Electron-phonon coupling and exchange-correlation effects in superconducting H$_3$S under high pressure
Matej Komelj and Henry Krakauer
Phys. Rev. B 92, 205125 — Published 23 November 2015
DOI: 10.1103/PhysRevB.92.205125
Electron-phonon coupling and exchange-correlation effects in superconducting H$_3$S under high pressure

Matej Komelj1,* and Henry Krakauer2

1Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

2Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795

We investigate the H$_3$S phase of sulphur hydride under high pressure ≈ 200 GPa by means of ab-initio calculations within the framework of the density-functional theory (DFT) with the PBE0 hybrid exchange-correlation (E_{xc}) approximation. The choice of E_{xc} has the largest effect on the calculated electron-phonon coupling (EPC) matrix elements; the high pressure equation of state and phonon frequencies are only slightly modified. Mode-dependent EPC correction factors are determined from PBE0 using a frozen-phonon supercell approach, while standard density-functional perturbation theory is used to determine the EPC with PBE generalized-gradient approximation E_{xc}. Our principle finding is that the calculated PBE0 T_c is enhanced by 25% compared to PBE. This is similar in magnitude, but in opposite direction, to the proposed suppression of T_c by anharmonic effects [Errea et al., Phys. Rev. Lett. 114, 157004 (2015)]. Our calculations demonstrate the importance of considering exchange-correlation approximations for calculations of superconducting properties for this class of materials.

PACS numbers: 74.20.pq, 74.25.Kc, 71.15.Mb

The quest for the holy grail of high-pressure physics, metallic hydrogen, has continued to attract the interest of experimentalists and theorists since Ashcroft proposed that the new phase should exhibit superconductivity with $T_c \approx 270$ K. A recent focus has been on the hydrides where reduced metallization pressures are expected. Sulphur hydrides have attracted a great deal of attention due to theoretical predictions of high $T_c \approx 200$ K under high pressure. This was supported by two experimental reports: superconductivity was first attributed to H$_2$S in Ref. 8, but Drozdov et al. re-analyzed their measurements, which lead to $T_c \approx 203$ K, now ascribed to the H$_3$S phase. Theoretically, Li et al. proposed a metallic phase of hydrogen sulfide H$_2$S, potentially superconducting with a maximum $T_c \approx 80$ K when subjected to a pressure of 160 GPa. The transition temperature was estimated by applying the Allen-Dynes modified McMillan equation and assuming electron-phonon coupling as the source of superconductivity. Duan et al. performed a systematic investigation of the pressure-dependent (H$_2$S)$_2$H$_2$ phase diagram and concluded that the cubic Im3m H$_3$S structure was the most stable phase at pressures above 180 GPa, with $T_c \sim 200$ K at 200 GPa. Papaconstantopoulos et al. applied the Gaspari-Gyorffy theory and argued that superconductivity in H$_3$S arises mostly from the coupling between the electrons and the H vibrations, whereas the role of the sulphur is to stabilize the hydride at high pressures via hybridization. A similar hypothesis was put forward by Bernstein et al. who proposed that the transport mechanism in the high-pressure H$_3$S was the same as in MgB$_2$. A substantially higher T_c in the hydride could be explained with the considerably smaller atomic masses of the constituents. It has also been argued that the features of the calculated electron-phonon spectrum in H$_3$S are near optimum for a high T_c. Errea et al. claimed, however, that the harmonic approximation, used in the previous calculations, overestimated the electron-phonon coupling and consequently the predicted T_c. Other related candidate materials, such as SeH$_3$, have also been investigated. By contrast, Hirsch and Marsiglio have argued against the conventional electron-phonon mechanism and in favor of an electron-hole mediated mechanism.

The previous theoretical investigations were based on ab-initio calculations that used the semilocal PBE generalized-gradient approximation (GGA). Standard local or semilocal DFT approaches sometimes fail to predict the correct T_c in conventional electron-phonon superconductors because of an insufficient treatment of the exchange-correlation effects. In this paper we address the effect of the choice of DFT exchange-correlation functional on the predicted EPC strength. Hybrid DFT (HDF) methods often improve the predicted properties of materials with hydrogen bonds. In HDFT a fraction of the Hartree-Fock exact-exchange term is added to E_{xc}. As a result, HDFT calculations are typically at least an order of magnitude computationally more demanding than local or semilocal E_{xc}. To calculate the effective Kohn-Sham potential for HDFT, it is necessary to evaluate $N_{k} \times N_{occ}$ six-dimensional spatial integrals, where N_{k} and N_{occ} are the number of k-points and occupied states, respectively. By contrast, only three-dimensional integrals are required for local or semilocal E_{xc}. For this reason, the extension and application of DFT perturbation theory (DFTPT) to calculate electron-phonon coupling coefficients becomes very challenging in HDFT. Instead, we adapted the approximation scheme introduced by Lazzeri et al. for GW and HDFT, as described below.

The mode-dependent EPC strengths λ_q, are given by
\[\lambda_{\mathbf{q}\nu} = \sum_{j} \frac{1}{M_j N(\varepsilon_F) \omega_{\mathbf{q}\nu}^2} \sum_{ij} \int \frac{d^3k}{\Omega_{\text{BZ}}} \left| \langle \psi_{k,i} | \frac{dV_{\mathbf{R}_j}}{dR_j} \psi_{k,q+i,j} \rangle \right|^2 \delta(\varepsilon_{\mathbf{q},i} - \varepsilon_F) \delta(\varepsilon_{k+q,j} - \varepsilon_F), \]

where the phonon frequencies \(\omega_{\mathbf{q}\nu} \) and eigenvectors \(\mathbf{U}_{\mathbf{q}\nu} \) are obtained by diagonalizing the phonon dynamical matrix; \(\varepsilon_{k,i}, \psi_{k,i} \) are the single-electron energies and eigenfunctions, \(N(\varepsilon_F) \) is the density of states at the Fermi energy \(\varepsilon_F \), and \(M_j \) is the mass of the \(j \)th atom. The EPC matrix element \(\langle \psi_{k,i} | \frac{dV_{\mathbf{R}_j}}{dR_j} \psi_{k,q+i,j} \rangle \) depends on the change of the self-consistent Kohn-Sham potential with respect to the phonon displacement. All of the quantities in Eq. (1) can be calculated using DFTPT\(^{23-25}\) for local or semi-local \(E_{xc} \), and this functionality is available in standard codes such as Quantum Espresso.\(^{26}\) Unfortunately, a combination of HDFT and DFTPT would be computationally too demanding and has not yet been implemented for solids, to our knowledge. Instead, we use an alternative approach.\(^{17,19}\) Supercells and the frozen-phonon method are used to obtain the phonon dynamical matrix and the resulting pairs of \(\omega_{\mathbf{q}\nu}, \mathbf{U}_{\mathbf{q}\nu} \) on a \(\mathbf{q} \) grid commensurate with the supercell.\(^{27}\) Small but finite phonon displacements can then be introduced to obtain phonon-induced Kohn Sham potentials, which can be expressed to first order as: \(V_{\mathbf{R}}(\mathbf{R}) + \langle dV_{\mathbf{R}}(\mathbf{R})/d\mathbf{R_j} \rangle \cdot \mathbf{U}_{\mathbf{q}\nu} \). The change \(\Delta \varepsilon \) of a single-electron energy is approximated as:

\[\Delta \varepsilon \approx \left\langle \frac{dV_{\mathbf{R}_j}}{d\mathbf{R}_j} \cdot \mathbf{U}_{\mathbf{q}\nu} \right\rangle. \]

The difference \(\Delta \varepsilon \) describes band splitting due to the lifted degeneracy in the presence of the phonon. For the application of the approximation (2) for the calculation of \(\lambda_{\mathbf{q}\nu} \) only the splittings nearest to the Fermi level are relevant. An example is presented in Fig. 1 for \(\text{Im} \text{Sm} \) \(\text{H}_3\text{S} \) in the presence of phonon mode \(\nu = 6 \) at \(\mathbf{q} = 0 \), calculated with PBE \(E_{xc} \).

The band splittings are determined for both DFT and HDFT, \(\Delta \varepsilon_{\mathbf{DFT}} \) and \(\Delta \varepsilon_{\mathbf{HDFT}} \), respectively. Using Eq. (2) in Eq. (1) for DFT and for HDFT yields the following approximation to estimate the HDFT electron-phonon coupling coefficients:

\[\lambda_{\mathbf{q}\nu}^{\mathbf{HDFT}} \approx \lambda_{\mathbf{q}\nu}^{\mathbf{DFT}} f_{\mathbf{q}\nu}, \]

where the correction factor \(f_{\mathbf{q}\nu} \) is given by:

\[f_{\mathbf{q}\nu} = \left(\frac{\lambda^{\mathbf{DFT}}}{\lambda^{\mathbf{HDFT}}} \right) \left(\frac{\omega_{\mathbf{q}\nu}^{\mathbf{DFT}}}{\omega_{\mathbf{q}\nu}^{\mathbf{HDFT}}} \right)^2 \left(\frac{\Delta \varepsilon_{\mathbf{HDFT}}}{\Delta \varepsilon_{\mathbf{DFT}}} \right)^2. \]

This procedure could be repeated, in principle, to determine \(\lambda_{\mathbf{q}\nu}^{\mathbf{HDFT}} \) for each phonon mode throughout the Brillouin zone (BZ), using appropriate \(\mathbf{q} \)-commensurate supercells. We note, however, that the Allen-Dynes equation for the superconducting transition temperature\(^{10}\)

\[T_C = \frac{\omega_{\text{log}}}{1.2} \exp \left(\frac{-1.04(1 + \lambda)}{\lambda - \mu^*(1 + 0.62\lambda)} \right) \]

depends on the total electron-phonon coupling coefficient \(\lambda \), which is given by an integral over the BZ and sum over phonon branches: \(\lambda = (1/\Omega_{\text{BZ}}) \sum_{\nu} \int \lambda_{\mathbf{q}\nu} d^3q \), where \(\Omega_{\text{BZ}} \) is the volume of the BZ; \(\mu^* \) and \(\omega_{\text{log}} \) are discussed below. Therefore we determine the center of gravity \(\mathbf{q}^* \) in the irreducible wedge of the Brillouin zone (IBZ) with respect to the \(\lambda_{\mathbf{q}\nu}^{\mathbf{DFT}} \) for each DFT phonon branch \(\nu \):

\[\mathbf{q}^* = \frac{\int_{\text{IBZ}} d^3q \lambda_{\mathbf{q}\nu}^{\mathbf{DFT}} \mathbf{q}}{\int_{\text{IBZ}} d^3q \lambda_{\mathbf{q}\nu}^{\mathbf{DFT}}}. \]

For each branch we calculate the correction factor (4) \(f_{\mathbf{q}\nu} \) and use this single value for all \(\mathbf{q} \)-points within a given branch \(\nu \):

\[\lambda_{\mathbf{q}\nu}^{\mathbf{HDFT}} \approx \lambda_{\mathbf{q}\nu}^{\mathbf{DFT}} f_{\mathbf{q}\nu}. \]

The calculations were carried out by applying the Quantum Espresso\(^{26}\) code. The DFT exchange-correlation potential was PBE, whereas for HDFT we used PBE0.\(^{28,29}\) The bare electron-ion interactions were described with the norm-conserving Goedecker-Hartwigsen-Hutter-Teter\(^{30,31}\) pseudopotentials. The plane-wave and charge-density cut-off parameters were set to 476 eV and 1904 eV, respectively. A Monkhorst-Pack\(^{32}\) \(16 \times 16 \times 16 \) \(\mathbf{k} \)-point grid was used for the BZ integration primitive cell calculations. PBE0 phonon

![FIG. 1. Band splitting due the presence of a phonon. PBE band structures of \(\text{Im} \text{Sm} \) \(\text{H}_3\text{S} \) are shown: solid lines correspond to the undistorted crystal, and dashed lines are for the atoms displaced according to the phonon mode \(\nu = 6 \) at \(\mathbf{q} = 0 \). The inset presents the details of the band splitting close to the Fermi energy near the \(\Gamma \) point due to the lifted degeneracy caused by the presence of the phonon.](image-url)
spectra were calculated using the frozen-phonon method as implemented in the Phonopy code, whereas the DFT electron-phonon coefficients were determined using DFPT, which is a part of the Quantum Espresso package. The total electron-phonon coupling coefficient λ^{DFT} was obtained by using a $4 \times 4 \times 4$ q-point grid in the BZ. The force constants for the frozen-phonon method were obtained from a $2 \times 2 \times 2$-supercell calculation.

Fig. 2 presents the calculated total energies as a function of the lattice parameter a fitted with the Birch-Murnaghan equation of state. The difference between PBE and PBE0 is most pronounced at zero pressure, reflecting the $\simeq 2\%$ difference in equilibrium lattice parameters: 3.66 Å and 3.58 Å, respectively. Near 200 GPa, however, PBE and PBE0 yield very similar lattice parameters, which match the published value 2.984 Å. We used this value for the subsequent calculations of the phonon-related properties.

The effect of HDFT is larger for phonon frequencies near 200 GPa, as shown in Fig. 3. The largest differences are for the optic modes, especially near the N point, while differences for the acoustic modes are small. PBE EPC strengths throughout the Brillouin zone are depicted in Fig. 4. In contrast to the case of BaBiO$_3$ from Ref. 19, there are no distinguished points with particularly large values of $\lambda^{DFT}_{q\nu}$. This provides some justification for our introduction here of the center of gravity point q^* in Eq. (5). Using this approximation, the number of HDFT $f_{q\nu}$ evaluations is reduced from 96 (the number of q-points in the irreducible BZ times the number of bands) to only 12 (the number of bands) in Eqs. (4) and (6). For all phonon branches, the center of gravity point is well-approximated by either $q^* = \Gamma$ or $q^* = (0,0,1/2) 2\pi/a$. The band splittings $\Delta \varepsilon$ can therefore be obtained from primitive cell or $1 \times 1 \times 2$-supercell calculations, respectively.

A suitable indicator for the overall influence of the exchange-correlation effects on the electron-phonon coupling is the Eliashberg spectral function $\alpha^2 F(\omega) \propto \sum_{\nu} \int (1/\Omega_{\text{BZ}}) \lambda_{q\nu} \omega_{q\nu} \delta(\omega - \omega_{q\nu}) d^3q$ which is plotted in Fig. 5 (using gaussians with width $\sigma = 0.5$THz to represent the δ-functions). The difference in peak positions reflects the changes in phonon dispersion in Fig. 3. The highest peaks are located in the middle of the frequency range, which is in agreement with the distribution of the $\lambda^{PBE}_{q\nu}$ magnitudes in Fig. 4. The PBE0 peaks for
enhancement of phonon frequencies has only a small effect on the PBE0 frequencies on average than PBE. Indeed, the calculated
values differ by only 7%. Thus, the change in the predicted T_c would be enhanced for any reasonable change in μ^* after switching from PBE to PBE0.

The context for our results is the theory of conventional electron-phonon superconductivity as described by DFT. In H$_2$S and related sulfides, the normal-state Fermi liquid quasiparticles have been described by DFT band structures and wave functions, using PBE E_{xc}. The DFT approximation is often quite good and is widely used, although there are no guarantees regarding the accuracy of the related one-particle Kohn-Sham eigenstates. Phonon excitations are commonly described in the harmonic approximation, using DFPT or DFT supercell calculations. These are ground state properties, within the Born-Oppenheimer approximation, so DFT is well justified. Using DFT for the non-adiabatic EPC is also justified within Migdal’s theorem and these are treated, as described above. The superconducting transition temperature T_c is then usually estimated using the McMillan or Allen-Dynes equations, although the superconducting anisotropic gap equation can be used by means of SCDF. The SCDF calculation with harmonic phonons yielded $T_c = 180 \text{ K}$ for H$_2$S, in agreement with experiment. While SCDF provides a sound footing for the DFT treatment of superconductivity, it does not in itself improve the electronic band structure and phonon properties. The effects of anharmonicity were studied by Errea et al. They found that anharmonicity suppressed λ by 30%; T_c was suppressed by 34 and 56 K, respectively, using the McMillan equation or the isotropic Migdal-Eliashberg equations. All of these studies were based on PBE E_{xc}. Here we have shown that the choice of exchange-correlation potential can have effects of similar magnitude on the EPC and T_c. The present PBE0 calculations modify the electronic quasi-particles in the theory, the phonon excitations, and the EPC. For T_c, we relied on the Allen-Dynes equations with our calculated PBE0 λ and phonon frequencies.

In summary, we examined the influence of exchange-correlation effects on the electron-phonon coupling in cubic Im3m H$_2$S under high pressure. We introduced the electron-phonon coupling center-of-gravity point q^\dagger, modifying the approach used in Ref. 19. We calculated a 25% enhancement of T_c for HDFT compared to PBE predictions. This is similar in magnitude, but in opposite direction, to the proposed suppression of T_c by anharmonic effects in Ref. 6. Our results demonstrate the importance of considering exchange-correlation approximations for calculations of superconducting properties for this class of materials.
ACKNOWLEDGMENTS

We thank Dimitrios A. Papaconstantopoulos for helpful discussions and Eric J. Walter for consultations on the computer calculations. HK acknowledges support from ONR (N000141211042). We also acknowledge computing support from the computational facilities at William and Mary.

*matej.komelj@ijs.si
Visiting scientist at the College of William and Mary

1. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
2. N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004).
3. Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, The Journal of Chemical Physics 140, 174712 (2014).
4. D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Sci. Rep. 4, 6968 (2014).
5. N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, Phys. Rev. B 91, 060511 (2015).
6. I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, Phys. Rev. Lett. 114, 157004 (2015).
7. R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, Phys. Rev. B 91, 224513 (2015).
8. A. P. Drozdov, M. I. Eremets, and I. A. Trojan, ()
9. A. P. Drozdov, M. I. Eremets, I. A. Trojan, V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015).
10. P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
11. D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, Phys. Rev. B 91, 184511 (2015).
12. G. D. Gaspari and B. L. Gyorffy, Phys. Rev. Lett. 28, 801 (1972).
13. E. J. Nicol and J. P. Carbotte, Phys. Rev. B 91, 220507 (2015).
14. J. A. Flores-Divas, A. Sanna, and E. K. U. Gross, ArXiv:1501.06336v1.
15. J. Hirsch and F. Marsiglio, Physica C: Superconductivity and its Applications 511, 45 (2015).
16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
17. M. Lazzeri, C. Attaccalite, L. Wirtz, and F. Mauri, Phys. Rev. B 78, 081406 (2008).
18. J. Laffamme Janssen, M. Côté, S. G. Louie, and M. L. Cohen, Phys. Rev. B 81, 073106 (2010).
19. Z. P. Yin, A. Kutepov, and G. Kotliar, Phys. Rev. X 3, 021011 (2013).
20. Y. Okamoto, M. Saito, and A. Oshiyama, Phys. Rev. B 58, 7701 (1998).
21. H. Shi, N. Zarifi, W.-L. Yin, and J. S. Tse, Journal of Physics: Conference Series 377, 012093 (2012).
22. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
23. M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda, and E. K. U. Gross, Phys. Rev. B 72, 024545 (2005).
24. S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).
25. X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
26. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kolalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Schulz, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).
27. A. Togo, F. Oba, and I. Tanaka, Phys. rev. B 78, 134106 (2008).
28. J. P. Perdew, M. Ernzerhof, and K. Burke, The Journal of Chemical Physics 105, 9982 (1996).
29. C. Adamo and V. Barone, The Journal of Chemical Physics 110, 6158 (1999).
30. C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).
31. S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
32. H. J. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).
33. F. Birch, Phys. Rev. 71, 809 (1947).
34. R. Stowasser and R. Hoffmann, Journal of the American Chemical Society 121, 3414 (1999).
35. P. B. Allen and B. Mitrovich, in Solid State Physics, Vol 37, edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic Press, New York, 1982) pp. 1–92.
36. A. B. Migdal, Sov. Phys. JETP, 996 (1958).
37. A. Sanna, G. Profeta, A. Floris, A. Marini, E. Gross, and S. Massidda, Physical Review B 75, 020511 (2007).