Philadelphia-positive case negative for JAK2 V617F mutation with hyperdiploidic karyotype: A case report

DRAGOMIRA NIKOLOVA1,2, VERA DAMYANOVA1,2, VASIL HRISCHEV2, MARIA MARKOVA2, LUBOMIR MITEV3, ASELENA ASENOV3, ATANAS RADINOV2 and DRAGA TONCHEVA1

1Department of Medical Genetics, Medical Faculty, Medical University Sofia; 2Clinic of Hematology, University Hospital ‘St. Ivan Rilski’, 1431 Sofia; 3Department of Clinical Laboratory and Immunology, Military Medical Academy, 1606 Sofia, Bulgaria

Received February 3, 2019; Accepted August 16, 2019

DOI: 10.3892/mco.2019.1933

Abstract. Chronic myeloid leukemia (CML) is one of the most common hematological malignancies and accounts for 15-20% of all leukemia cases. The cytogenetic marker of CML is the presence of Philadelphia chromosome (Ph) in >95% of patients. The current case reports a 83-year old woman who was directed to the genetic laboratory for a cytogenetic and molecular-genetic analysis suspected to be Ph positive [(+)]. Karyotype analysis of a bone marrow sample revealed a hyperdiploid karyotype in a part of Ph (+) cells with additional chromosomes 8, 10 and 12. Restriction analysis for V617F JAK2 mutation was negative, while the quantitative RT-qPCR assay indicated BCR-ABL/ABL transcript at the level of 120% International Scale (IS). Generally cytogenetic complexities are important in the prognostic evaluation of CML. Besides the Ph chromosome, a variet of chromosomal aberrations may be associated with CML. A total of 5-10% of these cases show complex translocations involving another chromosome. The current case is Ph(+) demonstrating an additional hyperdiploid karyotype clone with three additional autosomes (8, 10 and 12). This case highlights the significance of cytogenetic abnormalities on the prognosis of CML.

Introduction

Chronic myeloid leukemia (CML) is one of the most common hematologic malignancies and accounts for 15% of all cases of leukemia in adults (1). The incidence of CML is approximately 1.6/100,000. The cytogenetic marker of the disease is the presence of a distinctive Philadelphia chromosome (Ph) in more than 95% of the patients (2). It is a reciprocal translocation between the long arms of chromosomes 9 and 22. The translocation involves the transfer of the Abelson or ABL1 gene on chromosome 9 to the breakpoint cluster region, BCR, of chromosome 22, resulting in a fusion BCR/ABL gene. The fusion gene produces BCR/ABL, a tyrosine kinase with deregulated activity that plays a key role in the development of CML.

Our case is an 83-year old woman who is directed to the genetic laboratory for a cytogenetic and molecular-genetic analysis suspected to be Ph positive [(+)]. Her initial diagnosis is primary aplastic anemia with additional diagnosis of primary (essential) hypertonia. The anamnesis is taken both from medical documentation and the statements of patient’s relatives. She is accepted for the first time in the clinic having leukocytosis with neutrophilia, moderate-to-severe anemic syndrome-microcytic, hypochromic anemia; the thrombocytes are in the reference ranges. She has a consuming syndrome accompanied with a preserved and/or increased appetite and sore throat. Fever and feverish night sweats are lacking, there is no bleeding.

High levels of leucocytes have been diagnosed February, 2018. The leucocyte numbers increase in the following several months up to 85G/l. The levels from March, 2005 are documented as follows: St 12%; Sg 17%; Mo 2%; Ly 10%; Eo 5%; Bl + ProM 25%; M 21%; Meta M 9%.

Upon her acceptance in the hematological ward she is adequate and orientated. Her skin and mucosal membranes are pale pink with isolated suffusions and hematomas; no icterus is present. Peripheral lymph nodes are not enlarged on palpation; breathing is clear vesicular, double-sided, without wheezing. Cardiovascular system-there is arrhythmic cardiac activity, clear tones, systolic noise at Ao and cardiac apex. Stomach-soft, painless; liver-1-2 cm below the ribs’ arch; spleen-non-enlarged. There are no swellings of the limbs.

Materials and methods

At the Clinic of Hematology the patient is subjected to routine diagnostic procedures: Whole blood count test and biochemical analysis (Table I), morphological analysis of the blood cells, restriction analysis for V617F in JAK2 gene (Fig. 1), quantitative molecular-biological analysis (Real-time PCR) at the time
of her first visit and three months after treatment (Fig. 2), and karyotyping (Fig. 3). For all procedures and tests the patient has provided a written informed consent.

PCR amplification and restriction analysis for JAK2 V617F mutation detection. DNA is extracted from 200 µl venous blood taken in K2EDTA tube using QIAamp DNA Mini kit (Qiagen). JAK2 mutation has been checked as a part of the routine diagnostic procedure of the Clinic of Haematology when chronic myeloproliferative process is suspected. DNA is amplified using JAK2 codon 617 mutation specific primers (V617F) (JAK2F 5’-GGG TTT CCT CAG AAC GTT-3’ and JAK2R 5’-TCA TTG CTT TCC TTT TTC-3’) for 32 cycles using Taq polymerase (Qiagen), annealing temperature of 60˚C, and standard amplification conditions as described previously by Baxter et al (3). The amplified 460-bp fragment is enzymatically digested using BsaXI restriction enzyme (BioLabs™). Fragments of three different sizes (241, 189 and 30 bp) are received after digestion of the wild type allele, while the mutant allele remains undigested (Fig. 1). Digested fragments are separated in 2% agarose gel. Visualization of the restriction fragments is achieved by ethidium bromide (Fig. 1).

RT-qPCR analysis. It is carried out using the Cepheid GeneXpert® platform. RNA has been automatically extracted from 4 ml venous blood and converted to cDNA. Xpert BCR-ABL kit is used for quantitative detection of BCR-ABL chromosomal translocation mRNA transcripts and the ABL endogenous control mRNA transcripts in peripheral blood specimen from patients with CML. The Xpert BCR-ABL Ultra quantifies the BCR-ABL mRNA level on the IS and is calibrated to the first World Health Organization (WHO) international genetic reference panel for quantitation of BCR-ABL mRNA. The GeneXpert software calculates the %BCR-ABL/ABL (IS) using the following equation where the Delta Ct (∆Ct) value is obtained from ABL Ct minus BCR-ABL Ct: \(\% \text{BCR-ABL/ABL (IS)} = E_{\Delta \text{Ct}} \times 100 \times \text{Scaling Factor (SF)} \)

Biochemical characteristic	Result	Units	Reference values	Parameter	Result	Units	Referent values
WBC	69.77	x10\(^9\)/l	3.50-10.50	Gluc	5.58	mmol/l	3.50-6.10
RBC	4.34	x10\(^3\)/l	3.70-5.30	Creatinine	161.00	µmol/l	up to 96.00
HGB	87	g/l	120-160	TBil	8.50	µmol/l	up to 21.00
HTC	0.295	l/l	0.360-0.480	ASAT	27.60	U/l	up to 32.00
MCV	67.8	fl	80.0-96.0	ALAT	7.00	U/l	up to 33.00
MCH	19.90	pg	27.0-33.0	LDH	2783.00	U/l	up to 460
MCHC	294	g/l	300-360	Na	143.00	mmol/l	135-151
Platelets	182	x10\(^9\)/l	130-360	K	3.20	mmol/l	3.5-5.6
% lymphocytes	3.60%	%	20.0-48.0	Cl	103.00	mmol/l	93-112
% monocytes	6.30%	%	1.0-11.0	Fe	15.80	µmol/l	6.60-28.00
% eosinophils	0.80%	%	Up to 6.5	TIBC	50.30	µmol/l	42.00-78.00
% basophils	7.40%	%	Up to 2.0	UIBC	34.50	µmol/l	27.8-63.6
% neutrophils	88.00%	%	40.0-70.0	CRP	0.20	mg/l	<6
No lymphocytes	2.54	x10\(^9\)/l	1.00-4.00				
No monocytes	4.36	x10\(^9\)/l	Up to 0.80				
No eosinophils	0.59	x10\(^9\)/l	Up to 0.50				
No basophils	5.14	x10\(^9\)/l	Up to 0.14				
No neutrophils	61.39	x10\(^9\)/l	2.00-7.00				
MPV	9.40	fl	6.3-12.5				

WBC, whole blood count; RBC, red blood cells; HGB, hemoglobin; HTC, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MPV, mean platelet volume; Gluc, glucose; TBil, total bilirubin; ASAT, aspartate transaminase; ALAT, alanine transaminase; LDH, lactic acid dehydrogenase; Na, sodium; K, potassium; Fe, iron; TIBC, total iron binding capacity; UIBC, unsaturated iron binding capacity; CRP, C-reactive protein.

![Figure 1. Restriction analysis following reverse transcription-quantitative PCR of JAK2 exon 12 gene. BsaXI endonuclease is used to specifically cut the PCR product on 2% agarose gel. Lane 1 indicates 100 bp ladder, lane 2 and 5 indicate individuals, heterozygote for JAK2 V617F mutation, lane 3 and 4 indicates individuals homozygous by the normal allele (lane 3 corresponds to the patient from the presented case) and lane 6 indicates the negative control.](image-url)
Cytogenetic analysis. The bone marrow sample of the patient is taken by trepanobiopsy and sent to the cytogenetic laboratory of the Military Medical Academy (Sofia, Bulgaria). The cells are cultured in RPMI culture medium supplied with antibiotics and growth factors at 37°C for 24 h. 70 µl of colcemid is added to the sample and incubated in 37°C for 20 min. After centrifugation at 1,500 rpm, 0.075 M KCl is added and the sample is incubated at 37°C for 10 min. After two times fixation and centrifugation, several microscopic slides are prepared. They undergo standard Giemsa staining and are analyzed under microscope (Fig. 3).

Results

The morphological analysis of cells' populations shows hypercellular bone marrow with an altered ratio between the neutrophil, granulocyte, and erythroblast clones up to 12.1:1 (granulocytes 0.90; erythroblasts 0.07); hyperplasia of the neutrophil population with sustained maturation, increase of myelocytes and promyelocytes. Index of maturation 1.3 (reference values 0.5-0.8). Cytological features of gigantism in a part of the metamyelocytes. Substantially reduced erythroblast population with single representatives of all...
maturation forms. Well-presented megakaryocyte apparatus with a dominating population of polyplodictic granulated megakaryocytes. The conclusion of the morphological analysis is 'Chronic myeloproliferative process'. The ratio of different cell populations in the bone marrow is as follows: 1.5% lymphocytes, 87.9% granulocytes, 0.1% myeloblasts, 6.2% mature monocytes, 4.2% promonocytes. The whole blood count test of the patient and the biochemical analysis result at the time of her acceptance in the haematological ward of ‘St. Ivan Rilski’ Hospital is presented in Table I.

Based on the myelography the patient is directed for molecular-biological analysis for JAK2 mutation and Ph chromosome. The result of the restriction analysis is presented in Fig. 1 showing the genotype status of the patient (homzygous carrier of two wild type alleles for V617F JAK2 gene mutation).

Quantitative Real-time PCR analysis of the patient is performed (May, 2018) to confirm the presence of the molecular marker of CML-fusion gene BCR/ABL. The graph clearly shows the positive result of the amplification for both ABL (endogenous control) and BCR-ABL genes. The software estimates automatically the level of the fusion gene of 120% (IS) on the International Standardized Scale (Fig. 2A).

Real-time analysis is performed second time (September, 2018) after four months' treatment with Tasigna (Nilotinib) to monitor the molecular improvement of the patient. The result demonstrates 0.0019% (IS) (Fig. 2B) level which is much less compared to the patient's earlier data.

Karyotyping is performed after 24-h cultivation time of stimulated bone marrow specimen. Chromosomes are obtained, stained following Giemsa standard protocol and subsequently analyzed under light microscope (5). The cytogenetic analysis shows two different clones of cells: Hyperdiploid with additional chromosomes 8, 10 and 12 and Ph chromosome; and second clone which is Ph(+) with no hyperdiploidy (Fig. 3).
Funding

No funding was received.

Availability of data and materials

All data generated or analyzed during the present case study are included in this article.

Authors' contributions

DN performed the restriction analysis, Real-time PCR test, performed the literature review and wrote the manuscript, VM assisted in the laboratory data interpretation, VH and MM interpreted the clinical data of the patient and monitored the treatment, LM and AA performed the cytogenetic analysis, AR and DT acquired relevant data and revised the manuscript critically. All authors have read and approved the manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Written informed consent was obtained from the patient for the publication of the obtained data.

Competing interests

The authors declare that they have no competing interests.

References

1. Tamascar I and Ramanarayan J: Targeted treatment of chronic myeloid leukemia: Role of imatinib. Onco Targets Ther 2: 63-71, 2009.
2. Jabbour E and Kantarjian H: Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol 91: 252-265, 2016.
3. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, et al.: Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365: 1054-1061, 2005.
4. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408, 2001.
5. Garcia-Sanz R, Orlóo A, González M, Moro MJ, Hernández JM, Ortega F, Borrego D, Carnero M, Casanova F, Jiménez R, et al.: Prognostic implications of DNA aneuploidy in 156 untreated multiple myeloma patients. Cancer Genet Cytogenet 114: 100 -107, 1999.
6. Smadja NV, Bastard C, Bruguière C, Leroux D and Fruchart C: Groupe Français de Cytogénétique Hématologique: Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 98: 2229-2238, 2001.
7. Barlogie B, Alexanian R, Dixon D, Smith L, Smallwood L and Delasalle K: Prognostic implications of tumor cell DNA and RNA content in multiple myeloma. Blood 66: 338-341, 1985.
8. Latreille J, Barlogie B, Dosik G, Johnston DA, Drewinko B and Alexanian R: Cellular DNA content as a marker of human multiple myeloma. Blood 55: 403-408, 1980.
9. Morgan RJ Jr, Gonchoroff NJ, Katzmann JA, Witzig TE, Kyle RA and Greipp PR: Detection of hypodiploidy using multi-parameter flow cytometric analysis: A prognostic indicator in multiple myeloma. Am J Hematol 30: 195-200, 1989.
10. Garcia-Sanz R, Orfóo A, González M, Moro MJ, Hernández JM, Ortega F, Borrego D, Carnero M, Casanova F, Jiménez R, et al.: Prognostic implications of DNA aneuploidy in 156 untreated multiple myeloma patients. Castelano-Leones (Spain) cooperative group for the study of monoclonal gammopathies. Br J Haematol 90: 106-112, 1995.
11. Heerema NA, Raimondi SC, Anderson JR, Biegel J, Camitta BM, Cooley LD, Gaynon PS, Hirsch B, Magenis RE, McGavran L, et al: Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromosomes Cancer 46: 684-693, 2007.
12. Rojas A, Pineda L, González S, Soto M, Avila E, Urdaneta B, Prieto-Carrasquero M and González R: Chromosomal abnormalities in malignant hematologic diseases. Acta Cient Venez 51: 109-114, 2000 (In Spanish).
13. Werner M, Kaloutsi V, Buhr T, Delventhal S, Vykoupil KF and Georgii A: Cytogenetics of chronic myelogenous leukemia (CML) correlated to the histopathology of bone marrow biopsies. Ann Hematol 63: 201-205, 1991.
14. Meng CY: Cytogenetics and molecular studies in chronic myeloid leukemia. Clements University, 2001.
15. Stagno F, Vigneri P, Consoli ML, Cupri A, Stella S, També L, Massimino M, Manzella L and Di Raimondo M: Hyperdiploidy associated with a high BCR-ABL transcript level may identify patients at risk of progression in chronic myeloid leukemia. Acta Haematol 127: 7-9, 2012.
16. AM B: Cancer cytogenetics. The principles of clinical cytogenetics. Totowa, New Jersey, Humana Press Inc, 1999.
17. Godley LA and Le Beau MM: Williams Hematology. 8 edition. Cytogenetics and molecular abnormalities. McGraw Hill, 2008.
18. Wang Z, Zen W, Meng F, Xin X, Luo L, Sun H, Zhou J and Huang L: Chronic myeloid leukemia with variation of translocation at (Ph) [ins (22;9) [q12;q43]]: A case report. Int J Clin Exp Pathol 8: 13707-13710, 2015.