Cytokines in chronic respiratory diseases

Sergei P. Atamas1,2,5, Svetlana P. Chapoval2,3 and Achsah D. Keegan2,4*

Abstract

Cytokines are small, secreted proteins that control immune responses. Within the lung, they can control host responses to injuries or infection, resulting in clearance of the insult, repair of lung tissue, and return to homeostasis. Problems can arise when this response is over exuberant and/or cytokine production becomes dysregulated. In such cases, chronic and repeated inflammatory reactions and cytokine production can be established, leading to airway remodeling and fibrosis with unintended, maladaptive consequences. In this report, we describe the cytokines and molecular mechanisms behind the pathology observed in three major chronic diseases of the lung: asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. Overlapping mechanisms are presented as potential sites for therapeutic intervention.

Introduction

The healthy balance of normal processes in the lungs, termed pulmonary homeostasis, can be disturbed by external environmental insults or endogenous factors produced during other diseases. In response to insults, the lung responds with an ancient protective mechanism, inflammation. The subsequent course of events depends on the severity of the injury and on the effectiveness of the inflammatory response (Figure 1). If the injury is mild, structural damage to the lung is limited and the lung tissue will rapidly return to homeostasis (Figure 1a). If the injury is more profound and the structural integrity of the tissue and/or vitality of cells are impaired, then the defect in the tissue will be “patched” with newly formed connective tissue – scar. This repair process substitutes functional components of the tissue with extracellular matrix, which fills the defect and, in most cases, allows for the return to tissue homeostasis (Figure 1b). However, problems arise when the injury is severe or repetitive, and the inflammatory and repair processes fail to limit themselves. Under these circumstances, chronic inflammation and exaggerated repair can ensue, in some cases leading to excessive accumulation of extracellular matrix, or so-called pulmonary fibrosis (Figure 1c). In this brief report, we present the regulation of these processes by key cytokines in three representative chronic diseases of the lung – asthma, COPD, and pulmonary fibrosis.

Cytokines are small, secreted regulatory proteins that play critical roles in immune responses. Cytokines participate in cell-cell communication and regulate many functions including cell survival, cell growth, and induction of gene expression. Cytokines can be produced by many cell types. During the adaptive immune response, CD4+ “Helper T-cells” (TH) produce high levels of cytokines with differing functions. These helper cells can become TH1 cells making high levels of interferon (IFN)γ, TH2 cells making high levels of interleukin (IL)-4, IL-5, and IL-13, or TH17 cells making high levels of IL-17 [1]. These cytokines participate differently in asthma, COPD, and pulmonary fibrosis. While each disease has unique attributes, several cytokines play roles in all three diseases and, thus, may provide interesting targets for therapeutic intervention.
Asthma

Asthma is a chronic disease of the lung characterized by shortness of breath, wheeze, cough, reduced airflow on expiration, and airway hyperreactivity to non-specific bronchoconstrictors [2]. Recent evidence suggests that asthma is not a single disease, but consists of several subtypes, including allergic and steroid-resistant asthma [3,4]. Allergic asthma is mediated by the TH2 cytokines IL-4, IL-5, and IL-13 (Table 1) [5]. IL-4 participates in the differentiation of naïve CD4+ T cells into the TH2 type and is important for the production of allergen-specific IgE [1]. Furthermore, IL-4 drives the alternative activation of macrophages, which have been shown to increase lung inflammation in mouse models of allergic lung inflammation and to be correlated with asthma severity in asthma patients [6-12]. The role of IL-4 in driving allergic asthma is well known, and recent data suggest that its alternatively spliced variant missing exon 2-encoded region, IL-4[^2], is naturally produced by cells from patients with asthma but not from healthy controls [13]. This splice variant is active independently of wild-type IL-4 and promotes pulmonary inflammation without TH2 skewing [14,15].

Like IL-4, IL-13 can also regulate IgE production and the alternative activation of macrophages because it shares a receptor complex and downstream signaling pathways with IL-4 [16]. Furthermore, IL-13 has a distinct and prominent role in mediating the structural changes observed in the airways by modulating goblet cell differentiation and mucus production, airway smooth muscle cell proliferation, and subepithelial fibrosis [5,17,18]. Such changes lead to airway constriction and hypereactivity to stimulants, and, after prolonged chronic allergen exposure, tissue remodeling and fibrosis.

IL-5 plays an important role in eosinophilic inflammation during allergic asthma. Studies in both mouse models and human asthmatics have demonstrated that IL-5 is critical for the differentiation of eosinophils from bone marrow precursors and for their trafficking from the bone-marrow.

Table 1. Major cytokines involved in pathogenesis of asthma, COPD, and pulmonary fibrosis

Asthma	COPD	Pulmonary Fibrosis
IL-4, IL-5, IL-13	TNF-α, IL-1, IL-6, IL-8, IL-18, IL-32	TGF-β3, CTGF
IL-25, IL-33, TSLP		IL-4, IL-13
IL-17	IL-17	MCP-1, Oncostatin M
TNF-α, IL-1, IL-8, IL-18	TSLP	PDGF, GM-CSF
RANTES, eotaxin	TGF-β3	CCL17, PARC/CCL18
GM-CSF, VEGF		SDF-1/CXCL12
		IL-1, IL-17, IL-10

The relative importance of these cytokines is difficult to assess quantitatively; instead, the authors established this order based on their expertise and available literature in the field.

Abbreviations: CCL17, thymus and activation-regulated chemokine (also known as TARC); COPD, chronic, obstructive pulmonary disease; CTGF, connective tissue growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL, interleukin; MCP-1, monocyte chemotactic protein (also known as CCL2); PARC, pulmonary and activation-regulated chemokine (also known as CCL18); PDGF, platelet-derived growth factor; RANTES, regulated and normal T cell expressed and secreted; SDF-1/CXCL12, stromal cell-derived factor-1; TGF-β, transforming growth factor beta; TNF-α, tumor necrosis factor alpha; TSLP, thymic stromal lymphopoietin; VEGF, vascular endothelial growth factor.
to the lung [19-24]. Furthermore, IL-5 enhances eosinophil survival [25]. Thus, the TH2 cytokines IL-4, IL-13, and IL-5 orchestrate the set of physiological responses characteristic of allergic asthma including inflammation, airway hyperactivity, and airway remodeling.

In addition to the classic TH2-cell derived cytokines, cytokines produced by airway epithelial cells have recently been recognized as critical mediators of allergic asthma [26,27]. Airway epithelial cells are the first to encounter inhaled allergens or other agents and are stimulated to secrete IL-25 [28], IL-33 [29], and thymic stromal lymphopoietin (TSLP) [30-33]. IL-25 is produced by airway epithelial cells upon exposure to allergens, particles, and helminths [28,34,35]. IL-33 is present in cells in both full-length and mature forms, of which mature IL-33 is a powerful activator of the TH2 responses [29,36-41], whereas full length IL-33 activates inflammation without engaging the IL-33 receptor component T1/ST2 or engaging the TH2 mechanisms [36]. The IL-33 receptor is critical for development of asthma [42-44]. Both IL-25 and IL-33 stimulate the rapid production of IL-5 and IL-13 by natural helper cells (multipotent progenitor cells, nuocytes, c-Kit+Sca-1+ IL-7R+IL-33R+IL-17RB+ cells) in the airways, which promotes TH2 generation and increases local TH2 cytokine production [45-49]. TSLP primes, polarizes, and maintains TH2 cells [50], and its expression in the airways of patients with asthma has been shown to correlate with disease severity [51-53]. All these TH2-associated cytokines are engaged in an intricate interplay with other cytokines including, but not limited to, TNF-α [54-56], IL-1 [57,58], granulocyte-macrophage colony-stimulating factor (GM-CSF) [57,59,60], vascular endothelial growth factor (VEGF) [61-64], IL-18 [65,66], and IL-17 [67-73]. Based on studies in mouse models, it is believed that TH17 cells and, therefore, IL-17 cytokines play a role in asthma severity by increasing inflammatory cell recruitment to the airways [74]. Furthermore, the TH17-mediated pathway may contribute to steroid resistance in human asthma, but this has not yet been clearly established [4]. Thus, IL-17-driven asthma may be distinct from allergic asthma and require different therapeutic strategies [3,4]. The chemotactic family of cytokines called chemokines also centrally contributes to pathogenesis of asthma by recruiting specific inflammatory cells into the lung tissue [75-77], including regulated and normal T cell expressed and secreted (RANTES)/chemokine (c-c motif) ligand (CCL)5 [78-81], eotaxins CCL11, CCL24, and CCL26 [81-84], CXCL8/IL-8 [85,86]. While the TH1 cytokine IFN-γ is typically thought to suppress TH2-mediated responses, several reports indicate that, in certain circumstances, IFN-γ is also involved in promoting disease pathogenesis [87-89].

COPD

COPD is caused by smoking or other prolonged significant exposure to fumes, dust, or polluted air, which causes chronic inflammation of bronchi, destruction of lung tissue (emphysema), and some degree of scarring. The inflammatory process involving T cells, neutrophils, and macrophages is driven by the classical proinflammatory cytokines TNF-α [90,91], IFN-γ [92-94], IL-1 [95], IL-6 [96], IL-8 [90,91,97-102], IL-18 [92,103,104], and IL-32 [105]. Recent evidence also implicates IL-17 in the pathogenesis of COPD [56,92,106-109]. Increased sputum IL-17 levels were identified in COPD patients, and were even more pronounced than those detected in patients with asthma [56]. These levels correlated with a decrease in lung function as measured by a decrease in forced expiratory volume, suggesting a potential role for IL-17 in COPD pathogenesis and defining it as a prognostic target for disease immunotherapy [56]. Although COPD is not considered a TH2 disease, activated TH1 and TH2 cells are found in COPD patients, suggesting that both may contribute to the disease processes. For example, the pro-TH2 cytokine TSLP is expressed and functionally active not only in patients with asthma but also in patients with COPD [33,73]. Similarly, IL-13 may be contributing to mucus metaplasia, airway fibrosis, and vascular remodeling in COPD [92].

Expression of the profibrotic cytokine transforming growth factor (TGF)-β is enhanced in the airways of patients with COPD [110-113]. This appears somewhat counter intuitive because TGF-β is a potent inducer of connective tissue deposition, whereas COPD is characterized predominantly by lung tissue destruction. Nevertheless, pulmonary fibroblasts from these patients respond to stimulation by TGF-β with an enhanced activation of the WNT/β-catenin pathway [114], whereas COPD airway smooth muscles respond to similar stimulation with an enhanced deposition of the proteoglycan perlecan [115], suggesting that TGF-β contributes to architectural changes in the lungs in COPD. Indeed, peribronchial fibrosis does develop in the lungs of patients with COPD, which is in contrast to mostly subepithelial fibrosis in asthma (see above) and interstitial fibrosis in idiopathic pulmonary fibrosis and scleroderma lung disease (see below).

Pulmonary fibrosis

Pulmonary fibrosis – excessive accumulation of scar tissue – develops during the progression of a variety of lung diseases. This process may be self-limiting, but in some cases, the fibrotic process becomes overt and irreversible, leading to a significant decline in lung function, the ability to exchange gas. Pulmonary fibrosis
is the main cause of death in the autoimmune disease scleroderma [116], whereas in patients with idiopathic pulmonary fibrosis, median survival is only two to three years [117]. In cases of such profound pulmonary fibrosis, the available therapies have limited effectiveness. Extracellular matrix, including collagen, accumulates in the lungs through several mechanisms. Resident pulmonary fibroblasts become activated, increase their proliferation rate, while decreasing sensitivity to apoptotic signals, and deposit more extracellular matrix, while slowing down extracellular matrix turnover. Bone marrow-derived cells called fibrocytes home to the lung and differentiate into activated fibroblasts [118-120]. Epithelial-mesenchymal transition, a process by which lung epithelial cells transform into myofibroblasts, also contributes to lung fibrosis [121-123]. All these mechanisms are controlled by cytokines, either through direct recruitment and activation of extracellular matrix-producing cells, or indirectly, through regulation of pulmonary inflammation [124-130], redox balance [131-133], and activity of several enzymatic systems, including matrix metalloproteinases and their inhibitors [130,134-136], and clotting enzymes [126,137-141].

TGF-β is undoubtedly the most potent profibrotic cytokine [142,143]. It is produced in latent form and normally stored as such in tissues in association with extracellular matrix and needs to be activated to exert its functional effect. Thus, TGF-β-driven fibrosis is controlled by the mechanisms of its activation rather than production. In the lungs, activation of TGF-β by αV-containing integrins plays a central role in the mechanism of fibrosis [127,143-146]. Connective tissue growth factor (CTGF) acts in concert with TGF-β, contributing to fibrosis [147,148]. Furthermore, the TH2 cytokines IL-4 and IL-13 are direct activators of fibrosis [149-154], whereas the TH1 cytokine IFN-γ is a potent direct inhibitor of extracellular matrix deposition [155,156]. Interestingly, although the levels of Th2 cytokines are substantially higher in asthma than in fibrotic diseases such as scleroderma or idiopathic pulmonary fibrosis, the severity of fibrosis is higher in the latter diseases. Furthermore, scleroderma lung disease and idiopathic pulmonary fibrosis are characterized by diffuse parenchymal accumulation of extracellular matrix, whereas in asthma, fibrosis is mostly subepithelial. A possible explanation for this paradox is that, in asthma, TH2 cytokines are the predominant drivers of fibrosis, whereas in scleroderma lung disease and idiopathic pulmonary fibrosis, the patients experience a "profibrotic cytokine storm", with elevated levels of all of the cytokines listed in this section. Furthermore, TGF-β is a more potent profibrotic cytokine, exerting its effect at much lower concentrations than IL-4 or IL-13.

The chemokine monocyte chemotactic protein (MCP)-1/CCL2 promotes fibrosis through direct and indirect mechanisms [157-160], as do Oncostatin M [128,161] and platelet derived growth factor (PDGF) [162-164]. An important, predominantly indirect, modulator of fibrosis is the chemokine pulmonary and activation-regulated chemokine (PARC)/CCL18, which is elevated in association with various fibrotic lung diseases, such as scleroderma [165,166], hypersensitivity pneumonitis and idiopathic pulmonary fibrosis [166,167], asthma [168], and sarcoidosis [169]. Although PARC/CCL18 directly activates collagen production in fibroblasts in cell culture [170-173], it exerts its profibrotic action in vivo mostly by recruiting profibrotic T cells [127,130,174]. Another chemokine, stromal cell-derived factor (SDF)-1/chemokine (C-X-C motif) ligand (CXCL) 12, contributes to fibrosis by recruiting bone marrow-derived progenitors of fibroblasts to the lung [175-177]. Numerous other cytokines may contribute to the mechanism of pulmonary fibrosis, but their exact roles remain either controversial or mechanistically unclear, including IL-1β and IL-17 [178-180], IL-10 [181,182], thymus and activation-regulated chemokine (CCL17) [183], and GM-CSF [184-186]. An extensive discussion of cytokines regulating pulmonary fibrosis can be found in [129,187-189].

Cytokine-targeted immunotherapy

The important contribution of cytokines to features of the chronic lung diseases presented above suggests potential targets for therapeutic intervention using blocking antibodies or therapeutic proteins. Indeed, a number of clinical trials have been performed or are ongoing for many of the cytokine targets. The emerging anti-cytokine therapies for asthma are primarily directed toward IL-4, IL-5, or IL-13 [190-195]. Early studies targeting IL-4 met with limited success [195], likely because they did not also block IL-13. More recent studies with blocking anti-IL-13 antibodies or with an IL-4 mutant that blocks the actions of both IL-4 and IL-13 showed greater promise in some, but not all, studies [191-193,195-197]. The varied effectiveness of IL-13-directed therapies is not surprising considering that only 50% of asthmatics show elevated levels of sputum IL-13 [198]. Similarly, there are controversial results on the effectiveness of IL-5 directed therapies [196,197]. While anti-IL-5 antibody was effective at reducing eosinophil numbers in blood and sputum, it was substantially less effective at reducing eosinophil numbers in the lung and had a modest impact on lung function [194]. Therefore, it is clear that currently existing therapies have to be extended to include downregulation of additional pathways that have been shown to play roles in asthma pathogenesis such as TSLP, IL-17, IL-25, IL-33 [199]. Other more
“non-traditional” molecular pathways might also prove to be effective targets. As an example, we have recently shown that neuroimmune semaphorin 4A plays a downregulatory role in experimental asthma severity, in part, by regulation of IL-13 [200,201].

Targets for COPD and lung fibrosis are less numerous. Several drugs targeting the tumor necrosis factor (TNF)-α pathway have been developed and used in clinical settings. Some of them (i.e. mouse/human IgG1 antibody against TNF-β, ifliximab) were found to be effective in asthma but not in COPD [202-205]. A soluble human TNFR2, etanercept, reduced lung pathophysiology in patients with severe forms of disease [54,55]. Clinical studies of a fully humanized IL-1β blocking antibody (canakinumab) and anti-IL-6R blocking antibody (tocilizumab) were reported to be in progress in patients with COPD and rheumatoid arthritis, correspondingly [206], but no final results have been revealed yet. Several drugs have been developed to target the VEGF pathway, which has been implicated in asthma, such as bevacizumab, VEGF-Trap, and PTK737 [207] with clinical trials being limited thus far to cancer, ischemia, and age-related macular degeneration [208]. The identification and targeting of a cytokine active in more than one chronic lung disease would clearly be beneficial.

Summary
There is growing awareness that there are key similarities in the contribution of cytokines and the manifestation of lung pathology among the chronic respiratory diseases [209]. As noted in Table 1, several of the cytokines contribute to multiple chronic disease states (e.g. TGF-β, IL-17, TSLP, IL-4, IL-13). While we have learned much about the general role of cytokines in these diseases, many questions remain unanswered. What is the relationship between the major chronic respiratory diseases? Are there common targets for intervention? Will it be possible in the future to attenuate or even abrogate the undesired excessive responses by therapeutically targeting cytokines? Experiments in animals have been very promising, but their translation into clinical trials lags behind. One difficulty is that cytokines are functionally pleiotropic and redundant, and, as a result, targeting an individual cytokine may have a less than expected effect (due to functional substitution by other, functionally similar, cytokines) or have undesired side effects (due to pleiotropy). Another difficulty is that mouse models do not completely mimic the disease in humans [210-212]. It will be important to further understand these issues to increase the likelihood that targeting cytokines will improve the clinical outcome for patients with chronic lung diseases.

Abbreviations
CCL, chemokine (C-C motif) ligand; COPD, chronic, obstructive pulmonary disease; CTGF, connective tissue growth factor; CXCL, chemokine (C-X-C motif) ligand; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; MCP-1, monocyte chemotactic protein; PARC, pulmonary and activation-regulated chemokine; PDGF, platelet-derived growth factor; RANTES, regulated and normal T cell expressed and secreted; SDF-1, stromal cell-derived factor-1; TGF-β, transforming growth factor beta; TH, T helper cells; TNF, tumor necrosis factor; TSLP, thymic stromal lymphopoietin; VEGF, vascular endothelial growth factor.

Disclosures
The authors declare that they have no disclosures.

Acknowledgements
We thank the members of our laboratories for valuable discussions and insight. This work was supported by NIH grants AI038985 (ADK), HL106196 (SAP), and AI076736 (SPC) and the VA Merit Award 5I01CX00010 (SAP).

References
1. Zhu J, Paul WE: CD4 T cells: fates, functions, and faults. Blood 2008, 112:1557-69.
2. Busse WW, Rosenwasser LJ: Mechanisms of asthma. The Journal of allergy and clinical immunology 2003, 111:S799-804.
3. Bhakta NR, Woodruff PG: Human asthma phenotypes: from the clinic, to cytokines, and back again. Immuno Rev 2011, 242:220-32.
4. Wenzel SE: Asthma phenotypes: the evolution from clinical to molecular approaches. Nature medicine 2012, 18:716-25.
5. Wills-Karp M: Interleukin-13 in asthma pathogenesis. Immuno Rev 2004, 202:175-90.
6. Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, Sohn MH, Cohn L, Homer RJ, Kozhich AA, Humbles A, Kearley J, Coyle A, Chupp G, Reed J, Fivell RA, Elias JA: Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. The Journal of experimental medicine 2009, 206:1149-66.
7. Kim EY, Battaile JT, Patel AC, You Y, Agapov E, Grayson MH, Benoit LA, Byers DE, Aley V, Tucker J, Swanson S, Tidwell R, Tyner JW, Morton JD, Castro M, Polimeni D, Patterson GA, Schwendener RA, Allard JD, Pelz G, Holtzman MJ: Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nature medicine 2008, 14:633-40.
8. Melgert BN, Oriss TB, Qi Z, Dixon-McCarthy B, Geerlings M, Hylkema MN, Ray A: Macrophages: regulators of sex differences in asthma? American journal of respiratory cell and molecular biology 2010, 42:595-603.
9. Melgert BN, ten Hacken NH, Rutgers B, Timens W, Postma DS, Hylkema MN: More alternative activation of macrophages in lungs of asthmatic patients. The Journal of allergy and clinical immunology 2011, 127:S31-3.
10. Subrata LS, Bizzintino J, Mamessier E, Bosco A, McKenna KL, Wikstrom ME, Goldblatt J, Sly PO, Hales BJ, Thomas WR, Lain IA, LeSouef PN, Holt PG: Interactions between innate antiviral
and atopic immunoinflammatory pathways precipitate and sustain asthma exacerbations in children. J Immunol 2009, 183: 2793-800.

11. Ford AQ, Dasgupta P, Mikhailenko I, Smith EM, Noben-Trauth N, Keegan AD: Adaptive transfer of IL-4Ralpha(+) macrophages is sufficient to enhance eosinophilic inflammation in a mouse model of allergic lung inflammation. BMC Immunol 2012, 13:6.

12. Dasgupta P, Keegan AD: Contribution of Alternatively Activated Macrophages to Allergic Lung Inflammation: A Tale of Mice and Men. J Innate Immun 2012, 4:478-86.

13. Luzina IG, Lockatell V, Lavania S, Pickering EM, Kang PH, Bashkatova YN, Andrew SP, Atamas SP: Natural production and functional effects of alternatively spliced interleukin-4 protein in asthma. Cytokine 2012, 58:20-6.

14. Luzina IG, Lockatell V, Todd NW, Highsmith K, Keegan AD, Hasday JD, Atamas SP: Alternatively spliced variants of interleukin-4 promote inflammation differentially. J Leukoc Biol 2011, 89: 763-70.

15. Luzina IG, Lockatell V, Todd NW, Keegan AD, Hasday JD, Atamas SP: Splice isoforms of human interleukin-4 are functionally active in mice in vivo. Immunology 2011, 132:385-93.

16. Heller NM, Dasgupta P, Dorsey NJ, Chapoval SP, Keegan AD: The type I and type II receptor complexes for IL-4 and IL-13 differentially regulate allergic lung inflammation. In Allergic Diseases - Highlights in the Clinic, Mechanisms and Treatment. Edited by Pereira C. Rijeka, Croatia: IntTECH; 2012: 43-82.

17. Munitz A, Brandt EB, Mingler M, Finkelman FD, Rothenberg ME: Distinct roles for IL-13 and IL-4 via IL-13 receptor alpha1 and the type II IL-4 receptor in asthma pathogenesis. Proc Natl Acad Sci U S A 2008, 105:7240-5.

18. Ramalingam TR, Pesce JT, Sheikh F, Cheever EM, Wenzel-Kane MM, Wilson MS, Stevens S, Valenzuela DM, Murphy AJ, Yancopoulos GD, Urban Jr DF, Donnelly RP, Wynn TA: Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor alpha1 chain. Nat Immunol 2008, 9:25-33.

19. Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA: Recombinant human interleukin 5 is a selective activator of human eosinophil function. The Journal of experimental medicine 1988, 167:219-24.

20. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG: Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. The Journal of experimental medicine 1996, 183:195-201.

21. Lee JJ, McGarry MP, Farmer SC, Denzler KL, Larson KA, Carrigan PE, Brennise IE, Horton MA, Haczu A, Gelfand EW, Leikauf GD, Lee NA: Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. The Journal of experimental medicine 1997, 185: 2143-56.

22. Hanelmann E, Oshiba A, Loader J, Larsen GL, Gleich G, Lee J, Gelfand EW: Antinterleukin-5 antibody prevents airway hyperresponsiveness in a mouse model of airway sensitization. American journal of respiratory and critical care medicine 1997, 155:819-25.

23. Sur S, Gleich GJ, Swanson MC, Bartemes KR, Broide DH: Eosinophilic inflammation is associated with elevation of interleukin-5 in the airways of patients with spontaneous symptomatic asthma. The Journal of allergy and clinical immunology 1995, 96:661-8.

24. Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Steer PJ, Barnes PJ: Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness, and the late asthmatic response. Lancet 2000, 356:2144-8.

25. Stirling RG, van Rensen EL, Barnes PJ, Chung KF: Interleukin-5 induces CD34(+) eosinophil progenitor mobilization and eosinophil CCR3 expression in asthma. American journal of respiratory and critical care medicine 2001, 164:1403-9.

26. Lambrecht BN, Hammad H: Biology of lung dendritic cells at the origin of asthma. Immunity 2009, 31:412-24.

27. Kool M, Hammad H, Lambrecht BN: Cellular networks controlling Th2 polarization in allergy and immunity. F1000 Biol Rep 2012, 4:6.

28. Angkasekwinai P, Park H, Yang WH, Chang SH, Corry DB, Liu YJ, Zhu Z, Dong C: Interleukin 25 promotes the initiation of proallergic type 2 responses. The Journal of experimental medicine 2007, 204:1509-17.

29. Schnitz J, Owyang A, Oldham E, Song Y, Murphy E, Mcclanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA: IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005, 23:479-89.

30. Iseki M, Nomoto-Miyake M, Xu W, Sun X, Takaki S, Rawlings D, Ziegler SF: Thymic stromal lymphopoietin (TSLP)-induced polyclonal B-cell activation and autoimmunity are mediated by CD4+ T cells and IL-4. Int Immunol 2012, 24:183-95.

31. Okayama Y, Okumura S, Sagara H, Yuki K, Sasaki T, Watanabe N, Fueki M, Sugiyama K, Takeda K, Fukuda T, Saito H, Ra C, FcepsilonRI-mediated thymic stromal lymphopoietin production by interleukin-4-primed human mast cells. Eur Respir J 2009, 34:425-35.

32. Omori M, Ziegler S: Induction of IL-4 expression in CD4(+) T cells by thymic stromal lymphopoietin. J Immunol 2007, 178:1396-404.

33. Ying S, O’Connor B, Ratoff J, Meng Q, Fang C, Cousins D, Zhang G, Gu S, Gao Z, Shamji B, Edwards MJ, Lee TH, Corrigan CJ: Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol 2008, 181:2790-8.

34. Hurst SD, Muchamuel T, Gorman DM, Gilbert JM, Clifford T, Kwan S, Menon S, Seymour B, Jackson C, Kung TT, Brieland JK, Zurawski SM, Chapman RW, Zurawski G, Coffman RL: New IL-17 family members promote Th1 or Th2 responses in the lung in vivo function of the novel cytokine IL-25. J Immunol 2002, 169: 443-53.

35. Hammad H, Cheippa M, Perros F, Willart MA, Germann RN, Lambrecht BN: House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature medicine 2009, 15:410-6.

36. Luzina IG, Pickering EM, Kopach P, Kang PH, Lockatell V, Todd NW, Papadimitriou JC, McKenzie AN, Atamas SP: Full-Length IL-33 Promotes Inflammation but not Th2 Response In Vivo in an ST2-Independent Fashion. J Immunol 2012, 189:403-10.
37. Komai-Koma M, Xu D, Li Y, McKenzie AN, McInnes IB, Liew FY: IL-33 is a chemoattractant for human Th2 cells. *Eur J Immunol* 2007, 37:2779-86.

38. Louten J, Rankin AL, Li Y, Murphy EE, Beaumont M, Moon C, Bourne P, McClanahan TK, Pflanz S, de Waal Malefyt R: Endogenous IL-33 enhances Th2 cytokine production and T-cell responses during allergic airway inflammation. *Int Immunol* 2011, 23:307-15.

39. Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. *Proc Natl Acad Sci U S A* 1998, 95:6930-5.

40. Nawijn MC, Dingjan CM, Ferreira R, Lambrecht BN, Karis A, Louten J, Rankin AL, Li Y, Murphy EE, Beaumont M, Moon C, McInnes IB, Liew FY: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. *Proc Natl Acad Sci U S A* 1998, 95:6930-5.

41. Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. *Proc Natl Acad Sci U S A* 1998, 95:6930-5.

42. Coyle AJ, Lloyd C, Tian J, Nguyen T, Eriksen C, Wang L, Ossotos P, Persson P, Delaney T, Lehar S, Lin S, Poisson L, Meisel C, Kamradt T, Bjerke T, Levinson D, Gutierrez-Ramos JC: Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. *The Journal of experimental medicine* 1999, 190:895-902.

43. Walti G, Matthews S, Kendall S, Gutierrez-Ramos JC, Coyle AJ, O'Doherty P, Russell T: Inhibition of T1/ST2 during respiratory syncytial virus infection prevents Th helper cell type 2 (Th2)-but not TH1-driven immunopathology. *The Journal of experimental medicine* 2001, 193:785-92.

44. Townsend MJ, Fallon PG, Matthews DJ, Jolin HE, McKenzie AN: T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. *The Journal of experimental medicine* 2000, 191:1069-76.

45. Neil DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie AN: Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. *Nature* 2010, 464:367-70.

46. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fuji H, Koyasu S: Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. *Nature* 2010, 463:540-4.

47. Saez SA, Siracusa MC, Perrigue JG, Spencer SP, Urban JF Jr., Tocker JE, Budeldsy AL, Kleinschek MA, Kastelein RA, Kambayashi T, Bhandoola A, Armitage D: IL-25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. *Nature* 2010, 464:1362-6.

48. Price AE, Liang HE, Sullivan BM, Reinhardt RL, Easley CJ, Erle DJ, Lockley RM: Systemically dispersed innate IL-13-expressing cells in type-2 immunity. *Proc Natl Acad Sci U S A* 2010, 107:1489-94.

49. Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, McKenzie AN: Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. *The Journal of allergy and clinical immunology* 2012, 129:911-8 e191-4.

50. Wang YH, Ito T, Homey B, Watanabe N, Martin R, Barnes CJ, McInnes IB, Muller FW, Gilliet M, Kumar R, Yao Z, Liu Y: Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. *Immunity* 2006, 24:827-38.

51. Ying S, O'Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, Robinson D, Zhang G, Zhao J, Lee TH, Corrigan C: Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. *J Immunol* 2005, 174:1813-90.

52. Al-Shami A, Spolski R, Kelly J, Kean-Myers A, Leonard WJ: A role for TSLP in the development of inflammation in an asthma model. *The Journal of experimental medicine* 2005, 202:829-39.

53. Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. *Proc Natl Acad Sci U S A* 1998, 95:6930-5.

54. Al-Shami A, Spolski R, Kelly J, Kean-Myers A, Leonard WJ: A role for TSLP in the development of inflammation in an asthma model. *The Journal of experimental medicine* 2005, 202:829-39.

55. Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, Beckett P, Al Ali M, Chauhan A, Wilson SJ, Reynolds A, Davies DE, Holgate ST: Tumour necrosis factor alpha (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. *Thorax* 2005, 60:1012-8.

56. Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. *Proc Natl Acad Sci U S A* 1998, 95:6930-5.

57. Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. *Proc Natl Acad Sci U S A* 1998, 95:6930-5.

58. Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. *Proc Natl Acad Sci U S A* 1998, 95:6930-5.

59. Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. *Proc Natl Acad Sci U S A* 1998, 95:6930-5.
in bronchial asthma. The Journal of allergy and clinical immunology 2001, 107:1034-8.

63. Chapoval SP, Lee CG, Tang C, Keegan AD, Cohn L, Bottomly K, Elias JA: Lung vascular endothelial growth factor expression induces local myeloid dendritic cell activation. Clin Immunol 2009, 132:371-84.

64. Lee CG, Link H, Balak P, Homer RJ, Chapoval S, Bhandari V, Kang MJ, Cohn L, Kim YK, McDonald DM, Elias JA: Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nature medicine 2004, 10:1095-103.

65. Harada M, Obara K, Hirotu T, Yoshimoto T, Hitomi Y, Sakashita M, Doi S, Miyatake A, Fujita K, Enomoto T, Taniguchi M, Higashi N, Fukutomi Y, Nakashiki K, Nakamura Y, Tamari M: A functional polymorphism in IL-18 is associated with severity of bronchial asthma. American journal of respiratory and critical care medicine 2009, 180:1048-55.

66. Wild JS, Sigounas A, Sur N, Siddiqui MS, Alam R, Kurimoto M, Sur S: IFN-gamma-inducing factor (IL-18) increases allergic sensitization, serum IgE, TH2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J Immunol 2000, 164:2701-10.

67. Bellini A, Marini MA, Bianchetti L, Barczyk C, Schmidt M, Mattoli S: Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal immunology 2012, 5:140-9.

68. Nakajima H, Hirose K: Role of IL-23 and Th17 Cells in Airway Inflammation in Asthma. Immune network 2010, 10:1-4.

69. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N, Olivenstein R, Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N, Olivenstein R: Eotaxin-2 and eotaxin-3 expression is associated with persistent eosinophilic bronchial inflammation in patients with asthma after allergen challenge. The Journal of allergy and clinical immunology 2005, 115:779-85.

70. Pentchev G, Hadjicharalambous C, Yoshikawa T, Handy RL, Anderson IK, Louis K, Davies DE, Djukanovic R: Contribution of eotaxin-1 to eosinophil chemotactic activity of moderate and severe asthmatic sputum. American journal of respiratory and critical care medicine 2004, 169:1110-7.

71. Nakamura H, Weiss ST, Israel E, Luster AD, Drazen JM, Lilly CM: Eotaxin and impaired lung function in asthma. American journal of respiratory and critical care medicine 1999, 160:1952-6.

72. Ordóñez CL, Shaughnessy TE, Matthy MA, Fahy JV: Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: Clinical and biologic significance. American journal of respiratory and critical care medicine 2000, 161:1185-90.

73. John AE, Zhu YM, Brightling CE, Pang L, Knox AJ: Human airway smooth muscle cells from asthmatic individuals have CXCL8 hypersecretion due to increased NF-kappa B p65, C/EBP beta, and RNA polymerase II binding to the CXCL8 promoter. J Immunol 2009, 183:4682-92.

74. Cho SH, Stanciu LA, Holgate ST, Johnston SL: Increased interleukin-4, interleukin-5, and interferon-gamma in airway CD4+ and CD8+ T cells in atopic asthma. American journal of respiratory and critical care medicine 2005, 171:224-30.

75. Brooks GD, Buchta KA, Swenson CA, Gern JE, Busse WW: Rhinovirus-induced interferon-gamma and airway responsiveness in asthma. American journal of respiratory and critical care medicine 2003, 168:1091-4.

76. Kobayashi M, Ashino S, Shiohama Y, Wakisita D, Kitamura H, Nishimura T: IFN-gamma induces airway hyper-responsiveness via up-regulation of neurokinin A/neurokinin-2 receptor signaling in a severe asthma model. Eur J Immunol 2012, 42:393-402.

77. Keatings VM, Collins PD, Scott DM, Barnes PJ: Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. American journal of respiratory and critical care medicine 1996, 153:530-4.

78. Aaron SD, Angel JB, Lunau M, Wright K, Fex C, Le Saux N, Dales RE: Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine 2001, 163:349-55.
vascular remodeling via IFN-gamma, IL-17A, and IL-17. American journal of respiratory and critical care medicine 2012, 185:1205-17.

93. Kaur M, Smyth Lj, Cadden P, Grunvy S, Ray D, Plumb J, Singh D: T lymphocyte sensitiveness to corticosteroids in chronic obstructive pulmonary disease. Respiratory research 2012, 13:20.

94. Moermans C, Heinen V, Nguyen M, Henket M, Sele J, Manise M, Corhay JL, Louis R: Local and systemic cellular inflammation and cytokine release in chronic obstructive pulmonary disease. Gytokine 2011, 56:298-304.

95. Sapey E, Ahmad A, Bayley D, Newbold P, Snell N, Rugman P, Stoolley RA: Imbalances between interleukin-1 and tumor necrosis factor agonists and antagonists in stable COPD. J Clin Immunol 2009, 29:508-16.

96. Buccioni E, Khartonov SA, Allegra L, Barnes PJ: High levels of interleukin-6 in the exhaled breath condensate of patients with COPD. Respir Med 2003, 97:1299-302.

97. Di Stefano A, Capelli A, Donner CF: Role of interleukin-8 in the pathogenesis and treatment of COPD. Chest 2004, 126:676-8.

98. Qiu Y, Zhu J, Bandi V, Atmar RL, Hattotuwa K, Guntupalli KK, Stockley RA: Cytokine release in chronic obstructive pulmonary disease. A study of the effect of proinflammatory cytokines on the biopsied neutrophilia, neutrophil chemokine and cytokine release in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine 2003, 168:968-75.

99. Schulz C, Kraztel K, Wolf K, Schroll S, Kohler M, Pfeifer M: Activation of bronchial epithelial cells in smokers without airway inflammation and patients with COPD. Chest 2004, 125:1706-13.

100. Perring DW, Huang HY, Chen HM, Lee YC, Perring RP: Characteristics of airway inflammation and bronchodilator reversibility in COPD: a potential guide to treatment. Chest 2004, 126:375-81.

101. Damia Ade D, Gimeno JC, Ferrer MJ, Fabregas ML, Folch PA, Paya JM: Activation of bronchial epithelial cells in smokers without COPD.

102. van Krieken JH: peripheral blood T cells increases with chronic obstructive pulmonary disease. American journal of physiology Lung cellular and molecular physiology 2012, 302:L325-33.

103. King TE Jr., Pardo A, Selman M: The role of inflammation in pulmonary fibrosis. American journal of physiology Lung cellular and molecular physiology 2004, 287:L302-L304.

104. De Boer WI, van Schadewijk A, Sont JK, Sharma HS, Stolk J, Hensma PS, van Krieken JH: Transforming growth factor-beta1 and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine 1998, 158:1951-7.

105. Takizawa H, Tanaka M, Takami K, Ohtsoshi T, Ito K, Satoh M, Okada Y, Yamazawa F, Nakahara K, Umeda A: Increased expression of transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). American journal of respiratory and critical care medicine 2001, 163:1476-83.

106. Kotturk N, Taticcioglu T, Memis L, Akyurek N, Akyol G: Vessel-Associated Transforming Growth Factor-Betal (TGF-beta1) Is Increased in the Bronchial Reticular Basement Membrane in COPD and Normal Smokers. PLoS One 2012, 7:e39736.

107. Baarsma HA, Spanjer AI, Haitsma G, Engelbertink LH, Meurs H, Jonker MR, Timens W, Postma DS, Kerstjens HA, Gossens R: Activation of TGF/1/beta/beta-catenin signaling in pulmonary fibroblasts by TGF-beta1 is increased in chronic obstructive pulmonary disease. PLoS One 2011, 6:e25450.

108. Ichimaru Y, Krimmer DJ, Burgess JK, Black JL, Oliver BG: TGF-beta enhances deposition of perlecan from COPD airway smooth muscle. American journal of physiology Lung cellular and molecular physiology 2009, 301:L872-8.

109. Ley B, Collard HR, King TE Jr: Clinical course and prediction of survival in idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine 2011, 183:431-40.

110. Grieb G, Steffens G, Pallua N, Bernhagen J, Buclma R: Circulating fibrocytes—biology and mechanisms in wound healing and scar formation. Int Rev Cell Mol Biol 2011, 291:1-19.

111. Striebel RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B: The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol 2009, 86:1118-8.

112. Herzog EL, Buclma R: Fibrocytes in health and disease. Exp Hematol 2010, 38:548-56.

113. Tanjore H, Blackwell TS, Lawson WE: Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. American journal of physiology Lung cellular and molecular physiology 2012, 302:L721-9.
F1000 Biology Reports 2013, 5:3

161. Fritz DK, Kerr C, Fattouh R, Llop-Guevara A, Khan WI, Jordana M, Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, Trojanowska M: Oncostatin M induces CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. American journal of respiratory and critical care medicine 2011, 186:1170-81.

162. Lo Re S, Lecocq M, Uwambayinena F, Yakoub Y, Delos M, Demoulin JB, Lucas S, Sparwasser T, Renauld JC, Lison D, Huaux F: Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. American journal of respiratory and critical care medicine 2011, 184:1270-81.

163. Trojanowska M: Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology (Oxford) 2008, 47:v-4.

164. Abboudahi A, Li M, Ping G, Plathow C, Domhan M, Kolls J, Lee LB, McPherson G, Grone HJ, Lipson KE, Huber KE: Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. The Journal of experimental medicine 2005, 201:1925-35.

165. Luzina IG, Atamas SP, Wise R, Wrigley FM, Xiao HQ, White B: Gene expression in bronchoalveolar lavage cells from scleroderma patients. American journal of respiratory cell and molecular biology 2002, 16:549-57.

166. Prasse A, Pechkovsky DV, Toews GB, Schaefer M, Egelling S, Ludwig C, Gerhmann M, Kollett F, Zissel G, Muller-Quernheim J: CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum 2007, 56:1685-93.

167. Pardo A, Smith KM, Abrams J, Coffman R, Bustos M, McClanahan TK, Grein J, Murphy EE, Zlochek A, Selman M: CCL18/DC-CK-1/PARC up-regulation in hypersensitivity pneumonitis. J Leukoc Biol 2001, 70:610-6.

168. de Nadai P, Charbonnier AS, Chenivesse C, Senechal S, Fournier C, Gilet J, Vorr H, Chang Y, Gosset P, Wollert B, Tonnell AB, Lassalle P, Tisicopoulos A: Involvement of CCL18 in allergic asthma. J Immunol 2006, 177:6286-93.

169. Mr泽k F, Sekerova V, Drabek J, Kolek V, du Bois RM, Petrek M: Expression of the chemokine PARC mRNA in bronchoalveolar cells of patients with sarcoidosis. Immunol Lett 2002, 84:17-22.

170. Prasse A, Pechkovsky DV, Toews GB, Jungraithmayr W, Kollett F, Goldmann T, Vollmer E, Muller-Quernheim J, Zissel G: A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. American journal of respiratory and critical care medicine 2006, 173:781-92.

171. Atamas SP, Luzina IG, Choi J, Tsimbaljuk N, Carbonetti NH, Singh IS, Trojanowska M, Jimenez SA, White B: Pulmonary and activation-regulated chemokine stimulates collagen production in lung fibroblasts. American journal of respiratory and critical care medicine 2003, 167:743-9.

172. Luzina IG, Highsmith K, Pochetuehn K, Nacu N, Rao JN, Atamas SP: PKCα-mediated CCL18-stimulated collagen production in pulmonary fibroblasts. American journal of respiratory cell and molecular biology 2006, 35:298-305.

173. Luzina IG, Tsimbaljuk N, Choi J, Hasday JD, Atamas SP: CCL18-stimulated upregulation of collagen production in lung fibroblasts requires Sip1 signaling and Vsa Mad3 activity. J Cell Physiol 2006, 206:221-8.

174. Luzina IG, Papadimitriou JC, Anderson R, Pochetuehn K, Atamas SP: Induction of prolonged infiltration of T lymphocytes and transient T lymphocyte-dependent collagen deposition in mouse lungs following adenosine gene transfer of CCL18. Arthritis Rheum 2006, 54:2643-55.

175. Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH: Bone marrow-derived progenitor cells in pulmonary fibrosis. The Journal of clinical investigation 2004, 113:243-52.

176. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strierer RM: Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. The Journal of clinical investigation 2004, 114:438-46.

177. Xu J, Mora A, Shim H, Stecenko A, Brigham KL, Rojas M: Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis. American journal of respiratory cell and molecular biology 2007, 37:291-9.

178. Wilson MS, Madala SK, Ramalingum TR, Gochochi BR, Rosas IQ, Cheever AW, Wynn TA: Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. The Journal of experimental medicine 2010, 207:535-52.

179. Lo Re S, Dumoutier L, Couillin I, Van Vyve C, Yakoub Y, Uwambayinena F, Marien B, van den Brule S, Van Snick J, Uyttenhove C, Riffel B, Renauld JC, Lison D, Huaux F: IL-17A-producing gammadelta T and Th17 lymphocytes mediate lung inflammation but not fibrosis in experimental silicosis. J Immunol 2010, 184:6367-77.

180. Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, Wang XX, Liu HZ, Sun W, Hu ZW: Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol 2011, 187:3003-14.

181. Sun L, Louie MC, Vannella KM, Wilke CA, LeVine AM, Moore BB, Stanley TP: New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2 activation in a CCL2/CXCR2 axis. American journal of physiology Lung cellular and molecular physiology 2011, 300:L341-53.

182. Garcia-Prieto E, Gonzalez-Lopez A, Cabrera S, Astudillo A, Gutierrez-Fernandez A, Fanjul-Fernandez M, Batalla-Solis E, Puente XS, Fueyo A, Lopez-Otin C, Albaiceta GM: Resistance to bleomycin-induced lung fibrosis in MMP-8 deficient mice is mediated by interleukin-10. PLoS ONE 2010, 5:e13242.

183. Belperio JA, Dy M, Murray L, Burdick MD, Xue YY, Strierer RM, Keane MP: The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis. J Immunol 2004, 173:4692-8.

184. Xing Z, Okhawa T, Yajima M, Graham F, Gauldie J: Transfer of granulocyte-macrophage colony-stimulating factor gene to rat lung induces eosinophils, mononcytosis, and fibrotic reactions. The Journal of clinical investigation 1996, 97:1102-10.

185. Xing Z, Tremblay GM, Sime PJ, Gauldie J: Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor-beta I and myofibroblast accumulation. Am J Pathol 1997, 150:59-66.

186. Moore BB, Coffey MJ, Christensen P, Sitterding S, Ngar R, Wilke CA, McDonald P, Phare SM, Peters-Golden M, Paine R, 3rd, Toews GB, GM-CSF regulates bleomycin-induced pulmonary fibrosis via a prostaglandin-dependent mechanism. J Immunol 2000, 165:4032-9.

187. Atamas SP, White B: The role of chemokines in the pathogenesis of scleroderma. Curr Opin Rheumatol 2003, 15:772-7.

188. Atamas SP, White B: Cytokine regulation of pulmonary fibrosis in scleroderma. Cytokine Growth Factor Rev 2003, 14:537-50.

189. Atamas SP: Complex cytokine regulation of tissue fibrosis. Life Sci 2002, 72:631-43.

190. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Braubing P, Green RH, Wardlaw AJ, Pavord ID: Mepolizumab and exacerbations of refractory eosinophilic asthma. The New England journal of medicine 2009, 360:973-84.

191. Wenzel S, Wilbraham D, Fuller R, Gez EH, Longshre M: Effect of an interleukin-4 variant on late phase asthmatic response to
allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 2007, 370:1422-31.

192. Gauvreau GM, Boulet LP, Cockcroft DW, Fitzgerald JM, Carlsten C, Davis BE, Deschesnes F, Duong M, Durn BL, Howie KJ, Hui L, Koppang MT, Killian KJ, Srinich TX, Watson RM, Y N, Zhou S, Raible D, O’Byrne PM: Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. American journal of respiratory and critical care medicine 2011, 183:1007-14.

193. Maes T, Joos GF, Brusselle GG: Targeting interleukin-4 in asthma: lost in translation? American journal of respiratory cell and molecular biology 2012, 47:261-70.

194. Corren J: Anti-interleukin-5 antibody therapy in asthma and allergies. Curr Opin Allergy Clin Immunol 2011, 11:565-70.

195. Borish LC, Nelson HS, Lanz MJ, Claussen L, Whitmore JB, Agostì JM, Garrison L: Interleukin-4 receptor in moderate atopic asthma. A phase III randomized, placebo-controlled trial. American journal of respiratory and critical care medicine 1999, 160:1816-23.

196. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Ethemidis A, Pizzichini E, Hargreave FE, O’Byrne PM: Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. The New England journal of medicine 2009, 360:985-93.

197. Abonia JP, Putnam FE: Mepolizumab in eosinophilic disorders. Expert review of clinical immunology 2011, 7:411-7.

198. Berry MA, Parker D, Neale N, Woodman L, Morgan A, Monk P, Bradding P, Wardlaw AJ, Ravord ID, Brightling CE: Sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis. The Journal of allergy and clinical immunology 2004, 114:1106-9.

199. Park SJ, Lee YE: Interleukin-17 regulation: an attractive therapeutic approach for asthma. Respiratory research 2010, 11:78.

200. Nkymbang-Takwi EH, Shanks K, Smith E, Iyer A, Lipsky MM, Detolla LJ, Kikutani H, Keegan AD, Chapoval SP: Neuroimmune semaphorin 4A downregulates the severity of allergic response. Mucosal immunology 2012, 5:409-19.

201. Smith EP, Shanks K, Lipsky MM, DeTolla LJ, Keegan AD, Chapoval SP: Expression of neuroimmune semaphorins 4A and 4D and their receptors in the lung is enhanced by allergen and vascular endothelial growth factor. BMC immunity 2011, 12:30.

202. Ern EM, Leaker BR, Nicholson GC, Tan AJ, Green LM, Neighbour H, Zacharasiewicz AS, Turner J, Barnathan ES, Kon OM, Barnes PJ, Hansel TT: The effects of a monoclonal antibody directed against tumor necrosis factor-alpha in asthma. American journal of respiratory and critical care medicine 2006, 174:753-62.

203. van der Vaart H, Koeter GH, Postma DS, Kauffman HF, ten Hacken NH: First study of infliximab treatment in patients with chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine 2005, 172:645-9.

204. Rennard SI, Fogarty C, Kelsen S, Long W, Ramsdell J, Allison J, Mahler D, Saadeh C, Siler T, Snell P, Koenenblat P, Smith W, Kaye M, Mandel M, Andrews C, Prabhu R, Donohue JF, Watt R, Lo KH, Schlenker-Herceg R, Barnathan ES, Murray J; COPD Investigators: The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine 2007, 175:926-34.