Suppression of antiferromagnetic order and strong ferromagnetic spin fluctuations in Ca(Co$_{1-x}$Ni$_x$)$_{2-y}$As$_2$ single crystals

Santanu Pakhira,1 Y. Lee,1 Liqin Ke,1 V. Smetana,2 A.-V. Mudring,2
Thomas Heitmann,3 David Vaknin,1,4 and D. C. Johnston1,4

1Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
2Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
3The Missouri Research Reactor and Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
4Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Dated: July 7, 2021)

CaCo$_{2-y}$As$_2$ is a unique itinerant system having strong magnetic frustration. Here we report the effect of electron doping on the physical properties resulting from Ni substitutions for Co. The single crystals of Ca(Co$_{1-x}$Ni$_x$)$_{2-y}$As$_2$ were characterized by single-crystal x-ray diffraction, energy-dispersive x-ray spectroscopy, magnetization M versus temperature T, magnetic field H, and time t, and heat capacity $C_p(H,T)$ measurements. The A-type antiferromagnetic (AFM) transition temperature $T_N = 52$ K for $x = 0$ decreases to 22 K with only 3% Ni substitution and is completely suppressed for $x > 0.11$. For $0.11 \leq x \leq 0.52$ strong ferromagnetic (FM) fluctuations develop as revealed by magnetic susceptibility $\chi(T) = M(T)/H$ measurements. For $x = 0.11$ and 0.16, competing AFM and FM interactions result in spin-glass behavior at low T as evidenced by observations of thermomagnetic hysteresis and magnetic relaxation. Enhanced FM fluctuations are also found for the $x = 0.21$ and 0.31 crystals, where χ_c increases significantly at low T. A large χ anisotropy in these compositions where χ_c is up to a factor of two larger than χ_a suggests that the FM spin fluctuations are quasi-1D in nature. Weak FM contributions to $M(H = 0)$ were found at $T = 2$ K for $x = 0.11$–0.31. Heat-capacity $C_p(T)$ measurements revealed the presence of FM quantum spin fluctuations for $0.11 \leq x \leq 0.52$, where a logarithmic T dependence of $C_p(T)$ is observed at low T. The suppression of AFM order by the development of strong FM fluctuations in Ca(Co$_{1-x}$Ni$_x$)$_{2-y}$As$_2$ crystals suggests the presence of a FM quantum-critical point at $x = 0.20$. Our density-functional theory (DFT) calculations confirm that FM fluctuations are enhanced by Ni substitutions for Co in CaCo$_{2-y}$As$_2$. The Sommerfeld electronic heat-capacity coefficient is enhanced for $x = 0$, 0.21, and 0.42 by about a factor of two compared to DFT calculations of the bare density of states (DOS) at the Fermi energy, suggesting an enhancement of the DOS from electron-phonon and/or electron-electron interactions. The crystals with $x > 0.52$ do not exhibit FM spin fluctuations or magnetic order at $T \geq 1.8$ K, which was found from the DFT calculations to result from a Stoner transition. Superconductivity is not observed above 1.8 K for any of the compositions. Neutron-diffraction studies of crystals with $x = 0.11$ and 0.16 in the crossover regime $0.1 \leq x \leq 0.2$ found no evidence of A-type ordering above 4.8 K within experimental resolution as observed in the parent compound with $x = 0$. Furthermore, no other common magnetic structures, such as FM, helical stacking of in-plane FM layers, or in-plane AFM structure, were found above 4.8 K with an ordered moment greater than the uncertainty of 0.05 μ_B per transition-metal atom.

I. INTRODUCTION

The discovery of superconductivity in doped iron arsenides by suppressing the long-range antiferromagnetic (AFM) order of parent compounds has opened up a wide research field studying the complex interplay between superconductivity (SC) and magnetism [1–5]. A considerable number of studies have been carried out to understand the mechanism of the observed high-T_c superconductivity in doped ThCr$_2$Si$_2$-structure (122-type) AFe$_2$As$_2$ ($A = Ca, Sr, Ba, Eu$) compounds [6–11]. It has been established that AFM fluctuations mediate the electron-pairing mechanism for SC in the iron-arsenide family of compounds [6–11, 12]. Depending on the ratio of tetragonal lattice parameters c/a, a collapsed-tetragonal (ct) or uncollapsed-tetragonal (uT) version of the structure is formed (for a review, see Ref. [13]).

In contrast to 122-type iron-arsenide compounds, none of the parent cobalt arsenides exhibit superconductivity even with doping but are still found to be rich in physics associated with itinerant magnetism of the conduction electrons [14–21]. Interesting physical properties are observed including non-Fermi-liquid behavior associated with a quantum critical point, spin-glass behavior, and helical magnetic ordering in electron- or hole-doped 122-type CoAs-materials [22–24]. For example, metallic SrCo$_2$As$_2$ is a Stoner-enhanced paramagnet and does not exhibit any magnetic ordering down to a temperature T of 0.05 K; however, stripe-type AFM fluctuations were revealed via inelastic neutron-scattering (INS) measurements [16–18]. Although the wave vector associated with the stripe AFM fluctuations in SrCo$_2$As$_2$ is the same as that observed in the high-T_c AFe$_2$As$_2$ parent compounds, the CoAs analogues do not exhibit SC, perhaps due to
the simultaneous presence of strong ferromagnetic (FM) spin fluctuations [33]; however, the INS measurements in Ref. [17] indicate that dominant FM fluctuations present at high \(T \) cross over to AFM fluctuations at low \(T \). Electron doping of SrCo\(_2\)As\(_2\) via Ni substitution for Co results in helical AFM order with only a 1.3% Ni substitution for Co [21, 22]. A composition-induced non-Fermi-liquid behavior associated with a magnetic quantum-critical point is also evidenced in Sr(\(\text{Co}_{1-x}\text{Ni}_x \))\(_2\)As\(_2\) crystals near \(x = 0.3 \) [27]. No magnetic ordering down to \(T = 1.8 \) K is found in metallic BaCo\(_2\)As\(_2\) which, however, is in proximity to a FM quantum-critical point associated with a flat electron band near the Fermi energy \(E_F \) [21–23].

CaCo\(_{2-y}\)As\(_2\) is a unique member of the 122-type CoAs family with strong magnetic frustration and itinerant magnetism [34]. In contrast to SrCo\(_2\)As\(_2\) and BaCo\(_2\)As\(_2\) with cT structures, CaCo\(_{2-y}\)As\(_2\) has a cT structure with a substantial concentration of vacancies on the Co site [14, 15]. The compound undergoes A-type AFM ordering below \(T_K = 52 \) K, where the in-plane Co moments are aligned ferromagnetically along the \(c \) axis, while adjacent layers of Co moments are stacked antiferromagnetically. From magnetic susceptibility \(\chi \) versus temperature \(T \) measurements, the dominant interactions are FM. INS measurements further reveal the presence of quasi one-dimensional FM spin fluctuations in the FM square Co planes associated with a flat band near \(E_F \), as also suggested by band-structure calculations [34, 35].

Due to the presence of the strong magnetic frustration in CaCo\(_{2-y}\)As\(_2\), it is expected that the ground state of the compound can be changed by tuning \(E_F \) via chemical substitution. Hole doping has been accomplished by substituting Fe for Co in Ca(\(\text{Co}_{1-x}\text{Fe}_x \))\(_2\)As\(_2\) single crystals [26]. The \(\chi(T) \) and neutron-diffraction measurements on Ca(\(\text{Co}_{1-x}\text{Fe}_x \))\(_2\)As\(_2\) single crystals demonstrated that the Fe substitution suppresses the A-type AFM ordering with a reduction in the ordered moment, with long-range magnetic ordering disappearing by \(x = 0.12 \). INS measurements on an \(x = 0.15 \) single crystal further show that although the same level of magnetic frustration is present in \(x = 0.15 \) and \(x = 0 \), the spin fluctuations are strongly reduced for \(x = 0.15 \) [39]. Thus, hole doping eventually quenches the magnetic moments via a Stoner transition [36].

In this paper, we report the growth of Ca(\(\text{Co}_{1-x}\text{Ni}_x \))\(_2\)As\(_2\) single crystals and studies of their crystallographic, magnetic, and thermal properties. These materials are electron-doped instead of hole-doped as in Ca(\(\text{Co}_{1-x}\text{Fe}_x \))\(_2\)As\(_2\). The \(\chi(T) \) and \(M \) at fixed \(H \) versus time \(t \) measurements indicate that the A-type AFM ordering for \(x = 0 \) is suppressed to 10.5 K for \(x = 0.11 \) and does not occur above 1.8 K for \(x = 0.16 \), and that spin-glass ordering occurs below 5 K for these two compositions. Neutron-diffraction measurements of these two compositions show no evidence for long-range magnetic ordering above 4.6 K within experimental resolution. The out-of-plane magnetic susceptibility \(\chi_c \) is strongly enhanced for \(x \geq 0.16 \), indicating the presence of strong FM c-axis fluctuations which in turn suggests the presence of a nearby FM quantum-critical point (QCP). We also report density-functional theory (DFT) calculations of the competition between different magnetic structures and fluctuations. The large anisotropy between \(\chi_{ab} \) and \(\chi_c \) in the composition region \(0.21 < x < 0.42 \) suggests quasi-one-dimensional FM spin fluctuations along the \(c \) axis. The signature of critical FM spin fluctuations is also evident in the heat capacity \(C_p(T) \) for compositions \(0.11 \leq x \leq 0.52 \), where \(C_p(T)/T \) versus \(T \) exhibits a low-\(T \) upturn having a \(\log T \) dependence that is suppressed in magnetic fields applied along the \(c \) axis. From the DFT calculations, we infer the occurrence of a Stoner transition to a nonmagnetic state at \(x \approx 0.5 \). For \(x = 1 \), metallic single-crystal CaNi\(_2\)As\(_2\) is reported to be paramagnetic down to \(T = 2 \) K with a small and nearly \(T \)-independent paramagnetic \(\chi \) [37].

The experimental details are given in Sec. II. The crystallography results are presented in Sec. III, the magnetization \(M \) versus applied magnetic field \(H \) isotherms and the \(\chi(T) \) data in Sec. IV, and the \(C_p(T) \) data in Sec. V. The neutron-diffraction measurements are presented in Sec. VI and the DFT calculations in Sec. VII. A summary of our results including an \(H-T \) phase diagram constructed from the \(\chi(T) \) and \(M(H,t) \) isotherm measurements is given in Sec. VIII.

II. EXPERIMENTAL AND THEORETICAL DETAILS

Single crystals of Ca(\(\text{Co}_{1-x}\text{Ni}_x \))\(_2\)As\(_2\) with compositions \(x = 0, 0.03, 0.05, 0.11, 0.16, 0.21, 0.31, 0.42, 0.52, 0.67, 0.81 \) and 1 were grown using a self-flux solution-growth technique. The high-purity starting materials Ca (99.999%), Co (99.998%), Ni (99.999%), and As (99.9999%) from Alfa Aesar were placed in an alumina crucible with the molar ratio Ca:Co:Ni:As = 1.2:4(1-x):4:2. The 20% extra Ca is found to produce larger crystals. The loaded crucible was then put into a silica tube and quartz wool was placed above the crucible to extract the molten flux during centrifugation. The silica tube was then sealed under \(\approx 1/4 \) atm of Ar gas. The assembly was heated to 650 °C at a rate of 50 °C/h and held there for 6 h to avoid excess pressure created by As vapor. Then the ampule was heated to 1300 °C at 60 °C/h and held at that temperature for 20 h for homogenization. Finally, the tube was cooled to 1180 °C at a rate of 6 °C/h and the single crystals were separated from the excess flux using a centrifuge. Shiny platelike single crystals of different sizes were obtained from the growths with the \(c \) axis perpendicular to the plate surfaces with typical dimensions \(3 \times 3 \times 0.5 \) mm\(^3\). The crystal size was found to increase with increasing Ni concentration.

A scanning-electron microscope from JEOL equipped
with an energy-dispersive x-ray spectroscopy (EDS) attachment was used to check the phase homogeneity and average compositions of the crystals. The EDS scans were taken at multiple points on both sides of the crystals as well as on cleaved crystals to confirm the homogeneity and the absence of any secondary phases.

Single-crystal x-ray diffraction (XRD) measurements were performed at room temperature on a Bruker D8 Venture diffractometer operating at 50 kV and 1 mA equipped with a Photon 100 CMOS detector, a flat graphite monochromator and a Mo Kα IμS microfocus source (λ = 0.71073 Å). The raw frame data were collected using the Bruker APEX3 software package [48], while the frames were integrated with the Bruker SAINT program [49] using a narrow-frame algorithm for integration of the data and were corrected for absorption effects using the multiscan method (SADABS) [40]. The atomic thermal factors were refined anisotropically. Initially, the crystal structures were first obtained with the program SHELXT-2014 [41] and refined using the program SHELXL-2014 [42] within the APEX3 software package.

The temperature T- and magnetic field H-dependent magnetic measurements were carried out using a Quantum Design, Inc., magnetic-properties measurement system (MPMS) SQUID magnetometer in the range T = 1.8 to 300 K with H up to 5.5 T (1 T ≡ 10^4 Oe). The heat capacity Cp(H, T) measurements were performed using the relaxation technique in a Quantum Design, Inc., Physical-Properties Measurement System (PPMS) in the ranges T = 1.8–300 K and H = 0–9 T.

Single-crystal neutron-diffraction experiments were performed in H = 0 using the TRIAX triple-axis spectrometer at the University of Missouri Research Reactor (MURR). An incident neutron beam of energy Ei = 30.5 meV (wavelength λ = 1.6377 Å) was directed at the sample using a pyrolytic graphite (PG) monochromator. The λ/2 component present in the beam was removed using PG filters placed before the monochromator and between the sample and analyzer. Beam divergence was limited using collimators before the monochromator; between the monochromator and sample; sample and analyzer; and analyzer and detector of 60′ – 60′ – 40′ – 40′, respectively. Crystals of mass 20 mg were mounted on the cold tip of an Advanced Research Systems closed-cycle refrigerator with a base temperature in the 4.1 to 4.8 K range. The crystals were aligned in the (H00) and (00L) plane. Extended diffraction patterns along principal directions confirm the I4/mmm tetragonal symmetry with lattice constants a = 3.981(3) Å and c = 10.07(4) Å at 4.8 K for the x = 0.16 crystal and a = 3.980(3) and c = 10.10(4) Å for the x = 0.11 crystal.

DFT calculations were performed using a full-potential linear-augmented-plane-wave (FP-LAPW) method, as implemented in WIEN2K [49]. We used the virtual-crystal approximation (VCA) to simulate the doping effects. The generalized-gradient approximation (GGA) of Perdew, Burke, and Ernzerhof [44] was used for the correlation and exchange potentials. To generate the self-consistent potential and charge, we employed RMT-K \text{max} = 8.0 with Muffin-tin (MT) radii RMT = 2.7, 2.4, and 2.5 a.u. for Ca, Co, and As, respectively. The calculations were performed with 264 k-points in the irreducible Brillouin zone (BZ). They were iterated until the charge differences between consecutive iterations was smaller than 1 × 10^{-3} e and the total energy difference less than 0.01 mRy.

We also calculated the magnetocrystalline anisotropy energy (MAE), which originates from the spin-orbit coupling (SOC) [45]. The MAE is calculated as K = E_{100} − E_{001}, where E_{001} and E_{100} are the total energies for the magnetization oriented along the [001] and [100] directions, respectively. Positive (negative) K corresponds to easy-c-axis (easy-ab-plane) anisotropy. The SOC is included using the second-variation procedure [46].

The composition-dependent experimental lattice parameters listed in Table I in the following section were adopted in the calculations.

III. CRYSTALLOGRAPHY

The body-centered-tetragonal crystal structure of CaCo$_{2−x}$As$_2$ is shown in Fig. [47]. The room-temperature crystallographic data for Ca(Co$_{1−x}$Ni$_x$)$_2$−yAs$_2$ crystals obtained from single-crystal XRD measurements are listed in Table I. The listed compositions are the average compositions of the crystals from EDS measurements. The single-crystal XRD refinement does not allow simultaneous refinement of the total occupation of the transition metal site and the fraction of Co/Ni at that site. Thus, only the total occupancies were refined based on the Co/Ni ratio taken from the EDS data. All the compositions including the parents CaCo$_{2−y}$As$_2$ and CaNi$_2$As$_2$ crystallize in the cT ThCr$_2$Si$_2$-type structure.

The tetragonal lattice parameters a and c, unit-cell volume V$_{cell}$, c/a ratio, and the z-axis As position parameter z$_{As}$ are plotted as a function of the Ni concentration x in Fig. [2]. The a lattice parameter increases and the c lattice parameter decreases nonlinearly with x. As a result the unit-cell volume is almost constant throughout the composition range. Although all compositions form in the cT structure, the decrease in the ratio c/a with increasing x may result in a significant change in the interplanar magnetic coupling between the Co spins. The z$_{As}$ parameter initially decreases from x = 0 to x = 0.03, but then increases with further increases in Ni concentration. The EDS scans taken at points on both sides of each crystal confirm the homogenous nature of the crystals. The average compositions estimated by EDS indicate that the vacancy concentration on the transition-metal site decreases with increasing Ni substitution and that the stoichiometric composition CaNi$_2$As$_2$ is obtained within the error bar for x = 1.
TABLE I. Tetragonal lattice parameters a and c, c/a ratio, unit-cell volume V_{cell}, and fractional c-axis position of the As site z_{As} obtained for Ca(Co$_{1-x}$Ni$_x$)$_2$$\cdot$$\gammaAs_2$ from room-temperature single-crystal XRD measurements. The listed values of x are the average values obtained from EDS analyses.

Compound	a (Å)	c (Å)	c/a	V_{cell} (Å3)	z_{As}
CaCo$_{0.86(2)}$As$_2$	3.9837(4)	10.2733(4)	2.5788(6)	163.04(9)	0.3672(4)
Ca(Co$_{0.97(3)}$Ni$_{0.03(3)}$)$_{1.87(4)}$As$_2$	3.9888(6)	10.236(2)	2.5661(2)	162.87(6)	0.36620(5)
Ca(Co$_{0.95(1)}$Ni$_{0.05(1)}$)$_{1.86(4)}$As$_2$	3.986(2)	10.258(7)	2.5722(4)	163.0(2)	0.36643(8)
Ca(Co$_{0.89(1)}$Ni$_{0.11(1)}$)$_{1.87(4)}$As$_2$	3.9927(8)	10.234(3)	2.5631(3)	163.14(8)	0.36661(1)
Ca(Co$_{0.84(1)}$Ni$_{0.16(1)}$)$_{1.80(0)}$As$_2$	4.0025(6)	10.197(2)	2.5476(1)	163.35(6)	0.36661(1)
Ca(Co$_{0.79(1)}$Ni$_{0.21(1)}$)$_{1.86(3)}$As$_2$	4.0069(8)	10.178(4)	2.5401(6)	163.41(9)	0.36701(9)
Ca(Co$_{0.69(1)}$Ni$_{0.31(1)}$)$_{1.87(3)}$As$_2$	4.0109(1)	10.138(2)	2.5276(1)	163.10(1)	0.36755(8)
Ca(Co$_{0.58(1)}$Ni$_{0.42(1)}$)$_{1.87(3)}$As$_2$	4.0224(3)	10.093(5)	2.5093(2)	163.31(3)	0.36788(5)
Ca(Co$_{0.48(1)}$Ni$_{0.52(1)}$)$_{1.87(4)}$As$_2$	4.0274(3)	10.058(1)	2.4973(5)	163.14(3)	0.36807(4)
Ca(Co$_{0.33(1)}$Ni$_{0.67(1)}$)$_{1.89(4)}$As$_2$	4.0368(3)	10.017(1)	2.4814(4)	163.23(3)	0.36857(6)
Ca(Co$_{0.19(1)}$Ni$_{0.81(1)}$)$_{1.94(3)}$As$_2$	4.0464(2)	9.976(1)	2.4654(3)	163.33(2)	0.36931(7)
CaNi$_{1.97(4)}$As$_2$	4.0552(2)	9.921(1)	2.4464(2)	163.14(4)	0.36975(4)

FIG. 1. Chemical and A-type AFM structure of CaCo$_{2-x}$As$_2$. The ThCr$_2$Si$_2$-type chemical unit cell is body-centered tetragonal and the AFM unit cell is A-type with the ordered moments aligned along the c axis. The crystal structure was drawn using the VESTA program [47].

IV. MAGNETIC MEASUREMENTS

A. Magnetic susceptibility

The T-dependent magnetic susceptibilities $\chi = M/H$ for Ca(Co$_{1-x}$Ni$_x$)$_{2-x}$As$_2$ crystals with $x = 0, 0.03, 0.05, 0.11, 0.16, 0.21, 0.31, 0.42, 0.52, 0.67, 0.81$ and 1 are shown in Figs. 3(a) 3(l), respectively, for $H \parallel ab$ and $H \parallel c$ under both zero-field-cooled (ZFC) and field-cooled (FC) conditions as noted in the respective panels. The parent compound CaCo$_{2-x}$As$_2$ shows A-type AFM order with the ordered moments aligned along the c axis below the Neél temperature $T_N = 52$ K [15]. The c-axis susceptibility χ_c approaches zero for $T \rightarrow 0$ and the in-plane susceptibility χ_{ab} is almost independent of T below T_N, consistent with collinear AFM order along the c axis according to molecular-field theory [38]. The T_N is determined from the $\chi_{ab}(T)$ data using the Fisher criterion [19] where here the temperature of the peak in $d(\chi_{ab})/dT$ corresponds to T_N. The T_N drops from 52 K for $x = 0$ to 22 K with only 3% Ni doping and then decreases further (see Table III below) as shown in Fig. 4.

With increasing x, the values of χ_{ab} and χ_c both increase in the ordered state, indicating enhancements by FM fluctuations. For 5% Ni doping a small hysteresis between the ZFC and FC data for χ_c in Fig. 3(c) occurs at $T \ll T_N$. The thermal hysteresis in $\chi_c(T)$ increases for $x = 0.11$, where along with an AFM transition at $T_N = 10.5$ K, another anomaly is observed at $T_B \approx 4.8$ K which is clearly visible in the lower fields as shown in Fig. 3(a) for $H = 0.05$ T. For $x = 0.16$, the signature of an AFM transition for $H = 0.1$ T in Fig. 3(c) has almost disappeared, replaced by a strong FM-like increase, although the low-field data in $H = 0.05$ T in Fig. 3(b) confirm the presence of two magnetic transitions at $T_N \sim 6.5$ K and $T_B \sim 3.5$ K, where T_B is identified below as a blocking temperature. A separate discussion of the low-T anomaly observed at T_B for $x = 0.11$ and 0.16 is given in the following section. No signature of AFM ordering of any kind is observed for $x > 0.16$.

For $x > 0.16$, Fig. 3 shows that χ_c strongly increases and becomes much larger than χ_{ab}. At the lowest measured $T = 2$ K, $\chi_c \approx 2\chi_{ab}$ for $x = 0.21$. The ratio χ_c/χ_{ab} increases further for $x = 0.31$. These observations indicate a strong enhancement of FM c-axis spin fluctuations for $x = 0.21$ and 0.31. The FM spin fluctuations and the anisotropy is found to persist up to $x = 0.52$. The suppression of AFM order associated with the development of strong FM fluctuations in Ca(Co$_{1-x}$Ni$_x$)$_{2-x}$As$_2$ crystals suggests the presence of a nearby FM quantum-critical point (QCP) close to $x = 0.16$. We note that a
The anomalies in $\chi(T)$ at low T observed in Fig. 3 for the $x = 0.11$ and 0.16 crystals were further investigated by measuring $\chi(T)$ at smaller H. The respective $\chi(T)$ data measured in $H = 0.05$ T and 0.035 T for $x = 0.11$ and 0.16 are shown in Figs. 5(a) and 5(b), respectively, along with the respective T derivatives. For $x = 0.11$, $T_N = 10.5$ K. The ZFC and FC χ_c data for each composition diverge from each other below T_N, exhibiting an anomaly at a blocking temperature $T_B = 4.8$ K. The FM fluctuations considerably increase for $x = 0.16$ and it is difficult to ascertain whether long-range AFM order occurs for this composition. Indeed, the zero-field neutron diffraction measurements discussed below show no evidence for long-range AFM ordering for $x = 0.16$. On the other hand, the $\chi(T)$ data for $x = 0.16$ show clear evidence for a blocking temperature $T_B \approx 3.5$ K.

Thus in Ca(Co$_{1−x}$Ni$_x$)$_{2−y}$As$_2$ crystals the AFM order is suppressed and FM fluctuations increase significantly with increasing Ni substitution. It is therefore likely that for the $x = 0.11$ and 0.16 compositions AFM and FM interactions compete with each other at low T which gives rise to a metastable glassy state at a temperature T_B, similar to that observed in many reentrant AFM spin-glass systems \cite{54–56}. To further elucidate this scenario, we measured the magnetic relaxation behavior at different temperatures for both compositions. The crystals were zero-field-cooled from the paramagnetic (PM) state to the measured temperature at which a magnetic field was switched on and the time evolution of the magnetization $M(t)$ was recorded. As seen from Figs. 5(c) and 5(d), a clear t dependence of the relative change in magnetization $M(t)$ is observed for $T \lesssim T_B$ in the $x = 0.11$ and 0.16 crystals. It is interesting to see that although the relaxation for $T_B < T < T_N$ is negligible for $x = 0.11$, the relaxation is quite significant at $T = 2$ and 5 K for $x = 0.16$. This difference suggests that the strong enhancement of FM fluctuations along the c axis and resultant strong competition between the FM and AFM interactions significantly weakens AFM ordering and pushes the system towards metastability at low T. This is consistent with the observation of thermomagnetic irreversibility just below T_N for $x = 0.11$. Moreover, magnetic relaxation is observed in Figs. 5(c,d) at $T = 2$ K for small $H = 0.01$ T, whereas the larger $H = 1$ T is seen to prevent the metastable state from forming for both $x = 0.11$ and $x = 0.16$.

The relaxation behavior observed in Figs. 5(c,d) for $T \lesssim T_B$ is described well by the stretched-exponential dependence

$$\frac{M(t)}{M(t = 0)} = 1 - e^{-(t/\tau)\alpha},$$

similar to that observed in spin-glass systems \cite{57,58}. The fits at low temperatures are shown as the solid black curves in Figs. 5(c,d) and the fitted parameters τ and α
FIG. 3. The temperature T dependence of magnetic susceptibility χ of Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ crystals with compositions x in applied magnetic fields H in the ab plane and along the c axis as indicated. The data for $x = 0.11$ and 0.16 show a transition in $\chi_c(T)$ but not in $\chi_{ab}(T)$ as discussed separately in Sec. IV B. Note the large decrease with x of the ordinate scales for χ, indicating the loss of Co magnetic character for $x \geq 0.5$. The small anomalies at ≈ 50 K in panels (j), (k), and (l) may arise from small amounts of O$_2$ adsorbed on the crystal surfaces [65].

FIG. 4. Dependence of the Néel temperature T_N of Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ crystals on composition x.

are listed in Table I. Although the parameter α is similar for both crystals, a significantly larger τ is observed at $T = 2$ K for $x = 0.16$. This suggests that the competition between AFM and FM interactions is stronger in the $x = 0.16$ crystal, consistent with the $\chi(T)$ data in Fig. 3. Physical interpretations of the parameters τ and α are given in Ref. [58].

TABLE II. Parameters obtained by fitting the magnetic relaxation behavior of Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ crystals with $x = 0.11$ and 0.16 in Figs. 5(c) and 5(d) by the stretched-exponential function in Eq. (1) for $H = 0.01$ T applied along the c axis.

x	T	τ (103 s)	α
0.11	2	2.98(8)	0.46(1)
0.16	2	3.6(1)	0.45(1)
5		2.27(5)	0.44(1)

C. Magnetic susceptibility

The T dependences of the inverse magnetic susceptibilities $\chi_{ab}^{-1}(T)$ and $\chi_c^{-1}(T)$ for all the Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ crystal compositions $x = 0$–1 are shown in Figs. 6(a)–6(l). We analyzed the data in the PM regime $T > T_N$ using the modified Curie-Weiss law for local magnetic moments given by

$$\chi_\alpha(T) = \chi_0 + \frac{C_\alpha}{T - \theta_\alpha} \quad (\alpha = ab, c),$$ (2)
where χ_0 is an isotropic T-independent term, θ_{pa} is the Weiss temperature for field direction α, and the Curie constant C_α per mole of formula units (f.u.) is given by

$$C_\alpha = \frac{N_A g_\alpha^2 S(S + 1) a_B^2}{3 k_B} \quad (\alpha = ab, \ c), \quad (3)$$

where N_A is Avogadro’s number, g_α is the spectroscopic splitting factor (g factor), S is the spin angular-momentum quantum number, a_B is Boltzmann’s constant, and μ_{eff} is the effective moment of a spin. The μ_{eff} per (Co+Ni) transition metal atom is obtained from C_α per mole of formula units using

$$\mu_{\text{eff} \alpha}/(\text{Co + Ni}) = \sqrt{8C_\alpha [\text{cm}^3 \text{K/mol f.u.}]/2 - y}. \quad (4)$$

As shown in Figs. 6(a)–6(k), the $\chi_{ab}^{-1}(T)$ and $\chi_c^{-1}(T)$ data are well described by Eq. (2) in the T range noted in the panel for each crystal and the fitted parameters are listed in Table I. The values of C_α, $\mu_{\text{eff} \alpha}$, θ_{pa}, and $\chi_0 a_B$ as a function of x for the Ca(Co$_{1-x}$Ni$_x$)$_2$-yAs$_2$ crystals are plotted in Figs. 7(a)–7(c). The C_α and $\mu_{\text{eff} \alpha}$ decrease with increasing x. The positive θ_{pa} also decreases with increasing x and becomes negative for $x \geq 0.31$. The large negative value of θ_{pa} for $x \geq 0.41$ is a result of the overall suppression of $\chi(T)$ at the larger x values and does not have physical significance.

In a local-moment picture the isotropic Curie constant in units of cm3/mol spins for Heisenberg spins S with $g = 2$ is given by

$$C = \frac{\text{cm}^3 \text{K/mol spins}}{\mu_{\text{Sat}}^2} = 0.5002S(S + 1). \quad (5)$$

Thus for the minimum $S = 1/2$ with $g = 2$ and two spins per formula unit, one obtains $C_{\text{mol}} = 0.75 \text{ cm}^3 / \text{mol f.u.}$. The Curie constants for all the Ca(Co$_{1-x}$Ni$_x$)$_2$-yAs$_2$ crystals in Table III are much smaller than this value and hence suggest an itinerant character of the magnetism in these crystals as in undoped CaCo$_{2-y}$As$_2$ where FM interactions dominate. For an itinerant weak ferromagnet, the degree of itinerancy can be expressed in a Rhodes-Wölfarth (RW) plot of the ratio p_c/p_{Sat} versus the RW Curie temperature T_C, where $p_{\text{Sat}} = \mu_{\text{Sat}}^2/\mu_B$ is the saturation moment per transition-metal atom normalized by the Bohr magneton and μ_B.

$$p_c = \sqrt{1 + p_{\text{eff}}^2 - 1} \quad (g = 2). \quad (6)$$

For Heisenberg local-moment spins with $g = 2$ the value of p_c/p_{Sat} is equal to unity, whereas a larger value of p_c/p_{Sat} signifies itinerant magnetic character. Figure 8 shows an RW plot of p_c/p_{Sat} versus T_N for four of our Ca(Co$_{1-x}$Ni$_x$)$_2$-yAs$_2$ crystals, where the p_c values are listed in Table III The value of p_{Sat} is estimated.
FIG. 6. Temperature T dependence of inverse magnetic susceptibility χ^{-1} of Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ crystals with $x = 0$–1 in panels (a)–(h) for $H \parallel ab$ and $H \parallel c$ as indicated. The anomalies at ≈ 50 K in (j)–(l) are likely experimental artifacts arising from AFM ordering of small amounts of O$_2$ condensed on the crystals. The red solid lines are fits by the modified Curie-Weiss law in Eq. (2) over the temperature range noted in the respective panel. The positive values of $\theta_{p_{\text{sat}}}$ are responsible for the negative curvature in the fits. The overall decrease in the magnitude and associated weak T dependence of $\chi(T)$ are responsible for the increasingly negative unphysical values of $\theta_{p_{\text{sat}}}$ listed in Table III for $x = 0.42$–0.81.

FIG. 7. Magnetic parameters versus x from Table III (a) Curie constants C_{ab}, C_c, C_{av} (left ordinate) and effective magnetic moments $\mu_{\text{eff, ab}}$, $\mu_{\text{eff, c}}$, $\mu_{\text{eff, av}}$ (right ordinate), (b) Weiss temperatures $\theta_{p_{\text{ab}}}$, $\theta_{p_{c}}$ and (c) T–independent contributions $\chi_{0, ab}$, $\chi_{0, c}$. The large negative values of θ_{p} for $x \geq 0.42$ are unphysical and are only to be considered as fitting parameters. (d) Saturation moments $\mu_{\text{sat, ab}}$, $\mu_{\text{sat, c}}$, and $\mu_{\text{sat, av}}$ from Table IV. The data for $x = 0$ were obtained from zero-field neutron diffraction and $M(2 \text{ K, } H = 14 \text{ T})$ data. The data for $x = 0.11$–0.31 were obtained from the Arrott plots in the insets of Fig. 9.

FIG. 8. Rhodes-Wohlfarth plot of p_e/p_{sat} vs T_N for the listed Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ compositions. Although such plots are usually versus the FM Curie temperature T_C, on the abscissa, here FM interactions dominate and hence the abscissa is the Néel temperature T_N. Because the crystals with $x = 0.16$ and 0.21 do not show AFM ordering, proxies for the T_N values are used as explained in the text. by plotting M^2 versus H/M at $T \ll T_C$ (i.e., $\ll T_N$ here) known as an Arrott plot \cite{61,62} and extrapolating the high-field data to $H/M = 0$ \cite{63} as shown in the insets.
TABLE III. Parameters obtained from the modified Curie-Weiss fits to χ⁻¹(T) data in the respective temperature range noted in Fig. 6 for Ca(Co₁₋ₓNiₓ)₂₋ₙAs₂ crystals with x = 0 - 0.81 using Eq. (2). The parameters listed are the Néel temperature Tₐ, blocking temperature Tₜ, the magnetic-field direction α, the T-independent contribution to the magnetic susceptibility χ₀α, the Curie constant per mol Cα, the effective moment per transition metal atom µₑff calculated using Eq. (4), the spherical average µₑff,ave = (2µₑff,ab + µₑff,c)/3, the Weiss temperature θᵥ, and the spherical average θₑff,ave = 2θₑff,ab + θₑff,c.

Compound	Tₐ, Tₜ	Field direction α	χ₀α (10⁻⁴ cm³/mol)	Cα (cm⁻¹K)	µₑff,ab (µB/mol)	µₑff,c (µB/mol)	θᵥ (K)	θₑff,ave (K)				
CaCo₁₋₈₆(2)As₂	52, —	H		ab	0.03(2)	0.443(3)	1.37(1)	1.39(1)	59.5(9)	61(1)		
		H		c	-0.2(2)	0.480(1)	1.43(1)	64.5(3)				
Ca(Co₀.₉₇Ni₀.₀₃)₁₋₈₆As₂	22, —	H		ab	5.84(5)	0.299(1)	1.14(1)	1.17(1)	44.2(3)	44.6(5)		
		H		c	3.52(3)	0.349(1)	1.22(1)	45.4(2)				
Ca(Co₀.₉₅Ni₀.₀₅)₁₋₈₆As₂	17, —	H		ab	5.80(4)	0.298(1)	1.13(1)	1.14(1)	34.1(3)	33.7(6)		
		H		c	4.70(4)	0.322(1)	1.17(1)	33.1(3)				
Ca(Co₀.₈₉Ni₀.₁₁)₁₋₈₇As₂	10.5, 4.8	H		ab	3.66(3)	0.318(1)	1.16(1)	1.19(1)	26.7(2)	26.7(4)		
		H		c	3.71(2)	0.369(1)	1.25(1)	26.8(2)				
Ca(Co₀.₈₄Ni₀.₁₆)₁₋₈₉As₂	—, 3.5	H		ab	4.06(2)	0.285(1)	1.09(1)	1.12(1)	18.4(1)	18.7(2)		
		H		c	3.79(2)	0.335(1)	1.18(1)	19.5(1)				
Ca(Co₀.₇₉Ni₀.₂₁)₁₋₈₆As₂	H		ab	H		ab	6.67(3)	0.268(1)	1.07(1)	1.09(1)	10.9(2)	11.4(4)
		H		c	5.52(3)	0.303(1)	1.13(1)	12.6(2)				
Ca(Co₀.₆₉Ni₀.₃₁)₁₋₈₇As₂	H		ab	H		ab	6.98(5)	0.214(2)	0.95(1)	0.98(1)	-0.3(4)	-0.2(7)
		H		c	6.77(4)	0.252(1)	1.03(1)	-0.1(3)				
Ca(Co₀.₅₈Ni₀.₄₂)₁₋₈₇As₂	H		ab	H		ab	4.36(3)	0.188(1)	0.89(1)	0.92(1)	-18.2(5)	
		H		c	4.14(3)	0.227(1)	0.97(1)	-16.4(4)				
Ca(Co₀.₄₈Ni₀.₅₂)₁₋₈₇As₂	H		ab	H		ab	3.63(6)	0.175(2)	0.86(1)	0.89(1)	-45(2)	
		H		c	3.98(8)	0.211(3)	0.94(1)	-46(2)				
Ca(Co₀.₃₃Ni₀.₆₇)₁₋₈₉As₂	H		ab	H		ab	3.73(3)	0.128(1)	0.73(1)	0.77(1)	-77(2)	
		H		c	3.66(8)	0.170(3)	0.84(1)	-90(3)				
Ca(Co₀.₁₉Ni₀.₈₁)₁₋₉₄As₂	H		ab	H		ab	3.19(2)	0.090(3)	0.60(1)	0.65(1)	-203(16)	
		H		c	3.90(3)	0.140(2)	0.75(1)	-128(3)				

in Fig. 9 below. For CaCo₂₋₉As₂ (x = 0) the saturation (ordered) moment is taken to be that obtained from zero-field neutron diffraction measurements [20]. We have seen that AFM ordering does not occur for x ≥ 0.16. Therefore proxies for the values of T₀ for x = 0.16 and 0.21 in the RW plot are taken as the temperatures where the curvature of χ(T) in Figs. 3(c) and 3(f) respectively change sign from positive to negative on cooling. As seen from Fig. 9, pₑ/pₐ > 1 for all measured Ca(Co₁₋ₓNiₓ)₂₋₉As₂ compositions and also pₑ/pₐ increases with increasing x. This behavior suggests that the Ca(Co₁₋ₓNiₓ)₂₋₉As₂ crystals are essentially weak itinerant ferromagnets as expected from the dominance of FM interactions in these materials as also previously inferred for the Sr(Co₁₋ₓNiₓ)₂₋₉As₂ system [27].

D. Magnetization versus applied magnetic field isotherms

In order to investigate the magnetic-field evolution of the magnetic ground state, magnetization versus applied magnetic field M(H) hysteresis measurements were carried out for each of our crystal compositions. Before each measurement the superconducting magnet was quenched to reduce the applied field to zero. Figures 9(a) and 9(b) show M(H) four-quadrant hysteresis data with H || ab and H || c measured at T = 2 K for each of the Ca(Co₁₋ₓNiₓ)₂₋₉As₂ crystals.

As reported earlier [13, 24, 65], the undoped x = 0 composition shows a clear spin-flop (SF) transition in the Mₐ(H) data at HₛF = 3.6 T, consistent with the known collinear c-axis AFM ordering [20] whereas Mₐ(H) shows a smooth behavior. Figure 10(a) shows expanded plots of the Mₐ(H) data in Fig. 9 for x = 0, 0.03, 0.05, and 0.11. The latter three compositions show spin-flop transitions. The derivatives dM/dH versus H for these three compositions are plotted in Fig. 10(b) from which we obtain the respective spin-flop fields HₛF listed in Table IV.

No magnetic hysteresis is observed in Fig. 9 in either Mₐ(H) or Mₐ(H) for x = 0, 0.03, 0.05 or x ≥ 0.41. However hysteresis in the Mₐ(H) isotherms at low fields was detected at T = 2 K for the crystals with 0.11 ≤ x ≤ 0.31, as shown in Figs. 11(a) and 11(b) for H || ab and H || c, respectively. These data indicate the occurrence of weak
ferromagnetism and the parameters associated with it are the coercive field \(H_{CM} \), remanent magnetization \(M_{rem} \) and FM moment \(\mu_{FM} \) listed in Table IV. The observation of small \(H_{CF} \) values for \(x = 0.11 \) and 0.16 and even smaller values for \(x = 0.21 \) and 0.31 is consistent with the notion that the suppression of AFM ordering is mediated by strong FM fluctuations. The quasi-1D c-axis FM fluctuations discussed earlier are also reflected in the \(M(H) \) behavior, where only the \(M_c(H) \) data are hysteretic to some extent, whereas hysteresis is much smaller in the \(M_{ab}(H) \) data.

We obtained estimates of the saturation moments for \(x = 0.11, 0.16, 0.31, \) and 0.41 from extrapolations to \(H = 0 \) of Arrott plots of \(M^2 \) versus \(H/M \) shown in the respective insets of Fig. 9. The results are listed in Table IV and plotted in Fig. 7(d) together with the low-\(T \) ordered-moment for \(x = 0 \) obtained from zero-field neutron-diffraction 20 and \(M(H = 14 \, T, \, T = 2 \, K) \) 13 measurements.

V. HEAT CAPACITY

The zero-field heat capacities \(C_p(T) \) for all the \(\text{Ca(Co}_{1-x}\text{Ni}_x\text{)}_{2-y}\text{As}_2 \) crystal compositions are shown in Figs. 12(a)–12(l) in the \(T \) range 2–300 K. No detectable feature is observed at \(T_N \) for any of the respective compositions, evidently due to the small magnetic entropy change in these itinerant magnets at \(T_N \). The \(C_p(T) \) value at our high-\(T \) limit of 300 K is close to the classical Dulong-Petit high-\(T \) limit \(C_p = 3nR = 124.7 \, \text{J/mol K} \) where \(R \) is the molar gas constant and here \(n \approx 5 \) is the number of atoms per formula unit. As seen from the figures for all compositions except \(x = 0 \), a hump-like feature appears in the \(C_p(T) \) at \(T \sim 290 \, \text{K} \) that is due to melting of the Apiezon N grease used to make thermal contact between the sample and platform of the sample puck. This spurious feature can be avoided by using Apiezon H grease for the high-\(T \) measurements as shown for the crystal with \(x = 0 \).

Due to the nonstoichiometry of the \(\text{Ca(Co}_{1-x}\text{Ni}_x\text{)}_{2-y}\text{As}_2 \) crystals, the charge doping with respect to stoichiometric \(\text{CaCo}_2\text{As}_2 \) is not equal to the value of \(x \). Instead, noting that \(\text{Co}^{2+} \) and \(\text{Ni}^{2+} \) respectively have 3d\(^{7}\) and 3d\(^{8}\) electron configurations, the doping charge per formula unit \(q \) in units of the elementary charge is given by

\[
q = 7(1 - x) + 8x(2 - y) - 14,
\]

where a negative value of \(q \) corresponds to hole doping.
FIG. 10. (a) Expanded plots of the magnetization M vs applied magnetic field $H \parallel c$ for Ca(Co$_{1-x}$Ni$_x$)$_2$-yAs$_2$ crystals with $x = 0, 0.03, 0.05$, and 0.11 from Figs. 9(a)–9(d), respectively. (b) Derivative dM/dH of the $M(H)$ data in (a). Note that the peak height for $x = 0$ is divided by 3.

FIG. 11. Expanded low-field plots at $T = 2$ K of the $M(H)$ hysteresis loops of Ca(Co$_{1-x}$Ni$_x$)$_2$-yAs$_2$ crystals with $x = 0.11, 0.16, 0.21$, and 0.31 for (a) $H \parallel ab$ and (b) $H \parallel c$.

TABLE IV. Spin-flop transition field H_{SF}, coercive field H_{CF}, remanent magnetization M_{rem}, FM ordered moment μ_{FM}, and p_{sat} values of the Ca(Co$_{1-x}$Ni$_x$)$_2$-yAs$_2$ crystals with $x = 0.03$.

x	H_{SF} (T)	H_{CF} (T)	M_{rem} ($\times 10^{-2}$ B/T f.u.)	μ_{FM} (μ_B/f.u.)	p_{sat} ($\mu_B/T\mu$)
0	0.11	0.16	0.21	0.31	0.0036
0.03	0.011	0.016	0.021	0.031	0.0086
0.05	0.036	0.042	0.051	0.052	0.0095
0.10	0.061	0.067	0.081	0.088	0.0106

and a positive value to electron doping. The doping levels per formula unit are given for each of the crystal compositions in the second column of Table IV.

The inserts of Figs. 12(a)–12(l) show $C_p(T)/T$ vs T^2 for all the Ca(Co$_{1-x}$Ni$_x$)$_2$-yAs$_2$ crystal compositions. The low-T data in the range 2–10 K for $x = 0$, 0.03, 0.05, 0.67, 0.81, and 1 were fitted by the expression

$$C_p(T) = \gamma T + \beta T^3 + \delta T^5,$$

where γ is the Sommerfeld electronic heat-capacity coefficient associated with the conduction carriers and the last two terms describe the low-T lattice heat-capacity contribution. The fitted parameters are listed in Table IV. As shown in Fig. 12, the $C_p(T)$ vs T^2 data for the $x = 0.11, 0.16, 0.21, 0.31, 0.42$, and 0.52 crystals exhibit an upturn below a temperature $T_{min}(x)$ below which the $C_p(T)$ vs T^2 data are not described by Eq. (8).

As discussed earlier, the AFM interactions are gradually suppressed with increasing Ni substitution in the Ca(Co$_{1-x}$Ni$_x$)$_2$-yAs$_2$ crystals. For the $x = 0.11$ and 0.16 crystals the strengths of the AFM and FM interactions are comparable so that the materials settle into a metastable state below their respective T_N. The FM spin fluctuations dominate the AFM fluctuations with a further increase in the Ni concentration as inferred from a strong signature of FM spin fluctuations observed in
FIG. 12. Temperature dependence of zero-field heat capacity $C_p(T)$ of Ca$_{(1-x)$Ni$_x$}$As$$_2$ crystals with $x = 0$–1 along with fits by the Debye model using Eq. (11). The humps in $C_p(T)$ at $T \approx 290$ K are experimental artifacts. Insets: $C_p(T)/T$ vs T^2 along with fits by Eq. (5). The fitting temperature range is 2–10 K for $x = 0$, 0.03, 0.05, 0.67, 0.81, and 1, whereas for all other compositions the range is $T_{\text{min}} \leq T \leq 10$ K, with T_{min} being the temperature where minima in $C_p(T)/T$ vs T^2 is observed and below which the low-T upturn occurs that is associated with FM fluctuations. The fits below T_{min} are the extrapolations of the fits to 2 K using Eq. (8).

TABLE V. The fitting parameters obtained from the analysis of heat capacity data. Listed are the crystal composition, doping charge q with respect to Ca$_{(1-x)$Co$_x$}As$_2$ from Eq. (7) (hole-doping values are negative), Sommerfeld coefficient γ obtained using Eq. (5) for $x = 0$, 0.03, 0.05, 0.67, 0.81, and 1 and using Eq. (6) for $x = 0.11$, 0.16, 0.21, 0.31, 0.41, and 0.52; lattice heat-capacity coefficients β and δ obtained from low-T fits of the C_p/T versus T^2 data; spin-fluctuation coefficient κ, spin fluctuation temperature T_{sf}, and density of states at the Fermi energy $D(E_F)$ derived from γ using Eq. (10).

Compound	doping q	γ (mJ/mol K2)	β (mJ/mol K4)	δ (mJ/mol K6)	κ (mJ/mol K2)	T_{sf}(K)	$D(E_F)$ (states/(eV f.u.))
CaCo$_{1.86(2)}$As$_2$	-0.98	29.6(1)	0.391(1)	≈ 0	12.5(4)		
Ca(Co$_{0.97}$Ni$_{0.03}$)$_{1.86}$As$_2$	-0.92	47.59(8)	0.126(4)	0.52(4)	20.17(3)		
Ca$_{0.95}$Ni$_{0.05}$As$_2$	-0.89	57.98(1)	0.131(3)	1.21(3)	24.57(1)		
Ca$_{0.89}$Ni$_{0.11}$As$_2$	-0.70	53.5(7)	0.21(3)	0.44(7)	-16.9(5)	10.4(8)	22.6(3)
Ca$_{0.84}$Ni$_{0.16}$As$_2$	-0.47	59(1)	0.14(4)	0.82(2)	-15(1)	10.21(3)	25.0(4)
Ca$_{0.79}$Ni$_{0.21}$As$_2$	-0.59	55(1)	0.14(3)	1.3(1)	-24(2)	8.14(2)	23.3(4)
Ca$_{0.69}$Ni$_{0.31}$As$_2$	-0.33	52(1)	0.24(3)	0.6(1)	-49.2(7)	7(1)	22.0(4)
Ca$_{0.58}$Ni$_{0.42}$As$_2$	-0.12	40(1)	0.35(1)	0.37(6)	-21.6(4)	4.80(6)	16.9(4)
Ca$_{0.48}$Ni$_{0.52}$As$_2$	0.06	32.9(4)	0.22(1)	0.90(5)	-9.8(4)	4(1)	13.9(2)
Ca$_{0.33}$Ni$_{0.67}$As$_2$	0.50	29.62(4)	0.10(3)	1.67(2)	12.55(2)		
Ca$_{0.19}$Ni$_{0.81}$As$_2$	1.15	18.77(6)	0.15(3)	1.51(3)	7.95(3)		
CaNi$_{1.97}$As$_2$	1.76	9.3(1)	0.15(6)	1.7(6)	3.94(4)		
The lines are guides to the eye.

The fitted parameters are listed in Table V. The FM coefficient and \(T_{\text{sf}}\) determined from states are observed \([27, 30, 66–71]\). We found that the zero-field \(C_p/T\) at low \(T\) of the \(x = 0.11, 0.16, 0.21, 0.31, 0.41, \) and 0.52 crystals can also be well described by

\[
\frac{C_p(T)}{T} = \gamma + \beta T^2 + \delta T^4 + \kappa \ln(T/T_{st}), \tag{9}
\]

where in addition to the Sommerfeld coefficient \(\gamma\) and lattice coefficients \(\beta\) and \(\delta\), \(\kappa\) is the spin fluctuation coefficient and \(T_{st}\) is the spin-fluctuation temperature. The fitted parameters are listed in Table V. The FM spin fluctuations are observed over a wide composition range in \(\text{Ca(Co}_{1-x}\text{Ni}_x)_2\text{YAs}_2\) in contrast to the ranges observed in isostructural \(\text{Sr(Co}_{1-x}\text{Ni}_x)_2\text{YAs}_2\,\tag{27}\) and \(\text{Ca(0}_{1-x}\text{Ir}_x)_2\text{YAs}_2\,\tag{30}\) crystals where the spin fluctuations were limited to narrow composition ranges.

The Sommerfeld coefficient \(\gamma\) in Table V increases by nearly a factor of two with only 3–5% Ni substitutions, indicating a corresponding rapid increase in the electronic density of state at the Fermi energy \(D(E_F)\). The enhanced \(\gamma\) values are observed for the compositions with strong FM fluctuations. As the strength of these fluctuations gradually decreases for the larger \(x\) values, \(\gamma\) correspondingly decreases as shown in Fig. 14. The \(D(E_F)\) values are determined from the \(\gamma\) values using the relation

\[
D_\gamma(E_F) = \frac{\text{states}}{eV\text{ f.m.}} = \frac{1}{2.357} \gamma \left(\frac{\text{mJ}}{\text{mol K}^2}\right), \tag{10}
\]

and are listed in Table V. Here, \(D_\gamma(E_F)\) is the density of states at \(E_F\) determined from \(C_p(T)\) measurements and includes the factor of two Zeeman degeneracy of the conduction carriers.

The \(C_p(T)\) data in the temperature range 50–300 K are analyzed according to

\[
C_p(T) = \gamma_D T + nC_V\text{Debye}(T), \tag{11}
\]

\[C_V\text{Debye}(T) = 9R \frac{T \Theta_D}{\Theta_D^3} \int_0^\infty \frac{x^4 e^x}{(e^{x} - 1)^2} dx,\]

where \(\gamma_D\) is the Sommerfeld coefficient which we use as a variable in this fit, \(n\) is the number of atoms per formula unit, \(C_V\text{Debye}\) is the Debye lattice heat capacity per mole of atoms at constant volume, and \(\Theta_D\) is the Debye temperature. The high-\(T\) data associated with the phonon
contribution are well described by the Debye model as shown by the black solid lines in Figs. 12(a)–12(d). The fitted parameters are listed in Table VI. From the Table, γ_D significantly differs from γ in Table V except for $x = 0$ and $x = 1$.

TABLE VI. Sommerfeld electronic heat-capacity coefficient γ_D and Debye temperature Θ_D determined by fitting the $C_P(T)$ data for Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ crystals in the temperature range 50–300 K by Eqs. (11).

x	γ_D (mJ/molK2)	Θ_D (K)
0	29.4(3)	357(4)
0.03	28(1)	347(1)
0.05	22(1)	340(2)
0.11	22(1)	336(2)
0.16	16(1)	334(2)
0.21	11(1)	332(2)
0.31	17(1)	327(2)
0.42	13(1)	327(1)
0.52	12(1)	325(1)
0.67	15(1)	316(2)
0.81	13(1)	319(2)
1	8(1)	309(2)

VI. NEUTRON DIFFRACTION

Guided by the magnetic structure of the A-type antiferromagnetism exhibited by the parent compound CaCo$_{1.86}$As$_2$, we conducted a thorough search for new emerging magnetic Bragg reflections along the (20L) r.l.u. (reciprocal-lattice unit) direction [14]. In particular, for A-type antiferromagnetism it is expected to observe (201) and (203) magnetic reflections. Figure 15(a) shows scans along (20L) for an $x = 0.16$ crystal at base temperature and at 20 K, i.e., above the anomaly found in χ_{ab} [Fig. 3(a)]. As shown by the difference between these two scans in Fig. 15(b), no obvious peaks are observed over the whole L range thus excluding A-type ordering. In fact, much longer time counting longitudinal and transverse scans at the (201) position exclude an A-type phase at $T = 4.8$ K assuming that the average ordered moment is not larger than our resolution of $\sim 0.05 \mu_B$ per transition-metal atom.

Additional scans along (00L), (10L), and (1/40L) at $T = 4.8$ and 20 K (not shown) do not show evidence of new emerging Bragg reflections that may indicate magnetic ordering that is different from A-type AFM ordering. For instance, the absence of magnetic reflections along (00L) eliminates the helical structure recently discovered in the related Sr(Co$_{1-x}$Ni$_x$)$_2$As$_2$ system in which adjacent FM layers (moments aligned in the plane) are rotated at a finite angle as they stack along the c axis [29]. We note that examination of nuclear Bragg reflections do not show increased intensity as the temperature is lowered from 20 K to base temperature thus excluding FM ordering of the whole system assuming that the ordered moment is not larger than $\sim 0.1 \mu_B$.

Similar experiments for the $x = 0.11$ crystal with scans along (20L), (00L), (H00), and (10L) at base temperature and at 20 K were conducted (not shown) and also did not yield evidence of any of the various scenarios that were excluded above within our resolution for the $x = 0.16$ crystal.

VII. THEORY

A. Band-filling dependence of magnetic phases and their competition

Figure 16 shows the energies of four magnetic configurations, including ferromagnetic, A-type, stripe-AFM, and nonmagnetic states in Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$. For stoichiometric CaCo$_2$As$_2$, FM and A-type AFM configurations have much lower energy than the stripe-AFM ordering, indicating FM intralayer moment alignment is favored over the stripe-AFM intralayer alignment, as observed. The energy difference between the stripe-AFM phase and FM phase is much larger in cT-phase CaCo$_2$As$_2$ than in T-phase SrCo$_2$As$_2$ [22], mainly due to the different c/a-ratios in the T and cT phases. As a result, stripe ordering or fluctuations are unlikely to occur in CaCo$_2$As$_2$-related compounds.
The energy difference between the FM and A-type AFM configurations is much smaller, suggesting that interlayer coupling is much weaker than intralayer coupling. Interestingly, the stoichiometric CaCo$_2$As$_2$ FM state with $x = 0$ even has a lower energy than the A-type AFM state found in CaCo$_{1.86}$As$_2$ from experiments. This suggests that the intrinsic vacancies and the induced local structural relaxation present in experimental samples may play a significant role in stabilizing the AFM interlayer coupling.

Compared to SrCo$_2$As$_2$, CaCo$_{2-y}$As$_2$ shows a more stable magnetic ordering and the FM fluctuations exist in a much broader doping range in the Ni-doped compounds. This is likely due to the lack of intralayer FM-AFM competition and the easy-axis anisotropy in CaCo$_2$As$_2$. The much higher stripe-phase energy excludes stripe ordering or fluctuations in CaCo$_2$As$_2$, while both intralayer and intralayer FM-AFM competition coexist in SrCo$_2$As$_2$. Moreover, unlike SrCo$_2$As$_2$, CaCo$_2$As$_2$ has an easy-axis magnetocrystalline anisotropy, which is essential to stabilize the long-range magnetic ordering in 2D systems or layered bulk systems with very weak interlayer couplings, according to the Mermin-Wagner theorem.

The calculated magnetocrystalline anisotropy energy in stoichiometric CaCo$_2$As$_2$ is $\Delta E = 41 \mu$eV/Co with the easy direction along the c axis, consistent with the easy c-axis anisotropy found in experiments on CaCo$_{1.86}$As$_2$. For comparison, using the experimental value of the c-axis spin-flop field $H_{\text{SF}} = 3.5$ T and the ordered moment $\mu = 0.28 \mu_B$/Co, we obtain $\Delta E = \frac{1}{2} \mu H_{\text{SF}} = 28 \mu$eV/Co. The difference between the two values may be associated with the Co vacancies in CaCo$_{1.86}$As$_2$ which were not accounted for in the theoretical calculation. In addition, magnetic-dipole interactions between the Co spins in the simple-tetragonal Co structure give a small XY anisotropy $\Delta E \approx -1.5 \mu$eV/Co assuming Co point-dipole local moments.

B. Density of States

The influence of electron doping on the nonmagnetic density of electron states (DOS) is plotted versus energy E relative to the Fermi energy E_F in Fig. 17. The DOS in undoped CaCo$_2$As$_2$ peaks near E_F as previously reported. From Fig. 17, a large amount of electron doping decreases DOS(E_F) and suppresses the on-site magnetic moment according to a Stoner-like mechanism within a rigid-band picture, as also found previously for hole doping. Indeed, with electron doping, as shown in Fig. 16, the on-site magnetic moment of 3d atoms in Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ vanishes at the Stoner transition composition $x \approx 0.5$, which agrees well with the experimental fact that no spin fluctuations and magnetic ordering were observed with $x > 0.52$. Interestingly, calculations also found that a smaller amount of electron doping promotes the FM interlayer coupling against the AFM one, consistent with the above experiments showing that electron doping suppresses the AFM interlayer coupling and induces strong FM fluctuations.

The values of the calculated densities of states at the Fermi energy $D(E_F)$ from Fig. 17 are listed for $x = 0$, $x = 0.21$, and $x = 0.42$. The DOS is expressed per formula unit, taking into account the twofold Zeeman degeneracy of the electron. The DOS(E_F) is seen to peak near zero doping and to decrease upon electron doping.
TABLE VII. Calculated total density of states at the Fermi energy $D(E_F)$ of Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ per formula unit for both spin directions for compositions $x = 0, 0.21, \text{ and } 0.42$. Also listed are two similar electron-doping values q and corresponding $D(E_F)$ inferred for Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ from Table V.

x	q_{calc}	$D(E_F)_{\text{calc}}$	q_{obs}	$D(E_F)_{\text{obs}}$
0	0	7.846	0.06	13.9(2)
0.21	0.42	6.754	0.50	12.55(2)
0.42	0.84	4.809	1.15	7.95(3)

FIG. 18. Magnetic phase diagram in the T-x plane of the Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ system obtained from $\chi(T)$ and $M(H)$-isotherm measurements. Here AFM, SG, and PM stand for antiferromagnetic, spin-glass, and paramagnetic states, respectively. The suppression of AFM order by the development of strong FM fluctuations in Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ crystals suggest the presence of a nearby FM QCP at $x \approx 0.2$. Note the break in the abscissa scale between $x = 0.34$ and $x = 0.9$.

The magnetic phase diagram in the T-x plane of the Ca(Co$_{1-x}$Ni$_x$)$_2$As$_2$ system is shown in Fig. 18. The A-type AFM ordering observed at $T_N = 52$ K in the highly-frustrated itinerant parent compound CaCo$_{2-y}$As$_2$ is gradually suppressed with Ni substitution and vanishes for $x \geq 0.11$ Ni substitution strongly enhances the FM spin fluctuations in this system and as a result T_N rapidly drops to 22 K with only a 3% Ni substitution along with a strong enhancement of the Sommerfeld electronic heat-capacity coefficient.

The FM fluctuations increase further in the $x = 0.11$ and 0.16 crystals and compete with the AFM ordering in these systems until the formation of a low-T spin-glass state below a blocking temperature $T_\text{B} \sim 5$ K. With a further increase in Ni concentration quasi-one-dimensional c-axis FM spin fluctuations dominate in the $x = 0.21$ and 0.31 crystals where χ_c becomes much larger than χ_{ab} in the low-T region. Small static FM moments at $T = 2$ K were observed for $x = 0.11, 0.16, 0.21$, and 0.31 from magnetization versus field isotherms, with a maximum value of 0.12 μ_B/f.u. for $x = 0.16$.

DFT calculations confirm that FM fluctuations are enhanced by Ni substitutions for Co in CaCo$_{2-y}$As$_2$. The FM spin fluctuations are observed over a wide composition range from $x = 0.11$ to $x = 0.52$ at which a Stoner transition to a nonmagnetic state occurs as previously observed in the hole-doped Ca(Co$_{1-x}$Fe$_x$)$_2$As$_2$ system.

The results suggest the presence of a FM quantum-critical point at $x \approx 0.20$, which is unusual in such materials. However, a FM QCP can be avoided if preempted by an AFM transition \cite{50-52}. If FM critical fluctuations persist to low temperatures, a novel ground state such as p-wave superconductivity is conceivable \cite{76-79} with an onset below our low-T measurement limit of 1.8 K.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

\[1\] M. Rotter, M. Tegel, and D. Johrendt, Superconductivity at 38 K in the Iron Arsenide (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$, Phys. Rev. Lett. \textbf{101}, 107006 (2008).

\[2\] K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y.-Y. Xue, and C.-W. Chu, Superconducting Fe-Based Compounds (A$_{1-x}$Sr$_x$)Fe$_2$As$_2$ with A = K and Cs with Transition Temperatures up to 37 K, Phys. Rev. Lett.
P. Dai, J. Hu, and E. Dagotto, Magnetism and its micro-
structure, magnetic order, and superconductivity with Ni doping in CaFe$_{2-x}$Ni$_x$As$_2$, Phys. Rev. B 80, 144524 (2009).

Z. Ren, Q. Tao, S. Jiang, C. Feng, C. Wang, J. Dai, G. Cao, and Z. Xu, Superconductivity Induced by Phosphorus Doping and Its Coexistence with Ferromagnetism in EuFe$_2$(As$_{0.7}$P$_{0.3}$)$_2$, Phys. Rev. Lett. 102, 137002 (2009).

D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys. 59, 803 (2010).

J. Paglione and R. L. Greene, High-temperature superconductivity in iron-based materials, Nat. Phys. 6, 645 (2010).

P. C. Canfield and S. L. Bud’ko, Magnetism and its microscopic origin in iron-based high-temperature superconductors, Annu. Rev. Condens. Matter Phys. 1, 27 (2010).

G. R. Stewart, Superconductivity in iron compounds, Rev. Mod. Phys. 83, 1589 (2011).

P. Dai, J. Hu, and E. Dagotto, Magnetism and its microscopic origin in iron-based high-temperature superconductors, Nat. Phys. 8, 709 (2012).

P. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors, Rev. Mod. Phys. 87, 855 (2015).

D. J. Scalapino, A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys. 84, 1383 (2012).

For a review of collapsed- and uncollapsed-tetragonal materials, see Sec. VIII of V. K. Anand, P. K. Perera, A. Pandey, R. J. Goetsch, A. Kreyssig, and D. C. Johnston, Crystal growth and physical properties of SrCu$_2$As$_2$, SrCu$_2$Sb$_2$ and BaCu$_2$Sb$_2$, Phys. Rev. B 85, 174509 (2012).

D. G. Quinirale, V. K. Anand, M. G. Kim, A. Pandey, A. Huq, P. W. Stephens, T. W. Heitmann, A. Kreyssig, R. J. McQueeney, D. C. Johnston, and A. I. Goldman, Crystal and magnetic structure of CaCo$_1$As$_2$ studied by x-ray and neutron diffraction, Phys. Rev. B 88, 174420 (2013).

V. K. Anand, R. S. Dhaka, Y. Lee, B. N. Harmon, A. Kaminski, and D. C. Johnston, Physical properties of metallic antiferromagnetic CaCo$_{1.06}$As$_{2}$ single crystals, Phys. Rev. B 89, 214409 (2014).

A. Pandey, D. G. Quinirale, W. Jayasekara, A. Sapkota, M. G. Kim, R. S. Dhaka, Y. Lee, T. W. Heitmann, P. W. Stephens, V. Ogloblitchev, A. Kreyssig, R. J. McQueeney, A. I. Goldman, A. Kaminski, B. N. Harmon, Y. Furukawa, and D. C. Johnston, Crystallographic, electronic, thermal, and magnetic properties of single-crystal SrCo$_2$As$_2$, Phys. Rev. B 88, 014526 (2013).

B. Li, B. G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, D. C. Johnston, Q.-P. Ding, Y. Furukawa, P. P. Orth, A. Kreyssig, A. I. Goldman, and R. J. McQueeney, Competing magnetic phases and itinerant magnetic frustration in SrCo$_2$As$_2$, Phys. Rev. B 100, 054411 (2019).

W. Jayasekara, Y. Lee, A. Pandey, G. S. Tucker, A. Sapkota, J. Lamsal, S. Calder, D. L. Abernathy, J. L. Niedziela, B. N. Harmon, A. Kreyssig, D. Vakin, D. C. Johnston, A. I. Goldman, and R. J. McQueeney, Stripe Antiferromagnetic Spin Fluctuations in SrCo$_2$As$_2$, Phys. Rev. Lett. 111, 157001 (2013).

P. Wiecki, V. Ogloblitchev, A. Pandey, D. C. Johnston, and Y. Furukawa, Coexistence of antiferromagnetic and ferromagnetic spin correlations in SrCo$_2$As$_2$ revealed by 59Co and 75As NMR, Phys. Rev. B 91, 220406(R) (2015).

Y. Li, Z. Yin, Z. Liu, W. Wang, Z. Xu, Y. Song, L. Tian, Y. Huang, D. Shen, D. L. Abernathy, J. L. Niedziela, R. A. Ewings, T. G. Perring, D. M. Pajerowski, M. Matsuda, P. Bourges, E. Mechthild, Y. Su, and P. Dai, Coexistence of Ferromagnetic and Stripe Antiferromagnetic Spin Fluctuations in SrCo$_2$As$_2$, Phys. Rev. Lett. 122, 117204 (2019).

A. S. Sefat, D. J. Singh, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, Renormalized behavior and proximity of BaCo$_2$As$_2$ to a magnetic quantum critical point, Phys. Rev. B 79, 024512 (2009).

V. K. Anand, D. G. Quinirale, Y. Lee, B. N. Harmon, Y. Furukawa, V. V. Ogloblitchev, A. Huq, D. L. Abernathy, P. W. Stephens, R. J. McQueeney, A. Kreyssig, A. I. Goldman, and D. C. Johnston, Crystallography and physical properties of BaCo$_2$As$_2$, Ba$_{0.8}$Sr$_{0.2}$Co$_2$As$_2$, and Ba$_{0.75}$Sr$_{0.25}$Co$_2$As$_2$, Phys. Rev. B 90, 064517 (2014).

N. Xu, P. Richard, A. van Roekeghem, P. Zhang, H. Miao, W.-L. Zhang, T. Qian, M. Ferrero, A. S. Sefat, S. Biermann, and H. Ding, Electronic Band Structure of BaCo$_2$As$_2$: A Fully Doped Ferropnictide Analog with Reduced Electronic Correlations, Phys. Rev. X 3, 011006 (2013).

N. S. Sangeetha, V. K. Anand, E. Cuervo-Reyes, V. Smetana, A.-V. Mudring, and D. C. Johnston, Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo$_2$-δAs$_2$, Phys. Rev. B 97, 144403 (2018).

N. S. Sangeetha, V. Smetana, A.-V. Mudring, and D. C. Johnston, Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca$_{1-x}$Sr$_x$Co$_2$-δAs$_2$, Phys. Rev. Lett. 119, 257203 (2017).

W. T. Jayasekara, A. Pandey, A. Kreyssig, N. S. Sangeetha, A. Sapkota, K. Kothapalli, V. K. Anand, W. Tian, D. Vakin, D. C. Johnston, R. J. McQueeney, A. I. Goldman, and B. G. Ueland, Suppression of magnetic order in CaCo$_{1.06}$As$_2$ with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca(Fe$_{1-x}$Co$_x$)$_{6}$As$_2$, Phys. Rev. B 95, 064425 (2017).

N. S. Sangeetha, L.-L. Wang, A. V. Smirnov, V. Smetana, A.-V. Mudring, D. D. Johnson, M. A. Tanatar, R. Prozorov, and D. C. Johnston, Non-Fermi-liquid types of behavior associated with a magnetic quantum critical point in Sr(Co$_{1-x}$Ni$_x$)$_2$As$_2$ single crystals, Phys. Rev. B 100, 094447 (2019).

Y. Li, Z. Liu, Z. Xu, Y. Song, Y. Huang, D. Shen, N. Ma, A. Li, S. Chi, M. Frontzek, H. Cao, Q. Huang, W. Wang, Y. Xie, R. Zhang, Y. Rong, W. A. Shelton, D. P. Young, J. F. DiTusa, and P. Dai, Flat-band magnetism and helical magnetic order in Ni-doped SrCo$_2$As$_2$, Phys. Rev. B 100, 094446 (2019).

J. M. Wilde, A. Kreyssig, D. Vakin, N. S. Sangeetha, B. Li, W. Tian, P. P. Orth, D. C. Johnston, B. G.
SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, B. G. Ueland, S. Pakhira, B. Li, A. Sapkota, N. S. Sangeetha, B. G. Ueland, V. K. Anand, N. S. Sangeetha, C. Li, A. J. Freeman, H. J. F. Jansen, and C. L. Fu, Magnetic metal pnictides: A comparative study by optical spectroscopy, Phys. Rev. B 86, 127202 (2015).

[53] P. Wiecki, B. Roy, D. C. Johnston, S. L. Bud’ko, P. C. Canfield, and Y. Furulawa, Competing Magnetic Fluctuations in Iron Pnictide Superconductors: Role of Ferromagnetic Spin Correlations Revealed by NMR, Phys. Rev. Lett. 115, 137001 (2015).

[54] A. Sapkota, B. G. Ueland, V. K. Anand, N. S. Sangeetha, D. L. Abernathy, M. B. Stone, J. L. Niedziela, D. C. Johnston, A. Kreyssig, C. Johnston, A. I. Goldman, and R. J. McQueeney, Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo$_2$As$_2$, Phys. Rev. Lett. 119, 147201 (2017).

[55] H. Mao and Z. Yin, Electronic structure and spin dynamics of ACa$_2$As$_2$ (A = Ba, Sr, Ca), Phys. Rev. B 98, 115128 (2018).

[56] B. G. Ueland, S. Pakhira, B. Li, A. Sapkota, N. S. Sangeetha, T. G. Perring, Y. Lee, L. Ke, D. C. Johnston, and R. J. McQueeney, Carrier Tuning of Stoner Ferromagnetism in ThCr$_2$Si$_2$-Structure Cobalt Arsenides, arXiv:2103.05695.

[57] B. Cheng, B. F. Hu, R. Y. Chen, G. Xu, P. Zheng, J. L. Luo, and N. L. Wang, Electronic properties of 3d transitional metal pnictides: A comparative study by optical spectroscopy, Phys. Rev. B 86, 134503 (2012).

[58] APEX3, Bruker AXS Inc., Madison, Wisconsin, USA, 2015.

[59] SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2015.

[60] L. Krause, R. Herbst-Irmier, G. M. Sheldrick, and D. J. Stalke, Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination, Appl. Crystallogr. 48, 3 (2015).

[61] G. M. Sheldrick, SHELTX – Integrated space-group and crystal-structure determination, Acta Crystallogr. A 71, 3 (2015).

[62] G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. C 71, 3 (2015).

[63] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, and L. D. Marks, WIEN2k: An APW+lo program for calculating the properties of solids, J. Chem. Phys. 152, 074101 (2020).

[64] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[65] C. Li, A. J. Freeman, H. J. F. Jansen, and C. L. Fu, Magnetic anisotropy in low-dimensional ferromagnetic systems: Fe monolayers on Ag(001), Au(001), and Pd(001) substrates, Phys. Rev. B 42, 5433 (1990).

[66] L. Ke and M. van Schilfgaarde, Band-filling effect on magnetic anisotropy using a Green’s function method, Phys. Rev. B 92, 014423 (2015).

[67] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst. 44, 1272 (2011).

[68] D. C. Johnston, Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets, Phys. Rev. B 91, 064427 (2015).

[69] M. E. Fisher, Relation between the Specific Heat and Susceptibility of an Antiferromagnet, Philos. Mag. 7, 1731 (1962).

[70] M. Brando, W. J. Duncan, D. Moromi-Klementowicz, C. Albrecht, D. Gr¨uner, R. Ballou, and F. M. Grosche, Logarithmic Fermi-Liquid Breakdown in NbFe$_2$, Phys. Rev. Lett. 101, 026401 (2008).

[71] E. Lengyel, M. E. Macovei, A. Jesche, C. Krellner, C. Geibel, and M. Nicklas, Avoided ferromagnetic quantum critical point in CeRuPO, Phys. Rev. B 91, 035130 (2015).

[72] S. Hamann, J. Zhang, D. Jang, A. Hannaske, L. Steinke, S. Lausberg, L. Pedrozo, C. Klinkner, M. Baenitz, F. Steglich, C. Krellner, C. Geibel, and M. Brando, Evolution from Ferromagnetism to Antiferromagnetism in Yb(Rh$_{1-x}$Co$_x$)$_2$Si$_2$, Phys. Rev. Lett. 122, 077202 (2019).

[73] Yu. A. Freeman and H. J. Jodl, Solid oxygen, Phys. Rep. 401, 1 (2004).

[74] J. Dho, W. S. Kim, and N. H. Hur, Reentrant Spin Glass Behavior in Cr-Doped Perovskite Manganite, Phys. Rev. Lett. 89, 027202 (2002).

[75] S. Pakhira, C. Mazumdar, R. Ranganathan, S. Giri, and M. Avdeev, Large magnetic cooling power involving frustrated antiferromagnetic spin-glass state in R$_2$NiSi$_3$ (R = Gd, Er), Phys. Rev. B 94, 104414 (2016).

[76] M. Viswanathan and P. S. Anil Kumar, Observation of reentrant spin glass behavior in LaCo$_{0.5}$Ni$_{0.5}$O$_3$, Phys. Rev. B 80, 012410 (2009).

[77] J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, 1993).

[78] D. C. Johnston, Stretched Exponential Relaxation Arising from a Continuous Sum of Exponential Decays, Phys. Rev. B 74, 184430 (2006).

[79] P. Rhodes and E. P. Wohlfarth, The effective Curie-Weiss constant of ferromagnetic metals and alloys, Proc. Roy. Soc. London, Ser. A 273, 247 (1963).

[80] J. M. Santiago, C.-L. Huang, and E. Morossan, Itinerant magnetic metals, J. Phys.: Condens. Matter 29, 373002 (2017).

[81] A. Arrott, Criterion for Ferromagnetism from Observations of Magnetic Isotherms, Phys. Rev. 108, 1394 (1957).

[82] A. Arrott, Equations of state along the road to Arrott’s last plot, J. Magn. Magn. Mater. 322, 1047 (2010).

[83] Y. Takahashi, Spin Fluctuation Theory of Itinerant Electron Magnetism (Springer, Berlin, 2013).

[84] B. Cheng, B. F. Hu, R. H. Yuan, T. Dong, A. F. Fang, Z. G. Chen, G. Xu, Y. G. Shi, P. Zheng, J. L. Luo, and N. L. Wang, Field-induced spin-flop transitions in single-crystalline CaCo$_2$As$_2$, Phys. Rev. B 85, 144426 (2012).

[85] J. J. Ying, Y. J. Yan, A. F. Wang, Z. J. Xiang, P. Cheng, G. J. Ye, and X. H. Chen, Metamagnetic transition in Ca$_{1-x}$Sr$_x$Co$_2$As$_2$ (x = 0 and 1) single crystals, Phys. Rev. B 85, 214414 (2012).
[66] P. Fulde and A. Luther, Effects of Impurities on Spin Fluctuations in Almost Ferromagnetic Metals, Phys. Rev. 170, 570 (1968).

[67] A. J. Millis, Effect of a nonzero temperature on quantum critical points in itinerant fermion systems, Phys. Rev. B 48, 7183 (1993).

[68] M. Nicklas, M. Brando, G. Knebel, F. Mayr, W. Trinkl, and A. Loidl, Non-Fermi-Liquid Behavior at a Ferromagnetic Quantum Critical Point in Ni$_x$Pd$_{1-x}$, Phys. Rev. Lett. 82, 4268 (1999).

[69] M. B. Maple, R. E. Baumbach, N. P. Butch, J. J. Hamlin, and M. Janoschek, Non-Fermi Liquid Regimes and Superconductivity in the Low Temperature Phase Diagrams of Strongly Correlated d- and f-Electron Materials, J. Low Temp. Phys. 161, 4 (2010).

[70] L. S. Wu, M. S. Kim, K. Park, A. M. Tsvelik, and M. C. Aronson, Quantum critical points and intermediate valence fluctuations in layered YFe$_2$Al$_{10}$, Proc. Natl. Acad. Sci. USA 111, 14088 (2014).

[71] S. Pandey, V. Siruguri, and R. Rawat, Quantum critical point and intermediate valence fluctuations in CeRu$_{2-x}$Co$_x$Ge$_2$, Phys. Rev. B 98, 155129 (2018).

[72] W. Jayasekara, Y. Lee, A. Pandey, G. S. Tucker, A. Sapkota, J. Lamsal, S. Calder, D. L. Abernathy, J. L. Niedziela, B. N. Harmon, A. Kreyssig, D. Vaknin, D. C. Johnston, A. I. Goldman, and R. J. McQueeney, Stripe Antiferromagnetic Spin Fluctuations in SrCo$_2$As$_2$, Phys. Rev. Lett. 111, 157001 (2013).

[73] N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966); 17, 1307(E) (1966).

[74] D. C. Johnston, Magnetic dipole interactions in crystals, Phys. Rev. B 93, 014421 (2016).

[75] B. G. Ueland, S. Pakhira, B. Li, A. Sapkota, N. S. Sangeetha, T. G. Perring, Y. Lee, L. Ke, D. C. Johnston, and R. J. McQueeney, Carrier Tuning of Stoner Ferromagnetism in ThCr$_2$Si$_2$-Structure Cobalt Arsenides, arXiv:2103.05695.

[76] D. Fay and J. Appel, Coexistence of p-state superconductivity and itinerant ferromagnetism, Phys. Rev. B 22, 3173 (1980).

[77] E. V. Kuz’min, S. G. Ovchinnikov, and I. O. Baklanov, Comparison of superconductivity in Sr$_2$RuO$_4$ and copper oxides, Phys. Rev. B 61, 15392 (2000).

[78] M. Mochizuki, Y. Yanase, and M. Ogata, Ferromagnetic Fluctuation and Possible Triplet Superconductivity in Na$_x$CoO$_2$·yH$_2$O: Flucluation-Exchange Study of the Multiorbital Hubbard Model, Phys. Rev. Lett. 94, 147005 (2005).

[79] T. Hattori, Y. Ihara, Y. Nakai, K. Ishida, Y. Tada, S. Fujimoto, N. Kawakami, E. Osaki, K. Deguchi, N. K. Sato, and I. Satoh, Superconductivity Induced by Longitudinal Ferromagnetic Fluctuations in UCoGe, Phys. Rev. Lett. 108, 066403 (2012).