Profinite groups with restricted centralizers of \(\pi \)-elements

Cristina Acciarri and Pavel Shumyatsky

Abstract. A group \(G \) is said to have restricted centralizers if for each \(g \) in \(G \) the centralizer \(C_G(g) \) either is finite or has finite index in \(G \). Shalev showed that a profinite group with restricted centralizers is virtually abelian. Given a set of primes \(\pi \), we take interest in profinite groups with restricted centralizers of \(\pi \)-elements. It is shown that such a profinite group has an open subgroup of the form \(P \times Q \), where \(P \) is an abelian pro-\(\pi \) subgroup and \(Q \) is a pro-\(\pi' \) subgroup. This significantly strengthens a result from our earlier paper.

1. Introduction

A group \(G \) is said to have restricted centralizers if for each \(g \) in \(G \) the centralizer \(C_G(g) \) either is finite or has finite index in \(G \). This notion was introduced by Shalev in \cite{13} where he showed that a profinite group with restricted centralizers is virtually abelian. We say that a profinite group has a property virtually if it has an open subgroup with that property. The article \cite{3} handles profinite groups with restricted centralizers of \(w \)-values for a multilinear commutator word \(w \). The theorem proved in \cite{3} says that if \(w \) is a multilinear commutator word and \(G \) is a profinite group in which the centralizer of any \(w \)-value is either finite or open, then the verbal subgroup \(w(G) \) is virtually abelian.

In \cite{1} we study profinite groups in which \(p \)-elements have restricted centralizers, that is, groups in which \(C_G(x) \) is either finite or open for any \(p \)-element \(x \). The following theorem was proved.

2010 Mathematics Subject Classification. 20E18, 20F24.

Key words and phrases. Profinite groups, centralizers, \(\pi \)-elements, FC-groups.

This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF), Brazil.
Theorem 1.1. Let p be a prime and G a profinite group in which the centralizer of each p-element is either finite or open. Then G has a normal abelian pro-p subgroup N such that G/N is virtually pro-p'.

The present paper grew out of our desire to determine whether this result can be extended to profinite groups in which the centralizer of each π-element, where π is a fixed set of primes, is either finite or open. As usual, we say that an element x of a profinite group G is a π-element if the order of the image of x in every finite continuous homomorphic image of G is divisible only by primes in π (see [10], Section 2.3] for a formal definition of the order of a profinite group).

It turned out that the techniques used in the proof of Theorem 1.1 were not quite adequate for handling the case of π-elements. The basic difficulty stems from the fact that (pro)finite groups in general do not possess Hall π-subgroups.

In the present paper we develop some new techniques and establish the following theorem about finite groups.

If π is a set of primes and G a finite group, write $O^{\pi'}(G)$ for the unique smallest normal subgroup M of G such that G/M is a π'-group. The conjugacy class containing an element $g \in G$ is denoted by g^G.

Theorem 1.2. Let n be a positive integer, π be a set of primes, and G a finite group such that $|g^G| \leq n$ for each π-element $g \in G$. Let $H = O^{\pi'}(G)$. Then G has a normal subgroup N such that

1. The index $[G : N]$ is n-bounded;
2. $[H : N] = [H, H]$;
3. The order of $[H, N]$ is n-bounded.

Throughout the article we use the expression “(a, b, \ldots)-bounded” to mean that a quantity is finite and bounded by a certain number depending only on the parameters a, b, \ldots.

The proof of Theorem 1.2 uses some new results related to Neumann’s BFC-theorem [8]. In particular, an important role in the proof is played by a recent probabilistic result from [2]. Theorem 1.2 provides a highly effective tool for handling profinite groups with restricted centralizers of π-elements. Surprisingly, the obtained result is much stronger than Theorem 1.1 even in the case where π consists of a single prime.

Theorem 1.3. Let π be a set of primes and G a profinite group in which the centralizer of each π-element is either finite or open. Then G has an open subgroup of the form $P \times Q$, where P is an abelian pro-π subgroup and Q is a pro-π' subgroup.
Thus, the improvement over Theorem 1.1 is twofold – the result now covers the case of π-elements and provides additional details clarifying the structure of groups in question. Furthermore, it is easy to see that Theorem 1.3 extends Shalev’s result [13] which can be recovered by considering the case where $\pi = \pi(G)$ is the set of all prime divisors of the order of G.

We now have several results showing that if the elements of a certain subset X of a profinite group G have restricted centralizers, then the structure of G is very special. This suggests the general line of research whose aim would be to determine which subsets of G have the above property. At present we are not able to provide any insight on the problem. Perhaps one might start with the following question:

Let n be a positive integer. What can be said about a profinite group G such that if $x \in G$ then $C_G(x^n)$ is either finite or open?

Proofs of Theorems 1.2 and 1.3 will be given in Sections 2 and 3, respectively.

2. Proof of Theorem 1.2

The following lemma is taken from [1]. If $X \subseteq G$ is a subset of a group G, we write $\langle X \rangle$ for the subgroup generated by X and $\langle X^G \rangle$ for the minimal normal subgroup of G containing X.

Lemma 2.1. Let i, j be positive integers and G a group having a subgroup K such that $|x^G| \leq i$ for each $x \in K$. Suppose that $|K| \leq j$. Then $\langle K^G \rangle$ has finite (i, j)-bounded order.

If K is a subgroup of a finite group G, we denote by

$$Pr(K, G) = \frac{|\{(x, y) \in K \times G : [x, y] = 1\}|}{|K||G|}$$

the relative commutativity degree of K in G, that is, the probability that a random element of G commutes with a random element of K. Note that

$$Pr(K, G) = \frac{\sum_{x \in K} |C_G(x)|}{|K||G|}.$$

It follows that if $|x^G| \leq n$ for each $x \in K$, then $Pr(K, G) \geq \frac{1}{n}$.

The next result was obtained in [2] Proposition 1.2. In the case where $K = G$ this is a well known theorem, due to P. M. Neumann [9].

Proposition 2.2. Let $\epsilon > 0$, and let G be a finite group having a subgroup K such that $Pr(K, G) \geq \epsilon$. Then there is a normal subgroup $T \leq G$ and a subgroup $B \leq K$ such that the indexes $[G : T]$ and $[K : B]$, and the order of the commutator subgroup $[T, B]$ are ϵ-bounded.
We will now embark on the proof of Theorem [1.2].

Assume the hypothesis of Theorem [1.2]. Let \(X \) be the set of all \(\pi \)-elements of \(G \). Clearly, \(H = \langle X \rangle \). Given an element \(g \in H \), we write \(l(g) \) for the minimal number \(l \) with the property that \(g \) can be written as a product of \(l \) elements of \(X \). The following result is straightforward from [4] Lemma 2.1.

Lemma 2.3. Let \(K \leq H \) be a subgroup of index \(m \) in \(H \), and let \(b \in H \). Then the coset \(Kb \) contains an element \(g \) such that \(l(g) \leq m-1 \).

Let \(m \) be the maximum of indices of \(C_H(x) \) in \(H \) where \(x \in X \). Obviously, we have \(m \leq n \).

Lemma 2.4. For any \(x \in X \) the subgroup \([H, x] \) has \(m \)-bounded order.

Proof. Take \(x \in X \). Since the index of \(C_H(x) \) in \(H \) is at most \(m \), by Lemma [2.3] we can choose elements \(y_1, \ldots, y_m \) in \(H \) such that \(l(y_i) \leq m-1 \) and the subgroup \([H, x] \) is generated by the commutators \([y_i, x] \), for \(i = 1, \ldots, m \). For any such \(i \) write \(y_i = y_i^1 \cdots y_i^{m-1} \), with \(y_{ij} \in X \). Using standard commutator identities we can rewrite \([y_i, x] \) as a product of conjugates in \(H \) of the commutators \([y_{ij}, x] \). Let \(\{h_1, \ldots, h_s\} \) be the conjugates in \(H \) of all elements from the set \(\{x, y_{ij} \mid 1 \leq i, j \leq m\} \). Note that the number \(s \) here is \(m \)-bounded. This follows from the fact that \(C_H(x) \) has index at most \(m \) in \(H \) for each \(x \in X \). Put \(T = \langle h_1, \ldots, h_s \rangle \). Since \([H, x] \) is contained in the commutator subgroup \(T' \), it is sufficient to show that \(T' \) has \(m \)-bounded order. Observe that the centre \(Z(T) \) has index at most \(m^s \) in \(T \), since the index of \(C_H(h_i) \) is at most \(m \) in \(H \) for any \(i = 1, \ldots, s \). Thus, by Schur’s theorem [11] 10.1.4, we conclude that the order of \(T' \) is \(m \)-bounded, as desired. \(\Box \)

Select \(a \in X \) such that \(|a^H| = m \). Choose \(b_1, \ldots, b_m \) in \(H \) such that \(l(b_i) \leq m-1 \) and \(a^H = \{a^{b_i} \mid i = 1, \ldots, m\} \). The existence of the elements \(b_i \) is guaranteed by Lemma [2.3]. Set \(U = C_G(\langle b_1, \ldots, b_m \rangle) \). Note that the index of \(U \) in \(G \) is \(n \)-bounded. Indeed, since \(l(b_i) \leq m-1 \) we can write \(b_i = b_{i1} \cdots b_{i(m-1)} \), where \(b_{ij} \in X \) and \(i = 1, \ldots, m \). By the hypothesis the index of \(C_G(b_{ij}) \) in \(G \) is at most \(n \) for any such element \(b_{ij} \). Thus, \([G : U] \leq n^{(m-1)m} \).

The next result is somewhat analogous to [14] Lemma 4.5.

Lemma 2.5. If \(u \in U \) and \(ua \in X \), then \([H, u] \leq [H, a] \).

Proof. Assume that \(u \in U \) and \(ua \in X \). For each \(i = 1, \ldots, m \) we have \((ua)^{b_i} = ua^{b_i} \), since \(u \) belongs to \(U \). We know that \(ua \in X \) so taking into account the hypothesis on the cardinality of the conjugacy
class of \(ua \) in \(H \), we deduce that \((ua)^H\) consists exactly of the elements \(ua^b \), for \(i = 1, \ldots, m \). Thus, given an arbitrary element \(h \in H \), there exists \(b \in \{ b_1, \ldots, b_m \} \) such that \((ua)^h = ua^b\) and so \(u^h a^h = u a^b \). It follows that \([u, h] = a^h a^{-h} \in \langle H, a \rangle \), and the result holds. \(\square \)

Lemma 2.6. The order of the commutator subgroup of \(H \) is \(n \)-bounded.

Proof. Let \(U_0 \) be the maximal normal subgroup of \(G \) contained in \(U \). Recall that, by the remark made before Lemma 2.5, \(U \) has \(n \)-bounded index in \(G \). It follows that the index \([G : U_0]\) is \(n \)-bounded as well.

By the hypothesis \(a \) has at most \(n \) conjugates in \(G \), say \(\{ a g_1, \ldots, a g_n \} \).

Let \(T \) be the normal closure in \(G \) of the subgroup \([H, a] \). Note that the subgroups \([H, a g_i] \) are normal in \(H \), therefore \(T = [H, a g_1] \cdots [H, a g_n] \). By Lemma 2.4 each of the subgroups \([H, a g_i] \) has \(n \)-bounded order. We conclude that the order of \(T \) is \(n \)-bounded.

Let \(Y = Xa^{-1} \cap U \). Note that for any \(y \in Y \) the product \(ya \) belongs to \(X \). Therefore, by Lemma 2.5 for any \(y \in Y \), the subgroup \([H, y] \) is contained in \([H, a] \). Thus,

(1) \[[H, Y] \leq T. \]

Observe that for any \(u \in U_0 \) the commutator \([u, a^{-1}] = a^u a^{-1}\) lies in \(Y \) and so

(2) \[[H, [U_0, a^{-1}]] \leq [H, Y]. \]

Since \([U_0, a^{-1}] = [U_0, a]\), we deduce from (1) and (2) that

(3) \[[H, [U_0, a]] \leq T. \]

Since \(T \) has \(n \)-bounded order, it is sufficient to show that the derived group of the quotient \(H/T \) has finite \(n \)-bounded order. We pass now to the quotient \(G/T \) and for the sake of simplicity the images of \(G, H, U, U_0, X \) and \(Y \) will be denoted by the same symbols. Note that by (1) the set \(Y \) becomes central in \(H \) modulo \(T \). Containment (3) shows that \([U_0, a] \leq Z(H)\). This implies that if \(b \in U_0 \) is a \(\pi \)-element, then \([b, a] \in Z(H)\) and the subgroup \(\langle a, b \rangle \) is nilpotent. Thus the product \(ba \) is a \(\pi \)-element too and so \(b \in Y \). Hence, all \(\pi \)-elements of \(U_0 \) are contained in \(Y \) and, in view of (1), we deduce that they are contained in \(Z(H) \).

Next we consider the quotient \(G/Z(H) \). Since the image of \(U_0 \) in \(G/Z(H) \) is a \(\pi' \)-group and has \(n \)-bounded index in \(G \), we deduce that the order of any \(\pi \)-subgroup in \(G/Z(H) \) is \(n \)-bounded. In particular, there is an \(n \)-bounded constant \(C \) such that for every \(p \in \pi \) the order of the Sylow \(p \)-subgroup of \(G/Z(H) \) is at most \(C \). Because of Lemma
for any $p \in \pi$ each Sylow p-subgroup of $G/Z(H)$ is contained in a normal subgroup of n-bounded order. We deduce that all such Sylow subgroups of $G/Z(H)$ are contained in a normal subgroup of n-bounded order. Since H is generated by π-elements, it follows that the order of $H/Z(H)$ is n-bounded. Thus, in view of Schur’s theorem [11, 10.1.4], we conclude that $|H'|$ is n-bounded, as desired.

We will now complete the proof of Theorem 1.2.

Proof. Assume first that H is abelian. In this case the set X of π-elements is a subgroup, that is, $X = H$. By the hypothesis we have $|x^G| \leq n$ for any element $x \in H$ and so the relative commutativity degree $Pr(H, G)$ of H in G is at least $\frac{1}{n}$. Thus, by virtue of Proposition 2.2, there is a normal subgroup $T \leq G$ and a subgroup $B \leq H$ such that the indexes $[G : T]$ and $[H : B]$, and the order of the commutator subgroup $[T, B]$ are n-bounded.

Since H is a normal π-subgroup and $[G : H]$ is a π'-number, by the Schur–Zassenhaus Theorem [5, Theorem 6.2.1] the subgroup H admits a complement L in G such that $G = HL$ and L is a π'-subgroup. Set $T_0 = T \cap L$. Observe that the index $[L : T_0]$ is n-bounded since it is at most the index of T in G. Thus we deduce that the index of HT_0 is n-bounded in G, as well.

We claim that the order of $[H, T_0]$ is n-bounded. Indeed, the π'-subgroup T_0 acts coprimely on the the abelian π-subgroup $B_1 = B[B, T_0]$, and so we have $B_1 = C_{B_1}(T_0) \times [B_1, T_0]$ ([7, Corollary 1.6.5]). Note that $[B_1, T_0] = [B, T_0]$. Since the order of $[B, T_0]$ is n-bounded (being at most the order of $[T, B]$), we deduce that the index $[B_1 : C_{B_1}(T_0)]$ is n-bounded. In combination with the fact that $[H : B]$ is n-bounded, we obtain that the index $[H : C_{B_1}(T_0)]$ is n-bounded and so in particular $[H : C_H(T_0)]$ is n-bounded. Since T_0 acts coprimely on the abelian normal π-subgroup H, we have $H = C_H(T_0) \times [H, T_0]$. Thus we obtain that the order of the commutator subgroup $[H, T_0]$ is n-bounded, as claimed. Let $T_1 = C_{T_0}([H, T_0])$ and remark that the index $[T_0 : T_1]$ of T_1 in T_0 is n-bounded too. Set $N = HT_1$. From the fact that the indexes $[T_0 : T_1]$ and $[G : HT_0]$ are both n-bounded, we deduce that the index of N in G is n-bounded, as well.

Note that N is normal in G since the image of N in $G/H \cong L$ is isomorphic to T_1 which is normal in L. Furthermore, we have $[H, T_1, T_1] = 1$, since $T_1 = C_{T_0}([H, T_0])$. Hence by the standard properties of coprime actions we have $[H, T_1] = 1$ ([7, Corollary 1.6.4]). Therefore $[H, N] = 1$. This proves the theorem in the particular case where H is abelian.
In the general case, in view of Lemma 2.6, the commutator subgroup $[H, H]$ is of n-bounded order. We pass to the quotient $\overline{G} = G/[H, H]$. The above argument shows that \overline{G} has a normal subgroup \overline{N} of n-bounded index such that $\overline{H} \leq Z(\overline{N})$. Here $Z(\overline{N})$ stands for the centre of \overline{N}. Let N be the inverse image of \overline{N}. We have $[H, N] = [H, H]$ and so N has the required properties. The proof is now complete. □

3. Proof of Theorem 1.3

We will require the following result taken from \cite{1}, Lemma 4.1.

Lemma 3.1. Let G be a locally nilpotent group containing an element with finite centralizer. Suppose that G is residually finite. Then G is finite.

Profinite groups have Sylow p-subgroups and satisfy analogues of the Sylow theorems. Prosoluble groups satisfy analogues of the theorems on Hall π-subgroups. We refer the reader to the corresponding chapters in \cite{10}, Ch. 2] and \cite{15}, Ch. 2].

Recall that an automorphism ϕ of a group G is called fixed-point-free if $C_{G}(\phi) = 1$, that is, the fixed-point subgroup is trivial. It is a well-known corollary of the classification of finite simple groups that if G is a finite group admitting a fixed-point-free automorphism, then G is soluble (see for example \cite{12} for a short proof). A continuous automorphism ϕ of a profinite group G is coprime if for any open ϕ-invariant normal subgroup N of G the order of the automorphism of G/N induced by ϕ is coprime to the order of G/N. It follows that if a profinite group G admits a coprime fixed-point-free automorphism, then G is prosoluble. This will be used in the proof of Theorem 1.3.

Proof of Theorem 1.3. Recall that π is a set of primes and G is a profinite group in which the centralizer of every π-element is either finite or open. We wish to show that G has an open subgroup of the form $P \times Q$, where P is an abelian pro-π subgroup and Q is a pro-π' subgroup.

Let X be the set of π-elements in G. Consider first the case where the conjugacy class x^G is finite for any $x \in X$. For each integer $i \geq 1$ set

$$S_i = \{x \in X; |x^G| \leq i\}.$$

The sets S_i are closed. Thus, we have countably many sets which cover the closed set X. By the Baire Category Theorem \cite{6}, Theorem 34] at least one of these sets has non-empty interior. It follows that there is a positive integer k, an open normal subgroup M, and an element $a \in X$ such that all elements in $X \cap aM$ are contained in S_k.

Note that \(\langle a^G \rangle \) has finite commutator subgroup, which we will denote by \(T \). Indeed, the subgroup \(\langle a^G \rangle \) is generated by finitely many elements whose centralizer is open. This implies that the centre of \(\langle a^G \rangle \) has finite index in \(\langle a^G \rangle \), and by Schur’s theorem [11, 10.1.4], we conclude that \(T \) is finite, as claimed.

Let \(x \in X \cap M \). Note that the product \(ax \) is not necessarily in \(X \). On the other hand, \(ax \) is a \(\pi \)-element modulo \(T \). This is because \(\langle a^G \rangle \) becomes an abelian normal \(\pi \)-subgroup modulo \(T \) and the image of \(ax \) in the quotient \(G/\langle a^G \rangle \) is a \(\pi \)-element. In other words, there are \(y \in X \cap aM \) and \(t \in T \) such that \(ax = ty \). Observe that \(t \) has an open centralizer in \(G \) since \(t \in T \). In fact \(|G : C_G(t)| \leq |T| \). From the equality \(ax = ty \) deduce that \(|x^G| \leq k^2|T| \). This happens for any \(x \in X \cap M \). Using a routine inverse limit argument in combination with Theorem 1.2 we obtain that \(M \) has an open normal subgroup \(N \) such that the index \(|M : N| \) and the order of \([H, N] \) are finite. Here \(H \) stands for the subgroup generated by all \(\pi \)-elements of \(M \). Choose an open normal subgroup \(U \) in \(G \) such that \(U \cap [H, N] = 1 \). Then \(U \cap M \) is an open normal subgroup of the form \(P \times Q \), where \(P \) is an abelian pro-\(\pi \) subgroup and \(Q \) is a pro-\(\pi' \) subgroup. This proves the theorem in the case where all \(\pi \)-elements of \(G \) have open centralizers.

Assume now that \(G \) has a \(\pi \)-element, say \(b \), of infinite order. Since the procyclic subgroup \(\langle b \rangle \) is contained in the centralizer \(C_G(b) \), it follows that \(C_G(b) \) is open in \(G \). This implies that all elements of \(X \cap C_G(b) \) have open centralizers (because they centralize the procyclic subgroup \(\langle b \rangle \)). In view of the above \(C_G(b) \) has an open subgroup of the form \(P \times Q \), where \(P \) is an abelian pro-\(\pi \) subgroup and \(Q \) is a pro-\(\pi' \) subgroup and we are done.

We will therefore assume that \(G \) is infinite while all \(\pi \)-elements of \(G \) have finite orders and there is at least one \(\pi \)-element, say \(d \), such that \(C_G(d) \) is finite. The element \(d \) is a product of finitely many \(\pi \)-elements of prime power order. At least one of these elements must have finite centralizer. So without loss of generality we can assume that \(d \) is a \(p \)-element for a prime \(p \in \pi \).

Let \(P_0 \) be a Sylow \(p \)-subgroup of \(G \) containing \(d \). Since \(P_0 \) is torsion, we deduce from Zelmanov’s theorem [16] that \(P_0 \) is locally nilpotent. The centralizer \(C_G(d) \) is finite and so in view of Lemma 3.1 the subgroup \(P_0 \) is finite. Choose an open normal pro-\(p' \) subgroup \(L \) such that \(L \cap C_G(d) = 1 \). Note that any finite homomorphic image of \(L \) admits a coprime fixed-point-free automorphism (induced by the coprime action of \(d \) on \(L \)). Hence \(L \) is prosoluble. Let \(K \) be a Hall \(\pi \)-subgroup of \(L \). Since any element in \(K \) has restricted centralizer, Shalev’s result [13] shows that \(K \) is virtually abelian. We therefore can choose an
open normal subgroup J in L such that $J \cap K$ is abelian. If $J \cap K$ is finite then G is virtually pro-π' and we are done. If $J \cap K$ is infinite, then all π-elements of J have infinite centralizers. This yields that all π-elements of J have open centralizers in J and in view of the first part of the proof, J has an open normal subgroup of the form $P \times Q$, where P is an abelian pro-π subgroup and Q is a pro-π' subgroup. This establishes the theorem. □

References

[1] C. Acciarri, P. Shumyatsky, A stronger form of Neumann’s BFC-theorem, Isr. J. Math. 242, 269–278 (2021). https://doi.org/10.1007/s11856-021-2133-1.
[2] E. Detomi, P. Shumyatsky, On the commuting probability for subgroups of a finite group, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1–14 (2021). doi:10.1017/prm.2021.68.
[3] E. Detomi, M. Morigi, P. Shumyatsky, Profinite groups with restricted centralizers of commutators, Proceedings of the Royal Society of Edinburgh, Section A: Mathematics, 150(5) (2020), 2301–2321. doi:10.1017/prm.2019.17.
[4] G. Dierings, P. Shumyatsky, Groups with boundedly finite conjugacy classes of commutators, Quarterly J. Math. 69(3) (2018), 1047–1051.
[5] D. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1980.
[6] J. L. Kelley, General topology, Grad. Texts in Math., vol. 27, Springer, New York, 1975.
[7] E. I. Khukhro, Nilpotent groups and their automorphisms, Berlin-New York, de Gruyter, 1993.
[8] B. H. Neumann, Groups covered by permuting subsets, J. London Math. Soc. (3) 29 (1954), 236–248.
[9] P. M. Neumann, Two combinatorial problems in group theory, Bull. Lond. Math. Soc. 21 (1989), 456–458.
[10] L. Ribes, P. Zalesskii, Profinite Groups, 2nd edition, Springer Verlag, Berlin, New York, 2010.
[11] D. J. S. Robinson, A course in the theory of groups, Second edition. Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.
[12] P. Rowley, Finite groups admitting a fixed-point-free automorphism group, J. Algebra, 174 (1995) 724–727.
[13] A. Shalev, Profinite groups with restricted centralizers. Proc. Amer. Math. Soc. 122 (1994), 1279–1284.
[14] J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc. Roy. Soc. London Ser. A 238 (1957), 389–401.
[15] J.S. Wilson, Profinite Groups, Clarendon Press, Oxford, 1998.
[16] E. I. Zelmanov, On periodic compact groups. Israel J. Math. 77, 83–95 (1992).
