Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease?

Filomena Lo Vecchio, Paola Bisceglia, Bruno Pietro Imbimbo, Madia Lozupone, Raffaela Rita Latino, Emanuela Resta, Maurizio Leone, Vincenzo Solfrizzi, Antonio Greco, Antonio Daniele, Mark Watling, Francesco Panza and Davide Seripa

Abstract: Human apolipoprotein E (ApoE) is a 299-amino acid secreted glycoprotein that binds cholesterol and phospholipids. ApoE exists as three common isoforms (ApoE2, ApoE3, and ApoE4) and heterozygous carriers of the ε4 allele of the gene encoding ApoE (APOE) have a fourfold greater risk of developing Alzheimer’s disease (AD). The enzymes thrombin, cathepsin D, α-chymotrypsin-like serine protease, and high-temperature requirement serine protease A1 are responsible for ApoE proteolytic processing resulting in bioactive C-terminal-truncated fragments that vary depending on ApoE isoforms, brain region, aging, and neural injury. The objectives of the present narrative review were to describe ApoE processing, discussing current hypotheses about the potential role of various ApoE fragments in AD pathophysiology, and reviewing the current development status of different anti-ApoE drugs. The exact mechanism by which APOE gene variants increase/decrease AD risk and the role of ApoE fragments in the deposition are not fully understood, but APOE is known to directly affect tau-mediated neurodegeneration. ApoE fragments co-localize with neurofibrillary tangles and amyloid β (Aβ) plaques, and may cause neurodegeneration. Among anti-ApoE approaches, a fascinating strategy may be to therapeutically overexpress ApoE2 in APOE ε4/ε4 carriers through vector administration or liposomal delivery systems. Another approach involves reducing ApoE4 expression by intracerebroventricular antisense oligonucleotides that significantly decreased Aβ pathology in transgenic mice. Differences in the proteolytic processing of distinct ApoE isoforms and the use of ApoE fragments as mimetic peptides in AD treatment are also under investigation. Treatment with peptides that mimic the structural and biological properties of native ApoE may reduce Aβ deposition, tau hyperphosphorylation, and glial activation in mouse models of Aβ pathology. Alternative strategies involve the use of ApoE4 structure correctors, passive immunization to target a certain form of ApoE, conversion of the ApoE4 aminoacid sequence into that of ApoE3 or ApoE2, and inhibition of the ApoE-Aβ interaction.

Keywords: Alzheimer’s disease, antisense oligonucleotides, apolipoprotein E, dementia, fragments, proteolysis, tau protein, therapeutics

Received: 27 October 2021; revised manuscript accepted: 28 January 2022.
ApoE is involved in modulating synaptic function,5,6 blood-brain barrier (BBB) integrity,7–9 neuronal receptor recycling,10 and physiological processes (including cytoskeletal assembly and stability, mitochondrial integrity and function, and dendritic morphology and function) and numerous metabolic pathways such as lipid transport,11 glucose metabolism,12,13 and insulin signaling.14,15 ApoE was first identified in 1973 as a lipoprotein constituent of very-low-density lipoproteins (VLDL),16 high-density lipoproteins (HDL), and chylomicrons, as it was established that dietary cholesterol altered APOE distribution in plasma. Thus, ApoE keeps the same structure in both VLDL and HDL and plays a pivotal role for cholesterol and other lipid transport, participating in their redistribution to cells and facilitating their internalization in cells. However, while the role of ApoE in lipid pathophysiology may be associated with normal aging, its function in central nervous system (CNS) pathophysiology needs clarification. Nevertheless, APOE genotype is an established risk factor for Alzheimer’s disease (AD), independent of its role in the pathophysiology of lipid metabolism.17

HDL and low-density lipoprotein (LDL) are present in individuals with exceptional longevity and their offspring, but their particle sizes are larger compared with controls.18 ApoE protein is required for healthy cholesterol metabolism and CNS cholesterol transport. In very old individuals, total ApoE levels in plasma seem to correlate with lower total cholesterol and LDL cholesterol levels, which in turn are correlated with allele ε2.19 The presence of an abnormal cerebrospinal fluid (CSF) lipid profile and lower capacity to deliver neuronal cholesterol has been related to the ε4 allele.20 Detrimental APOE ε4 allele effects might be managed by nutritional interventions,21 in particular with a Mediterranean diet including higher intakes of n-3 polyunsaturated fatty acids.22,23 So, in healthy aging and longevity, lipid and cholesterol upkeep is an important factor.

About 25% of total body cholesterol resides in the CNS, playing an important role in synaptic plasticity.24 Cholesterol metabolism can change with advancing age, and its alteration in the brain may be associated with AD development.24 In addition, in the hippocampus and cortical areas of AD patients, there is decreased cholesterol compared with age-matched controls.25 Moreover, modifiable lifestyle factors such as education, alcohol consumption, physical activity, and smoking may attenuate genetic risk for accelerated age-related cognitive decline. The complex interactions between genetics, lifestyle, and cognitive aging may encourage behaviors preserving cognitive health into later life.26 ApoE is important not only for the pathophysiology of lipid metabolism27 and CNS, but also for healthy aging and longevity.28–31 Longevity studies focus on lifespan, while healthy aging studies consider healthspan; they are correlated because persons who live long have a tendency to be healthy for much of their lives.32 Healthy aging can be defined as reaching older age without multimorbidity (i.e. the coexistence of two or more chronic conditions in the same individual) or disabilities, and with intact cognition and/or mobility. The probability of an extreme human lifespan is reduced by the detrimental effects on longevity related to the APOE ε4 allele.33 In long-lived individuals, the ε2 allele is more frequent than ε4.34 The elevated frequency of the homozygous ε3/ε3 genotype compared with the heterozygous ε2/ε3 or ε3/ε4 genotypes produces a higher
frequency of the ε3 allele in older individuals and their offspring than in controls. Thus, the homozygous ε3/ε3 genotype is the main longevity factor.35

Since the early 90s, several studies have pointed out that ApoE could have a central role in AD neurodegeneration. Allele ε4, linked to the ApoE4 isoform, represents a key genetic risk factor for noninherited forms of AD (NIAD),36–39 with a semidominant inheritance.40 Nevertheless, in NIAD, the ApoE2 isoform might exert a protective effect.36,41–43 Although in APOE ε4 carriers the risk for NIAD is definitely increased, the presence of the APOE ε4 allele is not a causal factor for AD pathology.44–46

In AD pathogenesis, ApoE binds and transports amyloid β (Aβ) peptides,47–50 with differential affinity for Aβ according to ApoE isoform. Affinity is highest for lipid-associated ApoE4, intermediate for lipid-associated ApoE3, and lowest for lipid-associated ApoE2.51–54 Accordingly, distinct ApoE isoforms may exert different effects on Aβ aggregation and clearance,51,55–59 and also on Aβ production.60 ApoE also modulates microglial responses to amyloid plaque pathology61,62 and can affect tauopathy and tau-mediated neurodegeneration.63–65 Thus, distinct ApoE isoforms may either increase the risk for AD48,52 or have a protective role,66 depending on the different effects of fragments of distinct ApoE isoforms on deposition of Aβ.58,67,68

Brain ApoE is indeed present in smaller fragments (ApoE peptides), which are biologically active.69 It has been shown that the concentration of specific proteolytic fragments of ApoE is increased in AD brain70 and that some synthetic peptides of ApoE may be neurotoxic.71,72 The impact of ApoE fragments in AD pathogenesis remains unclear. Differences in the proteolytic processing of distinct ApoE isoforms are also under investigation. In the present narrative review, we have considered biochemical studies about APOE proteolysis, focusing on the enzymes involved in such processes and on the fragments produced by each enzyme. Furthermore, we have focused on recent studies about APOE fragments and their role in AD pathogenesis. In addition, we will review the current development status of different anti-ApoE drugs, and will discuss the feasibility of modulating ApoE processing as a new AD therapeutic approach.

Methods

The present was a narrative review article. We performed separate searches in the US National Library of Medicine (PubMed), Medical Literature Analysis and Retrieval System Online (MEDLINE), EMBASE, Scopus, Ovid, and Google Scholar databases to find original articles of interest. The search strategy used in PubMed and MEDLINE and adapted to the other four electronic sources was based upon searches using the following terms to identify risk exposure (apolipoprotein E OR APOE AND fragments AND enzymes) combined with terms to determine the outcomes of interest [Alzheimer’s disease OR dementia AND (pathogenesis OR development OR treatment OR therapeutics OR drugs OR compounds)]. Identified studies were analyzed for additional references of interest. The last search was performed on October 15, 2021. No language restriction was adopted. Two investigators (F.L.V., P.B.) independently and in duplicate searched for articles, screened titles and abstracts of the retrieved articles, reviewed the full texts, and selected articles for their inclusion. The following inclusion criteria were applied: original studies in cell and animal models and humans. Technical reports, letters to the editor, and systematic and narrative review articles were excluded. Data were cross-checked, any discrepancy was discussed, and disagreements were resolved by a third researcher (D.S.).

The ApoE structure

Encoded by the APOE gene at locus 19q13.32, APOE is a 299 aa glycoprotein of 34 kDa, found in several classes of lipoproteins in both humans and other vertebrates. In humans, peripheral and CNS ApoE does not cross the BBB, thus forming two independent ApoE pools with no exchange.73,74 In the periphery, ApoE is produced primarily by hepatocytes,75 while in the CNS ApoE derives mostly from astrocytes, activated microglia, vascular mural cells, and the choroid plexus.76,77 Although it was initially suggested that only astrocytes synthesize ApoE in the brain,78 subsequent studies have demonstrated that under various physiological and pathological conditions, CNS neurons can express ApoE, even if at lower levels than astrocytes.63,79,80

ApoE is synthetized as a preprotein of 317 aa, with a signal peptide of 18 aa removed in the post-translational phase. ApoE is composed of
two structural domains that are linked by an unstructured short hinge region. The NH2-(N)-terminal elongated domain (aa 1-167) forms a 4 \(\alpha\)-helix bundle and presents a region in basic Arg and lysine (Lys) residues (aa 135-150) that creates the low-density lipoprotein receptor (LDL-R)-binding region. Extracellularly, ApoE binds lipoproteins or lipid complexes and transports them to cells via specific neuronal and glial transmembrane receptors such as LDL-related protein (LRP).81

The carboxyl-(C)-terminal domain (aa 206-299) is composed of amphipathic \(\alpha\)-helices [characteristic of the exchangeable apolipoprotein and contains the lipid-binding region (aa 244-272)]. As previously described, ApoE was identified as a main apolipoprotein/component in HDL particles, VLDL, and chylomicron remnants, being a fundamental ligand in the uptake of these lipoproteins by members of the LDL-R family, except for HDL particles. The structural organization of ApoE in HDL profoundly impacts its ability to regulate cholesterol homeostasis in AD and cardiovascular diseases.

ApoE also serves as the primary cholesterol chaperone in the neuropil and maintains brain cholesterol homeostasis. At residues 141-150, the dual-domain ApoE mimic peptide Ac-hE18A-NH2 (ligand active site of the protein) co-localizes with a major heparin-binding site.82 This peptide, the putative receptor-binding region of human ApoE, is covalently linked to a well-characterized class A amphipathic helix, 18A, which has no sequence homology to any other exchangeable apolipoprotein sequences. It demonstrates dramatic ability to reduce plasma cholesterol levels in dyslipidemic mouse and rabbit models.82

The ApoE3 and ApoE3r structures

The ApoE3 isoform, characterized by the aa combination Cys\(^{112}\) = Arg\(^{158}\), is the major ApoE isoform in humans and is therefore considered the wild-type (or parental) isoform. ApoE3 includes a domain for lipid association between aa 203-266 and a globular domain between aa 1-191 encompassing the LDL-R-binding region.83,84 ApoE3 promotes clearance of triglyceride-rich lipoprotein particles, producing normal plasma lipid levels. Residues 1-167 of the N-terminal domain form an antiparallel 4 \(\alpha\)-helix bundle and present the nonpolar aspect of the amphipathic helices. The C-terminal domain encompasses aa 206-299 and has three \(\alpha\)-helices presenting a large, exposed hydrophobic surface. Both terminal domains are separated by a hinge region. Through hydrogen bonds and salt bridges the \(\alpha\)-helices interact with those in the NH2-terminal helix bundle domain. The LDL-R recognizes a site within the helix bundle domain, while the lipid-binding ability of the protein depends on the C-terminal domain. In helix 4 of the helix bundle domain, there are basic residues (mainly Arg and Lys), corresponding to aa 136-150, that interact with acidic residues present in the ligand-binding domain of the LDL-R family.86 Arg\(^{172}\) is also necessary for ApoE receptor binding activity.87

Interestingly, the isoform ApoE3r, characterized by the aa combination Arg\(^{112}\) - Cys\(^{158}\), has the same molecular weight and electrical charge of the parental form, ApoE3. ApoE3r has been shown to have normal VLDL receptor binding activity,\(^{1}\) resulting in an ApoE3-like lipid asset. However, ApoE3r is the rarest isoform across the population worldwide.1 The appearance of ApoE3r isoform during evolution and its role in lipid metabolism and CNS pathophysiology need to be further elucidated.2

The ApoE4 structure

The ApoE4 isoform, the second most common allele, differs from ApoE3 in the change of Cys\(^{112}\) to Arg, producing a combination Arg\(^{112}\) - Arg\(^{158}\). The resultant change in structure and stability of both terminal domains results in enhanced lipid binding. In particular, the substitution of a Cys side chain with a positively charged Arg side chain in the N-terminal helix bundle domain is responsible for its destabilization.88,89 At variance with ApoE3, in ApoE4 the presence of Arg at position 112 reconfigures the Arg\(^{61}\) side chain with formation of a saline bridge with glutamic acid (Glu)\(^{295}\) in the C-terminal region.90,91 Such binding, probably together with other allosteric effects,\(^{92}\) produces an altered relationship between the N- and C-terminal regions. In particular, the Cys\(^{112}\) to Arg substitution in ApoE4 leads to unfolding of certain helical segments that reduces self-association and is probably related to a reduced ability of ApoE4 to form tetramers, and is expected to enhance the binding of ApoE4 to plasma
triglyceride-rich lipoprotein particles and to brain Aβ deposits. A recently suggested mechanism based on lipid binding between the N- and C-terminal domains proposed that separation of the two domains, along with the presence of intrinsically disordered regions, may control protein motions. This mechanism may partly explain why ApoE3 and ApoE4 are functionally different, why lipid may increase the binding of ApoE to its receptor, and why specific residues may be conserved.

The ApoE2 structure
The ApoE2 isoform, the third most common allele, differs from ApoE3 by a single aa substitution Arg158 → Cys, producing the aa combination Cys112 – Cys158. Due to this, the salt-bridge between Arg158 and aspartic acid (Asp)154 in the α-helix of ApoE2 (which is present in ApoE3) is absent, while it is present between Asp158 and Arg150. The novel salt-bridge induces a conformational change of Arg150 relative to the other basic residues in the receptor-binding domain, so that it is no longer able to interact with the LDL-R, reducing binding between ApoE2 and the LDL-R, and resulting in reduced clearance of triglyceride-rich lipoproteins associated with type III hyperlipoproteinemia.

The role of ApoE in AD pathogenesis
ApoE is considered the most important genetic risk factor for sporadic AD. Heterozygous carriers of the APOE ε4 allele have a 4-fold greater risk of developing AD, whereas homozygous APOE ε4 carriers have a 12-fold greater risk, compared with APOE ε3 carriers. Conversely, the relative risk APOE ε2 allele is associated with a 40% lower AD risk and being homozygous for it further reduces the risk. Similarly, homozygous carriers of the rare ‘Christchurch’ mutation of APOE ε3 (R136 S) appear resistant to autosomal-dominant AD. Compared with APOE ε3 homozygotes, cognitively normal APOE ε4 carriers show higher Aβ and tau brain burden while APOEε2 carriers have lower global Aβ burden – however, they do not differ on regional tau burden or tau accumulation over time. Thus, APOE ε4 carriers show earlier, and APOE ε2 carriers later, onset of cognitive impairment compared with APOE ε3 homozygotes. Nevertheless, the effect of APOE genotype on rate of cognitive decline after disease onset remains controversial.

Although initial studies linked APOE with Aβ aggregation and clearance, recently it has emerged that the role of APOE in AD pathogenesis involves tau-mediated neurodegeneration, microglia dysfunction, astrocyte responses, and BBB disruption.

The ApoE-cutting enzymes
As seen above, under various physiological and pathological conditions, CNS neurons can express ApoE, even if at lower levels than astrocytes. Indeed, various in vivo and in vitro studies suggest that ApoE fragmentation occurs in neurons (not astrocytes) in specific brain regions. ApoE fragments are found only in the neocortex and hippocampus of ApoE-expressing transgenic mice. The proteolytic process usually yields C-terminal-truncated ApoE fragments in an isoform-dependent manner (ApoE4 > ApoE3). Specifically, ApoE4 cleavage produces more neurotoxic fragments than ApoE3, these fragments only being generated by neurons and not astrocytes. Both murine and human neuronal precursor cells produce increased ApoE levels when challenged with Aβ peptides. In the hippocampus, the formation of intraneuronal phospho-tau-containing filamentous inclusions is stimulated by production of C-terminal-truncated ApoE4 fragments, although the protease(s) responsible for ApoE fragmentation have not been confirmed. It has been reported that Aβ1-42 treatment of Neuro-2a cells transfected with either ApoE3 or ApoE4 cDNA significantly increased C-terminal truncated ApoE3 and ApoE4 levels, suggesting that the peptide activates intracellular protease(s). It has also been demonstrated that intracellular Aβ amyloid precursor protein (APP) C-terminal fragments raised ApoE levels and C-terminal fragments thereof, leading to the assumption that intracellular Aβ accumulation has a different effect on ApoE than exogenous application of Aβ peptides.

Two classes of proteases have so far been suggested as mediators of ApoE fragmentation, targeting Asp and Ser. Four enzymes appear to play a critical role: cathepsin D (the only aspartic protease identified) and thrombin (a serine protease), α-chymotrypsin-like serine protease, and high-temperature requirement serine protease A1 (HtrA1). Specific ApoE fragments are involved early in neurodegenerative processes impacting
deposition of Aβ plaques, tau hyperphosphorylation, and intracellular formation of neurofibrillary tangles (NFTs) (Figure 1). α-Chymotrypsin-like serine proteases and matrix metalloproteinase (MMP)-9 probably mediate the fragmentation process in the neuropil, while cathepsin D mediates the process in neuronal cytoplasm. Cathepsin D mediated ApoE fragments in the cytoplasm of the neurons and ApoE co-localize to a subset of predominantly senile plaques and some NFTs in the human post-mortem frontal cortex. In studies of serine proteases, ApoE fragments were found in the culture medium but not in cell lysates, which could imply that serine proteases are secreted to mediate fragmentation of ApoE in the extra-neuronal environment.

Thrombin

Thrombin, a serine protease belonging to chymotrypsin family, has a 36-residue polypeptide A chain and a 259-residue B chain, linked by a disulfide bridge at the corresponding Cys1 and Cys122 residues. The A chain may be superfluous to its enzymatic function. This structure presents two basic anion-binding exosites and one Na⁺-binding site. Anion-binding exosite I (the fibrinogen recognition exosite) is the recognition site for many cofactors and procoagulant substrates (such as fibrinogen and thrombomodulin), and thrombin cleaves protease activated receptor 1 (PAR-1). Exosite II is the heparin-binding site and the principal interaction site of the platelet glycoprotein receptor Ib/IIa. In AD pathophysiology, a role for this enzyme has been suggested, given that AD patients have amyloid deposits, senile plaques, NFTs, and micro-vessels, all containing thrombin. In addition, neuronal cells express prothrombin mRNA, and it has been observed that PAR-1, PAR-3 and PAR-4 are up-regulated in rat hippocampus. Thrombin cannot process phosphorylated tau protein, resulting in intracellular aggregates of tau protein in hippocampal neurons, but it may induce proteolysis of

![Figure 1. Apolipoprotein E (ApoE) fragments generated by cutting of enzymes. ApoE N-terminal fragments (orange), ApoE central fragments (light orange) and ApoE C-terminal fragments (yellow).](image-url)
Activation of PAR-1/4 and ERK1/2 pathways is implicated in thrombin-induced hyperphosphorylation and aggregation of tau. Hyperphosphorylated tau deposits are neurotoxic and, in the hippocampus, may lead to neuronal apoptosis. In vitro, the thrombin-mediated cleavage of APP promotes Aβ accumulation and amyloid plaque formation. Although some studies indicated that Aβ neurotoxic effects could be alleviated by thrombin, it is also possible that it may increase Aβ neurotoxicity through intracellular influx of calcium ions and high oxidative stress. Arg₁₉₁/alanine (Ala)₁₉₂ (major site) and Arg₂₁₅/Ala₂₁₆ (minor site) are two thrombin cleavage sites on the ApoE protein. ApoE cleavage by thrombin creates a 22 kDa fragment and a 10–12 kDa fragment. The ApoE N-terminal 22 kDa fragment originating from the ApoE4 isoform shows greater neurotoxicity compared to that originating from ApoE3.

Cathepsin D

The lysosomal enzyme cathepsin D is implicated in unfolded, unused, and damaged protein degradation and is highly expressed in the brain. Through autophagy and endocytosis processes, these damaged proteins are delivered into lysosomes and degraded. Dysregulation of cathepsin D enzymatic activity may lead to accumulation and aggregation of various proteins, and is involved in several proteinopathies. Cathepsins are proteases including several members differentiating for the aa number in the active site: cathepsins B, C, F, H, K, L, O, S, V, W, and X comprise the cysteine cathepsin family; cathepsins A and G, the serine cathepsin family; while D and E are the aspartyl cathepsin family. All human tissues express cathepsins B, L, H, C and D, while A, G, K, S, V, X and W CatD are tissue-specific and based on cell type. Preprocathepsin D, the synthetized inactive zymogen, is proteolytically cleaved and cathepsin D is activated; preprocathepsin D contains an N-terminal signal peptide, a propeptide, and a catalytic domain. Cathepsin D is mainly involved in degradation of proteins in lysosomes, but also has key roles in signal transduction pathways, such as activation of enzymatic precursors, prohormones and growth factors, brain-specific antigen processing, neuronal cell homeostasis, and apoptotic processes.

α-Chymotrypsin-like serine protease

α-Chymotrypsin-like serine protease cleaves aromatic and specific hydrophobic aa. ApoE has 67 sites for cleavage by α-chymotrypsin-like serine protease, and in the hinge, region Leu₁₉₈, Leu₂₀₃, Trp₂₁₀, Leu₂₁₄, and Met₂₁₈ are identified. Cleavage generates peptides from 23 kDa to 25 kDa (or from 24 to 26 kDa including O-glycosylation) in size. However, the endogenous pattern of ApoE fragmentation may be reflected by the profile of ApoE fragmentation mediated by cathepsin D. The aa 272-299 are included in the C-terminal ApoE4 fragment produced by this enzyme.

High-temperature requirement serine protease A1

The HtrA1 belongs to a four-enzyme subfamily of serine proteases in humans. At variance with HtrA2 (which is a mitochondrial transmembrane protein), HtrA1, HtrA3 and HtrA4 have identical regional composition: an insulin-like growth factor–binding protein domain (IGF-BD), a Kazal motif followed by a trypsin-like catalytic domain (KM), and a PDZ region. Although regulation of HtrA1 activity is still under debate, the IGF-BD
The role of ApoE isoforms in fragment generation

The three ApoE isoforms differ in their physical properties, including lipid-binding capacity, type of lipids bound, domain-domain interactions, and stability. The isoform-dependent secretion of ApoE and its immunomodulatory effects could be attributable to post-translational modifications. ApoE3 and ApoE2 are less sensitive to proteolytic cleavage than ApoE4. The greater instability of ApoE4 is due to its presentation of numerous protease-sensitive sites in the hinge region, including to thrombin, cathepsin D, and Htra1, and its vulnerable N- and C-terminal domains. And its vulnerable N- and C-terminal domains. In addition, ApoE 14-20 kDa N-terminal fragments and ApoE 10-15 kDa C-terminal fragments have been also shown to be more frequent in AD patients than in age-matched controls. The 4 α-helix bundle of ApoE4 is partially opened and extended, so exposing the hydrophobic surface of the protein. Therefore, proteolytic enzymes may have greater access to the short hinge region and the hydrophobic region, as compared to other isoforms. These differences may account for the lower AD risk in APOE ε2 carriers. Notably, AD patients carrying the APOE ε2 allele have reduced Aβ deposition in the neocortex and reduced formation of NFTs.

Recently, it has been shown that the 25 kDa ApoE fragment may be neuroprotective, and is more abundantly produced in brains of APOE ε3 carriers compared to APOE ε4 carriers. This finding suggests that reduction of ApoE3 fragments with neuroprotective effects may contribute to neurodegeneration in AD, alongside the neurotoxic impact of ApoE4 fragments. Other detailed studies are required to understand the function of ApoE fragments not only in astrocytes and microglia cells, but also in non-neuronal cell types and their exact role in AD development, lipid metabolism, healthy aging and longevity.

ApoE2 contains a Cys residue and its substitution with Arg makes this isofrom more stable and resistant to thermal and chemical denaturation than ApoE3 and ApoE4. Furthermore, in both these isoforms, the presence of a negative Cys residue reduces their propensity for domain interactions compared to ApoE4, which has a positive Arg residue. New synapse formation is promoted by increased dendritic outgrowth mediated by ApoE2, thus protecting against AD-related synaptic loss. ApoE protects cells from oxidative injury in vitro, but such activity varies by isoform: ApoE2 is the most effective, ApoE3 is moderately effective, while ApoE4 is the least effective. The immunomodulatory effects of ApoE also vary by isoform, and a new study indicates that isoform status dictates its own the glycosylation state and secretion.

The role of ApoE peptides in neurodegeneration and AD

The interaction between ApoE and Aβ is influenced by various factors, including the ApoE isoform and its lipiddation, and Aβ levels. In healthy brain, Aβ can associate with ApoE, which is involved in its metabolism and clearance. The brains of both cognitively intact controls and AD patients contain full-length ApoE, high molecular weight (HMW-22–30 kDa) and low molecular weight (LMW-10–20 kDa) fragments in varying quantities, although fragments are more frequent in AD brains than in those of controls. Nonetheless, the proportions of the various fragments are similar in both groups, as well as among the various APOE genotypes. APOE ε4 carriers’ brains have more fragments than non-carriers’ brains. Each of the post-cleavage ApoE4 domains is associated with a specific pathological process in AD brain: C-terminal domain binds to Aβ and localizes to senile plaques, while the N-terminal region mainly localizes with NFTs. N-terminal truncated ApoE fragments appears to be the major species in Aβ deposits in AD brains. In human brain, the dynamic processes involving cholesterol and Aβ may be impaired by loss of ApoE4 function, given that the accumulation of intraneuronal Aβ peptides is also correlated with the APOE ε4 genotype.
Low lipidation of ApoE4 favors its binding to Aβ, which may induce generation of ApoE-fragment/Aβ heteromers, increasing Aβ accumulation and AD risk (Figure 2). It is this ApoE4/Aβ interaction that plays a main role in AD development, while each component in isolation seems less critical. ApoE fragments lacking N-terminal and C-terminus, together with Aβ accumulation, may also favor AD pathology. Such ApoE fragments are without the Aβ transporter-binding domain, and formation of ApoE-fragment/Aβ heteromers decelerates Aβ clearance and favors accumulation. ApoE4 is more efficient than other isoforms in favoring ApoE-fragment/Aβ heteromer formation. Furthermore, ApoE can increase formation of Aβ oligomers. In AD brain, 3 ApoE fragments have been found – 18 kDa (ApoE18), 16 kDa (ApoE16) and 12 kDa (ApoE12) – with the 18 and 16 kDa forms being hybrid heteromers composed by Aβ1-42 peptides and ApoE middle fragments. One study showed that the formation of Aβ/ApoE16 and Aβ/ApoE12 heteromers (but not those involving ApoE18) seems to correlate with memory deficits in AD. Only the ApoE18 fragment was significantly increased, while ApoE16 and ApoE12 fragments were less elevated. Furthermore, the observation of increased hippocampal Aβ/ApoE18 heteromer suggested that it might serve as a biomarker for AD pathology.

ApoE mediates clearance of Aβ-protein from the neuropil by acting as a bridging protein between Aβ, via its C-terminal domain, and LRP, via its N-terminal domain. A study in senile plaques showed that the N-terminal/C-terminal domain interaction is stronger in ApoE4 than in ApoE3. ApoE4, therefore, has a shorter inter-terminal domain distance, but a relatively longer and more exposed hinge, which is more susceptible to proteolysis. Increased hinge proteolysis in ApoE4 leads to more disassociated Aβ-bound C-terminal fragments. These events contribute to the loss of Aβ clearance function in brains with ApoE4, enhancing amyloid deposition, given also that intracellular clearance of Aβ peptides is correlated with the APOE ε4 genotype.

ApoE fragmentation presents as a potential AD-related pathological process (Figure 2). C-terminal truncated forms of ApoE induce intracellular NFT-like inclusions in neurons. ApoE fragments associate with or induce the formation of hyperphosphorylated tau and NFTs in an isoform-dependent manner. The lipided form can also induce NFT formation, both in vitro and in vivo, in murine neocortex and hippocampus and interacts with NFTs via its aa residues 245-260 – these effects occur only in neurons. Cytosolic expression of ApoE4 (272-299) induces NFT-like inclusions in mouse primary-cultured cortical neurons and in human NT2 cells but not in various non-neuronal cells. Pathologic human tau accumulates in neurons due to an imbalance between the activities of tau protein kinases and phosphatases. Full-length ApoE decreases phosphorylation of tau kinases and inhibits tau phosphorylation at Thr171 and Ser202/Thr205 epitopes.

The ApoE receptor-binding N-terminal domain peptides

The potential neurodegenerative effects of ApoE N-terminal fragments are summarized in Table 1. In the BV2 mouse microglial cell line, the 17 kDa fragment has been reported to promote cell death. It has been reported that intracellular Aβ1-42 accumulation is stimulated by the 19 kDa fragment, which produces reactive oxygen species (ROS) in the SK-N-SH human neuroblastoma cell line. In this cell line and SW-1783 human astrocytoma cells, the 21 kDa fragment has been also reported to promote MMP9/TIMP1 imbalance, by stimulating IL-1β and reducing IL-10 levels. The 22 kDa thrombin cleavage ApoE4 fragment is also neurotoxic in vitro, but only at high concentrations – this has not yet been confirmed in vivo. The 22 kDa fragment exhibits receptor-mediated neurotoxicity and increases intracellular calcium in embryonic chick sympathetic sympathetic ganglia and embryonic rat hippocampal tissue. The 25 kDa fragments 1-195 have been reported to promote neuritogenesis in SK-N-SH/SH-SY5Y human neuroblastoma cells, whereas the 1-272 fragments may induce neurotoxic mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells.

The 22 kDa fragments originated by thrombin cleavage lack the aa 244-272 lipid-binding site and are different from ApoE fragments generated in AD brains. In contrast, this site seems to be essential for fragment-induced neurotoxic effects in vivo all ApoE fragments contain it, and it is
Figure 2. The role of apolipoprotein E (ApoE) peptides in neurodegeneration and Alzheimer’s disease (AD). In the brain, astrocytes and activated microglia synthesize ApoE. In neurons, ApoE is cleaved in the C-terminal domain that binds to amyloid β (Aβ) and localizes to plaques; and in the N-terminal domain that localizes with NFTs. Low ApoE lipidation influences the binding of ApoE4 to Aβ, promoting ApoE-fragment/Aβ heteromer generation. ApoE fragments without N- and C-terminal domains (ApoE 133-149, ApoE 141-149, ApoE 141-155, 12 kDa fragment) do not have the Aβ transporter-binding domain – these fragments (together with Aβ accumulation) favor the formation of ApoE-fragment/Aβ heteromers, decelerating Aβ clearance and favoring Aβ accumulation in AD. The lipitated form of ApoE interacts with NFTs through its amino acid residues 245-260. Imbalance between the activities of tau protein kinases and phosphatases promotes accumulation of tau protein in neurons. C-terminal truncated ApoE fragments induce oxidative stress and inflammation, releasing pro-inflammatory cytokines. Increased MMP-9 leads to β-site amyloid precursor protein–cleaving enzyme-1 (BACE-1) activation and/or apoptosis, and interleukin (IL)-1β interacting with neurons by LDL-related protein receptor induces NFT formation.
Table 1. Effect of apolipoprotein E (ApoE) N-terminal peptides in cell and animal models related to Alzheimer’s disease (AD) and differences in ApoE isoforms.

Organism	Tissue	Fragment	Effect	Model	Note	Reference
Mouse	Neuro-2a neuroblastoma cells	ApoE4 [1-271]\(^1\) (N-terminal)	In neuronal cells promotes NFT-like inclusion formation	In vitro	ApoE4 showed more inclusions than ApoE3	Huang et al.\(^70\)
Mouse	C57BL/6 J Neuro-2a neuroblastoma cells overexpressing APOE 272-299	ApoE4 [1-271]\(^1\) (N-terminal)	Promotes AD-like tau pathology and behavioral disorders	In vivo	Studies conducted only on ApoE4	Harris et al.\(^157\)
Mouse	J20 line of hAPP\(_{FAD}\) and overexpressing APOE 272-299	ApoE4 [1-271]\(^1\) (N-terminal)	Decreases Aβ clearance and increases Aβ deposition	In vivo/In vitro	Full-length ApoE3 and ApoE4 expressing mice were able to stimulate Aβ clearance	Bien-Ly et al.\(^158\)
Human	Primary neurons	22 kDa N-terminal	Cytotoxicity	In vitro	Higher effect in ApoE4 than ApoE3 background	Marques et al.\(^158\)
Chick	Embryonic sympathetic ganglia	22 kDa N-terminal	The neurotoxic function receptor- induced	In vitro	ApoE4 fragment was more toxic than ApoE3	Tolar et al.\(^72\)
Rat	Embryonic hippocampal tissue	22 kDa N-terminal	Determines increased intracellular calcium levels and neurotoxicity	In vitro	Studies conducted only on ApoE4	Tolar et al.\(^181\)
Mouse	BV2-microglia cells	1-151\(^2\) (17 kDa N-terminal)	Induces increased cell death and trafficking to the nucleus	In vitro	Effects not seen in ApoE3	Love et al.\(^178\)
Human	SK-N-SH human neuroblastoma	1-165\(^3\) (19 kDa N-terminal)	ApoE 1-165 promotes Aβ\(_{1-42}\) intracellular accumulation which induces ROS formation, whereas ApoE 1-185 do not	In vitro	Effects not seen in ApoE3 and ApoE2	Dafnis et al.\(^54\), Dafnis et al.\(^179\)
Human	SK-N-SH neuroblastoma and SW-1783 astrocytoma cells	1-185\(^3\) (21 kDa N-terminal)	Induces interleukin-1β and reduces interleukin-10 expression through MMP9/TIMP1 imbalance	In vitro	Only ApoE4 studied	Dafnis et al.\(^180\)
Human	SK-N-SH/SH-SY5Y human neuroblastoma cells	1-195\(^3\) (25 kDa N-terminal)	Promotes neuritogenesis	In vitro	Only ApoE3 studied	Muñoz et al.\(^159\)
Mouse	Neuro-2a neuroblastoma cells	1-272\(^2\) (N-terminal)	Exhibits neurotoxicity via mitochondrial dysfunction	In vitro	Only ApoE4 studied	Chang et al.\(^182\)

\(^1\)Gene ID: 11816.
\(^2\)Gene ID: 25728.
\(^3\)Gene ID: 348.
Aβ, amyloid β; MMP9, matrix metalloproteinase 9; NFT, neurofibrillary tangle; ROS, reactive oxygen species; TIMP1, tissue inhibitor of metalloproteinase 1.
implicated in the interplay between ApoE and Aβ peptides.47,183

The ApoE central domain peptides

The potential effects of the ApoE central fragments in neurodegeneration are summarized in Table 2. In BV2-microglia cells, release of tumor necrosis factor-α (TNF-α) and nitric oxide (iNOS) is induced by the 133-149 aa peptide by suppression of microglial activation.184 This peptide also reduces inflammation response after lipopolysaccharide (LPS) injection in C57BL/6 J blastocysts,185 suppressing the apoptosis and intracellular calcium increase caused by N-methyl-d-aspartate in primary neuronal-glia cells.186 In hippocampal slices, this peptide, together with the C-terminal portion of the 141-148 aa peptide, inhibited acetylcholine-induced responses.187 In Xenopus laevis oocytes, these peptides block the α7 nicotinic acetylcholine receptor (nAChR), disrupting nAChR signaling.188,189 The Arg-rich domain of the C-terminal ApoE 141-148 aa peptide favors the interaction with nAChR and may inhibit α7 nAChRs-mediated responses,187 as does APOE 133-149 aa.189 In contrast to ApoE 133-149 and ApoE 141-148, the ApoE 141-149 and ApoE 141-155 residues are associated with deleterious effects such as neurite degeneration69 and cytotoxicity,71 respectively. The 141-149 peptide was able to inhibit cell proliferation and showed cytotoxic effects in IL2-dependent T lymphocyte cells,71 whereas the 141-155 aa peptide may induce neurite degeneration in embryonic chick sympathetic neurons.69

The ApoE lipid-binding C-terminal domain peptides

The potential neurodegenerative effects of ApoE peptides originating from the C-terminal protein domain are summarized in Table 3. The C-terminal truncated ApoE fragment neither affects APP expression nor APP processing, but induces formation of NFTs. The C-terminal-derived fragment can stabilize Aβ to form pathogenic Aβ oligomers, but not Aβ fibrils. Furthermore, C-terminal fragments induce oxidative stress and inflammation, stimulating neuronal secretion of the pro-inflammatory cytokines IL-1β and MMP-9. Increased MMP-9 leads to BACE-1 activation and/or apoptosis, and IL-1β promotes NFT formation by interacting with

neurons via the LRP receptor. In addition to aberrant activation or repression of tau kinases and phosphatases, the third α-helix of the C-terminal fragment is involved in abnormal tau phosphorylation and formation of NFT-like inclusions. Inclusions similar to NFTs containing the 272-299 aa fragment (also designated as 1-271 aa fragment)70 are found in neuronal cells, and may cause AD-like tau pathology and behavioral disturbances in Neuro 2-a mouse neuroblastoma cells of transgenic mice C57BL/6 J overexpressing this peptide.157 In Neuro-2a cells, removal of the first 20 aa, up to the first α-helix, of ApoE4 (272-299) does not modify its ability to induce intracellular NFT-like inclusions. Only a further truncation of its third α-helix decreases the induction of NFT-like inclusions by ~50%.70

In transgenic mice hAPPFA, overexpressing 272-299 aa peptide, there was lower Aβ clearance.108 In Neuro-2a mouse neuroblastoma cells, production and stabilization of hexameric Aβ species may be induced by an ApoE C-terminal 13 kDa fragment that may also inhibit Aβ fibril formation.190 ApoE fragments escape the secretory and endocytic–lysosome internalization pathways to induce the formation of NFTs and/or to associate with them. In Neuro-2a cells, the neurotoxic ApoE4 fragment is not found in either the Golgi apparatus or endoplasmic reticulum. In contrast, the fragment either interacts with the mitochondria or cytoskeletal elements to form filamentous inclusions containing phosphorylated tau and phosphorylated neurofilament proteins.182 The mechanisms underlying this ability to evade the recycling pathway remain unknown.

It has been proposed that the LDL receptor-binding domain directs the C-terminal domain in initiating rapid lipid binding, followed by a slower N-terminal domain helix bundle opening, to yield discoidal reconstituted HDL. It appears that the bulky N-terminal domain determines the spatial organization of its C-terminal domain in reconstituted HDL, a finding that has significance for ApoE4, which is more susceptible to proteolytic cleavage in AD brains.191

The ApoE mimetic peptides

In nature, potentially therapeutic peptides are present as 100 aa short-chain monomers. Such peptides may bind certain membrane receptors
and activate specific signaling pathways. Historically, the use of peptides as therapeutic agents has been ignored due to several limitations including dimension, degradation susceptibility, absence of effective delivery methods, fast excretion, poor distribution, low oral bioavailability, reduced cell permeability, and target specificity. In 1953, oxytocin was the first therapeutic peptide synthesized. In 1982, recombinant human insulin was the first such peptide produced through recombinant fermentation. Transformation of peptides into mimetic peptides is one intriguing strategy for using them as therapeutic agents. Mimetic peptides exert effects similar to those of the original molecule, but promise several advantages: increased structural consistency, good cell membrane permeability, and increased stability to proteolytic digestion and target specificity. Peptides have been chemically modified to induce non-natural aa changes, amide bond variations, scaffold rigidity, or hydrophobic residue inclusion.

Mimetic peptide studies have been inspired by lipid-binding domains shared from apolipoproteins with a common structure to these mimetic peptides. Lipoprotein binding activity and clearance have been tested for peptides spanning the ApoE 130-169 region. Amphipathic α-helices within the C-terminal region are essential to its efflux capacity. The ApoE mimetic peptide (ATI-5361) has been developed on the basis of a 26 aa peptide including residues 238-266. A peptide composed of a dimer of residues 141-155 with an N-terminal tyrosine residue, designated Y(141-155)_2, binds to the LDL receptor. This latter peptide, upon acetylation of its N-terminus, binds to all lipoproteins. In ApoE-/- mice, VLDL and intermediate-density lipoprotein (IDL) clearance is promoted by injection of the acetylated peptide, whereas non-acetylated peptide exerted no such effects.

Organism	Tissue	Fragment	Effect	Model	Note	Reference
Chicken	Embryonic sympathetic ganglia	141-155	Neurite degeneration	In vitro	N/A	Crutcher et al.69
Human	Interleukin-2-dependent T lymphocytes	141-149	Cytotoxicity	In vitro	N/A	Clay et al.71
Mouse	BV2-microglia cells	133-149	Inhibits the release of TNFα and NO through suppresses microglial activation	In vitro	N/A	Laskowitz et al.184
Mouse	Primary neuronal-glia cells	133-149	Suppresses neuronal cell death and calcium influx induced by NMDA	In vitro	N/A	Aono et al.186
Mouse	C57BL/6 J blastocysts	133-149	Following LPS administration suppresses inflammatory response	In vivo	N/A	Lynch et al.185
Rat	Hippocampal slices	133-149	Acetylcholine-evoked responses in a dose-dependent manner are inhibited	Ex vivo	N/A	Klein and Yakel187
Frog	Oocytes	133-149	Block α7 nAChRs disrupting nAChR signaling	Ex vivo	N/A	Gay et al.188

1Gene ID: -
2Gene ID: 348.
3Gene ID: 25728.
4Gene ID: 394678.

LPS, lipopolysaccharide; nAChR, nicotinic acetylcholine receptor; NMDA, N-methyl-d-aspartate; NO, nitric oxide; TNFα, tumor necrosis factor α.
diseases, since intracellular cholesterol accumulation may have cytotoxic and inflammatory effects, and may induce structural and functional alteration in the plasma membrane.204,205 ABCA1 lipid efflux activity optimization may also be important in protecting against AD.206,207 ApoE lipidation and Aβ clearance could be facilitated by ABCA1 in brain cells208,209 and may protect against cognitive decline, particularly in the presence of ApoE4 phenotype.209 This observation suggests that therapeutic strategies aimed at targeting ABCA1 with a small peptide might be beneficial to AD patients carrying the \textit{APOE} ε4 allele. It would be also interesting to study the impact of specific ApoE isoforms in any improvement in glucose utilization and mitochondrial function in the aging brain, and in AD.210 LPS-induced inflammatory reactions may be modified by polymorphic human \textit{APOE} alleles, and ApoE mimetic peptides may suppress such responses. Following LPS administration, there is an innate immune response in human subjects with \textit{APOE} heterozygosity ε3/ε4 compared with homozygosity ε3/ε3.211 ApoE mimetics such as AchE18A-NH\textsubscript{2} may therefore restore or replace ligands in genetically induced hyperlipidemias to enable reduction in atherogenic lipoproteins by heparan sulfate proteoglycan, even in the absence of functional LDL receptors. Therefore, this and similar peptides may be useful in the treatment of dyslipidemias such as familial hyperlipidemia and AD-associated atherosclerosis.82 In conclusion, the potential role of mimetic peptides in AD seems to deserve further clinical studies.

Anti-ApoE therapeutics in AD

The complete absence of ApoE caused by a rare ablative \textit{APOE} frameshift mutation may cause abnormal lipoprotein metabolism but normal visual, cognitive, neurological, and retinal function, with normal CSF fluid Aβ and tau protein levels and normal findings on brain magnetic resonance imaging.212 This observation has encouraged different approaches to interfere with the pathological role of ApoE in AD.213 We now briefly describe the main approaches being pursued, some of which have reached the clinic.

ApoE2 overexpression

Gene therapy methods may be a strategy to overexpress ApoE2 in \textit{APOe4/e4} carriers through vector administration or liposomal delivery systems. An initial study has shown that single intracerebroventricular injection of an adeno-associated viral (AAV) vector expressing ApoE4 in a mouse model of AD increased brain Aβ deposition and worsened Aβ-mediated synaptotoxicity, whereas increased expression of ApoE2 reduced brain Aβ levels, attenuating peri-plaque synapse loss and neurite dystrophy.214 These findings were confirmed by a further study in which intracerebral AAV-mediated delivery of ApoE2 markedly reduced Aβ deposition in AD mouse models.215 Intracisternal administration in nonhuman primates of AAVrh.10hAPOE2-HA, an AAVrh.10 serotype coding for an HA-tagged human \textit{APOE2} cDNA sequence, safely mediated wide distribution of ApoE2 in AD relevant regions.216

Table 3. Effect of apolipoprotein E (ApoE) C-terminal peptides in cell and animal models related to Alzheimer’s disease (AD) and differences in ApoE isoforms.

Organism	Tissue	Fragment	Effect	Model	Note	Reference
Mouse	Neuro-2a neuroblastoma cells	182-2991 (13 kDa C-terminal)	Inhibits Aβ fibril formation and favors formation and stabilization of Aβ hexameric species	\textit{In vitro}	ApoE4 generates more 13 kDa fragment than ApoE2 or ApoE3	Wellnitz \textit{et al.}190
Human	Samples of frontal cortex	224-2992 (C-terminal)	Greater accumulation of ApoE C-terminal fragment in the insoluble fraction of tissue homogenate in the severe AD group \textit{versus} the control group	\textit{In vitro}	ApoE4 could be a source of the C-terminal fragment accumulation	Wang and Turko177

1Gene ID: 11816.
2Gene ID: 348.
Aβ, amyloid β.
open-label, phase I study (NCT03634007) in 15 AD APOE ε4 homozygotic subjects with evidence of brain amyloid accumulation is presently assessing the safety and tolerability of intracisternal AAVrh.10hAPOE2. The study will assess whether gene therapy can convert CSF ApoE isoform status in APOE ε4 homozygotes from ApoE4 to ApoE2-ApoE4. Recently, a brain-targeted delivery of ApoE2-encoding plasmid DNA (pApoE2) and using glucose transporter-1 (glut-1)-targeted liposomes has also recently suggested.217 After single tail vein administration of dual-functionalized liposomes, there was a higher transfection of pApoE2 in the C57BL/6 mice brain without signs of toxicity.217 Using transferrin- and penetratin-modified liposomes, a successful brain delivery of plasmid-encoding ApoE2 was also demonstrated after single intravenous injection in mice.218

Downregulation of expression of ApoE4

In APP/PS1 transgenic mice homozygous for the APOE ε4 or APOE ε3 allele, intracerebroventricular antisense oligonucleotides (ASOs) reduced ApoE expression and significantly decreased Aβ pathology when given prior to plaque deposition.219 In the P301 S/ApoE4 mouse model of tauopathy, intracerebroventricular injection of ApoE ASOs reduced ApoE4 protein levels by ~50%, significantly protecting against tau pathology and associated neurodegeneration, decreasing neuroinflammation, and preserving synaptic density.220

Anti-ApoE immunotherapy

The use of passive immunization targeting certain ApoE isoforms may be an alternative therapeutic strategy. The anti-ApoE4 monoclonal antibody 9D11 bound specifically to brain ApoE4 and not ApoE3.221 For this monoclonal antibody, a direct intracerebroventricular application prevented ApoE4-driven accumulation of Aβ in hippocampal neurons, while repeated intraperitoneal injections of 9D11 in ApoE4 mice resulted in the formation of ApoE/IgG complexes, associated with reversal of cognitive impairments and ApoE4-driven pathologies, including hyperphosphorylated tau.221 In APP/PS1 mice, the monoclonal antibody HJ6.3 delivered peripherally to either before or after plaque deposition reduced Aβ levels and fibrillar amyloid pathology, increased microglial activation, and improved spatial-memory performance.222 Moreover, intraperitoneal HJ6.3 (10 mg/kg/week for 21 weeks) affected Aβ plaques, neuronal network function, and behavior in 7-month-old APP/PS1 mice after plaque onset.223 In mice producing human ApoE3 and ApoE, central or peripheral administration of 4HAE-4, a monoclonal antibody that targets aggregated ApoE3 and ApoE4, reduced fibrillar amyloid plaque load without reducing cerebral or plasma ApoE levels.224 Furthermore, this monoclonal antibody increased peri-plaque Aβ phagocytosis,224 reduced cerebral amyloid angiopathy and amyloid plaque load, and improved cerebrovascular function.225

ApoE mimetics

As previously discussed, in mouse models of amyloid pathology, treatment with peptides that mimic the structural and biological properties of native ApoE reduces Aβ deposition,226,227 tau hyperphosphorylation,228 and glial activation.226–228 In male transgenic APP/PS1/APOETR mice, treatment with the ApoE mimic CN-105 for 40 days beginning at 14–18 weeks old reduced Aβ pathology and rescued memory deficits.229 Notably, delaying treatment onset to 25–28 weeks produced a less robust effect. At present, in 201 subjects with perioperative neurocognitive disorders, CN-105 is being tested in a double-blind, placebo-controlled study (NCT03802396).230

ApoE4 structure correctors

The pathological conformation of ApoE4 may result from an interaction between its amino-terminal and carboxy-terminal domains,231,232 and several small organic molecules designed to block this interaction have been tested in vitro.233,234 The ApoE4 structure corrector PH002 was shown to decrease ApoE4 fragmentation, reducing the effects of ApoE4 on Aβ production, tau phosphorylation, and GABAAergic neuron degeneration in human iPSC-derived neurons.235

Conversion of the ApoE4 amino acid sequence into that of ApoE3 or ApoE2

As the three ApoE isoforms only differ structurally by two aa residues, conversion of the ApoE4 sequence into that of ApoE3 or ApoE2 has been considered a logical approach to attenuating its neurotoxic effects. Indeed, conversion of APOE
e4 to APOE e3 by gene editing significantly altered cellular phenotypes. As mentioned previously, reductions in ApoE fragmentation, Aβ production, tau phosphorylation, and GABAergic neuron degeneration were observed in iPSC-derived neurons when APOE ε4 was converted to APOE ε3, suggesting that the detrimental effects of ApoE4 could be abolished by gene editing. Similarly, converting APOE ε4 to APOE ε3 attenuates several AD-related phenotypes in glial cells and organoids. This intervention enhances glial cell endocytosis of extracellular Aβ and significantly reduces Aβ deposition in organoids after 6 months of culture. Despite these promising in vitro findings, the in vivo feasibility and clinical translatable of this therapeutic concept appear challenging.

Inhibition of the ApoE-Aβ interaction

The synthetic peptide Aβ12-28P, which is homologous to the ApoE-binding site on the full-length Aβ molecule, inhibiting the ApoE-Aβ interaction reduced Aβ deposition and insoluble tau accumulation in AD mouse models, and intraneuronal Aβ accumulation in in vitro primary hippocampal neurons. Moreover, in amyloid mouse models, treatment with Aβ12-28P decreased brain Aβ accumulation, co-deposition of ApoE within Aβ plaques, and neuritic degeneration, with APOE ε2-targeted replacement and APOE ε4-targeted replacement backgrounds.

Challenges of ApoE targeting therapeutic approaches

Given the poor clinical results obtained so far in AD with both anti-Aβ and anti-tau drugs, anti-ApoE therapeutics represent a promising alternative approach. The most promising ApoE modulation approaches appear to be increasing ApoE2 expression or increasing ApoE4 clearance by immunotherapy. However, it is not clear whether chronic treatment with anti-ApoE drugs will be limited by the physiological role of this important glycoprotein in cytoskeletal assembly and stability, mitochondrial integrity and function, and dendritic morphology and function. Indeed, clinical failures of unselective anti-Aβ and anti-tau therapies could be explained by their clearing effects of physiological forms of Aβ and tau protein. Ideally, anti-ApoE therapeutics should attack the pathological forms of ApoE without interfering with its physiological functions.

Conclusion

Repeated studies on ApoE and APOE polymorphism have demonstrated their involvement in lipid transport and neurodegeneration. However, such fields of investigation are still quite independent, as ApoE effects in neurodegenerative diseases such as AD cannot be easily explained by ApoE function in lipid metabolism. Meanwhile, the contribution of ApoE fragments is under discussion in various areas of AD pathogenesis and pathophysiology, including neuron interactions, APP processing, tau hyperphosphorylation, oxidative stress, and inflammation.

Recently, a catabolic pathway has been discovered, in which ApoE undergoes a proteolytic process to produce active peptides with neurotoxic or neuroprotective effects. This finding sheds new light on the possible role of ApoE and its peptides, particularly in AD. The influence that ApoE peptides may have in AD pathogenesis is currently under investigation, while their roles in the transport and metabolism of cholesterol and phospholipids are largely unknown. This may be due to ApoE catabolism being restricted to the CNS, as only astrocytes express the enzymes producing ApoE fragmentation.

Given the different roles of ApoE isoforms in AD, the relationship between these and ApoE cutting enzymes is also of interest. Production of ApoE peptides depends on the isoform, as distinct effects of ApoE fragments on CNS cells have been suggested. Several studies have investigated the impact of ApoE4-derived peptides, which may promote neurotoxicity, mitochondrial dysfunction, phosphorylation of tau protein, NFT-like inclusions, neurodegeneration, neuronal apoptosis or suppress microglial activation. Mitochondrial dysfunction in AD also varies with APOE genotype, being greater in APOE ε4 than in APOE ε3 carriers. It is tempting to speculate that the impairment of mitochondrial function elicited by the expression of truncated ApoE4 in Neuro-2a cells correlates with the mitochondrial dysfunction observed in AD patients. Consequently, blocking the interaction of ApoE fragments with mitochondria is...
another potential strategy for inhibiting the detrimental effects of ApoE in AD.182

Understanding the differences between ApoE isoforms in different cell types will undoubtedly involve use of induced pluripotent stem cells that express physiological levels of endogenous genes, rather than relying on overexpression models.159 Recent studies have shown the role of ApoE4 in AD neuropathology in vitro.246 Furthermore, the roles of 12 and 20 kDa ApoE fragments in an ApoE4 background235 need to be clarified. Although other studies are currently attempting to investigate ApoE fragment levels in an ApoE2 background,60 little is known about ApoE2 fragmentation. In conclusion, the use of different cell lines with ApoE2, ApoE3r, or ApoE4 backgrounds might explain not only the specific impact of endogenous levels of ApoE fragments from each genotype, but also the involvement of these fragments in lipid metabolism, healthy aging, longevity, neurodegeneration, and AD pathogenesis.

Author contributions
Filomena Lo Vecchio: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Writing – original draft.
Paola Bisceglia: Data curation; Formal analysis; Investigation; Methodology; Software; Writing – review & editing.
Bruno Pietro Imbimbo: Investigation; Supervision; Validation; Visualization; Writing – original draft; Writing – review & editing.
Madia Lozupone: Methodology; Software; Supervision; Validation; Visualization; Writing – original draft; Writing – review & editing.
Raffaela Rita Latino: Methodology; Software; Supervision; Validation; Visualization; Writing – review & editing.
Emanuela Resta: Software; Validation; Visualization; Writing – review & editing.
Maurizio Leone: Resources; Supervision; Validation; Visualization; Writing – review & editing.
Vincenzo Solfrizzi: Data curation; Methodology; Software; Supervision; Validation; Visualization; Writing – review & editing.
Antonio Daniele: Methodology; Supervision; Validation; Visualization; Writing – original draft; Writing – review & editing.
Mark Watling: Software; Supervision; Validation; Visualization; Writing – review & editing.
Francesco Panza: Conceptualization; Data curation; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Writing – original draft; Writing – review & editing.
Davide Seripa: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Supervision; Validation; Visualization; Writing – original draft; Writing – review & editing.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was fully supported by ‘Ministero della Salute’, I.R.C.C.S. Research Program, Ricerca Corrente 2018–2020, Linea n. 2 ‘Meccanismi genetici, predizione e terapie innovative delle malattie complesse’ and by the ‘5 x 1000’ voluntary contribution to the Fondazione I.R.C.C.S. Ospedale ‘Casa Sollievo della Sofferenza’.

Conflict of interest statement
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

ORCID iD
Francesco Panza https://orcid.org/0000-0002-7220-0656

References
1. Seripa D, Matera MG, Daniele A, et al. The missing ApoE allele. Ann Hum Genet 2007; 71: 496–500.
2. Seripa D, D’Onofrio G, Panza F, et al. The genetics of the human APOE polymorphism. Rejuvenation Res 2011; 14: 491–500.
3. Persico AM, D’Agruma L, Zelante L, et al. Enhanced APOE2 transmission rates in families with autistic probands. Psychiatr Genet 2004; 14: 73–82.
4. Nickerson DA, Taylor SL, Fullerton SM, et al. Sequence diversity and large-scale typing of
SNPs in the human apolipoprotein E gene. *Genome Res* 2000; 10: 1532–1545.

5. Arendt T, Schindler C, Brückner MK, et al. Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein Epsilon 4 allele. *J Neurosci* 1997; 17: 516–529.

6. Zhao J, Fu Y, Yamazaki Y, et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids. *Nat Commun* 2020; 11: 5540.

7. Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. *Nature* 2012; 485: 512–516.

8. Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. *Nat Rev Neurol* 2013; 9: 106–118.

9. Zlokovic BV. Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. *JAMA Neurol* 2013; 70: 440–444.

10. Chen Y, Durakoglugil MS, Xian X, et al. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. *Proc Natl Acad Sci U S A* 2010; 107: 12011–12016.

11. Zhao J, Davis MD, Martens YA, et al. APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. *Hum Mol Genet* 2017; 26: 2690–2700.

12. Drzezga A, Riemenschneider M, Strassner B, et al. Cerebral glucose metabolism in patients with AD and different APOE genotypes. *Neurology* 2005; 64: 102–107.

13. Wu T, Dejanovic B, Gandham VD, et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. *Cell Rep* 2019; 28: 2111–2123.e6.

14. Geijlseaers SLC, Aalten P, Ramakers IHGB, et al. Association of cerebrospinal fluid (CSF) insulin with cognitive performance and CSF biomarkers of Alzheimer’s disease. *J Alzheimers Dis* 2018; 61: 309–320.

15. Zhao N, Liu CC, Van Ingelgom AJ, et al. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. *Neuron* 2017; 96: 115–129.e5.

16. Shore VG and Shore B. Heterogeneity of human plasma very low density lipoproteins.

Separation of species differing in protein components. *Biochemistry* 1973; 12: 502–507.

17. Mahley RW and Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. *Annu Rev Genomics Hum Genet* 2000; 1: 507–537.

18. Barzilai N, Atzmon G, Schechter C, et al. Unique lipoprotein phenotype and genotype associated with exceptional longevity. *JAMA* 2003; 290: 2030–2040.

19. Muenchhoff J,Song F, Poljak A, et al. Plasma apolipoproteins and physical and cognitive health in very old individuals. *Neurobiol Aging* 2017; 55: 49–60.

20. Liu CC, Kanekiyo T, Xu H, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. *Nat Rev Neurol* 2013; 9: 106–118.

21. Ordovas JM, Lopez-Miranda J, Mata P, et al. Gene-diet interaction in determining plasma lipid response to dietary intervention. *Atherosclerosis* 1995; 118(Suppl.): S11–S27.

22. Grimm MOW, Michaelson DM and Hartmann T. Omega-3 fatty acids, lipids, and ApoE lipidation in Alzheimer’s disease: a rationale for multi-nutrient dementia prevention. *J Lipid Res* 2017; 58: 2083–2101.

23. Bos MM, Noordam R, Blauw GJ, et al. The ApoE ε4 isoform: can the risk of diseases be reduced by environmental factors? *J Gerontol A Biol Sci Med Sci* 2019; 74: 99–107.

24. Yanagisawa K. Cholesterol and pathological processes in Alzheimer’s disease. *J Neurosci Res* 2002; 70: 361–366.

25. Liu S, Breitbart A, Sun Y, et al. Blocking the apolipoprotein E/amyloid β interaction in triple transgenic mice ameliorates Alzheimer’s disease related amyloid β and tau pathology. *J Neurochem* 2014; 128: 577–591.

26. Reas ET, Laughlin GA, Bergstrom J, et al. Effects of APOE on cognitive aging in community-dwelling older adults. *Neuropsychology* 2019; 33: 406–416.

27. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. *Science* 1988; 240: 622–630.

28. Siest G, Pilot T, Regis-Bailly A, et al. Apolipoprotein E: an important gene and protein to follow in laboratory medicine. *Clin Chem* 1995; 41: 1068–1086.
29. Mahley RW, Huang Y and Rall SC. Pathogenesis of type III hyperlipoproteinemia (dysbeta lipoproteinemia): questions, quandaries, and paradoxes. J Lipid Res 1999; 40: 1933–1949.

30. Seripa D, Franceschi M, Matera MG, et al. Sex differences in the association of apolipoprotein E and angiotensin-converting enzyme gene polymorphisms with healthy aging and longevity: a population-based study from Southern Italy. J Gerontol A Biol Sci Med Sci 2006; 61: 918–923.

31. Seripa D, Panza F, Franceschi M, et al. Non-apolipoprotein E and apolipoprotein E genetics of sporadic Alzheimer’s disease. Ageing Res Rev 2009; 8: 214–236.

32. Smith JD. Apolipoproteins and aging: emerging mechanisms. Ageing Res Rev 2002; 1: 345–365.

33. Sebastiani P, Gurinovich A, Nygaard M, et al. APOE alleles and extreme human longevity. J Gerontol A Biol Sci Med Sci 2018; 74: 44–51.

34. Smith JD. Apolipoproteins and aging: emerging mechanisms. Ageing Res Rev 2002; 1: 345–365.

35. Feng J, Xiang L, Wan G, et al. Is APOE ε3 a favourable factor for the longevity: an association study in Chinese population. J Genet 2011; 90: 343–347.

36. Corder EH, Saunders AM, Risch NJ, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994; 7: 180–184.

37. Chartier-Harlin MC, Parfitt M, Legrain S, et al. Apolipoprotein E, epsilon 4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum Mol Genet 1994; 3: 569–574.

38. Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer disease meta analysis consortium. JAMA 1997; 278: 1349–1356.

39. Fagan AM and Holtzman DM. Astrocyte lipoproteins, effects of apoE on neuronal function, and role of apoE in amyloid-beta deposition in vivo. Microsc Res Tech 2000; 50: 297–304.

40. Arélin K, Kinoshita A, Whelan CM, et al. Apolipoprotein E structural requirements for the formation of SDS-stable complexes with beta-amyloid-(1–40): the role of salt bridges. Biochem J 2002; 366: 273–279.

41. Genin E, Hannequin D, Wallon D, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 2011; 16: 903–907.

42. Panza F, Solfrizzi V, Torres F, et al. Apolipoprotein E in Southern Italy: protective effect of epsilon 2 allele in early- and late-onset sporadic Alzheimer’s disease. Neurosci Lett 2000; 292: 79–82.

43. Chiang GC, Insel PS, Tosun D, et al. Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects. Neurology 2010; 75: 1976–1981.

44. Mayeux R, Saunders AM, Shea S, et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s disease centers consortium on apolipoprotein E and Alzheimer’s disease. N Engl J Med 1998; 338: 506–511.

45. Richard F and Amouyel P. Genetic susceptibility factors for Alzheimer’s disease. Eur J Pharmacol 2001; 412: 1–12.

46. Zick CD, Mathews CJ, Roberts JS, et al. Genetic testing for Alzheimer’s disease and its impact on insurance purchasing behavior. Health Aff 2005; 24: 483–490.

47. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 1993; 90: 1977–1981.

48. Fagan AM and Holtzman DM. Astrocyte lipoproteins, effects of apoE on neuronal function, and role of apoE in amyloid-beta deposition in vivo. Microsc Res Tech 2000; 50: 297–304.

49. Bentley N, Ladu M, Rajan C, et al. Apolipoprotein E structural requirements for the formation of SDS-stable complexes with beta-amyloid-(1–40): the role of salt bridges. Biochem J 2002; 366: 273–279.
52. Deane R, Sagare A, Hamm K, et al. ApoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 2008; 118: 4002–4013.

53. Petrolova J, Hong HS, Bricarello DA, et al. A differential association of apolipoprotein E isoforms with the amyloid-β oligomer in solution. Proteins 2011; 79: 402–416.

54. Dafnis I, Stratikos E, Tzinia A, et al. An apolipoprotein E4 fragment can promote intracellular accumulation of amyloid peptide beta 42. J Neurochem 2010; 115: 873–884.

55. Ma J, Yee A, Brewer HB Jr, et al. The amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote the assembly of the Alzheimer β-protein into filaments. Nature 1994; 372: 92–94.

56. Wisniewski T, Castano EM, Golabek A, et al. Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 1994; 145: 1030–1035.

57. Koistinaho M, Lin S, Wu X, et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nat Med 2004; 10: 719–726.

58. Castellano JM, Kim J, Stewart FR, et al. Human ApoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 2011; 3: 89ra57.

59. Huang YA, Zhou B, Wernig M, et al. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell 2017; 168: 427–441.e21.

60. Dafnis I, Raftopoulou C, Mountaki C, et al. ApoE isoforms and carboxy-terminal-truncated apoE4 forms affect neuronal BACE1 levels and Aβ production independently of their cholesterol efflux capacity. Biochem J 2018; 475: 1839–1859.

61. Sala Frigerio C, Wolfs L, Fattorelli N, et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglial response to Aβ plaques. Cell Rep 2019; 27: 1293–1306.e6.

62. Ulrich JD, Ulland TK, Mahan TE, et al. ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med 2018; 215: 1047–1058.

63. Brecht W, Harris F, Chang S, et al. Neuron-specific apolipoprotein E4 proteolysis is associated with increase tau phosphorylation in brains of transgenic mice. J Neurosci 2004; 24: 2527–2534.

64. Shi Y and Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 2018; 18: 759–772.

65. Zhao N, Liu C-C, Van Ingelgom AJ, et al. APOE ε2 is associated with increased tau pathology in primary tauopathy. Nat Commun 2018; 9: 4388.

66. Bruinsma IB, Wilhelmus MMM, Kox M, et al. Apolipoprotein E protects cultured pericytes and astrocytes from D-Abeta(1-40)-mediated cell death. Brain Res 2010; 1315: 169–180.

67. Huynh TV, Davis AA, Ulrich JD, et al. Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J Lipid Res 2017; 58: 824–836.

68. Robert J, Button EB, Yuen B, et al. Clearance of beta-amyloid is facilitated by apolipoprotein E and circulating high-density lipoproteins in bioengineered human vessels. Elife 2017; 6: e29595.

69. Crutcher KA, Clay MA, Scott SA, et al. Neurite degeneration elicited by apolipoprotein E peptides. Exp Neurol 1994; 130: 120–126.

70. Huang Y, Liu XQ, Wyss-Coray T, et al. Apolipoprotein e fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci U S A 2001; 98: 8838–8843.

71. Clay MA, Anantharamaiah GM, Mistry JM, et al. Localization of a domain in apolipoprotein E with both cytostatic and cytotoxic activity. Biochemistry 1995; 34: 11142–11151.

72. Tolar M, Marques MA, Harmony JA, et al. Neurotoxicity of the 22 kDa thrombin-cleavage fragment of apolipoprotein E and related synthetic peptides is receptor-mediated. J Neurosci 1997; 17: 5678–5686.

73. Linton MF, Gish R, Hubl ST, et al. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J Clin Invest 1991; 88: 270–281.

74. Li Z, Shue F, Zhao N, et al. APOE2: protective mechanism and therapeutic implications for Alzheimer’s disease. Mol Neurodegener 2020; 15: 63.

75. Elshourbagy NA, Liao WS, Mahley RW, et al. Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and
is present in other peripheral tissues of rats and marmosets. *Proc Natl Acad Sci U S A* 1985; 82: 203–207.

76. Xu Q, Bernardo A, Walker D, *et al.* Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. *J Neurosci* 2006; 26: 4985–4994.

77. Huynh T-V, Wang C, Tran AC, *et al.* Lack of hepatic ApoE does not influence early Aβ deposition: observations from a new APOE knock-in model. *Mol Neurodegener* 2019; 14: 37.

78. Boyles J, Pitas R, Wilson E, *et al.* Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. *J Clin Invest* 1985; 76: 1501–1503.

79. Diedrich JF, Minnigan H, Carp RI, *et al.* Neuropathological changes in scrapie and Alzheimer’s disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. *J Virol* 1991; 65: 4759–4768.

80. Boschert U, Merlo-Pich E, Higgins G, *et al.* Apolipoprotein E expression by neurons surviving excitotoxic stress. *Neurobiol Dis* 1999; 6: 508–514.

81. Mahley RW. Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. *Arter Thromb Vasc Biol* 2016; 36: 1305–1315.

82. Sharifov OF, Nayyar G, Garber DW, *et al.* Apolipoprotein E mimetics and cholesterol-lowering properties. *Am J Cardiovasc Drugs* 2011; 11: 371–381.

83. Datta G, Chaddha M, Garber DW, *et al.* The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts. *Biochemistry* 2000; 39: 213–220.

84. Datta G, Garber DW, Chung BH, *et al.* Cationic domain 141–150 of ApoE covalently linked to a class A amphipathic helix enhances atherogenic lipoprotein metabolism in vitro and in vivo. *J Lipid Res* 2001; 42: 959–966.

85. Wilson C, Wardell MR, Weisgraber KH, *et al.* Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. *Science* 1991; 252: 1817–1822.

86. Weisgraber KH. Apolipoprotein E: structure-function relationships. *Adv Protein Chem* 1994; 45: 249–302.

87. Morrow JA, Arnold KS, Dong J, *et al.* Effect of arginine 172 on the binding of apolipoprotein E to the low density lipoprotein receptor. *J Biol Chem* 2000; 275: 2576–2580.

88. Morrow JA, Segall ML, Lund-Katz S, *et al.* Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. *Biochemistry* 2000; 39: 11657–11666.

89. Morrow JA, Hatters DM, Lu B, *et al.* Apolipoprotein E4 forms a molten globule. A potential basis for its association with disease. *J Biol Chem* 2002; 277: 50380–50385.

90. Dong LM, Wilson C, Wardell MR, *et al.* Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. *J Biol Chem* 1994; 269: 22358–22365.

91. Dong LM and Weisgraber KH. Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. *J Biol Chem* 1996; 271: 19053–19057.

92. Frieden C and Garai K. Concerning the structure of ApoE. *Protein Sci* 2013; 22: 1820–1825.

93. Chetty PS, Mayne L, Lund-Katz S, *et al.* Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry. *Proc Natl Acad Sci U S A* 2017; 114: 968–973.

94. Frieden C, Wang H and Ho CMW. A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain-domain interactions. *Proc Natl Acad Sci U S A* 2017; 114: 6292–6297.

95. Dong LM, Parkin S, Trakhanov SD, *et al.* Novel mechanism for defective receptor binding of apolipoprotein E2 in type III hyperlipoproteinemia. *Nat Struct Biol* 1996; 3: 718–722.

96. Serrano-Pozo A, Das S and Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. *Lancet Neurol* 2021; 20: 68–80.

97. Reiman EM, Arboleda-Velasquez JF, Quiroz YT, *et al.* Exceptionally low likelihood of
Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. *Nat Commun* 2020; 11: 667.

98. Arboleda-Velasquez JF, Lopera F, O’Hare M, et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. *Nat Med* 2019; 25: 1680–1683.

99. Salvadó G, Grothe MJ, Groot C, et al. Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia. *Eur J Nucl Med Mol Imaging* 2021; 48: 2212–2224.

100. Suzuki K, Hirakawa A, Ihara R, et al. Effect of apolipoprotein E ε4 allele on the progression of cognitive decline in the early stage of Alzheimer’s disease. *Alzheimers Dement* 2020; 6: e12007.

101. Therriault J, Benedet AL, Pascoal TA, et al. Association of apolipoprotein E e4 with medial temporal tau independent of amyloid-β. *JAMA Neurol* 2020; 77: 470–479.

102. Krasemann S, Madore C, Cialic R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. *Immunity* 2017; 47: 566–581.e9.

103. Shi Y, Manis M, Long J, et al. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. *J Exp Med* 2019; 216: 2546–2561.

104. Chen Y, Hong T, Chen F, et al. Interplay between microglia and Alzheimer’s disease-focus on the most relevant risks: APOE genotype, sex and age. *Front Aging Neurosci* 2021; 13: 631827.

105. Chung WS, Verghese PB, Chakraborty C, et al. Novel allele-dependent role for APOE4 in controlling the rate of synapse pruning by astrocytes. *Proc Natl Acad Sci U S A* 2016; 113: 10186–10191.

106. Blanchard JW, Bula M, Davila-Velderrain J, et al. Reconstruction of the human blood-brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. *Nat Med* 2020; 26: 952–963.

107. Ripphagen JM, Ramakers IHGM, Freeze WM, et al. Linking APOE-ε4, blood-brain barrier dysfunction, and inflammation to Alzheimer’s pathology. *Neurobiol Aging* 2020; 85: 96–103.

108. Bien-Ly N, Andrews-Zwilling Y, Xu Q, et al. C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-beta (Abeta) and acts in concert with Abeta to elicit neuronal and behavioral deficits in mice. *Proc Natl Acad Sci U S A* 2011; 108: 4236–4241.

109. Saul A and Wirths O. Endogenous apolipoprotein E (ApoE) fragmentation is linked to amyloid pathology in transgenic mouse models of Alzheimer’s disease. *Mol Neurobiol* 2017; 54: 319–327.

110. Dumanis SB, Tesoriero JA, Babus LW, et al. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. *J Neurosci* 2009; 29: 15317–15322.

111. Hebert LE, Bienias JL, Aggarwal NT, et al. Change in risk of Alzheimer disease over time. *Neurology* 2010; 75: 786–791.

112. Elliott DA, Tsai K, Holinkova S, et al. Isoform-specific proteolysis of apolipoprotein-E in the brain. *Neurobiol Aging* 2011; 32: 257–271.

113. Amponsah AE, Fang B, Guo R, et al. Fragmentation of brain apolipoprotein E (ApoE) and its relevance in Alzheimer’s disease. *Rev Neurosci* 2020; 31: 589–603.

114. Zhou W, Scott SA, Shelton SB, et al. Cathepsin D-mediated proteolysis of apolipoprotein E: possible role in Alzheimer’s disease. *Neuroscience* 2006; 143: 689–701.

115. Bode W, Mayr I, Baumann U, et al. The refined 1.9 Å crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. *EMBO J* 1989; 8: 3467–3475.

116. Bode W. Structure and interaction modes of thrombin. *Blood Cells Mol Dis* 2006; 36: 122–130.

117. DiBella EE, Maurer MC and Scheraga HA. Expression and folding of recombinant bovine prethrombin-2 and its activation to thrombin. *J Biol Chem* 1995; 270: 163–169.

118. Huntington JA. Molecular recognition mechanisms of thrombin. *J Thromb Haemost* 2005; 3: 1861–1872.

119. Akiyama H, Ikeda K, Kondo H, et al. Thrombin accumulation in brains of patients with Alzheimer’s disease. *Neurosci Lett* 1992; 146: 152–154.

120. Arai T, Miklossy J, Klegeris A, et al. Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer’s disease. *Apoptosis* 2017; 22: 1695–1707.
121. Grammas P, Samany PG and Thirumangalakudi L. Thrombin and inflammatory proteins are elevated in Alzheimer's disease microvessels: implications for disease pathogenesis. *J Alzheimers Dis* 2006; 9: 51–58.

122. Pompili E, Nori SL, Geloso MC, et al. Trimethyltin-induced differential expression of par subtypes in reactive astrocytes of the rat hippocampus. *Brain Res Mol Brain Res* 2004; 122: 93–98.

123. Suo Z, Wu M, Citron BA, et al. Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. *J Biol Chem* 2003; 278: 31177–31183.

124. Coughlin SR. Protease-activated receptors start a family. *Proc Natl Acad Sci U S A* 1994; 91: 9200–9202.

125. Davis-Salinas J, Saporito-Irwin SM, Donovan FM, et al. Thrombin receptor activation induces secretion and nonamyloidogenic processing of amyloid beta-protein precursor. *J Biol Chem* 1994; 269: 22623–22627.

126. Brewer G. Thrombin causes cell spreading and redistribution of beta-amyloid immunoreactivity in cultured hippocampal neurons. *J Neurochem* 1996; 67: 119–130.

127. Smith-Swintosky VL, Zimmer S, Fenton JW, et al. Opposing actions of thrombin and protease nexin-1 on amyloid beta-peptide toxicity and on accumulation of peroxides and calcium in hippocampal neurons. *J Neurochem* 1995; 65: 1415–1418.

128. Pike CJ, Vaughan PJ, Cunningham DD, et al. Thrombin attenuates neuronal cell death and modulates astrocyte reactivity induced by beta-amyloid in vitro. *J Neurochem* 1996; 66: 1374–1382.

129. Wetterau JR, Aggerbeck LP, Rall SC Jr, et al. Human apolipoprotein E3 in aqueous solution. I. Evidence for two structural domains. *J Biol Chem* 1988; 263: 6240–6248.

130. Vidoni C, Follo C, Savino M, et al. The role of cathepsin D in the pathogenesis of human neurodegenerative disorders. *Med Res Rev* 2016; 36: 845–870.

131. Wex T, Levy B, Smeekens SP, et al. Genomic structure, chromosomal localization, and expression of human cathepsin W. *Biochem Biophys Res Commun* 1998; 248: 255–261.

132. Brömme D, Li Z, Barnes M, et al. Human cathepsin v functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. *Biochemistry* 1999; 38: 2377–2385.

133. Turk B, Turk D and Turk V. Lysosomal cysteine proteases: more than scavengers. *Biochim Biophys Acta* 2000; 1477: 98–111.

134. Lecaillie F, Kalet J and Brömme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. *Chem Rev* 2002; 102: 4459–4488.

135. Hasilik A and Neufeld EF. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. *J Biol Chem* 1980; 255: 4937–4945.

136. Gieselmann V, Pohlmann R, Hasilik A, et al. Biosynthesis and transport of cathepsin D in cultured human fibroblasts. *J Cell Biol* 1983; 97: 1–5.

137. Erickson AH. Biosynthesis of lysosomal endopeptidases. *J Cell Biochem* 1989; 40: 31–41.

138. Minarowska A, Minarowski L, Karwowska A, et al. Regulatory role of cathepsin D in apoptosis. *Folia Histochem Cytobiol* 2007; 45: 159–163.

139. Benes P, Vetvicka V and Fusek M. Cathepsin D – many functions of one aspartic protease. *Crit Rev Oncol Hematol* 2008; 68: 12–28.

140. Reiser J, Adair B and Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. *J Clin Invest* 2010; 120: 3421–3431.

141. Conus S and Simon HU. Cathepsins and their involvement in immune responses. *Swiss Med Weekly* 2010; 140: w13042.

142. Masson O, Bach AS, Derocq D, et al. Pathophysiological functions of cathepsin D: targeting its catalytic activity versus its protein binding activity? *Biochimie* 2010; 92: 1635–1643.

143. Tan GJ, Peng ZK, Lu JP, et al. Lysosomal dysfunction promotes cleavage and neurotoxicity of tau in vivo. *PLoS Genet* 2010; 6: e1001026.

144. Khurana V, Elson-Schwab I, Fulga TA, et al. Lysosomal dysfunction promotes cleavage and neurotoxicity of tau in vivo. *PLoS Genet* 2010; 6: e1001026.

145. Minarowska A, Gacko M, Karwowska A, et al. Human cathepsin D. *Folia Histochem Cytobiol* 2008; 46: 23–38.
146. Marques MA, Owens PA and Crutcher KA. Progress toward identification of protease activity involved in proteolysis of apolipoprotein E in human brain. *J Mol Neurosci* 2004; 24: 73–80.

147. Zanni EE, Kouvatsi A, Hadzopoulou-Cladaras M, et al. Expression of ApoE gene in Chinese hamster cells with a reversible defect in O-glycosylation. Glycosylation is not required for ApoE secretion. *J Biol Chem* 1989; 264: 9137–9140.

148. Green RC, Cupples LA, Go R, et al. Risk of dementia among white and African American relatives of patients with Alzheimer disease. *JAMA* 2002; 287: 329–336.

149. Marques MA and Crutcher KA. Apolipoprotein E-related neurotoxicity as a therapeutic target for Alzheimer’s disease. *J Mol Neurosci* 2003; 20: 327–337.

150. Clausen T, Kaiser M, Huber R, et al. Htra proteases: regulated proteolysis in protein quality control. *Nat Rev Mol Cell Biol* 2011; 12: 386–388.

151. Truebstein L, Tennstaedt A, Mönig T, et al. Substrate-induced remodeling of the active site regulates human Htra1 activity. *Nat Struct Mol Biol* 2011; 18: 386–388.

152. Eigenbrot C, Ultsch M, Lipari MT, et al. Structural and functional analysis of Htra1 and its subdomains. *Structure* 2012; 20: 1040–1050.

153. Runyon ST, Zhang Y, Appleton BA, et al. Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. *Protein Sci* 2007; 16: 2454–2471.

154. Tamboli IY, Heo D and Rebeck G.W. Extracellular proteolysis of apolipoprotein E (ApoE) by secreted serine neuronal protease. *PLoS One* 2014; 9: e93120.

155. Chu Q, Diedrich JK, Vaughan JM, et al. Htra1 proteolysis of ApoE in vitro is allele selective. *J Am Chem Soc* 2016; 138: 9473–9478.

156. Hasegawa T and Liddelow SA. Isoform-dependent APOE secretion modulates neuroinflammation. *Nat Rev Neurol* 2021; 17: 265–266.

157. Harris FM, Brecht WJ, Xu Q, et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. *Proc Natl Acad Sci U S A* 2003; 100: 10966–10971.

158. Marques MA, Tolar M, Harmony JA, et al. A thrombin cleavage fragment of apolipoprotein E exhibits isoform-specific neurotoxicity. *Neuroreport* 1996; 7: 2529–2532.

159. Muñoz SS, Li H, Ruberu K, et al. The serine protease Htra1 contributes to the formation of an extracellular 25-kDa apolipoprotein E fragment that stimulates neuritogenesis. *J Biol Chem* 2018; 293: 4071–4084.

160. Werner-Hammond ME, Lauer SJ, Corsini A, et al. Glycosylation of human apolipoprotein E. The carbohydrate attachment site is threonine 194. *J Biol Chem* 1989; 264: 9094–9101.

161. Wisniewski T and Frangione B. Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. *Neurosci Lett* 1992; 135: 235–238.

162. Kim J, Basak JM and Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. *Neuron* 2009; 63: 287–303.

163. Nagy Z, Esiri MM, Jobst KA, et al. Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer’s disease. *Neuroscience* 1995; 69: 757–761.

164. Morris CM, Benjamin R, Leake A, et al. Effect of apolipoprotein E genotype on Alzheimer’s disease neuropathology in a cohort of elderly Norwegians. *Neurosci Lett* 2005; 201: 45–47.

165. Zhong N and Weisgraber KH. Understanding the association of apolipoprotein E4 with Alzheimer disease: clues from its structure. *J Biol Chem* 2009; 284: 6027–6031.

166. Xu Q, Brecht WJ, Weisgraber KH, et al. Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer. *J Biol Chem* 2004; 279: 25511–25516.

167. Miyata M and Smith JD. Apolipoprotein e allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. *Nat Genet* 1996; 14: 55–61.

168. Tai LM, Mehra S, Shete V, et al. Soluble apoE/Ab complex: mechanism and therapeutic target for APOE4-induced AD risk. *Mol Neurodegener* 2014; 9: 2.

169. Jones PB, Adams KW, Rozkalne A, et al. Apolipoprotein E: isoform specific differences in tertiary structure and interaction with amyloid-β in human Alzheimer brain. *PLoS One* 2011; 6: e1486.

170. Mouchard A, Boutonnet MC, Mazzocco C, et al. ApoE-fragment/Aβ heteromers in the brain
of patients with Alzheimer’s disease. Sci Rep 2019; 9: 3989.

171. Aizawa Y, Fukatsu R, Takamaru Y, et al. Amino-terminus truncated apolipoprotein E is the major species in amyloid deposits in Alzheimer’s disease-affected brains: a possible role for apolipoprotein E in Alzheimer’s disease. Brain Res 1997; 768: 208–214.

172. Christensen DZ, Schneider-Axmann T, Lucassen PJ, et al. Accumulation of intraneuronal Abeta correlates with ApoE4 genotype. Acta Neuropathol 2010; 119: 555–566.

173. Tai LM, Bilousova T, Jungbauer L, et al. Levels of soluble apolipoprotein E/amyloid-β (Aβ) complex are reduced and oligomeric Aβ increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. J Biol Chem 2013; 288: 5914–5926.

174. Mormino EC, Betensky RA, Hedden T, et al. Amyloid and ApoE4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology 2014; 82: 1760–1767.

175. Hashimoto T, Serrano-Pozo A, Hori Y, et al. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid beta peptide. J Neurosci 2012; 32: 15181–15192.

176. Wang M and Turko IV. Mass spectrometry quantification revealed accumulation of C-terminal fragment of apolipoprotein E in the Alzheimer’s frontal cortex. PLoS One 2013; 8: e61498.

177. Love JE, Day RJ, Gause JW, et al. Nuclear uptake of an amino-terminal fragment of apolipoprotein E4 promotes cell death and localizes within microglia of the Alzheimer’s disease brain. Int J Physiol Pathophysiol Pharmacol 2017; 9: 40–57.

178. Dafnis I, Argyri L, Sagnou M, et al. The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific. Sci Rep 2016; 6: 30654.

179. Dafnis I, Tzinia AK, Tsilimari EG, et al. An apolipoprotein E4 fragment affects matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 1 and cytokine levels in brain cell lines. Neuroscience 2012; 210: 21–32.

180. Tolar M, Keller JN, Chan S, et al. Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J Neurosci 1999; 19: 7100–7110.

181. Chang S, ran Ma T, Miranda R, et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci USA 2005; 102: 18694–18699.

182. Cho HS, Hyman BT, Greenberg SM, et al. Quantitation of apoe domains in Alzheimer disease brain suggests a role for apoe in Abeta aggregation. J Neuropathol Exp Neurol 2001; 60: 342–349.

183. Laskowitz DT, Thekdi AD, Thekdi SD, et al. Downregulation of microglial activation by apolipoprotein E and ApoE-mimetic peptides. Exp Neurol 2001; 167: 74–85.

184. Lynch JR, Tang W, Wang H, et al. ApoE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. J Biol Chem 2003; 278: 48529–48533.

185. Aono M, Bennett E, Kim K, et al. Protective effect of apolipoprotein E-mimetic peptides on n-methyl-daspartate excitotoxicity in primary rat neuronal-glial cell cultures. Neuroscience 2003; 116: 437–445.

186. Klein RC and Yakel JL. Inhibition of nicotinic acetylcholine receptors by apolipoprotein E-derived peptides in rat hippocampal slices. Neuroscience 2004; 127: 563–567.

187. Gay EA, Klein RC and Yakel JL. Apolipoprotein E-derived peptides block alpha7 neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther 2006; 316: 835–842.

188. Gay EA, Bienstock RJ, Lamb PW, et al. Structural determinates for apolipoprotein E-derived peptide interaction with the alpha7 nicotinic acetylcholine receptor. Mol Pharmacol 2007; 72: 838–849.

189. Wellnitz S, Friedlein A, Bonanni C, et al. A 13 kDa carboxy-terminal fragment of ApoE stabilizes abeta hexamers. J Neurochem 2005; 94: 1351–1360.

190. Kothari S, Bala N, Patel AB, et al. The LDL receptor binding domain of apolipoprotein E directs the relative orientation of its C-terminal segment in reconstituted nascent HDL. Biochim Biophys Acta Biomembr 2021; 1863: 183618.
192. Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic peptides: science and market. *Drug Discov Today* 2010; 15: 40–56.

193. Vagner J, Qu H and Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. *Curr Opin Chem Biol* 2008; 12: 292–296.

194. Puttagunta AL and Toth EL. Insulin lispro (Humalog), the first marketed insulin analogue: indications, contraindications and need for further study. *CMAJ* 1998; 158; 506–511.

195. Gentilucci L, Tolomelli A and Squassabia F. Peptides and peptidomimetics in medicine, surgery and biotechnology. *Curr Med Chem* 2006; 13: 2449–2466.

196. Segrest JP, Jackson RL, Morrisett JD, et al. A molecular theory of lipid-protein interactions in the plasma lipoproteins. *FEBS Lett* 1974; 38: 247–258.

197. Chung BH, Anatharamaiah GM, Brouillette CG, et al. Studies of synthetic peptide analogs of the amphipathic helix. correlation of structure with function. *J Biol Chem* 1985; 260: 10256–10262.

198. Dyer CA, Cistola DP, Parry GC, et al. Structural features of synthetic peptides of apolipoprotein E that bind the LDL receptor. *J Lipid Res* 1995; 36: 80–88.

199. Vedhachalam C, Narayanaswami V, Neto N, et al. The C-terminal lipid-binding domain of apolipoprotein E is a highly efficient mediator of ABCA1-dependent cholesterol efflux that promotes the assembly of high-density lipoproteins. *Biochemistry* 2007; 46: 2583–2593.

200. Hafiane A, Bielicki JK, Johansson JO, et al. Apolipoprotein e derived HDL mimetic peptide ari-5261 promotes nascent HDL formation and reverse cholesterol transport in vitro. *Biochim Biophys Acta* 2014; 1842: 1498–512.

201. Bielicki J, Zhang H, Cortez Y, et al. A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice. *J Lipid Res* 2010; 51: 1496–1503.

202. Nikoulin IR and Curtiss LK. An apolipoprotein E synthetic peptide targets to lipoproteins in plasma and mediates both cellular lipoprotein interactions in vitro and acute clearance of cholesterol-rich lipoproteins in vivo. *J Clin Invest* 1998; 101: 223–234.

203. Heinecke JW. Small HDL promotes cholesterol efflux by the ABCA1 pathway in macrophages: implications for therapies targeted to HDL. *Circ Res* 2015; 116: 1101–1103.

204. Westerterp M, Murphy AJ, Wang M, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. *Circ Res* 2013; 112: 1456–1465.

205. Tabas I, Garcia-Cardena G and Owens GK. Recent insights into the cellular biology of atherosclerosis. *J Cell Biol* 2015; 209: 13–22.

206. Boehm-Cagan A and Michaelson D. Reversal of ApoE4-driven brain pathology and behavioral deficits by bexarotene. *J Neurosci* 2014; 34: 7293–7301.

207. Nordestgaard LT, Tybjærg-Hansen A, Nordestgaard BG, et al. Loss-of-function mutation in ABCA1 and risk of Alzheimer’s disease and cerebrovascular disease. *Alzheimers Dement* 2015; 11: 1430–1438.

208. Währle SE, Jiang H, Parsadanian M, et al. Abca1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted ApoE. *J Biol Chem* 2004; 279: 40987–40993.

209. Fitz NF, Cronican AA, Saleem M, et al. Abca1 deficiency affects Alzheimer’s disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. *J Neurosci* 2012; 32: 13125–13136.

210. Bielicki J. Abca1 agonist peptides for the treatment of disease. *Curr Opin Lipidol* 2016; 27: 40–46.

211. Gale SC, Gao L, Mikacenic C, et al. ApoEpsilon4 is associated with enhanced in vivo innate immune responses in human subjects. *J Allergy Clin Immunol* 2014; 134: 127–134.

212. Mak AC, Pullinger CR, Tang LF, et al. Effects of the absence of apolipoprotein E on lipoproteins, neurocognitive function, and retinal function. *JAMA Neurol* 2014; 71: 1228–1236.

213. Yamazaki Y, Zhao N, Caulfield TR, et al. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. *Nat Rev Neurol* 2019; 15: 501–518.

214. Hudry E, Dashkoff J, Roe AD, et al. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. *Sci Transl Med* 2013; 5: 212ra161.
delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. *Neurobiol Aging* 2016; 44: 159–172.

216. Rosenberg JB, Kaplitt MG, De BP, et al. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease. *Hum Gene Ther Clin Dev* 2018; 29: 24–47.

217. Arora S, Layek B and Singh J. Design and validation of liposomal ApoE2 gene delivery system to evade blood-brain barrier for effective treatment of Alzheimer’s disease. *Mol Pharm* 2021; 18: 714–725.

218. Dos Santos Rodrigues B, Kanekiyo T and Singh J. ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. *Pharm Res* 2019; 36: 161.

219. Huynh TV, Liao F, Francis CM, et al. Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. *Neuron* 2017; 96: 1013–1023.e4.

220. Livinchuk A, Huynh TV, Shi Y, et al. Apolipoprotein E4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. *Ann Neurol* 2021; 89: 952–966.

221. Luz I, Liraz O and Michaelson DM. An anti-apoE4 specific monoclonal antibody counteracts the pathological effects of apoE4 in vivo. *Curr Alzheimer Res* 2016; 13: 918–929.

222. Kim J, Eltorai AE, Jiang H, et al. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. *J Exp Med* 2012; 209: 2149–2156.

223. Liao F, Hori Y, Hudry E, et al. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. *J Neurosci* 2014; 34: 7281–7292.

224. Liao F, Li A, Xiong M, et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. *J Clin Invest* 2018; 128: 2144–2155.

225. Xiong M, Jiang H, Serrano JR, et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. *Sci Transl Med* 2021; 13: eabd7522.

226. Vitek MP, Christensen DJ, Wilcock D, et al. APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenics. *Neurodegener Dis* 2012; 10: 122–126.

227. Handattu SP, Monroe CE, Nayyar G, et al. In vivo and in vitro effects of an apolipoprotein E mimetic peptide on amyloid-β pathology. *J Alzheimers Dis* 2013; 36: 335–347.

228. Ghosal K, Stathopoulos A, Thomas D, et al. The apolipoprotein-E-mimetic COG112 protects amyloid precursor protein intracellular domain-overexpressing animals from Alzheimer’s disease-like pathological features. *Neurodegener Dis* 2013; 12: 51–58.

229. Krishnamurthy K, Cantillana V, Wang H, et al. ApoE mimic improves pathology and memory in a model of Alzheimer’s disease. *Brain Res* 2020; 1733: 146685.

230. VanDusen KW, Eleswarpu S, Moretti EW, et al. The MARBLE study protocol: modulating ApoE signaling to reduce brain inflammation, delirium, and postoperative cognitive dysfunction. *J Alzheimers Dis* 2020; 75: 1319–1328.

231. Mahamudurthy K, Cantillana V, Wang H, et al. ApoE mimic improves pathology and memory in a model of Alzheimer’s disease. *Brain Res* 2020; 1733: 146685.

232. Chen HK, Ji ZS, Dodson SE, et al. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. *J Biol Chem* 2011; 286: 5215–5221.

233. Chen HK, Liu Z, Meyer-Franke A, et al. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. *J Biol Chem* 2012; 287: 5253–5266.

234. Brodbeck J, McGuire J, Liu Z, et al. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. *J Biol Chem* 2011; 286: 17217–17226.

235. Wang C, Najm R, Xu Q, et al. Gain of toxic apolipoprotein E4 effects in human ipsc-derived neurons is ameliorated by a small-molecule structure corrector. *Nat Med* 2018; 24: 647–657.

236. Lin YT, Seo J, Gao F, et al. ApoE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes...
in human iPSC-derived brain cell types. *Neuron* 2018; 98: 1141–1154.e7.

237. Tagalakis AD, Dickson JG, Owen JS, et al. Correction of the neuropathogenic human apolipoprotein E4 (APOE4) gene to APOE3 in vitro using synthetic RNA/DNA oligonucleotides (chimeraplasts). *J Mol Neurosci* 2005; 25: 95–103.

238. Sadowski M, Pankiewicz J, Scholtzova H, et al. A synthetic peptide blocking the apolipoprotein E/beta-amyloid binding mitigates beta-amyloid toxicity and fibril formation in vitro and reduces beta-amyloid plaques in transgenic mice. *Am J Pathol* 2004; 165: 937–948.

239. Sadowski MJ, Pankiewicz J, Scholtzova H, et al. Blocking the apolipoprotein E/amyloid-beta interaction as a potential therapeutic approach for Alzheimer’s disease. *Proc Natl Acad Sci U S A* 2006; 103: 18787–18792.

240. Kuszczyk MA, Sanchez S, Pankiewicz J, et al. Blocking the interaction between apolipoprotein E and Aβ reduces intraneuronal accumulation of Aβ and inhibits synaptic degeneration. *Am J Pathol* 2013; 182: 1750–1768.

241. Pankiewicz JE, Guridi M, Kim J, et al. Blocking the apoE/Aβ interaction ameliorates Aβ-related pathology in APOE ε2 and ε4 targeted replacement Alzheimer model mice. *Acta Neuropathol Commun* 2014; 2: 75.

242. Imbimbo BP, Lozupone M, Watling M, et al. Discontinued disease-modifying therapies for Alzheimer’s disease: status and future perspectives. *Expert Opin Investig Drugs* 2020; 29: 919–933.

243. Kent SA, Spires-Jones TL and Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. *Acta Neuropathol* 2020; 140: 417–447.

244. Huang Y and Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. *Neurobiol Dis* 2014; 72: 3–12.

245. Rohn TT, Catlin LW, Coonse KG, et al. Identification of an amino-terminal fragment of apolipoprotein E4 that localizes to neurofibrillary tangles of the Alzheimer’s disease brain. *Brain Res* 2012; 1475: 106–115.

246. Wang C, Xiong M, Gratuze M, et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. *Neuron* 2021; 109: 1657–1674.e7.