A CONVERSE THEOREM FOR DEGREE 2 ELEMENTS OF THE SELBERG CLASS WITH RESTRICTED GAMMA FACTOR.

MICHAEL FARMER

Abstract. We prove a converse theorem for a family of L-functions of degree 2 with gamma factor coming from a holomorphic cuspform. We show these L-functions coincide with either those coming from a newform or a product of L-functions arising from Dirichlet characters. We require some analytic data on the Euler factors, but don’t require anything on the shape. We also suppose that the twisted L-functions satisfy expected functional equations. We incorporate the ideas from [3] so that the non-trivial twists are allowed to have arbitrary poles.

1. Introduction

In [2], Booker proves a version of Weil’s converse theorem without needing knowledge of the root number. We extend on his work, by not assuming a specific shape of the Euler factors. However we do still need to have some analytic data on the Euler factors, namely holomorphy and non-vanishing on and to the right of the line $\Re(s) = 1/2$. This is a natural restriction to make when looking from the perspective of the Selberg class (see [10] for details on the Selberg class). Our result also makes partial progress of extending the result of Kaczorowski, Perelli in [6] to general conductor. In their paper, they get their result for conductor 5 without any information on twists through the theory of non-linear twists of L-functions. Combining our theorem with a result classifying the gamma factors of degree 2 elements, we could prove a more general theorem.

Remark. In [2], Booker proves a version of Weil’s converse theorem without needing knowledge of the root number. We extend on his work, by not assuming a specific shape of the Euler factors. However we do still need to have some analytic data on the Euler factors, namely holomorphy and non-vanishing on and to the right of the line $\Re(s) = 1/2$. This is a natural restriction to make when looking from the perspective of the Selberg class (see [10] for details on the Selberg class). Our result also makes partial progress of extending the result of Kaczorowski, Perelli in [6] to general conductor. In their paper, they get their result for conductor 5 without any information on twists through the theory of non-linear twists of L-functions. Combining our theorem with a result classifying the gamma factors of degree 2 elements, we could prove a more general theorem.

Let $S^\text{new}_k(\Gamma_0(N), \xi)$ denote the newforms of weight k, level N and nebentypus character ξ. We prove the following theorem.

Theorem 1.1. Let $\{a_n\}_{n=1}^\infty$ be a multiplicative sequence of complex numbers satisfying $a_n = O(n^\lambda)$ for some $\lambda \in \mathbb{R}_{>0}$ and such that $\sum_{j=0}^\infty a_p p^{-js}$ is analytic and non-vanishing for $\Re(s) \geq 1/2$ and every prime p. Fix positive integers k, N. For any primitive Dirichlet character χ of conductor q coprime to N, define

$$\Lambda_\chi(s) = \Gamma_C \left(s + \frac{k - 1}{2} \right) \sum_{n=1}^\infty a_n \chi(n) n^{-s}$$

for $\Re(s) > 1 + \lambda$, where $\Gamma_C(s) = 2(2\pi)^{-s}\Gamma(s)$. Suppose, for every such χ, that $\Lambda_\chi(s)$ continues to a meromorphic function on \mathbb{C} and satisfies the functional equation

$$\Lambda_\chi(s) = \varepsilon_\chi(Nq^{1/2} - s) \Lambda_\chi(1 - s),$$

for some $\varepsilon_\chi \in \mathbb{C}$. Let $\textbf{1}$ denote the character of modulus 1 and suppose there is a nonzero polynomial P such that $P(s)\Lambda_\textbf{1}(s)$ continues to an entire function of finite order.

Then one of the following holds:

(i) $k = 1$ and there are primitive characters ξ_1 (mod N_1) and ξ_2 (mod N_2) such that $N_1N_2 = N$ and $\sum_{n=1}^\infty a_n n^{-s} = L(s, \xi_1)L(s, \xi_2)$, where $L(s, \xi_1), L(s, \xi_2)$ are the usual Dirichlet L-functions.

(ii) $\sum_{n=1}^\infty a_n n^{-s} e(nz) \in S^\text{new}_k(\Gamma_0(N), \xi)$ for some Dirichlet character ξ of conductor dividing N.

Remark. If we suppose that for every χ of conductor $q \equiv 1$ (mod N) that $\Lambda_\chi(s)$ is entire, then we don’t require (i) for characters of conductor not congruent to 1 (mod N). If Λ_χ is not entire then we use this extra information in Lemma 2.1.

Remark. A similar result should be true for L functions with gamma factors coming from Maass forms, but would be more difficult. It requires analysis of hypergeometric functions as in [9].

From now on we shall assume the hypothesis of theorem 1.1.
2. Analysis of Euler factors.

We shall assume for now that $\Lambda_1(s)$ is entire and deal with the meromorphic case at the end. By the conditions in theorem $[11]$ have the following lemma to constrain the poles of Λ_χ, shown in the proof of $[3]$ Theorem 1.1).

Lemma 2.1. The function $\Lambda_\chi(s)$ is entire of finite order for every primitive character χ of prime conductor $q \nmid N$.

For χ a primitive character of conductor $q \nmid N$, both $\Lambda_1(s)$ and $\Lambda_\chi(s)$ are entire of finite order. The Phragmén-Lindelöf convexity principle means they are bounded in vertical strips.

Let $\mathbb{H} = \{ z \in \mathbb{C} : \Im(z) > 0 \}$ denote the upper half plane. Let $e(s) := e^{2\pi is}$ for $s \in \mathbb{C}$. For $z \in \mathbb{H}$, set

$$ f_n = a_n n^{\frac{k-1}{2}}, \quad f(z) = \sum_{n=1}^{\infty} f_n e(nz), \quad \overline{f}(z) = \sum_{n=1}^{\infty} \overline{f_n} e(nz). $$

Recall the k-slash operator defined for any function $g : \mathbb{H} \to \mathbb{C}$ and any matrix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of positive determinant by

$$ (g|\gamma)(z) = (\det \gamma)^{k/2}(cz + d)^{-k} g \left(\frac{az + b}{cz + d} \right). $$

For matrices γ, γ', we write $\gamma \simeq \gamma'$, if $g|\gamma = g|\gamma'$.

The functional equation $[11]$ for $\chi = 1$ and Hecke’s argument (see Theorem 4.3.5 from $[8]$) implies that $f|H_N = \epsilon_1 i^k \overline{f}$, where $H_N = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Let $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and I_2 be the identity matrix. Then since both f and \overline{f} are Fourier series, $P \simeq f I_2$ and $P \simeq \overline{f} I_2$.

Consider the additive twist by α, defined by $F(s, \alpha) = \sum_{n=1}^{\infty} a_n n^{-s} e(n\alpha)$ and $\overline{F}(s, \alpha) = \sum_{n=1}^{\infty} \overline{a_n} n^{-s} e(n\alpha)$. Moreover denote $L_f(s) := F(s, 0)$ and $L_{\overline{f}}(s) := \overline{F}(s, 0)$. Let $q \equiv 1 \pmod{N}$ be a prime number. For χ a Dirichlet character mod q, the Gauss sum is defined by $\tau(\chi) = \sum_{\alpha=1}^{q} \chi(\alpha) e\left(\frac{\alpha^2}{q} \right)$. By Fourier analysis on $\mathbb{Z}/q\mathbb{Z}$,

$$ e\left(\frac{n}{q} \right) = 1 - \frac{q}{q-1} \chi_0(n) + \frac{1}{q-1} \sum_{\chi \pmod{q} \nmid \chi_0} \tau(\chi) \chi(n). $$

Multiplying by $a_n n^{-s}$ and summing, we get the following relationship between additive twists and multiplicative twists.

$$ F(s, \frac{1}{q}) = L_f(s) - \frac{q}{q-1} L_{\overline{f}}(s) + \frac{1}{q-1} \sum_{\chi \pmod{q} \nmid \chi_0} \tau(\overline{\chi}) F(s, \chi), $$

where $L_q(s) = \sum_{j=0}^{\infty} a_q q^{-js}$ and $F(s, \chi) = \sum_{n=1}^{\infty} a_n \chi(n)n^{-s}$.

We shall prove the following lemma.

Lemma 2.2. Let $q \equiv 1 \pmod{N}$ be a sufficiently large prime number. Then the function $F_q(s)^{-1}$ is a polynomial in q^{-s} of degree at most 2.

Let $\Im(s) = t$. Because $F_q(s)^{-1}$ is $\frac{2\pi}{\log q}$-periodic, for the rest of this section we shall assume $t > 0$ is contained in the interval $\left[\frac{2\pi}{\log q}, \frac{4\pi}{\log q} \right]$.

Proof. By Mellin transformations,

$$ F(s, \frac{1}{q}) = \int_{0}^{\infty} y^{s+\frac{1}{2}} f\left(\frac{1}{q} + iy \right) dy \overline{L_f(s)} (2\pi)^{-s} \frac{1}{\Gamma(s + \frac{1}{2}) \Gamma(s + \frac{1}{2})}. $$

This equation will allow us to meromorphically continue $F(s, \frac{1}{q})$.

2
We want to estimate \(f_0^\infty \frac{y^s + \frac{k-1}{2} - 1}{q} f\left(\frac{1}{q} + iy\right) dy \) as \(\Re(s) \to -\infty \). For \(y > 1 \), we can use the trivial estimate

\[
(4) \quad \left| f\left(\frac{1}{q} + iy\right) \right| \leq \sum_{n=1}^{\infty} |a_n| n^{k-1} e^{-2\pi ny} \ll \sum_{n=1}^{\infty} n^{\frac{k-1}{2}} e^{-2\pi ny} \ll e^{-2\pi y}.
\]

When \(y \leq 1 \) we will use the modularity relation \(f|H_N = \varepsilon_1 f \) and the fact \(q \equiv 1 \pmod{M} \). Write \(q = MN + 1 \), where \(M \) is an integer. Then \(f|P^M H_N = \overline{\gamma} f \) since \(H_N^2 \simeq f \). We observe that,

\[
H_N P^M H_N = \begin{pmatrix} -N & 0 \\ MN^2 & -N \end{pmatrix} \cong f \begin{pmatrix} 1 & 0 \\ -MN & 1 \end{pmatrix}.
\]

Also this means, \(P^{-1} H_N P^M H_N \cong f \begin{pmatrix} q & -1 \\ 1-q & 1 \end{pmatrix} \).

Hence we get a relationship under the action of

\[
H_N P^{-1} H_N P^M H_N \cong f \begin{pmatrix} q-1 & -1 \\ Nq & -N \end{pmatrix} =: \gamma,
\]

namely

\[
\overline{\gamma} = \omega f
\]

for some \(\omega \) with \(|\omega| = 1\). This can be written explicitly in the form

\[
f(z) = \omega N^{\frac{k}{2}} (qz - 1)^{-1-k} f\left(\frac{(q-1)z - 1}{Nqz - N}\right).
\]

Using this identity, we have

\[
f\left(\frac{1}{q} + iy\right) \ll_q \left(\frac{1}{y}\right)^k \sum_{n=1}^{\infty} |a_n| n^{k-1} e^{-2\pi n q(1+O(y))}
\]

for \(y \leq 1 \) because

\[
\frac{(q-1)\left(\frac{1}{q} + iy\right) - 1}{Nq\left(\frac{1}{q} + iy\right) - N} = \frac{-1}{q^2 N (iy)} (1+O(y))
\]

for \(y \leq 1 \). Note that

\[
\sum_{n=1}^{\infty} |a_n| n^{k-1} e^{-2\pi n (1+O(y))} \ll e^{-2\pi y}.
\]

Let \(s = \sigma + it \) where \(\sigma < -\frac{k-1}{2} \). Then

\[
\int_0^{\infty} y^{s+\frac{k-1}{2}-1} f\left(\frac{1}{q} + iy\right) dy \ll_q \int_1^1 y^{\sigma+\frac{k-1}{2}-1} e^{-2\pi y} dy + \int_1^{\infty} y^{\sigma+\frac{k-1}{2}-1} e^{-2\pi y} dy
\]

\[
\ll_q \left(\frac{q^2 N}{2\pi}\right)^{|\sigma|} \int_0^{\infty} y^{-\sigma+\frac{k+1}{2}} e^{-y} dy + \frac{1}{|\sigma+\frac{k+1}{2}|}
\]

(5)

\[
\ll_q \left(\frac{q^2 N}{2\pi}\right)^{|\sigma|} \Gamma\left(-\sigma+\frac{k+1}{2}\right) + \frac{1}{|\sigma+\frac{k+1}{2}|}.
\]

The second term converges to zero as \(\sigma \to -\infty \). By Stirlings formula

\[
\left| \Gamma\left(-\sigma+\frac{k+1}{2}\right) \right| \ll \left(\frac{\sigma}{e}\right)^{|\sigma|+\frac{k}{2}}.
\]

By the functional equation (1) for \(\chi = 1 \), as \(\sigma \to -\infty \)

\[
\left| L_f(s) \Gamma(s + \frac{k-1}{2}) (2\pi)^{-s} \right| = \varepsilon_1 \frac{\sqrt{N}}{2\pi} \left(\frac{N}{2\pi}\right)^{-s} \Gamma(1-s + \frac{k-1}{2}) L_f(1-s)
\]

\[
\ll_q \left(\frac{N}{2\pi}\right)^{|\sigma|} \left(\frac{\sigma}{e}\right)^{|\sigma|+\frac{k}{2}},
\]

(6)
where we use the fact t is contained in the interval $\left[\frac{2\pi}{\log q}, \frac{4\pi}{\log q}\right]$.

From (3), (5) and (6), as $\sigma \to -\infty$

$$\frac{F(s, \frac{1}{q})}{L_f(s)} \ll q^{2|\sigma|}.$$

Moreover, by the functional equation (1),

$$\frac{F(s, \chi)}{L_f(s)} = \frac{\Gamma(s + \frac{k-1}{2})}{\Gamma(s + \frac{k+1}{2})} \frac{F(s, \chi)}{L_f(s)} \ll q^{2|\sigma|},$$

as $\sigma \to -\infty$.

Let $E_q(q^{-s}) = \frac{1}{F_q(s)}$. Since $F_q(s) = \sum_{j=0}^{\infty} a_q q^{-j}$, we have a power series expansion for $E_q(z)$. By the hypotheses on $F_q(s)$ the radius of convergence of $E_q(z)$ is at least $q^{-1/2}$. To prove lemma 2.2, we need to show that $E_q(z)$ is a polynomial of degree ≤ 2. We know

$$F(s, \frac{1}{q}) = \frac{(2\pi)^{\frac{k-1}{2}}}{(2\pi)^{-s}} \int_0^\infty y^{s-\frac{k-1}{2}} f(\frac{1}{q} + iy) dy$$

is entire thanks to the first line of (5) and since $\Gamma(s)$ has no zeroes. By (2), and our estimates above, $E_q(q^{-s})$ has a meromorphic continuation to \mathbb{C}, and satisfies

(7)

$$E_q(q^{-s}) \ll q^{2|\sigma|}$$

uniformly in t as $\sigma \to -\infty$. Thus

$$E_q(z) \ll q |z|^2$$

for $|z|$ sufficiently large. Once we have shown $E_q(z)$ is entire we have finished the proof of the lemma.

We shall show $E_q(q^{-s})$ is entire if q is sufficiently large.

Thanks to our assumption on $F_q(s)$ in Theorem 1.1, $E_q(q^{-s})$ is analytic for $\Re(s) \geq 1/2$. Also, the estimate (7) means it is also analytic in some left half plane. By t-periodicity, for large q it suffices to show $E_q(q^{-s})$ is analytic in some region of the form

$$D_K := \{ s \in \mathbb{C} : \Re(s) \in (K, \frac{1}{2}), \Im(s) \in [0,1]\},$$

where $K < \frac{1}{2}$. By Lemma 2.1, $F(s, \chi)$ is entire so the equation

$$E_q(q^{-s}) = \frac{q-1}{q} \left(1 - \frac{F(s, \frac{1}{q})}{L_f(s)} + \frac{1}{q-1} \sum_{\chi \equiv \chi \pmod{q}} \tau(\chi) \frac{F(s, \chi)}{L_f(s)} \right)$$

implies the only possible poles of $E_q(q^{-s})$ must come from zeroes of L_f. There are only finitely many zeroes of L_f in the region D_K. By t periodicity, if $E_q(q^{-s})$ has a pole at s in D_K, then L_f must also have zeroes at $s + \frac{2\pi i k}{\log q}$ for $k \in \mathbb{Z}$. For large enough q we would have too many zeroes of L_f in the region D_K. Hence for large q, $E_q(q^{-s})$ cannot have any poles in D_K as required.

\square

3. ANALYSIS OF THE COEFFICIENTS IN THE EULER FACTORS

We analyse the Euler factors using arguments from [2].

Let $q \equiv 1 \pmod{N}$ be a sufficiently large prime number (as in lemma 2.2), then $F_q(s)^{-1}$ can be expressed in the form $1 - \lambda q^{-s} + \mu q^{-2s}$ where $\lambda = a_q$, $\mu = a_q^2 - a_{q^2}$. Define

$$\epsilon = \begin{cases} \frac{\lambda}{\mu} & \text{if } \lambda \neq 0, \\ 0 & \text{if } \lambda = 0, \mu \neq 0, \\ 1 & \text{if } \lambda = 0, \mu = 0. \end{cases}$$

Remark. We shall show that the third case can’t happen so our choice here isn’t important.
Let \(r = 1 - e\pi \), then \(D_q(s) = r + q - 1 - q(1 - \lambda q^{-s} + \mu q^{-2s}) \) satisfies a functional equation of the form \(D_q(s) = e^{-2\pi s}D_q(1-s) \). Define \(\Lambda_{c+q}(s) = \Lambda_c(s) + r\Lambda_1(s) \), where \(\Lambda_c(s) = \gamma(s + k/2) \sum_{n=1}^{\infty} a_nc^n(n)n^{-s} \) and \(c_0(n) = \sum_{(a,q)=1} e\left(\frac{am}{q}\right) \) is a Ramanujan sum.

Since \(c_q(n) = q - 1 - q\chi_0(n) \) by Fourier analysis on \(\mathbb{Z}/q\mathbb{Z} \),

\[
D_q(s) = \frac{\Lambda_{c+q}(s)}{\Lambda_1(s)}.
\]

Hence we have the following relationship,

(8) \(\Lambda_{c+q+r}(s) = \epsilon\epsilon_1(Nq^2)^{-s}\Lambda_{c+q+r}(1-s) \).

For \(q \equiv 1 \pmod{N} \) and \(\chi \) a character mod \(q \), define

\[
f_\chi = \sum_{a \text{ (mod } q)} \chi(a)f_1 \left[\begin{array}{cc}
1 & \frac{a}{q} \\
0 & 1
\end{array} \right] + \mathbb{1}_{\chi=\chi_0}rf \quad \text{and} \quad f_\chi = \sum_{a \text{ (mod } q)} \chi(a)f_1 \left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right] + \mathbb{1}_{\chi=\chi_0}f_\tau.
\]

Also define

\[
C_\chi = \begin{cases}
\tau & \text{if } \chi \text{ is trivial,} \\
\chi(-N)e\chi_0\tau(\chi)/\tau(\chi) & \text{otherwise.}
\end{cases}
\]

By substituting the Fourier expansion of \(f \), we see \(f_\chi \) has \(n \)th Fourier coefficient

\[
f_\chi(c_q(n) + r) \quad \text{if } \chi \text{ is trivial,}
f_\chi(r\chi(\overline{\chi})) \chi(n) \quad \text{otherwise,}
\]

with a similar expression for \(f_\tau \). By (9) and the functional equation (11), Hecke’s argument implies we have the modularity relationship

(9) \(f_\chi \left| \begin{array}{cc}
0 & 1 \\
Nq^2 & -1
\end{array} \right| = \tau^k\chi(-N)e\chi_0C_\chi f_\tau \)

If \(\gamma, \gamma' \in \Gamma_0(N) \) have the same top row, then it is easy to check that \(\gamma'\gamma^{-1} \) is a power of \(\left(\begin{array}{cc}
1 & 0 \\
N & 1
\end{array} \right) \). As

\[
\left(\begin{array}{cc}
1 & 0 \\
N & 1
\end{array} \right) = H_NP^{-1}H_N^{-1},
\]

\(f|_{\gamma} \) depends only on the top row of \(\gamma \). Let \(\gamma_{q,a} \) denote any element of \(\Gamma_0(N) \) with top row \((q, -a) \).

Let \(\gamma = \left(\begin{array}{cc}
q & -b \\
-Nm & r
\end{array} \right) \) be an arbitrary element of \(\Gamma_1(N) \). If \(m = 0 \), then \(\gamma \) is (up to sign if \(N \leq 2 \)) a power of \(P \), so \(f|_{\gamma} = f \). Otherwise, multiplying \(\gamma \) on the left by \(P^{-j} \) leaves \(f|_{\gamma} \) unchanged and replaces \(q \) by \(q + jmN \). By Dirichlet’s theorem, we may assume that \(q \equiv 1 \pmod{N} \) is a prime and is large enough so Lemma 22 holds.

Equation (11) implies the following.

\[
\sum_{a \text{ (mod } q)} C_\chi \chi(a)f_1 \left[\begin{array}{cc}
1 & \frac{a}{q} \\
0 & 1
\end{array} \right] + \mathbb{1}_{\chi=\chi_0}rf = C_\chi f_\chi = \tau^k\epsilon_1 f_\tau \left| \begin{array}{cc}
0 & 1 \\
Nq^2 & -1
\end{array} \right|^{-1}
\]

\[
= \tau^k\epsilon_1 \left(\sum_{m \text{ (mod } q)} \chi(-Nm)f_\chi \left| \begin{array}{cc}
1 & \frac{m}{q} \\
0 & 1
\end{array} \right| \left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array} \right) \left(\begin{array}{cc}
0 & -1 \\
Nq^2 & 0
\end{array} \right)^{-1} + \mathbb{1}_{\chi=\chi_0}f_\tau \left| \begin{array}{cc}
0 & 0 \\
q^2 & 1
\end{array} \right|^{-1} \right)
\]

\[
= \sum_{m \text{ (mod } q)} \chi(-Nm)f_\chi \left| \begin{array}{cc}
0 & -1 \\
N & 0
\end{array} \right| \left(\begin{array}{cc}
0 & -1 \\
Nq^2 & 0
\end{array} \right)^{-1} + \mathbb{1}_{\chi=\chi_0}f_\tau \left| \begin{array}{cc}
0 & 0 \\
q^2 & 1
\end{array} \right|
\]

\[
(10) \quad = \sum_{a \text{ (mod } q)} \chi(a)f_\gamma \left| \begin{array}{cc}
1 & \frac{a}{q} \\
0 & 1
\end{array} \right| + \mathbb{1}_{\chi=\chi_0}f_\tau \left| \begin{array}{cc}
q^2 & 0 \\
0 & 1
\end{array} \right|.
\]
Fix a residue b coprime to q. By orthogonality of Dirichlet characters and (10),

$$f|_{\gamma_q,b}(0 | 0 1) = \frac{1}{\varphi(q)} \sum_{\chi \mod q} \chi(b) \sum_{a \mod q \atop (a,q) = 1} \chi(a)f|_{\gamma_q,a}(0 | 0 1)$$

$$= \frac{1}{\varphi(q)} \left(\sum_{\chi \mod q} \chi(b)\Lambda \sum_{a \mod q \atop (a,q) = 1} \chi(a)f \left| \left(\begin{array}{c} 1 \\ 0 \\ \frac{a}{q} \\ 1 \end{array} \right) \right] + \tau f \left| \left(\begin{array}{c} q^2 \\ 0 \\ 0 \\ 1 \end{array} \right) \right] \right).$$

Replacing a by ab on the right hand side and writing

$$\tilde{C}_q(a) = \left\{ \begin{array}{ll} \frac{1}{\varphi(q)} \sum_{\chi \mod q} \chi(a)f & \text{if } (a,q) = 1, \\ \frac{q}{\varphi(q)} & \text{otherwise,} \end{array} \right.$$

we obtain

(11) $$f|_{\gamma_q,b} = \sum_{a=0}^{q-1} \tilde{C}_q(a)f \left| \left(\begin{array}{c} 1 \\ 0 \\ \frac{(a-1)b}{q} \\ 1 \end{array} \right) \right] - \frac{\tau f}{\varphi(q)} \left| \left(\begin{array}{c} q^2 \\ 0 \\ -bq \\ 1 \end{array} \right) \right].$$

Let

$$S_q(x) = \sum_{a=0}^{q-1} \tilde{C}_q(a)e \left(\frac{(a-1)x}{q} \right).$$

From (11), the nth Fourier coefficient of $f|_{\gamma_q,b}$ is $f_n S_q(bn) - \frac{\tau f}{\varphi(q)} q\overline{\chi}(n) f_n / q^2$.

We shall use the following Lemma.

Lemma 3.1. Let $q \equiv 1 \pmod{N}$ be a sufficiently large prime so Lemma 2.2 holds. For any a such that $(a,q) = 1$, there exists an $n \equiv a \pmod{q}$ such that $f_n \neq 0$.

Proof. Proof of lemma 3.4.

Let $(a,q) = 1$ and suppose there does not exist any $n \equiv a \pmod{q}$ such that $a_n \neq 0$. Let χ_0 be the trivial character mod q. By Fourier analysis, $\chi_0(n) = \frac{q-1-c_q(n)}{q}$, so

$$\mathbb{I}_{n \equiv a} = \frac{1}{q} - \frac{c_q(n) + r}{q(q-1)} + \frac{r}{q(q-1)} + \frac{1}{q-1} \sum_{\chi \mod q \atop \chi \neq \chi_0} \chi(n).$$

Multiplying by $a_n n^{-s}$ and summing implies

$$(q-1+r) \Lambda_1(s) = \Lambda_{c_q+r}(s) - q \sum_{\chi \mod q \atop \chi \neq \chi_0} \chi(a) \Lambda_\chi(s).$$

Using the functional equations (1) and (8),

$$(q-1+r) \epsilon_1 N^{1/2-s} \Lambda_1(1-\overline{s}) = \epsilon_1 (Nq^2)^{1/2-s} \Lambda_{c_q+r}(1-\overline{s}) - q(Nq^2)^{1/2-s} \sum_{\chi \mod q \atop \chi \neq \chi_0} \epsilon_\chi \Lambda_\chi(1-\overline{s}).$$

Multiplying by $\overline{\epsilon_1} (Nq^2)^{1/2-s}$, replace s by $1-\overline{s}$ and conjugating, we get

$$(q-1+r) \overline{\epsilon_1} q^{1-2s} \Lambda_1(s) = \overline{\epsilon_1} \Lambda_{c_q+r}(s) - q \sum_{\chi \mod q \atop \chi \neq \chi_0} \overline{\epsilon_\chi} \Lambda_\chi(s).$$

Comparing Dirichlet coefficients at q, either $a_q = 0$ or $q-1+r = 0$. The second equation implies $|\mu| = q$, which cannot happen as $F_q(s)$ has no poles for $\Re(s) \geq 1/2$. Comparing at q^2 now, $q(q-1+r) = \overline{\epsilon_1} (q-1+r)a_q$. Since $a_q = 0$, $a_{q^2} = -\mu$, so this equation leads again to $|\mu| = q$, again giving a contradiction. □
Since \(q \equiv 1 \pmod{N} \), \(^2\) implies \(f|_{\gamma_1} = f \). Using Lemma \(^5\) and equating Fourier coefficients of \(f|_{\gamma_1} \) and \(f \) implies \(S_q(x) = 1 \) for all \(x \) coprime to \(q \). For \(n \) such that \(q \nmid n \), the \(n \)th Fourier coefficient of \(f|_{\gamma_1} \) is \(f_n \). If \(q|n \), the Fourier coefficient of \(f|_{\gamma_1} \) is independent of \(b \), so \(f|_{\gamma_1} \) has the same \(n \)th Fourier coefficient as \(f|_{\gamma_1} \). Hence \(f|_{\gamma_1} = f \) for all \(b \) coprime to \(q \). It is also easily shown in the case \(b \equiv 0 \pmod{q} \), so \(f \in M_q(\Gamma_1(N)) \).

Remark. For our proof we only need the fact \(f \in M_q(\Gamma_1(N)) \). The above calculations imply that in fact \(r = 0 \).

Notice that by definition \(S_q(0) = \tau \left(\frac{\phi(q)}{\varphi(q)} + 1 \right) \). Using Fourier analysis on \(\mathbb{Z}/q\mathbb{Z} \)

\[
\hat{C}_q(a + 1) = \frac{1}{q} \sum_{x=0}^{q-1} S_q(-ax/q) e(ax/q) = \mathbb{1}_{a=0} + \frac{S_q(0)-1}{q}.
\]

Hence \(\hat{C}_q(0) = \frac{S_q(0)-1}{q} = \frac{S_q(0)}{q} - \frac{1}{q} \). Suppose \(\lambda \neq 0 \), so \(f_q \neq 0 \). Then comparing the \(q \)th Fourier coefficient of \(f|_{\gamma_1} \) and \(f \) implies \(S_q(0) = 1 \), i.e \(r = 0 \). The fact \(S_q(0) = 1, r = 0 \) also shows \(\epsilon = 1 \) and \(|\mu| = 1 \), so \(\lambda \) is real in this case.

Now suppose \(\lambda = 0 \). Then \(f_q = -\mu q^{k-1}, f_1 = 1 \). Comparing coefficients at \(q^2 \) now,

\[
\mu q^{k-1} = \mu q^{k-1} \left(\frac{\tau q}{\varphi(q)} + 1 \right) + \frac{\tau q}{\varphi(q)},
\]

which implies \(|\mu| = 1 \). Hence \(\epsilon = \mu \), so \(r = 0 \) again.

4. PROOF OF THEOREM 1.1

Proof. We use the following argument from \(^2\). Let \(C \) denote the set of normalized Hecke eigenforms of weight \(k \) and conductor dividing \(N \), and for \(g \in C \) with Fourier expansion \(\sum_{n=1}^{\infty} g_n e(nz) \), let \(L_g(s) = \sum_{n=1}^{\infty} g_n n^{-s} e\left(\frac{n}{N}x\right) \).

Let \(X \) denote the set of pairs \((\xi_1, \xi_2)\) where \(\xi_1 \pmod{N_1}, \xi_2 \pmod{N_2} \) are primitive Dirichlet characters such that \(N_1 N_2 | N, \xi_1(-1) \xi_2(-1) = (-1)^k \) and if \(k = 1 \) then \(\xi_1(-1) = 1 \). Let

\[
L_{\xi_1, \xi_2}(s) = L(s + \frac{k-1}{2}, \xi_1)L(s - \frac{k-1}{2}, \xi_2)
\]

where the factors on the right are the usual Dirichlet \(L \) functions.

Since \(f \in M_k(\Gamma_1(N)) \), by newform theory and the description of Eisenstein series in \(^3\) Chapter 4.7, there are Dirichlet polynomials \(D_{\xi_1, \xi_2} \) and \(D_g \) such that

\[
L_f(s) = \sum_{(\xi_1, \xi_2) \in X} D_{\xi_1, \xi_2} L_{\xi_1, \xi_2}(s) + \sum_{g \in C} D_g(s)L_g(s)
\]

Furthermore the coefficients of each Dirichlet polynomial are supported on divisors of \(N \). Let us define \(F_{p,q}(s) \) to be the Euler factor of \(L_g(s) \) at \(p \), where \(g \in C \). Also, let \(F_{p, (\xi_1, \xi_2)}(s) \) be the Euler factor of \(L_{\xi_1, \xi_2}(s) \) at \(p \).

We will say that the Euler products of two \(L \) functions \(L_1, L_2 \) are equivalent if their Euler factors are the same except for finitely many primes and inequivalent otherwise. The Ranking–Selberg method (see \(^4\) Corollary 4.4) implies that the \(L \) functions on the right hand side of \(^1\) are pairwise inequivalent. Combining this with the linear independence result in \(^5\) Theorem 2\), we see the right hand side of \(^1\) has exactly one non-zero term. Hence \(L_f(s) = D_y(s)L_y(s) \) for some \(y \in C \cup X \).

In either case

\[
D_y(s) = \prod_{p | N} \frac{F_p(s)}{F_{p,y}(s)}
\]

and \(D_y \) satisfies a functional equation of the form \(D_y(s) = \varepsilon_y(N_y)^{\frac{s}{2}} D_y(1 - \overline{s}) \) where \(N_y \) is a positive integer, \(|\varepsilon_y| = 1 \). The \(Q \) linear independence of \(\log p \) for primes \(p \) and the fact \(D_y(s) \) is entire implies that \(\frac{F_{p,y}(s)}{F_p(s)} \) is entire for \(p | N \) and its zeroes are symmetric with respect to the line \(\Re(s) = \frac{1}{2} \).

Suppose \(y = (\xi_1, \xi_2) \in X \).

If \(k \geq 2 \), for \(p > N \), \(F_p(s) = F_{p,y}(s) \) has a pole on the line \(\Re(s) = \frac{k-1}{2} \geq \frac{1}{2} \). This is a contradiction to...
our assumptions on \(F_p(s) \) in the statement of the Theorem 12. Hence \(k = 1 \).

When \(k = 1, \) if \(p \mid N, \) \(\frac{F_p(s)}{F_p(0)} \) has no zeroes for \(\Re(s) \geq \frac{1}{2} \). The symmetry of the zeroes around \(\Re(s) = 1/2 \) then implies there are in fact no zeroes. In particular, \(D_y(s) \) has no zeroes and the fundamental theorem of algebra implies it must be constant. Equating coefficients of \(L_f(s) \) and \(L_y(s) \) implies \(D_y(s) = 1 \). The functional equation then implies \(N = N_1N_2 \) as required.

Suppose \(y = q \in C \).

Deligne showed that \(L_y \) satisfies the Ramanujan hypothesis, so \(L_y(s) \) lies in the Selberg class. Convergence of the logarithm in the definition of the Selberg class means \(F_p(s) \) has no zeroes and is analytic for \(\Re(s) \geq 1/2 \). Repeating the argument above, \(D_y(s) = 1 \) and the conductor of \(g \) equals \(N \) by the functional equation as required.

\[\square \]

We now deal with the case that \(\Lambda_1(s) \) is not entire. We shall deal with this issue as in [2] by twisting away the poles.

Fix a prime \(q \mid N \) and a primitive character \(\chi \mod{q} \) and consider the twisted sequence \(a_n' = a_n\chi(n) \) in place of \(a_n \) and \(Nq^2 \) in place of \(N \). Then all the hypotheses of Theorem 12 are satisfied, however now our associated \(L \) function \(\Lambda_1(s) \) is entire. Hence, either there is a primitive cuspform \(f' \) of conductor \(Nq^2 \) with Fourier coefficients \(a_n' \equiv n \mod{q} \), or \(k = 1 \) and there are primitive characters \(\xi_1, \xi_2 \) such that

\[a_n' = \sum_{d|n} \xi_1(n/d)\xi_2(d). \]

We deal with the cuspidal case first. By newform theory [1 Theorem 3.2], we can twist \(f' \) by \(\gamma \) to get a primitive cuspform \(f \) of conductor \(Nq^2 \), for some \(j \) with Fourier coefficients \(a_n'\chi(n/n)\chi^{-1}(q) = a_n\chi^{-1}(q) \) for every \(n \) coprime to \(q \). Applying this argument to two different choices of \(q, \) strong multiplicity one implies \(f \) has conductor \(N \) and Fourier coefficients \(a_n\chi^{-1}(q) \) as wanted.

In the non cuspidal case, let \(\xi_i \mod{N_i} \) for \(i = 1, 2 \) be the primitive character inducing \(\xi_i' \mod{N} \). Then

\[(13) \quad a_p = \xi_1(p) + \xi_2(p) \quad \text{for all sufficiently large primes } p. \]

The characters \(\xi_1 \) and \(\xi_2 \) have opposite parity so we normalize \(\xi_1 \) to be even. Dirichlet’s theorem on primes in arithmetic progressions implies \(\xi_1, \xi_2 \) are uniquely defined by (13). Again, using two choices of \(q, \) we have \(N_1N_2 = N \) and \(a_n = \sum_{d|n} \xi_1(n/d)\xi_2(d) \). Hence we have completed the proof.

5. Acknowledgements

I would like to thank my supervisor Andrew Booker for all his help on this work. His suggestions and ideas have been incredibly useful.

References

1. A. O. L. Atkin and Wen Ch’ing Winnie Li, Twists of newforms and pseudo-eigenvalues of \(W \)-operators, Invent. Math. 48 (1978), no. 3, 221–243. MR 509866
2. Andrew R. Booker, A converse theorem without root numbers, Mathematika 65 (2019), no. 4, 862–873. MR 3952509
3. Andrew R. Booker and M. Krishnamurthy, Weil’s converse theorem with poles, Int. Math. Res. Not. IMRN (2014), no. 19, 5328–5339. MR 3267373
4. , A converse theorem for \(GL(n) \), Adv. Math. 296 (2016), 154–180. MR 3490766
5. J. Kaczorowski, G. Molteni, and A. Perelli, Linear independence in the Selberg class, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 1, 28–32. MR 1669479
6. J. Kaczorowski and A. Perelli, On a Hecke-type functional equation with conductor \(q = 5 \), Ann. Mat. Pura Appl. (4) 197 (2018), no. 6, 1707–1728. MR 3855407
7. J Kaczorowski and A Perelli, Classification of \(L \)-functions of degree 2 and conductor 1, arXiv preprint arXiv:2009.12329 (2020).
8. Toshitsune Miyake, Modular forms, english ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006, Translated from the 1976 Japanese original by Yoshitaka Maeda. MR 2194815
9. Michael Neururer and Thomas Oliver, Weil’s converse theorem for Maass forms and cancellation of zeros, Acta Arith. 196 (2020), no. 4, 347–422. MR 4164486
10. Alberto Perelli, A survey of the Selberg class of \(L \)-functions. I, Milan J. Math. 73 (2005), 19–52. MR 2175035

School of Mathematics, University of Bristol, Bristol, BS8 1UG, United Kingdom
Email address: michaelfarmer868@gmail.com