Petalophyllum ralfsii (Wilson) Nees et Gottsche in Calabria: distribution, ecology and conservation

Domenico Puntillo¹, Dimitar Uzunov², Carmen Gangale³

(1) [Corresponding author] Museum of Natural History and Botanic Garden, University of Calabria, Loc. Polifunzionale, 87036 Arcavacata di Rende (Cosenza), Italy, domenicopuntillo@virgilio.it
(2) Botany Department, National Museum of Natural History, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, 1000 Sofia, Bulgaria, uzunovd@gmail.com; https://orcid.org/0000-0002-9742-8956
(3) Museum of Natural History and Botanic Garden, University of Calabria, Loc. Polifunzionale, 87036 Arcavacata di Rende (Cosenza), Italy, carmen.gangale@unical.it; https://orcid.org/0000-0002-7533-6057

Abstract: This paper reports data on distribution of *Petalophyllum ralfsii* in Calabria (S Italy). Investigations conducted from 2016 to 2019 permitted to outline an updated and accurate overview on the number and size of the populations of the species in the region. New findings were recorded, while some known locations were not confirmed. The size of each population was measured by direct counting of thalli or by sampling with plots, enabling to have a reliable estimate of the species density. Analysis of data gives also important information on the ecology and dynamism of the species.

Keywords: Calabrian bryoflora, Habitat Directive species monitoring, *Petalophyllum ralfsii*

Introduction

After the discovery of a new population of *Petalophyllum ralfsii* (Wilson) Nees & Gottsche in Calabria, an investigation was launched in 2016 to verify known populations and apply methods for quantifying density. In the area of the middle Valle of Crati River, small populations were already known, with dozens of individuals. The new site, which by number of individuals could represent the largest population in Italy, has been the subject of various inspections in which an attempt has been made to develop an effective and expeditious monitoring methodology. Monitoring activities have been extended to all the populations known in Calabria, located largely along the Crati Valley. The presence of the species elsewhere is more sporadic, in particular on the Tyrrenian coast (Capo Suvero), the Ionian coast (Foce del Crati) and in the surroundings of Crotone, where however the presence has not been confirmed recently.

Petalophyllum ralfsii is a thallose liverwort, included in Appendix I of Bern Convention of 1991 and listed on Annex II of the EU Habitats Directive. It has a light green thallus 5–10 mm long, with thin lateral wings and carinated rib, swelled at the end, in old thalli covered by rhizoids. Sporophytes ripe in March–April. It develops in springs and disappears in summer when it survives the aridity producing spores, remaining dominant till next spring. Also, it has a rhizome-like subterranean axis which becomes tuberous at the apex of mature plants, and which enables it to withstand long periods of desiccation (Paton, 1999).

The species occurs on wet and sandy places, on the shore of coastal ponds, in the rainiest periods, from the level of the sea up to 300 m of altitude. It is an Oceanic-Mediterranean species, distributed in the Mediterranean Region extending northwards along the Atlantic coast (Campbell et al., 2015). Populations of southern USA were recently referred to a distinct species, *P. americanum* C. H. Ford & Crand.-Stot. (Crandall-Stotler et al., 2002).

In Europe *P. ralfsii* is not very widely distributed. It has discontinuous populations in North Africa, Spain (in the Balearic Islands), Portugal, Greece (including
Crete), Italy (including Sicily and Sardinia), and Turkey, extending northwards along the Atlantic coast to Britain and Ireland (Söderström et al., 2002; Ros et al., 2007).

A review of its distribution in Italy is presented in Aleffi (2008) who reports it in few localities of Tuscany, Calabria, Sicily and Sardinia (11 localities total). In Calabria only two sites are indicated: Capo Suvero and Campagnano (Aleffi & Puntillo, 1998).

Last investigations in Calabria allow to have a more updated and exhaustive scheme of distribution in the Region, showing a very changeable situation, with new populations recording in dynamic environments and frequent disappearance of others. A short term monitoring system is necessary for a correct interpretation of population dynamism and trends of this so interesting species.

Material and methods

Distribution data in Calabria come mostly from investigations and collections started in 80s by D. Puntillo. Specimens kept in the Herbarium of Museum of Natural History of Calabria and Botanic Garden (CLU) have been used to outline the preliminary distribution map of the species in the region.

New field surveys were carried out from 2016 to 2019 in order to verify known populations, extending investigations to potential sites looking for new findings.

Phytosociological relevés were carried out in order to determine syntaxa and Natura 2000 habitat in which the species occurs.

Monitoring methods applied for the species in other countries (Campbell et all., 2015) have been evaluated as well as methodology proposed in Italy (Ercole et al., 2016), in order to comply with commitments arising from article 17 of Habitat Directive, but above all to obtain useful information about trend and dynamism of populations in South Italy, the effective impact of human activities and the real conservation status of the species.

For every population, the covered area was calculated in m². When possible, for small populations, number of individuals were estimated by coverage percentage and direct counting of single thalli. For larger populations counting was carried out in small plots of 0,5 m x 0,5 m, with a grid of 0,1 m x 0,1 m. The area covered by the population (m²) was multiplied by the mean number of thalli/m².

Results and discussion

In Calabria, *Petalophyllum ralfsii* is recorded in three main areas: Neto River, close to Cotronei in the province of Crotone; on the Thyrrhenian coast, north of Cape Suvero (Falerna, CS) and in the Crati Valley, from Cosenza to the Crati River mouth. Investigations in these three areas permit to update distribution data as shown in Table 1.

Population of Neto river (PET_CAL9), recorded in 1997, was not confirmed, and its disappearance is probable because of drastic changes in the location. The station of Falerna (PET-CAL4) is confirmed, but with a very small population (ca. 40 thalli). The Crati Valley (Table 2) is the most important area for this species, with numerous surviving populations (many of them are new findings) and three not confirmed in 2017–2018 investigations. Most of locations are situated along the Crati Valley very close to tributaries of Crati River (Annae, Mavigliano, Settimo, Campagnano), within an area of 15 km long, at an altitude range between 120 and 200 m a.s.l. In Annae (PET_CAL3) and Mavigliano creeks (PET_CAL2) the areas covered by the populations are very small (45 and 140 m²). The latest findings during Natura 2000 monitoring activities in 2018 allow to extend distribution area up to the Crati River mouth (PET_CAL12).

Substratum is characterised by alluvial soils, rich in sand and very wet in winter and spring. Only the populations in Cape Suvero (PET_CAL4) and Crati River mouth (PET_CAL12) are located on the dunal system, on depressions with compact sand, from 40 to 90 m far from shoreline.

All locations are in a strong dynamic ecological contest, due not only to the characteristics of ecosystems (coastal dunes and river banks), but also to human activities.

The population found in 2016 along Settimo creek (PET_CAL1) is probably the largest one in Italy, with a covered area of 2590 m² and a density that reaches 700 thalli per m². Total number of thalli in the location is estimated of 414000 individuals!

Petalophyllum ralfsii occurs in communities that does not have a clear phytosociological characterisation. Generally it is considered belonging to *Isoëto-Nanojuncetea* Br.-Bl. & Tüxen ex Westhoff, Dijk & Paschier 1946, but also to bryophytic alliance *Phascion* Waldheim 1944 (syn: *Tortulion acaulonis* Waldheim 1944) of *Psoretea decipientis* Mattick ex Follmann 1974 (syn: *Barbuletea unguiculatae* Mohan 1978) that
includes typical euhemerophilous pioneer bryophyte vegetation on temporary dry and dry loamy soils in the nemoral and boreal zones (Ercole et al., 2016; Mucina et al. 2016).

Nordic community of Ireland and Great Britain are referred to “2190 Humid Dune Slack”, listed on Annex I of the EU Habitats Directive. This habitat type has recently been ruled out from Italy, so coastal dune depressions are referred to other habitat types. In Ercole et al. 2016 Petalophyllum ralfsii is not referred to specific habitat in Council Directive 92/43/EEC.

In the relevé in Crati Valley characteristic species of Isoëto-Nanojuncetea are very scarce or absent, but there is a significant group of bryophytes of Psoretea.
decipientis. Among vascular plant the most frequent belongs to Poetea bulbosae Rivas Goday et Rivas-Mart. in Rivas-Mart. 1978 in which are included perennial, mainly hemicyryptophytic Mediterranean pastures, and Stellarietia mediae Tüxen et al. ex von Rochow 1951 (annual, ephemeral, weed ruderal nitrophilous and sub-nitrophilous vegetation) (Table 3).

Distribution data of Petalophyllum ralfsii in Italy have recently increased (Cogoni et al., 2006; Provenzano et al., 2011) because of more attention paid to this species since its inclusion in Annex II of Habitat Directive. Therefore, it’s not easy to understand its real demographic trends at long term and there is no evidence of a clear decline also because of the scarcity of previous data. Moreover, the dynamism of habitats and the ecology of the species are at the base of strong fluctuations in population density.

In any case it is evident that Petalophyllum ralfsii in Mediterranean area is not exclusive of coastal habitats (Puntillo, 2004; Sim-Sim et al., 2000; Cogoni et al., 2006; Provenzano et al., 2011), and in the inner areas it finds environmental conditions that are dynamically similar to a dunal system, preferring river banks and alluvial soils. By a diachronic comparison of orthophotos it is evident that the richest populations of Crati valley colonised former sand pits, where the species is advant-aged by the scarcity of vascular flora (Fig. 3). A similar situation has been verified for other populations too.

The progressive stabilisation of substratum and the evolution of vegetation, with increasing of perennial herbs and shrubs, can determine a negative trend leading to the total disappearance of the population. In PET-_CAL6, for example, the population is very scattered probably because of gradual evolution of vegetation.

The species occurs on sandy and silty soils colonising open areas without arboreal and shrub vegetation. However, in many sites it was observed that thallus growing under grass heads and small shrubs are more luxuriant. Also, in the largest population (PET-CAL1) the species seems to tolerate the coverage of the falling down poplar leaves, where thallus is favoured by the persistence of humidity conditions. At the Crati River mouth, all micro-populations stand under Ephedra distachya shrubs. It is likely that on the Atlantic coasts Petalophyllum can live in drier environments, directly on the dunes, but with a more humid general climate. Whereas, in Mediterranean areas it needs small depressions with greater water stagnation where it finds favourite ecological conditions and, moreover, doesn’t find competition with other bryophytes (Walter & Straka 1970).

It is a fact that all stands of Petalophyllum ralfsii in Calabria are localised in areas subject to rapid and drastic transformations, often very close to urban agglomerations. For this, in spite of its pioneer character and new findings, it should continue to be considered a threatened species.

Definition of the range of the species is very difficult because of its ecology that in Mediterranean area is not confined to dunal habitats like in Northern Europe but colonises alluvial soils along river valleys.

In order to compensate costs and benefits, an optimised monitoring programme could be based on a rapid assessment of known populations, their size and main pressure factors. Simultaneously, small representative permanent areas, can be chosen for a detailed demographic analysis in order to interpret fluctuations and relations with ecological conditions and vegetation evolution.

Declaration

Present investigation started as study case in the LIFE project Natura 2000 Action Programme (2014-2017), with Calabria Region as beneficiary. Field surveys and
Table 3. Phytosociological relevés of communities with *Petalophyllum ralfsii*.

Relevé (n°)	1	2	3	4	5	6	7	8	9	10	11	12	13
Data	19/2/17 19/2/17 19/2/17 19/2/17 19/2/17 8/4/17 8/4/17 15/3/18 15/3/18 8/2/19 8/2/19 8/2/19 8/2/19	19/2/17 19/2/17 19/2/17 19/2/17 19/2/17 8/4/17 8/4/17 15/3/18 15/3/18 8/2/19 8/2/19 8/2/19 8/2/19											
Area (m²)	0.25 0.25 0.25 0.25 0.25 0.25 0.25 1 1 0.25 0.25 0.25 0.25 1												
Altitude (m a.s.l.)	150 150 150 150 150 165 165 160 123 200 200 200 136												
Total coverage (%)	90 100 100 100 95 95 95 100 90 80 90 95 100 90												

Char. Psoretea decipiens Mattick ex Follmann 1974

Petalophyllum ralfsii (Wilson) Nees & Gottschke 2 3 2 1 5 + + 2 2 + + 1 2

Fossombronia caespitiformis De Not. ex Rabenh. 1 + + 1 1 . + 1 + .

Pleuridium acuminatum Lindb. 3 3 2 3 2 +

Pseudocrossidium hornschuchianum (Schultz) R. H. Zande + + + 2

Coronaria coriandrina (Spreng.) Lindb. + +

Riccia sorocarpa Bisch +

Char. Poetea bulbosae Rivas Goday et Rivas-Mart. in Rivas-Mart. 1978

Plantago serraria L. 2 +

Trifolium nigrescens Viv. subsp. nigrescens 1 + + +

Parentucella latifolia (L.) Caruel + + + + . + . + . + 1 . +

Bellis annua L. 1 2 2 1 .

Romulea bulbocodium (L.) Sebast. & Mauri + 2 2 . .

Romulea columnae Sebast. & Mauri +

Trifolium subterraneum L. +

Char. Stellarietia mediae Tüxen et al. ex von Rochow 1951

Cynodon dactylon (L.) Pers. 2 2 2 2 + 1 . . 4 . . . +

Erodium cicutarium (L.) L'Hér. . . . 1 . 2 1 4 + . . 2 1

Euphorbia helioscopia L. subsp. helioscopia . . + + + . . +

Poa annua L. 4 3 2 +

Sherardia arvensis L. + + +

Galactites tomentosus Moench . . 1 1 .

Anagallis arvensis L.

Other species

Hyphochlaena achyrocomphora L. + + . . + + + 1 + 2

Geranium molle L. 1 + 1 . . + . . + . . . +

Cerasium sp. + + . . + + . . + . . . + 1 .

Didymodon vinealis (Bridel) R. H. Zander 2 . 2.2 + + 1 1 1

Crepis vesticaria L. subsp. vesticaria 2 1 1 . . 1 2

Senecio vulgaris L. subsp. vulgaris + + + + + 1

Sagina micropetala Rauschert . . . 2 . . . + + 1 . . .

Hyphochlaena radicata L. + + + +

Serapis lingua L. . . + + 1 . .

Plantago bellardii All. subsp. bellardii +
Table 3 continued…

Relevé (n°)	1	2	3	4	5	6	7	8	9	10	11	12	13
Carex sp.	+	2	2				
Veronica sp.	+	+	.				
Vicia sp.	.	.	1	.	+				
Catepyrenium squamulosum	+	2				
Bellis perennis L.	1	1				
Filago germanica (L.) Huds.	+	+				
Aphanes arvensis L.	.	+	+			
Bryum capillare Hedw.	.	+				
Cichorium intybus L.	+	1				
Eurhynchium praelongum (Hedw.) Schimp.	1	.	.	.				
Medicago sp.	.	.	.	1	.	.	.	2	+	1			
Phaeoceros bulbiculosus (Brot.) Prosk	.	.	+		1		
Vulpia sp.	+	+	.	.	.				

Fig. 2. Comparison between 2017 (above) and 2002 (below) orthophotos of PET_CAL1 location. In red the position of the population.
monitoring activities in 2018-2019 were conducted under the Natura 2000 monitoring programme in Calabria (funded by POR FESR CALABRIA 2014/2020, action 6.5.A1).

References

Aleffi M., Cogoni A. 2008 *Petalophyllum ralfsii* (Wils.) Nees et Gottsche. In: AA.VV. 2008, Flora da Conservare: implementazione delle categorie e dei criteri IUCN (2001) per la redazione di nuove Liste Rosse. Informatore Botanico Italiano 40 (suppl. 1): 139–140.

Aleffi M., Puntillo D. 1998 Contributo alla conoscenza della flora briologica della Calabria. Webbia 53 (1): 181–190.

Crandall-Stotler B.J., Stotler R.E., Ford C.H. 2002 Contributions toward a Monograph of *Petalophyllum* (Marchantiophyta). Novon 12 (3): 334–337.

Campbell C., Hodgetts N., Lockhart N. 2015 Monitoring methods for *Petalophyllum ralfsii* (Wils.) Nees et Gottsche (Petalwort) in the Republic of Ireland. Irish Wildlife Manuals 90: 1–167.

Cogoni A., Adamo C., Flore F. 2006 Su alcuni nuovi o interessanti reperti della brioflora sarda. Informatore Botanico Italiano 28 (suppl. 1): 145–148.

Cercole S., Giacanelli V., Bacchetta G., Fenu G., Genovesi P. (eds) 2016 Manuali per il monitoraggio di specie e habitat di interesse comunitario (Direttiva 92/43/CEE) in Italia: specie vegetali. ISPRA, Serie Manuali e linee guida 140: 1–314.

Mucina L., Bültmann H., Dierßen K., Theurillat J.-P., Raus T., Čarni A., Šumberová K., Willner W., Dengler J., Gavilián García R., Chytrý M., Hájek M., Di Pietro R., Iakushenko D., Pallas J., Daniëls F.J.A., Bergmeier E., Santos Guerra A., Ermakov N., Va-