Novel Three-Dimensional Copper(II) 1,2-Ethylenediphosphonate Framework with Channel-like Voids
Roberto Köferstein, Michael Arnold, Christian Robl

To cite this version:
Roberto Köferstein, Michael Arnold, Christian Robl. Novel Three-Dimensional Copper(II) 1,2-Ethylenediphosphonate Framework with Channel-like Voids. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, Wiley-VCH Verlag, 2016, 642, pp.1126 - 1132. hal-01991446

HAL Id: hal-01991446
https://hal.archives-ouvertes.fr/hal-01991446
Submitted on 23 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Novel Three-Dimensional Copper(II) 1,2-Ethylenediphosphonate Framework with Channel-like Voids

Roberto Köferstein[\textsuperscript{b}], Michael Arnold[\textsuperscript{a}] and Christian Robl\textsuperscript{a}\textsuperscript{[a]}

\textsuperscript{[a]} Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstrasse 8, 07743 Jena, Germany
\textsuperscript{[b]} Institute of Chemistry, Inorganic Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany

Abstract. Turquoise monoclinic single crystals of the novel three-dimensional Cu\textsubscript{2}[\textmu\textsubscript{8-O\textsubscript{3}P(CH\textsubscript{2})\textsubscript{2}PO\textsubscript{3}]}\textcdot3.2H\textsubscript{2}O coordination polymer have been prepared using the silica gel method. Space group \textit{C2/m} (no. 12) with \textit{a} = 1483.6(2), \textit{b} = 668.44(8), \textit{c} = 436.30(6) pm, \textit{\beta} = 93.28(2)°. The Cu\textsuperscript{2+} cation is coordinated by four oxygen atoms stemming from the 1,2-ethylenediphosphonate dianions in a square planar manner and two water molecules in the axial positions. The connection between the Cu\textsuperscript{2+} cations and the [PO\textsubscript{3}C] units from the 1,2-ethylenediphosphonate dianions leads to layers parallel to (100), which are linked by the ethylene groups to a three-dimensional framework with channel-like voids. The voids accommodate water molecules not bound to Cu\textsuperscript{2+} and extend parallel along [001] with an opening of about 550 \times 260 pm. Magnetic measurements reveal an antiferromagnetic behaviour due to a superexchange coupling between Cu\textsuperscript{2+} ions through an oxygen bridge. The UV-Vis spectrum reveals three \textit{d}–\textit{d} transition bands at 694, 774, and 918 nm. The compound can be fully dehydrated by thermal treatment and rehydrated by storage in ambient air.
A Novel Three-Dimensional Cu(II) 1,2-Ethylenediphosphonate Framework with Channel-like Voids

Roberto Köferstein[b], Michael Arnold[a], and Christian Robl[a]

Keywords: 1,2-Ethylenediphosphonic acid; Metal-organic framework, Crystal structure, Voids, Magnetic properties, UV/Vis spectroscopy

Abstract. Turquoise monoclinic single crystals of the novel three-dimensional Cu$_2$[µ-O,P(CH$_2$)$_2$PO$_2$]·3.2H$_2$O coordination polymer have been prepared using the silica gel method. Space group $C2/m$ (no. 12) with $a = 1483.6(2)$, $b = 668.44(8)$, $c = 436.30(6)$ pm, $β = 93.28(2)^\circ$. The Cu$^{2+}$ cation is coordinated by four oxygen atoms stemming from the 1,2-ethylenediphosphonate dianions in a square planar manner and two water molecules in the axial positions. The connection between the Cu$^{2+}$ cations and the [PO$_2$C] units from the 1,2-ethylenediphosphonate dianions leads to layers parallel to (100), which are linked by the ethyleny groups to a three-dimensional framework with channel-like voids. The voids accommodate water molecules not bound to Cu$^{2+}$ and extend parallel along [001] with an opening of about 550 × 260 pm. Magnetic measurements reveal an antiferromagnetic behaviour due to a superexchange coupling between Cu$^{2+}$ ions through an oxygen bridge. The UV-Vis spectrum reveals three d-d transition bands at 694, 774, and 918 nm. The compound can be fully dehydrated by thermal treatment and rehydrated by storage in ambient air.

Introduction

Metal organophosphonates are of great interest due to their potential application e.g. as gas-phase sensor [1], catalyst [2, 3], and ion exchanger [4]. Using organodiphosphonates as ligands, various porous structures can be synthesized [5–10]. The connection between Cu$^{2+}$ and anions of alkylen- and arylenediphosphonic acids leads to coordination polymers with one-, two and three-dimensional structural features [11–18]. The structure depends on the chain lengths and shape of the organic unit. Cu(II)-alkylenediphosphonates possess mostly three-dimensional frameworks, in which compounds with e.g. butylene and pentylen units have an open three-dimensional framework accommodating water molecules [11]. On the other hand, depending on the synthesis conditions the reaction between Cu$^{2+}$ and 1,4-butylenediphosphonic acid can also result in a layer-like coordination polymer [16]. The structures of these coordination polymers can be modified using additional N-donor ligands [19–24]. Moreover, transition metal organodiphosphonates have interesting magnetic properties with ferromagnetic and/or antiferromagnetic interactions between the metal atoms [12–15,19,25–30].

Herein, we report on a novel zeolite-like three-dimensional copper 1,2-ethylenediphosphonate with channel-like voids accommodating water molecules.

Results and Discussion

The Cu$^{2+}$ cations in Cu$_2$[µ-O,P(CH$_2$)$_2$PO$_2$]·3.2H$_2$O occupy a crystallographic inversion centre of space group $C2/m$ (Wyckoff position 4f) and are equatorially surrounded by four oxygen atoms (2x O(1), 2x O(2)) leading to a slightly distorted square planar coordination. The four oxygen atoms stem from four crystallographically equivalent 1,2-ethylenediphosphonate dianions. The Cu–O distances in the equatorial plane are between 193.6(3) and 202.6(3) pm and the O–Cu–O angles do not differ significantly from 90 and 180° (Tab. 1). The best least-square-plane through Cu, O(1), O(2), O(1)$^{#1}$ and O(2)$^{#1}$ shows only minor deviation from planarity (maximum deviation of 4.3 pm). The water molecules O(w1) coordinate the copper ions in the axial positions with a long distance of 245.3(5) pm. Thus the coordination number is 4+2 resulting in an elongated octahedron with $D_{2h}$ symmetry in good approximation. The O(w1) position is not fully occupied with a site occupancy of 0.85(2). Employing the method of Brese and O’Keefe [31] the bond order is calculated to 2.04. Neighbouring Cu$^{2+}$ octahedra are tilted against each other by

* Corresponding Author
Fax: +493641-948152
E-Mail: crr@uni-jena.de
[a] Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldstrasse 8, 07743 Jena, Germany
[b] Institute of Chemistry, Inorganic Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Modresk-Straße 2, 06120 Halle, Germany

DOI: 10.1002/zaac.200

ARTICLE

A Novel Three-Dimensional Cu(II) 1,2-Ethylenediphosphonate Framework with Channel-like Voids

Roberto Köferstein[b], Michael Arnold[a], and Christian Robl[a]

Keywords: 1,2-Ethylenediphosphonic acid; Metal-organic framework, Crystal structure, Voids, Magnetic properties, UV/Vis spectroscopy

Abstract. Turquoise monoclinic single crystals of the novel three-dimensional Cu$_2$[µ-O,P(CH$_2$)$_2$PO$_2$]·3.2H$_2$O coordination polymer have been prepared using the silica gel method. Space group $C2/m$ (no. 12) with $a = 1483.6(2)$, $b = 668.44(8)$, $c = 436.30(6)$ pm, $β = 93.28(2)^\circ$. The Cu$^{2+}$ cation is coordinated by four oxygen atoms stemming from the 1,2-ethylenediphosphonate dianions in a square planar manner and two water molecules in the axial positions. The connection between the Cu$^{2+}$ cations and the [PO$_2$C] units from the 1,2-ethylenediphosphonate dianions leads to layers parallel to (100), which are linked by the ethylene groups to a three-dimensional framework with channel-like voids. The voids accommodate water molecules not bound to Cu$^{2+}$ and extend parallel along [001] with an opening of about 550 × 260 pm. Magnetic measurements reveal an antiferromagnetic behaviour due to a superexchange coupling between Cu$^{2+}$ ions through an oxygen bridge. The UV-Vis spectrum reveals three d-d transition bands at 694, 774, and 918 nm. The compound can be fully dehydrated by thermal treatment and rehydrated by storage in ambient air.

Introduction

Metal organophosphonates are of great interest due to their potential application e.g. as gas-phase sensor [1], catalyst [2, 3], and ion exchanger [4]. Using organodiphosphonates as ligands, various porous structures can be synthesized [5–10]. The connection between Cu$^{2+}$ and anions of alkylen- and arylenediphosphonic acids leads to coordination polymers with one-, two and three-dimensional structural features [11–18]. The structure depends on the chain lengths and shape of the organic unit. Cu(II)-alkylenediphosphonates possess mostly three-dimensional frameworks, in which compounds with e.g. butylene and pentylen units have an open three-dimensional framework accommodating water molecules [11]. On the other hand, depending on the synthesis conditions the reaction between Cu$^{2+}$ and 1,4-butylenediphosphonic acid can also result in a layer-like coordination polymer [16]. The structures of these coordination polymers can be modified using additional N-donor ligands [19–24]. Moreover, transition metal organodiphosphonates have interesting magnetic properties with ferromagnetic and/or antiferromagnetic interactions between the metal atoms [12–15,19,25–30].

Herein, we report on a novel zeolite-like three-dimensional copper 1,2-ethylenediphosphonate with channel-like voids accommodating water molecules.

Results and Discussion

The Cu$^{2+}$ cations in Cu$_2$[µ-O,P(CH$_2$)$_2$PO$_2$]·3.2H$_2$O occupy a crystallographic inversion centre of space group $C2/m$ (Wyckoff position 4f) and are equatorially surrounded by four oxygen atoms (2x O(1), 2x O(2)) leading to a slightly distorted square planar coordination. The four oxygen atoms stem from four crystallographically equivalent 1,2-ethylenediphosphonate dianions. The Cu–O distances in the equatorial plane are between 193.6(3) and 202.6(3) pm and the O–Cu–O angles do not differ significantly from 90 and 180° (Tab. 1). The best least-square-plane through Cu, O(1), O(2), O(1)$^{#1}$ and O(2)$^{#1}$ shows only minor deviation from planarity (maximum deviation of 4.3 pm). The water molecules O(w1) coordinate the copper ions in the axial positions with a long distance of 245.3(5) pm. Thus the coordination number is 4+2 resulting in an elongated octahedron with $D_{2h}$ symmetry in good approximation. The O(w1) position is not fully occupied with a site occupancy of 0.85(2). Employing the method of Brese and O’Keefe [31] the bond order is calculated to 2.04. Neighbouring Cu$^{2+}$ octahedra are tilted against each other by
The phosphorous atom is surrounded by three oxygen atoms and ethylene in a trans-(antiperiplanar) conformation with torsion angles of 63.9° tetrahedral fashion. The 1,2-ethylenediphosphonate dianion adopts a $-\text{C}$ mode in which each $\text{PO}_3^-$ group is coordinated to four $\text{Cu}^{2+}$ ions and adopts a $\eta_1^1$-$\eta_1^1$-$\eta_1^1$-$\eta_1^1$ connection mode (Fig. 2).

The 1,2-ethylenediphosphonate dianion lies on a mirror plane with a twofold crystallographic axis perpendicular to the C–C bond. The skeleton of the 1,2-ethylenediphosphonate dianion adopts a trans (antiperiplanar) conformation with torsion angles of $63.9^\circ$ (H–C–C–P) and $52.1^\circ$ (H–C–C–H), respectively. The phosphorous atom is surrounded by three oxygen atoms and one carbon atom from the ethylene group in a distorted tetrahedral fashion. The O–P bonds range from 151.8(3) to 155.7(5) pm, whereas the P–C bond is 179.8(6) pm (Tab. 2). The shorter P–O(2) bond lengths show considerable double bond character, which is also reflected in larger O–P–O angles involving O(2). The bond lengths and angles in the $\text{PO}_3^-$ groups differ only slightly from the values found in the 1,2-ethylenediphosphonic acid molecule [32], whereas the C–C single bond is significantly shorter (151.3(13) pm), and the P–P distance is enlarged by 5.6 pm to 445.1(2) pm. Each phosphonate group is coordinated to four Cu$^{2+}$ cations and adopts a $\eta_8$ coordination mode in which each $\text{PO}_3^-$ group shows a $\mu_4$-$\eta_1^1$-$\eta_1^1$-$\eta_1^1$-$\eta_1^1$-$\eta_1^1$-$\eta_1^1$-$\eta_1^1$ connection mode (Fig. 2).

![Figure 1. The coordination environment of Cu$^{2+}$.](image1)

![Figure 2. The connection between the 1,2-ethylenediphosphonate dianion and the Cu$^{2+}$ cations.](image2)

### Table 1. The Coordination Environment of Cu$^{2+}$

| Distances (pm) | Cu–O(1) | Cu–O(2) | Cu–O(w1) | Cu–O(w1) | Cu–O(w1) |
|---------------|---------|---------|----------|----------|----------|
| Cu–O(1)       | 193.6(3)| 202.6(3)| 245.3(5)| 245.3(5)| 334.2(1)|
| Cu–O(2)       | 193.6(3)| 202.6(3)| 245.3(5)| 245.3(5)| 334.2(1)|
| Cu–O(w1)      | 193.6(3)| 202.6(3)| 245.3(5)| 245.3(5)| 334.2(1)|
| Cu–O(w1)      | 193.6(3)| 202.6(3)| 245.3(5)| 245.3(5)| 334.2(1)|

| Bond angles (°) | O(2)–Cu–O(1) | O(1)–Cu–O(1) | O(2)–Cu–O(2) | O(1)–Cu–O(2) | O(2)–Cu–O(w1) | O(1)–Cu–O(w1) | O(2)–Cu–O(w1) | O(1)–Cu–O(w1) | O(2)–Cu–O(w1) | O(1)–Cu–O(w1) |
|----------------|--------------|---------------|--------------|--------------|---------------|---------------|--------------|---------------|--------------|---------------|
|                | 90.6(2)      | 110.6(2)      | 85.9(1)      | 113.4(3)     | 113.4(3)      | 113.4(3)      | 113.4(3)     | 113.4(3)     | 113.4(3)     | 113.4(3)      |
|                |              | 180           |              | 180          | 180           | 180           | 180          | 180          | 180          | 180           |
| Symmetry code: | #1: -x+0.5,-y+0.5,-z+1; #4: -x+0.5,y-0.5,z+1 |

The Cu$^{2+}$ polyhedra ribbons and the $[\text{PO}_3^+]$ tetrahedra are linked by common corners forming infinite layers parallel to (100). The phosphorous atoms are located above and below the Cu$^{2+}$ polyhedra ribbons. These layers are stacked in a sequence along the [100] direction (Fig. 3). The layers are connected by the C–C bonds of the ethylene groups, leading to a three-dimensional framework with small channel-like voids along [001] (Fig. 5 and 4). The largest and narrowest openings of the channel-like voids are approximately 550 × 260 pm with van der Waals radii [33] of the framework atoms taken into account excluding the weakly bonded water molecule O(w1), which can be easily removed by thermal treatment and is not essential for the stability of the copper 1,2-ethylenediphosphonate framework. Besides the weakly coordinated water molecules O(w1), the channels accommodate water molecules [O(w2), O(w3)] not bound to Cu$^{2+}$. The site occupancy for O(w2) and O(w3) is 0.41(3) and 0.34(3), respectively.

Poojary et al. [17] and Riou et al. [13] reported on blue crystals of a copper 1,2-ethylenediphosphonate dihydrate, in which the Cu$^{2+}$ cations are five coordinated in a square pyramidal fashion. Two square pyramids have a common edge leading to $[\text{CuO}_3^2]$ dimeric units, with a Cu–Cu distance of 313 pm, which are linked by tetrahedral $[\text{PO}_3^+]$ groups leading to layers in the (100) plane. These layers are linked by the $\text{C}_2\text{H}_4$ groups to a compact three-dimensional framework.
Figure 3. Stacking of the polyhedra layers. (● [CuO₆] octahedra, □ [PO₃C] tetrahedra)

Figure 4. Crystal structure of Cu₂[µ₈-O₃P(CH₂)₂PO₃]⋅3.2H₂O viewed along [001].

Figure 5. Space-filling model of the framework of Cu₂[µ₈-O₃P(CH₂)₂PO₃]⋅3.2H₂O. The water molecules O(w1), O(w2) and O(w3) are omitted.

Fig. 6 shows both the XRD pattern of powdered [Cu₂[µ₈-O₃P(CH₂)₂PO₃]]⋅3.2H₂O microcrystals from synthesis in aqueous solution and the calculated pattern obtained from the single crystal data. The experimental pattern matches the calculated pattern, showing that the synthesis in aqueous solution leads to a single phase product with the same crystal structure as the samples obtained by crystallization in silica gel.

Figure 6. X-ray powder diffraction patterns of [Cu₂[µ₈-O₃P(CH₂)₂PO₃]]⋅3.2H₂O. (a) calculated pattern, (b) experimental pattern.
TGA/DTA studies (Fig. 7) were carried out in air from room temperature to 1000 °C at a heating rate of 10 K min⁻¹. The loss of water molecules occurs stepwise in two endothermal processes. The first step is finished at approximately 138 °C and the second one at 240 °C. The weight loss of 14.8 % corresponds to the release of all water molecules (calc. 15.5 %). The dehydrated compound is stable up to 320 °C. This is obviously due to the small contribution of the weakly bound water molecule (O(w1)) to the bond valence sum of Cu²⁺. Thus making it unnecessary to reconstruct the coordination sphere during dehydration, which causes crystal structures of many coordination polymers often to collapse on heating. A small increase of weight between 320 and 360 °C is followed by a steep weight loss of 14.8 % corresponds to the release of all water molecules (calc. 15.5 %). The dehydrated compound is stable up to 320 °C. This is obviously due to the small contribution of the weakly bound water molecule (O(w1)) to the bond valence sum of Cu²⁺. Thus making it unnecessary to reconstruct the coordination sphere during dehydration, which causes crystal structures of many coordination polymers often to collapse on heating. A small increase of weight between 320 and 360 °C is followed by a steep weight loss during a highly endothermic process. This can be associated to the decomposition of the 1,2-ethylenediphosphonate anion, which was similarly observed in other organodiphosphonate complexes [11,18]. Between 370 °C and 450 °C an increase in weight occurred. XRD patterns of samples annealed between 380 and 450 °C showed an amorphous fraction and only reflections of CuO. The following weight loss leads to the formation of Cu₃P₂O₇ and is finished at about 660 °C. The colourless residue was identified as phase pure Cu₃P₂O₇ by X-ray powder diffraction. The entire weight loss up to 1000 °C of 19.2 % is in good agreement with the calculated one of 18.8 % with Cu₃P₂O₇ as the final product.

Figure 7. Thermal analysis of Cu₃[µ₅-O₂P(CH₂)₂PO₃]·3.2H₂O.

The water of crystallization in Cu₃[µ₅-O₂P(CH₂)₂PO₃]·3.2H₂O can be removed reversibly. Heating in a furnace at 260 °C for 10 min led to the completely dehydrated compound and the colour turned from turquoise to blue. The observed weight loss of 15.7 % corresponded very well with the loss of all water molecules (15.5 %). The dehydrated sample was split into two fractions. One fraction was stored in water at room temperature for 24 h and the other one was stored at ambient air for 7 days leading to a nearly complete rehydration and the colour turned back to turquoise in both cases. Thermogravimetric analysis of the rehydrated samples up to 1000 °C showed a total weight loss of 16.9 % and 17.0 %, respectively, indicating that the rehydrated samples contained 2.7 H₂O rather than 3.2 H₂O per formula unit. Fig. 8 shows the XRD patterns of the dehydrated and rehydrated samples compared with the as-prepared material Cu₃[µ₅-O₂P(CH₂)₂PO₃]·3.2H₂O. There is no significant change in the patterns indicating that the crystal structure of the host has not been changed during the dehydration and rehydration process. Furthermore, the compound can be partially dehydrated by storage in a desiccator over sulfuric acid. After 7 days the colour had turned to blue and a weight loss of 9.6 % was observed corresponding to the loss of 2 H₂O per formula unit. A longer storing time in the desiccator did not lead to further weight losses.

Figure 8. XRD patterns of dehydrated and rehydrated samples. (a) Cu₃[µ₅-O₂P(CH₂)₂PO₃]·3.2H₂O, (b) dehydrated sample after heating at 260 °C, (c) rehydrated sample stored in water for 24 h, (d) rehydrated sample stored in ambient air for 7 d.

The IR spectrum (ATR technique) of Cu₃[µ₅-O₂P(CH₂)₂PO₃]·3.2H₂O is shown in Fig. 9. The O–H stretching vibrations of the water molecules appear at 3478 and 3262 cm⁻¹, whereas the band 1649 cm⁻¹ probably reflects the H–O–H bending mode. The band at 1412 cm⁻¹ is caused by the CH₂ bending mode. Absorption bands at 1196 and 1124 cm⁻¹ are due to the asymmetrical and symmetrical P–O stretching vibrations. P–C stretching and CH₂ rocking vibrations result in bands at 767, 730, and 690 cm⁻¹, respectively [34,35].

Figure 9. IR spectrum of Cu₃[µ₅-O₂P(CH₂)₂PO₃]·3.2H₂O.
coupling between Cu$^{2+}$ ions. A direct exchange ($\delta$ bond) between neighbouring Cu$^{2+}$ can be certainly excluded because of the long Cu···Cu distance of 334.2(1) pm. The antiferromagnetic behaviour can be explained by superexchange coupling between Cu$^{2+}$ through the phosphonate oxygen atom O(1), which connects two copper ions (see Fig. 1 and 4). The coupling through the bridging water molecule O(w1) can be excluded because of its considerably longer distance to the Cu$^{2+}$ ions. Between 100 K and 300 K the magnetic moment changes only slightly and is close to the theoretical value indicating that there is no antiferromagnetic coupling.

![Figure 9](image1.png)

**Figure 9.** IR spectrum of Cu$_2$[µ₈-O₃P(CH₂)₂PO₃]·3.2H₂O.

Fig. 10 shows the diffuse reflectance UV-Vis spectrum of Cu$_2$[µ₈-O₃P(CH₂)₂PO₃]·3.2H₂O. Between 500 and 1200 nm a broad asymmetric band with two visible maxima (I, II) caused by d–d transitions can be seen. The experimental spectrum can be fitted well by three bands with maxima at 694, 774 and 918 nm. Since the Cu$^{2+}$ coordination polyhedron has D$_{3h}$ symmetry four d–d transition bands are expected according to selection rules [36]. A precise inspection shows that the polyhedron deviates only slightly from D$_{3h}$ symmetry (three transition bands), therefore the energy levels of the d$_{xz}$ and d$_{yz}$ orbitals are very close to each other, resulting in almost identical transition bands [37,38]. According to Billing and Hathaway [36] the order of the energy levels is d$_{x^2-y^2}$ > d$_{xy}$ > d$_{xz}$ ≥ d$_{yz}$. The fitted absorption band at 694 nm is assigned to the d$_{x^2-y^2}$ → d$_{x^2-y^2}$ at 774 nm to the d$_{xy}$ → d$_{x^2-y^2}$, and at 918 nm to the d$_{x^2}$ → d$_{x^2-y^2}$ transition.

![Figure 10](image2.png)

**Figure 10.** UV-Vis spectrum (diffuse reflectance) of powdered [Cu$_2$[µ₈-O₃P(CH₂)₂PO₃]·3.2H₂O. The inset shows the whole spectrum from 250 to 1200 nm. Three individual Gaussian profiles (red dashed curves) were used to fit the spectrum and their sum is presented by the thick red curve. (F(R) = Kubelka-Munk-function).

The magnetic susceptibility of Cu$_2$[µ₈-O₃P(CH₂)₂PO₃]·3.2H₂O was measured between 3 and 300 K (Fig. 11). The compound shows a paramagnetic behaviour. The change of the susceptibility in the range 35–300 K followed the Curie-Weiss law with a Curie constant of C = 11.77·10$^{-6}$ m$^3$ K$^{-1}$ mol$^{-1}$. The observed Weiss temperature of Θ = -19.45 K suggests an antiferromagnetic interaction. From the Curie constant the magnetic moment is calculated as µ$_{mag}$ = 2.74 µ$_{B}$ per formula unit, which is close to the calculated spin-only value for two isolated Cu$^{2+}$ ions (two unpaired electrons) of 2.83 µ$_{B}$. Figure 12 shows the magnetic moment depending on temperature. It can be seen that the magnetic moment decreases drastically below approximately 100 K indicating an antiferromagnetic

![Figure 11](image3.png)

**Figure 11.** Susceptibility depending on temperature of [Cu$_2$[µ₈-O₃P(CH₂)₂PO₃]·3.2H₂O. The inset shows χT versus temperature. (µ$_{B}$H = 0.3 T)

![Figure 12](image4.png)

**Figure 12.** Change of the magnetic moment versus temperature of [Cu$_2$[µ₈-O₃P(CH₂)₂PO₃]·3.2H₂O.

Conclusions

In summary, we reported on the synthesis and crystal structure of a novel three-dimensional Cu(II)-1,2-ethylenediphosphonate coordination polymer with channels
accommodating water molecules. Thermal investigations reveal that the dehydrated compound is stable between 240 and 320 °C. The dehydrated sample can be rehydrated upon storage in ambient air. Magnetic measurements show an antiferromagnetic interaction between the copper ions by a superexchange through the phosphonate oxygen atoms.

### Experimental Section

Single crystals of Cu$_2$(µ$_8$-O$_3$P(CH$_2$)$_3$PO$_3$)$_3$·2H$_2$O were grown in a silica gel matrix [39]. To a mixture of 6 ml 2M HNO$_3$, 5 ml water, and 6 ml of 0.1M 1,2-ethylenediphosphonic acid solution an aqueous Na$_2$SiO$_3$ solution (2M) was added until a pH value of 6 was reached. The mixture was placed in a test tube and within 24 h it turned to a high viscous gel. A 0.1M Cu(NO$_3$)$_2$ solution was placed on the top of the gel. The sealed test tube was kept at 45 °C and after a few days a white precipitate appeared (yield 92 %).

Larger amounts of fine crystalline material of Cu$_2$(µ$_8$-O$_3$P(CH$_2$)$_3$PO$_3$)$_3$·2H$_2$O can be obtained by the following procedure in aqueous solution. 1 g urea was added to 5 ml of a 0.1M 1,2-ethylenediphosphonic acid solution and 5 ml of 0.2 M Cu(NO$_3$)$_2$ solution was added whereupon a pale blue precipitate appeared immediately. The whole solution was kept at 80 °C and after 24 h 5 ml of a 0.2 M Cu(NO$_3$)$_2$ solution was added whereupon a pale blue precipitate appeared immediately. The whole solution was kept at 80 °C and after 4 days a turquoise fine crystalline precipitate appeared (yield 92 %).

Results of elemental analysis: (molecular weight 370.72) C 6.41 \((\text{calcd.} \ 6.48)\); H 2.57 \((\text{2.83})\)\%.

IR-ATR (cm$^{-1}$): 3478(m), 3262(m), 1649(m), 1412(m), 1196(m), 980(s), 959(s), 927(s), 767(s), 730(w), 690(w), 553(m), 517(s), 495(m), 435(s), 391(w).

ATR Fourier transformed infrared (IR-ATR) measurements were carried out at room temperature with a resolution of 2 cm$^{-1}$ using a Bruker Alpha FT-IR spectrometer equipped with diamond ATR unit. Thermooanalytical measurements with a heating rate of 10 K/min were performed in flowing air using a Netzsch STA 449 device. Temperature dependent magnetizations were measured at $\mu_0 H = 0.3$ T in the temperature range of 3 to 300 K using a Quantum Design PPMS 9. The X-ray powder diffraction patterns were recorded at room temperature on a Bruker D8-Advance diffractometer, equipped with a one-dimensional silicon strip detector (LynxEye$^\text{TM}$) and operating with Cu-Kα radiation. The diffuse reflectance UV-Vis spectra was obtained using a Perkin Elmer UV–Vis spectrometer Lambda 19. BaSO$_4$ was used as a white standard. X-ray single crystal structure determination was performed on a Siemens P4 four-circle diffractometer (MoKα, graphite monochromator) in a theta range up to 27.98°. Numerical absorption corrections have been applied. The phase problem was solved by direct methods. Full matrix least squares refinement employing |F|$^2$ made use of the SHELXTL program suite [40]. Hydrogen atom positions of water molecules have not been taken into account. The C bound hydrogen atom was located in a Difference Fourier map and has been refined with an isotropic displacement parameter. Crystallographic data are given in Table 3. Further details concerning the crystal structure analysis have been deposited with Cambridge Crystallographic Data Centre, The Director, CCDC, 12 Union Road, Cambridge CB21EZ, UK, Fax +(1223)336-033, e-mail data_request@ccdc.cam.ac.uk, www.ccdc.cam.ac.uk/data_request.cif under CCDC 1490380.

### Table 3. Crystallographic Data

| Property                        | Value                                      |
|---------------------------------|--------------------------------------------|
| Empirical formula               | C$_2$H$_6$P$_2$Cu$_2$O$_8$                |
| Crystal system                  | Monoclinic                                 |
| Space group                     | C2/m (no.12)                               |
| Lattice constants               | a = 1483.6(2) pm, b = 668.44(8) pm, c = 436.30(6) pm |
| β = 93.28°                      |                                            |
| Cell volume                     | 0.43196(10) nm$^3$                         |
| Formulas in unit cell           | 2                                          |
| Formula weight                  | 370.72 g/mol                               |
| Density (calc.)                 | 2.850 g/cm$^3$                             |
| Wavelength                      | 71.073 pm                                  |
| Absorption coefficient          | 5.329 mm$^{-1}$                            |
| Numerical absorption correction | min./max. transmittance                    |
| Temperature                     | 293(2) K                                  |
| Crystal size (mm)               | 0.06 x 0.08 x 0.20                        |
| F (000)                         | 368                                        |
| θ-range                         | 2.75°–27.98°                               |
| Limiting indices                | h: -1/1/9; k: -1/8/1; l: -5/5/5             |
| Reflections collected           | 727                                        |
| Independent reflections         | 570 (R$_{int}$ = 0.0400)                   |
| Structure solution              | Direct methods                             |
| Structure refinement            | Full-matrix least-squares on |F|$^2$|
| Refined parameters              | 557                                        |
| Extinction coefficient          | 0.001(2)                                   |
| Final mean shift/esd            | 0.000                                      |
| Goodness-of-fit on |F|$^2$|       | 1.368 |
| Residuals (all data)            | $R_1 = 0.0509 , wR_2 = 0.1156$             |
| Max. features in last difference Fourier synthesis | 1076 and -1397 e·nm$^{-3}$               |

### References

[1] L.C. Brousseau III and T.E. Mallouk, *Annu. Chem. 1997*, 69, 679–687.
[2] H. Byrd, A. Clearfield, D. Poojary, K.P. Reis, M.E. Thompson, *Chem. Mater. 1996*, 8, 2239–2246.
[3] M.E. Thompson, *Chem. Mater. 1994*, 16, 1168–1175.
[4] C.-Y. Yang and A. Clearfield, *React. Polym. 1987*, 5, 13–21.
[5] G. Albert, U. Costantino, F. Marmottini, R. Vivani, P. Zappelli, *Angew. Chem. Int. Ed. Engl. 1993*, 32, 1357–1359.
[6] D. Riou and G. Férey, *J. Mater. Chem. 1998*, 8, 2733–2735.
[7] L.-M. Zheng, C.-Y. Duan, X.-R. Ye, L.-Y. Zhang, C. Wang, X.-Q. Xin, *J. Chem. Soc., Dalton Trans. 1998*, 905–908.
[8] A. Distler, D.L. Lohse, S.C. Sevov, *J. Chem. Soc., Dalton Trans. 1999*, 1805–1812.
[9] S. Bauer, H. Müller, T. Bein, N. Stock, *Inorg. Chem.* 2005, 44, 9464–9470.

[10] L.-H. Schilling and N. Stock, *Z. Anorg. Allg. Chem.* 2013, 639, 2779–2784.

[11] D.I. Arnold, X. Ouyang, A. Clearfield, *Chem. Mater.* 2002, 14, 2020–2027.

[12] Y. Wang, S.S. Bao, W. Xu, J. Chen, S. Gao, L.-M. Zheng, *J. Solid State Chem.* 2004, 177, 1297–1301.

[13] D. Riou, F. Belier, C. Serre, M. Nogues, D. Vichard, G. Férey, *Int. J. Inorg. Mater.* 2000, 2, 29–33.

[14] K. Bathelet, M. Nogues, D. Riou, G. Férey, *Chem. Mater.* 2002, 14, 4910–4918.

[15] E. Burkholder, V.O. Golub, C.J. O’Connor, J. Zubieta, *Inorg. Chim. Acta* 2002, 340, 127–132.

[16] R.-B. Fu, X.-T. Wu, S.-M. Hu, J.-J. Zhang, Z.-Y. Fu, W.-X. Du, *Polyhedron* 2003, 22, 2739–2744.

[17] D.M. Poojary, B. Zhang, A. Clearfield, *J. Am. Chem. Soc.* 1997, 119, 12550–12559.

[18] D.M. Poojary, B. Zhang, P. Bellinghausen, A. Clearfield, *Inorg. Chem.* 1996, 35, 4942–4949.

[19] T.M. Smith, J. Vargas, D. Symester, M. Tichenor, C.J. O’Connor, J. Zubieta, *Inorg. Chim. Acta* 2013, 403, 63–77.

[20] R.C. Finn and J. Zubieta, *Inorg. Chim. Acta* 2002, 332, 191–194.

[21] B.-K. Koo, E. Burkholder, N.G. Armatas, J. Zubieta, *Inorg. Chim. Acta* 2005, 358, 3865–3872.

[22] V. Zima, J. Svoboda, Y.-C. Yang, S.-L. Wang, *Cryst. Eng. Comm.* 2012, 14, 3469–3477.

[23] G. Yucesan, W. Oullette, Y.-H. Chung, J. Zubieta, *Inorg. Chim. Acta* 2007, 360, 1502–1509.

[24] P. DeBurgomaster, K. Darling, S. Jones, J. Zubieta, *Inorg. Chim. Acta* 2010, 564, 150–156.

[25] P. Yin, S. Gao, L.-M. Zheng, Z. Wang, X.-Q. Xin, *Chem. Comm.* 2001, 2346–2347.

[26] L.-M. Zheng, S. Gao, P. Yin, X.-Q. Xin, *Inorg. Chem.* 2004, 43, 2151–2156.

[27] H.W. Bae and H.-J. Koo, *Bull. Korean Chem. Soc.* 2008, 29, 122–126.

[28] P. Yin, L.-M. Zheng, S. Gao, X.-Q. Xin, *Chem. Comm.* 2003, 1076–1077.

[29] K.-R. Ma, F. Ma, Y.-L. Zhu, L.-J. Yu, X.-M. Zhao, Y. Yang, W.-H. Duan, *Dalton Trans.* 2011, 40, 9774–9781.

[30] D.-G. Ding, M.-C. Yin, H.-J. Lu, Y.-T. Fan, H.-W. Hou, Y.-T. Wang, *J. Solid State Chem.* 2006, 179, 747–752.

[31] N.E. Brese and M. O’Keeffe, *Acta Cryst.* 1991, B47, 192–197.

[32] S.W. Peterson, E.Gebert, A.H. Resi, M.E. Druyan, G.W. Mason, D.F. Peppard, *J. Phys. Chem.* 1977, 81, 466–471.

[33] A. Bondi, *J. Phys. Chem.* 1964, 68, 441–451.

[34] K. Moedritzer and R.R. Irani, *J. Inorg. Nucl. Chem.* 1961, 22, 297–304.

[35] A.W. Herlinger, J.R. Ferraro, J.A. Garcia, R. Chiarizia, *Polyhedron* 1998, 17, 1471–1475.

[36] D.E. Billing and B.J. Hathaway, *J. Chem. Soc.* A 1968, 1516–1519.

[37] W. Kleemann and Y. Farge, *J. Phys. France* 1975, 36, 1293–1304.

[38] B.J. Hathaway and D.E. Billing, *Coord. Chem. Rev.* 1970, 5, 143–207.
**A Novel Three-Dimensional Cu(II) 1,2-Ethylenediphosphonate Framework with Channel-like Voids**

A novel Cu(II) 1,2-ethylenediphosphonate coordination polymer has been synthesized and structurally characterized. The three-dimensional framework has channel-like voids accommodating water molecules.