Photocatalytic Efficiency of Titanium Dioxide for Dyes and Heavy Metals Removal from Wastewater

Suresh Sagadevan1,*, Is Fatimah2,*, Titus Chinedu Egboisiub3, Solhe F. Alshahateet4, J. Anita Lett5, Getu Kassegn Weldegebrieal6, Minh-Vien Le7,8, Mohd Rafie Johan1

1 Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia.
3 Department of Chemical Engineering, Mutah University, P.O. BOX 7, Mutah 61710, Karak, Jordan.
4 Department of Chemistry, College of Natural and Computational Sciences, Debre Berhan University, Ethiopia.
5 Department of Chemistry, College of Science and Technology, Sanyabana Institute of Science and Technology, Chennai, Tamil Nadu, India.
6 Department of Chemistry, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam.
7 Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam.
8 Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam.

Received: 26th March 2022; Revised: 19th May 2022; Accepted: 20th May 2022
Available online: 25th May 2022; Published regularly: June 2022

Abstract

The hazardous toxicity of dye materials, even in low concentrations, harms ecological systems. It releases a large number of contaminants into the water, resulting as waste water. Dyes prevent the process of photosynthesis by obstructing light passage, lowers the oxygen levels dissolved in the water. Also, a good number of the dyes and heavy metals are carcinogenic and mutagenic to human beings. Heterogeneous photocatalysis is a promising technology for removing organic, inorganic, and microbial pollutants from water and wastewater. It is preferable to other conventional wastewater treatment approaches due to its benefit, such as low cost, environmental friendliness, ability to proceed at ambient temperature and pressure conditions, and to completely degrade pollutants into environmentally safe products with suitable measures. The titanium oxide (TiO\textsubscript{2}) is one of the most promising materials that has gained enormous importance in the field of energy and environmental applications. The unique physicochemical properties of TiO\textsubscript{2} make it one of the best candidates among existing photocatalysts. This review provides an overview of strategies employed to augment its catalytic performance as well as the impact of different operational parameters on the removal proficiency of various organic and inorganic pollutants in water and wastewater treatment.

Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: TiO\textsubscript{2}; Heterogeneous photocatalysis; Organic pollutants; Toxic heavy metal ion; Wastewater treatment

How to Cite: S. Sagadevan, I. Fatimah, T.C. Egboisiub, S.F. Alshahateet, J.A. Lett, G.K. Weldegebrieal, M.V. Le, M.R. Johan (2022). Photocatalytic Efficiency of Titanium Dioxide for Dyes and Heavy Metals Removal from Wastewater. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 430-450 (doi: 10.9767/bcrec.17.2.13948.430-450)

Permalink/DOI: https://doi.org/10.9767/bcrec.17.2.13948.430-450

1. Introduction

Water pollution had been adjudged a global menace for the accessibility of clean water, espec-
charged into the environment without proper treatment and cause a lot of diseases to human beings and public health. For instance, dyes used for colour impartation to achieve product attractiveness have been reported to decrease light penetration, thereby affecting the photosynthetic process [3-6]. Equally, metals, such as zinc (Zn), copper (Cu), lead (Pb), cadmium (Cd), Chromium (Cr), iron (Fe), mercury (Hg), arsenic (As) and nickel (Ni), are regarded as heavy metals when they are present in water more than a density of 5 g/cm³ [2,7]. These pollutants are very toxic, mutagenic, and carcinogenic which culminates in the malfunctioning of the reproductive system, liver, kidney, and nervous systems [7-9]. Since the pollutants are non-biodegradable and are accumulated in organisms through food chain transfer and direct uptake, there is a need to treat the wastewater to meet guidelines for drinking water quality by world health organizations [10].

Various conventional treatment methods are applied to remove toxic pollutants from wastewater including chemical [11], biological [12], membrane filtration [13], and adsorption [14]. Despite the use of these treatment methods for water quality improvement, some of them have prevalent disadvantages, for instance, chemical techniques involve large consumption of chemicals, pH monitoring, sludge generation and formation of secondary pollutants due to the excess chemicals used [4]. Specifically, the membrane filtration method is not cost-effective, inefficient in solute restriction and involves low throughput due to fouling challenges [9]. Also, the biological processes are difficult to control, while the adsorption technique produces secondary pollutants [4]. However, photocatalysis is a clean, environmentally friendly and sustainable process using semiconductor material for the creation of reactive chemical species that decompose toxic pollutants into non-toxic by-products. In doing that, common single photocatalysts used include titanium dioxide (TiO₂), tungsten trioxide (WO₃), zinc oxide (ZnO), tin(IV) oxide (SnO₂), cerium(IV) oxide (CeO₂), and iron(III) oxide (Fe₂O₃) [4,11,16]. Among them, TiO₂ has exhibited effective photocatalytic performance [1].

Titanium dioxide is commonly used in the photocatalytic water purification process to decompose various organic pollutants such as dyes, heavy metals, pesticides and phenols [17,18]. To obtain TiO₂ photocatalysts with high photocatalytic activity, many modifications of pristine material by metals, nonmetal species, or coupling TiO₂ with other semiconductors were performed [19-21]. One of the most promising and widely tested methods for preparing highly active photocatalysts is TiO₂ due to the enhancement of the photocatalytic activity under visible-light irradiation and the suppression of the recombination of the electron-hole pairs [22,23]. With the rapid advancement of science and technology, there has been a great deal of focus on the use of TiO₂ photocatalyst [24]. Numerous other successful materials have demonstrated improved photocatalytic activity. It is interesting to note that the use of TiO₂ has reached a sustainable level over the last half-century. Researchers have made extensive use of it due to its high photocatalytic activity, nontoxicity, ease of availability, and stability in the working environment [25]. Its unique properties make it chemically and biologically resistant and stable, while also being highly active against photoinduced chemical reactions and organisms [26]. TiO₂ can withstand high temperatures as well as work at room temperature. The physicochemical properties of TiO₂ can be altered to a greater extent as its size get reduced to the nanometer scale [27]. TiO₂ materials were prepared in the form of nanoparticles, nanowires, nanofibers, and nanotubes. As a result, it has emerged as a potential research component in terms of energy and the environment. However, TiO₂ can be excited by UV irradiation, which initiate the photocatalytic reactions such as flaking corrosion of paints and fabric degradation in the sun. Nowadays, it is also used for wastewater treatment. It is so specific that it can be effective against extremely low levels of pollution. It can be used for water splitting to generate H₂ gas.

Therefore, this review begins with the introduction of water pollution and its treatment methods including their specific qualities and limitations. When compared to conventional remediation methods, it was discovered that photocatalysis is one of the most distinctive and effective technology for water treatment, aiding in energy savings while efficiently remediating environmental concerns. Notably, the main focus of this review is the depiction of a more appealing photocatalytic property of TiO₂ towards the elimination of diverse pollutants in aqueous media. In addition, the fundamental principles of photocatalysis, its mechanism, working parameters in photocatalytic processes, and limitations that hinder photocatalytic performance of TiO₂ are discussed.
2. Water Pollution

Water is a necessary component of the ecosystem for both living and nonliving things. The availability of clean water is critical for living creatures which constantly used for drinking, cooking, cleaning, horticulture, and so on. Nature has its mechanism for recycling water to provide an adequate quantity of freshwater, with the impact on life sustainability and the standard of living beings. Current human activities such as large deforestation, decreased agricultural lands, extensive use of chemical pesticides, industrial chemical discharge, and so on have disrupted the equilibrium between usage and natural purification processes, resulting in a scarcity of clean and potable water. The majority of natural drinking water resources are contaminated with various poisonous materials and pathogenic microorganisms [28]. Water pollutants can be found in a variety of hazardous wastes, including pharmaceutical waste, pesticides, herbicides, textiles, gums, and phenolic compounds [29].

Water pollution is one of the most serious threats and challenges confronting humanity today. Every day, human activities pollute rivers, lakes, groundwater aquifers, and oceans with contaminant substances and wastes. This contamination alters the quality of the environment’s water, resulting in large amounts of water that are unsuitable for a variety of uses, including human consumption. Common water pollutants include textile dye; herbicides and pesticides; alkanes; haloalkanes; aliphatic compounds; alcohols; carboxylic acids; aromatic compounds; detergents and surfactants; agro waste like insecticides, pesticides and herbicides [30] inorganic compounds like heavy metals, such as mercury, cadmium, silver, nickel, lead; toxic gases; and pathogens like bacteria fungi and viruses [31,32]. Organic and inorganic contaminants can be found in groundwater, wells and surface waters; these residues can harm the environment and human health. Water covers 34% of our planet. However, due to the high concentration of salt, approximately 98% of this water is seawater and thus unfit for drinking. Only about 2% of the world’s water is fresh, with the remaining 1.6% trapped in polar ice caps and glaciers. An additional 0.36% is found underground in aquifers and wells. As a result, lakes, and rivers only hold about 0.036% of the world’s total water supply [30]. Because of human or industrial activities, existing freshwater resources are gradually becoming polluted and unavailable. One of the most serious environmental issues confronting humanity today is the increasing contamination of freshwater systems with thousands of industrial and natural chemical compounds. The major sources of water pollution are depicted in Figure 1.

The safe and economical removal of pollutants from water has become a global concern. In the current scenario, it is crucial to reduce this spectrum of pollutants from the water in order to maintain a high-quality eco-friendly nature, which has led to the destruction of various forms of pollution in the atmosphere due to pollution occurring in the form of untreated hazardous landfills or organic substances that are discharged into water bodies and potentially impair ecological safety and the quality of life [33].

2.1 Environmental Impact of Water Pollution

The spread of industrialization has its in environmental pollution across the globe these days. By 2025, it is expected that two-thirds of the world’s population will live in water-stressed areas. The main causes of water scarcity are the increasing global population’s demand for water and overuse of water, as well as water pollution and climate change. Contamination in the environment has influenced various plants and creatures in the biological community, as well as people all over the world. Humans require awareness and a critical need for the development of a novel hygienically friendly purification technology. Water pollution is thought to be a significant factor in environmental contamination. Modern effluents pollute the water with distinct synthetic substances, particularly engineered colors with some of them also causing cancer naturally or due to their harmful decomposed products in water either aerobically or anaerobically. As a result, there is an urgent need for a method to
remediate polluted water. Water technology remediation necessitates a huge number of assets, procedures, maintenance, with the large sums of money, and many lands. Thus, various traditional methods of water treatment include physical and chemical techniques such as adsorption, chlorination, coagulation, ion flotation, membrane process, sedimentation, and solvent extraction. These water remediation methods have limitations, raising concerns about their widespread application. Furthermore, the final results of these systems should be handled further for complete refinement and sanitization. To degrade harmless products into carbon dioxide and water, advanced oxidation processes such as biodegradation, radiation, ozonation, photocatalysis, and others are used. Many of the contaminants are so toxic that even at low concentrations, they can cause health problems in humans. Water pollution also reduces the number of freshwater resources available to both people and ecosystems. So, it is necessary to have as many treatment approaches as possible that are ecofriendly and economically efficient. In many developing countries, freshwater scarcity is already a reality.

2.2 Dye Wastewater

Synthetic dyes are an important component of industrial effluents as they are discharged in large quantities by many processing industries. Due to the potentially carcinogenic properties of these chemicals, the environmental impact of these dyes is a major concern. Apart from that, these dyes are mostly not biodegradable, but rather accumulate in the body of the organism and can decolorize anaerobically, leading to the formation of potential carcinogens. The presence of these dyes in wastewater can prevent both the penetration of sunlight and the dissolution of oxygen, both of which are necessary for aquatic life. In addition, accumulation of dyes in natural resources, such as water and soil, leads to changes in their proper-

Table 1. TiO₂ and TiO₂-based photocatalysts application in the removal of various dyes.

Photocatalyst	Target dye	Light source	Concentration (mg/L)	Removal efficiency (%)	Time (min)	Ref.
ZnO/TiO₂	Rhodamine B	200 W Xenon Lamp	10	94	45	[35]
CeO₂/TiO₂-NCC	Methyl orange		50	50	70	[36]
TiO₂	Direct dye	UV-A light	50	64	240	[37]
Ag-TiO₂	Rhodamine B	UV light	50	98.4	60	[38]
Carbonized TiO₂-coated melamine	Rhodamine B	Sunlight	12	98	60	[39]
TiO₂	Methylene blue	36 W Philips UV-C light	2.5	95	100	[40]
TiO₂/ZnO/rGO	Rhodamine B/Methyl orange	UV-C light	20	99.2/99.4	180	[41]
TiO₂/ZnO	Methylene blue	15 W UV Lamp	80	100	120	[42]
Ni–TiO₂	Congo red	UV light	10	92.31	180	[43]
NCS/CMC/TiO₂	Crystal violet	Visible light	200	95	180	[44]
TiO₂	Rhodamine B/ Acid red 57	UV light	6/30	93.8/90.7	190	[45]
TiO₂	Methyl orange	80/Methylene blue	10	77/100	120	[46]
GO/TiO₂	Methylene blue	500 W Xenon lamp	5	99	240	[47]
TiO₂	Methylene blue	UV light	20	85.5	120	[48]
Fe-TiO₂/AC	Malachite Green	UV light	100	97	45	[49]
TiO₂@Bi₂O₃	Methylene blue	Sunlight	50	94	30	[50]
TiO₂ NPs	Methyl orange	Sunlight	10	97.8	300	[51]
TiO₂/GO/Ag	Methyl orange	Solar light	15	97.66	180	[52]
ties and critical challenges, such as die-off of food microbes and contamination of water resources [12]. As a result, there is a significant need to treat these colored effluents before they are discharged into various water bodies. Photocatalysis may be used for the decomposition of such colored pollutants in water. Here, the dye containing solution is exposed to radiation in the presence of a small amount of photocatalyst, such as TiO$_2$.

For the photocatalytic degradation of dyes in wastewater using TiO$_2$ catalyst, there are two possible mechanisms for explaining the photodegradation stated in Equations (1) and (2).

\[
\text{Dye} + h\nu \rightarrow \text{Dye}^* \text{ (intermediate)} \quad (1)
\]
\[
\text{Dye}^* + \text{TiO}_2 \rightarrow \text{Dye}^+ + \text{TiO}_2^- \quad (2)
\]

Accordingly, Equation (1) is an indirect mechanism whereby the excitation of the dye molecules was attributed to the visible light energy that enhances its triplet excited state with further conversion to a semi-oxidized radical through electrons injection to the titanium dioxide conduction band [35]. On the other hand, Equation (2) indicates the direct mechanism of the photodegradation of dyes, whereby the dye molecules interact with the produced hydroxyl radicals, the electrons and the holes created as a result of the excitation at the conduction band, leading to the dyes reduction and oxidation [36]. Particularly, the indirect photodegradation mechanism of dyes dominates the direct mechanism with an enhanced degradation efficiency achieved at a faster rate [8].

Overall, the difficulty in the removal of a dye molecule at a time makes it paramount for a good catalyst that can effectively remove the dyes at a low cost. The treatment techniques such as coagulation/flocculation, biological methods, membrane processes, ion exchange and adsorption are used to remove dyes. However, these methods have not been consistent and reliable with observable structural degradation and the presence of color indicating incomplete removal. Releasing the incompletely treated water to the environment threatens the water resources and public health [17]. TiO$_2$ nanostructures have been identified as good photocatalytic materials for the treatment of wastewater due to their high surface area and outstanding catalytic capacity. Also, the application of TiO$_2$ with immobilized support has been characteristically reported as an efficient degrading material [37]. Based on the literature reports, the contributions of TiO$_2$ and TiO$_2$ incorporated with various materials towards the degradation of dyes contaminated wastewater are briefly presented in Table 1.

2.3 Wastewater with Heavy Metals Content

Heavy metals have higher density and atomic weight compared to water and are widely used in various industrial effluents due to their lower strength and reactivity [2].

Photocatalyst	Target heavy metal	Light source	Concentration (mg/L)	Removal efficiency (%)	Time (min)	Ref.
Bi/Bi$_2$O$_3$/TiO$_2$	Cu(II)	Visible light	10	96.5	300	[55]
CeO$_2$/TiO$_2$-NCC	Cr(VI)	Visible light	10	50	60	[36]
TiO$_2$-rGH	Cr(VI)	UV	10	100	30	[56]
Bi$_2$O$_3$/TiO$_2$	Pb(II)	Visible light	20	55	240	[57]
10Ag@C-TCZ	Cr(VI)	Visible light	5	95.5	120	[35]
Chitosan/g-CNT	Cr(VI)	800 W xenon lamp	800	90	240	[58]
TiO$_2$@PAN-3	Cr(VI)	300 W Xe lamp	5	99	60	[59]
Pristine TiO$_2$	Cr(VI)	Visible light	10	100	60	[60]
Nano-TiO$_2$	Cu(II)	UV light	10	96.63	180	[61]
TiO$_2$ nanotubes	Cr(VI)	Visible light	20	94	60	[62]
TiO$_2$/CoFe$_2$O$_4$	Se(VI)	Sunlight	0.5	99	2	[63]
TiO$_2$-WO$_3$-PANI	Cr(VI)	Visible light	10	67.32	60	[64]
TiO$_2$/Alg/FeNPs	Cr(VI)/Cu(II)/Pb(II)	UV light	40	98.4	72	[65]
TiO$_2$	As(III)	UV light	0.2	97	20	[66]

Copyright © 2022, ISSN 1978-2993
metals, such as lead, chromium, copper, zinc, selenium, arsenic, cadmium, manganese, iron, etc., are highly toxic, easily accumulate in the environment and are very difficult to remove using biological methods [53]. Heavy metals have been reported in the past to be carcinogenic and affect many organs in the body [54]. Notably, TiO$_2$ has been widely reported as an effective photocatalyst in removing heavy metals through the reduction of the heavy metals to lower oxidative states due to their deposition on the catalyst [2]. From this point of view, metal ions can be reduced to their ground state by electrons obtained by photoexcitation of TiO$_2$ at favorable reduction potentials, Equation (3).

$$M^{n+} + ne^- = M$$

(3)

The indirect method is an alternative technique to achieve reductive removal of metal ions by the addition of electron donors, for instance, formaldehyde and methanol.

$$M^{n+} + R-CH\cdot-\cdotOH \rightarrow M^{(n-1)+} + R-CHO$$

$$R-CH_2OH + \cdotOH \rightarrow R-CH\cdot\cdot-\cdotOH + H_2O$$

(4)

(5)

In addition, hydroxyl radicals or holes can be further used to oxidize metal ions to higher oxidation states, provided they are not previously occupying the highest possible oxidation states [2].

$$M^{n+} \xrightarrow{\text{hydroxyl radicals or holes}} M^{n+1}$$

(6)

Over the literature, TiO$_2$ and its composites of various materials had been reported to be effective in the removal of heavy metals, such as copper, chromium, lead, selenium etc. at different concentrations and light sources from wastewater as presented in Table 2.

2.4 Various Treatment Methods to Purify Wastewater

To address the problem, contaminated water must be treated and reused. Various mechanical, biological, physical and chemical processes are used to treat the contaminated water. Biological treatment is ideal after filtration and the elimination of particles in suspension (initial treatment and post-treatment). Unfortunately, some products are bio-refractory (non-biodegradable), necessitating the use of much more effective non-reactive systems. Although these processes aim to purify wastewater and thereby improve water quality, some of them (such as coagulation/flocculation, chlorination, ion exchange, membrane processes and adsorption) in Table 3 merely concentrate on pollutants by transferring them to other phases. The next step is about the ways for the proper disposal of the new pollutant-rich streams. As a result, the management of toxic chemicals with strict environmental legislation is driving the development of clean and environmentally friendly processes to eliminate pollutants before they are released into the environment. In addition, for these processes to be effective, all organic and inorganic contaminants in water and wastewater must be fully mineralized and degraded.

These advanced oxidation processes outperform all existing ones, but are much more expensive. Photocatalysis is a rapidly developing technology attracting the attention of researchers due to its low cost and high efficiency in water decontamination compared to other methods. It is an excellent method for solving energy and environmental problems, which can be used for a variety of purposes such as degradation of toxic natural pollutants in sewage, harmful gases and microscopic organisms in their various media, production of hydrogen, air purification, soil sanitation and antibacterial effect. Various approaches to handling and decontaminating such effluents have been reported in the literature. The techniques, such as adsorption [67], coagulation [68], ion flotation [69] and sedimentation [70], are versatile and useful, but they all generate secondary waste that needs further processing. Advanced oxidation processes (AOPs) are a newer, more powerful and promising set of techniques that have been developed and used to treat dye-contaminated effluents [71]. The AOP technique has attracted the interest of many members in the scientific community because it is easy to use and produces significantly fewer residuals than traditional approaches.

The UV photolytic technique [72], Fenton process [73], photo-Fenton process [74], ozonation process [75], sonolysis [76], photocatalytic approach [77], biodegradation [78], and radiation-induced pollutants degradation [79] are among the many techniques used in the AOP approach. Photocatalysis-based AOPs are an innovative strategy that benefit our atmospheric conditions by fully oxidizing natural organic molecules to harmless mixtures of CO$_2$ and H$_2$O [80-83]. Apart from that, it also produces hydroxyl free radicals (OH) which act as powerful oxidizing agents that easily react with impurities to break down and remove them from the water, making the water reusable [84]. Thus, photocatalytic phenomena have
Table 3. Advantages and disadvantages of various treatment methods used for the removal of dyes and heavy metals from wastewater.

Method	Advantages	Disadvantages
Coagulation / Flocculation	Cost-efficient	Production of high sludge
Chemical precipitation	Cost-effective, process simplicity and safe operations	It involves the addition of other chemicals, the production of a high amount of sludge, toxic by-products, time-consuming and slowly aggregation and settling of metal ions precipitate.
Photocatalysis	Easy operation and high degradation efficiency.	Requires the addition of chemicals and is mostly applicable for sludges and effluents.
Chlorination	Disinfection of pollutants and other microorganisms.	Formation of toxic chemicals and by-products such as dioxins and metals.
Photo-Fenton oxidation	Removed many pollutants	Produce a large amount of iron-containing sludge.
Electrochemical oxidation	Efficient for metals recovering	Performance depends highly on solution pH
Ozonation	A simple and rapid operation with higher removal efficiency. Good for decolorization, does not transfer pollutants from one phase to another, and no sludge production.	Ozone has a shorter half-life. Involve chemicals. The produced oxidation products may have toxicological effects. High doses of ozone are required for effective dyes degradation. It doesn’t affect salinity and produces carcinogenic bromate anions (BrO$_3^-$).
Biological treatment	Highly reusable, low cost, effective in the removal of suspended solids, biochemical oxygen demand and organic matters.	Highly selective, toxic, the sensitivity of microorganisms, requires large space for the bioreactors and is not suitable for all kinds of dyes.
Membrane process (reverse osmosis and nanofiltration)	A simple, rapid and effective method that does not involve the application of chemicals. Reverse osmosis effectively removes reactive dyes and nanofiltration involves low pressure.	High cost for the investment, maintenance and operations. A higher number of microbial organisms and biomass may be present in the residuals after the membrane process. Membrane fouling and high-pressure requirements for reverse osmosis. Frequent regeneration of ion-exchange resin using chemical reagents, thus causing secondary pollution. Highly expensive and selective for some dyes.
Ion exchange	It is reusable, selective and produces less sludge.	
Adsorption	This process is cheap, eco-friendly and easy to operate. Highly effective for the removal of some contaminants and have a wide pH range. No transformation or by-products are produced during the treatment. And can be applied in batch and fixed-bed reactors. Adsorbent efficiency determines its performance and a wide range of adsorbent materials can be used. Adsorption can be integrated with the other treatment techniques.	The disposal of the spent adsorbents after exhaustion requires a sustainable method. The cost of the regeneration process is high and may lead to adsorbent loss and adsorbents performance effectiveness. Adsorbents require additional modifications to improve their adsorption performances. It is dependent on numerous factors such as solution pH, contact time, adsorbent mass, adsorbate concentration, temperature and ionic strength for effective uptake performance. The coexistence of other pollutants ions may interfere with the removal of the target adsorbate.
advantages over conventional techniques, such as rapid oxidation, no formation of polycyclic compounds, complete oxidation of impurities, and high productivity. As a result, photocatalytic degradation has emerged as one of the most promising methods to treat toxic organic wastewater by using nanomaterials, such as TiO$_2$, ZnO, ZnS and others, as catalysts [85].

2.5 Photocatalytic Water Splitting

Photocatalytic water splitting reaction is studied for hydrogen gas production, which is one of the most intriguing methods to generate clean and renewable energy. In this reaction, photon energy interacts with TiO$_2$ particles to form electron-hole pairs. The hole oxidizes water to create oxygen while the electron reduces water to create hydrogen. The key factors for efficient photocatalytic activity are inhibited electron/hole recombination, enhanced light absorption, and favorable active sites for redox species. Although there are several mandatory requirements for efficient photodissociation of water, such as minimum potential difference of 1.23 V for the water dissociation energy, the TiO$_2$ band structure is advantageous for water splitting because of the relative position of the valence and conduction bands [86]. Since the TiO$_2$ conduction band energy is close to the H$_2$ evolution energy, the focus shifts to the valence band energy to bring it closer to the O$_2$ evolution energy. This is due to the high potential for O$_2$ evolution on the TiO$_2$ surface. Figure 2 depicts the photocatalytic mechanism in terms of a band energy diagram. The bandgap should be less than 3.0 eV (> 420 nm) for the photocatalyst which works on visible light. Furthermore, water’s oxidation and reduction potentials require energy that should be met by the conduction and valence band positions. Therefore, band engineering is required to develop photocatalysts with these properties. These processes are strongly influenced by crystal structure and crystallinity. The lower the number of defects, the higher the crystal quality. The defects act as trapping and recombination centers for photogenerated electrons and holes, reducing photocatalytic activity. Therefore, photocatalysts need to have a high degree of crystallinity rather than a high surface area, especially for an increasing reaction, such as water splitting. In order for oxygen evolution to take place, active sites for the four-electron oxidation of water are required. Although this reaction is challenging, oxide photocatalysts do not require cocatalysts because the valence band is low enough to oxidize water to oxygen.

A photocatalytic reaction involves both oxidation and reduction, and these opposing processes must have the same reaction rates for the photocatalyst to remain unchanged because electron transfer reactions are involved. The light activates a photocatalyst, facilitating a photocatalytic reaction. It increases the rate of the reaction by accumulating photon energy. It should not be changed physically or chemically during this time. The absorption of the incident light, bandgap excitation, separation of stimulated e^-/h^+ pairs, and redox couple reactions on the semiconductor surface are all important fundamental steps in a typical photocatalytic reaction [87]. When the incident light’s energy exceeds the bandgap energy between the valence and conduction bands, the incident light absorbs. The electrons in the valence band will then have enough energy to travel to the conduction band. As a result, electron-hole separation occurs, which can either open the active sites for further redox reactions on the semiconductor surface or cause recombination [88]. The active sites are successfully initiated after the addition of chemical species in the reaction. However, the surface reaction is affected by the active sites as well as the surface area. Surface activity can be significantly increased by the use of co-catalysts. These sites can enhance the absorption of visible and infrared irradiation, as well as act as charge carrier trapping sites. A large number of lattice defects in photocatalyst material could result in a continuous trapping band in the middle with energy distributions that differ from a single defect in a crystal [89]. The photocatalyst can speed up the photoreaction in two ways: by interacting with the substrate in its original or excited state, or by interacting with the photoreaction products. Heterogeneous photocatalysis harvests incident light and drives reactions in a

Figure 2. Schematic representation of excitons pathway in semiconductor photocatalysis (i) incident photon absorption and electron-hole separation. (ii) exciton migration, (iii) surface chemical reaction at active sites, and (iv) particle size effect on the recombination process.
3. Photocatalysis

The photocatalysis is the science of using light and catalysts to accelerate a chemical reaction that requires light [90]. A photocatalyst is defined as a material that generates electron-hole pairs after absorbing light from a source to enable chemical transformations of reactants and regenerate their chemical composition after each rotation of e^-/h^+ pair interactions [91]. Photocatalysis is an advanced oxidation technique used for a variety of useful purposes such as the biodegradation of organic contaminants in wastewater, hydrogen production, air refinement, and antimicrobial activities. Photocatalysis is distinguished by the fact that it requires sunlight or near-UV light as a source of irradiation, making it a low-cost treatment as well as a resource technique. In recent years, heterogeneous photocatalysis is an emerging technique as this method can achieve complete degradation of toxic compounds [92]. The photocatalytic method has many potential advantages over the conventional treatment methods, which include: (i) complete mineralization of the pollutant leading to CO, H$_2$O and simple inorganic ions as final products, (ii) higher efficiency in terms of reaction rate, (iii) reaction temperature is not an important parameter as this method operated by light energy, (iv) no solid waste formation, (v) recycling of the processed water, (vi) reusability of the catalyst as there is no chemical change in the catalyst, and (vii) cheap method as solar energy can be utilized. In this process, carbon dioxide is converted into organic compounds, especially sugars, using the energy from the Sunlight. Fujishima and Honda reported a photocatalytic process for generating hydrogen from water using TiO$_2$ semiconductor oxide electrodes [93], TiO$_2$ has proven to be the most suitable semiconductor for widespread environmental applications due to its exceptional optical and electronic properties. Furthermore, TiO$_2$ is biologically and chemically inert; it is photo corrosion resistant, and it is inexpensive. Another benefit of TiO$_2$ is its low cost, which is due to titanium's abundance (0.44 % of the earth's crust). However, the TiO$_2$ band gap (3.0–3.2 eV) causes absorption in the near UV range. Because UV makes up only 5-8 percent of the spectrum of sunlight, research has been done to develop photocatalysts that can absorb more of the visible spectrum. Several semiconductor oxides and sulfides have bandgap energies suitable to absorb light under visible and/or near UV and excite electrons and further proceed with the photocatalytic process. These include TiO$_2$, ZnO, ZrO$_2$, CdS, ZrO$_2$, MoS$_2$, Fe$_2$O$_3$, WO$_3$, etc. Among these semiconductors, the TiO$_2$ is considered a benchmark photocatalyst because of its high efficiency, photochemical stability, non-toxicity and low cost [25].

3.1 Fundamental Principle of Photocatalysis

The photocatalytic reaction is primarily determined by the wavelength of light (photon) energy and the catalyst. The light can be irradiated directly or indirectly as a result of the catalyst reacting with the dye. The photocatalytic mechanism associates dye degradation with the redox capabilities or potential of dyes and the energy level of the conduction band of the semiconductor or nanomaterial used. When a photon with hv energy matches or exceeds the bandgap energy (E_g) of a TiO$_2$, an electron in the valence band (VB) is promoted to the conduction band (CB), leaving a positive hole (h^+) in the VB. The photo-excitement can be expressed as [94].

$$\text{TiO}_2 + h\nu \rightarrow \text{TiO}_2(h^+)_{(\text{CB})} + \text{TiO}_2(e^-)_{(\text{CB})}$$ (7)

where VB and CB represent the valance band and the conduction band, respectively. The reactive species, h^+ and e^- are the powerful oxidizing and reducing agents, respectively. Therefore, soon after the reactive species formed, the semiconductor oxide particles can act as electron donors or electron acceptors resulting in oxidative and reductive reactions. At the same time, some reactive species can recombine in bulk by releasing energy in the form of heat without any chemical reaction.

$$\text{TiO}_2(h^+)_{(\text{VB})} + \text{TiO}_2(e^-)_{(\text{CB})} \rightarrow \text{TiO}_2(e^-)_{(\text{VB})} + \text{heat}$$ (8)

At the surface, the excess reactive species are trapped by adsorbed species and undergo an oxidation-reduction reaction. The valence band hole is considered a strong oxidizing species, which can oxidize any organic and inorganic compounds. The redox potential for the photogenerated hole is +2.53 V regarding a normal hydrogen electrode (NHE) [95]. Also, the hole can produce secondary oxidizing species. The general principle of photocatalysis is presented in Figure 3.

For instance, the water molecule or OH$^-$ ion oxidizes into hydroxyl radical (•OH), which is...
an extremely powerful oxidant.

\[
\text{TiO}_2(\text{h}^+) + \text{H}_2\text{O}_{(\text{ads})} \rightarrow \text{TiO}_2 + \cdot \text{OH}_{(\text{ads})} + \text{H}^+ \quad (9)
\]

\[
\text{TiO}_2(\text{h}^+) + \text{HO}^-_{(\text{ads})} \rightarrow \text{TiO}_2 + \cdot \text{OH}_{(\text{ads})} \quad (10)
\]

The oxidation potential of \(\cdot \text{OH} \) radical is +2.85 V regarding a normal hydrogen electrode (NHE) [96]. The conduction band electron is a powerful reducing species; reduces the molecules which undergo reduction. In oxygen or air mediated solution, reduction of adsorbed \(\text{O}_2 \) leads to the formation of superoxide anion radicals (\(\text{O}_2^\cdot^- \)), which is also considered a powerful oxidizing species. In addition to photogenerated holes, \(\cdot \text{OH} \) and \(\text{O}_2^\cdot^- \), various forms of active oxygen species, such as \(\text{HO}_2 \), \(\text{H}_2\text{O}_2 \) and \(\text{O} \), are produced. The hydroxyl radical can be produced from either \(\text{H}_2\text{O} \) or \(\text{OH}^- \) ion and react with the photogenerated holes.

\[
\text{TiO}_2(\text{e}) + \text{O}_2_{(\text{ads})} \rightarrow \text{O}_2^\cdot \quad (11)
\]

These superoxide ions can react with hydrogen ions (from Equation (10)), forming \(\text{HO}_2^\cdot \):

\[
\text{O}_2^\cdot^- + \text{H}^+ \rightarrow \text{HO}_2^\cdot \quad (12)
\]

\(\text{H}_2\text{O}_2 \) could be formed from \(\text{HO}_2^\cdot \) via the following reactions:

\[
\text{TiO}_2(\text{e}) + \text{HO}_2^\cdot \rightarrow \text{TiO}_2 + \text{HO}_2^- \quad (13)
\]

\[
\text{HO}_2^- + \text{H}^+ \rightarrow \text{H}_2\text{O}_2 \quad (14)
\]

The \(\text{H}_2\text{O}_2 \) formed are further undergoing cleavage into \(\text{OH}^\cdot \) radical by the following reaction path ways (Equations (15)-(18)):

\[
\text{H}_2\text{O}_2 + h\nu \rightarrow 2\text{HO}^\cdot \quad (15)
\]

\[
\text{H}_2\text{O}_2 + \text{O}_2^\cdot^- \rightarrow \text{HO}^\cdot + \text{O}_2 + \text{HO}^- \quad (16)
\]

\[
\text{H}_2\text{O}_2 + \text{TiO}_2(\text{e}) \rightarrow \text{HO}^\cdot + \text{HO}^- + \text{TiO}_2 \quad (17)
\]

Organics pollutant + (\(h\nu \), \(\text{OH}^\cdot \), \(\text{O}_2^\cdot^- \))

\[
\rightarrow \text{CO}_2 + \text{H}_2\text{O} \quad (18)
\]

Various semiconductors, such as \(\text{TiO}_2 \), \(\text{ZnO} \), \(\alpha\text{-Fe}_2\text{O}_3 \), and \(\text{WO}_3 \), are being investigated for their potential use as photocatalysts [97,98]. \(\text{TiO}_2 \) has proven to be the most suitable of these semiconductors for widespread environmental applications due to its exceptional optical and electronic properties. Furthermore, \(\text{TiO}_2 \) is biologically and chemically inert; it is photo corrosion resistant, and it is inexpensive. Under UV light illumination, coumarin in aqueous solution and terephthalic acid in \(\text{NaOH} \) solution was converted to highly fluorescent hydroxyl products on the \(\text{TiO}_2 \) film photocatalyst. The same research group has estimated the quantum yield of hydroxyl radical (\(\cdot \text{OH} \)) produced during \(\text{TiO}_2 \) photocatalysis in an aqueous solution using terephthalic acid as a fluorescence probe. Similarly, the quantum yield of hole generation is estimated by iodide ion oxidation. The quantum yield values were \(7\times10^{-5} \) and \(5.7\times10^{-2} \) for \(\cdot \text{OH} \) radical and holes, respectively [99]. From these values, they have confirmed that the oxidative reactions on \(\text{TiO}_2 \) photocatalyst occur mainly via photogenerated holes and not through \(\cdot \text{OH} \). As a result, the primary oxidants in the degradation of organic compounds are the hole and the hydroxyl radical (\(\text{OH}^\cdot \)), which results from the oxidation of adsorbed water or adsorbed \(\text{OH} \), and the presence of oxygen can prevent the re-combination of hole-electron pairs.

3.2 Photocatalyst Activity of \(\text{TiO}_2 \)

\(\text{TiO}_2 \) belongs to the family of transition metal oxides. It mainly occurs in four crystalgraphic forms: anatase, rutile, brookite, and titanium dioxide (B). The crystal structure of anatase is a tetragonal system. Rutile has a tetragonal crystal structure. Brookite has an orthorhombic crystal structure. \(\text{TiO}_2 \) (B) is a monoclinic mineral that is new to the titanium dioxide family. Brookite has an orthorhombic crystal structure. \(\text{TiO}_2 \) (B) is a monoclinic mineral that is new to the titania family [100]. Anatase contains 6 atoms per primitive cell. The anatase phase is more stable than the rutile at 0 K, but the energy difference between these two phases is small (~2 to 10 kJ/mol). Rutile also contains 6 atoms per unit cell. The rutile phase is stable at most temperatures and pressures up to 60 kbar, where \(\text{TiO}_2 \) (II) becomes the thermodynamically favorable phase. The unit cell of brookite is composed of 8 formula units of \(\text{TiO}_2 \) and is formed by edge-sharing [101]. Anatase phase \(\text{TiO}_2 \) exhibits greater photocatalytic activity than the other two crystal structures, anatase, brookite, and rutile [102].

![Figure 3. Schematic representation of the general principle of photocatalysis.](image)
TiO$_2$ anatase was used as a powder photocatalyst in the first report of photocatalytic activity for hydrogen production. However, due to the relatively wide bandgap (e.g., 3.2 eV for anatase; 3.0 eV for rutile) and high recombination rate of electron-hole pairs (as shown in Figure 4), the low utilization efficiency of visible light and quantum efficiency of photocatalytic reactions on TiO$_2$ limits its practical applications. Although the rutile phase has a lower bandgap, anatase has advantages over rutile, including a higher reduction potential and a lower photo-generated carrier recombination rate.

As shown in Figure 5, the conduction band edge of anatase is higher by 0.1V (more negative) than that of rutile. Because of oxygen defects in the structure, TiO$_2$ is an n-type semiconductor and thus non-stoichiometric. The number of free electrons is proportional to the number of oxygen defects in the crystal structure, which results in the n-type characteristics of a semiconductor. The rutile phase of TiO$_2$

![Figure 4](image)

Figure 4. Crystal structure of different TiO$_2$ phases: (a) rutile, (b) anatase, (c) brookite, (d) the relative position of the conduction band and valence band in anatase and rutile phases.

![Figure 5](image)

Figure 5. The photocatalytic mechanism in terms of a band energy diagram.

3.3 Photocatalysts under Solar Radiation with Improved Activity

Two main strategies were used to improve the activity of the photocatalyst. On the one hand, photocatalysts with increased activity could be obtained by improving the structural properties of the photocatalysts. Particle size, crystal quality, morphology, specific surface area, surface state and other structural properties of photocatalysts are considered. The appropriate fabrication method to prepare the nanoscale photocatalysts could allow proper control of these structural properties. Another method to increase catalytic activity is to improve charge separation. Many methods for separating electron-hole pairs have been studied. To prevent recombination, O$_2$ and other substances were added to a water solution to trap the excited electrons that reached the semiconductor surface [106]. Due to its wide band gap, the titania photocatalyst is photoactivated only in UV light, which is a small fraction of the solar energy (3.2 eV for anatase).

Therefore, efforts to increase the photoactivity of catalysts to cover the visible light spectrum are both attractive and important. Visible absorption can be improved by dye sensitization,
doping, compound semiconductors, and particle size modification.

TiO$_2$ anatase is a UV light active substance in general. There are several techniques for producing TiO$_2$ as a visible light active substance. To begin, transition metal doping in the TiO$_2$ lattice can broaden TiO$_2$'s absorbance range. Second, the visible light sensitivity of TiO$_2$ can be greatly enhanced by the addition of dyes, dopants, and impurities. This is due to the presence of dye molecules, which can function as the device's visible-light-driven electron pump [107]. Third, incorporating organic compounds into the catalysis process can propel the photocatalytic reaction forward. In the case of photo-assisted water splitting, the H$_2$ and O$_2$ produced may recombine in a backward reaction. By modifying redox potentials, organic compounds can solve this problem. Nowadays, it had been demonstrated that by combining ethanol with the platinized TiO$_2$ photocatalyst during photocatalytic water splitting, oxidation of H$_2$ can be reduced [24,26]. They discovered that the organic compounds were oxidized first, rather than photogenerated holes producing H$_2$, and that this event prevents H$_2$ from oxidizing again. Fourth, a highly sensitive system based on visible light active heterogeneous TiO$_2$/WO$_3$ can be created. Because WO$_3$ has a bandgap value of 2.8 eV, it can be absorbed in a wavelength of around 440 nm, which includes fluorescent light. Thus, the TiO$_2$/WO$_3$ system demonstrated enhanced hydrophilicity via photon absorption in the visible range [108]. A fluorescent lamp with an extremely weak UV light was used. Nonetheless, high hydrophilicity was achieved. As a result, it can be concluded that hyperactive UV-sensitive TiO$_2$ can be used in a broader range of applications, including indoor conditions. Fifth, TiO$_2$ doped with nitrogen demonstrated about the significant photocatalytic activities in the visible region. Similar photocatalysts sensitive to visible light have already been reported in a variety of scientific journals. Other significant changes include TiO$_2$ metal-ion implantation and a reduction in TiO$_2$ doping. Another approach was to replace Ti sites in the Ti lattice with Cr, Fe, or Ni [109]. Furthermore, Ti$^{+3}$ sites can be formed by creating oxygen vacancies in TiO$_2$ or by using the self-doping method. To create a photocatalyst with an optimal bandgap and good mechanistic properties, a thorough understanding of both hypothetical and experimental experiences is required. When conventional TiO$_2$ is doped with nitrogen, it can absorb more photons and thus becomes a visible light-active photocatalyst. The N doping process, on the other hand, disturbs TiO$_2$'s redox potential. As a result, overall photocatalytic efficiency declines. As a result, whether to use nitrogen-doped TiO$_2$ or conventional TiO$_2$ is determined by the light source [110].

3.3.1 Dye sensitization

Dyes can be photocatalytically degraded by sensitizing the dye with a synthesized TiO$_2$ to act as the active species in the chemical reaction. The difference in valence and conduction bands of the synthesized TiO$_2$ affects dye degradation. When a photon (light) hits the surface of a catalyst, light-generated holes (h^+) in the valence band are easily moved to the conduction band of the nanocatalyst by the band gap shift. Dye adsorption is mainly based on the surface charge of the catalyst, catalysts play an important role in the photogenerated dynamic species [111,112]. Advanced oxidation processes use free radicals in hydroxyl and superoxide radicals to oxidize organic pollutants and lead to less toxic products such as carbon dioxide and water [113]. It is recommended for its low running costs and its simple process to improve the quality of the environment. The selection of a suitable photocatalyst is based on its stability, cost-effectiveness, and applicability in the visible light range. The materials, such as metal oxides and sulfides, have been used to break down organic pollutants in recent decades [114]. Through processes, such as sonolysis, photocatalysis, etc. [115]. In sensitized photocatalysis, colored compounds are adsorbed onto semiconducting surfaces; the adsorbed compound is brought into an excited state by the application of visible radiation. This molecule in an excited state injects an electron into the conduction band of the semiconductor and is oxidized to a cation radical.

Figure 6. Schematic representation of the basic principle of dye-sensitized photocatalysis.
The cation radical generated by charge injection is less stable than the ground state of the compound and undergoes further transformation. The mechanism of sensitized photocatalysis is shown in Figure 6.

The steps involved in dye-sensitized TiO$_2$ photocatalysis under visible irradiation are given as follows (Equations (19)-(24)):

$$\text{Dye} + h\nu \rightarrow \text{dye}^* \quad (19)$$

$$\text{dye}^* + \text{TiO}_2 \rightarrow \text{dye}^* + \text{TiO}_2 (e^-) \quad (20)$$

$$\text{TiO}_2 (e^-) + \text{O}_2 \rightarrow \text{TiO}_2 + \text{O}_2^- \quad (21)$$

$$\text{O}_2^- + 2\text{H}^+ \rightarrow \text{O}_2 + \text{H}_2\text{O} \quad (22)$$

$$\text{H}_2\text{O}_2 + \text{TiO}_2 (e^-) \rightarrow \text{OH}^- + \text{OH}^- + \text{TiO}_2 \quad (23)$$

Organics + (OH$^-$ or O$_2^-$) \rightarrow degraded products (24)

3.3.2 Pure and doped TiO$_2$ photocatalysis

The photocatalytic reactivity of TiO$_2$ can be improved by extending its light absorption into the visible region by doping it with transition metals [117,118]. This approach introduces impurity or defect states into its band gap, thereby absorbing visible light. The dopants can be noble metals, transition metals and anions. The photoactivity of doped semiconductor photocatalysts depends on the doping ion nature and concentration, the manufacturing process, and the thermal and reductive treatments [119]. Figure 7 shows the electron capture properties of a metal in contact with a semiconductor surface across its Schottky barrier.

TiO$_2$ can also be coupled to a narrow bandgap semiconductor with a higher conduction band than TiO$_2$. In the coupling of two semiconductors (e.g. CdS and TiO$_2$), CdS has a small band gap (2.5 eV) and can be excited in the visible part of the solar spectrum, but a TiO$_2$ can excite in the near UV [120]. A photoelectron generated on CdS can be injected into the (inactivated) TiO$_2$ conduction band while the photohole remains on CdS (Figure 8) [120].

The Nobel metal-doped semiconductor photocatalysts facilitate electron-hole separation and promote interfacial electron transfer [121]. This resulted in increased quantum efficiency and so enhanced the photocatalytic activity. Also, it decreases the bandgap, which benefits the electron transfer from the valence band to the conduction band in the energy range of visible light [122,123]. Dopant level depends on the nature of dopant materials, and reaction conditions, especially the organics to be degraded. Previously, the summarized photocatalytic activity of TiO$_2$ particles modified with various noble metals has been presented [124-126]. These catalysts are used for the degradation of various organic molecules and also photo-splitting of water. Various transitional metal ions and rare earth metal ions were used for enhancing the TiO$_2$ photocatalytic activities. The improved performance in terms of activity and red-shifted photo response depends mainly on the nature of the metal ion and the preparation method. The metal ion characteristics are governed by its ability to trap the photogenerated electron. Yang et al. [127] reported that the preparation method influences the catalytic activity of noble metal or transition metal oxides for the degradation of formaldehyde. A more beneficiary effect was observed especially in Fe because its energy levels are near CB as well as VB edges of TiO$_2$. Xu et al. [128] compared the photocatalytic activity of various rare earth metal ions (La$^{3+}$, Ce$^{3+}$, Er$^{3+}$, Pr$^{3+}$, Gd$^{3+}$, Nd$^{3+}$, Sm$^{3+}$) doped on TiO$_2$ for the decomposition of nitrites. When compared to pure TiO$_2$,
all samples have improved photocatalytic activity to some extent. Higher adsorption, redshifts to a longer wavelength, and an increase in the interfacial electron transfer rate contributed to the increase in photoactivity. Among these, the dopant Gd$^{3+}$ showed the highest reaction activity because of its highest ability to transfer charge carriers to the interface. Noble metals, including Pt, Au, Pd, Rh, Ni, Cu, and Ag, have been reported to be very effective for the catalytic activity of semiconductor-mediated photocatalysis.

4. Conclusion

The enhanced water usage in households and industries had caused the persistent discharge of wastewater effluents to contaminate the environment and water resources. The contaminants of wastewater largely considered in this review are dyes and heavy metals which are toxic to the environment and human life as described. The advantages of the photocatalytic process over other conventional treatment methods, such as the effective degradation of organic pollutants by total mineralization to obtain CO, H$_2$O and simple inorganic ions, higher efficiency at reduced time, applicability at ambient and high temperatures, lack of sludge formation, reusability of treated water as it contains only inorganic salts, no use of chemicals and the usage of sunlight for irradiation, have been reviewed. The characteristics of TiO$_2$ that defines its suitability for photocatalytic removal of dyes and heavy metals with low cost and stability towards chemical reactions and corrosion have been described, while the TiO$_2$ limitations like reduced efficiency of incidence radiation uptake and the removal of TiO$_2$ particles difficulty have also been reviewed. Heterogeneous photocatalysis had been described as an emerging technique for wastewater purification, disinfection of microorganisms, water splitting to produce hydrogen fuel, and organic synthesis. Overall, the different mechanisms guiding the photocatalytic degradation of dyes and heavy metals have been investigated. The preparation techniques of modified TiO$_2$, such as immobilization, doping and composites of nanostructures formation, has been studied. The applications of various modified TiO$_2$ in the photocatalytic uptake of dyes and heavy metals have been reviewed. It had been proved that TiO$_2$ photocatalysis is a highly effective wastewater treatment technique, as the literature and present research interests suggest it as a highly promising research area.

Acknowledgement

This work was financially supported by the University of Malaya Research Grant (RU001-2019, RU001-2020 and RU001-2021). The authors are grateful to Mutah University for funding this work through the research group program under grant number IF019-2022.

References

[1] Zhao, Y., Wang, Y., Xiao, G., Su, H. (2019). Fabrication of biomaterial/TiO$_2$ composite photocatalysts for the selective removal of trace environmental pollutants. *Chinese Journal of Chemical Engineering*, 27, 1416–1428. DOI: 10.1016/j.cjche.2019.02.003

[2] Gopinath, K.P., Madhav, N.V., Krishnan, A., Malolan, R., Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. *Journal of Environmental Management*, 270, 110906. DOI: 10.1016/j.jenvman.2020.110906

[3] Al-Buraihi, A.K., Al-Gheethi, A.A., Senthil Kumar, P., Radin Mohamed, R.M.S., Yusof, H., Alshalif, A.F., Khalifa, N.A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. *Chemosphere*, 287, 132162. DOI: 10.1016/j.chemosphere.2021.132162

[4] Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO$_2$-based photocatalysts: A review. *Journal of Cleaner Production*, 268, 121725. DOI: 10.1016/j.jclepro.2020.121725

[5] Das, A., Adak, M.K., Mahata, N., Biswas, B. (2021). Wastewater treatment with the advent of TiO$_2$ endowed photocatalysts and their reaction kinetics with scavenger effect. *Journal of Molecular Liquids*, 338, 116479. DOI: 10.1016/j.molliq.2021.116479

[6] Dlamini, M.C., Maubane-Nkadimeng, M.S., Moma, J.A. (2021). The use of TiO2/clay heterostructures in the photocatalytic remediation of water containing organic pollutants: A review. *Journal of Environmental Chemical Engineering*, 9, 106546. DOI: 10.1016/j.jece.2021.106546
[7] Tahir, M.B., Rafique, M., Rafique, M.S., Nawaz, T., Rizwan, M., Tanveer, M. (2020). Photocatalytic Nanomaterials for degradation of organic pollutant and heavy metals. In: M.B. Tahir, M. Rafique, M.S. Rafique, Nanotechnology and Photo catalysis for Environmental Applications, Micro and Nano Technologies, Elsevier B.V., pp. 119-138. DOI: 10.1016/B978-0-12-821192-2.00008-5

[8] Siddhathu, A.K., Weldegebrial, G.K., Sagadevan, S., Tran, N.N., Hessvel, V. (2022). Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere, 300, 134623. DOI: 10.1016/j.chemosphere.2022.134623

[9] Pandey, B., Singh, P., Kumar, V. (2021). Photocatalytic-sorption processes for the removal of pollutants from wastewater using polymer-metal oxide nanocomposites and associated environmental risks. Environmental Nanotechnology, Monitoring & Management, 16, 100596. DOI: 10.1016/j.enmm.2021.100596

[10] WHO. (2017). Guidelines for Drinking-water Quality. Fourth Ed. 631.

[11] Ramalingam, G., Pachaiappan, R., Kumar, P.S., Dhariam, S., Rajendran, S., Vo, D.V.N., Hoang, T.K.A. (2022). Hybrid metal-organic frameworks as an Exotic material for the photocatalytic degradation of pollutants present in wastewater: A review. Chemosphere, 288, 132448. DOI: 10.1016/j.chemosphere.2021.132448

[12] Peñas-Garzón, M., Abdelraheem, W.H.M., Belver, C., Rodriguez, J.J., Bedia, J., Dionysiou, D.D. (2021). TiO₂-carbon microspheres as photocatalysts for effective remediation of pharmaceuticals under simulated solar light. Separation and Purification Technology, 275, 119169. DOI: 10.1016/j.seppur.2021.119169

[13] Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H. (2019). Photocatalytic activity improvement and application of UV-TiO₂ photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248. DOI: 10.1016/j.jece.2019.103248

[14] Gusain, R., Gupta, K., Joshi, P., Khatri, O.P. (2019). Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in Colloid and Interface Science, 272, 102009. DOI: 10.1016/j.cis.2019.102009

[15] Tijani, J.O., Abdullahi, M.N., Bankole, M.T., Mustapha, S., Egboshiuba, T.C., Ndaitso, M.M., Abdulkareem, A.S., Muzenda, E. (2021). Photocatalytic and toxicity evaluation of local dyeing wastewater by aluminium/boron doped WO₃ nanoparticles. Journal of Water Process Engineering, 44, 102376. DOI: 10.1016/j.jwpe.2021.102376

[16] Xia, T., Lin, Y., Li, W., Ju, M. (2021). Photocatalytic degradation of organic pollutants by MOFs based materials: A review. Chinese Chemical Letters, 32(10), 2975-2984. DOI: 10.1016/j.cclet.2021.02.058

[17] Muñoz, I., José Gómez, M., Molina-Díaz, A., Hujibregts, M.A., Fernández-Alba, A.R., García-Calvo, E. (2008). Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere, 74(1), 37-44. DOI: 10.1016/j.chemosphere.2008.09.029

[18] Wankhade, A.V., Gaikwad, G.S., Dhonde, M.G., Khaty, N.T., Thakare, S.R. (2013). Removal of Organic Pollutant from Water by Heterogeneous Photocatalysis: A Review. Research Journal of Chemistry and Environment, 17 (1), 84-94.

[19] Grabowska, E., Marchelek, M., Klimczuk, T., Trykowski, G., Zaleska-Medy, A. (2016). Noble metal modified TiO₂ microspheres: Surf 645 face properties and photocatalytic activity under UV-vis and visible light. Journal of Molecular Catalysis A: Chemical, 423, 191-206. DOI: 10.1016/j.molcata.2016.06.021

[20] Khdre, T.M., El-Sheikh, S.M., Hakki, A., Ismail, A.A., Badawy, W.A., Bahnemann, D.W. (2017). Highly active non-metals doped mixed-phase TiO₂ for photocatalytic oxidation of ibuprofen under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 346, 530-540. DOI: 10.1016/j.jphotoch.2017.07.004

[21] Gupta, S.M., Tripathi, M. (2011). A review of TiO₂ nanoparticles. Chinese Science Bulletin, 56, 1639. DOI: 10.1007/s11434-011-4476-1

[22] Yun, S.M., Palanivelu, K., Kim, Y.H., Kang, P.H., Lee, Y.S. (2008). Preparation and characterization of carbon-covered TiO₂ using sucrose 653 for solar photodegradation. Journal of Industrial and Engineering Chemistry, 14 (5), 667-671. DOI: 10.1016/j.jiec.2008.02.010

[23] Shao, P., Tian, J., Zhao, Z., Shi, W., Gao, S., Cui, F. (2015). Amorphous TiO₂ doped with carbon for visible light photodegradation of 655 rhodamine B and 4-chlorophenol. Applied Surface Science, 324, 35-43. DOI: 10.1016/j.apsusc.2014.10.108

Copyright © 2022, ISSN 1978-2993
[24] Singh, S.I.P., Abdullah, M.M., Sagadevan, S., Kaur, C. (2019). Highly sensitive ethanol sensor based on TiO₂ nanoparticles and its photocatalyst activity. Optik, 182, 512-518. DOI: 10.1016/j.ijleo.2019.01.077

[25] Hashimoto K., Irie H., Fujishima A.(2005). TiO₂ Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 44(12), 8269–8285. DOI: 10.1143/JJAP.44.8269

[26] Sagadevan, S., Vennila, S., Singh, P., Lett, J.A., Oh, W.C., Paiman, S., Mohammad, F., Al-Lohedan, H.A., Fatimah, I., Shahid, M.M., Obulapuram, P.K. (2020). Exploration of the antibacterial capacity and ethanol sensing ability of Cu-TiO₂ nanoparticles. Journal of Experimental Nanoscience, 15, 337-349. DOI: 10.1080/17458080.2020.1786979

[27] Sagadevan, S., Lett, J.A., Vennila, S., Prasath, P.V., Kaliaraj, G.S., Fatimah, I., Léonard, E., Mohammad, F., Al-Lohedan, H.A., Alshahateet, S.F., Lee, C.T. (2021). Photocatalytic activity and antibacterial efficacy of titanium dioxide nanoparticles mediated by Myristica fragrans seed extract. Chemical Physics Letters, 771, 138527. DOI: 10.1016/j.cplett.2021.138527

[28] Baruah, S., Pal, S.K., Dutta, J. (2012). Nanostructured Zinc Oxide for water treatment. Nanoscience & Nanotechnology-Asia, 2 (2), 90-102. DOI: 10.2174/2210681211202020090

[29] Chong, M.N., Jin, B., Chow, C.W.K., Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44(10), 2997-3027. DOI: 10.1016/j.watres.2010.02.039

[30] Reddy, D.H.K., Lee, S.M. (2012). Water Pollution and Treatment Technologies. Journal of Environmental & Analytical Toxicology, 2(5), 1000e103. DOI: 10.4172/2161-0525.1000e103

[31] Bahnemann, D. (2004). Photocatalytic water treatment: solar energy applications. Solar Energy, 77(5), 445-459. DOI: 10.1016/j.solener.2004.03.031

[32] Vinu, R., Madras, G. (2004). Environmental remediation by photocatalysis. Journal of the Indian Institute of Science, 90(2), 189-230.

[33] Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, F.S., Hamilton, J.W., Byrne, J., O'Shea, K., Entezari, M.H., Dionysiou, D.D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B, 125(21), 351-349. DOI: 10.1016/j.apcatb.2012.05.036

[34] Alam, M.Z., Ahmad, S., Malik, A., Ahmad, M. (2010). Mutagenicity and genotoxicity of tannery effluents used for irrigation at Kanpur, India. Ecotoxicology and Environmental Safety, 73(7), 1620-1628. DOI: 10.1016/j.ecoenv.2010.07.009

[35] Wang, Y., Liu, X., Guo, L., Shang, L., Ge, S., Song, G., Naik, N., Shao, Q., Lin, J., Guo, Z. (2021). Metal organic framework-derived C-doped ZnO/TiO₂ nanocomposite catalysts for enhanced photodegradation of Rhodamine B. Journal of Colloid and Interface Science, 599, 566-576. DOI: 10.1016/j.jcis.2021.03.167

[36] Sun, H., Guo, Y., Zelekew, O.A., Abdeta, A.B., Kuo, D.H., Wu, Q., Zhang, J., Yuan, Z., Lin, J., Chen, X. (2021). Biological renewable nanocellulose templated CeO₂/TiO₂ synthesis and its photocatalytic removal efficiency of pollutants. Journal of Molecular Liquids, 336, 116873. DOI: 10.1016/j.molliq.2021.116873

[37] Chairungsri, W., Subkomkaew, A., Kijjapanich, P., Chimupala, Y. (2022). Direct dye wastewater photocatalysis using immobilized titanium dioxide on a fixed substrate. Chemicalosphere, 286, 131762. DOI: 10.1016/j.chemosphere.2021.131762

[38] Le, A.T., Tan, Z.H., Sivakumar, R., Pung, S.Y. (2021). Predicting the photocatalytic performance of metal/metal oxide coupled TiO₂ particles using Response Surface Methodology (RSM). Materials Chemistry and Physics, 269, 124739. DOI: 10.1016/j.matchemphys.2021.124739

[39] Lu, X., Li, Z., Liu, Y., Tang, B., Zhu, Y., Razal, J.M., Pakdel, E., Wang, J., Wang, X. (2021). Titanium dioxide coated carbon foam as a microreactor for improved sunlight driven treatment of cotton dyeing wastewater. Journal of Cleaner Production, 246, 118949. DOI: 10.1016/j.jclepro.2019.118949

[40] Tichapondwa, S.M., Newman, J.P., Kubheka, O. (2020). Effect of TiO₂ phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118-119, 102900. DOI: 10.1016/j.pce.2020.102900

[41] Nguyen, C.H., Tran, M.L., Tran, T.T. Van, Juang, R.S. (2020). Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO₂/ZnO/rGO composites. Separation and Purification Technology, 232, 118062. DOI: 10.1016/j.seppur.2019.115962

[42] Yang, T., Peng, J., Zheng, Y., He, X., Hou, Y., Wu, L., Fu, X. (2018). Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO₂ nanocomposites. Applied Catalysis B: Environmental, 221, 223-234. DOI: 10.1016/j.apcatb.2017.09.025
Indira, K., Shanmugam, S., Hari, A., Vasantharaj, S., Sathiyavimal, S., Brindhadevi, K., El Askary, A., Elfasakhany, A., Pugazhendhi, A. (2021). Photocatalytic degradation of congo red dye using nickel–titanium dioxide nanoflakes synthesized by Mukia madrasapatan leaf extract. *Environmental Research*, 204, 112047. DOI: 10.1016/j.envres.2021.112047

Sugashini, S., Gomathi, T., Devi, R.A., Sudha, P.N., Rambabu, K., Banat, F. (2022). Nanochitosan/carboxymethyl cellulose/TiO2 biocomposite for visible-light-induced photocatalytic degradation of crystal violet dye. *Environmental Research*, 204, 112047. DOI: 10.1016/j.envres.2021.112047

Kiwaan, H.A., Atwoe, T.M., Azab, E.A., El-Bindary, A.A. (2020). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. *Journal of Molecular Structure*, 1299, 130496. DOI: 10.1016/j.molstruc.2020.130496

Javanbakht, V., Mohammadian, M. (2021). Photo-assisted advanced oxidation processes for efficient removal of anionic and cationic dyes using Bentonite/TiO2 nano-photocatalyst immobilized with silver nanoparticles. *Journal of Molecular Structure*, 1299, 130496. DOI: 10.1016/j.molstruc.2021.130496

Kurniawan, T.A., Mengting, Z., Fu, D., Yeap, S.K., Othman, M.H.D., Avtar, R., Ouyang, T. (2020). Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. *Journal of Environmental Management*, 270, 110871. DOI: 10.1016/j.jenvman.2020.110871

Ngoepe, N.M., Mathipa, M.M., Hintsho, Mbita, N.C. (2020). Biosynthesis of titanium dioxide nanoparticles for the photodegradation of dyes and removal of bacteria. *Optik*, 224, 165728. DOI: 10.1016/j.ijleo.2020.165728

Loo, W.W., Pang, Y.L., Lim, S., Wong, K.H., Lai, C.W., Abdallah, A.Z. (2021). Enhancement of photocatalytic degradation of Malachite Green using iron doped titanium dioxide loaded on oil palm empty fruit bunch-derived activated carbon. *Chemosphere*, 272, 129588. DOI: 10.1016/j.chemosphere.2021.129588

Rani, M., Keshu, K., Shanker, U. (2021). Efficient degradation of organic pollutants by novel titanium dioxide coupled bismuth oxide nanocomposite: Green synthesis, kinetics and photocatalytic activity. *Journal of Environmental Management*, 300, 113777. DOI: 10.1016/j.jenvman.2021.113777

Al-Mamun, M.R., Kader, S., Islam, M.S. (2021). Solar-TiO2 immobilized photocatalytic reactors performance assessment in the degradation of methyl orange dye in aqueous solution. *Environmental Nanotechnology, Monitoring & Management*, 16, 100514. DOI: 10.1016/j.enmm.2021.100514

Al-Mamun, M.R., Karim, M.N., Nitun, N.A., Kader, S., Islam, M.S., Khan, M.Z.H. (2021). Photocatalytic performance assessment of GO and Ag co-synthesized TiO2 nanocomposite for the removal of methyl orange dye under solar irradiation. *Environmental Technology & Innovation*, 22, 101537. DOI: 10.1016/j.eti.2021.101537

Burakov, A.E., Galunin, E. V., Burakova, I. V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. *Ecotoxicology and Environmental Safety*, 148, 702-712. DOI: 10.1016/j.ecoenv.2017.11.034

Egbosiuba, T.C., Chika, M., Oladejo, J., Mustapha, S., Saka, A., Sanni, A. (2022). Activated multi-walled carbon nanotubes decorated with zero-valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in batch and continuous flow modes. *Journal of Hazardous Materials*, 423, 126993. DOI: 10.1016/j.jhazmat.2021.126993

Qin, J., Ye, S., Yan, K., Zhang, J. (2022). Visible light-driven photocatalytic degradation of organic dyes for simultaneous removal of oxytetracycline and Cu (II) based on plasmonic Bi/Bi2O3/TiO2 nanotubes. *Journal of Colloid and Interface Science*, 607, 1936-1943. DOI: 10.1016/j.jcis.2021.10.008

Li, Y., Cui, W., Liu, L., Zong, R., Yao, W., Liang, Y., Zhu, Y. (2016). Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. *Applied Catalysis B: Environmental*, 199, 412-423. DOI: 10.1016/j.apcatb.2016.06.053

You, S., Hu, Y., Liu, X., Wei, C. (2018). Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light. *Applied Catalysis B: Environmental*, 232, 288-298. DOI: 10.1016/j.apcatb.2018.03.025

Li, Q.H., Dong, M., Li, R., Cui, Y.Q., Xie, G.X., Wang, X.X., Long, Y.Z. (2021). Enhancement of Cr(VI) removal efficiency via adsorption/photoelectrocatalysis synergy using electrosynthesized chitosan/g-C3N4/TiO2 nanofibers. *Carbohydrate Polymers*, 253, 117200. DOI: 10.1016/j.carbpol.2020.117200
[59] Cai, J., Li, H. (2020). Electrospun polymer nanofibers coated with TiO₂ hollow spheres catalyze for high synergetic photo-conversion of Cr(VI) and As(III) using visible light. *Chemical Engineering Journal*, 398, 125644. DOI: 10.1016/j.cej.2020.125644

[60] Sun, Y., Xu, L., Jin, P., Bai, X., Jin, X., Shi, X. (2021). Simultaneous removal of colorless micropollutants and hexavalent chromium by pristine TiO₂ under visible light: An electron transfer mechanism. *Chemical Engineering Journal*, 405, 126968. DOI: 10.1016/j.cej.2020.126968

[61] Sun, Q., Li, H., Niu, B., Hu, X., Xu, C., Zheng, S. (2015). Nano-TiO₂ immobilized on diatomite: Characterization and photocatalytic reactivity for Cu²⁺ removal from aqueous solution. *Procedia Engineering*, 102, 1935-1943. DOI: 10.1016/j.proeng.2015.01.334

[62] Liu, M., Yin, W., Qian, F.J., Zhao, T.L., Yao, Q.Z., Fu, S.Q., Zhou, G.T. (2020). A novel synthesis of porous TiO₂ nanotubes and sequential application to dye contaminant removal and Cr(VI) visible light catalytic reduction. *Journal of Environmental Engineering*, 8, 104061. DOI: 10.1016/j.jece.2020.104061

[63] Fuziki, M.E.K., Brackmann, R., Dias, D.T., Tuset, A.M., Specchia, S., Lenzi, G.G. (2021). Effects of synthesis parameters on the properties and photocatalytic activity of the magnetic catalyst TiO₂/CoFe₂O₄ applied to selenium photoreduction. *Journal of Water Process Engineering*, 42, 102163. DOI: 10.1016/j.jwpe.2021.102163

[64] Rathna, T., Ettiyappan, J.B.P., Sudhakar, D.R. (2021). Fabrication of visible-light assisted TiO₂-WO₃-PANI membrane for effective reduction of chromium (VI) in a photocatalytic membrane reactor. *Environmental Technology & Innovation*, 24, 102023. DOI: 10.1016/j.eti.2021.102023

[65] Kanakaraju, D., Mohamad Shahdad, N.R., Lim, Y.C., Pace, A. (2019). Concurrent removal of Cr(III), Cu(II), and Pb(II) ions from water by multifunctional TiO₂/Alg/FeNPs beads. *Sustainable Chemistry and Pharmacy*, 14, 100176. DOI: 10.1016/j.scp.2019.100176

[66] Fontana, K.B., Lenzi, G.G., Seára, E.C.R., Chaves, E.S. (2018). Comparision of photocatalysis and photolysis processes for arsenic oxidation in water. *Ecotoxicology and Environmental Safety*, 131, 127-131. DOI: 10.1016/j.ecoenv.2018.01.001

[67] Rauf, M.A., Qadri, S.M., Ashraf, S., Al-Mansoori, K.M. (2009). Adsorption studies of Toluidine Blue from aqueous solutions onto gypsum. *Chemical Engineering Journal*, 150(1) 90-95. DOI: 10.1016/j.cej.2008.12.008

[68] Riera-Torres, M., Gutiérrez-Bouzán, C., Crespi, M. (2010). Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. *Desalination*, 252, 53-59. DOI: 10.1016/j.desal.2009.11.002

[69] Shakir, K., Elkafrawy, A.F., Ghoneimy, H.F., Elrab Beheir, S.G., Refaat, M. (2010). Removal of rhodamine B (a basic dye) and thioron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. *Water Research*, 44, 1449-1461. DOI: 10.1016/j.watres.2009.10.029

[70] Zodi, S., Potier, O., Lapicque, F., Leclerc, J.-P. (2010). Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. *Desalination*, 261(1), 186-190. DOI: 10.1016/j.desal.2010.04.024

[71] Rauf, M.A., Ashraf, S.S. (2009) Application of Advanced Oxidation Processes (AOP) to dye degradation-an overview, in Arnold R. Lang (Ed.), *Dyes and Pigments: New Research*, Nova Science Publishers, Inc ISBN 978-1-60692-027-5

[72] Al-Hamedi, F.H., Rauf, M.A., Ashraf, S.S. (2009). Degradation studies of Rhodamine B in the presence of UV/H₂O₂. *Desalination*, 239, 159-166. DOI: 10.1016/j.desal.2008.03.016

[73] Bousala, C., Samar, M.E.H., Ismail, F. (2010). Degradation of methyl violet 6B dye by the Fenton process. *Desalination*, 254, 35-41. DOI: 10.1016/j.desal.2009.12.017

[74] Abdessalem, A.K., Bellakhal, N., Oumari, M., Dachraoui, M., Oturan, M.A. (2010). Treatment of a mixture of three pesticides by photo- and electro-Fenton processes. *Desalination*, 250(1), 450-455. DOI: 10.1016/j.desal.2009.08.072

[75] Tehrani-Bagha, A.R., Mahmoodi, N.M., Menger, F.M. (2010). Degradation of a persistent organic dye from colored textile wastewater by ozonation. *Desalination*, 260, 34-38. DOI: 10.1016/j.desal.2010.05.004

[76] Song, S., Ying, H., He, Z., Chen, J. (2007). Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis. *Chemosphere*, 66(9), 1782-1788. DOI: 10.1016/j.chemosphere.2006.07.090

[77] Bukallah, S.B., Rauf, M.A., Ashraf, S.S. (2007). Photocatalytic decoloration of Coomassie Brilliant Blue with titanium oxide. *Dyes and Pigments*, 72(3), 353-356. DOI: 10.1016/j.dyepig.2005.09.016

Copyright © 2022, ISSN 1978-2993
[100] Akpan, U.G., Hameed, B.H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO$_2$-based photocatalysts: A review. *Journal of Hazardous Materials*, 170(2-3), 520–529. DOI: 10.1016/j.jhazmat.2009.05.039

[101] Carp, O., Huismann, C.L., Roller, A. (2004). Photoinduced reactivity of titanium dioxide. *Progress in Solid State Chemistry*, 32(1-2), 33-177. DOI: 10.1016/j.progsolidstchem.2004.08.001

[102] Ding, Z., Lu, G.Q., Greenfield, P.F. (2000). Role of the crystal lattice phase of TiO$_2$ in heterogeneous photocatalysis for phenol oxidation in water. *The Journal of Physical Chemistry B*, 104, 4815–4820. DOI: 10.1021/jp993819b

[103] Devi, L.G., Kavitha, R. (2013). A review on non-metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. *Applied Catalysis B: Environmental*, 140-141, 559-558. DOI: 10.1016/j.apcata.2013.04.035

[104] Khan, A., Mir, N.A., Faisal, M., Muneer, M. (2012). Titanium Dioxide-Mediated Photocatalysed Degradation of Two Herbicide Derivatives Chloridazon and Metribuzin in Aqueous Suspensions. *International Journal of Chemical Engineering*, 2012, 850468. DOI: 10.1155/2012/850468

[105] Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gerjnak, W. (2009). Decontamination, and disinfection of water by solar photocatalysis: Recent overview and trends. *Catalysis Today*, 147(1), 1-59. DOI: 10.1016/j.cattod.2009.06.018

[106] Poznyak, S.K., Kokorin, A.I., Kulak, A.I. (1998). Effect of electron and hole acceptors on the photoelectrochemical behavior of nanocrystalline microporous TiO$_2$ electrodes. *Journal of Electroanalytical Chemistry*, 442(1-2), 99-105. DOI: 10.1016/S0022-0728(97)00458-0

[107] Miyauchi, M., Nakajima, A., Hashimoto, K., Watanabe, T. (2000). A highly hydrophilic thin film under 1 μW/cm2 UV illumination. *Advanced Materials*, 12(24), 1923–1927. DOI: 10.1002/1521-4095(200012)12:24<1923::AID-ADMA1923>3.0.CO;2-%23

[108] Lee, H.U., Lee, S.C., Choi, S., Son, B., Kim, H., Lee, S.M., Kim, H.J., Lee, J. (2013). Influence of visible-light irradiation on physicochemical and photocatalytic properties of nitrogen-doped three-dimensional (3D) titanium dioxide. *Journal of Hazardous Materials*, 258-259, 10-18. DOI: 10.1016/j.jhazmat.2013.04.028

[109] Li, M. (2013). The research and development of Fe doped TiO$_2$. *Research of Materials Science*, 2(2), 28-33.

[110] Beata, T., Magdalena, W., Grzegorz, Z., Guskos, N., Morawski, A., Colbeau, J.A., Wrobel, R., Nitta, A., Ohtani, B. (2018). Influence of an Electronic Structure of N-TiO$_2$ on Its Photocatalytic Activity towards Decomposition of Acetaldehyde under UV and Fluorescent Lamps Irradiation. *Catalysts*, 8, 85. DOI: 10.3390/catal8020085

[111] Rajeshwar, K., Osugi, M.E., Chanmanee, W., Chentharamarshan, C.R., Zanoni, M., Kajitvichyanukul, P., Krishnan-Ayer, R. (2008). Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. *Journal of Photochemical and Photobiology C*, 9(4), 171-192. DOI: 10.1016/j.jphotochemrev.2008.09.001

[112] Rehman, S., Ullah, R., Butt, A.M., Gohar, N.D. (2009). Strategies of making TiO$_2$ and ZnO visible light active. *Journal of Hazardous Material*, 170(2-3), 560-569. DOI: 10.1016/j.jhazmat.2009.05.064

[113] Hunter, A., Renfrew, M.M. (1999). Reactive Dyes for Textile Fibres: The Chemistry of Activated [pi]-bonds as Reactive Groups and Miscellaneous Topics, Society of Dyers and Colourists, ISBN: 9780901956750, 0901956759

[114] Lam, S.-M., Sin, J.-C., Abdullah, A.Z., Mohamed, A.R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. *Desalination and Water Treatment*, 41(1-3), 131-169. DOI: 10.1080/19443994.2012.664698

[115] Dhanalakshmi, M., Saravananukumar, K., Prabavathi, S.L, Muthuraj, V. (2020). Iridium doped ZnO nanocomposites: Synergistic effect induced photocatalytic degradation of methylene blue and crystal violet. *Inorganic Chemistry Communications*, 111, 107601. DOI: 10.1016/j.inoche.2019.107601

[116] Parmon, V.N. (1997). Photocatalysis as a phenomenon: Aspects of terminology. *Catalysis Today*, 39, 137-144. DOI: 10.1016/S0920-5861(97)00095-3

[117] Anpo, M. (2000). Utilization of TiO$_2$-photocatalysts in green chemistry. *Pure and Applied Chemistry*, 72(7), 1265–1270. DOI: 10.1351/pac200072071265

[118] Zaleska, A. (2008). Doped-TiO$_2$: A review. *Recent Patents on Engineering*, 2(3), 157–164. DOI: 10.2174/187221208786306289

[119] Litter, M.I. (1999). Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems. *Applied Catalysis B: Environmental*, 23(2-3), 89-114. DOI: 10.1016/S0926-3373(98)00069-7

[120] Komai, P.V. (1993). Photochemistry on non-reactive and reactive (semiconductor) surfaces. *Chemical Reviews*, 93, 267-300. DOI: 10.1021/cr00017a013
[121] Tian, H., Maa, J., Li, K., Li, J. (2008). Photo-catalytic degradation of methyl orange with W-doped TiO$_2$ synthesized by a hydrothermal method. *Materials Chemistry and Physics*, 112, 47-51. DOI: 10.1016/j.matchemphys.2008.05.005

[122] Kogo, A., Sakai, N., Tatsuma, T. (2010). Photocatalysis of Au$_{25}$-modified TiO$_2$ under visible and near infrared light. *Electrochemistry Communications*, 12, 996-999. DOI: 10.1016/j.elecom.2010.05.021

[123] Liu, C.-J., Yang, T.-Y., Wang, C.-H., Chien, C.-C., Chen, S.-T., Wang, C.-L, Leng, W.-H., Hwu, Y., Lin, H.-M., Lee, Y.-C., Cheng, C.-L., Je, J.H., Margaritondo, G. (2009). Enhanced photocatalysis, colloidal stability and cytotoxicity of synchrotron X-ray synthesized Au/TiO$_2$ nanoparticles. *Materials Chemistry and Physics*, 117, 74-79. DOI: 10.1016/j.matchemphys.2009.05.030

[124] Sobana, N., Selvam, K., Swaminathan, M. (2008). Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO$_2$. *Separation and Purification Technology*, 62, 648-653. DOI: 10.1016/j.seppur.2008.03.002

[125] Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M., Bae, Y.C. (2004). Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO$_2$ under visible and UV light irradiation. *Journal of Photochemistry and Photobiology A: Chemistry*, 163, 37-44. DOI: 10.1016/S1010-6030(03)00428-3

[126] Li, X.Z., Li, F.B. (2001). Study of Au/Au$^{3+}$-TiO$_2$ Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment. *Environmental Science & Technology*, 35(11), 2381-2387. DOI: 10.1021/es001752w

[127] Yang, J., Li, D., Zhang, Z., Li, Q., Wang, H. (2000). A study of the photocatalytic oxidation of formaldehyde on Pt/Fe$_2$O$_3$/TiO$_2$. *Journal of Photochemistry and Photobiology A: Chemistry*, 137, 197-202. DOI: 10.1016/S1010-6030(00)00340-3

[128] Xu, A.W., Gao, Y., Liu, H.Q. (2002). The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO$_2$ Nanoparticles. *Journal of Catalysis*, 207(2), 151-157. DOI: 10.1006/jcat.2002.3539