Safest Nearby Neighbor Queries in Road Networks

Punam Biswas, Tanzima Hashem, and Muhammad Aamir Cheema

Abstract—Safety on the roads has become a major concern in recent days. Travellers prefer to avoid road inconveniences that may occur from crime incidents, street harassment, protests or riots during unrest in a country. To facilitate safe travel, we introduce a novel query for road networks called the k safest nearby neighbor (SNN) query. Given a query location \(v_l \), a distance constraint \(d_c \) and a point of interest \(p_i \), we define the safest path from \(v_l \) to \(p_i \) as the path with the highest path safety score among all the paths from \(v_l \) to \(p_i \) with length less than \(d_c \). The path safety score is computed considering the road safety of each road segment on the path. Given a query location \(v_l \), a distance constraint \(d_c \) and a set of POIs \(P \), a kSNN query returns \(k \) POIs with the \(k \) highest path safety scores in \(P \) along with their respective safest paths from the query location. We develop two novel indexing structures called Ct-tree and a safety score based Voronoi diagram (SNVD). We propose two efficient query processing algorithms each exploiting one of the proposed indexes to effectively refine the search space using the properties of the index. Our extensive experimental study on real datasets demonstrates that our solution is on average an order of magnitude faster than the baseline.

Index Terms—Ct-tree, road networks, safest nearby neighbor, safest path, Voronoi diagram.

I. INTRODUCTION

CRIME incidents such as kidnapping and robbery on roads are not unusual especially in developing countries [1], [2], [3]. Street harassment (e.g., eve teasing, sexual assaults) is a common scenario that mostly women experience on roads [4], [5]. A traveler typically prefers to avoid a road segment with high crime or harassment rate. Similarly, during unrest in a country, people prefer to avoid roads with protests or riots. Also, elderly or sick people may prefer to avoid bumpy roads. However, traditional \(k \) nearest neighbors (kNN) queries that find \(k \) closest points of interest (POI) (e.g., a fuel station or a bus stop) fail to consider a traveler’s safety or convenience on roads. In real-world scenarios, a user may prefer visiting a nearby POI instead of their nearest one if the slightly longer path to reach the nearby POI is safer than the shortest path to the nearest POI. In this paper, to allow travelers to avoid different types of inconveniences on roads (e.g., crime incidents, harassment, bumpy roads etc.), we introduce a novel query type, called a \(k \) safest nearby neighbors (kSNN) query and propose novel solutions for efficient query processing.

Intuitively, a path is safer if it requires a smaller distance to be travelled on the least safe roads. Since in real-world scenarios, a user may not want to travel on paths that are longer than a user-defined distance constraint \(d_c \), we incorporate \(d_c \) in the formulation of the kSNN query. Given a set of POIs \(P \) on a road network, a query location \(v_l \) and a distance constraint \(d_c \), a kSNN query returns \(k \) POIs (along with paths from \(v_l \) to them) with the highest Path Safety Score (PSS) considering only the paths with distances less than \(d_c \).

Consider Fig. 1 that shows 3 restaurants \((p_1, p_2, p_3)\), a query located at \(s \) and the Path Safety Scores (PSS) of some paths from \(s \) to the three POIs (we formally define PSS in Section II). Assume a 1SNN query (i.e., \(k = 1 \)) located at \(s \) and \(d_c = 10 \text{km} \). The restaurants that meet the distance constraint are the candidates for the query answer (i.e., \(p_1 \) and \(p_2 \)). The POI \(p_3 \) is not a candidate because the length of the shortest path \(P_{1} \) between \(s \) and \(p_3 \) is 14, which exceeds \(d_c \). The safest path between \(s \) and \(p_1 \) is \(P_{1} \). The PSS of \(P_{1} \) is 0.4 and its length is 8km, which is smaller than \(d_c = 10 \text{km} \). Though the safest path \(P_{2} \) between \(s \) and \(p_2 \) has a higher PSS than that of \(P_{1} \), we do not consider \(P_{3} \) because it is longer than \(d_c = 10 \text{km} \). The PSS of the safest path \(P_{2} \) between \(s \) and \(p_2 \) within \(d_c \) is 0.3. Thus, 1SNN query (also called SNN query) returns \(p_1 \) along with the path \(P_{1} \). Although there are efficient algorithms [6], [7], [8], [9] for finding the safe paths between two locations, the straightforward application of those algorithms to evaluate kSNN queries would require multiple searches and incur prohibitively expensive computations. We consider this straightforward approach as one of the baselines in our experiments and...
compare the performance of our proposed efficient algorithms against it.

Finding kSNNs in a road network is a computational challenge because the number of POIs in the road network and the number of possible paths between a user’s location and a POI can be huge. The processing overhead of a kSNN algorithm depends on the amount of required road network traversal and the number of POIs considered for finding the safest nearby POIs. In this paper, we develop two novel indexing structures called Connected Component Tree (Ct-tree) and safety score based network Voronoi diagram (SNVD) to refine the search space and propose two efficient algorithms for finding the safest nearby POIs with a single search in road networks. Although a number of indexing structures [10], [11], [12], [13], [14], [15], [16] have been developed, they are developed to reduce the processing overhead for finding nearest neighbors and cannot be applied or trivially extended for efficient processing of kSNN queries. We extend index independent incremental network expansion (INE) technique [17] for nearest neighbor search to evaluate kSNN queries and consider it as one of the baselines.

A Ct-tree recursively partitions the road network graph into connected and safer subgraph(s) by recursively removing the roads with the smallest safety scores. Each node of the Ct-tree represents a subgraph, and for every subgraph, the Ct-tree stores some distance related information. By exploiting Ct-tree properties and the stored distance information, we develop pruning techniques that avoid exploring unnecessary paths that cannot be the safest ones to reach a POI and have distances less than the distance constraint.

In the past, the Voronoi diagram [18] has also been widely used for finding nearest neighbors with reduced processing overhead. The traditional Voronoi diagram divides the road network graph into subgraphs such that each subgraph corresponds to a single POI which is guaranteed to be the nearest POI of every query location in this subgraph. We introduce SNVD that guarantees that, for every query location in a subgraph, its unconstrained safest neighbor (i.e., SNN where the distance constraint is ignored) is its corresponding POI. Note that the unconstrained safest neighbor of a query location is not necessarily its SNN depending on the distance constraint specified by the user. By exploiting the SNVD properties, we develop an algorithm to identify the SNNs, and similar to our Ct-tree based approach we improve the performance of our SNVD based algorithm with novel pruning techniques to refine the search space.

We are the first to address the problem of finding kSNNs. Our major contributions are as follows:

- We define a PSS measure by incorporating road safety scores and individual distances associated with the road safety scores. Our solution can be easily extended for any other PSS measure that satisfies certain properties.
- We introduce two indexing structures, named Ct-tree and SNVD, and develop two novel algorithms for processing kSNN queries efficiently using them, respectively.
- We propose novel pruning techniques to refine the search space and further improve the performance.

We conduct an extensive experimental study using real datasets that demonstrate that the two proposed algorithms significantly outperform the baseline and the INE-based approach.

II. PROBLEM FORMULATION

We model a road network as a weighted graph $G = (V, E)$, where V is a set of vertices and E is a set of edges. A vertex $v_i \in V$ represents a road junction in the road network and an edge $e_{ij} \in E$ represents a road between v_i and v_j. Each edge e_{ij} is associated with two values w^d_{ij} and w^{ss}_{ij}. Here, w^d_{ij} is a positive value representing the weight of the edge e_{ij}, e.g., length, travel time, fuel cost etc. For simplicity, hereafter, we use length to refer to w^d_{ij}. w^{ss}_{ij} represents the edge safety score (ESS) of e_{ij} (higher the safer). Computing w^{ss}_{ij} is beyond the scope of this paper and we assume that edge safety scores are given as input (e.g., computed using existing geospatial crime mapping approaches [19], traffic conditions, past incidents etc.). Table I summarizes the main notations used the paper.

A path p_{ij} between two vertices v_i and v_j is a sequence of vertices such that the path starts at v_i, ends at v_j, and an edge exists between every two consecutive vertices in the path. Cost of a path p_{ij} is the sum of the weights of the edges in the path, e.g., total length, total travel time etc. For simplicity, hereafter, we use distance/length to refer to the cost of a path p_{ij} and denote it as $dist(p_{ij})$. Let d_c be a user-defined distance constraint. We say that a path p_{ij} is valid if $dist(p_{ij}) < d_c$.

A. Path Safety Score (PSS)

Intuitively, we want to define a Path Safety Score (PSS) measure that ensures that a path that requires smaller distance to be travelled on less safe roads has a higher PSS. Before formally representing this requirement using Property 1, we first define s-distance (denoted as d_s) of a path which is the total distance a path requires travelling on edges with safety score equal to s.

Notation	Explanation
$G(V, E)$	The road network graph
e_{ij}	An edge connecting vertices v_i and v_j
v_i	A query location
d_c	A user-defined distance constraint
p_{ij}	A POI located at v_i
w^d_{ij}	Weight (e.g., length, travel time) of e_{ij}
w^{ss}_{ij}	Edge safety score (ESS) of e_{ij}
\max	Maximum ESS, i.e., $\arg \max_{e \in E} w^{ss}_{e}$
$dist(p_{ij})$	Sum of weights of edges in p_{ij}
pt_{ij}	A path from a vertex v_i to a vertex v_j
d_s	Total weight of edges in p_{ij} with ESS equal to s
p_{ij}	Path safety score of p_{ij}
pt_{ij}^s	The safest path between v_i and v_j that has distance less than d_s
pt_{ij}^k	The shortest path between v_i and v_j
Definition 1: s-distance: Given a path p_{tij} and a positive integer s, s-distance of the path (denoted as d_{tij}) is the total length of the edges in p_{tij} which have safety score equal to s, i.e., $d_{tij} = \sum_{i,j,e|p_{tij} \& w_e = s} w_e$.

Consider the example of Fig. 2 that shows three paths P_1, P_2 and P_3 from source to a POI p_{1}, with lengths 9, 5 and 9, respectively. In Fig. 2, P_1 has two edges with ESS equal to 4. The lengths of these edges are 1 and 3, respectively. Therefore, 4-distance of P_1 is $d_{tij} = 1 + 3 = 4$. Table II shows s-distances for the three paths for each s from 1 to 5, e.g., $P_1.d_1 = 0$, $P_2.d_1 = 1$, $P_3.d_1 = 1$, $P_2.d_2 = 1$, and $P_3.d_2 = 2 + 4 = 6$.

Property 1: Let p_{tij} and p_{tij}' be two valid paths (i.e., have distances less than d_c). Let s be the smallest positive integer for which $d_{tij} \neq d_{tij}'$. The path p_{tij} must have a higher PSS than p_{tij}' if and only if $d_{tij} < d_{tij}'$.

Consider Fig. 2 and Table II. According to Property 1, P_1 must have a higher PSS than P_2 and P_3 because $P_1.d_1 = 0$ is smaller than $P_2.d_1 = 3, P_1.d_1 = 1$, i.e., P_1 does not require traveling on an edge with safety score 1 whereas P_2 and P_3 require traveling 1km on roads with safety score 1. P_2 must have a higher PSS than P_3 because, although $P_2.d_1 = P_3.d_1, P_2.d_2 = 1$ is smaller than $P_3.d_2 = 4$. Hereafter, we use d_c to denote $d_{tij} = d_{tij}'$, wherever the path p_{tij} is clear by context.

Next, we define a measure of PSS (Definition 2) which satisfies Property 1. For this definition, we assume that, for each edge, $w_{ij}^d \geq 1$ and w_{ij}^s is a positive integer. These assumptions do not limit the applications because $w_{ij}^d \geq 1$ can be achieved by appropriately scaling up if needed and, in most real-world scenarios, safety scores are integer values based on safety ratings (e.g., 1-10).

Definition 2: Path Safety Score (PSS): Let $d_c > 1$ be the distance constraint and p_{tij} be a valid path (i.e., $\text{dist}(p_{tij}) < d_c$). Let s_{max} be the maximum ESS of any edge in the road network G. The PSS $\text{pss}(p_{tij})$ of p_{tij} is computed as $\frac{1}{\sum_{i,j,w} w_{ij}^d}$, where $w_{ij}^d = d_{\text{max}}(w_{ij})$.

Here w_{ij} represents the weight (importance) assigned to the edges with ESS equal to s. For example, if $d_c = 10$ and $s_{\text{max}} = 5$, we have $w_1 = 10^4, w_2 = 10^3, w_3 = 10^2, w_4 = 10^1$ and $w_5 = 10^0$. We calculate PSS for paths P_1, P_2 and P_3 of Fig. 2 as follows. As shown in Table II, d_f values for P_1 are $P_1.d_1 = P_1.d_2 = P_1.d_3 = 0$, $P_1.d_4 = 4$ and $P_1.d_5 = 5$. The PSS for path P_1 is $\frac{1}{(10^4+1)+(10^3+1)+(10^2+1)+(10^1+1)+(10^0+1)} = \frac{1}{5}$. For P_2, d_f values are $P_2.d_1 = 1, P_2.d_2 = 1, P_2.d_3 = 0, P_2.d_4 = 1, P_2.d_5 = 2$. The PSS for path P_2 is $\frac{1}{(10^4+1)+(10^3+1)+(10^2+1)+(10^1+1)+(10^0+1)} = \frac{1}{14004}$. Finally, d_f values for P_3 are $P_3.d_1 = 1, P_3.d_2 = 4, P_3.d_3 = 3, P_3.d_4 = 0, P_3.d_5 = 4$. The PSS for P_3 is $\frac{1}{(10^4+1)+(10^3+1)+(10^2+1)+(10^1+1)+(10^0+1)} = \frac{1}{14004}$. Thus, as required by Property 1, P_1 has the highest PSS followed by P_2 and then P_3.

Note that the importance w_{ij} is set such that it fulfills the following condition: a unit length edge with ESS equal to s contributes more in the sum than all other edges in a valid path with ESS greater than s, i.e., $w_{ij} = \text{dist}(p_{tij}) \times w_{i,j+1}$ for $x \geq 1$. This is because $\text{dist}(p_{tij}) < d_c$ and $w_{i,j+1} = w_{ij}/d_c$. This condition ensures that our PSS measure satisfies Property 1. For example, when $d_c = 10$, we have $w_1 = 10^4$ and $w_2 = 10^3$. Since each edge has length at least 1, this implies that $w_1 \times d_1 > w_2 \times \text{dist}(p_{tij})$ because length of p_{tij} is less than $d_c = 10$.

Although the PSS of a path can vary depending on d_c, the relative ranking of two paths based on PSSs remains the same irrespective of the value of d_c as long as both paths are valid (i.e., have distance less than d_c).

B. kSNN Query

We denote the safest valid path between two vertices v_i and v_j as $p_{ij}^{s_{\text{max}}}$ which is a path with the highest PSS among all valid paths from v_i to v_j. Now, we define kSNN query.

Definition 3: A k Safest Nearby neighbors (kSNN) Query: Given a weighted road network $G(V, E)$, a set of POIs P, a query location v_i and a distance constraint d_c, a kSNN query returns a set P_v containing k POIs along with the safest valid paths from v_i to each of these POIs such that, for every $p_{ij} \in P_v$ and every $p_{ij}' \in P \setminus P_v$, $\text{pss}(p_{ij}') \geq \text{pss}(p_{ij})$ where $\text{pss}(p_{ij}'')$ and $\text{pss}(p_{ij}')$ represent the safest valid paths from v_i to p_i and p_i', respectively.

In Fig. 2, P_1 has the highest PSS among all valid paths from s to any of the three POIs. Thus a 1SNN query returns p_1 along with the path P_1 as the answer. In some cases, there

Path	d_f	$\text{dist}(s_{\text{tij}})$	$\text{dist}(s_{\text{tij}})$
P_1	0	0	4
P_2	1	1	0
P_3	1	4	0

TABLE II: Three Paths and Their s-Distances

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
C. Generalizing the Problem

We remark that our definition of PSS is more general than the definitions in previous works [6], [7], [8] that do not have any distance constraint and treat each road segment either as safe or unsafe instead of assigning different safety scores to each road as in our work. Consequently, our definition is more general and we can easily use our definition to compute the path that minimizes the distance travelled through unsafe zones (as in [6], [7], and [8]) by assigning each edge in the safe zone a safety score \(x \) and each edge in the unsafe zone a safety score \(y \) such that \(x > y \) and setting \(d_e \) to be larger than the length of the longest path in the network.

Although our definition of PSS is already more general than the previous work, in this section, we show that our algorithms can be immediately applied to a variety of other definitions of PSS. This further generalizes the problem studied in this paper and the proposed solutions. Specifically, we propose two algorithms to solve kSNN queries and both algorithms are generic in the sense that they do not only work when PSS is defined using Definition 2 but are also immediately applicable to a variety of other definitions of PSS. Specifically, our Ct-tree based algorithm works for any other definition of PSS as long as it satisfies both of the Properties 2 and 3, whereas, our SNVD based algorithm is immediately applicable to any definition of PSS as long as it satisfies Property 2.

Property 2: Let \(pt_{xy} \) be a subpath of a valid path \(pt_x \). The PSS computed using the defined measure must satisfy \(pss(pt_e) \leq pss(pt_{xy}) \).

Property 2 requires that a subpath must have equal or higher PSS than any path that contains this subpath. This requirement is realistic as the risk/inconvenience associated with a path inherits the risk/inconvenience associated with travelling on any subpath of this path.

Property 3: Let \(pt_{xy}, minSS \) be the minimum safety score among all the edges in the path \(pt_{xy} \), i.e., \(pt_{xy}, minSS = \arg\min_{e_j \in pt_{xy}} w_{ij}^{ss} \). Given two valid paths \(pt_x \) and \(pt_y \) such that \(pt_{xy}, minSS < pt_{xy}', minSS \), the PSS computed using the defined measure must satisfy \(pss(pt_x) < pss(pt_y) \).

Property 3 is also realistic as it dictates that if the least safe edge on path \(P \) is safer than the least safe edge on path \(P' \), the PSS of \(P \) must be equal to or greater than that of \(P' \).

Many intuitive definitions of PSS satisfy the above-mentioned properties. E.g., assume that ESS represents the probability that no crime will occur on this edge (as in [20]). If PSS is defined as multiplication of ESS on all edges on a path [20] (i.e., probability that no crime will occur on the whole path), this definition of PSS satisfies Property 2 but not Property 3. Thus, SNVD based algorithm can be used to handle queries involving such PSS. On the other hand, if PSS corresponds to the minimum ESS on any edge on the path, then this definition of PSS satisfies both properties, therefore, both Ct-tree and SNVD based approaches can be used.

We remark that our PSS measure (Definition 2) satisfies both properties and thus, both of our algorithms can be used for it. For example, in Fig. 2, the PSS for path \(P_1 \) is \((w_2 \times 4) + (w_5 \times 5) = (10 \times 4) + (1 \times 5) = \frac{45}{2} \). Now if we consider the subpath of \(P_1 \) by removing the last edge with ESS 5 and length 2, the PSS increases to \(\frac{1}{(w_2 \times 4) + (w_5 \times 3)} = \frac{1}{(10 \times 4) + (1 \times 3)} = \frac{1}{22} \) (which satisfies Property 2). Similarly, \(P_1, minSS = 4 \) and \(P_2, minSS = 1 \), and the PSSs of \(P_1 \) and \(P_2 \) are \(\frac{1}{4} \) and \(\frac{1}{11} \), respectively (which satisfies Property 3).

For the ease of presentation, in our problem setting, we assume that each edge has a single safety score \(w_{ij}^{ss} \). However, if an edge has multiple safety scores representing the road safety conditions at different times of the day (e.g., day vs night) or different types of crimes, our solutions can be immediately applied by only considering the relative safety score for each edge (e.g., safety scores for night time if the query is issued at night).

III. RELATED WORK

A variety of route planning problems have been studied in the past such as: shortest route computation [13], [21] which requires to find the path with the smallest overall cost; multi-criteria route planning [22], [23] which aims to return routes considering multiple criteria (e.g., length, safety, scenery etc.); obstacle avoiding path planning [24], [25], [26], [27], [28] which returns the shortest path avoiding a set of obstacles in the space; safe path planning [6], [7], [8] that aims to return paths that are safe and short; alternative route planning [22], [29], [30], [31] where the goal is to return a set of routes significantly different from each other so that the user has more options to choose from; and multi-stop route planning (also called trip planning) [23], [32], [33], [34] which returns a route that passes through multiple stops/POIs satisfying certain constraints. Below, we briefly discuss some of these route planning problems most closely related to our work.

A. Multi-Criteria Route Planning

Existing techniques [22], [23], [35], [36] typically use a scoring function (e.g., weighted sum) to compute a single score of each edge considering multiple criteria. Once the score of each edge has been computed, the existing shortest path algorithms can be used to compute the path with the best score. In contrast, our work cannot trivially use the existing shortest path algorithms due to the nature of the PSS. Also, as noted in [20], it is non-trivial for a user to define an appropriate scoring function combining the multiple criteria. Thus, some existing works [20], [37] approach the multi-criteria route planning differently and compute a set of skyline routes which guarantees that the routes returned are not dominated by any other routes. This is significantly different from our work as it returns possibly a large number of routes instead of the safest route.
B. Safe Path Planning

There are several existing works that consider safety in path planning. In [6], [7], and [8], the authors divide the space into safe and unsafe zones and minimize the distance travelled through the unsafe zones. However, these works are unable to handle different safety levels of roads and do not consider any distance constraint on the paths. In Section II, we show that our work is more general and is applicable to a wider range of definitions of safe paths. Some other existing works [20], [35], [36] also consider safety, however, they model the problem as multi-criteria route planning and are significantly different from the problem studied in this paper (as discussed above). A couple of recent approaches [38], [39] consider minimizing the total risk scores or maximizing the total safety score of a path. Optimizing the total scores does not allow a path to exclude a high risk road and thus, cannot ensure a traveler’s safety. The most closely related work to our work is [9] which develops an algorithm to find the safest paths between a source and a destination by considering individual distances associated with different safety scores of a path, which is similar to the definition of our path safety score.

The problem studied in this paper is significantly different from the above-mentioned route planning problems. Unlike route planning problems, our problem does not have a fixed destination, (i.e., each POI is a possible destination) and the goal is to find k POIs with the safest paths. In other words, the problem studied in this work is a POI search problem similar to a k nearest neighbor (kNN) query. We use [9] in one of our baselines to find the safest paths to candidate kSNNs.

C. kNN Queries

Answering kNN queries has been extensively studied, e.g., see [40] which describes and evaluates some of the most notable kNN query processing algorithms on road networks. A straightforward application of a existing kNN algorithms to kSNNs is prohibitively expensive as it would require two independent traversals of the road network for first finding k’ > k nearest neighbors as candidate kSNNs, and then computing the safest paths from the query location to each of the candidate kSNN, respectively. We extend the index independent INE [17] technique for kNN search to identify kSNNs with a single search in the road network and consider it as a baseline (please see Section IV for details).

IV. INCREMENTAL NETWORK EXPANSION

Incremental network expansion (INE) [17] is among the most efficient nearest neighbour search techniques that do not rely on any distance-based indexing structure. Since the PSS of a path is no larger than that of its subpath (Property 2), we can adapt the INE search to find kSNNs.

Starting from the query location v_l, the INE based search explores the adjacent edges of v_l. For each edge e_lj, a path consisting of v_l and v_j is enqueued into a priority queue Q_p. The entries in Q_p are ordered in the descending order based on their PSSs. Then the search continues by dequeueing a path from Q_p and repeating the process by exploring adjacent edges of the last vertex of the dequeued path. Before enqueuing a new valid path pt_lj into Q_p, its PSS is incrementally computed from the PSS of the dequeued path pt_li and the PSS of the path pt_lj that consists of a single edge e_lj using the following lemma (the proof of the lemma is included in the full version [41] of this paper).

Lemma 1: Let pt_lj be a valid path such that pt_lj = pt_li ⊕ pt_lj where ⊕ is a concatenation operation. Then, pss(pt_lj) = \frac{1}{pss(pt_li) \cdot pss(pt_lj)}.

The first SNN is identified once the last vertex of a dequeued path from Q_p is a POI and the distance of the path is less than d_c. The search for kSNNs terminates when paths to k distinct POIs have been dequeued from Q_p and the distances of the paths are smaller than d_c.

To refine the search space, we check if a path can be pruned before enqueuing it into Q_p using the following pruning rules. Pruning Rule 1 is straightforward as it simply uses the distance constraint for the pruning condition.

Pruning Rule 1: A path pt_lj can be pruned if dist(pt_lj) ≥ d_c, where d_c represents the distance constraint.

A path pt_lj between v_l and v_j can be pruned if there is already a dequeued path pt_lj_i which is at least as short as pt_lj and at least as safe as pt_lj. The following lemma justifies the above intuition (the proof of the lemma is included in the full version [41] of this paper).

Lemma 2: If path pt_lj_i is at least as short as path pt_lj and at least as safe as pt_lj, then path pt_lj_k = pt_lj_i ⊕ pt_lj_k is at least as short as and at least as safe as path pt_lj_k = pt_lj_i ⊕ pt_lj_k.

Since the search dequeues paths in descending order of PSSs from Q_p and Pruning Rule 2 is applied to a path pt_lj before enqueuing it, the PSS of any dequeued path is higher than pss(pt_lj). Thus, Pruning Rule 2 only checks whether there is a dequeued path to v_j that is at least as short as pt_lj.

Pruning Rule 2: A path pt_lj can be pruned if dist(pt_lj) ≥ Dsh_j, where Dsh_j represents the distance of the shortest path pt_lj_i from v_l to v_j dequeued so far.

We remark that, since Dsh_j is less than d_c, when a valid dequeued path to v_j exists, Pruning Rule 2 facilitates the pruning of the valid paths (i.e., the path length is smaller than d_c). On the other hand, Pruning Rule 1 prunes the paths, when there is no existing dequeued path that ends at v_j, i.e., Dsh_j = ∞. We provide complexity analysis of the algorithm in the full version [41].

V. Ct-TREE

In this section, we introduce a novel indexing structure, Connected component tree (Ct-tree) and develop an efficient solution based on Ct-tree to process kSNN queries. Index structures like R-tree [10], Contraction Hierarchy (CH) [42], Quad tree [43], ROAD [12], G-tree [13], G∗-tree [14], LG-tree [15] and HN-tree [16] have been proposed for efficient search of the query answer based on the distance metric and are not applicable for kSNN queries. Some of these indexing techniques [10], [43] divide the space into smaller

1The full version includes detailed descriptions (e.g., proof of the lemmas, complexity analysis) and more results of our experiments.
regions based on the position of the POIs, whereas some other indexing techniques [12], [42] divide the space based on the properties of the road network graph. These existing indexing techniques cannot be applied or trivially extended to compute kSNNs because they do not incorporate Edge Safety Score (ESS)s of the edges in the road network graph.

A. Ct-Tree Construction and Properties

The key idea to construct a Ct-tree is to recursively partition the graph by removing the edges with the smallest ESSs in each step. Removing the edges with the smallest ESS s may partition the graph into one or more connected components. A component is denoted as Gs, where t is a unique identifier for the partitions created by removing edges with ESS s. Each connected component Gs is recursively partitioned by removing the edges with the smallest ESS within Gs. The recursive partitioning stops when Gs either contains a single vertex or all edges within Gs have the same ESS.

Without loss of generality, we explain the Ct-tree construction process using an example shown in Figure 3. The original graph has edge ESSs in the range of 1 to 4, and for the sake of simplicity, we do not show the edge distances in the figure. The root of the Ct-tree represents the original graph G. After removing the smallest edge ESS 1, G is divided into three connected components G1, G2, and G3. These connected components are represented by three child nodes of the root node at tree height h = 1. Each of these components is then recursively partitioned by removing the edges with the smallest ESS. For example, the edges with ESS 2 are removed from G1, and G1 is divided into three connected components G21, G22, and G23. The recursive partitioning of G2 and G23 stop as they have edges with same ESS. On the other hand, after removing the edges with ESS 3, G2 is divided into G3 and G3. We formally define a Ct-tree as follows:

Definition 4: Ct-tree: A Ct-tree C is a connected component based search tree, a hierarchical structure that has the following properties:

- The Ct-tree root node represents the original graph G.
- Each internal or leaf Ct-tree node represents a connected component Gs, where Gs does not include any edge with ESS smaller than or equal to s and Gs is included in the graph represented by its parent node.
- The maximum height of the tree, hmax = s_{max} - 1
- Each internal or leaf Ct-tree node maintains the following information: the number of POIs n(Gs) in Gs, a border vertex set Bs, the minimum border distance d_{min}^B(v_i, Gs) and the minimum POI distance d_{min}^P(v_i, Gs) for each border vertex v_i ∈ Bs.

Border vertices, the minimum border distance and the minimum POI distance.

- For each border vertex v_i of a subgraph Gs, if there is an outgoing edge from v_i whose ESS is smaller than or equal to s and the edge is not included in Gs, we denote the set of border vertices of Gs with Bs. For example, in Figure 4, B12 includes {v1, v5, v8}. A border vertex of Gs represented by a Ct-tree node is also a border vertex of the subgraphs represented by its descendent nodes. For example, v5 is a border vertex of both G12 and G2.

For each border vertex, the corresponding Ct-tree node stores the minimum border distance and the minimum POI distance. The minimum border distance d_{min}^B(v_i, Gs) of a border vertex v_i of Gs is defined as the minimum of the
distances of the shortest paths from \(v_x \) to \(v_y \) for \(v_x, v_y \in B_{\delta_c} \setminus v_c \).

In Figure 4, the distances of border vertex \(v_8 \) from other border vertices \(v_1 \) and \(v_9 \) are 16 and 21 respectively. Thus, \(d_{B_{\delta_c}}^{\min}(v_8, G_{v_1}) = 16 \).

The minimum POI distance \(d_{B_{\delta_c}}^{\min}(v_x, G_{v_1}) \) of a border vertex \(v_x \) is defined as the distance from \(v_x \) to its closest POI in \(G_v \). In Figure 4, the distances of border vertex \(v_8 \) from POIs \(v_1 \), \(v_9 \) and \(v_{10} \) are 16, 10 and 20 respectively. Thus, \(d_{B_{\delta_c}}^{\min}(v_8, G_{v_1}) = 10 \).

After the Ct-tree construction, for each vertex \(v \) in \(G \), we store a pointer to each Ct-tree node whose subgraph contains \(v \). Since the height is \(s^{max} - 1 \), this requires adding at most \(O(s^{max}) \) pointers for each \(v \). We remark that the height \(h \) of the Ct-tree can be controlled if needed. Specifically, to ensure a height \(h \), the domain of possible ESS values is divided in \(h \) contiguous intervals and, in each iteration, the edges with ESS in the next smallest interval are removed. E.g., if ESS domain is 1 to 10, a Ct-tree of height 5 can be constructed by first removing edges with ESS in range \([0, 2]\) and then \((2, 4), (4, 6)\) and \((8, 10)\) (in this order).

B. Query Processing

1) kSNN Search: The efficiency of any approach for evaluating a kSNN query depends on the area of the graph search space for finding the safest paths having distances less than \(d_c \) from \(v_l \) to the POIs and the number of POIs considered for identifying kSNNs. The Ct-tree structure and Property 3 of our PSS measure allow us to start the search from the smallest and safest road network subgraph that has the possibility to include kSNNs for \(v_l \). By construction of Ct-tree, it is guaranteed that the subgraph of a child node is smaller and safer than that of its parent node. Thus, starting from the root node, our approach recursively traverses the child nodes that include \(v_l \). The traversal ends once a child node that includes less than \(k \) POIs and \(v_l \) is reached. The parent of the last traversed child node is selected as the starting node of our kSNN search. Note that the subgraph \(G_{v_l} \) of the starting node includes greater than or equal to \(k \) POIs.

If the lengths of the paths from \(v_l \) to at least \(k \) POIs in \(G_{v_l} \) is smaller than \(d_c \), then our approach does not need to expand \(G_{v_l} \). This is because, by definition, the edges that connect the border vertices in \(G_{v_l} \) to other vertices that are not in \(G_{v_l} \) have lower ESSs than those of the edges in \(G_{v_l} \). If there are less than \(k \) POIs in \(G_{v_l} \) whose safest paths from \(v_l \) have distances less than \(d_c \), our Ct-tree based approach recursively updates \(G_{v_l} \) with the subgraph of its parent node until kSNNs are identified.

To find the safest path having distance less than \(d_c \) from \(v_l \) to the POIs in \(G_{v_l} \), we improve the INE based safest path search discussed in Section IV by incorporating novel pruning techniques using Ct-tree properties. Specifically, the minimum border distance and the minimum POI distance stored in the Ct-tree node allow us to develop Pruning Rules 3 and 4 to further refine the search space in \(G_{v_l} \).

Pruning Rule 3: A path \(pt_{ij} \) can be pruned if \(dist(pt_{ij}) + d_{B_{\delta_c}}^{\min}(v_j, G_{v_l}) \geq d_c \) and \(dist(pt_{ij}) + d_{B_{\delta_c}}^{\min}(v_j, G_{v_l}) \geq d_c \), where \(v_j \) is a border vertex of \(G_{v_l} \) and \(d_{B_{\delta_c}}^{\min}(v_j, G_{v_l}) \) are the minimum border distance and the minimum POI distance of \(v_j \), respectively.

Pruning Rule 4: A path \(pt_{ij} \) can be pruned if \(dist(pt_{ij}) + d_{B_{\delta_c}}^{\min}(v_j, G_{v_l}) \geq d_c \) and \(dist(pt_{ij}) + d_{B_{\delta_c}}^{\min}(v_j, G_{v_l}) \geq d_c \), where \(v_j \) is a border vertex of \(G_{v_l} \), \(P_{v_l} \) represents the set of POIs in \(G_{v_l} \), and \(maxD \) represents the maximum of the current shortest distances of the POIs in \(P_{v_l} \) from \(v_l \). i.e., \(maxD = \max_{p_i \in P_{v_l}} D_{sh}(i) \).

If the first condition that uses the minimum border distance in Pruning Rule 3 or 4 becomes true then it is guaranteed that the expanded path through \(pt_{ij} \) cannot cross \(G_{v_l} \) to reach a POI outside of \(G_{v_l} \) due to the violation of distance constraint. On the other hand, satisfying the second condition in Pruning Rule 3 means that the expanded path through \(pt_{ij} \) cannot reach a POI inside \(G_{v_l} \) due to the violation of distance constraint. For the second condition, Pruning Rule 4 exploits that if the POIs inside \(G_{v_l} \) are already reached using other paths then \(maxD \), the maximum of the current shortest distances of the POIs in \(G_{v_l} \) can be used to prune a path. If the second condition in Pruning Rule 4 becomes true then it is guaranteed that the expanded path through \(pt_{ij} \) cannot provide paths that are safer than those already identified for the POIs in \(G_{v_l} \) (please see Pruning Rule 2 for details).

Pruning Rule 4 can prune more paths than Pruning Rule 3 when \(maxD \) is less than \(d_c \), i.e., at least one path from \(v_l \) to every POI in \(G_{v_l} \) have been identified. On the other hand, Pruning Rule 3 is better than Pruning Rule 4 when \(maxD \) is \(\infty \), i.e., no path has yet been identified for a POI in \(G_{v_l} \). Hence we consider all pruning rules (Pruning Rule 1–Pruning Rule 4) to check whether a path can be pruned.

Figure 5 shows an example where a path \(pt_{05} \) is pruned using Pruning Rule 3 for a query location \(v_0 \) and \(d_c = 20 \). In the example, \(v_5 \) is a border vertex of \(G_{v_1} \), \(dist(pt_{05}) = 10 \), \(d_{B_{\delta_c}}^{\min}(v_5, G_{v_2}) = 11 \) and \(d_{B_{\delta_c}}^{\min}(v_5, G_{v_2}) = 13 \). Here, both \(dist(pt_{05}) + d_{B_{\delta_c}}^{\min}(v_5, G_{v_2}) \) and \(dist(pt_{05}) + d_{B_{\delta_c}}^{\min}(v_5, G_{v_2}) \) are greater than \(d_c \). Hence according to Pruning Rule 3, path \(pt_{05} \) can be pruned. From the figure we also observe that if we expand \(pt_{05} \), it cannot reach a POI outside \(G_{v_2} \) through a border vertex \((v_1 \) or \(v_{10} \) or a POI \((v_3 \) or \(v_{10} \)) in \(G_{v_2} \), due to the violation of the distance constraint.

In Figure 6, the POIs \((v_3, v_6 \) and \(v_{10} \)) in \(G_{v_2} \) are already reached using other paths and \(D_{sh}[3] = 11, D_{sh}[6] = 16 \) and \(D_{sh}[10] = 15 \). Thus \(maxD = 16 \). The query location is \(v_0, d_c = 20, dist(pt_{01}) = 10 \), \(v_1 \) is a border vertex of
Algorithm 1 Ct-Tree-kSNN(v_j, k, d_c)

1: Initialize($Q_{\text{cur}}, Q_{\text{next}}, D_{sh})$
2: $G_s \leftarrow \text{Contains}(v_j)$
3: Enqueue($Q_{\text{cur}}, v_j, \infty, 0$)
4: while $Q_{\text{cur}}! = \emptyset$ do
5: pt_l, $\text{pss}(pt_l), \text{dist}(pt_l) \leftarrow \text{Dequeue}(Q_{\text{cur}})$
6: if $\text{dist}(pt_l) < D_{sh}[i]$ then
7: $D_{sh}[i] \leftarrow \text{dist}(pt_l)$
8: end if
9: if $\text{Is POI}(v_j)$ and $\text{Include}(A, v_j)$ then
10: $A \leftarrow A \cup \{ pt_l \}$
11: if $A.\text{size}() == k$ then
12: return A
13: end if
14: end if
15: for $v_l \in E_s$ do
16: if $v_l \in B_s$, then
17: Enqueue($Q_{\text{next}}, pt_l, \text{pss}(pt_l), \text{dist}(pt_l))$
18: end if
19: end for
20: if $Q_{\text{cur}} = \emptyset$ then
21: $G_s \leftarrow \text{GetParent}(G_s)$
22: $Q_{\text{cur}} \leftarrow Q_{\text{next}}$
23: $Q_{\text{next}} \leftarrow \emptyset$
24: end if
25: end if
26: end while
27: return A

At the end of the iteration, the algorithm checks whether the exploration of G_s, is complete, i.e., Q_{cur} is empty. If this condition is true, then it means that the safest paths having distances less than d_c from v_j to kSNNs are not included in G_s. Thus, the algorithm sets the parent of G_s as $G_{s'}$, assigns Q_{next} to Q_{cur} and resets Q_{next} to \emptyset (Lines 23–27).

PrunePath. Algorithm 2 returns true if path pt_l can be pruned by any of our pruning criteria and false otherwise. It first checks whether pt_l can be pruned using the criteria in Pruning Rules 1 or 2. Note that an entry $D_{sh}[x]$ for a vertex v_x is initialized to d_c and later it gets updated once a path to v_x is dequeued from the queue (see Line 7 in Algorithm 1).

If pt_l is not pruned, Function checkBorder(G_s, v_j) checks whether v_j is a border vertex of G_s, or one of its descendants. If so, it returns true for Is Border and the node $G_{s'}$, for which v_j is a border vertex. Otherwise, Is Border is set to false. By construction of the Ct-tree, a border vertex of a Ct-tree node is also the border vertex of its descendants. Thus, there may be multiple nodes for which v_j is a border vertex, in which case, $G_{s'}$ is chosen to be the highest node in the Ct-tree for which v_j is a border vertex.

If v_j is a border vertex then the algorithm checks whether pt_l can be pruned using Pruning Rules 3 or 4 (Lines 5–8). One of the pruning conditions that uses the minimum border distance is the same in both Pruning Rules 3 and 4, which is checked in Line 5. The left part of the other condition,
adding the minimum POI distance with \(dist(pt_{ij}) \) is also same in both pruning rules. The right part is \(d_c \) for Pruning Rule 3 and \(maxD \) for Pruning Rule 4, where \(maxD \) represents the maximum of the current shortest distances of \(v_j \) to the POIs in \(G_{s'_{ij}} \). The shortest distance of every vertex (including POIs) is initialized to \(d_c \) (Line 1 of Algorithm 1). Thus, \(maxD \) is initially \(d_c \) and later may become less than \(d_c \) when the paths to POIs in \(G_{s'_{ij}} \) are dequeued from the priority queue (Lines 5–7 of Algorithm 1). Since the minimum border distance and minimum POI distance of a \(Ct \)-tree node are at least equal to those of its descendants, we do not need to check these pruning conditions for \(v_j \) for the descendants of \(G_{s'_{ij}} \) separately.

In full version [41] of this paper, we provide complexity analysis of the algorithm and discuss how to update \(Ct \)-tree when there are updates to the road network and POIs.

VI. SAFETY SCORE BASED NETWORK VORONOI DIAGRAM

Network Voronoi diagram (NVD) [44], [45] has been shown as an effective method for faster processing of \(k \)NN queries [18], [46]. Traditional NVD is computed using distances and does not apply for processing \(k \)SNN queries. In Section VI-A, we present safety score based network Voronoi diagram (SNVD) and its properties. Our efficient technique to compute the \(k \)SNNs is composed of two phases: preprocessing (Section VI-B) and query processing (Section VI-C).

A. SNVD Properties

An SNVD divides the road network graph into subgraphs such that each subgraph contains a single POI which is the unconstrained safest neighbor for every point of the subgraph. We differentiate the unconstrained safest neighbor from the safest nearby neighbor (SNN) by considering unconstrained safest path. For an unconstrained safest path, we assume a sufficiently large value for \(d_c \) such that every simple path in the graph has length less than \(d_c \), e.g., \(d_c \) is just bigger than the sum of the lengths of all edges in the graph. The subgraphs are called Voronoi cells and a point that defines the boundary between two adjacent Voronoi cells is a called a border vertex. The Voronoi cell of POI \(p_i \) is denoted as \(VC_i \) and the border vertex set for \(VC_i \) is denoted as \(B_i \).

\[\text{Algorithm 2 PrunePath}(pt_{ij}, d_c, D_{sh}, G_{s_{ij}}) \]

1: if \(dist(pt_{ij}) \geq D_{sh}[j] \) then
2: \(\text{return} \) true
3: end if
4: \(isBorderG_{s'_{ij}} \leftarrow \text{checkBorder}(G_{s_{ij}}, v_j) \)
5: if \(isBorder == \text{true} \) and \(dist(pt_{ij}) + d_{\min}(v_j, G_{s'_{ij}}) \geq d_c \) then
6: \(dist(pt_{ij}) + d_{\min}(v_j, G_{s'_{ij}}) \geq maxD \) then
7: \(\text{return} \) true
8: end if
9: end if
10: \(\text{return} \) false

Figure 7 shows an example of an SNVD. Black vertices represent the generator POIs \(p_1, p_2 \) and \(p_3 \), white vertices represent the road intersections, and grey vertices represent the border vertices.

Unlike traditional distance based NVD [46], [47], a border vertex \(b \) between two adjacent Voronoi cells \(VC_i \) and \(VC_j \) may not have equal PSS for its unconstrained safest paths to \(p_i \) and \(p_j \). Figure 8 shows examples of such scenarios. When the PSSs for \(b \)’s unconstrained safest paths to \(p_i \) and \(p_j \) differ, the unconstrained safest neighbor of \(b \) is one of the POIs \(p_i \) and \(p_j \) for which \(b \) has the higher PSS.

The following lemmas shows the properties of SNVD that we exploit in our solution.

Lemma 3: Let \(p_1, p_2, \ldots, p_{k-1} \) represent the \(k-1 \) unconstrained safest POIs of \(v_j \), respectively. The unconstrained safest path from \(v_j \) to its \(k_{th} \) unconstrained safest POI \(p_k \) can only go through \(\{VC_1, VC_2, \ldots, VC_{k-1}, VC_k\} \).

Proof: Assume that the unconstrained safest path from \(v_j \) to \(p_k \) goes through a vertex \(v \) of \(VC_i \), where \(t \notin \{1, 2, \ldots, k\} \). By construction of SNVD, POI \(p_t \) is safer than POI \(p_k \) for \(v \). Since the unconstrained safest path from \(v_j \) to \(p_k \) goes through \(v \), POI \(p_t \) is also safer than POI \(p_{k-1} \) for \(v \). Thus \(t \in \{1, 2, \ldots, k\} \), which contradicts our assumption.

Lemma 4: Let \(v_1, v_2, \ldots, v_{k-1} \) represent the \(k-1 \) unconstrained safest POIs of \(v_j \), respectively. The \(k_{th} \) unconstrained safest POI \(p_{k} \) of \(v_j \) lies in one of the adjacent Voronoi cells of \(VC_1, VC_2, \ldots, VC_{k-1} \).

Proof: If the \(k_{th} \) unconstrained safest POI \(v_k \) of \(v_j \) does not lie in one of the adjacent Voronoi cells of \(VC_1, VC_2, \ldots, VC_{k-1} \), then the unconstrained safest path between \(v_j \) and \(v_k \) must go through a vertex which does not lie in \(VC_1, VC_2, \ldots, VC_{k-1} \), which contradicts Lemma 3. Thus, the \(k_{th} \) unconstrained safest POI of \(v_j \) lies in one of the adjacent Voronoi cells of \(VC_1, VC_2, \ldots, VC_{k-1} \).

B. Preprocessing

The following information will be precomputed and stored for the faster processing of \(k \)SNN queries:

- Voronoi cells, where each Voronoi cell \(VC_i \) has the POI \(p_i \) as the generator, a set \(B_i \) of border vertices, and a list \(L_i \) of pointers to adjacent Voronoi Cells
- For every vertex \(v \in B_i \), the unconstrained safest path between \(v \) and \(p_i \) and its PSS
- For every pair of border vertices \(v_i \in B_i \) and \(v_j \in B_i \), the unconstrained safest path between \(v_i \) and \(v_j \) that lies completely inside \(VC_i \) and its PSS
For every $v_x \in B_i$ the minimum border distance and the minimum POI distance, where the minimum border distance of a border vertex is defined as $\arg \min_{v_x \in B_i} \forall \ u \in VC_i \ dist(pt_{ui})$ and the minimum POI distance is $\text{dist}(pt_{ui})$ and the shortest paths for the minimum border distance and the minimum POI distance are computed by considering only the subgraph represented by Voronoi cell VC_i.

For every vertex v in the road network graph G, a pointer to the Voronoi cell whose POI generator is the unconstrained safest neighbour of v keeps track of the unconstrained safest path for every visited vertex. When the safest path’s distance is unconstrained, no path gets pruned and thus unlike INE, it is sufficient to only expand the unconstrained safest path from a vertex.

Then we compute the border vertices as follows: (i) if the unconstrained safest paths from v to two POIs p_i and p_j have the same PSS, then v is considered as a border vertex of Voronoi cells VC_i and VC_j, and (ii) if two end vertices of an edge have different unconstrained safest POIs, say p_i and p_j, and the Edge Safety Score (ESS) associated with the edge is s, then the point b of the edge that provides equal distance associated with s in both of the b’s safest paths to p_i and p_j is identified as a border vertex of Voronoi cells VC_i and VC_j.

Figure 8 shows three example scenarios. In case 1, the end vertices of the edge with ESS 1 has different unconstrained safest POIs and the distance of the edge is 4. There is no other edge in pt_{ij} with ESS 1. Thus b is placed at the midpoint of the edge so that both of the b’s safest paths to p_i and p_j have equal distance for ESS 1. For case 2, b is not the midpoint of the edge as there is another edge in pt_{ij} with ESS 1. Note that in case 3, b is placed at the mid of the edge with ESS 2, which is not the minimum ESS in pt_{ij}. This is because both of the b’s safest paths to p_i and p_j already have an edge with the same distance for ESS 1.

The resulted distances of the splitted edges with a border vertex b may become less than 1. This occurs when the length of the edge that is splitted by b is 1 and no other edge in pt_{ij} has the same ESS as the splitted edge. Our PSS measure requires the edge weight to be greater than or equal to 1. Thus, after the construction of the whole SNVD, if the distance of any splitted edge becomes less than 1, we scale up the distances of all edges in the road network to ensure that the distances of the splitted edges are greater than or equal to 1 and recompute the SNVD.

To compute the unconstrained safest path between v_i and v_j that lies completely inside VC_i for every pair of border vertices $v_i \in B_i$ and $v_j \in B_i$, we apply Dijkstra algorithm within VC_i.

C. Query Processing

According to the construction of SNVD, a POI p_i is the unconstrained safest neighbor for every location v in a Voronoi cell VC_i. However, an unconstrained safest neighbor is not necessarily the SNN for a location v if the distance of the unconstrained safest path from v to p_i is greater than or equal to the distance constraint d_c specified in the query. Hence, unlike the existing NVD based nearest neighbor search algorithms [18], we cannot simply return the POI of the Voronoi cell that includes the query location as the SNN. Since d_c is a query specific parameter, it is also not possible to consider d_c while computing the Voronoi cells of the SNVD. In Sections VI-C.1, we discuss our SNVD based solution to find kSNNs and in Section VI-C.2, we elaborate our efficient (unconstrained and constrained) safest path computation techniques by exploiting SNVD properties.

1) kSNN Search: Our SNN search technique using SNVD incrementally finds the unconstrained safest neighbors and adds each of these neighbors in a candidate set. The incremental search stops when the candidate set contains at least k POIs that have unconstrained safest paths with length less than d_c. Let $k + m$ be the size of the candidate set where $m \geq 0$. The k SNNs are guaranteed to be among the candidate set. Then, we compute the PSSs of the safest paths from v_j to the remaining m POIs in the candidate set to determine the query answer. The POIs whose safest paths from v_j among $k + m$ candidates have k largest PSSs and have distances less than d_c are identified as kSNNs.

Algorithm 3 shows the steps to find kSNNs in the road network using the SNVD. The algorithm’s inputs are v_j, k and d_c. The algorithm initializes i and j to 1, finds the first unconstrained safest neighbor using the stored pointer (Function FindUSN) and adds it to the candidate POI set C_P (Lines 1–2). Then the algorithm iterates in a loop until C_P includes kSNNs. In every iteration, the algorithm checks whether the distance of the unconstrained safest path from v_j to the j^{th} unconstrained safest neighbor is less than d_c. If yes, Function IsConstrained returns true and i is incremented by 1 (Lines 4–6). Irrespective of the returned value (true or false) of Function IsConstrained, the algorithm increments j by 1 and finds the next (j^{th}) unconstrained safest neighbor using Function NextUCN (Lines 7–8). When it becomes greater than k, then the loop ends and it is guaranteed that C_P includes kSNNs. Finally, FindA identifies kSNNs from C_P in A (Line 10), and Algorithm 3 returns A as the kSNN query answer (Line 11).
Algorithm 3 SNVD-kSNN(v_j, k, d_c)

1: i, j ← 1
2: C_p ← FindUSN(v_j)
3: while $i \leq k$ do
4: if IsConstrained(C_p, j, d_c) then
5: i ← i + 1
6: end if
7: j ← j + 1
8: C_p ← C_p \cup NextUSN(v_j, j)
9: end while
10: A ← FindA(C_p)
11: return A

Incremental computation of unconstrained safest neighbors. Function FindUSN locates Voronoi cell VC_q that includes v_j and returns the corresponding POI p_q as the first unconstrained safest neighbor. VC_q becomes the first candidate Voronoi cell of the set VC. To compute the second unconstrained safest neighbor, Function NextUSN adds the adjacent Voronoi cells of VC_q to VC as they include the second unconstrained safest POI of v_j (Lemma 4). The POI of one of these candidate Voronoi cells in VC whose unconstrained safest path to v_j has the second best PSS is identified as the second unconstrained safest neighbor of v_j (please see Section VI-C.2 for unconstrained safest path computation technique). Similarly, to find the j^{th} unconstrained safest neighbor of v_j, NextUSN adds the adjacent Voronoi cells of the $(j - 1)^{th}$ unconstrained safest neighbor’s Voronoi cell in VC, if they are not already included in VC. The j^{th} unconstrained safest neighbor of v_j is the POI that has the j^{th} best PSS for the unconstrained safest path from v_j among the POIs of the candidate Voronoi cells.

2) Safest Path Computation: Our PSS measure and the property shown in Lemma 3 allow us to adapt the shortest path computation technique proposed in [18] for finding the unconstrained safest paths from v_j to a POI of the candidate Voronoi cell in VC. After FindUSN locates Voronoi cell VC_q that includes v_j, it computes the unconstrained safest paths from v_j to p_q and the border vertices of VC_q using Dijkstra algorithm. Then similar to [18], we use precomputed unconstrained safest paths between border vertices for this purpose and reduce the processing overhead significantly. In experiments, we show that the number of border vertices of an SNVD is small with respect to the total number of vertices and thus, the overhead for storing the unconstrained safest paths for the border vertices is negligible.

On the other hand, we cannot use precomputed unconstrained safest paths and adapt [18] to compute the safest path between v_j and a POI while identifying kSNNs from candidate $k+m$ POIs. We improve the INE based safest path search technique discussed in Section IV by incorporating novel pruning techniques for search space refinement using SNVD properties and apply it to compute the safest paths that have distances less than d_c. Pruning Rules 5 and 6 use the minimum border distances and minimum POI distances of the border vertices, respectively, in the pruning condition:

Pruning Rule 5: Let the safest path between v_j and POI p_y needs to be determined. A path pt_{ij} can be pruned if $dist(pt_{ij}) + d^m_{\min}(v_j, VC_x) \geq d_c$, where v_j is a border vertex of Voronoi cell VC_x, $d^m_{\min}(v_j, VC_x)$ represents the minimum border distance of v_j and d_c represent the distance constraint.

Pruning Rule 6: Let the safest path between v_j and POI p_x needs to be determined. A path pt_{ij} can be pruned if $dist(pt_{ij}) + d^m_{\min}(v_j, VC_x) \geq d_c$, where v_j is a border vertex of Voronoi cell VC_x, $d^m_{\min}(v_j, VC_x)$ represents the minimum POI distance of v_j and d_c represent the distance constraint.

We have s_k, the upper bound of the PSS of the safest path between v_j and its k^{th} SNN, once k unconstrained safest neighbors of v_j that have distances less than d_c from v_j are identified. Later if a safest path from v_j to a new POI is identified that has the distance less than d_c and PSS higher than current s_k, then s_k is updated to the new PSS. By exploiting Property 2 of PSS and s_k, we develop a new pruning technique as follows:

Pruning Rule 7: A path pt_{ij} can be pruned if $pss(pt_{ij}) < s_k$, where s_k represent the upper bound of the PSS of the safest path between v_j and its k^{th} SNN.

Thus, in addition to Pruning Rules 1 and 2, our SNVD based solution checks whether a path can be pruned using Pruning Rules 5, 6 and 7 to find the safest paths that have distances less than d_c.

In full version [41] of this paper, we provide complexity analysis of the algorithm and discuss how to update SNVD when there are updates to the road network and POIs.

VII. EXPERIMENTS

A. Setup

There is no existing work to compute kSNNs and thus, in this paper, we compare our algorithms Ct-tree-kSNN and SNVD-kSNN against two baselines: R-tree-kSNN and INE-kSNN. R-tree-kSNN, indexes POIs using an R-tree and uses techniques in [49] to find the candidate kSNN POIs whose Euclidean distances from the query location are less than d_c. Thus, in addition to Pruning Rules 1 and 2, our SNVD based solution checks whether a path can be pruned using Pruning Rules 5, 6 and 7 to find the safest paths that have distances less than d_c.

Then, R-tree-kSNN applies the most recent technique [9] to find the safest valid paths to these candidate POIs to determine the kSNNs. INE-kSNN is the extension of INE for evaluating kSNN queries (Section IV).

1) Datasets: We used real-world datasets of three cities that differ in terms of the road network size and crime statistics. Specifically, we extract the road network of Chicago, Philadelphia and San Francisco, using OpenStreetMap (Table III). All edge weights representing distances were scaled up and integer values were taken.

Edge w^i_{ij} Computation. We used crime datasets of Chicago [50], Philadelphia [51] and San Francisco [52] to assign weights (w^i_{ij}) representing realistic Edge Safety Score (ESSs) of the respective road network graphs. We generated the ESSs of edges separately for three different ESS ranges [1, s^{max}_i] denoted as R_{ss} (see Table IV). The crime datasets include locations (latitude and longitude) of the crime incidents like robbery, motor vehicle theft, sexual offense, weapons violation, burglary and criminal damage to vehicle. For each edge, we count the number of crime incidents within
1km and set it as the crime count of the edge. These crime counts are normalized to integers between the range $[1, s^{max}]$ representing crime scores. The crime score of each edge is converted to a safety score as $s^{max} + 1 - \text{crimescore}$, e.g., if s^{max} is 10 and the crime score for an edge is 10, the safety score of the edge is 1. The PSS of a path is computed based on the ESSs included in the path (Definition 2) and can be a float value.

2) Parameters: The distance constraint d_c is a user specified parameter. Although our solution works for any d_c, in our experiments, we set d_c to a value that is large enough to find the kSNNs for each query. Let d^k be the distance between query location v_i and its k^{th} closest POI. We set $d_c = \delta \times d^k$ where $\delta > 1$ is a parameter in the experiments varied from 1.25 to 2. Existing studies involving other parameterized queries also adopt similar settings to ensure query results are not empty [53] and contain at least k POIs [54]. We evaluate the algorithms by varying δ, ESS range (R_{ss}), k, and the density of POIs (ρ), where density is the total number of POIs divided by the total number of vertices in the graph. The range and default values of the parameters are shown in Table IV. The justification of the parameter values can be found in [41].

3) Measures: For each experiment, we randomly select 100 vertices as query locations and report the average processing time to evaluate a kSNN query. We measure the preprocessing and storage cost for Ct-tree and SNVD in terms of the construction time, index size and the percentage of border vertices. All algorithms are implemented in C++ and the experiments are run on a 64-bit Windows 7 machine with an Intel Core i3-2350M, 2.30GHz processor and 4GB RAM.

B. Results

1) Effect of δ: Figures 9(a)–9(c) show that our algorithms can find kSNNs in real time. The query processing time slowly increases with the increase of δ (and consequently d_c) because more paths need to be explored for larger δ. For Ct-tree-kSNN and SNVD-kSNN, we observe on average 11.6 times and 13.8 times faster processing time than that of R-tree-kSNN and on average 9.7 times and 12.7 times faster processing time than that of INE-kSNN, respectively.

2) Effect of k: Figures 9(d)–9(f) show that the time increases with the increase of k, which is expected. The increase rate is low for Ct-tree-kSNN and SNVD-kSNN and shows almost a linear growth for varying k from 1 to 50, whereas in case of INE-kSNN and R-tree-kSNN, the time increases significantly.

3) Effect of R_{ss}: Figures 9(g)–9(i) show that the time increases for R-tree-kSNN, INE-kSNN and Ct-tree-kSNN for larger R_{ss}, whereas for SNVD-kSNN the required time is the least among four algorithms and remains almost constant for all R_{ss}s. A larger R_{ss} increases the height of the Ct-tree in which turn increases the number of subgraphs accessed by Ct-tree-kSNN. On the other hand, the number of subgraphs represented by SNVD cells does not vary with different R_{ss}s.

4) Effect of ρ: Figures 9(j)–9(l) show that the time decreases for INE-kSNN, Ct-kSNN and SNVD-kSNN with the increase of the POI density, ρ, whereas the time sharply increases for R-tree-kSNN. For INE-kSNN, a larger ρ increases the possibility of finding the required POIs with less amount of incremental network expansion. For Ct-tree-kSNN, a larger ρ increases the number of POIs in a Ct-tree node which in turn decreases the need of search in a larger subgraph. For SNVD-kSNN, the decrease curve is less steeper, since in SNVD-kSNN, the search time mainly depends on the number of SNVD cells that need to be explored rather than the total number of SNVD cells in the SNVD. On the other hand, for R-tree-kSNN, the number of candidates for kSNNs increases with the increase in ρ, which also causes increase in the number of independent safest path computations.

5) Effect of Datasets and Performance Scalability: In our experiments, we used three datasets that vary in the number of road network vertices, edges, POIs and crime

TABLE III	ROAD NETWORK DATASET	
Dataset	# Vertices	# Edges
Chicago	125,344	200,110
Philadelphia	80,558	120,581
San Francisco	40,528	72,819

TABLE IV	EXPERIMENT PARAMETERS	
Parameters	Range	Default
k	1, 5, 10, 25, 50	10
δ	1.25, 1.5, 1.75, 2	2
R_{ss}	1-5, 1-10, 1-15	1-10
ρ	0.001%, 0.01%, 0.1%, 1%, 10%	1%

Fig. 9. Effect of varying d_c, k, R_{ss} and ρ for the three datasets.
distributions. Irrespective of the datasets, both Ct-tree-kSNN and SNVD-kSNN outperform R-tree-kSNN and INE-kSNN with a large margin. In addition, the query processing time linearly increases with increase of the dataset size in terms of the number of road network vertices, edges and POIs. Thus, our algorithms are scalable and applicable for all settings. In default parameter setting, the average time for Ct-kSNN is 371 ms, 123 ms and 66 ms for CH, PHL, and SF datasets, respectively. The average time for SNVD-kSNN is 223 ms, 96 ms and 41 ms for for CH, PHL, and SF datasets, respectively.

6) Pruning Effectiveness: We investigate the effectiveness of our pruning rules for the search space refinement. Table V summarizes the experiment results in the default setting of the parameters in terms of the query processing time, number of network vertices accessed $\|V_o\|$ and number of valid paths explored in road networks for different approaches when different pruning rules are applied. The Basic Algorithm includes only Pruning Rule 1 (i.e., considers only valid paths). The performance of our algorithms are the best when all pruning rules are applied, which in turn means that each of the pruning rule contributes in improving the efficiency of our algorithms. Table V also explains why SNVD is faster than Ct-tree and Ct-tree is faster than INE based approach.

7) Query Effectiveness: We compare kSNNs with traditional k nearest neighbors (kNNs) on CH dataset using default settings but varying δ. The results on the other datasets can be found in [41]. We generate 100 query locations and run a kNN query and a kSNN query for each of these query locations, and report average results. We compare kSNNs with traditional k nearest neighbors (kNNs) using default settings but varying δ. Specifically, for each data set, we generate 100 query locations and run a kNN query and a kSNN query for each of these query locations, and report average results. Table VI shows that kSNNs are significantly different from kNNs (see number of common POIs). Furthermore, the traditional kNN queries are not likely to include a POI that is also the first SNN. Finally, although the path lengths to kSNNs are longer, these paths are much safer. Specifically, the paths to kSNNs are up to 1.6 times longer on average but they are up to 16 times safer than the paths to kNNs. The number of common POIs among kSNNs and kNNs decreases and the safety (PSS) of the paths from v_l to kSNNs increases with the increase of δ. Thus, in real-world scenarios where safety may be important for users, an application may show some kSNNs as well as some kNNs to give users more options to choose from.

Preprocessing and Index Size: We also evaluated the construction time and index size of Ct-tree and SNVD. The detailed results can be found in [41]. We observe that the construction times for Ct-tree and SNVD are comparable whereas SNVD is up to 1.6 times bigger in size than Ct-tree. Specifically, for default settings (i.e., $R_{ss} = 1 - \rho = 1$), the construction time for Ct-tree for the three datasets ranges from 54 – 123 minutes as compared to 50 – 122 minutes for SNVD. On the other hand, the index size of Ct-tree for the three datasets ranges from 63 – 114 MB compared to 101 – 168 MB for SNVD.

VIII. CONCLUSION

In this paper, we introduced k Safest Nearby neighbor (kSNN) queries in road networks and formulated the measure of path safety score. We proposed novel indexing structures, Ct-tree and a safety score based Voronoi diagram (SNVD), to efficiently evaluate kSNN queries. We adapt the INE based technique and the R-tree based technique to develop two baselines to find kSNNs. Our extensive experimental study on three real-world datasets shows that Ct-tree and SNVD based approaches are up to an order of magnitude faster than the baselines. Comparing Ct-tree and SNVD on default settings, both approaches have comparable construction time whereas SNVD index is around 1.6 times bigger than Ct-tree but is 1.2-1.7 times faster in terms of query processing cost. Thus, if the storage is not an issue, one should go for the SNVD based approach to get faster query processing performance.

REFERENCES

[1] C. H. Stubbert, S. F. Pires, and R. T. Guerette, “Crime science and crime epidemics in developing countries: A reflection on kidnapping for ransom in,” Crime Sci., vol. 4, no. 1, pp. 1–11, Dec. 2015.
Punam Biswas received the B.Sc. and M.Sc. degrees from the Bangladesh University of Engineering and Technology (BUET), where she is currently pursuing the Ph.D. degree with the Department of Computer Science and Engineering. Her research interests include the area of human–computer interaction, distributed computing, and spatial database.

Tanzima Hashem received the Ph.D. degree from The University of Melbourne, Australia, in 2012. She is currently a Professor with the Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET). Her research interests include the area of ubiquitous computing, spatial databases, and privacy. In 2017, she received the prestigious OWSD-Elsevier Foundation Award for Early-Career Women Scientists in the Developing World in Engineering Sciences.

Muhammad Aamir Cheema received the Ph.D. degree from UNSW, Australia, in 2011. He is currently an ARC Future Fellow and an Associate Professor with the Faculty of Information Technology, Monash University, Australia. He was a recipient of 2012 Malcolm Chaikin Prize for Research Excellence in Engineering, 2013 Discovery Early Career Researcher Award, 2014 Dean’s Award for Excellence in Research by an Early Career Researcher, 2018 Future Fellowship, 2018 Monash Student Association Teaching Award, and 2019 Young Tall Poppy Science Award. He has also won two CiSRA best research paper of the year awards, two invited papers in the special issue of IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING on the best papers of ICDE, and three best paper awards at ICAPS 2020, WISE 2013, and ADC 2010, respectively.