Cho, Taewon; Chung, Julianne; Jiang, Jiahua
Hybrid projection methods for large-scale inverse problems with mixed Gaussian priors.
(English) Zbl 1464.65038
Inverse Probl. 37, No. 4, Article ID 044002, 26 p. (2021).

MSC:
65F22 Ill-posedness and regularization problems in numerical linear algebra
62F15 Bayesian inference

Keywords:
generalized Golub-Kahan; hybrid projection methods; Tikhonov regularization; Bayesian inverse problems; sample covariance matrix; tomography

Software:
Regularization tools; AIR tools; HyBR; IR Tools

Full Text: DOI arXiv

References:
[1] Ambikasaran S, Li J Y, Kitanidis P K and Darve E 2013 Large-scale stochastic linear inversion using hierarchical matrices
Geosci.17 913-27 · Zbl 1395.62050 · doi:10.1007/s10596-013-9364-0
[2] Arridge S, Maass P, Öktem O and Schönlieb C-B 2019 Solving inverse problems using data-driven models Acta Numer.28 1-174 · Zbl 1429.65116 · doi:10.1017/s0962492919000059
[3] Asch M, Bocquet M and Nodet M 2016 Data Assimilation: Methods, Algorithms, and Applications vol 11 (Philadelphia, PA: SIAM) · Zbl 1361.93001 · doi:10.1137/1.9781611974546
[4] Aster R C, Borchers B and Thurber C H 2019 Parameter Estimation and Inverse Problems 3rd edn ed R C Aster, B Borchers and C H Thurber (Amsterdam: Elsevier) Chapter four - Tikhonov regularization pp 93-134 · doi:10.1016/b978-0-12-804651-7.00009-2
[5] Bardsley J M 2018 Computational Uncertainty Quantification for Inverse Problems vol 19 (Philadelphia, PA: SIAM) · Zbl 1435.60001
[6] Bazán F S V, Borges L S and Francisco J B 2012 On a generalization of Regińska's parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization Appl. Math. Comput.219 2100-13 · Zbl 1293.65061 · doi:10.1016/j.amc.2012.08.054
[7] Brown R D, Bardsley J M and Cui T 2020 Semivariogram methods for modeling Whittle-Matérn priors in Bayesian inverse problems Inverse Problems36 055006 · Zbl 1416.92099 · doi:10.1088/1361-6420/ab10ca
[8] Bucini A, Donatelli M and Reichel L 2017 Iterated Tikhonov regularization with a general penalty term Numer. Linear Algebra Appl.24 e2089 · Zbl 1424.65045 · doi:10.1002/nla.2089
[9] Calvetti D and Somersalo E 2005 Priorconditioners for linear systems Inverse Problems21 1397 · Zbl 1087.65044 · doi:10.1088/0266-5611/21/4/014
[10] Calvetti D and Somersalo E 2007 An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing vol 2 (Berlin: Springer) · Zbl 1137.65010
[11] Chen Y, Wiesel A, Eldar Y C and Hero A O 2010 Shrinkage algorithms for MMSE covariance estimation IEEE Trans. Signal Process.58 5016-29 · Zbl 1392.94142 · doi:10.1109/tsp.2010.2053029
[12] Chen Y, Wiesel A and Hero A O 2009 Shrinkage estimation of high dimensional covariance matrices 2009 IEEE Int. Conf. on Acoustics, Speech and Signal Processing 2009.460239 · doi:10.1109/ICASSP.2009.460239
[13] Chung J, Chung M and O'Leary D P 2011 Designing optimal spectral filters for inverse problems SIAM J. Sci. Comput.33 3132-52 · Zbl 1269.65040 · doi:10.1137/100812938
[14] Chung J, Nagy J G and O'Leary D P 2008 A weighted GCV method for Lanczos hybrid regularization Electron. Trans. Numer. Anal.28 149-67 · Zbl 1171.65029
[15] Chung J and Palmer K 2015 A hybrid LSMR algorithm for large-scale Tikhonov regularization SIAM J. Sci. Comput.37
[17] Chung J and Saibaba A K 2017 Generalized hybrid iterative methods for large-scale Bayesian inverse problems SIAM J. Sci. Comput.39 S24-66 · Zbl 1325.65057 · doi:10.1137/140975024

[18] Chung J, Saibaba A K, Brown M and Westman E 2018 Efficient generalized Golub-Kahan based methods for dynamic inverse problems Inverse Problems 34 024005 · Zbl 1385.65034 · doi:10.1088/1361-6420/aaa0e1

[19] Daley T and Ajo-Franklin J 2019 Frio 2: raw CASSM datasets (accessed)

[20] Daley T M, Ajo-Franklin J B and Doughty C 2011 Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine pilot Int. J. Greenh. Gas Control 5 772-95 · Zbl 0345.65021 · doi:10.1088/1361-6420/aaa0e1

[21] Daniel J W, Gragg W B, Kaufman L and Stewart G W 1976 Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization Math. Comput.77 299-326 · Zbl 1223.62160 · doi:10.1137/1.9780898718836

[22] Daniel J W, Gragg W B, Kaufman L and Stewart G W 1976 Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization Math. Comput.77 299-326 · Zbl 1223.62160 · doi:10.1137/1.9780898718836

[23] Donoho D L 1995 De-noising by soft-thresholding IEEE Trans. Inform. Theory 41 613-79 · Zbl 1288.65084 · doi:10.1109/18.382009

[24] Gazzola S and Novati P 2013 Multi-parameter Arnoldi-Tikhonov methods Electronic Transactions on Numerical Analysis40 452-75 · Zbl 1288.65084

[25] Gazzola S, Hansen P C and Nagy J G 2018 IR tools: a MATLAB package of iterative regularization methods and large-scale test problems Numer. Algorithms81 773-811 · Zbl 1415.65003 · doi:10.1007/s11075-018-0570-7

[26] Gazzola S and Novati P 2013 Multi-parameter Arnoldi-Tikhonov methods Electronic Transactions on Numerical Analysis40 452-75 · Zbl 1288.65084

[27] Golub G H, Heath M and Wahba G 1979 Generalized cross-validation as a method for choosing a good ridge parameter Technometrics21 215-27 · Zbl 1210.65092 · doi:10.1007/s11075-018-0570-7

[28] Hansen P C 2010 Discrete Inverse Problems: Insight and Algorithms (Philadelphia, PA: SIAM) · Zbl 1200.65001 · doi:10.1137/1.9780898718836

[29] Hansen P C and Jorgensen J S 2018 AIR tools II: algebraic iterative reconstruction methods, improved implementation Numer. Algorithms79 107-37 · Zbl 1385.65034 · doi:10.1007/s11075-017-0290-0

[30] Hochstenbach M E and Reichel L 2010 An iterative method for Tikhonov regularization with a general linear regularization operator J. Integr. Equ. Appl.22 465-82 · Zbl 1210.65092 · doi:10.1214/11-aos1172

[31] Ledoit O and Wolf M 2004 A well-conditioned estimator for large-dimensional covariance matrices J. Multivariate Anal.88 365-411 · Zbl 1032.62050 · doi:10.1016/j.jmva.2004.03.004

[32] Liu H, Schwab J, Antholzer S and Haltmeier M 2020 NETT: solving inverse problems with deep neural networks Inverse Problems86 065005 · Zbl 1385.65034 · doi:10.1016/j.jmva.2004.03.004

[33] Long C J, Purdun P L, Temerencanin S, Desai N U, Hämäläinen M S and Brown E N 2011 State-space solutions to the dynamic magnetotelluric inversion problem using high performance computing Ann. Appl. Stat.5 1207-26 · Zbl 1223.62160 · doi:10.1214/11-aoas483

[34] Lu S and Pereverzev S V 2011 Multi-parameter regularization and its numerical realization Numer. Math.118 1-31 · Zbl 1219.65128 · doi:10.1007/s00211-010-0318-3

[35] Lucas A, Iliadis M, Molina R and Katsaggelos A K 2018 Using deep neural networks for inverse problems in imaging: beyond analytical methods IEEE Signal Process. Mag.35 20-36 · Zbl 1415.65003 · doi:10.1109/mssp.2017.2760358

[36] Rasmussen C E 2003 Gaussian Processes in Machine Learning(Summer School on Machine Learning) (Berlin: Springer) pp 63-71

[37] Renaut R A, Vatankhah S and Ardestani V E 2017 Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted GCV for projected systems SIAM J. Sci. Comput.39 B221-43 · Zbl 1301.65115 · doi:10.1137/j15m1037925

[38] Schäfer J and Strimmer K 2005 A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics Stat. Appl. Genet. Mol. Biol.4 32 · Zbl 1223.62160 · doi:10.1214/11-aos1172

[39] Schwab J, Antholzer S and Haltmeier M 2018 Deep null space learning for inverse problems: convergence analysis and rates Inverse Problems 35 025008 · Zbl 1385.65034 · doi:10.1088/1361-6420/aa14a4

[40] Shapiro A, Dentcheva D and Ruszczyński A 2009 Lectures on Stochastic Programming: Modeling and Theory (Philadelphia, PA: SIAM) · Zbl 1183.90005 · doi:10.1137/1.9780898718751

[41] Wang Z 2012 Multi-parameter Tikhonov regularization and model function approach to the damped Morozov principle for choosing regularization parameters J. Comput. Math.30 1815-32 · Zbl 1223.62160 · doi:10.1214/11-aos1172

[42] Yao Z S, Roberts R G and Tryggvason A 1999 Calculating resolution and covariance matrices for seismic tomography with the LSQR method Geophys. J. Int.121 054002 · Zbl 1288.65084 · doi:10.1016/s0047-259x(03)00096-4

[43] Zhang J and McMechan G A 1995 Estimation of resolution and covariance for large matrix inversions Geophys. J. Int.121 409-26 · Zbl 1288.65084 · doi:10.1011/j.1361-6420.1995.tb65722.x

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH
