Games and Culture: Using Online-gaming Data to Cluster Chinese Regional Cultures

Xianwen Wang1,2,3*, Wenli Mao1,2, Chen Liu1,2

1WISE Lab, Faculty of Humanities and Social Sciences, Dalian University of Technology, Dalian 116085, China.
2School of Public Administration and Law, Dalian University of Technology, Dalian 116085, China.
3DUT-Drexel Joint Institute for the Study of Knowledge Visualization and Scientific Discovery, Dalian University of Technology, Dalian 116085, China.

* Corresponding author.
Email address: xianwenwang@dlut.edu.cn

Abstract
To identify cluster of societies and cultures is not easy in subject to the availability of data. In this study, we propose a novel method to cluster Chinese regional cultures. Using geotagged online-gaming data of Chinese internet users playing online card and board games with regional features, 336 Chinese cities are grouped into 17 clusters. The distribution of clustering units shows great geographical proximity when the boundary of the clusters coincides well with the geographical boundary of provinces.

Keywords
Chinese culture; geotagged data; usage data; big data; online game.

Introduction
Unlike the massive data available for natural sciences, data in social science are hard to collect (Latour, 2007). However, with the vast geotagged usage data generated by people in the web, it is possible for researchers to reveal and understand details of both individual and social behavior with unprecedented detail (Manovich, 2011; Girardin et al., 2008; Eagle and Pentland, 2006). Based on the fast development of big data, it’s possible for researchers to create and define new methods of observing, recording, and analyzing human dynamics (O’Neill et al., 2006).

With the data collected from 100 Bluetooth-enabled mobile phone users for 9 months, Nathan Eagle & Pentland make a good try to capture daily human behavior, “identify socially significant locations, and model organizational rhythms” (Eagle and Pentland, 2006). Using the geotagged usage data of scientific paper downloading from Springer Verlag, we try to capture details of researchers’ daily working behavior (Wang et al., 2012).

To identify cluster of societies is not easy in subject to the availability of data. There has been much effort to group countries into similar clusters using survey data (Cattell, 1950; Gupta et al., 2002; Smith et al., 1996; Brodbeck et al., 2000) (Furnham et al., 1994). Previous studies have shown that many factors, i.e. religious and linguistic commonality, geographic proximity, and mass migrations and ethnic social capital are relevant factors in the clustering of societies (Gupta et al., 2002).

As one of the world's earliest civilization, most populous and second largest country by land area, China has diversified cultures. i.e. China has as many as 292 living languages, people in different cities usually can’t standard each other if they speak dialect, especially in south China. For a long time, Chinese culture are roughly divided into two parts, south and north, along the Qinling
Mountains-Huaihe River line. There are some other classifications, including three zones (the eastern, central, and western region), six economic zones (northeast, eastern, central and western economic region), etc. However, these classifications are rather rough and lack of evidence.

In this study, using a kind of novel large sample usage data, we try to cluster Chinese cultures from a new perspective.

Data Source and Preparation

QQ Game Map

QQ is an abbreviation of Tencent QQ, which had been called OICQ during the period of 1998 – 2000. Now QQ is the most popular instant messenger software in China. By the end of 2012, there were 798 million active user accounts with approximately 170 million users online at a time.

QQ Game is a casual games client, offering only multi-player online games. 196 board and card games are available through the client. There are approximately 8 million active online players during peak hours, generally 21:00 – 23:00. Online players once peaked to 9.4 million in December 2012.

QQ Game Map is a service launched by Tencent, Inc. since October 22, 2012. It provides real-time visualization map of geographical distribution QQ game online players. Besides general distribution of the total QQ game players, the map also provide visualization for any single QQ game.

Data Preparation

Our data is collected from the website of QQ Game Map (http://qqgame.qq.com/online.shtml). For the 196 kinds of QQ games and 376 cities in China, the number of online players of each game in each city is recorded at the time 21:45, August 9, 2013, as table 1 shows.

Table 1. Data collecting

City	Total players	Shanghai mahjong	Sichuan mahjong	...
Shanghai	205,568	8740	1078	...
Beijing	235,185	100	1775	
Chongqing	134,675	5	11,312	...
Shenzhen	169,112	17	770	...
...
All cities	6,536,549	14,260	75,978	...

Results

Geographical distribution

Figure 1 shows the geographical distribution of QQ game players. The node size is correlated to the number of players of the city. The white shining spot in the center of the node means that someone of the region is beginning to play game.

There are approximate 7.55 million players online at this time point. Most nodes are clustered together in the east coastal regions, north China plain (including Beijing, Tianjin and Shandong province), when the dark west China form a powerful contrast to the dazzling east regions.
Beijing is the most active city in China in terms of online game playing, with over 0.23 million players online at the time, which accounts for about 1.20% of its population. Shanghai ranks number 2 with slightly less. The number 3 city is Shenzhen with approximately 0.17 million players and a high player-to-population ratio (1.63%). Shenzhen is the youngest big city located in the south of China and is adjacent to Hong Kong, which owns a number of factories and armies of young migrant workers. It is not strange that Shenzhen has the highest player-to-population ratio because of the plenty of young people aged from 18 to 40.

In Table 2, we list the top 20 cities with most QQ game players at the time of 21:45, August 9, 2013. The total number of the 20 cities is about 2.15 million and accounts for 31.89% of all QQ game players in the whole China.

Table 2. Top 20 cities with most QQ game players

Rank	City	Province	Number of players	Population	Percent
1	Beijing	NA	235,185	19,612,368	1.20%
2	Shanghai	NA	205,568	23,019,148	0.89%
3	Shenzhen	Guangdong	169,112	10,357,938	1.63%
4	Chongqing	NA	134,675	28,846,170	0.47%
5	Taiyuan	Shanxi	127,579	4,201,591	3.04%
	City	Province	Population	Total Population	Percent
---	------------	------------	------------	------------------	----------
6	Guangzhou	Guangdong	123,010	12,700,800	0.97%
7	Xi’an	Shaanxi	120,222	8,467,837	1.42%
8	Hangzhou	Zhejiang	111,637	8,700,400	1.28%
9	Chengdu	Sichuan	107,915	14,047,625	0.77%
10	Tianjin	NA	100,430	12,938,224	0.78%
11	Suzhou	Jiangsu	88,091	10,465,994	0.84%
12	Wuhan	Hubei	85,028	9,785,392	0.87%
13	Dongguan	Guangdong	74,208	8,220,237	0.90%
14	Ningbo	Zhejiang	70,878	7,605,689	0.93%
15	Fuzhou	Fujian	70,068	7,115,370	0.98%
16	Quanzhou	Fujian	68,601	8,128,530	0.84%
17	Zhengzhou	Henan	67,710	8,626,505	0.78%
18	Jilin City	Jilin	64,847	4,414,681	1.47%
19	Fuyang	Anhui	63,157	7,599,918	0.83%
20	Shijiazhuang	Hebei	62,064	10,163,788	0.61%
	All top 20	NA	2,149,985	225,018,205	0.96%
	All China	NA	6,536,549	1,339,724,852	0.49%

Note: population data are collected from Communique of the National Bureau of Statistics of People’s Republic of China on Major Figures of the 2010 Population Census (No. 2)

Regional difference and cultural diversity in China
Playing card and board game is a favorite pastime for Chinese people. China has strong board and card game culture. There are hundreds of card and board games in China. Most provinces and many cities have distinct card and board games. For example, there are more than 30 kinds of mahjong in China. Shanghai has Shanghai mahjong. Zhejiang, a neighbor province of Shanghai, has Hangzhou mahjong and Ningbo mahjong. So is the case for card games.

Figure 2 shows the geographical distribution of players of 13 Chinese mahjong games, including Sichuan mahjong, Hangzhou mahjong, Wuhan mahjong, Harbin mahjong, etc. Each mahjong game has its own sphere of influence, there may be some overlap between two games, but generally the boundary of games is distinct.

For Hangzhou mahjong, as the red dots shows, they are concentrated in Zhejiang province and other Yangtze River delta regions, including Shanghai and Jiangsu province.

For another kind of mahjong game, Sichuan mahjong, most players are concentrated in the west China, including Sichuan province, Chongqing city, Guizhou province, Yunnan province. Other regions, e.g. Yangtze River delta in east China, Pearl River Delta in south China, also have scattered distribution.
Figure 2. Geographical distribution of mahjong players with distinct regional characteristics

For contrast, we also choose another two games as control sample, which are Tractor and Happy Bullfight. They are also popular games in China and without much regional feature. As Figure 3 shows, the nodes distribution is very consistent with the general distribution shown in Figure 1.

Figure 3. Geographical distribution of games without regional characteristics
So, in order to identify the interregional similarities and interregional differences, only games with distinct regional features are selected from the complete dataset of 196 games. The criterion for regional game is quantified by the following rule, players from the top 20 cities account for over 50% of all players, when players from the top 5 cities account for less than 70%. Then, we make correlation analysis for the games. If games are high correlated with each other, only one (with more players) could be kept from the highly correlated games (correlation coefficient greater than 0.8).

For example, as shown in Table 3, the proportion of players in top 5 cities for the three games, Tractor and Sichuan Mahjong are 18.76% and 40.04% respectively, when the proportion of Shanghai Mahjong is as high as 90.42%. According to the criterion mentioned above, Shanghai Mahjong is excluded. When considering the proportion of players in top 20 cities, Tractor is excluded because its proportion is less than 50%.

	Tractor	Sichuan Mahjong	Shanghai Mahjong
% of top 5 cities	18.76%	40.04%	90.42%
% of top 20 cities	43.16%	60.32%	96.45%

Figure 4 shows the distribution of 3 games. As a kind of widespread game in China, Tractor has little regional characteristic, which could be seen from the smooth distribution of blue dots. When the distribution of Shanghai Mahjong, illustrated with red dots, is very steep. It means that players of Shanghai Mahjong concentrated in few cities, i.e. Shanghai. And the distribution of Sichuan Mahjong is somehow between.

Finally, 47 games with distinct regional characteristic are selected. For each provincial region in China, 2-3 kinds of QQ games with regional features are included as research samples, as Table 4 shows.
Rank	Chinese Poker	四人斗地主	No. of players	195485	25	Baofen	包分	6299
2	Baohuang	保皇	No. of players	78146	26	4A4	4A4	6239
3	Sichuan Mahjong	四川麻将	No. of players	75978	27	Atom	原子	5661
4	Yaodiren	么地人	No. of players	59681	28	Guanpai	关牌	5261
5	Protean Shuangkou	千变双扣	No. of players	39755	29	Erqiwang	二七王	5163
6	Da Da A	打大 A	No. of players	32521	30	Nanchang Mahjong	南昌麻将	5116
7	New Gouji	新够级	No. of players	29163	31	Dalian Qionghu Mahjong	大连够胡麻将	4854
8	Dig	挖坑	No. of players	26296	32	Changsha Mahjong	长沙麻将	4487
9	Chinese Hearts	拱猪	No. of players	23084	33	Tianjin Mahjong	天津麻将	3240
10	Guandan	捡蛋	No. of players	21962	34	Shandong Mahjong	山东麻将	2848
11	Paohuzi	跑胡子	No. of players	16426	35	Harbin Mahjong	哈尔滨麻将	2729
12	Wuhan Mahjong	武汉麻将	No. of players	13280	36	240	二百四	2687
13	Bieqi	憋七	No. of players	12759	37	Situan	四团	2671
14	Hebei Mahjong	河北麻将	No. of players	12124	38	Four Dig	四人挖坑	2397
15	Big Two	锄大地	No. of players	10435	39	Black A	黑尖	2280
16	Sandayi	三打一	No. of players	10369	40	Shoubai	手把一	2131
17	Red 10	红十	No. of players	9869	41	Fuzhou Mahjong	福州麻将	1893
18	Sandaha	三打哈	No. of players	9162	42	Changchun Mahjong	长春麻将	1863
19	Hangzhou Mahjong	杭州麻将	No. of players	8695	43	Xinyang Black 7	信阳黑7	1741
20	Shaanxi Mahjong	陕西麻将	No. of players	7642	44	Paoyao	创幺	1560
21	Guangdong Tuidaohu Mahjong	广东推倒胡麻将	No. of players	6991	45	Guiyang Zhuoijing Mahjong	贵阳捉鸡麻将	946
22	Guangdong Jipinghu Mahjong	广东鸡平胡麻将	No. of players	6685	46	Wenzhou Mahjong	温州麻将	573
23	Ningbo Mahjong	宁波麻将	No. of players	6679	47	Huashui Mahjong	滑水麻将	408
24	Qingdao Baohuang	青岛保皇	No. of players	6474	47			

Geographical Region Clustering

For the 376 cities in China, we record the number of players of each game in each city. Considering the population size of cities, we divide the number of players of one game by the total players of all games in the city. Because of the data missing of some regions in Hainan province, and the special status of Taiwan, Hong Kong and Macau, these areas are excluded. Finally, 336 cities in Chinese mainland are selected as research objects.
Hierarchical cluster analysis is employed to cluster the 336 cities. The clustering method is Average Linkage (Between Groups), when the distance is measured by Phi-square. To better illustrate the clusters and their relationship, we group some cities into one cluster according to the hierarchical cluster result. As Figure 5 shows, the above panel is the cluster result, there are 17 clusters. The color of clusters are different, we use the color ramp to label the relationship of clusters. Clusters with the more similar color have the more close relationship. The cities are projected to the geographical map of China with different color according to the clustering result as Figure 5 (a) shows. Cities in the same cluster are labeled with the same color. The gray line in the map illustrate the boundaries of provinces.

As Figure 5 (b) shows, firstly, the distribution of clustering units shows great geographical proximity. Although we make cluster analysis of the cities with not any spatial constraint to limit group membership to contiguous features, cities within the same cluster have typical geographical proximity, which could be demonstrated by large areas with the same color. Moreover, this kind of geographical proximity also applies to adjacent clusters, i.e. cluster 1 and 2 are located adjacent, the same for cluster 7, 8 and 9, cluster 13, 14 and 15.

Secondly, in general the boundary of the clusters coincides well with the geographical boundary of provinces. Some clusters are restricted in one province, i.e. cluster 17 and Shandong province, cluster 16 and Hunan province. Some clusters are concentrated in two or more provinces. For example, cluster 1 includes Shanghai, Jiangsu and Anhui. Cluster 5 is consist of Jiangxi, Guangdong and Guangxi. Cluster 7 contains Shaanxi, most areas in Ningxia and Gansu and part of Qinghai.

Figure 5. Result of cluster analysis

Discussion

Playing card and board game has a long history in Chinese societies, which has distinct cultural and societal characteristics. Using geotagged online-gaming data of Chinese internet users, we cluster Chinese regions into 17 groups. As the clustering results show, although we make cluster
analysis of the cities with not any spatial constraint to limit group membership to contiguous features, cities within the same cluster have typical geographical proximity. The geographic boundaries of clusters coincide well with the boundaries of provincial regions, which indicate that regions in the same province tend to have similar cultures.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The work was supported by the project of “National Natural Science Foundation of China” (61301227); and the project of "Fundamental Research Funds for the Central Universities" (grant number DUT12RW309).

References
Brodbeck FC, Frese M, Akerblom S, et al. (2000) Cultural variation of leadership prototypes across 22 European countries. *Journal of Occupational and Organizational Psychology* 73: 1-29.

Cattell RB. (1950) The principal culture patterns discoverable in the syntal dimensions of existing nations. *The Journal of Social Psychology* 32: 215-253.

Eagle N and Pentland A. (2006) Reality mining: sensing complex social systems. *Personal Ubiquitous Computing* 10: 255-268.

Furnham A, Kirkcaldy BD and Lynn R. (1994) National attitudes to competitiveness, money, and work among young people: First, second, and third world differences. *Human Relations* 47: 119-132.

Girardin F, Calabrese F, Fiore FD, et al. (2008) Digital footprinting: Uncovering tourists with user-generated content. *Pervasive Computing, IEEE* 7: 36-43.

Gupta V, Hanges PJ and Dorfman P. (2002) Cultural clusters: methodology and findings. *Journal of world business* 37: 11-15.

Latour B. (2007) Beware, your imagination leaves digital traces. *Times Higher Literary Supplement* 6: 2007.

Manovich L. (2011) Trending: the promises and the challenges of big social data. *Debates in the digital humanities*: 460-475.

O’Neill E, Kostakos V, Kindberg T, et al. (2006) Instrumenting the city: Developing methods for observing and understanding the digital cityscape. *UbiComp 2006: Ubiquitous Computing*. Springer, 315-332.

Smith PB, Dugan S and Trompenaars F. (1996) National culture and the values of organizational employees a dimensional analysis across 43 nations. *Journal of cross-cultural psychology* 27: 231-264.

Wang X, Xu S, Peng L, et al. (2012) Exploring scientists’ working timetable: Do scientists often work overtime? *Journal of Informetrics* 6: 655-660.