Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Efficient Framework for Detecting COVID-19 and Pneumonia from Chest X-Ray Using Deep Convolutional Network

Ahmed Salem Musallam, Ahmed Sobhy Sherif, Mohamed K. Hussein

PII: S1110-8665(22)00002-0
DOI: https://doi.org/10.1016/j.eij.2022.01.002
Reference: EIJ 312

To appear in: Egyptian Informatics Journal

Received Date: 11 January 2021
Revised Date: 8 January 2022
Accepted Date: 18 January 2022

Please cite this article as: A.S. Musallam, A.S. Sherif, M.K. Hussein, Efficient Framework for Detecting COVID-19 and Pneumonia from Chest X-Ray Using Deep Convolutional Network, Egyptian Informatics Journal (2021), doi: https://doi.org/10.1016/j.eij.2022.01.002

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo University.
Efficient Framework for Detecting COVID-19 and Pneumonia from Chest X-Ray Using Deep Convolutional Network

Abstract

Recently, the COVID-19 pandemic is considered the most severe infectious disease because of its rapid spreading. Radiologists still lack sufficient knowledge and experience for accurate and fast detecting COVID-19. What exacerbates things is the significant overlap between Pneumonia symptoms and COVID-19, which confuses the radiologists. It’s widely agreed that the early detection of the infected patient increases his likelihood of recovery. Chest X-ray images are considered the cheapest radiology images, and their devices are available widely. This study introduces an effective Deep Convolutional Neural Network (DCNN) called “DeepChest” for fast and accurate detection for both COVID-19 and Pneumonia in chest X-ray images. “DeepChest” runs with a small number of convolutional layers, a small number of max-pooling layers, and a small number of training iterations compared with the recent approaches and the state-of-the-art of DCNN. We conducted the experimental evaluations of the proposed approach on a data set with 7512 chest X-ray images. The proposed approach achieves an accuracy of 96.56% overall, 99.40% in detecting COVID-19, and 99.32% in detecting Pneumonia. In actual practice, the presented approach can be used as a computer-aided diagnosis tool to get accurate results in detecting Pneumonia and COVID-19 in chest X-ray images.

Keywords:
Deep Convolutional Neural Network, Chest X-ray images, Coronavirus, Pneumonia
1. Introduction

Respiratory system diseases such as Pneumonia and Coronavirus (COVID-19) are common, infectious, and deadly. The results of radiography are the main factor in the accurate diagnosis of such diseases. Consolidation is a radiological expression that explains the increased lung density within the air spaces. There are different types of lung opacity in a chest radiograph, which radiologists may find due to a pathologic operation that fills in the alveoli with blood, fluid, pus, protein, or cells[1]. Consolidation can help us in detecting many diseases, and specifically, Pneumonia and COVID-19. Pneumonia is a kind of respiratory system infection. Furthermore, it registers the highest death rate among contagious diseases and the third reason for death in general. The delay in an accurate diagnosis increases the possibility of death. So, a fast detection is very important[1, 2, 3, 4, 5]. COVID-19 is an infectious disease that affects the respiratory system. Respiratory problems are considered the main COVID-19 symptom. Consequently, a chest X-ray can show an early detection of COVID-19[6]. The use of artificial intelligence technology in automatic detection of consolidation in chest radiography became one of the interesting topics in medical research[7]. Researchers applied deep learning technology to a wide range of domains in science, engineering, and medicine[8]. Since 2012, Researches widely use a part of deep learning technology, called deep convolutional neural network (DCNN), and achieved great success in image classification[9]. Recently, the DCNNs also achieved promising results in the medical field[10, 11, 12, 13]. Figure 1 shows the phases of the proposed “DeepChest” diagnosis system. Now, we will mention some outlines about the proposed model:

- The proposed approach uses a three-step pre-processing method that enhances the quality of X-ray images via removing the noisy and confusing variables, eliminates histogram differences between X-ray images, and improves their contrast.
The proposed “DeepChest” along with the proposed training strategy.

A judgment applied to our pre-processing approach via measuring the image quality by Blind Reference less Image Spatial Quality Evaluator (BRISQUE)[14].

A balanced dataset was generated based on Pneumonia chest X-ray dataset[15], COVID-19 chest X-ray dataset[16], and COVID-XRay-5K dataset[17] in order to train the proposed problem-based deep convolutional neural net-
work model “DeepChest”.

- The proposed diagnosis system “DeepChest” is applied to classify chest X-ray images as normal, pneumonia, or COVID-19, and are compared with VGG16[18], Mohammad et al.[19], DenseNet-121[20], and MobileNet[21].

- Batch Normalization layers[22] are used in “DeepChest” to help us train the network faster, get a higher learning rate, and enable initializing weights easier.

- An analytical comparison experiment of Pneumonia and COVID-19 detection between the proposed model “DeepChest” and the well-known approaches like VGG16[18], DenseNet-121[20], MobileNet[21], and the recent approaches like Mohammad et al.[19] was applied.

We organized the rest of the paper as follows: Section 2 discusses the related work, Section 3 describes the proposed three-step pre-processing approach. In Section 4, we surveyed the associated models and presented the proposed model “DeepChest”. Section 5 discusses the results. Section 6 illustrates a performance comparison between well-known DCNNs and the proposed model. Finally, Section 7 presents the concluding remarks.

2. Related Work

Yaniv et al.[23] discussed the power of deep learning techniques, especially convolutional neural networks, for consolidation in the detection of chest radiographs. Still, they used a small number of chest radiographs in their practical experiments. Kai-lung et al.[24] used the context of nodule classification in their proposed convolutional neural network model to classify computed tomography images. But, they tend to detect lung cancer, and their achieved accuracy is not enough to be used as a computer-aided system. Mohammad et al.[25] proposed an ensemble convolutional neural network model to localize the anomalies in chest X-ray images. John et al.[26] introduced a DCNN model for classifying chest X-ray images as Normal or Pneumonia images. They declared that the
confusing variables like strings in the left and right corner could destroy the general performance of the DCNN models, so it is not possible to get favorable outputs in classification problems according to the irrelated features. Shuaijing et al. [27] proposed a hierarchical deep CNN model to rank chest X-ray images in normal images and anomaly images. Sergio et al. [28] proposed a novel approach for classifying COVID-19 in chest X-ray images based on the texture features and neural network. Their method used gray level co-occurrence matrix, other texture operators, and the uniform pattern values of the local binary patterns to extract chest X-ray image features. Still, this is a lousy descriptor compared to convolutional features. Moreover, they used a small number of COVID-19 chest X-ray images in their experiments. A.Jaiswal et al. [29] proposed DenseNet201 based on deep transfer learning as a pre-trained deep learning model with the ImageNet dataset to detect COVID-19 in chest CT. However, they accomplished the testing process with a small number of images, almost 374 for Normal and Covid-19. The training process has a large footprint with many computations presented in repeating the training phase up to 300 times to enhance accuracy. J.Civit-Masot et al. [30] proposed an approach with pre-processing steps applied with the VGG16 deep learning model. However, the evaluation process was done with only 80 chest X-ray images for Normal, Pneumonia, and COVID-19, and the small number of images used in their training process degraded the accuracy. H.Wang et al. [31] proposed triple attention learning for the classification of 14 thoracic diseases using DenseNet-121 as a backbone deep convolutional neural network, but the large number of classes involved in their approach negatively affected the accuracy of results. S.Minaee [32] proposed an approach for predicting COVID-19 from chest X-ray images using multi-use deep convolutional neural networks along with transfer learning technique. The COVID-19 class has a small number of images as compared to the Normal class. So their training process was unbalanced. Furthermore, their evaluation process was insufficient because they used only 100 COVID-19 X-ray images. Hamed et al. [33] proposed a DCNN model called "chestnet" for classifying chest X-ray images as Normal or Pneumonia. They discussed different histogram distributions be-
tween images included in the understudy dataset (Pediatric Chest X-ray). They reported the critical issue of selecting suitable pre-training datasets. But their DCNN model consists of 14 convolutional layers, which consume large memory space, and their pre-processing approach achieves a humble effect on the chest X-ray images. Mohammad et al. [19] proposed a deep convolutional model for detecting Pneumonia and COVID-19 in chest X-ray images. They used a small number of COVID-19 chest X-ray images, which creates an imbalanced dataset. There are other problems in the chest X-ray images, such as the noise in these images, the poor quality for X-ray images in general, and the model’s training with different domain datasets issues.

3. The proposed pre-processing approach

In radiology image classification problems, deep learning tries to identify patterns that will help in the classification process. There are many issues in the chest X-ray images dataset facing these models, downgrading the learning phase. Consequently, a wrong or misclassification may happen. In the following, we list the most common issues:

- There are confusing variables that can hugely affect the general performance of DCNN models, such as strings on the left and right corners of chest X-ray images (first issue).
- Chest X-ray images suffer from noises that downgrade the DCNNs performance in accurately detecting the desirable patterns (second issue).
- Chest X-ray images also have all its details in a small range in the histogram graph, and the contrast of chest X-ray images is not good enough to accurately detect the right edges of the desired patterns (third issue).

To handle all of the above issues and make an accurate assessment, the following three-step for pre-processing were carried out efficiently on the chest X-ray dataset.
3.1. Eliminating the confusing variables

The confusing variables such as a string on the left and right corners were eliminated via cropping each image with a pre-defined window with a size of 100 pixels from all directions, see Figure 2.

3.2. Denoising X-ray images using Non-Local Mean (NLM) Algorithm

Chest X-ray images suffer from noise that downgrades DCNNs from accurately detecting the desirable patterns, so to cope with this issue we use the NLM algorithm\[34\], which enhances the X-ray images as compared with Gaussian\[35\] and Median\[36\] denoising algorithms according to BRISQUE evaluator see Table 1. Given a chest X-ray image $x = \{x(i) | i \in I\}$, the result value $NL[x](i)$ for a pixel i, is calculated as weighted average for all the image pixels:

$$NL[x](i) = \sum_{j} w(i, j)x(j)$$ \((1)\)

Where the weights $\{w(i, j)\}_j$ relies on the similarity of pixel i and j, and ensure the condition $0 \leq w(i, j) \leq 1$ and $\sum_j w(i, j) = 1$. The NLM algorithm takes the road of producing a clear image with less loss in detail because the NLM filter takes a mean of all image pixels regarding how similar these pixels to the output pixel.
3.3. Histogram Equalization

In image processing, the common way to get comprehensive information and characteristics of any image is the histogram. The histogram of an image can be considered a vector that includes the frequencies of pixels at every gray level. We assume we have X rows and Y columns for an X-ray image p levels of intensity with values ranging from 0 to $P - 1$. The histogram $h(i)$ can be defined as:

$$h(i) = \sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} \delta(f(x, y) - i), \quad i = 0, 1, ..., P - 1,$$

where $\delta(w) = \begin{cases} 1 & w = 0, \\ 0 & \text{otherwise} \end{cases}$

Table 1: The BRSIQUE score for the original image, NLM Filter, Gaussian Filter and Median Filter.

Noise Filter	BRSIQUE Score
Original Image	30.422937041381687
NLM Filter	30.25358515476941
Gaussian Filter	68.95581668738586
Median Filter	44.94117491132553

In histogram equalization, the output histogram is flat, see Figure 3, it hugely improves the contrast in images, and it performs a separation to the most frequent intensity values, which allows recognizing small details via giving areas of lower contrast to get high contrast. Histogram Equalization solves the interference of the most frequent patterns in the X-ray image and improves the contrast.
Figure 3: Figure A shows a sample of Chest X-ray images after the cropping process. Figure B shows the histogram of Figure A. Figure C shows the same image after applying the NLM algorithm. Figure D shows the histogram of Figure C. Figure E shows the Figure D image after applying Histogram Equalization. Figure F shows the histogram of Figure E.
3.4. Judging the presented pre-processing approach using Blind Reference less Image Spatial Quality Evaluator (BRISQUE)

Chest X-ray images may have many distortions such as blur and noise. So we developed an approach to enhance the chest X-ray dataset images to improve the result of the DCCN model.

Table 2: The BRISIQUE score for the original image, Hamed et al.[33] approach and the proposed approach.

Pre-processing Approaches	BRISIQUE Score
Original Image	30.422937041381687
Hamed et al. Approach[33]	25.523768478459573
The Proposed Approach	18.209273375260608

We considered the BRISIQUE[14] to assess the quality of the output of our pre-processing approach. The higher the BRISIQUE scores, the worst the image, as it is full of noise. BRISIQUE was applied in a random chest X-ray image before and after the pre-processing steps applied, and a comparison is applied between our pre-processing approach with Hamed et al.[33] and we achieve better results. Table 2 shows the image quality scores.

4. The Investigated models and the proposed “DeepChest” model

In this work, we conducted an analytical comparison between different Multi-use models and our proposed problem-based model. The two following sections demonstrate this comparison and the training strategies.

4.1. Multi-use models and the proposed model “DeepChest”

This section presents an analytical comparison between different multi-use models and our proposed model “DeepChest”. We investigated the proposed model, and the multi-use DCNN models were VGG16[18], DenseNet-121[20], Mohammad et al.[19], and MobileNet[21].
The proposed pre-processing approach
- Eliminating the confusing variables
- Applying the NLM filter
- Applying Histogram Equalization

The Chest X-ray Dataset

The proposed "DeepChest" model

Eliminating the confusing variables
Applying the NLM filter
Applying Histogram Equalization

Convolutional layer
BatchNormalization layer
Max-pooling layer
Convolutional feature map

The Chest X-ray Dataset

The proposed pre-processing approach
- Eliminating the confusing variables
- Applying the NLM filter
- Applying Histogram Equalization

Figure 4: The structure of “DeepChest”, this structure consists of five blocks, the first four is convolutional part and the last one is the classifier part, this structure also has ten convolutional layers, five BatchNormalization layers, and four max-pooling layers.

The DCNNs contain two main parts in their architecture: convolutional parts and classifier parts. The convolutional parts extract the image’s features, and the classifier parts classify these features into one of several predefined classes due to the used dataset. The transfer learning technique [39] was applied to get pre-trained DCNN models. Therefore, the investigated models [18, 19, 20] were pre-trained on the standard ImageNet dataset [48]. The classifier part of these models was removed and a dense layer with 3 classes and activation "softmax" [41] function was added.
Table 3: The input parameters of the investigated multi-use DCCN models.

Parameters	VGG16	DenseNet-121	Mohammad et al model	MobileNet
Image Size	244×244×3	244×244×3	244×244×3	244×244×3
Learning Rate	0.0001	0.0001	0.0001	0.0001
Decay	1e−5	1e−5	1e−5	1e−5
Batch Size	16	16	16	16
Step Per Epoch	385	385	385	385
Validation Steps	1	1	1	1
Optimizer	Adam	Adam	Nadam	Adam
Call Backs	Model	Model	Model	Model
	Checkpoint and CSV	Checkpoint and CSV	Checkpoint and CSV	Checkpoint and CSV
Loss	Categorical Cross Entropy	Categorical Cross Entropy	Categorical Cross Entropy	Categorical Cross Entropy
Class Weight	Auto	Auto	Auto	Auto
Pre-training Weights	ImageNet	ImageNet	ImageNet	ImageNet
Activation Function	SoftMax	SoftMax	SoftMax	SoftMax
Of The Last Classifier Layer				

Table 3 shows the input parameters of these DCNNs models in the presented work. On the other hand, the “DeepChest” model is proposed as a DCNN problem-based model, see Figure 4. Table 4 shows the input parameter for the proposed model and Table 5 demonstrates the presented model structure. The proposed “DeepChest” model has many important differences from the
compared models as follows:

Table 4: The input parameters on the proposed model “DeepChest”.

Parameters	“DeepChest”
Image Size	$244 \times 244 \times 3$
Learning Rate	0.0001
Decay	$1e^{-5}$
Batch Size	16
Step Per Epoch	385
Validation Steps	1
Optimizer	Adam
CALL Backs	Model Checkpoint & CSV Logger
Loss	Categorical Cross Entropy
Class Weights	Auto
Number Of Neurons In The First Classifier Layer	1024
First Drop Out	0.7
Number Of Neurons In The Second Classifier Layer	512
Second Drop Out	0.5
Number Of Neurons In The Third Classifier Layer	3
Activation Function Of The Last Classifier Layer	SoftMax
Table 5: The structure details of the proposed “DeepChest” model.

Block #	Layer (type)	Output Shape
Block1	First Layer: Conv1-1 (Conv2D)	(None, 224, 224, 64)
	Second Layer: bn1 (Batch Normalization)	(None, 224, 224, 64)
	Third Layer: Conv1-2 (Conv2D)	(None, 224, 224, 64)
	Fourth Layer: pool1 (MaxPooling2D)	(None, 112, 112, 64)
Block2	First Layer: Conv2-1 (Conv2D)	(None, 112, 112, 128)
	Second Layer: bn2 (Batch Normalization)	(None, 112, 112, 128)
	Third Layer: Conv2-2 (Conv2D)	(None, 112, 112, 128)
	Fourth Layer: pool2 (MaxPooling2D)	(None, 56, 56, 128)
Block3	First Layer: Conv3-1 (Conv2D)	(None, 56, 56, 256)
	Second Layer: bn3 (Batch Normalization)	(None, 56, 56, 256)
	Third Layer: Conv3-2 (Conv2D)	(None, 56, 56, 256)
	Fourth Layer: bn3 (Batch Normalization)	(None, 56, 56, 256)
	Fifth Layer: Conv3-3 (Conv2D)	(None, 56, 56, 256)
	Sixth Layer: pool3 (MaxPooling2D)	(None, 28, 28, 256)
Block4	First Layer: Conv4-1 (Conv2D)	(None, 28, 28, 512)
	Second Layer: bn4 (Batch Normalization)	(None, 28, 28, 512)
	Third Layer: Conv4-2 (Conv2D)	(None, 28, 28, 512)
	Fourth Layer: bn5 (Batch Normalization)	(None, 28, 28, 512)
	Fifth Layer: Conv4-3 (Conv2D)	(None, 28, 28, 512)
	Sixth Layer: pool4 (MaxPooling2D)	(None, 14, 14, 512)
Block5	First Layer: flatten (Flatten)	(None, 100352)

Continued on next page
To speed up the X-ray images' diagnosis, we must decrease the size of the output of the convolution layer. Max-pooling layer was used. But it can result in losing some features from chest X-ray images. Well-known DCNN models such as VGG16[18], Mohammad et al.[19], MobileNet[21], and DenseNet-121[20] use 6, 9, 1, and 20 max-pooling layers[18, 19, 20] respectively. On the other hand, the proposed “DeepChest” model uses only 4 max-pooling layers. Fortunately, the proposed three-step pre-processing approach worked to make “Deep Chest” more speed and more accurate using a suitable number of max-pooling layers.

The well-known DCNN models, especially VGG16[18], Mohammad et al.[19], MobileNet[21], and DenseNet121[20] were designed to classify ImageNet dataset images, so they perform the convolutional operation with 3 \times 3 filter size to find small patterns that help in the classification process. However, the consolidation patterns are relatively big, so we need to use a bigger filter size in our convolutional operations. This is what we do in the “DeepChest” model, where the filter size is 7 \times 7. This filter size increases the number of parameters in the proposed model. DeepChest has approximately 104 million parameters, while VGG16[18], Mohammad et al.[19], DenseNet-121[20], and MobileNet[21] have 14 million, 44 million, 7, and 3 million parameters, respectively.

Table 5 – *Continued from previous page*

Block #	Layer (type)	Output Shape
	Second Layer: fc1 (Dense)	(None, 1024)
	Operation: dropout1 (Dropout)	(None, 1024)
	Third Layer: fc2 (Dense)	(None, 512)
	Operation: dropout2 (Dropout)	(None, 512)
	Fourth Layer: fc3 (Dense)	(None, 3)
4.2. Training strategy

In the proposed training strategy, we apply the training process of “DeepChest” from scratch. However, the chest X-ray images were small in number. To overcome this problem, the Image Data Generator method\[40\] has been used to generate chest X-ray images. The generated data will be in the same domain to force DCNN models to learn only the desirable features instead of bringing other chest X-ray datasets for training which may confuse the DCNN models during the training process. The proposed training strategy has three steps. We applied these steps to all the investigated models (VGG16\[18\], Mohammad et al.\[19\], MobileNet\[21\], and DenseNet-121\[20\].) , including the “DeepChest”.

![Diagram showing the training process](image)

Figure 5: VGG16\[18\], Mohammad et al.\[19\], MobileNet\[21\], and DenseNet-121\[20\] were pre-trained with ImageNet dataset before the training process with the used chest x-ray dataset. However, the “DeepChest” model were trained only with the used chest X-ray dataset.

Each step has ten epochs with 385 stepper epoch and batch size 16, and
then after each step, we save the weights of the epoch that have the highest accuracy. The saved weights were loaded for the next training step see Figures 1 and 5. But the DCNNs (VGG16[18], Mohammad et al.[19], MobileNet[21], and DenseNet-121[20].) were pre-trained via ImageNet dataset[48]. The proposed training strategy uses 3 times less memory space than training the investigated models directly with 30 epochs, which manages to free the random access memory (RAM) after every 10 epochs.

Table 6: The used generated balanced dataset details.

Dataset	COVID-19	Pneumonia	Normal
Corona Virus dataset	70	0	28
COVID-XRay-5k dataset	184	0	580
Pneumonia dataset	0	4273	1583
Excluded images	0	33	0
Generated images	1323	0	0
Training set	979	3842	1949
Validating set	8	8	8
Testing set	336	390	234

Table 7: The average training time for one epoch and the average testing time for the test set in seconds.

Models	Average Training Time(s)	Average Testing Time(s)
VGG16[18]	252	66
Mohammad et al.[19] model	241.5	73
DenseNet-121[20]	223.3	62

Continued on next page
5. Experimental Results

5.1. Dataset and statistical data analysis

We generate the main used dataset in this work based on the Pneumonia chest X-ray images dataset[15], Coronavirus chest X-ray images dataset[16], and COVID-XRay-5k dataste[17]. They are organized into three folders (Train, Test, and Val), including sub-folders for every image class (Normal, Pneumonia, COVID-19). There are 7512 chest X-ray images with the extension (JPEG) divided into three classes of COVID-19 (1323), Pneumonia (4240 images), and Normal (1949 images). We applied A filtering process to the dataset that excluded 33 chest X-ray images from the Pneumonia folder, which is included in the train folder. This exclusion is applied because the excluded images have no consistency with the pre-processing approach. This inconsistency due to the pre-defined window that crops the images is larger than the image itself. We generate 1323 COVID images with the same extension (JPEG) based on the 70 COVID-19 X-ray images available in the Coronavirus dataset. The generation rules were rotation range with 360 degrees, horizontal flip, vertical flip, width shift range with 0.05, height shift range with 0.05, zoom range 0.05, and fill mode "nearest" according to Keras image data generator[40] see Table 6. The used generated dataset available in Github. The proposed model and the other four compared models are developed using Python and Keras library[43] on Tensorflow[44], Google Colaboratory[45] Notebooks are used along with Google drive where the dataset is uploaded. All statistical and computations tasks
were calculated using statistic methods and sklearn packages[46] of Python version 3.8.3[47] which was released on 13 May 2020. We consider the test data included in the generated chest X-ray dataset to evaluate the result of the investigated DCCN models. Figure 6 demonstrates the train accuracy and loss functions of VGG16, DenseNet121, Mohammad et al., MobileNet, and the proposed “DeepChest” model.

Table 8: The confusion matrix of the investigated models and the presented “DeepChest” after applying our proposed pre-processing approach.

MODELS	Classes	Prediction	Prediction	Prediction	Total
	++	+	-		
++	292	44	0	336	
VGG16[18]	+	0	384	6	390
	-	0	41	223	234
	Total	292	439	229	960
DenseNet-121[20]	+	0	381	9	390
	-	0	62	172	234
	Total	325	454	181	960
Mohammad et al.[19] model	++	0	366	24	390
	+	3	16	215	234
	Total	332	388	240	960

Continued on next page
Table 8: Continued from previous page

MODELS	Classes	Prediction	Prediction	Prediction	Total
	++	-	-	-	-
MobileNet[21]	++	330	5	1	336
	+	9	369	12	390
	-	15	9	210	234
	Total	354	383	223	960
"DeepChest"	++	334	2	0	336
	+	1	387	2	390
	-	8	20	206	234
	Total	343	409	208	960

Table 9: The confusion matrix of the investigated models and the presented "DeepChest" before applying our proposed pre-processing approach.

MODELS	Classes	Prediction	Prediction	Prediction	Total
	++	-	-	-	-
VGG16[18]	++	292	44	0	336
	+	0	384	6	390
	-	0	201	33	234
	Total	292	629	39	960
DenseNet-121[20]	++	325	44	0	336
	+	0	381	9	390
	-	0	432	102	234
	Total	325	524	111	960

Continued on next page
The confusion matrices for the investigated DCNN models after applying the proposed pre-processing approach were calculated due to Table 8 for the performance evaluation process for each model. In this presented work the Normal, Pneumonia and COVID-19 classes are recognized as negative (demonstrated by – notation in Table 8), positive (demonstrated by + notation in Table 8) and double-positive classes (demonstrated by ++ notation in Table 8), respectively. The confusion matrices for the investigated DCNN models before applying the proposed pre-processing approach also were calculated see Table 9. The specificity, sensitivity, F1-score, and accuracy factors for every investigated model before and after the pre-processing approach are demonstrated in Table 9.

MODELS	Classes Prediction	Prediction	Prediction	Total
	++	+	-	
Mohammad et al. [19] model	329	6	1	336
MobileNet [21]	310	21	5	336
"DeepChest"	334	2	0	336

The confusion matrices for the investigated DCNN models after applying the proposed pre-processing approach were calculated due to Table 8 for the performance evaluation process for each model. In this presented work the Normal, Pneumonia and COVID-19 classes are recognized as negative (demonstrated by – notation in Table 8), positive (demonstrated by + notation in Table 8) and double-positive classes (demonstrated by ++ notation in Table 8), respectively. The confusion matrices for the investigated DCNN models before applying the proposed pre-processing approach also were calculated see Table 9. The specificity, sensitivity, F1-score, and accuracy factors for every investigated model before and after the pre-processing approach are demonstrated in Table 9.
bles 10 and 11 respectively. Based on the test set data which are not used in the training process, specificity, sensitivity, accuracy and F1 score metrics are computed due to the following equations:

\[
Specificity = \frac{TN}{TN + FP} \tag{3}
\]

\[
Sensitivity = \frac{TP}{TP + FN} \tag{4}
\]

\[
Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \tag{5}
\]

\[
F1 = \frac{TP}{TP + \frac{1}{2}(FP + FN)} \tag{6}
\]

In the above equations, TN, TP, FN, and FP indicate True Negative, True Positive, False Negative, and False Positive factors, respectively.

Figure 6: Figure A shows the investigated DCNN models (VGG16, Mohammed et al., DenseNet-121, MobileNet, and the proposed model (DeepChest))’s training accuracy in the training process, and Figure B shows the investigated DCNN models (VGG16, Mohammed et al., DenseNet-121, MobileNet, and the proposed model (DeepChest))’s training loss in the training process.
6. Performance comparison for the DCNN models

The investigated multi-use DCNN models were pre-trained via the ImageNet dataset. This allowed these models to take advantage of feature similarity in points and edges at the low-level view. The pre-training process via ImageNet dataset [48] enables the DCNN to model to learn basic patterns such as points, edges, and lines. Therefore the ImageNet weights were used with VGG16 [18], Mohammad et al. [19], MobileNet [21], and DenseNet-121 [20]. These models are trained with a large amount of data from scratch. In this presented work, DCNN models were fine-tuned and retrained with chest X-ray images. Lastly, the generated chest X-ray images dataset was used to train these models. The weights were initialized randomly in the classifier layers to learn how to classify X-ray images’ features as Normal, pneumonia, or COVID-19. So, the final result showed that the well-known DCNN models were customized by training and fine-tuning the trainable layers of the model.

Figure 7: The training accuracy metric among investigated models through the three stages training strategy.
Table 10: A comparison between the investigated models and the presented “DeepChest” in Accuracy, Sensitivity, Specificity, and F1-score after applying our proposed pre-processing approach.

Metrics	VGG16[18]	Mohammad et al.[19]	DenseNet-121[20]	MobileNet[21]	“DeepChest”
Accuracy	0.9365	0.9479	0.9145	0.9469	0.9656
COVID-19 Accuracy	0.8690	0.9673	0.9792	0.9821	0.994
COVID-19 Sensitivity	0.945	0.8916	0.8207	0.9402	0.9398
COVID-19 Specificity	0.9324	0.9981	0.9805	0.98302	0.9965
COVID-19 F1 score	0.939	0.9374	0.8935	0.9611	0.9674
Pneumonia Accuracy	0.9846	0.9385	0.9769	0.94615	0.9923
Pneumonia Sensitivity	1	0.9892	1	0.9584	0.9798
Pneumonia Specificity	0.9885	0.9775	0.922	0.9626	0.9945
Pneumonia F1 score	0.9942	0.9767	0.991	0.9652	0.9871
Normal Accuracy	0.953	0.9188	0.7350	0.8974	0.8803
Normal Sensitivity	0.8352	0.9729	0.9399	0.9375	0.9857
Normal Specificity	0.984	0.9722	0.91927	0.9668	0.9626
Normal F1 score	0.9035	0.9726	0.9294	0.9637	0.974

Continued on next page
Table 10 – Continued from previous page

Metrics	VGG16[18]	Mohammad et al.[19]	DenseNet-121[20]	MobileNet[21]	“DeepChest” model
Accuracy	0.7385	0.8646	0.8417	0.8646	0.8677
COVID-19 Accuracy	0.8690	0.9792	0.9673	0.9226	0.9940
COVID-19 Sensitivity	0.5852	0.7327	0.6974	0.8267	0.7422
COVID-19 Specificity	0.9046	0.9862	0.7773	0.9524	0.996
COVID-19 F1 score	0.7106	0.9408	0.73521	0.8851	0.8506
Pneumonia Accuracy	0.9846	0.9385	0.9769	0.8462	0.9923
Pneumonia Sensitivity	1.00	0.9882	1.00	0.9483	0.9798
Pneumonia Specificity	0.9819	0.9508	0.989	0.8929	0.9933
Pneumonia F1 score	0.9909	0.9692	0.9943	0.91964	0.9865

Table 11: A comparison between the investigated models and the presented “DeepChest” in Accuracy, Sensitivity, Specificity, and F1-score before applying our proposed pre-processing approach.

Metrics	VGG16[18]	Mohammad et al.[19]	DenseNet-121[20]	MobileNet[21]	“DeepChest” model
Accuracy	0.7385	0.8646	0.8417	0.8646	0.8677
COVID-19 Accuracy	0.8690	0.9792	0.9673	0.9226	0.9940
COVID-19 Sensitivity	0.5852	0.7327	0.6974	0.8267	0.7422
COVID-19 Specificity	0.9046	0.9862	0.7773	0.9524	0.996
COVID-19 F1 score	0.7106	0.9408	0.73521	0.8851	0.8506
Pneumonia Accuracy	0.9846	0.9385	0.9769	0.8462	0.9923
Pneumonia Sensitivity	1.00	0.9882	1.00	0.9483	0.9798
Pneumonia Specificity	0.9819	0.9508	0.989	0.8929	0.9933
Pneumonia F1 score	0.9909	0.9692	0.9943	0.91964	0.9865

Continued on next page
The DCCN models [18, 19, 20, 21] have millions of parameters (fat and deep), so they have many purposes. The one, these models configured several convolutional layers to extract features from images and max-pooling layers to reduce the dimension of X-ray images through layers. In the second one, the categories of ImageNet dataset [48] have features that managed the DCCN models from efficient classification. On the other hand, the generated chest X-ray dataset has only three classes, Normal, Pneumonia, and COVID-19. A small fraction of the chest X-ray image distinguishes the image with COVID-19 or Pneumonia from the Normal image. Therefore when we use many max-pooling layers will remove the feature separator of the three classes. Moreover, DCNN models need large chest data to learn the chest pattern, see tables 8, 9, 10 and 11. To overcome these issues, we proposed the “DeepChest” model that is fat and deep enough for chest X-ray images and has a suitable number of max-pooling layers as we compared with the investigated multi-use DCNN models. We input chest X-ray images into the training process after the pre-processing step. Batch Normalization [22] layers allow us to train the proposed model faster, getting higher learning rates as shown in Figure 7 and the process of the initializing weight becomes easier. For an overall demonstration of what our contribution was, see Figure 1. The accuracy, specificity, sensitivity, and F1 score were used.

Table 11 – Continued from previous page

Metrics	VGG16 [18]	Mohammad et al. [19]	DenseNet-121 [20]	MobileNet [21]	“DeepChest” model
Normal Accuracy	0.1410	0.5769	0.4359	0.8119	0.4786
Normal Sensitivity	0.4286	0.9575	1.0000	0.8017	0.97313
Normal Specificity	0.7708	0.8753	0.8425	0.9357	0.8553
Normal F1 score	0.3314	0.9145	0.9143	0.8635	0.9108
to make a demonstrative comparison between all of the investigated models in
this paper, see table 10 and 11. The experimental results showed the following:

- Figures 7 and 6 show that “DeepChest” achieved the highest and stablest
 training accuracy.
- Table 10 shows that DeepChest model has the highest accuracy, sensitivity,
 specificity, and F1 score among the investigated models, so ImageNet
 weights should not be used as pre-trained weights as the first choice.
- DeepChest also achieved better training and testing time costs than the
 other investigated models, see table 7.
- We made up the problem of a small number of images available in the
 chest X-ray dataset via using a data generator[40] provided by Keras,
 which allowed us to generate more data from the same domain.
- “DeepChest” used Drop-out layers two times with a rate of 0.7 and 0.5,
 respectively, to prevent data overfitting[42].
- Tables 8, 9, 10, and 11 shows the huge effect of the proposed pre-processing
 approach on the achieved results.

6.1. The effect of the proposed pre-processing approach

As demonstrated in Section 2, the pre-processing approach was critical to
improving the DCNN model classification process. In order to evaluate the pos-
itive effect of the presented pre-processing approach, the generated chest X-ray
dataset was input to the investigated DCNN models after and before applying
the pre-processing step. Tables 8, 9, 10, and 11 shows the huge improvement of
the achieved results.

7. Conclusion

This paper proposes a comprehensive method for detecting Pneumonia and
COVID-19 in chest X-ray images. This method includes: First, generating
a balanced chest X-ray dataset with three classes Normal, Pneumonia, and COVID-19. Second, a pre-processing approach stands for eliminating the confusing variables, removing noise from the X-ray images, and improving the contrast of these images. Third, a training strategy with three phases. Each phase has ten epochs. DeepChest saves the weights of the highest epoch accuracy. Then it loads the saved weights to the model before the second training phase begins. The same thing happens in the second and the third phase. Fourth, our problem-based model “DeepChest” was proposed to learn the desirable features of the chest X-ray images. We conducted the experimental evaluations of the proposed approach on a dataset with 7512 chest X-ray images. The proposed approach achieved an accuracy of 96.56% overall, 99.40% in detecting COVID-19, and 99.32% in detecting Pneumonia. In actual practice, the presented approach can be used as a computer-aided diagnosis tool to get accurate results in detecting Pneumonia and COVID-19 in chest X-ray images.

Code availability

We shared all the DCNN models investigated in this paper and the used dataset through this GitHub repository. We hope that the presented approach will be helpful in future research.

References

[1] Z Al-Ani, S Suut, AN Khan, Multifocal Lung Consolidation: Differential diagnosis The Role of Imaging, United Kingdom Radiological Congress (UKRC), (2015).

[2] A. Jackson, A. Bridgman, A. Black, B. Youzguin, Can You Tell What It Is Yet? An Investigation Into Identification Of Consolidation Of Chest X-Rays In Patients Diagnosed With Community Acquired Pneumonia, American Thoracic Society International Conference Abstracts, (2017), A3929-A3929.
[3] Tim J Schuijt, Jacqueline M Lankelma, Brendon P Scicluna et al, The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia, Gut microbiota, (2016), 65, 575-583. http://dx.doi.org/10.1136/ gutjnl-2015-309728

[4] J. Anthony G. Scott, Chizoba Wonodi, Maria Deloria et al, The definition of pneumonia, the assessment of severity, and clinical standardization in the pneumonia etiology research for child health study, Clinical Infectious Diseases, (2012), 54. https://doi.org/10.1093/cid/cir1065

[5] Sabine Tong, Caroline Amand, Alexia Kieffer et al, Trends in healthcare utilization and costs associated with pneumonia in the United States during 2008–2014, BMC Health Services Research, (2018), 18, 1–8. https://doi.org/10.1186/s12913-018-3529-4

[6] World Health Organization (WHO). Accessed on 2020-08-19 https://www.who.int;

[7] Chunli Qin, Demin Yao, Yonghong Shi et al, Computer-aided detection in chest radiography based on artificial intelligence: A survey, BioMedical Engineering Online, (2018), 17, 1-23. https://doi.org/10.1186/s12938-018-0544-y

[8] Olga Russakovsky, Jia Deng, Hao Su et al, ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, (2015), 115, 211-252. https://doi.org/10.1007/s11263-015-0816-y

[9] Weibo Liu, Zidong Wang, Xiaohui Liu et al, A survey of deep neural network architectures and their applications, Neurocomputing, (2017), 234, 11-26. https://doi.org/10.1016/j.neucom.2016.12.038

[10] Geert Litjens, Thijs Koo, Babak Elteshami Bejnordi et al, A survey on deep learning in medical image analysis, Medical image analysis, (2017), 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
[11] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu et al, CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning, arXiv preprint arXiv:1711.05225, (2017), 3-9. https://arxiv.org/abs/1711.05225

[12] Dinggang Shen, Guorong Wu, Heung-Il Suk et al, Deep Learning in Medical Image Analysis, Advances in Experimental Medicine and Biology, (2017), 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

[13] Jonathan H. Chen, Steven M. Asch, Machine learning and prediction in medicine-beyond the peak of inflated expectations, New England Journal of Medicine, (2017), 376, 2507-2509. https://doi/10.1056/NEJMp1702071

[14] Anish Mittal, Anush Krishna Moorthy, Alan Conrad Bovik, No-reference image quality assessment in the spatial domain, IEEE Transactions on Image Processing, (2012), 21, 4695-4708. https://doi:10.1109/TIP.2012.2214050

[15] P. Mooney, Chest X-Ray Images (Pneumonia) Dataset, Uploaded since (2018) https://www.kaggle.com/paultimothymooney/cheest-xray-pneumonia

[16] Nabeel Sajid, Chest X-Ray Images (Corona Virus Dataset) Dataset, Uploaded since (2020) https://www.kaggle.com/nabeelsajid917/covid-19-x-ray-10000-images

[17] Shervin Minaee, Rahele Kafieh et al, COVID-XRay-5K Dataset, Accessed since (2020). https://github.com/ieee8023/covid-chestxray-dataset

[18] Karen Simonyan, Andrew Zisserman, VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION, arXiv preprint arXiv:1409.1556, (2015). https://arxiv.org/abs/1409.1556

[19] Mohammad Rahimzadeh, Abolfazl Attar, A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and
ResNet50V2, Informatics in Medicine Unlocked, (2020), 19, 100360. https://doi.org/10.1016/j.imu.2020.100360

[20] Gao Huang, Zhuang Liu, Laurens van der Maaten et al, Densely Connected Convolutional Networks, Proceedings of the IEEE conference, (2017). https://ieeexplore.ieee.org/document/8099726

[21] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. 2017 Apr 17. https://arxiv.org/abs/1704.04861

[22] Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Machine Learning, (2015). https://arxiv.org/abs/1502.03167

[23] Yaniv Bar, Idit Diamant, Lior Wolf et al, Chest pathology detection using deep learning with non-medical training, Proceedings - International Symposium on Biomedical Imaging, (2015), 294-297. https://doi:10.1109/ISBI.2015.7163871.

[24] Kai-lung hua, che-hao hsu, shintami chusnul hidayati et al, Computer-aided classification of lung nodules on computed tomography images via deep learning technique, OncoTargets and Therapy, (2015), 8, 2015-2022. https://doi:10.2147/OTT.S80733

[25] Islam, M. T., Aowal, M. A., Minhaz, A. T., and Ashraf, K., Abnormality Detection and Localization in Chest X-Rays using Deep Convolutional Neural Networks, ar CoRR arXiv:1705.09850, (2017). https://arXiv:1705.09850

[26] John R. Zech, Marcus A. Badgeley, Manway Liu et al, Confounding variables can degrade generalization performance of radiological deep learning models, Unsupervised domain adaptation for medical imaging segmentation with self-ensembling, (2018), 9, 1-15. https://arxiv.org/abs/1807.00431
[27] SHUAIJING XU, HAO WU, RONGFANG BIE, CXNet-m1: Anomaly Detection on Chest X-Rays with Image-Based Deep Learning, IEEE Access, (2019), 7, 4466-4477. https://doi:10.1109/ACCESS.2018.2885997

[28] Sergio Varela-Santos and Patricia Melin, A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks, Information Sciences, (2021), 545, 403-414. https://doi.org/10.1016/j.ins.2020.09.041

[29] A.Jaiswala, N.Gianchandania et al, Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning, Journal of Biomolecular Structure and Dynamics, (2020), 1-8. https://doi.org/10.1080/07391102.2020.1788642

[30] J.Civit-Masot, F.Luna-Perejón et al, Deep Learning System for COVID-19 Diagnosis Aid Using X-ray Pulmonary Images, Applied Sciences, (2020), 10, 4640. https://doi.org/10.3390/app10134640

[31] Hongyu Wang, Shanshan Wang et al, Triple attention learning for classification of 14 thoracic diseases using chest radiography, (2021), 67. https://doi.org/10.1016/j.media.2020.101846

[32] Shervin Minaee, Rahele Kafieh et al, Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning, Medical Image Analysis, (2020), 65. https://doi.org/10.1016/j.media.2020.101794

[33] Hamed Behzadi-khormouji, Habib Rostami, Sana Salehi et al, Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images, Computer Methods and Programs in Biomedicine, (2020), 185, 105162. https://doi.org/10.1016/j.cmpb.2019.105162

[34] A. Buades, B. Coll, and J.-M. Morel., A Non-Local Algorithm for Image Denoising, in Proceedings, In CVPR, (2005), 2, 60–65. IEEE. https://doi:10.1109/CVPR.2005.38
[35] Deng, Guang and L. W. Cahill. "An adaptive Gaussian filter for noise reduction and edge detection." 1993 IEEE conference record nuclear science symposium and medical imaging conference. IEEE, 1993. 10.1016/0165-1684(95)00020-E.

[36] Pitas, I. Venetsanopoulos, Median Filters, Nonlinear Digital Filters: Principles and Applications, Springer US, 1990, 63-116. 10.1007/978-1-4757-6017-0_4.

[37] Raman B. Paranjape, Fundamental Enhancement Techniques, 3-18, Biomedical Engineering, University of Regina (2000). https://doi.org/10.1016/B978-012077790-7/50004-7

[38] Navdeep Singh, Lakhwinder Kaur, Kuldeep Singh, Histogram equalization techniques for enhancement of low radiance retinal images for early detection of diabetic retinopathy, Engineering Science and Technology, an International Journal, (2019), 22, 736-745. https://doi.org/10.1016/j.jestch.2019.01.014

[39] Sinno Jialin Pan, Qiang Yang, A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering, (2010), 22, 1345-1359. https://doi:10.1109/TKDE.2009.191

[40] F. Chollet, Keras ImageDataGenerator, Uploaded since (2015), https://keras.io/api/preprocessing/image/

[41] J. I. Arribas, J. Cid-Sueiro, T. Adali and A. R. Figueiras-Vidal, "Neural architectures for parametric estimation of a posteriori probabilities by constrained conditional density functions," Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), 1999, pp. 263-272. https://doi.org/10.1109/NNSP.1999.788145

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky et al, Dropout: A
Simple Way to Prevent Neural Networks from Overfitting, (2014), 15, 1929-1958.

[43] F. Chollet, Keras Library, Uploaded since (2015), https://keras.io/

[44] Google Brain Team, TensorFlow library, Uploaded since (2015), https://www.tensorflow.org/

[45] Google, Google Colab Notebook, Established since (2017), https://colab.research.google.com/

[46] D. Cournapeau, scikit-learn library, Accessed in (2020-08-19), https://scikit-learn.org/

[47] G. v. Rossum, Python library, uploaded since (2007), https://www.python.org/

[48] Deng, Dong and Socher et al, ImageNet: A Large-Scale Hierarchical Image Database, (2009), CVPR09. https://www.image-net.org/papers/imagenet_cvpr09.bib