Influence of gum-chewing on postoperative bowel activity after laparoscopic surgery for gastric cancer

A randomized controlled trial

Bujun Ge, MDa, Hongmei Zhao, MDp, Rui Lin, MDa, Jialiang Wang, MDa, Quanning Chen, MDa, Liming Liu, MDa, Qi Huang, MDa.∗

Abstract

Background: In some studies, gum-chewing was demonstrated to have a beneficial effect on resumption of bowel function; however, other contradictory findings in other studies refute the effects of gum-chewing on peristaltic movements and digestive system stimulation. In addition, previous studies were after colorectal or gynecology surgery, whereas few reports focused on the effect of gum-chewing after gastrectomy. The aim of this randomized controlled trial was to assess the effectiveness of gum-chewing on postoperative bowel function in patients who had undergone laparoscopic gastrectomy.

Methods: From March 2014 to March 2016, 75 patients with gastric cancer received elective laparoscopic surgery in Shanghai Tongji hospital and were postoperatively randomly divided into 2 groups: 38 in a gum-chewing (Gum) group and 37 in a control (No gum) group. The patients in the Gum group chewed sugarless gum 3 times daily, each time for at least 15 minutes, until the day of postoperative exhaust defecation.

Results: The mean time to first flatus (83.4±35.6 vs. 79.2±24.2 hours; P=0.554) and the mean time to first defecation (125.7±41.2 vs. 115.4±34.2 hours; P=0.192) were no different between the no gum and Gum groups. There was also no significant difference in the incidence of postoperative ileus (P=0.896) and postoperative hospital stay (P=0.109) between the 2 groups. The postoperative pain score at 48 hours (P=0.032) in the Gum group was significantly higher than in the no gum group. There was no significant difference between the 2 groups in regards to patient demographics, comorbidities, duration of surgery, complications, and nausea/vomiting score.

Conclusion: Gum-chewing after laparoscopic gastrectomy did not hasten the return of gastrointestinal function. In addition, gum-chewing may increase patient pain on the second postoperative day.

Abbreviations: ASA = American Society of Anesthesiologists, CD = Clavien–Dindo classification, ERAS = enhanced recovery after surgery, PCA = patient-controlled analgesia, POD = postoperative day, POI = postoperative ileus.

Keywords: gastric cancer, gum-chewing, laparoscopic, Sham feeding

1. Introduction

For the past few decades, promoting the recovery of postoperative gastrointestinal function has been an issue needing urgent improvement. Patients undergoing abdominal surgery experience reduced gastrointestinal peristalsis owing to extensive dissection, postoperative exhaust, and long duration of anesthesia. Postoperative ileus (POI) is referred to as delayed defecation, lasting for 3 to 5 days, prolonging the resumption of regular bowel movements following abdominal surgery. Extended hospital stays increase the risk of hospital-acquired infections, deep vein thrombosis, pulmonary compromise, and total hospital costs.[1] Traditional interventions to prevent POI or restore bowel function after surgery include decompression of the stomach with a nasogastric tube, adequate pain control,[1] early mobilization of the patient to stimulate bowel function, epidural anesthesia,[2] and drugs such as metoclopramide, erythromycin, neostigmine, alvimopan, among others.

Recent studies aimed at shortening the period of POI have revealed that chewing gum can stimulate gastrointestinal motility, thereby reducing POI.[3,4,5] However, contradictory findings in other studies[6,7] refute the effects of gum-chewing on peristaltic movements and digestive system stimulation. In
addition, most previous studies were after colorectal or gynecology surgery, whereas few reports focused on the effect of gum-chewing after gastrectomy[8,9].

The aim of this randomized controlled trial was to assess the effectiveness of gum-chewing on restoring postoperative bowel function in patients who received laparoscopic gastrectomy.

2. Methods

2.1. Patients and study design

This study was a prospective, single-center, randomized, and controlled clinical trial. The aim of the study was to evaluate the effectiveness of gum-chewing on postoperative bowel function and included consecutive adult patients with gastric cancer receiving elective laparoscopic surgery in Shanghai Tongji hospital from March 2014 to March 2016. The study was reviewed and approved by the Shanghai Tongji Hospital Review Board and the Ethics Committee of Shanghai Tongji Hospital. It was registered with the Chinese Clinical Trial Registry (Protocol ChiCTR-TRC-14004287).

For identification of cases, patient inclusion criteria were as follows: age ≥18 years; satisfactory consciousness (i.e., alertness) and cooperativeness toward chewing; underwent laparoscopic radical gastrectomy (including conversion to open surgery); any gender; any BMI; and informed consent.

Exclusion criteria for the study participation included the following: age < 18 years; unconsciousness after surgery; no teeth or defective or incomplete chewing movement; patient of long-term fasting and having received total parenteral nutrition; pyloric obstruction; remnant of gastric cancer; recurrence of gastric cancer; palliative surgery for advanced gastric cancer; refusal to participate in the trial; muscular and neurological disorders; history of drug addiction, especially opioids; and severe water and electrolyte disturbances.

The participants were given a thorough description of the research approach before entering the study. After eligibility had been established and patients provided written informed consent, patients were randomly allocated by a 1:1 ratio to the gum-chewing (Gum) or control (No gum) groups using a computer-generated (www.random.org) randomization sequence in our coordinating office. The sequence was then provided to the participating nurses by telephone after the operation. The same surgical group, to ensure technical replication, performed all the operations. All patients remained enrolled until the end of the study.

2.2. Sample size calculation

The required sample size in each group was calculated using G*Power software (University of Kiel, Germany). The time to first bowel movement was used for power analysis because it was more accurate than the time to flatus. For this purpose, the medical records of patients who had undergone laparoscopic gastrectomy between January 2012 and January 2013 were reviewed. The mean time to first bowel movement was estimated to be 122 ± 40 hours. The few previous studies on the effect of gum-chewing after gastric surgery showed conflicting results.[8,9]

Therefore, we assumed a 20% reduction of time to bowel movement for the gum-chewing group, according to a previous meta-analysis,[10] whose results were mostly from colectomy studies predicting a 98-hour mean time to bowel movement for the gum-chewing group, with a clinically relevant difference of 40 hours. A minimum sample size of 36 patients per randomization arm was estimated to obtain a power of 80% for detecting a difference at the 5% level.

3. Interventions and data collection

The protocol was carried out as follows: patients in the Gum group chewed sugarless gum for at least 15 minutes at 7:00, 12:00, and 18:00 from the first postoperative day (POD)-1 and continued until the day of exhaust defecation (up to 7 days). The patients in the No gum group received medical interventions with standardized ward care, thus minimizing confounding variables, to permit comparison for a placebo-like control for gum-chewing (i.e., sham feeding) alone. Although the patients, ward nurses, and the research assistant could not be blinded, all other investigators were blinded. Patients or their relatives completed their own confidential questionnaires to prevent bias and subjectivity.

Specific elements of the traditional enhanced recovery after surgery (ERAS) were incorporated, including preoperative and intraoperative warming. Other ERAS elements included use of patient-controlled analgesia, early removal of urinary catheters for most cases, and early ambulation, beginning on POD 1. We followed the strategy for removing the nasogastric tube within 24 hours after surgery.[11] Patients were subsequently allowed to receive a clear-liquid diet. The drain was removed when the aspirate was minimal or nonpurulent, usually within 3 to 4 days. Using 24-hour durations as time points after operation, we recorded the occurrence of first flatus and defecation, the incidence of POI, pain scores, nausea, and vomiting scores (Table 1), analgesic drug use, and complication data. Adynamic or paralytic ileus that persisted for >3 days following surgery was termed POI.[12] Complications were graded and reported using the Clavien–Dindo (CD) classification.[13] Complications of grades I and II were defined as minor complications, and grades III and higher were defined as major complications. The data-collecting instruments included the interview form, questionnaires, and the examination of subjects. In addition, age, sex, comorbidity, American Society of Anesthesiologists (ASA) grade, duration of the operation, need for postoperative analgesics, morbidity, mortality and postoperative hospital stay were also recorded. At our hospital, discharge from the department was performed when 3 conditions were fulfilled: normal body temperature for at least 24 hours, normal leukocyte count, and no apparent surgical site infection.

4. End points

The primary end points were time to flatus, time to defecation, and the incidence of POI. The secondary end points were length of postoperative hospital stay, pain score, and nausea/vomiting scores.

4.1. Statistical analysis

Summarized data were analyzed using SPSS (version 19.0; SPSS Inc, Chicago, IL). Continuous variables, such as age, duration of surgery, analgesic drug consumption, time to first flatus, and defecation, were presented as the mean ± standard deviation. Categorical variables, such as sex, ASA grade, comorbidities, postoperative complications, pain scores, and nausea and vomiting scores were expressed as frequencies. Student t tests were used to compare the means of continuous variables with
normal distribution, whereas Mann-Whitney U tests were used for those with nonparametric distribution. Categorical variables were compared using the \(\chi^2 \) test. For small samples, we used Yate correction for continuity, as appropriate. A probability value \(\leq 0.05 \) (\(P \leq 0.05 \)) was considered significant.

5. Results

Between March 2014 and March 2016, 85 patients participated in this trial. After 10 patients were excluded before randomization (see flowchart), a total of 75 patients were randomly assigned to either the Gum (n = 38) or No gum (n = 37) group.

Baseline characteristics were similar between the 2 groups (Table 2). There were no differences in sex, age, comorbidities, and ASA grade. Twenty-one patients in the No gum group had comorbidities before their operations, as did 21 patients in the Gum group. The most common comorbidities included primary hypertension, type 2 diabetes mellitus, post-stroke syndrome, and coronary artery disease.

Table 2

Baseline characteristics	No gum group (n=37)	Gum group (n=38)	\(P \)
Sex (male/female)	20/17	25/13	0.300
Age, y	64.2±14.1	61.9±10.2	0.437
Comorbidities	21 (56.76%)	21 (55.26%)	0.896
Primary hypertension	16	14	
Type 2 diabetes	4	5	
Post-stroke syndrome	2	3	
Coronary artery disease	1	1	
Atrial fibrillation	1	1	
Livedoarhythm function	1	0	
Renal dysfunction	1	1	
Cardiac dysfunction	0	1	
Asthma	0	1	
Severe anemia	1	0	
ASA score	0.939		
I	18	17	
II	17	19	
III	2	2	

ASA = American Society of Anesthesiologists.

The operation outcomes for both groups are shown in Table 2. Two cases in the No gum group and 4 cases in the Gum group were converted to open surgery. There was no significant difference in the duration of operation between the 2 groups. The rates of POI of the 2 groups did not significantly differ. In the No gum group, 1 patient developed CD grade I complications: wound infection requiring dressing change. One patient developed a grade III complication: pleural effusion requiring thoracocentesis under local anesthesia. In the Gum group, 1 patient developed CD grade I complications: wound infection requiring dressing change. Grade II complications occurred in 2 patients: pneumonia requiring antibiotics. One patient developed a grade III complication: pleural effusion and atelectasis requiring thoracocentesis under local anesthesia.

Patient-controlled analgesia (PCA) with fentanyl was administered to all the patients. There was no significant difference in fentanyl consumption between the 2 groups (\(P = 0.969 \)).

As shown in Table 3, there was no significant difference in the mean time to the onset of gas passage (\(P = 0.554 \)) or defecation (\(P = 0.192 \)) between the 2 groups. There was also no significant difference in the incidence of POI (\(P = 0.896 \)) and postoperative hospital stay (\(P = 0.109 \)) between the 2 groups.

Pain scores after operation are listed in Table 4. We found that the 48-hour postoperative pain scores in the Gum group were significantly higher (\(P = 0.032 \)). However, the 24-, 72-, and 72-hour-after pain scores were not significantly different between the 2 groups. We evaluated nausea and vomiting scores 24, 48, 72, and after 72 hours in the patients (Table 5). Between the 2 groups, 24 hours, 48 hours, 72 hours, and 72 hours after nausea and vomiting scores were not significantly different.

Table 3

Operative outcomes	No gum group (n = 37)	Gum group (n = 38)	\(P \)
Operation			0.964
Distal gastrectomy	32 (1)*	33 (3)	
Total gastrectomy	5 (1)	5 (1)	
Fentanyl consumption, mg	1.00±0.37	1.01±0.29	0.969
Complication			0.352
Clavien-Dindo ≤2	3	5	
Clavien-Dindo ≥3	1	2	
Mortality	0	0	1.000†
Time to flatus, h	83.4±35.6	79.2±24.2	0.554
Time to defecation, h	125.7±41.2	115.4±34.2	0.192
POI	21	21	0.896
Postoperative hospital stay, days	10.7±4.2	12.4±5.0	0.109

POI = postoperative ileus.

* The number inside parenthesis represents the laparoscopic surgery converted to open.

† Yate correction for continuity.

6. Discussion

Paralytic ileus is the most common postoperative complication after abdominal surgery. POI can result in pain, vomiting, and abdominal distension; this can delay the speed of a patient’s recovery after major gastrointestinal surgery. In recent years,
Nausea and vomiting score after operation.

	No gum group (n = 37)	Gum group (n = 38)	P
Nausea and vomiting score (0/1/2/3)			
24 h	10/15/10/2	7/11/19/1	0.142
48 h	14/15/6/2	7/14/17/0	0.032
72 h	15/18/2/2	8/24/6/0	0.103
After 72 h	21/14/2/0	22/15/1/0	0.845

Table 4

Pain score after operation.

	No gum group (n = 37)	Gum group (n = 38)	P
Pain score (0/1/2/3)			
24 h	10/15/10/2	7/11/19/1	0.142
48 h	14/15/6/2	7/14/17/0	0.032
72 h	15/18/2/2	8/24/6/0	0.103
After 72 h	21/14/2/0	22/15/1/0	0.845

Table 5

Nausea and vomiting score after operation.

	No gum group (n = 37)	Gum group (n = 38)	P
Nausea and vomiting score (0/1/2/3)			
24 h	29/4/4/0	28/10/0/0	0.853
48 h	33/4/0/0	28/10/0/0	0.087
72 h	31/6/0/0	33/5/0/0	0.710
After 72 h	35/2/0/0	38/0/0/0	0.149

The authors are grateful to Zhenqing Tang (Master of Public Health) for his help with statistics.
References

[1] Johnson MD, Walsh RM. Current therapies to shorten postoperative ileus. Cleveland Clin J Med 2009;76:641–8.

[2] Jorgensen H, Wetter treslev J, Morni che S, et al. Epidural local anaesthetics versus opioid-based analgesic regimens on postoperative gastrointestinal paralysis, PONV and pain after abdominal surgery. Cochrane Database Syst Rev 2000;4:CD001893.

[3] Purkayastha S, Tilney HS, Dzari AW, et al. Meta-analysis of randomized studies evaluating chewing gum to enhance postoperative recovery following colostomy. Arch Surg 2008;143:788–93.

[4] Kouba EJ, Wallen EM, Pruthi RS. Gum chewing stimulates bowel motility in patients undergoing radical cystectomy with urinary diversion. Urology 2007;70:1053–6.

[5] van den Heijkant TC, Costes LM, van der Lee DG, et al. Randomized clinical trial of the effect of gum chewing on postoperative ileus and inflammation in colorectal surgery. Br J Surg 2015;102:202–11.

[6] Anderson T, Bjersa K, Falk K, et al. Effects of chewing gum against postoperative ileus after pancreateoduodenectomy—a randomized controlled trial. BMC Res Notes 2015;8:37.

[7] Kobayashi T, Masaki T, Kogawa K, et al. Efficacy of gum chewing on bowel movement after open colectomy for left-sided colorectal cancer: a randomized clinical trial. Dis Colon Rectum 2015;58:1058–63.

[8] Zhang Q, Zhao P. Influence of gum chewing on return of gastrointestinal function after gastric abdominal surgery in children. Eur J Pediatr Surg 2008;18:44–6.

[9] Bonventre S, Inviati A, Di Paola V, et al. Evaluating the efficacy of current treatments for reducing postoperative ileus: a randomized clinical trial in a single center. Minerva Chir 2014;69:47–55.

[10] Yun Z, Sun J, Liu T, et al. Gum chewing: another simple potential method for more rapid improvement of postoperative gastrointestinal function. Digestion 2013;87:67–74.

[11] Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer: official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association. 2016.

[12] Livingston EH, Passaro EPFr. Postoperative ileus. Dig Dis Sci 1990;35:121–32.

[13] Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004;240:205–13.

[14] Short V, Herbert G, Perry R, et al. Chewing gum for postoperative recovery of gastrointestinal function. Cochrane Database Syst Rev 2015;2:CD006506.

[15] Zaghian K, Felder S, Ovsepyan G, et al. A prospective randomized controlled trial of sugared chewing gum on gastrointestinal recovery after major colorectal surgery in patients managed with early enteral feeding. Dis Colon Rectum 2013;56:328–35.

[16] Lim P, Morris OJ, Nolan G, et al. Sham feeding with chewing gum after elective colorectal resectional surgery: a randomized clinical trial. Ann Surg 2013;257:1016–24.

[17] Forrester DA, Doyle-Munroe J, McIntyre T, et al. The efficacy of gum chewing in reducing postoperative ileus: a multisite randomized controlled trial. J Wound Ostomy Continence Nurs 2014;41:227–32.

[18] Matros E, Rocha F, Zinner M, et al. Does gum chewing ameliorate postoperative ileus? Results of a prospective, randomized, placebo-controlled trial. J Am Coll Surg 2006;202:773–8.

[19] Qahil HM, Samad A, Neathey AJ, et al. Does gum chewing reduce postoperative ileus following open colectomy for left-sided colon and rectal cancer? A prospective randomized controlled trial. Colorectal Dis 2006;8:64–70.

[20] Asao T, Kuwano H, Nakamura J, et al. Gum chewing enhances early recovery from postoperative ileus after laparoscopic colectomy. J Am Coll Surg 2002;195:30–2.

[21] Bahena-Aponte JA, Cardenas-Lailson E, Chavez-Tapia N, et al. [Usefulness of chewing gum for the resolution of postoperative ileus in left colon resections]. Rev Gastroenterol Mex 2010;75:369–73.

[22] Hirayama I, Suzuki M, Ide M, et al. Gum-chewing stimulates bowel motility after surgery for colorectal cancer. Hepatogastroenterology 2006;53:206–8.

[23] Schuster R, Grewal N, Greaney GC, et al. Gum chewing reduces ileus after elective open sigmoid colectomy. Arch Surg 2006;141:174–6.

[24] Pereira Gomes Morais E, Porfirio RR, Macedo GJ, et al. Chewing gum for enhancing early recovery of bowel function after caesarean section. Cochrane Database Syst Rev 2016;10.

[25] Atkinson C, Ness PC, Longman AR, et al. Randomized clinical trial of postoperative chewing gum versus standard care after colorectal resection. Br J Surg 2016;103:8.

[26] Shum NF, Mak CH, Foo JC, WL, et al. Randomized clinical trial of chewing gum after laparoscopic colorectal resection. Br J Surg 2016;103:7.

[27] Melnyk M, Casey RG, Black P, et al. Enhanced recovery after surgery (ERAS) protocols: time to change practice? Can Urol Assoc J 2011;5:342–8.

[28] Carr CS, Ling KD, Boulos P, et al. Randomised trial of safety and efficacy of immediate postoperative enteral feeding in patients undergoing gastrointestinal resection. BMJ 1996;312:869–71.

[29] Stewart BT, Woods RJ, Collopy BT, et al. Early feeding after elective open colorectal resections: a prospective randomized trial. Aust N Z J Surg 1998;68:125–8.

[30] Fitzgerald JEF, Ahmed I. Systematic review and meta-analysis of chewing-gum therapy in the reduction of postoperative paralytic ileus following gastrointestinal surgery. World J Surg 2009;33:2557–66.

[31] Hennig CW, Costa M, Chen BN, et al. Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J Physiol 1999;517(Pr 2):575–90.

[32] Krauter EM, Strong DS, Brooks EM, et al. Changes in colonic motility and the electrophysiological properties of myenteric neurons persist following recovery from trinitrobenzenz sulfaic acid colitis in the guinea pig. Neurogastroenterol Motil 2007;19:990–1000.

[33] Steenhagen E. Enhanced recovery after surgery: it’s time to change practice!. NutritionClin Pract 2016;31:18–29.