Deep Resequencing of GWAS Loci Identifies Rare Variants in CARD9, IL23R and RNF186 That Are Associated with Ulcerative Colitis

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Beaudoin, M., P. Goyette, G. Boucher, K. S. Lo, M. A. Rivas, C. Stevens, A. Alikashani, et al. 2013. “Deep Resequencing of GWAS Loci Identifies Rare Variants in CARD9, IL23R and RNF186 That Are Associated with Ulcerative Colitis.” PLoS Genetics 9 (9): e1003723. doi:10.1371/journal.pgen.1003723. http://dx.doi.org/10.1371/journal.pgen.1003723.

Published Version
doi:10.1371/journal.pgen.1003723

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11877070

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Abstract

Genome-wide association studies and follow-up meta-analyses in Crohn’s disease (CD) and ulcerative colitis (UC) have recently identified 163 disease-associated loci that meet genome-wide significance for these two inflammatory bowel diseases (IBD). These discoveries have already had a tremendous impact on our understanding of the genetic architecture of these diseases and have directed functional studies that have revealed some of the biological functions that are important to IBD (e.g. autophagy). Nonetheless, these loci only explain a small proportion of disease variance (~14% in CD and 7.5% in UC), suggesting that not only are additional loci to be found but that the known loci may contain high effect rare risk variants that have gone undetected by GWAS. To test this, we have used a targeted sequencing approach in 200 UC cases and 150 healthy controls (HC), all of French Canadian descent, to study 55 genes in regions associated with UC. We performed follow-up genotyping of 42 rare non-synonymous variants in independent case-control cohorts (totaling 14,435 UC cases and 20,204 HC). Our results confirmed significant association to rare non-synonymous coding variants in both IL23R and CARD9, previously identified from sequencing of CD loci, as well as identified a novel association in RNF186. With the exception of CARD9 (OR = 0.39), the rare non-synonymous variants identified were of moderate effect (OR = 1.49 for RNF186 and OR = 0.79 for IL23R). RNF186 encodes a protein with a RING domain having predicted E3 ubiquitin-protein ligase activity and two transmembrane domains. Importantly, the disease-coding variant is located in the ubiquitin ligase domain. Finally, our results suggest that rare variants in genes identified by genome-wide association in UC are unlikely to contribute significantly to the overall variance for the disease. Rather, these are expected to help focus functional studies of the corresponding disease loci.
Introduction

Inflammatory bowel diseases (IBDs) are classified as chronic relapsing inflammatory diseases of the gastrointestinal tract. The two major forms of IBDs are Crohn’s disease (CD, OMIM 266600) and ulcerative colitis (UC, OMIM 191390). Both genetic and environment factors play a central role in the pathogenesis of the inflammatory response of IBDs [1].

Recent genome-wide association (GWA) studies and meta-analyses in IBD have shown great success, with the identification of 163 independent IBD risk loci. While some loci were shown to be specific to either CD or UC risk, most have been shown to impact on both diseases, supporting earlier claims that these diseases share genetic risk factors [2]. These recent studies have identified important disease pathways but the common SNPs identified, with generally modest effects, explain only 14% and 7.5% of disease variance for CD and UC, respectively [3].

Due to linkage disequilibrium in the genome and limitations of GWAS chip designs to date, genome-wide scans typically identify common variants that tag regions of variable sizes containing multiple candidate genes for disease susceptibility. Although there have been a few notable exceptions, most of the common associated SNPs do not clearly identify causal variants, and further studies are needed to highlight the causal gene in many associated regions [4–6]. Sequencing of exons within associated regions in order to identify rare variants with strong effect on disease has been proposed as a means to help identify the causal genes and to help explain a further portion of disease variance. We have recently performed a pooled next-generation sequencing study in Crohn’s disease, and identified association to novel low-frequency and rare protein altering variants in NOBD2, IL23R, and CARD9, as well as IL18RAP, CUL2, Ctrl106, PTPN22 and MUC19 [7]. We opted to use a similar targeted pooled next-generation sequencing approach to study UC-associated regions from our recent meta-analysis of 3 independent genome-wide scans for UC [8]. Using this approach we identified putative causal variants significantly associated to UC in three of the 22 loci examined and identified variants of interest for an additional six loci.

Results

Sequence analyses

We selected 200 ulcerative colitis cases and 150 healthy controls of French Canadian ancestry from among samples collected by the NIDDK IBD Genetics Consortium. Samples were pooled in batches of 50 cases or 50 controls and normalized in order for the DNA pool to reflect sample allele frequencies. We targeted 55 genes from 14 UC-associated regions, as well as 7 regions identified in CD showing nominal replication in our UC GWAS study and an additional candidate gene (ECMF) reported in recent literature [6,8–10]. PCR amplification primers were successfully designed to capture a total of 508 amplicons for a total of 305 Kb or 70% of our original target sequences. Of these 508 PCR reactions, 472 (93%) successfully amplified in each of the 7 sample pools and we used these to construct libraries for high-throughput sequencing on an Illumina Genome Analyzer II. This sequencing yielded large amounts of high-quality data for each pool, that captured 99% of our amplified target regions (283 Kb total; 117 Kb exonic sequences) and achieved 1575× median coverage per pool (corresponding to 31.5× per sample).

We used the previously described variant calling method Syzzyg, designed to accommodate pooled study designs, to identify rare and low-frequency single nucleotide variants in our pooled samples [7]. Syzzyg detected 1590 high confidence variants in our target regions, including 309 coding region variants (189 missense, 114 synonymous, 2 nonsense and 4 essential splice

Author Summary

Genetic studies of common diseases have seen tremendous progress in the last half-decade primarily due to recent technologies that enable a systematic examination of genetic markers across the entire genome in large numbers of patients and healthy controls. The studies, while identifying genomic regions that influence a person’s risk for developing disease, often do not pinpoint the actual gene or gene variants that account for this risk (called a causal gene/variant). A prime example of this can be seen with the 163 genetic risk factors that have recently been associated with the chronic inflammatory bowel diseases known as Crohn’s disease and ulcerative colitis. For less than a handful of these 163 is the causative change in the genetic code known. The current study used an approach to directly look at the genetic code for a subset of these and identified a causative change in the genetic code for eight risk factors for ulcerative colitis. This finding is particularly important because it directs biological studies to understand the mechanisms that lead to this chronic life-long inflammatory disease.
junction variants) with 56% of these already reported in dbSNP version 132, a non-synonymous/synonymous ratio of 1.7 and a transition/transversion ratio of 2.39 (Table S1). These results are similar to those obtained from our recent re-sequencing study in CD, as well as those reported by the 1000 Genomes Project, and are indicative of a relatively high true-positive rate for our dataset. This was confirmed by genotyping the 350 discovery DNA samples for a random subset of 237 variants from the total of 1590 high quality variants (Table S2).

Follow-up genotyping and association analyses

After removal of variants that did not validate, variants observed only once in our sequencing dataset (singleton) and variants from the MHC region, 94 non-synonymous coding variants (missense, non-sense and splicing variants), were used for subsequent analyses. Following removal of common variants (frequency >5%) and variants that did not design in our genotyping assays, we carried out follow-up genotyping for 42 of these variants. Genotyping was performed in 6 independent case-control cohorts totaling 7,292 UC cases and 8,018 HC (Table S3), and additional data was obtained for 7,143 UC cases and 12,186 HC from the International IBD Genetics Consortium (IIBDGC) Immunochip project for 14 of these variants [3].

Since our study focuses on infrequent and rare variants, we expect few non-reference alleles for these variants in each subcohort studied, which precludes the use of asymptotic statistics utilized in typical association studies of common variants. Also, given the low frequencies of the variants tested, population structure is likely to be a more substantial problem and thus requires a stratified analysis with strict population case-control matching. We used a previously described mega-analysis of rare variants (MARV) approach that provides a permutation-based estimate of significance, within each sub-cohort, and accommodates variable numbers of case-control samples in each independent population for single-marker analysis [7].

With a target set of 42 variants we can define a traditional corrected significance level of $P=0.0012$ for our study. Three variants, located in the CARD9, IL23R and RNF186 genes, reach this significance threshold suggesting that these could possibly be the causal genes/variants within these two loci (Table 1). Specifically, our results show that the c.IVS1+1G>C CARD9 splice variant confers significant protection to UC ($P=1.47 \times 10^{-11}$; OR = 0.39 [0.30–0.53]). We previously identified this splice variant in a sequencing project of CD loci and demonstrated that it leads to an alternatively spliced transcript that is missing exon 11 [7]. Our results also identify significant association of the valine to isoleucine substitution at position 362 (Val362Ile) in IL23R ($P=1.18 \times 10^{-10}$; OR = 0.79 [0.68–0.91]) previously reported by a recent re-sequencing of positional candidates in Crohn’s disease [7,11]. The significantly associated rare variant that we identified in RNF186 ($P=8.69 \times 10^{-5}$; OR = 1.49 [1.17–1.90]) encodes an alanine to threonine substitution at position 64 (Ala64Thr). RNF186 encodes a protein with a RING domain and two transmembrane domains. Importantly, the disease-coding variant is located in the RING domain, a domain with a predicted E3 ubiquitin-protein ligase activity (Fig. 1).

Independence of effect between rare variants in IL23R and CARD9 and the reported common association signals in these genes has previously been shown [7,11]. For RNF186, the Ala64Thr variant is mostly found on the protective haplotype background from the previously identified common variant, indicating that the reported association is not likely due to partial LD with the common variant. In addition, reciprocal conditional logistic regression analysis, using a subset of samples where both variants were genotyped (3548 UC cases and 3607 healthy controls) shows that these are independent association signals (data not shown).

Given the challenge inherent in achieving corrected significance thresholds for rare variants, even with large cohorts, we expect that some of the other variants that we identified and found to have nominal significance (0.0012<$P<0.05$) are truly associated with UC. In fact with a target set of 42 variants included in follow-up genotyping, and supposing these are independent and under the null, we would expect <1 SNP to exceed $P<0.01$ (with a probability of less than 1% to observe 3 or more associations at this level) and ~2 SNPs to exceed $P<0.05$ by chance alone (with a probability less than 0.0001 to observe 9 or more association at this level), whereas we observe 3 SNPs with $P<0.01$ and 9 SNPs with $P<0.05$, suggesting that there are additional true positives that have not met the more stringent threshold. Indeed, within the group of SNPs that we found to have nominal significance are two non-synonymous coding variants (Gly149Arg and Val362Ile) in IL23R that we and others have shown to be associated with protection from IBD (Table 1) [7,11]. In addition to these previously-validated variants in IL23R, we have found variants that are nominally associated with UC in the genes encoding CEPT2, LAMB1, CCR6, JAK2, and STAC2 (Table 1). Specifically, we identified two nominally associated rare variants in CEPT2 (Lys314Arg and Asp316Asn) in perfect LD with each other that appear to protect from UC (Table 1). As we also sequenced the only other gene in this locus (TPPP), but did not find any associated variants in it, this suggests that CEPT2 is potentially causal. Similarly, we sequenced both genes in the LAMB1-DLD locus on chromosome 7, with the nominally associated rare variant in LAMB1 (Ile154Thr) suggesting a role for this gene in risk to UC, especially as the associated allele is located in its DUF237 domain and is predicted to have a damaging effect [12]. All genes within the CCR6-FGFR1OP-RNASET2 locus were sequenced, with a single nominally-associated variant (Ala369Val) in CCR6, consistent with this gene’s probable role in the migration and recruitment of dendritic and T cells during inflammatory and immunological responses [13].

Within the JAK2-INSL6-LIH3 locus, we only sequenced JAK2 given its key role in signaling from the IL12R/IL23R, a biological pathway proven to be associated with IBD, and identified a nominally associated variant (Arg1063His) within its catalytic domain. STAC2 is within a locus with 16 other genes including ORMDL3, which has been suggested to be the most likely causal gene based previous genetic and functional studies in IBD and asthma [8,14]. Although we find a nominally associated variant in STAC2 (Lys302Arg) and none in ORMDL3, we have only sequenced 10 of the 17 genes within this locus (Table S4). Studies of each of these variants to determine their functional impact will be essential to prove causality.

Discussion

Genome-wide association studies in IBD have been very successful in identifying genomic regions associated with CD, UC or both. Only infrequently have these GWA studies also directly identified the causal genes/variants, with NOD2, IL23R and ATG16L1 being the few known examples. A recent targeted (exons and exon-intron boundaries) sequencing approach of known CD loci resulted in the identification of potentially causal variants in eight of the 36 loci examined [7]. The primary objective of the current study therefore was to use the same approach to identify likely causal variants within genes that were located in genomic regions associated with UC. While there are over 100 UC loci that have been identified and validated to date,
we examined 22 UC loci that were known at the time of the initiation of this project. Of these 22 loci, the current study identified potentially causal variation in three of the loci: two protective alleles in *CARD9* and *IL23R*, and an allele increasing risk in *RNF186*.

The identification of a rare variant (Ala64Thr) in *RNF186* that shows significant association to UC strongly suggests that this is the causal gene within this locus. Importantly, the disease-coding variant is located in the RING domain, a domain with a predicted E3 ubiquitin-protein ligase activity. Ubiquitin ligases have been shown to regulate key adaptors of proinflammatory pathways [15–17]. We previously reported that *RNF186* expression was higher in human intestinal tissues than in immune tissues [8]. We showed by immunostaining that the RNFL86 protein was expressed at the basal pole of epithelial cells and lamina propria within colonic tissues. Using GEO public microarray datasets, we pursued a systematic follow-up analysis of expression profiles of epithelial cells in response to bacterial products, PAMPs/pathogens. We found that *RNF186* gene expression was significantly up-regulated in small intestine epithelium and induced by Shigella infection in mice (*P* = 4.21 × 10^{−3}) (Figure 1, Panel A) [18,19]. Both invasive (INV+) and non-invasive (INV−) strains of Shigella induced significant overexpression of *RNF186* in intestinal tissues of 4-day- and 7-day-old mice infected for 2 or 4 hours. To further identify putative transcriptional regulators of *RNF186* expression, we employed a text-mining and network-generating analysis of human protein-protein, protein-DNA, protein-RNA and protein-compound interactions. Specifically, from our analyses we
hypothesize that RNF186 is transcriptionally regulated in a two-step process by the transcription factor Hepatocyte Nuclear Factor 4, alpha (HNF4A) (Figure 1, Panels B,C). Several studies have shown that HNF4A binds to the promoter region and up-regulates the expression of yet another transcription factor HNF1A [20–22]. Knockdown of HNF4A has been shown to down-regulate HNF1A gene expression [23,24]. HNF1A, in turn, regulates RNF186 and this interaction has been confirmed by chromatin immunoprecipitation and chip-on-chip assay [25–27]. Our own analysis of transcriptional profiles of HNF4A-Null colons recovered from HNF4AloxP/loxP Foxa3Cre and HNF4A-loxP/loxP Foxa3Cre mice uncovered a significant up-regulation of RNF186 transcript [28]. Expression profiling of human tissues also supports this hypothesis, as HNF4A and RNF186 are clearly co-expressed in the small intestine and the colon (Figure S1). This putative interaction is particularly relevant given that HNF4A has previously been shown to be associated with, genome-wide significance, with risk to developing UC [9]. Our analysis now indicates a direct genetic interaction between two IBD susceptibility genes namely, HNF4A and RNF186. While a singular loss-of-function mutation in HNF4A has already been shown to be associated with susceptibility to abnormal intestinal permeability, inflammation and oxidative stress, we speculate that a dual loss-of-function with additional mutation in RNF186 would further exacerbate one’s susceptibility to develop chronic inflammation in the gut [29,30].

In addition to the variants in IL23R, CARD9, and RNF186, we also identified variants of interest in an additional five loci (specifically within the CEP72, LAMB1, CCR6, JAK2, and STAC2 genes). While these latter six still require confirmation, we estimate that many will validate given that we observed an excess of nominally-associated variants. Examining the data from the current study along with the data derived from prior association and sequencing studies suggests that at a minimum, there currently is strong evidence of association to causal variation in IBD (i.e. missense, nonsense or splice junction variants) in the NOD2, ATG16L1, IL23R, MST1, CARD9, IL18RAP and RNF186 genes, and at least suggestive evidence for causal variation in the CUL2, Clf0f106, PTPN22, MUC19, CEP72, LAMB1, CCR6, JAK2, and STAC2 genes (Current study and references [4,5,7,11,31]).

While only a small fraction of the recently identified 163 IBD loci have been sequenced (36 CD, 22 UC for total of 42 independent

Table 1. Identification of rare variants associated with ulcerative colitis.

Gene, mutation	Follow-up genotyping	IBDGC Immunochip data	Combined								
	alleles tested, allele frequency	alleles tested, allele frequency	alleles tested								
	chromosome: position	UC	HC	P	UC	HC	P	UC	HC	OR (95% CI)	P
RNF186, p.Ala64Thr	14580	16034	8.69E-04	NA	NA	NA	14580	16034	1.49	8.69E-04	
1: 20013992	1.21%	0.69%									
IL23R, p.Gly149Arg	14472	15936	0.097	14262	24346	0.197	28734	40282	0.74	0.032	
1: 67421184	0.25%	0.35%									
IL23R, p.Val362Ile	14566	16026	0.025	11182	21102	0.024	25748	37128	0.79	1.18E-03	
1: 67478488	1.27%	1.52%									
CEP72, p.Lys314Arg	10278	10534	0.012	NA	NA	NA	10278	10534	0.17	0.012	
5: 690668	0%	0.095%									
CEP72, p.Asp316Asn	14558	16034	0.043	NA	NA	NA	14558	16034	0.34	0.043	
5: 690673	0.021%	0.075%									
CCR6, p.Ala369Val	13378	14454	4.52E-04	11180	21098	0.71	24560	35552	1.26	0.013	
6: 167470814	0.99%	0.66%									
LAMB1, p.Ile1547Thr	13374	14450	0.018	11170	21090	0.159	27432	35540	1.16	0.017	
7: 107357198	2.03%	1.61%									
JAK2, p.Arg1063His	14528	15976	0.015	NA	NA	NA	14528	15976	0.65	0.015	
9: 5116343	0.34%	0.58%									
CAR2, c.IVS11+1G>C	7002	7146	1.21E-06	14286	24362	1.81E-06	21290	31508	0.39	1.47E-11	
9: 138379413	0.31%	0.99%									
STAC2, p.Lys302Arg	14580	16036	0.038	NA	NA	NA	14580	16036	1.39	0.038	
17: 34624048	0.62%	0.47%									

*Positions from Human genome build 36.
†Previously reported variant independently identified in the current study.
‡Minor allele frequencies estimates from combined case:control cohorts; actual allele frequencies can vary between cohorts.
UC, Ulcerative Colitis; HC, Healthy Controls; NA, data not available.
doi:10.1371/journal.pgen.1003723.t001
...moter's major role in the response to microbes/microbial products. Going forward, the ubiquitin-ligase domain may have an important role in the previously described Syzygy software, designed to analyze qualities were recalibrated using GATK (Genome Analysis ToolKit) [38]. Finally, variant discovery was performed using the previously described Syzygy software, designed to analyze sequencing data from pooled DNA sequencing [7].

Genotyping, validation and follow-up genotyping

We randomly selected 237 high quality variants for validation in our 350 discovery DNAs samples using Sequenom MassARRAY iPLEX200 chemistry. Genotyping assay designs were obtained from the Assay Designer v.3.1 software, and genotyping oligonucleotides were synthesized at Integrated DNA Technologies. The correlation coefficient between observed minor allele frequencies and frequencies estimated from Syzygy for validated variants was calculated in order to evaluate the overall quality of our dataset (Figure S2). Eighty-four high quality non-synonymous coding variants (missense, nonsense and splicing variants (within 2 bp of a...
are all unrelated, and without family history of IBD or other
iPLEX (Sequenom). Belgian patients were all recruited at the IBD
Genomics Core Facility at UZ Leuven, using a MassARRAY
chemistry in 6 independent follow-up case-control cohorts (7292
cases and 8018 controls) (Table S3). Because of design constraints
and assay failures, not all markers were examined in all follow-up
sample sets. For a subset of these variants, further genotyping data
was obtained from the International IBD Genetics Consortium
Immunochip data (7143 UC, 12186 controls)

Cohort descriptions

For all cohorts, UC was diagnosed according to accepted
clinical, endoscopic, radiological and histological findings.

Genotyping of the NIDDK IBDGC cohort, as well as the
Italian and Dutch cohorts was performed at the Laboratory for
Genetics and Genomic Medicine of Inflammation (www.
inflamngen.org) of the Université de Montréal.

NIDDK IBD Genetics Consortium (IBDGC) samples were
recruited by the centers included in the NIDDK IBDGC; Cedars
Sinai, Johns Hopkins University, University of Chicago and Yale,
University of Montreal, University of Pittsburgh and University of
Toronto. Additional samples were obtained from the Queensland
Institute for Medical Research, Emory University and the
University of Utah. Medical history was collected with standard-
ized NIDDK IBDGC phenotype forms. Healthy controls are
defined as those with no personal or family history of IBD.

The Italian samples were collected at the S. Giovanni Rotondo
“CSS” (SGRC) Hospital in Italy.

The Dutch cohort is composed of ulcerative colitis cases recruited
through the Inflammatoy Bowel Disease unit of the University
Medical Center Groningen (Groningen), the Academic Medical
Center (Amsterdam), the Leiden University Medical Center
(Leiden) and the Radboud University Medical Center (Nijmegen),
and of healthy controls (n = 804) of self-declared European ancestry
from volunteers at the University Medical Center (Utrecht).

Genotyping of the German cohort was performed at the
Institute for Clinical Molecular Biology

Christian-Albrechts-University in Kiel. German patients were
recruited either at the Department of General Internal Medicine
of the Christian-Albrechts-University Kiel, the Charité University
Hospital Berlin, through local outpatient services, or nationwide
with the support of the German Crohn and Colitis Foundation.
German healthy control individuals were obtained from the
popgen biobank.

Genotyping of Swedish UC cases and controls was performed at
Karolinska Institutet’s Mutation Analysis core facility (MAF).
Swedish ulcerative colitis patients and controls were recruited at the
Karolinska University Hospital, Stockholm, and at the Örebro
University Hospital, Örebro, Sweden.

Genotyping of the Belgian cohort was performed at the
Genomics Core Facility at UZ Leuven, using a MassARRAY
iPLEX (Sequenom). Belgian patients were all recruited at the IBD
unit of the University Hospital Leuven, Belgium; control samples
are all unrelated, and without family history of IBD or other
immune related disorders.

Ethics statement

All patients and control subjects provided informed consent.
Recruitment protocols and consent forms were approved by
Institutional Review Boards at each participating institutions. All
DNA samples and data in this study were anonymized.

Association analysis

Association analysis of follow-up genotyping data was per-
formed using the previously described mega-analysis of rare
variants (MARV) approach [7]. Briefly, this method evaluates
significance of association from stratified sample, using within sub-
cohort permutation of individual phenotypes to provide the test
statistic. This approach is robust to population stratification and to
deviation from Hardy-Weinburg equilibrium.

Network analyses

We downloaded and analyzed several Gene Expression
Omnibus (GEO) public microarray datasets including: (a)
Expression data from newborn mice infected with Shigella
flexneri; GSE9785 (b) Transcription profiles of colon biopsies
from UC patients and healthy controls; GSE11223 (c) Steady-
state gene expression data of Tuberculosis infected human
primary dendritic cells; GSE34151 (d) PBMC transcriptional
profiles in healthy subjects, patients with Crohn’s Disease, and
patients with Ulcerative Colitis; GSE3965, (e) Transcription
profiles of colon biopsies from Crohn’s patients and healthy
controls; GSE20801, (f) Transcription profile of mouse small
intestine epithelium vs. mesenchyme; GSE6383, (g) Gene
expression in HNF4 null mouse colons compared to control
colons; GSE3116, and (h) Microarray profiles of mouse
epithelial colon harboring conditional knock out of HNF4A;
GSE11759. Each of these datasets was normalized using
quantile normalization routine in MATLAB. Genes were tested
for significant differences between pairs of control and
stimulated/treated samples within each experiment. After
selecting genes with nominal P<0.05, estimated using an
unpaired T-test, expression of RNF186 was evaluated whether
it passed the significance threshold or not. The results of
processing all these datasets are shown in Table S7 and Figures
S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14. For
transcriptional network analysis, we used Metacore’s suite of
network building algorithms to expand the sub-network around
RNF186. The algorithm searches through a manually curated
knowledgebase of molecular interaction to identify bidirectional
connectivity with genes, proteins and small molecules. The
search was constrained to expand the overall network size up to
50 components. Given that the bioinformatic analyses suggested
that HNF4A controlled the expression of RNF186, we directly
tested for their co-expression in a panel of RNAs from a variety
of human tissues. Specifically, expression levels of RNF186 and
HNF4A were evaluated using a custom expression array from
Agilent, which was designed to include an independent probe
for each exon of the genes tested (Figure S1). Briefly, total RNA
from bone marrow, heart, skeletal muscle, uterus, liver, fetal
liver, spleen, thymus, thyroid, prostate, brain, lung, small
intestine and colon were purchased from Clontech Laboratories.
A reference RNA sample was also included that consisted of an
equal mix from 10 different human tissues (adrenal gland,
cerebellum, whole brain, heart, liver, prostate, spleen, thymus,
colon, bone marrow). With the exception of the small intestine
(RIN ≥ 7.6), all RNAs had a RNA Integrity Value (RIN) value
≥8 (range 8.0-9.3) as measured by Agilent 2100 Bioanalyzer
using the RNA Nano 6000 kit (Agilent Technologies). Labeled
cRNA was then synthesized from 50 ng of each RNA sample
using the Low Input Quick Amp WT labeling kit (Agilent
Technologies) according to the manufacturer’s protocol. Quan-
tity and quality of labeled cRNA samples were assessed by
NanoDrop UV-VIS Spectrophotometer. Sample hybridization was performed according to the manufacturer’s standard protocol and microarrays were scanned using the Sure Scan Microarray Scanner (Agilent technologies). An expression value was obtained for each gene in each replicate by calculating the geometric mean of all probes within the gene, followed by a median normalization across all genes on the array. A geometric mean and geometric standard deviation was calculated from at least 3 independent measurements for each tissue.

Supporting Information

Figure S1 RNF186 and HNF4A are co-expressed in human intestinal tissues. Expression levels of (A) RNF186 and (B) HNF4A were evaluated in a panel of human tissues (bone marrow (Bone M.), heart, skeletal muscle (Sk.Muscle), uterus, liver, fetal liver (F.Liver), spleen, thymus, thyroid, prostate, brain, lung, small intestine (Small I.) and colon) and shown to be co-expressed in small intestine and colon, but show differential expression in liver. Intensity values for each tissue represent the geometric mean with geometric standard deviation of 3 independent measurements; each measurement represents the geometric mean of all probes (one per exon) for each gene followed by a median normalization across all genes on the array. The dotted line indicates the threshold level for detection of basal expression. The reference sample (Ref.) is composed of a mixture RNAs derived from 10 different human tissues.

TIFF

Figure S2 Correlation between minor allele frequencies estimated from sequence and genotype data. Minor allele frequency correlation between Syzygy estimates and genotyped data in discovery samples for 179 non-monomorphic variants from the 237 randomly selected set of high quality variant. (A) Whole range of minor allele frequencies shown. (B) Infrquent allele frequencies only (minor allele frequency ≤0.05). In this experiment, correlation gets lower as minor allele frequency threshold increase (R² = 0.88, 0.75, 0.59, 0.57 and 0.19 for MAF≥0, 0.05, 0.10, 0.20 and 0.30, respectively). This reflects the increase in absolute error for variants with greater MAF (funnel shaped plot), and is consistent with the higher validation rate for low-frequency variants (Table S2).

TIFF

Figure S3 Comparative gene expression profiling in PBMC from healthy subjects and patients with ulcerative colitis (UC). (A) Table of gene expression fold change statistics from comparison of PBMC transcriptional profiles in healthy subjects and patients with ulcerative colitis (UC) (GSE3365). Only top 10 genes and RNF186 are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (1061 significant genes ranked). (B) Plot of RNF186 gene expression in samples from normal individuals and patients with UC. The squares and crosses represent median and mean respectively.

TIFF

Figure S4 Comparative gene expression profiling in PBMC from healthy subjects and Crohn’s disease patients. (A) Table of gene expression fold change statistics from comparison of PBMC transcriptional profiles in healthy subjects and Crohn’s disease patients (GSE3365). Only top 10 genes and RNF186 are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (1844 significant genes ranked). (B) Plot of RNF186 gene expression in samples from normal individuals and Crohn’s disease patients. The squares and crosses represent median and mean respectively.

TIFF

Figure S5 Comparative gene expression profiling in colon epithelial biopsies from ulcerative colitis patients and healthy control donors. (A) Table of gene expression fold change statistics from transcriptional profiling of colon epithelial biopsies from ulcerative colitis patients and healthy control donors (GSE11223). Only top 10 genes and RNF186 are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (1214 significant genes ranked). (B) Plot of RNF186 gene expression in samples from Non-inflamed control colon and inflamed colon. The squares and crosses represent median and mean respectively.

TIFF

Figure S6 Comparative gene expression profiling of endoscopic biopsies taken at ileocolonoscopy from ascending colon of Crohn’s disease patients and healthy control donors. (A) Table of gene expression fold change statistics from transcriptional profiling of endoscopic biopsies taken at ileocolonoscopy from ascending colon of Crohn’s disease patients and healthy control donors (GSE20881). Only top 10 genes and RNF186 are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (2510 significant genes ranked). (B) Plot of RNF186 gene expression in samples from ascending colon biopsies of normal subjects and Crohn’s disease patients. The squares and crosses represent median and mean respectively.

TIFF

Figure S7 Comparative gene expression profiling of endoscopic biopsies taken at ileocolonoscopy from descending colon of Crohn’s disease patients and healthy control donors. (A) Table of gene expression fold change statistics from transcriptional profiling of endoscopic biopsies taken at ileocolonoscopy from descending colon of Crohn’s disease patients and healthy control donors (GSE20881). Only top 10 genes and RNF186 are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (579 significant genes ranked). (B) Plot of RNF186 gene expression in samples from descending colon biopsies of normal subjects and Crohn’s disease patients. The squares and crosses represent median and mean respectively.

TIFF

Figure S8 Comparative gene expression profiling of endoscopic biopsies taken at ileocolonoscopy from sigmoid colon of Crohn’s disease patients and healthy control donors. (A) Table of gene expression fold change statistics from transcriptional profiling of endoscopic biopsies taken at ileocolonoscopy from sigmoid colon of Crohn’s disease patients and healthy control donors (GSE20881). Only top 10 genes and RNF186 are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (613 significant genes ranked). (B) Plot of RNF186 gene expression in samples from sigmoid colon biopsies of normal subjects and Crohn’s disease patients. The squares and crosses represent median and mean respectively.

TIFF

Figure S9 Comparative gene expression profiling of endoscopic biopsies taken at ileocolonoscopy from terminal ileum of Crohn’s disease patients and healthy control donors. (A) Table of gene expression fold change statistics from transcriptional profiling of endoscopic biopsies taken at ileocolonoscopy from terminal ileum of Crohn’s disease patients and healthy control donors (GSE20881). Only top 10 genes and RNF186 are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (2608 significant genes ranked). (B) Plot of RNF186 gene expression in samples from terminal ileum biopsies.
of normal subjects and Crohn’s disease patients. The squares and crosses represent median and mean respectively.

(TIFF)

Figure S10 Comparative gene expression profiling of murine small intestinal epithelium and mesenchyme. (A) Table of gene expression fold change statistics from transcriptional profiling of murine small intestinal epithelium and mesenchyme (GSE6383). Only top 10 genes and *RNF186* are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (7239 significant genes ranked). (B) Plot of *RNF186* gene expression in samples from murine small intestinal epithelium and mesenchyme. The squares and crosses represent median and mean respectively.

(TIFF)

Figure S11 Comparative gene expression profiling of intestinal tissues of 4-day- or 7-day-old mice infected or not with invasive or non-invasive shigella. (A) Table of gene expression fold change statistics from transcriptional profiling of intestinal tissues of 4-day- or 7-day-old mice infected or not with invasive (INV+) or non-invasive (INV−) (GSE9785). Only top 10 genes and *RNF186* are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (2258 significant genes ranked). (B) Plot of *RNF186* gene expression in mice intestinal tissue infected with shigella and control samples. The squares and crosses represent median and mean respectively.

(TIFF)

Figure S12 Comparative gene expression profiling in primary dendritic cells from 65 individuals, before and after infection with MTB. (A) Table of gene expression fold change statistics from transcriptional profiles in primary dendritic cells from 65 individuals, before and after infection with MTB (GSE34151). Only top 10 genes and *RNF186* are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (4279 significant genes ranked). (B) Plot of *RNF186* gene expression in primary dendritic cells from 65 individuals, before and after infection with MTB. The squares and crosses represent median and mean respectively.

(TIFF)

Figure S13 Comparative gene expression profiling in HNF4α mutant and control murine colons. (A) Table of gene expression fold change statistics from comparison of transcriptional profiles in HNF4α mutant and control murine colons (GSE3116). Only top 10 genes and *RNF186* are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (895 significant genes ranked). (B) Plot of *RNF186* gene expression in HNF4α mutant and control murine colons. The squares and crosses represent median and mean respectively.

(TIFF)

Figure S14 Comparative gene expression profiling in mouse epithelial colons with or without conditional knock out of HNF4. (A) Table of gene expression fold change statistics from comparison of transcriptional profiles in mouse epithelial colons with or without conditional knock out of HNF4 (GSE11759). Only top 10 genes and *RNF186* are shown. The rank column refers to the rank of the gene for signal to noise ratio in the specific study (2177 significant genes ranked). (B) Plot of *RNF186* gene expression in HNF4α conditional knock out and control murine colons. The squares and crosses represent median and mean respectively.

(TIFF)

Table S1 Summary of Pooled Sequencing Experiment.

(XLSX)

Table S2 Validation of high quality variants identified by Syzzyg.

(XLSX)

Table S3 Cohort descriptions.

(XLSX)

Table S4 Details of sequencing and follow-up genotyping results, as well as association analyses for each SNP tested in this study.

(XLSX)

Table S5 Power calculations for each SNP tested with observed minor allele frequency greater than 0.0001.

(XLSX)

Table S6 Sequencing coverage per gene.

(XLSX)

Table S7 Table of datasets available in public domain that were processed and analyzed for *RNF186* expression.

(XLSX)

Acknowledgments

The authors would like to acknowledge the important contributions of the Quebec IBD Genetics Consortium, the NIDDK North American IBD Genetics Consortium and the International IBD Genetics Consortium for sample collection and for the ImmunoChip genotype data used in replication.

Members of the Quebec IBD Genetics Consortium

Guy Aumais1, Edmond-Jean Bernard2, Alain Bitton3, Albert Cohen4, Colette Deslandres5, Raymond Lahaise6, Pierre Pârè7, John D. Rioux8.

1 Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada, 2 Hôpital Hôtel-Dieu, Montréal, Québec, Canada, 3 Royal Victoria Hospital, McGill University Health Centre, Montréal, Québec, Canada, 4 Jewish General Hospital - Sir Mortimer B. Davis, Montreal, Québec, Canada, 5 Hôpital Sainte-Justine, Montréal, Québec, Canada, 6 CHUM – Hôpital Saint-Luc, Montréal, Québec, Canada, 7 Centre hospitalier affilié universitaire de Québec – Hôpital St. Sacrement, Québec, Canada, 8 Université de Montréal and the Montreal Heart Institute Research Center, Montréal, Québec, Canada

Members of the NIDDK North American IBD Genetics Consortium

Steven R Brant9, Judy H. Cho2, Richard H. Duer7, Dermot P. B. McGovern10, John D. Rioux7, Mark S. Silverberg8.

1 Johns Hopkins University School of Medicine, Department of Medicine, and Johns Hopkins University Bloomberg School of Public Health, Department of Epidemiology, Baltimore, Maryland, United States of America, 2 Departments of Medicine and Genetics, Yale University, New Haven, Connecticut, United States of America, 3 Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 4 Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America, 5 University of Montréal and the Montreal Heart Institute Research Center, Montréal, Québec, Canada, 6 Mount Sinai Hospital Inflammatory Bowel Disease Group, University of Toronto, Toronto, Ontario, Canada

Members of the International Inflammatory Bowel Disease Genetics Consortium

Tariq Ahmad11, Carl A. Anderson12, Vito Annese13, Robert N. Baldassano14, Tobias Balchun15, Murray Barclay16, Jeffrey C. Barrett17, Theodore M. Bayless18, Joshua C. Bis19, Stephen Brand20, Steven R. Brant20, Suzanne Bumpstead21, Carsten Buning22, Judy H. Cho2, Albert Cohen23, Jean-Frederick Colombel24, Mario Cotton25, Mauro D’Amato26, Renata D’Inca27, Mark J. Daly28, Ted Denson29, Marla Dubinsky30, Richard H. Duer7,31, Cathryn Edwards21,32, David Ellingham1, Tim Florin32, Denis Franchimont33, Andre Franke2, Richard Geary34, Michel Georges35, Jurgen Gleis36,37, Andre Van Gossum38, Anne M. Griffiths39, Stephen L. Guthery40, Hakon Hakonarson41,42, Tahin Haritunians43, Jean-Pierre Hugot44, Dirk J. de Jong45, Lake Justin9, Subra
References

1. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448: 427–434.

2. Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, et al. (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43: 246–252.

3. Justins L, Ripke S, Weerakum RK, Duerr RH, McGovern DP, et al. (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 448: 427–434.

4. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, et al. (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314: 1461–1463.

5. Rioux JD, Xavier RJ. Taylor KD. Silverberg MS, Goyette P, et al. (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39: 596–604.

6. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, et al. (2007) A genome-wide association scan of nonsynonymous SNPs identifies a...
sustainability variant for Crohn disease in ATG16L1. Nature Genetics 39: 207–211.

7. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, et al. (2011) Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 43: 1066–1073.

8. McGovern DP, Gardet A, Torkamani A, Goyette P, Esber C, et al. (2010) Genomewide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet 42: 332–337.

9. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, et al. (2008) Genomewide association studies yield 3 new loci associated with Crohn’s disease. Nat Genet 40: 955–962.

10. Festen EA, Goyette P, Scott R, Amseu Y, Zhernakova A, et al. (2009) Genetic variants in the region harboring IL23R associated with ulcerative colitis. Gut 58: 799–804.

11. Momozawa Y, Mni M, Nakamura K, Coppelers W, Almér S, et al. (2011) Resequencing of positional candidates identifies low frequency IL23R coding variants protecting against inflammatory bowel disease. Nat Genet 43: 43–47.

12. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 249–249.

13. Williams IR (2004) Chemokine receptors and leukocyte trafficking in the mucosal immune system. Immunol Res 29: 283–292.

14. Moffatt MF, Kabesch M, Li X, Madison BB, Zacharias W, et al. (2007) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 41: 1375–1379.

15. Maternal IR, Manzi M, Sakurama K, Coppelers W, Almér S, et al. (2011) Resequencing of positional candidates identifies low frequency IL23R coding variants protecting against inflammatory bowel disease. Nat Genet 43: 43–47.

16. Jin W, Chang M, Sun SC (2012) Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance. Cell Mol Immunol 9: 113–122.

17. Fernandez MI, Regnault B, Mulet C, Tanguy M, Jay P, et al. (2008) Maturation of paneth cells induces the refractory state of newborn mice to Shigella infection. J Immunol 180: 4924–4930.

18. Li X, Madison BB, Zacharias W, Kolterud A, Strachan D, et al. (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448: 470–473.

19. Natoli G, Chiocca S (2008) Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Science signaling 1: pe1.

20. Zhao W, Wang L, Zhang M, Yuan C, Gao C (2012) E3 Ubiquitin Ligase Hnfp3 Mediates the Degradation of Hepatocyte Nuclear Factor 1. Science 277: 109–112.

21. Krstaki E, Talianidis I (1997) Modulation of hepatic gene expression by hepatocyte nuclear factor 1. Science 277: 109–112.

22. Ikemich E, Makuch M, Auziere J, Bouverot-Marchand F, Dugas J, et al. (2008) Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon. Gastroenterology 130: 1207–1220.

23. Ktistaki E, Talianidis I (1997) Modulation of hepatic gene expression by a-24. Tomaru Y, Nakanishi M, Miura H, Kimura Y, Ohkawa H, et al. (2009) HNF4alpha target genes in intestinal epithelial cells. BMC Gastroenterol 9: 68.

25. Das D, Nalhe Z, Zhang MQ (2006) Adaptively inferring human transcriptional subnetworks. Mol Syst Biol 2: 2006:0029.

26. Odom DT, Zuzlperger N, Gordon IB, Bell GW, Kinaldi NJ, et al. (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303: 1378–1381.

27. Garrison WD, Battle MA, Yang C, Kastner KH, Sladek FM, et al. (2006) Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon. Gastroenterology 130: 1207–1220.

28. Darzynkiewicz Z, Babuci M, Dupuis A, Forch EE, Seidman EG, et al. (2009) Loss of hepatocyte nuclear factor-4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice. PLoS One 4: e7699.

29. Marvil V, Seidman E, Simonett D, Beaudoin M, Rioux JD, et al. (2010) Modification in oxidative stress, inflammation, and lipoprotein assembly in response to hepatocyte nuclear factor 4alpha knockdown in intestinal epithelial cells. J Biol Chem 285: 40448–40460.

30. Goetze P, Lefebvre C, Ng A, Brant SR, Choi JH, et al. (2008) Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunol 1: 131–138.

31. Asoano K, Matsushita T, Umena J, Moso N, Takahashi A, et al. (2009) A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet 41: 1325–1329.

32. Dassopoulos T, Nguyen GC, Bitton A, Bomfield GP, Schumack LP, et al. (2007) Assessment of reliability and validity of IBD phenotyping within the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK) IBD Genetics Consortium (IBDGC). Inflamm Bowel Dis 13: 975–983.

33. Fisher SA, Ternelling M, Anderson CA, Gwilling R, Bumpstead S, et al. (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 40: 710–712.

34. Brown AM, Lo KS, Guo P, Beaudoin M, Rioux JD, et al. (2010) Optimus Primer: A PCR enrichment primer design program for next-generation sequencing of human exomic regions. BMC Res Notes 3: 183.

35. Dassopoulos T, Nguyen GC, Bitton A, Bomfield GP, Schumack LP, et al. (2007) Assessment of reliability and validity of IBD phenotyping within the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK) IBD Genetics Consortium (IBDGC). Inflamm Bowel Dis 13: 975–983.

36. Brown AM, Lo KS, Guo P, Beaudoin M, Rioux JD, et al. (2010) Optimus Primer: A PCR enrichment primer design program for next-generation sequencing of human exomic regions. BMC Res Notes 3: 183.

37. Dassopoulos T, Nguyen GC, Bitton A, Bomfield GP, Schumack LP, et al. (2007) Assessment of reliability and validity of IBD phenotyping within the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK) IBD Genetics Consortium (IBDGC). Inflamm Bowel Dis 13: 975–983.

38. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation sequencing data. Nat Genet 42: 332–337.

39. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation sequencing data. Nat Genet 42: 332–337.

40. Hong MH, Chou YC, Wu YC, Tsai KN, Hu CP, et al. (2012) Transforming growth factor-beta (TGF-beta) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol 226: 1214–1223.

41. Brown AM, Lo KS, Guo P, Beaudoin M, Rioux JD, et al. (2010) Optimus Primer: A PCR enrichment primer design program for next-generation sequencing of human exomic regions. BMC Res Notes 3: 183.

42. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18: 1851–1858.

43. Guirke A, Melnikov A, Maugier J, Rogov P, LeProust EM, et al. (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27: 182–189.

44. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18: 1851–1858.

45. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generatio