Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia

Citation for published version:
Teng, S, Thomson, PA, Mccarthy, S, Kramer, M, Muller, S, Lihm, J, Morris, S, Soares, DC, Hennah, W, Harris, S, Camargo, LM, Malkov, V, McIntosh, AM, Millar, JK, Blackwood, DH, Evans, KL, Deary, IJ, Porteous, DJ & Mccombie, WR 2017, 'Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia', Molecular Psychiatry. https://doi.org/10.1038/mp.2017.115

Digital Object Identifier (DOI):
10.1038/mp.2017.115

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Molecular Psychiatry

Publisher Rights Statement:
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia

S Teng1,2,10, PA Thomson3,4,10, S McCarthy3,10, M Kramer1, S Muller1, J Lihm1, S Morris3, DC Soares3, W Hennah3, S Harris3,4, LM Camargo6, V Malkov7, AM McIntosh8, JK Millar3, DH Blackwood8, KL Evans4, IJ Deary4,9, DJ Porteous3,4 and WR McCombie1

Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neurotism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross, P = 0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWERacross, P = 0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.

Molecular Psychiatry advance online publication, 20 June 2017; doi:10.1038/mp.2017.115

INTRODUCTION
Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) affect tens of millions of people worldwide. These disorders are moderately heritable and family history is a strong predictor of risk. Genome-wide association studies (GWAS), structural variant analyses and genome sequencing studies have identified that common single-nucleotide variants (SNVs), low penetrant rare SNVs, moderate to high penetrant copy number variants (CNVs) and potentially causal variants (SNVs), low penetrant rare SNVs, moderate to high penetrant copy number variants (CNVs) and potentially causal de novo mutations each play a role in the genetic etiology of SCZ and BD and, to a lesser extent, in rMDD.1–4

There is now strong evidence for shared genetic risk across traditional diagnostic boundaries supporting the observation of ‘mixed’ diagnoses families.5,6 GWAS studies capture common, ancient variation and point to an additive, polygenic architecture that transcends psychiatric diagnoses to predict cognitive ability variables.1,7,8 Lower cognitive function, both premorbid and post-onset, has been associated with these disorders, and recently polygenic risk score analysis has suggested a small, but significant, genetic correlation between risk for major mental illness and cognitive ability.9

In a complementary fashion to common variants identified in GWAS, rare variants have been identified that segregate with psychiatric disorder in a quasi-Mendelian manner and impact upon normal cognitive function.10,11 One such example is a balanced t(1;11) (q42;q14) translocation in the Disrupted in Schizophrenia 1 (DISC1) gene, which was identified in a large Scottish pedigree highly burdened with SCZ, BD and rMDD.12 Independent reports of linkage and association have since reported evidence for region-wide association of DISC1 variants, or more commonly haplotypes, with these and other psychiatric disorders as well as for cognitive and neuropsychological traits.13–15 Although DISC1 itself is not a GWAS significant finding, its interactor PDE4B and regulated gene NRXN1 are reported as significant.16,17 Convergent functional genomics approaches integrating the functional and genotypic data continue to support involvement of DISC1 disruption in schizophrenia and related biological pathways.18,19

Recently, we reported deep sequencing of the DISC1 locus (528 kb) in 1542 samples that identified 2010 rare variants, of which ~60% were novel.17 We identified a common intrinsic variant with region-wide association for rMDD, and a rare missense mutation (R37W), previously reported in a SCZ case,20

1Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; 2Department of Biology, Howard University, Washington DC, USA; 3Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK; 4Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK; 5Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland; 6UCB New Medicines, One Broadway, Cambridge, MA, USA; 7Genetics and Pharmacogenomics, MRL, Merck & Co, Boston, MA, USA; 8Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK and 9Department of Psychology, University of Edinburgh, Edinburgh, UK. Correspondence: Professor DJ Porteous, Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK or Professor WR McCombie, Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
E-mail: david.porteous@ed.ac.uk or mccombie@cshl.edu
10These authors contributed equally to this work.
Received 26 October 2016; revised 20 March 2017; accepted 27 March 2017
in an individual with rMDD and in additional family members with mental disorders.\(^\text{17}\) Burden analysis also identified nominal associations with measures of depressed mood and cognitive ability at age 11, age 70 and cognitive ageing (change in cognitive ability at age 11 and change between age 11 and 70).\(^\text{17}\) Motivated by these findings, we hypothesized that further insights might emerge from a directly comparable study of the DISC1 pathway genes.

Molecular studies have shown that DISC1 functions as a scaffold protein that is critical in cell signalling, neuronal development and ontogenesis through multiple protein-protein interactions.\(^\text{23,26}\) DISC1-interacting partners (DISC1 Interactome) are enriched for proteins known to be involved in neural proliferation, migration, signaling and synaptic function.\(^\text{14,21,22,24,27}\) Positive case-control associations have been reported with psychiatric disorders for the following DISC1 Interactome genes: ATF4, CIT, NDE1, PCMK1, PDE4B, PDE4D and YWHAE.\(^\text{15}\) In addition, structural rearrangements of PDE4B and NDE1 have been reported in patients with SCZ.\(^\text{28,29}\)

Table 1. DISC1 (Number 1) Interactome and Regulome

DISC1 Interactome	DISC1 Regulome
AKAP9	KCNQ1
AP4B1	ACTG2
AP4M1	DVL2
APP	DLGAP1
ATF4	ANKRD16
ATF5	APP2L2
ATF7IP	DUSP6
CCDC88A	ARC
CDCL5	DYNL1L
CDK5RAP3	EGR2
CEP290	EGR3
CIT	EGR4
CLIC1	MARCH3
CLU	MCPH1
CTNB1	EGRB2
DCTN1	MEG3
DCTN2	MODIC
DISC1	MPP7
DISC1	MPRR1B
DIXDC1	MPRR3K
DPYS13	MPRR5K
DSY	MPRR5P
EIF3H	MYRIP
EXO4C	NAPB
FBXO1	NAPI
FEZ1	NGRI1
GNB1	NGRI2
GRB2	NGRI3
GRIPAP1	NGRI5
GSX3	HSPH1
TSN1	HSPA2
KALRN	HSPA3

*Genes with a nominally significant burden p-values for schizophrenia (16 of 154 genes in the DISC1 Regulome). These gene level results did not survive family-wise error rate correction across all tests.\(^\text{16}\) Genes with a nominally significant burden p-values for cognitive ability at age 11 (4 of 59 genes in the DISC1 Interactome).
community-dwelling, generally healthy older people from the Lothian Birth Cohort of 1936 (LBC1936), as described previously.17 A total of 213 genes were selected for sequence analysis (Table 1, Supplementary Information: gene selection, Supplementary Table S1). The DISC1 locus (DISC1, TSNAK and TSNAK-DISC1) and 56 direct DISC1 protein–protein interactors defined the DISC1 Interactome gene set. A total of 154 additional genes related to DISC1 expression from previous microarray analyzes comprised the DISC1 Regulome gene set. Genomic regions comprising ~11.7 Mb (3.3 Mb exons) were captured using a custom solution capture probe set (Roche NimbleGen, Pleasanton, CA, USA). Each sample capture was sequenced using a HiSeq2000 sequencer (Illumina, San Diego, CA, USA). Sequence reads were aligned to the human NCBI Build 36 (hg18) reference using BWA.36 Variant calling was performed using GATK,37 and high-quality SNVs were filtered by standardized filtering parameters. Using PLINK,38 we applied data quality control filters as described previously to exclude samples and SNVs that introduce bias (Supplementary Figures S2–S5). Sanger sequencing was used to optimize the quality control filters and exclude all identified false positive SNVs from further analysis. SNVs were matched to hg19 coordinates using liftOver from UCSC, and ANNOVAR40 was used for variant annotation based on the human reference genome hg19 (RefSeq). Variant filtering was carried out by all algorithms (MAF1%) and singletons in these mutation classes was assessed in each of the case cohorts and a combined cohort of all diagnoses; and for cognitive measures: cognitive ability at ages 11 and 70, change in cognitive ability, crystallized cognitive ability and general cognitive ability; and personality traits: neuroticism, anxiety and depression (Supplementary Information: rare variant burden analysis).

RESULTS

Targeted sequencing and genetic discovery in 213 DISC1 Interactome and Regulome genes

A total of 1464 samples (95%) were sequenced to a minimum coverage depth of 20x across at least 80% of the targeted bases (Supplementary Table S2). Coverage was uniform across all sample groups (Supplementary Figure S1). Following sequence- and variant-based quality filters, 196 080 SNVs in 1446 samples (211 cases of SCZ, 169 cases of rMDD, 195 cases of BD, and 871 controls from the LBC1936) remained for further analyses (Supplementary Table S2 and Supplementary Figures S2–S5). Of the 196 080 SNVs, 78% have a MAF less than 1%. Only 40% are reported in the 1000 Genome Project European subset (Supplementary Table S3). On the basis of ReSeq functional annotations using ANNOVAR, 169 905 SNVs mapped to introns, 5410 to 3’ or 5’ UTRs, and 4523 to coding regions. Of the 4523 exonic variants, 1893 were functionally classified with respect to coding potential as silent variants, 2569 as missense, and 41 as nonsense. A further 24 SNVs were annotated as splice site variants. SNVs showing greater functional impacts on protein function are more likely to be rare: 100% of nonsense and 92% of splice site variants have MAF <1%, compared to 79% of silent and 78% of intronic variants.

Analysis of genetic variation in the DISC1 Interactome and Regulome with psychiatric illness

Rare functional variant analysis in the DISC1 Interactome. There was no significant burden of rare disruptive, NSstrict or NSbroad variants in SCZ, BD, or rMDD nor in a combined cohort of all diagnoses compared to controls in the DISC1 Interactome (Supplementary Table S6). There was a nominal association of
Fewer rare disruptive variants in SCZ (unadjusted \(P = 0.0188 \)), but no significant difference between the accumulation rate of rare variants for any diagnosis after Family-Wise Error Rate (FWER) correction (Supplementary Table S7). None of the proportions of \(N_{\text{strict}} \) and \(N_{\text{broad}} \) rare or singleton variants deviated from the null hypothesis after FWER across correction.

The gene-wide burden of non-synonymous coding changes was nominally, but not significantly increased in psychiatric disorders (unadjusted \(P = 0.0048 - 0.0488 \)) for several DISC1 interactome genes. None survived correction for multiple testing (Supplementary Table S8).

Rare functional variant analysis in the DISC1 Regulome. We analyzed the burden and accumulation rates of rare and singleton functional variants in the DISC1 Regulome. For SCZ compared to control samples, we observed a significantly increased burden of singleton disruptive variants (unadjusted \(P = 0.0019 \), FWER within \(P = 0.0069 \), FWER across \(P = 0.0339 \), OR = 1.3162, SE = 0.0941; Figure 1 and Supplementary Table S9), and a nominally higher accumulation rate (4.13-fold, unadjusted \(P = 9.00 \times 10^{-4} \), FWER within \(P = 0.0185 \), FWER across \(P = 0.0965 \), Supplementary Table S10). In addition, the accumulation rate of rare disruptive variants, as opposed to singleton disruptive variants, was 3.47-fold higher in SCZ cases than in healthy controls and remained significant after multiple test correction (unadjusted \(P = 1.68 \times 10^{-5} \), FWER within \(P = 1.00 \times 10^{-5} \), FWER across \(P = 0.0022 \), Supplementary Table S10).

Unlike singleton disruptive variants, although the burden of rare disruptive variants in SCZ was nominally significant, and survived FWER correction for all tests within the trait, it did not meet the threshold for tests across all traits (unadjusted \(P = 0.0061 \), FWER within \(P = 0.0228 \), FWER across \(P = 0.0863 \), Supplementary Table S9). We also observed a nominally higher proportion and burden of \(N_{\text{strict}} \) singleton and rare variants in SCZ and disruptive singleton and rare variants in combined cases compared to controls, but none survived FWER for all tests across all traits (Supplementary Tables S9 and S10). There was no evidence for an increased overall burden in rMDD, BD or combined cases compared to controls after FWER correction across all traits.

At the gene-wide level, *Translin-associated factor X interacting protein 1 (TSNAXIP1)* showed greater burden of \(N_{\text{strict}} \) singletons in rMDD (unadjusted \(P = 1.29 \times 10^{-4} \), FWER within \(P = 0.0253 \)) and \(N_{\text{strict}} \) rare variants in SCZ (unadjusted \(P = 2.22 \times 10^{-4} \), FWER within \(P = 0.0410 \), Supplementary Table S11) compared to controls. However, these results did not survive correction for all tests (rMDD FWER across \(P = 0.0864 \), SCZ FWER across \(P = 0.1600 \)). *TSNAXIP1* has 16 exons encoding 712 amino acids. We validated 17 rare coding variants in *TSNAXIP1* in all carriers, including 1 splice site, 1 nonsense and 15 missense variants (Figure 2 and Supplementary Table S12). Of these 17 rare substitutions, 4 were previously reported in the 1000 Genomes Project European subset. In total, 7 rare variants in *TSNAXIP1* including 2 disruptive and 5 predicted damaging missense variants contributed to the gene burden analysis of \(N_{\text{strict}} \) variants in rMDD and SCZ. In a ‘leave-one-out’ approach, we determined that the nonsense mutation at chr16:66405794 (rs146214814, p.R46X) located in exon 2, contributed most to the higher burden of \(N_{\text{strict}} \) variants in SCZ. Relative to controls, this disruptive variant had a 3.58-fold higher allele frequency in SCZ (0.0146 vs 0.0041) and was not observed in any other mental illness cohort. Further information on the neurobiology of *TSNAXIP1* is given in Supplementary Information: *TSNAXIP1*.

Burden analysis of coding variants on quantitative cognitive ability and personality traits associated with psychiatric illness. We found that a significantly higher burden of singleton disruptive variants in the DISC1 Interactome was associated with lower cognitive ability assessed by Moray House Test (MHT) scores at age 11 (unadjusted \(P = 9.35 \times 10^{-5} \), FWER within \(P = 0.0005 \), FWER across \(P = 0.0043 \), \(\beta = -7.1141 \), SE = 3.6863; Figure 3 and Supplementary Table S13). The burden of \(N_{\text{strict}} \) singletons in the Interactome gene set was associated with lower MHT scores at age 11 (unadjusted \(P = 0.0003 \), FWER within \(P = 0.0017 \), FWER across \(P = 0.0122 \), \(\beta = -2.7865 \), SE = 1.2877). In addition, although these did not survive FWER across correction, nominally significant associations in the burden of disruptive singletons were observed with MHT scores at age 70 (unadjusted \(P = 0.0056 \), \(\beta = -6.6785 \)), National Adult Reading Test (unadjusted \(P = 0.0051 \), \(\beta = -6.9970 \)) and General Fluid Intelligence (unadjusted \(P = 0.0293 \), \(\beta = -0.5152 \)). Interestingly, there were nominally significant associations between the burden of rare functional variants and increased symptoms of neuroticism (Disruptive singletons:...
unadjusted $P = 0.0154$, $\beta = 6.5671$), anxiety (NS strict rare variants: unadjusted $P = 0.0349$, $\beta = 0.1394$) and depression (NS strict singletons: unadjusted $P = 0.0431$, $\beta = 0.2587$). At the gene-wide level, no association was found between the variability in cognitive ability or personality scores and the burden of damaging or disruptive variants in any specific gene of the DISC1 Interactome after FWER across correction (Supplementary Table S14).

In the analysis of the DISC1 Regulome, we observed a burden of NS strict singletons associated with lower MHT scores at age 70 (unadjusted $P = 0.0014$, $\beta = -1.7895$; Figure 3 and Supplementary Table S15) that withstood FWER correction for all tests within the trait (FWERwithin $P = 0.0079$), but not all tests across all traits (FWERacross $P = 0.0609$). The burdens of NS strict and NS broad variants were nominally significantly associated with greater decrease in cognitive ability between the ages of 11 and 70 (NS strict singletons: unadjusted $P = 0.0131$, $\beta = -1.4338$; NS broad singletons: unadjusted $P = 0.0014$, $\beta = -0.3175$; NS broad rare variants: unadjusted $P = 0.0280$, $\beta = -0.0010$). At the gene-wide level, the strongest association with cognitive function was observed with rare and singleton NS strict variants in CACNA1C, but this did not pass FWER across correction (Supplementary Table S16).

DISCUSSION

Encouraging progress towards delineating the genetic architecture of psychiatric disorders has been made and roles for both common, rare and de novo mutations established. Rare variants of high impact can provide valuable mechanistic insight. Recent case-control deep sequencing studies indicate that in individuals with SCZ rare loss-of-function variants are enriched in genes related to synaptic function,31 in target genes of the FMRP32 and in genes known to be associated with SCZ.46 The biological impacts of several DISC1 missense variants identified through deep sequencing have been demonstrated.30,47 We previously reported the discovery of rare disruptive DISC1 variants in individuals with psychiatric illness and demonstrated the biological impact of the p.R37W variant.17 Here we report the association of both clinical diagnoses and cognitive ability with rare variants in the DISC1 Interactome and the DISC1 Regulome.

Before discussing these positive findings, we first consider some limitations of the study. Although the sample size was large by current standards, these numbers are modest in size for comprehensive rare variant detection.17,48 We were unable to perform sex-specific analyses in our study given our sample size. Similar analyses may be important in our understanding of the relationships between genetic variants and gene expression particularly in psychiatric illness, given reports of sex-specific differences in gene expression in the brain49,50 but also due to reports of sex-specific differences in association of variants and haplotypes in DISC1,51–53 the success of the CONVERGE strategy that relied on mapping loci for severe depression within a female-only cohort54 and the differences in disease presentation between sexes that have likewise been reported.55 Burden analysis increases the power of analyses in such small samples, but the
rules for annotating rare variants as ‘damaging’ are far from foolproof: biological validation is required. Last, but not least, whole genome sequencing of all 1543 individuals, while ideal, was beyond the scope of our resources. Targeted capture sequencing was a practical option, but it is likely that relevant variants will have been missed by virtue of poor capture. It is also almost certainly the case that our list of bona fide DISC1 interactors is incomplete, and that contra wise, not all members of the Regulome that met our inclusion criteria will be regulated by DISC1 in practice.

Acknowledging these limitations, there were findings of note. No association was seen between rare variants in the DISC1 Interactome and any psychiatric diagnosis. There was, however, a significant excess of singleton disruptive variants in the DISC1 Regulome associated with SCZ, but not with BD or rMDD. We have shown that disruptive and NS staffing singleton variants in the DISC1 Interactome show significant association with cognitive ability at age 11. These classes of variants are also nominally associated in the DISC1 Regulome with cognitive ability at age 70 and change in cognitive ability between age 11 and 70. The DISC1 Regulome gene set was assembled from genes that show both i) altered expression in response to genetic variation in DISC1 or its interactors, or are themselves protein interactors of the core complex, and ii) evidence of association with psychiatric illness from candidate gene studies, or some of the earliest genome-wide association studies. We note that in this study, we found nominal association of rare Regulome variants with both increased schizophrenia risk and lower adult cognitive ability, particularly in older age. This mirrors the observation of association with single disruptive Regulome variants and SCZ in our sample suggests a greater impact of glutamate dysregulation in this disorder than BD or rMDD. A role for DISC1 in glutamate-related processes has previously been suggested in both a mouse model and in the t(1;11) translocation family. Comparison of the GO terms associated with both the DISC1 Interactome and Regulome reveals largely independent GO term associations with a very limited set of intersecting terms focused on negative regulation of cellular process, protein binding, and cell projections (Supplementary Figures S9).

In conclusion, and despite the limitations, these findings provide further genetic evidence to support the impact of both DISC1-interacting proteins and genes whose expression is modulated by genetic variants in the DISC1 pathway on schizophrenia.

CONFLICT OF INTEREST

WRM has participated in Illumina sponsored meetings over the past 4 years, and received travel reimbursement and an honorarium for presenting at these events. Illumina had no role in decisions relating to the study/work to be published, the data collection and analysis of the data, and the decision to publish. WRM has participated in Pacific Biosciences sponsored meetings over the past 3 years and received travel reimbursement for presenting at these events. WRM is a founder and shareholder of Orion Genomics. WRM is a member of the scientific Advisory Board of RainDance, Inc. The remaining authors declare no conflicts of interest.

ACKNOWLEDGMENTS

This study was supported by a gift from T and V Stanley and a grant from NIH (R01MH102068). We thank the LBC1936 participants and team members who contributed to these studies. Phenotype collection was supported by Age UK (The Disconnected Mind project). The work was undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from the BBSRC and Medical Research Council (MRC) is gratefully acknowledged. ST thanks supports from the Howard University startup funds (U100193) and Junior Faculty Writing & Creative Works Summer Academy. ST acknowledges Professor Fatimah Jackson for critical comments.

AUTHOR CONTRIBUTIONS

DJP and WRM designed the study, are PIs on the grant funding, supervised the study and supported the analysis. ST, SM, PT, VM, MLC and MK carried out the collection and analysis of the data, and the decision to publish. WRM has participated in presenting at these events. WRM is a founder and shareholder of Orion Genomics. WRM is a member of the scientific Advisory Board of RainDance, Inc. The remaining authors declare no conflicts of interest.

REFERENCES

1 Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.
2 Lee SH, DeCandia TR, Ripke S, Yang J, Sullivan PF, Goddard ME et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet 2012; 44: 247–250.
3 Ripke S, O’Dushlaine C, Cambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.
4 McCarthy SE, Gillis J, Kramer M, Lihon J, Yoon S, Berstein Y et al. De novo mutations in schizophrenia implicate chromatrin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry 2014; 19: 652–658.

5 Gottesman IL, Laurent TM, Bertelsen A, Mortensen PB. Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry 2010; 67: 252–257.

6 Lichtenstein P, Hj B, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

7 Wray NR, Lee SH, Mehta D, Vinkhuyzen AAE, Dudbridge F, Middeldorp CM. Research Review: Polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry Allied Discip 2014; 55: 1068–1087.

8 McIntosh AM, Gav A, Luciano M, Davies G, Liewald DC, Harris SE et al. Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol Psychiatry 2013; 73: 938–943.

9 Hagnens SP, Harris SE, Davies G, Hill WD, Liewald DCM, Ritchie SJ et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N = 112 151) and 24 GWAS consortia. Mol Psychiatry 2016; 21: 1624–1632.

10 Marioni RE, Penke L, Davies G, Huffman JE, Hayward C, Deary IJ. The total burden of rare, non-synonymous exome genetic variants is not associated with childhood or late-life cognitive ability. Proc Biol Sci 2014; 281: 20140117.

11 Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K, Smith JV et al. Onset of schizophrenia, −2.3 years, and the genetic contribution of common variation. Nature 2009; 460: 744–747.

12 Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Convergent functional genomic studies of Disrupted-in-Schizophrenia 1 Interactome: evidence for the close connectivity of DISC1 variation on neuroanatomical and neurocognitive phenotypes. Mol Psychiatry 2011; 16: 1096–1104.

13 Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, brain development and function. Mol Psychiatry 2013; 18: 490–496.

14 Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, brain development and function. Mol Psychiatry 2013; 18: 490–496.

15 Gozes I. Sexual divergence in activity-dependent neuroprotective protein signalling. Science 2005; 310: 1187–1191.

16 Invernizzi S, Moretti A, Zaffaroni S, Tacchini C, De Vivo A, Romanelli A et al. Exon-level sequence analysis to identify rare disruptive variants in DISC1. Mol Psychiatry 2017; 5: 658–657.

17 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

18 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.

19 Purcell SM, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

20 Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. Nat Protoc 2010; 5: 1564–1573.

21 Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.

22 Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Hum Mol Genet 2003; 12: 3133–3138.

23 Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

24 Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res 2009; 19: 1553–1561.

25 Schwartz JM, Rodelsperger C, Schulke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010; 7: 575–576.

26 Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 2011; 89: 82–93.

27 Hu X, Zhang B, Liu W, Paciga S, He W, Lanz TA et al. A survey of rare coding variants in candidate genes in schizophrenia by deep sequencing. Mol Psychiatry 2014; 19: 857–858.

28 Singh KK, De Rienzo G, Drake L, Mao Y, Flood Z, Madison J et al. Common DISC1 polymorphisms disrupt Wnt/GSK3β signaling and brain development. Neuron 2011; 72: 545–558.

29 Kiezun A, Garimella K, Do R, Sitzits NO, Benjamin M, Mclaren PJ et al. Exome sequencing and the genetic basis of complex traits. Nat Genet 2012; 44: 623–630.

30 Le-Niculescu H, Case NJ, Hulvershorn L, Patel SD, Bowker D, Gupta J et al. Rare disruptive variants in the DISC1 Interactome and Regulome Rare disruptive variants in the DISC1 Interactome and Regulome. Mol Psychiatry (2017), 1–8.
55 Kokras N, Dalla C. Preclinical sex differences in depression and antidepressant response: Implications for clinical research. J Neurosci Res 2017; 95: 731–736.

56 The International Schizophrenia Consortium, International T, Consortium S. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

57 Ferreira MAR, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

58 Hubbard L, Tansey KE, Rai D, Jones P, Ripke S, Chambert KD et al. Evidence of common genetic overlap between schizophrenia and cognition. Schizophr Bull 2016; 42: 832–842.

59 Hill WD, Davies G, Liewald DC, McIntosh AM, Deary U, Deary U. Age-dependent pleiotropy between general cognitive function and major psychiatric disorders. Biol Psychiatry 2016; 80: 266–273.

60 Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection. bioRxiv 2016; doi: https://doi.org/10.1101/068593.

61 Kirov G. CNVs in neuropsychiatric disorders. Hum Mol Genet 2015; 24: R45–R49.

62 Suárez-Rama JJ, Arrojo M, Sobrino B, Amigo J, Brenlla J, Agra S et al. Resequencing and association analysis of coding regions at twenty candidate genes suggest a role for rare risk variation at AKAP9 and protective variation at NRXN1 in schizophrenia susceptibility. J Psychiatr Res 2015; 66–67: 38–44.

63 Rees E, Kendall K, Pardiñas AF, Legge SE, Pocklington A, Escott-Price V et al. Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiatry 2016; 73: 963–969.

64 Zhang J, Xu TX, Hallett PJ, Watanabe M, Grant SGN, Isacson O et al. PSD-95 uncouples dopamine-glutamate interaction in the D1/PSD-95/NMDA receptor complex. J Neurosci 2009; 29: 2948–2960.

65 Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M. Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 1995; 378: 85–88.

66 Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neureglin. Proc Natl Acad Sci USA 2004; 101: 13915–13920.

67 Wu Q, Liu J, Fang A, Li R, Bai Y, Kriegstein AR et al. The dynamics of neuronal migration. Adv Exp Med Biol 2014; 800: 25–36.

68 Dawson N, Kurihara M, Thomson DM, Winchester CL, McVie A, Hedde JR et al. Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1. Transl Psychiatry 2015; 5: e569.

69 Thomson PA, Duff B, Blackwood DHR, Romaniuk L, Watson A, Whalley HC et al. Balanced translocation linked to psychiatric disorder, glutamate, and cortical structure/function. NPJ Schizophr 2016; 2: 16024.

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)