HSV-1 strains circulating in Finland demonstrate uncoupling of geographic and phenotypic variation

Christopher D. Bowen, Henrik Paavilainen, Daniel W. Renner, Jussi Palomäki, Jenni Lehtinen, Tytti Vuorinen, Peter Norberg, Veijo Hukkanen, Moriah L. Szpara

1Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
2Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10 D, FIN-20520 Turku, Finland
3Clinical Microbiology, Turku University Hospital and Institute of Biomedicine, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland
4Department of Virology, University of Gothenburg, Gothenburg, Sweden

#equal contribution of DWR and HP
*equal contribution of MLS and VH

Corresponding Author:
Moriah L. Szpara
Dept. of Biochemistry & Molecular Biology
The Huck Institutes of the Life Sciences
W-208 Millennium Science Complex (MSC)
Pennsylvania State University
University Park, PA 16802 USA
Phone: 814-867-0008
Email: moriah@psu.edu

Author emails:
Christopher D. Bowen: cdb5004@psu.edu
Henrik Paavilainen: hojpaa@utu.fi
Daniel W. Renner: dwr19@psu.edu
Jussi Palomäki: jmmpal@utu.fi
Jenni Lehtinen: jen_ni_90@hotmail.com
Tytty Vuorinen: tyvuori@utu.fi
Peter Norberg: peter.norberg@microbio.gu.se
Veijo Hukkanen: veijo.hukkanen@utu.fi
Moriah L. Szpara: moriah@psu.edu
Abstract

A majority of adults in Finland are seropositive carriers of herpes simplex viruses (HSV). Infection occurs at epithelial or mucosal surfaces, after which virions enter innervating nerve endings, eventually establishing lifelong infection in neurons of the sensory or autonomic nervous system. Recent data have highlighted the genetic diversity of HSV-1 strains, and demonstrated apparent geographic patterns in strain similarity. Though multiple HSV-1 genomes have been sequenced from Europe to date, there is a dearth of sequenced genomes from Nordic countries. Finland’s history includes at least two major waves of human migration, suggesting the potential for diverse viruses to persist in the population. Here we used HSV-1 clinical isolates from Finland to test the relationship between viral phylogeny, genetic variation, and phenotypic characteristics. We found that Finnish HSV-1 isolates separated into two distinct phylogenetic groups, potentially reflecting the two historical waves of human (and viral) migration into Finland. The amount of genetic diversity found in these ten clinical isolates was similar to that found between independent HSV-1 strains from other geographic areas. These HSV-1 isolates harbored distinct phenotypes in cell culture, including differences in virus production, extracellular virus release, and cell-type-specific fitness. Importantly, these phenotypic differences did not partition into the same groups as the phylogenetic clusters, demonstrating that whole-genome relatedness is not a proxy for overall viral phenotype. Instead, we highlight specific gene-level differences that may contribute to observed phenotypic differences, and we note that strains from different phylogenetic groups contain the same genetic variations.

Keywords: Herpes simplex virus (HSV), comparative genomics, phylogeny, genotype, phenotype, genetic variation
Introduction

Human herpes simplex virus 1 (HSV-1; Family: Herpesviridae, Genus: Simplexvirus, species: *Human herpesvirus 1*) has been recognized as a major human malady since the era of Hippocrates (1), and to this day there is no effective vaccine (2). Approximately 50% of adults in Finland are seropositive for HSV-1 (3–5), and 13% are seropositive for HSV-2 (3, 6). HSV infects via epithelial or mucosal surfaces, after which it is taken up by nerve endings and establishes a lifelong infection in neurons of the sensory or sympathetic nervous system. From these neuronal sites the virus can reactivate, transit via nerve endings back to the skin surface, and re-initiate skin or mucosal shedding at the same site as the original infection. In addition to recurrent epithelial lesions, HSV also causes infectious keratitis, worsens acquisition and shedding rates for human immunodeficiency virus (HIV), and can progress to cause rare but life-threatening encephalitis (1).

Recent comparative genomics studies of HSV-1, from our lab and others, have demonstrated that HSV-1 strains from unrelated individuals can differ in 2-4% of the viral genome (7–13). HSV-1 has a large DNA genome of ~152 kilobases, encoding >75 proteins (14, 15). Sequence-based comparisons of HSV-1 strains have demonstrated at least three major clades (16, 17), with evidence of geographic clustering (9, 18), as well as recombination between these groups. HSV-1 displays greater host-to-host variation than any other alpha-herpesvirus (9, 19): approximately double the amount found in HSV-2 (20, 21), and 5-fold higher than found between isolates of varicella zoster virus (VZV) (22–24). The impacts of these naturally occurring viral genetic variations on virulence and pathogenesis in humans are unknown. Examining the phenotypic differences displayed by HSV-1 strains in culture provides an opportunity to explore the scope of...
these differences and test whether or not they are linked to previously observed patterns of geographic diversity.

Finland has a unique history that has led to a relatively homogeneous and stable population, providing a unique view on the evolution of viruses that are persistent in the population. There have been two major migratory sweeps contributing to expansion of the human population of Finland: the first wave from the east, occurring ca. 4000 years ago, and another wave from the south (southwest) ca. 2000 years ago (25–27). Finland also has one of the best genealogical databases in the world, which in combination with computerized medical records and a high rate of patient participation, has led to many recent advances in human medical genetics (28, 29). This may enable future studies to explore the co-evolution of human and viral genetic variation in this population.

We have characterized ten HSV-1 strains isolated from a random subset of Finland clinic visits, and compared their growth properties, drug resistance, and other phenotypic features. Full genome sequences of these viruses were compared to each other and to other previously described strains of HSV-1, to reveal patterns of inter-host and intra-host variability. We found that the observed phenotypic differences did not partition into the same sub-groups as the overall genomic patterns, demonstrating that whole-genome relatedness is not a proxy for viral phenotype. We anticipate that these data will aid in efforts to develop improved sequence-based antiviral therapies and contribute to development of a vaccine against HSV infections (30).

These data present an opportunity to explore the diversity of chronic herpesviruses in the Finland population, and to lay the foundation for future studies that explore the connections between...
viral genetic differences, host genetic predispositions, and their potential relationship(s) to clinical outcomes of HSV-1 infection.

Methods

Virus isolates and virus stock propagation

Clinical isolates were obtained from anonymous coded diagnostic samples from herpes lesions representing currently circulating viral strains in Finland (Table 1). Approval for the study of anonymous HSV isolates was provided by the Turku University Central Hospital (permit # J10/17).

An immunoperoxidase-rapid culture assay (31) was used to type the viruses as HSV-1, which was confirmed by a HSV type-specific gD (US6) gene-based PCR test (32). Viruses were initially propagated on Vero cells (African green monkey kidney cells; ATCC), maintained in Dulbecco's MEM with 2% fetal calf serum and gentamycin. A stock was made by addition of 3 ml of 9% autoclaved skimmed milk (Valio, Finland) on to 5 ml of the culture medium and subsequent freezing. The cells and the medium were collected and combined upon thawing, and were frozen and thawed for two further rounds before aliquoting. The viral titer was determined by plaque titration on Vero cells as described before (33). Parallel aliquots were used for further viral culture studies and for preparation of viral nucleocapsid DNA. For viral production data, SPSS Statistics 20 (IBM, Armonk NY, USA) software was used to perform statistical analyses. Non-parametric Mann-Whitney U-test was used to calculate statistical significances. The threshold for significance was set to p<0.05.
Viral genomic DNA isolation

The viral genomic DNA was prepared from isolated viral nucleocapsids as described previously (7, 34). In brief, viral stock collected from the first or second passage in Vero cells was used to infect \(\sim 1 \times 10^8\) HaCaT cells (Department of Dentistry, University of Turku (35)) at a multiplicity of infection (m.o.i.) of 0.1-1 plaque-forming units (PFU)/cell, and the infection was allowed to proceed to completion at +35 °C (1-3 days). The cells were collected, washed with PBS and suspended to LCM buffer (0.125 M KCl, 30 mM Tris pH 7.4, 5 mM MgCl\(_2\), 0.5 mM EDTA, 0.5% Nonidet P-40; with 0.6 mM beta-mercaptoethanol). After two successive extractions with Freon (1,1,2-trichloro-1,2,2-trifluoroethane, Sigma-Aldrich), the extracts were added on top of layers in LCM buffer with 45% and 5% glycerol and ultracentrifuged at 77 000 x g for 1 h at +4°C (Beckman Coulter SW41Ti rotor). Viral nucleocapsids were recovered from the bottom of the ultracentrifuge tube, and the DNA was prepared by treatment with Proteinase K and SDS, followed by repeated extractions with phenol-chloroform and ethanol precipitation. The DNA content and purity were observed by spectrophotometry and by agarose gel electrophoresis after restriction enzyme digestions.

Cell culture

Vero cells (ATCC; Manassas, VA) were propagated in M199 medium supplemented with 5% fetal bovine serum and gentamycin. HaCaT cells (Department of Dentistry, University of Turku; (35)) were propagated in DMEM medium with HEPES buffer, supplemented with 7% fetal bovine serum and gentamycin. SH-SY5Y neuroblastoma cells (K. Åkerman, Åbo Akademi University, Turku, Finland) were propagated in DMEM (high glucose) medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine and gentamycin. Initial differentiation of SH-

Bowen et al., 2018
SY5Y cells involved culture for 10 days in DMEM/F-12 medium containing 5% fetal bovine serum, 10 µM All-trans retinoic acid (Sigma), 2 mM L-glutamine and gentamycin. Thereafter SH-SY5Y cells were transferred on Matrigel-coated (B-D) 96-well plates and the medium was changed to serum-free DMEM/F-12 medium containing 10 µM all-trans retinoic acid (Sigma), 0.5 µg/ml of brain-derived neurotrophic factor (Millipore), 2 mM L-glutamine and gentamycin.

Acyclovir resistance testing

The sensitivity of each HSV strain to acyclovir was tested in a microplate format. Vero cells grown on 96-well cell culture plates were treated with cell culture medium (DMEM with 5% fetal bovine serum) supplemented with acyclovir (ACV; Sigma), in concentrations of 128 µg/ml to 0.03125 µg/ml (1:4 serial dilutions). Duplicate wells containing each ACV dilution, and wells without ACV, were infected with 100 PFU of each virus. As a control, the HSV-1 delta305 virus was included; it is resistant to ACV due to deletion of its thymidine kinase gene (36). Infected cells were incubated at +37°C, at 5% CO₂, for 72 hours before fixation with methanol and staining with crystal violet. The reduction of plaque numbers at each ACV dilution was observed in comparison with wells infected without ACV. A logistic fit curve was used for determination of IC₅₀ values. A virus with an IC₅₀ value of over 2 µg/ml (of ACV) was considered resistant (37).

Image acquisition

Photomicrographic images of viral plaques were obtained using a Zeiss Primovert inverted microscope with Plan-Achromat 4x and 10x objectives, recorded using an AxioCam ERc 5s camera, and analyzed using Zeiss ZEN 2012 software.
Next generation sequencing

Viral nucleocapsid DNA was sheared on a Covaris M220 (parameters: 60 seconds duration, peak power 50, 10% duty cycle, 4C). We used the Illumina TruSeq DNA Sample Prep kit to prepare barcoded sequencing libraries, according to the manufacturer’s protocol for low-throughput sample handling. Libraries were quantified and assessed by Qubit (Invitrogen, CA), Bioanalyzer (Agilent), and library adapter qPCR (KAPA Biosystems). Illumina MiSeq paired-end sequencing (2 x 300 bp) was completed according to manufacturer’s recommendations, using 17 pM library concentration.

A consensus viral genome for each strain was assembled using a de novo viral genome assembly (VirGA) workflow (10). This approach begins with quality control, including removal of contaminating host sequences, adapters from library preparation, and imaging artifacts. Next VirGA iterates through multiple de novo assemblies using SSAKE, which we then combine into longer blocks of sequence (contigs) using Celera and GapFiller. VirGA uses Mugsy alignment to match these contigs to the HSV-1 reference genome (strain 17, GenBank accession JN555585). The best-matched contigs are stitched into a single consensus genome, which is then annotated and subjected to additional quality control measures. These include an examination of coverage (sequence read) depth, detection of minority variants within each consensus genome, and manual inspection of gaps and low coverage areas. See Table 2 for GenBank accessions.

Intra-strain minority-variant detection

Minority-variant (MV) positions within each de novo assembled genome were determined using VarScan v2.2.11 as previously described (38, 39). Conservative variant calling parameters to
eliminate sequencing-induced errors were set at: minimum allele frequency ≥0.02; base call quality ≥20; read depth at the position ≥100; independent reads supporting minor allele ≥5. MVs containing ≥90% unidirectional strand support were excluded from further analyses (40, 41). MVs passing quality control were mapped to respective genomes and assessed for mutational effect using SnpEff and SnpSift (42, 43).

Phylogenetic and recombination analyses

DNA sequences were aligned using the Kalign algorithm included in eBioTools. To avoid inferences caused by false phylogenetic signals, all gap and repeat regions were excluded prior to this analysis. Repeat regions not leading to gaps were also excluded since these may contain single nucleotide differences that have been shuffled into new positions by random aspects of tandem-repeat alignment. Furthermore, ambiguous nucleotides that were marked as “N” were excluded, along with the corresponding aligned nucleotides in remaining sequences. Complete genomes in GenBank harbouring long stretches of “N” were not included in the analysis (e.g. strain B3x_1_5). In total, 110,168 nucleotides were analysed in each genome.

The phylogenetic network was constructed by using SplitsTree4. It is a NeighborNet with OrdinaryLeastSquares Variance depicted as a RootedEqualAngle splits tree. A recombination test on the complete dataset was performed by using the Phi test for recombination implemented in SplitsTree4.

Restriction fragment length polymorphism (RFLP) analysis

A cytoplasmic viral DNA preparation was modified from the protocol described by Igarashi et al (44). Subconfluent Vero cell cultures were infected at an m.o.i of 0.1, and incubated at +34°C for
2 days until the cytopathic effect was complete. The cells were collected in 150 mM NaCl, 10 mM Tris pH 7.6, 1.5 mM MgCl₂ buffer, with 0.1% Nonidet P-40. The nuclei were pelleted, and DNA was extracted from the supernatant by two successive extractions with phenol-chloroform. DNA was recovered by ethanol precipitation. 12.5 µg of each viral DNA was diluted in 15 µl solution containing sterile H₂O, FastDigest 10X green buffer and FastDigest BamHI or Sall restriction enzyme (Thermo Scientific). Electrophoresis was run in 0.8 % TBE-agarose gels, with GeneRuler mix DNA ladder, for 24 h at 45 V before imaging. In order to separate large DNA fragments after Sall digestion, electrophoresis was continued for additional 36 h at 30 V.

Results

Comparison of growth properties of Finnish HSV-1 strains in vitro

A random set of ten circulating Finnish HSV-1 isolates were selected from residual laboratory diagnostic specimens (Table 1). We first examined in vitro phenotypic characteristics of these HSV-1 isolates, by comparing their overall titer and rate of intracellular virus vs. extracellular (released) virus production at 24 hours post infection (hpi) of a range of cell types (Figure 1). These included non-human primate kidney-derived epithelial (Vero) cells (Figure 1A), human keratinocyte (HaCaT) cells (Figure 1B), and human neuroblastoma (SH-SY5Y) cells in a mixed, undifferentiated state (Figure 1C), as well as a differentiated, neuronal state (Figure 1D). Compared to epithelial and keratinocyte cells, overall viral production was markedly reduced in neuronal precursor cells and differentiated neuronal cells (compare Figure 1AB vs. CD). The wild-type HSV-1 reference strain 17+ replicated to significantly higher titers than any of the
circulating clinical isolates in Vero cells, which are standardly used for HSV propagation, and to a lesser extent strain 17+ replicated at higher titer in other cell types as well (Figure 1; p<0.05, 10-100 fold higher viral amounts). Different clinical isolates excelled at producing virions in each cell type, with no clear patterns of most- or least-efficient viral production or release across all cell types. The amount of extracellular released virus was less than 10% of the total virion production, in all cell types except the undifferentiated neuronal precursor cells (Supplemental Figure S1). Each virus strain was also tested for acyclovir (ACV) resistance. Despite some variation in ACV susceptibility (IC50 values), none of the circulating Finnish viruses was considered resistant to ACV (Table 1). There were also no significant differences among the 10 clinical isolates in the plaque morphology or the type of cytopathic effect induced in Vero cell cultures (Figure 2).

Genetic and genomic analysis of Finnish HSV-1 strains

Based on prior data suggesting the effects of successive waves of migration on the human population in Finland (25, 26), we next assessed the overall genetic diversity of these ten HSV-1 isolates. We first performed a restriction fragment length polymorphism (RFLP) analysis on viral genomic DNA, which revealed at least two broad patterns of variation (Figure 3 and Supplemental Figure S2). The diversity of bands led us to examine these genetic differences with greater precision using high-throughput, deep genome sequencing (HTS) and comparative genomics analysis (see Methods for details). A previously described bioinformatics pipeline was used to de novo assemble a full-length consensus genome for each strain (Table 2). A viral consensus genome represents the most common nucleotide detected at each nucleotide position in that viral population. All viral genomes had a coverage depth between 1,000-2,800-fold, with
>96% of the genome covered at a depth exceeding 100-fold (Table 2). This depth enabled us to compare the full genetic complement of the viral genome for each strain, and to analyze differences both between and within each viral strain population, and to compare them to previously described viral genomes.

Genetic relatedness of Finland HSV-1 samples

First, we used the viral consensus genomes to compare how overall variation in these ten Finnish HSV-1 genomes related to the patterns observed by RFLP analysis (Figure 3). Whole genome alignments were created using the ten Finnish HSV-1 genomes, as well as these ten in conjunction with a diverse set of previously published HSV-1 genomes (see Methods and Supplemental Table S1 for a full list). We then used SplitsTree to create a network graph that revealed the relatedness of the ten Finnish viral genomes to each other (Figure 4A) and to previously described HSV-1 genomes (Figure 4B). This approach revealed that the Finland HSV-1 genomes separated into two sub-groups, which appear to relate to previously recognized Asian and European / North American clades. These data echo those of the initial RFLP analysis.

Protein-coding variation in Finland HSV-1 samples

Next, we examined more fine-scale genetic differences in these HSV-1 isolates, which are invisible at the level of RFLP analysis. Here we examined DNA- and amino acid (AA)-alignments for each protein-coding region of the HSV-1 genome (Supplemental Table S2-S3). We found that from zero to 8% of each coding region differed at the AA level between the ten Finnish viral genomes (Figure 5). Only a handful of small coding regions (UL20, VP26 (UL35), UL49A, UL55) showed no AA variation at all between viral isolates. Consistent with previous
findings (9), gL (UL1), UL11, UL43, gG (US4), and gJ (US5) were among the most divergent proteins. Together these inter-strain genetic differences in 70 HSV-1 proteins in Figure 5 provide ample opportunities to generate the phenotypic diversity observed in Figure 1. Overall, these levels of AA coding diversity reflect those seen in previous analyses (9), and between other known HSV-1 genomes.

Minority allelic variants in Finland HSV-1 viral populations

Each viral consensus genome represents the most common nucleotide detected at each position in the viral genome. In contrast, minority variants (MV) within each viral population are rare alleles, presented in <50% of the sequenced reads. These MV may rise to greater prevalence during viral spread to new niches or hosts, or under selective evolutionary pressure. For each viral genome, we examined the number of MVs detected in each genome. Stringent quality-control criteria were used to reduce the number of false-positive MVs (see Methods), such that only those MV detected at ≥2% prevalence were used in this analysis. MVs were found dispersed across each genome (Supplemental Figure S3), mostly in intergenic regions. A concentration of MVs were found near tandem repeats in VP1/2 (UL36), gI (US7), and in the internal-repeat regions, which may result from stochasticity in tandem repeat alignment in these regions. The MVs detected in gI occur at the same tandem-repeat site as the consensus-level AA variations in this gene (Figure 6). Taken together, these results define the level of inter-host (Figure 5) and intra-host (Supplemental Figure S3) variation seen in the Finnish HSV-1 strains described herein.
Patterns of variation in Finnish HSV-1 strains

Finally, we considered whether any of the observed patterns of genomic or phenotypic variation could be linked to fine-scale coding variations in these ten Finnish HSV-1 isolates. The genomic sub-groups detected by RFLP (Figure 3) and network graph analysis (Figure 4) were reflected in several coding variations that correlated with phylogenetic group. For example, coding differences in the secreted and virion surface glycoprotein G (gG; US4) correlated with the two Finnish phylogenetic sub-groups (Figure 6A; see Figure 4 for phylogenetic sub-groups). Other impacts on coding variation may result from changes in copy number at tandem repeats.

Variation in tandem repeat length in glycoprotein I (gI; US7) leads to changes in the length of a repeating tract of mucin-type O-linked glycosylation sites (Figure 6B), akin to that previously described in clinical isolates of HSV-1 (16, 45). Finally, there are detectable patterns of AA variation that correlate with phenotypic differences in viral fitness in specific cell types. Coding differences in the nuclear egress complex protein NEC2 (UL34) (Figure 6C) were observed in the two strains (F-12g, M-15) which showed no detectable extracellular virion release in differentiated neuronal cells (Figure 1D). The terminally differentiated and non-dividing state of these neuronal cells may constitute a sensitized background to detect impacts on virion egress. Taken together, these examples illustrate the type and degree of variation present in these strains, and highlight potential genetic insights into viral phenotype.
Discussion

In this study, we described the first-ever HSV-1 genomes from Finland. Two distinct sub-groups or clades were observed in the ten Finnish clinical isolates, with four strains clustering in one clade and six in another. These groups were detectable using both classical RFLP approaches (Figure 3) and deep-sequencing methods for whole-genome analyses (Figure 4). These data appear to corroborate previous findings that show multiple colonization events of Finland, with migration from Europe in the south and Asia in the northeast (25, 26). However, we found that phenotypic differences between these isolates were uncoupled from the overall genomic patterns that grouped them into two geographic clades. While plaque morphology was consistent across isolates (Figure 2), the amount of virus production, extracellular virion release, and acyclovir sensitivity differed between isolates and across cell types (Figure 1 and Table 1). We detected gene-specific patterns of genetic variation that may well impact protein function. Future studies will need to dissect individual genetic variations in each viral isolate in order to test their precise impact(s) on viral fitness.

When analyzing the replication capabilities of these recently isolated clinical samples in multiple cell types, we found that they replicated to lower overall titers and produced fewer extracellular virions than the lab-adapted HSV-1 strain 17+, regardless of cell type (Figure 1 and Supplemental Figure S1). This difference was more pronounced in non-human primate and human epithelial cells, and was more subtle in neuronal precursors and differentiated neuronal cells. There did not appear to be any clear differences in titer or extracellular virus production between geographic clades. There also seemed to be no noticeable differences in plaque morphology among these samples, with plaque size and cellular cytopathic effect being similar.
across all samples. Although we report findings in a number of cell lines in this study, it will be important for future studies to examine each virus and cell-type pairing separately, since these data demonstrate that maximal viral fitness in one cell type is not generally predictive of fitness in another.

We observed several potential connections between genetic differences and phenotypic differences. For instance, we detected an AA difference in the UL34 (NEC2) binding domain in F-12g and M-15 (Figure 6C). Previous work has shown that the viral proteins UL31 (NEC1) and UL34 (NEC2) form a nuclear egress complex that localizes to the perinuclear space and plays a critical role in egress of viral capsids from the nucleus (46, 47). In these two clinical isolates (F-12g and M-15), there was no measurable amount of extracellular virus produced in differentiated neuronal cells (Figure 1D). Further studies will be needed to examine if this phenotype is linked to a disruption of NEC1 and NEC2 binding and impaired nuclear egress for isolates F-12g and M-15. Variation in the copy-number of tandem repeats is yet another way that HSV-1 isolates can generate genetic and potential phenotypic variation. Glycoprotein I (gI; US7) contains a mucin-like domain with repeating units of serine, threonine, and proline (Figure 6B). This domain varies in length across these isolates. This domain has been previously shown to serve as a site of O-linked glycosylation, with longer tracts (e.g. 8 repeating blocks of 7 AA each) being more heavily glycosylated than short tracts (e.g. 2 repeating blocks) (16, 45). A prior study of over 80 Swedish HSV-1 isolates found roughly equal distributions of isolates with two, three, or four repeating blocks in this mucin-like gI domain (16, 45). Half of the Finland HSV-1 isolates analyzed here have at least four repeating units, suggesting the potential for gI to be more
heavily glycosylated in these isolates. These data generate hypotheses for future investigations of genotype-phenotype links in these and other new clinical isolates.

This study provides one of the first combinations of phenotypic analyses that span multiple cell types, alongside full comparative genomic analyses that span both phylogenetic and gene-specific analyses. One comparison not yet explored in this or prior studies is the specific pairing of each virus with cells derived from the human source of each isolate. This approach is now technically feasible, using induced pluripotent stem cell technology to generate specific cell types from a single source such as a buccal swab. The rich genealogical databases in Finland suggest an opportunity to not only pair these analyses at the human-cell and virus level, but also to link observed phenotypes of cellular infection to each patient’s clinical and/or familial history of herpesvirus disease. We anticipate that in the future, this approach would yield fruitful insights not only into direct clinical outcomes of herpesvirus disease, but also generate hypotheses about herpesvirus co-morbidities.

Acknowledgements

The authors thank members of the Hukkanen and Szpara labs for helpful feedback and discussion. We acknowledge Ritva Kajander for preparation of the viral stocks and the viral nucleocapsid DNA. This work was supported by research startup funds (MLS) from the Pennsylvania State University, and by a grant from the Pennsylvania Department of Health using CURE funds (MLS). The Department specifically disclaims responsibility for any analyses, interpretations, or conclusions. The funding from the Jane and Aatos Erkko Foundation grant...
#170046 is acknowledged. We thank Prof. Bernard Roizman, University of Chicago, for the delta305 virus.

Figure Legends

Figure 1: Comparison of growth properties of Finnish HSV-1 strains reveals the uncoupling of phenotypic and geographic variation.

Histograms comparing virus production for ten Finnish strains of HSV-1, as compared to the HSV-1 reference strain 17+, in different cell types. Panel (A, non-human primate) shows Vero monkey kidney cells, which are defective in interferon signaling; (B) shows HaCaT human epithelial cells; (C) shows undifferentiated human SH-SY5Y neuroblastoma cells (neuronal precursor cells); (D) shows differentiated human SH-SY5Y neuronal-like cells. Viruses are plotted in descending order based on their viral production, and divided into their genomic subgroups (see Figure 4). Each histogram bar plots infectious virions in the cell-associated fraction (gray) vs. those released from cells (black). **Supplemental Figure S1** shows the same data, but with extracellular released virus plotted as a percentage of total virus production. Bar shows SEM; * = p<0.05, ** = p<0.001 as compared to the total virus amount (cell associated + shed), clinical isolate vs HSV-1(17+) reference strain.

Figure 2. Finnish HSV-1 strains have similar plaque morphology.

Typical morphology of the plaques of the clinical HSV-1 isolates on Vero cells, at 48 hours post infection. Plaques are shown at low magnification (4X, A,C), as well as high magnification (10X, B,D). Isolates M-19 (A-B) and F-12g (C,D) serve as representative examples. These two isolates also represent the two sub-groups of Finnish HSV-1 isolates detected in **Figures 3-4**, as
well as samples annotated as blister-derived (M-19) and genital-blister-derived (F-12g) (see also Table 1). The scale bar corresponds to 100 µm in panels A and C, and to 50 µm in panels B and D.

Figure 3: RFLP comparison reveals at least two sub-groups of Finnish HSV-1 strains.

Viral genomic DNA was digested with SalI and separated via electrophoresis to distinguish overall genetic patterns. Classically defined SalI fragment notations (red alphabet letters) are indicated on the left (48). Predicted SalI cut-sites in each viral genome are shown in Supplemental Figure S2. Red crosses (x) indicate variation in the size of SalI fragment G, while diamonds indicate variation in the SalI Q fragment.

Figure 4. A network graph of genetic relatedness reveals that Finland HSV-1 isolates separate into two sub-groups.

A network graph of genetic relatedness was constructed using SplitsTree4 to demonstrate how the ten new Finland HSV-1 isolates relate to each other (A) and to previously described HSV-1 genomes from a diversity of locations (B). Geographic clustering of branches and clades resemble those previously described (9, 16–18) and are colored by origin of strains: red for Europe and North America, blue for Asia, and purple for Africa. Finland HSV-1 genomes are indicated in bold, and separate into two sub-groups (A), which appear to relate previously recognized Asian and European and North American clades. The isolate name, country of origin, GenBank accession, and reference(s) for each previously described HSV-1 genome are listed in Supplemental Table S1.
Figure 5. Substantial protein-coding variation exists between Finland HSV-1 isolates.

Histogram showing each protein of the HSV-1 genome and its percent amino acid (AA) variation between the ten Finnish HSV-1 strains compared here. Labels for the Unique Long (UL) and Unique Short (US) regions of the HSV-1 genome are shown in summary format, to the left of each sequentially-numbered viral coding region. Where possible, the common name of each protein is shown to the right of the appropriate histogram bar, e.g. UL1 is also known as gL. AA differences were quantified at the consensus level of each viral genome. See Supplemental Table S2 for additional data on the number of nucleotide differences and dN/dS ratio for each gene.

Figure 6. Patterns of genetic variation in Finnish HSV-1 strains correlate with genomic and phenotypic data.

Diagrams depict three HSV-1 proteins with known functional domains and post-translational modifications (e.g. phosphorylation, glycosylation; see Legend). A subset of each protein is highlighted via an AA alignment of the ten clinical HSV-1 isolates. (A) Coding differences in the secreted and virion surface glycoprotein G (gG; US4) correlate with the overall genomic subgroups (clades) shown in Figure 4. (B) Variation in copy number of a seven AA tandem repeat block in glycoprotein I (gI; US7) changes the length of a repeating tract of mucin-type O-linked glycosylation sites, as described previously in clinical isolates of HSV-1 (16, 45). (C) AA differences in the nuclear egress protein NEC2 (UL34) were observed in the two strains (M-15, F-12g) which showed no detectable extracellular virion release in differentiated neuronal cells (Figure 1D).
References

1. Roizman B, Sears E. 1996. Herpes simplex viruses and their replication, p. 1043–1107. In Fields, BN, Knipe, DM, Howley, PM (eds.), Fundamental virology, 3rd ed. Lippincott-Raven, Philadelphia, PA.

2. Johnston C, Koelle DM, Wald A. 2011. HSV-2: in pursuit of a vaccine. J Clin Invest 121:4600–4609.

3. Pebody RG. 2004. The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sex Transm Infect 80:185–191.

4. Puhakka L, Sarvikivi E, Lappalainen M, Surcel H-M, Saxen H. 2016. Decrease in seroprevalence for herpesviruses among pregnant women in Finland: cross-sectional study of three time points 1992, 2002 and 2012. Infect Dis 48:406–410.

5. Looker KJ, Magaret AS, May MT, Turner KME, Vickerman P, Gottlieb SL, Newman LM. 2015. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS ONE 10:e0140765.

6. Looker KJ, Magaret AS, Turner KME, Vickerman P, Gottlieb SL, Newman LM. 2015. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PloS One 10:e114989.

7. Szpara ML, Parsons L, Enquist LW. 2010. Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. J Virol 84:5303–13.

8. Kolb AW, Adams M, Cabot EL, Craven M, Brandt CR. 2011. Multiplex sequencing of seven ocular herpes simplex virus type-1 genomes: phylogeny, sequence variability, and SNP distribution. Invest Ophthalmol Vis Sci 52:9061–73.

9. Szpara ML, Gatherer D, Ochoa A, Greenbaum B, Dolan A, Bowden RJ, Enquist LW, Legendre M, Davison AJ. 2014. Evolution and diversity in human herpes simplex virus genomes. J Virol 88:1209–27.

10. Parsons LR, Tafuri YR, Shreve JT, Bowen CD, Shipley MM, Enquist LW, Szpara ML. 2015. Rapid genome assembly and comparison decode intrastrain variation in human alphaherpesviruses. mBio 6:e02213-14.

11. Bowen CD, Renner DW, Shreve JT, Tafuri Y, Payne KM, Dix RD, Kinchington PR, Gatherer D, Szpara ML. 2016. Viral forensic genomics reveals the relatedness of classic herpes simplex virus strains KOS, KOS63, and KOS79. Virology 492:179–186.

12. Pfaff F, Groth M, Sauerbrei A, Zell R. 2016. Genotyping of herpes simplex virus type 1 (HSV-1) by whole genome sequencing. J Gen Virol.
13. Greninger AL, Roychoudhury P, Xie H, Casto A, Cent A, Pepper G, Koelle DM, Huang M-L, Wald A, Johnston C, Jerome KR. 2018. Ultrasensitive Capture of Human Herpes Simplex Virus Genomes Directly from Clinical Samples Reveals extraordinarily Limited Evolution in Cell Culture 3:12.

14. Davison AJ. 2012. Evolution of sexually transmitted and sexually transmissible human herpesviruses. Ann N Y Acad Sci 1230:E37–E49.

15. Roizman B, Knipe DM, Whitley R. 2013. Herpes Simplex Viruses, p. 1823–1897. In Fields Virology, 6th ed. Lippincott Williams & Wilkins, Philadelphia, PA.

16. Norberg P, Bergstrom T, Rekabdar E, Lindh M. 2004. Phylogenetic Analysis of Clinical Herpes Simplex Virus Type 1 Isolates Identified Three Genetic Groups and Recombinant Viruses. J Virol 78:10755–10764.

17. Norberg P. 2010. Divergence and genotyping of human alpha-herpesviruses: an overview. Infect Genet Evol J Mol Epidemiol Evol Ge net Infect Dis 10:14–25.

18. Kolb AW, Ané C, Brandt CR. 2013. Using HSV-1 genome phylogenetics to track past human migrations. PloS One 8:1–9.

19. Sijmons S, Thys K, Mbong Ngwese M, Van Damme E, Dvorak J, Van Loock M, Li G, Tachezy R, Busson L, Aerssens J, Van Ranst M, Maes P. 2015. High-Throughput Analysis of Human Cytomegalovirus Genome Diversity Highlights the Widespread Occurrence of Gene-Disrupting Mutations and Pervasive Recombination. J Virol 89:7673–7695.

20. Newman RM, Lamers SL, Weiner B, Ray SC, Colgrove RC, Diaz F, Jing L, Wang K, Saif S, Young S, Henn M, Laeyendecker O, Tobian AAR, Cohen JI, Koelle DM, Quinn TC, Knipe DM. 2015. Genome Sequencing and Analysis of Geographically Diverse Clinical Isolates of Herpes Simplex Virus 2. J Virol JVI.015.

21. Kolb AW, Larsen IV, Cuellar JA, Brandt CR. 2015. Genomic, Phylogenetic, and Recombinational Characterization of Herpes Simplex Virus 2 Strains. J Virol 89:6427–6434.

22. Tyler SD, Peters GA, Grose C, Severini A, Gray MJ, Upton C, Tipples GA. 2007. Genomic cartography of varicella-zoster virus: a complete genome-based analysis of strain variability with implications for attenuation and phenotypic differences. Virology 359:447–58.

23. Zell R, Taudien S, Pfaff F, Wutzler P, Platzer M, Sauerbrei A. 2012. Sequencing of 21 Varicella-Zoster Virus Genomes Reveals Two Novel Genotypes and Evidence of Recombination. J Virol 86:1608–1622.

24. Depledge DP, Gray ER, Kundu S, Cooray S, Poulsen A, Aaby P, Breuer J. 2014. Evolution of Cocirculating Varicella-Zoster Virus Genotypes during a Chickenpox Outbreak in Guinea-Bissau. J Virol 88:13936–13946.
25. Kittles RA, Perola M, Peltonen L, Bergen AW, Aragon RA, Virkkunen M, Limnoila M, Goldman D, Long JC. 1998. Dual Origins of Finns Revealed by Y Chromosome Haplotype Variation. Am J Hum Genet 62:1171–1179.

26. Varilo T, Paunio T, Parker A, Perola M, Meyer J, Terwilliger JD, Peltonen L. 2003. The interval of linkage disequilibrium (LD) detected with microsatellite and SNP markers in chromosomes of Finnish populations with different histories. Hum Mol Genet 12:51–59.

27. Lappalainen T, Laitinen V, Salmela E, Andersen P, Huoponen K, Savontaus M-L, Lahermo P. 2008. Migration Waves to the Baltic Sea Region. Ann Hum Genet 72:337–348.

28. Hannelius U, Salmela E, Lappalainen T, Guillot G, Lindgren CM, von Döbeln U, Lahermo P, Kere J. 2008. Population substructure in Finland and Sweden revealed by the use of spatial coordinates and a small number of unlinked autosomal SNPs. BMC Genet 9:54.

29. Ilonen J, Reijonen H, Green A, Reunanen A, Knip M, Simell O, Akerblom HK. 2000. Geographical differences within Finland in the frequency of HLA-DQ genotypes associated with type 1 diabetes susceptibility. The Childhood Diabetes in Finland Study Group. Eur J Immunogenetics Off J Br Soc Histocompat Immunogenetics 27:225–230.

30. Paavilainen H, Lehtinen J, Romanovskaya A, Nygårdas M, Bamford DH, Poranen MM, Hukkanen V. 2016. Inhibition of clinical pathogenic herpes simplex virus 1 strains with enzymatically created siRNA pools: siRNA Pools Against Clinical HSV Strains. J Med Virol 88:2196–2205.

31. Ziegler T, Waris M, Rautiainen M, Arstila P. 1988. Herpes simplex virus detection by macroscopic reading after overnight incubation and immunoperoxidase staining. J Clin Microbiol 26:2013–2017.

32. Hukkanen V, Rehn T, Kajander R, Sjöroos M, Waris M. 2000. Time-resolved fluorometry PCR assay for rapid detection of herpes simplex virus in cerebrospinal fluid. J Clin Microbiol 38:3214–3218.

33. Romanovskaya A, Paavilainen H, Nygårdas M, Bamford DH, Hukkanen V, Poranen MM. 2012. Enzymatically produced pools of canonical and Dicer-substrate siRNA molecules display comparable gene silencing and antiviral activities against herpes simplex virus. PloS One 7:e51019.

34. Szpara ML, Tafuri YR, Enquist LW. 2011. Preparation of viral DNA from nucleocapsids. J Vis Exp JoVE 2–7.

35. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. 1988. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771.
36. Post LE, Mackem S, Roizman B. 1981. Regulation of alpha genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with alpha gene promoters. Cell 24:555–565.

37. Tardif KD, Jorgensen S, Langer J, Prichard M, Schlaberg R. 2014. Simultaneous titration and phenotypic antiviral drug susceptibility testing for herpes simplex virus 1 and 2. J Clin Virol 61:382–386.

38. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. 2012. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576.

39. Pandey U, Renner DW, Thompson RL, Szpara ML, Sawtell NM. 2017. Inferred father-to-son transmission of herpes simplex virus results in near-perfect preservation of viral genome identity and in vivo phenotypes. Sci Rep 7:13666.

40. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa S, Linak MC, Hirai A, Takahashi H, Altaf-Ul-Amin M, Ogasawara N, Kanaya S. 2011. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 39:1–13.

41. Depledge DP, Kundu S, Jensen NJ, Gray ER, Jones M, Steinberg S, Gershon A, Kinchington PR, Schmid DS, Balloux F, Nichols RA, Breuer J. 2014. Deep Sequencing of Viral Genomes Provides Insight into the Evolution and Pathogenesis of Varicella Zoster Virus and Its Vaccine in Humans. Mol Biol Evol 31:397–409.

42. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin) 6:80–92.

43. Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, Lu X. 2012. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front Genet 3.

44. Igarashi K, Fawl R, Roller RJ, Roizman B. 1993. Construction and properties of a recombinant herpes simplex virus 1 lacking both S-component origins of DNA synthesis. J Virol 67:2123–2132.

45. Norberg P, Olofsson S, Tarp MA, Clausen H, Bergstrom T, Liljeqvist JA. 2007. Glycoprotein I of herpes simplex virus type 1 contains a unique polymorphic tandem-repeated mucin region. J Gen Virol 88:1683–1688.

46. Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD. 2002. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76:8939–52.

47. Roller RJ, Bjerke SL, Haugo AC, Hanson S. 2010. Analysis of a Charge Cluster Mutation of Herpes Simplex Virus Type 1 UL34 and Its Extragenic Suppressor Suggests a Novel
Interaction between pUL34 and pUL31 That Is Necessary for Membrane Curvature around Capsids. J Virol 84:3921–3934.

48. Buchman TG, Simpson T, Nosal C, Roizman B. 1980. The Structure of Herpes Simplex Virus DNA and its Application to Molecular Epidemiology. Ann N Y Acad Sci 354:279–290.

49. Rastrojo A, López-Muñoz AD, Alcamí A. 2017. Genome Sequence of Herpes Simplex Virus 1 Strain SC16. Genome Announc 5:e01392-16.

50. Skoblov MY, Lavrov AV, Bragin AG, Zubtsov DA, Andronova VL, Galegov GA, Skoblov YS. 2017. The genome nucleotide sequence of herpes simplex virus 1 strain L2. Russ J Bioorganic Chem 43:140–142.

51. Petro CD, Weinrick B, Khajoueinejad N, Burn C, Sellers R, Jacobs WR, Herold BC. 2016. HSV-2 ΔgD elicits FcγR-effector antibodies that protect against clinical isolates. JCI Insight 1.

52. Lee K, Kolb AW, Sverchkov Y, Cuellar JA, Craven M, Brandt CR. 2015. Recombination Analysis of Herpes Simplex Virus 1 Reveals a Bias toward GC Content and the Inverted Repeat Regions. J Virol 89:7214–7223.

53. Bondre VP, Sankararaman V, Andhare V, Tupekar M, Sapkal GN. 2016. Genetic characterization of human herpesvirus type 1: Full-length genome sequence of strain obtained from an encephalitis case from India. Indian J Med Res 144:750–760.

54. Parsons LR, Tafuri YR, Shreve JT, Bowen CD, Shipley MM, Enquist LW, Szpara ML. 2015. Rapid Genome Assembly and Comparison Decode Intrastrain Variation in Human Alphaherpesviruses. mBio 6:e02213-14.

55. Norberg P, Tyler S, Severini A, Whitley R, Liljeqvist J-A, Bergstrom T. 2011. A genome-wide comparative evolutionary analysis of herpes simplex virus type 1 and varicella zoster virus. PloS One 6:1–8.
Table 1: The Finnish HSV-1 strains used for genome sequence comparisons.

Sample	Gender	Code	Age	Lesion or diagnosis	Acyclovir sensitivity, IC50 value (µg/ml)
H1211	female	F-11	21	blister	0.25
H1215	male	M-15	5	blister	0.03
H12113	female	F-13	29	blister	0.11
H12114	female	F-14g	23	genital blister	0.50
H12117	female	F-17	57	blister	0.15
H12118	female	F-18g	19	genital blister	0.13
H1311	female	F-11/	59	blister (lip)	0.31
H1312	male	M-12	39	blister	0.13
H1412	female	F-12g	28	genital lesion	0.09
H15119	male	M-19	36	blister	0.15

*The IC50 value for HSV-1 delta305 (a TK-negative, ACV-resistant, positive-control) was 8.08 and for the reference strain HSV-1(17+) it was 0.13. The limit of resistance was ≥2.0 µg/ml.
Table 2. Sequencing statistics for Finnish HSV-1 strains.

Sample	Code	% Depth ≥100	Average coverage	Raw Sequence Reads	Used for Assembly	% Viral	GenBank Accession^
H1211	F-11	96%	1,027x	4.2 million	2.8 million	66%	MH999843
H1215	M-15	99%	2,808x	5.5 million	3.8 million	70%	MH999846
H12113	F-13	98%	2,354x	3.8 million	2.4 million	64%	MH999842
H12114	F-14g	98%	2,078x	5.9 million	3.8 million	66%	MH999844
H12117	F-17	98%	1,976x	4.1 million	2.7 million	66%	MH999845
H12118	F-18g	98%	1,678x	4.2 million	2.9 million	69%	MH999847
H1311	F-11/	99%	2,541x	4.6 million	3.0 million	65%	MH999848
H1312	M-12	98%	2,415x	6.0 million	3.7 million	61%	MH999849
H1412	F-12g	98%	1,524x	4.5 million	3.1 million	69%	MH999851
H15119	M-19	99%	1,536x	4.8 million	3.0 million	64%	MH999850

^See GenBank flatfile attached for review purposes.
Figures & Figure Legends

Figure 1: Comparison of growth properties of Finnish HSV-1 strains reveals the uncoupling of phenotypic and geographic variation.

Histograms comparing virus production for ten Finnish strains of HSV-1, as compared to the HSV-1 reference strain 17+, in different cell types. Panel (A, non-human primate) shows Vero
monkey kidney cells, which are defective in interferon signaling; (B) shows HaCaT human epithelial cells; (C) shows undifferentiated human SH-SY5Y neuroblastoma cells (neuronal precursor cells); (D) shows differentiated human SH-SY5Y neuronal-like cells. Viruses are plotted in descending order based on their viral production, and divided into their genomic sub-groups (see Figure 4). Each histogram bar plots infectious virions in the cell-associated fraction (gray) vs. those released from cells (black). Supplemental Figure S1 shows the same data, but with extracellular released virus plotted as a percentage of total virus production. Bar shows SEM; * = p<0.05, ** = p<0.001 as compared to the total virus amount (cell associated + shed), clinical isolate vs HSV-1(17+) reference strain.
Figure 2. Finnish HSV-1 strains have similar plaque morphology.

Typical morphology of the plaques of the clinical HSV-1 isolates on Vero cells, at 48 hours post infection. Plaques are shown at low magnification (4X, A,C), as well as high magnification (10X, B,D). Isolates M-19 (A-B) and F-12g (C,D) serve as representative examples. These two isolates also represent the two sub-groups of Finnish HSV-1 isolates detected in Figures 3-4, as well as samples annotated as blister-derived (M-19) and genital-blister-derived (F-12g) (see also Table 1). The scale bar corresponds to 100 μm in panels A and C, and to 50 μm in panels B and D.
Figure 3: RFLP comparison reveals at least two sub-groups of Finnish HSV-1 strains.

Viral genomic DNA was digested with SalI and separated via electrophoresis to distinguish overall genetic patterns. Classically defined SalI fragment notations (red alphabet letters) are indicated on the left (48). Predicted SalI cut-sites in each viral genome are shown in Supplemental Figure S2. Red crosses (x) indicate variation in the size of SalI fragment G, while diamonds indicate variation in the SalI Q fragment.
Figure 4. A network graph of genetic relatedness reveals that Finland HSV-1 isolates separate into two sub-groups.

A network graph of genetic relatedness was constructed using SplitsTree4 to demonstrate how the ten new Finland HSV-1 isolates relate to each other (A) and to previously described HSV-1 genomes from a diversity of locations (B). Geographic clustering of branches and clades resemble those previously described (9, 16–18) and are colored by origin of strains: red for Europe and North America, blue for Asia, and purple for Africa. Finland HSV-1 genomes are indicated in bold, and separate into two sub-groups (A), which appear to relate previously recognized Asian and European and North American clades. The isolate name, country of origin, GenBank accession, and reference(s) for each previously described HSV-1 genome are listed in Supplemental Table S1.
Figure 5. Substantial protein-coding variation exists between Finland HSV-1 isolates.
Histogram showing each protein of the HSV-1 genome and its percent amino acid (AA) variation between the ten Finnish HSV-1 strains compared here. Labels for the Unique Long (UL) and Unique Short (US) regions of the HSV-1 genome are shown in summary format, to the left of each sequentially-numbered viral coding region. Where possible, the common name of each protein is shown to the right of the appropriate histogram bar, e.g. UL1 is also known as gL. AA differences were quantified at the consensus level of each viral genome. See Supplemental Table S2 for additional data on the number of nucleotide differences and dN/dS ratio for each gene.
Figure 6. Patterns of genetic variation in Finnish HSV-1 strains correlate with genomic and phenotypic data.

Diagrams depict three HSV-1 proteins with known functional domains and post-translational modifications (e.g. phosphorylation, glycosylation; see Legend). A subset of each protein is highlighted via an AA alignment of the ten clinical HSV-1 isolates. (A) Coding differences in the secreted and virion surface glycoprotein G (gG; US4) correlate with the overall genomic subgroups (clades) shown in Figure 4. (B) Variation in copy number of a seven AA tandem repeat block in glycoprotein I (gI; US7) changes the length of a repeating tract of mucin-type O-linked glycosylation sites, as described previously in clinical isolates of HSV-1 (16, 45). (C) AA differences in the nuclear egress protein NEC2 (UL34) were observed in the two strains (M-15, F-12g) which showed no detectable extracellular virion release in differentiated neuronal cells (Figure 1D).
Supplementary Table & Figures

Supplemental Table S1: List of previously published HSV-1 genomes used for phylogenetic analyses

Virus Isolate	Country (with location detail, if available)	GenBank Accession #	References
H1211 / F-11*	Finland	MH999843	(30), present
H1215 / M-15*	Finland	MH999846	(30), present
H12113 / F-13*	Finland	MH999842	present
H12114 / F-14g*	Finland	MH999844	(30), present
H12117 / F-17*	Finland	MH999845	(30), present
H12118 / F-18g*	Finland	MH999847	(30), present
H1311 / F11*	Finland	MH999848	present
H1312 / M-12*	Finland	MH999849	present
H1412 / F-12g*	Finland	MH999851	present
H15119 / M-19*	Finland	MH999850	present
SC16	Spain (Madrid)	KX946970	(49)
172/2010	Germany	LT594105	(12)
2158/2007	Germany	LT594106	(12)
3083/2008	Germany	LT594107	(12)
1319/2005	Germany	LT594108	(12)
270/2007	Germany	LT594109	(12)
66/2007	Germany	LT594110	(12)
1394/2005	Germany	LT594111	(12)
369/2007	Germany	LT594112	(12)
160/1982	Germany	LT594192	(12)
132/1998	Germany	LT594457	(12)
L2	Russia (Moscow)	KT780616	(50)
B^3x1.1	U.S.A. (Bronx, NY)	KU310657	(51)
B^3x1.2	U.S.A. (Bronx, NY)	KU310658	(51)
B^3x1.3	U.S.A. (Bronx, NY)	KU310659	(51)
B^3x1.4	U.S.A. (Bronx, NY)	KU310660	(51)
B^3x1.5	U.S.A. (Bronx, NY)	KU310661	(51)
H193	U.S.A.	KT425108	n/a
KOS79	U.S.A. (Madison, WI)	KT425109	(11)
CJ994	U.S.A. (Madison, WI)	KR011283	(52)
HSV-1/0116209/India/2011	India	KJ847330	(53)
H166	U.S.A.	KM222726	(54)
H166syn	U.S.A.	KM222727	(54)
RE	U.S.A.	KF498959	n/a
OD4	U.S.A. (Madison, WI)	JN420342	(8)
17	U.K. (Glasgow)	JN555585	(9)
CR38	China (Shenyang)	HM585508	(9)
Virus Isolate	Country (with location detail, if available)	GenBank Accession #	References
---------------	---	---------------------	------------
E03	Kenya (Nairobi)	HM585509	(9)
E06	Kenya (Nairobi)	HM585496	(9)
E07	Kenya (Nairobi)	HM585497	(9)
E08	Kenya (Nairobi)	HM585498	(9)
E10	Kenya (Nairobi)	HM585499	(9)
E11	Kenya (Nairobi)	HM585500	(9)
E12	Kenya (Nairobi)	HM585501	(9)
E13	Kenya (Nairobi)	HM585502	(9)
E14	Kenya (Nairobi)	HM585510	(9)
E15	Kenya (Nairobi)	HM585503	(9)
E19	Kenya (Nairobi)	HM585511	(9)
E22	Kenya (Nairobi)	HM585504	(9)
E23	Kenya (Nairobi)	HM585505	(9)
E25	Kenya (Nairobi)	HM585506	(9)
E35	Kenya (Nairobi)	HM585507	(9)
R11	South Korea (Seoul)	HM585514	(9)
R62	South Korea (Seoul)	HM585515	(9)
S23	Japan (Sapporo)	HM585512	(9)
S25	Japan (Sapporo)	HM585513	(9)
F	U.S.A. (Chicago, IL)	GU734771	(9)
H129	U.S.A. (San Francisco, CA)	GU734772	(9)
McKrae	U.S.A. (Gainesville, FL)	JQ730035, JX142173	(9)
KOS	U.S.A. (Houston, TX)	JQ673480, JQ780693	(9)
HF10	U.S.A. (New York, NY)	DQ889502	(9)
Ty 25	Japan	MH999840	n/a
Ty 148	Japan	MH999841	n/a
K 86	Japan	MH999839	n/a
K 47	Japan	MH999838	n/a
7-hse†	Sweden or U.S.A.	SRX056767	(55)
7862†	Sweden or U.S.A.	SRX056770	(55)
3355†	Sweden or U.S.A.	SRX056769	(55)
2762†	Sweden or U.S.A.	SRX056768	(55)
90237†	Sweden or U.S.A.	SRX056772	(55)
E4†	Sweden or U.S.A.	SRX056773	(55)
78326†	Sweden or U.S.A.	SRX056771	(55)
4-J1037†	Sweden or U.S.A.	SRX056760	(55)
J1061†	Sweden or U.S.A.	SRX056774	(55)
5-J1061†	Sweden or U.S.A.	n/a	(55)

* newly sequenced strains from Finland in this study.
† Sequence data deposited in GenBank short read archive
Supplemental Table S2: Number of nucleotide and amino acid (AA) differences observed in each set of Finnish or worldwide published HSV1 genomes.

Gene*	ORF length in NT	protein length (#AA)	10 Finnish # NT diff.	10 Finnish # AA changes	10 Finnish %AA diff.	10 Finnish dN/dS	All HSV1 # NT diff.	All HSV1 # AA changes	All HSV1 %AA diff.	All HSV1 dN/dS ratio
UL1	675	224	22	12	5.4	1.20	58	31	13.8	1.15
UL2	1005	334	24	8	2.4	0.50	62	28	8.4	0.82
UL3	675	224	13	5	2.2	0.63	43	19	8.5	0.79
UL4	600	199	11	2	1.0	0.22	43	18	9.0	0.72
UL5	2649	882	35	13	1.5	0.59	106	38	4.3	0.56
UL6	2031	676	43	13	1.9	0.43	107	30	4.4	0.39
UL7	891	296	24	6	2.0	0.33	47	17	5.7	0.57
UL8	2253	750	44	18	2.4	0.69	124	62	8.3	1.00
UL9	2556	851	21	5	0.6	0.31	110	32	3.8	0.41
UL10	1422	473	25	5	1.1	0.25	81	30	6.3	0.59
UL11	291	96	13	5	5.2	0.63	26	17	17.7	1.89
UL12	1881	626	36	12	1.9	0.50	87	30	4.8	0.53
UL13	1557	518	27	10	1.9	0.59	72	33	6.4	0.85
UL14	660	219	10	6	2.7	1.50	27	15	6.8	1.25
UL15	2208	735	22	3	0.4	0.16	80	16	2.2	0.25
UL16	1122	373	13	3	0.8	0.30	55	19	5.1	0.53
UL17	2112	703	30	12	1.7	0.67	108	39	5.5	0.57
UL18	957	318	12	6	1.9	1.00	41	15	4.7	0.58
UL19	4125	1374	39	7	0.5	0.22	139	40	2.9	0.40
UL20	669	222	7	0	0.0	0.00	29	9	4.1	0.45
UL21	1608	535	20	9	1.7	0.82	70	25	4.7	0.56
UL22	2517	838	21	8	1.0	0.62	120	50	6.0	0.71
UL23	1131	376	21	8	2.1	0.62	63	26	6.9	0.70
UL24	810	269	18	7	2.6	0.64	60	28	10.4	0.88
Gene*	ORF length in NT*	protein length (#AA)	10 Finnish # NT diff.*	10 Finnish # AA changes	10 Finnish %AA diff.	10 Finnish dN/dS	All HSV1 # NT diff.	All HSV1 # AA changes	All HSV1 %AA diff.	All HSV1 dN/dS ratio
-------	------------------	----------------------	------------------------	-------------------------	----------------------	----------------	------------------	---------------------	------------------	---------------------
UL25	1743	580	19	4	0.7	0.27	74	25	4.3	0.51
UL26	1908	635	40	14	2.2	0.54	92	34	5.4	0.59
UL26.5	990	329	21	8	2.4	0.62	45	17	5.2	0.61
UL27	2715	904	51	14	1.5	0.38	123	40	4.4	0.48
UL28	2358	785	26	6	0.8	0.30	87	23	2.9	0.36
UL29	3591	1196	54	10	0.8	0.23	154	33	2.8	0.27
UL30	3708	1235	32	13	1.1	0.68	154	49	4.0	0.47
UL31	921	306	15	5	1.6	0.50	34	13	4.2	0.62
UL32	1791	596	20	2	0.3	0.11	85	28	4.7	0.49
UL33	393	130	2	1	0.8	1.00	14	4	3.1	0.40
UL34	828	275	15	6	2.2	0.67	37	14	5.1	0.61
UL35	339	112	1	0	0.0	0.00	8	1	0.9	0.14
UL36	9420	3139	166	66	2.1	0.66	1271	440	14.0	0.53
UL37	3372	1123	41	13	1.2	0.46	140	60	5.3	0.75
UL38	1398	465	18	8	1.7	0.80	70	30	6.5	0.75
UL39	3414	1137	42	13	1.1	0.45	157	61	5.4	0.64
UL40	1023	340	10	3	0.9	0.43	38	12	3.5	0.46
UL41	1470	489	16	3	0.6	0.23	52	22	4.5	0.73
UL42	1467	488	19	10	2.0	1.11	76	39	8.0	1.05
UL43	1254	417	35	17	4.1	0.94	90	50	12.0	1.25
UL44	1536	511	26	16	3.1	1.60	97	55	10.8	1.31
UL45	519	172	4	3	1.7	3.00	22	8	4.7	0.57
UL46	2157	718	33	15	2.1	0.83	111	65	9.1	1.41
UL47	2082	693	29	6	0.9	0.26	81	29	4.2	0.56
UL48	1473	490	18	4	0.8	0.29	69	25	5.1	0.57
UL49	276	301	13	5	1.7	0.63	42	18	6.0	0.75
UL49A	906	91	2	0	0.0	0.00	8	3	3.3	0.60
UL50	1116	371	23	9	2.4	0.64	65	26	7.0	0.67
Gene*	ORF length in NT^	protein length (#AA)	10 Finnish # NT diff.^	10 Finnish # AA changes	10 Finnish %AA diff.	10 Finnish dN/dS	All HSV1 # NT diff.	All HSV1 # AA changes	All HSV1 %AA diff.	All HSV1 dN/dS ratio
-------	------------------	----------------------	------------------------	-------------------------	----------------------	----------------	---------------------	---------------------	--------------------	----------------------
UL51	735	244	12	3	1.2	0.33	33	13	5.3	0.65
UL52	3177	1058	43	9	0.9	0.26	129	41	3.9	0.47
UL53	1017	338	16	4	1.2	0.33	36	12	3.6	0.50
UL54	1539	512	11	4	0.8	0.57	73	34	6.6	0.87
UL55	561	186	5	0	0.0	0.00	25	9	4.8	0.56
UL56	705	234	8	4	1.7	1.00	34	19	8.1	1.27
US1	1263	420	22	8	1.9	0.57	75	39	9.3	1.08
US2	876	291	24	6	2.1	0.33	44	14	4.8	0.47
US3	1446	481	14	5	1.0	0.56	57	21	4.4	0.58
US4	717	238	26	13	5.5	1.00	68	36	15.1	1.13
US5	279	92	10	7	7.6	2.33	25	17	18.5	2.13
US6	1185	394	18	4	1.0	0.29	67	18	4.6	0.37
US7	1173	390	28	12	3.1	0.75	119	57	14.6	0.92
US8	1653	159	30	13	8.2	0.76	79	38	23.9	0.93
US8A	480	550	3	3	0.5	1.00	49	15	2.7	0.44
US9	273	90	1	1	1.1	1.00	12	4	4.4	0.50
US10	939	312	11	5	1.6	0.83	65	29	9.3	0.81
US11	486	161	1	1	0.6	1.00	42	19	11.8	0.83
US12	267	88	4	2	2.3	1.00	17	10	11.4	1.43
RL1	747	248	25	11	4.4	0.79	422	90	36.3	0.27
RL2	2328	775	44	20	2.6	0.83	180	91	11.7	1.02
RS1	3897	1298	62	30	2.3	0.94	345	207	15.9	1.50

693 * See Supplemental Table S1 for list of strain names and genome accessions for comparisons of 10 Finnish and all published HSV1 genomes.
694 See Supplemental Table S3 for list of strains excluded from selected gene alignments due to missing data in GenBank.
695 ^ Abbreviations: ORF, open reading frame; NT, nucleotide; AA, amino acid; diff., difference; %, percent; dN/dS, ratio of nonsynonymous to synonymous nucleotide changes
Supplemental Table S3: HSV-1 strains used to calculate nucleotide and amino acid (AA) differences in Supplemental Table S2 and Figure 5.

Gene	# of strains in nucleotide alignment	# of strains in AA alignment	Strains not used in nucleotide and AA alignments*
UL7	60	60	B^3x1.1, B^3x1.2, B^3x1.3, B^3x1.4, B^3x1.5
UL12	61	61	B^3x1.1, B^3x1.3, B^3x1.4, B^3x1.5, RE
UL13	58	58	E06, E25, E11, OD4, B^3x1.3, B^3x1.4, B^3x1.5
UL15	60	60	B^3x1.1, B^3x1.2, B^3x1.3, B^3x1.4, B^3x1.5
UL19	61	61	B^3x1.3, B^3x1.4, B^3x1.5, RE
UL26.5	61	61	B^3x1.1, B^3x1.3, B^3x1.4, B^3x1.5, HF10
UL41	61	61	B^3x1.1, B^3x1.3, B^3x1.4, B^3x1.5, OD4
UL43	61	61	B^3x1.3, B^3x1.4, B^3x1.5, HF10
UL48	60	60	B^3x1.1, B^3x1.2, B^3x1.3, B^3x1.4, B^3x1.5
UL49A	51	51	B^3x1.3, B^3x1.4, B^3x1.5, HF10, 66_2007, 369_2007, 160_1982, 1394_2005, 132_1998, 3083_2008, 2158_2007, 172_2010, 270_2007, 1319_2005
UL55	59	59	E35, E13, KUTy25, B^3x1.3, B^3x1.4, B^3x1.5
UL56	60	60	B^3x1.1, B^3x1.2, B^3x1.3, B^3x1.4, B^3x1.5
US1	60	60	B^3x1.3, B^3x1.4, B^3x1.5, E35, HF10
US8A	61	61	HF10, B^3x1.3, B^3x1.4, B^3x1.5
RL1	58	58	B^3x1.3, B^3x1.4, B^3x1.5, OD4, 1394_2005, CJ994, L2
RL2	61	61	B^3x1.3, B^3x1.4, B^3x1.5, B^3x1.2
RS1	59	59	B^3x1.3, B^3x1.4, B^3x1.5, S23, CJ994, L2
All other genes	62	62	B^3x1.3, B^3x1.4, B^3x1.5

* Strains were excluded due to missing data (e.g. due to sequencing gaps) or annotations in GenBank.
Figure S1. Viral production as percent values in shed and cell-associated fractions.

Histograms compare virus production for ten Finnish strains of HSV-1, as compared to the HSV-1 reference strain 17+, in different cell types. These data are the same as those shown in Figure 1, but here extracellular released virus, or shed virus (black), is plotted as a percentage of total virus production (gray). Viruses are plotted in the same order as Figure 1, which is descending based on their viral production, within each genomic sub-group (see Figure 4). Panel (A, non-human primate) shows Vero monkey kidney cells, which are defective in interferon signaling;
(B) shows HaCaT human epithelial cells; (C) shows undifferentiated human SH-SY5Y neuroblastoma cells (neuronal precursor cells); (D) shows differentiated human SH-SY5Y neuronal-like cells. Bar shows SEM.
Supplemental Figure S2: Diagrams depict the predicted SalI cut-sites in 10 Finnish HSV-1 genomes.

A computational prediction of SalI restriction sites is shown for each viral consensus genome. Classically defined SalI fragment notations (alphabet letters) are indicated on each major fragment. These maps were compared to the experimentally observed fragments in Figure 3. Genomic sub-groups are as diagrammed in Figure 4.
Supplemental Figure S3. Scatter plots demonstrate the distribution of minority variants in each Finnish HSV-1 genome.

(A) Scatter plots demonstrate the position (x-axis) and frequency (y-axis) of minority variants detected in each Finnish HSV-1 genome. The limit of detection was set at 2% (see Methods for details). Stochastic aspects of alignment at tandem repeats can generate excess signals of...
minority variants near these areas, as can be seen in VP1/2 (UL36) and in the internal-repeat regions (areas denoted in gray on x-axis). **(B)** Histograms depict the total number of minority variants (y-axis) in each frequency bin (x-axis) for each strain of Finnish HSV-1. Bins are in 1% increments.