Chemical Composition of the Essential Oils From Twigs, Leaves, and Cones of *Thuja plicata* and Its Cultivar Varieties “Fastigiata”, “Kornik,” and “Zebrina”

Anna Lis¹, Agata Swaczyna¹, Agnieszka Krajewska¹, and Karolina Mellor²

Abstract

The essential oils from different parts of *Thuja plicata* and its cultivar varieties “Fastigiata”, “Kornik,” and “Zebrina” were analyzed by gas chromatography (GC) and GC/mass spectrometry. More than 80 compounds were identified. The oils from leaves, twigs with leaves, and twigs without leaves contained mainly α-thujone (52.1%-59.2%), fenchone (10.0%-11.3%), and beyerene (3.7%-9.5%), whereas in the cone oil there were α-thujone (35.6%), sabinene (24.0%), and α-pinene (8.3%). The main constituents of the oils from twigs with leaves of “Fastigiata,” “Zebrina,” and “Kornik” cultivars were α-thujone (76.2%, 72.5%, and 67.4%, respectively) and β-thujone (7.6%, 6.2%, and 4.9%, respectively). The oils from cultivars contained more thujones and less fenchone and diterpenes in comparison with *T. plicata* oil.

Keywords

Thuja plicata, essential oil composition, α-thujone

Received: June 1st, 2017; Accepted: February 16th, 2019.
Table 1. Chemical Composition of the Essential Oils From *Thuja Plicata* Twigs With Leaves (A), Leaves (B), Twigs Without Leaves (C), Fruits (D), *T. Plicata* Cv. “Fastigiata” (E), *T. Plicata* Cv. “Kornik” (F), and *T. Plicata* Cv. “Zebrina” (G).

Compound	RI	LRI	A	B	C	D	E	F	G
(Z)-Salvene	843	849	0.1	0.1	tr	tr	0.3	tr	0.2
Santolatriene	897	909	0.4	0.4	0.2	0.8	0.3	0.2	0.4
Tricyclene	922	927	1.1	1.0	0.6	8.3	1.1	1.0	1.4
α-Thuene	925	932	0.8	0.7	0.5	0.4	0.4	0.4	tr
α-Pinene	928	936	0.7	0.7	0.5	0.5	tr	0.4	tr
Myrcene	939	941	5.3	5.6	1.9	24.0	4.8	3.0	7.1
α-Phellandrene	944	950	1.2	1.1	0.1	3.2	1.4	1.1	1.8
α-Terpinene	968	973	5.3	5.6	1.9	24.0	4.8	3.0	7.1
p-Cymene	970	978	0.1	0.1	0.1	0.3	0.1	0.1	0.1
β-Phellandrene	982	987	0.8	0.7	0.5	0.4	0.4	0.4	tr
Limonene	984	990	0.7	0.7	0.5	0.5	tr	0.3	tr
γ-Terpinene	997	1002	0.3	0.3	0.3	0.3	0.3	0.3	0.3
trans-Sabinene hydrate	1006	1013	0.4	0.3	0.2	0.6	0.4	0.3	0.4
Camphor	1009	1015	0.3	0.3	0.3	0.3	0.3	0.3	0.3
β-Phellandrene	1018	1023	1.2	1.1	0.7	1.5	0.8	1.0	0.9
β-Pinene	1020	1025	0.5	0.4	0.5	0.9	0.6	0.5	0.6
trans-Sabinene hydrate	1021	1026	0.4	0.3	0.3	0.3	0.3	0.3	0.3
Fenchone	1028	1034	11.3	10.6	10.0	3.8	5.1	1.1	1.2
Terpinolene	1035	1041	0.0	0.2	0.1	0.2	0.2	0.2	0.2
α-Thujone	1036	1042	0.3	0.3	0.3	0.3	0.3	0.3	0.3
β-Thujone	1038	1044	0.2	0.2	0.2	0.2	0.2	0.2	0.2
α-Campholenal	1039	1045	0.2	0.2	0.2	0.2	0.2	0.2	0.2
cis-p-Menth-2-en-1-ol	1040	1046	0.3	0.3	0.3	0.3	0.3	0.3	0.3
trans-p-Menth-2-en-1-ol	1041	1047	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Camphor	1042	1048	2.1	2.0	2.1	0.8	0.1	0.3	0.1
Sabina ketone	1043	1049	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Camphene hydrate	1044	1050	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Thujol	1045	1051	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Bornol	1046	1052	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Terpinen-4-ol	1047	1053	0.3	0.3	0.3	0.3	0.3	0.3	0.3
α-Terpineol	1048	1054	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Myrtenol	1049	1055	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Verbenone	1050	1056	0.1	0.1	0.1	0.1	0.1	0.1	0.1
trans-Piperitol	1051	1057	0.1	0.1	0.1	0.1	0.1	0.1	0.1
trans-Verbenol	1052	1058	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Camphene hydrate	1053	1059	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Fenchyl acetate	1054	1060	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Thymol methyl ether	1055	1061	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Carvacrol methyl ether	1056	1062	0.0	0.0	0.0	0.0	0.0	0.0	0.0
cis-Sabinene hydrate	1057	1063	0.2	0.2	0.2	0.2	0.2	0.2	0.2
trans-Sabinene hydrate	1058	1064	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Bornyl acetate	1059	1065	0.3	0.3	0.3	0.3	0.3	0.3	0.3
trans-Sabinyl acetate	1060	1066	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Neothujyl acetate	1061	1067	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Menthol acetate	1062	1068	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Terpinen-4-yl acetate	1063	1069	0.2	0.2	0.2	0.2	0.2	0.2	0.2
α-Cubebene	1064	1070	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Geranyl acetate	1065	1071	0.1	0.1	0.1	0.1	0.1	0.1	0.1
α-Copaene	1066	1072	0.1	0.1	0.1	0.1	0.1	0.1	0.1

(Continued)
Compound	RI	LRI	A	B	C	D	E	F	G	
β-Elemene	1387	1389								
(E)-β-Caryophyllene	1417	1421								
Guai-6,9-diene	1438	1443	tr	tr						
(E)-β-Farnesene	1446	1446								
α-Humulene	1452	1455						tr	tr	
Germacrene D	1475	1479							tr	
α-Muurolene	1492	1496								
γ-Cadinene	1505	1507	tr	tr				tr	tr	
δ-Cadinene	1515	1520	tr	0.1	tr	tr	0.1	tr	0.1	
Elemol	1538	1541								
Furoelepargone B	1561	1567	0.3	0.3	0.4	0.2	tr	0.2	0.1	
Germacrene D-4-ol	1566	1571	0.1	0.1		0.5	tr	0.1		
Caryophyllene oxide	1571	1578	0.1	0.1	0.1	0.1	tr	0.4	tr	
β-Olopone	1589	1595	tr	tr	tr	tr				
Humulene epoxide II	1594	1602	tr	tr	0.1	0.1	tr	0.1	tr	
ω-α-Muurolol	1626	1633	tr	tr	0.1	tr	0.1			
α-Cadinol	1638	1643	0.1	0.1	0.3	tr	0.1			
14-Hydroxy-β-caryophyllene	1652	1656								
Olopone	1706	1703	tr	tr	tr	tr	0.1	tr		
Rimuene	1896	1907	1.3	1.7	0.6	0.1	0.1	0.9	0.2	
Beyereone	1944	1951	6.7	9.5	3.7	0.3	0.3	2.2	0.4	
Pimara-8(14),15-diene	1950	1955	tr	tr	tr	tr				
Sandaracopimara-8(14),15-diene	1964	1967	0.1	0.1	0.1					
Manool oxide	1999	2007	tr	tr	tr	tr				
(E)-Biformene	2002	2008								
Kaur-15-ene	2006	2011	tr	tr	tr	tr				
Abieta-8,12-diene	2017	2022								
Abiatriene	2039	2046	0.1	0.1	0.1		tr	tr		
Abieta-7,13-diene	2079	2084	tr	tr	0.1	0.7	tr			
Abieta-8(14),13(15)-diene	2147	2152							0.1	
Abieta-6(8),14-dien-18-al	2213	2215								
Dehydroabietal	2234	2241							0.1	
α-α-Totarol	2249	2252	tr	tr	0.7					
Abietol	2256	2261			0.1	1.3			0.1	
Beyeren-19-yl acetate	2308	2316					0.1	0.6	1.2	
4-α-Abietol	2329	2341						0.4		
Abieta-8,13(15)-dien-18-al	2340	2347						0.1		
Abietol	2378	2389							0.3	
Total			99.5	99.6	96.2	98.2	99.2	99.7	99.3	
Monoterpene hydrocarbons			12.2	12.0	6.2	41.3	10.3	8.5	13.5	
Oxygenated monoterpenes			78.5	75.5	84.0	49.1	88.4	86.8	83.4	
Sesquiterpene hydrocarbons						0.1				
Oxygenated sesquiterpenes			0.6	0.6	0.6	1.7	tr	0.7	0.4	
Diterpene hydrocarbons			8.2	11.4	4.6	1.6	0.4	3.1	0.6	
Oxygenated diterpenes						0.8	2.5	0.1	0.6	1.3
Oil yield			0.7	0.8	0.2	1.2	1.6	0.8	1.2	

LRI, literature retention indices on DB-1 column according to MassFinder 3.1; RI, retention indices on Rtx-1 column; tr, trace (<0.05%).

- Literature retention indices on DB-5 column according to Adams.\(^1\)
- Literature retention indices according to NIST (\(^2\)BP-1 column, \(^3\)HP-1 column, \(^4\)CP Sil 5 column, \(^5\)HP-5 column, \(^6\)DB-1 column).
- Literature retention indices on DB-5 column according to Adams.\(^1\)
- Literature retention indices according to NIST (\(^2\)BP-1 column, \(^3\)HP-1 column, \(^4\)CP Sil 5 column, \(^5\)HP-5 column, \(^6\)DB-1 column).
The essential oil from *T. plicata* contained several times more oil than twigs without leaves (0.8% and 0.2%, respectively). Cones contained 1.2% of the oil. “Fastigiata” and “Zebrina” cultivars were about 2 times richer in oil than *T. plicata* (1.6%, 1.2%, and 0.7%, respectively). More than 80 compounds representing 96% to 99% of the oils were identified, with about 40 for the first time in this species. The composition of the oils from leaves, twigs with leaves, and twigs without leaves of *T. plicata* were similar. The main constituents of the oils were α-thujone (52.1%-59.2%), fenchone (10.0%-11.3%), and beyerene (3.7-9.5). A few components were present in concentrations of 2%-5%: sabine, β-thujone, camphor, terpinen-4-ol, and bornyl acetate, while others constituted less than 1%. The oil from cones differed in composition. In comparison with those oils, it contained lower amounts of α-thujone (35.6%), fenchone (3.8%), and beyerene (0.3%), but the amounts of the monoterpene hydrocarbons sabine (24.0%) and α-pinene (8.3%) were much higher. Additionally, it contained many sesquiterpenes and diterpenes, which were not found in the oil from leaves and twigs. Thus, both leaves and twigs with leaves give oils rich in thujones. The presence of cones in the raw material may reduce the content of thujones in the oil.

The oils of “Fastigiata” and “Zebrina” varieties had similar composition with α-thujone (76.2% and 72.5%, respectively), β-thujone (7.6% and 6.2%, respectively), and sabine (4.8% and 7.1%, respectively) as the main constituents. “Kornik” oil contained α-thujone (67.4%), fenchone (7.5%), and β-thujone (4.9%). The chemical profiles of the oils from twigs with leaves of *T. plicata* and its cultivars “Fastigiata,” “Kornik,” and “Zebrina” were comparable having α-thujone as the dominant compound. On the other hand, significant differences between the oils were observed. The oils of “Fastigiata” and “Zebrina” in comparison with *T. plicata* oil contained more thujones (78%-83% and 57%, respectively) and less fenchone (trace and 11%, respectively) and diterpenes (1% and 8%, respectively).

With regard to the previously reported *T. plicata* oils, the composition of “Fastigiata” and “Zebrina” oils were similar to that of laboratory distilled Canadian oils and commercial oil from the United States, with high level of α-thujone (72%-82%), no fenchone, and no diterpenes. In turn, the *T. plicata* oil investigated by us resembled commercial Canadian oil with similar contents of α-thujone (54%), fenchone (15%), and β-thujone (6%-8%), but differed in content of diterpenes. Such high levels of diterpenes were previously found only in the oil from *T. plicata* var. “Gracilis.”

Our investigation showed that the yield and quantitative composition of *T. plicata* oil depended on the plant organ and variety. Twigs with leaves of *T. plicata*, particularly from “Fastigiata” and “Zebrina” cultivars, due to their high amount of essential oil and high content of thujones can be a good source of natural thujones for the pharmaceutical and fragrance industries.

Experimental

Plant Material

Thuja plicata Donn ex D. Don and its cultivars “Fastigiata,” “Kornik,” and “Zebrina” were collected in the Lodz Botanical Garden, Poland, in October 2016. The voucher specimens (Tpl/2016, Tplf/2016, Tplk/2016 and Tplz/2016) have been deposited in the Herbarium of the Institute of General Food Chemistry, Lodz University of Technology.

The fresh branches of *T. plicata* were divided into twigs with leaves, leaves, twigs without leaves, and cones. These samples of fresh plant material (100.0 g each), as well as twigs with leaves of “Fastigiata,” “Kornik,” and “Zebrina” cultivars were cut into small pieces (0.5 cm long) and separately hydrodistilled in a Clevenger-type apparatus for 3 hours to obtain essential oils. The procedure was replicated 3 times. After decanting and drying over anhydrous MgSO4, the oils were stored at low temperature (5°C) before analysis. The oils had pale yellow color and an intensive herbal-camphoraceous aroma.

Analysis of the Essential Oils

The chemical composition of the oils was determined by simultaneous gas chromatography (GC)/flame detection (FID) and GC/mass spectrometry (MS) analyses using an MS-FID splitter (SGE Analytical Science) and a Trace GC ultra gas chromatograph coupled with a DSQ II mass spectrometer (Thermo Electron Corporation). The apparatus was equipped with an apolar capillary column Rtx-1 (dimethylpolysiloxane), 60 m × 0.25 mm × 0.25 µm film thickness (Restek, Bellafonte, PA, USA). The oven temperature was programmed from 50 to 300°C with rises of 4°C/min. Injector temperature was 280°C, detector temperature 300°C, ion source temperature 200°C, carrier gas helium with constant pressure 300 kPa, ionization voltage 70 eV, mass range 33-420 amu.

Identification of components was based on comparison of their retention indices relative to *n*-alkanes (C8-C26) and their mass spectra with those of commercial libraries (MassFinder 3.1, NIST 98.2, Wiley Registry of Mass Spectral Data 8th ed.) and literature.

A quantitative analysis (expressed as percentage of each component) was carried out by peak normalization measurement without correction factors.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) declared no financial support for the research, authorship, and/or publication of this article.
References
1. Seneta W, Dolatowski J. Dendrologia. (Dendrology). Warszawa: Państwowe Wydawnictwo Naukowe PWN; 2008:73.
2. Nesom G. Plant Guide. Western red cedar Thuja plicata Donn ex D. Don ex D. Don. http://plants.usda.gov/plantguide/pdf/cs_thpl.pdf (17.03.2017).
3. The Gymnosperm Database, www.conifers.org/cu/Thuja_plicata.pph (17.03.2017).
4. von Rudloff E. Gas—liquid chromatography of terpenes VI. The volatile oil of Thuja plicata Donn. Phytochemistry. 1962;1(3):195-202.
5. Rudloff Evon, Lapp MS. Populational variation in the leaf oil terpene composition of western red cedar, Thuja plicata. Can J Bot. 1979;57(5):476-479.
6. Von Rudloff E, Lapp MS, Yeh FC. Multivariate analysis of leaf oil terpene composition. Biochem Syst Ecol. 1988;16:119-125.
7. Lawrence BM. Progress in essential oils. Western red cedar leaf oil. Perfum Flavor. 2007;32:52-54.
8. Belanger A, Goudemand H, Brosseau M. Essential oil composition of Canadian Western red cedar. Rivista Italiana EPPOS. 1997; SpecNum., 15th Journees Internationales Huiles Essentielles. 1996:583-591(SciFinder, abstract).
9. Jirovetz L, Buchbauer G, Denkova Z, Slavechev A, Stoyanova A, Schmidt E. Chemical composition, antimicrobial activities and odor descriptions of various Sabia sp. and Thuja sp. essential oils. Ernahrung Nutrition. 2006;30:152-159.
10. Tsiri D, Graikou K, Poblocka-Olech L, Krauze-Baranowska M, Spyropoulos C, Chinou I. Chemosystematic value of the essential oil composition of Thuja species cultivated in Poland-antimicrobial activity. Molecules. 2009;14(11):4707-4715.
11. Hudson J, Kuo M, Vimalanathan S. The antimicrobial properties of cedar leaf (Thuja plicata) oil; a safe and efficient decontamination agent for buildings. Int J Environ Res Public Health. 2011;8(12):4477-4487.
12. Han X, Parker TL. Arborvitae (Thuja plicata) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts. Biochim Open. 2017;4:56-60.
13. Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy. 4th ed. Carol Stream, IL: Allured Publ. Corp; 2007:1-804.