LETTER

T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments

Edwin D. Hawkins1,2,3,4, Delfim Duarte1,4*, Olufolake Akinduro1, Reema A. Khorsheed1, Diana Passaro5, Malgorzata Nowicka6, Lenny Straszkowski7, Mark K. Scott1,2, Steve Rothery8, Nicola Ruivo1, Katie Foster5, Michaela Waibel9,10, Ricky W. Johnstone9,10, Simon J. Harrison9,10, David A. Westerman9,10, Hang Quach1,12, John Gribben13, Mark D. Robinson6, Louise E. Purton7,12, Dominique Bonnet3 & Cristina Lo Celso1,4

It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function1. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.

The importance of cancer cell interactions with their surrounding microenvironment has gained increased attention due to the hypothesis that specific supportive cells may regulate quiescence, survival and self-renewal of cancer cells themselves. This relationship may underlie a critical mechanism that facilitates both the initiation of disease and chemo-resistance. Leukaemia develops within the bone marrow (BM), where it has been suggested to take part in complex crosstalk that in some cases results in microenvironment remodelling2–8. Therapeutic targeting of leukaemia-supportive niches has been proposed9,10, therefore it is critical that we understand both the spatial and kinetic nature of leukaemia–BM interactions. However, our current knowledge of leukaemia biology is predominantly derived from ex vivo flow cytometric analysis, and static images that cannot capture information on the location and dynamics of leukaemia interactions with BM structures and cells over time.

We studied a Notch-driven mouse model of T-ALL, which recapitulates human disease both phenotypically (Extended Data Fig. 1) and genetically11,12. Twenty-five per cent of paediatric and 40% of adult T-ALL patients develop aggressive relapsed disease originating from chemo-resistant clones13. Thus, there is a pressing need to understand if T-ALL cells migrate to, and interact with particular BM stroma during the propagation of disease and/or selection of chemo-resistance, or if T-ALL can remodel the BM microenvironment in its favour.

To address these questions, we monitored leukaemia growth in mouse calvarium bone marrow by intravital microscopy14–16. We used a tile-based imaging approach that allows tissue-wide visualization of heterogeneous BM microenvironments (Fig. 1a, b) while maintaining a resolution that permits the measurement of single leukaemia cell interactions with BM cells and structures by time-lapse microscopy15 (Fig. 1c and Supplementary Video 1). To characterize T-ALL interactions systematically in vivo, we injected transformed leukaemic cells isolated from primary hosts into secondary recipients, and observed highly synchronous disease progression (Fig. 1d and Extended Data Fig. 1). In secondary recipients, T-ALL preferentially infiltrated the BM before expansion to peripheral lymphoid organs (Extended Data Fig. 1). This is consistent with expression of CXCR4, albeit at variable levels, on leukaemic cells (Extended Data Fig. 1). We visualized T-ALL cells relative to osteoblasts (green fluorescent protein (GFP) or cyan fluorescent protein (CFP) positive in Col2.3–GFP/CFP reporter mice17,18), perivascular mesenchymal stem/progenitor cells (GFP positive in nestin–GFP reporter mice19) and vasculature (by injecting Cy5 dextran) in cohorts of recipient mice during disease progression and treatment (Fig. 1d).

By day 10 after transplantation we could reproducibly observe single, sparse T-ALL cells in the BM at a frequency of 1–30 cells per calvarium (Fig. 1e, f). We measured the proximity of leukaemia cells to osteoblastic and nestin–GFP+ cells and vasculature. We used randomly positioned dots as a control for the specificity of observed associations, as these do not possess any inherent ability to localize to a particular BM stroma component (Fig. 1g). The distribution of T-ALL cells was equivalent to that of the random dots and the actual distances

1Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK. 2The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. 3Department of Haematology, The University of Melbourne, Parkville, Victoria 3010, Australia. 4The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK. 5The Francis Crick Institute, Haematopoietic Stem Cell Laboratory, 1 Midland Road, London NW1 1AT, UK. 6SIB Swiss Institute of Bioinformatics and Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. 7Stem Cell Regulation Unit, St Vincent’s Institute of Medical Research, 41 Victoria Parade Fitzroy, Victoria 3065 Australia. 8Imperial College Faculty for Imaging by Light Microscopy, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK. 9Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia. 10Peter MacCallum Cancer Centre, Department of Haematology, Melbourne, Victoria 3000, Australia. 11Department of Haematology, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia. 12Department of Medicine, The University of Melbourne, Fitzroy, Victoria 3065, Australia. 13Centre of Haematology-Oncology, Cancer Research UK Clinical Centre, Barts Cancer Institute, St Bartholomew’s Hospital, Queen Mary University of London, London EC1M 6BQ, UK. 14These authors contributed equally to this work.

doi:10.1038/nature19801
recorded inversely correlated with the abundance of each component (Fig. 1h–j). These results demonstrate that seeding T-ALL in the BM is stochastically distributed relative to osteoblasts, nestin–GFP⁺ cells and vasculature.

To determine whether T-ALL expansion was supported by specific constituents of the BM, we monitored the dynamics of single T-ALL cells (Fig. 2a) for 3 h (Fig. 2b, c, Extended Data Fig. 2 and Supplementary Videos 2, 3). This revealed that the vast majority of T-ALL cells were motile, in stark contrast with previous observations of transplanted haematopoietic stem cells in BM, and that movement was rarely restricted to the proximity of any specific cell type or structures (Fig. 2b, c, position 2 and 3, and Supplementary Videos 2, 3). Notably, the speed of any given cell over time was also heterogeneous, and thus no single migratory behaviour was associated with osteoblastic, nestin–GFP⁺ cells or vasculature (Fig. 2c, Extended Data Fig. 2 and Supplementary Videos 2, 3). Tracking single T-ALL cells enabled us to measure the location of mitotic events, revealing the same stochastic distribution of dividing cells and suggesting that proximity to these stroma components is not key for T-ALL expansion (Fig. 2d, e, Extended Data Fig. 2 and Supplementary Videos 2, 3). Additionally, daughter cells migrated large distances after division, illustrating that clones and their progeny are not restricted to foci within the local microenvironment (Fig. 2c and Supplementary Video 2, position 3). These observations were consistent with tile scans performed at later stages of BM colonization (day 12–18 after transplantation), where we detected pockets of high and low infiltration juxtaposed in all types of microenvironments (Extended Data Figs 3 and 4). Interestingly, the motility patterns displayed by single, isolated cells were also consistently observed when tracking individual cells located in densely infiltrated areas (Supplementary Video 4). Combined, these analyses demonstrate that T-ALL seeding and colonization of BM do not select for, or depend on specific BM stroma.

The question remained whether certain BM regions could create ‘hotspots’ for chemo-resistance through provision of a protective environment. To address this issue, we adapted our imaging protocol to follow the same BM areas over multiple days to track leukaemia dynamics from complete BM infiltration and throughout therapy. We used the lock-and-key mechanism of the imaging window to re-position mice precisely on the microscope stage over multiple imaging sessions. Mice were tile scanned 18 days after T-ALL transplantation to confirm full BM infiltration. Dexamethasone was then administered daily (Fig. 3a), and immediately after the third therapy dose we observed a staggering reduction in disease burden (Fig. 3b–d and Extended Data Fig. 5a, b), while non-leukaemic, dexamethasone-treated control mice maintained robust BM and stroma cellularity (Extended Data Fig. 5d, e). Strikingly, surviving cells were scattered throughout the BM space and not preferentially associated with osteoblastic, nestin–GFP⁺ cells or vasculature compared with simulated data (Fig. 3b–f and Extended Data Fig. 5a–c).

To test whether initial T-ALL loss was independent from specific stroma components, we increased the imaging temporal resolution to include the first day of treatment. The distribution of T-ALL cells was maintained as disease gradually succumbed to therapy (Extended Data Fig. 6). In contrast to predictions based on previous publications (Extended Data Fig. 3b, c) and nestin–GFP⁺ cells (Supplementary Video 6). Furthermore, surviving cells travelled at significantly faster speeds than early infiltrating cells (days 10–15) (Fig. 3m). Finally, residual T-ALL cells were still capable of undergoing division (Fig. 3g and Supplementary Videos 5, 6) at times when other cells within the same mouse were still undergoing death (Supplementary Video 6). This behaviour, coupled with the observation that mice maintained on dexamethasone for a 7-day period harboured an almost completely repopulated BM space (Extended Data Fig. 7a), suggests that these cells were genuinely resistant to dexamethasone.

Collectively, these data contradict the prevailing hypothesis that therapy-resistant leukaemic cells depend on a particular microenvironment.
for survival. To investigate this proposed paradigm, we compared the gene expression profile of T-ALL cells purified at full infiltration to those isolated from mice 7–10 days after initiation of dexamethasone treatment, when surviving cells have re-colonized the BM (Extended Data Fig. 7a). Gene expression profiles of all T-ALL samples were more heterogeneous compared with control T cells (CD4+ and CD8+).

Figure 2 | Four-dimensional imaging of leukaemia interactions in BM. a. Maximum projection tile scan of a Col2.3–GFP recipient mouse 12 days after transplantation of T-ALL cells. P position. b. Individual positions (framed in a) were imaged at 3 min intervals for 3 h. Red: T-ALL cells; green: osteoblasts; blue: vasculature; grey: bone; arrows: mitosis. c. Three-dimensional cell tracks (temporally colour coded) of individual leukaemia cells. Grey: vasculature; green: osteoblasts; red spheres: T-ALL cells at beginning of imaging period; red asterisks: finishing position of daughter cells; arrows: mitosis. d, e. Position of mitosis relative to GFP+ osteoblasts (n = 46) (d) or nestin cells (n = 30) (e) compared to randomly generated dots (n = 48 and 28 respectively). Data in a–d are representative of/pooled from eight mice (biological replicates) injected with T-ALL isolated from three primary donors. Data in e are pooled from four individual mice (biological replicates) injected with T-ALL from two primary donors. Error bars: mean ± standard error of the mean (s.e.m.).

Figure 3 | Multi-day imaging of chemotherapy, a. Intravital microscopy and treatment schedule. i.v., intravenous. b–d. Representative maximum projection of Col2.3–GFP calvarium bone marrow 18 days after T-ALL transplant (b) and of the same mouse after 2 days of dexamethasone treatment (c) (high-magnification three-dimensional renders of the boxed areas are shown in d). e, f. Measurement of the position of surviving cells relative to the closest osteoblastic cell (n = 303 real and 91 artificial cells) (e) or blood vessel (n = 143 real and 55 artificial cells) (f). b–f. Data are representative of/pooled from five mice (biological replicates) with T-ALL cells from two primary donors. g, i, k. Positions imaged at 3 min intervals for 3 h in mice treated with dexamethasone (g), vincristine (i) and dexamethasone, vincristine and l-asparaginase (DVA) (k). Arrows: mitosis; green: osteoblastic (g) or nestin cells (i); blue: vasculature; red: T-ALL cells; grey: bone (i, k). Corresponding cell tracks (red lines) for each treatment are in h, j, l. m. Mean speed of cells at early disease, and with dexamethasone, vincristine or DVA treatment (n = 91, 184, 199 and 180 cell tracks, respectively). Data are pooled from seven early infiltrated, three dexamethasone-, five vincristine- and four DVA-treated mice (biological replicates) from eight independent experiments using T-ALL from two primary donors (early infiltration and dexamethasone treatment), one primary and two secondary donors (vincristine and one secondary donor (DVA)). n, o. Cell number (n) and cell cycle analysis (o) before (day D0) and after treatment (D2). Data are pooled from three mice (biological replicates) per time point, injected with T-ALL from one secondary donor. Error bars: mean ± s.d. NS, not significant. ****P ≤ 0.0001.
T-cell progenitor (CD4+CD8+ thymocytes) and whole BM populations, as expected on the basis of inter-clone variation in leukaemia cells. The transcriptome of resistant cells overlapped with that of T-ALL cells pre-treatment (Extended Data Fig. 7c). Indeed, only 79 genes were differentially expressed in the post-treatment group and, consistent with our intravitral imaging data, none of the differentially expressed genes were related to known cell-niche interaction candidates (Supplementary Table 1 and Extended Data Fig. 7b). Together, our imaging and gene expression data suggest that dexamethasone treatment does not select for a subpopulation of T-ALL cells that have been directed to a specific niche.

To investigate the importance of these data in a human context, we assessed the migratory behaviour of xenotransplanted primary human T-ALL (Supplementary Table 2) in NOD/SCID/γc mice. After dexamethasone treatment, even human wild-type NOTCH receptor T-ALL cells exhibited migratory behaviour equivalent to murine cells (Extended Data Fig. 8a–d and Supplementary Video 7). We noted an even distribution of quiescent cells throughout the BM as measured by Ki-67 staining (Extended Data Fig. 8e, f). To test whether the migratory behaviour was a specific trait induced by dexamethasone, we treated murine T-ALL-burdened animals with vincristine. The T-ALL response followed similar kinetics to that of dexamethasone-treated animals. Enhanced migration of resistant cells and cell division events were evident immediately after the third dose of vincristine (Fig. 3i, j, m and Supplementary Video 8). This behaviour was even more pronounced when we combined dexamethasone, vincristine and L-asparaginase (Fig. 3k–m, Extended Data Fig. 9 and Supplementary Video 9). In this context, we observed the highest migration speed of all therapies tested, despite over 50% of surviving cells being in G0 (Fig. 3n, o), demonstrating that quiescence is not a feature of niche-restricted immotile cells after chemotherapy.

These findings were universal in all therapies tested in our studies, suggesting that migration and lack of long-lasting interactions with the surrounding microenvironment are conserved features of chemo-resistance in T-ALL.

To assay whether T-ALL may affect BM structures, we performed time-lapse imaging in heavily disease-burdened, untreated mice. After day 18 we observed striking remodelling of osteoblasts (Fig. 4a, b). A 9 h period of time-lapse imaging after full infiltration (day 19 onwards) revealed that osteoblastic cells underwent dramatic shrinking and blebbing (Fig. 4a and Supplementary Video 10), in stark contrast to the early stages of disease (Supplementary Video 1) and to control Col2.3–GFP mice reconstituted with red fluorescent healthy BM, where osteoblastic cells were unaffected (Fig. 4a, b, Extended Data Fig. 10a, b and Supplementary Video 10). TdT-mediated dUTP nick end labelling (TUNEL) and cleaved caspase-3 histological stainings indicated that osteoblasts were undergoing apoptosis (Fig. 4c). The loss of osteoblasts was so dramatic that virtually no GFP+ osteoblasts remained apparent by days 22–25 after transplantation (Fig. 4b, d). Similar results were also found for osteosclerosis (Fig. 4f); however, nestin–GFP+ cells remained 75% GFP+ osteoblasts remained apparent by days 22–25 after transplantation (Fig. 4b, d). Similar results were also found for osteosclerotic osteoblasts) treatment does not select for a subpopulation of T-ALL cells that have been directed to a specific niche.

T-ALL cells to interact with and migrate through the BM. Our studies also reveal that T-ALL has the intrinsic potential to remodel the BM microenvironment via apoptosis throughout the osteolineage. As these cells are associated with haematopoietic fitness, including in the context of leukaemia, the remodelling we uncovered may contribute to the loss of healthy haematopoiesis observed in leukaemia patients. Collectively, our observations suggest that a shift in therapeutic design may be advisable, such that any intervention targeting osteoblastic cells should focus on promoting survival of this lineage, rather than seeking to modulate a direct influence of the BM on the cancer itself. Therefore, a better focus for novel anti-cancer therapeutics may be on disrupting the ability of T-ALL cells to interact transiently with multiple components of the BM microenvironment.
Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 5 June 2015; accepted 24 August 2016.

Published online 17 October 2016.

1. Bowers, M. et al. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood 125, 2678–2688 (2015).
2. Colmone, A. et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322, 1861–1865 (2008).
3. Duan, C. W. et al. Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell 25, 778–793 (2014).
4. Hanoun, M. et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15, 365–375 (2014).
5. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnol. 25, 1315–1321 (2007).
6. Saito, Y. et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nature Biotechnol. 28, 275–280 (2010).
7. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).
8. Zhang, B. et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 21, 577–592 (2012).
9. Jin, L. et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol. Cancer Ther. 7, 48–58 (2008).
10. Weisberg, E. et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 26, 985–990 (2012).
11. Sanna, T. et al. Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 115, 1735–1745 (2010).
12. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).
13. Pui, C. H., Robison, L. L. & Look, A. T. Acute lymphoblastic leukaemia. Lancet 371, 1030–1043 (2008).
14. Lo Celso, C. et al. Live-animal tracking of individual hematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).
15. Rashidi, N. M. et al. In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells. Blood 124, 79–83 (2014).
16. Scott, M. K., Akinduro, O. & Lo Celso, C. In vivo 4-dimensional tracking of hematopoietic stem and progenitor cells in adult mouse calvarial bone marrow. J. Vis. Exp. 91, e51683 (2014).
17. Kalajzic, I. et al. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J. Bone Miner. Res. 17, 15–25 (2002).
18. Paic, F. et al. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45, 682–692 (2009).
19. Méndez-Ferrer, S. et al. Mesenchymal and hematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).
20. Inaba, H. & Pui, C. H. Glucocorticoid use in acute lymphoblastic leukemia. Lancet Oncol. 11, 1096–1106 (2010).
21. Mullighan, C. G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322, 1377–1380 (2008).
22. Lassalvia, F., Foster, K., Lopez-Onieva, L., Curie, E. & Bonnet, D. Multidimensional imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 122, 1730–1740 (2013).
23. Vissaric, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258–3264 (2004).
24. Krevvata, M. et al. Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood 124, 2834–2846 (2014).

Supplementary Information is available in the online version of the paper.

Acknowledgements E.D.H. was supported by a fellowship from the European Haematology Association and an RD Wright Career fellowship from the National Health and Medical Research Council of Australia (NHMRC) as well as a project grant from Bloodwise (12033). D.D. was supported by the GABBA PhD program (FCT fellowship SFRH/BD/52195/2013). L.E.P. was supported by a National Health and Medical Research Council of Australia Senior Research Fellowship. H.Q. is supported by Victorian Cancer Agency Early Career Seed Grant. D.B., D.P. and K.F. were funded by Cancer Research UK (CRUK) and the Francis Crick Institute. C.L.C. was funded by Bloodwise (12033), Human Frontier Science Program (RGPO051/2011), CRUK (C36195/A1183), Biotechnology and Biological Sciences Research Council (BB/R004033/1) Kay Kendall Leukaemia Fund (KKL460) and the European Research Council (337066). We are grateful to M. Spitaler, D. Keller and L. Carlin for support with imaging. We also thank S. Piperelis, E. Ibarsuen, W. Steel and H. Goyal for logistical help; A. Ivan for support from the genomics facility; J. Srivastava and C. Simpson for support from the flow cytometry facility; M. Wall for her advice on the human cytogenetics; D. Ilanez for access to software; H. Fleming; V. Greco, R. E. Sindel, S. Mostowy and P. O’Donovan for critical feedback on the manuscript.

Author Contributions E.D.H. and C.L.C. conceived the project. E.D.H., C.L.C., O.A. and M.K.S. designed and refined the intravital imaging systems. R.A.K. designed the image analysis platform; R.A.K., E.D.H. and D.D. performed all image analysis. S.R. designed the random data simulator. E.D.H., D.D. and N.R. performed imaging experiments. N.R. maintained all animal lines. M.N. and M.D.R. designed the microarray experiment and analysed the data. E.D.H., M.W. and R.W.J. performed experiments in Extended Data Fig. 1. D.P., K.F. and D.B. designed, performed and analysed osteirx–GFP experiments. S.J.H., D.A.W. and J.G. provided human T-ALL samples. L.S. and L.E.P. performed histological analysis of human BM trephinations (H.O.), funded human biopsy studies. D.P. and D.B. designed and D.P. performed the human T-ALL xenograft experiments and analysed data. E.D.H., D.D. and C.L.C. analysed data and wrote the manuscript. All authors contributed revisions to the manuscript. Note that O.A., R.A.K. and L.S. provided human T-ALL samples. L.S. and L.E.P. performed histological analysis of human BM trephinations (H.O.), funded human biopsy studies. D.P. and D.B. designed and D.P. performed the human T-ALL xenograft experiments and analysed data. E.D.H., D.D. and C.L.C. analysed data and wrote the manuscript. All authors contributed revisions to the manuscript. Note that O.A., R.A.K. and D.P. contributed equally to this work, and the same is for M.D.R., L.E.P. and D.B.

Author Information Gene expression data have been deposited in ArrayExpress under accession number E-MTAB-4889. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to E.D.H. (Hawkins.e@wehi.edu.au) or C.L.C. (c.lo-cello@imperial.ac.uk).

Reviewer Information Nature thanks T. Look, C. Mullighan, J. van Rheenen and the other anonymous reviewer(s) for their contribution to the peer review of this work.
METHODS

Mice. All animal experimentation in this study was approved and performed according to the standards of the animal ethics committee at Imperial College London and to UK Home Office regulations (ASPA 1986). C57Bl/6 mice were purchased from Harlan UK Ltd; Col2.3–GFP, Col2.3–CFP26, nestin–GFP and mTmG25 mice were bred and housed at Imperial College London. For imaging experiments, female Col2.3–GFP and nestin–GFP mice >8 weeks old were used. osteX–CreGFP mice were provided by A. McMahon and backcrossed over eight generations into NSG mice and maintained at the Francis Crick Institute, Cancer Research UK26. Equal proportions of male and female osteX–CreGFP mice aged 11–14 weeks were used.

Generation of murine T-ALL disease. T-ALL was generated as previously described27. Briefly, timed matings were established between C57Bl/6 mice and embryos harvested at E14.5. Single-cell suspensions were prepared from whole fetal livers isolated from the embryos. Suspensions were cultured in IL-3, IL-6, and stem cell factor conditioned media with 20% FCS for 3 days. Lin–Xc cells were transfected by calcium phosphate with MigR1 plasmids containing either DsRed only or DsRed with NotchICNΔ as described previously28. We also used GFP-tagged plasmids when required. Supernatants containing recombiant retrovirus were removed and spun by centrifugation onto non-tissue-culture-treated plates coated with 15 μg/ml retronectin (Takara Clontech, CA). Fetal liver cells were cultured in the presence of virus for 3 days and transduction was assessed by flow cytometry. Primary lethally irradiated recipient mice (two doses of 5.5 Gy administered greater than three hours apart) were transplanted with 1 × 106 DsRed– fetal liver cells by intravenous injection into the tail vein.Recipient mice were maintained on bayer-treated water to prevent infection for >6 weeks post-transplantation. Cohorts of reconstituted mice were the result of three independent fetal liver isolations and three independent transplantations. Transformation of Notch-transduced retroviral cells is highly heterogeneous in vivo, with onset of primary disease ranging from 6–25 weeks28 (Extended Data Fig. 1). More than 4 weeks post-reconstitution, peripheral blood was isolated from mice, and red blood cells were lysed, and successful reconstitution determined by presence of DsRed cells. Mice reconstituted with NotchICNΔRamΔP-transduced fetal liver cells were monitored daily for signs of leukaemia onset or other signs of ill health. Mice were euthanized when any one or a combination of the following signs were observed: hunched posture, laboured breathing, weight loss, enlarged lymph nodes and/or spleen, peripheral white blood cellularity of 13 × 106 per litre or greater. No experiment exceeded the tumour burden approved by the Home Office and the Imperial College ethics committee. Peripheral lymphoid organs were analysed by flow cytometry for DsRed or GFP, CXCR4, CD3, CD4 and CD8 expression. All FACS data was collected on a Fortessa flow cytometer (BD Biosciences, CA). Secondary recipients were sub-lethally irradiated (two doses of 3 Gy administered greater than three hours apart) and injected with 10,000 thawed, Ficoll purified T-ALL blasts and monitored as described earlier. In selected cases 10,000 secondary T-ALL cells were transplanted into tertiary recipients. For therapy experiments, mice were injected i.v. daily with 15 mg/kg dexamethasone sodium phosphate29,30 (Selleckchem, MA) alone, 0.15 mg/kg vincristine sulfate salt (Sigma) alone or with a combination of 15 mg/kg dexamethasone, 0.15 mg/kg vincristine and 1,000 μg/kg t-asparaginase (medac; obtained from the Imperial College Healthcare NHS Trust Pharmacy).

Bone marrow chimaeras. Reconstitution with MigR1 DsRed-transduced cells yields <50% chimaeras. For this reason, analysis of healthy BM cells by microscopy is inaccurate. Therefore, to obtain >95% chimaerism of healthy, red fluorescent BM to be used for imaging control experiments, whole BM mononuclear cells were isolated from femurs, hips and tibia of mTmG donor mice, suspended in phosphate balanced salt solution and administered intravenously to recipient mice at a dose of 2 × 107 cells/mouse. Recipient Col2.3–GFP or C57Bl/6 mice had been lethally irradiated 2 doses of 5.5 Gy administered greater than 3h apart) immediately before the transplant, and were maintained on bayer-treated water to prevent infection >6 weeks post-transplantation.

Intravital microscopy. Intravital microscopy was performed using a Leica SP5 and a Zeiss LSM 780 upright confocal microscope with a motorized stage. The SP5 was fitted with the following lasers: Argon, 488, 561, 633 and a tunable infrared multiphoton laser (Spectraphysics Mai Tai 690-1020). The Zeiss LSM 780 was fitted with the following lasers: Argon, 561, 633 and a tunable infrared multiphoton laser (Spectraphysics Mai Tai DeepSee 690-1040). Signal was visualized with a Leica HCX IRAPO 1 × 25 water immersion lens (0.95 N.A.) and a W Plan-Apochromat × 20 DIC water immersion lens (1.0 N.A.). Collagen bone second harmonic generation signal and GFP and CFPS signals were generated through excitation at 840 and 870 nm and detected with external detectors. Internal detectors were used to collect DsRed and Cy5 signal (and on some occasions, GFP). Prior to surgery, mice were administered analgesia with buprenorphine (0.1 mg/kg intraperitoneally (i.p.)). Anaesthesia was induced in mice with 4% isoflurane mixed with pure oxygen. This was gradually reduced to approximately 1% as anaesthesia stabilized. Surgery to attach the headpiece was then performed as described previously24. Large three-dimensional ‘tile scans’ of the entire BM cavity space were acquired by stitching adjacent, high-resolution z-stack images using a surgically implanted imaging window that ensures steady positioning of mice on the microscope. The calvarium has been demonstrated to be equivalent to the long bones such as the femur with regards to haematopoietic stem cell frequency, function and localization31,32, and is the only BM site that allows longitudinal imaging through minimally invasive surgery33,34. Blood vessels were highlighted by i.v. injection of 50 μl of 8 mg/ml 500 kDa Cy5-Dextran (Nanocs, MA). Cy5-Dextran was re-injected every 1–2h to maintain blood vessel signal and cross reference for registration of blood vessel data in time-lapse analysis. For repeated imaging, protective intrasite gel (Smith & Nephew) was applied to the imaging window to preserve the bone integrity and prevent scar formation. The window was bandaged, and mice were allowed to recover from anaesthesia. Owing to the lock-and-key mechanism of the imaging window35, mice could then be re-anaesthetized and accurately repositioned on the microscope stage and the same BM areas re-imaged. After each imaging, analgesia was administered via oral buprenorphine in raspberry jelly at a dose of approximately 0.8 mg/kg.

Image quantification. Microscopy data was processed using multiple platforms. Tile scans were stitched using Leica Application Systems (LAS, Leica Microsystems, Germany) and ZEN black (Zeiss, Germany) softwares. Raw data were visualized and processed using Fiji/ImageJ. Simulated data was prepared using Fiji macros to create, and overlay z-stack images on original tile-scan data. Using the internal random number algorithm, spheres matching the size of T-ALL cells (11–15 μm) were placed at random x,y,z coordinates. Simulated data Fiji macro is available on request. Automated cell segmentation, distance and volume measurements were performed in Definis (Definis Developer 64, Germany) using local heterogeneity segmentation32 to isolate osteoblast and nestin cells as well as vasculature, and a combination of seed detection algorithm and morphological growing and shrinking operations to detect leukaemia cells. Definis rulesets for these functions are available upon request. Distance measurements from this segmentation were performed as described previously32. Cell tracking was performed using Imaris (Bitplane, Switzerland) and the Fiji plugin MTrack. For accuracy in cell tracking data, videos were registered when required before using four-dimensional data protocols implemented in Fiji36. Three-dimensional data rendering and measurement of cell division distances were performed in Volocity (Perkin Elma, MA) and Definis (Definis Developer 64, Germany).

Microarrays. T-ALL samples were harvested from bone marrow and FACS sorted based on fluorescent protein expression (DsRed or GFP) unless infiltration of bone marrow was complete. Control samples for microarray were prepared by Fiji sorting for splenic CD4+ T cells, CD8+ T cells and CD4+CD8− thymocytes from 8–14 week female C57Bl/6 mice. RNA was purified from samples using the Qiangen RNeasy mini kit (Netherlands) as per the manufacturer’s instructions. Purified RNA was prepared for hybridization using the Genechip WT Plus reagent kit (Affymetrix, CA) as per the manufacturer’s instructions and hybridized on Affymetrix Mouse 430 2.0 ST arrays (Affymetrix, CA) by the MRC Genomics Facility (Imperial College London). Analysis was performed using R version 3.1.1. Data were normalized and summarized to ‘core’ level using the RMA method from the oligo package (version 1.30.68). Annotation was downloaded from the Affymetrix NetAffx Query website. Differential expression was determined using limma version 3.22.7 (ref. 35). Genes with Benjamini–Hochberg-adjusted P value < 0.05 and absolute log-fold-change >1 were deemed significant. Heatmaps of gene expression were generated with pheatmap package version 1.0.2.

Human T-ALL xenografts. Primary human T-ALL samples were obtained from Dr. Margaret Pearson (St George’s Hospital, London) after informed consent via a protocol approved by the East London Research Ethics Committee and carried out in accordance with the principles of the Helsinki declaration (see Supplementary Table 2 for details), before treatment being administered to the patients. Primary cells from two distinct patients were immunophenotyped, and CD45+/CD7+/CD4−/CD8−/CD3−/low cells sorted and infused i.v. in non-conditioned osteX–CreGFP/NOD/SCID/γc−/− recipient mice. Primary xenograft transplantation was assessed via peripheral blood sampling and/or BM aspiration. BM and spleen-derived primary xenografts were infused i.v. in non-conditioned NOD/SCID/γc−/− secondary recipient mice for therapy experiments. Intravital imaging was performed as described earlier. Human T-ALL cells were cultured by infecting 10 μg of PE-conjugated human CD45 antibody (clone HI30, Biologend) 15–30 min before the imaging session. For dexamethasone therapy experiments, mice were treated with daily injections of 15 mg/kg i.v.30. Number of human T-ALL cells in therapy experiments was quantified using reference beads as described previously36.
Immunofluorescence. Hips and tibias were harvested and post-fixed overnight in periodate-lysine-paraformaldehyde fixative, at 4 °C. Bones were then washed with 0.1 M phosphate buffer, cryoprotected in sucrose (10–30% gradient), for 48 h, frozen in optimal cutting temperature compound (TissueTek) and stored at −80°C. Sections were cut in a Leica Cryostat, using the Cryojane tape transfer system (Leica Microsystems) and stored at −80°C. For staining, slides were re-hydrated in PBS, permeabilized in 0.1% Triton X-100, blocked in 5% goat serum and incubated with primary antibodies overnight, at 4°C. After washing in PBS, slides were incubated with secondary antibodies, counter-stained with DAPI (Invitrogen), washed in 0.1% Triton X-100 and mounted using Prolong Diamond antifade (Invitrogen). The following antibodies were used: Alexa Fluor 647 mouse anti-Ki-67 (B56, BD Biosciences, 1:50), PE-conjugated human CD45 antibody (HI30, BD Biosciences, 1:100), rabbit anti-cleaved caspase-3 (Asp175, Cell Signaling, 1:100), goat anti-rabbit IgG Alexa Fluor 633 (Life Technologies, 1:400). TUNEL labelling was performed to detect apoptotic cells, according to the manufacturer's instructions (DeadEnd Colorimetric TUNEL System, Promega). Images were obtained using a Zeiss LSM 780 upright confocal two-photon combined microscope and analysed using Fiji/ImageJ. Cell counting was performed manually using the Fiji plugin Cell Counter.

T-ALL cell number and cell cycle analysis. BM from human T-ALL xenotransplanted, untreated and treated mice was harvested and stained with DAPI (Invitrogen) and FITC mouse anti-Ki-67 set (BD Biosciences), according to the manufacturer's instructions. Cells were analysed by flow cytometry and absolute numbers were obtained using reference beads as described previously36.

Osterix quantification. T-ALL engraftment and infiltration was confirmed via peripheral blood sampling and/or tibia puncture. Once mice presented with signs of ill health (as described earlier), mice were euthanized and bones were digested with a DNase I/Collagenase (Sigma) solution. The total number of Osx−GFP+ cells was assessed by flow cytometry analysis using counting beads (CountBright, Life Technologies).

Human trephine histology. Samples were obtained from patients after informed consent had been obtained, under full ethical approval by the Peter MacCallum Cancer Centre Human Research Ethics Committee. De-waxed human trephine biopsy sections (3μM) were stained with osteocalcin antibody (Abcam ab93876, Cambridge), counterstained and mounted for viewing. All areas of each section were monitored for visible osteoblasts.

Statistics. The sample size required for the experiments was estimated based on the results of preliminary data. Blinding or randomization for animal experiments were not necessary due to the nature of the experiments. Statistical differences between the means of two data groups was determined by using two-tailed unpaired Student’s t-test, and P values < 0.05 were considered significant. Multiple group comparisons were performed using ANOVA with a Bonferroni correction, P values < 0.05 were considered significant.

25. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).
26. Rodda, S. J. & McMahon, A. P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244 (2006).
27. Hawkins, E. D. et al. Lethal giant larva 1 tumour suppressor activity is not conserved in models of mammalian T and B cell leukaemia. PloS ONE 9, e87376 (2014).
28. Aster, J. C. et al. Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukaemia by notch1. Mol. Cell. Biol. 20, 7505–7515 (2000).
29. Real, P. J. et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nature Med. 15, 50–58 (2009).
30. Chiu, P. P., Jiang, H. & Dick, J. E. Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood 116, 5268–5279 (2010).
31. Lo Celso, C., Lin, C. P. & Scadden, D. T. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nature Protocols 6, 1–14 (2011).
32. Khorsheed, R. A. et al. Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data. Stem Cell Reports 5, 139–153 (2015).
33. Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancak, P. Software for bead-based registration of selective plane illumination microscopy data. Nature Methods 7, 418–419 (2010).
34. Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).
35. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
36. Hawkins, E. D. et al. Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nature Protocols 2, 2057–2067 (2007).
Extended Data Figure 1 | T-ALL disease experimental model. Fetal liver single-cell suspensions were isolated from embryonic day (E)14.5 wild-type (WT) embryos and transduced with DsRed alone or DsRed with NotchICNΔRamΔP then transplanted into primary lethally irradiated recipient mice. Recipient mice typically accumulated CD4⁺CD8⁺ cells in the peripheral blood from 4 weeks after transplant. Transformed leukemic cells could be distinguished from non-malignant cells based on DsRed expression levels, where DsREDlo cells were transduced with the Notch construct yet were non-malignant as they had not yet acquired secondary mutations to drive leukaemogenesis, whereas DsRedhi cells were fully malignant. DsREDlo cells contained single-positive CD4⁺ and CD8⁺ T-cell populations, whereas DsRedhi cells had predominantly the leukemic CD4⁺CD8⁺ phenotype. The accumulation of transformed leukemic populations displayed large variation over time as shown in the ratio of transformed to non-malignant cells in peripheral blood of primary recipient mice at 6 and 9 weeks. Data shown are mean ± s.e.m. When DsRedlo cells dominated peripheral cell populations, mice were burdened with typical CD4⁺CD8⁺ T-ALL (now simply referred to as DsRed⁺). When primary recipient mice displayed enlarged lymph nodes and/or spleen, they were euthanized and DsRed⁻ cells were harvested, stored frozen and transplanted into secondary recipients. CXCR4 expression was measured in CD4⁺ T cells, CD8⁺ T cells and T-ALL by flow cytometry (T-ALL from four primary donors) and microarray gene expression analysis (triplicate biological replicates are shown for control T cells, and samples from nine individual secondary recipients injected with five independent primary T-ALL samples). To track disease progression, 10,000 primary T-ALL cells were transplanted into cohorts of sub-lethally irradiated secondary recipient mice. Secondary transplanted cells colonized the BM primarily, before spreading to peripheral organs and blood (n = 4 mice per time point; data shown are mean ± s.e.m.) and developed disease more rapidly and synchronously than primary recipients as injected cells were already transformed. Secondary recipients survived for up to 38 days (shown are survival data of mice injected with four independent primary T-ALL samples, n = 2 mice per primary sample represented by the following symbols: filled circle, open square, open triangle and asterisk). In selected cases, secondary T-ALL blasts were transplanted into tertiary recipients, which developed disease more rapidly but showed similar responses to chemotherapy. The primary samples used in this study were from primary recipients 151, 907, B2M2, B2M3, B2M10, B3M3 and B3M30. This nomenclature refers to the mouse numbering from three independent fetal liver transductions. First transduction: mouse 151 and 907; second transduction (B2): mouse 2, 3 and 10; third transduction (B3): mouse 3 and mouse 30.
Extended Data Figure 2 | Four-dimensional multi-position imaging of leukaemia cells in the BM space. a, Representative maximum projection tile scan of a Col2.3–GFP recipient mouse (from Fig. 2) 12 days after transplantation of DsRed+ T-ALL. Red: T-ALL cells; green: GFP+ osteoblastic cells; blue: blood vessels; grey: bone collagen. b, Individual positions (framed in a) were selected and imaged at 3 min intervals for 3 h to measure cell migration and division. Shown here are a single time frame/position. For full time-lapse data see Supplementary Video 2. c, Three-dimensional rendering of the three-dimensional tracks of individual leukaemia cells, measured using semi-automated tracking (red), overlaid to vasculature (blue). Spheres represent the beginning of each track. d, Data from c are shown with osteoblasts included in green. e, Tracks from c colour-coded based on time. Long stretches of the same colour correspond to faster movement, while rapid colour shifts represent slower movement. Data are representative of >30 time-lapse videos collected from eight secondary recipients (biological replicates) injected with three independent primary T-ALL samples.
Extended Data Figure 3 | T-ALL expansion is not associated with Col2.3–GFP⁺ osteoblastic cells and nestin–GFP⁺ cells. a, Representative tile scan of a Col2.3–GFP mouse 15 days after transplantation of T-ALL. Zooms P1–P4 illustrate that the expansion of disease is not associated with the presence or absence of GFP⁺ osteoblastic cells. Red: T-ALL; green: osteoblastic cells; blue: blood vessels. Image is representative of five mice injected with two individual T-ALL primary samples. b, Representative tile scan of a nestin–GFP mouse 15 days after transplantation of T-ALL. Zooms P1–P3 illustrate that the expansion of disease is not associated with the presence or absence of nestin–GFP⁺ cells. Red: T-ALL; green: nestin⁺ cells; blue: blood vessels; grey: bone collagen second harmonic generation (SHG) signal. Image is representative of three individual mice (biological replicates).
Extended Data Figure 4 | T-ALL expansion is not associated with BM areas containing nestin–GFP+ or any combination of Col2.3–CFP+ cells or any combination of them. Representative tile scan of a Col2.3–CFP/nestin–GFP double-transgenic mouse 15 days after transplantation of T-ALL. Zooms P1–P3 illustrate that the expansion of disease is not associated with the presence or absence of any combination of Col2.3–CFP+ or nestin–GFP+ cells. Yellow: T-ALL; green: nestin–GFP+ cells; blue: Col2.3–CFP+ cells; magenta: Cy5-labelled blood vessels; grey: bone collagen SHG signal. Image is representative of four mice (biological replicates).
Extended Data Figure 5 | Dexamethasone-resistant T-ALL cells do not associate with nestin–GFP+ cells. a, Representative nestin–GFP mouse transplanted with T-ALL cells and imaged 18 days post-transplant to confirm complete BM infiltration (left). Tile-scan imaging was repeated after 2 days of treatment with 15 mg kg\(^{-1}\) dexamethasone i.v. (right). b, Magnified view of representative positions, framed in a. c, We observed no preferential positioning of T-ALL surviving cells relative to nestin+ cells compared to simulated data. Red: T-ALL; green: nestin–GFP+ cells; blue: blood vessels. Data are representative of four individual mice injected with two T-ALL primary samples. Error bars: mean ± s.d. d, Chimaeric mice were generated by transplanting mTmG–tomato+ BM into Col2.3–GFP recipients. The high reconstitution efficiency of mTmG cells provided a more robust traceable marker of steady-state haematopoiesis for intravital imaging than MigR1–DsRed-transduced fetal liver cells (<40% reconstitution, data not shown). e, Representative tile scans of a mTmG-Col2.3–GFP chimaeric mouse performed before and after three doses of dexamethasone treatment showing that healthy BM is not affected by dexamethasone treatment or sub-lethal irradiation. Red: tomato+, healthy mTmG BM; green: GFP+ osteoblastic cells; blue: blood vessels. \(n = 2\) mice. NS, not significant.
Extended Data Figure 6 | Multi-day time course of response to chemotherapy. a, Representative maximum projections of tile scans of calvarium BM of one Col2.3–CFP and one nestin–GFP mouse at 18 days after T-ALL transplant (pre-treatment) and 1 and 2 days of dexamethasone treatment (15 mg kg\(^{-1}\)). Red squares indicate some areas of cell loss from day 1 to day 2. b, Three-dimensional measurement of the position of surviving cells in mice imaged at both 1 and 2 days of dexamethasone treatment. \(n = 1,499\) and 352 T-ALL cells measured to osteoblastic CFP\(^+\) cells at day 1 and day 2, respectively, and 363 and 496 T-ALL cells measured to nestin–GFP\(^+\) cells at day 1 and day 2, respectively. Data are representative from three individual mice (biological replicates) of each genotype. Error bars: mean ± s.d. NS, not significant.
Extended Data Figure 7 | See next page for caption.
Extended Data Figure 7 | Development of resistance to dexamethasone and gene-expression-based clustering of leukaemia samples collected before and after dexamethasone treatment.
a, Representative maximum projection of tile scan of calvarium bone marrow of a mouse after 7 days of daily dexamethasone treatment (15 mg kg$^{-1}$, i.v.). Red, DsRed$^+$ T-ALL cells. Data are representative of four independent mice injected with four independent T-ALL primary samples.
b, Mice with T-ALL were either kept untreated or treated with dexamethasone for 7 days, at which point they were culled and the expression of CXCR4 on T-ALL cells analysed by flow cytometry. There was no statistically significant difference in the mean fluorescence intensity (MFI) of CXCR4 between the two groups. Data are representative of six untreated and five treated mice, injected with three independent T-ALL primary samples. Error bars: mean ± s.d.
c, Multi-dimensional scaling (MDS) plot of control CD4$^+$ T cells, CD8$^+$ T cells, CD4$^+$8$^+$ thymocytes, whole BM and T-ALL samples with no treatment (grey) or after treatment with dexamethasone (red) based on microarray transcriptomics data for the 1,000 most variable genes. The name of the primary T-ALL sample used to inject each mouse is indicated next to the dot marking its position relative to all other samples. This nomenclature refers to the mouse numbering from three independent fetal liver transductions. First transduction: mouse 907; second transduction (B2): mouse 2, B2M2, mouse 3, B2M3 and 10, B2M10; third transduction (B3): mouse 3, B3M3 and mouse 30, B3M30. Control samples are purified by flow cytometry from three biological replicate mice and each circle represents an individual sample. NS, not significant.
Extended Data Figure 8 | Analysis of human T-ALL cells during response to chemotherapy in NSG xenotransplant recipients.

a, b, Human T-ALL samples were transplanted into NOD/SCID/γ (NSG) mice and 12 days post-transplant, daily dexamethasone treatment at 15 mg kg⁻¹ was initiated. Fourteen days later, the response was measured by flow cytometry. c, For intravital imaging, human T-ALL cells were labelled by injection of 10 μg anti-human CD45-PE 15–30 min before imaging. d, Cells were imaged at 3 min intervals for >60 min and migration was measured by manual tracking either before or after dexamethasone treatment. Pre-dexamethasone: n = 82 cells from 2 independent mice, 14 days; dexamethasone: n = 100 from 3 independent mice. Shown are cells from patient JH, wild-type NOTCH. e, BM sections were prepared from untreated and treated NSG mice and stained for human CD45 (red) and Ki-67 (green). In addition, nuclei were visualized using DAPI (blue) and bone by SHG signal (grey). Zooms are of the areas framed by the white boxes on their left. f, Analysis of 2,338 (untreated) and 1,576 (14 days dexamethasone) human CD45⁺ cells in sections from three mice per condition reveals no change in the fraction of proliferating Ki-67⁺ cells after dexamethasone treatment. NS, not significant. **P < 0.01. Error bars: mean ± s.d. (b, d, f).
Combined dexamethasone, vincristine and l-asparaginase treatment effectively reduces T-ALL burden.

a. Representative tile scan of a mouse calvarium fully infiltrated with T-ALL (pre-DVA) and after 2 days of combination therapy (dexamethasone, vincristine and l-asparaginase (DVA)).

b. Zooms P1 and P2 illustrate effectiveness of DVA treatment and the small number of surviving T-ALL cells. Red: T-ALL; blue: blood vessels; grey: SHG bone collagen. Image is representative of four mice (biological replicates) injected with one individual T-ALL secondary sample.
Extended Data Figure 10 | Analysis of the response of bone marrow structures to irradiation and dexamethasone treatment and of nestin–GFP+ cells to T-ALL. a, b, Col2.3–GFP (a) or nestin–GFP (b) mice were treated with combinations of sublethal irradiation (administered >18 days before measurement) or dexamethasone treatment (administered for 2 days before measurement) as indicated. Then, using three-dimensional image analysis of tile scans, the total volume of GFP+ cells was quantified. Groups were analysed using analysis of variance (ANOVA) with Bonferroni correction for multiple groups. Error bars: mean ± s.d.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.