RENORMALIZATION AND SIEGEL DISKS FOR
COMPLEX HÉNON MAPS

DENIS GAIĐASHEV, REMUS RADU, AND MICHAEL YAMPOLSKY

Abstract. We use hyperbolicity of golden-mean renormalization of dissipative Hénon-like maps to prove that the boundaries of Siegel disks of sufficiently dissipative quadratic complex Hénon maps with golden-mean rotation number are topological circles.

Conditionally on an appropriate renormalization hyperbolicity property, we derive the same result for Siegel disks of Hénon maps with all eventually periodic rotation numbers.

1. Introduction

Consider the complex quadratic Hénon map written as

\[H_{c,a}(x, y) = (x^2 + c + ay, ax) \text{ for } a \neq 0. \]

The maps \(H_{c,a} \) and \(H_{c,-a} \) are conjugate by the change of coordinates \((x, y) \mapsto (x, -y)\); and the pair of parameters \((c, a^2)\) determines the Hénon map uniquely up to a biholomorphic conjugacy. In this parametrization the Jacobian is \(-a^2\). Let \(K^\pm \) be the sets of points that do not escape to infinity under forward, respectively backward iterations of the Hénon map. Their topological boundaries are \(J^\pm = \partial K^\pm \). Let \(K = K^+ \cap K^- \) and \(J = J^- \cap J^+ \). The sets \(J^\pm, K^\pm \) are unbounded, connected sets in \(\mathbb{C}^2 \) (see [BS1]). The sets \(J \) and \(K \) are compact (see [HOV1]). In analogy to one-dimensional dynamics, the set \(J \) is called the Julia set of the Hénon map.

In this paper we will always assume that the Hénon map is dissipative, \(|a| < 1\).

Note that for \(a = 0 \), the map \(H_{c,a} \) degenerates to

\[(x, y) \mapsto (f_c(x), 0),\]

where \(f_c(x) = x^2 + c \) is a one-dimensional quadratic polynomial. Thus for a fixed small value of \(a_0 \), the one parameter family \(H_{c,a_0} \) is a small perturbation of the quadratic family.

Note that a Hénon map \(H_{c,a} \) is determined by the multipliers \(\lambda \) and \(\mu \) at a fixed point uniquely up to changing the sign of \(a \). In particular,

\[\lambda \mu = -a^2, \]

2010 Mathematics Subject Classification. 37E20, 37D30, 37F25, 37F50.
the parameter \(c \) is a function of \(a^2 \) and \(\lambda \):

\[
c = (1 - a^2) \left(\frac{\lambda}{2} - \frac{a^2}{2\lambda} \right) - \left(\frac{\lambda}{2} - \frac{a^2}{2\lambda} \right)^2.
\]

Hence, we sometimes write \(H_{\lambda,\mu} \) instead of \(H_{c,a} \), when convenient. When \(\mu = 0 \), the Hénon map degenerates to

\[
H_{\lambda,0}(x, y) = (P_{\lambda}(x), 0), \quad P_{\lambda}(x) = x^2 + \lambda/2 - \lambda^2/4.
\] (1)

We say that a dissipative Hénon map \(H_{c,a} \) has a semi-Siegel fixed point (or simply that \(H_{c,a} \) is semi-Siegel) if the eigenvalues of the linear part of \(H_{c,a} \) at that fixed point are \(\lambda = e^{2\pi i \theta} \), with \(\theta \in (0,1) \setminus \mathbb{Q} \) and \(\mu \), with \(|\mu| < 1 \), and \(H_{c,a} \) is locally biholomorphically conjugate to the linear map

\[
L(x, y) = (\lambda x, \mu y).
\]

The classic theorem of Siegel [Sie] states, in particular, that \(H_{\lambda,\mu} \) is semi-Siegel whenever \(\theta \) is Diophantine, that is \(q_{n+1} < cq_n^d \), where \(p_n/q_n \) are the continued fraction convergents of \(\theta \). The existence of a linearization is a local result, however, in this case there exists a linearizing biholomorphism \(\phi : \mathbb{D} \times \mathbb{C} \to \mathbb{C}^2 \) sending \((0,0)\) to the semi-Siegel fixed point,

\[
H_{\lambda,\mu} \circ \phi = \phi \circ L,
\]

such that the image \(\phi(\mathbb{D} \times \mathbb{C}) \) is maximal (see [MNTU]). We call \(\phi(\mathbb{D} \times \mathbb{C}) \) the Siegel cylinder; it is a connected component of the interior of \(K^+ \) and its boundary coincides with \(J^+ \) (see [BS2]). We let

\[
\Delta = \phi(\mathbb{D} \times \{0\}),
\]

and by analogy with the one-dimensional case call it the Siegel disk of the Hénon map. Clearly, the Siegel cylinder is equal to the stable manifold \(W^s(\Delta) \), and \(\Delta \subset K \) (which is always bounded). Moreover, \(\partial \Delta \subset J \), the Julia set of the Hénon map.

Remark 1.1. Let \(q \) be the semi-Siegel fixed point of the Hénon map. Then \(\Delta \subset W^c(q) \), the center manifold of \(q \) (see e.g. [S] for a definition of \(W^c \)). The center manifold is not unique in general, but all center manifolds \(W^c(q) \) coincide on the Siegel disk. This phenomenon is nicely illustrated in [O], Figure 5.

The main result of this paper is the following theorem:

Theorem A. There exists \(\delta > 0 \) such that the following holds. Let \(\theta_* = (\sqrt{5} - 1)/2 \) be the inverse golden mean, \(\lambda_* = e^{2\pi i \theta_*} \), and let \(|\mu| < \delta \). Then the boundary of the Siegel disk of \(H_{\lambda_*,\mu} \) is a homeomorphic image of the circle.

By Carathéodory Theorem, the linearizing map

\[
\phi : \mathbb{D} \times \{0\} \to \Delta
\] (2)

extends continuously and injectively to the boundary. However, we note:
Theorem B. The conjugacy
\[\phi: S^1 \times \{0\} \to \partial \Delta \]
is not \(C^1\)-smooth.

It is worthwhile mentioning that if we assume that \(\lambda = e^{2\pi i \theta}\), \(\mu = e^{2\pi i \theta'}\) and the pair \((\theta, \theta')\) satisfies the two-dimensional Brjuno condition \([Brj]\), then the conservative Hénon map \(H_{\lambda, \mu}\) has a bounded maximal domain of linearization, called a Siegel ball. Herman \([He]\) asked whether the boundary of the Siegel ball is a topological or perhaps a \(C^\infty\) submanifold of \(\mathbb{C}^2\). We answer similar questions, in the dissipative setting, as outlined above.

The proofs of Theorems A and B are based on a renormalization theory for two-dimensional dissipative Hénon-like maps, developed by the first and third authors in \([GaYa2]\). A Hénon-like map (see \([dCLM]\))
\[H: \mathbb{C}^2 \to \mathbb{C}^2 \]
can be defined as
\[H(x, y) = (f(x) + \epsilon(x, y), ax) \]
for some small \(\epsilon\). In this normalization, it has Jacobian \(-a\partial\epsilon/\partial y\) and it reduces to the standard Hénon map when \(f(x) = x^2 + c\) and \(\epsilon(x, y) = ay\). In general, the Jacobian of a Hénon-like map is not constant.

Following \([LRT]\), we say that a Hénon-like map \(H\) has a semi-Siegel fixed point if there exists a local holomorphic change of variables \(\phi\) such that \(\tilde{H} = \phi \circ H \circ \phi^{-1}\) is a skew product of the form \(\tilde{H}(x, y) = (\lambda x, \mu(x)y)\), for some holomorphic function \(\mu(x) = \mu + O(x)\), where \(\lambda = e^{2\pi i \theta}\), with \(\theta \in (0, 1) \setminus \mathbb{Q}\), and \(|\mu| < 1\). This condition is equivalent to the existence of a one-dimensional Siegel disk \(\Delta = \phi(D \times \{0\})\).

Below, we will be using several different renormalization operators. The first of them is the renormalization of pairs of two-dimensional dissipative maps introduced in \([GaYa2]\). We will recall its definition in §3.

In one complex dimension, it corresponds to the renormalization of commuting pairs \(\mathcal{R}\) (cf. \([Stir]\)). In particular, suppose that an analytic map \(f\) has a fixed Siegel disk \(\Delta_f\), with a rotation number \(\theta \in (0, 1)\). Suppose furthermore, that \(\partial \Delta_f\) is a Jordan curve, and that there is a neighbourhood of \(\overline{\Delta_f}\) in which the only critical point of \(f\) is a simple critical point \(c_f \in \partial \Delta_f\). The example to keep in mind is a polynomial \(P_\lambda\), defined in \([1]\) with \(\lambda = e^{2\pi i \theta}\), such that the rotation number \(\theta\) is of bounded type \([Pet, Ya1]\).

Let a number \(\theta \in (0, 1)\) and denote \(\theta_0 = \theta, \theta_1, \theta_2, \ldots\) its orbit under the Gauss map
\[G(x) = \left\{ \frac{1}{x} \right\}; \]
which is finite if and only if \(\theta \in \mathbb{Q}\). We denote \(r_k\) the integer part \([1/\theta_k]\). Then the numbers \(r_k\) form a finite or infinite continued fraction expansion of \(\theta\), which we abbreviate as \(\theta = [r_0, r_1, \ldots]\). As usual, the \(n\)-th continued fraction convergent of \(\theta\) will be denoted by \(p_n/q_n \equiv [r_0, \ldots r_{n-1}]\).

The \(n\)-th pre-renormalization \(p\mathcal{R}_n f\) is the restriction of the pair of iterates \((f^{n+1}, f^n)\) to appropriate neighborhoods of the critical point \(c_f\). Let \(\kappa(z) = \bar{z}\)
denote the complex conjugation, and set
\[\nu_n(z) \equiv (f^{q_n}(c_f) - c_f) \cdot \kappa^{q_n}(z) + c_f; \]
this is a linear map if \(n \) is even, and an anti-linear map if \(n \) is odd. The \(n \)-th renormalization is obtained by rescaling \(pR_n f \) by \(\nu_n \):
\[R_n f = (\nu_n^{-1} \circ f^{q_{n+1}} \circ \nu_n, \nu_n^{-1} \circ f^{q_n} \circ \nu_n). \]

A different take on renormalization of one-dimensional analytic maps with Siegel disks was introduced by the third author in [Ya2] based on the cylinder renormalization operator \(R_{cyl} \). This operator acts on analytic maps defined in some neighborhood of a Siegel fixed point, rather than on pairs. The definition of cylinder renormalization involves a non-linear, rather than linear rescaling of iterates. There exists a constant \(s \in \mathbb{N} \) such that the following holds. Let \(f \) be a cylinder-renormalizable analytic map \(f \), and denote \((\eta, \xi) = R_s^{-1}(f) \). Then the cylinder renormalization \(R_{cyl}(f) \) is obtained by a non-linear rescaling
\[\Phi \circ \eta \circ \Phi^{-1} = R_{cyl}(f) \quad (3) \]
of the map \(\eta \) by the uniformizing coordinate \(\Phi \) of a particular fundamental domain (called a fundamental crescent in [Ya2]) of the map \(\xi \). Furthermore, (cf. Proposition 2.11 of [Ya2]), the dependence
\[\xi \mapsto \Phi \]
is locally analytic.

For a topological disk \(Z \ni 0 \) denote \(\mathcal{H}(Z) \) the Banach space of holomorphic functions \(f \) in \(Z \) with the uniform norm, and set \(\mathcal{H}(Z,W) \equiv \mathcal{H}(Z) \times \mathcal{H}(W) \). We will typically use the notation \((\eta, \xi) \) for an element of \(\mathcal{H}(Z,W) \).

We let \(\mathcal{C}(Z,W) \) denote the Banach subspace of \(\mathcal{H}(Z,W) \) given by the linear conditions
\[\eta'(0) = \xi'(0) = 0. \]
We say that a pair \((\eta, \xi) \in \mathcal{C}(Z,W) \) is **almost commuting to order** \(s \geq 0 \) if the following holds:
\[(\eta \circ \xi)^{(n)}(0) = (\xi \circ \eta)^{(n)}(0), \quad 0 \leq n \leq s; \quad \eta''(0) > 0; \quad \xi''(0) > 0, \quad \text{and} \quad \xi(0) = 1. \quad (4) \]
In the case \(s = 2 \), we will simply call the pair **almost commuting (or a.c.)**. We denote \(\mathcal{B}(Z,W) \) the subset of \(\mathcal{C}(Z,W) \) consisting of a.c. pairs. In [GaYa2], it is shown that there exists an open neighborhood \(\mathcal{U} \) of \(\mathcal{C}(Z,W) \) such that \(\mathcal{B}(Z,W) \cap \mathcal{U} \) is a Banach submanifold of \(\mathcal{H}(Z,W) \).

Let \(\theta \) be periodic under the Gauss map with period \(p \), and denote \(r_t = \lfloor 1/G^t(\theta) \rfloor \) (these are the digits in the continued fraction expansion of \(\theta \), and \(q_{n+1} = r_n q_n + q_{n-1} \)). Similarly to the above, for a pair \(\zeta = (\eta, \xi) \), we define a sequence of pre-renormalizations
\[pR_n^{\zeta} = \zeta_n = (\eta_n, \xi_n) \]
by $\zeta_0 = \zeta$ and $\xi_{n+1} = \eta_n$, $\eta_{n+1} = \eta_n \circ \xi_n$. Renormalizations $R^n(\zeta)$ are then defined as

$$R^n(\zeta) = (v_n^{-1} \circ \eta_n \circ v_n, v_n^{-1} \circ \xi_n \circ v_n),$$

where $v_n(z) = \xi_n(0) \cdot \kappa(z)$.

McMullen in [Mc] showed that there exists a pair of analytic maps ζ_λ which is periodic under the action of R with period p, and such that for every $\lambda_1 = e^{2\pi i \theta_1}$
where
\[G^m(\theta_1) = \theta, \text{ for some } m \geq 0, \]
we have
\[R^{np+m}P_{\lambda_1} \to \zeta_\lambda \text{ at a rate, which is geometric in } n. \]

Let \(\theta \) and \(p \) be as above. Set
\[k = p \text{ if } p \text{ is even, or } k = 2p \text{ if } p \text{ is odd}, \]
(5) to guarantee that the operator \(R^k \) is holomorphic (rather than anti-holomorphic).

Let us say that renormalization hyperbolicity property (H) holds for \(\theta \) if the following is true:

(H) There exist a pair of topological disks \(\bar{Z} \ni Z, \bar{W} \ni W \) and \(n = mk \), where \(m \in \mathbb{N} \) and \(k \) is as in (5) such that

(i) The operator \(R^n \) is an analytic operator from an open neighborhood of its fixed point \(\zeta_\lambda \) in \(B(Z,W) \) to \(B(\bar{Z},\bar{W}) \).

(ii) The differential \(DR^n|_{\zeta_\lambda} \) is a compact linear operator in \(T_{\zeta_\lambda}B(Z,W) \). Let \(M \equiv DR^n|_{\zeta_\lambda} \). Then \(M \) has a single simple eigenvalue outside of the closed unit disk, and the rest of the spectrum of \(M \) lies inside the open unit disk.

We prove a conditional theorem:

Theorem C. Suppose renormalization hyperbolicity property (H) holds for \(\theta \), and let \(\theta_1 \) be such that \(G^m(\theta_1) = \theta \) for some \(m \in \mathbb{N} \). Set \(\lambda_1 = e^{2\pi i \theta_1} \). Then the following statements hold:

(I) there exists \(\delta > 0 \) such that if \(|\mu| < \delta \) then the map \(H_{\lambda_1,\mu} \) lies in the stable set of \(\zeta_\lambda \);

(II) every Hénon-like map \(H \) in \(W^s(\zeta_\lambda) \) has a Siegel disk \(\Delta_H \) whose boundary is a topological circle;

(III) the Carathéodory extension of the linearizing coordinate \(\phi \) as in equation (2) to a map \(S^1 \times \{0\} \to \partial \Delta_H \) is not \(C^1 \)-smooth.

Our Theorems [A] and [B] will follow from Theorem C and the following statement proven in [GaYa2]:

Golden-mean renormalization hyperbolicity [GaYa2]. Renormalization hyperbolicity property (H) holds for \(\theta_* = (\sqrt{5} - 1)/2 \).

2. Dynamical partitions and multi-indices

Consider the space \(\mathcal{I} \) of multi-indices \(\bar{s} = (a_1, b_1, a_2, b_2, \ldots, a_m, b_m) \) where \(a_j \in \mathbb{N} \) for \(2 \leq m, a_1 \in \mathbb{N} \cup \{0\}, b_j \in \mathbb{N} \) for \(1 \leq j \leq m - 1 \), and \(b_m \in \mathbb{N} \cup \{0\} \). We introduce a partial ordering on multi-indices: \(\bar{s} \succ \bar{t} \) if \(\bar{s} = (a_1, b_1, a_2, b_2, \ldots, a_m, b_m), \bar{t} = (a_1, b_1, \ldots, a_k, b_k, c, d) \), where \(k \ll m \) and either \(c < a_{k+1} \) and \(d = 0 \) or \(c = a_{k+1} \) and \(d < b_{k+1} \).
For a pair of maps $\zeta = (\eta, \xi)$ and \bar{s} as above we will denote
$$\zeta^{\bar{s}} \equiv \xi^{b_m} \circ \eta^{a_m} \circ \cdots \circ \xi^{b_2} \circ \eta^{a_2} \circ \xi^{b_1} \circ \eta^{a_1}.$$

Similarly,
$$\zeta^{-\bar{s}} \equiv (\zeta^{\bar{s}})^{-1} = (\eta^{a_1})^{-1} \circ (\xi^{b_1})^{-1} \circ \cdots \circ (\eta^{a_m})^{-1} \circ (\xi^{b_m})^{-1}.$$

Consider the n-th pre-renormalization of ζ:
$$pR^n \zeta = \zeta_n = (\eta_n|_{Z_n}, \xi_n|_{W_n}),$$
where $Z_n = \alpha_n(Z), W_n = \alpha_n(W),$ and
$$\alpha_n(z) = \eta_n(0)z.$$

We define $\bar{s}_n, \bar{t}_n \in \mathcal{I}$ to be such that
$$\eta_n = \zeta^{\bar{s}_n}, \text{ and } \xi_n = \zeta^{\bar{t}_n}.$$

A straightforward induction shows:

Lemma 2.1. Let $\bar{r} = \bar{s}_n$ or \bar{t}_n. Write $\bar{r} = (a_1, b_1, a_2, b_2, \ldots, a_{m_n}, b_{m_n})$. Then $b_{m_n} = 0$, and either
$$a_{m_n} \geq 2$$
or
$$a_{m_n} = b_{m_n-1} = 1.$$

Furthermore, if \bar{s}_n ends in $\ldots, 1, 1, 0$ then so does \bar{t}_n.

Let $\tau_\theta : \mathbb{R} \to \mathbb{R}$ be the translation $x \mapsto x + \theta$, with $\lambda = \exp(2\pi i \theta)$, and $\theta \in (0, 1)$. Define
$$f(x) = \tau_\theta(x) \text{ and } g(x) = x - 1,$$
and set
$$I = [-1, 0], J = [0, \theta], \text{ and } T = (f|_I, g|_J).$$

Define
$$T_n = (f_n, g_n) = (T^{\bar{s}_n}, T^{\bar{t}_n}),$$
and set
$$I_n = [0, g_n(0)], J_n = [0, f_n(0)]$$
(the notation $[a, b]$ denotes the interval with endpoints a, b, not necessarily in that order).

Now consider the collection of intervals
$$\mathcal{P}_n \equiv \{T^{\bar{w}}(I_n) \text{ for all } \bar{w} \prec \bar{s}_n \text{ and } T^{\bar{w}}(J_n) \text{ for all } \bar{w} \prec \bar{t}_n\}. $$

It is easy to see that:
(a) $\bigcup_{H \in \mathcal{P}_n} H = I \cup J$;
(b) for any two distinct elements H_1 and H_2 of \mathcal{P}_n, the interiors of H_1 and H_2 are disjoint.
In view of the above, we call P_n the n-th dynamical partition of the segment $I \cup J$.

Consider the sequence of domains

$$\mathcal{V}_n \equiv \{ \zeta^\bar{w}(Z_n) \} \text{ for all } \bar{w} \prec \bar{s}_n \text{ and } \zeta^\bar{w}(W_n) \text{ for all } \bar{w} \prec \bar{t}_n \}.$$

By analogy with the above definition (and somewhat abusing the notation) we call \mathcal{V}_n the n-th dynamical partition of the pair ζ.

Proposition 2.2. Suppose, renormalization hyperbolicity property holds for θ, and

$$\zeta \in W^s(\zeta^R), \text{ where } \lambda = e^{2\pi i \theta}.$$

Then there exists $N = N(\zeta)$, $K > 0$, and $0 < \gamma < 1$ so that for every $n > N$ the following properties hold.

1) If $Q_n \in \mathcal{V}_n$ then $\text{diam}(Q_n) < \gamma^n$.
2) Any two neighboring domains $Q_n, Q'_n \in \mathcal{V}_n$ are K-commensurable.
3) For every $\bar{w} \prec \bar{s}_n$ (or $\bar{w} \prec \bar{t}_n$) set $\psi_{\bar{w}} = \zeta^\bar{w} \alpha_n$. Then $\| D\psi_{\bar{w}} \|_{L^\infty} < \gamma^n$ (or $\| D\psi_{\bar{w}} \|_{W^\infty} < \gamma^n$, respectively).

Proof. By our assumption, there exists $N > 0$ and a pair of domains $\hat{Z} \ni Z$ and $\hat{W} \ni W$ such that for all $n \geq N$ the maps of the pair $R^n \zeta \in \mathcal{C}(\hat{Z}, \hat{W})$. By Koebe Distortion Theorem, this implies that for all $\bar{w} \prec \bar{s}_n$ (or $\bar{w} \prec \bar{t}_n$) the branches $\zeta^{-\bar{w}}$ have bounded distortion. The domain $Z_n = \alpha_n(Z)$ has diameter $O(\gamma^n)$. The claims readily follow.

\[\square \]

3. Renormalization for pairs of two-dimensional dissipative maps

This section contains a summary of the extension of the renormalization operator from the space $B(Z, W)$ of almost commuting pairs to an appropriately defined space of two-dimensional maps. The details of the procedure can be found in [GaYa3].

Let Ω, Γ be domains in \mathbb{C}^2. We denote $O(\Omega, \Gamma)$ the Banach space of bounded analytic functions $F = (F_1(x, y), F_2(x, y))$ from Ω and Γ respectively to \mathbb{C}^2 equipped with the norm

$$\| F \| = \frac{1}{2} \left(\sup_{(x, y) \in \Omega} |F_1(x, y)| + \sup_{(x, y) \in \Gamma} |F_2(x, y)| \right).$$

We let $O(\Omega, \Gamma, \delta)$ stand for the δ-ball around the origin in this Banach space.

In what follows, we fix $W, Z, \hat{Z},$ and \hat{W} as in (H), and $R > 0$ such that $\mathbb{D}_R \subset Z \cap W$, and let $\Omega = Z \times \mathbb{D}_R$, $\Gamma = W \times \mathbb{D}_R$. We select \hat{Z} and \hat{W} so that $Z \subset \hat{Z} \subset \tilde{Z},$ $W \subset \hat{W} \subset \tilde{W}$.
We define an isometric embedding \(\iota \) of the space \(\mathcal{H}(Z, W) \) into \(O(\Omega, \Gamma) \) which send the pair \(\zeta = (\eta, \xi) \) to the pair of functions \(\iota(\zeta) \):

\[
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \eta(x) \\ \eta(x) \end{pmatrix}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \xi(x) \\ \xi(x) \end{pmatrix}.
\]

Let \(\mathcal{U} \) be an open neighborhood of \(\zeta_0 \) as in \((H)\) in \(C(Z, W) \), and let \(Q \) be a neighborhood of 0 in \(\mathbb{C} \). We will consider an open subset of \(O(\Omega, \Gamma) \) of pairs of maps of the form

\[
A(x, y) = (a(x, y), h(x, y)) = (a_y(x), h_y(x)),
\]
\[
B(x, y) = (b(x, y), g(x, y)) = (b_y(x), g_y(x)),
\]
such that

1) the pair \((a(x, y), b(x, y))\) is in a \(\delta \)-neighborhood of \(\mathcal{U} \) in \(O(\Omega, \Gamma) \),

2) \((h, g) \in O(\Omega, \Gamma)\) are such that \(|\partial_x h(x, 0)| > 0\) and \(|\partial_x g(x, 0)| > 0\) whenever \(x \notin Q \), and

\[
(h(x, y) - h(x, 0), g(x, y) - g(x, 0)) \in O(\Omega, \Gamma, \delta).
\]

This open subset of \(O(\Omega, \Gamma) \) will be denoted \(\mathcal{A}(\mathcal{U}, Q, \delta) \) for brevity.

We say that a pair \((A, B)\) is a pre-renormalization of a map \(H \):

\[
(A, B) = p^R^n H
\]

if

\[
A = H^{q_n}, \quad B = H^{q_{n+1}} \text{ for some } n \geq 0.
\]

3.1. **Defining renormalization: coordinate transformations.** Let \((\eta, \xi) \in \mathcal{B}(Z, W)\) be \(n \geq 2 \) times renormalizable, and consider its \(n \)-th pre-renormalization written as

\[
p^R^n \zeta = \left(\zeta^{s_n}, \zeta^{t_n} \right).
\]

Let \(s_n \) be given by \((a_1, b_1, a_2, b_2, \ldots, a_m, 0)\) (recall Lemma 2.1). We denote

\[
\hat{s}_n = \begin{cases} \{ (a_1, b_1, a_2, b_2, \ldots, a_m - 2, 0), \quad a_m \geq 2 \\ (a_1, b_1, a_2, b_2, \ldots, 0, 0, 0), \quad a_m = 1 \end{cases},
\]
\[
\phi_0(x) = \begin{cases} \eta^2, \quad a_m \geq 2 \\ \eta \circ \xi, \quad a_m = 1. \end{cases}
\]

Define \(\hat{t}_n \) in an identical way to \(\hat{s}_n \) (see Lemma 2.1). Then \(p^R^n \zeta \) can be written as

\[
p^R^n \zeta = \phi_0 \circ \left(\zeta^{s_n}, \zeta^{t_n} \right).
\]

For a sufficiently large \(n \), the function \(\eta^{-1} \) is a diffeomorphism of the neighborhood \(\alpha_n(Z \cup W) \), and one can define the \(n \)-th pre-renormalization of \(\zeta \) in \(\eta^{-1}(\alpha_n(Z \cup W)) \) as

\[
p^R^n \zeta = \left(\eta^{-1} \circ \zeta^{s_n} \circ \eta, \eta^{-1} \circ \zeta^{t_n} \circ \eta \right) = \left(f \circ \zeta^{s_n} \circ \eta, f \circ \zeta^{t_n} \circ \eta \right),
\]

where \(f = \eta \) if \(a_n \geq 2 \) and \(f = \xi \) if \(a_n = 1 \).
Next, suppose that \(\Sigma = (A,B) \) lies in \(\mathcal{A}(U,Q,\delta) \) with \(U \) and \(\delta \) sufficiently small, so that the following pre-renormalization is defined in a neighborhood of \(\eta^{-1}(\alpha_n(Z \cup W)) \times \{0\} \):

\[
\hat{p} R^n \Sigma = \left(F \circ \Sigma^{\hat{z}} \circ A, F \circ \Sigma^{\hat{z}} \circ A \right),
\]

where \(F = A \) if \(a_n \geq 2 \) and \(F = B \) if \(a_n = 1 \).

We will denote

\[
\pi_1(x,y) = x \quad \text{and} \quad \pi_2(x,y) = y.
\]

Set

\[
\phi_y(x) = \phi(x,y) := \begin{cases}
\pi_1 A^2(x,y), & a_n \geq 2 \\
\pi_1 A \circ B(x,y), & a_n = 1
\end{cases}
\]

For sufficiently small \(\delta \), the map \(\hat{\phi}_z \) is close to \(\phi_0 \) and is a diffeomorphism of a neighborhood of \(\pi_1 \Sigma^{\hat{z}}(\alpha_n(Z),0) \approx \zeta^\alpha(\alpha_n(Z)) \) for all \(z \in \mathbb{D}_R \) for some \(R = R(\delta) > 0 \). Similarly, \(g_z \) is a diffeomorphism of a neighborhood of \(\pi_1 \Sigma^{\hat{z}}(\alpha_n(Z),0) \) for all \(z \in \mathbb{D}_R \) for some \(R = R(\delta) > 0 \).

Furthermore, set

\[
q_z(x) \equiv q(x,z) = \pi_2 F(x,z) = \begin{cases}
h_z(x), & a_n \geq 2 \\
g_z(x), & a_n = 1
\end{cases}
\]

According to our definition of the class \(\mathcal{A}(U,Q,\delta) \), this is a diffeomorphism outside a neighborhood of zero. Also, set

\[
w_z(x) \equiv w(x,z) := q_z(\phi_z^{-1}(x)),
\]

a diffeomorphism of a neighborhood of \(\pi_1 \phi_z \circ \Sigma^{\hat{z}}(\alpha_n(Z),0) \) in \(\mathbb{C}^2 \) onto its image for all \(z \in \mathbb{D}_R \) for some \(R = R(\delta) > 0 \). Notice, that \(\partial_z w_z(x) \) and \(\partial_{\hat{z}} w_z^{-1}(x) \) are functions whose uniform norms are \(O(\delta) \).

Define the following transformation:

\[
H_\Sigma(x,y) = (a_y(x), w^{-1}_{\hat{z}}(y)), \tag{13}
\]

This transformation is \(\delta \)-close to \((\eta(x), \phi_0(q_{\hat{z}}^{-1}(y))) \) in \(O(\Omega, \Gamma) \), and therefore, for small \(\delta \), is a diffeomorphism of a neighborhood of \(\pi_1 F \circ \Sigma^{\hat{z}}(\alpha_n(Z),0) \approx f(\zeta^{\hat{z}}(\alpha_n(Z))) \) onto its image. In particular,

\[
A \circ H_\Sigma^{-1}(x,y) = (x, h(\eta^{-1}(x),y)) + O(\delta). \tag{14}
\]

We use \(H_\Sigma(x,y) \) to pull back \(\hat{p} R^n \Sigma \) to a neighborhood of definition of the \(n \)-th pre-renormalization of a pair \((\eta, \xi) \) - that is, a neighborhood of \(\alpha_n(Z \cup W) \) in \(\mathbb{C}^2 \):

\[
\hat{p} R^n \Sigma = (\hat{A}, \hat{B}) = H_\Sigma \circ F \circ \left(\Sigma^{\hat{z}}, \Sigma^{\hat{z}} \right) \circ A \circ H_\Sigma^{-1}(x,y).
\]

The following has been proved in \[GaYa2\].
Lemma 3.1. There exists an \(n \in \mathbb{N} \), and a choice of \(\mathcal{U} \), \(Q \), \(\delta_0 \) and \(C > 0 \) such that the following holds. For every \(\delta < \delta_0 \) and every \(\Sigma \in \mathcal{A}(\mathcal{U}, Q, \delta) \) the pair \(p\mathcal{R}^n \Sigma \) is defined, lies in \(O(\hat{\Omega}, \hat{\Gamma}) \), \(\hat{\Omega} = \hat{Z} \times \mathbb{D}_R \), \(\hat{\Gamma} = \hat{W} \times \mathbb{D}_R \), and

\[
\text{dist}(p\mathcal{R}^n \Sigma, \iota(\mathcal{H}(\alpha_n(\hat{Z}), \alpha_n(\hat{W})))) < C\delta(\|\pi_1 \Sigma - \pi_2 \Sigma\| + \delta).
\]

Let us write

\[
\bar{\mathcal{A}}(x, y) = \begin{pmatrix} \bar{\eta}_1(x) + \bar{\tau}_1(x, y) \\ \bar{\eta}_2(x) + \bar{\tau}_2(x, y) \end{pmatrix},
\]

where

\[
\bar{\eta}_1(x) \equiv \pi_1 \bar{\mathcal{A}}(x, 0), \quad \bar{\eta}_2(x) \equiv \pi_2 \bar{\mathcal{A}}(x, 0)
\]

are \(O(\delta\|\pi_1 \Sigma - \pi_2 \Sigma\| + \delta^2) \)-close to each other, and both are \(\delta \)-close to \(\pi_\eta p\mathcal{R}^n \zeta = \zeta^\eta_n \), where \(\pi_\eta \) and \(\pi_\zeta \) are the projections on, correspondingly, the first and the second map in a pair, and

\[
\bar{\tau}_1(x, y) \equiv \pi_1 \bar{\mathcal{A}}(x, y) - \pi_1 \bar{\mathcal{A}}(x, 0), \quad \bar{\tau}_2(x, y) = \pi_2 \bar{\mathcal{A}}(x, y) - \pi_2 \bar{\mathcal{A}}(x, 0),
\]

are functions whose norms are \(O(\delta^2) \). Similarly,

\[
\bar{\mathcal{B}}(x, y) = \begin{pmatrix} \bar{\xi}_1(x) + \bar{\pi}_1 x, y \\ \bar{\xi}_2(x) + \bar{\pi}_2(x, y) \end{pmatrix},
\]

where

\[
\bar{\xi}_1(x) \equiv \pi_1 \bar{\mathcal{B}}(x, 0), \quad \bar{\xi}_2(x) \equiv \pi_2 \bar{\mathcal{B}}(x, 0)
\]

are \(O(\delta\|\pi_1 \Sigma - \pi_2 \Sigma\| + \delta^2) \)-close to each other, and both are \(\delta \)-close to \(\pi_\xi p\mathcal{R}^n \zeta = \zeta^\xi_n \), and

\[
\bar{\pi}_1(x, y) \equiv \pi_1 \bar{\mathcal{B}}(x, y) - \pi_1 \bar{\mathcal{B}}(x, 0), \quad \bar{\pi}_2(x, y) = \pi_2 \bar{\mathcal{B}}(x, y) - \pi_2 \bar{\mathcal{B}}(x, 0),
\]

are functions whose norms are \(O(\delta^2) \).

3.2. Defining renormalization: critical projection. By the Argument Principle, if \(\delta \) is sufficiently small, then the function \(\pi_1 \bar{\mathcal{B}} \circ \bar{\mathcal{A}}(x, 0) \) has a unique critical point \(c_1 \) in a neighborhood of \(0 \). Set \(T_1(x, y) = (x + c_1, y) \), then

\[
\partial_x \left(\pi_1 T_1^{-1} \circ \bar{\mathcal{B}} \circ \bar{\mathcal{A}} \circ T_1 \right)(0, 0) = 0.
\]

Similarly, if \(\delta \) is sufficiently small, the function \(\pi_1 T_1^{-1} \circ \bar{\mathcal{A}} \circ \bar{\mathcal{B}} \circ T_1(x, 0) \) has a unique critical point \(c_2 \) in a neighborhood of \(0 \). Set \(T_2(x, y) = (x + c_2, y) \), then

\[
\partial_x \left(\pi_1 T_2^{-1} \circ T_1^{-1} \circ \bar{\mathcal{A}} \circ \bar{\mathcal{B}} \circ T_1 \circ T_2 \right)(0, 0) = 0.
\]

We now set

\[
\Pi_1(\bar{\mathcal{A}}, \bar{\mathcal{B}}) = (\bar{\mathcal{A}}, \bar{\mathcal{B}}) := (T_2^{-1} \circ T_1^{-1} \circ \bar{\mathcal{A}} \circ T_1, T_1^{-1} \circ \bar{\mathcal{B}} \circ T_1 \circ T_2)
\]

\[
= \begin{pmatrix} \bar{\eta}_1(x) + \bar{\tau}_1(x, y) \\ \bar{\eta}_2(x) + \bar{\tau}_2(x, y) \end{pmatrix}, \begin{pmatrix} \bar{\xi}_1(x) + \bar{\pi}_1(x, y) \\ \bar{\xi}_2(x) + \bar{\pi}_2(x, y) \end{pmatrix},
\]

where the norms of the functions \(\bar{\tau}_k, \bar{\pi}_k, k = 1, 2 \), are \(O(\delta^2) \).
The critical points of the functions \(\pi_1(\tilde{A} \circ \tilde{B})(x, 0) \) and \(\pi_1(\tilde{B} \circ \tilde{A})(x, 0) \) are \(O(\delta\|\pi_1\Sigma - \pi_2\Sigma\| + \delta^2) \)-close to each other, and therefore,
\[
T_2 = \text{Id} + O(\delta\|\pi_1\Sigma - \pi_2\Sigma\| + \delta^2). \tag{16}
\]

Let us set
\[
\tilde{\Sigma} = (\tilde{A}, \tilde{B}) = \Pi_1 p \mathcal{R}^n \Sigma.
\]

We note that if the maps \(\bar{A} \) and \(\bar{B} \) commute, than the critical point of \(\pi_1 T_1^{-1} \circ \bar{A} \circ \bar{B} \circ T_1(x, 0) \) is at 0. We, therefore, have the following

Proposition 3.2. Suppose \((A, B)\) is a pre-renormalization of a map \(H\). Then the map \(T_2 \equiv \text{Id}\), and hence, the projection \(\Pi_1\) is a conjugacy by \(T_1\).

3.3. Defining renormalization: commutation projection

At the next step we will project the pair \((\tilde{A}, \tilde{B})\) onto the subset of pairs satisfying the following almost commutation conditions:
\[
\begin{align*}
\partial_x^i \pi_1(\tilde{A} \circ \tilde{B}(x, 0) - \tilde{B} \circ \tilde{A}(x, 0))|_{x=0} &= 0, \quad i = 0, 2 \tag{17} \\
\pi_1 \tilde{B}(0, 0) &= 1. \tag{18}
\end{align*}
\]

To that end we set
\[
\Pi_2(\tilde{A}, \tilde{B})(x, y) = \begin{pmatrix}
\tilde{\eta}_1(x) + ax^4 + bx^6 + \tilde{\tau}_1(x, y) \\
\tilde{\eta}_2(x) + ax^4 + bx^6 + \tilde{\tau}_2(x, y)
\end{pmatrix}, \quad \begin{pmatrix}
\tilde{\xi}_1(x) + c + \tilde{\pi}_1(x, y) \\
\tilde{\xi}_2(x) + c + \tilde{\pi}_2(x, y)
\end{pmatrix},
\]

and require that \(17\) and \(18\) are satisfied for maps in the pair \(\Pi_2(\tilde{A}, \tilde{B})(x, y)\). The following Proposition is proved in \cite{GaYa2}.

Proposition 3.3. There exists \(\rho > 0\) such that for all \(\tilde{\Sigma}\) in the \(\rho\)-neighborhood of \(\iota(\mathcal{C}(\alpha_n(\tilde{Z}), \alpha_n(\tilde{W})))\) there is a unique tuple \((a, b, c, d)\) such that the pair \(\Pi_2(\tilde{A}, \tilde{B})\) satisfies the equations \(17\) and \(18\). Moreover, in this neighborhood, the dependence of \(\Pi_2\) on \(\Sigma\) is analytic. Furthermore, if \(A \circ B = B \circ A\), then \(\Pi_2 = \text{Id}\).

Let us fix \(n \in 2\mathbb{N}, \mathcal{U}, \mathcal{Q}, \delta\) so that Lemma \(3.1\) holds, and furthermore, the image \(\Pi_1 p \mathcal{R}^n \mathcal{A}(\mathcal{U}, \mathcal{Q}, \delta)\) lies in the \(\rho\)-neighborhood of \(\iota(\mathcal{C}(\alpha_n(\tilde{Z}), \alpha_n(\tilde{W})))\) as in Proposition \(3.3\). We then have:

Proposition 3.4. For every \(\Sigma \in \mathcal{A}(\mathcal{U}, \mathcal{Q}, \delta)\),
\[
\text{dist}(\Pi_2 \Pi_1 p \mathcal{R}^n \Sigma, \iota(\mathcal{B}(\alpha_n(\tilde{Z}), \alpha_n(\tilde{W})))) < C\delta(\|\pi_1\Sigma - \pi_2\Sigma\| + \delta).
\]

Let \(\ell_n = \pi_1 \tilde{B}(0, 0)\) and \(\Lambda_n(x, y) = (\ell_n x, \ell_n y)\).

Definition 3.5. We define the renormalization of depth \(n\) of a pair \(\Sigma \in \mathcal{A}(\mathcal{U}, \mathcal{Q}, \delta)\) as
\[
\mathcal{R}_n \Sigma = \Lambda_n^{-1} \circ \Pi_2 \circ \Pi_1 \circ p \mathcal{R}^n \Sigma \circ \Lambda_n. \tag{19}
\]
Given a map H from a subset of \mathbb{C}^2 to \mathbb{C}^2, such that the pair $(A, B) = pR^n H = (H^{q_{n+1}}, H^{q_n}) \in \mathcal{A}(U, Q, \delta)$ for some integer n, we will also use the shorthand notation

$$R_n H \equiv \Lambda_n^{-1} \circ \Pi_2 \circ \Pi_1 \circ pR^n H \circ \Lambda_n.$$

3.4. Hyperbolicity of renormalization of 2D dissipative maps. We conclude this section by formulating the following theorem:

Theorem 3.6. Given a p-periodic θ, set that $\lambda = e^{2\pi i \theta}$. Assume that (H) holds. Then there exists an even $n = mk$, where $m \in \mathbb{N}$ and k is as in (5), such that the point $\iota(\zeta \lambda)$ is a fixed point of R_n in $O(\Omega, \Gamma)$. The linear operator $N = D_R n|_{\iota(\zeta \lambda)}$ is compact. The spectrum of N coincides with the spectrum of M, where M is as in (H). More specifically, $\kappa \neq 0$ is an eigenvalue of M, and h is a corresponding eigenvector if and only if κ is an eigenvalue of N, and $D_\iota(h)$ is a corresponding eigenvector.

Proof. Since ι is an immersion on $\mathcal{C}(Z, W)$, and

$$\iota \circ R^k = R_k \circ \iota,$$

the spectral decomposition of N splits into the direct sum $T_1 \oplus T_2$, where T_1 is the tangent subspace

$$T_1 = T_{\iota(\zeta \lambda)} \iota(\mathcal{B}(Z, W)).$$

The restriction $N|_{T_1}$ is isomorphic to M. Further, by Proposition 3.4, the magnitude of a perturbation of $\iota(\zeta \lambda)$ in the direction of a vector in T_2 is decreased quadratically by $(R_n)^2$. Hence, in the spectral decomposition, the subspace T_2 corresponds to the zero eigenvalue. \hfill \Box

4. Proof of Theorem C.

4.1. The Hénon family intersects $W^s(\zeta \lambda)$. Let us fix $\theta, \theta_1, \lambda, \lambda_1$ as in Theorem C. As before, let k be as in (5), and let n be as in Theorem 3.6. For brevity, in what follows, we set

$$\mathcal{R} = \mathcal{R}_n.$$

We prove:

Theorem 4.1. There exists $\delta > 0$ such that if $|\mu| < \delta$ then the one-parameter family $l \to H_{l, \mu}$ intersects the stable set of $\zeta \lambda$ under \mathcal{R}.

Proof. Let $U \ni 0$ be a Jordan domain in \mathbb{C} and let \mathcal{C}_U denote the Banach space of bounded analytic maps f in U equipped with a uniform norm $\|f\|_U$ and such that $f(0) = 0$. Let f_* be the periodic point of \mathcal{R}_cyl with $f_*'(0) = e^{2\pi i \theta}$ constructed in [Ya2]. We denote the period of f_* under \mathcal{R}_cyl by p. As shown in [Ya2], there exists a choice of domains $U_1 \ni U$ such that

$$f_* \in \mathcal{C}_U \text{ and } \mathcal{R}_cyl f_* \in \mathcal{C}_{U_1}.$$
Let n be as in Theorem 3.6. For the quadratic polynomial P_{λ}, there exists N such that its Nn-th cylinder renormalization lies in the local stable set of f_* in C_U.

As is shown in [Ya2], the family $l \mapsto R_{cyl}^P l$ lies in the unstable cone field of R_{cyl}. Specifically, if $l_t = \lambda + t$, then

$$||R_{cyl}^{(i+N)n} P_{l_t} - R_{cyl}^{(i+N)n} P_\lambda||_U = a_0 \beta^i t + o(t),$$

where $\beta > 1$ and $a > 0$. (21)

Let us select i large enough, so that $R_{cyl}^{(i+N)n} P_{l_t} \in C_{U_2}$ with $U_2 \supseteq U$. By Koebe Distortion Theorem,

$$||R_{cyl}^{(i+N)n} P_{l_t} - R_{cyl}^{(i+N)n} P_\lambda||_U \sim |(R_{cyl}^{(i+N)n} P_{l_t})(1) - (R_{cyl}^{(i+N)n} P_\lambda)(1)|,$$

where 1 is the critical point.

Let us turn to renormalization of commuting pairs. We recall that, according to (3), sn steps of R correspond to n steps of the operator R_{cyl}. Using Koebe Distortion Theorem again, we see that

$$||R^{(i+N)n} P_{l_t} - R^{(i+N)n} P_\lambda||_U \sim |(R^{(i+N)n} P_{l_t})(0) - (R^{(i+N)n} P_\lambda)(0)|.$$ (23)

Denote

$$(\eta_t, \xi_t) = R^{s-1}(R^{(i+N)n-1} P_l).$$

Let Φ_t, Φ_0 denote the uniformizing coordinates of the fundamental crescents of ξ_t, ξ_λ respectively [3]. Note that, by complex a priori bounds [Ya2] and Koebe Distortion Theorem, Φ_t has universally bounded distortion and $\Phi_t' \simeq 1$. We have

$$||\Phi_t - \Phi_0|| \sim ||R^{(i+N)n} P_{l_t} - R^{(i+N)n} P_\lambda||.$$ (24)

The estimates (21)-(24) imply that

$$||R^{(i+N)n} P_{l_t} - R^{(i+N)n} P_\lambda|| \sim \beta^i t.$$ Thus the family $l \mapsto g_l \equiv l R^{Nsn} P_l$ lies in the expanding cone field of ζ_λ under R.

Since for a small enough μ, the family $l \mapsto G_l \equiv R^{Ns} H_{l,\mu}$ is a C^1-small perturbation of g_l, it is transverse to $W_{loc}^s(\zeta_\lambda)$ and hence, intersects with it (see Fig. 2). □
4.2. Construction of an invariant curve. In this section we prove the following statement:

Proposition 4.2. There exists $\epsilon > 0$ such that the following holds. Let $|\mu| < \epsilon$, and

$$H_{i,\mu} \in W^s(\zeta_{\lambda})$$

where $\lambda = e^{2\pi i \theta}$.

Denote Ω_n, Γ_n the domains of definition of the n-th pre-renormalization $pR^n H_{i,\mu}$. Then there exists a curve $\gamma_* \subset \mathbb{C}^2$ such that the following properties hold:

- γ_* is a homeomorphic image of the circle;
- $\gamma_* \cap \Omega_n \neq \emptyset$ and $\gamma_* \cap \Gamma_n \neq \emptyset$ for all $n \geq 0$;
- there exists a topological conjugacy

$$\varphi_* : \mathbb{T} \rightarrow \gamma_*$$

between the rigid rotation $x \mapsto x + \theta_1 \mod \mathbb{Z}$ and $H_{i,\mu}|\gamma_*);

- there exists m such that $G^m(\theta_1) = \theta$;
- the conjugacy φ_* is not C^1-smooth.

Before proving the above Proposition, we need to introduce some further notation. Below, for brevity, we will denote $\Upsilon^1 = \Omega$, $\Upsilon^2 = \Gamma$.

We set $n = km$, as in Theorem 3.6 for some $m \geq 1$ (to be fixed later).

To differentiate between transformations for different pairs we will use the following notation. Denote

$$s_n = (a_1, b_1, \ldots, a_{m_n}, 0)$$
$$\tilde{t}_n = (c_1, d_1, \ldots, c_{l_n}, 0).$$

Given a pair Σ, denote Λ_Σ the rescaling that corresponds to the first renormalization \mathcal{R}, and H_Σ - the transformation constructed for Σ in [13], that is

$$\mathcal{R}_\Sigma = \Lambda_{\Sigma}^{-1} \circ T_{\Sigma}^{-1} \circ H_\Sigma \circ \left(\Sigma^{s_n}, \Sigma^{t_n}\right) \circ H_{\Sigma}^{-1} \circ T_\Sigma \circ \Lambda_\Sigma = L_{\Sigma}^{-1} \circ \hat{p}\mathcal{R}^n \Sigma \circ L_\Sigma,$$
where
\[s_n = (1, 0, a_1, b_1, \ldots, a_{m_n} - 1, 0), \quad \text{and} \quad t_n = (1, 0, c_1, d_1, \ldots, c_{l_n} - 1, 0), \tag{25} \]
and
\[L_\Sigma = H_\Sigma^{-1} \circ T_\Sigma \circ \Lambda_\Sigma. \]

Note that since the elements of \(\Sigma \) commute, the projection \(\Pi_2 = \text{Id} \) and \(\Pi_1 \) is the conjugation by the translation \(T_\Sigma := T_1 \).

Let \(\bar{s}_n \) and \(\bar{t}_n \) be defined by
\[(\hat{\rho} R^n)^i_\zeta = (\zeta^s_n, \zeta^t_n). \]

For each multi-index
\[\bar{w} = (a_0, b_0, a_1, b_1, \ldots, a_k, b_k) \prec \bar{s}_n \text{ or } \bar{w} = (a_1, b_1, \ldots, a_k, b_k) \prec \bar{t}_n \]
we define a domain
\[Q^i_{\bar{w}} = \Sigma_{\bar{w}} \circ L_{\Sigma} \circ L_{\Sigma} \circ \ldots \circ L_{\Sigma}^{-1}(\Upsilon^i), \quad i = 1 \text{ for } \bar{w} \prec \bar{s}_n, \quad i = 2 \text{ for } \bar{w} \prec \bar{t}_n. \tag{26} \]

By analogy with a dynamical partition of a commuting pair from Section 2, the collection
\[Q_{\bar{w}} = \{ Q^i_{\bar{w}} \} \]
will be referred to as the \(n \)-th partition for the two-dimensional pair \(\Sigma \).

Given \(\Sigma \in W_{loc}(\zeta_\lambda) \), consider the following collection of functions defined on \(\Omega \cup \Gamma \):
\[\Psi^\Sigma_{\bar{w}} = \Sigma_{\bar{w}} \circ L_{\Sigma}. \]

Given a collection of index sets \(\{ \bar{w}^i \} \), \(\bar{w}^i \prec \bar{s}_n \) or \(\bar{w}^i \prec \bar{t}_n \), consider the following renormalization microscope
\[\Phi^j_{\bar{w}^0, \bar{w}^1, \bar{w}^2, \ldots, \bar{w}^{j-1}, \Sigma} = \Psi^\Sigma_{\bar{w}^0} \circ \Psi^{R\Sigma}_{\bar{w}^1} \circ \ldots \circ \Psi^{R(j-1)\Sigma}_{\bar{w}^{j-1}}, \]
which we will also denote \(\Phi^j_{\bar{w}^{j-1}, \Sigma} \), where \(\bar{w}^{j-1}_0 = \{ \bar{w}^0, \bar{w}^1, \bar{w}^2, \ldots, \bar{w}^{j-1} \} \), for brevity.

Lemma 4.3. The renormalization microscope maps a set \(\Upsilon^i \) onto an element of partition \(Q_{\bar{w}} \) for \(\Sigma \).

Proof. The claim holds for \(j = 1 \) by the definition (26) of the elements of the partition.

Assume that it \(\Phi^j_{\bar{w}^0, \Sigma} \Upsilon^i \) is an element of partition \(Q_{\bar{w}} \) for \(\Sigma \).

Consider \(\Phi^j_{\bar{w}^{j-1}, \Sigma} \Upsilon^i \):
\[\Phi^j_{\bar{w}^{j-1}, \Sigma} \Upsilon^i = \Psi^\Sigma_{\bar{w}^0} \circ \Psi^{R\Sigma}_{\bar{w}^1} \circ \ldots \circ \Psi^{R(j-1)\Sigma}_{\bar{w}^{j-1}} \Upsilon^i. \]

By assumption,
\[\Phi^j_{\bar{w}^i, R\Sigma} \Upsilon^i = \Psi^{R\Sigma}_{\bar{w}^i} \circ \ldots \circ \Psi^{R(j-1)\Sigma}_{\bar{w}^{j-1}} \Upsilon^i. \]
is an element of the partition of level jn for the pair $\mathcal{R}\Sigma$, that is, by (26)

$$
\Phi^j_{\tilde{v}_0,\Sigma}(\Upsilon) = (\mathcal{R}\Sigma)^{\tilde{v}} \circ L_{\mathcal{R}\Sigma} \circ L_{\mathcal{R}\Sigma} \circ \ldots \circ L_{\mathcal{R}\Sigma}(\Upsilon),
$$

for some admissible $\tilde{v} = (\alpha_0, \beta_0, \alpha_1, \beta_1, \ldots, \alpha_m, \beta_m)$. Therefore, using the short-hand

$$
\mathcal{R}\Sigma = (A_1, B_1),
$$

we have:

$$
\Phi^{j+1}_{\tilde{u}_0,\Sigma}(\Upsilon_i) = \Psi_{\tilde{w}_1,\mathcal{R}\Sigma}(\Upsilon_i),
$$

then exists R whenever

$$
\text{for some index } \tilde{u}, \tilde{v}.\text{ By (26), the latter is an element of the partition } Q_{(j+1)n}.
$$

Since $\mathcal{R}^i\Sigma$ converges to ζ_{λ} at a geometric rate, the function $\Psi_{\tilde{w},\mathcal{R}}$ converges to the function $(\psi_{\tilde{w}}, \psi_{\tilde{w}})$, defined in Proposition 2.2, at a geometric rate in C^1-metric. Therefore, by Proposition 2.2, there exists a neighborhood \mathcal{S} in $W^s_{\text{loc}}(\zeta_{\lambda})$, and a sufficiently large l, such that

$$
\|D\Psi_{\tilde{w},\mathcal{R}}(\Upsilon_i)\|_{\infty} < \frac{1}{2},
$$

whenever $\mathcal{R}^i\Sigma \in \mathcal{S}$.

For every $\Sigma \in W^s_{\text{loc}}(\zeta_{\lambda})$, there exists $i_0 \in \mathbb{N}$ such that $\mathcal{R}^i\Sigma \in \mathcal{S}$ for $i \geq i_0$. Hence, there exists $C = C(\Sigma)$, such that

$$
\|D\Phi^j_{\tilde{w},\Sigma}(\Upsilon_i)\|_{\infty} < \frac{C}{2^j},
$$

and thus the renormalization microscope is a uniform metric contraction.

We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. Let

$$
\mathcal{R}^i(H_{\lambda,\mu}) \equiv \Sigma = (A, B) \in W^s(\zeta_{\lambda})
$$

for some $r \in \mathbb{N}$.

Select a distinct point $(x_{\tilde{w}}, y_{\tilde{w}})$ in each of the sets $Q^i_{\tilde{w}} \in \mathcal{Q}_{(n)}$. Consider the ln-th dynamical partition \mathcal{P}_{ln} for the pair T as defined in (7). Consider a piecewise-constant map φ_l sending the element of the partition with a multi-index \tilde{u} to $(x_{\tilde{w}}, y_{\tilde{w}})$. According to (27), the diameters of the sets $Q^i_{\tilde{w}}$ decrease at a geometric
rate. Thus, the maps \(\varphi_l \) converge uniformly to a continuous map \(\varphi \) of the interval \([-1, \theta]\) which is a homeomorphism onto the image. Set

\[
\varphi([-1, \theta]) \equiv \gamma.
\]

By construction,

\[
\varphi \circ T = \Sigma \circ \varphi.
\]

Let \(\gamma_1 \subset K^+(H_{l^*\mu}) \) be the preimage of \(\gamma \) under renormalization rescaling, and set

\[
\gamma_* \equiv \bigcup_{n \in \mathbb{N}} H_{l^*\mu}(\gamma_1).
\]

The conjugacy \(\varphi \) induces a conjugacy

\[
\varphi_* : \mathbb{T} \to \gamma_*
\]

between a rigid rotation and \(H_{l^*\mu}|_{\gamma_*} \). Hence, setting \(l_* = e^{2\pi i \theta_1} \), we have

\[
G^r(\theta_1) = \theta
\]

for some \(r \geq 0 \).

Finally, since the limiting pair \(\zeta_\lambda \) has a critical point at \(z = 0 \), the conjugacies \(\varphi \) and \(\varphi_* \) cannot be \(C^1 \)-smooth. Indeed, assume the contrary. This would imply that there exists \(K > 1 \) such that for every arc \(J \subset \gamma_* \) and every \(n \in \mathbb{N} \), we have

\[
\frac{1}{K} \text{diam}(J) < \text{diam}(H_{l^*\mu}^n(J)) < K \text{diam}(J). \quad (28)
\]

However, let \(\Omega_n, \Gamma_n \) denote the domains of the pair \(p \mathcal{R}^n H_{l^*\mu} \). Let \(z \in \gamma_* \cap \Omega_n \) and \(z' = H_{l^*\mu}^n(z) \), and denote \(J_n \) the smaller subarc of \(\gamma_* \) bounded by these two points. Since

\[
\mathcal{R} H_{l^*\mu} \approx \zeta_\lambda
\]

for large values of \(n \), we have

\[
\text{diam}(H_{l^*\mu}^n(J_n)) \sim (\text{diam}(J_n))^2.
\]

This clearly contradicts (28). \(\square \)

4.3. The curve \(\gamma_* \) bounds a Siegel disk. Let us define a \(\varrho \)-vertical cone field in the tangent bundle \(T\Omega \) where \(\Omega \) is a subdomain of \(\mathbb{C}^2 \) as

\[
C_{\text{vert.}},\varrho \equiv \left\{ (u, v) \in T_{(x,y)}\Omega, \ |u| < \varrho |v| \right\}.
\]

Let \(f : U \to \mathbb{C} \) be a holomorphic map. We consider two-dimensional perturbations of this map \(F : \Omega \to \mathbb{C}^2 \) of the form

\[
F(x, y) = (w(x, y), h(x, y)) = (f(x) + \tau(x, y), g(x) + \chi(x, y)). \quad (29)
\]

We note:
Proposition 4.4. Suppose \(|f'(x)|, |g'(x)| > \kappa\) and \(|f'(x)|, |g'(x)| < K\) on the domain \(U\) for some \(\kappa > 0\). Let \(F^{-1}\) be defined on \(\Delta = F(\Omega)\).

Then there exist \(\epsilon > 0\) and \(\varphi > 0\) such that the following holds. Suppose the uniform norms of \(\tau\) and \(\chi\) in (29) on \(\Omega\) are bounded by \(\epsilon\). Given \(\hat{\Delta} \subseteq \Delta\), for every \((x, y) \in \hat{\Delta}\), denoting \((x_1, y_1) = F(x, y)\), we have

\[
DF^{-1}|_{(x_1, y_1)} \left(C_{\text{vert}, \varphi}^{(x_1, y_1)} \right) \subset C_{\text{vert}, \varphi}^{(x, y)},
\]

and \(\|DF^{-1}\| > O\left(\frac{\kappa}{K\epsilon}\right)\) in \(C_{\text{vert}, \varphi}\).

Proof. Let \(w_i(x, y) = \partial_i w(x, y)\) denote the \(i\)-th partial derivative of \(w(x, y)\), \(i = 1, 2\). Similarly for \(h_i(x, y)\). A simple computation shows that:

\[
DF^{-1}(x_1, y_1) \left[\begin{array}{c} u \\ v \end{array} \right] = \frac{1}{D(x, y)} \left[\begin{array}{c} h_2(x, y) - w_2(x, y) \\ -h_1(x, y) - w_1(x, y) \end{array} \right] \cdot \left[\begin{array}{c} u \\ v \end{array} \right] = \frac{1}{D(x, y)} \left[\begin{array}{c} \tilde{u} \\ \tilde{v} \end{array} \right],
\]

where \(D(x, y) = w_1(x, y)h_2(x, y) - w_2(x, y)h_1(x, y)\), and

\[
|\tilde{u}| < C\epsilon(|u| + |v|) < C\epsilon(\rho + 1)|v|,
\]

\[
|\tilde{v}| > (\kappa - C\epsilon)|v| - (|g_1(x_1)| + C\epsilon)|u| > (\kappa - C(1 + \rho)e - \rho K)|v|,
\]

and \(|\tilde{u}| < \rho|\tilde{v}|\) if \(\rho(\kappa - \varphi K) > C\epsilon(\rho + 1)^2\). Furthermore, \(|D(x, y)| < 2(K + C\epsilon)C\epsilon\) for some \(C > 0\) and all \((x, y) \in \hat{\Delta}\). The lower bound on the operator norm \(\|DF^{-1}\|\) on the vertical cone field follows. \(\square\)

As before, for \(H_{t, \mu} \in W^s(\zeta_\lambda)\), we let \(\Omega_n, \Gamma_n\) be the domains of the pair \(\mathfrak{Z}_n = (\mathfrak{A}_n, \mathfrak{B}_n) \equiv p\mathcal{R}^n H_{t, \mu}\).

For brevity, let us also write

\[
\Delta_n \equiv \Omega_n \cup \Gamma_n
\]

and \(\Delta'_n \equiv \mathfrak{Z}_n(\Delta_n) \equiv \mathfrak{A}_n(\Omega_n) \cup \mathfrak{B}_n(\Gamma_n)\).

Let \(\alpha_*\) be the scaling factor \(\alpha_n\) (see definition (6)) for the pair \(\zeta_\lambda\).

Proposition 4.5. There exists \(N \in \mathbb{N}\) such that for any \(n \geq N\) we can select \(\delta_0 > 0\), \(k \in \mathbb{N}\) and \(\varphi > 0\) so that the following holds. Let \(|\mu| < \delta < \delta_0\) and \(H_{t\mu} \in W^s(\zeta_\lambda)\). Then the derivatives of the inverse branches of the restriction of the pair \(\mathfrak{Z}_n\) to the domains \(\Delta_n \setminus \Delta_{n+k}\) preserve the vertical cone field \(C_{\text{vert}, \varphi}\) and expand vectors in \(C_{\text{vert}, \varphi}\) at a rate \(O(|\alpha_*|^k \delta^{-2})\).

Proof. Let \(\mathfrak{Z}_n = (f_n(x) + \tau_n(x, y), g_n(x) + \chi_n(x, y))\). By Lemma 3.1, the uniform norms of \(\tau_n\) and \(\chi_n\) on \(\Delta_n\) are bounded from above by \(O(\delta^2)\).

Notice that \(\Delta_{n+k}\) is an image of \(\Delta_n\) under a linear map which converges to \((\alpha_*^k, 0)\) as \(n \to \infty\). Therefore, if \((x, 0) \in (\Delta_n \setminus \Delta_{n+k}) \cap \{y = 0\}\), then

\[
C_2|\alpha_*|^n > |x| > C_1|\alpha_*|^{n+k},
\]

for some \(C_1\) and \(C_2\), which gives

\[
C_4|\alpha_*|^n > |f'_n(x)|, |g'_n(x)| > C_3|\alpha_*|^{n+k},
\]

and \(\|DF^{-1}\| > O\left(\frac{\kappa}{K\epsilon}\right)\) in \(C_{\text{vert}, \varphi}\).
for some C_3 and C_4. The result follows from Proposition 4.4 with $\epsilon = O(\delta^2)$, $\kappa = O(|\alpha|^{|n+k|})$ and $K = O(|\alpha|^n)$.

The following result will be used in the proof of Proposition 4.7.

Lemma 4.6. (Löwner [Löw]) Let $f : \mathbb{D} \mapsto \mathbb{D}$ be holomorphic with $f(0) = 0$. If f extends to a homeomorphism of $\partial \mathbb{D}$, then f is a rotation.

We can now complete the proof of Theorem C.

Proposition 4.7. There exists $\delta > 0$ such that the following holds. Let $H_{i, \mu} \in W^s(\zeta_\lambda)$ with $|\mu| < \delta$ and let γ_\ast be the invariant curve constructed in Proposition 4.2. Then γ_\ast bounds a Siegel disk for $H_{i, \mu}$. The eigenvalue l_\ast is equal to

$$
\lambda_1 = e^{2\pi i \theta} \text{ with } \theta = G^m(\theta_1) \text{ for some } m \geq 0.
$$

Finally, there exists $\epsilon_1 > 0$ such that for all $|\mu| < \epsilon_1$ and for all λ_1 satisfying (31), we have $H_{\lambda, \mu} \in W^s(\zeta_\lambda)$.

Proof. Let us select k, N, and φ as in Proposition 4.5. Let $i \geq N$. Fix an open subdomain $\hat{\Delta}_i \in \Delta_i \cap \Delta'$. Since $H_{i, \mu}$ is an δ-small perturbation of the Siegel quadratic polynomial P_λ, we can select $\delta > 0$ small enough so that the map $H_{i, \mu}$ is normally hyperbolic in a sufficiently large neighborhood of the α-fixed point of P_λ. In particular, by Proposition 4.5 it is normally hyperbolic in the set $\Delta_i \setminus \Delta_{i+k}$. Let q be the fixed point of $H_{i, \mu}$ which is closest to the α-fixed point of P_λ. By the Graph Transform, the map $H_{i, \mu}$ has a weak stable/unstable/center manifold W of q which is δ-close to the slice $\{y = 0\}$ (see [HPS]), and therefore $W \cap \Delta_i \neq \emptyset$ if δ is sufficiently small.

Let us begin with the case when q is attracting. By Proposition 4.5 the inverse branches of $\mathcal{Z}_{i+m,k}$, $m \geq 0$ are normally hyperbolic in $\Delta_{i+m,k} \setminus \Delta_{i+(m+1)k}$. Therefore, the weak attracting submanifold W interesects $\Delta_{i+m,k}$ for all $m \in \mathbb{N}$. We conclude that the invariant curve γ_\ast lies in the closure of W. Applying Löwner's Lemma 4.6 we arrive to a contradiction.

Suppose q is hyperbolic. Then $W = W^u(q)$, the unstable manifold of q, and successive applications of Proposition 4.5 as above imply that W extends to the invariant curve γ_\ast, which is then its boundary. This, again, contradicts Löwner's Lemma 4.6.

Finally, suppose that q is semi-neutral (that is, the linear part of the Hénon map at q has a neutral eigenvalue of absolute value 1 and a dissipative eigenvalue of absolute value smaller than 1). In this case $W = W^c(q)$: it is only smooth, and a priori, not uniquely defined. The restriction $H_{i, \mu}|_W$ is not necessarily holomorphic.

By density of the irrational of bounded type in the circle, we can choose a sequence $H_{i, \mu}$ of maps whose neutral eigenvalue $l_j = e^{2\pi i \vartheta_j}$ for some angle $\vartheta_j \in \mathbb{R} \setminus \mathbb{Q}$ of bounded type, converging to $H_{i, \mu}$. By continuity of the renormalization
operator, for every $M \in \mathbb{N}$, there exists $J = J(M)$, such that for all $j > J(M) H_{l_j, \mu}$ is $i + Mk$ times renormalizable with the height of the renormalizations coinciding with those for the map $H_{l_{\ast}, \mu}$. The Siegel disk W_j of $H_{l_j, \mu}$ is an analytic submanifold of \mathbb{C}^2. Applying Proposition 4.5 to the inverse branches of Z_{i+mk}, $0 \leq m \leq M$ of $H_{l_j, \mu}$, and using considerations of dominated splitting, we can extend W_j for large j to intersect each $\hat{\Delta}_{i+km}$, $0 \leq m \leq M$. The rotation numbers of the orbits of points in $W_j \cap \hat{\Delta}_{i+km}$, whose continued fraction expansion is given by the renormalization heights, approach θ_1. Since, the rotation number of the orbits of $H_{l_j, \mu}|W_j$ is constant, $l_{\ast} \mapsto \theta_1$, $DH_{l_{\ast}, \mu}(q) = \lim_{j \to \infty} DH_{l_j, \mu}(q_j)$, and $l_{\ast} = e^{2\pi i \theta_1}$. Therefore, W is a Siegel disk for $H_{l_{\ast}, \mu}$, and $H_{l_{\ast}, \mu}|W$ is holomorphic.

By Proposition 4.5 the submanifold W intersects Δ_{i+mk} for all $m \in \mathbb{N}$, and, therefore γ_{\ast} lies in the closure of W. By Proposition 4.2, the restriction $H_{l_{\ast}, \mu}|\gamma_{\ast}$ is a homeomorphism, but not a diffeomorphism, therefore γ_{\ast} cannot lie in W.

Conversely, let $\lambda_1 = e^{2\pi i \theta_1}$ satisfy (31). As shown in Theorem 4.1 if μ is small enough, then the family $l \mapsto H_{l, \mu}$ intersects the stable set of ζ_λ near P_{λ_1}. Denote $l = \lambda_2$ the parameter of the intersection. As we have shown above, if $|\mu| < \epsilon$, then $\lambda_2 = e^{2\pi i \theta_2}$, where $\theta = G^j(\theta_2)$. The digits in the continued fraction expansion of θ_2 correspond to the periods of renormalizations of $H_{\lambda_2, \mu}$. By considerations of continuity, if μ is small enough, then the digits in the continued fractions of θ_2 and θ_1 coincide, and hence, $\lambda_2 = \lambda_1$.

References

[BS1] E. Bedford, J. Smillie, *Polynomial diffeomorphisms of \mathbb{C}^2: currents, equilibrium measure and hyperbolicity*, Invent. Math. 103 (1991), no. 1, 69-99.

[BS2] E. Bedford, J. Smillie, *Polynomial diffeomorphisms of \mathbb{C}^2 II: Stable manifolds and recurrence*, J. Am. Math. Soc. 4(4) (1991), 657-679.

[Brj] A.D. Brjuno, Analytical form of differential equations. Transactions of the Moscow Mathematical Society 25, 131-288 (1971); 26, 199-239 (1972).

[Bur] A. Burbanks, *Renormalization for Siegel disks*, Ph.D. Thesis, Loughborough University, 1997.

[dCLM] A. de Carvalho, M. Lyubich, M. Martens, *Renormalization in the Hénon Family, I: Universality but Non-Rigidity*, J. Stat. Phys. (2006) 121 5/6, 611-669.

[dFdM] E. de Faria, W. de Melo, *Rigidity of critical circle mappings I*, Journal of the European Mathematical Society 1 (1999), 339-392.

[GaYa1] D. Gaidashev, M. Yampolsky, *Cylinder renormalization of Siegel disks*, Exp. Math., 16(2007), 215-226.

[GaYa2] D. Gaidashev, M. Yampolsky, *Golden mean Siegel disk universality and renormalization*, e-print arXiv:1604.00717.

[GaYa3] D. Gaidashev, M. Yampolsky, *Renormalization of almost commuting pairs*, e-print arXiv:1604.00719.

[He] M. Herman, *Recent results and some open questions on Siegels linearization theorem of germs of complex analytic diffeomorphisms of \mathbb{C}^n near a fixed point*, VIIIth international
congress on mathematical physics (Marseille, 1986), World Sci. Publishing, Singapore, 1987, pp. 138-184.

[HOV1] J. H. Hubbard, R.W. Oberste-Vorth, Hénon mappings in the complex domain I: The global topology of dynamical space, Pub. Math. IHES 79 (1994), 5-46.

[HPS] M. Hirsch, C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, New York, 1977.

[Löw] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I., Math. Ann., 89 (1923) 103-121.

[LRT] M. Lyubich, R. Radu, R. Tanase, Hedgehogs in higher dimensions and their applications, e-print arXiv:1611.09840.

[Mc] C. McMullen, Self-similarity of Siegel disks and Hausdorff dimension of Julia sets, Acta Math. 180 (1998), 247-292.

[MNTU] S. Morosawa, Y. Nishimura, M. Taniguchi, T. Ueda, Holomorphic dynamics, Cambridge Studies in Advanced Mathematics, 66. Cambridge University Press, Cambridge, 2000.

[O] G. Osipenko, Center Manifolds, Encyclopedia of Complexity and Systems Science 2009: 936-951.

[Pet] C.L. Petersen, Local connectivity of some Julia sets containing a circle with an irrational rotation. Acta Math., 177 (1996), 163-224.

[S] M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, 1987.

[Sie] C. L. Siegel, Iteration of analytic functions, Annals of Mathematics (2) 43, 607-612 (1942).

[Stir] A. Stirnemann, Existence of the Siegel disc renormalization fixed point, Nonlinearity 7 (1994), no. 3, 959-974.

[Ya1] M. Yampolsky, Complex bounds for renormalization of critical circle maps, Ergodic Theory and Dynamical Systems 18(1998), 1-31.

[Ya2] M. Yampolsky, Siegel disks and renormalization fixed points, Fields Institute Communications, 53 (2008).

Uppsala University, Uppsala, Sweden

E-mail address: gaidash@math.uu.se

Stony Brook University, Stony Brook, United States

E-mail address: rradu@math.stonybrook.edu

University of Toronto, Toronto, Canada

E-mail address: yampol@math.utoronto.ca