Entrustable Professional Activities – Visualization of Competencies in Postgraduate Training. Position Paper of the Committee on Postgraduate Medical Training of the German Society for Medical Education (GMA)

Pascal O. Berberat
Sigrid Harendza
Martina Kadmon
Gesellschaft für Medizinische Ausbildung, GMA-Ausschuss für Weiterbildung

1 Technische Universität München, Fakultät für Medizin, Medizindidaktisches Centrum für Ausbildungsforschung und Lehre, TUM MeDiCAL, München, Deutschland
2 Universitätsklinikum Hamburg-Eppendorf, III. Medizinische Klinik und Poliklinik, Hamburg, Deutschland
3 Chirurgische Universitätsklinik Heidelberg, Heidelberg, Deutschland

Authors
The three authors contributed equally to this paper.

Introduction
Quality and structure of postgraduate medical training and educational experiences in undergraduate and postgraduate training play a major role in career decisions of young medical graduates [14], [19], [23], [28]. They consider structured mandatory and challenging postgraduate training programmes delivered by experienced trainers with high training competencies as important factors of attractiveness and good starting of their clinical career [23]. The present postgraduate training in Germany widely differs between the medical disciplines. Best-practice examples of a structured competency-based postgraduate training that may serve as models for other clinical fields exist for anaesthesiology [24], family medicine [25], urology [11] and surgery [18]. However, a national comprehensive and binding curricular structure ensuring comparable competencies independent of training site is missing. Certification examinations in all medical disciplines follow an unstructured oral assessment format outside of the clinical context. Thus, it neither adequately assesses clinical competencies of medical doctors at the time of certification nor does it represent professional tasks [http://www.bundesaerztekammer.de/downloads/MWBO_07122011.pdf (accessed February 12, 2013)]. The evaluation of postgraduate training launched by the German Medical Association in 2009 and 2011 revealed mediocre overall satisfaction of the trainees [http://www.evaluation-weiterbildung.de/data/Bundesrapport2009.pdf (accessed February 12, 2013)], [http://www.baek.de/downloads/Bundesrapport_2011.pdf (accessed February 12, 2013)]. Forty-five per-
cent of the respondents rated postgraduate training between satisfactory and failed on a school grade scale. More than a third evaluated the training culture in their work environment and the support in acquiring professional competencies as only satisfactory to deficient. The most worrying result was the lack of training in evidence-based medicine and its transfer to the delivery of patient care, which 69% of respondents rated as only satisfactory or below. As for transparency of postgraduate training, only one third of the respondents obtained a structured plan and defined outcome objectives in written form, 42% received no training schedule at all (http://www.baek.de/downloads/Bundesrapport_2011.pdf [accessed February 12, 2013]). There was a slight improvement between the two evaluation cycles in 2009 and 2011 suggesting the necessity of a further decisive and perceptible action plan to advance the present postgraduate training culture in Germany.

Currently, a vigorous discussion on the future of postgraduate medical training in Germany is ongoing among political stakeholders, the German Medical Association, the State Chambers of Physicians, scientific medical societies, professional medical organizations and all physicians in charge of postgraduate training supervision. On the 115th annual conference of the German Physicians Board 2012 the managing-committee of the German Medical Association was requested to work out concrete propositions for new Postgraduate Professional Education Regulations, which represent the reality of health care provision today and define professional competencies as essential outcomes of postgraduate training [15].

The suggestion to entirely omit guiding numerical values for medical procedures in favour of competencies was not supported by the majority. However, there is agreement that the new regulations should include the following fundamentals:

- Definition of competency-based educational goals,
- integration of domains and levels of competencies,
- a focus on educational contents rather than duration,
- a reduction of numerical values for medical procedures [http://www.bundesaerztekammer.de/downloads/116top4BartmannFolien.pdf (accessed June 29, 2013)].

In order to facilitate an exchange of ideas the German Medical Association has established the “WIKI-BÄK-Plattform” in December 2012 to allow scientific medical societies and professional medical organizations to place their propositions and thus contribute to the new regulations for certification between February and April 2013 [http://www.bundesaerztekammer.de (accessed February 12, 2013)]. In Austria the present situation in postgraduate medical training appears similar to that in Germany: evaluation reveals only mediocre overall satisfaction of the trainees. There is an ongoing discussion, based on the reform of undergraduate training in 2002 and the increased mobility of young doctors, that postgraduate training urgently needs new and more structured curricula. They should pursue the agreed and planned competency-based education of the final year of undergraduate training and follow a modular structure with internship, common trunk and major/elective subjects.

A slightly different situation is reported from Switzerland: all postgraduate training programs were accredited in 2011, and the national postgraduate training regulation was revised in 2013. An independent institute, the Swiss Institute for Postgraduate Training (SIWF), is responsible. Regarding the orientation towards professional competencies as outcomes of postgraduate training the present national regulation defines general outcomes for all programs. These are listed in detail in an associated catalogue of general learning objectives based on the CanMEDS roles and integrating other frameworks like the ACGME General Competencies [http://www.fmh.ch/files/pdf8/allg_lz_d.pdf (accessed October 19, 2013)]. Moreover different postgraduate training programs have implemented workplace-based assessments aiming at monitoring the achievement of professional competencies [20].

The present situation represents an ideal chance for considering and implementing new concepts of postgraduate training which would stress the continuum of undergraduate and postgraduate training as well as continuous professional development [17]. The Society for Medical Education (GMA) should have a significant share in the discussion and promotion of the ongoing process of developing an interdisciplinary evidence-based postgraduate education strategy for Germany in the 21st century. The Committee on Postgraduate Medical Education of the GMA has elucidated crucial questions and formulated essential stimuli supporting the current process [4]. This position paper is aimed at presenting successful competency-based frameworks for postgraduate medical education and appreciating prospects of integrating these frameworks in the current German reforms.

Competency-based frameworks for postgraduate medical training

Competency-based medical education, both in undergraduate and postgraduate training, is today considered an important prerequisite for adequate delivery of patient care in the 21st century [2], [10], [30]. Epstein and Hurdert propose that professional competence may be defined as “the habitual and judicious use of communication, knowledge, technical skills, clinical reasoning, emotions, values, and reflection in daily practice for the benefit of the individual and community being served” [6]. Thus, professional competence builds on a basis of cognition, clinical skills and personal attitudes paired with the willingness and motivation to apply these skills in concrete medical contexts for adequate problem solving toward a humane patient care and to resume responsibility [6], [32], [http://www.egon-spiegel.net/fileadmin/user_upload/documents/Theologie/Spiegel/Tagungen_Kongresse/Wildt.pdf (accessed January 10, 2013)]. Not
the time spent in clinical rotations or the numbers of medical procedures, but the demonstration of competence in delivering medical care represents the essence of competency-based postgraduate training [9], [16], [30].

Two major competency-based postgraduate training frameworks rest on this outcome-oriented fundament, the CanMEDS Physician Competency Framework and the Outcome Project of the Accreditation Council for Graduate Medical Education (ACGME) [http://www.medschool.vcu.edu/gme/pgmdir/documents/Competency-OutcomeWorksheets.doc (accessed January 13, 2013)], [7], [8], [12], [27]. Apart from a structured postgraduate training curriculum the integration of workplace-based assessment formats, e.g. mini-clinical evaluation exercise, clinical encounter cards, direct observation of procedural skills, case-based discussion with the provision of feedback seem to be an adequate tool to support the development of clinical competencies of trainees in the course of postgraduate medical training [22]. The integration of entrustable professional activities (EPAs) in training and formative assessment may close the gap between the theory of competency-based training and the patient-centred practice in the clinical context [21], [30]. Thus, EPAs have become the core of postgraduate trainings in various disciplines [1], [3],[21].

Entrustable professional activities (EPAs)

EPAs can be based on the Canadian Medical Education Directions for Specialists (CanMEDS) framework [8] which defines competencies a physician should attain summarized in seven roles: medical expert (the central role), communicator, collaborator, manager, health advocate, scholar and professional. Not the time spent in training is the important outcome measure but rather the attainment of competence. As each EPA defines a real professional activity that can be entrusted to a resident and as each EPA is linked to several competencies which are most crucial to a specific EPA we follow the suggestion by Mulder et al. to refer to the seven CanMEDS roles as ‘domains of competence’ [21]. Each CanMEDS role or ‘domain of competence’, respectively, is underpinned by knowledge, skills and attitude [21] and can be divided further into facets of competence [34]. The ‘communicator’ role, for example, which is referred to as ‘communication’ domain [21], includes several facets of competence: ‘verbal communication with colleagues and supervisors’, ‘empathy and openness’, ‘adapted informing of patients’, ‘respecting privacy and autonomy of the patient’ and others [34], and in turn each facet of competence includes different aspects of knowledge, skills and attitudes.

Based on the CanMEDS framework a range of EPAs for the different stages of residency training can be appointed by defining the specific domains of competence relevant for each EPA [21]. For every step in residency training each EPA is ‘a critical part of professional work that can be identified as a unit to be entrusted to a trainee once sufficient competence has been reached’ [29], [30]. Using this framework, representative EPAs for the different stages of residency training can be defined and as they are linked to explicit domains of competence they also provide a base for observation and assessment in clinical practice [21].

A three-step approach resulting in an EPA-based workplace curriculum for physician assistant training has been proposed by Mulder et al. [21]. This approach can be adapted for residency training in a similar way:

1. Selection of EPAs for a specific residency training,
2. Description of the EPAs,
3. Plan training and assessment of EPAs (see table 1).

This outline will lead to observable levels of proficiency in executing each EPA and schedule EPAs and level of competence over the course of the training. The levels of proficiency could be adapted for residency training as suggested by Wijnen-Meijer et al. for medical graduates [33]:

1. the resident is not able to do this,
2. the resident is able to do this under direct supervision,
3. the resident is able to do this if supervision is available,
4. the resident is able to do this independently,
5. the resident is able to supervise others in performing this activity (see table 2).

Furthermore, the following four factors of influence on entrustment decisions have been identified and need to be kept in mind when planning a curriculum for residents based on EPAs: characteristics of the resident, the attending, the clinical context, and the critical task [26].

In the professional workplace of every resident in a hospital a mutual EPA for their first year of postgraduate training could be “running a ward in a multidisciplinary team”, which may serve as an example to illustrate the underlying principle for selection of EPAs for an EPA-based workplace curriculum. This EPA is a fairly broad one, which includes multiple smaller EPAs each one being linked to several domains of competence. Table 3 shows a blueprint underpinning the EPAs with their included domains of competence. After the EPAs are identified they need to be described in the next step. Mulder et al. suggest to provide a title and to describe the content of each EPA, to select the underpinning domains of competence, to specify the required knowledge and skill and to describe the assessment methods [21]. As an example, two more elementary EPAs from the set of EPAs in table 3 are given in tables 4 and 5.

For the achievement of the EPA “running a ward in a multidisciplinary team” the expected level of entrusted independence must be defined for each underpinning EPA. While for the EPA “leading a ward round” level 4 (the resident is able to do this independently) may be expected, for the EPA “taking a history and performing a physical examination of XXX-patients” level 5 (the resident is
Table 1: Outline for the design of an EPA based residency training. Steps adapted according to Mulder et al. [21]

Steps for an EPA based residency training
1. Select EPAs for a specific residency training
- Identify real EPAs
- Decide about the number and scope of EPAs
2. Describe the EPAs
- Provide a title and clarify the content of the EPAs
- Select domains of competence
- Specify required knowledge and skills
- Describe assessment methods
3. Plan training and assessment of the EPAs
- Schedule EPAs and level of competence over the course of the training
- Fine tune the schedule for the individual candidate along the way

Table 2: Levels of proficiency in residency training. Levels adapted according to Wijnen-Meijer et al. [34]

Levels of proficiency in residency training
1. The resident is not able to do this
2. The resident is able to do this under direct supervision
3. The resident is able to do this if supervision is available
4. The resident is able to do this independently
5. The resident is able to supervise others in performing this activity

Table 3: Blueprint of EPAs and their respective underpinning domains of competence for the EPA „running a ward in a multidisciplinary team“. XXX: patients from a certain specialty, e.g. pulmonology in this example

EPA	Medical expertise	Communication	Collaboration	Scholarship	Health Advocacy	Management	Professionalism
Taking a history and performing a physical examination of XXX-patients	X	X					X
Leading discussions regarding the management of a patient	X	X	X	X	X	X	
Defining diagnostic and therapeutic measures						X	
Leading a ward round	X	X	X	X			X
Prioritizing tasks according to urgency	X		X	X		X	
Accompanying patients and relatives		X	X			X	
Performing a pleural puncture	X	X					
Completing a discharge summary and organizing patient follow up	X		X			X	X

able to supervise others in performing this activity) seems adequate as a resident may supervise medical students in their practice year performing this task. The overall achievement of the EPA “running a ward in a multidisciplinary team” at level 3 (the resident is able to do this if supervision is available) can be expected at an early time
Table 4: Description of an EPA, example from pulmonology

Discipline	Pulmonology
Title of the EPA	Performing a pleural puncture
Short description	Making the diagnosis of pleural effusion, confirming the indication for pleural puncture and performing the pleural puncture
Occurrence frequency	At least once a week
Most important CanMEDS domains of competence	Medial expertise, communication, collaboration, management
Knowledge and skills required	▪ Knowledge of thorax anatomy, in particular vascularization
▪ Knowledge of differential diagnoses for pleural effusions and related laboratory workups to be performed on the aspirated liquid	
▪ Knowledge of the technical procedure and the material needed	
▪ Knowledge of the complications of the procedure	
▪ Knowledge of contraindications for the procedure and respective tests needed before performing the procedure	
▪ Knowledge how to check for complications after the procedure is performed	
▪ Ability to evaluate contraindications and to explain the procedure to the patient including its complications and to achieve informed consent	
▪ Ability to work in a sterile manner	
▪ Ability to give instructions to personnel that assists the procedure	
▪ Ability to give instructions to the patient	
▪ Manual skill to perform the pleural puncture using the correct access and aspirating the effusion	
Assessment procedure	▪ Structured interviewing about procedural knowledge and about complications and contraindications
▪ Observations of the procedural process |

Table 5: Description of an EPA, example form abdominal surgery

Discipline	Abdominal surgery
Title of the EPA	Leading a ward round
Short description	Visiting preoperative and postoperative patients, checking on their current state and deciding about further diagnostic and therapeutic measures
Occurrence frequency	Every day
Most important CanMEDS domains of competence	Medial expertise, communication, collaboration, management
Knowledge and skills required	▪ Knowledge of the current history and diagnosis of every patient and the current treatment
▪ Knowledge of preoperative and postoperative patient care	
▪ Knowledge of possible postoperative complications	
▪ Knowledge of postoperative pain management	
▪ Knowledge about discharge and rehabilitation procedures in the particular hospital	
▪ Ability to ask patients focused questions	
▪ Ability to inform patients about diagnostic and histological findings and their implications for further treatment on the ward and after discharge	
▪ Ability to receive relevant information from nurses and physiotherapists	
▪ Ability to discuss further treatment plans with nurses, physiotherapists and colleagues from other medical fields, e.g., in case of multimodal therapy	
▪ Ability to reflect own limitations and realize when to ask a supervisor	
Assessment procedure	▪ Observations of the procedural process
▪ Report about individual patient management
▪ Report from nurses, physiotherapists and colleagues of the same discipline and from other medical fields about interaction |

of residency, while level 4 may be reached at a later stage of residency. Rather than the time spent on a certain EPA the achieved level of independence is the driving force for entrustment; this can differ between residents according to their individual behaviour and competencies [31]. However, an exemplary timeframe when certain levels for certain EPAs are expected during residency training may guide and help to visualize the longitudinal dimension of EPAs (see table 6). In the actual planning of an EPA-based residency curriculum a few aspects need particular attention independently of a specific discipline. To distinguish EPAs from general learning objectives or skills it can be helpful to complete the sentence “Tomorrow the resident will be allowed to ...” [21]. For example, one can be allowed to perform a pleural puncture under direct supervision – this would be EPA performance level 2 – whereas one cannot be allowed to “communicate respectfully” which would be a skill needed to achieve informed consent from the patient for this procedure. As described above and shown in table 1, EPAs can vary in complexity and scope. A complex EPA, e.g., “running a ward in a multidisciplinary team”, can consist of several less complex EPAs. To be able to define the number of EPAs needed for a residency training one should think of the requirements of a resident close to taking the board exam. When considering this it will be noticeable that certain EPAs will be relevant for all disciplines, some EPAs will be of interdisciplinary relevance and a special set of EPAs will be only relevant for a specific discipline. The description of the individual EPAs and their underpinning domains of competence including knowledge, skills and attitudes should be explicit enough for observed assessment. Assessment may include direct observation...
and feedback (e.g. following a ward round) or “indirect observation” by assessing the quality of patient reports and discharge letters. Another assessment method could be a developmental portfolio in combination with progress interviews where milestones for reaching level 4, i.e. independent work, can be marked. This assessment method can be used to adjust the curriculum according to the progress of the individual resident [5].

It is essential to mix assessment of directly observed behavior with judgments of trainees’ performance over a certain period of time. Whereas specific objective workplace-based assessment tools, such as mini-clinical evaluation exercise (mini CEX) or objective-structured assessment of technical skills (OSATS) may be used to assess directly observed behaviour, multisource feedback (MSF) may serve to assess performance over time [21], [22]. First experiences show that a ratio 1:5 to 1:10 between assessment of directly observed behavior and performance judgments over time may be feasible [26]. All the more the few tasks, which should be assessed by direct observation, must be chosen wisely to capture the most important activities for effective and safe entrustment decisions. Finally, the process and tools for assessment of entrustment decisions should be clearly defined, structured and transparent to supervisors and trainees. Training of supervisors will be crucial, particularly with respect to assessment and entrustment decisions, as most clinicians may not be familiar with short structured observations and the culture of regular written feedback [21].

The German perspective

The authors feel confident that the definition and use of professional competencies as essential outcomes of postgraduate training could be the one central driving force to reform and further develop the German, but also the Austrian and Swiss postgraduate medical education systems.

As already mentioned earlier, major competency-based postgraduate training frameworks, such as CanMEDS and the ACGME Outcome Project, were defined some years ago [http://www.medschool.vcu.edu/gme/pgmdir/documents/Competency-OutcomeWorksheets.doc (accessed January 13, 2013)], [7], [8], [12] and have already been integrated in a number of countries in daily postgraduate training [30]. In Germany the CanMEDS framework builds the backbone of the National Competence-Based Learning Objectives Catalogue for Undergraduate Medical Education (NKLM), which is being developed by a nation-wide initiative led by the Association of Medical Faculties (MFT) and the Association for Medical Education (GMA) [13]. However, many clinicians still feel uncomfortable or even reject these competency-based frameworks [30]. Many see it as “theoretical constructs” with some academic but not much practical value: unclear and artificial in terminology, complicated not self-explanatory in structure, with unrealistic assessment methods etc. Consequently, well-meant initiatives may never reach implementation in clinical training.

Similar apprehensions may lead the present discussion concerning the call for new concepts of postgraduate training by the 115th annual conference of the German Physicians Board 2012. We face hesitation to omit the present regulations consisting listings of general clinical learning topics and numerical values for medical procedures in favour of competencies [http://www.bundesaerztekammer.de/downloads/116top4BartmannFolien.pdf (accessed June 29, 2013)].

We must answer two central questions if competence-based frameworks are meant to reach wide acceptance and implementation in residency reality:

1. How can we align a competence-based curriculum with the day-to-day patient care of residents and their supervisors?
2. How can we integrate regular and valid, and feasible assessment strategies depicting the various physician roles in all fields of clinical practice?

Table 6: Framework for expected mastering of the different levels of selected EPAs during the years of residency training.

EPA	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Taking a history and performing a physical examination of XXX-patients	4	5	5	5	5	5
Leading discussions regarding the management of a patient	3	3	3	4	4	5
Defining diagnostic and therapeutic measures	3	4	4	4	5	5
Leading a ward round	2	3	3	4	4	5
Prioritizing tasks according to urgency	2	2	3	4	4	5
Accompanying patients and relatives	3	3	3	3	4	5
Performing a pleural puncture	2	3	4	5	5	5
Completing a discharge summary and organizing patient follow up	2	3	4	4	5	5
We believe that the present concept of EPAs can "bridge the gap between theory and clinical practice" and may be used as a framework for implementation of the new regulations for certification (MWBO) in the clinical residency programs of all medical disciplines. A rough proposal of a workflow including representative steps towards implementation of such a framework is shown in Table 7. Such a process would integrate the national development of a new competence-based framework and faculty development measures to support local implementation. Furthermore, any new initiative in postgraduate medical education should consider the current development in undergraduate medical education. New regulations of certification should be aligned with the newly developed NKLM. The integration of EPAs in the practical year of the undergraduate medical curriculum in close matching with the NKLM, would provide an optimal transfer and continuity between under- to postgraduate education [17].

In summary, the EPA concept may have the potential for wide acceptance in the clinical world and shows perspectives, which currently used curricular frameworks lack:

1. Focus on relevant and daily clinical activities including the continuum from single procedures to general competencies.
2. Obvious and self-explanatory levels of entrustment enabling the definition of guiding timeframes but also the consideration of individual learning curves.
3. Feasible and transparently structured assessment systems consisting of a mixture of objective measures and entrustment decisions.

The Commission of Postgraduate Medical Training of the German Society for Medical Education works on exemplary EPA curricula development and pursues supporting activities and tools to further introduce and promote the concept on different levels of German postgraduate medical education.

Competing interests

The authors declare that they have no competing interests.

Table 7: Workflow for the establishment of EPA based postgraduate training

National stakeholders	Program directors and supervisors
1. Reaching consensus for central EPA blueprints:	**1. Workshops for program directors on the concept and practical use of the EPA concept:**
a) EPA-general competencies (exp. Table 2)	o Introduction and clarification of the concept
b) EPA description (exp. Tab. 3 & 4)	o Exercise in exemplary curriculum building
c) EPA entrustment levels	o Introduction of different models and tools of entrustment decision making
d) EPA expected levels – time schedule (exp. Tab.5)	o Exercise in building local entrustment decision system
2. Definition and description of discipline-specific EPAs by the scientific medical societies (1a & b)	**- Train-the-trainer courses for training supervisors:**
3. Differentiation and agreement on common, field- and discipline-specific EPAs	o Introduction and clarification of the concept
4. Proposal of an exemplary timeframe for entrustment schedule (1d)	o Supervision and feedback principles
5. Proposal of different models and tools for entrustment decision making based on local resources	o Work-based assessment methods
References

1. Boyce P, Spratt C, Davies M, McEvoy P. Using entrustable professional activities to guide curriculum development in psychiatry training. BMC Med Educ. 2011;11:96-103. DOI: 10.1186/1472-6920-11-96

2. Carraccio C, Wolfshal SD, Englander R, Ferentz K, Martin C. Shifting paradigms: from Flexner to competencies. Acad Med. 2002;77(8):361–367. DOI: 10.1097/00001888-200205000-00003

3. Chang A, Bowen JL, Buranosky RA, Frankel RM, Gosh N, Rosenblum MJ, Thompson S, Green ML. Transforming primary care training – patient-centered medical home entrustable professional activities for internal medicine residents. J Gen Intern Med. 2013;28(6):801-809. DOI: 10.1007/s11606-012-2193-3

4. David DM, Euteneier A, Fischer MR, Hahn EG, Johannink J, Kulike K, Lauch R, Lindhorst E, Noll-Hussong M, Pinilla S, Weih M, Wenneke V. Die Zukunft der ärztlichen Weiterbildung in Deutschland – Positionspapier des Ausschusses Weiterbildung der Gesellschaft für Medizinische Ausbildung (GMA). GMS Z Med Ausbild. 2013;30(2):Doc 26. DOI: 10.3203/zma000869

5. Dekker H, Drissen E, Ter Braak E, Scheele F, Slaets J, Van der Molen T, Cohen-Schotanus J. Mentoring portfolio use in undergraduate and postgraduate medical education. Med Teach. 2009;31(10):903-909. DOI: 10.3109/01421590903173697

6. Epstein RM, Hundert EM. Defining and assessing professional competence. JAMA. 2002;287(2):226-235. DOI: 10.1001/jama.287.2.226

7. Frank JR. The CanMEDs 2005 physician competency framework. Med Educ. 2005;39(12):1176-1177. DOI: 10.1111/j.1365-2929.2005.02341.x

8. Frank JR, Danoff D. The CanMEDS initiative: implementing an outcomes-based framework of physician competencies. Med Teach. 2007;29(7):642-647. DOI: 10.1080/01421590701746983

9. Frank JR, Snell LS, Ten Cate O, Holmboe ES, Carraccio C, Swing SR, Harris P, Glasgow NJ, Campbell C, Dath D, Harden RM, Iobst W, Long DM, Mungroo R, Richardson DL, Sherbino J, Silver I, Taber S, Talbot M, Harris KA. Competency-based medical education: theory to practice. Med Teach. 2010;32(8):638-645. DOI: 10.3109/0142159X.2010.501190

10. Frenk J, Chen L, Bhatta ZA, Cohen J, Crisp N, Evans T, Fineberg H, Garcia P, Ke Y, Kelley P, Kistnasamy B, Meleis A, Naylor D, Noll-Hussong M, Pinilla S, Weih M, Wenneke V. Health professionals for a new century: transforming medical education: theory to practice. Med Teach. 2010;32(10):e453-e459. DOI: 10.3109/0142159X.2010.513719

11. Fühlhase C, Werner S, Kurpick O, Martin C. Das gemeinsame Curriculum der Gesellschaft für Medizinische Ausbildung (GMA) und des Medizinischen Fakultätentages (MFT). GMS Z für Med Ausbild. 2009;26(3):Doc35. DOI: 10.3205/zma000627

12. Green ML, Aagaard EM, Caverzagie KL, Chick DA, Holmboe E, Kane G, Smith CD, Iobst W. Charting the road to competence: Developmental milestones for internal medicine residency training. J Grad Med Educ. 2009;1(1):5-20. DOI: 10.4303/jgme.2009.01.0003

13. Hahn EG, Fischer MR. Nationaler Kompetenzbasierter Lernzielkatalog Medizin (NKLK) für Deutschland: Zusammenarbeit der Gesellschaft für Medizinische Ausbildung (GMA) und des Medizinischen Fakultätentages (MFT). GMS Z für Med Ausbild. 2009;26(3):Doc35. DOI: 10.3205/zma000627

14. Hauer KE, Durning SJ, Kernan WN, Fagan MJ, Mintz M, O’Sullivan PS, Battistone M, DeFer T, Elnicky M, Harrell H, Reddy S, Boscardin CK, Schwartz MD. Factors associated with medical Students’ career choice regarding internal medicine. JAMA. 2008;300(10):1154-1164. DOI: 10.1001/jama.300.10.1154

15. Hibbeler B, Areizei statt Zwang. Dtsch Ärztebl. 2012;109(22-23):A1143-A1144

16. Jobst WF, Sherbino J, Ten Cate O, Richardson DL, Dath D, Swing SR, Harris P, Mungroo R, Holmboe ES, Frank JR, for the international CBME collaborators. Competency-based medical education in postgraduate medical education. Med Teach. 2010;32(8):651-656. DOI: 10.1080/0142159X.2010.500709

17. Kadmon M, Ganschow P, Gillen S, Hofmann HS, Braune M, Johannink J, Kühn P, Buh R, Berker PD. Der kompetente Chirurg – Brückenschlag zwischen der Ausbildung im Praktischen Jahr und der chirurgischen Weiterbildung. Chirurg. 2013. [Epub ahead of print]. DOI: 10.1007/s00014-013-2531-y

18. Krones CJ, Binnebösel M, Stumpf M, Schumpelick V. Praxisnahe Weiterbildung – Das Aachener Modell. Chirurg. 2010;81:7-13. DOI: 10.1007/s00104-009-1760-6

19. Laponis R, O’Sullivan PS, Hollandar H, Cornett P, Julian K. Educating generalists: factors of resident continuity clinic associated with perceived impact on choosing a generalist career. J Grad Med Educ. 2011;3(4):469-474. DOI: 10.4300/JGME-D-10-00227.1

20. Montagne S, Kurmann J, Jucker-Kupper P, Beyeler C, Bauer W. Einführung des Arbeitsplatz-basierten Assessments (AbA) durch die Fachgesellschaften. Erste Erfahrungen in der Psychiatrie und Psychotherapie. Schw Ärztez. 2013;94(6):207-210

21. Mulder H, Ten Cate O, Daalder R, Berkvens J. Building a competency-based workplace curriculum around entrustable professional activities: the case of physician assistant training. Med Teach. 2010;32(10):e453-e459. DOI: 10.3109/0142159X.2010.513719

22. Norcini J, Burch V. Workplace-based assessment as an educational tool: AMEE Guide No. 31. Med Teach. 2007;29(9):855-871. DOI: 10.1080/01421590701775453

23. Reed CE, Vapocriyan AA, Erikson C, Dill MJ, Carpenter AJ, Guleserian KJ, Merrill WH. Factors dominating choice of surgical specialty. J Am Coll Surg. 2010;210(3):319-324. DOI: 10.1016/j.jamcollsurg.2009.11.016

24. Schmidt GN, Fiege M, Goetz AE. Weiterbildung in der Anästhesiologie. Umsetzung am Universitätsklinikum Hamburg-Eppendorf. Anästhesiologie. 2011;60(4):366-374. DOI: 10.1007/s00101-010-1836-1

25. Steinhäuser J, Chenot JF, Roos M, Ledig T, Joos S. Competence-based curriculum development for general practice in Germany: a stepwise peer-based approach instead of reinventing the wheel. BMC Res Notes. 2013;6:314. DOI: 10.1186/1756-0500-6-314

26. Steinheuser J, Chenot JF, Roos M, Ledig T, Joos S. Competence-based curriculum development for general practice in Germany: a stepwise peer-based approach instead of reinventing the wheel. BMC Res Notes. 2013;6:314. DOI: 10.1186/1756-0500-6-314

27. Steinhäuser J, Chenot JF, Roos M, Ledig T, Joos S. Competence-based curriculum development for general practice in Germany: a stepwise peer-based approach instead of reinventing the wheel. BMC Res Notes. 2013;6:314. DOI: 10.1186/1756-0500-6-314

28. Tambyraja AL, McCrea CA, Parks RW, Garden OJ, Attitudes of medical students toward careers in general surgery. World J Surg. 2008;32(6):960-963. DOI: 10.1007/s00268-008-9529-5

29. Ten Cate O. Entrustability of professional activities and competency-based training. Med Educ. 2005;39(12):1176-1177. DOI: 10.1111/j.1365-2929.2005.02341.x
30. Ten Cate O, Scheele F. Competency-based postgraduate training: can we bridge the gap between theory and clinical practice? Acad Med. 2007;82(6):542-547. DOI: 10.1097/ACM.0b013e31805559c7

31. Ten Cate O, Snell L, Carraccio C. Medical competence: the interplay between individual ability and the health care environment. Med Teach. 2010;32(8):669-675. DOI: 10.3109/0142159X.2010.500897

32. Weinert FE. Vergleichende Leistungsmessung in Schulen - eine umstrittene Selbstverständlichkeit. In: Weinert FE (Hrsg). Leistungsmessung in Schulen. Weinheim: Beltz; 2002. S.17-31

33. Wijnen-Meijer M, Van der Schaaf M, Booji E, Harendza S, Boscardin C, Van Wijngaarden J, Ten Cate TJ. An argument-based approach to the validation of UHTRUST: can we measure how recent graduates can be trusted with unfamiliar tasks? Adv Health Sci Educ Theory Pract. 2013. [Epub ahead of print] DOI: 10.1007/s10459-013-9444-x

34. Wijnen-Meijer M, van der Schaaf M, Nillesen K, Harendza S, Ten Cate O. Essential facets of competence that enable trust in graduates: a Delphi study among Physician educators in the Netherlands. J Grad Med Educ. 2013;5:46-53. DOI: 10.4300/JGME-D-11-00324.1

Corresponding author:
Prof. Dr. med. Pascal O. Berberat, MME
Technische Universität München, Fakultät für Medizin, Medizindidaktisches Zentrum für Ausbildungsforschung und Lehre, TUM MeDICAL, Ismaninger Straße 22, 81675 München, Deutschland, Tel.: +49 (0)89/4140-6268 berberat@tum.de

Please cite as
Berberat PO, Harendza S, Kadmon M., Entrustable Professional Activities – Visualization of Competencies in Postgraduate Training. Position Paper of the Committee on Postgraduate Medical Training of the German Society for Medical Education (GMA). GMS Z Med Ausbild. 2013;30(4):Doc47. DOI: 10.3205/zma000890, URN: urn:nbn:de:0183-zma0008909

This article is freely available from http://www.egms.de/en/journals/zma/2013-30/zma000890.shtml

Received: 2013-09-09
Revised: 2013-09-25
Accepted: 2013-10-22
Published: 2013-11-15

Copyright
©2013 Berberat et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.
Anvertraubare professionelle Tätigkeiten – Sichtbarwerden von Kompetenzen in der Weiterbildung. Positionspapier des Ausschusses Weiterbildung der Gesellschaft für Medizinische Ausbildung (GMA)

Pascal O. Berberat¹
Sigrid Harendza²
Martina Kadmon³
Gesellschaft für Medizinische Ausbildung, GMA-Ausschuss für Weiterbildung

1 Technische Universität München, Fakultät für Medizin, Medizindidaktisches Centrum für Ausbildungsforschung und Lehre, TUM MeDiCAL, München, Deutschland
2 Universitätsklinikum Hamburg-Eppendorf, III. Medizinische Klinik und Poliklinik, Hamburg, Deutschland
3 Chirurgische Universitätsklinik Heidelberg, Heidelberg, Deutschland

Autoren
Die drei Autoren trugen zu gleichen Anteilen zu dem Positionspapier bei.

Einleitung
Qualität und Struktur, aber auch konkrete eigene Erfahrungen im Rahmen der studentischen Ausbildung und postgradualen Weiterbildung spielen eine zentrale Rolle bei der Karriereentscheidung junger Mediziner [14], [19], [23], [28]. Sie halten strukturierte und verbindliche Weiterbildungsprogramme auf hohem qualitativem Niveau und engagierte professionelle klinische Weiterbilder für wichtige Faktoren zur Steigerung der Attraktivität und Verbesserung der Startbedingungen in eine klinische Karriere [23].

Die aktuelle Weiterbildung in Deutschland unterscheidet sich deutlich in verschiedenen medizinischen Fachdisziplinen. Beispielsweise Modelle einer strukturierten kompetenzbasierten Weiterbildung existieren für die Anästhesiologie [24], die Allgemeinmedizin [25], die Urologie [11] und die Chirurgie [18]. Allerdings fehlt eine flächendeckende nationale und verbindliche curriculare Vorgabe, die vergleichbare Absolventenkompetenzen unabhängig von der Weiterbildungsinstitution gewährleistet. Facharztprüfungen erfolgen in allen Fachdisziplinen im Format eines mündlichen Facharztgespräches ohne bindende Struktur und Inhalt und außerhalb des klinischen Kontextes. Dementsprechend bilden sie weder klinische Kompetenzen des Facharztes ab noch berücksichtigen sie beobachtbare konkrete professionelle Handlungen [http://www.bundesaerztekammer.de/downloads/MWBO_07122011.pdf (zugegriffen am 12.02.2013)].
Die Evaluation der Weiterbildung durch die Bundesärztekammer (BÄK) 2009 und 2011 ergab lediglich eine mittelmäßige Zufriedenheit auf Seiten der Ärzte in Weiterbildung [http://www.evaluation-weiterbildung.de/data/Bundesrapport2009.pdf (zugreif en am 12.02.2013)], [http://www.baek.de/downloads/Bundesrapport_2011.pdf (zugreif en am 12.02.2013)]. 45% der teilnehmenden Befragten beurteilten die Weiterbildung auf einer Schulnotenskala insgesamt mit ausreichend oder mangelhaft. Mehr als ein Drittel bewerteten die Weiterbildungsqualität und die Unterstützung im Erwerb professioneller Kompetenzen in ihrer Arbeitsumgebung als ausreichend bis ungenügend. Das besorgniserregendste Ergebnis waren mangelnde Weiterbildungsinhalte im Bereich Evidenzbasierte Medizin (EBM) und ihr Transfer in die Patientenversorgung, die von 69% der Befragten als nur ausreichend oder schlechter eingeschätzt wurden. Nur ein Drittel der Befragten erhielten einen transparenten strukturierten Weiterbildungsplan mit definierten Weiterbildungszielen in schriftlicher Form, 42% bekamen gar keinen Ablaufplan für ihr postgraduales Training [http://www.baek.de/downloads/Bundesrapport_2011.pdf (zugreif en am 12.02.2013)]. Zwischen den beiden Befragungphasen 2009 und 2011 war lediglich eine geringfügige Verbesserung zu verzeichnen, was die Notwendigkeit eines entschiedenen und spürbaren Maßnahmenplanes unterstreicht, um die Weiterbildungskultur in Deutschland voranzutreiben.

Gegenwärtig ist zwischen politischen Interessensvertretern, der Bundesärztekammer und den Landesärztekammern, den medizinischen Fachgesellschaften und Berufsverbänden sowie den Weiterbildenden eine heftige Diskussion zur Zukunft der postgradualen Weiterbildung in Deutschland im Gange. Im Rahmen des 115. Deutschen Ärztetages 2012 wurde die BÄK aufgefordert, konkrete Vorschläge für eine neue Musterweiterbildungsordnung (MWBO) vorzulegen, welche die heutige Realität der Gesundheitsversorgung widerspiegelt und professionelle Kompetenzen ins Zentrum der Weiterbildungsprogramme rückt [20]. Der Vorschlag, zugunsten ärztlicher Kompetenzen komplett auf Richtzahlen für medizinische Prozeduren zu verzichten, fand keine mehrheitliche Unterstützung. Konsens wurde allerdings zu einigen fundamentalen Änderungen erzielt, die in der neuen MWBO abgebildet werden sollen:

- Definition von kompetenzorientierten Weiterbildungszielen,
- Integration von Kompetenzbereichen und -ebenen,
- Fokus auf Weiterbildungsinhalten statt auf der Weiterbildungsduer,
- Reduktion von Richtzahlen für medizinische Prozeduren [http://www.bundesaerztekammer.de/downloads/116top4BarthmannFolien.pdf (zugreif en am 29.06.2013)].

Die BÄK hat im Dezember 2012 eine "WIKI-BÄK-Plattform" etabliert, um die medizinischen Fachgesellschaften und Berufsverbände an dem Diskussionsprozess zu beteiligen und ihnen die Eingabe von Vorschlägen zu einer neuen MWBO zwischen Februar und April 2013 zu ermöglichen [http://www.bundesaerztekammer.de (zugreif en am 12.02.2013)].

In Österreich zeigt sich in der Weiterbildung ein ähnliches Bild wie in Deutschland: Die Evaluationen zeigen höchstens durchschnittliche Resultate in Bezug auf die Zufriedenheit der Weiterzubildenden. Es gibt eine rege Diskussion, dass basierend auf der Studienreform von 2002 und der zunehmenden Mobilität von jungen Ärztinnen und Ärzten dringend neue, besser strukturierte Weiterbildungscurricula gebraucht werden. Diese sollen die bereits beschlossene und konkret geplante kompetenzbasierte Ausbildung des neuen Klinisch-Praktischen Jahres weiterführen und einer modularer Struktur mit Internship, Common Trunk und Haupt-/Wahlfächern folgen. Ein wenig anders zeigt sich die Situation in der Schweiz: alle Weiterbildungsprogramme wurden 2011 akkreditiert und die nationale Weiterbildungsordnung 2013 revidiert. Eine unabhängige Institution (Schweizerisches Institut für ärztliche Weiter- und Fortbildung, SIWF) ist verantwortlich für die Weiterbildung. In Bezug auf eine kompetenzbasierte Weiterbildung definiert die Weiterbildungsordnung allgemeine Ziele für alle Programme. Diese allgemeinen Ziele sind in den entsprechenden Weiterbildungs katalogen im Detail aufgeführt mit allgemeinen Lernzielen basierend auf den CanMEDS Rollen und anderen Rahmenwerken, wie die ACGME Kompetenzen [http://www.fmh.ch/files/pdf8/allg_lz_d.pdf (zugreif en am 19.10.2013)]. Weiterhin haben verschiedene Weiterbildungsprogramme Arbeitsplatzbasiertes Prüfen implementiert mit dem Ziel die Aneignung dieser professionalen Kompetenzen auch zu kontrollieren [20].

Die gegenwärtige Situation stellt eine ideale Chance dar, um neue Weiterbildungskonzepte zu berücksichtigen und zu implementieren, die das Kontinuum der studentischen Ausbildung und des postgradualen Trainings sowie der kontinuierlichen professionellen Fortbildung betonen [17]. Die Gesellschaft für Medizinische Ausbildung (GMA) sollte ganz wesentlich in die Diskussion und Beförderung des aktuellen Prozesses einbezogen werden, um die Entwicklung einer interdisziplinären evidenzbasierten Weiterbildungsstrategie für Deutschland im 21. Jahrhundert zu stützen. Der Ausschuss Weiterbildung der GMA hat mit eben dieser Zielsetzung bereits kritische Schlüsselfragen formuliert und wesentliche Impulse gesetzt [4]. DiesesPOSITIONspapier geht einen Schritt weiter, stellt erfolgreiche kompetenzbasierte Rahmenwerke für die Weiterbildung vor und skizziert einen möglichen Ausblick, wie diese in die zukünftigen Reformen in Deutschland integriert werden können.

Kompetenzbasierte Rahmenwerke für die Weiterbildung

Kompetenzbasierte medizinische Ausbildungskonzepte sowohl in der studentischen Ausbildung als auch in der
postgradualen Weiterbildung werden heute als wesentliche Voraussetzung für eine adäquate Patientenversorgung im 21. Jahrhundert gesehen [2], [10], [30]. Epstein und Hundert definieren professionelle Kompetenz als "die habituelle und begründete Nutzung von Kommunikation, Wissen, technischen Fertigkeiten, klinischer Urteilskraft, Emotionen, Werten und Reflexion in der täglichen Routine für das Wohle des Einzelnen und der Gemeinschaft [6]. Professionelle Kompetenz stützt sich also auf eine kognitive Basis, auf klinische Basisfertigkeiten und persönliche Haltungen gepaart mit der Bereitschaft und der Motivation diese in konkreten medizinischen Kontexten anzuwenden, um medizinische Probleme verantwortlich im Sinne einer humanen Patientenversorgung zu lösen [6], [32] [http://www.egon-spiegel.net/fileadmin/user_upload/documents/Theologie/Spiegel/Tagungen_Kongresse/Wildt.pdf (zugriffen am 10.01.2013)]. Nicht die Dauer klinischer Rotationen oder die Zahl durchgeführter klinischer Prozeduren, sondern die Demonstration von Kompetenz in der Gesundheitsversorgung steht im Zentrum einer kompetenzbasierten Weiterbildung [9], [16], [30].

Zwei Rahmenwerke für die postgraduale Weiterbildung basieren auf dieser Kompetenz- und Ergebnis-orientierten Grundlage, die "CanMEDS Physician Competency Framework" und das "Outcome Project of the Accreditation Council for Graduate Medical Education (ACGME)" [http://www.medschool.vcu.edu/gme/pgmdir/documents/Competency-OutcomeWorksheets.doc (zugriffen am 13.01.2013)], [7], [8], [12], [27]. Neben einem strukturierten Weiterbildungscurriculum unterstützt die regelmäßige Umsetzung Arbeitsplatz-basierter Prüfungen, wie Mini-CEX ("mini-clinical evaluation exercise"), klinische Begegnungskarten ("clinical encounter cards"), DOPS ("direct observation of procedural skills") und fallbasierte Diskussionen mit Feedback, die stufenweise Entwicklung klinischer Kompetenzen in Weiterbildungsprogrammen [22]. Die Integration von anvertraubaren professionellen Tätigkeiten (APTs) als Basis für formative Prüfungen in der Weiterbildung schließt die Lücke zwischen der Theorie eines kompetenzbasierten Trainings und einer patientenzentrierten Umsetzung im klinischen Kontext [20], [30]. Dementsprechend bilden APTs das Herzstück einiger Weiterbildungsprogramme in verschiedenen medizinischen Fachdisziplinen [1], [3], [21].

Anvertraubare professionelle Tätigkeiten (APTs)

APTs können sich auf das Rahmenwerk der Canadian Medical Education Directions for Specialists (CanMEDS) stützen [8], die Kompetenzen, die ein Arzt erlangen sollte, in sieben Rollen zusammenfasst: Medizinischer Experte (die zentrale Rolle), Kommunikator, Teammitglied, Manager, Berater und Fürsprecher, Gelehrter und professionell Händler. Nicht die Ausbildungsdauer ist die wesentliche Messgröße des Ausbildungsergebnisses, sondern vielmehr das Erlangen von Kompetenz. Da jede ATP eine echte professionelle Tätigkeit beschreibt, die einem Arzt in der Weiterbildung anvertraut werden kann und da jede ATP mit mehreren Kompetenzen, die für eine spezifische ATP äußerst wichtig sind, verknüpft ist, folgten wir dem Vorschlag von Mulder et al., die sieben CanMEDS Rollen als 'Kompetenzdomänen' zu bezeichnen [21]. Jede CanMEDS Rolle bzw. 'Kompetenzdomäne' ist von Wissen, Fertigkeiten und Haltung untermauert [21] und kann weiter in Kompetenzfacetten unterteilt werden [34]. Die Kommunikatorrolle beispielsweise, die auch als 'Kommunikationsdomäne' bezeichnet wird [21], beinhaltet mehrere Kompetenzfacetten: 'verbale Kommunikation mit Kollegen und Vorgesetzten', 'Empathie und Offenheit', 'angepasste Information von Patienten', 'Beachtung der Privatsphäre und der Autonomie des Patienten' und andere [34]. Umgekehrt beinhaltet jede Kompetenzfacette verschiedene Aspekte von Wissen, Fertigkeiten und Haltungen.

Basierend auf dem CanMEDS Rahmenwerk kann ein großer Umfang von APTs für die verschiedenen Stadien der ärztlichen Weiterbildung festgelegt werden, indem spezifische Kompetenzdomänen, die für jede APT relevant sind, definiert werden [21]. Für jede Stufe in der ärztlichen Weiterbildung ist jede APT ein 'entscheidender Teil der professionellen Arbeit, der als Einheit identifiziert werden kann, die einem Arzt in der Weiterbildung anvertraut werden kann, wenn ausreichende Kompetenz erreicht worden ist' [29], [30]. Unter Verwendung dieses Rahmenwerks können repräsentative APTs für die unterschiedlichen Stadien der ärztlichen Weiterbildung definiert werden und da sie mit eindeutigen Kompetenzdomänen verbunden sind, bilden sie außerdem eine Grundlage für Beobachtung und Prüfung im klinischen Alltag [21]. Eine dreistufige Herangehensweise, die in einem APT-basierten Arbeitsplatz-besogenen Curriculum für die Ausbildung von Arztassistenten mündete, wurde von Mulder et al. vorgeschlagen [21]. Dieser Ansatz kann für die ärztliche Weiterbildung in ähnlicher Weise adaptiert werden:

1. Auswahl von APTs für eine spezifische ärzliche Weiterbildung,
2. Beschreibung der APTs,
3. Planung von Ausbildung und Prüfung in den APTs (siehe Tabelle 1).

Diese Gliederung führt zu beobachtbaren Leistungs niveaulasten in der Ausführung; jeder APT und ermöglicht die Planung für die APTs und Kompetenzstadien in Verlauf der ärztlichen Weiterbildung. Die Leistungs niveaulasten für die ärztliche Weiterbildung können adaptiert werden wie von Wijnen-Meijer et al. für Absolventen des Medizinstudiums vorgeschlagen [33]: Der Arzt in Weiterbildung

1. ist nicht in der Lage die ärztliche Tätigkeit durchzuführen,
2. kann die ärztliche Tätigkeit unter enger Begleitung durchführen,
3. kann die ärztliche Tätigkeit durchführen, wenn er Unterstützung anfordern kann,
4. kann die ärztliche Tätigkeit selbstständig durchführen,
5. kann andere bei der Durchführung der ärztlichen Tätigkeit betreuen (siehe Tabelle 2).

Darüber hinaus wurden die folgenden vier Faktoren identifiziert, die Entscheidungen des Anvertrauens beeinflussen und die bei der Planung eines auf APTs basierten Curriculums für die ärztliche Weiterbildung zu bedenken sind: die Eigenschaften des in Weiterbildung befindlichen Arztes, des Oberarztes, des klinischen Kontextes und der anzuvertrauenden Aufgabe [26].

Am beruflichen Arbeitsplatz jedes Arztes in Weiterbildung in einem Krankenhaus könnte eine gemeinsame APT für das erste Weiterbildungsjahr „eine Station in einem interdisziplinären Team leiten“ sein, die als ein Beispiel dienen kann, um das zugrundeliegende Prinzip für die Auswahl von APTs für ein APT-basiertes Arbeitsplatzcurriculum zu illustrieren. Diese APT ist eine recht breit gefächerte, die mehrere kleinere APTs beinhaltet, welche jeweils mit mehreren Kompetenzdomänen verbunden sind. Tabelle 3 zeigt eine Blaupause, die die APTs mit ihren zugehörigen Kompetenzdomänen untermauert. Wenn die APTs identifiziert sind, müssen sie in einem nächsten Schritt beschrieben werden. Mulder et al. schlagen vor, einen Titel zu definieren und den Inhalt jeder APT zu beschreiben, die zugrundeliegenden Kompetenzdomänen auszuwählen, das benötigte Wissen und die erforderlichen Fertigkeiten zu spezifizieren und die Prüfungsverfahren zu beschreiben [21].

Schritte für ein APT-basiertes Weiterbildungscurriculum
1. Auswahl von APTs für ein spezifisches ärztliches Weiterbildungscurriculum
- Identifizierung realer APTs
- Entscheidung über Anzahl und Umfang der APTs
2. Beschreibung der APTs
- Titeldefinition und Inhaltsdarstellung der APTs
- Auswahl der Kompetenzdomänen
- Spezifizierung von erforderlichem Wissen und notwendigen Fertigkeiten
- Beschreibung der Prüfungsverfahren
3. Lern- und Prüfungsplan für die APTs
- Festlegung der APTs und Leistungsniveaustufen über den Verlauf der Weiterbildung
- Feinabstimmung der Planung für den individuellen Assistenten im Verlauf der Weiterbildung

Für das Erreichen der APT „eine Station in einem interdisziplinären Team leiten“ muss das erwartete Leistungsniveau der anvertrauten Unabhängigkeit für jede zugrundeliegende APT definiert werden. Während für die APT „eine Visite leiten“ die Niveaustufe 4 (der Arzt in Weiterbildung kann die ärztliche Tätigkeit selbstständig durchführen) erwartet werden kann, scheint für die APT „eine Anamnese erheben und eine körperliche Untersuchung bei XXX-Patienten durchführen“ die Niveaustufe 5 (der Arzt in Weiterbildung kann andere bei der Durchführung der ärztlichen Tätigkeit betreuen) adäquat, da der Arzt in Weiterbildung Medizinstudierende im Praktischen Jahr bei der Durchführung dieser Aufgaben supervidieren darf. Das Erreichen der Niveaustufe 3 (der Arzt in Weiterbildung kann die ärztliche Tätigkeit durchführen, wenn er Unterstützung anfordern kann) für die APT „eine Station in einem interdisziplinären Team leiten“ kann zu einem frühen Zeitpunkt in der ärztlichen Weiterbildung erwartet werden, während die Niveaustufe 4 erst zu einem späteren Zeitpunkt erreicht wird. Weniger die Zeit, die mit einer bestimmten APT verbracht wird, als vielmehr die erreichte Niveaustufe der Unabhängigkeit ist die entscheidende Größe für das Anvertrauen; dies kann sich zwischen Ärzten in Weiterbildung unterscheiden gemäß ihrer individuellen Verhaltensweisen und ihrer Kompetenzen [31].

Bei der tatsächlichen Planung eines APT-basierten Weiterbildungscurrículums muss einigen Aspekten unabhängig von der spezifischen Weiterbildungsdiscipline besondere Aufmerksamkeit gewidmet werden. Um APTs von allgemeinen Lernzielen oder Fertigkeiten zu unterscheiden, kann es hilfreich sein, den Satz „Morgen wird es dem Arzt in Weiterbildung erlaubt sein, zu …“ zu vervollständigen [21]. Es kann jemandem beispielsweise erlaubt werden, eine Pleurapunktion unter enger Begleitung durchzuführen – dies wäre APT Niveaustufe 2 – womöglich jemandem nicht erlaubt werden kann „respektvoll zu kommunizieren“, was eine Fertigkeit wäre, um das Einverständnis des Patienten für diese Prozedur zu erhalten. Wie oben beschrieben und in Tabelle 1 dargestellt können APTs in Komplexität und Umfang variieren. Eine komplexe APT, z.B. „eine Station in einem interdisziplinären Team leiten“, kann sich aus verschiedenen weniger komplexen APTs zusammensetzen. Um die Anzahl von APTs festzulegen, die für eine ärztliche Weiterbildung erforderlich sind, ist es hilfreich über die Anforderungen nachzudenken, die ein
Tabelle 2: Leistungs niveaustufen in der Weiterbildung. Kompetenzebenen adaptiert nach Wijnen-Meijer et al. [34]

Leistungs niveaustufen während der Weiterbildung
1. Der Arzt in Weiterbildung ist nicht in der Lage die ärztliche Tätigkeit durchzuführen.
2. Der Arzt in Weiterbildung kann die ärztliche Tätigkeit unter enger Begleitung durchführen.
3. Der Arzt in Weiterbildung kann die ärztliche Tätigkeit durchführen, wenn er Unterstützung anfordern kann.
4. Der Arzt in Weiterbildung kann die ärztliche Tätigkeit selbstständig durchführen.
5. Der Arzt in Weiterbildung kann andere bei der Durchführung der ärztlichen Tätigkeit betreuen.

Tabelle 3: Blaupause einer APT und ihrer zugrundeliegenden Kompetenzdomänen für die APT „eine Station in einem interdisziplinären Team leiten“. XXX: Patienten aus einer bestimmten Fachrichtung, z.B. Pulmologie in diesem Beispiel

APT	Medizinische Expertise	Kommunikation	Teamarbeit	Gelehrsamkeit	Beratung und Fursprache	Management	Professionalität
Anamnese und körperliche Untersuchung bei XXX-Patienten durchführen	X	X					X
Besprechungen über das Management von Patienten leiten	X	X	X				X
Diagnostische und therapeutische Maßnahmen festlegen							X
Eine Visite leiten	X	X	X				
Aufgaben nach Dringlichkeit priorisieren	X			X			
Patienten und Angehörige begleiten	X						
Eine Pleurapunktion durchführen	X	X					
Einen Entlassungsbrief verfassen und die Weiterbehandlung eines Patienten organisieren	X						X

Tabelle 4: Beschreibung einer APT, Beispiel aus der Fachrichtung Pulmologie

Fachrichtung	Pulmologie
Titel der APT	Eine Pleurapunktion durchführen
Kurzbeschreibung	Die Diagnose Pleuraerguss stellen, die Indikation zur Pleurapunktion bestätigen und die Pleurapunktion durchführen
Häufigkeit des Vorkommens	Mindestens einmal wöchentlich
Wichtigste CanMEDS Kompetenzdomänen	Medizinische Expertise, Kommunikation, Teamarbeit, Management
Erforderliches Wissen und benötigte Fertigkeiten	
• Wissen über die Anatomie des Thorax, insbesondere über die Gefäßversorgung	
• Wissen über die Differentialdiagnosen des Pleuraergusses und erforderliche Laborwerte, die in der aspirierten Flüssigkeit bestimmt werden sollten	
• Wissen über den technischen Ablauf der Prozedur und die benötigten Materialien	
• Wissen über Komplikationen bei der Prozedur	
• Wissen über Kontraindikationen für die Durchführung der Prozedur und entsprechende Tests, die vorher erforderlich sind	
• Wissen, wie Komplikationen nach der Durchführung der Prozedur festgestellt werden können	
• Fähigkeit, Kontraindikationen zu ermitteln und die Prozedur inklusive ihrer Komplikationen dem Patienten zu erläutern und eine Einverständniserklärung einzuholen	
• Fähigkeit, steril zu arbeiten	
• Fähigkeit, den Mitarbeitern, die bei der Prozedur assistieren, Weisungen zu geben	
• Fähigkeit, dem Patienten Weisungen zu geben	
• Manuelle Fertigkeit, unter Verwendung des korrekten Zugangswegs und Aspiration des Ergusses eine Pleurapunktion durchzuführen	
Prüfungsablauf	
• Strukturierte Befragung über die prozeduralen Kenntnisse und über Komplikationen und Kontraindikationen	
• Beobachtung des prozeduralen Prozesses	
Arzt in Weiterbildung nahe der Facharztprüfung erfüllen sollte. Bei dieser Betrachtungsweise wird deutlich, dass bestimmte APTs für alle Weiterbildungsdisciplinen relevant sind, einige APTs eine interdisziplinäre Relevanz haben und eine Gruppe spezieller APTs nur für spezifische Disziplinen relevant sind.

Die Beschreibung einzelner APTs und ihrer zugrundeliegenden Kompetenzdomänen inklusive Wissen, Fertigkeiten und Haltungen sollte eindeutig genug sein für eine Prüfung durch Beobachtung. Eine Prüfung kann direkte Beobachtung und Feedback umfassen (z.B. die Begleitung einer Visite) oder „indirekte Beobachtung“ durch Bewertung der Qualität von Patientenberichten und Entlassungsbriefen. Eine andere Prüfungsmethode könnte ein Entwicklungsportfolio in Kombination mit einem Interview über Fortschritte sein, in dem Meilensteine für das Erreichen der Niveaustufe 4, d.h. selbstständige ärztliche Tätigkeit, markiert werden können. Diese Prüfungsmethode kann verwendet werden, um das Curriculum gemäß dem Fortschritt eines individuellen Arztes in der Weiterbildung anzupassen [5].

Es ist entscheidend, die Prüfung der direkten Beobachtung des Verhaltens eines Arztes in Weiterbildung mit den Bewertungen der Leistungen des Arztes in Weiterbildung über einen bestimmten Zeitraum zu kombinieren. Während spezifische objektive Arbeitsplatz-basierte Prüfungsf orm en wie beispielsweise Mini-CEX („mini-clinical evaluation exercise“) oder OSATS (objective-structured assessment of technical skills) für unmittelbar beobachtbares Verhalten verwendet werden können, kann Feedback aus verschiedenen Quellen („multisource feedback, MSF) zur Einschätzung der Leistung über einen Zeitraum hin dienen [21], [22]. Erste Erfahrungen zeigen, dass ein Verhältnis von 1:5 bis 1:10 von Prüfungen des direk
Die deutsche Perspektive

Die Autoren sind überzeugt, dass die Definition professioneller Kompetenzen, die das Absolventenprofil am Ende der postgradualen klinischen Weiterbildung skizzieren, eine zentrale Antriebskraft für die Reform und Weiterentwicklung des medizinischen Weiterbildungssystems in Deutschland, wie auch in Österreich und der Schweiz, sein könnte und sollte. Wie bereits erwähnt, wurden in den letzten Jahren zwei zentrale kompetenzbasierte Rahmenwerke für die Weiterbildung, die "CanMEDS"-Rahmenstruktur und das "ACOGME Outcome Project" [http://www.medschool.vcu.edu/gme/pgmdir/documents/Competency-OutcomeWorksheets.doc (zugegriffen am 13.01.2013)], [7], [8], [12] definiert und in einer Reihe von Ländern in die Weiterbildungspraxis integriert [30]. In Deutschland bildet die "CanMEDS"-Rahmenstruktur das Rückgrat des Nationalen Kompetenzbasierter Lernzielkatalogs Medizin (NKLM), der aktuell im Rahmen einer nationalen Initiative des Medizini- schen Fakultätentages (MFT) und der GMA entwickelt wird [13]. Dennoch sind viele Kliniker skepsitisch oder lehnen kompetenzorientierte Weiterbildungsmodelle so- gar ab [30], weil sie lediglich als theoretische akade- mische Konstrukte ohne praktischen Wert wahrnehmen: unklar und artifiziell in ihrer Terminologie, kompliziert und unverständlich in ihrer Struktur mit unrealistischen Prüfungsmethoden in einer klinischen Versorgungsstruktur etc. Dementsprechend erreichen engagierte Initiativen unter Umständen die Implementierung in das klinische Training, Ähnliche Auffassungen bestimmen die Diskussion um den Ruf nach neuen Konzepten der Weiterbildung durch den 115. Deutschen Ärztetages 2012: Zögern und Zurückhaltung, die gegenwärtigen Weiterbildungsbestimmungen, die aus Listen allgemeiner klinischer Lerninhalte und Richtzahlen für medizinische Prozeduren zugunsten ärztlicher Kompetenzen zu verlassen [http://www.bundesaerztekammer.de/downloads/116top4BartmannFolien.pdf (zugegriffen am 29.06.2013)]. Zwei zentrale Fragen müssen wir beant- worten, wenn kompetenzorientierte Weiterbildungsmodelle breite Akzeptanz finden und in die Weiterbildungsrealität implementiert werden sollen:

1. Wie können wir ein kompetenzbasiertes Curriculum mit der klinischen Routine der Patientenversorgung durch Ärzte in Weiterbildung und ihre Weiterbildenden in Einklang bringen?
2. Wie können wir regelmäßig valide Prüfungsformen, die die verschiedenen ärztlichen Rollen in allen Bereichen der klinischen Praxis abbilden, machbar einsetzen?

Wir glauben, dass das Konzept der APTs die Lücke zwischen Theorie und klinischer Praxis schließen und als Modell für die Implementierung der neuen MWBO in allen medizinischen Fachdisziplinen dienen kann. Ein grober Entwurf eines Ablaufplans einschließlichrepräsentativer Schritte in Richtung Implementierung eines solchen Rahmenwerks ist in Tabelle 7 dargestellt. Ein solcher Prozess sollte die national abgestimmte Entwicklung eines neuen kompetenzbasierten Rahmenwerks sowie Fakul- tätsentwicklungsmaßnahmen zur Unterstützung der lokalen Implementierung einschließen. Außerdem sollte jede neue Initiative in der Weiterbildung im Sinne der Anschlussfähigkeit aktuelle Entwicklungen in der studentischen Ausbildung berücksichtigen. Die neue MWBO sollte mit dem NKLM abgestimmt sein und daran anschließen. Die Integration von APTs auf NKLM-Basis im Praktischen Jahr der medizinischen Ausbildung könnte einen optimalen Übergang zwischen studentischer Ausbildung und ärztlicher Weiterbildung sicherstellen [17]. Zusammenfassend hat das APT-Konzept durch seine Realitätsnähe das Potential für eine breite Akzeptanz im klinischen Umfeld und beinhaltet Perspektiven, die unseren aktuellen Rahmenwerken fehlen:

1. Fokus auf relevanten und häufigen klinischen Tätigkeiten unter Einbeziehung des Kontinuums von einzelnen medizinischen Prozeduren zu allgemeinen Kompetenzen
2. Plausible und selbsterklärende Ebenen der Verantwortung übergabe an den Weiterzubildenden, die sowohl die Definition einer zeitlichen Richtlinie als auch die Berücksichtigung individueller Lernkurven zulassen
3. Machbare und transparente strukturierte Prüfungs- konzepte bestehend aus einer Mischung von definier- ten objektiven Prüfungsmaßnahmen im klinischen Kontext und Entscheidungen von Verantwortungsüber- gabe auf der Basis kontinuierlicher Beobachtung

Der Ausschuss Weiterbildung der GMA arbeitet an einem beispielhaften APT-basierten Weiterbildungscurriculum und verfolgt unterstützende Aktivitäten, um dieses Konzept auf verschiedenen Ebenen in der postgradualen Weiterbildung in Deutschland voran zu bringen und es festzulegen.
Tabelle 7: Ablaufplan für die Entwicklung und Implementierung eines APT-basierten Weiterbildungscurriculums

Nationale Interessengruppen
1. Konsenserreichung für zentrale APT Blaupausen:
a) APT-allgemeine Kompetenzen (z.B. Tabelle 2)
b) APT Beschreibung (z.B.: Tabelle 3 & 4)
c) APT Leistungsniveaus des Anvertrauens
d) APT Leistungsniveauerwartungen – Zeitplan (z.B. Tabelle 5)
2. Festlegung und Beschreibung von fachspezifischen APTs durch die medizinischen Fachgesellschaften (1a & b)
3. Differenzierung und Abstimmung über gemeinsame, Bereichs- und fachspezifische APTs
4. Entwurf eines beispielhaften Zeitrahmens für die Planung des Anvertrauens (1д)
5. Entwurf von verschiedenen Modellen und Instrumenten für die Entscheidung zum Anvertrauen basierend auf lokalen Ressourcen

Weiterbildungsbevollmächtigte und Weiterbildende

| 1. Seminare für Weiterbildungsbevollmächtigte basierend auf dem Konzept und der praktischen Nutzung von APTs: |
| o Einführung und Erläuterung des Konzepts |
| o Übungen zu beispielhafter Curriculumsentwicklung |
| o Einführung in verschiedene Modelle und Instrumente zum Treffen von Anvertrauensentscheidungen |
| o Übungen für den Aufbau eines lokalen Systems für Anvertrauensentscheidungen |
| 2. Weiterbildungskurse für Weiterbildende: |
| o Einführung und Erläuterung des Konzepts |
| o Begleitungs- und Feedbackprinzipien |
| o Arbeitsplatz-basierte Prüfungsmethoden |

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Boyce P, Spratt C, Davies M, McEvoy P. Using entrustable professional activities to guide curriculum development in psychiatry training. BMC Med Educ. 2011;11:96-103. DOI: 10.1186/1472-6920-11-96
2. Carraccio C, Wolfshal SD, Englander R, Ferentz K, Martin C. Shifting paradigms: from Flexner to competencies. Acad Med. 2002;77(5):361–367. DOI: 10.1097/00001888-200205000-00003
3. Chang A, Bowen JL, Buranosky RA, Frankel RM, Gosh N, Rosenblum MJ, Thompson S, Green ML. Transforming primary care training – patient-centered medical home entrustable professional activities for internal medicine residents. J Gen Intern Med. 2013;28(6):801-809. DOI: 10.1007/s11606-012-2193-3
4. David DM, Euteneier A, Fischer MR, Hahn EG, Johannink K, Kulike K, Lach R, Lindhorst E, Noll-Hussong M, Pinilla S, Weih M, Wennke V. Die Zukunft der ärztlichen Weiterbildung in Deutschland – Positionspapier des Ausschusses Weiterbildung der Gesellschaft für Medizinische Ausbildung (GMA). GMS Z Med Ausbild. 2013;30(2):Doc 26. DOI: 10.3205/zma000869
5. Dekker H, Driessen E, Ter Braak E, Scheele F, Slaets J, Van der Molen T, Cohen-Schotanus J. Mentoring portfolio use in undergraduate and postgraduate medical education. Med Teach. 2009;31(10):903-909. DOI: 10.3109/01421590903173697
6. Epstein RM, Hundert EM. Defining and assessing professional competence. JAMA. 2002;287(2):226-235. DOI: 10.1001/jama.287.2.226
7. Frank JR. The CanMEDs 2005 physician competency framework. Better standards, better physicians. Better care. Ottawa: The Royal College of Physicians and Surgeons of Canada; 2005. Zugänglich unter/available from: http://www.royalcollege.ca/portal/page/portal/rc/common/documents/CANMEDS/resources/publications/framework_full_e.pdf (accessed January 13, 2013)
8. Frank JR, Danoff D. The CanMEDS initiative: implementing an outcomes-based framework of physician competencies. Med Teach. 2007;29(7):642-647. DOI: 10.1080/01421590701746983
9. Frank JR, Snell LS, Ten Cate O, Holmboe ES, Carraccio C, Swing SR, Harris P, Glasgow NJ, Campbell C, Dath D, Henden RM, Iobst W, Long DM, Mungrue R, Richardson DL, Sherbino J, Silver I, Taber S, Talbot M, Harris KA. Competency-based medical education: theory to practice. Med Teach. 2010;32(8):638-645. DOI: 10.1080/0142159X.2010.501190

10. Frenk J, Chen L, Bhutta ZA, Cohen J, Crisp N, Evans T, Fineberg H, Garcia P, Ke Y, Kelley P, Kastrazna M, Meleis A, Naylor D, Pablos-Mendez A, Reddy S, Schirrmaw S, Sepulveda J, Serwadda D, Zayak H. Health professionals for a new century: transforming education to strengthen health systems in an interdependent world. Lancet. 2010;376(9765):1923–1958. DOI: 10.1016/S0140-6736(10)61854-5

11. Füllhase C, Werner S, Kurick P, Fichtner J. Das gemeinsame Logbuch "Urologische Weiterbildung" von GeSRU, DGU, BDU. Ein Meilenstein für die urologische Weiterbildung in Deutschland. Urologe. 2008;47(3):348-356. DOI: 10.1007/s00120-008-1628-2

12. Green ML, Aagaard EM, Caverzagie KJ, Chick DA, Holmboe E, Kane G, Smith CD, Iobst W. Charting the road to competence: Developmental milestones for internal medicine residency training. J Grad Med Educ. 2009;1(1):5-20. DOI: 10.4300/01.01.0003

13. Hahn EG, Fischer MR. Nationaler Kompetenzbasierter Lernzielkatalog Medizin (NKLM) für Deutschland: Zusammenarbeit der Gesellschaft für Medizinische Ausbildung (GMA) und des Medizinischen Fakultäten - (MFT). GMS Z für Med Ausbild. 2009;26(3):Doc35. DOI: 10.3205/zma000627

14. Hauer KE, Durning SJ, Kernan WN, Fagan MJ, Mintz M, O'Sullivan PS, Battestone M, DeFeer T, Einicki M, Harrell H, Reddy S, Boscardin CK, Schwartz MD. Factors associated with perceived impact on choosing a generalist career. J Grad Med Educ. 2010;32(8):651-656. DOI: 10.1001/jama.2008.10459.

15. Hibbeler B. Anreise statt Zwang, Dtsch Ärztebl. 2012;109(22-23):A1143-A1144.

16. Iobst WF, Sherbino J, Ten Cate O, Richardson DL, Dath D, Swing SR, Harris P, Mungrue R, Holmboe ES, Frank JR, for the international CBME collaborators. Competency-based medical education in postgraduate medical education. Med Teach. 2010;32(6):651-656. DOI: 10.1080/014215909.2010.500709

17. Kadmon M, Ganschow P, Gillen S, Hofmann HS, Hrade M, Johannin K, Kühn P, Buhr HJ, Berberat PO. Der kompetente Lehrer: Entlang des Arbeitsplanungskatalogs (APK) und des Medizinischen Fakultätsplans. GMS Z für Med Ausbild. 2010;28(4):Doc35. DOI: 10.3205/zma000627

18. Krones CJ, Burch V. Workplace-based assessment as an educational tool: AMEE Guide No. 31. Med Teach. 2007;29(9):855-871. DOI: 10.1080/01421590701775453

19. Laponis R, O'Sullivan PS, Hollander H, Cornett P, Julian K. Educating generalists: factors of resident continuity clinic associated with perceived impact on choosing a generalist career. J Grad Med Educ. 2011;3(4):469-474. DOI: 10.4300/JGME-D-10-00227.1

20. Montagne S, Kurnman J, Jucker-Kupper P, Beyerer C, Bauer W. Einführung des Arbeitsplanungskatalogs (APK) und des Medizinischen Fakultätsplans. Schw Ärztez. 2013;94(6):207-210.

21. Mulder H, ten Cate O, Daalder R, Berkvens J. Building a competency-based workplace curriculum around entrustable professional activities: the case of physician assistant training. Med Teach. 2010;32(10):e453-e459. DOI: 10.3109/0142159X.2010.513719

22. Norcini J, Burch V. Workplace-based assessment as an educational tool: AMEE Guide No. 31. Med Teach. 2007;29(9):855-871. DOI: 10.1080/01421590701775453

23. Reed CE, Vaporiyan AA, Erikson C, Dill MJ, Carpenter AJ, Gulerisian JK, Merrill WH. Factors dominating choice of surgical specialty. J Am Coll Surg. 2010;210(3):319-324. DOI: 10.1016/j.jamcollsurg.2009.11.016

24. Schmidt GN, Fiege M, Goetz AE. Weiterbildung in der Anästhesiologie. Umsetzung am Universitätsklinikum Hamburg-Eppendorf. Anaesthesist. 2011;60(4):366-374. DOI: 10.1007/s00101-010-1836-1

25. Steinhäuser J, Chenot JF, Roos M, Ledig T, Joos S. Competence-based curriculum development for general practice in Germany: a stepwise peer-based approach instead of reinventing the wheel. BMC Res Notes. 2013;6:1314. DOI: 10.1186/1756-0500-6-134

26. Sterkenburg A, Barach P, Kalkman C, Gielen M, ten Cate O. Do supervising physicians decide to entrust residents with unsupervised tasks? Acad Med. 2010;85(9):1408-1417. DOI: 10.1097/ACM.0b013e3181ead0ec

27. Swing SR. The ACGME outcome project: retrospective and prospective. Med Teach. 2007;29(7):648-654. DOI: 10.1080/01421590701392903

28. Tambrya AL, McCreary CA, Parks RW, Garden OJ. Attitudes of medical students toward careers in general surgery. World J Surg. 2008;32(6):960-963. DOI: 10.1007/s00268-008-9529-5

29. Ten Cate O. Entrustability of professional activities and competency-based training. Med Educ. 2005;39(12):1176-1177. DOI: 10.1111/j.1365-2929.2005.02341.x

30. Ten Cate O, Scheee F. Competency-based postgraduate training: can we bridge the gap between theory and clinical practice? Acad Med. 2007;82(6):542-547. DOI: 10.1097/ACM.0b013e3180559c7

31. Ten Cate O, Snell L, Carraccio C. Medical competence: the interplay between individual ability and the health care environment. Med Teach. 2010;32(8):669-675. DOI: 10.3109/0142159X.2010.500897

32. Weinert FE. Vergleichende Leistungsmessung in Schulen - eine umstrittene Selbstverständlichkeit. In: Weinert FE (Hrsg). Leistungsmessung in Schulen. Weinheim: Beltz; 2002. S.17-31

33. Wijnen-Meijer M, Van der Schaaf M, Booji E, Harendza S, Boscardin C, Van Wijngaarden J, Ten Cate TJ. An argument-based approach to the validation of UHTRUST: can we measure how recent graduates can be trusted with unfamiliar tasks? Adv Health Sci Educ Theory Pract. 2013. [Epub ahead of print] DOI: 10.1007/s10459-013-9444-x

34. Wijnen-Meijer M, van der Schaaf M, Nillesen K, Harendza S, Ten Cate O. Essential facets of competence that enable trust in graduates: a Delphi study among Physician educators in the Netherlands. J Grad Med Educ. 2013;5:46-53. DOI: 10.4300/JGME-D-11-00324.1

Korrespondenzadresse:
Prof. Dr. med. Pascal O, Berberat, MME Technische Universität München, Fakultät für Medizin, Medizindidaktisches Centrum für Ausbildungsforschung und Lehre, TUM MedICAL, Ismaninger Straße 22, 81675 München, Deutschland, Tel.: +49 (0)89/4140-6268 berberat@tum.de
