Effects of intrinsic spin-relaxation in molecular magnets on current-induced magnetic switching

Maciej Misiorny1\textsuperscript,* and Józef Barnaś1,21
1Department of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
2Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Poland
(Dated: February 5, 2008)

Current-induced magnetic switching of a single magnetic molecule attached to two ferromagnetic contacts is considered theoretically, with the main emphasis put on the role of intrinsic spin relaxation processes. It is shown that spin-polarized current can switch magnetic moment of the molecule, despite of the intrinsic spin relaxation in the molecule. The latter processes increase the threshold voltage (current) above which the switching takes place.

PACS numbers: 75.47.Pq, 75.60.Jk, 71.70.Gm, 75.50.Xx

Single-molecule magnets (SMMs)1,2 attract much attention due to their exceptional properties and possible applications in quantum information processing3 and information storage technology1,4. Apart from this, SMMs are also promising as key elements of novel spintronics devices5. Therefore, an important question is how to manipulate the SMM in order to write a bit of information on it. One possibility relies on the application of an external magnetic field. In the following paper, however, we consider another possibility, i.e. the current-induced magnetic switching (CIMS)6,7. The phenomenon of CIMS8 is well known in the case of artificial layered nanostructures. Since the present-day technology allows to attach a SMM to electronic contacts9, CIMS of a SMM is an alternative way of writing information in SMM-based memory elements.

There are several challenging aspects of the current-induced manipulation of SMM’s spin. First, the up-to-date experimental techniques offer only limited control of the relative orientation of the molecule’s easy axis and leads’ magnetizations10. Second, intrinsic spin-relaxation time of the molecule11 has a significant influence on the switching parameters and is hardly controllable externally. Finally, the efficiency of spin injection from ferromagnetic leads to molecules is a subject of intense technological efforts. The main objective of this paper is a detailed analysis of the second point, i.e. of the influence of intrinsic spin-relaxation on the CIMS of a SMM.

It is very recently, when the switching of SMM’s spin due to spin-polarized current has been proposed6,7. However, the intrinsic spin relaxation in the molecule has not been taken into account. When the energy ε of the lowest unoccupied orbital (LUMO) level of the molecule is sufficiently low, electronic transport takes place owing to tunneling between the electrodes and the LUMO level. The CIMS can then occur when the LUMO level is exchange coupled to the SMM’s spin. The corresponding Hamiltonian of the molecule can be written in the form

\[H_{SMM} = -\left(D + \sum_\sigma D_1 c_\sigma^\dagger c_\sigma + D_2 c_1^\dagger c_1 c_\downarrow + \frac{1}{2} \sum_{\sigma\sigma'} J_{\sigma\sigma'} \cdot S_{c\sigma'} c_{\sigma} \right) S_z^2 + \sum_\sigma \varepsilon c_\sigma^\dagger c_\sigma + U c_1^\dagger c_1 c_\downarrow + \frac{1}{2} \sum_{\sigma\sigma'} J_{\sigma\sigma'} \cdot S c_{\sigma'}^\dagger c_{\sigma}, \]

where σ is the Pauli spin operator for electrons in the LUMO level, $c_\sigma^\dagger (c_\sigma)$ is the relevant creation (annihilation) operator, and U is the Coulomb energy of two electrons of opposite spins in the LUMO level. The first term of H_{SMM} describes the anisotropy of a SMM, whereas the final one accounts for the exchange interaction between the SMM’s core and the LUMO level, with J being the relevant exchange parameter. The influence of molecule’s oxidation state on the anisotropy12 is taken into account by the terms linear in D_1 and D_2. In turn, tunneling processes between the molecule and leads are described by H_T. $H_T = \sum_q \sum_{k\sigma} \left[T_q q_{k\sigma} c_\sigma^\dagger + T_q^* c_{\sigma}^\dagger q_{k\sigma} \right]$, where T_q is the tunneling matrix element between the SMM and the q-th lead ($q = L(R)$ for the left (right) electrode), and $q_{k\sigma} (q_{k\sigma}^\dagger)$ is the annihilation (creation) operator of an electron with the wave vector k and spin σ in the q-th electrode. The system is shown schematically in Fig. I(a).

Tunneling between the leads and molecule gives rise to a finite spin-dependent width Γ_σ of the LUMO level, $\Gamma_\sigma = \sum_q \Gamma_q^\sigma$, where $\Gamma_q^\sigma = 2\pi |T_q|^2 D_q$ and D_\uparrow is the spin-dependent density of states (DOS) at the Fermi level in the lead q. The parameters Γ_q^σ will be used in the following to describe coupling strength between the LUMO level and leads. It is convenient to write Γ_q^σ as $\Gamma_\uparrow = \Gamma_q (1 + P_q)$, where $\Gamma_q = (\Gamma_q^\uparrow + \Gamma_q^\downarrow)/2$, and P_q is the polarization of the q-th lead, $P_q = (D_q^\uparrow - D_q^\downarrow)/(D_q^\uparrow + D_q^\downarrow)$. Here $\sigma = (+)(-)\ correspond to spin-majority (spin-minority) electrons. In the following, we assume that the couplings are symmetric, $\Gamma_L = \Gamma_R = \Gamma/2$.

When the energy ε of the LUMO level is large enough, electron tunneling to the molecule is energetically forbidden at bias voltages of interest. However, current still can flow due to higher order processes, e.g. cotunneling ones,
The energy levels corresponding to the Hamiltonian of the molecule can be then reduced to $H_{\text{SMM}} = -DS_0^2$, while tunneling processes can be described effectively by $H_T = \frac{1}{2} \sum_{qq'} \sum_{\sigma \sigma'} J_{\sigma \sigma'} \cdot S + \delta a_{k \sigma}^q a_{k \sigma'}^{q'}$, where δ takes into account those tunneling processes between the leads, which are not included in the exchange term. These, however, are irrelevant from the point of view of switching process and can be neglected ($\delta = 0$).

Switching of the SMM’s spin takes place consecutively via the magnetic states of the molecule. These states are described by the eigenvalue m of the z component of the molecule’s total spin, $S^z_i = S_z + \frac{1}{2} (c_i^+ c_i - c_i^+ c_i)$ (where the second term represents the contribution from electrons in the LUMO level), and the corresponding occupation number n of the LUMO level, i.e. $|n,m\rangle$ [3].

The problem is then reduced to determining the probabilities $P_{|n,m\rangle}$ of finding the molecule in all possible molecular states $|n,m\rangle$. These probabilities can be determined from the relevant master equations and the corresponding transition rates between the molecular states. The key point is that these transition rates must include also the effects due to intrinsic spin relaxation.

Generally, in the systems under consideration one can distinguish two classes of SMM’s spin relaxation processes. The first class is associated with the coupling of the molecule to ferromagnetic leads [6, 7, 13], and the other one includes all intrinsic spin-relaxation processes [2, 11]. The role of the latter processes in the CIMS of the SMM’s spin is the main objective of this paper. It is important to note that even at low temperatures the molecule’s spin is subject to decoherence due to interaction with its environment. A SMM in an excited molecular spin level can undergo transitions to neighboring levels of lower energy, which is accompanied by emission of a phonon. As a consequence, excited molecular spin states have a finite life-time, and it has been shown that this time for Fe$_8$ is of order of 10^{-6} s [11]. Furthermore, coherence of the SMM’s spin can also be lost due to various forms of magnetic interactions with the environment, e.g. due to the hyperfine interaction with nuclear moments of protons in the vicinity of the molecule [2, 11].

To include the intrinsic spin relaxation processes into considerations, we introduce the relaxation rate γ_R in addition to the rates $\gamma_{|n,m\rangle|n',m'}$ describing current-induced transitions between the molecular spin states $|n,m\rangle$ and $|n',m'\rangle$. The latter ones can be calculated from the Fermi golden rule [6, 7]. In turn, intrinsic relaxation of the molecule’s spin occurs as transitions between neighboring molecular states of the same spin multiplet, Fig. 1(b), i.e. the occupation of the LUMO level is not changed by these processes. Furthermore, we assume that the spin relaxation is fully characterized by a phenomenological relaxation time τ_R, i.e. the relaxation rate takes the form

$$\gamma_R^{|n,m\rangle|n,m'} = \frac{1}{\tau_R} \times \frac{\exp \left[\frac{-\Delta}{2k_B T} \right]}{2 \cosh \left[\frac{\Delta}{2k_B T} \right]}.$$. (3)

Here, $\epsilon_{|n,m\rangle}$ denotes the energy of the molecular state $|n,m\rangle$, k_B is the Boltzmann constant, T is the temperature of the system, and $\Delta = \epsilon_{|n,m\rangle} - \epsilon_{|n,m'\rangle}$. The Boltzmann factor in Eq. (3) assures that the intrinsic spin relaxation drives the SMM’s spin to the state of the lowest energy.

FIG. 1: (color online)(a) Schematic representation of the system and switching mechanism due to spin-polarized current. (b) Energy levels of the Mn$_{12}$ molecule for the following parameters: $D \approx 0.05$ meV, $D_1 \approx -0.006$ meV, $D_2 \approx 0.0017$ meV [12], $J = 0.25$ meV, $\varepsilon = 5$ meV, and $U = 0$. Different parabolas correspond to indexed values of the SMM’s total spin S_t and occupation numbers of the LUMO level.
Taking into account the relaxation processes discussed above, the master equations for the probabilities \(P_{n,m} \) take the form,

\[
\frac{dP_{n,m}}{dV} = -\left(\gamma_R^{n,m-1,n,m} + \gamma_R^{n,m,n,m+1} \right) P_{n,m} + \gamma_R^{n,m-1,n,m} P_{n-1,m} + \gamma_R^{n,m,n,m+1} P_{n+1,m} + \sum_{n',m'} \left[\gamma_R^{n',m',n,m} P_{n',m'} - \gamma_R^{n,m,n',m'} P_{n,m} \right].
\]

In the following we assume that initially the molecule is saturated in the state \(|0, -10\rangle \), and then voltage growing linearly in time is applied, \(V = ct \), with \(c \) denoting the speed at which the voltage is augmented. It means that for the molecule of the spin \(S = 10 \), like the molecule Mn_{12} or Fe_{18}, one has to solve the set of 21 coupled differential equations for the situation of large LUMO level and 84 equations in the general case.

In Fig. 2 we show evolution of the \(z \) component of the molecule’s spin in the case of parallel magnetic configuration and high LUMO level (current flows then due to higher order processes). The results clearly show that the molecule’s spin becomes switched when the voltage exceeds some critical value, which is determined by the magnetic anisotropy (energy gap between the states corresponding to \(m = -10 \) and \(m = -9 \)) and the intrinsic relaxation time. Since the intrinsic spin-flip relaxation processes tend to restore the initial state, the lowest threshold voltage occurs in the absence of intrinsic spin relaxation. The switching, however, takes also place in the presence of intrinsic spin relaxation processes, although the threshold voltage becomes increased. Apart from this, the switching time also increases with decreasing \(\Gamma_R \). Similar behavior also occurs in the case when magnetic moments of the leads are antiparallel.

The parameters assumed in Fig. 2 correspond to half-metallic ferromagnetic left electrode (\(P_L = 1 \)) and typical 3d ferromagnetic metallic right electrode. For simplicity the positive bias corresponds to electrons flowing from left to right (\(c > 0 \)), i.e. from half-metallic ferromagnetic electrode to the 3d one. Spin-up electrons leaving the half-metallic electrode can change its spin orientation when interacting via exchange coupling with the molecule’s spin, and this way can increase the spin number \(m \) of the molecule’s spin. Intrinsic relaxation processes tend to restore the initial state. When the current exceeds some critical value, the competition of intrinsic spin relaxation (lowering the quantum number \(m \)) and current-induced processes (increasing the number \(m \)) leads to spin reversal of the molecule. This takes place in both, parallel and antiparallel (with magnetic moment of the right electrode being reversed) magnetic configurations. For reversed bias polarization only switching from the state \(|0, 10\rangle \) to the state \(|0, -10\rangle \) is possible.

In Figs 3 and 4 we show the average value of the total spin \(\langle S^z \rangle \) and current flowing in a biased system in the case when switching occurs due to sequential tun-
neling of electrons through the molecule’s LUMO level. These two figures correspond to parallel (Fig. 3) and antiparallel (Fig. 4) magnetic configurations. Clearly, there is no switching in the parallel configuration. Instead of this, current excites the molecule to higher states and the average spin becomes zero (see Fig. 3). The situation is different in the antiparallel configuration, where there is a clear switching from the state $|0, -10\rangle$ to the state $|0, 10\rangle$. To understand this behavior one should note that in Figs 3 and 4 the spin polarization of both electrodes is the same. Consequently, the current-induced processes increasing the number m and those decreasing m occur with the same rate in the parallel configuration. Accordingly, none of the molecule’s spin states is stabilized by the current. In contrast, in the antiparallel configuration processes increasing the number m start to dominate over those decreasing m above a certain threshold voltage, and the switching to the state $|0, 10\rangle$ takes place. Current-induced switching of the molecules’ spin may be possible also in the parallel configuration, provided spin polarizations of the electrodes are different.

In conclusion, we have shown that spin-polarized current flowing through the molecule can switch its magnetic moment despite of intrinsic spin relaxation processes in the molecule. The latter processes increase the threshold voltage (current) and switching time. If for a certain bias polarization current stabilizes the state $|0, -10\rangle$ (or $|0, 10\rangle$), then the opposite current stabilizes the state $|0, 10\rangle$ (or $|0, -10\rangle$).

Acknowledgments This work, as part of the European Science Foundation EUROCORES Programme SPINTRA, was supported by funds from the Ministry of Science and Higher Education as a research project in years 2006-2009 and the EC Sixth Framework Programme, under Contract N. ERAS-CT-2003-980409.

* Electronic address: misiorny@amu.edu.pl
† Electronic address: barnas@amu.edu.pl
[1] R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature (London) 365, 141 (1993); D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 42, 268 (2003).
[2] D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets (Oxford University Press, New York, 2006).
[3] M. N. Leuenberger, D. Loss, Science 410, 789 (2001); B. Zhou, R. Tao, S.-Q. Shen, J.-Q. Liang, Phys. Rev. A 66, 010301(R) (2002).
[4] C. Joachim, J. K. Gimzewski, A. Aviram, Nature (London) 408, 541 (2000).
[5] A. R. Rocha, V. M. Garcia-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, S. Sanvito, Nature Materials 4, 335 (2005).
[6] M. Misiorny, J. Barnaś, Phys. Rev. B 75, 134425 (2007).
[7] M. Misiorny, J. Barnaś, Phys. Rev. B 76, 54448 (2007); C. Timm, F. Elste, Phys. Rev. B 73, 235304 (2006).
[8] J. Barnaś, A. Fert, M. Gmitra, I. Weymann, V. K. Dugaev, Phys. Rev. B 72, 24426 (2005); M. D. Stiles, A. Zangwill, Phys. Rev. B 66, 14407 (2002).
[9] H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C. Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello, A. Cornia, Phys. Rev. Lett. 96, 206801 (2006); M.-H. Jo, J. E. Grose, K. Baheti, M. M. Deshmukh, J. J. Sokol, E. M. Rumberger, D. N. Hendrickson, J. R. Long, H. Park, D. C. Ralph, Nano Lett. 6, 2014 (2006); J. J. Henderson, C. M. Ramsey, E. del Barco, A. Mishra, G. Christou, J. Appl. Phys. 101, 09E102 (2007).
[10] C. Timm, Phys. Rev. B 76, 14421 (2007); M. Misiorny, J. Barnaś, Solid State Sciences (in press); M. Misiorny, J. Barnaś, Materials Science (PL) (in press), arXiv.org:0704.2497v2.
[11] A. Morello, O. N. Bakharev, H. B. Brom, R. Sessoli, L. J. de Jongh, Phys. Rev. Lett. 93, 197202 (2004); A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timeo, R. E. P. Winpenny, Phys. Rev. Lett. 98, 57201 (2007); S. Bahr, K. Petukhov, V. Mosser, W. Wernsdorfer, Phys. Rev. Lett. 99, 147205 (2007).
[12] M. Soler, W. Wernsdorfer, K. A. Abboud, J. C. Huffman, E. R. Davidson, D. N. Hendrickson, G. Christou, J. Am. Chem. Soc 125, 3576 (2003); N. E. Chakov, M. Soler, W. Wernsdorfer, K. A. Abboud, G. Christou, Inorg. Chem. 44, 5304 (2005).
[13] M. Misiorny, J. Barnaś, Europhys. Lett. 78, 27003 (2007).