Impact of SUSY CP Phases on Stop and Sbottom Decays in the MSSM

A. Bartla, S. Hesselbacha, K. Hidakab, T. Kernreitera, W. Porodc

aInstitut für Theoretische Physik, Universität Wien, A-1090 Vienna, Austria
bDepartment of Physics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
cInstitut für Theoretische Physik, Universität Zürich, CH-8057 Zürich, Switzerland

Abstract

We study the decays of top squarks and bottom squarks in the Minimal Supersymmetric Standard Model with complex parameters A_t, A_b and μ. In a large region of the supersymmetric parameter space the branching ratios of \tilde{t}_1 and \tilde{b}_1 show a pronounced phase dependence. This could have an important impact on the search for \tilde{t}_1 and \tilde{b}_1 at a future linear collider and on the determination of the supersymmetric parameters.

1 Introduction

So far most phenomenological studies on production and decay of supersymmetric (SUSY) particles have been performed within the Minimal Supersymmetric Standard Model (MSSM) [1] with real SUSY parameters. In this contribution we analyze the decays of \tilde{t}_1 and \tilde{b}_1 in the MSSM with complex SUSY parameters. The lighter squark mass eigenstates may be relatively light and could be thoroughly studied at an e^+e^- linear collider.

In the third generation sfermion sector the mixing between the left and right states cannot be neglected because of the effects of the large Yukawa couplings. The left-right mixing terms in the squark mass matrix depend on the higgsino mass parameter μ and the trilinear scalar couplings A_q, $q = t, b$, which may be complex in general. In mSUGRA-type models the phase φ_μ of μ turns out to be restricted by the experimental data on electron, neutron and mercury electric dipole moments (EDMs) to a range $|\varphi_\mu| \lesssim 0.1 - 0.2$ for an universal scalar mass parameter $M_0 \lesssim 400$ GeV [2, 3, 4]. However, the restriction due to the electron EDM can be circumvented if complex lepton flavour violating terms are present in the slepton sector [5]. The phases of the parameters $A_{t,b}$ are not restricted
at one-loop level by the EDM data but only at two-loop level, resulting in much weaker constraints on these phases [6].

Analyses of the decays of the 3rd generation squarks $\tilde{t}_{1,2}$ and $\tilde{b}_{1,2}$ in the MSSM with real parameters were performed in Refs. [7, 8] and phenomenological studies of production and decay of these particles at future e^+e^- colliders in Ref. [9]. A detailed study how to determine A_t and A_b in the real MSSM with help of the measured polarization of final state top quarks was performed in Ref. [10]. Recently the influence of complex phases on the phenomenology of third generation sleptons has been studied in [11].

In this article we study the effects of the complex phases of A_q, A_b and μ on the partial decay widths and branching ratios of \tilde{t}_1 and \tilde{b}_1. We assume, that the gaugino mass parameters are real. Especially the effects of the possibly large phases of A_q and A_b can be quite strong, which would have an important impact on the search for \tilde{t}_1 and \tilde{b}_1 at a future e^+e^- linear collider.

2 \tilde{q}_L-\tilde{q}_R mixing

The left-right mixing of the stops and sbottoms is described by a hermitian 2×2 mass matrix, which in the basis $(\tilde{q}_L, \tilde{q}_R)$ reads

$$\mathcal{L}_M^\tilde{q} = -(\tilde{q}^*_L, \tilde{q}^*_R) \begin{pmatrix} M_{2LL}^2 & M_{2LR}^2 \\ M_{2RL}^2 & M_{2RR}^2 \end{pmatrix} \begin{pmatrix} \tilde{q}_L \\ \tilde{q}_R \end{pmatrix},$$

with

$$M_{2LL}^2 = M_{2LL}^Q + (T^3 - Q_q \sin^2 \theta_W) \cos 2\beta m_Z^2 + m_{\tilde{q}_L}^2,$$

$$M_{2RR}^2 = M_{2RR}^Q + Q_q \sin^2 \theta_W \cos 2\beta m_Z^2 + m_{\tilde{q}_R}^2,$$

$$M_{2RL}^2 = (M_{2LR}^Q)^* = m_q \left(A_q - \mu^*(\tan \beta)^{-2T_q^3} \right),$$

where m_q, Q_q and T^3_q are the mass, electric charge and weak isospin of the quark $q = b, t$. θ_W denotes the weak mixing angle, $\tan \beta = v_2/v_1$ with v_1 (v_2) being the vacuum expectation value of the Higgs field H_1^\prime (H_2^0) and $M_{\tilde{q}} = M_{\tilde{Q}}$ ($M_{\tilde{D}}$) for $q = b$ (t). $M_{\tilde{Q}}$, $M_{\tilde{D}}$, $M_{\tilde{U}}$, A_b and A_t are the soft SUSY-breaking parameters of the stop and sbottom system. In case of complex parameters μ and A_q the off-diagonal elements $M_{2LR}^2 = (M_{2LR}^Q)^*$ are also complex with the phase

$$\varphi_\tilde{q} = \arg \left[M_{2LR}^2 \right] = \arg \left[A_q - \mu^*(\tan \beta)^{-2T_q^3} \right].$$

$\varphi_\tilde{q}$ together with the squark mixing angle $\theta_\tilde{q}$ fixes the mass eigenstates of the squarks

$$\begin{align*}
\tilde{q}_1 &= e^{i\varphi_\tilde{q}} \cos \theta_\tilde{q} \tilde{q}_L + \sin \theta_\tilde{q} \tilde{q}_R, \\
\tilde{q}_2 &= -\sin \theta_\tilde{q} \tilde{q}_L + e^{-i\varphi_\tilde{q}} \cos \theta_\tilde{q} \tilde{q}_R
\end{align*}$$

with

$$\cos \theta_\tilde{q} = \frac{-|M_{2LR}^2|}{\sqrt{|M_{2LR}^2|^2 + (m_{\tilde{q}_L}^2 - M_{2LL}^2)^2}}, \quad \sin \theta_\tilde{q} = \frac{M_{2LL}^2 - m_{\tilde{q}_L}^2}{\sqrt{|M_{2LR}^2|^2 + (m_{\tilde{q}_L}^2 - M_{2LL}^2)^2}}.$$
and the mass eigenvalues
\[m_{q_{1,2}}^2 = \frac{1}{2} \left((M_{q_{LL}}^2 + M_{q_{RR}}^2) \mp \sqrt{(M_{q_{LL}}^2 - M_{q_{RR}}^2)^2 + 4|M_{q_{LR}}^2|^2} \right). \] (9)

3 Numerical results

In this section we will present numerical results for the phase dependences of the \(\tilde{t}_1 \) and \(\tilde{b}_1 \) partial decay widths and branching ratios. We calculate the partial decay widths in Born approximation. It is known that in some cases the one-loop SUSY QCD corrections are important. The analyses of [8, 12, 13] suggest that a significant part of the one-loop SUSY QCD corrections to certain \(\tilde{t}_1 \) and \(\tilde{b}_1 \) partial decay widths can be incorporated by using an appropriately corrected bottom quark mass. In this spirit we calculate the tree-level widths of the \(\tilde{t}_1 \) and \(\tilde{b}_1 \) decays by using on-shell masses for the kinematic factors, whereas we take running masses for the top and bottom quark for the Yukawa couplings. For definiteness we take \(m_t^\text{run}(m_Z) = 150 \text{ GeV}, m_b^\text{on-shell} = 175 \text{ GeV}, m_b^\text{run}(m_Z) = 3 \text{ GeV} \) and \(m_b^\text{on-shell} = 5 \text{ GeV} \). This approach leads to an “improved” Born approximation, which takes into account an essential part of the one-loop SUSY QCD corrections to the \(\tilde{t}_1 \) and \(\tilde{b}_1 \) partial decay widths and predicts their phase dependences more accurately than the “naive” tree-level calculation.

In the numerical analysis we impose the following conditions in order to fulfill the experimental constraints: \(m_{\tilde{\chi}^\pm_1} > 103 \text{ GeV}, m_{\tilde{\chi}^0_1} > 50 \text{ GeV}, m_{H_1} > 100 \text{ GeV}, m_{\tilde{t}_1,\tilde{b}_1} > 100 \text{ GeV}, m_{\tilde{t}_1,\tilde{b}_1} > m_{\tilde{\chi}^0_1}, \Delta \rho (t - b) < 0.0012 \) [14]. We also calculate the branching ratio for \(b \to s \gamma \) and compare it with the experimentally allowed range \(2.0 \times 10^{-4} < B(b \to s \gamma) < 4.5 \times 10^{-4} \) [15].

First we discuss the dependence of the \(\tilde{t}_1 \) partial decay widths on \(\varphi_{A_t} \) and \(\varphi_{\mu} \) in two scenarios inspired by the Snowmass Points and Slopes scenarios SPS 1a and SPS 4 [16]. For this we take the squark masses, the squark mixing angles, \(\mu, \tan \beta \) and \(M_2 \) from [16] as input and compute \(|A_t| \) from this with help of eqs. (1) – (4). The relevant parameters for the determination of the partial decay widths are summarized in Table 1. Furthermore, we also look at a scenario with a light \(\tilde{t}_1 \) allowing production of this particle at a 500 GeV linear collider. When varying the phases of \(A_t \) and \(\mu \) we fix three squark masses and the absolute values of the parameters at the given values, calculating \(M_{\tilde{Q}}, M_D \) and \(M_D \) accordingly. Then the fourth squark mass \(m_{\tilde{b}_2} \) (\(m_{\tilde{t}_2} \)) in case of stop (sbottom) decays depends on the phases and varies around the given value.

In Fig. 1 we show the partial decay widths and branching ratios for \(\tilde{t}_1 \to \tilde{\chi}^+_1 b, \tilde{t}_1 \to \tilde{\chi}^0_1 t, \tilde{t}_1 \to \tilde{\chi}^0_2 b \) and \(\tilde{t}_1 \to \tilde{\chi}^0_1 t \) as a function of \(\varphi_{A_t} \) in the scenarios of Table 1 for \(\varphi_{A_b} = \varphi_{\mu} = 0 \). Fig. 1 (a) and (b) are for the SPS 1a inspired scenario. Here the partial decay widths of the chargino channels \(\tilde{t}_1 \to \tilde{\chi}^+_1 b \) show a significant \(\varphi_{A_t} \) dependence, whereas \(\tilde{t}_1 \to \tilde{\chi}^0_2 t \) and \(\tilde{t}_1 \to \tilde{\chi}^0_1 t \) have only a weak phase dependence. For \(\varphi_{A_t} \approx 0, 2\pi \) the decay into \(\tilde{\chi}^0_1 t \) dominates, whereas for \(\varphi_{A_t} \approx \pi \) the decay into \(\tilde{\chi}^+_1 b \) has the largest branching ratio. In Fig. 1 (c) and (d) we show the decays in the SPS 4 inspired scenario. Here all four partial decay widths contribute with comparable size. Again the chargino channels \(\tilde{t}_1 \to \tilde{\chi}^+_1 b \) show the largest \(\varphi_{A_t} \) dependence. However, for \(\varphi_{A_t} \approx 0, 2\pi \) the decay \(\tilde{t}_1 \to \tilde{\chi}^0_2 t \) dominates. In the scenario with a light \(\tilde{t}_1 \) (Fig. 1 (e) and (f)) only the decay channels into \(\tilde{\chi}^0_1 \) and \(\tilde{\chi}^0_2 \) are open. Also
	SPS 1a	SPS 4	light \tilde{t}_1	light \tilde{b}_1		
$m_{\tilde{t}_1}/\text{GeV}$	379.1	530.6	240.0	170.0		
$m_{\tilde{t}_2}/\text{GeV}$	574.7	695.9	700.0	≈ 729		
$m_{\tilde{b}_1}/\text{GeV}$	491.9	606.9	400.0	350.0		
$m_{\tilde{b}_2}/\text{GeV}$	≈ 540	≈ 709	≈ 662	700.0		
$	A_t	/\text{GeV}$	465.5	498.9	600.0	600.0
$	\mu	/\text{GeV}$	352.4	377.0	400.0	300.0
$\tan\beta$	10	50	6	30		
M_2/GeV	192.7	233.2	135.0	200.0		
m_{H^\pm}/GeV	401.8	416.3	900.0	150.0		
\tilde{q} mixing	$M_{\tilde{Q}} > M_{\tilde{U}}$	$M_{\tilde{Q}} > M_{\tilde{U}}$	$M_{\tilde{Q}} > M_{\tilde{U}}$	$M_{\tilde{Q}} > M_{\tilde{D}}$		

Table 1: Relevant parameters in scenarios used to discuss the stop and sbottom decays.

In this scenario $\Gamma(\tilde{t}_1 \to \tilde{\chi}^0_1 b)$ shows this clear φ_{A_t} dependence, resulting in $B(\tilde{t}_1 \to \tilde{\chi}^0_1 t)$ dominating at $\varphi_{A_t} \approx 0, 2\pi$ and $B(\tilde{t}_1 \to \tilde{\chi}^+ b)$ dominating at $\varphi_{A_t} \approx \pi$. The decay pattern, especially of $\tilde{t}_1 \to \tilde{\chi}^+ b$, can be explained in the following way: In all scenarios we have $|A_t| \gg |\mu|/\tan\beta$, therefore θ_t depends only weakly on φ_{A_t}. However, $\varphi_{\tilde{t}} \approx \varphi_{A_t}$ (see eq. (5)), which causes the clear $1 - \cos \varphi_{A_t}$ behavior of $\Gamma(\tilde{t}_1 \to \tilde{\chi}^+ b)$. We have calculated $B(b \to s\gamma)$ in all three scenarios. In the case of SPS 1a we obtain $B(b \to s\gamma)$ in the experimentally allowed range for $0.5\pi < \varphi_{A_t} < 1.5\pi$, whereas for $\varphi_{A_t} \approx 0, 2\pi$ it can reach values up to 5×10^{-4}. In the case of SPS 4 and the scenario with a light \tilde{t}_1 the situation is quite similar, with $B(b \to s\gamma)$ reaching values of 6.5×10^{-4} and 5.3×10^{-4}, respectively, near $\varphi_{A_t} \approx 0, 2\pi$.

In Fig. 2 (a) we show a contour plot for the branching ratio $B(\tilde{t}_1 \to \tilde{\chi}^0_1 t)$ as a function of φ_{A_t} and φ_μ for $\varphi_{A_t,\mu} = 0$ in the SPS 1a inspired scenario. The φ_{A_t} dependence is stronger than the φ_μ dependence. The reason is that these phase dependences are caused by the \tilde{t}_L - \tilde{t}_R mixing term (eq. (4)), where the φ_μ dependence is suppressed. The φ_μ dependence is somewhat more pronounced for $\varphi_{A_t} \approx 0, 2\pi$ than for $\varphi_{A_t} \approx \pi$. If the constraint $|\varphi_\mu| < 0.1 - 0.2$ from the EDM bounds has to be fulfilled, then only the corresponding bands around $\varphi_\mu = 0, \pi, 2\pi$ are allowed. $B(b \to s\gamma)$ is in agreement with the experimental range in almost the whole φ_{A_t} - φ_μ plane: only at $\varphi_{A_t} \approx 0, 2\pi$ and $\varphi_\mu \approx 0, 2\pi$ it can go up to 5×10^{-4}. In order to discuss the dependence of this branching ratio on $|A_t|$ we show in Fig. 2 (b) the contour plot of $B(\tilde{t}_1 \to \tilde{\chi}^0_1 t)$ as a function of φ_{A_t} and $|A_t|$ for $\varphi_{A_b} = \varphi_\mu = 0$ and $|A_t| = |A_b|$. Clearly, the φ_{A_t} dependence is strongest for large values of $|A_t|$. The dashed lines mark the contours of $\cos \theta_t$, which are perpendicular to the ones of $B(\tilde{t}_1 \to \tilde{\chi}^0_1 t)$ in a large domain of the parameter space. Thus a simultaneous measurement of $B(\tilde{t}_1 \to \tilde{\chi}^0_1 t)$ and $\cos \theta_t$ might be helpful to disentangle the phase of A_t from its absolute value. As an example a measurement of $B(\tilde{t}_1 \to \tilde{\chi}^0_1 t) = 0.6 \pm 0.1$ and $|\cos \theta_t| = 0.3 \pm 0.02$
Figure 1: (a), (c), (e) Partial decay widths and (b), (d), (f) branching ratios of the decays $\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 b$ (solid), $\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 t$ (dashed), $\tilde{t}_1 \rightarrow \tilde{\chi}_2^+ b$ (dashdotted) and $\tilde{t}_1 \rightarrow \tilde{\chi}_2^0 t$ (dotted) in the SPS 1a and SPS 4 inspired scenarios and the scenario with a light \tilde{t}_1 defined in Table 1 for $\varphi_{A_b} = \varphi_{\mu} = 0$.

would allow to determine $|A_t| \approx 320$ GeV with an error $\Delta(|A_t|) \approx 20$ GeV and φ_{A_t} with a
twofold ambiguity $\varphi_{A_t} \approx 0.35\pi$ or $\varphi_{A_t} \approx 1.65\pi$ with an error $\Delta(\varphi_{A_t}) \approx 0.1\pi$. $B(b \to s\gamma)$
is in agreement with the experimental range in almost the whole φ_{A_t}-$|A_t|$ plane: only at
$\varphi_{A_t} \approx 0, 2\pi$ and $|A_t| \gtrsim 300$ GeV it can go up to 5×10^{-4}.

![Diagram](image.png)

Figure 2: Contours of $B(\tilde{t}_1 \to \tilde{\chi}_1^0 t)$ in the SPS 1a inspired scenario defined in Table 1
for (a) $\varphi_{A_b} = 0$ and (b) $|A_b| = |A_t|$, $\varphi_{A_b} = \varphi_\mu = 0$. The dashed lines in (b) denote the contours of cos $\theta_\tilde{t}$.

In order to discuss the decays of the \tilde{b}_1 we choose a scenario with a light \tilde{b}_1 and a light
H^\pm as defined in Table 1, where the \tilde{b}_1 production at a 800 GeV linear collider is possible
and the decay channel $\tilde{b}_1 \to H^-\tilde{t}_1$ is open. We fix $\tan \beta = 30$, because for small $\tan \beta$ the off-diagonal elements in the sbottom mixing matrix are too small.

We show in Fig. 3 (a) and (b) the partial decay widths and the branching ratios
$\tilde{b}_1 \to \tilde{\chi}_{1,2}^0 b$, $\tilde{b}_1 \to H^-\tilde{t}_1$ and $\tilde{b}_1 \to W^-\tilde{t}_1$ as a function of φ_{A_b} taking $|A_b| = |A_t| = 600$ GeV,
$\varphi_\mu = \pi$ and $\varphi_{A_t} = \pi/4$. In the region $0.75\pi < \varphi_{A_b} < 1.75\pi$ the decay $\tilde{b}_1 \to H^-\tilde{t}_1$
dominates. The φ_{A_b} dependence of its partial decay width is due to that of the $b_R\tilde{t}_L H^-$
coupling term. The partial decay widths of $\tilde{b}_1 \to \tilde{\chi}_{1,2}^0 b$ are essentially φ_{A_b} independent,
because the φ_{A_b} dependence of the sbottom mixing matrix elements nearly vanishes. The φ_{A_b}
dependence of the branching ratios $B(\tilde{b}_1 \to \tilde{\chi}_1^0 b)$ is caused by the φ_{A_b} dependence
of the total decay width. In the whole parameter range considered $B(b \to s\gamma)$ satisfies
the experimental limits.

For large $\tan \beta$ one expects also a significant $|A_b|$ dependence of the partial decay width $\Gamma(\tilde{b}_1 \to H^-\tilde{t}_1)$. This can be inferred from Fig. 4 (a), where we show the contour plot of the branching ratio of $\tilde{b}_1 \to H^-\tilde{t}_1$ as a function of $|A_b|$ and φ_{A_b}, taking $|A_t| = |A_b|$, $\varphi_\mu = \pi$ and $\varphi_{A_t} = \pi/4$. The φ_{A_b} dependence is stronger for large values of $|A_b|$. Although
Fig. 4 (a) is similar to Fig. 2 (b), the $|A_b|$ and φ_{A_b} dependences in Fig. 4 (a) are mainly
due to the phase dependence of the $b_R\tilde{t}_L H^-$ coupling. The shifting of the symmetry axis
to $\varphi_{A_b} = 1.25\pi$ is caused by the additional phase $\varphi_{A_t} = \pi/4$. Contrary to the mixing in the stop sector $\cos\theta_{\tilde{t}}$ is nearly independent of $|A_b|$ and φ_{A_b}. Therefore the knowledge of $\cos\theta_{\tilde{t}}$ does not help to disentangle the phase of A_t from its absolute value.

In Fig. 4 (b) we show the contour lines of $B(\tilde{b}_1 \to H^-\tilde{t}_1)$ as a function of φ_{A_b} and φ_{A_t}, for $|A_t| = |A_b| = 600$ GeV, $\varphi_{\mu} = \pi$ and the other parameters (except φ_{A_t}) as in Fig. 4 (a). As can be seen, the φ_{A_t}-φ_{A_b} correlation is quite strong. The shaded area marks the region which is experimentally excluded because of $B(b \to s\gamma) < 2.0 \times 10^{-4}$. Note, that the constraints from $B(b \to s\gamma)$ are only fulfilled for a small range of values of φ_{A_t} in the given scenario with $m_{H^\pm} = 150$ GeV.

4 Conclusion

We have shown that the effect of the CP-violating phases of the supersymmetric parameters A_t, A_b and μ on CP-conserving observables such as the branching ratios of \tilde{t}_1 and \tilde{b}_1 decays can be strong in a large region of the MSSM parameter space. Especially the branching ratios of the \tilde{t}_1 can show a pronounced dependence on φ_{A_t} in all decay channels. The dependence of the partial decay widths of the \tilde{b}_1 on φ_{A_b} are in general quite small with exception of decays into final states containing Higgs bosons. Nevertheless the resulting branching ratios show a clear phase dependence. This could have an important impact on the search for \tilde{t}_1 and \tilde{b}_1 at a future e^+e^- linear collider and on the determination of the MSSM parameters, especially of A_t and A_b which are not easily accessible otherwise.

Acknowledgements

This work is supported by the ‘Fonds zur Förderung der wissenschaftlichen Forschung’ of Austria, FWF Projects No. P13139-PHY and No. P16592-N02 and by the European Community’s Human Potential Programme under contract HPRN-CT-2000-00149. W.P.
Figure 4: Contours of $B(\tilde{b}_1 \rightarrow H^- \tilde{t}_1)$ in the scenario with a light \tilde{b}_1 defined in Table 1 for (a) $|A_b| = |A_t|$, $\varphi_\mu = \pi$, $\varphi_{A_t} = \pi/4$ and (b) $|A_b| = |A_t| = 600$ GeV, $\varphi_\mu = \pi$. The shaded area marks the region, which is excluded by the experimental limit $B(b \rightarrow s\gamma) > 2.0 \times 10^{-4}$.

has been supported by the Erwin Schrödinger fellowship No. J2272 of the ‘Fonds zur Förderung der wissenschaftlichen Forschung’ of Austria and partly by the Swiss ‘Nationalfonds’.

References

[1] H. P. Nilles, Phys. Rep. 110 (1984) 1; H. E. Haber, G. L. Kane, Phys. Rep. 117 (1985) 75.

[2] T. Falk and K. A. Olive, Phys. Lett. B 375 (1996) 196 [arXiv:hep-ph/9602299]; Phys. Lett. B 439 (1998) 71 [arXiv:hep-ph/9806236]; T. Ibrahim and P. Nath, Phys. Lett. B 418 (1998) 98 [arXiv:hep-ph/9707409]; Phys. Rev. D 57 (1998) 478 [arXiv:hep-ph/9708456]; Phys. Rev. D 58 (1998) 111301 [arXiv:hep-ph/9807501]; Phys. Rev. D 61 (2000) 093004 [arXiv:hep-ph/9910553]; E. Accomando, R. Arnowitt and B. Dutta, Phys. Rev. D 61 (2000) 115003 [arXiv:hep-ph/9907446]; V. Barger, T. Falk, T. Han, J. Jiang, T. Li and T. Plehn, Phys. Rev. D 64 (2001) 056007 [arXiv:hep-ph/0101106]; T. Ibrahim and P. Nath, talk at 9th International Conference on Supersymmetry and Unification of Fundamental Interactions, 11–17 June 2001, Dubna, Russia, arXiv:hep-ph/0107325.
[3] A. Bartl, T. Gajdosik, W. Porod, P. Stockinger and H. Stremnitzer, Phys. Rev. D 60 (1999) 073003 [arXiv:hep-ph/9903402];
 A. Bartl, T. Gajdosik, E. Lunghi, A. Masiero, W. Porod, H. Stremnitzer and O. Vives, Phys. Rev. D 64 (2001) 076009 [arXiv:hep-ph/0103324].

[4] S. Abel, S. Khalil and O. Lebedev, Nucl. Phys. B 606 (2001) 151 [arXiv:hep-ph/0103320].

[5] A. Bartl, W. Majerotto, W. Porod and D. Wyler, arXiv:hep-ph/0306050.

[6] D. Chang, W. Y. Keung and A. Pilaftsis, Phys. Rev. Lett. 82 (1999) 900 [Erratum-ibid. 83 (1999) 3972] [arXiv:hep-ph/9811202];
 A. Pilaftsis, Phys. Lett. B 471 (1999) 174 [arXiv:hep-ph/9909485];
 D. Chang, W. F. Chang and W. Y. Keung, Phys. Lett. B 478 (2000) 239 [arXiv:hep-ph/9910465];
 A. Pilaftsis, Nucl. Phys. B 644 (2002) 263 [arXiv:hep-ph/0207277].

[7] A. Bartl, H. Eberl, K. Hidaka, S. Kraml, T. Kon, W. Majerotto, W. Porod, Y. Yamada, Phys. Lett. B 435 (1998) 118 [arXiv:hep-ph/9804265].

[8] K. Hidaka and A. Bartl, Phys. Lett. B 501 (2001) 78 [arXiv:hep-ph/0012021].

[9] A. Bartl, H. Eberl, S. Kraml, W. Majerotto, W. Porod and A. Sopczak, Z. Phys. C 76 (1997) 549 [arXiv:hep-ph/9701336];
 A. Bartl, H. Eberl, S. Kraml, W. Majerotto and W. Porod, Eur. Phys. J. directC 2 (2000) 6 [arXiv:hep-ph/0002115].

[10] E. Boos, H. U. Martyn, G. Moortgat-Pick, M. Sachwitz, A. Sherstnev and P. M. Zerwas, arXiv:hep-ph/0303110.

[11] A. Bartl, K. Hidaka, T. Kernreiter and W. Porod, Phys. Lett. B 538 (2002) 137 [arXiv:hep-ph/0204071]; Phys. Rev. D 66 (2002) 115009 [arXiv:hep-ph/0207186].

[12] H. Eberl, K. Hidaka, S. Kraml, W. Majerotto and Y. Yamada, Phys. Rev. D 62 (2000) 055006 [arXiv:hep-ph/9912463].

[13] M. Carena, S. Mrenna and C. E. Wagner, Phys. Rev. D 60 (1999) 075010 [arXiv:hep-ph/9808312];
 M. Carena, D. Garcia, U. Nierste and C. E. Wagner, Nucl. Phys. B 577 (2000) 88 [arXiv:hep-ph/9912516];
 H. E. Logan, Nucl. Phys. Proc. Suppl. 101 (2001) 279 [arXiv:hep-ph/0102029];
 H. Baer, J. Ferrandis, K. Melnikov and X. Tata, Phys. Rev. D 66 (2002) 074007 [arXiv:hep-ph/0207126];
 C. Pallis, arXiv:hep-ph/0304047;
 S. Profumo, arXiv:hep-ph/0304071.

[14] M. Drees and K. Hagiwara, Phys. Rev. D 42 (1990) 1709;
 G. Altarelli, R. Barbieri and F. Caravaglios, Int. J. Mod. Phys. A 13 (1998) 1031.
[arXiv:hep-ph/9712368];
S. K. Kang and J. D. Kim, Phys. Rev. D 62 (2000) 071901 [arXiv:hep-ph/0008073].

[15] K. Abe et al. [Belle Collaboration], Phys. Lett. B 511 (2001) 151 [arXiv:hep-ex/0103042];
S. Chen et al. [Cleo Collaboration], Phys. Rev. Lett. 87 (2001) 251807 [arXiv:hep-ex/0108032];
E. H. Thorndike [Cleo Collaboration], arXiv:hep-ex/0206067.

[16] N. Ghodbane and H. U. Martyn, arXiv:hep-ph/0201233;
B. C. Allanach et al., Eur. Phys. J. C 25 (2002) 113 [arXiv:hep-ph/0202233].