Development of functionally-oriented technological processes of electroerosive processing

S Yu Syanov

Bryansk State Technical University, Boulevard 50 let Oktyabrya 7, Bryansk 241035, Russia.

E-mail: SERG620@mail.ru

Abstract. The stages of the development of functionally oriented technological processes of electroerosive processing from the separation of the surfaces of parts and their service functions to the determination of the parameters of the process of electric erosion, which will provide not only the quality parameters of the surface layer, but also the required operational properties, are described.

1. Introduction

Electroerosive processing (EEP) is one of the most progressive and economically advantageous methods of processing materials in machine building. The process of forming the surfaces of parts in EEP is carried out by the most progressive method in comparison with the processes of mechanical processing of materials by cutting. EEP allows processing both electrically conductive and non-electrically conductive materials irrespective of their physical and mechanical properties, the shape and location of the surfaces of the machined parts, which distinguishes it from machining by cutting, especially when processing hard-to-work materials.

Despite the positive technical, technological and economic indicators, the EEP has its own application fields and shortcomings due to its physical nature. The main disadvantage of EEP is high energy intensity in comparison with cutting machining in the manufacture of simple shape parts from structural materials under the same processing conditions (productivity and quality of the surface layer).

EEP is economically advantageous for processing products of complex spatial shape and hard-to-digest materials, and also in cases where surfaces are difficult to manufacture by other processing methods.

Thus, the EEP has a number of significant advantages that expand the field of practical application of this processing method in the manufacture of various engineering products.

The processes taking place in the EEP have been studied in detail; the influence of technological processing regimes on the quality of the surface layer, the accuracy, wear of the tool electrode, and the productivity of the process have been revealed [1-5].

However, the destruction of mechanisms and machines (wear, fatigue, corrosion, etc.) begin with the working surfaces of parts, so the development of measures to improve their reliability based on the provision of specified, required or limiting operational properties is an actual problem. This problem is usually solved at the stage of design and technological preparation of products. A particularly important stage in the preparation of the manufacture of products is the development and
implementation of the technological process of their manufacture. It is at this stage that the properties of the products are formed that are necessary to perform the required operational functions.

It can also be noted that the current technologies of EEP products provide the necessary performance indicators only for limited operating conditions. The solution of this problem is possible on the basis of application of functional-oriented technologies for the production of products by electroerosive methods [6; 7].

2. The development of a functionally oriented technological process of electroerosive processing

The task, which is solved in the development of the functionally oriented technological process of the EEP, is to determine the optimal conditions for maintaining the EEP, ensuring the performance of the required operational functions and increasing the reliability of the product as a whole (Figure 1).

The main stages of the development of functionally-oriented technological processes of EEP are the following:

1) analysis of basic structural elements and allocation of typical product surfaces;
2) determination of service functions of typical product surfaces;
3) determination of the operational property or group of operational properties that ensure the performance of the service function surface of the product;
4) definition of quality parameters of the surface layer providing an operational property or a group of operational properties [8; 9];
5) consideration of the technological impact scheme, options and conditions for the implementation of technological operations of the EEP to ensure the necessary quality parameters of the surface layer.

Classification of typical surfaces of parts is carried out taking into account the general requirements for the development of the technological process. The technological process of billet machining is determined by the shape (configuration), the accuracy of processing and the quality of the machined surface, the material of the part, the dimensions, the annual output program and the overall production environment. Accordingly, the technological process of processing typical parts of the part must also take into account the above conditions (requirements, data, etc.). However, for a typical surface, the list of determining factors can be narrowed. The most significant parameters for a typical surface from the point of view of choosing the route of processing are the shape (shape) of the surface, the accuracy and quality of the surface, the type of the material of the workpiece.

The dimensions of the part significantly affect the nature of the equipment and, to a lesser extent, the processing route.

Therefore, all the surfaces available on the parts can be divided into the following typical types:

1) outer cylindrical - smooth and stepped;
2) external conical;
3) internal cylindrical (holes) - smooth and stepped, through and deaf;
4) internal conical;
5) flat (including face and intermittent);
6) shaped;
7) threaded;
8) slotted;
9) teeth (of different profiles).
Figure 1. Stages of the development of a functionally oriented technological process of electroerosive processing.

The type of a typical surface has a major influence on the EEP methods used, which are divided into the following varieties:
1) electroerosion interval;
2) electroerosive volumetric copying;
3) electroerosive excision;
4) electroerosion stitching;
5) electroerosive grinding;
6) electroerosive debugging;
7) electro-erosion hardening;
8) electroerosive alloying.

Having separated a product into typical surfaces, it is necessary to define their service functions.
Service functions of the parts surfaces are used by technologists to design the technological process of machining.

Any product is intended to perform the appropriate service purpose through its surfaces. Consequently, each surface of the product is designed to perform a specific service function. The classification of product surfaces on the basis of service function is shown in Fig. 2.

Free surface (FS) not mated with the surfaces of other parts. All free surfaces are binder, that is, they serve to unite all the executive surfaces into a single space "body-detail" and give the details the desired shapes, sizes, manufacturability, strength, aesthetics.

Executive surfaces (ESs) are surfaces by means of which the machine or its individual mechanisms fulfill their official function. The execution surfaces are subdivided into technological and design surfaces.
Figure 2. Classification of the functions of product surfaces.

Technological surfaces (TS) are designed for technological purposes and do not significantly affect either the service purpose or the shape of the part. These include:
- separating TS (for example: technological grooves); technological goal (function) - the separation of surfaces with different accuracy during processing;
- basic TS (for example: center holes, technological grooves and holes, technological planes); technological purpose (function) - basing during processing, that is, contact with the base surfaces of the devices.

Design surfaces (DS) - surfaces by means of which the machine or its individual mechanisms fulfill their service purpose; contact with the surfaces of other parts or with the working medium. Design surfaces are divided into working and basing.

Work surfaces (WS) are involved in the implementation of a particular working process of the machine.

The surfaces or the combinations of surfaces that replace them, relative to which the position of the other surfaces of the part are determined, is usually called basing surfaces or bases. The bases are characterized by a certain mutual arrangement, which forms a set of bases.
After determining service functions F_i of the surfaces of products, it is necessary to determine the operational properties of O_i (wear resistance, fatigue strength, contact stiffness, corrosion resistance, etc.) that will ensure the performance of the required operational function.

Knowing operational properties O_i and the functional interrelationships of these operational properties with the technological parameters, namely the quality of the surface layer ($Q_i = f(Q_i)$) [10], it is possible to determine the optimal quality parameters of surface layer Q_i necessary to provide the required operational function of surface F_i.

Using the obtained quality parameters of surface layer Q_i, the physics of the EEP process and the functional interrelation of the quality parameters of the surface layer with the conditions of conducting EEP ($Q_i = f(R_i)$) [1 - 5], let us determine necessary technological impacts R_i (electrode tool material, dielectric fluid properties, technological current, technological voltage, duration and duty cycle of the pulse, etc.) to ensure the required operational function of product surface F_i.

3. Conclusions

The article describes a general approach to the development of functionally oriented technological processes of EEP based on a whole set of new principles for designing technological processes. To implement the functionally oriented EEP technologies, a general methodology and methodology for their implementation are presented. Functionally oriented EEP technologies significantly increase the technical and economic performance of products and ensure the realization of their full potential. Also opportunities are created to ensure equal durability and quality of operation of all elements of the product. At the same time, labor costs for manufacturing products and their prime costs are significantly reduced.

References

[1] Sychev E A and Tarapanov A S 2013 Forecasting of surface roughness in electroerosion machining of parts of complex configuration (News of the Tula State University. Technical science vol 8) pp 122-127

[2] Lesnikov R V and Ablyaz T R 2015 Theoretical analysis of the influence of the parameters of electroerosion processing on the magnitude of the spark gap (Modern problems of science and education vol 2) p 176

[3] Kozlov V G and Volkov V S 2015 Modern methods of metal processing. Electroerosion treatment (Youth vector of development of agrarian science) pp 180-184

[4] Sarilov M Yu and Pokotilo M A 2009 Selection of quality management parameters for the electro-erosion treatment of parts surfaces (Automation. Modern technologies vol 4) pp. 3-9

[5] Bretskih A F and Sysun V I 2010 Electroerosive treatment (Scientific notes of Petrozavodsk State University vol 2) pp 78-82

[6] Mikhailov A N 2007 General features of functionally-oriented technologies and principles of orientation of their technological influences and product properties (Mechanical Engineering and the Technosphere of the 21st Century) pp 38 - 52

[7] Mikhailov A N 2008 Functionally-oriented technologies. (Mechanical Engineering and the Technosphere of the 21st Century vol 2) pp 290 - 314

[8] Syanov S Yu 2015 Theoretical determination of surface layer quality characteristics of workpieces, tool electrode wear and efficiency of spark eroding (In the collection: Proceedings of 2015 International Conference on Mechanical Engineering, Automation and Control Systems) pp 1-4

[9] Khrushchov M M 2012 Friction, wear and microhardness of materials: Selected works (on the occasion of the 120th anniversary of his birth (Moscow: KRASAND) p 512

[10] Suslov A G 2002 Scientific foundations of engineering technology (Moscow: Mechanical Engineering) p 684