In vivo and In vitro Management of Purple Blotch of Onion by Using Fungicides and Plant Extracts

Md. Mozidul Islam1, Fatema Begum2, Nazmoon Nahar3, U. A. Habiba4, K. M. Fakruzzaman5

1Assistant Horticulture Development Officer, DAE, Burirhat, Rangpur, Bangladesh
ddhicranganpur5400[at]gmail.com

2Corresponding author, Professor, Department of Plant Pathology, Sher-e-Bangla Agriculture University, Dhaka-1207, Bangladesh
fatema22_sau[at]yahoo.com

3Lecturer, Agriculture, Taragonj O/A Government College, Taragonj, Rangpur, Bangladesh
nahema97[at]gmail.com

4Undergraduate Student, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh

5Former Superintendent Engineer, Power Plant Commission, Operation & Maintenance, Welfare (bd) Ltd, 33, SMC Tower Dhaka-1213, Bangladesh

Abstract: An investigation was carried on the management of purple blotch disease of onion (Alternaria porri) during 2015-2016 at BARI, Joydebpur, Gazipur, Bangladesh to see the effectiveness of fungicides in controlling the disease and evaluate the performance of some plant extracts in controlling purple blotch disease of onion seed crop. In in vivo, the effectiveness of 10 fungicides (Antracol, Folicur, Inindo M-45, Metaril, Rovral, Score, Sucox, Sun copperoxy, Unilax and Vonot 306) were screen against the disease. The fungicides were applied at 0.2%, three times at 10 days interval. Of them Rovral appeared the best followed by Score. Folicur, Antracol, Metaril, Sucox and Indofil M-45. More or less similar trend of the fungicides became evident when they were tested against Alerternaria porri in in vitro. While fungitoxicity of seven plants extracts (Dhatura, Dhokolmi, Garlic, Ginger, Marigold, Neem and Nimbicidine) was tested in field condition. Nimbicidine showed significantly the best performance in reducing the disease incidence and giving higher yield.

Keywords: Alternaria porri, Fungicides, Plant extract, Nimbicidine

1. Introduction

Onion (Allium cepa L.) is the most important one and familiar throughout the world and also used as popular vegetable among the spices crops. The major onion growing districts of Bangladesh are: Faridpur, Cumilla, Dhaka, Dinajpur, Jessore, Pabna and Rajshahi. It is an important vegetable in Australia, Belgium, India, Japan, United Kingdom, USA and some other countries. However, bulb onion is still the most popular here. The present production of onion is around 18, 67,000 MT from 4, 59, 000 acres of land [1], which is low compared to other onion growing countries of the world.

A number of diseases are associated with onion crops [2] - [5]. Among them the well documented disease is onion purple blotch incited by Alternaria porri (Ellis) which is noted as a major disease throughout the world including Bangladesh [4] - [7]. In India, purple blotch of onion is a major devastating and widespread disease and causes serious yield reduction [8]. The disease is also a threat for seed production of onion [9] - [11].

Damage of foliage and breaking of floral stalks due to purple blotch resulting failure of seed production of onion are common [2], [12] reported that the disease causes 41-44% yield loss in Bangladesh. [13] reported that under favorable environmental conditions complete failure of the crop takes place and there will be no seed setting. In India, the disease causes 20 to 25 per cent loss in seed yield [14].

Litteratures from home and abroad indicate that many explored to find out suitable control methods of the disease, viz. resistant variety, date of planting, use of fertilizers, bulb size and chemical control with fungicides [16] - [23]. Available literatures indicating quite a largenumber of plant species have been reported to have the antipathogenic activity [24] - [27].

In Bangladesh, no resistant source is available. The varieties grown in the country are highly susceptible to the disease. Role of environmental factors on disease development has not yet been studied systematically. Therefore, quite a little information is available on fungicidal control; and mostly those are on bulb production only [2], [10] but not on seed production. So, the present study was undertaken with the following objectives:
1) To screen the effectiveness of fungicides in controlling the disease and
2) To evaluate the performance of some plant extracts in controlling purple blotch disease of onion seed crop.

2. Materials and Methods

Experimental site: The experiment was conducted at the Plant Pathology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, Bangladesh during 2015-2016 crop season. Three experiments were conducted for fulfilling the objectives. They were 1) Efficacy of some fungicides in controlling purple blotch disease of onion.2)
Bioassay of fungicides and their concentrations in controlling growth of *Alternaria porri* in *vitro* and 3) Effect of plant extracts in controlling purple blotch disease of onion seed crop.

Preparation of soil: The field soil was sandy loam, was prepared for well till using a tractor driven disc plough rotavator and harrow. Then the soil clods were broken by hammer. After ploughing the field was left for 7 days for sun and air drying. Later, fertilizers were mixed with soil. TSP, MP, Urea and decomposed cowdung were applied.

Fertilizer application: Soil was fertilized with Nitrogen (in the form of urea), Phosphorus (in the form of Triple super phosphate-TSP), Potassium (in the form of muriate of potash-MP); Calcium (in the form of gypsum), Zinc (in the form of zinc oxide) and Boron (in the form of boric acid) [12]. Cowdung was applied during land preparation. Whole quantity of TSP, Gypsum, Zinc oxide, boric acid one third of Urea, were applied during final land preparation; the rest two third of urea was applied later in two installments (40 and 60 days after planting). Half of muriate of potash was applied at final land preparation and rest half was applied 40 days after planting. Cowdung was incorporated into soil at the rate of 10 tons per hectare during land opening.

Intercultural operation: A total of three times irrigation was done at 30, 60 and 90 days after transplanting by flood method. The dead or sick seedlings were replaced by healthy seedlings within a week after plantation. The damaged plants were also replaced by border plants through gap filling. Weeding and mulching were done as and when required to keep the crop free from weeds, for better soil aeration and conserve soil moisture. Mechanical support was provided in each plot using bamboo stick to keep the plant erect and to protect them from the damage caused by storm and high winds.

Collection of data: Data were recorded on lesion area, disease severity, PDI (Percent disease index), stem height, number of stem per hill, umbel diameter, weight of seeds/umbel, weight of seeds per plot, yield per plot was converted into yield per hectare. Lesion area was expressed in millimeter by measuring length and breadth of the leaves. Disease severity of purple blotch was assessed using 0-5 scale [13], as follows, by selecting 10 plants randomly from each plot and used for PDI (percent disease index) estimation.

0 = no disease symptoms
1 = a few spots towards the tip, covering less than 10% leaf area
2 = several dark purplish brown patches covering less than 20% leaf area
3 = several patches with paler outer zone, covering up to 40% leaf area
4 = long streaks covering up to 75% leaf area or breaking of leaves/stems from the centre
5 = complete drying of the leaves/stems or breaking of the leaves/stems from the base.

The per cent disease index (PDI) was calculated by using formula given by [28], [29] as follows:

\[
PDI = \frac{\text{Total sum of numerical ratings}}{\text{Number of observation} \times \text{Maximum grading}} \times 100
\]

Umbel diameter was taken by randomly selecting 10 umbels from each replication. Weight of seeds/umbel was assessed by recording seed weight of 10 umbels per replication. The crop was harvested within 100–125 days after transplanting.

Efficacy of some Fungicides in Controlling Purple Blotch of Onion

Seedlings of local cultivars were included under the study. The unit plot size was 2.0 x 2.0m, keeping 20cm and 10cm spacing respectively for row to row and plant to plant. Apparently healthy seedlings were transplanted on 20.12.15.

Treatments (Fungicides): The experiment consisted of 11 treatments including control. The treatments were as follows:

Treatment	Fungicide
T0	Control
T1	Antracol
T2	Folicur
T3	Indofil M-45
T4	Metaril
T5	Rovral
T6	Score
T7	Sulcox
T8	Sun copperoxy
T9	Vondozeb
T10	Unilax

Application of fungicides: Spray of fungicides was initiated after the disease symptoms detected in the experimental plot. A total of three sprays were performed at an interval of 10 days. The experiment was scheduled following RCB D having three replications.

Bioassay of Fungicides and their Concentrations in Controlling Growth of *Alternaria porri in vitro*

Collection and Isolation of the fungus

Ideal purple blotch diseased samples of onion was collected from experimental field of BARI, Gazipur and brought in the Plant Pathology Central Laboratory. Diseased samples were processed into small pieces, sterilized with 10% chlorox solution for three minutes, rinsed with sterile water and finally placed on Petri plates (9 cm dia.) containing host extract media. The composition of the host extract Media were onion leaf (200 g), dextrose (15 g), agar (20 g) and water (1000 ml). Onion leaf was cut into small pieces, put in 500 ml water and boiled for 30 minutes. Then supernatant extract was decanted. Within the supernatant other ingredients were added with rest quantity of water to make one litre. The medium was then autoclaved at 121°C at 15 PSI for 20 minutes. After sterilization the medium (at 40-45°C) was poured at the rate of 20 ml per Petri plates. After solidifying of the media inoculated Petri plates were incubated at 25±1°C for five days. The isolated fungus was identified by using the keys outlined by [30].

Multiplication of *A. porri*: Pure culture of *A. porri* was multiplied on PDA (Potato 200 g, Dextrose 15 g, Agar 20 g, water 1000 ml) Petri plates by hyphal tip method.

Fungicides used: Ten fungicides namely, Antracol, Folicur, Indofil M-45, Metaril, Rovral, Score, Sulcox, Sun Copperoxy, Unilax and Vondozeb were included in the study.

Concentration of Fungicides and its preparation: Fungicides were used in four concentrations. Those were...
Bioassay of Fungicides: Poisoned food technique was followed [31]. Potato dextrose agar medium was used and poured at the rate of 15 ml per Petri plate (9 cm). Before pouring of medium one ml of fungicidal solution (for each concentration of fungicides) was added in each Petri plate. After adding medium the plates were shaken in swirling motion for uniform mixing. After solidifying of the media, the centre of each Petri plate was inoculated with a 3 mm mycelial disc, cut from the edge of 10 days old fresh culture of A. porri. The inoculated Petri plates were then incubated at 25 ± 1°C for 10 days.

Collection of data: After incubation the mycelia growth of the fungus from each concentration of the fungicide was recorded.

Design: The experiment was arranged following Completely Randomised Design.

Effect of Plant Extracts in Controlling Purple Blotch Disease of Onion Seed Crop

Treatments (Plant extracts): There were eight treatment including control. The treatments were as follows:

Treatment	Common Name	Scientific Name
T₁	Dhatura	Datura alba
T₂	Dholkalmi	Ipomoea fistulosa
T₃	Garlic	Allium sativum
T₄	Ginger	Gingiberofficinale
T₅	Marigold	Tagetespatula
T₆	Neem	Azadirachta indica
T₇	Nymbicidine	Azadirachta indica
T₈	Control	-

From T₁ to T₆, the dose of each extract was used at the rate of 15 ml per 1000 ml water. Treatment T₇, Nymbicidine was applied at the rate of 0.2% per 1000 ml water.

Application of Plant Extracts: A total of five sprays were scheduled at 10 days interval, initiating just after the onset of disease symptom in experimental field.

Analysis of data: Data were analysed statistically using MSTAT-C computer Program. Data were transformed, whenever necessary, following Arcsine transformation. Means of treatments were separated using Duncan’s Multiple Range Test (DMRT) [32].

3. Results

3.1 Efficacy of Some Fungicides in Controlling Purple Blotch Disease of Onion

There was significant variations among the fungicides in relation to disease parameters of purple blotch disease of onion and the corresponding effects on yield (Table 1 and 2).

The effect of fungicides on plant height ranged from 27.8 – 37.9 cm. The highest plant height was recorded in plants where Rovral was applied and it appeared statistically similar to those of Antracol, Folicur, Indofil M-45, Metaril, Score, Sulcox and Sun Copperoxy. Significantly the lowest plant height was recorded under the control treatment, where only plain water was sprayed; but it showed statistically insignificant compared with the fungicides like Sun Copperoxy, Unilax and Vondozeb.

In case of leaf number per seedling existence of difference among the treatments became evident. It ranged from 3.9 – 6.4. The effect of fungicides like Antracol, Folicur, Rovral and score on producing leaf number per seedling were insignificant. The minimum of 3.9 leaves per seedling was recorded under control and it gave statistically similar response after treatments with Indofil M-45, Sun Copperoxy, Unilax and Vondozeb. The maximum (31.9 mm²) and the minimum (14.33 mm²) lesion area were assessed respectively under control and Rovral. Among the tested fungicides, Rovral appeared the best in minimizing lesion area of purple blotch; followed by Score (15.93 mm²), Folicur (17.13 mm²), Antracol (19.20 mm²), Metaril (19.20 mm²), Sulcox (20.4mm²), Indofil M-45 (21.56 mm²), Sun Copperoxy (22.1 mm²), Unilax (23.06 mm²) and Vondozeb (29.63 mm²). The fungitoxicities of Antracol, Folicur, Indofil M-45, Metaril, Rovral, Score, Sulcox and Sun Copperoxy in reducing lesion area of A. porri, were statistically similar. These fungicides, however, varied significantly with Unilax, Vondozeb and control. The effect of Unilax was statistically similar to that of Vondozeb but it (Unilax) differed significantly with the control.

The effectiveness of the fungicides in reducing PDI of purple blotch can be arranged in ascending order as: Rovral(32.0%), Score (36.0%), Folicur (40.66%), Antracol (42.0%), Metaril (45.33%), Sulcox (50.66%), Indofil M-45 (52.00%), Sun Copperoxy (56.0%), Unilax (57.33%), Vondozeb (58.66%) and Control (72.00%). When statistical analysis was performed it was found that Rovral proved to be the best one in minimizing PDI significantly and it appeared statistically similar to that of Score (Fig. 1), Folicur and Antracol but differed significantly with the rest of the treatments. Among the fungicides Vondozeb appeared as least effective and gave the maximum PDI value of the disease numerically but the values was statistically identical with Unilax, Sun copperoxy, Sulcox and Indofil M-45. Through Indofil M-45 appeared statistically insignificant to Antracol and Folicur but it gave significantly higher PDI compared to Score and Rovral (Fig. 2). Based on the parameter of reduction of PDI over control, it was found that the maximum PDI of purple blotch was reduced by the application of Rovral (55.55%), followed by score (50.0%), Folicur (43.52%), Antracol (41.66%), Metaril (37.04%), Sulcox (29.63%), Indofil M-45 (27.77%), Sun Copperoxy (22.22%), Unilax (20.37%) and Vondozeb (18.52%).

Results obtained from yield contributing parameters indicated the presence of significant differences among the used fungicides. Bulb diameter among the treatments, ranged from 24.17–30.64 mm; where the minimum and the maximum was recorded from control and Rovral, respectively. There was no other significant difference
among the fungicides on this parameter. Significantly lower bulb diameter was measured from control and it was statistically alike with Indofil M-45, Sulcox, Sun Copperoxy, Unilax and Vondozeb.

In respect of bulb weight per plant, the highest bulb weight was assessed from Rovral treated plants (26.63g) which was followed by Score (25.9g), Folicur (24.85g), Antracol (23.65g), Metaril (20.94g), Sulcox (18.86g), Indofil (18.22g), Sun Copperoxy (18.06g), Unilax (18.05g), Vondozeb (15.86g) and control (15.03g). Statistical analysis revealed that significantly higher per plant bulb weight was incurred by Rovral; its differences were insignificant with Score, Folicur, Antracol and Metaril. Metaril again showed statistically similar it’s in terms of effect on bulb weight per plant, with Indofil, Sulcox, Sun Copperoxy, Unilax, Vondozeb and the Control. Regarding, bulb weight, the performance of fungicides in order of descending, can be arranged as: Rovral (2.79kg), Score (2.72 kg), Folicur (2.64 kg), Antracol (2.54 kg), Metaril (2.47 kg), Sulcox (2.35 kg), Indofil (2.22 kg), Sun Copperoxy (2.08 kg), Unilax (2.07 kg), Vondozeb (2.04 kg) and Control (1.98 kg). However, significantly lower bulb yield was harvested from control which was statistically at par with Vondozeb, Unilax, Sulcox, Sun Copperoxy, and Indofil. When bulb yield was converted to determine the percent yield increased over control, due to application of fungicides it appeared that Vondozeb, Unilax and Indofil. Metaril again showed statistical similar it’s in terms of effect on bulb weight per plant, with Indofil, Sulcox, Sun Copperoxy, Unilax, Vondozeb and the Control. Regarding, bulb weight, the performance of fungicides in order of descending, can be arranged as: Rovral (2.79kg), Score (2.72 kg), Folicur (2.64 kg), Antracol (2.54 kg), Metaril (2.47 kg), Sulcox (2.35 kg), Indofil (2.22 kg), Sun Copperoxy (2.08 kg), Unilax (2.07 kg), Vondozeb (2.04 kg) and Control (1.98 kg). However, significantly lower bulb yield was harvested from control which was statistically at par with Vondozeb, Unilax, Sun Copperoxy, Sulcox and Indofil. When bulb yield was converted to determine the percent yield increased over control, due to application of fungicides it appeared that 28.28, 33.33, 12.12, 24.72, 40.90, 37.37, 18.68, 5.05, 4.54 and 3.03% more yields were obtained respectively (Fig. 2), by using Antracol, Folicur, Indofil, Metaril, Rovral, Score, Sulcox, Sun Copperoxy, Unilax and Vondozeb.

Table 1: Effect of different fungicides in controlling purple blotch disease of onion

Treatment	No. of leaf/seedling	Plant height (cm)	Lesion area (sq.mm)	%PDI
T1 = Antracol	5.5 abc	35.9 a	19.20 cd	42.00 def (6.47)
T2 = Folicur	5.8 ab	36.7 a	17.13 cd	40.66 def (6.67)
T3 = Indofil M-45	4.5 cd	33.5 abc	21.56 cd	52.00 bcd (7.20)
T4 = Metaril	5.3 bc	35.1 a	19.40 cd	45.33 cde (6.72)
T5 = Rovral	6.4 a	37.9 a	14.33 d	32.00 f (5.65)
T6 = Score	6.1 ab	36.8 a	15.93 c	36.00 ef (5.99)
T7 = Sulcox	5.2 bc	34.5 ab	20.40 cd	50.66 bcd (7.09)
T8 = Sun Copperoxy	4.5 cd	33.2 abc	22.10 cd	56.00 bcd (7.46)
T9 = Unilax	4.1 d	29.3 bc	23.06 bc	57.33 b (7.56)
T10 = Vondozeb	4.1 d	28.0 c	29.63 ab	58.66 b (7.62)
T11 = Control	3.9 d	27.8 c	31.90 a	72.00 a (8.47)

— Means bearing same letter within the same column do not differ significantly at 5% level following DMRT.
— Figures in parenthesis indicate transformed value.

Table 2: Effect of different fungicides on yield contributing characters of purple blotch of onion

Treatment	Diameter (mm/bulb)	Weight (gm/bulb)	Bulb weight (kg/plot)
T1 = Antracol	29.84 a	23.65 a	2.54 ab
T2 = Folicur	30.40 a	24.85 a	2.64 ab
T3 = Indofil M-45	28.50 ab	18.22 b	2.22 bcd
T4 = Metaril	29.5 a	20.94 ab	2.47 abc
T5 = Rovral	30.64 a	26.63 a	2.79 a
T6 = Score	30.45 a	25.99 a	2.72 a
T7 = Sulcox	28.73 ab	18.86 b	2.35a bcd

3.2 Bioassay of fungicides and their concentrations in controlling growth of Alternaria porri in vitro

Results on the effectiveness of fungicides and their concentrations on mycelial growth of A. porri are presented in Table 3. Irrespective of concentrations, Rovral and Score appeared the best in controlling growth of A. porri and they showed statistically similar effect. The fungicide Folicur...
was highly effective at higher concentrations (2000 and 1000 ppm) and showed statistically similar with Rovral and Score even at their lowest concentration (250 ppm). Folicur at 500 and 250 ppm has shown statistically insignificant effect on mycelial growth of the fungus. The fungicides; Antracol, Sulcox and Metaril exhibited statistically similar effect with their highest concentration (2000 ppm) against A. porri and they showed statistically insignificant with Folicur at 500 ppm. Vondozeb failed to prove its effectiveness in restricting the growth of the fungus even at its highest concentration. More or less similar trend of in effectiveness of Unilax became evident during performing of the study. Sun Copperoxy and Indolfi M-45 was less effective against A. porri to check the growth even at the highest concentration. The maximum mycelia growth of the fungus was recorded in control (9.0 cm) where plain sterile water was added and the growth was statistically similar to those of Sulcox (500 and 250 ppm), Sun Copperoxy (500 and 250 ppm), Metaril (250 ppm), Vondozeb (2000, 1000, 500 and 250 ppm) and Unilax (500 and 250 ppm).

Table 3: Efficacy of some fungicides and their concentrations on mycelial growth of Alternaria porri in In vitro

Fungicide	Mycelial growth (cm)				
	2000 ppm	1000 ppm	500 ppm	250 ppm	
T₁ = Antracol	2.967	3.233	5.883	6.987	b-f
T₂ = Folicur	1.167	1.617	3.083	4.517	h
T₃ = Indolfi M-45	5.317	6.283	7.100	7.750	a-d
T₄ = Metaril	3.450	5.350	7.100	7.750	a-d
T₅ = Rovral	0.650	1.000	1.283	1.333	k
T₆ = Score	0.766	1.050	1.277	1.503	k
T₇ = Sulcox	3.483	7.050	8.000	8.367	ab
T₈ = Sun Copperoxy	6.017	6.550	7.717	8.067	abc
T₉ = Unilax	6.850	6.400	7.467	8.750	a
T₁₀ = Vondozeb	7.817	8.067	8.210	8.967	a
T₁₁ = Control	9.000	9.000	9.000	9.000	a

- Means bearing same letter within the same column do not differ significantly at 5% level following DMRT.

3.3 Effect of Plant Extracts in Controlling Purple Blotch Disease of Onion Seed Crop

Significant differences among the effects of plant extracts became evident in controlling purple blotch of onion as well as in the seed contributing characters (Tables 4 and 5). The maximum stem height was recorded in the crops where Dhatura (T₁) extract (62.09 cm) was applied followed by T₈ (Neem), T₃ (Nymbicidine), T₂ (Ginger), T₆ (Garlic), T₅ (Control), T₁ (Marigold) and T₄ (Dholkalmi). Statistical analysis revealed that significantly higher stem height was measured under the treatment T₁ and this was statistically similar to T₃ and Nymbicidine (T₄) but differed significantly with the rest of the treatments (Table 4). The treatment T₃ gave the lowest stem height and the differences were statistically insignificant with T₂, T₁ and T₆. In case of stem number per hill, it ranged from 1.86-2.47, where the minimum and the maximum number of stem per hill were recorded in T₃ and T₁, respectively. The effect of treatments on producing number of stem per hill under the treatments T₁, T₃, T₅, T₆ and T₇ were insignificant. Significantly fewer number per stem per hill was recorded in T₈ which was statistically similar to those of T₂ and T₅. The differences on the effects of plant extracts on the lesion-area were also pronounced under the study and it ranged from 18.40-25.90mm². In order of affectivity of plant extracts in reducing the lesion area of purple blotch, the treatments can be arranged as: T₇ (18.40 mm²), T₄ (19.13 mm²), T₁ (19.20 mm²), T₂ (20.40 mm²), T₅ (20.60 mm²), T₄ (21.33 mm²), T₃ (25.10 mm²) and T₆ (25.90 mm²). Significantly better response in minimizing the purple blotch lesion area was measured under the treatment T₇ which differed significantly with all the rest of the treatments. The effect of treatments noted at T₁, T₃, T₅ and T₆ showed statistically similar in reducing lesion area and they showed significantly lower lesion area compared to those of T₁ and T₆. Regarding PDI value, the minimum PDI was computed at T₃ (37.66%). The treatment, T₁ ranked next to T₇ followed by T₆ (43.66%), T₂ (45.66%), T₃ (52.00%), T₃ (64.00%), T₂ (64.00%) and T₈ (86.33%). Statistical analysis revealed that, among the plant extracts, Nymbicidine (T₄) was the best, which significantly reduced the PDI of purple blotch compared to the others ones except T₁. The differences between the reductions of PDI under the treatments T₁ and T₆ was insignificant and the treatments gave significantly lower PDI compared to T₁, T₂, T₄, T₅ and T₈(Fig. 3). The treatments T₂ and T₆ showed statistically similar performance on reduction of PDI. Treatment T₈ has shown significantly higher PDI and it differed significantly with the rest of the treatments. The maximum PDI reduced over control was shown by T₇ (56.37%) followed by T₆ (51.20%), T₁ (49.84%), T₂ (47.10%), T₃ (39.76%) and T₅ (30.49%).

The treatments showed a wide variation on yield contributing parameters both numerically and statistically. The influence of treatments (Plant extracts) on umbel diameters ranged from 46.23- 53.83 mm. The maximum umbel diameter was recorded in T₁; followed by T₆ (52.46 mm), T₁ (51.69 mm), T₅ (50.55 mm), T₃ (49.67 mm), T₃ (48.67 mm), T₂ (48.43 mm) and T₈ (46.23 mm). The umbel diameter recorded by T₁ differed significantly with those of other treatments (Table 5). However, there was no significant variation between the treatments, T₁ and T₆ on umbel diameter; so were T₄ and T₅. Significantly lower umbel diameter was recorded in T₈ and it differed significantly with the rest of the treatments. In case of weight of seed per umbel, significantly higher amount of seed was harvested from the umbels of T₈ treated plots but statistically it showed similar effects with all the rest of the treatments except T₈, where no plant extract was sprayed. Though significantly lower seed weight per umbel was assessed in T₈ it was statistically similar to those of T₂, T₃, T₄, T₅ and T₇.

The yield per plot ranged from 55.00-135.00g with the minimum and the maximum given by T₈ and T₇, respectively. The treatment T₆ gave the second highest per plot seed yield (109.30 g) followed by T₁ (92.67g), T₅ (82.67g), T₇ (72.00g), T₃ (66.00g) and T₂ (65.00g) (Table 5). Statistical analysis indicated that significantly higher seed yield was harvested under the treatment T₇ and it differed significantly with all other treatments. The treatment T₆ gave significantly lower seed yield than T₁ but gave significantly higher per plot seed yield over T₁, T₂, T₃, T₄, T₅ and T₈. The effect of T₁ and T₅ on per plot seed yield was insignificant.
Again, the effect of T_2, T_3 and T_4 on same parameters was insignificant among themselves. About 68.49, 18.18, 20.00, 30.90, 50.30, 98.72 and 145.45% yield increased over control was estimated respectively, by those of T_1, T_2, T_3, T_4, T_5, T_6 and T_7 treatments (Fig.4).

Table 4: Fungi toxicity of some plant extracts in controlling purple blotch of onion seed crop

Treatment	Stem ht. (cm)	Stem/hill	Lesion area (mm²)	%PDI
T_1 = Dhatura	62.09 a	2.47 a	20.40 b	43.30 de (6.58)
T_2 = Dholkalmi	57.74 d	2.17 abc	20.60 b	45.66 c (6.75)
T_3 = Garlic	59.42 bc	1.93 bc	19.20 b	64.00 b (8.00)
T_4 = Ginger	59.87 bc	2.23 ab	21.33 b	52.00 c (7.21)
T_5 = Marigold	58.13 ed	2.20 ab	25.90 a	64.00 b (8.00)
T_6 = Neem	61.22 ab	2.40 a	19.13 b	43.66 cd (6.60)
T_7 = Nymbicidine	61.19 ab	2.43 a	18.40 c	37.66 e (6.15)
T_8 = Control	58.48 cd	1.86 c	25.10 a	86.33 a (9.29)

- Means bearing same letter within the same column do not differ significantly at 5% level following DMRT.
- Figures in parenthesis indicate transformed value.

Table 5: Effect of different plant extracts on yield contributing characters of purple blotch of onion

Treatment	Umbel diameter (mm)	Weight of seed (g/umbel)	Seed yield (g/plot)
T_1 = Dhatura	51.69 b	0.960 a	92.67 c
T_2 = Dholkalmi	48.43 d	0.840 ab	65.00 ef
T_3 = Garlic	48.67 d	0.723 ab	66.00 ef
T_4 = Ginger	50.55 c	0.766 ab	72.00 de
T_5 = Marigold	49.67 c	0.726 ab	82.67 cd
T_6 = Neem	52.46 b	1.067 a	109.30 b
T_7 = Nymbicidine	53.83 a	0.833 ab	135.00 a
T_8 = Control	46.23 e	0.473 b	55.00 f

- Means bearing same letter within the same column do not differ significantly at 5% level following DMRT.
4. Discussions

Under the study 10 fungicides viz. Antracol, Folicur, Indofil M-45, Metaril, Rovral, Score, Sulcox, Sun copperoxy, Unilax and Vondozeb were evaluated both in vitro and in vivo to evaluate their affectivity in controlling purple blotch of onion caused by Alternaria porri and their influence on yield. Results indicate that there was significant variation among the fungicides in their efficacy. All the fungicides were not equally effective. Of the fungicides tested, Rovral scored the best in performance followed by score, Folicur and Antracolin *vitro*. Metaril was only effective at 2000 ppm to inhibit the growth of *A. porri*. The fungicides performed statistically similarly almost in all parameters. But in *in-vitro* assay, Antracol and Folicur were found equally significantly effective, irrespective of concentrations. They showed to be statistically similar at only two higher concentrations (2000 and 1000 ppm) of Rovral. Score appeared less effective compared to Antracol and Folicur, irrespective of concentrations, *in vitro*. Metaril was only effective at 2000 ppm to inhibit the growth of *A. porri*. The fungicides Indofil M-45, Sulcox, Sun Copperoxy and Unilax were more or less effective against purple blotch. The present finding on effectiveness of Rovral against *Alternaria* spp. has been corroborated with by many other researchers [9], [10] and [33]-[44].According to [45] more than 75% disease reduction was obtained using Rovral. [46]opined that iprodione (Rovral) performed excellent in reducing disease intensity of purple blotch and gave highest yield. The effectiveness of Folicur, Metaril, Antracol against purple blotch have also been suggested by [22], [23], [40], [43] and [47]-[53].

Under the study Indofil M-45 (mancozeb) was found not so effective to control *A. porri* incidence compared to Rovral, Score, Folicur and Metaril. On the contrary good control of *A. porri* by Dithane M-45 (Mancozeb) have also been reported by many workers under both *in vitro* and *in vivo* [2], [8]-[11], [20], [23], [25], [39], [50] and [54]-[60], [9], [13], [58] and [61]stated that Dithane M-45 was the best among the fungicides to reduce the purple blotch disease incidence and maximizing bulb yields. [62]reported that mancozeb reduced the purple blotch of onion by 23.6% and increased the yield by 35.0%. The potentiality of copper fungicides against *A. porri* has been documented by many researchers [10], [22], [23], [43], [50], [59]-[61] and [63]-[65] which differed with the present investigation where coper fungicides like sun Copperoxy and Sulcox appeared to be less effective to *A. porri*. According to [8], however, copperoxychloride was the best to reduce purple blotch and to maximize the highest bulb yield; which the results of this information fail to support. It may indicate the need to investigate whether *A. porri* has developed resistance against copper based fungicides, in the meantime.

Results on evaluation of fungi toxicity of plant extracts to control purple blotch of onion indicate that all of them have some potentiality against the disease but it varied widely among the extracts of plant origin. Of them Nymbicidine, Neem leaf extracts and Datura performed better compared to rest of the plant extracts. Dholkolmi plant extract shows less effectiveness against purple blotch (*A. porri*); among the plant extracts. The fungitoxic potential of Neem and Datura have been supported by [26], [27] and [66]-[69]. The extracts of garlic, ginger and onion also showed some degree of potential to restrict the infestation of purple blotch. This was in line with the findings of [24]-[26], [67], [68] and [70]-[72] who tested these extracts against a good number of both seed and soil-borne fungi.

5. Conclusions

In a field study fungitoxic potential of 10 fungicides were tested to locate effective one(s) to combat purple blotch (*A. porri*) disease of onion using seedlings of local cultivars, transplanted in unit plot of 2.0 x 1.2 m. The fungicides employed were: Antracol, Folicur, Indofil M-45, Metaril, Rovral, Score, Sulcox, Sun Copperoxy, Unilax and Vondozeb. All the fungicides were used at the rate of 0.2%. A total of three sprays were executed at 10 days interval. It appeared that there were significant variations in effectiveness among the tested fungicides against *A. porri*. Among them Rovral gave best control of the disease (lesion area and PDI) followed by Score, Folicur, Antracol, Metaril, Sulcox, Indofil M-45, Sun Copperoxy, Unilax and Vondozeb. More or less similar trend were shown by fungicides in yield contributing characters.

The effectiveness of the fungicides tested *in vivo* was also evaluated *in vitro* to evaluate their performance against *A. porri* using poison food technique. The fungicides were tested at four concentrations viz. 250, 500, 1000 and 2000 ppm. Irrespective of concentrations Rovral and Score appeared the best one in inhibiting the growth of *A. porri* followed by Folicur. Among the fungicides Vondozeb and Unilax were proved ineffective to restrict the growth of *A. porri*.

The antifungal effect of six plant extracts (Datura, Dholkalmi, Garlic, Ginger, Marigold and Neem) and one commercial plant product, namely Nymbicidine (ACI crop care division) was evaluated under field condition. Under the study, bulbs of one of local cultivar was planted in unit plot size of 3.0 x 1.2 m. Nymbicidine was applied at the rate of 2 ml/litre of water while 15 ml/litre of water each plant extract was applied to best their efficiency. Each treatment was replicated thrice. As the crop was seed crop, plant extracts was applied five times at an interval of 10 days. It was found that all the plant extract had some degree of potentiality in reducing disease contributing characters. Of them Nymbicidine *T*₁ performed best in minimizing the purple blotch and it differed significantly from rest of the plant extracts. This was followed by *T*₁ (Datura), *T*₉ (Neem), *T*₃ (Dholkalmi), *T*₄ (Ginger), *T*₃ (Garlic) and *T*₄ (marigold). Nymbicidine also gave the highest seed yield.

Based on the findings of the present investigation the following conclusions may be made.

i) Fungicides like Rovral, Score, Folicur, Metaril are highly effective to check purple blotch disease of onion

ii) Nymbicidine, Datura, Neem and Dholkalmi are potential plant extracts against *Alternaria porri*.
References

[1] Bangladesh Bureau of Statistics, Year Book of Agricultural Statistics of Bangladesh, Statistics Division, Ministry of Planning, Dhaka, 2016-17.

[2] Ashrafuzzaman and M.U. Ahmed, “Control of foliage disease of onion by spray fungicides,” Bangladesh Hort., 4(2): 25-30, 1976.

[3] D.C.L.Munoz, J.J.P. Martinez and A.P. Perez, “Onion seed production under tropical conditions,” Humboldt Inst. Fund. Res. Trop. Agric. Acad. Sci., 10(2): 42-45, 1984.

[4] H.U. Ahmed, and M.M. Hossain, “Final report of the project crop disease survey and establishment of a herbarium at BARI,” Plant Pathology Divn. BARI, Joydebpur, Gazipur, 170 pp, 1985.

[5] T.K. Bose and G.M. Som, Vegetable crops in India, Nayaprokash, Calcutta, India, 567-569 pp, 1986.

[6] J.J. Castellanos-Linareas, F. Aucht-Jenccens and I. Garcia-Correos, “Effect of Alternaria porri (Ell.) Cif. on onion seed production under experimental conditions in Cuba,” In Rev. Pl. Pathol., 67: 2730, 1988.

[7] S.R. Ahmed and J.P. Goyal, “Control of purple blotch on onion with fungicides,” Phythophylactica, 2092): 85-186, 1988.

[8] R.P. Gupta, V.K. Srivastava, and U.B. Pandey, “Effect of different fungicides on the control of purple blotch disease of onion bulb crop,” Pl. Path. Lab. Associated Agric. Dev. Foundation East Kailash, New Delhi 110065, India, Pesticides, 21 (5): 33-34, 1987.

[9] M.L. Rahman, H. U. Ahmed and I. H. Mian, “Efficacy of fungicides in controlling purple leaf blotch of onion,” Bangladesh J. Plant Path., 4(1&2): 71-76, 1988.

[10] S. Yazawa, “Onion seed production in Srilanka R.P.P.,” 72(7): 526, 1993.

[11] S.R. Sharma, “Effect of fungicidal sprays on purple blotch and bulb yield of onion,” Indian Phytopath., Indian Inst. Hort. Res. Bengalore 560080, Karnataka, India, 39(1): 78-82, 1986.

[12] T.S.Thindand J.S. Jhooty, “Association of thrips with purple blotch infection on onion plants caused by Alternaria porri,” Indian Phytopathol, 35: 696-698, 1982.

[13] K.S. Sandhu, S.S. Gill and H. Singh, “Effect of cultural practices on purple blotch disease in onion seed crop,” Hort. Abs., 53: 1654, 1983.

[14] S.N. Vishwakarma, “Economics of chemical control of purple blotch Alternaria porri of onion seed crop,” Pestology, Bombay, 10(6): 18-21, 1986.

[15] R.B.L. Gupta1, V.N. Pathak, “Effect of age of host inoculum density and duration of high relative humidity on development of purple blotch of onion,” Phythophylactica 18(3): 151-152, 1986.

[16] D. Mishra, I.C. Mahanta, P.K., Chhotaray, “Chemical control of purple blotch of onion in Orissa,” Orossa J. of Agric. Res., (1): 25-28, 1989.

[17] S.K. Sugha, P.D. Tyagi and R.K. Develash, “Effect of heat treatment of bulb and spray of fungicides in management of purple blotch (Alternaria porri) of onion (Allium cepa),” Indian J. Agril. Sci., 63(5): 303-305, 1993.

[18] P.K. Srivastava, R.C. Sharma and R.P. Gupta, “Effect of different fungicides on the control of purple blotch and Stemphylium blight diseases in onion seed crop,” Newsl. Natl. Hort. Res. Dev. Found., 15(3): 6-9, 1995.

[19] N. Ahmed and K. Sultana, “Fungitoxic effect of garlic on treatment of jute seed,” Bangladesh J. Bot., 13: 130-136,1984.

[20] U.P. Singh, R.P. Srivastava, K.P. Singh and G.D. Mishra, “Control of powdery mildew of pea by ginger extract,” Indian Phytopath., 44(1): 55-59, 1991.

[21] B.N. Bhowmickand V. Vardhan, “Antifungal activity of some leaf extract of medicinal plants on Curvularia lunata,” Indian Phytopath., 34: 386, 1991.

[22] H.S. Sarvasangala and R.K. Dutta, “Evaluation of plant extracts for the control of fungal diseases of mulberry,” Indian Phytopath. 46(4): 398-401, 1993.

[23] B.E. Wheeler, An introduction to plant diseases, John Willey and Sons, Ltd., U. K, pp. 301, 1969.

[24] M.R. Islam, N. Akhter, S.M. Chowdhury, M. Ali, and K.U. Ahmed, “Evaluation of Fungicides against Alternaria porri Causing Purple Blotch of Onion,” Journal of Agricultural Science and Technology, 27-30, 2003.

[25] M.B. Ellis, Dematiaceous Hyphomycetes. Commonwealth Mycol. Institute, Kew, Surrey, England, 608 p, 1971.

[26] M.J. Tuute, Plant Pathological Methods: Fungi and Bacteria, Purdue University, Lafayette, Indiana, U.S.A., 239p, 1969.

[27] K.A. Gomez and A.A. Gomez, Statistical Procedure for Agricultural Res. (2nd Ed. John Wiley and Sons, Singapore pp. 188-192, 1984.

[28] B. Jouan, J. M. Lemaire and Y. Herve, “Studies on diseases of cauliflower. I. Pathogens of seed plant of cauliflower,” Annales-de-Phytopathologie 4(2):133-135, 1972.

[29] R. B. Maude, “Alternaria. Routine sprays to check seed crop disease now under test,” Grower 88(7): 288-291, 1977.

[30] L. Miura, “Control of fungi on onion seeds,” Pesquisa e Andamento EMPASC, Florianopolis, Brazil, No. 45, 2pp, 1985.

[31] M.G. Anderson, Cabbage storage decay control. Ann. Rep. Sta. Kentville. Nova.Scotia.Canada, pp. 115, 1986.

[32] G. Bedlan, “Control of leaf spot in chinese cabbage,” Rev. Plant Path., 67:4169, 1987.

[33] D. Esiyok, N. Cetindaya, E. Barnoczki, Cabbage storage decay control, 67:4169, 1987.

[34] P.P. Sinhaand R. K. Prasad, “Chemical management of Alternaria blight of cauliflower seed crop,” Indian J. Mycol. and Plant Pathol., 19(2):204-205, 1989.

[35] E. Barnoczki-Stoilova, A. Barnoczki, F. Szalay, J. Hirka and S. Varga, “The effect of plant protective sprays applied during flowering on onion Yields and seed quality” Zoldseg-termesztésiKutatóIntezet, Bulletine.NyáriProka, 30, 1988.

[36] Perez-Moreno, L., Chavez-Hernandez, Luis-Felipe, “Genotype and fungicide evaluation for control
of purple spot (Alternaria porri) and downy mildew peronospora destructor (Berk) caps] of onion (Allium cepa L.) in Irapuato,” GTO. Universidad de Guanajuato, (Mexico), Escuela de Agronomia Y Zootecnia, Apdo. Postal 311, Irapuato, Gto. 36500. Revista-Mexicana-de-Fitopatologia (Mexico), V. 10(1). p. 29-34, 1992.

[37] M. Babadoost, “Control of Alternaria brassicae and A. brassicicola with ground and aerial fungicide applications,” Seed Sci. and Technology, 21(1):1-7, 1993.

[38] S.K. Sugha, “Management of purple blotch (Alternaria porri) of garlic with fungicides,” Indian J. Agril. Sci. 65(6):455-458, 1995.

[39] A. Ayub, T. K. Dey, M. Jahan, H. U. Ahmed and K. B. Alam, “Foliar spray of fungicides to control Alternaria blight of mustard,” Annals of Bangladesh Agriculture, 6(1):47-50, 1996.

[40] N. Filjadic and T. B. Sutton, “Chemical control of Alternaria of garlic bulbs caused by Alternaria mali,” Plant Disease, 76(2):126-130, 1992.

[41] N.I. Georgy, I.A. El-Henawy, A.E. N.I. Georgy, I.A. Radwan, H.A. Mohammed and T. B. Sutton, “Evaluation of seed treatments for reducing Alternaria brassicae and A. brassicicola of purple spot (Alternaria porri) (Ell.) Cif.] of onion (Allium cepa L.),” Hort. Abs., 55:7618, 1985.

[42] M. Tahir, M. Shah, M. Khan, A. Samad and S.F.A. Shah, “Chemical control of purple disease of onion,” Sarhad J. of Agriculture, 7(3):373-376, 1991.

[43] T.A.S. Aveling, H.G. Snyman and S.P. Haude, “Evaluation of seed treatments for reducing Alternaria porri and Stemphyliumvascuscarium onion seed,” Plant disease, 77(10):1000-1011, 1993.

[44] E.W. Ryan, W. P. Staunton and J. C. Cassidy, “Diseases of vegetables,” Rev. Plant Path., 63:5178, 1984.

[45] E. N. Nene and P.N. Thapliyal, “Fungicides in plant disease control” Oxford and IBH Pub.Co., New Delhi, Bombay and Calcutta, India, 379p, 1979.

[46] S. M. H. Quadri, K.J. Srivastava, S.R. Bhonde, U.B. Pandey and P.M. Bhagchaudani, “Fungicidal bioassay against some important pathogens of onion,” Pesticides 16: 11-16, 1982.

[47] A. K. Sharma, “Field evaluation of some common fungicides for control of purple blotch of onion,” Pesticides, 21(9): 39-42, 1987.

[48] R.P. Gupta, P.K. Srivastava, K.J. Srivastava and B.S. Bhardwaj, “Prevalence of onion disease and insect pests in India and strategy for effective pest management,”Newsletter Associated Agricultural Development Foundation, Nasik, 422001, India, 11(3): 7-11, 1992.

[49] V.V. Datar, “Chemical management of purple blotch of onion in India,” TVIS Newsletter, 1(2): 23-24, 1996.

[50] M.B. Joiani and H.N. Sonone, “Evaluation of nine fungicides for the control of leaf blight (Alternaria cepalicolaRac) or onion in Maharashtra,” J. Maharashtra Agril. Univ., 3(3): 211-213, 1978.

[51] M. Babadoost, “Control of Alternaria brassicae and A. brassicicola with ground and aerial fungicide applications,” Seed Sci. and Technology, 21(1):1-7, 1993.

[52] R. P. Gupta, P.K. Srivastava, K.J. Srivastava and B.S. Bhardwaj, “Prevalence of onion disease and insect pests in India and strategy for effective pest management,”Newsletter Associated Agricultural Development Foundation, Nasik, 422001, India, 11(3): 7-11, 1992.

[53] V.V. Datar, “Chemical management of purple blotch of onion in India,” TVIS Newsletter, 1(2): 23-24, 1996.

[54] K.J. Srivastava, S.M.H. Qadri, B.K. Tiwari and S.R. Bhonde, “Chemical control of purple blotch of onion bulb in kharif season,” Indian Phytopathology, 44(2): 251-253, 1991.

[55] D.N. Padule and P.G. Utikar, “Evaluation of fungicides for the control of Alternaria blight on onion,” Madras Agril. J., 64(10): 693-694, 1977.

[56] M.B. Joiani and H.N. Sonone, “Evaluation of nine fungicides for the control of leaf blight (Alternaria cepalicolaRac) or onion in Maharashatra,” J. Maharashtra Agril. Univ., 3(3): 211-213, 1978.

[57] K. J. Srivastava and R.P. Gupta, “Efficacy of pesticide combinations on the control of disease blotch disease and thrips in onion seed crop,” Newsletter-Associated Agricultural Development Foundation, Nashik 422001, India, Horticultural Abstracts, V. 65 (5). p. 500, 1993.

[58] Upadhyay-J and Tripathi-KC, “Field evaluation of fungicides against purple blotch of onion Seed Crop,” Recent Horticulture, 2/2, 153-155, 1995.

[59] P. Lakshmanan, S. Mohan and R. J. Eyarajan, “Antifungal properties of some plant extracts against Thanatephorus cucumeris, the causal agent of collar rot disease of Phaeolusauraenum,” Madras Agric. J., 77(1): 1-4, 1990.

[60] M.A.T. Mia, H.U. Ahmed, N.R. Sharma, A. Ali and S.A. Miah, “Antifungal activity of some plant extracts,” Bangladesh J. Botany, 19(1): 5-10, 1990.

[61] P. Lakshmanan, S. Mohan and R. J. Eyarajan, “Antifungal properties of some plant extracts against Fusariumoxysporum sp. Cicero,” Bangladesh J. Botany, 20(2): 219-222, 1991.

[62] M.A. Basharand B. Rai, “Antifungal activity of extracts of some plant parts against Fusarium oxysporum sp. Cicero,” Bangladesh J. Microbiol., 10(1): 39-42, 1993.

[63] N.S. Murtyand K. Nagarajan, “Role of plant extracts in the control of TMV infection in nursery and field grown tobacco,” Indian Phytopathol, 39: 98-99, 1986.

[64] R.G. Dubeyand R.S. Dwivedi, “Fungitoxic properties of some plant extracts against vegetative growth and sclerotial viability of Macrophomina phasasolina,” Indian Phytopathol. 44: 411-423, 1991.

Author Profile

Md. Mozidul Islam received the B.S. in Agriculture from Sher-e- Bangla Agricultural University, Sher-e- Bangla Nagar, Dhaka, Bangladesh in 2000 and M.S. in Plant pathology from Bangladesh Agricultural University, Mymensingh, Bangladesh in 2003, respectively. He is now working as Assistant Horticulture Development Officer, Department of Agricultural Extension, Dhaka, Bangladesh.

Volume 9 Issue 10, October 2020
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SR201008003034
DOI: 10.21275/SR201008003034