Impact of Altitude on Cardiopulmonary and Right Ventricular Hemodynamics During Exercise

William K. Cornwell III, MD, MSCS
Department of Medicine—Cardiology
University of Colorado Anschutz Medical Campus
Aurora, CO

Clinical Translational Research Center
University of Colorado Anschutz Medical Campus
Aurora, CO

Andrew Lovering, PhD
Department of Human Physiology
University of Oregon
Eugene, OR

INTRODUCTION
More than 100 million individuals travel to high-altitude environments per year for work or pleasure.1–3 Reductions in the partial pressure of ambient oxygen initiate a cascade of physiologic responses, which place unique stressors on the cardiovascular and pulmonary systems. These stressors are accentuated by attempts to exercise. Information available on the effects of hypoxia on human physiology, both at rest and with exercise, is derived primarily from healthy individuals. Nevertheless, the prevalence of cardiovascular disease (~18 million), hypertension (~108 million), and heart failure (~6 million) in the United States is high, and many of these individuals, who have abnormal sea level (SL) hemodynamics, may experience much larger perturbations in cardiopulmonary and exercise hemodynamics than healthy populations. In this review, cardiac and pulmonary responses to hypoxia are emphasized, and exercise physiology at altitude is highlighted.

CARDIOVASCULAR, PULMONARY, AND RESPIRATORY RESPONSES TO HYPOXIA
The hemodynamic response to hypoxia is highly dynamic and evolves from acute (hours to days) to chronic (days to weeks) exposure. Acutely, the cardiovascular response to hypoxia is dominated by a marked increase in sympathetic nerve activity (SNA).4–8 Microneurography studies of healthy humans have demonstrated that SNA increased from SL values of 27.1 ± 2.9 bursts/min to 36.4 ± 2.6, 39.1 ± 3.1, and 40.2 ± 4.2 bursts/min at 4000, 5000, and 6000 m, respectively.7 This increase in sympathetic tone results from hypoxia-induced activation of peripheral chemoreceptors and acutely increases heart rate (HR), stroke volume (SV), cardiac output (Qc), and muscle blood flow compared with levels encountered at SL.6,10,11 As the body adapts to hypoxia over several days to weeks, Qc falls in response to a decline in SV.4–6,9 This reduction in SV occurs over the first several days of altitude exposure and stabilizes after ~1 week.6,10,11

Hypoxic pulmonary vasoconstriction leads to an acute increase in pulmonary arterial pressures (PAPs), which increase in proportion to altitude exposure.12–16 In a study of healthy mountaineers, pulmonary artery systolic pressure, determined by echocardiography, increased from 22 ± 3 mm Hg at SL to 33 ± 6 mm Hg after 4 hours of exposure to a simulated height of 4500 m (fraction of inspired oxygen [FIO₂] = 0.12).15

In another study involving invasive hemodynamic assessment by pulmonary arterial catheterization of healthy volunteers, mean PAP increased from 14 ± 1 mm Hg at a baseline altitude of 490 m to 22 ± 1 mm Hg after only 10 minutes of breathing hypoxic gas (FIO₂ = 0.12).13 At more extreme altitudes, greater increases in PAP have been observed.16 In Operation Everest 2, healthy volunteers experienced large increases in mean PAP from 15 ± 1 mm Hg to 34 ± 3 mm Hg over a 40-day simulated ascent to 8840 m (summit of Mount Everest), and pulmonary vascular resistance increased from 1.2 ± 0.1 to 4.3 ± 0.3 Woods units.16

Ventilation increases dramatically after hypoxic exposure. For example, among healthy males, resting minute ventilation increased from 7.1 ± 0.3 L/min at SL to 11.8 ± 0.5 L/min on the first day of exposure to 3110 m.17

This increase in ventilation continues to rise over time with ongoing hypoxic exposure and is relevant inasmuch as a significant amount of oxygenated blood may be diverted to supply respiratory muscles to support the increased work of breathing, thereby causing a respiratory “steal” phenomenon which contributes to reductions in exercise capacity at altitude.18,19

Correspondence: william.cornwell@ucdenver.edu
Disclosures: None to report.

DOI:10.21693/1933-088X-19.3.77

Advances in Pulmonary Hypertension Volume 19, Number 3, 2020 77
CARDIOPULMONARY HEMODYNAMICS OF EXERCISE AT HIGH ALTITUDE

One critical relationship in exercise physiology pertains to oxygen uptake (VO₂) and Qc, such that Qc increases approximately −6 L/min for every 1 L/min rise in VO₂. Despite exercise at high altitude, this relationship between Qc and VO₂ is preserved. However, maximal exercise capacity at altitude is lower than exercise at SL. Stroke volume at all levels of exercise is reduced compared with SL values. Exercise Qc may be higher than SL during rest and exercise at altitude, and based on this finding, it was concluded that RV function is preserved. Nevertheless, in placebo controlled studies using either sildenafil or bosentan, pulmonary vasodilator administration with normobaric hypoxia resulted in a reduced PAP and pulmonary vascular resistance and was associated with an improved maximal exercise workload (FIO₂ = 0.10(26)) and a 30% increase in VO₂Max (FIO₂ = 0.12(27)).

Additionally, there are data to suggest that RV function may decline over time in response to chronic (eg, weeks) exposure to hypoxia. Hypoxia-mediated augmentations in PAP lead to an increase in RV afterload. In a study of healthy individuals, RV end-diastolic volume increased from 52 ± 12 to 61 ± 25 mL at SL to 5085 m, respectively, which coincided with increases in systolic PAP (13.1 ± 5.9 versus 26.6 ± 10.8 mm Hg). In another study, TAPSE declined from 2.9 ± 0.3 to 2.3 ± 0.3 cm from SL to 5050 m. Finally, pharmacologic reductions of PAP by administration of sildenafil led to an increase in LV SV. In total, these data suggest that, as PAP (and hence, RV afterload) rises, RV contractility declines over time, and this reduction in RV function compromises LV SV. Further research incorporating invasive and comprehensive assessments of RV function—such as has recently been performed in patients with pulmonary arterial hypertension, heart failure with preserved ejection fraction, heart failure patients supported by LV assist devices, and even healthy individuals exercising at SL—is necessary to characterize the effects of acute and chronic altitude exposure on resting and exertional RV performance and how decrements in RV function may influence LV SV, Qc, and exercise capacity overall.

A minority of individuals experience subacute mountain sickness after several months’ exposure to hypoxia at altitude. Subacute mountain sickness in humans has been compared to Brisket disease in cattle living above 3000 m, which was reported well over 100 years ago and presents as edema in the neck and chest. In humans, this syndrome was described in soldiers who participated in vigorous exercises at altitudes of 5800–6700 m for up to 6 months. These individuals had evidence of RV failure, including generalized edema, ascites, and pericardial effusion. On echocardiography, these soldiers displayed evidence of RV enlargement, which normalized on repeat assessment several weeks after return to low altitude. Based on these types of observations, it has been proposed that this disease entity be termed “high-altitude right heart failure.”

CONCLUSIONS

Sojourns to mountainous locations lead to acute and chronic stressors on the cardiovascular and pulmonary systems. These stressors result primarily from reductions in ambient oxygen content, which acutely increases sympathetic tone through activation of peripheral chemoreceptors and increases PAP through hypoxic pulmonary vasoconstriction. Hypoxia-mediated increases in RV afterload (ie, PAP) may lead to RV enlargement and compromise resting and exertional RV performance. Overt RV failure appears to be quite rare and occurs after several months of exposure to altitudes above 5500 m. Compared to SL performance, exercise capacity declines linearly in proportion to the level of altitude.

References

1. Lo MY, Daniels JD, Levine BD, Burtscher M. Sleeping altitude and sudden cardiac death. Am Heart J. 2013;166(1):71–75.
2. Burtscher M, Bachmann O, Hatzi T, et al. Cardiopulmonary and metabolic responses in healthy elderly human during a 1-week hiking programme at high altitude. Eur J Appl Physiol. 2001;84(5):379–386.
3. Windsor JS, Firth PG, Grocott MP, Rodway GW and Montgomery HE. Mountain mortality: a review of deaths that occur during recreational activities in the mountains. Postgrad Med J. 2009;85(1004):316–321.
4. Levine BD. Going high with heart disease: the effect of high altitude exposure in older individuals and patients with coronary artery disease. High Alt Med Biol. 2015;16(2):89–96.
5. Baggish AL, Wolfe EE, Levine BD. Cardiovacular system. In: Swenson E, Bärtsch P, eds. High Altitude. New York, NY: Springer; 2014:103–139.
Canepa A, Chavez R, Hurtado A, Rotta A, Reeves JT, Groves BM, Sutton JR, et al. 
Bärtsch P, Gibbs JSR. Effect of altitude on cardiac function at extreme altitude. J Appl Physiol. 1999;86(2):531–539.

Pulmonary circulation at sea level and at high altitudes. Clin Cardiol. 1983;6(6):301–303.

Canepa A, Chavez R, Hurtado A, Rotta A, Velasquez T. Pulmonary circulation at sea level and at high altitudes. J Appl Physiol. 1996;81(3):283–336.

Maggio M, Molé C, Pierre S, et al. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation. 2001;103(16):2078–2083.

Kronenberg RS, Safar P, Lee J, et al. Pulmonary artery pressure and alveolar gas exchange in man during acclimatization to 12,470 ft. J Clin Invest. 1971;50(4):827–837.

Berger MM, Hesse C, Dehner C, et al. Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema. Am J Respir Crit Care Med. 2005;172(6):763–767.

Groves BM, Reeves JT, Sutton JR, et al. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol. 1987;63(2):521–530.

Basi CK, Selvamurthy W, Bhaumick G, Gautum RK, Sawhney RC. Respiratory changes during initial days of acclimatization to increasing altitudes. Aviat Space Environ Med. 1996;67(1):40–45.

Luks AM, Swenson ER. Travel to high altitude with pre-existing lung disease. Eur Respir J. 2007;29(4):770–792.

Dempsey JA, Harns CA, Ainsworth DM. Respiratory muscle perfusion and energetics during exercise. Med Sci Sports Exerc. 1996;28(9):1123–1128.

Rowell LB. Human Circulation, Regulation During Physical Stress. New York, NY: Oxford University Press; 1986.

Proctor DN, Beck KC, Shen PH, Eikhoff TJ, Halliwell JR, Joyner MJ. Influence of age and gender on cardiac output—VO_{2} relationsh