The use of statistical models in identifying skipjack tuna habitat characteristics during the Southeast Monsoon in the Bone Gulf, Indonesia

SAFRUDDIN*, RACHMAT HIDAYAT, ST. AJISAH FARHUM, MUKTI ZAINUDDIN
Study Program of Capture Fisheries, Faculty of Marine Science and Fisheries, Universitas Hasanuddin. Jl. Perintis Kemerdekaan Km.10, Makassar 90245, South Sulawesi, Indonesia. Tel./fax: +62-411-586025, *email: safruddin@fisheries.unhas.ac.id

Abstract. Safruddin, Hidayat R, Farhum SA, Zainuddin M. 2022. The use of statistical models in identifying skipjack tuna habitat characteristics during the Southeast Monsoon in the Bone Gulf, Indonesia. Biodiversitas 23: 2231-2237. Skipjack tuna (Katsuwonus pelamis) is the main fishery product in the Bone Gulf, Indonesia, since it has high economic value and is widely accepted by the market. The migration of skipjack tuna can be described by oceanographic dynamics, influenced by seasonal changes. This study aimed to explore the relationship between the oceanographic factors and the distribution and abundance of skipjack tuna obtained by pole and line fishing in the Bone Gulf, Indonesia. The research was conducted during the southeast monsoon season (April-September) from 2015 until 2018. Three oceanographic parameters were used to understand this relationship, i.e., Sea Surface Temperature (SST), Sea Surface Chlorophyll-a (SSC), and water depth. Generalized Additive Models (GAMs) and Generalized Linear Models (GLMs) used to predict the spatial pattern of the skipjack tuna showed that all considered parameters significant influenced the distribution of skipjack tuna in the study area. The fish are mostly distributed from coastal to offshore areas, ranging between 50 to 2000 meters and even wider. The concentration tends to be high within the range of 29.5 to 30.5°C of SST, 0.25 to 0.35 mg m⁻³ of SSC, and 500 to 1500 meters of water depth. The research also found that the skipjack tuna migration to the Bone Gulf may have followed the current water interruption during the southeast monsoon, for preferred warmer temperatures and lower primary productivity waters in the offshore areas. This factor may represent the optimal habitat of skipjack tuna during the period and can be the basis for determining the skipjack fishing schedule in the Bone Gulf.

Keywords: Fishing schedule, oceanographic factors, satellite data, skipjack tuna habitat, southeast monsoon season

INTRODUCTION

Skipjack tuna (Katsuwonus pelamis) is the most crucial target catch of marine fisheries in the world’s oceans (Galland et al. 2016). Large schools of adult skipjack tuna are often associated with juvenile yellowfin (Thunnus albacares) and bigeye tuna (Thunnus obesus) (IOTC 2020). Skipjack tuna is a highly migratory pelagic species inhabiting all tropical and subtropical waters (Artex-Arrate et al. 2020). However, they are found mainly in the tropical areas of the Atlantic, Indian, and Pacific Oceans, with the most incredible abundance seen near the equator. Since juvenile yellowfin and bigeye tuna often school with adult skipjack tuna, they are caught by purse seine and pole and line vessels whose main target is skipjack tuna (Hidayat et al. 2019; IOTC 2019; Safruddin et al. 2020).

The dynamics of oceanographic factors could affect the natural fluctuations in the distribution and abundance of skipjack tuna in the coastal and offshore areas (Mugo et al. 2010; Tseng et al. 2010; Wang et al. 2016). The distribution could also be influenced by the abundance of small pelagic fish such as anchovy in the same area (Safruddin et al. 2018). Therefore, there is an urgent need for information on the effects of oceanographic factors on skipjack tuna distribution (Andrade and Garcia 1999) to predict fishing ground potential zones for sustainable skipjack tuna fishery in the study area.

Statistical models such as generalized additive models (GAMs) and generalized linear models (GLMs) can be the most useful methods for determining the fish distribution in relation to oceanographic factors such as the sea surface temperature (SST), sea surface chlorophyll-a (SSC), and water depth (Safruddin 2013; Safruddin et al. 2018; Selao et al. 2019).

The Bone Gulf is one of the best skipjack tuna habitats in Indonesian waters (Zainuddin et al. 2020), with the peak fishing season lasting from early April until the end of September (southeast monsoon). Although skipjack tuna is an iconic species in the Bone Gulf, its local availability is a key factor for the pole and line fishery economy. However, there is a lack of information about its distribution, both spatially and temporally. Hence, this study is an attempt to investigate the availability of skipjack tuna caught using pole and line fishing gear under various oceanographic conditions and to discuss the oceanographic elements...
impacting skipjack tuna distribution by applying statistical models.

MATERIALS AND METHODS

Study area

The study area was located in the Bone Gulf (3°-5°S) and (120°-122°E), South Sulawesi, Indonesia (Figure 1). The field surveys used the pole and line method (local commercial fisheries) to investigate the fishing ground positions and the number of skipjack tuna catches during the study. Oceanography and bathymetric observations (satellite imagery data) were conducted monthly during the southeast monsoon (April-September) from 2015 until 2018. This study only focuses on fishing activities in the southeast monsoon, which is due to the peak season for skipjack fishing in the Bone Gulf takes place in the southeast monsoon.

Procedures

Data collection

In-situ data were obtained through a scientific survey at the fishing base at Murante fish landing site, Luwu district. We gathered the fishery data from 508 fishing ground positions. A global positioning system (GPS) was used to determine fishing ground coordinates (latitude and longitude). The in-situ field data consisted of the fishing position and catch per unit efforts (CPUEs). The oceanographic parameters (SST, and SSC) were obtained from satellite oceanography imagery data of high-resolution Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS), with a spatial resolution of 4 km, from 2015 until 2018 (April-September). The water depth data was gained from the ETOPO1 (Amante and Eakins 2009) satellite database. In this study, we used monthly temporal resolution. Furthermore, the SST and SSC averaged during southeast monsoon were mapped as shown in Figures 2 and 3, respectively.

Data analysis

To determine the effect of oceanographic parameters on horizontal distributions of skipjack tuna in the sea, statistical models (Hastie and Tibshirani 1990) were used for the CPUE and oceanographic datasets. The models, such as GAMs and GLMs, were created using the MGCV package in R-studio (Wood 2006) to predict the spatial patterns of skipjack tuna. The response variable used skipjack tuna catches (CPUE/fishing trip), and the predictor used oceanographic parameters (SST, SSC, and depth).

The hypothesized interactions between oceanographic parameters and skipjack tuna distribution are most likely non-linear. GAM was employed as an experimental technique to determine the forms of the associations. The connections between the skipjack distribution and each predictor (SST, SSC, and depth) were also determined. In a GLM, proper functions were utilized to identify these forms in the linear model, as indicated in Equations (1) and (2) (Safruddin 2013).

\[
g(μi) = α0 + s1 (SST) + s2 (SSC) + s3 (depth) + ε \quad \text{(GAM model)}
\]

\[
g(μi) = β0 + β1 (SST) + β2 (SSC) + β3 (depth) + ε \quad \text{(GLM model)}
\]

Where, \(g \) is the link function, \(μ \) is the expected value of the dependent variable for the presence of skipjack tuna (CPUE), \(α0 \) and \(β0 \) are the respective model’s constant, \(s_n \) is the predictor variable’s smoothing function, \(ε \) is a random error term, and \(β_n \) is the vector of model coefficients.

The Gaussian family with identical link functions was chosen since the skipjack tuna CPUE has a continuous distribution. Models were created from the ground up, with only one independent component such as SST, and predictor components were added later. Model selection was influenced by the predictor’s significance, Akaike Information Criterion (AIC) reduction, and the deviance explained value. The best model was chosen from a group of seven to build the GAMs/GLMs. The GAMs/GLMs model was utilized to compare the results of the prediction models using a statistical criterion. They were also used to explain all observations with multiple variables, including inter-variable correlations (Safruddin 2013).
RESULTS AND DISCUSSION

Skipjack tuna fishing ground

Skipjack tuna fishing grounds were mapped on latitude and longitude scales, with SST, SSC, and depth overlay (Figures 2-4). CPUE marks the position along the overlay in Figures 2-4, and each school is designated as a single point. Map contours with high SST, SSC, and depth, or the opposite, were also discovered.

The lowest SST and the highest SSC occur every year during the southeast monsoon period. The reverse happens in the northwest monsoon season, skipjack tuna was least abundant in the lower SST area (Figure 2) due to changes in water temperature caused by water currents from the Flores Sea entrance to the Bone Gulf. This could be a strategy in biological processes related to fish growth under changing oceanographic conditions. Skipjack tuna stock is positively correlated with oceanographic factors. It is distributed mainly in nearshore areas in the water depth range of 50 to 2000 m (Figure 4). The horizontal profiles of the SST and SSC structures for the 2015-2018 southeast monsoon season (Figures 2 and 3) are warmer near the coast than offshore. Skipjack schools occupy offshore areas where they prefer relatively higher SST and lower SSC (Figures 2 and 3).

The environmental conditions of skipjack tuna fishing grounds were used for four monthly datasets (April-August). As a result, the preference range suggested a possible association between all examined factors. For example, Figure 2 shows that skipjack tuna were found in temperatures ranging from 29.5 to 31.05°C. Likewise, the skipjack tuna schools concentrated in the narrow ranges of 0.15-1.00 mg.m⁻³ with respect to SSC (Figure 3). As for the depth of water, skipjack is found in waters with a depth of 50-2000 meters (Figure 4).

Effects of oceanographic factors on skipjack tuna distribution

The oceanographic conditions of the skipjack tuna schooling coordinates were employed in the current study for displaying the area and further analysis. Tables 1 and 2 show the models built using GAMs/GLMs on the skipjack
tuna distribution scenarios utilizing predictor parameters (SST, SSC, and depth). Tables 1 and 2 present the results for each of the seven GAM and GLM models. Each model’s predictor component(s) significantly affected the skipjack tuna distribution in p<0.05 reference levels, except depth as predictor two and three (Table 1). However, only SST substantially contributed to a single model predictor, two model predictors, and three model predictors in GLMs (Table 2). For the final model combination of SST, SSC, and depth, the cumulative deviance explained (CDE) was 21.9% (GAMs) and 12.830% (GLMs), respectively. Thus, Tables 1 and 2 suggest that the influence of oceanographic conditions may explain the fluctuation of skipjack tuna abundance distribution. Additionally, GAMs with higher CDE were well-suited to characterize the influence of oceanographic conditions on skipjack tuna distribution and abundance.

Tables 1 and 2 show the results of GAMs and GLMs, respectively. For both statistical models, the SST had the largest deviance explained among the single variable models. According to AIC (6048.045) and CDE (21.9%), and as the best model predictor of GAM, the combination of SST and SSC predicted relatively more significant variability in skipjack tuna catches. The AIC values for the three-parameter models were low (6049.831) and the most significant deviation explained was 21.9%. SST was the sole predictor model with the lowest AIC (6083.072) and the maximum CDE on the GLMs model (12.830%). All results produced by combining predictor factors at various levels revealed an increase or decrease in CDE and a higher AIC value of variation.

GAMs models were more effective than GLMs in understanding the effect of oceanographic factors on skipjack tuna distribution and abundance, as shown in Tables 1 and 2. The result of the GAM plots shows the impact of each predictor on schooling density of skipjack tuna as shown in Figures 5. The observed data points are represented by the rug plot on the horizontal axis, while the thin line shows the fitted function, and the grey shading represents the 95% confidence interval (Safruddin 2013).

Table 1. Oceanographic factor influences on the skipjack tuna distribution (n: 508), according to the GAMs models. Also included are the significant factor, AIC value, and CDE.

Model	Oceanographic factor	P-value	AIC	CDE (%)
SST	SST	<0.001	6054.183	20.400
SSC	SSC	<0.001	6121.052	8.400
Depth	Depth	<0.001	6132.647	4.970
SST + SSC	SST	<0.001	6048.045	21.900
	SSC	<0.001	6121.052	8.400
	Depth	0.296		
SST + Depth	SST	<0.001	6067.725	17.300
	Depth	0.236		
SSC + Depth	SSC	<0.001	6121.672	8.350
	Depth	0.832		
SST + SSC + Depth	SST	<0.001	6049.831	21.900
	SSC	<0.001	6121.052	8.400
	Depth	0.236		

Note: Sig. codes: 0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’
Table 2. Oceanographic factor influences on the skipjack tuna distribution (n: 508), according to the GLMs models. Also included are the significant factor, AIC value, and CDE.

Model	Oceanographic factor	P-value	AIC	CDE (%)
SST	SST	<0.001 ***	6083.072	12.960
SSC	SSC	0.894	6154.549	0.194
Depth	Depth	0.176	6152.724	0.165
SST + SSC	SST	<0.001 ***	6084.600	12.870
	SSC	0.494		
SST + Depth	SST	<0.001 ***	6084.987	12.800
	Depth	0.772		
SSC + Depth	SSC	0.385	6153.966	0.117
	Depth	0.109		
SST + SSC + Depth	SST	<0.001 ***	6085.819	12.830
	SSC	0.282		
	Depth	0.379		

Note: Sig. codes: 0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’

Figure 5. Skipjack tuna distribution responses of oceanographic factors: (A) SST; (B) SSC; (C) depth; and (D) best model predictor. The shaded area is the standard error indicating the 95% confidence interval. The stack of blue vertical lines on the x-axis indicates the density or distribution of the test parameter data. The y-axis is the partial effect of the variable, while the 3D graph depicts a combination model between significant SST and SSC to be the best predictive model.

Figure 5 describes the impact of oceanographic conditions on skipjack tuna distribution. Around 29.5-30.5°C, the SST (Figure 5a) had a noticeable positive effect on skipjack tuna distribution. The confidence intervals are broader because there are fewer data points at 30.5-31.0°C. In the SSC plot (Figure 5b), there was a beneficial influence on school distribution in the SSC ranges of 0.25-0.35 mgm⁻³. A consistent influence on skipjack tuna distribution was seen at a depth of 500-1500 m (Figure 5c). The study also found that models combining SST and SSC produced the most significant model prediction, with the lowest AIC and highest CDE (Figure 5d). Skipjack tuna distribution in the Northern Pacific Ocean near Japan waters had SST and SSC optimal values of 20.5-26°C and 0.3-0.37 mgm⁻³, respectively, according to Mugo et al. (2010). The findings of this study corroborated those of
Zainuddin et al. (2017), who discovered that the distribution of skipjack tuna in the coastal area was primarily around 50 m depth.

Discussion

Oceanographic conditions such as the SST, which have the most significant impact on the growth stages of fish and their distribution (Yuniarti et al. 2013; Syah et al. 2020), play a main role in the natural oscillations of skipjack tuna stocks. As a result, SST is a great indicator for the fishing ground of skipjack tuna to have been used by fishermen and researchers for decades. Furthermore, changes in oceanic (physical and biological) parameters may significantly impact migration patterns and fish growth (Safruddin et al. 2018).

Since the SST in the research region may vary, measurements should be obtained frequently. More samples may be required to accomplish this goal. Therefore, one of the objectives of this research was to determine how oceanographic data can be used in research (e.g., correlation between skipjack tuna distribution and abundance). Temperature fluctuations are often linked to the biological richness (Iskandar et al. 2017; Takarina et al. 2019), such as anchovy distribution and abundance as the prey for skipjack tuna, and they have an important influence on fish physiology (Kunarso et al. 2011; Olson et al. 2016; Duffy et al. 2017).

Satellite remote sensing imagery directly provides horizontal and large-area information on oceanographic conditions, which may be utilized to understand oceanographic processes in the surface water better. The combination of satellite data with acoustic technology will, of course, increase the accuracy of the data. For example, CTD and satellite data are combined when conducting data observations (Safruddin 2013). As a result, four-year datasets of oceanographic conditions (SST, SSC, and water depth) on skipjack tuna position were employed, with scattered plots and optimal ranges indicating a possible association among all variables observed, as shown in Figure 5.

Skipjack tuna can be found in coastal areas, sometimes in large numbers, especially in upwelling areas (Sari et al. 2018; Wijaya et al. 2020). This study details the interactions between skipjack tuna and its oceanographic variables taking into account temporal and spatial scale aspects to understand the various processes involved and how they can be used to model dynamics and estimate their abundance (Prista et al. 2011; Selvaraj et al. 2020). The catch data used is the distribution of catches in Bone Bay. Although spatially, several fishing points are located in almost the same area, the dynamics of different oceanographic parameters each year make the description of the range of SST and SSC at each skipjack fishing point experience different.

Oceanographic conditions are essential variables to assess the abundance of fish in the waters, especially skipjack tuna, representing the original habitats. The distribution of skipjack tuna observed during the daytime is closely related to the dynamics of oceanographic variables and fishing operations in the Bone Gulf. As shown in Tables 1 and 2 and Figure 5, the effect of oceanographic parameters on the abundance and distribution of skipjack tuna is also a reference for water depths. The p-value, AIC, and CDE can all be used to assess the impact of changing oceanographic conditions on skipjack tuna CPUE. As a result, oceanographic variables connected to skipjack tuna distribution are critical for understanding skipjack tuna habitat preferences.

Oceanographic phenomena in the waters, such as frontal oceanic zones, eddies, and upwelling areas, often occur with different characteristics as seen in the Bone Gulf and the Flores Sea (Zainuddin et al. 2017, 2019; Hidayat et al. 2019b). This event makes the waters very dynamic and affects the horizontal distribution of fish in the Bone Gulf. The dynamic oceanographic parameters in this area produce highly productive habitats and serve as foraging grounds for various commercially and ecologically important species such as anchovies and skipjack tuna (Safruddin et al. 2018; Hidayat et al. 2019b).

The results of this study indicate that the SST tolerance value for skipjack tuna is in the range of 29.5-30.5°C and in the range of 0.25-0.35 mmg m⁻³ for SSC parameters (Figures 5a and 5b). However, in addition to SST and SSC, Indonesian Throughflow (ITF) and Asian monsoons also influence the location of the optimum habitat for skipjack tuna (Gordon 2005). Changes in the value of SST in the waters are heavily influenced by the seasonal cycle, in contrast to the SSC, which is not influenced much by the seasonal cycle. Therefore, the migration of skipjack tuna in the northern waters of the Bone Gulf is thought to have followed the mass movement of water in the southeast monsoon, occupying relatively warm areas in offshore waters.

Based on the lowest AIC value and the highest CDE, the GAM nonlinear model is the best statistical model to understand the effect of oceanographic parameters on the distribution and abundance of skipjack tuna. This study is also supported by previous findings in the Makassar Strait, which reported that the GAM model effectively assessed the effect of oceanographic parameters on skipjack tuna (Hidayat et al. 2019a) and small pelagic fish such as anchovies in the Bone Gulf (Safruddin et al. 2018).

This study concludes that the GAM statistical model has succeeded in explaining the effect of oceanographic parameters on the distribution of skipjack tuna in the Bone Gulf. This study also shows the vital role of oceanographic parameters in understanding the habitat of skipjack tuna related to its abundance and distribution in the waters. The distribution of skipjack tuna in the ocean shows a strong relationship with several parameters such as the SST, SSC, and water depth. Suitable or optimal conditions for skipjack tuna represented skipjack fishing areas during the study in the southeast monsoon period. Oceanographic parameters associated with fish catches correspond to the spatial and temporal distribution of skipjack tuna and have become a hot topic of discussion worldwide (Andrade 2003; Mugo et al. 2010; Zainuddin et al. 2019). From the results of this study, it can be suggested that management decisions to increase fishery yields need to consider oceanographic conditions and characteristics in the waters.
ACKNOWLEDGMENTS

We thank the Ministry of Education, Culture, Research, and Technology and Hasanuddin University, Makassar, Indonesia for their outstanding contribution to support this research through PTUPT research grants (2017-2019) and PDUPT research grants in 2020 and 2021. We also thank all parties involved in this research.

REFERENCES

Amante C, Eakins BW. 2009. ETOP01 Global Relief Model converted to PanMap layer format. NOAA-National Geophysical Data Center. PANGAEA. DOI: 10.1594/PANGAEA.769615.

Andrade HA. 2003. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south-western Atlantic. Fish Oceanogr. 12 (1): 10-18. DOI: 10.1046/j.1365-2419.2003.00220.x.

Andrade HA, Garcia CAE. 1999. Skipjack tuna fishery in relation to sea surface temperature off the southern Brazilian coast. Fish Oceanogr 8 (4): 245-254. DOI: 10.1046/j.1365-2419.1999.00107.x.

Arteixe-Arrate I, Fraile I, Marsac F, Farley JH, Rodriguez-Ezeleta N, Davies CR, Clear NP, Grewe F, Murua H. 2020. A review of the fisheries, life history and stock structure of tropical tuna (skipjack Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye Thunnus obesus) in the Indian Ocean. Adv Mar Biol 88: 39-89. DOI: 10.1016/fs.2020.09.002.

Duffy LM, Kuhnert PM, Pethybridge HR, Young JW, Olson RJ, Logan AM, Rogers A, Ammodytes personatus in the eastern Indian Ocean. Indones J Fish Oceanogr 19 (4): 245-254. DOI: 10.1046/j.1365-2419.1999.00107.x.

Galland G, Rogers A, Nickson A. 2016. Netting billions: A global valuation of tuna. Pew Charitable Trust 1-22.

Gordon AL, 2005. Oceanography of the Indonesia seas and their throughflow. Oceanography 18 (4): 14-27. DOI: 10.5670/oceanog.2005.01.

Hastie T, Tibshirani R. 1990. Generalized Additive Models. Chapman and Hall, London.

Hidayat R, Zainuddin M, Safruddin S, Nurdin M, Rodriguez MA. 2015. Spatio-temporal distribution of yellowfin tuna based on sea surface temperature and chlorophyll a in the gulf of Tomani, Sulawesi, Indonesia. Biodiversitas 19 (3): 743-751. DOI: 10.1594/PANGAEA.769615.

Syah AF, Gaol JL, Zainuddin M, Aprilya NR, Berlianty D, Mahabroh D. 2020. Detection of potential fishing zones of Bigeye tuna (Thunnus obesus) at profundity of 155 M in the eastern Indian Ocean. Indones J Geogr 52 (1): 29-35. DOI: 10.22146/ijg.43708.

Takarina ND, Nurhidayani Y, Wardhana W. 2019. Relationship between environmental parameters and the Plankton community of the Batutuhde fishing grounds, Pandeglang, Banten, Indonesia. Biodiversitas 20 (1): 171-180. DOI: 10.1594/biodiv/1d20120.

Tseng CT, Sun CL, Yeh SZ, Chen SC, Su WC. 2010. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data. Int J Remote Sens 31: 4543-4558. DOI: 10.1080/014311610.2010.485220.

Wang J, Chen X, Chen Y. 2016. Spatio-temporal distribution of skipjack in relation to oceanographic conditions in the west-central Pacific Ocean. Int J Remote Sens 37 (24): 6149-6164. DOI: 10.1080/01431161.2016.1250509.

Wijaya A, Zakyah U, Sambah AB, Setyohadi D. 2020. Spatio-temporal variability of temperature and chlorophyll-a concentration of sea surface in Bali Strait, Indonesia. Biodiversitas 21 (11): 5283-5290. DOI: 10.13057/biodiv/211132.

Wood SN. 2006. Generalized Additive Models: An Introduction with R. Chapman & Hall, London.

Yuniarti A, Maslukah L, Helmi M. 2013. Studi variabilitas suhu permukaan laut berdasarkan citra satelit aqu MODIS tahun 2007-2011 di Perairan Selat Bali. J Oceanogr 2 (4): 416-421. [Indonesian]

Zainuddin M, Farhan SA, Safruddin S, Selarnat MB, Surodman S, Nurdin N, Syamsuddin M, Ridwan M, Saitoh SL. 2017. Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bones-Flores Sea, southwestern Coral Triangle tuna, Indonesia. Plos One 12 (10): e0185601. DOI: 10.1371/journal.pone.0185601.

Zainuddin M, Amri MI, Bone IA, Farhan SA, Hidayat R, Putri ARS, Mihara A, Safruddin, Ridwan M. 2017. Mapping distribution patterns of skipjack tuna during January-May in the Makassar Strait. IOP Conf Ser Earth Environ Sci 370 (1): 012004. DOI: 10.1088/1755-1315/370/1/012004.

Zainuddin M, Hidayat R, Putri ARS, Ridwan M, Safruddin, Farhan SA. 2020. Seasonal changes of potential fishing ground formation for Skipjack Tuna in the Bone Gulf, Indonesia. IOP Conf Ser Earth Environ Sci 564: 012083. DOI: 10.1088/1755-1315/564/1/012083.