Abstract—Multi unmanned aerial vehicle (UAV) network is a promising solution to providing wireless coverage to ground users in challenging rural areas (such as Internet of Things (IoT) devices in farmlands), where the traditional cellular networks are sparse or unavailable. A key challenge in such networks is the 3-D placement of all UAV base stations (BSs) such that the formed multi-UAV network: 1) utilizes a minimum number of UAVs while ensuring—2) backhaul connectivity directly (or via other UAVs) to the nearby terrestrial BS; and 3) wireless coverage to all ground users in the area of operation. This joint backhaul-and-coverage-aware drone deployment (BoaRD) problem is largely unaddressed in the literature and, thus, is the focus of this article. We first formulate the BoaRD problem as integer linear programming (ILP). However, the problem is NP-hard and, therefore, we propose a low complexity algorithm with a provable performance guarantee to solve the problem efficiently. Our simulation study shows that the Proposed algorithm performs very close to that of the Optimal algorithm (solved using ILP solver) for smaller scenarios, where the area size and the number of users are relatively small. For larger scenarios, where the area size and the number of users are relatively large, the proposed algorithm greatly outperforms the baseline approaches—Backhaul-aware Greedy and random algorithm, respectively, by up to 17% and 95% in utilizing fewer UAVs while ensuring 100% ground-user coverage and backhaul connectivity for all deployed UAVs across all considered simulation setting.

Index Terms—Approximate algorithms, backhaul, graph theory, multi-UAV networks, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

U NMANNE D aerial vehicles (UAVs), or drones, have found numerous applications in recent years in the industry, government, and commercial fields, such as telecommunications, rescue operations, safety aerial sensing, safety surveillance, package delivery, and precision agriculture [1]. In particular, UAVs have attracted significant attention as the key enablers of end-to-end wireless communications, owing to their small size, positioning flexibility, and agile autonomy. One of the critical applications of UAVs is to provide wireless connectivity in remote/rural areas to wireless devices, such as the Internet of Things (IoT) devices, where the conventional cellular wireless coverage is sparse or largely unavailable [2]. Multiple UAVs can collaborate to form a multi-UAV network and provide end-to-end wireless communication services to all ground users (e.g., IoT devices, etc.) in the area of operation. However, there are several challenges in doing so.

Deploying a multi-UAV network in order to provide wireless coverage to all ground users in a certain area of operation incurs enormous investment for network providers. Thus, it is critically important to utilize a minimum number of UAVs and facilitate the engineering application of multi-UAV networks. As the ground-user distribution in a typical rural or remote area exhibits spatial and temporal dynamics, it is favorable to place UAVs close to more users and increase the number of users covered by deployed UAVs. Moreover, in order to ensure end-to-end wireless connectivity between the terrestrial base station (BS) and any UAV (via other UAVs as relay hops), it is important that all the deployed UAVs in the formed multi-UAV network maintain a backhaul connectivity among UAVs (in other words, there exists at least one path from a UAV to any other UAV in the formed multi-UAV network) [3]–[6].

Several works on UAV-assisted wireless communications have investigated optimal 3-D placement of UAVs with a variety of objective functions, such as ground-user coverage maximization [7], maximizing average rate under worst-case bit error rate threshold [8], energy-efficient communication maximization [9], etc., with applications in coverage and capacity enhancement. Refer to Section II for a detailed discussion of related works. However, there is no work that studies the joint optimization of number, 3-D placement, and backhaul connectivity of multi-UAV networks.

In this article, we first formulate the above backhaul-and-coverage-aware drone deployment (BoaRD) optimization problem as an integer linear programming (ILP) problem, considering communication channel constraints for all the access links and backhaul links, and show that it is NP-Hard. Following this, we propose a low computational complexity algorithm, using graph-theoretic concepts, for solving the BoaRD problem with a provable performance guarantee.
The key contributions of this article are as follows.
1) We investigate the problem of UAV 3-D placement such that the formed multi-UAV network: a) employs a minimum number of UAVs; b) ensures wireless coverage to all ground users in the area of operation; and, finally, c) guarantees that all UAVs in the multi-UAV network are directly or indirectly (via one or more UAV relay hops) connected to the nearby terrestrial BS, i.e., the formed multi-UAV network maintains an end-to-end backhaul connectivity among UAVs.
2) We formulate the joint optimization problem of number, placement, and backhaul connectivity of multi-UAV networks, termed the BoaRD problem as an ILP optimization problem. We show that the geometric set cover (GSC) problem is reducible to the BoaRD problem, and prove that it is NP-Hard. To solve the problem efficiently, we use graph-theoretic concepts and propose a low computational complexity algorithm with a provable performance guarantee.
3) We solve the BoaRD problem using the ILP solver (namely, the Gurobi optimizer) and compare our proposed algorithm against it for smaller scenarios, where the area size of considered operation area is small (up to 10×10 km2) and number of users is few (e.g., up to 60 users). The results shows that the Proposed algorithm performs quite well and utilizes close to the optimal number of UAVs for smaller scenarios.
4) For larger scenarios (with larger operation area sizes (e.g., 50×50 km2) and hundred’s of ground users), our large-scale simulations demonstrate that the Proposed algorithm significantly outperforms the two baselines—Backhaul-aware Greedy (BaG) (described in Section VIII) and Random algorithms in utilizing fewer number of UAVs, by up to 17% and 95%, respectively, across varying number of ground users, area sizes, and signal-to-noise ratio (SNR) thresholds for backhaul links. Moreover, the Proposed algorithm outperforms the basic greedy solution (with no backhaul) by up to 13% in high user density scenarios at low backhaul SNR thresholds (i.e., minimum SNR threshold for a successful connection between two UAVs), which further corroborates the efficacy of the Proposed algorithm.

The remainder of this article is organized as follows. Section II reviews the related works. Section III presents the system model. In Section IV, we formulate the BoaRD problem as an ILP optimization problem and prove its NP-hardness. Section V discusses the key intuitions behind the Proposed solution, which are at the basis of the Proposed algorithm discussed in Section VI. In Section VII, we analyze the performance guarantee of the Proposed algorithm. Section VIII discusses the experimental results. Finally, Section IX presents the concluding remarks.

II. RELATED WORKS

Recent years have witnessed a surge of works such as in [2], [5]–[40] (as well as the comprehensive overview [1] [41]) that attempts to address several research challenges in UAV communications and networking. Existing literature has focused on the following research directions—1) air-to-ground channel modeling [10]–[13]; 2) UAV trajectory optimization [19]–[24]; 3) performance analysis of UAV-enabled wireless networks [25]–[28]; and 4) optimal placement of UAVs as flying BSs with a variety of objective functions, such as energy-efficient communication maximization, sum-rate maximization, ground-user coverage maximization, and maximize average rate under the worst case bit error rate threshold [2], [5]–[9], [14]–[18], [29]–[40], with applications in coverage and capacity enhancement of 4G/5G cellular networks, flying ad hoc networks (FANETs), and flying BSs for post-disaster situations, mmWave communications, among others.

Though there exists a rich and growing body of literature on UAV communications, including the optimal placement of UAVs, there is scant work on the design, analysis, and optimization of backhaul connectivity of multi-UAV networks while optimizing the placement of UAVs for ground-user coverage. Bor-Yaliniz et al. [15] proposed a 3-D placement algorithm to cover the maximum number of ground users, given the fixed number of UAVs. Zhang et al. [36] optimized the 3-D position of UAVs aiming to jointly minimize the number of UAVs and the coverage rate. Lin et al. [37] proposed an adaptive UAV deployment scheme to optimize UAV locations for more user coverage, and less communication energy consumption. Zhang et al. [38] studied the joint 3-D deployment of the UAVs and power allocation problem to maximize the throughput of the UAV BS system. However, the mentioned works only focused on the access link in the drone-assisted network without considering the backhaul link. Ansari et al. [33] proposed a drone communication framework, in which free-space optical links are employed to serve as the backhaul link between UAV and ground BSs. They used the free-space link to transfer data and energy to the UAV simultaneously and, thus, provision high-speed backhaul as well as prolong the UAV’s flight. Lyu et al. [34] aimed to minimize the number of UAV-mounted mobile BSs (MBSs) needed to provide wireless coverage for a group of distributed ground terminals (GTs), with the assumption that MBSs are backhaul connected via satellite links. Gupta et al. [42] proposed an approach to partition the available resource between access links and a backhaul link by optimizing the placement of a single UAV in the area of operation. Hu et al. [43] maximized the system uplink throughput by jointly optimizing the UAV altitude, power control, and bandwidth allocation between the backhaul and access links. Pham et al. [39] aimed to maximize the sum rate achieved by ground users by jointly optimizing the UAV placement, spectrum allocation, and power control. Their scenario consists of a single UAV connected to a macro BS by a backhaul link and serves several ground users via access links. Iradukunda et al. [5] investigated the problem of maximizing the worst achievable rate for ground users by optimizing the UAV placement and power allocation, and bandwidth allocation. They considered that several users are connected to a single UAV via access links, which is connected to a macro BS via a backhaul link, by incorporating the nonorthogonal multiple access (NOMA).
scheme. Santos et al. [44] provided an approach to optimally place the UAVs as gateways in the area to address the dynamic traffic demand of access points, which itself is based on dynamic attributes of users. Nguyen et al. [40] aimed to maximize the user sum rate in a UAV-assisted cellular network by jointly optimizing the location of UAVs, the transmit beamformer at UAVs and a macro cell BS, and the decoding order of the NOMA-successive interference cancelation on wireless backhaul transmissions. They considered a number of UAVs at UAVs and a macro cell BS, and the decoding order by jointly optimizing the location of UAVs, the transmit beamformer at UAVs and a macro cell BS, and the decoding order of the NOMA-successive interference cancelation on wireless backhaul transmissions. They considered a number of UAVs directly backhauling to the macro cell BS and forming a two-hop backhaul connectivity. Dai et al. [6] aimed to maximize the end-to-end throughput in a UAV-assisted cellular network consisting of a single user, a macro cell BS, and a fixed number of UAVs. They derived the optimal position of UAVs considering power control, and orthogonal frequency schemes.

As evidenced, none of the existing work have investigated the joint optimization problem of number, placement, and backhaul connectivity of multi-UAV networks, which is the key focus of our work.

III. MULTI-UAV NETWORK MODEL

As shown in Fig. 1, we consider a multi-UAV network with V ground users, J UAVs as aerial BSs, and one or more nearby terrestrial BS via which the multi-UAV network can communicate with outside world. Denote B as the set of terrestrial BSs in the area of operation. We assume that ground users and terrestrial BSs are located at the given locations on the horizontal plane (ground). For simplicity, let $V = V \cup B$ be the set of all ground users (including the terrestrial BSs) that are required to be covered by J UAVs deployed in the region of interest.

Note that both the height and horizontal distance of a UAV toward ground users significantly impact the channel conditions of the access link. On the other hand, all ground users need to communicate with each other (or to the remote server) via the backhauls between UAVs, which requires that all UAVs keep connectivity with each other. Thus, UAVs should be deployed close enough to each other to ensure the channel condition threshold of the UAV–UAV backhaul links. As a result, both the (UAV–ground user) access link and (UAV–UAV) backhaul link are taken into account in the multi-UAV network to provide seamless coverage for all ground users.

In this work, we consider that the adjacent UAVs (in the backhaul links) in our multi-UAV network utilize orthogonal frequency channels to not interfere with one another. This is a typical frequency planning approach employed in the terrestrial cellular networks. It means that two UAVs can reuse the same frequency channel (and spectrum band) if those two UAVs not adjacent to each other. For access link, we can use the same frequency channel with various frequency/time division multiple access (and furthermore, channel resource scheduling protocols) so as to ensure no or little co-channel interference between two ground users.

Even after employing proper frequency planning and multiple frequency/time division access schemes, we understand that both these communication links are wireless and are susceptible to channel interference and other factor, such as large-scale fading, small-scale fading, and shadowing. However, since the focus of our work is on the deployment and coverage of multi-UAV network (rather than lower PHY or MAC layer design for a certain wireless link), we utilize simplified communication path-loss model for wireless links (both access and backhaul links). One can extend our work to account for channel interference and other path-loss-related factors by employing sophisticated path-loss models, such as measurement-based path-loss models.

A. Average Path-Loss Model Between Ground User and UAV

The air-to-ground communications channel may be line of sight (LoS), and non LoS (NLoS) and, thus, both of them need to be taken into account. The communication channel is assumed to be a probabilistic LoS channel. Given an access link between ground user i located at $(x_i', y_i', 0)$, and UAV j located at (x_j, y_j, h_j), the path loss of the LoS and NLoS channels are modeled as follows [7]:

$$
\begin{align*}
\phi^L_{ij} &= 20 \log \left(\frac{4\pi f d_{ij}}{c} \right) + \eta^L \\
\phi^N_{ij} &= 20 \log \left(\frac{4\pi f d_{ij}}{c} \right) + \eta^N
\end{align*}
$$

where η^L and η^N are denoted as the system loss for the LoS and NLoS of an access link, f_s is the carrier frequency, $d_{ij} = [(x_i - x_j)^2 + (y_i - y_j)^2 + h_j^2]^{1/2}$ is this 3-D distance between user i and UAV j, and c is the speed of light. As the access link is a probabilistic LoS channel, the probabilities of both the LoS and NLoS channels can be expressed as [7]

$$
\begin{align*}
p^L &= \left[1 + a e^{-b(h_i - a)} \right]^{-1} \\
p^N &= 1 - p^L
\end{align*}
$$

where a and b are constant parameters based on the environment (e.g., urban, rural, etc.), which can be measured proactively. h_i is the elevation angle between ground user i and UAV j that can be modeled as $\theta_{ij} = \arctan(h_j / d_{ij})$ where h_j is the height of the UAV and $d_{ij} = [(x_i - x_j)^2 + (y_i - y_j)^2]^{1/2}$ is the horizontal distance between user i and UAV j.

Fig. 1. Envisioned multi-UAV network model with UAVs, ground users, and terrestrial BS.
Hence, the average path loss of the access link can be derived as follows [7]:

$$\phi_{ij} = P^L \phi^L_{ij} + P^N \phi^N_{ij}. \quad (3)$$

B. Average Path-Loss Model Between Two UAVs

Since UAVs fly over ground users, we assume that their altitudes are high enough to maintain LoS channel between each other. Thus, the path loss between UAV j and UAV k can be expressed as

$$\phi^c_{jk} = 20 \log \left(\frac{4\pi f_c d_{jk}}{c} \right). \quad (4)$$

Without loss of generality and for the ease of presentation, we consider same carrier frequency (f_c) for the backhaul link (as that of access link).

C. Communication Model

Given the path-loss model, P_j as the transmission power of UAV j, and δ^2 as the noise power, we can derive the SNR between UAV j and ground user i as follows:

$$\gamma_{ij} = 10 \log P_j - \phi_{ij} - 10 \log \delta^2. \quad (5)$$

Note that the SNR of a ground user i determines if it is covered by the corresponding UAV. In other words, a ground user is assumed to be within the coverage of UAV j when its γ_{ij} meets the SNR threshold γ_0 (i.e., $\gamma_{ij} \geq \gamma_0$). Given the 3-D location and transmission power of UAV j, we can determine the transmission range of a certain UAV. Similarly, we assume that UAV j and UAV k have a successful connection provided that γ_{jk} exceeds the corresponding threshold γ'_0. Major notations used in this article are listed in Table I.

Symbol	Definition
\mathcal{B}	Set of terrestrial BSs.
V	Set of a ground users (including terrestrial BSs).
J	Set of UAVs in Multi-UAV Network.
$\left(x_j, y_j, h_j\right)$	3D location of UAV j.
$\left(x_j^{\prime}, y_j^\prime, 0\right)$	3D location of ground user t.
γ_{ij}	SNR between UAV j and user i.
γ'_{jk}	SNR between UAV j and UAV k.
γ_0	Minimum SNR threshold for a successful communication link between two UAVs.
γ'_0	Minimum SNR threshold for successful connection between a ground user and a UAV.
R	Radius of maximum radio coverage on ground.
R'	Radius of maximum UAV coverage. (i.e., in air).

IV. Problem Formulation

In this section, we formulate the BoaRD problem as an ILP optimization problem. BoaRD aims to minimize the number of UAVs needed to provide wireless coverage to all ground users in the area of operation, such that: 1) each ground user is efficiently covered by at least one UAV and 2) the backhaul connectivity is guaranteed.

Notations: Let V and J denote the set of ground users and UAVs, respectively. γ_{ij} denotes the SNR between ground user $i \in V$ and UAV $j \in J$, whereas γ'_0 denotes the SNR between two UAVs j and k. Let γ_0 denote the minimum SNR threshold for successful connection between a ground user and a UAV. Similarly, let γ'_0 denote the minimum SNR threshold for successful communication between any two UAVs. For backhaul connectivity criteria, a UAV must have a link with at least one other UAV. Finally, let (x_j, y_j, h_j) denote the 3-D location of UAV j (in case of deployment in the 3-D space) in the considered area of operation.

Variables: We introduce a decision variable $f_j = 1$, if a UAV j is located at a 3-D location (x_j, y_j, h_j) in the area of operation; otherwise, $f_j = 0$. We use another variable $\beta_{ij} = 1$, if a ground user $i \in V$ is associated with a UAV $j \in J$; otherwise, $\beta_{ij} = 0$. We consider a third variable $z_{jk} = 1$, if a UAV j is connected to UAV k; otherwise, $z_{jk} = 0$ (where $j, k \in J$). Fourth, we introduce a dummy decision variable $u_{jk} = 1$ to indicate whether a certain UAV–UAV backhaul link is selected in the multi-UAV network topology.

$$\begin{align*}
\min_{(\beta_{ij}, f_j, z_{jk})} & \sum_j f_j \\
\text{s.t.} & \sum_{j \in J} \beta_{ij} \geq 1 \quad \forall i \in V \\
& \gamma_{ij} \beta_{ij} \geq \gamma_0 \quad \forall i \in V, j \in J \\
& \beta_{ij} \leq f_j \\
& \gamma'_{jk} z_{jk} \geq \gamma'_0 \quad \forall j \in J, k \in J, k \neq j \\
& z_{jk} \leq f_j, z_{jk} \leq f_k \\
& \sum_{j \in J} z_{jk} \geq 1 \quad \forall j \in J \\
& u_{jk} \leq z_{jk} \\
& \sum_{j, k \in J} u_{jk} \leq \sum_{p \in J} f_p - 1 \\
& \sum_{j, k \in J} u_{jk} \leq |S| - 1 \quad \forall S \subseteq J, |S| \geq 1 \\
& f_j, \beta_{ij}, z_{jk}, u_{jk} \in \{0, 1\}. \quad (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
\end{align*}$$

Objective Function: As shown in (6), the objective function is to minimize the number of UAVs (and determine the optimal 3-D placement of each UAV) in the multi-UAV network, so that each ground user is served by at least one UAV and the backhaul connectivity among UAVs is guaranteed. Note that this does not preclude the possibility that some ground users may be covered by more than one UAVs, and each UAV may have links with more than one UAVs in the multi-UAV network.

Constraints: Equation (7) imposes each ground user to be covered by at least one UAV in the area. Equation (8) indicates that a ground user can only be covered by a certain UAV if the SNR threshold (γ_0) is met. Equation (9) indicates that ground user i may be associated with UAV j only if UAV j is deployed in the area. Equation (10) ensures that a UAV–UAV backhaul link exists only if it meets the SNR threshold γ'_0 between them. Similarly, (11) indicates that a connection between two UAVs j and k exists only if both UAVs are deployed in the area of operation. Equation (12) ensures that a certain UAV has a
backhaul link with at least one other UAV. Note this constraint by itself does not guarantee that the backhaul connectivity constraint is met.

In order to address this, we introduce three more constraints, i.e., constraints (13)–(15). Equation (13) restricts a certain UAV-to-UAV link be a part of connected network topology only if the communication link exists between those two UAVs. Constraint (14) ensures that there exists at least \((n - 1)\) connections among \(n\) UAVs, where \(n = \sum_{j \in J} f_j\) and \(n \leq |J|\). Moreover, constraint in (15) ensures that there is no cycle in any subset \(S \subseteq J\). These two are the necessary and sufficient conditions to ensure a connected backhaul connectivity in the multi-UAV network with \(n\) UAVs. Equation (16) represents the binary decision variables, which take values either 0 or 1.

Theorem 1: The BoaRD problem is NP-Hard.

Proof: We show that GSC problem, which is NP-Hard, is polynomial-time reducible to the BoaRD problem, which further shows that the BoaRD problem is NP-Hard. Let us consider a generic instance of GSC problem: given a set \(X\) of points in \(\mathbb{R}^2\), and \(\mathcal{R}\) is a family of subsets of \(X\), which is called ranges. The goal is to select a subset \(C \subseteq \mathcal{R}\) whose size is minimum and all points in the \(X\) are covered by at least one range in \(C\).

The proof is quite straightforward. Suppose that the SNR threshold for UAV-to-UAV link is \(-\infty\) (i.e., \(y_0' = -\infty\)), which relaxes constraint (10). Furthermore, it also means all UAVs are in communication range and, thus, relaxes all connectivity constraints, i.e., constraints (13)–(15). Given the SNR threshold for UAV-to-ground-user link \(y_0\), we can compute the radius of maximum ground coverage (denoted by \(R\)) [7]. Then, the BoaRD problem is transformed into choosing the minimum number of radio coverage disks (with radius \(R\)) that provides coverage to all ground users. Considering the set of users \(J = X\), and the set of users on the ground that can be covered by deploying UAVs \(R = \mathcal{R}\), then the optimal solution to the transformed problem \(C\) is equivalent to the optimal solution to the GSC problem \(C\). We reduced the GSC problem to an instance of the BoaRD problem. Since the GSC problem is a classic NP-hard problem [45], the BoaRD problem is also NP-Hard.

V. KEY INTUITIONS BEHIND THE PROPOSED SOLUTION

In this section, we discuss key intuitions behind the proposed solution (discussed in Section VI) that solves BoaRD problem in polynomial-time with performance guarantees.

1) **Focus on the Optimal Altitude of the UAVs That Provides Maximum Radio Coverage on the Ground:** Since one of the key objectives of the BoaRD problem is to provide coverage to all ground users in the area, it becomes intuitive that UAVs are deployed at the optimal altitude that provides maximum radio coverage on the ground while meeting the SNR threshold, thanks to their capability of maintaining that height. From the seminal work [7], such an optimal altitude can be computed mathematically given the environmental parameters, carrier frequency, LoS and NLoS system loss, and transmit power. Let \(h\) and \(R\), respectively, be the optimal altitude of UAV and the radius of the maximum radio coverage by a UAV on the ground (corresponding to SNR threshold \(y_0\) for access link).

2) **Focus on Possible Covered Sets of Ground Users for UAVs Rather Than Candidate 3-D Locations of UAVs:** Since UAVs can be deployed in any 3-D location in the area of operation \(\mathbb{R}^3\), the number of candidate locations of UAVs is infinite, or the solution space of BoaRD problem is infinite. However, several of those candidate locations are essentially equivalent if they provide wireless coverage to the same set of ground users. Thus, the Proposed solution only needs to consider one representative 3-D location among its associated class of all equivalent 3-D locations, and the number of all such representative 3-D locations is finite because the number of all possible covered set of ground users is finite.

3) **Focus on Those Candidate 3-D Locations That Provide Coverage to a Large Set of Ground Users:** If a representative 3-D location covers the set of ground users \([u_1, u_2, u_3, u_4]\), then the Proposed solution does not need to consider 3-D locations that cover its subsets, such as \([u_1, u_2]\) or \([u_2, u_3, u_4]\).

4) **Account for UAV–UAV Connectivity Guarantee:** The proposed solution to the BoaRD problem not only minimizes the number of UAVs needed to cover all the ground users but also guarantees that the deployed UAVs ensure backhaul connectivity. Now, the average path loss in the UAV–UAV backhaul link is usually much smaller compared to that of UAV-to-ground-user access link, thanks to the LoS path-loss model in case of backhaul links. Thus, the maximum radius \(R'\) of UAV coverage is much larger than the maximum radius \(R\) of the radio coverage on the ground, i.e., \(R' > R\).

3-D Candidate Locations of UAVs: Intuitively, the number of candidate locations of UAVs in the area of operation is infinite. Utilizing intuitions 1 and 2, we present a simple grid approach to reduce the infinite solution space of BoaRD problem to finite solution space—we first determine the optimal altitude of the UAVs that provides the maximum coverage on the ground (see intuition 1). Next, as depicted in Fig. 2, we divide the area of operation into \(N\) grids, each with diagonal length \(R\), and length \(= \text{breadth} = (R/\sqrt{2})\), where \(R\) is the radius of the maximum radio coverage on the ground. All these grid intersection points are the candidate locations of UAVs. Note that this approach allows eight grid intersections \((k_i \mid i \in [1, 9], i \neq 5)\) in addition to the central grid intersection \((k_5)\). Given that there are nine candidate locations within a grid of diagonal length \(R\), it is very likely that the resultant finite solution space (with \(N\) grids) will have the (near) optimal solution to the problem. Compared to state-of-the-art grid-based approach [30], [31] that simply discretizes the area of operation, our approach here is to create a minimum number of grids that discretizes the area without losing out on the potential of finding an optimal solution. However, 3Note that this intuition holds for our BoaRD problem setting as it only ensures ground-user coverage (with no constraint on bit rate thresholds). However, it will not hold for multi-UAV network system where user bit rate thresholds have to be met. We will investigate this in our future work.
our proposed approach is independent of this approach, and will work perfectly with any state-of-the-art grid discretization approaches.

VI. PROPOSED ALGORITHM

In this section, we model multi-UAV network as a graph (see Fig. 2), and then transform the BoaRD problem as a graph problem. Next, we propose a low-complexity algorithm with performance guarantee to effectively solve the transformed BoaRD problem.

Graph Modeling: A UAV will provide wireless coverage to a certain ground user if it lies within the UAV’s maximum radio coverage (R). On the other hand, a UAV will have a backhaul link with another UAV in the area of operation, if they are within the transmission range of each other (i.e., R’).

As depicted in Fig. 2, let graph $G(V \cup K, E \cup E')$ denote the multi-UAV network with V as the set of ground users and K as the set of 3-D candidate locations. For edge set E, we include an edge e_{jk} between user $i \in V$ and candidate location $k \in K$, if user i is covered by the UAV at location k, i.e., $\gamma_{jk} \geq \gamma_0$. In other words, the Euclidean distance between user i and candidate location k is less than or equal to R, i.e., $dist_{ik} \leq R$. Similarly, the edge set E' reflects the backhaul links, where a link e'_{jk} between UAV j and k exists if they are within each other’s transmission range, i.e., $\gamma_{jk} \geq \gamma_0'$ (or Euclidean distance between UAV j and k, $dist_{jk} \leq R'$).

Given the graph G, the BoaRD problem is transformed into choosing the minimum subset D of K such that every node in V is adjacent to at least one member of D. In fact, the members in D form a connected network topology.

Let $D \subseteq K$ be the minimum connected subset of G, i.e., the solution of the BoaRD problem. It means that all nodes in D can cover every node in V, and keep connected (i.e., the nodes of D can reach each other via a path that stays entirely within D). In other words, deploying $|D|$ UAVs at the selected locations can provision coverage to all ground users, whereas all the UAVs form a connected network, i.e., backhaul connectivity is guaranteed. Note that though the BoaRD problem seems similar with a well-known graph problem, i.e., the minimum connected dominating set (MCDS) problem\(^4\) [46], it is different in two aspects: 1) D is a subset of K (instead of being a subset of V itself) and 2) each node in V is adjacent to at least one node in D, where $D \subseteq K$.

Note that we do not consider any connectivity constraint on remaining $K \setminus D$. Next, we detail the Proposed algorithm that efficiently solves the transformed BoaRD problem with low computational complexity and provable performance guarantee.

Algorithm Description: The pseudocode of the Proposed algorithm is presented in Algorithm 2. As shown in line 1, the algorithm first calls a function INITIALIZATION (V, K, R, R') that returns—1) the aforestated graph G and 2) a list $U = \cup_{k \in K} U_k$ where each U_k contains the set of the

\(4\) A dominating set of a graph G, denoted as D, is a set of nodes where for every node $u \in G$, either $u \in D$ or u is adjacent to a node $v \in D$. Then, a dominating set of a graph G is a connected dominating set with the smallest possible cardinality among all connected dominating sets of G.

Fig. 2. Constructed graph G, with V ground users and K candidate locations in the area of operation. Blue and Red dots, respectively, represent ground users and candidate 3-D locations. An edge (in red) represents the communication link between a ground user and a candidate location. Whereas, an edge (in green) denotes the link between two UAVs.
ground users associated with the UAV at candidate location $k \in K$.

The details of INITIALIZATION (V, K, R, R') is presented in Algorithm 1. At the beginning, the algorithm initializes an empty graph G and list U in line 1. Then, as shown lines 2–5, graph G incorporates edges between each pair of candidate location $j, k \in K$, whose Euclidean distance is $\leq R'$ (in other words, the UAVs at the candidate locations j and k are within the maximum UAV coverage radius R' of each other). Similarly, the algorithm also adds edges between ground user $i \in V$ and candidate location $k \in K$ if the Euclidean distance between them is $\leq R$ (see lines 7–10). In addition, as shown in line 11, we add ground user i into U_k (with respect to (w.r.t) to candidate location k) if user i is within the coverage range of UAV k.

After the initialization step, we take the set of candidate locations K as the initial D (line 2 of Algorithm 2). (Note that D is the minimum connected subset of G, i.e., the solution to the BoaRD problem.) At each iteration, the algorithm first selects the list of candidate locations U_{min} which have the minimum cardinality of covered ground users (see line 5). Sequentially, in line 5, it selects a candidate location u from graph G if both of the following conditions are met—1) removing u does not make the graph G disconnected and 2) remaining candidate locations ($K \setminus \{u\}$) can cover all the nodes in ground-user set V. If the above conditions are not satisfied, candidate location u is dispensible in the final solution and, thus, u must be fixed (see line 8). Following this in lines 9–11, all the ground users that are associated with u are removed from the remaining U_k. Otherwise, as shown in line 13, we remove the candidate location u from D. Such a candidate location is referred to as nonfixed candidate location as its removal neither disconnects the subgraph in D nor hampers the coverage of ground users in V. Afterward, we remove the corresponding set U_u from the list U. These steps are repeated until there is no nonfixed candidate location in D.

Theorem 2: The time complexity of the Proposed algorithm is $O(|K|^2(|V| + |K|))$.

Proof: Since the Proposed algorithm calls the INITIALIZATION function, we first check the time complexity of Algorithm 1. The time complexity for lines 2–5 and 7–11 of Algorithm 1 is $O(|K|^2)$ and $O(|V||K|)$, respectively. Hence, the running time of Algorithm 1 (or line 1) of the Proposed algorithm becomes $O(|K|(|V| + |K|))$. Lines 5 and 6 of the Proposed algorithm have the time complexity $O(|K|, |\log(|K|)|)$ (the time needed to sort the list and make a binary search), and $O(|K|^2)$, respectively. In addition, the procedure of checking if a graph G (with D nodes and E edges) is connected or not, has the time complexity $O(|D| + |E|)$, which is the time needed for running the depth first search. It implies that the running time of the first condition in line 7 is $O(|K| + |K|^2)$. The second condition in line 7 has the complexity of $O(|V||K|)$. The cost of lines 9-11 is $O(|K|^2)$. The while loop in line 4 will be repeated for $|K|$ time, because in each step, a node in K will be either fixed or removed. Hence, the total time complexity of the Proposed algorithm can be expressed as $O(|K|^2(|V| + |K|)) = O(|K|^2(|V| + |K|)^2)$.

VII. PERFORMANCE GUARANTEE ANALYSIS

In this section, we analyze the performance guarantee of the Proposed algorithm presented in aforesaid Section VI. In order to accomplish this, we first reduce graph G into graph G_r in the following manner.

Consider a candidate location $i \in D$ that provides wireless coverage to ground users which are not in the coverage area of any $j \in D \setminus \{i\}$. Let $U_i \in V$ be the set of ground users in the coverage area of candidate location i. We remove all ground users in the set U_i, and instead, add one dummy node u_i (representing all the ground users in U_i) connected to candidate location i. By repeating this procedure, until no ground users remain, we will have a set $U = \bigcup U_i$. Let graph $G_r = (U \cup K, E' \cup E'')$ where E'' is the set of edges between added nodes $u_i \in U$ and UAV i. Note that each node in D is connected to a unique node $u_i \in U$ or employed to ensure the connectivity of subset D; otherwise, it could have been removed (recall such a node corresponds to a fixed candidate location in Algorithm 2).

Lemma 1: Let OPT be an MCDS of G_r, any maximal independent set (MIS)5 of G_r has a maximum size of $5 |\text{OPT}| + 1$.

Proof: Inspired by the work in [47], assume OPT be any MCDS in G_r, and W is any MIS of G_r. Let T be an arbitrary spanning tree of OPT, and $\{v_1, v_2, \ldots, v_{\text{opt}}\}$ be any arbitrary preorder traversal of T after picking an arbitrary node as the root of T. Let W_i be the set of vertices in W that is adjacent to v_i, but none of $v_1, v_2, \ldots, v_{i-1}$, for any $1 \leq i \leq \text{opt}$. Also, let W_I be the set of vertices in W that is adjacent to node v_1. Then, $W_1, W_2, \ldots, W_{\text{opt}}$ form a partition of W. W_1 has at most one of the u_is defined in the above discussion. All other vertices of W_1, which are nodes from the set K, should have a pairwise distance of more than R' and, thus, there could be at most five nodes. Therefore, $|W_1|$ could be at most 6. In other words, let us scale down all distances from R' to 1, and assume two UAVs will be connected if their Euclidean distance is ≤ 1. Hence, any node will be adjacent to a maximum of five independent nodes in a unit disk graph [47]. Because of the preorder traversal labeling of T, there is at least one node in $\{v_1, v_2, \ldots, v_{i-1}\}$ adjacent to v_i, and let us name it v_j. Hence, by considering the coverage range of v_i and v_j, there is a sector of at most 240°, which is within the coverage area of v_j, but not v_i. Therefore, $W_i \setminus \{u_i\}$ should lie in the mentioned sector and, thus, $|W_i \setminus \{u_i\}|$ is at most 4, and $|W_i|$ is at most 5. Therefore

$$|W| = \sum_{i=1}^{\text{opt}} |W_i| \leq 6 + 5(\text{opt} – 1) = 5\text{opt} + 1.$$

Lemma 2: Given the graph G_r and the resulting subset D calculated by the Proposed Algorithm on graph G, there is an independent set of G_r containing at least $|D|/4$ vertices.

5Set S is an independent set if the subgraph S contains no edges. Then, an independent set $S \subset G$ is a MIS if and only if for every vertex $u \in G – S$, the set $S \cup \{u\}$ is not independent (i.e., the graph $S \cup \{u\}$ is not independent).
Proof: The goal is to find an independent set with the cardinality of at least \(|C_m|/2\) for each induced cycle \(C_m = \{v_1, v_2, \ldots, v_k\}\) in graph \(G[D]\), and remove them afterward [46]. If \(|C_m|\) is even, then there is a set \(I_m = \{v_i \mid i\) is even\}, which, by the definition of an induced cycle, is an independent set. However, if \(|C_m|\) is odd, then there are two cases. First, at least one of the vertices in \(C_m\), let us name it \(v_i\), have a neighbor \(u_i\), which is not the neighbor of other vertices in \(D\), by our definition. Therefore, we can construct \(I_m\) by picking \(u_i\) with half of nodes from \(C_m \setminus \{v_i\}\), which is a bipartite tree, so that it is independent. Second, if none of vertices in \(C_m\) is connected to a user-representation node \(u_i\), it implies that all the nodes in \(C_m\) are fixed to ensure the connectivity of the graph; otherwise, at least one of them would have been removed by Algorithm 2. In this case, assume \(v_i\) is a vertex of \(C_i\), and it is connected to subgraph \(L_i\), which is out of \(C_m\). It is obvious that if we remove \(v_i\) from \(C_m\), there is no path from any vertices in \(L_i\) to any vertices in \(C_m\). Therefore, each vertex \(v_i \in C_m\) is connected to a unique subgraph \(L_i\). There is at least one user-representation node \(u_i\) in each \(L_i\); otherwise, all vertices of \(L_i\) should have been removed. Let us construct \(I_m\) by selecting \(u_i\) with half of nodes from \(C \setminus \{v_i\}\) so that it is independent. We should ensure that if we select \(u_i\) to construct the independent set \(I_m\) corresponding to set \(C_m\), \(u_i\) is not needed for constructing \(L_i\) corresponding to set \(C_i\). If \(L_i\), itself, consists of any induced cycle(s) \(C_i\) with odd number of vertices, then we can find a node \(u_i\) for constructing \(I_i\). Because \(|C_i| > 2\), then \(C_i\) is connected to subgraphs \(\{L_i', \ldots, L_{|C_i|-1}\} \subset L_i\). It implies that there are more than one user-representation node to select for constructing \(I_m\) and \(I_i\). It is clear that when the number of vertices in graph \(D\) is finite, then the number of such induced cycles is finite.

After the removal of all induced cycles from \(D\), independent trees will compose the remaining set. As shown in [46], we can select at least half of the nodes in each tree so that they compose independent sets. An independent set \(I^*\) can be constructed from the union of obtained independent sets with the cardinality of at least \(1/2 \times |\bigcup I_i|\) and, thus, \(|I^*| \geq |D|/4\).

Similar to [46], the theorem provided as follows can estimate the Proposed algorithm performance guarantees.

Theorem 3: The cardinality of the subset \(D\) computed by the Proposed algorithm is at most 20 OPT + 4, where OPT is the size of an MCDS of \(G_r\).

Proof: From Lemmas 1 and 2, we have

\[
5.\text{opt} + 1 \geq |\text{Maximal Independent Set}| \geq |I^*| \geq |D|/4 \\
\Rightarrow 20.\text{opt} + 4 \geq |D|.
\]

VIII. SIMULATION EXPERIMENTS

In this section, we first showcase how well the Proposed algorithm performs compared to the Optimal algorithm (using the ILP solver) for small scenarios only (ILP solver takes several hours, rather days, to run for larger scenarios). Following this, we focus on the performance analysis of the Proposed algorithm against three comparison/baseline algorithms, namely, the Greedy algorithm (No backhaul constraint), BaG algorithm, and Random algorithm, for general (larger) scenarios in the rest of the section.

A. Comparative Analysis of the Proposed and Optimal Algorithms

Before we evaluate the performance of the proposed algorithm for general simulation scenarios, we first showcase how our Proposed algorithm is compared with the Optimal algorithm (solved using the ILP solver called the Gurobi optimizer). The experiments are done for a small scenario where the size of the area is \(9 \times 9\) km², and the number of users is 40. The rest of the simulation parameters are listed in Table IV.

As shown in Table II, the Proposed algorithm utilizes the same or slightly higher number of UAVs for forming a multi-UAV networks compared to that of the Optimal approach. Fig. 3 shows the resultant multi-UAV network using the Proposed and Optimal algorithms. These results show that the Proposed algorithm performs really well and is close to the Optimal algorithm for smaller scenarios.

Moreover, Table III shows the exponential time complexity of the Optimal algorithm for increasing area size (i.e., increasing number of candidate locations). We can see that running the Optimal algorithm may take several hours for larger scenarios and, thus, we do not show the results for the Optimal algorithm in the large-scale simulation experiments presented in the following section.

Area size (sq. Km)	Approach	Time for execution (s)
8 \times 8	Optimal	36.67
	Proposed	0.13
9 \times 9	Optimal	1198.89
	Proposed	0.14
10 \times 10	Optimal	22652.85
	Proposed	0.16

B. Simulation Setting

Unless otherwise stated, we consider a simulation area of size 50 km x 50 km with 200 ground users. The major parameters of the simulation setting are listed in Table IV.

The optimal altitude (\(h\)) for placing the UAVs, and its corresponding radio coverage radius on ground (\(R\)) are computed as 1500 and 3300 m, respectively, for a suburban area as per the seminal work [7]. Refer to Table IV for the considered the values of environmental parameters, LoS and NLoS system

As shown in Table II, the Proposed algorithm utilizes the same or slightly higher number of UAVs for forming a multi-UAV networks compared to that of the Optimal approach. Fig. 3 shows the resultant multi-UAV network using the Proposed and Optimal algorithms. These results show that the Proposed algorithm performs really well and is close to the Optimal algorithm for smaller scenarios. Moreover, Table III shows the exponential time complexity of the Optimal algorithm for increasing area size (i.e., increasing number of candidate locations). We can see that running the Optimal algorithm may take several hours for larger scenarios and, thus, we do not show the results for the Optimal algorithm in the large-scale simulation experiments presented in the following section.
Using (4), and (5), the UAV coverage radius loss and other required parameters for calculating h and R. Using (4), and (5), the UAV coverage radius R' is calculated. For instance, we observe that $R' \approx 2.5 \times R \approx 8.3$ km when the backhaul SNR threshold $\gamma'_0 = 15$ dB. However, note that different γ'_0 will result in different R', and is calculated accordingly for each experiment. Also, since UAVs are hovering over the air constantly, we considered a higher SNR threshold to address the antenna pointing variations and improve the backhaul links.

In our experiments, grounds users are randomly distributed in clusters, where each cluster houses 10–15 ground users, in the considered simulation area. This is a realistic user distribution in case of post-disaster scenarios [48] or rural/remote areas [49], instead of completely random distribution of ground users in the entire simulation area usually considered in the UAV literature [34]. In order to ensure the accuracy of the results, we execute each experiment 100 times for each algorithm and take the average value as the simulation results.

For extensive analysis, we evaluate the Proposed algorithm against the other three comparison approaches for: 1) varying number of ground users, ranging from 50 to 500 and 2) varying area sizes, from (10 km × 10 km) to (100 km × 100 km), both for varying backhaul SNR thresholds, from 10 to 20 dB.

C. Comparison Algorithms

1) Greedy Algorithm (No Backhaul): Greedy algorithm has been proposed in the literature [50], [51] to determine the minimum number of UAVs (and its 3-D placement) required to provide wireless coverage to all ground users. The algorithm works in the following manner: the algorithm first sorts the candidate locations \mathcal{K} in the nonincreasing order of the number of ground users associated with different locations $k \in \mathcal{K}$, i.e., ground-user density. Denote $\hat{\mathcal{K}}$ as the sorted list of candidate locations. Then, the UAVs are placed sequentially at candidate locations with a higher user density until all ground users are covered. Note that this algorithm does not always guarantee backhaul connectivity among UAVs.

2) Backhaul-Aware Greedy Algorithm: We extend the Greedy algorithm to account for backhaul connectivity among UAVs, which we call BaG Algorithm. The algorithm works as follows.

First, BaG utilizes Greedy Algorithm to deploy the minimum number of UAVs at optimal 3-D candidate locations (denoted as the subset D) that ensures wireless coverage to all ground users. Following this, we utilize the concept of Euclidean minimum spanning tree (EMST) to determine the minimum spanning tree of subset D, where the weight of the edge between each pair of UAVs is the Euclidean distance between them. However, since the only possible 3-D locations for placement of UAVs are candidate locations in set \mathcal{K}, the edge set H in EMST cannot be directly utilized for the placement of additional UAVs in order to ensure the backhaul connectivity. To address this, we set the weights of the existing edges between candidate locations as 1. Now, for each selected edge $e_{jk} \in H$ (where $j, k \in D$), we utilize Dijkstra’s algorithm to find the shortest path between end nodes j and k. It returns the minimum number of additional candidate locations (relay nodes), denoted by \hat{D}, that are required to connect the end nodes of the selected edge e_{jk}. We repeat the process for all edges in set H and include the additional candidate locations to the set \hat{D}. Since there may be overlaps of candidate locations between two or more shortest paths for different edges in set H, we only include the additional candidate locations for a certain path if those additional candidate locations are not already included in the set \hat{D}. The set $D \cup \hat{D}$ is the final solution of the BaG algorithm.

3) Random Algorithm: Random algorithm deploys UAVs at randomly chosen candidate locations until and unless all ground users are covered and the deployed UAVs ensure backhaul connectivity in the formed multi-UAV network.

D. Experimental Results

Varying Number of Ground Users: Fig. 4 shows the impact of varying number of ground users on the number of required
UAVs, under different backhaul SNR thresholds γ'_0. In particular, we consider γ'_0 as 10, 15, and 20 dB and the corresponding results for each case is reported in Fig. 4(a)–(c), respectively. The number of UAVs required by all algorithms gradually increases with the increasing number of ground users, under any considered value of γ'_0. This is because more UAVs will be required to provide wireless coverage to increasing number of users (spread out in multiple clusters in the area). Moreover, the number of UAVs required by all algorithms (except for Greedy) increases with increasing γ'_0, even for a fixed number of ground users. This is because UAV coverage radius R' decreases with increasing γ'_0 and, therefore, more number of UAVs would be required for ensuring backhaul connectivity. Since Greedy does not ensure backhaul connectivity, the number of required UAVs in this case remains constant and does not change with changing γ'_0.

The proposed algorithm outperforms the other two backhaul-aware algorithms, i.e., BaG and Random, for varying number of ground users under all considered backhaul SNR thresholds. The proposed algorithm requires fewer number of UAVs by up to 15% and 95% compared to that of BaG and Random algorithms, respectively. This shows the superiority of the proposed algorithm in solving the BoaRD problem, i.e., optimizing the number and placement of UAVs while ensuring backhaul connectivity and ground-user coverage. It is noteworthy that the difference in the number of UAVs required by the proposed algorithm and BaG is even larger for higher γ'_0. This is because when γ'_0 is high, UAVs have to be placed close to each other to maintain the successful connection between UAVs (for backhaul connectivity), and BaG necessitates a relatively large number of UAVs compared to that of the proposed algorithm. For clarity of exposition, we employ Fig. 5(a) and (b) that depicts the resultant UAV placement (and multi-UAV network) corresponding to the proposed and BaG for a simple simulation setting with 60 ground users in an area of 75 km \times 75 km. (We consider 60 ground users for the clarity of the plot.) Here, the proposed algorithm requires 40 UAVs whereas BaG requires 50 UAVs.

As expected, the Greedy algorithm requires a relatively smaller number of UAVs to ensure wireless coverage to all ground users, for almost all considered cases in Fig 4. Note that Greedy does not guarantee backhaul connectivity and, thus, does not always provide a solution to the BoaRD problem. It is interesting to note that for lower SNR thresholds, such as 10 dB [Fig. 4 (a)] and 15 dB [Fig. 4 (b)], the proposed algorithm outperforms the Greedy algorithm by up to 13% in the reduction of required UAVs. There are two reasons for this. First, since the UAV coverage radius (R') is large (due to lower SNR thresholds), a negligible number of additional UAVs are required to ensure backhaul connectivity. Second, fewer UAVs may be required to ensure ground-user coverage in the case of the proposed algorithm. For clarity of exposition, we employ Fig. 5(a) and (b) that depicts the resultant UAV placement (and multi-UAV network) corresponding to the proposed and BaG for a simple simulation setting with 60 ground users in an area of 75 km \times 75 km. (We consider 60 ground users for the clarity of the plot.) Here, the proposed algorithm requires 40 UAVs whereas BaG requires 50 UAVs.

Varying Area Sizes: Fig. 6 represents the variation of number of required UAVs w.r.t varying size of areas under various SNR thresholds, i.e., $\gamma'_0 = 10, 15,$ and 20 dB. As expected,
the number of UAVs required by all algorithms increases with the increasing area size, under all values of γ_0. This is intuitive as more UAVs will be required to provide wireless coverage to users spread out in the larger area sizes and maintain the backhaul connectivity. The number of UAVs required by the Proposed algorithm is fewer than BaG and Random algorithms, respectively, by up to 17% and 95%. The Proposed algorithm significantly outperforms both backhaul-aware algorithms, i.e., BaG and Random, for the same reasons discussed before that the Proposed algorithm solves the BoaRD problem efficiently.

Interestingly, compared to the Greedy algorithm, the Proposed algorithm requires fewer number of UAVs for smaller area sizes (<50 km \times 50 km) and lower γ_0 (10 and 15 dB). However, it gradually increases afterward mainly because of the increased number of UAVs required for ensuring backhaul connectivity. When the area becomes larger, the distances between the cluster of the users in the area are larger and, thus, more UAVs are needed to ensure the backhaul connectivity. Since, as discussed earlier, Greedy does not ensure backhaul connectivity, more UAVs are needed by the Proposed and BaG algorithms compared to the Greedy approach in larger areas. Also, larger γ_0 values results in shorter backhaul links, which increase the number of UAVs needed by the Proposed and BaG algorithms in comparison to the Greedy algorithm to maintain the backhaul connectivity.

IX. CONCLUSION AND FUTURE WORK

In this article, we investigated the joint optimization of number, placement, and backhaul connectivity of multi-UAV networks, such that the network provides wireless coverage to all ground users in the region of operation. We formulated the above problem, named, the BoaRD problem as an ILP problem and showed that it is NP-Hard. Utilizing graph-theoretic concepts, we proposed a low computational complexity algorithm to solve the BoaRD problem with provable performance guarantees. Our extensive simulations demonstrated the superiority of the Proposed algorithm in minimizing the number of UAVs to form a multi-UAV network, when compared to both BaG and random algorithms for all considered scenarios. Interestingly, the Proposed algorithm even outperformed the baseline greedy algorithm (no backhaul) for higher ground-user density and lower backhaul SNR thresholds, which further corroborated the efficacy of the Proposed algorithm. In the future, we will explore the problem of UAV placement (with the fewest number of UAVs) such that the formed multi-UAV network is resilient against various UAV node and link failures and provides end-to-end wireless coverage to ground users in the region of operation. Another interesting future direction is to investigate designing the multi-UAV networks under very high-mobility ground users.

REFERENCES

[1] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on UAVs for wireless networks: Applications, challenges, and open problems,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2334–2360, 3rd Quart., 2019.
[2] A. Ahmed, M. Awais, T. Akram, S. Kulac, M. Alhussein, and K. Aurangeb, “Joint placement and device association of UAV base stations in IoT networks,” Sensors, vol. 19, no. 9, p. 2157, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/9/2157
[3] K. Hazra, V. K. Shah, S. Roy, S. Deep, S. Saha, and S. Nandi, “Exploring biological robustness for reliable multi-UAV networks,” IEEE Trans. Netw. Service Manag., vol. 18, no. 3, pp. 2776–2788, Sep. 2021.
[4] B. Galkin, J. Kibilda, and L. A. DaSilva, “Backhaul for low-altitude UAVs in urban environments,” in Proc. IEEE Int. Conf. Commun. (ICC), 2018, pp. 1–6.
[5] N. Iradukunda, Q.-V. Pham, M. Zeng, H.-C. Kim, and W.-I. Hwang, “UAV-enabled wireless backhaul networks using non-orthogonal multiple access,” IEEE Access, vol. 9, pp. 36689–36698, 2021.
[6] Y. Dai, Y. Guo, and J. Hao, “UAV placement and resource allocation for multi-hop UAV assisted backhaul system,” in Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), 2021, pp. 1–6.
[7] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 569–572, Dec. 2014.
[8] C.-C. Lai, C.-T. Chen, and L.-C. Wang, “On-demand density-aware UAV base station 3D placement for arbitrarily distributed users with guaranteed data rates,” IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 913–916, Jun. 2019.
[9] M. Alzenad, A. El-Keyei, F. Lagum, and H. Yanikomeroglu, “3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage,” IEEE Wireless Commun. Lett., vol. 6, no. 4, pp. 434–437, Aug. 2017.
[10] D. W. Matolak, “Air-ground channels & models: Comprehensive review and considerations for unmanned aircraft systems,” in Proc. IEEE Aero. Conf., 2012, pp. 1–17.
[11] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss for low altitude platforms in urban environments,” in Proc. IEEE Global Commun. Conf., 2014, pp. 2898–2904.
[12] D. W. Matolak and R. Sun, “Air-ground channel characterization for unmanned aircraft systems—Part I: Methods, measurements, and models for over-water settings,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 26–44, Jan. 2017.
[13] E. Yanmaz, R. Küschling, and C. Bettstetter, “Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility,” in Proc. IEEE INFOCOM, 2013, pp. 120–124.
M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications,” IEEE Trans. Wireless Commun., vol. 16, no. 11, pp. 7574–7589, Nov. 2017.

R. I. Bor-Yaliniz, A. El-Keyi, and H. Yanikomeroglu, “Efficient 3-D placement of an aerial base station in next generation cellular networks,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–5.

M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage,” IEEE Commun. Lett., vol. 20, no. 8, pp. 1647–1650, Aug. 2016.

E. Kalantarli, H. Yanikomeroglu, and A. Yongacoglu, “On the number and 3D placement of drone base stations in wireless cellular networks,” in Proc. IEEE 84th Veh. Technol. Conf. (VTC-Full), 2016, pp. 1–6.

W. Wang et al., “Placement of unmanned aerial vehicles for directional coverage in 3D space,” IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 888–901, Apr. 2020.

C. You and R. Zhang, “3D trajectory optimization in Rician fading for UAV-enabled data harvesting,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3192–3207, Jun. 2019.

J. Cui, Z. Ding, Y. Deng, A. Nallanathan, and L. Hanzo, “Adaptive UAV-trajectory optimization under quality of service constraints: A model-free solution,” IEEE Access, vol. 8, pp. 112253–112265, 2020.

J. Xiong, H. Guo, and J. Liu, “Task offloading in UAV-aided edge computing: Bit allocation and trajectory optimization,” IEEE Commun. Lett., vol. 23, no. 3, pp. 538–541, Mar. 2019.

X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying and edge computing: Scheduling and trajectory optimization,” IEEE Trans. Wireless Commun., vol. 18, no. 10, pp. 4738–4752, Oct. 2019.

D. Huang, M. Cui, G. Zhang, X. Chu, and F. Lin, “Trajectory optimization and resource allocation for UAV base stations under in-band backhaul constraint,” EURASIP J. Wireless Commun. Netw., vol. 2020, no. 1, pp. 1–17, 2020.

Y.-C. Kuo, J.-H. Chiu, J.-P. Sheu, and Y.-W. P. Hong, “UAV deployment and IoT device association for energy-efficient data-gathering in fixed-wing multi-UAV networks,” IEEE Trans. Green Commun. Netw., vol. 5, no. 4, pp. 1934–1946, Dec. 2021.

P. Pawar, S. M. Yadav, and A. Trivedi, “Performance study of dual unmanned aerial vehicles with underlaid device-to-device communications,” Wireless Pers. Commun., vol. 105, no. 3, pp. 1111–1132, 2019.

W. Yi, Y. Liu, M. Elkashlan, and A. Nallanathan, “Modeling and coverage analysis of downlink uav networks with mmwave communications,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2019, pp. 1–6.

H. Nguyen, H. Tuan, T. Duong, H. Poor, and W. Hwang, “Joint D2D assignment, bandwidth and power allocation in cognitive UAV-enabled networks,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 3, pp. 1084–1095, Sep. 2020.

M. Banagar, V. V. Chetlur, and H. S. Dhillon, Stochastic Geometry-Based Performance Analysis of Drone Cellular Networks, Hoboken, NJ, USA: Wiley, 2020, ch. 9, pp. 231–254.

J. Sabzehali, V. K. Shah, H. S. Dhillon, and J. H. Reed, “3D placement and orientation of mmWave-based UAVs for guaranteed LOS coverage,” IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1662–1666, Aug. 2021.

V. Mayor, R. Estepa, A. Estepa, and G. Madinabeitia, “Deploying a reliable UAV-aided communication service in disaster areas,” Wireless Commun. Mobile Comput., vol. 2019, pp. 1–20, Apr. 2019. [Online]. Available: https://www.hindawi.com/journals/wcmc/2019/7521513/
Vijay K. Shah received the Ph.D. degree in computer science from the University of Kentucky, Lexington, KY, USA, in 2019, and the B.Tech. degree in computer science and engineering from the National Institute of Technology Durgapur, Durgapur, India, in 2013. He is an Assistant Professor with the Cybersecurity Engineering Department, College of Engineering and Computing, George Mason University, Fairfax, VA, USA. He also holds an Adjunct Faculty Member position with The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA. His research interests focus on 5G/Next-G cellular networks, machine learning for wireless, UAVs, and wireless testbed development and prototyping.

Qiang Fan (Member, IEEE) received the M.S. degree in electrical engineering from Yunnan University of Nationalities, Kunming, China, in 2013, and the Ph.D. degree in electrical and computer engineering from New Jersey Institute of Technology, Newark, NJ, USA, in 2019. He was a Postdoctoral Researcher with the Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA. He is currently a Staff Engineer with Qualcomm, San Jose, CA, USA. His current research interests include wireless communications and networking, mobile-edge computing, machine learning, and drone-assisted networking. Dr. Fan has served as a Reviewer for over 120 journal submissions, such as the IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, and IEEE TRANSACTIONS ON COMMUNICATIONS.

Lingjia Liu (Senior Member, IEEE) received the B.S. degree in electronic engineering from Shanghai Jiao Tong University, Shanghai, China, and the Ph.D. degree in electrical and computer engineering from Texas A&M University, College Station, TX, USA. He is currently a Professor with The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA, where he is also serving as the Associate Director for Wireless@Virginia Tech and an Executive Committee Member for the National Spectrum Consortium. Prior to joining academia, he spent more than four years working with the Mitsubishi Electric Research Laboratory and the Standards and Mobility Innovation Lab, Samsung Research America, Mountain View, CA, USA, where he was leading Samsung’s efforts on multiuser MIMO, CoMP, and HetNets in 3GPP LTE/LTE-Advanced standards. His general research interests lie in enabling technologies for Beyond 5G/6G networks, including machine learning for wireless networks, massive MIMO, distributed computing/learning, and Internet of Things. Dr. Liu received eight best paper awards.

Biplav Choudhury (Graduate Student Member, IEEE) received the bachelor’s degree in electronics and communication engineering from the National Institute of Technology Silchar, Silchar, India, in 2015. He is currently pursuing the Ph.D. degree in electrical and computer engineering with The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA. His research interests include V2X communications, resource allocation mechanisms, deep reinforcement learning, and data analytics.

Jeffrey H. Reed (Fellow, IEEE) received the B.S., master’s, and Ph.D. degrees in electrical and computer engineering from the University of California at Davis, Davis, CA, USA in 1979, 1980, and 1987, respectively. He is the Willis G. Worcester Professor of Electrical and Computer Engineering with The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA. He is the Founding Director of Wireless@Virginia Tech, one of the largest wireless research groups in the United States, and the previous Interim Director and currently, the Chief Technology Officer with the Commonwealth Cyber Initiative for the State of Virginia. In 2010, he cofounded the Ted and Karyn Hume Center for National Security and Technology, Virginia Tech, and served as the Interim Director. His current areas of expertise are in software-defined radios, AI-enabled 5G wireless, wireless security/information assurance, interference analysis, and vehicular communications.