Data in Brief

The complete mitochondrial genome of the acid-tolerant fungus *Penicillium* ShG4C

Andrey V. Mardanov,⁎ Lubov B Glukhova, Eugeny V. Gruzdev, Alexey V. Beletsky, Olga V. Karnachuk, Nikolai V. Ravin

Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
Tomsk State University, 634050 Tomsk, Russia

Abstract

Complete mitochondrial genome of the acid-tolerant fungus *Penicillium* ShG4C, isolated from oxidized sediments of an abandoned polymetallic mine site, has been sequenced using high-throughput sequencing approach. The mitochondrial genome represents a circular DNA molecule with size of 26,725 bp. It encodes a usual set of mitochondrial genes, including 15 protein coding genes, large and small ribosomal RNAs and 27 tRNA genes. All genes are located on H-strand DNA and transcribed in one direction. Taxonomic analysis based on concatenated sequences of mitochondrial proteins confirmed taxonomic position of this fungus within the genus *Penicillium*. The sequence of the complete mitochondrial genome of *Penicillium* ShG4C was deposited in DBJ/EMBL/GenBank under accession number KX931017.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Direct link to deposited data

https://www.ncbi.nlm.nih.gov/nuccore/KX931017.

2. Introduction

Fungi of the genus *Penicillium* of Trichocomaceae family of Pezizomycotina order (filamentous fungi) of Ascomycetes are widely distributed in nature. Generally they are saprophytes and use dead organic material for feed. Eukaryotic organisms could inhabit extreme environments, for example, fungi of the genus *Penicillium* sp. were found in acidic Rio Tinto in Spain and Iron Mountains in California [9,10], hot soil of Yellowstone Part in USA [12]. A few Ascomycetes fungi were found in Zanjan province (Iran) as potential species for cadmium removal from soils [11]. Evolutionary adaptation of fungi to metal-contaminated soils is a well-documented phenomenon, particularly because it is one of the most striking examples of microevolution driven by edaphic factors [8]. They have considerable potential in the solution of bioremediation tasks [2]. These fungi can absorb different metals from soil and water [3], they are easily isolated, grow quickly and adjust to environmental conditions, so they have a major potential for bioremediation [2]. In this paper we present the results of sequencing and analysis of the mitochondrial genome of acid tolerant strain of fungus *Penicillium* ShG4C. The obtained data will be useful for further research in the field of taxonomy and evolution of filamentous fungi.

3. Experimental design, materials and methods

3.1. Features of the mitochondrial genome of *Penicillium* ShG4C

In 2013 the fungal strain ShG4C belonging to the genus *Penicillium* was isolated from wastes of the ore mining deposit “Sherlovaya Gora” located in Transbaikal region, Eastern Siberia, Russia. Chemical analysis of water at the sampling site showed low pH value (1.9) and high
concentrations of iron (320 mM), arsenic (39 mM), zinc (41 mM), aluminum (100 mM), and copper (31 mM). Strain ShG4C is able to grow in presence of high concentration of arsenic and metals. Due to these properties, strain ShG4C is a potential object for development of new bioremediation approaches.

Genomic DNA was extracted from mycelium by modified protocol described in works of [1]. Whole genomic DNA was sequenced using Illumina HiSeq2500 platform (10 millions of 100-bp long reads). The sequencing reads were de novo assembled into contigs using the Spades v. 3.7.1 [4]. A single circular contig with an average 1158 X coverage representing the mitochondrial genome was identified based on sequence similarity to the mitochondrial genome sequence of *Penicillium polonicum* (KUS30219). Identification of protein-coding genes, ribosomal and tRNA genes was carried out using Mitos server [5] and tRNAscan-SE [6]. The obtained automatic annotation was checked and corrected manually using BLAST search against the NCBI sequence database (http://www.ncbi.nlm.nih.gov/genbank/).

The complete mitochondrial genome of *Penicillium* ShG4C was a circular 26,725 bp long DNA. Its size is comparable to mtDNA of other closely related fungi of genus *Penicillium*, e.g. mtDNA of *Penicillium polonicum* – 28,192 bp (NC_030172), and *Penicillium roqueforti* – 29,908 bp (KR952335). The standard set of genes, including 15 protein-coding genes, 27 tRNA genes and 2 genes of ribosomal RNA is encoded by the mitochondrial genome of *Penicillium* ShG4C (Table 1). All identified genes are encoded on H-strand of mtDNA. All protein-encoding genes have the same start codon ATG, except for COX1 gene with TTG start codon. NAD6 gene has stop codon TAG and the other encoding genes have the same start codon ATG, except for COX1 gene.

Gene	Start	Stop	Length, bp
rrnL	113	4705	4593†
RPSb	2861	4072	1212
tmN-UGU	4753	4823	71
tmE-UUC	4861	4934	74
tmW-UAC	4936	5008	73
tmM-CAU	5010	5080	71
tmM-CAU	5081	5153	73
trnL-CAA	5158	5239	82
trnA-UGC	5245	5316	72
trnF-GAA	5564	5636	73
trnL-UGU	5649	5731	83
trnQ-UUG	5744	5816	73
trnM-CAU	5820	5891	72
trnC-GCA	5915	5985	71
trnH-UUG	6118	6188	71
COX1	6376	8088	1713
ATP9	8452	8676	225
tmN-GUJ	8731	8801	71
NAD5	8990	9397	408
COX2	9537	10298	762
trnR-ACG	10404	10474	71
NAD4L	10744	11013	270
NAD5	11013	12992	1980
NAD2	13047	14735	1689
COB	16400	17557	1158
trnY-GUA	17648	17713	66
NAD1	17897	18952	1056
NAD4	19213	20679	1467
trnR-UUC	20749	20819	71
trnG-GUJ	20851	20921	71
ATP8	21045	21191	147
ATP6	21356	22129	774
rns	22660	24049	1390
trnY-GUA	24177	24261	85
NAD6	24349	25002	654
COX3	25052	25861	810
trnK-UUU	25900	25971	72
trnG-ACC	26014	26084	71
trnG-UCC	26105	26175	71
trnD-GUC	26188	26260	73
trnS-GCT	26314	26394	81
trnW-UCA	26395	26466	72
tmL-CAU	26483	26554	72
tmS-UCG	26559	26644	86

* a Contains intron (2517–4200).

* b Gene encoding ribosomal protein, located within rnl intron.

![Fig. 1. Phylogenetic analysis of representatives of the genera Aspergillus and Penicillium.](image-url)
[3] D.S. Hibbett, J.W. Taylor, Fungal systematics: is a new age of enlightenment at hand? Nat. Rev. Microbiol. 11 (2) (2013) 129–133.

[4] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A.D. Pyshkin, A.V. Pyshkin, N. Vyahhi, G. Tesler, M.A. Alekseyev, P.A. Pevzner, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5) (2012) 455–477.

[5] M. Bernt, A. Donath, F. Jühling, F. Externbrink, C. Florentz, G. Fritzsch, J. Pütz, M. Middendorf, P.F. Stadler, MITOS: improved de novo metazoan mitochondrial genome annotation Mol. Phylogenet. Evol. 69 (2013) 313–319.

[6] T.M. Lowe, S.R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25 (1997) 955–964.

[7] K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 (2013) 2725–2729.

[8] J.V. Colpaert, P. Vandenkoornhuyse, K. Adriaensen, J. Vangronsveld, Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol. 147 (2000) 367–379.

[9] Z. Amaral, F. Gómez, E. Zettler, B.G. Keenan, R. Amils, M.L. Sogin, Microbiology: eukaryotic diversity in Spain’s River of Fire. Nature 417 (6885) (2002) 137.

[10] B.J. Baker, M.A. Lutz, S.C. Dawson, P.L. Bond, J.F. Banfield, Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl. Environ. Microbiol. 70 (10) (2004) 6264–6271.

[11] M. Mohammadian Fazli, N. Soleimani, M. Mehrasbi, S. Darabian, J. Mohammadi, A. Ramazani, Highly cadmium tolerant fungi: their tolerance and removal potential. 2015. J. Environ. Health Sci. Eng. 13 19, http://dx.doi.org/10.1186/s40201-015-0176-0.

[12] R.S. Redman, A. Litvintseva, K.B. Sheehan, J.M. Henson, R.J. Rodriguez, Fungi from geothermal soils in Yellowstone National Park. Appl. Environ. Microbiol. 65 (12) (1999) 5193–5197.