Open reduction and closed reduction internal fixation in treatment of femoral neck fractures: a meta-analysis

Weiguo Wang1,2, Junjie Wei3, Zhanwang Xu4*, Wenkun Zhuo1, Yuan Zhang1, Hui Rong1, Xuecheng Cao1 and Pingshan Wang1

Abstract

Background: A meta-analysis was performed to assess the association between healing rate, avascular necrosis (AVN) of femoral head and two reductions-open reduction internal fixation (ORIF) and closed reduction internal fixation (CRIF) for femoral neck fracture.

Methods: A literature-based search was conducted to identify all relevant studies published before September 10, 2013. The odd ratio (OR) and 95% confidence interval (CI) were used for estimating the effects of the two reduction methods. Data were independently extracted by two investigators who reached a consensus on all of the items. The heterogeneity between studies was examined by χ^2-based Q statistic. Egger's regression analysis was used to evaluate publication bias. Statistical analysis was performed by Stata 10.0 software.

Results: We examined 14 publications. The results of the present meta-analysis showed that AVN of femoral head were significant associated with the two reductions (CRIF vs. ORIF, OR = 1.746, 95% CI 1.159-2.628, $p = 0.008$), while the healing rate were not (CRIF vs. ORIF, OR = 0.853, 95% CI 0.573-1.270, $p = 0.433$).

Conclusion: The present meta-analysis indicated the risk of AVN of femoral head was significant higher after CRIF fixation compared with ORIF, but no association between the healing rate and the two reductions for femoral neck fracture.

Keywords: Femoral neck fracture, Open reduction internal fixation, Closed reduction internal fixation

Background

Femoral neck fracture, known as hip fracture, occurs in the proximal end of the femur near the hip, and is often due to osteoporosis [1]. The incidence of femoral neck fracture is increasing at an exponential rate as a result of the longevity of the general population [2]. It is one of the most common consequences of injuries in the elderly population [3]. Despite advances in surgical techniques and medical care, the risk of nonunion and avascular necrosis (AVN) of femoral head after fixation have not changed appreciably in the last 50 years [4].

Emergency internal fixation is one of the main options for the treatment of displaced femoral neck fractures [5]. It contains open reduction internal fixation (ORIF) and closed reduction internal fixation (CRIF). Both of the two methods have their advantages and disadvantages [6]. Although ORIF has advantages of direct look and restoration of normal function, its application still limited by the potential negative effects of nerve damage, swelling, incomplete healing of the bone, increased pressure and blood clot [7]. CRIF has advantages of avoiding injury to the medial circumflex femoral artery [8]. However, intracapsular pressure formed by CRIF compromised femoral head circulation, and prolonged extension and internal rotation position on the fracture table reduced the blood supply to the femoral head, what's more, the repeated forceful manipulation increased the risk of AVN [6]. Thus, the optimal treatment of femoral

* Correspondence: zhanwangxu@hotmail.com
4Department of Orthopaedics, The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.16369, Jingshi Road, 250014 Jinan, China
Full list of author information is available at the end of the article

© 2014 Wang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The healing rate of ORIF and CRIF

A total of nine studies [11-19] met the inclusion and exclusion criteria in the meta-analysis of healing rate of ORIF and CRIF (Table 1), which contained 405 patients of ORIF and 442 patients of CRIF. Egger's regression analysis indicated no publication bias (p = 0.462). No significant heterogeneity was observed among studies (p = 0.462), so a fixed effect model was used and generated a combined OR of 0.853 (95% CI 0.573-1.270). Meta-analysis showed that no significant association between the healing rate and the two reductions (p = 0.433), and the forest plot was presents at Figure 2.

The AVN of ORIF and CRIF

A total of eleven studies [11,12,14,16-18,20-24] met the inclusion and exclusion criteria in the meta-analysis between AVN and the two reductions (Table 2), which contained 478 patients of ORIF and 505 patients of CRIF. Egger regression analysis indicated no publication bias (p = 0.462). No significant heterogeneity was observed among studies (p = 0.462), so a fixed effect model was used and generated a combined OR of 0.853 (95% CI 0.573-1.270). Meta-analysis showed that no significant association between AVN and the two reductions (p = 0.433), and the forest plot was presents at Figure 2.
bias (p = 0.257). No significant heterogeneity was observed among studies (p = 0.507), so a fixed effect model was used and generated a combined OR of 1.746 (95% CI 1.159-2.628). Meta-analysis showed that significant association between AVN and the two reductions (p = 0.008), and the forest plot was presented at Figure 3.

Discussion

Femoral neck plays an important role in weight bearing and movement. ORIF and CRIF are the two common techniques to cure femoral neck fractures. The results of the present meta-analysis showed that there was significant

Study	Year	ORIF Union	ORIF Nonunion	CRIF Union	CRIF Nonunion
Liu [11]	2003	21	21	33	23
Wang [12]	2005	19	1	41	1
Song [13]	2010	14	1	7	5
Zhang [14]	2011	47	3	48	2
Ye [15]	2011	16	12	19	13
Lin [16]	2012	18	1	12	3
Zhou [17]	2012	124	13	113	8
Xia [18]	2013	37	3	33	3
Zhang [19]	2013	43	11	68	10

Table 1 Characteristics of studies included in the meta-analysis of the nonunion rate between the two groups

Study	Year	Normal AVN	Normal AVN
Liu [11]	2003	40	2
Upadhyay [20]	2004	36	8
Wang [12]	2005	18	2
Gao [21]	2008	25	3
Zhang [14]	2011	49	1
Kan [22]	2011	44	5
Kan [23]	2011	15	3
Lin [16]	2012	19	0
Zhou [17]	2012	126	11
Xia [18]	2013	37	3
Mohammad [24]	2013	26	5

Table 2 Characteristics of studies included in the meta-analysis of AVN between the two groups

Figure 2 Forest plots of meta-analysis of nonunion rate. Closed reduction internal fixation vs. open reduction internal fixation.
incidence of AVN of femoral head in CRIF was significant higher than ORIF (OR = 1.746, 95% CI 1.159-2.628, p = 0.008). This might be caused by the pressure of CRIF that compromised the blood supply to the femoral head [6].

Nonunion is caused by a combination of unfavorable biomechanical and vascular conditions, ignoring general contraindications, and inadequate internal fixation [29]. It also related to age, the quality of bone and the pattern of fracture [20]. It was reported that the risk of nonunion was higher in female than male [30]. The effect of smoking and alcohol drinking may also influence the rate of nonunion [31]. Our meta-analysis showed that there was no significant difference of the healing rate between CRIF and ORIF (OR = 0.853, 95% CI 0.573-1.270, p = 0.433).

The early treatment of femoral neck fracture is critical. CRIF is prior for patients with good blood perfusion of the femoral head while the ORIF should be selected for those with poor blood perfusion [12]. It was reported that gentle closed reduction should be tried first, with a maximum of one or two reduction attempts, which could prevent greater displacement with risk of greater damage to the blood supply [32]. Once the CRIF failed, then ORIF should be performed [33]. However, this may increase the risk of AVN as the result of the present study indicated, thus, ORIF is recommended.

There were several limitations in the present meta-analysis that should be noted. First, publication bias, an inherent limitation of all meta-analyses, may still exist because researchers are less likely to publish negative findings, although Egger’s regression analysis did not suggest publication bias in this study. Second, the confounding variables (age, sex, smoking, or alcohol intake) were not adjusted because most of studies didn’t provide respective OR value or sufficient data for calculating OR. Besides, different types of reduction devices may affect the results. Third, we did not perform subgroup analysis for different type of femoral neck fracture because the classifications varied from different studies including Garden [34], Pauwels [35] and Delbet [36] classification. Despite these limitations, the study is still of great importance for evaluating the effects of two reductions for femoral neck fracture treatment, especially considering the main complication - AVN.

Conclusion

In conclusion, our meta-analysis suggested that the risk of AVN of femoral head was significant higher after CRIF compared with ORIF, while there was no significant difference of the healing rate between the two reductions. ORIF offers advantage over CRIF in terms of AVN for treatment of the femoral neck fractures.

Consent

Written informed consent was obtained from the patient for the publication of this report and any accompanying images.
Competing interests
We certify that regarding this paper, no actual or potential conflicts of interests exist; the work is original, has not been accepted for publication nor is concurrently under consideration elsewhere, and will not be published elsewhere without the permission of the Editor and that all the authors have contributed directly to the planning, execution or analysis of the work reported or to the writing of the paper.

Authors’ contributions
WW and JW participated in the design of this study, and they both performed the statistical analysis. ZK and YZ carried out the study, together with WZ, collected important background information, and drafted the manuscript. HR, XC, and PW conceived of this study, and participated in the design and helped to draft the manuscript. All authors read and approved the final manuscript.

Authors’ information
Weiguo Wang and Junjie Wei: The first two authors should be regarded as Joint First Authors.

Author details
1. Department of Orthopaedic Surgery, General Hospital of Jinan Military Command, 250301 Jinan, China. 2. Research on 2013 stage doctoral student of TCM Orthopaedics, Shandong University of Traditional Chinese Medicine, Jinan, China. 3. Outpatient Department, General Hospital of Jinan Military Command, 250301 Jinan, China. 4. Department of Orthopaedics, The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.16369, Jingshi Road, 250014 Jinan, China.

Received: 9 October 2013 Accepted: 23 April 2014

Published: 22 May 2014

References
1. Iorio R, Schwartz B, Macaulay W, Teeneey SM, Healy WL, York S: Surgical treatment of displaced femoral neck fractures in the elderly: a survey of the American Association of Hip and Knee Surgeons. J Arthroplasty 2006, 21:1124–1133.
2. Kyle RF: Fractures of the femoral neck. Instr Course Lect 2009, 58:61–68.
3. Kurniawan S, Dadamieto J, Kweeoto G, Parvanehho N, Butenas T: Mortality after femoral neck fractures: a two-year follow-up. Medicina (Kaunas) 2012, 48:145–149.
4. Schmidt AH, Swiontkowski MF: Femoral neck fractures. Orthop Clin North Am 2002, 33:97–111.
5. Giertsen J-E, Vinge T, Engesæter L, Lie S, Havelin L, Furnes O, Fevang J: Internal screw fixation compared with bipolar hemiarthroplasty for treatment of displaced femoral neck fractures in elderly patients. J Bone Joint Surg Am 2010, 92:619–628.
6. Gautham VK, Anand S, Douhan BK: Management of displaced femoral neck fractures in young adults (a group at risk). Injury 1998, 29:215–218.
7. Open reduction and internal fixation (ORIF). In http://orthoinformation.healthcare.org/evDoc/print/hid155240750
8. Chaouchhi S: Closed reduction, internal fixation with quadratus femoris muscle pedicle bone grafting in displaced femoral neck fracture. Indian J Orthop 2008, 42:33–38.
9. Ross JR, Gardner MJ: Femoral head fractures. Curr Rev Musculoskelet Med 2012, 5:199–205.
10. Cochran WG: The combination of estimates from different experiments. Biometrics 1954, 10:101–129.
11. Liu Z, Liu X, Gong H, Wang Y, Fan W: Comparison of two methods for the treatment of femoral neck fractures. China J Orthop Trauma 2003, 16:257–259.
12. Wang Y: An analysis of the surgical treated 62 cases with femoral neck fracture in youth. Chin Gen Pract 2005, 8:1970–1971.
13. Song KS: Displaced fracture of the femoral neck in children: open versus closed reduction. J Bone Joint Surg Br 2010, 92:1448–1511.
14. Zhang M: Early closed reduction and internal fixation of 50 cases of simple fracture of the femoral neck. China Health Industry 2011, 8:4–5.
15. Ye Z, Qi C, Duan L: Comparative analysis of open reduction and closed reduction in the treatment of femoral neck fractures. China Prac Med 2005, 6:54–55.
16. LIN Z, Sun Y, Wu X, Liu Z, Yin S: Comparison of the effect between early anatomical open reduction, internal fixation and closed reduction, internal fixation for treatment of children displaced femoral neck fracture. China J Orthop Trauma 2012, 25:446–458.
17. Zhou F, Hu Z, Liang W, Li L, Cao S, Ye L: Therapeutic effect of two methods in the treatment of femoral neck fractures in young. J Pract Orthop 2012, 18:835–837.
18. Xia Y: Comparison of two ways in the treatment of displaced femoral neck fracture. Mod Med Health 2013, 29:247–248.
19. Zhang F: Compared the efficacy of open reduction and closed reduction in the treatment of femoral neck fracture. Guide China Med 2013, 11:169–171.
20. Upadhyay A, Jain P, Mishra P, Maini L, Gauthum VK, Dhaon BK: Delayed internal fixation of fractures of the neck of the femur in young adults. A prospective, randomised study comparing closed and open reduction. J Bone Joint Surg (Br) 2004, 86:1035–1040.
21. Gao X, Sun F, GE G, Qiu H: A comparison study on open and closed reduction plus cannulated screws system for femoral neck fractures. J Pract Orthop Q 2008, 14:265–270.
22. Kan W, Zheng Q, Hu J, Chen M, Wang J, Cheng W, Xu M: Open reduction versus closed reduction in treatment of femoral neck fractures. Chin J Orthop Trauma 2008, 18:401–405.
23. Bali K, Suldest P, Patel S, Kumar V, Saini U, Dhilion M: Pediatric femoral neck fractures: our 10 years of experience. Clin Orth Surg 2011, 3:302–308.
24. Javidan M, Bahadori M, Hosseini A: Evaluation the treatment outcomes of intracapsular femoral neck fractures with closed or open reduction and internal fixation by screw in 18-50-year-old patients in Isfahan from Nov 2010 to Nov 2011. Adv Biomed Res 2013, 21:1–14.
25. Razik F, Alesopoulous A-S, El-Cota B, Connolly MJ, Brown A, Hassan S, Ravikumar K: Time to internal fixation of femoral neck fractures in patients under sixty years—does this matter in the development of osteonecrosis of femoral head? PLoS One 2012, 7:e3227–2312.
26. Vandermeer JS, Kamiya N, Aya-ay J, Garces A, Browne R, Kim HK: Local administration of ibandronate and bone morphogenic protein-2 after ischemic osteonecrosis of the immature femoral head in a combined therapy that stimulates bone formation and decreases femoral head deformity. J Bone Joint Surg Am 2011, 93:905–913.
27. Miyata N, Kumagai K, Onaki M, Murata M, Tomita M, Hozumi A, Nozaki Y, Niwa M: Pentosan reduces osteonecrosis of femoral head in SHRSP. Clin Exp Hypertens 2011, 32:511–516.
28. Ko J-H, Wang F-S, Wang C-J, Wong T, Chou W-Y, Tseng S-L: Increased Dickkopf-1 expression accelerates bone cell apoptosis in femoral head osteonecrosis. Bone 2010, 46:594–591.
29. Raaymakers EL, Marti RK: Nonunion of the femoral neck: possibilities and limitations of the various treatment modalities. Indian J Orthop 2008, 42:3–21.
30. Parker MJ, Raghavan R, Gurusamy K: Nonunion of the femoral neck: possibilities and limitations of the various treatment modalities. Acta Orthop Belg 2010, 76:7–13.
31. Huang HK, Su YP, Chiu CM, Chiu FY, Liu CL: Displaced femoral neck fractures in young adults treated with closed reduction and internal fixation. Orthopedics 2010, 33:873–884.
32. Bimmel R, Bakker A, Bosma B, Michielsen J, Monica FAZ: Paediatric hip fractures: a systematic review of incidence, treatment options and complications. Acta Orthop 2010, 81:873–884.
33. Lundby J, Swiontkowski MF: Treatment of femoral neck fractures in young adults. J Bone Joint Surg Am 2008, 90:2254–2266.
34. Garden R: Malreduction and avascular necrosis in subcapital fractures of the femur. J Bone Joint Surg Br 1971, 53:183–197.
35. Paavolts F: Der Schenkelhalsbruch: ein mechanisches Problem: grundlagen des Heilungsvorganges, Prognose und Kausaltheorie. 1935.
36. Mirdad T: Fractures of the neck of femur in children: an experience at the Aseer Central Hospital, Abha, Saudi Arabia. Injury 2002, 33:823–827.

Cite this article as: Wang et al.: Open reduction and closed reduction internal fixation in treatment of femoral neck fractures: a meta-analysis. BMC Musculoskeletal Disorders 2014 15:167.

doi:10.1186/1471-2474-15-167