SPACES OF EMBEDDINGS OF COMPACT POLYHEDRA INTO 2-MANIFOLDS

TATSUHIKO YAGASAKI

ABSTRACT. Let M be a PL 2-manifold and X be a compact subpolyhedron of M and let $\mathcal{E}(X,M)$ denote the space of embeddings of X into M with the compact-open topology. In this paper we study an extension property of embeddings of X into M and show that the restriction map from the homeomorphism group of M to $\mathcal{E}(X,M)$ is a principal bundle. As an application we show that if M is a Euclidean PL 2-manifold and $\dim X \geq 1$ then the triple $(\mathcal{E}(X,M), \mathcal{E}_{\text{LIP}}(X,M), \mathcal{E}_{\text{PL}}(X,M))$ is an (s,Σ,σ)-manifold, where $\mathcal{E}_{\text{LIP}}(X,M)$ and $\mathcal{E}_{\text{PL}}(X,M)$ denote the subspaces of Lipschitz and PL embeddings.

1. Introduction

The investigation of the topology of the homeomorphism groups of compact 2-manifolds included the use of conformal mappings in order to develop some extension properties of embeddings of a circle into an annulus and proper embeddings of an arc into a disk. In this paper we establish a similar extension property of embeddings of trees into a disk. Since every graph can be decomposed into ads (cones over finite points) and arcs connecting them, this implies an extension property of embeddings of compact polyhedra into 2-manifolds.

Suppose M is a PL 2-manifold and $K \subset X$ are compact subpolyhedra of M. Let $\mathcal{E}_K(X,M)$ denote the space of embeddings $f : X \hookrightarrow M$ with $f|_K = id$, equipped with the compact-open topology. An embedding $f : X \hookrightarrow M$ is said to be proper if $f(X \cap \partial M) \subset \partial M$ and $f(X \cap \text{Int} M) \subset \text{Int} M$. Let $\mathcal{E}_K(X,M)^*$ denote the subspace of proper embeddings in $\mathcal{E}_K(X,M)$, and let $\mathcal{E}_K(X,M)^*_0$ denote the connected component of the inclusion $i_X : X \subset M$ in $\mathcal{E}_K(X,M)^*$. Our result is summarized in the next statement.

Theorem 1.1. For every $f \in \mathcal{E}_K(X,M)^*$ and every neighborhood U of $f(X)$ in M, there exist a neighborhood \mathcal{U} of f in $\mathcal{E}_K(X,M)^*$ and a map $\varphi : \mathcal{U} \to \mathcal{H}_{K\cup(M\setminus U)}(M)_0$ such that $\varphi(g)f = g$ for each $g \in \mathcal{U}$ and $\varphi(f) = id_M$.

Let $\mathcal{H}_X(M)$ denote the group of homeomorphisms h of M onto itself with $h|_X = id$, equipped with the compact-open topology. Let $\mathcal{H}(M)_0$ denote the identity component of $\mathcal{H}(M)$. In the study of the homotopy type of $\mathcal{H}_X(M)_0$ and $\mathcal{E}_K(X,M)_0$ the restriction map $\pi : \mathcal{H}_K(M)_0 \to \mathcal{E}_K(X,M)^*_0$ plays an important role (cf. 3). The above extension maps yield local sections of this restriction map.

Corollary 1.1. For any open neighborhood U of X in M, the restriction map $\pi : \mathcal{H}_{K\cup(M\setminus U)}(M)_0 \to \mathcal{E}_K(X,U)^*_0$, $\pi(f) = f|_X$, is a principal bundle with the fiber $\mathcal{G} \equiv \mathcal{H}_{K\cup(M\setminus U)}(M)_0 \cap \mathcal{H}_X(M)$, where the subgroup \mathcal{G} acts on $\mathcal{H}_{K\cup(M\setminus U)}(M)_0$ by right composition.

1991 Mathematics Subject Classification. 57N05, 57N20, 57N35.

Key words and phrases. Embeddings, Homeomorphism groups, 2-manifolds, Infinite-dimensional manifolds.
As an application of Extension Theorem 1.1 we can study the embedding space $E_K(X, M)$ from the viewpoint of infinite dimensional topology (see §4 for basic terminologies). In K. Sakai and R.Y. Wong showed the (s, Σ, σ)-stability property of triples of spaces of embeddings of compact polyhedra and subspaces of Lipschitz and PL embeddings, and posed the question whether these triples are (s, Σ, σ)-manifolds. The 1-dimensional case is studied in [15]. In this paper we will consider the 2-dimensional case and answer the question affirmatively.

Let $E_{PL}^K(X, M)$ denote the subspace of PL-embeddings. When M is a Euclidean PL 2-manifold, let $E_{LIP}^K(X, M)$ denote the subspace of Lipschitz embeddings. The Extension Theorem enables us to reduce the ANR-property and the homotopy negligibility of embedding spaces to the ones of the homeomorphism groups. Using the characterization of (s, Σ, σ)-manifold [20] we have the following result.

Theorem 1.2. Suppose M is a Euclidean PL 2-manifold and $K \subset X$ are compact subpolyhedra of M. If $\dim(X \setminus K) \geq 1$, then the triple $(E_K(X, M), E_{LIP}^K(X, M), E_{PL}^K(X, M))$ is an (s, Σ, σ)-manifold.

Further applications of Corollary 1.1 to the study of $H_X(M)$ and $E_K(X, M)$ will be given in a succeeding paper. We conclude this section with some remarks. In Section 2 we study the extension property of embeddings of a tree into a disk. Section 3 contains the proofs of Theorem 1.1 and Corollary 1.1. The final section 4 contains the proof of Theorem 1.2. Throughout the paper spaces are assumed to be separable and metrizable. A Euclidean PL n-manifold is a subpolyhedron of some Euclidean space \mathbb{R}^m which is a PL-manifold with respect to the induced triangulation and is equipped with the metric induced from the standard metric of \mathbb{R}^m. When M is an orientable manifold, $\mathcal{H}_+(M)$ denote the subspace of orientation preserving homeomorphisms of M. Finally $i_X : X \subset Y$ denotes the inclusion map.

2. **Extension property of embeddings of trees into disks**

In this section we will study some extension properties of embeddings of trees into disks. The proper embedding case is a consequence of a direct application of the conformal mapping theorem on simply connected domains (cf. [11]). Thus our interest is in the case of embeddings into the interior of a disk, where we need to apply the conformal mapping theorem on a doubly connected domain one boundary circle of which is collapsed to a tree.

Throughout the section we will work on the plane $\mathbb{C} (= \mathbb{R}^2)$ and use the following notations: For $z \in \mathbb{C}$ and $r > 0$, $D(z, r) = \{x \in \mathbb{C} : |z - x| \leq r\}$, $O(z, r) = \{x \in \mathbb{C} : |z - x| < r\}$, $C(z, r) = \{x \in \mathbb{C} : |z - x| = r\}$, and $D(r) = D(0, r)$, $O(r) = O(0, r)$, $C(r) = C(0, r)$. For $0 < r < s$, $A(r, s) = \{x \in \mathbb{C} : r \leq |x| \leq s\}$. For $A \subset \mathbb{C}$ and $\varepsilon > 0$, $O(A, \varepsilon) = \{x \in \mathbb{C} : |x - y| < \varepsilon$ for some $y \in A\}$ (the ε-neighborhood of A).

2.1. **Proper embeddings of trees into a disk.**

First we recall the conformal mapping theorem on simply connected domains normalized by the three points boundary condition. Consider the family $J = \{(J, w_1, w_2, w_3) : J$ is a simple closed curve
in \mathbb{C} and $w_1, w_2, w_3 \in J$ are three distinct points lying on J in counterclockwise order (with respect to the orientation induced from \mathbb{C}).} A sequence $\{A_n\}_{n \geq 1}$ of subsets of \mathbb{C} is said to be uniformly locally connected if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that for any $n \geq 1$ and any $x, y \in A_n$ with $|x - y| < \delta$ there exists an arc α in A_n with connecting x and y and diam $\alpha < \varepsilon$.

Fact 2.1. Let $z_1, z_2, z_3 \in C(1)$ be the fixed three points lying on $C(1)$ in counterclockwise order.

(i) (\cite[Corollary 2.7]{14}) For every $(J, w_1, w_2, w_3) \in J$ there exists a unique $\varphi = \varphi(J, w_1, w_2, w_3) \in E(D(1), \mathbb{C})$ such that φ maps $O(1)$ conformally onto the interior of J, $\varphi(C(1)) = J$ and $\varphi(z_i) = w_i$ $(i = 1, 2, 3)$.

(ii) If a sequence $(J_n, w_1(n), w_2(n), w_3(n))$ $(n \geq 1)$ converges to (J, w_1, w_2, w_3) in the following sense, then $\varphi(J_n, w_1(n), w_2(n), w_3(n))$ converges uniformly to $\varphi(J, w_1, w_2, w_3)$:

(*) J_n converges to J with respect to the Hausdorff metric, $\{J_n\}$ is uniformly locally connected, and $w_i(n) \to w_i$ $(i = 1, 2, 3)$.

For the statement (ii) we refer to the proof of \cite[Theorem 2.1, Proposition 2.3]{14} (also see the proof of Lemma 2.3).

Lemma 2.1. Suppose D is a disk and $C = \partial D$.

(i) (cf. \cite[Lemma 3]{11}) There exists a map $\Phi : E(C, \mathbb{C}) \to E(D, \mathbb{C})$ such that $\Phi(f)|_C = f$ $(f \in E(C, \mathbb{C}))$.

(ii) (cf. \cite[Lemma 5]{11}) Suppose T is a tree embedded into a disk D such that $T \cap C$ coincides with the set of terminal vertices of T. Then there exists a map $\Psi : E_{T\cap C}(T, D)^* \to \mathcal{H}_\partial(D)$ such that $\Psi(f)|_T = f$ $(f \in E_{T\cap C}(T, D)^*)$ and $\Psi(i_T) = id_D$.

Proof. We may assume that $D = D(1)$. Let $z_1, z_2, z_3 \in C(1)$ be as in Fact 2.1.

(i) Let $E^{\pm} = \{f \in E(C(1), \mathbb{C}) : f$ preserves (reverses) orientation$\}$. If $f \in E^+(C(1), \mathbb{C})$, then $(f(C(1)), f(z_1), f(z_2), f(z_3)) \in J$ and by Fact 2.1 we obtain $\varphi(f) = \varphi(f(C(1)), f(z_1), f(z_2), f(z_3)) \in E(D(1), \mathbb{C})$. If $f_n \to f$ in E^+, then $(f(C(1)), f(z_1), f(z_2), f(z_3))$ converges to $(f(C(1)), f(z_1), f(z_2), f(z_3))$ in the sense (\ast) of Fact 2.1(i). Hence the map $\varphi : E^+ \to E(D(1), \mathbb{C})$ is continuous. Let $c : \mathcal{H}(C(1)) \to \mathcal{H}(D(1))$ be the cone extension map and let $\gamma : C \to \mathbb{C}$ be the reflection $\gamma(z) = \overline{z}$. Then the extension map Φ is defined by $\Phi(f) = \varphi(f) c(\varphi(f)^{-1} f)$ for $f \in E^+$ and $\Phi(f) = \gamma \Phi(\gamma f)$ for $f \in E^-$.

(ii) The tree T separates the disk $D(1)$ into subdisks D_i. By (i) each disk D_i admits an extension map $\psi_i : E(\partial D_i, \mathbb{C}) \to E(D_i, \mathbb{C})$. Every $f \in E_{T\cap C(1)}(T, D(1))^*$ can be extended to $\overline{f} \in E_{C(1)}(T \cup C(1), D(1))$. The required extension map Ψ is defined by $\Psi(f)|_{D_i} = \psi_i(\overline{f}|_{\partial D_i})$. To achieve $\Psi(i_T) = id_D$, replace $\Psi(f)$ by $\Psi(f)\Psi(i_T)^{-1}$.

In the proof of Theorem 1.1 we will apply the statement (ii) to the case where T is an arc.

2.2. Embeddings of trees into the interior of a disk.

Suppose T is a finite tree (\neq 1 pt) embedded into $O(2)$. We will use the following notation: For $a, b \in T$, let $E_T(a, b)$ denote the unique arc in T connecting a and b. Let $\{v_1, \ldots, v_n\}$ be the collection of end vertices of T. We can choose disjoint arcs $\alpha_1, \ldots, \alpha_n$ in $D(2)$ such that each α_i connects v_i with a point a_i in $C(2)$ and $\text{Int} \alpha_i \subset O(2) \setminus T$. We can arrange the ordering of v_i's.
so that a_1, \ldots, a_n lie on $C(2)$ in counterclockwise order. The labeling is unique up to the cyclic permutations. Note that T does not meet the interior of the disk surrounded by the simple closed curve $\alpha_i \cup E_T(v_i, v_{i+1}) \cup \alpha_{i+1} \cup a_i a_{i+1}$, where $v_{n+1} = v_1$ and $a_{n+1} = a_1$.

Lemma 2.2. ([1] Ch. V, §1, Theorems 1.1, 1.2) There exists a unique real number r, $0 < r < 2$, and a unique map $h : A(r, 2) \rightarrow D(2)$ such that $h : \text{Int} A(r, 2) \rightarrow O(2) \setminus T$ is a conformal map and $h(2) = 2$. Furthermore, the map h satisfies the following conditions: (i) h maps $C(2)$ homeomorphically onto $C(2)$, (ii) $h(C(r)) = T$ and there exists a unique collection of points $\{u_1, \ldots, u_n\}$ lying on $C(r)$ in counterclockwise order such that h maps each circular arc $u_i u_{i+1}$ homeomorphically onto the arc $E_T(v_i, v_{i+1})$, where $u_{n+1} = u_1$.

We refer to [4], Ch. 2. Theorem 2.1 for the extension to boundary and [4], Ch. 2, §1 Prime End Theorem, §§4, 5 and [3], p.40 for the correspondence between prime ends and boundary points. Let $E = E(T, O(2))$. For each $f \in E$ the image $f(T)$ is a tree in $O(2)$. Hence by Lemma 2.2 there exists a unique real number r_f, $0 < r_f < 2$, and a unique map $h_f : A(r_f, 2) \rightarrow D(2)$ such that $h_f : \text{Int} A(r_f, 2) \rightarrow O(2) \setminus f(T)$ is a conformal map and $h_f(2) = 2$. For $0 < r < 2$ let $\varphi_r : A(1, 2) \rightarrow A(r, 2)$ denote the radial map defined by $\varphi_r(x) = ((2 - r)(|x| - 1) + r)x/|x|$, and let $\mathcal{C}(A(1, 2), D(2))$ denote the space of continuous maps from $A(1, 2)$ to $D(2)$, with the compact-open topology. We have $h_f \varphi_r \in \mathcal{C}(A(1, 2), D(2))$.

Lemma 2.3. The map $\Psi : E(T, O(2)) \rightarrow \mathbb{R} \times \mathcal{C}(A(1, 2), D(2))$, $\Psi(f) = (r_f, h_f \varphi_{r_f})$, is continuous.

This continuity property can be verified using the length distortion under conformal mapping [4], Proposition 2.2]. When L is a rectifiable (possibly open) curve in \mathbb{R}^2, we denote the length of L by $\Lambda(L)$.

Proof. Suppose $f_n \rightarrow f$ in E. It suffices to show that the sequence $(r_n, h_n \varphi_{r_n}) \equiv (r_{f_n}, h_{f_n} \varphi_{r_{f_n}})$ has a subsequence $(r_{n_k}, h_{n_k} \varphi_{r_{n_k}})$ such that $r_{n_k} \rightarrow r_f$ and $h_{n_k} \varphi_{r_{n_k}}$ converges uniformly to $h_f \varphi_{r_f}$.

Let $R_0 > 2 (= \text{the radius of } D(2))$ and $\varepsilon(\rho) = 2\pi R_0/\sqrt{\log(1/\rho)}$ ($0 < \rho < 1$).

(i) Passing to a subsequence we may assume $r_n \rightarrow r_0$ for some $r_0, 0 \leq r_0 \leq 2$. First we will show that $0 < r_0 < 2$. (a) Suppose $r_0 = 2$. Take $\rho, 0 < \rho < 1$, such that $\varepsilon(\rho) < d(f(T), C(2))$. Choose $n \geq 1$ such that $\varepsilon(\rho) < d(f_n(T), C(2))$ and $|r_n - r_0| < \rho$. We can apply [4], Proposition 2.2] for any point $c \in C(2)$ (with $R = 2$) to find $\rho_0, \rho < \rho_0 < \sqrt{\rho}$, such that $\Lambda(h_n(L)) < \varepsilon(\rho)$, where L is one of the two arc components of $C(c, \rho_0)$ \text{Int} $A(r_n, 2)$ which connects $C(r_n)$ and $C(2)$. This implies $d(f_n(T), C(2)) < \varepsilon(\rho)$, a contradiction. (b) Suppose $r_0 = 0$. Take $\rho, 0 < \rho < 1$, such that $\varepsilon(\rho) < \text{diam } f(T)$. Choose $n \geq 1$ such that $\varepsilon(\rho) < \text{diam } f_n(T)$ and $r_n < \rho$. By [4], Proposition 2.2] there exists $\rho_0, \rho < \rho_0 < \sqrt{\rho}$ such that $\Lambda(h_n(C(\rho_0))) < \varepsilon(\rho)$. Since $f_n(T)$ is contained in the interior of the circle $h_n(C(\rho_0))$, we have $\text{diam } f_n(T) < \varepsilon(\rho)$, a contradiction.

(ii) Next we will show that the sequence $h_n : A(r_n, 2) \rightarrow D(2)$ ($n \geq 1$) is equicontinuous, that is, for every $\varepsilon > 0$ there exists a $\rho > 0$ such that $|h_n(z) - h_n(w)| < \varepsilon$ for any $n \geq 1$ and $z, w \in A(r_n, 2)$ with $|z - w| < \rho$. Let $\varepsilon > 0$ be given. We may assume that $\varepsilon < d(C(2), f_n(T))$ for each $n \geq 1$.

4
Proposition 2.1. (i) Let \(f_n(T) \) (respectively \(C(2) \)) connecting \(z \) and \(w \) and with \(\text{diam} A < \varepsilon/2 \). Choose \(\rho, 0 < \rho < 1, \) such that \(\varepsilon(\rho) < \delta \) and \(2\sqrt{\rho} < 2 - \max_{n \geq 0} r_n \). Suppose \(z, w \in A(r_n, 2) \) and \(|z - w| < \rho. \) By Proposition 2.2] (with \(c = z \)) we have \(\rho_0, \rho < \rho_0 < \sqrt{\rho}, \) such that \(\Lambda(h_n(L)) < \varepsilon(\rho), \) where \(L = C(z, \rho_0) \cap A(r_n, 2). \) Since \(z, w \in D \equiv D(z, \rho_0) \cap A(r_n, 2), \) it suffices to show that \(\text{diam} h_n(D) < \varepsilon. \) By the choice of \(\rho, D(z, \rho_0) \) meet at most one of \(C(2) \) and \(C(r_n). \) If \(D(z, \rho_0) \subset A(r_n, 2) \) or \(D(z, \rho_0) \supset D(0, r_n), \) then \(L = C(z, \rho_0) \) and \(h_n(D) \) is a disk bounded by \(h_n(L), \) so \(\text{diam} h_n(D) < \varepsilon(\rho). \) Otherwise, \(L \) is an arc connecting two points \(P, Q \) with either (a) \(P, Q \in C(2) \) or (b) \(P, Q \in C(r_n). \) In both cases \(|h_n(P) - h_n(Q)| \leq \Lambda(h_n(L)) < \delta, \) hence by the choice of \(\delta, \) we have an arc \(A \subset C(2) \) (resp. \(f_n(T) \)) connecting \(h_n(P) \) and \(h_n(Q) \) and \(\text{diam} A < \varepsilon/2. \) In the case (a) \(h_n(L) \) separates \(D(2) \) into the subdisk \(h_n(D) \) and another subdisk. Since \(h_n(D) \cap f_n(T) = \emptyset \) and \(d(C(2), f_n(T)) > \varepsilon, \) the Jordan curve \(h_n(L) \cap A \) bounds the disk \(h_n(D), \) so \(\text{diam} h_n(D) < \varepsilon. \) In the case (b) the Jordan curve \(h_n(L) \cap A \) bounds a disk \(E \) in \(D(2) \) with \(\text{diam} E < \varepsilon. \) Since \(h_n(A(r_n, 2) \setminus (D \cup C(r_n))) \) is contained in the exterior of \(E \) and \(h_n(\text{Int } D) \cap \partial E = \emptyset, \) it follows that \(h_n(\text{Int } D) = \text{Int } E \cap f_n(T), \) so \(\text{diam} h_n(D) = E. \)

(iii) Since the sup-metric \(d(\varphi_{r_n}, \varphi_{r_0}) = |r_n - r_0| \to 0 \) (\(n \to \infty \)), the sequence \(h_n \varphi_{r_n} \) \((n \geq 1)\) is also equiuniform. By the Ascoli-Arzelà theorem, passing to a subsequence, we may assume that \(h_n \varphi_{r_n} \) converges to a map \(h_0 : A(1, 2) \to D(2). \) Set \(h_0 = h_0^{-1} \varphi_{r_0}. \) Then \(h_0(A(r_0, 2)) = D(2), \) \(h_0(C(2)) = C(2), \) \(h_0(C(r_0)) = f(T) \) and \(h_0(2) = 2. \) Since the sequence of univalent analytic maps \(h_n : \text{Int } A(r_n, 2) \to \mathbb{C} \) converges weakly uniformly to the map \(h_0 : \text{Int } A(r_0, 2) \to \mathbb{C} \) (i.e., for each compact subset \(K \) of \(\text{Int } A(r_0, 2), h_n|_K \) converges uniformly to \(h_0|_K) \) and \(h_0 \) is not constant, \(h_0 : \text{Int } A(r_0, 2) \to \mathbb{C} \) is also a univalent analytic map \([19], \text{Ch.3, Theorem 3.3.} \). It follows that \(h_0(\text{Int } A(r_0, 2)) = O(2) \setminus f(T) \) and \(h_0 : \text{Int } A(r_0, 2) \to O(2) \setminus f(T) \) is a conformal map, so \((r_0, h_0) = (r_f, h_f) \) by the uniqueness in Lemma 2.2. This completes the proof.

Let \(i : T \to O(2) \) denote the inclusion and set \(\mathcal{E}_+ \equiv \mathcal{E}_+(T, O(2)) = \{ f \in \mathcal{E} : \text{there exists an } h \in \mathcal{H}_+(D(2)) \text{ with } hi = f \}, \) which is an open neighborhood of \(i \) in \(\mathcal{E}. \)

Proposition 2.1. (i) There exists a canonical map \(\Phi = \Phi_T : \mathcal{E}_+ \to \mathcal{H}_+(D(2)) \) such that \(\Phi(f)i = f \) \((f \in \mathcal{E}_+)\) and \(\Phi(i) = id. \)

(ii) There exists a neighborhood \(\mathcal{U} \) of \(i \) in \(\mathcal{E} \) and a map \(\varphi : \mathcal{U} \to \mathcal{H}_0(D(2)) \) such that \(\varphi(f)i = f \) \((f \in \mathcal{U})\) and \(\varphi(i) = id_D. \)

Proof. (i) Let \(f \in \mathcal{E}_+. \) Comparing two maps \(h_f \varphi_{r_f}, h_i \varphi_{r_i} : C(1) \to f(T), \) we obtain a unique map \(\Theta_0(f) \in \mathcal{H}_+(C(1)) \) such that \(h_f \varphi_{r_f} \Theta_0(f) = h_i \varphi_{r_i}. \) Extend \(\Theta_0(f) \) radially to \(\Theta(f) \in \mathcal{H}_+(A(1, 2)) \) by \(\Theta(f)(rz) = r\Theta_0(f)(z) \) \((z \in C(1), 1 \leq r \leq 2)\). The required map \(\Phi(f) \) is defined as the unique map \(\Phi(f) \in \mathcal{H}_+(D(2)) \) with \(h_f \varphi_{r_f} \Theta(f) = \Phi(f)h_i \varphi_{r_i}. \) In Claim below we will show that the map \(\Theta_0 \) is continuous. This implies the continuity of the map \(\Phi. \)
(ii) Since $\Phi(i) = id$, if we take a sufficiently small neighborhood U of i, then $\Phi(f)|_{C(2)}$ is close to $id_{C(2)}$ for $f \in U$, and we can use a collar of $C(2)$ in $D(2)$ and a local contraction of a neighborhood of $id_{C(2)}$ in $\mathcal{H}(C(2))$ to modify the map $\Phi|_{U}$ to obtain the desired map φ. □

Claim. The map $\Theta_0 : \mathcal{E}_+ \to \mathcal{H}_+(C(1))$ is continuous.

Proof. Under the notations of Lemma 2.2, let $g_f = h_f \varphi_r f$ and $x_j(f) = \varphi_r^{-1}(u_j)$. For the inclusion $i : T \subset D(2)$, we abbreviate as $g = g_i$ and $x_j = x_j(i)$ let $L_j = x_j \cup x_{j+1}$ the (circular arc in $C(1)$). Also let $\tilde{f} = \Theta_0(f)$. Note that g_f is continuous in f (Lemma 2.3), $g_f \tilde{f} = g_f \tilde{f}(x_j) = x_j(f) = g_f^{-1}(f(v_j))$ and that g_f maps $\tilde{f}(L_j)$ homeomorphically onto $f(E_T(v_j, v_{j+1}))$.

(1) First we will show the following statement:

(*) Suppose $f \in \mathcal{E}_+, U$ is any open neighborhood of $x_j(f)$ in \mathbb{C} and A_j is a small compact neighborhood of x_j in $C(1)$ such that $g_f(\tilde{f}(A_j)) \cap g_f(A(1, 2) \setminus U) = \emptyset$ (hence $\tilde{f}(A_j) \subset U$). If f' is sufficiently close to f, then $\tilde{f}'(A_j) \subset U$. In particular, $x_j(f) \in C(1)$ is continuous in f.

In fact, there exists an $\varepsilon > 0$ such that $O(g_f(A_j), \varepsilon) \cap O(g_f(A(1, 2) \setminus U), \varepsilon) = \emptyset$. If f' is sufficiently close to f then the sup-metric $d(f', f) < \varepsilon$ and $d(g_{f'}, g_f) < \varepsilon$. Hence, $f'g(A_j) = g_{f'} \tilde{f}'(A_j)$ does not meet $g_f(A(1, 2) \setminus U)$, so $g_{f'} \tilde{f}'(A_j) \subset U$.

(2) To show that \tilde{f} is continuous in f, let $f \in \mathcal{E}_+$ and $\varepsilon > 0$ be given. It suffices to show that for each $j = 1, \ldots, n$ there exists a small neighborhood U of f in \mathcal{E}_+ such that \tilde{f} and \tilde{f}' are ε-close on L_j for every $f' \in U$.

Set $U_j = O(x_j(f), \varepsilon/2)$ and $U_{j+1} = O(x_{j+1}(f), \varepsilon/2)$, and let A_j and A_{j+1} be small circular arc neighborhoods of x_j and x_{j+1} in $C(1)$ as in (1) with respect to U_j and U_{j+1} respectively. Set $K_j = d(L_j \setminus (A_j \cup A_{j+1}))$ and choose small circular arc neighborhoods C_j and C_{j+1} of $x_j(f)$ and $x_{j+1}(f)$ in $C(1)$ such that $g_f \tilde{f}(K_j)$ meets neither $g_f(C_j)$ nor $g_f(C_{j+1})$. Choose $\delta_1 > 0$ such that $O(g_f \tilde{f}(K_j), \delta_1) \cap O(g_f(C_j), \delta_1) \subset O(g_f \tilde{f}(x), \varepsilon)$.

By (1) there exists a neighborhood U of f in \mathcal{E}_+ such that if $f' \in U$, then $\tilde{f}'(A_j) \subset U_j, \tilde{f}'(A_{j+1}) \subset U_{j+1}, \tilde{f}'(x_j) \subset C_j, \tilde{f}'(x_{j+1}) \subset C_{j+1}$ and $d(f, f') < \delta, d(g_{f'}, g_f) < \delta$. Since \tilde{f}' is orientation preserving, $\tilde{f}'(x_j) \subset C_j$ and $\tilde{f}'(x_{j+1}) \subset C_{j+1}$, it follows that $\tilde{f}'(L_j) \subset \tilde{f}(L_j) \cup C_j \cup C_{j+1}$. If $x \in A_j$, then $\tilde{f}'(x), \tilde{f}(x) \in U_j$ so that $d(\tilde{f}'(x), \tilde{f}(x)) < \varepsilon$. For each $x \in A_{j+1}$ we have the same conclusion. Suppose $x \in K_j$. Since $g_f \tilde{f}'(x) = f'g(x)$ is δ-close to $f g(x) = g_f \tilde{f}(x) \in g_f(K_j)$ and $g_f' \tilde{f}'(C_j) \subset O(g_f(C_j), \delta)$, we have $\tilde{f}'(x) \subset C_j$. Similarly $\tilde{f}'(x) \subset C_{j+1}$, and we have $\tilde{f}(x) \subset C_j \cup C_{j+1}$. Since $g_f \tilde{f}(x) = f g(x)$ is δ-close to $f'g(x) = g_{f'} \tilde{f}'(x)$ and the latter is also δ-close to $g_f \tilde{f}'(x)$, we have $g_f \tilde{f}'(x) \in O(g_f \tilde{f}(x), 2\delta)$. Hence by the choice of δ, $\tilde{f}'(x) \in O(\tilde{f}(x), \varepsilon)$. This completes the proof. □

Finally we will see a symmetry property of the map Φ_T in Proposition 2.1 (i). For $z \in C(1)$ let $\theta_z : \mathbb{C} \to \mathbb{C}$ denote the rotation $\theta_z(w) = z \cdot w$ and let $\gamma : \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection, $\gamma(x, y) = (x, -y)$.

Lemma 2.4. (i) $\Phi_T(\theta_z f) = \theta_z \Phi_T(f)$ ($f \in \mathcal{E}_+, z \in C(1)$).

(ii) $\Phi_T(\gamma f \gamma) = \gamma \Phi_T(f) \gamma$ ($f \in \mathcal{E}_+$). In particular, if T is a segment in the x-axis, then $\Phi_T(\gamma f) = \gamma \Phi_T(f) \gamma$ ($f \in \mathcal{E}$).
Proof. (i) Let \(f \in \mathcal{E}_+, z \in C(1) \) and let \(w_0 \in C(2) \) be the unique point such that \(\theta_z h_f \theta^{-1}_z(w_0) = 2 \). Under Lemma 2.2, \((r_f, \theta_z h_f \theta^{-1}_z \theta_w) \) corresponds to \(\theta_z f \), where \(w = w_0/2 \). Thus \(\Theta(\theta_z f) = \theta^{-1}_w \theta_z \Theta(f) \) and the conclusion follows from

\[
\Phi(\theta_z f) \varphi_i \varphi_j = (\theta_z h_f \theta^{-1}_z \theta_w) \varphi_i \varphi_j \Theta(\theta_z f) = (\theta_z h_f \theta^{-1}_z \theta_w) \varphi_i \varphi_j \varphi_i \Theta(f) = \theta_z h_f \varphi_i \varphi_j \Theta(f) = \theta_z \Phi(f) \varphi_i \varphi_j.
\]

(ii) Since \((r_i, \gamma_h \gamma) \) corresponds to \(\gamma(T) \) and \((r_f, \gamma h \gamma) \) corresponds to \(\gamma f(T) \), it follows that \(\Theta(\gamma h \gamma) = \gamma \Theta(T) \gamma \). The conclusion follows from

\[
(\gamma \Phi(f) \gamma)(\gamma h_i \gamma \varphi_j) = \gamma(\Phi(f) \varphi_i \varphi_j) \gamma = \gamma(h_f \varphi_i \varphi_j) \Theta(f) \gamma = (\gamma h_f \gamma \varphi_j)(\gamma \Theta(f) \gamma).
\]

\[\square \]

3. Extension property of embeddings of compact polyhedra into 2-manifolds

In this section we prove Theorem 1.1 and Corollary 1.1. First we consider the case where \(M \) is compact.

Lemma 3.1. Suppose \(M \) is a compact PL 2-manifold and \(K \subset X \) are compact subpolyhedra of \(M \). Then there exists an open neighborhood \(U \) of \(i_X \) in \(\mathcal{E}_K(X, M)^* \) and a map \(\varphi : U \to \mathcal{H}_K(M) \) such that \(\varphi(f)|_X = f \) (\(f \in U \)) and \(\varphi(i_X) = \text{id}_M \).

Proof. We may assume that \(K = \emptyset \), since if \(\varphi \) satisfies the above condition in the case where \(K = \emptyset \) then we have \(\varphi(U \cap \mathcal{E}_K(X, M)^*) \subset \mathcal{H}_K(M) \) for any \(K \subset X \).

(1) The case when \(\partial M = \emptyset \): We fix a triangulation of \(X \) and let \(S_k \) \((k = 0, 1, 2)\) denote the set of \(k \)-simplices of this triangulation and \(X^{(1)} \) denote the 1-skeleton of \(X \). For each \(\sigma \in S_1 \) with ends \(v, w \) we choose two disjoint subarcs \(\sigma_v, \sigma_w \) of \(\sigma \) with \(v \in \sigma_v, w \in \sigma_w \) and a subarc \(e_{\sigma} \) of \(\text{Int} \sigma \) with \(\text{Int} e_{\sigma} \supset c l (\sigma \setminus (\sigma_v \cup \sigma_w)) \). For each \(\sigma \in S_0 \) set \(T_v = \{ v \} \cup (\cup_{v \in \sigma \in S_1} \sigma_v) \), which is an arc or a single point. We choose two disjoint families of closed disks \(\{ D_v \}_{v \in S_0} \) and \(\{ E_\sigma \}_{\sigma \in S_1} \) in \(M \) such that (i) \(T_v \subset \text{Int} D_v \) (\(v \in S_0 \)) and (ii) \(X^{(1)} \cap E_\sigma = e_{\sigma} \) and \(\text{Int} e_{\sigma} \subset \text{Int} E_\sigma \) (i.e., \(e_{\sigma} \) is a proper arc of \(E_\sigma \)).

![Figure 1.a](image-url)
Since $\lambda(i_X) = \text{id}_M$ and $\lambda(f)^{-1}f|_{T_v} = i_{T_v}$ ($v \in S_0$), if \mathcal{U} is small enough, then $\lambda(f)^{-1}f$ is sufficiently close to i_X so that $\lambda(f)^{-1}f|_{\epsilon_\sigma} \in \mathcal{W}_\sigma$. Hence we can define a map $\mu : \mathcal{U} \to \mathcal{H}(M)$ by

$$
\mu(f) = \begin{cases}
\beta_\sigma(\lambda(f)^{-1}f|_{\epsilon_\sigma}) & \text{on } E_\sigma, \\
\text{id} & \text{on } M \setminus \cup_\sigma E_\sigma.
\end{cases}
$$

Then $\mu(i_X) = i_M$ and $\hat{f} \equiv \mu(f)^{-1}\lambda(f)^{-1}f$ is equal to the identity map on $X^{(1)}$ for each $f \in \mathcal{U}$. Since $\hat{f}(\sigma) = \sigma$ ($\sigma \in S_2$), we can define a map $\nu : \mathcal{U} \to \mathcal{H}(M)$ by $\nu(f)|_X = \hat{f}$ and $\nu(f)|_{M \setminus X} = \text{id}$. Since $\nu(i_X) = i_M$ and $\nu(f)^{-1}\mu(f)^{-1}\lambda(f)^{-1}f = i_X$, the map $\varphi : \mathcal{U} \to \mathcal{H}(M)$, $\varphi(f) = \lambda(f)\mu(f)\nu(f)$ ($f \in \mathcal{U}$) satisfies the desired conditions.

(2) The case when $\partial M \neq \emptyset$: We can use the double $N = M \cup \partial M$. Since X is a subpolyhedron of M, $Y = X \cap \partial M$ is also a subpolyhedron of ∂M.

(i) By (1) (where $K \neq \emptyset$) we have a neighborhood V_0 of $i_X \cup \partial M$ in $\mathcal{E}_{\partial M}(X \cup \partial M, N)$ and an extension map $\psi_0 : V_0 \to \mathcal{H}_{\partial M}(N)$. We can extend every $f \in \mathcal{E}_Y(X, M)^*$ to an $f_0 \in \mathcal{E}_{\partial M}(X \cup \partial M, N)$ by the identity on ∂M. If V is a small neighborhood of i_X in $\mathcal{E}_Y(X, M)^*$, then for every $f \in V$ we have $f_0 \in V_0$, so $\psi(f_0)$ is defined and $\psi_0(f_0)(M) = M$. Thus we have an extension map $\psi : V \to \mathcal{H}_{\partial M}(M)$, $\psi(f) = \psi_0(f_0)|_M$.

(ii) Since $\mathcal{H}(\partial M)$ is locally contractible, using a collar of ∂M in M, we have a neighborhood W of i_M in $\mathcal{H}(\partial M)$ and a map $F : W \to \mathcal{H}(M)$ such that $F(g)|_{\partial M} = g$ ($g \in W$) and $F(i_M) = i_M$. We can easily verify a 1-dimensional version of Lemma 3.1 and find a neighborhood W_0 of i_Y in $\mathcal{E}(Y, \partial M)$ and an extension map $\lambda_0 : W_0 \to \mathcal{H}(\partial M)$. We may assume that $\lambda_0(W_0) \subset W$. Hence if \mathcal{U} is a small neighborhood of i_X in $\mathcal{E}(X, M)^*$, then we have a map $\lambda : \mathcal{U} \to \mathcal{H}(M)$, $\lambda(f) = F(\lambda_0(f)|_Y)$.

Lemma 3.2. If M is a compact PL 2-manifold and X is a compact subpolyhedron of M, then $\mathcal{H}_X(M)$ is an ANR.

Proof. Let $\pi : \mathcal{H}(M) \to \mathcal{E}(X, M)^*$, $\pi(h) = h|_X$, denote the restriction map. By Lemm 3.1 (with $K = \emptyset$) there exists an open neighborhood \mathcal{U} of i_X in $\mathcal{E}(X, M)^*$ and a map $\varphi : \mathcal{U} \to \mathcal{H}(M)$ such that $\varphi(f)|_X = f$. Then $\Phi : \mathcal{U} \times \mathcal{H}_X(M) \cong \pi^{-1}(\mathcal{U})$, $\Phi(f, h) = \varphi(f)h$, is a homeomorphism with the inverse $\Phi^{-1}(k) = (k|_X, \varphi(k|_X)^{-1}k)$. Since $\mathcal{H}(M)$ is an ANR and $\pi^{-1}(\mathcal{U})$ is open in $\mathcal{H}(M)$, $\mathcal{H}_X(M)$ is also an ANR.

Proof of Theorem 1.1. Theorem 1.1 can be reduced to Lemma 3.1 by the following observations:

(i) Since there exists an $h \in \mathcal{H}_{K \cup (M \cup U)}(M)$ such that hf is a PL embedding (cf. Appendix) we may assume that f is a PL-embedding. Replacing X by $f(X)$, we may assume that $f = i_X : X \subset M$.

(ii) Taking a compact PL-submanifold neighborhood N of X in U and replacing (M, X, K) by $(N, X \cup...
Fr_M N, K \cup Fr_M N), we may assume that M is compact and U = M.

(iii) If M is compact then \(H_K(M)_0 \) is open in \(H_K(M) \) by Lemma 3.2. Hence we can take a smaller U to attain \(\varphi(U) \subset H_K(M)_0. \)

Proof of Corollary 1.1. Let \(f \in E_k(X, U)^* \) and let \(U_f, \varphi_f \) be as in Theorem 1.1. If \(U_f \cap \text{Im} \pi \neq \emptyset \) then \(U_f \subset \text{Im} \pi. \) In fact, if \(h \in H_{K \cup (M \cup U)}(M)_0 \) and \(\pi(h) = h|_X \in U_f, \) then for any \(g \in U_f \) we have \(g = \pi(\varphi_f(g) \varphi_f(h|_X)^{-1} h). \) Hence \(\text{Im} \pi \) is clopen in \(E_k(X, U)^* \), so \(\text{Im} \pi = E_k(X, U)^*_0 \) and \(U_f \subset E_k(X, U)^*_0 \). Choose an \(h_f \in H_{K \cup (M \cup U)}(M)_0 \) with \(h_f|_X = f \) and define a local trivialization \(\Phi: U_f \times G \cong \pi^{-1}(U_f) \) by \(\Phi(g, h) = \varphi_f(g)h_fh. \)

By a similar argument we can also show the following statements.

Corollary 3.1. Suppose \(K \subset Y \subset X \) are compact subpolyhedra of a PL 2-manifold M.

(i) For any open neighborhood \(U \) of X in M the restriction map \(\pi: H_{K \cup (M \setminus U)}(M) \to \text{Im} \pi \subset E_k(X, U)^* \) is a principal bundle with the fiber \(H_{X \cup (M \cup U)}(M) \) and \(\text{Im} \pi \) is clopen in \(E_k(X, U)^*. \)

(ii) The restriction map \(p: E_k(X, M)^* \to \text{Im} p \subset E_k(Y, M)^* \) is locally trivial and \(\text{Im} p \) is clopen in \(E_k(Y, M)^*. \)

4. THE SPACES OF EMBEDDINGS INTO 2-MANIFOLDS

In this final section we will prove Theorem 1.2.

4.1. **Basic facts on infinite-dimensional manifolds.**

First we recall some basic facts on infinite-dimensional manifolds. As for the model spaces we follow the standard convention: \(s = (-\infty, \infty) \), \(\Sigma = \{(x_n) \in s : \sup_n |x_n| < \infty\}, \sigma = \{(x_n) \in s : x_n = 0 \text{ (almost all n)}\}. \) A triple \((X, X_1, X_2)\) means a triple of a space X and subspaces \(X_1 \supset X_2. \) A triple \((X, X_1, X_2)\) is said to be a \((s, \Sigma, \sigma)\)-manifold if each point of X admits an open neighborhood U in X and an open set V in s such that \((U, U \cap X_1, U \cap X_2) \cong (V, V \cap \Sigma, V \cap \sigma)\) (a homeomorphism of triples). In [20] we have obtained a characterization of \((s, \Sigma, \sigma)\)-manifolds in terms of some class conditions, a stability condition and the homotopy negligible complement condition. A space is \(\sigma-\text{(fd)}\)-compact if it is a countable union of (finite dimensional) compact subsets. A triple \((X, X_1, X_2)\) is said to be \((s, \Sigma, \sigma)\)-stable if \((X \times s, X_1 \times \Sigma, X_2 \times \sigma) \cong (X, X_1, X_2). \) We say that a subset Y of X has the homotopy negligible (h.n.) complement in X if there exists a homotopy \(\varphi_t: X \to X \) \((0 \leq t \leq 1)\) such that \(\varphi_0 = \text{id}_X \) and \(\varphi_t(X) \subset Y \) \((0 < t \leq 1)\). The homotopy \(\varphi_t \) is called an absorbing homotopy of X into Y.

Fact 4.1. (i) Y has the h.n. complement in X iff each point \(x \in X \) has an open neighborhood U and a homotopy \(\varphi: U \times [0, 1] \to X \) such that \(\varphi_0 = \text{id}_U : U \subset X \) and \(\varphi_t(U) \subset Y \) \((0 < t \leq 1)\).
(ii) If Y has the h.n. complement in X, then X is an ANR iff Y is an ANR by [10].
(iii) ([17]) Suppose X is an ANR. Then Y has the h.n. complement in X iff for any open set U of X the inclusion \(U \cap Y \subset U \) is a weak homotopy equivalence. Hence if both \(Y \subset X \) and \(Z \subset Y \) have the h.n. complement, then so does \(Z \subset X. \)
In (i) $U \cap Y$ has the h.n. complement in U and local absorbing homotopies can be uniformized to a global one [3].

We will apply the following characterization of (s, Σ, σ)-manifolds [20].

Proposition 4.1. A triple (X, X_1, X_2) is an (s, Σ, σ)-manifold iff

(i) X is a separable completely metrizable ANR, X_1 is σ-compact and X_2 is σ-fd-compact,

(ii) X_2 has the h.n. complement in X,

(iii) (X, X_1, X_2) is (s, Σ, σ)-stable.

We refer to [18] for related topics in infinite-dimensional topology.

4.2. **The spaces of embeddings into 2-manifolds.**

First we summarize the stability property and the class property of embedding spaces. Suppose (X,d) and (Y,ρ) are metric spaces. An embedding $f : X \to Y$ is said to be L-Lipschitz ($L \geq 1$) if $\frac{1}{L}d(x,y) \leq \rho(f(x),f(y)) \leq Ld(x,y)$ for any $x,y \in X$.

Lemma 4.1. ([6] Theorems 1.2]) Suppose M is a Euclidean PL 2-manifold and $K \subset X$ are compact subpolyhedra of M. If $\dim(X \setminus K) \geq 1$, then the triples $(\mathcal{E}_K(X,M), \mathcal{E}_{\text{Lip}}^\text{PL}(X,M), \mathcal{E}_{\text{PL}}^\text{PL}(X,M))$ and $(\mathcal{E}_K(X,M)^*, \mathcal{E}_{\text{Lip}}^\text{PL}(X,M)^*, \mathcal{E}_{\text{PL}}^\text{PL}(X,M)^*)$ are (s, Σ, σ)-stable.

Lemma 4.2. (1) Suppose X is a compact metric space, K is a closed subset of X and Y is a locally compact, separable metric space. Then (i) $\mathcal{E}_K(X,Y)$ is separable, completely metrizable, and (ii) $\mathcal{E}_K^\text{PL}(X,Y)$ is σ-compact.

(2) ([3]) If X is a compact polyhedron, K is a subpolyhedron of X, and Y is a locally compact polyhedron, then $\mathcal{E}_K^\text{PL}(X,Y)$ is σ-fd-compact.

Proof. (1) (i) $\mathcal{C}(X,Y)$ is completely metrizable by the sup-metric, and $\mathcal{E}(X,Y)$ is G_δ in $\mathcal{C}(X,Y)$.

(ii) For $L \geq 1$ let $\mathcal{E}_{\text{Lip}}^\text{PL}(L)(X,Y)$ denote the subspace of L-Lipschitz embeddings. If we write $Y = \bigcup_{n=1}^{\infty} Y_n$ (Y_n is compact and $Y_n \subset \text{Int} \ Y_{n+1}, n \geq 1$), then $\mathcal{E}_{\text{Lip}}^\text{PL}(X,Y) = \bigcup_{n=1}^{\infty} \mathcal{E}_{\text{Lip}}^\text{PL}(n)(X,Y_n)$. Since $\mathcal{E}_{\text{Lip}}^\text{PL}(n)(X,Y_n)$ is equicontinuous and closed in $\mathcal{C}(X,Y_n)$, it is compact by Arzela-Ascoli Theorem ([2, Ch. XII. Theorem 6.4]). Hence $\mathcal{E}_{\text{Lip}}^\text{PL}(X,Y)$ is σ-compact.

For the proper PL-embedding case we need some basic facts:

Fact 4.2. (1) Suppose A is a PL disk (or a PL arc) and $a \in \text{Int} \ A$. Then there exists a map $\varphi : \text{Int} \ A \to \mathcal{H}^\text{PL}_{\partial A}(A)$ such that $\varphi_x(a) = x \ (x \in \text{Int} \ A)$ and $\varphi_a = \text{id}_A$.

(2) Suppose N is a PL 1-manifold with $\partial N = \emptyset$, Y is a compact subpolyhedron of N, U is an open neighborhood of Y in N. Then there exists an open neighborhood U of i_Y in $\mathcal{E}^\text{PL}(Y,N)$ and a map $\varphi : U \to \mathcal{H}^\text{PL}_{N,Y}(N)$ such that $\varphi(f)|_Y = f$ and $\varphi(i_Y) = \text{id}_N$.

(3) Suppose M is a PL 2-manifold, N is a compact 1-submanifold of ∂M and U is an open neighborhood of N in M. Then there exists an open neighborhood U of $id_{\partial M}$ in $\mathcal{H}^\text{PL}_{\partial M,N}(\partial M)$ and a map $\varphi : U \to \mathcal{H}^\text{PL}_{M,U}(M)$ such that $\varphi(f)|_{\partial M} = f$ and $\varphi(id_{\partial M}) = \text{id}_M$.

(4) Suppose M is a PL 2-manifold, Y is a compact subpolyhedron of ∂M and U is an open neighborhood of Y in M. Then there exists an open neighborhood V of i_Y in $E^{PL}(Y, \partial M)$ and a map $\varphi : V \to H^{PL}_{M \setminus U}(M)$ such that $\varphi(g)|_Y = g$ and $\varphi(i_Y) = id_M$.

Comment. (3) Using a PL-collar of ∂M in M, the assertion follows from the following remarks:

(3-i) If A is a PL arc (or a PL open arc), then there exists a map $\varphi : H^A_+(\partial M) \to H^A_+(\partial M \times [0, 1])$ such that $\varphi(f)$ is an isotopy from f to id_A (i.e. $\varphi(f)(x,t) = (x,t)$, $\varphi(f)(x,0) = f(x)$ and $\varphi(f)(x,1) = (x,1)$) for each $f \in H^A_+(A)$ and $\varphi(id_A) = id_A \times [0,1]$.

(3-ii) Suppose S is a PL circle. Then there exists an open neighborhood U of id_S in $H^PL(S)$ and a map $\varphi : U \to H^PL(S \times [0, 1])$ such that $\varphi(f)$ is an isotopy from f to id_S for each $f \in U$ and $\varphi(id_S) = id_S \times [0,1]$.

In (3-i) we may assume that $A = [0,1]$ (or $A = \mathbb{R}$). Then $\varphi(f)$ is defined as the linear isometry $\varphi(f)(x,t) = ((1-t)f(x) + tx, t)$.

(4) This follows from (2) and (3).

\[\square\]

Lemma 4.3. If M is a PL 2-manifold and $K \subset X$ are compact subpolyhedra of M, then (i) $E_K(X, M)^*$ is completely metrizable and (ii) $E_K^{PL}(X, M)^*$ is σ-fd-compact.

Proof. (i) $E_K(X, M)^*$ is G_δ in $E_K(X, M)$.

(ii) We may assume that $K = \emptyset$. It suffices to show that each $f \in E^{PL}(X, M)^*$ has a σ-fd-compact neighborhood. Since $E^{PL}(X, M)^* \cong E^K(X, M)^*$, we may assume that $f = i_X$. Choose a sequence of small collars C_n of ∂M in M pinched at $Y = X \cap \partial M$ such that C_n becomes thinner and thinner and also the angle between $Fr_M C_n$ and ∂M at $Fr_M Y$ becomes smaller and smaller as $n \to \infty$. Let $M_n = cl(M \setminus C_n)$. Then $E^{PL}(X, M)^* = \cup_n E^{PL}(X, M_n)$ and $E^{PL}(Y, \partial M)$ are σ-fd-compact by [3].

By Fact 4.2.(4) there exists an open neighborhood V of i_Y in $E^{PL}(Y, \partial M)$ and a map $\varphi : V \to H^{PL}(M)$ such that $\varphi(g)|_Y = g$ and $\varphi(i_Y) = id_M$. Let $\psi : E^{PL}(X, M)^* \to E^{PL}(Y, \partial M)$ be the restriction map, $\psi(f) = f|_Y$ and let $U = \psi^{-1}(V)$. Then $\Phi : V \times E^{PL}(X, M)^* \to U$, $\Phi(g, h) = \varphi(g)h$, is a homeomorphism with the inverse $\Phi^{-1}(f) = (f|_Y, \varphi(f|_Y)^{-1}f)$. Hence U is also σ-fd-compact. This implies the conclusion.

\[\square\]

Next we verify the ANR-condition and the h.n. complement condition.

Fact 4.3. (4, 3) Suppose M is a compact PL 2-manifold and X is a compact subpolyhedron of M. Then $H^{PL}_X(M)$ has the h.n. complement in $H_X(M)$.

Comment. By [4, p10] (a comment on a relative version) $H^{PL}_X(M)$ is (uniformly) locally contractible. Since $H_X(M)$ is an ANR, by [3] $H^{PL}_X(M)$ has the h.n. complement in $H_X(M)$. Note that in dimension 2, the local contractibility of $H^{PL}_X(M)$ at id_M simply reduces to the case where $X = \emptyset$ by the following splitting argument:

(1) We may assume that X has no isolated points in $\text{Int} M$. If X has the isolated points x_i ($i = 1, \cdots, n$) in $\text{Int} M$, then we can choose mutually disjoint PL disk neighborhood D_i of x_i in $\text{Int} M \setminus X_0$, where $X_0 = X \setminus \{x_1, \cdots, x_n\}$. By Fact 4.2.(1) there exists a map $\varphi : \prod_{i=1}^n \text{Int} D_i \to H^{PL}_{X_0}(M)$
such that \(\varphi(y_1, \cdots, y_n)(x_i) = y_i \) and \(\varphi(x_1, \cdots, x_n) = id_M \). Then \(U = \{ f \in \mathcal{H}^{PL}_X(M) : f(x_i) \in Int D_i (i = 1, \cdots, n) \} \) is an open neighborhood of \(id_M \) in \(\mathcal{H}^{PL}_X(M) \) and \(\Phi : (\prod \text{Int} D_i) \times \mathcal{H}^{PL}_X(M) \to U, \Phi(y_1, \cdots, y_n, g) = \varphi(y_1, \cdots, y_n)g \), is a homeomorphism with the inverse \(\Phi^{-1}(f) = (f(x_1), \cdots, f(x_n), \varphi(f(x_1), \cdots, f(x_n))^{-1}f) \). Hence if \(\mathcal{H}^{PL}_X(M) \) is locally contractible, then \(\mathcal{H}^{PL}_X(M) \) is also locally contractible.

(2) Cutting \(M \) along \(\text{Fr}_M \) \(X \) we may assume that \(X \subset \partial M \).

(3) By Fact 4.2.(4) there exists an open neighborhood \(V \) of \(i_X \) in \(E^{PL}(X, \partial M) \) and a map \(\varphi : V \to \mathcal{H}^{PL}(M) \) such that \(\varphi(g)|_X = g \) and \(\varphi(i_X) = id_M \). Let \(\psi : \mathcal{H}^{PL}(M) \to E^{PL}(X, \partial M) \) be the restriction map, \(\psi(f) = f|_X \) and let \(U = \psi^{-1}(V) \). Then \(U \) is an open neighborhood of \(id_M \) in \(\mathcal{H}^{PL}(M) \) and \(\Phi : V \times \mathcal{H}^{PL}(X, \partial M) \to U, \Phi(g,h) = \varphi(g)h \), is a homeomorphism with the inverse \(\Phi^{-1}(f) = (f|_X, \varphi(f|_X)^{-1}f) \). Since \(\mathcal{H}^{PL}(M) \) is locally contractible \(\square \), \(\mathcal{H}^{PL}_X(M) \) is also locally contractible.

Suppose \(M \) is a PL 2-manifold and \(K \subset X \) are compact subpolyhedra of \(M \).

Lemma 4.4. (1) (i) \(E_K(X, M)^* \) is an ANR and (ii) \(E_K^{PL}(X, M)^* \) has the h.n. complement in \(E_K(X, M)^* \).

(2) (i) \(E_K(X, M) \) is an ANR and (ii) \(E_K^{PL}(X, M) \) has the h.n. complement in \(E_K(X, M) \).

Proof. (1)(i) For every \(f \in E_K(X, M)^* \), take a compact PL 2-submanifold neighborhood \(N \) of \(f(X) \) in \(M \) and consider the map \(\pi : \mathcal{H}^{PL}_K(M \setminus \text{Int}_M N) (M) \to E_K(X, M)^* \), \(\pi(h) = hf \). By Theorem 1.1 there exists an open neighborhood \(U \) of \(f \) in \(E_K(X, M)^* \) and a map \(\varphi : U \to \mathcal{H}^{PL}_K(M \setminus \text{Int}_M N)(M) \) such that \(\pi \varphi(g) = g \ (g \in U) \). Since \(\mathcal{H}^{PL}_K(M \setminus \text{Int}_M N)(M) \cong \mathcal{H}^{PL}_K(M \setminus \text{Fr}_M N)(N) \) is an ANR by Lemma 3.2, so is \(U \). Hence \(E_K(X, M)^* \) is an ANR.

(ii) By Fact 4.1.(i) it suffices to show that every \(f \in E_K(X, M)^* \) admits a neighborhood \(U \) and a homotopy \(F_t : U \to E_K(X, M)^* \) such that \(F_0 = id_U \) and \(F_t(g) \subset E_K^{PL}(X, M)^* \ (0 < t \leq 1) \). Take a compact PL 2-submanifold \(N \) of \(M \) with \(f(X) \subset U \equiv \text{Int}_M N \). Let \(\varphi : U \to \mathcal{H}^{PL}_K(M \setminus \text{Int}_M U)(M) \) be given by Theorem 1.1. Since \(\mathcal{H}^{PL}_K(M \setminus \text{Int}_M U)(M) \cong \mathcal{H}^{PL}_K(M \setminus \text{Fr}_M U)(N) \) by Fact 4.2 we have an absorbing homotopy \(\chi_t \) \(\mathcal{H}^{PL}_K(M \setminus \text{Fr}_M U)(N) \) into \(\mathcal{H}^{PL}_K(M \setminus \text{Fr}_M U)(M) \). There exists a \(h \in \mathcal{H}^{PL}_K(M \setminus \text{Fr}_M U)(M) \) such that \(hf \in E_K^{PL}(X, M)^* \). Define \(F_t \) by \(F_t(g) = \chi_t(\varphi(g)h^{-1})hf \ (g \in U) \).

(2) There exists an \(f \in E_K^{PL}(X, M) \) with \(f(X \setminus K) \subset \text{Int} M \). It induces a homeomorphism \((E_K(f(X), M), E_K^{PL}(f(X), M)) \cong (E_K(X, M), E_K^{PL}(X, M)) : g \to gf \). Hence we may assume that \(X \setminus K \subset \text{Int} M \). Pushing towards \(\text{Int} M \) using a collar of \(\partial M \) pinched on \(\partial M \cap K \), it follows that \(E_K(X, M)^* \) has the h.n. complement in \(E_K(X, M) \). Thus (i) follows from (1)(i) and Fact 4.1.(ii), and (ii) follows from (1)(ii), Fact 4.1.(iii) and \(E_K^{PL}(X, M)^* \subset E_K^{PL}(X, M) \). \(\square \)

Theorem 1.2 follows from Proposition 4.1 and the above lemmas. For the proper embeddings we have a pair version.

Proposition 4.2. If \(\dim (X \setminus K) \geq 1 \), then \((E_K(X, M)^*, E_K^{PL}(X, M)^*) \) is an \((s, \sigma)\)-manifold.

Remark 4.1. In general, \(E_K^{LIP}(X, M)^* \) is not \(\sigma \)-compact. For example, suppose \(X \) is a proper arc in \(M \) and \(K = \partial X \). If \(E_K^{LIP}(X, M)^* = \cup_{i \geq 1} F_i \), \(F_i \) is compact, then \(F_i = \{ f(x) : f \in F_i, x \in X \} \)
is a compact subset of M with $F_i \cap \partial M = K$. By a simple diagonal argument we can define an $f \in E_{K}^{\text{LIP}}(X,M)$ such that $f(X) \not\subset F_i$ for each $i \geq 1$. Figure 2 indicates how to define such an f near an end point of X.

Figure 2.

References

[1] Courant, R., *Dirichlet’s principle, conformal mapping, and minimal surfaces*, Pure and Applied Math., Interscience Publishers Inc., New York, 1950.

[2] Dugundji, J., *Topology*, Allyn and Bacon Inc., Boston, 1966.

[3] Epstein, D. B. A., Curves on 2-manifolds and isotopies, *Acta Math.*, 155 (1966) 83 - 107.

[4] Gauld, D. B., Local contractibility of spaces of homeomorphisms, *Compositio Math.*, 32 (1976) 3 - 11.

[5] Geoghegan, R., On spaces of homeomorphisms, embeddings, and functions, II: The piecewise linear case, *Proc. London Math. Soc.*, (3) 27 (1973) 463 - 483.

[6] Geoghegan, R. and Haver, W. E., On the space of piecewise linear homeomorphisms of a manifold, *Proc. of Amer. Math. Soc.*, 55 (1976) 145 - 151.

[7] Goluzin, G. M., *Geometric Theory of Functions of A Complex Variable*, Translations of Mathematical Monographs 26, Amer. Math. Soc., 1969.

[8] Hamstrom, M. E., Homotopy groups of the space of homeomorphisms on a 2-manifold, *Illinois J. Math.*, 10 (1966) 563 - 573.

[9] Luke, R. and Mason, W. K., The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract, *Trans. Amer. Math. Soc.*, 164 (1972), 275 - 285.

[10] Michael, E. A., Local properties of topological spaces, *Duke Math. J.*, 21 (1954) 163 - 172.

[11] Pommerenke, Ch., *Boundary Behaviour of Conformal Maps*, GMW 299, Springer-Verlag, New York, 1992.

[12] Sakai, K., An embedding space triple of the unit interval into a graph and its bundle structure, *Proc. Amer. Math. Soc.*, 111 (1991), 1171 - 1175.

[13] Toruńczyk, H., Concerning locally homotopy negligible sets and characterizing of \mathcal{L}_2-manifolds, *Fund. Math.*, 101 (1978) 93 - 110.

[14] van Mill, J., *Infinite-Dimensional Topology: Prerequisites and Introduction*, North-Holland, Amsterdam, 1989.

[15] Veech, W. A., *A second Course in Complex Analysis*, W.A. Benjamin Inc., New York, 1967.

[16] Yagasaki, T., Infinite-dimensional manifold tuples of homeomorphism groups, *Topology Appl.*, 76 (1997) 261 - 281.

Department of Mathematics, Kyoto Institute of Technology, Matsugasaki, Sakyoku, Kyoto 606, Japan

E-mail address: yagasaki@ipc.kit.ac.jp