Restoration of the natural $E(1/2^+ - E(3/2^+_1)$ energy splitting in odd-K isotopes towards $N = 40$

Y.L. Suna,b,n, A. Obertellia,n, P. Doornenbalc, C. Barbierid, Y. Chazonee, T. Duguetb,f, H.N. Liua,b,g, P. Navrátílh, F. Nowackii,j, K. Ogatae,k, T. Otsukal,m, F. Raimondid,n, V. Somàb, Y. Utsunoo, K. Yoshidao, N. Achourip, H. Babac, F. Brownec, D. Calvetb, F. Châteaub, S. Chenq,c,r, N. Chigac, A. Corsib, M.L. Cortésc, A. Delbartb, J.-M. Ghellerb, A. Giganonb, A. Gillibertb, C. Hilairet, T. Isobee, T. Kobayashib, Y. Kubotac,m, V. Lapouxb, T. Motobayashic, I. Murrayh, H. Otsuc, V. Paninc, N. Paulb, W. Rodriguezk,c, H. Sakuraic,l, M. Sasanoc, D. Steppenbeckc, L. Stuhlm, Y. Toganou, T. Uesakac, K. Wimmerl, K. Yonedac, O. Aktase, A. Aumanaa,v, L.X. Chungw, F. Flavignyp, S. Franchoop, I. Gašparicx,c, R.-B. Gersty, J. Gibelinz, K.I. Hahna,d, D. Kima,a,c, T. Koivail, Y. Kondoab, P. Koseogloua,v, J. Leef, C. Lehri, B.D. Linhw, T. Lokotkol, M. MacCormickk, K. Moschnery, T. Nakamuraab, S.Y. Parka,a,c, D. Rossia, E. Sahinc, D. Sohlerad, P.-A. Söderströms, S. Takeuchiab, H. Törnqvista,v, V. Vaqueroae, V. Wagnera, S. Wangaf, V. Wernera, X. Xul, H. Yamadaab, D. Yanaf, Z. Yangc, M. Yasudaab, L. Zanettia

a Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
b IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
c RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
d Department of Physics, University of Surrey, Guildford GU2 7XH, UK
e Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
f KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
g Department of Physics, Royal Institute of Technology, SE-10691 Stockholm, Sweden
h TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
i Université de Strasbourg, IPHC, 67037 Strasbourg Cedex, France
j CNRS, UMR7178, 67037 Strasbourg, France
k Department of Physics, Osaka City University, Osaka 558-8585, Japan
l Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
m Center for Nuclear Study, University of Tokyo, RIKEN campus, Wako, Saitama 351-0198, Japan
n ENS, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
o Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
p Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
q State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, PR China
r Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
s Department of Physics, Tohoku University, Sendai 980-8578, Japan
t Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Física, Bogotá 111321, Colombia
u Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Tokyo, Tokyo 172-8501, Japan
v GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
w Institute for Nuclear Science & Technology, VINATOM, P.O. Box ST-160, Nghe An, Hanoi, Vietnam
x Rudar BoškoVI Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
y Institut für Kernphysik, Universität zu Köln, D-50937 Cologne, Germany
z LPC Caen, ENSECGN, Université de Caen, CNRSIN2P3, F-14050 Caen, France
a,b Department of Science Education and Department of Physics, Evha Womans University, Seoul 03760, Republic of Korea
a,f Department of Physics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo, 152-8551, Japan
a,f Department of Physics, University of Oslo, N-0316 Oslo, Norway
a,f MTA Atomki, P.O. Box 51, Debrecen H-4001, Hungary
a,f Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
a,f Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China

* Corresponding author at: Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany.
 E-mail address: ysun@kp.tu-darmstadt.de (Y.L. Sun).

https://doi.org/10.1016/j.physletb.2020.135215
0370-2693/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The atomic nucleus is a strongly interacting many-body system that, however, shows features of independent nucleon motion near the Fermi surface [1]. The first predictive realization of the independent-particle model was achieved by Mayer and Jensen [2, 3], who established the conventional nuclear shell structure by introducing a strong spin-orbit coupling to explain the “magic numbers” and the ground-state spins of stable odd–mass-number nuclei. In the modern shell-model approach, the variation of the nuclear structure is mainly driven by the monopole component of the interaction, which is responsible for the single-particle behavior, and further modified by multiple correlations [4,5]. The correlation effects vanish in nuclei with a one-particle or one-hole configuration with respect to closed shells, resulting in the so-called monopole energy shift along the corresponding isotopic or isotonic chains [6,7]. In this situation the single-particle energies of the odd nucleon are solely determined by the monopole interaction and change as linear functions of the nucleon number of the other type.

Recently, significant experimental and theoretical efforts have focused on the monopole shift of proton-hole states in the neutron-rich odd-K isotopes [8–14], where Z = 20 remains a shell closure away from stability [15,16]. From 39K (N = 20) to 41K (N = 28), the energy level splitting between the 1/2+ and 3/2+ states drops rapidly and the 1/2+ state becomes lower in energy than the 3/2+ state in 47K [17–19], which is interpreted as an energy inversion of the π1d5/2 and π2S1/2 orbitals at N = 28 [9–11,18]. The energy splitting decreases almost in proportion to the number of valence neutrons in the f7/2 orbital, reflecting the robust feature of the monopole interaction [20]. For K isotopes beyond N = 28 where the valence neutrons start filling the p1/2 and p3/2 orbitals, data are scarce. The only known energy splitting is for 46K (N = 30), in which the 1/2+ ground state and the 3/2+ excited state become nearly degenerate [13,21]. Predictions from phenomenological shell-model calculations using different effective interactions reproduce well the energy splittings from 39K to 49K but differ significantly at N = 32 and 34 [14]. A ground-state spin I = 3/2 has been recently established in 51K [13] using laser spectroscopy, indicating that the π1d3/2 and π2S1/2 orbitals restore natural order at N = 32. However, the energy splitting in 51K was still unknown, since the 1/2+ excitation energy in 51K has not been measured. For 53K and beyond, no spectroscopic information was known. The measurements towards 59K (N = 40) are essential to understand the development of collectivity towards the potentially doubly magic nucleus 60Ca discovered newly [22]. More recently, the proton structure of K and Ca isotopes beyond N = 28 has attracted particular interest with a steep raise of charge radii up to 51K [23] and 52Ca [24], which can be understood as due to the halo-like nature of the ν2p3/2 orbital [25]. In this Letter, we report on the first measurement of low-lying states in 51,53K populated by one-proton removal from doubly magic nuclei 52,54Ca and the unambiguous angular-momentum assignments of the populated 1/2+ and 3/2+ states.

The experiment was performed at the Radioactive Isotope Beam Factory operated by the RIKEN Nishina Center and the Center for Nuclear Study of the University of Tokyo. The radioactive isotopes were produced by fragmentation of a 345 MeV/nucleon 70Zn primary beam on a Be target with an average beam intensity of 240 pnA. The secondary cocktail beam was identified using the magnetic rigidity (Bp), energy loss (∆E) and time-of-flight (TOF) information in the BigRIPS two-stage fragment separator [26,27]. The mean intensities of the 52Ca and 54Ca secondary beams were 4.4 and 7.3 particles per second, respectively.

The 52Ca and 54Ca secondary beams with average kinetic energies of 266 and 251 MeV/nucleon, respectively, impinged on a 151(1)-mm-thick liquid hydrogen (LH2) target [30] to induce one-proton knockout reactions. The incident angle and position of the projectiles were determined by two multi-wire drift chambers (MWDCs). The heavy fragments were measured by the SAMURAI spectrometer [31] with a central magnetic field of 2.7 Tesla. Trajectories of the charged fragments were determined by two MWDCs located at the entrance and exit of the SAMURAI magnet. The ∆E and TOF of the fragments were measured by a 24-element 10-mm-thick plastic scintillator hodoscope. 51,53K from the 52,54Ca(p,2p) reactions could be clearly identified using the Bp-∆E-TOF method [32] and were fully within the acceptance of the spectrometer.

The LH2 target was surrounded by the MINOS time projection chamber [33] to track the outgoing protons for reaction vertex reconstruction. The estimated vertex resolution was ∼4 mm (FWHM) [34]. Velocities of the projectiles and residues at the reaction vertex were deduced by taking into account the energy loss in the materials along their trajectories. The efficiencies of detecting at least one proton for 52Ca(p,2p)51K and 54Ca(p,2p)53K reactions were determined to be 90(6)% and 88(3)%, respectively.

De-excitation γ-rays from the reaction residues were measured by the upgraded DALI2+ array [32,35], which consisted of 226 NaI(Tl) detectors with an average threshold set to around 50 keV. The gain of the NaI(Tl) detectors was set to measure γ-rays with energies up to ∼6 MeV after Doppler correction. The whole array was calibrated with 60Co, 137Cs, 88Y, and 133Ba sources, yielding a calibration uncertainty of 4 keV. The measured energy resolution for the 662 keV γ-ray peak of 137Cs was 9.1% (FWHM). To increase the full energy peak efficiency, back-back analysis was adopted for γ-rays hits in detectors located within 12 cm of each other. For 1-MeV γ-rays emitted from nuclei with a velocity of 0.6c, the simulated photopake efficiency and energy resolution were 30% and 11% (FWHM), respectively. The Doppler-corrected γ-ray spectra of 51K(53K) from one-proton removal of 52Ca(54Ca) are displayed in...
Fig. 1. Doppler-corrected γ-ray spectra of 51K (upper panel) and 53K (lower panel). The black solid lines show the fit results of the simulated response functions for the observed transitions (red dotted lines) and double exponential backgrounds (blue dashed lines). The insets show the spectra up to 5 MeV. The deduced experimental level schemes are shown to the right of the spectra. The experimental neutron separation energies (S_N) are taken from Refs. [28,29].

The spectra were fitted with GEANT4 [36] simulated response functions on top of a double-exponential background to determine the transition energies and intensities. For 51K, three transitions at 737(5), 1950(16), 2249(25) keV were clearly observed and one structure at 4281(47) keV was observed with a significance level of 3.0 standard deviations (σ). In the case of 53K, only one clear γ-ray transition at 837(5) keV was observed. All the transitions were attributed to direct decays to the ground states as no $\gamma-\gamma$ coincidences were observed. In this work, we focus on the first two low-lying states in 51,53K, whose extracted cross sections are listed in Table 1. The quoted uncertainties for the excited states include contributions from statistics, MINOS efficiency (7%), and γ-ray detection efficiency (5%). The reaction losses of 52,54Ca and 51,53K in the materials along their trajectories were determined by measuring the corresponding unreacted beam and were taken into account in the cross-section deduction. The measured inclusive cross sections of 52Ca(p,2p)51K and 54Ca(p,2p)53K reactions were 9.0(6) mb and 5.3(3) mb, respectively. Only one gamma-ray transition was observed in 53K. While three other transitions were observed in 51K in addition to the transition from its first excited state, amounting to a cross section of 2.1(3) mb to the corresponding excited states. The ground-state population cross sections were deduced after subtracting the excited-state contributions from the inclusive yields assuming that there are no higher excited states decaying by emitting γ-rays beyond 5 MeV, since the neutron separation energies of 51K/53K is 4.86 MeV [28] (3.23 MeV [29]).

The measured partial cross sections are compared to the products of the single-particle cross sections (σ_{sp}) obtained using the distorted-wave impulse-approximation (DWIA) model of Refs. [37, 38] and the spectroscopic factors (SFs) obtained using either the self-consistent Green's function (SCGF) approach in the third-order algebraic diagrammatic construction [ADC(3)] approximation [39] with the chiral interaction NN+3N[lnl] [40] or large-scale shell-model (LSSM) calculations with phenomenological effective interactions discussed later in the text. The DWIA model has been applied to calculate σ_{sp} for (p,2p) reactions in recent works [41–43]. Here, the proton single-particle wave functions were determined by a mean-field Hartree-Fock-Bogoliubov approach with the SLy4 interaction [44]. The energy dependence of the cross sections was considered by taking the σ_{sp} averaged over the beam energy along the thick target. The SCGF SFs are systematically smaller than the shell-model SFs because of the particle-vibration coupling effects that cannot be accounted even in LSSM valence spaces [45]. As shown in Table 1, the experimental cross sections to the ground states are 3.1(4) and 2.5(4) times of the cross sections to the first excited states for 51K and 53K, respectively, while the theoretical ratios of these two states are around 2.0 due to the fact that theoretical calculations overestimate the cross sections for the 1/2$^+_1$ states. Nevertheless, the experimental ground-state population cross sections are higher than those of the first excited states, consistent with the removal of proton in 1d$^{1/2}$ and 2s$^{1/2}$ orbitals with occupancy of 2j+1 = 4 and 2, respectively. In addition to this first indication, the spin-parity assignments are determined unambiguously using the parallel momentum distribution (PMD) of the residual nuclei, which links its shape directly to the orbital angular momentum of the knocked-out proton [46].

Fig. 2 displays the PMDs of 51,53K from the 52,54Ca(p,2p) reactions which were obtained by transforming the measured momentum distributions of the residues to the beam-at-rest frame to eliminate the momentum spread of the incident beam. Parallel momentum resolutions of $\sigma = 37$ MeV/c and 43 MeV/c were achieved for the 52Ca(p,2p)51K and 54Ca(p,2p)53K reactions, respectively, by taking into account the measured momentum resolution using the unreacted beam and the momentum spread due to the vertex resolution. The angular-momentum assignments were determined by comparing the measured PMDs to DWIA model calculations [37] assuming removal of the proton from different single-particle orbitals and folded with the experimental momentum resolutions. The PMDs of the 737-keV state in 51K and the 837-keV state in 53K can be well reproduced by the theoretical curves assuming removal of an s-wave proton from 52Ca and 54Ca, respectively. The assignments are strongly supported by the log$_{10}$ scaled Bayes factors [47] of s-wave over d-wave which are 3 and 7 for 51K and 53K, respectively.

![Figure 1](image1.png)

Table 1

E_{ex} (keV)	J^π	σ_{sp} (mb)	E_{in} (keV)	J^π	SF	σ_{sp} (mb)	σ_{in} (mb)
51K	3/2$^+$	5.2(4)	737(5)	3/2$^+$	2.76	0	7.73
	3/2$^+$	1.7(2)	1950(16)	1/2$^+$	1.27	1.68	2.39
53K	3/2$^+$	3.8(3)	2249(25)	1/2$^+$	2.90	3.80	4.32
	1/2$^+$	1.5(2)	53K	3/2$^+$	1.36	1.74	2.23

The measured excitation energies (E_{ex}), spin-parity (J^π) and cross sections (σ_{sp}) from the 52,54Ca(p,2p)51,53K reactions. Only the 1/2$^+_1$ and 3/2$^+_1$ states are listed. Theoretical excitation energies (E_{in}), J^π, and spectroscopic factors (SFs) are obtained from ab initio SCGF calculations with the NN+3N[lnl] interaction (Th1) or shell-model calculations with the SDPF-U1mod interaction (Th2) or the SDPF-MDs interaction (Th3). Theoretical partial cross sections (σ_{sp}) are the products of the SFs and the single-particle cross sections (σ_{in}) calculated using the DWIA model. See text for details.
tively. 1 Thereby, the spins and parities of the first excited states of $^{51,53}\text{K}$ are assigned as $1/2^+$. To pin down the angular momenta of the ground states, we subtracted the first-excited-state PMDs from the inclusive spectra. The resulting distributions are dominated by the ground-state contribution (71% in ^{51}K and 100% in ^{53}K), and can be well reproduced by the DWIA calculation assuming removal of d-wave protons. For the ground states the \log_{10} scaled Bayes factors of d-wave over s-wave are 100 and 77 for ^{51}K and ^{53}K, respectively. Spins and parities of $3/2^+$ are therefore established for the ground states of $^{51,53}\text{K}$. No bound fp-shell states in $^{51,53}\text{K}$ could be populated via ($p,2p$) reactions based on the $ab\ initio$ SCGF calculations, which is in line with the doubly magic nature of $^{52,54}\text{Ca}$. Note that the momentum resolution without using the vertex information would not be sufficient to disentangle the s- and d-wave contributions as illustrated in the rightmost panel of Fig. 2. This is the first time the PMDs are extracted with enough resolving power to disentangle proton removal from different ℓ orbitals when using thick targets, pushing the sensitivity frontiers for the spectroscopy of very exotic nuclei produced at only few particles per second.

We now discuss the $E(1/2^+)-E(3/2^+)$ systematics in odd-K isotopes. As displayed in Fig. 3, the reinversion of the $3/2^+$ and $1/2^+$ proton-hole states in ^{51}K is confirmed and its continuation to ^{53}K is established for the first time. We compare the experimental energy splittings to $0\hbar\omega$ LSSM calculations performed in the sd-pf valence space employing the SDPF-U interaction [9] and effective interactions based on the SDPF-MU Hamiltonian [11]. The shell-model calculations show excellent agreement with the experimental results from ^{39}K to ^{49}K and start to differ significantly at ^{53}K. The SDPF-U calculation overestimates the energy splitting by ~ 0.3 MeV in ^{51}K and by ~ 0.7 MeV in ^{53}K. To improve the SDPF-U interaction in the $N > 30$ region, the $\pi 1d_{3/2}-\nu 2p_{1/2}$ and $\pi 2s_{1/2}-\nu 2p_{3/2}$ monopole waves need to be tuned by $+37.5$ keV and -75 keV, respectively, leading to the SDPF-Uhm model interaction. The predicted energy splittings in $^{51,53}\text{K}$ using the SDPF-Uhm interaction are much closer to the data, increasing by 277 keV and 410 keV, respectively, demonstrating a strong sensitivity to these specific proton-neutron cross-shell interactions. Note that the modified SDPF-U interaction can well reproduce the measured 2^+ systematics in Ca isotopes and the single particle spectra in $N = 21$ isotones [9]. Regarding the SDPF-MU Hamiltonian [11], it has been successfully applied to the present mass region. It was derived based on the V_{MU} interaction which is suitable for a global description as its six parameters of Gaussian central force were determined from G-matrix and effective interactions in the sd- and pf-shells [48]. The SDPF-MUr [49] is a revision made for ^{49}K [13, 21] and ^{54}Ca [16]. $^{51,53}\text{K}$ provide a precious opportunity to further tune certain two-body matrix elements beyond the global determination. In order to describe the measured energy splittings, a modification is required to shift the original $T = 0$ central force monopole strength between $\pi 2s_{1/2}$ and $\nu 2p_{1/2}$ (-1.27 MeV) and between $\pi 2s_{1/2}$ and $\nu 2p_{3/2}$ (-1.29 MeV) by -0.2 MeV, meaning strengthening the attraction. In addition, the $\nu 1f_{5/2}$ pairing matrix element is shifted by -0.4 MeV to better describe the 2^+ in Ca isotopes, which has no direct relevance to the present case. The derived SDPF-MUs interaction with the above modifications can reproduce the observed splittings from ^{49}K to ^{53}K. The original SDPF-MU interaction produces the $T = 0$ monopole strength between $\pi 2s_{1/2}$ and $\nu 2p_{1/2}$ and that between $\pi 2s_{1/2}$ and $\nu 2p_{3/2}$, both larger in magnitude compared to other cases because that the relative wave functions contains more components with lower relative orbital angular momentum, such as the relative s-wave, and the employed Gaussian central force produces a flat contribution at short distances [48]. This short-range behavior of the effective NN interaction does not show up in most other monopole strengths. Such information is a unique outcome of the present experiment and will be very useful in obtaining more insight of the effective NN interaction, including global ones like SDPF-MUs. Note that the above-discussed modifications of interactions have negligible impact on the total binding energy, which in the shell-model approach involves all monopole interactions and depends on the sum

1 One hypothesis has decisive evidence against the other one if their \log_{10} scaled Bayes factor is larger than 2.
of their absolute values, as illustrated in the parameterization of the Duflou-Zuker shell-model mass formula [50,51].

In the shell-model calculations, the increased energy splitting from 40K to $^{51.5}$K is a consequence of the restoration of a sizeable $Z = 16$ sub-shell gap in 51K and 53K, which are calculated to be 0.95 MeV and 1.38 MeV, respectively, when the SDPF-MUs interaction is employed. The near degeneracy of the $\pi 1d_{3/2}$ and $\pi 2s_{1/2}$ orbitals around $N = 28$ has been suggested to play a key role in the development of collectivity in neutron-rich silicon, sulfur and argon isotopes [11,52,53]. The restoration of the $Z = 16$ sub-shell gap would therefore have the profound consequence of suppressing the collectivity induced by proton excitations for $Z = 14, 16, 18$ nuclei lying beyond $N = 30$. Indeed, a narrowed shell gap will free nucleons to participate in collective motions, while a large shell gap will quench correlations by enlarging the energy cost for excitations across the gaps.

The energy splittings along the odd-K isotopic chain also provide a testing ground to validate the chiral effective field theory (EFT) interactions in the ab initio many-body calculations, which have extended their reach to entire medium-mass isotopic chains very recently. In particular, we compare the experimental data to the initial ADC(2) Gorkov-SCGF calculations [55,56] performed in a model space of up to 14 harmonic oscillator shells including three-nucleon (3N) interactions limited to basis states with $N_1 + N_2 + N_3 \leq 16$ where $N = 2n + l$. We employed two sets of state-of-the-art EFT interactions: the NNLOact [54] and the newly developed $N+N+3N$(inl) [40]. Uncertainties associated with the approximated many-body scheme were estimated by differences between ADC(2) and available ADC(3) results. With the most recent $N+N+3N$(inl) interaction, SCGF total binding energies in this mass region are within 3% (1%) from experiment when computed in the ADC(2) [ADC(3)] scheme [57]. As shown in Fig. 3, the NNLOact calculations systematically underestimate the splittings in odd-K isotopes by ~ 1 MeV, although the same interaction successfully reproduces charge radii, binding energies and spectroscopic properties of lighter medium-mass nuclei [54,58]. In contrast, the $N+N+3N$(inl) calculations show better overall agreement with the experimental data, consistent with its application on the mass prediction of $^{48-56}$Sr [40].

So far, state-of-the-art shell-model and ab initio calculations reproduce experimental energy splittings at all the shell closures including $N = 20, 28, 32, 34$. The $ab initio$ $N+N+3N$(inl) calculations predict that the energy splitting increases linearly from 0.59 MeV in 51K to 1.35 MeV in 59K. The two modified phenomenological effective interactions SDPF-Umvd and SDPF-MUs anticipate similar trends as shown in Fig. 3, reaching 1.88 MeV and 1.38 MeV at 59K, respectively, equivalent to the corresponding effective single-particle energy differences between the $\pi 1d_{3/2}$ and $\pi 2s_{1/2}$ orbitals. Since the valence neutrons in the shell-model calculations are restricted to pf-shells below $N = 40$, the consistent energy-splitting increase towards 59K, still to be proven experimentally, supports the $N = 40$ shell closure assumed in all the above shell-model calculations.

In summary, we have reported on the first measurement of the low-lying states in $^{51.5}$K populated from the 52,54Ca(p,2p) reactions at ~ 250 MeV/nucleon. We implemented a new technique based on reaction vertex tracking to achieve momentum resolutions of ~ 40 MeV/c when using a thick liquid-hydrogen target. The $1/2^+ \rightarrow 3/2^+$ transitions of $^{51.5}$K were measured for the first time and the spins-parities were unambiguously assigned based on the measured cross sections and parallel momentum distributions. The measured $E(1/2^+ - E(3/2^+)$ energy splittings in $^{51.5}$K provide a stringent constraint on the $\pi 2s_{1/2}1d_{3/2}^{-1}2p_{1/2}2p_{3/2}$ matrix elements. The restoration of the natural ordering of the $1/2^+$ and $3/2^+$ proton-hole states in $^{51.5}$K is interpreted as a restoration of a sizeable $Z = 16$ sub-shell gap beyond $N = 30$, having as a consequence the suppression of proton-induced collectivity in the region. State-of-the-art shell model calculations and $ab initio$ calculations all predict consistently the continuation and enhancement of the restoration towards $N = 40$.

Acknowledgements
We are very grateful to the RIKEN Nishina Center accelerator staff for providing the stable and high-intensity zinc beam and to the BigRIPS team for the smooth operation of the secondary beams. The development of MINOS has been supported by the European Research Council through the ERC Grant No. MINOS-258567. Green’s function calculations were performed using HPC resources from GENCI-TGCC, France (Projects A0030507392 and A0050507392) and from the DiRAC Data Intensive service at Leicester, UK (funded by the UK BEIS via STFC capital grants ST/K000373/1 and ST/R002363/1 and STFC DiRAC Operations grant ST/R001014/1). This work (C. B.) was also supported by the United Kingdom Science and Technology Facilities Council (STFC) under Grants No. ST/P005314/1 and No. ST/I005816/1. K. O. acknowledges the support by Grant-in-Aid for Scientific Research J16K05352. Y. L. S. acknowledges the support of Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2015-705023) from the European Union and the support from the Helmholtz International Center for FAIR. The valuable discussions with C. Qi are gratefully acknowledged. H. N. L. acknowledges the support from the Enhanced Eurotalents program (PCOFUND-GA-2013-600382) co-funded by CEA and the European Union. H. N. L. and A. O. acknowledge the support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project No. 279384907-SFB 1245. V. L. S. and A. O. acknowledge the support from the Alexander von Humboldt Foundation. L. X. C. and B. D. L would like to thank MOST for its support through the Physics Development Program Grant No. 15TBL13C518. I.G. has been supported by HIC for FAIR and HRZ2 under project No. 1257 and 7194. K. I. H., D. K. and S. Y. P. acknowledge the support from the NRF grant funded by the Korea government (No. 2017R1A2B2012382 and 2019M1A1033186). F. B. acknowledge the support from the RIKEN Special Postdoctoral Researcher Program. D.S. was supported by projects No. GINOP-2.3.1-2016-00034 and No. K128947. V. V. acknowledges support from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2017-84756-C2-2-P. V. W. acknowledges support from BMBF grants 05P15RDFN1, 05P19RDFN1 and DFG grant SFB 1245. P. K. acknowledges support from HGS-HiRe and BMBF grant 05P19RDFN1. This work was also supported by NKFIH (128072).

References
[1] W. Dickhoff, C. Barbieri, Self-consistent Green’s function method for nuclei and nuclear matter, Prog. Part. Nucl. Phys. 52 (2) (2004) 377–496, https://doi.org/10.1016/j.ppnp.2004.02.038, http://www.sciencedirect.com/science/article/pii/S0146641004000535.
[2] M.G. Mayer, On closed shells in nuclei, II, Phys. Rev. 75 (1949) 1969–1970, https://doi.org/10.1103/PhysRev.75.1969, https://link.aps.org/doi/10.1103/PhysRev.75.1969.
[3] O. Haxel, J.K.D. Jensen, H.E. Suesc, On the “magic numbers” in nuclear structure, Phys. Rev. 75 (1949) 1766, https://doi.org/10.1103/PhysRev.75.17662, https://link.aps.org/doi/10.1103/PhysRev.75.17662.
[4] E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, The shell model as a unified view of nuclear structure, Rev. Mod. Phys. 77 (2005) 427–488, https://doi.org/10.1103/RevModPhys.77.427, https://link.aps.org/doi/10.1103/RevModPhys.77.427.
[5] T. Otsuka, T. Suzuki, J.D. Holt, A. Schwenk, Y. Akaiishi, Three-body forces and the limit of oxygen isotopes, Phys. Rev. Lett. 105 (2010) 032501, https://doi.org/10.1103/PhysRevLett.105.032501, https://link.aps.org/doi/10.1103/PhysRevLett.105.032501.
Y. Tanaka, S. Suzuki, H. Kusaka, K. Fujiwara, and H. Takeda, “Identification and separation of reaction iso-
beams at the RIKEN RI beam factory: in-beam spectroscopy of exotic nuclei,” Phys. Rev. C 94 (2016) 034306,
https://doi.org/10.1103/PhysRevC.94.034306.

S. Suzuki, T. Otsuka, H. Fujiwara, K. Fujiwara, K. Kusaka, H. Takeda, S. Kusaka, and K. Fujiwara, “Identification,
spectroscopy, and magnetic moment measurements of 50Ca,” Phys. Rev. C 88 (2013) 054332,
https://doi.org/10.1103/PhysRevC.88.054332.

M. Suzuki, T. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-proton-evolution experi-
ments in 56Ca,” Phys. Rev. C 88 (2013) 024319,
https://doi.org/10.1103/PhysRevC.88.024319.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “A two-
proton-evolution experiment in 56Ca,” Phys. Rev. C 88 (2013) 024320,
https://doi.org/10.1103/PhysRevC.88.024320.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024321,
https://doi.org/10.1103/PhysRevC.88.024321.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024322,
https://doi.org/10.1103/PhysRevC.88.024322.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024323,
https://doi.org/10.1103/PhysRevC.88.024323.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024324,
https://doi.org/10.1103/PhysRevC.88.024324.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024325,
https://doi.org/10.1103/PhysRevC.88.024325.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024326,
https://doi.org/10.1103/PhysRevC.88.024326.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024327,
https://doi.org/10.1103/PhysRevC.88.024327.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024328,
https://doi.org/10.1103/PhysRevC.88.024328.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024329,
https://doi.org/10.1103/PhysRevC.88.024329.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024330,
https://doi.org/10.1103/PhysRevC.88.024330.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024331,
https://doi.org/10.1103/PhysRevC.88.024331.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024332,
https://doi.org/10.1103/PhysRevC.88.024332.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024333,
https://doi.org/10.1103/PhysRevC.88.024333.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024334,
https://doi.org/10.1103/PhysRevC.88.024334.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024335,
https://doi.org/10.1103/PhysRevC.88.024335.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024336,
https://doi.org/10.1103/PhysRevC.88.024336.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024337,
https://doi.org/10.1103/PhysRevC.88.024337.

M. Suzuki, T. Kusaka, H. Fujiwara, H. Kusaka, H. Takeda, S. Kusaka, K. Fujiwara, S. Suzuki, and H. Takeda, “Two-
proton-evolution experiments in 56Ca,” Phys. Rev. C 88 (2013) 024338,
https://doi.org/10.1103/PhysRevC.88.024338.
