From \(\gamma\) to Radio - The Electromagnetic Counterpart of GW 170817

Ehud Nakar\(^{1}\), Ore Gottlieb\(^{1}\) Tsvi Piran\(^{2}\) Mansi M. Kasliwal\(^{3}\) Greg Hallinan\(^{3}\)

\(^{1}\)The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
\(^{2}\)Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
\(^{3}\)Division of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA

ABSTRACT

The gravitational waves from the first binary neutron star merger, GW170817, were accompanied by a multi-wavelength electromagnetic counterpart, from \(\gamma\)-rays to radio. The accompanying gamma-rays, seems at first to confirm the association of mergers with short gamma-ray bursts (sGRBs). The common interpretation was that we see an emission from an sGRB jet seen off-axis. However, a closer examination of the sub-luminous \(\gamma\)-rays and the peculiar radio afterglow were inconsistent with this simple interpretation. Here we present results of 3D and 2D numerical simulations that follow the hydrodynamics and emission of the outflow from a neutron star merger form its ejection and up to its deceleration by the circum-merger medium. Our results show that the entire set of \(\gamma\)-rays, X-rays and radio observations can be explained by the emission from a mildly relativistic cocoon material (Lorentz factor \(\sim 2-5\)) that was formed while a jet propagated through the material ejected during the merger. The \(\gamma\)-rays are generated when the cocoon breaks out from the engulfing ejecta while the afterglow is produced by interaction of the cocoon matter with the interstellar medium. The strong early uv/optical signal may be a Lorentz boosted macronova/kilonova. The fate of the jet itself is currently unknown, but our full-EM models define a path to resolving between successful and choked jet scenarios, outputting coupled predictions for the image size, morphology, observed time-dependent polarization and light curve behavior from radio to X-ray. The predictive power of these models will prove key in interpreting the on-going multi-faceted observations of this unprecedented event.

1 INTRODUCTION

At first glance GRB 170817A looks like a regular sGRB (Goldstein et al. 2017; Savchenko et al. 2017), thereby confirming the association of mergers with short gamma-ray bursts (sGRBs) (e.g., Eichler et al. 1989; Nakar 2007). However, a closer examination reveals that it does not resemble any other burst seen before. Its total isotropic equivalent luminosity is smaller by several orders of magnitude than the weakest short burst with an identified redshift. It is too bright and too blue half a day after the merger. While clearly inconsistent with lanthanides high opacity (\(\kappa \approx 10 \text{cm}^2/\text{g}\)), even a much lower opacity (\(\kappa \approx 1 \text{cm}^2/\text{g}\)) is hardly consistent with such a bright early signal (Kasliwal et al. 2017; Arcavi 2018).

The common explanation to the peculiar observations was that we have observed a regular sGRB jet off-axis (Troja et al. 2017; Margutti et al. 2017; Haggard et al. 2017; Goldstein et al. 2017). However, even this signal deviated somewhat from the expectations. It was too bright and too blue half a day after the merger. While clearly inconsistent with lanthanides high opacity (\(\kappa \approx 10 \text{cm}^2/\text{g}\)), even a much lower opacity (\(\kappa \approx 1 \text{cm}^2/\text{g}\)) is hardly consistent with such a bright early signal (Kasliwal et al. 2017; Arcavi 2018).

The common macronova (a.k.a. kilonova) interpretation is that it was powered by radioactive decay within the dynamical ejecta and winds ejected during the merger (e.g., Evans et al. 2017; Kasen et al. 2017; Cowperthwaite et al. 2017; Smartt et al. 2017; Kasliwal et al. 2017; Pian et al. 2017; Tanvir et al. 2017; Tanaka et al. 2017; Drout et al. 2017; Kilpatrick et al. 2017; Nicholl et al. 2017; Waxman et al. 2017; Shappee et al. 2017). Alternatively, the unique prop-

1 Simple Doppler arguments suggest that the peak photon energy of that burst would have been at least \(\approx 5 \text{MeV}\). Such peak energy is much higher than the typically observed SGRB peak energy, and is seen only rarely.
erties of the γ-rays suggest that we observed a mildly relativistic shock breakout. Compactness arguments show that the radiating material must have at least $\Gamma \approx 2 - 3$ (Gottlieb et al. 2017), while the uv/optical/IR indicate that $\sim 0.05 M_\odot$ were launched at velocities of $0.1 - 0.3c$ during the merger. This suggests that a jet with $\Gamma \geq 3$ was launched following the merger into the expanding ejecta. When the jet propagates through the sub-relativistic ejecta it inflates a cocoon (Ramirez-Ruiz et al. 2002; Nakar & Piran (2017), Lazzati et al. (2017b) and Gottlieb et al. (2018) have shown before GW170817 that in the conditions expected following a neutron star merger the jet propagation gives rise to a wide-angle mildly relativistic cocoon. Moreover, the cocoon is expected not only in case that the jet successfully breaks out of the sub-relativistic ejecta, presumably producing a regular sGRB for an on-axis observer, but also in cases when the jet is choked within the ejecta and no sGRB is generated.

Soon after the detection of GW170817 we and others suggested that the γ-rays were generated by the breakout of the shock driven by the cocoon out of the sub-relativistic ejecta (Kasliwal et al. 2017; Gottlieb et al. 2017; Bromberg et al. 2018; Pozanenko et al. 2018). The mildly relativistic shock breakout model is appealing since it explains all the properties of the signal: its low luminosity compared to the total explosion energy, its spectrum, duration and the delay compared to the GW signal. Moreover, the quasi-thermal spectrum and its hard to soft evolution is a clear prediction of shock breakout emission (Nakar & Sari 2012; Gottlieb et al. 2017). In addition, all the unique properties of GRB 170817A are seen also in low-luminosity GRBs (a special family of long GRBs), which are believed to arise from a shock breakout from the stellar surface (Kulkarni et al. 1998; Campagna et al. 2006; Nakar & Sari 2012; Nakar 2015). For a shock breakout to explain the observed γ-rays in GRB 170817A it should take place at a radius of $10^{11} - 10^{12}$ cm with $\Gamma \sim 3$.

While the γ-rays gave the first hint for a significant mildly relativistic outflow, the radio and X-ray afterglow provided a very strong support for this picture. The radio signal, which seems as the mildly relativistic part of the radio flare predicted by Nakar & Piran (2011), rises continuously, roughly as $t^{0.8}$, since the first detection on day sixteen (Hallinan et al. 2017; Mooley et al. 2018) and so does the X-ray signal (Ruan et al. 2018; Pooley et al. 2017; Margutti et al. 2018). This moderate continuous increase is inconsistent with any type of off-axis emission (i.e., emission from material that moves with a Lorentz factor Γ at an angle larger than $1/\Gamma$ with respect to observer). Instead it requires a mildly relativistic blast wave with $\Gamma \sim 2 - 5$ that radiates on-axis (Nakar & Piran 2018).

Namely, the blast wave propagates into the ISM at a direction within an angle of $1/\Gamma$ with respect to the line of sight. The continuous rise in the radio implies that between day 10 and 100 the energy in the region that radiates on-axis increased by about a factor of 10. The additional energy can be produced by a slower inner matter which is moving behind the blast wave and is catching up as it slows down or from matter moving on a slightly larger viewing angles that decelerates and comes into the line of sight (i.e., an angle $< 1/\Gamma$) (Nakar & Piran 2018). All these properties of the emitting blast wave fit very well the outcome of the interaction of the mildly relativistic cocoon (with either a choked or a successful jet) with the circum-merger inter-stellar medium (Gottlieb et al. 2017; Lazzati et al. 2017a; Margutti et al. 2018).

The first goal of this paper is to find if a single model can explain the entire electromagnetic observations, starting with the prompt gamma-rays, through the uv/optical/IR macronova and up to the radio and X-ray afterglow. The second goal is to find out what future observation are needed to distinguish between different models that currently fit the data, and specifically whether there is a successful jet in GW170817 or not. For that we carry out a series of numerical simulations which are the first to encompass the entire evolution and emission, from the prompt γ-rays to the afterglow, in a single simulation. A general description of the simulations is given in §2. In order to streamline the structure of the paper the exact details of the simulations are discussed in an Appendix. We discuss the resulting light curves of the γ-rays, the uv/optical/IR macronova and the radio afterglow in §3. In §4 we explore the differences in the predicted radio light curve, image and polarization between a choked and a successful jet and discuss how future observations may distinguish between these two scenarios. We summarize our results and conclude in §5.

2 METHODS

We have carried out a set of relativistic hydrodynamic simulations (see Appendix for details) of the post-merger outflow starting at the jet launching, following its propagation through the sub-relativistic ejecta and the cocoon shock breakout, where the γ-rays are produced, continuing to the homologous phase during which the uv/optical/IR macronova is emitted and ending in the interaction of the outflow with the circum-merger ISM that gives rise to the radio and the X-rays. We used the public code PLUTO (Mignone et al. 2007), with an HLL Riemann solver and a third order Runge Kutta time stepping.

The numerical simulations were done in two steps, spanning together over about ten orders of magnitude in length scale, both for the hydrodynamics and for the radiation. The hydrodynamics begins on a scale of 10^6 cm where we inject the jet and it ends at about 10^{18} cm, the location of the blast wave 1000 days (as measured in the observer frame) after the event.

In each one of the relevant stages we post-process the hydrodynamic results and calculate the emission (see Appendix for details). The prompt γ-ray emission upon the cocoon shock breakout, takes place at a radius $\sim 10^{11}$ cm, where the emitting region width is about 10^9 cm. The macronova signal is produced at $10^{15} - 10^{16}$ cm, and the subsequent afterglow at $10^{16} - 10^{18}$ cm. As initial conditions we take the sub-relativistic ejecta that was ejected by the merger. The ejecta contained two components, a massive and slow component ($0.05 - 0.1 M_\odot$ at 0.1-0.3c), which is inferred from the uv/optical/IR emission, and a fast low mass tail that is necessary, in our model, for the breakout to take place at a large enough radius to produce the observed γ-rays. This fast tail is not observed directly, but its existence was predicted as an outcome of the shock that formed during the first collision between the two neutron stars (Kyutoku et al. 2014) and it was found in early merger simulations (although with marginal resolution) (Hotokezaka et al. 2013), where $\sim 10^{-6} - 10^{-7} M_\odot$ has a velocity of 0.7-0.8c. Kiuchi et al. (2017) performed recently the highest resolution merger simulations ever and confirmed the existence of this fast component.

3 RESULTS

In the various simulations we varied the jet and ejecta properties. We focused on relatively wide jets with opening angles $\sim 0.5 - 0.7$ rad. Such jets are uncollimated and are fully choked in the ejecta dumping all their energy into the mildly relativistic cocoon. Only these jets can accelerate enough ejecta material to affect the early
optical emission. Among those simulations we looked for those that fit the entire set of observations, finding several. An example of the emission from such a simulation and a comparison to the observations is shown in figures 1-3. The jet in this simulation has a luminosity of 2.6×10^{51} erg/s, an opening angle of 0.7 rad and it is launched for 1 s starting 0.8 s after the merger. The observer is set at an angle of 0.6 rad with respect to the jet symmetry axis. In figure 3 we show the afterglow for two different ISM densities, both fit current observations but each has a different future prediction.

We also run two simulations of a narrow powerful jet with an initial opening angle of 10° and a luminosity of 6.7×10^{50} erg/s. In both simulations the jet and ejecta parameters are the same and the only difference is the duration over which the jet is launched. In one simulation the jet is launched for a duration that is long enough so it successfully breaks out of the ejecta and presumably produces a sGRB that can be observed along its axis. This successful jet with its cocoon, which is sometimes called "structured jet", is scenario E in figure 2 of Mooley et al. (2018) and it is similar to the one considered by Lazzati et al. (2017a) and Margutti et al. (2018). In the second simulation the jet is launched for a short duration and it is choked before breaking out of the ejecta. In both cases the cocoon does not affect the uv/optical emission on a timescale of half a day, but we show that the shock breakout of the successful jet can potentially generate the γ-ray signal (figure 4). In both simulations there are afterglow parameters (ISM density and microphysics) for which the observed radio and X-ray emission is produced as shown in figure 3.

4 WAS THERE A RELATIVISTIC JET IN GW170817?

A relativistic jet is necessary to produce a sGRB. Therefore, the question whether a relativistic jet can successfully break out of a neutron star merger ejecta and in particular whether a jet broke out in this event is interesting. In GW170817 we consider the option of a successful jet as possible, but less likely. First, it doesn’t explain the early optical light. Second, and more importantly, to explain the observed radio emission the jet should be either much weaker than the cocoon, so its contribution is unimportant, or it should be so powerful that its contribution begins only at very late time, at least months after the merger. Without fine tuning, the jet is not expected to have much less energy than the cocoon (Nakar & Piran 2017), while a very powerful jet produces a very luminous sGRB and these are known to be extremely rare (Nakar 2007; Wanderman & Piran 2015). However, these are only circumstantial evidence.

Unfortunately a weak successful jet does not contribute to the observed emission and therefore we may never know if it existed or not. A powerful jet, however, might be detectable. If it is powerful enough it may be detectable while being still off-axis. In that case the radio light curve should rise sharply, then decline as a power-law, after a short plateau. This unique prediction of the jet signature is the easiest to identify. A less powerful jet may contribute to the radio light curve, but its contribution may not be easily identified (e.g., see figure 3 and Lazzati et al. 2017a; Margutti et al. 2018).
since a continuous rise to a peak followed by a decay can arise either from a successful or from a choked jet (see figure 3 and Nakar & Piran 2018).

Additional information, especially in the radio near the time that the afterglow flux peaks, may provide the key to resolve this question. First, the radio image of the source is expected to be resolved soon. Figure 5 shows the images of a choked and a successful jet simulations. It shows that when there is a successful jet, the image becomes more symmetric and its centroid moves significantly (on a scale comparable to the image size), as the emission from the jet becomes more prominent. The jet dominates the emission once the light curve peaks and then the motion of the image centroid stops. This evolution is generic and is expected to be seen in all the cases that a successful jet dominates the emission near the peak. The image of a choked jet is less predictive as it depends on the details of the cocoon structure and it varies between different simulations we carried out. However, its evolution is typically different than that of a successful jet. Generally, we found that it is much less symmetric near the peak of the light curve, and its centroid tends to move more slowly before the peak, than the image of a successful jet.

Linear polarization may provide an additional valuable clue.

Figure 3. The afterglow emission compared with the radio and X-ray data (Hallinan et al. 2017; Mooley et al. 2018; Troja et al. 2017; Margutti et al. 2018). Shown are four simulations, two uncollimated, both with a choked jet and two collimated, one with a choked jet and one with a successful jet. In all simulations the observer is at 0.6 rad (see the Appendix). Both uncollimated choked jet simulations have the same outflow as in figures 1 and 2. The difference is that one has a high ISM density and a low magnetic field, \(n = 0.05 \text{ cm}^{-3}, \quad B = 10^{-5} \) and the other has a lower density and a higher magnetic field \(n = 5 \times 10^{-4} \text{ cm}^{-3}, \quad B = 0.006 \). The collimated choked jet afterglow simulation has \(n = 0.02 \text{ cm}^{-3}, \quad B = 7 \times 10^{-2} \) and the successful jet simulation has \(n = 0.05 \text{ cm}^{-3}, \quad B = 10^{-3} \). In all simulations \(\epsilon_e = 0.1 \) and \(p = 2.17 \). All models fit the observations very well and in all the cocoon dominates the emission during most (if not all) of the available observations. The models start to deviate only after about 100 days. In the collimated cases (both choked and successful) the emission near the peak contains a significant contribution from material along the jet axis (in the successful case it is the jet), and following the peak there is a fast decline. The afterglows of uncollimated choked jets also reach a peak, but the following decline is typically shallower than the collimated jets. We note that the jet in the successful case is extremely energetic with an isotropic equivalent luminosity of \(4.4 \times 10^{52} \text{ erg/s} \) which is unusually high for sGRBs. This is the main reason that its contribution starts so late.

Figure 4. The shock breakout \(\gamma \)-ray light curve (top panel) and spectrum (bottom panel) from the successful jet simulation. The blue thin line is the spectrum during the peak while the red thick line is the spectrum during the tail.

The level of polarization depends on the geometry of the image and on the structure of the magnetic field. Therefore, the exact level of polarization at a given time will not give a definite answer, however the time evolution differs significantly between a choked and a successful jet. A maximal polarization is seen when the source is moving at an angle of \(1/4 \) with respect to the line of sight (Sari 1999). Thus, if there is a dominant jet then the polarization is expected to rise significantly as the jet becomes more dominant, reaching a peak in the polarization near or slightly after the peak of the light curve. After the peak, as the flux starts its decay, also the polarization level starts to drop. In contrast, the polarization of a choked jet is not expected to show significant evolution before and near the peak of the light curve. To conclude, while there may be uncertainty in interpreting any one piece of the information carried by the afterglow light, when added altogether we have a powerful tool at hand to resolve the structure of the outflow.

5 CONCLUSIONS

In summary, we have shown that the entire set of electromagnetic observations that followed GW170817 can be explained by the different phases in the evolution of a mildly relativistic cocoon, formed during the propagation of a relativistic jet through the sub-relativistic ejecta. While the formation and evolution of the cocoon, as well as its importance for a signal observed away from the cone of the relativistic jet were predicted before GW170817 (Nakar & Piran 2017; Lazzati et al. 2017; Gottlieb et al. 2018), here we show that it is much more important than was thought before. A clear prediction of this model is that future neutron star mergers will also show the signature of this mildly relativistic outflow. The current observations of GW170817 can be explained by a cocoon arising either from a choked jet or from a successful one.
Figure 5. Radio images at 3GHz for two of the simulations presented in figure 3, the uncollimated choked jet with high density and the successful jet. The images are taken on days 80 (panels A and C) and 240 (panels B and D), where the light curve of both afterglows peak. The crosses at [0,0] mark the line of sight. Both models show a roughly linear growth of the image size with time, to a size that should be resolved by the VLBI. By day 80 the jet is already the main contributor in the successful jet model, whereas the wider cocoon leads to a bigger image in case of a choked jet. By day 240 both shapes remain similar but have grown bigger over time with the successful jet showing a more symmetric image with a centroid that is at a larger offset compared to the image on day 80. This is a general feature of successful jet images near the peak of the radio light curve, when the peak is dominated by the jet emission. We note that the image of the choked jet in this example is not general and in other simulations (that fit the radio light curve) we see a different image structures. The common property of most choked jet images is that they are asymmetric with one axis of the image being longer than the other.

where in the latter case the jet may significantly contribute to the emission at late times. While we favor the former, both are viable and GW170817 may or may not have produced a sGRB. Therefore, GW170817 is not yet a conclusive evidence for the sGRB-NS merger connection. Nevertheless, it is certainly supporting this connection since it demonstrates that NS mergers most likely generate relativistic jets, even if in this specific event the jet was choked. This is especially true given that the duration distribution of sGRBs shows evidence for a large number of failed sGRBs where the jet is choked (Moharana & Piran 2017).

This research was supported by the I-Core center of excellence of the CHE-ISF. OG and EN were partially supported by an ERC starting grant (GRB/NS) and an ISF grant (1277/13). TP was partially supported by an advanced ERC grant TReX and by a grant from the Templeton foundation.

REFERENCES

Arcavi I., 2018, preprint, (arXiv:1802.02164)
Arcavi I., et al., 2017, Nature, 551, 64
Bromberg O., Tchekhovskoy A., Gottlieb O., Nakar E., Piran T., 2018, MNRAS, 475, 2971
Buckley D. A. H., et al., 2018, MNRAS, 474, L71
Campana S., et al., 2006, Nature, 442, 1008
Coulter D. A., et al., 2017, Science, 358, 1556
Covino S., et al., 2017, Nature Astronomy, 1, 791
Cowperthwaite P. S., Berger E., Villar V. A., et. al. 2017, ApJ, 848, L17
Díaz M. C., et al., 2017, ApJ, 848, L29
Drout M. R., et al., 2017, Science, 358, 1570
Eichler D., Livio M., Piran T., Schramm D. N., 1989, Nature, 340, 126
Evans P. A., et al., 2017, Science, 358, 1565
Goldstein A., et al., 2017, ApJ, 848, L14
Gottlieb O., Nakar E., Piran T., Hotokezaka K., 2017, preprint, (arXiv:1710.05896)
Gottlieb O., Nakar E., Piran T., 2018, MNRAS, 473, 576
Granot J., 2012, Mon. Not. R. Astron. Soc, 421, 2610
Granot J., Gill R., Guetta D., De Colle F., 2017, preprint, (arXiv:1710.06421)
Haggard D., Nynka M., Ruan J. J., Kalogera V., Cenko S. B., Evans P., Kennea J. A., 2017, ApJ, 848, L25
Hallinan G., Corsi A., Mooley K. P., Hotokezaka K., Nakar E., et. al. 2017, Science, 358, 1579
Hotokezaka K., Kiuchi K., Kyutoku K., Okawara H., Sekiguchi Y.-i., Shibata M., Taniguchi K., 2013, Phys. Rev. D, 87, 024001
Hotokezaka K., Nissanke S., Hallinan G., Lazio T. J. W., Nakar E., Piran T., 2016, ApJ, 831, 190
Kasen D., Fernández R., Metzger B. D., 2015, MNRAS, 450, 1777
Kasen D., Metzger B., Barnes J., Quataert E., Ramirez-Ruiz E., 2017, Nature, 551, 80
Kasliwal M. M., Nakar E., Singer L. P., et. al. 2017, Science, 358, 1559
Kilpatrick C. D., et al., 2017, Science, 358, 1583
Kiuchi K., Kawaguchi K., Kyutoku K., Sekiguchi Y., Shibata M., Taniguchi K., 2017, Phys. Rev. D, 96, 084060
Kulkarni S. R., et al., 1998, Nature, 395, 663
Kyutoku K., Ioka K., Shibata M., 2014, MNRAS, 437, L6
Lazzati D., Perna R., Morsony B. J., et. al. 2017a, preprint, (arXiv:1712.03237)
Lazzati D., Deich A., Morsony B. J., Workman J. C., 2017b, MNRAS, 471, 1652
Lyman J. D., Lamb G. P., Levan A. J., et. al. 2018, preprint, (arXiv:1801.02669)
Margutti R., et al., 2017, ApJ, 848, L20
Margutti R., Alexander K. D., Xie X., Siromi L., et al. 2018, preprint, (arXiv:1801.03531)
McCully C., et al., 2017, ApJ, 848, L32
Mignone A., Bodo G., Massaglia S., Matsakos T., Tesileanu O., Zanni C., Ferrari A., 2007, Astrophys. J. Suppl. Ser., 170, 228
Moharana R., Piran T., 2017, MNRAS, 472, L55
Mooley K. P., et al., 2018, Nature, 554, 207
Nakar E., 2007, Phys. Rep., 442, 166
Nakar E., 2015, ApJ, 807, 172
Nakar E., Piran T., 2011, Nature, 478, 82
Nakar E., Piran T., 2018, preprint, (arXiv:1802.03240)
Pozanenko A. S., et al., 2018, ApJ, 852, L30
Ramirez-Ruiz E., Celotti A., Rees M. J., 2002, MNRAS, 337, 1349
Ruan J. J., Nynka M., Haggard D., Kalogera V., Evans P., 2018, ApJ, 853, L4
Sari R., 1999, ApJ, 524, L43
Sari R., Piran T., Narayan R., 1998, ApJ, 497, L17
Savchenko V ., et al., 2017, ApJ, 848, L15
Shapoori B. J., et al. 2017, Science, 358, 1574
Smartt S. J., Chen T.-W., Jerkstrand A., et. al. 2017, Nature, 551, 75
Soares-Santos M., et al., 2017, ApJ, 848, L16
Tanaka M., et al., 2017, Phys. Rev. D, 96, 084060
Tanaka M., et al., 2017, PASJ, 69, 102

MNRAS 000, 1–77 (2018)
Here we describe one such simulation. Signals resemble the electromagnetic counterparts of GW 170817. In the macro nova stage of interaction with the ISM, where we varied various parameters, such as the exact ejecta mass and velocity profile, the maximal ejecta velocity and the jet luminosity and duration, we found several models where the resulting signals resemble the electromagnetic counterparts of GW 170817. We describe the details of the hydrodynamic simulation of the choked jet, for which we present the results in figures 1-3. We use 2D simulations for all the phases. This is justified since the jet in this simulation is launched with a wide opening angle and therefore it is uncollimated. As a result (unlike the case of a collimated jet, Gottlieb et al. 2018) the structure at the jet’s head is not strongly affected by the symmetry axis and the evolution in 2D and 3D is expected to be similar.

As initial conditions for part I we set the ejecta to be present from the base of the grid at \(r_{\text{min}} = 4 \times 10^8 \mathrm{cm} \) up to \(r_{\text{max}} = 5.2 \times 10^9 \mathrm{cm} \). The ejecta is composed of two components, a massive and slow component, which we describe as the core, and a low-mass fast component, which we denote as the tail. The core extends from \(r_{\text{min}} \) to \(r_{\text{max}}/4 \), and the fast-tail from \(r_{\text{max}}/4 \) to \(r_{\text{max}} \). The core ejecta’s density profile is:

\[
\rho_c(r, \theta) = \rho_0 r^{-2} \left(\frac{1}{4} \sin^2 \theta \right) ,
\]

(A1)

where \(\rho_0 \) is chosen for a total core ejecta mass \(M_c = 0.1 M_\odot \). Namely, the angular dependence is such that \(3/4 \) of the ejecta mass near the equator at \(1.0 \text{rad} < \theta < 1.0 \text{rad}, \) where \(\theta \) is the angle with respect to the jet axis. The velocity profile of the core is

\[
v_c(r) = v_{c, \text{max}} \frac{r}{r_c} ,
\]

(A2)

where \(v_{c, \text{max}} = 0.2c \) is the core’s maximal velocity. The normalisation of the fast-tail density is chosen so its total mass is \(M_t = 5 \times 10^{-3} M_\odot \). With a steep power-law \(\rho \propto r^{-14} \) and maximal velocity 0.7c. With this velocity profile only \(10^{-5} M_\odot \) are moving at \(v \geq 0.6c. \)

The jet is injected into the ejecta with a delay of 0.8s for a total working time of 1s and a total luminosity of \(L_j = 2.6 \times 10^{51} \text{erg s}^{-1} \). The jet is injected with a specific enthalpy of 20 at and opening angle of 0.7rad from a nozzle at the base of the grid with a size of \(10^6 \text{cm} \).

We use a 2D cylindrical symmetric grid where the symmetry axis is \(z \). For the grid of the first part of the simulation (from merger till the homologous phase) we use three patches along the \(x \)-axis, the innermost one in the \(x \)-axis resolves the jet’s nozzle with 20 uniform cells from \(x = 0 \) to \(x = 2 \times 10^5 \text{cm} \). The next patch stretches logarithmically from \(x = 2 \times 10^5 \text{cm} \) to \(x = 2 \times 10^{10} \text{cm} \) with 800 cells, and the last patch has 1200 uniform cells to \(x = 1.2 \times 10^{12} \text{cm} \). In the \(z \)-axis we employ two uniform patches, one from \(z_{\text{min}} = 4.5 \times 10^8 \text{cm} \) to \(z = 2 \times 10^{10} \text{cm} \) with 800 cells, and the second to \(z = 1.2 \times 10^{12} \text{cm} \) with 1200 cells. In total the grid contains \(2020 \times 2000 \) cells.

For the second part of simulation we propagate the last snapshot of the first simulation ballistically to a radius of \(\sim 10^{16} \text{cm} \), where we let the relativistic outflow interact with the ISM. We verify that taking a smaller initial radius for this part does not.

APPENDIX A: NUMERICAL SIMULATIONS

We carry out numerical relativistic hydro simulations of the jet ejecta interaction and of the resulting outflow and its interaction with the surrounding matter. We then post-process the hydrodynamic results to calculate the observed emission. The hydrodynamics has four phases. First, the jet-ejecta interaction and the formation of the cocoon. Second, the breakout of the cocoon (and the jet if it is not choked) and its expansion and acceleration until it reaches a homologous expansion. Third, a phase of homologous expansion during which the interaction with the external medium is unimportant, and finally, once enough ISM material is collected, the slowing down of the ejecta due to the strong blast wave it drives into the surrounding ISM. The hydro simulations are carried out in two steps. In step I we calculate the jet propagation within the ejecta and the cocoon breakout and expansion. This step ends when the cocoon material reaches a homologous expansion. During the homologous expansion phase each element moves ballistically and cools adiabatically, and therefore we do not need to simulate this phase. We simply propagate the results from the end of phase I up to a radius that is smaller by an order of magnitude than the radius at which the radio emission starts being significant. Then we start step II of the simulation that calculates the interaction of the outflow with the surrounding ISM.

We used the public code PLUTO (Mignone et al. 2007), with an HLL Riemann solver and a third order Runge Kutta time stepping. Throughout the simulations we apply an equation of state with a constant adiabatic index of 4/3, as appropriate for a radiation dominated and relativistic gas. We neglect gravity, as the gravitational dynamical times are longer than the typical interaction timescales at all phases of the simulations.

The hydro simulation begins at the time of the merger, that is \(t = 0 \), with a radially expanding cold ejecta (core and tail). After a fraction of a second a relativistic jet is launched into the ejecta. The interaction of this jet with the ejecta forms a hot cocoon that eventually breaks out of the ejecta (with a jet in the successful case) at \(r_{\text{jet}} \). We let the relativistic outflow reach \(5 \times 10^8 \text{cm} \) before terminating the simulation at \(1.2 \times 10^{12} \text{cm} \). We then stop the simulation and propagate the matter ballistically to a radius of \(\sim 10^{16} \text{cm} \) where we start it again to calculate the interaction with an external constant density medium.

Following the hydro simulations we post-process the data and calculate the observed radiation: the \(\gamma \)-rays during the shock breakout phase; the macronova’s uv/optical/IR emission during the homologous expansion phase and the radio and X-rays during the final stage of interaction with the ISM.

We carried out several simulations of uncollimated choked jets where we varied various parameters, such as the exact ejecta mass and velocity profile, the maximal ejecta velocity and the jet luminosity and duration. We found several models where the resulting signals resemble the electromagnetic counterparts of GW 170817. Here we describe one such simulation.

Simulations of collimated jets are much more demanding computationally (see below). We carried out, therefore, only two simulations, one of a successful jet and one of a choked jet. We found afterglow parameters for which the radio and X-rays from these simulations provide an good fit to the data (see figure 3). We calculated the \(\gamma \)-ray signal from the simulation of the successful jet and it is brighter and harder than GRB 170817A by about an order of magnitude (see figure 4), but we expect that there are other parameters for which the shock breakout of a cocoon driven by a successful jet produces a \(\gamma \)-ray signal that is consistent with GRB 170817A.
affect the radio and X-ray light curve at the times of the observations. The simulation can be scaled, so a single simulation can be used to calculate the hydrodynamic evolution in different ISM densities over a different range of radii (Granot 2012). We present results for two such scalings, each with a different ISM number density and different radii \(R_1 \) and \(R_2 \) for the patches of the grid. For the high ISM number density we use \(n = 5 \times 10^{-2} \text{cm}^{-3} \) with \(R_1 = 7 \times 10^{15} \text{cm} \) and \(R_2 = 4 \times 10^{15} \text{cm} \). In the second simulation we use \(n = 5 \times 10^{-3} \text{cm}^{-3} \) with \(R_1 = 3.2 \times 10^{16} \text{cm} \) and \(R_2 = 1.8 \times 10^{18} \text{cm} \). The grids are divided into two patches on each axis, the first of which are uniform with 500 cells on each axis, from 0 and to \(R_1 \) in the \(x \)-axis and from 2\(\text{min} \) to \(R_1 \) in the \(z \)-axis. This patch contains the entire grid of the final snapshot of part 1 (propagated ballistically). The outer patches are identical with 2500 cells in each axis which are distributed logarithmically between \(R_1 \) and \(R_2 \). In total the grid has 3000 \times 3000 cells.

A2 Hydrodynamic simulation - Collimated successful and choked jets

We turn now to describe the details of the hydrodynamic simulation of the collimated jets. Here, the initial phase of the jet propagation within the ejecta core must be carried out using high resolution 3D simulation (Gottlieb et al. 2018). This phase is very demanding computationally and therefore we carry out only two simulations. After the jets cross the ejecta core and expand into the fast tail it is choked when its head is crossing most of the core ejecta. We stop the simulation at that time. We then continue the simulation in 2D.

We run two identical simulations except for a single difference, the jet launching time, so in one simulation the jet is choked in the \(x \)-axis, the first of which are uniform with 500 cells on each axis, from 0 and to \(R_1 \) in the \(x \)-axis and from 2\(\text{min} \) to \(R_1 \) in the \(z \)-axis. We then continue the simulation in 2D.

We run two identical simulations except for a single difference, the jet launching time, so in one simulation the jet is choked in the \(x \)-axis, the first of which are uniform with 500 cells on each axis, from 0 and to \(R_1 \) in the \(x \)-axis and from 2\(\text{min} \) to \(R_1 \) in the \(z \)-axis. We then continue the simulation in 2D.

A3 \(\gamma \)-ray emission

The \(\gamma \)-ray emission following the shock breakout is calculated in the following way. First, for each angle \(\Theta \) we determine the time \(t_{\text{bo}}(\Theta) \) and radius \(r_{\text{bo}}(\Theta) \) at which the shock breaks out from the ejecta at this angle. The luminosity is then calculated by finding the photons that diffused to the photosphere during the time that passed since the shock crossing, approximating the diffusion as being radial. Specifically, at each lab frame time \(t > t_{\text{bo}} \) and angle \(\Theta \) we find the location \(r_{\text{bo}}(\Theta) \) from which the photons diffuse to the observer. Namely we find the location where the diffusion time to the photospheric radius, \(r_{\text{ph}}(\Theta) = 1 \), equals the time that passed since breakout:

\[
r_{\text{bo}}(\Theta) - r_{\text{ph}}(\Theta) = \frac{t - t_{\text{bo}}(\Theta)}{\Gamma(t_{\text{bo}}(\Theta))},
\]

where \(\Gamma(t_{\text{bo}}) \) is the Lorentz factor of the emitting region. The energy, as measured in the fluid rest frame, released between \(t_{\text{bo}} \) and \(t_{\text{bo}}(\Theta) \) and from a solid angle element \(d\Omega \) is the total internal energy of the emitting region during this period:

\[
dE'(t_{1}, t_{2}, \Theta) \propto \int_{t_{1}(t_{2})}^{t_{2}(t_{2})} 4\pi(r)^2 d\tau d\Omega.
\]

A4 UV/optical/IR emission

We are interested in fitting the bolometric luminosity and temperature evolution of the uv/optical/IR counterpart of GW 170817. We restrict the fit to the first week, after which both the luminosity and the temperature are not well constrained. For the hydrodynamic evolution we use the final snapshot of part I of the choked jet hydrodynamical simulation, taken at time \(t_f \). The homologous expansion after that time enables us to calculate the evolution of each fluid element and the adiabatic cooling of the radiation trapped in the fluid at any time \(t > t_f \).
We estimate the opacity of the ejecta using two components, a low opacity component that corresponds to Lanthanides poor material and high opacity component that corresponds to Lanthanides rich material. This is motivated both by theoretical considerations that suggest that the ejecta at high latitudes is Lanthanides free while the outflow at low latitudes is Lanthanides rich (e.g. Perego et al. 2014; Kasen et al. 2015), and more importantly, by the spectral evolution of the UV/optical/IR counterpart of GW 170817 (e.g. Evans et al. 2017, Smartt et al. 2017). We find a good fit to the data during the first week (figure 2) using $\kappa = 0.8 \text{ cm}^2\text{g}^{-1}$ for material moving at $v > 0.1c$, and $\kappa = 5 \text{ cm}^2\text{g}^{-1}$ for material moving at $v < 0.1c$. This velocity criterion is applicable since the interaction with the jet accelerates the material at high latitudes to $v > 0.1c$. We also test if a single component model can fit the data (e.g. Smartt et al. 2017) and find that a good fit (at least to the luminosity and temperature) can be obtained with a single component where all the ejecta have $\kappa \approx 0.8 \text{ cm}^2\text{g}^{-1}$.

The emission is calculated assuming that the photons diffuse radially. For each angle θ, we calculate first the optical depth to infinity, $\tau(r, \theta)$. We determine the trapping radius $r_t(\theta)$ where $\tau(r_t(\theta)) = c/\nu$, above which photons diffuse freely to the observer, and the photosphere $r_{ph}(\theta)$ in which $\tau(\theta) = 1$.

The emission is powered by two sources: the diffusion of the internal energy (cooling emission) and the radioactive heating (macronova). For the cooling emission we find the rest frame energy flux at $r_t(t, \theta)$, which has been trapped up until the current time t.

$$\Phi(t, \theta)_{\text{cool}} = 4\pi p r_t(\theta)^2 v_\theta d\Omega,$$

where p_t and v_θ are the pressure and velocity at $r_t(\theta)$.

We approximate the macronova luminosity as coming from the instantaneous heating rate at $r > r_t$:

$$\Phi(t, \theta)_{\text{MN}} = \int_{r_t(\theta)}^{\infty} \rho(r) r^2 dr d\Omega,$$

where ρ and Γ are the density and Lorentz factor of the emitting region and the radioactive heating rate per unit of mass is approximated as (e.g. Hotokezaka et al. 2016)

$$\xi \approx \xi_0(f_\gamma(t) + 0.5 f_e(t))(\frac{t}{\text{day}})^{-\alpha},$$

where $\xi_0 \sim 10^{10} \text{ erg g}^{-1} \text{ s}^{-1}$ and $\alpha \approx -1.1$. f_e and f_γ are the fraction of the energy in gamma-rays and electrons that is deposited in the ejecta, respectively. As we are interested in the emission during the first week we approximate $f_e = 1$ and $f_\gamma = 1 - \nu^{-5/2}$, where $t_\nu \sim 1 \text{ d}$ is the typical gamma-rays escape time. For the fit presented in figure 2 we use $\xi_0 = 2 \times 10^{10} \text{ erg g}^{-1} \text{ s}^{-1}$, $\alpha = 1.1$ and $t_\nu = 0.7 \text{ d}$.

Along each angle we approximate the emission at any time as being emitted isotropically at the photospheric radius, $r_{ph}(\theta)$, with a luminosity $\Phi(t, \theta)_{\text{cool}} + \Phi(t, \theta)_{\text{MN}}$ in the photosphere rest frame. We also approximate the emission as being in thermal equilibrium at the photosphere, so emitted with a blackbody with a rest frame temperature that corresponds to the luminosity and $r_{ph}(\theta)$. Finally, similarly to A3 we integrate and boost the luminosity and temperature to the observer’s reference frame. The spectrum that we obtain from the integration is not a blackbody and the temperature that we present is the color temperature.

A5 Radio and X-ray afterglow emission

We model the afterglow emission by the synchrotron radiation of relativistic electrons accelerated in the shocks formed between that cocoon and the ISM. We use the standard afterglow modelling that parameterizes the microphysics using a constant fraction of the internal energy that goes to electrons, ξ_e, a constant fraction of the internal energy that goes to the magnetic field, ξ_B, and a power-law distribution for the accelerated electrons with index p. Given the low density of the ISM the radio and the X-ray bands are not affected by cooling or by absorption. In fact both bands are on a single power-law segment above the typical synchrotron and self absorption frequencies and below the cooling frequency. Therefore the emission from each fluid element is not affected by its history (i.e., cooling) or by the conditions in other fluid elements (i.e., absorption).

Using the microphysical parameterization and the pressure and the density in each cell at each time-step we find the electron distribution and the magnetic field and calculate the rest frame synchrotron emissivity using standard afterglow theory (e.g. Sari et al. 1998). Then to find the observed luminosity at each observing angle we integrate over equal arrival time surfaces taking the proper Lorentz boost from each element.

Since the radio and the X-rays are on the same spectral power-law index, $-(p - 1)/2$, the observations set $p = 2.17$. We also set $\xi_e = 0.1$. The free parameters we have are external density, n, and ξ_B. The values we use to fit the data in the various simulations (which are not unique) are given in figure 3.