Control by the accuracy of the results of studies for the cadmium content in samples applying the microwave laboratory system PLP-01M

L N Tretyak¹, M B Rebezov²³⁴, A V Korablev⁴, T M Mikhaylova⁴ and E A Voskanyan⁴

¹Orenburg State University, 13 pr. Pobedy, Orenburg, 460018, Russian Federation
²V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation
³Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow, 119991, Russian Federation
⁴K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

E-mail: tretyak_ln@mail.ru

Abstract. The article states that in order to compare the results obtained while operating on the atomic absorption spectrometer "Kvant-2AT" applying the microwave laboratory system PLP-01M and during the sample preparation in accordance with GOST 26929 "Raw materials and food products. Sample preparation. Mineralization to determine the content of toxic elements", on operating samples, the products were selected that most fully cover the range of results obtained during the research. Some research results and data analysis were carried out within 30 operating days. The data were obtained while working on the Kvant-2AT atomic absorption spectrometer, taking into account the application of the PLP-01M microwave laboratory system and while the sample preparation in accordance with GOST 26929. The average values obtained under repeatability conditions were put in the table. The analyte cadmium was supplemented to assess the accuracy of the obtained values. The implementation of sample preparation methods taking into account the microwave decomposition of the sample in the case of using the microwave laboratory system PLP-01M and while sample preparation in accordance with GOST 26929-94 achieves the precision of the analysis results both under conditions of repeatability and under conditions of intermediate precision.

1. Introduction
The investigation of the heavy metals influence in ecosystems and technological methods for reducing the residual amounts of contaminants in products is one of the topical issues [1-8].

Ensuring product testing for the content of xenobiotics requires constant improvement [9-18].

The permissible levels of cadmium in products are shown in figure 1.
Figure 1. Permissible levels of cadmium in flour, cereals and bakery products according to the requirements of technical regulations, mg/kg, not more.

One of the important tasks of testing centers is to ensure the reliability of tests at minimal cost [19-23]. The relevance of the problem under consideration is confirmed by numerous studies of scientists from different countries [24-29].

A fundamentally new method of the sample preparation is used in the microwave laboratory system PLP-01M. The decomposition was carried out in a closed system, i.e. sealed fluoroplastic vessels under the influence of high temperature, pressure and microwave field. The microwave field in the operating chamber of the furnace was created by a special generator-magnetron.

The advantages of microwave decomposition of samples applying the PLP-01M over classical methods of the sample preparation are undeniable.

2. Material and methods

The article considers and analyzes the results of examining samples for cadmium content by determining them on a Kvant-2AT atomic absorption spectrometer. It takes into account the use of the PLP-01M microwave laboratory system and while the sample preparation in accordance with GOST 26929 "Raw materials and food products. Sample preparation. Mineralization to determine the content of toxic elements”.

Sample mineralization by microwave decomposition applying the microwave laboratory system PLP-01M was carried out according to the general scheme in accordance with the instructions for the microwave laboratory oven from the TP Ural-Gefest.

The intervals were identified and control samples (CS\textsubscript{Pb}/CS\textsubscript{Cd}) with a certified value of the determined toxic element, cadmium, were selected for these intervals to cover the entire range of results obtained during research and thereby simulate the obtaining of values of various concentrations in the analysis of working samples of food products (table 1).

Intervals, mg/dm\(^3\)	CS\textsubscript{Cd}, mg/dm\(^3\)
0.001–0.005	0.0035
0.005–0.010	0.0075
0.01–0.05	0.0
Standard samples of the cadmium ions solution composition were applied for research purposes (figure 2).

3. Results and discussion
The products were selected on the operating samples; they cover the range of results obtained during the research. They were selected to compare the results obtained while operating on the atomic absorption spectrometer "Kvant-2AT" taking into account the application of the microwave laboratory system PLP-01M and while the sample preparation in accordance with GOST 26929 "Raw materials and food products. Sample preparation. Mineralization to determine the content of toxic elements".

The data were obtained while working on the Kvant-2AT atomic absorption spectrometer, taking into account the application of the PLP-01M microwave laboratory system and while sample preparation in accordance with GOST 26929. The average values obtained under repeatability conditions were recorded in the table. The analyte cadmium was supplemented to assess the accuracy of the obtained values.

As a result, five average values were obtained under conditions of intermediate precision.

The preparation of the selected samples of wheat bread was carried out in accordance with GOST 26929 and in accordance with the instructions for a microwave laboratory oven PLP-01M from TP Ural-Gefest, the volume of the sample taken for analysis is given in table 1.

Table 2. Weight of the sample in g.

Sample preparation in accordance with GOST 26929	Microwave decomposition on PLP-01M
15	2

The results are summarized in table 3.

Table 3. Analysis of bread samples for cadmium content.

Days	GOST	PLP-01M	GOST	PLP-01M
			Cs=0.015	
1	0.033	0.037	0.041	0.055
2	0.035	0.035	0.039	0.054
3	0.029	0.044	0.045	0.051
4	0.036	0.043	0.046	0.048
5	0.038	0.041	0.048	0.056
Xav	0.0342	0.04	0.0438	0.0528

Assessing the precision of results \((X_{\text{max}} - X_{\text{min}}) \leq C R_{0.05}(5) \)

	0.009<0.016	0.009<0.019	0.009<0.020	0.008<0.025

Figure 2. Characteristics of a standard sample composition of cadmium ion solution.
The data analysis in table 3 showed that the condition \((X_{\text{max}}-X_{\text{min}}) \leq CR_{0.95}(5)\) is satisfied for all measurement results.

3.1 Monitoring the stability of the results applying the supplement technique

The control tools were operating samples of a stable composition and the same samples with a known supplement of the analyte, carrying out operational control of the analysis procedure using the control procedure for error control (CPEC) applying the supplement technique.

The control while the implementation of various types of the sample preparation by the supplement technique was carried out according to the following scheme.

The sample was taken in a double size; the analyzed sample was divided into two parts. One part remained unchanged; the second one was supplemented with the determined element \(C_s\). The supplementation was carried out at the stage of sample preparation; the analysis of samples was carried out with the added additive of the determined element and without a supplement in conditions of intralaboratory precision.

The control measurements result of the determined element concentration in the averaged working sample \(X_{(n)}\) and in the averaged operating sample with a known addition of the determined element \(X_{(n)+a}\) were obtained in accordance with the analysis methods, taking into account various types of sample preparation.

As the results of control measurements of the determined element concentration in the sample and in the sample with a supplement, the simple average of two results of a single analysis were applied. The discrepancy between them does not exceed the repeatability limit.

The result of the control procedure \(C_c\) and the control standard \(C\) were calculated according to the approved methods. The comparison condition was also checked.

The results of the operational control of the analysis procedure applying the procedure to control the error using the supplement technique are summarized in table 4.

| Table 4. Results of the operational control of the analysis procedure applying the supplement technique. |
|---|-----------------|-----------------|-----------------|-----------------|
| GOST 26929 | PLP-01M |
| \(C_c\) | \(C\) | \(C_c\) | \(C\) |
| -0.0016 | 0.0085954 | 0.0004 | 0.0098494 |
| -0.0054 | 0.0056015 | -0.0022 | 0.0066771 |
| -0.0018 | 0.0018943 | -0.001728 | 0.0021763 |
| -0.0044 | 0.006834 | -0.0032 | 0.0082083 |

The analysis of the obtained research results showed that the condition \(|C_c| \leq C\) is fulfilled for all measurement results.

3.2 The precision assessment of the analysis obtained results taking into account the application of two different types of the sample preparation

The analysis procedure was considered satisfactory if a condition 3.12 was fulfilled. The evaluating precision results of the results obtained taking into account the use of different types of sample preparation are summarized in table 5. The operational control of the error was carried out by the supplement technique to control the stability of the analysis results obtained taking into account the application of different types of sample preparation. The operational control results of the analysis procedure applying the control procedure for the error control applying the supplement technique are summarized in table 5.
Table 5. Analysis of wheat bread samples for cadmium content.

GOST	PLP-01M	GOST	PLP-01M
-	Cs=0.05	0.04	0.0528
X(5)av	0.0342	0.0438	
Xav	0.0371	0.0483	

Evaluation of the results precision obtained by different sample preparations:

	9.3 % < 17 %	7.8 % < 17 %
X	Cc	C
	-0.0038	0.00869709

The analysis of the obtained data concludes that the results for the assessment of the precision and operational error control applying the supplement technique are satisfactory.

4. Conclusion
The results of analyzes carried out under conditions of repeatability and intermediate precision are considered satisfactory. The results for the assessment according to the precision and operational control of the error applying the method of additions are satisfactory.

The implementation of sample preparation methods taking into account the microwave decomposition of the sample in the case of using the PLP-01M microwave laboratory system and while the sample preparation in accordance with GOST 26929-94 achieves of the analysis results precision both under conditions of repeatability and under conditions of intermediate precision.

Acknowledgements
The authors would like to express special gratitude to the AM Chuprakova, an engineer who conducted multi-stage tests of the designated products for compliance with the requirements of regulatory documents.

References
[1] MacLeod C and Coughanowr C 2019 Heavy metal pollution in the derwent estuary: history, science and management Regional Studies in Marine Science 32 100866
[2] Larsen E H et al 2005 Determination of inorganic arsenic in white fish using microwave-assisted al-kaline alcoholic sample dissolution and HPLC-ICP-MS Anal. and Bioanal. Chem 381(2) 339-46
[3] Ali MM et al 2019 Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli river, Bangladesh. Human and Ecological Risk Assessment An Int J 1-17
[4] Kaushik A, Kansal A, Santosh M, Kumari S and Kaushik C P 2009 Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments Journal of Hazardous Materials 164(1) 265-70
[5] Cherfi A, Abdoun S and Gaci O 2014 Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria Food and Chemical Toxicology 70 48-53
[6] Mansour S A 2014 Monitoring and health risk assessment of heavy metal contamination in food Practical Food Safety: Contemporary Issues and Future Directions 235-55
[7] Mourya A, Mazumdar B and Sinha S K 2019 Determination and quantification of the heavy metal ion by electrochemical method Journal of Environmental Chemical Engineering 7(6) 103459
[8] Ivanova-Petropulos V et al 2015 Determination of Pb and Cd in Macedonian wines by electrother-mal atomic absorption spectrometry (ETAAS) Food Analytical Methods 8(8)
1947-52

[9] Kataoka Y et al 2015 Development of ICP-OES, ICP-MS and GF-AAS methods for simultaneous quantification of lead, total arsenic and cadmium in soft drinks Food Hygiene and Safety Science 56(3) 88-95

[10] Lu H, Lu X, Ma L, Cui Y, Wang J and Zhao M 2004 Microwave cleavage for the determination of lead in milk powder by atomic fluorescence spectrometry and mass spectrometry with induction plasma Journal of Chinese Mass Spectrometry Society 25 9-10.

[11] Li N et al 2009 Determination of arsenic in foods by flow injection on-line sorption pre-concentration with hydride generation atomic fluorescence spectrometry Food Additives and Contaminants 26(6) 839-46

[12] Katsnelson B et al 2014 Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead Food and Chemical Toxicology 64 144-56

[13] Kim B-M et al 2013 Influence of squid liver powder on accumulation of cadmium in serum, kidney and liver of mice Preventive Nutrition and Food Science 18(1) 1-10

[14] Ma W, Zhao B and Ma J 2019 Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species Environmental Science and Pollution Research 26(26) 26733-47

[15] Alaouiri H A A et al 2020 The possibility of using scots pine needles as biomonitor in determination of heavy metal accumulation Environmental Science and Pollution Research NN 1-22

[16] Šrut M, Menke S, Sommer S and Höckner M 2019 Earthworms and cadmium – heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicology and Environmental Safety 171 843-53

[17] Rahimi G, Kolahchi Z and Bayat S 2019 Heavy metals' bio-accumulation and transfer in lemon balm (melissa officinalis l.) irrigated with industrial wastewater International Journal of Environment and Waste Management 23(3) 238-56

[18] Singh BR et al 2011 Safety of food crops on land contaminated with trace elements J Sci Food Agric 91(8) 1349-66

[19] Sizentsov A N, Kvan O V, Sizentsov Y A, Bibartseva E V and Osipova E A 2019 Comparative analysis of heavy metal sorption characteristics on laboratory animal models Research Journal of Pharmaceutical, Biological and Chemical Sciences 10(1) 1313-6

[20] Tumanyan A F, Tusaint F, Shcherbakova N A, Seliverstova A P and Tyutyuma N V 2019 Heavy metal contents in soils and vegetables of Southern Russia Chemistry and Technology of Fuels and Oils 54(6) 766-70

[21] Barsova N, Yakimenko O, Tolpeshta I and Motuzova G 2019 Current state and dynamics of heavy metal soil pollution in Russian Federation Environmental Pollution 249 200-07

[22] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health.risk/2019.2.04.english

[23] Kuramshina N, Rebezov M, Kuramshin E, Krasnogorskaya N, Tretyak L, Somova Yu, Dolmatova I, Zaitseva T, Grigoryeva I and Bakirova L 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) 7(4.42) 14-8 DOI: 10.14419/ijet.v7i4.42.25536

[24] Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T, Kazhibayeva G, Somova Yu and Zaitseva T 2019 Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge Journal of Engineering and Applied Sciences 14(11) 2139-45

[25] Assenova B, Okuskhanova E, Rebezov M, Korzhikenenov N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research
Journal of Pharmaceutical, Biological and Chemical Sciences 7(1) 1425-33

[26] Barbosa J T P, Korn M G A, Santos C M M, Flores E M M, Peralva V N, Korn M and Nóbrega J A 2015 Microwave-assisted diluted acid digestion for trace element analysis of edible soybean products Food Chemistry 175 212-7

[27] Yang Z Y 2005 To study the activity of palladium used as modifier under microwave decomposition and atomic absorption spectrometry with graphite furnace for the determination of trace elements in food products Chinese Journal of Spectroscopy Laboratory 22(3) 607-17

[28] Rebezov M et al 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review 12(16) 29-33 doi:10.31782/IJCRR.2020.12167