Pharmacogenomics deliberations of 2-deoxy-d-glucose in the treatment of COVID-19 disease: an in silico approach

Navya B. Prabhu1 · Chigateri M. Vinay1 · Kapaettu Satyamoorthy2 · Padmalatha S. Rai1

Received: 14 July 2022 / Accepted: 12 September 2022 / Published online: 21 September 2022
© The Author(s) 2022

Abstract
The outbreak of COVID-19 caused by the coronavirus (SARS-CoV-2) prompted number of computational and laboratory efforts to discover molecules against the virus entry or replication. Simultaneously, due to the availability of clinical information, drug-repurposing efforts led to the discovery of 2-deoxy-d-glucose (2-DG) for treating COVID-19 infection. 2-DG critically accumulates in the infected cells to prevent energy production and viral replication. As there is no clarity on the impact of genetic variations on the efficacy and adverse effects of 2-DG in treating COVID-19 using in silico approaches, we attempted to extract the genes associated with the 2-DG pathway using the Comparative Toxicogenomics Database. The interaction between selected genes was assessed using ClueGO, to identify the susceptible gene loci for SARS-CoV infections. Further, SNPs that were residing in the distinct genomic regions were retrieved from the Ensembl genome browser and characterized. A total of 80 SNPs were retrieved using diverse bioinformatics resources after assessing their (a) detrimental influence on the protein stability using Swiss-model, (b) miRNA regulation employing miRNASNP3, PolymiRTS, MirSNP databases, (c) binding of transcription factors by SNP2TFBS, SNPInspector, and (d) enhancers regulation using EnhancerDB and HaploReg reported A2M rs201769751, PARP1 rs193238922 destabilizes protein, six polymorphisms of XIAP effecting microRNA binding sites, EGFR rs712829 generates 15 TFBS, BECN1 rs60221525, CASP9 rs4645980, SLC2A2 rs5393 impairs 14 TFBS, STK11 rs3795063 altered 19 regulatory motifs. These data may provide the relationship between genetic variations and drug effects of 2-DG which may further assist in assigning the right individuals to benefit from the treatment.

Keywords 2-Deoxy-d-glucose (2-DG) · SARS-CoV-2 · COVID-19 · Single nucleotide polymorphisms · Drug response

Introduction
The outbreak of coronavirus disease 2019 (COVID-19) caused by the new coronavirus (SARS-CoV-2) infection has prompted worldwide attempts to develop efficient molecules to treat the disease and symptoms (Samantaray et al. 2021). However, developing novel molecules culminating in translation against infections can be laborious, time-consuming, and expensive (Paul et al. 2010). Thus, identifying the therapeutically effective entity against the disease from a pre-existent clinically approved repository of molecules may be advantageous (Ciliberto et al. 2020).

Virus infections such as SARS-CoV-2 reprogram the host cells to consume more glucose and upregulate metabolic activities such as glycolysis, akin to the Warburg effect and alter glycosylation to survive, replicate, and transmit infections (Mullen et al. 2021). Similar to glucose, internalization of 2-DG is facilitated by glucose transporters followed by its phosphorylation into inactive metabolite, 2-deoxyglucose-6-phosphate. This glucose deprivation in the cells leads to reduced proliferation and induction of apoptosis (Schmidt and O‘Donnell 2021).

2-Deoxy-d-glucose (2-DG) has been tested to inhibit glycolysis and hence SARS-CoV-2 replication in monocytes and epithelial cells consequently leading to increased HIF-1α and reduced inflammatory mediators (Pliszka and Szablewski 2021; Medini et al. 2021; Codo et al. 2020).
was reported that 2-DG prevents viral replication by hindering virus DNA polymerase (Codo et al. 2020; Liu et al. 2021) attaching to specified receptors on the cell surface and obstructing viral invasion into the target cells; blocking viral protein synthesis, obstructing delayed phases of virus assembly (Codo et al. 2020). The metabolic processes such as glycolysis in the cytoplasm and glycosylation in the endoplasmic reticulum can be interrupted using glucose mimics such as 2-deoxy-D-glucose (2-DG) (Xi et al. 2014). By impeding viral replication, high energy requirements, and viral assembly, it could be a potential therapeutic candidate (Khurana et al. 2022).

The reports from the different phases of clinical trials have shown that 2-DG aids in improving the health status of severely Covid-19-infected individuals and decreases oxygen therapy dependency. It was found that a large number of 2-DG-treated patients reported negative within 5 days (Goel 2021; Wang et al. 2021). 2-DG as an anti-viral agent has previously been reported wherein the inhibition of replication of enveloped viruses such as herpes simplex virus (Courtney et al. 1973), measles virus, respiratory syncytial virus (Hodes et al. 1975), Semiliki forest virus, and Sindbis virus (Kaluza et al. 1972) are demonstrated. In an in vivo study, 2-DG inhibited rhinovirus load and inflammation in mice (Gualdoni et al. 2018). Several proteins such as non-structural protein 1 (NSp1), RNA-dependent RNA polymerase, 3CLpro are the attractive targets involved in COVID-19 treatment (Singh et al. 2021, 2022). In silico analysis suggested efficient binding of 2-DG with SARS-CoV-2 viral main protease 3CLpro and NSP15 endoribonuclease (Balkrishna et al. 2020). As considerable knowledge on molecular interaction between 2-DG and SARS-CoV-2 and drug response is lacking, there is an absolute requisite to integrate the information from 2DG interacting genes by in silico analysis. The genes and their products are regulated by various mechanisms that involve correlation between many processes, metabolic pathways, and regulatory factors (Vohra et al. 2021). One prevalent form of gene variants is single nucleotide polymorphisms (SNPs), where two different bases appear at a remarkable rate in human diversity (Prabhukumar et al. 2021). The genetic profiling based on the identified and functionally characterized SNPs is considered a “fingerprint”, possibly used to determine the risk of disease susceptibility and drug response (Shastry 2007). Many variants residing in non-coding and non-regulatory sequences are functionally silent. However, few SNPs alter the structure and function of the protein. The role of functional SNPs, which can alter the regulation and structure of the protein in relation to the effects of 2-DG, is not well understood. These functional SNPs are considered an ideal substrate for the human population in health and illness (Alwi 2005).

Hence, the current study is aimed to investigate the influence of functional or regulatory SNPs on the potency and pernicious effect of 2-DG. Therefore, the main purpose of the research was to examine the impact of SNPs in the 2-DG interacting pathway genes by interrogating various bioinformatics resources and assessed the influence of SNPs on the protein stability, miRNA regulation, and cis-acting elements to evolve a relationship for pharmacogenomics purposes.

Materials and methods

Identification of interacting genes of 2-DG

The interacting genes of 2-DG were retrieved from the Comparative Toxicogenomic Database (CTD) (Grondin et al. 2021) using the parameter named chemical-gene interaction in Homo sapiens. Uniprot database (Uniport Consortium 2021) was used to retrieve the data of all the 2-DG interacting gene families, and further, these data were utilized for downstream analysis.

Pathway interaction among 2-DG interacting genes

The 2-DG interacting genes were subjected to the Cytoscape tool v3.0 Software ClueGO v2.5.8 (Bindea et al. 2009) was employed to identify the networks in the degree sorted circular layout to interpret the biological function of the selected genes. The distinct ontologies such as molecular function, pathways, and human diseases were used in the framework, and the GO terms were connected using kappa statistics based on the overlapping genes.

Retrieval and characterization of SNPs

For the selected genes, SNPs were retrieved by preferring the option variant table in the Ensembl genome browser (m.ensembl.org). The retrieved SNPs were further classified into missense variants, 5′-UTR variants, 3′-UTR variants, synonymous SNPs, intronic SNPs, splice donor, splice acceptor variants, splice region SNPs, stop retained SNPs, stop-loss SNPs, stop-gained SNPs, and non-coding transcript exon variants. Among these, missense SNPs were considered for further functional analysis.

In silico prediction of missense variants functional impacts

The selected missense variants were scrutinized utilizing six diverse tools with mutation score accessible in the Ensembl genome browser, and these included CADD (Combined Annotation-Dependent Depletion), Mutation assessor, SIFT (Sorting Intolerant from Tolerant), Revel (Rare exome variant ensemble learner), MetaLR, and PolyPhen-2 (Polymorphism Phenotyping). The SNPs characterized as
“deleterious” in all the tools were carefully chosen and evaluated for their effect on protein structure and stability.

Protein modeling and mutation effect on protein stability

To interpret the effect of deleterious SNPs on protein structure, we predicted the native and mutant forms by protein modeling. The predicted model of the native form was available from the AlphaFold protein structure database (Jumper et al. 2021), and the mutant form of the protein structure was modeled using an automated protein structure homology-modeling server, SWISS-MODEL via Expasy webserver (Waterhouse et al. 2018), by considering the native predicted model as a template. The alteration in the hydrophilicity or hydrophobicity for the deleterious SNPs due to the amino acid change is presented using the hydropathy index (Kyte et al. 1982). The stability of the protein was determined based on point mutation using the CUPSAT mutation tool (Parthiban et al. 2006) of the 3D AlphaFold structure of variants retrieved from UniProt database. Using Swiss-PDB Viewer (Kaplan and Littlejohn 2001), the energy minimization using the steepest descent algorithm was performed for the mutated protein model with the corresponding amino acid substitution, compared with the native protein model, followed by total energy calculations. The root-mean-square deviation (RMSD) was calculated using align function from Pymol software to find the divergence in mutant form from the native form of the protein (Yuan et al. 2017).

Prediction of functional microRNA target SNPs

The identified 2-DG-associated genes were deployed to predict the SNPs in the microRNA binding sites that were functional using three databases. These were microRNA-related Single Nucleotide Polymorphisms v3 (miRNASNP3) (Gong et al. 2015), PolymiRTS database (Bhattacharya et al. 2014), and miRNA-related SNPs (MirSNP) database (Liu et al. 2012). The MirSNP database was utilized to investigate the miRNA binding SNP locations and their consequences on the target position. Furthermore, the PolymiRTS database was employed to obtain the variants and their concomitant miRNAs at wild and mutant alleles and assessed their effect on the target gain/loss in the 3′-UTR using the miRNASNP3 database.

SNPs at the transcription factor binding site (TFBS)

The shortlisted 2-DG interacting genes were utilized to obtain the SNPs in TFBS employing SNP2TFBS (Kumar et al. 2017). The parameter named annotated variants were employed to obtain the SNPs residing in the upstream and 5′-UTR regions. The SNPInspector in Genomatix Software Suite (https://www.genomatix.de/) was applied to predict if SNPs in TFBS generate or destroy the TF binding sites.

Enhancers SNPs

The identified 2-DG-associated genes were further utilized to analyze the influence of SNPs residing in enhancers using EnhancerDB (Kang et al. 2019) and ENCODE laboratories software HaploReg version 4.1 (Ward and Kellis 2012). The search preference comprising gene was utilized in the EnhancerDB database to retrieve the enhancer SNPs of the shortlisted genes. Further, HaploReg v4.1 was used to evaluate the regulatory motifs of the enhancer SNPs that were altered.

Results

Identification of interacting genes for 2-DG

We identified 48 interacting genes for 2-DG (Table 1) and plotted their position using the Circos ideogram. The depiction indicated the distribution of genes over 21 autosomes and X chromosome except for 13 autosome and Y chromosome (Fig. S1). The overview of plot shows 48 genes (from outer ring inwards), 5′-UTR SNPs, intronic SNPs, 3′-UTR SNPs, synonymous SNPs, missense variants, splice variants (splice region, splice donor, splice acceptor), start lost, stop-lost, stop-gained, stop-lost SNPs, inner most ring constitutes non-coding transcript exon variant and NMD transcript variant. The schematic illustration of in silico workplan is shown in Fig. 1.

Pathway interaction among 2-DG interacting genes

The interaction among 2-DG genes constituted a network after employing the statistical option Enrichment/Depletion test (two-sided hypergeometric test) (Fig. S2). The resulting network indicated 13 Kappa score groups such as apoptotic factor-mediated response, the intrinsic pathway for apoptosis, cytochrome C-mediated apoptotic response, interleukin-4, and interleukin-13 signaling, integration of energy metabolism, macroautophagy, purinergic signaling in leishmaniasis infection, ATF6 alpha activates chaperone genes, mTOR signaling, FOXO-mediated transcription, protease binding, collagen-binding and SARS-CoV infections (Fig. S2). It was found that 45.87% of the associated genes (CASP3, CASP9, MAPK1, MAPK3, XIAP) contributed to cytochrome C-mediated apoptotic response and 3.67% of the associated genes (BECN1, FXYD2, GSK3B, HSP90AA1, ITGB1, MAP1LC3B) contributed to SARS-CoV infections (Fig. S2).
Sl. No.	Gene	Gene symbol	Family	Chromosome	Location	Strand
1	Alpha-2-Macroglobulin	A2M	Protease inhibitor	chr12	9,067,664–9,116,229	Minus
2	Adiponectin, C1Q And Collagen Domain	ADIPOQ	Hormone	chr3	186,842,704–186,858,463	Plus
3	Amyloid Beta Precursor Protein	APP	Protease inhibitor	chr21	25,880,550–26,171,128	Minus
4	Autophagy Related 7	ATG7	–	chr3	11,272,309–11,564,652	Plus
5	BCL2 Associated X, Apoptosis Regulator	BAX	–	chr19	48,954,815–48,961,798	Plus
6	Beclin 1	BECN1	–	chr17	42,810,132–42,833,350	Minus
7	BH3 Interacting Domain Death Agonist	BID	–	chr22	17,734,138–17,774,770	Minus
8	Caspase 3	CASP3	Protease	chr4	184,627,696–184,649,509	Minus
9	Caspase 9	CASP9	Protease	chr1	15,490,832–15,526,534	Minus
10	DNA Damage Inducible Transcript 3	DDIT3	–	chr12	57,516,588–57,521,737	Minus
11	Epidermal Growth Factor Receptor	EGFR	Kinase	chr7	55,019,017–55,211,628	Plus
12	Eukaryotic Translation Initiation Factor	EIF4EBP1	Protein synthesis inhibitor	chr8	38,030,534–38,060,365	Plus
13	Erb-B2 Receptor Tyrosine Kinase 2	ERBB2	Kinase	chr17	39,687,914–39,730,426	Plus
14	FXYD Domain Containing Ion Transport	FXYD2	Ion transport	chr11	117,800,844–117,828,698	Minus
15	Glycogen Synthase Kinase 3 Beta	GSK3B	Kinase	chr3	119,821,321–120,095,823	Minus
16	H2AX Variant Histone	H2AX	–	chr11	119,093,854–119,095,467	Minus
17	Hexokinase 2	HK2	–	chr2	74,834,126–74,893,359	Plus
18	Heme Oxygenase 1	HMOX1	Oxidoreductase	chr22	35,380,361–35,394,214	Plus
19	Heat Shock Protein 90 Alpha Family Class A	HSP90AA1	Protease	chr14	102,080,742–102,139,749	Minus
20	Heat Shock Protein 90 Beta Family Member 1	HSP90B1	Chaperone	chr12	103,930,107–103,953,931	Plus
21	Heat Shock Protein Family A (Hsp70) Member 5	HSPA5	Protease	chr9	125,234,853–125,241,382	Minus
22	Htra Serine Peptidase 2	HTRA2	Protease	chr2	74,529,405–74,533,556	Plus
23	Insulin Like Growth Factor 1 Receptor	IGF1R	Kinase	chr15	98,648,539–98,964,530	Plus
24	Interleukin 1 Beta	IL1B	Cytokine receptors	chr2	112,829,751–112,836,843	Plus
25	Insulin	INS	Hormone	chr11	2,159,779–2,161,221	Minus
26	Integrin Subunit Beta 1	ITGB1	Integrin	chr10	32,887,273–33,005,792	Minus
27	Potassium Voltage-Gated Channel Sub-family	KCNH2	Ion channel	chr7	150,944,956–150,978,321	Minus
28	Microtubule Associated Protein 1 Light Chain 3 Alpha	MAP1LC3A	–	chr20	34,546,823–34,560,345	Plus
29	Microtubule Associated Protein 1 Light Chain 3 Beta	MAP1LC3B	–	chr16	87,383,953–87,404,779	Plus
30	Mitogen-Activated Protein Kinase 1	MAPK1	Kinase	chr22	21,759,657–21,867,680	Minus
31	Mitogen-Activated Protein Kinase 3	MAPK3	Kinase	chr16	30,114,105–30,123,506	Minus
32	Matrix Metallopeptidase 13	MMP13	Protease	chr11	102,942,995–102,955,732	Minus
33	Matrix Metallopeptidase 9	MMP9	Protease	chr20	46,008,908–46,016,561	Plus
34	Mechanistic Target Of Rapamycin Kinase	MTOR	Kinase	chr1	11,106,535–11,273,497	Minus
35	Nitric Oxide Synthase 2	NOS2	Oxidoreductase	chr17	27,756,766–27,800,529	Minus
36	Poly (ADP-Ribose) Polymerase 1	PARP1	Glycosyltransferase	chr1	226,360,210–226,408,154	Minus
37	Ribosomal Protein S6	RPS6	Ribonucleoprotein	chr9	19,375,715–19,380,236	Minus
38	Ribosomal Protein S6 Kinase B1	RPS6KB1	Kinase	chr17	59,893,046–59,950,574	Plus
39	Serpin Family B Member 5	SERPINB5	–	chr18	63,476,958–63,505,085	Plus
40	Solute Carrier Family 2 Member 1	SLC2A1	Transport	chr1	42,925,353–42,958,893	Minus
41	Solute Carrier Family 2 Member 2	SLC2A2	Transport	chr3	170,996,341–171,026,743	Minus
42	Solute Carrier Family 2 Member 3	SLC2A3	Transport	chr12	7,919,230–7,936,187	Minus
SNPs characterization

A sum of 9,66,482 SNPs was obtained by using the Ensembl genome browser (m.ensembl.org) from human genome assembly GRCh38.p13 (1000 Genomes Project). The retrieved variants were mined which generated 1,04,034 SNPs. These shortlisted variants were further classified depending on their function. These SNPs were from 5′-UTR (295), intronic regions (27,917), 3′-UTR (1729), synonymous SNPs (519), splice variants of the genes including splice donor, acceptor, splice region (119), non-coding transcript exons (103), 8 stop-gained, stop-lost SNP (1), NMD-transcript variants (20), and 616 were missense variants (Fig. 2).

Selection of lethal nsSNPs

Among 616 missense SNPs, SIFT analysis predicted 248 SNPs (40.25%) as “deleterious”, however, the prediction rate of mutation by PolyPhen-2 was 149 (24.18%) as “probably damaging”. CADD, Revel, Meta LR, and Mutation Assessor reported 27 SNPs (4.38%), 109 SNPs (17.69%), 116 SNPs (18.83%), and 464 SNPs (6.49%) as likely deleterious, likely disease-causing, damaging, and high, respectively (Fig. S3). A total of six diverse bioinformatic resources, such as CADD, Mutation assessor, SIFT, Revel MetaLR, and PolyPhen-2 collectively showed three lethal missense variants (Fig. 3); A2M rs201769751, rs778604418, and PARP1 rs193238922 (Table S1).

Table 1 (continued)

Sl. No.	Gene	Gene symbol	Family	Chromosome	Location	Strand
43	Superoxide Dismutase 2	SOD2	Oxidoreductase	chr6	159,669,069–159,762,529	Minus
44	Sequestosome 1	SQSTM1	–	chr5	179,806,393–179,838,078	Plus
45	Serine/Threonine Kinase 11	STK11	Kinase	chr19	1,177,558–1,228,431	Plus
46	Tumor Necrosis Factor	TNF	Cytokine	chr6	31,575,565–31,578,336	Plus
47	Tumor Protein P53	TP53	Activator and repressor	chr17	7,661,779–7,687,538	Minus
48	X-Linked Inhibitor of Apoptosis	XIAP	Protease inhibitor	chr X	123,859,708–123,913,976	Plus

SNPs single nucleotide polymorphisms, chr chromosome

Fig. 1 Schematic representation of in silico workflow of the study
Protein modeling and mutation effect on protein stability

Out of three deleterious SNPs identified, A2M (rs778604418) and PARP1 (rs193238922) showed a change in hydrophobicity or hydrophilicity, but none of them showed a change in its polarity. The change in polarity and hydrophobicity may affect the protein structure and its activity. The divergence in free energy of unfolding between native form and mutant form of proteins known as $\Delta \Delta G$ is calculated by CUPSAT tool using structural environment-specific atom capability and torsion angle capability. Henceforth, the stability of the protein was identified in terms of predicted $\Delta \Delta G$ values (kcal/mol). Out of three deleterious SNPs, A2M (rs778604418) showed more stability with a predicted $\Delta \Delta G$ value of 3.35 kcal/mol and A2M (rs201769751), PARP1 (rs193238922) affects the protein stability with predicted $\Delta \Delta G$ value of -5.07 kcal/mol and -0.51 kcal/mol, respectively (Table S2). The native form of the protein A2M (AlphaFold ID: AF-P01023-F1), PARP1 (AlphaFold ID: AF-P09874-F1) was retrieved from the AlphaFold database, and the mutant form was modeled and validated using the Ramachandran plot. The mutant model showed that 95% of the amino acids were present in the favorable region and considered for further in silico analysis. The native and mutant protein forms of deleterious SNPs along with overlapping models were shown (Fig. 4).

A high QMEAN score and sequence identity from the SwissPDB Viewer. The total energy of mutant structures in all three polymorphisms was less compared to native protein structures. Hence, it is believed that these three deleterious SNPs may affect the protein structure and function. Further, the calculated RMSD value for A2M (rs201769751, rs778604418) and PARP1 (rs193238922) were 0.052 Å, 0.047 Å, and 0.221 Å, respectively. It is reported that the higher the RMSD value, the greater the deviation between the native and mutant forms of the protein structures, which in turn indicates the change in its functional activity. The total energy and RMSD value of native and mutant forms of all the polymorphisms are tabulated in Table S3.

Prediction of functional microRNA target SNPs

The functional microRNA targeting SNPs were predicted using three different resources, and these were miRNASNP3, PolymiRTS, and MirSNP, which concomitantly reported 12 SNPs (rs11552192 in the BECN1, rs60393216 in the GSK3B, rs9903 in the MAP1LC3B, rs1065154, and rs10277 in the SQSTM1, rs10415095 in the STK11, rs28382747, rs28382755, rs28382752, rs28382740, rs28382742, rs17330644 in the XIAP) with the minor allele frequency (MAF) of 10% in the microRNA binding sites. It also indicates any miRNAs linked with SNPs residing in the target position would create or destroy a miRNA-mRNA binding site (Table 2).

SNPs at the transcription factor binding site (TFBS)

A sum of 22 SNPs was found to be in TFBS with MAF > 0.1 by SNP2TFBS; among them, 17 and 5 SNPs reside in the upstream and 3'-UTR region, respectively. Further, SNPInspector projected that rs712829 in the EGFR generates 15 TFBS; rs60221525 in the BECN1, rs4645980 in the CASP9, and rs5393 in the SLC2A2 impaired binding position for 14 transcription factors (TFs). The effect of 22 SNPs at TFBS revealed those SNPs that would generate or disrupt the positions for the binding of TFs (Table 3).

SNPs in enhancers

The two databases, namely, EnhancerDB and HaploReg were employed to identify SNPs in the enhancers which unanimously identified 42 SNPs residing in the introns and
Fig. 3 Pathogenicity predictions showing common deleterious non-synonymous SNPs

Fig. 4 Native, mutant and superimposition of native and mutant modeled structures of the A2M (1) rs201769751 (2) rs778604418 (3) PARP1 rs193238922. a Structure of native protein, b enlarged structure of native protein, c structure of mutant protein, d enlarged structure of mutant protein, e superimposed model of native and mutant protein structures, f enlarged superimposed model of native and mutant protein structures
1 3′-UTR SNP with MAF > 0.1. Out of 43 SNPs, rs3795063 in the STK11 gene showed 19 regulatory motifs that were altered which included CAC-binding-protein, CACD, E2A, Egr-1, Irf, Klf4, Klf7, Myc, Myf, NRSF, Pou2f2, Rad21, SMC3, SP1, SP4, TATA, UF1H3BETA, YY1, and Zfp740. The rs10861203 in the HSP90B1 gene reported 14 regulatory motifs that were altered and these included BCL, BDP1, ELF1, Egr-1, Ets, FEV, Myc, NERF1a, Nrf-2, Pax-5, STAT, TBX5, Tel2, and p300. The specifics of SNPs residing in the enhancers and their altered regulatory motifs are catalogued (Table 4).

Table 2 Details of miRNA target site SNPs with minor allele frequency > 0.1

Sl no.	Gene	Common SNPs among MirSNP, miRNASNP3 and PolymiRTS databases	MAF	miRNA binding at mutant allele	miRNA binding at ancestral allele	Effect
1	BECN1	rs11552192	0.11	hsa-miR-590-3p	–	Create
2	GSK3B	rs60393216	0.30	hsa-miR-3662	–	Break
3	MAP1LC3B	rs9903	0.18	–	hsa-miR-3960	Break
					hsa-miR-4467	Break
					hsa-miR-4484	Break
4	SQSTM1	rs1065154	0.277	–	hsa-miR-4643	Create
					hsa-miR-466	Create
					hsa-miR-4694-3p	Break
					hsa-miR-4717-3p	Create
					hsa-miR-4802-3p	Create
5	STK11	rs10415095	0.29	–	hsa-miR-4781-5p	Break
6	XIAP	rs28382747	0.26	hsa-miR-4634	–	Create
					hsa-miR-143-5p	Create
					hsa-miR-5693	Create
					–	Create
					hsa-miR-150-5p	Create
					–	Create
					hsa-miR-562	Create
					hsa-miR-5697	Create
					–	Create
					hsa-miR-3675-5p	Break
					hsa-miR-5195-5p	Create
					hsa-miR-548ah-5p	Create

Discussion

Detection of therapeutically effective entity counter to the disease from a pre-existent molecule repository may substantially reduce the time and efforts against new drug discovery and clinical trial randomization. The approach of repurposing the existing drugs has resulted in the detection of a large number of effective molecules for the treatment of COVID-19 infection (Ciliberto et al. 2020).
In order to simplify the overview of large number of 2-DG interacting genes that has been extracted, massive number of SNPs residing in respective genes were mined and characterized based on their location. The distribution of these SNPs was depicted by circos which is an unambiguous representation to lessen the inherent complexities and consider the density and dynamic range within huge data sets (Krzywinski et al. 2009). Further, our in silico approach has detected 80 genetic variants associated with 2-DG interacting genes using diverse bioinformatics resources. Therefore, an assessment of these variants was performed by employing various SNP prediction resources and by choosing the overlapping SNPs to overcome the false-positive findings. The pathway analysis aids in investigating interrelationships of terms and functional groups that constitute biological networks (Bindea et al. 2009). The pathway analysis of 2-DG

Sl no.	Gene name	rsID	Allele	Function	MAF	Generated sites	Deleted sites
1	A2M	rs226380	A>C	UTR5	0.47	SMAD	SORY, GREF, GREF
2	APP	rs364048	T>C	Upstream	0.13	LEFF, HNFP	BCDF, FKHD
3	ATG7	rs2594971	G>A/C	Upstream	0.49	NOLF, MZF1, E2FF, XCPE, MZF1, AP2F, GCF, ZF02, ZTRE	CTCF, NOLF, ZF02, ZTRE, GLIF, EGRF, SP1F, AP2F
4	BECN1	rs60221525	C>A/G	Upstream	0.10	ZF07, ZF02, BEDF, GLIF, INSM, CNBP, RREB, GCMF	MAZF, ZF07, NDPK, ZF02, BEDF, SP1F, CTBP, KLFS, EGRF, GLIF, INSM, CNBP, RREB, NDPK
5	CASP3	rs114746204	G>C/T	Upstream	0.39	MAZF, KLFS, ZTRE, NDPK, EGRF, GLIF, ZF02, CTCF, SP1F, ZF07, E2FF, PURA, HEAT	MAZF, PLAG, PAx6, SP1F, KLFS, ZTRE, E2FF, NDPK, EGRF, IKRS, SPZ1, ZF37
6	CASP9	rs4645978	C>A.T	Upstream	0.41	CEBP, GCMF, ZF30, MAZF, NR2F, PERO, ZF07	MAZF, PLAG, SP1F, KLFS, ZTRE, E2FF, NDPK, EGRF, IKRS, ZF02, ZF5F, BCF2, XCPE, EGRF
7	CASP9	rs4645980	C>A.T	Upstream	0.41	CTBP	MAZF, PLAG, SP1F, KLFS, ZTRE, E2FF, NDPK, EGRF, IKRS, ZF02, ZF5F, BCF2, XCPE, EGRF
8	DDI7	rs703835	A>G	UTR5	0.21	HUB1, STAT, CEBP, RBPF, IKRS	STAT, CEBP
9	EGFR	rs712829	G>C/T	UTR5	0.22	MAZF, EGRF, KLFS, CTCF, VEZF, ZF02, SP1F, NDPK, CTCF, MZF1, ZF07, BEDF, GLIF, CTBP, INSM	MAZF, PLAG, PAx6, SP1F, KLFS, ZTRE, E2FF, NDPK, EGRF, IKRS, SPZ1, ZF37
10	EIF4EBP1	rs3750243	C>A/G	Upstream	0.23	GCF2, CTCF, ZTRE, KLFS, MAZF, EGRF, ZF07, NDPK, EGRF	KLFS, BCFD, ZF57, EBOX, HESF, CHRE
11	IL1B	rs1143627	G>A	Upstream	0.47	PTBP, MYT1	ZF02, TAIP
12	INS	rs3842737	T>G	Upstream	0.11	PLAG, RXRF, ZF02, SP1F, ZF07, BEDF, KLFS, ZF37	PLAG, ZF02, GLIF, RREB
13	INS	rs689	A>G.T	UTR5	0.35	PAX6, GREF, PBX6, RXRF, TALE, MYRF	TF3A, NGRE, IKRS
14	MAPK3	rs61764202	C>T	Upstream	0.36	AP1F	SP1F, KLFS, ZTRE, E2FF, HESF
15	PARP1	rs2793379	T>A/C	Upstream	0.20	PARF, TALE, HAND, EBOX, MYOD, NREB	PDX1
16	PARP1	rs2077197	C>G/T	Upstream	0.26	CDXF, ABDB, E2FF, EGRF, ZF02, HBOX, RXRF	PLAG, ZF02, GLIF, RREB
17	RPS6	rs35096177	A>G	Upstream	0.12	SORY, CLOX, DMRT, HNF6, HOXC, LEFF, AP1F	SORY, ARID, HOXF, PIT1, BRNF, CART, LHXF, HOXH, HBOX, HOMF, NKX1, NKX6
18	SLC2A2	rs5393	T>G	Upstream	0.22	NOLF, NGRE, BCDF	LHXF, DLXF, PDX1, BRN5, BRNF, HOMF, GATA, NKX1, OCT1, CART, HOX6, NKX6, PAXH, DLXF
19	SLC2A2	rs5394	G>A	Upstream	0.14	MIPU	TF3A, STAF
20	STK11	rs3795061	G>C	Upstream	0.15	CTCF, ETSF	ZF02, GCMF, KLFS
21	TP53	rs2909430	C>G/T	UTR5	0.15	ZF01, IRXF, RP58, CEBP	PAx6
22	XIAP	rs12687176	C>T	Upstream	0.22	MAZF, E2FF, SPZ1	MAZF, GLIF, ZF07, SAL4

MAF: minor allele frequency
Table 4: SNPs in enhancers and their altered regulatory motifs with MAF > 0.1

Sl no	Gene	Chromosome	rs ID	MAF	Reference Allele	Alternative Allele	Enhancer ID	Functional annotation	Regulatory motifs altered
1	SLC2A1	chr1	rs11210771	0.36	T	C	enh11804	Intrinsic	Rad21
2	SLC2A1	chr1	rs7512565	0.14	C	T	enh107379	Intrinsic	Irf, Maf, Mxi1, Nkx2
3	SLC2A1	chr1	rs710221	0.43	G	A	enh107379	Intrinsic	HNF4
4	ADIPOQ	chr3	rs875571	0.34	T, C	C,G	enh48780	Intrinsic	BCL, CCNT2, GATA, HDAC2, HMGN3, TAL1
5	ADIPOQ	chr3	rs55647362	0.30	A	G	enh7748	Intrinsic	EBF, GR, Sox, TATA
6	ATG7	chr3	rs11915050	0.40	A	G	enh6998	Intrinsic	p300
7	CASP9	chr1	rs4646029	0.41	G	A	enh78963	Intrinsic	ERalpha-a, Pax-5, TCF11::MafG, ZID
8	CASP9	chr1	rs4233536	0.41	C	T	enh98427	Intrinsic	HEY1, Pou1f1, Sox
9	DDIT3	chr12	rs4792972	0.37	C	A	enh98973	Intrinsic	Znf143, p300
10	EGFR	chr7	rs6593207	0.18	T	C	enh24214	Intrinsic	Zfp691
11	EIF4EBP1	chr8	rs9644811	0.33	G	A	enh24927	Intrinsic	Dbx1, Evi-1, Foxa, Foxp1, HDAC2, HMG-1Y, Ncx, TATA, Zfp105
12	EIF4EBP1	chr8	rs10958541	0.23	G	C	enh40918	Intrinsic	AhR::Arnt1, Arnt, NF-E2, NRSF, Nanog, TATA
13	ERBB2	chr17	rs2952155	0.37	T	C	enh17134	Intrinsic	BCL, Egr-1, Ets, GATA, Hsf, Maf, PU.1, Pax-5, STAT, UF1H3BETA, Zfp281, Znf143
14	FXYD2	chr11	rs869789	0.11	G	A	enh64534	Intrinsic	CTCF, TCF12
15	GSK3B	chr3	rs28536662	0.40	A	G	enh20841	Intrinsic	EWSR1-FL1I, Gfi1, HDAC2, HMG-1Y, Med2
16	GSK3B	chr3	rs4688054	0.30	T	C	enh7475	Intrinsic	CTCF, ERalpha-a, Foxk1, Irf, Rad21, SMC3, SZF1-1
17	HK2	chr2	rs1545522	0.30	T	C	enh5656	Intrinsic	MIF-1
18	HK2	chr2	rs3771763	0.12	C	T	enh18686	Intrinsic	ERalpha-a, GCNF, HNF4, RXRA, SF1
19	HSP90AA1	chr14	rs7156564	0.32	A	G	enh15961	Intrinsic	Mef2
20	HSP90AA1	chr14	rs1746587	0.10	A	G	enh3457	Intrinsic	Dobox4
21	HSP90B1	chr12	rs312136	0.24	A	G	enh29941	Intrinsic	AIRE
22	HSP90B1	chr12	rs7980326	0.44	T	G	enh19498	Intrinsic	Myc, Smad3, Zfp410
23	HSP90B1	chr12	rs10861203	0.19	G	A	enh86141	Intrinsic	BCL, BDP1, ELF1, Egr-1, Ets, FEV, Myc, NERF1a, Nrf-2, Pax-5, STAT, TBX5, Tel2, p300
24	HTRA2	chr2	rs13411185	0.29	C	T	enh33451	Intrinsic	Pax-5
25	HTRA2	chr2	rs72920676	0.19	C	T	enh81722	Intrinsic	AP-1, Mef2, NRSF, YY1
26	HTRA2	chr2	rs17838412	0.11	T	C	enh33456	Intrinsic	Foxp3, Pou5f1
27	IGF1R	chr15	rs6598541	0.44	A	G	enh16457	Intrinsic	NRSF, RFX5
28	ITGB1	chr10	rs10763923	0.40	G	A	enh43272	Intrinsic	Cdx2, Hoxd10
29	ITGB1	chr10	rs11090338	0.17	A	G, T	enh62030	Intrinsic	EWSR1-FL1I, TAL1, VDR
30	MAP1LC3B	chr16	rs4598916	0.43	C	G	enh32021	Intrinsic	DBP, Irf, PU.1
31	MAP1LC3B	chr16	rs8052244	0.16	G	C	enh32020	Intrinsic	BCL, ELF1, Egr-1, Ets, GATA, Maf, NERF1a, PU.1, Pax-5, SPIB, TEF, TFHA, p300
32	MAP1LC3B	chr16	rs3794673	0.24	G	C	enh115621	Intrinsic	Ets, PLAG1, Pax-6
33	NOS2	chr17	rs4796222	0.21	A	G	enh17068	Intrinsic	Sox
34	RPS6	chr9	rs944720	0.29	A	G	enh25490	Intrinsic	Foxf2, Fox1, Foxp3, Gm397, Nanog, Pou1f1, Pou2f1, Pou3f3
35	RPS6KB1	chr17	rs11079374	0.20	T	C	enh17258	Intrinsic	LBP-1, LBP-9
36	RPS6KB1	chr17	rs9910598	0.10	G	A	enh96758	Intrinsic	Mx-1, Ncx
37	SERPINB5	chr18	rs11661184	0.25	G	A	enh4892	Intrinsic	CTCF, HNF4, RXRA, Rad21, SMC3, SP1, TATA
interacting genes emphasized various processes: cytochrome C-mediated apoptotic response, interleukin-4, and interleukin-13 signaling, among others. Interestingly, the assessment also indicated susceptible gene loci for SARS-CoV infections. The pathway assessment among 2-DG interacting genes also highlighted apoptosis-related signaling mediated by the caspase family of proteins which may modify the metabolism of cells and enhance the rate of cell death (Gioti et al. 2021) and its potential role in viral infection inhibition (Plassmeyer et al. 2021). Cell death due to 2-DG in various tumor cells has been reported and could be mediated by ER stress/autophagy in HCT116 colon cancer cells or through Cytochrome C-Caspase 3-PARP axis in certain other cells (Maximchik et al. 2018). Similarly, A2M which is a key anti-inflammatory protease can induce cell proliferation when ligated to chaperon GRP78 by increasing the glucose uptake (Vandooren and Itoh 2021). GRP78 also accumulates upon ER stress induced by 2-DG thus sequentially increasing its uptake when provided in place of glucose (Kim et al. 2018). Thus, any structural alterations in A2M may determine the efficacy of 2-DG treatment.

Often 3’-UTR and less frequently exon bound miRNAs silence and regulate the genes at a posttranscriptional level. The variations due to SNPs introduced into the miRNA binding regions may diminish binding affinity and consequently affect its function (Prabhu et al. 2021). We extracted the SNP information of 2-DG interacting genes to unravel the miRNA binding sites employing three databases namely miRNASNP3, MirSNP, and PolymiRTS and examined whether or not miRNAs linked polymorphisms residing in the target region would generate or disrupt a miRNA-mRNA binding region. The findings of our study showed the impact of two miRNA target SNPs (rs1065154, rs10277) residing in the SQSTM1 gene which could create or break at ancestral and mutant allele. Expression quantitative trait loci analysis is a robust technique toward determining genetic loci linked with quantitative variations in gene expression. After employing Genome-Wide Association analysis to the set of records containing approximately 3,00,000 SNPs and 48,000 mRNA expression traits from high throughput technique, researchers found 1226 significant associations, out of which 95 associations were linked to ADME of drugs. The variant rs10277 residing in the gene SQSTM1 in human liver samples reported that allele C is linked with increased transcription compared to allele T. These data broaden our understanding regarding the genetic features of inter-individual variation in gene expression in conjunction with specific prominence on pharmacogenomics (Table S4) (Schröder et al. 2011; Whirl-Carrillo et al. 2012).

In this study, the influence of polymorphisms in TFBS and enhancers were also analyzed. The massive number of genetic variants detected from GWAS resides in the genome’s noncoding region and are of significant interest when located in regulatory sites such as promoters and enhancers as these variants may influence gene expression and these may play a major role in the complex traits that elicits drug response. Thus, we screened the 5’-UTR and upstream SNPs of the selected genes to verify whether the substitution of SNP allele and modified TF binding sites would possibly perturb gene regulation (Buroker 2017).

Pathogenic and other exposures cause leucocytes to respond quickly, with effects ranging from cytokine generation to migration and engulfing by phagocytosis (Marsin et al. 2002; Yang et al. 2012; Wahl et al. 2012). Activation of mononuclear cells with lipopolysaccharide enhanced the production of cytokines IL-1β, IL-6, and TNF-alpha, as predicted (Fangradt et al. 2012; Freemerman et al. 2014). Accelerated glycolytic flow produces ATP quickly to meet these critical processes, which are bioenergetically expensive (Palsson-Mcdermott and O’Neill 2013; Macintyre and Rathmell 2013). For all three cytokines, the competitive glycolysis inhibitor 2-DG dramatically inhibited

Table 4 (continued)

Sl no	Gene	Chromosome	rs ID	MAF Reference Allele	Alternative Allele	Enhancer ID	Functional annotation	Regulatory motifs altered
38	SOD2	chr6	rs6913904	0.11 A	G	enh9509	Intronic	Ets, Pax-4, Pbx3, TBX5
39	SQSTM1	chr5	rs502729	0.49 A	C	enh22874	Intronic	Osr,TCF12
40	SQSTM1	chr5	rs5920382	0.17 C	T	enh22871	Intronic	Foxp1,RFX5
41	SQSTM1	chr5	rs10464093	0.42 A	A	enh22874	Intronic	Sin3Ak-20,TATA
42	STK11	chr19	rs3795063	0.25 C	G,T	enh17841	Intronic	CAC-binding-protein, CACD, E2A, Egr-1, Irf, Klf4, Klf7, Myc, Myf, NRSF, Pou2f2, Rad21, SMC3, SP1, Sp4, TATA, UF1H3BETA, YY1, Zfp740
43	STK11	chr19	rs34928889	0.46 G	A	enh17841	Intronic	ERalpha-a,Rad21,Zfx

MAF minor allele frequency, chr chromosome
lipopolysaccharide-mediated generation of cytokines (Jones et al. 2015). Our findings reported rs1143627 residing in IL1B generated two TFBS for PTBP, MYT1. One of the studies proclaimed that rs1143627 residing in the gene IL1B was found to be associated with Influenza A susceptibility in humans. The findings also showed that aged adults or individuals of any age with comorbid or immunosuppressive conditions might be at a greater risk of disease development. IL1B rs1143627 was also considered to be susceptibility alleles in individuals suffering from liver fibrosis infected by the hepatitis B virus (Wu et al. 2018). Extensive data reported the role of two variants, namely, rs712829 residing in EGFR gene and rs1143627 in IL1B gene in NCI-60 cancer cell lines and human samples, highlighting the effect of genotype on neoplasms and psoriasis on the usage of diverse drugs molecules (Tables S4, S5) (Whirl-Carrillo et al. 2012). Additionally, enhancers that regulate gene expression function as rheostats for transcription, which will further tune up the levels of specific transcripts (Corradin and Scacheri 2014). Henceforth, in the current study 43 SNPs have shown a wide spectrum of altered motifs that may result in gene regulation.

Due to the complexity of the infection, an apt determinative model and efficacious medication for COVID-19 infection are yet to be evolved. As the innate immune system is inadequate to produce a powerful immune response counter to the virus, multi-targeted factors that mitigate viral infection, replication, and host immune reactions are warranted. In the present study, a sum of three polymorphisms (SQSTM1 rs10277, IL1B rs1143627, EGFR rs712829) of 2-DG interacting genes may increase the susceptibility to SARS-CoV infections than other polymorphisms. However, these identified polymorphisms need to be considered by experimental validation of the likelihoods proposed in the current work is required in larger cohorts for repurposing the drug. Further, this in silico study was conducted to shed light on the pharmacogenomic concerns of 2-DG against SARS-CoV-2. We believe that the selected variants in the current study should be wisely considered to overcome adverse drug reaction and to strengthen the foundation for future medical exploration. Nevertheless, it is universally believed that an SNP acts through neighboring genes when it is most likely connected to a phenotype or illness. Therefore, it is undeniable that the present strategy may overlook certain associated genes.

Conclusions

In the current in silico study, efforts were made to identify the genetic biomarkers of 2-DG interacting genes, which may determine the risk of gene polymorphisms and drug response. The in silico data mining strategy aids predominantly in finding the drug interacting genes, and their respective pathways and supports in assessing the influence of SNPs in distinct genomic regions. Eventually, the information creates an integrated foundation to delineate the intricate molecular relationships among 2-DG interacting genes and may subsequently provide insight to predict COVID-19 infection risk and treatment strategies with 2-DG.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s13205-022-03363-4.

Acknowledgements This study was supported by Indian Council of Medical Research (ICMR) (2020-6122/CMB-BMS), KSTePS, DST, Government of Karnataka (DST/KStEPS/Ph.D. Fellowship/LIF-05:2020-21) and Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contributions PSR and KS initiated the work and concept; NBP and CMV performed the literature search, data interpretation and wrote the manuscript. PSR and KS critically reviewed the manuscript.

Funding Open access funding provided by Manipal Academy of Higher Education, Manipal. The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants, or patents received or pending, or royalties.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alwi ZB (2005) The use of SNPs in pharmacogenomics studies. Malays J Med Sci 12:4–12
Balkrishna A, Thakur P, Singh S, Dev S, Jain V, Varshney A, Sharma R (2020) Glucose antimetabolite 2-Deoxy-D-Glucose and its derivative as promising candidates for tackling COVID-19: insights derived from in silico docking and molecular simulations. Authorea Prepr. https://doi.org/10.22541/AU.158567174.40895611/
Bhattacharya A, Ziebarth JD, Cui Y (2014) PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites
with human diseases and biological pathways. Nucleic Acids Res 42:D86–D91. https://doi.org/10.1093/NAR/GKT1028

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093. https://doi.org/10.1093/BIOINFORMATICS/BTP101

Buroker NE (2017) SNPs, transcriptional factor binding sites and disease. Biomed Genet Genomics 2. https://doi.org/10.1016/j.bmgg.1001032

Ciliberto G, Mancini R, Paggi MG (2020) Drug repurposing against COVID-19: focus on anticancer agents. J Exp Clin Cancer Res 39:86. https://doi.org/10.1186/s13046-020-01590-2

Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-Silva JV, Prodonoff JS, Carregari VC, de Biagi Junior CAO, Crunflí F, Jimenez Restrepo JL, Vendramini PH, Reis-de-Oliveira G, Bispo Dos Santos K, Toledo-Teixeira DA, Parise PL, Martini MC, Marques RE, Carmo HR, Borin A, Corinha LD, Boldrini VO, Brunetti NS, Vieira AS, Mansour E, Ulaf RG, Bernardes AF, Nunes TA, Ribeiro LC, Palma AC, Agrela MV, Moretti ML, Sposito AC, Pereira FB, Velloso LA, Vinolo MAR, Damasio A, Proença-Médena JL, Carvalho RF, Mori MA, Martins-de-Souza D, Nakaya HI, Farias AS, Moraes-Vieira PM (2020) Elevated glucose levels favor SARS-CoV-2 infection and mono-cyte response through a HIF-1α/Glycolysis-dependent axis. Cell Metab 32:437–446.e5. https://doi.org/10.1016/j. cellul.2020.07.007

Corradin O, Scacheri PC (2014) Enhancer variants: evaluating functional and pathway annotation networks. Bioinformatics 25:1091–1093. https://doi.org/10.1093/BIOINFORMATICS/BTP101

Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093. https://doi.org/10.1093/BIOINFORMATICS/BTP101

Critically, protein function can be predicted using machine learning models that are trained on large datasets containing protein sequence information. This approach is particularly useful for understanding the functional implications of rare missense mutations that are not easily annotated by traditional manual curation methods. For example, Wang et al. (2021) used a deep learning model to predict the functional impact of missense variants in the BRCA1 gene, which is associated with breast cancer risk. The model achieved high accuracy in identifying deleterious variants, outperforming existing databases. Further research is needed to validate the performance of these models and to optimize their use in clinical practice.

Equally important is the integration of structural information into computational models of protein function. Structures are often available for a small subset of proteins, which limits the applicability of machine learning approaches. However, recent advances in computational protein design and structure prediction have enabled the generation of high-quality structural models for many proteins. This information can be leveraged to improve the accuracy of functional predictions, especially for proteins that lack high-quality experimental structures.

In conclusion, the field of computational protein function prediction is rapidly advancing, driven by the growing availability of large-scale functional, sequence, and structural data. By combining these data with powerful machine learning algorithms, researchers can develop models that not only predict protein function but also provide insights into the mechanisms underlying protein activity. These models will be instrumental in advancing our understanding of protein function, enabling the development of new therapeutic strategies and providing a deeper understanding of the molecular basis of human diseases.
Maximchik P, Abdrahmanov A, Inozemtseva E, Tyurin-Kuzmin PA, Zhivotovsky B, Gogvadze V (2018) 2-Deoxy-D-glucose has distinct and cell line-specific effects on the survival of different cancer cells upon antitumor drug treatment. FEBS J 285:4590–4601. https://doi.org/10.1111/FEBS.14687

Medini H, Zirman A, Mishmar D (2021) Immune system cells from COVID-19 patients display compromised mitochondrial-nuclear expression co-regulation and Rewiring towards glycolysis, iScience 24:103471. https://doi.org/10.1016/j.isci.2021.103471

Mullen PJ, Garcia G, Purkayastha A, Matulionis N, Schmid EW, Momcilovic M, Sen C, Langerman J, Ramaiah A, Shackelford DB, Danioseaux R, French SW, Plath K, Gomperts BN, Arumugaswami V, Christofk HR (2021) SARS-CoV-2 infection rewrites host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun 12:1–10. https://doi.org/10.1038/s41467-021-22166-4

Pålsson-Mcdermott EM, O’Neill LAJ (2013) The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays 35:965–973. https://doi.org/10.1002/BIES.201300084

Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:W239–W242. https://doi.org/10.1093/nar/gkl190

Paul SM, Mytelka DS, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214. https://doi.org/10.1038/nrd3078

Plassmeyer M, Alpan O, Corley M, Premeaux T, Lillard K, Coatney P, Vaziri T, Michalsky S, Pang A, Bukhari Z, Yeung S, Evering T, Naughton G, Latterich M, Mudd P, Spada A, Rindone N, Loizou D, Sonder SU, Ndhlovu L, Gupta R (2021) Caspases in COVID-19 disease and sequela and the therapeutic potential of caspase inhibitors. Authora Prepr. https://doi.org/10.22541/AU.161368477.78159414/V1

Pliszka M, Szablewski L (2021) Glucose transporters as a target for anticancer therapy. Cancers (basel) 13:4184. https://doi.org/10.3390/cancers13164184

Prabhu BN, Kanchanreddy SH, Sharma AR, Bhat SK, Bhat PV, Kabekkodu SP, Satyamoorthy K, Rai PS (2021) Conceptualization of functional single nucleotide polymorphisms of polycystic ovarian syndrome genes: an in silico approach. J Endocrinol Invest 44:1783–1793. https://doi.org/10.1007/S40618-021-01498-4

Samantaray A, Johnson E, Kumar N, Mehdiratta L (2021) COVID-19: a game of drugs, vaccines, hope and… death! Indian J Anaesth 44:1783–1793. https://doi.org/10.1007/s10038-021-01498-4

Singh R, Bhardwaj VK, Das P, Purohit R (2021) A Computational approach for rational discovery of inhibitors for non structural protein 1 of SARS-CoV-2. Comput Biol Med 135:104555. https://doi.org/10.1016/j.compbiomed.2021.104555

Singh R, Bhardwaj VK, Das P, Bhattacharjee D, Zyranyan GV, Purohit R (2022) Benchmarking the ability of novel compounds to inhibit SARS-CoV-2 main protease using steered molecular dynamics simulations. Comput Biol Med 146:105572. https://doi.org/10.1016/j.compbiomed.2022.105572

The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D65–D74. https://doi.org/10.1093/NAR/GKA4100

Vandoooren J, Itoh Y (2021) Alpha-2-Macroglobulin in Inflammation. Immunity and Infections Front Immunol. https://doi.org/10.3389/FIMMU.2021.803244

Vohra M, Sharma AR, Satyamoorthy K, Rai PS (2021) Pharmacogenomic considerations for repurposing of dexamethasone as a potential drug against SARS-CoV-2 infection. Futur Med 18:389–398. https://doi.org/10.2217/pme-2020-0183

Wahl DR, Byersdorfer CA, Ferrara JLM, Opipari AW, Glick GD (2012) Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev 249:104. https://doi.org/10.1111/j.1600-065X.2012.01148.X

Wang C, Wang Z, Wang G, Lau JYN, Zhang K, Li W (2021) COVID-19 in early 2021: current status and looking forward. Signal Transduct Target Ther 6:1–14. https://doi.org/10.1038/s41392-021-00527-1

Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934. https://doi.org/10.1093/NAR/GKR917

Waterhouse A, Bertoni M, Bienert S, Studer G, Taurelli G, Gumieny R, Heer FT, de Beer TAP, Rempler C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/NAR/GKY427

Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE (2012) Pharmacogenomic knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417. https://doi.org/10.1038/CLPT.2012.96

Wu JF, Song SH, Lee CS, Chen HL, Ni YH, Hus HY, Wu TC, Chang MH (2018) Clinical predictors of liver fibrosis in patients with chronic hepatitis B virus infection from children to adults. J Infect Dis 217:1408–1416. https://doi.org/10.1093/INFDIS/JHY048

Xi H, Kurtoglu M, Lampidis TJ (2014) The wonders of 2-deoxy-D-glucose: mechanisms that suppress its toxic effects. Curr Genet 67:107–114. https://doi.org/10.1007/s00294-020-01122-7

Schroeder A, Klein K, Winter S, Schwab M, Bonin M, Zell A, Zanger UM (2011) Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomics J 13:12–20. https://doi.org/10.1038/tjpj.2011.44

Shastry BS (2007) SNPs in disease gene mapping, medicinal drug development and evolution. J Hum Genet 52:871–880. https://doi.org/10.1007/s10038-007-0200-z

Yuan S, Chan HCS, Hu Z (2017) Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci 7:e1298. https://doi.org/10.1002/WCMS.1298