Cytokine release syndrome in a patient with colorectal cancer following vaccination with BNT162b2 (tozinameran)

Samra Turajlic (samra.turajlic@crick.ac.uk)  Francis Crick Institute  https://orcid.org/0000-0001-8846-136X

Lewis Au
The Francis Crick Institute

Annika Fendler
Francis Crick Institute

Scott Shepherd
Francis Crick Institute

Karolina Rzeniewicz
Francis Crick Institute

Maddalena Cerrone
Francis Crick Institute

Fiona Byrne
Francis Crick Institute

Eleanor Carlyle
The Royal Marsden NHS Foundation Trust

Kim Edmonds
The Royal Marsden NHS Foundation Trust

Lyra Del Rosario
The Royal Marsden NHS Foundation Trust

John Shon
Serimmune

Winston Haynes
Serimmune

Barry Ward
Francis Crick Institute

Ben Shum
Francis Crick Institute

William Gordon
Francis Crick Institute

Camille Gerard
Brief Communication

Keywords: cytokine release syndrome (CRS), mRNA vaccine, immunology

DOI: https://doi.org/10.21203/rs.3.rs-355230/v1
Abstract

We present a case of cytokine release syndrome (CRS) that occurred five days after vaccination with BTN162b2 (tozinameran), an mRNA COVID-19 vaccine, in a patient with colorectal cancer on long-standing anti-PD-1 monotherapy. The CRS was evidenced by raised inflammatory markers, thrombocytopenia, elevated cytokine levels (IFN-γ/IL-2R/IL-18/IL-16/IL-10), and steroid responsiveness.

Main Text

Cytokine release syndrome (CRS) is a systemic inflammatory response, characterised by excessive cytokine release. CRS may develop following infection (including coronavirus disease 2019 [COVID-19]), or due to iatrogenic causes most notably chimeric antigen receptor T-cell (CAR-T) therapy, and less frequently cytotoxic chemotherapy or stem cell transplantation.1-3 Extremely rarely, it occurs following immune checkpoint inhibitor (ICI) therapy,4 and, to the best of our knowledge, it has not been reported following administration of any vaccine. Here, we report a case of CRS following vaccination with BTN162b2 (tozinameran), an mRNA COVID-19 vaccine.

A 58-year-old male commenced anti-PD-1 monotherapy (an investigational ICI within an ongoing clinical trial) in February 2019 for the treatment of mismatch repair deficient colorectal cancer (MMRd CRC) metastatic to mesentry and rectus muscle (Figure 1a). Two months following treatment initiation he experienced a neurological immune-related adverse event (irAE), with worsening ataxia (grade 1 to grade 2 and MRI changes in pons, medulla, and cerebellum) on the background of pre-existing spinocerebellar ataxia of unknown aetiology. ICI was suspended and he was commenced on 1 mg/kg prednisolone (tapered over one month) and ataxia returned to grade 1 (baseline). Anti-PD-1 therapy was re-started in June 2019 (Figure 1a), with stable disease as per immune related Response Evaluation Criteria in Solid Tumors (irRECIST). In March 2020 (13 months after commencing ICI), he developed an endocrine irAE (grade 1 hypocortisolemia from adrenocorticotropic hormone deficiency; Fig 1a) and was commenced on physiological doses of corticosteroid replacement (prednisolone 3 mg daily). Disease control was maintained and the last ICI dose was administered in December 2020, 27 days prior to BNT162b2.

The patient had no history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and had negative SARS-CoV-2 serological tests in June and October 2020. He received the first dose of BNT162b2 vaccine on 29 December 2020 (Figure 1a) without immediate adverse events, except for grade 1 inflammation at the vaccination site. Five days later (32 days after last anti-PD-1 dose), he presented with myalgia, two days history of diarrhoea (grade 1), and one day history of fever (38.4°C), despite antipyretics (ibuprofen) use. On admission to hospital, his vital signs were: oxygen saturation: 100% on room air; respiratory rate: 18/min; blood pressure: 111/71 mmHg; heart rate: 86 bpm; temperature: 36.7°C. Laboratory investigations revealed elevated inflammatory markers (C-reactive protein [CRP]: 125 mg/l [normal: <6]; serum lactate dehydrogenase [LDH]: 184 U/l [normal range: 120-246]), and thrombocytopenia (68x10⁹ cells/l [normal range: 150-410]; confirmed on microscopy) (Figure 1b). Empirical treatment with broad-spectrum intravenous antibiotics was commenced, however, blood and
urine cultures were negative, as was SARS-CoV-2 RT-PCR of serial naso-pharyngeal swabs (Figure 1a). Computed tomography of thorax, abdomen and pelvis revealed no nidus of infection and stable disease. Over the next five days, fevers up to 39.8°C continued, with worsening thrombocytopenia (28x10^9 cells/l), increasing inflammatory markers (CRP: 317 mg/l, LDH 849 U/l), including significantly elevated ferritin (6,010 µg/l [normal range: 18-464]) (Figure 1b). At this point (five days post-admission), CRS was suspected and he was commenced on 1 mg/kg intravenous methylprednisolone (IVMP), and antibiotics were ceased three days later. Biochemical and haematological indices normalised within seven days of IVMP initiation (Figure 1b), and the patient was afebrile and asymptomatic upon discharge home with a weaning corticosteroid regimen. He remained well and was re-challenged with anti-PD-1 on 8 February 2021 (36 days after initial presentation) without any adverse events (Figure 1a).

To explore the features of his presentation further, we performed longitudinal cytokine analysis, pre- and post-IVMP. An exaggerated type 1 helper T-cell (Th1) response is a frequent feature of CRS,¹ and the initial profile (day 3 of admission; Figure 2a) indicated activation of Th1 cells (elevated MIG, IL-2R, IL-16, IFN-y, IL-18) and macrophages (elevated MCP-1, MIP, IL-8, IL-18, MIG). IL-10 inhibits pro-inflammatory cytokine responses limiting exuberant inflammatory responses³, and while we observed elevated IL-10 on days 3 to 8 of admission it evidently failed to suppress hyperinflammation in this case. Majority of cytokines decreased substantially during IVMP treatment, but persistent elevation of IL-2R, IL-2, IL-16, and IL-18 day 12 of admission (Figure 2a) indicate sustained T-cell activation.

SARS-CoV-2 reactive and neutralising antibodies were detectable seven days post-vaccination (Figure 2b), and the titres continued to rise during IVMP treatment, suggesting a robust vaccine-induced immune response. However, S-specific CD4⁺ and CD8⁺ T-cells were undetectable on days 17 and 40 post-vaccination (Figure 2c,d and Figure S1a,b), consistent with weak/absent T-cell responses observed in healthcare workers following the first dose of BNT162b2.⁵

To identify antibody-binding epitopes we performed a serum epitope repertoire analysis (SERA) and protein-based immunome wide association study (PIWAS), using a bacterial display system coupled with next-generation sequencing. Post-vaccine profile was comparable to that of healthcare workers after COVID-19 mRNA vaccine (data not shown), with a rise in positive signal against spike but not non-spike proteins (vs SARS-CoV-2 positive subjects)⁶ (Figure S2). This was consistent with the lack of prior SARS-CoV-2 infection as a potentially contributor to the clinical presentation.

The laboratory findings in CRS are variable and relate to the underlying cause, although CRP elevation is universal and correlates with severity.¹ Elevated ferritin and thrombocytopenia are also common abnormalities.¹ Whilst there are no defined cytokine profiles that confirm CRS, raised IFN-y, IL-2R, IL-18, IL-6, and IL-10 are considered key in establishing the diagnosis.¹,² All bar IL-6 was were elevated in this case. Whereas transient cytokine elevation (IFN-a, IFN-y, IL-6, IFN-inducible protein-10, and IL-12 p70) was observed following mRNA cancer vaccines co-administered with ICI in melanoma patients,⁷ they manifest as self-limiting mild flu-like symptoms.
Less than 0.01% of irAEs reported in the context of anti-PD-1 monotherapy involve CRS and to date no CRS events have been reported following BNT162b2. ICI-related CRS typically develops a median of 4 weeks after ICI initiation (range: 1-18 weeks), making CPI as the sole cause of CRS unlikely in this patient who commenced anti-PD1 treatment 22 months prior. The close temporal association of vaccination and clinical presentation favours the vaccine as potential trigger of CRS in this case.

Receptor occupancy associated with anti-PD-1 agents is 2–3 months and it remains possible that CRS was triggered by the vaccine on a background of immune activation secondary to PD1 blockade which results in T-cell proliferation and increased effector function. We did not detect S-reactive T-cells in the periphery, however vaccine-activated T-cells that contributed CRS could be resident within tissue or lymph nodes and evade detection in the blood. T-cell cross-reactivity, as a result of sequence similarity between spike protein and tumour neoantigens is an alternative though a less likely cause of CRS in this case. Cross-reactivity to cardiac tissue was reported as a mechanism of ICI-related myocarditis, and this patient's history of irAEs and the high neoantigen load (typical of MMRD CRC) could in theory increase the likelihood of T-cell cross-reactivity.

Given patients with cancer were excluded from SARS-CoV-2 vaccine studies and are currently prioritised in COVID-19 vaccination programs globally, this case motivates prospective pharmacovigilance regarding the safety profile of COVID-19 vaccines in cancer patients. However, this being an isolated case, the benefit-risk profile for COVID-19 vaccination remains strongly in favour of vaccination in the cancer population who are generally more vulnerable to COVID-19. Current empirical recommendations regarding the timing of COVID-19 vaccination suggest administering “on availability” in cancer patients on systemic anticancer treatments including ICI, cytotoxic chemotherapy, and hormone therapy; and avoiding vaccination within 48–72 h of investigational products to minimise misattribution of adverse event causation.

Methods

CAPTURE design, study schedule, and follow-up

During admission, the patient was enrolled in CAPTURE (NCT03226886), an observational prospective study of the immune response to SARS-CoV-2 in cancer patients that opened for recruitment in May 2020 at the Royal Marsden NHS Foundation Trust. The study design has been previously published. Adult patients with current or history of invasive cancer are eligible for enrolment, irrespective of cancer type, stage, or treatment. Primary and secondary endpoints relate to patient characteristics of those with and without SARS-CoV-2 infection, and the impact of COVID-19 on long-term survival and ICU admission rates. Exploratory endpoints pertain to characterising clinical and immunological determinants of COVID-19 and vaccine response in cancer patients. Clinical data and sample collection for participating cancer patients are performed at baseline, and at clinical visits per standard-of-care management during the first
year of follow-up; frequency varies depending on in- or outpatient status and systemic anti-cancer treatment regimens. CAPTURE was approved as a substudy of TRACERx Renal (NCT03226886). TRACERx Renal was initially approved by the NRES Committee London - Fulham on January 17, 2012. The TRACERx Renal sub-study CAPTURE was submitted as part of Substantial Amendment 9 and approved by the Health Research Authority on April 30, 2020 and the NRES Committee London - Fulham on May 1, 2020. CAPTURE is conducted in accordance with the ethical principles of the Declaration of Helsinki, Good Clinical Practice and applicable regulatory requirements.

**Handling of whole blood samples**

For indicated experiments, serum or plasma samples were heat-inactivated at 56°C for 30 minutes prior to use.

**Plasma and PBMC isolation**

Whole blood was collected in EDTA tubes (VWR) and stored at 4°C until processing. All samples were processed within 24 hours. Time of blood draw, processing, and freezing was recorded for each sample. Prior to processing tubes were brought to room temperature (RT). PBMC and plasma were isolated by density-gradient centrifugation using pre-filled centrifugation tubes (pluriSelect). Up to 30 ml of undiluted blood was added on top of the sponge and centrifuged for 30 minutes at 1000 x g at RT. Plasma was carefully removed then centrifuged for 10 minutes at 4000 x g to remove debris, aliquoted and stored at -80°C. The cell layer was then collected and washed twice in PBS by centrifugation for 10 minutes at 300 x g at RT. PBMC were resuspended in Recovery cell culture freezing medium (Fisher Scientific) containing 10% DMSO, placed overnight in CoolCell freezing containers (Corning) at -80°C and then stored in liquid nitrogen.

**Serum isolation**

Whole blood was collected in serum coagulation tubes (Vacuette CAT tubes, Greiner) for serum isolation and stored at 4°C until processing. All samples were processed within 24 hrs. Time of blood draw, processing, and freezing was recorded for each sample. Tubes were centrifuged for 10 minutes at 2000 x g at 4°C. Serum was separated from the clotted portion, aliquoted and stored at -80°C.

**S1-reactive IgG ELISA**

Ninety-six-well MaxiSorp plates (Thermo Fisher Scientific) were coated overnight at 4°C with purified S1 protein in PBS (3 μg/ml per well in 50 μl) and blocked for 1 hour in blocking buffer (PBS, 5% milk, 0.05% Tween 20, and 0.01% sodium azide). Sera were diluted in blocking buffer (1:50). Fifty microliters of serum were then added to the wells and incubated for 2 hours at RT. After washing four times with PBS-T (PBS, 0.05% Tween 20), plates were incubated with alkaline phosphatase-conjugated goat anti-human IgG (1:1000, Jackson ImmunoResearch) for 1 hour. Plates were developed by adding 50 μl of alkaline phosphatase substrate (Sigma Aldrich) for 15-30 minutes after six washes with PBS-T. Optical densities were measured at 405 nm on a microplate reader (Tecan). CR3022 (Absolute Antibodies) was used as a
positive control. The cut-off for a positive response was defined as the mean negative value multiplied by 0.35 times the mean positive value.

**Neutralising antibody assay**

Confluent monolayers of Vero E6 cells were incubated with SARS-CoV-2 virus and two-fold serial dilutions of heat-treated serum or plasma samples starting at 1:40 for 4 hrs at 37°C, 5% CO₂, in duplicates. The inoculum was then removed and cells were overlaid with viral growth medium. Cells were incubated at 37°C, 5% CO₂. At 24 hours post-infection, cells were fixed in 4% paraformaldehyde and permeabilized with 0.2% Triton X-100/PBS. Virus plaques were visualized by immunostaining, as described previously for the neutralisation of influenza viruses using a rabbit polyclonal anti-NSP8 antibody used at 1:1000 dilution and anti-rabbit-HRP conjugated antibody at 1:1000 dilution and detected by action of HRP on a tetramethyl benzidine-based substrate. Virus plaques were quantified and ID50 was calculated.

**T-cell stimulation**

PBMC for in vitro stimulation were thawed at 37 °C and resuspended in 10 ml of warm complete medium (RPMI, 5% human AB serum) containing 0.02% benzonase. Viable cells were counted and 2x10⁶ cells were seeded in 200 µl complete medium per well of a 96-well plate. Cells were stimulated with 4 µl/well PepTivator SARS-CoV-2 S, M, or N pools (representing 1µg/ml final concentration per peptide; Miltenyi Biotec, Surrey, UK). Staphylococcal enterotoxin B (Merck, UK) was used as a positive control at 0.5µg/ml final concentration, negative control was PBS containing DMSO at 0.002% final concentration. PBMC were cultured for 24 hrs at 37°C, 5% CO₂.

**Activation-induced marker assay**

Cells were washed twice in warm PBMC. Dead cells were stained with 0.5 µl/well Zombie dye V500 for 15 minutes at RT in the dark, then washed once with PBS containing 2% FCS (FACS buffer). A surface staining mix was prepared per well, containing 2 µl/well of each antibody for surface staining (Supplementary Table 1) in 50:50 brilliant stain buffer (BD) and FACS buffer. PBMC were stained with 50 µl surface staining mix per well for 30 minutes at RT in the dark. Cells were washed once in FACS buffer and fixed in 1% PFA in FACS buffer for 20 min, then washed once and resuspended in 200 µl PBS. All samples were acquired on a Bio-Rad Ze5 flow cytometer running Bio-Rad Everest software v2.4 and analysed using FlowJo v10 (Tree Star Inc.) analysis software. Compensation was performed with 20 µl antibody-stained anti-mouse Ig, k / negative control compensation particle set (BD Biosciences, UK). Up to 1x10⁶ live CD19-/CD14- cells were acquired per sample. Gates were drawn relative to the unstimulated control for each donor. Gating strategy is shown in Figure S2c. T-cell response is displayed as a stimulation index by dividing the percentage of AIM-positive cells by the percentage of cells in the negative control. When S, M, and N stimulation were combined the sum of AIM-positive cells was divided by the three times the percentage of positive cells in the negative control.

**Multiplex immune assay for cytokines and chemokines**
The preconfigured multiplex Human Immune Monitoring 65-plex ProcartaPlex immunoassay kit (Invitrogen, Thermo Fisher Scientific, UK) was used to measure 65 protein targets in plasma on the Bio-Plex platform (Bio-Rad Laboratories, Hercules, CA, USA), using Luminex xMAP technology. Analytes measured included APRIL; BAFF; BLC; CD30; CD40L; ENA-78; Eotaxin; Eotaxin-2; Eotaxin-3; FGF-2; Fractalkine; G-CSF; GM-CSF; Gro-alpha; HGF; IFN-alpha; IFN-gamma; IL-10; IL-12p70; IL-13; IL-15; IL-16; IL-17A; IL-18; IL-1alpha; IL-1beta; IL-2; IL-20; IL-21; IL-22; IL-23; IL-27; IL-2R; IL-3; IL-31; IL-4; IL-5; IL-6; IL-7; IL-8; IL-9; IP-10; I-TAC; LIF; MCP-1; MCP-2; MCP-3; M-CSF; MDC; MIF; MIG; MIP-1alpha; MIP-1beta; MIP-3alpha; MMP-1; NGF-beta; SCF; SDF-1alpha; TNF-beta; TNF-alpha; TNF-R2; TRAIL; TSLP; TWEAK; VEGF-A. All assays were conducted as per the manufacturer's recommendation.

Serum epitope repertoire analysis

Patient serum samples were screened and analysed using the previously published serum epitope repertoire analysis (SERA) pipeline. Briefly, sera were screened with a randomised bacterial peptide display library and plasmids from antibody-bound bacteria were isolated and sequenced. Protein-based Immunome Wide Association Studies (PIWAS) was applied to identify epitopes and antigens for the SARS-CoV-2 proteome.

Declarations

Acknowledgements

We thank the patient for permission to report his case. We thank the CAPTURE trial team, including Hamid Ahmod, Natalie Ash, Ravinder Dhaliwal, Lauren Dowdie, Tara Foley, Lucy Holt, Justine Korteweg, Charlotte Lewis, Karla Lingard, Mary Mangwende, Aida Murra, Kema Peat, Sarah Sarker, Nahid Shaikh, and Fiona Williams. We thank Firza Gronthoud, Gail Gardner, Robyn Shea and their teams for support on sample collation. We acknowledge the tremendous support from the clinical and research teams at participating units at the Royal Marsden Hospital. We thank Mike Gavrielides for informatics support, and Brigitta Stockinger for valuable discussions. We also thank the Volunteer Staff at The Francis Crick Institute, and the Crick COVID19 consortium. Due to limitations on cited references and the pace at which the field is evolving, we acknowledge researchers in COVID-19 vaccines and immune responses in patients with cancer. The CAPTURE study is a substudy of TRACERx Renal, and is sponsored by The Royal Marsden NHS Foundation Trust and funded from a grant from the Royal Marsden Cancer Charity (RMCC) Programme (Ref. RMCC32). TRACERx Renal is partly funded by the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) at the Royal Marsden Hospital and Institute of Cancer Research (ICR) (A109). This work was supported by the Francis Crick Institute receives its core funding from Cancer Research UK (CRUK) (FC010110), the UK Medical Research Council (FC010110), and the Wellcome Trust (FC010110). This research was funded in whole, or in part, by the Wellcome Trust (FC0010988). For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.
Author contributions

S.T., L.A., S.S., and A.F. contributed to study design. L.A., K.R., A.F., and S.T drafted the manuscript. S.S., A.F., and L.A. contributed to the collection and processing of clinical specimens. A.F., K.W., and M.C. performed laboratory analysis. A.F. and L.A contributed to visualisations. S.S., L.A., N.J-H., D.L., I.C., N.S., and C.F. provided clinical data. All authors critically reviewed the manuscript for intellectual content, approved the final version of the manuscript for submission, and agreed to be accountable for all aspects of the work.

Competing interests declaration

L.A. is funded by the Royal Marsden Cancer Charity. A.F. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 892360. M.C., K.A.W. and R.J.W. receives core funding from the Francis Crick Institute (FC001218). J.S. and W.H. are employees and shareholders at Serimmune Inc. N.J-H receives funding from Cancer Research UK (grant reference number C65320/A26413). J.L. has worked in a consulting or advisory role for Achilles Therapeutics, AstraZeneca, Boston Biomedical, Bristol Myers Squibb, Eisai, EUSA Pharma, GlaxoSmithKline, Imugene, Incyte, iOnctura, Ipsen, Kymab, Merck Serono, Merck Sharp & Dohme, Nektar Therapeutics, Novartis, Pierre Fabre, Pfizer, Roche/Genetech, Secarna, and Viataccess; and has received support from NIHR RM/ICR Biomedical Research Centre for Cancer, and institutional research support from Achilles Therapeutics, Aveo, Bristol Myers Squibb, Covance, Immunocore, Merck Sharp & Dohme, Nektar Therapeutics, Novartis, Pharmacyclics, Pfizer, and Roche. D.L. is the recipient of the Australasian Gastro-Intestinal Trials Group/Merck Clinical Research Fellowship. I.C. has worked in a consulting or advisory role for Eli-Lilly, Bristol Meyers Squibb, MSD, Bayer, Roche, Merck-Serono, Five Prime Therapeutics, Astra-Zeneca, OncXerna, Pierre Fabre, Boehringer Ingelheim, Incyte, and Astella; and has received research funding from Eli-Lilly and Janssen-Cilag; and has received honorarium from Eli-Lilly and Eisai. S.T. has received speaking fees from Roche, Astra Zeneca, Novartis and Ipsen. G.K. receives core funding from the Francis Crick Institute (FC0010099). S.T. is funded by Cancer Research UK (grant reference number C50947/A18176), the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC0010988), the UK Medical Research Council (FC0010988), and the Wellcome Trust (FC0010988), the National Institute for Health Research (NIHR) Biomedical Research Centre at the Royal Marsden Hospital and Institute of Cancer Research (grant reference number A109), the Royal Marsden Cancer Charity, The Rosetrees Trust (grant reference number A2204), Ventana Medical Systems Inc (grant reference numbers 10467 and 10530), the National Institute of Health (Bethesda) and Melanoma Research Alliance. All other authors declare no conflicts of interest.

Data availability

All requests for raw and analysed data, materials, and CAPTURE study protocol will be reviewed by the CAPTURE Trials Team, Skin and Renal Clinical Trials Unit, The Royal Marsden NHS Foundation Trust (CAPTURE@rmh.nhs.uk) to determine if the request is subject to confidentiality and data protection obligations. Data and materials that can be shared will be released via a material transfer agreement.
The CAPTURE consortium

The members of the CAPTURE consortium include Lewis Au, Susana Banerjee, Katie Bentley, Shree Bhide, Laura Amanda Boos, Fiona Byrne, The Crick COVID-19 Consortium, Ian Chau, David Cunningham, Joanne Droney, Annika Fendler, Andrew Furness, Camille Gerard, Firza Gronthud, Kevin Harrington, Adrian Hayday, Shaman Jhanji, Robin Jones, George Kassiotis, Yasir Khan, Sacheen Kumar, James Larkin, Steve K.W. Leung, Michael Jones, Paula Lorgelly, Richard Martin, Ethna McFerran, Christina Messiou, Emma Nicholson, Alicia Okines, Clare Peckitt, Lisa Pickering, Karin Purhouse, Alison Reid, Caroline Relton, Jennifer Rusby, Scott Shepherd, Ben Shum, Tim Slattery, Naureen Starling, Anthony Swerdlow, Stefan Symeonides, Kate Tatham, Samra Turajlic, Nicholas Turner, Liam Welsh, Katalin Wilkinson, Robert J Wilkinson, Matthew Wheater, Kate Young, and Nadia Yousaf.

The Crick COVID-19 Consortium

Titilayo Abiola, Jim Aitken, Zoe Allen, Rachel Ambler, Karen Ambrose, Emma Ashton, Alida Avola, Samutheswari Balakrishnan, Caitlin Barns-Jenkins, Genevieve Barr, Sam Barrell, Souradeep Basu, Rodrigo Batalha, Rupert Beale, Clare Beesley, Teresa Bertran, Natalie Bevan, Nisha Bhardwaj, Shahnaz Bibi, Ganka Bineva-Todd, Dhruva Biswas, Michael J Blackman, Dominique Bonnet, Carles Bosch, Faye Bowker, Malgorzata Broncel, Claire Brooks, Michael D Buck, Andrew Buckton, Timothy Budd, Alana Burrell, Louise Busby, Claudio Bussi, Simon Butterworth, Matthew Byott, Fiona Byrne, Richard Byrne, Simon Caidan, Veronique Calleja, Enrica Calvani, Joanna Campbell, Johnathan Canton, Ana Cardoso, Nick Carter, Luiz Carvalho, Raffaella Carzaniga, Antonio Casal, Natalie Chandler, Qu Chen, Peter Cherepanov, Laura Churchward, Graham Clark, Bobbi Clayton, Clementina Cobolli Gigli, Zena Collins, Nicola Cook, Cristina Cotobal Martin, Sally Cottrell, Margaret Crawford, Stefania Crotta, Laura Cubitt, Tom Cullup, Annalisa D’Avola, Heledd Davies, Patrick Davis, Dara Davison, Joost De Folter, Vicky Dearing, Solene Debaisieux, Monica Diaz-Romero, Alison Dibbs, Jessica Diring, Paul C Driscoll, Christopher Earl, Amelia Edwards, Chris Ekin, Dimitrios Evangelopoulos, Todd Fallesen, Rupert Faraway, Antony Fears, Aaron Ferron, Efthymios Fidanis, Patricia Figuiredo-Nunes, Katja Finsterbusch, Dan Fitz, James Fleming, Helen Flynn, Ashley Fowler, Daniel Frampton, Bruno Frederico, Alessandra Gaiba, Anthony Gait, Steve Gamblin, Sonia Gandhi, Julian Gannon, Edmund Garr, Kathleen Gärtner, Acely Garza-Garcia, Liam Gaul, Helen M Golding, Jacki Goldman, Robert Goldstone, Belen Gomez Domínguez, Hui Gong, Ilaria Gori, Paul R Grant, Maria Greco, Mariana Grobler, Anabel Guedan, Silvana Guioli, Maximiliano G Gutierrez, Fiona Hackett, Chris Hadjiigeorgiou, Ross Hall, Steinar Halldorsson, Suzanne Harris, Sugera Hashim, Emine Hatipoglu, Lyn Healy, Judith Heaney, Susanne Herbst, Graeme Hewitt, Theresa Higgins, Prisca Hill, Steve Hindmarsh, Rajnika Hirani, Han Ngoc Ho, Maxine Holder, Joshua Hope, Elizabeth Horton, Beth Hoskins, Catherine F Houlihan, Michael Howell, Louise Howitt, Jacqueline Hoyle, Mint R Htun, Michael Hubank, Hector Huang Encabo, Deborah Hughes, Jane Hughes, Almaz Huseynova, Ming-Shih Hwang, Fairouz Ibrahim, Rachael Instrell, Deborah Jackson, Mariam Jamal-Hanjani, Lucy Jenkins, Ming Jiang, Mark Johnson, Leigh Jones, Neill Justin, Nnennaya Kanu, George Kassiotis, Gavin Kelly, Geoff Kelly, Louise Kiely, Anastacio King Spert Teixeira, Fiona Kinnis, Stuart Kirk, Svend Kjaer, Ellen Knuepfer, Nikita Komarov, Paul Kotzampaltiris, Konstantinos Kousis, Tammy Krylova, Ania Kucharska, Robyn Labrum, Catherine Lambe, Michelle Lappin,
Stacey-Ann Lee, Andrew Levett, Lisa Levett, Marcel Levi, Nick Lewis, Hon-Wing Liu, Shuangyan Liu, Sam Loughlin, Wei-Ting Lu, Robert Ludwig, James I MacRae, Akshay Madoo, Sarah Manni, Julie A Marczak, Manuella Marques, Mimmi Martensson, Thomas Martinez, Bishara Marzook, John Matthews, Joachim M Matz, Samuel McCall, Laura E McCoy, Fiona McKay, Edel C McNamara, Sofanit Mebrate, Hilina Mehari, Manuela Melchionda, Carlos M Minutti, Gita Mistry, Miriam Molina-Arcas, Beatriz Montaner, Kylie Montgomery, Catherine Moore, David Moore, Anastasia Moraiti, Raveena Morar, Lucia Moreira-Teixeira, Joyita Mukherjee, Cristina Naceur-Lombardelli, Eleni Nastouli, Aileen Nelson, Jerome Nicod, Luke Nightingale, Stephanie Nofal, Paul Nurse, Savita Nutan, Anne O’Garra, Jean D O’Leary, Olga O’Neill, Nicola O’Reilly, Caroline Oedekoven, Jessica Olsen, Paula Ordonez Suarez, Neil Osborne, Amar Pabari, Aleksandra Pajak, fVenizelos Papayannopoulos, Stavroula M Paraskevopoulou, Namita Patel, Yogen Patel, Oana Paun, Nigel Peat, Laura Peces-Barba Castano, Ana Perez Caballero, Jimena Perez-Lloret, Magali S Perrault, Abigail Perrin, Roy Poh, Enzo Z Poirier, James M Polke, Marc Pollitt, Lucia Prieto-Godino, Alize Proust, Clinda Puvirajasinghe, Val Pye, Christophe Queval, Vijaya Ramachandran, Abhinay Ramaprasad, Peter Ratcliffe, Minoo Razi, Laura Reed, Caetano Reis e Sousa, Kayleigh Richardson, Sophie Ridewood, Karine Rizzoti, Fiona Roberts, Rowenna Roberts, Angela Rodgers, Pablo Romero Clavijo, Annachiara Rosa, Alice Rossi, Chloe Roustan, Andrew Rowan, Erik Sahai, Aaron Sait, Katarzyna Sala, Emilie Sanchez, Theo Sanderson, Pierre Santucci, Fatima Sardar, Adam Sateriale, Jill A Saunders, Chelsea Sawyer, Anja Schlott, Edina Schweighoffer, Sandra Segura-Bayona, Rajvee Shah Punatar, Maryam Shahanesh, Joe Shaw, Gee Yen Shin, Mariana Silva Dos Santos, Margaux Silvestre, Matthew Singer, Marie Sjotun, Daniel M Snell, Ok-Ryul Song, Christelle Soudy, Moira J Spyer, Louisa Steel, Amy Strange, Adrienne E Sullivan, Charles Swanton, Michele SY Tan, Zoe H Tautz-Davis, Raquel Taveira-Marques, Effie Taylor, Gunes Taylor, Harriet B Taylor, Alison Taylor-Beadling, Fernanda Teixeira Subtil, Berta Terré Torras, Goran Tomic, Patrick Toolan-Kerr, Francesca Torelli, Tea Toteva, Moritz Treeck, Hadija Trojer, Ming-Han C Tsai, James MA Turner, Melanie Turner, Jernej Ule, Rachel Ulferts, Sharon P Vanloo, Selvaraju Veeriah, Raju Veeriah, Mani Venkatesan, Subramanian Venkatesan, Ferdinando Verdirame, Karen Vousden, Andreas Wack, Claire Walder, Jane Walker, Philip A Walker, Yiran Wang, Sophia Ward, Catharina Wenman, Luke Williams, Matthew J Williams, Cherry Wong, Wai Keong Wong, Chi Wong, Joshua Wright, Mary Wu, Lauren Wynne, Zheng Xiang, Melvyn Yap, Julian A Zagalak, Davide Zecchin, Rachel Zillwood.

References

1 Fajgenbaum, D. C. & June, C. H. Cytokine Storm. *N Engl J Med* **383**, 2255-2273, doi:10.1056/NEJMra2026131 (2020).

2 Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. *J Immunother Cancer* **6**, 56, doi:10.1186/s40425-018-0343-9 (2018).

3 Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. *Nat Rev Clin Oncol* **15**, 47-62, doi:10.1038/nrclinonc.2017.148 (2018).
4 Ceschi, A., Noseda, R., Palin, K. & Verhamme, K. Immune Checkpoint Inhibitor-Related Cytokine Release Syndrome: Analysis of WHO Global Pharmacovigilance Database. *Front Pharmacol* **11**, 557, doi:10.3389/fphar.2020.00557 (2020).

5 Prendecki, M. *et al.* Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine. *The Lancet*, doi:10.1016/S0140-6736(21)00502-X (2021).

6 Haynes, W. A. *et al.* High-resolution mapping and characterization of epitopes in COVID-19 patients. *medRxiv*, 2020.11.2023.20235002, doi:10.1101/2020.11.23.20235002 (2020).

7 Sahin, U. *et al.* An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. *Nature* **585**, 107-112, doi:10.1038/s41586-020-2537-9 (2020).

8 Brahmer, J. R. *et al.* Phase I Study of Single-Agent Anti–Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates. *Journal of Clinical Oncology* **28**, 3167-3175, doi:10.1200/jco.2009.26.7609 (2010).

9 Tumeh, P. C. *et al.* PD-1 blockade induces responses by inhibiting adaptive immune resistance. *Nature* **515**, 568-571, doi:10.1038/nature13954 (2014).

10 Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: generation, compartmentalization and homeostasis. *Nature Reviews Immunology* **14**, 24-35, doi:10.1038/nri3567 (2014).

11 Johnson, D. B. *et al.* Fulminant Myocarditis with Combination Immune Checkpoint Blockade. *N Engl J Med* **375**, 1749-1755, doi:10.1056/NEJMoa1609214 (2016).

12 Ballhausen, A. *et al.* The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution. *Nat Commun* **11**, 4740, doi:10.1038/s41467-020-18514-5 (2020).

13 Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. *N Engl J Med* **378**, 158-168, doi:10.1056/NEJMra1703481 (2018).

14 Williamson, E. J. *et al.* Factors associated with COVID-19-related death using OpenSAFELY. *Nature* **584**, 430-436, doi:10.1038/s41586-020-2521-4 (2020).

15 Deng, G., Yin, M., Chen, X. & Zeng, F. Clinical determinants for fatality of 44,672 patients with COVID-19. *Critical Care* **24**, 179, doi:10.1186/s13054-020-02902-w (2020).

16 Desai, A. *et al.* COVID-19 vaccine guidance for patients with cancer participating in oncology clinical trials. *Nat Rev Clin Oncol*, doi:10.1038/s41571-021-00487-z (2021).
17 Au, L. et al. Cancer, COVID-19, and Antiviral Immunity: The CAPTURE Study. *Cell* **183**, 4-10, doi:10.1016/j.cell.2020.09.005 (2020).

18 Wrobel, A. G. et al. Antibody-mediated disruption of the SARS-CoV-2 spike glycoprotein. *Nature Communications* **11**, 5337, doi:10.1038/s41467-020-19146-5 (2020).

19 Reifert, J. et al. Serum Epitope Repertoire Analysis Enables Early Detection of Lyme Disease with Improved Sensitivity in an Expandable Multiplex Format. *Journal of Clinical Microbiology* **59**, e01836-01820, doi:10.1128/jcm.01836-20 (2021).

20 Haynes, W. A., Kamath, K., Daugherty, P. S. & Shon, J. C. Protein-based Immunome Wide Association Studies (PIWAS) for the discovery of significant disease-associated antigens. *bioRxiv*, 2020.2003.2018.997759, doi:10.1101/2020.03.18.997759 (2020).

**Figures**

![Graph A](image1)

**Figure 1**
Clinical course from cancer diagnosis and inflammatory markers during CRS a) Clinical timeline from diagnosis of metastatic MMRd CRC to CRS after one dose of BNT162b2 vaccine. Created with BioRender.com. b) CRP, LDH, platelet count and ferritin levels during the course of admission. Normal ranges are indicated in green. Treatment with IVMP is indicated in red. CRP, C-reactive protein; CRS, cytokine release syndrome; IrAEs, immune-related adverse events; IVMP, intravenous methylprednisolone; LDH - lactate dehydrogenase; MMRd CRC, mismatch repair deficient colorectal cancer

Figure 2

Cytokine profile and immune response to BNT162b2 vaccine a) Cyto/chemokine levels were measured using the human immune monitoring 65-plex ProCartaPlex immunoassay in consecutive plasma samples. Samples were measured in duplicates. Data are presented as the log10 of the concentration in pg/ml. b) Kinetics of S1-reactive and neutralising antibody responses post-BNT162b2. Data are presented as the reciprocal dilution of the last detected sample. IVMP treatment is indicated in red. c) SARS-CoV-2 specific CD4+ and CD8+ T-cell response in exemplary samples after stimulation of PBMCs
with spike (S) peptide pool. d) PBMCs were stimulated with S, S1, and S+ peptide pools representing the full length of the spike protein. SEB was used as a positive control. Data are presented as a stimulation index indicating the ratio of the frequency of CD4+CD137+OX40+ or CD8+CD137+CD69+ T-cells in the sample and the negative control. IVMP, intravenous methylprednisolone; PBMC, peripheral blood mononuclear cells; SEB, Staphylococcal enterotoxin B

**Supplementary Files**

This is a list of supplementary files associated with this preprint. Click to download.

- CRSsupplTurajlic.docx