \Omega$ holds

$$[F(\nabla v_p(x))]^{p-1} F_\ell(\nabla v_p(x)) \cdot \nu + f(x) v_p(x)^{p-1} F(\nu) = 0.$$ \hspace{1cm} (5.1)

Having in mind that $\Omega \subset \mathcal{W}_R$ and using (5.1), we have that v_p solves the following problem

$$\begin{cases}
- \mathcal{Q}_p v_p = \ell_1(\beta, \mathcal{W}_R)v_p^{p-1} & \text{in } \Omega \\
[F(\nabla v_p)]^{p-1} F_\ell(\nabla v_p) \cdot \nu + f(x) v_p^{p-1} F(\nu) = 0 & \text{on } \partial \Omega
\end{cases} \hspace{1cm} (5.2)$$

Using (5.2) and Lemma 4.2

$$\ell_1(\beta, \mathcal{W}_R) = \inf_{u \in \mathcal{W}_R} \frac{\int_{\Omega} |F(\nabla u)|^p dx + \int_{\partial \Omega} f(x)|v_p|^p F(\nu) d\mathcal{H}^{n-1}}{\int_{\Omega} |v_p|^p dx} \leq \inf_{u \in \mathcal{W}_R} \frac{\int_{\Omega} |F(\nabla u)|^p dx + \int_{\partial \Omega} |v_p|^p F(\nu) d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^p dx} = \ell_1(\beta, \Omega)$$

When Ω contains a Wulff shape we have the following result

Theorem 5.2. Let $\Omega \subset \mathbb{R}^n$ be a bounded and convex open set with $C^{1,\alpha}$ boundary, $\alpha \in]0,1[$. Let \mathcal{W}_R be a Wulff shape such that $\mathcal{W}_R \subset \Omega$, then

$$\ell_1(\beta, \Omega) \leq \ell_1(\beta, \mathcal{W}_R).$$

Proof. First of all, we take the positive eigenfunction v_p associated to $\ell_1(\beta, \mathcal{W}_R)$. By Theorem 4.1 $v_p(x) = g_p(F^p(x))$, and by (4.3) we can extend g_p up to $+\infty$ and then v_p in \mathbb{R}^n. Let us consider the super-level set

$$\mathcal{W}_+ = \{ x \in \mathbb{R}^n : v_p(x) > 0 \}.$$

By the property of v_p, \mathcal{W}_+ is a Wulff shape and clearly $\mathcal{W}_R \subset \mathcal{W}_+$.

Moreover, v_p solves the following equation

$$- \mathcal{Q}_p v_p = \ell_1(\beta, \mathcal{W}_R)v_p^{p-1} \text{ in } \mathcal{W}_+.$$

To prove the Theorem we consider the set $\Omega = \Omega \cap \mathcal{W}_+$. Being Ω convex and due to the radially decreasing of the eigenfunction, three possible cases can occur.
Case 1: \(\partial \tilde{\Omega} = \partial \Omega \). Then in this case \(\mathcal{W}_R \subset \Omega \subset \mathcal{W}_+ \) and \(\tilde{\Omega} = \Omega \). Then for \(x \in \partial \Omega \) we put \(r_x = F^\alpha(x) \) and we can compute

\[
f(r_x) = \frac{(-\rho_p(r_x))^{p-1}}{(\rho_p(r_x))^{p-1}}.
\]

Then arguing as in the proof of Theorem 5.1 and recalling that by Lemma 4.2, \(f(r_x) \geq \bar{\beta} \), for any \(x \in \partial \Omega \) we get

\[
\ell_1(\bar{\beta}, \mathcal{W}_R) = \frac{\int_{\tilde{\Omega}} [F(\nabla v_p)]^p dx + \int_{\partial \tilde{\Omega}} f(r_x) |v_p|^p F(\nu) d\sigma}{\int_{\tilde{\Omega}} |v_p|^p dx} = \inf_{u \in W^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\tilde{\Omega}} [F(\nabla u)]^p dx + \int_{\partial \tilde{\Omega}} f(r_x) |u|^p F(\nu) d\sigma}{\int_{\tilde{\Omega}} |u|^p dx} \geq \inf_{u \in W^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\tilde{\Omega}} [F(\nabla u)]^p dx + \int_{\partial \tilde{\Omega}} \bar{\beta} |u|^p F(\nu) d\sigma}{\int_{\tilde{\Omega}} |u|^p dx} = \ell_1(\bar{\beta}, \Omega)
\]

and the first case is proved.

Case 2: \(\partial \tilde{\Omega} \cap \partial \Omega \neq \emptyset \) and \(\partial \tilde{\Omega} \cap \partial \Omega \neq \partial \Omega \). Then \(\partial \tilde{\Omega} \cap \mathcal{W}_+ \neq \emptyset \). Moreover, on \(\partial \tilde{\Omega} \cap \partial \Omega \) the eigenfunction \(v_p \) is positive, while on \(\partial \tilde{\Omega} \cap \partial \mathcal{W}_+ \) it is equal to zero. In particular, for every \(x \in \partial \tilde{\Omega} \cap \partial \Omega \) we still have that \(f(r_x) \geq \bar{\beta} \) as in the Case 1. We define the following test function \(\varphi \in W^{1,p}(\Omega) \)

\[
\varphi(x) = \begin{cases}
v_p(x) & \text{in } \tilde{\Omega} \\
0 & \text{in } \Omega \setminus \tilde{\Omega}.
\end{cases}
\]

Then

\[
\ell_1(\bar{\beta}, \mathcal{W}_R) = \frac{\int_{\tilde{\Omega}} [F(\nabla v_p)]^p dx + \int_{\partial \tilde{\Omega} \cap \partial \Omega} f(r_x) v_p^p F(\nu) d\mathcal{H}^{n-1}}{\int_{\tilde{\Omega}} v_p^p dx} = \frac{\int_{\Omega} [F(\nabla \varphi)]^p dx + \int_{\partial \tilde{\Omega} \cap \partial \Omega} f(r_x) \varphi^p F(\nu) d\mathcal{H}^{n-1}}{\int_{\Omega} \varphi^p dx} \geq \frac{\int_{\Omega} [F(\nabla \varphi)]^p dx + \int_{\partial \tilde{\Omega} \cap \partial \Omega} \bar{\beta} \varphi^p F(\nu) d\mathcal{H}^{n-1}}{\int_{\Omega} \varphi^p dx} = \frac{\int_{\Omega} [F(\nabla v)]^p dx + \int_{\partial \Omega} \bar{\beta} \varphi^p F(\nu) d\mathcal{H}^{n-1}}{\int_{\Omega} \varphi^p dx}
\]
When β in general a function defined on Ω, following problem a function belonging to $L^1(\Omega)$ formula holds positive minimizer of (3.5) cases, after a finite number of steps we could be either in Case 1 or in Case 2.

By Theorems 5.1 and 5.2 we get the following monotonicity property for ℓ_1 for constant β.

Corollary 5.1. Let $\Omega_1, \Omega_2 \subset \mathbb{R}^n$ be as in (3.1) and convex. Let W_R be a Wulff shape such that $\Omega_1 \subset W_R \subset \Omega_2$. Then $\ell_1(\beta, \Omega_2) \leq \ell_1(\beta, \Omega_1)$.

6 A representation formula for $\ell_1(\beta, \Omega)$

In this section we prove a level set representation formula for the first eigenvalue $\ell_1(\beta, \Omega)$ of the following problem

$$
\begin{cases}
-\mathcal{Q}_p \nu = \ell |v|^{p-2}v & \text{in } \Omega \\
F^{p-1}(\nabla v)\xi(\nabla v) \cdot \nu + \beta F(\nu)|v|^{p-2}v = 0 & \text{on } \partial \Omega.
\end{cases}
$$

(6.1)

When $\beta = \bar{\beta}$ is a nonnegative constant a similar result can be found in [5] in the Euclidean case and in [11] for the anisotropic case. Our aim is to extend the known results assuming that β is in general a function defined on $\partial \Omega$. In the next we will use the following notation. Let \tilde{u}_p be the first positive eigenfunction such that $\max \tilde{u}_p = 1$. Then, for $t \in [0, 1]$,

$$
U_t = \{ x \in \Omega : \tilde{u}_p > t \}, \\
S_t = \{ x \in \Omega : \tilde{u}_p = t \}, \\
\Gamma_t = \{ x \in \partial \Omega : \tilde{u}_p > t \}.
$$

Theorem 6.1. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with $C^{1,\alpha}$ boundary and let $\alpha \in [0, 1]$. Let β be a function belonging to $L^1(\partial \Omega)$, $\beta \geq 0$ and such that (3.3) holds. Let $\tilde{u}_p \in C^{1,\alpha}(\Omega) \cap L^\infty(\Omega)$ be a positive minimizer of (3.5) with $\|\tilde{u}_p\|_\infty = 1$. Then for a.e. $t \in [0, 1]$ the following representation formula holds

$$
\ell_1(\beta, \Omega) = \mathcal{F}_\Omega \left(U_t, \frac{|F(\nabla \tilde{u}_p)|^{p-1}}{\tilde{u}_p^{p-1}} \right),
$$

(6.2)

where \mathcal{F}_Ω is defined as

$$
\mathcal{F}_\Omega(U_t, \varphi) = \frac{1}{|U_t|} \left(-(p-1) \int_{U_t} \varphi^p dx + \int_{S_t} \varphi F(\nu) d\sigma + \int_{\Gamma_t} \beta F(\nu) d\sigma \right).
$$

(6.3)

Proof. Let $0 < \epsilon < t < 1$ and we define

$$
\psi_\epsilon = \begin{cases}
0 & \text{if } \tilde{u}_p \leq t \\
\frac{\tilde{u}_p}{\epsilon} & \text{if } t < \tilde{u}_p < t + \epsilon \\
\frac{1}{\epsilon} & \text{if } \tilde{u}_p \geq t + \epsilon.
\end{cases}
$$
The functions \(\psi \) are in \(W^{1,p}(\Omega) \) and increasingly converge to \(\tilde{u}_p^{-(p-1)} \chi_{U_t} \) as \(\varepsilon \to 0 \). Moreover, we can obtain that

\[
\nabla \psi \varepsilon = \begin{cases}
0 & \text{if } \tilde{u}_p < t \\
\frac{1}{\varepsilon} \left((p-1) \frac{t}{\tilde{u}_p} + 2 - p \right) \tilde{u}_p^{-p} & \text{if } t < \tilde{u}_p < t + \varepsilon \\
-(p-1) \frac{\nabla \tilde{u}_p}{\tilde{u}_p} & \text{if } \tilde{u}_p > t + \varepsilon.
\end{cases}
\]

Then choosing \(\psi \varepsilon \) as test function in (3.4), we get that the first integral is

\[
-(p-1) \int_{U_{t+\varepsilon}} \frac{|F(\nabla \tilde{u}_p)|^p}{\tilde{u}_p^p} dx + \frac{1}{\varepsilon} \int_{U_{t+\varepsilon} U_{t+\varepsilon}} \frac{|F(\nabla \tilde{u}_p)|^p}{\tilde{u}_p^{-p-1}} \left((p-1) \frac{t}{\tilde{u}_p} + 2 - p \right) dx =
\]

\[
-(p-1) \int_{U_{t+\varepsilon}} |F(\nabla \tilde{u}_p)|^p dx + \frac{1}{\varepsilon} \int_{t}^{t+\varepsilon} \left((p-1) \frac{t}{\tau} + 2 - p \right) \int_{S_{r}} \frac{|F(\nabla \tilde{u}_p)|^p}{\tilde{u}_p^{-p-1}} F(\nu) dH^{n-1},
\]

where last equality follows by the coarea formula. Then, reasoning as in [11] and [11] we get that

\[
\int_{\Omega} |F(\nabla \tilde{u}_p)|^p F(\nabla \psi \varepsilon) dx \xrightarrow{\varepsilon \to 0} -(p-1) \int_{U_t} |F(\nabla \tilde{u}_p)|^p dx + \int_{S_t} \frac{|\nabla \tilde{u}_p|^p}{\tilde{u}_p^{-1}} F(\nu) dH^{n-1}.
\]

As regards the other two integrals in (3.4), we have

\[
\int_{\partial \Omega} \beta \tilde{u}_p^{-p-1} \psi \varepsilon F(\nu) dH^{n-1} = \int_{\Gamma_{t+\varepsilon}} \beta F(\nu) dH^{n-1} + \int_{\Gamma_{t+\varepsilon}} \frac{\beta \tilde{u}_p - t}{\varepsilon} F(\nu) dH^{n-1} \xrightarrow{\varepsilon \to 0} \int_{\Gamma_t} \beta F(\nu) dH^{n-1},
\]

by dominated convergence theorem and by monotone convergence theorem and the definition of \(\psi \varepsilon \),

\[
\ell_1(\beta, \Omega) \int_{\Omega} \tilde{u}_p^{-p-1} \psi \varepsilon dx \xrightarrow{\varepsilon \to 0} \ell_1(\beta, \Omega) |U_t|.
\]

Summing the three limits, we get (6.2).

When we consider a generic test function we have

Theorem 6.2. Let \(\Omega \subset \mathbb{R}^n \) be a bounded open set with \(C^{1,\alpha} \) boundary and let \(\alpha \in]0, 1[\). Let \(\varphi \) be a nonnegative function in \(\Omega \) such that \(\varphi \in L^{p'}(\Omega) \), where \(p' = \frac{p}{p-1} \). If \(\varphi \neq |F(\nabla \tilde{u}_p)|^p/\tilde{u}_p^{-1} \), where \(\tilde{u}_p \) is the eigenfunction given in Theorem 6.7, and \(F_{\Omega} \) is the functional defined in (6.3), then there exists a set \(S \subset]0, 1[\) with positive measure such that for every \(t \in S \) it holds that

\[
\ell_1(\beta, \Omega) > F_{\Omega}(U_t, \varphi).
\]

The proof is similar to that obtained in [13] and [11], and we only sketch it here. It can be divided in two main steps. First, we claim that, if

\[
w(x) := \varphi - \frac{|F(\nabla \tilde{u}_p)|^{p-1}}{\tilde{u}_p^{p-1}}, \quad I(t) := \int_{U_t} w \frac{|F(\nabla \tilde{u}_p)|^{p-1}}{\tilde{u}_p} dx,
\]

then the function \(I :]0, 1[\to \mathbb{R} \) is locally absolutely continuous and

\[
F_{\Omega}(U_t, \varphi) \leq \ell_1(\beta, \Omega) - \frac{1}{|U_t| t^{p-1}} \left(d \frac{dt}{dt} (p I(t)) \right)
\]

(6.5)
for almost every \(t \in [0,1]. \) Second, we show that the derivative \(\frac{d}{dt}(t^p I(t)) \) is positive in a subset of \([0,1]\) with nonzero measure.

In order to prove \((6.5)\), using the coarea formula we obtain that, for a.e. \(t \in [0,1], \)

\[
F_{\Omega}(U_t, \varphi) = \ell_1(\beta, \Omega) + \frac{1}{|U_t|} \left(\int_{S_t} w F(\nu) dH^{n-1} - (p - 1) \int_{U_t} \left(\varphi^{p'} - \frac{[F(\nabla \tilde{u}_p)]^p}{\tilde{u}_p} \right) dx \right)
\]

\[
\leq \ell_1(\beta, \Omega) + \frac{1}{|U_t|} \left(\int_{S_t} w F(\nu) dH^{n-1} - p \int_{U_t} w \frac{F(\nabla \tilde{u}_p)}{\tilde{u}_p} dx \right)
\]

\[
= \ell_1(\beta, \Omega) + \frac{1}{|U_t|} \left(\int_{S_t} w F(\nu) dH^{n-1} - p I(t) \right)
\]

(6.6)

where the inequality in \((6.5)\) follows from the inequality \(\varphi^{p'} \geq v^{p'} + p'v^{p'-1}(\varphi - v) \), with \(\varphi, v \geq 0 \).

Proceeding as in \([11]\) and using the coarea formula we obtain for a.e. \(t \in [0,1], \)

\[
- \frac{d}{dt}(t^p I(t)) = t^{p-1} \left(\int_{S_t} w F(\nu) dH^{n-1} - p I(t) \right).
\]

(6.7)

Substituting \((6.7)\) in \((6.6)\) we obtain \((6.5)\). We can conclude the proof, arguing by contradiction exactly as in \([6, \text{Theorem 3.2}]\), indeed is possible to see that the function \(t^p I(t) \) has positive derivative in a set of positive measure. This fact with \((6.5)\) give us the inequality \((6.4)\).

6.1 Applications

In this section we use the representation formula given in Theorem \(6.1\) in order to get some estimates for \(\ell_1(\beta, \Omega) \).

6.1.1 A Faber-Krahn type inequality

Let \(\Omega \subset \mathbb{R}^n \) be a bounded open set with \(C^{1,\alpha} \) boundary, \(\alpha \in [0,1] \) and let \(W_R \) be the Wulff shape centered at the origin with radius \(R \) such that \(|\Omega| = |W_R| \).

Let \(\tilde{\beta} \) be a positive constant and let us consider the following Robin eigenvalue problem in \(W_R \) for \(Q_p \)

\[
\begin{cases}
- Q_p v = \ell_1(\tilde{\beta}, W_R)|v|^{p-2}v & \text{in } W_R, \\
F^{p-1}(\nabla v)F_{\xi}(\nabla v) \cdot \nu + \tilde{\beta} F(\nu)|v|^{p-2}v = 0 & \text{on } \partial W_R.
\end{cases}
\]

(6.8)

Let \(w(t), t \in [0, +\infty[\), be a non negative continuous function such that

\[
w(t) \geq C(R) t,
\]

(6.9)

where \(C(R) = \ell_1(\tilde{\beta}, W_R) + (p - 1) \tilde{\beta} \frac{R}{R^p} \) is the constant appearing in \((4.7)\).

Let us consider the following Robin eigenvalue problem

\[
\begin{cases}
- Q_p u = \ell_1(\beta, \Omega)|u|^{p-2}u & \text{in } \Omega, \\
F^{p-1}(\nabla u)F_{\xi}(\nabla u) \cdot \nu + \beta(x) F(\nu)|u|^{p-2}u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

(6.10)

where

\[
\beta(x) = w(F^p(x)), \quad x \in \partial \Omega.
\]

(6.11)

As a consequence of the representation formula \((6.1)\) for \(\ell_1(\beta, \Omega) \) we get the following Faber-Krahn inequality.
Theorem 6.3. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with $C^{1,\alpha}$ boundary, let $\alpha \in [0, 1]$ and let W_R be the Wulff shape such that $|\Omega| = |W_R|$. Let $w(t)$, $t \in [0, +\infty[$, be a nonnegative continuous function which verifies (6.9) and let $\beta(x)$ be the function defined in (6.11). Then,

$$\ell_1(\beta, W_R) \leq \ell_1(\beta, \Omega).$$

(6.12)

Proof. We construct a suitable test function in Ω for (6.4). Let v_p be a positive eigenfunction of the radial problem (6.8) in B_R. By Theorem 4.1, v_p is a function depending only by $F^o(x)$, $v_p = \rho_p(F^o(x))$, and then we can argue as in Section 4 defining the function

$$f(r_x) = \varphi_*(x) = \left[F\left(\nabla v_p(x)\right) \right]^{p-1} F_\xi(Dv_p(x)) \cdot \nu = \frac{(-\rho_p(r_x))^{p-1}}{(\rho_p(r_x))^{p-1}},$$

where $r_x = F^o(x) \in [0, R]$.

Denoted by $W_s = \{ x \in W_R : v_p(x) > s \}$, $0 < s < R$, clearly W_s is a Wulff shape centered at the origin and by Theorem (6.1) we get

$$\ell_1(\beta(R), W_R) = F_{W_R}(W_s, \varphi_*) = \frac{1}{|W_s|} \left(-(p-1) \int_{W_s} \varphi'^2 \, dx + \int_{\partial W_s} \varphi_*(\nu) \, d\mathcal{H}^{n-1} \right)$$

(6.13)

Let u_ν be the first eigenfunction of (6.10) in Ω such that $\|u_\nu\|_\infty = 1$. For $x \in \Omega$ we set $u_\nu(x) = t$, $0 < t < 1$. Then we consider the Wulff shape $W_{r(t)}$, centered at the origin, where $r(t)$ is the positive number such that $|U_t| = |W_{r(t)}|$. Then, we define the following test function

$$\varphi(x) := f(r(t)) = f(F^o(x)).$$

We stress that clearly $r(t) < R$. Our aim is to compare $\mathcal{F}_{\Omega}(U_t, \varphi)$ with $\mathcal{F}_{W_R}(W_{r(t)}, \varphi_*)$. Then by (6.13) with $s = r(t)$ we have to show that

$$\mathcal{F}_{\Omega}(U_t, \varphi) \geq \frac{1}{|W_{r(t)}|} \left(-(p-1) \int_{W_{r(t)}} \varphi'^2 \, dx + \int_{\partial W_{r(t)}} \varphi_*(\nu) \, d\mathcal{H}^{n-1} \right) = \mathcal{F}_{W_R}(W_{r(t)}, \varphi_*).$$

We first observe that by [26] Section 1.2.3, being $|U_t| = |W_{r(t)}|$ for all $t \in [0, 1]$,

$$\int_{U_t} \varphi'^2 \, dx = \int_{W_{r(t)}} \varphi'^2 \, dx.$$

Moreover, from the weighted isoperimetric inequality quoted in Remark 4.2, Theorem 4.3 and the assumption (6.11) on β we get

$$\begin{align*}
\int_{\partial W_{r(t)}} \varphi_*(\nu) \, d\mathcal{H}^{n-1} &\leq \int_{\partial U_t} f(r(t)) F(\nu) \, d\mathcal{H}^{n-1} \leq \int_{\partial U_t} F^o(x) F(\nu) \, d\mathcal{H}^{n-1} \\
&\leq \int_{S_t} F^o(x) F(\nu) \, d\mathcal{H}^{n-1} + \int_{\Gamma_t} F^o(x) F(\nu) \, d\mathcal{H}^{n-1} \\
&= \int_{S_t} \varphi F(\nu) \, d\mathcal{H}^{n-1} + \int_{\Gamma_t} F^o(x) F(\nu) \, d\mathcal{H}^{n-1} \\
&\leq \int_{S_t} \varphi F(\nu) \, d\mathcal{H}^{n-1} + C(R) \int_{\Gamma_t} F^o(x) F(\nu) \, d\mathcal{H}^{n-1} \\
&\leq \int_{S_t} \varphi F(\nu) \, d\mathcal{H}^{n-1} + \int_{\Gamma_t} w(F^o(x)) F(\nu) \, d\mathcal{H}^{n-1}
\end{align*}$$

and this concludes the proof. \(\square\)

Remark 6.1. When $\beta = \beta$ is a nonnegative constant (6.12) is proved in [11] in the anisotropic case and in [8] in the Euclidean case.
6.1.2 A Cheeger type inequality for $\ell_1(\beta, \Omega)$

In this part we introduce the anisotropic weighted Cheeger constant and, using the representation formula we prove an anisotropic weighted Cheeger inequality for $\ell_1(\beta, \Omega)$. Following [7] we give

Definition 6.1. Let $g : \overline{\Omega} \to]0, \infty[$ be a continuous function the weighted anisotropic Cheeger constant is defined as follows

$$h_g(\Omega) = \inf_{U \subset \Omega} \frac{\int_{\partial U} gF(\nu) d\mathcal{H}^{n-1}}{|U|} = \inf_{U \subset \Omega} \frac{P_F(g,U)}{|U|}.$$

We observe that when $g(x) = c$ is a constant then

$$h_g(\Omega) = c \inf_{U \subset \Omega} \frac{P_F(U)}{|U|} = c h(\Omega),$$

where $h(\Omega)$ is the anisotropic Cheeger constant defined in (2.7). In [7] it is proved that actually $h_g(\Omega)$ is a minimum that is there exists a set $C \subset \Omega$ such that

$$h_g(\Omega) = \frac{P_F(g,C)}{|C|},$$

and we refer to C as a weighted Cheeger set.

We observe that for suitable weight g the constant $h_g(\Omega)$ verifies an anisotropic isoperimetric inequality

Theorem 6.4. Let $g(x) = w(F^\alpha(x)) = w(r)$, $r \geq 0$ with w a non negative and nondecreasing function such that

$$w(r^\frac{1}{\alpha})^{1-\frac{1}{\alpha}}, \quad 0 \leq r \leq R,$$

is convex with respect to r. Then

$$h_g(\Omega) \geq h_g(\mathcal{W}_R) = \frac{nw(R)}{R},$$

where \mathcal{W} is a Wulff shape with the same measure as Ω.

Proof. The proof follows immediately from Remark 3.2.

When $\beta = \bar{\beta}$ is a nonnegative constant and $p = 2$ in [22] the following Cheeger inequality is proved in the Robin eigenvalue case

$$\ell_1(\bar{\beta}, \Omega) \geq \begin{cases} h(\Omega)\bar{\beta} - \bar{\beta}^2 & \text{always} \\ \frac{1}{4} [h(\Omega)]^2 & \text{if } \bar{\beta} \geq \frac{1}{2} h(\Omega) \end{cases} \quad (6.14)$$

In the next result we extend (6.14) to the anisotropic case for any $1 < p < \infty$ considering β not in general constant.

Theorem 6.5. Let us consider problem (6.1) with $\beta \in C(\overline{\Omega})$ such that $\beta \geq 0$. Then the following weighted anisotropic Cheeger inequality holds

$$\ell_1(\beta, \Omega) \geq h_\beta(\Omega) - (p-1)\|\beta^{p'}\|_{L^\infty(\overline{\Omega})},$$

where $p' = \frac{p}{p-1}$.
Proof. Using β as test function in (6.4) we obtain
\[
\ell_1(\beta, \Omega) \geq \mathcal{F}(U_t, \beta) = \frac{1}{|U_t|} \left(-(p-1) \int_{U_t} \beta^p \, dx + \int_{S_t} \beta F(\nu) \, d\mathcal{H}^{n-1} + \int_{\Gamma_t} \beta F(\nu) \, d\mathcal{H}^{n-1} \right)
\]
\[
= \frac{1}{|U_t|} \left(-(p-1) \int_{U_t} \beta^p \, dx + \int_{\partial U_t} \beta F(\nu) \, d\mathcal{H}^{n-1} \right) \geq -(p-1) \|\beta^p\|_\infty + h_\beta(\Omega).
\]
\[\square\]

Remark 6.2. We observe that the previous result continues to hold if we take $\beta \in C(\partial \Omega)$. Indeed in this case from a classical result, see for instance [18, Theorem 4.1], we know that the function β is the trace of a nonnegative function $\beta_\Omega \in C(\Omega)$. Then inequality (6.15) holds with $\beta = \beta_\Omega$.

We emphasize the inequality (6.15) in the particular case of $\beta = \bar{\beta}$ is a nonnegative constant.

Corollary 6.1. The first eigenvalue $\ell_1(\bar{\beta}, \Omega)$ of (6.1) on a fixed bounded open set $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary satisfies
\[
\ell_1(\bar{\beta}, \Omega) \geq \begin{cases}
 h(\Omega)\bar{\beta} - (p-1)\bar{\beta}^p \frac{p-1}{p} & \text{always} \\
 \frac{1}{p^p} [h(\Omega)]^p & \text{if } \bar{\beta} \geq \frac{1}{p^{p-1}} [h(\Omega)]^{p-1}
\end{cases}
\]
(6.16)

Proof. From the Theorem 6.3 we obtain, using the constant function $\bar{\beta}$ as test, we obtain the first part of the inequality. For the second part, suitable using as test function in the functional $\mathcal{F}_{\Omega}(U_t, \cdot)$, the constant $\frac{1}{p^{p-1}} [h_F(\Omega)]^{p-1}$ under the assumption that the constant $\bar{\beta} \geq \frac{1}{p^{p-1}} [h_F(\Omega)]^{p-1}$.
\[\square\]

Remark 6.3. From the anisotropic Cheeger inequality for constant $\bar{\beta}$ we obtain immediately a lower bound for $\ell_1(\bar{\beta}, \Omega)$ in terms of the anisotropic inradius of Ω different from (3.8) by using (2.8).

Remark 6.4. By (ii) Theorem 3.1 and Corollary 6.1 we obtain for $\bar{\beta} \geq \frac{1}{p^{p-1}} [h(\Omega)]^{p-1}$ the anisotropic Cheeger inequality (6.16) for the first Dirichlet eigenvalue of Q_p
\[
\lambda_D(\Omega) \geq \ell_1(\bar{\beta}, \Omega) \geq \frac{1}{p^p} [h(\Omega)]^p.
\]

References

[1] A. Alvino, V. Ferone, P. - L. Lions, G. Trombetti, *Convex symmetrization and applications*, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14. 2. (1997): 275-293.

[2] M. Belloni, V. Ferone, and B. Kawohl. *Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators*. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 54. 5. (2003): 771-783.

[3] M. F. Betta, F. Brock, A. Mercaldo, M. R. Posteraro, *Weighted isoperimetric inequalities on \mathbb{R}^n and applications to rearrangements*. Math. Nachr. 281. 4. (2008): 466-498.

[4] L. Brasco, G. Franzina, *An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities*. NoDEA. Nonlinear Differential Equations and Appl. 20. 6. (2013): 1795-1830

[5] D. Bucur, D. Daners, *An alternative approach to the Faber-Krahn inequality for Robin problems*. Calc. Var. 37. (2010): 75-86
[6] H. Busemann. The isoperimetric problem for Minkowski area. Amer. J. Math., 71. (1949): 743-762.

[7] V. Caselles, G. Facciolo, E. Meinhardt, Anisotropic Cheeger Sets and Applications. SIAM J. Imaging Sci. 2. 4. (2009): 1211-1254.

[8] Q.-y. Dai, Y.-x. Fu, Faber-Krahn inequality for Robin problems involving p-Laplacian. Acta Mathematica Applicatae Sinica, English Series. 27. (2011): 13-28

[9] D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension. Mathematische Annalen. 335. (2006): 767-785.

[10] F. Della Pietra, G. di Blasio, N. Gavitone, Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle. [arXiv:1710.03140]

[11] F. Della Pietra, N. Gavitone, Faber-Krahn Inequality for Anisotropic Eigenvalue Problems with Robin Boundary Conditions. Potential Analysis. 41. (2014): 1147-1166

[12] F. Della Pietra, N. Gavitone, S. Guarino lo Bianco, On functionals involving the torsional rigidity related to some classes of nonlinear operators. [arXiv:1705.03330]

[13] F. Della Pietra, N. Gavitone, H. Kovářík, Optimizing the First Eigenvalue of some Quasilinear Operators with respect to Boundary Conditions. ESAIM: COCV. 23. (2017): 1381-1395.

[14] F. Della Pietra, N. Gavitone, G. Piscitelli, On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators. [arXiv:1704.00508]

[15] E. N. Dancer, D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions. J. Differential Equations. 138. (1997): 86-132.

[16] E. DiBenedetto, \(C^{1+\alpha}\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7. 8. (1983): 827-850.

[17] I. Fonseca and S. Müller. A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A. 119. 1-2. (1991): 125-136.

[18] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova. 27. (1957) 284-305

[19] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, 2nd edn. Springer-Verlag (1983)

[20] T. Giorgi, R. G. Smits, Monotonicity results for the principal eigenvalue of the generalized Robin Problem. Illinois Journal of Mathematics. 49. 4 (2005): 1133-1143

[21] B. Kawohl, M. Novaga, The p-Laplace eigenvalue problem as \(p \to 1\) and Cheeger sets in a Finsler metric. J. Convex Anal. 15. 3. (2008): 623-634

[22] J. B. Kennedy, On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditions. University of Sydney. School of Mathematics and Statistics. Ph.D. Thesis (2010)

[23] J. R. Kuttler, A Note on a Paper of Sperb. ZAMP. 24. 3. (1973): 431-434

[24] O. A. Ladyzhenskaya, N. N. Uraltseva Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York. (1968)

[25] P. Lindqvist, On a Nonlinear Eigenvalue Problem. Rocky Mountain Journal of Mathematics. 23. 1. (1993)
[26] V. G. Maz’ja, *Sobolev Spaces*. Springer Verlag, Berlin (1985)

[27] P. Tolksdorf, *Regularity for a more general class of quasilinear elliptic equations*. J. Diff. Equat. 54. 1. (1984): 126-150

[28] N. S. Trudinger, *On Harnack type inequalities and their application to quasilinear elliptic equations*. Comm. Pure Appl. Math. 20. (1967): 721-747