A study on a low power optimization algorithm for an edge-AI device

Tatsuya Kaneko1a), Kentaro Orimo1, Itaru Hida1, Shinya Takamaeda-Yamazaki1, Masayuki Ikebe1, Masato Motomura1, and Tetsuya Asai1

1 Division of Electronics for Informatics, Graduate School of Information Science and Technology (IST), Hokkaido University, M-BLDG 2F, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan

a) kaneko.tatsuya.cy@ist.hokudai.ac.jp

Abstract: Although research on the inference phase of edge artificial intelligence (AI) has made considerable improvement, the required training phase remains an unsolved problem. Neural network (NN) processing has two phases: inference and training. In the training phase, a NN incurs high calculation cost. The number of bits (bitwidth) in the training phase is several orders of magnitude larger than that in the inference phase. Training algorithms, optimized to software, are not appropriate for training hardware-oriented NNs. Therefore, we propose a new training algorithm for edge AI: backpropagation (BP) using a ternarized gradient. This ternarized backpropagation (TBP) provides a balance between calculation cost and performance. Empirical results demonstrate that in a two-class classification task, TBP works well in practice and compares favorably with 16-bit BP (Fixed-BP).

Key Words: machine learning, edge AI, training algorithm, backpropagation, quantization, low power

1. Introduction

Many of the most successful current machine/deep learning systems rely on cloud devices such as graphics processing unit (GPU) servers. A neural network is trained by a stochastic gradient descent (SGD) [1] method, Adam [2], and the like. These training algorithms have been used to train neural networks recently. For example, Squeeze-and-Excitation networks [3] is one of the best approaches for image recognition, CycleGAN [4] is one of the best approaches for data generation, and Parallel WaveNet [5] is one of the best at speech synthesis. These great achievements are based on high-performance and high-power-consumption devices such as GPUs. GPUs consume huge amounts of power, so their use on edge devices is difficult. TPUv2 [6], v3 [7], and DLU [8] are used not only in the inference phase but also in the training phase. In TPU, most of the computations performed in training a neural network are floating point multiplications; also in addition, DLU uses its own precision called “Deep Learning Integer” (DL-INT) in [8] to train a neural network. This DL-INT can reduce power consumption while maintaining accuracy. However, these architecture are used on
cloud servers, so are not appropriate for edge device.

On the other hand, field programmable gate arrays (FPGAs) can be used to accelerate and achieve higher energy efficiency than GPUs. FPGAs are a user-programmable hardware; hence, we can compose high-energy-efficiency circuits depending on each neural network. FPGAs can calculate with low power consumption. Various types of FPGA exist from low-end to high-end. High-end FPGAs are also used in cloud servers. Our method is aimed towards the low end or requiring less resources than low-end FPGAs. We call these devices edge devices. In edge devices, which have lower power and resource requirements than GPUs, many approaches for the inference phase that can accelerate calculation have been and are still actively being investigated. Usually, this type of accelerator uses a neural network’s parameter, which is previously trained by central processing unit (CPU) or GPU. A summary of FPGA-based accelerators was presented by Guo et al. [9] In contrast to the active area of research investigation into the inference phase, only a few approaches for the training phase to accelerate or even implement calculation have been investigated. This type of architecture does not use a pre-trained parameter, it obtains its own parameter by training. For example, DoReFa-Net [10] is a method to train convolutional neural networks that have low bitwidth weights and activations using low bitwidth parameter gradients. This method aims at accelerating and also reducing the power consumption of neural networks by quantization or binarization. F-CNN [11] also aims at accelerating and reducing the power consumption of neural networks by reconfiguring a streaming datapath at runtime. However, F-CNN uses 32-bit floating-point arithmetic, so we do not consider this method as appropriate for edge devices.

The reason for the lack of investigations into training for edge devices is that training is more difficult than inference. Neural networks in the training phase deal with minimum values: networks need a greater number of bits for the data representation. As the bitwidth increases, so do the resources required. To tackle the issue of the bitwidth, to allow networks to train and guarantee reasonable accuracy with edge devices, all previous methods used an unbalanced approach between resources and performance. Our method can provide a balance between resources and performance. In the not too distant future, we consider that training algorithms for edge devices will gain in importance: relying on today’s cloud servers for training every neural network is difficult. There has been growing interest in machine/deep learning, so that we need to use simple devices according to task and not use cloud servers for every task.

This paper makes the following contributions.

1. We propose a backpropagation architecture and low-power and low-resource algorithm. The architecture is based on the SGD method; it uses fixed-point multiplications to calculate the forward pass and backward pass. A bitwidth in this architecture is defined by experiment. Our proposed algorithm is aimed at edge devices: it uses ternarized gradient to calculate the backward pass.

2. We introduce our proposed algorithm: “ternarized backpropagation” (TBP). TBP has two important components, mutation, rate of changing parameters, and L^2 regularization. We explore the configuration space of mutation for TBP. For example, training a network using a 0.3% mutation rate can lead to the highest accuracy on the MNIST dataset. In addition, we show that a lower mutation rate is better than a higher mutation through experiment. Furthermore, we show the importance of L^2 regularization to prevent accuracy from being reduced.

3. We show that the TBP algorithm consumes less power than 16-bit quantized backpropagation by two orders magnitude on the same task, which is two-class classification task using an independent dataset. In this experiment, we use a multilayer perceptron (MLP) on the MNIST dataset and fashion MNIST dataset; we estimate power consumption from the number of read or write operations to static random access memory (SRAM).
2. Proposed architecture

In this section, we introduce two types of architecture: a quantized SGD architecture implemented on FPGA and a ternarized SGD that is not implemented on any hardware, just an algorithm. Both types of architecture are calculated by time division.

2.1 Fixed-BP architecture

Many of the most successful artificial intelligent systems, such as machine translation, image recognition, and data generation, are software oriented. In these systems, the optimization algorithm used to train a neural network is based on floating point calculation. In hardware implementations, floating point calculation needs more power and resources than fixed-point calculation; we do not use floating point under the constraint condition that edge devices require low power consumption and resources. We consider that quantizing to SGD is the simplest method to train neural networks on edge device. One of the most important problems when using fixed-point calculation is the relation between bitwidth and accuracy. We have confirmed how the bitwidth can achieve better accuracy by software simulation using MLP on the MNIST dataset [12]. Figure 1 shows the network model: the number of neurons is 784–150–10 (this parameter is limited by the memory size of the target hardware device), the bitwidth in the inference phase is 8 bits, 1–2–5 bit (sign–integer–fractional part), the activation function of each layer is a sigmoid function, the learning rate is 0.4, the minibatch size is 1, and the training iteration is 0.3 epochs (18,000 iterations). Figure 2 shows the relation between the bitwidth and accuracy: a power-of-two bitwidth is favorable for SRAM, so that we have simulated how accuracy changes about each power-of-two bitwidth. On the basis of this result, we found that the neural network needs more 16-bit bitwidths in the training phase to achieve better accuracy with MNIST test. We thus use 16 bits as the bitwidth in the training phase. We cannot implement only backpropagation, so that the inference phase has also been implemented in this architecture.

In the real world, the environment is changing so slowly as compared to present digital computers, and hence we consider edge devices do not require high throughput. In other words, edge devices

Fig. 1. Network model. We use MLP, which has one hidden layer. The bitwidth in the inference phase is 8 bits and in training phase is 32, 16, or 8 bits.

Fig. 2. Average of 30 times accuracy at each bitwidth in the training phase.
are not appropriate accelerators; that is, they do not have high-performance processors or high-speed interfaces. Even if we achieve high-speed calculation using parallel operation, throughput is limited by the low-speed interface (SPI, I2C [13]), so that using parallel operation to achieve high throughput is not important. We thus decided to use serial operation in forward and backward propagation.

In this architecture, the feedforward and BP modules work in turns: when forward propagation has ended and output data is stored into buffer or SRAM, backward propagation begins. Calculation in both feedforward and BP module is layer-wise. Figure 3 shows an overview of hardware implementation and data flow; the architecture can be divided four components: the feedforward and BP modules, control system, and memory system. We have to give input, label (supervisor), weights, and bias (W0) to the network as initialization. The output data such as accuracy is stored into the memory system after inference phase. BP module outputs updating parameters (Wt+1); Wt is overwritten by this new parameter. Any memory access and calculation in the feedforward and BP modules are controlled by the control system. Figure 4 shows a more detailed block chart of the architecture. Data
is temporarily stored into input buffers \((x, t)\) to reduce SRAM access; however, weights and biases are stored into SRAM owing to the huge number of values. We stored each layer’s output data into \(g(h)\) and \(g(y)\) in output buffers. The outputs of the hidden and output layers are stored in buffers \(g(h)\) and \(g(y)\), respectively. In the training phase, these outputs are used to calculate error gradient or to update parameters so that both values must be stored until the training phase is completed. If this architecture has an inference phase only, two buffers are not required. In addition, we have to store each layer’s “raw” output, before putting in activations, into output buffers \((h, y)\); raw output is also used in the training phase. The controller module generates signals such as memory address; SRAM or buffer access is controlled by these signals via a multiplexer (MUX). More details of the feedforward and BP modules are given in the following.

Feedforward and BP modules use time-divided calculation to reduce hardware resources. In one calculation cycle, one weight is read from SRAM. Activation functions and their differentials are implemented by a look-up table (LUT). Figure 5 shows the details of the feedforward module. This module is composed of three states: wait, hidden calculation, and output calculation. We have implemented inner production by the multiplication module (mul) and accumulation via the addition module (add). The input for the multiplication module is weight or bias, which is stored into SRAM, and input data, which is stored into buffer \(x\) or buffer \(g(h)\). If the input data are for the hidden layer, they are stored in buffer \(x\). If instead the input data are for the output layer, they are stored in buffer \(g(h)\). When the calculation for one neuron is completed, the output value is stored in buffer \(h\) or \(y\); in addition, buffer \(g(h)\) or \(g(y)\) stores the output value via LUT. After output calculation, the feedforward module enters wait mode until the end of the BP module calculation. Figure 6 shows the detail of the BP module. This module is also composed of three states denoted “wait”, “updating output layer”, and “updating hidden layer”. When calculating the error gradient \((\delta_m)\), we can derive subtraction form from the differential of the loss function in many cases of machine learning. The error gradient calculation needs a supervisor \((t)\) and raw output of the network \((y)\). When this calculation has ended, we can calculate the updating parameter \((w_m')\) and error gradient for the previous layer \((\delta_{m-1})\). This updating calculation needs error gradient \((\delta_m)\), parameters \((w_m)\), and input \((h_m\) or \(x_m\) is stored into buffers) of the target layer; the learning rate is implemented by bit shift. The inner product of the error-gradient calculation is implemented by the multiplication (mul) and accumulation (accumulator) modules. The updating parameter and error gradient propagation are calculated in parallel. We do not have to propagate the error gradient until the input layer; if we have propagated error gradient until the input layer, there are no parameters.

Fig. 5. Feedforward module. The calculation result is independently stored into buffers: one is directly stored into each layer’s buffer, another is stored into each layer’s activation buffers after putting into the LUT.
Fig. 6. BP module. This module has two components: calculating error gradient module (Loss generator), propagating error gradient to the previous layer and calculating updating value module (Update module). Here N denotes the number of neurons and i denotes the target neuron in the next layer.

2.2 Binary and ternary backpropagation

In the training phase, networks need higher bitwidth than in the inference phase. When networks deal with the fixed-point format, as a result of training, the network parameters, weights, or biases are not always affected by updating; this is caused by the difference between bitwidth in training and inference. For example, when networks use 4 bits in the inference phase and 8 bits in the training phase, network parameters are stored with 8 bits. In the inference phase, networks load only 4 bits from 8 bits stored in memory. After the training phase, when parameters have updated out of the inference bitwidth range, the inference phase is not affected by updating. However, networks cannot train when parameters are stored with 4 bits to reduce hardware cost. An optimization algorithm for software, such as SGD, Adadelta [14], RMSProp [15], or Adam, are not appropriate for edge devices. Hence, a new optimization algorithm is required to solve this problem. Figure 7 shows an overview.

Fig. 7. Overview of the BBP/TBP algorithm. Both algorithms update the LSB according to the sign part of ΔW. (a) After BBP, all parameters have changed. (b) After TBP, some parameters have changed. Changing parameters are selected stochastically.
of our proposed algorithms, which are binarized backpropagation (BBP) and TBP. Both algorithms update the least significant bit (LSB) according to sign bit of update value (ΔW). In BBP and TBP, gradients have been calculated with binary or ternary values; hence, we reduce the calculation cost in the training phase by using an XNOR gate or multiplexer instead of multiplier. Furthermore, we can skip derivative calculation of the activation functions according to the gradient of activation functions.

Table I shows the accuracy of MNIST classification: the network is MLP with 784 input neurons, 128 hidden neurons, 10 output neurons, and each layer has bias, and has been trained on 1 epoch with minibatch size 64. Leaky ReLU [16] and a sigmoid function are used for activations. BBP has a high learning rate owing to updating all parameters, because the accuracy is low. On the basis of these results, we need to reduce the learning rate. TBP uses a ternarized gradient, $+1$, -1, and 0, thus we can reduce the apparent learning rate by updating a parameter with a 0 value.

Table I. MLP trained on the MNIST dataset. The accuracy is 1 epoch after.

	BBP [%]	TBP [%]
#1	8.57	76.2
#2	2.59	77.0
#3	7.00	76.6
#4	8.21	76.0
#5	7.19	78.0

Mutation

We now define mutation. Mutation is a hyper-parameter related to updating parameters. If mutation is 0%, the accuracy is the same score as initializing networks, because parameters are not updated. Similarly, if mutation is 100%, the accuracy has the same score as BBP. ΔW seldom equals 0, and therefore TBP and BBP are equivalent if the mutation rate is 100%. Strictly speaking, TBP and BBP are only approximately equivalent. In general, from the perspective of accuracy and power consumption, a low mutation rate is better. Figure 8 shows that when mutation is 0.3%, the network obtained the highest accuracy. We find that the higher the mutation rate, the lower the accuracy. Furthermore, when the network has low mutation, as a result of reducing memory access for read or write operations, this reduces power consumption.

Figure 9 shows the result of changing parameters on Fixed-BP. We can treat that this changing is similar to mutation; mutation in Fixed-BP do not change at a constant rate. We consider that it becomes a parameter of layer and iteration. In contrast, mutation in TBP is not parameterized by layer and iteration. In addition, the mutation rate of TBP is so low that the network may be
Fig. 9. Percentage of updated parameters of Fixed-BP with 1 epoch training. This is calculated from the difference in bitwidth of inference phase between before update and after update. The bitwidth of inference is 8 bits and training is 16 bits. (a) Between input and hidden layer. (b) Between hidden and output layer.

not trained well. However, if TBP used the same mutation rate as Fixed-BP, which is trained by Fixed-BP, the accuracy is not high. In this paper, we use a constant rate of mutation, which is defined heuristically, because it is too difficult to explore the configuration space of combinations of the first layer of mutation and second layer of mutation. Nevertheless, we have to revise the mutation rule.

Update rule

We can divide the backpropagation process into calculate gradient and update weights. TBP as introduced in the previous section is related to the process of calculate gradient and mutation is related to the process of updating parameters. TBP is based on the SGD algorithm, and therefore the calculation processes are essentially the same. However, all the values are quantized or ternarized. Our algorithm differs in terms of the mutation and update steps. The mutation involves a ternarization, i.e., ΔW is set to $+1$, 0, or -1. In the update step, the ternarized ΔW is added to the LSB of the parameter. In Fig. 10, we proposed two types of update rule: using a random number to select

![Fig. 10. Update rule of TBP. Both types uniformly update any parameter.](image)
updating weights and using an accumulator to select updating weights. In the accumulator type, the counter for +1 and −1 is saved within the module, so that the weight that is first counted is also guaranteed updates. Despite this, we apply different types of update rules on the same network and mutation rate, and the accuracy is not affected by these update rules. Figure 11 shows the relation between weights and iterations. In the first five iterations, about 80% of weights are updated at least once. Then we also find that some weights are updated several times. In the last five iterations, some weights are updated. The number of weights updated in fewer than in the first five iterations, but the percentage of weights updated is several times larger than in the first five iterations. On the basis of this result, weights are not updated uniformly. In updating weights with Fixed-BP, there is some kind of rule. However, the proposed updating rules update weights uniformly; we also need a new updating rule that does not incur high calculation costs.

![Fig. 11. Illustration of part of a network (left), where each neuron is fully connected to the next layer neuron, and relation between updated weights and iterations (right). The red circle in (a) corresponds to red lines in the illustrated networks. (a) Updated weight in the first five iterations. (b) Updated weight in the last five iterations. We find that weights in a network are updated according to some kind of rule, not uniformly. The color in (a), (b) stands for a number of update times.](image)

L^2 regularization

In contrast to the use of Fixed-BP, the network trained by TBP achieves lower accuracy after several epochs. Table II shows that the accuracy of training MLP on the MNIST dataset is about 76% after the first epoch; however, the accuracy is decreases to about 68% after five epochs. In general, the more a network is trained, the higher the network accuracy. If the network is overfitting [17], which is caused by training over a long time, the accuracy decreases following training; however, overfitting is not a problem in the initial stage of training. Therefore, this may be attributed to TBP updating.

Figure 12 shows the histogram of weight in each layer. After five epochs, it can be concluded that the weight variance becomes large. The weight connected to the hidden layer is distributed between +0.5 and −0.5; also in addition, the weight connected to the output layer is mainly distributed between

| Table II. Accuracy using TBP on MLP without (w/o) and with (w/) L^2 regularization. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
epoch	w/o L^2 regularization	w/ L^2 regularization								
#1	76.2	77.0	76.6	76.0	78.0	75.2	74.1	75.0	75.0	75.3
#2	73.9	74.7	72.4	74.1	74.3	76.0	75.7	74.1	75.1	75.4
#3	71.5	72.2	70.1	71.1	73.5	74.1	75.3	74.0	74.3	75.5
#4	68.7	69.2	69.2	70.2	70.3	73.5	75.0	73.2	73.9	74.7
#5	67.9	66.7	67.4	68.6	68.6	72.9	74.7	74.6	72.2	73.0

381
The reason for the decrease in accuracy is that the weight variance is increased. Hence, we have introduced L^2 regularization to prevent the increase in weight variance. The results of L^2 regularization are shown in Fig. 13. As a result of L^2 regularization, the accuracy is about 75% after the first epoch and about 73% after five epochs. L^2 regularization helps to stem the decrease in accuracy and the increase in variance, but it does so imperfectly.

Based on this result, TBP using all ternarized gradients is incapable of achieving a high-accuracy performance; therefore, we do not ternarize all gradients, only the error gradient is not ternarized. Table III shows the accuracy, which is used multi bit for error gradient. We confirmed that accuracy is improved using over 4 bit for error gradient. The hardware resources and performance have been balanced, because the new TBP stored the relation of the error gradient among neurons instead of the error gradient. In practice, we define the error gradient as quantized after bit shift to the right by one bit; this leads to achieving reasonable accuracy from the perspective of the balance between performance and resource requirements.

Table III. The accuracy using multi bit for error gradient.

	3bit	4bit	5bit	6bit
epoch: 1	77.01%	82.46%	82.84%	84.23%
epoch: 2	78.49%	81.73%	83.14%	83.29%
epoch: 3	77.91%	81.97%	82.71%	83.71%
epoch: 4	78.16%	81.78%	81.56%	82.00%
epoch: 5	76.88%	83.07%	82.08%	80.57%

Fig. 12. Histogram of weight without L^2 regularization. (a) Weights between input and hidden layers. (b) Weights between hidden and output layers.

Fig. 13. Histogram of weight with L^2 regularization. (a) Weights between input and hidden layers. (b) Weights between hidden and output layers.
Algorithm

Algorithm 1 lists the pseudo-code of our proposed algorithm TBP. Our method is based on SGD. Here L is the number of layers of weight. For example, in the case $L = 2$, MLP is composed of input, hidden, and output layers. With $\delta_q^l = \text{quantize}(\delta^l \gg 1)$ we denote the error gradient, which has only been quantized in TBP. The value 1 in this equation is a hyper-parameter. The larger this hyper-parameter is, the larger the bitwidth required in the error gradient. When $l = 1$, the error gradient is not propagated to previous layer. As a result of storing only the error gradient with quantized, we can skip multiplication in inner product. With $\text{Mutation}(\Delta\theta_t) \gg n - \lambda \times \text{Mutation}(\theta_t^l)$, mutation between $\Delta\theta_t$ and θ_t^l is not independent, therefore L^2 regularization is only applied to updating θ_t. As a result of mutation, if some $\Delta\theta_t$ is changed to 0, L^2 regularization is not applied. Here λ is a hyper-parameter, and we define this hyper-parameter as 0.5 following experiments on the MNIST dataset.

Algorithm 1 Ternarized Back Propagation (TBP). Here E is the loss function, y is the output of each layer, $\text{ternarize}(X)$ denotes ternarize, $\text{mutation}(X)$ denotes mutation methods, L is the number of layers of weight, θ is a parameter, and λ is a parameter of L^2 regularization.

Require: Network parameters $W, b \in \theta$

Require: Input data x at each layer

Require: bitwidth n of fractional part in inference phase.

\[
\delta^L = \frac{\partial E}{\partial y}
\]

for $l = L$ to 1 do

\[
\delta_q^l = \text{quantize}(\delta^l \gg 1)
\]

if $l \neq 1$ then

\[
\delta^{l-1} = \text{ternarize}(W^l) \cdot \delta_q^l
\]

end if

$\Delta\theta = \text{ternarize}(x) \cdot \delta_q^L$

$\Delta\theta_t = \text{ternarize}(\Delta\theta)$

$\theta_{t+1} = \theta_t - \text{Mutation}(\Delta\theta_t) \gg n - \lambda \times \text{Mutation}(\theta_t^l)$

end for

Figure 14 shows the power consumption by changing the number of layers. If networks have more than three layers, power consumption becomes large when calculating the error gradient for the previous layer. We consider that three layers is best for edge device training from the perspective of power consumption. Even if we want more than four layers in a network, power consumption could increase dramatically according to calculating the error gradient to propagate the previous layer.

![Fig. 14. Relation between the number of layers and power consumption. If the network has more than four layers, power consumption is increased drastically according to calculating the error gradient to propagate the previous layer.](image-url)
be reduced by selecting the weight to update.

Architecture

Figure 15 shows the architecture of a random-type TBP module. It consists of an inner product module (dot), ternarize module (sign/0), and selector. Here \(\delta^l \) and \(x \) are put in inner product module to calculate \(\Delta W \). The \(\Delta W \) is stochastically ternarized by a random number to the handed update module. TBP can skip calculating the derivative activation in the case that the activation has a uniform gradient such as a sigmoid. On the other hand, \(\delta^l \) and \(W \) are also put into the inner product module to calculate the previous layer’s \(\delta^{l-1} \); this operation does not require as much time as calculating \(\Delta W \). Hence, we can process this time-multiplexed. Figure 16 shows the architecture of an accumulator-type TBP module. It also consists of an inner product module (dot), ternarize module (sign/0), and selector. The accumulator-type TBP module has a selector more than the random type. This is attributed to the two types of counter: +1 (cnt+) and −1 (cnt−). In the accumulator-type TBP module, the process of inner product and ternarize is the same as in the random-type TBP module. The first bit “[0]” after the ternarized module means +1 or −1, the second bit “[1]” means whether 0. That is, +1 means 0 after the ternarized module. If the count is over threshold in each counter module, the counter module puts out +1 or −1 via the selector. Figure 17 shows the architecture of an update module. The number of times to read parameters from SRAM memory (MEM,W) is not affected by the implementation of \(L^2 \) regularization: we can implement \(L^2 \) regularization without additional power consumption. A value of 4 in “\(\gg \)4” means the bitwidth of the fractional part in the reference phase; the value of 2 in “\(\gg \)2” means rate of \(L^2 \) regularization. Less than 1% of the entire parameters have been updated; hence, we reduce the power consumption using a write-back operation. Figure 18 shows an overview of the backpropagation architecture; the weights have been stored by dividing the sign part (W_sign_MEM) and value part (W_value_MEM) and using only the sign part of the parameters so that we can reduce calculation cost. The error gradient is stored into \(\delta \)-MEM, the hidden layer’s output is stored in \(Y \)-MEM. The address of this memory is operated by the controller module for the inner product and updating parameters.
3. Experiments

Figure 19 summarizes our approach. The proposed BBP algorithm cannot achieve our goal, and therefore we optimized the mutation rate to use TBP. We then confirmed that the accuracy decreases with every iteration, and therefore we implemented L^2 regularization. Next, we seek to improve the accuracy by considering the error gradient as a series of bits. Based on these results, we performed more practical simulations in section 3. Section 3.1 considered a 10-class classification using the MNIST dataset; i.e., the network was trained using 60,000 training data. We then measured the accuracy using 10,000 test data. This experiment involved 30 epochs and 64 minibatches, giving approximately 900 iterations per epoch. There were 10 output neurons. Section 3.2, on the other hand, considered 2-class classification using both the MNIST and the fashion-MNIST datasets; i.e., the network aimed to distinguish between input data from both datasets. This experiment explored how the data size and the number of iterations can be used to achieve an accuracy better than 99%. The minibatch size is 1, giving 1 iteration per epoch. There is therefore 1 output neuron as a result of the 2-class classification. We evaluate both Fixed-BP and TBP with a software simulation using Numpy from the perspective of accuracy and power consumption. The network is composed of three-layer MLP, input, 128 hidden units, and output layer. The network using activation function as a Leaky ReLU (leak=0.25) and a sigmoid function; also in addition, the loss function is a mean squared error (MSE). The hyper-parameters used in the experiments are as follows. In Fixed-BP, the learning rate is 0.25. The bitwidth in the inference phase is 1 bit for the sign part, 2 bits for the integer part, and 5 bits for the fractional part, and in the training phase is 1 bit for the sign part, 2 bits for the

![Fig. 18. Overview of the backpropagation architecture.](image)

![Fig. 19. Simulation flowchart.](image)
integer part, and 13 bits for the fractional part. In TBP, mutation is 0.003 (≈ 0.3%). The update rule is random type and regularization rate (λ) is 0.5. The bitwidth in the inference phase is 2 bits for the sign part, 2 bits for the integer part, and 4 bits for the fractional part, and in the training phase is 2 bits for the sign part and 3 bits for the fractional part.

3.1 MNIST
In the MNIST test, we found that TBP cannot provide a balance between high accuracy and low power consumption. Figure 20 shows the accuracy and power consumption on MNIST classification. We compare TBP with Fixed-BP using a minibatch size of 64. In contrast to the accuracy of Fixed-BP, TBP makes slow progress in increasing the accuracy in the entire stage of training; in addition, we found the highest accuracy is lower than with Fixed-BP. This may be attributed to the randomness of the update rule: as introduced in the previous section, the weight should be updated according to some kind of rule. However, all weights are treated equally by both update rules in TBP, so that TBP might causing the weights that should be updated to not be updated and, conversely, the weights that should not be updated being updated. Hence, TBP roughly increases the accuracy and sometimes decreases the accuracy, as in the 15th epoch. We consider that a new update rule is required that does not depend on randomness to solve this problem; also in addition, we possibly need a mutation schedule as in simulated annealing [18].

The aim of this paper is only to propose a new training algorithm and not to implement it on hardware devices, such as FPGAs. Ideally, any discussion of power consumption must refer to an actual implementation on a FPGA, which is outside the scope of the present work. It is nonetheless necessary to discuss power consumption. Our new algorithm targets edge devices, which require low power. The power consumed in the logical part of a FPGA (part of the Xilinx Virtex II family, which uses 0.15 μm technology) is of the order of 10^{-6} W/MHz [19]. On the other hand, a read or write operation in SRAM [20], which uses 0.18 μm technology, 2 ports and $O(10^3\text{Bytes})$, consumes the order of 10^{-3} W/MHz. From these results, we conclude that SRAM access dominates over arithmetic operations. So that, the power consumption is estimated by the number of read and write operations to SRAM [20]. On the basis of accuracy and power consumption, Fixed-BP is more suitable than TBP; however, in edge devices, we consider that it is too difficult to apply to the training algorithm, which needs $O(10^3)$ power consumption. If we do not need as high accuracy, such as over 90% to discriminate, we can consider using TBP to reduce power consumption. TBP has a weak point as
increasing the accuracy is a slow process; conversely, TBP does not require a long training time like Fixed-BP. We can achieve reasonable power consumption and accuracy using TBP with >3 epochs. Thus, TBP cannot achieve both high accuracy and low power consumption at the same time; however, if we do not require high accuracy, TBP can provide a balance between hardware cost and performance.

3.2 Filtering
We consider that edge devices are more appropriate for two-class classification, such as filtering, than MNIST classification. In the approaching “Internet of Things” (IoT) era, one of the most important tasks will be that of selecting whether data is necessary to use network bandwidth. We consider that data should be distinguished if it has an independent distribution. Therefore, we evaluate both Fixed-BP and TBP on classification using two types of dataset, digit or fashion: T-shirt, dress, sandal, bag, etc. In this test, a number of output neurons have been changed to 1.

Figure 21 shows the iteration and power consumption when the network achieves over 99% accuracy. We compare TBP with Fixed-BP using a minibatch size of 1. We found that the power consumption of TBP was two orders of magnitude less than Fixed-BP, \(O(10^{-1})\); hence, TBP can balance high accuracy and low power consumption. TBP required several more hundred iterations than Fixed-BP. We do not consider this a critical problem: the edge devices using around us do not require high speed. The operating speed in hardware is too fast for humans to discern, so that we would not notice difference in the number of iterations. However, the network using TBP and also Fixed-BP does not distinguish with high accuracy when the training dataset has the same distribution. For example, the network cannot distinguish with high accuracy between even and odd numbers in MNIST. Hence, an investigation into distance of each distribution that can be distinguished with high accuracy will also be necessary. We also need to see whether the network can distinguish among three or more independent distributions while retaining low power consumption. The network need more than 100 data in each class for training. TBP is incapable of filtering when dataset has 10 data in each class; however, Fixed-BP is also incapable of filtering, so we consider this a fundamental problem. Edge devices do not have large amounts of memory; networks that can be trained with smaller datasets have an advantage. In this experiment, we confirm that the network can achieve an accuracy in excess of 99% when using TBP with a training dataset of size of order 500. So that, The number of iterations

![Fig. 21. Relation between data size and iteration/power consumption while ensuring 99% accuracy. The training time is 30 runs for TBP and Fixed-BP. The line shows the mean of runs. The dots show the real data of each runs. The dotted line shows the power consumption calculated by the iteration curve.](image)
does not decrease, even for datasets greater than 2,000. Thus, TBP can achieve both high accuracy and low power consumption at the same time in filtering tests using an independent data distribution. On the other hand, TBP and also Fixed-BP cannot achieve high accuracy in filtering tests using the same distribution, such as distinguishing between even and odd numbers in the MNIST dataset.

4. Conclusion
We introduced a simple and computationally efficient algorithm for gradient-based optimization. The TBP is aimed at machine-learning problems with edge devices, which require low power consumption. The experiments confirmed the advantage of TBP in filtering tasks: we demonstrated that the power consumption of the proposed TBP was lower than that of the 16-bit BP (Fixed-BP) by two orders of magnitude in a two-class classification task while ensuring 99% accuracy. In contrast to cloud-based artificial intelligence (AI) processing, which is used to achieve high accuracy in complex tasks, edge-AI processing is used for simple classification tasks; in these tasks, edge AI will be required to work in various environments. In any environment, a low-power training algorithm is necessary in order to adapt and obtain simple intelligence, such as discriminating whether data is necessary. In a Cloud–Fog–Edge AI society, it is more important to select data that reduces the communication cost. We demonstrated that TBP is an effective solution in this society.

Acknowledgments
This study was supported by the JSPS Grants-in-Aid for JSPS Fellows and a Grant-in-Aid for Scientific Research on Innovative Areas [18H03302, 2511001503] from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, and was also supported by the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References
[1] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” Proc. COMPSTAT '10, pp. 177–186, August 2010.
[2] D.P. Kingma and J.L. Ba, “Adam: A method for stochastic optimization,” arXiv preprint, arXiv: 1412.6980, 2014.
[3] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” arXiv preprint, arXiv:1709.01507, 2017.
[4] J.-Y. Zhu, T. Park, P. Isola, and A.A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” arXiv preprint, arXiv:1703.10593, 2017.
[5] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu, G. van den Driessche, E. Lockhart, L.C. Cobo, F. Stimberg, N. Casagrande, D. Grewe, S. Noury, S. Dieleman, E. Olsen, K. Kalchbrenner, H. Zen, A. Graves, H. King, T. Walters, D. Belov, and D. Hassabis, “Parallel WaveNet: Fast high-fidelity speech synthesis,” arXiv preprint, arXiv:1711.10433, 2017.
[6] J. Dean, “Machine learning for systems and systems for machine learning,” Visit http://learningsys.org/nips17/assets/slides/dean-nips17.pdf, November 2017.
[7] S. Pichai, “Google Keynote,” Google I/O, May 2018.
[8] T. Maruyama, “Fujitsu HPC and AI processors,” International Supercomputing Conference, June 2017.
[9] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA based neural network accelerator,” arXiv preprint, arXiv:1712.08934, 2017.
[10] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint, arXiv:1606.06160, 2016.
[11] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang, “F-CNN: An FPGA-based framework for training convolutional neural networks,” Proc. IEEE International Conference on Application-specific Systems, Architectures and Processors, pp. 107–114, July 2016.
[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, pp. 2278–2324, November 1998.

[13] F. Leens, “An introduction to I²C and SPI protocols,” IEEE Instrumentation & Measurement Magazine, vol. 12, no. 1, pp. 8–13, February 2009.

[14] M.D. Zeiler, “ADADELTA: An adaptive learning rate method,” arXiv preprint, arXiv:1212.5701, 2012.

[15] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning lecture 6a overview of mini-batch gradient descent,” Lecture slide, 2012.

[16] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convolution network,” arXiv preprint, arXiv:1505.00853, 2015.

[17] R. Caruana, S. Lawrence, and L. Giles, “Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping,” Proc. Advances in Neural Information Processing Systems, pp. 402–408, 2000.

[18] K. Scott, C.D. Gelatt, and M.P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983.

[19] L. Shang, A.S. Kaviani, and K. Bathala, “Dynamic power consumption in Virtex-II FPGA family,” Proc. ACM/SIGDA ’02, pp. 157–164, February 2002.

[20] Visit http://www.csd.uoc.gr/%7Ehy534/03a/s31_ram_bl.htm