HOMOMORPHISMS OF COMMUTATOR SUBGROUPS OF
BRAID GROUPS WITH SMALL NUMBER OF STRINGS

S. Yu. Orevkov

Abstract. For any \(n \), we describe all endomorphisms of the braid group \(B_n \) and of its commutator subgroup \(B'_n \), as well as all homomorphisms \(B'_n \to B_n \). These results are new only for small \(n \) because endomorphisms of \(B_n \) are already described by Castel for \(n \geq 6 \), and homomorphisms \(B'_n \to B_n \) and endomorphisms of \(B'_n \) are already described by Kordek and Margalit for \(n \geq 7 \). We use very different approaches for \(n = 4 \) and for \(n \geq 5 \).

Introduction

Let \(B_n \) be the braid group with \(n \) strings. It is generated by \(\sigma_1, \ldots, \sigma_{n-1} \) (called standard or Artin generators) subject to the relations

\[
\sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i - j| > 1; \quad \sigma_i \sigma_j = \sigma_j \sigma_i \sigma_j \text{ for } |i - j| = 1.
\]

Let \(B'_n \) be the commutator subgroup of \(B_n \).

In this paper we describe all endomorphisms of \(B_n \) and \(B'_n \) and homomorphisms \(B'_n \to B_n \) for any \(n \). These results are new only for small \(n \) because endomorphisms of \(B_n \) are described by Castel in [4] for \(n \geq 6 \), and homomorphisms \(B'_n \to B_n \) and endomorphisms of \(B'_n \) are described by Kordek and Margalit in [11] for \(n \geq 7 \).

The automorphisms of \(B_n \) and \(B'_n \) have been already known for any \(n \): Dyer and Grossman [5] proved that the only non-trivial element of \(\text{Out}(B_n) \) corresponds to the automorphism \(\Lambda \) defined by \(\sigma_i \mapsto \sigma_i^{-1} \) for any \(i = 1, \ldots, n - 1 \), and in [17] we proved that the restriction map \(\text{Aut}(B_n) \to \text{Aut}(B'_n) \) is an isomorphism for \(n \geq 4 \) (\(B'_3 \) is a free group of rank 2, thus its automorphisms are known as well: see e.g. [15]).

The problem to study homomorphisms between braid groups and, especially, between their commutator subgroups was posed by Vladimir Lin [12–14] because he found its applications to the problem of superpositions of algebraic functions (the initial motivation for Hilbert's 13th problem), see [13] and references therein.

Let us formulate the main results. We start with those about homomorphisms of \(B'_n \) to \(B_n \) and to itself.

Theorem 1.1. (proven for \(n \geq 7 \) in [11]). Let \(n \geq 5 \). Then every non-trivial homomorphism \(B'_n \to B_n \) extends to an automorphism of \(B_n \).

We proof this theorem in §2. Since \(B''_n = B'_n \) and \(\text{Aut}(B_n) = \text{Aut}(B'_n) \) for \(n \geq 5 \), the following two corollaries are, in fact, equivalent versions of Theorem 1.1.

Corollary 1.2. If \(n \geq 5 \), then any non-trivial endomorphism of \(B'_n \) is bijective.
Corollary 1.3. *If* $n \geq 5$, *then any non-trivial homomorphism* $B'_n \to B_n$ *is an automorphism of* B'_n *composed with the inclusion map.*

Let R be the homomorphism

$$R : B_4 \to B_3, \quad \sigma_1, \sigma_3 \mapsto \sigma_1, \quad \sigma_2 \mapsto \sigma_2.$$ \hspace{1cm} (1)

(we denote it by R because, if we interpret B_n as $\pi_1(X_n)$ where X_n is the space of monic squarefree polynomials of degree n, then R is induced by the mapping which takes a degree 4 polynomial to its cubic resolvent).

For a group G, we denote its commutator subgroup, center, and abelianization by G', $Z(G)$, and G^{ab} respectively. We also denote the inner automorphism $y \mapsto xyx^{-1}$ by \bar{x}, the commutator $xyx^{-1}y^{-1}$ by $[x, y]$, and the centralizer of an element x (resp. of a subgroup H) in G by $Z(x; G)$ (resp. by $Z(H; G)$).

Given two group homomorphisms $f : G_1 \to G_2$ and $\tau : G_1^{ab} \to Z(\text{im} f; G_2)$, we define the *transvection of f* by τ as the homomorphism $f_{[\tau]} : G_1 \to G_2$ given by $x \mapsto f(x)\tau(x)$ where x is the image of x in G_1^{ab}. To simplify notation, we will not distinguish between τ and its composition with the canonical projection $G_1 \to G_1^{ab}$. So, we shall often speak of a transvection by $\tau : G_1 \to Z(\text{im} f; G_2)$.

We say that two homomorphisms $f, g : G_1 \to G_2$ are equivalent if there exists $h \in \text{Aut}(G_2)$ such that $f = hg$. If, moreover, $h \in \text{Inn}(G_2)$, we say that f and g are conjugate.

Theorem 1.4. *Any homomorphism* $\varphi : B'_4 \to B_4$ *either is equivalent to a transvection of the inclusion map, or* $\varphi = fR$ *for a homomorphism* $f : B'_3 \to B_4$ (*since* B'_3 *is free [9], it has plenty of homomorphisms to any group).*

We prove this theorem in §3.

Corollary 1.5. *Any endomorphism of* B'_4 *is either an automorphism or a composition of* R *with a homomorphism* $B'_3 \to B'_4$.

As we already mentioned, B'_3 is free, thus its homomorphisms are evident. Now let us describe endomorphisms of B_n. We say that a homomorphism is cyclic if its image is a cyclic group (probably, infinite cyclic).

Theorem 1.6. (proven for $n \geq 6$ in [4]). *If* $n \geq 5$, *then any non-cyclic endomorphism of* B_n *is a transvection of an automorphism.*

For $n \geq 7$, this result is derived in [11] from Theorem 1.1. The same proof works without any change for any $n \geq 5$.

Theorem 1.7. *Any endomorphism of* B_4 *is either a transvection of an automorphism, or it is of the form* fR *for some* $f : B_3 \to B_4$ (*see Proposition 1.9 for a general form of such* f).

This theorem also can be derived from Theorem 1.4 in the same way as it is done in [11] for $n \geq 7$.

Let $\Delta = \Delta_n = \prod_{i=1}^{n-1} \prod_{j=1}^{n-i} \sigma_j$ (the Garside’s half-twist), $\delta = \delta_n = \sigma_{n-1} \ldots \sigma_2 \sigma_1$, and $\gamma = \gamma_n = \sigma_1 \delta_n$. One has $\delta^n = \gamma^{n-1} = \Delta^2$, and it is known that $Z(B_n)$ is generated by Δ^2, and each periodic braid (i.e. a root of a central element) is conjugate to δ^k or γ^k for some $k \in \mathbb{Z}$.

It is well-known that B_3 admits a presentation $\langle \Delta, \delta \mid \Delta^2 = \delta^3 \rangle$. By combining this fact with basic properties of canonical reduction systems, it is easy to prove the following descriptions of homomorphisms from B_3 to B_n for $n = 3$ or 4.
Proposition 1.8. Any non-cyclic endomorphism of B_3 is equivalent to a transvection by τ of a homomorphism of the form $\Delta \mapsto \Delta$, $\delta \mapsto X\delta X^{-1}$ for some $X \in B_3$ and $\tau : B_3^{ab} \to Z(B_3) = \langle \Delta^2 \rangle$.

Proposition 1.9. For any non-cyclic homomorphism $\varphi : B_3 \to B_4$, one of the following two possibilities holds:

(a) φ is equivalent to a transvection by τ of a homomorphism of the form $\Delta_3 \mapsto \Delta_4$, $\delta_3 \mapsto X\gamma_4 X^{-1}$ for some $X \in B_4$ and $\tau : B_3^{ab} \to Z(B_4) = \langle \Delta_4^2 \rangle$;

(b) φ is equivalent to $(\psi \tau)$ where ψ is a non-cyclic endomorphism of B_3, $\iota : B_3 \to B_4$ is the standard embedding, and τ is a homomorphism $B_3^{ab} \to Z(B_4) = \langle \Delta_4^2 \rangle$.

Remark 1.10. Since $B_n^{ab} \cong Z(B_n) \cong \mathbb{Z}$, the transvection in Theorem 1.6 (and in the non-degenerate case in Theorem 1.7) is uniquely determined by a single integer number. In contrast, $(B'_1)^{ab} \cong \mathbb{Z}^2$, thus the transvection in Theorem 1.4 depends on two integers (here $\operatorname{im} \varphi = B'_1$, hence $Z(\operatorname{im} \varphi; B_4) = Z(B_4) \cong \mathbb{Z}$). Notice also that two transvections are involved in the case (b) of Proposition 1.9, thus the general form of φ in this case is

$$\Delta_3 \mapsto f(\mu(\Delta_3)^{6k+1}\Delta_4^{6l}), \quad \delta_3 \mapsto f(\mu(X\delta_3 X^{-1}\Delta_3^{4k})\Delta_4^{4l})$$

with $k, l \in \mathbb{Z}$, $X \in B_3$, $f \in \operatorname{Aut}(B_4)$.

2. The case $n \geq 5$

In this section we prove Theorem 1.1 which describes homomorphisms $B'_n \to B_n$ for $n \geq 5$. The proof is very similar to the proof of the case $n \geq 5$ of the main theorem of [17] which describes $\operatorname{Aut}(B_n)$. As we already mentioned, Theorem 1.1 for $n \geq 7$ is proven by Kordek and Margalit in [11]. Some elements of their proof are valid for $n \geq 5$ (see Proposition 2.4 below) which allowed us to omit a big part of our original proof based on [17].

Let S_n be the symmetric group. Let $e : B_n \to \mathbb{Z}$ and $\mu : B_n \to S_n$ be the homomorphisms defined on the generators by $e(\sigma_i) = 1$ and $\mu(\sigma_i) = (i, i + 1)$ for $i = 1, \ldots, n - 1$. So, $e(X)$ is the exponent sum (signed word length) of X. Let $P_n = \ker \mu$ be the pure braid group. Following [12], we denote $P_n \cap B'_n$ by J_n, and $\mu|B'_n$, by μ', thus $J_n = \ker \mu'$.

For a pure braid X, we denote the linking number between the i-th and the j-th strings of X by $\operatorname{lk}_{ij}(X)$. It can be defined as $\frac{1}{2}e(X_{ij})$ where X_{ij} is the 2-braid obtained from X by removal of all strings except the i-th and the j-th ones. For $1 \leq i < j \leq n$, we set $\sigma_{ij} = (\sigma_{j-1} \ldots \sigma_{i+1})\sigma_i(\sigma_{j-1} \ldots \sigma_{i+1})^{-1}$ (here $\sigma_{i+1} = \sigma_i$). Then P_n is generated by $\{\sigma_{ij}^2 \ 1 \leq i < j \leq n\}$ (see [1]) and we denote the image of σ_{ij}^2 in P_n^{ab} by A_{ij}. We use the additive notation for P_n^{ab} and J_n^{ab}.

Lemma 2.1. ([17, Lemma 2.3]). P_n^{ab} (for any n) is free abelian group with basis $(A_{ij})_{1 \leq i < j \leq n}$, and the natural projection $P_n \to P_n^{ab}$ is given by $X \mapsto \sum_{i < j} \operatorname{lk}_{ij}(X)A_{ij}$.

If $n \geq 5$, then the homomorphism $J_n^{ab} \to P_n^{ab}$ induced by the inclusion map defines an isomorphism of J_n^{ab} with $\{\sum x_{ij} A_{ij} | \sum x_{ij} = 0\}$ (notice that this statement is wrong for $n = 3$ or 4; see [17, Proposition 2.4]).

From now on, till the end of this section, we assume that $n \geq 5$ and $\varphi : B'_n \to B_n$ is a non-cyclic homomorphism. Since any group homomorphism $G_1 \to G_2$ maps G_1'
to G'_2, we have $\varphi(B''_n) \subset B'_n$. By [9] (see also [17, Remark 2.2]), we have $B''_n = B'_n$, thus
\[
\varphi(B'_n) \subset B'_n.
\]
Then [12, Theorem D] implies that
\[
\varphi(J_n) \subset J_n.
\]
Thus we may consider the endomorphism φ_* of J_{ab}^n induced by $\varphi|_{J_n}$. We shall not distinguish between J_{ab}^n and its isomorphic image in P_{ab}^n (see Lemma 2.1).

Following [12], we set
\[
c_i = \sigma_i^{-1} \sigma_i \quad (i = 3, \ldots, n - 1) \quad \text{and} \quad c = c_3.
\]

Lemma 2.2. Suppose that $\mu \varphi = \mu'$ and $\varphi(c) = c$. Then $\varphi_* = \text{id}$.

Proof. The exact sequence $1 \to J_n \to B'_n \to A_n \to 1$ defines an action of A_n on J_{ab}^n by conjugation. Let V be a complex vector space with base e_1, \ldots, e_n endowed with the natural action of S_n induced by the action on the base. We identify P_{ab}^n with its image in the symmetric square $\text{Sym}^2 V$ under the homomorphism $A_{ij} \to e_i e_j$. Then, by Lemma 2.1, we may identify J_{ab}^n with $\{ \sum x_{ij} e_i e_j \mid x_{ij} \in \mathbb{Z}, \sum x_{ij} = 0 \}$. These identifications are compatible with the action of A_n. Thus $W := J_{ab}^n \otimes \mathbb{C}$ is a $\mathbb{C}A_n$-submodule of $\text{Sym}^2 V$.

For an element v of a $\mathbb{C}S_n$-module, let $\langle v \rangle_{\mathbb{C}S_n}$ be the $\mathbb{C}S_n$-submodule generated by v. It is shown in the proof of [17, Lemma 3.1], that $W = W_2 \oplus W_3$ where
\[
W_2 = \langle (e_1 - e_2)(e_3 + \cdots + e_n) \rangle_{\mathbb{C}S_n}, \quad W_3 = \langle (e_1 - e_2)(e_3 - e_4) \rangle_{\mathbb{C}S_n},
\]
and that W_2 and W_3 are irreducible $\mathbb{C}S_n$-modules isomorphic to the Specht modules corresponding to the partitions $(n - 1, 1)$ and $(n - 2, 2)$ respectively. Since the Young diagrams of these partitions are not symmetric, W_2 and W_3 are also irreducible as $\mathbb{C}A_n$-modules.

The condition $\mu \varphi = \mu'$ implies that φ_* is A_n-equivariant. Hence, by Schur’s lemma, $\varphi_* = a \text{id}_{W_2} + b \text{id}_{W_3}$. We have the identity
\[
(n - 2)(e_1 - e_2)e_3 = (e_1 - e_2)(e_3 + \cdots + e_n) + \sum_{i \geq 4}(e_1 - e_2)(e_3 - e_i)
\]
whence, denoting $e_5 + \cdots + e_n$ by e,
\[
(n - 2)\varphi_*((e_1 - e_3)e_2) = (e_1 - e_3)(a(e_2 + e_4 + e) + b((n - 3)e_2 - e_4 - e)),
\]
\[
(n - 2)\varphi_*((e_2 - e_4)e_3) = (e_2 - e_4)(a(e_1 + e_3 + e) + b((n - 3)e_3 - e_1 - e)).
\]
The condition $\varphi(c) = c$ implies the φ-invariance of $c^2 \in J_n$. Since the image of c^{-2} in J_{ab}^n is $A_{12} - A_{34}$, we obtain that $e_1 e_2 - e_3 e_4$ is φ_*-invariant. Hence
\[
(n - 2)(e_1 e_2 - e_3 e_4) = (n - 2)\varphi_*((e_1 e_2 - e_3 e_4)
\]
\[
= (n - 2)\varphi_*((e_1 - e_3)e_2 + (e_2 - e_4)e_3)
\]
\[
= (2a + (n - 4)b)(e_1 e_2 - e_3 e_4) + (a - b)(e_1 + e_2 - e_3 - e_4).e
\]
Since \{\(e_i e_j\}_{i < j}\} is a base of $\text{Sym}^2 V$, it follows that $2a + (n - 4)b = n - 2$ and $a - b = 0$ whence $a = b = 1$. \(\square\)
Lemma 2.3. Let \(\varphi_1 \) and \(\varphi_2 \) be equivalent homomorphisms \(B'_n \to B_n \). Then \(\mu \varphi_1 \) and \(\mu \varphi_2 \) are conjugate.

Proof. This fact immediately follows from Dyer - Grossman’s [5] classification of automorphisms of \(B_n \) (see the beginning of the introduction) because \(\mu \Lambda = \mu \).

Proposition 2.4. (Kordek and Margalit [11, §3, Proof of Thm. 1.1, Cases 1–3 and Step 1 of Case 4]). There exists \(f \in \text{Aut}(B_n) \) such that \(f \varphi(c_i) = c_i \) for each odd \(i \) such that \(1 \leq i < n \) (recall that we assume \(n \geq 5 \)).

This proposition implies, in particular, that \(\mu \varphi \) is non-trivial, hence by Lin’s result [12, Theorem C] \(\mu \varphi \) is conjugate either to \(\mu' \) or to \(\nu \mu' \) (when \(n = 6 \)) where \(\nu \) is the restriction to \(A_6 \) of the automorphism of \(S_6 \) given by \((12) \mapsto (12)(34)(56), (123456) \mapsto (123)(45) \) (it represents the only nontrivial element of \(\text{Out}(S_6) \)).

Lemma 2.5. If \(n = 6 \), then \(\mu \varphi \) is not conjugate to \(\nu \mu' \).

Proof. Let \(H \) be the subgroup generated by \(c_3 \) and \(c_5 \). By Lemma 2.3 and Proposition 2.4 we may assume that \(\varphi|_H = \text{id} \). Then we have

\[
\mu'(H) = \mu \varphi(H) = \{\text{id}, (12)(34), (12)(56), (34)(56)\}.
\]

In particular, no element of \(\{1, \ldots, 6\} \) is fixed by all elements of \(\mu \varphi(H) \). A straightforward computation shows that

\[
\nu \mu'(H) = \{\text{id}, (12)(34), (13)(24), (14)(23)\},
\]

thus 5 and 6 are fixed by all elements of \(\nu \mu'(H) \). Hence these subgroups are not conjugate in \(S_6 \).

Lemma 2.6. There exists \(f \in \text{Aut}(B_n) \) such that \(f \varphi(c) = c \) and \(\mu \varphi = \mu' \).

Proof. By Proposition 2.4 we may assume that

\[
\varphi(c) = c.
\]

Then \(\mu \varphi \) is non-trivial, hence, by [12, Thm. C] combined with Lemma 2.5, it is conjugate to \(\mu' \), i.e. there exists \(\pi \in S_n \) such that \(\tilde{\pi} \mu \varphi = \mu' \), i.e. \(\pi \mu(\varphi(x)) = \mu(x) \pi \) for each \(x \in B'_n \). For \(x = c \) this implies by (3) that \(\pi \) commutes with \((12)(34) \), hence \(\pi = \pi_1 \pi_2 \) where \(\pi_1 \in V_4 \) (the group in the right hand size of (2)) and \(\pi_2(i) = i \) for \(i \in \{1, 2, 3, 4\} \). Let \(\tilde{V}_4 = \{1, c, \Delta_4, c \Delta_4\} \). This is not a subgroup but we have \(\mu(\tilde{V}_4) = V_4 \). We can choose \(y_1 \in \tilde{V}_4 \) and \(y_2 \in <\sigma_5, \ldots, \sigma_{n-1}> \) so that \(\mu(y_j) = \pi_j \) for \(j = 1, 2 \). Let \(y = y_1 y_2 \). Then we have \(\tilde{y}(c) = c^{\pm 1} \) and \(\mu \tilde{y} \varphi = \tilde{\pi} \mu \varphi = \mu' \). Thus, for \(f = A^k \tilde{y}, k \in \{0, 1\} \), we have \(f \varphi(c) = c \) and \(\mu f \varphi = \mu' \).

Due to Lemma 2.6, from now on we assume that \(\mu \varphi = \mu' \) and \(\varphi(c) = c \). Then, by Lemma 2.2, we have \(\varphi_* = \text{id} \), hence (see Lemma 2.1)

\[
l_k(x) = l_k(\varphi(x)) \quad \text{for any } x \in J_n \text{ and } 1 \leq i < j \leq n.
\]

Starting at this point, the proof of [17, Thm. 1.1] given in [17, §5], can be repeated almost word-by-word in our setting. The only exception is the proof of [17, Lemma 5.8] (which is Lemma 2.11 below) where the invariance of the isomorphism type of centralizers of certain elements is used as well as Dyer–Grossman result [5].
However, as pointed out in [17, Remark 5.15] (there is a misprint there: \(n \geq 6 \) should be replaced by \(n \geq 5 \)), there is another, even simpler, proof of Lemma 2.11 based on Lemma 2.7 (see below). This proof was not included in [17] by the following reason. At that time we new only Garside-theoretic proof of Lemma 2.7 while the rest of the proof of the main theorem for \(n \geq 6 \) used only Nielsen-Thurston theory and results of [12]. So we wanted to make the proofs (at least for \(n \geq 6 \)) better accessible for readers who are not familiar with the Garside theory. Now we learned from [11] that when we wrote that paper, Lemma 2.7 had been already known for a rather long time [2, Lemma 4.9] and the proof in [2] is based on Nielsen-Thurston theory.

In the rest of this section, for the reader’s convenience we re-expose Section 5.1 of [17] (Sections 5.2–5.3 can be left without any change). In this re-exposition we give another proof of [17, Lemma 5.8] and omit the lemmas which are no longer needed due to Proposition 2.4.

We shall consider \(B_n \) as a mapping class group of \(n \)-punctured disk \(\mathbb{D} \). We assume that \(\mathbb{D} \) is a round disk in \(\mathbb{C} \) and the set of the punctures is \(\{1, 2, \ldots, n\} \). Given an embedded segment \(I \) in \(\mathbb{D} \) with endpoints at two punctures, we denote with \(\sigma_I \) the positive half-twist along the boundary of a small neighborhood of \(I \). The set of all such braids is the conjugacy class of \(\sigma_1 \) in \(B_n \). The arguments in the rest of this section are based on Nielsen-Thurston theory. The main tool are the canonical reduction systems. One can use [3], [6] or [10] as a general introduction to the subject. In [17] we gave all precise definitions and statements needed there (using the language and notation inspired mostly by [8]).

Lemma 2.7. ([2, Lemma 4.9], [17, Lemma A.2]). Let \(x, y \in B_n \) be such that \(x y x = y x y \) and each of \(x \) and \(y \) is conjugate to \(\sigma_1 \). Then there exists \(u \in B_n \) such that \(\tilde{u}(x) = \sigma_1 \) and \(\tilde{u}(y) = \sigma_2 \).

Let \(\text{sh}_2 : B_{n-2} \to B_n \) be the homomorphism \(\text{sh}_2(\sigma_i) = \sigma_{i+2} \). We set

\[
\tau = \sigma_1^{(n-2)(n-3)} \text{sh}_2(\Delta_{n-2}^{-2}).
\]

We have \(\tau \in J_n \) (in the notation of [17], \(\tau = \psi_{2,n-2}(1; \sigma_1^{(n-2)(n-3)}, \Delta^{-2}) \)). Recall that we assume \(\varphi(c) = c \), \(\mu \varphi = \mu' \), and hence (4) holds.

Lemma 2.8. Let \(I \) and \(J \) be two disjoint embedded segments with endpoints at punctures. Then \(\varphi(\sigma_I^{-1} \sigma_J) = \sigma_J^{-1} \sigma_I \), where \(I_1 \) and \(J_1 \) are disjoint embedded segments such that \(\partial I_1 = \partial I \) and \(\partial J_1 = \partial J \).

Proof. The braid \(\sigma_I^{-1} \sigma_J \) is conjugate to \(c \), hence so is its image (because \(\varphi(c) = c \)). Therefore \(\varphi(\sigma_I^{-1} \sigma_J) = \sigma_J^{-1} \sigma_I \) for some disjoint \(I_1 \) and \(J_1 \). The matching of the boundaries follows from (4) applied to \(\sigma_I^{-2} \sigma_J^2 \). \(\square \)

Lemma 2.9. (cf. [17, Lemmas 5.1 and 5.3]). Let \(C_1 \) be a component of the canonical reduction system of \(\varphi(\tau) \). Then \(C_1 \) cannot separate the punctures 1 and 2, and it cannot separate the punctures \(i \) and \(j \) for \(3 \leq i < j \leq n \).

Proof. Let \(u = \sigma_i^{-1} \sigma_{ij}, \ 3 \leq i < j \leq n \). By Lemma 2.8, \(\varphi(u) = \sigma_I^{-1} \sigma_J \) with \(\partial I = \{1, 2\} \) and \(\partial J = \{i, j\} \). Since \(\varphi(u) \) commutes with \(\varphi(\tau) \), the result follows. \(\square \)
Lemma 2.10. (cf. [17, Lemma 5.7]). \(\varphi(\tau) \) is conjugate in \(P_n \) to \(\tau \).

Proof. \(\varphi(\tau) \) cannot be pseudo-Anosov because it commutes with \(\varphi(c) \) which is \(c \) by our assumption, hence it is reducible.

If \(\varphi(\tau) \) were periodic, then it would be a power of \(\Delta^2 \) because it is a pure braid. This contradicts (4), hence \(\varphi(\tau) \) is reducible non-periodic.

Let \(C \) be the canonical reduction system for \(\varphi(\tau) \). By Lemma 2.9, one of the following three cases occurs.

Case 1. \(C \) is connected, the punctures 1 and 2 are inside \(C \), all the other punctures are outside \(C \). Then the restriction of \(\varphi(\tau) \) (viewed as a diffeomorphism of \(\mathbb{D} \)) to the exterior of \(C \) cannot be pseudo-Anosov because \(\varphi(\tau) \) commutes with \(\varphi(c) = c \), hence it preserves a circle which separates 3 and 4 from 5, \ldots, \(n \). Hence \(\varphi(\tau) \) is periodic which contradicts (4). Thus this case is impossible.

Case 2. \(C \) is connected, the punctures 1 and 2 are outside \(C \), all the other punctures are inside \(C \). This case is also impossible and the proof is almost the same as in Case 1. To show that \(\varphi(\tau) \) cannot be pseudo-Anosov, we note that it preserves a curve which encircles only 1 and 2.

Case 3. \(C \) has two components: \(C_1 \) and \(C_2 \) which encircle \(\{1, 2\} \) and \(\{3, \ldots, n\} \) respectively. Let \(\alpha \) be the interior braid of \(C_2 \) (that is \(\varphi(\tau) \) with the strings 1 and 2 removed). It cannot be pseudo-Anosov by the same reasons as in Case 1: because \(\varphi(\tau) \) preserves a circle separating 3 and 4 from 5, \ldots, \(n \). Hence \(\alpha \) is periodic. Using (4), we conclude that \(\varphi(\tau) \) is a conjugate of \(\tau \). Since the elements of \(Z(\tau; B_n) \) realize any permutation of \(\{1, 2\} \) and of \(\{3, \ldots, n\} \), the conjugating element can be chosen in \(P_n \). \(\Box \)

Lemma 2.11. (cf. [17, Lemma 5.8]). There exists \(u \in P_n \) such that \(\varphi(c_i) = \bar{u}(c_i) \) for each \(i = 3, \ldots, n - 1 \).

Proof. Due to Lemma 2.10, without loss of generality we may assume that \(\varphi(\tau) = \tau \) and \(\tau(C) = C \) where \(C \) is the canonical reduction system for \(\tau \) consisting of two round circles \(C_1 \) and \(C_2 \) which encircle \(\{1, 2\} \) and \(\{3, \ldots, n\} \) respectively. Since the conjugating element in Lemma 2.10 is chosen in \(P_n \), we may assume that (4) still holds.

By Lemma 2.8, for each \(i = 3, \ldots, n - 1 \), we have \(\varphi(c_i) = \sigma_{I_i}^{-1} \sigma_{J_i}^{-1} \) with \(\partial I_i = \{1, 2\} \) and \(\partial J_i = \{i, i + 1\} \). Since \(\tau \) commutes with each \(c_i \), the segments \(I_i \) and \(J_i \) can be chosen disjoint from the circles \(C_1 \) and \(C_2 \). Hence \(\sigma_{I_i} = \sigma_1 \) for each \(i \), and all the segments \(J_i \) are inside \(C_2 \).

Therefore the braids \(\sigma_{J_3}, \ldots, \sigma_{J_{n-1}} \) satisfy the same braid relations as \(\sigma_3, \ldots, \sigma_{n-1} \). Hence, by Lemma 2.7 combined with [17, Lemma 5.13], \(J_3 \cup \cdots \cup J_{n-1} \) is an embedded segment. Hence it can be transformed to the straight line segment \([3, n] \) by a diffeomorphism identical on the exterior of \(C_2 \). Hence for the braid \(u \) represented by this diffeomorphism we have \(\bar{u}(c_i) = c_i \), \(i \geq 3 \). The condition \(\partial J_i = \{i, i + 1\} \) implies that \(u \in P_n \). \(\Box \)

The rest of the proof of Theorem 1.1 repeats word-by-word [17, §§5.2–5.3].

Remark 2.12. Besides Nielsen-Thurston theory, in the case \(n = 5 \), the arguments in [17, §§5.3] use an auxiliary result [17, Lemma A.1] for which the only proof we know is based on a slight modification of the main theorem of [16] which is proven there using the Garside theory.
3. The case $n = 4$

We shall use the same notation as in [17, §6]. The groups B_3' and B_4' were computed in [9], namely B_3' is freely generated by $u = \sigma_2\sigma_1^{-1}$ and $t = \sigma_1^{-1}\sigma_2$, and $B_4' = K_4 \rtimes B_3'$ where $K_4 = \ker R$ (see (1)). The group K_4 is freely generated by $c = \sigma_3\sigma_1^{-1}$ and $w = \sigma_2\sigma_2^{-1}$. The action of B_3' on K_4 by conjugation is given by

$$ucu^{-1} = w, \quad uwu^{-1} = w^2c^{-1}w, \quad tct^{-1} = cw, \quad twt^{-1} = cw^2.$$ \hfill (5)

The action of σ_1 and σ_2 on K_4 is given by

$$\sigma_1c\sigma_1^{-1} = c, \quad \sigma_1w\sigma_1^{-1} = c^{-1}w, \quad \sigma_2c\sigma_2^{-1} = w, \quad \sigma_2w\sigma_2^{-1} = wc^{-1}w.$$ \hfill (6)

So, we also have $B_4 = K_4 \rtimes B_3$.

Besides the elements c, w, u, t of B_4', we consider also $d = \Delta \sigma_1^{-3}\sigma_3^{-3}$ and $g = R(d) = \Delta_3^2\sigma_1^{-6}$.

One has (see Figure 1)

$$d = [c^{-1}t, u^{-1}], \quad g = [t, u^{-1}].$$ \hfill (7)

We denote the subgroup generated by c and d by H and the subgroup generated by c and g by G.

![Figure 1](image-url) \hfill Figure 1. the identity $d = [c^{-1}t, u^{-1}]$.

Let $\varphi : B_4' \to B_4$ be a homomorphism such that $K_4 \not\subset \ker \varphi$.

Lemma 3.1. The restriction of φ to H is injective, $\varphi(H) \subset B_4'$, and $\varphi(G) \subset B_4'$.

Proof. We have $H = \langle c \rangle \rtimes \langle d \rangle$ and d acts on c by $dcd^{-1} = c^{-1}$. Hence any non-trivial normal subgroup of H contains a power of c. Thus, if $\varphi|_H$ were not injective, $\ker \varphi$ would contain a power of c and hence c itself because the target group B_4 does not have elements of finite order. Then we also have $w \in \ker \varphi$ because $w = ucu^{-1}$.

This contradicts the assumption $K_4 = \langle c, w \rangle \not\subset \ker \varphi$, thus $\varphi|_H$ is injective.

We have $dcd^{-1} = c^{-1}$, hence the image of $\varphi(c)$ under the abelianization $c : B_4 \to \mathbb{Z}$ is zero, i.e., $\varphi(c) \in B_4'$. By (7) we also have $\varphi(d) \in B_4'$ and $\varphi(g) \in B_4'$, thus $\varphi(H) \subset B_4'$ and $\varphi(G) \subset B_4'$. \hfill \Box
Lemma 3.2. \(\varphi(c) \) and \(\varphi(g) \) do not commute.

Proof. Suppose that \(\varphi(c) \) and \(\varphi(g) \) commute. Then \(\varphi(c) = \varphi(gcg^{-1}) \). Hence (see Figure 2) \(\varphi(c) = \varphi(w^{-1}c^{-1}w) \), i.e., \(\varphi \) factors through the quotient of \(B'_4 \) by the relation \(wc = c^{-1}w \). Let us denote this quotient group by \(\hat{B}'_4 \).

The relation \(wc = c^{-1}w \) allows us to put any word \(\prod_j c^{k_j} w^{l_j} \) with \(l_j = \pm 1 \) into the normal form \(c^{k_1-k_2+k_3-...-l_1+l_2+l_3+...} \) in \(\hat{B}'_4 \). Due to (5), the conjugation by \(t \) of the word \(w^{-1}cwc \) (which is equal to 1 in \(\hat{B}'_4 \)) yields

\[
1 = t(w^{-1}cwc)t^{-1} = (w^{-2}c^{-1})(cw)(cw^2)(cw) = w^{-1}cw^2cw = c^{-2}w^2
\]

(here in the last step we put the word into the above normal form). Conjugating once more by \(t \) and putting the result into the normal form, we get

\[
1 = t(c^{-2}w^2)t^{-1} = (w^{-1}c^{-1})(w^{-1}c^{-1})(cw^2)(cw) = w^{-1}c^{-1}wcw^2 = c^2w^2.
\]

Thus \(c^{-2}w^2 = c^2w^2 = 1 \), i.e., \(c^4 = 1 \) in \(\hat{B}'_4 \), hence \(\varphi(c^4) = 1 \) which contradicts Lemma 3.1. \(\square \)

As in [17], we denote the stabilizer of 1 under the natural action of \(B_3 \) on \(\{1, 2, 3\} \) by \(B_{1,2} \). It is well-known (and easy to prove by Reidemeister-Schreier method) that \(B_{1,2} \) is isomorphic to the Artin group of type \(B_2 \), that is \(\langle x, y \mid xyxy = yxxy \rangle \). The Artin generators \(x \) and \(y \) of the latter group correspond to \(\sigma_1^2 \) and \(\sigma_2 \).

Lemma 3.3. (cf. [17, Lemma 6.2]) We have \(G = Z(d^2c^6; B'_4) \) and this group is generated by \(g \) and \(c \) subject to the defining relation \(gcgc = cgcg \).

Proof. The centralizer of \(d^2c^6 \) in \(B_4 \) is the stabilizer of its canonical reduction system which is shown in Figure 4, and (see [8, Thm. 5.10]) it is the image of the injective homomorphism \(B_{1,2} \times \mathbb{Z} \to B_4 \), \((X, n) \mapsto Y\sigma_1^n \), where the 4-braid \(Y \) is obtained from the 3-braid \(X \) by doubling the first strand. It follows that \(Z(d^2c^6; B'_4) \) is the isomorphic image of \(B_{1,2} \) under the homomorphism \(\psi : B_{1,2} \to B'_4 \) defined on the generators by \(\psi(\sigma_1^2) = g \), \(\psi(\sigma_2) = c \) (see Figure 3), thus \(Z(d^2c^6; B'_4) = G \). As we have pointed out above, \(B_{1,2} \) is the Artin group of type \(B_2 \), hence so is \(G \) and \(gcgc = cgcg \) is its defining relation. \(\square \)

Figure 2. The identity \(gcg^{-1} = w^{-1}c^{-1}w \).

Figure 3. The images of the generators under \(\psi : B_{1,2} \to B'_4 \).
Lemma 3.4. \(\varphi(d^2c^6) \) is conjugate in \(B_4 \) to \(d^{2k}, d^{2k}c^{6k} \), or \(h^k \) for some integer \(k \neq 0 \), where \(h = \Delta_3^{-2}\sigma_3\sigma_2\sigma_1^2\sigma_2\sigma_3 \).

Proof. Let \(x = d^2c^6 \). By Lemma 3.3, \(G = Z(x; B'_4) \), hence \(\varphi(G) \subset Z(\varphi(x); B_4) \).

By Lemma 3.1 we also have \(\varphi(G) \subset B'_4 \), hence \(\varphi(G) \subset Z(\varphi(x); B'_4) \). Then it follows from Lemma 3.2 that \(Z(\varphi(x); B'_4) \) is non-commutative. The isomorphism classes of the centralizers (in \(B'_4 \)) of all elements of \(B'_4 \) are computed in [17, Table 6.1]. We see in this table that \(Z(\varphi(x); B'_4) \) is non-commutative only in the required cases (see the corresponding canonical reduction systems in Figure 4) unless \(\varphi(x) = 1 \). However the latter case is impossible by Lemma 3.1. \(\square \)

![Figure 4. Canonical reduc. systems for \(d^m, c^m, (d^2c^6)^m, h^m, m \neq 0 \).](image)

Lemma 3.5. There exists an automorphism of \(B_4 \) which takes \(\varphi(c) \) and \(\varphi(d) \) to \(c^k \) and \(d^k \) respectively for an odd positive integer \(k \).

Proof. Let \(x = d^2c^6 \) and \(y = d^2c^{-6} \). Since \(y = dx^{-1} \), the images of \(x \) and \(y \) are conjugate and both of them belong to one of the conjugacy classes indicated in Lemma 3.4. The canonical reduction systems for \(d^{2k}, d^{2k}c^{6k} \), and \(h^k \) for \(k \neq 0 \) are shown in Figure 4. Since \(x \) and \(y \) commute, the canonical reduction systems of their images can be chosen disjoint from each other. Hence, up to composing \(\varphi \) with an inner automorphism of \(B_4 \), \((\varphi(x), \varphi(y)) \) is either \((h^{k_1}, h^{k_2}) \) or \((d^{2k_1}c^{l_1}, d^{2k_2}c^{l_2}) \) where \(l_j \in \{0, \pm 6k_j\} \), \(j = 1, 2 \). Since \(x \) and \(y \) are conjugate, by comparing the linking numbers between different pairs of strings, we deduce that \(k_1 = k_2 \) and (in the second case) \(l_1 = \pm l_2 \). Moreover, \(\varphi(x) \neq \varphi(y) \) by Lemma 3.1. Hence, up to exchange of \(x \) and \(y \) (which is realizable by composing \(\varphi \) with \(\tilde{d} \)), we have \(\varphi(x) = d^{2k}c^{6k} \) and \(\varphi(y) = d^{2k}c^{-6k} \) whence, using that \(xy^{-1} = c^{12} \), we obtain \(\varphi(c^{12}) = \varphi(xy^{-1}) = c^{12k} \). Since the canonical reduction systems of any braid and its non-zero power coincide (see, e.g., [7, Lemmas 2.1–2.3]), we obtain \(\varphi(c) = c^k \) and \(\varphi(d) = d^k \). By composing \(\varphi \) with \(\Lambda \) if necessary, we can arrive to \(k > 0 \). The relation \(d^kc^kd^{-k} = c^{-k} \) combined with Lemma 3.1 implies that \(k \) is odd. \(\square \)

Lemma 3.6. \(\varphi(K_4) \subset K_4 \).

Proof. Lemma 3.5 implies that \(c^k \) is mapped to \(\varphi(c) \) by an automorphism of \(B_4 \). Since \(K_4 \) is a characteristic subgroup of \(B'_4 \) (see [17, Lemma 6.5]) and \(B'_4 \) is a characteristic subgroup of \(B_4 \), we deduce that \(\varphi(c) \in K_4 \). The same arguments can be applied to any other homomorphism of \(B'_4 \) to \(B_4 \) whose kernel does not contain \(K_4 \), in particular, they can be applied to \(\varphi\tilde{u} \) whence \(\varphi\tilde{u}(c) \in K_4 \). Since \(\varphi(w) = \varphi\tilde{u}(c) \), we conclude that \(\varphi(K_4) = \langle \varphi(c), \varphi(w) \rangle \subset K_4 \). \(\square \)

Let \(F = G \cap K_4 \).
Lemma 3.7. (a) The group F is freely generated by c and $c_1 = w^{-1}c^{-1}w$.

(b). Let a_1, \ldots, a_{m-1} and b_1, \ldots, b_m be non-zero integers, and let a_0 and a_m be any integers. Then $c^{a_0}w^{b_1}c^{a_1} \ldots w^{b_m}c^{a_m}$ is in F if and only if m is even and $b_j = (-1)^j$ for each $j = 1, \ldots, m$.

Proof. The relation on g and c in Lemma 3.3 is equivalent to
\[g^{-1}cg = cg^{-1}. \] (8)
Recall that $G = \langle c, g \rangle$. We have $R(c) = 1$ and, by (7), $g = R(d) \in B'_2$ whence $R(g) = g$. Hence $R(G)$ is generated by g. By definition, $F = \ker(R|_G)$, hence F is the normal closure of c in G, i.e., F is generated by the elements $\tilde{g}^k(c)$, $k \in \mathbb{Z}$. We have $\tilde{g}(c) = c_1$ (see Figure 2) and
\[\tilde{g}(c_1) = \tilde{g}^2(c) = g c^{-1}(cgcg^{-1})g^{-1} = g c^{-1}(g^{-1}cg)c^{-1} = c_1^{-1}c_1 \]
whence by induction we obtain $\tilde{g}^k(c) \in \langle c, c_1 \rangle$ for all positive k. Similarly,
\[\tilde{g}^{-1}(c) = (g^{-1}cg)c^{-1} = c_1c^{-1} \]
and $\tilde{g}^{-1}(c_1) = c$ whence $\tilde{g}^k(c) \in \langle c, c_1 \rangle$ for all negative k. Thus $F = \langle c, c_1 \rangle$.

To check that c and c_1 is a free base of F (which completes the proof of (a)), it is enough to observe that if, in a reduced word in x, y, we replace each x^k with c^k and each y^k with $w^{-1}c^{-k}w$, then we obtain a reduced word in c and w. The statement (b) also easily follows from this observation. □

Lemma 3.8. If $x \in F$ and $x = [w^{-1}, A]$ with $A \in K_4$, then $x = [w^{-1}, c^k], k \in \mathbb{Z}$.

Proof. Let $A = w^{b_1}c^{a_1} \ldots w^{b_m}c^{a_m}w^{b_{m+1}}, m \geq 0$, where a_1, \ldots, a_m and b_2, \ldots, b_m are non-zero while b_1 and b_{m+1} may or may not be zero. If $m = 0$, then $[w^{-1}, A] = 1 = [w^{-1}, c^0]$ and we are done. If $m = 1$, then $[w^{-1}, A] = w^{b_1-1}c^{a_1}w^{-1}c^{-a_1}w^{-b_1}$ where, by Lemma 3.7(b), we must have $b_1 = 0$, hence $[w^{-1}, A] = [w^{-1}, c^{a_1}]$ as required. Suppose that $m \geq 2$. Then
\[[w^{-1}, A] = w^{b_1-1}c^{a_1} \ldots w^{b_m}c^{a_m}w^{-a_m}w^{-b_m} \ldots c^{-a_1}w^{-b_1} \]
and this is a reduced word in c, w. Hence, by Lemma 3.7(b), the sequence of the exponents of w in this word (starting form $b_1 - 1$ when $b_1 \neq 1$ or from b_2 when $b_1 = 1$) should be $(-1, 1, -1, 1, \ldots, -1, 1)$. Such a sequence cannot contain $(\ldots, b_m, 1, -b_m, \ldots)$. A contradiction. □

Lemma 3.9. If $\varphi(d^2) = d^2$ and $\varphi(c) = c$, then $w^{-1}\varphi(w) \in F$.

Proof. For any $k \in \mathbb{Z}$ we have
\[\sigma_3^k w = \sigma_3^k (\sigma_2 \sigma_3)(\sigma_1^{-1} \sigma_2^{-1}) = (\sigma_2 \sigma_3)^k (\sigma_1^{-1} \sigma_2^{-1}) = (\sigma_2 \sigma_3)^k \sigma_1^{-1} \sigma_2^{-1} = w \sigma_1^{-1} \sigma_2^{-1}, \]
hence $\sigma_3^k \sigma_1^{-1} \sigma_2^{-1} = w = \sigma_3^{-k} \sigma_1^{-1} \sigma_2^{-1}$ and we obtain
\[d^2 w d^{-2} = \Delta^2 \sigma_1^{-6} (\sigma_3^{-6} w \sigma_1)^6 \sigma_3^{-6} \Delta^{-2} = \sigma_1^{-6} (\sigma_3^{-6} w \sigma_1)^6 \sigma_3^{-6} = c^6 w c^6. \] (9)
Set $x = w^{-1}\varphi(w)$, i.e., $\varphi(w) = wx$. The relation (9) combined with our hypothesis on c and d^2 implies
\[c^6 w x c^6 = \varphi(c^6 w c^6) = \varphi(d^2(w)) = d^2(w x) = d^2(w) d^2(x) = c^6 w c^6 d^2 x d^{-2} \]
whence $x(c^6 d^2) = (c^6 d^2)x$, i.e., $x \in Z(d^2 c^6)$. On the other hand, $\varphi(w) \in K_4$ by Lemma 3.6, hence $x = w^{-1}\varphi(w) \in K_4$. By Lemma 3.3 we have $Z(d^2; B'_4) = G$, thus $x \in Z(d^2 c^6) \cap K_4 = G \cap K_4 = F$. □
Lemma 3.10. There exists $f \in \text{Aut}(B_4)$ and a homomorphism $\tau : B_4' \rightarrow Z(B_4)$ such that $f \varphi(c) = c$, $f \varphi(d^2) = d^2$, and $Rf \varphi = R\text{id}_{[\tau]}$.

Proof. By Lemma 3.5 we may assume that $\varphi(c) = c^k$ and $\varphi(d) = d^k$ for an odd positive k. For $x \in K_4$, we denote its image in K_4^{ab} by \tilde{x} and we use the additive notation for K_4^{ab}. Consider the homomorphism $\pi : B_4 \rightarrow \text{Aut}(K_4^{ab}) = \text{GL}(2, \mathbb{Z})$, where $\pi(x)$ is defined as the automorphism of K_4^{ab} induced by \tilde{x}; here we identify $\text{Aut}(K_4^{ab})$ with $\text{GL}(2, \mathbb{Z})$ by choosing \tilde{c} and \tilde{w} as a base of K_4^{ab}. By Lemma 3.6, $\varphi(w) \in K_4$, hence we may write $\varphi(w) = p\tilde{c} + q\tilde{w}$ with $p, q \in \mathbb{Z}$. Then, for any $x \in B_4$, we have

$$\pi \varphi(x) \cdot P = P \pi(x) \quad \text{where} \quad P = \begin{pmatrix} k & p \\ 0 & q \end{pmatrix}. \quad (10)$$

(P is the matrix of the endomorphism of K_4^{ab} induced by $\varphi|_4$). By (9) we have

$$\pi(d^2) = \begin{pmatrix} 1 & 12 \\ 0 & 1 \end{pmatrix} \quad \text{hence} \quad \pi(d^{2k}) \cdot P = P \pi(d^2) = \begin{pmatrix} 0 & 12k(q - 1) \\ 0 & 0 \end{pmatrix}. \quad (11)$$

Since $\varphi(d^2) = d^{2k}$, we obtain from (10) combined with (11) that $q = 1$, i.e., $\varphi(w) = p\tilde{c} + \tilde{w}$. By (5) we have $\varphi(u)c^k\varphi(u)^{-1} = \varphi(ucu^{-1}) = \varphi(w)$, hence

$$k \varphi(u)c\varphi(u)^{-1} = \varphi(w) = p\tilde{c} + \tilde{w}.$$

Therefore $k = 1$ because $p\tilde{c} + \tilde{w}$ cannot be a multiple of another element of K_4^{ab}. Notice that $\tilde{\sigma}_1(c) = c$, $\tilde{\sigma}_1(d^2) = d^2$, and $\tilde{\sigma}_1(w) = c^{-1}w$ (see (6)). Hence, for $f = \tilde{\sigma}_1^p$, we have

$$f \varphi(c) = c, \quad f \varphi(d^2) = d^2, \quad f \varphi(w) = \tilde{w}. \quad (12)$$

It remains to show that $Rf \varphi = R\text{id}_{[\tau]}$ for some $\tau : B_4' \rightarrow Z(B_4)$. Let $x \in B_4'$. Since $B_4' = K_4 \times B_3'$ and $B_4 = K_4 \times B_3$, we may write $x = x_1 a_1$ and $f \varphi(x) = x_2 a_2$ with $x_1 \in R(x) \in B_3'$, $x_2 = Rf \varphi(x) \in B_3$, and $a_1, a_2 \in K_4$. The equation (10) for $f \varphi$ (and hence with the identity matrix for P because (12) means that $f \varphi|_4$ induces the identity mapping of K_4^{ab}) reads $\pi f \varphi(x) = \pi(x)$, that is $\pi(x_2 a_2) = \pi(x_1 a_1)$. Since $a_1, a_2 \in K_4 \subset \ker \pi$, this implies that

$$\pi(x_1) = \pi(x_2). \quad (13)$$

Let $S_1 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ and $S_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. It is well-known that the mapping $\sigma_1 \mapsto S_1$, $\sigma_2 \mapsto S_2$ defines an isomorphism between $B_3/\langle \Delta_3^4 \rangle$ and $\text{SL}(2, \mathbb{Z})$. From (6) we see that $\pi(\sigma_1) = S_1$ and $\pi(\sigma_1^{-1}\sigma_2\sigma_1) = S_2$. Hence $\ker(\pi|_{B_3}) = \langle \Delta_3^4 \rangle = R(Z(B_4))$. Therefore (13) implies that $x_2 = x_1 R(\tau(x))$ for some element $\tau(x)$ of $Z(B_4)$. It is easy to check that τ is a group homomorphism, thus, recalling that $x_1 = R(x)$ and $x_2 = Rf \varphi(x)$, we get $Rf \varphi(x) = x_2 = x_1 R(\tau(x)) = R(x\tau(x)) = R \text{id}_{[\tau]}(x)$. □

Lemma 3.11. If $\varphi|_4 = \text{id}$ and $R \varphi = R\text{id}_{[\tau]}$ for some homomorphism $\tau : B_4' \rightarrow Z(B_4)$, then $\varphi = \text{id}_{[\tau]}$.

Proof. Since $B_4' = K_4 \times B_3'$ and $K_4 \subset \ker \pi$, it is enough to show that $\varphi|_{B_3'} = \text{id}_{[\tau]}$. So, let $x \in B_3'$. The condition $R \varphi = R\text{id}_{[\tau]}$ means that $\varphi(x) = x a \tau(x)$ with $a \in K_4$.

Let b be any element of K_4. Then $xbx^{-1} \in K_4$, hence $\varphi(xbx^{-1}) = xbx^{-1}$ (because $\varphi|_{K_4} = \text{id}$). Since $\varphi(x) = x\tau(x)$, $\varphi(b) = b$, and $\tau(x)$ is central, it follows that

$$xbx^{-1} = \varphi(xbx^{-1}) = \varphi(x)b\varphi(x)^{-1} = x\tau(x)b\tau(x)^{-1}a^{-1}x^{-1} = xaba^{-1}x^{-1}$$

whence $aba^{-1} = b$. This is true for any $b \in K_4$, thus $a \in Z(K_4)$. Since K_4 is free, we deduce that $a = 1$, hence $\varphi(x) = x\tau(x) = \text{id}_{[\tau]}(x)$.

Proof of Theorem 1.4. Recall that we assume in this section that φ is a homomorphism $B'_4 \rightarrow B_4$ such that $K_4 \not\subset \ker \varphi$.

By Lemma 3.10 we may assume that $\varphi(c) = c$, $\varphi(d^2) = d^2$, and $R\varphi = R\text{id}_{[\tau]}$ for some $\tau : B'_4 \rightarrow Z(B_4)$, in particular, $R\varphi(u) = R(u\tau(u))$. The latter condition means that $\varphi(u) = u\tau(u)$ with $a \in K_4$. Then, by (5), we have

$$\varphi(w) = \varphi(ucu^{-1}) = uaca^{-1}u^{-1} = \tilde{u}(c[c^{-1}, a]), = w[w^{-1}, \tilde{u}(a)],$$

thus $w^{-1}\varphi(w) = [w^{-1}, A]$ for $A = \tilde{u}(a) \in K_4$. By Lemma 3.9 we have also $w^{-1}\varphi(w) \in F$. Then Lemma 3.8 implies that $w^{-1}\varphi(w) = [w^{-1}, c^k]$ for some integer k, that is $\varphi(w) = c^kw^{-k}$. Hence, $(\tilde{c}^{-k}\varphi)|_{K_4} = \text{id}$. Since $c \in \ker R$, we have $R\tilde{c}^{-k} = R$ whence $R\tilde{c}^{-k}\varphi = R\varphi = R\text{id}_{[\tau]}$. This fact combined with $(\tilde{c}^{-k}\varphi)|_{K_4} = \text{id}$ and Lemma 3.11 implies that $\tilde{c}^{-k}\varphi = \text{id}_{[\tau]}$, i.e., φ is equivalent to $\text{id}_{[\tau]}$. □

References

1. E. Artin, *Theory of braids*, Ann. of Math. 48 (1947), 101–126.
2. R. W. Bell, D. Margalit, *Braid groups and the co-Hopfian property*, J. Algebra 303 (2006), 275–294.
3. J. S. Birman, A. Lubotzky, J. McCarthy, *Abelian and solvable subgroups of the mapping class group*, Duke Math. J. 50 (1983), 1107–1120.
4. F. Castel, *Geometric representations of the braid groups*, Astérisque 378 (2016), vi+175.
5. J. L. Dyer, E. K. Grossman, *The automorphism group of the braid groups*, Amer. J. of Math. 103 (1981), 1151–1169.
6. B. Farb, D. Margalit, *A primer on mapping class groups*, volume 49 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 2012.
7. J. González-Meneses, *The nth root of a braid is unique up conjugacy*, Algebraic and Geometric Topology 3 (2003), 1103–1118.
8. J. González-Meneses, B. Wiest, *On the structure of the centralizer of a braid*, Ann. Sci. Éc. Norm. Sup. (4) 37 (2004), 729–757.
9. E. A. Gorin, V. Ya. Lin, *Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids*, Math. USSR-Sbornik 7 (1969), 569–596.
10. N. V. Ivanov, *Subgroups of Teichmüller modular groups*, Translations of mathematical monographs, vol. 115, AMS, 1992.
11. K. Kordek, D. Margalit, *Homomorphisms of commutator subgroups of braid groups*, arXiv:1910.06941.
12. V. Lin, *Braids and permutations*, arXiv:math/0404528.
13. V. Ya. Lin, *Algebraic functions, configuration spaces, Teichmüller spaces, and new holomorphically combinatorial invariants*, Funk. Anal. Prilozh. 45 (2011), no. 3, 55–78 (Russian); English transl., Funct. Anal. Appl. 45 (2011), no. 3, 204–224.
14. V. Lin, *Some problems that I would like to see solved*, Abstract of a talk, Technion, 2015, http://www2.math.technion.ac.il/~pincho/Lin/Abstracts.pdf.
15. W. Magnus, A. Karrass, D. Solitar, *Combinatorial group theory: presentations of groups in terms of generators and relations*, Interscience Publ., 1966.
16. S. Yu. Orevkov, *Algorithmic recognition of quasipositive braids of algebraic length two*, J. of Algebra 423 (2015), 1080–1108.
17. S. Yu. Orevkov, *Automorphism group of the commutator subgroup of the braid group*, Ann. Faculté des Scie. de Toulouse. Math. (6) 26 (2017), 1137–1161.