Using Mutability Landscapes To Guide Enzyme Thermostabilization

Chao Guo, Yan Ni, Lieuwe Biewenga, Tjaard Pijning, Andy-Mark W. H. Thunnissen, and Gerrit J. Poelarends*
Supporting Figures

Figure S1. Chiral GC chromatograms of the γ-nitroaldehyde products obtained by enzymatic acetaldehyde addition to *trans*-β-nitrostyrene. Racemic standard (A), product obtained using 4-OT wild type (B), product obtained using 4-OT variant A33D (C), product obtained using 4-OT variant R11I (D) and product obtained using 4-OT variant R11Y (E).
Figure S2. Chiral GC chromatograms of the γ-nitroaldehyde products obtained by enzymatic acetaldehyde addition to trans-β-nitrostyrene. Racemic standard (A), product obtained using 4-OT variant R11I/M45Y/F50A (B), product obtained using 4-OT variant R11Y/M45Y/F50A (C), and product obtained using 4-OT variant A33D/M45Y/F50A (D).
Figure S3. SDS-PAGE gels of purified enzymes. 4-OT wild-type (A), 4-OT variant A33D (B), 4-OT variant R11I (C), and 4-OT variant R11Y (D).
Supporting Table

Table S1. Relative activity, enantioselectivity and stability of 4-OT variants.

Catalyst	Relative activity	e.r.	Abs. conf.	T_m (°C)
WT	1	97:3	S	74
A33D	2.3	>99:1	S	78
R11I	0.7	95:5	S	94
R11Y	0.4	98:2	S	92
R11I/A33D	0.2	99:1	S	60
R11L/A33D	0.2	97:2	S	64
R11Y/A33D	0.2	99:1	S	65
R11F/A33D	0.2	>99:1	S	76
R11Q/A33D	0.5	>99:1	S	51
M45Y/F50A	1.3	6:94	R	57
A33D/M45Y/F50A	3.5	8:92	R	84
R11I/M45Y/F50A	3.1	5:95	R	96
R11Y/M45Y/F50A	2.2	6:94	R	92