An expert survey to assess the current status and future challenges of energy system analysis

Fabian Scheller a, *, Frauke Wiese b, Jann Michael Weinand c, g, Dominik Franjo Dominkovic c, d, Russell McKenna e, f

* Energy Economics and System Analysis, Division of Sustainability, Department of Technology, Management and Economics, Technical University of Denmark, Akademivej, 2800, Kgs. Lyngby, Denmark
b Department of Energy- and Environmental Management, Interdisciplinary Institute for Environmental, Social and Human Sciences, Europa-Universität Flensburg, 24943, Flensburg, Germany
c Chair of Energy Economics, Institute for Industrial Production (IIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
d Chair of Energy Economics Institute for Industrial Production (IIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
e Department of Applied Mathematics and Computer Science, Technical University of Denmark, Matematiktorvet, 2800, Kgs. Lyngby, Denmark
f Chair of Energy Transition, School of Engineering, University of Aberdeen, King's College, Aberdeen, AB24 3FX, UK
g Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
h Institute of Techno-economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, Germany

ARTICLE INFO

Article history:
Received 4 July 2021
Received in revised form 24 November 2021
Accepted 28 November 2021
Available online 30 November 2021

Keywords:
Energy models
Modelling approaches
Mathematical optimisation models
Simulation models
Modelling challenges
Expert survey

ABSTRACT

Decision support systems like computer-aided energy system analysis (ESA) are considered one of the main pillars for developing sustainable and reliable energy strategies. Although today’s diverse tools can already support decision-makers in a variety of research questions, further developments are still necessary. Intending to identify opportunities and challenges in the field, we classify modelling topics into modelling capabilities, methodologies, implementation issues and management issues mainly working with simulation and optimisation models, the Status of Development and the Complexity of Realisation of those modelling topics are assessed. While the rated items are considered to be more complex than actually represented, no significant outliers are determinable, showing that there is no consensus about particular aspects of ESA that are lacking development. Nevertheless, a classification of the items in terms of a specially defined modelling strategy matrix identifies capabilities like land-use planning patterns, equity and distributional effects and endogenous technological learning as “low hanging fruits” for enhancement, as well as a large number of complex topics that are already well implemented. The remaining “tough nuts” regarding modelling capabilities include non-energy sector and social behaviour interaction effects. In general, the optimisation and simulation models differ in their respective strengths, justifying the existence of both. While methods were generally rated as quite well developed, combinatorial optimisation approaches, as well as machine learning, are identified as important research methods to be developed further for ESA.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
resolution of ESMs. In such cases, optimum unit commitments and dispatch for energy systems often cannot be determined analytically but require the use of mathematical optimisation models [3]. The same applies for studying social interactions of unrealistic rational actors on the demand side with the help of agent-based models [4] or for comparing policy measures that differ concerning various key parameters such as costs, emissions, energy supply, and others with simulation models [5].

Since assessment findings might be influenced by a wide range of factors, rather holistic frameworks and profound models are needed to sufficiently map the system complexities [6]. For example, ESMs require sufficient consideration of uncertainties [7,8] or socio-technical factors for improved realisation of optimal transition pathways [9]. Groissb [10] demanded a greater detail in terms of modelling ramping of power plants as well as physical and thermodynamic capabilities to not underestimate the complexity of the energy system. Furthermore, Mohammadi et al. [11] suggest that future multi-generation systems need a broader perspective in terms of energy sources and Hansen et al. [12] see a greater focus on the joint analysis of multidimensional flexibility options along the energy value chain as important. Ringkjøb et al. [13] request a better representation of short-term spatiotemporal variability in long-term studies. In cases that high-resolution modelling reaches the limits of being solvable in a reasonable time, the planning and operational step might be divided concerning different time scales with different levels of detail [14]. Keirstead et al. [15] call for the utilisation of computational advances like cloud computing for higher complexity modelling, e.g. in terms of activity- and agent-based modelling. However, a higher complexity might also lead to extra data collection efforts due to more specific input parameters [15] and data uncertainty handling since data quality is important [6].

In the past, energy researchers have developed and applied their own models to answer as many research questions as possible [16]. Due to a lack of transparency in modelling exercises, for example, about assumptions, data sources, and uncertainties, the energy system modelling field has attracted a lot of criticism [17,18]. Recently, there have been increasing calls to make ESM and ESA more transparent or even publicly available [19,20]. Nevertheless, existing open-source and commercial energy system models still do not account for all aspects that are necessary for determining successful transition pathways [10]. Moreover, politicians should receive alternative options and recommendations for debating desired energy futures [5]. A recent study on the trends in tools and approaches of energy system models has also shown that key issues of the models continue to be mainly tool coupling, accessibility and perceived policy relevance [21]. In the future, therefore, numerous further research challenges will have to be tackled to respond to the future system [8,22].

Indeed, the strong interest in ESA and ESM in recent decades has inspired many reviews about ESA and ESM to present available tools for different questions, classify model representations and outline future challenges. Building on the classifications, findings and conclusions of 28 review papers of ESA, partially introduced above and systematically compiled in the Supplementary Material A, this paper aims to identify future research opportunities and challenges for ESA. The focus of the analysis is on modelling topics as measured through modelling items related to different aspects of energy system modelling and not specific models. For this, we conducted a quantitative expert survey with a sample size of N = 61 in the summer of 2020 to provide insights regarding the criteria Status of Development and the Complexity of Realisation of 96 identified and classified question items. The compilation and classification of actual representations and future needs from the analysed review papers in terms of modelling capabilities, methodological options, implementation approaches, and management challenges serve as the foundation for our survey. Although there are individual expert-based or rather developer-based surveys for reviewing selected energy modelling tools [23], classifying complexity of ESMs [16], and assessing current trends and challenges in ESA [21], our survey-based study employs a broader approach focusing not on representations of specific models but general representations of the research field. Thus, our results enable the identification of key modelling aspects that have been neglected in the past but might be easy to implement in the future, as well as those that will be very challenging. These insights can support researchers, practitioners and policymakers to select suitable focus areas for future research projects. This paper also complements and builds on a parallel bibliometric analysis of the ESA field [24].

To achieve this, the paper is structured as follows: the methodology used to create and evaluate the survey is presented in Section 2. Subsequently, our results are presented in Section 3 before the implications and main opportunities and challenges are discussed in Section 4. The paper then concludes in Section 5.

2. Methodology

In the present study, future modelling needs are explored with the help of a computer-aided survey. The focus of the survey was on methodologies and modelling items related to different aspects of energy systems, while the purpose of specific models was out of the scope of this study. The form of data acquisition is a central challenge in every research project, as it influences survey design, sampling strategy, recruitment procedures, and statistical evaluation techniques. While Section 2.1 presents the data acquisition method and the survey design, Section 2.2 describes the recruitment procedure and section 2.3 the applied evaluation procedure.

2.1. Form of data acquisition and design of the survey

As an appropriate technique of data acquisition, a web-based survey was chosen. The structure of the survey was largely determined by the research objective to assess the most urgent improvements and most relevant challenges for ESA. The corresponding question items (modelling topics) were systematically derived from a review of various ESM reviews (cf. Section 1) and a comprehensive bibliometric analysis of the field [24]. An overview of the results of the literature analysis concerning the research scope and future needs is outlined in the Supplementary Material A. During the development process, modelling challenges and future needs were clustered, defined and classified by the research team. The survey started with a selection of socio-demographic questions. Since the participants were asked to answer the questions according to their background information, the model type used and the associated temporal and spatial scale are of particular importance. While every participant could choose different characteristics concerning temporal and spatial scale, they had to select exactly one model type they were mainly working with. The selectable model types were optimisation, simulation, multi-agent, partial equilibrium, system dynamics, game-theoretic, and other bottom-up models. Despite the possible overlap between the models, we decided that this is the best possibility to compare the modelling topic ratings regarding the different model types. In most real-world examples, based on our review of the literature, one of the above model types generally tends to dominate. Subsequently, several challenges needed to be assessed by the respondents. The 96 challenges derived from the synthesis of peer-reviewed energy system analysis reviews were arranged into four sections: 1. Capabilities, 2. Methodology, 3. Implementation, and 4.
Management (cf. Table 1). A complete overview of the survey questions is provided in the Supplementary Material B.

In the four survey sections, we invented and employed two main criteria to assess the 96 different items related to different aspects of energy system modelling, namely Status of Development and Complexity of Realisation. While the first criterion Status of Development was related to the question “Which of the following modelling topics would you consider as already represented adequately in the field of energy system analysis and which ones need improvement?”, the second criterion Complexity of Realisation was related to the question “Which of the following modelling topics has been/can be realised without significant difficulties in the field of energy system analysis and which ones not, due to a high level of complexity”. Both criteria were queried on an ordinal scale with a five-point Likert scale ranging from 1-very low to 5-very high. Even though the survey consisted mainly of closed questions, all parts included an option called ‘I don’t know’ or ‘not applicable’. Since the questionnaire comprised items derived from the literature body, one open question was asked to the ESM experts to state innovative future modelling directions. In the survey, the term framework was defined as a generic program that can be applied for different use cases (e.g. code and structure). In contrast, a model was defined as a corresponding application of a framework (e.g. for a certain set of countries and time resolution including appropriate data). To reduce confusion, we only applied the term “model” in the questions, although we are aware that the mentioned challenges could only be tackled on the framework level.

2.2. Recruitment procedure

In line with the research objectives, we aimed to obtain responses from leading experts in the field of ESA from all over the world. Potential respondents were identified through the authors’ combined networks. Furthermore, key authors in the field were selected in a parallel bibliometric analysis on energy system analysis based on publication numbers and citation indices [24]. In this context, we analysed the exponentially growing number of publications in the field of ESA for the last two decades by employing different statistical techniques and identified among others the most productive and most referenced authors of different countries and institutions. To reduce the potential bias of our network, we included these top authors from the most productive countries in our list of potential participants. In total, 571 potential participants and their email addresses were collected. By prioritising the expert knowledge of respondents over the number of respondents, we aim for a more homogeneous selected group of participants with a profound background in ESM. This should lead to a greater common understanding of the modelling topics and the two aspects queried.

The web-based survey was created and processed with the aid of the LimeSurvey service. To determine the effectiveness of our survey, a pretest was carried out with experts in our closer networks at the end of June and the beginning of July 2020. The feedback was used to specify the two assessment criteria more precisely and to combine, revise or eliminate question items. Even though we cannot completely exclude any bias in interpreting the criteria and answering the questions, we tried to reduce a different understanding by incorporating their feedback in the provided final definition. Also, we discussed the meaning amongst the authors. While the potential participants were addressed personally, the cover letter of the invitation mail (c.f. Supplementary Material C) explained the intention and background of the study and provided personal contact information. The first invitation was sent out on July 24th. Besides, the study results were offered as an incentive for participation. On September 21st, the addressees received one reminder to participate in the survey. The final sample consisted of 61 completed questionnaires. This corresponds to a response rate of around 11%. Fieldwork was completed on October 31, 2020. Although the response rate is low, it is still comparable to similar survey studies [25] and our sample size is greater than in similar studies [21,23,26]. Since we had a quite long survey and because the invitations were directed to experts of the ESA field who are generally invited to similar surveys more often, the response rate seems reasonable.

An overview of the expert sample working in 23 countries of the world (N = 61) in absolute numbers is outlined in Table 2 and Table 3. The respondents’ countries cover 70% of the top 20 most productive countries in terms of the total number of publications in the field of ESA [24]. Around 75% of the respondents were (senior) researchers or (assistant/associate/full) professors. More than half of the respondents were experts working with optimisation models (62%, cf. Fig. 1). A further 20% of the respondents mainly worked with simulation models, and the final 18% used different types of bottom-up models. These proportions align with the identified keywords “simulation” and “optimisation” in our bibliometrics analysis [24]. Due to the low number of participants, we also summarised these types under the category “others” for further analyses (multi-agent, partial equilibrium, system dynamics, game-theoretic). Despite the overlap between some model types, we assumed that the participants made a conscious decision against the common categories of optimisation and simulation when choosing, e.g., partial equilibrium models. In terms of the temporal and spatial scale, the models were distributed quite well between the choices. While around 23% of the models were related to short-term analyses, 30% were related to mid-term analyses, and 47% were related to long-term analyses. Furthermore, 23% focused on a plant or building scale, 41% on a district, municipality or regional scale, and 36% on a national or international scale. Even if the temporal and spatial scale does not provide a precise definition of the purpose of the modelling activities, it gives a rough indication of the kind of models. In addition, Fig. 2 shows the methods used concerning the working position of the respondents. Most of the respondents worked within public universities (68%) or research institutions (17%) and were male (80%). Around half of the respondents (45%) also reported that they already followed some kind of open source strategy in energy system modelling (fully open data and code: 25%; fully open code but data not or only partly open: 14%; fully open data but code not or only partly open: 7%).

2.3. Statistical evaluation procedure

Data analysis was conducted using the software package SPSS (IBM). In this context, four analysis steps were carried out. The order of analysis presented below also corresponds to the structure of the result sub-sections in Section 3.2, Section 3.3, and Section 3.4.

First, the mean ratings of the modelling items regarding the two main criteria Status of Development and Complexity of Realisation were calculated for each survey section. An overview of the results is provided in Appendix A Tables A1, A2, and A3 from the perspective of the whole survey sample as well as the subsamples of optimisation model users, simulation model users, and other model users. For a quick orientation, the mean of the rated items...
Table 1
Composition and structure of the main parts of the computer-aided survey. The modelling topics to be assessed were derived from the literature and arranged into four sections. In this context, sixty-nine items were queried concerning the Status of Development and the Complexity of Realisation. Furthermore, one open question was asked to the ESM experts. The structure of the categories (A, B, C, ...) for each section and the numbering of the items (1,2,3,..) is used to describe the results.

#	Section title	Section description	Question items
1	Capabilities	This section deals with the concrete capabilities of models for modelling various relevant aspects of energy systems. To facilitate a detailed analysis, the focus of energy system models typically lies in the simplified techno-economic representation of reality. Relevant model capabilities relate to all parts of the energy value chain.	8 categories, 32 items; A) Social aspects and human behaviour modelling: 1. technology acceptance and adoption, 2. lifestyle aspects, 3. stakeholder dynamics and coordination, 4. technology diffusion, 5. equity and distributional effects B) Demand-side modelling: 6. Energy service demands, 7. demand-side technology heterogeneity, 8. consumption process models C) Transmission and distribution system modelling: 9. microgrid and autonomy aspects, 10. power network characteristics, 11. gas network characteristics, 12. heat network characteristics, 13. virtual power plants, 14. ancillary services and spinning reserve D) Supply generation modelling: 15. ramping capabilities, 16. detailed technology process models, 17. supply-side technology heterogeneity, 18. non-conventional energy supply sources E) Flexibility, sector coupling and energy system integration modelling: 19. cross-sectoral approaches, 20. multi-energy services and carriers, 21. innovative storage modelling, 22. supply-side flexibility options, 23. demand-side flexibility options F) Markets and regulations framework modelling: 24. inter-market modelling, 25. market design, 26. regulatory and policy frameworks G) Environmental and resources modelling: 27. land-use planning patterns, 28. material resource assessments and limitations, 29. nexus issues: for example, land/energy/water/food H) Feedback and interaction effects: 30. endogenous technology learning, 31. elastic demand, 32. non-energy sector impacts
2	Methodology	This section deals with the methodological approaches of energy system models. Given the analysis purposes and the complexity of the system, a variety of approaches have been developed to define and analyse the planning issues, each with its advantages and limitations. Crucial methodological choices are related to the model type, mathematical class, spatial and temporal resolution.	4 categories, 15 items; 1 open question A) High-resolution modelling: 1. adequate programming language selection, 2. adequate solver selection, 3. modular and adaptable modelling systems, 4. availability of model coupling interfaces B) Programming formulations: 6. new general mathematical frameworks, 7. Non-linear programming formulations, 8. mixed-integer programming formulations, 9. linear programming formulations, 10. stochastic optimisation C) Model characteristics: 11. consistent and high-quality data sources, 12. higher focus on uncertainty analysis, 13. sustainability indicator assessment, 14. technology neutrality, 15. integrated assessment of multiple capabilities
3	Implementation	This section deals with the implementation of a model, including its usability in general as well as how the model can be applied by different users. Furthermore, documentation standards, as well as technical development options such as standardisation, validation and benchmarking options, affect the implementation options of a model.	4 categories, 15 items; 1 open question A) Development activities: 1. adequate programming language selection, 2. adequate solver selection, 3. modular and adaptable modelling systems, 4. availability of model coupling interfaces B) Model validation and benchmarking: 5. well-documented model validations, 6. well-documented benchmarks for solving common problems C) Model usability: 7. (graphical) user interfaces, 8. scenario management tools, 9. web-based and cloud computing environments, 10. master data management systems D) Documentation standards: 11. installation and application instructions, 12. equation documentations, 13. standards for documentation of data records, 14. clear licensing for code, 15. clear licensing for data
4	Management	This section relates to all operational functions dealing with research projects employing energy system analysis. It covers personnel management, contractual arrangements and can include any functions related to intellectual property, project development, and results dissemination.	3 categories, 7 items; A) Human resources management: 1. the possibility of recruiting adequately trained staff, 2. the existence of continuous training B) Research infrastructure: 3. presence of continuous model maintenance and version control, 4. presence of technical infrastructure C) Results dissemination: 5. appropriate journals for the publication of the project results, 6. compliance with requirements for open access, open data, and open-source code, 7. public presentation of the project results
Table 2
Overview of the survey sample structure. The number of respondents is shown in total and concerning their type of model, they are mainly working with and the institution they are working for. Furthermore, the sex of the respondents is displayed. The survey focuses on bottom-up energy system models: optimisation models (Opt), simulation models (Sim), multi-agent models (Agent), partial equilibrium models (Equil), system dynamics models (Dynm), game-theoretic models (Game), and other bottom-up models (Ors). Due to the low level of respondents and the main focus of this publication, the latter models (*) are summarised in further analyses. The institutions are abbreviated as follows: university (Uni), research institution (Inst), private company (Comp), public authority (Auth), and others.

Sample	Institution	Gender	N	Uni	Inst	Comp	Auth	Others	Male	Female	Others
Opt			38	26	7	6	1	0	33	4	1
Sim			12	12	1	0	0	0	9	3	0
Agent*			1	1	0	0	0	0	1	0	0
Equil*			4	0	2	2	0	0	3	1	0
Dynm*			2	2	0	0	0	0	2	0	0
Game*			1	1	0	0	0	0	1	0	0
Ors*			3	2	1	0	0	0	1	2	0
Total			61	44	11	8	1	1	49	11	1

Table 3
Overview of the temporal and spatial scales of the models of the sample with simultaneous consideration of the energy system model type (optimisation models (Opt), simulation models (Sim), multi-agent models (Agent), partial equilibrium models (Equil), system dynamics models (Dynm), game-theoretic models (Game), and other bottom-up models (Ors)).

Sample	Spatial scale	Temporal scale					
	Short term	Mid term	Long term		Short term	Mid term	Long term
Opt	11	18	31	14	12	12	11
Sim	6	5	6	2	4	4	5
Agent*	1	0	1	1	0	0	0
Equil*	0	0	4	0	0	1	2
Dynm*	1	1	0	1	0	1	0
Game*	1	1	0	0	1	1	0
Ors*	1	3	1	2	2	1	2
Total	21	28	43	20	19	20	21

Fig. 1. Overview of the temporal and spatial scales of the models of the sample with simultaneous consideration of the energy system model type (optimisation models (Opt), simulation models (Sim), multi-agent models (Agent), partial equilibrium models (Equil), system dynamics models (Dynm), game-theoretic models (Game), and other bottom-up models (Ors)).

Table 4 gives more detailed insights regarding the quadrants.

Second, pairwise Spearman coefficients between the rating of the Status of Development and the Complexity of Realisation were determined for each of the sub-groups, which provide insights into the interrelations of the main criteria. Thereby, the correlation was defined to be significant at the 10% level. As with the mean ratings, the results are provided in Appendix A Tables A1, A2, and A3.

Third, to underpin the differences between various mean ratings within the distinct sub-groups of respondents who work with optimisation, simulation or other model types, statistically significant relationships between the reported model type and rated criteria were examined using the Kruskal-Wallis H test. The Mann-Whitney U test was then utilised post-hoc to compare each of the identified relationships. Moreover, Mann-Whitney U tests were conducted for other non-distinct sub-groups such as different platforms.
temporal scales, spatial scales, and respondent’s positions. Particular dependencies were highlighted and interpreted in the respective sub-sections. As with the correlation, the 10% confidence level was also used here as the level of significance. In this regard, we used the various scales to determine whether individual modelling items are assessed differently for different kind of models and thus for different purposes.

Fourth, a pairwise Spearman correlation matrix of all of the rated items was determined in terms of the whole sample and for the two main assessment criteria. Figs. 5 and 7 summarise the coefficients for the modelling capabilities and modelling methodologies. The analysis results allow a description of dependencies between items in one category but also across categories for the two criteria and, thus, answers questions about whether certain items have always been rated similarly. Since there should not be logical dependencies between the items in the last two survey sections (Implementation and Management items, respectively), only the first two survey sections (Capability and Methodology...
Fifth, the answers to the one open question on innovative future modelling directions are discussed and summarised in the discussion.

3. Findings

The survey findings are presented individually for each survey section. While Section 3.1 gives an initial insight into the general ratings of all items, the following sections present the rated items in more detail: Section 3.2 deals with the modelling capabilities, Section 3.3 with the modelling methodology, Section 3.4 with the implementation approach, and Section 3.5 with the project management. The structure of each sub-section follows the analysis steps as described in Section 2.3.

3.1. Modelling topics overview

The average (mean) ratings across the whole sample of the modelling capabilities, modelling methodologies, and implementation approaches are provided in Fig. 3. While we show all the results rounded to one decimal, the vast majority assessed the different modelling topics of the different survey sections in a quite similar way without big outliers. The mean overall is 3.0 in terms of the criteria Status of Development and 3.2 in terms of the criteria Complexity of Realisation. Thereby, the items related to the modelling capabilities demonstrate the lowest average (2.9) and the items related to the modelling methodology the highest average (3.2) concerning the assessment criteria Status of Development. In terms of the Complexity of Realisation, the implementation items are rated lowest (3.1) and the methodology items

Fig. 4. Overview of the modelling strategy matrix for the average ratings of the modelling capabilities regarding the Status of Development (ordinal scale very low 1–very high 5) and Complexity of Realisation (ordinal scale very low 1–very high 5) from the perspective of the whole survey sample. The categories of the capabilities are social aspects and human behaviour modelling (A), demand-side modelling (B), transmission and distribution system modelling (C), supply generation modelling (D), flexibility, sector coupling and energy system integration modelling (E), markets and regulations framework modelling (F), environmental and resources modelling (G), as well as feedback and interaction effects (H). The meaning of the quadrants is described in Table 4.

Table 4

Quadrant	Definition	Interval “Status of Development”	Interval “Complexity of Realisation”	Strategy
Low hanging fruits (bottom-left quadrant)	Poorly developed and easy to implement	[0; 3]	[0; 3]	Modelling items represent straightforward model extensions
Tough nuts (upper-left quadrant)	Poorly developed and complex to implement	[0; 3]	(3; 5]	Modelling items represent fundamental model extensions
Long runners (bottom-right quadrant)	Highly developed and easy to implement	(3; 5]	[0; 3]	Modelling items represent common model components
Top stars (upper-right quadrant)	Highly developed and complex to implement	(3; 5]	(3; 5]	Modelling items represent specific model features
again highest (3.4). At the same time, the standard deviation of the ratings of the Status of Development is higher than the ratings of the Complexity of Realisation for each survey section (Capability: 0.45 vs. 0.17; Methodology: 0.37 vs. 0.23; Implementation: 0.35 vs. 0.34). Thus, there is a lower agreement between the experts on the Status of Development than on the Complexity of Realisation.

Most of the items are assessed as top stars according to our modelling strategy matrix, followed by various items which are seen as tough nuts. Only a few items are rated as low hanging fruits or long runners. Since our survey questions are related to well-known modelling aspects, which have been identified with the help of a bibliometric analysis and a literature review as outlined in Section 2.1, these results seem plausible. While there are hardly any outliers, individual capability items are rated lowest in terms of the Status of Development (lifestyle aspects, equity and distributional effects, market design, non-energy sector impacts). In contrast, one single methodology item is considered to be the most developed (linear programming formulations).

3.2. Capability items

The average ratings of the capability categories (cf. Table A1, Fig. 4) demonstrate a heterogeneous picture. The two capability items lifestyle aspects (2.3 ± 1.0, n = 55),

Fig. 5. Pairwise Spearman correlation matrix (p) of the modelling capabilities concerning the Status of Development ratings among each other (lower triangle of the correlation matrix) and the Complexity of Realisation ratings among each other (upper triangle of the correlation matrix). The coefficients are shown for the total sample and only for significant values (correlation is significant at the 10% level). Based on the significant coefficients a colour transition from red over white to blue or rather lower coefficients over medium coefficients to higher coefficients is applied in this table. The categories of the capabilities are social aspects and human behaviour modelling (A), demand-side modelling (B), transmission and distribution system modelling (C), supply generation modelling (D), flexibility, sector coupling and energy system integration modelling (E), environmental and resources modelling (F), feedback and interaction effects (G). The numbers (1–32) are related to the question items of the modelling capabilities (cf. Table 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 6. Overview of the modelling strategy matrix for the average ratings of the modelling methodologies regarding the Status of Development (ordinal scale very low 1- very high 5) and Complexity of Realisation (ordinal scale very low 1- very high 5) from the perspective of the whole survey sample. The categories of the methodologies are high-resolution modelling (A), programming formulations (B), model characteristics (C). The meaning of the quadrants is described in Table 4.

Fig. 7. Pairwise Spearman correlation matrix (\(r \)) of the modelling methodologies concerning the Status of Development ratings among each other (lower triangle of the correlation matrix) and the Complexity of Realisation ratings among each other (upper triangle of the correlation matrix). The coefficients are shown for the total sample and only for significant values (correlation is significant at the 10% level). Based on the significant coefficients a colour transition from red over white to blue or rather lower coefficients over medium coefficients to higher coefficients is applied in this table. The categories of the methodologies are high-resolution modelling (A), programming formulations (B), model characteristics (C). The numbers (1e15) are related to the question items of the methodological approaches (c.f. Table 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
(3.7 ± 1.1, n = 58) and energy service demands (3.7 ± 1.2, n = 56) are examined to be best represented. The associated categories supply generation modelling (D) and demand-side modelling (B) are also considered to be best represented on the average of all item ratings.

In terms of the realisation difficulties, all capability items of the category flexibility, sector coupling and energy system integration modelling (E) are assessed with the highest complexity (e.g., demand-side flexibility options: 3.6 ± 1.1, n = 60; cross-sectoral approaches: 3.5 ± 1.2, n = 57). Technology diffusion (2.9 ± 1.1, n = 51), micro-grid and autonomy aspects (3.0 ± 1.3, n = 52) and virtual power plants (3.0 ± 1.1, n = 49) are considered as easiest to implement. It should be noted, however, that the assessments of the Complexity of Realisation are associated with a lower variance. While the differences for the highest and lowest-ranked capabilities is only 0.74 for this criterion, the difference is 1.44 for the Status of Development.

As visualised in the modelling strategy matrix in Fig. 4, with moderate realisation complexity and low development status, land-use planning patterns, virtual power plants, equity and distributional effects, and endogenous technological learning could represent low hanging fruits for future model enhancements. On the other hand, non-energy sector impacts, stakeholder dynamics, market designs, and lifestyle aspects are viewed as poorly developed but also complex to implement. These tough nuts might represent future features of individual models.

Despite the various mean ratings between the sub-groups of respondents who work with optimisation, simulation or other models (cf. Table A1), statistically significant relationships between the reported model type and rated criteria are found concerning six items for each criterion. While the null hypothesis of the Kruskal–Wallis H test suggests that all the medians are equal, a rejection indicates a statistically significant relationship. In this regard, the null hypothesis is rejected for the items technology acceptance and adoption, ramping capabilities, detailed technology process models, supply-side flexibility options, regulatory and policy frameworks, and elastic demand in terms of the Status of Development. The same is valid in terms of the Complexity of Realisation for the items technology diffusion, multi-energy services and carriers, supply-side flexibility options, market design, endogenous technology learning, and elastic demand. The post-hoc pairwise comparisons of each model type with the Mann–Whitney U test shows that simulation models are more advanced than optimisation models to represent technology acceptance and adoption. In contrast, optimisation models are more developed concerning ramping capabilities compared with simulation models, detailed technology process models compared with simulation models and other models, and supply-side flexibility options compared with simulation models. Other models demonstrate a higher development status concerning regulatory and policy frameworks and elastic demands towards optimisation and simulation models. Besides, unexpectedly the Mann–Whitney U test revealed that all six listed capabilities are indicated as significantly more complex to realise for simulation than optimisation models. Due to the small sample size of individual sub-groups, all comparisons between them, however, need to be treated with caution.

A closer investigation of the impact of different temporal scales (short-term, mid-term, long-term) shows hardly any peculiarities. While the short-term experts report on average a slightly higher Status of Development of capabilities related to the categories transmission and distribution system modelling (C), demand-side modelling (B), and social aspects and human behaviour modelling (A), the long-term experts report a slightly higher Status of Development of capabilities related to the categories markets and regulations framework modelling (F), and flexibility, sector coupling and energy system integration modelling (E). In this context, the capabilities with the highest mean differences are

Fig. 8. Overview of the modelling strategy matrix for the average ratings of the implementation approaches regarding the Status of Development (ordinal scale very low 1- very high 5) and Complexity of Realisation (ordinal scale very low 1- very high 5) from the perspective of the whole survey sample. The categories are related to development activities (A), model validation and benchmarking (B), model usability (C), and documentation standards (D).
microgrid and autonomy aspects, cross-sectoral approaches, ancillary services, and consumption process models. A significant dependency is shown for the items consumption process models and microgrid and autonomy aspects when we conduct the Mann–Whitney U test from short term and long term perspective. At the same time, the items cross-sectoral approaches and ancillary services demonstrate only a significant dependency from the perspective of long term modelling or short term modelling, respectively. A similar result is obtained for the items lifestyle aspects, stakeholder dynamics as well as regulatory and policy frameworks, which show a significant relationship with the long term modelling focus towards other responses.

Moreover, a higher average development status rating dependent on the spatial scales (small scale, medium scale, large scale) is indicated for smaller than larger scales for the categories social aspects and human behaviour modelling (A) and transmission and distribution system modelling (C). In contrast, flexibility, sector coupling and energy system integration modelling (E) is rated on average slightly higher by large scale model experts. The capabilities with the highest mean differences are micro-grid and autonomy aspects, lifestyle aspects, stakeholder dynamics, and cross-sectoral approaches. This time, the conducted Mann–Whitney U test reveals a significant difference between the ratings of the mentioned items. The pairwise test showed a significant difference from the point of view of the small scale experts and from the point of view of the large scale experts. Thus, large-scale model experts really rate these items higher. The same is true for equity and distributional effects, power network characteristics, and detailed process models.

The importance of the capabilities of the same category is again demonstrated with a correlation analysis of the ratings of all capabilities (c.f. Fig. 5). Various capabilities of the same category are rated similarly by the total sample. On the one hand, this underlines the focus on certain categories in the past and the importance of other categories in the future. On the other hand, this shows that the capabilities of the same category are conceived together. The interrelations between the modelling capabilities are examined using Spearman’s rank correlation coefficient. On the one hand, modelling capabilities of the categories social aspects and human behaviour modelling (A), sector coupling and energy system integration modelling (E), as well as feedback and interaction effects (G) show several significant and strong correlation coefficients regarding the Status of Development and Complexity of Realisation. On the other hand, capabilities of the environment and resources modelling (F) show a significant and strong correlation coefficient, especially regarding the Complexity of Realisation. In terms of the Status of Development, the strongest significant correlations are between the capabilities lifestyle aspects and equity and distributional effects (A2, A5: $\rho = 0.674$), power network characteristics and gas network characteristics (C10, C11: $\rho = 0.663$), ramping capabilities and supply-side flexibility options (D15, E22: $\rho = 0.658$), innovative storage modelling and supply-side flexibility options (E21, E22: $\rho = 0.657$). In terms of the complexity of realisation, the strongest significant correlations are between market design and inter-market modelling (F24, F25: $\rho = 0.837$), nexus issues and material resource assessments and limitations (G28, G29: $\rho = 0.761$), regulatory and policy frameworks and market design (F25, F26: $\rho = 0.751$).

3.3. Methodology items

Similar to the capabilities, different approaches to the modelling methodology are rated by the experts (c.f. Table A2, Fig. 6). On average over the entire sample, the category programming formulations (B) includes the items with the highest as well as the lowest development status. While new general mathematical framework aspects (2.8 ± 1.1, n = 38) and Non-Linear Programming (NLP) formulations (2.9 ± 1.2, n = 48) are viewed as underdeveloped, Mixed Integer Programming (MIP) (3.7 ± 1.3, n = 50) and Linear Programming (LP) formulations (4.0 ± 1.3, n = 55) are considered as highly developed. The last item of the category Stochastic Optimisation (SO) formulations (2.9 ± 1.2, n = 50) is also seen as not yet fully exploited. In this regard, only the decomposition methods (2.9 ± 1.2, n = 53) and the focus on uncertainty analysis (2.9 ± 1.0, n = 59) are rated slightly lower. While there is no clear trend in terms of individual categories, more complex mathematical structures are seen as ‘tough nuts’ for future models. In terms of the Complexity of Realisation, different capabilities such as NLP formulations (3.8 ± 1.1, n = 44) or decomposition methods (3.6 ± 1.0, n = 49), which have been rated rather low in the Status, are considered difficult. At the same time, keeping consistent and high-quality data sources is seen throughout as most complex to realise (3.9 ± 1.1, n = 59) but also as quite advanced (3.7 ± 1.0, n = 60) in the field. Thereby, the ratings regarding the Complexity of Realisation again exhibit a smaller variance as in the previous section.

Modelling methods that might be most suitable for future research in terms of both criteria are sustainability indicator assessments and stochastic optimisation. At the same time, the modelling strategy matrix does not show any low hanging fruits (c.f. Fig. 6). The same is valid for the long run and common items. The pairwise test revealed a significant difference between the ratings of the mentioned items.

The importance of the capabilities of the same category is again demonstrated with a correlation analysis of the ratings of all capabilities (c.f. Fig. 5). Various capabilities of the same category are rated similarly by the total sample. On the one hand, this underlines the focus on certain categories in the past and the importance of other categories in the future. On the other hand, this shows that the capabilities of the same category are conceived together. The interrelations between the modelling capabilities are examined using Spearman’s rank correlation coefficient. On the one hand, modelling capabilities of the categories social aspects and human behaviour modelling (A), sector coupling and energy system integration modelling (E), as well as feedback and interaction effects (G) show several significant and strong correlation coefficients regarding the Status of Development and Complexity of Realisation. On the other hand, capabilities of the environment and resources modelling (F) show a significant and strong correlation coefficient, especially regarding the Complexity of Realisation. In terms of the Status of Development, the strongest significant correlations are between the capabilities lifestyle aspects and equity and distributional effects (A2, A5: $\rho = 0.674$), power network characteristics and gas network characteristics (C10, C11: $\rho = 0.663$), ramping capabilities and supply-side flexibility options (D15, E22: $\rho = 0.658$), innovative storage modelling and supply-side flexibility options (E21, E22: $\rho = 0.657$). In terms of the complexity of realisation, the strongest significant correlations are between market design and inter-market modelling (F24, F25: $\rho = 0.837$), nexus issues and material resource assessments and limitations (G28, G29: $\rho = 0.761$), regulatory and policy frameworks and market design (F25, F26: $\rho = 0.751$).

3.3. Methodology items

Similar to the capabilities, different approaches to the modelling methodology are rated by the experts (c.f. Table A2, Fig. 6). On average over the entire sample, the category programming formulations (B) includes the items with the highest as well as the lowest development status. While new general mathematical framework aspects (2.8 ± 1.1, n = 38) and Non-Linear Programming (NLP) formulations (2.9 ± 1.2, n = 48) are viewed as underdeveloped, Mixed Integer Programming (MIP) (3.7 ± 1.3, n = 50) and Linear Programming (LP) formulations (4.0 ± 1.3, n = 55) are considered as highly developed. The last item of the category Stochastic Optimisation (SO) formulations (2.9 ± 1.2, n = 50) is also seen as not yet fully exploited. In this regard, only the decomposition methods (2.9 ± 1.2, n = 53) and the focus on uncertainty analysis (2.9 ± 1.0, n = 59) are rated slightly lower. While there is no clear trend in terms of individual categories, more complex mathematical structures are seen as ‘tough nuts’ for future models. In terms of the Complexity of Realisation, different capabilities such as NLP formulations (3.8 ± 1.1, n = 44) or decomposition methods (3.6 ± 1.0, n = 49), which have been rated rather low in the Status, are considered difficult. At the same time, keeping consistent and high-quality data sources is seen throughout as most complex to realise (3.9 ± 1.1, n = 59) but also as quite advanced (3.7 ± 1.0, n = 60) in the field. Thereby, the ratings regarding the Complexity of Realisation again exhibit a smaller variance as in the previous section.

Modelling methods that might be most suitable for future research in terms of both criteria are sustainability indicator assessments and stochastic optimisation. At the same time, the modelling strategy matrix does not show any low hanging fruits (c.f. Fig. 6). The same is valid for the long run and common items. The pairwise test revealed a significant difference between the ratings of the mentioned items. The importance of the capabilities of the same category is again demonstrated with a correlation analysis of the ratings of all capabilities (c.f. Fig. 5). Various capabilities of the same category are rated similarly by the total sample. On the one hand, this underlines the focus on certain categories in the past and the importance of other categories in the future. On the other hand, this shows that the capabilities of the same category are conceived together. The interrelations between the modelling capabilities are examined using Spearman’s rank correlation coefficient. On the one hand, modelling capabilities of the categories social aspects and human behaviour modelling (A), sector coupling and energy system integration modelling (E), as well as feedback and interaction effects (G) show several significant and strong correlation coefficients regarding the Status of Development and Complexity of Realisation. On the other hand, capabilities of the environment and resources modelling (F) show a significant and strong correlation coefficient, especially regarding the Complexity of Realisation. In terms of the Status of Development, the strongest significant correlations are between the capabilities lifestyle aspects and equity and distributional effects (A2, A5: $\rho = 0.674$), power network characteristics and gas network characteristics (C10, C11: $\rho = 0.663$), ramping capabilities and supply-side flexibility options (D15, E22: $\rho = 0.658$), innovative storage modelling and supply-side flexibility options (E21, E22: $\rho = 0.657$). In terms of the complexity of realisation, the strongest significant correlations are between market design and inter-market modelling (F24, F25: $\rho = 0.837$), nexus issues and material resource assessments and limitations (G28, G29: $\rho = 0.761$), regulatory and policy frameworks and market design (F25, F26: $\rho = 0.751$).
correlations with various other methodology items. This could lead to the assumptions that the spatial and temporal modelling level directly influence the status and complexity perception. Various interrelations are also visible for the status assessment of category B regarding the programming formulations (e.g., B8, B9: p = 0.693 and B8, B10: p = 0.498).

3.4. Implementation items

The ranked implementation approaches (c.f. Table A3, Fig. 8) show the lowest status for three items of the category model usability (C) and most of the items of the benchmark regarding the programming formulations (e.g., B8, B9: p = 0.693 and B8, B10: p = 0.498).

4. Discussion

The analysed survey responses and the elaborated modelling strategy matrix demonstrate the current states and future needs of various items in ESM. In the following, we embed the key results into the body of literature. While Section 4.1 discusses cross-cutting aspects of all survey sections, Section 4.2 and Section 4.3 discusses results related to capability and methodology aspects as well as implementation and management aspects, respectively. Finally, we present the limitations of this paper in Section 4.4.

4.1. Cross-cutting aspects

The field of ESA is becoming increasingly complex, which includes the models themselves as well as coupling exercises [3,27]. Evidence for this is in the number of modelling topics or rather items extracted from the reviews and included in the survey, as well as the overall high complexity ratings in the results. Including more and more capabilities into the models themselves can involve trade-offs with regard to the understandability of the models. As one of the experts commented in the survey, “there is a difficult balance between simplicity and detail in energy modelling”. A solution for that problem would be, as another expert suggests, a modular approach where the user can customise just the relevant part of the model while applying pre-defined settings and data for the other sectors.

While the factors of complexity are not widely viewed in the same way (Gell-Mann 2002), according to Remington und Pollack (2016) there are four sources of complexity which influence the realisation of a project: structural complexity, technical complexity, directional complexity, and temporal complexity. Thus, the abstraction, formulation, and implementation of conceptual or mathematical models is dependent on the difficulty in managing the high number of individual and interconnected tasks, finding an unknown solution to the problems, identifying the right focus and objectives, and working in an uncertain environment. In line with the reported assessments, we might assume that experts who directly work with specific modelling topics experience a higher problem complexity with each advancement as one has to deal with more specific and in-depth problems. This is also supported by
the fact that unfamiliar modelling topics or rather modelling topics which have not been well developed yet are seen as more complex. At the same time, younger researchers rate the complexity higher in general, which leads to the assumption that experience in a certain field might lead to a lower complexity assessment. When we relate these results to the different sources of complexity, we can assume there is a different assessment of these sources with experience. However, through experience one also recognizes the underlying problems, which in turn leads to a higher complexity assessment. An initial analysis of different energy system models with respect to four complexity dimensions (temporal, spatial, mathematical, modelling content) is provided by Ridha et al. [16].

The question remains, to what extent the modeller has to and is able to fully understand the whole model. Our results show that PhD-students rate items of model usability significantly lower than more senior researchers, which might indicate that ESMs have become so complex that it is a time-consuming and demanding task to fully understand them. To improve the knowledge of the mechanisms of the model functionalities and interdependencies between input and output, simultaneous visualisation of results when changing model input was suggested by one expert. This could on the one hand help the modeller to understand the model when changing model input was suggested by one expert. The latter out as one of the main current challenges of ESM.

As other research also confirms, the lack of transparency is still an issue for ESM [28,29] and our survey confirms that difficulties regarding compliance with requirements for open access, open data and open source are present. However, although there is a growing number of openly available models [30], many researchers still program and use their own tools. Regarding data, keeping consistent and high-quality data sources is seen as highly advanced but also the most complex to realise — it is still a complex and time-consuming part of the modelling work. This is especially true since input data is not only extensive and from many different sources, but also from many different fields. Depending on the type of model, data about, e.g., climate change, social dynamics, population, economy, technology development and adoption, resource pricing, policy is required. Thus, modellers not only have to deal with the challenge regarding consistency of the data but also regarding the different types and levels of uncertainty the data involves. Presenting the influence this uncertainty has in the result is an extremely complex task. However, already sharing the data in a transparent way is a necessary but obviously difficult task itself.

The outlined challenges by David Stuart et al. [31] support the results that data sharing is difficult and at the same time required data for energy models are so extensive and from so many different sources that this is actually the main part of the time-load in the modelling life. According to their survey, half of the researchers see challenges in organising data in a presentable and useful way. Furthermore, more than one-third are unsure about the copyright and licensing of the data. Additionally, one quarter also reported that there is a lack of time to share and deposit data [31]. At the same time, there are a rising number of projects where modellers try to free time for their modelling work by sharing the data-workload. Furthermore, there has been some development regarding sharing of the tedious data work for ESM and also a provision of data from official sources (e.g. ENTSO-E for electricity generation, transport and consumption data; OpenStreetMap for building and other infrastructure data), freeing time for the modellers to focus on the analyses. Thus, there are initiatives for data sharing and open-source models available, but what is lacking is — as one of the experts suggests — open source as a structured approach. This could be a data and model hub, maintained by the EU or other central administration. A good example of how this could be realised is the Danish Energy Technology Catalogue, provided by the Danish Energy Agency in collaboration with different experts. A more far-reaching suggestion is a global structure (network or platform) for discussing results, stakeholder engagement, policy modelling, scenario structures and data sources for all energy system analysis/models. From a European point of view, the Energy Modelling Platform Europe could be a starting point for that. Some of the current Horizon 2020 (H2020) projects are contributing to that forum for exchanging research, development and practice of energy system modelling. The explicit goal of the OpenEntrance project is to develop, use and disseminate an open, transparent and integrated modelling platform. In the US, the National Renewable Energy Laboratory has initiated workshops on the use of open data and open software tools in the energy modelling community in North America. An US-based open energy data portal is developed within OpenEI. Also noteworthy are some of the open-source frameworks like PyPSA [32], oemof [33], Balmoren [34], Calliope [35], TEMOA [36] or Backbone [37].

Benchmark tests for models derived from different modelling frameworks covering the same scope have a long history [38] and are common in projects nowadays (e.g. European Energy and Climate Modelling Forum). However, the Status of Development of well-documented benchmark tests have been rated below—average but their Complexity of Realisation above average. This might be due to the challenge of comparing models that may cover similar things but are each designed for specific research questions that might be similar but not exactly matching. Another aspect further complicates comparison and benchmarking of models: Ellenbeck und Lilliestam [39] argue that models are discursive structures, reproducing particular discourses and thus the question is not only whether they are correct, but also what they represent. Benchmarking might also support the requested reflection upon the discursive character of models.

An obvious question arises in the context of cross-sectional items: do we need innovative new methods or rather incremental progress by combining already existing methods and ideas? In terms of novel or groundbreaking methods with the potential to revolutionise the ESA field, there was some diversity in opinion amongst the experts. Some pointed towards multi-objective and near-optimal solutions with Pareto fronts, as well as leader-follower equilibria with bi-level optimisation models. Others only referred to partial solutions with the main challenge being to integrate these in the most effective way and with an acceptable effort.

Whilst individual modelling approaches are already some of the most advanced in terms of complexity and development, there has been a strong trend towards coupling diverse models in order to exploit their respective benefits [12,40,41]. Such approaches were further emphasised by the experts as continued avenues to achieve the results that data sharing is difficult and at the same time required data for energy models are so extensive and from so many different sources that this is actually the main part of the time-load in the modelling life. According to their survey, half of the researchers see challenges in organising data in a presentable and useful way. Furthermore, more than one-third are unsure about the copyright and licensing of the data. Additionally, one quarter also reported that there is a lack of time to share and deposit data. At the same time, there are a rising number of projects where modellers try to free time for their modelling work by sharing the data-workload. Furthermore, there has been some development regarding sharing of the tedious data work for ESM and also a provision of data from official sources (e.g. ENTSO-E for electricity generation, transport and consumption data; OpenStreetMap for building and other infrastructure data), freeing time for the modellers to focus on the analyses. Thus, there are initiatives for data sharing and open-source models available, but what is lacking is — as one of the experts suggests — open source as a structured approach. This could be a data and model hub, maintained by the EU or other central administration. A good example of how this could be realised is the Danish Energy Technology Catalogue, provided by the Danish Energy Agency in collaboration with different experts. A more far-reaching suggestion is a global structure (network or platform) for discussing results, stakeholder engagement, policy modelling, scenario structures and data sources for all energy system analysis/models. From a European point of view, the Energy Modelling Platform Europe could be a starting point for that. Some of the current Horizon 2020 (H2020) projects are contributing to that forum for exchanging research, development and practice of energy system modelling. The explicit goal of the OpenEntrance project is to develop, use and disseminate an open, transparent and integrated modelling platform. In the US, the National Renewable Energy Laboratory has initiated workshops on the use of open data and open software tools in the energy modelling community in North America. An US-based open energy data portal is developed within OpenEI. Also noteworthy are some of the open-source frameworks like PyPSA, oemof, Balmoren, Calliope, TEMOA, or Backbone.

Benchmark tests for models derived from different modelling frameworks covering the same scope have a long history and are common in projects nowadays (e.g. European Energy and Climate Modelling Forum). However, the Status of Development of well-documented benchmark tests have been rated below—average but their Complexity of Realisation above average. This might be due to the challenge of comparing models that may cover similar things but are each designed for specific research questions that might be similar but not exactly matching. Another aspect further complicates comparison and benchmarking of models: Ellenbeck und Lilliestam argue that models are discursive structures, reproducing particular discourses and thus the question is not only whether they are correct, but also what they represent. Benchmarking might also support the requested reflection upon the discursive character of models.

An obvious question arises in the context of cross-sectional items: do we need innovative new methods or rather incremental progress by combining already existing methods and ideas? In terms of novel or groundbreaking methods with the potential to revolutionise the ESA field, there was some diversity in opinion amongst the experts. Some pointed towards multi-objective and near-optimal solutions with Pareto fronts, as well as leader-follower equilibria with bi-level optimisation models. Others only referred to partial solutions with the main challenge being to integrate these in the most effective way and with an acceptable effort.

Whilst individual modelling approaches are already some of the most advanced in terms of complexity and development, there has been a strong trend towards coupling diverse models in order to exploit their respective benefits. Such approaches were further emphasised by the experts as continued avenues to achieve the most effective way and with an acceptable effort.
developmental advances, for example with multi-scale energy system modelling and coupling of system dynamics and optimisation models. Whilst there has been no clear answer to the above question from our survey, what definitely becomes clear is that many questions cannot be answered by models directly but are rather part of the scenario process and the way results are interpreted. Here interdisciplinarity (energy analysts, environmentalists, economists, social sciences) is essential for analyzing and questioning the framework ESM is embedded in and thus restricted to. As already pointed out decades ago, the key benefit in ESA is not the ESM itself, but the knowledge the experts gain while working with the models — the model being rather the tool to help the expert understand the system than to provide concrete answers: modelling for insights, not for numbers [42].

4.2. Capability and methodology aspects

The capability results show that especially some of the wider and socioeconomic aspects of ESM can be considered tough nuts. This includes items like stakeholder dynamics and lifestyle aspects (with technology acceptance and adoption as moderately developed top stars), as well as non-energy sector impacts, market design and inter-market modelling. For these topics at least, the high complexity can be understood as the main reason for a lack of development. Lower down the matrix, however, there are topics such as equity and distributional effects and material resource assessments, for which the lack of development is apparently not solely due to complexity. Instead, these research questions are related to relatively recent topics within the ESM community, which for this reason have not yet reached a high stage of development.

Socioeconomic aspects of energy systems, especially relating to behaviour, decision making and acceptance, have become more important in the ESA field recently and also feature strongly in the survey. Indeed, the originally mainly techno-economic focus of ESM in terms of energy systems and markets continues to be extended into the social domain, especially but not only within the framework of socio-technical transitions [43]. In this context, equity and distributional effects have also come to the fore in recognition of the fact that energy transitions not only impact coal miners but instead have a wider and more diverse set of impacts on equally different stakeholders [44]. But there is still a large scope for improvement in terms of the ways in which the ESM community accounts for distributional effects in its models if this is done at all. One reason for this lack of attention (at least in a European context) might be consistent metrics and datasets for energy poverty, fuel poverty and energy vulnerability, which have not been available until recent years [45]. The importance of such aspects is emphasised by one of the experts, who suggests that spatial justice could be linked to project finance and social physics techniques could be included in numerical models. Indeed, there have been some attempts to do include distributional impacts in long terms energy scenarios [46].

Several aspects of capability and methodology can be broadly interpreted in the context of widening the ESM scope or system boundary. This especially applies to material resource assessments, land-use planning patterns and non-energy sector impacts. Whilst the former two lie on the boundary between low hanging fruits and tough nuts with a complexity score of 3.0, with a score of 3.4 the latter is definitively a tough nut. Land use planning patterns are typically considered in broader ESAs such as Integrated Assessment Models (IAMs) and are particularly relevant where questions relating to agricultural land for food, chemicals and/or energy are posed. Especially where net-zero scenarios are being explored with bioenergy with carbon capture and storage, Gambhir et al. [47] conclude that IAMs benefit most from couplings with other models and approaches. With the increase in modern bioenergy exploitation in recent decades, the relevance of land-use competition issues for these applications has also come to the fore. In addition, there is a trend in the ESA community towards combining ESMs with LCA methods, in order to account for the impact of energy technologies beyond their operational phase [45]. But such endeavours present several challenges, including different temporal horizons or system boundaries, data quality and availability, and the underrepresentation of industrial processes [48]. In terms of non-energy sector impacts, one of the experts suggested studying the investments (or opportunities) outside the energy sector, which might explain some lack of investment in energy-related infrastructure for energy efficiency.

Related to the above-mentioned challenges of stakeholder dynamics and lifestyle aspects, simulation models are viewed as significantly more advanced than optimisation models to represent technology acceptance and adoption by sub-groups who work with optimisation or simulation models. For example, two separate experts highlighted the combination of agent-based methodologies (ABMs) to study consumer preferences and technology diffusion with optimisation modelling to analyse optimal technology pathways for future energy systems. In contrast, optimisation models are significantly more developed concerning sampling capabilities, detailed technology process models, and supply-side flexibility options according to the modellers using them. Furthermore, a higher average status rating is reported for smaller than larger-scale modelling experts for the categories social aspects and human behaviour modelling and transmission and distribution system modelling. In contrast, flexibility, sector coupling and energy system integration modelling is rated on average slightly higher by large scale modelling experts. These findings are in line with the features of simulation and optimisation models as such. Optimisation models are good when relationships can be described in simple, often linear terms, thus are well suited especially for supply-side modelling and supply-side flexibility [5,49]. Since simulation models have fixed assumed capacities and can be thought of as if-then decisions in ESM, they are capable of taking into account more complex, often non-linear relationships, which makes them a good choice for demand-side modelling, including for demand-side flexibility. This also includes modelling acceptance and adoption, as well as end-user behaviour [5].

Furthermore, simulation models are well suited for modelling different approaches, which then ask for more active involvement of stakeholders in the decision-making process [50]. However, detailed representations of demand-side modelling with complex non-linear relationships, as well as the vast amount of input data needed, makes it burdensome to apply the same methodologies to the large-scale models. As pointed out by one of the respondents, a combined analysis of sociological and technological dynamics might be helpful to assess transformation pathways more realistically by providing insights into the interactions between the decision processes of market actors and the performance of the supply system. Such approaches have been followed, e.g. with empirically grounded agent-based modelling and optimisation models by Wittmann [31]. Chappin und Dijkema [52], and Scheller et al. [53].

Many experts also mentioned combinatorial optimisation approaches (e.g. graph theory) or machine learning (ML) as important future research methods in the field of ESM. The energy research field is indeed one of the most important areas for which combinatorial optimisation methods are applied and developed today [54], e.g. for optimal power flow planning [55] or designing of district heating networks [56]. However, the underlying combinatorial problems are often NP-hard, i.e. very difficult to solve exactly [57]. ML-based approaches which show promising results in
different applications by making decisions that were otherwise made by handcrafted expert knowledge-based heuristics in a more principled and optimised way could help to solve these problems [58]. In a recent collaborative study of some of the most important experts of the ML community, ML methods to tackle climate change have been proposed [59]. The article contains a compilation of ML methods, which could be used for various problems like “optimising buildings”, “urban planning” or “modelling social interactions”. Specific examples, include designing energy systems [60], determining long-term dependencies in occupant behaviour [61] or price forecasting in electricity market simulations [62].

4.3. Implementation and management aspects

The most important implementation items are related to the usability and documentation of models as well as model modularity, whereas the management items are focused on requirements for open access, open data, and open-source code and the recruitment of adequate staff. While various items regarding model usability and documentation standards have scope for improvement, experts from the optimisation field considered the equation documentation significantly more advanced than experts working with simulation models. This is probably due to the constraint imposed by employing an optimisation model, whereby the model should have a pre-defined structure and concerns about solvability and run times may lead to more rigorous documentation. Simulation-based approaches, on the other hand, arguably offer more freedom for experimentation, with less of a clearly defined structure and objective [63]. Higher usability might be achieved by adding data management systems and graphical user interfaces to the existing models.

The high-status ratings but also the recognition of the complexity of items such as the modularity and adaptability of models as well the adequate solver selection suggest strong activity in the field over the past decade(s) [14]. Thereby, the actual modularity of the system is rated significantly lower from the perspective of small-scale experts and higher from long-term experts. This may show that the diversity in research questions to be answered has increased, whereby large ESMs are required to be modular to remain feasible. This is also related to adaptability, whereby a model should be easily tailored (and tailorable) to a specific research question or application. When it comes to documentation of models and data, it seems that the former is considered more advanced than the latter. In other words, aspects such as master data management systems, well-documented benchmarks, graphical user interfaces, clear licensing for data and standards for data documentation all exhibit lower than average levels of development. This goes in line with the suggestion of Keirstead et al. [15]. On the other hand, the model- and code-related aspects appear on the right-hand side of Fig. 8. This may reflect advances in making models transferable, open-source and/or validated, all with good supporting documentation, but which is lacking for their data framework [64].

In terms of the management items, PhD students reported lower ratings for model usability and documentation standards than more senior researchers. This may highlight the difficulties of young researchers applying models. In addition, since professors even indicate a significantly higher status in data documentation standards, this may indicate that particular tasks might be underestimated in terms of their complexity. Indeed, PhD projects in the ESA field often invest large amounts of effort to get a full picture of the model. Probably this also relates to stepwise model developments over longer periods of time, each adding additional layers of complexity, whereby the senior scientist(s) and/or group leaders are the only ones who still have (or are still able to keep) an overview.

4.4. Study limitations

An inherent limitation of survey-based research is that respondents may assess their own perceptions differently in different contexts. For instance, a tendency exists to assess one’s own research field more positively or more complex in such a public setting [65,66]. This also might contradict our assumption in terms of the correlations between the two evaluation criteria that experts who directly work with these approaches experienced a higher problem complexity with each advancement. Although the compilation and classification of the queried items in terms of the different survey sections are derived from a comprehensive review process, we might have missed relevant items. Furthermore, our terms for the items might be understood in different ways by the different experts. Since it is challenging to agree on a specific vocabulary for all respondents, we expressed our understanding of each item with an additional definition included in the survey. While survey formats are not perfectly suited to capturing granular information of how the terms are interpreted and why the answer is given in this exact way, surveys provide more quantifiable and more generalisable results. All participants are faced with exactly the same formulation without any other influences. Thus, the responses may be more objective, certainly more so than interviews. At the same time, other methods like focus groups are helpful to investigate complex topics and to capture perceptions. Nevertheless, they are in some way also interpretive and subjective by nature. Since focus groups consist of group discussions that are influenced by the salience of the research agenda and their responses could be sub-consciously manipulated [67]. Additionally, following the recommendations, focus groups should be conducted with a group size of around six [68,69]. In this context, a data collection with the help of a comparable method would have produced a massive overhead or would even be an impossible task due to the internationality of the experts and their tight schedules.

Although we defined each of the key criteria in the survey and aligned our understanding with participants in our pretest, it is conceivable that different participants interpreted these criteria differently. According to our understanding, the first criteria, Status of Development, is related to assessing the research progress or development of the respective modelling topic in the ESA field. Despite the different modelling emphases of the sample participants, it is likely that experts of the research field have a quite similar overview and thus assess the modelling topics with a similar internal scale. However, this seems more difficult with our second criterion.

The abstraction, formulation, and implementation of conceptual or mathematical models of given real-world situations are often described as being complex. However, the factors which make the realisation difficult are not widely viewed in the same way (Gell-Mann 2002). According to our assumption, one can categorise the complexity of abstraction, formulation, and implementation into different groups like simple, moderate, difficult based on the required resources and capabilities. Since we did not relate our definition to a specific individual complexity, our understanding comprised different aspects of the realisation of the model, e.g., structural, technical, directional, and temporal complexity (Remington und Pollack 2016). While the perceived complexity in terms of the different aspects is clearly dependent on the abilities of the participants, we can still assume that the internal scale regarding self-reporting on this criterion is not completely different since a lot of the researchers in the ESA area share a similar educational
Another limitation is connected to the frame of modellers when answering the survey. Models usually have a focus on specific areas and are built for a specific purpose. Consequently, modellers base their answers on the particular modelling framework they are used to. On the other hand, this survey collected all the answers under the same umbrella, which leads to a higher uncertainty relating to the quantitative results.

Related to the empirical design, we prioritised the expert knowledge of respondents over the number of respondents. The sample size and bias is quite small. Nevertheless, the respondents of the sample cover various countries of 20 most productive countries in the field of ESA [24]. Furthermore, our sample size is comparable to similar studies [21,23]. While there are even more answers available for optimisation models, the small size is particularly visible for all other models. In this regard, the determination of statistically significant relationships between the reported model type and rated criteria should be taken with caution. The same applies to other modelling sub-groups such as temporal and spatial scales. Additionally, the survey does not sufficiently allow for interdisciplinary studies since each respondent had to choose a single model type to rate the items, as one respondent correctly remarked. For instance, energy analysts working alongside environmentalists, economists and social scientists using soft-linked models can hardly assess the questionnaire from their comprehensive view. Nevertheless, we could hardly find any significant differences in the context of the average ratings between experts of different modelling types. While this made it even more difficult to clearly identify future modelling challenges and opportunities, our specially-created matrix revealed valuable insights by comparing the items regarding the two criteria and classifying them in the different quadrants.

5. Summary and conclusion

This paper seeks to contribute to the literature on future research opportunities and challenges for ESA. For this, we conducted a quantitative expert survey with a sample size of $N = 61$ to provide insights regarding the criteria Status of Development and the Complexity of Realisation of 96 identified and classified question or rather modelling items from various reviews in the ESA and ESM field. With the two criteria in mind, a specially defined 2×2 modelling strategy matrix is applied to determine modelling items that are poorly developed and easy to implement (“low hanging fruits”), poorly developed and complex to implement (“tough nuts”), highly developed and easy to implement (“long runners”), and highly developed and complex to implement (“top stars”). The expert survey does not show precise results regarding the main challenges for ESM. Although there are tendencies for low hanging fruits and tough nuts, there are hardly any outliers. In more detail, we identify capabilities like land-use planning patterns, equity and distributional effects and endogenous technological learning as low hanging fruits for enhancement and a large number of complex topics that are already well implemented. The remaining tough nuts regarding modelling capabilities include non-energy sector and social behaviour interaction effects.

The general level of complexity in the field of energy system modelling is rather high, as well as the diversity of modellers, model types and applications. Instead of converging model types, the combination of advantages of model techniques by model coupling is high on the agenda. However, this further increases the complexity of result interpretation and the respective result communication, which has the potential to become a research field on its own. Considering the already high level of complexity of many models, the true art seems to be choosing a manageable level of complexity instead of necessarily adding more. In general, openness is a way forward and on top of transparency, accessibility of models and collaboration could open the way for more interdisciplinary ESA, which can combine the specialities of the different modelling techniques and types.

Our results show a large range in terms of complexity and development status for model capabilities and methodologies. Logically, further research should focus on the “low-hanging fruits” quadrant, but very few of the items are to be found here. Thus, future model enhancements should concentrate on land-use planning patterns, equity and distributional effects and endogenous technological learning. Nevertheless, for any given modelling item, efforts should be directed towards advancing the status of development — which may also indirectly result in higher complexity. This implies focusing attention on the leftmost part of the matrix, where human-centric aspects such as market design, stakeholder dynamics, lifestyle and distributional effects (Fig. 4) are located. In terms of methods, especially non-linear, decomposition and stochastic formulations should be concentrated on. But such a prioritisation may overlook the relevance of such issues to specific problems, and certainly should not be generalized too widely. Instead, future developments in the ESA field need to consider the specific research question(s) and objective(s) and develop the research strategy accordingly.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank all of the survey participants for their time and expertise in completing the survey. We also thank the reviewers for their thoughtful comments and efforts towards improving our manuscript. Fabian Scheller kindly acknowledges the financial support of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 713683 (COFUNDfellowsDTU).

Appendix A. Overview of survey responses
Average rating of the modelling capabilities regarding the Status of Development (ordinal scale very low 1- very high 5) and Complexity of Realisation (ordinal scale very low 1-very high 5; based on the scale a colour transition from red over white to blue or rather lower ratings over medium ratings to higher ratings is applied in this table) from the perspective of the whole survey sample (N) as well of the sub-sample of optimisation model users (Opt), simulation model users (Sim), and other model users (Ors). The modelling capabilities are sorted in ascending order from the perspective of the whole survey sample (capabilities with the lowest Status of Development are at the top). The pairwise Spearman coefficient (\(\rho\)) between the rating of the Status of Development and the Complexity of Realisation is also presented for each of the groups (* correlation is significant at the 10% level). The categories of the capabilities are social aspects and human behaviour modelling (A), demand-side modelling (B), transmission and distribution system modelling (C), supply generation modelling (D), flexibility, sector coupling and energy system integration modelling (E), markets and regulations framework modelling (F), environmental and resources modelling (G), as well as feedback and interaction effects (H). The numbers (1–32) are related to the question items of the modelling capabilities (c.f. Table 1).

Capability items	Status of development	Complexity of realisation	\(\rho\) (Status, Complexity)									
	N	Opt	Sim	Ors	N	Opt	Sim	Ors	N	Opt	Sim	Ors
A 2	2.3	2.1	2.2	2.6	3.2	3.0	3.6	3.3	-.025	-.006	-.494	.342
A 5	2.3	2.2	2.0	2.6	3.1	2.8	4.0	2.9	-.005	-.165	-.197	.930*
F 25	2.3	2.3	2.4	2.2	3.3	2.9	4.1	3.4	.135	.047	.447	.046
H 32	2.3	2.2	2.2	2.8	3.4	3.2	4.0	3.0	-.058	-.018	-.458	.379
G 27	2.4	2.5	1.8	2.8	3.0	2.8	3.7	3.0	.175	.148	.082	.687
A 3	2.4	2.3	2.7	2.8	3.4	2.8	4.0	3.7	-.011	-.119	-.013	.151
C 13	2.6	2.7	2.1	2.6	3.0	2.8	3.6	3.0	.327*	.445*	.690*	.000
H 30	2.6	2.4	2.7	3.4	3.1	2.8	4.1	3.1	-.023	-.006	-.041	-.163
G 29	2.6	2.5	2.5	3.3	3.3	3.3	4.0	3.1	-.123	-.209	-.099	.194
C 11	2.6	2.5	2.5	3.1	3.1	2.9	3.6	3.2	.189	.117	.000	.658*
F 24	2.7	2.7	2.3	2.9	3.3	3.1	4.0	3.4	-.028	-.043	-.689	-.595*
G 28	2.7	2.8	2.3	2.7	3.0	3.0	3.4	2.9	-.063	-.032	-.436	.422
C 9	2.7	2.8	2.6	2.7	3.0	2.8	3.4	3.3	.100	.109	-.236	.460
F 26	2.8	2.7	2.2	3.8	3.2	3.0	4.0	3.3	.081	.148	-.107	.000
H 31	2.8	2.6	2.3	3.8	3.2	2.9	4.1	3.3	.092	.218	-.148	-.150
C 14	2.9	3.1	2.5	2.6	3.0	3.1	3.7	2.8	.398*	.438*	.203	.660*
E 21	3.0	3.2	2.5	2.9	3.4	3.2	4.1	3.5	.100	.150	-.318	.484
B 8	3.0	3.0	2.9	3.3	3.3	3.1	3.7	3.6	.007	.338*	-.707*	-.396
A 1	3.1	2.8	3.7	3.4	3.3	3.2	3.8	3.3	.403*	.270	-.328	.847*
E 23	3.1	3.2	2.6	3.1	3.6	3.4	4.1	3.5	.046	.112	-.316	.414
C 12	3.2	3.2	3.1	3.3	3.2	3.2	3.3	2.9	.282*	.170	.000	.771*
C 10	3.2	3.4	2.8	3.1	3.3	3.2	3.7	3.6	.236*	.388*	-.096	.308
D 15	3.3	3.6	2.5	3.2	3.0	3.0	3.6	2.9	.007	.109	-.041	.133
E 22	3.4	3.6	2.8	3.2	3.4	3.3	4.1	3.4	.038	.226	-.349	-.203
D 16	3.4	3.7	2.9	2.7	3.1	3.0	3.6	3.1	-.025	-.041	.334	-.140
E 20	3.5	3.7	2.9	3.4	3.4	3.3	4.1	3.5	.055	.087	.010	.179
D 18	3.5	3.7	3.5	3.0	3.1	3.1	3.5	3.2	.135	.261	-.078	-.149
A 4	3.5	3.5	3.3	3.8	2.9	2.9	3.6	3.5	.205	.247	-.010	.351
B 7	3.5	3.7	3.1	3.4	3.3	3.3	3.8	3.3	.113	.348*	-.066	-.121
E 19	3.6	3.8	3.0	3.4	3.5	3.3	4.2	3.6	-.035	.006	.199	.109
B 6	3.7	3.6	4.0	3.5	3.2	3.1	3.4	3.4	-.087	-.072	-.139	.113
D 17	3.7	3.9	3.1	3.6	3.0	3.1	3.2	3.2	.052	.145	-.054	-.059
Table A2
Average rating of the methodological approaches regarding the Status of Development (ordinal scale very low 1- very high 5) and Complexity of Realisation (ordinal scale very low 1- very high 5; based on the scale a colour transition from red over white to blue or rather lower ratings over medium ratings to higher ratings is applied in this table) from the perspective of the whole survey sample (N) as well of the sub-sample of optimisation model users (Opt), simulation model users (Sim), and other model users (Ors). The modelling methodologies are sorted in ascending order from the perspective of the whole survey sample (methodologies with low Status of Development are at the top). The pairwise Spearman coefficient (ρ) between the rating of the Status of Development and the Complexity of Realisation is also presented for each of the groups (* correlation is significant at the 0.1 level). The categories of the methodologies are high-resolution modelling (A), programming formulations (B), model characteristics (C). The numbers (1–15) are related to the question items of the methodological approaches (c.f. Table 1).

Methodology items	Status of development	Complexity of realisation	rho (Status, Complexity)									
	N	Opt	Sim	Ors	N	Opt	Sim	Ors	N	Opt	Sim	Ors
B 6 New general mathem. frameworks	2.8	2.8	2.8	2.8	3.4	3.1	4.1	3.3	.289*	.407*	.197	.118
B 7 NLP formulations	2.9	2.7	3.3	3.1	3.8	3.9	3.9	3.6	.189	.152	.159	.627
A 4 Decomposition methods	2.9	3.0	2.7	2.9	3.6	3.4	4.1	3.8	.167	.241	.049	.015
C 12 Focus on uncertainty analysis	2.9	2.9	2.5	3.2	3.4	3.2	4.1	3.4	.280*	.312*	.005	.466
B 10 SP formulations	2.9	2.9	2.5	3.6	3.3	3.3	3.6	3.4	.328*	.481*	-.310	.425
A 3 Foresight approaches	3.0	3.2	2.6	3.0	3.4	3.3	4.1	3.3	.043	.038	-.093	.338
A 5 Soft- or hard-coupling of models	3.1	3.2	2.9	3.1	3.7	3.6	4.3	3.8	.174	.141	.453	.028
C 13 Sustainability indicator assmt.	3.1	3.1	3.0	3.3	3.1	2.9	3.8	3.1	.031	.033	.021	-.072
C 15 Integ. assmt. multi capabilities	3.2	3.4	2.8	2.9	3.5	3.5	4.0	3.4	.070	.075	.098	-.099
A 1 High(er) level of spatial disag.	3.3	3.2	3.1	3.5	3.3	3.2	3.9	3.2	.077	.185	-.143	-.140
A 2 High(er) level of temporal disag.	3.5	3.6	3.2	3.5	3.3	3.1	4.0	3.3	.132	.223	.577	-.235
C 14 Technology neutrality	3.6	3.7	3.2	3.6	3.2	3.1	3.4	3.1	.088	.094	.085	.190
C 11 Consistent quality data sources	3.7	3.7	3.5	3.8	3.8	3.9	4.1	3.4	.099	.074	-.185	.470
B 8 MIP formulations	3.7	3.9	3.1	3.6	3.5	3.5	3.4	3.3	.384*	.318*	.559	.372
B 9 LP formulations	4.0	4.3	3.1	3.8	3.1	2.9	3.5	3.2	-.026	.020	.029	.014

Table A3
Average rating of the implementation approaches regarding the Status of Development (ordinal scale very low 1- very high 5) and Complexity of Realisation (ordinal scale very low 1- very high 5; based on the scale a colour transition from red over white to blue or rather lower ratings over medium ratings to higher ratings is applied in this table) from the perspective of the whole survey sample (N) as well of the sub-sample of optimisation model users (Opt), simulation model users (Sim), and other model users (Ors). The modelling methodologies are sorted in ascending order from the perspective of the whole survey sample (methodologies with the lowest Status of Development are at the top). The pairwise Spearman coefficient (ρ) between the rating of the Status of Development and the Complexity of Realisation is also presented for each of the groups (* correlation is significant at the 0.1 level). The categories are related to development activities (A), model validation and benchmarking (B), model usability (C), and documentation standards (D). The numbers (1–15) are related to the question items of the implementation approaches (c.f. Table 1).

Implementation items	Status of development	Complexity of realisation	rho (Status, Complexity)									
	N	Opt	Sim	Ors	N	Opt	Sim	Ors	N	Opt	Sim	Ors
C 9 Web-based & cloud environm.	2.6	2.5	2.6	2.7	3.0	2.8	3.7	3.1	.418*	.498*	.424	.407
C 10 Master data mgmnt. systems	2.8	2.8	2.8	2.7	3.3	3.2	3.9	3.0	.273*	.520*	-.121	.000
C 7 (Graphical) user interfaces	2.8	2.8	2.8	3.0	3.0	2.9	3.2	3.1	.165	.278	-.224	.289
D 15 Clear licensing for data	2.9	3.0	2.8	2.6	2.9	2.8	2.8	3.6	.074	.101	.124	-.210
D 13 Standards for data document.	2.9	2.9	2.9	2.8	2.9	2.8	2.7	3.2	.001	-.206	.418	.270
A 4 Model coupling interfaces	2.9	2.9	2.8	3.0	3.7	3.6	3.8	3.4	.045	.134	-.246	.103
B 6 Well-documented benchmarks	2.9	3.0	3.0	2.6	3.1	3.0	3.4	3.1	.311*	.254	.480	.448
C 8 Scenario management tools	3.1	3.2	3.1	2.6	3.2	3.1	3.6	3.1	.325*	.457*	.215	-.308
B 5 Well-documented model validat.	3.2	3.2	3.0	3.3	3.4	3.5	3.7	3.1	.150	.033	.521*	.187
D 14 Clear licensing for code	3.3	3.4	2.8	3.5	2.7	2.5	2.8	3.1	.080	.115	.124	.063
D 11 Installation & appl. instruction	3.3	3.5	2.8	3.3	2.7	2.5	2.6	3.4	.139	.210	.435	-.538
A 3 Modular & adaptable models	3.5	3.6	3.3	3.6	3.8	3.7	3.7	4.1	.191	.138	.160	.493
D 12 Equation documentations	3.5	3.8	3.0	3.4	2.8	2.7	2.5	3.4	.121	.067	.185	.455
A 2 Adequate solver selection	3.7	3.8	3.4	3.6	3.5	3.4	3.9	3.6	.115	.282	-.543	.000
A 1 Programming. Language select.	3.7	3.7	4.0	3.4	3.3	3.4	2.9	3.7	-.053	.064	-.642*	.674*
Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.segy.2021.100057.

References

[1] IRENA. Energy Transition. IRENA: 2021. Available at: https://www.irena.org/
[2] Herbst Andrea, Toro Felipe, Reitzel Felix, Jochem Eberhard. Introduction to energy systems modelling. Swiss J Econ Stat 2012;148(2):111–35. https://doi.org/10.1007/BF03399361.
[3] Kottay T, Nothling L, Platenberg M, Groß T, Smolencz A, Priesmann J, Büsing H, Beer R, Kullmann F, Singh B, Praktiknjo A. A modeler's guide to handle complexity in energy systems optimization. Adv Appl Energy 2021. p.100063. https://doi.org/10.1016/j.apenergy.2021.116731.
[4] Kai Varun, Henry Adam Douglas. Agent-based modelling of consumer energy choices. Nat Clim Change 2016;6(5):536–62. https://doi.org/10.1038/nclimate2967.
[5] Lund Henrik, Arler Finn, Østergaard Poul, Hvelplund Frede. Energy supply decisions: a large-scale decision science approach. Energy Sustain Soc 2018b;8(1):13.https://doi.org/10.1186/s13705-018-0154-z.
[6] Oberle Stella, Elsland Rainer. Are open access models able to assess today's energy scenarios?. In: Energy Strategy Reviews, vol. 26; 2019. p. 100396. https://doi.org/10.1016/j.esr.2019.100396.
[7] Pfessmann Jan, Nothling Lars, Praktiknjo Aaron. Are complex energy system models more accurate? An intra-model comparison of power system optimization models. Appl Energy 2019;235:113783. https://doi.org/10.1016/j.apenergy.2019.113783.
[8] Junne Tobias, Xiao Mengzhu, Xu Lei, Wang Zongfei, Jochem Patrick, Pregger Thomas. How to assess the quality and transparency of energy scenarios: results of a case study. In: Energy Strategy Reviews, vol. 26, 2019. p. 100180. https://doi.org/10.1016/j.esr.2019.100180.
[9] Morrison Robbie. Energy system modelling: public transparency, scientific reproducibility, and open development. In: Energy Strategy Reviews, vol. 20; 2018. p. 49–63. https://doi.org/10.1016/j.esr.2017.12.010.
[10] Wiese Frauke, Herbst Andrea, Kottay T. Open source energy system optimization tools: most easy-to-use?. In: Renewable and Sustainable Energy Reviews, vol. 105; 2019. p. 444. https://doi.org/10.1016/j.rser.2018.03.004.
[11] Junne Tobias, Xiao Mengzhu, Xu Lei, Wang Zongfei, Jochem Patrick, Pregger Thomas. How to assess the quality and transparency of energy scenarios?. In: Energy Strategy Reviews, vol. 26; 2019. p. 100396. https://doi.org/10.1016/j.esr.2019.100396.
[12] Pfessmann Jan, Nothling Lars, Praktiknjo Aaron. Are complex energy system models more accurate? An intra-model comparison of power system optimization models. Appl Energy 2019;235:113783. https://doi.org/10.1016/j.apenergy.2019.113783.
[13] Junne Tobias, Xiao Mengzhu, Xu Lei, Wang Zongfei, Jochem Patrick, Pregger Thomas. How to assess the quality and transparency of energy scenarios: results of a case study. In: Energy Strategy Reviews, vol. 26, 2019. p. 100180. https://doi.org/10.1016/j.esr.2019.100180.
[14] Morrison Robbie. Energy system modelling: public transparency, scientific reproducibility, and open development. In: Energy Strategy Reviews, vol. 20; 2018. p. 49–63. https://doi.org/10.1016/j.esr.2017.12.010.
[15] Wiese Frauke, Herbst Andrea, Kottay T. Open source energy system optimization tools: most easy-to-use?. In: Renewable and Sustainable Energy Reviews, vol. 105; 2019. p. 444. https://doi.org/10.1016/j.rser.2018.03.004.
