CHERN CLASSES OF RANK TWO GLOBALLY GENERATED VECTOR BUNDLES ON \mathbb{P}^2.

PH. ELLIA

ABSTRACT. We determine the Chern classes of globally generated rank two vector bundles on \mathbb{P}^2.

INTRODUCTION.

Vector bundles generated by global sections come up in a variety of problems in projective algebraic geometry. In this paper we consider the following question: which are the possible Chern classes of rank two globally generated vector bundles on \mathbb{P}^2? (Here $\mathbb{P}^2 = \mathbb{P}^2_k$ with k algebraically closed, of characteristic zero.)

Clearly these Chern classes have to be positive. Naively one may think that this the only restriction. A closer inspection shows that this is not true: since we are on \mathbb{P}^2, the construction of rank two vector bundles starting from codimension two, locally complete intersection subschemes is subjected to the Cayley-Bacharach condition (see Section 2). So if we have an exact sequence $0 \to \mathcal{O} \to F \to \mathcal{I}_Y(c) \to 0$, with F a rank two vector bundle and $Y \subset \mathbb{P}^2$ of codimension two, then Y satisfies Cayley-Bacharach for $c - 3$.

Now F is globally generated if and only if $\mathcal{I}_Y(c)$ is. If Y is contained in a smooth curve, T, of degree d, we have $0 \to \mathcal{O}(-d + c) \to \mathcal{I}_Y(c) \to \mathcal{I}_{Y,T}(c) \to 0$ and we see that, if $c \geq d$, $\mathcal{I}_Y(c)$ is globally generated if and only if the line bundle $\mathcal{L} = \mathcal{I}_{Y,T}(c)$ on T is globally generated. But there are gaps in the degrees of globally generated line bundles on a smooth plane curve of degree d (it is classically known that no such bundle exists if $d \geq 3$ and $1 \leq \deg \mathcal{L} \leq d - 2$). A remarkable theorem due to Greco-Raciti and Coppens ([3], [1] and Section 3) gives the exact list of gaps.

This is another obstruction, at least if Y lies on a smooth curve, T, of low degree with respect with $c = c_1(F)$ (in this case F tends to be not stable). The problem

2010 Mathematics Subject Classification. 14F99, 14J99.

Key words and phrases. Rank two vector bundles, globally generated, projective plane.
then is to have such a curve for every vector bundle with fixed Chern classes and then, to treat the case where T is not smooth. The first problem is solved in the necessarily unstable range ($\Delta(F) = c_1^2 - 4c_2 > 0$) (see Section 3). In the stable range there are no obstructions, this was already known to Le Potier (see [7]). For the second problem we use the following remark: if a line bundle $O_T(Z)$ on a smooth plane curve of degree d is globally generated, then Z satisfies Cayley-Bacharach for $d - 3$. Working with the minimal section of F we are able to have a similar statement even if T is singular (see [4]). Finally with a slight modification of Theorem 3.1 in [3] we are able to show the existence of gaps.

To state our result we need some notations. Let $c > 0$ be an integer. Let’s say that (c, y) is effective if there exists a globally generated rank two vector bundle on \mathbb{P}^2, F, with $c_1(F) = c, c_2(F) = y$. It is easy to see (cf Section 1) that it must be $0 \leq y \leq c^2$ and that (c, y) is effective if and only if $(c, c^2 - y)$ is. So we may assume $y \leq c^2/2$. For every integer t, $2 \leq t \leq c/2$, let $G_t(0) = [c(t - 1) + 1, t(c - t) - 1]$ (we use the convention that if $b < a$, then $[a, b] = \emptyset$). For every integer t, $4 \leq t \leq c/2$, denote by t_0 the integral part of $\sqrt{t - 3}$, then for every integer a such that $1 \leq a \leq t_0$ define $G_t(a) = [(t - 1)(c - a) + a^2 + 1, (t - 1)(c - a + 1) - 1]$. Finally let

$$G_t = \bigcup_{a=0}^{t_0} G_t(a) \text{ and } G = \bigcup_{t=2}^{c/2} G_t.$$

Then we have:

Theorem 0.1. Let $c > 0$ be an integer. There exists a globally generated rank two vector bundle on \mathbb{P}^2 with Chern classes $c_1 = c, c_2 = y$ if and only if one of the following occurs:

1. $y = 0$ or $c - 1 \leq y \leq c^2/2$ and $y \notin G$
2. $y = c^2$ or $c^2/2 < y \leq c^2 - c + 1$ and $c^2 - y \notin G$.

Although quite awful to state, this result is quite natural (see Section 3). As a by-product we get (Section 4) all the possible “bi-degrees” for generically injective morphisms from \mathbb{P}^2 to the Grassmannian $G(1, 3)$ (or more generally to a Grassmannian of lines). We hope to come back on this topic in the future.

Acknowledgment: I thank L. Gruson for pointing this problem to my attention.
1. **General facts and a result of Le Potier for stable bundles.**

Let F be a rank two globally generated vector bundle on \mathbb{P}^2 with Chern classes $c_1(F) =: c$, $c_2(F) =: y$. Since the restriction F_L to a line is globally generated, we get $c \geq 0$. A general section of F yields:

$$0 \to \mathcal{O} \to F \to \mathcal{I}_Y(c) \to 0$$

where $Y \subset \mathbb{P}^2$ is a smooth set of y distinct points (cf [3], 1.4) or is empty. In the first case $y > 0$, in the second case $F \simeq \mathcal{O} \oplus \mathcal{O}(c)$ and $y = 0$. In any case the Chern classes of a globally generated rank two vector bundle are positive.

Also observe ($Y \neq \emptyset$) that $\mathcal{I}_Y(c)$ is globally generated (in fact F globally generated $\iff \mathcal{I}_Y(c)$ is globally generated). This implies by Bertini’s theorem that a general curve of degree c containing Y is smooth (hence irreducible).

Since $rk(F) + \dim(\mathbb{P}^2) = 4$, F can be generated by $V \subset H^0(F)$ with $\dim V = 4$ and we get:

$$0 \to E^* \to V \otimes \mathcal{O} \to F \to 0$$

It follows that E is a rank two, globally generated vector bundle with Chern classes: $c_1(E) = c$, $c_2(E) = c^2 - y$. We will say that E is the *G-dual bundle* of F. Since a globally generated rank two bundle has positive Chern classes we get: $0 \leq y \leq c^2$, $c \geq 0$.

Definition 1.1. We will say that (c, y) is effective if there exist a globally generated rank two vector bundle on \mathbb{P}^2 with $c_1 = c$ and $c_2 = y$. A non effective (c, y) will also be called a gap.

Remark 1.2. By considering G-dual bundles we see that (c, y) is effective if and only if $(c, c^2 - y)$ is effective. Hence it is enough to consider the range $0 \leq y \leq c^2/2$.

If $c = 0$, then $F \simeq 2\mathcal{O}$ and $y = 0$.

If $y = c^2$ then $c_2(E) = 0$, hence $E \simeq \mathcal{O} \oplus \mathcal{O}(c)$ and:

$$0 \to \mathcal{O}(-c) \to 3\mathcal{O} \to F \to 0$$

Such bundles exists for any $c \geq 0$. If $y = 0$, $F \simeq \mathcal{O} \oplus \mathcal{O}(c)$.
Definition 1.3. If F is a rank two vector bundles on \mathbb{P}^2 we denote by F_{norm} the unique twist of F such that $-1 \leq c_1(F_{\text{norm}}) \leq 0$. The bundle F is stable if $h^0(F_{\text{norm}}) = 0$.

By a result of Schwarzenberger, if F is stable with $c_1(F) = c, c_2(F) = y$, then $\Delta(F) := c^2 - 4y < 0$ (and $\Delta(F) \neq -4$). Moreover there exist a stable rank two vector bundle with Chern classes (c, y) if and only if $\Delta := c^2 - 4y < 0, \Delta \neq -4$.

Concerning stable bundles we have the following result of Le Potier [7]:

Proposition 1.4 (Le Potier). Let $\mathcal{M}(c_1, c_2)$ denote the moduli space of stable rank two bundles with Chern classes c_1, c_2 on \mathbb{P}^2. There exists a non empty open subset of $\mathcal{M}(c_1, c_2)$ corresponding to globally generated bundles if and only if one of the following holds:

1. $c_1 > 0$ and $\chi(c_1, c_2) \geq 4$ ($\chi(c_1, c_2) = 2 + \frac{c_1(c_1+3)}{2} - c_2$)
2. $(c_1, c_2) = (1, 1)$ or $(2, 4)$.

Using this proposition we get:

Corollary 1.5. If $c > 0$ and

$$\frac{c^2}{4} \leq y \leq \frac{3c^2}{4}$$

then (c, y) is effective.

Proof. The existence condition ($\Delta < 0, \Delta \neq -4$) translates as: $y > c^2/4$, $y \neq c^2/4 + 1$. Condition (1) of [1,4] gives: $\frac{c(c+3)}{2} - 2 \geq y$, hence if $\frac{c(c+3)}{2} - 2 \geq y > \frac{c^2}{4}$ and $y \neq \frac{c^2}{4} + 1$, (c, y) is effective.

Let’s show that $(c, \frac{c^2}{4})$ is effective for every $c \geq 2$ (c even). Consider:

$$0 \to \mathcal{O} \to F \to \mathcal{I}_Y(2) \to 0$$

where Y is one point. Then F is globally generated with Chern classes $(2, 1)$. For every $m \geq 0$, $F(m)$ is globally generated with $c_1^2 = 4c_2$.

In the same way let’s show that $(c, \frac{c^2}{4} + 1)$ is effective for every $c \geq 2$ (c even). This time consider:

$$0 \to \mathcal{O} \to F \to \mathcal{I}_Y(2) \to 0$$
where Y is a set of two points; F is globally generated with Chern classes $(2, 2)$. For every $m \geq 0$, $F(m)$ is globally generated with the desired Chern classes.

We conclude that if $\frac{c(c+3)}{2} - 2 \geq y \geq \frac{c^2}{4}$, then (c, y) is effective. By duality, (c, y) is effective if $\frac{3c^2}{4} \geq y \geq \frac{c(c-3)}{2} + 2$. Putting every thing together we get the result. □

Remark 1.6. Since $3c^2/4 > c^2/2$, we may, by duality, concentrate on the range $y < c^2/4$, i.e. on not stable bundles with $\Delta > 0$, that’s what we are going to do in the next section.

2. Cayley-Bacharach.

Definition 2.1. Let $Y \subset \mathbb{P}^2$ be a locally complete intersection (l.c.i.) zero-dimensional subscheme. Let $n \geq 1$ be an integer. We say that Y satisfies Cayley-Bacharach for curves of degree n ($CB(n)$), if any curve of degree n containing a subscheme $Y' \subset Y$ of colength one (i.e. of degree $\deg Y - 1$), contains Y.

Remark 2.2. Since Y is l.c.i. for any $p \in \text{Supp}(Y)$ there exists a unique subscheme $Y' \subset Y$ of colength one (locally) linked to p in Y. So Def. 2.1 makes sense even if Y is non reduced.

Let’s recall the following ([4]):

Proposition 2.3. Let $Y \subset \mathbb{P}^2$ be a zero-dimensional l.c.i. subscheme. There exists an exact sequence:

$$0 \to \mathcal{O} \to F \to I_Y(c) \to 0$$

with F a rank two vector bundle if and only if Y satisfies $CB(c - 3)$.

Actually in [4] Proposition 2.3 is proved only under the assumption that Y is reduced, but it is well known that the proof works in the general case. The proposition gives conditions on the Chern classes of bundles having a section, in our case:

Lemma 2.4. Let F be a globally generated rank two vector bundle on \mathbb{P}^2 with $c_1(F) = c$, $c_2(F) = y$, then:

$$c - 1 \leq y \leq c^2 - c + 1 \text{ or } y = c^2 \text{ or } y = 0$$
Proof. Since F is globally generated a general section vanishes in codimension two or doesn’t vanish at all. In the second case $F \simeq 2\mathcal{O}$ and $y = 0$. Let’s assume, from now on, that a general section vanishes in codimension two. We have an exact sequence:

$$0 \to \mathcal{O} \to F \to \mathcal{I}_Y(c) \to 0$$

where Y is a zero-dimensional subscheme (we may assume Y smooth) which satisfies Cayley-Bacharach condition for $c - 3$.

If $c - 3 \geq y - 1$, $\forall p \in Y$ there exists a curve of degree $c - 3$ containing $Y_p := Y \setminus \{p\}$ and not containing Y (consider a suitable union of lines). Since Y must satisfy the Cayley-Bacharach condition, it must be $y \geq c - 1$.

Let F be a globally generated rank two vector bundle with $c_1(F) = c$, $c_2(F) = y$. Consider the G-dual bundle:

$$0 \to F^* \to 4\mathcal{O} \to E \to 0$$

then E is a rank two, globally generated, vector bundle with $c_1(E) = c$, $c_2(E) = c^2 - y$. By the previous part: $c_2(E) = 0$ (i.e. $y = c^2$) or $c^2 - y = c_2(E) \geq c_1(E) - 1 = c - 1$. So $c^2 - c + 1 \geq y$. □

Remark 2.5. It is easy to check that for $0 \leq c \leq 3$, every value of y, $c - 1 \leq y \leq c^2 - c + 1$ is effective (take $Y \subset \mathbb{P}^2$ of maximal rank with $c - 1 \leq y \leq c^2/2$ and use Castelnuovo-Mumford’s lemma to show that $\mathcal{I}_Y(c)$ is globally generated). In fact gaps occur only for $c \geq 6$. In the sequel we will assume that $c \geq 4$.

3. The statement.

From now on we may restrict our attention to the range: $c - 1 \leq y < c^2/4$ ([1.6, 2.4]) for $c \geq 4$ (2.3). In this range $\Delta(F) = c^2 - 4y > 0$, hence F is necessarily unstable (i.e. not semi-stable). In particular, if c is even: $h^0(F(-\frac{c}{2})) = h^0(\mathcal{I}_Y(\frac{c}{2})) \neq 0$ (resp. $h^0(F(-\frac{c+1}{2})) = h^0(\mathcal{I}_Y(\frac{c+1}{2})) \neq 0$, if c is odd). So Y is forced to lie on a curve of relatively low degree. In fact something more precise can be said, for this we need the following elementary remark:

Lemma 3.1 (The trick). Let F be a rank two vector bundle on \mathbb{P}^2 with $h^0(F) \neq 0$. If $c_2(F) < 0$, then $h^0(F(-1)) \neq 0$.

Proof. A non-zero section of F cannot vanish in codimension two (we would have $c_2 > 0$), nor can the section be nowhere non-zero (F would split as $F \simeq \mathcal{O} \oplus \mathcal{O}(c)$, hence $c_2(F) = 0$). It follows that any section vanishes along a divisor. By dividing by the equation of this divisor we get $h^0(F(-1)) \neq 0$.

Actually this works also on \mathbb{P}^n, $n \geq 2$.

For $2 \leq t \leq c/2$ ($c \geq 4$) we define:

$$\overline{A}_t := [(t-1)(c-t+1), \ t(c-t)] = [(t-1)c - (t-1)^2, \ (t-1)c - (t^2 - c)]$$

The ranges \overline{A}_t cover $[c-1, \ c^2/4]$, the interval we are interested in. From our point of view we may concentrate on the interior points of \overline{A}_t. Indeed if $y = ab$, with $a + b = c$, we may take $F \simeq \mathcal{O}(a) \oplus \mathcal{O}(b)$. So we define:

$$A_t = [(t-1)(c-t+1), \ t(c-t)], \ \ 2 \leq t \leq c/2$$

Lemma 3.2. If $y \in A_t$, and if Y is the zero-locus of a section of F, a rank two vector bundle with Chern classes (c, y), then $h^0(I_Y(t-1)) \neq 0$.

Proof. We have an exact sequence $0 \to \mathcal{O} \to F \to I_Y(c) \to 0$. Now $c_2(F(-c-t)) = (-c + t)t + y$. By our assumptions, $y < t(c-t)$, hence $c_2(F(-c + t)) < 0$. We have $c - t \geq c/2$, by repeated use of 3.1 we conclude that $h^0(F(-c + t - 1)) = h^0(I_Y(t-1)) \neq 0$.

So if $y \in A_t$, Y is forced to lie on a degree $(t-1)$ curve (but not on a curve of degree $t-2$). If general principles are respected we may think that if $y \in A_t$, $Y \subset T$, where T is a smooth curve of degree $t - 1$ and that $h^0(I_Y(t-2)) = 0$. If this is the case we have an exact sequence:

$$0 \to \mathcal{O}(-t+1) \to I_Y \to I_{Y,T} \to 0$$

twisting by $\mathcal{O}_T(c)$:

$$0 \to \mathcal{O}(c-t+1) \to I_Y(c) \to \mathcal{O}_T(c-Y) \to 0$$

Since $c - t + 1 > 0$ (because $c \geq 2t$), we see that: $I_Y(c)$ is globally generated if and only if $\mathcal{O}_T(c - Y)$ is globally generated. The line bundle $\mathcal{L} = \mathcal{O}_T(c - Y)$ has degree $l := c(t-1) - y$. So the question is: for which l does there exists a degree l line bundle on T generated by global sections? This is, by its own, a quite natural
problem which, strangely enough, has been solved only recently (\cite{3, 4}). First a definition:

Definition 3.3. Let C be a smooth irreducible curve. The Lüroth semi-group of C, $LS(C)$, is the semi-group of nonnegative integers which are degrees of rational functions on C. In other words: $LS(C) = \{ n \in \mathbb{N} \mid \exists \mathcal{L}, \text{of degree } n, \text{such that } \mathcal{L} \text{ is globally generated} \}.$

Then we have:

Theorem 3.4 (Greco-Raciti-Coppens). If C is a smooth plane curve of degree $d \geq 3$, then

$$LS(C) = LS(d) := \mathbb{N} \setminus \bigcup_{a=1}^{n_0} [(a-1)d+1, a(d-a)-1]$$

where n_0 is the integral part of $\sqrt{d-2}$.

Of course $LS(1) = LS(2) = \mathbb{N}$. We observe that $LS(C)$ doesn’t depend on C but only on its degree.

Going back to our problem we see that if $c(t-1) - y \notin LS(t-1)$, then $\mathcal{L} = \mathcal{O}_T(c-Y)$ can’t be globally generated and the same happens to $\mathcal{I}_{Y}(c)$. In conclusion if $c(t-1) - y \in \bigcup_{a=1}^{n_0} [(a-1)(t-1)+1, a(t-1-a)-1]$, or if $c(t-1) - y < 0$, under our assumptions, (c, y) is not effective. The assumption is that the unique curve of degree $t-1$ containing Y is smooth. (Observe that $\deg \mathcal{O}_T(t-1-Y) < 0$, hence $h^0(\mathcal{I}_{Y}(t-1)) = 1$.)

Our theorem says that general principles are indeed respected. In order to have a more manageable statement let’s introduce some notations:

Definition 3.5. Fix an integer $c \geq 4$. An integer $y \in A_t$ for some $2 \leq t \leq c/2$, will be said to be admissible if $c(t-1) - y \in LS(t-1)$. If $c(t-1) - y \notin LS(t-1)$, y will be said to be non-admissible.

Observe that $y \in A_t$ is non-admissible if and only if: $y \in G_t(0) = [c(t-1) + 1, t(c-1)-1]$ (this corresponds to $c(t-1) - y < 0$), or $y \in G_t(a) = [(t-1)(c-a) + a^2 + 1, (t-1)(c-a+1)-1]$ for some $a \geq 1$ such that $a^2 + 2 \leq t-1$ (i.e. $a \leq t_0$).
In order to prove Theorem 0.1 it remains to show:

Theorem 3.6. For any \(c \geq 4 \) and for any \(y \in A_t \) for some \(2 \leq t \leq c/2 \), \((c, y)\) is effective if and only if \(y \) is admissible.

The proof splits into two parts:

(1) **(Gaps)** If \(c(t - 1) - y \notin LS(t - 1) \), one has to prove that \((c, y)\) is not effective.

This is clear if \(Y \) lies on a smooth curve, \(T \), of degree \(t - 1 \), but there is no reason for this to be true and the problem is when \(T \) is singular.

(2) **(Existence)** If \(c(t - 1) - y \in LS(t - 1) \), one knows that there exists \(L \) globally generated, of degree \(c(t - 1) - y \) on a smooth curve, \(T \), of degree \(t - 1 \).

The problem is to find such an \(L \) such that \(M := \mathcal{O}_T(c) \otimes L^* \) has a section vanishing along a \(Y \) satisfying the Cayley-Bacharach condition for \((c - 3)\).

4. **The proof (gaps).**

In this section we fix an integer \(c \geq 4 \) and prove that non-admissible \(y \in A_t \), \(2 \leq t \leq c/2 \) are gaps. For this we will assume that such a \(y \) is effective and will derive a contradiction. From \(3.2 \) we know that \(h^0(\mathcal{I}_Y(t - 1)) \neq 0 \). The first task is to show that under our assumption (\(y \) not-admissible), \(h^0(\mathcal{I}_Y(t - 2)) = 0 \) (see \(4.3 \)); this will imply that \(F(-c + t - 1) \) has a section vanishing in codimension two.

To begin with let’s observe that non-admissible \(y \in A_t \) may occur only when \(t \) is small with respect to \(c \).

Lemma 4.1. Assume \(c \geq 4 \). If \(t > \frac{2\sqrt{3}}{3}\sqrt{c - 2} \), then every \(y \in A_t \) is admissible.

Proof. Recall (see \(3.3 \)) that \(y \in A_t \), \(2 \leq t \leq c/2 \), is non admissible if and only if \(y \in G_t(a) \) for some \(a, 0 \leq a \leq t_0 \).

We have \(G_t(0) \neq \emptyset \) \(\iff \) \(t(c - t) - 1 \geq c(t - 1) + 1 \) \(\iff \) \(t \leq \sqrt{c - 2} \).

For \(a \geq 1 \), \(G_t(a) \cap A_t \neq \emptyset \) \(\Rightarrow \) \((t - 1)(c - a) + a^2 + 1 < t(c - t) \). This is equivalent to: \(a^2 - at + t^2 - c + a + 1 < 0 \) (*). The discriminant of this equation in \(a \) is \(\Delta = -3t^2 + 4(c - a - 1) \) and we must have \(\Delta \geq 0 \), i.e. \(\frac{2\sqrt{3}}{3}\sqrt{c - 2} \geq t \).

Let’s get rid of the \(y' \)s in \(G_t(0) \):
Lemma 4.2. If $y \in A_t$ is non-admissible and effective, then $y \in G_t(a)$ for some a, $1 \leq a \leq \sqrt{t - 3}$.

Proof. We have to show that if $c(t - 1) - y < 0$ and $y \in A_t$, then y is not effective. By 3.2 $h^0(I_Y(t - 1)) \neq 0$. If y is effective then $I_Y(c)$ is globally generated and Y is contained in a complete intersection of type $(t - 1, c)$, hence $\deg Y = y \leq c(t - 1)$: contradiction.

Now we show that if y is non-admissible and effective, then $h^0(I_Y(t - 1)) = 1$:

Lemma 4.3. Let $c \geq 4$ and assume $y \in A_t$ for some t, $2 \leq t \leq c/2$. Assume furthermore that y is non-admissible and effective i.e.:

$$y = (t - 1)(c - a) + \alpha, \quad a^2 + 1 \leq \alpha \leq t - 2$$

for a given a such that $t - 1 \geq a^2 + 2$. Under these assumptions, $h^0(I_Y(t - 1)) = 1$.

Proof. If $h^0(I_Y(t - 2)) \neq 0$, then $y \leq c(t - 2)$ (the general $F_c \in H^0(I_Y(c))$ is integral since $I_Y(c)$ is globally generated. Moreover $t - 1 < c$ so $F_c \neq T$). It follows that:

$$y = (t - 1)(c - a) + \alpha \leq c(t - 2) = c(t - 1) - c$$

This yields $a(t - 1) \geq c + \alpha$. We have $c + \alpha \geq c + a^2 + 1$, hence:

$$0 \geq a^2 - a(t - 1) + c + 1 \quad (*)$$

The discriminant of $(*)$ (viewed as an equation in a) is: $\Delta = (t - 1)^2 - 4(c + 1)$. If $\Delta < 0$, $(*)$ is never satisfied and $h^0(I_Y(t - 2)) = 0$. Now $\Delta < 0 \iff (t - 1)^2 < 4(c + 1)$.

In our context $\Delta < 0 \iff t < 1 + 2\sqrt{c + 1}$. In conclusion if $t < 1 + 2\sqrt{c + 1}$ and if y is non-admissible, then $h^0(I_Y(t - 2)) = 0$.

Now by 1.1 if y is non-admissible, we have: $t \leq \frac{2\sqrt{3}}{3}\sqrt{c - 2}$. Since $\frac{2\sqrt{3}}{3}\sqrt{c - 2} < 1 + 2\sqrt{c + 1}$, for $c > 0$, we are done.

Since $h^0(I_Y(t - 1)) \neq 0$, $F(-c + t - 1)$ has a non-zero section, since $h^0(I_Y(t - 2)) = 0$ the section vanishes in codimension two. Hence we have:

$$0 \rightarrow O \rightarrow F(-c + t - 1) \rightarrow I_W(-c + 2t - 2) \rightarrow 0$$

where $\deg W = y - (t - 1)(c - t + 1)$. Since $-c + 2t - 2 < 0$ (because $c \geq 2t$), we get $h^0(F(-c + t - 1)) = 1 = h^0(I_Y(t - 1))$. \qed
Notations 4.4. Let F be a globally generated rank two vector bundle with Chern classes (c, y). A section $s \in H^0(F)$ defines $Y_s = (s)_0$. If $y \in A_t$, $h^0(\mathcal{I}_{Y_s}(t-1)) \neq 0$, moreover if y is non-admissible $h^0(\mathcal{I}_{Y_s}(t-1)) = 1$ and there is a unique $T_s \in H^0(\mathcal{I}_{Y_s}(t-1))$. It follows that $F(-c + t - 1)$ has a unique section (hence vanishing in codimension two): $0 \to \mathcal{O} \to F(-c + t - 1) \to \mathcal{I}_W(-c + 2t - 2) \to 0$.

Lemma 4.5. If $y \in A_t$ is non-admissible and effective, with notations as in 4.4:

1. Y_s and W are bilinked on T_s
2. The curves T_s are precisely the elements of $H^0(\mathcal{I}_W(t-1))$
3. $\mathcal{I}_W(t-1)$ is globally generated, in particular for $s \in H^0(F)$ general, T_s is reduced.

Proof.

(1) (2) We have a commutative diagram:

\[
\begin{array}{ccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
\mathcal{O} & = & \mathcal{O} \\
\downarrow u & & \downarrow T_s \\
0 & \to & \mathcal{O}(-c + t - 1) \xrightarrow{s} F(-c + t - 1) \to \mathcal{I}_Y(t-1) \to 0 \\
\| & & \downarrow \\
0 & \to & \mathcal{O}(-c + t - 1) \xrightarrow{s} \mathcal{I}_W(-c + 2t - 2) \to \mathcal{I}_{Y,T_s}(t-1) \to 0 \\
\downarrow & & \downarrow \\
0 & = & 0 \\
\end{array}
\]

We see that s corresponds to an element of $H^0(\mathcal{I}_W(t-1))$ and the quotient $\mathcal{O} \xrightarrow{s} \mathcal{I}_W(t-1)$ has support on T_s and is isomorphic to $\mathcal{L}^*(-c + 2t - 2)$ where $\mathcal{L}^* \simeq \mathcal{I}_{W,T_s}$; finally Y_s is a section of $\mathcal{L}(c - t + 1)$ which shows that W and Y_s are bilinked on T_s.

(3) The exact sequence $0 \to \mathcal{O}(c-t+1) \to F \to \mathcal{I}_W(t-1) \to 0$ shows that $\mathcal{I}_W(t-1)$ is globally generated, hence the general element in $H^0(\mathcal{I}_W(t-1))$ is reduced. □

Since W could well be non-reduced with embedding dimension two, concerning T, this is the best we can hope. However, and this is the point, we may reverse the construction and start from W.
Lemma 4.6. Let $W \subset \mathbb{P}^2$ be a zero-dimensional, locally complete intersection (l.c.i.) subscheme. Assume $\mathcal{I}_W(n)$ is globally generated, then if $T, T' \in H^0(\mathcal{I}_W(n))$ are sufficiently general, the complete intersection $T \cap T'$ links W to a smooth subscheme Z such that $W \cap Z = \emptyset$.

Proof. If $p \in \text{Supp}(W)$, denote by W_p the subscheme of W supported at p. Since W is l.c.i, $\mathcal{I}_{W,p} = (f, g) \subset \mathcal{O}_p$. By assumption the map $H^0(\mathcal{I}_W(n)) \otimes \mathcal{O}_p \xrightarrow{ev} \mathcal{I}_{W,p}$ which takes $T \in H^0(\mathcal{I}_W(n))$ to its germ, T_p, at p, is surjective. Hence there exists T such that $T_p = f$ (resp. T' such that $T'_p = g$). It follows that in a neighborhood of p: $T \cap T' = W_p$. If G is the Grassmannian of lines of $H^0(\mathcal{I}_W(n))$ for $(T,T') \in G$ the property $T \cap T' = W_p$ (in a neighborhood of p) is open (it means that the local degree at p of $T \cap T'$ is minimum). We conclude that there exists a dense open subset, $U_p \subset G$, such that for $(T,T') \in U_p$, $T \cap T' = W_p$ (locally at p). If $\text{Supp}(W) = \{p_1, ..., p_r\}$ there exists a dense open subset $U \subset U_1 \cap ... \cap U_r$ such that if $(T,T') \in U$, then $T \cap T'$ links W to Z and $W \cap Z = \emptyset$.

By Bertini’s theorem the general curve $T \in H^0(\mathcal{I}_W(n))$ is smooth out of W. If $C \subset T$ is an irreducible component, the curves of $H^0(\mathcal{I}_W(n))$ cut on C, residually to $W \cap C$, a base point free linear system. By the previous part the general member, Z_C, of this linear system doesn’t meet $\text{Sing}(C)$ (because $Z_C \cap W = \emptyset$), it follows, by Bertini’s theorem, that Z_C is smooth. So for general $T, T' \in H^0(\mathcal{I}_W(n))$, $T \cap T'$ links W to a smooth subscheme, Z, such that $W \cap Z = \emptyset$.

Corollary 4.7. Let $y \in A_1$ be non-admissible. If y is effective, with notations as in [4.6], if $T, T' \in H^0(\mathcal{I}_W(t-1))$ are sufficiently general, then $T \cap T'$ links W to a smooth subscheme, Z, such that $W \cap Z = \emptyset$. Furthermore $\mathcal{I}_Z(c)$ is globally generated and if $S_c \in H^0(\mathcal{I}_Z(c))$ is sufficiently general, then $T \cap S_c$ links Z to a smooth subscheme Y, where Y is the zero locus of a section of F and where $Z \cap Y = \emptyset$.

Proof. The first statement follows from [4.6]. From the exact sequence

$$0 \to \mathcal{O}(c-2t+2) \to F(-t+1) \to \mathcal{I}_W \to 0$$

we get by mapping cone:

$$0 \to F^*(-t+1) \to \mathcal{O}(-c) \oplus 2\mathcal{O}(-t+1) \to \mathcal{I}_Z \to 0 \quad (*)$$
which shows that $\mathcal{I}_Z(c)$ is globally generated. Since Z is smooth and contained in the smooth locus of T and since $\mathcal{I}_Z(c)$ is globally generated, if C is an irreducible component of T, the curves of $H^0(\mathcal{I}_Z(c))$ cut on C, residually to $C \cap Z$, a base point free linear system. In particular the general member, D, of this linear system doesn’t meet $\text{Sing}(C)$. By Bertini’s theorem we may assume D smooth. It follows that if $S_c \in H^0(\mathcal{I}_Z(c))$ is sufficiently general, $S_c \cap T$ links Z to a smooth Y such that $Z \cap Y = \emptyset$. By mapping cone, we see from (*) that Y is the zero-locus of a section of F. \hfill \Box

The previous lemmas will allow us to apply the following (classical, I think) result:

Lemma 4.8. Let $Y, Z \subset \mathbb{P}^2$ be two zero-dimensional subschemes linked by a complete intersection, X, of type (a, b). Assume:

1. $Y \cap Z = \emptyset$
2. $\mathcal{I}_Y(a)$ globally generated.

Then Z satisfies Cayley-Bacharach for $(b - 3)$.

Proof. Notice that Z and Y are l.c.i. Now let P be a curve of degree $b - 3$ containing $Z' \subset Z$ of colength one. We have to show that P contains Z. Since $\mathcal{I}_Y(a)$ is globally generated and since $Y \cap Z = \emptyset$, there exists $F \in H^0(\mathcal{I}_Y(a))$ not passing through p. Now PF is a degree $a + b - 3$ curve containing $X \setminus \{p\}$. Since complete intersections (a, b) verify Cayley-Bacharach for $a + b - 3$ (the bundle $\mathcal{O}(a) \oplus \mathcal{O}(b)$ exists!), PF passes through p. This implies that P contains Z. \hfill \Box

Gathering everything together:

Corollary 4.9. Let $y \in A_t$ be non-admissible. If y is effective, then there exists a smooth zero-dimensional subscheme Z such that:

1. Z lies on a pencil $\langle T, T' \rangle$ of curves of degree $t - 1$, the base locus of this pencil is zero-dimensional.
2. $\deg Z = c(t - 1) - y$
3. Z satisfies Cayley-Bacharach for $t - 4$
Proof. By 4.7 there is a zero-locus of a section of F which is linked by a complete intersection of type $(c, t-1)$ to a Z such that $Y \cap Z = \emptyset$. Since $\mathcal{I}_Y(c)$ is globally generated, by 4.8, Z satisfies Cayley-Bacharach for $t-4$. □

Now we conclude with:

Proposition 4.10. Let $Z \subset \mathbb{P}^2$ be a smooth zero-dimensional subscheme contained in a curve of degree d. Let $a \geq 1$ be an integer such that $d \geq a^2 + 2$. Assume $h^0(\mathcal{I}_Z(a-1)) = 0$. If $(a-1)d + 1 \leq \deg Z \leq a(d-a) - 1$, then Z doesn’t verify Cayley-Bacharach for $d-3$.

Remark 4.11. This proposition is Theorem 3.1 in [3] with a slight modification: we make no assumption on the degree d curve (which can be singular, even non reduced), but we assume $h^0(\mathcal{I}_Z(a-1)) = 0$ (which follows from Bezout if the degree d curve is integral).

Since this proposition is a key point, and for convenience of the reader, we will prove it. We insist on the fact that the proof given is essentially the proof of Theorem 3.1 in [3].

Notations 4.12. We recall that if $Z \subset \mathbb{P}^2$, the numerical character of Z, $\chi = (n_0, ..., n_{\sigma-1})$ is a sequence of integers which encodes the Hilbert function of Z (see [3]):

1. $n_0 \geq ... \geq n_{\sigma-1} \geq \sigma$ where σ is the minimal degree of a curve containing Z
2. $h^1(\mathcal{I}_Z(n)) = \sum_{i=0}^{\sigma-1} [n_i - n - 1]_+ - [i - n - 1]_+ ([x]_+ = \max\{0, x\})$.
3. In particular $\deg Z = \sum_{i=0}^{\sigma-1} (n_i - i)$.

The numerical character is said to be connected if $n_i \leq n_{i+1} + 1$, for all $0 \leq i < \sigma - 1$. For those more comfortable with the Hilbert function, $H(Z, -)$ and its first difference function, $\Delta(Z, i) = H(Z, i) - H(Z, i-1)$, we recall that $\Delta(i) = i + 1$ for $i < \sigma$ while $\Delta(i) = \#\{l \mid n_l \geq i + 1\}$. It follows that the condition $n_{r-1} > n_r + 1$ is equivalent to $\Delta(n_r + 1) = \Delta(n_r)$. Also recall that for $0 \leq i < \sigma$, $n_i = \min\{t \geq i \mid \Delta(t) \leq i\}$.
Lemma 4.13. Let $Z \subset \mathbb{P}^2$ be a smooth zero-dimensional subscheme. Let $\chi = (n_0, \ldots, n_{s-1})$ be the numerical character of Z. If $n_{r-1} > n_r + 1$, then Z doesn’t verify Cayley-Bacharach for every $i \geq n_r - 1$.

Proof. It is enough to show that Z doesn’t verify $CB(n_r - 1)$. By [2] there exists a curve, R, of degree r such that $R \cap Z = E'$ where $\chi(E') = (n_0, \ldots, n_{r-1})$. Moreover if E'' is the residual of Z with respect to the divisor R, $\chi(E'') = (m_0, \ldots, m_{s-1-r})$, with $m_i = n_{r+i} - r$. It follows that $h^1(I_{E''}(n_r - r - 1)) = 0$. This implies that given $X \subset E''$ of colength one, there exists a curve, P, of degree $n_r - r - 1$ passing through X but not containing E''. The curve RP has degree $n_r - 1$, passes through $Z' := E' \cup X$ but doesn’t contain Z (because $R \cap Z = E'$).

Proof of Proposition 4.10.

Observe that the assumptions imply $d \geq 3$, moreover if $d = 3$, then $a = \deg Z = 1$ and the statement is clear; so we may assume $d \geq 4$.

Assume to the contrary that Z satisfies $CB(d-3)$. This implies $h^1(I_Z(d-3)) \neq 0$. If $a = 1$, then $\deg Z \leq d - 2$ and necessarily $h^1(I_Z(d-3)) = 0$, so we may assume $a \geq 2$. Now if $h^1(I_Z(d-3)) \neq 0$, then $n_0 \geq d - 1$, where $\chi(Z) = (n_0, \ldots, n_{s-1})$ is the numerical character of Z. Since $\sigma \geq a$, $n_{a-1} \in \chi(Z)$.

We claim that $n_{a-1} < d - 2$. Indeed otherwise $n_0 \geq d - 1$ and $n_0 \geq \ldots \geq n_{a-1} \geq d - 2$ implies

$$\deg Z = \sum_{i=0}^{a-1} (n_i - i) \geq \sum_{i=0}^{a-1} (n_i - i) \geq 1 + \sum_{i=0}^{a-1} (d - 2 - i) = 1 + a(d - 2) - \frac{a(a - 1)}{2}$$

If $a \geq 1$, then $1 + a(d - 2) - \frac{a(a - 1)}{2} > a(d - a) - 1 \geq \deg Z$: contradiction.

Let’s show that $n_{a-1} \geq d - a$. Assume to the contrary $n_{a-1} < d - a$. Then there exists $k, 1 \leq k \leq a - 1$ such that $n_k \leq d - 2$ and $n_{k-1} \geq d - 1$ (indeed $n_0 \geq d - 1$ and $n_{a-1} < d - a \leq d - 2$). If $n_{k-1} \geq n_k \geq \ldots \geq n_{a-1}$ is connected, then $n_{k-1} < d - a + r$ where $a = k + r$. Hence $d - a + r > n_{k-1} \geq d - 1$, which implies $r \geq a$ which is impossible since $k \geq 1$. It follows that there is a gap in $n_{k-1} \geq n_k \geq \ldots \geq n_{a-1}$, i.e. there exists $r, k \leq r \leq a - 1$, such that $n_{r-1} > n_r + 1$. Since $d - 2 \geq n_k \geq n_r$, we conclude by Lemma 4.13 that Z doesn’t satisfy $CB(d - 3)$: contradiction.

So far we have $d - a \leq n_{a-1} < d - 2$ and $n_0 \geq d - 1$. Set $n_{a-1} = d - a + r$ ($r \geq 0$). We claim that there exists k such that $n_k \geq d - 1$ and $n_k \geq \ldots \geq n_{a-1} = d - a + r$.
is connected. Since \(n_0 \geq d - 1 \), this follows from 4.13, otherwise \(Z \) doesn’t verify \(CB(d - 3) \).

We have \(\chi(Z) = (n_0, ..., n_k, ..., n_{a-1}, ..., n_{\sigma-1}) \) with \(n_k \geq d - 1 \), \(n_{a-1} = d - a + r \). Since \((n_k, ..., n_{a-1})\) is connected and \(n_k \geq d - 1 \), we have \(n_i \geq d - 1 + k - i \) for \(k \leq i \leq a - 1 \). Since \(n_{a-1} = d - a + r \geq d - 1 + k - (a - 1) \), we get \(r \geq k \). It follows that:

\[
\deg Z = \sum_{i=0}^{\sigma-1} (n_i - i) = \sum_{i=0}^{k-1} (n_i - i) + \sum_{i=k}^{a-1} (n_i - i) + \sum_{i=a} (n_i - i)
\]

\[
\geq \sum_{i=0}^{k-1} (d - 1 - i) + \sum_{i=k}^{a-1} (d - 1 - 2i + k) + \sum_{i=a} (n_i - i)
\]

\[
\geq \sum_{i=0}^{k-1} (d - 1 - i) + \sum_{i=k}^{a-1} (d - 1 - 2i + k) = (+)
\]

We have:

\[
\sum_{i=k}^{a-1} (d - 1 - 2i + k) = (a - k)(d - a) \quad (*)
\]

If \(k = 0 \), we get \(\deg Z \geq a(d - a) \), a contradiction since \(\deg Z \leq a(d - a) - 1 \) by assumption. Assume \(k > 0 \). Then:

\[
\sum_{i=0}^{k-1} (d - 1 - i) = k(d - 1) - \frac{k(k - 1)}{2} = k(d - 1 - \frac{(k - 1)}{2})
\]

From (+) and (*) we get:

\[
\deg Z \geq (a - k)(d - a) + k(d - 1 - \frac{(k - 1)}{2}) = a(d - a) + k(a - 1 - \frac{(k - 1)}{2})
\]

and to conclude it is enough to check that \(a - 1 \geq (k - 1)/2 \). Since \(r \geq k \), this will follow from \(a - 1 \geq (r - 1)/2 \). If \(a < (r + 1)/2 \), then \(n_{a-1} = d - a + r > d + a - 1 \geq d \), in contradiction with \(n_{a-1} < d - 2 \). The proof is over.

We can now conclude and get the “gaps part” of 3.6:

Corollary 4.14. For \(c \geq 4 \) let \(y \in A_t \) for some \(t \), \(2 \leq t \leq c/2 \). If \(y \) is non admissible, then \(y \) is a gap (i.e. \((c, y)\) is not effective).
Proof. Since y is non-admissible, $y \in G_*(a)$ for some $a \geq 1$ (see 4.2), or equivalently $\deg Z = c(t - 1) - y \in [(a - 1)(t - 1) + 1, a(t - 1 - a) - 1]$ for some $a \geq 1$ such that $a^2 + 1 \leq t - 1$. In view of 4.3 it is enough to show that Z cannot verify Cayley-Bacharach for $t - 4$. For this we want to apply 1.10. The only thing we have to show is $h^0(I_Z(a - 1)) = 0$. Let P be a curve of degree $\sigma < a$ containing Z. If P doesn’t have a common component with some curve of $H^0(I_Z(t - 1))$, then $\deg Z \leq \sigma(t - 1) \leq (a - 1)(t - 1)$. But this is impossible since $\deg Z \geq (a - 1)(t - 1) + 1$. On the other hand Z is contained in a pencil $\langle T, T' \rangle$ of curves of degree $t - 1$ and this pencil has a base locus of dimension zero (see 4.9). So we may always find a curve in $H^0(I_Z(t - 1))$ having no common component with P. \hfill \Box

5. The proof (existence).

In this section we assume that $y \in A_t$ is admissible and prove that y is indeed effective. Since y is admissible we know by 1.11 that there exists a smooth plane curve, T, of degree $t - 1$ and a globally generated line bundle, \mathcal{L}, on T of degree $z := c(t - 1) - y$.

Lemma 5.1. Assume $y \in A_t$ is admissible. If T is a smooth plane curve of degree $t - 1$ and if \mathcal{L} is a globally generated line bundle on T with $\deg \mathcal{L} = c(t - 1) - y$, then $\mathcal{L}^*(c)$ is non special and globally generated.

Proof. We have $\deg \mathcal{L}^*(c) = y$. It is enough to check that $y \geq 2gt + 1 = (t - 2)(t - 3) + 1$. We have $y \geq (t - 1)(c - t + 1) + 1$. Since $c \geq 2t$ it follows that $y \geq (t - 1)(t + 1) + 1 = t^2$. \hfill \Box

Lemma 5.2. Assume $y \in A_t$ is admissible. If there exists a smooth plane curve, T, of degree $t - 1$, carrying a globally generated line bundle, \mathcal{L}, with $\deg \mathcal{L} = c(t - 1) - y$ and with $h^1(\mathcal{L}) \neq 0$, then y is effective.

Proof. Let Z be a section of \mathcal{L}. If $h^1(\mathcal{L}) = h^0(\mathcal{L}^*(t - 4)) \neq 0$, then Z lies on a curve, R, of degree $t - 4$. Set $X = T \cap R$. By 5.1 $\mathcal{L}^*(c)$ is globally generated, so we may find a $s \in H^0(\mathcal{L}^*(c))$ such that $(s)_0 \cap X = \emptyset$. Set $Y = (s)_0$. We have $\mathcal{O}_T(c) \simeq \mathcal{O}_T(Z + Y)$ and $Y \cap Z = \emptyset$. So Y and Z are linked by a complete intersection $I = F \cap T$. Let’s prove that Y satisfies $CB(c - 3)$. First observe that there exists a degree
t − 1 curve, T', containing Z such that $T' \cap Y = \emptyset$: indeed since $Y \cap X = \emptyset$, we just take $T' = R \cup C$ where C is a suitable cubic. Now let $p \in Y$ and let P be a degree $c − 3$ curve containing $Y' = Y \setminus \{p\}$. The curve $T'P$ contains $I \setminus \{p\}$ and has degree $c + t − 4$. Since the complete intersection I satisfies $CB(c + t − 4)$ and since $T' \cap Y = \emptyset$, $p \in P$.

It follows that we have: $0 \to \mathcal{O} \to F \to \mathcal{I}_Y(c) \to 0$ where F is a rank two vector bundle with Chern classes (c, y). Since $\mathcal{I}_{Y,T}(c)$ is globally generated, $\mathcal{I}_Y(c)$ and therefore F are globally generated. □

We need a lemma:

Lemma 5.3. For any integer r, $1 \leq r \leq h^0(\mathcal{O}(t − 1)) − 3$, there exists a smooth zero-dimensional subscheme, R, of degree r such that $\mathcal{I}_R(t − 1)$ is globally generated with $h^0(\mathcal{I}_R(t − 1)) \geq 3$.

Proof. Take R of degree r, of maximal rank. If $h^0(\mathcal{O}(t − 2)) \geq r$, then $h^1(\mathcal{I}_R(t − 2)) = 0$ and we conclude by Castelnuovo-Mumford’s lemma. Assume $h^0(\mathcal{O}(t − 2)) < r$ and take R of maximal rank and minimally generated (i.e. all the maps $\sigma(m) : H^0(\mathcal{I}_R(m)) \otimes H^0(\mathcal{O}(1)) \to H^0(\mathcal{I}_R(m + 1))$ are of maximal rank). If $\sigma(t − 1)$ is surjective we are done, otherwise it is injective and the minimal free resolution looks like:

$$0 \to d.\mathcal{O}(-t − 1) \to b.\mathcal{O}(-t) \oplus a.\mathcal{O}(-t + 1) \to \mathcal{I}_R \to 0$$

By assumption $a \geq 3$.

Since $\text{Hom}(d − \mathcal{O}(-t − 1), b.\mathcal{O}(-t) \oplus a.\mathcal{O}(-t + 1))$ is globally generated, if $\varphi \in \text{Hom}(d.\mathcal{O}(-t − 1), b.\mathcal{O}(-t) \oplus a.\mathcal{O}(-t + 1))$ is sufficiently general, then $\text{Coker}(\varphi) \simeq \mathcal{I}_R$ with R smooth of codimension two. Furthermore since $b.\mathcal{O}(1)$ is globally generated, it can be generated by $b + 2$ sections; it follows that the general morphism $f : d.\mathcal{O} \to b.\mathcal{O}(1)$ is surjective ($d = a + b − 1 \geq b + 2$). In conclusion the general morphism $\varphi = (f, g) : d.\mathcal{O}(-t − 1) \to b.\mathcal{O}(-t) \oplus a.\mathcal{O}(-t + 1)$ has $\text{Coker}(\varphi) \simeq \mathcal{I}_R$ with R smooth, with the induced morphism $a.\mathcal{O}(-t + 1) \to \mathcal{I}_R$ surjective. □

Proposition 5.4. Let $c \geq 4$ be an integer. For every $2 \leq t \leq c/2$, every admissible $y \in A_t$ is effective.
Proof. By \([1]\) there exists a globally generated line bundle, \(L\), of degree \(l = c(t-1) - y\) on a smooth plane curve, \(T\), of degree \(t - 1\). If \(h^1(L) \neq 0\) we conclude with \(5.2\).

Assume \(h^1(L) = 0\). Then \(h^0(L) = l - g_T + 1 \geq 2\) (we may assume \(L \neq \mathcal{O}_T\), because if \(y = c(t-1)\), we are done). So \(l \geq \frac{(t-2)(t-3)}{2} + 1\). Since \((t-1)(c-t+1) + 1 \leq y \leq t(c-t) - 1\), we have:

\[
(t-1)^2 - 1 \geq l \geq \frac{(t-2)(t-3)}{2} + 1 \quad (*)
\]

It follows that:

\[
l = (t-1)^2 - r, \quad 1 \leq r \leq \frac{t(t+1)}{2} - 3 = h^0(\mathcal{O}(t-1)) - 3 \quad (**)\]

For \(r, 1 \leq r \leq h^0(\mathcal{O}(t-1)) - 3\), let \(R \subset \mathbb{P}^2\) be a general set of \(r\) points of maximal rank, with \(h^0(\mathcal{I}_R(t-1)) \geq 3\) and \(\mathcal{I}_R(t-1)\) globally generated (see \(5.3\)). It follows that \(R\) is linked by a complete intersection \(T \cap T'\) of two smooth curves of degree \(t-1\), to a set, \(Z\), of \((t-1)^2 - r = l\) points. Since \(\mathcal{I}_R(t-1)\) is globally generated, \(\mathcal{I}_{R,T}(t-1) \simeq \mathcal{O}_T(t-1-R)\) is globally generated. Since \(\mathcal{O}_T(t-1) \simeq \mathcal{O}_T(R+Z)\), we see that \(L := \mathcal{O}_T(Z)\) is globally generated. Moreover, by construction, \(h^0(\mathcal{I}_Z(t-1)) \geq 2\).

By \(5.4\), \(L^*(c)\) is globally generated so there exists \(s \in H^0(L^*(c))\) such that: \(Y := (s)_0\) satisfies \(Y \cap (T \cap T') = \emptyset\). As in the proof of \(7.2\), we see that \(Y\) satisfies \(CB(c-3)\): indeed \(T'\) is a degree \(t-1\) curve containing \(Z\) such that \(T' \cap Y = \emptyset\). Since \(\mathcal{I}_{Y,T}(c) \simeq L\) is globally generated, we conclude that \(\mathcal{I}_{Y}(c)\) is globally generated.

Proposition \(5.4\) and Corollary \(1.14\) (and Remark \(2.5\)) prove Theorem \(3.6\). It follows that the proof of Theorem \(0.1\) is complete.

6. Morphisms from \(\mathbb{P}^2\) to \(G(1, 3)\).

It is well known that finite morphisms \(\varphi : \mathbb{P}^2 \to G(1, 3)\) are in bijective correspondence with exact sequences of vector bundles on \(\mathbb{P}^2\):

\[
0 \to E^* \to 4.\mathcal{O} \to F \to 0 \quad (*)
\]

where \(F\) has rank two and is globally generated with \(c_1(F) = c > 0\). If \(\varphi\) is generically injective, then \(\varphi(\mathbb{P}^2) = S \subset G \subset \mathbb{P}^5\) (the last inclusion is given by the Plücker embedding) has degree \(c^2\) (as a surface of \(\mathbb{P}^5\)) and bidegree \((y, c^2 - y)\), \(y = c_2(F)\) (i.e. there are \(y\) lines of \(S\) through a general point of \(\mathbb{P}^3\) and \(c^2 - y\) lines of \(S\) contained in a general plane of \(\mathbb{P}^3\)). Theorem \(5.11\) gives all the possible
(c, y) (but it doesn’t tell if φ exists). Finally, by [8], if φ is an embedding then
(c, y) ∈ {(1, 0), (1, 1), (2, 1), (2, 3)}.

REFERENCES

[1] Coppens, M.: The existence of base point free linear systems on smooth plane curves,
J. Algebraic Geom., 4 (n° 1), 1-15 (1995)

[2] Ellia, Ph.-Peskine, Ch.: Groupes de points de P²: caractère et position uniforme,
L.N.M. 1417 , 111-116, Springer-Verlag (1990)

[3] Greco, S.-Raciti, G.: The Lüroth semigroup of plane algebraic curves, Pacific J. of
Math., 43-56, vol. 151, n°1 (1991)

[4] Griffiths, Ph.-Harris, J.: Residues and zero-cycles on algebraic varieties, Ann. of
Math., 108, 461-505 (1978)

[5] Gruson, L.-Peskine, Ch.: Genre des courbes de l’espace projectif, L.N.M., 687, 29-59,
Springer (1978)

[6] Hartshorne, R.: Stable vector bundles of rank 2 on P³, Math. Ann., 238, 229-280
(1978)

[7] Le Potier, J.: Stabilité et amplitude sur P²(ℂ), in Progress in Math., 7, 145-182,
Birkhaeuser (1980)

[8] Tango, H.: On (n − 1)-dimensional projective spaces contained in the Grassmann
variety Gr(n, 1), J. Math. Kyoto Univ., 14-3, 415-460 (1974)

Dipartimento di Matematica, 35 via Machiavelli, 44100 Ferrara

E-mail address: phe@unife.it