On the Spin-Orbital Structure of the “Zero” Magnetization Spin-Precessing Modes of the Superfluid 3He $- B$

G. Kharadze and N. Suramlishvili

Andronikashvili Institute of Physics, Georgian Academy of Sciences, 6 Tamarashvili St.,
380077, Tbilisi, Georgia

The spin-orbital configurations of the coherently precessing spin modes characterized by a small value of the magnetization ($M \ll M_0 = \chi H_0$) is considered. Various regimes are analysed depending on the transverse rf-field strength.

PACS: 67.57.Lm

In the superfluid phases of liquid 3He the unusual spin-precessing modes can be exited at the magnitude $M = |\vec{M}|$ of the magnetization essentially different from its equilibrium value $M_0 = \chi H_0$ (here χ is the magnetic susceptibility and H_0 denotes the strength of an applied static magnetic field). Such a possibility is realized, in particular, for 3He $- B$ at $M = M_0/2$ (or $M = 2M_0$), as has been pointed out in Ref.[1] and demonstrated experimentally [2-4] (for the details see, also, Ref.[5]). These homogeneously precessing spin-modes are stabilized at the local minima of time-averaged dipole-dipole potential U_D and are characterized by the specific (non-Leggett) orbital configurations of the order parameter.

For the superfluid B-phase

$$U_D = \frac{2}{15} \chi_B \left(\frac{\Omega_B}{g} \right)^2 \left(\text{Tr} \hat{R} - \frac{1}{2} \right)^2,$$

where Ω_B is the longitudinal NMR frequency, g-the gyromagnetic ratio for 3He nuclei and the orthogonal matrix \hat{R} describes 3D relative rotations of the spin and orbital degrees of freedom. By introducing the triples of Euler angles (α_S, β_S, γ_S) and (α_L, β_L, γ_L), which parametrize rotations in the spin and orbital spaces, respectively, it can be shown that $U_D = U_D(s_Z, l_Z, \alpha, \gamma)$, where $s_Z = \cos \beta_S$ ($l_Z = \cos \beta_L$) is the projection of the Cooper pair...
spin quantization axis (orbital momentum quantization axis) along the direction of the applied static magnetic field \vec{H}_0, $\alpha = \alpha_S - \alpha_L$ and $\gamma = \gamma_S - \gamma_L$. Measuring the energy density in units of χH_0^2 and noticing that U_D is a periodic function of α and γ, we have:

$$\frac{U_D}{\chi B H_0^2} = \varepsilon f(s_Z, l_Z, \alpha, \gamma) = \varepsilon \sum_{kl} f_{kl}(s_Z, l_Z) e^{i(k\alpha + l\gamma)}$$ (2)

with $\varepsilon \propto (\Omega_B/\omega_0)^2$ (here $\omega_0 = gH_0$).

In the case of a strong magnetic field ($\omega_0 \gg \Omega_B$) the angular variables α and γ perform rapid rotations within a long time scale $1/\Omega_D$ and the result of the time-averaging procedure of Eq.(2) essentially depends on the possible presence of a slow combination $\phi_{kl} = k\alpha + l\gamma$. Since in the strong-field case ($\varepsilon \ll 1$) $\dot{\alpha} \simeq -\omega_0$ and $\dot{\gamma} \simeq gM/\chi$, the phase ϕ_{kl} turns out to be a slow variable at the resonance condition $M/M_0 = k/l$. Addressing the explicit expressions of the Fourier coefficients f_{kl} for 3He -- B (see Ref.[6]) it is concluded that, along with the conventional resonance at $M = M_0$ with $k = l = \pm 1, \pm 2$, the two other (unconventional) resonances are realized at $M = M_0/2$ ($M = 2M_0$) with $2k = l$ ($k = 2l$). This happens in the case of $l_Z \neq 1$ (non-Leggett orbital configuration) where $f_{12} = f_{21} \neq 0$. In particular, at $M = M_0/2$ the time-averaged dipole-dipole potential

$$\bar{f} = 1 + 2s_Z^2 l_Z^2 + (1 - s_Z^2)(1 - l_Z^2) + \frac{2}{3} \sqrt{1 - s_Z^2} \sqrt{1 - l_Z^2} (1 + s_Z)(1 + l_Z) \cos \phi_{12}$$ (3)

and the half-magnetization (HM) spin-precessing mode is trapped at the local minima of Eq.(3) [1].

In Refs.[2,3], along with the above-mentioned HM spin-precessing mode, another unusual spin-precessing state with $M \ll M_0$ has been observed experimentally. This “zero” magnetization mode is not within the category of the resonances with a slow phase. Instead, the “zero” magnetization spin-precessing mode can be stabilized at the balance of the dissipative energy losses and the transverse rf-field energy pumping, as has been discussed in Ref.[7]. The experimentally realized “zero” magnetization spin-precessing mode seems to be characterized by the Cooper pairs orbital configuration close to $l_Z = 0,$
although in Ref.[7] the case of the Leggett configuration \((l_Z = 1)\) was adopted. The computer simulation was used to resolve this controversy (see, e.g., [8]). Here we apply an analytical approach to the same question.

In order to construct the stationary spin-precessing state with \(M \ll M_0\) we address the equations describing the evolution of the spin density \(\vec{S} = \vec{M}/g\). In the strong magnetic field case the spin dynamics is governed by the two pairs of canonically conjugate variables \((S_Z, \alpha)\) and \((S, \gamma)\) subject to a set of the equations

\[
\dot{\alpha} = -1 + \frac{\varepsilon \partial f_D}{\partial S_Z} + \frac{S_Z}{S_Z} \sqrt{S^2 - S_Z^2} h_\perp \cos \theta - \varepsilon \kappa \frac{S^2}{\sqrt{S^2 - S_Z^2}} \left(\frac{\partial f_D}{\partial \alpha} - s_Z \frac{\partial f_D}{\partial \gamma} \right), \quad (4)
\]

\[
\dot{\gamma} = S + \frac{\varepsilon \partial f_D}{\partial S} - \frac{S}{\sqrt{S^2 - S_Z^2}} h_\perp \cos \theta - \varepsilon \kappa \frac{S^2}{\sqrt{S^2 - S_Z^2}} \left(\frac{\partial f_D}{\partial \gamma} - s_Z \frac{\partial f_D}{\partial \alpha} \right), \quad (5)
\]

\[
\dot{S}_Z = -\varepsilon \frac{\partial f_D}{\partial \alpha} - \sqrt{S^2 - S_Z^2} h_\perp \sin \theta + \varepsilon^2 \kappa (S^2 - S_Z^2) \left(\frac{\partial f_D}{\partial S_Z} \right)^2, \quad (6)
\]

\[
\dot{S} = -\varepsilon \frac{\partial f_D}{\partial \gamma}. \quad (7)
\]

This equations are put into a dimensionless form with the time measured is the units of \(1/\omega_0\) and the spin density - in the units of \(S_0 = M_0/g\). The presence of the transverse rf field \(\vec{H}_\perp(t) = H_\perp 0 (\hat{x} \cos \phi(t) + \hat{y} \sin \phi(t))\) is taken into account \((h_\perp = H_\perp 0 / H_0, \theta = \alpha - \phi)\). The dissipation in the spin dynamics is characterized by a phenomenological parameter \(\kappa\) (as in Ref.[9]).

Now we focus on the case of the spin precession in the regime with \(S \ll 1\). In this situation \(\dot{\gamma} \ll 1\) but if \(\sqrt{\varepsilon} \ll S \ll 1\) the angular variable will change faster then \(S_Z\) and \(S\). Then, in order to describe the evolution of the spin system in \(\varepsilon\)-approximation (the Van der Pol picture), we have to use the time-averaged dipole-dipole potential \(\bar{f}_D\) with respect to both angular variables \(\alpha\) and \(\gamma\) independently. In this non-resonance case

\[
\bar{f} = f_{00} = 1 + 2s_Z^2 l_Z^2 + (1 - s_Z^2)(1 - l_Z^2), \quad (8)
\]
and the disipationless dynamics of α and γ is governed by the equations

$$\dot{\alpha} = -1 + \varepsilon \frac{\partial f_{00}}{\partial S_Z} + \frac{S_Z}{\sqrt{S^2 - S_Z^2}} h_{\perp} \cos \theta,$$

$$\dot{\gamma} = S + \varepsilon \frac{\partial f_{00}}{\partial S} - \frac{S}{\sqrt{S^2 - S_Z^2}} h_{\perp} \cos \theta,$$

with S_Z and S being constants.

The stationary solutions of Eqs.(9) and (10) are found according to the conditions

$$\frac{\partial f}{\partial S_Z} = \frac{\partial f}{\partial S} = 0,$$ \hspace{1cm} (11)

where the free energy

$$f = \varepsilon f + \frac{1}{2}(S - \omega \gamma)^2 + (\omega_\alpha - 1)S_Z - \sqrt{S^2 - S_Z^2} h_{\perp} \cos \theta$$ \hspace{1cm} (12)

with $\omega_\alpha = -\dot{\alpha}_{\mathrm{st}}$ and $\omega_\gamma = \dot{\gamma}_{\mathrm{st}}$.

In what follows we consider the case where the first (dipole-dipole) term in Eq.(12) dominates over the rest part of the free energy. Than it is concluded that the stationarity conditions (11) are reduced to the equation

$$\frac{\partial f_{00}}{\partial \beta_s} = 2\sqrt{1 - s_Z^2} s_Z (1 - 3l_Z^2) = 0.$$ \hspace{1cm} (13)

In the situation where l_Z is free to adjust to the minimal value of f_{00}, Eq.(13) is to be supplemented by an analogous condition

$$\frac{\partial f_{00}}{\partial \beta_L} = 2\sqrt{1 - l_Z^2} l_Z (1 - 3s_Z^2) = 0.$$ \hspace{1cm} (14)

From Eqs.(13) and (14) it is readily concluded that the minimal value of $f_{00}(= 1)$ is realized at the following spin-orbital configurations:

$$a) \quad s_Z = \pm 1, \quad l_Z = 0,$$

$$b) \quad s_Z = 0, \quad l_Z = \pm 1.$$ \hspace{1cm} (15) \hspace{1cm} (16)
The case with \(s_Z = l_Z = 1 \) corresponds to the maximal value of \(f_{00} \).

The experimentally observed “zero” magnetization spin-precessing mode is developed near the spin-orbital configuration \(s_Z = 1 \) and \(l_Z = 0 \) \([2,3]\) and we have to verify whether it corresponds to the dynamical regime with \(\sqrt{\varepsilon} < S \ll 1 \). For this purpose the set of equations for \(S \) and \(S_Z \) with dissipative terms is to be addressed. Using the results of Ref.\([6]\) and putting \(\beta \approx 1 - \frac{1}{2}\beta_S^2 \), for the case \(l_Z = 0 \) the following set of equations is obtained:

\[
\dot{S} = 4\kappa\varepsilon^2 \left(1 - \frac{\beta_S^2}{2S} \right),
\]

\[
\dot{\beta}_S = -\frac{\kappa\varepsilon^2}{S\beta_S} \left(\frac{77}{9} + \frac{\beta_S}{S} \right) + h_\perp \sin \theta,
\]

with the stationary solution

\[
S = a \left(\frac{\varepsilon^2}{h_\perp} \right)^{2/3}.
\]

where \(a = \frac{1}{2} \left(\frac{100\kappa}{9\sin \theta} \right)^{2/3} \). It can be verified that this solution is locally stable. Since in Eq.(19) the coefficient \(a \) is of the order of unity, the initially imposed condition on the value of \(S \) (\(\sqrt{\varepsilon} \ll S \ll 1 \)) will be fulfilled for \(h_\perp \) being within the limits

\[
\varepsilon^2 \ll h_\perp \ll \varepsilon^{5/4}.
\]

For the case with \(\varepsilon \approx 10^{-3} \), which corresponds to the situation realized experimentally, the value of \(h_\perp = H_\perp/H_0 \approx 10^{-5} \) fits Eq.(20). This consideration shows that the “zero” magnetization spin-precessing mode is realized at the spin-orbital configuration \(s_Z \approx 1, l_Z \approx 0 \), in accordance with experimental observations.

Now we turn to the question of stability of the “zero” magnetization spin-precessing mode near the orbital state \(l_Z = 1 \), which realizes the maximum value of the time-averaged dipole-dipole potential (8). Again addressing the set of Eqs. for \(S \) and \(s_Z \) (see Ref.\([6]\)) this time for the case of a spin-orbital configuration with \(s_Z \approx 1 \) and \(l_Z \approx 1 \), we obtain that for \(\sqrt{\varepsilon} \ll S \ll 1 \)
\[
\dot{S} = \frac{160}{9} \kappa \varepsilon^2, \quad (21)
\]
\[
\dot{\beta}_S = -\frac{\kappa \varepsilon^2}{S \beta_S} \left(\frac{77}{9} + \frac{\beta_S}{S} \right) + h_\perp \sin \theta. \quad (22)
\]

It can be easily seen that this set of Eqs. has no stationary solution.

It is interesting to analyze another possible regime of “zero” magnetization spin-precessing state with \(S \simeq \sqrt{\varepsilon} \). In this case \(\dot{\gamma} \simeq \sqrt{\varepsilon} \) and the rate of the time evolution of angular variable \(\gamma \) is still faster than the temporal variations of \(S \) and \(S_Z \). On the other hand, \(\dot{s}_Z = (\dot{S}_Z - s_Z \dot{S})/S \simeq \sqrt{\varepsilon} \) and the only fast variable upon which depends the dipole-dipole potential is \(\alpha \). In the considered situation

\[
f_D = \sum_k f_k(s_Z, l_Z, \gamma) e^{i k \alpha}, \quad (23)
\]

where the time-averaged value

\[
f_0 = 1 + 2s_Z^2 l_Z^2 + 4s_Z l_Z \sqrt{1 - s_Z^2} \sqrt{1 - l_Z^2} \cos \gamma + (1 - s_Z^2)(1 - l_Z^2)(1 + \cos 2\gamma). \quad (24)
\]

After having minimized \(f_0 \) with respect to the slow variable \(\gamma \) it can be shown that \(f_0(s_Z, l_Z) \) is highly degenerate with respect to the spin and orbital variables: the minimum of \(f_0(s_Z, l_Z) \) is realized within the circle \(s_Z^2 + l_Z^2 \leq 1 \). Considering again the orbital state \(l_Z = 0 \) with the stationary value \(\gamma_{st} = \pi/2 \) it can be shown that the time evolution of \(s_Z \) is governed by an equation

\[
\dot{s}_Z = \frac{4 \kappa \varepsilon^2}{S(1 - s_Z^2)} (s_Z^4 - s_Z^3 s_Z^2 + s_Z^2 + 4) - h_\perp \sqrt{1 - s_Z^2} \sin \theta. \quad (25)
\]

From Eq.(25) it follow that near \(s_Z = \pm 1 \) the stationary value of \(\beta_S \) is given by

\[
\beta_S \simeq 2 \left(\frac{2 \kappa \varepsilon^2}{3S h_\perp \sin \theta} \right)^{1/3}. \quad (26)
\]

It is easy to show that the solution (26) for the case \(s_Z \simeq -1 \) is locally stable (in contrast to the case with \(s_Z \simeq 1 \)). This spin-orbital configuration \((s_Z \simeq -1, l_Z \simeq 0) \) is
one of the stable spin-precessing states at $S \simeq \sqrt{\varepsilon}$. The phase diagram of the “zero” magnetization in the degeneracy domain $s_Z^2 + l_Z^2 \leq 1$ will be presented in a separate publication.

We are indebted to E.Sonin for his valuable comments.

References

[1] G.Kharadze and G.Vachnadze, *JETP Lett.*, **56**, 458 (1992).

[2] V.V.Dmitriev, I.V.Kosarev, M.Krusius *et al.*, *Phys.Rev.Lett.*, **78**, 86 (1997).

[3] V.B.Elstov, V.V.Dmitriev, M.Krusius *et al.*, *J.Low Temp. Phys.*, **113**, 645 (1998).

[4] V.V.Dmitriev, I.V.Kosarev and D.V.Ponarin, *JETP Lett.*, **69**, 215 (1999).

[5] G.Kharadze, N.Suramlishvili and G.Vachnadze, *J. Low Temp. Phys.*, **110**, 851 (1998).

[6] G.Kharadze and N.Suramlishvili, *Low Temp.Phys.(Kharkov)*, **25**, 607 (1999).

[7] E.Sonin, *Sov.Phys. JETP*, **67**, 1791 (1988).

[8] V.V.Dmitriev, *Uspekhi Fiz. Nauk*, **170**, 689, (2000)

[9] I.A.Fomin, *Sov.Phys. JETP*, **50**, 144 (1979).