Global Coronary Heart Disease Risk Assessment of Individuals With the Metabolic Syndrome in the U.S.

Khet C. Hoang, MD
Helgi Ghandehari
Victor A. Lopez

Michael G. Barboza
Nathan D. Wong, PhD, MPH

OBJECTIVE — Although metabolic syndrome is related to an increased risk of coronary heart disease (CHD) events, individuals with metabolic syndrome encompass a wide range of CHD risk levels. This study describes the distribution of 10-year CHD risk among U.S. adults with metabolic syndrome.

RESEARCH DESIGN AND METHODS — Metabolic syndrome was defined by the modified National Cholesterol Education Program (NCEP)/Third Adult Treatment Panel (ATP III) definition among 4,293 U.S. adults aged 20–79 years in the National Health and Nutrition Examination Survey 2003–2004. Low-, moderate-, moderately high-, and high-risk categories were defined as <6, 6 to <10, 10–20, and >20% probability of CHD in 10 years (based on NCEP/ATP III Framingham risk score algorithms), respectively; those with diabetes or preexisting cardiovascular disease were assigned to high-risk status.

RESULTS — The weighted prevalence of metabolic syndrome by NCEP criteria in our study was 29.0% overall (30.0% in men and 27.9% in women, P = 0.28): 38.5% (30.7% men and 46.9% women) were classified as low risk, 8.5% (7.9% men and 9.1% women) were classified as moderate risk, 15.8% (23.4% men and 7.6% women) were classified as moderately high risk, and 37.3% (38.0% men and 36.5% women) were classified as high risk. The proportion at high risk increased with age but was similar among Hispanics, non-Hispanic whites, and non-Hispanic blacks.

CONCLUSIONS — Although many subjects with metabolic syndrome have a low calculated risk for CHD, about half have a moderately high or high risk, reinforcing the need for global risk assessment in individuals with metabolic syndrome to appropriately target intensity of treatment for underlying CHD risk factors.

Diabetes Care 31:1405–1409, 2008

The aim of this article was to calculate the global risk of CHD in adults with metabolic syndrome in the U.S. to better characterize the diversity in their risk of CHD using the data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004. In addition, we will examine the global risk of CHD in individuals with metabolic syndrome across sex, ethnicity, and age-groups and examine goal attainment and distance to recommended levels for key CHD risk factors.

RESEARCH DESIGN AND METHODS — Among 4,293 adults aged 20–79 years in the NHANES 2003–2004, 3,034 had complete risk factor data allowing calculation of 10-year risk of a “hard” CHD event (nonfatal myocardial infarction or CHD death) according to National Cholesterol Education Program (NCEP)/Third Adult Treatment Panel (ATP III) Framingham risk score criteria (3). We defined metabolic syndrome by the modified NCEP definition if ≥3 of the following were present: 1) waist circumference ≥102 cm for men or ≥88 cm for women, 2) triglyceride level ≥1.69 mmol/l (150 mg/dl) if fasting, 3) HDL cholesterol level ≤0.94 mmol/l (35 mg/dl) if female, 4) blood pressure ≥130/85 mmHg or receiving antihypertensive treatment, and 5) fasting glucose level ≥5.6 mmol/l (100 mg/dl) or receiving drug treatment for elevated glucose. Participants were classified as not having metabolic syndrome after confirming the absence of at least three metabolic syndrome risk factors. We also conducted similar analyses among individuals identified with metabolic syndrome by the International Diabetes Federation criteria requiring increased waist circumference as defined above plus ≥2 of the other criteria (based on the same cut points as shown above, except for a lower waist circumference cut point for Hispanics of ≥90 cm for women and ≥90 cm for men as recommended by the International Diabetes Federation for individuals of Central or South American ancestry) (6). Diabetes was defined as having a fasting
Global risk assessment and metabolic syndrome

Figure 1—Proportion of individuals with and without metabolic syndrome (MetS) classified by 10-year CHD risk group: low- (<6%), moderate- (6 to <10%), moderately high- (10–20%), and high- (>20%) or diabetes (DM)/CVD risk groups. P < 0.001 comparing distribution of risk groups between those with versus without metabolic syndrome.

Cross-tabulation procedures with SUDAAN software were used for population-weighted percentages. The $\chi^2$ test of proportions and ANOVA tests for comparing means were used to compare the extent of positive risk factors for each parameter by sex and ethnicity. SAS statistical software (version 9.1.3; SAS Institute, Cary, NC) as well as SUDAAN statistical software (version 9.0.1; Research Triangle Institute, Research Triangle Park, NC) were used for analysis and computation of weighted estimates for projection to the U.S. population in 2003–2004.

RESULTS

10-year global risk of individuals with metabolic syndrome

The 2003–2004 NHANES weighted prevalence of metabolic syndrome as defined by the AHA/NHLBI modified NCEP/ATP III definition was 29.0% (the unweighted prevalence was 32.0%, based on 971 of 3,034 subjects being classified with metabolic syndrome). Among those with metabolic syndrome, 38.5% had a calculated 10-year risk for CHD of <6% (low), 8.5% had a 10-year CHD risk of 6 to <10% (moderate), and 3.5% had a 10-year CHD risk of >10% (moderate high). The remaining 33.7% of subjects with metabolic syndrome had diabetes and/or CVD, which would put them in the highest risk category. This contrasts with those without metabolic syndrome, of whom a significantly higher proportion had a low risk (79.7%) and lower proportions had a moderate (6.3%), moderately high (8.2%), or high (0.8%) risk. There were, however, no significant differences in CHD risk distribution when different ethnic groups were compared (Fig. 2).
with the proportions at high risk among Hispanics, non-Hispanic whites, and non-Hispanic blacks being 35.6, 36.3, and 41.6%, respectively ($P = 0.27$). Among individuals with metabolic syndrome, from logistic regression analyses both unadjusted and age adjusted, there were no significant differences in the likelihood of high-risk status by sex or ethnicity (results not shown). Across agegroups, the proportion of individuals with metabolic syndrome at high risk (>20% 10-year risk or diabetes/CVD) increased dramatically with age from 4.4% in those aged 20–29 years to 75.8% in those aged 70–79 years among men and 17.1% to 55.0%, respectively, among women ($P < 0.001$ when risk category distributions by age for both men and women were compared) (Fig. 3).

A very similar risk distribution was calculated for subjects with metabolic syndrome identified under the International Diabetes Federation criteria, for whom an overall weighted prevalence of 26.8% (unweighted prevalence 29.0%) for metabolic syndrome was obtained. Of these subjects, 39.6% had a low risk, 8.5% had a moderate risk, 15.5% had a moderately high risk, and 3.4% had a high risk; and 33.2% had diabetes or CVD when the International Federation criteria for metabolic syndrome were used. By sex, 37.1% of men and 35.9% of women, and by ethnicity, 34.3% of Hispanics, 35.6% of non-Hispanic whites, and 40.7% of non-Hispanic blacks ($P < 0.001$ across sex) were defined as having a high risk, including CVD or diabetes, comparable to the proportions obtained using the NCEP definition above.

**Prevalence of metabolic syndrome risk factors**

Among individuals with metabolic syndrome (classified by the NCEP ATP III definition), the most common risk factor components were increased waist circumference (93.4% of subjects with metabolic syndrome) followed by elevated triglycerides (64.6% of subjects with metabolic syndrome). Elevated LDL cholesterol, although among the least common of the associated risk factors, was still present in 40.2% of subjects with metabolic syndrome. When subjects with metabolic syndrome and with diabetes were compared with those without diabetes, those with diabetes showed a trend toward a lower prevalence of abnormal HDL (50.1% vs. 62.8% in those subjects with metabolic syndrome without diabetes) and triglycerides (59.3% vs. 65.9%).

**Mean levels, proportion not at goal, and distance from goal of selected risk factors in subjects with metabolic syndrome**

Mean levels of CVD risk factors for subjects with and without metabolic syndrome are shown in Table 1. Of all individuals with metabolic syndrome, 34.4% had systolic blood pressure not at recommended levels, whereas 17.9% had diastolic blood pressure above the recommended levels. Of those not at goal for blood pressure, mean blood pressures were 151 mmHg for systolic and 91 mmHg for diastolic, with an average distance from goal of 16 mmHg for systolic and 5 mmHg for diastolic blood pressure. Of all individuals with metabolic syndrome, 40.2% had LDL cholesterol that was not controlled to recommended lev-
Table 1—Mean and distance to goal or recommended levels of cardiovascular risk factors in persons with and without metabolic syndrome

|                          | Systolic blood pressure (mmHg) | Diastolic blood pressure (mmHg) | Triglycerides (mg/dl) | Waist circumference (cm) | HDL cholesterol (mg/dl) | Fasting glucose (mg/dl) | LDL cholesterol (mg/dl) |
|--------------------------|---------------------------------|---------------------------------|-----------------------|--------------------------|-------------------------|------------------------|-------------------------|
| Overall mean (median)    |                                 |                                 |                       |                          |                         |                        |                         |
| Metabolic syndrome       | 131 (132)*                      | 75 (73)*                        | 204 (171)*            | M: 114 (110)*            | M: 40 (39)*              | 108 (103)*             | 124 (122)*              |
| Non-metabolic syndrome   | 117 (116)                       | 70 (69)                         | 101 (89)              | M: 94 (94)               | M: 52 (51)               | 88 (88)                | 117 (116)               |
| Proportion not at goal or recommended levels |                    |                                 |                       |                          |                         |                        |                         |
| Metabolic syndrome       | 34.4*                           | 17.9*                           | 64.6*                 | M: 90.1*                 | M: 53.4*                | 56.3*                  | 40.2*                   |
| Non-metabolic syndrome   | 7.4                             | 3.8                             | 11.5                  | M: 19.9                  | M: 10.2                 | 7.9                    | 18.5                    |
| Mean (median) among subjects not at goal or recommended levels |                    |                                 |                       |                          |                         |                        |                         |
| Metabolic syndrome       | 151 (149)                       | 91 (91)                         | 261 (205)             | M: 116 (112)*            | M: 35 (36)               | 123 (112)*             | 154 (150)               |
| Non-metabolic syndrome   | 152 (149)                       | 93 (92)                         | 231 (201)             | M: 111 (109)             | M: 34 (33)               | 110 (104)              | 163 (161)               |
| Mean (median) distance from goal among subjects not at goal or recommended levels |                    |                                 |                       |                          |                         |                        |                         |
| Metabolic syndrome       | 16 (13)                         | 5 (3)                           | 111 (55)              | M: 14 (10)*              | M: 5 (4)                | 23 (12)*               | 37 (29)                 |
| Non-metabolic syndrome   | 14 (11)                         | 5 (3)                           | 81 (51)               | M: 9 (7)                 | M: 6 (5)                | 10 (4)                 | 29 (23)                 |

For those with diabetes or chronic kidney disease goals or recommended levels for systolic/diastolic blood pressure are <140/90 or <120/80 mmHg, for triglycerides are <150 mg/dl, for waist circumference are <102 cm for men or <88 cm for women, for HDL cholesterol are ≥40 mg/dl for men and ≥50 mg/dl for women, for glucose are <100 mg/dl, and for LDL cholesterol are <100 mg/dl for CVD, diabetes, or high risk (>20% 10-year risk), <130 mg/dl for moderate risk (6–20% 10-year risk), and <160 mg/dl for low risk (<6% 10-year risk). *P < 0.001; †P < 0.01 compared with those without metabolic syndrome. M, male; F, female.
algorithm, it did not include triglycerides and obesity, which could potentially affect risk estimation in subjects with metabolic syndrome in the multiethnic U.S. population, even though these factors did not add to prediction of CHD in the original Framingham cohort of primarily Caucasian subjects. Although the Framingham risk equation has been validated in some ethnic populations in previous reports (9), it may or may not be fully applicable for multiethnic populations such as those in the most recent NHANES 2003–2004 survey. Our analysis did not show estimated CHD risk to differ by ethnicity among individuals with metabolic syndrome. Populations such as Hispanics have lower CHD rates (10), so it is also possible we may have overestimated risk in our subset of Hispanics. Conversely, despite blacks having poorer CVD outcomes, our analysis did not identify estimated CHD risk to be significantly greater among blacks with metabolic syndrome. Certain factors that may relate to poorer outcomes in blacks (e.g., left ventricular hypertrophy), which are part of neither the metabolic syndrome definition nor the Framingham risk algorithms used, may help explain this result. Second, the NCEP/ATP III algorithm does not take into account family history of premature CHD or new markers (e.g., C-reactive protein) or subclinical measures of CHD, which may be more common in subjects with metabolic syndrome, thereby potentially underestimating risk in certain individuals. For example, it has been shown that within a given calculated risk strata (e.g., 10–20% CHD risk), actual CHD event risk varied severalfold according to level of coronary calcium score (11). In addition, as information on CVD was based on self-report, it is possible that these numbers could be underestimated, which would result in a lower overall risk of CHD than may actually be the case. Finally, this study only addresses 10-year risk for CHD; lifetime CHD risk is substantially greater and may be a more relevant end point for the purposes of targeting therapy (12).

In summary, a wide spectrum of estimated risk of CHD exists in U.S. adults with metabolic syndrome; about one-third of those with metabolic syndrome have a high risk of CHD (either due to preexisting CHD, diabetes, or >20% calculated risk of CHD), and approximately one-half have a ≥10% risk for CHD. These proportions are significantly higher in individuals with versus without metabolic syndrome. Specifically, more than one-third of men with metabolic syndrome are of high-risk status. Finally, many individuals with metabolic syndrome have measurements that remain a significant distance from recommended or normal levels of lipids, blood pressure, and/or glucose. These findings highlight the importance of global risk assessment in individuals with metabolic syndrome to appropriately intensify treatment of their cardiometabolic risk factors.

Acknowledgments — Parts of this study were presented in abstract form at the 59th annual Scientific Session of the American College of Cardiology, Atlanta, Georgia, 11–14 March 2006.

References
1. Ford ES: Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 28:1769–1778, 2005
2. Malik S, Wong ND, Franklin SS, Kamath TV, L’Italien GJ, Pio JR, Williams GR: Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110: 1245–1250, 2004
3. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F: Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112:2735–2752, 2005
4. Wong ND, Pio JR, Franklin SS, L’Italien GJ, Kamath TV, Williams GR: Preventing coronary events by optimal control of blood pressure and lipids in patients with the metabolic syndrome. Am J Cardiol 91: 1421–1426, 2003
5. Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III): final report. Circulation 106:3143–3421, 2002
6. Alberti KG, Zimmet P, Shaw J: Metabolic syndrome—a new world-wide definition: a consensus statement from the International Diabetes Federation. Diabet Med 23:469–480, 2006
7. Greenland P, Smith SC, Grundy SM: Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests. Circulation 104: 1863–1867, 2001
8. Centers for Disease Control and Prevention: NHANES Laboratory/Medical Technologists Procedures Manual. Atlanta, Centers for Disease Control and Prevention, 2001
9. D’Agostino RB, Grundy SM, Sullivan LM, Wilson P: Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 286:180–187, 2001
10. American Heart Association. Heart and Stroke Facts 2007. Dallas, American Heart Association
11. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TJ: Prognostic value of cardiac risk factors and coronary artery calcium for all-cause mortality. Radiology 228:826–833, 2003
12. Lloyd-Jones DM: Short-term versus long-term risk for coronary artery disease: implications for lipid guidelines. Curr Opin Lipidol 17:619–625, 2006