Screening for coeliac disease in children and adults living in a slum of Dhaka, Bangladesh

Md. Amran Gazi, Subhasish Das, Mustafa Mahfuz, Md. Mehedi Hasan, Md. Shabab Hossain, Shah Mohammad Fahim, Md. Ashraful Alam, Zannatun Noor, Carol A Gilchrist, William A Petri, Masudur Rahman, Ramendra Nath Mazumder, Rashidul Haque, Shafiquil Alam Sarker, Tahmeed Ahmed

ABSTRACT

Background and objective Serological screening with a confirmation through biopsy has improved the understanding of coeliac disease (CD) epidemiology worldwide. Prevalence of CD in Bangladesh is not yet explored and therefore, we aimed to assess the seroprevalence of CD in slum-dwelling malnourished children and adults in Dhaka.

Methods Serum samples were collected from three different cohorts: stunted (length-for-age Z-scores (LAZ) <-2) and at risk of stunting children (LAZ <-1 to -2) and malnourished adults (body mass index <18.5 kg/m²). Samples from all the participants were assessed for anti-tissue transglutaminase antibody (tTG-IgA) and total serum IgA by ELISA. Positive tTG-IgA and randomly selected low IgA values were reconfirmed using anti-tTG-IgG and gliadin IgG ELISA. CD was diagnosed when second screening tests were found positive and the participants were further investigated by small bowel biopsy.

Results A total of 818 participants (240 stunted, 272 at risk of stunting children and 306 malnourished adults) were enrolled in the study. Overall, anti-tTG-IgA was positive in 5/818 (0.6%; 95% CI 0.25% to 1.46%). Of the five positive cases, anti-tTG-IgG and gliadin IgG were found positive in only one participant. Duodenal biopsy of positive participant revealed characteristic lesions of CD. Randomly selected low IgA values were found negative in tTG-IgG and gliadin IgG for all the participants. No participant was found total IgA deficient.

Conclusion The incidence of coeliac autoimmunity is low in malnourished slum dwellers regardless of age in Bangladesh. It is important to investigate the nationwide prevalence to reveal the definite picture.

INTRODUCTION

Coeliac disease (CD) is a chronic small intestinal digestive disease caused by an inappropriate immune response to ingested gluten in genetically predisposed people who carry two specific class II human leucocyte antigen (HLA) haplotypes, DQ2/DQ8. The HLA-DQ2 and HLA-DQ8 present gluten peptide antigens, triggering the activation of T lymphocytes and ultimately leading to mucosal immune responses in intestine. The classic clinical presentations of CD are mostly gastrointestinal in nature and can be manifested by weight loss, diarrhoea, malnutrition,
statorrhoea and oedema caused by hypoalbuminaemia.\(^3\) The disease can also be presented with other range of symptoms leading to delayed or missed diagnosis\(^4\) which eventually may result in negative consequences on quality of life.\(^5\)\(^6\)

In past reports, the prevalence of CD exhibited evidence of racial and geographical differences, marked by a higher prevalence among the people of European descent.\(^9\) Geographical variances of CD prevalence can be explained by the differences in HLA-DQ background between the individuals as well as the dietary habit of consuming wheat as staple food. However, the presence of CD-predisposing HLA genes coupled with rapid westernisation of diet (ie, wheat consumption) and the recent global trend of migration might have a contribution to the rise of CD prevalence worldwide.\(^9\) Bangladesh is also experiencing a nutritional shift, although the staple food is rice along with other food items like wheat, potato, vegetables, fish, meat and milk. The prevalence of CD was observed 1% or a little more in the USA and in several European countries.\(^10\)\(^13\) Data pertaining to prevalence in the Asia-Pacific region are still very limited. A few studies were conducted on the symptomatic individuals in China, India, Malaysia and Vietnam to estimate the prevalence.\(^11\)\(^12\) However, there remains scarcity of information regarding the CD prevalence in Bangladesh especially among the malnourished population. Seroprevalence (IgA tTg positivity) of CD was found 15.38% among severe acute malnourished children in Bangladesh particularly among slum dwellers. CD-15.38% among severe acute malnourished children in Bangladesh especially among the malnourished population. CD is being conducted among the residents of a slum in Mirpur, one of the 21 regulatory units of Dhaka city. This is a community-based nutrition intervention study, and the details of the overall design of the study have already been published elsewhere.\(^25\) In short, the goals of this study include the validation of non-invasive biomarkers for assessing gut health, and understanding the pathophysiology and mechanism of environmental enteric dysfunction (EED). In the BEED study, participants were recruited from a cohort of children aged between 12 and 18 months and a cohort of adults aged between 18 and 45 years. The child cohort includes stunted children (length-for-age Z-scores (LAZ) <−2) and at risk of stunting children (LAZ <−1 to −2) and the adult cohort includes malnourished people with body mass index (BMI) <18.5 kg/m\(^2\). For this particular study, we have taken serum samples from 818 participants collected from July 2016 to March 2018 from the BEED study population. Serum samples had been kept at −80°C in a freezer prior to analysis.

STUDY PROTOCOL

Serological testing of tTG-IgA was used as primary screening test. If tTG-IgA was found negative, the chance of false-negative cases due to IgA deficiency was considered. Hence, all the participants with negative tTG-IgA were tested for total IgA. In the event with positive tTG-IgA, borderline tTG-IgA, low IgA (randomly selected) or IgA deficiency (IgAD) was found existent, and tTG of isotype IgG (tTG-IgG) and gliadin IgG was assayed for further confirmation of CD. Randomly selected samples from total IgA sufficient group were also assessed for tTG-IgG and gliadin IgG as control (expected to be negative). The CD diagnosis was based on the results of serological tests, histology of small intestine mucosal biopsy and clinical examination of the patient.

Serum antibody tests

Sera were analysed for tTG-IgA by ELISA using Eu-tTG (Eurospital, Trieste, Italy). All samples were diluted 1:101 in the sample buffer and 6-point calibration curves were used to calculate the levels of antibody, expressed as arbitrary units (units per millilitre). The layout for the interpretation of the results obtained is as follows: positive, ≥16 U/mL; borderline, 9–16 U/mL; normal, <9 U/mL. Quantitative determination of serum IgA was carried out using ELISA, following the manufacturer’s instructions (Affymetrix, eBioscience). Patients with serum levels of <5 mg/dL were considered IgA deficient, whereas values less than the reference limits (<20 mg/dL for children age 1–3 years and <70 mg/dL for adults older than 19 years) were considered as low IgA. Age-related IgA reference intervals are as described by Bienvenu et
Table 1 Demographic characteristics of the study population (n=818)

Characteristics	Stunted (n=240)	At risk of stunted (n=272)	Malnourished adults (n=306)
Age (years/months), mean±SD	14.70±2.09	14.39±2.08	23.68±6.7
Female, n (%)	107 (44.77)	149 (54.78)	233 (76.14)
Body mass index (kg/m²), mean±SD	NA	NA	17.16±0.87
Weight (kg), mean±SD	7.89±1.83	8.46±0.83	40.91±4.63
Length/height (cm), mean±SD	70.82±2.74	73.52±2.63	154.23±7.67
Length for age, mean±SD	−2.78±0.64	−1.52±0.29	NA
Monthly family income in US$, median (IQR)	144 (120–192)	156 (120–240)	156 (120–216)

Gazi MA, et al. BMJ Open Gastro 2019;6:e000294. doi:10.1136/bmjgast-2019-000294
the prevalence of CD in a Bangladeshi population using specific antibodies. While the presence of CD is recognised in some countries of Asia, it is still regarded to be uncommon in most of the countries of the same region. But recent reports have identified the existence of CD in many countries of this region which might be due to the changes in dietary habits. Bangladesh is also rapidly acclimatising to western diet and the actual prevalence of CD in the country is not yet known. Therefore, screening of the disease using sequential sensitive and specific serological tests was carried out both in children and adults. In our study, five participants were found to be anti-tTG-IgA positive, but no one was positive in tTG-IgG and gliadin IgG. IgA deficiency was also not found in these participants.

Previous reports indicated that prevalence of CD has been varied ranging from 1:50 to 1:500 in different countries of the Asia-Pacific region, including New Zealand, Australia, Syria, Iran, Turkey and Israel. The prevalence was reported extremely low in Japan and China. CD is well recognised in India, especially in the northern region, where two studies unveiled the incidence to be 0.3% to 1.04%, although it was believed to be rare in the northeastern and southern parts. A study conducted on adult Indians found seroprevalence of CD in northern (1.23%), northeastern (0.87%) and southern (0.10%) India. It is known that Eastern India is geographically, socioeconomically, culturally and also in terms of dietary habit close to Bangladesh, strengthening our study findings. According to a systematic review in China, the number of recorded CD was very low, although a study conducted on diarrhoeal children exhibited histologically proven CD of 12%. A recent study in China has also shown that approximately 2% of young adults and adolescents (age, 16–25 years) had positive CD serology. However, the population that consume wheat as staple diet exhibited a lower prevalence of CD (0.76%) in Shandong province located in northern China. Initial reports from Singapore and Vietnam also showed the presence of CD in these countries. A study conducted in Malaysia reported a seroprevalence of 1.25% in healthy young adults. There has been no report from any representative Bangladeshi sample. However, one study conducted in hospitalised adults with irritable bowel syndrome demonstrated a 9% prevalence of CD. The present study employed screening tests to identify CD in individuals living in an urban community and has established the presence of CD among Bangladeshi population.

All the studies that screened CD so far have reported the existence of autoimmunity in variable rates. To circumvent this variation of different autoantibody tests, tTG-IgA test which is the single preferable test for detection of CD had been used as primary test for the assessment of the seroprevalence of this disease. Both the sensitivity and specificity of this test for untreated CD are

Figure 1 Flow chart showing overall results of the study. CD, coeliac disease.
Table 2 Clinical profile of the patients positive in IgA anti-tTG

Sex	Cohort	Age	Main clinical findings	Regular diet	tTG-IgA (U/mL)	tTG-IgG (U/mL)	Gliadin IgG (U/mL)	Total IgA (mg/dL)	Endoscopy
M	Stunted child	13 months	Malnutrition, no specific complaints after consuming gluten	Khichuri and breast milk	20.8	13.5	7.8	78	Refused to consent
F	At risk of stunting child	17 months	Malnutrition, no specific complaints after consuming gluten	Khichuri and breast milk	18.7	11.2	6.9	71	Dropped out from study
M	Stunted child	14 months	Malnutrition, no specific complaints after consuming gluten	Khichuri, breast milk, egg, suji, meat, bread, fish, rice	17.7	8.5	2.5	45	Refused to consent
F	At risk of stunting child	13 months	Malnutrition, diarrhoea (1–2 episodes/month), no specific complaints after consuming gluten	Breast milk,*† kichuri, egg, suji, meat, bread, fish, rice	16.7	6.5	3.6	64	Dropped out from study
M	Malnourished adult	20 years	Malnutrition, history of peptic ulcer disease of sibling, no specific complaints after consuming gluten	Rice, bread, lentil, meat	45.6	29.2	67.9	156	Acute gastritis, CLO positive

*Khichuri (hotchpotch) is a local meal cooked from rice, lentils, vegetables and soybean oil.
†Suji (semolina) is a traditional dish mixed with milk powder, rice powder, sugar and soybean oil.
CLO, Campylobacter-like organism; F, female; M, male.

equal or greater than 95%. Combining several tests to the diagnostic strategy instead of tTG-IgA alone are not recommended in low-risk populations because it might slightly increase the sensitivity but decreases the specificity.34 Our study findings depict that the Bangladeshi population falls into the category of low-risk populations. Hence, we have employed tTG-IgG and gliadin IgG as secondary tests only for positive tTG-IgA participants and randomly selected low IgA participants. The lower prevalence reported in our study population perhaps can be explained either by the lower consumption of gluten or the late introduction of gluten in children, and microbiota or exposure to microbes early in childhood that could hinder the immune system development (ie, hygiene hypothesis).35 Our study participants were from a slum area in Dhaka, and they live in a poor socioeconomic condition. Monthly median family income for these participants is *1250 taka (equivalent to US$156). So, one may speculate that the lower prevalence is linked to low socioeconomic conditions resulting in, for instance, changes in gut microbiota, the frequency of parasitic and intestinal infections, and various other dietary factors than gluten.

Generally, IgAD is found 10 to 15 times higher in patients with CD (1.30%) compared with the healthy individuals (0.13% to 0.25%), which may yield false-negative results.17 In patients diagnosed with low IgA or IgA deficiency, IgG-based testing (IgG DGP’s and tTG-IgG) is recommended for further validation,19 especially if IgA-based serology assay is negative. In general, total IgAD is defined in most studies as an undetectable serum IgA at a value of 5 mg/dL. This is the lowest measurable concentration fixed by most of the research laboratories.36 Partial IgAD is defined as detectable but reduced IgA, higher than 2 SD below normal for age. This is mostly seen in children due to their delayed ontogeny of IgA system after birth. However, this condition is self-limiting and about half of these children reach normal values by 14 years of age (transient IgAD).37 We did not apply this definition for partial IgAD in our study. Instead, we only considered
low IgA as the value lower than the reference limits by age which in turn helped us to cover more participants in identifying the deficiency. No participants were found to have IgA deficiency; however, 70 participants (8.6%) were found to have low IgA according to the definition. The rest of the participants had normal IgA value. Our results are consistent with the data from other Asian countries such as Japan, China and India. A study conducted in Northern India among adults has detected 6.7% participants with partial IgA deficiency out of 3640 participants screened, which is also in accordance with our findings. Another study performed in Iran has observed partial IgA deficiency of 7.1% in children (mean age 10.3 years) with rheumatoid arthritis. We have also found a higher number of participants with low IgA in children. Perhaps, it can be explained by the age of the children enrolled in this study. We have enrolled children less than 2 years of age in this study, and it is established that children aged <2 years are more susceptible to IgA deficiency. However, we have tested tTG-IgG and gliadin IgG to confirm the CD for the participants who had positive tTG-IgA, borderline tTG-IgA value and who had low IgA. Only one participant was positive in both tests which was confirmed by biopsy (CD likely). All others were found negative in tTG-IgG and gliadin IgG and hence CD was unlikely for them.

The other test that can be considered for CD is HLA typing as the HLA-DQ2 heterodimer encoded by the DQA1*05 and DQB1*02 alleles is frequent in patients with CD. However, according to the Allele Frequency Net Database (www.allelefrequencies.net), this should not be common in the Bangladeshi population and neither is the HLA-DQ8 heterodimer which comprises the second most common HLA type. The sample set entered into the database was not extensive and therefore we did not consider this test in our study. The low specificity of this test has also been borne in mind.

In conclusion, the prevalence of CD was found to be low among children and adults in the present study. However, the study population belongs to the lower socioeconomic group and their diet might be different from the average Bangladeshi diet. Moreover, gastrointestinal infection and infestations are common among the study population. Western diet is getting more popular particularly among the middle-class and affluent people. Therefore, the prevalence may be different among the general population. Our study findings hence emphasised the necessity of nationwide investigation of the CD prevalence both in children and adults of the general population and the population who belongs to poor socioeconomic status and living in inimical environment because CD symptoms in this group can easily be obscured by the commonly observed environmental enteropathy, characterised by persistent diarrhoea, failure to thrive and malnutrition.

LIMITATIONS

There were some limitations in this study. First, we could not collect the biopsy specimen from all the participants who were serology positive. This was due to refusal of the participants to undergo endoscopy and attrition of the participants during the study. Second, the target population was stunted or at risk of stunting children and malnourished adults and therefore by definition had not been completely healthy. Another drawback of the study was that the secondary screening tests (tTG-IgG and gliadin IgG) were not employed for all the participants in this study. Cut-off values selected for CD serum antibody assays were another limitation of our study as that had been chosen according to the recommendations of the manufacturers and might be different in this population. Lastly, the lower number of samples was another limitation because the study was conducted on the population of a certain area.
6. Katz KD, Rashtak S, Lahr BD, et al. Screening for celiac disease in a North American population: sequential serology and gastrointestinal symptoms. *Am J Gastroenterol* 2011;106:1333–9.
7. Gaström F, Al Hepato 2017;15:1572-3 et al. Delay to celiac disease diagnosis and its implications for health-related quality of life. *BMC Gastroenterol* 2011;11.
8. Roma E, Panayiotou J, Karantana H, et al. Changing pattern in the clinical presentation of pediatric celiac disease: a 30-year study. *Zagreb* 2009;80:185–91.
9. Brusca I. Overview of biomarkers for diagnosis and monitoring of celiac disease. *Adv Clin Chem* 2015;68:1–55.
10. Fasano A, Catassi C. Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. *Gastroenterology* 2001;120:636–51.
11. Fasano A, Berti I, Gerarduzzi T, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. *Arch Intern Med* 2003;163:286–92.
12. Mahfuz M, Das S, Mazumder RN, et al. Prevalence of celiac disease in Bangladesh: a cross-sectional study. *Pediatr Gastroenterol Nutr* 2013;57:472–6.
13. Rewers M. Epidemiology of celiac disease: what are the prevalence, incidence, and progression of celiac disease? *Gastroenterology* 2005;128(4 Suppl 1):S47–S51.
14. Yuan J, Gao J, Li X, et al. The tip of the "celiac iceberg" in China: a systematic review and meta-analysis. *PLoS One* 2013;8:e81151.
15. Yap TW-C, Chan W-K, Leow AH-R, et al. Prevalence of serum celiac antibodies in a multiracial Asian population—a first study in the young Asian adult population of Malaysia. *PLOS One* 2015;10:e0121908.
16. Kanoh T, Mizumoto T, Yasuda N, et al. Deficiency in the binding protein gene polymorphism as a risk factor for vitamin D deficiency in Thais. *Vox Sang* 1992;72:88–90.
17. Zanella S, De Leo L, Nguyen-Ngoc-Quynh L, et al. Cross-sectional study of coeliac autoimmunity in a population of Vietnamese children. *BMJ Open* 2016;6:e011173.
18. Beniwal N, Armeta G, Chahar CK. Celiac disease in children with severe acute malnutrition (SAM): a hospital based study. *Indian J Pediatr* 2017;84:339–43.
19. Wierdsma NJ, Nijeboer P, de van der Schueren MAE, et al. Prevalence of celiac disease in children with diarrhea in 4 cities in China. *J Pediatr Gastroenterol Nutr* 2011:53:368–70.
20. Prince HE, Norman GL, Binder WL, et al. Immunoglobulin A (IgA) deficiency and alternative celiac disease-associated antibodies in sera submitted to a reference laboratory for endomysial IgA testing. *Clin Diag Lab Immunol* 2000;7:192–6.
21. Kanoh T, Mizutani T, Yasuda N, et al. Selective IgA deficiency in Japanese blood donors: frequency and statistical analysis. *Vox Sang* 1986;50:81–6.
22. Seng L. [Epidemiological study of selective IgA deficiency among 6 nationalities in China]. *Zhonghua Yi Xue Za Zhi* 1992;72:88–90.
23. Kondrashova A, Mustalahlki K, Kaukinen K, et al. Lower economic status and inferior hygienic environment may protect against celiac disease. *Ann Med* 2008;40:223–31.
24. Chowdhury MK, Chakraborty R, Gope S, et al. Celiac disease in patients fulfilling the Rome III criteria for irritable bowel syndrome attending gastroenterology department of a tertiary care hospital in Bangladesh. *Mymensingh Med J* 2016;25:102–8.
25. Chen C, Yang Y, Wang X, et al. Increasing prevalence of diabetes in Bangladesh: a scoping review. *Endocr Pract* 2011;17:1347–51.
26. Way SS, Borczuk AC, Dominitz R, et al. An essential role for gamma interferon in innate resistance to Shigella flexneri infection. *Infect Immun* 1998;66:1342–8.
27. Cummins AG, Roberts-Thomson IC. Prevalence of celiac disease in the Asia-Pacific region. *J Gastroenterol Hepatol* 2009;24:1347–51.
28. Ramakrishna BS, Macharia GK, Chetri K, et al. Prevalence of adult celiac disease in India: regional variations and associations. *Am J Gastroenterol* 2016;111:115–23.
29. Yuan J, Gao J, Li X, et al. The tip of the "celiac iceberg" in China: a systematic review and meta-analysis. *PLoS One* 2013;8:e81151.
30. Wang X-qiong, Liu W, Xu C-dl, et al. Celiac disease in children with diarrhea in 4 cities in China. *J Pediatr Gastroenterol Nutr* 2011;53:368–70.
31. Makharia GK. Celiac disease screening in southern and East Asia. *Dig Dis* 2015;33:167–74.
32. Prince HE, Norman GL, Binder WL, et al. Immunoglobulin A (IgA) deficiency and alternative celiac disease-associated antibodies in sera submitted to a reference laboratory for endomysial IgA testing. *Clin Diag Lab Immunol* 2000;7:192–6.