WELCOME

Master Program in Data Science
Plan d’études

DATA SCIENCE

2022 - 2023

arrêté par la direction de l'EPFL le 23 mai 2022

Directeur de section	Prof. S. Vaudenay
Adjointe de la section	Mme E. Hazboun
Conseillers d’études :	
1ère année cycle master	Prof. C. Troncoso
2ème année cycle master	Prof. R. Guerraoui
Projet de Master	vacat
Coordinatrice des stages en industrie	Mme P. Genet
Spécialiste administrative	Mme C. Dauphin

Aux cycles bachelor et master, selon les besoins pédagogiques, les heures d’exercices mentionnées dans le plan d’études pourront être intégrées dans les heures de cours ; les scolarités indiquées représentent les nombres moyens d’heures de cours et d’exercices hebdomadaires sur le semestre.
Groupe "Core courses et options"

Groupe 1 "Core courses"

Code	Matières	Enseignants	Sections	Semestres	Type examen
CS-450	Advanced Algorithms	Chiesa/Kapralov	IN	4 3	E écrit
CS-401	Applied data analysis	West	IN	2 2	H écrit
COM-402	Information security and privacy	Busch/Larus/Pyrgelis	IN/SC	3 1 2	H écrit
COM-406	Foundations of Data Science	Urbanke	SC	4 2	H écrit
CS-433	Machine learning	Jaggi/Flammarion	IN	4 2	H écrit
CS-439	Optimization for Machine Learning	Jaggi/Flammarion	IN	2 2 1	E écrit
MATH-413	Statistics for Data Science	Davison	MA	4 2	H écrit
CS-460	Systems for data management and data science	Ailamaki/Kermarrec	IN	2 2 2	E écrit

Bloc "Projets et SHS"

Code	Matières	Enseignants	Sections	Semestres	Type examen
COM-412	Semester project in Data Science	Divers enseignants	SC	2	12 sem A ou P
HUM-nnn	SHS : introduction au projet	Divers enseignants	SHS	2 1	3 sem A
HUM-nnn	SHS : projet	Divers enseignants	SHS	3 3	3 sem P

Total des crédits du cycle master

90

Groupe 2 "Options"

(la somme des crédits des groupes 1 et 2 doit être de 72 crédits au minimum)

Code	Matières	Enseignants	Sections	Semestres	Type examen
Cours à option	Divers enseignants	Divers			

Stage d'ingénieur

Voir les modalités dans le règlement d'application

Mineurs

Le cursus peut être complété par un des mineurs figurant dans l'offre de l'EPFL (renseignements à la page sac.epfl.ch/mineurs), à l'exclusion des mineurs "Data Science", "Informatique" et "Systèmes de communication" qui ne peuvent pas être choisis.

Le choix des cours de tous les mineurs se fait sur conseil de la section de l'étudiant et du responsable du mineur.
Code	Matières	Enseignants	Sections	MA1	MA2	Crédits	Nbre.	Type examen	Cours	Semestres
COM-501	Advanced cryptography	Vaudenay	SC	2	2	4	E écrit	E écrit		
COM-417	Advanced probability and applications	Lévêque	SC	4	2	8	E écrit	E écrit		
CS-523	Advanced topics on privacy enhancing technologies	Trompette	IN	3	1	2	E écrit	E écrit		
MATH-490	Applied stochasticity	Goldshtein	MA	2	2	5	sem P			
CS-456	Artificial neural network reinforcement learning	Grenander	IN	2	2	5	E écrit	E écrit		
EE-554	Automatic speech processing	Magaudossi	EL	2	1	3	H écrit	E écrit		
MICRO-432	Basics of mobile robotics	Mondada	MT	2	2	4	H écrit	E écrit		
MATH-453	Computational linear algebra	Kreuzner	MA	2	2	5	E oral	E oral		
CS-524	Computational complexity	Lévêque	IN	3	1	4	H écrit	E écrit		
NX-465	Computational neuroscience: neural dynamics	Grenander	SN	2	2	5	E écrit	E écrit		
CS-413	Computational Photography	Stastunk	SC	2	2	5	sem P			
COM-418	Computers and Music	Prandoni P.	SC	2	1	4	sem P	écrit		
CS-442	Computer vision	Fua	IN	2	1	4	E écrit	E écrit		
CS-453	Concurrent algorithms	Guerraoui	SC	1	1	5	H écrit	E écrit		
COM-401	Cryptography and security	Vaudenay	SC	4	2	8	H écrit	E écrit		
CS-480	Data visualization	Vuillon	SC	2	2	4	sem P			
EE-559	Deep learning	Isolat	EL	2	2	4	500	E écrit		
CS-411	Digital education	Gilbert/Zimmermann	IN	2	2	4	6	sem A		
CS-451	Distributed algorithms	Guerraoui	SC	2	2	8	H écrit	E écrit		
CS-423	Distributed information systems	Abner	SC	2	1	4	H écrit	E écrit		
ENG-466	Distributed intelligent systems	Martinoli	SIE	2	3	5	E écrit	E écrit		
CS-550	Formal verification	Kuncak	IN	2	2	6	sem A			
CS-457	Geometric Computing	Pauly	IN	1	2	6	sem A			
MATH-360	Graph Theory	Mattei	MA	2	2	5	H écrit	E écrit		
EE-451	Image analysis and pattern recognition	Thiran J.-P.	EL	2	1	4	sem P			
COM-404	Information theory and coding	Telatar	SC	4	2	8	H écrit	E écrit		
CS-430	Intelligent agents	Faltings	IN	3	1	6	sem A			
CS-486	Interaction design	Puu	IN	2	1	4	sem P			
CS-411	Introduction to natural language processing	Chappelle-Rayman	IN	2	2	4	H écrit	E écrit		
COM-490	Large-scale data science for real-world data	Maclaurin/van Herkmaen/Verdery	SC	4	4	sem P	sans retrait			
CS-526	Learning theory	Maclaurin/Urbanke	SC	2	2	4	E écrit	E écrit		
MATH-341	Linear models	Paumet	MA	2	2	5	H écrit	E écrit		
CS-442	Machine learning for behavioral data	Käser	IN	2	2	4	E écrit	E écrit		
COM-516	Markov chains and algorithmic applications	Lévêque/Macris	SC	2	1	4	H écrit	E écrit		
COM-514	Mathematical foundations of signal processing	Sommese/Fageot	SC	3	1	6	H écrit	E écrit		
EE-556	Mathematics of data: from theory to computation	Corchet	EL	2	1	6	H écrit	E écrit		
CS-552	Modern natural language processing	Bosslet	IN	3	2	1	6	sem P		
COM-512	Networks out of control	Thiran P./Gisquettaier	SC	2	1	4	E écrit	E écrit		
COM-508	Optional project in Data Science	Divers enseignants	SC	2	8	sem A ou P				
MATH-447	Risk, rare events and extremes	Strasser	MA	2	2	5	H écrit	E écrit		
CS-412	Software security	Payet	IN	3	1	6	sem P			
MATH-486	Statistical mechanics and Gibbs measures	Friedli	MA	2	2	5	E oral	E oral		
PHYS-512	Statistical physics of computation	Krzakula/Zelberová	PH	2	2	4	H écrit	E écrit		
MATH-442	Statistical Theory	Koch	MA	2	2	5	H écrit	E écrit		
COM-506	Student seminar: security protocols and applications	Vaudenay	SC	2	3	5	sem P			
CS-480	Sublinear algorithms for big data analysis	Kapralov	IN	2	2	4	sem P			
CS-410	Technology ventures in IC	Kapralov	IN	2	2	4	sem P			
CS-458	The GC Maker Project	Pauly	IN	4	2	5	sem P			
MATH-342	Time Series	Elorde	MA	2	2	5	E écrit	E écrit		
CS-455	Topics in theoretical computer science	Kapralov	IN	3	1	4	sem A			
CS-444	Virtual reality	Nisli	IN	1	2	4	sem P			
CS-503	Visual Intelligence : Machines and Minds	Zamir	IN	2	2	5	sem P			
La direction de l'École polytechnique fédérale de Lausanne

vu l'ordonnance sur la formation menant au bachelor et au master de l'EPFL du 14 juin 2004,
vu l'ordonnance sur le contrôle des études menant au bachelor et au master à l'EPFL du 30 juin 2015,
vu le plan d'études de la section de systèmes de communication pour le master en Data Science.

arrête:

Article premier - Champ d'application

Le présent règlement fixe les règles d'application du contrôle des études de master de la section de systèmes de communication pour le master en Data Science qui se rapportent à l’année académique 2022-2023.

Art. 2 – Étapes de formation

Le master en Data Science est composé de deux étapes successives de formation :
- le cycle master d’une durée de 3 semestres dont la réussite implique l’acquisition de 90 crédits, condition pour effectuer le projet de master.
- le projet de master, d’une durée de 17 semaines à l’EPFL ou de 25 semaines hors EPFL (industrie ou autre haute école) et dont la réussite se traduit par l’acquisition de 30 crédits. Il est placé sous la responsabilité d'un professeur ou MER affilié à la section de systèmes de communication ou d’informatique.

Art. 3 – Sessions d’examen

1. Les branches d’examen sont examinées par écrit ou par oral pendant les sessions d’hiver ou d’été. Elles sont mentionnées dans le plan d’études avec la mention H ou E.

2. Les branches de semestre sont examinées pendant le semestre d’automne ou le semestre de printemps. Elles sont mentionnées dans le plan d’études avec la mention sem A ou sem P.

3. Une branche annuelle, c’est à dire dont l’intitulé tient sur une seule ligne dans le plan d’étude, est examinée globalement pendant la session d’été (E).

4. Pour les branches de session, la forme écrite ou orale de l’examen indiquée pour la session peut être complétée par des contrôles de connaissances écrits ou oraux durant le semestre, selon indications de l’enseignant.

Art. 3 – Prérequis

Certains enseignements peuvent exiger des prérequis qui sont mentionnés dans la fiche de cours concerné. Le cours prérequis est validé si les crédits correspondants ont été acquis pour le cours ou par moyenne du bloc.

Art. 4 – Conditions d’admission

1. Les étudiants issus du Bachelor en Informatique ou en Systèmes de communications sont admis automatiquement.

2. Pour les autres étudiants, l’admission s’effectue sur dossier.

Art. 5 - Organisation

1. Les enseignements du cycle master sont répartis en deux groupes et un bloc dont les crédits doivent être obtenus de façon indépendante.

2. Le bloc « Projets et SHS » est composé d’un projet de 12 crédits et de l’enseignement SHS.

3. Le groupe 1 « Core courses » est composé des cours de la liste du plan d’études dans la rubrique « Master ».

4. Le groupe 2 « Options » est composé
 - des cours de la liste du groupe 2 « options » du plan d’études dans la rubrique « Master »;
 - des crédits surnuméraires obtenus dans le groupe 1 « Core courses »;
 - d’un projet optionnel de 8 crédits;
 - de cours hors plan d’études suivant l’alinéa 6.

5. Le projet du bloc « Projets et SHS » et le projet optionnel du groupe 2 ne peuvent être effectués dans le même semestre.

6. Des cours, comptant pour un maximum de 15 crédits au total, peuvent être choisis en dehors de la liste des cours du plan d’études dans la rubrique « Master ». Le choix de ces cours doit être accepté préalablement par le directeur de la section qui peut augmenter le maximum de 15 crédits si la demande est justifiée.

Art. 6 - Examen du cycle master

1. Le bloc « Projets et SHS » est réussi lorsque 18 crédits sont obtenus.

2. Le groupe « Core courses et Options », composé du groupe 1 « Core courses » et du groupe 2 « Options » est réussi lorsque 72 crédits sont obtenus.

3. Le groupe 1 « Core courses » est réussi lorsqu’au moins 30 crédits sont obtenus.

Art. 7 - Enseignement SHS

Les deux branches SHS donnent chacune lieu à 3 crédits. L’enseignement du semestre d’automne introduit à la réalisation du projet du semestre de printemps. Pour autant qu’il considère que le motif est justifié, le Collège des Humanités peut déroger à cette organisation. Il peut également autoriser à ce qu’un étudiant réalise son projet sur un semestre qui ne suit pas immédiatement celui dans lequel a lieu l’enseignement d’introduction.
Art. 8 – Mineurs

1. Afin d’approfondir un aspect particulier de sa formation ou de développer des interfaces avec d’autres sections, l’étudiant peut choisir la formation offerte dans le cadre d'un mineur figurant dans l’offre de l’EPFL.

2. Le choix des cours qui composent un mineur se fait avec la section de systèmes de communication et avec le responsable du mineur. Les mineurs « Data Science » « Informatique » et « Systèmes de Communication » ne peuvent pas être choisis.

3. L’étudiant annonce le choix d’un mineur à sa section au plus tard à la fin du premier semestre des études de master.

4. Un mineur est réussi quand 30 crédits au minimum sont obtenus parmi les branches avalisées.

Art. 8 – Stage d’ingénieur

1. Les étudiants commençant leur cycle master doivent effectuer un stage d’ingénieur durant leur master :
 - soit un stage d’été de minimum 8 semaines
 - soit un stage de minimum 6 mois en entreprise (en statut stage durant un semestre). Durant la période du COVID-19, la durée du stage peut être adaptée.
 - soit un Projet de Master de 25 semaines en entreprise (valide le stage et le Projet de Master)

2. En règle générale, pour les étudiants issus du Bachelor IC, le stage peut être effectué dès le 2ème semestre du cycle master, mais avant le projet de master. Sur demande de l’étudiant, la section peut l’autoriser à effectuer son stage avant ou pendant le 1er semestre du cycle Master.

3 L’étudiant ne peut pas faire de cours/projet en parallèle à son stage.

4. Le responsable du stage de la section évalue le stage, par l’appréciation « réussi » ou « non réussi ». Sa réussite est une condition pour l’admission au projet de master. En cas de non réussite, il peut être répété une fois, en règle générale dans une autre entreprise.

5. Il est validé avec les 30 crédits du projet de master.

6. Les modalités d’organisation et les critères de validation du stage font l’objet d’une directive interne à la section.

Art. 9 – Spécialisation Enseignement

1. Les étudiants en Master Data Science ont la possibilité de suivre une spécialisation en informatique pour l’enseignement.

2. L’étudiant admis à cette spécialisation ne peut pas suivre de mineur. Le plan d’études est modifié comme suit : (i) Un nouveau groupe de 30 ECTS de cours à la HEP Vaud est rajouté et le nombre de ECTS du Cycle Master passe de 60 à 30 ECTS ; (ii) les cours SHS sont remplacés par un cours à la HEP Vaud ; (iii) le Projet de Master peut s’étaler sur deux semestres et commencer après que l’étudiant a complété le bloc « Projets et SHS » et le groupe « Core courses » ; (iv) la durée maximale des études ne peut pas dépasser 8 semestres.

3. Au moins 50 ECTS doivent avoir été obtenus pour débuter la spécialisation.

Art. 10 – Procédure d’admission

1. L’admission à cette spécialisation n’est pas automatique. Pour être admis à la spécialisation, le candidat doit être inscrit au Master en Data Science de l’EPFL et répondre aux conditions pour l’admission au Diplôme d’enseignement pour le degré secondaire II fixées par le Règlement d’application de la loi sur la HEP du 3 juin 2009 (RLHEP).

2. L’étudiant s’inscrit auprès de la HEP Vaud selon les conditions et délais de la candidature en ligne et transmet les pièces requises par le RLHEP ainsi qu’une attestation d’immatriculation à l’EPFL.

Au nom de la direction de l'EPFL

Le vice-président académique, J. S. Hesthaven

Lausanne, le 23 mai 2022
Horaire	Salles	Nb	Places	Matières	Engagements
MARDI					
08:15-09:00	CE2	187	C	OPT Distributed algorithms	Enseignant-e-(s): Guerraoui Rachid
08:15-10:00	INM200	79	C	OPT Digital education	Enseignant-e-(s): Dillenbourg Pierre, Jermann Patrick
08:15-10:00	MAA112	48	E	OPT Statistical theory	Enseignant-e-(s): Koch Erwan Fabrice
09:15-10:00	CE2	187	E	OPT Distributed algorithms	Enseignant-e-(s): Guerraoui Rachid
10:15-11:00	CE2	187	T	OPT Distributed algorithms	Enseignant-e-(s): Dillenbourg Pierre, Jermann Patrick
10:15-12:00	INM200	79	P	OPT Digital education	
10:15-12:00	MAA112	48	E	OPT Statistical theory	Enseignant-e-(s): Koch Erwan Fabrice
13:15-14:00	SG0211	112	C	OPT Concurrent algorithms	
13:15-15:00	ELA2	88	C	OPT Information theory and coding	Enseignant-e-(s): Telatar Emre
14:15-15:00	SG0211	112	E	OPT Concurrent algorithms	Enseignant-e-(s): Guerraoui Rachid
14:15-16:00	CM1	184	C	OBL Statistics for data science	Enseignant-e-(s): Davison Anthony Christopher
15:15-16:00	SG0211	112	T	OPT Concurrent algorithms	Enseignant-e-(s): Guerraoui Rachid
15:15-17:00	ELA2	88	E	OPT Information theory and coding	Enseignant-e-(s): Telatar Emre
15:15-17:00	CE2	187	C	OPT Basics of mobile robotics	
16:15-18:00	RLC E1 240	599	C	OBL Machine learning	Enseignant-e-(s): Flammarion Nicolas Henri Bernard, Jaggi Martin
17:15-19:00	CM1104	49	E	OPT Basics of mobile robotics	Enseignant-e-(s): Mondada Francesco
MERCREDI					
08:15-10:00	RLC E1 240	599	C	OBL Applied data analysis	Enseignant-e-(s): West Robert
08:15-10:00	CM5	129	C	OPT Introduction to natural language processing	Enseignant-e-(s): Chappelier Jean-Cédric, Rajman Martin
08:15-10:00	ELA1	122	C	OPT Cryptography and security	Enseignant-e-(s): Vaudenay Serge
10:15-12:00	RLC E1 240	599	C	OBL Machine learning	Enseignant-e-(s): Flammarion Nicolas Henri Bernard, Jaggi Martin
10:15-12:00	INM200	79	C	OBL Foundations of Data Science	Enseignant-e-(s): Urbanke Rüdiger
10:15-12:00	CM5	129	E	OPT Introduction to natural language processing	Enseignant-e-(s): Chappelier Jean-Cédric, Rajman Martin
13:15-14:00	INF1	128	E	OBL Information security and privacy	Enseignant-e-(s): Busch Marcel, Larus James Richard, Pyrgelis Apostolos
	INF213	54			
	INJ218	96			
	INM11	42			
13:15-15:00	CE1100	64	E	OBL Statistics for data science	Enseignant-e-(s): Davison Anthony Christopher
	CE1101	64			
13:15-16:00	BHC2201	239	C	OPT Intelligent agents	Enseignant-e-(s): Faltings Boi
14:15-16:00	INF1	128	P	OBL Information security and privacy	Enseignant-e-(s): Busch Marcel, Larus James Richard, Pyrgelis Apostolos
	INF213	54			
	INJ218	96			
	INM11	42			
16:15-18:00	MAB111	84	C	OPT Linear models	Enseignant-e-(s): Panaretos Victor
16:15-19:00	INF1	128	C	OPT Automatic speech processing	
16:15-19:00	INF213	54	E	OPT Intelligent agents	Enseignant-e-(s): Faltings Boi
17:15-19:00	CM3	190	C	OPT Distributed information systems	
18:15-19:00	CM3	190	E	OPT Distributed information systems	
18:15-19:00	INM202	86	C	OPT Markov chains and algorithmic applications	Enseignant-e-(s): Lévêque Olivier, Macris Nicolas
19:15-19:00	MAA330	60	C	OPT Graph theory	Enseignant-e-(s): Maffucci Riccardo Walter
19:15-19:00	CO120	40	C	OPT Statistical physics of computation	Enseignant-e-(s): Krazakala Florent Gérard, Zdeborova Lenka
19:15-19:00	INF1	128	C	OPT Automatic speech processing	Enseignant-e-(s): Magimal Doss Mathew
19:15-19:00	INF219	79	E	OPT Machine learning	Enseignant-e-(s): Flammarion Nicolas Henri Bernard, Jaggi Martin

Please note that Monday 19th September 2022 will be public holiday
Horaire	Salles	Nb Places	Matières	Engagements
15:15-17:00	INM201	36	OPT Graph theory	Enseignant-e-(s): Maffucci Riccardo Walter
15:15-17:00	MAA330	60	OPT Computational complexity	Enseignant-e-(s): Göös Mika Tapani
15:15-17:00	CM4	129	OPT Formal verification	Enseignant-e-(s): Kuncak Viktor
15:15-17:00	GRA330	58	OPT Statistical physics of computation	Enseignant-e-(s): Krzakala Florent Gérard, Zdeborová Lenka
17:15-19:00	GRA330	58	OPT Formal verification	Enseignant-e-(s): Kuncak Viktor
VENDREDI				
08:15-10:00	INM200	79	OBL Foundations of Data Science	Enseignant-e-(s): Urbanke Rüdiger
08:15-10:00	MAA330	60	OPT Linear models	Enseignant-e-(s): Panaretos Victor
08:15-10:00	INM10	62	OPT Computational complexity	Enseignant-e-(s): Göös Mika Tapani
09:15-12:00	CM1	184	OPT Cryptography and security	Enseignant-e-(s): Vaudenay Serge
09:15-12:00	INF213	54	OPT Geometric computing	Enseignant-e-(s): Pauly Mark
10:15-12:00	INM200	79	OBL Foundations of Data Science	Enseignant-e-(s): Urbanke Rüdiger
13:15-15:00	BCH2201	239	OBL Applied data analysis	Enseignant-e-(s): West Robert
	INR219	79	T OPT Formal verification	Enseignant-e-(s): Kuncak Viktor
15:15-17:00	INM203	38	C OPT Mathematical foundations of signal processing	Enseignant-e-(s): Fageot Julien René
15:15-17:00	INM202	86	E OPT Markov chains and algorithmic applications	Enseignant-e-(s): Lévêque Olivier, Macris Nicolas
16:15-19:00	BC01	84	T OPT Mathematics of data: from theory to computation	Enseignant-e-(s): Cevher Volkan
	BC03	40		
	BC07-08	35		
Horaire	Salles	Nb Places	Matières	Engagements
--------------	----------	-----------	---------------------------------------	--
LUNDI				
08:15-10:00	INM202	86	C OPT Concurrent algorithms	Enseignant-e-(s): Guerraoui Rachid
09:15-12:00	MAB111	84	C OPT Mathematics of data: from theory to computation	Enseignant-e-(s): Cevher Volkan
11:15-13:00	BC01	84	C OPT Information theory and coding	Enseignant-e-(s): Telatar Emre
12:15-14:00	CE3	214	C OBL Statistics for data science	Enseignant-e-(s): Davison Anthony
13:15-15:00	CE4	233	C OPT Distributed algorithms	Enseignant-e-(s): Guerraoui Rachid
14:15-16:00	INF213	54	T OPT Geometric computing	Enseignant-e-(s): Pauly Mark
14:15-16:00	INF2	128	C OPT Distributed algorithms	Enseignant-e-(s): Guerraoui Rachid
15:15-17:00	INM203	38	E OPT Mathematical foundations of signal processing	Enseignant-e-(s): Fageot Julien René Pierre, Simeoni Matthieu Martin Jean-André
16:15-19:00	CO1	342	C OBL Information security and privacy	Enseignant-e-(s): Busch Marcel, Larus, James Richard, Pyrgelis Apostolos
MARDI				
08:15-09:00	CE2	187	C OPT Distributed algorithms	Enseignant-e-(s): Guerraoui Rachid
08:15-10:00	INM200	79	C OPT Digital education	Enseignant-e-(s): Dillenbourg Pierre, Jermann Patrick
08:15-10:00	MAA112	48	C OPT Statistical theory	Enseignant-e-(s): Koch Erwan Fabrice
09:15-11:00	CE2	187	E OPT Distributed algorithms	Enseignant-e-(s): Guerraoui Rachid
10:15-12:00	INM200	79	P OPT Digital education	Enseignant-e-(s): Dillenbourg Pierre, Jermann Patrick
10:15-12:00	MAA112	48	E OPT Statistical theory	Enseignant-e-(s): Koch Erwan Fabrice
13:15-15:00	SG0211	112	C OPT Concurrent algorithms	Enseignant-e-(s): Guerraoui Rachid
13:15-15:00	ELA2	88	C OPT Information theory and coding	Enseignant-e-(s): Telatar Emre
14:15-15:00	SG0211	112	E OPT Concurrent algorithms	Enseignant-e-(s): Guerraoui Rachid
14:15-16:00	CM1	184	C OBL Statistics for data science	Enseignant-e-(s): Guerraoui Rachid
15:15-16:00	SG0211	112	T OPT Concurrent algorithms	Enseignant-e-(s): Guerraoui Rachid
15:15-17:00	ELA2	88	E OPT Information theory and coding	Enseignant-e-(s): Telatar Emre
15:15-17:00	CE2	187	C OPT Basics of mobile robotics	Enseignant-e-(s): Mondada Francesco
16:15-18:00	RLC E1 240	599	C OBL Machine learning	Enseignant-e-(s): Flammarien Nicolas Henri Bernard, Jaggi Martin
17:15-19:00	CM1104	49	E OBL Basics of mobile robotics	Enseignant-e-(s): Mondada Francesco
MERCREDI				
08:15-10:00	RLC E1 240	599	C OBL Applied data analysis	Enseignant-e-(s): West Robert
08:15-10:00	CM5	129	C OPT Introduction to natural language processing	Enseignant-e-(s): Chappelier Jean-Cédric, Rajman Martin
08:15-10:00	ELA1	122	C OPT Cryptography and security	Enseignant-e-(s): Vaudenay Serge
10:15-12:00	RLC E1 240	599	C OBL Machine learning	Enseignant-e-(s): Flammarien Nicolas Henri Bernard, Jaggi Martin
10:15-12:00	INM200	79	C OBL Foundations of Data Science	Enseignant-e-(s): Urbanke Rüdiger
10:15-12:00	CM5	129	E OPT Introduction to natural language processing	Enseignant-e-(s): Chappelier Jean-Cédric, Rajman Martin, Assistant-e-(s): Bayazit Deniz
13:15-14:00	INF1	128	E OBL Information security and privacy	Enseignant-e-(s): Busch Marcel, Larus, James Richard, Pyrgelis Apostolos
13:15-15:00	CE1100	64	E OBL Statistics for data science	Enseignant-e-(s): Davison Anthony
13:15-16:00	INF1	128	P OBL Information security and privacy	Enseignant-e-(s): Faltings Boi
14:15-16:00	INF213	54	C OPT Intelligent agents	Enseignant-e-(s): Busch Marcel, Larus, James Richard, Pyrgelis Apostolos
16:15-18:00	MAB111	84	C OPT Linear models	Enseignant-e-(s): Panaretos Victor
16:15-19:00				
JEUDI				
10:00-12:00	CM3	190	C OPT Distributed information systems	Enseignant-e-(s): Aberer Karl
10:00-12:00	CMS	129	C OPT Cryptography and security	Enseignant-e-(s): Vaudenay Serge
10:00-12:00	CM1105	114	E OPT Distributed information systems	Enseignant-e-(s): Aberer Karl
Horaire	Salles	Nb Places	Matières	Engagements
--------------	--------------	-----------	---	--
12:15-14:00	INM202	86	C OPT Markov chains and algorithmic applications	Enseignant-e-(s): Lévêque Olivier, Macris Nicolas
13:15-15:00	MAA330	60	C OPT Graph theory	Enseignant-e-(s): Maffucci Riccardo Walter
13:15-15:00	CO120	40	C OPT Statistical physics of computation	Enseignant-e-(s): Krzakala Florent Gérard, Zdeborová Lenka
13:15-15:00	INF1	128	C OPT Automatic speech processing	Enseignant-e-(s): Magimai Doss Mathew
	INM201	36		
	INM11	42		
	INM203	38		
	INF119	54	E OBL Machine learning	Enseignant-e-(s): Flammarion Nicolas Henri Bernard, Jaggi Martin
	INF2	128		
	INJ218	96		
	INM202	86		
	INR219	79		
13:15-16:00	INF1	128	E OPT Automatic speech processing	Enseignant-e-(s): Magimai Doss Mathew
	INM201	36		
15:15-17:00	MAA330	60	E OPT Graph theory	Enseignant-e-(s): Maffucci Riccardo Walter
15:15-17:00	CM4	129	C OPT Computational complexity	Enseignant-e-(s): Göös Mika Tapani
15:15-17:00	GRA330	58	C OPT Formal verification	Enseignant-e-(s): Kuncak Viktor
15:15-17:00	CO120	40	E OPT Statistical physics of computation	Enseignant-e-(s): Krzakala Florent Gérard, Zdeborová Lenka
17:15-19:00	GRA330	58	E OPT Formal verification	Enseignant-e-(s): Kuncak Viktor
VENDREDI				
08:15-10:00	INM200	79	C OBL Foundations of Data Science	Enseignant-e-(s): Urbanke Rüdiger
08:15-10:00	MAA330	60	E OPT Linear models	Enseignant-e-(s): Panaretos Victor
08:15-10:00	INM10	62	E OPT Computational complexity	Enseignant-e-(s): Göös Mika Tapani
09:15-11:00	CM1	184	E OPT Cryptography and security	Enseignant-e-(s): Vaudenay Serge
09:15-12:00	INF213	54	C OPT Geometric computing	Enseignant-e-(s): Pauly Mark
10:15-12:00	INM200	79	E OBL Foundations of Data Science	Enseignant-e-(s): Urbanke Rüdiger
13:15-15:00	BCH2201	239	P OBL Applied data analysis	Enseignant-e-(s): West Robert Desikan Bhargav
	INR219	79	T OPT Formal verification	Enseignant-e-(s): Kuncak Viktor
	INM203	38	C OPT Mathematical foundations of signal processing	Enseignant-e-(s): Fageot Julien René Pierre, Simeoni Matthias Martin Jean-André
	INM202	86	E OPT Markov chains and algorithmic applications	Enseignant-e-(s): Lévêque Olivier, Macris Nicolas
16:15-19:00	BC01	84	T OPT Mathematics of data: from theory to computation	Enseignant-e-(s): Cevher Volkan
Data Science Program
https://www.epfl.ch/schools/ic/education/master/data-science/

Administrative Specialist, Data Science Program
Mrs. Carole Dauphin
carole.dauphin@epfl.ch
INN 111 – Tel. 021.693.75.32

Deputy Head, BS/MS Programs
Mrs. Eileen Hazboun
eileen.hazboun@epfl.ch
INN 130 – Tel. 021.693.60.48

Director of Data Science Program
Prof. Serge Vaudenay
serge.vaudenay@epfl.ch

Registrar’s Office
https://www.epfl.ch/education/studies/en/epfl-studies/
This website is your gateway to: study plans, rules, academic calendar, forms, useful links and much more.

Students Services
https://www.epfl.ch/education/studies/en/support-and-health/student_desk/
The “Student Services” desk is the main contact point for all queries about academic life and everyday life.

Students Services Desk
Office hours
From Monday to Friday
9am to 6pm
Location: Building BP1229

Contact
student.services@epfl.ch
Tel. 021.693.43.45

Please note that Monday 19th September 2022 will be public holiday. Therefore, no course will be given on that day, and the administrative offices will be closed.
IC STUDENT ASSOCIATIONS

CLIC is the **IC Student Association**. Our goal is to keep the IC School alive! We organise all types of events such as free breakfasts, aperitifs, talks, the traditional IC Faculty Dinner, welcome events and IC Boost Day, a career event specially curated for IC students. We also take care of the faculty hoodies and hold a bar at the Balélec festival. If you are interested or if you have ideas to improve the faculty atmosphere, you are more than welcome to join us. We look forward to seeing you at our events!

[Emails and social media handles]

IC Travel is in charge of **organising the end of Bachelor study trip for IC students**. Whether you are interested in organising or taking part in the trip, you can contact us!

[Email]

polygl0ts is the official **EPFL Capture The Flag team**. It was born in 2018, and is still going strong. We are a passionate, growing team looking forward to expand its ranks. We join in competitive security hacking events and usually win (unless there are too many guessy challenges).

[Email]

Game* (« Game Star ») is a CLIC commission aiming to put forward the various aspects of **video games** on the EPFL-UNIL campus through the following ways:

- Inform interested people of actions and activities concerning video games on the campus.
- Organise activities and events on and around the campus.
- Bring together different actors of video games from Switzerland.

[Email]

Orbital

game jam

We organise **Orbital Game Jam**, an event in which you have 24h to **create a game**. The event usually takes place in March at Satellite. It's non-competitive, the aim is to just have fun and be creative.

[Email]

CEVE takes care of **IC student life spaces**. We try to make cosy and fun installations available, such as sofas and home-made arcade machines.

[Email]

CEVE

IC STUDENT ASSOCIATIONS

CLIC

IC Travel

polygl0ts

Game* (« Game Star »)

Orbital

CEVE

The **Data Analytics Group**'s main goal is to build a community around **Data Science** and build relationships between students, academic experts, and data mature companies. We organise academic talks, workshops, and coding challenges.

Not a member yet? Join our community here: http://bit.ly/JOIN-DAG and follow us on LinkedIn here: go.epfl.ch/DAG-linkedIn

LauzHack is a student-run **hackathon** at EPFL in Lausanne, Switzerland. Hackathons are creativity marathons, where attendees work in teams to create something exciting in a short time. Come and join over 300 like-minded students hacking together during a weekend to make something amazing!

info@lauzhack.com

The **Blockchain Student Association** is the association for EPFL students interested in the world of Blockchain. During the year, we organise talks, workshops and hackathons to allow you to discover and learn about blockchains.

bsa@epfl.ch

PolyLAN organises **LAN parties** in Switzerland twice a year. They take place in the RLC or the STCC and bring together up to 1250 participants over different animations and Esport tournaments.

comite@polylan.ch

E-bou promotes university **esports**, with tournaments of all sizes ranging from small and chill Mario Kart and Smash LAN parties to semestrial cups on multiple games. To keep yourself up to date with our activities and to take part in them, join our Discord server go.epfl.ch/e-bou-discord and follow us on Instagram [@ebou_pese](https://instagram.com/ebou_pese)

E-bou promotes university **esports**, with tournaments of all sizes ranging from small and chill Mario Kart and Smash LAN parties to semestrial cups on multiple games. To keep yourself up to date with our activities and to take part in them, join our Discord server go.epfl.ch/e-bou-discord and follow us on Instagram [@ebou_pese](https://instagram.com/ebou_pese)

[PolyProg](mailto:polyprog@epfl.ch)

PolyProg is a **competitive programming** association at EPFL. We promote the interests and skills in algorithms within EPFL. We train EPFL students for international contests, such as the ACM ICPC. We organize events, both for EPFL students and the whole of Switzerland.

polyprog@epfl.ch

gnugen is committed to protect your **digital freedoms**. We boost your academic computing experience with cutting edge free software at our git, LaTeX talks and GNU/Linux install fest. We also hold talks focused on our philosophy (e.g., privacy) and even novelties (e.g., hardware) for you to stay ahead! Check out our events at gnugen.ch, visit us in CM 0 415 and join us if you support free computing!

contact@gnugen.ch

For more information on all of the official EPFL associations, check out: www.epfl.ch/campus/associations/category/
Plan d’orientation EPFL

Students services - Registrar’s office BP1129

I&C Master Secretariat INN111 (1st floor)