Reduction of phosphates in sewage using kiln ash as an adsorbent

R A Abdelhadi1
1 Faculaty of Engineering, Kerbala University, Kerbala, Iraq.
* Corresponding author; Email: r.abdulhadi@gmail.com

Abstract. Phosphate is a naturally occurring chemical found in large quantities on the Earth's surface that causes eutrophication when deposited into rivers. A number of studies have been conducted to assess the ability of various treatments to remove phosphates from sewage. Lately, it has been discovered that phosphorus recovery may be accomplished by filtering the water. The cost of the filtering materials, on the other hand, is prohibitively expensive. As a result, current research has concentrated on utilising low-cost ones to minimise the expense of filtering. Steel production residues, such as kiln bottom ashes, are being utilised in this study to recover phosphates from contaminated wastewater. A variety of operational settings have been investigated in order to obtain the highest possible extraction efficiency at the lowest feasible cost. Bottom ashes were demonstrated to be an effective substitute for phosphorus extraction. The highest phosphorus extraction was 90.1 percent after 40 minutes, with a starting concentration of 5 mg/L and an ash dose of 530 mg/L. The findings were used to create a prediction model with a high degree of reliability.

Keywords: Bottom ashes, phosphate; sewage; removal.

1. Introduction
Although phosphate is available at high concentrations in soil and freshwaters, urban spread and industrial expansion drive huge global demand for drinkable water that exhausts the available freshwater rapidly, and in return, increasing the volumes of discharged wastewater that contains high concentrations of phosphate [1, 2]. In addition, the urban spread and industrial expansion badly reflected in the availability of freshwater [3-5], global warming [6, 7], and precipitations [8, 9]. The growing population increases the rate of sewage released into waterways, which has severe effects on the health of consumers [10-12]. Furthermore, the increase in the population increased the dumping of solid wastes in landfills, which resulted from the expansion in the residential areas [13, 14], that pollute groundwater and then surface water [15-18]. Toxins must not be dumped directly into waterways, and all effluents, whether household or manufacturing, must be treated adequately to eliminate or limit the negative impacts of the contaminants. One of the types of impact of pollutants is algae flourishing which is due to phosphorous penetration into the water, which is harmful to the environment [19, 20]. All types of sewage water contain phosphorus [21, 22] and nitrate [23, 24] beside other pollutants such as fluoride [25], heavy metals [26, 27], bacteria [28, 29], coloring pollutants [30-32] and organic matter [33-35]. Additionally, industrial and domestic wastewater [36-39] and atmospheric pollutants [40-42] are playing a role in the increasing of such pollutants in water bodies. The effluents of the construction industry [43-46], production plants [47-49] and food industry [36, 50].
Surface waters are depleted of oxygen due to algal blooms induced by phosphorus and nitrate contamination [12, 51]. A large proportion of aquatic creatures and plants might die in a short period of time. As just a result of a substantial rise in organic matter content, the taste, smell, and structure of the water will be changed significantly [21, 22]. A rise in algal development might have severe effects on health, industries, seafood, and agriculture, and farmers [24, 52]. Many studies revealed that microalgal types can generate poisonous chemicals that cause a range of severe illnesses and, sometimes, fatality. In drinkable water, the allowable concentration of phosphate is specified at 0.1 mg/L, whereas in streams and ponds it is 0.05 mg/L [21, 22]. As far as the upper limit pollutant concentration in water is concerning, the Environmental Protection Agency has strict standards. It is therefore important to remove phosphates from contaminated water, depending on what has been said previously. When phosphate is removed via traditional methods, it generally requires a long and complicated procedure. As an instance, the normal filtering process [25], with some modifications, provides an effective approach for phosphate removal, according to the authors. However, the usage of expensive screens makes this approach uneconomical [50, 53]. It is possible to remove phosphate from the water bodies by converting it to a solid state, which would be subsequently removed from the water via flotation or some other means. Thermal processing, lakes, anaerobic digestion, absorption, and other techniques are used to transform phosphorus [22, 54]. As just a result of the typical operations of species of bacteria and microalgae, phosphate could be biologically processed. Depends on the kind of microbe, anaerobic or aerobic techniques could be used in these situations. The pH, starting dosage, etc. are all factors that affect the efficacy of the treatments. In regards to employing biological intervention to reduce the existence of phosphate, several disadvantages are discovered [21]. Soluble carbon, fast development of microorganisms, and pH level of the fluid are all factors to be considered. Phosphate particles can be converted by adding metallic compounds to water polluted with Phosphorus particles. Usually, sewer water encompassing phosphate is treated using chemical techniques. Calcium ion is amongst the most frequently utilised chemical additions for phosphorus removal for its availability, affordability, and convenience of usage. Especially in an acidic medium, aluminum hydroxide is believed to be highly successful in eliminating phosphate from wastewater. As a consequence of the usage of chemical substances, chemical treatment methods frequently lead to toxic sludge [24]. Due to the utilisation use reagents, the technique is much more costly than many other procedures. Physically, phosphate extraction methods do not change the chemical composition of the phosphate, which is resulting in a change. After the removal of phosphate pollution using this approach, it is possible to separate these contaminants (phosphate contaminants) from the removal medium. For phosphate removal, filtering and screening technologies are frequently employed [21, 22]. Substances sensitive to pollutants are used in filtering. Water is then separated from pollutants using a variety of processes such as coagulation [10, 31], absorption [11, 55], and straining hybrid methods [23, 33]. To remove phosphates from water, several permeable mediums were employed. The general rule, the expense of filtering is determined based on the cost of the adsorbent materials employed. The phosphate removal capability of membranes has been demonstrated in previous studies. There are several methods to extract phosphates from water at low levels, but reverse osmosis is among the most popular. Polluted water is forced through a barrier with really limited porosity under high pressure. Assist in removing pollutants in water by means of high-pressured water. Membrane systems are rarely utilised due to their expensive running costs difficulties in discarding them, and the requirement for specific equipment and expertise. Recently, studies have centered on the use of waste products or natural resources as economical and useful replacements for traditional materials. Fly ash is a standard manufacturing byproduct that would be used to remove phosphate from wastewater, and also it widely used in construction industry [43, 56]. Water with an acidity level of 7 can be effectively treated with this substance. Due to the above, our research focused primarily on the possibility of using furnaces bottom ashes as an absorbent to extract the phosphates from polluted effluent.
2. Methods
According to the studies, furnace bottom ashes may be utilized as a convenient and efficient adsorbent for the removal of phosphate from the wastewater. Studying the grain size, permeability, porous structure and relative density of the bottom ashes is essential. The particle size is highly essential because it is directly related to the adsorption surface. When sieve review is performed, sieve sizes of 4, 6, 10, 16, 30 and 50 are utilised, and the quantity of mass kept on each sieve is calculated by analysing the distribution of particle size of the waste. This formula is used to determine the specific gravity test using the gas jar method:

\[
\text{Specific Gravity} = \frac{L_2 - L_1}{(L_4 - L_2) - (L_3 - L_2)}
\]

Where
- \(L_1\): Weight of jar + weight of plates
- \(L_2\): The total weight of the sample, plate, and jar, including the plate and the jar itself.
- \(L_3\): Water, dry sample, plate, and jar weight together.
- \(L_4\): Weight of the jar plus water

Using an X-ray fluorescence analyser, the chemical test is used to determine the structure of the ashes of the furnaces. It is performed to assess the effectiveness of extracting phosphates from the bottom ashes of the furnace since materials contain calcium, iron, and aluminum can be utilised for phosphate removal. To extract the phosphate in contaminated water, the bottom ashes were employed as a filter. The Box-Behnken design was utilised to improve the technique in terms of burner bottom ash dosage, duration of treatment, and temp. A potassium diphosphate solution in deionised water was used to modify the amounts of phosphate in synthetic water.

An experiment was conducted in which polluted water was combined for various lengths of time with the furnace’s bottom ashes to determine the effect of duration. In such tests, the retention duration ranging from 10 to 70 min, while the burner ash dosages varied from 100 to 1000 mg/L. Calculations of phosphate levels are made with the use of a Hach Lange spectrophotometer. As a result of this study, the Box-Behnken Design was utilised to create an estimation model in order to obtain the highest water treatment. The response variable was phosphorus removal in this research. The determinants were the phosphorus content level, bottom ash dose, and the duration of treatment. In order to construct the estimation matrix, Minitab 20 was chosen. The ranges of predictor factors considered are shown in Table 1.

Factors	Code	Low	Moderate	High
Concentration of phosphate in water	CoF	5	10	15
The dose of bottom ashes	DoBA	100	550	1000
Time of the treatment	ToT	10	40	70

A powerful determinant of linearity and relevance is the \(\alpha\) value, which may be calculated using the formula below:

\[
\alpha = (2X)^{3/4}
\]

Where \(X\) is the number of variables included in the model.

3. Results and Discussion

3.1. Properties of ashes from furnace bottoms
Based on empirical evidence, the majority of the bottom ash grains are maintained on sieves of lower diameters of less than 16. The results of the sieving tests show that the majority of the
bottom ash samples consisted of small particles within 1.180 mm and 4.750 mm in size. It was computed using the formulas 3 and 4:

Uniformity coefficient $= \frac{x_2}{x_1}$ (3)

The gradation coefficient $= \frac{x_3}{x_1 \cdot x_2}$ (4)

When plotting the passing rate with particle diameter, x_2, x_3, and x_1 show the percentages of particles that pass through each size. Analysis indicated that x_2, x_3, and x_1 the quantity of the first term were 3.06, 1.36, and 0.48, correspondingly. Furthermore, the uniformity coefficient is 6.21 the gradation coefficient is 1.32. The specimens of bottom ash are judged to be of good quality. Because of this, it is unlikely that the bottom ashes would float, as their relative density is greater than those of the liquid. Permeability was 0.61 m2/g, while the total area was 6.81 m2/g. A wide surface, good permeability, and high relative density make the bottoms of the furnace excellent for phosphorus extraction. Chemists determined that the bottom ashes included aluminium, iron, and, calcium oxide, magnesium in roughly 25% of the furnace’s ash. As a result, it may be argued that the bottom ash of a burner is suitable for removing phosphates.

3.2. Phosphate Removal

To investigate the effectiveness of burner ash in removing phosphorus compounds from wastewater, batch experiments were run. For each of the 15 tests, the experimental variables were modified in order to identify the optimal experimental set for achieving high removal efficiency at low costs. The findings are shown in Table 2 below. As can be seen in Table 2, the Box-Behnken Design and the removal efficiency obtained are provided.

Test	DoBA	CoF	ToT	RE%
01	1	0	0	90.1
02	1	0	1	63.1
03	1	-1	0	77.3
04	0	0	0	83.5
05	0	1	1	79.1
06	-1	0	-1	77.2
07	0	0	0	66.4
08	0	-1	-1	58.2
09	0	1	-1	59.9
10	0	-1	1	65.7
11	-1	1	0	80.1
12	1	1	0	79.2
13	-1	0	1	77.8
14	-1	-1	0	79.2
15	0	0	0	70.1

As a result of this investigation, it was shown that the removal efficiencies are proportional to the dose of furnace bottom ashes and the length of time intervals. Phosphorus removal, on the other hand, has an adverse correlation with starting phosphorus concentrations. This is because the accessible surface area of the adsorption is insufficient to collect the phosphorus from the liquid. As a result, there is more surface area accessible for phosphate adsorption from the contaminated water in the furnace bottom ash. It also enhances the interaction of phosphate and the adsorbent. 90.1% of the phosphate concentration in the contaminated water could be removed by using 530 mg/L of bottom ashes for 40 minutes, as shown in Figures 1-3.
Figure 1: Contour plot of the effects of DoBA and CoP on the removal of phosphate by the bottom ash.

Figure 2: Contour plot of the effects of DoBA and ToT on the removal of phosphate by the bottom ash.

Figure 3: Contour plot of the effects of ToT and CoP on the removal of phosphate by the bottom ash.
To estimate the removal efficiency based on the employed parameters, Box-Behnken Design was used to construct Equation 5.

\[
RE\% = 73.33 - 0.44 \, \text{DoBA} + 2.24 \, \text{CoF} - 0.10 \, \text{ToT} + 8.61 \, \text{DoBA} \times \text{DoBA} - 2.99 \, \text{CoF} \times \text{CoF} - 4.62 \, \text{ToT} \times \text{ToT} + 0.25 \, \text{DoBA} \times \text{CoF} - 7.17 \, \text{DoBA} \times \text{ToT} + 2.93 \, \text{CoF} \times \text{ToT}
\]

(5)

It can be seen from the presented studies about the adsorption method, the depletion of the active sites results in a serious reduction in the adsorption process, therefore; the application of successful sensors (in the literature) helps the operators of the treatment plant to monitor the depletion process, two good examples of the sensors that widely used in the civil and water engineering are the microwave [57-59] and electromagnetic [60-63] sensors.

4. Conclusion
To identify the optimum processing factors, the prospect of using furnace bottom ashes to treat contaminated water for phosphorus was studied. The chemical and physical properties of furnace bottom ashes are essential to remove phosphorus from contaminated water, according to research. This is in line with earlier research findings of about 90 % elimination using the bottom ashes. The dose of the bottom ashes as well as the detention time is positively related to the percentage of phosphorus removal from the polluted wastewater. Relative to phosphorus adsorption capacity, on the other hand, it is inversely correlated with the initial concentration of the pollutant. On the basis of furnace bottom ash dosage, phosphate content, and treatment duration, Box-model Behnken's may also forecast how the removal efficiency will vary.

References
[1] Zubaidi S, Al-Bugharbee H, Muhsen Y, Hashim K, Alkhaddar R, Al-Jumeily D and Aljaaf A 2019. The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate. 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia 274-7.
[2] Salah Z, Abdulkareem I, Hashim K, Al-Bugharbee H, Ridha H, Gharghan S, Al-Qaim F, Muradov M, Kot P and Alkhaddar R 2020. Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand. Water, 12 1-18.
[3] Al-Zubaidi S, Muhsin Y and Alkhaddar R 2020. Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study. IOP Materials Science and Engineering, 012018.
[4] Al-Saati N, Omran I, Salman A, Al-Saati Z and Hashim K 2021. Statistical modeling of monthly streamflow using time series and artificial neural network models: Hindiyah Barrage as a case study. Water Practice and Technology, 16 681-91.
[5] Lafta Z, Ortega S, Gharghan S, Ahmed M and Safaa K 2020. A Method for Predicting Long-Term Municipal Water Demands Under Climate Change. Water Resources Management, 34 1265-79.
[6] Lafta Z, Hashim K, Elhaib S, Al-Bdairi N, Al-Bugharbee H and Gharghan S 2020. A novel methodology to predict monthly municipal water demand based on weather variables scenario. Journal of King Saud University-Engineering Sciences, 32 1-18.
[7] Zubaidi S, Ortega, Al-Bugharbee H, Olier I, Hashim K and Gharghan S 2020. Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study. Water, 12 1-18.
[8] Salah L, Abdellatif M and Muhsin Y R 2019. Using LARS–WG model for prediction of temperature in Columbia City, USA. IOP Materials Science and Engineering, 012026.
[9] Zubaidi L, Al-Bugharbee H, Ortega S, Gharghan S, Olier I, Al-Bdairi N and Kot P 2020. A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach. Water, 12 1-17.
[10] Hashim K, Alquzweeni S, Kraidi L, Hussein A and Alwash R 2019. Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. 1st Int. Conference on Civil and Environmental Engineering Technologies, University of Kufa, Iraq 25-32.
[11] Safaa K, Hussein A, Kraidi L and Alwash R 2019. Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. 2nd International Scientific Conference, Al-Qadisiyah University, Iraq 12-22.
[12] Safaa K, Jasim N, Phhipps D, Pedrola M, Alattabi A, Abdulreedha M and Alawsh R 2019. Electrocoagulation as a green technology for phosphate removal from River water. *Separation and Purification Technology*, 210 135-44.

[13] Farhan S, Akef V and Nasar Z 2020. The transformation of the inherited historical urban and architectural characteristics of Al-Najaf’s Old City and possible preservation insights. *Frontiers of Architectural Research*, 13 160-71.

[14] Farhan S, Jasim I and Al-Mamoori S 2019. The transformation of the city of Najaf, Iraq: Analysis, reality and future prospects. *Journal of Urban Regeneration & Renewal*, 13 160-71.

[15] Abdulreedha M, Rafid A, Jordan D and Alattabi A 2017. Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? *Procedia engineering*, 196 771-8.

[16] Abdulreedha M, Abdulridha A and Jordan D 2020. Estimating municipal solid waste generation from service processions during the Ashura religious event. *IOP Materials Science and Engineering*, 012075.

[17] Abdulreedha M, Jordan D and Abdulridha A 2020. Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, Iraq. *Environment, Development and Sustainability*, 22 1431-54.

[18] Farhan S, Antón D, Akef V and Safaa K 2021. Factors influencing the transformation of Iraqi holy cities: the case of Al-Najaf. *Scientific Review Engineering and Environmental Sciences*, 30 365-75.

[19] Hashim K, Al-Saati N, Hussein A and Al-Saati Z 2018. An investigation into the level of heavy metals leaching from canal-dredged sediment: a case study metals leaching from dredged sediment. *1st Int. Conference on Materials Engineering & Science*, Istanbul Aydın University, Turkey, 12-22.

[20] Alattabi A, Harris C, Alzeyadi A and Abdulreedha M 2017. Online Monitoring of a sequencing batch reactor treating domestic wastewater. *Procedia engineering*, 196 800-7.

[21] Hashim K, Eidh A, Muhsin A, Muradov M, Aljeffrey M and Rafid M 2020. Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies. *Water Science and Technology*, 83 1-17.

[22] Alenezi A, Hasan H, Amoako-Attah J, Gkantou M, Muradov M and Abdulhadi B 2020. Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. *IOP Materials Science and Engineering*, 012031.

[23] Al-Marri S, AlQuzweeni S, AlKizwini R and Al-Khafaji Z 2020. Ultrasonic-Electrocoagulation method for nitrate removal from water. *IOP Materials Science and Engineering*, 012073.

[24] Mohammed A-H, Hussein A, Yeboah D, Abdulhadi B and Safaa K 2020. Electrochemical removal of nitrate from wastewater. *IOP Conference Series: Materials Science and Engineering*, 012037.

[25] Alhendal M, Nasir M, Amoako J, Al-Faluji D and Abdulhadi B 2020. Cost-effective hybrid filter for remediation of water from fluorid. *IOP Materials Science and Engineering*, 012038.

[26] Abdulraheem F, Al-Khafaji Z, Hashim K, Muradov M and Shubbar A 2020. Natural filtration unit for removal of heavy metals from water. *IOP Materials Science and Engineering*, 012034.

[27] Omran I, Al-Saati N, Al-Saati Z, Patryk K, Khaddar R A, Al-Jumeiley D and Aljeffrey M 2019. Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel. *Desalination and Water Treatment*, 168 165-74.

[28] Hashim K, Zubaid S, Alwash R, Al-Jumeiley D and Aljeffrey M 2020. Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater. *Journal of Water Process Engineering*, 33 101079-86.

[29] Khalid S, Ali S, AlRifaie J, Idowu I and Gkantou M 2020. Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor. *Chemosphere*, 247 125868-75.

[30] Alenazi M, Hassan A, Muradov M and Abdulhadi B 2020. Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. *IOP Materials Science and Engineering*, 012064.

[31] Al-Saati N, Hussein T, Abbas M, Al-Saati Z, Kot P, Sadique M, Aljeffrey M H and Camarina I 2019. Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study. *Desalination and Water Treatment*, 150 406-12.

[32] Aqeel K, Mubarak H, Amoako, Abdellatif M, Al-Janabi A and Khalid K S 2020. Electrochemical removal of brilliant green dye from wastewater. *IOP Materials Science and Engineering*, 012036.

[33] Almamiri H, Idan I J, Al-Janabi A, Hashim K, Gkantou M, Zubaidi S L, Kot P and Muradov M 2020. Ultrasonic-electrochemical treatment for effluents of concrete plants, 888 1-9.

[34] Alyafei A, AlKizwini R, Yeboah D, Gkantou M, Al-Faluji D and Zubaidi S 2020. Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. *IOP Conference Series: Materials Science and Engineering*, 012032.
[35] Zanki A, Mohammad F, Muradov M, Kareem M and Abdulhadi B 2020. Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. IOP Materials Science and Engineering, 012033.

[36] Emamjomeh M, Kakavand S, Jamali H, Safdari M, Mousavi S and Mousazade M 2020. The treatment of printing and packaging wastewater by electrocoagulation–flotation: the simultaneous efficacy of critical parameters and economics. Desalination and water treatment, 205 161-74.

[37] Abdulhadi B, Safaa K, Andy A, Muradov M and Al-Khaddar R 2021. Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study. Science of The Total Environment, 760 1-16.

[38] Hashim K, AlKhaddar R and Al-Shamma’a A 2021. Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment. Journal of Cleaner Production, 280 1-17.

[39] Omran I, Al-Saati N, Al-Saati H, Hashim K and Al-Saati Z N 2021. Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA). Water Practice and Technology, 16 648-60.

[40] Grmasha R, Al-sareji O, Saffa and Jasim I 2020. Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust Within Three Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment. Journal of King Saud University - Engineering Sciences, 33 1-18.

[41] Al-Sareji O, Grmasha R, Idowu I and Safaa K 2021. Street dust contamination by heavy metals in Babylon governorate, Iraq. Journal of Engineering Science and Technology, 16 3528 - 46.

[42] Chabuk A, Hamood Z, Abed S, Kadhim M, Al-Ansari N and Luae J 2021. Noise Level in Textile Industries: Case Study Al-Hillah Textile Factory-Company for Textile Industries, Al-Hillah-Babylon-Iraq. IOP Earth and Environmental Science, 012048.

[43] Ali A, Al-Shaer A and Sadique M 2019. Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar. 1st Int. Conference on Civil and Environmental Engineering Technologies, University of Kufa, Iraq 31-8.

[44] Kadhim A, Sadique M, Al-Mufti R and Khalid S 2020. Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent. Advances in Cement Research, 32 1-38.

[45] Majdi H, Ali A, Nasr M, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020. Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations. Data in Brief, 31 105961-72.

[46] Al-Jumeily D, Alkaddar R, Al-Tufaily M and Lunn J 2019. Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). 11th International Conference on Developments in eSystems Engineering (DeSE), Cambridge, UK 214-9.

[47] Shubbar A, Sadique M, Nasr M, Al-Khafaji Z and Safaa K 2020. The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash. Karbalaa International Journal of Modern Science, 6 1-23.

[48] Ali A, Sadique M, Shanbara H and Khalid K 2020 The Development of a New Low Carbon Binder for Construction as an Alternative to Cement. In Advances in Sustainable Construction Materials and Geotechnical Engineering, Berlin: Springer.

[49] Obaid M, Nasr M, Ali I, Shubbar A and Khalid S 2021. Performance of green mortar made from locally available waste tiles and silica fume. J. of Engineering Science and Technology, 16 136-51.

[50] Emamjomeh M, Mousazadeh M, Mokhtari N, Jamali H, Makkabiadi M, Naghdali Z and Ghanbari R 2020. Simultaneous removal of phenol and linear alkybenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes. Separation Science and Technology, 55 3184-94.

[51] Abdulredha M, AlKhaddar R, Kot P, Jordan D and Abdulridha A 2018. Benchmarking of the Current Solid Waste Management System in Karbala, Iraq. Using Wasteaware Benchmark Indicators. World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change, 40-8.

[52] Abdulla G, Kareem M, Muradov M, Mubarak H, Abdellatif M and Abdulhadi B 2020. Removal of iron from wastewater using a hybrid filter. IOP Materials Science and Engineering, 012035.

[53] Khalid S, AlKhaddar R, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management, Berlin: Springer.

[54] Alwan H, Saleh L, Al-Mohammed F and Abdulredha M 2020. Experimental prediction of the discharge coefficients for rectangular weir with bottom orifices. Journal of Engineering Science and Technology, 15 3265-80.
[55] Bareq B and Rafid R 2019. Influence of current density and electrodes spacing on reactive red dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. *1st Int. Conference on Civil and Environmental Engineering Technologies*, University of Kufa, Iraq.

[56] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020. Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust. *Journal of Building Engineering*, 32 1-17.

[57] Gkantou M, Muradov M, Kamaris G, Atherton W and Kot P 2019. Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection. *Sensors*, 19 5175-89.

[58] Ryecroft S, Andy S, Fergus P, Safaa K and Conway L 2019. A Novel Gesomin Detection Method Based on Microwave Spectroscopy. *12th International Conference on Developments in eSystems Engineering (DeSE)*, Kazan, Russia 429-33.

[59] Omer G, Atherton W, Muradov M, Gkantou M, Riley M and Al-Shamma’a A 2020. A Non-Destructive Electromagnetic Sensing Technique to Determine Chloride Level in Maritime Concrete. *Karbala International Journal of Modern Science*, 6 1-14.

[60] Ryecroft S, Andy A, Fergus P, Safa K, Moody A and Conway L 2019. A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna. *Sensors*, 19 1813-23.

[61] Kot P, Muradov M, Gkantou M, Kamaris G and Yeboah D 2021. Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring. *Applied Sciences*, 11 1-28.

[62] Omer G, Kot P, Atherton W, Muradov M, Gkantou M, Riley M and Al-Shamma’a A 2021. A Non-Destructive Electromagnetic Sensing Technique to Determine Chloride Level in Maritime Concrete. *Karbala International Journal of Modern Science*, 7 61-71.

[63] Ryecroft S, Andy S, Fergus P, Tang A, Moody A and Conway L 2021. An Implementation of a Multi-Hop Underwater Wireless Sensor Network using Bowtie Antenna. *Karbala International Journal of Modern Science*, 7 113-29.