OGLE-2017-BLG-0173Lb: Low-mass-ratio Planet in a “Hollywood” Microlensing Event

K.-H. Hwang1, A. Udalski2, Y. Shvartzvald3,14, Y.-H. Ryu1, and
M. D. Albrow4, S.-J. Chung1,5, A. Gould1,6,7, C. Han8, Y. K. Jung9, I.-G. Shin9, J. C. Yee9, W. Zhu6, S.-M. Cha1,10, D.-J. Kim1, H.-W. Kim4, S.-L. Kim5, C.-U. Lee1,5, D.-J. Lee1, Y. Lee1,10, B.-G. Park1,5, R. W. Pogge6 (KMTNet Collaboration), J. Skowron2, P. Mróz2, R. Poleski2,6, S. Kozłowski2, L. Sozzi2, P. Pietrukowicz2, M. K. Szymański2, K. Ulaczyk2, M. Pawlak2 (OGLE Collaboration), and G. Bryden3, C. Beichman11, S. Calchi Novati12, B. S. Gaudi6, C. B. Henderson11, S. Jacklin13, and M. T. Penny6,15 (UKIRT Microlensing Team)

1 Korea Astronomy and Space Science Institute, Daejon 34055, Korea
2 Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
3 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
4 University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020, New Zealand
5 Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
6 Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA
7 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
8 School of Space Research, Kyung Hee University, Yongin, Kyeonggi 17104, Korea
9 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
10 IPAC/NEXsci, Mail Code 100-22, Caltech, 1200 E. California Boulevard, Pasadena, CA 91125, USA
11 IPAC, Mail Code 100-22, Caltech, 1200 E. California Boulevard, Pasadena, CA 91125, USA
12 IPAC, NEXsci, Mail Code 100-22, Caltech, 1200 E. California Boulevard, Pasadena, CA 91125, USA
13 Vanderbilt University, Department of Physics & Astronomy, PMB 401807, 2301 Vanderbilt Place, Nashville, TN 37235, USA

Received 2017 August 28; revised 2017 September 25; accepted 2017 November 5; published 2017 December 15

Abstract

We present microlensing planet OGLE-2017-BLG-0173Lb, with planet–host mass ratio of either $q \approx 2.5 \times 10^{-5}$ or $q \approx 6.5 \times 10^{-5}$, the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, $\Delta \chi^2 \approx 10000$, because it arises from a bright (therefore, large) source passing over and enveloping the planetary caustic: a so-called “Hollywood” event. The factor $\sim 2.5$ offset in $q$ arises because of a previously unrecognized discrete degeneracy between Hollywood events in which the caustic is fully enveloped and those in which only one flank is enveloped, which we dub “Cannae” and “von Schleffen,” respectively. This degeneracy is “accidental” in that it arises from gaps in the data. Nevertheless, the fact that it appears in a $\Delta \chi^2 \approx 10000$ planetary anomaly is striking. We present a simple formalism to estimate the sensitivity of other Hollywood events to planets and show that they can lead to detections close to, but perhaps not quite reaching, the Earth/Sun mass ratio of $3 \times 10^{-6}$. This formalism also enables an analytic understanding of the factor $\sim 2.5$ offset in $q$ between the Cannae and von Schleffen solutions. The Bayesian estimates for the host mass, system distance, and planet–host projected separation are $M = 0.39^{+0.40}_{-0.24} M_{\odot}$, $D_L = 4.8^{+1.5}_{-1.3}$ kpc, and $a_c = 3.8 \pm 1.6$ au, respectively. The two estimates of the planet mass are $m_p = 3.3^{+3.8}_{-2.1} M_{\oplus}$ and $m_p = 8^{+11}_{-6} M_{\oplus}$. The measured lens-source relative proper motion $\mu = 6$ mas yr$^{-1}$ will permit imaging of the lens in about 15 years or at first light on adaptive-optics imagers on next-generation telescopes. This will allow one to measure the host mass but probably will not be able to resolve the planet–host mass-ratio degeneracy.

Key words: gravitational lensing: micro – planetary systems

1. Introduction

Planetary companions of microlensing hosts induce two classes of caustic structures on the otherwise smooth magnification pattern due to the host itself; “central caustics” that lie projected close to the host and “planetary caustics” that are separated from the host position by $(s - s^*) \theta_{E}$, where $s \theta_E$ is the planet–star angular separation and $\theta_E$ is the angular Einstein radius$^{16}$ (Mao & Paczyński 1991; Gould & Loeb 1992; Gaudi 2012).

For planets that lie outside the Einstein ring ($s > 1$), each of the two caustics may be regarded as due to the tidal shear induced by the other body on its own symmetric gravitational field, a regime that was first analyzed in a cosmological context

---

$^{14}$ NASA Postdoctoral Program Fellow.
$^{15}$ Sagan Fellow.
by Chang & Refsdal (1984), and then in a microlens-planet context by Gould & Loeb (1992). Because the Einstein radius \( \theta_E \) of each is proportional to the square root of the lens mass \( M \),

\[
\theta_E \equiv \sqrt{\kappa M_{\text{rel}}} ; \quad \kappa \equiv \frac{4G}{c^2 \text{au}} \approx 8.14 \frac{\text{mas}}{M_\odot},
\]

and the shear scales directly with \( M \), it immediately follows that the size \( w \) of the planetary caustics is larger than that of the central caustics by

\[
\frac{w_{\text{planet}}}{w_{\text{host}}} \propto \frac{M_{\text{host}}}{M_{\text{planet}}} \frac{\theta_{E,\text{planet}}}{\theta_{E,\text{host}}} \propto \sqrt{\frac{M_{\text{host}}}{M_{\text{planet}}}} \approx q^{-1/2}.
\]

Here, \( \pi_{\text{rel}} \approx \text{au}(D_c^{-1} - D_s^{-1}) \) is the lens-source relative parallax and \( q \) is the planet–star mass ratio.

It follows directly from Equation (2) that random source trajectories passing through the Einstein ring will intersect planetary caustics much more often than central caustics and that this disparity should grow stronger with decreasing mass ratio \( q \). Naively, this would seem to imply that the great majority of microlensing planet detections should take place via planetary caustics. In fact, a recent compilation by Mróz et al. (2017) shows that fewer than one-third are detected through this channel. While examination of their Figure 7 does show that this fraction rises for trajectories passing randomly through Einstein rings, they are not all recognized in time to mobilize these resources, and if the high-magnification planet induces distortions in the magnification profile via a central caustic. For this reason, if there are limited observational resources, and if the high-magnification events can be recognized in time to mobilize these resources, it makes sense to concentrate them on high-magnification events. See, for example, Gould et al. (2010).

Wide-area high-cadence surveys, initiated first by the Microlensing Observations in Astrophysics (MOA; Sumi et al. 2016) and the Optical Gravitational Lensing Experiment (OGLE; Udalski et al. 2015) can continuously monitor all events, whether the source trajectories are individually favorable or not, making them much more sensitive to planetary caustics and therefore, in particular according to Equation (2), low-mass planets. Indeed, this is a major component of the motivation for such surveys.

For gas-giant planets, whose characteristic Einstein timescales (and so typical durations of perturbation) are one-to-few days, the sensitivity of the survey is basically independent of the diurnal coverage. For example, OGLE-2012-BLG-0406Lb, one of the first planets to be detected in this mode, has a perturbation spanning about five days. OGLE data, which are taken from Chile, quite adequately cover the anomaly, enabling robust characterization, even though they span only about one-third of the diurnal cycle and even though three days were entirely missed due to the Moon passing through the Galactic bulge (Poleski et al. 2014b). These results were later confirmed and refined by Tsaprals et al. (2014).

For planets at the opposite extreme, i.e., Earth-to-Neptune mass-ratio planets with characteristic timescales of a few hours, these surveys retain their sensitivity, but it now scales as their diurnal coverage. That is, such short-duration anomalies are likely to be either basically contained within a night’s data or entirely missed.

Detection of such low-mass planets is a major motivation for creating round-the-clock surveys, either by combining several surveys located at complementary sites (Shvartzvald et al. 2014), or by operating a single, multi-site survey (Kim et al. 2016; Henderson et al. 2014).

Here, we report the discovery of OGLE-2017-BLG-0173Lb, which at either \( q \approx 2.5 \times 10^{-5} \) or \( q \approx 6.5 \times 10^{-5} \), is in this latter regime: the discovery relies critically on the near-continuous coverage of the Korea Microlensing Telescope Network (KMTNet) survey, with the anomaly entirely captured by data taken from its Australia and South African observatories.

The source star of the event is a giant and so has a large angular radius. The event therefore illustrates the power of the so-called “Hollywood” strategy of “following the big stars” to detect low-mass planets (Gould 1997).

### 2. Observations

OGLE-2017-BLG-0173 is at (R.A., decl.) = (17:51:52.95, −29:16:16.9), corresponding to \((l, b) = (0.42, −1.35)\). It was discovered and announced as a probable microlensing event by the OGLE Early Warning System (Udalski et al. 1994; Udalski 2003) at UT 14:21 2017 February 25. OGLE observations were at a cadence of \( \Gamma = 1 \text{ hr}^{-1} \) using their 1.3 m telescope at Las Campanas, Chile.

KMTNet observed this field from its three 1.6 m telescopes at CTIO (Chile, KMT), SAAO (South Africa, KMTS), and SSO (Australia, KMTA), in its two slightly offset fields BLG02 and BLG42, with combined cadence of \( \Gamma = 4 \text{ hr}^{-1} \). However, for KMT-CLG02, the source usually fell on a bad column of the detector, so observations from this observatory-field combination were not included. Hence, For KMT, \( \Gamma = 2 \text{ hr}^{-1} \).

The great majority of observations were carried out in \( V \)-band with occasional \( W \)-band observations made solely to determine source colors (but see next paragraph). All reductions for the light curve analysis were conducted using variants of difference image analysis (DIA; Alard & Lupton 1998), specifically Woźniak (2000) and Albrow et al. (2009).

Although the source is a low-luminosity giant, and therefore quite luminous relative to the majority of microlensed sources, it is also highly extincted, \( A_V = 2.8 \). Hence, it is extremely faint in the \( V \)-band. While many faint-\( V \) sources nevertheless can ultimately yield very good \((V−I)\) colors (e.g., Yee et al. 2012), this is only because they are observed at high magnification. By contrast, the most highly magnified source for OGLE-2017-BLG-0173 has a magnification \( A \sim 2.2 \) (i.e., \( \Delta A = 1.2 \) relative to baseline), which yields only very poor constraints on the source color. Fortunately, the UKIRT microlensing survey (Shvartzvald et al. 2017), which is primarily motivated to improve understanding of future \( WFIRST \) microlensing observations (Spergel et al. 2013), observed this field using the wide-field near-infrared camera (WFCAM) with a nominal cadence of \( \Gamma = 1 \text{ day}^{-1} \) in \( H \)-band. Although these observations began 26 days after peak, when the source was just leaving the Einstein ring (so magnified by only \( \Delta A \sim 0.3 \), see Figure 1), the source was quite bright in this passband, \( H_i \sim 14.5 \), which enables a good \((I−H)\) color measurement. See Section 4.1. The UKIRT/WFCAM images were reduced by the Cambridge Astronomy Survey Unit (CASU; Irwin et al. 2004). The UKIRT light curve was extracted using a soft-edged circular aperture and was photometrically calibrated to 2MASS (see Hodgkin et al. 2009 for details).
The OGLE-2017-BLG-0173 light curve is comprised of a long low-amplitude hump, lasting several months, which rises just 0.35 mag above baseline (see Figure 1), punctuated by a short (<1 day) bump, which rises an additional 0.3 mag (see Figure 2). The anomaly starts and ends with an abrupt rise and fall, indicating a caustic entrance and exit, respectively. However, there is no “dip” between these, implying that the source must be larger than the separation between the two sides of the caustic. The simplest way to account for this behavior is that the source envelops a substantial fraction of, or perhaps the whole, caustic. While a few such events have previously been observed, e.g., OGLE-2005-BLG-390 (Beaulieu et al. 2006) and OGLE-2008-BLG-092 (Poleski et al. 2014a), there has never been a discussion of how to intuitively understand this generic class of events. We therefore begin with such a heuristic analysis.

3.1. Heuristic Analysis

In general, a minimum of six geometric parameters are required to describe a binary microlensing event: \((t_0, u_0, \theta_E, s, q, \alpha)\). The first three are the Paczynski (1986) parameters of the underlying event due to the system as a whole, i.e., the time of closest approach, the impact parameter (scaled to \(\theta_E\)), and the Einstein timescale,

\[ t_E \equiv \frac{\theta_E}{\mu}, \]

where \(\mu\) is the lens-source relative proper motion and \(\mu = |\mu|\). For the case of planetary companions, particularly those of very low mass, the great majority of the light curve follows the standard Paczynski (1986) flux evolution:

\[ F(t) = f_s A[u(t; t_0, u_0, t_E)] + f_b; \]

\[ A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}; \]

\[ u^2 = \frac{(t - t_0)^2}{t_E^2} + u_0^2, \]

where \(f_s\) is the source flux and \(f_b\) is any blended light in the aperture not taking part in the event. The normalized separation \(s\) and mass ratio \(q\) have already been described, while \(\alpha\) gives the direction of the star–planet axis relative to \(\mu\). If the source passes over or close to any caustics, one must also specify a seventh parameter,

\[ \rho \equiv \frac{\theta_s}{\theta_E}, \]

where \(\theta_s\) is the angular source radius.

As shown in Figure 1, the OGLE data are quite well fit by a standard Paczynski (1986) curve, Equation (4). After including the KMTNet data as well (but excluding the anomaly) we find that the Paczynski (1986) parameters are,

\[ (t_0, u_0, \theta_E, f_s, f_b) = (7837.90, 0.74, 33.7 \text{ day}, 0.93, 0.61), \]

(point – lens fit),

where the flux scale is set by \(f \equiv 1\) at \(l = 18\). In addition to these five parameters, we must still evaluate the four others related to the planet that were defined above, \((s, \alpha, q, \rho)\). The first two of these are quite straightforward.

The perturbation is centered at \(\tau_{anom} = 7844.3\), i.e., at \(\tau_{anom} \equiv (\tau_{anom} - t_0)/t_E = 0.190\). Hence, the position and orientation within the Einstein ring are

\[ u_{anom} = \sqrt{u_0^2 + \tau_{anom}^2} = 0.76 \]

\[ \alpha = \tan^{-1} \frac{u_0}{\tau_{anom}} = 1.32 \text{ radian}. \]

The physical origin of the caustic is that one of the two images created by the gravity of the host, at scaled positions \((u \pm \sqrt{u^2 + 4})/2\), is passing near the planet, with separation \(s\) from the host. However, as shown by Gould & Gauchere (1997), when a source envelops the caustics due to the “minor” image \((u - \sqrt{u^2 + 4})/2\), it tends to generate zero excess magnification rather than the bump that is seen in Figure 2. Hence we derive,

\[ s = \frac{u_{anom} + \sqrt{u_{anom}^2 + 4}}{2} = 1.45. \]

To evaluate the remaining two parameters \((q, \rho)\) by eye is more difficult. We begin by making the simplifying assumption that the source completely envelopes the caustic and then discuss how the estimates are impacted if this assumption fails and the caustic is only partially enveloped.

Gould & Gauchere (1997) showed that for the case of an \(s > 1\) planetary caustic, the excess magnification at peak for a source that is much larger than the planetary Einstein radius...
That is, $A_D$ is the same as it would be if the planet were an isolated point-lens. The excess flux can be read off the light curve, which then (combined with $fs$) yields the excess magnification, $A_qA_{10^{0.67}}$. 2.0.33, $10^{0.4}$. $\sigma_{anom,base}$ = $6.5 \times 10^{-5}$ (models A and C). The upper panel is a zoom and also includes the best-fit binary-source model, which clearly fails to account for the data. $	heta_{E,\rho} \equiv \sqrt{q} \theta_E$ is

$$\Delta A = \frac{2q}{\rho^2}.$$  

That is, $\Delta A$ is the same as it would be if the planet were an isolated point-lens. The excess flux can be read off the light curve, which then (combined with $f_s$) yields the excess magnification,

$$\Delta A = \frac{10^{-0.4} I_{anom,peak} - 10^{-0.4} I_{anom,base}}{10^{-0.4} I} = 0.67;$$  

$$\frac{q}{\rho^2} = \frac{\Delta A}{2} = 0.33,$$ 

\[(9)\]

\[(10)\]

where $I_{anom,peak} = 16.94$ and $I_{anom,base} = 17.23$. 

In order to evaluate $q$, we must determine $\rho$. Working in the limit that the source is much larger than the planetary Einstein radius ($q/\rho^2 \ll 1$), which is only marginally satisfied by Equation (10), and assuming that the source center passes directly over the caustic, then $\rho = t_{fwhm}/2\theta_E$, where $t_{fwhm} = 0.5$ days, is the full width at half maximum of the bump. Under this assumption,

$$\rho = \frac{t_{fwhm}}{2\theta_E} = 0.0074;$$  

$$q = \frac{\Delta A}{2 \rho^2} = \frac{t_{fwhm}^2 \Delta A}{8\theta_E^2} = 1.84 \times 10^{-5}.$$  

\[(11)\]

The above formalism is appropriate if the source fully envelops the caustic, which we dub “Cannae” events. However, qualitatively similar event morphologies will be generated if the source envelops only one flank of the caustic, which we call “von Schlieffen” events. As a representative of these, we consider the case that the limb of the source (rather than its center) passes directly over the center of the caustic. Then, the above argument gives us $q = \Delta A \rho^2$, which yields $q = 3.7 \times 10^{-5}$. Hence, the heuristic analysis indicates that $10^{-5} \lesssim q \lesssim 10^{-4}$, but a more detailed numerical analysis is needed to make a more precise estimate. More generally, this analysis tells us that planets of quite small mass ratio are easily detectable in these large-source events.

### 3.2. Numerical Analysis

To carry out a systematic analysis, we begin (as described above) by fitting a Paczyński (1986) curve to the full data set excluding the anomaly, in order to obtain initial estimates of...
(t₀, u₀, tₑ). We also make an initial estimate of ρ = 0.01 following the reasoning above. We then conduct a grid search over (s, q) space, holding these two parameters fixed and allowing the other five to vary, including α, which we seed at a grid of values. We use inverse-ray shooting (Kayser et al. 1986; Schneider & Weiss 1988; Wambsganss 1997) when the source is close to a caustic and multipole approximations (Pejcha & Heyrovský 2009; Gould 2008) otherwise. We employ Monte Carlo Markov Chain (MCMC) to locate all minima. We find three solutions (A, B, C). All three have very similar geometries defined by (t₀, u₀, tₑ, ρ, s, α), but one of them (B) has a Cannae topology and the other two have von Schlieffen topologies, one on each flank. Note that the degeneracy between solutions A and C was already predicted by Gaudi & Gould (1997), but the degeneracy of these two solutions with B has not previously been predicted nor seen in practice. Figure 2 shows the three model light curves superposed on the data, while Figure 3 shows the lens-source geometries and the resulting relations between the source and the caustics. The best-fit parameters and uncertainties are shown in Table 1. Note that all of the parameters are in reasonable agreement with those derived from the heuristic analysis of Section 3.1. In particular, for the Cannae solution, the estimated mass ratio q is too low by about 25% and for the von Schlieffen solutions it is too low by about 40%.

As demonstrated by Table 1, the three solutions are extremely close in terms of (t₀, u₀, s, α) geometry, but are strongly separated in q. We find that the three minima are discrete in the sense that the MCMC does not jump from one to the other in a normal run, showing that the barriers between them are too high. To explore the nature of these barriers, we run a “hotter” MCMC (artificially inflating the error bars by a factor 3.0 and then, to compensate for this, multiplying the resulting χ² values by 9.0). To trace the relation between these solutions, we introduce the parameter

\[ \Delta \xi \equiv u_0 \csc \alpha - \xi_+(s) ; \quad \xi_+(s) = s - s^{-1}, \quad (12) \]

where \[\xi_+(s)\] is the Einstein-ring position of the center of the major-image caustic for a planet in the regime \(q \ll 1\) with separation \(s\). That is, \(\Delta \xi\) is the offset between the centers of the source and the caustic as the source crosses planet–star axis.

Figure 4 plots log \(q\) versus \(\Delta \xi\). It shows a broad minimum in \(q\) centered near \(\Delta \xi = 0\) (solution B), with \(q\) rising roughly symmetrically toward solutions A and C on either side. These tracks are continuous in the parameters of the plot, but have relatively high barriers between the three minima, as expected. We find that these barriers have heights of \(\Delta \chi^2 \sim 35\) between solutions A and B, and \(\Delta \chi^2 \sim 60\) between solutions B and C.

The \(\chi^2\) differences between the best (B) and worst (C) solutions is \(\Delta \chi^2 \sim 16\), and hence solution C can be considered as strongly disfavored. However, the two von Schlieffen solutions (A and C) have almost identical physical
implications, while solutions A and B have very similar $\chi^2$. Hence, the degeneracy between solutions with different $q$ (and so different physical implications) is quite severe.

3.3. Reality of Roughly Equal Source and Blend Fluxes?

A mildly peculiar feature of these solutions is that $f_s$ and $f_b$ are comparable. This is more true of solution C than either A or B. Nevertheless, this statement qualitatively describes all three solutions. Such rough equality is frequently observed for typical microlensed sources, which are most often stars near the turn-off. Because the projected density of stars of similar luminosity is very high toward the bulge, it is not at all uncommon to have more than one in a ground-based seeing disk. However, as we will discuss in Section 4.1, the “baseline object” is in or near the Galactic bulge clump, and it would be much rarer to have a star of comparable brightness projected on such a source. The issue is important because spurious blending could be an indication of systematic errors in the data that are driving the solution.

Fortunately, we have very clear evidence that the blending is real, which also permits us to estimate the allowed range of $f_b/f_s$ completely independent of the light curve analysis.

We find that the astrometric position of the “baseline object” (i.e., the cataloged “star” derived from analysis of the template image) is offset from the position of the source by $\Delta \theta_{\text{app}} = 0\rlap{.}^\circ13$. The source position is derived by finding the position of the “difference star” formed by subtracting the template image from images taken near peak magnification. The offset between the blending star (or the light centroid of several blending stars) and the source, $\Delta \theta$, is related to the apparent offset by

$$\Delta \theta_{\text{app}} = \frac{f_b}{f_s} \frac{\Delta \theta}{f_b + f_s} \implies \frac{f_b}{f_s} = \left( \frac{\Delta \theta}{\Delta \theta_{\text{app}}} - 1 \right)^{-1}. \quad (13)$$

We consider that if the blend were separated by more than one FWHM in the very good seeing images of the template, FWHM $\sim 0\rlap{.}^\circ8$, then it would have been separately resolved, i.e., $\Delta \theta < 0\rlap{.}^\circ8$. Hence, Equation (13) implies: $0.19 \lesssim \frac{f_b}{f_s} < \infty$. From Table 1, the best-fit values for this ratio are $f_b/f_s = (0.34, 0.28, 0.60)$ for solutions (A, B, C), which are all easily satisfied. Alternatively, we can derive best-fit estimates $\Delta \theta = (0\rlap{.}^\circ51, 0\rlap{.}^\circ59, 0\rlap{.}^\circ35)$. In all cases, it is quite plausible that blends with the corresponding flux ratios would not be detected at these separations in the template.

3.4. Binary-source Solution?

As pointed out by Gaudi (1998), short-term peaks that are the hallmark of planetary perturbations can also be generated by a second source, which then typically pass very close to the lens (accounting for its apparent timescale) and would then also be very faint (so as not to completely dominate the light curve during this close passage). We search for such solutions but do not find acceptable fits. See Figure 2. The basic reason for this is that the perturbation is simply too compact.

To better understand the underlying reasons for this numerical result, we first consider the case that the second source is not impacted by finite source effects. Then the effective timescale $t_{\text{eff}, 2} = t_{0, 2} f_E = t_{\text{FWHM}} / \sqrt{12} = 0.14$ day, which implies that the excess flux during the Chile observations at $\Delta t = 0.45$ day would be $f_{\text{exc}} = \frac{f_{2, \text{peak}}}{t_{\text{FWHM}}} \sqrt{1 + (\Delta t / \text{fwhm})^2} \approx 12^{-1/2} t_{\text{FWHM}} / \Delta t$ $f_{2, \text{peak}} = 0.2$, corresponding to a change of 0.1 mag. This would clearly contradict the data.

On the other hand, consider the case that the second source passes directly over the lens. One may show\footnote{See, e.g., Figure 3 of Chung et al. (2018) and note that $t_{\text{FWHM}} = \Delta / \sqrt{2} \rho_{\text{E}}$, where $\Delta / \sqrt{2} \approx 1.1$ is the solution of $B(\Delta / \sqrt{2}) / \Delta / \sqrt{2} = (1/2) B'(0) = 1$.} that $t_{\text{FWHM}} \approx 4.2 \rho_{\text{E}}$. Then $f_{s,2} = f_{2,\text{peak}} \rho_{2}/2$, and hence the excess flux seen from Chile just before the bump would be $f_{\text{exc}} = f_{s,2} t_{\text{E}} / \Delta t = f_{2,\text{peak}} t_{\text{FWHM}} / 4.4 \Delta t = 0.17$, corresponding to about 0.08 mag. This is still clearly excluded by the data.

4. Physical Parameters

The lens mass $M$ and lens-source relative parallax $\pi_{\text{rel}}$ can in principle be determined provided that both the Einstein radius $\theta_E$ (Equation (1)) and the microlens parallax (Gould 1992, 2000; Gould & Horne 2013),

$$\pi_E = \frac{\pi_{\text{rel}}}{\theta_E}, \quad \mu = \frac{\pi_{\text{rel}}}{\theta_E} \quad \text{(14)}$$

can be measured. Then, $M = \theta_E / \kappa \pi_E$ and $\pi_{\text{rel}} = \theta_E \pi_E$. As in most planetary microlensing events, $\theta_E$ can be measured, but unfortunately we find that $\pi_E$ can be neither measured nor meaningfully constrained. Therefore, after measuring $\theta_E$ in Section 4.1, we apply a Galactic model to estimate the lens mass and distance.

4.1. Measurement of $\theta_E$ and $\mu$

As mentioned in Section 2, we are able to roughly place the “baseline object” on a $(V - I, I)$ color–magnitude diagram (CMD), but we cannot actually measure the source color in these bands. This is due partly to its faintness in $V$ (as a result of the $A_V \sim 5$ mag of extinction), and partly because its peak magnification is quite modest. We therefore use UKIRT $H$-band in place of the usual $V$-band, to determine the color.

As illustrated in Figure 5, the source is 0.16 $\pm$ 0.06 mag redder and for solutions (A, B, C) (0.60, 0.55, 0.79) $\pm$ (0.09, 0.11, 0.07) mag fainter than the clump in these bands. We use Bessell & Brett (1988) to convert the color offset to $\Delta (V - I) = 0.13 \pm 0.06$. Then adopting $[(V - I), I]_{0, \text{clump}} = (1.06, 14.43)$ from Bensby et al. (2013) and Nataf et al. (2013), we find $[(V - I), I]_{0, s} = [1.19, 15.03, 14.98, 15.22]$. Again using the color–color relations of Bessell & Brett (1988) as well as the the color/surface-brightness relation of Kervella et al. (2004), we find,

$$\theta_\ast = (5.30, 5.43, 4.86) \pm (0.30, 0.35, 0.26) \mu\text{as}, \quad \text{(15)}$$

and so (taking account of the correlation between $\rho$ and $f_d$),

$$\theta_E = \frac{\theta_\ast}{\rho} = (0.48, 0.54, 0.53) \pm 0.03 \text{mas;}$$

$$\mu = \frac{\theta_E}{\theta_E} = (5.7, 6.5, 5.9) \pm (0.3, 0.4, 0.3) \text{mas yr}^{-1}. \quad \text{(16)}$$
and relative proper motion $M=1.02$ CMDs ($[I-H]$ and $(V-I)$) and VId color–color diagram of field stars near OGLE-2017-BLG-0173, together with the positions of the clump centroid (red), the “baseline object” (blue), and for each of the three solutions (A = magenta, B = green, C = cyan), the source star (open circles), and the blended light (five-pointed stars). The “baseline object” is barely detected in $V$-band, which results in a 0.3 mag uncertainty in its color. Hence, we use an $[I, (I-H)]$ CMD (top panel) to determine the intrinsic source color. The offset between the source and the clump (in both color and magnitude), leads to an angular source radius $\theta_E = (0.48, 0.54, 0.53) \text{mas}$ for solutions (A, B, C). See Section 4.1.

4.2. Bayesian Estimate

The angular Einstein radius $\theta_E$ and relative proper motion $\mu$ (Equation (16)) are quite consistent with either a disk or bulge lens. See upper left panel of Figure 7 of Penny et al. (2016). To make a more quantitative estimate of the lens characteristics, we draw lensing events randomly from a Han & Gould (1995, 2003) Galactic model and catalog the subset of these events that are consistent with the observables, $\theta_E$ and $\mu$.

The results are shown in Table 2. For host mass, system distance, and planet–host projected separation, the results are essentially the same for the three solutions: $M = 0.39^{+0.04}_{-0.22} \, M_\odot$, $D_L = 4.8^{+1.5}_{-1.8} \, \text{kpc}$, and $a_\| = 3.8 \pm 1.6 \, \text{au}$. However, because $q$ is very different for the von Schlieffen solutions compared to the Cannae solution, the planet masses are also centered at very different values, $m_p = 8 \, M_\oplus$ and $m_p = 3.3 \, M_\oplus$, respectively. Because the fractional error in $q$ is much smaller than that of the Bayesian estimate of $M$, the fractional error in $m_p$ is dominated by the latter.

We show the posterior histograms for $M$ and $D_L$ for solution B in Figure 6. The corresponding figures for the other two solutions are extremely similar and so are not shown.

4.3. Future Resolution

Because of its low mass ratio, either $q \approx 6.5 \times 10^{-5}$ (solutions A and C) or $q \approx 2.5 \times 10^{-5}$ (solution B), it would be of significant interest to determine the true mass of the host and to resolve the degeneracies among the three solutions, and thereby determine the mass of the planet. Here, we show that the first will eventually be possible and that the second will probably not be possible.

If the event had occurred somewhat later in the season, it could have been targeted for Spitzer microlensing observations (Gould et al. 2016). However, the first epoch at which it was visible by Spitzer was at HJD$' = 7930$ when $u \sim 2.7$, and hence $A \sim 1.024$, i.e., quite close to baseline. Such observations were nevertheless attempted, but did not yield useful constraints.

Hence, the best hope for measuring the host mass is to image the lens when it has sufficiently separated from the source, using high-resolution imaging. Because the source is likely to be 100–1000 times brighter than the lens, it will probably require (with current instruments) about 1.5 times larger separation than the 60 mas separation by which Batista et al. (2015) resolved the roughly equal-brightness lens and source of OGLE-2005-BLG-169. From the measured proper motion, this would require a roughly 15-year wait. In the meantime, high-resolution imagers of next-generation ("30 meter") telescopes

Table 2

| Quantity | Model A | Model B | Model C |
|----------|---------|---------|---------|
| $M_{\text{host}}[M_\odot]$ | $0.357^{+0.360}_{-0.208}$ | $0.396^{+0.390}_{-0.227}$ | $0.396^{+0.386}_{-0.229}$ |
| $M_{\text{planet}}[M_\oplus]$ | $7.581^{+0.045}_{-0.011}$ | $3.269^{+0.045}_{-0.015}$ | $8.950^{+0.026}_{-0.019}$ |
| $D_L[\text{kpc}]$ | $5.015^{+1.488}_{-1.468}$ | $4.705^{+1.763}_{-1.688}$ | $4.800^{+1.793}_{-1.673}$ |
| $a_\| [\text{au}]$ | $3.688^{+1.540}_{-1.649}$ | $3.913^{+1.763}_{-1.653}$ | $3.727^{+1.573}_{-1.553}$ |
may come on line, in which case the lens could be imaged at first light.

To aid with these measurements, which may be decades in the future, we give a short summary of what is known from the event about the \(H\)-band fluxes and their errors together with the underlying reason. The most precise measurement is of the \((I - H)\) source color, where \(I\) is in the OGLE-IV system and \(H\) is in the 2MASS system: \((I - H)_s = 3.71 \pm 0.06\). This is essentially independent of any model and depends on regression and the assumption of achromaticity, which follows from general relativity. At the next level, we have \(H_L = \frac{I_L - (I - H)_s}{1 + q}\) for (A, B, C) (see Table 1). Because the \(I_L\) and \((I - H)_s\) measurements are essentially independent, the errors are added in quadrature. Finally, we report the \(H\)-band baseline \(H_{\text{base}} = 14.01 \pm 0.01\). Because there are enough data very close to baseline, the error in this quantity is basically just the calibration error. Therefore, subtracting fluxes and noting that the \(H_s\) and \(H_L\) flux errors are the same, we obtain \(H_L = (16.37, 16.88, 15.46) \pm (0.86, 1.56, 0.25)\).

By directly resolving the host and measuring both its color and magnitude (and combining this with the mass-distance constraint from the measurement of \(\theta_E = \sqrt{\kappa M_{\text{rel}}}\)), the host mass can be determined.

Unfortunately, such a measurement would not discriminate among the three solutions. All three predict similar lens masses and distances. This is particularly true of solutions A and B, which differ by only \(\Delta \chi^2 = 2.5\).

However, the same high-resolution imaging (or even a high-resolution image taken much sooner) could in principle partially discriminate among solutions by separately resolving the source and the blended light. Suppose, for example, that the blended light were measured to have \(H_L = 19.0\), corresponding to \(f_0 = 0.40\). From Table 1, this would be consistent with solutions A and B, but inconsistent with solution C. Unfortunately, solutions A and B predict the same \(f_0\) to well within 1 \(\sigma\), so there is no possibility of distinguishing between them by measuring \(f_0\).

5. Discussion

5.1. Nature of Degeneracy

As just discussed in Section 4.3, the factor 2.5 degeneracy in the planet–host mass ratio between solutions A + C and solution B cannot be resolved from the existing data and may never be resolved. Hence, while there is no doubt that OGLE-2017-BLG-0173Lb is a very low-mass-ratio planet \(q < 10^{-4}\), and may be the lowest yet detected \((q \approx 2.5 \times 10^{-5})\), its actual mass ratio remains somewhat uncertain. Given that the planetary deviation is detected with extremely high confidence \((\Delta \chi^2 \approx 100000)\), it is of considerable interest to understand the nature of the degeneracy.

Inspection of Figure 2 shows that this is an “accidental” degeneracy in that the model light curves differ significantly in regions of the anomaly where there are gaps in the data. These in turn are due to the fact the anomaly occurred quite early in the season (March 31), when KMTNet was able to observe only 4.0 hr from each site. In particular, models A and B are well separated during the \(\sim 3.5\) hr prior to the onset of KMTA observations. While models B and C are less well separated, model C is already disfavored by \(\Delta \chi^2 = 16\). Hence, it is likely that this degeneracy would have been resolved if the event had occurred, for example, 2 months later.

5.2. Poster Child for “Hollywood” Events

The mass ratio, \(q \approx 2.5 \times 10^{-5}\) or \(q \approx 6.5 \times 10^{-5}\), of OGLE-2017-BLG-0173 is among the lowest for any micro-lensing planet (see, e.g., Figure 7 from Mróz et al. 2017). Yet the signal is quite strong. From the analysis given in Section 3.1, if \(q\) had been substantially smaller, say \(q = 10^{-5}\), and focusing for the moment on solution B, then the light curve would have looked qualitatively similar but with the amplitude of the bump, \(\Delta A\), reduced by a factor of 2.7. In this case, it still would have been easily recognized. Moreover, the excess magnification would have been the same, regardless of the planet–host separation, provided \(s > 1\) and of course provided that the source passed over the caustic. For example, Poleski et al. (2014a) discovered a \(q = 2.4 \times 10^{-4}\) planet from the passage of a giant source over an \(s = 5.26\) planeto caustic, with \(\rho = 0.04\), in OGLE-2008-BLG-092. Hence, \(\Delta A = 2q/\rho^2 = 0.3\), which is quite similar to the present case. In addition, Poleski et al. (2017) found a \(q = 0.016\) companion from a giant source (very similar to the OGLE-2017-BLG-0173 source, with similar \(\rho \approx 0.01\) passing over an outlying caustic, \(s = 4.4\), in MOA-2012-BLG-006. However, in this case, the large mass ratio implied that the companion Einstein radius was about 10 times larger than the source, so that \(\Delta A > 1\), and hence the framework of Section 3.1 does not apply.

These facts illustrate the strengths of the “Hollywood strategy” advocated by Gould (1997) of “following the big stars” to find planets.18 Whenever the star is so big that it can envelop the caustic, the cross section for anomalous deviations from a Paczyński (1986) curve grows from the size of the caustic (or a bit more) to the size of the source. The duration of the deviation likewise grows, implying that modest-duration breaks in the light-curve coverage (like the ones before and after KMTA observations near JD 7844 in Figure 2) do not compromise the detection (although, as discussed in Section 5.1, they can degrade characterization).

To highlight these points, we show in Figures 7–9, simulated events that are geometrically identical to the real one for models (A, B, C), except with a source that is 9.6 times smaller than the real source. For didactic purposes, the top panel in each figure shows what the light curve would look like if the source had the same brightness, despite being much smaller. In this case, there are quite clear (A, B) or relatively clear (C) signatures of an anomaly. The difference between these two classes is simply the result of where the gaps fall relative to the strongest part of the anomaly.

The middle panel in each figure shows a more realistic situation. The source is fainter by a factor of 20, similar to a bulge turn-off star. In this case, there is no recognizable anomaly at all for model C, and a only a suggestive hint of an anomaly for models A and B. In any case, it would not be possible to claim detection of a planet in any of the three cases.

18 Originally, the nickname “Hollywood” developed because cases in which the star is big enough that it can envelop the caustic generally correspond to cases in which the star is a giant and therefore are often the brightest objects in the field. However, we use the term here more generally to describe any case in which the source is comparable to or larger than the caustic. In fact, in the WFIRST era (Spergel et al. 2013), even dwarf stars may fully envelop the tiny caustics of extremely low-mass planets that will be detectable.
The bottom panel in each figure shows the whole light curve. It is far from clear that the parent microlensing event would even be recognized in any of the three cases.

To construct the top panels of these figures, we used the original error bars from Figure 2, and we took the residuals from the zoom of Figure 2 and added these to each of the models shown. For the lower two panels, we multiplied both the error bars and residuals by a factor 10.

In creating the Hollywood moniker, Gould (1997) appears to have had in mind primarily events in which the caustic is fully enveloped by the source, in that he emphasized all three characteristics: larger cross section, brighter sources, and longer duration. The classic example of such an event is OGLE-2005-BLG-390 (Beaulieu et al. 2006). However, one can also consider cases, like models A and C presented here, in which the source is comparable to the size of the caustic but only partially envelops it, as a second sub-class of Hollywood events. We have dubbed these sub-classes as “Cannae” and “von Schlieffen” events, respectively. Comparing Figures 7–9 with each other and with Figure 2, one sees that the latter are still of the “Hollywood”-type in that they retain the properties of greater source brightness and longer duration. Thus, the range of such events is larger than that originally proposed by Gould (1997). Because the probability of detecting a planet in such an event scales much less strongly with mass ratio than for a typical source, Hollywood events can play a crucial role in the detection and characterization of planets, in particular those of low mass.

Hollywood events do have their drawbacks. Bennett & Rhie (1996) showed that the signal from Earth/Sun mass-ratio planets will be almost completely “washed out” by giant sources. On the other hand, Jung et al. (2014), taking account of the higher precision measurements from giant sources, argued that Earth-mass planets would be more detectable than for smaller sources (except for separations $s \sim 1$). This tension can be illustrated in the present case by noting from Section 3.1 that such a $q = 3 \times 10^{-6}$ planet would generate a $\Delta A = 2q/\rho^2 = 0.06$ bump in a fully enveloped, Cannae event (model B). The probability for envelopment would be a factor 10 larger than for a caustic crossing for a typical, turn-off star, microlensing source. However, while such a bump would certainly be detectable in the present data, whether it could be unambiguously interpreted is less clear.

In any case, the range of $q$ that is accessible to this approach extends at least a factor five below the previous lowest values, even if it does not reach the Earth/Sun regime.

Another potential drawback of Hollywood is the degeneracy discovered in this paper between Cannae and von Schlieffen solutions. Although this degeneracy was shown to be
“accidental” in the sense that it was due to data gaps, such gaps are likely to be common. Furthermore, this degeneracy is present despite the $\Delta \chi^2 \sim 10000$ detection of the planet. We therefore investigated the case of OGLE-2005-BLG-390 (Beaulieu et al. 2006), which was the first Hollywood planet. We find that while the analog of Figure 4 shows the same “U” shaped structure, it does not contain multiple minima. Hence, there is no degeneracy despite the fact that the planet is detected at only $\Delta \chi^2 \sim 500$. Noting that the source is much larger than the caustic in the case of OGLE-2005-BLG-390, we conjecture that this is the decisive difference. That is, we suggest that the degeneracy found in OGLE-2017-BLG-0173 will occur primarily in events for which the source and caustic have similar size.

When the “Hollywood strategy” was proposed, it was indeed a “strategy” in the sense that one had to choose to which targets one should apply limited follow-up resources. By contrast, OGLE-2017-BLG-0173Lb was discovered in pure survey mode, in which no decisions were needed or made about individual targets. However, the problem of applying limited follow-up telescope resources does continue to apply to Spitzer microlensing, and after the planetary nature of OGLE-2017-BLG-0173 was recognized, the Spitzer team (Gould et al. 2016) revised their selection strategy to give much greater emphasis to Hollywood events. More generally, there remains the question of how to apply limited human resources. We suggest that searches for smooth bumps, even of quite low amplitude, in current light curves and archival microlensing events with giant sources, may yield low-mass outlying planets that have not previously been recognized.

Work by W.Z., Y.K.J., and A.G. was supported by AST-1516842 from the US NSF. W.Z., I.G.S., and A.G. were supported by JPL grant 1500811. Work by C.H. was supported by the grant (2017R1A4A1015178) of National Research Foundation of Korea. This research has made use of the KMTNet system operated by the Korea Astronomy and Space Science Institute (KASI) and the data were obtained at three host sites of CTIO in Chile, SAAO in South Africa, and SSO in Australia. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to AU. Work by Y.S. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Universities Space Research Association through a contract with NASA. The United Kingdom Infrared Telescope (UKIRT) is supported by NASA and operated under an agreement among the University of Hawaii, the University of Arizona, and Lockheed Martin Advanced Technology Center; operations are enabled through the cooperation of the Joint Astronomy Centre of the Science and Technology Facilities Council of the U.K.
Figure 9. Dissection of the virtues of Hollywood through simulated data, illustrated for model C. Compared to models A (Figure 7) and B (Figure 8), the idealized upper panel is substantially less interpretable due to the fact that, by chance, almost the entire bump lies in the data gap. Hence, in the more realistic middle panel, there is hardly a hint of the anomaly.

References

Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325
Albrow, M. D., Horne, K., Bramich, D. M., et al. 2009, MNras, 397, 2099
Batista, V., Beaulieu, J.-P., Bennett, D. P., et al. 2015, ApJ, 808, 170
Beaulieu, J.-P., Bennett, D. P., Fouquè, P., et al. 2006, Natur, 439, 437
Bennett, D. P., & Rhie, S.-H. 1996, ApJ, 472, 660
Bensby, T., Yee, J. C., Feltzing, S., et al. 2013, A&A, 549A, 147
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Chang, K., & Refsdal, S. 1984, A&A, 130, 157
Chung, S.-J., Zhu, W., & Udalski, A. 2017, ApJ, 838, 154
Gaudi, B. S. 1998, ApJ, 506, 533
Gaudi, B. S. 2012, ARA&A, 50, 411
Gaudi, B. S., & Gould, A. 1997, ApJ, 486, 85
Gould, A. 1992, ApJ, 392, 442
Gould, A. 1997, in Variables Stars and the Astrophysical Returns of the Microlensing Surveys, ed. R. Ferlet, J.-P. Maillard, & B. Raban (Gif-sur-Yvette, France: Editions Frontieres), 125
Gould, A. 2000, ApJ, 542, 785
Gould, A. 2008, ApJ, 681, 1593
Gould, A., & Gauchere, C. 1997, ApJ, 477, 580
Gould, A., & Horne, K. 2013, ApJL, 779, L28
Gould, A., & Loeb, A. 1992, ApJ, 396, 104
Gould, A., Carey, S., & Yee, J. 2016, Spitzer Proposal ID, 13005
Gould, A., Dong, S., Gaudi, B. S., et al. 2010, ApJ, 720, 1073
Griest, K., & Safizadeh, N. 1998, ApJ, 500, 37
Han, C., & Gould, A. 1995, ApJ, 447, 53
Han, C., & Gould, A. 2003, ApJ, 592, 172
Henderson, C. B., Gaudi, B. S., Han, C., et al. 2014, ApJ, 794, 52
Hodgkin, S. T., Irwin, M. J., Hewett, P. C., & Warren, S. J. 2009, MNras, 394, 675
Irwin, M. J., Lewis, J., Hodgkin, S., et al. 2004, Proc. SPIE, 5493, 411
Jung, Y. K., Park, H., Han, C., et al. 2014, ApJ, 786, 85
Kayser, R., Refsdal, S., & Stabell, R. 1986, A&A, 166, 36
Kervella, P., Thévenin, F., Di Folco, E., & Ségransan, D. 2004, A&A, 426, 297
Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, IJAS, 49, 37
Mao, S., & Paczyński, B. 1991, ApJ, 374, 37
Mróz, P., Han, C., Udalski, A., et al. 2017, AJ, 153, 143
Nataf, D. M., Gould, A., Fouquè, P., et al. 2013, ApJ, 769, 88
Paczyński, B. 1986, ApJ, 304, 1
Pejcha, O., & Heyrovský, D. 2009, ApJ, 690, 1772
Penny, M. T., Henderson, C. B., & Clanton, C. 2016, ApJ, 830, 150
Polenski, R., Skowron, J., Udalski, A., et al. 2014a, ApJ, 755, 42
Poleski, R., Udalski, A., Bond, I. A., et al. 2017, A&A, 604A, 103
Poleski, R., Udalski, A., Dong, S., et al. 2014b, ApJ, 782, 47
Rattenbury, N. J., Bond, I. A., Skuljan, J., & Yock, P. C. M. 2002, MNRAS, 335, 159
Schneider, P., & Weiss, A. 1988, ApJ, 330, 1
Shvartzvald, Y., Bryden, G., Gould, A., et al. 2017, AJ, 153, 61
Shvartzvald, Y., Maoz, D., Kaspi, S., et al. 2014, MNRAS, 439, 604
Spergel, D. N., Gehrels, N., Breckinridge, J., et al. 2013, arXiv:1305.5422

Sumi, T., Udalski, A., Bennett, D. P., et al. 2016, ApJ, 825, 112
Tsapras, Y., Choi, J.-Y., Street, R.-A., et al. 2014, ApJ, 782, 48
Udalski, A. 2003, AcA, 53, 291
Udalski, A., Szymański, M., Kaluzny, J., et al. 1994, AcA, 44, 317
Udalski, A., Szymański, M. K., & Szymański, G. 2015, AcA, 65, 1
Wambsganss, J. 1997, MNRAS, 284, 172
Woźniak, P. R. 2000, AcA, 50, 421
Yee, J. C., Shvartzvald, Y., Gal-Yam, A., et al. 2012, ApJ, 755, 102