Research Article

Bioequivalence Study of Pantoprazole Sodium-HPBCD and Conventional Pantoprazole Sodium Enteric-Coated Tablet Formulations

Sandesh P. Kamdi and Prashant J. Palkar

Medical Services Department, Akumentis Healthcare Ltd., 204 Second Floor, G-Corp Tech Park, Kasarvadavali, Near Hypercity, Ghodbunder Road, Thane (West), Maharashtra 400 615, India

Correspondence should be addressed to Sandesh P. Kamdi; sandesh_kamdi@yahoo.co.in

Received 26 December 2012; Accepted 11 January 2013

Academic Editors: T. Irie and T. B. Vree

Copyright © 2013 S. P. Kamdi and P. J. Palkar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The objective of this study was to investigate the bioequivalence of two formulations of 40 mg pantoprazole sodium enteric-coated tablets: Tripeps as the test and Pantocid as the reference. The two products were administered as a single oral dose according to a randomized two-phase crossover with a 1-month washout period in 25 healthy Indian volunteers. After drug administration, serial blood samples were collected over a period of 30 hours. Plasma pantoprazole concentrations were measured by high-performance liquid chromatography with UV detection. Pharmacokinetic parameters were analyzed based on noncompartmental analysis. The logarithmically transformed data of $AUC_{0-\infty}$ and C_{max} were analyzed for 90% confidence intervals (CI) using ANOVA. The mean (90% CI) values for the ratio of $AUC_{0-\infty}$ and C_{max} values of the test product over those of the reference product were 90.21 (83.69–97.24) and 108.68 (100.21–117.86), respectively (within the bioequivalence range of 80–125%). On the basis of pharmacokinetic parameters including $AUC_{0-\infty}$, AUC_{0-t}, and C_{max} values, both the formulations were bioequivalent.

1. Introduction

Pantoprazole, a proton pump inhibitor (PPI), is indicated for the treatment of erosive esophagitis associated with gastroesophageal reflux disease (GERD). Pantoprazole is one of the highly prescribed PPI in the management of peptic ulcer diseases. It shows high specificity for the relevant binding sites on activated proton pumps with little propensity to cause unwanted systemic effects [1, 2].

Pantoprazole sodium, administered as a 40 mg enteric-coated tablet, is quantitatively absorbed. Its absolute bioavailability is 77% and does not change upon multiple dosing. Following a single oral dose of 40 mg, C_{max} is approximately 2.5 mg/L with a T_{max} of 2-3 h. Pantoprazole is extensively metabolized in the liver and has a total serum clearance of 0.11 l/h/kg, a serum elimination half-life of about 1.1 h, and an apparent volume of distribution of 0.15 L/kg. 98% of pantoprazole is bound to serum proteins. Elimination half-life, clearance, and volume of distribution are independent of the dose. Almost 80% of an oral or intravenous dose is excreted as metabolites in urine; the remainder is found in feces and originates from biliary secretion. The clearance of pantoprazole is only slightly affected by age, with its half-life being approximately 1.25 h in the elderly [3]. Pantoprazole is an acid labile drug that requires protection from degradation in acidic media [4]. Hence, oral formulations of pantoprazole are available as enteric-coated tablets.

Cyclodextrins are nonreducing cyclic oligosaccharides, consisting of dextrose units. Cyclodextrins have a “doughnut” shape, with the interior of the molecule being relatively hydrophilic. Because of their unique chemical structure, cyclodextrins are capable of forming “inclusion complexes” with many drug molecules if the drug is capable of undergoing chemical degradation in solution. The drug molecule can be protected by inclusion complexation with a cyclodextrin [5, 6]. Amongst thousands of excipients used for modifying the physical properties of drug or for altering its biopharmaceutical characteristics, cyclodextrins can be considered as the most excellent one [7–9]. Cyclodextrins can
improve the stability of a number of labile drugs against dehydra-
tion, hydrolysis, oxidation, and photodecomposition and thus in-
creasing the shelf life of drugs. Cyclodextrin-induced enhancement of drug stability is due to inhibition of drug in-
teraction with vehicles and/or inhibition of drug bioconversion at the absorption site. By providing molecular shield, cyclodextrin complexation encapsulates labile drug molecules at the molecular level and insulates them against various degradation processes [8, 10, 11].

Of all the cyclodextrin derivatives available, hydroxypro-
pyl-beta-cyclodextrin (HPBCD) is the safest, as it does not
permeate the membranes. A literature survey shows that the
toxicity of HPBCD has been extensively studied. HPBCD has
been shown to have a reduced haemolytic potential, making it
suitable for parenteral use as well as for oral and/or top-
ical applications. HPBCD encapsulation technology is well
known for its solubilizing power. HPBCD is well tolerated in
most species, particularly if dosed orally, and shows limited
toxicity, depending upon dose and route of administration
[12]. Previously an attempt has been made to evaluate the
solubility of pantoprazole by using beta-cyclodextrin and
HPBCD. It was found that beta-cyclodextrin and HPBD
increased the solubility of pantoprazole by 4 and 36 times
respectively, [13].

In the present study, a generic preparation of pantopra-
zole with HPBCD has been developed for clinical use.
Although the generic and the innovator preparations contain
the same active ingredient, they differ from each other by
manufacturing processes as well as content of excipients,
which affect the rate and extent of absorption of active drug.
Therefore, the bioequivalence testing is mandated to confirm
the bioavailability between the two preparations in human
subjects. In the present study, the objective was to determine
the bioequivalence of two oral formulations of pantoprazole
in human subjects.

2. Materials and Methods

2.1. Subjects. Twenty-six healthy Indian male subjects aged
between 20 and 32 years old and the body mass index within
18–25 participated in this study. Subjects were in good health
on the basis of medical history, physical examination, and
routine blood test. Subjects with known contraindication or
hypersensitivity to pantoprazole were excluded as well as
those with history of drug abuse, heavy alcohol consumption
or cigarette smoking. No drug was allowed 1 month before
the study period. The study was approved by the Research Ethics
Committee in Mumbai, India.

2.2. Study Drugs. The reference product was commercially
available 40 mg pantoprazole sodium enteric-coated tablets
Pantocid manufactured by Sun Pharma, Mumbai, India (lot
no. BS KO980, Mfd. 04/2011, Exp. 03/2014). Test product was
formulated as 1:2 mixture of pantoprazole sodium with
HPBCD enteric-coated tablets. Tripepsa manufactured by
Akums Drugs & Pharmaceuticals Limited, India (lot no.
XD CL02, Mfd. 01/2012, Exp. 12/2013).

2.3. Study Design and Method of Drug Administration. The
experimental design of two-way crossover and randomized
study with 25 healthy male volunteers was adopted in the
study. As per the randomization schedule, each subject
received a single oral dose of 40mg pantoprazole tablet
(either Tripepsa or Pantocid) on the morning with 240 ±
2 mL drinking water at room temperature in sitting posture,
under 10 hours overnight fasting condition. The fasting
state continued for 04 hrs after dose. Water and lunch were
served 2 hours and 4 hours after dose, respectively. The
washout period between each treatment was 1 month. After
a washout period, subjects were administered the different
brand of pantoprazole in the same manner. An identical meal
and fluid intake were served during the two study periods.
Subjects were required to refrain from drinking caffeine
containing beverages and alcohol. The blood samples for
the analysis of pantoprazole in plasma and collected at the
following time points. Predose blood sample (00.00 hr) was
collected just after phlebotomy within 2.0 hours prior to drug
administration and the postdose samples were collected at
0.30, 1.0, 1.30, 2.0, 2.20, 2.40, 3.0, 3.15, 3.30, 3.45, 4.0, 4.15,
4.30, 4.45, 5.0, 5.20, 5.40, 6.0, 7.0, 8.0, 9.0, 10.0, 12.0, 16.0, 24.0,
and 30.0 hrs (each contains 1 × 5 mL) after dose, respectively.
Within 30 minutes, the blood samples were centrifuged to
separate the plasma. The plasma samples were immediately
kept at −20°C until assay.

2.4. Determination of Pantoprazole Concentration in Plasma.
Drug analysis of pantoprazole in plasma was performed by
suitable analytical method developed and validated at the
Analytical Department, Drug Monitoring Research Institute,
according to the international guidelines. The assay was
operated using a high-performance liquid chromatography
(HPLC) with UV detector set at 288 nm. A highperfor-
mance liquid chromatography-ultraviolet detection (HPLC-
UV) method was established to determine the concentra-
tion of pantoprazole in human plasma. The limit of quantifica-
tion during sample analysis was concentration range for pan-
toprazole of 19.9 ng/mL to 5000.1 ng/mL. A Shimadzu LC-
10ATvp pump (Kyoto, Japan) and a Shimadzu SPD-10A VP
detector (Kyoto, Japan) were used. Chromatography was
performed on a Diamonsil C18 column (particle size 5µm,
200 mm × 4.6 mm ID, Beijing, China), using a mobile phase
of methanol-water (60 : 40, V/V), which was delivered at
a flow rate of 1.2 mL/min. Under the present chromato-
graphic conditions, HPLC retention time of pantoprazole and
the IS (internal standard, betamethasone) was 6.3 min and
9.0 min, respectively. To a 500 µL aliquot of plasma sample,
50 µL of methanol-water (50 : 50, V/V) and 50 µL of the
IS solution (betamethasone 400 µg·mL⁻¹ in 50% methanol)
were added. The mixed samples were then extracted with
3 mL of diethyl ether-acetic ether (3:2, V/V). The mixture
was vortex-mixed for approximate 1 min, then shaken on a
mechanical shaker for 10 min. After centrifugation at 2000 g
for 5 min, the upper organic layer was removed and evapo-
rated to dryness at 40°C under a gentle stream of nitrogen.
The residue was reconstituted in 100 µL of the mobile phase,
then vortex-mixed. A 20 µL aliquot of the resulting solution
was injected onto the HPLC-UV system for analysis.
2.5. Statistical Methods and Data Analysis

2.5.1. Pharmacokinetic Analysis. Pharmacokinetics analysis was performed by means of a noncompartmental method. The parameters C_{max} and T_{max} were determined by an inspection of individual drug plasma concentration time profiles. The terminal elimination rate constant (k_e) was determined by least-square regression analysis of terminal logarithm-linear portions of the plasma concentration time profile ($k_e = -2.303 \times \text{slope}$). The elimination half-life ($t_{1/2}$) was calculated as $0.693/k_e$. The AUC_{0-t}, from time zero to the last quantifiable point (C_t) was calculated using the trapezoidal rule, and extrapolated AUC from C_t to infinity ($AUC_{t-\infty}$) was determined as C_t/k_e. Total $AUC_{0-\infty}$ was the sum of $AUC_{0-t} + AUC_{t-\infty}$.

2.5.2. Statistical Analysis. Bioequivalence was evaluated by means of statistical analysis of variance (ANOVA) and Student’s t-test for the crossover design with standard 90% confidence intervals (CI) of the test/reference ratio with logarithm-transformed data. The T_{max} was analyzed by nonparametric test (Mann-Whitney test). The bioequivalence acceptance criteria required that the 90% CI for the test/reference ratios of the AUC and C_{max} fell into 80%–125% for AUC_{0-t} and $AUC_{0-\infty}$ and 70%–143% for C_{max}, respectively [14, 15].

3. Results and Discussion

All 25 patients completed the study as per the protocol. Their mean values of age, weight, height, and body mass index were $30.9 \pm 3.2 \text{ year}$, $75.8 \pm 12.8 \text{ kg}$, $1.73 \pm 0.10 \text{ m}$, and $25.46 \pm 4.27 \text{ kg/m}^2$, respectively.

Oral administrations of both 40 mg pantoprazole tablets were well tolerated. The mean plasma concentration time curves of test and reference were comparable (Figure 1). Taken together, all of the results mentioned above indicated that the two formulations have comparable pharmacokinetic profiles of pantoprazole. In the first two hours after the drug administration, C_{max} of the test formulation was seen greater than the reference formulation. Moreover, fairly rapid absorption of pantoprazole from the test formulation in the intestine showed linear increase in the C_{max} within 2.56 hr. This might be suspected due to the increased solubility and absorption of pantoprazole by HPBCD. It has been previously reported that HPBCD increased the apparent solubility of pantoprazole by 36 times [13].

The main pharmacokinetic parameters for test and reference formulations are listed in Table 1. The average half-life of test pantoprazole in serum ($1.06–9.40$, mean = 4.09 hr) was lower than the reference pantoprazole ($2.06–11.20$, mean = 5.38 hr); however, it was longer than the expected values reported from a previous study (1.25 hr) [3].

The mean values (±SD) of the C_{max} and $AUC_{0-\infty}$ for test formulation were not significantly different from those of reference formulation (4057.04 ± 914.97 versus 3708 ± 720.75 ng/mL and 23907.75 ± 5745.31 versus 26369.31 ± 5965.38 ng-hr/mL). Bioequivalence analysis showed that 90% CI values for the test/reference ratios (%) of $AUC_{0-\infty}$ and C_{max} were 90.21 (83.69–97.24) and 108.68 (100.21–117.86), respectively (Table 2). The coefficient of variation (%CV) estimated from S^2 obtained from the ANOVA after logarithmic transformed for $AUC_{0-\infty}$ and C_{max} was 24.03% and 22.62%, respectively. According to the nomograms and tables of Diletti, the power of tests values for AUC and C_{max} were >90% and 80% for the sample size of 25, respectively. In addition, since the 90% CI values of $AUC_{0-\infty}$ and C_{max} were within the bioequivalence range, our study demonstrated the bioequivalence of the two preparations.

Based on the aforementioned results, the test formulation of pantoprazole sodium tablets (Tripepsa), formulated by Akums Drugs & Pharmaceuticals Limited, India, is considered bioequivalent with commercially available pantoprazole.
Table 2: The mean and 90% confidence intervals (CI) of pharmacokinetic parameters of the test product (Tripepsa) compared to the reference product (Pantocid).

Pharmacokinetic parameter	Mean ratio (%)	90% CI (%)	Bioequivalence limit (%)
Ratio of C_{max}	108.68	100.21–117.86	80–125
Ratio of $\text{AUC}_{0-\infty}$	90.21	83.69–97.24	80–125
Ratio of AUC_{0-t}	96.78	89.56–104.58	70–143

4. Conclusions

The present randomized, two-way crossover design study indicated that two brands of pantoprazole sodium 40 mg preparations were bioequivalent. Hence, Tripepsa may have excellent therapeutic efficacy in patients with peptic acid disorders.

Conflict of Interests

All authors do not have a direct financial relation with the commercial identities mentioned in the paper.

Acknowledgments

The authors acknowledge the NexusCRO for the completion of the study. This work was supported by Akumentis Healthcare Ltd., Mumbai, India.

References

[1] P. W. Jungnickel, "Pantoprazole: a new proton pump inhibitor," *Clinical Therapeutics*, vol. 22, no. 11, pp. 1268–1293, 2000.
[2] D. L. Avner, "Clinical experience with pantoprazole in gastroesophageal reflux disease," *Clinical Therapeutics*, vol. 22, no. 10, pp. 1169–1185, 2000.
[3] M. A. Pue, J. Laroche, I. Meineke, and C. de Mey, "Pharmacokinetics of pantoprazole following single intravenous and oral administration to healthy male subjects," *European Journal of Clinical Pharmacology*, vol. 44, no. 6, pp. 575–578, 1993.
[4] R. P. Raffin, L. M. Colomé, S. S. Guterres, and A. R. Pohlmann, "Enteric controlled-release pantoprazole-loaded microparticles prepared by using eudragit S100 and poly(ε-caprolactone) blend," *Pharmaceutical Development and Technology*, vol. 12, no. 5, pp. 463–471, 2007.
[5] T. Jens. Carstensen and C. T. Rhodes, *Drug Stability, Principles and Practices*, Marcel Dekker, New York, NY, USA, 3rd edition, 2005.
[6] S. Yoshioka and S. J. Valentino, *Stability of Drugs and Dosage Forms*, Springer, Tokyo, Japan, 2002.
[7] J. Szeltli, "Molecular encapsulation by cyclodextrins," in Encyclopedia of Nanoscience and Nanotechnology, vol. 2, pp. 283–384, 2003.
[8] R. Challa, A. Ahuja, J. Ali, and R. K. Khar, "Cyclodextrins in drug delivery: an updated review," *AAPS PharmSciTech*, vol. 6, no. 2, pp. E329–E357, 2005.
[9] The United States Pharmacopeial Convention, *The United States Pharmacopoeia—National Formulary, USP 27—NF 22*, The United States Pharmacopeial Convention, Rockville, Md, USA, 2004.
[10] J. Szeltli, "Past, present, and future of cyclodextrin research," *Pure and Applied Chemistry*, vol. 76, no. 10, pp. 1825–1845, 2004.
[11] T. Irie and K. Uekama, "Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation," *Journal of Pharmaceutical Sciences*, vol. 86, no. 2, pp. 147–162, 1997.
[12] S. Gould and R. C. Scott, "2-hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicity review," *Food and Chemical Toxicology*, vol. 43, no. 10, pp. 1451–1459, 2005.
[13] "Pantoprazole cyclodextrin inclusion complexes," International Publication Number, W 03/059393 A1, International Publication, Patent Cooperation Treaty (PCT), 2003.
[14] "FDA Guidance for Industry, Statistical Approaches to Establishing Bioequivalence," US Department of Health and Human Services, Food and Drug Administration, Centre for Drug Evaluation and Research (CDER), 2001, http://www.fda.gov/downloads/Drugs/Guidances/ucm070244.pdf.
[15] State Committee of Pharmacopoeia, *Guidance for Evaluation of Bioavailability and Bioequivalence of Pharmaceutical Preparations in Human*, chapter 193, Chemical Industry Press, Beijing, China, 2005.