Global wellposedness of the 3D compressible Navier-Stokes equations with free surface in the maximal regularity class

Yoshihiro Shibata ∗ and Xin Zhang †

February 8, 2022

Abstract

This paper concerns the global well posedness issue of the Navier-Stokes equations (CNS) describing barotropic compressible fluid flow with free surface occupied in the three dimensional exterior domain. Combining the maximal L_p-L_q estimate and the L_p-L_q decay estimate of solutions to the linearized equations, we prove the unique existence of global in time solutions in the time weighted maximal L_p-L_q regularity class for some $p > 2$ and $q > 3$. Namely, the solution is bounded as L_p in time and L_q in space. Compared with the previous results of the free boundary value problem of (CNS) in unbounded domains, we relax the regularity assumption on the initial states, which is the advantage by using the maximal L_p-L_q regularity framework. On the other hand, the equilibrium state of the moving boundary of the exterior domain is not necessary the sphere. To our knowledge, this paper is the first result on the long time solvability of the free boundary value problem of (CNS) in the exterior domain.

subjclass[2020]: Primary: 35Q30; Secondary: 76N10

keywords: Compressible viscous barotropic fluid, free boundary problem, exterior domain, global well-posedness, L_p-L_q maximal regularity, L_p-L_q decay properties.

1 Introduction

1.1 Model

Let Ω_t be a time dependent exterior domain in the three dimensional Euclidean space \mathbb{R}^3. To describe the motion of the viscous, barotropic, compressible fluid without surface tension, we denote the positive constant ρ_e for the reference mass density, Γ_t for the moving boundary of Ω_t and \mathbf{n}_t for the unit outer normal to Γ_t. The equations for the mass density $\rho + \rho_e > 0$, the velocity field $\mathbf{v} = (v_1, v_2, v_3)^\top$, and

∗Department of Mathematics, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, USA
E-mail address: yshibata325@gmail.com

†School of Mathematical Sciences, Tongji University, No.1239, Siping Road, Shanghai (200092), China.
E-mail address: xinzhang2020@tongji.edu.cn
\[\Omega_t \subset \mathbb{R}^3 \] are formulated as follows:
\[
\begin{cases}
\partial_t \rho + \text{div} ((\rho c + \rho)v) = 0 & \text{in } \bigcup_{0 < t < T} \Omega_t \times \{t\}, \\
(\rho c + \rho)(\partial_t v + v \cdot \nabla v) - \text{Div} (S(v) - P(\rho c + \rho)I) = 0 & \text{in } \bigcup_{0 < t < T} \Omega_t \times \{t\}, \\
(S(v) - P(\rho c + \rho)I)n_{\Gamma_t} = -P(\rho c)n_{\Gamma_t}, \quad V_{\Gamma_t} = v \cdot n_{\Gamma_t} & \text{on } \bigcup_{0 < t < T} \Gamma_t \times \{t\}, \\
(\rho, v, \Omega_t)|_{t=0} = (\rho_0, v_0, \Omega).
\end{cases}
\]

Above, the Cauchy stress tensor \(S(v) = \mu D(v) + (\nu - \mu) \text{div} v I \) for the viscous coefficients \(\mu, \nu > 0 \), the doubled deformation tensor \(D(v) = \nabla v + (\nabla v)^T \). Here, the \((i, j)\)th entry of the matrix \(\nabla v \) is \(\partial_i v_j \), \(M^T \) is the transposed matrix of \(M = [M_{ij}] \), the pressure law \(P(\cdot) \) is a smooth function defined on \(\mathbb{R}_+ \), and \(I \) is the \(3 \times 3 \) identity matrix. In addition, \(\text{Div} M \) denotes a 3-vector of functions whose \(i \)-th component is \(\sum_{j=1}^3 \partial_j M_{ij} \), \(\text{div} v = \sum_{j=1}^3 \partial_j v_j \), and \(v \cdot \nabla = \sum_{j=1}^3 v_j \partial_j \) with \(\partial_j = \partial / \partial x_j \). In \((1.2)\), \(P(\rho c) \) coincides with the pressure of the atmosphere, and \(V_{\Gamma_t} \) is the normal velocity of \(\Gamma_t \) for \(t > 0 \).

In the mathematical theory of fluid mechanics, the barotropic (or isentropic) compressible Navier-Stokes system (CNS) is one fundamental model describing the dynamic behaviour of the viscous gases. There is a huge amount of literatures on the well posedness issue of (CNS). For the Cauchy problem of three dimensional viscous compressible flow, the global-in-time solution was first constructed by Matsumura and Nishida in [17] by assuming that the initial data are small enough in \(H^3(\mathbb{R}^3) \). In addition, the authors [16] also proved that the solution \(\rho, v \) of (CNS) has the following decay property,
\[
\|(\rho, v)(\cdot, t)\|_{L^2(\mathbb{R}^3)} \leq C(1 + t)^{-3/4}
\]
for some constant \(C \) and \(t > 0 \), if the initial state \((\rho_0, v_0)\) is small measured by the norm \(\| \cdot \|_{L^1(\mathbb{R}^3) \cap H^3(\mathbb{R}^3)} \). Some improvement based on [16, 17] was obtained in the later works [11, 13, 24]. On the other hand, Hoff and Zumbrun in their seminal work [9] studied the decay property of the solution in the \(L_p \) norm, which exhibits the property of the multidimensional diffusion wave. For this aspect, the reader may also refer to [12, 15]. Furthermore, Danchin [3] solved (CNS) with the \(L_2 \) Besov regularity. We also refer to [1, 2, 8] for the extension to the \(L_p \) type Besov regularity and [19, 4] for the decay property.

In addition, the works [5, 10, 13, 18, 23] investigate the non-slip boundary value problem of compressible flow in the smooth bounded domain, exterior domain or the half space. For the free boundary value problem in the smooth bounded domain without taking the surface tension into account, [21, 26] solved the local wellposedness issue and [28, 22] established the global-in-time solution. When the moving bounded domain has the surface tension effect, [25, 29] proved the long time stability of some equilibrium state in the framework of the anisotropic Sobolev space. More recently, [6, 7, 30] solved the free boundary value problem of (CNS) in short time interval but in the unbounded domain within the maximal \(L_p \cdot L_q \) regularity framework.

1.2 Lagrangian coordinates and main result

We assume that the reference (or initial) domain \(\Omega \) is a \(C^2 \) exterior domain in \(\mathbb{R}^3 \). Since \(\Omega_t \) is unknown, we shall transform \(\Omega_t \) to the reference domain \(\Omega \) by the Lagrangian transformation. Let \(\mathbf{u} \) be a velocity field in the Lagrange coordinates \(y = (y_1, y_2, y_3) \in \Omega \), and we define the Lagrangian mapping:
\[
x = X_\mathbf{u}(y, t) = y + \int_0^t \mathbf{u}(y, s) \, ds
\]
for $0 < t < T$. In order to guarantee the invertibility of X_u in (1.2), we assume that

$$
\int_0^T \|u(\cdot, s)\|_{H^1(\Omega)} ds \leq \delta
$$

(1.3)

with small constant $\delta > 0$. So we may write the inverse map of the transformation (1.2) by $X_u^{-1}(x, t)$.

Suppose that $\rho(x, t) = \eta(X_u^{-1}(x, t), t), \ v(x, t) = u(X_u^{-1}(x, t), t), \ \Omega_t = \{x = X_u(y, t) : y \in \Omega\}, \ \Gamma_t = \{x = X_u(y, t) : y \in \Gamma = \partial\Omega\}.$

The kinematic condition (non-slip condition): $V_{\Gamma_t} = v \cdot n_t$ is automatically satisfied under the Lagrangian transformation (1.2).

Now, we derive the equations for (η, u) from (1.1). Introduce that

$$
\frac{\partial x}{\partial y} = \nabla y X_u = I + \int_0^t \nabla y u(y, s) ds,
$$

and $J_u = \det(\nabla y X_u)$. Then by the assumption (1.3), there exists the inverse of $\nabla y X_u$, that is,

$$
\frac{\partial y}{\partial x} = (\nabla y X_u)^{-1} = I + V_0(k), \quad k = \int_0^t \nabla y u(y, s) ds,
$$

where $V_0(k)$ is a matrix-valued function given by the series

$$
V_0(k) = \sum_{j=1}^{\infty} (-k)^j.
$$

In particular, $V_0(0) = 0$. By the chain rule, we introduce the gradient, divergence and stress tensor operators with respect to the transformation (1.2).

$$
\nabla u = (I + V_0(k)) \nabla y, \quad \text{div}_u u = (I + V_0(k)) : \nabla y u = J_u^{-1} \text{div}_y \left(J_u (I + V_0(k))^\top u \right),
$$

$$
D_u(u) = (I + V_0(k)) \nabla u + (\nabla u)^\top (I + V_0(k))^\top = D(u) + V_0(k) \nabla u + (V_0(k) \nabla u)^\top, \quad S_u(u) = \mu D_u(u) + (\nu - \mu) (\text{div}_u u) I, \quad \text{Div}_u A = J_u^{-1} \text{Div}_y \left(J_u A (I + V_0(k)) \right).
$$

In addition, $\text{Div}_u A$ can be also written via

$$
\text{Div}_u A = \text{Div}_y A + (V_0(k) \nabla |A|)
$$

(1.5)

with the ith component $(B \nabla |A|)_i = \sum_{j,k=1}^3 B_{ij} \partial_k A_{ij}$ for $B = [B_{ij}]_{3 \times 3}, \ i = 1, 2, 3$. Like the standard operator Div, $\text{Div}_u A = 0$ if A is a constant matrix. Then according to (1.1), the pair (η, u) fulfils the following system:

$$
\begin{align*}
\partial_t \eta + (\rho_c + \eta) \text{div}_u u &= 0 \quad &\text{in} \quad \Omega \times (0, T), \\
(\rho_c + \eta) \partial_t u - \text{Div}_u (S_u(u) - P(\rho_c + \eta) I) &= 0 \quad &\text{in} \quad \Omega \times (0, T), \\
(S_u(u) - P(\rho_c + \eta) I) n_u &= -P(\rho_c) n_u \quad &\text{on} \quad \Gamma \times (0, T), \\
(\eta, u)|_{t=0} = (\rho_0, v_0) \quad &\text{in} \quad \Omega,
\end{align*}
$$

(1.6)

where n_u is defined by

$$
n_u = \frac{(I + V_0(k)) n_\Gamma}{|(I + V_0(k)) n_\Gamma|}
$$

with n_Γ standing for the unit normal vector to $\Gamma = \partial\Omega$. Our main result is the following global well-posedness for problem (1.6).
Theorem 1.1. Let Ω be a C^3 exterior domain in \mathbb{R}^3. Let $b > 0$, $2 < p < \infty$, $2 < q_1 < 3 < q_2 < \infty$ satisfying the conditions:

$$
\frac{1}{q_1} = \frac{1}{3} + \frac{1}{q_2}, \quad bp' > 1, \quad \frac{3}{2q_1} + \frac{1}{2} - \frac{1}{p} > b \geq \frac{3}{2q_1}.
$$

(1.7)

Assume that $(\rho_0, v_0) \in \bigcap_{q=q_1,q_2} (H^1_q(\Omega) \times B^{2-2/p}_q(\Omega)) \cap L_{q_1/2}(\Omega)^4$ satisfying the compatibility condition of order 1. Namely,

$$
(S(v_0) - P(\rho_0 + \rho_0) n_\Gamma) = -P(\rho_0) n_\Gamma.
$$

(1.8)

Denote that

$$
I_0 = \sum_{q \in \{q_1, q_2\}} \left(\|\rho_0\|_{H^1_q(\Omega)} + \|v_0\|_{B^{2-2/p}_q(\Omega)} \right) + \|(\rho_0, v_0)\|_{L_{q_1/2}(\Omega)}.
$$

Then, there exists a small constant $\varepsilon > 0$ such that if $I_0 \leq \varepsilon$, then problem (1.4) admits a unique solution (η, u) with

$$
\eta \in H^1_{p, \text{loc}}(\mathbb{R}^3; L_q(\Omega)), \quad u \in H^1_{p, \text{loc}}(\mathbb{R}^3; L_q(\Omega)^3) \cap \{u \in H^2_{\text{loc}}(\mathbb{R}^3; H^2_q(\Omega)^3) \}
$$

for $q \in \{q_1, q_2\}$. Moreover, there exists a constant M independent of T, ε such that $E_T(\eta, u) \leq M \varepsilon$ for any $T > 0$. Here, we have set

$$
E_T(\eta, u) = \|\langle t \rangle^{3/(2q_1)}(\eta, u)\|_{L^\infty(0,T;L_{q_1}(\Omega))} + \|\langle t \rangle^b(\eta, u)\|_{L^\infty(0,T;L_{q_2}(\Omega))} + \|\langle t \rangle^b(\eta, u)\|_{L_p(0,T;H^2_q(\Omega))} + \sum_{\ell=1,2} \|\langle t \rangle^b \partial_t^\ell \eta\|_{L_p(0,T;H^1_{q_1}(\Omega))} + \|\langle t \rangle^b \partial_t^\ell u\|_{L_p(0,T;L_{q_1}(\Omega))}
$$

(1.9)

with $\langle t \rangle = \sqrt{1 + t^2}$.

Remark. Some comments on Theorem 1.1:

1. In fact, it is not hard to see from (1.7) in Theorem 1.1 that $q_2 > 6$ and $1/2 < b < 5/4$. In particular, let $(q_1, q_2) = (2 + 2\sigma, 6(1 + \sigma)/(1 - 2\sigma))$ for any small $\sigma > 0$, while the initial data have the $L_{1+\sigma}$ boundedness. Then we see the decay rate of $L_{2+2\sigma}$ norm of our solution from (1.4), namely

$$
\|\langle \eta, u \rangle(\cdot, t)\|_{L_{2+2\sigma}(\Omega)} \leq C_0(1 + t)^{-\frac{3}{2+4\sigma}}
$$

(1.10)

for some constant C_0 depending on I_0. Moreover, (1.10) is optimal in sense of heat flows.

2. Although v_0 does not necessarily belong to $B^{2-2/p}_q(\Omega)$, the maximal $L_p^{-1} L_{q_1/2}$ regularity property is used in later proof (see Theorem 3.1). So we cannot extend the result to $q_1 = 1$ by the method of this paper, which distinguishes our result with the classical works [16, 17] in the L_2 energy approach.

3. Notice that $(\rho_0, 0, \Omega)$ can be regarded as the equilibrium state of the problem (1.1). Furthermore, only C^3 smoothness constrain is imposed on Ω, but not the shape of the initial boundary Γ. This is the main difference between the surface tension problem and the problem of this paper.

4. For technical reason, we only construct the global solution of (1.4) with the constrain $p > 2$ in Lagrangian coordinates. However, we also expect the long time result for the endpoint case $p = 2$ in the future.
1.3 Reformulation of (1.6) and main idea

Now let us give some rough idea of the proof of Theorem 1.1. To convert (1.6) into some linearized form, we set some notations. It is clear that the boundary condition in (1.6) is equivalent to

\[
\left(S_u(u) - (P(\rho_e + \eta) - P(\rho_e)) I \right) (I + V_0(k)) n = 0. \tag{1.11}
\]

On the other hand, Taylor’s theorem yields that

\[
P(\rho_e + \eta) - P(\rho_e) = P'(\rho_e) \eta + Q(\eta) \quad \text{with} \quad Q(\eta) = \eta^2 \int_0^1 P''(\rho_e + \theta \eta)(1 - \theta) \, d\theta.
\]

From (1.4), we introduce that

\[
D_D(u) = D_u(u) - D(u) = V_0(k) \nabla u + (V_0(k) \nabla u) ^T, \quad S_D(u) = S_u(u) - S(u) = \mu D_D(u) + (\nu - \mu) (V_0(k) : \nabla u) I.
\tag{1.12}
\]

Suppose that \(\Omega^c \subset B_R \) for some \(R > 0 \). Let \(\kappa \in C_0^\infty(\mathbb{R}^N) \) be a cut-off function such that \(\kappa(x) = 1 \) for \(|x| \leq 2R \) and \(\kappa(x) = 0 \) for \(|x| \geq 3R \). Then we rewrite the system (1.6) in the following equivalent form:

\[
\begin{align*}
\partial_t \eta + \gamma_1 \text{div } u &= f(\eta, u) \quad \text{in} \quad \Omega \times (0, T), \\
\gamma_1 \partial_t u - \text{Div} (S(u) - \gamma_2 \eta I) &= g(\eta, u) \quad \text{in} \quad \Omega \times (0, T), \\
(S(u) - \gamma_2 \eta I) n &= \kappa h(\eta, u) \quad \text{on} \quad \Gamma \times (0, T), \\
(\eta, u)|_{t=0} &= (\rho_0, v_0) \quad \text{in} \quad \Omega,
\end{align*}
\tag{1.13}
\]

where \(\gamma_1 = \rho_e, \gamma_2 = P'(\rho_e) \) and the nonlinear terms on the right-hand side are given by

\[
\begin{align*}
f(\eta, u) &= -\eta \text{div } u - (\gamma_1 + \eta) V_0(k) : \nabla u, \\
g(\eta, u) &= -\gamma_1 \partial_t u + \text{Div} (S_D(u) - Q(\eta) I) + (V_0(k) \nabla | S_u(u) - \gamma_2 \eta I - Q(\eta) I), \\
h(\eta, u) &= -(S_D(u) - Q(\eta) I) n - (S_u(u) - \gamma_2 \eta I - Q(\eta) I) V_0(k) n.
\end{align*}
\tag{1.14}
\]

Now we decompose the solution \((\eta, u) \) of (1.13) by \((\eta, u) = (\rho^1, v^1) + (\rho^2, v^2) + (\theta, w) \) where \((\rho^i, v^i), i = 1, 2 \), satisfy the shifted systems for some \(\lambda_0 > 0 \):

\[
\begin{align*}
\partial_t \rho^1 + \lambda_0 \rho^1 + \gamma_1 \text{div } v^1 &= f(\eta, u) \quad \text{in} \quad \Omega \times (0, T), \\
\gamma_1 \partial_t v^1 + \lambda_0 v^1 - \text{Div} (S(v^1) - \gamma_2 \rho^1 I) &= g(\eta, u) \quad \text{in} \quad \Omega \times (0, T), \\
(S(v^1) - \gamma_2 \rho^1 I) n &= \kappa h(\eta, u) \quad \text{on} \quad \Omega \times (0, T); \quad \text{in} \quad \Omega;
\end{align*}
\tag{1.15}
\]

\[
\begin{align*}
\partial_t \rho^2 + \lambda_0 \rho^2 + \gamma_2 \text{div } v^2 &= \lambda_0 \rho^1 \quad \text{in} \quad \Omega \times (0, T), \\
\gamma_1 \partial_t v^2 + \lambda_0 v^2 - \text{Div} (S(v^2) - \gamma_2 \rho^2 I) &= \lambda_0 v^1 \quad \text{in} \quad \Omega \times (0, T), \\
(S(v^2) - \gamma_2 \rho^2 I) n &= 0 \quad \text{on} \quad \Gamma \times (0, T), \\
(\rho^2, v^2)|_{t=0} &= (0, 0) \quad \text{in} \quad \Omega.
\end{align*}
\tag{1.16}
\]

In addition, \((\theta, w) \) satisfies the compensate system:

\[
\begin{align*}
\partial_t \theta + \gamma_1 \text{div } w &= \lambda_0 \theta \quad \text{in} \quad \Omega \times (0, T), \\
\gamma_1 \partial_t w - \text{Div} (S(w) - \gamma_2 \theta I) &= \lambda_0 v^2 \quad \text{in} \quad \Omega \times (0, T), \\
(S(w) - \gamma_2 \theta I) n &= 0 \quad \text{on} \quad \Gamma \times (0, T), \\
(\theta, w)|_{t=0} &= (\rho_0, v_0) - (\rho^1, v^1)|_{t=0} \quad \text{in} \quad \Omega.
\end{align*}
\tag{1.17}
\]
In the system (1.15), we omit the initial conditions. Because, the role of \((\rho^1, v^1)\) is to handle the nonlinear terms as in Section 3. To apply the semigroup theory established in [24], the construction of \((\rho^2, v^2)\) is necessary, which can be regarded as one difficulty from the quasilinear type conditions (1.11) in our problem. At last, we treat (1.17) by the decay estimates of the semigroup theory (see Sections 5 and 6).

1.4 Notion
Let us end up this section by introducing some symbols for the domains and the functional spaces, which will be used throughout this paper. For any domain \(G \subset \mathbb{R}^3\), \(1 \leq p \leq \infty\) and \(k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\), \(L_p(G)\) and \(H^k_p(G)\) denote the standard Lebesgue space and Sobolev space respectively. In addition, the Besov space \(B^s_{q,p}(G)\) for some \(1 < s \leq k\) and \((p, q) \in (1, \infty)^2\) is defined by the real interpolation functor
\[
B^s_{q,p}(G) = (L_q(G), H^k_q(G))^s/k,p.
\]
For any Banach space \(X\) and any interval \(I \subset \mathbb{R}\), \(H^k_p(I; X)\) (or \(H^k_p_{\text{loc}}(I; X)\)) stands for the total of the \(X\)-valued mappings in the \(H^k_p\) (or \(H^k_p_{\text{loc}}\)) class. Sometimes, we write \(H^k_p(a, b; X)\) for simplicity whenever \(I = (a, b)\) for any \(0 \leq a < b < \infty\). In addition, \(A \lesssim B\) stands for \(A \leq CB\) whenever \(C\) is a harmless constant.

2 Linear theory on the shifted model
In this section, we introduce the linear theory on the time-weight estimates of some shifted model problem.

Theorem 2.1. Let \(\Omega\) be a \(C^2\) exterior domain in \(\mathbb{R}^3\), and let \(1 < p, q < \infty\). Assume that \(f, g\) and \(h\) satisfy that
\[
\begin{align*}
\langle t \rangle^b f(\cdot, t) &\in L_p(0, T; H^1_q(\Omega)), \quad \langle t \rangle^b g(\cdot, t) \in L_p(0, T; L_q(\Omega)^3), \\
\langle t \rangle^b h(\cdot, t) &\in L_p(\mathbb{R}; H^1_q(\Omega)^3) \cap H^1_{3/2}(\mathbb{R}; L_q(\Omega)^3)
\end{align*}
\]
for some \(b \geq 0\). Let \(f_0\) and \(g_0\) be zero extensions of \(f\) and \(g\) outside of \((0, T)\), that is \(h_0(\cdot, t) = h(\cdot, t)\) for \(t \in (0, T)\) and \(h_0(\cdot, t) = 0\) for \(t \not\in (0, T)\) with \(h \in \{f, g\}\). Then there exists a constant \(\lambda_0 > 0\) such that the following system
\[
\begin{cases}
\partial_t \rho + \lambda_0 \rho + \gamma_1 \text{div} v = f_0 & \text{in } \Omega \times \mathbb{R}, \\
\gamma_1 \partial_t v + \lambda_0 v - \text{Div}(S(v) - \gamma_2 \rho I) = g_0 & \text{in } \Omega \times \mathbb{R}, \\
(S(v) - \gamma_2 \rho I) \nu|_{\Gamma} = h & \text{on } \Gamma \times \mathbb{R}
\end{cases}
\tag{2.1}
\]
admits a unique solution \((\rho, v)\) with
\[
\rho \in H^1_p(\mathbb{R}; H^1_q(\Omega)), \quad v \in H^1_p(\mathbb{R}; L_q(\Omega)^3) \cap L_p(\mathbb{R}; H^2_q(\Omega)^3),
\]
possessing the estimate:
\[
\begin{align*}
\|\langle t \rangle^b(\rho, \partial_t \rho)\|_{L_p((0, T); H^1_q(\Omega))} + \|\langle t \rangle^b \partial_t v\|_{L_p((0, T); L_q(\Omega)^3)} + \|\langle t \rangle^b v\|_{L_p((0, T); H^2_q(\Omega)^3)}
&\leq C\left(\|\langle t \rangle^b f\|_{L_p((0, T); H^1_q(\Omega))} + \|\langle t \rangle^b g\|_{L_p((0, T); L_q(\Omega)^3)} + \|\langle t \rangle^b h\|_{L_p(\mathbb{R}; H^1_q(\Omega)^3)} + \|\langle t \rangle^b h\|_{H^1_{3/2}(\mathbb{R}; L_q(\Omega))}\right) \tag{2.2}
\end{align*}
\]
for some constant \(C > 0\).
Moreover, if \(h = 0\), then \((\rho, v) = (0, 0)\) for \(t \leq 0\), in particular \((\rho, v)|_{t=0} = (0, 0)\).
Proof. One can establish (2.2) for the case \(b = 0 \) by using the \(\mathcal{R} \) bounded solution operators of the corresponding generalized resolvent problem in [6] Theorem 2.4 (see also [24] Section 5). Namely, we have for some \(\lambda_0 > 0 \)

\[
\|(\rho, \partial_t \rho)\|_{L_p(\mathbb{R}; L^2_{\gamma}(\Omega))} + \|\partial_t \mathbf{v}\|_{L_p(\mathbb{R}; L^2_{\gamma}(\Omega))} + \|\mathbf{v}\|_{L_p(\mathbb{R}; H^1_{\gamma}(\Omega))} \leq C \left(\|f_0\|_{L_p(\mathbb{R}; H^1_{\gamma}(\Omega))} + \|g_0\|_{L_p(\mathbb{R}; L^2_{\gamma}(\Omega))} + \|\mathbf{h}\|_{L_p(\mathbb{R}; H^1_{\gamma}(\Omega))} + \|\mathbf{h}\|_{H^{1/2}_{\gamma}(\mathbb{R}; L^2_{\gamma}(\Omega))} \right).
\]

(2.3)

Then we can deduce the bound (2.2) for general \(b > 0 \) by considering the following system

\[
\begin{align*}
&\partial_t (t^b \rho) + \lambda_0 (t^b \rho) + \gamma_1 \text{div} (t^b \mathbf{v}) = \tilde{f} &\text{in } \Omega \times \mathbb{R}, \\
&\gamma_1 \partial_t (t^b \mathbf{v}) + \lambda_0 (t^b \mathbf{v}) - \text{Div} (S ((t^b \mathbf{v}) - \gamma_2 (t^b \rho) \mathbf{I}) = \tilde{g} &\text{in } \Omega \times \mathbb{R}, \\
&(S ((t^b \mathbf{v}) - \gamma_2 (t^b \rho) \mathbf{I}) \mathbf{n}_\Gamma = \tilde{h} &\text{on } \Gamma \times \mathbb{R},
\end{align*}
\]

(2.4)

where we have set \(\tilde{f} = \langle t^b f \rangle + b (t^{b-2} t \rho, \tilde{g} = \langle t^b g \rangle + \gamma_1 b (t^b t^b \mathbf{v}) \) and \(\tilde{h} = \langle t^b h \rangle \). Note the fact that

\[
\langle t^b \rangle^{b-1} \leq \begin{cases} 1 & \text{for } 0 < b \leq 1, \\ C_\delta + \delta \langle t^b \rangle & \text{for } b > 1 \text{ and any } 0 < \delta < 1. \end{cases}
\]

(2.5)

Thus we see from (2.3) and (2.4) that

\[
\begin{align*}
&\|\tilde{f}_0\|_{L_p(\mathbb{R}; H^1_{\gamma}(\Omega))} + \|\tilde{g}\|_{L_p(\mathbb{R}; L^2_{\gamma}(\Omega))} + \|\tilde{h}\|_{H^{1/2}_{\gamma}(\mathbb{R}; L^2_{\gamma}(\Omega))} + \|\tilde{h}\|_{L_p(\mathbb{R}; H^1_{\gamma}(\Omega))} \\
&\leq C_\delta \left(\|\langle t^b \rangle^b \|_{L_p(\mathbb{R}; L^2_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \|_{L_p(\mathbb{R}; L^2_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \|_{L_p(\mathbb{R}; H^1_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \|_{H^{1/2}_{\gamma}(\mathbb{R}; L^2_{\gamma}(\Omega))} \right) \\
&\quad + \delta \left(\|\langle t^b \rangle^b \|_{L_p(\mathbb{R}; H^1_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \|_{L_p(\mathbb{R}; L^2_{\gamma}(\Omega))} \right).
\end{align*}
\]

Then applying (2.3) to (2.4) and choosing \(\delta \) small yield the desired bound of \(\langle \rho, \mathbf{v} \rangle \).

Moreover, if \(\mathbf{h} = 0, \text{ then for any } \gamma > \lambda_0 \) we see from [6] Theorem 2.4 that

\[
\gamma \|\langle \rho, \mathbf{v} \rangle\|_{L_p((-\infty,0];L^2_{\gamma}(\Omega))} \leq \gamma \|e^{-\gamma t} \langle \rho, \mathbf{v} \rangle\|_{L_p(\mathbb{R}; L^2_{\gamma}(\Omega))} \leq C \left(\|e^{-\gamma t} f_0\|_{L_p(\mathbb{R}; H^1_{\gamma}(\Omega))} + \|e^{-\gamma t} g_0\|_{L_p(\mathbb{R}; L^2_{\gamma}(\Omega))} \right) \leq C \left(\|f\|_{L_p(0,T;H^1_{\gamma}(\Omega))} + \|g\|_{L_p(0,T;L^2_{\gamma}(\Omega))} \right).
\]

(2.6)

Letting \(\gamma \to \infty \), we have \(\langle \rho, \mathbf{v} \rangle = (0,0) \) for \(t \leq 0 \).

The uniqueness of the solution follows from the uniqueness of the corresponding resolvent problem after applying the Laplace transform to equations (2.1).

\[\square\]

3 The solution of the shifted system

In this whole section, we set for convenience that

\[
\mathcal{M}^b_{\rho, q} (T; \rho, \mathbf{v}) = \|\langle t^b \rangle^b (\rho, \partial_t \rho)\|_{L_p(0,T;H^1_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \partial_t \mathbf{v}\|_{L_p(0,T;L^2_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \mathbf{v}\|_{L_p(0,T;H^1_{\gamma}(\Omega))},
\]

for any \(b \geq 0, 1 < p, q < \infty \) and \(0 < T \leq \infty \). For the solution \((\eta, \mathbf{u}) \) of (1.6), recall that

\[
\mathcal{E}_T(\eta, \mathbf{u}) = \|\langle t^b \rangle^b (\rho, \partial_t \rho)\|_{L^\infty(0,T;L^q_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \partial_t \mathbf{v}\|_{L^p(0,T;L^q_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \mathbf{v}\|_{L^p(0,T;H^1_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \partial_t \eta\|_{L^p(0,T;H^1_{\gamma}(\Omega))}
\]

\[+ \|\langle t^b \rangle^b \partial_t \mathbf{u}\|_{L^p(0,T;L^q_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \partial_t \mathbf{u}\|_{L^p(0,T;L^q_{\gamma}(\Omega))} + \|\langle t^b \rangle^b \mathbf{u}\|_{L^p(0,T;H^1_{\gamma}(\Omega))}
\]

(3.1)

\[+ \|\langle t^b \rangle^b (\eta, \mathbf{u})\|_{L^\infty(0,T;L^q_{\gamma}(\Omega))} + \mathcal{M}^b_{\rho, q} (T; \eta, \mathbf{u})
\]
for \(b > 0, 1 < p, q_1, q_2 < \infty \) and \(0 < T < \infty \). We consider shifted equations:

\[
\begin{aligned}
\partial_t \rho^1 + \lambda_0 \rho^1 + \gamma_1 \text{div} \mathbf{v}^1 &= f(\eta, \mathbf{u}) \quad \text{in } \Omega \times \mathbb{R}, \\
\gamma_1 \partial_t \mathbf{v}^1 + \lambda_0 \mathbf{v}^1 - \text{Div} \left(\mathbf{S}(\mathbf{v}^1) - \gamma_2 \rho^1 \mathbf{I} \right) &= \mathbf{g}(\eta, \mathbf{u}) \quad \text{in } \Omega \times \mathbb{R}, \\
\left(\mathbf{S}(\mathbf{v}^1) - \gamma_2 \rho^1 \mathbf{I} \right) \mathbf{n}_\Gamma &= (t)^{-b/\kappa} \text{Ext}[\mathbf{h}(\eta, \mathbf{u})] \quad \text{on } \Gamma \times \mathbb{R}.
\end{aligned}
\]

(3.2)

Here, \(\text{Ext}[\mathbf{h}(\eta, \mathbf{u})] \) is an extension of \(\mathbf{h}(\eta, \mathbf{u}) \) which will be given later. In what follows, we study the system (3.2) and prove:

Theorem 3.1. Let \(b > 0, 1 < p < \infty, 2 < q_1 \leq q_2 \) and \(3 < q_2 < \infty \) with \(bp' > 1 \). In addition, assume that \((\eta, \mathbf{u}) \) satisfies the conditions:

\[
\mathcal{E}_T = \mathcal{E}_T(\eta, \mathbf{u}) < \infty, \quad \|\eta\|_{L^\infty(0,T;L^\infty(\Omega))} \leq \rho_{c}/2, \quad \int_0^T \|\nabla \mathbf{u}(\cdot, s)\|_{L^\infty(\Omega)} \, ds \leq 1/2.
\]

(3.3)

Let \(\rho_0 \in H^1_{q_1}(\Omega) \cap H^1_{q_2}(\Omega) \) in (1.13). Then (3.2) admits a unique solution \((\rho^1, \mathbf{v}^1)\) with \(\rho^1 \in H^1_p(\mathbb{R}; H^1_{q_1}(\Omega)) \) and \(\mathbf{v}^1 \in H^1_p(\mathbb{R}; L^q(\Omega)^3) \cap H^1_p(\mathbb{R}; H^2_{q_2}(\Omega)^3) \) for any \(q \in \{q_1/2, q_1, q_2\} \). Moreover, there exists a constant \(C \) such that the following estimate holds:

\[
\sum_{q \in \{q_1/2, q_1, q_2\}} \mathcal{M}^b\mathcal{L}_{p,q}(T; \rho^1, \mathbf{v}^1) \leq C(T'_{0} + \mathcal{E}_T^2 + \mathcal{E}_T^3).
\]

(3.4)

Here, \(T'_{0} = \sum_{\ell=1,2} \|\rho_0\|_{H^1_{q_\ell}(\Omega)} \).

The rest of this section is dedicated to studying the quantities on the right-hand side of (3.2). Without loss of generality, we assume that \(T'_{0} \leq 1 \) hereafter.

3.1 Bound of \(f(\eta, \mathbf{u}) \)

We review some technical lemma proved in [20] Appendix A, which is about the estimates of \(\mathbf{V}_0(\mathbf{k}) \).

Lemma 3.2 ([20]). Assume that \(\mathbf{u} \) is some smooth enough vector field satisfying

\[
\|\nabla \mathbf{u}\|_{L^1(0,T;L^\infty(\Omega))} \leq \sigma < 1
\]

for some constant \(\sigma \). Then there exists a positive constant \(C_\sigma \) such that

\[
\begin{aligned}
\|\mathbf{V}_0(\mathbf{k})\|_{L^\infty(0,T;L^\infty(\Omega))} &\leq C_\sigma \|\nabla \mathbf{u}\|_{L^1(0,T;L^\infty(\Omega))}, \\
\|\nabla \mathbf{V}_0(\mathbf{k})\|_{L^\infty(0,T;L^q(\Omega))} &\leq C_\sigma \|\nabla^2 \mathbf{u}\|_{L^1(0,T;L^q(\Omega))}, \\
\|\partial_t \mathbf{V}_0(\mathbf{k})\|_{L^p(0,T;H^1_q(\Omega))} &\leq C_\sigma \|\nabla \mathbf{u}\|_{L^p(0,T;H^1_q(\Omega))}
\end{aligned}
\]

for \(1 < q < \infty \).

First, we notice from Lemma 3.2 Sobolev inequalities and the condition \(bp' > 1 \) that

\[
\begin{aligned}
\|\mathbf{V}_0(\mathbf{k})\|_{L^\infty(0,T;L^\infty(\Omega))} &\leq \|\nabla \mathbf{u}\|_{L^1(0,T;H^1_{q_2}(\Omega))} \leq \|t\|^b \|\nabla \mathbf{u}\|_{L^p(0,T;H^1_{q_2}(\Omega))}, \\
\|\nabla \mathbf{V}_0(\mathbf{k})\|_{L^\infty(0,T;L^q(\Omega))} &\leq \|\nabla^2 \mathbf{u}\|_{L^1(0,T;L^q(\Omega))} \leq \|t\|^b \|\nabla^2 \mathbf{u}\|_{L^p(0,T;L^q(\Omega))}
\end{aligned}
\]

(3.5)
for $\ell = 1, 2$. On the other hand, assuming the condition $\|\nabla u\|_{L^1([0,T];L^\infty(\Omega))} \leq 1/2$, the definition of $V_0(k)$ gives us that

$$\|V_0(k)\|_{L^1([0,T];L^q(\Omega))} \lesssim \|\nabla u\|_{L^1([0,T];L^q(\Omega))} \lesssim \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];L^{q'_\ell}(\Omega))}, \quad \forall \ell = 1, 2,$$

which, together with (3.5), yields that

$$\|V_0(k)\|_{L^1([0,T];L^\infty(\Omega))} + \sum_{\ell=1}^2 \|V_0(k)\|_{L^1([0,T];L^{q'_\ell}(\Omega))} \lesssim \sum_{\ell=1}^2 \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];L^{q'_\ell}(\Omega))} \lesssim \mathcal{E}_T. \quad (3.6)$$

Now let us derive the estimates of $f(\eta, u) = -\eta \text{div } u - (\gamma_1 + \eta) V_0(k) : \nabla u$. According to the definition of \mathcal{E}_T and Hölder inequalities, we have

$$\|\langle \nabla^\ell \rangle \eta \text{div } u\|_{L^p([0,T];H^{q_{\ell,1/2}}(\Omega))} \lesssim \|\eta\|_{L^\infty([0,T];L^{q_{1}}(\Omega))} \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];H^{q_{\ell,1}}(\Omega))}$$

$$+ \|\nabla \eta\|_{L^\infty([0,T];L^{q_{1}}(\Omega))} \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];L^{q_{1}}(\Omega))} \lesssim \|\eta\|_{L^\infty([0,T];L^{q_{1}}(\Omega))} \mathcal{E}_T, \quad \ell = 1, 2. \quad (3.7)$$

Next, for the bound of $V_0(k) : \nabla u$, we use Hölder inequalities and (3.6) to get

$$\|\langle \nabla^\ell \rangle V_0(k) : \nabla u\|_{L^p([0,T];H^{q_{\ell,1/2}}(\Omega))} \lesssim \|V_0(k)\|_{L^1([0,T];L^{q_{1}}(\Omega))} \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];H^{q_{\ell,1}}(\Omega))}$$

$$+ \|\nabla V_0(k)\|_{L^1([0,T];L^{q_{1}}(\Omega))} \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];L^{q_{1}}(\Omega))} \lesssim \mathcal{E}_T^2, \quad \ell = 1, 2. \quad (3.9)$$

for $\ell = 1, 2$. Analogously, we have

$$\|\langle \nabla^\ell \rangle \eta V_0(k) : \nabla u\|_{L^p([0,T];H^{q_{\ell,1/2}}(\Omega))} \lesssim \|V_0(k)\|_{L^1([0,T];L^{q_{1}}(\Omega))} \|\eta\|_{L^\infty([0,T];L^{q_{1}}(\Omega))} \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];H^{q_{\ell,1}}(\Omega))}$$

$$+ \|\nabla V_0(k)\|_{L^1([0,T];L^{q_{1}}(\Omega))} \|\nabla \eta\|_{L^\infty([0,T];L^{q_{1}}(\Omega))} \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];L^{q_{1}}(\Omega))} \lesssim \|\eta\|_{L^\infty([0,T];L^{q_{1}}(\Omega))} \mathcal{E}_T^2, \quad \ell = 1, 2. \quad (3.11)$$

and

$$\|\langle \nabla^\ell \rangle \eta V_0(k) : \nabla u\|_{L^p([0,T];H^{q_{\ell,1/2}}(\Omega))} \lesssim \|V_0(k)\|_{L^1([0,T];L^{q_{1}}(\Omega))} \|\eta\|_{L^\infty([0,T];L^{q_{1}}(\Omega))} \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];H^{q_{\ell,1}}(\Omega))}$$

$$+ \|\nabla V_0(k)\|_{L^1([0,T];L^{q_{1}}(\Omega))} \|\nabla \eta\|_{L^\infty([0,T];L^{q_{1}}(\Omega))} \|\langle \nabla^\ell \rangle u\|_{L^p([0,T];L^{q_{1}}(\Omega))} \lesssim \|\eta\|_{L^\infty([0,T];L^{q_{1}}(\Omega))} \mathcal{E}_T^2. \quad (3.12)$$
Hence, summing up the bounds (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12), we obtain that
\[\sum_{q \in \{q_1/2, q_1, q_2\}} \|⟨t⟩^b f(η, u)⟩_{L_p(0,T;H^1_q(Ω))} \lesssim \left(\sum_{\ell=1,2} \|η∥_{L_∞(0,T;H^1_q(Ω))} \right)(\mathcal{E}_T + \mathcal{E}^2_T) + \mathcal{E}^3_T. \] (3.13)

To complete the discussion of \(f(η, u) \), note that \(η(·, t) = η(·, 0) + \int_0^t \partial_3 η(·, s) \, ds \). Then we have
\[∥η∥_{L_∞(0,T;H^m_q(Ω))} \leq ∥ρ_0∥_{H^m_q(Ω)} + C_p,b∥⟨t⟩^b ∂_η∥_{L_p(0,T;H^m_q(Ω))} \] (3.14)
for \(\ell = 1, 2, \) and \(m = 0, 1 \). Therefore, we insert (3.14) into (3.13) to get
\[\sum_{q \in \{q_1/2, q_1, q_2\}} \|⟨t⟩^b f(η, u)⟩_{L_p(0,T;H^1_q(Ω))} \lesssim (∥ρ_0∥_{H^1_q(Ω)} + ∥ρ_0∥_{H^1_q(Ω)})\mathcal{E}_T + \mathcal{E}^2_T + \mathcal{E}^3_T \]
\[\lesssim \mathcal{I}^2_0 + \mathcal{E}^2_T + \mathcal{E}^3_T, \] (3.15)
where we have used \(\mathcal{I}_0^1 ≤ 1 \) to obtain \(\mathcal{I}^2_0 ≤ \mathcal{I}^2_0 \).

3.2 Bound of \(g(η, u) \)

In this subsection, we study the source term \(g(η, u) \) defined by
\[g(η, u) = −η∂_t u + \text{Div}(S_D(u) − Q(η)I) + (V_0(k)∇q| Su(u) − γ_2ηI − Q(η)I). \]

More precisely, we shall prove that
\[\sum_{q \in \{q_1/2, q_1, q_2\}} \|⟨t⟩^b g(η, u)⟩_{L_p(0,T;L_q(Ω))} \lesssim (∥ρ_0∥_{L_1(Ω)} + ∥ρ_0∥_{H^1_q(Ω)})\mathcal{E}_T + \mathcal{E}^2_T + \mathcal{E}^3_T \]
\[\lesssim \mathcal{I}^2_0 + \mathcal{E}^2_T + \mathcal{E}^3_T, \] (3.16)
since \(∥ρ_0∥_{L_1(Ω)} + ∥ρ_0∥_{H^1_q(Ω)} \leq \mathcal{I}^2_0 ≤ 1 \).

Firstly, by Hölder inequalities and (3.14), we have
\[\|⟨t⟩^b η∂_t u⟩_{L_p(0,T;L_{q_1}(Ω))} \lesssim ∥η∥_{L_∞(0,T;L_{q_1}(Ω))} \|⟨t⟩^b η∂_t u⟩_{L_p(0,T;L_{q_1}(Ω))} \lesssim (∥ρ_0∥_{L_1(Ω)} + \mathcal{E}_T)^{\mathcal{E}_T}, \]
\[\|⟨t⟩^b η∂_t u⟩_{L_p(0,T;L_{q_1}(Ω))} \lesssim ∥η∥_{L_∞(0,T;L_{q_1}(Ω))} \|⟨t⟩^b η∂_t u⟩_{L_p(0,T;L_{q_1}(Ω))} \lesssim (∥ρ_0∥_{H^1_q(Ω)} + \mathcal{E}_T)^{\mathcal{E}_T}, \] (3.17)
for \(\ell = 1, 2. \)

Secondly, from (3.9) and (3.10), it follows immediately that
\[\sum_{q \in \{q_1/2, q_1, q_2\}} \|⟨t⟩^b \text{Div} S_D(u)⟩_{L_p(0,T;L_q(Ω))} \lesssim \mathcal{E}^2_T. \] (3.18)

Next, from the definition of \(Q(η) \), we see easily that
\[|∇Q(η)| \lesssim |η||∇η| + |η|^2|∇η|. \]

Then, we obtain from (3.3) and (3.14) that
\[\|⟨t⟩^b ∇Q(η)⟩_{L_p(0,T;L_{q_1/2}(Ω))} \lesssim (1 + ∥η∥_{L_∞(0,T;L_{∞}(Ω))}) \|η∥_{L_∞(0,T;L_{q_1}(Ω))} \|⟨t⟩^b ∇η⟩_{L_p(0,T;L_{q_1}(Ω))} \]
\[\lesssim (∥ρ_0∥_{L_1(Ω)} + \mathcal{E}_T)^{\mathcal{E}_T}, \]
\[\|⟨t⟩^b ∇Q(η)⟩_{L_p(0,T;L_{q_1}(Ω))} \lesssim (1 + ∥η∥_{L_∞(0,T;L_{∞}(Ω))}) \|η∥_{L_∞(0,T;L_{∞}(Ω))} \|⟨t⟩^b ∇η⟩_{L_p(0,T;L_{q_1}(Ω))} \]
\[\lesssim (∥ρ_0∥_{H^1_q(Ω)} + \mathcal{E}_T)^{\mathcal{E}_T}, \quad \forall \ell = 1, 2, \] (3.19)
which give us
\[
\sum_{q\in\{q_1/2, q_1, q_2\}} \| \langle t \rangle^b \nabla Q(\eta) \|_{L^p(0,T;L^q(\Omega))} \lesssim (\| \rho_0 \|_{L^q(\Omega)} + \| \rho_0 \|_{H^1_{q_2}(\Omega)}) E_T + E_T^3.
\] (3.20)

As \(S_u(u) = S(u) + S_D(u) \), by (3.6) and (3.18) we have
\[
\| \langle t \rangle^b (V_0(k) \nabla | S_u(u) - \gamma_2 \eta) \|_{L^p(0,T;L^q_{q_1/2}(\Omega))} \lesssim \| V_0(k) \|_{L^\infty(0,T;L^q_{q_1}(\Omega))} (\| \langle t \rangle^b (\nabla^2 u, \nabla \eta) \|_{L_p(0,T;L^q_{\ell_1}(\Omega))} + \| \langle t \rangle^b \nabla S_D(u) \|_{L_p(0,T;L^q_{\ell_2}(\Omega))}) \lesssim E_T^2 + E_T^3,
\] (3.21)

and, by (3.6) and (3.19) we have
\[
\| \langle t \rangle^b (V_0(k) \nabla | Q(\eta) I) \|_{L^p(0,T;L^q_{q_1}(\Omega))} \lesssim \| V_0(k) \|_{L^\infty(0,T;L^q_{q_1}(\Omega))} (\| \langle t \rangle^b \nabla Q(\eta) \|_{L_p(0,T;L^q_{\ell_1}(\Omega))}) \lesssim \| \rho_0 \|_{H^1_{q_2}(\Omega)} E_T^2 + E_T^3,
\] (3.22)

\[
\sum_{q\in\{q_1/2, q_1, q_2\}} \| \langle t \rangle^b (V_0(k) \nabla | S_u(u) - \gamma_2 \eta I - Q(\eta) I) \|_{L^p(0,T;L^q_{\ell_2}(\Omega))} \lesssim E_T^2 + E_T^3.
\] (3.23)

Therefore, we can conclude the claim (3.16) from (3.17), (3.18), (3.20) and (3.23).

3.3 Bound of the boundary term

In order to estimate the boundary term, first of all we introduce the following extension formula of functions defined on \((0,T)\). Let \(f \) be a function defined on \((0,T)\) such that \(f|_{t=0} = 0 \). We set
\[
\epsilon[f](\cdot, t) = \begin{cases}
 f(\cdot, t) & t \in (0,T), \\
 f(\cdot, 2T - t) & t \in (T, 2T), \\
 0 & t \notin (0,2T).
\end{cases}
\]
From the definition, we have
\[
\partial_t \epsilon[f](\cdot, t) = \begin{cases}
 (\partial_t f)(\cdot, t) & t \in (0,T), \\
 - (\partial_t f)(\cdot, 2T - t) & t \in (T, 2T), \\
 0 & t \notin (0,2T).
\end{cases}
\] (3.24)

Since \(\eta|_{t=0} \neq 0 \), we introduce another extension formula of \(\eta \). Let \(\eta_L \in H^1_p(\mathbb{R}, H^1_{q_1}(\Omega) \cap H^1_{q_2}(\Omega)) \) be a function such that \(\eta_L|_{t=0} = \rho_0 \) and
\[
\| \epsilon^\gamma[\eta_L] \|_{H^1_p(\mathbb{R}, H^1_{q_2}(\Omega))} \leq C \| \rho_0 \|_{H^1_{q_2}(\Omega)} \quad (\ell = 1, 2)
\] (3.25)
for some constants $\gamma, C > 0$. Such η_L can be constructed as follows. Let $\tilde{\rho}_0$ be an extension of ρ_0 to \mathbb{R}^3 such that $\tilde{\rho}_0|_{\Omega} = \rho_0$ and
\[\|\tilde{\rho}_0\|_{H^1_{\eta_\ell}(\mathbb{R}^3)} \leq C\|\rho_0\|_{H^1_{\eta_\ell}(\Omega)}, \quad \forall \ \ell = 1, 2. \]
Then, let (ρ_L, v_L) be a solution of the equations for some $\lambda_0 > 0$:
\[
\begin{cases}
\partial_t \rho_L + \lambda_0 \rho_L + \gamma_1 \text{div} v_L = 0 & \text{in } \mathbb{R}^3 \times \mathbb{R}_+,
\gamma_1 \partial_t v_L + \lambda_0 v_L - \mu \Delta v_L - \nu \nabla \text{div} v_L + \gamma_2 \nabla \rho_L = 0 & \text{in } \mathbb{R}^3 \times \mathbb{R}_+,
(\rho_L, v_L)|_{t=0} = (\tilde{\rho}_0, 0) & \text{in } \mathbb{R}^3.
\end{cases}
\]
And then, set $\eta_L(t) = \rho_L(|t|)$.

Now, we define the extension $\text{Ext} [h(\eta, u)]$ of $h(\eta, u)$ as follows. Let
\[
\begin{align*}
S^e_D &= \mu e[(t)^b D_D(u)]n_\Gamma + (\nu - \mu)e[(t)^b V_0(k)] \nabla u]n_\Gamma, \\
Q^e &= (t)^b Q(\eta_L) + e[(t)^b (Q(\eta) - Q(\eta_2))]n_\Gamma, \\
S^e_u &= e[(t)^b S_u(u)V_0(k)]v_\Gamma, \\
R^e &= e[(t)^b (\gamma_2 \eta + Q(\eta))]V_0(k)]n_\Gamma.
\end{align*}
\]
And then, set $\text{Ext} [h(\eta, u)] = -S^e_D + Q^e - S^e_u + R^e$. Obviously,
\[
\langle t \rangle^{-1} \text{Ext} [h(\eta, u)] = h(\eta, u) \quad \text{for } t \in (0, T).
\]
Note that
\[
\begin{align*}
\sum_{q \in \{a_1/2, a_1q_2\}} \left(\|\kappa \text{Ext} [h(\eta, u)]\|_{L^p(\mathbb{R}; H^1_{\eta}(\Omega))} + \|\kappa \text{Ext} [h(\eta, u)]\|_{H^{1/2}_p(\mathbb{R}; L^q(\Omega))} \right) \\
\lesssim \|\text{Ext} [h(\eta, u)]\|_{L^p(\mathbb{R}; H^1_{\eta}(\Omega))} + \|\text{Ext} [h(\eta, u)]\|_{H^{1/2}_p(\mathbb{R}; L^q(\Omega))}.
\end{align*}
\]
In order to estimate the right-hand side of (3.26), we use the following technical lemma whose proof is given in Sect. 3.4 below.

Lemma 3.3. Assume that Ω is a uniform C^2 domain in \mathbb{R}^N. Let $1 < p < \infty$ and $N < q < \infty$. Let f and g be functions defined for $t \in (0, T)$ fulfilling $f|_{t=0} = 0$. Then
\[
\begin{align*}
\|e[f \nabla g\|_{H^{1/2}_p(\mathbb{R}; L^q(\Omega))} + \|e[f \nabla g\|_{L^p(\mathbb{R}; H^1(\Omega))} \\
\leq C \left(\|\partial_t f\|_{L^p(0,T; H^1_{\eta}(\Omega))} \|g\|_{L^\infty(0,T; L^q(\Omega))} + \|f\|_{L^\infty(0,T; H^1_{\eta}(\Omega))} \left(\|\partial_t g\|_{L^p(0,T; L^q(\Omega))} + \|g\|_{L^p(0,T; H^1_{\eta}(\Omega))} \right) \right).
\end{align*}
\]
By Lemma 3.2 and 3.6, we have
\[
\begin{align*}
\|\partial_t V_0(k)\|_{L^p(0,T; H^1_{\eta}(\Omega))} + \|V_0(k)\|_{L^\infty(0,T; H^1_{\eta}(\Omega))} \lesssim \|t^b u\|_{L^p(0,T; H^1_{\eta}(\Omega))} \lesssim \mathcal{E}_{T,q_2},
\end{align*}
\]
for $\mathcal{E}_{T,q_2} = \|(t)^b (\eta, u)\|_{L^\infty(0,T; L^{q_2}(\Omega))} + \mathcal{M}^b_{p,q_2}(T; \eta, u)$. In particular, (3.27) also yields that
\[
\begin{align*}
\|\partial_t[V_0(k) \otimes V_0(k)]\|_{L^p(0,T; H^1_{\eta}(\Omega))} + \|V_0(k) \otimes V_0(k)\|_{L^\infty(0,T; H^1_{\eta}(\Omega))} \lesssim \mathcal{E}_{T,q_2}^2,
\end{align*}
\]
as $H^1_{\eta}(\Omega)$ is an algebra for $q_2 > 3$. Here, $A \otimes B = [A_{ij} B_{kl}]$ for any 3×3 matrices A, B. Then, Lemma 3.3, 3.6, 3.8 and 3.9 yields that
\[
\begin{align*}
\|S^e_D\|_{L^p(\mathbb{R}; H^1_{\eta}(\Omega))} + \|S^e_D\|_{H^{1/2}_p(\mathbb{R}; L^{q_2}(\Omega))} \lesssim \mathcal{E}_{T,q_2}^2,
\|S^e_u\|_{L^p(\mathbb{R}; H^1_{\eta}(\Omega))} + \|S^e_u\|_{H^{1/2}_p(\mathbb{R}; L^{q_2}(\Omega))} \lesssim \mathcal{E}_{T,q_2}^2.
\end{align*}
\]
For the estimate of Q^e and R^e, we use the continuous embedding
\[H^1_p(\mathbb{R}; L_q(\Omega)) \hookrightarrow H^{1/2}_p(\mathbb{R}; L_q(\Omega)). \]
According to (3.25), we have
\[\|\eta\|_{L^\infty(\mathbb{R}; L^\infty(\Omega))} \lesssim \|\rho_0\|_{H^1_{q_2}(\Omega)}, \]
which yields that
\[\|(t)^b Q(\eta)\|_{L^p_p(\mathbb{R}; H^1_{q_2}(\Omega))} + \|(t)^b Q(\eta L)\|_{H^1_p(\mathbb{R}; L_{q_2}(\Omega))} \lesssim \|\rho_0\|_{H^1_{q_2}(\Omega)}^2. \]
(3.30)
Notice that \[\|\eta\|_{L^\infty(0,T; L_{q_2})} \leq \|(t)^b\eta\|_{L^\infty(0,T; L_{q_2})} \leq E_{T,q_2}. \] And then,
\[\|(t)^b Q(\eta)\|_{L^p_p(0,T; H^1_{q_2}(\Omega))} + \|(t)^b \partial_t Q(\eta)\|_{L^p_p(0,T; L_{q_2}(\Omega))} \]
\[\lesssim \|(t)^b \eta\|_{L^p_p(0,T; H^1_{q_2}(\Omega))} \|\|\|L^\infty(0,T; H^1_{q_2}(\Omega)) + \|(t)^b \partial_t \eta\|_{L^p_p(0,T; H^1_{q_2}(\Omega))} \|\|L^\infty(0,T; L_{q_2}(\Omega)) \]
\[\lesssim E_{T,q_2} \|(\rho_0\|_{H^1_{q_2}(\Omega)} + \|(t)^b \partial_t \eta\|_{L^p_p(0,T; H^1_{q_2}(\Omega))} + \mathcal{E}_{T,q_2}^2 \lesssim \|\rho_0\|_{H^1_{q_2}(\Omega)}^2 + \mathcal{E}_{T,q_2}^2. \]
Thus we use (3.30) and (3.31) to obtain
\[\|Q^e\|_{L^p_p(\mathbb{R}; H^1_{q_2}(\Omega))} + \|Q^e\|_{H^1_p(\mathbb{R}; L_{q_2}(\Omega))} \]
\[\lesssim \|Q^e\|_{L^p_p(\mathbb{R}; H^1_{q_2}(\Omega))} + \|\partial_t Q^e\|_{L^p_p(\mathbb{R}; L_{q_2}(\Omega))} \]
\[\lesssim \|Q^e\|_{L^p_p(\mathbb{R}; H^1_{q_2}(\Omega))} + \|\|\|L^\infty(0,T; H^1_{q_2}(\Omega)) + \|\|\|L^\infty(0,T; L_{q_2}(\Omega)) \]
\[\lesssim E_{T,q_2}^2 + \|\|\|L^\infty(0,T; H^1_{q_2}(\Omega)) + \|\|\|L^\infty(0,T; L_{q_2}(\Omega)) \]
\[\lesssim E_{T,q_2}^2 + \|\|\|L^\infty(0,T; H^1_{q_2}(\Omega)) + \|\|\|L^\infty(0,T; L_{q_2}(\Omega)) \]
\[\lesssim E_{T,q_2}^2 + \|\|\|L^\infty(0,T; H^1_{q_2}(\Omega)) + \|\|\|L^\infty(0,T; L_{q_2}(\Omega)) \]
\[\lesssim \|\rho_0\|_{H^1_{q_2}(\Omega)} + \mathcal{E}_{T,q_2}^2 + \mathcal{E}_{T,q_2}^3. \]
(3.32)
Analogously, by (3.27) and (3.31) we have
\[\|R^e\|_{L^p_p(\mathbb{R}; H^1_{q_2}(\Omega))} + \|R^e\|_{H^1_p(\mathbb{R}; L_{q_2}(\Omega))} \]
\[\lesssim \|R^e\|_{L^p_p(\mathbb{R}; H^1_{q_2}(\Omega))} + \|\partial_t R^e\|_{L^p_p(\mathbb{R}; L_{q_2}(\Omega))} \]
\[\lesssim \|\|\|L^\infty(0,T; H^1_{q_2}(\Omega)) + \|\|\|L^\infty(0,T; L_{q_2}(\Omega)) \]
\[\lesssim E_{T,q_2}^2 + \|\|\|L^\infty(0,T; H^1_{q_2}(\Omega)) + \|\|\|L^\infty(0,T; L_{q_2}(\Omega)) \]
\[\lesssim E_{T,q_2}^2 + \|\|\|L^\infty(0,T; H^1_{q_2}(\Omega)) + \|\|\|L^\infty(0,T; L_{q_2}(\Omega)) \]
\[\lesssim \|\rho_0\|_{H^1_{q_2}(\Omega)} + \mathcal{E}_{T,q_2}^2 + \mathcal{E}_{T,q_2}^3. \]
(3.33)
Here, we have used the facts that \[\|\rho_0\|_{H^1_{q_2}(\Omega)} \lesssim T_0' \leq 1 \]
and that
\[\|\eta\|_{L^\infty(0,T; H^1_{q_2}(\Omega))} \lesssim \|\rho_0\|_{H^1_{q_2}(\Omega)} + \|(t)^b \partial_t \eta\|_{L^p_p(0,T; H^1_{q_2}(\Omega))} \lesssim \|\rho_0\|_{H^1_{q_2}(\Omega)} + E_{T,q_2}. \]
At last, combining all the bounds (3.26), (3.29), (3.32) and (3.33) yields that
\[\sum_{q_1 \in \{q_1/2, q_1, q_2\}} \left(\|\kappa\text{Ext}[\mathbf{h}(\eta, \mathbf{u})]\|_{L^p_p(\mathbb{R}; H^1_{q_2}(\Omega))} + \|\kappa\text{Ext}[\mathbf{h}(\eta, \mathbf{u})]\|_{H^{1/2}_p(\mathbb{R}; L_q(\Omega))} \right) \]
\[\lesssim \|\rho_0\|_{H^1_{q_2}} + \mathcal{E}_{T,q_2}^2 + \mathcal{E}_{T,q_2}^3. \]
(3.34)
because the support of κ is compact and $q_1/2 < q_1 < q_2$.

13
3.4 Proof of Lemma 3.3

We end up with the proof of Lemma 3.3. To this end, we introduce the dual space of $H^1_q(R^N)$ (1 < q < ∞), that is,

$$H^{-1}_q(R^N) = \{ f \in \mathcal{S}'(R^N) \cap L_{1,loc}(R^N) \mid \| f \|_{H^{-1}_q(R^N)} < \infty \}$$

with the norm given by

$$\| f \|_{H^{-1}_q(R^N)} = \| \mathcal{F}^{-1}_\xi [(1 + |\xi|^2)^{-1/2} \mathcal{F}_x [f] (\xi)] \|_{L_q(R^N)}.$$

Here, the symbols \mathcal{F}_x and \mathcal{F}^{-1}_ξ denote the Fourier transformation and its inverse in R^N.

Proof of Lemma 3.3. By extending functions defined on Ω to R^N, we may assume that $\Omega = R^N$. Then we know that

$$\| h \|_{H^{1/2}(R; L^q(R^N))} \lesssim \| \partial_t h \|_{H^1_q(R; H^{-1}_q(R^N))} + \| h \|_{L^p(R; H^1_q(R^N))},$$

which together with Sobolev inequalities yields that

$$\| e[f \nabla g] \|_{H^{1/2}(R; L^q(R^N))} \lesssim \| \partial_t e[f \nabla g] \|_{L^p(R; H^{-1}_q(R^N))} + \| e[f \nabla g] \|_{L^p(R; H^1_q(R^N))}
\lesssim \| \partial_t e[f \nabla g] \|_{L^p(R; H^{-1}_q(R^N))} + \| f \|_{L^\infty(0,T; H^1_q(R^N))} \| \nabla g \|_{L^p(0,T; H^1_q(R^N))}. \tag{3.35}$$

Since $f \nabla g|_{t=0}$, we infer from (3.24) that

$$\partial_t e[f \nabla g](\cdot, t) = \begin{cases} \partial_t(f \nabla g)(\cdot, t), & t \in (0, T), \\ -\partial_t(f \nabla g)(\cdot, 2T - t), & t \in (T, 2T), \\ 0 & t \notin (0, 2T). \end{cases}$$

For any $\varphi \in C_0^\infty(R^N), 0 < t < T$ and $k = 1, \ldots, N$, integration by parts and Hölder inequalities imply that

$$\left| \left(\partial_t(f \partial_k g), \varphi \right)_{H^{-1}_q(R^N) \times H^1_q(R^N)} \right| \leq \int_{R^N} (\partial_t f \varphi) \partial_k g \, dx + \int_{R^N} \partial_k \partial_t g \varphi \, dx$$

$$\leq \int_{R^N} \partial_k (\partial_t f \varphi) g \, dx + \int_{R^N} \partial_k g (\partial_t \varphi) \, dx$$

$$\leq \left(\| \partial_t \partial_k f \|_{L^q(R^N)} \| g \|_{L^q(R^N)} + \| \partial_t f \|_{L^q(R^N)} \| \partial_k g \|_{L^q(R^N)} \right) \| \varphi \|_{L^2(R^N)}$$

$$+ \left(\| \partial_t f \|_{L^\infty(R^N)} \| g \|_{L^q(R^N)} + \| f \|_{L^\infty(R^N)} \| \partial_t g \|_{L^q(R^N)} \right) \| \partial_k \varphi \|_{L^q(R^N)},$$

with s satisfying $2/q + 1/s = 1$. Since

$$N(1/q' - 1/s) = N \left(1 - 1/q - (1 - 2/q) \right) = N/q < 1,$$

we have the Sobolev’s inequality

$$\| \varphi \|_{L^s(R^N)} \leq C \| \varphi \|_{H^1_q(R^N)}.$$

Combining these estimates yields that

$$\| \partial_t(f \nabla g)(\cdot, t) \|_{H^{-1}_q(R^N)} \leq \sup_{k=1,\ldots,N} \sup_{\varphi \in B_1} \left| \left(\partial_t(f \partial_k g), \varphi \right)_{H^{-1}_q(R^N) \times H^1_q(R^N)} \right|$$

$$\lesssim \| \partial_t f \|_{H^1_q(R^N)} \| g \|_{L^q(R^N)} + \| f \|_{H^1_q(R^N)} \| \partial_t g \|_{L^q(R^N)}.$$
Therefore, assuming that
\[I \]
for \(q > N \). This completes the proof.

4 Some auxiliary system

In this short section, we consider the following auxiliary system:

\[
\begin{aligned}
\partial_t \rho^2 + \lambda_0 \rho^2 + \gamma_1 \text{div } \mathbf{v}^2 &= (\lambda_0 \rho^1)_0 & \text{in } & \Omega \times \mathbb{R}, \\
\gamma_1 \partial_t \mathbf{v}^2 + \lambda_0 \mathbf{v}^2 - \text{Div}(\mathbf{S}(\mathbf{v}^2) - \gamma_2 \rho^2 \mathbf{I}) &= (\lambda_0 \mathbf{v}^1)_0 & \text{in } & \Omega \times \mathbb{R}, \\
\mathbf{S}(\mathbf{v}^2) - \gamma_2 \rho^2 \mathbf{I} \cdot \mathbf{n} &= 0 & \text{on } & \Gamma \times \mathbb{R}.
\end{aligned}
\]

(4.1)

According to Theorem 2.1 and Theorem 3.1 the system (4.1) admits a unique solution \((\rho^2, \mathbf{v}^2)\) with \(\rho^2 \in H^1_p(\mathbb{R}; H^1_q(\Omega)), \quad \mathbf{v}^2 \in H^1_p(\mathbb{R}; L^q(\Omega)^3) \cap L^p(\mathbb{R}; H^2_q(\Omega)^3)\) for \(q = q_1/2, q_1 \) and \(q_2 \). Here, the indices \(b, q_1 \) and \(q_2 \) satisfy the assumptions in Theorem 3.1 Moreover, the solution \((\rho^2, \mathbf{v}^2)\) satisfies the estimates

\[
\sum_{q \in \{q_1/2, q_1, q_2\}} \mathcal{M}^{b,q}_{\rho^2, \mathbf{v}^2}(T; \rho^2, \mathbf{v}^2) \lesssim \mathcal{I}_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3
\]

(4.2)

for \(\mathcal{I}_0 = \sum_{t=1,2} \|\rho_0\|_{H^1_q(\Omega)} \), and \((\rho^2, \mathbf{v}^2) = (0, 0)\) for \(t \leq 0 \). Thus we obtain that

\[
\sum_{a \in \{1,2\}} \sum_{q \in \{q_1/2, q_1, q_2\}} \mathcal{M}^{b,q}_{\rho^2, \mathbf{v}^a}(T; \rho^2, \mathbf{v}^a) \lesssim \mathcal{I}_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3.
\]

(4.3)

which together with Sobolev inequalities imply that

\[
\sum_{a \in \{1,2\}} \| (t)^{b}(\rho^a, \mathbf{v}^a) \|_{L^\infty(0,T; H^1_q^0(\Omega))} \lesssim \mathcal{I}_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3.
\]

(4.4)

Therefore, assuming that \(b \geq 3/(2q_1) \), we infer from (4.3) and (4.4) that

\[
\mathcal{E}_T(\rho^1, \mathbf{v}^1) + \mathcal{E}_T(\rho^2, \mathbf{v}^2) \lesssim \mathcal{I}_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3.
\]

(4.5)
5 Decays estimates related to the modified initial data

The compensation \((\theta, w)\) is constructed as the solution of the equations:

\[
\begin{aligned}
\partial_\theta + \gamma_1 \text{div} w &= \lambda_0 \rho^2 & \text{in} & \Omega \times (0, T), \\
\gamma_1 \partial_\theta w - \text{Div} \left(S(w) - \gamma_2 \theta I \right) &= \lambda_0 v^2 & \text{in} & \Omega \times (0, T), \\
(S(w) - \gamma_2 \theta I) n_\Gamma &= 0 & \text{on} & \Gamma \times (0, T), \\
(\theta, w)|_{t=0} = (\rho_0, v_0) - (\rho^1, v^1)|_{t=0} & \text{in} & \Omega.
\end{aligned}
\]

(5.1)

From the definition of \(h(\eta, u)\) and \((1.8)\), \((\rho^1, v^1)|_{t=0}\) satisfies the compatibility conditions

\[(S(v^1)|_{t=0} - \gamma_2 \rho^1|_{t=0} I) n_\Gamma = Q(\rho_0) n_\Gamma = (S(v_0) - \gamma_2 \rho_0 I) n_\Gamma.
\]

In other words, if we denote \((\theta_0, w_0) = (\rho_0, v_0) - (\rho^1, v^1)|_{t=0}\), then it holds

\[(S(w_0) - \gamma_2 \theta_0 I) n_\Gamma = 0.
\]

Moreover, the following estimate follows from the trace method and Theorem 3.1

\[
I_0^* = \sum_{q \in \{q_1, q_2\}} \left(\|\theta_0\|_{H^q_0(\Omega)} + \|w_0\|_{B^{2-2/q}_p(\Omega)} \right) + \|\theta_0, w_0\|_{L_1^1(\Omega)} \lesssim I_0 + E^2_T + E^3_T.
\]

(5.2)

In this section, we only verify the decay estimates from \((\theta_0, w_0)\), while the contribution of \((\lambda_0 \rho^2, \lambda_0 v^2)\) on the right-hand side of \((5.1)\) will be discussed in the next section. For convenience, we adopt the notation

\[H^{m,n}_p(\Omega) = \{(\rho, v) : \rho \in H^m_p(\Omega), v \in H^n_p(\Omega)^3\}, \quad \|\rho, v\|_{H^{m,n}_p(\Omega)} = \|\rho\|_{H^m_p(\Omega)} + \|v\|_{H^n_p(\Omega)}\]

(5.3)

for \(1 \leq p \leq \infty\) and \(m, n = 0, 1, 2\).

5.1 Some property of the semigroup \(T(t)\)

To study the system \((5.1)\), we introduce the semigroup \(T(t)\) associated to the following homogeneous problem

\[
\begin{aligned}
\partial_\theta \bar{\gamma} + \gamma_1 \text{div} \bar{\gamma} &= 0 & \text{in} & \Omega \times (0, T), \\
\gamma_1 \partial_\theta \bar{\gamma} - \text{Div} \left(S(\bar{\gamma}) - \gamma_2 \bar{\gamma} I \right) &= 0 & \text{in} & \Omega \times (0, T), \\
(S(\bar{\gamma}) - \gamma_2 \bar{\gamma} I) n_\Gamma &= 0 & \text{on} & \Gamma \times (0, T), \\
(\bar{\gamma}, \bar{\gamma})|_{t=0} = (\bar{\rho}_0, \bar{v}_0) & \text{in} & \Omega.
\end{aligned}
\]

(5.4)

We recall the semigroup setting of the equations \((5.4)\). For \(1 < p < \infty\), let

\[D(A) = \{(\rho, v) \in H^{1,2}_p(\Omega) | (S(v) - \gamma_2 \rho I) n_\Gamma = 0 \text{ on } \Gamma\},
\]

\[A(\rho, v) = (\gamma_1 \text{div} v, \gamma_1^{-1} \text{Div} (S(v) - \gamma_2 \rho I)) \text{ for } (\rho, v) \in D(A).
\]

Then, equations \((5.4)\) are written as

\[
\partial_t (\bar{\gamma}, \bar{\gamma}) - A(\bar{\gamma}, \bar{\gamma}) = (0, 0) \text{ for } t \in (0, T), \quad (\bar{\gamma}, \bar{\gamma})|_{t=0} = (\bar{\rho}_0, \bar{v}_0).
\]

According to the results in \([6, 20]\), we know that the operator \(A\) generates a continuous analytic semigroup \(\{T(t)\}_{t \geq 0}\) on \(H_{p, \text{loc}}^{1,2}(\Omega)\), and therefore, thanks to the Duhamel principle, the solution of \((5.1)\) is given by

\[(\theta^1, w^1) = T(t)(\theta_0, w_0), \quad (\theta^2, w^2) = \lambda_0 \int_0^t T(t-s)(\rho^2, v^2) \cdot s ds.
\]

16
Now, we review some properties of $T(t)$ used in this paper. From the fundamental property of the continuous analytic semigroup we have

$$
\|T(t)(\overline{\rho}_0, \overline{v}_0)\|_{H^1_{P,0}(\Omega)} \leq C\|\overline{\rho}_0, \overline{v}_0\|_{H^1_{P,0}(\Omega)}, \quad \text{for } (\overline{\rho}_0, \overline{v}_0) \in H^1_{P,0}(\Omega), \tag{5.5}
$$

for any $0 < t \leq 2$. To establish the long time estimates, we also need the following results proved in [24]:

$$
\begin{align*}
\|T(t)(\overline{\rho}_0, \overline{v}_0)\|_{L_p(\Omega)} &\leq C t^{-3/2}|||\overline{\rho}_0, \overline{v}_0|||_{p,q} \quad (t \geq 1), \\
\|\nabla T(t)(\overline{\rho}_0, \overline{v}_0)\|_{L_p(\Omega)} &\leq C t^{-\sigma(p,q)}|||\overline{\rho}_0, \overline{v}_0|||_{p,q} \quad (t \geq 1), \tag{5.6}
\end{align*}
$$

with $1 \leq q \leq 2 \leq p < \infty$, $|||(\overline{\rho}_0, \overline{v}_0)|||_{p,q} = |||(\overline{\rho}_0, \overline{v}_0)|||_{L_q(\Omega)} + |||\nabla(\overline{\rho}_0, \overline{v}_0)|||_{H^1_{P,0}(\Omega)}$, $\overline{\tau} = \overline{P}_t T(t)(\overline{\rho}_0, \overline{v}_0)$ in [5.2], and

$$
\sigma(p,q) = \begin{cases} (3/q - 3/p)/2 + 1/2 & \text{for } 2 \leq p \leq 3, \\ 3/(2q) & \text{for } 3 < p < \infty. \end{cases}
$$

5.2 Bound of (θ^1, w^1)

As (θ^1, w^1) satisfies the linear problem [5.4] with the initial data (θ_0, w_0), we infer from [6] Theorem 2.7] and (5.2) that

$$
\sum_{\ell=1,2} \left(\sup_{0 < t < \min(2,T)} \left(\|e^t\theta^1\|_{H^1_{q_1}(\Omega)} + \|e^t w^1\|_{B^{2-2/p}_{q_1,p}(\Omega)} \right) + \|e^t(\theta^1, w^1)\|_{L_p(0,\min(2,T):H^1_{P,2}(\Omega))} \right) \lesssim \sum_{\ell=1,2} \left(\|\theta_0\|_{H^1_{q_1}(\Omega)} + \|w_0\|_{B^{2-2/p}_{q_1,p}(\Omega)} \right) \lesssim \mathcal{I}_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3. \tag{5.7}
$$

In what follows, we suppose that $T > 2$. Firstly, the bounds in (5.6) yield that

$$
\begin{align*}
\|\theta^1, w^1\|_{L_{q_1}(\Omega)} &\lesssim t^{-3/(2q_1)}\|\theta_0, w_0\|_{q_1,q_1/2}, \\
\|\nabla \theta^1, w^1\|_{L_{q_1}(\Omega)} &\lesssim t^{-3/(2q_1)-1/2}\|\theta_0, w_0\|_{q_1,q_1/2}, \\
\|\nabla^2 w^1\|_{L_{q_1}(\Omega)} &\lesssim t^{-3/q_1}\|\theta_0, w_0\|_{q_1,q_1/2}, \tag{5.8}
\end{align*}
$$

for $1 < t < T$. Note the fact that

$$
\sum_{\ell=1,2} \|\theta_0, w_0\|_{q_1,q_1/2} \lesssim \mathcal{I}_0'' \lesssim \mathcal{I}_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3.
$$

Then we combine the bounds (5.7) and (5.8) to obtain that

$$
\begin{align*}
\|t^{3/(2q_1)}(\theta^1, w^1)\|_{L_{\infty}(0,T:L_{q_1}(\Omega))} + \|t^b\nabla \theta^1\|_{L_p(0,T:L_{q_1}(\Omega))} + \|t^b\nabla w^1\|_{L_p(0,T:H^1_{q_1}(\Omega))} \\
+ \|t^b(\theta^1, w^1)\|_{L_p(0,T:L_{q_2}(\Omega))} + \|t^b(\theta^1, w^1)\|_{L_p(0,T:H^1_{q_2}(\Omega))} \lesssim \mathcal{I}_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3 \tag{5.9}
\end{align*}
$$

for the indices b, q_1, q_2 fulfilling

$$
2 < q_1 < 3 < q_2 < \infty, \quad \frac{1}{q_1} = \frac{1}{3} + \frac{1}{q_2}, \quad \text{for } p > 1, \quad \frac{3}{2q_1} + \frac{1}{2} - b) p = \frac{3}{q_1} - \frac{3}{2q_2} - b > 1.
$$

17
Furthermore, using the equations of \((\theta^1, w^1)\) and (5.9), we have
\[
\sum_{\ell=1,2} \|\langle t \rangle^{\ell} \partial_t (\theta^1, w^1) \|_{L_p(0,T; H_{\ell q}^1(\Omega))} \leq \sum_{\ell=1,2} \left(\|\langle t \rangle^{\ell} \nabla \theta^1 \|_{L_p(0,T; L_{q^2}(\Omega))} + \|\langle t \rangle^{\ell} \nabla w^1 \|_{L_p(0,T; H_{\ell q}^1(\Omega))} \right)
\]
(5.10)
\[
\lesssim I_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3.
\]
Thus (5.9) and (5.10) furnish that
\[
\mathcal{E}_T(\theta^1, w^1) \lesssim I_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3.
\]
(5.11)

6 Estimates of \((\theta^2, w^2)\)

In this section, we derive the decay estimates of
\[
(\theta^2, w^2)(\cdot, t) = \lambda_0 \int_0^t T(t-s)(\rho^2, v^2)(\cdot, s) \, ds
\]
for \(T(t)\) and \((\rho^2, v^2)\) given in the last section. That is, \((\theta^2, w^2)\) satisfies the linear problem
\[
\begin{cases}
\partial_t \theta^2 + \gamma_1 \text{div} w^2 = \lambda_0 \rho^2 & \text{in } \Omega \times (0, T), \\
\gamma_1 \partial_t w^2 - \text{Div}(S(w^2) - \gamma_2 \theta^2 I) = \lambda_0 v^2 & \text{in } \Omega \times (0, T), \\
(S(w^2) - \gamma_2 \theta^2 I) \mathbf{n}_T = 0 & \text{on } \Gamma \times (0, T), \\
(\theta^2, w^2)|_{t=0} = (0, 0) & \text{in } \Omega.
\end{cases}
\]
(6.1)

In view of (6.2) and (6.3), we set
\[
Y_T(\rho^2, v^2) = \|\langle t \rangle^b (\rho^2, v^2)\|_{L_{\infty}(0,T; H_{q_1}^{1,0}(\Omega))} + \sum_{q \in \{q_1/2, q_1, q_2\}} \mathcal{M}_{p,q}^b(T; \rho^2, v^2) \lesssim I_0 + \mathcal{E}_T^2 + \mathcal{E}_T^3.
\]

Now, the main result of this section is stated as follows.

Theorem 6.1. Let \(b > 0, 1 < p < \infty \) and \(2 < q_1 < 3 < q_2 < \infty\) satisfying the conditions:
\[
\frac{1}{q_1} = \frac{1}{3} + \frac{1}{q_2}, \quad bp' > 1, \quad \frac{3}{2q_1} + \frac{1}{2} - \frac{1}{p} > b \geq \frac{3}{2q_1}.
\]
(6.2)

If \(Y_T = Y_T(\rho^2, v^2)\) is finite, then (6.1) admits a unique solution \((\theta^2, w^2)\). Moreover, there exists a positive constant \(C\) such that
\[
\sup_{0 < t < T} \langle t \rangle^{3(2q_1)} \|\langle t \rangle^b (\theta^2, w^2)\|_{L_q(\Omega)} + \|\langle t \rangle^b \nabla \theta^2\|_{L_p(0,T; L_{q^2}(\Omega))} + \|\langle t \rangle^b \nabla w^2\|_{L_p(0,T; H_{q_1}^{1,0}(\Omega))}
\]
\[
+ \|\langle t \rangle^b (\theta^2, w^2)\|_{L_p(0,T; H_{q_2}^{1,0}(\Omega))} + \sum_{\ell=1,2} \langle t \rangle^{b\ell} \partial_t (\theta^2, w^2)\|_{L_p(0,T; H_{q_1}^{1,0}(\Omega))} \leq CY_T.
\]
(6.3)

\(^1\text{We still keep the convention (5.3) in this section.}\)
In the following, we only verify the decay estimates of spatial derivatives of \((\theta, w)\), namely,
\[
\sup_{0 < t < T} \{t\}^{3/(2q_1)} \|\theta^2, w^2\|_{L_q(\Omega)} + \|\theta^2, w^2\|_{L_p(0, T; L_q(\Omega))} + \|\theta^2, w^2\|_{L_p(0, T; H_{q_1}^1(\Omega))} + \|\theta^2, w^2\|_{L_p(0, T; H_{q_2}^{1,2}(\Omega))} \lesssim Y_T. \tag{6.4}
\]

By admitting decay estimate \((6.4)\) for a while, the equations in \((6.1)\) imply that
\[
\sum_{\ell = 1, 2} \left(\|t\|^{\beta} \|\theta\|_{L_p(0, T; H_{q_1}^2(\Omega))} + \|t\|^{\beta} \|w\|_{L_p(0, T; L_{q_1}(\Omega))} \right) \lesssim Y_T.
\]

On the other hand, the last inequality in \((5.5)\) yields that
\[
\sup_{0 < t < \min\{2, T\}} \{t\}^{3/(2q_1)} \|\theta, w\|_{L_q(\Omega)} + \|t\|^{\beta} \|\theta, w\|_{L_p(0, \min\{2, T\}; H_{q_1}^{1,2}(\Omega))} \lesssim Y_T. \tag{6.5}
\]

In other words, \((6.5)\) gives the boundedness of \((\theta^2, w^2)\) in short time interval \((0, \min\{2, T\})\). Thus we assume that \(T > 2\) in what follows, and prove that
\[
\sup_{2 < t < T} \{t\}^{3/(2q_1)} \|\theta, w\|_{L_q(\Omega)} + \|t\|^{\beta} \|\theta, w\|_{L_p(2, T; H_{q_1}^1(\Omega))} \|t\|^{\beta} \|\theta, w\|_{L_p(2, T; H_{q_2}^{1,2}(\Omega))} \lesssim Y_T. \tag{6.6}
\]

Then \((6.5)\) and \((6.6)\) yield \((6.4)\). This completes the proof of Theorem \((6.1)\).

In order to establish the bound \((6.6)\), we take advantage of the decomposition
\[
\theta^2, w^2 = \lambda_0 \left(\int_0^{t/2} + \int_{t/2}^{t-1} + \int_t^T \right) T(t - s)(\rho^2, v^2)(\cdot, s) ds = I_1(t) + I_2(t) + I_3(t), \tag{6.7}
\]

and then we study \(I_1(t)\), \(I_2(t)\) and \(I_3(t)\) respectively. For simplicity, we denote
\[
J_{k, 0}(t) = \|I_k(t)\|_{L_q(\Omega)}, \quad J_{k, 1}(t) = \|\nabla I_k(t)\|_{H_{q_1}^{1,1}(\Omega)}, \quad J_{k, 2}(t) = \|I_k(t)\|_{H_{q_2}^{1,2}(\Omega)},
\]

with \(k = 1, 2, 3\). Furthermore, we also make use of the fact that
\[
\sum_{k = 1, 2} \|t\|^{\beta} \|\theta^2, w^2\|_{L_q(\Omega)} \|t\|^{\beta} \|\theta^2, w^2\|_{L_p(0, T)} \lesssim Y_T
\]

for
\[
\|\theta^2, w^2\|_{L_q(\Omega)} = \|\theta^2, w^2\|_{L_q(\Omega)} + \|\theta^2, w^2\|_{H_{q_2}^{1,2}(\Omega)}.
\]

6.1 Bound of \(I_1(t)\)

By our assumption \(1/q_1 = 1/3 + 1/q_2\), we set
\[
a = \frac{3}{2q_1} + \frac{1}{2} = \frac{3}{2} \left(\frac{2}{q_1} - \frac{1}{q_2} \right) = 1 + \frac{3}{2q_2} > 1.
\]

Then by using \((5.6)\) and Hölder inequalities, we have
\[
J_{1, 0}(t) \lesssim \int_0^{t/2} (t - s)^{-\frac{3}{2m}} \|\theta^2, w^2\|_{L_q(\Omega)} ds \lesssim t^{-\frac{3}{2m}} \|\theta^2, w^2\|_{L_q(\Omega)} \int_0^{t/2} (s)^{-1/p'} ds \lesssim t^{-\frac{3}{2m}} Y_T, \tag{6.9}
\]

19
Now, let us consider the bound of I_2. Firstly, we use the condition $bp' > 1$ to get

\[
\langle t \rangle^{3/4} J_{2,0}(t) \lesssim \int_{t/2}^{t} \|(\rho^2, \mathbf{v}^2)(\cdot, s)\|_{q_t,1/2} ds
\]

\[
\lesssim \|s\|^{\beta} \|\rho^2, \mathbf{v}^2\|_{q_t,1/2} \left(\int_{0}^{t/2} |s|^{-bp'} ds \right)^{1/p'} \lesssim Y_T, \tag{6.12}
\]

On the other hand, note that $\int_{1}^{\infty} t^{-a} dt < \infty$ as $a > 1$. Analogous to (6.10), we obtain from (5.6) and Hölder inequalities that

\[
\langle t \rangle^{b} J_{2,\ell}(t) \lesssim \int_{t/2}^{t} (t-s)^{-a} \|s\|^{\beta} \|\rho^2, \mathbf{v}^2\|_{q_t,1/2} ds
\]

\[
\lesssim \left(\int_{t/2}^{t} (t-s)^{-a} ds \right)^{1/p'} \left(\int_{0}^{t/2} (t-s)^{-b} \|\rho^2, \mathbf{v}^2\|_{q_t,1/2} ds \right)^{1/p} \lesssim Y_T. \tag{6.13}
\]

Hence Fubini’s theorem and (6.12) yield that

\[
\sup_{2 < t < T} \langle t \rangle^{3/4} \|J_2(t)\|_{L_{q_t}(\Omega)} + \|\langle t \rangle^{b} \nabla I_2(t)\|_{L_{p(2, T; H_{q_t}^{1/2}(\Omega))}} + \|\langle t \rangle^{b} I_2(t)\|_{L_{p(2, T; H_{q_t}^{1/2}(\Omega))}} \lesssim Y_T. \tag{6.14}
\]

6.3 Bound of $I_3(t)$

Since $(\rho^2, \mathbf{v}^2)(t, \cdot) \in D(A)$ for any $t \in (0, T)$ as follows from (4.11), to estimate the norm of $I_3(t)$, we use (5.5) and Hölder inequalities and obtain that

\[
\langle t \rangle^{b} J_{3,0}(t) \lesssim \int_{t-1}^{t} \|s\|^{\beta} \|\rho^2, \mathbf{v}^2\|_{H_{q_t}^{1/2}(\Omega)} ds
\]

\[
\lesssim \int_{t-1}^{t} ds \|s\|^{\beta} \|\rho^2, \mathbf{v}^2\|_{L_{\infty}(0, T; H_{q_t}^{1/2}(\Omega))} \lesssim Y_T,
\]

\[
\langle t \rangle^{b} J_{3,\ell}(t) \lesssim \int_{t-1}^{t} \|s\|^{\beta} \|\rho^2, \mathbf{v}^2\|_{H_{q_t}^{1/2}(\Omega)} ds
\]

\[
\lesssim \int_{t-1}^{t} ds \|s\|^{\beta} \|\rho^2, \mathbf{v}^2\|_{L_{\infty}(0, T; H_{q_t}^{1/2}(\Omega))} \lesssim Y_T,
\]

\[
\tag{6.12}
\]

\[
\tag{6.13}
\]

\[
\tag{6.14}
\]
\[
\lesssim \left(\int_{t_1}^{t} ds \right)^{1/p'} \left(\int_{t_1}^{t} \langle s \rangle^b \left\| \left(\rho^2, \mathbf{v}^2 \right)(\cdot, s) \right\|_{H_{\eta}^{1,2}(\Omega)}^p ds \right)^{1/p},
\]

which together with Fubini’s theorem and \(b \geq 3/(2q_1) \) gives us

\[
\sup_{2 < t < T} \left(\frac{M}{2t} \right)^{1/2} \left| I_3(t) \right|_{L_{q_1}(\Omega)} + \left\| \langle t \rangle^b \nabla I_3(t) \right\|_{L_p(2,T; H_{q_1}^{0,1}(\Omega))} + \left\| \langle t \rangle^b I_3(t) \right\|_{L_p(2,T; H_{q_2}^{1,2}(\Omega))} \lesssim Y_T + \sum_{\ell=1,2} \left(\int_1^T \langle s \rangle^b \left\| \left(\rho^2, \mathbf{v}^2 \right)(\cdot, s) \right\|_{H_{\eta}^{1,2}(\Omega)}^p \int_s^{s+1} dt ds \right)^{1/p} \lesssim Y_T. \tag{6.15}
\]

At last, combining (6.11), (6.14) and (6.15) yields (6.4).

6.4 Complement of the proof of Theorem 1.1

In this subsection, we discuss the local wellposedness issue of (1.6) (or (1.3) equivalently). By the argument in [6], it is not hard to see the following theorem.

Theorem 6.2. Let \(\Omega \) be a \(C^2 \) exterior domain in \(\mathbb{R}^3 \) and let \(2 < p < \infty \) and \(3 < q_2 < \infty \). Assume that \((\rho_0, \mathbf{v}_0) \in E_{p,q_2}(\Omega) \) satisfying the compatibility condition

\[
\left(\mathbf{S}(\mathbf{v}_0) - (P(\rho_e + \rho_0) - P(\rho_e)) \mathbf{I} \right) \mathbf{n}_f = 0,
\]

and \(\|\rho_0\|_{H_{q_2}^1(\Omega)} + \|\mathbf{v}_0\|_{B^{2,2/p}_{2q_2}(\Omega)} \leq D_0 \) for some \(D_0 > 0 \). Then there exists a (small) \(T > 0 \) such that problem (1.6) admits a unique solution \((\eta, \mathbf{u})\) with \(\|\eta\|_{L_{\infty}(0,T; L_{q_1}(\Omega))} \leq \rho_e/4 \) and

\[
\eta \in H_{p}^1(0,T; H_{q_2}^1(\Omega)), \quad \mathbf{u} \in H_{p}^1(0,T; L_{q_1}(\Omega)^3) \cap L_p(0,T; H_{q_2}^2(\Omega)^3).
\]

Moreover, there exists a constant \(C > 0 \) so that

\[
\|\eta\|_{L_p(0,T; H_{q_2}^1(\Omega))} + \|\mathbf{u}\|_{H_{p}^1(0,T; L_{q_2}(\Omega)^3)} + \|\mathbf{u}\|_{L_p(0,T; H_{q_2}^2(\Omega))} \leq CD_0.
\]

Now let us prove Theorem 1.1. Assume that \(T_0 \leq \varepsilon \) for some small \(\varepsilon > 0 \). Then according to Theorem 6.2, the solution \((\eta, \mathbf{u})\) satisfies that

\[
\|\eta\|_{L_{\infty}(0,T; L_{q_1}(\Omega))} \leq \rho_e/2, \quad \int_0^T \|\nabla \mathbf{u}(\cdot, t)\|_{L_{q_1}(\Omega)} dt \leq 1/2.
\]

As \((\eta, \mathbf{u}) = (\rho^1, \mathbf{v}^1) + (\rho^2, \mathbf{v}^2) + (\theta^1, \mathbf{w}^1) + (\theta^2, \mathbf{w}^2)\), the bounds (4.5), (5.11) and (6.3) yield that

\[
\mathcal{E}_T \leq C(\varepsilon + \mathcal{E}_T^r + \mathcal{E}_F^r)
\]

for \(\mathcal{E}_T = \mathcal{E}_T(\eta, \mathbf{u}) \). Then the continuity of \(\mathcal{E}_T \) and [20] Lemma 5.2] give that \(\mathcal{E}_T \leq M\varepsilon \) for some constant \(M \) so long as \(\varepsilon \) small enough. So the solution \((\eta, \mathbf{u})\) can be extended to any larger time interval by the standard bootstrap argument.

Acknowledgement

Y.S. is partially supported by Top Global University Project and JSPS Grant-in-aid for Scientific Research (A) 17H0109; X.Z. is partially supported by NSF of China under Grant 12101457 and the Fundamental Research Funds for the Central Universities.
References

[1] F. Charve and R. Danchin. A global existence result for the compressible Navier-Stokes equations in the critical L^p framework. Arch. Ration. Mech. Anal., 198(1):233–271, 2010.

[2] Q. Chen, C. Miao, and Z. Zhang. Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity. Comm. Pure Appl. Math., 63(9):1173–1224, 2010.

[3] R. Danchin. Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math., 141(3):579–614, 2000.

[4] R. Danchin and J. Xu. Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L^p framework. Arch. Ration. Mech. Anal., 224(1):53–90, 2017.

[5] Y. Enomoto and Y. Shibata. On the R-sectoriality and the initial boundary value problem for the viscous compressible fluid flow. Funkcial. Ekvac., 56(3):441–505, 2013.

[6] Y. Enomoto, L. von Below, and Y. Shibata. On some free boundary problem for a compressible barotropic viscous fluid flow. Ann. Univ. Ferrara Sez. VII Sci. Mat., 60(1):55–89, 2014.

[7] D. Götz and Y. Shibata. On the R-boundedness of the solution operators in the study of the compressible viscous fluid flow with free boundary conditions. Asymptot. Anal., 90(3-4):207–236, 2014.

[8] B. Haspot. Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal., 202(2):427–460, 2011.

[9] D. Hoff and K. Zumbrun. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J., 44(2):603–676, 1995.

[10] Y. Kagei and T. Kobayashi. Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space. Arch. Ration. Mech. Anal., 177(2):231–330, 2005.

[11] M. Kawashita. On global solutions of Cauchy problems for compressible Navier-Stokes equations. Nonlinear Anal., 48(8, Ser. A: Theory Methods):1087–1105, 2002.

[12] T. Kobayashi and Y. Shibata. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \mathbb{R}^3. Comm. Math. Phys., 200(3):621–659, 1999.

[13] T. Kobayashi and Y. Shibata. Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations. Pacific J. Math., 207(1):199–234, 2002.

[14] H.-L. Li and T. Zhang. Large time behavior of isentropic compressible Navier-Stokes system in \mathbb{R}^3. Math. Methods Appl. Sci., 34(6):670–682, 2011.

[15] T.-P. Liu and W. Wang. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions. Comm. Math. Phys., 196(1):145–173, 1998.

[16] A. Matsumura and T. Nishida. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci., 55(9):337–342, 1979.

[17] A. Matsumura and T. Nishida. The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 20(1):67–104, 1980.
[18] A. Matsumura and T. Nishida. Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. *Comm. Math. Phys.*, 89(4):445–464, 1983.

[19] M. Okita. Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations. *J. Differential Equations*, 257(10):3850–3867, 2014.

[20] H. Saito, Y. Shibata, and X. Zhang. Some free boundary problem for two-phase inhomogeneous incompressible flows. *SIAM J. Math. Anal.*, 52(4):3397–3443, 2020.

[21] P. Secchi and A. Valli. A free boundary problem for compressible viscous fluids. *J. Reine Angew. Math.*, 341:1–31, 1983.

[22] Y. Shibata. On the global well-posedness of some free boundary problem for a compressible barotropic viscous fluid flow. In *Recent advances in partial differential equations and applications*, volume 666 of *Contemp. Math.*, pages 341–356. Amer. Math. Soc., Providence, RI, 2016.

[23] Y. Shibata and Y. Enomoto. Global existence of classical solutions and optimal decay rate for compressible flows via the theory of semigroups. In *Handbook of mathematical analysis in mechanics of viscous fluids*, pages 2085–2181. Springer, Cham, 2018.

[24] Y. Shibata and X. Zhang. The L_p-L_q decay estimate for the multidimensional compressible flow with free surface in the exterior domain. [arXiv:2101.09669](http://arxiv.org/abs/2101.09669), preprint, 2021.

[25] V. A. Solonnikov and A. Tani. Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid. In *The Navier-Stokes equations II—theory and numerical methods (Oberwolfach, 1991)*, volume 1530 of *Lecture Notes in Math.*, pages 30–55. Springer, Berlin, 1992.

[26] A. Tani. On the free boundary value problem for compressible viscous fluid motion. *J. Math. Kyoto Univ.*, 21(4):839–859, 1981.

[27] Y. Wang and Z. Tan. Global existence and optimal decay rate for the strong solutions in H^2 to the compressible Navier-Stokes equations. *Appl. Math. Lett.*, 24(11):1778–1784, 2011.

[28] W. M. Zajączkowski. On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface. *Dissertationes Math. (Rozprawy Mat.)*, 324:101, 1993.

[29] W. M. Zajączkowski. On nonstationary motion of a compressible barotropic viscous capillary fluid bounded by a free surface. *SIAM J. Math. Anal.*, 25(1):1–84, 1994.

[30] X. Zhang. The R-bounded operator families arising from the study of the barotropic compressible flows with free surface. *J. Differential Equations*, 269(9):7059–7105, 2020.