Diez Benavente, E; Ward, Z; Chan, W; Mohareb, FR; Sutherland, CJ; Roper, C; Campino, S; Clark, TG (2017) Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure. PloS one, 12 (5). e0177134. ISSN 1932-6203 DOI: https://doi.org/10.1371/journal.pone.0177134

Downloaded from: http://researchonline.lshtm.ac.uk/4086923/

DOI: 10.1371/journal.pone.0177134

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Genomic variation in *Plasmodium vivax* malaria reveals regions under selective pressure

Ernest Diez Benavente¹, Zoe Ward¹,², Wilson Chan¹,³, Fady R. Mohareb³, Colin J. Sutherland¹, Cally Roper¹, Susana Campino¹‡, Taane G. Clark¹‡*

¹ London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom, ² The Bioinformatics Group, School of Water Energy and Environment, Cranfield University, Cranfield, Bedfordshire, United Kingdom, ³ Department of Pathology & Laboratory Medicine, Diagnostic & Scientific Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada

‡ These authors are joint last authors on this work.
* taane.clark@lshtm.ac.uk

Abstract

Background

Although *Plasmodium vivax* contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly *P. falciparum*. It is known that *P. vivax* populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors.

Results

We analysed the high-quality genomic data for 46 *P. vivax* isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported *MRP1* and *DHPS* genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, *MDR1* gene, and duplications in the Duffy binding protein gene (*PvDBP*) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify *P. vivax* populations across continents and differentiate between *Plasmodia spp*.

Conclusions

This study has shown that genomic diversity that lies within and between *P. vivax* populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications.

Background

The *Plasmodium vivax* malaria parasite is the second most virulent malaria species after *P. falciparum*. Geographically, it is found throughout Asia, South and Central America, Oceania,
Middle East and some parts of Africa, with nearly 2.85 billion people at risk of infection [1]. Although *P. vivax* contributes to almost half of all malaria cases outside Africa, as it kills infrequently and is not amenable to continuous *in vitro* culture, it has been relatively neglected compared to the more deadly *P. falciparum* [2]. However, as *P. vivax* drug-resistant strains emerge and spread and fatality rates increase, the need to implement better control and elimination strategies is becoming urgent. Many of the interventions used for controlling *P. falciparum* malaria are not as effective against *P. vivax*. Consequently, *P. vivax* has become the dominant malaria parasite in several countries where *P. falciparum* transmission has been successfully reduced. Hence, control and elimination of *P. vivax* malaria calls for additional interventions, notably against the dormant liver stage of the parasite. However, gaps in our knowledge of *P. vivax* epidemiology and biology may compromise its control. Genomic research can contribute greatly to enhancing our understanding of *P. vivax* basic biology and evolutionary history, supporting the development and surveillance of new interventions.

Since the first characterisation of the *P. vivax* genome sequence (Sal-1, [3]), several population genetic studies, based on microsatellite data and more recently using whole genomes, have shown that this parasite is more polymorphic than *P. falciparum* [4,5,6,7]. *P. vivax* populations harbour high genetic diversity, even on small spatial scales, and can differ extensively between locations due to vector species, host genetics and environmental factors [4,5,6]. Genetic variation enables the parasite to overcome host immune responses and antimalarial drugs to establish persistent infections and increase transmission. Genomic studies in natural populations of *P. vivax* can pinpoint genetic regions that are under selective pressure, including those associated with resistance to antimalarial drugs. Such studies can also contribute to the identification of vaccine targets. Moreover, global genomic studies can assist with identifying sets of polymorphism private to populations, allowing the monitoring of gene flow over space and time, and the tracking of imported infections. By developing a molecular barcode of individual parasites it will also be possible to distinguish recrudescent from re-infections.

Highly polymorphic microsatellites have been the preferred method of genetic analysis, revealing high levels of diversity and highlighting interesting genotypic patterns and geographical clustering across global populations [8, 9, 10, 11, 12]. The advancement of whole genome sequencing technologies has opened up opportunities to obtain a comprehensive picture of the epidemiology and structural variation of *P. vivax*. There is now the ability to perform genome-wide analysis of the various populations without the need for *in vitro* culture and overcoming difficulties with low parasitaemias and high human DNA contamination [13]. Recent studies using genome-wide SNPs highlighted that signals of natural selection suggest that *P. vivax* is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector [6,7]. Several other whole genome sequence studies have been published [13, 14, 15, 16], covering 10 countries. Using these and other data, we explore the genetic diversity within and between continents, identify signatures of drug pressure and molecular barcodes that could be useful for determining the source of infections and monitoring parasite populations.

Methods

Samples and sequence data

Publicly available whole genome sequence data for 74 *P. vivax* samples were gathered from multiple sources, and included reference strains (India VII, Mauritania X, North Korea II, Brazil I, Sal-1 from El Salvador (see [2])), field and clinical isolates (Cambodia (n = 3) [13], Thailand (n = 39) [13], Madagascar (n = 3) [2,17], Colombia (n = 8) [14] and Peru (n = 11) [7,15]) and clinical samples from travellers (to Papua Indonesia (n = 2) [13], India (n = 2) [13], and
Papua New Guinea (PNG, n = 6) [13]). All sequencing data for non-reference strains were generated using Illumina paired end technologies (read lengths ≥75bp). The raw sequence data were mapped to the Sal-1 reference genome (version 10.0) using bwa-mem with default parameters. SNPs (n = 447,232) were identified using the samtools software suite (samtools.sourceforge.net) with high quality scores (phred score > 30, 1 error per 1 kbp). Genotypes were called using ratios of coverage, where the minimal heterozygous calls still present after filtering were converted to the majority genotype if the coverage ratio was 80:20 or greater [18,19]. SNPs were retained if they were biallelic, had low genotype missingness (<10%) and heterozygous (<0.4%) calls. SNPs in regions of extreme coverage and very low coverage were excluded, as well as in non-unique regions (using a k-mer approach with length of 54 bp) and highly polymorphic VIR genes. Two samples were found to have P. vivax and P. falciparum co-infections (ERR020124 and SRR828528), and were excluded from population genetic analysis. Isolates were retained if they had at least average 10-fold genome-wide coverage, and at most 10% missing genotype calls. The final high quality dataset consisted of 46 (62.2%) isolates (Thailand 22, Southeast Asia 24, South America 11; other 11; S1 Table) and 219,288 SNPs, and used as the basis of population genetic analyses. FreeC software (http://bioinfo-out.curie.fr/projects/freec/tutorial.html) was used to identify regions of the genome with a significant increase or decrease in read coverage identifying potential copy number variants (CNVs) after accounting for GC bias through coverage normalization. Regions identified as CNVs were inspected visually and assessed using de novo assembly methods [20].

Population genetics

Genetic diversity was estimated using the average pairwise nucleotide diversity (π) with the R package "pegas". An in-house R script was used to compute the allele frequency-based Tajima’s D test [21] to identify genes under balancing selection in the individual populations (values > 2.5; [18]), this method was chosen over the dN/dS approach given the latter being not fit for analysis on individual populations [22]. To detect signals of directional selection, the integrated Haplotype Score (iHS) approach [23] was applied to individual populations supported by a principal component analysis (PCA). This approach used the most frequent allele where mixed calls where found so the haplotype analysis will be based on the most abundant strain in each sample [7]. P-values for iHS were computed from standardised values based on a 2-tailed conversion from a Gaussian distribution [19]. The Salvador-I being the reference and oldest sample was used as ancestral haplotype. Multiplicity of infection was estimated using a novel method of counting the unique haplotypes formed by polymorphism on paired sequencing reads (estMOI, [24]). For comparisons between populations, we first applied PCA and neighbourhood joining tree clustering based on a matrix of pairwise identity by state values. These analyses were followed by applying the cross population long-range haplotype method (XP-EHH [25], Rsb implementation [19]) and the population differentiation metric \(F_{ST} \) [26]. P-values for the \(Rsb \) estimates were calculated using a Gaussian approximation [19]. A significance threshold of \(P < 0.001 \) was established for both \(iHS \) and \(Rsb \) using bootstrap-and permutation-based simulation approaches [18,19]. We used the ranked \(F_{ST} \) statistics to identify the informative polymorphism for the barcoding of populations and driving the clustering observed in the PCA. Linkage disequilibrium (LD) was assessed in the two populations with the largest sample sizes (Thailand and South America) using the \(r^2 \) and \(D' \) metrics [27], calculated for pairs of SNPs with different physical separation up to 2 kbp using a sliding window approach. The SNPs were annotated and effects of variants on genes (such as amino acid changes) were predicted using snpEFF software [28]. The R statistical package was used to analyse SNP data, including implementation of selection analyses using the "rehh" library.
Results

Genetic polymorphisms

The genomic coverage in the nuclear genome was high (median 103-fold, range 30-5973-fold), and in keeping with multiple organellar copies, the mitochondria and apicoplast coverage was 30-fold and 1.8 fold greater than the nuclear coverage. The density of SNPs in the nuclear genome (219,288 SNPs, 1 every 99 bp) was greater than in the mitochondrial (23 SNPs, 1 every 165 bp) and apicoplast genomes (176 SNPs, 1 every 165 bp) (S2 Table). Although 60% of the annotated reference genome is coding (chromosomal range: 54%-64%), approximately half the SNPs in the isolates were found in genic regions (mean 48% per chromosome, range 43% to 52%) (Fig 1A). The proportion of non-synonymous sites is consistent with those found in other Plasmodium species, with 52% of coding SNP sites being non-synonymous in the nuclear genome, 36% in the mitochondrion and 56% in the apicoplast. The differences in these genomes suggest they may be subject to differential selective pressure [29]. The majority of SNPs are rare, with nearly half of the mutations (45%) being observed in single samples (Fig 1B) as seen in other Plasmodium populations [18]. There was some evidence of polyclonality in 22 samples (Cambodia 1/2, Colombia 5/5, Madagascar 2/2, PNG 2/5, Thailand 11/22).

Analysis of structural variants and copy number variants was limited to Thai, Cambodian and Madagascan isolates, which had high and uniform genomic coverage. CNVs were located

Fig 1. (a) SNP locations by annotation*. (b) Minor allele frequency spectrum indicates a predominance of rare alleles. (c) Linkage disequilibrium (r2) decays rapidly with physical genetic distance. * established using snpEFF software.

https://doi.org/10.1371/journal.pone.0177134.g001
less than 1 kbp distance from the MDR1 gene (chromosome 10, PVX_080100) in Cambodian and Thai isolates (S1 Fig). Several MDR1 variants have previously been reported, some considered putative chloroquine- and mefloquine-resistance alleles [14,30–35]. At the MDR1 locus, we observed either a duplication of ~35kb (position 351kbp to 389kbp, n = 1, Thailand), a major deletion in the promoter region of the gene (n = 7, Thailand; n = 1 Cambodia), or a combination of both structural variants, including two copies, one with the deletion in the promoter and another copy with a complete promoter (n = 4, Thailand); as confirmed by the increase or decrease in coverage and accumulation of split reads in the regions where a break in the coverage occurs. The known duplication in the Duffy binding protein PvDBP (chr. 6: 974,000–982,000, PVX_110810) in Malagasy [36] was confirmed in one of the two Madagascan isolates (SRR828416). The PvDBP gene is potentially involved in erythrocyte invasion, and the duplication was also observed in thirteen Thai isolates. A further duplication was observed in Pv-fam-e (a RAD gene, chr. 5: 895,000–900,000, n = 8, Thailand), a gene linked to P. vivax selectivity for young erythrocytes and/or immune evasion [36].

Assessing genetic diversity, LD and positive directional selection

The average polymorphism (pair-wise mismatches measured by nucleotide diversity π) was calculated by gene and chromosome. There was little difference across the chromosomes with mean 11.1x10^{-4} (range 6.0 x 10^{-4} to 19.0x10^{-4}), which is consistent with other studies with similar sample size [14] as well as larger datasets when restricted to high quality SNPs (1.5x10^{-3}) [6, 7]. LD decays rapidly for non-rare polymorphism (minor allele frequency ≥ 5%) within a few hundred base pairs, and reaches a baseline within 500bp in South American and Thai nuclear genomes (Fig 1C). Like P. falciparum, there is a high correlation between non-rare SNPs (median D’ 0.918, range 0.425–1) in the mitochondrial and apicoplast genomes supporting the inference that the organelles are co-inherited and supporting the view that these SNPs have potential utility for barcoding [29].

To examine evidence for signatures of positive natural selection we calculated the iHS metric in the Thailand and South America populations, informed by the population structure reported in S3 Fig. Five contiguous loci of strong positive directional selection were identified, including the MRP1 gene (PVX_097025) and its promoter region in Thailand, and a region surrounding the MRP2 gene (PVX_097025, P. falciparum homologue associated with primaquine and antifolate drug sensitivity [14]). Several surface proteins were identified in both populations, including the MSP7 and MSP3.1, which are thought to be under selection pressure due to their role in erythrocyte invasion and strong vaccine candidates and have been identified before by other studies using sanger sequencing [29] (Table 1, Table 2, S2 Fig). In addition, some helicases showed strong signals of selection (PVX_088190 and PVX_111220) which were also detected in the same study [36] reinforcing the method used. Furthermore, we identified in South America a proximal region of selection (chr14: 1,414,164–1,479,586) described elsewhere [7].

Allele frequency spectrum and balancing selection

The allele frequency spectrum of different classes of nucleotide sites all show an excess of rare alleles, with coding, non-synonymous, synonymous and intergenic sites more skewed than expected under a Wright-Fisher model of constant population size [18]. This observation could indicate a population expansion in the recent past, where as a population grows in size, the frequency of rare alleles also increases [18]. The Tajima’s D method was applied to genes with at least five SNPs in the two main populations (Thailand 4,673 (91.0%) and South America 3,549 (70.0%) genes). The majority of Tajima’s D values were negative (Thailand 90.2%;
South America 64.4%), reinforcing the presence of an excess of low frequency and singleton polymorphisms, potentially due to population expansion in the recent past or purifying selection. For Thailand, we identified 398 (8.5%) genes with positive Tajima’s D values, of which 14 were in excess of 2.5 and potentially under balancing selection (Table 3). Similarly, for South America, of the 1,260 (35.5%) values that were positive, 12 were in excess of 2.5 (Table 3). The loci under potential balancing selection in both populations encode proteins with predominantly roles surface proteins (e.g. MSPs) and antigens. The majority of the 26 genes identified

Chr	Position / Range	Max iHS	Gene	Annotation
1	284000	5.083	PVX_087910	E3 ubiquitin-protein ligase, putative
1	379430	3.511	.	.
2	148413	4.319	.	Promoter region MRP1
2	158122	3.452	PVX_097025	multidrug resistance-associated protein 1, MRP1
4	576773	4.289	.	.
4	629852	3.483	PVX_003770	merozoite surface protein 5 (MSP5)
5	673939	3.566	PVX_089575	trafficking protein particle complex protein, TRAPPCL
7	778719	3.986	.	.
7	1397181	5.829	PVX_086903	Plasmodium exported protein, unknown function
8	766604	3.709	PVX_095055	Rhs interacting protein, putative (RIPR)
8	921104	3.451	PVX_095235	protein phosphatase inhibitor 2, putative
8	927191	3.489	PVX_095245	hypothetical protein, conserved
8	985454	3.778	PVX_095305	hypothetical protein, conserved
9	107123	6.186	PVX_090925	protein kinase domain containing protein
9	311594	3.590	.	.
9	526557	4.115	PVX_091440	hypothetical protein, conserved
10	1222646	5.499	PVX_097715	hypothetical protein
10	1225529	4.109	.	.
10	1261650	9.180	.	Promotor region MSP3.1
10	1261852	3.982	PVX_097670	merozoite surface protein 3 (MSP3.1)
11	926166	4.034	.	.
12	732115	3.531	PVX_082735	thrombospondin-related anonymous protein (TRAP)
12	734223-745860	4.901	PVX_082730	hypothetical protein, conserved
12	746536	4.319	.	.
12	751773	5.473	PVX_082710	hypothetical protein
12	752332	3.558	.	.
12	765929	6.849	.	.
12	766784	6.170	PVX_082675	merozoite surface protein 7 (MSP7)
12	864218	3.561	PVX_082510	hypothetical protein
12	865780	3.930	PVX_082505	CPW-WPC family protein, putative
12	1020235	5.042	.	.
12	2475528	4.740	.	.
12	2540841	3.633	PVX_118270	serine/threonine protein kinase, putative
12	2622092	3.446	PVX_118345	protein transport protein SEC7, (SEC7)
12	2638874	4.900	.	.
12	2671299	3.501	PVX_118380	GTP-binding protein, putative
12	2732268	3.486	PVX_118460	hypothetical protein, conserved
14	3028986	5.168	.	.

* $|i$HS$| > 3.

https://doi.org/10.1371/journal.pone.0177134.t001
in this study have had positive indices of balancing selection in previous studies [37, 38], or have orthologues in *P. falciparum* [18].

Population structure and evidence of differing directional selection in populations

Both a principal component and a neighbourhood joining tree analysis (Fig 2, S4 Fig) revealed clustering by continent, in keeping with similar *P. falciparum* analyses [18, 19]. The across population long-range haplotype method (*Rsb* implementation) was applied to compare Thailand to the South American population, to identify regions potentially under recent directional selection (*Table 4*). We detected several loci including at multidrug resistance-associated protein *MRP1* (*PVX_097025*), and the CCR4-associated factor 1 (*CAF1*, *PVX_123230*) located

Table 2. Regions under directional selective pressure in South America *.

Chr	Position / Range	Max iHS	Gene	Annotation
1	490369	3.020	*PVX_088190*	helicase, putative
1	662401	3.050	*PVX_093585*	SF-assemblin, putative
2	244790–1	5.316		
			PVX_000860	hypothetical protein, conserved
3	372679	4.109	*PVX_000695*	hypothetical protein, conserved
4	574831	3.029	*PVX_003830*	serine-repeat antigen 5 (SERA)
5	560637	3.649	*PVX_089445*	RAD protein (Pv-fam-e)
6	1046482	3.358	*PVX_090020*	hypothetical protein, conserved
7	627960–1	3.605	*PVX_111230*	hypothetical protein, conserved
7	437942–60	4.773	*PVX_099005*	cysteine repeat modular protein 1, CRMP1
7	527651	3.182	*PVX_099125*	pseudouridylate synthase, putative
7	1116251–2	5.712	*PVX_099915*	RNA-binding protein, putative
7	1214179	6.840	*PVX_087145*	nucleolar protein Nop52, putative
8	219359	3.180	*PVX_094405*	hypothetical protein, conserved
9	730034	3.611	*PVX_091700*	circumsporozoite-related antigen, EXP1
9	751857	3.149		
9	829890	3.161	*PVX_091770*	calcium-dependent protein kinase 7, CDK7
9	1042906–7	5.519	*PVX_092035*	6-phosphofructokinase, putative
9	1138673	3.110	*PVX_092160*	hypothetical protein, conserved
10	380535	3.108	*PVX_080110*	G10 protein, putative
10	1063432	3.592	*PVX_097895*	TBC domain containing protein
10	1257251	3.291		
10	1260441–2	5.201		1 Kb from MSP3.2
11	822715	4.026	*PVX_114575*	transmembrane amino acid transporter protein
11	1973708	6.074		
12	955488	3.652	*PVX_082400*	myosin C, putative
12	1317195	3.435	*PVX_116815*	hypothetical protein, conserved
13	215135	3.283	*PVX_084350*	hypothetical protein, conserved
13	611668	5.708	*PVX_084755*	hypothetical protein, conserved
13	856226–30	4.519	*PVX_085030*	aspartyl protease, putative
14	1275835	3.114	*PVX_123250*	aquaporin, putative (AQP2)
14	1665191	3.572	*PVX_123885*	histone-lysine N-methyltransferase, SET10
14	1875833	4.986	*PVX_123890*	hypothetical protein, conserved

* |iHS| > 3.

https://doi.org/10.1371/journal.pone.0177134.t002
within 20kb of DHPS (associated with resistance to sulfadoxine [14]). Five non-synonymous mutations were identified in the DHPS gene (M616T, P553A, P383A, P382R, P382A), with evidence that the P383A has driven toward fixation across all geographical regions. Except for mutation in codon 616, all the others have been previously reported [39–42]. The DHFR gene, associated with resistance to pyrimethamine (part of the SP drug combination), exhibited elevated Rsb (>3). Seven non-synonymous mutations were identified, including the previously described S58R and S117N [42–44] that were fixed across populations, and F57I/L and T61M [44–46] that were absent from South America (S3 Table). No evidence was observed of a hard sweep around the MDR1 copy number gene. However, nine non-synonymous SNP mutations were identified, five of which have been reported previously. These included the fixed alleles T958M and M908L, F1076L at high frequency across populations, and G698S and S513R [41–44]. There was no evidence of a sweep around the P. vivax orthologues of the falciparum chloroquine related CRT (pvcrt-o, PVX_087980) or GTP cyclohydrolase I folate pathway (GTPCH, PVX_123830) genes. No common non-synonymous mutations were identified within the CRT gene, while 7 low frequency non-synonymous SNPs were identified in the GTPCH locus.

The Rsb analysis also revealed loci associated with the diversity of vectors, including the P28 (PVX_111180) gene expressed in the surface of the ookinete stage during the mosquito part of the life cycle, pv47 (PVX_083240) and pv48/45 (PVX_083235) involved in the transmission of the parasite. There are continental-specific pv47 and pv48/45 SNPs (and haplotypes) as previously found [47, 48], consistent with the presence of different species of mosquito in each the regions [49], resembling a similar pattern found in P. falciparum [50].

Table 3. Genetic regions under potential balancing selection pressure in South America (SA) and Thailand (T)*.

Chr.	Gene Start	Gene End	Tajima’s D	Gene **	Annotation	Population
1	521978	527387	3.265	PVX_088235	ferlin, putative	SA
3	19187	30715	14.166, 7.134	PVX_001080	hypothetical protein, conserved	SA, T
4	265018	267216	2.928	PVX_002785	ATP-dependent acyl-CoA synthetase	T
5	562755	566374	4.871, 6.085	PVX_003840	serine-repeat antigen 3 (SERA)	SA, T
6	567313	571093	4.944	PVX_003835	serine-repeat antigen 1 (SERA)	T
7	572172	575852	3.36	PVX_003830	serine-repeat antigen 5 (SERA)	T
8	596283	600192	4.224	PVX_003805	serine-repeat antigen (SERA), putative	SA
9	1297808	1301010	3.279	PVX_090285	Pvspt1, putative	T
10	1345372	1354047	15.907	PVX_090325	reticulocyte binding protein 2c (RBP2c)	T
11	1358748	1360820	5.762	PVX_090330	reticulocyte binding protein 2 (PvRB2p-2)	T
12	1157742	1162997	5.593, 4.124	PVX_099880	merozoite surface protein 1 (MSP1)	SA, T
13	6424	7811	4.195	PVX_090835	hypothetical protein	T
14	22046	23460	2.925	PVX_079700	hypothetical protein, conserved	T
15	65101	69250	2.793	PVX_079750	hypothetical protein, conserved	T
16	1187639	1188909	5.206	PVX_097760	60S ribosomal protein L31, RPL31	SA
17	1218512	1221845	2.939, 5.585	PVX_097720	merozoite surface protein 3 (MSP3.10)	SA, T
18	1272354	1274193	3.869	PVX_097660	4-diphosphocytidyl-2-C-methyl- kinase, IspE	SA
19	1306384	1308153	5.991	PVX_097600	hypothetical protein, conserved	SA
20	751041	752203	5.578	PVX_082710	hypothetical protein	SA
21	37121	59181	3.876	PVX_084160	dynein heavy chain, putative	SA
22	128618	131751	4.099	PVX_084260	hypothetical protein, conserved	SA
23	3044644	3046339	2.773	PVX_101575	hypothetical protein, conserved	T

* Tajima’s D > 2.5
** at least 5 SNPs per gene.

https://doi.org/10.1371/journal.pone.0177134.t003
Towards molecular barcoding of *P. vivax*

The development of molecular barcode for *P. vivax* could ultimately assist with surveillance and disease control. Previous work [51] has described a 42 SNP barcode to classify geographically *P. vivax* across 7 countries. Across the 46 isolates analysed here, we found 3 SNPs in the barcode to be either non-segregating or not passing quality control filtering. Use of the remaining 39 SNPs led to imperfect clustering by continent (S4 Table, S5 Fig). Application of the F_{ST} population differentiation metric identified SNPs driving the observed differences between Thailand, South America and other populations (S5 Table). These SNPs occurred in drug resistance loci, including *MRP1* (PVX_097025), *DHPS* (PVX_123230) and *UBP1* (PVX_081540) (all $F_{ST} > 0.72$), and in close proximity (e.g. PVX_089960 within 8kb of DHFR). Population differentiation due to genetic diversity in drug resistant loci is also observed in *P. falciparum* [18,19].

Previous work has proposed the mitochondria and apicoplast organellar genomes as candidate regions for a barcode [29]. Genotyping of organellar markers would benefit from greater copy number and coverage as well as highly conserved sequences [29]. Eight markers across five apicoplast genes could differentiate Thai and Southeast Asian samples from the other isolates, and two non-genic markers were found to be exclusive to South America (all $F_{ST}>0.7$, S6 Table). No informative mitochondrial markers were identified (all $F_{ST}<0.7$). Further, as the
organelle genomes are known to be highly conserved between Plasmodia species, when comparing a set of P. falciparum geographical markers [26] to P. vivax sequences, we found evidence of positions close in the sequence. Two of the samples (ERR020124 and SRR828528) had a high density of mixed calls in the organellar genomes, in this case, a signature of P. falciparum overlaying onto P. vivax (S6 Fig). In general, this density signature is indicative of a co-infection of P. vivax with another Plasmodium spp. By comparing the sequencing reads to the Plasmodium knowlesi reference genome [52], there was no evidence of any vivax and knowlesi co-infections. However, the presence of a unique triallelic SNP reinforces the potential for an organellar inter-plasmodia species barcode (S6 Fig).

Table 4. Regions under directional selective pressure between Thailand and South America *

Chr	Position/Range	Rsb	Gene	Annotation
2	145708–151606	11.80		Promoter region MRP1
2	154067–158122	5.230	*PVX_097025*	multidrug resistance-associated protein 1, MRP1
2	175191–176803	3.717	*PVX_081215*	hypothetical protein, conserved
4	91457	5.879	*PVX_002550*	hypothetical protein, conserved
4	607568–607837	4.457	*PVX_003795*	serine-repeat antigen (SERA)
4	629831–630120	5.205	*PVX_003770*	merozoite surface protein 5
5	1132736	10.20	*PVX_090105*	holo-[acyl-carrier-protein] synthase, putative (ACPS)
5	964771	3.624	*PVX_089950*	bifunctional dihydrofolate reductase-thymidylate synthase, DHFR-TS
6	199049–199165	4.703	*PVX_001850*	hypothetical protein
6	605656–608119	3.788	*PVX_111220*	hypothetical protein, conserved
6	635433–635539	4.406	*PVX_111220*	RNA helicase, putative
6	661816	6.048	*PVX_111180*	28 kDa ookinete surface protein, (P28)
7	1396929–1396961	4.708		Promoter region PVX_086903
7	1397181	4.700	*PVX_086903*	Plasmodium exported protein, unknown function
8	219359–220251	5.257	*PVX_094405*	hypothetical protein, conserved
8	1417014–1417038	4.406	*PVX_119515*	hypothetical protein, conserved
8	1533222	3.214	*PVX_119360*	hypothetical protein
9	419318–419619	4.971		Promoter region PVX_091307
9	920056–920166	4.676	*PVX_091880*	hypothetical protein, conserved
9	1048990	3.304	*PVX_092040*	geranylgeranyl pyrophosphate synthase (GGPPS)
9	1229833	3.296	*PVX_092275*	apical membrane antigen 1 (AMA1)
10	1251585–1257251	7.094		Promoter region MSP3.2
10	1257754–1257815	6.617	*PVX_097675*	merozoite surface protein 3 (MSP3.2)
11	1517269	3.234	*PVX_113775*	6-cysteine protein (P12)
11	1223546–1223790	3.816		Promoter region PVX_114125
11	1383108–1383155	6.010	*PVX_113925*	hypothetical protein, conserved
12	286960	3.227	*PVX_083240*	6-cysteine protein (P47)
13	141889–142286	5.680	*PVX_084280*	hypothetical protein, conserved
13	620154–620261	5.922		Promoter region PVX_084770
13	731328–792522	5.375	*PVX_084860*	hypothetical protein, conserved
13	1034635–1034718	4.101	*PVX_085235*	hypothetical protein
13	1042774	5.406	*PVX_085245*	hypothetical protein, conserved
13	1553113	4.126	*PVX_085835*	hypothetical protein, conserved
14	1231525–1231528	6.056	*PVX_123205*	CCR4-associated factor 1, (CAF1)
14	1429874	3.903	*PVX_123415*	adrenodoxin-type ferredoxin, putative

* Rsb > 3; genes in bold refer to loci related with mosquito life stages of the parasite or drug-resistance.

https://doi.org/10.1371/journal.pone.0177134.t004
Discussion

Several studies have previously described the genomic diversity of *P. vivax* populations using whole genome data, but with low sample sizes. Recently, two papers using a combined collection of over 400 isolates from 17 countries described major genomic diversity in *Plasmodium vivax* [6, 7]. Here we analysed a complementary collection of 46 high quality isolates spanning 10 countries across 4 continents in order to position them within the context of this new work. As expected we confirmed that *P. vivax* genomic diversity is greater compared to *P. falciparum*, and even at a relatively low sample size, the samples clustered geographically. We reveal a wider genomic distance between South American and Southeast Asian continents than observed between *P. falciparum* African and Southeast Asian populations [6, 18, 19], highlighted by the greater and more uniform distribution of SNPs with a high F_{ST} across the genome. Hotspots of selection pressure were identified, including the previously reported *MRP1*, *DHPS* [14] and other putative drug resistance genes, as well as several loci related with the mosquito stage of the parasite life cycle. The latter observation is consistent with recent work [6,7] and the presence of different *Anopheles* species across continents. We identified structural variants, including extra copies and deletions in the promoter region of the *MDR1* gene, a locus associated with multiple antimalarial drugs [14]. We also confirmed the duplication in the Duffy binding protein gene (*PvDBP*) in a Madagascan sample, and detected it in Thai isolates. This duplication has been found in parasites from several regions in Africa, South America and Asia [6,37]. Many of these locations are areas where Duffy-negative individuals make up >45% of the population. However other regions like Cambodia do not present Duffy-negative individuals [53]. It has been theorized that the duplication allows the parasite to infect Duffy negative individuals [53], however more research is needed in this area.

Microsatellite genotyping has been used previously to cluster geographically *P. vivax* isolates, and together with antigen genotyping identify mixed infections and extent of transmission, used as the basis of genetic epidemiology. In comparison, whole genome sequencing provides higher specificity in the application of geographical clustering [51]. While other studies have focused on creating a barcode using the nuclear genome [51], we also considered organelle genomes (mitochondrion and apicoplast), which are more stable over time, do not undergo recombination and are co-inherited [29]. The analysis revealed organellar markers that are potentially Southeast Asian and South American specific, and others that highlighted the presence of multi-species mixed infections. The sequencing of large numbers of isolates, beyond currently published samples sizes, will be required to establish robust intra- and interspecies organellar-based barcode. Such large-scale datasets across multiple regions will also serve to identify the high genomic diversity that lies within and between *P. vivax* populations, which could be exploited for biological insights, including elucidating drug resistance and invasion mechanisms, and ultimately measures of disease control.

Conclusion

This study has shown that genomic diversity that lies within and between *P. vivax* populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications.

Supporting information

S1 Fig. Structural variants located around the *MDR1* gene (chromosome 10) in the Thailand population; (i) a sample without a copy number variant or deletion (even coverage), (ii) a major deletion in the promoter region of the gene (n = 7); (iii) duplication of ~35kb (position 351kbp to 389kbp, n = 1); and (iv) a combination of both structural variants (ii) and (iii).
including two copies, one with the deletion in the promoter and another copy with a complete promoter (n = 4, Thailand). The horizontal dashed line is average chromosomal coverage and the red outline encloses the promoter region of the MDRI gene.

(SIFF)

S2 Fig. Intra-population evidence of directional selective pressure (iHS) a) Thailand b) South America. * iHS integrated haplotype score; see Table 1 and Table 2 for a summary of the hits.

(TIFF)

S3 Fig. Principal component analysis based on 225k SNPs reveals strong clustering of isolates by continent.

(PNG)

S4 Fig. Identifying regions under directional selective pressure between Thailand and South America. Blue line: \(|Rsb| > 3 (P<0.003)\); Red line represents a human GWAS cut-off; see Table 4 for a summary of the hits.

(PNG)

S5 Fig. Principal component analysis based on the previously characterised 42 barcoding SNPs does not reveal strong population clustering. * SNPs and genotypes are shown in S4 Table

(PNG)

S6 Fig. Signatures of a mixed species infection based on heterozygous calls in mitochondrial markers (positions: 3,736–3,935bp).

(PNG)

S1 Table. The 46 study isolates.

(DOCX)

S2 Table. The SNPs.

(DOCX)

S3 Table. Non-synonymous mutations in candidate genes.

(DOCX)

S4 Table. Previously characterised 42 barcoding SNPs in the 46 study isolates.

(DOCX)

S5 Table. Sites of population differentiation between Thailand and South America.

(DOCX)

S6 Table. Population informative apicoplast variants.

(DOCX)

Acknowledgments

We thank Samuel Assefa, Francesc Coll, and Mark Preston for providing computing support. Sequence data were analysed using the MRC UK funded eMedlab computing resource.

Author Contributions

Conceptualization: EDB CJS CR SC TGC.

Data curation: EDB.
Formal analysis: EDB ZW WC SC TGC.
Funding acquisition: TGC CR.
Supervision: FRM SC TGC.
Writing – original draft: EDB SC TGC.
Writing – review & editing: EDB ZW WC FRM CJS CR SC TGC.

References
1. World Health Organization. World malaria report 2013. http://www.who.int/malaria/publications/world_malaria_report_2013/en/
2. Bright AT, Tewhey R, Abeles S, Chuquiyauri R, Llanos-Cuentas A, Ferreira MU, et al. Whole genome sequencing analysis of Plasmodium vivax using whole genome capture. BMC Genomics 2012; 13:262. https://doi.org/10.1186/1471-2164-13-262 PMID: 22721170
3. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 2008; 455:757–63. https://doi.org/10.1038/nature07327 PMID: 18843361
4. Arnott A, Barry AE, Reeder JC. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J 2012; 11:14. https://doi.org/10.1186/1475-2875-11-14 PMID: 22233585
5. Neafsey DE, Galinsky K, Jiang RH, Young L, Sykes SM, Salf S, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet 2012; 44:1046–50. https://doi.org/10.1038/ng.2373 PMID: 22863733
6. Hupalo DN, Luo Z, Melnikov A, Sutton PL, Rogov P, Escalante A, et al. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat Genet 2016; 48(8), 953–958. https://doi.org/10.1038/ng.3588 PMID: 27348298
7. Pearson RD, Amato R, Aubert S, Miotto O, Almagro-Garcia J, Amararatunga C, et al. Genomic analysis of local variation and recent evolution in Plasmodium vivax. Nat Genet 2016; 48(8), 959–964. https://doi.org/10.1038/ng.3599 PMID: 27348299
8. Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, et al. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol 2007; 37:1013–22. https://doi.org/10.1016/j.ijpara.2007.02.010 PMID: 17442318
9. Dharia NV, Bright AT, Westenberger SJ, Barnes SW, Batalov S, Kuhnen K, et al. Whole-genome sequencing and microarray analysis of ex vivo Plasmodium vivax reveal selective pressure on putative drug resistance genes. Proc Natl Acad Sci USA 2010; 107:20045–50. https://doi.org/10.1073/pnas.1003776107 PMID: 21037109
10. Gunawardena S, Karunaweera ND, Ferreira MU, Phone-Kyaw M, Pollack RJ, Alifrangi M, et al. Geographic structure of Plasmodium vivax: microsatellite analysis of parasite populations from Sri Lanka, Myanmar, and Ethiopia. Am J Trop Med Hyg 2010; 82:235–42. https://doi.org/10.4269/ajtmh.2010.09-0588 PMID: 20133999
11. Koepfl C, Rodrigues PT, Antao T, Orjuela-Sánchez P, Van den Eede P, Gamboa D, et al. Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Negl Trop Dis 2015; 9: e0003872. https://doi.org/10.1371/journal.pntd.0003872 PMID: 26125189
12. Kim JY, Goo YK, Zo YG, Ji SY, Trimarsanto H, To S et al. Further Evidence of Increasing Diversity of Plasmodium vivax in the Republic of Korea in Recent Years. PLoS One 2016; 11:e0151514. https://doi.org/10.1371/journal.pone.0151514 PMID: 26990869
13. Auburn S, Mafurt J, Maslen G, Campino S, Ruano Rubio V, Manske M, et al. Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing. PLoS One 2013; 8: e53160. https://doi.org/10.1371/journal.pone.0053160 PMID: 23308154
14. Winter DJ, Pacheco MA, Vallejo AF, Schwartz RS, Arevalo-Herrera M3, Herrera S, et al. Whole Genome Sequencing of Field Isolates Reveals Extensive Genetic Diversity in Plasmodium vivax from Colombia. PLoS Neg Trop Dis 2015; 9:e0004252.
15. Flannery EL, Wang T, Akbari A, Corey VC, Gunawan F, Bright AT, et al. Next-Generation Sequencing of Plasmodium vivax Patient Samples Shows Evidence of Direct Evolution in Drug-Resistance Genes. ACS Infect Dis 2015; 1:367–379. https://doi.org/10.1021/acsinfecdis.5b00049 PMID: 26719854
16. Shen HM, Chen SB, Wang Y, Chen JH. Whole-genome sequencing of a Plasmodium vivax isolate from the China-Myanmar border area. Mem Inst Oswaldo Cruz 2015; 110:814–6. https://doi.org/10.1590/0074-0276015026 PMID: 26517664

17. Parobek CM, Bailey JA, Hathaway NJ, Socheat D, Rogers WO, Juliano JJ. Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens. PLoS Negl Trop Dis 2014; 8: e2796. https://doi.org/10.1371/journal.pntd.0002796 PMID: 24743266

18. Ocholla H, Preston MD, Mipando M, Jensen AT, Campino S, MacInnis B, et al. Whole-genome scans provide evidence of adaptive evolution in Malawian Plasmodium falciparum isolates. J Infect Dis 2014; 210:1991–2000. https://doi.org/10.1093/infdis/jiu349 PMID: 24948693

19. Samad H, Coll F, Preston MD, Ocholla H, Fairhurst RM, Clark TG. Imputation-based population genetics analysis of Plasmodium falciparum malaria parasites. PLoS Genet 2015; 11:e1005131. https://doi.org/10.1371/journal.pgen.1005131 PMID: 25928499

20. Campino S, Diez Benavente E, Assefa S, Thompson E, Drought LG, Taylor CJ, et al. Genomic variation in two gametocyte non-producing Plasmodium falciparum clonal lines. Malar J 2016; 15:229. https://doi.org/10.1186/s12936-016-1254-1 PMID: 27098483

21. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123:585–95. PMID: 2513255

22. Kryazhimskiy S, Plotkin JB. The Population Genetics of dN/dS. PLOS Genetics 2008; 4(12): e1000304. https://doi.org/10.1371/journal.pgen.1000304 PMID: 19081788

23. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol 2006; 4:e72. https://doi.org/10.1371/journal.pbio.0040072 PMID: 16494531

24. Assefa S, Preston M, Campino S, Ocholla H, Sutherland CJ, Clark TG. estMOI: Estimating multiplicity of infection using parasite deep sequencing data. Bioinformatics 2014; 30:1292–4. https://doi.org/10.1093/bioinformatics/btu005 PMID: 24443379

25. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. Genome-wide detection and characterization of positive selection in human populations. Nature 2007; 449:913–8. https://doi.org/10.1038/nature06250 PMID: 17943131

26. Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 2009; 10:639–50. https://doi.org/10.1038/nrg2611 PMID: 19687804

27. Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor Appl Genet 1968; 38:226–31. https://doi.org/10.1007/BF01245622 PMID: 24442307

28. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 2012; 6(2), 80–92. https://doi.org/10.4161/fly.19695 PMID: 22728672

29. Preston MD, Campino S, Assefa SA, Thompson E, Drought LG, Taylor CJ, et al. A barcode of organelar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nat Commun 2014, 5:4052. https://doi.org/10.1038/ncomms5052 PMID: 24923250

30. Brega S, Meslin B, de Monbrison F, Severini C, Gradoni L, Udomsangpetch R, et al. Identification of the Plasmodium vivax mdr-like gene (pvmdr1) and analysis of single-nucleotide polymorphisms among isolates from different areas of endemcity. J Infect Diseases 2005, 191(2), 272–277.

31. Schousboe ML, Ranjitkar S, Rajakaruna RS, Amerasinghe PH, Morales F, Pearce R, et al. Multiple Origins of Mutations in the mdr1 Gene—A Putative Marker of Chloroquine Resistance in P. vivax. PLoS Negl Trop Dis 2015, 9(11), e0004196. https://doi.org/10.1371/journal.pntd.0004196 PMID: 26539821

32. Barnadas C, Ratsimbasona A, Tichit M, Boucher C, Jahevtira M, Picot S, et al. Plasmodium vivax resistance to chloroquine in Madagascar: clinical efficacy and polymorphisms in pvmdr1 and pvcrtr-o genes. Antimicrobial Agents and Chemotherapy 2008, 52(12), 4233–4240.

33. Lu F, Lim CS, Nam DH, Kim K, Lin K, Kim TS, et al. Genetic polymorphism in pvmdr1 and pvcrtr-o genes in relation to in vitro drug susceptibility of Plasmodium vivax isolates from malaria-endemic countries. Acta Tropica 2011, 117(2), 69–75. https://doi.org/10.1016/j.actatropica.2010.08.011 PMID: 20933490

34. Suwanarusk R, Russell B, Chavchich M, Chalfein F, Kenangalem E, Kosaiavee V, et al. Chloroquine Resistant Plasmodium vivax: In Vitro Characterisation and Association with Molecular Polymorphisms. PLoS ONE 2007, 2(10), e1089. https://doi.org/10.1371/journal.pone.0001089 PMID: 17971853

35. Imwong M, Pukrittayakamee S, Ponglavimonyo W, Nakaseathit S, Nair S, Newton P, et al. Gene amplification of the multidrug resistance 1 gene of Plasmodium vivax isolates from Thailand, Laos, and Myanmar. Antimicrobial Agents and Chemotherapy 2008, 52(7), 2657–2659. https://doi.org/10.1128/AAC.01459-07 PMID: 18443118
36. Cornejo EO, Fisher D, and Escalante AA. Genome-Wide Patterns of Genetic Polymorphism and Signatures of Selection in Plasmodium vivax. Genome Biol Evol 2015; 7:106–119.

37. Menard D, Chan ER, Benedet C, Ratsimbason A, Kim S, Chim P, et al. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains. PLoS Negl Trop Dis 2013; 7:e2489. https://doi.org/10.1371/journal.pntd.0002489 PMID: 24278487

38. Ord R, Polley S, Tami A, Sutherland CJ. High sequence diversity and evidence of balancing selection in the Pvmsp3α gene of Plasmodium vivax in the Venezuelan Amazon. Mol Biochem Parasitol 2005; 144:86–93. https://doi.org/10.1016/j.molbiopara.2005.08.005 PMID: 16159677

39. Triglia T, Cowman AF. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc National Academy Sci 1994, 91(15), 7149–7153.

40. Hawkins VN, Suzuki SM, Rungsihirunrat K, Hapuarachchi HC, Maestre A, Na-Bangchang K, Sibley CH. Assessment of the origins and spread of putative resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase. Am J Trop Med Hyg 2009, 81(2), 348–355. PMID: 19635897

41. Imwong M, Sudimack D, Pukrittayakamee S, Osorio L, Carlton JM, Day NP, et al. Microsatellite variation, repeat array length, and population history of Plasmodium vivax. Mol Biol Evol 2006, 23(5):1016–8. https://doi.org/10.1093/molbev/msj116 PMID: 16507919

42. Hawkins VN, Joshi H, Rungsihirunrat K, Na-Bangchang K, Sibley CH. Antifolates can have a role in the treatment of Plasmodium vivax. Trends in Parasitology 2007, 23(5), 213–222. https://doi.org/10.1016/j.pt.2007.03.002 PMID: 17368986

43. Hawkins VN, Auliff A, Prajapati SK, Rungsihirunrat K, Hapuaraichhi HC, Maestre A, et al. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase. Malaria J 2008, 7, 72. https://doi.org/10.1186/1475-2875-7-72

44. Saralamba N, Nakeesathit S, Mayxay M, Newton PN, Osorio L, Kim JR, et al. Geographic distribution of amino acid mutations in DHFR and DHPS in Plasmodium vivax isolates from Lao PDR, India and Colombia. Malaria J 2016, 15(1), 484.

45. Hawkins VN, Na-Bangchang K, Hawkins VN, Munthin M, Sibley CH. Sensitivity to antifolates and genetic analysis of Plasmodium vivax isolates from Thailand. Am J Trop. Med Hyg 2007, 76(6), 1057–1065. PMID: 17556611

46. Lu F, Lim CS, Nam DH, Kim K, Lin K, Kim TS. Mutations in the antifolate-resistance-associated genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium vivax isolates from malaria-endemic countries. Am J Trop Med Hyg 2010, 83.

47. Tachibana M, Suwanabun N, Kaneko O, Iriko H, Otsuki H, Sattabongkot J, et al. Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization. Vaccine 2015, 33(16), 1901–1908. https://doi.org/10.1016/j.vaccine.2015.03.008 PMID: 25765968

48. Vallejo AF, Martinez NL, Tobon A, Alger J, Lacerta MV, Kajava AV, et al. Global genetic diversity of the Plasmodium vivax transmission-blocking vaccine candidate Pvs48/45. Malaria J 2016, 15, 202.

49. Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant anopheline vectors of human malaria in the Asia-Pacific region: Occurrence data, distribution maps and bionomic précis. Parasit Vectors 2011; 4:89. https://doi.org/10.1186/1756-3305-4-89 PMID: 21612587

50. Molina-Cruz A, Garver LS, Alabaster A, Bangiolo L, Haile A, Winikor J, et al. The human malaria parasite Pf47 gene mediates evasion of the mosquito immune system. Science 2013; 340:984–7. https://doi.org/10.1126/science.1235264 PMID: 23661646

51. Baniecki ML, Faust AL, Schaffner SF, Park DJ, Galinsky K, Daniels RF et al. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl Trop Dis 2015; 9:e0003539. https://doi.org/10.1371/journal.pntd.0003539 PMID: 25781890

52. Pain A, Böhme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 2008; 455:799–803. https://doi.org/10.1038/nature07306 PMID: 18433688

53. Hostetler JB, Lo E, Kanjee U, Amaratunga C, Suon S, Sreng S, et al. Independent Origin and Global Distribution of Distinct Plasmodium vivax Duffy Binding Protein Gene Duplications. PLOS Neglected Tropical Diseases 2016, 10(10), e0005091. https://doi.org/10.1371/journal.pntd.0005091 PMID: 27798646