Isotope-Purification-Induced Reduction of Spin-Relaxation and Spin-Coherence Times in Semiconductors

Oscar Bulancea-Lindvall, Matthew T. Eiles, Nguyen Tien Son, Igor A. Abrikosov, and Viktor Ivády

1 Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
2 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Street 38, Dresden D-01187, Germany
3 Department of Physics of Complex Systems, Eötvös Loránd University, Egyetem tér 1-3, Budapest H-1053, Hungary
4 MTA–ELTE Lendület “Momentum” NewQubit Research Group, Pázmány Péter, Sétány 1/A, Budapest 1117, Hungary

(Received 20 May 2022; revised 15 March 2023; accepted 18 May 2023; published 15 June 2023)

Paramagnetic defects and nuclear spins are often the major sources of decoherence and spin relaxation in solid-state qubits realized by optically addressable point defect spins in semiconductors. It is commonly accepted that a high degree of depletion of nuclear spins can enhance the coherence time by reducing magnetic noise. Here we show that the isotope purification beyond a certain optimal level can become contraproductive when both electron and nuclear spins are present in the vicinity of the qubits, particularly for half-spin systems. Using state-of-the-art numerical tools and considering the silicon-vacancy qubit in various spin environments, we demonstrate that the coupling of the spin-3/2 qubit to a spin bath of spin-1/2 point defects in the lattice can be significantly enhanced by isotope purification. The enhanced coupling shortens the spin-relaxation time that in turn may limit the coherence time of spin qubits. Our results can be generalized to triplet point defect qubits, such as the nitrogen-vacancy center in diamond and the divacancy in silicon carbide.

DOI: 10.1103/PhysRevApplied.19.064046

I. INTRODUCTION

Point defect qubits in semiconductors exhibit long coherence time at cryogenic and room temperature [1–3]. Combining this feature with advanced magneto-optical control of the qubit state has enabled these systems to become the leading contender in several areas of quantum technology [4–6]. The properties of point defect qubits depend to a very large degree on the host material. In particular, magnetic fluctuations in the local spin environment of the defects can profoundly influence the defect’s coherence time, in most cases reducing it by several orders of magnitude from the theoretical upper limit set by the spin-relaxation time [1,7]. As a result, a strategy of chemical and isotope purification in the host material is commonly pursued in order to enhance the coherence time of the point defect qubits. It is believed that this strategy can be applied in most of the cases [1,7–12].

In this paper, we report on a counterintuitive effect that emerges when both electron and nuclear spins are present in the vicinity of the qubits. In particular, we show that isotope purification leads to a significant reduction of the spin-relaxation time, due to enhanced cross-relaxation effects with other paramagnetic defects of similar fine structure. This effect in turn sets a reduced upper limit for the coherence time. We study the phenomenon numerically for the quartet silicon-vacancy center (V_{Si}) in silicon carbide (SiC), where the consequences may be highly significant. Our results can be extended to other semiconductor quantum systems, such as silicon dot spin qubits in silicon.

The negatively charged silicon vacancy in SiC exhibits a quartet ground-state spin with long coherence time [3,13]. This high spin state has been utilized in quantum sensing applications [14–21] and to implement a room-temperature maser [22]. Furthermore, the defect’s favorable optical properties [23,24] and advanced fabrication capabilities [25–27] make it potentially interesting for near-infrared quantum information processing applications [22,26–32]. In 4H-SiC, the V1 and V2 photoluminescence lines and the Tv1-Tv2 electron spin resonance...
(ESR) signals [33–37] are related to the negatively charged silicon vacancy. The V1 and V2 center are assigned to the \(h \) and \(k \) silicon-vacancy configurations, respectively, by comparing with first-principles results [38,39]. In our numerical studies we consider the V2 center, which is the most often studied configuration.

There are two main ingredients of the environmental spin bath in SiC. Natural samples include 4.7% \(^{29}\)Si and most often studied configuration. Numerical studies we consider the V2 center, which is the atomic model incorporating various paramagnetic defects and impurities, whose concentrations may vary over several orders of magnitudes depending on the growth conditions, after growth sample preparation, and nanoscale fabrication. Here, we consider the most common intrinsic spin-1/2 defects, such as the carbon vacancy and carbon-antisite-vacancy pair whose concentration may reach \(10^{15} \) cm\(^{-3} \) in HPSI 4H-SiC [30,40]. We note that this value may increase by 2–3 orders of magnitude due to irradiation and implantation that are frequently used techniques to create silicon-vacancy qubits.

II. METHODS

In our study, we divide the complex ground-state spin Hamiltonian of the quartet silicon-vacancy-environmental spin-bath system into two terms, \(H_1 \) and \(H_2 \), respectively, describing one- and two-spin interaction terms. The one-spin interactions include the zero-field splitting (ZFS) interaction of the quartet silicon vacancy and Zeeman terms of all the spins in the system, i.e.,

\[
H_1 = D \left(S_{0,z}^2 - \frac{5}{4} \right) + g_{\parallel} \mu_B S_{0,z}^3 \frac{S_{0,+}^3}{4i} - S_{0,-} B_z \\
+ g_e \mu_B \sum_{j=0}^{N} S_{j,z} B_z + \mu_N \sum_{k=1}^{M} g_{N,k} I_{k,z} B_z,
\]

where \(S_{j,z} \) is the \(z \) component of the electron spin operator of defect \(j \), \(I_{k,z} \) is the \(z \) component of the nuclear spin operator of nucleus \(k \), \(g_e \) is the electron \(g \) factor, \(\mu_B \) is the Bohr magneton, \(g_{N,k} \) is the \(g \) factor of nucleus \(k \), and \(\mu_N \) is the nuclear magneton. Terms with \(j \neq 0 \) index label the silicon-vacancy spin, while \(j > 0 \) indices label the doublet paramagnetic defects in the environment. The ZFS parameter \(D \) is equal to 35.0 MHz for the V2 silicon-vacancy configuration [38]. The second term on the rhs of Eq. (1) accounts for a nonvanishing higher-order term of the Zeeman interaction of the quartet spin states in \(C_{3v} \) symmetry, where \(g_{3||} = 0.6 \) [16,41].

The two-spin interaction terms account for the hyperfine and the dipolar coupling between qubit and spin-1/2 electron spins, as well as dipolar coupling between nuclear spins, i.e.,

\[
H_2 = \sum_{j=0}^{N} \sum_{k=1}^{M} S_j A_{jk} I_k \\
+ \sum_{i=0}^{N} \sum_{j>i}^{N} \frac{\mu_0}{4\pi} \frac{g_{3||}^2 \mu_B^2}{r_{ij}^3} \left(S_i S_j - 3 (S_i \cdot \hat{r}_{ij}) (S_j \cdot \hat{r}_{ij}) \right) \\
+ \sum_{k=1}^{M} \sum_{l>k}^{M} \frac{\mu_0}{4\pi} \frac{g_{N,k} g_{N,l} \mu_N^2}{r_{kl}^3} \left(I_k I_l - 3 (I_k \cdot \hat{r}_{kl}) (I_l \cdot \hat{r}_{kl}) \right),
\]

where \(A_{jk} \) is the hyperfine tensor, \(\hat{r}_{ij} \) and \(\hat{r}_{kl} \) are the unit vector and distance between spin \(i \) and spin \(j \). \(A_{jk} \) for \(j > 0 \) are mostly unknown as they depend on the paramagnetic defects found in the vicinity of the silicon vacancy. For simplicity, we consider only the hyperfine interaction of the silicon vacancy, i.e., \(A_{jk} = 0 \) for \(j > 0 \), and use the hyperfine coupling tensors obtained from first-principles density-functional-theory calculations in Ref. [42]. However, beyond 15 Å distance from the silicon vacancy, the Fermi contact term is neglected and only the dipolar hyperfine term is considered. All presented couplings are temperature-independent contributions to the spin interactions in the lattice and our numerical models do not include temperature-dependent spin-lattice relaxation effects.

In order to numerically study the Hahn-echo coherence time \((T_2) \) of the quartet silicon-vacancy spin in natural and isotope purified SiC, we employ the second-order generalized cluster-correlation expansion (gCCE-2) method [43]. In contrast to popular collective field models, which assume a statistical model of the spin-bath fluctuations frequently requiring experimental parameters [44,45], the gCCE-2 approach, as well other approaches in this work, allow simulation based on a microscopic model obtainable via first-principles techniques. An outline of the method is provided in Appendix A.

The numerically converged models include \(M \approx 1000 \) nuclear spins within a sphere of radius \(r_{\text{bath}} \) around the qubit. For natural nuclear spin abundance models \(r_{\text{bath}} = 50 \) Å is used, while for lower abundances \(r_{\text{bath}} \) is increased to keep the average number of environmental spins \(M \) fixed. Nuclear spin pairs are considered within the cut-off radius \(r_{\text{dip}} = 6.0 \) Å. The ensemble coherence function is obtained by averaging over 500 randomly generated spin-bath configurations and fitted with an \(A \exp (-(t/T_2)^\alpha) \) function to obtain the Hahn-echo coherence time \(T_2 \). To study the coherence properties of the silicon vacancy, the \(|+3/2 \rangle \) and the \(|+1/2 \rangle \) states are used to implement a qubit.

In order to quantify the dipolar spin-relaxation time \((T_1) \) of the quartet silicon-vacancy spin states in a bath of spin-1/2 electron spins, we utilize the method recently developed in Ref. [42] and briefly reviewed in Ref. [46].
This approach utilizes a clustering scheme to reduce the complexity of the spin population evolution under the assumption of weak intrabath interactions. In this regime, the interaction between bath spins may be neglected in favor of reducing the Hilbert space of the problem while still approximating the evolution of the N-body defect and bath system. For details, see Appendix B.

The considered spin-bath models include \(N = 32 \) electron spins with varying concentration, forming a closed system with the defect. We use the first-order cluster approximation, constraining the Hamiltonian coupling terms to that of pairwise defect-bath interactions, which is suitable for an electron spin bath of short coherence time \([42, 46]\). The time step of the propagation is set to 1 ps, while the simulation time is optimized for the considered concentrations and vary between 0.05 and 1 ms.

Local inhomogeneities at the defect sites due to the hyperfine interaction are included in calculations as an effective magnetic field. Accordingly, the first term on the rhs of Eq. (2) is approximated as \(H_{\text{inhomo}} = \Delta S_{0,z} \), where \(\Delta = \sum_k A_{k,0z} |k_z\rangle \) is the inhomogeneous splitting, or the nuclear Overhauser field in other contexts. Here, the angular bracket represents expectation value, while \(A_z = \sqrt{A_{1z}^2 + A_{2z}^2 + A_{3z}^2} \). The coupling strength between the qubit and the bath spins are obtained in the point-spin density approximation, i.e., by assuming spin dipole-dipole interactions. The \(S_{0,+} S_{j,-} + S_{0,-} S_{j,+} \) term contained within the second term in the rhs of Eq. (2) can effectively couple the quartet and doublet states of the defect-bath spin cluster.

III. RESULTS

First, we study the coherence time of the V2 silicon-vacancy qubit when only nuclear spins are included in the spin bath. The decay of the Hahn-echo coherence function due to a surrounding nuclear spin bath of natural isotope abundance is depicted in Fig. 1. As can be seen, the coherence function decays on two different time scales. Due to the hyperfine interaction driven precession of the nuclear spins, the coherence function partially collapses at first with a time scale comparable with the inhomogeneous coherence time \(T_2^* \). In contrast to the N-V center, the coherence function does not recover later and no coherent beatings can be observed. This irregular behavior is due to the quartet spin state and further discussed in Ref. [47].

The long time scale decay, observable in Fig. 1, is due to the nuclear spin-nuclear spin interaction induced magnetic field fluctuations. The former effect dominates at small magnetic field values, i.e., at strong hyperfine coupling, while the latter effect dominates at high magnetic field values where the hyperfine interaction is suppressed by the Zeeman splitting of the nuclear spin states. The coherence time saturates above 200 Gauss and takes the values of \(T_2 = 1.8 \) ms for natural abundance of paramagnetic nuclei. The strength of the nuclear-spin coupling and thus the saturated high magnetic field coherence time sensitively depend on the abundance of the nuclear spins. As expected, the \(T_2 \) time significantly enhances as the nuclear-spin bath is depleted, see inset of Fig. 1. These results are in accordance with the anticipated behavior of the system and previous results on the coherence time of the silicon vacancy [47].

However, the host material includes not only nuclear spins but also other electron-spin defects in the local environment of the qubits. In order to qualitatively understand the behavior of a quartet electron spin interacting with a bath of spin-1/2 defects, let us first consider the magnetic field dependence of the energy levels of a single quartet-doublet electron-spin pair in Fig. 2(a), as opposed to the many-spin system considered in our quantitative simulations. The relevant physics of the many-spin system can be understood by considering such a 2-spin subsystem. As can be seen in Fig. 2(a), for large magnetic field values the Zeeman interaction dominates. Due to the magnetic splitting of both the quartet and the doublet electron spins \(g_e \approx 2 \) for both spins), the energy levels form five distinct branches, labeled in Fig. 2(a). Note that each of the three innermost branches consist of a pair of states. These pairs include \(\Delta m_S = \pm 1 \) and \(\Delta m_S = \mp 1 \) states of the quartet and the doublet states and can be effectively coupled by the dipole-dipole interaction. This interaction induces spin flip flops of the electron spins, shortens the spin-state lifetime and thus limits the coherence time of the quartet silicon-vacancy qubit states.

Since the dipolar coupling of the electron spins is generally small, any splitting of the spin states within the branches has a significant effect on the lifetime of the states. In this respect, it is noteworthy that the \(|+1/2, -1/2\rangle \) and the \(|-1/2, +1/2\rangle \) states are degenerate, when only ZFS and Zeeman interactions are taken into
In order to quantify the hyperfine interaction-induced inhomogeneity, we study the distribution of the hyperfine splitting of the $m_S = \{-1/2, +1/2\}$ subspace of the quartet silicon vacancy, Δ, shown in Fig. 3. The distribution exhibits several distinct and isolated peaks. The largest peak corresponds to configurations with no first and second nearest-neighbor nuclear spins. Going from lower to higher splitting, the second, third, and fourth peaks include configurations with one, two, and three second nearest-neighbor 29Si nuclear spins. This series continues with vanishing peak heights. Furthermore, there are two additional noticeable peaks beyond 20 MHz that correspond to one 13C and zero 29Si nuclear spin and one 13C and one 29Si nuclear spins in the first and second neighborhood shell of the silicon vacancy.

The hyperfine interaction-induced local inhomogeneity is approximated by an inhomogeneous magnetic field acting on the silicon vacancy, which splits the $m_S = \{-1/2, +1/2\}$. The field is here defined as the median of the effective hyperfine strength.
distribution of the random environment ensemble, i.e., as median \(\left(\sum_k \sqrt{A_{k,zz}^2 + A_{k,zz}^2 + A_{k,zz}^2} \right) \) for hyperfine tensor components between the qubit and nuclear spins, \(k \) denoting the nuclear-spin index within each spin configuration. We note that a single value cannot properly characterize a multipeak distribution observed in Fig. 3, however, in paramagnetic isotope depleted samples the amplitude of the peaks beyond the first peak are significantly reduced and the distribution converges to a single peak-asymmetric distribution. In such cases, the median is a good measure of the distribution of the maximal hyperfine splitting. The median as a function of the \(^{29}\text{Si} \) abundance is depicted in the inset of Fig. 3. As can be seen, the median of the hyperfine splitting approaches zero as the paramagnetic silicon isotopes are depleted.

Combining our results presented so far, we conclude that the isotope purification can reduce the inhomogeneous splitting of the qubit states, which in turn may enhance the coupling and cross-relaxation effects between the quartet spin states and spin-1/2 defects in the local environment, see Fig. 2(c). This counterintuitive phenomena may lead to a drastically reduced spin-state lifetime that sets the maximum for the coherence time. To quantify this effect, we calculate the spin relaxation time \(T_1 \) of the \(|+1/2\rangle\) state of the silicon vacancy for various spin-1/2 paramagnetic point defect concentrations, as a function of the \(^{29}\text{Si} \) abundance and zero \(^{13}\text{C} \) abundance. The choice of \(^{13}\text{C} \) abundance simplifies the analysis and may be justified by the fact that \(^{29}\text{Si} \) and \(^{13}\text{C} \) relaxation and decoherence contributions are comparable mainly at similar abundances (e.g., see inset of Fig. 1). At the same abundances, \(^{13}\text{C} \) may yield a stronger splitting field due to its larger nuclear magnetic moment and first neighbor proximity. However, we do not expect any qualitative differences for different nuclear-spin types.

We define the absolute maximum of the coherence time as \(T_{2,max} = 2T_1 \). Here, we note that in experiments \(T_{2,max} \approx 0.5T_1 \) is found for the N-V center \([9]\), therefore our results can be considered as an upper bound. To obtain the coherence time when both nuclear spins and electron spins are included in the local environment of the silicon vacancy, we use the \(T_{2}^{-1} = T_{2,nuc}^{-1} + T_{2,max}^{-1} \) relation, where the last term accounts for decoherence effects due to nuclear-spin flip-flop-induced magnetic fluctuations.

The results on the ensemble averaged coherence time are depicted in Fig. 4. The individual relaxation times and coherence times are shown in Appendix C. As can be seen the coherence time can be significantly reduced both by the increase of the electron-spin concentration and the depletion of the paramagnetic isotopes. In high spin-1/2 defect concentration (approximately equal to \(10^{18} \text{ cm}^{-3} \)) \(T_2 \) is limited by the paramagnetic defects and cannot reach higher than approximately 100 \(\mu \text{s} \). As the defect concentration reduces, the theoretical maximum of the coherence time rapidly increases and the fluctuation of the nuclear-spin bath starts to limit the coherence time in natural abundance, see the calculated \(T_2 \) time at, for instance, natural abundance of \(^{29}\text{Si} \) isotope in Fig. 4. Isotope purification not only reduces magnetic field fluctuations but also enhances cross-relaxation effects that may become the major limiting factor in the coherence time in nuclear-spin depleted samples, see Fig. 4. We note that even a very low concentration of spin-1/2 defect may have a dramatic effect on the coherence time in highly isotope purified samples.

![FIG. 3. The distribution of the hyperfine splitting \(\Delta \) of the \(m_S = \{-1/2, +1/2\} \) subspace of the quartet electron spin in natural abundance. The inset shows the variation of the median of the hyperfine splitting distribution, including calculated medians and a power-law fit, as a function of the paramagnetic \(^{29}\text{Si} \) abundance, with no carbon isotope spins.](image)

![FIG. 4. Paramagnetic \(^{29}\text{Si} \) abundance dependence of the spincoherence time at various spin-1/2 point defect concentrations. \(T_{2,nuc} \) (dashed black line) is obtained at 200 G by including \(^{29}\text{Si} \) nuclear spins in the environment only. The theoretical maximum of the coherence time \(T_{2,max} \) is set by spin relaxation due to electron spins (plotted by colored dashed lines). The coherence time \(T_2 \) is obtained by combining these effects (colored thick solid lines).](image)
IV. DISCUSSION AND CONCLUSION

Temperature-dependent relaxation effects and other magnetic-field-independent effects are not accounted for in Fig. 4 and may become relevant for less purified samples. These contributions will provide an additional term to the relaxation rate, setting an upper bound on the T_1 time. Photoluminescence and electron paramagnetic resonance measurements have estimated the relaxation time of the silicon vacancy in a sample of natural abundance at room temperature to approximately 40–100 µs [51,52], setting the upper bound on $T_{2,\text{max}} = 2T_1$ below the limit of a 10^{17} cm$^{-3}$ electron-spin-bath concentration up to natural 29Si abundance. Measurements at lower temperatures showed a roughly exponentially decreasing trend of the relaxation rate, with T_1 times of 400 µs at 200 K and 1700 µs at 100 K [52]. Therefore, the enhanced hyperfine-driven relaxation studied in this work, limiting the T_2 time more than the nuclear-spin dipolar contribution, would be observable for studied concentrations below 100 K even for less purified samples, but also at room temperature depending on the sample and electron-spin-bath concentration.

Very recently a nanophotonic device integrating V2 qubit with excellent spin properties was realized in Ref. [27]. The spin-coherence time is found to be 1.39 ms in a high-purity isotope purified sample. The isotope abundance of the sample is estimated to be 28Si > 99.85% and 12C > 99.98%. Considering only magnetic field fluctuations due to the residual nuclear-spin bath (approximately 0.15% 28Si), we would expect a coherence time close to 25 ms. The order of magnitude difference indicates that the coherence time is limited by an effect other than nuclear-spin flip flops. Based on our results, interaction with electron spins in the lattice is a possible source of decoherence in this experiment.

Our qualitative and quantitative results are obtained for the quartet silicon vacancy in SiC, with the inhomogeneous hyperfine splitting as the main source of degeneracy lifting. The spin Hamiltonian and the results in Fig. 4 can be generalized to other spin-1/2 or spin-3/2 electron-spin-qubit systems not experiencing any additionally major degeneracy splitting. For instance, spin qubits in silicon quantum dots is an area where our findings can be easily generalized and applied [53,54]. Furthermore, our results can be generalized to spin-1 point defect qubits interacting with other spin-1 environmental defects, which can also exhibit nearly degenerate spin states coupled by the dipolar interaction. Although, for spin-1 defects, the differences of the ZFS can also contribute to the splitting of the coupled states and possibly suppress cross-relaxation effects. Relaxation of the spin states is the most efficient when nearby spin-1 defects of the same kind are coupled to each other, e.g., in a dense N-V center ensemble.

ACKNOWLEDGMENTS

We acknowledge support from the Knut and Alice Wallenberg Foundation through WBSQD2 project (Grant No. 2018.0071). Support from the Swedish Government Strategic Research Area SeRC and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009 00971) is gratefully acknowledged. This research is supported by the National Research, Development, and Innovation Office of Hungary within the Quantum Information National Laboratory of Hungary (Grant No. 2022-2.1.1-NL-2022-00004) and within the grant FK 145395. N.T.S. acknowledges the support from the EU H2020 project QuanTELCO (Grant No. 862721). The calculations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre (NSC), partially funded by the Swedish Research Council through grant agreement no. 2018-05973.

APPENDIX A: CLUSTER-CORRELATION EXPANSION

The cluster-correlation expansion (CCE) is a method for evaluating the coherence function of an ensemble many-body spin system based on a clustering approximation under the assumption of weak coupling between the spins. As outlined in Refs. [55–57], a Hamiltonian like in Eqs. (1) and (2) may have the resulting coherence function cluster-expanded,

$$\mathcal{L} = \mathcal{L}_0 \left(\prod_{i=1}^{N} \hat{\mathcal{L}}_i \right) \left(\prod_{i_1 \neq i_2}^{N} \hat{\mathcal{L}}_{i_1,i_2} \right) \cdots = \prod_{c \subset C_N} \hat{\mathcal{L}}_c, \quad (A1)$$

for an N-spin system, C_N, with every possible subsystem contained in C_N and a phase factor \mathcal{L}_0. The $\hat{\mathcal{L}}_i$, $\hat{\mathcal{L}}_{i_1,i_2}$, and $\hat{\mathcal{L}}_c$ are the spin-correlation functions for clusters of size one involving spin i, two-body clusters involving spins i_1 and i_2 etc., and for an arbitrary cluster c. The factorization is truncated to order M in practice at sufficient accuracy, denoted as performing the CCE-M approach. If applied to systems of limited interaction order, the spin-correlation functions of many-body clusters can be defined recursively, i.e.,

$$\hat{\mathcal{L}}_c = \frac{\mathcal{L}_c}{\prod_{c' \subset c} \hat{\mathcal{L}}_{c'}}, \quad (A2)$$

with the spin-coherence function $\mathcal{L}_c = \text{Tr}(\rho_c(t)S_z) / \text{Tr}(\rho_c(0))$ for the c-cluster density matrix ρ_c. The time-evolved cluster-restricted density matrix is obtained by propagation with appropriate propagator, in this case $U(t) = e^{-iH_c t}$ for free decay where H_c is determined by
dropping all terms in Eqs. (1) and (2) not involving spins in cluster \(c\).

In the case of the generalized CCE (gCCE) \cite{58,59}, the cluster-expansion approach is applied to the density-matrix components of the qubit, assuming a correlation function expansion of

\[
\rho_{ab} = \rho_{ab}^0 \prod_{i} \tilde{\rho}_{ab}^{i} \prod_{i,j} \tilde{\rho}_{ab}^{i,j} \ldots , \tag{A3}
\]

and recursion relation

\[
\tilde{\rho}_{ab} = \frac{\langle a|\rho_x|b \rangle}{\prod_{c' < c} \rho_{ab}^{c'}} . \tag{A4}
\]

Expanding the components themselves allows the evolution to also account for relaxation phenomena and the implied limitation of the coherence in proximity to level anticrossings.

APPENDIX B: THE EXTENDED LINDBLADIAN METHOD

The extended Lindbladian approach is used to simulate the population dynamics of a many-body spin system. The system is modeled to consist of a central spin in an environment of bath spins with dipolar coupling, which Hamiltonian can be written

\[
H_{tot} = H_{\text{defect}} + \sum_{i=1}^{N-1} H_{\text{bath},i} + \sum_{i<j} H_{ij} , \tag{B1}
\]

corresponding to Eqs. (1) and (2) in this work, with terms, respectively, describing the Hamiltonian of the defect spin labeled as spin 0, the bath spins labeled 1 to \(N-1\) and the dipolar interaction terms \(H_{ij}\) between spins \(i\) and \(j\) .

This system is divided into \(M\)-body clusters \(\{c_k\}\) each containing the defect and \((M-1)\)-bath spins, with respective cluster Hamiltonian

\[
H_{c_k} = H_{\text{defect}} + \sum_{i \neq 0, i \in c_k} H_{\text{bath},i} + \sum_{i \neq j, i,j \in c_k} H_{ij} + \beta_{c_k} , \tag{B2}
\]

where \(\beta_{c_k}\) is an effective field to include the spin level change from spins outside the cluster. The time propagation of the system is performed by evolving each cluster density matrix \(\rho_{c_k}\) separately while introducing a collective coupling in the form of the extended Lindbladian, \(\mathcal{L}_{c_k}\),

\[
\frac{d\rho_{c_k}}{dt} = -\frac{i}{\hbar} \left[H_{c_k}, \rho_{c_k}\right] + \mathcal{L}_{c_k}(\{b_{c_k,mn}\}, \rho_{c_k}) . \tag{B3}
\]

The Lindbladian coupling for each cluster incorporates the relaxation rate of the defect experienced in other cluster systems due to the bath spins in those clusters and is defined as

\[
\mathcal{L}_{c_k}(\{b_{c_k,mn}\}, \rho_{c_k}) = \sum_{mn} \frac{b_{c_k,mn}}{\text{Tr}\left(C_{mn}^+ C_{mn}\rho_{c_k}\right)} \times \left(C_{mn} \rho_{c_k} C_{mn}^+ - \frac{1}{2} \{ \rho_{c_k}, C_{mn}^+ C_{mn} \} \right) , \tag{B4}
\]

using the jump operator acting on the defect spin states \(|m\rangle\) and \(|n\rangle\), \(C_{mn} = |m\rangle\langle n| \otimes \rho_{c_k} I_1\), and where the corresponding dynamic flip-flop rates \(b_{c_k,mn}\) are chosen at the simulation step to achieve the desired description.

The time evolution with the Hamiltonian of Eq. (B2) for a short period time, \(dt\), yields a finite difference that we write as

\[
\delta \rho_{c_k} = -\frac{i}{\hbar} \left[H_{c_k}, \rho_{c_k}(t)\right] dt . \tag{B5}
\]

The defect is also evolved in isolation to give \(\delta \rho_d\) as a reference for the inherent effect of the defect Hamiltonian. Using these finite differences, Lindbladian couplings representative of each cluster evolution \(a_{c_k,mn}\), as well as for the isolated defect evolution \(a_{d,mn}\) are determined and collected to form the collective flip-flop rates

\[
b_{c_k,mn} = \sum_{j \neq k} (a_{c_j,mn} - a_{d,mn}) , \tag{B6}
\]

by having the \(a_{c_k,mn}\) couplings satisfy

\[
\text{diag}\left(\text{Tr}_B \delta \rho_{c_k}\right) = \text{diag}\left(\text{Tr}_B \mathcal{L}(a_{c_k,mn}, \rho_{c_k})\right) , \tag{B7}
\]

where \(\text{Tr}_B\) denotes the partial trace over cluster bath spins. Finally, the density matrix populations of each cluster are updated with both the inherent evolution and collective Lindbladian couplings

\[
\rho_{c_k}(t+dt) = \rho_{c_k}(t) + \delta \rho_{c_k} + \mathcal{L}(\{b_{c_k,mn}\}, \rho_{c_k}) . \tag{B8}
\]

We note that the applied method, in principle, allows for an arbitrary cluster size and therefore can be made increasingly precise as necessary. However, for the present work, a two-body clustering of the defect and bath is deemed sufficient.

APPENDIX C: THE EFFECT OF NUCLEAR-SPIN ABUNDANCE ON RELAXATION AND DECOHERENCE

For further description of obtained relaxation and coherence times for the silicon vacancy, shown in Fig. 4 of the paper, we show individual calculation results separately here in Fig. 5. Results are obtained as a function of the \(^{29}\text{Si}\) abundance in the local spin environment, although the
abundance for relaxation time calculations corresponded to a hyperfine field splitting described by the inset of Fig. 3. Both kinds of coherence loss could, respectively, be well described by a power law as a function of abundance. In the summary presented in Fig. 4, the limitation, which the relaxation time puts on the coherence time, is taken as 2T1, i.e., twice the values presented in Fig. 5(b). Comparing Fig. 5(a) and 5(b), the limit set by the relaxation time is seen to dominate at low abundances, especially for higher electron-spin concentrations.

[1] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Ultralong spin coherence time in isotopically engineered diamond, Nat. Mater. 8, 383 (2009).

[2] D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. U. Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, Isolated electron spins in silicon carbide with millisecond coherence times, Nat. Mater. 14, 160 (2015).

[3] D. Simin, H. Kraus, A. Sperlich, T. Ohshima, G. V. Astakhov, and V. Dyakonov, Locking of electron spin coherence above 20 ns in natural silicon carbide, Phys. Rev. B 95, 161201(R) (2017).

[4] J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom, Quantum computing with defects, PNAS 107, 8513 (2010).

[5] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).

[6] D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, Quantum technologies with optically interfaced solid-state spins, Nat. Photonics 12, 516 (2018).

[7] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, Coherent dynamics of coupled electron and nuclear spin qubits in diamond, Science 314, 281 (2006).

[8] N. Mizuochi, P. Neumann, F. Rempp, J. Beck, V. Jacques, P. Siusushev, K. Nakamura, D. J. Twitchen, H. Watanabe, S. Yamasaki, F. Jelezko, and J. Wrachtrup, Coherence of single spins coupled to a nuclear spin bath of varying density, Phys. Rev. B 80, 041201(R) (2009).

[9] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, Solid-state electronic spin coherence time approaching one second, Nat. Commun. 4, 1743 (2013).

[10] T. Yamamoto, T. Umeda, K. Watanabe, S. Onoda, M. L. Markham, D. J. Twitchen, B. Naydenov, L. P. McGuinness, T. Teraji, S. Koizumi, F. Dolde, H. Fedder, J. Honert, J. Wrachtrup, T. Ohshima, F. Jelezko, and J. Isoya, Extending spin coherence times of diamond qubits by high-temperature annealing, Phys. Rev. B 88, 075206 (2013).

[11] E. D. Herbschleb, H. Kato, Y. Maruyama, T. Danjo, T. Makino, S. Yamasaki, I. Ohki, K. Hayashi, H. Morishita, M. Fujiwara, and N. Mizuochi, Ultra-long coherence times amongst room-temperature solid-state spins, Nat. Commun. 10, 3766 (2019).

[12] C. P. Anderson, E. O. Glen, C. Zeledon, A. Bourassa, Y. Jin, Y. Zhu, C. Vorwerk, A. L. Crook, H. Abe, J. Ul-Hassan, T. Ohshima, N. T. Son, G. Galli, and D. D. Awschalom, Five-second coherence of a single spin with single-shot readout in silicon carbide, Sci. Adv. 8, eabm5912 (2022).

[13] M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, Coherent control of single spins in silicon carbide at room temperature, Nat. Mater. 14, 164 (2015).

[14] H. Kraus, V. A. Soltamov, F. Fuchs, D. Simin, A. Sperlich, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide, Sci. Adv. 8, eabm5912 (2022).

[15] S.-Y. Lee, M. Niethammer, and J. Wrachtrup, Vector magnetometry based on s = 3/2 electron spins, Phys. Rev. B 92, 115201 (2015).

[16] D. Simin, V. A. Soltamov, A. V. Poshaykinskyi, A. N. Anisimov, R. A. Babunts, D. O. Tolmachev, E. N. Mokhov, M. Trupke, S. A. Tarasenko, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide, Phys. Rev. X 6, 031014 (2016).

[17] M. Niethammer, M. Widmann, S.-Y. Lee, P. Stenberg, O. Kordina, T. Ohshima, N. T. Son, E. Janzén, and J. Wrachtrup, Vector Magnetometry using Silicon Vacancies in 4h-SiC under Ambient Conditions, Phys. Rev. Appl. 6, 034001 (2016).
[18] A. N. Anisimov, D. Simin, V. A. Soltamov, S. P. Lebedev, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Optical thermometry based on level anticrossing in silicon carbide, Sci. Rep. 6, 33301 (2016).

[19] V. A. Soltamov, C. Kasper, A. V. Poshakinskiy, A. N. Anisimov, E. N. Mokhov, A. Sperlisch, S. A. Tarasenko, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Excitation and coherent control of spin qudit modes in silicon carbide at room temperature, Nat. Commun. 10, 1678 (2019).

[20] T. M. Hoang, H. Ishiwata, Y. Masuyama, Y. Yamazaki, K. Kojima, S.-Y. Lee, T. Ohshima, T. Iwasaki, D. Hisamoto, and M. Hatano, Thermometric quantum sensor using excited state of silicon vacancy centers in 4H-SiC devices, Appl. Phys. Lett. 118, 044001 (2021).

[21] J. B. S. Abraham, C. Gutgsell, D. Todorovski, S. Sperling, J. E. Epstein, B. S. Tien-Street, T. M. Sweeney, J. J. Wathen, E. A. Pogue, P. G. Brereton, T. M. McQueen, W. Frey, B. D. Clader, and R. Osier, Nanotesla Magnetometry with the Silicon Vacancy in Silicon Carbide, Phys. Rev. Appl. 15, 064022 (2021).

[22] H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlisch, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Room-temperature quantum microwave emitters based on spin defects in silicon carbide, Nat. Phys. 10, 157 (2014).

[23] P. Udvarhelyi, G. M. H. Thiering, N. Mørioka, C. Babin, F. Kaiser, D. Lukin, T. Ohshima, J. Ul Hassan, N. T. Son, J. Vučković, J. Wrachtrup, and A. Gali, Vibronic States and Their Effect on the Temperature and Strain Dependence of Silicon-Vacancy Qubits in 4H-SiC, Phys. Rev. Appl. 13, 054017 (2020).

[24] P. Udvarhelyi, R. Nagy, F. Kaiser, S.-Y. Lee, J. Wrachtrup, and A. Gali, Spectrally Stable Defect Qubits with No Inversion Symmetry for Robust Spin-to-Photon Interface, Phys. Rev. Appl. 11, 044022 (2019).

[25] M. Widmann, M. Niethammer, D. Y. Fedyanin, I. A. Khramtsov, T. Rendler, I. D. Booker, J. Ul Hassan, N. Mørioka, Y.-C. Chen, I. G. Ivanov, N. T. Son, J. Vučković, J. Wrachtrup, and A. Gali, Vibronic States and Their Effect on the Temperature and Strain Dependence of Silicon-Vacancy Qubits in 4H-SiC, Phys. Rev. Appl. 13, 054017 (2020).

[26] D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruyssse, G. H. Ahn, and J. Vučković, 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics, Nat. Photonics 14, 330 (2020).

[27] C. Babin, et al., Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence, Nat. Mater. 21, 67 (2022).

[28] P. Baranov, I. Il’in, E. Mokhov, M. Muzafarov, S. Orlin斯基, and J. Schmidt, Epr identification of the triplet ground state and photoinduced population inversion for a Si-C divacancy in silicon carbide, JETP Lett. 82, 441 (2005).

[29] D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlisch, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Iljin, and G. V. Astakhov, Resonant Addressing and Manipulation of Silicon Vacancy Qubits in Silicon Carbide, Phys. Rev. Lett. 109, 226402 (2012).

[30] R. Nagy, M. Niethammer, M. Widmann, Y.-C. Chen, P. Udvarhelyi, C. Bonato, J. U. Hassan, R. Karhu, I. G. Ivanov, N. T. Son, J. R. Maze, T. Ohshima, O. O. Soykal, A. Gali, S.-Y. Lee, F. Kaiser, and J. Wrachtrup, High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide, Nat. Commun. 10, 1954 (2019).

[31] N. Morioka, et al., Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide, Nat. Commun. 11, 2516 (2020).

[32] J.-F. Wang, F.-F. Yan, Q. Li, Z.-H. Liu, J.-M. Cui, Z.-D. Liu, A. Gali, J.-S. Xu, C.-F. Li, and G.-C. Guo, Robust coherent control of solid-state spin qubits using anti-Stokes excitation, Nat. Commun. 12, 3223 (2021).

[33] T. Wimbauer, B. K. Meyer, A. Hofstätter, A. Scharrmann, and H. Overhof, Negatively charged Si vacancy in 4H SiC: A comparison between theory and experiment, Phys. Rev. B 56, 7384 (1997).

[34] N. Mizuochi, S. Yasamaki, H. Takizawa, N. Morishita, T. Ohshima, H. Itoh, and J. Isoya, Continuous-wave and pulsed epr study of the negatively charged silicon vacancy with $s = \frac{1}{2}$ and C_{2v} symmetry in n-type 4H-SiC, Phys. Rev. B 66, 235202 (2002).

[35] S. B. Orlinski, J. Schmidt, E. N. Mokhov, and P. G. Baranov, Silicon and carbon vacancies in neutron-irradiated SiC: A high-field electron paramagnetic resonance study, Phys. Rev. B 67, 125207 (2003).

[36] N. Mizuochi, S. Yasamaki, H. Takizawa, N. Morishita, T. Ohshima, H. Itoh, T. Umeda, and J. Isoya, Spin multiplicity and charge state of a silicon vacancy (T12a) in 4H-SiC determined by pulsed epr, Phys. Rev. B 72, 235208 (2005).

[37] N. T. Son, P. Stenberg, V. Jokubavičius, T. Ohshima, J. U. Hassan, and I. G. Ivanov, Ligand hyperfine interactions at silicon vacancies in 4H-SiC, J. Phys.: Condens. Matter 31, 195501 (2019).

[38] V. Ivády, J. Davidsson, N. T. Son, T. Ohshima, I. A. Abríkosov, and A. Gali, Identification of Si-vacancy related room-temperature qubits in 4H silicon carbide, Phys. Rev. B 96, 161114(R) (2017).

[39] J. Davidsson, V. Ivády, R. Armiento, T. Ohshima, N. T. Son, A. Gali, and I. A. Abríkosov, Identification of divacancy and silicon vacancy qubits in 6H-SiC, Appl. Phys. Lett. 114, 112107 (2019).

[40] N. T. Son, P. Carlsson, J. ul Hassan, B. Magnusson, and E. Janzén, Defects and carrier compensation in semi-insulating 4H-SiC substrates, Phys. Rev. B 75, 155204 (2007).

[41] V. Ivády, I. A. Abríkosov, and A. Gali, First principles calculation of spin-related quantities for point defect qubit research, npj Comput. Mater. 4, 76 (2018).

[42] V. Ivády, Longitudinal spin relaxation model applied to point-defect qubit systems, Phys. Rev. B 101, 155203 (2020).

[43] M. Onizhuk, K. C. Miao, J. P. Blanton, H. Ma, C. P. Anderson, A. Bourassa, D. D. Awschalom, and G. Galli, Probing the Coherence of Solid-State Qubits at Avoided Crossings, PRX Quantum 2, 010311 (2021).

[44] R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, Coherent dynamics of a single spin interacting with an adjustable spin bath, Science 320, 352 (2008).

[45] N. Bar-Gill, L. Pham, C. Belthangady, D. Le Sage, P. Cappellaro, J. Maze, M. Lukin, A. Yacoby, and R. Walsworth,
Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems, Nat. Commun. 3, 858 (2012).

[46] O. Bulancea-Lindvall, N. T. Son, I. A. Abrikosov, and V. Ivády, Dipolar spin relaxation of divacancy qubits in silicon carbide, npj Comput. Mater. 7, 1 (2021).

[47] L.-P. Yang, C. Burk, M. Widmann, S.-Y. Lee, J. Wrachtrup, and N. Zhao, Electron spin decoherence in silicon carbide nuclear spin bath, Phys. Rev. B 90, 241203(R) (2014).

[48] O. Bulancea-Lindvall, M. T. Eiles, N. T. Son, I. A. Abrikosov, and V. Ivády, Low-Field Microwave-Free Magnetometry using the Dipolar Spin Relaxation of Quartet Spin States in Silicon Carbide, Phys. Rev. Appl. 19, 034006 (2023).

[49] A. J. Ramsay and A. Rossi, Relaxation dynamics of spin-$\frac{1}{2}$ silicon vacancies in 4H-SiC, Phys. Rev. B 101, 165307 (2020).

[50] H. J. von Bardeleben, S. A. Zargaleh, J. L. Cantin, W. B. Gao, T. Biktagirov, and U. Gerstmann, Transition metal qubits in 4H-silicon carbide: A correlated EPR and DFT study of the spin $S = 1$ vanadium V3+ center, Phys. Rev. Mater. 3, 124605 (2019).

[51] H. Singh, A. N. Anisimov, S. S. Nagalyuk, E. N. Mokhov, P. G. Baranov, and D. Suter, Experimental characterization of spin-$\frac{1}{2}$ silicon vacancy centers in 6H-SiC, Phys. Rev. B 101, 134110 (2020).

[52] V. A. Soltamov, B. V. Yavkin, A. N. Anisimov, H. Singh, A. P. Bundakova, G. V. Mamin, S. B. Orlinskii, E. N. Mokhov, D. Suter, and P. G. Baranov, Relaxation processes and high-field coherent spin manipulation in color center ensembles in 6H-SiC, Phys. Rev. B 103, 195201 (2021).

[53] A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P. de Leon, and F. Kuemmeth, Semiconductor qubits in practice, Nat. Rev. Phys. 3, 157 (2021).

[54] G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, Semiconductor spin qubits, ArXiv:2112.08863 (2021).

[55] W. Yao, R.-B. Liu, and L. J. Sham, Theory of electron spin decoherence by interacting nuclear spins in a quantum dot, Phys. Rev. B 74, 195301 (2006).

[56] W. Yang and R.-B. Liu, Quantum many-body theory of qubit decoherence in a finite-size spin bath, Phys. Rev. B 78, 085315 (2008).

[57] S. Kanai, F. J. Heremans, H. Seo, G. Wolfowicz, C. P. Anderson, S. E. Sullivan, M. Onizhuk, G. Galli, D. D. Awschalom, and H. Ohno, Generalized scaling of spin qubit coherence in over 12,000 host materials, Proc. Natl. Acad. Sci. 119, e2121808119 (2022).

[58] Z.-S. Yang, Y.-X. Wang, M.-J. Tao, W. Yang, M. Zhang, Q. Ai, and F.-G. Deng, Longitudinal relaxation of a nitrogen-vacancy center in a spin bath by generalized cluster-correlation expansion method, Ann. Phys. 413, 168063 (2020).

[59] M. Onizhuk, K. C. Miao, J. P. Blanton, H. Ma, C. P. Anderson, A. Bourassa, D. D. Awschalom, and G. Galli, Probing the Coherence of Solid-State Qubits at Avoided Crossings, PRX Quantum 2, 010311 (2021).