Coloring the squares of graphs whose maximum average degrees are less than 4

Seog-Jin Kim
Department of Mathematics Education
Konkuk University
Seoul, Korea
skim12@konkuk.ac.kr

Boram Park*
Department of Mathematics
Ajou University
Suwon, Korea
borampark@ajou.ac.kr

June 16, 2015

Abstract

The square G^2 of a graph G is the graph defined on $V(G)$ such that two vertices u and v are adjacent in G^2 if the distance between u and v in G is at most 2. The maximum average degree of G, $\text{mad}(G)$, is the maximum among the average degrees of the subgraphs of G.

It is known in [2] that there is no constant C such that every graph G with $\text{mad}(G) < 4$ has $\chi(G^2) \leq \Delta(G) + C$. Charpentier [5] conjectured that there exists an integer D such that every graph G with $\Delta(G) \geq D$ and $\text{mad}(G) < 4$ has $\chi(G^2) \leq 2\Delta(G)$. Recent result in [1] implies that $\chi(G^2) \leq 2\Delta(G)$ if $\text{mad}(G) < 4 - \frac{1}{c}$ with $\Delta(G) \geq 40c - 16$.

In this paper, we show for $c \geq 2$, if $\text{mad}(G) < 4 - \frac{1}{c}$ and $\Delta(G) \geq 14c - 7$, then $\chi(G^2) \leq 2\Delta(G)$, which improves the result in [1]. We also show that for every integer D, there is a graph G with $\Delta(G) \geq D$ such that $\text{mad}(G) < 4$ and $\chi(G^2) \geq 2\Delta(G) + 2$, which disproves Charpentier’s conjecture. In addition, we give counterexamples to Charpentier’s another conjecture in [5], stating that for every integer $k \geq 3$, there is an integer D_k such that every graph G with $\text{mad}(G) < 2k$ and $\Delta(G) \geq D_k$ has $\chi(G^2) \leq k\Delta(G) - k$.

1 Introduction

A proper k-coloring $\phi : V(G) \rightarrow \{1, 2, \ldots, k\}$ of a graph G is an assignment of colors to the vertices of G so that any two adjacent vertices receive distinct colors. The chromatic number $\chi(G)$ of a graph G is the least k such that there exists a proper k-coloring of G. A list assignment on G is a function L that assigns each vertex v a set $L(v)$ which is a list of available colors at v. A graph G is said to be k-choosable if for any list assignment L such that $|L(v)| \geq k$ for every vertex v, there exists a proper coloring ϕ such that $\phi(v) \in L(v)$ for every $v \in V(G)$. The list chromatic number $\chi_L(G)$ of a graph G is the least k such that G is k-choosable.

The square G^2 of a graph G is the graph defined on $V(G)$ such that two vertices u and v are adjacent in G^2 if the distance between u and v in G is at most 2. The maximum average

*Corresponding author: borampark@ajou.ac.kr
degree of G, $\text{mad}(G)$, is the maximum among the average degrees of the subgraphs of G. That is, $\text{mad}(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)|}$.

The study of $\chi(G^2)$ was initiated in [3], and has been actively studied. From the fact that $\chi(G^2) \geq \Delta(G) + 1$ for every graph G, a naturally arising problem is to find graphs G which satisfy $\chi(G^2) = \Delta(G) + 1$. A lot of research has been done to find sufficient conditions in terms of girth or $\text{mad}(G)$ to be $\chi(G^2) = \Delta(G) + 1$. Also, given a constant C, determining graphs G which satisfy $\chi(G^2) \leq \Delta(G) + C$ is also an interesting research topic. See [1] [3] [8] for more information.

Bonamy, Lévêque, Pinlou [1] showed that $\chi_\ell(G^2) \leq \Delta(G) + 2$ if $\text{mad}(G) < 3$ and $\Delta(G) \geq 17$. However, it was reported in [2] that there is no constant C such that every graph G with $\text{mad}(G) < 4$ has $\chi(G^2) \leq \Delta(G) + C$. On the other hand, Bonamy, Lévêque, Pinlou [2] showed the following result.

Theorem 1.1 ([2]). There exists a function $h(\epsilon)$ such that every graph G with $\text{mad}(G) < 4 - \epsilon$ satisfies $\chi_\ell(G^2) \leq \Delta(G) + h(\epsilon)$, where $h(\epsilon) \sim \frac{40}{\epsilon}$ as $\epsilon \to 0$.

It is known in [2] that for arbitrarily large maximum degree, there exists a graph G such that $\text{mad}(G) < 4$ and $\chi(G^2) \geq \frac{3\Delta(G)}{2}$. On the other hand, Charpentier [5] proposed the following conjectures.

Conjecture 1.2 ([5]). There exists an integer D such that every graph G with $\Delta(G) \geq D$ and $\text{mad}(G) < 4$ has $\chi(G^2) \leq 2\Delta(G)$.

Conjecture 1.3 ([5]). For each integer $k \geq 3$, there exists an integer D_k such that every graph G with $\Delta(G) \geq D_k$ and $\text{mad}(G) < 2k$ has $\chi(G^2) \leq k\Delta(G) - k$.

It was mentioned in [5] that Conjecture 1.2 and Conjecture 1.3 are best possible, if they are true. In this paper, we disprove Conjecture 1.2 by showing that for any positive integer D, there is a graph G with $\Delta(G) \geq D$ and $\text{mad}(G) < 4$ such that $\chi(G^2) \geq 2\Delta(G) + 2$. Precisely, for arbitrarily positive integer $d \geq 2$, there exists a graph G_d with $\Delta(G) = d + 1$ such that $\text{mad}(G) = 4 - \frac{10}{d+1}$ and the maximum clique size of G_d^2 is $2\Delta(G_d) + 2$. It means that there is no constant D_0 such that every graph G with $\text{mad}(G) < 4$ and $\Delta(G) \geq D_0$ satisfies that $\chi(G^2) \leq 2\Delta(G)$. In addition, we give counterexamples to Conjecture 1.3 by using similar idea.

As a modification of Conjecture 1.2, we are interested in finding the optimal value $h(c)$ such that $\chi(G^2) \leq 2\Delta(G)$ (or $\chi_\ell(G^2) \leq 2\Delta(G)$) for every graph G with $\text{mad}(G) < 4 - \frac{1}{c}$ and $\Delta(G) \geq h(c)$. Our main theorem of this paper is the following, which shows that $h(c) \leq 14c - 7$.

Theorem 1.4. Let c be an integer such that $c \geq 2$. If a graph G satisfies $\text{mad}(G) < 4 - \frac{1}{c}$ and $\Delta(G) \geq 14c - 7$, then $\chi(G^2) \leq 2\Delta(G)$.

Note that Theorem 1.1 implies that if G is a graph with $\text{mad}(G) < 4 - \frac{1}{c}$ and $\Delta(G) \geq 40c - 16$, then $\chi_\ell(G^2) \leq 2\Delta(G)$. Thus Theorem 1.3 gives a better bound on $h(c)$ than Theorem 1.1 when $14c - 7 \leq \Delta(G) \leq 40c - 17$.

Next, we will show that $h(c) \geq 2c + 2$. Thus the current bound on $h(c)$ is $2c + 2 \leq h(c) \leq 14c - 7$. Hence it would be interesting to solve the following problem.
Problem 1.5. Given a positive integer \(c \geq 1 \), there is a function \(h(c) \) such that \(\chi(G^2) \leq 2\Delta(G) \) (or \(\chi(G^2) \leq 2\Delta(G) \)) whenever a graph \(G \) satisfies \(mad(G) < 4 - \frac{1}{c} \) and \(\Delta(G) \geq h(c) \). What is the optimal value of \(h(c) \)? Or, reduce the gap in \(2c + 2 \leq h(c) \leq 14c - 7 \).

Remark 1.6. Yancey [10] showed that for \(t \geq 3 \), if \(G \) is a graph with \(mad(G) < 4 - \frac{4}{t+1} - \epsilon \) for some \(\frac{4}{t+1} > \epsilon > 0 \), then \(\chi(G^2) \leq \max\{\Delta(G) + t, 16t^2c^{-2}\} \). We can convert \(mad(G) < 4 - \frac{4}{t+1} - \epsilon \) into \(mad(G) < 4 - \frac{1}{c} \) form by setting \(\frac{4}{t+1} + \epsilon = \frac{1}{c} \). Then from \(0 < \epsilon < \frac{4}{t(t+1)} < 1 \), we have that \(\epsilon < \frac{1-c}{c} \times \frac{4-c}{4+c+\epsilon-1} \), and consequently \(0 < \epsilon < \frac{1}{c(4c+1)} < 1 \). Thus \(0 < 1 - \epsilon \epsilon < 1 \), and consequently, we have \(t = \frac{4c}{1-\epsilon} - 1 > 4c - 1 \). Hence, when \(16t^2\epsilon^{-2} \leq 2\Delta(G) \), we have

\[
\Delta(G) \geq 8t^2\epsilon^{-2} > 8(4c - 1)^2c^2(4c + 1)^2
\]

since \(\epsilon < \frac{1}{c(4c+1)} \). Thus Yancey’s result implies that \(\chi(G^2) \leq 2\Delta(G) \) only when \(mad(G) < 4 - \frac{1}{c} \) and \(\Delta(G) \geq t_0c^6 \) for some constant \(t_0 \). But, note that in our result, the lower bound on \(\Delta(G) \) is linear as \(\Delta(G) \geq 14c - 7 \).

This paper is organized as follows. In Section 2 we will give a construction which is a counterexample to Conjecture 1.2 and in Section 3 we will prove Theorem 1.4 using discharging method. In Section 4, we modify the construction in Section 2 slightly, and show that for any positive integer \(c \), there exists a graph \(G \) such that \(mad(G) < 4 - \frac{1}{c} \), \(\Delta(G) = 2c + 1 \), and \(\chi(G^2) = 2\Delta(G) + 1 \), which implies that \(h(c) \geq 2c + 2 \). And next, in Appendix, we will give counterexamples to Conjecture 1.3.

2 Construction

We will show that for any positive integer \(n \geq 2 \), there is a graph \(G \) with \(\Delta(G) = n + 1 \) such that \(mad(G) < 4 \), and \(\chi(G^2) > 2\Delta(G) \). Let \([n] = \{1, \ldots, n\} \).

Construction 2.1. Let \(n \geq 2 \) be a positive integer. Let \(S = \{u_1, u_2, \ldots, u_n\} \), \(T = \{v_1, \ldots, v_n\} \), and \(X = \{x_{ij} \mid (i, j) \in [n] \times [n]\} \). We define a graph \(G_n \) by

\[
\begin{align*}
V(G_n) &= \{u, v\} \cup S \cup T \cup X \\
E(G_n) &= \{uv\} \cup \{uu_i \mid u_i \in S\} \cup \{vv_i \mid v_i \in T\} \\
&\quad \cup \left(\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \{u_ix_{ij}, v_jx_{ij}\} \right) \cup \left(\bigcup_{i=2}^{n} \{x_{11}x_{ii}\} \right) \cup \left(\bigcup_{i=2}^{n} \{x_{12}x_{i(i+1)}\} \right),
\end{align*}
\]

where \(x_{n(n+1)} = x_{n1} \). See Figure 1 for an illustration.

We have the following simple observations.

- For \(y \in \{u, v\} \cup S \cup T \), \(d(y) = n + 1 \).
Figure 1: Construction of G_n

- For $x_{ij} \in X$,

$$d(x_{ij}) = \begin{cases}
 n + 1 & \text{if } (i, j) = (1, 1), \text{ or } (1, 2) \\
 3 & \text{if } j = i + r \text{ for } r \in \{0, 1\} \text{ and } i \geq 2, \\
 2 & \text{otherwise},
\end{cases}$$

where $x_{n(n+1)} = x_{n1}$.

Therefore $\Delta(G_n) = n + 1$ and $\{u, v, x_{11}, x_{12}\} \cup S \cup T$ is a clique in G_n^2 with $2n + 4$ vertices. Thus $\chi(G_n^2) \geq 2\Delta(G_n) + 2$.

From now on, we denote G_n by G for simplicity. Next, we will show that $mad(G) < 4$. Denote the number of edges of the subgraph of G induced by A by $||A||$, that is, $|E(G[A])| = ||A||$. Define a potential function $\rho_G: 2^{V(G)} \rightarrow \mathbb{Z}$ by for $A \subset V(G)$,

$$\rho_G(A) = 2|A| - ||A||.$$

Note that $\rho_G(A) \geq 1$ for every subset $A \subset V(G)$ is equivalent to $mad(G) < 4$.

We will show that $\rho_G(A) \geq 1$ for all $A \subset V(G)$. A vertex of degree k is called a k-vertex, and a vertex of degree at least k (at most k) is called a k^+-vertex (k^--vertex).

Claim 2.2. For all $A \subset V(G)$, $\rho_G(A) \geq 1$.

Proof. Suppose that there is $A \subset V(G)$ such that $\rho_G(A) \leq 0$. Let A be a smallest subset of $V(G)$ among all subsets of $V(G)$ with minimum value $\rho_G(A)$. That is, A is a minimal counterexample to Claim 2.2.

If $G[A]$ contains a 2^--vertex v then $\rho_G(A \setminus \{v\}) \leq \rho_G(A)$, which is a contradiction to the minimality of $\rho_G(A)$ or the minimality of $|A|$. Thus $G[A]$ does not have a 2^--vertex.

Let X_3 be the set of 3^+-vertices in X. Then every vertex in $X \setminus X_3$ does not belong to A, since each vertex in $X \setminus X_3$ is a 2-vertex.
If \(a \notin A \) and \(a \) has at least three neighbors in \(A \), then \(\rho_G(A \cup \{a\}) < \rho_G(A) \), a contradiction to the minimality of \(\rho_G(A) \). Thus every vertex not in \(A \) has at most two neighbors in \(A \).

Next, we will show that \(\{u, v\} \subset A \). If \(|A \cap S| \leq 1 \), then any vertex in \(A \cap T \) is a 2\(^{-}\) vertex of \(G[A] \), a contradiction. Thus \(|A \cap S| \geq 2 \). Suppose that \(|A \cap S| = 2 \). If \(v \notin A \), then \(A \cap T \) has a 2-vertex of \(G[A] \), which is forbidden. Thus \(v \in A \), and then \(u \) is adjacent to three vertices of \(A \), and so \(u \in A \). Therefore \(\{u, v\} \subset A \). Similarly, if \(|A \cap T| = 2 \), then \(\{v, u\} \subset A \). On the other hand, if \(|A \cap S| \geq 3 \) and \(|A \cap T| \geq 3 \), then \(\{v, u\} \in A \), since every vertex not in \(A \) has at most two neighbors in \(A \). Therefore, we can conclude that \(\{u, v\} \subset A \).

Let \(X'_3 \) be the set of 3-vertices of \(G \) in \(X \cap A \). That is, \(X'_3 = (X_3 \cap A) \setminus \{x_{11}, x_{12}\} \). As we noted that every vertex in \(X \setminus X_3 \) does not belong to \(A \), in fact, \(X'_3 = (X \cap A) \setminus \{x_{11}, x_{12}\} \). Note that every vertex in \(X'_3 \) is also a 3-vertex of \(G[A] \). Since any two vertices in \(X'_3 \) are not adjacent in \(G \), we have

\[
\rho_G(A \setminus X'_3) = 2|A \setminus X'_3| - |A \setminus X'_3| = 2|A| - 2|X'_3| - |A| + 3|X'_3| = \rho_G(A) + |X'_3|.
\]

Since \(\rho_G(A) \leq 0 \),

\[
\rho_G(A \setminus X'_3) \leq |X'_3|.
\]

Note that each vertex in \((A \setminus X'_3) \cap X = A \cap \{x_{11}, x_{12}\} \) has degree at most 2 in \(G[A \setminus X'_3] \), and therefore, we have \(\rho_G(A \setminus X'_3) \geq \rho_G(A \setminus X) \).

Let \(\alpha = |A \cap (S \cup T)| \) for simplicity. Note that \(\alpha \geq |X'_3| \), since for vertex \(x \) in \(X'_3 \), \(x \) is a 3-vertex in both \(G \) and \(G[A] \), and so \(N_G(x) \subset A \). Now note that \(G[A \setminus X] \) has \(\alpha + 2 \) vertices and has \(\alpha + 1 \) edges. Thus

\[
\rho_G(A \setminus X'_3) \geq \rho_G(A \setminus X) \geq 2\alpha + 4 - (\alpha + 1) \geq \alpha + 3 \geq |X'_3| + 3,
\]

a contradiction to (1). Therefore \(\rho_G(A) \geq 1 \) for every subset \(A \subset V(G) \). This completes the proof of Claim 2.2.

Remark 2.3. In Appendix, we will also show that Conjecture 1.3 is not true. That is, for any integers \(k \) and \(n \) such that \(k \geq 2 \) and \(n \geq k^2 - k \), there exists a graph \(G \) such that \(mad(G) < 2k \), \(\Delta(G) \geq n \), and \(\chi(G^2) \geq k\Delta(G) + k \). The construction for \(k \geq 3 \) is similar to Construction 2.1.

3 Proof of Theorem 1.4

We use double induction on the number of 3\(^{+}\)-vertices first, and then on the number of edges.

Definition 3.1. Let \(n_3(G) \) be the number of 3\(^{+}\)-vertices of \(G \). We order graphs as follows. Give two graphs \(G \) and \(G' \), say that \(G' \) is smaller than \(G \) if (1) \(n_3(G') < n_3(G) \), or (2) \(n_3(G') = n_3(G) \) and \(|E(G')| < |E(G)| \).

Throughout this section, we let \(G \) be a minimal counterexample to Theorem 1.4.

Lemma 3.2. If a vertex \(u \) has a neighbor of degree 2, then

\[
\sum_{x \in N(u)} d(x) \geq 2\Delta(G).
\]

Proof. Suppose that $\sum_{x \in N(u)} d(x) < 2\Delta(G)$. Let v be a neighbor of u whose degree is 2. Let $H = G - uv$. The number of 3^+-vertices of H is not greater than that of G, and the number of edges of H is less than that of G. Thus, $\chi_l(H^2) \leq 2\Delta(H)$. Note that $2\Delta(H) \leq 2\Delta(G)$. Now uncolor u and v. Then the number of forbidden colors at v is at most $2\Delta(G) - 1$ and so we can assign a color of v. And the number of forbidden colors at u is at most $\sum_{x \in N(u)} d(x) < 2\Delta(G)$, and so we can give a color to u. Thus G^2 is $2\Delta(G)$-choosable. This is a contradiction. \hfill \Box

Corollary 3.3. Let u be a vertex having a neighbor of degree 2. Then

(i) if $d(u) \leq \frac{2\Delta(G)}{3}$, then u has at least one neighbor of degree at least 4;

(ii) if $d(u) \leq \frac{\Delta(G)}{3}$, then u has at least two neighbors of degree at least 4;

(i) a 2-vertex is not adjacent to a 2-vertex.

Lemma 3.4. Every 3-vertex has a neighbor of degree at least $4c$.

Proof. For any graph G', we define a potential function $\rho_{G'}: 2^{V(G')} \to \mathbb{Z}$ by

$$\rho_{G'}(A) = (4c - 1)|A| - 2c||A||.$$

Note that $\rho_{G'}(A) \geq 1$ for every subset $A \subset V(G')$ is equivalent to $\text{mad}(G') \leq 4 - \frac{1}{c}$.

Let u be a 3-vertex of G, and let $N(u) = \{x_1, x_2, x_3\}$. Suppose that $\max\{d(x_1), d(x_2), d(x_3)\} \leq 4c - 1$. Let H be the graph obtained by deleting the vertex u and adding three vertices y_1, y_2, y_3 such that $N(y_1) = \{x_1, x_2\}, N(y_2) = \{x_2, x_3\}$, and $N(y_3) = \{x_1, x_3\}$.

Now we will show that $\rho_H(S) \geq 1$ for every $S \subset V(H)$. Suppose that there exists $S \subset V(H)$ such that $\rho_H(S) \leq 0$. We take a smallest such S. If $S \cap \{y_1, y_2, y_3\} = \emptyset$, then $\rho_H(S) = \rho_G(S) \geq 1$. Thus $S \cap \{y_1, y_2, y_3\} \neq \emptyset$. If a vertex y in $S \cap \{y_1, y_2, y_3\}$ is a 1-vertex, then $\rho_H(S) > H(S \setminus \{y\})$, a contradiction to the minimality of $|S|$. Thus, any vertex in $S \cap \{y_1, y_2, y_3\}$ is a 2-vertex.

Let $S' = S \setminus \{y_1, y_2, y_3\}$ and $|S \cap \{y_1, y_2, y_3\}| = \alpha$. If $\alpha = 1$ then $\rho_H(S) = \rho_G(S' \cup \{u\}) \geq 1$. If $\alpha \geq 2$, then $\{x_1, x_2, x_3\} \subset S$ and so

$$\rho_H(S) = \rho_H(S') + (4c - 1)\alpha - 4c\alpha$$

$$= \rho_G(S') - \alpha$$

$$= \rho_G(S' \cup \{u\}) - (4c - 1) + 6c - \alpha$$

$$= \rho_G(S' \cup \{u\}) + 2c - \alpha + 1 \geq 1,$$

where the last inequality is from the fact that $\rho_G(S' \cup \{u\}) \geq 1$ and $\alpha \leq 3$. Hence $\rho_H(S) \geq 1$ for every $S \subset V(H)$.

Note that each x_i has degree in H at least 3 by Lemma 3.2. Hence the number 3^+-vertices of H is smaller than the number of 3^+-vertices of G. Thus by the minimality of G, we have $\chi_l(H^2) \leq 2\Delta(H)$. Since the degrees of x_1, x_2, x_3 in G are at most $4c - 1$ and $\Delta(G) \geq 14c - 7$, $\Delta(H) = \Delta(G)$. Thus $\chi_l(H^2) \leq 2\Delta(G)$. Now, since the number of 2-distance neighbors of u is at most $12c < 2\Delta(G)$, the number of forbidden colors at u is less than $2\Delta(G)$. Thus G^2 is $2\Delta(G)$-choosable. This is a contradiction. This completes the proof of Lemma 3.4. \hfill \Box
Discharging Rules

R1: If \(d(u) \geq 8c - 2 \), then \(u \) sends \(1 - \frac{1}{2c} \) to each of its neighbors.

R2: If \(4c \leq d(u) < 8c - 2 \), \(u \) sends \(1 - \frac{1}{2c} \) to each of neighbors of degree 2, and sends \(1 - \frac{1}{c} \) to each of neighbors of degree 3.

R3: If \(4 \leq d(u) < 4c \) and \(u \) has exactly one neighbor of degree at least 4, then \(u \) does not send any charge to its neighbors.

R4: If \(4 \leq d(u) < 4c \) and \(u \) has at least two neighbors of degree at least 4, then \(u \) sends \(1 - \frac{1}{2c} \) to each of its neighbors.

R5: If a 3-vertex \(u \) has two neighbors of degree at least \(8c - 2 \) and one neighbor of degree 2, then \(u \) sends \(1 - \frac{1}{2c} \) to its neighbor whose degree is 2.

Let \(d^*(u) \) be the new charge after discharging. We will show that \(d^*(u) \geq 4 - \frac{1}{c} \) for all \(u \). Note that \(\Delta(G) \geq 14c - 7 \).

1. When \(d(u) \geq 8c - 2 \),

\[
d^*(u) \geq d(u) - d(u) \left(1 - \frac{1}{2c} \right) = \frac{d(u)}{2c} \geq 4 - \frac{1}{c}.
\]

2. If \(4c \leq d(u) \leq 8c - 3 \) and \(u \) has no neighbor of degree 2, then

\[
d^*(u) \geq d(u) - d(u) \left(1 - \frac{1}{c} \right) = \frac{d(u)}{c} \geq 4 - \frac{1}{c}.
\]

3. Suppose that \(4c \leq d(u) \leq 8c - 3 \) and \(u \) is adjacent to a 2-vertex. Note that by (i) of Corollary 3.3 \(u \) is adjacent to at least one \(4^+ \)-vertex.
 - If \(6c - 1 \leq d(u) \leq 8c - 3 \), then
 \[
d^*(u) \geq d(u) - (d(u) - 1) \left(1 - \frac{1}{2c} \right) = 1 + \frac{d(u)}{2c} - \frac{1}{2c} \geq 4 - \frac{1}{c},
 \]
 since \(u \) is adjacent to at least one \(4^+ \)-vertex.
 - If \(4c \leq d(u) \leq 6c - 2 \) and \(u \) has exactly one neighbor \(z \) of degree at least 4, then
 \[
 \sum_{x \in N(u)} d(x) \leq d(z) + 3 \cdot (d(u) - 2) + 2,
 \]
and by Lemma 3.2

\[2\Delta(G) \leq \sum_{x \in N(u)} d(x) \leq d(z) + 3 \cdot (d(u) - 2) + 2. \]

Thus

\[d(z) \geq 2\Delta(G) - 3 \cdot (d(u) - 2) - 2 \geq 2 \cdot (14c - 7) - 3 \cdot (6c - 4) - 2 \geq 8c - 2, \]

which implies that \(u \) receives charge \(1 - \frac{1}{2c} \) from \(z \). Thus

\[d^*(u) \geq d(u) - (d(u) - 1) \left(1 - \frac{1}{2c} \right) + 1 - \frac{1}{2c} = 2 + \frac{d(u)}{2c} - \frac{1}{c} \geq 4 - \frac{1}{c}. \]

- If \(4c \leq d(u) \leq 6c - 2 \) and \(u \) is adjacent to at least two \(4^+ \)-vertices, then

\[d^*(u) \geq d(u) - (d(u) - 2) \left(1 - \frac{1}{2c} \right) = 2 + \frac{d(u)}{2c} - \frac{1}{c} \geq 4 - \frac{1}{c}. \]

Thus \(d^*(u) \geq 4 - \frac{1}{c}. \)

(4) Suppose that \(2c + 1 \leq d(u) < 4c \). If \(u \) has no neighbor of degree 2, then \(u \) does not send any charge to others. Next, consider the case when \(u \) has a neighbor of degree 2. By (ii) of Corollary 3.3, \(u \) is adjacent to at least two \(4^+ \)-vertices.

- Suppose that \(u \) has exactly two neighbors of degree at least 4, say \(z_1 \) and \(z_2 \). Then by Lemma 3.2

\[d(z_1) + d(z_2) + 3 \cdot (d(u) - 2) \geq 2\Delta(G). \]

Note that

\[d(z_1) + d(z_2) \geq 2\Delta(G) - 3d(u) + 6 \geq 2 \cdot (14c - 7) - 3 \cdot (4c - 1) + 6 = 16c - 5 = 2 \cdot (8c - 2) - 1. \]

Thus at least one of \(d(z_1) \) and \(d(z_2) \) is at least \(8c - 2 \), implies that \(u \) receives charge at least \(1 - \frac{1}{2c} \) from \(z_1 \) and \(z_2 \). Thus

\[d^*(u) \geq d(u) - (d(u) - 2) \left(1 - \frac{1}{2c} \right) + 1 - \frac{1}{2c} = \frac{d(u)}{2c} + 3 - \frac{3}{2c} \geq 4 - \frac{1}{c}. \]

- If \(u \) is adjacent to at least three \(4^+ \)-vertices, then

\[d^*(u) \geq d(u) - (d(u) - 3) \left(1 - \frac{1}{2c} \right) = \frac{d(u)}{2c} + 3 - \frac{3}{2c} \geq 4 - \frac{1}{c}. \]
Suppose that \(u \) has at least \((d(u) - 3)\) neighbors of degree 2. Let \(z_1, z_2 \) and \(z_3 \) be the other neighbors. By Lemma 3.2, since \(u \) has a neighbor of degree 2,
\[
d(z_1) + d(z_2) + d(z_3) + 2 \cdot (d(u) - 3) \geq 2\Delta(G).
\]
Note that
\[
d(z_1) + d(z_2) + d(z_3) \geq 2\Delta(G) - 2d(u) + 6 \geq 2 \cdot (14c - 7) - 2 \cdot 2c + 6 \geq 3 \cdot (8c - 2) - 2.
\]
Thus we can conclude that at least one of \(d(z_1), d(z_2), d(z_3)\) is at least \(8c - 2\), and so \(u \) receives charge at least \(1 - \frac{1}{2c}\) from \(z_1, z_2, z_3 \). Thus
\[
d^*(u) \geq d(u) - (d(u) - 3) \left(1 - \frac{1}{2c}\right) + 1 - \frac{1}{2c} = \frac{d(u)}{2c} + 4 - \frac{4}{2c} \geq 4.
\]

(5) Suppose that \(4 \leq d(u) < 2c + 1 \). If \(u \) has no neighbor of degree 2, then \(u \) does not send any charge to others. Consider the case when \(u \) has a neighbor of degree 2. If \(u \) has at most \((d(u) - 4)\) neighbors of degree 2, then
\[
d^*(u) \geq d(u) - (d(u) - 4) \left(1 - \frac{1}{2c}\right) = \frac{d(u)}{2c} + 4 - \frac{2}{c} \geq 4 - \frac{1}{c}.
\]
Suppose that \(u \) has at least \((d(u) - 3)\) neighbors of degree 2. Let \(x \) be a neighbor of degree at least 4, the it violates (ii) of Corollary 3.3. Thus the case of \(4 \) neighbors of degree 2, then \(c \) receives charge \(1 - \frac{1}{2c} \) from its neighbors. Even though we consider \(R5 \), we have \(d^*(u) \geq 4 - \frac{1}{c} \).

(6) When \(d(u) = 3 \), by Lemma 3.4, \(u \) has at least one neighbor of degree at least \(4c \). Thus \(u \) receives charge at least \(1 - \frac{1}{2c} \) from its neighbors. Even though we consider \(R5 \), we have \(d^*(u) \geq 4 - \frac{1}{c} \).

(7) Suppose that \(d(u) = 2 \). We will show that \(u \) receives \(1 - \frac{1}{2c} \) from both neighbors. Let \(x \) be a neighbor of \(u \). Suppose that \(d(x) \leq 3 \). Then \(d(x) = 3 \) by (iii) of Corollary 3.3. By Lemma 3.2, each neighbor of \(x \) other than \(u \) has degree at least \(\Delta(G) - 2 \), which implies that \(u \) receives charge \(1 - \frac{1}{2c} \) from \(x \) by \(R5 \). Suppose that \(d(x) \geq 4 \). If \(4 \leq d(x) < 4c \) and \(x \) has exactly one neighbor of degree at least 4, the it violates (ii) of Corollary 3.3. Thus the case of \(R3 \) does not happen to \(x \). That is, \(x \) must send \(1 - \frac{1}{2c} \) to \(u \). Then \(d^*(u) \geq 4 - \frac{1}{c} \).

4 Remark on a condition for \(\Delta(G) \) to be \(\chi(G^2) \leq 2\Delta(G) \)

Given a positive integer \(c \geq 2 \), let \(h(c) \) be the smallest value such that \(\chi(G^2) \leq 2\Delta(G) \) whenever \(G \) is a graph with mad\((G) < 4 - \frac{1}{c} \) and \(\Delta(G) \geq h(c) \). Theorem 1.4 shows that \(h(c) \leq 14c - 7 \).

In the following, we will see that \(h(c) \geq 2c + 2 \) by showing that for any integer \(c \geq 2 \), there is a graph \(G \) such that \(mad(G) < 4 - \frac{1}{c} \), \(\Delta(G) = 2c + 1 \), and \(\chi(G^2) \geq 2\Delta(G) + 1 \). Hence \(2c + 2 \leq h(c) \leq 14c - 7 \). Thus, it would be interesting to find the optimal value of \(h(c) \) or to reduce the gap in \(2c + 2 \leq h(c) \leq 14c - 7 \).

Now, given a positive integer \(c \geq 2 \), we give a graph \(G \) such that \(mad(G) < 4 - \frac{1}{c} \), \(\Delta(G) = 2c + 1 \), and \(\chi(G^2) \geq 2\Delta(G) + 1 \). Let consider \(G_n \) in Section 2 when \(n = 2c \), and then let
\[
G = G_n - \{x_{12}x_{i(i+1)} : 2 \leq i \leq n\} \cup \{x_{12}x_{n1}\}.
\]
Then \(|V(G)| = 4c^2 + 4c + 2 \) and \(|E(G)| = 8c^2 + 6c \). Therefore, \(\Delta(G) = n + 1 \) and \(\{u, v, x_{11}\} \cup S \cup T \) is a clique in \(G^2 \) with \(2n + 3 \) vertices. Thus \(\chi(G^2) \geq 2\Delta(G) + 1 \).
Claim 4.1. $\text{mad}(G) < 4 - \frac{1}{c}$.

Proof of Claim. Define a potential function $\rho^*_G(A) = (4c - 1)|A| - 2c||A||$ for $A \subseteq V(G)$. Note that $\text{mad}(G) < 4 - \frac{1}{c}$ is equivalent to $\rho^*_G(A) \geq 1$ for all $A \subseteq V(G)$.

Now, we will show that $\rho^*_G(A) \geq 1$ for all $A \subseteq V(G)$. Suppose that there is $A \subseteq V(G)$ such that $\rho^*_G(A) \leq 0$, and take such A with minimum value $\rho^*(A)$. If $G[A]$ contains a 1^--vertex v then $\rho^*_G(A \setminus \{v\}) < \rho^*_G(A)$, which is a contradiction to the minimality of $\rho^*(A)$. Thus $G[A]$ does not have a 1^--vertex. If $a \notin A$ and a has at least two neighbors in A, then $\rho^*(A \cup \{a\}) < \rho^*(A)$, a contradiction to the minimality of $\rho^*(A)$. Therefore, if $a \notin A$, then a has at most one neighbor in A. Thus for i, j such that $i \neq j$,

$$x_{ij} \in A \iff \{u_i, v_j\} \subset A.$$ \hfill (2)

Without loss of generality, we may assume that $|S \cap A| \leq |T \cap A|$. From (2), it is easy to check that if $|A \cap S| \leq 1$ or $|A \cap T| \leq 1$, then $\rho^*(A) \geq 1$. Thus we can assume that $|T \cap A| \geq |S \cap A| \geq 2$, and so $\{u, v\} \in A$.

For simplicity, let $s = |S \cap A|$ and $t = |T \cap A|$. Then $s \leq t$. By (2), $|A \cap X| = |S \cap A| \cdot |T \cap A| = st$. Thus we have that $|A| \geq st + s + t + 2$. On the other hand,

$$||A|| \leq 2st + s + t + 1 + (s - 1) = 2 \cdot (st + s + t + 2) - (t + 4).$$

Thus,

$$\rho^*(A) = (4c - 1)|A| - 2c||A||$$

$$\geq (4c - 1)(st + s + t + 2) - 2c \cdot (2 \cdot (st + s + t + 2) - (t + 4))$$

$$= (4c - 1)(st + s + t + 2) - 4c \cdot (st + s + t + 2) + 2c \cdot (t + 4)$$

$$= -(st + s + t + 2) + 2c(t + 4)$$

$$= -(st - s - t - 2 + 2tc + 8c)$$

$$= (2ct - st) + (2c - s) + (2c - t) + (4c - 2) \geq 1,$$

where the last equality is from the fact that $2c \geq \max\{s, t\}$. This is a contradiction to the assumption that $\rho^*(A) \leq 0$. Thus $\rho^*(A) \geq 1$ for every subset $A \subseteq V(G)$.

References

[1] M. Bonamy, B. Lévêque, and A. Pinlou, Graphs with maximum degree $\Delta \geq 17$ and maximum average degree less than 3 are list 2-distance $(\Delta + 2)$-colorable, *Discrete Math.*, **317** (2014), 19–32.

[2] M. Bonamy, B. Lévêque, and A. Pinlou, 2-distance coloring of sparse graphs, *J. Graph Theory*, **77** (2014), 190–218.

[3] M. Bonamy, B. Lévêque, and A. Pinlou, List coloring the square of sparse graphs with large degree, *European J. Combin.*, **41** (2014), 128–137.
Appendix: Counterexamples to Conjecture 1.3

Fix an integer \(k \geq 3 \) and let \(n \) be a prime with \(n \geq k^2 - k \). We will define a graph \(G = G_{k,n} \) such that \(\Delta(G) = k + n - 1 \), \(mad(G^2) < 2k \), and \(G^2 \) contains a clique of size \(k\Delta(G) + k \). The idea is exactly same as Construction 2.1 in Section 2.

For \(\ell \in [k - 2] \), we define a Latin square \(L_\ell \) of order \(n \) by

\[
L_\ell(i,j) = j + \ell(i - 1) \pmod{n}, \quad \text{for } (i,j) \in [n] \times [n].
\]

That is, the \((i,j)\)-entry of the Latin square of \(L_\ell \) is \(L_\ell(i,j) \). (See page 252 in [7] for detail.)

Construction 4.2. For \(i \in [k] \), let \(U_i = \{u_{i,1}, u_{i,2}, \ldots, u_{i,n}\} \). Let \(U = \{u_1, u_2, \ldots, u_k\} \) and \(X = \{x_{i,j} \mid (i,j) \in [n] \times [n]\} \). Define

\[
V(G) = U \cup \left(\bigcup_{i=1}^{n} U_i \right) \cup X
\]

\[
E(G) = \{u_iu_j \mid 1 \leq i < j \leq k\} \cup \left(\bigcup_{i=1}^{k} \{u_i x \mid x \in U_i\} \right)
\]

\[
\cup \left(\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \{x_{i,j} y \mid y \in \{u_{1,i}, u_{2,j}, u_{3,L_1(i,j)}, u_{4,L_2(i,j)}, \ldots, u_{k,L_{k-2}(i,j)}\}\} \right)
\]

\[
\cup \left(\bigcup_{r=0}^{k^2-k-1} \bigcup_{i=2}^{n} \{x_{1,1+r} x_{i,i+r}\} \right)
\]

where the subscripts of \(x_{i,j} \) are computed by modulo \(n \).
Then we have the following observations.

- For \(u_i \in U \), \(d(u_i) = n + k - 1 \) and for \(u_{i,j} \in U_i \), \(d(u_{i,j}) = n + 1 \).
- For \(x_{i,j} \in X \),

\[
d(x_{i,j}) = \begin{cases}
2k - 1 & \text{if } i = 1 \\
k + 1 & \text{if } j = i + r \text{ for some } 0 \leq r \leq k^2 - k - 1 \text{ and } i \geq 2 \\
k & \text{otherwise}
\end{cases}
\]

where the subscript of \(x_{i,j} \) are computed by modulo \(n \).

Therefore \(\Delta(G) = n + k - 1 \).

Claim 4.3. \(\chi(G^2) \geq k\Delta(G) + k \).

Proof. We will show that \{\(x_{1,1}, x_{1,2}, x_{1,3}, \ldots, x_{1,k^2-k} \)\} \(\cup U \cup U_1 \cup \cdots \cup U_k \) is a clique in \(G^2 \). From the orthogonality of Latin squares, we know that \(u_{i,j} \) and \(u_{i',j'} \) are adjacent in \(G^2 \) if \(i \neq i' \). For each \(i \in [k] \), since \(u_{i,j} \) and \(u_{i,j} \) share a neighbor \(u_i \), they are adjacent in \(G^2 \). In addition, \(u_i \) and \(u_{i,j} \) are adjacent in \(G^2 \), since they share a neighbor \(u_i \). Therefore, \(U \cup U_1 \cup \cdots \cup U_k \) is a clique in \(G^2 \).

Note that the vertices in \{\(x_{1,1}, x_{1,2}, \ldots, x_{1,k^2-k} \)\} share a neighbor \(u_{1,1} \), and so they form a clique in \(G^2 \). Furthermore, each vertex in \(U \) is adjacent to each vertex in \(X \) in \(G^2 \) since they share a neighbor in \(U_1 \cup \cdots \cup U_k \). Thus, it remains to show that for each integer \(r \) such that \(0 \leq r \leq k^2 - k - 1 \), \(x_{1,1+r} \) is adjacent to each vertex in \(U_1 \cup \cdots \cup U_k \).

Let \(r \) be an integer with \(0 \leq r \leq k^2 - k - 1 \). Since for \(i \in [n] \),

\[
N_G(x_{1,i+r}) \supseteq \{u_{1,i}, u_{2,i+r}, u_{3,L_1(i,i+r)}, u_{4,L_2(i,i+r)}, \ldots, u_{k,L_{k-2}(i,i+r)}\}.
\]

Thus \(N_G(x_{1,1+r}) \cup N_G(x_{2,2+r}) \cup \cdots \cup N_G(x_{n,n+r}) \) contains

\[
\begin{align*}
\{u_{1,1}, u_{2,1+r}, u_{3,L_1(1,1+r)}, u_{4,L_2(1,1+r)}, \ldots, u_{k,L_{k-2}(1,1+r)}\} \\
\cup \{u_{1,2}, u_{2,2+r}, u_{3,L_1(2,2+r)}, u_{4,L_2(2,2+r)}, \ldots, u_{k,L_{k-2}(2,2+r)}\} \\
\vdots \\
\cup \{u_{1,n}, u_{2,n+r}, u_{3,L_1(n,n+r)}, u_{4,L_2(n,n+r)}, \ldots, u_{k,L_{k-2}(n,n+r)}\}.
\end{align*}
\]

Since for each \(\ell \in [k-2] \),

\[
\{L_\ell(1,1+r), L_\ell(2,2+r), \ldots, L_\ell(n,n+r)\} = [n],
\]

we can conclude that

\[
N_G(x_{1,1+r}) \cup N_G(x_{2,2+r}) \cup \cdots \cup N_G(x_{n,n+r}) \supseteq U_1 \cup \cdots \cup U_k.
\]

Since \(x_{1,1+r} \) is adjacent to every vertex in \(\{x_{2,2+r}, x_{3,3+r}, \ldots, x_{n,n+r}\} \), \(x_{1,1+r} \) is adjacent to each vertex in \(U_1 \cup \cdots \cup U_k \) in \(G^2 \).

Consequently, \(\{x_{1,1}, x_{1,2}, x_{1,3}, \ldots, x_{1,k^2-k}\} \cup U \cup U_1 \cup \cdots \cup U_k \) is a clique in \(G^2 \) with \(kn + k + (k^2 - k) = k\Delta(G) + k \) vertices. Thus \(\chi(G^2) \geq k\Delta(G) + k \). \qed
Next, we will show that $\text{mad}(G) < 2k$. Define a potential function $\rho_G : 2^V(G) \rightarrow \mathbb{Z}$ by for $A \subset V(G)$,

$$\rho_G(A) = k|A| - ||A||.$$

Note that $\rho_G(A) \geq 1$ for every $A \subset V(G)$ is equivalent to $\text{mad}(G) < 2k$.

Now, we will show that $\rho_G(A) \geq 1$ for all $A \subset V(G)$.

Claim 4.4. For all $A \subset V(G)$, $\rho_G(A) \geq 1$.

Proof. Suppose that there is $A \subset V(G)$ such that $\rho_G(A) \leq 0$. Let A be a smallest subset of $V(G)$ among all subsets of $V(G)$ with minimum value $\rho_G(A)$. That is, A is a minimal counterexample to Claim 4.4.

If there is a k^{-}-vertex v of $G[A]$, then $\rho_G(A \setminus \{v\}) \leq \rho_G(A)$, which is a contradiction to the minimality of $\rho_G(A)$ or the minimality of $|A|$. Thus there is no k^{-}-vertex in $G[A]$. Thus if a vertex x in $X \cap A$ has degree $k+1$ in G, then $N_G(x) \subset A$.

Therefore if $x \in X$ has degree k in G, then $x \not\in A$, and if a vertex x in $X \cap A$ has degree $k+1$ in G, then $N_G(x) \subset A$. Let X' be the set of $(k+1)$-vertices of G in $X \cap A$. Thus every vertex in X' is also a $(k+1)$-vertex in $G[A]$. Since any two vertices in X' are not adjacent in G, we have

$$\rho_G(A \setminus X') = k|A \setminus X'| - ||A \setminus X'|| = k|A| - k|X'| - ||A|| + (k+1)||X'|| = \rho_G(A) + |X'|.$$

Since $\rho_G(A) \leq 0$,

$$\rho_G(A \setminus X') \leq |X'|. \tag{3}$$

On the other hand, all the vertices in $(A \setminus X') \cap X$ have degree at most k in $G[A \setminus X']$. Then $\rho_G(A \setminus X') \geq \rho_G(A \setminus X)$. Then all those vertices in $A \setminus (X \cup U)$ are pendent vertices in $G[A \setminus X]$. Let $\alpha = |A \setminus (X \cup U)| = |A \cap (U_1 \cup \cdots U_k)|$ for simplicity. Note that $\alpha \geq |X'|$, since for vertex x in X', $N_G(v) \subset A$. Let $u = |A \cap U|$. Therefore, $G[A \setminus X]$ has $u + \alpha$ vertices and has $\frac{u^2 - u}{2} + \alpha$ edges. Thus

$$\rho_G(A \setminus X') \geq \rho_G(A \setminus X) \geq ku + k\alpha - \frac{u^2 - u}{2} - \alpha \geq u^2 + k\alpha - \frac{u^2 - u}{2} - \alpha = \frac{u^2 + u}{2} + (k-1)\alpha \geq 1 + (k-1)|X'| \geq 1 + |X'|,$$

a contradiction to (3). Thus $\rho_G(A) \geq 1$ for every subset $A \subset V(H)$. Hence, $\text{mad}(G) < 2k$. \qed