Graphene’s cousin: the present and future of graphane

Chao Zhou¹, Sihao Chen¹*, Jianzhong Lou¹,²*, Jihu Wang¹, Qiujie Yang¹, Chuanrong Liu¹, Dapeng Huang¹ and Tonghe Zhu¹

Abstract

The so-called graphane is a fully hydrogenated form of graphene. Because it is fully hydrogenated, graphane is expected to have a wide bandgap and is theoretically an electrical insulator. The transition from graphene to graphane is that of an electrical conductor, to a semiconductor, and ultimately to an electrical insulator. This unique characteristic of graphane has recently gained both academic and industrial interest. Towards the end of developing novel applications of this important class of nanoscale material, computational modeling work has been carried out by a number of theoreticians to predict the structures and electronic properties of graphane. At the same time, experimental evidence has emerged to support the proposed structure of graphane. This review article covers the important aspects of graphane including its theoretically predicted structures, properties, fabrication methods, as well as its potential applications.

Keywords: Graphene; Graphane; Partially hydrogenated graphene; Nanostructure

Review

Graphene was first discovered in 2004 by Novoselov et al. [1]. Graphene is a single atomic layer with a thickness of only 0.34 nm of sp² hybridized carbon atoms covalently bonded to three other atoms arranged in a honeycomb lattice [1-7]. Graphene’s unique structural, mechanical, and electrical properties and high carrier mobility makes it one of the most important topics in materials science today [8-14]. Graphene forms the basic structure of other carbon-based materials such as fullerene (wrapped-up graphene) [15-21], carbon nanotubes (several graphene sheets rolled up along a vertical axis) [22-29], and graphite (stacked graphene) [30-35]. Some of the carbon-based materials are illustrated in Figure 1.

Graphene has unique properties with tremendous potential applications, such as chemical sensors [36,37], nanoelectronic devices [38], hydrogen storage systems [39], or polymer nanocomposites [40]. Graphene could be considered as a prototypical material to study the properties of other two-dimensional nanosystems. Several two-dimensional structures have been explored in the literature [41,42]. Graphene-like two-dimensional silicon carbide [43,44], silicon [45,46], germanium [47,48], boron nitride [49,50], and zinc oxide [51] have been explored in the literature.

One important development since the discovery of graphene is the discovery of the so-called graphane, which is a fully hydrogenated form of graphene, as shown in Figure 2. In this form, all carbon atoms in this fully hydrogenated form assume in the sp³ hybridization. This novel material, graphane, was first proposed by Lu et al. in theoretical investigation [41], and the predicted graphane structure was later confirmed by an experiment by Elias et al. [42]. It was reported that graphene was changed into a new structure called graphane by exposing graphene to hydrogen plasma for several hours. Graphane is predicted to be a stable structure consisting of a graphene layer in which each C atom is sp³-bonded to one H atom above and below the C atom in an alternating manner [52]. Graphane is predicted to have a bandgap of about 3.5 eV and has potential applications in electronics. In addition to forming graphane, hydrogen plasma exposure was observed to form partially hydrogenated graphene, which consisted of a graphene layer in which only one side was hydrogenated. Although hydrogenation of only one side of graphene is not predicted to be stable, it is proposed...
that ripples in graphene, which have sp^3-like bonding angles, facilitate the sp^3 bonding of C with H on only one side of the graphene. Partially hydrogenated graphene is observed to be insulating and thus has potential applications in electrical isolation for graphene-based circuits [53].

This review article is intended to focus on the fabrication and structure features of graphane (or graphane-like [54,55]) and the potential application of graphane (or graphane-like) and properties. It covers the latest developments and new perspectives of graphane-based hydrogen storage [56] and transistor [57] with the special discussions on the merits and limitations of the material. Except for presenting a brief overview of the synthesis processes of single-layer graphane, graphane-like, graphene-graphane, graphane nanoribbons [58,59], respectively, the structure features of graphane, particularly related to hydrogen storage and transistor, have been discussed.

Computational modeling of graphene

Flores et al. [60] used *ab initio* quantum calculations in order to optimize the geometry of graphane-like structures. They used classical reactive bond-order approach in order to investigate the effects of hydrogenation on geometrical structures for a number of graphene membrane models. Molecular dynamics (MD) simulations were used to address the dynamics of hydrogen incorporation into graphene membranes. As the results are displayed, H frustration were very likely to occur, perfect graphane-like structures are unlikely to be formed, and hydrogenated domains are very stable (relevant parameter and crystalline structures shown in Table 1 and Figure 3).

Dora et al. [61] used density functional theory, which studies the density of states in monolayer graphene (MLG) and bilayer graphene (BLG) at low energies in the presence of a random symmetry-breaking potential. And it had a breaking potential, which opens a uniform gap, and a random symmetry-breaking potential also created tails in the density of states.

Table 1 Predicted energy per atom in unit cell, cell parameter values, and carbon-carbon distances for graphene and chair-like and boat-like graphane, respectively [60]

	Graphene	G-chair	G-boat
Energy (Ha)	−304.68	−309.41	−309.38
Lattice parameters:			
a (Å)	2.465	2.540	4.346
b (Å)	2.465	2.540	2.509
γ (°)	120	120	90
C-C bond length (Å)	1.423	1.537	1.581, 1.537

Note, lattice constant (or called the lattice constant) means the cell length, namely each parallelepiped unit side, he is the crystal structure of an important basic parameters.
Experimental synthesis of graphane

The transition from graphene to graphane is that of an electrical conductor to a semiconductor and ultimately to an insulator, which is dependent upon the degree of hydrogenation.

In 2009, the graphane was synthesized by exposing the single-layer graphene to a hydrogen plasma [42]. Savchenko [57] used hydrogen plasma to react with graphene for the preparation of graphane and the preparation process was shown in Figure 4. This method was not able to control the degree of hydrogenation.

Wang et al. [62] reported a new route to prepare high-quality and monolayer graphane by plasma-enhanced chemical vapor deposition (the structures model as shown in Figure 5). A large-area monolayer graphane-like film was produced by remote-discharged radio frequency plasma beam deposition at 650°C on Cu/Ti-coated SiO2-Si. The advantages of the plasma deposition were very short deposition time (<5 min) and very low growth temperature of 650°C compared to the current thermal chemical vapor deposition approach (1,000°C).

Structures of graphane

Many configurations with low energies for graphane were proposed. Sluiter et al. [63] and Sofo et al. [64] reported that the most stable configuration of graphane was the chair-like structure, with the UDUDUD hydrogenation in each hexagonal carbon ring as shown in Figure 6a [65]. Sluiter et al. [63], Leenaerts et al. [66], and Bhattacharya et al. [67] reported that the second stable configuration was the ‘stirrup’ with the UUUDDD hydrogenation in each carbon ring shown in Figure 6a, whose energy was about 28 meV/atom larger than that of the chair one. At the point of stability, the following configurations for graphane allotropes are boat-1 [63,64,66] with the UUDDUU hydrogenation, boat-2 [65,66] with the UUUUDD hydrogenation, twist-boat [68] with the UUUDDD hydrogenation and other configurations with relatively high energies which were reported in the literatures [65,69]. Recently, He et al. [70] used the restrictive condition of keeping the hexagonal hydrocarbon rings equivalent in the systems, and proposed a tricycle graphane allotrope in which each hexagonal hydrocarbon ring with the same UUUDUD hydrogenation
was equivalent, as shown in Figure 6b. Table 2 summarizes the structure information for the six fundamental allotropes of graphane [70].

Mechanical properties

Xue and Xu [71] used a first-principle approach to study strain effects on basal-plane hydrogenation of graphene. Figure 7 shows the predicted energy of both types of graphane structures and also the combined system of pristine graphene and isolated hydrogen atom. The results also show that the in-plane modulus of graphene \(C = \frac{d^2}{A} \frac{E}{d\varepsilon^2} = 1,260 \) GPa is reduced by 52% and 26% in symmetric and antisymmetric phases, respectively, where \(E \) is the potential energy, \(\varepsilon \) is the in-plane biaxial strain, and \(A \) is the calculated cross-sectional area where the thickness of graphene is taken as 3.4 Å. Accordingly, the biaxial tensile strength has a strong reduction after hydrogenation, from 101.27 GPa to 49.64 and 67.92 GPa due to the hydrogenation-induced rehybridization.

Popova and Sheka [72] used quantum-mechanochemical-reaction-coordinate simulations to investigate the mechanical properties of hydrogen functionalized graphene. Their results showed that the mechanical behavior of graphane was anisotropic so that tensile deformation occurred quite differently along (zg mode) and normally (acha mode) to the C-C bonds chain. The tensile strengths at fracture constituted 62% and 59% of graphene for the ach and zg modes, respectively, while the fracture strains increased by 1.7 and 1.6 times. Young’s modules of the two deformation modes of graphane decreased by 1.8 and 2 times. Some mechanical parameters are shown in Table 3.

Peng et al. [73] investigated the effect of the hydrogenation of graphene to graphane on its mechanical properties using first-principles calculations based on the density functional theory. The results show that graphane exhibits a nonlinear elastic deformation up to an ultimate strain, which is 0.17, 0.25, and 0.23 for armchair, zigzag, and biaxial directions, respectively, and also have a relatively low in-plane stiffness of 242 N/m², which is about 2/3 of that of graphene, and a very small Poisson ratio of 0.078, 44% of that of graphene. There has been a good idea which states that such unique mechanical properties make the
graphane a good candidate for materials used in building the tubes or pipelines that transfer materials in high speed under applied high pressure.

Thermal properties

Ao et al. [74] used the density functional theory to investigate the thermal stability of graphene/graphane nanoribbons (GGNRs). They found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs were 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only approximately 0.3 eV. These results unambiguously demonstrated that the thermal stability of GGNRs could be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. Similarly, Costamagna et al. [75] used large scale atomistic simulations to study the thermal fluctuations of graphane. Rajabpour et al. [76] used nonequilibrium molecular dynamics simulations to investigate the thermal conductivity of hybrid graphene-graphane nanoribbons. Neek-Amal and Peeters [77] used atomistic simulations to determine the roughness and the thermal properties of a suspended graphane sheet. Compared with graphene, graphane had a larger thermal contraction, a wide range corresponding to length scales in the range 30 to 125 Å at room temperature. The estimated heat capacity was 29.32 ± 0.23 J/mol K which was 14.8% larger than the one for graphene.

In addition, graphane or graphane-like structures have magnetic properties and thermal performance. Neek-Amal and Peeters [78] investigated the lattice thermal properties of graphane, including thermal contraction, roughness, and heat capacity. Results showed that the

Table 2 Structure information

System	SG and LC	Positions	LCH and LCC
Chair	P-3 m1 (164),	H: (0.3333, 0.6667, 0.5893)	C-H: 1.110
UDUDUD	a = b = 2.504; c = 15.0	C: (0.3333, 0.6667, 0.5153)	C-C: 1.537
Tricycle	Pbcm (57)	H1: (0.4328, 0.1235, 0.2500)	C1-H1: 1.108
UUUDUD	a = 15; b = 7.681; c = 2.544	C1: (0.4981, 0.0563, 0.2500)	C1-C1: 1.539; C1-C2: 1.541
Boat-1	Pmmm (59)	H: (0.5000, 0.2562, 0.5922)	C-H: 1.105
UUDDDU	a = 15.0; b = 4.585; c = 4.328	C: (0.4622, 0.5933, 0.4317)	C-C: 1.542, 1.548, 1.573
Boat-2	Pbcm (57)	H: (0.3987, 0.4932, 0.5036)	C-H: 1.103
UUUDDD	a = 2.529; b = 4.309; c = 15.0	C: (0.5000, 0.1822, 0.5216)	C-C: 1.537; 1.570
twist-boat	Pcca (54)	H: (0.1215, 0.4079, 0.5609)	C-H: 1.106
UUDDUDD	a = 4.417; b = 15.0; c = 4.987	C: (0.0904, 0.4788, 0.6154)	C-C: 1.542; 1.548; 1.562

SG, space group; LC, lattice constant; Position, inequivalent atom positions for H and C atoms; LCH, C-H bond length; LCC, C-C bond length for the six fundamental allotropes of graphane [70].

Figure 7 Energies of pristine graphene. With additional energy from isolated hydrogen atoms and graphane under (a) biaxial and (b) uniaxial strain loading [71].
roughness, amplitude, and wave lengths of the ripples were very different. The thermal contraction effect of graphane is larger than for graphene. Above 1,500 K, graphane is buckled and starts to lose H atoms at the edges of the membrane. Roughness of graphane is larger than that of graphene and the roughness exponent in graphane decreases versus temperature (from 1.2 to 1.0), while for graphene, it stays around 1.0 implying random uncorrelated roughness. Heat capacity of graphane is found to be 14.8%, which is larger than that of graphene.

Optical properties

In Universal optical properties of graphane nanoribbons: A first-principles study by Yang et al. [78], the results indicated that the optical properties of graphane nanoribbons were independent of their edge shapes and widths. Their unique optical properties make graphane nanoribbons suitable for various applications in nanoscale optical and optoelectronic devices.

Electronic properties

León and Pacheco [80] studied on the electronic and dynamical properties of a molecular wire consisting of molecules with structures of graphene and a graphene nanoribbon. Bubin and Varga [81] had discussed the response of graphene and graphene fragments to strong femtosecond laser pulses and the results showed that the hydrogenation was controllable by strong femtosecond laser pulses. Before that, Chandrachud et al. [82] had been systematic studied on electronic structure from graphene to graphane. Simultaneously, their results revealed that it was possible to design a pattern of hydrogenation so as to yield a semiconducting sheet with a bandgap much lower than that of graphene. Nanyang Technological University's Hwee Ling Poh et al. [83] investigated the electrochemical behavior of hydrogenated graphene synthesized under various pressures and temperatures for comparison and showed that hydrogenation of graphene (towards graphane) resulting in a decrease in the observed heterogeneous electron transfer rates as measured by cyclic voltammetry and an increase in the charge transfer resistance as measured by impedance spectroscopy as compared to graphene.

Magnetic properties

Lee and Grossman [84] used the first-principles calculations based on the density functional theory (DFT) to explore the magnetic properties of graphene-graphane superlattices with zigzag interfaces and separately varying widths. The results displayed that the magnetic properties of the superlattices were entirely determined by the graphene region due to the π character of the spin density. It was a potential for future spintronics applications with a variable spin-current density. Berashevich and Chakraborty [85], Schmidt and Loss [86], Şahin et al. [87], and Hernández et al. [88] also did the related research on the magnetism of graphene, such as sustained ferromagnetism, tunable edge magnetism, magnetization of graphene by dehydrogenation, graphane nanoribbons magnetic, and so on.

Derivatives of graphene

Graphene can be functionalized by varied methods. Haldar et al. [89] used Fe to replace the hydrogen on the plane of graphene. The work showed that the response of the two channels, the armchair and the zigzag channels, were different. Hussain [90] and AlZahrani [91] reported the strain induced lithium functionalized graphane as a high-capacity hydrogen storage material and used the manganese adsorption graphene and graphane as magnetic materials. Graphane's derivatives were not only just about functionalization of the surface atoms, but also by changing the substrate atoms to achieve its function. For example, Lu et al. [41], from the University of Science and Technology of China, studied the chemical modification with –OH or -NH₂ group on planar polysilane and graphane. Hölzl et al. [92], Artyukhov and Chernoizatonskii [93], Bianco [94], Garcia et al. [95] reported separately in cis-polyacetylene and graphene, carbon monofluoride and graphane, germanium graphane analogue, group-IV graphene, graphene-like nanosheets, and so on.

Therefore, we can fabricate many derivatives of graphene by changing the substrate atoms (like C, Si, Ge, P) and the surface atoms (like H, –OH, -NH₂, He, Li, Fe, Mn, and all the VII A element).

Applications of graphene

As mentioned in many articles, graphene or graphene-like materials can be applied in many fields. Nechae [96] considered the thermodynamic and experimental backgrounds of the condensed hydrogen storage problem, and an effective method was put forward to produce a high-density hydrogen carrier which was hydrogen intercalation in carbonaceous nanomaterials at relevant temperatures and pressures (at the cost of the hydrogen association energy). The result displayed the intercalated solid molecular hydrogen in graphene-like nanofibers (17 wt.% H₂). Compared with the US Department of Energy (DOE)’s strategic

| Table 3 Mechanical parameters of graphene and graphane nanosheets [72] |
|-----------------|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| Species Mode | ε, ^{cr} | F_{cr}, N (×10⁻⁹) | σ_{cr}, N/m² (×10⁹) | E_{cr}, TPa |
| Graphene ach | 0.18 | 54.56 | 119.85 | 1.09 |
| Graphene zg | 0.14 | 47.99 | 106.66 | 1.15 |
| Graphene ach | 0.3 | 43.41 | 74.37 | 0.61 | 0.54 e |
| Graphene zg | 0.23 | 36.09 | 63.24 | 0.57 | 0.52 e |
objectives for the year 2015 which include a minimum 'gravimetric' capacity (weight of stored H2/system weight) of 9.0 wt.% of reversible hydrogen and a 'volumetric' capacity (density) of 0.081 g(H2)/cm3(system), graphene-like nanofibers are much more acceptable and efficient hydrogen storage technology.

Gharekhanlou et al. [97] reported that graphene materials can be used as bipolar transistor. Cudazzo et al. [98] provided an exact analytic form of the two-dimensional screened potential. Gharekhanlou et al. [99] introduced a 2D p-n junction based on graphane with hydrogen deficiency to reduce the bandgap effectively. And using basic analysis has shown that within the approximation of Shockley law of junctions, an exponential ideal I-V characteristic is expectable. This broadens the graphene or graphene-like application in transistor devices. Savini et al. [100] used p-doped graphene to fabricate a prototype high-Tc electron–phonon superconductor, which has Tc as high as 150 K for a 1-nm nanowire, higher than copper oxides. Loktev and Turkowski [101] and Kristoffel and Rägo [102] considered the superconducting properties of multilayer graphene by taking into account the fluctuations of the order parameter. The result showed that in the single-layer case, the BKT critical temperature which corresponds to the vortex SC is equal to the MF temperature 100 K beginning from a rather low value of doping less than 0.01. And they estimated that the critical temperature may reach values 150 K, which is significantly higher than the maximal temperature under ambient pressure in cuprates. Nechaev [103] said that the high-density hydrogen carrier intercalation in graphene-like nanostructures can be used in fuel cell-powered vehicles. Russian et al. [104,105] used polylithiated (OLi2) functionalized graphene as a potential hydrogen storage material, the storage capacity to achieve 12.9 wt.%.

Conclusions

Exceptional physical properties, chemical tunability, potential electronic, and transistor applications of graphane have definitely gained the interest of materials and electronics researchers. This review article is intended to focus on the fabrication and structural features of graphane (or graphene-like material) and the potential applications of graphene (or graphene-like) and graphene-based nano-composites. It covers the latest advancement and new perspectives of graphene as a potential material for hydrogen storage and transistor with the special discussions on the merits and limitations of the material. After presenting a brief overview of the synthesis processes of single-layer graphane, graphene-like, graphene-graphane, and graphene nanoribbons, the structure features of graphene, particularly related to the hydrogen storage and transistor, have been discussed.

By reversible hydrogenation, one can make the graphene material from conductor to insulator. Thus, we can control the degree of hydrogenation to modulate the conductive properties. Through this process, graphene-graphane mixed structures offer greater possibilities for the manipulation of the material's semiconducting properties and they can be potentially applied in the field of transistor, electron–phonon superconductor and others applications. The behavior of graphene to graphane or graphane to graphene is the progress of hydrogen energy storage or release. Graphane or graphene-like material can be used as hydrogen storage material for fuel cells. Because of its wide range of conductivity, it can be used for nanosensors with exceptional sensitivity.

Certainly, most notably we can fabricate many derivatives of graphene by changing the substrate atoms (like C, Si, Ge, P, S) and the surface atoms (like H, –OH, –NH2, He, Li, Fe, Mn, Ag, and all the VII A element) so as to promote its application value and expand the application field.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SC and JL designed the structure and modified the manuscript articles; CZ drafted the manuscript. JW, QY, CL, DH, and TZ participated in the sequence alignment. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the Shanghai Major Construction Projects (11YY188, XKZC1205), Shanghai Science and Technology Capacity Building Project Local Universities (11XK0501500), and Shanghai University of Engineering Science Innovation Project (13KY0410).

Received: 16 August 2013 Accepted: 7 December 2013

Published: 13 January 2014

References

1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric field effect in atomically thin carbon films. Sci 2004, 306:666.
2. Layek RK, Nandi AK: A review on synthesis and properties of polymer functionalized graphene. Polymer 2013, 54:5087.
3. Geim AK, Novoselov KS: The rise of graphene. Nat Mater 2007, 6:183.
4. Hili EW, Vijayanagahavan A, Novoselov K: Graphene sensors. IEEE Sensors J 2011, 113:161.
5. Si Y, Samulski ET: Synthesis of water soluble graphene. Nano Lett 2008, 8:1679.
6. Choi W, Lhari I, Seelaboyina R, Kang YS: Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 2010, 35:52.
7. Singh V, Journg D, Zhai L, Das S, Khondaker SI, Seal S: Graphene based materials: past, present and future. Prog Mater Sci 2011, 56:1178.
8. Castro Neto AH, Guinea F, Peres NM, Novoselov KS, Geim AK: Rev. Mod. The electronic properties of graphene. Phys 2009, 81:109.
9. Basu S, Bhattacharyya P: Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B 2012, 173:1.
10. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C: Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 2010, 4:2865.
11. Zhu Y, Musali S, Cai W, Li X, Suk AV, Potts JR, Ruff RL: Graphene and graphene oxide: synthesis, properties and applications. Adv Mater 2010, 22:9306.
12. Allen MJ, Tung VC, Gomez De Arco L, Xu Z, Chen LM, Nelson KS, Zhou C, Kaner RB, Yang Y: Soft transfer printing of chemically converted graphene. Adv Mater 2009, 21:2098.
13. Gotbachev RV, Mayorov AS, Savchenko AK, Horsell DW, Guinea F: Conductance of p-n-p graphene structures with air-bridge top gates. Nano Lett 2005, 9:2088.

14. Dragoman M, Dragoman D: Graphene-based quantum electronics. Prog Quantum Electron 2009, 33:165.

15. Fracari MP, Russo S, Yamamoto M, Tarucha S: Tuneable electronic properties in graphene. Nano Today 2011, 6:42.

16. Winterrin J, Bocquet ML: Graphene on metal surfaces. Surf Sci 1841, 2009:603.

17. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AN: Two-dimensional gas of mass less Dirac fermions in graphene. Nature 2005, 438:197.

18. Zhang Y, Tan YW, Stormer HL, Kim P: Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438:201.

19. Ingaki M, Kim YA, Endo M: Graphene: preparation and structural perfection. J Mater Chem 2011, 21:3280.

20. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK: Fine structure constant defines visual transparency of graphene. Science 2008, 320:1308.

21. Ackel M, Chabal YJ: Nature of graphene edges: a review. Jpn J Appl Phys 2011, 50:S70101.

22. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi J, Hong BH: Large-scale pattern growth of graphene films for stretchable transparent electrode. Nature 2009, 457:206.

23. Lee C, Wei X, Kyas IR, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321:385.

24. Cheianov V, Falco V, Atutchev B: The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 2007, 315:1252.

25. Geim AK: Graphene: status and prospects. Nature 2009, 524:13.

26. Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U, Bleloch A, Gass M, Novoselov KS, Katsnelson MI, Geim AK: Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 2008, 8:3442.

27. Pae SK, Enoki T, Bao CNR: Graphene and its Fascinating Attributes. Singapore: World Scientific Publishing Co Pte. Ltd; 2011.

28. Tombrno N, Jozca C, Popincic M, Jonkmann H, van Wees B: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448:571.

29. Raza H: (Ed): Graphene Nanoelectronics: Metrology, Synthesis Properties and Applications. Berlin, Germany: Springer; 2012.

30. Kula T, Bose S, Khrana P, Mishra AK, Kim NH, Lee JH: Recent advances in graphene-based biosensors. Biosens Bioelectron 2011, 26:4637.

31. Choi W, Lee JW: Graphene: Synthesis and Applications. New York, USA: CRC Press (Taylor and Francis group); 2012.

32. Chan HE: Recent advances in graphene-based biosensors. Biosens Bioelectron 2011, 26:4637.

33. Choi W, Lee JW: Graphene: Synthesis and Applications. New York, USA: CRC Press (Taylor and Francis group); 2012.

34. Kula T, Bose S, Khrana P, Mishra AK, Kim NH, Lee JH: Recent advances in graphene-based biosensors. Biosens Bioelectron 2011, 26:4637.

35. Blanter Y, Hecht G: Conductance of p-n-p graphene structures with air-bridge top gates. Nano Lett 2005, 9:2088.

36. Dragoman M, Dragoman D: Graphene-based quantum electronics. Prog Quantum Electron 2009, 33:165.

37. Fracari MP, Russo S, Yamamoto M, Tarucha S: Tuneable electronic properties in graphene. Nano Today 2011, 6:42.

38. Winterrin J, Bocquet ML: Graphene on metal surfaces. Surf Sci 1841, 2009:603.

39. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AN: Two-dimensional gas of mass less Dirac fermions in graphene. Nature 2005, 438:197.

40. Zhang Y, Tan YW, Stormer HL, Kim P: Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438:201.

41. Ingaki M, Kim YA, Endo M: Graphene: preparation and structural perfection. J Mater Chem 2011, 21:3280.

42. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK: Fine structure constant defines visual transparency of graphene. Science 2008, 320:1308.

43. Ackel M, Chabal YJ: Nature of graphene edges: a review. Jpn J Appl Phys 2011, 50:S70101.

44. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi J, Hong BH: Large-scale pattern growth of graphene films for stretchable transparent electrode. Nature 2009, 457:206.

45. Lee C, Wei X, Kyas IR, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321:385.

46. Cheianov V, Falco V, Atutchev B: The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 2007, 315:1252.

47. Geim AK: Graphene: status and prospects. Nature 2009, 524:13.

48. Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U, Bleloch A, Gass M, Novoselov KS, Katsnelson MI, Geim AK: Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 2008, 8:3442.

49. Pae SK, Enoki T, Bao CNR: Graphene and its Fascinating Attributes. Singapore: World Scientific Publishing Co Pte. Ltd; 2011.

50. Tombrno N, Jozca C, Popincic M, Jonkmann H, van Wees B: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448:571.

51. Raza H: (Ed): Graphene Nanoelectronics: Metrology, Synthesis Properties and Applications. Berlin, Germany: Springer; 2012.

52. Kula T, Bose S, Khrana P, Mishra AK, Kim NH, Lee JH: Recent advances in graphene-based biosensors. Biosens Bioelectron 2011, 26:4637.

53. Choi W, Lee JW: Graphene: Synthesis and Applications. New York, USA: CRC Press (Taylor and Francis group); 2012.

54. Chan HE: (Ed): Graphene and Graphite Materials. New York, USA: Nova Science Publishers Inc; 2010.

55. Pumera M, Ambrozi A, Bonamai A, Chng ELK, Poh HL: Graphene for electrochemical sensing and biosensing. Trends Anal Chem 2010, 29:554.

56. Lang B: A LEED study of the deposition of carbon on platinum crystal surfaces. Surf Sci 1975, 53:317.

57. Basu S, Bhattacharyya P: Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B 2012, 173:21.

58. Pumera M: Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rev 2009, 9:211.

59. Casolo S, Martina M, Tantardini GFJ: Band engineering in graphene with superlattices of substitutional defects. Phys Chem C 2011, 115:3250.

60. Schwierz F: Graphene transistors. Nature Nanotech 2010, 5:487.

61. Bakhvalov DW, Katsnelson MI, Lichtenstein AI: Hydrogen on graphene: electronicstructure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B 2008, 77:405.

62. Kulla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH: Recent advances in graphene based polymer composites. Prog Polym Sci 2010, 35:130.

63. Lu N, Li Z, Yang J: Electronic structure engineering via on-plane chemical functionalization: a comparisonstudy on two-dimensional polysilane and graphene. Phys Chem C 2009, 113:16741.

64. Elias DC, Nair RR, Mohiuddin TMC, Morozov SV, Blake P, Hallal MP, Ferrari AC, Bakhvalov DW, Katsnelson MI, Geim AK, Novoselov KS: Control of graphene's properties by reversible hydrogenation: evidence for graphene. Science 2009, 323:610.

65. Huda MN, Yan YF, Al-Jassim M, Chem M: Thermal conductivity of silicon and carbon hybrid monolayers: a molecular dynamics study. Phys Lett 2009, 479:25j.
Theoretical investigation of manganese adsorption on graphene:

1. AlZahrani AZ:
2. Hussain T, DeSarkar A, Ahuja R:
3. Haldar S, Kanhere DG, Sanyal B:
4. Bubin S, Varga K:
5. Electon and ion dynamics in graphene and graphane.
6. Electronic and dynamics properties of a molecular wire of graphane Nanoclusters.
7. Magnetic properties in graphene-graphane.
8. Lattice thermal properties of graphane:
9. Strain effects on basal-plane hydrogenation of graphene to graphane on its mechanical properties.
10. Magnetic impurities in graphane with H-vacancies in graphane.
11. Strain induced lithium functionalized graphane as a high capacity hydrogen storage material.
12. AlZahrani AZ: Theoretical investigation of manganese adsorption on graphene and graphene: A first-principles comparative study.
13. Høltz T, Veszprémi T, Nguyen MT: Phosphaethyne polymers are analogues of cis-polyacetylene and graphene.
14. Artyukhov VI, Chernozatonskii LA: Structure and Layer interaction in carbon monofluoride and graphene: a comparative computational study.
15. Bianco E: Stability and exfoliation of germanane: a germanium graphane analogue.
16. Garcia JC, De Lima DB, Asali LVC, Justo JF: Group-IV graphene and graphene-like nanosheets.
17. Nечаев И.С. On the solid hydrogen carrier intercalation in graphene-like regions in carbon-based nanostructures.
18. Gharekhaniou B, Tousaki SB, Khorasani S: Bipolar transistor based on graphene.
19. Gharekhaniou B, Khorasani S: Current–voltage characteristics of graphene p-n junctions.