ON THE COEFFICIENT OF THE n^{th} CESARO MEAN OF ORDER α OF BI-UNIVALENT FUNCTIONS

ADNAN GHAZY ALAMOUSH

ABSTRACT. The purpose of the present paper is to introduce a new subclasses of the function class of bi-univalent functions defined in the open unit disc. Furthermore, we obtain estimates on the coefficients $|a_2|$ and $|a_3|$ for functions of this class. Some results related to this work will be briefly indicated.

1. INTRODUCTION

Let A denote the class of the functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disc $U = \{ z \in \mathbb{C} : |z| < 1 \}$ and satisfy the normalization condition $f(0) = f'(0) - 1 = 0$. Let S be the subclass of A consisting of functions of the form (1) which are also univalent in U.

A function $f \in A$ is said to be in the class of strongly bi-starlike functions of order α ($0 < \alpha \leq 1$), denoted by $S^*_\Sigma(\alpha)$, if each of the following conditions is satisfied:

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\alpha \pi}{2}, \,(|z| < 1, 0 < \alpha \leq 1),$$

and

$$\left| \arg \left\{ \frac{zg'(w)}{g(w)} \right\} \right| < \frac{\alpha \pi}{2}, \,(|w| < 1, 0 < \alpha \leq 1),$$

where g is the extension of f^{-1} to U (for details see [Brannan and Taha]). And is said to be in the class of strongly bi-convex functions of order α ($0 < \alpha \leq 1$), denoted by $K^*_\Sigma(\alpha)$, if it satisfies the following inequality

$$\left| \arg \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \right| < \frac{\alpha \pi}{2}, \,(|z| < 1, 0 < \alpha \leq 1).$$

and

$$\left| \arg \left\{ 1 + \frac{wg''(w)}{g'(w)} \right\} \right| < \frac{\alpha \pi}{2}, \,(|w| < 1, 0 < \alpha \leq 1).$$

Where g is the extension of f^{-1} to U. Recall that the Koebe one-quarter theorem [2] ensures that the image of D under every univalent function $f \in S$ contains a disk of radius $\frac{1}{4}$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z)) = z, (z \in D)$ and

$$f^{-1}(f(w)) = w, (|w| < r_0 f, r_0 f \geq \frac{1}{4}).$$

$$g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^2 - 5a_2a_3 + a_4)w^4 + \ldots \quad (2)$$

In recent years, many authors discussed estimate on the coefficients $|a_2|$ and $|a_3|$ for subclasses of bi-univalent function (see for example [3], [4], [5], [6], [7], [8]).
Let \(f : D \to C \) be an analytic function on \(D \) having Taylor expansion \(f(z) = \sum_{n=1}^{\infty} a_n z^n, z \in D \), with \(a_n \in C, a_1 = 1, n = 1, 2, 3, \ldots \). A function \(f \in S \) is bi-univalent in \(D \) if both \(f \) and \(f^{-1} \) are univalent in \(D \).

The object of the present paper is to introduce a new subclass \(\Sigma \) of the function class \(\Sigma \) and to find estimates on the coefficients \(|a_2| \) and \(|a_3| \) for new functions in these new subclasses of the function class \(\Sigma \).

We say that \(\delta_n^\alpha f(z) \) is the \(n^\text{th} \) Cesaro mean of order \(\alpha \geq 0 \) of \(f \) is defined by

\[
\delta_n^\alpha f(z) = z + \sum_{n=2}^{\infty} A_n a_n z^n
\]

where

\[
A_n = \frac{\left(k + \alpha - n \right)}{\left(k - n \right)} - \frac{\left(k + \alpha - 1 \right)}{\left(k - n \right)}, \quad a_1 = 1.
\]

Let \(D \) denote the open unit disk in \(C \). It is well known that outer functions are zero-free on the unit disk. Outer functions, which play an important role in \(H_p \) theory to find a suitable finite (polynomial) approximation for the outer infinite series \(f \) so that the approximant reduces the zero-free property of \(f \), arise in the characteristic equation which determines the stability of certain nonlinear systems of differential equations. Recall that an outer function is a function \(f \in H_p \) of the form

\[
f(z) = e^{i\gamma} e^{\int_{-\pi}^{\pi} \frac{1}{1 - e^{it} z} \log \psi(t) dt}
\]

where \(\psi(t) \geq 0 \), \(\log \psi(t) \) is in \(L^1 \) and \(\psi(t) \) is in \(L^p \). See [9] for the definitions and classical properties of outer functions. Since any function \(f \) in \(H^1 \) which has \(1/f \) in \(H^1 \) is an outer function, then typical examples of outer functions can be generated by functions of the form \(\prod_{k=1}^{\infty} (1 - e^{i\theta_k z})^{\alpha_k} \) for \(-1 < \alpha_k < 1\).

We observe for outer functions that the standard Taylor approximants do not, in general, retain the zero-free property of \(f \). It was shown in [10] that the Taylor approximating polynomials to outer functions can vanish in the unit disk. By using convolution methods that the classical Cesaro means, retains the zero-free property of the derivatives of bounded convex functions in the unit disk. The classical Cesaro means play an important role in geometric function theory (see [11],[12]).

Lemma 1.1. If \(h \in p \) then \(|c_k| < 1 \), for each \(k \), where \(p \) is the family of all functions \(h \) analytic in \(U \) for which \(\Re\{h(z)\} > 0 \), then

\[
h(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \ldots, z \in U.
\]

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS \(H_{\Sigma}(\psi) \)

In the sequel, it is assumed that \(\varphi \) is an analytic function with positive real part in the unit disk \(D \), satisfying \(\psi(0) = 1, \psi'(0) > 0, \) and \(\psi(D) \) is symmetric with respect to the real axis. Such a function has a Taylor series of the form

\[
\psi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots, (B_1 > 0).
\]
Suppose that \(u(z) \) and \(v(z) \) are analytic in the unit disk \(D \) with \(u(0) = v(0) = 0, |u(z)| < 1, |v(z)| < 1 \), and suppose that

\[
u(z) = b_1z + \sum_{n=2}^\infty b_n z^n, \quad v(z) = c_1z + \sum_{n=2}^\infty c_n z^n, \quad (|z| < 1).
\]

(4)

It is well known that

\[
|b_1| \leq 1, \quad |b_2| \leq 1 - |b_1|^2, \quad |c_1| \leq 1, \quad |c_2| \leq 1 - |c_1|^2.
\]

(5)

By a simple calculation, we have

\[
\psi(u(z)) = 1 + B_1b_1z + (B_1b_2 + B_2b_1^2)z^2 + \ldots, \quad |z| < 1
\]

(6)

and

\[
\psi(v(w)) = 1 + B_1c_1w + (B_1c_2 + B_2c_1^2)w^2 + \ldots, \quad |w| < 1.
\]

(7)

Definition 2.1. [13] A function \(f \in \Sigma \) is said to be in the class \(H_{\Sigma}(\psi) \) if and only if

\[
f'(z) < \psi(z), \quad g'(z) < \psi(w),
\]

where \(g(w) = f^{-1}(w) \).

Theorem 2.2. If \(f \) given by (1) is in the class \(H_{\Sigma}(k, \psi) \), then

\[
|a_2| \leq \left| \frac{k + \alpha - 1}{k - 2} \right| \frac{B_1\sqrt{B_1}}{\sqrt{[3B_1^2 - 4B_2] + 4B_1}}
\]

(8)

and

\[
|a_3| \leq \left[\frac{k + \alpha - 1}{k - 3} \right] \left[(1 - \frac{4}{3B_1}) \frac{B_1^3}{[3B_1^2 - 4B_2] + 4B_1} + \frac{B_1}{3} \right].
\]

(9)

Proof. Let \(f \in H_{\Sigma}(k, \psi) \) and \(g = f^{-1} \). Where \(a_1 = 1 \). Then there are analytic functions \(u, v : D \to D \) given by (4) such that

\[
[\delta_n^a f(z)]' = \psi(u(z)), \quad [\delta_n^a g(w)]' = \psi(v(w)),
\]

(10)

since

\[
[\delta_n^a f(z)]' = 1 + 2A_2a_2z + 3A_3a_3z^3 + \ldots,
\]

\[
[\delta_n^a g(w)]' = 1 - 2A_2a_2w + 3[2A_2^2a_2^2 - A_3a_3]w^3 + \ldots,
\]

(11)

it follows from (6), (7), (10) and (11) that
\[2A_2a_2 = B_1b_1, \quad (12)\]
\[3A_3a_3 = B_1b_2 + B_2b_1^2, \quad (13)\]
\[-2A_2a_2 = B_1c_1, \quad (14)\]
\[3[2A_2a_2^2 - A_3a_3] = B_1c_2 + B_2c_1^2. \quad (15)\]

From (12) and (14), we get
\[b_1 = -c_1. \quad (16)\]

By adding (15) to (13), further computations using (12) and (16) lead to
\[A_2^2a_2^2[3B_1^2 - 8B_2] = B_1^3(b_2 + c_2). \quad (17)\]

Also, from (16) and (17), together with (5), we obtain
\[|A_2^2a_2^2[3B_1^2 - 8B_2]| \leq 2B_1^3(1 - |b_1|^2). \quad (18)\]

From (12) and (18) we get
\[|a_2| \leq \left| \frac{\binom{k + \alpha - 1}{k - 2}}{\binom{k + \alpha - 2}{k - 2}} \right| \frac{B_1\sqrt{B_1}}{\sqrt{\|3B_1^2 - 4B_2\| + 3B_1}}. \]

Which, in view of the well-known inequalities \(|b_2| \leq 2\) and \(|c_2| \leq 2\) for functions with positive real part, gives us the desired estimate on \(|a_2|\) as asserted in (8). By subtracting (15) from (13), further computations using (12) and (16) lead to
\[6A_3a_3 = 6A_2^2a_2^2 + B_1(b_2 - c_2). \quad (19)\]

From (5), (12), (16) and (19), it follows that
\[|a_3| \leq \frac{6A_3^2|a_2|^2 + B_3(|b_2| + |c_2|)}{6A_3} \]
\[\leq \frac{6A_3^2|a_2|^2 + B_1(1 - |b_1|^2) + (1 - |c_1|^2)}{6A_3} \]
\[\leq \frac{1}{A_3} \cdot \left| \frac{4}{3B_1} \right|^2 + \frac{B_1}{3A_3} \]
\[|a_3| \leq \left(\frac{k + \alpha - 1}{k - 3} \right) \left(\frac{k + \alpha - 3}{k - 3} \right) \left[(1 - \frac{4}{3B_1}) \frac{B_1^3}{\|3B_1^2 - 4B_2\| + 3B_1} + \frac{B_1}{3} \right]. \]
3. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $Q_{\Sigma}(\alpha, \mu, \lambda)$

Definition 3.1. A function $f(z)$ given by (1) is said to be in the class $Q_{\Sigma}(\alpha, \mu, \lambda)$ if the following conditions are satisfied: For $f \in \Sigma$,

$$\left| \arg \left\{ \frac{(1 - \lambda)\delta_n^\alpha f(z) + \lambda z[\delta_n^\alpha f(z)]'}{z} \right\} \right| < \frac{\pi\alpha}{2}, \alpha(0 < \alpha \leq 1, \lambda \geq 1, z \in U),$$

(20)

and

$$\left| \arg \left\{ \frac{(1 - \lambda)\delta_n^\alpha g(w) + \lambda w[\delta_n^\alpha g(w)]'}{w} \right\} \right| < \frac{\pi\alpha}{2}, \alpha(0 < \alpha \leq 1, \lambda \geq 1, w \in U),$$

(21)

where the function g defined by (2).

Theorem 3.2. Let the function $f(z)$ given by (1) be in the class $Q_{\Sigma}(\alpha, \mu, \lambda)$, $n \in N_0, 0 \leq \beta < 1, \lambda \geq 1$. Then

$$|a_2| \leq 2\alpha \left| \frac{\left(\frac{k + \alpha - 1}{k - 2} \right) - \left(\frac{k + \alpha - 2}{k - 2} \right)}{\sqrt{4} \left(1 + \lambda \right)^2 + \alpha \left[2.3k \left(1 + \lambda \right) - 4k \left(1 + \lambda \right)^2 \right]} \right|,$$

where $p(z)$ and $q(w)$ in P and $a_1 = 1$, and have the forms

$$p(z) = 1 + p_1z + p_2z^2 + p_3z^3 + \ldots,$$

(26)

and

$$q(w) = 1 + p_1w + q_2w^2 + q_3w^3 + \ldots.$$

(27)

Now, equating the coefficients in (24) and (25), we obtain

$$(1 + \lambda)A_2a_2 = \alpha p_1,$$

(28)

$$(1 + 2\lambda)A_3a_3 = \frac{1}{2}[2\alpha p_2 + \alpha(\alpha - 1)p_1^2],$$

(29)

and

$$-(1 + \lambda)A_2a_2 = \alpha q_1,$$

(30)

$$(1 + 2\lambda)[2A_2a_2^2 - A_3a_3] = \frac{1}{2}[2\alpha q_2 + \alpha(\alpha - 1)q_1^2].$$

(31)
From (28) and (30), we obtain

\[p_1 = -q_1 \]

(32)

and

\[2(1 + \lambda)^2 A_2^2 a_2^2 = \alpha^2(p_1^2 + q_1^2). \]

(33)

Now, from (29), (31) and (33), we obtain

\[2(1 + 2\lambda) A_2^2 a_2^2 = \alpha(p_2 + q_2) + \frac{\alpha(\alpha - 1)}{2} \frac{2(1 + \lambda)^2 A_2^2 a_2^2}{\alpha^2}. \]

Therefore we have

\[a_2^2 = \frac{\alpha^2(p_2 + q_2)}{(1 + \lambda)^2 + \alpha(1 + 2\lambda) - \lambda^2} A_2. \]

Applying Lemma 1.1 for the coefficients \(p_2 \) and \(q_2 \), we immediately have

\[|a_2| \leq 2\alpha \left| \left(\frac{k + \alpha - 1}{k - 2} \right) \left(\frac{k + \alpha - 2}{k - 2} \right) \right| \frac{1}{\sqrt{4^\epsilon(1 + \lambda)^2 + \alpha[2.3^\epsilon (1 + \lambda) - 4^\epsilon (1 + \lambda)^2]}}. \]

This gives the bound as asserted in (22).

Next, in order to find the bound on \(|a_3| \), we subtract (29) from (31) and obtain

\[2[(1 + 2\lambda)(A_3 a_3 - A_2^2 a_2^2) = \frac{1}{2} \left(2\alpha(p_2 - q_2) + \alpha(\alpha - 1)(p_1^2 - q_1^2) \right) \]

\[= \frac{\alpha(p_2 - q_2)}{2(1 + 2\lambda) A_3} + \frac{\alpha^2(p_1^2 + q_1^2)}{2(1 + \lambda)^2 A_3}, \]

\[a_3 = \left[\begin{array}{c} \frac{k + \alpha - 1}{k - 3} \\ \frac{k + \alpha - 3}{k - 3} \end{array} \right] \left[\frac{\alpha(p_2 - q_2)}{2(1 + 2\lambda) A_3} + \frac{\alpha^2(p_1^2 + q_1^2)}{2(1 + \lambda)^2 A_3} \right]. \]

Applying Lemma 1.1 for the coefficients \(p_2 \) and \(q_2 \), we immediately have

\[|a_3| \leq \left[\begin{array}{c} \frac{k + \alpha - 1}{k - 3} \\ \frac{k + \alpha - 3}{k - 3} \end{array} \right] \left[\frac{2\alpha}{(1 + 2\lambda)} + \frac{4\alpha^2}{(1 + \lambda)^2} \right]. \]

This completes the proof of Theorem 3.2. \(\square \)
4. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $H_{\Sigma}(\beta, \mu, \lambda)$

Definition 4.1. A function $f(z)$ given by (1) is said to be in the class $H_{\Sigma}(\beta, \mu, \lambda)$ if the following conditions are satisfied: For $f \in \Sigma$,

$$\Re \left\{ \frac{(1 - \lambda) \delta_{\alpha} f(z) + \lambda z [\delta_{\alpha} f(z)]'}{z} \right\} > \beta, z \in U, n \in N_0, 0 \leq \beta < 1, \lambda \geq 1.$$

(34)

and

$$\Re \left\{ \frac{(1 - \lambda) \delta_{\alpha} g(w) + \lambda w [\delta_{\alpha} g(w)]'}{w} \right\} > \beta, w \in U, n \in N_0, 0 \leq \beta < 1, \lambda \geq 1,$$

(35)

where the function $g(z)$ defined by (2).

Theorem 4.2. Let $f(z)$ given by (1) be in the class $H_{\Sigma}(\beta, \mu, \lambda), 0 \leq \beta < 1, \mu \geq 0, \text{ and } \lambda \geq 1$. Then

$$|a_2| \leq \left[\frac{k + \alpha - 1}{k - 2} \right] \left[\frac{k - 2}{k + \alpha - 2} \right] \sqrt{\frac{2(1 - \beta)}{1 + 2\lambda}}.$$

(36)

and

$$|a_3| \leq \left[\frac{k + \alpha - 1}{k - 3} \right] \left[\frac{k - 3}{k + \alpha - 3} \right] \left[\frac{4(1 - \beta)^2 + 2(1 - \beta)}{(1 + \lambda)^2 + (1 + 2\lambda)} \right].$$

(37)

Proof. It follows from (34) and (35) that there exists $p, q \in P$ such that

$$\frac{(1 - \lambda) \delta_{\alpha} f(z) + \lambda z [\delta_{\alpha} f(z)]'}{z} = \beta + (1 - \beta)p(z),$$

(38)

and

$$\frac{(1 - \lambda) \delta_{\alpha} g(w) + \lambda w [\delta_{\alpha} g(w)]'}{w} = \beta + (1 - \beta)q(w),$$

(39)

where $a_1 = 1$, and have the forms

$$p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \ldots,$$

(40)

and

$$q(w) = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \ldots,$$

(41)

respectively. Equating coefficients in (38) and (39) yields

$$[(1 + \lambda) A_2 a_2 = (1 - \beta)p_1,$$

(42)

$$[(1 + 2\lambda) A_3 a_3 = (1 - \beta)p_2,$$

(43)

$$- [(1 + \lambda) A_2 a_2 = (1 - \beta)q_1,$$

(44)

and

$$(1 + 2\lambda)[2 A_2^2 a_2^2 - A_3 a_3] = (1 - \beta)q_2.$$

(45)
From (42) and (44), we have

\[-p_1 = q_1 \tag{46}\]

and

\[2(1 + \lambda)^2 A_2^2 a_2^2 = (1 - \beta)^2(p_1^2 + q_1^2) \tag{47}\]

Also, from (43) and (45), we find that

\[2(1 + 2\lambda) A_2^2 a_2^2 = (1 - \beta)(p_2 + q_2), \tag{48}\]

\[|a_2|^2 \leq \begin{bmatrix} k + \alpha - 1 \\ k - 2 \end{bmatrix} \begin{bmatrix} k + \alpha - 2 \\ k - 2 \end{bmatrix} \frac{(1 - \beta)(|p_2| + |q_2|)}{2(1 + 2\lambda)}, \tag{49}\]

\[|a_2| \leq \sqrt{\frac{2(1 - \beta)}{1 + 2\lambda}}, \tag{50}\]

which is the bound on $|a_2|$ as given in (36).

Next, in order to find the bound on $|a_3|$ by subtracting (45) from (43), we obtain

\[2A_3(1 + 2\lambda) a_3 = 2(1 + 2\lambda) A_2^2 a_2^2 + (1 - \beta)(p_2 - q_2) \]

or, equivalently

\[a_3 = \frac{2(1 + 2\lambda) A_2^2 a_2^2 + (1 - \beta)(p_2 - q_2)}{2A_3(1 + 2\lambda)}. \]

Upon substituting the value of a_2^2 from (47), we obtain

\[a_3 = A_3 \left[\frac{(1 - \beta)^2(p_1^2 + q_1^2)}{2(1 + \lambda)^2} + \frac{(1 - \beta)(p_2 - q_2)}{2(1 + 2\lambda)} \right]. \]

Applying Lemma 1.1 for the coefficients p_1, p_2, q_1 and q_2 we obtain

\[a_3 = A_3 \left[\frac{4(1 - \beta)^2}{(1 + \lambda)^2} + \frac{2(1 - \beta)(p_2 - q_2)}{(1 + 2\lambda)^2} \right]. \]

\[|a_3| \leq \begin{bmatrix} k + \alpha - 1 \\ k - 3 \end{bmatrix} \begin{bmatrix} k + \alpha - 3 \\ k - 3 \end{bmatrix} \left[\frac{4(1 - \beta)^2}{(1 + \lambda)^2} + \frac{2(1 - \beta)}{(1 + 2\lambda)^2} \right]. \]

which is the bound on $|a_3|$ as asserted in (37). \qed

Remark. 1. For all $\alpha \geq 0$, and $k = n$ in Theorems 2.2, we obtain the corresponding results due to Zhigang and Qiuqiu [14].
Remark. 2. For all $\alpha \geq 0$, and $k = n$ in Theorems 3.2 and 4.2, we obtain the corresponding results due to Frasin and Aouf [4].

REFERENCES

[1] Brannan D. A., Taha T. S., On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Math. Anal. and Appl., Kuwait; February 1821, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 5360. see also Studia Univ. Babe-Bolyai Math., 31 (2) (1986): 70-77.
[2] Duren P. L., Univalent Functions, Springer-Verlag, Berlin, 1983.
[3] Srivastava H. M., Mishra A. K., and Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010): 1188-1192.
[4] Frasin B. A., Aouf M. K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011): 1569-1573.
[5] Alamoush A. G., Darus M., Coefficient bound for new subclasses of bi-univalent functions using Hadamard product, Acta Univ. Apul., 18 (2) (2014): 153-161.
[6] Alamoush A. G., Darus M., On coefficient estimates for bi-univalent functions of fox-wright functions, Far East Jour. Math. Sci., 89 (2) (2014): 249 - 262.
[7] Alamoush A. G., Darus M., On coefficient estimates for new generalized subclasses of bi-univalent functions, AIP Conf. Proc., 1614, 844 (2014).
[8] Alamoush A. G., Coefficient estimates for certain subclass of bi functions associated the Horadam polynomials, arXiv: 1812.10589 (2019).
[9] Duren P. L., Theory of H_p spaces, Acad. Press. 1970.
[10] Barnard R. W., Cima J., and Pearce K., Cesaro sum approximation of outer functions, Ann. Univ. Maria Curie-Sklodowska Sect., A52 (1) (1998): 1-7.
[11] Ruscheweyh St., Geometric properties of Cesaro means, Results Math., 22 (1992): 739-748.
[12] Ruscheweyh St. Salinas L., Subordination by Cesaro means, Complex Var. Theory Appl., 21 (1993): 279-285.
[13] Ali R M., Lee S. K., Ravichandran V., and Shamani S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012): 344-351.
[14] Zhigang P., Qiuqiu H., On the coefficient of several classes of bi-univalent functions, Acta Math. Sci., 34 B(1): (2014), 228-240.

Adnan Ghazy Alamoush
Faculty of Science, Taibah University, Saudi Arabia.

Email: adnan–omoush@yahoo.com