MACROSCOPIC DIMENSION OF THE ℓ^p-BALL WITH RESPECT TO THE ℓ^q-NORM

MASAKI TSUKAMOTO

ABSTRACT. We show estimates of the “macroscopic dimension” of the ℓ^p-ball with respect to the ℓ^q-norm.

1. Introduction

1.1. Macroscopic dimension. Let (X,d) be a compact metric space, Y a topological space. For $\varepsilon > 0$, a continuous map $f : X \to Y$ is called an ε-embedding if $\text{Diam} f^{-1}(y) \leq \varepsilon$ for all $y \in Y$. Following Gromov [2, p. 321], we define the “width dimension” $\text{Widim}_{\varepsilon} X$ as the minimum integer n such that there exist an n-dimensional polyhedron P and an ε-embedding $f : X \to P$. When we need to make the used distance d explicit, we use the notation $\text{Widim}_{\varepsilon}(X,d)$. If we let $\varepsilon \to 0$, then $\text{Widim}_{\varepsilon}$ gives the usual covering dimension:

$$\lim_{\varepsilon \to 0} \text{Widim}_{\varepsilon} X = \text{dim} X.$$

$\text{Widim}_{\varepsilon} X$ is a “macroscopic” dimension of X at the scale $\geq \varepsilon$ (cf. Gromov [2, p. 341]). It discards the information of X “smaller than ε”. For example, $[0,1] \times [0,\varepsilon]$ (with the Euclidean distance) macroscopically looks one-dimensional ($\varepsilon < 1$):

$$\text{Widim}_{\varepsilon}[0,1] \times [0,\varepsilon] = 1.$$

Using this notion, Gromov [2] defines “mean dimension”. And he proposed open problems about this $\text{Widim}_{\varepsilon}$ (see [2 pp. 333-334]). In this paper we give (partial) answers to some of them.

In [2, p. 333], he asks whether the simplex $\Delta^{n-1} := \{x \in \mathbb{R}^n | x_k \geq 0 (1 \leq k \leq n), \sum_{k=1}^{n} x_k = 1\}$ satisfies

$$(1) \quad \text{Widim}_{\varepsilon} \Delta^{n-1} \sim \text{const}_{\varepsilon} n.$$

Our main result below gives the answer: If we consider the standard Euclidean distance on Δ^{n-1}, then (1) does not hold.

Date: February 3, 2008.

2000 Mathematics Subject Classification. 46B20.

Key words and phrases. ℓ^p-space, Widim, mean dimension.

*Supported by Grant-in-Aid for JSPS Fellows (19-1530) from Japan Society for the Promotion of Science.
In [2, p. 333], he also asks what is \(\text{Widim}_\varepsilon B_{\ell^p}(\mathbb{R}^n) \) with respect to the \(\ell^q \)-norm, where (for \(1 \leq p \))
\[
B_{\ell^p}(\mathbb{R}^n) := \left\{ x \in \mathbb{R}^n \mid \sum_{k=1}^{n} |x_k|^p \leq 1 \right\}.
\]
Our main result concerns this problem. For \(1 \leq q \leq \infty \), let \(d_{\ell^q} \) be the \(\ell^q \)-distance on \(\mathbb{R}^n \) given by
\[
d_{\ell^q}(x, y) := \left(\sum_{k=1}^{n} |x_k - y_k|^q \right)^{1/q}.
\]
We want to know the value of \(\text{Widim}_\varepsilon (B_{\ell^p}(\mathbb{R}^n), d_{\ell^q}) \). Especially we are interested in the behavior of \(\text{Widim}_\varepsilon (B_{\ell^p}(\mathbb{R}^n), d_{\ell^q}) \) as \(n \to \infty \) for small (but fixed) \(\varepsilon \). When \(q = p \), we have (from “Widim inequality” in [2, p. 333])
\[
(2) \quad \text{Widim}_\varepsilon (B_{\ell^p}(\mathbb{R}^n), d_{\ell^p}) = n \quad \text{for all } \varepsilon < 1.
\]
(For its proof, see Gromov [2, p. 333], Gournay [1, Lemma 2.5] or Tsukamoto [7, Appendix A].) More generally, if \(1 \leq q \leq p \leq \infty \), then \(d_{\ell^p} \leq d_{\ell^q} \) and hence
\[
(3) \quad \text{Widim}_\varepsilon (B_{\ell^p}(\mathbb{R}^n), d_{\ell^q}) = n \quad \text{for all } \varepsilon < 1.
\]
I think this is a satisfactory answer. (For the case of \(\varepsilon \geq 1 \), there are still problems; see Gournay [1].) So the problem is the case of \(1 \leq p < q \leq \infty \). Our main result is the following:

Theorem 1.1. Let \(1 \leq p < q \leq \infty \) (\(q \) may be \(\infty \)). We define \(r (\geq p) \) by \(1/p - 1/q = 1/r \). For any \(\varepsilon > 0 \) and \(n \geq 1 \), we have
\[
(4) \quad \text{Widim}_\varepsilon (B_{\ell^p}(\mathbb{R}^n), d_{\ell^q}) \leq \min(n, \lceil (2/\varepsilon)^r \rceil - 1),
\]
where \(\lceil (2/\varepsilon)^r \rceil \) denotes the smallest integer \(\geq (2/\varepsilon)^r \). Note that the right-hand-side of (4) becomes constant for large \(n \) (and fixed \(\varepsilon \)). Therefore \(\text{Widim}_\varepsilon (B_{\ell^p}(\mathbb{R}^n), d_{\ell^q}) \) becomes stable as \(n \to \infty \).

This result makes a sharp contrast with the above (3). For the simplex \(\Delta^{n-1} \subset \mathbb{R}^n \) we have
\[
\text{Widim}_\varepsilon \Delta^{n-1} \leq \text{Widim}_\varepsilon (B_{\ell^p}(\mathbb{R}^n), d_{\ell^q}) \leq \lceil (2/\varepsilon)^2 \rceil - 1.
\]
Therefore (1) does not hold. Actually this result means that the “macroscopic dimension” of \(\Delta^{n-1} \) becomes constant for large \(n \).

When \(q = \infty \), we can prove that the inequality (4) actually becomes an equality:

Corollary 1.2. For \(1 \leq p < \infty \),
\[
\text{Widim}_\varepsilon (B_{\ell^p}(\mathbb{R}^n), d_{\ell^\infty}) = \min(n, \lceil (2/\varepsilon)^p \rceil - 1).
\]
This result was already obtained by A. Gournay [1, Proposition 1.3]; see Remark 1.6 at the end of the introduction. For general $q > p$, I don’t have an exact formula. But we can prove the following asymptotic result as a corollary of Theorem 1.1.

Corollary 1.3. For $1 \leq p < q \leq \infty$,

\[
\lim_{\varepsilon \to 0} \left(\lim_{n \to \infty} \log \text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^n), d_{\ell^q})/|\log \varepsilon| \right) = r = \frac{pq}{q-p}.
\]

Note that the limit $\lim_{n \to \infty} \log \text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^n), d_{\ell^q})$ exists because $\text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^n), d_{\ell^q})$ is monotone non-decreasing in n and has an upper bound independent of n.

Remark 1.4. Gournay [1, Example 3.1] shows $\text{Widim}_\varepsilon(B_{\ell^1}(\mathbb{R}^2), d_{\ell^p}) = 2$ for $\varepsilon < 2^{1/p}$.

1.2. **Mean dimension theory.** Theorem 1.1 has an application to Gromov’s mean dimension theory. Let Γ be an infinite countable group. For $1 \leq p \leq \infty$, let $B_{\ell^p}(\Gamma) \subset \ell^p(\Gamma)$ be the ℓ^p-space, $B_{\ell^p}(\Gamma)$ the unit ball (in the ℓ^p-norm). We consider the natural right action of Γ on $\ell^p(\Gamma)$ (and $B_{\ell^p}(\Gamma)$):

\[(x \cdot \delta)_\gamma := x_{\delta \gamma} \text{ for } x = (x_\gamma)_{\gamma \in \Gamma} \in \ell^p(\Gamma) \text{ and } \delta \in \Gamma.\]

We give the standard product topology on \mathbb{R}^Γ, and consider the restriction of this topology to $B_{\ell^p}(\Gamma) \subset \mathbb{R}^\Gamma$. (This topology coincides with the restriction of weak topology of $\ell^p(\Gamma)$ for $p > 1$.) Then $B_{\ell^p}(\Gamma)$ becomes compact and metrizable. (The Γ-action on $B_{\ell^p}(\Gamma)$ is continuous.) Let d be the distance on $B_{\ell^p}(\Gamma)$ compatible with the topology. For a finite subset $\Omega \subset \Gamma$ we define a distance d_Ω on $B_{\ell^p}(\Gamma)$ by

\[d_\Omega(x,y) := \max_{\gamma \in \Omega} d(x_\gamma,y_\gamma).\]

We are interested in the growth behavior of $\text{Widim}_\varepsilon(B_{\ell^p}(\Gamma), d_\Omega)$ as $|\Omega| \to \infty$. In particular, if Γ is finitely generated and has an amenable sequence $\{\Omega_i\}_{i \geq 1}$ (in the sense of [2, p. 335]), the mean dimension is defined by (see [2, pp. 335-336])

\[\dim(B_{\ell^p}(\Gamma) : \Gamma) = \lim_{\varepsilon \to 0 i \to \infty} \text{Widim}_\varepsilon(B_{\ell^p}(\Gamma), d_{\Omega_i})/|\Omega_i|.\]

As a corollary of Theorem 1.1 we get the following:

Corollary 1.5. For $1 \leq p < \infty$ and any $\varepsilon > 0$, there is a positive constant $C(d,p,\varepsilon) < \infty$ (independent of Ω) such that

(5) \[\text{Widim}_\varepsilon(B_{\ell^p}(\Gamma), d_\Omega) \leq C(d,p,\varepsilon) \text{ for all finite set } \Omega \subset \Gamma.\]

Namely, $\text{Widim}_\varepsilon(B_{\ell^p}(\Gamma), d_\Omega)$ becomes stable for large $\Omega \subset \Gamma$. In particular, for a finitely generated infinite amenable group Γ

(6) \[\dim(B_{\ell^p}(\Gamma) : \Gamma) = 0.\]

(6) is the answer to the question of Gromov in [2, p. 340]. Actually the above (5) is much stronger than (6).
Remark 1.6. This paper is a revised version of the preprint [5]. A referee of [5] pointed out that the above (6) can be derived from the theorem of Lindenstrauss-Weiss [4, Theorem 4.2]. This theorem tells us that if the topological entropy is finite then the mean dimension becomes 0. We can see that the topological entropy of $B(\ell^p(\Gamma))$ (under the Γ-action) is 0. Hence the mean dimension also becomes 0. I am most grateful to the referee of [5] for pointing out this argument. The essential part of the proof of Theorem 1.1 (and Corollary 1.2 and Corollary 1.3) is the construction of the continuous map $f: \mathbb{R}^n \to \mathbb{R}^n$ described in Section 3. This construction was already given in the preprint [5]. When I was writing this revised version of [5], I found the paper of A. Gournay [1]. [1] proves Corollary 1.2 ([1, Proposition 1.3]) by using essentially the same continuous map as mentioned above. I submitted the paper [5] to a certain journal in June of 2007 before [1] appeared on the arXiv in November of 2007. And [5] is quoted as one of the references in [1].

2. PRELIMINARIES

Lemma 2.1. For $s \geq 1$ and $x, y, z \geq 0$, if $x \geq y$, then

$$x^s + (y + z)^s \leq (x + z)^s + y^s.$$

Proof. Set $\varphi(t) := (t + z)^s - t^s (t \geq 0)$. Then $\varphi'(t) = s((t + z)^{s-1} - t^{s-1}) \geq 0$. Hence $\varphi(y) \leq \varphi(x)$, i.e., $(y + z)^s - y^s \leq (x + z)^s - x^s$. □

Lemma 2.2. Let $s \geq 1$ and $c, t \geq 0$. If real numbers x_1, \cdots, x_n ($n \geq 1$) satisfies

$$x_1 + \cdots + x_n \leq c, \quad 0 \leq x_i \leq t \ (1 \leq i \leq n),$$

then

$$x_1^s + \cdots + x_n^s \leq c \cdot t^{s-1}.$$

Proof. First we suppose $nt \leq c$. Then $x_1^s + \cdots + x_n^s \leq nt^s \leq c \cdot t^{s-1}$.

Next we suppose $nt > c$. Let $m := \lfloor c/t \rfloor$ be the maximum integer satisfying $mt \leq c$. We have $0 \leq m < n$ and $c - mt < t$. Using Lemma 2.1 we have

$$x_1^s + \cdots + x_n^s \leq t^s + \cdots + t^s \underbrace{(c - mt)^s}_{m} \leq mt^s + t^{s-1}(c - mt) \leq c \cdot t^{s-1}. \quad □$$

3. PROOF OF THEOREM 1.1

Let S_n be the n-th symmetric group. We define the group G by

$$G := \{\pm 1\}^n \rtimes S_n.$$

The multiplication in G is given by

$$((\varepsilon_1, \cdots, \varepsilon_n), \sigma) \cdot ((\varepsilon'_1, \cdots, \varepsilon'_n), \sigma') := ((\varepsilon_1\varepsilon_{\sigma^{-1}(1)}, \cdots, \varepsilon_n\varepsilon_{\sigma^{-1}(n)}), \sigma\sigma').$$
where $\varepsilon_1, \ldots, \varepsilon_n, \varepsilon'_1, \ldots, \varepsilon'_n \in \{\pm 1\}$ and $\sigma, \sigma' \in S_n$. G acts on \mathbb{R}^n by

$$(\varepsilon_1, \ldots, \varepsilon_n, \sigma) \cdot (x_1, \ldots, x_n) := (\varepsilon_1 x_{\sigma^{-1}(1)}, \ldots, \varepsilon_n x_{\sigma^{-1}(n)})$$

where $((\varepsilon_1, \ldots, \varepsilon_n, \sigma)) \in G$ and $(x_1, \ldots, x_n) \in \mathbb{R}^n$. The action of G on \mathbb{R}^n preserves the l^p-ball $B_{l^p}(\mathbb{R}^n)$ and the l^p-distance $d_{l^p}(\cdot, \cdot)$.

We define $\mathbb{R}^n_{\geq 0}$ and A_n by

$$\mathbb{R}^n_{\geq 0} := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_i \geq 0 \ (1 \leq i \leq n)\},$$

$$A_n := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 \geq x_2 \geq \cdots \geq x_n \geq 0\}.$$

The following can be easily checked:

Lemma 3.1. For $\varepsilon \in \{\pm 1\}^n$ and $x \in \mathbb{R}^n_{\geq 0}$, if $\varepsilon x \in \mathbb{R}^n_{\geq 0}$, then $\varepsilon x = x$. For $\sigma \in S_n$ and $x \in A_n$, if $\sigma x \in A_n$, then $\sigma x = x$. For $g = (\varepsilon, \sigma) \in G$ and $x \in A_n$, if $gx \in A_n$, then $gx = \varepsilon (\sigma x) = \sigma x = x$.

Let m, n be positive integers such that $1 \leq m < n$. We define the continuous map $f_0 : A_n \to A_n$ by

$$f_0(x_1, \cdots, x_n) := (x_1 - x_{m+1}, x_2 - x_{m+1}, \cdots, x_m - x_{m+1}, 0, 0, \cdots, 0).$$

The following is the key fact for our construction:

Lemma 3.2. For $g \in G$ and $x \in A_n$, if $gx \in A_n$ ($\Rightarrow gx = x$), then we have

$$f_0(gx) = gf_0(x).$$

Proof. First we consider the case of $g = \varepsilon = (\varepsilon_1, \cdots, \varepsilon_n) \in \{\pm 1\}^n$. If $x_{m+1} = 0$, then

$$f_0(\varepsilon x) = (\varepsilon_1 x_1, \cdots, \varepsilon_m x_m, 0, \cdots, 0) = \varepsilon f_0(x).$$

If $x_{m+1} > 0$, then $\varepsilon_i = 1$ ($1 \leq i \leq m+1$) because $\varepsilon_i x_i = x_i \geq x_{m+1} > 0$ ($1 \leq i \leq m+1$). Hence

$$f_0(\varepsilon x) = (x_1 - x_{m+1}, \cdots, x_m - x_{m+1}, 0, \cdots, 0) = f_0(x) = \varepsilon f_0(x).$$

Next we consider the case of $g = \sigma \in S_n$. $gx \in A_n$ implies $x_{\sigma(i)} = x_i$ ($1 \leq i \leq n$). Set $y := f_0(x)$. Let r ($1 \leq r \leq m+1$) be the integer such that

$$x_{r-1} > x_r = x_{r+1} = \cdots = x_{m+1}.$$

From $x_{\sigma(i)} = x_i$ ($1 \leq i \leq n$), we have

$$1 \leq i < r \Rightarrow 1 \leq \sigma(i) < r \Rightarrow y_{\sigma(i)} = x_{\sigma(i)} - x_{m+1} = y_i,$$

$$r \leq i \Rightarrow r \leq \sigma(i) \Rightarrow y_{\sigma(i)} = 0 = y_i.$$

Hence we have $f_0(\sigma x) = f_0(x) = \sigma f_0(x)$.

Finally we consider the case of \(g = (\varepsilon, \sigma) \in G \). Since \(gx \in \Lambda_n \), we have \(gx = \varepsilon(\sigma x) = \sigma x = x \in \Lambda_n \) (see Lemma 3.1). Hence

\[
\sigma x = f_0(x) = \sigma f_0(x) = \varepsilon f_0(\sigma x) = \varepsilon f_0(x) = g f_0(x).
\]

\(\square \)

We define a continuous map \(f : \mathbb{R}^n \to \mathbb{R}^n \) as follows; For any \(x \in \mathbb{R}^n \), there is a \(g \in G \) such that \(gx \in \Lambda_n \). Then we define

\[
f(x) := g^{-1} f_0(gx).
\]

From Lemma 3.2, this definition is well-defined. Since \(\mathbb{R}^n = \bigcup_{g \in G} g\Lambda_n \) and \(f|_{g\Lambda_n} = g f_0 g^{-1} (g \in G) \) is continuous on \(g\Lambda_n \), \(f \) is continuous on \(\mathbb{R}^n \). Moreover \(f \) is \(G \)-equivariant.

Proposition 3.3. Let \(1 \leq p < q \leq \infty \). For any \(x \in B_{lp}(\mathbb{R}^n) \), we have

\[
d_{ev}(x, f(x)) \leq \left(\frac{1}{m+1} \right)^{\frac{1}{p} - \frac{1}{q}}.
\]

Note that the right-hand side does not depend on \(n \).

Proof. Since \(f \) is \(G \)-equivariant and \(d_{ev} \) is \(G \)-invariant, we can suppose \(x \in B_{lp}(\mathbb{R}^n) \cap \Lambda_n \), i.e. \(x = (x_1, x_2, \cdots, x_n) \) with \(x_1 \geq x_2 \geq \cdots \geq x_n \geq 0 \). We have

\[
f(x) = (x_1 - x_{m+1}, \cdots, x_m - x_{m+1}, 0, \cdots, 0).
\]

Hence

\[
d_{ev}(x, f(x)) = \left\| (x_{m+1}, \cdots, x_{m+1}, x_{m+2}, \cdots, x_n) \right\|_{ev}.
\]

Set \(t := x_{m+1}^p \) and \(s := q/p \). Since \(x_1^p + \cdots + x_n^p \leq 1 \) and \(x_1 \geq x_2 \geq \cdots \geq x_n \geq 0 \), we have \(t \leq 1/(m+1) \), \(0 \leq x_k^p \leq t \,(m+1 \leq k \leq n) \) and \(x_{m+2}^p + \cdots + x_n^p \leq 1 - (m+1)t \). Using Lemma 2.2, we have

\[
x_{m+2}^q + \cdots + x_n^q \leq \{1 - (m+1)t\}^{t^{s-1}} = t^{s^{-1}} - (m+1)t^s.
\]

Therefore

\[
d_{ev}(x, f(x))^q = (m+1)x_{m+1}^q + x_{m+2}^q + \cdots + x_n^q \leq t^{s^{-1}} \leq (1/(m+1))^{s^{-1}}.
\]

Thus

\[
d_{ev}(x, f(x)) \leq (1/(m+1))^{1/p - 1/q}.
\]

\(\square \)

Proof of Theorem 1.1. Set \(m := \min(n, \lceil (2/\varepsilon)^r \rceil - 1) \). We will prove \(\text{Widim}_e(B_{lp}(\mathbb{R}^n), d_{ev}) \leq m \). If \(n = m \), then the statement is trivial. Hence we suppose \(n > m = \lceil (2/\varepsilon)^r \rceil - 1 \).

From \(m + 1 = \lceil (2/\varepsilon)^r \rceil \geq (2/\varepsilon)^r \) and \(1/r = 1/p - 1/q \),

\[
2 \left(\frac{1}{m+1} \right)^{\frac{1}{p} - \frac{1}{q}} \leq \varepsilon.
\]
We have
\[f(\mathbb{R}^n) = \bigcup_{g \in G} g f(\Lambda_n). \]
Note that \(f(\Lambda_n) \subset \mathbb{R}^m := \{(x_1, \cdots, x_m, 0, \cdots, 0) \in \mathbb{R}^n\} \). Proposition 3.3 implies that
\[
\left. f \right|_{B_\ell^p(\mathbb{R}^n)} : (B_\ell^p(\mathbb{R}^n), d_\ell^q) \to \bigcup_{g \in G} g \cdot \mathbb{R}^m \text{ is a } 2 \left(\frac{1}{m+1} \right)^{\frac{1}{p} - \frac{1}{q}} \text{-embedding.}
\]
Therefore we get
\[
\text{Widim}_\varepsilon(B_\ell^p(\mathbb{R}^n), d_\ell^q) \leq m.
\]
\[\square \]

4. Proof of Corollaries 1.2 and 1.3

4.1. Proof of Corollary 1.2. We need the following result. (cf. Gromov [2, p. 332]. For its proof, see Lindenstrauss-Weiss [4, Lemma 3.2] or Tsukamoto [6, Example 4.1].)

Lemma 4.1. For \(\varepsilon < 1 \),
\[\text{Widim}_\varepsilon([0, 1]^n, d_{\ell^\infty}) = n, \]
where \(d_{\ell^\infty} \) is the sup-distance given by \(d_{\ell^\infty}(x, y) := \max_i |x_i - y_i| \).

From this we get:

Lemma 4.2. Let \(B_{\ell^\infty}(\mathbb{R}^n, \rho) \) be the closed ball of radius \(\rho \) centered at the origin in \(\ell^\infty(\mathbb{R}^n) \) \((\rho > 0)\). Then for \(\varepsilon < 2\rho \)
\[\text{Widim}_\varepsilon(B_{\ell^\infty}(\mathbb{R}^n, \rho), d_{\ell^\infty}) = n. \]

Proof. Consider the bijection
\[
[0, 1]^n \to B_{\ell^\infty}(\mathbb{R}^n, \rho), \quad (x_1, \cdots, x_n) \mapsto (2\rho x_1 - \rho, \cdots, 2\rho x_n - \rho).
\]
Then the statement easily follows from Lemma 4.1. \(\square \)

Proof of Corollary 1.2. Set \(m := \min(n, \lceil (2/\varepsilon)^p \rceil - 1) \). We already know (Theorem 1.1) \(\text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^n), d_{\ell^\infty}) \leq m \). We want to show \(\text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^n), d_{\ell^\infty}) \geq m \). Note that for any real number \(x \) we have \(\lceil x \rceil - 1 < x \). Hence \(m \leq \lceil (2/\varepsilon)^p \rceil - 1 < (2/\varepsilon)^p \). Therefore \(m(\varepsilon/2)^p < 1 \). Then if we choose \(\rho > \varepsilon/2 \) sufficiently close to \(\varepsilon/2 \), then \((m \leq n) \)
\[B_{\ell^\infty}(\mathbb{R}^m, \rho) \subset B_{\ell^p}(\mathbb{R}^n). \]
(If \(\varepsilon \geq 2 \), then \(m = 0 \) and \(B_{\ell^\infty}(\mathbb{R}^m, \rho) \) is \(\{0\} \).) From Lemma 4.2
\[\text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^n), d_{\ell^\infty}) \geq \text{Widim}_\varepsilon(B_{\ell^\infty}(\mathbb{R}^m, \rho), d_{\ell^\infty}) = m. \]
Essentially the same argument is given in Gournay [1, pp. 5-6]. \(\square \)
4.2. Proof of Corollary 1.3. The following lemma easily follows from (2)

Lemma 4.3. Let \(B_{\ell^q}(\mathbb{R}^n, \rho) \) be the closed ball of radius \(\rho \) centered at the origin in \(\ell^q(\mathbb{R}^n) \) (\(1 \leq q \leq \infty \) and \(\rho > 0 \)). For \(\varepsilon < \rho \),

\[
\text{Widim}_\varepsilon(B_{\ell^q}(\mathbb{R}^n, \rho), d_{\ell^q}) = n.
\]

Proposition 4.4. For \(1 \leq p < q \leq \infty \),

\[
\min(n, \lceil \varepsilon^{-r} \rceil - 1) \leq \text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^n), d_{\ell^q}),
\]

where \(r \) is defined by

\[
\frac{1}{r} = \frac{1}{p} - \frac{1}{q}.
\]

Proof. We can suppose \(q < \infty \). Set \(m := \min(n, \lceil \varepsilon^{-r} \rceil - 1) \). From Hölder’s inequality,

\[
(|x_1|^p + \cdots + |x_m|^p)^{1/p} \leq m^{1/r}(|x_1|^q + \cdots + |x_m|^q)^{1/q}.
\]

As in the proof of Corollary 1.2, we have \(m \leq \lceil \varepsilon^{-r} \rceil - 1 < \varepsilon^{-r} \), i.e. \(m^{1/r} \varepsilon < 1 \). Therefore if we choose \(\rho > \varepsilon \) sufficiently close to \(\varepsilon \), then \((m \leq n) \)

\[
B_{\ell^p}(\mathbb{R}^m, \rho) \subset B_{\ell^p}(\mathbb{R}^n).
\]

From Lemma 4.3

\[
\text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^n), d_{\ell^p}) \geq \text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^m, \rho), d_{\ell^p}) = m.
\]

\(\square \)

Proof of Corollary 1.3 From Theorem 1.1 and Proposition 4.4 we have

\[
\lceil \varepsilon^{-r} \rceil - 1 \leq \lim_{n \to \infty} \text{Widim}_\varepsilon(B_{\ell^p}(\mathbb{R}^n), d_{\ell^p}) \leq \lceil (2/\varepsilon)^r \rceil - 1.
\]

From this estimate, we can easily get the conclusion. \(\square \)

5. **Proof of Corollary 1.5**

Let \(1 \leq p < \infty \) and \(\varepsilon > 0 \). Set \(X := B(\ell^p(\Gamma)) \). To begin with, we want to fix a distance on \(X \) (compatible with the topology). Since \(X \) is compact, if we prove (5) for one fixed distance, then (5) becomes valid for any distance on \(X \). Let \(w : \Gamma \to \mathbb{R}_{>0} \) be a positive function satisfying

\[
\sum_{\gamma \in \Gamma} w(\gamma) \leq 1.
\]

We define the distance \(d(\cdot, \cdot) \) on \(X \) by

\[
d(x, y) := \sum_{\gamma \in \Gamma} w(\gamma)|x_\gamma - y_\gamma| \text{ for } x = (x_\gamma)_{\gamma \in \Gamma} \text{ and } y = (y_\gamma)_{\gamma \in \Gamma} \text{ in } X.
\]

As in Section 1, we define the distance \(d_\Omega \) on \(X \) for a finite subset \(\Omega \subset \Gamma \) by

\[
d_\Omega(x, y) := \max_{\gamma \in \Omega} d(x_\gamma, y_\gamma).
\]
For each $\delta \in \Gamma$, there is a finite set $\Omega_\delta \subset \Gamma$ such that
\[
\sum_{\gamma \in \Gamma \setminus \Omega_\delta} w(\delta^{-1}\gamma) \leq \varepsilon/4.
\]
Set $\Omega' := \bigcup_{\delta \in \Omega} \Omega_\delta$. Ω' is a finite set satisfying
\[
\sum_{\gamma \in \Gamma \setminus \Omega'} w(\delta^{-1}\gamma) \leq \varepsilon/4 \quad \text{for any } \delta \in \Omega.
\]
Set $c := \lceil (4/\varepsilon)^p \rceil - 1$. Let $\pi : X \to B_{\ell^p}(\mathbb{R}^{\Omega'}) = \{ x \in \mathbb{R}^{\Omega'} \mid \|x\|_p \leq 1 \}$ be the natural projection. From Theorem [1] there are a polyhedron K of dimension $\leq c$ and an $\varepsilon/2$-embedding $f : (B_{\ell^p}(\mathbb{R}^{\Omega'}), d_{\ell^\infty}) \to K$. Then $F := f \circ \pi : (X, d_\Omega) \to K$ becomes an ε-embedding; If $F(x) = F(y)$, then $d_{\ell^\infty}(\pi(x), \pi(y)) \leq \varepsilon/2$ and for each $\delta \in \Omega$
\[
d(\delta x, \delta y) = \sum_{\gamma \in \Omega'} w(\delta^{-1}\gamma)|x_\gamma - y_\gamma| + \sum_{\gamma \in \Gamma \setminus \Omega'} w(\delta^{-1}\gamma)|x_\gamma - y_\gamma|,
\]
\[
\leq \frac{\varepsilon}{2} \sum_{\gamma \in \Omega'} w(\delta^{-1}\gamma) + 2 \sum_{\gamma \in \Gamma \setminus \Omega'} w(\delta^{-1}\gamma),
\]
\[
\leq \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]
Hence $d_\Omega(x, y) \leq \varepsilon$. Therefore,
\[
\operatorname{Widim}_\varepsilon(X, d_\Omega) \leq c.
\]
This shows (5). If Γ has an amenable sequence $\{ \Omega_i \}_{i \geq 1}$, then $|\Omega_i| \to \infty$ and hence
\[
\lim_{i \to \infty} \operatorname{Widim}_\varepsilon(X, d_{\Omega_i})/|\Omega_i| = 0.
\]
This shows (6).

References

[1] A. Gournay, Widths of ℓ^p balls, [arXiv:0711.3081](http://arxiv.org/abs/0711.3081)
[2] M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom. 2 (1999) 323-415
[3] E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999) 227-262
[4] E. Lindenstrauss, B. Weiss, Mean topological dimension, Israel J. Math. 115 (2000) 1-24
[5] M. Tsukamoto, Mean dimension of the unit ball in ℓ^p, preprint, http://www.math.kyoto-u.ac.jp/preprint/index.html (2007)
[6] M. Tsukamoto, Moduli space of Brody curves, energy and mean dimension, preprint, [arXiv:0706.2981](http://arxiv.org/abs/0706.2981)
[7] M. Tsukamoto, Deformation of Brody curves and mean dimension, preprint, [arXiv:0712.0266](http://arxiv.org/abs/0712.0266)

Masaki Tsukamoto
Department of Mathematics, Faculty of Science
Kyoto University
Kyoto 606-8502
Japan

E-mail address: tukamoto@math.kyoto-u.ac.jp