THE Hα LUMINOSITY FUNCTION AND STAR FORMATION RATE VOLUME DENSITY AT z = 0.8 FROM THE NEWFIRM Hα SURVEY

CHUN LY1,2,6,7, JANICE C. LEE2,8, DANIEL A. DALE3, IVELINA MOMCHEVA2, SAMIR SALIM4, SHAWN STAUDAhER3, CAROLYNN A. MOORE3, AND ROSE FINN5

1 Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA; chunly@stsci.edu
2 Carnegie Observatories, Pasadena, CA, USA
3 Department of Physics and Astronomy, University of Wyoming, Laramie, WY, USA
4 Department of Astronomy, Indiana University, Bloomington, IN, USA
5 Department of Physics, Siena College, Loudonville, NY, USA

Received 2010 August 31; accepted 2010 November 10; published 2010 December 21

ABSTRACT

We present new measurements of the Hα luminosity function (LF) and star formation rate (SFR) volume density for galaxies at z ∼ 0.8. Our analysis is based on 1.18 μm narrowband data from the NEWFIRM Hα (NewHα) Survey, a comprehensive program designed to capture deep samples of intermediate redshift emission-line galaxies using narrowband imaging in the near-infrared. The combination of depth (∼1.9 × 10^{-17} erg s^{-1} cm^{-2} in Hα at 3σ) and areal coverage (0.82 deg^2) of the 1.18 μm observations complements other recent Hα studies at similar redshifts, and enables us to minimize the impact of cosmic variance and place robust constraints on the shape of the LF. The present sample contains 818 NB118 excess objects, 394 of which are selected as Hα emitters. Optical spectroscopy has been obtained for 62% of the NB118 excess objects. Empirical optical broadband color classification is used to sort the remainder of the sample. A comparison of the LFs constructed for the four individual fields covered by the observations reveals significant cosmic variance, emphasizing that multiple, widely separated observations are required for such analyses. The dust-corrected LF is well described by a Schechter function with L*, = 10^{45.00±0.52} erg s^{-1}, Φ*, = 10^{-3.26±0.54} Mpc^{-3}, and α = −1.6 ± 0.19. We compare our Hα LF and SFR density to those at z ≲ 1, and find a rise in the SFR density α (1 + z)^{1.4}, which we attribute to significant L*, evolution. Our Hα SFR density of 10^{-1.00±0.18} M⊙ yr^{-1} Mpc^{-3} is consistent with UV and [O II] measurements at z ∼ 1. We discuss how these results compare to other Hα surveys at z ∼ 0.8, and find that the different methods used to determine survey completeness can lead to inconsistent results. This suggests that future surveys probing fainter luminosities are needed, and more rigorous methods of estimating the completeness should be adopted as standard procedure (for example, with simulations which try to simultaneously reproduce the observed Hα LF and equivalent width distributions).

Key words: galaxies: distances and redshifts – galaxies: evolution – galaxies: luminosity function, mass function – galaxies: photometry – galaxies: star formation

Online-only material: color figures

1. INTRODUCTION

The luminosity of the Hα nebular emission line is a star formation rate (SFR) indicator valued for its relatively direct physical connection to short-lived massive stars. In the local universe, it has been well calibrated (e.g., Kennicutt 1998; Kennicutt et al. 2009) and extensively used to measure the SFRs of individual galaxies, as well as the SFR density over cosmic volumes (e.g., Kennicutt & Kent 1983; Gallego et al. 1995; Salzer et al. 2001; Gavazzi et al. 2002; Brinchmann et al. 2004; Hanish et al. 2006; Meurer et al. 2006; Ly et al. 2007; Dale et al. 2008; Kennicutt et al. 2008; Lee et al. 2009).

While it is desirable to extend Hα studies of galaxies to earlier cosmic times, such work is observationally difficult because Hα is redshifted into the infrared beyond z ∼ 0.4. Early attempts yielded samples of Hα emitters that were small in size and did not sample representative cosmic volumes, because of the limited depth and areal coverage of the observations (e.g., Yan et al. 1999; Hopkins et al. 2000; Tresse et al. 2002). Other SFR indicators, which are accessible in the optical at higher redshift (e.g., the rest-frame UV continuum or other bluer emission lines), have therefore been more commonly used. Measurements of the SFR density have now been made at redshifts as high as ∼6. A sharp, order of magnitude decline is seen in the star formation activity of the universe from z ∼ 1 to the present day (see, e.g., Hopkins 2004). However, the amalgam of measurements that constitute our current understanding of the cosmic star formation history shows a scatter of at least a factor of a few, which considerably reduces their usefulness as a constraint on models of galaxy evolution.

In this context, it is important to determine the extent to which systematics between different SFR indicators (such as the variable impact of dust attenuation and dependence on metallicity) contribute to the observed scatter in the cosmic star formation history. In particular, it is useful to trace the history with a consistent indicator throughout time, and then compare the overall histories determined with different indicators. This paper represents a step in this process, and aids in the robust extension of Hα measurements of the SFR density to higher redshift.

Here, we present Hα luminosity functions (LFs) and SFR densities at z = 0.80. At this redshift, the age of the universe is 6.6 Gyr, assuming a \([Ω_Λ, Ω_M, h_{70}] = [0.7, 0.3, 1.0]\)
cosmology, which we adopt throughout. Our analysis is based on narrowband (NB) observations from the NEWFIRM Hα (NewHα) Survey (J. C. Lee et al. 2011, in preparation), which has been conducted with the NOAO Extremely Wide-Field Infrared Imager (NEWFIRM; Probst et al. 2004, 2008) at the KPNO 4m telescope. The current sample contains ~400 Hα emitting galaxies above 3σ significance, which have been identified over an area of 0.82 deg².

This paper is organized as follows. In Section 2, we give an overview of the NewHα data that are used in our analysis. In Section 3, we describe the selection of NB118 excess emitters. We also discuss the techniques (i.e., dedicated follow-up spectroscopy and empirical broadband color classification) that are used to identify the emission line(s) responsible for the narrowband excess. A description of how we compute emission-line fluxes, luminosities, and equivalent widths (EWs) is provided in Section 4. In Section 5, estimates of the survey’s completeness and the surveyed volume are presented, and Section 6 presents the Hα LF and the comoving SFR density at z ~ 0.8. Comparisons of these results with existing Hα measurements are described in Section 7. We also compare our results with that of other recent z ~ 0.8 narrowband Hα surveys, and examine the reasons why inconsistent results may arise between these studies. A discussion of our results and their implications for the evolution of typical galaxies at z ~ 0.8 are provided in Section 8, and concluding remarks are provided in Section 9. Magnitudes are reported on the AB system (Oke 1974).

2. OBSERVATIONS AND DATA REDUCTION

2.1. The NewHα Survey

The NewHα Survey is an ongoing campaign designed to extend deep, wide searches for emission-line galaxies into the intermediate redshift universe. The survey takes advantage of the 27.6 × 27.6 field of view of the NEWFIRM, which achieved first light on the KPNO 4 m telescope in 2007 February, and became available for general observing in 2007 November.

NewHα uses narrowband observations to identify emission-line galaxy candidates. Imaging is taken through 1% filters that are designed to sample low OH airglow windows in the near-infrared, and objects are selected by detection of a photometric excess in a narrowband, relative to continuum measurements in a broadband. Bandpasses are centered at 1.18 μm and 2.09 μm, which capture Hα emission at redshifts of 0.80 and 2.19, respectively. The continuum flux is constrained with J and Ks imaging. A combination of techniques, including dedicated follow-up spectroscopy and empirical broadband color classification, is used to identify the emission line(s) responsible for the narrowband excess, as discussed in more detail below. A full description of the overall survey is provided in J. C. Lee et al. (2011, in preparation). Here, we give a summary of the 1.18 μm imaging observations, data reduction, and selection technique used to construct a robust sample of Hα emitters at z = 0.80.

2.2. NEWFIRM Observations

The analysis presented in this paper is based upon NEWFIRM J band⁹ and 1.18 μm narrowband (hereafter NB118)¹⁰ observations of areas in the Subaru-XMM Deep Survey (SXDS; Furusawa et al. 2008) and Cosmic Evolution Survey (COSMOS; Scoville et al. 2007) extragalactic deep fields. The observations were carried out in 2007 December, 2008 September, and 2008 October at the KPNO 4 m telescope. Data were acquired for three regions in the SXDS and one region in COSMOS, each spanning the ~750 arcmin² subtended by the detector array of the camera. In total, these observations cover 0.82 deg² for a comoving volume of 9.12 × 10⁴ h⁷₀⁻³ Mpc³ at z = 0.8.

We follow standard near-infrared observing procedures to obtain the data. Integration times of 240 s and 30 s are used for the individual NB118 and J exposures, respectively. The NB118 exposures are read out with eight Fowler samples. In 2008, on board co-adding was enabled in the camera, and was used for our J-band observations, with every two J exposures being summed. A combination of nine-, six-, and four-point dither patterns is used to cover a 75′′ square grid with 61 positions. The dithers serve to smooth over cosmetic defects, bridge the 35′′ gaps between NEWFIRM’s four 2048 × 2048 InSb arrays, and enable the rejection of pixels affected by persistent afterimages caused by the latency properties of the detectors. The pattern, with small offsets from the initial position, is repeated as necessary to achieve a minimum 3σ depth of 23.5 AB (NB118) and 23.7 AB (J), in apertures containing at least ~80% of the flux of a point source, given the seeing conditions during the observations (see Section 3.1). Cumulative integration times range between 8.2 and 12.7 hr in NB118 and 2.3 and 4.0 hr in J. The median seeing during our observations was ~1.2′′, and varied between 1.0′′ and 1.9′′, hence point sources are adequately sampled with 0.4 pixels. Sky conditions were mostly photometric, but some data were taken through thin cirrus. A summary of the observations is given in Table 1.

2.3. NEWFIRM Data Reduction

Data reduction is performed with our own automated PyRAF-based pipeline, which builds upon routines from the IRAF/NESTERN package and is optimized for the processing of NewHα observations. Our procedures follow standard, iterative, near-infrared reduction techniques to produce flat-fields, subtract the sky background, and reject artifacts, particularly those due to persistent afterimages from bright sources.

The NewHα pipeline processes the data in two passes. One of the purposes of the initial pass is to create a deep object mask that is used to construct flat-fields and sky frames from the science images themselves. The pipeline first subtracts the dark current, masks for bad pixels, corrects for the nonlinear response of the detector, and performs a preliminary sky-subtraction using a median of the temporally closest five exposures. The geometric distortion is rectified, and the astrometry is calibrated relative to the Two Micron All Sky Survey (2MASS) catalog. The dithered science images are then projected onto a common pixel grid and stacked. A deep object mask is made from this initial stack, and applied to the individual science exposures on the original pixel grid.

The first pass sky-subtracted frames are also used to identify artifacts due to persistent afterimages. Object masks are created for each individual frame, and pixels in a given image are compared to corresponding pixels from previous frames. Pixels containing object flux in consecutive frames are masked. Non-science images, such as short exposures used to check and adjust the telescope pointing, are also included in this process. This method flags roughly 95% of visually apparent persistent artifacts. The remaining 5% are faint and decay quickly enough.
in subsequent frames that they are not detectable in the final mosaics after the stacking of the entire data set.

Flat-fields for each night are made by combining J-band science images, which have been masked for both real objects and persistent sources. The flats are used to normalize the response within each detector in both the J and NB118 images. Correc-
tions that account for sensitivity variation between detectors are also applied.

In the second pass, all the data are flat-fielded, and the sky subtraction is again performed, but with stacks of temporally neighboring frames which have now been masked of all sources. Any problematic frames (e.g., due to read-out problems or jumps in the telescope pointing) are rejected. The flat-fielded, sky-subtracted, persistence-masked frames are then combined to produce the final mosaic. The astrometry of the mosaics is tested against 2MASS sources, as well as against sources in the GOODS (Fujita et al. 2003; LeFèvre et al. 2007; Shioya et al. 2008; Villar et al. 2008; Sobral et al. 2009). We check for systematic errors as a function of both spatial extent and assuming a Gaussian profile. In the SXDS-N and SXDS-W fields, the seeing during our observations was between 1′′1 and 1′′2, and thus 2′′5 and 3′′ diameter apertures are used. The aperture sizes are increased to 2′′5 and 4′′ for the SXDS-S and COSMOS fields, where the seeing was worse and varied from 1′′25 to 1′′6. One of the purposes of using two aperture sizes is to allow the selection to be sensitive to galaxies with concentrated star formation as well as those with more extended nebular emission. In order to derive global quantities, however, the Hα luminosities and EWs for all selected sources are calculated from fluxes measured in the larger aperture.

Sources are considered to have a significant narrowband excess if:

1. They have a color above a minimum threshold given by

 \[\Delta(J - NB118) \geq 0.2 \text{ mag}, \]

 where \(\Delta(J - NB118) \) is defined below, and 0.2 mag roughly corresponds to the 5σ scatter in \(\Delta(J - NB118) \) for bright point sources with \(18 < NB118 < 20 \) mag. It is imposed to help exclude bright foreground sources with blue continua from the candidate list.

2. The color is significant at the 3σ level

 \[\Delta(J - NB118) \geq 3 \sqrt{\sigma_J^2 + \sigma_{NB118}^2}. \]

Other recent near-infrared narrowband surveys have adopted a lower threshold of 2.5σ (Villar et al. 2008; Sobral et al. 2009, hereafter V08 and S09, respectively). We also extract a secondary sample with this relaxed significance criterion to facilitate comparisons with these studies (Section 7).

Two issues critical to the robust application of these criteria for the selection of line emitters are the determination of \(\Delta(J - NB118) \), and the calculation of accurate photometric errors. We discuss each of these in turn.

Flux excess in the NB118 filter cannot be directly calculated from the J – NB118 color since the NB118 filter does not fall at the center of the J bandpass, but rather was designed to sample the low-OH airglow window toward the blue edge. This not only results in a non-zero mean color for pure continuum sources \(J - NB118 \), but also leads to variation about the mean color as a function of continuum slope. This systematic

Field	R.A., Decl. (J2000)	Observation Dates	Filter	Int. Time (hr)	FWHM (arcsec)	Limiting Magnitude (AB, 3σ)
COSMOS	10:01, +02:01	2007 Dec 4–5	J	2.30	1.20	23.63
		2007 Dec 2–5	NB118	8.16	1.50	23.48
SXDS-N	02:18, −04:38	2008 Sep 28,29, Oct 1,22,23	J	3.52	1.10	23.91
		2008 Sep 29, Oct 1,22,23	NB118	8.47	1.20	23.77
SXDS-S	02:18, −05:15	2007 Dec 3–5	J	2.40	1.25	23.67
		2007 Dec 2–5	NB118	10.28	1.60	23.40
SXDS-W	02:16, −04:57	2008 Sep 23–26,28, Oct 21,22	J	3.97	1.20	24.02
		2008 Sep 23–26,28, Oct 21,22	NB118	12.67	1.15	23.88

Notes. Limiting magnitudes are reported for apertures sizes of 2′′ diameter for the SXDS-N and SXDS-W, and 2′′5 for the SXDS-S and COSMOS. These apertures are chosen to contain a minimum of 80% of the flux of a point source for each pair of J and NB118 imaging, given the seeing conditions during the observations.
is illustrated in the left panel of Figure 1, which shows a standard color–magnitude selection diagram for one of our fields. The points in the diagram are color coded to correspond to different ranges in the \(z' - J \) color, which provides a measure of the continuum slope. Sources with red continua have lower values of \((J - NB118) \) compared with those with blue continua, as expected. Here, the \(J \) photometry is from our NEWFIRM observations, while the \(z' \) measurements are from Subaru/Suprime-Cam (see Furusawa et al. 2008 for SXDS and Taniguchi et al. 2007 for COSMOS).

To account for this systematic, we define

\[
\Delta (J - NB118) = (J - NB118) - (J - NB118)_{e} \tag{3}
\]

where

\[
(J - NB118)_{e} = f(z' - J). \tag{4}
\]

A linear fit is performed for sources with \(J - NB118 \) within \(\pm 0.25 \) mag of the overall mean value. We find that \((J - NB118)_{e} = -0.15(z' - J) + \text{const.} \) for \(z' - J < 0.5 \). For \(z' - J > 0.5 \), there is no apparent slope so a constant value is assumed for redder sources. Accordingly, we compute corrections and apply them relative to the value of \((J - NB118)_{e} \) for sources with an intermediate \(z' - J \) of 0.25 mag. The right panel of Figure 1 shows the color–magnitude diagram after this correction is applied and demonstrates the removal of the systematic.

Photometric uncertainties are calculated by combining the errors generated by SExtractor with measurements of the background noise taken through a large number of apertures randomly placed on the images. This hybrid scheme ensures that our uncertainties account for (1) correlated (non-Poissonian) noise arising from pixel interpolation during astrometric re-projection in the image reduction (captured in the random aperture measurements) and (2) local variations in the noise, for example, due to non-uniformity in the exposure map (captured by the SExtractor errors). A detailed discussion of these issues is given in Gawiser et al. (2006).

The global, average uncertainty due to the background can be robustly measured using a large number of apertures (identical in size to the apertures used for the photometry) that randomly sample the sky in the images. We perform this exercise separately for different quadrants in the image to account for quantum efficiency differences between the NEWFIRM detectors. The distribution of measurements is well fitted by a Gaussian function, and the standard deviation given by the fit provides the 1\(\sigma \) uncertainty. The average depths of our observations determined in this way are given in Table 1.

To incorporate information on local variations in the noise that is included in the SExtractor errors, the SExtractor estimates are compared with those computed from the random apertures. We find that SExtractor yields lower uncertainties, which is expected since the program assumes that the noise is purely Poissonian and simply computes the error from the global pixel-to-pixel rms. To account for the contribution of non-Poissonian noise components, we scale the median SExtractor error (as a function of the object flux and on a per-quadrant basis) to match the average uncertainty determined from the random apertures. The errors from SExtractor are increased by 2\%–51\%, depending upon the aperture size used. These scaled SExtractor errors are adopted to evaluate the significance of the color excess detected in our observations.

The selection criteria are illustrated in Figure 2, which shows the color–magnitude diagrams for one of our fields, where the photometry has been measured in the larger choice of aperture. Horizontal lines indicating the minimum accepted color excess are plotted, along with curves representing the average values.

\[11 \text{ In Table 1, note that while three detectors have comparable sensitivities, the fourth is less sensitive by about 0.3 mag. The primary cause is an extra layer of anti-reflection coating, which was inadvertently applied to the detector.} \]
of the color excess at 3.0σ, 2.5σ, and 2.0σ significance (as determined using random apertures). Objects selected at 3σ (red circles) and 2.5σ (black diamonds) are both shown. Hereafter, quantities related to the 2.5σ samples are quoted in brackets unless otherwise noted.

The selection is performed separately for the photometry determined through the two sets of apertures, as well as for the individual quadrants in each field. The use of a second, larger detection aperture results in a ∼10% increase of the number of narrowband excess candidates. In total, we find 150–300 [250–450] candidates per field. All candidates are inspected by visual examination of the NEWFIRM J and NB118 data, alongside publicly available deep z′ imaging. The inspection process leads to the removal of four sources from the sample (two are artifacts and two are significantly blended with adjacent candidates). The overall process yields a total sample of 818 [1218] NB118 excess emitters in the combined survey area of 0.82 deg². A summary of the number of sources identified in each field is given in Table 2. A catalog of NB118 excess emitters, including emission-line fluxes and EWs, will be provided in a forthcoming paper (J. C. Lee et al. 2011, in preparation).

Table 2

Field	Area (arcmin²)	N_{NB1187}	f_{spec}	N_{Hα}	f_{spec} (Hα)
COSMOS	732.5	157 [253]	65% [48%]	59 [90]	46% [32%]
SXDS-N	745.2	157 [255]	59% [42%]	63 [93]	63% [49%]
SXDS-S	741.7	201 [265]	75% [64%]	130 [154]	76% [70%]
SXDS-W	746.6	303 [445]	52% [38%]	142 [185]	61% [48%]
Total	2966.0	818 [1218]	62% [46%]	394 [522]	64% [52%]

Notes. Surveyed area listed in units of arcmin². N_{NB1187} gives the number of sources selected as emission-line galaxy candidates which have 3σ [2.5σ] Δ(J – NB118) excess and are above Δ(J – NB118) = 0.2 mag. f_{spec} indicates the percentage of N_{NB1187} with follow-up optical spectroscopy. N_{Hα} gives the number of emission-line galaxy candidates identified as Hα emitters by empirical color selection or spectroscopy, as discussed in Section 3.2. f_{spec} (Hα) indicates the percentage of N_{Hα} that has been spectroscopically confirmed.

3.2. Identification of Hα Emitters

An excess in the narrowband can arise from various emission lines that are redshifted into the bandpass of the filter. The main emission lines detected in our NB118 observations are as
predictions for cosmic variance in Section 6.1. A summary of observed field-to-field variation is discussed in the context of our four fields, the fraction ranges from 35% to 65%. This sample (394 nation of techniques. For 62% [46%] of the 3 ... SXDS IMACS follow-up campaign is provided in J. C. Lee et al. (2011, in preparation). A more complete description of the NewH metallicity properties of the sample (I. Momcheva et al. 2011, in preparation).

3.2.1. Spectroscopy of NewHα Narrowband Excess Sources

We carried out spectroscopy of NewHα narrowband excess sources between 2008–2009 with the Inamori Magellan Areal Camera and Spectrograph (IMACS; Dressler et al. 2006) at the 6.5 m Magellan I telescope. IMACS enables multi-object spectroscopy with slit masks over a 27.4 diameter area (an excellent match to the field of view of NEWFIRM), and has good sensitivity to ~9500 Å. These two characteristics make IMACS an ideal instrument for optical spectroscopic follow-up of NewHα NB118 excess sources, and in particular, Hα emitters at z = 0.80. Our observational setup yields spectral coverage from 6300 Å to 9600 Å with 9 Å resolution, and captures the complete ensemble of strong rest-frame optical emission lines blueward of Hα at z = 0.80, from [O iii] λ 3737 at 6720 Å to [O iii] λ 5007 at 9030 Å. The spectra have a median integration time of ~3.5 hr on average, reaching 5σ sensitivities of ~2 × 10^{-17} erg s^{-1} cm^{-2}. IMACS spectroscopy has been obtained for 56% [42%] of our candidates, and the data are currently being used to probe the attenuation and metallicity properties of the sample (I. Momcheva et al. 2011, in preparation). A more complete description of the NewHα IMACS follow-up campaign is provided in J. C. Lee et al. (2011, in preparation) and I. Momcheva et al. (2011, in preparation).

Additional spectroscopy is available from observations carried out by the SXDS (M. Akiyama 2008, private communication) and zCOSMOS (DR2; Lilly et al. 2007) survey teams. The sample sizes of the spectroscopic catalogs are 11,975 for COSMOS and 4231 for SXDS, and among these, 2690 and 2386 fall in our survey regions. The zCOSMOS survey uses the VIMOS spectrograph on the Very Large Telescope 8 m, and targets J < 22.5 mag sources, as well as galaxies that are color-selected to have 1.4 < z < 3.0. The existing SXDS spectroscopic catalog is formed from the composite of data from a number of individual observing programs targeting a range of SXDS subsamples, using various instruments, and achieving different depths. The mean and 1σ dispersion of the magnitude distribution for the available SXDS zspec catalog are R_C = 21.7 and 2.0 mag, respectively. Both of the resultant SXDS and zCOSMOS spectroscopic catalogs are dominated by objects that are bright relative to our NB118 excess emitters, and hence the overlap with our sample is small (5% or 58/1218).

In total, 504 [566] sources in our NB118 excess sample have spectroscopic redshifts. The redshift distribution for these galaxies is shown in Figure 3. There are 253 [272] galaxies with redshifts between 0.790 and 0.817, which places Hα in the NB118 bandpass, and thus confirms them as Hα emitters.

3.2.2. Empirical Optical Color Classification

For the remaining 38% [54%] of the NB118 excess sources that do not have spectroscopic redshifts, a classification scheme based on publicly available Suprime-Cam broadband photometry is developed to separate Hα emitters from other sources in the sample. Our classification uses R_C i′ − z′ in the SXDS fields, and r′ i′ z′ in the COSMOS field. These sets of bandpasses are chosen because at z = 0.8, the Balmer and 4000 Å breaks occur at ~6500 Å (in the R band), so NB118 Hα emitters will appear much redder in R − i′ for a given i′ − z′ than other narrowband excess sources (Figure 4).

In the SXDS fields, we examine the distribution of NB118 excess sources that have spectroscopy from our follow-up IMACS observations (Figure 4, left panel), and identify Hα emitters as those sources with

\[R_C - i' \geq 0.25, \quad \text{if } i' - z' \leq 0.35 \] \hspace{1cm} (5)

\[R_C - i' \geq 0.846(i' - z') + 0.204, \quad \text{if } i' - z' > 0.35. \] \hspace{1cm} (6)

In the COSMOS field, our IMACS spectroscopic data set sparsely samples the color–color diagram. Thus, to improve
coverage of the diagram, we also include galaxies in the zCOSMOS spectroscopic catalog which lie outside the area of our imaging, but whose redshifts would cause an emission line to appear in the NB118 bandpass (open triangles in Figure 4, right panel). Similar color criteria are adopted:

$$R_C - i' \geq 0.39, \quad \text{if } i' - z' \leq 0.30$$

$$R_C - i' \geq 1.08(i' - z') + 0.162, \quad \text{if } i' - z' > 0.30$$

An additional 141 [250] NB118 excess sources lacking spectroscopic redshifts are identified as Hα candidates with these criteria in both fields.

Of course, this color method is a blunt selection tool compared with the use of spectroscopic redshifts—it leads to the inclusion of some interlopers, while missing true Hα emitters that do not lie within the color selection region, as evident from Figure 4. In particular, the color criteria cannot distinguish between Hα and [S ii] emitters because the wavelengths of the emission lines are separated by ~ 100 Å.

Fortunately, we can estimate the contamination and miss rates by examining the color classification of the NB118 excess sources with spectroscopic redshifts. In the SXDS fields, 15% of the excess sources with available spectroscopy that lie in the Hα selection region are incorrectly classified as Hα emitters, and 5% are confirmed Hα emitters that fall outside the color selection region. The corresponding numbers for the COSMOS field are 29% and 8%. Applying these rates to the number of Hα emitters that are added to the Hα sample via the color method, we find that 25 [45] sources are potential interlopers and 8 [15] Hα emitters could be missed. However, the overall contamination and miss rates are far more limited with a high level of spectroscopic completeness of the sample: the estimated number of interlopers and missed Hα emitters are only 6% [2%] and 9% [3%] of the total Hα sample.

4. CALCULATION OF Hα LUMINOSITIES

4.1. Observed Line Fluxes, EWs, and Luminosities

Emission-line fluxes and EWs for the $z = 0.8$ Hα galaxy sample are calculated as follows. Flux densities (erg s$^{-1}$ cm$^{-2}$ Å$^{-1}$) may be written as $f_{NB} = f_C + f_L/\Delta J$ and $f_J = f_C + f_L/\Delta J$, where f_C is the continuum flux density, f_L is the emission-line flux (erg s$^{-1}$ cm$^{-2}$), and ΔNB and ΔJ are the full width at half maximum of the NB118 (110 Å) and J (1786 Å) filters. Therefore, the emission-line flux and the continuum flux density are computed as

$$F_L = \Delta NB \frac{f_{NB} - f_J}{1 - (\Delta NB/\Delta J)}$$

and

$$f_C = \frac{f_J - f_{NB}(\Delta NB/\Delta J)}{1 - (\Delta NB/\Delta J)}.$$ \hspace{1cm} (10)

By definition, the observed EW, which is a factor of 1 + z larger than the rest-frame EW, is the ratio of the emission-line flux to the continuum flux density, and thus

$$EW_{\text{obs}} \equiv \frac{F_L}{f_C} = \Delta NB \frac{f_{NB} - f_J}{f_J - f_{NB}(\Delta NB/\Delta J)}.$$ \hspace{1cm} (11)

With this equation, the minimum $\Delta(J - NB118) = 0.2$ mag excess corresponds to an observed EW of 40 Å. To compute luminosities, we adopt a distance of $5041\, h_{70}^{-1}$ Mpc, which corresponds to $z = 0.803$, the median redshift of our spectroscopically confirmed Hα emitters. Distributions of the observed emission-line fluxes and EWs for our sample of Hα emitters are shown in Figure 5.
The Astrophysical Journal

4.2. Derived Hα Luminosities

To determine the intrinsic Hα luminosity from the observed line luminosity, corrections must be applied for contamination of the flux by the adjacent [N II] lines, and for attenuation by dust internal to the galaxy. The corrections that we adopt are based on standard, empirically calibrated relationships, which describe average corrections for ensemble populations. They should yield luminosities appropriate for computing averaged/integrated quantities such as the SFR volume density. However, it should be noted that the corrections will not be accurate for integrated quantities such as the SFR volume density. However, it should be noted that the corrections will not be accurate for individual galaxies, since the scatter in the relationships is large, as described below.

N II contamination. The NB118 bandpass is wide enough to include flux from the [N II] λ6548,6583\(^{12}\) emission lines for narrowband excess selected Hα emitters.

In the local universe, integrated spectroscopic surveys have found that the Hα/[N II] flux ratio is 2.3 for typical \(L_\star\) galaxies (Kennicutt 1992; Gallego et al. 1997), and past narrowband surveys have often adopted a fixed correction of 2.3 for all selected Hα emitters. The flux ratio, however, has been shown to increase with larger emission-line EWs (see, e.g., V08) and with decreasing B-band luminosities (Kennicutt et al. 2008; Lee et al. 2009). Such correlations are likely a consequence of the mass–metallicity relationship (e.g., Lee et al. 2004; Tremonti et al. 2004). In a recent deep optical narrowband survey with Subaru Suprime-Cam, Ly et al. (2007) adopted 4.66 based on optical spectroscopic follow-up of their emitters. The sample of Ly et al. (2007) consists of galaxies with fainter luminosities, and hence are more metal-poor and would have a higher Hα/[N II] flux ratio on average.

For this study, we follow V08 and S09 in adopting an EW-dependent Hα/[N II] flux ratio to facilitate comparisons of results. The EW-dependent correction was constructed from thousands of \(z \sim 0.1\) star-forming galaxies from the Sloan Digital Sky Survey fourth data release with V08 determined the mean relationship between the rest-frame EW of Hα + [N II] \(\lambda\lambda 6583\) and the Hα/[N II] flux ratio. The correlation exhibits a scatter of \(\sim 0.2\) dex, which implies that estimates of the Hα/[N II] ratio for individual sources will only be accurate to \(\sim 50\%\). Such errors will average out in the calculation of integrated quantities however, and are adequate for our purposes here.

Also, our correction assumes that the Hα/[N II] relation does not evolve with redshift. This is a valid assumption since the evolution of metallicity between \(z = 0.07\) and \(z = 0.7\) has been found to be no more than 0.1 dex (see, e.g., Mannucci et al. 2009 and references therein). Near-infrared multi-object spectroscopy will be needed to examine the Hα/[N II] ratio for NB selected galaxies on a case-by-case basis. Assuming the V08 [N II] correction, the Hα/[N II] ratio varies from 1.85 to 10.0 with a median (average) of 2.50 (2.81) for our population of Hα emitting galaxies.

Dust attenuation. To correct for dust attenuation, we adopt a luminosity-dependent extinction relation following Hopkins et al. (2001):

\[
\log \left[\frac{\text{SFR}_{\text{obs}}(\text{H}\alpha)}{\text{SFR}_{\text{true}}(\text{H}\alpha)} \right] = \log \left[\frac{\text{SFR}_{\text{int}}(\text{H}\alpha)}{\text{SFR}_{\text{true}}(\text{H}\alpha)} \right] - 2.36 \\
\times \log \left[\frac{0.797 \log \left[\text{SFR}_{\text{int}}(\text{H}\alpha) \right] + 3.786}{2.86} \right].
\]

Hopkins et al. (2001) showed that attenuations computed from this equation show a 0.2 dex scatter relative to those based on Balmer decrement measurements for individual galaxies. Much like the [N II] correction, these dust extinction corrections are more reliable when considering multiple sources of a given luminosity/SFR. The Hopkins et al. (2001) relation was also adopted in other studies (e.g., Ly et al. 2007; V08; Dale et al. 2010). For our sample, this correction \((A[H\alpha])\) ranges from 0.66 to 1.87 mag with a median and average of 1.19 and 1.21 mag, respectively.

One piece of evidence that supports the Hopkins et al. (2001) relation is the work of Garn et al. (2010), which has looked at the UV, Hα, and mid-infrared fluxes for a sample of narrowband selected Hα emitters to determine dust attenuation. They find a correlation between the observed Hα luminosity and dust attenuation that is similar to Hopkins et al. (2001). This multi-wavelength comparison will be conducted for our sample of Hα emitters. We will also investigate dust attenuation determined from Balmer decrements, which are obtained from the combination of our NB118 measurements and our IMACS follow-up spectroscopy (I. Momcheva et al. 2011, in preparation). Preliminary results do indicate that the attenuations based on Balmer decrements for the NB118-selected Hα emitters are consistent with the Hopkins et al. (2001) correction.

5. COMPLETENESS OF THE SURVEY

5.1. Monte Carlo Simulations

Motivation. To account for the detection limits and photometric selection of the NewHα survey, we need to estimate the completeness fraction as a function of luminosity, \(\kappa(L)\). The greatest uncertainty for such a task is the intrinsic EW distribution, that is, the inherent distribution of the population that we are able to seek. Since the narrowband and broadband imaging sensitivities of the survey are known, the completeness is determined for a source of a given brightness with a \(J - NB118\) excess color (i.e., an EW). However, sources of a given emission-line luminosity can be faint with large EWs or bright with low EWs. Thus, the adopted EW distribution affects the estimated completeness for individual emission-line luminosity bins. For this reason, we conduct Monte Carlo realizations of our data, and follow a “maximum likelihood” approach to determine the completeness of NewHα.

Technique/approach. The methodology intends to simultaneously reproduce the shape of the observed \(^{13}\) Hα+[N II] EW distributions are a factor of \(1 + z\) larger than the rest-frame EW distributions.

\(^{12}\) Hereafter, “[N II]” refers to both nitrogen nebular emission lines.

\(^{13}\) Throughout this section, we use “observed” to denote that the EW distributions are a factor of \(1 + z\) larger than the rest-frame EW distributions.
distribution and the observed Hα LF. We begin with a grid of models that adopt certain EW distributions. With these distributions, we generate artificial emission-line galaxies. We add noise to these galaxies, and use their measured magnitudes and colors to determine if these mock galaxies satisfy the NB118 excess selection. We construct the observed EW distribution and Hα LF from the sample of mock NB118 excess emitters to compare to the respective distributions from NewHα. We determine a best model and define the completeness, $\kappa(L)$, as the ratio of the number of mock NB118 excess emitters to the total number of generated artificial galaxies:

$$\kappa(L) = \frac{N(L)_{\text{obs}}}{N(L)_{\text{tot}}}.$$ \hspace{1cm} (13)

Assumptions. For the prior distributions, we make two assumptions. First, for the Hα LF, a proper normalization of bright-to-faint sources is necessary, otherwise we will generate relatively too many bright sources, and a decline in the simulated LF will not be seen and cannot be compared to the observed Hα LF. To constrain the ratio of bright-to-faint sources, we examine the galaxy number counts (N(J)) in the NewHα fields and find that $\log [N(J)] \propto 0.344 \times J$. This relation implies that the number of galaxies at magnitude $J' + 1$ is a factor of 2.2 more numerous than those at J'. Second, each plausible model assumes a log-normal EW distribution described by a mean $\langle \log (EW_0/\text{Å}) \rangle$ and a sigma $\sigma[\log (EW/\text{Å})]$. We adopt such a distribution, since it is fairly similar to the observed NewHα distributions and the distributions seen locally (Lee et al. 2007). Our models span $\langle \log (EW_0/\text{Å}) \rangle = 1.15-1.55$ and $\sigma[\log (EW/\text{Å})] = 0.15-0.40$ both in increments of 0.05 dex for a total of 54 EW distributions. Here, $\langle \log (EW_0/\text{Å}) \rangle$ is the logarithm of the rest-frame EW, and we later include a factor of $1+\varepsilon$ for the “observed” magnitudes, colors, fluxes, and EWs.

Implementation. For each of the 54 models, we generate ~40,000 mock galaxies with J-band (continuum) magnitudes chosen to follow the above relation between $\log [N(J)]$ and J. We assume that these galaxies are spatially unresolved and follow the FWHM of seeing for each mosaic. For the EWs, we randomly draw from a log-normal distribution given by $\langle \log (EW_0/\text{Å}) \rangle$ and $\sigma[\log (EW/\text{Å})]$. With these two information, we “fill” the color–magnitude diagram ($\Delta(J - \text{NB118})$ versus NB118; see Figure 6).

We add observational uncertainties to the J and NB118 magnitudes as follows. For each mock galaxy, we have a randomly chosen position in the mosaics, and generate 200 realizations based on the sensitivity at that position. The sensitivity is governed by the exposure maps for both the NB118 and J-band mosaics, thus accounting for detector and pixel-to-pixel variations. We compute the NB118 or J-band 3σ limiting magnitudes, $m_{\text{lim}}(x,y)$, signal-to-noise ratios, $S/N(x,y)$, and 1σ uncertainties, $\Delta m(x,y)$ as

$$m_{\text{lim}}(x,y) = \langle m_{\text{lim}} \rangle + 2.5 \log (\sqrt{I(x,y)/I_0}),$$ \hspace{1cm} (14)

$$S/N(x,y) = 3 \times 10^{-0.4(m-m_{\text{lim}}(x,y))},$$ \hspace{1cm} (15)

$$\Delta m(x,y) = 2.5 \log \left[1 + \frac{1}{S/N(x,y)}\right],$$ \hspace{1cm} (16)

where $\langle m_{\text{lim}} \rangle$ and I_0 are the individual detector’s median limiting magnitudes and exposure times (see Table 1), respectively, and m is the NB118 or J magnitude. For the $\Delta(J - \text{NB118})$ colors, the errors are added in quadrature: $\sqrt{\Delta m_{\text{NB118}}(x,y)^2 + \Delta m_J(x,y)^2}$. The magnitudes for the 200 realizations follow a Gaussian distribution with a mean of m and 1σ of $\Delta m(x,y)$.

We identify mock galaxies that are NB118 excess emitters using the same methods described in Section 3.1. For the smaller apertures (2$''$ or 2$''$5), we assume that the flux enclosed is between 81% and 86% of the total flux within the larger apertures (3$''$ or 4$''$). We determine these values by considering a Gaussian distribution with an FWHM equal to the seeing size for each NEWFIRM pointing. Note that we adopt limiting magnitudes appropriate for the size of the measurement aperture.

Comparisons with observations. For each model, we construct the observed EW distribution and Hα LF from the mock NB118 excess emitters. Since we generate many mock galaxies, we normalize each distribution to best match the observed NewHα distributions. We illustrate an example of these model–observation comparisons in Figure 7 for the SXDS-W field. We find the best fit by minimizing χ^2 through a comparison of the mock and the NewHα EW distributions and Hα LF. We show in Figure 7 that the best-fit model is able to reproduce both the EW distribution and the Hα LF. We find that observed EW distribution provides a better constraint on the best-fit model (versus the Hα LF). That is, multiple EW models can sufficiently explain the Hα LF. We find the model with $\langle \log (EW/\text{Å}) \rangle = 1.35$ and $\sigma[\log (EW/\text{Å})] = 0.40$ best matches the observed distributions.

We calculate the completeness as the ratio of the number of mock galaxies that meets the NB118 excess selection criteria to all mock galaxies ($N \approx 200 \times 40,000$) as a function of $L(\text{H}\alpha)$. We illustrate in Figure 8 how the completeness differs
by adopting different \(\langle \log (EW_0/\AA) \rangle \) values. This comparison shows that we miss bright galaxies with low EWs, which is not surprising given the minimum observed EW of 40 Å. This figure also reveals that the completeness can vary between 60% and 90% for observed fluxes of \(5 \times 10^{-17} - 6 \times 10^{-16} \text{ erg s}^{-1} \text{ cm}^{-2} \) or roughly 0.1–1 \(L_\star \) (see Section 6.1), and emphasizes that proper choice in the prior EW distribution is necessary for an accurate determination of the LF. We also show the completeness as a function of H\(_\alpha\) luminosity and observed EW for each of the fields assuming the best-fitting model with \(\langle \log (EW_0/\AA) \rangle = 1.35 \) and \(\sigma [\log (EW/\AA)] = 0.40 \) in Figure 9.

Discussion of simplifying assumptions. In the above calculations, we made a couple of simplifications to allow the Monte Carlo simulations to be significantly less computationally intensive. First, we assume that the galaxies are unresolved sources. Second, instead of detecting sources on the images, we estimate the measured magnitudes and fluxes where the photometric uncertainties are based on pixel-to-pixel and detector-dependent sensitivity. Third, it is important to note that our current simulations assume that the EW distribution is the same at all continuum magnitudes. It would be more correct to allow the EW distribution to vary as a function of continuum magnitude, since it has been shown that more luminous star-forming galaxies tend to have lower emission-line EWs than those at lower luminosity (e.g., Lee et al. 2007). However, this adds another degree of freedom to our models, and significantly increases the computational time required to complete the simulations. Future work will include greater complexity in the modeling of the EW distribution, and will examine the impact of the current assumptions on the resultant completeness corrections. These simplifications allow for a few orders of magnitude faster production of completeness results rather than the approach of adding sources directly to the images, and is able to reproduce the distributions of scatter in Figures 1 and 2 (e.g., see Figure 6).

Prior to these MC simulations (for this discussion, we refer to the above approach as “Method I”), we generated a simulation where artificial extended sources were directly added to the mosaics and detected. In this simulation (referred to as “Method II”), we adopted a log-normal Gaussian EW distribution with \(\langle \log (EW_0/\AA) \rangle = 1.52 \) and \(\sigma [\log (EW/\AA)] = 0.16 \), motivated by the results in Lee et al. (2007). We performed Method I by adding 1000 artificial galaxies to each NEWFIRM mosaic, and compared the number of artificial NB118 excess emitting galaxies to the number detected. We created the galaxies using IRAF/mkobjects with physical parameters similar to those found in local galaxies. The parameters include luminosities, H\(_\alpha\) EWs, semimajor to semiminor axial ratios (between 0.15 and 1.0), and the H\(_\alpha\) disk scale length (3.6 kpc; Dale et al. 1999). After extracting sources in the same manner described in Section 3, we calculated the completeness. We repeated each simulation 30 times using different seed numbers to increase the statistical accuracy of the results (\(N \sim 30,000 \) per NEWFIRM pointing). The similarities in the shape of the completeness curves in Methods I and II suggest that the simplifications we made do not have a significant effect on the estimated completeness. There are certain differences such that the comparison is not completely “apples-to-apples;” however, good agreement suggests that proceeding with Method II is satisfactory. The greatest benefit of this simulation is the

![Figure 7](image-url)

Figure 7. Comparisons between the modeled predictions and observations of the EW distribution (top) and the H\(_\alpha\) galaxy number counts (bottom) for the SXDS-W field. The shaded and unshaded histograms are for the SXDS-W and all four NewH\(_\alpha\) fields, respectively. The dashed line in the top panel is the minimum adopted \(J - NB118 \) excess of 0.2 mag or an observed EW of 40 Å. The model (black curves) assumes \(\langle \log (EW_0/\AA) \rangle = 1.35 \) and \(\sigma [\log (EW/\AA)] = 0.40 \), and is scaled to match the observed distributions. This model is able to produce the shape of the observed EW distribution and the H\(_\alpha\) number counts.

![Figure 8](image-url)

Figure 8. Completeness correction derived from Monte Carlo simulations of our SXDS-W data for models with \(\sigma [\log (EW/\AA)] = 0.40 \). The H\(_\alpha\) fluxes have not been corrected for any dust extinction. The color and line style conventions are for different adopted \(\langle \log (EW_0/\AA) \rangle \), as indicated in the lower right. This figure illustrates that as a larger \(\langle \log (EW_0/\AA) \rangle \) is adopted, the completeness increases for bright emission-line galaxies. As expected, the adopted minimum \(J - NB118 \) color excess of 0.2 mag is unable to identify galaxies that are very bright with low EWs.

(A color version of this figure is available in the online journal.)
determination of a model that best matches two different sets of measurements.

Finally, we assume a power-law distribution for \(N(J) \) to normalize the number of bright and faint sources. Ideally, the distribution should be constructed from galaxies at \(z \approx 0.8 \). An investigation with the COSMOS photo-z sample (after the simulation was completed) finds that the faint-end slope of the number counts is approximately 0.25, which is to be compared to the adopted 0.34. Also, an exponential decline exists at bright continuum luminosities. This will impact our completeness estimates for the brightest emitters. Future work will address and examine the impact that these differences have on the completeness reported here.

5.2. Effective Volume

The volume that the survey is capable of probing is determined by the shape and width of the NB filter. The ideal filter will have a perfect top-hat profile, and will survey the same comoving volume at all emission-line fluxes. However, with real filters a weak emission line can either result from the line falling in the wings of the NB filter profile or from an intrinsically weak line located near the filter center. The net result is that a weak emission line is more likely to be detected near filter center, so a non-square filter reduces the effective volume at the faint end (Ly et al. 2007).

We can quantify how much the filter profile deviates from being a perfect top-hat by comparing the area underneath the profile with that of a rectangle with width equal to the FWHM, and height equal to the maximum transmission of the actual filter. The area enclosed by the profile is just 9% smaller, so the shape of the bandpass is close to ideal.

To determine the effective volume as a function of emission-line flux, we calculate the range in wavelengths such that an emission line is considered detectable within the NB filter. This emission line has an intrinsic S/N. We then place it at different wavelengths to determine what the degradation in the S/N will be due to lower throughput. We define an emission line to be undetected below 2.5\(\sigma \), and this criterion yields the minimum and maximum NB118 wavelengths (hence redshift) that is observable for a particular S/N. The effective comoving volume per unit steradian would then be

\[
\frac{V}{d\Omega} = \int_{z_1}^{z_2} \frac{dz}{dzd\Omega}, \quad \text{where} \quad \frac{dV}{dzd\Omega} = \frac{c}{H_0} \frac{D_M^2}{E(z)},
\]

\[
E(z) \equiv \sqrt{\Omega_M(1+z)^3 + \Omega_\Lambda}, \quad \text{and}
\]

\[
D_M = \frac{c}{H_0} \int_0^z \frac{dz'}{E(z')}.
\]

Here, \(z_1 \) and \(z_2 \) refer to the minimum and maximum redshifts that the emission line is detectable. Note that these equations assume a flat universe. The maximum surveyed volume \(V_{\text{eff}}/\Omega = 1.11 \times 10^5 \text{ Mpc}^3\text{ deg}^{-2} \) or \(\Delta \lambda = 110 \text{ Å} \) is observable for \(S/N \geq 5.1 \) and decreases to \(V_{\text{eff}}/\Omega = 5.54 \times 10^4 \text{ Mpc}^3\text{ deg}^{-2} \) \(\Delta \lambda = 55 \text{ Å} \) at \(S/N = 2.57 \). This is illustrated in Figure 10.

6. RESULTS

6.1. Luminosity Function and Star Formation Rate Densities

Figure 11 presents the (observed) H\alpha LF for this survey with and without completeness corrections. Applying the necessary corrections...
The median variation of the number density relative to the average of all four fields is $\sim 50\%$, and we illustrate in Figure 13 the fluctuation of the four different pointings relative to the average. Using predictions from Somerville et al. (2004; hereafter S04), we find that the expected fluctuation per NEWFIRM pointing (shaded region in Figure 13) is consistent with what is observed. The hourglass-like shape of the expected amount of field-to-field fluctuations is due to (1) the stronger clustering of luminous galaxies, (2) the decrease of cosmic variance with number density, and (3) the small volume surveyed at low luminosities due to the weakness of emission lines. Thus, the minimum of field-to-field variations is around an extinction-corrected Hα luminosity of 1×10^{42} erg s$^{-1}$. It is common to model the Hα LF by fitting the LF with the Schechter (1976) function:

$$\Phi(L) dL = \phi^\star \left(\frac{L}{L^\star} \right)^{\alpha} \exp \left(-\frac{L}{L^\star} \right) dL. \quad (21)$$

This function was derived from the Press & Schechter (1974) formalism, which describes the halo mass function, and was adapted to explain the distribution of galaxy continuum luminosities. An explanation for why the Schechter function can describe the continuum LF is that a connection exists between the luminosities of galaxies and their stellar masses and/or halo masses. However, such a link may be much weaker with the Hα luminosity and SFR; thus, one might question whether the Schechter function is a good model for the Hα LF. For the current analysis we simply assume that the Schechter function can be used to adequately model the distribution of Hα luminosities and SFR since it appears to provide a good fit to our data. This also facilitates comparisons with previous work. However, this assumption should be explored further when more accurate LFs from future studies show evidence for a different model.

...
Figure 12. Extinction-corrected Hα LF at z ~ 0.81. Dust extinction corrections adopted the Hopkins et al. (2001) equation. The color and point-style conventions follow those in Figure 11. The left figure shows each of our NEWFIRM pointing and the average with the best-fitting Schechter function (shown as triangles). S09 measurements were adjusted to adopt the Hopkins et al. (2001) dust extinction equation instead of A(Hα) = 10\(^{-3}\). Extinction-corrected Hα L\(^{\star}\) ± 0.52 Mpc.

Table 3

log L	2.5σ N	Nspec	Φ(L)	κ(L)	3σ N	Nspec	Φ(L)	κ(L)
Raw number densities								
40.70	11	0	11.17 ± 3.4	0.08
40.90	60	8	49.34 ± 6.4	0.22	20	3	12.74 ± 2.8	0.22
41.10	116	27	83.76 ± 7.8	0.47	65	19	40.36 ± 5.0	0.49
41.30	102	50	63.02 ± 6.2	0.72	78	45	45.96 ± 5.2	0.73
41.50	98	74	55.39 ± 5.6	0.79	96	73	54.01 ± 5.5	0.79
41.70	66	54	36.21 ± 4.5	0.79	66	54	36.21 ± 4.5	0.79
41.90	34	26	18.65 ± 3.2	0.81	34	26	18.65 ± 3.2	0.81
42.10	19	18	10.42 ± 2.4	0.80	19	18	10.42 ± 2.4	0.80
42.30	8	7	4.39 ± 1.6	0.81	8	7	4.39 ± 1.6	0.81
42.50	8	8	4.39 ± 1.6	0.86	8	8	4.39 ± 1.6	0.86
Extinction and completeness-corrected number densities								
40.90	3	0	59.79 ± 34.5	0.07
41.10	18	1	245.40 ± 57.8	0.14	3	0	43.48 ± 25.1	0.18
41.30	55	18	156.58 ± 21.1	0.28	19	4	46.46 ± 10.7	0.26
41.50	77	15	108.82 ± 12.4	0.52	43	10	50.12 ± 7.6	0.53
41.70	99	44	93.94 ± 9.4	0.69	64	37	54.58 ± 6.8	0.71
41.90	89	55	66.39 ± 7.0	0.78	84	53	61.75 ± 6.7	0.78
42.10	63	48	43.66 ± 5.5	0.80	63	48	43.66 ± 5.5	0.80
42.30	50	43	34.85 ± 4.9	0.79	50	43	34.85 ± 4.9	0.79
42.50	20	15	19.70 ± 3.7	0.81	29	24	19.70 ± 3.7	0.81
42.70	18	14	12.32 ± 2.9	0.80	18	14	12.32 ± 2.9	0.80
42.90	12	12	8.12 ± 2.3	0.81	12	12	8.12 ± 2.3	0.81
43.10	5	4	3.37 ± 1.5	0.81	5	4	3.37 ± 1.5	0.81
43.30	4	4	2.46 ± 1.2	0.89	4	4	2.46 ± 1.2	0.89

Notes. Φ(L) is normalized to 1 × 10\(^{-4}\) Mpc\(^{-3}\) dex\(^{-1}\) and luminosities (L) are given in erg s\(^{-1}\). κ(L) is the survey completeness fraction defined in Section 5.1. Numbers reported in the top half are prior to any completeness corrections while completeness is included for the bottom half. The spectroscopic completeness (Nspec) as a function of luminosity is shown.
that a Schechter function is not the best model to explain the \(\text{H} \alpha \) LF.

In order to obtain the best-fitting Schechter parameters, a Monte Carlo simulation was performed to consider the full range of scatter in the extinction- and completeness-corrected \(\text{H} \alpha \) LF. We ignored luminosities below our 50% completeness limit (1.0 \(\times \) 10^41 erg s\(^{-1}\) observed; 3.0 \(\times \) 10^41 erg s\(^{-1}\) extinction-corrected). Each data point was randomly perturbed \(1 \times 10^5 \) times following a Gaussian distribution with 1\(\sigma \) in \(\Phi(L) \) given by Poisson statistics. Each iteration is then fitted to obtain the Schechter parameters. The best-fitting Schechter parameters are then determined from the averages of these fits. The confidence contours for the best fit are shown in Figure 14. A summary of the best fits and the corresponding integrated \(\text{H} \alpha \) luminosity density (\(\mathcal{L} = \int L \Phi(L) dL \)) and SFR density (see below) is provided in Table 4. We find a relatively steep faint-end slope for the \(\text{H} \alpha \) LF (\(\alpha = -1.6 \)) at \(z \sim 0.81 \), indicating that galaxies below 0.2 and 1\(L_* \) contribute 61% and 89% to the total \(\text{H} \alpha \) luminosity/SFR density, respectively. Often, past studies have opted to fix the faint-end slope since they were unable to reliably constrain it. Following this methodology, we also report the results of our fits when \(\alpha \) is set to -1.6 in Table 4.

The extinction-corrected \(\text{H} \alpha \) luminosity density can be converted into an SFR density by using the recipe given in Kennicutt (1998): SFR(\(\text{H} \alpha \)) = 7.9 \(\times \) 10^{-42} L(\(\text{H} \alpha \)), where the SFR is given in M\(_\odot\) yr\(^{-1}\) and the \(\text{H} \alpha \) luminosity is given in erg s\(^{-1}\). This conversion assumes a Salpeter IMF with minimum and maximum masses of 0.1 M\(_\odot\) and 100 M\(_\odot\) and solar metallicity. We determined that the \(\text{H} \alpha \) SFR density is \(\rho_{\text{SFR}} = 10^{-0.96 \pm 0.18 \pm 0.04} M_\odot \) yr\(^{-1}\) Mpc\(^{-3}\) down to \(L = 0 \), where the second set of errors account for cosmic variance estimated from S04. Compared to measurements at \(z \lesssim 0.1 \) (Gullego et al. 1995; Pérez-González et al. 2003; Brinchmann et al. 2004; Nakamura et al. 2004; Hanish et al. 2006; Ly et al. 2007; Westra et al. 2010), our \(\text{H} \alpha \) SFR density at \(z \sim 0.8 \) is higher by a factor of 3.8 to 16.6 with a median of 8.1.

It is thought that the \(\text{H} \alpha \) luminosity density is dominated by emission from star formation and not active galactic nuclei (AGNs). However, to accurately compute the SFR volume density, we statistically account for the fraction of the \(\text{H} \alpha \) luminosity volume density originating from AGNs. While estimating the AGN fraction is an observational challenge because deep x-ray data and/or spectroscopic information are needed, previous studies have typically found that 10%–15% of galaxies have AGNs. For example, Brinchmann et al. (2004) estimate that 11% of the \(\text{H} \alpha \) luminosity density is due to AGNs at \(z \lesssim 0.1 \). Gullego et al. (1995) found 15% \(\text{AGN} \) contamination to the \(\text{H} \alpha \) SFR density at \(z \sim 0 \). V08 used X-ray data for a small (~50) sample of \(\text{H} \alpha \) emitters at \(z \sim 0.8 \) and found 10% \pm 3%. S09 looked at the [O iii]/H\beta and [O iii]/H\beta flux ratios (Rola et al. 1997), for a subset of 28 \(z \sim 0.8 \) \(\text{H} \alpha \) emitters with optical spectroscopy and reported 15% \pm 8%. Our preliminary analysis of the rest-frame optical emission-line flux ratios from our IMACS spectroscopy (see Section 3.2.1) finds similar results. Based on the [O iii]/H\beta and [O iii]/H\beta flux ratios, 5 (10) of 141 \(\text{H} \alpha \) emitters are AGNs (LINERs). Thus, we correct the above \(\text{H} \alpha \) SFR density by 11% to account for AGN and LINER contamination. This reduces our total \(\text{H} \alpha \) SFR density to \(\rho_{\text{SFR}} = 10^{-1.00 \pm 0.18 \pm 0.04} M_\odot \) yr\(^{-1}\) Mpc\(^{-3}\).

7. COMPARISONS WITH OTHER NEAR-INFRARED \(\text{H} \alpha \) STUDIES

Recently, two other independent groups have performed relatively wide-field near-infrared narrowband imaging on 3–4 m class telescopes to search for high-\(z \) emission-line galaxies. V08 first surveyed 626 arcmin\(^2\) for \(\text{H} \alpha \) emitting galaxies at...
The Astrophysical Journal, 726:109 (19pp), 2011 January 10

LY ET AL.

Survey	\(\log L_\star \)	\(\log \Phi_\star \)	\(\alpha \)	\(\log L(0) \)	\(\log L(L_{\text{lim}}) \)	\(\log \rho_{\text{SFR}}(0) \)	\(\log \rho_{\text{SFR}}(0)^* \)	\(\log \rho_{\text{SFR}}(L_{\text{lim}})^* \)
NewHz	43.00 \(\pm \) 0.52	\(-3.20 \pm 0.54\)	\(-1.60 \pm 0.19\)	40.15 \(\pm \) 0.18	40.01 \(\pm \) 0.08	\(-0.96 \pm 0.18\)	\(-1.00 \pm 0.18\)	\(-1.10 \pm 0.08\)
NewHz	43.03 \(\pm \) 0.17	\(-3.20 \pm 0.16\)	\(-1.60 \pm 0.05\)	40.17 \(\pm \) 0.05	40.04 \(\pm \) 0.05	\(-0.93 \pm 0.05\)	\(-0.98 \pm 0.05\)	\(-1.06 \pm 0.05\)
V08	42.97 \(\pm \) 0.27	\(-2.76 \pm 0.32\)	\(-1.34 \pm 0.18\)	40.35
S09	42.33(0.16)	\(-2.51(0.17)\)	\(-1.64 \pm 0.21\)	40.21

Notes. \(L_\star \) and \(\Phi_\star \) are in units of erg s\(^{-1}\) and Mpc\(^{-3}\), respectively. Luminosity (\(L \)) and SFR densities (\(\rho_{\text{SFR}} \)) are provided for \(L \geq 0 \) and \(L \geq L_{\text{lim}} \). All LF s adopt Hopkins et al. (2001) dust attenuation. Note that S09 incorrectly reported the normalization (\(\Phi_\star \)) for their Hz LF and was off by a factor of \(\sim 0.43 \).

D. Sobral provided a new preliminary fit, which adopts the Hopkins et al. (2001) extinction and the proper LF normalization.

\(*\) Corrections for AGN contamination applied.

\(\alpha \) is the spectral index of the LF. The observed number density of Hz emitters is shown in Figure 11 (left panel). It illustrates that all three surveys agree to within \(\sim 50\% \), which indicates that the differences in the selection of Hz emitters and NB excess emitters do not significantly affect the observed number densities of galaxies. The V08 observed LF is generally higher, but it is consistent with our SXDS-S observations, which has a similar area coverage, so cosmic variance is likely the cause (see below for further discussion).

In Figure 12 (right panel), we show the extinction- and completeness-corrected LF for all three Hz surveys. It is apparent that the bright end of S09’s LF is consistent with NewHz’s. This is to be expected since both surveys cover large areas and incompleteness corrections are less of an issue. In addition, V08 is in agreement with NewHz below a luminosity of \(\sim 10^{12} \) erg s\(^{-1}\). This is also expected since V08 reaches a sensitivity comparable to our survey. However, there are two discrepancies worth addressing.

Differences in the LF. First, the extinction- and completeness-corrected LF of V08 is 0.2–0.3 dex higher at \(L_\star \). However, the luminous end of the V08 LF is not well determined since their survey consists of three pointings (two in the Groth strip, one in GOODS-N) totaling less than 0.2 deg\(^2\). Thus, the combination of Poisson fluctuations and cosmic variance can explain the higher number density at the bright end.

The second discrepancy is that S09 find a higher number density of faint Hz emitters, after survey completeness corrections are applied (see Figure 11, right panel). S09 claimed that the completeness correction is a factor of 2–3 at their 2.5\(\sigma \) flux limit, while our Monte Carlo simulation indicates that 50% completeness occurs at our \(\sim 2\sigma \) flux limit. Furthermore, S09 find that their completeness gradually declines while our Monte Carlo simulation shows that above an observed Hz emission-line luminosity of \(\sim 10^{11.5} \) erg s\(^{-1}\), the completeness is generally \(\geq 80\% \) and falls off rapidly with fainter luminosities. How rapidly the completeness declines will affect the shape of the LF, and thus the completeness corrections can alter the determined Schechter parameters. An illustration of this is provided in Figure 14 where the differences in the Schechter parameters for these two studies are shown.
Recall that the two LFs prior to any completeness corrections are consistent.

The differences between NewHα and S09 at the faint end imply that (1) deeper data must be obtained such that incompleteness determinations are less of an issue or (2) a more standardized rigorous procedure is needed for completeness estimates. For example, a method that considers a maximum likelihood approach that simultaneously produces the observed emission-line EW and LF (such as those performed in Section 5.1).

8. DISCUSSION

In this section, we compare our Hα SFR density measurements with those published in the literature for a range of redshifts. We limit the comparison to other Hα-based measurements to avoid systematic issues with other SFR indicators.

The latest compilation of Hα measurements was made by Dale et al. (2010). We add our measurements to this compilation and plot them as a function of redshift in Figure 15. All of the measurements plotted are summarized in Table 5. We note that the measurements reported here correct for a few mistakes found in the original papers (see Table 5 footnotes). The dashed line is a fit determined by Dale et al. (2010) where the NewHα SFR density was not included in the fitting process. It has the form of log (\(SFR / M_\odot \text{ yr}^{-1}\)) = \(-2.06 + 3.39 \log(1+z)\). Our SFR density measurement with the removal of 11% for AGN contamination is above the Dale et al. (2010) fit, but consistent within the uncertainties. This relation indicates that the Hα SFR density increases by a factor of \(\sim 10\) per unit redshift at \(z < 1.5\).

To understand this redshift evolution, we compare in Figure 16 the confidence contours of the Schechter parameters for measurements at \(z = 0.07, 0.39, \) and 0.81. The values reported for \(z = 0.39\) is based on a combination of data from two complementary surveys: the Subaru Deep Field (SDF; Ly et al. 2007, extremely deep for 0.25 deg\(^2\)) and the Wisconsin Survey for Hα (Dale et al. 2010, shallower sensitivity by 1.8 dex but covers \(\sim 1\) deg\(^2\)). The binned LFs are combined together and fit with a Schechter function. Likewise, \(z < 0.1\) measurements from the SDF are combined with Gallego et al. (1995). We find that the characteristic luminosity systematically increases by 0.95 dex (0.7 dex) from \(z \approx 0.1\) (\(\sim 0.4\)) to \(z \approx 0.8\), while the normalization is similar at all three redshifts. This indicates that the increase in the SFR density is a result of \(z \sim 0.8\) L\(_\odot\) galaxies producing stars at a rate that is \(\sim 10\) times that of local L\(_\odot\) (\(\sim 10^{7\pm0.6}\) erg s\(^{-1}\)) galaxies.

Infrared surveys have provided complementary constraints on the evolution of the LF and SFR densities. These measurements are sensitive to UV radiation of massive stars that are absorbed by dust and re-radiated at rest wavelengths of 10–100 μm. Le Floc’h et al. (2005) examined the infrared luminosity of 24 μm-selected galaxies and found that for \(z \lesssim 1\), the LF evolves as \(\log (\Phi_{\text{IR}}) \propto 3.2_{-0.4}^{+0.7}(1+z)\) and \(\log (\Phi_{\text{H}\alpha}) \propto 0.7_{-0.5}^{+0.6}(1+z)\). These results of significant L\(_\odot\) evolution and weak \(\Phi_{\text{H}\alpha}\) evolution are consistent with those of NewHα—granted, this can be for a different population of galaxies.

In addition, we find that our Hα SFR density measurement at \(z \approx 0.8\) is consistent with \(z \sim 1\) UV and [O iii] SFR density measurements (Hopkins 2004 and references therein), though the scatter among the measurements spans a factor of \(\sim 2\). The causes for the large scatter include (1) cosmic variance, (2) systematic issues involving the SFR indicators, and (3) the...
different selection biases that affect each of the surveys. These issues also affect the LF and SFR density derived from infrared surveys. All of these issues will be addressed over the next few years to improve the accuracy that the cosmic star formation history can be determined. In general, cosmic variance will gradually become less of an issue with surveys covering at least several deg2. In future work, data from the NewHα survey, in combination with UV data from GALEX, mid-infrared fluxes from Spitzer, and [O ii] fluxes from follow-up spectroscopy (see Section 3.2.1), will directly enable us to compare the SFRs based on these indicators in hundreds of individual galaxies to address point (2).

And finally, upcoming studies, including ones based upon the NewHα Survey, will investigate the differences in galaxy samples that result from the use of different selection techniques. For example, infrared surveys primarily probe the dustiest galaxies, while UV surveys preferentially select the bluest galaxies, and emission-line selected surveys are biased against low-EW galaxies. Direct comparisons of samples selected with different techniques in the same volumes will allow us to account for variations in the SFR volume density, which are due to such selection biases. As mentioned in the Introduction, ultimately it will also be possible to trace large fractions of the cosmic star formation history with a single indicator, and then compare the consistently measured histories from multiple indicators.

9. CONCLUSIONS

We have presented new measurements of the Hα LF and SFR volume density for galaxies at $z \sim 0.8$, based on 1.18 μm narrowband imaging from the NewHα Survey. With a 3σ Hα emission-line flux depth of $\approx 1.9 \times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$ (a luminosity of $\approx 6 \times 10^{40}$ erg s$^{-1}$) and an area coverage of 0.82 deg2, the NewHα survey allows for a reduction of field-to-field fluctuations to 10%, and for robust estimates of the
faint-end slope ($\sim 10\%$ accuracy) and the location of the “knee” (0.5 dex accuracy) of the LF. We have identified 818 NB excess emitters above 3σ, and 394 are classified as Hα emission-line galaxies at $z \approx 0.80$. The classification utilized a large spectroscopic sample providing unambiguous determination of redshifts for 62% of the sample. These spectra were also used to calibrate the multi-color selection of the remaining Hα emitters without spectroscopic follow-up.

We constructed the extinction- and completeness-corrected Hα LF. Corrections for [N ii] flux contamination and the effective surveyed volume, as a function of line flux, were applied. The LF is well described by a Schechter function with $L_\star = 10^{43.0 \pm 0.52}$ erg s$^{-1}$, $\Phi_\star = 10^{-3.20 \pm 0.52}$ Mpc$^{-3}$, and $\alpha = -1.6 \pm 0.19$. When the LF is integrated to $L = 0$, we determine an SFR density of $\rho_{SFR} = 10^{-7.0 \pm 0.18 \pm 0.04}$ M$_\odot$ yr$^{-1}$ Mpc$^{-3}$. This SFR density is (on average) 8.1 times higher than the $z \lesssim 0.1$ measurements. We determined that the characteristic Hα luminosity is systematically higher at $z \sim 0.81$ by 0.70 and 0.95 dex compared to $z = 0.39$ and $z \sim 0.1$ estimates, respectively. The normalization of the LF at $z \sim 0.8$ is similar to what is seen for $z \sim 0$. This may imply that the cause of the redshift evolution in the Hα SFR density is a result of $z \sim 0.8 L_\star$ galaxies producing stars at a rate that is ≈ 10 times that of typical galaxies seen locally.

The depth and completeness of current high-z Hα surveys significantly limit the accuracy to which the (1) Hα SFR density, (2) the shape of the LF, and (3) its evolution can be measured. This is underscored by the fact that three independent Hα surveys (including NewHα) show excellent agreement in the observed number densities, but exhibit discrepancies at the factor of two level after completeness corrections are applied. These discrepancies lead to different conclusions on the evolution of star-forming galaxies: while NewHα measurements for thousands of galaxies (written for the reduction of data from the NEWFIRM Medium-Band Survey; van Dokkum et al. 2009), which allowed for an initial reduction of our data in advance of the development of our dedicated pipeline. We also thank Haisanoi Furusawa for providing his proprietary photometric redshift catalog for the SXDS field. We thank Masami Ouchi and collaborators for including NewHα narrowband excess objects as mask fillers in their IMACS spectroscopic observations, and providing the data for these ≈ 100 objects. C.L. has been supported by NASA grant NNX08AW14H through their Graduate Student Researcher Program. The NewHα Survey has been primarily funded by Hubble and Carnegie Fellowships to J.C.L. This work has used zCOSMOS observations carried out using the Very Large Telescope at the ESO Paranal Observatory under Programme ID: LP175.A-0839. We thank the anonymous referee for the prompt response and helpful comments that improved the paper. We also thank David Sobral, Jim Geach, and Philip Best for discussions about their Hα LFs.

Facilities: Magellan:Baade (IMACS), Mayall (NEWFIRM), Subaru (Suprime-Cam), VLT:Melipal (VIMOS)

REFERENCES

Atek, H., et al. 2010, ApJ, 723, 104
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman, T., & Brinkmann, J. 2004, MNRAS, 351, 1151
Dale, D. A., Giovannelli, R., Haynes, M. P., Hardy, E., & Campusano, L. E. 1999, AJ, 118, 1468
Dale, D. A., et al. 2008, AJ, 135, 1412
Dale, D. A., et al. 2010, ApJ, 712, L189
Dressler, A., Hare, T., Bigelow, B. C., & Ospil, D. J. 2006, Proc. SPIE, 6269, 13
Fujita, S. S., et al. 2003, ApJ, 586, L115
Furusawa, H., et al. 2008, ApJS, 176, 1
Gallage, J., Zamorano, J., Aragon-Salamanca, A., & Rego, M. 1995, ApJ, 455, L1
Gallage, J., Zamorano, J., Rego, M., & Vittore, A. G. 1997, ApJ, 475, 502
Garn, T., et al. 2010, MNRAS, 402, 2017
Gavazzi, G., Boselli, A., Pedotti, P., Gallazzi, A., & Carrasco, L. 2002, A&A, 396, 449
Gawiser, E., et al. 2006, ApJS, 162, 1
Geach, J. E., Smail, I., Best, P. N., Kurk, J., Casali, M., Ivison, R. J., & Coppin, K. 2008, MNRAS, 388, 1473
Hanish, D. J., et al. 2006, ApJ, 649, 150
Hippelein, H., et al. 2003, A&A, 420, 65
Hopkins, A. M. 2004, ApJ, 615, 209
Hopkins, A. M., Connolly, A. J., Haarsma, D. B., & Carn, L. E. 2001, AJ, 122, 288
Hopkins, A. M., Connolly, A. J., & Szalay, A. S. 2000, AJ, 120, 2843
Kennicutt, R. C. 1992, ApJ, 388, 310
Kennicutt, R. C. 1998, ARA&A, 36, 189
Kennicutt, R. C., Jr., & Kent, S. M. 1993, AJ, 88, 1094
Kennicutt, R. C., Jr., Lee, J. C., Funes, S. J., José, G., Sakai, S., & Akiyama, S. 2008, ApJS, 178, 247
Kennicutt, R. C., et al. 2009, ApJ, 703, 1672
Kurucz, R. L. 1979, ApJS, 40, 1
Lee, J. C., Kennicutt, R. C., Funes, S. J., José, G., Sakai, S., & Akiyama, S. 2007, ApJ, 671, L113
Lee, J. C., Salzer, J. J., & Melbourne, J. 2004, ApJ, 616, 752
Lee, J. C., et al. 2009, ApJ, 706, 599
Le Floch’ e, E., et al. 2005, ApJ, 632, 169
Lilly, S. J., et al. 2007, ApJS, 172, 70
Ly, C., et al. 2007, ApJ, 657, 738
Mannucci, F., et al. 2009, MNRAS, 398, 1915
Meurer, G. R., et al. 2006, ApJS, 165, 307
Morioka, T., Nakajima, A., Taniguchi, Y., Shiyou, Y., Murayama, T., & Sasaki, S. S. 2008, PASJ, 60, 1219

We are grateful to Ron Probst, Buell Januzzi, and Ron George for their work that enabled regular filter changes in NEWFIRM, without which the NewHα survey would not have been possible. We thank Ivo Labbe for sharing his IDL processing pipeline (written for the reduction of data from the NEWFIRM Medium-Band Survey; van Dokkum et al. 2009), which allowed for an initial reduction of our data in advance of the development of our dedicated pipeline. We also thank Haisanoi Furusawa for providing his proprietary photometric redshift catalog for the SXDS field. We thank Masami Ouchi and collaborators for including NewHα narrowband excess objects as mask fillers in their IMACS spectroscopic observations, and providing the data for these ≈ 100 objects. C.L. has been supported by NASA grant NNX08AW14H through their Graduate Student Researcher Program. The NewHα Survey has been primarily funded by Hubble and Carnegie Fellowships to J.C.L. This work has used zCOSMOS observations carried out using the Very Large Telescope at the ESO Paranal Observatory under Programme ID: LP175.A-0839. We thank the anonymous referee for the prompt response and helpful comments that improved the paper. We also thank David Sobral, Jim Geach, and Philip Best for discussions about their Hα LFs.
Nakamura, O., Fukugita, M., Brinkmann, J., & Schneider, D. P. 2004, AJ, 127, 2511
Oke, J. B. 1974, ApJS, 27, 21
Pérez-González, P. G., Zamorano, J., Gallego, J., Aragón-Salamanca, A., & Gil de Paz, A. 2003, ApJ, 591, 827
Press, W. H., & Schechter, P. 1974, ApJ, 187, 425
Probst, R. G., George, J. R., Daly, P. N., Don, K., & Ellis, M. 2008, Proc. SPIE, 7014, 70142
Probst, R. G., et al. 2004, Proc. SPIE, 5492, 1716
Rola, C. S., Terlevich, E., & Terlevich, R. J. 1997, MNRAS, 289, 419
Salzer, J. J., et al. 2001, AJ, 121, 66
Schechter, P. 1976, ApJ, 203, 297
Scoville, N., et al. 2007, ApJS, 172, 1
Shim, H., Colbert, J., Teplitz, H., Henry, A., Malkan, M., McCarthy, P., & Yan, L. 2009, ApJ, 696, 785
Shioya, Y., et al. 2008, ApJS, 175, 128
Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Sobral, D., et al. 2009, MNRAS, 398, 75 (S09)
Somerville, R. S., Lee, K., Ferguson, H. C., Gardner, J. P., Moustakas, L. A., & Giavalisco, M. 2004, ApJ, 600, L171 (S04)
Sullivan, M., Treister, M. A., Ellis, R. S., Bridges, T. J., Milliard, B., & Donas, J. 2000, MNRAS, 312, 442
Taniguchi, Y., et al. 2007, ApJS, 172, 9
Tremonti, C. A., et al. 2004, ApJ, 613, 898
Tresse, L., & Maddox, S. J. 1998, ApJ, 495, 691
Tresse, L., Maddox, S. J., Le Fèvre, O., & Cuby, J.-G. 2002, MNRAS, 337, 369
van Dokkum, P. G., et al. 2009, PASP, 121, 2
Villar, V., Gallego, J., Pérez-González, P. G., Pascual, S., Noeske, K., Koo, D. C., Barro, G., & Zamorano, J. 2008, ApJ, 677, 169 (V08)
Westra, E., Geller, M. J., Kurtz, M. J., Fabricant, D. G., & Dell’Antonio, I. 2010, ApJ, 708, 534
Westra, E., & Jones, D. H. 2008, MNRAS, 383, 339
Yan, L., McCarthy, P. J., Freudling, W., Teplitz, H. I., Malumuth, E. M., Weymann, R. J., & Malkan, M. A. 1999, ApJ, 519, L47