Review

Stem cell decisions: A twist of fate or a niche market?

Jens Januschke *, Inke Näthke

Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK

A R T I C L E I N F O

Article history:
Available online 5 March 2014

Keywords:
Spindle orientation
Centrosome segregation
Stem cells
Asymmetric cell division

A B S T R A C T

Establishing and maintaining cell fate in the right place at the right time is a key requirement for normal tissue maintenance. Stem cells are at the core of this process. Understanding how stem cells balance self-renewal and production of differentiating cells is key for understanding the defects that underpin many diseases. Both, external cues from the environment and cell intrinsic mechanisms can control the outcome of stem cell division. The role of the orientation of stem cell division has emerged as an important mechanism for specifying cell fate decisions. Although, the alignment of cell divisions can depend on spatial cues from the environment, maintaining stemness is not always linked to positioning of stem cells in a particular microenvironment or ‘niche’. Alternate mechanisms that could contribute to cellular memory include differential segregation of centrosomes in asymmetrically dividing cells.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

Contents

1. Introduction .. 116
 1.1. Principle concepts of spindle orientation ... 117
 1.2. Spindle orientation – how to measure it properly? .. 117
 1.3. Stem cell compartment, plasticity and the niche concept .. 117
 1.4. Asymmetric inheritance of centrosomes .. 119
 1.5. Contribution of structural differences in centrosomes to biased centrosome segregation 119
 1.6. Retaining the ability to rapidly produce a primary cilium .. 119
 1.7. Molecules involved in centriole segregation in Drosophila neuroblasts .. 120
 1.8. Centrosomes and selective DNA strand segregation .. 120
 1.9. Cell intrinsic memory of spindle orientation .. 120
 1.10. Regulation of centrosome segregation by signaling pathways .. 120
 2. Conclusion .. 121
 Acknowledgements .. 121
 References .. 121

1. Introduction

One of the central questions in cell and developmental biology is how differences in cells are established and maintained. In multicellular organisms this problem is not restricted to development but is also relevant during tissue homeostasis in the adult. One mechanism for establishing different cell fates is asymmetric cell division. In this context, the transmission of cell fate information can occur through cell–cell communication, it can be established via intracellular polarity or it can be inherited from one cell generation to the next [1]. Stem cells are one cell type that can divide asymmetrically to produce a self-renewed stem cell and a daughter cell that will differentiate. Stem cells can also divide symmetrically to expand the stem cell pool. Increasing stem cell numbers or generating differentiating cells is a key process in building and maintaining tissues. In the context of stem cells the orientation of the mitotic spindle can influence the fate of daughter cells [1,2]. The correct alignment of mitotic spindles is not only important in development but defects in this process are also associated

* Corresponding author. Tel.: +44 1382 386169; fax: +44 1382 385386.
E-mail addresses: j.januschke@dundee.ac.uk (J. Januschke), i.s.nathke@dundee.ac.uk (I. Näthke).

http://dx.doi.org/10.1016/j.semcdb.2014.02.014
1084-9521/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
with disease [3,4]. It is thus not surprising that controlling the orientation of mitosis is an important issue for tissue morphogenesis [5–7]. The different requirements and contexts in which stem cells are found predict that a plethora of regulatory mechanisms operate to govern spindle orientation and cell fate decisions. Here we discuss intrinsic and extrinsic cues that are involved in asymmetric stem cell division and focus specifically on the contribution of selective centrosome segregation.

1.1. Principle concepts of spindle orientation

Invertebrate model systems have proven extremely useful for unraveling the general principles that underpin spindle orientation during asymmetric cell division. The genetic approaches possible in these model systems permit asking detailed questions about this process. They also enable identification and easy access of the cells under investigation. Importantly, most of the molecular principles of asymmetric division identified in Drosophila and Caenorhabditis elegans are highly conserved [1,8,9].

How is spindle orientation achieved? A series of events cooperate to position the spindle. In many instances two key events are required that are tightly coupled (Fig. 1). First, cell polarity needs to be established specifying cortical regions that can capture the spindle. Second, the spindle apparatus needs to be able to interact with the cortex. Typically, astral microtubules nucleated by centrosomes at the spindle poles serve this purpose. Common to this process in various contexts, is the contribution of a conserved, sophisticated molecular machinery that includes cortical and microtubule binding proteins in addition to molecular motors that can exert torque on the spindle. Our understanding of the key molecules involved in this machinery is steadily increasing [10].

In Brief, G alphaI, LGN (ASGc in C. elegans and Pins in Drosophila) and Numa (Lin-5 in C. elegans, Mud in Drosophila) constitute the conserved core set of molecules involved in spindle positioning (Fig. 1). G alphaI can be myristoylated and binds to the cortex [11]. G alphaI also regulates the activity of Pins by increasing its affinity for Mud [12]. Pins/LGN binds Mud/Numa [2,13–15]. In turn, Numa/Mud can interact with cytoplasmic Dynein [16,17], which can exert forces to orient the spindle. Hence, this protein complex can function in anchoring and positioning the spindle. These molecules also play important roles in directing spindle orientation in progenitor cells in the mouse neocortex, the chicken neural tube, and during symmetric divisions in developing epithelia [18–22]. The proteins involved seem to function similarly in different contexts. Nonetheless, how the orientation of mitotic spindles influences the outcome of progenitor/stem cell division varies and is not understood in many progenitor cells [23]. Another difficulty is that measuring spindle orientation reliably in complex stratified vertebrate tissues is more complex than in the simpler tissue structures of Drosophila or C. elegans.

1.2. Spindle orientation – how to measure it properly?

In vertebrates, the orientation of mitotic spindles is commonly used to classify symmetric and asymmetric divisions [24–27]. Although the position of daughter cells does not necessarily predict the fate of resulting daughter cells, the alignment of mitotic spindles perpendicular to the tissue layer in which the mother resides, usually this corresponds to the apical surface, is considered asymmetric because the daughter cells inherit different proportions of apical polarity markers. The problem that arises especially in morphologically complex tissues is: what is used as reference to determine the orientation of the spindle? It is important to note that the methods used to measure mitotic spindle alignment have never been compared directly and the reference points used to report the angle of spindle orientation differ between investigators and systems [24–27]. This may explain discrepancies between observations in the same system [24–27]. In tissue that is curved like the base of the intestinal crypt, it becomes even more difficult to define relevant reference points or axes that relate to cell or tissue organization and more robust methods for these measurements in three-dimensional tissue are needed.

1.3. Stem cell compartment, plasticity and the niche concept

Additional complexity is added by the emerging view that at least some stem cell compartments have a high degree of plasticity. Within some tissues, several cell populations can act as stem cells in a context dependent manner. Which stem cell pool is the active one under a given set of circumstances? This important for understanding the role of spindle orientation in cell fate decisions and is particularly relevant in the stem cell compartment of the mouse intestine. In recent years much progress in understanding the biology of the stem cells at the base of intestine has been made revealing a high level of plasticity within this compartment [28].

Leucine-rich repeat containing G protein-coupled receptor 5 (LGR5) was identified as a marker of cells that can generate all the lineages normally present in the intestinal epithelium [29]. Within the epithelium, Paneth cells are secretory cells that are usually restricted to the crypt base where the antimicrobial peptides they secrete are thought to protect neighboring stem cells [30]. Previously, cells that reside at position +4, above the last Paneth cell, were identified as stem cells based on their ability to retain labeled DNA [31]. These so-called +4 cells express low levels of LGR5 in addition to the marker Bmi1. Importantly, +4 cells can restore LGR5Hi cells upon their depletion [32]. Similarly when +4 cells are specifically depleted, they are restored from the LGR5Hi pool [33]. To complicate the situation further, a subset of Paneth cells can act as reserve stem cell pool when called upon in response to injury or disease [34]. Together these and other similar observations illustrate the high degree of plasticity that exists in this tissue between different pools of progenitor cells in this tissue. The high turn over of cells in the intestine makes it vital to maintain a constant supply of replacement cells. A highly dynamic stem cell compartment that includes back-up provisions ensures the survival of the organism. The molecular mechanisms that control these decisions remain a mystery but they are likely to include a complex interplay between different signaling pathways, differential adhesion between cells and basement membrane, and mechanical forces that act at the level of cells and tissue.

Stem cells usually reside in a particular environment called the niche, that hosts and maintains stem cells [35,36]. One idea that has gained popularity is that the niche is the dominant factor in controlling stem cell fate by providing short-range signals that confer stemness on cells within their range. In the Drosophila germline, niche signals can even promote reversion of cells that are partially differentiated to become stem cells again [37,38]. However, such powerful effects of the niche are not universal. In the case of the hair follicle, cells do not revert to a stem cell fate when they return to the niche after exiting and differentiating even when the niche is depleted of endogenous stem cells [39]. On the other hand, hematopoietic stem cells can leave the niche without losing their stemness [40] and neural stem cells can exist and symmetrically self-renew outside their complex microenvironment [41].

In the case of the crypts in the intestine, Paneth cells secret important stem cell maintenance factors including Wnt [42]. If Paneth cells are experimentally ablated, however, stem cells are maintained in vivo [43]. Hence crypt stem cells have the capacity to compensate for the loss of Paneth cells and maintain stemness by other means. Similarly, murine neuroepithelial progenitor cells removed from their normal location produce neurons at normal frequency suggesting that their self-renewal capacity does
established when directly Pins/LGN, centrioles at these not Fig. populations.

release mechanisms cells the except a operation favorable for these immediate 1. capacity in that factors to can differentiating the data the can signals that their source of their own signals as well as for the differentiating signals for their progeny [45].

These data question the universal validity of the classical concept that the niche provides all the cues required for normal stem cell maintenance and emphasize the need to consider additional mechanisms that can confer cell fate.

An emerging concept that can explain how cellular states are maintained between different generations proposes that cellular memory can be passed on from one cell to the next during division [46]. Prominent examples for mechanisms that could transmit information from one cell generation to the next include epigenetic modification of the chromosomes [47], the inheritance of the midbody, which can impact dramatically on cellular physiology and cell-fate determination [48], and asymmetric segregation of centrosomes and cilia [49]. These elements may provide the molecular basis for transmitting differential cell fate information. In the following sections we discuss what is known about such mechanisms.
in asymmetrically dividing cells, specifically stem cells, focusing on recent advances in understanding the mechanism and function of non-random centrosome segregation.

1.4. Asymmetric inheritance of centrosomes

Cell fate information could be carried directly by the spindle. Consistent with this idea, various organelles and mRNAs associate with the spindle to provide potential fate determinants to one or both daughter cells [50]. In this context, the centrosome is particularly important. Centrosomes segregate to the opposing poles of mitotic spindles each time a cell divides making them ideal vehicles for carrying information from one cell to another during division.

Centrosomes also provide a means to establish polarity in a spindle because they are intrinsically different, due to their duplication cycle [51]. At the core of a typical centrosome are two centrioles. Before new centrioles are produced, the two centrioles already present separate and each one acts as the site for the assembly of a new centriole. As a result, centrioles within each centrosome can be distinguished by age-reflected in the language used to describe the older centriole as “mother” and the younger centriole as “daughter.” Hence the ‘mother centrosome’ carries the oldest set of centrioles whereas the ‘daughter centrosome’ carries the younger set (Fig. 1).

Differences in the maturation of mother or daughter centrioles are reflected by structural differences and the unequal distribution of proteins [52]. Consequently, molecular differences exist between centrosomes that cells could use to distinguish between them.

Indeed, differential segregation of mother and daughter centrosomes has been observed in cells that divide asymmetrically. However, the direction of centrosome segregation is not always the same. In Drosophila male germ line stem cells [53] and in progenitor cells of the neocortex in mice [54] the mother centrosome stays within the stem cell in asymmetric divisions.

In budding yeast, where the phenomenon of differential centrosome segregation was first discovered [55] and in Drosophila larval neuroblasts [56,57] the mother centrosome (or spindle pole body (SPB) in the case of yeast) leaves the old cell (the self-renewed stem cell in the case of neuroblasts) and segregates to the new daughter cells. This direction of segregation was also observed in cells from a neuroblastoma cell line where the daughter centrosome is inherited by the cell with progenitor potential [58].

1.5. Contribution of structural differences in centrosomes to biased centrosome segregation

The nature of centriole duplication causes the presence of centrioles with different states of maturity within a cell. Intriguingly, in system that display biased centrosome segregation like budding yeast, the Drosophila male germ line and Drosophila neuroblasts, the centrosomes (SPBs in the case of yeast) differ in their ability to nucleate microtubules during interphase [53,56,57,59–61]. This could suggest that centrosome segregation patterns may be driven by differences in the ability to nucleate astral microtubules caused by structural variations that result from the maturation state of daughter versus mother centrioles.

In vertebrate cells mother and daughter centrioles vary in their ability to recruit components for microtubule nucleation in interphase [62]. This might be because centrioles require ~1.5 cell cycles to fully mature to become a mother centriole. The maturation is accompanied by the formation of different types of appendages that may be involved in anchoring microtubules [63,64]. Hence, the increased ability of the mother centriole to nucleate and/or anchor microtubules might confer an advantage for engaging with the microtubule binding sites at the cortex, which in turn enhances the probability of the mother centriole to be retained there. Although appendages do not form on mothercentrioles in Drosophila [65], the mother centrosome of male germ line stem cells can nucleate a significant number of microtubules during interphase [53]. To ensure asymmetry of the process, such astral microtubules might then be captured by asymmetrically localized microtubule stabilizing proteins like the adenomatous polyposis coli protein (APC), which is restricted to the stem cell/hub cell interface [66].

Differences in the maturation of the SPB might also drive biased SPB segregation in budding yeast. The old SPB is guided into the bud and this requires the Kar9 protein, a protein with some sequence similarity to APC [67]. Importantly, the old SPB has the ability to nucleate microtubules significantly earlier than the new SPB because recruitment of Spc72 – a core component of the SPB and a receptor for γ-Tubulin – to the new SPB occurs with a significant delay. Abolishing this difference by forcing simultaneous nucleation of astral microtubule from both the old and the new SPB causes randomization of SPB segregation [68]. This suggests that SPB segregation can result from structural asymmetries in the SPBs imposed by the SPB replication cycle. However, additional complexities are likely to exist. Using recombinase-dependent exchange of fluorescent tags fused to Spc72 to specifically label old and new SPBs allowed screening for genes involved in directional SPB segregation [69]. This approach revealed that Nud1/centriolin, a core structural component of the SPB, together with components of the mitotic exit network – a conserved signaling cascade controlling key events of exit from mitosis and cytokinesis – are required to specify the fate of the SPB [69]. Without a fully functioning mitotic exit network Kar9 does not preferentially recognize the old SPB and the older SPB is inherited randomly [69].

1.6. Retaining the ability to rapidly produce a primary cilium

Another structural difference between centrioles in vertebrate cells is linked to the fact that mother centrioles produce the primary cilium. The primary cilium is generated as mother centrioles mature into a basal body that is anchored at the membrane [70,71]. In the case of radial glia, the non-random segregation of centrosomes could thus be linked to the fact that these cells are ciliated. Contrary to observations in other cell types, the primary cilium is not completely disassembled when absorbed prior to cell division in these cells. Remnants of it stay attached to the mother centrosome during mitosis and co-segregate to the daughter cell that retains stem cell characteristics [72]. Intriguingly, observations made in mouse fibroblasts already suggested that inheriting the older centrosome results in an asymmetric outcome for the timing of primary cilium production. Both fibroblast daughter cells can build a primary cilium, but the daughter cell inheriting the older centriole produces a primary cilium first. This asynchrony results in a differential response to Sonic hedgehog signaling [73]. Similarly, an asymmetry in the ability to form a cilium between progenitor cell daughters could lead to differences in their ability to respond to proliferative signals [72]. Hence inheriting the ability to rapidly produce a primary cilium by asymmetrically receiving mother centrioles might support maintenance of radial glial fate. Indeed, depletion of the mother cilium marker Ninein by RNAi led to a reduction in the number of progenitor cells, suggesting that losing mother centrosome specific markers from the centriole impacts on cell fate maintenance [54]. However, depletion of Ninein affects formation of the primary cilium in retinal pigment epithelial cells [74] opening the possibility that loss of radial glia cells induced by Ninein knockdown may not solely be attributable to loss of mother cilium traits, but could also be due to loss of cilium-mediated signal transduction. Thus, direct evidence for non-random centrosome segregation and progenitor cell fate is still missing. It will be important to dissect the role of the primary cilium in ciliated progenitor cell divisions to resolve this issue.
1.7. Molecules involved in centriole segregation in Drosophila neuroblasts

In *Drosophila* neuroblasts differences between centrosomes exist in interphase. One centriole nucleates an aster and is stably bound to the cell cortex, while the other does not nucleate microtubules and moves freely through the cytoplasm [60, 75]. Progress was made recently shedding light on the molecular details of this process. Centrinobin (CNB), a protein specific for daughter centrioles that was first identified in mammalian cells is required for centriole duplication [76] and localizes to the daughter centriole in *Drosophila* [57], actively nucleating microtubules and cortex bound.

In interphase neuroblasts, CNB is required to recruit the machinery that nucleates microtubules. Loss of CNB abolishes the ability of daughter centrioles to nucleate microtubules causing both centrioles to move apparently in a random manner within the cytoplasm. Loss of CNB also randomizes the centriole segregation pattern. [77]. Conversely, forcing recruitment of CNB to both centrioles leads to microtubule nucleation from both centrioles generating two cortex-bound asters close to each other [77]. In both cases total number of centrioles per cell is normal, but at least in the case of CNB loss, the stereotypical inheritance of the daughter centriole by the neuroblast is lost, which is likely to happen when CNB is forced to both centrioles in these cells as well.

Recently Pericentrin like protein (PLP) was discovered as an additional player in regulating microtubule nucleation in interphase neuroblasts. PLP localizes to both centrioles, but higher levels accumulate on the mother centriole [78]. Loss of PLP causes activation of microtubule nucleation at both centrioles suggesting that PLP is normally involved in suppressing microtubule nucleation at the mother centriole [78]. Unlike loss of CNB, loss of PLP also compromises centrosome segregation, but leads to normal centrosome numbers per cell [78]. CNB and PLP are thus components that regulate microtubule nucleation and affect the stereotypic segregation of centrosomes.

1.8. Centrosomes and selective DNA strand segregation

Almost 40 years ago, the immortal strand hypothesis was proposed by John Cairns. It states that in order to protect themselves against mutation due to errors introduced by DNA replication, stem cells retain the original DNA template strand [79]. This hypothesis has been revised [80, 81] that stem cells might still control DNA strand segregation, but do so to differentially segregate epigenetic information. One major caveat is that molecular mechanisms that enable execution of this task are largely unknown [80]. The finding that labeling centrosomes in *Drosophila* male germ line stem cells within a short time window during embryogenesis was sufficient to generate label-carrying centrosomes many cell generations later in the adult, demonstrated the permanent presence of the same centrosome within male germ line stem cells [53]. Such an ‘immortal centrosome’ could be an element that provides continuity in controlling DNA strand segregation [82].

There is still no evidence of immortal DNA strands in the Drosophila male germ line [83–85]. Yet the finding that male germ line stem cells retain certain histones during asymmetric division [86] indicates that these cells might differentially transmit epigenetic information. In line with this idea, using chromosome oriented fluorescent in situ hybridization [87] non-random sister chromatid segregation of only the sex chromosomes was reported to occur in these cells [85]. The SUN-KASH domain containing proteins connect cytoplasmic elements of the cytoskeleton with the nuclear lamina and chromosomes [88]. This machinery might control non-random sister chromatid segregation since interfering with the centrosome or components of the SUN-KASH machinery randomized chromatid segregation [85]. Nonetheless, how individual DNA strands are recognized remains completely unclear, as does the role played by the mother centrosome in this process. Furthermore, randomizing DNA strand segregation by impaired centrosome function, did not immediately affect germ line stem cell fate or number [85], leaving the functional relevance of this phenomenon unclear.

1.9. Cell intrinsic memory of spindle orientation

Neuroblasts are special because they are the only somatic cells in Drosophila with a centrosome actively nucleating microtubules during interphase [59, 60, 89]. It is also notable that in these cells the daughter centriole recruits the machinery to nucleate microtubules in interphase [77], a feature typically performed by the mother centriole in other systems [90]. In interphase Drosophila neuroblasts, the daughter centriole organizes a microtubule aster that keeps an invariant position at the cortex, which will become the apical pole in the next mitosis and hence remains in the neuroblast. Therefore the interphase microtubule aster is located opposite from the position where daughter cells are born [60, 75, 91]. Why daughter cells cluster remains unclear, but in the Drosophila embryo, mechanisms exist to correct errors in the orientation of neuroblasts division that involve signaling from neighboring glial cells [92], suggesting that daughter cell clustering is of critical importance during central nervous system development in *Drosophila*. In larval neuroblasts, the position of the microtubule aster at the apical cell pole opposite to the daughter cell cluster suggested that it might play a role in transmitting cell division orientation information from one division to the next. Consistent with this idea, transiently disrupting microtubules, which leads to loss of asters and the anchoring of centrioles to the cortex, resets the orientation of divisions by establishing an ectopic microtubule aster that serves as a predictor of the new axis of division after restoring microtubule dynamics [93].

Mutants such as *mud* induce an increase in the number of symmetric divisions of neuroblasts thus interrupting the normal pattern of asymmetric divisions [13, 14, 94]. Subsequent asymmetric divisions of the resulting *mud* mutant neuroblast siblings respect the orientation of the preceding asymmetric cell division and daughter cells are born into the space between the sibling neuroblasts pair [95]. This means that in this case the orientation of the preceding divisions is maintained. These data suggest that neuroblasts can ‘read’ or remember the orientation of their last division. The responsible mechanism is not clear. However, the memory of division orientation also functions robustly when the interphase aster is composed of two centrosomes. On the other hand, it is prone to errors when centrosome function is impaired or when microtubule dynamics are disrupted [77, 78, 93]. This suggests that it is important for neuroblasts to have a functional microtubule network in interphase for the cell polarity memory to work, but why the system requires the daughter centrosome remains unknown.

1.10. Regulation of centrosome segregation by signaling pathways

An important question that remains is whether cell extrinsic input contributes to bias in centrosome segregation. Orientation of cell division is known to be regulated by a number of signaling events between cells [96]. The Wnt/plane cell polarity (PCP) pathway can regulate spindle orientation [97]. Remarkably Wnt signaling seems to be able to bias centrosome segregation. When exposed to a localized source of Wnt3a signal, embryonic stem cells in culture can be triggered to show biased centrosome segregation taking the older centrosome to the cell closer to the source of Wnt3a. The cell retaining this centrosome was also seen retained pluripotency markers [98]. However, the molecular details of how exposure to Wnt regulates the orientation of mitotic spindles
are not well understood. In *Drosophila* and zebrafish the trans-
membrane receptor Frizzled and its effector Dishevelled (Dsh)
are involved [99]. They can interact with Mud/Numa linking Wnt
signaling to the spindle orientation machinery [99]. That means
it is possible that a similar signaling event also provides cues for
the attraction of one spindle pole, the one containing stronger Ninein
signal, a marker for the mother centriole, in embryonic stem cells
[98].

We do not understand the signaling that governs the selection of
one spindle pole over the other, but details about how downstream
targets of Wnt signaling could contribute to the orientation of
mitosis are emerging. Wnt-dependend spindle orientation, recently
identified in zebrafish dorsal epiblast cells, showed involvement of
the anthrax toxin receptor 2a [100]. Wnt polarizes the activity of
this receptor. In cooperation with RhoA it activates the formin zDia2
to locally generate actin filaments to help orient the spindle [100].
The precise role of actin cables in spindle positioning remains to be
determined.

In *Drosophila* S2 cells, experimentally forcing the localization of
Dsh to restricted cortical regions causes recruitment of the actin
binding protein Canoe/Afadin locally activating Rho signaling. Dia
then functions as an effector of Rho activation inducing F-actin
enrichment at sites of cortical Dsh [101].

Interestingly, during *Drosophila* neuroblast asymmetric divi-
sions Canoe is involved in spindle orientation [102] by playing a
role in recruiting Mud [103]. These results from zebrafish and
Drosophila indicate that actin–dependent processes might influ-
ence spindle orientation similar to the situation in budding yeast.
In yeast, actin cables serve to guide astral microtubules to position
the spindle during mitosis [104]. Alternatively, the interaction of
Pins/Canoe could be a way to stabilize the cortical position of Gal-
phai/Pins/LGN/Mud/Numa complexes [105]. It will be important to
test whether the actin–myosin network is involved in this process
in cells where non-random centrosome segregation occurs.

Another signaling pathway that was recently implicated in
asymmetric centrosome behavior is the Notch signaling pathway.
In cells of the peripheral nervous system of *Drosophila*, asymmet-
rics in centrosome behavior correlate with differences in centriole
migration. During cytokinesis of the sensory organ precursor cell
the anterior and posterior centrosome differed in the time required
for their movement to the apical pole. Notably, this differential
movement was delayed in mutants of Numb, a regulator of the
Notch pathway, and accelerated when Numb was overexpressed
[106] suggesting that Numb regulates differential centrosome
behavior in this cell type. Consistent with this idea, Notch may also
function in regulating spindle orientation in the mammary epithe-
lium. Treating young mice with γ-secretase inhibitor to block Notch
signaling was reported to result in measurable differences in the
orientation of mitosis in cells within the terminal end buds [107].
Hence, in addition to the well-known link between asymmetric cell
division and the control of Notch pathway activity, Notch signaling
might play also a more direct role as a regulator of centrosome and
spindle behavior.

2. Conclusion

Many potential mechanisms have emerged that contribute to
the phenomenon of non-random segregation of centrosomes.
These include differences in their structure and molecular composi-
tion, and in their ability to respond to specific signals. Observations
from yeast show that even if structural differences can suffice
to ensure asymmetric SPB segregation [68], additional layers of
regulation that involve signaling cascades can impact on SPB behav-
ior [69]. Similar to the situation in yeast, centrosome segregation
seems to be controlled in a sophisticated manner in *Drosophila*
neuroblasts since: (1) pericentriolar material is actively shed from
the mother centriole at the end of mitosis and accumulates on the
daughter centriole [56,59]; (2) stable microtubule nucleation by
the daughter centriole requires the action of Pins, a protein that
has thus far been shown to only localize to the apical cortex in
mitosis [59,77]. Thus, in *Drosophila* neuroblasts and yeast signals
that control biased centrosome/SPB segregation cannot solely be
explained by structural differences in centriole maturation.

It is also still unknown whether the loss of a primary cilium
from progenitor cells affects their fate. To this end, it will be im-
portant to determine if depleting specific genes, such as ODF2, which
renders mother and daughter centrioles indistinguishable at the
ultra-structural level and prevents primary cilium formation with-
out impinging on the cell cycle [108], affects progenitor fate.

Importantly, a clear-cut connection between directed cen-
trosome segregation and cell fate generation has not been
demonstrated in any of the systems that exhibit non-random cen-
trosome segregation. To this end, it will be most informative to
investigate now whether asymmetric centrosome segregation is
(i) a general feature of stem cell division, (ii) occurs only during
asymmetric division or can also be observed in symmetric divi-
sions and (iii) occurs in cells in which non-random segregation
of DNA strands occurs. It should now be possible to measure this in
muscle satellite cells, crypt stem cells and intestinal stem cells in
Drosophila [24,81,109–111]. The most important point to resolve
will be to establish how non-random centrosome segregation and
cell fate are related to test the beautiful hypothesis that inheriting
one type of centrosomes ensures the continuity of cell fate between
different generations.

Acknowledgements

We would like to thank Bart Lesage, Ian Newton, Arno Müller,
Antoine Guichet, and Kate Storey for helpful comments and sug-
gen. Work in JJ’s lab is supported by a Sir Henry Dale fellowship
from the Wellcome Trust and the Royal Society (100031/Z/12/Z).
IN is supported by a program grant from Cancer Research UK
(C430/A11243).

References

[1] Knoblich JA. Mechanisms of asymmetric stem cell division. Cell
2008;132:583–97.
[2] Siller KH, Doe CQ. Spindle orientation during asymmetric cell division. Nature
2009;11:365–74.
[3] Gonzalez C. Spindle orientation, asymmetric division and tumour suppression
in Drosophila stem cells. Nat Rev Genet 2007;8:462–72.
[4] Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell
division and its implications for stem cells and cancer. Genes Dev
2009;23:2675–99.
[5] Gillies TE, Cabernard C. Cell division orientation in animals. Curr Biol
2011;21:RS599–609.
[6] Castanon I, Gonzalez-Gaitán M. Oriented cell division in vertebrate embryo-
genesis. Curr Opin Cell Biol 2011;23:697–704.
[7] Morin X, Belläiche Y. Mitotic spindle orientation in asymmetric and symmet-
ic cell divisions during animal development. Dev Cell 2011;21:102–19.
[8] Lu B, Jan LY, Jan YN. Asymmetric cell division: lessons from flies and worms.
Curr Opin Genet Dev 1998;8:392–9.
[9] Doe CQ. Neural stem cells: balancing self-renewal with differentiation.
Development 2008;135:1575–87.
[10] Lu MS, Johnston CA. Molecular pathways regulating mitotic spindle orienta-
tion in animal cells. Development 2013;140:1843–56.
[11] Wall MA, Coleman DE, Lee E, Itilmuz-Lahji JA, Posner BA, Gilman AG, et al.
The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell
1995;83:1047–58.
[12] Nipper RW, Siller KH, Smith NR, Doe CQ, Prehoda KE. Galphai generates mu-
tiple Pins activation states to link cortical polarity and spindle orientation in
Drosophila neuroblasts. Proc Natl Acad Sci U S A 2007;104:14306–11.
[13] Izumi Y, Ohta N, Hisata K, Raabe T, Matsuzaki F. Drosophila Pins-binding pro-
tein Mud regulates spindle-polarity coupling and centrosome organization.
Nat Cell Biol 2006;8:586–93.
Brewley C, Matsunis E. Regeneration of male germ line stem cells by spermatogonial dedifferentiation in vivo. Science 2004;304:1331–4.

Kai T. Spradling A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 2004;428:564–9.

Hsu Y-C, Pasolli HA, Fuchs E. Dynamics between stem cells, niche, and progeny in the follicle epithelium. 2011;144:52–6.

Cao Y-A, Wagers AJ, Bethke A, Dusch J, Bachmann MH, Negrín RS, et al. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A 2004;101:221–6.

Corti L, Pollard SM, Tometta T, Retes M, Toselli M, Biella G, et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 2005;3:e283.

Sato T, van ES JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for LG5 stem cells in intestinal crypts. Nature 2011;469:415–8.

Durand A, Donahue B, Peignon G, LeTourneur F, Cagnard N, Slimani C, et al. Functional distal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci U S A 2012;109:8965–70.

Wu H-H, Ivskovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, et al. Autoregulation of neurogenesis by GDF11. Neuorn 2003;37:197–207.

Lim X, Tan SH, Koh WLG, Chau RMW, Yan KS, Kuo CQ, et al. Interfollicular epidemal stem cells self-renew via autocrine Wnt signaling. Science 2013;342:1226–30.

Ouellet J, Barrau Y. Organelle segregation during mitosis: lessons from asymmetric growth. Dev Cell 2012;19:261–71.

Kouzouris T. Chromatin modifications and their function. Cell 2007;128:693–705.

Chen C-T, Ettinger AW, Hutten NB,Dossey SJ. Resurrecting remnants: the relevance of post-mitotic cell bodies. Cell Death Biol 2007;14:118–28.

Pelletier L, Yamashita YM. Centrosome asymmetry and inheritance during animal development. Curr Opin Cell Biol 2012;24:541–6.

Lécuyer E, Yoshida H, Krause HM. Global implications of mRNAs localization pathways in cellular organization. Curr Opin Cell Biol 2009;21:409–15.

Bettencourt-Dias M, Glover DM. Centrosome biogenesis and function: centrosomes brings new understanding. Nat Rev Mol Cell Biol 2007;8:57–63.

Nigg EA, Stearns T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 2011;13:1154–60.

Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 2007;315:518–21.

Wang X, Tsai J-W, Imai JH, Lian W-N, Vallee RB, Shi H-S. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 2009;461:947–55.
Cairns J. Mutation selection and the natural history of cancer. Nature 1975;255:197–20.

Landsdorp PM. Essential steps of mitotic kinesis? Nat Rev Mol Cell Biol 2007;129:1244–7.

Yenni S, Tajbakhsh S. DNA asymmetry and cell fate regulation in stem cells. Semin Cell Dev Biol 2013;24:627–42.

Tajbakhsh S, Gonzalez C. Biased segregation of DNA and centrosomes: moving together or drifting apart? Nat Rev Mol Cell Biol 2009;10:804–10.

Yadlapalli S, Cheng J, Yamashita YM. Drosophila male germline stem cells do not asymmetrically segregate chromosome strands. J Cell Sci 2011;124:933–9.

Yamashita YM. Biased DNA segregation in Drosophila male germline stem cells. Semin Cell Dev Biol 2013;24:618–26.

Yadlapalli S, Yamashita YM. Chromosome-specific nonrandom sister chromatid segregation during stem-cell division. Nature 2013;498:251–4.

Tran V, Lin C, Xie J, Chen X. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 2012;338:679–82.

Falconer E, Chavez EA, Henderson A, Poon SS, McKinney S, Brown L, et al. Identification of sister chromatids by DNA template strand sequences. Nature 2010;463:93–7.

Razafsky D, Hozick D. Bringing KASH under the SUN: the many faces of nucleocytoplasmic connections. J Cell Biol 2009;186:461–72.

Rogers CG, Rusan NM, Peifer M, Rogers SL. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol Biol Cell 2008;19:3163–78.

Wang W-J, Soni RK, Uryu K, Tsou M-FB. The conversion of centrosomes to centrioles: essential coupling of duplication with segregation. J Cell Biol 2011;193:727–39.

Yu F, Xue CT, Jan YN. Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron 2006;51:13–20.

Yoshiura S, Ohta N, Matsuzaki F. Tre1 GPCR signaling orients stem cell divisions in the Drosophila central nervous system. Dev Cell 2012;22:79–91.

Januschke J, Gonzalez C. The interphase microtubule aster is a determinant of asymmetric division orientation in Drosophila neuroblasts. J Cell Biol 2010;188:693–706.

Siller KH, Cabernard C, Doe CQ. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 2006;8:594–600.

Cabernard C, Doe CQ. Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila. Dev Cell 2009;17:34–41.

Werts AD, Goldstein B. How signaling between cells can orient a mitotic spindle. Semin Cell Dev Biol 2011;22:842–9.

Segalen M, Belläiche Y. Cell division orientation and planar cell polarity pathways. Semin Cell Dev Biol 2009;20:972–7.