Mechanical behaviour of selected bulk oilseeds under compression loading

Č. Mizera¹*, D. Herák¹, P. Hrabě², Z. Aleš³ and J. Pavlů³
¹Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Prague, Czech Republic
²Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Czech Republic
³Department for Quality and Dependability of Machines, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, CZ 16500 Prague, Czech Republic

* mizera@tf.czu.cz

Abstract. Pressing of vegetable oils plays an important role in modern agriculture. This study was focused on the linear pressing of soybean seeds (Glycine max L.), Jatropha seeds (Jatropha curcas L.) and palm kernel (Elaeisguineensis). For pressing test the compressive device (ZDM, model 50, Germany) was used. The maximum pressing force of 100 kN with a compression speed of 1 mm s⁻¹ was used to record the force–deformation characteristics. The pressing vessel with diameter 60 mm and initial height of seeds 80 mm were used. The specific energy per gram of oil of soybean, palm kernel and Jatropha was 158.92 ± 7.21, 128.78 ± 8.36 and 68.26 ± 5.94 J.goil⁻¹, respectively. The oil content of soybean, palm kernel and Jatropha was 20.4 ± 1.23, 44.7 ± 2.27 and 34.2 ± 1.75 %, respectively. Water concentration, dynamic and kinematic viscosity of obtained oils was also determined.

1. Introduction

Production of vegetable oil is one of the most important part of modern agriculture. Vegetable oils have been used for centauries for food and non-food applications [1]. A large part of obtained oil is edible oils, which are used directly in food industry as follows: mayonnaise, margarine, cooking fats etc. [2]. Separation of oil from oilseeds is an important processing operation. The process has a significant effect on the quality and quantity of protein and oil obtained from the oilseeds [3]. One of the most common methods of obtaining oil is mechanical pressing. This method is based on mechanical compression of oleaginous materials. The vegetable oil obtained via this method is characterized by high quality and can be used for special applications [4]. The most commonly used equipment for mechanical pressing is screw press. This method is the most popular oil extraction as the process is simple, flexible, continues and safe [5]. For designing screw pressing technology is necessary to know the basic mechanical behaviour of bulk oilseeds by linear pressing. For this study soybean (Glycine max L.), Jatropha (Jatropha curcas L.) and palm kernel (Elaeisguineensis) were chosen, because this seeds represent the main oilseeds in Indonesia. Some of the pressing parameters of this seeds have already been determined [2; 3; 6; 7; 8; 9]. The aim of this study was to determine the pressing curves, specific energy, amount of oil and initial slope of deformation curve of selected oilseeds. The content of water in oil and viscosity of the obtained oil were also determined.
2. Materials and Methods

Whole seeds of soybean (*Glycine max* L.), Jatropha (*Jatropha curcas* L.) and palm kernel (*Elaeisguineensis*) obtained from North Sumatra, Indonesia were used for the compression test. The moisture content, which was determined using standard oven method, ASAE method (ASAE S410.1 DEC97, ASAE, 1998), for soybean, Jatropha and palm kernel was 7, 8; 8,9 and 6,2 %, respectively. The maximum quantities of oil present in each batch of the oilseeds used for this study were determined using the Soxhlet extraction technique. This was done according to the CSN method (CSN EN ISO 659 – 46 1034, CSN, 2011).

2.1. Compression test

To determine the relationship between the pressing force and deformation, the compressive device (ZDM, model 50, Germany) was used to record the course of deformation function. The pressing vessel and plunger (Fig. 1) of diameter 60 mm were used. The bulk seeds of initial height 80 mm were measured and pressed at the rate of 1 mm.s\(^{-1}\) under room temperature. The measuring range of force was between 0 kN and 100 kN. The experiment was repeated three times for each type of seeds.

![Scheme of pressing vessel](image)

The volume energy is the area under the compressive force-deformation curve and was calculated using Eq. 1.

\[
E_x = \sum_{n=0}^{n_{max}} \left(\frac{F_{n+1} + F_n}{2} \right) \left(X_{n+1} - X_n \right)
\]

(1)

where: \(E_x\) – deformation energy, J; \(F_{n+1}\) and \(F_n\)–values of compressive force, N; \(X_{n+1}\) and \(X_n\)–values of seed deformation, m;

The initial slope of deformation curve was determined as the slope of the tangent at zero time.

2.2. Oil analysis

The Soxhlet apparatus was used to determine the oil content of seeds. For Soxhlet extraction 10 g of find ground seeds was extracted with petroleum in a Soxhlet apparatus for 6 h at 60°C.
The Coulometer WTD developed to perform routine analysis of moisture, was used to measure the content of water in given oil samples. Employing the coulometric method allows detection of small or even trace amounts of water in a variety of solutions; including, but not limited to, solutions based on organic acids, alcohols, esters, hydrocarbons and many other organic solvents.

Stabinger Viscometer was used for determination of viscosity. This analyser covers a wide measuring range with one measuring cell and provides precision comparable to gravimetric capillary viscometers.

3. Results and discussion

Measured data of individual pressing curve for soybean, Jatropha seed and palm kernel are shown in Fig. 2. The compression test was repeated three times for each type of seeds.

![Graph showing pressing characteristic of different types of oilseeds](image)

Figure 2. Measured amounts of pressing characteristic of different type of oilseeds

The oil content of seeds was determined by Soxhlet apparatus and is shown in Table 1. The parameters of mechanical pressing of the 3 oilseeds are presented in Table 1. Deformation at peak load 100 kN ranged between 34-35, 41-43 and 64-66 mm in soybean, palm kernel and Jatropha seeds. The deformation was significantly higher in Jatropha seeds than in the other seeds (Table. 1).
Table 1. Mechanical parameters of the bulk oilseeds loaded compressively to 100 kN

	Soybean	Palm kernel	Jatropha
Oil content [%]	20.4 ± 1.23	44.7 ± 2.27	34.2 ± 1.75
Initial mass [g]	167.1 ± 8.87	152.3 ± 6.52	77.2 ± 3.15
Gained oil [g]	4.2 ± 0.22	10.5 ± 0.69	10.65 ± 0.56
Initial slope of deformation [N.m^-1]	588.57 ± 28.38	736.67 ± 44.63	99.96 ± 4.58
Strain [-]	0.44 ± 0.03	0.53 ± 0.02	0.81 ± 0.04
Deformation energy [J]	670.56 ± 32.22	1237.64 ± 88.48	726.99 ± 45.51
Specific energy [J.g_oil^-1]	158.92 ± 7.21	128.78 ± 8.36	68.26 ± 5.94

Strain in bulk seeds of soybean, palm kernel and Jatropha seeds at a peak compressive force of 100 kN was 0.44, 0.53 and 0.81, respectively. Mean deformation energy at peak compression was 670.56, 1237.64 and 726.99 J, for 80 mm initial height of soybean, palm kernel and Jatropha seeds, respectively. The energy demands for the deformation of soybean and Jatropha seeds at peak load were significantly less than the energy requirement for the deformation of palm kernel at the same load (Table 1). Similar mechanical properties of the Jatropha seeds were also found by other authors [7; 8; 10]. The oil obtained from individual seeds is also shown in Table 1. From these values the specific energy per gram of oil was determined. From Table 1 it is evident that the energy demand to obtain 1 g of oil in the case of Jatropha seeds was significantly less than the energy requirement for the other seeds. Mechanical properties of soybean were also determined by other authors [11; 12]. Very similar results of pressing palm were also found by other authors [13, 14].

The measured values of water concentration and viscosity of oils are shown in Fig. 3 and Fig. 4.

![Figure 3. Water concentration of analysed oils](image-url)
It is obvious that the highest concentration of water was measured in palm kernel oil sample in Figure 3. Water content has also impact on value of viscosity. The lowest value of viscosity was measured within palm kernel shown in Figure 4. Some results of soybean oil has been already determined.

4. Conclusion

This study was focussed on the Mechanical behaviour of soybean, palm kernel and Jatropha seeds under compression loading. Individual pressing curves of seeds were determined and analysed. Results indicate that the specific energy per gram of oil at Jatropha seeds was approximately two times lower than the energy requirements for other seeds. The oil content of soybean, palm kernel and Jatropha seeds by Soxhlet extraction was also determined. Oil analysis of obtained oils such as water concentration, dynamic and kinematic viscosity was also determined. The results obtained in this study can help with the design of the pressing technology.

Acknowledgment

This paper has been supported by Internal Grant Agency of Faculty of Engineering – Czech University of Life Sciences Prague – IGA 2017: 31130/1312/3111.

References

[1] Hasenhuettl G L 1991 Fats and fatty oils, in Kirk-Othmer’s Encyclopedia of Chemical Technology, J.I. Kroschwitz and M. Howe-Grant (Eds.), pp. 282-285. New York: Wiley & Sons. 10: 252 – 287.

[2] Bargale P C 1997 Mechanical oil expression from selected oilseeds under uniaxial compression, Ph.D. Thesis, University of Saskatchewan, Canada

[3] Bargale P C and Patil R T 2007 Effect of pretreatments on oil recovery and oil-point
pressure of soybean under uniaxial pressing. Journal of Food Science and Technology 44(5) pp 478-482

[4] Willems P, Kuipers N J M and de Haan A 2008 Hydraulic pressing of oilseeds: experimental determination and modeling of yield and pressing rates. Journal of Food Engineering 89(1) pp 8-16

[5] Beerens P, 2007 Screw-pressing of Jatropha seeds for fuelling purposes in less developed countries, Ph.D. Thesis, Eindhoven University of Technology, Netherlands

[6] Ajibola O O., Okunade D A and Owolarafe O K 2002 Oil Point Pressure of Soybean. Journal Food Process Engineering 25 pp 407-416

[7] Herak D, Kabutey A, Divisova M and Simanjuntak S 2013 Mathematical model of mechanical behaviour of Jatropha curcas L. seeds under compression loading. Biosystems Engineering 114 pp 279-288

[8] Kabutey A., Herák D., Chotěborský R., Sigalingging R. and Mizera C 2015 Effect of compression speed on energy requirement and oil yield of Jatropha curcas L. bulk seeds under linear compression. Biosystems Engineering 136 pp 8-13

[9] Herak D, Kabutey A, Choteborsky R, Petru M and Sigalingging R 2015 Mathematical models describing the relaxation behaviour of Jatropha curcas L. bulk seeds under axial compression. Biosystems Engineering 131 pp 77-83

[10] Sigalingging R, Herák D, Kabutey A, Mizera Č and Divišová M 2014 Tangent curve function description of mechanical behaviour of bulk oilseeds. Scientia Agriculturae Bohemica 4 (45) pp 259-264.

[11] Dijkstra A J., 2015 Soybean Oil. Encyclopedia of Food and Health 18 pp 58-63

[12] Lee H, Min S C 2014 Development of antimicrobial defatted soybean meal-based edible films incorporating the lactoperoxidase system by heat pressing. Journal of Food Engineering 120 pp 183-190

[13] Akinoso R., Raji A O., Igbeka J C 2009 Effects of compressive stress, feeding rate and speed of rotation on palm kernel oil yield. Journal of Food Engineering 93 pp 427-430

[14] Owolarafe O K., Osumeke A S., Odejobi O A., Ajadi S O., Faborode M O 2008 Mathematical modelling and simulation of the hydraulic expression of oil from oil palm fruit. Biosystems Engineering 101 pp 331-340