Evaluation of phenolic acids and phenylpropanoids in the crude drugs

Liudas Ivanauskas, Valdas Jakštas, Jolita Radušienė, Audronis Lukošius, Algirdas Baranauskas

Department of Analytical and Toxicological Chemistry,
1Department of Pharmaceutical Chemistry and Pharmacognosy, Kaunas University of Medicine,
2Laboratory of Economical Botany, Institute of Botany, Vilnius,
3Department of Pharmaceutical Technology and Social Pharmacy, Kaunas University of Medicine, Lithuania

Key words: phenolic acids; phenylpropanoids; high-performance liquid chromatography; crude drug.

Summary. Phenolic acids and phenylpropanoids have an important biological activity and are therapeutic agents of crude drugs. Development of validated analysis techniques of these phytotherapeutic agents (fingerprinting and assay procedures) is an important practice for efficacy, safety, and quality control of herbal drug preparations. The aim of the present work was to study analytical capabilities of the evaluation of selected phenolic acids and phenylpropanoids: caffeic acid, chlorogenic acid, cinnamic acid, coumaric acid, ferulic acid, gallic acid, protocatechuic (3,4-dihydroxybenzoic) acid, rosmarinic acid, vanillic acid, and vanillin. Optimization and validation procedures of rapid and simple method of reversed-phase high-performance liquid chromatography were carried out. The mobile phase of the optimized chromatographic method consisted of methanol and 0.5% acetic acid solvent in water. For the application of method, two kinds of raw materials were chosen: propolis and the Herba Origani. Coumaric acid is the dominating phenolic acid of propolis (2785 μg/g). Results of analysis of Herba Origani demonstrated high quantities (6376 μg/g) of rosmarinic and protocatechuic (1485 μg/g) acids in the samples.

Introduction

Phenolic compounds are a wide group of substances that have particular importance in various aspects of scientific research, particularly for phytopharmacologists and phytochemists. Medical plants contain a large variety of phenolics. Phenolics, denominated as phenolic acids and phenylpropanoids, are derived from two nonphenolic molecules, benzoic and cinnamic acids, respectively. Many studies showed that phenolic acids and phenylpropanoids play a key role in antioxidative defense mechanisms in biological systems, exhibit health-promoting effects, and may have inhibitory effects on mutagenesis and carcinogenesis. Caffeic acid and gallic acid demonstrated strong antioxidant properties and act as free radical acceptors (1). The important biological activities of simple benzenoids – chlorogenic, caffeic, ferulic, gallic acids – are probably due to their cytoprotective activity and possible inhibitory effects on carcinogenesis, mutagenesis, and tumor genesis (2, 3). Phenolic acids and phenylpropanoid compounds have showed an important antibacterial activity (4). In addition, natural phenolic compounds make a considerable contribution to the nutritional quality of fruits and fruit products, which play an important role in the daily diet (3).

The determination of phenolics is important both for their characterization in the drug and to facilitate more efficient uses of the important plant resources. Development of validated analysis techniques of these phytotherapeutic agents (fingerprinting and assay procedures) are an important practice for standardization and quality control of the herbal drugs used in clinical trials and efficacy, safety, and quality control of herbal drug preparations (5).

There are several methods for the determination of phenolic acids in herbal drugs. Various plants have been analyzed by thin-layer chromatography, high-performance liquid chromatography (HPLC), and capillary electrophoresis (3, 4, 6–9). The most reliable and applicable methods for the routine determination
of phenolics in herbal drugs are HPLC methods.

The aim of the present work was to study analytical capabilities of the HPLC separation of selected phenolic acids and phenylpropanoids: caffeic acid, chlorogenic acid, cinnamic acid, coumaric acid, ferulic acid, gallic acid, protocatechuic (3,4-dihydroxybenzoic) acid, rosmarinic acid, vanillic acid, and vanillin. The structures of analysed compounds are presented in Fig. 1.

**Material and methods**

**Chemicals.** Methanol for HPLC analysis was of HPLC grade and purchased from Carl Roth GmbH (Karlsruhe, Germany). Distilled water used for preparation of solvents was filtered through the Millipore HPLC grade water preparation cartridge (Millipore, Bedford, USA) and membrane filter with a pore size of 0.45 μm. Standards of phenolic acids and phenylpropanoids were purchased from ChromaDex (Santa Ana, USA).

**Raw material.** Samples of propolis and Herba Origani were collected in the territory of Lithuania. Crude drug samples passed the analysis procedures of European Pharmacopoeia. All samples were extracted with 80% (v/v) ethanol (propolis) and 70% (v/v) ethanol (Herba Origani) before the HPLC analysis.

**Equipment.** HPLC analysis with UV/PDA detec-

![Fig. 1. Structure of selected phenolic acids and phenylpropanoids](image)

1 – protocatechuic acid; 2 – caffeic acid; 3 – ferulic acid; 4 – coumaric acid; 5 – cinnamic acid; 6 – vanillic acid; 7 – vanillin; 8 – rosmarinic acid; 9 – gallic acid; 10 – chlorogenic acid.
The mobile phase of the optimized chromatographic method consisted of solvent A (methanol) and solvent B (0.5% (v/v) acetic acid in water). The elution profile was as follows: 0 min 10% A in B, 28.6 min 60% A in B, 30 min 10% A in B. All gradients were linear. The flow rate was 1 mL/min, and injection volume was 10 μL. Absorption was measured at 290 nm. The eluted components were identified based on the retention time by comparison with reference standards following the equation:

\[ Y = a + bX \]

where \( Y \) is the log value of the peak area, \( X \) – the log value of sample amount, \( a \) – the intercept, and \( b \) – the slope.

The parameters of the calibration curves and their coefficients of determination demonstrate good linearity in the ranges of standard concentrations analyzed (Table 1).
Fig. 2. HPLC chromatograms of different gradient elution
(30% and 20% of solvent A on gradient start)

Analytes: 1 – gallic acid; 2 – protocatechuic acid; 3 – chlorogenic acid; 4 – vanillic acid; 5 – caffeic acid;
6 – vanillin; 7 – coumaric acid; 8 – ferulic acid; 9 – rosmarinic acid; 10 – cinnamic acid.

Fig. 3. Optimized HPLC separation of phenolic acids and phenylpropanoid standards

Analytes: 1 – gallic acid; 2 – protocatechuic acid; 3 – chlorogenic acid; 4 – vanillic acid; 5 – caffeic acid;
6 – vanillin; 7 – coumaric acid; 8 – ferulic acid; 9 – rosmarinic acid; 10 – cinnamic acid.

Medicina (Kaunas) 2008; 44(1)
Table 1. Parameters of resolution and calibration curves for separated phenolics

| No. | Analyte            | Fixed linear range (µg/mL) | Resolution | Equation | r²  | LOD (µg/mL) | LOQ (µg/mL) |
|-----|--------------------|----------------------------|------------|----------|-----|-------------|-------------|
| 1   | Gallic acid        | 0.17–6.80                  | R_s C_min  | Y=1.90×10⁴ X–4.43×10² | 0.99985 | 0.021 | 0.070 |
| 2   | Protocatechuic acid| 0.13–5.24                  | 8.77       | 6.86     | Y=1.82×10⁴ X–6.48×10² | 0.99990 | 0.017 | 0.057 |
| 3   | Chlorogenic acid   | 0.10–4.00                  | 16.12      | 14.99    | Y=2.14×10⁴ X–5.81×10² | 0.99988 | 0.019 | 0.064 |
| 4   | Vanillic acid      | 0.08–3.23                  | 3.75       | 3.42     | Y=2.27×10⁴ X+1.05×10² | 0.99990 | 0.009 | 0.031 |
| 5   | Caffeic acid       | 0.08–3.20                  | 2.35       | 2.36     | Y=4.12×10⁴ X–3.74×10² | 0.99989 | 0.008 | 0.026 |
| 6   | Vanillin           | 0.07–2.80                  | 3.30       | 3.18     | Y=3.59×10⁴ X–3.34×10² | 0.99995 | 0.006 | 0.021 |
| 7   | Coumaric acid      | 0.04–1.60                  | 11.73      | 11.26    | Y=7.06×10⁴ X+3.08×10² | 0.99988 | 0.004 | 0.014 |
| 8   | Ferulic acid       | 0.07–2.80                  | 3.94       | 3.48     | Y=3.91×10⁴ X–6.21×10² | 0.99989 | 0.018 | 0.058 |
| 9   | Rosmarinic acid    | 0.09–3.60                  | 18.27      | 15.96    | Y=2.03×10⁴ X–5.03×10² | 0.99988 | 0.016 | 0.054 |
| 10  | Cinnamic acid      | 0.05–2.00                  | 15.21      | 14.44    | Y=6.85×10⁴ X+3.23×10² | 0.99994 | 0.004 | 0.014 |

R_s C_min and R_s C_max – resolution values calculated using minimal and maximal concentrations of standard solutions; LOD – limit of detection; LOQ – limit of quantitation.

Table 2. Within-day and between-day precision and accuracy of assay for determination of phenolics in standard solution

| Analyte       | Injected concentration (µg/mL) | RSD, % for peak area | Mean concentration measured (µg/mL) | RSD, % for amount | Recovery, % |
|---------------|-------------------------------|----------------------|------------------------------------|-------------------|-------------|
|               | WD | BD |
| Gallic acid   | 3.400 | 0.1 | 2.2 | 3.483 | 3.419 | 0.1 | 1.5 | 102.3–102.6 | 97.3–102.4 |
| Protocatechuic acid | 2.624 | 0.5 | 3.5 | 2.785 | 2.706 | 0.5 | 2.6 | 105.6–106.4 | 97.8–106.4 |
| Chlorogenic acid | 2.000 | 2.0 | 3.1 | 2.023 | 1.998 | 1.9 | 2.1 | 100.0–103.8 | 95.1–100.9 |
| Vanillic acid  | 1.615 | 0.7 | 3.5 | 1.702 | 1.657 | 0.7 | 2.4 | 104.7–106.2 | 97.3–105.3 |
| Caffeic acid   | 1.600 | 0.5 | 3.2 | 1.681 | 1.638 | 0.5 | 2.2 | 104.5–105.4 | 97.7–105.4 |
| Vanillin       | 1.400 | 0.3 | 3.5 | 1.485 | 1.439 | 0.3 | 2.6 | 105.7–106.3 | 97.8–106.2 |
| Coumaric acid  | 0.800 | 0.4 | 3.3 | 0.841 | 0.821 | 0.4 | 2.2 | 104.7–105.5 | 97.4–105.5 |
| Ferulic acid   | 1.400 | 0.4 | 2.7 | 1.455 | 1.427 | 0.4 | 1.7 | 103.6–104.4 | 97.5–104.4 |
| Rosmarinic acid | 1.800 | 0.4 | 1.8 | 1.805 | 1.781 | 0.4 | 1.8 | 99.9–100.7 | 97.2–100.2 |
| Cinnamic acid  | 1.000 | 0.2 | 3.2 | 1.055 | 1.031 | 0.2 | 2.4 | 105.2–105.6 | 98.2–105.2 |

RSD – relative standard deviation; WD – within-day precision; BD – between-day precision.
The limit of detection (LOD) and limit of quantification (LOQ), defined as the lowest concentration of the analyte that can be clearly detected or quantified, were calculated by multiplying the signal to noise ratio by 3 (LOD) and by 10 (LOQ). The limits were set at the concentration of lowest calibration (diluted with methanol 2–4 times). The limits of detection and the limits of quantification were between 0.004–0.021 and 0.014–0.07, respectively (Table 1).

The precision and accuracy of the method were assessed by within-day and between-day run validations. Method precision was determined by measuring repeatability and precision of peak area. The repeatability (within-day) precision of the method was determined by performing replicate injection (n=4). The relative standard deviation (RSD, %) was also calculated by comparing the observed concentrations. In Table 2, RSD values are given for peak area and amount. The between-day precision was evaluated by injecting three sets of controls on three separate days. In all cases, RSD was lower than 3.5% for peak area and 2.6% for amount. The results show that repeatability of peak area was suitable to assay analyses. The within-day and between-day accuracy was also measured in the range of 95.1–106.4%.

Application. For the application of method, samples of propolis and Herba Origani were chosen. Propolis is a natural product, produced by bees, and has antibacterial, antiviral, antifungal, anti-inflammatory, anesthetic, and immunomodulating properties (13). Recent findings report antimicrobial, fungicidal, and antioxidant properties of essential oil of Origanum vulgare and crude drug Herba Origani (14). Volatile compounds of Lithuanian propolis and Origanum vulgare samples were analyzed earlier by method of gas chromatography/mass spectrometry (13, 14).

Nine analytes were identified in the propolis with the comparison of retention times and PDA spectra of standards. Only protocatechuic acid was not detected in the samples. Typical chromatogram is presented in Fig. 4. Amounts of phenolics are given in the Table 3. On the ground of the presented quantities, coumaric acid was established as the dominating phenolic acid of propolis.

Results of analysis of Herba Origani demonstrated high quantitie of rosmarinic acid in the samples (Table 4). Fig. 5 presents the typical chromatogram of Herba Origani sample. Six phenolic compounds of this crude drug could be assayed with the validated method.

Conclusions
Optimization and validation procedures of rapid and simple method of reversed-phase high-

![Fig. 4. HPLC chromatogram of propolis sample](image)

Analytes: 1 – gallic acid; 3 – chlorogenic acid; 4 – vanillic acid; 5 – caffeic acid; 6 – vanillin; 7 – coumaric acid; 8 – ferulic acid; 9 – rosmarinic acid; 10 – cinnamic acid.
performance liquid chromatography were carried out. By applying optimized method, reliable parameters (resolution, linearity, limit of detection, limit of quantification, and precision) were obtained. For the application of method, two kinds of raw materials – propolis and the *Herba Origani* – were chosen. Coumaric acid is the dominating phenolic acid of propolis (2785 µg/g). Results of analysis of *Herba Origani* demonstrated high quantities (6376 µg/g) of rosmarinic acid in the samples.

**Table 3. Amounts of phenolics in propolis**

| No. | Analyte        | Amount in the air-dried propolis (µg/g) |
|-----|----------------|----------------------------------------|
| 1   | Gallic acid    | 105.4                                  |
| 3   | Chlorogenic acid| 540.5                                  |
| 4   | Vanillic acid  | 88.1                                   |
| 5   | Caffeic acid   | 166.0                                  |
| 6   | Vanilin        | 1094.8                                 |
| 7   | Coumaric acid  | 2784.6                                 |
| 8   | Ferulic acid   | 939.9                                  |
| 9   | Rosmarinic acid| 140.8                                  |
| 10  | Cinnamic acid  | 104.1                                  |

**Table 4. Amounts of phenolics in oregano (Herba Origani) sample**

| No. | Analyte          | Amount in the air-dried oregano (µg/g) |
|-----|------------------|----------------------------------------|
| 2   | Protocatechuic acid| 1485.7                              |
| 3   | Chlorogenic acid | 89.9                                   |
| 5   | Caffeic acid     | 195.6                                  |
| 7   | Coumaric acid    | 175.4                                  |
| 9   | Rosmarinic acid  | 6375.9                                 |
| 10  | Cinnamic acid    | 171.3                                  |

**Fig. 5. HPLC separation of oregano (Origanum vulgare) phenolics**

Analytes: 2 – protocatechuic acid; 3 – chlorogenic acid; 5 – caffeic acid; 7 – coumaric acid; 9 – rosmarinic acid; 10 – cinnamic acid.
Fenolinų rūgščių ir fenilpropanoidų įvertinimas vaistinėje žaliavoje

Liudas Ivanauskas, Valdas Jakštaitė, Jolita Rudušienė, Audronis Lukošius, Algirdas Baranauskas

Kauno medicinos universiteto Analizinės ir toksikologinės chemijos katedra,
1Farmacinės chemijos ir farmakognosijos katedra, 2Botanikos instituto Ekonominės botanikos laboratorija,
3Kauno medicinos universiteto Vaistų technologijos ir socialinės farmacijos katedra

Raktažodžiai: fenolinės rūgščios, fenilpropanoidai, efektyviosios skysčių chromatografija, vaistinė žaliava.

Santrauka. Fenolinės rūgščios ir fenilpropanoidai pasižymi reikšmingu biologinio aktyvumo ir yra vaistinių žaliavų veiklieji komponentai. Įteisintų tyrimo metodikų tiems junginiams nustatytų (koksbiginių ir kiektybių žaliavų tyrimui) tobulinimas ypač svarbus augalinių vaistinių preparatų veiksmingumo, saugumo ir kokybės kontrolei.

Tyrimo tikslas – išsiaiškinti galimybę analitiniai metodai įvertinti šias fenolinės rūgštis ir fenilpropanoidus: chlorogeno rūgštį, cinamono rūgštį, galio rūgštį, ferulo rūgštį, kumaro rūgštį, protokatecho (3,4-dihidroksibenzoine) rūgštį, rozmarno rūgštį, vanilinį ir vanilinio rūgštį. Atlikti tyrimai paprastos ir greitos atvirkštinių fazių efektyviosios skysčių chromatografijos metodikos optimizavimui ir įtėsinimui. Sukurto chromatografinio metodo judrūsio skysčio fazė yra metanolis ir acto rūgštis 0,5 proc. vandeninis tirpalas. Kiektybinis metodo pakartojamumas yra didesnis nei 2,6 proc. Metodo taikymui pasirinktos dvi vaistinės žaliavos: propolis ir raudonėlio žolė (Herba Origani). Nustatyta, jog propoloje vyrauja kumaro rūgštis (2785 μg/g) ir vanilinės (1094 μg/g). Raudonėlio žolės (Herba Origani) bandinių tyrimo duomenys rodė didelį (6376 μg/g) rozmarno rūgšties ir protokatecho rūgštis (1485 μg/g) kiekį žaliavoj.

Adresas susirašinėti: L. Ivanauskas, KMU Analizinės ir toksikologinės chemijos katedra, A. Mickevičiaus 9, 44307 Kaunas. El. paštas: liudas.ivanauskas@med.kmu.lt

References
1. Kumar KC, Müller K. Medicinal plants from Nepal; II. Evaluation as inhibitors of lipid peroxidation in biological membranes. J Ethnopharmacol 1999;64:135-9.
2. Birošová L, Mikulašova M, Vaverkova Š. Antimutagenic effect of phenolic acids. Biomed Pap Med Fac Univ Palacký Olo
3. Summanen JO. A Chemical and ethnopharmalogical study on Phyllanthus emblica (Euphorbiaceae) [dissertation]. Helsinki: University of Helsinki, 1999.
4. Aljadi AM, Yusoff KM. Isolation and identification of phe
5. Calixto JB. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). The medicinal use of herbal drugs. Braz J Med Biol Res 2000;33:179-89.
6. Fecka I, Cisowski W. Multiple gradient development TLC in analysis of complex phenolic acids from Lycopersicon esculentum L. Chromatographia 1999;49(5,6):256-60.
7. Popova M, Bankova V, Butovskaya D, Petkov V, Nikolova-Damyanova B, Sabatini AG, et al. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem Anal 2004;15:235-40.
8. Midorikawa K, Banska AH, Tezuka Y, Nagaoka T, Matsushige K, Message D, et al. Liquid chromatography-mass spectrometry analysis of propolis. Phytochem Anal 2001;12:366-73.
9. Volpi N. Separation of flavonoids and phenolic acids from propolis by capillary zone electrophoresis. Electrophoresis 2004:25:1872-8.
10. Horax R, Hettiarachy N, Islam S. Total phenolic contents and phenolic acid constituents in 4 varieties of bitter melons (Momordica charantia) and antioxidant activities of their extracts. JFC C 2005;70(4):275-80.
11. Tuzen M, Ozdemir M. Chromatographic determination of phenolic acids in the snowdrop by HPLC. Turk J Chem 2003;27:49-54.
12. Kowalski R, Wolski T. Evaluation of phenolic acid content in Silphium perfoliatum L. leaves, inflorescences and rhizomes [serial online] 2003;6(1). Available from: URL: http://www. epau.media.pl/series/volume6/issuel/horticulture/art-03.html
13. Majemeni D, Trumbeckaitė S, Grünvienė D, Ivanauskas L, Gendrolis A. Propolo ekstrakto cheminės sudėties tyrimai. (Investigation of chemical composition of propolis extract.) Medicina (Kaunas) 2004;40(8):771-4.
14. Radziušienė J, Judžiniene A, Peciulė D, Janulis V. Chemical composition of essential oil and antimicrobial activity of Origanum vulgare. Biologija 2005;4:53-8.

Received 21 November 2007, accepted 5 December 2007
Straipsnis gautas 2007 11 21, priimtas 2007 12 05