Disentangling multipole resonances through a full x-ray polarization analysis.

C. Mazzoli,1 S.B. Wilkins,1,2 S. Di Matteo,3,4 B. Detlefs,1,5 C. Detlefs,1 V. Scagnoli,1 L. Paolasini,1 and P. Ghigna6

1European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex 9, France
2Brookhaven National Laboratory, Condensed Matter Physics & Materials Science Department, Upton, NY, 11973-5000, USA
3Laboratori Nazionali di Frascati INFN, via E. Fermi 40, C.P. 13, I-00044 Frascati (Roma) Italy
4Équipe de physique des surfaces et interfaces, UMR-CNRS 6627 PALMS, Université de Rennes 1, 35042 Rennes Cedex, France
5European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, Karlsruhe, D-76125 Germany
6 Dipartimento di Chimica Fisica “M. Rolla”, Università di Pavia, I-27100 Pavia, Italy

(Dated: October 16, 2018)

Complete polarization analysis applied to resonant x-ray scattering at the Cr K-edge in K2CrO4 shows that incident linearly polarized x-rays can be converted into circularly polarized x-rays by diffraction at the Cr pre-edge (E = 5994 eV). The physical mechanism behind this phenomenon is a subtle interference effect between purely dipole (E1-E1) and purely quadrupole (E2-E2) transitions, leading to a phase shift between the respective scattering amplitudes. This effect may be exploited to disentangle two close-lying resonances that appear as a single peak in a conventional energy scan, in this way allowing to single out and identify the different multipole order parameters involved.

PACS numbers: 78.70.Ck, 78.20.Bh, 78.20.Ek

I. INTRODUCTION

In the last 10 years resonant x-ray scattering (RXS) has developed into powerful technique to obtain direct information about charge, magnetic, and orbital degrees of freedom.1,2,3,4,5,6 It combines the high sensitivity of x-ray diffraction to long-range ordered structures with that of x-ray absorption spectroscopy to local electronic configurations. In particular, the development of third generation synchrotron radiation sources has made possible the detection of small effects in electronic distribution, due to magneto-electric anisotropy7 or to local chirality8,9,10. The aim of the present article is to address the previous problems by extending the well-known techniques of optical polarimetry from the visible to the x-ray regime, as developed at the beamline ID20 at the ESRF, Grenoble, France. By using a diamond x-ray phase plate to rotate the incident linear polarisation in combination with a linear polarisation analyser, we can resolve resonances determined by multipoles of different order that are very close in energy, playing on their relative phase shifts. The idea can be explained through a simplified model, by considering two externally driven, damped harmonic oscillators of unitary amplitude, but with resonant frequencies differing by 2π. The scattering amplitude of such oscillators
Stokes parameters: the photon energy. Experimentally, the scattered beam is induced by the in-
scatter in different polarization channels. Using the Jones matrix formalism, the polarisation of the scattered beam may then be written as \(\epsilon' = G\epsilon \), where \(\epsilon \) (\(\epsilon' \)) are the incident (scattered) polarization vectors, and the matrix \(G = \left(\begin{array}{cc} g_+ & g_- \\ g_+ & g_- \end{array} \right) \) contains the dependence on the photon energy. Experimentally, the scattered beam polarisation is best described in terms of the Poincaré-Stokes parameters:

\[
P'_1 \equiv \frac{|\epsilon'_g|^2 - |\epsilon'_e|^2}{\bar{P}_0^2} \\
P'_2 \equiv 2\Re \epsilon'_g \epsilon'_e / \bar{P}_0^2 \\
P'_3 \equiv 2\Im \epsilon'_g \epsilon'_e / \bar{P}_0^2
\]

with \(\bar{P}_0^2 \equiv (|\epsilon'_g|^2 + |\epsilon'_e|^2) \) the total intensity, and \(\epsilon'^* \) the complex conjugate of \(\epsilon' \). \(P'_1 \) and \(P'_2 \) describe the linear polarization states, whereas \(P'_3 \) indicates the degree of the circular polarization. The Poincaré-Stokes parameters, \(P_{0,1,2,3} \), of the incident beam are obtained by substituting \(\epsilon \) for \(\epsilon' \).

For example, for an incoming \(\pi \) polarised beam, \(\epsilon = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \), we obtain \(\left(\begin{array}{c} \epsilon'_g \\ \epsilon'_\pi \end{array} \right) = \left(\begin{array}{c} g_+ \\ g_- \end{array} \right) \), which in turn yields:

\[
P'_1 = -\frac{2\zeta \omega}{\omega^2 + \zeta^2 + \Gamma^2} \\
P'_2 = \frac{\omega^2 - \zeta^2 + \Gamma^2}{\omega^2 + \zeta^2 + \Gamma^2} \\
P'_3 = \frac{2\zeta \Gamma}{\omega^2 + \zeta^2 + \Gamma^2}
\]

Therefore we expect that in the intermediate region between the two resonances, the outgoing beam is circularly polarised, depending on the relative dephasing of the two resonances, as shown in Fig. 1 for the case \(\zeta = \Gamma \).

Below, we describe experimental data which we then compare to quantitative \textit{ab-initio} calculations carried out using the FDMNES code\(^{22}\). We demonstrate that a 100% linear- to circular-polarization conversion at the pre-edge region of the Cr K-edge in K$_2$CrO$_4$ is induced by the interference of the dispersive and absorptive parts of two different multipoles probed by purely dipole (E1-E1) and purely quadrupole (E2-E2) resonances. Thus, the scattered beam originates from two different excitation channels, each scattering the beam with a different phase.

Their relative amplitudes, at a given energy, are governed by the probed multipoles, the relative orientation of the incident and scattered electric field vectors to the probed multipoles and the reciprocal lattice point under study. Their interference can therefore be tuned simply by varying the incident polarization by means of a phase plate.

II. EXPERIMENTAL SETUP

Experiments were carried out at ID20, ESRF. The experimental setup is outlined in Fig. 2. A single crystal of K$_2$CrO$_4$ was mounted on the six-circle horizontal diffractometer, and a cryostat was used to stabilize the temperature at 300 K. Sample rocking curves (\(\theta \)-scans) of the crystal resulted in widths smaller than 0.01° indicating a high sample quality.

A diamond phase plate of thickness 700 \(\mu \)m with a [110] surface was inserted into the incident beam, within its own goniometer, and the (111) Bragg reflection in symmetric Laue geometry was selected to modify the polarization of the x-ray beam incident on the diffractometer. The phase plate was operated in either quarter-wave or half-wave plate mode. With the former we generated left- or right-circular polarization, \(P_3 \approx \pm 1 \), whereas with the latter we rotated the linear incident polarization into an arbitrary plane, described by \(P_3 \approx \sin(2\eta) \) and \(P_3 \approx \cos(2\eta) \). Here \(\eta \) is the angle between the incident beam electric field vector and the vertical axis (see Fig. 2), i.e. \(\eta = 0 \) when the polarization is perpendicular to the horizontal scattering plane (\(\sigma \) polarization).

The sample was mounted with the [010] and [100] directions defining the horizontal scattering plane. Figure 3 shows the fluorescence yield and the energy dependence of the glide-plane forbidden (130) reflection, collected at an azimuthal angle of \(\Psi = -0.78(3)^\circ \) degrees.
with respect to the reciprocal lattice direction [010]. The photon energy was then tuned to the pre-edge region of the Cr K-edge (5994 eV). An x-ray polarization analyzer was placed in the scattered beam. It exploited the (220) Bragg reflection of a LiF crystal, scattering close to Brewster’s angle of 45°. The polarization analyzer setup was rotated around the scattered beam by an angle, \(\eta' \), and at each point the integrated intensity was determined by rocking the analyzer’s theta axis (\(\theta_{PA} \)). An example is shown in the inset of Fig. 2. The resulting integrated intensities were then fitted to the equation

\[
I = \frac{P'_1}{2} \left[1 + P'_1 \cos 2\eta' + P'_2 \sin 2\eta' \right],
\]

to obtain the Poincaré-Stokes parameters, \(P'_1 \) and \(P'_2 \). An example is shown in Fig. 4 for \(\eta' = -90^\circ \). The degree of circular polarization, \(P'_3 \), can not be measured directly in this setup. However, an upper limit is inferred from \(P'_1^2 + P'_2^2 + P'_3^2 \leq 1 \) (the equality holding for a completely polarized beam).

We systematically measured \(P'_1 \) and \(P'_2 \) of the beam scattered at the (130) reciprocal lattice point as function of \(\eta \). Figure 5 shows both the experimental data (symbols) and the theoretical calculation (dashed lines), described below. The measured degree of linear polarization of the scattered beam, \(P'_1^2 + P'_2^2 \), strongly deviates from 100% in the range \(-10^5 \lesssim \eta \lesssim 50^\circ\), indicating that a large component of the scattered beam is either circularly polarized or depolarized. To ascertain which of these two processes is realised we reconfigured the diamond phase plate to produce circularly polarized x-rays. Figure 6 shows the measured \(P'_1 \) and \(P'_2 \) for both linearly and circularly polarized x-rays. The presence of linearly scattered x-rays for the circular incident case is consistent with the assumption that the region for which \(P'_1^2 + P'_2^2 \) strongly deviates from 1 corresponds to an increased circularly polarized contribution. Furthermore, the calculations for \(P'_3^2 \), detailed in Section III, involving only completely polarized contributions to the scattered beam, agree well with its upper limit inferred from the data \(P'_3^2 \equiv 1 - P'_1^2 - P'_2^2 \), indicating that the signal is essentially circularly polarised.
III. THEORETICAL DISCUSSION

In RXS the global process of photon absorption, virtual photoelectron excitation and photon re-emission, is coherent throughout the crystal, thus giving rise to the usual Bragg diffraction condition \[\sum_j e^{i\mathbf{Q} \cdot \mathbf{R}_j} (f_{0j} + f_j') \]

where \(f_{0j} \) is the Thomson factor and \(f_j' \) the sum of \(\omega \) terms for \(\omega \) even or odd. For example, when \(\omega = 4 \), the E1-E2 scattering is proportional to \(\sin(2\pi x) \approx 0.99 \) and it dominates the other terms, proportional to \(\cos(2\pi x) \approx 0.12 \). Indeed we found the presence of a very intense pre-edge feature from E1-E2 channel at the (140) reflection that is related to the electric octupole moment, as predicted in Ref. 27 and verified numerically by our ab-initio calculations. However, as described above, the presence of a single scattering channel, as in the case of the (140) reflection, can not lead to a circularly polarized diffracted beam. This can be demonstrated by a symmetry argument: if only one scatterer is present, which

\[f_j' = f_j(\omega) \propto -\omega^2 \sum_n \langle \psi_n'(j)| \hat{O}_n^\dagger |\psi_n(\omega)| \hat{O}_n |\psi_n'(j) \rangle, \]

where \(\omega \) is the photon energy, \(\omega_n \) the ground state energy, and \(\Gamma_n \) the energy and inverse lifetime of the excited states, \(\psi_n(\omega) \) is the core ground state centered around the \(j \)th atom and \(\psi_n \) the photo-excited state \(\epsilon \) and \(\epsilon' \) are the polarizations of the incoming and outgoing photons and \(\mathbf{q} \) and \(\mathbf{q}' \) their corresponding wave vectors. The sum is extended over all the excited states of the system. The transition operator \(\hat{O}_j \) is written as a multipolar expansion of the photon field up to electric dipole (E1) and quadrupole (E2) terms; \(\mathbf{r}' \) is the electron position relative to the resonating ion, \(\epsilon' \) is the polarization of the incoming (outgoing) photon and \(\mathbf{q}' \) its corresponding wave vector.

By taking into account the space group symmetry of \(\text{K}_2\text{CrO}_4 \) (Pnma, No. 62), the four equivalent Cr sites at Wyckoff 4c positions (with local mirror-plane \(\mathbf{m}_y \)) can be related one another by the following symmetry operations: \(f_3 = I f_1 \), \(f_4 = C_{2x} f_1 \) and \(f_2 = I f_4 \). \(I \) is the space-inversion operator and \(C_{2x} \) is the \(\pi \)-rotation operator around \(x \)-axis. The Thomson scattering \(f_0 \) does not contribute at (1k0) type reflections, for any \(k \), due to the glide plane extinction rule. Therefore, the structure factor at Cr K-edge for the (1k0) chosen reflections, when summed over all equivalent sites, becomes, for E1-E2 scattering:

\[S = 2i \sin[2\pi(x + \frac{k}{4})]\rangle|1 - \mathbf{m}_z|f_1 \]

while for E1-E1 and E2-E2 scattering it is given by:

\[S = 2 \cos[2\pi(x + \frac{k}{4})]\rangle|1 - \mathbf{m}_z|f_1 \]

where \(x \approx 0.23 \) is the fractional coordinate of Cr atoms and \(\mathbf{m}_z \) is a glide-plane orthogonal to the \(z \)-axis. In deriving Eqs. 3 and 4 we have used the identity \(f_1 = \mathbf{m}_z f_1 \). It is interesting to note the different behavior of the two terms for \(k \) even or odd. For example, when \(k = 4 \), the E1-E2 scattering is proportional to \(\sin(2\pi x) \approx 0.99 \) and it dominates the other terms, proportional to \(\cos(2\pi x) \approx 0.12 \). Indeed we found the presence of a very intense pre-edge feature from E1-E2 channel at the (140) reflection that is related to the electric octupole moment, as predicted in Ref. 27 and verified numerically by our ab-initio calculations. However, as described above, the presence of a single scattering channel, as in the case of the (140) reflection, cannot lead to a circularly polarized diffracted beam. This can be demonstrated by a symmetry argument: if only one scatterer is present, which...
is by hypothesis non-magnetic, and the incident light is linearly polarized, then the initial state is time-reversal even. Therefore, as matter-radiation interaction does not break time-reversal, it follows that the final state must also be time-reversal even, i.e., radiation cannot be circularly polarized, which would break time-reversal. This is no more true when two scatterers are present, due to the extra degree of freedom represented by the time (phase) delay between the two scattering processes. Indeed, this was a posteriori verified by our numerical simulation, which confirmed that no outgoing circular polarization is present at the (140) reflection.

The case of the (130) reflection is very different. The role of \(\sin(2\pi x) \) and \(\cos(2\pi x) \) in Eqs. 4 and 6 switches in such a way that the two diffraction channels E1-E1 and E2-E2 become predominant. Further analysis of the structure factors reveals that two resonances are allowed, one for each channel, corresponding to an electric quadrupole ordering for the E1-E1 scattering and an electric hexadecapole for the E2-E2 scattering. Finally, multiple-scattering calculations with the FDMNES program confirm that the two resonances overlap in the pre-edge region, though slightly shifted in energy of \(\sim 1 \) eV. These are the conditions to be met to get the interference of the two channels. In order to describe the effect quantitatively from a theoretical point of view we used the ab-initio code FDMNES, in the multiple-scattering mode, to calculate \(P_3 \) directly from Eq. 4 for the K\(_2\)CrO\(_4\) structure. We employed a cluster of 43 atoms, corresponding to a radius of 5.5 Å around the resonating Cr-atom. Notice that in this most general case we find \(P_3' = (f_{E1}'(\omega)f_{E1}''(\omega) - f_{E2}'(\omega)f_{E1}''(\omega)) \) where \(f' \) and \(f'' \) are the usual dispersive and absorptive terms (see Eq. 4) for E1 and E2 channels. Therefore at the photon energy \(\omega \), \(P_3' \) is determined by the interference of the absorptive part \(f'' \) of one channel with the dispersive part \(f' \) of the other and, again, in the presence of just one channel, \(P_3' = 0 \).

The numerical simulations shown in Fig. 3 (dashed lines) confirm that there is an azimuthal region where the incoming linear polarization is fully converted into an outgoing circular polarization and that the effect is determined by the interference of the E1-E1 and E2-E2 channels.

In this respect, it is interesting to note that the origin of this effect is profoundly different from those determined by a chiral (magnetic) structure (see, e.g., Ref. 29, 30), as clearly seen by the fact that all the tensors involved are non-magnetic and parity-even.

Finally, we verified experimentally that at the Cr K-edge (\(E = 6010 \) and 6018 eV), where only one term in the E1-E1 channel is present, no circular polarization was observed for all incident angles, i.e., \(P_1'^2 + P_2'^2 = 1 \). Calculations performed using FDMNES confirmed this result.

IV. CONCLUSIONS

Polarization analysis of RXS experiments has developed greatly in the last few years, helping to understand several characteristics of order parameters in transition metal oxides, rare-earth based compounds, and actinides. Up to now, however, the full investigation of Stokes’ parameters was not applied most likely because linear polarization analysis, where only the \(P_1' \) parameter was determined by measuring the \(\sigma \rightarrow \sigma' \) and \(\sigma \rightarrow \pi' \) channels, was considered sufficient. While this may be true when just one excitation channel is involved (as at the (140) reflection in the present case), several dephasing phenomena may appear when two different multipole excitations close in energy are involved in the transition. As we have seen, these phenomena may lead to a situation where incoming linear polarization is scattered to a circular polarization due to an interference between two multipoles, at the same time allowing for a very sensitive determination of the presence of the second multipole. We believe that the use of phase plates and of a complete polarization analysis, is the key to disentangle multi-resonance structures in those situations where an usual energy scan, like the one shown in Fig. 3 is not sufficient to this aim. Effect of \(d \)-band filling on details of the electronic structure will be investigated by the method presented here in the series of isostructural compounds K\(_2\)CrO\(_4\) → K\(_2\)MnO\(_4\) → K\(_2\)FeO\(_4\).

Acknowledgments

The authors would like to acknowledge David H. Templeton and François de Bergevin for enlightening discussions.

One of us (SDM) acknowledges the kind hospitality at ESRF during the preparation of the manuscript.

The work at Brookhaven National Laboratory is supported by the U.S. Department of Energy, under contract no. DE-AC02-98CH10886.

1 M. Blume, in Resonant anomalous x-ray scattering, edited by G. Materlik, C. J. Sparks, and K. Fischer (Elsevier Science, Amsterdam, 1994), p. 495.
2 Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. 80, 1932 (1998).
3 Y. Murakami, J. P. Hill, D. Gibbs, M. Blume, I. Koyama, M. Tanaka, H. Kawata, T. Arima, Y. Tokura, K. Hirota, et al., Phys. Rev. Lett. 81, 582 (1998).
4 Y. Joly, S. Grenier, and J. E. Lorenzo, Phys. Rev. B 68, 104412 (2003).
5 S. B. Wilkins, P. D. Hatton, M. D. Roper, D. Prabhakaran, and A. T. Boothroyd, Phys. Rev. Lett. 90, 187201 (2003).
6 S. B. Wilkins, P. D. Spencer, P. D. Hatton, S. P. Collins,
M. D. Roper, D. Prabhakaran, and A. T. Boothroyd, Phys. Rev. Lett. 91, 167205 (2003).
7 M. Kubota, T. Arima, Y. Kaneko, J. P. He, X. Z. Yu, and Y. Tokura, Phys. Rev. Lett. 92, 137401 (2004).
8 J. Goulon, C. Goulon-Ginet, A. Rogalev, V. Gotte, C. Malgrange, C. Brouder, and C. R. Natoli, J. Chem. Phys. 108, 6394 (1998).
9 S. Di Matteo, Y. Joly, and C. R. Natoli, Phys. Rev. B 72, 144406 (2005).
10 J. A. Paixão, C. Detlefs, M. J. Longfield, R. Caciuffo, P. Santini, N. Bernhoeft, J. Rebizant, and G. H. Lander, Physical Review Letters 89, 187202 (2002).
11 S. D. Matteo, Y. Joly, A. Bombardi, L. Paolasini, F. de Bergevin, and C. R. Natoli, Phys. Rev. Lett. 91, 257402 (2003).
12 T. H. Arima, J. H. Jung, M. Matsubara, M. Kubota, J. P. He, Y. Kaneko, and Y. Tokura, J. Phys. Soc. Japan 74, 1419 (2005).
13 R. Caciuffo, J. A. Paixão, C. Detlefs, M. J. Longfield, P. Santini, N. Bernhoeft, J. Rebizant, and G. H. Lander, J. Phys.: Condens. Matt. 15, S2287 (2003).
14 C. M. Varma, Phys. Rev. B 55, 14554 (1997).
15 C. M. Varma, Phys. Rev. Lett. 83, 3538 (1999).
16 D. Mannix, G. H. Lander, J. Rebizant, R. Caciuffo, N. Bernhoeft, E. Lidström, and C. Vettier, Phys. Rev. B 60, 15187 (1999).
17 L. Paolasini, C. Vettier, F. de Bergevin, F. Yakhou, D. Mannix, A. Stunault, W. Neubeck, M. Altarelli, M. Fabrizio, P. A. Metcalf, et al., Phys. Rev. Lett. 82, 4719 (1999).
18 K. D. Finkelstein, Q. Shen, and S. Shastri, Phys. Rev. Lett. 69, 1612 (1992).
19 P. Carra and B. T. Thole, Rev. Mod. Phys. 66, 1509 (1994).
20 L. Paolasini et al. (2007), submitted to Phys. Rev. B.
21 D. H. Templeton and L. K. Templeton, Phys. Rev. B 49, 14850 (1994).
22 L. Paolasini, C. Detlefs, C. Mazzoli, S. B. Wilkins, P. P. Deen, A. Bombardi, N. Kernavanois, F. de Bergevin, F. Yakhou, J.-P. Valade, et al., J. Synch. Rad. (2007), in press.
23 M. Blume and D. Gibbs, Phys. Rev. B 37, 1779 (1988).
24 Y. Joly, Phys. Rev. B 63, 125120 (2001), the program can be freely downloaded at the web address http://www-cristallo.grenoble.cnrs.fr/ldmnes.
25 C. Giles, C. Vettier, F. de Bergevin, C. Malgrange, G. Grübel, and F. Grossi, Rev. Sci. Instrum. 66, 1518 (1995).
26 L. Bouchenoire, S. D. Brown, P. Thompson, C. Detlefs, and M. J. Cooper, Nucl. Instr. Method A 566, 733 (2006).
27 I. Marri and P. Carra, Phys. Rev. B 69, 113101 (2004).
28 The application of the structure-factor symmetry operation \(\hat{m}_z \) on the irreducible tensor representing the atomic scattering factor \(f(q) \) leads to \(\hat{m}_z f(q) = (-1)^{p+1} f(q) \), where \(p \) is the parity of the tensor (+1 for e1-e1 and e2-e2, -1 for e1-e2). From this rule the allowed multipole components follow.
29 C. Sutter, G. Grüber, C. Vettier, F. de Bergevin, A. Stunault, D. Gibbs, and C. Giles, Phys. Rev. B 55, 954 (1997).
30 J. C. Lang, D. R. Lee, D. Haskel, and G. Srajer, J. Appl. Phys. 95, 6537 (2004).