Thibaut Le Gouic

A note on flatness of non separable tangent cone at a barycenter
Volume 358, issue 4 (2020), p. 489-495.

<https://doi.org/10.5802/crmath.66>

© Académie des sciences, Paris and the authors, 2020.
Some rights reserved.

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte
www.centre-mersenne.org
A note on flatness of non separable tangent cone at a barycenter

Une note sur la platitude du cône tangeant à un barycentre

Thibaut Le Gouic

Abstract. Given a probability measure \(P \) on an Alexandrov space \(S \) with curvature bounded below, we prove that the support of the pushforward of \(P \) on the tangent cone \(T_{b^*}S \) at its (exponential) barycenter \(b^* \) is a subset of a Hilbert space, without separability of the tangent cone.

Résumé. Étant donné une mesure de probabilité \(P \) sur un espace d’Alexandrov \(S \) avec courbure minorée, nous prouvons que le support de la mesure poussée de \(P \) sur le cône tangent \(T_{b^*}S \) à son barycentre (exponentiel) \(b^* \) est un sous-ensemble d’un espace de Hilbert, sans condition de séparabilité du cône tangent.

Funding. Supported by ONR grant N00014-17-1-2147.

1. Introduction

Barycenter of a probability measure \(P \) (a.k.a. Fréchet means) provides an extension of expectation on Euclidean space to arbitrary metric spaces. We present here a useful tool for the study of barycenters on Alexandrov spaces with curvature bounded below: the support of \(\log_{b^*} \#P \) in the tangent cone at the barycenter is included in a Hilbert space. This rigidity result has been stated in [9] as Theorem 45, however the proof is not written. Moreover, there is an extra assumption of support of \(\log_{b^*} \#P \) being separable, which does not even seem to be a consequence of the support of \(P \) being separable. As pointed out by [7], it is not clear if even \(S \) being proper ensures that the tangent cone is separable. This paper presents a proof of this rigidity result, without this extra separable assumption on the tangent cone. For measurability purposes (see Lemma 6), we suppose however that \(S \) is separable. The proof is essentially the one of Theorem 45 of [9], with needed approximations dealt with a bit differently.
2. Setting and main result

We use a classical notion of curvature bounded below for geodesic spaces, referred to as Alexandrov curvature. We recall several notions whose formal definitions can be found for instance in [3] or in the work in progress [2].

For a metric space \((S,d)\), we denote by \(\mathcal{P}_1(S)\) the set of probability measures on \(S\) with finite moment of order 1 (i.e. such that there exists \(x \in S\) such that \(\int d(x,y) d\mathbf{P}(y) < \infty\)). The support of a measure \(\mathbf{P}\) will be denoted by \(\text{supp}\mathbf{P}\). We use both notation \(\int f d\mathbf{P}\) and \(\mathbf{P}f\) for the integral of \(f\) w.r.t. \(\mathbf{P}\).

A geodesic space is a metric space \((S,d)\) such that every two points \(x,y \in S\) at distance is connected by a curve of length \(d(x,y)\). Such shortest curves are called geodesics. For \(\kappa \in \mathbb{R}\), the model space \((\mathbb{M}_\kappa, d_\kappa)\) denotes the 2-dimensional simply connected complete surface of constant Gauss curvature \(\kappa\). A geodesic space \((S,d)\) is an Alexandrov space with curvature bounded below by \(\kappa\) if for every triangle (3-uple) \((x_0,x_1,y) \in S\), and a constant speed geodesic \((x_t)_{t \in [0;1]}\) there exists an isometric triangle \((\tilde{x}_0,\tilde{x}_1,\tilde{y}) \in \mathbb{M}_\kappa\), such that the geodesic \((\tilde{x}_t)_{t \in [0;1]}\) satisfies for all \(t \in [0;1]\),

\[
d(y,x_t) \geq d_\kappa(\tilde{y},\tilde{x}_t).
\]

For such spaces, angles between two unit-speed geodesics \(\gamma_1,\gamma_2\) starting at the same point \(p \in S\) can be defined as follows:

\[
\cos \angle_p(\gamma_1,\gamma_2) = \lim_{t \to 0} \frac{d^2(\gamma_1(t),p) + d^2(\gamma_2(t),p) - d^2(\gamma_1(t),\gamma_2(t))}{2d(p,\gamma_1(t))d(p,\gamma_2(t))},
\]

where angle \(\angle_p(\gamma_1,\gamma_2) \in [0;\pi]\). Denote by \(\Gamma_p\) the set of all unit-speed geodesics emanating from \(p\). Using angles, we can define the tangent cone \(T_pS\) at \(p \in S\) as follows. First define \(T'_pS\) as the (quotient) set \(\Gamma_p \times \mathbb{R}^+\), equipped with the (pseudo-)metric defined by

\[
\|((y_1,t)-(y_2,s))\|^2_p := s^2 + t^2 - 2st \cos \angle_p(\gamma_1,\gamma_2).
\]

Then, the tangent cone \(T_pS\) is defined as the completion of \(T'_pS\) equipped with the metric \(\| \cdot \|_p\). We will use the notation for \(u,v \in T_pS\),

\[
\langle u,v \rangle_p := \frac{1}{2} (\|u\|_p^2 + \|v\|_p^2 - \|u-v\|_p^2),
\]

We will often identify a point \(\gamma(t) \in S\) with \((\gamma,t) \in T_pS\). Although such \(\gamma\) might not be unique, we will assume a choice of a map \(\log_p : S \to T_pS\), called logarithmic map, such that for all \(x \in S\), there exists a unit-speed geodesic \(\gamma\) emanating from \(p\) such that, for some \(t > 0\), \(\gamma(t) = x\) and

\[
\log_p(x) = (\gamma,t).
\]

This map can be chosen to be \(\mathcal{G}_B\)-measurable, where \(\mathcal{G}_B\) denotes the \(\sigma\)-algebra generated by open balls on the tangent cone \(T_pS\) (see Lemma 6) and this weak measurability is enough for our results to hold and will be assumed for the rest of the paper. Then the pushforward of \(\mathbf{P}\) by \(\log_p\) will be denoted by \(\# \log_p \mathbf{P}\).

The tangent cone is not necessarily a geodesic space (see [4]), however, it is included in a geodesic space, namely the ultratangent space (see for instance Theorem 14.4.2 and 14.4.1 in [2]) that is an Alexandrov space with curvature bounded below by 0.

The tangent cone \(T_pS\) contains the subspace \(\text{Lin}_p\) of all points with an opposite, formally defined as follows. A point \(u\) belongs to \(\text{Lin}_p \subset T_pS\) if and only if there exists \(v \in T_pS\) such that \(\|u\|_p = \|v\|_p\) and

\[
\langle u,v \rangle_p = -\|u\|_p^2.
\]

Our main result is based on the following Theorem.

Theorem (Theorem 14.5.4 in [2]). The set \(\text{Lin}_p\) equipped with the induced metric of \(T_pS\) is a Hilbert space.
A point \(b^* \in S \) is a barycenter of the probability measure \(P \in \mathcal{P}_1(S) \) if for all \(b \in S \)
\[
0 \leq \int d^2(x, b) - d^2(x, b^*) \, dP(x).
\]
Such barycenter might not be unique, neither exists. However, when they exist, they satisfy
\[
\int \langle x, y \rangle_{b^*} \, dP \otimes P(x, y) = 0. \tag{1}
\]
A point \(b^* \in S \) satisfying (1) is called an exponential barycenter of \(P \).
We can now state our main result.

Theorem 1. Let \((S, d)\) be an Alexandrov space with curvature bounded below by some \(\kappa \in \mathbb{R} \) and \(P \in \mathcal{P}_1(S) \). If \(b^* \in S \) is an exponential barycenter of \(P \), then \(\text{supplog}_{b^*} \#P \subset \text{Lin}_{b^*} S \). In particular, \(\text{supplog}_{b^*} \#P \) is included in a Hilbert space.

This result allows to prove the following Corollary, that has been implicitly used in [1].

Corollary 2 (Linearity). Let \(b \in T_{b^*} S \). Then, the map \(\langle \cdot, b \rangle_{b^*} : \text{Lin}_{b^*} \to \mathbb{R} \) is continuous and linear. In particular, if \(b^* \) is an exponential barycenter of \(P \), then
\[
\int \langle x, b \rangle_{b^*} \, dP(x) = 0.
\]

3. Proofs

Recall that we always identify a point in \(S \) and its image in the tangent cone \(T_{b^*} S \) by the \(\log_{b^*} \) map.

Proof of Corollary 2. Linearity is obvious from the definition of \(\langle \cdot, b \rangle_{b^*} \). We check that \(x \mapsto \langle x, b \rangle_{b^*} \) is a convex and concave function in \(\text{Lin}_{b^*} S \). Let \(t \in (0, 1), \, x_0, x_1 \in \text{Lin}_{b^*} S \), and set \(x_t = (1 - t)x_0 + tx_1 \). Since the tangent cone is included in an Alexandrov space with curvature bounded below by 0 on one hand, and \(\text{Lin}_{b^*} \) is a Hilbert space on the other hand,
\[
\langle x_t, b \rangle_{b^*} \geq \frac{1}{2} (\|x_t\|_{b^*}^2 + \|b\|_{b^*}^2 - \|x_t - b\|^2)
\]
\[
\quad \leq \frac{1}{2} \left((1 - t)(\|x_0\|_{b^*}^2 - \|x_0 - b\|^2) + t(\|x_1\|_{b^*}^2 - \|x_1 - b\|^2) + \|b\|^2_{b^*} \right)
\]
\[
\quad = (1 - t)\langle x_0, b \rangle_{b^*} + t\langle x_1, b \rangle_{b^*}.
\]
The same lines applied to \(-x_0 \) and \(-x_1 \) gives the converse inequality
\[
\langle -x_t, b \rangle_{b^*} \leq (1 - t)\langle -x_0, b \rangle_{b^*} + t\langle -x_1, b \rangle_{b^*}.
\]
The second statement follows from the fact that \(b^* \) is a Pettis integral of the pushforward of \(P \)
on \(\text{Lin}_{b^*} \subset T_{b^*} S \), as a direct consequence of Theorem 1.

Proof of Theorem 1. Let \(L = \{ x \in S | \int \langle x, \cdot \rangle_{b^*} \, dP = 0 \} \) be a measurable set such that \(P(L) = 1 \) given by Lemma 3. Let \(x \in L \). For \(U = \{ x \} \), use Lemma 5 with \(Q = P \) and \(B_\delta \) a ball of radius \(\delta \) around \(x \) in \(T_{b^*} S \), to get a sequence \(\langle y_{n}^{B_\delta} \rangle_{n} \subset T_{b^*} S \) such that,
\[
\limsup_{n} \cos(1 \frac{x_{n}^{B_\delta}}{\delta_{n}^{B_\delta}}) = \limsup_{n} \frac{\langle x, y_{n}^{B_\delta} \rangle_{b^*}}{d(b^*, x)d(b^*, y_{n}^{B_\delta})} = \frac{1}{d(b^*, x)} \limsup_{n} \frac{\langle x, y_{n}^{B_\delta} \rangle_{b^*}}{d(b^*, y_{n}^{B_\delta})} \leq \frac{1}{d(b^*, x)} \int_{B_\delta} \langle x, y \rangle_{b^*} \, dP(x) \frac{P(B_\delta)}{\left(\int_{B_\delta} \int_{B_\delta} \langle x, y \rangle_{b^*} \, dP \otimes P(x, y) \right)^{1/2}}.
\]
Then, since \(\int \langle x, y \rangle_{b^*} \, dP(y) = 0 \), letting \(\delta \to 0 \), one gets
\[
\frac{1}{P(B_\delta)} \int_{B_\delta} \langle x, y \rangle_{b^*} \, dP(y) = - \frac{1}{P(B_\delta)} \int_{B_\delta} \langle x, y \rangle_{b^*} \, dP(y) \to -d^2(b^*, x),
\]
and
\[
\left(\int_{B_\delta} \int_{B_\delta} \langle x, y \rangle_{b^*} \, dP \otimes P(x, y) \right)^{1/2} \to d(b^*, x).
\]
Thus,
\[
\lim_{\delta \to 0^+} \sup_{n} \cos \angle \left((1^x_{b^*}, 1^y_{b^*}) \right) = -1
\]
One can thus choose \((\bar{y}^n)_n\) a sequence in \((y^n_\delta)_{n, \delta}\) such that \(\cos \angle (1^x_{b^*}, 1^y_{b^*}) \to -1\). Since \(T_{b^*} S\) is a subspace of an Alexandrov space of curvature bounded below by \(0\), we also have
\[
\angle (1^x_{b^*}, 1^y_{b^*}) \leq 2\pi - \angle (1^{\bar{y}^n}_{b^*}, 1^{\bar{y}^k}_{b^*}) - \angle (1^x_{b^*}, 1^{\bar{y}^k}_{b^*}) \to 0,
\]
as \(n, k \to \infty\). Thus \((\bar{y}^n)_n\) corresponds to a Cauchy sequence in the space of direction, and thus admits a limit in \(T_{b^*} S\), since its “norm” also admits a limit \(d(b^*, x)\). Its limit \(\bar{y}\) satisfies \(\cos \angle (1^x_{b^*}, 1^{\bar{y}}_{b^*}) = -1\), and therefore, it is the opposite \(\bar{y} = -x\).

Finally, by definition of the support, for \(x \in \text{supp}(\log_{b^*} P)\), every ball centered at \(x\) have a positive probability, and thus there exists a sequence \((x_n)_{n \geq 1} \subset L\) such that \(x_n \to x\). We conclude with the completeness of \(\text{Lin}_{b^*}\).

Lemma 3 (Proposition 1.7 of [8] for non separable metric space). Suppose \((S, d)\) is an Alexandrov space with curvature bounded below. Then, for any probability measure \(Q \in \mathcal{P}_1(S)\), and any \(b^* \in S\),
\[
\int \langle x, y \rangle_{b^*} \, dQ \otimes Q(x, y) \geq 0.
\]
Moreover, if \(b^*\) is an exponential barycenter of \(Q\), then for \(Q\)-almost all \(x \in S\),
\[
\int \langle x, y \rangle_{b^*} \, dQ(y) = 0.
\]

Proof. For brevity, we will adopt the notation \(Q g\) for \(\int g \, dQ\).

The result for \(Q\) finitely supported is the Lang–Schroeder inequality (Proposition 3.2 in [5]). Thus, we just need to approximate \(Q \otimes Q(\cdot, \cdot)_{b^*}\) by some \(Q^1_n \otimes Q^2_n(\cdot, \cdot)_{b^*}\) for some finitely supported \(Q^1_n\).

To approximate \(Q \otimes Q(\cdot, \cdot)_{b^*}\), draw two independent sequences of i.i.d. random variables \((X^1_i)_{i}\) and \((X^2_i)_{i}\) of common law \(Q\), and denote \(Q^1_n\) and \(Q^2_n\) the corresponding empirical measures. In particular, \(Q^1_n \otimes Q^2_n\) and \(Q^2_n \otimes Q^2_n\) are both empirical measures of \(Q \otimes Q\). Since \(S\) is not separable, we can not apply the fundamental theorem of statistics that ensures almost sure weak convergence of \(Q^1_n \otimes Q^2_n\) to \(Q \otimes Q\). However, for a measurable function \(f : S \times S \to \mathbb{R}\), such that \(Q \otimes Q f < \infty\), the law of large number ensures that almost surely
\[
Q^1_n \otimes Q^2_n f \to Q \otimes Q f
\]
and
\[
Q^2_n \otimes Q^2_n f \to Q \otimes Q f.
\]
Since the sequence \((X^1_1, X^1_2, X^2_2, X^2_3, X^1_3, X^2_4, \ldots)\) is also an i.i.d. sequence of random variables of common law \(Q\), the subsequence of the associated empirical measures \((Q^3_n)_n\) defined by
\[
Q^3_n := \frac{1}{2}(Q^1_n + Q^2_n)
\]
also satisfies the almost sure convergence
\[
Q^3_n \otimes Q^3_n f \to Q \otimes Q f.
\]
Now, since
\[Q_n^1 \otimes Q_n^2 = \frac{1}{4} (Q_n^1 \otimes Q_n^2 + Q_n^1 \otimes Q_n^1 + Q_n^2 \otimes Q_n^1 + Q_n^2 \otimes Q_n^2), \]
we proved that almost surely
\[Q_n^1 \otimes Q_n^1 f + Q_n^2 \otimes Q_n^2 f \to 2Q \otimes Q f. \]
And since \((Q_n^1)_n\) and \((Q_n^2)_n\) are independent and with same law, it implies that both \(Q_n^1 \otimes Q_n^1 f\) and \(Q_n^2 \otimes Q_n^2 f\) converge to \(Q \otimes Q f\) almost surely. In particular, since \(Q_n^1\) is supported on \(n\) points, there exists a sequence of finitely supported measures (that we rename \((Q_n)_n\)) such that \(Q_n \otimes Q_n f \to Q \otimes Q f\). We thus proved the first result applying \(f = \langle \cdot , \cdot \rangle_{b^*} \).

Now, for any \(x \in S\), applying this first result to the measure \(Q_x := \frac{1}{1+\ve} Q + \frac{\ve}{1+\ve} \delta_x\), we get
\[0 \leq (1+\ve)Q_x \otimes Q_x \langle \cdot , \cdot \rangle_{b^*} + 2\ve Q(x, \cdot)_{b^*} + \ve^2 \|x\|_{b^*}^2. \]
Letting \(\ve \to 0^+\), we get
\[Q(x, \cdot)_{b^*} \geq 0. \]
Then equality follows from the hypothesis \(Q \otimes Q \langle \cdot , \cdot \rangle_{b^*} = 0\) meaning that \(b^*\) is an exponential barycenter.

Lemma 4 (Subadditivity, Lemma A.6 of [5]). Let \((S, \delta)\) be an Alexandrov space with curvature bounded below. Take \(b^* \in S\). Let \(x_1, \ldots, x_n \in T_{b^*} S \) and \(U \subset T_{b^*} S \) finite. Then, for all \(\ve > 0\), there exists \(y \in T_{b^*} S\) such that for all \(u \in U\),
\[\langle y, u \rangle_{b^*} \leq \sum_{i=1}^n \langle x_i, u \rangle_{b^*} + \ve, \]
and
\[\sum_{i,j=1}^n \langle x_i, x_j \rangle_{b^*} + \ve. \]

Lemma 5 (Approximation). Let \(U \subset T_{b^*} S \) finite. Take \(B \subset S\) measurable and a probability measure \(P \in \mathcal{P}_1(S)\) such that \(P \otimes P \langle \cdot , \cdot \rangle_{b^*} = 0\) and \(P(B) > 0\). Then, there exists a sequence \((y^n)_n\) such that for all \(u \in U\)
\[\frac{1}{P(B)} \int_{B^c} \langle u, x \rangle_{b^*} dP(x) \geq \limsup_n \langle u, y^n \rangle_{b^*} \] (2)
and
\[\frac{1}{P(B)^2} \int_B \int_B \langle x, y \rangle_{b^*} dP \otimes P(x, y) = \lim_n d^2(b^*, y^n). \] (3)

Proof. Using the same arguments as in Lemma 3, we see that the empirical measures \((P_n)_n\) satisfy
\[P_n \otimes P_n f \to P \otimes P f, \]
almost surely, for any \(f : S \times S \to \mathbb{R} \in L^1(S \times S, P \otimes P)\). In particular, taking \(f(x, y) = \langle x, y \rangle_{b^*} 1_{B \times B}(x, y)\), the following convergence holds in \(L^2(P^{\infty})\),
\[\int_B \int_B \langle x, y \rangle_{b^*} dP_n \otimes P_n \to \int_B \int_B \langle x, y \rangle_{b^*} dP \otimes P, \] (4)
and similarly for \(B^c\). Also, the law of large number ensures that almost surely, for all \(u \in U\),
\[\int_B \langle u, x \rangle_{b^*} dP_n \to \int_B \langle u, x \rangle_{b^*} dP, \] (5)
and again, the same for \(B^c\). Thus, there exists a subsequence (of a deterministic realization of) \(P_n\) (that we rename \(P_n\)) such that (4) and (5) both hold for all \(u \in U\).
Then, applying Lemma 4 to finite sum
\[
\frac{1}{P(B)} \int_{B^c} \langle \cdot , u \rangle_{b^*} dP_n,
\]
shows that there exists a sequence \((y^n)_n \in T^*_n S\) such that (2) holds and for a sequence \((\varepsilon_n)_n\) s.t. \(\varepsilon_n \to 0\),
\[
\|y^n\|_{b^*}^2 \leq \frac{1}{P(B)^2} \int_{B^c} \int_{B^c} \int_{B^c} \int_{B^c} \langle x, y \rangle_{b^*} dP_n \otimes P_n + \varepsilon_n.
\]
Then, applying the same Lemma 4 again shows that there exists a sequence \((z^n)_n \in T^*_n S\), such that
\[
0 \leq \frac{1}{P(B)^2} \int_{B^c} \int_{B^c} \langle x, y \rangle_{b^*} dP_n \otimes P_n(x, y)
= \frac{1}{P(B)^2} \left(\int_B \int_{B^c} \int_{B^c} + 2 \int_B \int_{B^c} \right) \langle x, y \rangle_{b^*} dP_n \otimes P_n(x, y)
\geq \|z^n\|_{b^*}^2 + \|y^n\|_{b^*}^2 + 2 \langle y^n, z^n \rangle_{b^*} - \varepsilon_n.
\]
Letting \(n \to \infty\), one obtains
\[
0 \geq \lim_n \|z^n\|_{b^*}^2 + 2 \langle y^n, z^n \rangle_{b^*} + \|y^n\|_{b^*}^2
\geq \lim_n \|z^n\|_{b^*}^2 - 2 \|y^n\|_{b^*} \|z^n\|_{b^*} + \|y^n\|_{b^*}^2
= \lim_n (\|z^n\|_{b^*}^2 - \|y^n\|_{b^*}^2) \geq 0.
\]
and which shows \(\lim_n \|y^n\| = \lim_n \|z^n\|\) and also that (6) becomes an equality at the limit and therefore
\[
\lim_n \|z^n\|_{b^*}^2 = \frac{1}{P(B)^2} \int_B \int_{B^c} \langle x, y \rangle_{b^*} dP \otimes P(x, y)
\]
This Lemma appears in a remark of [6].

Lemma 6 (Measurability of the log map). Let \((S,d)\) be a separable Alexandrov space. Let \(p \in S\). Then \(\log_p : S \to T_p S\) can be chosen to be \(\mathcal{G}_B\)-measurable.

Proof. Denote \(G_p\) the space of all constant speed geodesics emanating from \(p\) equipped with the sup distance \(\| \cdot \|_{\infty}\). Then \((G_p, \| \cdot \|_{\infty})\) is separable and complete too. Using Kuratowski and Ryll-Nardzewski measurable selection theorem, one can choose a Borel map \(g : S \to G_p\) such that \(g\) maps \(x\) to a geodesic from \(p\) to \(x\). Then, using the (proof of) Lemma 4.2 of [7], the map \(l : G_p \to T_p S\) is measurable \(T_p S\) is equipped with the \(\sigma\)-algebra \(\mathcal{G}\) generated by open balls. Therefore, \(\log_p := l \circ g\) is \(\mathcal{G}_B\)-measurable.

Acknowledgements

This note originated from technical issues emanating from the problem considered in [1] and [6]. I would like to thank Quentin Paris and Philippe Rigollet for fruitful discussions that lead to this article. I am also indebted to the anonymous referee for their careful review and comments.

References

[1] A. Ahidar-Coutrix, T. Le Gouic, Q. Paris, “On the rate of convergence of empirical barycentres in metric spaces: curvature, convexity and extendible geodesics”, https://arxiv.org/abs/1806.02740v1, 2018.
[2] S. Alexander, V. Kapovitch, A. Petrunin, “Alexandrov geometry”, http://arxiv.org/abs/1903.08539, 2019.
[3] D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, 2001.
[4] S. Halbeisen, “On tangent cones of Alexandrov spaces with curvature bounded below”, Manuscr. Math. 103 (2000), no. 2, p. 169-182.
[5] U. Lang, V. Schroeder, “Kirszbraun's theorem and metric spaces of bounded curvature”, *Geom. Funct. Anal.* 7 (1997), no. 3, p. 535-560.

[6] T. Le Gouic, Q. Paris, P. Rigollet, A. J. Stromme, “Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space”, https://arxiv.org/abs/1908.00828, 2019.

[7] S.-I. Ohta, “Barycenters in Alexandrov spaces of curvature bounded below”, *Adv. Geom.* 12 (2012), no. 4, p. 571-587.

[8] K.-T. Sturm, “Metric spaces of lower bounded curvature”, *Expo. Math.* 17 (1999), no. 1, p. 35-47.

[9] T. Yokota, “A rigidity theorem in Alexandrov spaces with lower curvature bound”, *Math. Ann.* 353 (2012), no. 2, p. 305-331.