Immunotherapy and Hypophysitis in the Clinical Practice: A Case Report

Elisabetta Gambale1*, Camilla Tinari2, Consiglia Carella3, Alessandra Di Paolo1 and Michele De Tursi1

1Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Italy
2Department of Medicine and Sciences of Aging, Unit of Endocrinology, University of Chieti-Pescara, Chieti, Italy
3Department of Medical, Oncology Unit, Oral and Biotechnological Sciences, Italy

Abstract

The reported frequency of ipilimumab-induced hypophysitis (IIH), a cytotoxic T-lymphocyte antigen 4 antibody, ranges from 0 to 17%, in contrast to the rarity of idiopathic autoimmune hypophysitis that has an estimated incidence of one in nine million people per year.

Here we present the case of a patient with ipilimumab-induced hypophysitis (IIH). After his third course of ipilimumab, the patient began to present worsening asthenia and severe headache. A brain MRI scan showed the mild swelling of the anterior pituitary gland and thickening of the stalk. Haematological reports were consistent with hypophysitis diagnosis: in fact, ACTH and cortisol levels were very low. Then ipilimumab was interrupted and therapy with a large dose of glucocorticoids (dexamethasone) was promptly started. A rapid symptoms improvement was obtained by this therapeutic approach. The dose of dexamethasone was gradually decreased over 4 weeks and hydrocortisone replacement was started.

Development of IIH is associated with the risk of acute adrenal insufficiency or adrenal crisis, so early recognition and therapeutic intervention are extremely relevant. Furthermore, in the absence of data demonstrating clinical benefit from high-dose glucocorticoid therapy, we wondered if, in absence of symptoms such as visual disturbances or other life-threatening simultaneous irAEs in other organs, there is the indication to start with hydrocortisone replacement therapy alone from the beginning. We also wondered if it was reasonable to administer ipilimumab during prolonged high-dose glucocorticoid therapy. Thus, guidelines for surveillance and management of IIH are highly required.

Keywords: Metastatic melanoma; Ipilimumab; Hypophysitis; Secondary adrenal insufficiency; Glucorticoids, Hydrocortisone replacement therapy

Introduction

Autoimmune hypophysitis (AH) is a rare immune-mediated inflammatory disorder, characterized by cellular infiltration (activated lymphocytes) and inflammation of pituitary gland. It can be primary or secondary to systemic disease, local lesions or immunotherapies. It can impair the normal secretion of anterior and/or posterior pituitary hormones. Therefore, it can result in an adenohypophysitis with variable pituitary defects, in an infundibuloneurohypophysitis with diabetes insipidus, or in a pan-hypophysitis [1-9].

A new etiology of hypophysitis has recently been described in association with ipilimumab, a human MABs against the cytotoxic T-Lymphocyte antigen 4 (CTLA-4 Ab). T-Lymphocyte CTLA4 receptors enhance self-tolerance by downregulating the T-cell activation pathway and this can potentiate tumor growth. By blocking the CTLA4 receptor, ipilimumab enhances the innate immune response against tumors [1]. Ipilimumab was approved in 2011 by the US Food and Drug Administration (FDA) for the treatment of advanced melanoma and in 2015 FDA expanded the approved use of ipilimumab to include a new indication for treatment of stage III melanoma [14]. However, it frequently causes several immune-related adverse events (irAEs) such as hypophysitis, enterocolitis, dermatitis, pneumonitis, peripheral neuropathy and hepatitis that are due to unrestrained T-cell activation [1,6,7]. A specific timing of occurrence after the initiation of therapy with ipilimumab was described for these irAEs: after 2-3 weeks for skin, later for gastrointestinal and hepatic irAEs, and >9 weeks for hypophysitis. The secretion of anterior pituitary hormones appears to be impaired in a typical order: the first and the most frequent secretions impaired are the secretion of TSH and ACTH, then gonadotropins, prolactin, and GH secretions [1,6-9].

Case Report

A 68-year-old man referred to our oncology clinic in June 2015 after the diagnosis of metastatic BRAF V600E mutated melanoma. ECOG performance status was 0; no comorbidities. For his melanoma, he was treated surgically in June 2011. In May 2015, he underwent a CT-scan that displayed pulmonary metastases and conglobated pathological lymph nodes in left axilla of around 8 cm. In June 2015, after adequate screening, he began Ipilimumab. In August 2015, he referred to our Institution with a 1 week history of headache following his third course of Ipilimumab. He denied nausea, vomiting, visual symptoms, loss of libido, polydipsia or polyuria. As metastatic brain disease or hypophysitis was suspected, he underwent a brain MRI that showed a pituitary swelling consistent with hypophysitis (Figure 1). Hormonal investigations demonstrated hypopituitarism: morning cortisol 0.7 mcgr/dl (reference range 8 to 25), with a low-normal LH and FSH, TSH 0.208 Uui/ml (0.250 to 4.5). There was no diabetes insipidus, his prolactin and IGF-1 were normal. He was started on dexamethasone 4 mg every 6 h; 5 days later levotiroxyline 50 mcg daily was added and gradually increased to 100 mcg once a day, because his
deficiency (TSH=0.011 uUI/ml and free T4=0.50 ng/dl reference range: TSH and free T4 continued to decrease and it resulted in a thyrotroph.

In January 2016 confirmed progression disease. Therefore, the patient began therapy with daily oral dabrafenib 300 mg and trametinib 2 mg. Two months later, in November 2015, the patient recovered normal thyrothroph function and levothyroxine was stopped. He had not received his fourth course of ipilimumab because he presented liver toxicity: AST 160 U/L (15 U/L to 46 U/L) and ALT 350 U/L (11 U/L to 66 U/L). Ipilimumab was found to be effective for the conglobated pathological lymph node in left axilla on a follow-up CT-scan performed on August 2015, with a stable pulmonary disease. A brain MRI performed two months later, on October 2015, revealed improvements in the enlargement of the pituitary gland (Figure 2). The follow-up chest CT-SCAN of November 2015 showed progressive disease, but, in reason of a pseudo-progression, we waited to start a new therapy. The CT-scan performed in January 2016 confirmed progression disease. Therefore, the patient began therapy with only one case of diabetes insipidus described in the literature during treatment with Ipilimumab [1].

Thyrotrophic function may recover in 37% to 50% of patients and gonadotrophic function in 57% of men, but recovery of adrenocorticotrophic function rarely occurs [1,6].

There is significant morbidity associated with development of IIH and early recognition and therapeutic intervention are fundamental. Although in absence of a prospective randomized study conducted to evaluate the long-term efficacy and safety of high-dose glucocorticoid therapy in patients with ipilimumab-induced hypophysitis, its effectiveness to resolve enlargements in the pituitary gland in the acute phase has been empirically appreciated [6,7]. About the concerns that high-dose of dexamethasone can decrease the anti-tumor efficacy of ipilimumab, previous evidences show that the function of activated T cells is not inhibited by glucocorticoids [6]. Moreover, despite the administration of high-dose glucocorticoid therapy, hormonal deficiencies persisted in most cases [6]. High-dose of systemic glucocorticoid treatment appears in fact not to be associated with a better outcome of IIH [6]. According to these considerations, if visual disturbances, other life threatening irAEs (pneumonitis for example) and hyponatremia are absent, it is reasonable to administer a conservative treatment and to start on hydrocortisone from the beginning [6].

About nivolumab, a human antibody against programed death 1, an inhibitor receptor expressed by activated T cells, the incidence of nivolumab-induced hypophysitis appears to be lower (<1%) [1,10]. These great different incidences may be attributed to functional differences in the processes of T cell activation and the ectopic expression of CTLA-4 in the human pituitary gland that may be targeted by ipilimumab [6,10-12]. Furthermore, about patients treated with nivolumab who had progressed after ipilimumab, like our patient, who is ipilimumab-refractory, prior grade 3-4 immune-related adverse effects from ipilimumab were not indicative of nivolumab toxicities [23].

In summary, hypopituitarism as a consequence of IIH, if not promptly recognized, can lead to potentially fatal events, such as adrenal insufficiency. Therefore, oncologists and endocrinologists should be familiar with the key aspects of this condition. More studies
to develop screening protocols and therapeutic intervention algorithms should be performed to decrease morbidity related to IIH. A precise monitoring of ACTH, cortisol, TSH, and free T4 levels as well as the suspicion of hypophysitis based on patient symptoms like headache, asthenia, hypotension, hyponatremia and a history of having received at least three doses of Ipilimumab will lead to an earlier diagnosis and appropriate treatment [1,6,12].

References

1. Albarel F (2015) Long-term follow-up of ipilimumab-induced hypophysitis, a common adverse event of the anti-CTLA-4 antibody in melanoma. Eur J Endocrinol 172: 195-204.
2. Buxton N, Robertson I (2001) Lymphocytic and granulocytic hypophysitis: A single centre experience. Br J Neurosurg 15: 242-248.
3. Torino F, Barnabei A, Paragliola RM, Marchetti P, Salvatori R, et al. (2013) mAbs and pituitary dysfunction: Clinical evidence and pathogenic hypotheses. Eur J Endocrinol 169: 153-164.
4. Corsello SM, Barnabei A, Marchetti P, Vecchis LD, Salvatori R, et al. (2013) Endocrine side effect induced by immune checkpoint inhibitors. J Clin Endocrinol Metab 98: 1361-1375.
5. Faje AT, Sullivan R, Lawrence D, Trillos NA, Fadden R, et al. (2014) Ipilimumab-induced hypophysitis: A detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J Clin Endocrinol Metab 99: 4078-4085.
6. Faje A (2016) Immunotherapy and hypophysitis: Clinical presentation, treatment, and biological insights Pituitary 19: 92-92.
7. Caturegli P, Newschaffer C, Olivi A, Pomper MG, Burger PC, et al. (2005) Autoimmune hypophysitis. Endocr Rev 26: 599-614.
8. Imura H, Nakao K, Shimatsu A, Ogawa Y, Sando T, et al. (1993) Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N Engl J Med 329: 683-689.
9. Kasperlik-Zaluska AA, Czarnecka B, Czech W (2003) Autoimmunity as the most frequent cause of idiopathic secondary adrenal insufficiency: Report of 111 cases. Autoimmunity 36: 155-159.
10. Caturegli P, Lupi I, Landek-Salgado M, Kimura H, Rose NR (2008) Pituitary autoimmunity: 30 years later. Autoimmun Rev 7: 631-637.
11. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363: 711-723.
12. Eggermont AM (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. Lancet Oncol 16: 522-30.
13. Miller AH, Brod P, Jim Yeung SC (2016) Pituitary dysfunction: a case series of immune checkpoint inhibitor-related hypophysitis in an emergency department. Ann Emerg Med 68.
14. Araujo PB, Coelho MC, Arruda M (2015) Ipilimumab-induced hypophysitis: review of the literature. J Endocrinol Invest 38: 1159-1166.
15. Min L, Hodi FS, Giobbie-Hurder A (2015) Systemic high-dose corticosteroid treatment does not improve the outcome of ipilimumab-related hypophysitis: A retrospective cohort study. Clin Cancer Res 21: 749-755.
16. Araujo PB, Coelho MC, Arruda M (2015) Ipilimumab-induced hypophysitis: review of the literature. J Endocrinol Invest 38: 1159-1166.
17. Min L, Hodi FS, Giobbie-Hurder A (2015) A Systemic high-dose corticosteroid treatment does not improve the outcome of Ipilimumab-related hypophysitis: a retrospective cohort study. Clin Cancer Res 21: 749-755.
18. Honegger J, Buchfelder M, Schlaffer S, Droste M, Werner S, et al. (2015) Treatment of primary hypophysitis in Germany. J Clin Endocrinol Metab 100: 3460-3468.
19. Downey SG, Klapper JA, Smith FO, Yang JC, Sherry RM, et al. (2007) Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res 13: 6681-6688.
20. Hinrichs, Palmer DC, Rosenberg SA, Restifo NP (2005) Glucocorticoids do not inhibit antitumor activity of activated CD8+ T cells. J Immunother 28: 517-524.
21. Marlier J, Coquyt V, Brochez L, Van Bella S, Kruse V (2014) Ipilimumab not just another anti-cancer therapy: hypophysitis as side effect illustrated by four case reports. Endocrine 47: 878-883.
22. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, et al. (2014) Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTLA4 blockade. Clin Cancer Res 13: 6681-6688.
23. Weber J, Gibney G, Kuchchadkar R, Yu B, Cheng P, et al. (2016) Study of Metastatic Melanoma Patients Treated with Nivolumab Who Had Progressed after Ipilimumab. Cancer Immunol Res. 4: 349-353.