Data Article

Data on unstable charge/discharge behavior of composite anode composed of Sn compound and multi-walled carbon nanotube

S.H. Kima, J.Y. Leeb, Y.S. Yoonb,⁎

a Department of Fashion Industry, Incheon National University Songdo, Yeonsu-gu, Incheon, Republic of Korea
b Department of Chemical Engineering, Gachon University, Gyeonggi-do 461-710, Republic of Korea

ARTICLE INFO

Article history:
Received 25 January 2018
Received in revised form 7 February 2018
Accepted 12 February 2018
Available online 17 February 2018

ABSTRACT

This data is related to the article entitled “Effect of Composite Structure on Capacity Instability of SnO\textsubscript{2}-Coated Multiwalled Carbon Nanotube Composite Anode” (Kim et al., 2018) \cite{1}. This data provides the information about capacitance instability of a composite anode material based on multiwalled carbon nanotube (MWCNT) coated with crystalline and amorphous SnO\textsubscript{2} and Sn on the inner and outer walls of MWCNT fabricated by a simple wet synthesis method.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Materials
More specific subject area	Composite Anode
Type of data	Table, figure
How data was acquired	BioLogic EC-Lab, VSP-300
Data format	Analyzed

DOI of original article: https://doi.org/10.1016/j.jallcom.2018.01.283

⁎ Corresponding author.
E-mail address: benedicto@gachon.ac.kr (Y.S. Yoon).

https://doi.org/10.1016/j.dib.2018.02.023

2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Half cell performance was measured with metal Li foil at RT

Coin cell performance

Energy Materials Lab, Department of Chemical Engineering, Gachon University, Republic of Korea.

This article.

1. Data

This dataset provides information on the capacitance instability of MWCNT-Sn compound composite anode and the capacity variation characteristics of the composite with the progress of charge-discharge when the Sn compound is predominantly located on the outer surface of the MWCNT. Fig. 1 shows the TEM image of MWCNT-Sn based composite. Fig. 2 gives the graph for capacities vs. cycle number for MWCNT-Sn based composite anode materials obtained using the 2032 coin cell with metal Li. Table 1 shows representative values of the specific capacity according to the cycle number of the MWCNT-Sn compound composite anode synthesized at a precursor concentration of 0.5 M.

2. Experimental design, materials and methods

In order to chemically activate the surface of the MWCNT having an average diameter of 500 nm, a chemical surface treatment was carried out by the liquid phase method as follows. 1 g of MWCNT was stirred in 1 mol of nitric acid solution at 120 °C for 4 h and then washed with distilled water until pH 7. The resulting reaction product was then dried at 60 °C for 24 h. 0.105 g of SnC2O4·2H2O was mixed with 3 ml of distilled water and stirred at room temperature for 60 min. 3 ml of ethylene glycol and 0.25 g of poly-vinylpyrrolidone (PVP) were stirred at room temperature for 10 minutes. 0.33 g of the surface-treated MWCNT and thus obtained solution were mixed and heated to 195 °C and then stirred for another 5 h. The obtained reaction product was centrifuged, washed with distilled water and centrifuged again to obtain a precipitate. The precipitate was again dried in an electric oven at 50 °C for 5 h to obtain a composite anode in the form of a black powder.

A high resolution TEM analysis was performed to identify the shape and location of the hybridized Sn compounds in the MWCNT composite anode. An anode electrode slurry composed of 86 wt% of active material, 9 wt% of conductive material, and 5 wt% of binder was directly applied on the aluminum current collector to have a thickness of 50 μm and dried at 80 °C for 4 h. A CR2032 coin cell was prepared in a glove box using Li metal as the counter electrode and 1 M LiPF6 (EC: DMC: EMC = 1: 1: 1) as the electrolyte. Specific capacities were measured using a cycling voltage and current method (CV) at a scan rate of 0.1 mV/s in the potential range of 0.1 and 2.5 V at room temperature (298 K).
Fig. 1. TEM image of a tin oxide coated MWCNT (white cursors show the tin oxide materials on outer and inner sides of MWCNT).

Fig. 2. Capacities vs. cycle number for composite anode consisting of MWCNT- Sn compound.

Table 1
Specific capacity according to the cycle number of the composite anode synthesized at a precursor concentration of 0.5 M.

Cycle Number	Specific capacity (mA h g\(^{-1}\))
20th	610
30th	670
40th	570
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.02.023.

Reference

[1] S.H. Kim, J.Y. Lee, Y.S. Yoon, Effect of composite structure on capacity instability of SnO$_2$-coated multiwalled carbon nanotube composite anode, J. Alloy. Compd. (2018).