Quality-Quantitative Identification of Dangerous Waste From FOB-Usp: Waste Management

Identificação quali-quantitativa dos resíduos perigosos produzidos na FOB-usp: gestão de resíduos.

Aline Salgado Dionizio¹
Cesar Augusto de Souza Valle²
Rodrigo Cardoso Oliveira³
Marília Afonso Rabelo Buzalaf⁴
Beatriz Antoniassi⁵
Flavia Godoy Ianò⁶

ABSTRACT
Introduction: Hazardous waste is defined by the Environmental Protection Agency of the United States (EPA) as any waste that because of its quantity, concentration, physical, chemical or infectious characteristics, may cause or significantly contribute to increased mortality, serious irreversible or incapacitating reversible diseases, or pose a present substantial or potential hazard to human health and the environment when improperly managed. Objective: Aiming to comply with the laws, the Bauru Dental School (FOB) in 2003, installed its first Laboratory of Chemical Waste (LRQ). However due to increased demand and new waste generated, there was the need to build a new laboratory. Therefore, this study conducted a qualitative and quantitative survey of hazardous waste generated in different sectors of the FOB, Hospital for Rehabilitation of Craniofacial Anomalies (HRAC) and Prefecture of Campus, beyond its current mode of handling by responsible. Material and Methods: This survey was conducted through a questionnaire. Results: After analyzing the data, we saw that were generated 433 liters of waste in 2013, mainly: developer liquid, fixer liquid, alcohol, ethylenediaminetetraacetic acid (EDTA), xylene and formaldehyde. In addition, we found the key points for a better management of waste. Conclusion: This work was important to quantify and qualify the hazardous waste on the USP campus of Bauru. The implementation of a specialized laboratory in management and treatment of waste on campus, for the recovery of these, beyond to proper disposal, is important for both environment and people. Keywords: Hazardous waste, Environment, Management.

RESUMO
Introdução: Resíduo perigoso é definido pela Agência de Proteção Ambiental dos Estados Unidos (EPA) como qualquer resíduo que em razão da sua quantidade, concentração, características físicas, químicas ou infecciosas, pode causar ou contribuir consideravelmente para o aumento da mortalidade, de doenças graves irreversíveis ou incapacitantes reversíveis, ou ainda representar um risco substancial atual ou potencial à saúde humana e ao meio ambiente quando gerenciado indevidamente. Visando a atender às legislações, a Faculdade de Odontologia de Bauru (FOB), em 2003, instalou o seu primeiro Laboratório de Resíduos Químicos (LRQ). Porém, devido ao aumento da demanda e de novos resíduos gerados, houve a necessidade da construção de um novo laboratório. Objetivo: Sendo assim, este trabalho

¹Faculdade de Odontologia de Bauru. Mestre em Ciência- Departamento de Ciências Biológicas
²Faculdade de Odontologia de Bauru. Engenheiro- Departamento de Ciências Biológicas
³Faculdade de Odontologia de Bauru. Professor Associado- Departamento de Ciências Biológicas
⁴Faculdade de Odontologia de Bauru. Professora Titular- Departamento de Ciências Biológicas
⁵Universidade do Sagrado Coração. Doutora em Ciência e Tecnologia de Materiais
⁶Faculdade de Odontologia de Bauru/ Universidade de São Paulo- Departamento de Ciências Biológicas
realizou um levantamento quali-quantitativo dos resíduos perigosos gerados nos diferentes setores da FOB, Hospital de Anomalias Craniofaciais (HRAC) e Prefeitura do Campus, além de seu modo atual de manuseio pelos responsáveis. **Material e Métodos:** Esse levantamento foi realizado por meio da aplicação de um questionário. **Resultados:** Após analisar os dados, visualizamos que foram gerados 433 litros de resíduos no ano de 2013, sendo que os principais foram: líquido revelador, líquido fixador, álcool, ácido etilenodiaminato tetra-acético (EDTA), xilol e formaldeído. Além disso, foi possível verificar os principais pontos para um melhor gerenciamento dos resíduos. **Conclusão:** Este trabalho foi importante para quantificar e qualificar os resíduos perigosos no campus USP de Bauru. A implementação de um laboratório especializado em gerenciamento e tratamento de resíduos no campus, visando à recuperação destes, além do descarte adequado, é importante tanto para o meio ambiente quanto para as pessoas. **Palavra-chave:** Resíduos perigosos, Meio Ambiente, Gerenciamento.

INTRODUCTION

Hazardous waste is defined by the EPA - the United States Environmental Protection Agency such as any residues that because of their quantities, concentrations, physical, chemical or infectious characteristics, can cause or contribute significantly to the increase in mortality, in number of cases of serious irreversible or reversible disabling diseases, or to represent a large risk to human health and to environment when treated, stored, transported, disposed or managed inappropriately.\(^1\) The residue may be classified by laboratory test as having any of the following characteristics: inflammability, reactivity, corrosivity and toxicity.\(^2, 3\)

The management of hazardous waste, from generation to final disposition, it’s of major importance for the health of human, preservation of the environment, natural patrimony and sustainable development. In this way, waste management consists in applying a set of solutions/actions that find to prevent possible damages to human health, certifying the prudent and rational use of natural resources, which preserve, protect and improve the quality of the environment.\(^4-7\)

From 1960, began the first movements to discuss the preservation of the environment and the international and national meetings resulting in norms, protocols and legislation to control and punish those that caused environmental damage. In the last decades, some important Laws come in force, such as, Law of Environmental Crimes (Number 9.605 of 1998/02/12) with civil punishment, fine and even the closure of companies under the allegation of environmental impacts, leading the leader to respond criminally, as well, as the Law of National Environmental Policy (Number 6.938 of 1981/08/31), which defines that the polluter is bound to recompense the environmental damages caused by himself, independent of the guilt and Public Ministry can propose actions of civil responsibility for damages to the environment, imposing on the polluter an responsibility to recover and/or recompense damages caused\(^8, 9\).

Educational and research institutions and industries, although they are not mentioned directly in the current laws, due to the fact they experience the problem of waste generating daily, start to worry, search solutions, treatment programs and awareness of the population. In the 1970s, universities start timidly to implement hazardous waste management programs.\(^10\) The diagnosis of waste management and environmental conformation in educational institutions is of great relevance, considering the marked activities research, teaching and extension aiming a work place and a healthy social environment.\(^3, 5, 6, 11, 12\)

Thus, the implantation of a laboratory and a waste management assists and collaborates with the reception, storage and proper disposal of the contaminants. Another positive aspect is that with the right structure it is possible to recover and reuse, avoiding waste and providing money savings.

To combat this problem and to comply with
existing legislation, the Bauru Dental School (FOB) of the University of São Paulo (USP), in 2003, built its first chemical waste laboratory, which was inaugurated in January 2004. Initially were treated amalgam residues to recovery mercury 13 and silver 14, in addition xylene and ethyl alcohol, from FOB and the Hospital for Rehabilitation of Craniofacial Anomalies (HRAC). With this laboratory, it was expected the treatment and reuse of the generated waste in FOB and HRAC themselves, as well, some laboratories and clinics in the region. Faced with the awareness that exists in society today regarding the environmental perspective and the strict punishments for those that harm the environment and due to the great demand for chemical residues, there was a need to build a new laboratory and also an implementation of a Waste Management

The purpose of the present work was to accomplish with a qualitative and quantitative survey of hazardous wastes at FOB-USP, HRAC and Campus prefecture, in order to guide the implementation of the waste management plan for the new Chemical Waste Laboratory. In addition, formatting, application, tabulation and statistical analysis of the technical data, to propose information and procedures that can collaborate with the application, monitoring and updating of the plan, enabling a discussion on several environmental aspects.

Methodology

Initially a bibliographic analysis was performed and then documents were searched in the institution to delineate the other stages.

An interview in different sectors of FOB-USP, HRAC and Campus prefecture. Among them, clinics and research laboratories, using a questionnaire (Figure 1 and 2), containing open and closed questions.

The questionnaire was developed using the ABNT standards related to waste, the Law of the National Environmental Policy n° 6.938 from to 1981/08/31 and the Law of Environmental Crimes n° 9605 from to 1998/02/12.

Results were tabulated using Microsoft Excel®, so that they could be analyzed.

Results and discussion

The development of research by the interview method provided a greater proximity to the employees and representatives of the sectors (interviewees), so it was easier to obtain clearer and more detailed data. Another positive aspect was the information to them, because this way we were able to transmit knowledge about environmental subject, dangerous waste, treatment forms, care, among others. The same result with this method were observed by Antoniassi and Silva 7 (2017) and Muller et al. 15 (2013), which reported that this way it was possible to carry out environmental education actions.

For the accomplishment of this work, interviews were made in 34 sectors, being 25 of the FOB, 8 of the HRAC and 1 of the Campus Prefecture, according Table I.

FOB	HRAC	Campus Prefecture
Anatomy	Surgery Center	Administration
Proteome	Dental Center	
-Biochemistry	Injection / Sterilization	
Central -Biochemistry	Drugstore	
Vivarium	Cytogenetics Laboratory	
Integrated Research Center	Clinical Pathology Laboratory	
Surgery Clinic	Medical X-ray	
Periodontics Clinic	Dentistry X-ray	
Endodontics		
Stomatology		
Pharmacology		
Histology		
Pediatric Dentistry Laboratory		
Orthodontic Laboratory		
Periodontics Laboratory		
Postgraduate Laboratory		
Laboratory Microbiology		
Pediatric dentistry		
Pathology		
Prosthesis 1		
Prosthesis 2		
Radiology		
Urgency / Screening		
Figure 1 – Waste questionnaire: part 1
6) Among the items below, what and how much is generated as waste at this place?

Waste	Quantity*	Waste	Quantity*
Anaesthetics		Ethers	
Lead acetate		Phenol	
Acetone		Fluorides	
Acids		Formaldehyde (Formol)	
Acrylamide		Plaster	
Hydrogen peroxide		Glutaraldehyde	
Alcohols (others)		Ammonium hydroxide	
Alginate		Hypochlorites	
Amalgam	Iodides	Metal alloys	
Ammonia		Methanol	
Bases		Naphthol	
Batteries, batteries		Neodioctaine	
Benzene		Nitrates	
Bis-Acrylamide		Ethidium bromide	
Ethidium bromide		Oxypolyene	
Wax		Paraffin	
Chlorides		Paraplast	
Doubletet		Resins	
EDTA		Developer/Fixer	
Chloroform		Sulfates	
dyes		Sulfides	
Endo Prost		Carbon tetrachloride	
Esters		Osmium tetroxide	
Ethanol		Xyloil	

*Monthly estimate

Other Wastes: ________________________________

7) Are the materials listed above discarded by you or someone else from the laboratory in the public sewage system?

☐ Yes ☐ No ☐ Some yes, others not

8) What, in your opinion, would be necessary for this place to actively participate in waste management?

__

__

I declare that I am not omitting information and that all the answers provided by me are true. I am aware that this questionnaire is part of a survey and I authorize the use of these data for study purposes.

Figure 2 – Waste questionnaire: part 2
Of the interviewed sectors, 24 are used as clinics, 21 as research laboratory, 15 as teaching and 15 as extension. It is worth mentioning that in some cases, the same sector is used in more than one function.

Awareness, storage, identification, discard and reuse of chemical waste

It was found that in most sectors there is awareness about the suitable waste discard by employees (58.82%) and students (41.18%), but the same does not occur in none sector by visitors and/or patients. As for the storage of products, the campus offers good installations and in relation to identification, they have the original factory labels or simple labels with only the name of the reagent.

Regarding the reuse of treated waste, 91.2% of the sectors interviewed said that they would reuse only if they were within the parameters of quality and 8.8% said that they would not accept the treated waste because the experiments carried out require high standards of purity. It is worth to emphasize that the residue with the highest acceptance rate for reuse after recovery is ethyl alcohol.

As for discard, some waste are sent to a contracted company for proper discard, others are discard in the white or common waste and some are dumped into the sewage system. It was verified that there are sectors that carry out the waste discard in an inappropriate way, 11.8% throw all the waste in the sewage and 47% of the places said that discard some waste correctly and others not. The rest of the interviewees (41.2%) do not discard their waste in the public sewage system. According to the interviewees’ explanation, there is no information about the correct discard and there is a shortage of waste storage containers.

Mapping of the generated residues in greater and smaller quantity

After completing the questionnaire, the main and most important wastes generated at the FOB, HRAC and Campus Prefecture (Figure 3) were mapped. According to Jardim16 (1998) the waste that must be considered as the most important are called active inventory, because they are frequently used in the sectors, and it is through them that the activities of the waste laboratory will be traced.

![Graph: Monthly amount of waste generated at FOB, HRAC and Campus Prefecture](image)

Figure 3 - Monthly percentage of the different residues generated in FOB, HRAC and Campus prefecture.
Still in relation to monthly percentage of residues generated (Figure 3), it was verified that were generated a total of 433 liters of these residues, and it is important to emphasize that the values obtained are a monthly estimate that we obtained through interviews and that these values can increase or decrease as the need for experiments, classes or appointments on campus.

The largest volumes of waste generated are from developer and fixer from the radiographs performed by the students and/or professionals in patients. Although the substances are used at the same time, they must go through different treatment and discard processes. The developer, according to RDC nº306/04 has a simple form of treatment, which can be neutralized to pH of the solution close to 7, and then can be discarded in the public sewage system. However, attention must be given to the directives indicated by environmental, water and sanitation agencies. In relation to the fixative, the great interest is in the silver (Ag) recovery, as it is a scarce metal nowadays and is present in the fixative solution in an amount easily recoverable. There are several techniques used for recovery, such as those based on electrolysis, metallic displacement (cementation), as well as some that employ chemical precipitation, besides technology complementary, of ion exchange, to treat solutions resulting from washing water processes and/or more diluted fixative solutions. The most used process in large scale operations is based on the electrolysis of the fixative solutions, allowing the direct recovery of silver over a metallic cathode, usually made of stainless steel. Little is studied about the remaining solution (after silver recovery), however according to Nolla et al. (2013) there are tests that suggest that this effluent can be used as liquid fertilizer, since it has ammonium thiosulfate.

Then, in third place is ethanol or ethyl alcohol. Alcohol is used for a variety of purposes, from cleaning and sanitizing to chemical reactions or experimental procedures. Alcohol recovery is simple, accomplished by fractional distillation. It is the most used type of distillation in large industries, but it is also well known in chemical laboratories. Fractional distillation separates the compounds into various fractions, that are separated by the boiling point of the substances. It is worth mentioning that the boiling point of the alcohol is approximately 78.5 °C and that this residue was already treated in the old LRQ and will continue to be treated in the new building.

The fourth residue generated in most quantity is EDTA (ethylenediamine tetra acetic acid), normally used for endodontic treatment because it has a chelating function and to remove calcium ions (Ca²⁺), it is also used as anticoagulant, in electron microscopy for contrast DNA and disrupt RNA. This acid is mixed with several components and because of this there is no recovery treatment or discard in the sewage system, so for a while the most appropriate is incineration. But is not possible in the University, so this material is send for the company specified for the incineration.

Fifth is xylene or xylol, this is normally used for histological experiments, immunohistochemistry and can also be used as solvent. The recovery of xylene is simple, by fractional distillation. It is important to highlight that the boiling point of xylene is 138° C and that this, as alcohol, will continue to be recovered in the new LRQ building. After recovery, it will be able to use again.

Sixth is formaldehyde an organic compound, widely used in a variety of sectors, such as anatomy laboratories, in the embalming of anatomical specimens and in anatomopathological analysis laboratories. For large quantities, it is recommended the use of incineration or photo-Fenton reaction.

Seventh is methanol or methyl alcohol. This
compound is highly inflammable and toxic, so doing a new distillation becomes dangerous to the health of the person handling it. Due to this the manufacturers recommendations are that either it is returned to the them or it is sent for incineration 27.

Finally, the discarded acids are mainly characterized by their low pH (about pH 3). Depending on the acid, it can be used for precipitation of metals or to neutralize basic solutions (pH above 7). Because of its very low pH, it cannot be discarded without its pH adjusted to near neutral (pH 7) 28. After that, in some cases, it can be discarding in the sewage system, but it must be analyzed on a case-by-case basis so that the best method of disposal of the acid can be verified.

Some wastes are generated in small quantities, namely: lead acetate, amalgam, alginate, hydrogen peroxide, bases, ethidium bromide, wax, chlorides, chloroform, ethers, dye, gypsum, iodides, hypochlorite, sodium fluoride, metal alloys, phenol, paraffin and resin, which were not mentioned in the graph. These residues are generated in small quantities because there is no continuous use, so it is not possible to make a monthly estimate of the quantity generated. Although the quantities are minimal, the care in their form of discard or recovery is as important as waste generated in larger quantities. Care should be taken to the properly recover or discard as in accordance with RDC Nº 306/04, chemical wastes which present a risk to human and/or animal health or to the environment, if not recovery, reuse or recycled, should receive treatment or a specific final disposition 17.

In the specific case of amalgam, although it is not managed in large numbers on campus, the University periodically receives these residues from dentists associated with OdontoPrev. FOB and OdontoPrev have an agreement signed since 2004 for the mercury and silver recovery. This recovery is done by means of vacuum distillation for the mercury recovery 13, and by means of precipitation using ascorbic acid for the silver recovery 14.

Effective participation of the sectors

By the application of the questionnaire it was possible to verify what, in the opinion of the respondents, it is necessary to be carried out in order that the sectors participate actively in the treatment of generated waste (Figure 4).

![What is needed for the effective participation of the sectors](image)

Figure 4 - Needed Items for the effective participation of the sectors in the management of dangerous waste.
It is important to highlight that the disclosure of information is the main complaint in the interviewed sectors. Asked about the solution to this lack of information, the following suggestions were given: dissemination of informational materials through lectures, mini-courses, booklets and panels, and protocols that should be followed for proper disposal.

The infrastructure for discard containers needs to be improved as some respondents said there were not appropriate nor enough bottles. The suggestion is that the laboratory of chemical residues provides glasses and bottles suitable for the discard. The idea is that when leaving a bottle full of residue, another bottle will automatically be provided for the subsequent discards.

Another item is the logistics of waste transportation, which should be more efficient. One solution would be in the first place an online central of the sectors with the laboratories, which would fulfill a requirement of sending and after authorization this residue would be sent to the laboratory; another solution would be to elect a person in the waste laboratory to be responsible for collecting waste.

And, finally, the awareness of the involved people. The suggestion is that should be provided lectures, dissemination of informative material, clarification on the importance of proper discard of waste, making possible the greater involvement of people.

Waste management at the FOB’s Chemical Waste Laboratory, verifying that the discard and/or treatment of waste generated in larger quantities is simple and economically viable, making it more beneficial than continuing to send to the outsourced company that currently operates in the faculty. This same conclusion can be seen by Costa et al. 29 (2014), by his statement that the economic viability of the project is linked to the reduction of costs and expenses of Federal University of Alfenas (UNIFAL-MG) with waste treatment, since there will be no expense with the outsourced company, besides the reduction of reagent purchase, since they can be recovered.

Conclusions

Through the directly conducted interviews with the employees, which enabled more effective results, we concluded that the treatment of waste in the campus, aiming to the recovery waste, besides allowing the proper disposal, is important for the environment as well as for the people, in addition to being able to generate a financial return for the university. We also conclude that these processes begin in the sectors where the waste is generated, with adequate separation and storage, before being sent to the LRQ.

References

1. Agency USEP. Learn the Basics of Hazardous Waste 2018 [cited 2018]. Available from: https://www.epa.gov/hw/learn-basics-hazardous-waste#hwid
2. Vesilind PA, Morgan SM. Introdução à Engenharia Ambiental. São Paulo 2011.
3. Lara ER, Rosa JRDl, Castillo Air, Cerino-Cordova FdJ, Chukun UJL, Delgadillo SSF, et al. A comprehensive hazardous waste management program in a Chemistry School at a Mexican university. J Clean Prod. 2017;142:1486-1491. DOI: 10.1016/j.jclepro.2016.11.158
4. Figuerêdo DV. Manual para Gestão de Resíduos Químicos Perigosos de Instituições de Ensino e de Pesquisa. 1 ed. Belo Horizonte 2006.
5. Gallardo A, Edo-Alcón N, Carlos M, Renau M. The determination of waste generation and composition as an essential tool to improve the waste management plan of a university. Waste Manag. 2016; 53: 3-11. DOI: 10.1016/j.wasman.2016.04.013
6. Antoniassi B, Araujo V, Chaves M, Telascrea M, Kempa M, Bersanetti B. Analysis of the Economic Viability in the Implementation of the
Chemical Waste Management System in Teaching and Research Laboratories. *J Sustain Dev.* 2017;10(1). DOI: 10.5539/jsd.v10n1p112

7. Antoniassi B, Silva MCKd. The importance of dangerous waste management in a university: study case of teaching and research laboratories. *Systems & Manag.* 2017;12:183-91. DOI:10.20985/1980-5160.2017.v12n2.914

8. Lei n.º 9605 de 12 de fevereiro de 1998. Dispõe sobre as sancões penais e administrativas sobre o meio ambiente, (1998). Available from: http://www.planalto.gov.br/ccivil_03/Leis/L9605.htm

9. Lei nº 6.938 de 17 de janeiro de 1981. Dispõe sobre a Política Nacional do Meio Ambiente, seus fins e mecanismos de formulação e aplicação, e dá outras providências., (1981). Available from: http://www.planalto.gov.br/ccivil_03/leis/l6938.htm

10. Alberguini LBA, Silva LC, Rezende MO. Tratamento de resíduos químicos: guia prático para a solução dos resíduos químicos em instituições de ensino superior. 1 ed. São Carlos, SP 2005.

11. Rivetti LV, Simonato DC, Costa SO, Figueiredo RA. Document analysis and perceptions about waste management in a university campus (sp, brasil) *RICA.* 2012;3 (1):98-111. DOI: 10.6008/ESS2179-6858.2012.001.0006

12. Geng Y, Liu k, Xue B, Fujita T. Creating a “green university” in China: a case of Shenyang University. *J Clean Prod.* 2013;61:13-19. DOI:10.1016/j.jclepro.2012.07.013

13. Iano FG, Santos Sobrinho O, Silva TL, Pereira MA, Figueiredo PJM, Alberguini LBA, et al. Optimizing the procedure for mercury recovery from dental amalgam. *Braz Oral Res.* 2008; 22: 119-24. DOI: 10.1590/S1806-83242008000200005

14. Pereira HABDS, Iano FG, Silva TLD, Oliveira RCD, Menezes MLD, Buzalaf MAR. Recovery of silver residues from dental amalgam. *J Appl Oral Sci.* 2010;18:121-6. DOI:10.1590/S1678-77572010000200005

15. Muller AM, Silveira DDS, Nara EOB, Kipper LM, Moraes JAR. A view on the exploration of waste services for health courses of health in a university community in South Brazil. *REGET-UFSM.* 2013;17(17): 3327 - 35. DOI: 10.5902/223611709303

16. Jardim WdF. Waste management program for chemical residues in both teaching and research laboratories. *Quim Nova* 1998;21(5):671-3. DOI: 10.1590/S0100-40421998000500024

17. Resolução da Diretoria Colegiada nº 306, de 07 de dezembro de 2004. Dispõe sobre o Regulamento Técnico para o gerenciamento de resíduos de serviços de saúde, (2004). Available from: http://portal.anvisa.gov.br/documents/33880/2568070/res0306_07_12_2004.pdf/95eac678-d441-4033-a5ab-f0276d56aaa6

18. Fernandes GS, Azevedo ACPd, Carvalho ACP, Pinto MLC. Analysis and management of effluents from radiology departments. *radiol bras.* 2005;38(5). DOI: 10.1590/S0100-39842005000500009

19. Chen W-T, Ma C-C, Lee M-H, Chu Y-C, Tsai L-C, Shu C-M. Silver recovery and chemical oxygen demand (COD) removal from waste fixer solutions. *Appl energy.* 2012;100:187–92. DOI: 10.1016/j.apenergy.2012.06.026

20. Bortoletto EC, Igarashi-Mafra L, Sorbo ACAC, Galliani N, Barros MASD, Tavares CRG. Remoção Da Prata Em Efluentes Radiográficos. *Acta sci technol.* 2007;29(1):37-41. DOI: 10.4025/actascitechnol.v29i1.83

21. Company. EK. Chemical Recovery Produces. In: Films PKMP, editor: KODAK; 2000. Available from: https://www.kodak.com/uploadedfiles/motion/US_plugins_acrobat_en_motion_support_processing_h245_h2405.pdf

22. Ho N, Babel S, Sombatmankhong K. Bio-electrochemical system for recovery of silver coupled with power generation and wastewater treatment from silver(I) diammine complex. *J Water Proc Eng.* 2018;23:186-94. DOI: 10.1016/j.jwpe.2018.04.001

23. Muller AM, Silveira DDS, Nara EOB, Kipper LM, Moraes JAR. A view on the exploration of waste services for health courses of health in a university community in South Brazil. *REGET-UFSM.* 2013;17(17): 3327 - 35. DOI: 10.5902/223611709303
MTS. Understanding The Chemistry In Chelate Smear Layer Removal: Review Of Literature. *RevSaudeCom*. 2015;11(1):78-87. DOI: 10.22481/rsc.v11i1.260

26. ARC. Chemical agents and related occupations. In: ORGANIZATION IAFROCWH, editor. Lyon, france: IARC monographs on the evaluation of carcinogenic risks to humans; 2012. p. 211-6. Available from: http://monographs.iarc.fr/ENG/Monographs/vol100F/mono100F.pdf

27. Pereira PAP, Andrade JB. Sources, reactivity and quantification of atmospheric methanol and ethanol. *Quim Nova* 1998;21(6). DOI: 10.1590/0100-40421998000600015

28. Atkins PW, Jones L. *Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente*. 5 ed 2011.

29. Costa LTD, Salgado EG, Carmo DDFD, Guerra M, Evangelista M, Silveira K. Chemical Waste Treatment And Recovery Laboratory: An Alternative For Industrial Waste Of Southern Minas Gerais *Rev Bras Desenv Reg*. 2014;2(2):225-43. DOI:10.7867/2317-5443.2014V2N2P225-243

Submetido em: 7-8-2017
Aceito em:18-6-2017