A型急性大動脈解離に対するポリエステル繊布製人工中膜を用いたバルサルバ洞形成術の遠隔成績と病理組織

大野 暢久、前田 登史、加藤おと 婁、佐藤 博文、植野 剛、吉澤 康祐

要旨：A型急性大動脈解離に対してポリエステル布を解離バルサルバ洞に挿入するneomedia repairの長期成績を検討した。術後例の中で単例例、大動脈弁閉鎖不全の進行、大動脈基部縫合の再手術および死亡はなかった。2尖弁の変成で再手術となった症例でポリエステル布はneomediaとして機能している所見が得られた。neomedia repairは解離バルサルバ洞の長期安定化に寄与することが示唆された。(J Jpn Coll Angiol 2019; 59: 37–43)

Key words: aortic dissection, aortic root, neomedia, polyester fabric, pathology

受付：2019年4月11日 受理：2019年5月8日 公開：2019年6月10日

序 言

A型急性大動脈解離（ATA AD）の基本的治療方針は一部の血栓閉塞性を除き外科的緊急手術であり1)，一般的に上行大動脈置換術（AAR）か上行弓部大動脈置換術（TAR）が行われる。術前期の重篤な症例に対しては救命を得ることが重要であるが、近年体内循環法、脳およ
び心臓の保存法、血管再建法の進歩2)により初期治療の成績は向上してきている。遠隔予後向上も常に念頭に置く必要がある。遠隔予後は残存する大動脈基部と遠位大動脈の病変に分けて考える必要があるが、大動脈基
部の予後は再開通によるバルサルバ洞の拡大やそれに伴う大動脈弁閉鎖不全（AI）が影響する3)。われわれは解
離したバルサルバ洞の安定化に、ポリエステル布を人工中膜として解離腔に挿入するneomedia repairをシリー
ーズで最長2年の経過を報告した。今回その遠隔成績を検討するとともに、1例の再手術症例で興味深い所見
が得られたので報告する。

対象と方法

2008年11月から2012年12月までの間に経験した連続 23例のATA ADのうち、大動脈基部を温存したバールサ
バ洞の解離に対しneomedia repairを行った18例を対象と

兵庫県立尼崎総合医療センター心臓血管外科
doi: 10.7133/jca.19-00007

THE JOURNAL of JAPANESE COLLEGE of ANGIOLOGY Vol. 59
近位の順に、TARはStepwise法で遠位吻合を行った後、弓部2分枝、近位の順に吻合を行った。遠位吻合終了後人工血管の側枝から下半身の循環を再開し緩徐に復温を開始した。

近位吻合の直前にバルサルバ洞のneomedia repairを行った。本シリーズにおいては2種類の方法を用いた。方法として、解離したバルサルバ洞の形に切り出したポリエステル織布（Hemashield Woven Double Velour Fabric; Maquet, NJ, USA）を解離腔に挿入し、フィブリン糊（Beriplast; CSL Behring, PA, USA）にて接着した（Fig. 1A）。当初均一な接着力を得る目的で、フィブリン糊のA液をあらかじめポリエステル布に浸透させておき、解離腔に挿入後B液を添加したが、組織が濡れていると接着が得られないことがあり、時にフィブリン糊を追加する必要があった。そこで方法2はより速やかで確実な接着を得る目的で改良した。すなわち、ポリエステル布と同じ形に切り出した2枚のフィブリンシーラントパッチ（TachoSil; CSL Behring, PA, USA）のコーナーカ層の面をポリエステル布の裏表にフィブリン糊で接着し、両面がフィブリンーゲン／トロンビン層で構成される解離バ尔斯ルバ洞の形に合わせたバッチを作製しておく。それを解離腔に挿入して用圧着することにより解離腔を修復した（Fig. 1B）。この方法によって安定した接着力が得られるようになった。いずれの方法においてもneomediaは解離腔の形状に合わせるようにトリミングし、複数のバ尔斯ルバ洞にわたって広く解離している場合には、それぞれのバ尔斯ルバ洞の解離形態を模して分割再建した（Fig. 2）。大動脈弁の各交点をフェルト付き4-0モノフィラメント糸にて吊り上げ固定した後大動脈の外周に帯状フェルトを巻き、交通部の直上に内挿した人工血管を4-0モノフィラメント糸の周囲U字結節縫合で吻合した。

遠位吻合の断端整形法であるが、TARの遠位吻合は内挿されたエレファントトランクが内膜の安定化に寄与する考え方、外膜内縫合を併用するに留め、4-0モノフィラメント糸の周囲U字結節縫合と連続縫合で人工血管の吻合を行った。AARの遠位吻合は、近位吻合と同様のneomedia repairにて断端形成を行った後、同様の周囲U字結節縫合にて行った。

全例退院前に造影CTと経胸壁心エコーを行い、当科外来で術後フォローアップを行った。原則として単純CTと経胸壁心エコーを1年ごとに行った。退院前とフォロー中最終のCTにて大動脈根部最大径を画像解析ソフトウェア（Centricity PACS Universal Viewer Ver.6.0; GE Healthcare, IL, USA）にて計測し比較した。経胸壁心エコーは当院の生理検査室で行い、退院前と最終検査でAIの有無と程度を比較した。AIの評価は検査レポートの基準に従った。遠隔期には再手術となった1例で大動脈壁のトリミングの際、neomedia repair部の小サンプルを採取し、ヘマトキシリン・エオジン（HE）染色にて病理組織診断を行った。連続変数は平均値±標準偏差で表示し、生存曲線はJMP（SAS Institute Inc.; NC, USA）を用いKaplan–Meier法で作成した。本研究は患者とその家族にインフォームドコンセントを行った際に同意を得、兵庫県立尼崎総合医療センター倫理委員会で承認されている（承認番号：31-11）。

Figure 1 Schema of the neomedia repair technique
A: Method 1 (n=6); A geometrically tailored WPF (blue) is inserted into the dissected Valsalva sinuses with the aid of fibrin glue to adhere dissected layers. The prosthetic graft is anastomosed with external TFS reinforcement. B: Method 2 (n=12); Two FSPs tailored as the same shape as the WPF (blue) are put on both sides of the WPF with the aid of fibrin glue to make the composite patch. The dry fibriingon/thrombin layers (yellow) face outward as an adhesive surface. The composite patch is inserted into the dissected Valsalva sinuses, and strong bonding between the adventitia and the intima is obtained. The prosthetic graft is anastomosed with the same fashion as method 1. WPF: woven polyester fabric, TFS: Teflon felt strip, FSP: fibrin sealant patch

Figure 2 Photograph of prepared neomedias and an operative procedure
A: Various forms of neomedia are tailored to fit dissected Valsalva sinuses. B: Dissected left to right Valsalva sinuses are repaired by method 2. Tow pieces of neomedia prepared with FSP are inserted in the sinuses. FSP: fibrin sealant patch
結果

対象18例の平均年齢は64.5±12.2歳（45～88歳）、男性9例、女性9例であった。術前心タンポナーデを5例に認め、1例に心筋梗塞が行われた。脳血流不全を2例に、下肢循環不全を2例に認めた。気管内挿管は13例が上行大動脈に、2例が弓部大動脈内に存在し、3例がDe Bakey III型逆行性解離であった。術前心電図および心エコーにて計測されたAIは軽度4例、中等度以上2例であった。1例は慢性腎不全にて維持透析が導入されていた（Table 1）。術式はAAR 13例、TAR 4例、心肺蘇生の1例は手術時間短縮のため部分弓部置換を行った。併施術式は冠動脈バイパス1例。TARのうち1例は大動脈弁がType 0の先天性2尖弁であったが、機能的に全く問題なかったため温存した。手術時間401±76分、体外循環時間228±50分、心筋虚血時間129±38分、下肢循環停止時間65±37分であった（Table 2）。

術前心肺蘇生を行った症例を術後1週間で全脳虚血にて失った。それ以外の17例は大きな合併症なく軽快退院した。術後遠隔期の大動脈への介入は、解離の残存した胸腹部大動脈の拡大に対し胸腹部大動脈置換術を1例に、腹部debranchingとTEVARを1例に追加した。心臓への介入は、縦隔断限による僧帽弁閉鎖不全に対する僧帽弁形成術を1例に、先天性2尖弁の症例でAIが進行し、10年後に大動脈弁置換術を行った。本症例は非解離部の石灰化が徐々に進行し、同部位が剥離することによりAIが生じていた。大動脈基部への介入を要した症例はなかった（Table 3）。認知症による通院困難のため3例が途中でdrop outしたが、残の14例は現在も外来通院を続けている。その結果、術後1、5、10年生存率は94、94、94%（Fig.3）、遠位大動脈を含む大動脈再手術回遅延率は94、87、87%（Fig.4）であった。CTによる

Table 1 Preoperative patient characteristics

Variables	n=18
Age, years	65±12
Female (%)	9 (50)
Cardiac tamponade	5
Aortic regurgitation	4
Malperfusion	2

CPR: Cardiopulmonary resuscitation

Table 2 Operative data and finding

Variables	n=18
Operation time, minutes	401±76
CPB time, minutes	228±50
Cardiac ischemic time, minutes	129±38
Circulatory arrest time, minutes	65±37

Replacement of the aorta
- Ascending aorta | 13 |
- Ascending aorta+partial arch | 1 |
- Ascending aorta+total arch | 4 |

Comcomitant procedure
- CABG | 1 |

Operative finding
- Bicuspid aortic valve | 1 |

CPB: Cardiopulmonary bypass, CABG: coronary artery bypass grafting

Table 3 Post operative events

Variables	n=18
Hospital death*	1
Aortic reintervention	
TEVAR	1
Replacement of the thoracoabdominal aorta	1
Replacement of the abdominal aorta	1
Aortic valve replacement*	1
Mitral valve repair	1

TEVAR: Thoracic endovascular aortic repair
* Cardiopulmonary resuscitation, ** bicuspid aortic valve

Figure 3 Postoperative survival including hospital death
Figure 4 Freedom from aortic reoperation

Before Discharge Long-term Period

	Before discharge	Long-term*
0		
1		
2		
3		
4		
5		
6		
7		
II	35.8±3.2	34.5±4.8

* 62±34 months (31~120; median 68)

Figure 5 Postoperative follow-up of aortic regurgitation

Table 4 Long-term follow-up of the aortic root diameter

	Before discharge	Long-term*
Root diameter, millimeter	35.8±3.2	34.5±4.8

A: Dissected non-coronary to right-coronary sinus was repaired by method 1. B: The finding showed normally healed aortic wall repaired by neomedia (yellow arrow).

Figure 6 Intraoperative views of the first operation and the second aortic valve replacement for a patient of degenerated bicuspid aortic valve

A: Neomedia (NM) layer situates just outside the native own media (OM) (HE, ×50). B: Artificial fibers (some of them are indicated by arrows) are seen in the NM layer without active inflammation (HE, ×100). HE: hematoxylin and cosin

Figure 7 Pathological view of the neomedia repaired aortic wall derived from a patient who had the aortic valve replacement for the degenerated bicuspid aortic valve

A: Neomedia (NM) layer situates just outside the native own media (OM) (HE, ×50). B: Artificial fibers (some of them are indicated by arrows) are seen in the NM layer without active inflammation (HE, ×100). HE: hematoxylin and cosin

（Fig. 6B）。同部位の病理組織標本ではポリエステル布の繊維が自己組織と一体化し新しい中膜（neomedia）を形成していた（Fig. 7）。

考察

ATA ADの人工血管置換術において過去さまざまな断端形成法が報告されている。古くは帯状セルロースのサンドイッチ5,6）からはじまり、外膜内翻法7）, gelatin-resorcine-formalin（GRF）glue, bovine serum albumin-glutaraldehyde glue（BioGlue；Cryolite, GA, USA）, フィブリン糊（Beriplast; CSL Behring, PA, USA）, フィブリンシーラントパッチ（TachoSil; CSL Behring, PA, USA）などの接着剤で解離腔を接着する方法8-10）, フェルトシート11,12）やポリエステル布13,14）を解離腔に人工中膜として挿入するneomedia repairなどである。断端形成はもと人工血管吻合部の出血予防、吻合部内膜のカッティングで新しいエントリーを生じないよう解離内膜を安定させる目的で開発された。一方解離した大動脈部欠損の処理は、人工血管吻合部の補強以外に解離したパルサルパル部の安定化と大動脈弁輪の形態維持が求められ、それらは区別して考える必要がある。GRFやBioGlueなどの生体
ポリエステル繊維布は薄くて適度な張りがあり、解離腔の
奥まで挿入する際の操作性が良好であった。今回再手術時
に得られた組織所見から自己組織との親和性も良好で
あったことから、人工中膜に適した素材と考える。方法
1と2の違いであるが、再手術例を方法1で行っていた
こと、フィブリンシーラントパッチが生体吸収素材であ
ることから、確実な初期接着が得られていて遠隔期の
強度維持はポリエステル繊維布が不す。結果は同等である
うと考える。しかし手術手技において、塞栓症の懸念と
なるフィブリン糊の追加滴下が必要ないこと、短時間で
確実な接着が得られる点でフィブリンシーラントパッチ
が優れていた。また、フィブリンシーラントパッチはそ
れ単独で解離腔の接着材料として有効なことが報告され
ており8)，生体毒性の懸念もほとんどない点からも人工
中膜の接着架橋として有用と思われる。

本研究の限界としては症例が少なく後ろ向き観察研究
であることが挙げられる。しかしその中でも大動脈基部
の拡大と大動脈關連の再手術が1例もこないことを鑑み、
本方法は優れた術式と考えている。

結 論

A型急性大動脈解離の上行大動脈置換に際し、解離巴
ルサルバ洞にポリエステル繊維布挿入し、フィブリン糊
およびフィブリンシーラントパッチを接着架橋として用
いたneomedia repairを行った。最長10年の遠隔成績では
バールサルバ洞の拡大、大動脈弁閉鎖不全の進行症例はな
く、大動脈および解離と関連する大動脈弁の再手術回遅
率は100%であった。偶然再手術となった2尖弁症例の
病理組織でneomediaは自己組織と完全に同化しており、
本法は解離バールサルバ洞の修復と強度維持に大きく寄与
すると考える。

利益相反

著者全員に利益相反はない。

文 献

1) Hagan PG, Nienaber CA, Isselbacher EM, et al: The Interna-
tional Registry of Acute Aortic Dissection (IRAD): new
insights into an old disease. JAMA 2000; 283: 897–903
2) Ogino H, Ando M, Sasaki H, et al: Total arch replacement
using a stepwise distal anastomosis for arch aneurysms with
distal extension. Eur J Cardiothorac Surg 2006; 29: 255–257
3) Minatoya K, Inoue Y, Sasaki H, et al: Total arch replacement
using a 4-branched graft with antegrade cerebral perfusion. J
Thorac Cardiovasc Surg 2019; 157: 1370–1378
4) Dell’Aquila AM, Concistrè G, Gallo A, et al: Fate of the preserved aortic root after treatment of acute type A aortic dissection: 23-year follow-up. J Thorac Cardiovasc Surg 2013; 146: 1456–1460
5) Koster JK Jr., Cohn LH, Mee RBB, et al: Late results of operation for acute aortic dissection producing aortic insufficiency. Ann Thorac Surg 1978; 26: 461–467
6) Mazzucotelli JP, Deleuze PH, Baufreton C, et al: Preservation of the aortic valve in acute aortic dissection: long-term echocardiographic assessment and clinical outcome. Ann Thorac Surg 1993; 55: 1513–1517
7) Floten HS, Ravichandran PS, Furnary AP, et al: Adventitial inversion technique in repair of aortic dissection. Ann Thorac Surg 1995; 59: 771–772
8) Kazui T, Washiyma N, Muhammad Bashar AH, et al: Role of biologic glue repair of proximal aortic dissection in the development of early and midterm redissection of the aortic root. Ann Thorac Surg 2001; 72: 509–514
9) Lisy M, Kahlil M, Stock UA, et al: Fibrin sealant patch for repair of acute type A aortic dissection. J Card Surg 2013; 28: 736–741
10) Suzuki S, Masuda M, Imoto K: The use of surgical glue in acute type a aortic dissection. Gen Thorac Cardiovasc Surg 2014; 62: 207–213
11) Bavaria JE, Pochettino A, Brinster DR, et al: New paradigms and improved results for the surgical treatment of acute type A dissection. Ann Surg 2001; 234: 336–343; discussion, 342–343
12) Rylski B, Bavaria JE, Milewski RK, et al: Long-term results of neomedia sinus valsalva repair in 489 patients with type A aortic dissection. Ann Thorac Surg 2014; 98: 582–589; discussion, 588–589
13) Nakajima T, Kawazoe K, Izumoto H, et al: Effective use of fibrin glue for acute aortic dissection. Ann Thorac Surg 2005; 79: 1793–1794
14) Nakajima T, Kawazoe K, Kataoka T, et al: Midterm results of aortic repair using a fabric neomedia and fibrin glue for type A acute aortic dissection. Ann Thorac Surg 2007; 83: 1615–1620
15) Bingley JA, Gardner MA, Stafford EG, et al: Late complications of tissue glues in aortic surgery. Ann Thorac Surg 2000; 69: 1764–1768
16) Luthra S, Theodore S, Tatoulis J: Bioglue: a word of caution. Ann Thorac Surg 2008; 86: 1055–1056; author reply, 1056–1057
17) Witter K, Tonar Z, Matějka VM, et al: Tissue reaction to three different types of tissue glues in an experimental aorta dissection model: a quantitative approach. Histochem Cell Biol 2010; 133: 241–259
18) Sabik JF, Lytle BW, Blackstone EH, et al: Long-term effectiveness of operations for ascending aortic dissections. J Thorac Cardiovasc Surg 2000; 119: 946–964
19) Kirsch M, Soustelle C, Houël R, et al: Risk factor analysis for proximal and distal reoperations after surgery for acute type A aortic dissection. J Thorac Cardiovasc Surg 2002; 123: 318–325
20) Geirsson A, Bavaria JE, Swarr D, et al: Fate of the residual distal and proximal aorta after acute type A dissection repair using a contemporary surgical reconstruction algorithm. Ann Thorac Surg 2007; 84: 1955–1964; discussion, 1955–1964
Neomedia Repair of the Valsalva Sinus in the Treatment of Acute Type-A Aortic Dissection: Long-term Effectiveness and a Case of Pathology

Nobuhisa Ohno, Toshi Maeda, Otohime Kato, Hiroyumi Sato, Go Ueno, and Kosuke Yoshizawa

Department of Cardiovascular Surgery, Amagasaki General Medical Center, Hyogo, Japan

Key words: aortic dissection, aortic root, neomedia, polyester fabric, pathology

Although numerous surgical techniques are employed to treat acute Stanford type A aortic dissection (ATAAD), controversy remains over which is the best procedure for aortic root reconstruction. Among the various techniques utilized, neomedia repair is considered to be more promising than adhesive-only repair for the treatment of a dissected aortic root. We experienced a series of neomedia sinus valsalva repair using woven polyester fabric, and evaluated the aortic root diameter by computed tomography and severity of aortic valve insufficiency by transthoracic echocardiography. The aortic root diameter was well preserved with no progress of aortic valve insufficiency in the long-term period. Furthermore, we found that the fabric looked functioning new media in the findings obtained from the pathological examination of a neomedia repaired aortic wall sample that was obtained by chance from a patient during valve replacement surgery performed 10 years after aortic reconstruction for ATAAD. Neomedia repair using woven polyester fabric for ATAAD might facilitate the long-term durability of the surgically treated aortic root.

(Jpn Coll Angiol 2019; 59: 37–43)

Online publication June 10, 2019