IN SEARCH OF THE LARGEST VELOCITY DISPERSION GALAXIES

S. SALVIANDER, G. A. SHIELDS, AND K. GEBHARDT
Department of Astronomy, University of Texas, Austin, TX 78712

AND

M. BERNARDI AND J. B. HYDE
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104

Received 2008 April 20, accepted 2008 July 3

ABSTRACT

We present Hobby-Eberly Telescope (HET) observations for galaxies at redshift \(z < 0.3 \) from the Sloan Digital Sky Survey (SDSS) showing large velocity dispersions while appearing to be single galaxies in \(HST \) images. The high signal-to-noise HET spectra provide more definitive velocity dispersions. The maximum velocity dispersion we find is \(\sigma_v = 444 \text{ km s}^{-1} \). Emission-line widths in QSOs indicate that black holes can exist with masses \(M_{\bullet} \) exceeding 5 billion \(M_\odot \), implying \(\sigma_v > 500 \text{ km s}^{-1} \) by the local \(M_{\bullet}-\sigma_v \) relationship. This suggests either that QSO black hole masses are overestimated or that the black hole–bulge relationship changes at high black hole mass. The latter option is consistent with evidence that the increase in \(\sigma_v \) with luminosity levels off for the brightest elliptical galaxies.

Subject headings: galaxies: general — black hole physics

Online material: color figures

1. INTRODUCTION

The use of broad emission lines in QSOs to measure black hole mass, \(M_{\bullet} \), allows study of black hole demographics over a large volume of space. The largest black hole masses range up to \(10^{10} M_\odot \), exceeding the largest \(M_{\bullet} \) (\(10^{9.5} M_\odot \)) measured for nearby galaxies. Shields et al. (2006b) derive a space density of 200 Gpc\(^{-3}\) for black holes with \(M_{\bullet} > 10^{9.7} M_\odot \) based on broad-line widths in the most luminous QSOs. Wyithe & Loeb (2003) find a similar result based on the assumption that all QSOs are radiating at their Eddington limit. However, from the \(M_{\bullet}-\sigma_v \) relationship (Gebhardt et al. 2000a; Ferrarese & Merritt 2000; Tremaine et al. 2002), a black hole with mass \(10^{9.7} M_\odot \), corresponds to a velocity dispersion of 500 km s\(^{-1}\), larger than any \(\sigma_v \) observed in local galaxies. Indeed, in a volume of space \(\sim 0.5 \text{ Gpc}^3 \) (approximately corresponding to the SDSS DR2; Strauss et al. 2002) none appear to have \(\sigma_v \geq 430 \text{ km s}^{-1} \) (Bernardi et al. 2006, 2008, hereafter B06 and B08 respectively). These seemingly contradictory results raise the question of where the largest black holes reside, and what value of \(\sigma_v \) characterizes their host galaxies.

Accurate knowledge of the largest values of \(\sigma_v \) that occur in galaxies is therefore important for the understanding of the largest black holes in the universe, as well as having obvious bearing on the evolution of the largest galaxies. However, the signal-to-noise (S/N) of survey spectra—especially in the case of higher redshift galaxies—is often too low to make an accurate determination of \(\sigma_v \), or to confidently rule out doubles and superposition as causes for large apparent velocity dispersions. With this goal in mind, we have selected eight galaxies which have among the highest velocity dispersions in the sample of B08 and appear, in \(HST \) images and SDSS spectra, to be single galaxies. We have obtained high S/N spectra with the Hobby-Eberly Telescope (HET) to measure \(\sigma_v \) with greater accuracy and to double-check the likelihood of superposition.

Absolute magnitudes used in this study are calculated using the cosmological parameters \(H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1} \), \(\Omega_M = 0.3 \), and \(\Omega_\Lambda = 0.7 \).
by determining the x and y locations of the spectra on the images and approximating a trace. Images were sky subtracted using apertures for the night sky that were defined manually for each object. Images for each galaxy were combined, and then a one-dimensional spectrum was extracted by defining an aperture for the object and summing pixel values for each wavelength bin. The wavelength scale was calibrated by means of a fourth-order polynomial wavelength solution for an emission spectrum of a Cd lamp.

3.1. Measuring σ_*

Details of the spectrum modeling are described in Gebhardt et al. (2000b). Briefly, we used an automated procedure to fit the spectrum separately in the regions of the G-band line and the Ca $\text{\textsc{ii}}$ H and K lines using an adjustable combination of stellar templates to simulate the spectrum of an elliptical galaxy. Table 2 lists the template stars and their spectral types. There is some difficulty in simulating spectra for large-σ_* galaxies, because the

Fig. 1.—HST images from B08 for the galaxies in Table 3. Circles show the size of the 3" SDSS fiber. [See the electronic edition of the Journal for a color version of this figure.]
stellar population is not well known. For this reason, we con-
strained our fitting routine to the regions immediately sur-
grounding the G-band and Ca ii H and K lines. A measure for σ_*
was obtained through a simultaneous fitting of the continuum
and the velocity profiles of the G-band line or the Ca ii H and
K lines until an optimal match to the galaxy spectrum was achieved
(see Fig. 2). We modeled the velocity profiles using two methods:
(1) least-squares fits of a pure Gauss function; and (2) least-
squares fits of a Gauss-Hermite function, which is a Gaussian
multiplied by Hermite polynomials. The coefficients of the Hermite
polynomials, h_3 and h_4, characterize the asymmetrical and sym-
metrical deviations from a pure Gaussian profile, respectively
(see van der Marel & Franx 1993). The first two moments of the
Gauss-Hermite represent the mean velocity and velocity disper-
sion, σ_*. We quote the σ_* measurements from fitting method (1),
and used the parameters of the fit from fitting method 2 as a check
for binarity or other irregularities. Goodness of fit was confirmed
by visual inspection of the model fit and velocity profiles for
each galaxy.

Error bars were determined via Monte Carlo trials in which
the initial data were randomly varied based on the rms noise per
pixel and then refitted by our automated procedure to get a σ_*. The
standard deviation of σ_* from 100 such trials determined the
1 σ level of error. The errors for the G-band fits and Ca ii H and
K fits are comparable, but we quote only the σ_* of the G-band
measurement, since it is less susceptible to template mismatch
due to α-element enhancement (see Barth et al. 2002).

4. RESULTS

Table 3 lists σ_* measured for each galaxy from both the HET
and SDSS spectrum. Figure 3 shows that in most cases there is agree-
ment within $\pm 10\%$. The largest σ_* we find is 444 ± 16 km s$^{-1}$
for SDSS J082646.72+495211.5, which differs from the SDSS
spectrum measurement by $\sim 9\%$. The smallest σ_* in our sample is
302 ± 18 km s$^{-1}$ for SDSS J082216.57+481519.1, which differs from the SDSS
spectrum measurement by $\sim 25\%$. Figure 3 shows that the largest discrepancies are for lower σ_* objects. We applied our fitting algorithm to the SDSS spectra, and our mea-
sured dispersions agree with those reported in B06. There is no
obvious reason for the discrepancies. One possibility may be that
the galaxies were selected for large σ_* from SDSS. Given the
steeply dropping number of galaxies with increasing σ_* and the
large number of galaxies in the full SDSS data set, noise may act
to elevate a few objects from $\sigma_* \approx 300$ km s$^{-1}$ to a measured
value of $\sigma_* \geq 400$ km s$^{-1}$.

SALVIANDER ET AL.

Vol. 687

TABLE 1

GALAXY (SDSS J)	APERTURE	PROFILE	
082216.5+481519.1	2.35	5.34	Power law
082646.7+495211.5	2.82	7.74	Power law
124609.4+515021.6	1.88	7.76	Core
133724.7+033656.5	2.35	5.55	Power law
145506.8+615809.7	2.82	11.8	Core
171328.4+274336.6	2.12	9.38	Core
211019.2+095047.1	1.65	6.08	Core
221414.3+131703.7	2.82	7.51	Power law

TABLE 2

STAR	Template Stars	
HD 10761	G8 III
HD 111812	G0 III
HD 161797	G5 IV
HD 199960	G1 V
HD 219449	K0 III
HD 220954	K1 III
HD 39283	A2 V
HD 81146	K2 III
HD 85235	A3 IV
HD 92588	K1 IV
G166$-$45	A5 V

NOTES.—The HET spectra were extracted from the apertures shown in the second and third columns. Galaxy profile types are from Bernardi et al. (2008).

4.1. Tests for Binarity

We attempted to assess the likelihood of binarity by inspecting
plots of the velocity profiles for asymmetries and multiple compo-
ants—flat-topped profiles in particular indicate binaries. The
strength of the Hermite coefficients h_3 and h_4 served as nume-
rical indicators of binaries: nonzero h_3 indicates asymmetry, with
$h_3 < 0$ corresponding to a blue wing on the profile and $h_3 > 0$
corresponding to a red wing; $h_4 < 0$ indicates a boxy or flat-
topped profile. The $|h_3|$ and $|h_4|$ for each of the galaxies in our
sample were modest (<0.1), and none of the velocity profiles
showed indication of asymmetry or multiple components. How-
ever, this method of assessing binarity appears to detect only
obvious binaries with very large measured σ_*. We fit the SDSS
spectra of the galaxies in Table 2 of B06, which are flagged as
superpositions, to see whether h_3 and h_4 would help to distin-
guish them as binaries. We found that only in cases where mea-
sured $\sigma_* \geq 500$ km s$^{-1}$ and visual inspection of the profile fits
showed obvious signs of binarity did the $|h_3|$ and $|h_4|$ exceed 0.1. We
rely on the HST images and the lack of gross effects on the
line profiles to rule out binaries, but cannot rule out precisely
superimposed images and modest velocity separations that could
enhance measured σ_*.

4.2. The σ_*-L Relationship

In Figure 4 we plot σ_* against V-band absolute magnitude and
compare our galaxies to the σ_*-L relationships and data from
Figure 3 of Lauer et al. (2007b), which includes galaxies with core,
power-law, and intermediate-type profiles. Lauer et al. point out that the absolute magnitudes given for these galaxies by
the SDSS catalog are underestimated due to improper sky sub-
traction in the SDSS pipeline. Hyde et al. (2008) corrected for
this by carrying out their own photometric reductions of these
objects, so we follow B08 in adopting their r-band absolute mag-
nitudes, and convert to Johnson V-band magnitudes using the pre-
scription from Jester et al. (2005) ($V = g - 0.59[g - r] - 0.01$). The
four lowest luminosity galaxies agree with the σ_*-L rela-
tionship for power-law galaxies ($L \sim \sigma_*^3$), while the higher
luminosity galaxies agree with the relationship for core galaxies
($L \sim \sigma_*^2$)—a direct analysis of the HST light profiles confirms
that the low L objects are power-law galaxies, and the others are
core galaxies (Hyde et al. 2008). Figure 5 shows the residual from
the Faber-Jackson ($L \sim \sigma_*^3$) relationship versus the residual
from the effective radius—luminosity relationship (Bernardi et al.
2007a). More concentrated bulges are correlated with greater
deviation from the Faber-Jackson relationship, in the sense that our galaxies have measured velocity dispersions larger than what is predicted from their luminosities. See § 5 for the significance of this correlation.

4.3. The M_\bullet-\σ_\star Relationship

Table 3 also lists black hole masses predicted from the M_\bullet-\σ_\star relationship for nearby galaxies quantified by Tremaine et al. (2002) and from the logquadratic formulation of Wyithe (2006). For our highest \σ_\star object, we predict $M_\bullet \approx 10^{9.5} M_\odot$ (Tremaine) and $\approx 10^{9.7} M_\odot$ (Wyithe), rivaling M_\bullet for M87 (Harms et al. 1994) and recently that of Abell 1836-BCG, the most massive black holes measured locally (Dalla Bontà et al. 2007). Note that the σ_\star of 375 km s$^{-1}$ for M87 (Tremaine et al. 2002) places it above the M_\bullet-\σ_\star relationship by a factor of about 2 in M_\bullet. If the M_\bullet-σ_\star relationship changes for high M_\bullet (e.g., Netzer 2003), black hole masses could be larger for our galaxies than what is predicted here. Alternatively, M_\bullet may not correlate well with any galaxy properties at high M_\bullet. Given the scatter in the black hole–galaxy relationships, and lacking direct measurement of black hole masses $>10^{9.5} M_\odot$, the nature of the M_\bullet-\σ_\star relationship remains uncertain for large M_\bullet.

5. DISCUSSION

The largest \σ_\star we measure is ≈ 444 km s$^{-1}$ in a volume of space corresponding to 0.5 Gpc3. We find no observational support for galaxies with \$\sigma_\star > 500$ km s$^{-1}$, contrary to the QSO-based prediction of 100 such galaxies (see § 1). Evidently, either (1) black hole masses derived from QSOs are overestimated or (2) the linear relationship between log M_\bullet and log \σ_\star breaks down for high M_\bullet (Netzer 2003). Regarding the first possibility, QSO black hole masses are typically estimated using the “photoionization method” (see Shields et al. 2003 and references therein), in which the virial mass is given by $M_\bullet = v^2 R/G$. The velocity is given by the width of broad-line region (BLR) emission lines such as Hβ, and the QSO luminosity provides an estimate of the radius of the BLR. Assuming the BLR gas is indeed virialized, the main uncertainties are the BLR radius–luminosity relationship and the geometry of the BLR (flattened or spherical). The R_{BLR}-L relationship was calibrated using the reverberation mapping technique on a

Table 3

Galaxy (SDSS J)	z	M_\star (mag)	σ_\star (km s$^{-1}$)	$\log M_\bullet (M_\odot)$	$\log R_\star$ (kpc)			
082216.5+481519.1	0.127	-21.27 ± 0.042	302 ± 18	402 ± 28	8.85	8.84	8.28	0.337
082646.7+495211.5	0.159	-22.22 ± 0.009	444 ± 16	408 ± 26	9.52	9.69	8.79	0.547
124609.4+515021.6	0.269	-23.95 ± 0.052	404 ± 22	402 ± 35	9.36	9.47	9.70	1.249
133724.7+033656.5	0.133	-22.74 ± 0.004	419 ± 29	422 ± 31	9.43	9.57	9.06	0.645
145506.8+615809.7	0.274	-24.37 ± 0.015	408 ± 14	413 ± 36	9.31	9.42	9.92	1.460
171328.4+274336.6	0.297	-24.00 ± 0.010	378 ± 13	413 ± 27	9.40	9.52	9.73	1.108
211019.2+095047.1	0.230	-24.37 ± 0.004	309 ± 34	386 ± 32	9.28	9.37	9.92	1.093
221414.3+131703.7	0.153	-22.02 ± 0.008	342 ± 18	384 ± 28	9.27	9.36	8.68	0.391

Notes. — M_\star calculated using r- and g-band magnitudes is from Hyde et al. (2008) and the transformation from Jester et al. (2005). Errors for M_\star were calculated by adding in quadrature the rms errors for M_\star, M_\bullet, and the uncertainty in the conversion to M_\star. We take σ_\star from Bernardi et al. (2006). Values of M_\bullet(σ_\star) and M_\bullet(σ_\star-quad.) are inferred from the M_\bullet-σ_\star relationship quantified by Tremaine et al. (2002) and Wyithe (2006), respectively. M_\bullet(L) is inferred from the M_\bullet-L relationship quantified by Lauer et al. (2007b). R_\star is from Hyde et al. (2008).
sample of lower luminosity AGN (see review by Kaspi et al. 2007) and scales as $R_{\text{BLR}} \sim L^\gamma$ with $\gamma = 0.5-0.7$. Bentz et al. (2006) find $\gamma = 0.52$ after correcting L for host galaxy star light, consistent with photoionization physics (Shields et al. 2003). This relationship holds for a relatively wide range of luminosities up to $L_{\text{bol}} = 10^{46}$ ergs s$^{-1}$, and is extrapolated to higher luminosities to estimate black hole masses for bright QSOs. As discussed by Salviander et al. (2007), the calibration used by Shields et al. (2006b) is consistent with observed M_* and σ_* in Seyfert galaxies (Onken et al. 2004). The calibration recommended by Bentz et al. (2006) gives $M_* \sim 0.1$ dex larger than that of Shields et al. (2006b). Shields et al. point out that a majority of the highest luminosity QSOs in the sample of Shields et al. (2003) have $M_* > 10^{9.7} M_\odot$, which argues against scatter in the derivation of M_* from AGN luminosity and broad-line width as a major source of the large M_* for this sample. Thus, an overestimation of M_* in QSOs appears unlikely as a cause of the conflict between the abundance of large black holes in QSOs and the number of galaxies with sufficiently high σ_*. We must therefore consider the possibility of a breakdown in the linear relationship between log M_* and log σ_* at high M_*. This is consistent with the properties of the brightest cluster galaxies (BCGs). As shown in Figure 4 and discussed by Lauer et al. (2007b), the Faber-Jackson relationship levels off for the most luminous galaxies (also see Oegerle & Hoessel 1991; Bernardi et al. 2007a). This is consistent with Lauer et al. (2007b), who conclude that M_* may track galaxy luminosity rather than σ_* for the largest galaxies. Lauer et al. (2007b) have augmented the galaxy luminosity function of Blanton et al. (2003) to include brightest cluster galaxies (BCGs) from the Postman & Lauer (1995) sample. This luminosity function (Lauer et al. 2007a; our Fig. 1) gives $10^{21}-1$ galaxies per Gpc3 with $M_V < -23.9$. If current black hole samples are unbiased (see discussion in Bernardi et al. 2007b), then this luminosity corresponds to $M_* = 10^{9.1} M_\odot$ (see eq. [6] of Lauer et al. 2007b). Within the uncertainties, this is an adequate number of BCGs to host the largest black holes observed in QSOs. Note that Tundo et al. (2007) show that scatter in the M_*-L_{bulge} relationship can bias estimates like this upwards by factors of several. A consequence is that the largest...
black holes will typically reside in proportionally modest-sized galaxies (see discussion in § 6). This may introduce scatter into the black hole–host galaxy relationships for the largest black holes.

Does our highest velocity dispersion represent a physical limit for \(\sigma \)? The \(\sigma_-L \) relationship flattens out for \(\sigma_- \) at high \(L \), which may be explained by influences on \(\sigma_- \) in galaxy merger models; the largest galaxies are believed to have formed through a succession of dissipationless, or “dry,” mergers. Loeb & Peebles (2003) discuss possible causes of a limiting value of \(\sigma_- \). Major merger simulations by Boylan-Kolchin et al. (2006) show that the type of trajectory during galaxy mergers determines the concentration, and therefore \(\sigma_- \) of the remnant spheroid. For orbits with high angular momentum, more energy is transferred from the stellar component to the dark matter halo, resulting in a more concentrated remnant and a larger \(\sigma_- \). Figure 5 is consistent with this picture, showing more concentrated bulges (in the sense that the measured effective radius, \(R_e \), is smaller than that predicted from the \(R_e-L \) relationship) corresponding to overlarge \(\sigma_- \) (for a given bulge luminosity and the \(L-\sigma_- \) relationship). Since we use luminosity to predict both \(\sigma_- \) and \(R_e \), the axes in Figure 5 are not independent. However, these correlated errors cannot explain the trend in the figure. Given the definition of the residuals, \(\Delta \log \sigma_- = \log \sigma_- (L) - \log \sigma_- \), and \(\Delta \log R_e = \log R_e (L) - \log R_e \), and that \(R_e \propto L^{0.5} \) and \(\sigma_- \propto L^{0.25} \), errors in luminosity will affect \(\Delta \log \sigma_- \) and \(\Delta \log R_e \), in the sense of creating a positive slope in the figure rather than the negative slope that is actually seen. The magnitude and sense of the change in the relationship due to correlated errors is indicated in the figure. The negative slope in Figure 5 is qualitatively consistent with expectations from the virial theorem—for a given spheroid mass (and therefore luminosity) a decrease in radius corresponds to an increase in measured \(\sigma_- \).

6. COMMENT ON EVOLUTION OF THE \(M_\bullet-\sigma_- \) RELATIONSHIP

Recent studies by Shields et al. (2006a), Peng et al. (2006), Salviander et al. (2007), and others suggest that the \(M_\bullet-\sigma_- \) relationship evolves with redshift in the sense that, for a given \(M_\bullet \), the velocity dispersion is too small at higher redshifts. Whether this apparent evolution is real is controversial. For example, Salviander et al. (2007) studied \(M_\bullet \) and \(\sigma_- \) in SDSS QSOs at redshifts up to \(z = 1.2 \), estimating \(\sigma_- \) from the width of [O iii] \(\lambda 5007 \) and [O ii] \(\lambda 3727 \). They found that higher redshift QSOs had \(M_\bullet \) too large for \(\sigma_- \) by \(\sim 0.5 \) dex. The interpretation of this trend requires caution. Brighter QSOs generally have larger black holes, so that larger \(M_\bullet \) corresponds to practice to higher redshift and larger look-back time. (1) Salviander et al. (2007) and Lauer et al. (2007a) describe how a Malmquist-like bias leads to over-representation of large black holes in modest galaxies. This bias is greater at the steep, high-luminosity end of the QSO luminosity function, and it may give rise to the appearance of evolution in the \(M_\bullet-\sigma_- \) relationship. (2) An observational bias favoring the detection of narrow lines affects the statistics of the [O iii] and [O ii] line widths. Salviander et al. find that these two biases account for about 0.3 dex of their apparent evolution, leaving \(\sim 0.15 \) dex of residual evolution. However, as discussed above, \(\sigma_- \) levels off in the \(\sigma_-L \) (Faber-Jackson) plot (Fig. 4) at high luminosity, where brightest cluster galaxies (BCGs) do not follow the relationship (Oegerle & Hoessel 1991; Lauer et al. 2007b; Bernardi et al. 2007a). Use of the local \(M_\bullet-\sigma_- \) relationship (Tremaine et al. 2002) with \(M_\bullet \propto \sigma_-^2 \) at high \(M_\bullet \) could overestimate the expected \(\sigma_- \) and give the appearance of evolution. A correction of only 0.1 dex on this basis applied to the residual evolution of Salviander et al. (2007) would leave no significant remaining evolution. Alternatively, Bernardi et al. (2007b) suggest that there is little bias in the \(M_\bullet-\sigma_- \) relationship. Instead, they suggest that bias occurs in the \(M_\bullet-L \) relationship, as a result of a steeper slope in the \(\sigma_-L \) relationship for black hole samples compared to the SDSS sample.

7. CONCLUSION

We have used the HET LRS to obtain high signal-to-noise spectra for eight galaxies selected from the sample of B06–B08 representing galaxies with the highest measured values for \(\sigma_- \) that appear to be single galaxies in HST images and SDSS spectra. The maximum \(\sigma_- \) we find is 444 km s\(^{-1}\), similar to B06. We find no support for \(\sigma_- \geq 500 \) km s\(^{-1}\). If black hole masses are reliable, this is indicative of a \(M_\bullet-\sigma_- \) relationship that deviates at high \(M_\bullet \) from the locally observed loglinear relationship. Although our data do not address this issue directly, they are consistent with the change in the relationship between \(\sigma_- \) and luminosity for the brightest elliptical galaxies.

We thank John Kormendy and Miloš Milosavljević for helpful discussions. We also thank the anonymous referee for comments that improved the paper. G. A. S. gratefully acknowledges the hospitality of Lick Observatory and the support of the Jane and Roland Blumberg Centennial Professorship in Astronomy. M. B. acknowledges support from NASA LTSG-NNG06GC19G grant. We thank the SDSS team for the enormous effort involved in conducting the survey and making the results conveniently accessible to the public. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

Funding for the Sloan Digital Sky Survey (SDSS) has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org. The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Korean Scientist Group, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

REFERENCES

Barth, A. J., Ho, L. C., & Seargeant, W. L. W. 2002, AJ, 124, 2604
Benitez, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Onken, C. A. 2006, ApJ, 644, 133
Bernardi, M. 2007, AJ, 133, 1741
Bernardi, M., Sheth, R. K., Tundo, E., & Hyde, J. B. 2007b, ApJ, 660, 267
Bernardi, M., et al. 2006, AJ, 131, 2018 (B06)
Blanton, M. R., et al. 2003, ApJ, 592, 819

Bernardi, M., Hyde, J. B., Sheth, R. K., Miller, C. J., & Nichol, R. C. 2007a, AJ, 133, 1741
Bernardi, M., Sheth, R. K., Tundo, E., & Hyde, J. B. 2007b, ApJ, 660, 267
Bernardi, M., et al. 2006, AJ, 131, 2018 (B06)
Blanton, M. R., et al. 2003, ApJ, 592, 819
Dalla Bontà, E., Ferrarese, L., Corsini, E. M., Miralda-Escudé, J., Coccato, L., & Pizzella, A. 2007, Mem. Soc. Astron. Italiana, 78, 745
Boylan-Kolchin, M., Ma, C.-P., & Quataert, E. 2006, MNRAS, 369, 1081
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Gebhardt, K., et al. 2000a, ApJ, 539, L13
———. 2000b, AJ, 119, 1157
Harms, R. J., et al. 1994, ApJ, 435, L35
Hill, G. J., Nicklas, H. E., MacQueen, P. J., Tejada, C., Cobos Duenas, F. J., & Mitsch, W. 1998, Proc. SPIE, 3355, 375
Hyde, J. B., Bernardi, M., Fritz, A., Sheth, R. K., Gebhardt, K., & Nichol 2008, MNRAS, submitted
Jester, S., et al. 2005, AJ, 130, 873
Kaspi, S., Brandt, W. N., Maoz, D., Netzer, H., Schneider, D. P., & Shemmer, O. 2007, ApJ, 659, 997
Lauer, T. R., Tremaine, S., Richstone, D., & Faber, S. M. 2007a, ApJ, 670, 249
Lauer, T. R., et al. 2007b, ApJ, 662, 808
Loeb, A., & Peebles, P. J. E. 2003, ApJ, 589, 29
Netzer, H. 2003, ApJ, 583, L5
Oegerle, W., Hoessel, J. G. 1991, ApJ, 375, 15
Onken, C. A., Ferrarese, L., Merritt, D., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Wandel, A. 2004, ApJ, 615, 645
Peng, C. Y., Impey, C. D., Rix, H.-W., Kochanek, C. S., Keeton, C. R., Falco, E. E., Lehár, J., & McLeod, B. A. 2006, ApJ, 649, 616
Postman, M., & Lauer, T. R. 1995, ApJ, 440, 28
Salviander, S., Shields, G. A., Gebhardt, K., & Bonning, E. W. 2007, ApJ, 662, 131
Shields, G. A., Gebhardt, K., Salviander, S., Wills, B. J., Xie, B., Brotherton, M. S., Yuan, J., & Dietrich, M. 2003, ApJ, 583, 124
Shields, G. A., Menezes, K. L., Massart, C. A., & Vanden Bout, P. 2006a, ApJ, 641, 683
Shields, G. A., Salviander, S., & Bonning, E. W. 2006b, NewA Rev., 50, 809
Strauss, M. A., et al. 2002, AJ, 124, 1810
Tremaine, S., et al. 2002, ApJ, 574, 740
Tundo, E., Bernardi, M., Hyde, J. B., Sheth, R. K., & Pizzella, A. 2007, ApJ, 663, 53
van der Marel, R. P., & Franx, M. 1993, ApJ, 407, 525
Wyithe, J. S. B. 2006, MNRAS, 365, 1082
Wyithe, J. S. B., & Loeb, A. 2003, ApJ, 595, 614