Composition and Acaricidal Activity of *Laurus novocanariensis* and *Laurus nobilis* Essential Oils Against *Psoroptes cuniculi*

Fabio Macchioni, Stefania Perrucci, Pierluigi Cioni, Ivano Morelli, Paula Castilho & Francesca Cecchi

To cite this article: Fabio Macchioni, Stefania Perrucci, Pierluigi Cioni, Ivano Morelli, Paula Castilho & Francesca Cecchi (2006) Composition and Acaricidal Activity of *Laurus novocanariensis* and *Laurus nobilis* Essential Oils Against *Psoroptes cuniculi*, Journal of Essential Oil Research, 18:1, 111-114, DOI: 10.1080/10412905.2006.9699403

To link to this article: https://doi.org/10.1080/10412905.2006.9699403

Published online: 08 Dec 2011.
Composition and Acaricidal Activity of *Laurus novocanariensis* and *Laurus nobilis* Essential Oils Against *Psoroptes cuniculi*

Fabio Macchioni* and Stefania Perrucci
Dipartimento di Patologia Animale, Profilassi ed Igiene degli Alimenti, Università di Pisa, Italy

Pierluigi Cioni and Ivano Morelli
Dipartimento di Chimica Bioorganica e Biofarmacia, Università di Pisa, Italy

Paula Castilho
Centro de Química da Madeira, Departamento de Química, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal

Francesca Cecchi
Dipartimento di Produzioni Animali, Università di Pisa, Italy

Abstract

The major components of *Laurus nobilis* and *L. novocanariensis* leaf oils were identified and their acaricidal activity against *Psoroptes cuniculi* evaluated. Monoterpenes were predominant in *L. nobilis* oil (91.8%), while sesquiterpenes were only 1.4%. The main components of this oil were 1,8-cineole (39.2%), α-terpinyl acetate (11.3%), sabinene (10.6%) and linalool (7.4%). The acaricidal activity of *L. nobilis* oil, at a concentration of 10%, led to a mortality rate of 73%; at 5% the average activity was significantly reduced to 51%, while dilutions of 2.5%, 1.25% and 0.625% were ineffective.

Laurus novocanariensis oil, compared to *L. nobilis*, was richer in sesquiterpenes; the main constituents were α-pinene (10.4%), 1,8-cineole (9.6%) and β-selinene (7.2%). After 24 h of contact, the oil of *L. novocanariensis* killed all the mites when used at 10% and 5% concentrations. At lower concentrations the mortality significantly decreased; a dilution of 0.625% was ineffective.

Key Word Index

Psoroptes cuniculi, Laurus nobilis, Laurus novocanariensis, Lauraceae, acaricide, essential oil composition, α-pinene, sabinene, 1,8 cineole, α-terpinyl acetate.

Address for correspondence

Introduction

The biological activity of essential oils against several organisms has been confirmed in many reports, mainly associated with primary components mono- and sesquiterpenoids (1,2).

The acaricidal activity of many essential oils has been previously reported: Charmil gel containing essences of *Cedrus deodara* Loud. (Pinaceae) and *Pangamia glabra* Vent. (Fabaceae) was used against *Sarcoptes scabiei* (L.) (Sarcoptidae) in dogs (3) and pigs (4). A phyt-aromatic gel (Canidor) composed of more than 15 oils from plants was used against the rabbit mite *Psoroptes cuniculi* (Delafond) (Psoroptidae) (5); linalool and the oils from *Lavandula angustifolia* Mill. (Lamiaceae) and *Artemisia verlotorum* Lamotte (Asteraceae) were evaluated against *P. cuniculi* in rabbits (6,7). Acaricidal activity of pine oils and of their main components against *Tyrophagus putrescentiae*, a stored food mite, was also evaluated (8). A moderate activity against house dust mites was shown by laurel leaf oil (9). Different oils, among them *Laurus nobilis* oil and some monoterpenes, were tested against *Dermatophagoides pteronyssinus* (10).

The composition of the leaf oils of *L. azorica* and *L. nobilis* has been reported (11-13). Prior to 2002, *Laurus* ssp.—endemic of the macaronesian archipelagos of Azores, Madeira and Canaries—were represented as a single species, *Laurus azorica*. Recently, laurels from Madeira and the Canaries have been reconsidered as a separated taxon, classified as *Laurus novocanariensis* (14).

The aim of the present study is the identification of the major components of *L. nobilis* and *L. novocanariensis* leaf...
t = trace (< 0.1%)

Constituents	LRI	L. novocanariensis %	L. nobilis %
(E)-2-hexenal	854	-	0.1
α-thonene	933	1	0.6
α-pinene	941	10.4	5.2
camphene	955	1	0.5
sabine	978	1.0	10.6
β-pinene	981	5.7	4.7
myrcene	992	-	1.3
α-phellandrene	1007	-	0.5
δ-3-carene	1013	2.7	0.1
α-terpinene	1020	-	0.4
α-cymene	1024	1.2	-
p-cymene	1028	1.1	0.3
limonene	1032	0.5	2.0
1,8 cineole	1035	9.6	39.2
(E)-β-ocimene	1051	-	0.1
γ-terpinene	1064	-	0.7
cis-sabine hydrate	1070	-	0.6
terpinolene	1089	-	0.3
linalool	1099	-	7.4
trans-sabine hydrate	1100	-	0.2
cis-p-menth-2-en-1-ol	1123	-	0.1
trans-pinocarveol	1141	-	1
trans-p-menth-2-en-1-ol	1145	-	0.1
pinocarveol	1164	0.7	-
δ-terpinol	1166	-	0.3
borneol	1167	-	0.2
terpinen 4-ol	1180	0.7	2.1
α-terpinol	1190	-	2.5
linalyl acetate	1258	-	1
isobornyl acetate	1286	-	0.4
α-terpinalacetate	1351	2.4	11.3
eugenol	1356	-	1.2
α-copaene	1377	5.0	-
β-bourbonene	1385	0.6	-
methyl eugenol	1404	-	2.3
β-caryophyllene	1420	1.5	0.2
(E)-cinnamyl acetate	1443	-	1.2
allo-aromadendrene	1461	-	3.9
γ-murolene	1477	1.2	-
germacrene D	1482	1.1	-
γ-selinene	1485	0.8	-
β-selinene	1487	7.2	-
valencene	1492	4.3	-
bicyclogermacrene	1495	-	0.2
virdiflorene	1496	0.8	-
δ-cadinene	1524	3.8	0.1
α-calacorene	1542	0.6	-
elemicin	1554	5.4	0.2
spathulenol	1577	1.1	0.5
Caryophyllene oxide	1583	3.3	0.2
allo-aromadendrene epoxide	1641	0.8	-
cubenol	1643	0.6	-
β-eudesmol	1643	-	0.2
eudesma-4(15),7-dien-1β-ol	1651	2.2	
Total identified	**83.7**	**99.2**	
Yield %	**0.8**	**0.6**	

(a) percentages obtained by FID peak-area normalization, all relative response factors being taken as one (HP-5 column); linear retention indices (HP-5 column); t = trace (< 0.1%)

Experimental

Leaves of Laurus nobilis were collected in June 2003 at Alberaccio (Asciano- Pisa, Italy) on wild trees. A voucher was deposited in the Herbarium of Pisa’s botanical garden. Leaves of L. novocanariensis were collected in May 2001, at Ponta do Pargo on Madeira Island (Portugal) from a single wild tree. A voucher was deposited in the Herbarium of Madeira’s botanical gardens.

The leaves were dried at room temperature away from direct sunlight before distillation. For each species, the oil was obtained from 100 g samples of finely cut dry leaves hydrodistilled for 2 h in a Clevenger-type apparatus.

Chemical Analysis

The oils were analyzed by gas chromatography with FID GC/MS detection. The GC analyses were accomplished with an HP-5890 Series II instrument equipped with HP-WAX and HP-5 capillary columns (30 m x 0.25 mm, 0.25 μm film thickness) operated with the following temperature program: 60°C for 10 min, ramp of 5°C/min up to 220°C; injector and detector temperatures 250°C; carrier gas nitrogen (2 mL/min); detector dual FID; split ratio 1:30; injection of 0.5 μL. The identification of the components was performed, for both the columns, by comparison of their retention times with those of pure authentic samples, and by means of their linear retention indices (LRI) relative to the series of n-hydrocarbons. The relative proportions of the oil constituents were expressed as percentages obtained by FID peak-area normalization, all relative response factors being taken as one.

GC/EIMS analyses were performed on a Varian CP-3800 gas chromatograph equipped with a DB-5 capillary column (30 m x 0.25 mm, coating thickness 0.25 μm) and a Varian Saturn 2000 ion trap mass detector. Analytical conditions: injector and transfer line temperatures 220°C and 240°C, respectively; oven temperature programmed from 60°-240°C at 3°C/min; the carrier gas was helium at 1 mL/min; injection of 0.2 μL (10% hexane solution); split ratio 1:30. Identification of the constituents was performed as before by computer matching against commercial (NIST 98 and ADAMS) and homemade libraries of mass spectra built up from pure substances and components of known oils and MS literature data (15-20). Moreover, the molecular weights of all the identified substances were confirmed by GC/CIMS using MeOH as CI ionizing gas.

Biological Analysis

Disks of filter paper were imbibed with 50 μL of each of the oils, diluted to several concentrations. The disks were put in concave glass capsules having the same dimensions of the oils and the evaluation of their acaricidal activity against Psoroptes cuniculi.
The mobility control of mites was performed after 24 h of contact with the substances. To verify mortality, immobile mites were collected one by one and placed on disks inside capsules without tested substances. Control was performed after another 24 h; the persistence of the immobility of the mites after their stimulation with a needle indicated their death.

The oils of \textit{L. nobilis} and \textit{L. novocanariensis} were used at 10%, 5%, 2.5%, 1.25% and 0.625%. Dilutions were obtained with paraffin oil as the solvent. Paraffin was also used as control to ensure its innocuousness for mites.

Statistical Analysis

Data were subjected to ANOVA in which oil type (\textit{Laurus nobus} and \textit{Laurus novocanariensis}) and different concentration levels (10, 5, 2.5, 1.25, 0.65, control) were considered as fixed effects and percentage mortality as the independent variable. Statistical analysis was undertaken using the statistical package JMP (SAS Institute, 2002).

Results and Discussion

The yield of the leaf oil was 0.8% for \textit{L. novocanariensis} and 0.6% for \textit{L. nobilis}. In \textit{L. nobilis} oil the monoterpenes were predominant (91.8%), while sesquiterpenes represented only 1.4%. Aromatic compounds were present at 5.9%, 71.4% of all constituents were oxygenated. The main components were 1,8-cineole (39.2%), \(\alpha\)-terpinyl acetate (11.3%), abiesene (10.6%), linalool (7.4%), \(\alpha\)-pinene (5.2%), \(\beta\)-pinene (4.7%) and methyl eugenol (4.5%). \textit{Laurus novocanariensis} leaf oil components proved more difficult to identify. Unambiguous identification was only achieved for about 80% of components, of which monoterpenes accounted for 36% and identified sesquiterpenes 38.8%. The aromatic compounds were 8.9% of the oil, while the oxygenated components were 30.3%. The main constituents were \(\alpha\)-pinene (10.4%), 1,8-cineole (9.6%), \(\beta\)-selinene (7.2%), \(\beta\)-pinene (5.7%), elemicin (5.4%) and \(\alpha\)-copaene (5%). \textit{Laurus novocanariensis} leaf oil, compared to \textit{L. nobilis}, was richer in sesquiterpenes, especially considering that many of the unidentified components had a mass-to-charge ratio (m/z) of 204 and an LRI that indicated they were probably sesquiterpene compounds as well. The most remarkable differences were observed with the greater amounts of \(\alpha\)- and \(\beta\)-pinene, \(\delta\)-cadinene, elemicin, caryophyllene oxide and \(\delta\)-3-carene in \textit{L. novocanariensis}, which also contained other components such as \(\alpha\)-copaene, aldo-aromadendrene, \(\beta\)-selinene or valencene. On the contrary, \textit{L. nobilis} had higher contents of 1,8-cineole, abiesene, \(\alpha\)-terpinyl acetate and methyl eugenol; it also contained linalool and \(\delta\)-terpinone, which were absent in \textit{L. novocanariensis}.

The oil of \textit{L. novocanariensis}, at concentrations of 10% and 5% after 24 h of contact with mites, killed all the mites, showing an acaricidal activity of 100%; at 2.5%, the mortality of the mites significantly decreased to 22%; at 1.25% and at 0.625% concentrations, the mortality was further reduced, respectively, to 8% and 0%—largely ineffective. From these data, it can be established that the minimum concentration leading to death of the mite is 5%.

The acaricidal activity of \textit{L. nobilis} oil, at a concentration of 10%, led to a mortality of 73% (average of three independent assays), while at 5% the average activity was significantly reduced to 51%. Dilutions of 2.5%, 1.25% and 0.625% were found to be significantly ineffective.

Compared to \textit{L. nobilis}, \textit{L. novocanariensis} oil showed a more intense and significant activity at 5% (P<0.05) and 10% (P<0.01).

References

1. J.P. Chaumont and I. Bardey, \textit{Activites antifongiques in vitro de sept huiles essentielles}. Fitoterapia, 3, 263-266 (1989).
2. G. Buchbauer, W. Jager, L. Jirovetz, H. Dietrich, \textit{Therapeutic properties of essential oils and fragrances}. In: Bioactive Volatile Compounds from Plants. Edits., R.G. Buttery and H. Sugisawa, ACS Symposium Series 525, pp 159-165 American Chemical Society Washington, DC (1993).
3. S.S. Das, \textit{Effect of a herbal compound for treatment of sarcotic mange infestations on dogs}. Veterin. Parasit., 63, 303-306 (1996).
4. M.B. Chabra and G.S. Jakharia, \textit{Treatment of sarcotic mange in pigs}. Indian J. Veterin. Med., 14, 92-93 (1994).
5. B.R. Mignon and B.J. Losson, \textit{Efficacy of a phyto-aromatic gel against auricular mange in rabbits and carnivores}. Veterin. Rec., 138, 329-332 (1996).
6. S. Perrucci, P.L. Cioni, G. Flamini, I. Morelli and G. Macchioni, \textit{Acaricidal agents of natural origin against Psoroptes cunicul}. Parassitologia, 36, 263-271 (1994).
7. S. Perrucci, G. Flamini, P.L. Cioni, I. Morelli, F. Macchioni and G. Macchioni, \textit{In vitro and in vivo efficacy of extracts of Artemisia verlotorum against Psoroptes cunicul}. Veterin. Rec., 148, 814-815 (2001).
8. F. Macchioni, P.L. Cioni, G. Flamini, I. Morelli, S. Perrucci, A. Franchesi, G. Macchioni and L. Ceccarini, \textit{Acaricidal Activity of Pine Essential Oils and Their Main Components against Tyrophagus putrescentiae, a Stored Food mites}. J. Agric. Food Chem., 50, 4586-4588 (2002).
9. A.F. Kalpakliglu, A.G. Feinitz, Z. Misirtligi, Y.S. Demirel and L. Gurbuz, \textit{The effectiveness of benzyl benzoate and different chemicals as acaricides}. Faculty Medicine, University Ankara, Ankara, Turk. Allergy (Copenhagen), 51, 164-170 (1996).
10. H.-S. Lee, (S. Korea). POT INT, 19 pp. Appl. Plant oil and chemical compound having acaricidal activity. (2003).
11. H. Hokwera, R. Bos, D.H.H. Tattje and Th. M. Malingre, \textit{Composition of the essential oils of Laurus nobilis, L. nobilis var. angustifolia and Laurus azorica}. Planta Med., 44, 116-119 (1982).
12. L.G. Pedro, P.A.G. Santos, J.A. Da Silva, A.C. Figueiredo, J.C. Barroso, S.G. Dearn, A. Looman and J.J.C. Scheffler, \textit{Essential oils from Azorean Laurus azorica}. Phytochemistry, 57, 245-250 (2001).
13. J.A.Pino, P. Fernandes, R. Martubot and S.S. Fontinha, \textit{Chemical Composition of the Leaf Oil of Laurus azorica (Seub.) Franco var. Longifolia (O. Kuntze) Künk. From Madeira}. J. Essent. Oil Res., 16, 22-23 (2004).
14. S. Rivas-Martinez, T.E. Diaz, F. Fernandez-Gonzalez, J. Izco, J. Loidi, M. Loussu and A. Penas, \textit{Vascular Plant Communities of Spain and Portugal/Adenda to the Sintaxonomical checklist of 2001, Part II}. Itinera Geobotanica, 15, 703 (2002).
15. E. Stenhagen, S. Abrahamsson and F.W. McLaflerry, \textit{Registry of Mass Spectral Data}. J. Wiley & Sons, New York (1974).
16. Y. Massada, Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry. J. Wiley & Sons, New York (1976).
17. W. Jennings and T. Shibamoto, Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Chromatography. Academic Press, New York (1980).
18. N.W. Davies, Gas chromatographic retention indexes of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20 M phases. J. Chromatogr., 503, 1-24 (1990).
19. A.A. Swigar and R.M. Silverstein, Monoterpenes. Aldrich Chem. Comp., Milwaukee (1981).
20. R.P. Adams, Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy. Allured Publ., Carol Stream, IL (1995).