Phakic intraocular lenses (pIOLs) are a common solution for the surgical correction of high myopia and myopia in thin corneas. Global trends result in increasing rates of patients with high myopia which will result in increased rates of pIOL implantation. Three types of lenses can be distinguished: anterior chamber angle-supported, anterior chamber iris-fixated, and posterior chamber phakic IOLs. The efficacy of phakic intraocular lenses is generally very good, but pIOLs have undergone many changes over the years to improve the safety profile and decrease pIOL-related complications such as endothelial cell loss, corneal decompensation and cataract formation. This article describes the efficacy and safety profiles of the most recent pIOLs, as well as suggests gaps of knowledge that are deserve additional research to optimize the results of pIOLs.

Key words: Phakic Intraocular Lens, High Myopia, Refractive Surgery

Prevalence of high myopia has increased over the past years, resulting in a so-called epidemic of myopia that is especially prevalent in East and Southeast Asia.\cite{1,2} In these regions, myopia is seen in up to 90% of adolescents, a vast increase when compared to an incidence of maximum 30% in adolescents 60 years ago.\cite{1,3} Next to genetic factors, environmental factors are the main reason for this increased prevalence of myopia. This is mainly caused by intensive education resulting in children that spend more time indoor and doing near work.\cite{1-5} If children and adolescents are required to perform near work, their eyes require constant accommodation to focus incoming light onto, rather than behind the retina. This combination of accommodation and lack of natural light falling on the retina causes the eye to grow, and the axial length to increase to create a situation where constant accommodation is no longer required during near work. However, this longer axial length also results in a distant image that is focused in front of the retina, introducing (high) myopia. Studies have shown that the onset, and progression of myopia can be reduced significantly by increasing the time a child spends in daylight. A vast amount of research focuses on stopping the myopic progression in the (very) young child in order to prevent increasing incidence of high myopia, defined as -5 to -6 D or higher.\cite{2,6} Prevention of high myopia is important since it is associated with potentially blinding complications such as myopic macular degeneration, retinal detachment, staphyloma formation, or macular retinoschisis.\cite{1,3,5,7} Current treatments are based on using cycloplegics, orthokeratology (nighttime contact lenses) to temporarily change the shape of the cornea, or multifocal contact lenses.\cite{4,5,9} Results seem promising in halting axial elongation, but long-term data and mechanisms have yet to be determined.\cite{4,3,9} Furthermore, contact lens wear introduces a risk of corneal infection, which can result in corneal scarring requiring corneal transplantation.\cite{10,11}

In a myopic patient non-surgical refractive correction can be obtained using contact lenses or glasses. It should be noted that refractive correction of high myopia will result in thicker contact lenses and glasses. Contact lenses in these patients are expensive, might cause problems with contact lens fitting and introduce the risk of contact lens-related infections.\cite{10,11} Glasses are the best option to safeguard corneal health, but are aesthetically not preferred due to a misrepresentation of the contour of the face, and cause visual distortion in the peripheral visual field.

Long-term treatment of stable myopia can be obtained by three different types of surgery: laser refractive surgery, phakic intraocular lens (pIOL) implantation, and lens surgery for refractive purposes (refractive lens exchange [RLE]) [Fig. 1]. Both laser refractive surgery and refractive lens exchange are permanent, whereas refractive surgery using pIOL implantation is a reversible procedure.\cite{12,13} For safety reasons, laser refractive surgery is performed in cases up to -8 D of myopia, depending on corneal thickness, thus excluding a...
large group of high myopes from treatment. The relative risk of developing a retinal detachment increases four times after cataract surgery, with patients under 50 years old and patients with a long axial length reported as especially at risk for developing a retinal detachment. Taking into account that cataract surgery also removes all accommodative capacity, refractive lens exchange is rarely performed in non-presbyopic patients. As a result, pIOL implantation is regularly performed as a treatment for non-presbyopic high myopes.

History and Development of Phakic Intraocular Lenses

Phakic IOLs can be divided into (1) anterior chamber angle supported pIOLs that function with haptics positioned in the angle where the iris and cornea meet; (2) anterior chamber iris-fixated pIOLs that use small “lobster claws” to enclavate iris-tissue and position the pIOL in front of the pupil; and (3) posterior chamber pIOLs that use plate haptics to support and position the lens in the posterior chamber [Fig. 2].

Implantation of pIOLS for the correction of myopia started in 1953 when Strampelli implanted the first rigid angle-supported pIOL. Although refractive results were promising, the high rate of corneal complications, and excessive pressure on the iris root causing inflammation and pupil malformation, resulted in withdrawal of the pIOL from the market. From the 1970s until the early 2010s multiple new angle-supported pIOLS were available, using different materials and different optic designs to try and cause less corneal complications and induce less pressure on the iris-root. Despite rendering good visual and refractive results, the complication rate of angle-supported pIOLS resulted in the withdrawal of all angle-supported pIOLS from the market [Tables 1a, 2a and 3a].

First designed in 1953 by the Dutch ophthalmologist Cornelis Binkhorst, iris-fixated IOLs were originally created for implantation after crystalline lens removal. The Binkhorst IOL, using a paper-clip design to stabilize the lens, was associated with lens instability resulting in lens luxation, corneal complications and chronic inflammation causing retinal edema and problems with intraocular pressure. In 1978 the iris-fixated IOL design was updated by a second Dutch ophthalmologist, Jan Worst. He discovered that fixation of midperipheral iris tissue with small “lobster-claws” provided good stabilization of the IOL, without inducing the complications associated with chronic inflammation in the paper-clip design. Over time the Worst IOL was also implemented as a pIOL for the correction of refractive errors. Current iris-fixated pIOLs are still largely based on the Worst lens, with different materials and designs for the correction of myopia, hyperopia and astigmatism, producing excellent visual and refractive results, and low rates of complications [Tables 1a, 2a and 3a].

Posterior pIOLs were launched in the 1980s, driven by the complications associated with angle-supported pIOLS. By positioning the pIOL further back and away from the cornea, it was hypothesized that the risk of corneal complications would diminish. The specific downside of this design is its proximity to the crystalline lens, and zonular fibers. Early designs of posterior pIOLs frequently touched the anterior part of the crystalline lens causing a significant anterior subcapsular cataract, whereas friction between the pIOL and iris caused pigmentary dispersion and inflammation resulting in raised intraocular pressure. Modern posterior pIOLs have evolved to use plate haptics to support them in the sulcus between the iris base and ciliary muscle, and apertures in the optic to facilitate aqueous humor flow, providing good visual and refractive results [Table 1c]. They rely on correct sizing to prevent both iris chafing or pupillary block glaucoma caused by an oversized plate pushing the iris forward, and cataract formation caused by an undersized plate resulting in insufficient support and touch between the pIOL and crystalline lens [Table 3c]. Although the altered aqueous humor flow in posterior pIOLs with apertures reduces the rate of cataract formation after...
implantation, correct sizing remains the main determinant in the prevention of complications. Unfortunately, there is no perfect way yet to measure the sulcus, introducing a higher risk of sizing problems.

One posterior pIOL type that was taken of the market did not require measurement of the sulcus. This lens relied on the natural flow of intraocular fluid to keep the pIOL from touching the crystalline lens. However, its instability increased the rate of cataract formation, the rate of pIOL luxation behind the crystalline lens in the vitreous, and made it unsuitable for the correction of astigmatism.[15,16,108]

Outcomes and Complications of Phakic Intraocular Lenses

Large numbers of studies have shown that all three types of pIOLs render excellent results with regard to uncorrected visual acuity, distance corrected visual acuity, and residual refractive error [Tables 1a-1c]. Other outcome measures reported after pIOL implantation are mainly related to the safety of the pIOL in the eye and report complications associated with the cornea, crystalline lens, or retina.[6]

The cornea is essential in refracting light – functioning as a positive lens – and its clarity is of vital importance to procure a clear image on the retina. Corneal clarity is maintained by the innermost cells of the cornea, called the endothelial cells. Endothelial cells function as an active pump that transports water from the corneal stroma, essential because excessive intracorneal water causes corneal edema and compromises its clarity. Although the number of endothelial cells decreases with advancing age, it remains sufficiently high to retain adequate pump function.[12,109-111] Any intraocular surgery causes a surgery-related, acute peak in endothelial cell loss that varies per person as well as per type of surgery. Additionally, the intraocular presence of a pIOL increases chronic endothelial cell loss. Therefore, endothelial cell density should be checked with regular intervals, both to monitor individual safety as well as safety of the specific pIOL in general.[112]

On a patient-level these measurements are performed to prevent corneal transplantation due to endothelial cell loss and corneal decompensation. On a population level, regular measurements and standardized reporting can detect trends to remove high-risk pIOLs from the market. Recent evidence have led to withdrawal of angle-supported pIOLs because of increased levels of endothelial cell loss [Tables 2a-2c].[15,16,18,112,113]

Although high myopes are known to develop cataract at a younger age, pIOLs may also lead to accelerated cataract formation, causing loss of accommodation and decreased visual acuity, requiring pIOL explantation combined with cataract surgery [Tables 3a-3c].[12,16] Cataract formation after uneventful pIOL implantation is thought to be associated with inflammation in all pIOL types, but patients with posterior chamber pIOLs are especially at risk for cataract formation due to the design of the pIOL [Tables 3a-3c].[12,16,108] As highlighted previously, the position of the posterior pIOL in proximity to the crystalline lens, combined with known preoperative sizing difficulties, frequently induces contact between the pIOL and crystalline lens. As a result of this friction, these patients are at a high risk to develop anterior subcapsular cataract, which can require cataract surgery at a much younger age, whilst adhesions between the crystalline lens and its surrounding capsule increase the difficulty of the surgery. Fortunately, recent modifications with additional apertures in the optic have presumably changed the aqueous humor flow and resulted in a decreased rate of cataract formation [Table 3c].[117]

High myopia is associated with retinal complications because the retina is stretched out and becomes thinner, increasing the risk of developing weak spots in the retina. Ultimately these weak spots can result in complications such as myopic macular degeneration, retinal detachment, macular retinoschisis or choroidal neovascularization [Tables 3a-3c].[8] Even though these complications can occur regardless of intraocular surgery,
it is known that cataract surgery significantly increases the risk of developing a retinal detachment, especially when surgery is performed in younger patients. The causative mechanism might be that cataract surgery requires the removal of the
Table 1c: Overview of visual and refractive results after implantation with a posterior chamber phakic intraocular lens
Nr. eyes
[nr. pt]

PRL Myopia, CIBA Vision/Zeiss Meditec
Hoyos, J. E., 2002
Pallikaris, I. G., 2004
Koivula, A., 2005
Donoso, R., 2006
Jongsareejit, A., 2006
Verde, C. M., 2007
Portaliou, D. M., 2011
Perez-Cambroni, R. J., 2011
Torun, N., 2013
PRL Hyperopia, CIBA Vision/Zeiss Meditec
Hoyos, J. E., 2002
Koivula, A., 2005
Gil-Cazorla, R., 2006
Koivula, A., 2009
PRL, CIBA Vision/Zeiss Meditec (Mixed Groups)
Koivula, A., 2005
ICL V4f (Toric), STAAR Surgical
Kamiya, K., 2013
Sari, E.S., 2013
Alfonso, J.F., 2014
Igarashi, A., 2014
Guber, I., 2016
Shimizu, K., 2016
ICL V4c (Toric), STAAR Surgical
Shimizu, K., 2012
Shimizu, K., 2016
Kamiya, K., 2017
Kamiya, K., 2017
Pjano, M.A., 2017
Kamiya, K., 2018
Miao, H., 2018
Takahashi, M., 2018
Alfonso, J. F., 2019
Ghereishi, M., 2019
Jadidid, K., 2019
Qin, Q., 2019
Igarashi, A., 2019
Niu, L., 2019
Nakamura, T., 2019

Contd...
Table 1c: Contd...

Nr. eyes [nr. pt]	Follow-up (mo)	MRSE	% within target	UDVA	CDVA	Indices						
		preop	postop 0.5D	postop 1.0D	20/20 (%)	20/40 (%)	20/20 (%)	20/40 (%)	Efficacy	Safety		
Nakamura, T., 2019[26]	70 [38]	120	-9.97	-0.86	71.4	87.1	NR	92.9	NR	NR	0.66	0.88
Yu, Z., 2020[27]	38 [19]	3	-10.77	-0.63	NR	53.84	NR	NR	NR	NR	0.95	1.18
ICL, STAAR Surgical (Mixed Groups)												
Hassaballa, M.A., 2011[28]	26 [NR]	12	-12.44	-0.63	NR	34.3	NR	NR	NR	NR	0.65	1.22
Moya, T., 2015[100]	110 [NR]	144	-16.90	-1.77	NR	34.3	NR	NR	NR	NR	1.02	0.64
IPCL (Toric), CareGroup IOL												
Vasavada, V., 2018[29]	30 [16]	36	-16.50	-0.89	45	69	46	NR	NR	NR	1.2	1.39
Sachdev, G., 2019[102]	134 [NR]	12	-10.31	NR	98	51	96	NR	NR	NR	NR	NR
EYECRYL, Biotech												
Yasa, D., 2018[103]	58 [29]	12	-13.41	-0.44	62	89	3	NR	NR	NR	1.7	1.25
Yasa, D., 2020[24]	43 [23]	6	-10.3	-0.36	70	91	16	88	1.25	1.41		

Mo = Months; MRSE = Manifest refractive spherical equivalent; D = Diopter; UDVA = Uncorrected distance visual acuity; CDVA = Corrected distance visual acuity; NR = Not reported.

Table 2a: Overview of studies reporting on endothelial cell health after anterior chamber angle supported phakic intraocular lens implantation

Nr. Eyes [Nr. pt]	Follow-up (mo)	Preop ACD (mm)	ECD (cells/mm²)	Total EC loss (%)		
		Preop	Postop			
AcrySof Cachet, Alcon						
Kohnen, T., 2009[22]	190 [190]	12	NR	NR	NR	-4.8
Mastropasqua, L., 2012[18]	36 [NR]	12	NR	NR	NR	-4.0
Yang, R.B., 2012[22]	25 [13]	12	NR	2767	2764	NR
Kermani, O., 2013[23]	50 [28]	3	NR	2650	2500	NR
Taneri, S., 2014[24]	15 [15]	12	NR	2676	2825	NR
Aerts, A.A., 2015[25]	79 [NR]	24	3.64*	2817	NR	-3.8
Gimbel, H.V., 2015[29]	51 [NR]	36	3.87*	2945	2768	-3.1
Kohnen, T., 2016[26]	415 [326]	60	3.73*	NR	NR	-8.9
Aloi, J.L., 2017[27]	25 [NR]	60	NR	2849	2513	-13.7
Al-Qahtani, S., 2018[28]	36 [21]	6	NR	3017	2775	-7.2

Mo = Months; ACD = Anterior chamber depth; ECD = Endothelial cell density; EC = Endothelial cell; NR = Not reported. *as measured from the corneal epithelium, around 0.5 mm consists of corneal thickness, † measurement not repeatable based on materials and methods section, ‡ Chronic loss from 6 months to endpoint.

crystalline lens, changing the dynamics of the posterior part of the eye, whereas in pIOL implantation changes are only applied in the anterior segment of the eye, which is unlikely to result in a similar risk.

Discussion

As reported in Tables 1a-1c, 2a-2c, and 3a-3c previous publications show large variations in the duration of follow-up, and reported outcome measures. This is especially true when reporting safety outcomes as endothelial cell loss, complications, and number and reason of pIOL explantations [Tables 2a-2c, and 3a-3c].

Cataract formation in patients with pIOLs can be caused by (A) aging, (B) crystalline lens damage, or possibly by (C) insufficient aqueous humor circulation.[16,18,109,122] (A) With advancing age the crystalline lens becomes sclerotic and loses flexibility, resulting in decreased accommodative capacity and requirement of reading glasses (presbyopia). Age-related structural changes in the fibers and proteins of the crystalline lens result in refractive changes, increased light scatter and a decreased lens clarity (cataract)[122]. (B) Crystalline lens trauma due to forceful irrigation, complicated pIOL implantation, or intermittent touch of an incorrectly sized posterior chamber pIOL have all been described in previous papers.[18,115,123] Sizing of posterior chamber pIOLs is especially difficult because there is no clear correlation between anterior segment measurements and sulcus diameter. Insufficient sizing induces higher risks of excessively small or large vaults, causing crystalline lens touch or angle closure, respectively – risks that are...
decreased in the presence of a peripheral iridectomy in anterior chamber or central hole in posterior chamber pIOLs. Numerous conference meetings and scientific papers report on the optimization of sizing of posterior chamber pIOLs, but further research will hopefully result in finding the "gold standard" for preoperative sizing.\(^\text{(C)}\) Aqueous humor circulation is responsible for the distribution of nutrients towards the surface of the crystalline lens.\(^{[122]}\) Computer simulations using iris-fixated and posterior chamber pIOLs have shown that altered aqueous humor flow is unlikely to cause cataract formation in iris-fixated pIOLs and posterior

Nr. Eyes [Nr. pt]	Follow-up (mo)	Preop ACD (mm)	ECD (cells/mm\(^2\))	Total EC loss (%)	
			Preop	Postop	
Artisan Myopia, Ophtec					
Budo, C., 2000\(^{[31]}\)	249 [NR]	36	3.38‡	2876	2607
Pop, M., 2004\(^{[37]}\)	293 [NR]	24	NR	2631	2577
Asano-Kato, N., 2005\(^{[33]}\)	11 [NR]	24	NR	2831	2750
Couillet, J., 2006\(^{[35]}\)	31 [31]	12	NR	2638	2473
Benedetti, S., 2007\(^{[38]}\)	49 [30]	60	NR	2616	2379
Gieriek-Ciaciura, S, 2007\(^{[37]}\)	20 [12]	12	3.39‡	2651	NR
Moshirfar, M., 2007\(^{[38]}\)	89 [NR]	24	NR	2836	2514
Tahzib, N.G., 2007\(^{[39]}\)	89 [NR]	120	3.30‡	2817	2800
Coullet, J., 2006\(^{[35]}\)	31 [31]	12	NR	2638	2473
Benedetti, S., 2007\(^{[38]}\)	49 [30]	60	NR	2616	2379
Gieriek-Ciaciura, S, 2007\(^{[37]}\)	20 [12]	12	3.39‡	2651	NR
Moshirfar, M., 2007\(^{[38]}\)	89 [NR]	24	NR	2836	2514
Tahzib, N.G., 2007\(^{[39]}\)	89 [NR]	120	3.30‡	2817	2800
Guell, J. L., 2008\(^{[40]}\)	34 [NR]	48	NR	2735	2560
Galvis, V., 2008\(^{[40]}\)	10 [5]	108	NR	2707	2279
Artisan Hyperopia (Toric), Ophtec					
Guell, J. L., 2008\(^{[41]}\)	34 [NR]	48	NR	2735	2560
Galvis, V., 2019\(^{[62]}\)	10 [5]	108	NR	2707	2279
Artisan Toric, Ophtec (Mixed Groups)					
Dick, H. B., 2003\(^{[32]}\)	70 [NR]	6	3.47*	2983	2849
Guell, J. L., 2003\(^{[32]}\)	27 [16]	12	NR	2649	2726
Guell, J. L., 2006\(^{[40]}\)	67 [NR]	36	NR	2632	2537
Jonker, S.M., 2018\(^{[60]}\)	40 [NR]	60	3.49*	2695	2270
Jonker, S.M., 2018\(^{[60]}\)	20 [NR]	120	3.49*	2695	2270
Artiflex Myopia (Toric), Ophtec					
Coullet, J., 2006\(^{[35]}\)	31 [31]	12	NR	2654	2405
Dick, H. B., 2009\(^{[31]}\)	290 [191]	24	3.65*	2634	2605
Doors, M., 2012\(^{[32]}\)	115 [73]	6	3.65*	2805	2676
Munoz, G., 2012\(^{[32]}\)	42 [25]	12	3.51‡	2801	2538
Ozerturk, Y., 2012\(^{[44]}\)	50 [NR]	24	3.41‡	3023	2797
Ruckhofer, J., 2012\(^{[50]}\)	42 [24]	6	NR	2646	2627
Jonker, S.M., 2018\(^{[64]}\)	137 [NR]	60	3.27*	2739	2480
Jonker, S.M., 2018\(^{[64]}\)	63 [NR]	60	3.24*	2769	2488
Shaaban, Y., 2020\(^{[63]}\)	20 [NR]	36	NR	2899	2173
Ghoreishi, M., 2020\(^{[63]}\)	41 [12]	12	NR	2777	2721

\(Mo = \) Months; \(ACD = \) Anterior chamber depth; \(ECD = \) Endothelial cell density; \(EC = \) Endothelial cell; \(NR = \) Not reported. *as measured from the corneal epithelium, around 0.5 mm consists of corneal thickness, †measurement not repeatable based on materials and methods section, ‡measurement method not reported, †chronic loss from 6 months to endpoint
Table 2c: Overview of studies reporting on endothelial cell health after posterior chamber phakic intraocular lens implantation

Nr. Eyes	Follow-up (mo)	Preop ACD (mm)	ECD (cells/mm²)	Total EC loss (%)		
			Preop	Postop		
PRL Myopia, CIBA Vision/Zeiss Meditec						
Koivula, A., 2005[71]	14 [NR]	12	NR	2989	2771	-7.4†
Torun, N., 2013[77]	53 [29]	86	NR	2581	NR	-6.4

PRL Hyperopia, CIBA Vision/Zeiss Meditec

Koivula, A., 2005[71] | 6 [NR] | 12 | NR | 3198 | 3031 | -6.2† |
Koivula, A., 2009[79] | 40 [25] | 12 | NR | NR | NR | -3.8‡ |

PRL, CIBA Vision/Zeiss Meditec (Mixed Groups)

Koivula, A., 2005[71] | 20 [NR] | 12 | NR | NR | NR | -7.1† |

ICL V4(b Toric), STAAR Surgical

Kamiya, K., 2013[80] | 50 [28] | 36 | 3.23* | 2753 | 2682 | NR† |
Sari, E.S., 2013[81] | 34 [20] | 36 | 3.22* | 3307 | 3102 | -7.8† |
Alfonso, J.F., 2014[82] | 35 [20] | 12 | NR | 2755 | 2634 | NR† |
Igarashi, A., 2014[83] | 41 [41] | 96 | 3.24* | 2819 | 2626 | -6.2† |
Shimizu, K., 2016[84] | 26 [26] | 60 | 3.11‡ | 2750 | 2711 | -1.2|
Goukon, H., 2017[114] | 25 [25] | 24 | 3.16‡ | 2829 | 2798 | -1.1† |

ICL V4(c Toric), STAAR Surgical

Shimizu, K., 2012[85] | 20 [20] | 6 | 3.13* | 2798 | 2720 | -2.8† |
Shimizu, K., 2016[86] | 26 [26] | 60 | 3.13‡ | 2803 | 2799 | -0.5† |
Goukon, H., 2017[114] | 34 [34] | 24 | 3.14‡ | 2816 | 2806 | -0.3† |
Kamiya, K., 2017[87] | 57 [57] | 12 | 3.08* | NR | NR | -0.1† |
Kamiya, K., 2017[88] | 294 [294] | 12 | 3.14* | NR | NR | -0.1† |
Pjano, M.A., 2017[89] | 28 [16] | 12 | 3.48* | 2656 | 2512 | -5.5† |
Alfonso, J.F., 2019[90] | 141 [83] | 60 | 3.16 | 2657 | 2645 | -0.4† |
Řeháková, T., 2019[106] | 63 [32] | 24 | NR | 3271 | 2803 | -13.5† |
Choi, J., 2019[107] | 71 [NR] | 120 | NR | 2889 | 2749 | NR† |
Niú, L., 2019[97] | 51 [31] | 12 | 2.74 | 3235 | 2964 | -8.4† |
Nakamura, T., 2019[108] | 70 [38] | 120 | 3.19 | 2739 | 2581 | -5.3† |
Ghoreishi, M., 2020[96] | 41 [41] | 12 | NR | 2723 | 2672 | NR‡ |

IPCL (Toric), CareGroup IOL

Vasavada, V., 2018[109] | 30 [16] | 36 | 3.28* | 3036 | 2655 | -9.7† |
Sachdev, G., 2019[109] | 134 [NR] | 12 | 3.21* | 2755 | NR | -2.0† |
Stodulka, P., 2020[110] | 17 [10] | 24 | 3.44 | 2552 | 2299 | -9.9 |

EYECRYL, Biotech

Yasa, D., 2018[109] | 58 [29] | 12 | NR | 2713 | 2608 | -3.9† |
Yasa, D., 2020[109] | 43 [23] | 6 | 3.23 | 2719 | 2779 | NR† |

Mo = Months; ACD = Anterior chamber depth; ECD = Endothelial cell density; EC = Endothelial cell; NR = Not reported. *as measured from the corneal epithelium, around 0.5 mm consists of corneal thickness, †measurement not repeatable based on materials and methods section, ‡measurement method not reported

chamber pIOLs with a central hole.[120] The models in these studies focus on the assessment of shear stress on the surface of the crystalline lens and corneal endothelium. Importantly, they show an increased shear stress on the surface of the crystalline lens in posterior chamber pIOLs with a small vault.[120] It is currently unclear if daily eye movements (saccades) affect aqueous humor flow and nutrient distribution. New simulations need to be performed in order to assess whether flow is altered and if this might influence cataract formation or EC loss.

Endothelial cell loss is the second most common complication related to pIOL implantation. Three hypotheses exist, attributing EC loss to either (i) the proximity of the pIOL to the corneal endothelium, (ii) the pIOL-related change in aqueous humor flow, or (iii) the chronic subclinical inflammatory response to the pIOL.[48,60,64]

(i) A shorter distance between the anterior chamber pIOL and the corneal endothelium is associated with an increased EC loss.[5,48,60] Posterior chamber pIOLs are designed to be positioned further away from the endothelium and are therefore assumed to cause less EC loss. This theory cannot be definitely confirmed due to incomplete or absent reporting on EC loss in recent research on posterior chamber pIOLs. A 2018 paper by our group casts
additional doubt upon this theory, because it does not identify a smaller preoperative anterior chamber depth as a significant risk-factor for EC loss in eyes with foldable iris-fixated pIOLs.\[64]\ Adequately designed studies are needed to prove the validity of this hypothesis and assess if there is additional benefit to posterior chamber pIOLs regarding EC loss.

(ii) Alterations in aqueous humor flow have been assessed in iris-fixated and posterior chamber pIOLs using computer simulation, and have shown a significant change in aqueous humor flow that is unlikely to result in increased EC loss. As mentioned previously, none of these studies have implemented the daily movements (saccades) of the eye in their estimations.\[128]\ New simulations are required to assess whether these movements result in significant changes in aqueous humor flow that could explain EC loss, and to assess whether design changes are required in pIOLs currently available for implantation.

(iii) Research regarding the possibility of subclinical inflammation has been met with technical difficulties in the past.\[126]\ Few methods are available to assess minimal inflammation - for example, in eyes not presenting with either cell, flare or the Tyndall Effect during slit-lamp evaluation. Laser Flare Meters have been used in the past to assess inflammation, and the first study using a Laser Flare Cell Meter to assess inflammation in patients with a pIOL was published in the early nineties.\[127]\ Studies that were performed in the years following showed increased flare in eyes with angle-supported and iris-fixated pIOLs, as compared to healthy patients without these lenses, and showed highly variable inflammation in eyes with iris-fixated P IOLs.\[116]\ However, high inter- and intra-observer variability, low repeatability, and the time-consuming nature of these measurements have prohibited the implementation of the Laser Flare Cell Meter in the clinical care pathway.

Regardless of the cause of EC loss, EC monitoring is essential whenever a pIOL is implanted. In 2006, the AFSSAPS published a guideline reporting an ECD of 1500 cells/mm\(^2\) as less than a reason for pIOL explantation, after the Vivarte angle-supported pIOL had to be taken off the market.\[128]\ After consulting with large numbers of specialists from the field, the AAO published a second, more extensive guideline in 2018.\[112]\ It describes the importance of correct ECD measurements and provides specific endpoints when reporting ECD (i.e., the proportion of eyes with \(\geq 25\%\) EC loss after 3 years). In addition, it also refers to clause D.4.2 of the ANSI standard Z80.13 Phakic Intraocular Lenses standard for recommendations on how to perform ECD measurements. Studies should report the mean of three acceptable measurements of the central cornea, identifying at least 100 cells per frame, and use the center-to-center method with the same non-contact specular microscope throughout the study.\[112]\ Identifying 100 cells per image can be challenging; non-contact specular microscopes are capable of capturing 120 to 170 cells per image, depending on ECD and the quality of the image. Contact specular microscopes on the other hand can capture 700 to 3000 cells per image, depending on the skill of the technician.\[129]\ Contact specular microscopy however is time-consuming and invasive, as well as a skill that requires a certain level of training and upkeep, making it more difficult to implement in a busy practice. Another option to increase the number of analyzed cells is to use the corner method instead of the center-to-center method.\[130]\ A 2010 study confirmed that the corner method is likely to benefit representation of ECD and morphological characteristics in transplanted corneas, but did not find clinically relevant

Table 3a: Reported complications in eyes implanted with anterior chamber angle supported phakic intraocular lenses

AcrySof Cachet, Alcon	Nr. Eyes [Nr. pt]	Follow-up (mo)	Exchange (%)	Explants (%)	Complication
Kohnen, T., 2009\[18]\	190 [190]	12	0.53	0.53 NR	NR 32.6% ≥15° rotation, 1.05% pIOL related synechiae. 0.53% explanted due to upside-down implantation
Knorz, M.C., 2011\[33]\	104 [NR]	36	0.56	1.39 NR	NR NR NR
Gimbel, H.V., 2015\[26]\	51 [NR]	36	NR	1.68 NR	1.68% anterior synechiae
Kohnen, T., 2016\[18]\	415 [326]	60	NR	6.33 1.27	4.9% anterior synechiae, 0.39% upside down implantation
Ajo, J.L., 2017\[27]\	25 [NR]	60	NR	2 NR	4.1% surgical intervention, 3.1% cataract formation, 2.5% raised IOP requiring treatment

Mo = Months; ACD = Anterior chamber depth; ECD = Endothelial cell density; EC = Endothelial cell; NR = Not reported; pIOL = Phakic intraocular lens; IOP = Intraocular pressure
Artisan Myopia (Toric), Ophtec	Nr. Eyes [Nr. pt]	Follow‑up (mo)	Exchange (%)	Explants (%)	Complication	Position Related	Other
Budo, C., 2000[35]	249 [NR]	36 NR	NR	2.8 1.2 0.4	0.8% Retinal Detachment	10% uncentered pIOL, 0.8% pupillary block	2.4% age related cataract, 1.6% hyphema, 0.8% persistent corneal edema
Asano-Kato, N., 2005[36]	11 [NR]	24 NR	NR NR NR NR	NR NR NR	4.5% pigment deposition on pIOL	NR	
Bartels, M., 2006[37]	20 [14]	24 NR	NR NR NR NR	1.85% Retinal Detachment	NR	1.85% cataract	
Benedetti, S., 2007[38]	49 [30]	60 NR	NR NR NR NR	NR NR NR	16.8% iris atrophy, 8.2% pigment deposition on pIOL	NR	
Moshirfar, M., 2007[39]	38 [NR]	24 1.18 NR NR NR	NR NR NR	NR	2.4% pupil deformation	4.2% pIOL repositioning, 1.18% surgery related cataract, 1.12% additional laser refractive correction	
Tahzib, N.G., 2007[40]	89 [49]	120 NR	2.25 2.25 NR	NR NR NR	NR	NR	
Guell, J. L., 2008[41]	89 [NR]	60 NR	1.25 0.5 0.75	0.25% Macular Hemorrhage, 0.25% Retinal Detachement	NR	NR	
Guell, J. L., 2008[42]	165 [NR]	60 NR	NR NR NR NR	NR NR NR	NR	NR	
Silva, R.A., 2008[43]	19 [NR]	60 NR	7.6 3.8 NR	NR	3.8% explanted due to glare/halo's	NR	
Stulting, R.D., 2008[44]	386 [232]	36 1.02 1.1 0.25	NR NR	0.51% Retinal Detachment	2.54% refixations	NR	
Qasem, Q., 2010[45]	151 [84]	12 NR	NR NR NR NR	2.16% Myopic Degeneration, 1.08% Retinal Detachment	4.32% refixation	17.9% additional laser refractive correction	
Titiyal, J.S., 2012[46]	28 [NR]	60 NR	1.17 1.17 1.17	1.17% Retinal Detachment, 1.17% Perifoveal Subretinal Hemorrhage, 1.17% Peripheral Retinal Tear	57.41% refixation, 29.4% iris atrophy	NR	
Moshirfar, M., 2014[47]	213 [NR]	65 NR	2.76 2.3 0.92	NR NR NR	NR	NR	
Chebli, S., 2018[48]	113 [60]	65 NR	NR NR NR NR	NR NR NR	NR	NR	
Jonker, S.M., 2019[49]	460 [250]	120 1.09 17.39 11.09 5.88	1.09% retinal detachment, 1.74% myopic macular degeneration, 0.43% retinoschisis, 0.22% myopic macular hole, 0.22% central serous chorioretinopathy	1.09% refixations	3.26% additional laser refractive correction		
Eldanasoury, A., 2019[50]	90 [57]	144 NR	33 7 27	NR NR NR	NR	11% corneal edema and DSAEK	

Contd...
	Nr. Eyes [Nr. pt]	Follow‑up (mo)	Exchange (%)	Explants (%)	Complication		
			Total	Cataract	EC loss		
Galvis, V., 2019	67 [45]	114	NR	4.5	3	1.5	1.5% refixation after trauma
Artisan Hyperopia, Ophtec							
Guell, J. L., 2008	28 [NR]	60	4.88	NR	NR	NR	29.9% over 25% total EC loss
Qasem, Q., 2010	14 [7]	12	NR	NR	NR	2.16% Myopic Degeneration, 1.08% Retinal Detachment	
Artiflex Myopia (Toric), Ophtec							
Dick, H. B., 2009	290 [191]	24	0.34	NR	NR	NR	4.8% pigment deposition on pIOL, 1.4% giant cell deposition on pIOL, 1.4% repositioning
Doors, M., 2012	115 [73]	6	NR	1.74	NR	NR	14.8% pigment deposition on pIOL, 12.2% giant cell deposition on pIOL
Munoz, G., 2012	42 [25]	12	NR	NR	NR	NR	16.7% pigment deposition on pIOL, 2.4% repositioning
Ozereturk, Y.,	50 [NR]	24	NR	NR	NR	1.2% Choroidal Neovascularisation	
2012							
Visser, N., 2012	35 [20]	12	NR	NR	NR	2.16% Choroidal Neovascularisation	
Galvis, V., 2019	10 [5]	108	NR	NR	NR	21.7% depositions on pIOL	
Ghereishi, M.,	41 [41]	12	NR	NR	NR	2.44% reposition due to misalignment	
2020							
Artisan/Artiflex (Toric), Ophtec (Mixed Groups)							
Tehrani, M., 2006	30 [NR]	36	NR	NR	NR	17.5% pigment deposition on pIOL	
Guell, J. L.,	67 [NR]	36	1.19	NR	NR	NR	5.95% additional laser refractive correction
2008							
Saxena, R., 2008	318 [NR]	mean 36	1.57	1.26	1.26	NR	0.31% Retinal Detachment
Qasem, Q., 2010	20 [11]	12	NR	NR	NR	2.16% Myopic Degeneration, 1.08% Retinal Detachment	

Mo = Months; ACD = Anterior chamber depth; ECD = Endothelial cell density; EC = Endothelial cell; NR = Not reported; pIOL = Phakic intraocular lens; IOP = Intraocular pressure
Table 3c: Reported complications in eyes implanted with posterior chamber phakic intraocular lenses

Nr. Eyes [Nr. pt]	Follow-up (mo)	Exchange (%)	Explants (%)	Retinal	Position Related	Other	
Nr.	**Eyes**	**Total**	**Cataract**	**EC loss**	**Complication**	**Complication**	
PRL Myopia, CIBA Vision/Zeiss Meditec							
Hoyos, J. E., 2002[69]	17 [NR]	12	18	NR	NR	NR	6% cortical lens opacity
Pallikaris, I. G., 2004[70]	34 [19]	17	NR	NR	NR	NR	2.9% anterior opacification due to lens touch
Donoso, R., 2006[71]	53 [39]	8	NR	3.8	NR	NR	1.9% retinal detachment
Jongsareejit, A., 2006[72]	50 [31]	12	NR	2	2	NR	3.8% lens subluxation through zonules
Portaliou, D. M., 2011[73]	34 [NR]	72	NR	NR	NR	NR	2% pupillary block glaucoma
Perez-Cambrodi, R. J., 2011[74]	35 [20]	57	NR	NR	NR	NR	8.8% damaged anterior capsule, pigment dispersion, 2.9% lens decentration
Torun, N., 2013[75]	53 [29]	86	NR	9.3	7.5	NR	2.86% retinal detachment
PRL Hyperopia, CIBA Vision/Zeiss Meditec							
Hoyos, J. E., 2002[69]	14 [NR]	12	NR	NR	NR	NR	14% pupillary block glaucoma, 7% pigmentary dispersion
Gil-Cazorla, R., 2006[76]	16 [9]	12	NR	NR	NR	NR	28% glare and halo’s
PRL, CIBA Vision/Zeiss Meditec (Mixed Groups)							
Koivula, A., 2005[77]	20 [NR]	12	NR	NR	NR	NR	10% pupillary block glaucoma
ICL V3/V4, STAAR Surgical							
Moya, T., 2015[100]	110 [NR]	144	1.38	11.8	7.6	NR	3.47% Retinal Detachment
ICL V4(b Toric), STAAR Surgical							
Kamiya, K., 2013[80]	50 [25]	36	NR	NR	NR	NR	13.88% significant opacities, 0.69% subluxation needing exchange, 0.69% incorrect sizing needing exchange
Sari, E. S., 2013[81]	34 [20]	36	NR	NR	NR	NR	12% ≥ 10° rotation requiring repositioning, 8% asymptomatic anterior cataract

Contd...
Nr. Eyes [Nr. pt]	Follow-up (mo)	Exchange (%)	Explants (%)	Retinal	Position Related	Other		
Nr. Eyes	Total	Cataract	EC loss					
ICL V4(c Toric), STAAR Surgical								
Igarashi, A., 2014 [81]	41 [41]	96	NR	NR	4.9	NR	9.8% asymptomatic anterior cataract	9.8% asymptomatic nuclear cataract
Guber, I., 2016 [82]	90 [NR]	120	NR	NR	18.3	NR	1.5% Choroidal Neovascularisation, 0.8% Macular Hole, 0.8% Central Pigment Atrophy	54.8% lens opacities, 12% increased IOP requiring treatment
Shimizu, K., 2016 [84]	26 [26]	60	NR	NR	NR	NR	3.1% anterior cataract, 3.1% ≥30° rotation	3.1% additional laser refractive correction
Kamiya, K., 2017 [85]	294 [294]	12	0.7	NR	NR	NR	0.3% ≥ 30° rotation, 0.3% iritis	0.3% additional laser refractive correction
Kamiya, K., 2018 [86]	365 [201]	12	0.6	NR	NR	NR	0.6% ≥ 30° rotation	NR
Takahashi, M., 2018 [8]	42 [21]	6	NR	NR	NR	NR	19% glare and halo in the early postoperative period	NR
Řeháková, T., 2019 [86]	63 [32]	24	NR	3.1	NR	NR	3.1% explanted due to decentration and acute glaucoma	NR
Choi, J., 2019 [87]	110 [60]	120	1.9	5.5	5.5	NR	0.9% rhegmatogenous retinal detachment	NR
Niu, L., 2019 [87]	51 [31]	12	NR	NR	NR	NR	7.8% with a small vault due to incorrect haptic placement in the sulcus	NR
Nakamura, T., 2019 [88]	114 [61]	120	NR	NR	3.5	NR	10.5% anterior subcapsular opacities	NR
IPCL (Toric), CareGroup IOL								
Vasavada, V., 2018 [89]	30 [16]	36	NR	NR	NR	NR	3.3% clinically significant vault reduction over 3 years, 3.3% anterior subcapsular cataract with good VA until 3y postop	NR
Sachdev, G., 2019 [90]	134 [NR]	12	NR	NR	0.7	NR	2.9% anterior subcapsular cataract, 0.7% pupillary block glaucoma, 4.47% ≥5° rotation requiring repositioning	0.7% hypopion/TASS

Mo = Months; ACD = Anterior chamber depth; ECD = Endothelial cell density; EC = Endothelial cell; NR = Not reported; pIOL = Phakic intraocular lens; IOP = Intraocular pressure
differences between these measurement methods in healthy corneas. The corner method takes up significantly more time in the clinic and probably only has additional value in studies on transplanted or diseased corneal endothelium, or in studies focusing on morphometric data. Selection of 100 contiguous cells in a non-contact specular microscopic image is challenging, even in healthy corneas. For this reason, most studies reporting ECD data select 50 contiguous cells and report the mean of three ECD measurements to provide reliable results. The ANSI standard might press researchers to select cells that would not qualify as clearly identifiable, possibly resulting in misrepresentation of ECD and EC morphology.

It is important to acknowledge that neither the AFSSAPS, nor the AAO criteria present the researcher with cut-off values as to what proportion of eyes is considered ‘safe’ at a predefined time point. The observed rates of EC loss clearly indicate the need for higher preoperative ECD in each age group, in order to provide a safe number of ≥1500 cells/mm², when cataract surgery becomes necessary. Additional risk-factors for increased EC loss differed between rigid (PMMA) and foldable (silicone) iris-fixed pIOLs, prompting the need for research on different intraocular materials (i.e., differences in intraocular inflammation) as a cause for increased EC loss.

Phakic IOL implantation yields excellent visual and refractive results. An analysis of the preoperative characteristics of patients implanted with pIOLs identify (high) myopia as the main reason for surgery, followed by (high) astigmatism or (high) hyperopia [Tables 1a–1c]. Multiple studies assessing patient satisfaction, spectacle independence and occurrence of bothersome side effects have indeed reported excellent outcomes, and few bothersome side effects (glare, halo’s) after implantation with different types of pIOLs. Several questionnaires are available for the evaluation of refractive errors, with three questionnaires (i.e., Quality of Life Impact of Refractive Correction [QIRC][visual symptoms], Quality of Vision [QoV][quality of life], Near Activity Visual Questionnaire [NAVQ][activity limitations]) showing slightly superior results in the assessment of refractive surgery.

Decreased visual acuity over time has been reported with pIOLs, and can be attributed to refractive changes or occurrence of complications. Recent publications by our group report significant changes in refractive error over time in a mainly myopic population. Age-related myopisation due to cataract formation did not entirely account for these changes. Subgroup analyses imply a significant increase in axial length over time in a highly myopic – but small – patient population. Increasing axial length is known to occur in the growing, adolescent eye, but is assumed to stop at around the age of 21. These hypotheses are based on older epidemiological studies that have used cross-sectional analyses to report axial length, resulting in data implying a decrease in axial length with age. The data presented in the abovementioned papers suggest that axial length keeps increasing after reaching adulthood. New studies are necessary to determine if this is indeed the case, and if so, if it only occurs in (high) myopes.

It is hard to confirm an association between progressive cataract formation and myopisation based on research since there are no guidelines defining how to describe the rate and progression of cataract formation in patients with pIOLs. Three options can be identified to gather information on cataract formation in a study population.

(I) Cataract formation results in altered refraction and visual acuity, and standardization of refractive and visual results are applied by a number of journals. The arrival of standardized six- and nine graphs has resulted in standardized outcome measures in the vast majority of newly published papers on refractive surgery. Via these criteria it can be computed how many eyes show a significant decrease in visual acuity or change in refractive error. To conclude if these changes are indeed related to cataract formation, ophthalmologists are dependent on the authors to provide an adequate and sufficient explanation of the cause of these changes.

(II) Structural evaluation of cataract formation using grading tools requires the investigator to visually quantify the amount of cataract. Unfortunately, this divides patients into categories rather than assigning a numerical value that can be used to assess cataract progression (i.e., for the categories two versus four, the amount of cataract does not increase two-fold in the second category). Although some Scheimpflug and optical coherence tomography devices can objectively measure lens characteristics, this is not fully automated yet and further studies are needed to optimize clinical use.

(III) Survival analyses provide a definitive cut-off measure, working with a binary outcome measure (explantation yes/no). However, they do not provide insights into the progression of cataract formation and implementation is difficult in studies reporting short-term follow-up or small numbers of patients. For future reference, long-term studies with large numbers of patients are the preferred option, reporting refractive changes and their causes, as well as survival analyses and the total number of explantations due to cataract formation. Survival analyses should be attempted in small studies, but they should always be supplemented with the mean time and total number of explantations in order to provide sufficient standardization over time.

Conclusion

Phakic IOL implantation in highly myopic patients is associated with excellent visual and refractive outcomes shortly after surgery. Due to age-related and morphometric changes, visual and refractive outcomes might change over time. The exact mechanisms causing this are yet unknown and require additional research to formulate definitive recommendations. Until then, surgeons implanting pIOLs in highly myopic patients should inform their patients of the feasibility that their refractive error might change slightly over time. As shown by the large variability in the reported data, there are still large variations in the assessment and description of complications occurring in patients with pIOLs. Further standardization of outcomes is required to make sure that complications are reported reliably and results can be compared. Specific attention should be paid towards reporting EC loss, cataract formation, including developing methods to reliably assess cataract progression over time, and patient-reported outcomes using validated questionnaires.

Financial support and sponsorship
Nil.
Conflicts of interest
Soraya M.R. Jonker, Tos T.J.M. Berendschot, Annick E. Ronden, Isabelle E.Y. Saelens: none. Noël J.C. Bauer: Alcon (C, L, S), Bausch & Lomb (C, L), Ophitec (S). Rudy M.M.A. Nuijts: Abbott (S), Alcon (C, L, S), Asico (C), Bausch & Lomb (S), Carl-Zeiss (S), HumanOptics (S), Ophitec (S), TheaPharma (S, C).

References
1. WHO. The Impact of Myopia and High Myopia. World Health Organization Brien Holden Vision Institute; 2017.
2. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2020. Ophthalmology 2016;123:1036-42.
3. Morgan IG, He M, Rose KA. Epidemic of pathologic myopia: What can laboratory studies and epidemiology tell us? Retina 2017;37:989-97.
4. Azar DT, Azar NF, Brodie SE, Hoffer KJ, Korn TS, Mauger TE, et al. Clinical Optics. United States of America: American Academy of Ophthalmology; 2017.
5. Huang J, Wen D, Wang Q, McAlinden C, Filterolf I, Chen H, et al. Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis. Ophthalmology 2016;123:697-708.
6. Tideman JW, Snabel MC, Tiedja MS, van Rijn GA, van Rijn GA, Wong KT, et al. Multicenter study of the Artisan phakic intraocular lens and Verisyse iris-claw lens. Graefes Arch Clin Exp Ophthalmol 2011;37:469-80.
7. Mastropasqua L, Toto L, Vecchiario L, Donzese M, Mastropasqua R, Di Nicola M. AcrySof catchet phakic intraocular lenses in myopic patients: Visual performance, wavefront error, and lens position. J Refract Surg 2012;28:267-74.
8. Yang RB, Zhao SZ. AcrySof phakic angle-supported intraocular lens for the correction of high to extremely high myopia: One-year follow-up results. Int J Ophthal 2012;5:360-5.
9. Kermani O, Oberheide U, Gerten G. Rotation stability of the catchet angle-supported phakic intraocular lens. J Refract Surg 2013;29:390-4.
10. Aerts AA, Jonker SM, Wielders LH, Berendschot TT, Doors M, De Brabander J, et al. Phakic intraocular lens: Two-year results and comparison of endothelial cell loss with iris-fixed intraocular lenses. J Cataract Refr Surg 2015;41:2258-65.
11. Gimbel HV, Norton NR, Amritanand A. Angle-supported phakic intraocular lenses for the correction of myopia: Three-year follow-up. J Cataract Refr Surg 2015;41:2179-89.
12. Alio JL, Plaza-Puche AB, Cavas F, Yébana Rubio P, Sala E. An angle-supported foldable phakic intraocular lens for correction of myopia: A five-year follow up. Arch Soc Esp Oftalmol 2017;92:4-11.
13. Al-Qahtani S, Al-Arafaj KA, Al-Jindan M, Al-Beshri AS, Khandekar R. Short and long-term outcomes of angle supported phakic intraocular lens implantation in high myopic eyes. Int J Ophthal 2018;11:888-90.
14. Cornelius D, Binkhorst MD. At the forefront of the IOL revolution. J Cataract Refr Surg 1997;23:306-7.
15. Alpar JJ. Professor Jan Gerben Frans Worst. J Cataract Refr Surg 2016;42:809.
16. Budo C, Hessloehl JC, Izak M, Luyten GP, Menezes JL, Sener BA, et al. Multicenter study of the Artisan phakic intraocular lens. J Cataract Refr Surg 2000;26:1163-71.
17. Dick HB, Alio J, Bianchetti M, Christiaans BJ, El-Danasoury MA, Giessler JL, et al. Toric phakic intraocular lenses: European multicenter study. Ophthalmology 2003;110:150-62.
18. Asano-Kato N, Toda I, Hori-Komai Y, Sakai C, Fukushima T, Arai H. Experience with the Artisan phakic intraocular lens in Asian eyes. J Cataract Refr Surg 2005;31:910-5.
19. Bartels MC, Saxena R, van den Berg TJ, van Rij G, Mulder PG, Luyten GP, et al. The influence of incision-induced astigmatism and axial lens position on the correction of myopic astigmatism with the Artisan toric phakic intraocular lens. Ophthalmology 2006;113:1110-7.
20. Couillet J, Guell JL, Fournier P, Grandjean H, Gaytan J, Arne JL, et al. Iris-supported phakic lenses (rigid vs foldable version) for treating moderately high myopia: Randomized paired eye comparison. Am J Ophthal 2006;142:909-16.
21. Tahzib NG, Boostma SJ, Eggink FA, Nuijts RM. Functional outcome and patient satisfaction after Artisan phakic intraocular lens implantation for the correction of myopia. Am J Ophthal 2006;142:31-9.
2007;245:1-7.

38. Moshirfar M, Holz HA, Davis DK. Two-year follow-up of the Artisan/Verisyse iris-supported phakic intraocular lens for the correction of high myopia. J Cataract Refract Surg 2007;33:1392-7.

39. Tahzib NG, Nuijts RM, Wu WY, Budo CJ. Long-term study of Artisan phakic intraocular lens implantation for the correction of moderate to high myopia: Ten-year follow-up results. Ophthalmology 2007;114:1133-42.

40. Guell JL, Morral M, Gris O, Gaytan J, Sisquella M, Manero F. Five-year follow-up of 399 phakic Artisan/Verisyse implantation for myopia, hyperopia, and/or astigmatism. Ophthalmology 2008;115:1002-12.

41. Silva RA, Jain A, Manche EE. Prospective long-term evaluation of the efficacy, safety, and stability of the phakic intraocular lens for high myopia. Arch Ophthalmol 2008;126:775-81.

42. Stulting RD, John ME, Maloney RK, Assil KK, Arrowsmith PN, Thompson VM, et al. Three-year results of Artisan/Verisyse phakic intraocular lens implantation. Results of the United States Food And Drug Administration clinical trial. Ophthalmology 2008;115:464-72.e1.

43. Tahzib NG, MacRae SM, Yoon G, Berendschot TT, Eggink FA, Hendrikse F, et al. Higher-order aberrations after implantation of iris-fixed rigid or foldable phakic intraocular lenses. J Cataract Refract Surg 2008;34:1913-20.

44. Qasem Q, Kirwan C, O'Keefe M. 5-year prospective follow-up of Artisan phakic intraocular lenses for the correction of myopia, hyperopia and astigmatism. Ophthalmologica 2010;224:283-90.

45. Hassaballa MA, Macky TA. Phakic intraocular lenses outcomes and complications: Artisan vs Visian ICL. Eye (Lond) (2011) 25:1365-70.

46. Titiyal JS, Sharma N, Mannan R, Pruthi A, Vajpayee RB. Iris-fixed intraocular lens implantation to correct moderate to high myopia in Asian-Indian eyes: Five-year results. J Cataract Refract Surg 2012;38:1446-52.

47. Yuan X, Ping HZ, Hong WC, Yin D, Ting Z. Five-year follow-up after anterior iris-fixed intraocular lens implantation in phakic eyes to correct high myopia. Eye (Lond) 2012;26:321-6.

48. Jonker SM, Berendschot T, Ronden AE, Saelens IE, Bauer NJ, Nuijts RM. Long-term endothelial cell loss in patients with artisan myopia and artisan toric phakic intraocular lenses: 5- and 10-year results. Ophthalmology 2018;125:486-94.

49. Pop M, Payette Y. Initial results of endothelial cell counts after Artisan lens for phakic eyes: An evaluation of the United States Food and Drug Administration Ophtec Study. Ophthalmology 2004;111:309-17.

50. Benedetti S, Casamenti V, Benedetti M. Long-term endothelial changes in phakic eyes after Artisan intraocular lens implantation to correct myopia: Five-year study. J Cataract Refract Surg 2007;33:784-90.

51. Yamaguchi T, Negishi K, Yuki K, Saiki M, Nishimura R, Kawaguchi N, et al. Alterations in the anterior chamber angle after implantation of iris-fixed phakic intraocular lenses. J Cataract Refract Surg 2008;34:1300-5.

52. Jonker SM, Berendschot T, Ronden AE, Saelens IE, Bauer NJ, Nuijts RM. Five-year endothelial cell loss after implantation with artiflex myopia and artiflex toric phakic intraocular lenses. Am J Ophthalmol 2018;194:110-9.

53. Moshirfar M, Imbormoni LM, Ostler EM, Muthappan V. Incidence rate and occurrence of visually significant cataract formation and corneal decompensation after implantation of Verisyse/Artisan phakic intraocular lenses. Clin Ophthalmol 2014;8:711-6.

54. Chebli S, Rabilloud M, Burillon C, Kocaba V. Corneal endothelial tolerance after iris-fixed phakic intraocular lens implantation: A model to predict endothelial cell survival. Cornea 2018;37:591-5.

55. Visser N, Berendschot TT, Bauer NJ, Nuijts RM. Vector analysis of corneal and refractive astigmatism changes following toric pseudophakic and toric phakic IOL implantation. Invest Ophthalmol Vis Sci 2012;53:1865-73.

56. Saxena R, Boekhoorn SS, Mulder PG, Noordzij B, van Rij G, Luyten GP. Long-term follow-up of endothelial cell change after Artisan phakic intraocular lens implantation. Ophthalmology 2008;115:608-13.e1.

57. Hoyos JE, Dementiev DD, Cigales M, Hoyos-Chacin J, Hoffer KJ. Phakic refractive lens experience in Spain. J Cataract Refract Surg 2002;28:1939-46.

58. Paillikaris IC, Kalyvianaki MI, Kymionis GD, Panagopoulou SI. Phakic refractive lens implantation in high myopic patients: One-year results. J Cataract Refract Surg 2004;30:1190-7.

59. Koivula A, Matin R, Zetterstrom C. Clinical outcomes of phakic refractive lens in myopic and hyperopic eyes: 1-year results. J Cataract Refract Surg 2005;31:1145-52.

60. Donoso R, Castillo P. Correction of high myopia with the PRL phakic intraocular lens. J Cataract Refract Surg 2006;32:1296-300.

61. Jongsareejit A. Clinical results with the medennium phakic refractive lens for the correction of high myopia. J Refract Surg 2006;22:890-7.

62. Verde CM, Teus MA, Arranz-Marquez E, Cazorla RG. Medennium
posterior chamber phakic refractive lens to correct high myopia. J Refract Surg 2007;23:900-4.

75. Portaliou DM, Kymionis GD, Panagopoulou SI, Kalyvianaki MI, Grentzelos MA, Pallikaris IG. Long-term results of phakic refractive lens implantation in eyes with high myopia. J Refract Surg 2011;27:787-91.

76. Perez-Cambronero RJ, Pinero DP, Madrid-Costa D, Blanes-Mompó FJ, Ferrer-Blasco T, Cerviño A. Medium-term visual, refractive, and intraocular stability after implantation of a posterior chamber phakic intraocular lens to correct moderate to high myopia. J Cataract Refract Surg 2011;37:1791-8.

77. Torun N, Bertelmann E, Klamann MK, Maier AK, Liekfeld A, Gonnermann J. Posterior chamber phakic intraocular lens to correct myopia: Long-term follow-up. J Cataract Refract Surg 2013;39:1023-8.

78. Gil-Cazorla R, Teus MA, Arranz-Marquez E, Marina-Verde C. Phakic refractive lens (Medennium) for correction of +4.00 to +6.00 diopters: 1-year follow-up. J Refract Surg 2008;24:350-4.

79. Koivula A, Zetterstrom C. Phakic intraocular lens for the correction of hyperopia. J Cataract Refract Surg 2009;35:248-55.

80. Kamiya K, Shimizu K, Kobashi H, Igarashi A, Komatsu M. Three-year follow-up of posterior chamber toric phakic intraocular lens implantation for moderate to high myopic astigmatism. PLoS One 2013;8:e56453.

81. Sari ES, Pinero DP, Kubalagalou A, Evcili PS, Koytak A, Kutlutürk I, et al. Toric implantable collamer lens for moderate to high myopic astigmatism: 3-year follow-up. Graefes Arch Clin Exp Ophthalmol 2013;251:1413-22.

82. Alfonso JF, Lisa C, Alfonso -Bartolozzi B, Pérez -Vives C, et al. Use of low-vault posterior chamber collagen copolymer phakic intraocular lenses for the correction of myopia: A 3-year follow-up. Graefes Arch Clin Exp Ophthalmol 2019;257:1555-60.

83. Qin Q, Wu Z, Bao L, Chen H, Yang L, He Z, et al. Evaluation of visual quality after EVO-ICL implantation for hypermyopia: An observational study. Medicine (Baltimore) 2019;98:e17677.

84. Igarashi A, Shimizu K, Kato S, Kamiya K. Predictability of the vault after posterior chamber phakic intraocular lens implantation using anterior segment optical coherence tomography. J Cataract Refract Surg 2019;45:1099-104.

85. Niu L, Miao H, Han T, Ding L, Wang X, Zhou X. Visual outcomes of Visian ICL implantation for high myopia in patients with shallow anterior chamber depth. BMC Ophthalmol 2019;19:121.

86. Nakamura T, Isogai N, Kojima T, Yoshida Y, Sugiya Y. Posterior chamber phakic intraocular lens implantation for the correction of myopia and myopic astigmatism: A prospective 10-year follow-up study. J Ophthalmol 2019;206:1-10.

87. Yu Z, Li J, Song H. Short-time evaluation on intraocular scattering after implantable collamer lens implantation for correcting high myopia. BMC Ophthalmol 2020;20:235.

88. Moya T, Javaloy J, Montes-Micó R, Beltrán J, Muñoz G, Montalbán R. Implantable collamer lens for myopia: Assessment 12 years after implantation. J Refract Surg 2015;31:548-56.

89. Vasavada V, Srivastava S, Vasavada SA, Sudhalkar A, Vasavada AR. Safety and efficacy of a new phakic posterior chamber IOL for correction of myopia: A 3 years of follow-up. J Refract Surg 2018;34:817-23.

90. Sachdev G, Ramamurthy D. Long-term safety of posterior chamber implantable phakic contact lens for the correction of myopia. Clin Ophthalmol 2019;13:137-42.

91. Yasa D, Urdem U, Agca A, Yildirim Y, Kepez Yildiz B, Kandemir Beşek N. Early results with a new posterior chamber phakic intraocular lens in patients with high myopia. J Ophthalmol 2018;2018:1329874.

92. Yaşă D, Köse B, Ağça A. Rotational stability of a new posterior chamber toric phakic intraocular lens. J Ophthalmol 2020;2020:1624632.

93. Guber I, Mouvet V, Bergin C, Perritaz S, Othenin-Girard P, Majo F, et al. Clinical outcomes and cataract formation rates in eyes 10 years after posterior phakic lens implantation for myopia. JAMA Ophthalmol 2016;134:487-94.

94. Řeháková T, Veliká V, Rozsíval P, Jirásková N. Correction of myopia and myopic astigmatism by implantation of a phakic posterior chamber implantable collamer lens. Česk Slov Oftalmol 2019;74:147-52.

95. Choi JH, Lim DH, Nam SW, Yang CM, Chung ES, Chung TY. Ten-year clinical outcomes after implantation of a posterior chamber phakic intraocular lens for myopia. J Cataract Refract Surg 2019;45:1555-61.

96. Perez-Cambronero RJ, Pinero DP, Ferrer-Blasco T, Cerviño A, Brautaset R. The posterior chamber phakic refractive lens (PRL): A review. Eye (Lond) 2013;27:14-21.
109. Remington LA. Clinical Anatomy and Physiology of the Visual System. St. Louis, Missouri, United States of America: Elsevier Butterworth Heinemann; 2012.

110. Weisenthal RW, Afshari NA, Bouchard CS, Colby KA, Rootman DS, Tu EY, et al. External Disease and Cornea. United States of America: American Academy of Ophthalmology; 2016.

111. Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci 1997;38:779-82.

112. MacRae S, Holladay JT, Hilmantel G, Calogero D, Masket S, Stark W, et al. Special report: American Academy of Ophthalmology Task Force recommendations for specular microscopy for phakic intraocular lenses. Ophthalmology 2017;124:141-2.

113. Ostovic M, Hofmann C, Klaproth OK, Kohnen T. Corneal decompensation and angle-closure glaucoma after upside-down implantation of an angle-supported anterior chamber phakic intraocular lens. J Cataract Refract Surg 2013;39:806-9.

114. Goukon H, Kamiya K, Shimizu K, Igarashi A. Comparison of corneal endothelial cell density and morphology after posterior chamber phakic intraocular lens implantation with and without a central hole. Br J Ophthalmol 2017;101:1461-5.

115. Stodulka P, Slovak M, Sramka M, Polisensky J, Liska K. Posterior chamber phakic intraocular lens for the correction of presbyopia in highly myopic patients. J Cataract Refract Surg 2020;46:40-4.

116. Perez-Santonja JJ, Iradier MT, Benitez del Castillo JM, Serrano JM, Zato MA. Chronic subclinical inflammation in phakic eyes with intraocular lenses to correct myopia. J Cataract Refract Surg 1996;22:183-7.

117. Packer M. The Implantable Collamer Lens with a central port: Review of the literature. Clin Ophthalmol 2018;12:2427-38.

118. McCannel CA, Atebara NH, Kim SJ, Leonard BC, Rosen RB, Sarraf D, et al. Retina and Vitreous. United States of America: American Academy of Ophthalmology; 2017.

119. Tuft SJ, Minassian D, Sullivan P. Risk factors for retinal detachment after cataract surgery: A case-control study. Ophthalmology 2006;113:650-6.

120. Fernandez-Vigo JJ, Marcos AC, Agujetas R, Montanero JM, Sanchez-Guillen I, Garcia-Feijoo J, et al. Computational simulation of aqueous humour dynamics in the presence of a posterior-chamber versus iris-fixed phakic intraocular lens. PLoS One 2018;13: e0202128.

121. Schmidinger G, Lackner B, Pieh S, Skorpik C. Long-term changes in posterior chamber phakic intraocular collamer lens vaulting in myopic patients. Ophthalmology 2010;117:1506-11.

122. Jick SL, Beasley TL, Brasington CR, Buznego C, Groststein R, Park L, et al. Lens and Cataract. United States of America: American Academy of Ophthalmology; 2018.

123. Steinwender G, Varna-Tigka K, Shajari M, Kohnen T. Anterior subcapsular cataract caused by forced irrigation during implantation of a posterior chamber phakic intraocular lens with a central hole. J Cataract Refract Surg 2017;43:969-74.

124. Gonzalez-Lopez F, Mompean B, Bilbao-Calabuig R, Vila-Arteaga J, Beltran J, Baviera J. Dynamic assessment of light-induced vaulting changes of implantable collamer lens with central port by swept-source OCT: Pilot study. Transl Vis Sci Technol 2018;7:4.

125. Lee H, Kang DSY, Choi JY, Ha BJ, Kim EK, Seo KY, et al. Analysis of pre-operative factors affecting range of optimal vaulting after implantation of 12.6-mm V4c implantable collamer lens in myopic eyes. BMC Ophthalmol 2018;18:163.

126. Tahzib NG, Eggink FA, Frederik PM, Nuijts RM. Recurrent intraocular inflammation after implantation of the Artiflex phakic intraocular lens for the correction of high myopia. J Cataract Refract Surg 2006;32:1388-91.

127. Alio JL, Hoz Fde L, Ismail MM. Subclinical inflammatory reaction induced by phakic anterior chamber lenses for the correction of high myopia. Ocul Immunol Inflamm 1993;1:219-24.

128. Bernard P, Fournier M. Definitive stop of marketing, product recall and follow-up of implanted patients. Presbyopic intraocular lenses NEWLIFE/VIVARTE PRESBYOPIC. Agence Francaise de Sécurité Sanitaire des Produits de Santé (AFSSAPS); 2007. Vol. 2016.

129. McCartney BE, Edelhauser HF, Lynn MJ. Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions. Cornea 2008;27:1-16.

130. Patel SV, McLaren JW, Bachman LA, Bourne WM. Comparison of flex-center, center, and corner corneas of mydriatic anterior chamber cell analysis. Cornea 2010;29:1042-7.

131. Jeong A, Hau SC, Rubin GS, Allan BD. Quality of life in high myopia before and after implantable Collamer lens implantation. Ophthalmology 2010;117:2295-300.

132. Kandel H, Khadka J, Lundstrom M, Goggins M, Pesudovks V. Questionnaires for measuring refractive surgery outcomes. J Refract Surg 2017;33:416-24.

133. Atchison DA, Markwell EL, Kasthurirangan S, Pope JM, Smith G, Swann PG. Age-related changes in optical and biometric characteristics of emmetropic eyes. J Vis 2008;8:29-1-0.

134. Gudmundsdottir E, Arnarsson A, Jonasson F. Five-year refractive changes in an adult population: Reykjavik eye study. Ophthalmology 2005;112:672-7.

135. McBrien NA, Adams DW. A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings. Invest Ophthalmol Vis Sci 1997;38:321-33.

136. Reinstein DZ, Archer TJ, Randleman JB. IRS standard for reporting astigmatism outcomes of refractive surgery. J Refract Surg 2014;30:654-9.

137. Dupps WJ Jr, Kohnen T, Mamalis N, Rosen ES, Koch DD, Obstbaum SA, et al. Standardized graphs and terms for refractive surgery results. J Cataract Refract Surg 2011;37:1-3.

138. Chylack LT Jr, Leske MC, Sperduto R, Khu P, McCarthy D. Lens opacities classification system. Arch Ophthalmol 1988;106:330-4.

139. Chylack LT Jr, Leske MC, McCarthy D, Khu P, Kashiwagi T, Sperduto R. Lens opacities classification system II (LOCS II). Arch Ophthalmol 1989;107:991-7.

140. Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, et al. The lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol 1993;111:831-6.

141. Hall AB, Thompson JR, Deane JS, Rosenthal AR. LOCS III versus the Oxford Clinical Cataract Classification and Grading System for the assessment of nuclear, cortical and posterior subcapsular cataract. Ophthalmic Epidemiol 1997;4:179-94.

142. Sparrow JM, Bron AJ, Brown NA, Ayliffe W, Hill AR. The Oxford clinical cataract classification and grading system. Int Ophthalmol 1986;9:207-25.

143. Chylack LT Jr, Wolfe JK, Friend J, Khu P, McCarthy D, Randleman JB. JRS standard for reporting refractive procedures, surgical devices, and new intraocular drugs and solutions. Cornea 2008;27:1-16.

144. Makkothkina NY, Berendschot TT, Hestelid K, van den Biggelaar F, Weik ARH, Nuijts RMMA. Comparability of subjective and objective measurements of nuclear density in cataract patients. Acta Ophthalmol 2018;96:356-63.

145. Chen D, Li Z, Huang J, Yu L, Liu S, Zhao YN, et al. Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: Correlation to LOCS III and a Scheimpflug imaging-based grading system. Br J Ophthalmol 2019;103:1048-53.