Reprogramming normal cells into tumor precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties

Tito Panciera1#, Anna Citron1#, Daniele Di Biagio1, Giusy Battilana1, Alessandro Gandin2, Stefano Giulitti1, Mattia Forcato3, Silvio Bicciato3, Valeria Panzetta4,5, Sabato Fusco4,5, Luca Azzolin1, Antonio Totaro1, Angelo Paolo Dei Tos6, Matteo Fassan6, Vincenzo Vindigni7, Franco Bassetto7, Antonio Rosato8, Giovanna Brusatin2, Michelangelo Cordenonsi1* and Stefano Piccolo1,9,*

1Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
2Department of Industrial Engineering and INSTM, University of Padua, Padua, Italy.
3Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 287 41100 Modena, Italy.
4Interdisciplinary Research Centre on Biomaterials, CRIB and Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy.
5Center for Advanced Biomaterials for Health Care IIT@CRIB, Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci 53, Naples 80125, Italy.
6Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, Padua, Italy.
7Padua University Hospital, Clinic of Plastic Surgery, Padua, Italy.
8Istituto Oncologico Veneto IOV-IRCCS, and Department of Surgery, Oncology and Gastroenterology, University of Padua School of Medicine, Via Gattamelata 64, 35128 Padua, Italy.
9IFOM, The FIRC Institute of Molecular Oncology, Padua, Italy. piccolo@bio.unipd.it.

#These authors contributed equally to the work

* Co-last authors

Correspondence should be addressed to:
Stefano Piccolo
Department of Molecular Medicine,
viale Colombo 3, 35100 Padua, Italy
TEL 0039049 8276098
FAX 0039049 8276079
piccolo@bio.unipd.it
Supplementary Information

Supplementary Figure 1
Supplementary Tables 1-3
Supplementary Discussion
Supplementary Figure 1.

Uncropped blots with molecular weight markers.
Supplementary Figure 1.
Supplementary Table 1.

Supplementary Data File containing the List of GO terms significantly enriched (p-value ≤ 0.05) in HER2-induced genes whose expression is dependent on YAP/TAZ and substrate stiffness (referred to Extended Data Fig. 4i).
Supplementary Table 2.

siRNA sequences used
siControl (siAS)
siYAP#1
siYAP#2
siYAP#3
siTAZ#1
siTAZ#2
siTAZ#3

siRNA mixes were composed as following: mix siYAP/TAZ#1 contains siYAP#1 and siTAZ#1, mix siYAP/TAZ#2 contains siYAP#2 and siTAZ#2, mix siYAP/TAZ#3 contains siYAP#3 and siTAZ#3.
Supplementary Table 3.

qRT-PCR primer sequences used

Target	Forward primer sequence	Reverse primer sequence	
Human CTGF	AGGAGTGCGGTTGGTGGAGCA	CCAGGCAGTTGGCTCCTAACT	
Human CYR61	CAGTCGGGACACCGAGGCTGA	CAGTCGGGACACCGAGGCTGA	
Human AXL	CAGCAAAAGAGCTAGGAAGGT	CAGCAAAAGAGCTAGGAAGGT	
Human SNAI2	GGGAGAGGACACGAGGCTGA	CAGTCGGGACACCGAGGCTGA	
Human CD10	TGGAGGGTGTGGCTGAGCGA	CAGTCGGGACACCGAGGCTGA	
Human aSMA	TGAGCCACGGAATGCGAGGAG	CAGTCGGGACACCGAGGCTGA	
Human K14	CACCTCTCGCTCCTCCAGTT	GACGACATCGCCATCTGCTC	
Human K8	TCTCCAGCGAGCTATATGGAAG	GGTGCGGAAAATATCCGCTACTG	
Human K18	AATCTTGATGCGCTCCGTTGA	CAGTCGGGACACCGAGGCTGA	
Human K19	ACACCTGGCAGAAACCGAGGAC	TGGAGGGTGTGGCTGAGCGA	
Human MUC1	TGGGCTTGTCCTGAGGCTCG	ACATAGCGCCATGGGTGGTG	
Human E-CAD	CACCCAGCTTACAGGGGTG	CAGTCGGGACACCGAGGCTGA	
Human CLDN4	GACCTCGGCTTGGCTCAAGGA	CAGTCGGGACACCGAGGCTGA	
Human GAPDH	TTCCTGCCGCACCAACTCT	CAGTCGGGACACCGAGGCTGA	
Murine DN	p63	CAGTCGGGACACCGAGGCTGA	CAGTCGGGACACCGAGGCTGA
Murine Slug	CTACCTCGGAGACCATCAG	CAGTCGGGACACCGAGGCTGA	
Murine k5	TCTCTTCTGCGTACGAGGAGA	GGTGCGGAAAATATCCGCTACTG	
Murine aSMA	TGCTGGCACTGAGAACGAGCTA	CAGTCGGGACACCGAGGCTGA	
Murine Procr	GGAGAGACGCGGCTGAGGCTT	CAGTCGGGACACCGAGGCTGA	
Murine k14	AGGAGGGTGTGGCTGAGCGA	CAGTCGGGACACCGAGGCTGA	
Murine Axin2	GACAATGGAGCAGCTGTGGAAC	CAGTCGGGACACCGAGGCTGA	
Murine Mhy11	GGGCCACAGCTGCTCCATGCT	CAGTCGGGACACCGAGGCTGA	
Murine Areg	TTGGAGGGTGTGGCTGAGCGA	CAGTCGGGACACCGAGGCTGA	
Murine Esr	GGGAGAGGACGGAAGCAAGT	CAGTCGGGACACCGAGGCTGA	
Murine k19	AGGAGGGTGTGGCTGAGCGA	CAGTCGGGACACCGAGGCTGA	
Murine Pgr	TCGGAGAACTTGACATACGGCAAC	CAGTCGGGACACCGAGGCTGA	
Murine Sox9	AGGCACCAGAACAGCTCAC	CAGTCGGGACACCGAGGCTGA	
Murine Amy	GGTGCGGCTCAGATGGTG	CAGTCGGGACACCGAGGCTGA	
Murine Yap	AAGGAGGACAGCTGCGGTGAA	CAGTCGGGACACCGAGGCTGA	
Murine Taz	ACCCACAGGGAAGTGAATGT	CAGTCGGGACACCGAGGCTGA	
Murine YapS127A	ACAGAATGGAGGAGCAGGAGA	CAGTCGGGACACCGAGGCTGA	
Murine Rac1	CCTGGAGGGTGTGAGAGCTGCA	CAGTCGGGACACCGAGGCTGA	
Murine Ctgf	CTGCTGGCACTGAGGAGCAGAC	CAGTCGGGACACCGAGGCTGA	
Murine Gapdh	ATCTGGGACACCGAGGCTGA	CAGTCGGGACACCGAGGCTGA	
Murine 18s-rRNA	TGTCTCAGGTAAGGACCACCTAACCAGA	CAGTCGGGACACCGAGGCTGA	
Supplementary Discussion

Another point of discussion relates to the material nature of the ECM and its effect on oncogene-expressing cells. Our studies employed defined, covalently crosslinked ECM allowing tuning of stiffness. These hydrogels are typically elastic (Extended Data Fig. 7), while natural ECMs are complex viscoelastic entities, with weak (e.g., ionic, hydrogen) bonds also allowing stress relaxation. In addition, cells dynamically remodel their ECM. Time-dependent stress relaxation (i.e., the viscous effect) has been shown to contribute, on top of ECM stiffness, to stem cell fate and to YAP mechanosignaling, highlighting the need of designing more complex biomaterials recapitulating both elastic and viscous characteristics, as well as changes in the ECM composition, in future studies of oncogene-mediated mechanotransduction.