Electronic Supporting Information

Triangular radial Nb$_2$O$_5$ nanorod growth on c-plane sapphire for ultraviolet-radiation detection

Kwan-Woo Kim1,*, Bum Jun Kim2,*, Sang Hoon Lee1, Tuqeer Nasir2, Hyung-Kyu Lim1, Ik Jun Choi1, Byung Joo Jeong1, Jaeyeong Lee3, Hak Ki Yu3, and Jae-Young Choi1,2,*

1 School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea
2 SKKU of Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Korea
3 Dept. of Materials Science and Engineering, Dept. of Energy Systems Research, Ajou University, Suwon, 16499, Korea

*Tel: +82(0)31-290-7353, FAX: +82(0)31-290-7410

#These authors contributed equally to this work.
Table of contents:

1. Fig. S1..3
2. Fig. S2..4
3. Fig. S3..5
Fig. S1 Comparison of UV-visible transmittance spectra for the Nb$_2$O$_5$/c-plane sapphire samples with different synthesis times.
2. Fig. S2

Fig. S2 Scanning electron microscopy (SEM) images of Nb$_2$O$_5$ nanorods grown at 900 °C (left) and 790 °C (right) on c-plane sapphire.
Fig. S3 I–V characteristics of Nb$_2$O$_5$ grown on c-plane sapphire illuminated with different-wavelength lights of 254 nm, and 360 nm as well as under dark atmosphere.