Inhibitory Effects of Resveratrol and Piceid against Pathogens of Rice Plant, and Disease Resistance Assay of Transgenic Rice Plant Transformed with Stilbene Synthase Gene

Sang-Mi Yu¹, Ha Kyung Lee¹, Ui-Seon Jeong¹, So Hyeon Baek², Tae-Hwan Noh², Soon Jong Kwon³ and Yong Hoon Lee¹,4*

¹Division of Biotechnology, Chonbuk National University, Iksan 570-752, Korea
²Department of Rice and Winter Cereal Crop, National Institute of Crop Science, Rural Development Administration, Iksan 570-080, Korea
³Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
⁴Advanced Institute of Environment and Bioscience, and Plant Medical Research Center, Chonbuk National University, Korea

(Received on June 23, 2013; Revised on July 11, 2013; Accepted on July 13, 2013)

Resveratrol has been known to inhibit bacterial and fungal growth in vitro, and can be accumulated in plant to concentrations necessary to inhibit microbial pathogens. Hence, stilbene synthase gene has been used to transform to synthesize resveratrol in heterologous plant species to enhance resistance against pathogens. In the present study, we investigated the antimicrobial activities of resveratrol and piceid to bacterial and fungal pathogens, which causing severe damages to rice plants. In addition, disease resistance was compared between transgenic rice varieties, Iksan 515 and Iksan 526 transformed with stilbene synthase gene and non-transgenic rice varieties, Dongjin and Nampyeong. Minimum inhibitory concentration of resveratrol for Burkolderia glumae was 437.5 µM, and the mycelial growth of Bipalis oryzae was slightly inhibited at concentration of 10 µM. However, other bacterial and fungal pathogens are not inhibited by resveratrol and piceid. The expression of the stilbene synthase gene in Iksan 515 and Iksan 526 did not significantly enhanced resistance against bacterial grain rot, bacterial leaf blight, sheath blight, and leaf blight. This study is the first report on the effect of resveratrol and piceid against pathogens of rice plant, and changes of disease resistance of transgenic rice plants transformed with stilbene synthase gene.

Keywords: Iksan 526, Piceid, Resveratrol, Stilbene synthase, Transgenic rice

Introduction

Phytoalexins have been known to be important natural components in the defense of plants against microbial pathogens. A lot of plants synthesize the stilbene-type phytoalexin resveratrol (trans-3,4,5-trihydroxy-stilbene) when attacked by pathogens (Adrian et al., 1997; Jeandet et al., 2002). Resveratrol is synthesized by the enzyme stilbene synthase, using as substrates one molecule of 4-coumaroyl-CoA and three molecules of malonyl-CoA (Pezet et al., 2004b). Resveratrol is also glycosylated as piceide (5,4'-dihydroxystilbene-3-O-β-glucopyranoside), and pterostilbene (3,5-dimethoxy-4-hydroxystilbene) is a dimethylated resveratrol derivative (Jeandet et al., 2002). Viniferins is oxidation product of resveratrol by 4-hydroxystilbene peroxidases. Recently, it was shown that an isomer of ε-viniferin, δ-viniferin is one of the major stilbenes produced from resveratrol oxidation in grapevine leaves infected by Plasmopara viticola (Pezet et al., 2003).

A number of in vitro studies demonstrated the toxicity of stilbenes on fungal and bacterial pathogens. Resveratrol inhibited conidial germination of Botrytis cinerea (Adrian et al., 1997). More recently, Pezet et al. (2004a) assayed the toxicity of the stilbenes against zoospores of P. viticola and reported that δ-viniferin and pterostilbene were the most toxic stilbenes. In addition, resveratrol exhibited inhibitory activities against bacterial pathogens of plants, such as Xylella fastidiosa (Maddox et al.,
Resveratrol is synthesized from coumaroyl CoA and malonyl CoA by the enzyme stilbene synthase. Since these two substrates are commonly present in plants, introduction of a single gene encoding stilbene synthase may be sufficient to synthesize resveratrol in heterologous plant species, and consequently to enhance natural resistance against fungal pathogens. The expression of a stilbene synthase gene increased resistance to *B. cinerea* in transgenic tobacco, barley, and wheat plants (Hain et al., 1993; Leckband and Lorz, 1998). In transformed tomato plants, stilbene synthase also reduced 65% in disease incidence by *Phytophthora infestans* (Thomzik et al. 1997). Transgenic alfalfa had significantly increased resistance to *Phoma medicaginis* (Hipkinsk and Paiva, 2000). However, the stilbene synthase gene did not augment resistance against *B. cinerea* in transgenic kiwi (Kobayashi et al., 2000).

The antimicrobial activity of plant stilbenes strongly suggests that these compounds are important components for disease resistance. However, the results are variable and cannot be predicted, which indicating the activities in transgenic plants must be evaluated empirically. In the present study, we investigated the antimicrobial activities of resveratrol and piceid to bacterial and fungal pathogens, which causing severe damages to rice plants. Moreover, disease resistance was evaluated in the transgenic rice varieties (Baek et al., 2013), which transformed with stilbene synthase gene.

Materials and Methods

In vitro growth inhibition assay on bacterial pathogens. Growth inhibition activity on bacterial pathogens, *Burkholderia glumae* and *Xanthomonas oryzae* pv. *oryzae* was assayed following Maddox et al. (2010) with small modifications. Resveratrol (Sigma, USA) and piceid (polydatin; Sigma) were dissolved in 5% ethanol to a final concentration of 320 mM and filtered through 0.22 µm syringe filters (PALL Life Sciences, USA). The stock solutions were prepared as described above and added to PDA (DM) at 28°C to give final concentrations ranging from 0, 10, 100 and 1000 µM. A small plug of agar (6 mm diameter) from a 7–10 day old mycelial culture was placed in the center of each well of 24-well microtiter dish. The diameter of mycelium was measured 5 days after inoculation (DAI). The inhibition of fungal growth was compared to the mycelial colony of 0 mM resveratrol or piceid control. Each treatment was replicated three times and the experiment was repeated twice.

Assay on mycelial growth inhibition of fungal pathogens. Inhibition activity on mycelial growth of fungal pathogens, *Bipolaris oryzae*, *Pyricularia oryzae*, *Rhizoctonia solani*, and *Fusarium moniliforme* was evaluated using potato dextrose agar (PDA) medium containing various concentrations of resveratrol and piceid as described above. Resveratrol and piceid solutions were prepared as described above and added to PDA at 50°C to give final concentrations ranging from 0, 10, 100 and 1000 µM. A small plug of agar (6 mm diameter) from a 7–10 day old mycelial culture was placed in the center of each well of 24-well microtiter dish. The diameter of mycelium was measured 5 days after inoculation (DAI). The inhibition of fungal growth was compared to the mycelial colony of 0 mM resveratrol or piceid control. Each treatment was replicated three times and the experiment was repeated twice.

Rice varieties and cultivation. The transgenic rice varieties, Iksan 515 and Iksan 526 (Baek et al., 2013), which was transformed with stilbene synthase gene in variety Dongjin, and non-transgenic rice varieties, Dongjin and Nampyeong, were compared for the difference of disease resistance. The seeds of each variety were sown in pots filled with sterilized nursery bed soil (Pungnong, Korea), and each pot received 20 ml of 1/3 (v/v) strength Hoagland’s solution once a week, watered daily and did not receive additional fertilization. Seedlings were raised in plant growth room (light/dark, 16/8 hr, 27°C).

Disease resistance assay. The transgenic and non-transgenic rice seeds were surface sterilized with 2% sodium hypochlorite for 2 min and washed with sterilized DW. The bacterial suspension of *B. glumae* cultured in LB medium for 24 hr at 28°C and 180 rpm was adjusted to 1×10^8 CFU/ml. The surface-sterilized rice seeds were soaked in the *B. glumae* suspension (5 g/100 ml) amended with 0.2% carboxymethyl cellulose (CMC) at 28°C and 150 rpm for 12 hr (Fang et al., 2009). The challenged seeds were air-dried for 12 hr and then sown in the pots as described above. At 7 days after seeding, disease incidence was scored as follows; 0 = seedlings with no symptom, 1 = seedlings with pale yellow leaves, 2 = seedlings with severe chlorosis and stunting, 3 = seedlings killed soon after germination, 4 = seeds rooted without germination. Disease severity was calculated by the following formula: disease index = $(0n_0 + 1n_1 + 3n_2 + 5n_3 + 7n_4)/7N \times 100$; where n_{0-4} is the concentration of each media. The lowest concentrations of each compound that completely inhibited bacterial growth were considered to be minimum inhibitory concentrations (MICs). Each treatment was replicated three times and the experiment was repeated twice.
number of leaves in each degree (0 to 4) and N is the number of total seedlings investigated. Each treatment consisted of 3 replicates of 50 seeds each (10 seeds/pot) and the experiment was repeated three times.

X. o. pv. oryzae was inoculated following the procedures described by Kauffman et al. (1973). The K1 race (KACC10332) of *X. o. pv. oryzae* were cultured on peptone sucrose agar (PSA) for 2 days at 28°C, adjusted to 10⁶ CFU/ml in 10 mM MgCl₂. The three- to four-week-old seedlings were clip inoculated 3 cm below the tip with sterile scissors dipped in the bacterial suspension. The inoculated plants were covered with a polythene hood for 24 hr, and the seedlings were grown as described above. The length of lesion was recorded from each culm and the mean lesion length was calculated. Two separate experiments were conducted with ten plants for each treatment.

R. solani was inoculated following Park et al. (2008) with small modifications. The fungal isolate was grown on PDA for 7 days at 28°C, and agar blocks (0.5 cm squares) were cut from the outer edge of the culture. The agar block was placed on the beneath of the leaf sheath of 4 weeks old rice plants. The inoculated sheath was covered immediately with aluminum foil. When typical lesions appeared around 3 DAI, the aluminum foil was removed. The infected rice plants were left in a humidity chamber made of clear plastic for 2 weeks to allow for disease development. The lesion length was recorded from each culm and the mean lesion length was calculated. Each treatment consisted of 2 replicates of 5 plants and the experiment was repeated three times.

P. oryzae (K197, K1113) was cultured on rice flour agar and incubated at 25°C under fluorescent lights with a 12 hr photoperiod for 2 weeks (Naureen et al., 2009). Spores were harvested and adjusted to 5 × 10⁸ spores/ml. Four week old rice plants were inoculated by spraying the spore suspensions. Immediately after inoculation, the plants were covered with a polythene hood for 24 hr in the dark. After 7 days of inoculation, the disease incidence was determined by estimating the diseased leaf area from zero percent which represents healthy plants (no chlorosis and necrosis) to 100% which completely diseased plants (intense yellowing and chlorosis). Each treatment consisted of 2 replicates of 5 plants and the experiment was repeated three times.

Statistical analysis. The analysis of variance of each disease incidence was performed with SAS software (Statistical Analysis System 9.2, NC, USA) using Tukey’s test. Means were compared by least significant difference (LSD) at *P* < 0.05.

Results and Discussion

In vitro bacterial growth-inhibitory activity of resveratrol and piceid. Plant stilbenes, which are considered as phytoalexins can accumulate in plant tissues to concentrations necessary to inhibit growth of microbial pathogens. Hence, stilbenes have been known to inhibit bacterial and fungal growth *in vitro*, and attracted much attention as a candidate to increase resistance in transgenic plants. However, there is no report on their toxic activities on the pathogens of rice plant.

In the present study, the antibacterial effect of resveratrol and piceid to *B. glumae* and *X. o. pv. oryzae*, which causing bacterial grain rot and bacterial leaf blight (BLB), respectively was assayed using an agar diffusion method. There was no growth inhibition in the control which containing traces of ethanol. Resveratrol suppressed the growth of *B. glumae*, and the MIC of resveratrol to the pathogen was 437.7 µM (Table 1). In the previous reports, resveratrol showed low levels of inhibitory activity against gram-positive species, such as *B. cereus* and *S. aureus*, and gram-negative species, such as *Escherichia coli*, *S. typhimurium*, and *P. aeruginosa* (Paulo et al., 2010; Tegos et al., 2002). More recently, resveratrol exhibited very strong inhibitory activities (MIC = 200 µM) towards all four *X. fastidiosa* strains (Maddox et al., 2010). However, in the present study, the growth of *X. o. pv. oryzae* was not inhibited by resveratrol. Its glucoside piceid showed no inhibitory effect on *B. glumae* and *X. o. pv. oryzae* either. It has been known that resveratrol and piceid are synthesized and accumulated in the leaves of the transgenic rice varieties 0–8.9 µg/g and 1.2–174.4 µg/g (Baek et al., 2013). In addition, the grains of the transgenic rice contained 0.1–4.8 µg/g and 0.1–10.4 µg/g of resveratrol and piceid, respectively. In view of the accumulation amount of the stilbene, the biosynthesis of stilbene in the transgenic rice plant cannot exert inhibitory activity on the bacterial pathogens.

Effect on mycelial growth of fungal pathogens

Many studies reported that reveratrol is toxic to fungal pathogens.

Pathogens	Minimum inhibitory concentration (µM)	Resveratrol	Piceid
B. glumae	437.5 ± 10.5	NI	
X. o. pv. oryzae	NI	NI	

No inhibition in the concentration from 10 µM to 10 mM.
In this study, we investigated the antifungal activity of resveratrol and piceid against *B. oryzae*, *P. oryzae*, *R. solani* and *F. moniliforme*, which cause brown spot, leaf blast, sheath blight, and bakanae disease, respectively to rice plants. When 10 µM of resveratrol was treated, the growth of *B. oryzae* was reduced to 84.2% compared to untreated control. However, the mycelial growth of *P. oryzae*, *R. solani* and *F. moniliforme* was not inhibited by resveratrol (Fig. 1).

Resveratrol inhibits conidial germination of *B. cinerea* which causes gray mold on grapes (Adrian et al., 1997). When resveratrol was exogenously applied to apples, the penetration of cuticular membranes by *Venturia inaequalis*, which causing apple scab was inhibited.

Moreover, piceid completely inhibited penetration of *V. inaequalis* at concentrations between 200 and 400 g/ml (Schulze et al., 2005). However, resveratrol and piceid have little or no inhibitory activity against *Plasmopara viticola* which causing downy mildew (Pezet et al., 2004). In the same study, pterostilbene, the dimethylated form of resveratrol, had a 5-fold higher activity than resveratrol in inhibiting mycelial growth of *P. viticola* in vitro, and 6-viniferin and pterostilbene was the most toxic stilbenes concerning zoospore mobility and disease development. However, piceid has never shown any toxic activity against *P. viticola* zoospores, even at concentrations >1000 mM. Overall, the results including this study indicate that the antifungal activity of resveratrol is very limited and variable to fungal pathogen.

Disease resistance of transgenic rice cultivars. Stark-Lorenzen et al. (1997) reported that rice plants transformed with the grapevine stilbene synthase gene exhibited enhanced resistance against the rice blast pathogen *P. oryzae* (1997). However, they did not present the accumulation of the phytoalexin resveratrol in the transgenic rice plant. In addition, the effectiveness of stilbene synthase gene in monocots is very limited.

In the present study, resistance or susceptibility of transgenic rice cultivar, Iksan 515 and Iksan 526 on bacterial grain rot, BLB, and sheath blight was evaluated in growth room conditions. The transgenic rice cultivars didn't show any difference of resistance to bacterial grain rot compared with Dongjin and Nampyeong (data not shown).

The incidence of BLB was evaluated by clip inoculation of *X. o. pv. oryzae* to each rice cultivar. Though disease severity in Iksan 515 was slightly reduced compared to the incidence of Nampyeong, all of the tested varieties was susceptible to BLB (Fig. 2). The results indicated that the transgenic rice didn't acquire any resistance to BLB.

The susceptibility on sheath blight was compared by lesion length after artificial inoculation of *R. solani*. The transgenic rice varieties and non-transgenic control varieties were very susceptible to sheath blight (Fig. 2, Fig. 3). The results indicated that the biosynthesis of resveratrol in Iksan 515 and Iksan 526 did not increase the resistance to sheath blight. In addition the incidence of blast in transgenic rice varieties didn't show any significant difference in comparison to non-transgenic varieties.

Stilbene synthase genes isolated from grapevine have been transformed into tobacco (Hain et al., 1993), tomato (Thomzik et al., 1997), rice (Stark-Lorenzen et al., 1997), barley and wheat (Leckband and Lorz, 1998), kiwi (Kobayashi et al., 2000), alfalfa (Hipskind and

![Fig. 1. Mycelial growth of *B. oryzae* (), *F. moniliforme* (), *M. grisea* () and *R. solani* () on culture medium containing (A) resveratrol and (B) piceid. Each fungus was inoculated on the PDA containing each compound. The control was supplemented with an equal amount of ethanol. The same letters are not significantly different at *P* < 0.05 according to Tukey’s test. Vertical bars indicate mean ± standard deviation of the replications. The experiment was repeated two times with three replications.](image-url)
Disease Resistance of Rice Plants Transformed with Stilbene Synthase Gene

Paiva, 2000), and apple (Szankowski et al., 2003). Though the resistance was increased in most cases, in some cases, expression of stilbene synthase did not result in an improved pathogen resistance. For instance, Kiwi fruits transformed with the stilbene synthase gene produced piceid but did not increase resistance to B. cinerea (Kobayashi et al., 2000). In addition, transgenic white poplars expressing Vitis stilbene synthase did not showed any effects in in vitro bioassays against Melampsora pulcherrima, a rust pathogen (Giorcelli et al., 2004). Pezet et al. (2004b) reported that resistance of grape leaves to P. viticola is associated with the conversion of resveratrol to viniferins while susceptibility is associated with the formation of piceid from resveratrol.

The results of this study indicated that the expression of stilbene synthase gene did not induce any changes of mechanisms to increase disease resistance. No stimulation of disease resistance may be related to the production of the glucosylated form of resveratrol, viz. piceid or low concentration of resveratrol (0−8.9 μg/g leaf).

The main goal of this investigation was to assess toxic effects of resveratrol and piceid on pathogens which causing devastating damage to rice plants and changes in disease resistance of the transgenic rice varities which producing stilbenes. Overall, though the resveratrol inhibited the growth of some pathogens, both compounds showed no significant inhibitory activity on the growth of bacterial and fungal pathogens of rice plants. In addition, the expression of the stilbene synthase gene did not enhance resistance to diseases in transgenic rice cultivars. To our knowledge, this is the first report that the effect of resveratrol and piceid was specifically tested against pathogens of rice plant. The in planta production and modifications of resveratrol after infection of pathogens need more investigation.

Acknowledgment

This study was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ0095282013), and S. M. Yu was partly supported by Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ0083112011), Rural Development Administration, Republic of Korea.

References

Adrian, M., Jeandet, P., Veneau, J., Weston, L. A. and Bessis, R. 1997. Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J. Chem. Ecol. 23: 1689–1702.

Fang, Y., Xu, L.-H., Tian, W.-X., Huai, Y., Yu, S.-H., Lou, M.-M. and Xie, G.-L. 2009. Real-time fluorescence PCR method for detection of Burkholderia glumae from rice. Rice Science 16: 157–160.

Back, S.-H., Shin, W.-C., Ryu, H.-S., Lee, D.-W., Moon, E., Seo,
C.-S., Hwang, E., Lee, H.-S., Ahn, M.-H., Jeon, Y., Kang, H.-J., Lee, S.-W., Kim, S. Y., D’Souza, R., Kim, H.-J., Hong, S.-T. and Jeon, J.-S. 2013. Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases. PLoS ONE 8: e57930. doi:10.1371/journal.pone.0057930.

Giorcelli, A., Sparvoli, F., Mattivi, F., Tava, A., Balestrazzi, A., Vrhovsek, U., Calligari, P., Bollini, R. and Confalonieri, M. 2004. Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res. 13: 203–214.

Hain, R., Reif, H. J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P. H., Stocker, R. H. and Stenzel, K. 1993. Disease resistance results from the treatment of metabolic syndrome and related diseases. PLoS ONE 8: e57930. doi:10.1371/journal.pone.0057930.

Hain, R., Reif, H. J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P. H., Stocker, R. H. and Stenzel, K. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156.

Hipskind, J. D. and Paiva, N. L. 2000. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol. Plant Microbe Interact. 13: 551–562.

Jeandet, P., Douillet-Breuil, A. C., Bessis, R., Debord, S., Sbaghi, M. and Adrian, M. 2002. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50: 2731–2741.

Kauffman, H. E., Reddy, A. P. K., Hsieh, S. P. Y. and Merca, S. D. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis. Rep. 57: 537–541.

Kobayashi, S., Ding, C. K., Nakamura, Y., Nakajima, I. and Matsumoto, R. 2000. Kiwifruit (Actinidia delicosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol glucoside). Plant Cell Rep. 19: 904–910.

Leckband, G. and Lorz, H. 1998. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96: 1001-1012.

Maddock, C. E., Laur, L. M. and Tian, L. 2010. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr. Microbiol. 60: 53–58.

Naureen, Z., Price, A. H., Hafeez, F. Y. and Roberts, M. R. 2009. Identification of rice blast disease suppressing bacterial strains from the rhizosphere of rice grown in Pakistan. Crop Prot. 28: 1052–1060.

Park, D.-S., Sayler, R. J., Hong, Y.-G., Nam, M.-H. and Yang, Y. 2008. A method for inoculation and evaluation of rice sheath blight disease. Plant Dis. 92: 25–29.

Paulo, L., Ferreira, S., Gallardo, E., Queiroz, J. A. and Domingues, F. 2010. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 26: 1533–1538.

Pezet, R., Perret, C., Jean-Denis, J. B., Tabacchi, R., Gindro, K. and Viret, O. 2003. δ-Viniferin, a resveratrol dehydrodimer: one of the major stilbenes synthesized by stressed grapevine leaves. J. Agric. Food Chem. 51: 5488–5492.

Pezet, R., Gindro, K., Viret, O. and Richter, H. 2004a. Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vit 43: 1145–1148.

Pezet, R., Gindro, K., Viret, O. and Spring, J.-L. 2004b. Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol. Mol. Plant Pathol. 65: 2297–2303.

Schulze, K., Schreiber, L. and Szankowski, I. 2005. Inhibiting effects of resveratrol and its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. J. Agric. Food Chem. 53: 356–362.

Stark-Lorenzen, P., Nelke, B., HanBler, G., Muhlbach, H. P. and Thomzik, J. E. 1997. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep. 16: 668–673.

Szankowski, I., Brivià, K., Fleschhut, J., Schönherr, J., Jacobsen, H. J. and Kiesecker, H. 2003. Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis Vinifera L.) and a PGIP gene from kiwi (Actinidia delicosa). Plant Cell Rep. 22: 141–149.

Tegos, G., Stermitz, F. R., Lomovskaya, O. and Lewis K. 2002. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Ch. 46: 3133–3141.

Thomzik, J. E., Stenzel, K., Stocker, R., Schreier, P. H., Hain, R. and Stahl, D. J. 1997. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 51: 265–278.