Astroglial gap junctions shape neuronal network activity

Ulrike Pannasch,1 Mickael Derangeon,1 Oana Chever and Nathalie Rouach*

Keywords: astrocytes, gap junctions, connexins, neuroglial interactions, neuronal network activity, hippocampus

Astrocytes, the third element of the tripartite synapse, are active players in neurotransmission. Up to now, their involvement in neuronal functions has primarily been investigated at the single cell level. However, a key property of astrocytes is that they communicate via extensive networks formed by gap junction channels. Recently, we have shown that this networking modulates the moment to moment basal synaptic transmission and plasticity through the regulation of extracellular potassium and glutamate levels. Here we show that astroglial gap junctional communication also regulates neuronal network activity. We discuss these findings and their implications for brain information processing.

Introduction

Astrocytes, as part of the tripartite synapse, can integrate neuronal activity through activation of their channels, receptors, and transporters, and modulate in turn synaptic transmission and plasticity, via the release of gliotransmitters or uptake of neuroactive substances.1 Individual astrocytes can contact up to 140 000 synapses.2 However, since astrocytes are interconnected via gap junctions, which allow the intercellular trafficking and redistribution of neuroactive substances, they can integrate and modulate large neuronal ensembles.3-6 We have recently shown that astroglial gap junctional networks provide the basis for precise neuronal network activity. We discuss these findings and their implications for brain information processing.

Results and Discussion

In mice with intact astroglial networks, increasing the stimulus length by 5-fold enhanced the presynaptic input by ~7-fold, as measured by the fiber volley amplitude (n = 7, Fig. 1B), and also resulted in synaptically-induced firing, detected as population spike (Fig. 1A).

However, in the absence of functional astroglial networks, even though the presynaptic presynaptic activity was comparable to the wildtype response (Fig. 1C), the
postsynaptic activity was dramatically amplified (n = 6, Fig. 1B), and resulted mostly from the massive increase in synaptically-evoked firing, as measured by the charge of the evoked response, consisting of the field fEPSP and predominantly of the population spike [p < 0.05; Cx30\(^{-/-}\)Cx43\(^{-/-}\) mice (n = 6), as compared with the wildtype mice (n = 7). Scale bar 0.2 mV, 25 ms. (C, D) The extracellular potassium accumulation is increased (amplitude p < 0.05) and prolonged (decay, p < 0.001 for 0.1 ms pulse width and p < 0.005 for 0.5 ms pulse width) in slices from Cx30\(^{-/-}\)Cx43\(^{-/-}\) mice (n = 6) compared with wildtype mice (n = 7), as measured by the astroglial membrane depolarization. Scale bar, 1 mV, 1 sec. (E, F) Spontaneous bursts, induced by inhibition of GABAergic transmission (100 μM picrotoxin) and removal of extracellular Mg\(^{2+}\), and recorded extracellularly in the hippocampal CA1 area, occur more frequently in Cx30\(^{-/-}\)Cx43\(^{-/-}\) mice (p < 0.001, n = 16) than in wildtype mice (n = 16). Scale bar, 0.2 mV, 30 sec. However, amplitude (p < 0.001), as well as charge transfer (p < 0.001), are reduced in Cx30\(^{-/-}\)Cx43\(^{-/-}\) mice (n = 16, WT n = 16). High magnifications of representative traces are shown on the right. Scale bar, 0.2 mV, 1s.

Figure 1. Astroglial gap junctional communication prevents amplification of neuronal activity and reduces neuronal network activity. Synchronous recordings of hippocampal CA1 extracellular field excitatory postsynaptic potentials (fEPSP) (A) and astroglial membrane depolarizations (C) were performed and representative traces are illustrated. (B) Increasing the stimulation length from 0.1 to 0.5 ms resulted in comparable presynaptic activity (fiber volley), but enhanced postsynaptic activity (charge transfer, p < 0.005) in Cx30\(^{-/-}\)Cx43\(^{-/-}\) mice (n = 6), as compared with the wildtype mice (n = 7). Scale bar 0.2 mV, 25 ms. (C, D) The extracellular potassium accumulation is increased (amplitude p < 0.05) and prolonged (decay, p < 0.001 for 0.1 ms pulse width and p < 0.005 for 0.5 ms pulse width) in slices from Cx30\(^{-/-}\)Cx43\(^{-/-}\) mice (n = 6) compared with wildtype mice (n = 7), as measured by the astroglial membrane depolarization. Scale bar, 1 mV, 1 sec. (E, F) Spontaneous bursts, induced by inhibition of GABAergic transmission (100 μM picrotoxin) and removal of extracellular Mg\(^{2+}\), and recorded extracellularly in the hippocampal CA1 area, occur more frequently in Cx30\(^{-/-}\)Cx43\(^{-/-}\) mice (p < 0.001, n = 16) than in wildtype mice (n = 16). Scale bar, 0.2 mV, 30 sec. However, amplitude (p < 0.001), as well as charge transfer (p < 0.001), are reduced in Cx30\(^{-/-}\)Cx43\(^{-/-}\) mice (n = 16, WT n = 16). High magnifications of representative traces are shown on the right. Scale bar, 0.2 mV, 1s.
depolarization facilitating receptor activation; 2) extracellular glutamate accumulation caused by decreased astroglial glutamate clearance rate in Cx30-/- Cx43-/- mice, which furthermore results in enhanced spillover of glutamate, activating neighboring synapses, as we recently found; and 3) a severely decreased extracellular space volume during enhanced activity in Cx30-/- Cx43-/- mice, due to the increased swelling and delayed deswelling of disconnected astrocytes, as we observed during a train of stimulation (10 Hz, 1Hz), which should also further augment glial Ca2+ and glutamate concentrations, and lead to an accumulation of diffusion barriers slowing down extracellular diffusion. Altogether these results indicate that astroglial network communication precisely tunes pre-to-post-synaptic signaling and prevents amplification of neuronal activity. Such uncontrolled amplification of neuronal activity, especially in the highly recurrently connected hippocampal formation, could result in hypersynchronous firing, a hallmark of epilepsy. Indeed a previous study already reported enhanced seizure susceptibility of Cx30-/- Cx43-/- mice in response to low-frequency stimulation, as result in hypersynchronous firing, a hallmark of epilepsy. Indeed a previous study already reported enhanced seizure susceptibility of Cx30-/- Cx43-/- mice, due to the increased swelling and delayed extracellular space volume during enhanced activity in Cx30-/- Cx43-/- mice in response to low-frequency stimulation, as well as during persistent NMDA receptor activity.7 However a detailed analysis of the epileptiform activity and of the underlying mechanisms was not performed. Since our previous results indicate that in the absence of functional astroglial networks, both, excitatory, as well as inhibitory transmission increased, we first investigated whether the observed alterations in the excitatory drive alone could result in the enhanced seizure susceptibility. We found that astroglial network communication reduces bursting activity in an acute pharmacological model of epileptic-like activity (0 Mg2+, picrotoxin). Indeed, the frequency of interictal events was enhanced by nearly 3-fold in the absence of astroglial networks (Cx30-/- Cx43-/- mice p < 0.001; 4.5 ± 0.1 min⁻¹; n = 16) compared with wildtype mice (1.7 ± 0.05 min⁻¹; n = 16, Fig. 1E and 1F). However, detailed analysis of individual events revealed smaller burst amplitudes and reduced charge transfer (Fig. 1F) in slices from Cx30-/- Cx43-/- mice (n = 16) compared with wildtype (n = 16).

The increase in frequency of epileptiform events in hippocampal slices from Cx30-/- Cx43-/- mice may result from accumulation of extracellular potassium. Indeed an increase in extracellular potassium from 5 to 10 mM results in a 5-fold increase in the frequency of interictal events.7 Furthermore the enhanced postsynaptic AMPA receptor density, as well as the pronounced glutamate spillover, activating neighboring inactive synapses, should also contribute to synchronous firing and the increase in burst frequency. The reduced amplitude of epileptiform events in Cx30-/- Cx43-/- mice (Fig. 1F) might result from stronger depolarizations of CA1 pyramidal cells due to the enhanced extracellular potassium levels, leading to decreased excitatory postsynaptic activity. Alternatively, the decreased amplitude may come from a reduced number of neurons firing during an individual event, or from an altered energy supply, which is partially mediated by astroglial networks.13,14 The enhanced neuronal firing should also further elevate extracellular potassium levels. This might contribute to inappropriate information processing due to altered membrane depolarizations and repolarizations, resulting in dysfunction of voltage-gated ion channels, necessary for the generation of action potentials. The altered dynamics of extracellular potassium in Cx30-/- Cx43-/- mice should therefore prevent fast and adequate membrane depolarizations and hyperpolarizations, necessary for temporally and spatially-restricted channel activity. In addition to the disturbed extracellular potassium homeostasis in Cx30-/- Cx43-/- mice, we also found insufficient astroglial glutamate clearance, measured by decreased glutamate transporter (GLT) clearance rate during basal evoked synaptic transmission (single stimulation of Schaffer collaterals). This results most likely from disturbance in K+ and Na+ gradients driving glutamate uptake. Indeed, a reduced electrogenic drive may be due to the altered intracellular ion homeostasis caused by the lack of intercellular coupling, and/or to alterations in astroglial membrane potential dynamics, resulting from enhanced extracellular potassium levels during neuronal activity.15 Interestingly, besides the well-known involvement of gap junctions in potassium buffering, an activity-dependent Na+ spread through gap junction networks was shown in a recent study.16 We found that GLT dysfunction results in accumulation of released glutamate at synaptic, as well as at extrasynaptic sites, which increased postsynaptic AMPA receptor responses.7 However for higher regimes of activity, such as the bursting activity we induced acutely, further accumulation of glutamate in Cx30-/- Cx43-/- mice may lead to desensitization of AMPA receptors, as well as to activation of extrasynaptic metabotropic glutamate receptors, thereby limiting the development of uncontrolled excessive activity. It is furthermore possible that the impaired astroglial metabolic supply to neurons in Cx30-/- Cx43-/- mice, important during persistent neuronal activity, also contributes to limit the aberrant bursting activity. Inter-astroglial connectivity provides individual astrocytes with large uptake and buffering capacities for potassium and glutamate, since intracellular accumulation can be prevented due to the fast redistribution via the network. Interestingly, our previous work showed that disconnection of astrocytes is still associated with a large uptake capacity,7 suggesting that disconnected astrocytes manage to redistribute and release the uptake substances locally within their own microdomains. Nevertheless, we previously found that the glutamate clearance time course is deaccelerated,7 demonstrating a reduced functionality of GLT in Cx30-/- Cx43-/- astrocytes. We therefore investigated which strategies uncoupled astrocytes use to compensate for the lack in network redistribution capacity.

Since hippocampal excitatory transmission was enhanced in juvenile Cx30-/- Cx43-/- mice due in part to increased synaptic glutamate release, and expression of glutamate transporters is thought to be activity-dependent,11-13 we first analyzed whether hippocampal astrocytes exhibit expression changes in GLT-1 and GLAST, the two astroglial glutamate transporter subtypes. However protein levels of these two transporters, mainly expressed by glial cells, were indistinguishable between Cx30-/- Cx43-/- and wildtype mice (Fig. 2A). Thus in juvenile mice (P16–25), we did not observe the increase in GLT-1 and GLAST protein levels recently reported in the cortex and hippocampus of adult Cx30-/- Cx43-/- mice.17 This increase in adult Cx30-/- Cx43-/- mice might reflect a compensatory upregulation to counteract the...
enhanced excitatory transmission and decreased glutamate clearance rate, although a functional upregulation of glutamate uptake was not yet shown in adult Cx30−/− Cx43−/− mice.

We also found that disconnected astrocytes display several morphological changes, including a prominent swelling, a larger domain area, as well as enhanced GFAP and vimentin levels, reflecting reactive gliosis. Interestingly, a preferential swelling of astrocytic processes,24 known to cover synaptic compartments,25 may well occur, as shown during hypotonic stress.26 In addition, process volume changes depend on the expression of GFAP,27 which is increased in Cx30−/− Cx43−/− mice.28

Intracellular accumulation of potassium and glutamate in individual disconnected astrocytes should result in enhanced entry of water to equilibrate intracellular osmolarity, likely responsible for the swelling of Cx30−/− Cx43−/− astrocytes. Remarkably, a functional relationship has been proposed in astrocytes between connexin 43 gap junctions and aquaporin-4 water channels, prominently expressed in astrocytes.29 Indeed aquaporin-4 knockdown leads to a downregulation of Cx43 and associated cell coupling, as well as to an alteration in cell morphology.30 However our data, as well as previous results,31 suggest that the function of aquaporin-4 channels is unaltered in Cx43−/− Cx30−/− astrocytes. Indeed aquaporin-4 protein levels are unchanged (Fig. 2A). Furthermore disconnected astrocytes display larger domain area and important swelling, changes opposite to what is reported when aquaporin-4 expression is reduced.21

Finally uncoupled astrocytes, to compensate for the intracellular accumulation of potassium and glutamate, might open pannexin-mediated hemichannels to release potassium and/or glutamate at sites of lower concentration, and thereby balance intracellular osmolarity. Previous work revealed the presence of pannexin-1 hemichannels in astrocytes,22 enabling the release of glutotransmitters,23 and the opening of such channels by membrane depolarization.24 However carbenoxolone (CBX, 200 μM), known to inhibit connexin, as well as pannexin channels,25 did not reveal any additional functionality of these hemichannels in astrocytes, as assessed by ethidium bromide uptake assay in slices from Cx30−/− Cx43−/− mice (n = 26) or from wildtype mice (n = 37) in the presence of normal calcium concentration, as used throughout our experiments (Fig. 2B, C).

Nevertheless, in the absence of extracellular calcium, we detected a prominent opening of CBX sensitive-hemichannels in wildtype mice (n = 49, in CBX n = 38), while in Cx30−/− Cx43−/− mice, a small uptake activity (~10%) was likely mediated by pannexin-1 (n = 30, in CBX n = 26), and thus could also possibly contribute to the alterations we reported in neuronal activity. Indeed, previous work revealed that elevation of extracellular potassium can activate microglial cells,34 which can release cytokines such as TNFα, known to increase the density of postsynaptic AMPA receptors enhancing synaptic strength,35 decrease glutamate clearance,36 and promote excitotoxicity.37 However we did not observe morphological characteristics of reactive microglia in Cx30−/− Cx43−/− mice, such as increased soma size (Cx30−/− Cx43−/−: 30.1 ± 1.1μm², n = 13; wt: 33.7 ± 2.1μm², n = 14) or Iba1 reactivity (mean fluorescence intensity (arbitrary units):...

Figure 2. Absence of compensatory upregulation of water channels, glutamate transporters, opening of pannexin hemichannels or reactive microglia in Cx30−/− Cx43−/− mice. (A) Quantitative immunoblot analysis of hippocampal extracts from Cx30−/− Cx43−/− mice (n = 3) and wild type (n = 3) revealed no difference in protein expression for the water channel aquaporin 4 (~30 kD) and the glial glutamate transporters GLT-1 (~70 kD) and GLAST (~60 kD). Tubulin was used as a loading control. (B, C) Under control conditions, no enhanced ethidium bromide (EtBr) uptake was detectable in astrocytes from Cx30−/− Cx43−/− mice. Pretreatment with carbenoxolone (CBX, 200 μM) for 15 min, a connexin and pannexin hemichannel blocker, has no effect on basal astroglial ethidium bromide uptake in wildtype (n = 50) and Cx30−/− Cx43−/− mice (n = 36). Removal of extracellular calcium (0 Ca²⁺) induced a carbenoxolone sensitive EtBr uptake in astrocytes from wildtype mice (n = 50), and to a much smaller extend in Cx30−/− Cx43−/− mice (n = 36). Scale bar, 25 μm. (D) Immunostaining of hippocampal slices with the microglia marker Iba1 revealed no sign of microglia activation in slices from Cx30−/− Cx43−/− mice (n = 3; wild type n = 3). Scale bar, 10 μm.
Hippocampal synaptic plasticity, by releasing ATP,\(^5\) suggesting that other mechanisms potentially involving coordinated release of gliotransmitters by astroglial networks, may also restrict and dampen synaptic transmission.

Interestingly, astroglial networks have also been proposed to participate to heterosynaptic depression, another form of hippocampal synaptic plasticity, by releasing ATP,\(^5\) suggesting that other mechanisms potentially involving coordinated release of gliotransmitters by astroglial networks, may also restrict and dampen synaptic transmission.

Such astroglial networks are also likely to be functionally crucial in pathological conditions associated to enhanced release of ions and neurotransmitters, and should therefore preserve synaptic independence and restrict excitotoxicity. Thus our work reveals the cellular and molecular mechanisms underlying the key role of astroglial connexins in cognitive functions and possibly in psychiatric disorders including autism\(^31\) and major depression.\(^3\) Such astroglial gap junctional communication is disrupted in many pathological conditions (neuroinflammation, excitotoxic injury, multiple sclerosis, epilepsy, ocular-dentodigital dysplasia, neurodegenerative diseases, psychopathologies), connexins should be a promising therapeutic target to restore normal brain information processing.

Materials and Methods

Animals. Experiments were performed according to the guidelines of the European Community Council Directives of November 24th 1986 (86/609/EEC). Experiments were performed on the hippocampus of wild type mice and Cx30\(^{-/-}\)/Cx43\(^{-/-}\) double knockout (provided by Pr. Willecke, University of Bonn, Germany), with conditional deletion of Cx3 in astrocytes\(^32\) and additional total deletion of Cx30,\(^3\) as previously described.\(^7\) For all analyses, mice of both genders and littermates were used (P16–P25). Immunohistochemistry. Materials and Methods

Animals. Experiments were performed according to the guidelines of the European Community Council Directives of November 24th 1986 (86/609/EEC). Experiments were performed on the hippocampus of wild type mice and Cx30\(^{-/-}\)/Cx43\(^{-/-}\) double knockout (provided by Pr. Willecke, University of Bonn, Germany), with conditional deletion of Cx3 in astrocytes\(^32\) and additional total deletion of Cx30,\(^3\) as previously described.\(^7\) For all analyses, mice of both genders and littermates were used (P16–P25). Immunohistochemistry. Materials and Methods

Animals. Experiments were performed according to the guidelines of the European Community Council Directives of November 24th 1986 (86/609/EEC). Experiments were performed on the hippocampus of wild type mice and Cx30\(^{-/-}\)/Cx43\(^{-/-}\) double knockout (provided by Pr. Willecke, University of Bonn, Germany), with conditional deletion of Cx3 in astrocytes\(^32\) and additional total deletion of Cx30,\(^3\) as previously described.\(^7\) For all analyses, mice of both genders and littermates were used (P16–P25). Immunohistochemistry. Materials and Methods

Animals. Experiments were performed according to the guidelines of the European Community Council Directives of November 24th 1986 (86/609/EEC). Experiments were performed on the hippocampus of wild type mice and Cx30\(^{-/-}\)/Cx43\(^{-/-}\) double knockout (provided by Pr. Willecke, University of Bonn, Germany), with conditional deletion of Cx3 in astrocytes\(^32\) and additional total deletion of Cx30,\(^3\) as previously described.\(^7\) For all analyses, mice of both genders and littermates were used (P16–P25). Immunohistochemistry. Materials and Methods

Animals. Experiments were performed according to the guidelines of the European Community Council Directives of November 24th 1986 (86/609/EEC). Experiments were performed on the hippocampus of wild type mice and Cx30\(^{-/-}\)/Cx43\(^{-/-}\) double knockout (provided by Pr. Willecke, University of Bonn, Germany), with conditional deletion of Cx3 in astrocytes\(^32\) and additional total deletion of Cx30,\(^3\) as previously described.\(^7\) For all analyses, mice of both genders and littermates were used (P16–P25). Immunohistochemistry. Materials and Methods

Animals. Experiments were performed according to the guidelines of the European Community Council Directives of November 24th 1986 (86/609/EEC). Experiments were performed on the hippocampus of wild type mice and Cx30\(^{-/-}\)/Cx43\(^{-/-}\) double knockout (provided by Pr. Willecke, University of Bonn, Germany), with conditional deletion of Cx3 in astrocytes\(^32\) and additional total deletion of Cx30,\(^3\) as previously described.\(^7\) For all analyses, mice of both genders and littermates were used (P16–P25). Immunohistochemistry. Materials and Methods

Animals. Experiments were performed according to the guidelines of the European Community Council Directives of November 24th 1986 (86/609/EEC). Experiments were performed on the hippocampus of wild type mice and Cx30\(^{-/-}\)/Cx43\(^{-/-}\) double knockout (provided by Pr. Willecke, University of Bonn, Germany), with conditional deletion of Cx3 in astrocytes\(^32\) and additional total deletion of Cx30,\(^3\) as previously described.\(^7\) For all analyses, mice of both genders and littermates were used (P16–P25). Immunohistochemistry.
immunostaining by overnight incubation at 4°C with primary antibodies diluted in PBS. After three washes, sections were incubated for 2 h at room temperature with appropriate secondary antibodies. After several washes, slices were mounted in Fluoromount (Southern Biotechnology) and examined with a confocal laser-scanning microscope (Leica TCS SP2, SP5), equipped with 16, 40 and 63 x objectives. Stacks of consecutive confocal images taken at 0.5 μm intervals were acquired sequentially with two lasers (argon 488 nm) and Z projections were reconstructed using Leica Confocal Software. Cell soma size and immunoreactivity were measured in Image J on overlaid projections of several consecutive images.

Immunoblotting. Hippocampi were frozen, pulverized and homogenized in 2% SDS with protease inhibitor cocktail, β-glycerophosphate (10 mM) and orthovanadate (1 mM). Equal amounts of protein were separated on 10% PAGE gel followed by transfer to nitrocellulose membranes. Proteins were detected by immunoblotting using the HRP-ECL kit from Perkin Elmer.

Dye uptake by hemichannels. The hemichannel permeable fluorescent tracer ethidium bromide (EthBr, 314 Da) was included in either ACSF or ACSF/6 Ca²⁺/5 mM EGTA solutions at a final concentration of 4 μM. Slices were incubated for 10 min in the solutions (equilibrated with 95% O₂, 5% CO₂, at RT). In blockin experiments, slices were pre-incubated 15 min prior to and during EthBr application with the GJ and connexin/pannexin hemichannel blocker carbenoxolone (CBX, 200 μM). Slices were then rinsed 15 min in ACSF, fixed for 2 h in 4% paraformaldehyde in 0.1 M buffer phosphate and mounted in Fluoromount. Labeled cells were examined in a confocal laser-scanning microscope (TCS SP2, Leica) with a 63x objective. Stacks of consecutive confocal images were taken at 300 nm intervals and acquired with a laser (argon 488 nm) using the LAS AF software. At least three fields were selected in each slice. Fluorescence was digitized in arbitrary units (AU) with image J processing software. Dry uptake was expressed as the difference between the fluorescence measured in cells (5–10 per slice) and the background fluorescence measured where no labeled cells were detected. Values of fluorescence in different experimental conditions were normalized relative to the control level.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank K. Willecke for providing the Ca³⁺/Ca²⁺ATPase (Ca²⁺ ATPase) Cre mice, and P. Eran for his technical assistance. This work was supported by grants from the HFSPO (Career Development Award), ANR (Programme Jeunes chercheurs and Programme Blanc Neurosciences), FRC (Fédération pour la Recherche sur le Cerveau), INSERM and La Pitié Salpêtrière hospital (Translational research contract) to N.R., from French Research Ministry and Deutsche Forschungsgemeinschaft postdoc fellowships to U.P., and from FRM postdoc fellowships to M.D. and O.C.

References

1. Perea G, Navarrete M, Araque A. Tripartite synapses: active synaptic zones and control of synaptic integration. Trends Neurosci 2011; 34:242-51. PMID:21413734; http://dx.doi.org/10.1016/j.tins.2011.03.001
2. Bushong EA, Martone ME, Jones YZ, Ellisman MH. Projections of several consecutive images. Nat Neurosci 2002; 5:126-32. PMID:11756501; http://dx.doi.org/10.1038/nn899
3. Wallraff A, Köhling R, Heinemann U, Theis M, Déleignon JP, Kóka E, Koester KE, Tschopp T, Kuner RT, Hákánsson M, Merker HJ, et al. Aquaporin-4 knock-out mice, and from FRM postdoc fellowships to M.D. and O.C.

6. Wallraff A, Köhling R, Heinemann U, Theis M, Déleignon JP, Kóka E, Koester KE, Tschopp T, Kuner RT, Hákánsson M, Merker HJ, et al. Aquaporin-4 knock-out mice, and from FRM postdoc fellowships to M.D. and O.C.

9. Pumain R, Heinemann U. Stimulus- and amino acid-induced calcium and potassium changes in rat neurons. J Neurosci 1985; 5:13-16. PMID:3877775
10. Anzola S, Mannion S, Mastaitis A. Specialized motility during slow and paroxysmal sleep oscillations in cortical terminals in situ. Eur J Neurosci 2004; 20:2235-9. PMID:15188590; http://dx.doi.org/10.1111/j.1460-9568.2004.03689.x
11. Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Spray DC. New possible roles for aquaporin-4 in astroglial functions. J Neurosci Res 2002; 71:183-92. PMID:11756501; http://dx.doi.org/10.1002/jnr.10111
12. Chérif A, Ardiadnic M, Hock M, Pajakiewicz J, Ntepoum R, Chérif Y, et al. Three-dimensional astrocyte morphology reveals structural changes in astrocytic morphology in situ. J Neurosci Res 2007; 85:260-71. PMID:17086549; http://dx.doi.org/10.1002/jnr.20780
13. Hirrlinger J, Hadjibayev M, Kuchler K, Egea A, Bartsch T, et al. Astrogial perisynaptic function at active synaptic terminals in the hippocampus. J Neurosci 2008; 28:154-8. PMID:18285797; http://dx.doi.org/10.1523/JNEUROSCI.3594-07.2008
14. Pannek E, Vargos E, Bakic D, Heizmann D, Grasse C, et al. Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A 2011; 108:18467-72. PMID:21213895; http://dx.doi.org/10.1073/pnas.1104658108
15. Greider C, Yacarè C, Boux M, Mathis S, Bardolle H, Leighton R, et al. The GluR1 and GluR2 glutamate transporters are expressed on metabolically distinct astrocytes and regulated by metabolic activity at primary hippocampal synapses. J Neurochem 2000; 75:1076-87. PMID:10721369; http://dx.doi.org/10.1046/j.1471-4159.2000.0751076.x
16. Unger T, Bette S, Zhang J, Thiel M, Engel J. Correlation-difficulty affects expression levels of glutamate transporters within the cortex. Neurosci Lett 2012; 526:126-30. PMID:22375997; http://dx.doi.org/10.1016/j.neulet.2012.06.074
17. Unger T, Biochemicals exhibited in either ACSF or ACSF/6 Ca²⁺/5 mM EGTA solutions at a final concentration of 4 μM. Slices were incubated for 10 min in the solutions (equilibrated with 95% O₂, 5% CO₂, at RT). In blockin experiments, slices were pre-incubated 15 min prior to and during EthBr application with the GJ and connexin/pannexin hemichannel blocker carbenoxolone (CBX, 200 μM). Slices were then rinsed 15 min in ACSF, fixed for 2 h in 4% paraformaldehyde in 0.1 M buffer phosphate and mounted in Fluoromount. Labeled cells were examined in a confocal laser-scanning microscope (TCS SP2, Leica) with a 63x objective. Stacks of consecutive confocal images were taken at 300 nm intervals and acquired with a laser (argon 488 nm) using the LAS AF software. At least three fields were selected in each slice. Fluorescence was digitized in arbitrary units (AU) with image J processing software. Dry uptake was expressed as the difference between the fluorescence measured in cells (5–10 per slice) and the background fluorescence measured where no labeled cells were detected. Values of fluorescence in different experimental conditions were normalized relative to the control level.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank K. Willecke for providing the Ca³⁺/Ca²⁺ATPase (Ca²⁺ ATPase) Cre mice, and P. Eran for his technical assistance. This work was supported by grants from the HFSPO (Career Development Award), ANR (Programme Jeunes chercheurs and Programme Blanc Neurosciences), FRC (Fédération pour la Recherche sur le Cerveau), INSERM and La Pitié Salpêtrière hospital (Translational research contract) to N.R., from French Research Ministry and Deutsche Forschungsgemeinschaft postdoc fellowships to U.P., and from FRM postdoc fellowships to M.D. and O.C.
22. Santiago MF, Veliskova J, Patel NK, Lutz SE, Caille D, Charollais A, et al. Targeting pannexin1 improves seizure outcome. Mol Cell 2011; 45:257-64; PMID:21749881; http://dx.doi.org/10.1016/j.molcel.2011.05.018

23. Ye ZC, Wyth MS, Balkin-Tedlock S, Ramon BR. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 2011; 31:7598-609; PMID:21710309

24. Bas L, Lecuivre S, Dall G. Pannexin membrane channels are permissive conduits for ATP. FEBS Lett 2006; 572:63-6; PMID:16943125, http://dx.doi.org/10.1016/j.febslet.2006.07.009

25. Spray DC, Ye ZC, Ramon BR. Functional connexin "hemichannels": a critical appraisal. Glia 2006; 54:758-79; PMID:17040904; http://dx.doi.org/10.1002/glia.20435

26. Abrahám H, Losonczy A, Czéh G, Lázár G. Rapid activation of microglial cells by hypoxia, kainic acid, and potassium ions in slice preparations of the rat hippocampus. Brain Res 2001; 906:115-26; PMID:11430868; http://dx.doi.org/10.1016/S0006-8993(01)02569-0

27. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, et al. Control of synaptic strength by glial TNFalpha. Science 2002; 295:2282-5; PMID:12080528; http://dx.doi.org/10.1126/science.1067859

28. Fine SM, Angel RA, Perry SW, Epstein LG, Rothstein JD, Dewhurst S, et al. Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem 1996; 271:13190-6; PMID:8643407; http://dx.doi.org/10.1074/jbc.271.13190

29. Balosso S, Ravizza T, Fasolo C, Troccoli J, Campbell IL, De Simoni MG, et al. Tumor necrosis factor alpha inhibits seizures in mice via P75 receptors. Ann Neurol 2005; 57:19-26; PMID:15582277; http://dx.doi.org/10.1002/ana.20489

30. Balosso S, Ravizza T, Tassoni M, Calacchio E, Invernizzi R, Di Giovanni C, et al. Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamate transporter in the mouse hippocampus: implications for seizure susceptibility. Neuroscience 2009; 161:295-300; PMID:19208115; http://dx.doi.org/10.1016/j.neuroscience.2009.03.005

31. Verity SH, Fehon TD, Rozinant T, Lee S. Expression of astrocytic markers ap asp-9 and connexin 43 is altered in brains of subjects with autism. Synapse 2006; 60:241-7; PMID:16456417; http://dx.doi.org/10.1002/syn.20359

32. Benard R, Kerman IA, Thompson BC, Jones DG, Barney WE, Burchard JS, et al. Altered expression of glutamate-spiking growth factors and glia gene in the hippocampus of patients with major depression. Mol Psychiatry 2011; 16:650-66; PMID:20683688; http://dx.doi.org/10.1038/mp.2010.44

33. Ernst C, Nagy C, Kim S, Yang P, Dong X, Holloway KC, et al. Dysfunction of astrocyte connexin-30 and 43 in dorsal lateral prefrontal cortex of suicide completers. Biol Psychiatry 2011; 70:512-9; PMID:21751253; http://dx.doi.org/10.1016/j.biopsych.2011.03.008

34. Thien M, Jacob R, Zhao L, Speidel D, Wallach A, Döng P, et al. Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 2005; 25:786-76; PMID:15774491

35. Trudner R, Michel V, Postl J, Lauterij M, Ghibellini M, Stoff G, et al. Connexin 43 (CGN)-deficiency causes severe hearing impairment and lack of endolymph potential. Hear Mol Genet 2003; 12:13-19; PMID:12800528; http://dx.doi.org/10.1038/sj.hmg.1001686

36. Baslé M, Nykl K, Penkova RS, Egan GM, Adolphs R, Tomita Y, et al. TARP gamma-8 controls hippocampal AMPA receptor number, distribution, and synaptic plasticity. Nat Neurosci 2005; 8:1255-61; PMID:16222332; http://dx.doi.org/10.1038/nn1553