Evidence for CP Violation in $B^0 \to D^+D^-$ Decays

S. Fratina, K. Abe, K. Abe, I. Adachi, H. Aihara, D. Anipko, K. Arinstein, T. Aushev, A. M. Bakich, E. Barberio, A. Bay, K. Belous, U. Bitenc, I. Bizjak, A. Bondar, A. Bozek, M. Bračko, Y. K. Choi, S. Cole, J. Dalseno, M. Dash, A. Drutskoy, S. Eidelman, A. Go, B. Golob, A. Gorišek, H. Ha, J. H. Kang, M. Hazumi, D. Heffernan, T. Hokkue, Y. Hoshi, W.-S. Hou, T. Iijima, K. Inami, A. Ishikawa, H. Ishino, R. Itoh, M. Iwasaki, Y. Iwasaki, H. Kaji, J. H. Kang, N. Katayama, H. Kawai, T. Kawasaki, H. Kichimi, H. J. Kim, H. O. Kim, S. K. Kim, Y. J. Kim, K. Kinoshita, S. Korpar, P. Križan, P. Krokovny, R. Kulasiri, R. Kumar, C. C. Kuo, A. Kuzmin, Y.-J. Kwon, M. J. Lee, S. E. Lee, T. Lesiak, A. Limosani, S.-W. Lin, D. Liventsev, F. Mandl, T. Matsumoto, A. Matyja, S. McOnie, T. Medvedeva, W. Mitaroff, K. Miyabayashi, H. Miyake, H. Miyata, Y. Miyazaki, R. Mizuk, G. R. Moloney, T. Mori, E. Nakano, M. Nakao, H. Nakazawa, S. Nishida, S. Noguchi, S. Ogawa, T. Ohshima, S. Okuno, S. L. Olsen, Y. Onuki, H. Ozaki, P. Pakhlov, G. Pakhlova, C. W. Park, H. Park, L. S. Peak, R. Pestotnik, L. E. Piilonen, Y. Sakai, N. Satoyama, T. Schietering, O. Schneider, J. Schümann, C. Schwanda, A. J. Schwartz, K. Senyo, M. E. Sevior, M. Shapkin, H. Shibuya, B. Shwartz, J. B. Singh, A. Somov, N. Soni, S. Stanič, M. Starić, H. Stoeck, T. Sumiyoshi, F. Takasaki, K. Tamai, M. Tanaka, Y. Teramoto, X. C. Tian, I. Tikhomirov, K. Trabelsi, T. Tsukamoto, S. Uehara, K. Ueno, T. Uglov, Y. Unno, S. Uno, P. Urquijo, Y. Usov, G. Varner, K. E. Varvell, K. Vervink, S. Villa, C. H. Wang, Y. Watanabe, E. Won, B. D. Yabsley, A. Yamaguchi, Y. Yamashita, M. Yamauchi, C. C. Zhang, Z. P. Zhang, V. Zhilich, and A. Zupanc

(The Belle Collaboration)
1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3Chonnam National University, Kwangju
4University of Cincinnati, Cincinnati, Ohio 45221
5Department of Physics, Fu Jen Catholic University, Taipei
6The Graduate University for Advanced Studies, Hayama
7University of Hawaii, Honolulu, Hawaii 96822
8High Energy Accelerator Research Organization (KEK), Tsukuba
9Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
10Institute of High Energy Physics, Vienna
11Institute of High Energy Physics, Protvino
12Institute for Theoretical and Experimental Physics, Moscow
13J. Stefan Institute, Ljubljana
14Kanagawa University, Yokohama
15Korea University, Seoul
16Kyungpook National University, Taegu
17Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
18University of Ljubljana, Ljubljana
19University of Maribor, Maribor
20University of Melbourne, Victoria
21Nagoya University, Nagoya
22Nara Women’s University, Nara
23National Central University, Chung-li
24National United University, Miao Li
25Department of Physics, National Taiwan University, Taipei
26H. Niewodniczanski Institute of Nuclear Physics, Krakow
27Nippon Dental University, Niigata
28Niigata University, Niigata
29University of Nova Gorica, Nova Gorica
30Osaka City University, Osaka
31Osaka University, Osaka
32Panjab University, Chandigarh
Abstract

We report measurements of the branching fraction and CP violation parameters in $B^0 \rightarrow D^+ D^-$ decays. The results are based on a data sample that contains $535 \times 10^6 B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance, with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. We obtain $(1.97 \pm 0.20 \text{ (stat)} \pm 0.20 \text{ (syst)}) \times 10^{-4}$ for the branching fraction of $B^0 \rightarrow D^+ D^-$. The measured values of the CP violation parameters are: $S = -1.13 \pm 0.37 \pm 0.09$, $A = 0.91 \pm 0.23 \pm 0.06$, where the first error is statistical and the second is systematic. We find evidence of CP violation in $B^0 \rightarrow D^+ D^-$ at the 4.1σ confidence level. While the value of S is consistent with expectations from other measurements, the value of the parameter A favors large direct CP violation at the 3.2σ confidence level, in contradiction to Standard Model expectations.

PACS numbers: 13.25.Hw, 11.30.Er
Within the Standard Model (SM), CP violation (CPV) arises from a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix V [1]. The dominant contribution to $B^0 \rightarrow D^+ D^-$ decays is the tree-level $b \rightarrow c\bar{d}$ transition shown in Fig. 1(a). If this diagram is the only contribution, then the mixing-induced CP parameter for $B^0 \rightarrow D^+ D^-$ is $-\sin 2\phi_1$, where $\phi_1 = \arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$, while the direct CPV term A is zero. The second-order gluonic penguin contribution, shown in Fig. 1(b), is expected to change the value of the parameter S by less than a few percent and increase the value of A to about 3% [3]. However, particles from physics beyond the SM may give additional contributions within the loop diagrams mediating flavor-changing $b \rightarrow d$ transitions. Such contributions may potentially induce large deviations from the SM expectation for time-dependent CP asymmetries. As $\sin 2\phi_1$ has already been determined with high precision by measurements in $b \rightarrow c\bar{s}s$ charmonium modes [4, 5], the objective here is to focus on deviations from expectations in $b \rightarrow c\bar{d}d$ transitions. Similar studies have been carried out for $B^0 \rightarrow D^{*\pm} D^{(*)\pm}$ decays, which involve the same quark level weak decay [6, 7, 8, 9].

The CPV parameters S and A can be measured from the Δt distribution of $B^0 \rightarrow D^+ D^-$ decays,

$$P_{\text{sig}} = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ 1 + q[S \sin(\Delta m \Delta t) + A \cos(\Delta m \Delta t)] \right\},$$

(1)

where $\Delta t = t_{CP} - t_{\text{tag}}$ is the time difference between decays of the two B mesons arising from the $\Upsilon(4S)$. The parameters t_{CP} and t_{tag} are the proper decay times of the corresponding B mesons, τ is the B^0 meson lifetime and Δm is the mass difference of the two B mass eigenstates [10]. The flavor q is determined from the final state of the tagging B meson: $q = +1 (-1)$ for $B_{\text{tag}} = B^0 (\bar{B}^0)$.

The results presented here are based on a data sample that contains $(535 \pm 7) \times 10^6 B\bar{B}$ pairs, collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider $\sqrt{s} = 3.5$ on 8 GeV) collider [11]. KEKB operates at the $\Upsilon(4S)$ resonance ($\sqrt{s} = 10.58$ GeV) with a
peak luminosity that exceeds 1.7×10^{34} cm$^{-2}$s$^{-1}$. At KEKB, the Υ(4S) is produced with a Lorentz boost of $\beta \gamma = 0.425$ nearly along the electron beam line ($-z$ direction). Since the B^0 and \bar{B}^0 mesons are approximately at rest in the Υ(4S) center-of-mass (CM) system, Δt can be determined from the displacement in z between the B_{CP} and B_{tag} decay vertices:

$$\Delta t \simeq \frac{(z_{CP} - z_{tag})}{\beta \gamma c} \equiv \frac{\Delta z}{\beta \gamma c}.$$

The Belle detector [12] is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K^0_L mesons and to identify muons. Two inner detector configurations were used; a 2.0 cm radius beam pipe and a 3-layer silicon vertex detector was used for the first $152 \times 10^6 B\bar{B}$ pairs and a 1.5 cm beam pipe, a 4-layer silicon detector and a small-cell inner drift chamber were employed for the remaining $383 \times 10^6 B\bar{B}$ pairs [13].

D mesons are reconstructed using the $D^+ \to K^-\pi^+\pi^+$ and $D^+ \to K_S\pi^+$ decay modes [14]. In this paper, the shorter notation $K\pi\pi$ is used when both D mesons are reconstructed in the $K\pi\pi$ channel while $K_S\pi$ is used when at least one of the D mesons is reconstructed in the $K_S\pi$ channel. Charged tracks that are not positively identified as electrons [15] and satisfy a loose requirement on the impact parameter relative to the interaction point (IP) are considered as pion and kaon candidates. For charged particle identification (PID), we combine information from the CDC, TOF and ACC counters into a likelihood ratio $L(K^\pm)/[L(K^\pm) + L(\pi^\pm)]$, which is required to be greater than 0.55 for kaon and less than 0.9 for pion candidates [16]. K_S candidates are reconstructed in the $K_S \to \pi^+\pi^-$ decay mode; the pion combination is required to have an invariant mass within 30 MeV/c2 of the nominal K_S mass and a vertex displaced from the IP. The mass of the D^\pm meson candidate is required to be within 10 MeV/c2 (2.4σ) of the nominal D^\pm mass. We select B meson candidates using the energy difference $\Delta E = E^*_B - E^*_\text{beam}$ and the beam-energy-constrained mass $M_{bc} = \sqrt{(E^*_\text{beam}/c^2)^2 - (p^*_B/c)^2}$, where E^*_B, E^*_beam, and p^*_B are the B meson energy, the beam energy, and the B meson momentum, respectively, in the CM system.

The K_S decay vertex is fitted from two pion tracks. The D^+ meson decay vertex is fitted from three charged tracks or from the K_S and π^+ track. The mass of the $K^-\pi^+\pi^+$
or $K_S\pi^+$ combination is constrained to the D^+ meson mass to obtain better M_{bc} and ΔE resolutions. The B^0 decay vertex is reconstructed from the two D meson tracks and the IP information. All remaining charged tracks are used to determine the decay vertex of the tag-side B meson. A loose requirement on the quality of the vertex fit is applied for both B mesons. The reconstruction of the B_{tag} vertex, vertex quality and flavor tagging are not required for the branching fraction measurement.

The flavor of the accompanying B meson is determined from its decay products. Events are divided into six r-bins according to the tagging quality r. The value of r ranges from 0 for events with no flavor information to 1 for unambiguous flavor assignment. Due to the imperfect flavor tagging, the distribution P_{sig} of Eq. (1) is modified to

$$P_{sig} = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ 1 - q\Delta w + q(1 - 2w) \left[S \sin(\Delta m \Delta t) + A \cos(\Delta m \Delta t) \right] \right\},$$

where w is the wrong tag fraction, and Δw is the difference between the wrong tag fractions if the B_{tag} meson is a \overline{B}^0 or B^0. The values of w and Δw for each of the six bins in the tagging quality parameter r are determined separately using flavor specific B meson decays [17].

Continuum events are suppressed by forming a likelihood ratio from $\cos \theta_B$, where θ_B is the polar angle between the B meson direction in the CM system and the beam axis, and a variable based on a combination of sixteen modified Fox-Wolfram moments with the scalar sum of transverse momentum [18]. Note that since the $B \overline{B}$ and continuum events have significantly different distributions in the tagging quality variable r, the continuum suppression cut varies for events in different r-bins.

After applying all of the event selection criteria, 16% of the signal events have more than one B^0 candidate. The B^0 with the smallest value of $(\Delta m_{D^+}/\sigma_{D^+})^2 + (\Delta m_{D^-}/\sigma_{D^-})^2$ is selected as the best candidate, where $\Delta m_D = M_{K\pi\pi/K_S\pi} - m_D$ is the difference from the nominal D meson mass and σ_{D^\pm} are the widths of the signal peak in the $M_{K\pi\pi/K_S\pi}$ mass distribution.

The signal yield is obtained from an extended unbinned 2D maximum likelihood (ML) fit of the M_{bc} and ΔE distributions in the range $M_{bc} > 5.20\,\text{GeV}/c^2$ and $-0.05\,\text{GeV} < \Delta E < 0.10\,\text{GeV}$. A Gaussian function for the signal and an ARGUS [19] function for the background are used to describe the M_{bc} distribution. For the parameterization of the ΔE
distribution we used two Gaussians with the same mean value to describe the signal and a linear function to describe the background. The fraction and the width of the wider Gaussian were fixed to the values obtained from Monte Carlo (MC) simulated signal decays [20]. Non-resonant $B^0 \to D^- K^{0*} \pi^+$ and $B^0 \to D^- K^{0}(892) \pi^+$ decays are found to be a possible source of background peaking in the M_{bc} and ΔE distributions. The amount of this background was estimated from the D^+ mass sidebands in data and subtracted from the signal. We estimate the number of non-resonant decays in the signal region (N_{nr}) to be 2.0 ± 1.8 and 1.4 ± 1.0 for the $K\pi\pi$ and $K_S\pi$ channels, respectively. The fit yields 150 ± 15 events in the signal peak, where the error is statistical only. The M_{bc} and ΔE distributions of reconstructed events and the projection of the fit result are shown in Fig. 2. The signal yields from separate fits to the $K\pi\pi$ and $K_S\pi$ decay modes are given in Table I.

![Graph](image)

(a) M_{bc}, $|\Delta E| < 0.03$ GeV
(b) ΔE, $M_{bc} > 5.27$ GeV/c^2

FIG. 2: Distributions for the reconstructed events in $M_{bc}c^2$ (a) and ΔE (b). The full (dashed) curves show the projections of the result of the 2D unbinned maximum likelihood fit for all (background) events.

The combined branching fraction is calculated from the total number of reconstructed events and the average reconstruction efficiency, and is found to be $B(B^0 \to D^+ D^-) = [1.97 \pm 0.20 \text{ (stat)} \pm 0.20 \text{ (syst)}] \times 10^{-4}$, which is consistent with previous measurements [21, 22] and has better accuracy. The uncertainty in the D meson branching fractions results in a 5% systematic error. The error in the pion and kaon track reconstruction efficiency was estimated using partially reconstructed D^* decays. The errors are added linearly for all six pion and kaon tracks, which yields a 6% uncertainty. The difference in PID efficiency for the simulated and real data is approximately 1% per track, which gives a 6% uncertainty.
Smaller contributions come from the uncertainty in the K_S selection efficiency (1%), the number of $B\bar{B}$ events (1.3%) and the number of non-resonant decays (1.5%). The total systematic error of 10% is obtained from the quadratic sum of these uncertainties.

Time-dependent CP violation parameters are determined by an unbinned ML fit to the Δt distribution of 219 events in the signal region $5.27 \text{ GeV}/c^2 < M_{bc} < 5.29 \text{ GeV}/c^2$ and $|\Delta E| < 0.03 \text{ GeV}$. The Δt distribution for signal events P_{sig} described by Eq. (2) is modified by the inclusion of the background contribution and resolution effects. The event-by-event likelihood is given by

$$L_{\text{ev}} = f_{\text{sig}} P_{\text{sig}} \otimes R + f_{\text{nr}} P_{\text{nr}} \otimes R + f_{\text{bcg}} P_{\text{bcg}} \otimes R_{\text{bcg}}, \quad (3)$$

Subscripts sig, nr and bcg refer to signal, non-resonant and combinatorial background components, respectively. The fractions $f_i = f_i(M_{bc}, \Delta E, r)$ are determined on an event-by-event basis, $f_{\text{sig}} + f_{\text{nr}} + f_{\text{bcg}} = 1$. The function R describes the detector resolution of the Δt measurement. It takes into account the error in the determination of both B meson vertices as well as an additional kinematic smearing due to the momentum of the B meson in the CM system and the smearing of the tag-side vertex due to the tracks originating from the secondary vertices. An additional wide Gaussian component with $\sigma \approx 20 \text{ ps}$ is added to describe a small fraction of events (about 1%) with poorly reconstructed vertices. A more detailed description of the resolution function parameterization can be found in Ref. [23]. Resolution parameters for the B_{CP} meson vertex are determined from a fit to the Δt distribution of kinematically similar $B^0 \rightarrow D_s^+ D^-$ decays.

The fraction of the non-resonant decays f_{nr} is assumed to be proportional to the signal fraction, $f_{\text{nr}} = a f_{\text{sig}}$, where $a = N_{\text{nr}}/(N_{\text{peak}} - N_{\text{nr}})$ and $a_{K\pi\pi} = 0.016$, $a_{K_S\pi} = 0.059$. The

channel	$B_D^+ \times B_D^-$	ϵ [%]	N_{peak}	N_{bcg}
$K\pi\pi$	(0.904\pm0.065)%	12.6	124.1\pm13.6	110.8\pm2.6
$K_S\pi$	(0.204\pm0.015)%	12.1	25.7\pm5.7	13.8\pm0.9
The \(\Delta t \) distribution of the non-resonant \(B^0 \to D^- K^0 \pi^+ \) or \(B^0 \to D^- K^0(892) \pi^+ \) background is described by the \(\Delta t \) distribution for signal with the parameters \(S \) and \(A \) set to zero. We include the effect of possible \(CP \) asymmetry of these modes in the systematic error. About half of the combinatorial background events come from \(B \bar{B} \) decays \((b \to c \text{ transition}) \), which have an exponential decay \(\Delta t \) distribution. The other half are continuum \(e^+e^- \to q\bar{q} \) events, for which the \(\Delta t \) distribution contains a \(\delta \)-function component. Therefore, the \(\Delta t \) distribution of the background is described by

\[
P_{\text{bcg}} = \frac{1}{2} \left[(1 - f_\delta) \frac{e^{-|\Delta t|/\tau_{\text{bcg}}}}{2\tau_{\text{bcg}}} + f_\delta \delta(\Delta t) \right],
\]

(4)

The background resolution function \(R_{\text{bcg}} \) is taken to be a Gaussian. Parameters describing the background distribution are obtained from a fit to the \(\Delta t \) distribution of the data sideband, \(M_{\text{bc}} < 5.27 \text{ GeV}/c^2 \) and \(\Delta E > 0.06 \text{ GeV} \).

From an unbinned fit to the measured \(\Delta t \) distribution described by Eq. (3), we obtain the \(CP \) violation parameters for \(B^0 \to D^+D^- \),

\[
S = -1.13 \pm 0.37 \pm 0.09 \quad \text{and} \quad A = +0.91 \pm 0.23 \pm 0.06,
\]

(5)

where the first error is statistical and the second is systematic. The \(\Delta t \) distributions are shown in Fig. 3. The main contributions to the systematic error are fit bias (0.06 for \(S \) and 0.02 for \(A \)), uncertainties in the resolution function (0.04 for \(S \) and 0.03 for \(A \)) and signal.
fraction (0.035 for S and 0.015 for A). Other uncertainties come from the errors on the parameters τ and Δm (0.023 for S and 0.007 for A), wrong tag fractions (0.017 for S and 0.014 for A), description of background Δt distribution (0.01 for S and A), fraction and possible CP asymmetry of the non-resonant background (0.02 for S and 0.03 for A), the effect of tag-side interference [24] (0.01 for S and 0.03 for A) and requirements on the vertex quality and the fitting range (less than 0.01 for S and 0.01 for A).

To test the consistency of the fitting procedure, the same analysis was applied to the $B^0 \to D^+_s D^-$ control sample. Since there is only one decay amplitude at the tree level and the leading penguin contributions have the same CKM structure as the tree contribution, no CPV is expected for this decay. The result is consistent with no CPV, $S = -0.064 \pm 0.094$ and $A = 0.091 \pm 0.060$, where the error is statistical only. We also fit the background sample ($M_{bc} < 5.27 \text{GeV}/c^2$ and $\Delta E > 0.06 \text{GeV}$) for a possible CP asymmetry and find none: $A = -0.01 \pm 0.06$ and $S = 0.03 \pm 0.10$. In addition, a time-integrated fit for the parameter A was performed to validate the result in $B^0 \to D^+ D^-$ decays. The signal yield was determined separately for events tagged as $B_{\text{tag}} = B^0$ and $B_{\text{tag}} = B^0$ for each of the six r-bins. The fit yields $A = 0.86 \pm 0.32$, which is consistent with the time-dependent result.

We use the Feldman-Cousins frequentist approach [25] to determine the statistical significance of our measurement. In order to form confidence intervals, we use the A and S distributions of the results of fits to the MC pseudo-experiments for various input values of A and S in a similar way as described in Ref. [26]. The systematic errors and possibility of tails that are wider than Gaussian tails are taken into account. The case of no CPV, $S = A = 0$, is ruled out at the 4.1σ confidence level (CL). The case of no direct CPV, $A = 0$, is excluded at more than 3.2σ CL for any value of the parameter S.

In summary, we measure the branching fraction for $B^0 \to D^+ D^-$ decays to be $(1.97 \pm 0.20 \pm 0.20) \times 10^{-4}$, superseding our previous measurement [21]. We obtain values for the CP parameters $S = -1.13 \pm 0.37 \pm 0.09$ and $A = 0.91 \pm 0.23 \pm 0.06$ and rule out the CP-conserving case, $S = A = 0$, at the 4.1 σ confidence level. The value of S is consistent with measurements of $b \to c\bar{c}s$ modes [10]. In addition, we observe evidence for direct CP violation at the 3.2 σ confidence level. Some extensions of the SM predict large contributions to the CP violating phases in $b \to c\bar{c} d$ decays that are consistent with our result [27]. Our measurement differs from a previous measurement by the BaBar collaboration [8] by about 2.2 σ.

10
We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC and KIP of CAS (China); DST (India); MOEHRD, KOSEF and KRF (Korea); KBN (Poland); MIST (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[2] Another naming convention, $\beta = \phi_1$, is also used in the literature.

[3] Z.-Z. Xing, Phys. Rev. D 61, 014010 (2000).

[4] K.-F. Chen et al. (Belle Collaboration), Phys. Rev. D 72, 012004 (2005); K. Sumisawa et al. (Belle Collaboration), Phys. Rev. Lett. 95, 061801 (2005).

[5] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 71, 091102(R) (2005); Phys. Rev. Lett. 94, 191802 (2005); Phys. Rev. Lett. 95, 011801 (2005).

[6] T. Aushev et al. (Belle Collaboration), Phys. Rev. Lett. 93, 201802 (2004).

[7] H. Miyake et al. (Belle Collaboration), Phys. Lett. B 618, 34 (2005).

[8] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 95, 131802 (2005).

[9] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 95, 151804 (2005).

[10] W.-M. Yao et al., J. Phys. G 33, 1 (2006).

[11] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume.

[12] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002).

[13] Z. Natkaniec et al., Nucl. Instrum. Methods Phys. Res., Sect. A 560, 1 (2006).

[14] The inclusion of the charge conjugate mode decay is implied throughout this paper.

[15] K. Hanagaki et al., Nucl. Instrum. Methods Phys. Res., Sect. A 485, 490 (2002).

[16] E. Nakano, Nucl. Instrum. Methods Phys. Res., Sect. A 494, 402 (2002).

[17] H. Kakuno et al., Nucl. Instrum. Methods Phys. Res., Sect. A 533, 516 (2004).

[18] S.-H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
[19] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).

[20] Events are simulated with the Evtgen generator, D.-J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001); the detector response is simulated with GEANT, R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1, 1984.

[21] G. Majumder et al. (Belle collaboration), Phys. Rev. Lett. 95, 041803 (2005).

[22] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 73, 112004 (2006).

[23] H. Tajima et al., Nucl. Instrum. Methods Phys. Res., Sect. A 533, 370 (2004).

[24] O. Long, M. Baak, R.-N. Cahn and D. Kirkby, Phys. Rev. D 68, 034010 (2003).

[25] G.-J. Feldman and R.-D. Cousins, Phys. Rev. D 57, 3873 (1998).

[26] K. Abe et al. (Belle Collaboration), Phys. Rev. D 68, 012001 (2003).

[27] Y. Grossman, M. Worah, Phys. Lett. B 395, 241 (1997).