Key words: comparative mapping; expressed sequence tags; lentil; marker-assisted selection; pea; synteny.

Investigation of conserved regions in different studies has provided strong evidence for sequence correlations between *M. truncatula* and pea (Choi et al., 2004a; Aubert et al., 2006; Bordat et al., 2011). This information can be used to develop genic markers based on sequence homology between the related species. Choi et al. (2004b) developed EST-based intron-targeted primers after aligning *M. truncatula* ESTs with the homologous genomic sequences of *Arabidopsis* (DC.) Heynh. and used them to construct a genetic map of *M. truncatula*. The basic assumption for this strategy is that introns or noncoding regions contain more DNA polymorphism than exons or coding regions (Brauner et al., 2002). A similar strategy—one that allows amplification of genomic DNA fragments covering two or more exons and bracketing polymorphic intron regions between those exons—was used in this study to develop pea EST-derived genic markers. Markers developed in this study are also available as cross-species markers within the legume family.

METHODS AND RESULTS

Primers were designed from pea EST sequences having significant similarity (score ≥100; E-value ≤−50) using the BLASTn search with *M. truncatula* gene calls from the contig assembly (Mt3.0) of *M. truncatula*. Approximately 1200 *M. truncatula* gene calls were searched for presence of introns. One or more introns were present in 510 of the 1200 *M. truncatula* gene calls and were aligned with the available pea ESTs (n = 18576) in the database. Seventy-seven primers were designed from the pea ESTs having significant similarity with *M. truncatula* gene sequences to investigate genetic diversity, linkage mapping, and cross-species transferability.

Novel markers were developed for pea (*P. sativum*) from pea expressed sequence tags (ESTs) having significant homology to *Medicago truncatula* gene sequences. Markers developed in this study using the conserved sequences between the two legumes are valuable because they can add density to gene-rich linkage maps of pea, establish macro- or microsynteny between *M. truncatula* and pea, and have higher chances of transferability between closely related species. This information can help in identifying markers that are tightly linked to the genes of interest or candidate gene/quantitative trait locus for agronomic traits.
Table 1. Specific primer sequences and characteristics of 75 EST-derived genic markers developed in *Pisum sativum*.

Locus	Primer sequences (5’–3’)	Product size (bp)	T_m (°C)	M. truncatula gene call number	Pea EST
Mt5_001*	F: AGGAAAATCAGGAAATGCTGCTCCCC R: GCAAGAACATCTGGCCTCTCCCC	510–540	62	Medtr5g008110.1	gbEX568712.1
Mt5_002	F: GGCGAGACGTCGTTGAGAACCC R: GAGGGGCAAGAATGATGGCTCCTCGG	310–1200	60	Medtr5g007580.1	gbCD860473.1
Mt5_003*	F: GTGGATGCTGGATTTGAGGGGT R: CCTACAGCTTCCCTCACAAGCAGCA	350	62	Medtr5g011160.1	gbEX569130.1
Mt5_004*	F: TTGTCATCTGCAACATTTAGGAGGC R: TGGGGGAGTTTTCAATCAGAGTGGGG	810–1200	62	Medtr5g011250.2	gbCD861142.1
Mt5_005*	F: TGAGCAGCAATGCGACGGCGC R: CCCATACGCTCCTGCTGCGG	300	62	Medtr5g012870.1	gbGH720478.1
Mt5_006*	F: GAACCCACACACCTCAGCAAGC	380	62	Medtr5g013110.1	gbFG530896.1
Mt5_007	F: AATGCGAGCTACGACGAGAGTGGCGG R: ACCATAAGAATCTCTGCTCAGG	505	58	Medtr5g013750.2	gbFG530508.1
Mt5_008*	F: AGGAAACACAGGCAACCCGCAGG R: ATGGCAAGAATCAGCCACGG	340–1200	62	Medtr5g016230.1	gbFG536800.1
Mt5_010	F: TGCTTGTGCTGGCTAGGAGGGT R: GCAGCAGCAATCAGTTGAGGAG	320	62	Medtr5g016380.1	gbCD858783.1
Mt5_012*	F: GGTGATACGAGATCTCTGCCG R: GGAGGGAATGCTGCTGCGG	1200	62	Medtr5g016490.1	gbFG537114.1
Mt5_013	F: AGGTGCTGTGCTGATCTCTGCCG R: TGTTGCTGACAGGCTGAGGCCACG	250	62	Medtr5g018040.1	gbFG536363.1
Mt5_015	F: TTGAGTACGAGGCAACGACTGGGGG	330–450	62	Medtr5g019760.1	gbFG535260.1
Mt5_017	F: CCAAAGGATAGAGCTGACTTTGCAGC	350	62	Medtr5g021320.1	gbCD859147.1
Mt5_018*	F: TCCATACGACTGCAAGCAAAAACCCG R: GCCGCGGCTGTTGCGCAAGCG	200	62	Medtr5g021730.1	gbFG530030.1
Mt5_019	F: CAGGTAGAGGTAGGTGTCTGCGG R: CTATAGATGATCTGACCTGCGG	1200	62	Medtr5g022640.1	gbCD861082.1
Mt5_020*	F: AATGGGAGGAATGCTGACTTTGCGG	520	62	Medtr5g024350.1	gbFG530254.1
Mt5_021	F: GAGATGCTGTGACGACCCGGG C: CGAGTCTCTCTCTACAGTCTCTCTCTCCG	510	62	Medtr5g027470.1	gbCD859365.1
Mt5_022	F: GGGTGGATAGGACCCGGAGAGTGGCGG R: TGGTTGATGAGGAGATGGTGAGGGG	510	62	Medtr5g032270.1	gbFG534942.1
Mt5_023	F: AGGTGTTGAGGAGGGCTGCCC R: AATTGGATGGGAGGGTTCGCC	150	62	Medtr5g034530.1	gbFG536062.1
Mt5_024*	F: AAAACCTCATGCTCTGCTCCC R: TACCCATCAGCTCCTCCTCCTACATGGG	300–420	62	Medtr5g036270.1	gbFG530106.1
Mt5_025*	F: ACAGCGAGCAACGAGCTGGCTCAGG R: CGCTAGATGAGAGGAGGAGAGGGCGG	720	62	Medtr5g036610.1	gbFG535769.1
Mt5_026	F: AACTGCTCTCAGGCTGACGACG R: ACCGCGACCAGTGGGACGACG	390	62	Medtr5g038320.1	gbFG530798.1
Mt5_027*	F: GCCATGCTGATTTTGGTCTTCCG	600–1200	58	Medtr5g038460.1	gbFG536762.1
Mt5_028	F: GGTCTCCTCTCCCGCTCCAGG	980	58	Medtr5g039270.1	gbFG535137.1
Mt5_029	F: TCCACGGGAGGCACCGAGCAGG	280	60	Medtr5g04680.1	gbFG533184.1
Mt5_030	F: CATGGCTGACACCTCTCCAGG R: TTTTCTGTTCCTGACGGCGG	490–550	60	Medtr5g045820.1	gbFG533235.1
Mt5_031	F: GCTTGGACACAGCTCAATCGG R: CCAAAGCAGACACACACACCA	520	60	Medtr5g046470.1	gbEX569990.1
Mt5_033*	F: AATGGGAGGAAATGCTGACGAG R: TTGGAGCTATGAGGAGAATTTGCGG	420–430	62	Medtr5g048930.1	emblAM161971.1
Mt5_034*	F: ACATGGATTCTGCACTGACGACGG	480	60	Medtr5g049600.1	gbGH720878.1
Mt5_036	F: CATCGTCAAGCTCTCTGACAGCGG	510	60	Medtr5g05000.1	gbFG530443.1
Mt5_037*	F: TTCGAGCCAACAGTTTGGTCTAGTGGC	550	62	Medtr5g05120.1	gbFG533265.1
Mt5_038	F: GATGTGCTGACAGCTTATGAGGGG	510	61	Medtr5g06790.1	gbFG529092.1
Mt5_039	F: TGGAGAGAGGGAATGCTGACGAGG R: CCTCTGCTCAGTCAGGGCGG	430	61	Medtr5g067140.1	gbFG533231.1
Mt5_041	F: TTATGGGTGTGTTGGAACACCGG R: CACCTGGGAAATGCTCTCCAGGC	290	60	Medtr5g068460.1	gbFG531379.1

http://www.bioone.org/lo/i/apps
Locus	Primer sequences (5'-3')	Product size (bp)	T_r (°C)	M. truncatula gene call number	Pea EST
Mt5_042*	F: AACCTGCTCTGTTGGCAGATGGGC R: AACCTGCTCTGCTGGAGGACCTCCCG	320	62	Medtr5g068500.1	gbiFG530312.1
Mt5_043*	F: TCCAGAAGACACCAACACACTTGCA R: TCCAGAAGACACCAACACACTTGCA	400	58	Medtr5g069000.1	gbiFG534946.1
Mt5_044	F: TGCTGGAGAAAATCGAGCTCCGGG R: AAACCTGGGATGAGAGGTAACCCG	660	62	Medtr5g069480.1	gbiFG535471.1
Mt5_045	F: TGTTTTTGCTAGGTACCCTAGTTGAGGGCC R: CCATTGTCGGGTTTGTGGAGGCC	395	62	Medtr5g071720.1	gbiFG530120.1
Mt5_046*	F: TCAGTTTTTCAGGAAATAGAGGCC R: AGCTCTCAACAAAGCCTTGGCC	380	62	Medtr5g072140.1	gbiFG536413.1
Mt5_047	F: GCACCTGAAGCAGTGCGAGGCC R: TGTTTTTGCTAGGTACCCTAGTTGAGGGCC	490	62	Medtr5g072570.1	gbiFG530301.1
Mt5_052*	F: CTGACATGCCTGACTGACCTGCC R: GAAATGTCTGATGGAGTGGCC	450	58	Medtr5g070790.1	gbiFG535146.1
Mt5_053*	F: GCCATCAAACAGCTATTGACCTGCC R: CGGTAGTCGTCTGATGGAGTGGCC	550	58	Medtr5g070790.1	gbiFG535776.1
Mt5_054	F: TGCATACCATGATGGAGGACCTCCGG R: CTCATACTGCCATGATGGAGGACCTCCGG	540	58	Medtr5g070790.1	gbiCD858894.1
Mt5_055*	F: GCCATCAAACAGCTATTGACCTGCC R: CGGTAGTCGTCTGATGGAGTGGCC	450	58	Medtr5g070790.1	gbiCD858894.1
Mt5_057	F: ACCACCAAGGACCTACCG R: ACATGCTTTTCCTGAGCTCAGCCCGG	290	60	Medtr5g079650.1	gbiGH719720.1
Mt5_058*	F: GCATACCATTTCCGAGGAGATCCTGGCC R: CGATTGCAACACCTCCGGCC	550	58	Medtr5g080340.1	gbiCD858878.1
Mt5_059*	F: TGCAACCTGCTATATAGCTTGGCC R: CGGTAGTCGTCTGATGGAGTGGCC	700	58	Medtr5g080730.1	gbiFG531745.1
Mt5_060	F: CCATCTCTCCCTCCACCGGG R: GTAACCACGCAGCTTGGCC	490	62	Medtr5g080900.1	gbiFG533819.1
Mt5_061	F: AAGAGCTGCTGTGGATCTGACAGGGG R: TTCAAGATCTCCTGATGGAGCC	495	62	Medtr5g081470.1	gbiFG538061.1
Mt5_064	F: GCCGACAGCGTCTGTGGACTTGTG R: CGGTAGTCGTCTGATGGAGTGGCC	610–1200	58	Medtr5g082870.1	gbiGH720629.1
Mt5_065*	F: GGATCTGCTGAGTTTTGGGAGCTCC R: CTCATTGCCGTTTCTCTCTCC	150–350	58	Medtr5g083280.1	gbiGH719482.1
Mt5_066*	F: AACAAACCAAGACGGCTTGGCC R: TTGGTCTACGCTGACGTCTTGGCC	8200	58	Medtr5g083430.1	gbiEX571173.1
Mt5_067	F: GGCTGCCGCGTGCCTATTGGG R: GGATTTGCAAGCAGCTTGGGAGCC	520	55	Medtr5g084140.1	gbiFG534893.1
Mt5_068	F: GTGTCATGTTGTGTTATGACCGCC R: CTGACATCCCTGCTGCTAGGGG	290	55	Medtr5g084410.1	gbiFG535302.1
Mt5_069*	F: AACGGGACAGCTGCTGCTGCTG R: TAGGACTTTCTACAAAAAGCCCGG	320	58	Medtr5g084550.1	gbiFG529821.1
Mt5_070*	F: CTGCTGCTGCTGCTGCTGCTG R: GGATTTGCAAGCAGCTTGGGAGCC	700	55	Medtr5g084740.1	gbiGH720486.1
Mt5_071*	F: CCCCTGCTGCTGCTGCTGCTG R: TTGGTCTACGCTGACGTCTTGGCC	400	58	Medtr5g084890.1	gbiCD860585.1
Mt5_072*	F: TCTGACATCCGCTGAGCTTGGGC R: GCCACCAAACAAACAGATTTGAGGGCG	200	58	Medtr5g085020.1	gbiCD860768.1
Mt5_073	F: AGACCTGCAAATGATTTGGAAGGG R: AGTGACAAATGATTTGGAAGGG	1200	55	Medtr5g085470.1	gbiFG533738.1
Mt5_074	F: TGGCAGACGACGACGACGACG R: CGCTGAGAGCAGAGAGAGAGAGAGACG	800	55	Medtr5g085560.1	gbiFG537000.1
Mt5_075	F: CAGAGCATGACGACGAGACGAGAGAGG R: ACCGGCAATCACCCTACCCCGG	750–800	58	Medtr5g085630.1	gbiFG534721.1
Ps4_001	F: TTCCTGACATCCGCTGACG R: ACCGGCAATCACCCTACCCCGG	363	59	Medtr8g008440	FG531483
Ps4_003	F: TTGGTCTACGCTGACGTCTG R: GGATTTGCAAGCAGCTTGGGAGCC	568	51	Medtr8g008880	FG537838
Ps4_004	F: TTCCTGACATCCGCTGACG R: ACCGGCAATCACCCTACCCCGG	684	58	Medtr8g011640	FG530764
Ps4_005	F: TTCTGACATCCGCTGACG R: ACCGGCAATCACCCTACCCCGG	628	58	Medtr8g011640	FG530764
The current study identifies and characterizes new EST-derived genic markers based on comparative mapping between pea and *M. truncatula*. Thirty-three polymorphic and 42 monomorphic primer sequences were described in this study. These EST-derived genic markers were mined from conserved *M. truncatula* gene sequences; therefore, they can be used to anchor genomic regions between pea and *M. truncatula* and possibly among other members of the legume family. These markers show polymorphism among 16 pea genotypes that include parents of several pea mapping populations being used to map different disease resistance loci. These molecular markers will be useful to develop gene-rich linkage maps and to tag genes for agronomically important traits. In addition, amplification of these markers in lentil demonstrates the transferability of these markers across related species.

CONCLUSIONS

The current study identifies and characterizes new EST-derived genic markers based on comparative mapping between pea and *M. truncatula*. Thirty-three polymorphic and 42 monomorphic primer sequences were described in this study. These EST-derived genic markers were mined from conserved *M. truncatula* gene sequences; therefore, they can be used to anchor genomic regions between pea and *M. truncatula* and possibly among other members of the legume family. These markers show polymorphism among 16 pea genotypes that include parents of several pea mapping populations being used to map different disease resistance loci. These molecular markers will be useful to develop gene-rich linkage maps and to tag genes for agronomically important traits. In addition, amplification of these markers in lentil demonstrates the transferability of these markers across related species.

Table 1. Continued.

Locus	Primer sequences (5'-3')	Product size (bp)	*T*_c (°C)	*M. truncatula* gene call number	Pea EST
Ps4_006	F: TGCCCAACTCCTGCTGCCG				
R: TGCCGCTAACCTGCTTACG	220	61	Medtr5g015460	FG538362	
Ps4_007	F: GACAACTCAACCATGATGCGCC				
R: TCAGTGATGACCTGAGACAGC	275	59	Medtr8g021260	FG530143	
Ps4_009	F: AGGGTCGGCAGCTGAACGGG				
R: AGGGTCGACGTACTCCCGC	601	59	Medtr8g024670	FG533947	
Ps4_010	F: GCACACGAAGATGTTGAGGAGATGCG				
R: GTGACAACGGAGAGAGGACG	210	58	Medtr8g026430	FG529623	
Ps4_012	F: AGGGTCGGCAGCTGAACGGG				
R: ATCCAATGCCGACCCGC	425	56	Medtr8g027050	EX570946	
Mt8_002*	F: GGTGTCTTCAAGATCATTGCGCCG				
R: GCTTGCAACTGATATCTGAGCC | 300 | 61 | Medtr8g008860 | FG537838 |

*Polyorphic EST-derived genic markers.

Table 2. Results of 33 polymorphic EST-derived genic loci screened in 16 genotypes of *Pisum sativum*.

Locus	*A*	*H*_e	*H*_o	PIC
Mt5_01	2	0.4800	0.0000	0.3648
Mt5_03	3	0.3507	0.0000	0.3222
Mt5_04	3	0.6391	0.0000	0.5659
Mt5_05	2	0.2041	0.0000	0.1833
Mt5_06	2	0.4032	0.0000	0.3219
Mt5_08	2	0.4234	0.0000	0.3538
Mt5_12	2	0.2604	0.0000	0.2265
Mt5_15	2	0.0377	0.0385	0.0376
Mt5_20	2	0.4527	0.0000	0.3502
Mt5_24	3	0.3225	0.0000	0.2896
Mt5_25	2	0.4872	0.0400	0.3685
Mt5_27	2	0.3200	0.0000	0.2688
Mt5_33	2	0.1528	0.0000	0.1411
Mt5_34	2	0.2188	0.0000	0.1948
Mt5_37	2	0.3750	0.0000	0.3047
Mt5_42	2	0.0605	0.0625	0.0587
Mt5_43	2	0.4992	0.0000	0.3746
Mt5_46	2	0.4800	0.0000	0.3648
Mt5_48	2	0.3955	0.0000	0.3411
Mt5_50	2	0.4970	0.0000	0.3735
Mt5_51	3	0.5408	0.0000	0.4529
Mt5_53	2	0.2604	0.0000	0.2265
Mt5_55	2	0.0740	0.0000	0.0712
Mt5_58	2	0.0740	0.0000	0.0712
Mt5_59	3	0.5910	0.0385	0.5252
Mt5_65	2	0.4800	0.0000	0.3648
Mt5_66	2	0.3107	0.0000	0.2624
Mt5_69	2	0.0740	0.0000	0.0712
Mt5_70	2	0.1420	0.0000	0.1319
Mt5_71	2	0.4970	0.0000	0.3735
Mt5_72	2	0.1420	0.0000	0.1319
Mt5_75	2	0.4734	0.0000	0.3613
Mt8_002	2	0.1420	0.0000	0.1319

*Note: A = number of alleles; *H*_e = expected heterozygosity; *H*_o = observed heterozygosity; PIC = polymorphic information content.
LITERATURE CITED

Aubert, G., J. Morin, F. Jacquin, K. Loreson, M. C. Quillet, A. Petit, C. Ramiau, et al. 2006. Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theoretical and Applied Genetics 112: 1024–1041.

Bordat, A., V. Savoris, M. Nicolas, J. Salse, A. Chauveau, M. Bourgeois, J. Potier, et al. 2011. Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3: Genes, Genomes, Genetics 2: 93–103.

Brauner, S., R. L. Murphy, J. G. Walling, J. Przyborowski, and N. F. Weedon. 2002. STS markers for comparative mapping in legumes. Journal of the American Society for Horticultural Science 127: 616–622.

Choi, H. K., J. H. Mun, D. J. Kim, H. Y. Zhu, J. M. Baek, J. Mudge, B. Roe, et al. 2004a. Estimating genome conservation between crop and model legume species. Proceedings of the National Academy of Sciences, USA 101: 15289–15294.

Choi, H. K., D. Kim, T. Uhm, E. Limpens, H. Lim, J. H. Mun, P. Kalo, et al. 2004b. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166: 1463–1502.

Decaire, J., C. J. Coyne, S. Brumett, and J. L. Shultz. 2012. Additional pea EST-SSR markers for comparative mapping in pea (Pisum sativum L.). Plant Breeding 131: 222–226.

Jain, S., K. McPhee, A. Kumar, R. R. Mir, and R. Singh. 2012. Virus resistance breeding in cool season food legumes: Integrating traditional and molecular approaches. In G. S. Bhullar and N. K. Bhullar [eds.], Agricultural sustainability: Progress and prospects of crop research, 221–244. Elsevier/Academic Press, Waltham, Massachusetts, USA.

Liu, K., and S. V. Muse. 2005. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics (Oxford, England) 21: 2128–2129.

Mishra, R. K., B. H. Gangadhar, A. Nookaraju, S. Kumar, and S. W. Park. 2012. Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability. Plant Breeding 131: 118–124.

Phan, H. T. T., S. R. Ellwood, R. Ford, S. Thomas, and R. Oliver. 2006. Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. Functional Plant Biology 33: 775–782.

Rogers, S. O., and A. J. Bendich. 1985. Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Molecular Biology 5: 69–76.

Smykal, P., G. Aubert, J. Burstin, C. J. Coyne, N. T. H. Ellis, A. J. Flavell, R. Ford, et al. 2012. Pea (Pisum sativum L.) in the genomic era. Agronomy 2: 74–115.

Xu, S., Y. Gong, W. Mao, Q. He, G. Zhang, W. Fu, and Q. Xian. 2012. Development and characterization of 41 novel EST-SSR markers for Pisum sativum (Leguminosae). American Journal of Botany 99: e149–e153.

Zhuang, X., K. E. McPhee, T. E. Coram, T. L. Peever, and M. I. Chilvers. 2013. Development and characterization of 37 novel EST-SSR markers in Pisum sativum (Fabaceae). Applications in Plant Sciences 1: 1200249.