ABSTRACT
Knowledge is an essential ingredient for economic development, growth and gaining a competitive advantage. In order to produce novel and valuable knowledge, it is advantageous, perhaps vital, to rely on insights gained from prior research efforts. Those knowledge spillovers (KS) provide the rationale for sustained economic growth and produce unique place-based knowledge spaces. Due to the spatial embeddedness and stickiness of knowledge, most investigations mainly pay attention to the localized nature of KS, but what about those spillovers from other jurisdictions, or perhaps even from across the globe? To analyse the role played by international KS, the present study investigates to what extent international KS shape the evolution of the UK science and technology space. The first step involves creating knowledge spaces following the methodology outlined by Kogler et al. (2013; 2017) for the period 2006–15. Subsequently, we are following the paper trail of publications and patents developed by UK authors and inventors to depict to what degree international KS in specific science and technology domains have contributed to the production of novel knowledge in the UK. The results indicate that four out of five citations made in publications and patents in the UK are the works of authors and inventors residing elsewhere. This has important policy implications considering recent tendencies to curtail trade and the free movement of labour, all of which contribute to the diffusion of knowledge.

ARTICLE HISTORY
Received 16 March 2021; Accepted 16 September 2021

KEYWORDS
knowledge space; knowledge spillovers; publication and patent citation analysis; evolutionary economic geography; UK

JEL
D83; O34

KNOWLEDGE SPILOVERS: CONTEXT AND THE KNOWLEDGE SPACE
Knowledge and learning that subsequently translate into scientific advances, and novel goods and processes is key for economic development and the competitiveness of firms, regions and nations (Feldman & Kogler, 2010). Essentially, the innovative performance of an economy is...
determined by the existing stock of knowledge, the rate of knowledge production, and the extent of knowledge spillovers (KS) (Caballero & Jaffe, 1993). KS are of particular importance in this context as they provide the rationale for sustained economic growth (Romer, 1990). They are the results from research and development activities undertaken in one sector that are appropriated by other parts of the same or different sector, and where these may serve as a valuable input in the knowledge-creation process (Griliches, 1979). Thus, most novel knowledge is the product of recombination activities where various existing knowledge domains are combined in a previously undiscovered way (Schumpeter, 1942). While the public good aspects of knowledge, that is, the non-rivalry and non-excludability characteristics (Arrow, 1962), perhaps indicate that knowledge should be circulating freely in space, this is of course not the case and there is ample evidence that in terms of access not only location matters (Marshall, 1890) but also that KS are geographically localized (Jaffe et al., 1993).

Based on these insights, relevant studies have predominantly paid attention to the local and regional scale of KS, frequently ignoring the international dimension of the total stock of knowledge that exists in the world. Given that a significant amount of knowledge is tacit in nature and thus embedded in individuals rather than available in codified form that enables diffusion to take place more easily, this might not come as a surprise (Gertler, 2003). Nevertheless, a real research gap seems to exist, which in turn leads to the following research question: To what extent do international KS contribute to the evolution of place-based knowledge spaces?

To answer this, we rely on evolutionary economic geography principles (Kogler, 2016) and the knowledge space methodology developed by Kogler et al. (2013), which later has also been used in a number of regional analyses on various topics (i.e., Feldman et al., 2015; Kogler et al., 2017, 2021; Buarque et al., 2020, among others). The starting point are data that contain information on distinct knowledge domains, for example, scientific fields or patent classification codes, which then enable us to determine the frequency of co-occurrence (recombination) between these. Essentially, we trust in the principle of relatedness that has been outlined and tested in a variety of settings (Hidalgo et al., 2018; Whittle & Kogler, 2020). In terms of spatial allocation, the address of an author or inventor is used to determine the place of knowledge origin. Further, these data also contain citations to previous works and prior art, which then enables us to follow the paper trail of resulting KS. In summary, the knowledge space represents a network where the nodes are distinct knowledge domains, the size of the node indicates the frequency of use, and the relative distance between nodes shows how frequently particular domains are combined in a single publication or invention. Associated with these nodes are citations to prior works and inventions that have been used in the development of the novel knowledge and which were developed by authors/inventors either residing in the same jurisdiction or elsewhere.

DOMESTIC AND INTERNATIONAL KNOWLEDGE SPILLOVERS IN THE PRODUCTION OF UK SCIENCE AND TECHNOLOGY

In the present investigation we take the UK as a case study and use data derived from the Web of Science database (publications) and European Patent Office (EPO) records (inventions) published and applied for in the period 2006–15. The final sample contains almost 80,000 patent documents that cover 608 distinct patent classification codes, and about 1.37 million publication records that span 144 science subjects. The count of citations regardless of their place of origin for these two data sets is 600,000 and over 6 million, respectively.

Figure 1 illustrates the UK science and technology space along with corresponding global map of UK international knowledge sourcing intensity, respectively. To depict to what extent intra- and international KS have contributed to the evolution of the UK knowledge spaces, we devise a colour scheme. The colour ramp ranges from dark blue (0) to white (0.5) to red.
For a more effective visualization, and because the distribution of KS is highly skewed, we applied a log-transformation and then normalized the data by the maximum value, which, in turn, gives a range between 0 and 1, where 1 is red and indicates the maximum value of intra-UK KS. Essentially, on the low spectrum (blue) a significant amount of KS, prior art in patents or citations made in scientific publications, would have been sourced from outside the UK. In other words, UK patents and publications in domains that display a darker shade of blue in the UK science and technology space were developed by relying on knowledge that was previously developed by inventors and authors who have a non-UK residence or affiliation.

First, examine the UK science space illustrated at top-left in Figure 1(a). Upon visual inspection it is evident that many of the larger scientific domains also have a relatively higher share of international KS compared with some of the smaller nodes. On the contrary, at the bottom and just centre-left of the science space one can find several nodes that display various shades of red, which in turn indicates a relatively high share of domestic KS that feed into the evolution of these science subjects. The domains that cluster include: behavioural sciences; healthcare sciences and services; education and educational research; as well as government and law, amongst others. The clustering of these domains reveals that these scientific fields are frequently combined in single publications, while the node size shows the frequency of their outputs. For example, behavioural sciences, which is the largest node in that cluster, produces many more publications (4100) than education and educational research (1300) that is just to the bottom left of it. For details on the abbreviations used in the science space as well as relative figures and shares of publications and domestic citation ratios in each of the science domains, see Tables A1 and A2 in Appendix A.

In the UK technology space that is illustrated at bottom-left of Figure 1(b) we observe one giant cluster of technology classes that benefit to a larger extent from domestic KS, as indicated by the red shades in the top right-hand corner. This cluster of knowledge domains is
centred around Cooperative Patent Classification (CPC) subclass ‘A61K’ which refers to ‘Preparations for medical, dental, or toilet purposes’, a technological class important for the pharmaceutical sector, among others. Further CPC subclasses located in that quadrant of the UK technological knowledge space refers to knowledge section C of the CPC scheme, that is, ‘Chemistry; metallurgy’. Looking at the top left-hand corner, we observe the opposite pattern, that is, a cluster of technological knowledge domains that are used to produce a significant amount of patents (indicated by node size) and which are frequently combined in single innovations (the clustering of the nodes in space), but that rely heavily on non-UK prior knowledge in their development. These CPC subclasses mainly belong to knowledge sections G and H of the CPC scheme, that is, ‘Physics’ and ‘Electricity’.

Nevertheless, non-standardized results indicate that on average four out of five citations made in UK publications and patents are to works of authors and inventors residing elsewhere; for detailed non-standardized results as well as full labels for the abbreviations displayed in the science space, see Tables A1 and A2 in Appendix A.

Figure 1 also shows two maps, each associated with either the science (a) or technology space (b), in order to illustrate the source of international KS. It is mainly other advanced economies, for example, the United States, Germany, Japan, etc., providing knowledge inputs that are subsequently used for advancing the UK science and technology space. The colours used in the two maps follow the same scheme as shown previously in the knowledge space illustrations, and again we apply a log-transformation and then normalized the data by the maximum value due to the highly skewed distribution of global KS. In both instances, most international KS derive from the United States followed by larger shares from European counties and eventually smaller shares from the rest of the world. We certainly also observe a significant North/South divide in terms of from where KS for UK inventions and publications are sourced.

While the present investigation is mainly descriptive in nature, it certainly warrants further analysis. Nevertheless, the insights so far point to important policy implications considering recent tendencies to curtail trade and the free movement of labour, all of which contribute to the diffusion of knowledge and, if hindered, probably will decrease the absorptive capacity (Cohen & Levinthal, 1990) to recognize what kind of knowledge might be important for scientific and technological advancements. Given that on average four out of five patents as well as publication citations are made in non-domestic sources, this could have a disastrous impact on the evolution and competitiveness of the UK knowledge space going forward.

DISCLOSURE STATEMENT

No potential conflict of interest was reported by the author(s).

FUNDING

This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme [grant number 715631, ERC TechEvo]; and the Science Foundation Ireland’s (SFI) Science Policy Research Programme [grant number 17/SPR/5324, SciTechSpace].

NOTES

1 Knowledge spillovers are also commonly referred to as knowledge externalities in the relevant literature.
2 Patent documents contain the detailed addresses information, or at least the name of the resident locality, for each inventor listed. This in turn allows us to place inventors in space; in the
present analysis this was rather easy as each patent that had at least one UK-based inventor listed could be selected. We apply fractional counting for patents that are developed by inventors in various locations (see Kogler et al., 2017, for further details). Publication data derived from the Web of Science provide authors’ names and their affiliation/address. That information enables us to determine if it is a UK author, that is, an individual who lists an institution, firm or organization with an UK address. With multiple authors we follow the same fractional counting method as with inventors on patent documents.

The present analysis is based on data retrieved from the following: Web of Science bibliographic databases: ‘1980–2017 – Annual Science Citation Index Expanded and Proceedings-Science Combined’ and the EPO PATSTAT database.

For a detailed overview of individual science fields and patent classes as well as the derived UK citation ratio and total counts, Tables A1 and A2 in Appendix A. For a detailed overview of the applied patent classification scheme, that is, the Cooperative Patent Classification (CPC), and the exact definition of each CPC class, see the table provided by the standard setting organization at https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table.

ORCID

Dieter F. Kogler http://orcid.org/0000-0002-6744-5632
Keungoui Kim http://orcid.org/0000-0002-0839-8813

REFERENCES

Arrow, K. (1962). Economic welfare and the allocation of resources for inventions. In R. R. Nelson (Ed.), The rate and direction of inventive activity: Economic and social factors (pp. 609–629). Princeton University Press for the National Bureau of Economic Research (NBER). Buarque, B., Davies, D., Hynes, R., & Kogler, D. F. (2020). OK computer: The creation and integration of AI in Europe. Cambridge Journal of Regions, Economy and Society, 13(1), 175–192. https://doi.org/10.1093/cjres/rsz023

Caballero, R. J., & Jaffe, A. B. (1993). How high are the giants’ shoulders: An empirical assessment of knowledge spillovers and creative destruction in a model of economic growth. NBER Macroeconomics Annual, 8, 15–74. https://doi.org/10.1086/654207

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152. https://doi.org/10.2307/2393553

Feldman, M., Kogler, D. F., & Rigby, D. (2015). Rknowledge: The spatial diffusion and adoption of rDNA methods. Regional Studies, 49(5), 798–817. https://doi.org/10.1080/00343404.2014.980799

Feldman, M. P., & Kogler, D. F. (2010). Stylized facts in the geography of innovation. In B. Hall & N. Rosenberg (Eds.), Handbook of the economics of innovation (pp. 381–410). Elsevier.

Gertler, M. S. (2003). Tacit knowledge and the economic geography of context, or the undefinable tacitness of being (there). Journal of Economic Geography, 3(1), 75–99. https://doi.org/10.1093/jeg/3.1.75

Griliches, Z. (1979). Issues in assessing the contribution of R&D to productivity growth. The Bell Journal of Economics, 10(1), 92–116. https://doi.org/10.2307/3003321

Hidalgo, C., Ballard, P.-A., Boschma, R., Delgado, M., Feldman, M. P., Frenken, K., Glaeser, E., He, C., Kogler, D. F., Morrison, A., Neffke, F., Rigby, D., Stern, S., Zheng, S., & Zhu, S. (2018). The principle of relatedness. In A. Morales, C. Gershenson, D. Braha, A. Minai, & Y. Bar-Yam (Eds.), Unifying themes in complex systems IX. ICCS 2018. Springer proceedings in complexity (pp. 451–457). Springer. https://doi.org/10.1007/978-3-319-96661-8_46

Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577–598. https://doi.org/10.2307/2118401
Kogler, D. F. (Ed.). (2016). Evolutionary economic geography: Theoretical and empirical progress. Routledge.

Kogler, D. F., Essletzbichler, J., & Rigby, D. (2017). The evolution of specialization in the EU15 knowledge space. *Journal of Economic Geography, 17*(2), 345–373. https://doi.org/10.1093/jeg/lbw024

Kogler, D. F., Rigby, D., & Tucker, I. (2013). Mapping knowledge space and technological relatedness in us cities. *European Planning Studies, 21*(9), 1374–1391. https://doi.org/10.1080/09654313.2012.755832

Kogler, D. F., Whittle, A., & Buarque, B. (2021). The science space of artificial intelligence knowledge production: Global and regional patterns, 1990–2016. In H. Kurz, M. Schütz, R. Strohmaier, & S. Zilian (Eds.), *Handbook of smart technologies*. Routledge.

Marshall, A. (1890). *Principles of economics*. Macmillan.

Romer, P. (1990). Endogenous technological change. *Journal of Political Economy, 64*, 1002–1037.

Schumpeter, J. (1942). *Capitalism, socialism and democracy*. Harper.

Whittle, A., & Kogler, D. F. (2020). Related to what? Reviewing the literature on technological relatedness: Where we are now and where can we go? *Papers in Regional Science, 99*(1), 97–113. https://doi.org/10.1111/pirs.12481
APPENDIX A

Table A1. UK technology space: present Cooperative Patent Classification (CPC) codes, and their associated UK citation ratio as well as the count of patents using the CPC listed.

No.	CPC	UK_CITE	UK_PATS																
1	A01B	15.9	26	103	B07C	18.3	14	205	B61L	14.9	39	307	C13K	8.9	3	409	F03G	19.2	21
2	A01C	9.9	15	104	B08B	13.9	82	206	B62B	16.8	89	308	C148	27.2	1	410	F03H	7.7	6
3	A01D	18.7	56	105	B09B	14.1	17	207	B62D	13.2	201	309	C14C	17.0	9	411	F04B	20.4	210
4	A01F	8.0	8	106	B09C	12.4	7	208	B62H	8.4	11	310	C21B	13.4	23	412	F04C	16.5	149
5	A01G	11.6	95	107	B21B	12.8	47	209	B62J	14.1	42	311	C21C	9.6	3	413	F04D	17.3	234
6	A01H	14.6	22	108	B21C	20.9	16	210	B62K	12.8	42	312	C21D	15.8	28	414	F04F	21.0	26
7	A01I	20.6	9	109	B21D	20.6	103	211	B62L	8.3	2	313	C22B	18.9	32	415	F05B	15.8	184
8	A01K	22.6	240	110	B21F	6.4	3	212	B62M	15.1	15	314	C22C	16.8	121	416	F05C	15.4	11
9	A01L	12.8	6	111	B21H	10.8	1	213	B63B	14.7	170	315	C22F	17.6	21	417	F05D	18.1	472
10	A01M	16.6	67	112	B21J	22.6	20	214	B63C	19.4	42	316	C23C	15.2	227	418	F15B	11.7	74
11	A01N	12.8	457	113	B21K	23.0	5	215	B63G	20.8	25	317	C23D	20.0	0	419	F15C	30.8	1
12	A21B	17.4	11	114	B22C	15.9	24	216	B63H	13.8	67	318	C23F	16.8	36	420	F15D	19.4	9
13	A21C	11.2	13	115	B22D	15.3	50	217	B63J	14.2	5	319	C23G	15.1	3	421	F16B	17.0	238
14	A21D	17.6	51	116	B22F	12.6	110	218	B64B	20.5	4	320	C25B	14.6	47	422	F16C	14.1	208
15	A22B	22.4	6	117	B23B	15.7	46	219	B64C	20.3	332	321	C25C	20.8	21	423	F16D	17.3	214
16	A22C	17.6	8	118	B23C	8.3	10	220	B64D	19.8	279	322	C25D	16.4	54	424	F16F	14.8	100
17	A23B	11.4	19	119	B23D	9.8	34	221	B64F	14.5	36	323	C25F	9.0	5	425	F16G	18.3	22
18	A23C	7.1	22	120	B23F	8.6	2	222	B64G	1.4	18	324	C30B	25.8	61	426	F16H	16.0	247
19	A23D	15.7	37	121	B23H	30.3	10	223	B65B	15.0	159	325	C40B	21.4	14	427	F16J	17.3	107
20	A23F	21.4	97	122	B23K	13.8	227	224	B65C	17.3	33	326	D01B	32.8	2	428	F16K	16.4	266
21	A23G	16.2	309	123	B23P	15.9	34	225	B65D	16.7	131	327	D01C	14.4	0	429	F16L	19.6	493
22	A23I	11.1	6	124	B23Q	13.6	55	226	B65F	23.1	41	328	D01D	16.4	17	430	F16M	14.2	71
23	A23K	11.6	98	125	B24B	14.1	42	227	B65G	15.2	159	329	D01F	12.8	24	431	F16N	14.4	11
24	A23L	12.6	323	126	B24C	10.3	16	228	B65H	13.7	137	330	D01G	11.0	1	432	F16P	14.2	5

(Continued)
No.	CPC	UK_CITE	UK_PATS																				
25	A23N	14.4	9	127	B24D	9.9	27	229	B66B	22.9	43	331	D01H	32.8	1	433	F16T	14.1	3	535	G09B	16.7	100
26	A23P	15.9	47	128	B25B	17.3	66	230	B66C	12.0	49	332	D02G	19.1	15	434	F17C	10.8	220	536	G09C	16.6	3
27	A23V	12.4	94	129	B25C	9.4	8	231	B66D	14.2	23	333	D02H	33.3	0	435	F17D	18.0	17	537	G09F	15.2	132
28	A23Y	7.2	2	130	B25D	9.7	7	232	B66F	15.8	51	334	D03C	19.2	5	436	F21K	6.8	8	538	G09G	12.5	137
29	A24B	14.2	72	131	B25F	8.2	14	233	B67B	15.8	12	335	D03D	17.2	29	437	F21L	18.7	6	539	G10C	33.3	0
30	A24C	17.2	51	132	B25G	15.4	7	234	B67C	10.5	4	336	D04B	14.9	11	438	F21S	13.8	39	540	G10D	14.8	14
31	A24D	22.9	206	133	B25H	15.5	17	235	B67D	18.2	89	337	D04C	13.6	3	439	F21V	13.3	91	541	G10G	19.7	4
32	A24F	14.6	182	134	B25J	11.5	52	236	B68B	1.8	8	338	D04H	14.8	28	440	F21W	12.6	9	542	G10H	8.9	24
33	A41B	14.4	15	135	B26B	23.7	161	237	B68C	19.8	5	339	D05B	17.4	2	441	F21Y	10.4	24	543	G10K	15.9	46
34	A41C	21.2	18	136	B26D	16.5	42	238	B68G	24.7	4	340	D05C	40.0	1	442	F22B	6.6	14	544	G10L	10.3	125
35	A41D	15.3	86	137	B26F	11.4	7	239	B81B	9.5	29	341	D06B	16.3	5	443	F22D	2.7	3	545	G11B	15.3	96
36	A41F	20.1	9	138	B27B	14.5	13	240	B81C	5.4	27	342	D06C	8.0	1	444	F23B	5.1	2	546	G11C	10.2	68
37	A41G	7.4	6	139	B27C	21.2	12	241	B82B	12.6	3	343	D06F	15.1	91	445	F23C	18.4	38	547	G12B	9.1	0
38	A41H	23.1	5	140	B27D	50.0	0	242	B82Y	16.5	94	344	D06H	6.4	2	446	F23D	14.9	80	548	G16B	21.5	64
39	A42B	15.4	45	141	B27F	13.8	1	243	C01B	17.2	177	345	D06L	12.7	7	447	F23G	16.9	39	549	G16C	17.8	11
40	A42C	10.8	1	142	B27G	12.9	4	244	C01C	11.6	4	346	D06M	17.9	60	448	F23H	18.9	1	550	G16H	15.4	89
41	A43B	12.0	88	143	B27K	19.0	19	245	C01D	17.0	2	347	D06N	14.7	12	449	F23J	9.5	17	551	G16Z	18.8	2
42	A43C	16.3	8	144	B27L	50.0	0	246	C01F	12.1	9	348	D06P	19.6	20	450	F23K	19.6	9	552	G21B	18.8	10
43	A43D	13.9	9	145	B27M	29.7	0	247	C01G	19.0	24	349	D06Q	12.4	2	451	F23L	16.7	9	553	G21C	10.2	10
44	A44B	10.1	7	146	B27N	20.2	8	248	C01P	17.5	59	350	D07B	14.9	17	452	F23M	11.3	9	554	G21D	15.4	1
45	A44C	7.0	11	147	B28B	16.3	29	249	C02F	13.5	246	351	D10B	16.1	26	453	F23N	16.7	35	555	G21F	11.3	20
46	A44D	16.5	1	148	B28C	20.7	8																

(Continued)
No.	CPC CITE	UK_PATS No.												
50	A45F	16.4	49	152	B29D	16.0	58	254	C05C	11.6	2356	C05C	11.6	2356
51	A46B	11.5	65	153	B29K	15.4	104	255	C05D	8.2	4357	C05D	8.2	4357
52	A46D	24.0	3	154	B29L	14.7	68	256	C05F	15.7	11358	D21J	14.7	11358
53	A47B	11.6	76	155	B30B	9.6	33	257	C05G	11.3	7359	E01B	23.5	4561
54	A47C	13.8	99	156	B31B	12.9	39	258	C06B	17.0	16360	E01C	18.6	56426
55	A47D	13.9	37	157	B31D	10.3	7	259	C06C	22.2	1361	E01D	26.0	12463
56	A47F	14.3	56	158	B31F	12.8	15	260	C06D	30.9	1362	E01F	18.5	64464
57	A47G	18.3	107	159	B32B	17.6	414	261	C07B	25.2	8336	E01H	21.7	11465
58	A47H	14.4	12	160	B33Y	13.3	61	262	C07C	18.1	56364	E02B	17.1	65466
59	A47J	16.4	248	161	B41C	14.8	6	263	C07D	18.6	2610	E02D	24.7	11467
60	A47K	15.4	122	162	B41F	17.7	45	264	C07F	19.3	13436	E02F	13.2	103468
61	A47L	17.9	359	163	B41J	19.4	209	265	C07G	5.0	1367	E03B	20.1	27469
62	A47L	15.2	1610	164	B41L	33.3	0	266	C07H	20.4	72368	E03C	17.5	77470
63	A61C	9.6	65	165	B41M	18.9	80	267	C07J	19.3	23369	E03D	16.1	46471
64	A61D	15.6	9	166	B41N	13.0	6	268	C07K	16.8	11777	E03F	16.3	41472
65	A61F	17.3	860	167	B41P	21.9	8	269	C08B	16.1	32371	E04B	17.7	17473
66	A61G	16.4	145	168	B42C	16.8	2	270	C08C	12.2	1372	E04C	16.2	57474
67	A61H	13.8	95	169	B42D	19.7	149	271	C08F	15.4	22337	E04D	15.9	53475
68	A61J	15.9	105	170	B42F	8.4	5	272	C08G	14.1	32137	E04F	16.0	97476
69	A61K	17.4	3937	171	B43K	15.3	11	274	C08J	14.8	17476	E04H	17.2	114478
70	A61L	19.8	451	172	B43J	15.3	11	274	C08K	14.8	17476	E041F	5.9	45800
71	A61M	19.5	2708	173	B43L	22.5	1	275	C08K	14.8	18837	E05B	14.0	41479
72	A61N	15.3	223	174	B43M	19.8	6	276	C08L	13.7	20537	E05C	21.6	29480
73	A61P	19.2	142	175	B44B	16.3	3	277	C09B	14.7	113379	E05D	13.8	32481
74	A61Q	15.6	312	176	B44C	9.9	10	278	C09C	16.0	26380	E05F	17.4	27482
75	A62B	21.4	155	177	B44D	14.5	16	279	C09D	17.3	35381	E05G	21.3	12483
76	A62C	18.0	90	178	B44F	17.4	5	280	C09G	2.2	1382	E05Y	14.1	52484
77	A62D	19.9	51	179	B60B	16.0	50	281	C09H	30.1	0383	E068	17.6	180485

(Continued)
No.	CPC	UK_CITE	UK_PATS																
78	A638	14.7	233	78	A668	12.7	502	82	B60C	14.3	82	88	B60D	9.4	23	79	A63C	10.8	17
80	A63D	15.2	5	80	A66F	24.8	21	81	A63F	13.9	16	82	A66G	14.7	94	83	A63G	15.0	12
85	A63K	50.0	1	85	A66L	10.8	92	86	B01B	35.7	0	86	B01D	15.6	572	87	B01F	13.8	157
91	A63J	22.2	186	91	A66K	13.7	147	92	B02B	66.7	2	92	B02C	16.1	103	93	B03B	11.4	13
95	A63O	19.0	26	95	A66P	8.7	7	96	B04B	22.9	25	96	B04C	21.9	33	98	B05B	15.8	259
101	B06B	18.3	15	101	B06H	11.4	18	102	B07B	20.4	39	102	B07K	9.7	6				
Table A2. UK science space: present science subjects and their associated UK domestic citation ratio as well as the count of publications that list a specific science subject.

No.	Science subject	Abbreviation	UK_CITE	UK_PUBS	No.	Science subject	Abbreviation	UK_CITE	UK_PUBS
1	Acoustics	ACOU	21.34	2619	73	Mathematical and computational biology	MATC	17.73	3051
2	Agriculture	AGRI	17.11	15,392	74	Mathematical methods in social sciences	MATM	19.97	486
3	Allergy	ALLE	15.60	2022	75	Mathematics	MATH	16.16	24,396
4	Anatomy and morphology	ANAT	15.58	1528	76	Mechanics	MECH	18.30	7109
5	Anaesthesiology	ANES	20.70	5354	77	Medical ethics	MEDE	26.22	130
6	Anthropology	ANTH	17.45	552	78	Medical informatics	MEDI	22.36	1115
7	Archaeology	ARCA	20.87	213	79	Medical laboratory technology	MEDL	15.45	2450
8	Architecture	ARCH	16.34	13	80	Metallurgy and metallurgical engineering	META	14.25	5269
9	Area studies	AREA	20.51	2	81	Meteorology and atmospheric sciences	METE	15.40	10,117
10	Art	ARTS	17.06	17	82	Microbiology	MICB	15.44	16,821
11	Arts and humanities – other topics	ARTH	9.41	5	83	Microscopy	MICS	18.85	1292
12	Astronomy and astrophysics	ASTR	14.48	38,147	84	Mineralogy	MINE	16.07	1602
13	Audiology and speech–language pathology	AUDI	21.55	929	85	Mining and mineral processing	MINI	14.24	401
14	Automation and control systems	AUTO	16.12	4474	86	Music	MUSI	10.92	27
15	Behavioral sciences	BEHA	21.75	4060	87	Mycology	MYCO	13.85	1328
16	Biochemistry and molecular biology	BIOC	15.51	55,480	88	Neurosciences and neurology	NEUR	16.12	54,192
17	Biodiversity and conservation	BIOD	19.85	2838	89	Nuclear science and technology	NUCL	14.08	3016
18	Biomedical social sciences	BIOM	24.02	416	90	Nursing	NURS	24.04	2176
19	Biophysics	BIOP	14.88	8107	91	Nutrition and dietetics	NUTR	18.36	8141
20	Biotechnology and applied microbiology	BIOT	14.79	13,571	92	Obstetrics and gynaecology	OBST	18.27	8853
21	Business and economics	BUSI	20.18	2275	93	Oceanography	OCEA	18.65	4498
22	Cardiovascular system and cardiology	CARD	15.25	25,627	94	Oncology	ONCO	13.54	33,396
23	Cell biology	CELL	14.92	23,753	95	Operations research and management science	OPER	15.60	2903
24	Chemistry	CHEM	14.44	95,196	96	Ophthalmology	OPHT	18.37	9753
25	Communication	COMM	19.94	10	97	Optics	OPTI	15.46	15,162

(Continued)
Table A2. Continued.

No.	Science subject	Abbreviation	UK_CITE	UK_PUBS	No.	Science subject	Abbreviation	UK_CITE	UK_PUBS
26	Computer science	COMP	16.31	31,969	98	Orthopaedics	ORTH	15.16	4964
27	Construction and building technology	CONS	19.72	1401	99	Otorhinolaryngology	OTOR	14.82	4012
28	Criminology and penology	CRIM	44.00	2	100	Palaeontology	PALE	19.96	2402
29	Crystallography	CRYL	17.67	4120	101	Parasitology	PARA	18.42	5169
30	Demography	DEMO	16.88	4	102	Pathology	PATH	14.38	6833
31	Dentistry, oral surgery and medicine	DENT	16.94	8317	103	Pediatrics	PEDI	17.82	11,729
32	Dermatology	DERM	17.23	6823	104	Pharmacology and pharmacy	PHAR	15.20	32,607
33	Developmental biology	DEVE	16.39	4572	105	Philosophy	PHIL	21.52	50
34	Education and educational research	EDUC	30.27	1309	106	Physical geography	PHYG	20.93	3644
35	Electrochemistry	ELEC	11.25	4448	107	Physics	PHYS	12.13	95,897
36	Emergency medicine	EMER	18.65	2266	108	Physiology	PHYL	16.07	8403
37	Endocrinology and metabolism	ENDO	16.44	20,135	109	Plant sciences	PLAN	16.00	17,355
38	Energy and fuels	ENER	12.85	4915	110	Polymer science	POLY	12.22	10,428
39	Engineering	ENGI	15.93	63,156	111	Psychiatry	PSYH	20.32	13,302
40	Entomology	ENTO	17.29	3869	112	Psychology	PSYC	23.33	7961
41	Environmental sciences and ecology	ENVI	17.36	30,379	113	Public administration	PUBA	14.77	25
42	Ethnic studies	ETHN	42.86	25	114	Public, environmental and occupational health	PUBE	19.57	13,967
43	Evolutionary biology	EVOL	19.06	4969	115	Radiology, nuclear medicine and medical imaging	RADI	14.87	15,417
44	Family studies	FAMI	15.54	14	116	Rehabilitation	REHA	19.72	2474
45	Fisheries	FISH	15.54	2846	117	Remote sensing	REMO	14.39	1702
46	Food science and technology	FOOD	13.22	8033	118	Reproductive biology	REPR	17.08	3324
47	Forestry	FORE	12.81	2496	119	Research and experimental medicine	RESE	13.93	12,574
48	Gastroenterology and hepatology	GAST	13.31	12,802	120	Respiratory system	RESP	17.56	8010
49	General and internal medicine	GENE	20.24	33,816	121	Rheumatology	RHEU	16.51	7199
50	Genetics and heredity	GENE	16.07	20,328	122	Robotics	ROBO	14.31	1162
51	Geochemistry and geophysics	GEOC	16.22	10,545	123	Science and technology – other topics	SCIE	14.44	51,070
52	Geography	GEOG	24.14	169	124	Social issues	SOCI	28.13	112

(Continued)
No.	Science subject	Abbreviation	UK_CITE	UK_PUBS	No.	Science subject	Abbreviation	UK_CITE	UK_PUBS
53	Geology	GEOL	19.18	18,310	125	Social sciences – other topics	SOCS	28.21	559
54	Geriatrics and gerontology	GERI	15.65	4294	126	Social work	SOCW	12.82	10
55	Government and law	GOVE	28.62	43	127	Sociology	SOCL	28.74	25
56	Health care sciences and services	HEAL	24.03	5909	128	Spectroscopy	SPEC	13.98	3725
57	Haematology	HEMA	14.56	12,259	129	Sport sciences	SPOR	17.07	5264
58	History	HIST	35.93	23	130	Substance abuse	SUBS	16.28	1301
59	History and philosophy of science	HISP	29.60	645	131	Surgery	SURG	14.79	18,296
60	Imaging science and photographic technology	IMAG	15.25	2158	132	Telecommunications	TELE	12.28	4558
61	Immunology	IMMU	14.24	19,604	133	Thermodynamics	THER	12.92	2234
62	Infectious diseases	INFE	15.09	9353	134	Toxicology	TOXI	14.10	5686
63	Information science and library science	INFO	21.95	549	135	Transplantation	TRAP	14.21	2676
64	Instruments and instrumentation	INST	15.52	4722	136	Transportation	TRAN	15.99	980
65	Integrative and complementary medicine	INTE	13.86	1556	137	Tropical medicine	TROP	15.19	2050
66	International relations	INTE	5.88	1	138	Urban studies	URBA	13.85	56
67	Legal medicine	LEGA	17.15	830	139	Urology and nephrology	UROL	13.30	10,750
68	Life sciences and biomedicine – other topics	LIFE	17.88	8227	140	Veterinary sciences	VETO	18.60	9578
69	Linguistics	LING	26.94	295	141	Virology	VIRO	15.07	7274
70	Literature	LITE	14.29	1	142	Water resources	WATE	18.60	4779
71	Marine and freshwater biology	MARI	17.94	7110	143	Women’s studies	WOME	12.84	37
72	Materials science	MATE	13.58	39,157	144	Zoology	ZOOL	19.72	8674