Introduction

Adverse drug reactions (ADR) are a major health problem to the individual as well as for society [1]. The World Health Organisation’s definition of an ADR is “a response to a drug which is noxious, and unintended, and which occurs at doses normally used in man for prophylaxis, diagnosis or therapy of disease, or for the modification of physiological function” [2]. The frequent occurrence of ADRs in children has been reported in three previous systematic reviews of observational studies covering the period from 1966 to 2010 [3,4,5]. The reviews provided estimates of ADR rates causing hospital admission, in hospitalised children and in outpatient children and demonstrated that ADRs in hospitalised children are a considerable problem. Two of the reviews [4,5] provide data on the clinical presentation of the ADR and the drugs involved. In addition, the more recent review [5] provides information on the methods and persons involved in identifying ADRs.

There are however, a number of limitations to the previous reviews. Each review [3,4,5] applied a search strategy, using a limited number of keywords to just two electronic bibliographic databases - MEDLINE and EMBASE. Importantly, as a consequence, relevant studies may have been excluded. In addition, the reviews excluded studies that included adults as well as children, thus reducing the number of eligible studies, and the more recent reviews excluded studies that evaluated adverse drug events (medication errors as well as ADRs).

These reviews do not provide information about the drugs involved in ADRs or about which methods were used for detecting, or assessing the causality and subsequent of an ADR.

Abstract

Background: Adverse drug reactions in children are an important public health problem. We have undertaken a systematic review of observational studies in children in three settings: causing admission to hospital, occurring during hospital stay and occurring in the community. We were particularly interested in understanding how ADRs might be better detected, assessed and avoided.

Methods and Findings: We searched nineteen electronic databases using a comprehensive search strategy. In total, 102 studies were included. The primary outcome was any clinical event described as an adverse drug reaction to one or more drugs. Additional information relating to the ADR was collected: associated drug classification; clinical presentation; associated risk factors; methods used for assessing causality, severity, and avoidability. Seventy one percent (72/102) of studies assessed causality, and thirty four percent (34/102) performed a severity assessment. Only nineteen studies (19%) assessed avoidability. Incidence rates for ADRs causing hospital admission ranged from 0.4% to 10.3% of all children (pooled estimate of 2.9% (2.6%, 3.1%) and from 0.6% to 16.8% of all children exposed to a drug during hospital stay. Anti-infectives and anti-epileptics were the most frequently reported therapeutic class associated with ADRs in children admitted to hospital (17 studies; 12 studies respectively) and children in hospital (24 studies; 14 studies respectively), while anti-infectives and non-steroidal anti-inflammatory drugs (NSAIDs) were frequently reported as associated with ADRs in outpatient children (13 studies; 6 studies respectively). Fourteen studies reported rates ranging from 7%–98% of ADRs being assessed and avoided.

Conclusions: There is extensive literature which investigates ADRs in children. Although these studies provide estimates of incidence in different settings and some indication of the therapeutic classes most frequently associated with ADRs, further work is needed to address how such ADRs may be prevented.
the avoidability [7] of an ADR in order to try to prevent its future occurrence is crucial to reducing the burden of ADRs.

We therefore undertook this systematic review to provide a more comprehensive assessment of all relevant studies and to understanding how ADRs might be better detected, assessed and avoided.

Methods

Criteria for considering studies for this review

Included studies. Observational studies that estimate the incidence of ADRs including retrospective and prospective cohort studies of children.

Excluded studies. Studies which focus on ADRs in relation to a specific drug (e.g. antibiotics or carbamazepine), clinical condition (e.g. epilepsy, asthma) or specific clinical presentations of ADRs (anaphylaxis); case control studies; those carried out exclusively on a neonatal intensive care unit; studies reporting medication errors, therapeutic failures, non-compliance, accidental and intentional poisoning and drug abuse.

Participants. Children as defined by the original study authors.

Studies included three defined populations: 1) children admitted to hospital, 2) children in hospital and 3) children within the community.

Interventions. Exposure to any systemic or topical medicinal product including herbal and aromatherapy, as defined by researchers.

Types of outcome measure. Any clinical event described as an adverse drug reaction or non-avoidable adverse drug event to an individual or group of drugs.

Search methods for identification of studies

A range of electronic bibliographic databases were searched (Table 1) using a search strategy of text words and indexing terms (Table 2). In addition, we examined references in relevant studies and those cited by previous systematic reviews. Contact with experts was made to identify other potentially relevant published and unpublished studies. We did not apply language restrictions to the search.

Selection of studies

Screening on title, abstract and full publication stage. Duplicate citations were removed. A study eligibility screening proforma based on pre-specified inclusion criteria was used. Two reviewers (RMDS, EG) independently screened each title and categorised as include, exclude or unsure. The two independent categorisations for all titles were compared and the title categorised again following discussion if two reviewers disagreed. Where there was agreement to exclude, the citation was excluded at this stage. All other citations were reviewed at abstract level. This process was repeated and where there was disagreement, discussion took place between reviewers and citations were re-categorised. Those with agreement to include or as unsure were reviewed at full publication level. The process was repeated at full publication stage. Studies considered as unsure or included at full publication stage were reviewed by a third reviewer (JK). Reasons for exclusion were documented at the abstract and full paper stage of the screening process.

Checking for correct exclusion at each stage. At title stage, two reviewers (RMDS, EG) independently viewed the abstracts for a proportion (2%) of studies excluded. Independent categorisation were compared (as above). This process was repeated at abstract stage where a third reviewer (JK) reviewed 10% of full papers for studies excluded based on abstract. This was repeated at full publication stage where the same reviewer (JK) reviewed 20% of excluded full papers. If any studies were excluded incorrectly at any stage, additional checking was performed.

Data extraction

We extracted the following data from each study:

1) Study characteristics: country; year completed; duration; number of sites; design (prospective or retrospective); clinical setting; number of children.

2) Identification of ADR: definition of ADR, including definition of drug exposure; incidence definition and calculation (numerator and denominator, either at patient or episode level); assessment of causal relationship to drug; person who assessed and categorised ADRs; any method (e.g. case record review) or reporting system used (e.g. Yellow Card).

3) Information relating to the ADR: clinical presentation; associated drug(s)/drug classification; associated risk factors (including age, gender, polypharmacy); ADR considered avoidable.

Assessment of methodological quality of included studies

As we were unable to find a validated assessment tool for critically appraising observational studies of adverse drug reactions, we developed a quality assessment form specifically for the review. The following aspects were deemed important when assessing study quality: study design; methods for identifying ADRs; methods used to establish the causal relationship between drug and effect; tools for assessing avoidability of the ADR; and tools for assessing severity of the ADR. Criteria were graded as yes, no, unclear, or not reported. Two reviewers (RMDS, EG) independently assessed methodological quality of each study (Table 3).

Statistical analysis and data synthesis

For each of the three defined populations; children admitted to hospital, children in hospital and children within the community, a forest plot was produced to present the ADR incidence rate and 95% confidence interval for each relevant study. Studies were sub grouped according to whether the incidence rate was reported at the patient and/or episode level and whether or not all patients had been exposed to a drug. Further, for rates reported at the patient level, a distinction was made between studies that had included one admission per patient and those that had included multiple admissions per patient. All results provided per study were included. Pooled estimates were calculated if the variability in incidence rates was not considered too large.

Univariate meta-regression was used to determine if study level characteristics (setting, gender, age, oncology and number of drugs used) are associated with ADR incidence. Incidence rates for ADRs causing admission and occurring in hospital, calculated at the patient level for a single episode were included. Multivariate meta-regression was not undertaken due to the paucity of covariate data. Risk factor analyses reported by any study were collated.

Results

The search was originally undertaken in November 2009 and retrieved 20,906 potentially relevant citations. An update search was subsequently performed in October 2010 and retrieved an
Included studies

A total of 102 studies (117 citations), were included in the review. Eighty (80/102) studies described the clinical event as an ADR. In 10 of these studies, ADR was a category within ‘drug related’ problems/admissions; three studies described ADRs as drug induced disease/illness. Sixteen described an ADE where the non-preventable ADE was the same as our definition and two studies used the term iatrogenic disease to describe an ADR. Some studies included multiple settings; 42 studies investigated ADRs as the cause of admission to hospital, 51 studies investigated ADRs in the hospital setting, and 36 studies investigated ADRs in the community setting. Studies included in our review were conducted in 31 different countries, mostly Europe (40/102) and America (32/102). The earliest study assessed the year 1964, the latest assessed years 2008–2009 for causing admission, study size ranged from 24 children to 39,625 admissions. For studies carried out in hospital; the earliest study assessed the year 1964, the latest 2009, study size ranged from 81 children to 64,403 children, and the earliest study assessed the years 1970–1973, the latest 2007, study size ranged from 73 children to 47,107 children for community studies. Characteristics for each individual study are provided in Table 4.

Assessment of methodological quality of included studies

All studies, including those that evaluated ADEs, explicitly stated that they had used either the WHO ADR definition [8] or a comparable one and that they excluded drug errors. Methodological features of each individual study are provided in Table 4.

Study design

The majority of studies were carried out prospectively (n = 85; 83%), which included 13 in those causing admission, 26 studies with the ADR occurring in hospital, 24 in the community, 16 in hospital and causing admission and 6 in mixed hospital and community settings. Fourteen studies were carried out retrospectively, which included six causing hospital admission, two in hospital studies, and four in the community, one causing admission and in the hospital setting and one the study that considered ADRs that resulted in any medical care contact. Two studies (one in hospital, and one in hospital and causing admission), used both study designs. For the remaining study we were unable to determine the study design (Table 4).

Persons involved in identifying ADRs

Sixty-four studies reported that a clinician; either a medical doctor, nurse or pharmacist, was involved in the identification of ADRs. Thirty studies reported also involving either the child or parent. Eight studies did not provide information about who identified the ADRs.

Methods for identifying ADRs

Several methods were used to detect ADRs. Multiple ADR detection methods were employed in 38/102 studies; these consisted of a combination of case record review, drug chart review, laboratory data, computerised ADR reporting system,
attendance at ward rounds, and interviewing patients/parents or clinicians. In thirty-one studies case record review alone was undertaken. The remaining eleven studies used: parental interviews/questionnaires (5 studies), clinical assessments (3 studies), clinician questionnaires (1 study), ward round (1 study) and a nationwide computer database (1 study). The remaining study report did not refer to the methods used.

Studies estimating the proportion of paediatric hospital admissions related to ADRs

Description of studies. There were 42 studies, where ADRs have been investigated as the cause of admission to hospital. The period under study varied widely and ranged from 1 week to 11 years. The majority of studies were described as being performed in a general paediatric unit or ward (n = 22) [9–29,34]. Four studies included general medicine [30–33] one study in a hospital emergency department [35]. Two studies covered general medicine and a hospital emergency department, [36,37], and one study an integrated primary care information database [38]. Two studies were performed in the paediatric intensive care setting [39], one in combination with general paediatrics also [40]. Seven studies covered a combination of clinical settings [41–47]. The remaining three studies were performed in dermatology and venereology [48], Infectious diseases [49] and an isolation ward [50].

ADR incidence. We do not have ADR incidence rates for 12/42 of these studies as the child only data was not available (n = 4), data were not split by clinical setting (n = 5), data provided for ADRs in hospital but not causing admission (n = 2) and data were provided for the total number of ADRs but not the ADR.

Table 2. MEDLINE search strategy.

| 1st Concept - general terms used to describe the participants - infants and children. |
| 1. exp Child/ |
| 2. exp Adolescent/ |
| 3. [young adj (person| or people or adult| or individual| or women or woman or men or man)].ti,ab. |
| 4. (child| or adolescent| or kid or kids or youth| or youngster| or minor or minors or teen| or juvenile| or student| or pupil| or boy| or girl).ti,ab. |
| 5. exp Students/ |
| 6. Puberty/ |
| 7. Pediatrics/ |
| 8. (infant| or newborn| or new born| or baby| or babies or child| or schoolchild| or kid or kids or toddler| or adole| or teen| or boy| or girl| or minor| or juvenile| or youth| or kindergar| or nursery| or pre| or prepuber| or prepuber| or prepubescent| or prepubescent| or pre pubescent| or pubescent| or pediatric| or paediatric| or schoolage).ti,ab. |

| 2nd Concept including terms relating to adverse drug reactions |
| 9. side effect| or drug induced or drug related or drug safety).ti,ab. |
| 10. toxicity| or Harm).ti,ab. |
| 11. adverse adj3 (effect or effects or reaction or reactions or event or events or outcome or outcomes).ti,ab. |
| 12. exp adverse drug reaction reporting systems/ or exp drug toxicity/ or exp abnormalities, drug induced/ or exp drug hypersensitivity/ |

| 3rd Concept – terms relating to the occurrence of ADRs |
| 13. incidence/ or prevalence/ |
| 14. (incidence| or prevalence| or occurrence or admission| or admitted or visit| or hospitalisation or hospitalised or hospitalization or hospitalized).ti,ab. |

| 4th Concept - terms that encompass the intervention |
| 15. (drug| or pharmaceutical| or medicine).ti,ab. |
| 16. Pharmacological Preparations/ |
| 17. herb| or medicinal| or plant or plants or herb or herbs or aromatherapy| or aroma therapy).ti,ab. |
| 18. Medicine, Chinese Traditional/ or Plant Preparations/ or Plants, Medicinal/ or Plant Extracts/ or Drugs, Chinese Herbal/ |
| 19. Aromatherapy/ |

| 5th Concept - study design |
20. (observational	or nonrandomized or cross sectional or cross-sectional or case control or case-control).ti,ab.	
21. (prospective	or cohort).ti,ab.	
22. (retrospective	or case series).ti,ab.	
23. (population-based	or review	or summary).ti,ab.
24. Cohort Studies/		
25. Health Care Surveys/		
26. Retrospective Studies/		
27. Prospective Studies/		
28. Cohort Studies/		
29. observational stu	or review).ti,ab.
30. (prospective	or review).ti,ab.
31. (prospective	or study).ti,ab.
32. (retrospective	or study).ti,ab.
33. (retrospective	or review).ti,ab.
34. population-based stu).ti,ab.	
35. cohort stu).ti,ab.	
36. incidence stu).ti,ab.	
37. Sn.fs.		
38. Ep.fs.		
39. monitor).ti,ab.	
40. surveillance).ti,ab.		

The terms within each concept were ORed, and then all 5 concepts were combined using the AND Boolean operator. This search strategy was translated as appropriate for the other databases.
doi:10.1371/journal.pone.0024061.t002
frequency at the patient or episode level (n = 1). Figure 1 presents data from all studies that provide incidence rates for ADRs causing admission to hospital (n = 30). These rates range from 0.4% to 10.3% of children (single admission). One study was an extreme outlier [20] and if this was excluded we found a reduction in the upper limit of this range to 4%, and a pooled incidence estimate of 2.9% (2.6%, 3.1%).

Studies estimating the proportion of children experiencing an ADR during their admission

Description of studies. We have included 51 studies, where ADRs have been investigated in the hospital setting. The period under study varied widely and ranged from 1 day to ten years. The majority of studies where described as being performed in a general paediatric unit or ward (n = 24) [14,19,20,22–26,28,34,37,51–54,56–63,85] two of which included intensive care also [64], [40]. Six studies were performed solely in the intensive care setting [39,65–69], one of which included general medicine [70]. Three studies included children on an isolation ward [71–73]. One study was performed using an integrated primary care information database [38] and one in an isolation ward [50]. The remaining thirteen studies covered a combination of clinical settings [41,43–47,49,74–79].

ADR incidence. We do not have ADR incidence rates for 18/54 of these studies as the child only data was not available (n = 3), the data were not split by clinical setting (n = 7), data were provided for the total number of ADRs but not the ADR frequency at the patient or episode level (n = 5), data provided for ADRs and ADEs combined (n = 2), and data provided for ADRs causing admission but not in hospital (n = 1). Figure 2 presents data from all studies that provide incidence rates for ADRs in hospital (n = 36). These estimates range from 0.6% to 16.8% of patients (at a single episode and with prior drug exposure). A pooled estimate has not been calculated since the rates are considered too varied.

Studies estimating the incidence of ADRS in outpatient children

Description of studies. We have included 36 studies, where ADRs have been investigated in the community setting. The period under study varied widely and ranged from 1 week to 11 years. The majority of studies where described as being performed in a hospital outpatient or accident emergency department (n = 21) [25,25,47,55,78,80–84,86–97]. Nine studies were performed in general practice [98–106]. The remaining six studies were performed in an infant care and educational establishment [107], local community setting [108,109], general practice and accident and emergency department [37], outpatient population seeking medical care [110], and after discharge from hospital [26].

ADR incidence. We do not have ADR incidence rates for 19/36 of these studies as the child only data were not available (n = 10), the data were not split by clinical setting (n = 3), data not available for the total number of children/visits (n = 4), data were provided for the total number of ADRs but not the ADR frequency at the patient or visit level (n = 1) and data were provided for errors only (n = 1). Figure 3 presents data from studies that provide incidence rates for ADRs in the community (n = 15). Two studies were not included in this figure due to their method of ADR ascertainment.

All Settings

Drugs and clinical presentation associated with ADR. We do not have information on the drugs involved in ADRs for 50/102 studies, as the child only data were not available (37 studies), ADRs were a subset of events looked at and ADR specific data were not reported (10 studies), and drug data were not available in the publication (3 studies). For studies that provided data (52/101) (Table 5); anti-infectives were the drug class most commonly reported across the three settings. Proportions ranged from 3.5%–66.6% for causing admission studies (17 studies); 8.6%–100% for in hospital studies (24 studies); and 17%–78% for community studies (13 studies). The most common associated clinical presentations reported were nausea, vomiting, diarrhoea and skin rash. Anti-epileptics were the second most common reported drug class in both the causing admission and in hospital studies; proportions ranging from 0.8%–30% (12 studies); and 3.9%–46.6% (14 studies) respectively. Reported clinical presentations were ataxia, skin rash, increased fitting, and drowsiness. Non-steroidal anti-inflammatory drugs (NSAIDs) were...
Table 4. Study characteristics.

Study	Country	Study duration/design	Clinical setting	Population	Causality assessment	Avoidability assessment
Al-Olah 2008	Saudi Arabia	28 days Prospective	Causing admission Emergency department	Children and adults Not reported in publication/unable to obtain from author	Naranjo	Definite preventable and definite non-preventable defined as 3 evaluators in agreement; possible preventable and possible non-preventable 2 in agreement
Classen 1991	USA	18 months Prospective	Acute care referral hospital	Children and adults 0–20 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Duczmal 2006	Poland	Not reported in publication/unable to obtain from author Retrospective	Paediatric department	Children 0–15 years	Naranjo	Not reported in publication/unable to obtain from author
Easton 1998	Australia	56 days Prospective	Medical ward	Children 19 weeks – 18 years, 19 weeks – 20 years	Naranjo Score Algorithm	Schumock and Thornton 1992
Easton-Carter 2004	Australia	22 weeks Prospective	Specialist paediatric hospital and general regional teaching hospital	Children Not reported – 17 years	Dartnell et al 1996	Schumock and Thornton 1992
Gallagher 2010	UK	2 weeks Prospective	Large tertiary - paediatric hospital	Children ≤18 years	Naranjo	Hallas et al 1990
Gallagher 2011	UK	12 month Prospective	Large tertiary - paediatric hospital	Children ≤18 years	Naranjo Liverpool Causality Tool	Hallas et al 1990
Ganeva 2007	Bulgaria	5 years Prospective	Dermatology and venerology	Children and adults 6–18 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Hewitt 1995	Australia	4 months Retrospective	General teaching hospital	Children and adults Age not reported	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author
Ives 1987	US	1 year Retrospective	Family medicine inpatient service at hospital	Children and adults <20 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Kunac 2009	New Zealand	12 weeks Prospective	Paediatric	Children Newborn-16 years	Naranjo Score Algorithm	Schumock and Thornton 1992
Lamabadusurya 2003	Sri Lanka	11 months Prospective	Medical ward	Children Not reported in publication/unable to obtain from author	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Major 1998	Lebanon	6 months Prospective	Medical, paediatric	Children and adults Up to 19 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
McDonnell 2002	US	11 months Retrospective	University affiliated teaching hospital	Children and adults Not reported – 15 years	Naranjo Score Algorithm	Adapted from Schumock & Thornton
Mitchell 1988	US	11 years Prospective	Teaching and community hospitals	Children 0–15 years	Definite - clear implicated drug caused the reaction; Possible – other factors might have caused the reaction.	Not reported in publication/unable to obtain from author
Pouyanne 2000	France	14 days Prospective	Medical, Public hospital	Children and adults Not reported – 15 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author
Santos 2000	Philippines	3 months Prospective	Paediatric unit	Children 0–18 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Schneeweiss 2002	Germany	2 yrs and 5 months Prospective	Internal medicine or emergency departments of all hospitals	Children and adults Age not provided	Begaud et al 1985	Not reported in publication/unable to obtain from author
Van der Hooft 2006	Netherlands	1 year Retrospective	Academic and general hospitals	Children and adults Not reported – <18 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author
Table 4. Cont.

Causing admission studies

Study	Country	Study duration/ design	Clinical setting	Population	Causality assessment	Avoidability assessment
Yosselson-Superstine	Israel	7 months Prospective	General paediatric ward	Children 0–16 years	Seidl et al 1965; Seidl et al 1966; McKenzie 1973; McKenzie 1976; Whyte 1977	Not reported in publication/unable to obtain from author
Dharnidharka	India	18 months Prospective	Paediatric unit	Children 0–12 years	Stephens et al 1998	Not reported in publication/unable to obtain from author
Dos Santos 2009	Brazil	2 years Prospective	General paediatric ward	Children 1 month–14.4 years	Naranjo	Not reported in publication/unable to obtain from author
dos Santos 2006	Brazil	5 months Prospective	General paediatric ward	Children 1 month–14.4 years	WHO	Not reported in publication/unable to obtain from author
Easton-Carter 2003b	Australia	39 weeks Prospective & prospective	General paediatric ward	Children 0–17 years	Naranjo Score Algorithm	Schumock and Thornton 1992
Farrokhi 2006	Iran	5 months Prospective	Paediatric surgery	Children 0.5 months–11 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author
Gonzalez-Martín 1998	Chile	1 year Prospective	Paediatric wards	Children 5 days–15 years	Naranjo Score Algorithm	Naranjo and Busto 1989
Imbs 1999	France	1 day Prospective	Departments of medicine, surgery and geriatrics	Children and adults 0–19 years	Two members of the pharmacovigilance team validated each ADR.	Not reported in publication/unable to obtain from author
Jha 2007	Nepal	5 months Prospective	General paediatric ward	Children and adults 0–18 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Kaushal 2001	US	36 days Prospective	General paediatric ward	Children and adults neonates – teenagers	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Leach 1998	UK	14 months Prospective	Regional ICU, a general medical ward, cardiac ICU and cardiac medical ward	Children Not reported in publication/unable to obtain from author	Naranjo, Karch and Lasagna, and Kramer 1979	Not reported in publication/unable to obtain from author
Maistrello 1999	Italy	6 months Prospective	Emergency ward, Infectology ward, general paediatric ward, Pneumology ward	Children 0–17 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author
Mitchell 1979	US	4 years Prospective	General medical, oncology, NICU	Children 0–17 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author

In hospital studies

Study	Country	Study duration/ design	Clinical setting	Population	Causality assessment	Avoidability assessment
Agarwal et al 2010	USA	4 mths Retrospective	Paediatric intensive care	Children 0–13 years	Not reported in publication/unable to obtain from author	ADEs assessed, non preventable = ADR
Barstow 1988	US	4 month prospective	Paediatric units	Children and adults Age not provided	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author
Benkirane 2009	Morocco	3 month prospective Intensive care unit	Children and adults Age not provided	Not reported in publication/unable to obtain from author	ADEs assessed, non preventable = ADR.	
Buckley 2007	US	12 days Prospective	Paediatric intensive care	Children Not reported --<18 years	Not reported in publication/unable to obtain from author	ADEs assessed using Bates et al, non preventable ADE = ADR
Choonara 1984	UK	6 months Prospective	General paediatric ward	Children Not reported in publication/unable to obtain from author	Seidl et al 1966	6 avoidable: 3 dose prescribed too high, 1 treatment not necessary, 2 application of pharmacological principles would have prevented reactions
Dharidharka 1993	India	18 months Prospective	Paediatric unit	Children 0–12 years	Stephens et al 1998	Not reported in publication/unable to obtain from author
Dos Santos 2009	Brazil	2 years Prospective	General paediatric ward	Children 1 month–14.4 years	Naranjo	Not reported in publication/unable to obtain from author
dos Santos 2006	Brazil	5 months Prospective	General paediatric ward	Children 1 month–14.4 years	WHO	Not reported in publication/unable to obtain from author
Easton-Carter 2003b	Australia	39 weeks Prospective & prospective	General paediatric ward	Children 0–17 years	Naranjo Score Algorithm	Schumock and Thornton 1992
Farrukhi 2006	Iran	5 months Prospective	Paediatric surgery	Children 0.5 months–11 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author
Gonzalez-Martín 1998	Chile	1 year Prospective	Paediatric wards	Children 5 days–15 years	Naranjo Score Algorithm	Naranjo and Busto 1989
Imbs 1999	France	1 day Prospective	Departments of medicine, surgery and geriatrics	Children and adults 0–19 years	Two members of the pharmacovigilance team validated each ADR.	Not reported in publication/unable to obtain from author
Jha 2007	Nepal	5 months Prospective	General paediatric ward	Children and adults 0–18 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Kaushal 2001	US	36 days Prospective	General paediatric ward	Children and adults Neonates – teenagers	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Leach 1998	UK	14 months Prospective	Regional ICU, a general medical ward, cardiac ICU and cardiac medical ward	Children Not reported in publication/unable to obtain from author	Naranjo, Karch and Lasagna, and Kramer 1979	Not reported in publication/unable to obtain from author
Maistrello 1999	Italy	6 months Prospective	Emergency ward, Infectology ward, general paediatric ward, Pneumology ward	Children 0–17 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author
Mitchell 1979	US	4 years Prospective	General medical, oncology, NICU	Children 0–17 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author
Table 4. Cont.

In hospital studies

Study	Country	Duration	Setting	Children	Naranjo Score Algorithm	Methodology	Schumock and Thornton 1992
Neubert 2004	Germany	8 months	Prospective	Children 5 days–17 years	Naranjo Score Algorithm	Assessed but no detail provided, non preventable ADE = ADR	
Neubert 2006	Germany	6 months	Prospective	Children and adults 0–18 years	Naranjo Score Algorithm	Assessed but no detail provided, non preventable ADE = ADR	
Shockrollah 2009	Iran	3 months	Retrospective	Children 2 days–12 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author	
Takata 2008a	USA	3 months	Prospective	Children <18 years	Not reported in publication/unable to obtain from author	Assessed but no detail provided, non preventable ADE = ADR	
Takata 2008b	USA	6 months	Prospective	Children <18 years	Naranjo Score Algorithm	Assessed but no detail provided, non preventable ADE = ADR	
Telechea 2010	Uruguay	2 months	Prospective	Children 1 month – 14 years	Karch and Lasagna	Not reported in publication/unable to obtain from author	
Turner 1999	UK	13 weeks	Prospective	Children 1 day–18 years	Choonara & Harris 1984	Not reported in publication/unable to obtain from author	
Uppal 2000	India	3 years	Prospective	Children and adults Not reported in publication/unable to obtain from author	Karch and Lasagna	Not reported in publication/unable to obtain from author	
Vazquez de la Villa 1989	Spain	12 months	Prospective	Children 1–8 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author	
Wang 2007	US	3 months	Prospective	Children Age not provided	Not reported in publication/unable to obtain from author	ADEs assessed, non preventable = ADR	
Weiss 2002	Germany	8 months	Prospective	Children 1 month–18 years	adapted Naranjo (Evans et al 1994)	Avoidable or tolerated – toxicity, drug interactions, secondary effects.	

Community studies

Study	Country	Duration	Setting	Children	Naranjo Score Algorithm	Methodology	Schumock and Thornton 1992
Calderon-Ospina 2008	Colombia	12 days	Prospective	Children and adults 0–20 years	WHO	Schumock and Thornton 1992	
Campbell 1978	USA	48 months	Prospective	Children and adults ≤20 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author	
Cirko-Begovic 1989	Croatia	3 months	Prospective	Children 0-7 years	Hutchinson 1979	Not reported in publication/unable to obtain from author	
Dennehy 1996	USA	1 month	Retrospective	Children and adults ≤25 years	Strand et al 1990	Considered preventable if avoided through appropriate prescribing, outpatient monitoring or patient compliance.	
Doval 1981	India	Not reported in publication/unable to obtain from author	Outpatient department	Children and adults 1 year–20 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author	
Easton-Carter 2003a	Australia	18 weeks	Prospective	Children ≤17 years	Dartnell et al 1996	Schumock and Thornton 1992	
Horen 2002	France	Not reported in publication/unable to obtain from author	Office-based practice	Children 0–15 years	Begaud et al 1985	Not reported in publication/unable to obtain from author	
Juntti-Patinen 2006	Finland	6 months	Prospective	Children 0–15 years	WHO	Not reported in publication/unable to obtain from author	
Kaushal 2007	US	2 months	Prospective	Children <21 years	Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author	
Knopf 2010	Germany	3 years	Prospective	Children ≤17 years	WHO	Not reported in publication/unable to obtain from author	
Community studies

Study	Country	Study Duration	Setting	Patient Age	Outcome Description
Kramer 1985	Canada	1 year	Prospective	Children 2 days–18.9 years	Kramer 1979 Predictive - realistic nondrug alternative available; Possibly preventable - safer alternative drug available/lower dosage might have been modified; Unpreventable - would not have changed the choice/dose of drug.
Kushwaha 1994	India	2 years	Prospective	Children 0–14 years	Not reported in publication/unable to obtain from author
Lemer 2009	USA	10mths	Prospective	Children ≤12 years	ADEs assessed, non preventable = ADR
Lewinski 2010	Germany	3 mths	Prospective	Children and adults ≤16 years	Strand et al 1990 Not reported in publication/unable to obtain from author
Martys 1979	UK	2 years	Prospective	Children and adults 2 months–19 years	Not reported in publication/unable to obtain from author
Menmiti-Ippolito 2000	Italy	1 year	Prospective	Children 0–14 years	Not reported in publication/unable to obtain from author
Miller 2006	Australia	10 months	Prospective	Children and adults ≤14 years	Thomas & Brennan 2000
Mulroy 1973	UK	1 year	Prospective	Children and adults ≤20 years	Not reported in publication/unable to obtain from author
Munoz 1998	Spain	25 months	Prospective	Children 4 weeks–13 years	Karch and Lasagna Not reported in publication/unable to obtain from author
Otero Lopez 1999	Spain	6 months	Prospective	Children <15 years	Schumock and Thornton 1992
Phan 2010	USA	5 mths	Retrospective	Children ≤18 years	Naranjo Not reported in publication/unable to obtain from author
Planchamp 2009	France	6 months	Retrospective	Children 0–18 years	Begaud et al 1985 Olivier et al 2005
Prince 1992	US	4 months	Retrospective	Children and adults Age not provided	Michel and Knodel 1986 Not reported in publication/unable to obtain from author
Rebelo Gomes 2008	Portugal	4 months	Retrospective	Children Age not provided	Not reported in publication/unable to obtain from author Not reported in publication/unable to obtain from author
Sanz 1987	Spain	6 months	Prospective	Children <14 years	Karch and Lasagna, Vensel, Dangoumau, Kramer, Naranjo and Blanc
Sharma 2007	India	4 months	Prospective	Children and adults 0–20 years	WHO Not reported in publication/unable to obtain from author
Smith 1997	US	1 month	Retrospective	Children and adults ≤18 years	Not reported in publication/unable to obtain from author
Stoukides 1993	US	6 months	Retrospective	Children and adults ≤20 years	Not reported in publication/unable to obtain from author Not reported in publication/unable to obtain from author
Valladares 1992	Spain	4 years	Prospective	Children and adults 0–14 years	Karch and Lasagna Not reported in publication/unable to obtain from author
Woods 1987	UK	26 weeks	Prospective	Children Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author Not reported in publication/unable to obtain from author
Table 4. Cont.

Community studies

Study	Country	Duration	Setting	Age	Linkage	Diagnosis	Outcome	Author	
Zahroui 2010	Morocco	7 months	Prospective	Children ≤16 years	NOT REPORTED	Referral centre	NOT REPORTED	Schumock and Thornton 1992	
Baniasadi 2008	Iran	12 months	Prospective	Children 0-18 years	NOT REPORTED	Multidisciplinary hospital	WHO	Begaud et al 1985	
Bordet 2001	France	18 months	Prospective	Children 0-20 years	NOT REPORTED	General paediatric ward	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Fattahi 2005	Iran	5 months	Prospective	Children 0-14 years	WHO	Paediatric infectious diseases	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Fincham 1989	USA	3 months	Prospective	Children Age not provided	NOT REPORTED	Hospital and private practice	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Gill 1995	UK	3 months	Prospective	Children 4 days-16 years	Kramer 1979	Paediatric intensive care	WHO	NOT REPORTED	Unable to obtain from author
Haffner 2005	Germany	91 days; 80 days; overlap of 52 days	Prospective	ICU, General paediatric ward, Department of Paediatrics	Children Age not provided	WHO	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Impicciatore 2002	Italy	9 months	Prospective	Children 3 months-14 years	WHO - confirmed by author	Paediatric unit	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Le 2006	US	10 years	Retrospective	Children 0-15 years	Definite; Probable; Possible; Conditional	Children's Hospital	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Martinez-Mir 1996	Spain	90 days; and 99 days	Prospective	Paediatric hospital; Paediatric isolation ward, Lactants B ward	Children 1 month–24 months	Spanish Drug Surveillance Scheme (Meyboom 1992)	NOT REPORTED	NOT REPORTED	Unable to obtain from author
McKenzie 1973	US	8 months	Prospective	Children 0 – no upper limit provided	Definite - directly attributable to drug	University affiliated teaching hospital, paediatric medicine services	Not reported in publication/unable to obtain from author		
McKenzie 1976	US	3 years	Prospective	Children 0 – no upper limit provided	Definite - directly attributable to drug	University affiliated teaching hospital	Not reported in publication/unable to obtain from author		
Oshikoya 2007	Nigeria	3 years	Both	Children 4 months–12 years	Jones 1982	General paediatric ward	NOT REPORTED	Done but no reference provided	
Ramesh 2003	India	7 months	Prospective	Children and adults 0-18 years	WHO	Memorial hospital	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Seidl 1966	US	3 months	Prospective	Children and adults 0-20 years	Documented- confirmatory re-challenge test or a lab result indicating the unwanted effect. Probable - improvement or cessation of symptoms upon withdrawal of drug	General medical service	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Smidt1972	New Zealand	6 months	Prospective	Children and adults Not reported in publication/unable to obtain from author	Not reported in publication/unable to obtain from author	General hospital	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Speranza 2008	Uruguay	1 week	Prospective	Children 0-12 years	Karch and Lasagna	Paediatric hospital	NOT REPORTED	NOT REPORTED	Unable to obtain from author
Van der Hooft 2008	Netherlands	1 year	Retrospective	Integrated Primary Care Information Database	Children and adults Not reported-16 years	WHO	NOT REPORTED	Not reported in publication/unable to obtain from author	
Whyte 1977	UK	10 months	Prospective	Children 0-12+ (maximum not stated)	Not reported in publication/unable to obtain from author	Paediatric unit	NOT REPORTED	Not reported in publication/unable to obtain from author	
frequently reported as being associated with ADRs in studies in children in both the causing admission and outpatient studies, proportions ranging from 4.1%–25% (9 studies) and 1%–10% (6 studies) respectively. Reported clinical presentations were cutaneous reactions, haematuria, hypertranspiration, drowsiness, abdominal pain, aggressiveness and vomiting.

In addition, corticosteroids were commonly reported across the three settings. Proportions ranging from 5.5%–41.0% for causing admission studies (7 studies); 1.7%–23.4% for in hospital studies (10 studies); and 0.05%–5% for community studies (3 studies). The most common associated clinical presentations reported were immunosuppression, post-operative bleeding, gastric irritation, and diarrhoea.

The distribution of drugs implicated in ADRs reflect the prescribing practices for the individual settings. For example; vaccines were commonly reported in causing admission studies (7 studies) and community studies (5 studies). Proportions ranged from 1.7%–20.0% and 9.2%–25% respectively, with rash and fever being the most common associated clinical presentations. Cytotoxics were reported in both causing admission (8 studies) and in hospital studies (7 studies), proportions ranged from 14.2%–50%, and 1.7%–66.6% respectively. The remaining studies reported a variety of drugs implicated in ADRs, for some more than one drug was the cause of a single ADR (Table 5).

Meta-regression

Univariate meta-regression results (Table 6) suggest that the incidence rate for ADRs occurring in hospital is higher than for ADRs causing admission (OR = 2.73 (0.93, 8.03)). In addition, the results suggest that the incidence rate is higher for studies with a relatively high mean/median number of drugs per patient (OR = 1.49 (1.14, 1.94)), high percentage of females (OR = 1.13 (0.91, 1.40)), high percentage of oncology patients (OR = 1.15 (0.89, 1.50)) and low mean age of patients (OR = 0.71 (0.39, 1.27)). However, only the variable representing the mean/median number of drugs per patient achieves statistical significance.

Risk factors

Risk factor analyses reported by all studies were collated. Consistent with the meta-regression results, evidence is provided, from 10/19 studies that consider gender as a risk factor, that boys are less likely to have an ADR, and, from 16/17 studies, that risk increases with the number of drugs taken. In addition, 3/3 studies suggest that the risk of ADRs is greater with off-label use. Only two studies considered oncology as a risk factor. The results for the age analyses do not follow a clear pattern and are difficult to interpret due to the variety of age categorisations used.

Tools for assessing causality

Nearly three quarters of the studies (72/102) mentioned a causality assessment, of which the Naranjo algorithm was the most frequently used tool (30/72). Of the 72 studies, seven used a self-assessment method rather than a published causality tool. Despite the majority of studies mentioning a causality assessment, only half of these studies (36/72) reported causality data that were complete for all identified ADRs, specific to the paediatric population and did not include errors as part of the assessment (Table 4).

Tools for assessing severity

Thirty-four (34/102) studies performed an ADR severity assessment. Rates ranged from 0%–66.7% of reported ADRs considered to be severe. By setting, the proportion of ADRs occurring in hospital assessed as severe ranged from 0% to 66.7%, compared with 0% to 45.5% of ADRs causing admission, and 0% to 32.6% of ADRs occurring in the community. Twenty studies provided a reference to indicate the severity tools used, however tools differed widely. Examples of ADRs assessed as severe were those that caused death or were directly life-threatening, caused hospital admission, prolonged hospitalisation or caused transfer to higher level of clinical care.

Assessment of avoidability

Nineteen (19/101) studies performed an avoidability assessment, however, data were only available for 14/19 studies as child only data were not available in 4/19 and ADR specific data were not provided in 1/19. For these 14 studies 7%–98% of ADRs were designated either definitely/possibly avoidable. Three studies provided the rationale for sixty-two avoidable ADRs: inappropriate selection or indication for use of drug (n = 14), inadequate patient education (n = 14), prescribing not rationale (n = 11), lack of appropriate prophylaxis for known ADR (n = 9), lack of appropriate monitoring of drugs (n = 5), previous known ADR to medication (n = 3), dose prescribed was too high (n = 5), inappropriate duration of treatment (n = 1), drug was not prescribed per treatment protocol (n = 1), inappropriate duration of drug and monitoring of treatment (n = 1). Ten studies used a recognised avoidability assessment; of which half used Schumock and Thornton [111] (Table 4).

doi:10.1371/journal.pone.0024061.t004

Table 4. Cont.

Combined settings (in hospital & in community)

Study	Country	Setting	Duration	Setting	Children and adults	Naranjo Score	Author
Doomra 2001	India	Prospective	15 months	Various	Children and adults 0–15 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author

Combined settings (causing admission, in hospital & community)

Study	Country	Setting	Duration	Setting	Children and adults	Naranjo Score	Author
Al-Tajir 2005	United Arab Emirates	Prospective	12 months	General paediatric ward	Children and adults <15 years	Naranjo Score Algorithm	Schumock and Thornton 1992
Buajordet 2002	Norway	Prospective	5 months	General paediatric ward	Children 0–16 years	Naranjo Score Algorithm	Not reported in publication/unable to obtain from author
Jonville-Bera 2002	France	Prospective	1 week	Paediatric wards, A&E, private paediatricians	Children Age not provided	Naranjo Score Algorithm	Begaud et al 1985
Jose and Padma 2006	India	Prospective	12 months	Various departments (not stated)	Children and adults 0–15 years	Naranjo Score Algorithm	Lau et al 2003
Table 1: Incidence of Adverse Drug Reactions (ADRs) in Pediatric Patients Across Various Studies

Study	Setting	Events	Total	Prop (in %)	95% CI
All patients (single admission)					
ADRIC 2010		142	6021	2.08	[1.76, 2.45]
Jeruelle-Bera 2002		4	260	1.54	[0.42, 1.80]
Mitchell 1986		283	73721	3.86	[3.52, 4.33]
Palazzini 2000		10	625	1.60	[0.92, 2.34]
Szanto 2002		14	808	1.75	[0.96, 2.93]
Yosses & Superstine 1982		29	906	3.08	[2.66, 4.44]
Impicciatore 2002		12	116	10.54	[4.60, 17.37]
Oshikoya (Ref) 2007		13	3139	0.41	[0.22, 0.71]
Oshikoya (Proc) 2007		4	662	0.65	[0.16, 1.49]
Speranza 2005		3	173	1.73	[0.36, 4.50]
Fatani 2005		3	408	2.22	[1.02, 4.19]
All patients (some multiple admissions)					
Bujaardt 2002		35	665	5.26	[3.68, 7.34]
Gellagher 2010		10	462	3.48	[1.99, 5.55]
Whyte 1977		12	844	1.42	[0.74, 2.47]
Bantissadi 1999		2	748	0.14	[0.00, 0.75]
Bantu 2006		2	135	2.22	[0.46, 3.68]
Martinez-Mir 1986		2	492	4.28	[2.67, 6.49]
Only patients with prior drug exposure (single admission)					
ADRIC 2010		142	4655	3.05	[2.57, 3.58]
Jeruelle-Bera 2002		4	119	3.38	[0.92, 5.30]
Major 1998		24	457	5.25	[3.38, 7.11]
Santos 2000		14	624	2.24	[1.23, 3.74]
Ions 1987		8	24	0.00	[0.00, 0.14]
Only patients with prior drug exposure (some multiple admissions)					
Martinez-Mir 1986		2	21	8.20	[5.16, 12.27]
Geneva 2007		4	7	8.22	[3.06, 17.04]
All admissions		240	8345	2.20	[2.53, 3.29]
Al-Tair 1986		1	2591	0.00	[0.00, 0.18]
Bujaardt 2002		49	919	5.33	[3.97, 6.99]
Gellagher 2010		19	473	3.61	[2.27, 5.55]
Hussain 1995		13	703	1.85	[0.98, 3.14]
Lamarche-Bussières 2003		63	39625	0.16	[0.12, 0.20]
McDonnell 2002		8	2048	0.42	[0.11, 0.65]
McKenzie 1976		72	3598	2.02	[1.56, 2.58]
van der Hofstede 2006		971	109947	0.06	[0.05, 0.08]
van der Hofstede 2008		1	301	0.33	[0.01, 1.04]
Whyte 1977		12	932	1.28	[0.67, 2.24]
Easton 1984		2	1682	0.59	[0.29, 1.09]
Easton 2004		2	2633	0.99	[0.66, 1.42]
Martinez-Mir 1986		2	512	4.10	[2.58, 6.23]
Gill 1975		10	969	1.10	[0.52, 2.01]

Setting Key

1. All wards including Oncology
2. Excluding Oncology
3. Infectious diseases department
4. Dermatology department
5. ICU

Figure 1. What proportion of all paediatric hospital admissions are ADR related?
doi:10.1371/journal.pone.0024061.g001
Figure 2. What proportion of children in hospital experience an ADR during their admission?
doi:10.1371/journal.pone.0024061.g002

Study/ Setting Events Total	Prop in %	95% CI			
Only patients with prior drug exposure (single episode)					
Garcia-Lara 1999	1	219	12.70	[9.44, 18.97]	
Jervis-Brolla 2002	1	227	3.84	[0.89, 6.88]	
Mitchell 1976	1	199	10.78	[5.01, 16.00]	
Clasek 1991	2	17	2078	0.82	[0.48, 1.31]
Oksenholt 2002	2	338	12.44	[7.23, 17.04]	
O'Keeffe 2005	2	16	24	10.87	[0.00, 5.25]
O'Keeffe 2007 (reg)	2	16	24	0.57	[0.24, 0.90]
Benesimone 2008	3	155	2.23	[0.68, 7.73]	
Faulkner 2005	5	40	10.51	[7.63, 14.06]	
Reuben 2006	6	46	12.40	[9.22, 16.18]	
Only patients with prior drug exposure (some may have had multiple episodes)					
Budnert 2003	1	165	16.13	[15.09, 21.52]	
Dharmadhikari 1983 (HIS)	1	6	340	1.76	[1.65, 3.00]
Dharmadhikari 1983 (HIS)	1	6	340	0.26	[0.01, 0.53]
Uspall 2000	1	35	1615	0.22	[0.15, 0.30]
Whyb 1977	1	39	596	6.55	[4.70, 8.35]
Ronassassad 2008	2	27	845	3.94	[2.48, 5.56]
Xun 2009	2	15	135	11.11	[0.35, 17.06]
Martinez-Mir 1985	2	59	498	14.43	[11.17, 18.71]
Viegas & de la Villa 1989	2	26	577	4.36	[3.86, 6.53]
Stocker & Merchant 2000	3	5	230	2.17	[0.71, 5.00]
Farrell 2006	2	37	270	0.77	[0.37, 1.04]
Reuben 2004	6	31	136	16.97	[13.82, 20.70]
Weiss 2002	8	33	181	16.23	[12.89, 20.64]
All patients (single episode)					
Oksenholt 2002	1	6	260	2.31	[1.89, 4.09]
Jha 2007	2	33	272	12.12	[8.05, 16.61]
Sparranzo 2008	2	20	173	11.56	[7.72, 17.25]
Faulkner 2005	5	40	494	9.08	[7.17, 15.23]
All patients (some may have had multiple episodes)					
Budnert 2003	1	165	15.79	[13.10, 18.19]	
Dharmadhikari 1983 (HIS)	1	6	347	1.73	[1.64, 3.75]
Whyb 1977	1	39	392	4.18	[2.99, 5.58]
Gool 1994	1	7	82	11.20	[4.68, 21.00]
Dojvagola 2008	2	27	740	3.95	[1.42, 5.38]
Chomnara 1984	1	15	268	5.00	[3.17, 7.06]
Martinez-Mir 1985	2	59	490	12.04	[9.29, 15.25]
Teichler 2006	3	34	213	16.57	[13.23, 20.63]
Farrell 2005	4	34	194	3.19	[2.66, 4.00]
Reuben 2004	6	31	181	17.42	[12.15, 23.80]
Only episodes with prior drug exposure					
Oksenholt 2002	1	382	372	8.11	[7.25, 9.03]
Low 1998	1	51	499	10.22	[7.70, 12.72]
Turner 1997	2	119	396	12.39	[10.35, 14.49]
Gool 1995	3	63	89	7.01	[5.43, 8.59]
Stocker & Merchant 2000	3	5	232	1.98	[0.65, 4.57]
All episodes					
At-Talib 2005	1	2	2351	0.09	[0.01, 0.31]
Hoffner 2005	1	7	708	10.16	[7.97, 12.57]
Low 2008	1	1061	64643	1.66	[1.56, 1.75]
Esteban-Carter 2003b	2	41	1742	0.22	[0.16, 0.27]
Turner 1989	2	119	1045	11.09	[9.25, 13.15]
Farrell 2005	4	3	192	2.34	[1.61, 3.68]
Pehrson 2003	5	6	2151	0.46	[0.24, 0.78]

Setting Key

1. All wards including Oncology
2. Excluding Oncology
3. ICU
4. Surgery
5. Infectious diseases department
6. Isolation ward
7. Paediatric Emergency department
Discussion

This is the largest systematic review of ADRs in children to date and shows clearly that ADRs are an important clinical problem for children and have been the subject of a large number of studies.

Unlike previous systematic reviews [3,4,5], our review searched for studies using a comprehensive search strategy of a large number of databases, including those specific to toxicology and pharmacology. Nineteen databases were searched of which eight retrieved eligible studies. When compared with the previous reviews this resulted in an additional 73 studies being included in our review, of which, in 24, we were able to extract data. We included studies where ADEs had been evaluated, and that included both adults and children. In addition, we contacted authors of studies to obtain unpublished information. As a result, we were able to obtain unreported ADR incidence data for an additional 24/102 studies. This allowed us to make a more informed judgement regarding ADR incidence estimates.

In agreement with previous studies, including those specific to adults [112], this review found that ADR incidence rates were generally higher in hospitalised children than ADR rates causing hospital admission or in an outpatient setting. One of the main difficulties when comparing ADR incidence rates, particularly from observational studies, is that the studies differ in a number of ways, such as clinical setting, population characteristics and study duration. This may explain the large variation in the incidence rates reported. However, since the numerators and denominators used to calculate ADR incidence were not consistent across studies it was not possible to apply statistical methods to comprehensively explore the heterogeneity. Due to the large amount of heterogeneity, a pooled estimate of the incidence rate has been provided for ADRs causing admission only.

Concerning risk factors associated with ADRs, we found evidence, from both univariate meta-regression and the collation of risk factor analyses from individual studies, that the use of multiple drugs is an important predictor of ADRs. This may be due to the additive risk of an ADR when receiving several drugs or to drug-drug interactions.

We report where possible the drugs associated with ADRs and the clinical presentation, although information regarding drugs involved was poorly reported. The types of drugs associated with ADRs differed substantially between studies due to differences between patient populations there were a number of similarities, and many of the drugs analysed in this review are commonly used in children. The results of this review will facilitate a greater understanding of prescribing practices, thus ultimately reduce drug harm. This may help in the development of interventions to improve drug prescribing and monitoring.

We examined the methods used for detecting, and assessing the causality, severity and avoidability of an ADR. The assessment of
Table 5. Drug class and clinical presentation of ADRs.

Drug class	Study	Population of study	Total number of ADRs reported in study	Number of ADRs due to drug class (%)	Clinical presentation
Anti-infectives					
	Easton (1998)	1682 admissions	10	1 (10%)	Colitis, ileus
	Impicciatore (2002)	116 children	12	4 (33.3%)	Urticaria, periorbital oedema, neutropenia
	Lamababusuriya (2003)	39625 admissions	63	38 (60.3%)	Erythema multiforme, stevens-johnson syndrome, rash, raised intracranial pressure
	Oshikoya (2007)	3821 children	17	7 (41.1%)	Provided for deaths only ×1
	Easton Carter (2004)	2933 admissions	29	Not reported in publication	Not reported in publication
	Mitchell (1988)	7271 children	288	10 (3.5%)	Diarrhoea, fever, erythema multiforme death ×2
	Major (1998)	457 children	26	6 (23%)	Not reported in publication
	Santos (2000)	624 children	14	6 (42.8%)	Not reported in publication
	Gallagher (2010)	462 children	18	3 (16.6%)	Diarrhoea
	Duczmal (2006)	4996 admissions	58	Not reported in publication	Not reported in publication
	Ganeva (2007)	73 children	6	4 (66.6%)	Not reported in publication
	Fattahi (2005)	404 children	9	4 (44.4%)	Not reported in publication
	Martinez-Mir (1996)	490 children	21	10 (47.6%)	Not reported in publication
	Yosselson-Superstine (1982)	906 children	29	Not reported in publication	Not reported in publication
	McKenzie (1976)	3556 admissions	72	Not reported in publication	Provided for deaths only ×2
	Gallagher (2011)	6821 children	249	16 (6.4%)	Diarrhoea, Rash, Vomiting, Lip swelling, Deranged LFTs, Thrush
Anti-epileptics	Easton (1998)	1682 admissions	10	3 (30%)	Increased fitting, Rash, aphasia/motor regression
	Impicciatore (2002)	116 children	12	2 (16.6%)	coma
	Lamababusuriya (2003)	39625 admissions	63	4 (6.3%)	Ataxia and cerebellar signs, liver failure, stevens-johnson syndrome
	Oshikoya (2007)	3821 children	17	1 (5.8%)	Not reported in publication
	Mitchell (1988)	7271 children	288	23 (7.9%)	Lethargy, ataxia, rash, erythema
Anti-epileptics	Le (2006)	64 403 admissions	35	Not reported in publication	Not reported in publication
	Santos (2000)	624 children	14	1 (7.1%)	Not reported in publication
	Yosselson-Superstine (1982)	906 children	29	Not reported in publication	Not reported in publication
	McKenzie (1976)	3556 admissions	72	Not reported in publication	Not reported in publication
	Fattahi (2005)	404 children	9	1 (11.1%)	Not reported in publication
	Jonville-Bera (2002)	260 children	4	1 (25%)	Convulsion
	Gallagher (2011)	6821 children	249	2 (0.8%)	Constipation, respiratory depression
NSAIDS	Duczmal (2006)	4996 admissions	58	Not reported in publication	Not reported in publication
	Impicciatore (2002)	116 children	12	1 (8.3%)	Coma
	Lamababusuriya (2003)	39625 admissions	63	3 (4.7%)	Rectal bleeding, Aspirin – Reye syndrome
Table 5. Cont.

Causing admission studies

Drug class	Study	Population of study	Total number of ADRs reported in study	Number of ADRs due to drug class (%)	Clinical presentation
	Major (1998)	457 children	26	2 (7.6%)	Not reported in publication
	Gill (1995)	909 admissions	10	1 (10%)	Not reported in publication
	Gallagher (2011)	6821 children	249	31 (12.4%)	Post-op bleeding, haematemesis, constipation, abdominal pain
	Gallagher (2010)	462 children	18	1 (5.5%)	Haematemesis
	Mitchell (1988)	7271 children	288	12 (4.1%)	Gastritis
	Jonville-Bera (2002)	260 children	4	1 (25%)	Melaena
Cytotoxics	(n = 8)				
	Mitchell (1988)	7271 children	288	Not reported in publication	Deaths ×2
	Major (1998)	457 children	26	10 (38.4%)	Not reported in publication
	Santos (2000)	624 children	14	2 (14.2%)	Not reported in publication
	Yosselson-Superstine (1982)	906 children	29	Not reported in publication	Death ×1
	McKenzie (1976)	3556 admissions	72	Not reported in publication	Provided for deaths only ×3
	Fatah (2005)	404 children	9	2 (22.2%)	Not reported in publication
	Gallagher (2010)	6821 children	249	110 (44.2%)	Thrombocytopenia, Anaemia, Vomiting, Mucositis, Deranged LFTs, Immunosuppression, Diarrhoea, Nausea, Constipation, Headache, Abdominal pain, Back pain, Haematuria, Leukencephalopathy, Deranged renal function
	Gallagher (2010)	462 children	18	9 (50%)	Pyrexia, neutropenia, lethargy, decreased responsiveness, vomiting
Corticosteroids	(n = 7)				
	Easton (1998)	1682 admissions	10	1 (10%)	Unstable diabetes
	Santos (2000)	624 children	14	1 (7.1%)	Upper GI bleed
	Yosselson-Superstine (1982)	906 children	29	Not reported in publication	Not reported in publication
	McKenzie (1976)	3556 admissions	72	Not reported in publication	Not reported in publication
	Ganeva (2007)	73 children	6	2 (33.3%)	Not reported in publication
	Gallagher (2010)	6821 children	249	102 (41.0%)	Immunosuppression, Post-op bleeding, Hyperglycaemia, Hypertension, Gastritis, Increased appetite, Impaired healing, adrenal suppression
	Gallagher (2010)	462 children	18	1 (5.5%)	Vomiting
Vaccines	(n = 7)				
	Easton (1998)	1682 admissions	10	1 (10%)	Hypotonic-hyporesponsive episode
	Lamababusuriya (2003)	39625 admissions	63	9 (14.2%)	Rash, encephalopathy, fits, head lag
	Easton Carter (2004)	2933 admissions	29	Not reported in publication	Not reported in publication
	Mitchell (1988)	7271 children	288	5 (1.7%)	Not reported in publication
	Santos (2000)	624 children	14	1 (7.1%)	Not reported in publication
	Gill (1995)	909 admissions	10	2 (20%)	Seizures, fever
	Gallagher (2010)	6821 children	142		Fever, Rash, Irritability, Seizure, Vomiting, Pallor, Apnoea, Limb swelling, Lethargy, Thrombocytopenia Diarrhoea, Abdominal pain, Respiratory distress, Kawasaki disease
Table 5. Cont.

In hospital studies

Anti-infectives

Study	Number of Children/Episodes	Adverse Reactions	Not Reported in Publication
Al-Tajir (2005)	2351 episodes 2	Not reported in publication	Not reported in publication
Baniasadi (2008)	693 children 27	Not reported in publication	Not reported in publication
Choonara (1984)	268 children 15	Vomiting, oral monilia, diarrhoea	Not reported in publication
Dharmidharka (1993)	703 children 7	Skin rash	Not reported in publication
Dos Santos (2008)	265 children 47	Not reported in publication	Not reported in publication
Dos Santos (2009)	3726 episodes 302	Not reported in publication	Not reported in publication
Easton Carter (2003b)	17432 episodes 41	Not reported in publication	Not reported in publication
Farrokh (2006)	81 children 3	Not reported in publication	Not reported in publication
Fattahi (2005)	380 children 40	Not reported in publication	Not reported in publication
Gill (1995)	899 episodes 76	Vomiting, rash, diarrhoea, arthropathy, neutropenia, nausea, fits	Not reported in publication
Gonzalez-Martin (1998)	219 children 46	Not reported in publication	Not reported in publication
Jha (2007)	943 children 13	Maculapular rashes, vomiting, diarrhoea, drug fever	Not reported in publication
Jonville-Bera (2002)	227 children 6	Diarrhoea, rash	Not reported in publication
Impicciatore (2002)	1619 children 29	Urticaria, increased transaminase levels, vomiting, diarrhoea	Not reported in publication
Le et al (2006)	64 403 admissions 1060	Not reported in publication	Not reported in publication
Leach (1998)	499 episodes 58	Vomiting, rash, diarrhoea, arthropathy, neutropenia, nausea, fits	Not reported in publication
Mitchell (1979)	1669 children 280	Not reported in publication	Not reported in publication
Maistrello (1999)	1103 children 59	Gasto-intestinal disorders,	Not reported in publication
Martinez-Mir (1996)	490 children 68	Not reported in publication	Not reported in publication
Neubert (2004)	156 children 31	Not reported in publication	Not reported in publication
Oshikoya (2007)	3821 children 27	Red man syndrome, pustular rash, stevens-johnson syndrome, erythema, jaundice, anaphylaxis, urticaria, fever	Not reported in publication
Shockrollah (2009)	230 children 5	Not reported in publication	Not reported in publication
Turner (1999)	936 episodes 157	Not reported in publication	Not reported in publication
Vazquez de la villa (1999)	597 children 26	Diarrhoea, vomiting, rash	Not reported in publication

Anti-epileptics

Study	Number of Children/Episodes	Adverse Reactions	Not Reported in Publication		
Choonara (1984)	268 children 15	Drowsiness, hyperactivity, ataxia	Not reported in publication		
Dharmidharka (1993)	703 children 7	Skin rash	Not reported in publication		
Dos Santos (2009)	3726 episodes 302	Not reported in publication	Not reported in publication		
Easton Carter (2003b)	17432 episodes 41	Not reported in publication	Not reported in publication		
Gill (1995)	899 episodes 76	Not reported in publication	Not reported in publication		
Gonzalez-Martin (1998)	219 children 46	Not reported in publication	Not reported in publication		
Le et al (2006)	64 403 admissions 1060	Not reported in publication	Not reported in publication		
Leach (1998)	499 episodes 58	Apnoea	Not reported in publication		
Mitchell (1979)	1669 children 280	Not reported in publication	Not reported in publication		
Martinez-Mir (1996)	490 children 68	Not reported in publication	Not reported in publication		
Neubert (2004)	156 children 31	Not reported in publication	Not reported in publication		
Oshikoya (2007)	3821 children 27	Erythema	Not reported in publication		
Table 5. Cont.					
---	---				
In hospital studies					
Telechea (2010)	123 children	46	15 (32.6%)	Not reported in publication	
Vazquez de la villa (1999)	597 children	26	4 (15.3%)	Sedation, paradoxil reaction	
Corticosteroids (n = 10)					
Dos Santos (2006)	265 children	47	11 (23.4%)	Not reported in publication	
Gill (1995)	899 episodes	76	6 (7.8%)	Not reported in publication	
Gonzalez-Martin (1998)	219 children	46	3 (6.5%)	Not reported in publication	
Impicciatore (2002)	1619 children	29	1 (3.4%)	Rash	
Leach (1998)	499 episodes	58	1 (1.7%)	Gastric irritation	
Mitchell (1979)	1669 children	280	Not reported in publication	Not reported in publication	
Neubert (2004)	156 children	31	Not reported in publication	Not reported in publication	
Telechea (2010)	123 children	46	4 (8.6%)	Not reported in publication	
Turner (1999)	936 episodes	157	10 (6.3%)	Not reported in publication	
Vazquez de la villa (1999)	597 children	26	1 (3.8%)	Cushing syndrome	
Bronchodilators (n = 9)					
Choonara (1984)	268 children	15	3 (20%)	Tachycardia	
Easton Carter (2003b)	17432 episodes	41	Not reported in publication	Not reported in publication	
Gill (1995)	899 episodes	76	8 (10.5%)	Not reported in publication	
Gonzalez-Martin (1998)	219 children	46	8 (17.3%)	Not reported in publication	
Impicciatore (2002)	1619 children	29	5 (17.2%)	Tremor, tachycardia	
Neubert (2004)	156 children	31	Not reported in publication	Not reported in publication	
Telechea (2010)	123 children	46	8 (17.3%)	Not reported in publication	
Turner (1999)	936 episodes	157	8 (5.0%)	Not reported in publication	
Vazquez de la villa (1999)	597 children	26	11 (42.3%)	Tachycardia, nervousness, vomiting	
Cytotoxics (n = 7)					
Dos Santos (2009)	3726 episodes	302	10 (3.3%)	Not reported in publication	
Gonzalez-Martin (1998)	219 children	46	7 (15.2%)	Not reported in publication	
Jonville-Bera (2002)	227 children	6	4 (66.6%)	Vomiting	
Cytotoxics					
Le et al (2006)	64 403 admissions	1060	Not reported in publication	Not reported in publication	
Leach (1998)	499 episodes	58	1 (1.7%)	Thrombocytopenia	
Mitchell (1979)	1669 children	280	Not reported in publication	Not reported in publication	
Telechea (2010)	123 children	46	1 (2.1%)	Not reported in publication	
Diuretics (n = 6)					
Easton Carter (2003b)	17432 episodes	41	Not reported in publication	Not reported in publication	
Leach (1998)	499 episodes	58	1 (1.7%)	Over diureses	
Mitchell (1979)	1669 children	280	Not reported in publication	Not reported in publication	
Neubert (2004)	156 children	31	Not reported in publication	Not reported in publication	
Telechea (2010)	123 children	46	9 (19.5%)	Not reported in publication	
Turner (1999)	936 episodes	157	31 (19.7%)	Not reported in publication	
Community					
Anti-infectives (n = 13)					
Cirko-Begovic (1989)	2459 children	63	49 (78%)	Not reported in publication	
Community	Number of consultations	Number of children	Reported ADRs	Not reported in publication	
---	-------------------------	--------------------	--	---	
Table 5. Cont.					
Easton-Carter (2003a)	8601	118	Not reported in publication	Not reported in publication	
Horen (2002)	1419	20	9 (45%)	Not reported in publication	
Junitti-Patinen (2006)	Not reported for children	4	Not reported for children only	Not reported for children only	
Kaushal (2007)	1689	226	158 (70%)	Nausea, vomiting and diarrhoea.	
Kramer (1985)	4244	200	Not reported in publication	Diarrhoea, other gastrointestinal complaints and skin rashes	
Menniti-Ippolito (2000)	7890	119	79 (66%)	Cutaneous, gastrointestinal, eosinophilia, neurological, angioedema, fever	
Planchamp (2009)	12995	43	Not reported in publication	Not reported in publication	
Sanz (1987)	1327	10	4 (40%)	Cutaneous reaction and diarrhoea	
Munoz (1998)	47107	447	49.5%	Included skin reactions	
Jonville-Bera (2002)	A&E: 428 children	Private paediatricians: 1192	A&E: 2 (50%)	Private paediatricians: 6 (75%)	
Anti-infectives					
Woods (1987)	1590	235	40 (17%)	Diarrhoea, drowsiness, rash, headache, hyperactivity, anorexia, abdominal pain, vomiting, sleep disturbance	
Zahraoui (2010)	Not reported	24	Not reported in publication	Not reported in publication	
NSAIDs (n = 6)					
Kaushal (2007)	1689	226	2 (1%)	Not reported in publication	
Menniti-Ippolito (2000)	7890	119	3 (3%)	Cutaneous, haematuria, hypertranspiration	
Munoz (1998)	47107	447	Not reported	Not reported in publication	
Planchamp (2009)	12995	43	Not reported in publication	Not reported in publication	
Sanz (1987)	1327	10	1 (10%)	Not reported in publication	
Woods (1987)	1590	235	9 (4%)	Drowsiness, abdominal pain, aggressiveness, vomiting	
Analgesics (n = 5)					
Kaushal (2007)	1689	226	1 (0.4%)	Not reported in publication	
Munoz (1998)	47107	447	Not reported in publication	Not reported in publication	
Planchamp (2009)	12995	43	Not reported in publication	Not reported in publication	
Sanz (1987)	1327	10	1 (10%)	Not reported in publication	
Woods (1987)	1590	235	11 (5%)	Drowsiness, irritability, aggressiveness	
Zahraoui (2010)	Not reported	24	Not reported in publication	Not reported in publication	
Vaccines (n = 5)					
Horen (2002)	1419	20	5 (25%)	Not reported in publication	
Jonville-Bera (2002)	A&E: 428 children	Private:1192 children	A&E: 1 (25%)	Private: 2 (25%)	
Menniti-Ippolito (2000)	7890	119	14 (12%)	Not reported in publication	
Munoz (1998)	47107	447	? 9.2%	Not reported in publication	
Planchamp (2009)	12995	43	Not reported in publication	Not reported in publication	
Antihistamine (n = 4)					
Cirko-Begovic (1989)	2459	63	2 (3%)	Not reported in publication	
Kaushal (2007)	1689	226	2 (1%)	Not reported in publication	
Menniti-Ippolito (2000)	7890	119	2 (2%)	Not reported in publication	
Community	Woods (1987)	1590 children	235	46 (20%)	Drowsiness, aggressiveness, dry mouth, headache, irritability, diarrhoea
-----------	--------------	---------------	-----	---------	---
Bronchodilators (n = 3)					
Kaushal (2007)	1689 children	226	16 (7%)	Not reported in publication	
Kramer (1985)	4244 courses of therapy	200	Not reported in publication	Various manifestations of central nervous stimulation	
Woods (1987)	1590 children	235 ADRs	6 (3%)	Hyperactivity, shakiness, dizziness, irritability, sleep disturbance.	
Steroid (n = 3)					
Horen (2002)	1419 consultations	20	1 (0.05%)	Not reported in publication	
Kaushal (2007)	1689 children	226	12 (5%)	Not reported in publication	
Woods (1987)	1590 children	235	5 (2%)	Abdominal pain, diarrhoea	
Combined settings (causing admission & in hospital)					
Anti-infectives (n = 2)					
Haffner (2006)	703 admissions	101	Not reported in publication	Not reported in publication	
Speranza (2008)	173 children	24	10 (41.6%)	Not reported in publication	
Bronchodilators (n = 1)					
Haffner (2006)	703 admissions	101	Not reported in publication	Not reported in publication	
Anti-epileptics (n = 2)					
Haffner (2006)	703 admissions	101	Not reported in publication	Not reported in publication	
Speranza (2008)	173 children	24	4 (16.6%)	Not reported in publication	
Cardiovascular (n = 1)					
Haffner (2006)	703 admissions	101	Not reported in publication	Not reported in publication	
Analgesics (n = 1)					
Speranza (2008)	173 children	24	2 (8.3%)	Not reported in publication	
Anti-ulcer (n = 1)					
Speranza (2008)	173 children	24	2 (8.3%)	Not reported in publication	
Psychotropic (n = 1)					
Speranza (2008)	173 children	24	2 (8.3%)	Not reported in publication	
Combined settings (in hospital & community)					
Anti-infectives (n = 1)					
Kushwaha (1994)	20310 admissions	267	Not reported in publication	Erythematous maculopapular rash, thrombophlebitis, erythema multiforme, fixed drug reaction, urticaria, jaundice, aplastic anaemia, thrombocytopenia purpura	
Vaccines (n = 1)					
Kushwaha (1994)	20310 admissions	267	Not reported in publication	Nodular cyst in gluteal region, injection abscess	
NSAID (n = 1)					
Kushwaha (1994)	20310 admissions	267	Not reported in publication	Erythematous maculopapular rash	
causality in individual cases of ADRs is required to establish whether there is an association between the untoward clinical event and the suspected drug [6]. The detection of ADRs depends on the validity and reliability of the tests employed and if sensitive methods are performed, in theory, all ADRs should be detected. We found a third (31/102) of studies did not report which causality assessment they used, with an additional six not using a recognised algorithm. As a consequence there may be either an underestimation or overestimation of ADRs in these studies. Over a third of studies (34/102) assessed ADRs for the severity of the reactions; just eight of which did not report any severe ADRs. Severe ADRs were described as those that caused either death or were directly life-threatening, caused hospital admission, prolonged hospitalisation or caused transfer to higher level of clinical care [113]. The ability to classify ADRs by severity provides a mechanism for clinicians to identify problem areas and implement interventions to inform paediatric pharmacovigilance practice.

The absence of avoidability data was most noticeable in this review; with only fourteen studies (14/102; 14%) providing avoidability data. Therefore it is not possible to consider this important aspect of drug safety in order to prevent future ADRs [7]. Further studies are clearly required to determine which ADRs are potentially avoidable. These studies could provide the necessary data in order to enable clinicians to administer medications in the safest and appropriate way.

The reporting quality of some of the included studies was poor, which may have affected the results. Not all provided a clear definition of the term ‘adverse drug reaction’; often insufficient information was in the publication in order to determine whether ADRs included medication or prescribing errors. ADR incidence data were not always clearly described in the publications. In many studies (n = 48/102) reporting was unclear regarding whether the incidence rate was reported at the patient and/or episode level and whether or not all children had been exposed to a drug.

It is disappointing given the large number of studies we identified which addressed this problem that most did not include these important methodological aspects. We recommend researchers should consider the approach which we have taken to assess the quality of these studies, although we recognise that further work is needed to develop a quality assessment tool which meets rigorous standards of development. We recommend that future studies provide information on the avoidability of ADRs; this may help in the development of interventions to improve drug prescribing and

Table 5. Cont.
Combined settings (in hospital & community)
Analgesic
(n = 1)
Kushwaha (1994)
20310 admissions
267
Not reported in publication
Erythematous maculopapular rash, urticaria
Steroid
(n = 1)
Kushwaha (1994)
20310 admissions
267
Not reported in publication
Injection abscess |

Combined settings (causing admission, in hospital & community)
Steroid
(n = 1)
McKenzie (1973)
658 children
175
Not reported in publication
Psychotic reaction, cushingoid syndrome, cataracts, hypertension
Anti-infectives
(n = 1)
McKenzie (1973)
658 children
175
Not reported in publication
Rash, diarrhoea, facial flush, monilia, pain in injection site
Cytotoxics
(n = 1)
McKenzie (1973)
658 children
175
Not reported in publication
Alopecia, peripheral neutitis, mouth ulcer, injection site inflammation, leukopenia, secondary infection |

Note 1 patient in the Zahraoui (2010) study died (gastrointestinal bleeding and severe thrombocytopenia after prolonged anti-convulsant treatment. Mitchell (1988) – 5 deaths (fever, vomiting, arrhythmia and cardiopulmonary arrest attributed to theophylline and erythromycin; cardiac arrest and hypernatremia attributed to halothane and nitrous oxide pneumonia attributed to chemotherapy-induced immunosuppression; cardiotoxicity attributed to doxorubicin; candida sepsis and meningitis attributed to chemotherapy-induced immunosuppression). Yosselson-Superstine (1982) – 1 death (no detail provided). doi:10.1371/journal.pone.0024061.0005

Table 6. Univariate meta-regression results for causing admission and in hospital incidence rates.
Covariate
Setting: Admission
Hospital
% Female patients
Mean age (years)
Mean/median number of drugs
% Oncology patients

doi:10.1371/journal.pone.0024061.0006
monitoring. There are several outcomes that warrant further investigation or require more detailed information to be collected. Important risk factor data and the number of medications each child received needs to be reported fully in order to explore possible sources of heterogeneity between studies. Future studies need to use clear, unambiguous terminology to describe how ADR incidence rates are calculated. This would improve understanding of the clinical relevance of individual study findings and allow comparisons between studies for the purposes of systematic review, enabling more robust conclusions and recommendations.

This review confirms previous studies which have shown ADRs to be a significant problem in children and has highlighted therapeutic classes of drugs most commonly associated with them. We strongly recommend further work to address prescribing practices in different settings and avoidability of ADRs is needed to indicate how such ADRs may be prevented.

Supporting Information

Figure S1 Flow diagram.

TIF

Checklist S1 PRISMA Checklist.

DOC

Acknowledgments

We are grateful to the authors of included studies who answered specific queries about the reporting of outcomes in their trials. We would also like to thank Lynn Hampson for her help in translating the search strategy into the different databases. Finally, we thank the referees who reviewed this work for their helpful comments.

Author Contributions

Conceived and designed the experiments: PRW RLS RMS SG JJK EG. Performed the experiments: PRW RLS RMS JJK LC SG. Analyzed the data: PRW RLS RMS EG JJK LC SG. Contributed reagents/materials/analysis tools: PRW RLS RMS EG SG JJK LC. Wrote the paper: PRW RLS RMS EG JJK LC SG.

References

1. Wester K, Jonsson AK, Spigset O, Druud H, Hagg S (2008) Incidence of fatal adverse drug reactions: a population based study. Br J Clin Pharmacol 65: 573–579.
2. (WHO) WHO (2002) Safety of Medicines - a guide to detecting and reporting adverse drug reactions. WHO, Geneva.
3. Impicciatore P, Choonara I, Clarkson A, Provasi D, Pandolfini C, et al. (2001) Incidence of adverse drug reactions in paediatric in/out-patients: A systematic review and meta-analysis of prospective studies. British Journal of Clinical Pharmacology 52: 77–83.
4. Clavenna A, Bonati M (2009) Adverse drug reactions in childhood: a review of prospective studies and safety alerts. Arch Dis Child 94: 724–729.
5. Aagaard L, Christensen A, Hansen EH (2010) Information about adverse drug reactions reported in children: a qualitative review of empirical studies. Br J Clin Pharmacol 70: 481–491.
6. Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, et al. (1981) A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 30: 239–245.
7. Schumock GT, Thornton JP (1992) Focusing on the preventability of adverse drug reactions. Hospital Pharmacy 27: 530.
8. WHO (1997) International drug monitoring: the role of national centres. Tech Rep Ser 496.
9. Duzczal E, Berborowicz A (2006) Adverse drug reactions as a cause of hospital admission. Przegląd Pediatryczny 36: 14–18.
10. Easton KL, Chapman CB, Brien JE (2004) Frequency and characteristics of hospital admissions associated with drug-related problems in paediatrics. British Journal of Clinical Pharmacology 57: 611–615.
11. Hewitt J (1995) Drug-related unplanned readmissions to hospital. Australian Journal of Hospital Pharmacy 25: 400–407.
12. Ives TJ, Benzij EJ, Gowyber RE (1987) Drug-related admissions to a family medicine inpatient service. Archives of Internal Medicine 147: 1117–1120.
13. McDonnell PJ, Jacobs MR (2002) Hospital admissions resulting from preventable adverse drug reactions.[see comment]. Annals of Pharmacotherapy 36: 1331–1339.
14. McKenize MW, Marchall GL, Netzelf ML, Cluff LE (1976) Adverse drug reactions leading to hospitalization in children. J Pediatr 89: 467–490.
15. Mitchell AA, Lacouture PG, Sherehan JE, Kaufmann RE, Shapiro S (1980) Adverse drug reactions in children leading to hospital admission. Pediatrics 62: 24–29.
16. Santos RP, Benjamin G, Paje-Villar E (2000) Drug-related hospitalization among pediatric patients in a tertiary hospital Santo Tomas. Journal of Medicine 49: 141–152.
17. van der Hooft CS, Sturkenboom MCM, van Grootheest K, Kinnga HJ, Stricker BHC (2006) Adverse drug reaction-related hospitalisations: a nationwide study in The Netherlands. Drug Safety 29: 161–168.
18. Youseme-Supreme X, Weiss T (1982) Drug-related hospitalization in pediatric patients. J Clin Hosp Pharm 7: 195–203.
19. Bordet R, Gautier S, Le Louet H, Dupuis B, Caron J (2001) Analysis of the direct cost of adverse drug reactions in hospitalised patients. European Journal of Clinical Pharmacology 56: 933–941.
20. Impicciatore P, Moin A, Chiarelli F, Pandolfini C, Bonati M (2002) Adverse drug reactions to off-label drugs on a paediatric ward: An Italian prospective pilot study. Paediatric and Perinatal Drug Therapy 5: 19–24.
21. Kumar DL, Kennedy J, Austin N, Reith D (2009) Incidence, preventability, and impact of Adverse Drug Events (ADEs) and potential ADEs in hospitalized children in New Zealand: a prospective observational cohort study. Paediatric Drugs 11: 153–160.
22. Le J, Nguyen T, Law AV, Hoddinig J (2005) Retrospective analysis of adverse drug reactions in pediatrics over a 10-year period. Pharmacotherapy 25: 1432.
23. Osakbaya KA, Nwakaoma OF, Ghilfunctional HA, Ojo RO (2007) Adverse drug reactions in Nigerian children. Paediatric and Perinatal Drug Therapy 8: 81–88.
24. Whyte J, Greenan E (1977) Drug usage and adverse drug reactions in paediatric patients. Acta Paediatrica Scandinavica 66: 767–775.
25. Al-Tajir G, Kelly WN (2005) Epidemiology, comparative methods of detection, and preventability of adverse drug events. Annals of Pharmacotherapy 39: 1169–1174.
26. Bujaforder I, Wessenberg F, Boers O, Langlet A (2002) Adverse drug event in children during hospitalization and after discharge in a Norwegian University Hospital. Acta Paediatrica, International Journal of Paediatrics 91: 88–94.
27. Gallagher (2011) Adverse drug reactions causing admission to a paediatric hospital: a pilot study. J Clin Pharm Ther 36: 194–199.
28. Sporanza N, Lucas L, Teleschea H, Santaruo A, Giachetto G, et al. (2008) Adverse Drug Reactions in Hospitalized Children A Public Health Problem. Drug Safety 31(10): 805–906. doi: 10.2165/0002018-200831100-00007.
29. Gallagher (2011) Adverse Drug Reactions Causing Admission to a Paediatric Hospital Unpublished.
30. Eston KL, Parsons BJ, Starr M, Brien JE (1998) The incidence of drug-related problems as a cause of hospital admissions in children. Medical Journal of Australia 169: 336–343.
31. Lanabasabasaci SP, Sathiadas G (2003) Adverse drug reactions in children requiring hospital admission. Ceylon Medical Journal 48: 86–87.
32. Major S, Badr S, Bahalwan I, Hassan G, Khoglaishanian T, et al. (1998) Drug-related hospitalization at a tertiary teaching center in Lebanon: Incidence, associations, and relation to self-prescribing behavior. Clinical Pharmacology & Therapeutics 64: 450–461.
33. Poyanne P, Haramburu F, Imbs JL, Bagaud B (2000) Admissions to hospital caused by adverse drug reactions: cross sectional incidence study. French Pharmacovigilance Centres. BMJ 320: 1036.
34. McKenize MW, Stewart RB, Weiss CF, Cluff LE (1973) Pharmacist-based study of the epidemiology of adverse drug reactions in pediatric medicine patients. American Journal of Hospital Pharmacy 30: 898–903.
35. At-Olah YH, Al Thabi KM (2008) Admissions through the emergency department due to drug-related problems. Annals of Saudi Medicine 28: 429–429.
36. Schnerewiss S, Hasford J, Gottler M, Hoffmann A, Rielhing A-K, et al. (2002) Admissions caused by adverse drug reactions to medical and emergency departments in hospitals: a longitudinal population-based study. European Journal of Clinical Pharmacology 58: 285–291.
37. Jouville-Bera AP, Giraudreau B, Blanc P, Beau-Salinia F, Astoret-Laca E (2002) Frequency of adverse drug reactions in children: A prospective study. British Journal of Clinical Pharmacology 53: 207–210.
38. van der Hooft CS, Dieleman JP, Niemel G, Azarnoudi A, Hjverhamme KMC, et al. (2008) Adverse drug reaction-related hospitalizations: A population-based cohort study. Pharmacoeconomics and Drug Safety 17: 365–371.
39. Gill AM, Leach HJ, Hughes J, Barker C, Nunn AJ, et al. (1995) Adverse drug reactions in a paediatric intensive care unit. Acta Paediatrica, International Journal of Paediatrics 84: 438–441.

40. Haffner S, von Laue N, Wirth S, Thurnhammer PA (2005) Detecting adverse drug reactions on paediatric wards - Improved surveillance versus computerised screening of laboratory values. Drug Safety 28: 453–464.

41. Baniasadi S, Fahimi F, Shaviri G (2008) Developing an adverse drug reaction reporting system at a teaching hospital. Base & Clinical Pharmacology & Toxicology 102: 409–411.

42. Claassen DC, Pestonik SL, Evans RS, Burke JP (1991) Computerized surveillance of adverse drug events in hospital patients. Journal of the American Medical Association 266: 2047–2051.

43. Fischbach (1989) Pilot Study of Adr Reporting by Physicians - Phase II. ASHP Annual Meeting: 41.

44. Ramesh S, Pandit J, Tothill RN, Heath CE, Smith NA, et al. (2001) Adverse drug reactions in a South Indian hospital - Their severity and cost involved. Pharmacoeconomics and Drug Safety 12: 687–692.

45. Seidl TG, Thornton GE, Smith JW, Cliff LE (1966) Studies on the epidemiology of adverse drug reactions III. Reactions in patients on a general medical service. The Johns Hopkins Hospital bulletin 119: 299–315.

46. Smith NA, McQueen EG (1972) Adverse reactions to drugs: a comprehensive hospital inpatient survey. New Zealand Medical Journal 76: 397–401.

47. Jose J, Rao PGM (2006) Pattern of adverse drug reactions notified by spontaneous reporting in an Indian tertiary care teaching hospital. Pharmacological Research 55: 231–236.

48. Ganeva M, Gianchetti V, Lazareva R, Tetzrofina Y, Heistikova E (2007) A prospective study of adverse drug reactions in a dermatology department. Methods & Findings in Experimental & Clinical Pharmacology 29: 107–112.

49. Fattahi F, Pourpak Z, Moin M, Kazeremnejad A, Khoterei GT, et al. (2005) Adverse drug reactions in hospitalized children in a department of infectious diseases. Journal of Clinical Pharmacology 45: 1311–1318.

50. Martinez-Mir I, Garcia LM, Palop V, Ferrer JM, Estan L, et al. (1996) A prospective study of adverse drug reactions as a cause of admission to a paediatric hospital. British Journal of Clinical Pharmacology 42: 319–324.

51. Barstow L, Vorce-West T, Buncher CR (1988) Comparative Study of Three Voluntary Adr Reporting Systems. Ashp Midyear Clinical Meeting 23: P-290.

52. Choanor A, Harris P (1984) Adverse drug reactions in medical inpatients. Archives of Disease in Childhood 59: 578–580.

53. Dhamimadarka VR, Kandoth PN, Anand RK (1993) Adverse drug reactions in pediatrics with a study of in-hospital intensive surveillance. Indian Pediatrics 30: 745–751.

54. dos Santos DB, Coelho HLL (2006) Adverse drug reactions in hospitalized children in Fortaleza, Brazil. Pharmacoeconomics & Drug Safety 15: 635–640.

55. Easton-Carter KL, Chapman CB, Brien JE (2003) Emergency department attendances associated with drug-related problems in paediatrics. Journal of Paediatrics and Child Health 39: 124–129.

56. Gonzalez-Martín G, Caroca CM, Paris E (1998) Adverse drug reactions (ADRs) in hospitalized pediatric patients. A prospective study. International Journal of Clinical Pharmacology and Therapeutics 36: 330–335.

57. Baz N, Bajcarova O, Nasuyal T (2007) Prevalence of adverse drug reactions in hospital patients with commonly prescribed drugs in different hospitals of Khamtani valley.[see comment]. Kathmandu University Medical Journal 5: 504–510.

58. Kaushal R, Bates DW, Landrigan C, McKenna KJ, Clapp MD, et al. (2001) Adverse drug reactions and adverse drug events in hospitals participating in the California Pediatric Drug Safety Project. Pediatrics 108: 651–658.

59. Mitchell AA, Goldman P, Shapiro S, Stone D (1979) Drug utilization and adverse drug events in pediatric inpatients. Journal of Clinical Pharmacology and Therapeutics 36: 530–533.

60. Mitchell AA, Goldman P, Shapiro S, Stone D (1979) Drug utilization and adverse drug events in pediatric inpatients. Journal of Clinical Pharmacology and Therapeutics 36: 530–533.

61. Neubert A, Bornmann H, Weiss J, Egger T, Criegee-Rieck M, et al. (2004) The prevalence of unlicensed and off-label drug use on adverse drug reactions in paediatric patients. Drug Safety 27: 1059–1067.

62. Neubert A, Bornmann H, Weiss J, Criegee-Rieck M, Ackermann A, et al. (2006) Are computerised monitoring systems of value to improve pharmacovigilance in paediatric patients? European Journal of Clinical Pharmacology 62: 929–935.

63. Weiss J, Krebs S, Hoffmann C, Werner U, Neubert A, et al. (2002) Survey of adverse drug reactions on a paediatric ward: A strategy for early and detailed detection. Pediatrics 110: 254–257.

64. Farrokh S, Nahta H, Pourpak Z, Moin M, MajdiNasab P, et al. (2006) Adverse drug reactions in a department of pediatric surgery. Journal of Tropical Pediatrics 52: 72–73.

65. Imbs JL, Pouyanne P, Haramburu F, Welsch M, Decker N, et al. (1999) [Iatrogenic medication: estimate of its prevalence in French public hospitals. Regional Centers of Pharmacovigilance]. Therapie 54: 21–27.

66. Mitchell AA, Goldman P, Shapiro S, Stone D (1979) Drug utilization and adverse drug reactions in hospitalized children. American Journal of Diseases in Children 110: 196–204.

67. Turner S, Nunn AJ, Fielding K, Choanor A (1999) Adverse drug reactions to unlicensed and off-label drugs on paediatric wards: a prospective study. Acta Paediatrica 88: 965–968.

68. Donnurna R, Gupta SK (2001) Intensive adverse drug reaction monitoring in various specialty clinics of a tertiary care hospital in North India. International Journal of Medical Toxicology and Legal Medicine 4: 1–14.

69. Maistrello I, Di Pietro P, Renna S, Boscaini M, Nobili A (1999) A surveillance-oriented medical record as a source of data for both drug quality and care of surveillance. Pharmacoeconomics and Drug Safety 8: 131–139.

70. Calderon-Osmina G, Orozco-Diaz J (2008) [Adverse drug reactions as the reason for visiting an emergency department]. Revista de Salud Publica 10: 315–321.

71. Cirko-Begovic A, Vrhovac B, Bakran I (1989) Intensive monitoring of adverse drug reactions in infants and preschool children. European Journal of Clinical Pharmacology 36: 63–65.

72. Demehy CE, Kishi DT, Louie C (1996) Drug-related illness in emergency department patients. Am J Health Syst Pharm 53: 1422–1426.

73. Doval DN, Gualati C, Bhargava A (1981) A survey of adverse effects of drugs in an outpatient population. Indian Journal of Public Health 25: 133–138.

74. Phan H, Leder M, Fuldlye M, Moeller M, Nahata M (2010) Off-label and unlicensed medication use and associated adverse drug events in a pediatric emergency department. Pediatric Emergency Care 26: 424–430.

75. Easton-Carter KL, Chapman CB, Brien JE (2003) Adverse drug reactions in paediatrics: Are we getting the full picture? Journal of Pharmacy Practice and Research 33: 106–110.

76. Junti-Patinen I, Kuutinen T, Pere P, Neuvonen PJ (2006) Drug-related visits to a district hospital emergency room. Basic and Clinical Pharmacology and Toxicology 90: 212–217.

77. Planchamp F, Nguyen KA, Vial T, Nasiri S, Javouhey E, et al. (2009) Active drug monitoring of adverse drug reactions in pediatric emergency department. Archives de Pediatric 16: 106–111.

78. Prince BS, Goetz CM, Rihon TL, Oksly M (1992) Drug-related emergency department visits and hospital admissions. Am J Hosp Pharm 49: 1096–1070.

79. Rebollo Gomes E, Fonseca J, Araujo L, Demoly P (2008) Drug allergy claims in children: From self-reporting to confirmed diagnosis. Clinical and Experimental Allergy 38: 191–198.

80. Sharma H, Agui M, Inam F, Alam MS, Kapur P, et al. (2007) A pharmacovigilance study in the Department of Medicine of a University Teaching Hospital. Pharmacovigilance Practice and Research 5: 46–49.

81. Stokides CA, D'Agostino PR, Kaufman MB (1993) Adverse drug reaction surveillance in an emergency room. Am J Hosp Pharm 50: 712–714.

82. Valladare J, Ferrer JM, Palop V, Rubio E, Morales Olivas EJ (1992) [Adverse reactions to medications in patients in an ambulance service]. Revista de Atencion Primaria 11: 92–98.

83. Otero Lopez MJ, Bajo Bajo A, Medreroa Fernandez JA, Domínguez-Gil Hurle A (1999) Preventable adverse drug events in a hospital Emergency Department. Revista Clinica Espanola 199: 736–805.
95. Smith KM, McAdams JW, Frenia ML, Todd MW (1997) Drug related problems in emergency department patients. American Journal of Health-System Pharmacy 54: 295–298.
96. Kushwaha KP, Verma RB, Singh YD, Rathi AK (1994) Surveillance of drug induced diseases in children. Indian Journal of Pediatrics 61: 357–365.
97. Zahraoui M (2010) Study for developing intensive pharmacovigilance system at paediatric emergency department. Fundamental and Clinical Pharmacology 24.
98. Horen B, Montastruc J-L, Lapeyre-Mestre M (2002) Adverse drug reactions and off-label drug use in paediatric outpatients. British Journal of Clinical Pharmacology 54: 665–670.
99. Kaushal R, Goldmann DA, Krohane CA, Christine M, Honour M, et al. (2007) Adverse drug events in pediatric outpatients. Ambulatory Pediatrics 7: 393–399.
100. Kramer MS, Hutchinson TA, Flegel KM, Naimark L, Contardi R, et al. (1985) Adverse drug reactions in general pediatric outpatients. Journal of Pediatrics 106: 305–310.
101. Martyr CR (1979) Adverse reactions to drugs in general practice. British Medical Journal 2: 1194–1197.
102. Menniti-Ippolito F, Rascetti R, Da Cas R, Giaquinto C, Cantarutti L, et al. (2000) Active monitoring of adverse drug reactions in children. Lancet 355: 1613–1614.
103. Lerner C, Bates DW, Yoon C, Krohane C, Fitzmaurice G, et al. (2009) The role of advice in medication administration errors in the pediatric ambulatory setting. Journal of patient safety 5: 168–175.
104. Miller GC, Britt HC, Valenti L (2006) Adverse drug events in general practice patients in Australia. Medical Journal of Australia 184: 321–324.
105. Mulroy R (1973) Iatrogenic disease in general practice: its incidence and effects. British Medical Journal 2: 407–410.
106. Saiz E, Boida J (1987) Adverse drug reactions in pediatric outpatients. Int J Clin Pharmacol Res 7: 169–172.
107. Woods CG, Rylance ME, Cullen RE, Rylance GW (1987) Adverse reactions to drugs in children. Br Med J 294: 869–870.
108. Lewinski D, Wind S, Belgardt C, Plate V, Behles C, et al. (2010) Prevalence and safety-relevance of drug-related problems in German community pharmacies. Pharmacoepidemiology & Drug Safety 19: 141–149.
109. Knopf H, Du Y (2010) Perceived adverse drug reactions among noninstitutionalized children and adolescents in Germany. British Journal of Clinical Pharmacology 70: 409–417.
110. Campbell WH, Johnson RE, Senft RA (1978) Adverse drug reactions in a disadvantaged population. J Community Health 3: 205–215.
111. Schumock GT, Thornton JP (1992) Focusing on the preventability of adverse drug reactions. Hosp Pharm 27: 538.
112. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279: 1200–1205.
113. Hartwig SC, Siegel J, Schneider PJ (1992) Preventability and severity assessment in reporting adverse drug reactions. Am J Hosp Pharm 49: 2229–2232.