THE FIRST H-BAND SPECTRUM OF THE MASSIVE GAS GIANT PLANET BETA PICTORIS b WITH THE GEMINI PLANET IMAGER

J. Chilcote, T. Barman, M. P. Fitzgerald, J. R. Graham, J. E. Larkin, B. Macintosh, B. Bauman, A. S. Burrows, A. Cardwell, R. J. de Rosa, D. Dillon, R. Doyon, J. Dunn, D. Erikson, D. Gavel, S. J. Goodsell, M. Hartung, P. Hibon, P. Ingraham, P. Kalas, Q. Konopacky, J. Maire, F. Marchis, M. S. Marley, C. Marois, M. Millar-Blanchaer, K. Morzinski, A. Norton, B. R. Oppenheimer, D. Palmer, J. Patience, M. D. Perrin, L. Poyneer, L. Pueyo, F. Rantakyro, N. Sadakuni, L. Saddlemyer, D. Savransky, A. Serio, A. Sivaramakrishnan, I. Song, R. Soummer, S. Thomas, J. K. Wallace, S. J. Wiktorowicz, S. Wolff

October 30, 2014

Astrophysical Journal Letters
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
THE FIRST H-BAND SPECTRUM OF THE MASSIVE GAS GIANT PLANET BETA PICTORIS b WITH THE GEMINI PLANET IMAGER

JEFFREY CHILCOTE1, TRAVIS BARMAN3, MICHAEL P. FITZGERALD1, JAMES R. GRAHAM3, JAMES E. LARKIN4, BRUCE MACINTOSH4,5, BRIAN BAUMAN2, ADAM S. BURROWS3, ANDREW CARDWELL, ROBERT J. DE ROSA5, DAREN DILLON6, RENE DOYON10, JENNIFER DUNN11, DARREN ERIKSON11, DONALD GADEL3, STEPHEN J. GOODSKILL3, MARCUS HARTUNG1, PASCALE Hibon1, PATRICK Ingraham1, PAUL Kalas8, QUINN Konopacky13, JÉRÔME MAIRE15, FRANCK Marchis14, MARK S. Marley15, CHRISTIAN Marois15, MAX MILLAR-BLANCHAER5, KATIE Morzinski16, ANDREW Norton7, B. R. OPPENHEIMER17, DAVID PALMER5, JENNIFER Patience5, MARSHALL D. PERRIN15, LISA Poyneer17, LAURENT Pueyo8, FREDRIK Rantakyrö7, NARU Sadakuni5, LESLIE Saddlemyer11, DAVID Savransky9, ANDRADE Savransky19, IVAN SIVARAMAKRISHNAN17,18, INSEOK Song70, REMI SoumMER8, SANDRINE Thomas15, J. KENT Wallace11, SLOANE J. Wiktorowicz22,23, AND SCHUYLER WOLFF23

1 Department of Physics and Astronomy, University of California, Los Angeles, CA USA 90095
2 Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721
3 Astronomy Department, University of California, Berkeley; Berkeley CA 94720
4 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305
5 Lawrence Livermore National Laboratory, Livermore, CA USA 94551
6 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544
7 Gemini Observatory, Casilla 603, La Serena, Chile
8 School of Earth and Space Exploration, Arizona State University, PO Box 871404, Tempe, AZ 85287, USA
9 University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064
10 Observatoire du Mont-Mézenc and D’apartement de physique Université de Montéral, Montréal, QC H3T 1J4, Canada
11 NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC, Canada, V9E 2E7
12 Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720, USA
13 Dunlap Institute for Astronomy and Astrophysics University of Toronto, Toronto, Ontario, Canada MSS 3H4
14 SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA
15 NASA Ames Research Center, Mountain View, CA 94035
16 Steward Observatory, University of Arizona, Tucson AZ 85721
17 Department of Astrophysics, American Museum of Natural History, New York, NY 10024
18 Space Telescope Science Institute, Baltimore, MD 21218
19 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
20 Department of Physics and Astronomy, University of Georgia, Athens, GA 30602
21 Jet Propulsion Laboratory, California Institute of Technology Pasadena CA 91125
22 Department of Astronomy, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064
23 NASA Sagan Fellow and
24 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218

Submitted to the Astrophysical Journal Letters, 2014 July 15

ABSTRACT

Using the recently installed Gemini Planet Imager (GPI), we have taken the first H-band spectrum of the planetary companion to the nearby young star beta Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H-band (1.65 microns). The spectrum has a resolving power of ~ 45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1650 ± 50 K and a surface gravity of log(g) = 4.0 ± 0.25 (cgs units). These values agree well with predictions from planetary evolution models for a gas giant with mass between 10 and 12 M_Jup and age between 10 and 20 Myrs.

Subject headings: (stars:beta Pictoris) planetary systems — instrumentation: adaptive optics — techniques: spectroscopic — infrared: general

1. INTRODUCTION

For over a decade, there have been ongoing efforts to detect directly imaged young Jupiter mass exoplanets still luminous in the infrared (IR) from their formation process. Examples of such planets include 2M1207b (Chauvin et al. 2003), Fomalhaut b (Kalas et al. 2008), the HR8799 system (Marois et al. 2008, 2010), β Pic b (Lagrange et al. 2010), IRX J1609 b (Lafrenière et al. 2010), HD 95086 b (Rameau et al. 2013), and GJ 504 b (Kuzuhara et al. 2014).

Beta Pictoris (HD 39060) is an A6V star located 19.44 ± 0.05 pc from Earth (Grav et al. 2006, van Leeuwen 2007). Zuckerman et al. (2001) estimates the age of β Pic at 12±8 4 Myr, but that has recently been revised upwards to 21 ± 4 Myr (Binks & Jefferies 2014). β Pic represents the earliest examples of using high contrast imaging to directly detect a circumstellar disk (Smith & Terrile 1984). The disk is seen edge-on and shows asymmetric structure that has been attributed to planetary perturbations (Burrows et al. 1995, Kalas & Jewitt 1993; Golimowski et al. 2008, Mouillet et al. 1997, Heap et al. 2000). The planet possibly responsible for these perturbations was eventually discovered by direct imaging (Lagrange et al. 2010). β Pic b has been detected by VLT/NACO (Lagrange et al. 2010), Gemini/NICI (Boccaletti et al. 2013), Magellan AO (Males et al. 2014, Morzinski et al. 2014), and Gem-
GPI \cite{Macintosh+2014}. This has led to a multi-epoch attempt to understand the planet’s orbital parameters and to discern if it is aligned with the main disk or the secondary inclined disk \cite{Lagrange+2012; Chauvin+2012; Macintosh+2014}. The basic properties of β Pic b have been estimated using SED fitting of broad band photometry, resulting in an effective temperature of 1700 ± 100 K, with a log g = 4.0 ± 0.5 \cite{Bonnefoy+2013}. Previous comparisons of the planet’s bolometric luminosity and system age to evolutionary cooling tracks resulted in a mass from 9 to 13 M_Jup \cite{Bonnefoy+2013; Males+2014}. Using a cross-correlation technique and high-spectral resolution over a narrow wavelength range, Snellen et al. \cite{2014} were able to measure the planet’s spin \((v\sin i) \sim 25 \text{ km/s}) and detect carbon monoxide absorption in the K band.

Understanding the atmospheres of these very young giant exoplanets is a challenging task because we have only a handful of objects to study spectroscopically. The theoretical models used to compute the emergent flux from these planetary atmospheres are often extensions of those generated for brown dwarfs, yet the spectra of the HR8799 planets exhibit significant differences relative to brown dwarfs \cite{Barman+2011a; Marley+2012}. Spectroscopy of β Pic b offers another opportunity to study the atmospheric properties of a young giant planet that is substantially hotter than the HR8799 planets.

Here we present the first H-band spectral mode observations of β Pic b with GPI. An analysis of the orbital parameters using astrometric measurements from these data has been published in Macintosh et al. \cite{2014}. In section 2.3 we briefly review the recently delivered Gemini Planet Imager being commissioned on the Gemini South telescope. In section 3 we discuss the observations and data reduction used to analyze the spectrum with this new instrument. Analysis of the H-band spectrum, along with existing photometry, is presented in section 4. Conclusions are discussed in Section 4.

2. GEMINI PLANET IMAGER

The Gemini Planet Imager is a facility class instrument that was designed and built to directly image and spectroscopically characterize young, Jupiter sized, self-luminous extrasolar planets. GPI was built for the Gemini Observatory, and installed at Gemini South in the fall of 2013. The high dynamic ranges involved in directly imaging extrasolar planets required GPI to be designed to pay special attention to speckle suppression \cite{Macintosh+2006; Graham+2007}.

GPI uses different sub-systems to combine several key technologies into one instrument. The GPI adaptive optics (AO) system incorporates a large number of degrees of freedom and uses a spatially filtered wavefront sensor to enhance contrast near the star. GPI first light and commissioning tests demonstrate that the AO system lowers the total wavefront error from dynamic sources and quasi-static errors by an order of magnitude compared to earlier AO systems \cite{Macintosh+2014}. The GPI AO system is composed of a low spatial frequency, high stroke, 11 actuator diameter woofer deformable mirror, and a 64 × 64 Micro-electro-mechanical-system low stroke, high frequency, deformable mirror from Boston Micromachines \cite{Povneer+2011}, with a 43-actuator-diameter region for high order corrections. Light travels through a spatially-filtered wave-front sensor, to remove high spatial frequency signals that would violate the sampling theorem and be aliased as low-frequency signals. Spatial filtering is implemented as a hard-edged stop in the focal plane before the wave front sensor \cite{Povneer+Macintosh2003}.

Diffraction is suppressed by an apodized-pupil Lyot coronagraph \cite{Soummer+2011; Macintosh+2014}. A grid of narrow, widely-spaced lines printed onto the apodizer forms a two-dimensional grating, producing diffracted images of the central star in a square pattern. These four satellite spots allow for a sampling of the central star spectrum, instrumental, and atmospheric effects in the same image as the object of interest \cite{Wang+2014}.

A infrared (IR) calibration wavefront sensor was designed to suppress non-common path wavefront errors \cite{Wallace+2010} by providing feedback about these errors to the AO system. Finally, the science instrument is a near-IR (1-2.5 µm) integral field spectograph (IFS) with an imaging polarimetry mode \cite{Chilcote+2012; Larkin+2014}. The spatial field is sampled by a lenslet array and then dispersed, resulting in ∼ 37,000 individual spectra with a spectral resolving power R = λ/Δλ ~ 30 – 90. The spatial plane is sampled at 14.14 ± 0.01 milliarcseconds per pixel \cite{Konopacky+2014}. In first light observations, GPI achieved a 5-σ contrast of 10^5 at 0.35 arcseconds and 10^6 at 0.75 arcseconds \cite{Macintosh+2014}.

3. OBSERVATIONS AND DATA REDUCTION

β Pic was observed with GPI in the H band (1.5072µm - 1.7899µm) \cite{Macintosh+2014} by the GPI Verification and Commissioning team on Gemini South during first light and then during the first verification and commissioning runs on 18 November 2013 and 10 December 2013, respectively. During the November observations, 32 individual 59.6-second images were obtained in coronagraphic mode, with the cryocoolers \cite{Chilcote+2012; Larkin+2014} operating at a reduced power level to reduce the effects of vibration introduced into the telescope. Seeing conditions were on average 0.68′′ as measured by the Gemini South DIMM. As the observations were performed during instrument commissioning, various operational modes were used during a specific data set to evaluate performance of the instrument. During the December 2013 observations, 14 individual 59.6-second images were obtained in coronagraphic mode. For eight of the images, the IFS cryocoolers were operating at full power, while in the remaining six images, the cryocoolers were operating in a reduced power state similar to the November observations. Each image has a different spatial filter size & woofer integrator memory value in an attempt to optimize AO performance \cite{Macintosh+2014}. Immediately after the observing sequence was completed, at the same telescope orientation and flexure, a single observation of the flood illuminated argon calibration source was taken to accurately track the shift of the spectral solution on the HAWAII-2RG detector.

1 Defined by the 80% power-point of the filters
The images were first processed using the GPI data reduction pipeline (Perrin et al. 2014). The pipeline requires the location and spectral solution for every lenslet. These lenslet locations were determined by using a cross correlation of the single argon image taken during the observing sequence as β Pic and high S/N, deep images made during daytime calibrations. The telescope elevation differed between the science images and the daytime calibration sequence. The resultant shift was used to determine the overall change of the wavelength solution between the daytime calibrations and that appropriate for the observations of β Pic.

With a shifted wavelength calibration, the GPI data reduction pipeline was used to reduce all images, apply dark corrections, remove bad pixels, track satellite spot locations, and convert each microspectra into a 37-channel spectral cube ($1.490 - 1.802 \mu$m). Each data set was processed in an identical way.

Further data processing was done outside of the GPI pipeline. The GPI atmospheric dispersion corrector was not commissioned at the time these observations were made; therefore, each image and each spectral slice are independently registered using the stellar position found by the four satellite spots. GPI is mounted on a Cassegrain port with derotator disabled so each image has a different sky orientation. In post processing, these images are rotated so that the planet has a fixed location.

Since the satellite spots are imaged at an identical time under identical conditions, in theory their PSFs should closely match the planet PSF especially when the four spots are averaged together. Instrumental effects and atmospheric effects are estimated from satellite spot spectra. An 8000K, log $g = 4.0$ BT-Nexgen model (Allard et al. 2013) convolved to the resolution of GPI, was used to approximate the A6V stellar spectrum of β Pic A. This allows the instrumental and telluric features under identical conditions to be estimated for the planet spectrum and removed.

We found that the remaining halo in these initial first light images was smooth, and dominated by uncorrected atmospheric halo speckles, rather than quasistatic speckles. In order to remove this halo, we fit a third-order spline surface to an aperture of radius=57.2–114.4 mas centered on the location of the planet, which includes the space around the planet but does not include the planet itself. A PSF, generated by the average of the four satellite spot cores, was scaled and subtracted from the planet position in parallel to the spline fit. This average PSF of the four satellite spot spectra, was smoothed and subtracted from each image and at each spectral channel (Figure 1).

With a shifted wavelength calibration, the GPI data reduction pipeline was used to reduce all images, apply dark corrections, remove bad pixels, track satellite spot locations, and convert each microspectra into a 37-channel spectral cube ($1.490 - 1.802 \mu$m). Each data set was processed in an identical way.

Further data processing was done outside of the GPI pipeline. The GPI atmospheric dispersion corrector was not commissioned at the time these observations were made; therefore, each image and each spectral slice are independently registered using the stellar position found by the four satellite spots. GPI is mounted on a Cassegrain port with derotator disabled so each image has a different sky orientation. In post processing, these images are rotated so that the planet has a fixed location.

Since the satellite spots are imaged at an identical time under identical conditions, in theory their PSFs should closely match the planet PSF especially when the four spots are averaged together. Instrumental effects and atmospheric effects are estimated from satellite spot spectra. An 8000K, log $g = 4.0$ BT-Nexgen model (Allard et al. 2013) convolved to the resolution of GPI, was used to approximate the A6V stellar spectrum of β Pic A. This allows the instrumental and telluric features under identical conditions to be estimated for the planet spectrum and removed.

We found that the remaining halo in these initial first light images was smooth, and dominated by uncorrected atmospheric halo speckles, rather than quasistatic speckles. In order to remove this halo, we fit a third-order spline surface to an aperture of radius=57.2–114.4 mas centered on the location of the planet, which includes the space around the planet but does not include the planet itself. A PSF, generated by the average of the four satellite spot cores, was scaled and subtracted from the planet position in parallel to the spline fit. This average PSF of the four satellite spot spectra, was smoothed and subtracted from each image and at each spectral channel (Figure 1).

The spectrum discussed above has an SNR (per wavelength channel) that matches or exceeds most previous broadband photometry. With this spectrum, we can estimate surface gravity and effective temperature as well as search for molecular absorption features and departures from stellar abundances.

The H-band spectrum has a clear peak at 1.68 μm defined by absorption on either side. The location of this peak and the slopes on either side are consistent with water absorption frequently seen in brown dwarf spectra. Based on previous photometric estimates of the effective temperature (1600–1700 K), the primary opacity sources across the near-infrared are water, collision-induced absorption (CIA) from H$_2$, and dust. There is no evidence for additional molecular absorption (e.g., from methane or ammonia). The H-band spectrum has a very triangular shape, a hallmark of low surface gravity and further evidence of β Pic b’s low mass and youth.

The GPI H-band spectrum and existing ground-based photometry were compared to the model grids described in Barman et al. (2011a,b). An effective temperature of 1650±50 K was found to best match these spectral data, in excellent agreement with previous photometric studies (Bonnefoy et al. 2013, Currie et al. 2013, Males et al. 2014). The best matching model is shown in Figure 4 and it agrees well with the visible to IR photometry. Broad-band photometric colors, however, are more modestly sensitive to surface gravity, emphasizing the need for spectral data. Our H-band spectrum, as previously discussed, has an triangular shape that sensitively depends on surface gravity. Our best matching models have $\log(g) = 4.0 \pm 0.25$ (cgs units) that, when taken into consideration along with the effective temperature of 1650 K, is consistent with evolutionary models between 10 and 20 Myrs for masses between 10 and 12 M$_{\text{Jup}}$ (Burrows et al. 1997, Chabrier et al. 2000).

Figure 3 compares the December 2013 β Pic b spectrum to those of other directly imaged planetary-mass companions: ROXs 42B b (Bowler et al. 2014), 2M1207B (Patience et al. 2010), HR8799 b (Barman et al. 2011a) and HR8799 c (Oppenheimer et al. 2013). All of these objects are reported to exhibit low gravity. ROXs 42B b has a similar H-band spectrum as β Pic b, though the former has a slightly steeper spectrum on either side of the peak, consistent with ROXs 42B b being slightly younger (5–10 Myr) or lower mass. The other three planets shown in Figure 3 are all cooler than β Pic b by ~ 500K to 800K. Despite this large temperature difference, 2M1207b and β Pic b have similar H-band spectra. 2M1207b’s H-band spectrum is shaped by a combination of low gravity, opacity from thick dusty clouds, and non-equilibrium chemistry that favors CO over methane (Barman et al. 2011).
chemistry is less important in hotter objects like \(\beta \) Pic b that will have large CO/CH\(_4\) ratio, regardless of vertical mixing. Consequently, very different temperatures, ROXs 42B b, 2M1207b and \(\beta \) Pic b have atmospheres with similar dominant opacity sources. The \(H\)-band similarities between these objects supports the idea that \(\beta \) Pic b is low gravity (and hence low mass) and 1 to 2 pressure scale heights near the photosphere. The differences between \(\beta \) Pic b and HR8799 b and c seen in Figure 2 highlight the spectral evolution of low gravity objects from high to low effective temperatures.

The model spectra (Figure 3), however, do not match the \(H\)-band spectrum particularly well. The best matching model under predicts the fluxes at \(\lambda > 1.7 \) \(\mu \)m while slightly over predicting the fluxes on the blue side of the \(H\)-band peak. The net effect is a systematic tilt of 5 to 10% between the model and the data. Though a spectral offset of this magnitude may be present in the data, we found that most \(H\)-band spectra from a low gravity brown dwarf spectral sequence (Allers & Liu 2013) agree extremely well with our GPI spectrum. The best matching brown dwarf, 2M2213-21, has a reduced \(\chi^2 = 1.7 \) (see Fig. 3) and the red-optical through \(K\)-band spectrum of 2M2213-21 also closely follows the \(\beta \) Pic b photometry. Like \(\beta \) Pic b, 2M2213-21 is a young object with low gravity features and is possibly a member of the \(\beta \) Pic moving group, at the \(\sim 30\% \) level (Manjavacas et al. 2014). The agreement between the GPI spectrum and that of known low-gravity brown dwarfs strongly suggests that our GPI spectrum is mostly free of chromatic systematic errors and the discrepancies with the synthetic spectra are mostly likely the result of imperfect modeling (e.g., treatment of dust clouds). Such a systematic discrepancy in the model spectra could bias the derived surface gravity, but it is unclear by how much. Allowing for a slight, \(\pm 10\% \) tilt in the model \(H\)-band spectra yields much improved fits, but does not noticeably change the resulting surface gravity.

5. CONCLUSION

We present the first \(H\)-band spectrum of the extrasolar planet \(\beta \) Pic b from the recently commissioned Gemini Planet Imager — located on the Gemini South tele-

scope — which began commissioning in the Fall of 2013. The Gemini Planet Imager is a facility class instrument built to directly image and spectroscopically characterize young, Jupiter sized, self-luminous, extrasolar planets. We find that the spectrum of \(\beta \) Pic b provides a new and insightful look at the atmospheres of these high-temperature low-gravity objects. While the best matching model does not perfectly match the \(H\)-band spectrum, the spectrum is remarkably similar to the young, low gravity brown dwarf 2M2213-21. We thus conclude that error most likely is derived from imperfect modeling of the atmosphere. With so few directly imaged planet spectra, the other known objects are estimated to be cooler then \(\beta \) Pic b, and have a slightly different spectral shape.

Currently, and in the near future, several extreme-AO instruments will be on-line with the capability to directly image the spectra of the extrasolar planets they find. While our \(\beta \) Pic b data only cover the \(H\)-band, GPI is designed to measure spectra from 0.95 – 2.4\(\mu \)m at a similar capability as our \(H\)-band data. These spectra will further our understanding of these high temperature low-gravity objects. The low resolution but great sensitivity of GPI is well designed to identify and characterize low gravity young exoplanets, as is demonstrated in our \(\beta \) Pic b spectrum.

The authors would like to acknowledge the financial support of the Gemini Observatory, the NSF Center for Adaptive Optics at UC Santa Cruz, the NSF (AST-0909188; AST-1211562, AST-1405505), NASA Origins (NNX11AD21G; NNX10AH31G, NNX14AC21G), the University of California Office of the President (LFRP-118057), and the Dunlap Institute, University of Toronto. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and under contract with the California Institute of Technology/Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. We are indebted to the international team of engineers and scientists who worked to make GPI a reality.

Facilities: Gemini South (GPI).

REFERENCES

Allard, F., Homeier, D., & Freytag, B. 2012, Royal Society of London Philosophical Transactions Series A, 370, 2705
Allers, K. N. & Liu, M. C. 2013, ApJ, 772, 79
Barnes, T. S., Macintosh, B., Konopacky, Q. M., & Marois, C. 2011a, ApJ, 733, 65
—. 2011b, ApJ, 735, L39
Binks, A. S. & Jeffries, R. D. 2014, MNRAS, 438, L11
Boccaletti, A., Lagrange, A.-M., Bonnefoy, M., Galicher, R., & Chauvin, G. 2013, A&A, 551, L14
Bonnefoy, M., Boccaletti, A., Lagrange, A.-M., Allard, F., Mordasini, C., Beust, H., Chauvin, G., Girard, J. H. V., Homeier, D., Apai, D., Lacour, S., & Rouan, D. 2013, A&A, 555, A107
Bowler, B. P., Liu, M. C., Kraus, A. L., & Mann, A. W. 2014, ApJ, 784, 65
Burrows, A., Marley, M., Hubbard, W. B., Lunine, J. I., Guillot, T., Saumon, D., Freedman, R., Sudarsky, D., & Sharp, C. 1997, ApJ, 491, 856
Burrows, C. J., Krist, J. E., Stapelfeldt, K. R., & WFPC2 Investigation Definition Team. 1995, in Bulletin of the American Astronomical Society, Vol. 27, American Astronomical Society Meeting Abstracts, 1329
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464
Chauvin, G., Lagrange, A.-M., Beust, H., Bonnefoy, M., Boccaletti, A., Apai, D., Allard, F., Ehrenreich, D., Girard, J. H. V., Mouillet, D., & Rouan, D. 2012, A&A, 542, A41
Chauvin, G., Lagrange, A.-M., Dumas, C., Zuckerman, B., Mouillet, D., Song, I., Beuzit, J.-L., & Lowrance, P. 2005, A&A, 438, L25
Chilcote, J. K., Larkin, J. E., Maire, J., Perrin, M. D., Fitzgerald, M. P., Doyon, R., Thibault, S., Bauman, B., Macintosh, B. A., Graham, J. R., & Saddlemeyer, L. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
Fig. 1.— *Left:* An average combined set of GPI images of β Pic b from November 2013 with no additional post processing removal of the background. *Right:* An average combined set of images from November with a circular annulus defined around the estimated location of the planet, which has been used to define a surface in each image and spectral channel to subtract the remaining halo light. In order to remove this halo, we fit a third-order spline surface to an aperture of radius=57.2–114.4 mas centered on the location of the planet, which includes the space around the planet but does not include the planet itself. A PSF, generated by the average of the four satellite spot cores, was scaled and subtracted from the planet position in parallel to the spline fit. Images are averaged along the 37 spectral channels in H-band (≈1.5 – 1.8µm).

Fig. 2.— H-band spectra of β Pic b using both November and December 2013 observations from GPI. Both spectra are in agreement. The spectra were taken at different phases of the GPI commissioning process resulting in different effects on the light in the halo and PSF shape.

Soummer, R., Sivaramakrishnan, A., Pueyo, L., Macintosh, B., & Oppenheimer, B. R. 2011, ApJ, 729, 144
van Leeuwen, F. 2007, A&A, 474, 653
Wallace, J. K., Burruss, R. S., Bartos, R. D., Trinh, T. Q., Pueyo, L. A., Fregoso, S. F., Angione, J. R., & Shelton, J. C. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7736, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series

Wang, J. J., Rajan, A., Graham, J. R., Savransky, D., Ingraham, P. J., Ward-Duong, K., Patience, J., Rosa, R. J. D., Bulger, J., Sivaramakrishnan, A., Perrin, M. D., Thomas, S. J., Sadakuni, N., Greenbaum, A. Z., Pueyo, L., Marois, C., Oppenheimer, B. R., Kalas, P., Cardwell, A., Goodsell, S., Hibon, P., & Rantakyrö, F. T. 2014, in Zuckerman, B., Song, I., Bessell, M. S., & Webb, R. A. 2001, ApJ, 562, L87
Fig. 3.— H-band spectra of young, directly imaged planets. The December 2013 Gemini Planet Imager spectrum of β Pic b is plotted above the spectra of ROX 42B b (Bowler et al. 2014), 2M1207b (Patience et al. 2011), HR8799 c (Oppenheimer et al. 2013) and HR8799 b (Barman et al. 2011a). Each of these objects is cooler than β Pic b. Despite very different temperatures, ROXs 42B b, 2M1207b and β Pic b have atmospheres with similar dominant opacity sources. The differences between β Pic b and HR8799 b and c highlights the spectral evolution of low gravity objects.
Fig. 4.— The comparison of the H-band spectrum (black) to a 1650K model with 3 different gravities. All three models do not provide a perfect match to the spectrum. The log(g) = 4.0 model (green) comparison has the best fit but is offset from the observations by a constant slope. The young, low-gravity brown dwarf 2M2213-21 (red) has a better match to the spectrum than all 3 models. The agreement between the GPI spectrum and that of known low-gravity brown dwarfs strongly suggests that our GPI spectrum is mostly free of chromatic systematic errors and the discrepancies with the synthetic spectra are most likely the result of imperfect modeling (e.g., treatment of dust clouds). The spectra are normalized to match the flux measured in Males et al. (2014).

Fig. 5.— We compare the model 1650K log(g) = 4.0 spectrum (green), and its predicted photometric points (blue) to the spectrum of 2M2213-21 (red) and the measured photometric points of β Pic b (black) (Males et al. 2014).