DIMITROV’S QUESTION FOR THE POLYNOMIALS OF DEGREE 1, 2, 3, 4, 5, 6

DMITRIY DMITRISHIN, IVAN SKRINNIK, ANDREY SMORODIN, AND ALEX STOKOLOS

Abstract. D. Dimitrov [4] has posted the problem of finding the optimal polynomials that provide the sharpness of Koebe Quarter Theorem for polynomials and asked whether Suffridge polynomials [7] are optimal ones. We disproved Dimitrov’s conjecture for polynomials of degree 3, 4, 5 and 6. For polynomials of degree 1 and 2 the conjecture is valid.

1. Introduction

One of the fundamental results in the geometric complex analysis is the famous Koebe Quarter Theorem. It states that for any function \(f \in \mathcal{U}_n \) the image \(f(\mathbb{D}) \) contains a disc of radius 1/4, whether \(\mathbb{D} = \{|z| < 1\} \) and \(\mathcal{U}_n = \{f(z) : f(0) = 0, f'(0) = 1, f(z) \text{ is univalent in } \mathbb{D}\} \). The 1/4 bound is sharp as it is indicated by the Koebe function \(K(z) = z/(1 - z)^2 \). A natural question is whether the constant 1/4 can be improved for polynomial of specific degree. Say, for polynomials of the first degree it is trivially 1; a simple computation demonstrates that for polynomials of degree 2 it is 1/2. The task was formalized by Dimitrov [4, Problem 5] who posted the following problem

For any \(n \in \mathbb{Z}_+ \) find the polynomial \(p_n(z) \in \mathcal{U}_n \), for which the infimum \(\inf \{|p_n(z)| : z = e^{it}, 0 \leq t \leq 2\pi \} \) is attained.

By the Koebe Quarter Theorem the above infimums are bounded from below by 1/4.

Córdova and Ruscheweyh [3] considered the Suffridge polynomials [7]

\[
S_{n,j}(z) = \sum_{k=1}^{n} \left(1 - \frac{k - 1}{n} \right) \frac{\sin(\pi j k/(n + 1))}{\sin(\pi j/(n + 1))} z^k.
\]

Note that \(S_{n,j}(z) \in \mathcal{U}_n \) and \(|S_{n,1}(-1)| = \frac{1}{4} \sum_{k=0}^{n-1} \frac{\pi k}{n} \sec^2 \frac{\pi k}{2(n+1)} \to 1/4 \). Hence these polynomials solve the latter problem at least asymptotically.

Note that the value \(\frac{1}{4} \sum_{k=0}^{n-1} \frac{\pi k}{n} \sec^2 \frac{\pi k}{2(n+1)} \) is the Koebe radius only for polynomials \(S_{n,1}(z) \) of even degree. For the polynomials of odd degree the quantity \(\inf \{|S_{n,1}(z)| : |z| = 1\} \) is not achieved at the point \(z = -1 \), rather a different point \(\xi \), such that \(S'_{n,1}(\xi) = 0 \). (see Fig 1).
Fig 1: The image and fragment for $S_{3,1}(\mathbb{D})$.

Note that for $n = 3$, $|S_{3,1}(-1)| \approx 0.3905$ while the Koebe radius is $r_3 \approx 0.3849$. For $n = 5$, $|S_{5,1}(-1)| \approx 0.3215$ while the Koebe radius is $r_5 \approx 0.3196$. Note that $r_2 = 0.5$, $r_4 \approx 0.3455$, $r_6 \approx 0.3069$.

Dimitrov [4, p.15] asked a specific question about the Suffridge polynomial: *Is it the extremal one for every fixed N?* Note that they are indeed extremal for $N = 1, 2$. Below we prove that the answer is negative for $N = 3, 4, 5, 6$.

2. New extremal polynomials

Univalent polynomials are classical objects of complex analysis. Perhaps, the first systematic approach was suggested by Alexander [1] who proved that the truncated sums of the Taylor series of the function $f(z) = \log(1/(1 - z))$ are univalent in \mathbb{D} polynomials. Note that Alexander’s paper contains many ideas that were not properly estimated at that time, c.f. [5]. The subtlety of the situation well illustrates the fact that a necessary condition of univalency - the derivative does not vanish in \mathbb{D} - implies that the n-th coefficient of the polynomial of degree n cannot exceed $1/n$ in absolute value. This is perfectly fine with the logarithm function and awfully wrong with the Koebe function. Thus, Suffridge polynomials can be treated as reasonable substitutions for the function $K(z)$. These polynomials are extremal in a way that they have the n-th coefficient exactly $1/n$.

Thus, so far we have two families of extremal univalent polynomials in play - Alexander polynomials and Suffridge polynomials. The main discovery of the current paper is a new extremal family of polynomials that seem to be univalent in \mathbb{D} and might be as important as the two mentioned above series. Namely, the following polynomials were introduced in [8].

$$P_N(z) = \frac{1}{U'_N\left(\cos \frac{\pi}{N+2}\right)} \sum_{k=1}^{N} U'_{N-k+1}\left(\cos \frac{\pi}{N + 2}\right) U_{k-1}\left(\cos \frac{\pi}{N + 2}\right) z^k,$$

where $U_k(x)$ is a family of Chebyshev polynomials of the second kind and $U'_k(x)$ is a derivative.

One given below some examples:

$$P_1(z) = z, \quad P_2(z) = z + \frac{1}{2}z^2,$$
First, let us write

\[P_3(z) = z + \frac{2}{\sqrt{5}} z^2 + \frac{1}{2} \left(1 - \frac{1}{\sqrt{5}}\right) z^3, \quad P_4(z) = z + \frac{7}{6} z^2 + \frac{2}{3} z^3 + \frac{1}{6} z^4, \]

\[P_5(z) = z + \frac{8 - 40 (\cos(\pi/7))^2 + 32 (\cos(\pi/7))^3 - 24 \cos(\pi/7))^2}{40 (\cos(\pi/7))^3 - 30 \cos(\pi/7) - 32 (\cos(\pi/7))^2 + 7} \]

\[\frac{24 (\cos(\pi/7))^3 - 28 (\cos(\pi/7))^2 - 18 \cos(\pi/7) + 4 z^3}{40 (\cos(\pi/7))^3 - 30 \cos(\pi/7) - 32 (\cos(\pi/7))^2 + 7} \]

\[\frac{16 (\cos(\pi/7))^3 - 16 (\cos(\pi/7))^2 - 12 \cos(\pi/7) + 4 z^4}{40 (\cos(\pi/7))^3 - 30 \cos(\pi/7) - 32 (\cos(\pi/7))^2 + 7} \]

\[\frac{8 (\cos(\pi/7))^3 - 4 (\cos(\pi/7))^2 - 6 \cos(\pi/7) + 1 z^5}{40 (\cos(\pi/7))^3 - 30 \cos(\pi/7) - 32 (\cos(\pi/7))^2 + 7} \]

\[P_6(z) = z + \frac{9 + 8 \sqrt{2}}{4 \sqrt{2} + 8} z^2 + \frac{6 \sqrt{2} + 10}{4 \sqrt{2} + 8} z^3 + \frac{4 \sqrt{2} + 6}{4 \sqrt{2} + 8} z^4 + \frac{2 \sqrt{2} + 2}{4 \sqrt{2} + 8} z^5 + \frac{1}{4 \sqrt{2} + 8} z^6 \]

Theorem 1. The following presentation is valid for \(t \in (0, \pi) \), \(t \neq \frac{2\pi}{N+2} \)

\[P_N(e^{it}) = \frac{1}{2 \left(\cos t - \cos \frac{2\pi}{N+2}\right)} + \frac{1 - \cos \frac{2\pi}{N+2}}{(N+2)(1-\cos t)} \sin t \sin \frac{N+2}{2} \frac{\sin \frac{N+2}{2}}{\left(\cos t - \cos \frac{2\pi}{N+2}\right)^2} e^{\frac{N+2}{2}it}. \]

Proof. First, let us write \(P_N(z) \) in terms of trigonometric expressions [8]

\[P_N(z) = \frac{1}{(N+2) \sin \frac{2\pi}{N+2}} \sum_{k=1}^{N} \left((N-k+3) \sin \frac{(k+1)\pi}{N+2} - \frac{(N-k+1) \sin \frac{(k-1)\pi}{N+2}}{\sin \frac{2\pi}{N+2}} \right) \sin \frac{k\pi}{N+2} z^k \]

Having in mind that

\[2 \sin(\pi) - 0 \cdot \sin \frac{N\pi}{N+2} \sin \frac{(N+1)\pi}{N+2} \cdot z^{N+1} = 0 \]

we can change the upper bound for the range in the sum from \(N \) to \(N+1 \). Further modification produces

\[P_N(z) = \frac{1}{(N+2) \sin \frac{2\pi}{N+2}} \sum_{k=1}^{N+1} \left((N-k+2) \sin \frac{2k\pi}{N+2} + 2 \frac{\cos \frac{\pi}{N+2}}{\sin \frac{2\pi}{N+2}} \sin^2 \frac{k\pi}{N+2} \right) z^k. \]

An important observation is that

\[\frac{N+1}{N+2} \cdot S_{N+1,2}(z) = \frac{1}{(N+2) \sin \frac{2\pi}{N+2}} \sum_{k=1}^{N+1} (N-k+2) \sin \frac{2k\pi}{N+2} \cdot z^k, \]

where \(S_{N+1,2}(z) \) is the second Suffridge polynomial of order \(N+1 \). By formula (5) in [7] p. 496], for \(n = N+1 \) and \(j = 2 \) we get
Theorem 2. The following presentation is valid for $t \in (0, \pi)$, $t \neq \frac{2\pi}{N+2}$.

\[
4|P_N(e^{it})|^2 = \left(\frac{\cos \frac{N+2t}{2} - \cos \frac{2\pi}{N+2}}{\cos t - \cos \frac{2\pi}{N+2}} \right)^2 + 2\frac{1 - \cos \frac{2\pi}{N+2}}{N + 2} \left(\frac{\sin t}{\cos t - \cos \frac{2\pi}{N+2}} \right)^2 \left(\frac{\sin \frac{N+2t}{2} - \sin \frac{2\pi}{N+2}}{\cos t - \cos \frac{2\pi}{N+2}} \right)^2 .
\]

We use the Chebyshev polynomials of the first kind $T_n(x)$ and put $t = \frac{2\pi}{N+2}$.

By combining both formulas, we get the formula in the theorem. □

Note that the right hand side has removable singularities, thus in fact it is a trigonometric polynomial.

Let us fix a positive integer N and let $R_N(e^{it}) = |P_N(e^{it})|^2$. The following theorem can be directly verified by tedious standard computations.

Theorem 2. The following presentation is valid for $t \in (0, \pi)$, $t \neq \frac{2\pi}{N+2}$.

\[
4|P_N(e^{it})|^2 = \left(\frac{\cos \frac{N+2t}{2} - \cos \frac{2\pi}{N+2}}{\cos t - \cos \frac{2\pi}{N+2}} \right)^2 + 2\frac{1 - \cos \frac{2\pi}{N+2}}{N + 2} \left(\frac{\sin t}{\cos t - \cos \frac{2\pi}{N+2}} \right)^2 \left(\frac{\sin \frac{N+2t}{2} - \sin \frac{2\pi}{N+2}}{\cos t - \cos \frac{2\pi}{N+2}} \right)^2 .
\]

Because the real coefficients symmetry of $P_N(e^{it})$ (the real part is an even function and the imaginary is an odd function of t), we denote $|P_N(e^{it})|^2 = R_N(x)$ as a polynomial of $x = \cos(t)$. Let $b = \cos \frac{2\pi}{N+2}$ and T_N be the Chebyshev polynomial of the first kind. From Theorem 2 one can get the following formulas by straightforward computations:

\[
4R_N(x) = \frac{1}{(x-b)^2} + 2\frac{1-b}{(N+2)(x-b)^3} + 2\frac{(1-b)^2}{(N+2)^2}(1-x),
\]

\[
4(R_N(x))' = \frac{2}{(b-x)^3} \left(1 - \frac{1-b}{1-x} (1-T_{N+2}(x)) \left(1 - \frac{4(1-b)(1+x)}{(N+2)^2(b-x)^2} - \frac{2(1-b)}{(N+2)^2(1-x)(b-x)} \right) + \frac{1-b}{1-x} \frac{1-b}{1-x} U_{N+1}(x) \frac{1-bx + 3(1-x^2)}{b-x} \right).
\]

Theorem 3. If $(R_N(x))' > 0$ for $x \in (-1, 1)$ then the polynomial $P_N(z)$ is univalent in \mathbb{D} and the Koebe radius of this polynomial is $\sqrt{R_N(-1)}$.

It is proved in [8] that the polynomial $P_N(z)$ is typically real and thus the image of the unit circle has no self intersections, the theorem is proved.

Note, that $\sqrt{R_N(-1)} = \frac{1}{4} \sec^2 \frac{\pi}{N+2}$.
3. The case N=1.

In this case $R_1(x) = 1$, thus the Koebe radius is 1.

4. The case N=2.

In this case $R_2(x) = 5/4 + x$, thus the Koebe radius is $\sqrt{R_2(-1)} = 1/2$.

5. The case N=3.

In this case the polynomial $P_3(z)$ is univalent that can be verified using Brennan’s criteria [2]. Also

$$\frac{4R_3(x)}{25} = -2 \frac{37 \cos \left(\frac{1}{5} \pi \right) - 69 + 56 \left(\cos \left(\frac{1}{5} \pi \right)\right)^2}{\left(\cos \left(\frac{1}{5} \pi \right)\right)^2 + 1 - 2 \cos \left(\frac{1}{5} \pi \right)} - \frac{32}{25} \frac{\left(23 \cos \left(\frac{1}{5} \pi \right) - 51 + 49 \left(\cos \left(\frac{1}{5} \pi \right)\right)^2\right)x}{-9 - 5 \cos \left(\frac{1}{5} \pi \right) + 20 \left(\cos \left(\frac{1}{5} \pi \right)\right)^2}$$

$$4R_3'(x) = -32 \frac{23 \cos \left(\frac{1}{5} \pi \right) - 51 + 49 \left(\cos \left(\frac{1}{5} \pi \right)\right)^2}{-9 - 5 \cos \left(\frac{1}{5} \pi \right) + 20 \left(\cos \left(\frac{1}{5} \pi \right)\right)^2} \frac{64}{5} \frac{\left(10 \cos \left(\frac{1}{5} \pi \right) - 14 + 9 \left(\cos \left(\frac{1}{5} \pi \right)\right)^2\right)x}{14 \left(\cos \left(\frac{1}{5} \pi \right)\right)^2 + 3 - 15 \cos \left(\frac{1}{5} \pi \right)}$$

One can check that $R_3'(x)$ is positive on [-1,1], which implies the estimate from above on Koebe radius $|P_3(-1)| = 3 \sqrt{5} \approx 0.382$.

6. The case N=4.

In this case the polynomial $P_4(z)$ is univalent, c.f. [6].

$$4R_4(x) = 40/9 + (112/9)x + (124/9)x^2 + (16/3)x^3$$

and

$$4R_4'(x) = 112/9 + (248/9)x + (48/3)x^2$$

The discriminant is $-37.13...$ therefore the smallest value for $R_4(x)$ is at -1, which implies the estimate from above on Koebe radius $|P_4(-1)| = 1/3$.

7. The case \(N = 5 \).

In the particular case \(N = 5 \) we get

\[4R_5'(x) = \frac{16}{49} \left(42 \cos (\frac{1}{7} \pi)^3 - 31 \cos (\frac{1}{7} \pi) + 9 - 47 \cos (\frac{1}{7} \pi)^2 \right) + \]

\[\frac{64}{49} \left(\frac{762 \cos (\frac{1}{7} \pi)^3 - 618 \cos (\frac{1}{7} \pi) - 3 - 323 (\sin (\frac{1}{7} \pi)^2) x}{-11 + 2 (\sin (\frac{1}{7} \pi))^2 - 39 \cos (\frac{1}{7} \pi) + 60 (\cos (\frac{1}{7} \pi))^3} \right) + \]

\[\frac{192}{49} \left(\frac{940 \cos (\frac{1}{7} \pi)^3 - 761 \cos (\frac{1}{7} \pi) + 81 - 536 (\sin (\frac{1}{7} \pi)^2) x^2}{-18 + 14 (\cos (\frac{1}{7} \pi))^3 + 35 (\sin (\frac{1}{7} \pi))^2} \right) + \]

\[\frac{128}{7} \left(\frac{380 \cos (\frac{1}{7} \pi)^3 - 293 \cos (\frac{1}{7} \pi) + 17 - 176 (\sin (\frac{1}{7} \pi)^2) x^3}{-22 + 9 (\sin (\frac{1}{7} \pi))^2 - 70 \cos (\frac{1}{7} \pi) + 112 (\cos (\frac{1}{7} \pi))^3} \right). \]

![Fig 2: The graphs \(R_5(x) \) and \(R_5'(x) \)](image)

By decomposing into Taylor polynomial centered at \(-1\) we get

\[4R_5'(x) = -\frac{8}{49} \left(778868087 \cos (\frac{1}{7} \pi)^2 - 791395834 + 2270258054 \cos (\frac{1}{7} \pi)^3 - 1666223113 \cos (\frac{1}{7} \pi) \right) + \]

\[\frac{32}{49} \left(-58704325 + 88578183 (\cos (\frac{1}{7} \pi))^2 + 57393568 (\cos (\frac{1}{7} \pi))^3 - 61237982 \cos (\frac{1}{7} \pi) \right) (1 + x) + \]

\[\frac{192}{49} \left(-212691 + 312494 (\cos (\frac{1}{7} \pi))^2 - 238981 \cos (\frac{1}{7} \pi) + 238432 (\cos (\frac{1}{7} \pi))^3 \right) (1 + x)^2 + \]

\[\frac{128}{7} \left(17 - 176 (\sin (\frac{1}{7} \pi))^2 + 380 (\cos (\frac{1}{7} \pi))^3 - 293 \cos (\frac{1}{7} \pi) \right) (1 + x)^3 \right). \]
Thus, $R_5'(x) = A_0 + (x + 1)(A_1 + A_2(x + 1) + A_3(x + 1)^2)$ with the obvious choice of A_j. Since for $|x| \leq 1$ the value $x + 1$ is positive and $A_i \geq 0$ for $i = 0, 1$ then the inequality

$$A_2^2 - 4A_1A_3 < 0$$

implies that

$$R'(x) > 0; \quad x \in [-1, 1].$$

The verification of (1) is an elementary issue based on approximations of $\cos \pi/7$ and $\sin \pi/7$ from above and below with sufficiently large number of digits.

This proves that the derivative does not intersect the interval and that $R_5'(z) \geq 0$. Thus, $R_5(z)$ is not decreasing on $[-1, 1]$ therefore $P_5(z)$ is univalent by Theorem 3. This gives us an estimate on the Koebe radius $|P_5(-1)| \approx 0.3080$.

8. The case $N = 6$.

In this case

$$4R_6(x) = 2 + \left(8\sqrt{2} - 4\right)x + \left(38 - 12\sqrt{2}\right)x^2 + \left(28\sqrt{2} - 4\right)x^3 + \left(28\sqrt{2} - 10\right)x^4 + \left(-16\sqrt{2} + 32\right)x^5.$$

$$4R_6'(x) = 8\sqrt{2} - 4 + 2\left(38 - 12\sqrt{2}\right)x + 3\left(28\sqrt{2} - 4\right)x^2 + 4\left(28\sqrt{2} - 10\right)x^3 + 5\left(-16\sqrt{2} + 32\right)x^4$$

$$= -76\sqrt{2} + 108 + \left(464\sqrt{2} - 660\right)(1 + x) + \left(-732\sqrt{2} + 1068\right)(1 + x)^2 + \left(432\sqrt{2} - 680\right)(1 + x)^3 + \left(-80\sqrt{2} + 160\right)(1 + x)^4$$

$$= \left(108 - 76\sqrt{2} + \frac{-660 + 464\sqrt{2}}{2\sqrt{108 - 76\sqrt{2}}}(x + 1)\right)^2 + \left[\frac{-660 + 464\sqrt{2}}{4(108 - 76\sqrt{2})} - 732\sqrt{2} + 1068 + \frac{432\sqrt{2} - 680}{2\sqrt{108 - 76\sqrt{2}}}(x + 1) + \left(-80\sqrt{2} + 160\right)(1 + x)^2\right](x + 1)^2$$

Applying on argument similar to the formula (1) we get formula (2) which implies the estimate for the Koebe radius $|P_5(-1)| \approx 0.2929$. We conjecture that the obtained estimates in fact are true values.

9. Conclusion

In [8] a new class of polynomials was introduced

$$P_N(z) = \frac{1}{U'_N\left(\cos \frac{\pi}{N+2}\right)} \sum_{k=1}^{N} U'_{N-k+1} \left(\cos \frac{\pi}{N+2}\right) U_{k-1} \left(\cos \frac{\pi}{N+2}\right) z^k,$$
and the extremal property of these polynomials was mentioned

$$\sup_{p_N(z)=z+\sum_{k=2}^{N}a_k z^k} \min \{\Re(p_N(e^{it})) : \Im(p_N(e^{it}) = 0\} = P_N(-1).$$

It was conjectured that these polynomials are univalent and solves Dimitrov problem.

In the present article the first conjecture is proved for $N = 1, ..., 6$ thus for those N the estimates from below on the radius Koebe of polynomials from U_N are obtained. It is shown that those values are smaller then the corresponding ones for Suffridge polynomials $S_{N,1}(z)$.

To prove the case $N > 6$ one needs to verify the criteria given by Theorem 3, which is a not trivial task. Currently we are working on this subject.

Also, let us mention that the polynomials $P_N(z), S_{N,1}(z)$ and their generalizations turnes out to be very helpful in the problem of stabilization of of cycles in nonlinear discrete systems [10, 9].

References

[1] Alexander, J.W. Functions which map the interior of the unit circle upon simple regions, Annals of Math. 17 (1915), pp 12-22.
[2] Brannan, D. A., Coefficient regions for univalent polynomials of small degree, Mathematika 14 (1967), pp 165-169.
[3] Cordova A.Y., Ruscheweyh S., On maximal ranges of polynomial spaces in the unit disk, Constructive Approximation, 5 (1989), pp 309-327.
[4] Dimitrov D., Extremal Positive Trigonometric Polynomials, Approximation Theory: A volume dedicated to Blagovest Sendov 2002, pp 1-24.
[5] Gluchoff A. and Hartmann F., On a "Much Underestimated" Paper of Alexander, Archive for History of Exact Sciences, Vol. 55, No. 1 (August 2000), pp. 1-41.
[6] Dillies J., Univalence of a certain quartic function, arXiv:1803.03098 (2018).
[7] Suffridge T., On univalent polynomials. J. London Math. Soc. 44 (1969), pp 496-504.
[8] Dmitrishin D., Smorodin A., Stokolos A., Estimating the Koebe radius for polynomials, arXiv:1805.06927 (2018).
[9] Dmitrishin D., Khamitova A and Stokolos A., Fejer polynomials and Chaos. Springer Proceedings in Mathematics and Statistics, 108 (2014), pp 49-75.
[10] Dmitrishin D., Khamitova A., Stokolos A., and Tohaneanu M., Finding Cycles in Nonlinear Autonomous Discrete Dynamical Systems. Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2), Springer AWM series, Volume 5, 2017, pp 199-237.