Management of hypertension in the hemodialysis population: a review of the literature

Nabela Enam, Medical Student¹,²*, Kavita Kakkad, MD², Akshay Amin, MD¹,² and Carole Lever, MLS, AHIP²

¹School of Medicine, University of Maryland, Baltimore, MD, USA; ²Medstar Union Memorial Hospital, Baltimore, MD, USA

Objective: The objective of this paper was to propose an algorithm for approaching hypertensive hemodialysis patients admitted to the hospital for hypertensive urgency.

Methods: A literature search was conducted using PubMed (Medline). Articles selected were limited to humans and the English language.

Results: We identified eight management modalities including: short-daily and nocturnal dialysis, sodium restriction, sodium profiling, antihypertensive medications, sympathetic denervation, bilateral nephrectomy, and bioimpedance spectroscopy. The benefits and drawbacks of each were investigated and discussed before implementation into the algorithm.

Discussion: The algorithm presented suggests a linear approach to patient care, but treatment modalities may not be mutually exclusive, and additional factors, such as patient compliance and individual health status, should be taken into account to provide patients with optimum care.

Keywords: hypertension; hemodialysis; algorithm; sodium dialysate; anti-hypertensive medication

P

atients with hypertension (HTN) are often asymptomatic, but the consequences, if left untreated, may be devastating. The Kidney Disease: Improving Global Outcomes provides national guidelines in clinical practice for blood pressure control in the non-dialysis-dependent chronic kidney disease population. However, clearly defined guidelines are not available for hypertensive patients in the hemodialysis (HD) population. For practicing physicians, the absence of a specific protocol may present challenges in managing such patients admitted to the hospital for hypertensive urgency. Thus, the goal of this paper was to conduct a literature search and identify specific interventions for this patient population. Although additional studies are needed to adequately draw therapeutic conclusions, the proposed algorithm serves as a summary of the recommendations presented in current literature.

Whether a patient is in an early stage of kidney disease or has progressed to end-stage renal disease (ESRD) and is dependent on dialysis, maintaining blood pressure continues to play a critical role. A systematic review and meta-analysis of randomized controlled trials published in 2009 reported that blood pressure-lowering treatment was associated with a reduced risk of cardiovascular events, all-cause mortality, and cardiovascular mortality in dialysis patients (1).

HD provides better volume control in ESRD patients by achieving a patient’s dry weight, defined as the postdialysis body mass at which the patient neither retains excess fluid nor experiences symptoms of hypotension. Even with HD, however, nearly 50–60% of patients continue to suffer from HTN (2). As such, additional strategies to reduce blood pressure should be implemented alongside the dialysis plan. The HTN management options to achieve volume control that were investigated in this article include:

1. Prolonged or increased frequency of HD
2. Sodium control (dietary and dialysate sodium prescriptions)
3. Antihypertensive agents
4. Sympathetic denervation
5. Bilateral nephrectomy
6. Bioimpedance spectroscopy

Methods

The search for HTN management options in the HD population was conducted using PubMed (Medline). We identified relevant literature, particularly those using...
Table 1. Search keywords for advanced PubMed search with systematic review, meta-analysis, or no filter specified

Medical subject headings (MeSH) keywords:
Dialysis solution + hypertension
Hypertension + hemodialysis
Kidney failure, chronic + hypertension
Anti-HTN medication + hemodialysis

Table 1 displays the systematic review and meta-analysis methodologies. Articles included were limited to humans and the English language. The search keywords applied are shown in Table 1. If relevant systematic reviews or meta-analysis were not found, the search criteria were broadened to include all other forms of literature by removing the systematic review and meta-analysis filter.

Results
The literature selected for this project is summarized in Table 2.

Eight interventions were investigated for managing HTN in the HD population; seven showed benefits in patient care as measured by improvements in blood pressure control, decrease in prescribed antihypertensive medications, or less interdialytic weight gain. The description and findings from each intervention are summarized in Table 3.

Algorithm
An algorithm summarizing the findings from the literature review was proposed to serve as an initial guide to managing HD patients admitted for hypertensive urgency because specific guidelines are not currently available. Until further investigation and recommendations can be made, this algorithm provides a stepwise approach that may assist physicians in optimizing care from acute presentation to long-term management.

Conclusion
The goal of this article was to search the PubMed database and broadly address the clinical question of how to manage HTN in HD patients, a population for whom specific guidelines are not currently available. Because the underlying mechanism and pathophysiology of acute and chronic HTN are similar, the literature findings were applied to both immediate and long-term patient care. Although additional research and investigation are required to optimize care, the proposed algorithm provides a stepping stone for practicing physicians faced with the clinical scenario described.

Although the algorithm presented suggests a linear approach, it is important to note that multiple management modalities may benefit a single patient and treatment options are not mutually exclusive. Additionally, it is imperative to take a patient’s individual health status, comorbidities, and personal preferences into account when providing care. Perhaps the most important factor to consider after stabilizing a HD patient admitted for hypertensive urgency is adherence to the assigned treatment regimen. Explaining the significance of patient cooperation may present the most efficient and proactive method of treatment. Once established, the additional

In the acute setting, a HD patient with fluid overload should be given pharmacologic intervention as they are prepared for emergency dialysis. Common intravenous medications administered include labetalol and nicardipine. Once stabilized, long-term management strategies should be implemented. Common home medication regimens include β-blockers, calcium channel blockers, Angiotensin converting enzyme inhibitors (ACE inhibitors), and Angiotensin receptor blockers (ARBs). Because some parameters may present ambiguity, Table 4 clarifies factors presented in the algorithm that may be difficult to define in clinical practice Fig. 1.
Table 3. Summary of literature search results for the management of hypertension in hemodialysis patients in intervention groups

Intervention	Description of technique	Findings
Short-daily HD (3, 4)	Performed approximately 5–7 times per week for 1.5–3 hour duration	Improvements in blood pressure control
Nocturnal HD (5)	Performed approximately 6 nights a week	Discontinuation or reduction in mean number of anti-HTN drugs
Sodium restriction (6)	Restricting dietary sodium leads to less water retention and interdialytic weight gains	Greater blood pressure drop in hypertensive patients than general population
Sodium profiling (7, 8)	Gradual reduction of sodium dialysate concentration to match patient’s individualized plasma sodium level (normal range between 135–145 mEq/L)	Pre-HD sodium concentration is a safe and effective means to manage HTN in HD patients
Anti-HTN agents (1)	Many classes with different targets	In general, reduced cardiovascular morbidity and mortality
	Adrenergic receptor antagonists (α-blockers, β-blockers)	β-Blockers, CCBs, ACE inhibitors, and ARBs are appropriate primary choices for HD patients
	Calcium channel blockers (CCB)	α-Blockers and central acting agents recommended as secondary choices
	ACE inhibitors and ARBs	Assign medication according to patient comorbidities
	Centrally acting agents	
Sympathetic denervation (9)	Catheter-based radiofrequency energy interrupts sympathetic nervous system in renal arteries	Patients with resistant HTN showed significant reduction in systolic and diastolic pressures with no reported worsening of kidney function postdenervation
Bilateral nephrectomy (10)	Removing kidneys reduces circulating levels of renin, angiotensin I and angiotensin II	Largely abandoned with introduction of anti-HTN medication
Bioimpedance spectroscopy (11)	Recently proposed technique using fluid model to determine fluid overload	Decrease in postdialysis body weight, better blood pressure levels and decreased use of anti-HTN medication

Table 4. Clarification of parameters presented in algorithm that may be difficult to assess

Life style modification	Salt restriction and healthy diet
	Weight control (interdialytic weight gain)
	Exercise
	Monitor daily blood pressure
Response to anti-HTN medication	Ensure patient receiving optimal and/or maximum recommended dose
	Consider changing or adding anti-HTN meds to treatment regimen
	Take individual patient characteristics (e.g., race, comorbidities) into account
Compliance with medication	Cost of medication
	Mental status
	Education
	Gross negligence
Secondary HTN	Examples include: renovascular disease and hyperaldosteronism
management methodologies presented in this article are beneficial in optimizing a patient’s quality of life.

Conflict of interest and funding

The authors have not received any funding or benefits from industry or elsewhere to conduct this study.

References

1. Heerspink HJL, Ninomiya T, Zoungas S, de Zeeuw D, Grobbée DE, Jardine MJ, et al. Effect of lowering blood pressure on cardiovascular events and mortality in patients on dialysis: A systematic review and meta-analysis of randomised controlled trials. Lancet 2009; 373: 1009–15.
2. Henrich WL, Lionel U. Mailloux. In: Schwab SJ, et al. eds. Hypertension in hemodialysis patients. Waltham, MA: UpToDate; 2013.
3. Puña J, Lema LV, Sanchez-Guisande D, Ruano-Ravina A. Clinical effectiveness and quality of life of conventional haemodialysis versus short daily haemodialysis: A systematic review. Nephrol Dial Transplant 2008; 23: 2634–46.
4. Susantitaphong P, Koulouridis I, Balk EM, Madias NE, Jaber BL. Effect of frequent or extended hemodialysis on cardiovascular parameters: A meta-analysis. Am J Kidney Dis 2012; 59(5): 689–99.
5. Walsh M, Culleton B, Tonelli M, Manns B. A Systematic review of the effect of nocturnal hemodialysis on blood pressure, left
ventricular hypertrophy, anemia, mineral metabolism, and health-related quality of life. Kidney Int 2005; 67: 1500–8.
6. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ, et al. Effect of lower sodium intake on health: a systematic review and meta-analysis. Br M J 2013: 1–20.
7. Elshahawy Y, Sany D, Shawky S. Outcome of individualized dialysate sodium concentration for hemodialysis patients. Saudi J Kidney Dis Transpl 2013; 24(3): 507–13.
8. Santos SFF, Peixoto AJ. Revisiting the dialysate sodium prescription as a tool for better blood pressure and interdialytic weight gain management in hemodialysis patients. Am Soc Nephrol 2008; 3: 522–30.
9. Gosain P, Garamella PS, Hard PD, Agarwal R. Renal sympathetic denervation for treatment of resistant hypertension: A systematic review. Official J Am Soc Hypertens 2013; 15(1): 75–84.
10. Medina A, Bell PR, Briggs JD, Brown JI, Fine A, Lever AF, et al. Changes of blood pressure, renin, and angiotensin after bilateral nephrectomy in patients with chronic renal failure. Br Med J 1972; 4(5842): 694–6.
11. Hur E, Usta M, Toz H, Asci G, Wabel P, Kahveciolugu S, et al. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: A randomized controlled trials. Am J Kidney Dis 2013; 61(6): 957–65.