Birt-Hogg-Dube syndrome presenting as multiple oncocytic parotid tumors

Noralane M Lindor1, Jan Kasperbauer2, Jean E Lewis3 and Mark Pittelkow4

Abstract

Mutations in FLCN cause Birt-Hogg-Dubé syndrome, an autosomal dominant disorder notable for development of cutaneous fibrofolliculomas or trichodiscomas, a variety of renal tumors, and spontaneous pneumothorax due to cystic lung changes. We present a woman referred for genetic evaluation due to bilateral parotid gland tumors, who was subsequently diagnosed with Birt-Hogg-Dubé syndrome.

Keywords: Salivary gland, Oncocytic, Warthin tumor, Oncocytosis

Introduction

BHD syndrome is an uncommon genodermatosis characterized by the presence of multiple fibrofolliculomas, trichodiscomas, and acrochordons of the skin. There is significantly increased susceptibility to renal tumors, of which about half are hybrid chromophobe/oncocytic renal cancers; about 5% are oncocytomas. Pulmonary cysts occur in the majority of adults with BHD syndrome, leading to spontaneous pneumothorax in at least a quarter of affected individuals. A longer list of tumors have been reported rarely in BHD [1]; parotid tumors have been reported several times but have not served as the sentinel lesion bringing a patient to diagnosis.

Case report

A previously healthy 45 year old Caucasian woman had a magnetic resonance scan for persistent mild hearing loss in her right ear. The cause for the hearing loss was not identified but the magnetic resonance imaging demonstrated multiple small parotid masses: a 9 mm diameter peripherally enhancing/T2 hyperintense lesion in anterolateral aspect of right parotid gland, a few additional smaller T1 hypointense nonenhancing lesions in right parotid gland and additional lesions in the superficial and deep lobes of the left parotid gland (Figure 1). Fine needle aspiration biopsies revealed a mildly hypercellular collection of epithelial cells with oncocytic differentiation and associated lymphoid aggregates; the interpretation was: suspicious for oncocytic neoplasm, favor Warthin tumor. The differential diagnosis included the spectrum of oncocytic proliferations which includes Warthin tumors, nodular oncocytic hyperplasia (nodular oncycytosis), and multiple oncocytomas of the parotid glands. The presence of lymphoid aggregates favors the diagnosis of Warthin tumors. The histologic diagnosis could not be further refined based upon the tissues obtained. Given the FNA findings and the distribution of the lesions, the plan is for observation of the parotid nodules until bothersome (size, cosmesis) and the treatment will require surgery addressing both the superficial and deep lobes of the parotid gland given the diffuse distribution of the nodules. She reported no prior history of tumors but had had several “moles” removed from her face for cosmetic reasons which were labeled only as “benign”. There was no history of spontaneous pneumothorax.

The family history was notable for maternal grandfather with prostate cancer, maternal grandmother with a bladder cancer diagnosed in her 40s and a lung cancer diagnosed in her 50s (she had smoked). A maternal uncle had a throat cancer and died at 58. The paternal family history was negative for neoplasms. Her three siblings and two children were apparently healthy.

Her physical examination was normal except for a striking number of raised, smooth, flesh-colored cutaneous papules most notable around the scalp (Figure 2) and face in a generalized distribution and around the neck accompanied by numerous acrochordons. No intraoral lesions were noted. Skin biopsies showed...
findings of fibrofolliculomas in the scalp lesions and acrochordons on the neck. Imaging of the kidneys by computerized tomography showed only a single small cyst, but the bases of the lungs showed extensive cystic changes. Mutation analysis of \(\text{FLCN} \) revealed a c.779 + 1 G > T mutation which has been reported previously in BHD syndrome. Tissue from the biopsy was not available for further studies such as loss of heterozygosity of \(\text{FLCN} \).
nutrient/energy-sensing pathways involving AMPK and mTOR and may provide a molecular mechanism for the BHD phenotype. No direct link to mitochondrial dysfunction has been proposed yet for this tumor suppressor gene but the oncocytic nature of the tumors in both kidney and now parotid gland raise this as a possibility.

Around half of BHD families recognized to date have a mutation in hot spot involving deletion (c.1285delC) or duplication (c.1285dupC) of a C nucleotide in the polycytosine tract in exon 11 of FLCN [5]. The mutation found in this patient is not in this area but has been reported previously in six individuals from two families [as IVS7 + 1] [7] and has not been reported since, per the Leiden Open Variome Database update of 2011 [https://grenada.lumc.nl/LOVD2/shared1/variants. php?select_db=FLCN&action=view_unique]. The major manifestation in these families generally appeared typical of BHD syndrome with renal tumors in five, lung cysts in six, documented fibrofolliculomas in five. Also reported was an angiofibroma, dermatofibrosarcoma protuberans, cutaneous leiomyosarcoma, and trichodiscoma. No parotid tumors were reported. Combined with the current case report, these families might be perceived as having more diverse dermatological findings than other BHD families, raising the possibility of some genotype-phenotype interaction.

Based upon the DNA diagnosis, the patient was counseled regarding autosomal dominant inheritance of this syndrome and the implications for multiple relatives, and was provided screening recommendations for typical BHD syndrome with regard to renal and pulmonary complications, and she will remain under closer surveillance for changes in the parotid tumors and for additional dermatologic findings [13].

Consent
Written consent for use of patient photographs were obtained.

Competing interests
All authors have declared that they have no competing interest.

Author contributions
All authors contributed to clinical diagnosis and review of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank Danielle Wright for preparation and submission of this manuscript.
Author details
1Department of Health Science Research, Mayo Clinic Arizona 2Department of Otolaryngology. 3Department of Laboratory Medicine and Pathology. 4Department of Dermatology, Mayo Clinic Rochester.

Received: 5 April 2012 Accepted: 10 September 2012 Published: 10 October 2012

References
1. Reese E, Sluzevich J, Kluijt I, Teertstra HJ, De Jong D, Horenblas S, Ryu J: Birt-Hogg-Dube Syndrome. 2009.
2. Strassburger S, Hyckel P, Kosmehl H: Multifocal oncocytic adenomatous hyperplasia of the parotid gland: A case report. Int J Oral Maxillofac Surg 1999, 28(6):457–458.
3. Palmer TJ, Gleeson MJ, Eveson JW, Cawson RA: Oncocytic adenomas and oncocytic hyperplasia of salivary glands: a clinicopathological study of 26 cases. Histopathology 1990, 16(5):487–493.
4. Liu V, Kwan T, Page EH: Parotid oncocytoma in the Birt-Hogg-Dube syndrome. J Am Acad Dermatol 2000, 43(6):1120–1122.
5. Schmidt LS, Nickerson ML, Warren MB, et al: Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dube syndrome. Am J Hum Genet 2005, 76(6):1023–1033.
6. Palmirotta R, Donati P, Savonarola A, Cota C, Ferroni P, Guadagni F: Birt-Hogg-Dube (BHD) syndrome: report of two novel germline mutations in the folliculin (FLCN) gene. Eur J Dermatol 2008, 18(4):382–386.
7. Toro JR, Wei MH, Glenn GM, et al: BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dube syndrome: a new series of 50 families and a review of published reports. J Med Genet 2008, 45(6):321–331.
8. Maffe A, Toschi B, Cinco G, et al: Constitutional FLCN mutations in patients with suspected Birt-Hogg-Dube syndrome ascertained for non-cutaneous manifestations. Clin Genet 2011, 79(4):345–354.
9. Shellenberger TD, Williams MD, Clayman GL, Kumar AJ: Parotid gland oncocytosis: CT findings with histopathologic correlation. AJNR Am J Neuroradiol 2008, 29(4):734–736.
10. O’Neill ID: New insights into the nature of Warthin’s tumour. J Oral Pathol Med 2000, 39(1):145–149.
11. Gieffing M, Wierzbia St, Rydzanicz M, Cegla R, Kujawski M, Szyfter K: Chromosomal gains and losses indicate oncogene and tumor suppressor gene candidates in salivary gland tumors. Neoplasma 2008, 55(1):55–60.
12. Baba M, Hong SB, Sharma N, et al: Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci USA 2006, 103(42):15552–15557.
13. Reigert-Johnson D, Boardman L, Hefferson T, et al: Cancer Syndromes. 2009. http://www.ncbi.nlm.nih.gov/pubmed/21249754.

doi:10.1186/1897-4287-10-13
Cite this article as: Lindor et al.: Birt-Hogg-Dube syndrome presenting as multiple oncocytic parotid tumors. Hereditary Cancer in Clinical Practice 2012 10:13.

Submit your next manuscript to BioMed Central and take full advantage of:
• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit