On the determination of the $\text{grad} - \text{div}$ criterion

V. Decaria*
Department of Mathematics,
University of Pittsburgh,
Pittsburgh, PA 15260, USA

W. Layton†
Department of Mathematics,
University of Pittsburgh,
Pittsburgh, PA 15260, USA

A. Pakzad$‡$
Department of Mathematics,
University of Pittsburgh,
Pittsburgh, PA 15260, USA

Y. Rong$§$
School of Math. and Stat.,
Xi’an Jiaotong Univ.,
Xi’an, 710049, China

N. Sahin$¶$
Department of Mathematics and CS,
Ankara Yildirim Beyazit Univ.,
Ankara, Turkey

H. Zhao$∥$
Department of Mathematics,
University of Pittsburgh,
Pittsburgh, PA 15260, USA

April 14, 2017

Abstract

Grad-div stabilization, adding a term $-\gamma \text{grad} \text{div} u$, has proven to be a useful tool in the simulation of incompressible flows. Such a term requires a choice of the coefficient γ and studies have begun appearing with various suggestions for its value. We give an analysis herein that provides a

*The research herein was partially supported by NSF grants DMS 1522267 and CBET 160910. vpd7@pitt.edu.

$†$The research herein was partially supported by NSF grants DMS 1522267 and CBET 160910. wjl@pitt.edu, www.math.pitt.edu/~wjl

$‡$The research herein was partially supported by NSF grants DMS 1522267 and CBET 160910. alp145@pitt.edu.

$§$rongyao@stu.xjtu.edu.cn. Research of YR supported by NSFC grants 11171269, 11571274 and Chinese Scholar Council grant 201606280154.

$¶$nisa70@gmail.com.

$∥$The research herein was partially supported by NSF grants DMS 1522267 and CBET 160910. haz50@pitt.edu.
restricted range of possible values for the coefficient in 3d turbulent flows away from walls. If U, L denote the large scale velocity and length respectively and κ is the signal to noise ratio of the body force, estimates suggest that γ should be restricted to the range

$$\frac{\kappa^2}{24} L U \leq \gamma \leq \frac{\kappa^2}{4} Re L U, \text{ mesh independent case},$$

$$\frac{\kappa^2}{24} L U \leq \gamma \leq \frac{\kappa^2}{4} \left(\frac{h}{L} \right)^{-\frac{3}{4}} L U, \text{ mesh dependent case}.$$
independent approach limiting \(\gamma \) to values where the additional dissipation introduced does not disturb statistical equilibrium. Denote time averaging by

\[
\langle \phi \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \phi(t) dt.
\]

For 3d, fully developed, turbulent flows away from walls, it is known that the total energy dissipation rate balances energy input, \(\langle \varepsilon(u) \rangle = \mathcal{O}(U^3/L) \), where the energy dissipation rate (per unit volume) \(\varepsilon(u) \) is

\[
\varepsilon(u) = \frac{1}{|\Omega|} \int_{\Omega} \nu |\nabla u(x, t)|^2 + \gamma |\nabla \cdot u(x, t)|^2 dx
\]

so

\[
\langle \varepsilon \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \varepsilon(u) dt.
\]

This balance is one of the two laws of experimental turbulence, [F95] Ch. 5. Building on [DF02], we analyze the dependence of \(\langle \varepsilon \rangle \) on \(\gamma \) for the simplest system arising when incompressibility is relaxed by \(-\gamma \text{grad div } u \), given by

\[
\begin{align*}
 u_t + \text{div}(u \otimes u) - \frac{1}{2} \left(\nabla \cdot u \right) u &- \nu \Delta u - \gamma \nabla \nabla \cdot u = f(x).
\end{align*}
\]

(1)

This continuum model arises from the common penalty approximation

\[
\nabla \cdot u = 0 \text{ replaced by } \frac{1}{\gamma} \nabla p + \nabla \cdot u = 0 \text{ for } \gamma >> 1
\]

so that

\[
\nabla p = -\gamma \nabla \nabla \cdot u.
\]

Its solutions satisfy the same á priori energy bound as a discrete NSE system with \text{grad} – \text{div} stabilization:

\[
\frac{1}{2} \frac{d}{dt} ||u(t)||^2 + \{ \nu ||\nabla u(x, t)||^2 + \gamma ||\nabla \cdot u(x, t)||^2 \} = (f, u).
\]

The domain \(\Omega = (0, L_{\Omega})^3 \) is a 3d periodic box, \(f(x) \) and \(u(x, 0) \) are periodic, satisfy \(\nabla \cdot u(x, 0) = 0 \), and \(\nabla \cdot f = 0 \)

and have zero mean:

\[
\begin{align*}
 u(x + L_{\Omega}e_j, t) &= u(x, t) \quad (2) \\
 \text{and} \\
 \int_{\Omega} \phi dx &= 0 \text{ for } \phi = u, u_0, f. \quad (3)
\end{align*}
\]

\(^1\)The energy input rate at the large scales is \(U^3/L \). Briefly, the kinetic energy of the large scales scales with dimensions \(U^2 \). The "rate" has dimensions \(1/\text{time} \). A large scale quantity with this dimensions is formed by \(U/L \) which is the turn over time for the large eddies, i.e., the time it takes a large eddy with velocity \(U \) to travel a distance \(L \). Thus the "rate of energy input" has dimensions \(U^3/L \).
The body force $f(x)$ is assumed smooth so that it inputs energy only into large scales. Recalling $f(x)$ has mean zero, define the \textit{signal to noise ratio} of the body force κ by

$$\kappa = \sqrt{\frac{\|f\|^2_{L^2(\Omega)} \Omega}{\frac{1}{|\Omega|} \int_{\Omega} |f(x)|^2 \, dx}}.$$

Since $\nabla \cdot u \neq 0$ the nonlinearity is explicitly skew symmetrized by adding $-\frac{1}{2}(\nabla \cdot u)u$.

Let $(\cdot, \cdot), ||\cdot||$ denote the $L^2(\Omega)$ inner product and norm. Let F, L, U denote

$$F = \left(\frac{1}{|\Omega|} \|f\|^2\right)^{\frac{1}{2}},$$

$$L = \min \left\{L_{\Omega}, \frac{F}{\|\nabla f\|_{L^\infty}}, \frac{F}{\left(\frac{1}{|\Omega|} \|\nabla f\|^2\right)^{\frac{1}{2}}} \right\},$$

$$U = \left(\frac{1}{|\Omega|} \|u\|^2\right)^{\frac{1}{2}}.$$

Non-dimensionalization in the standard way by

$$t^* = \frac{t}{T}, \quad x^* = \frac{x}{L}, \quad U = \frac{L}{T}, \quad u^* = \frac{u}{U}$$

gives:

$$u^*_t + \text{div}^*(u^* \otimes u^*) - \frac{1}{2}(\nabla^* \cdot u^*)u^* - \frac{\nu}{LU} \Delta^* u^* - \frac{\gamma}{LU} \nabla^* \nabla^* \cdot u^* = \frac{f(x)}{U^2}.$$

We recall $\text{Re} = \frac{LU}{\nu}$ and define the non-dimensional parameter

$$\mathcal{R}_\gamma = \frac{LU}{\gamma}.$$

\textbf{Theorem 1} Let $u(x,t)$ be a weak solution of \eqref{eq:navier-stokes}. Then,

$$\langle \varepsilon(u) \rangle \leq \left(6 + \text{Re}^{-1} \frac{1}{4} \kappa^2 \mathcal{R}_\gamma \right) \frac{U^3}{L}. \quad (5)$$

This estimate gives insight into γ by asking \textit{grad} -- \textit{div} dissipation be comparable to (respectively) the pumping rate of energy to small scales by the nonlinearity, U^3/L, and to the correction to the asymptotic, $\text{Re} \to \infty$, rate due to energy dissipation in the inertial range, $\text{Re}^{-1} \frac{U^3}{T}$. The cases

$$2 \simeq \kappa^2 \mathcal{R}_\gamma$$

and

$$\text{Re}^{-1} \simeq \kappa^2 \mathcal{R}_\gamma$$
yield

\[
\frac{\kappa^2}{24} \leq \frac{\gamma}{LU} \leq \frac{\kappa^2}{4} Re.
\]

Let \(\eta \approx Re^{-3/4}L \) denote the Kolmogorov microscale so \(Re = (\eta/L)^{-4/3} \). When the model is solved on a spacial mesh with meshwidth \(\eta \ll h \) the smallest scale available is \(O(h) \). Replacing \(\eta \) by \(h \) leads to an estimate of mesh dependence of

\[
\frac{\kappa^2}{24} \leq \frac{\gamma}{LU} \leq \frac{\kappa^2}{4} \left(\frac{h}{L} \right)^{-4/3}.
\]

1.1 Related work

The energy dissipation rate is a fundamental statistic in experimental and theoretical studies of turbulence, e.g., Sreenivasan [S84], Frisch [F95]. In 1968, Saffman [S68], addressing the estimate of energy dissipation rates, \(\langle \varepsilon \rangle \approx U^3/L \), wrote that

"This result is fundamental to an understanding of turbulence and yet still lacks theoretical support." - P.G. Saffman 1968

In 1992 Constantin and Doering [CD92] made a fundamental breakthrough, establishing a direct link between the phenomenology of energy dissipation and that predicted for general weak solutions of shear flows directly from the NSE. This work builds on Busse [B78], Howard [H72] (and others) and has developed in many important directions. It has been extended to shear flows in Childress, Kerswell and Gilbert [CKG01], Kerswell [K08] and Wang [W97]. For flows driven by body forces extensions include Doering and Foias [DF02], Cheskidov, Doering and Petrov [CDP06] (fractal body forces), and [L07] (helicity dissipation). Energy dissipation in models and regularizations studied in [L02], [L07], [LRS10], [LST10].

2 Analysis of the energy dissipation rate

Compared to the NSE case [DF02] the term

\[
-\frac{1}{2}(\nabla \cdot u)u
\]

adds dependence on \(\gamma \) since \(\text{div} u \neq 0 \). A smooth enough solution of (11) satisfies the same \(\alpha \) priori energy bound as a discrete NSE system with \(\text{grad} - \text{div} \) stabilization

\[
\frac{1}{2} \frac{d}{dt} ||u(t)||^2 + \{ \nu ||\nabla u(x,t)||^2 + \gamma ||\nabla \cdot u(x,t)||^2 \} = (f, u).
\]
We thus define weak solutions to the model as follows.

Definition 2 A weak solution of (1) is a distributional solution satisfying the energy inequality

\[
\frac{1}{2}||u(T)||^2 + \int_0^T \nu ||\nabla u(t)||^2 + \gamma ||\nabla \cdot u(t)||^2 dt \leq \frac{1}{2}||u(0)||^2 + \int_0^T (f, u) dt. \tag{6}
\]

From (2.1) standard differential inequalities establish that

\[
\frac{1}{2}||u(T)||^2 + \frac{1}{T} \int_0^T \varepsilon(u) dt \leq C < \infty, \quad C = C(\text{data}) \text{ independent of } T. \tag{7}
\]

From (2.2) \(\varepsilon\) is well defined and finite and

\[
\frac{1}{T}||u(T)||^2 \to 0 \text{ as } O(T).\]

\(L\) has units of length and satisfies

\[
||\nabla f||_{L^\infty} \leq \frac{F}{L}
\]

and

\[
\frac{1}{|\Omega|} \int_\Omega |\nabla f(x)|^2 dx \leq \frac{F^2}{L^2}. \tag{8}
\]

Dividing (6) by \(1/(T|\Omega|)\) gives

\[
\frac{1}{2T|\Omega|}||u(T)||^2 + \frac{1}{T|\Omega|} \int_0^T \nu ||\nabla u(t)||^2 + \gamma ||\nabla \cdot u(t)||^2 dt \leq \frac{1}{2} \frac{1}{T|\Omega|}||u(0)||^2 + \frac{1}{T|\Omega|} \int_0^T (f, u) dt. \tag{9}
\]

Define

\[
U_T := (\frac{1}{T} \int_0^T \frac{1}{|\Omega|} ||u||^2 dt)^{1/2}.
\]

Given (7) and the definition of \(F\), this is

\[
\frac{1}{T} \int_0^T \varepsilon(u) dt \leq O(\frac{1}{T}) + \frac{1}{T|\Omega|} \int_0^T (f, u) dt \leq O(\frac{1}{T}) + F \sqrt{\frac{1}{T} \int_0^T \frac{1}{|\Omega|} ||u||^2 dt}
\]

\[
\leq O(\frac{1}{T}) + FU_T
\]

6
To estimate F, set the test function in the weak form to be $f(x)$ (recall $\nabla \cdot f = 0$). This yields

$$F^2 = \frac{(u(T) - u_0, f)}{T|\Omega|} - \frac{1}{T|\Omega|} \int_0^T (u \otimes u, \nabla f) - \left(\frac{1}{2}(\nabla \cdot u)u, f\right)dt + \frac{1}{T} \int_0^T \nu(\nabla u, \nabla f)dt.$$

Of the four terms on the RHS, by (11) the first is $O(1/T)$. The second and fourth are bounded using Hölders and Young’s inequalities by

second:

$$\left| \frac{1}{T|\Omega|} \int_0^T (u \otimes u, \nabla f)dt \right| \leq \|\nabla f\|_{L^\infty} \frac{3}{T|\Omega|} \int_0^T \|u\|^2 dt \leq 3\frac{F}{L} U^2_T,$$

fourth:

$$\left| \frac{1}{T} \int_0^T \nu \left| \nabla u, \nabla f \right| dt \right| \leq \left(\frac{1}{T} \int_0^T \frac{\nu}{|\Omega|} \left| \nabla u \right|^2 dt \right)^\frac{1}{2} \left(\frac{1}{T} \int_0^T \frac{\nu}{|\Omega|} \left| \nabla f \right|^2 dt \right)^\frac{1}{2} \leq \left(\frac{1}{T} \int_0^T \frac{\nu}{|\Omega|} \left| \nabla u \right|^2 dt \right)^\frac{1}{2} \frac{\sqrt{F}}{L} \leq \frac{1}{2} F \frac{1}{T} \int_0^T \frac{\nu}{|\Omega|} \|\nabla u\|^2 dt + \frac{1}{2} UF \nu.$$

The third term is treated as follows:

third:

$$\left| \frac{1}{T} \int_0^T \frac{1}{|\Omega|} \left(\frac{1}{2}(\nabla \cdot u)u, f\right)dt \right| \leq \frac{1}{2} \|f\|_{L^\infty} \sqrt{\frac{1}{T} \int_0^T \frac{1}{|\Omega|} \left| \nabla \cdot u \right|^2 dt U_T}$$

$$\leq \frac{\gamma}{2} F \frac{1}{T} \int_0^T \frac{1}{|\Omega|} \left| \nabla \cdot u \right|^2 dt + \frac{1}{8\gamma} UF \frac{1}{|\Omega|} \int_0^T |f(x)|^2 dx U_T^2 \leq \frac{\gamma}{2} F \frac{1}{T} \int_0^T \frac{1}{|\Omega|} \left| \nabla \cdot u \right|^2 dt + \frac{1}{8\gamma} \nu^2 U T^2.$$
Inserting this in the RHS of (10) gives
\[
\frac{1}{T} \int_0^T \varepsilon(u) dt \leq \mathcal{O}\left(\frac{1}{T}\right) + FU_T
\]
\[
\leq \mathcal{O}\left(\frac{1}{T}\right) + 3\frac{U^3}{L} + U_T\frac{1}{2U} \int_0^T \varepsilon(u) dt + \frac{\nu U}{2L^2} U_T + \frac{1}{8\gamma} U\kappa^2 U^3_T.
\]
Letting \(T \to \infty \) we have, as claimed, that
\[
\langle \varepsilon(u) \rangle \leq \left(6 + \Re^{-1} + \frac{1}{4} \kappa^2 \Re \gamma \right) \frac{U^3}{L}.
\]

3 Conclusions

The analysis herein suggests the following linkage. Weak imposition of \(\nabla \cdot u = 0 \) at higher Reynolds numbers means explicit skew symmetrization becomes necessary. Since \(\nabla \cdot u \neq 0 \), this leads to a second nonlinear term \(-\frac{1}{2}(\nabla \cdot u)u\). The parameter \(\gamma \) affects the size of \(||\nabla \cdot u|| \) which affects the rate at which \(-\frac{1}{2}(\nabla \cdot u)u\) pumps energy to smaller scales. This leads to restricting \(\gamma \) by aligning this energy transfer rate with that of the underlying incompressible Navier-Stokes equations. To summarize\(^3\):

\begin{quote}
Compressibility, however so slight
Doubles nonlinearity for skew-symmetry.
Cascades can stop by penalty, however light,
Unless its criterion is chosen with sagacity.
\end{quote}

References

[BIL06] L.C. Berselli, T. Iliescu and W. Layton, Large Eddy Simulation, Springer, Berlin, 2006

[B78] F.H. Busse, The optimum theory of turbulence, Adv. Appl. Mech., 18(1978), 77-121.

[BL12] S. Börm and S. Le Borne, H-LU factorization in preconditioners for augmented Lagrangian and grad-div stabilized saddle point systems. IJNMF 68(2012) 83–98.

[BBJL07] M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. CMAME 196(2007) 853–866.

\(^2\)Several helped develop this limeric: boarertalk.com/forum/LiquidLounge/1052573267.
Yu V. Bychenkov and E.V. Chizonkov, Optimization of one three-parameter method of solving an algebraic system of the Stokes type. Russian J. of Numer. Anal. and Math. Modelling 14.5(1999) 429-440.

O. Colomés, S. Badia and J. Principe, Mixed finite element methods with convection stabilization for the large eddy simulation of incompressible turbulent flows, CMAME 304(2016) 294-318.

A. Cheskidov, C. Doering and N. Petrov, Energy dissipation in fractal-forced flow, J. Math. Phys., 48(2007) 065208.

S. Childress, R.R. Kerswell and A.D. Gilbert, Bounds on dissipation for Navier-Stokes flows with Kolmogorov forcing, Phys. D., 158(2001),1-4.

P. Coletti, Analytical and numerical results for k-epsilon and large eddy simulation turbulence models, Ph.D. Thesis, UTM-PHDTS 17, U. Trento, 1998.

P. Constantin and C. Doering, Energy dissipation in shear driven turbulence, Phys. Rev. Letters, 69(1992) 1648-1651.

C. Doering and C. Foias, Energy dissipation in body-forced turbulence, J. Fluid Mech., 467(2002) 289-306.

C. Doering and J.D. Gibbon, Applied analysis of the Navier-Stokes equations, Cambridge, 1995.

A.A. Dunca, K.E. Kohler, M. Neda, and L.G. Rebholz, A mathematical and physical study of multiscale deconvolution models of turbulence, M2AS, 35(2012) 1205–1219.

U. Frisch, Turbulence, Cambridge, 1995.

K. Galvin, A. Linke, L. Rebholz and N. Wilson, Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection, CMAME, 237(2012)166–176.

R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia 1989.

N.D. Heavner, Locally chosen grad-div stabilization parameters for finite element discretizations of incompressible flow problems, SIURO, 7(2017) SO1278.

T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioner for the Oseen problem using grad-div stabilization, IJNMF, 71(2013)118–134.
[H72] L.N. Howard, *Bounds on flow quantities*, Ann. Rev. Fluid Mech., 4(1972) 473-494.

[J17] E.W. Jenkins, V. John, A. Linke and L. Rebholz, *On the parameter choice in grad-div stabilization for the Stokes equations*, Adv. Comp. Math. 40(2014) 491-516.

[JK10] V. John and A. Kindl, *Numerical studies of finite element variational multiscale methods for turbulent flow simulations*, CMAME 199(2010): 841-852.

[JLMNR16] V. John, A. Linke, C. Merdon, M. Neilan, and L. Rebholz, *On the divergence constraint in mixed finite element methods for incompressible flows*, SIAM Review (2016).

[K98] R.R. Kerswell, *Unification of variational methods for turbulent shear flows: the background method of Doering-Constantin and the mean-flow method of Howard-Busse*, Physica D, 121 (1998), 175-192.

[L69] O. Ladyzhenskaya, *The Mathematical Theory of Viscous Incompressible Flow*, Gordon and Breach, (1969).

[L67] O. Ladyzhenskaya, *New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems*. Trudy Matematicheskogo Instituta im. VA Steklova 102 (1967): 85-104.

[L02] W. Layton, *Bounds on energy dissipation rates of large eddies in turbulent shear flows*, Mathematical and Computer Modeling, 35, 2002, 1445 1451.

[L07] W. Layton, *Bounds on energy and helicity dissipation rates of approximate deconvolution models of turbulence*, SIAM J Math. Anal., 39, 916-931 (2007)

[LRS10] W. Layton, L. Rebholz and M. Sussman, *Energy and helicity dissipation rates of the NS-alpha and NS-omega deconvolution models*, IMA Journal of Applied Math, 75, 56-74, 2010.

[LST10] W. Layton, M. Sussman and C. Trenchea, *Bounds on energy, magnetic helicity and cross helicity dissipation rates of approximate deconvolution models of turbulent MHD flows*, Num. Functional Anal. and Opt., 31, 577-595, 2010.

[L54] J. Leray, *The physical facts and the differential equations*, American Math. Monthly 61 (1954), 5-7.

[LMNOR09] W. Layton, C. Manica, M. Neda, M.A. Olshanskii and L. Rebholz, *On the accuracy of the rotation form in simulations of the Navier-Stokes equations*. JCP, 228(2009)3433–3447.
[LAD15] G. Lube, D. Arndt, H. Dallmann, Understanding the limits of inf-sup stable Galerkin-FEM for incompressible flows, In: Knobloch P. (eds) BAIL 2014, LN in CSE, vol 10, Springer, 2015.

[MBYL15] W.D. McComb, A. Berera, S.R. Yoffe and M.F. Linkmann, Energy transfer and dissipation in forced isotropic turbulence, Phys. Rev. E. 91(2015) 043013.

[M97] A. Muschinski, A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES, JFM 325 (1996), 239-260.

[O02] M.A. Olshanskii, A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods. CMAME, 191(2002)5515-5536.

[OLHL09] M.A. Olshanskii, G. Lube, T. Heister and J. Löwe, Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations. CMAME, 198(49-52):3975–3988, 2009.

[OR04] M.A. Olshanskii and A. Reusken, Grad-Div stabilization for the Stokes equations. Math. Comp., 73(2004)1699–1718.

[RST08] H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems, Springer, Berlin, 2008.

[S68] P.G. Saffman, 485-614 in: Topics in Nonlinear Physics, N. Zabusky (ed.), Springer, 1968.

[S01] P. Sagaut, Large eddy simulation for Incompressible flows, Springer, Berlin, 2001.

[S84] K.R. Sreenivasan, On the scaling of the turbulent energy dissipation rate, Phys. Fluids, 27(1984) 1048-1051.

[V15] J.C. Vassilicos, Dissipation in turbulent flows, Ann. Rev. Fluid Mech. 47 (2015) 95-114.

[vD12] E.R. van Driest, On turbulent flow near a wall, J. of the Aeronautical Sciences (Inst. of Aeronautical Sciences) 23.11 (2012).

[vNR50] J. von Neumann and R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Applied Physics 21(1950) 232-237.

[W97] X. Wang, The time averaged energy dissipation rates for shear flows, Physica D, 99 (1997) 555-563. 2004.