ON THE ACCEPTABLE ELEMENTS

XUHUA HE AND SIAN NIE

Abstract. In this paper, we study the set $B(G, \mu)$ of acceptable elements for any p-adic group G. We show that $B(G, \mu)$ contains a unique maximal element and is represented by an element in the admissible subset of the associated Iwahori-Weyl group.

Introduction

Let F be a finite field extension of \mathbb{Q}_p and L be the completion of the maximal unramified extension of F. Let G be a connected reductive algebraic group over F and σ be the Frobenius morphism. We denote by $B(G)$ the set of σ-conjugacy classes of $G(L)$. The set $B(G)$ is classified by Kottwitz in [Ko1] and [Ko2]. This classification generalize the Dieudonné-Manin classification of isocrystals by their Newton polygons.

Let \tilde{W} be the Iwahori-Weyl group of G. Let $\{\mu\}$ be a conjugacy class of characters of G defined over L. Let $\text{Adm}(\mu) \subset \tilde{W}$ be the admissible subset of \tilde{W} ([KR1]) and $B(G, \mu)$ be the finite subset of $B(G)$ defined by the group-theoretic version of Mazur’s theorem [Ko2, §6].

The main result of this paper is as follows.

Theorem 0.1. The set $B(G, \mu)$ contains a unique maximal element and this element is represented by an element in $\text{Adm}(\mu)$.

For quasi-split groups, this is obvious as the unique maximal element of $B(G, \mu)$ is represented by t^μ. However, it is much more complicated for non quasi-split groups.

This result is an important ingredient in the proof [He3] of Kottwitz-Rapoport conjecture [KR2, Conjecture 3.1] and [Ra, Conjecture 5.2] on the union of affine Deligne-Lusztig varieties. The knowledge of the explicit description of the maximal element of $B(G, \mu)$ is also useful in the study of μ-ordinary locus of Shimura varieties.

Key words and phrases. Newton polygons, p-adic groups, affine Weyl groups.
1. Preliminaries

1.1. We first recall the classification of $B(G)$ obtained by Kottwitz in [Ko1] and [Ko2].

For any $b \in G(L)$, we denote by $[b]$ the σ-conjugacy class of $G(L)$ that contains b. Let $\Gamma_F = \text{Gal}(\overline{L}/F)$ be the absolute Galois group of F. Let $\kappa_G : B(G) \to \pi_1(G)_{\Gamma_F}$ be the Kottwitz map [Ko2, §7]. This gives one invariant.

Another invariant is given by the Newton map.

Let S be a maximal L-split torus that is defined over F and let T be its centralizer. Since G is quasi-split over L, T is a maximal torus. We also fix a σ-invariant alcove a in the apartment of G_L corresponding to S.

To an element $b \in G(L)$, we associate its Newton point ν_b. It is a σ-invariant element in the closed dominant chamber $X^*(T)_Q^+$. By [Ko2, §4.13], the map $B(G) \to X^*(T)_Q^+ \times \pi_1(G)_{\Gamma_F}$, $b \mapsto (\nu_b, \kappa_G(b))$ is injective.

The partial order on $B(G)$ is defined as follows. Let $b, b' \in G(L)$, then $[b] \leq [b']$ if $\kappa_G(b) = \kappa_G(b')$ and $\nu_b \leq \nu_{b'}$, i.e., $\nu_{b'} - \nu_b$ is a non-negative Q-linear combination of positive relative coroots.

1.2. We follow [HR]. Let N be the normalizer of T. The finite Weyl group associated to S is $W_0 = N(L)/T(L)$. The Iwahori-Weyl group associated to S is $\tilde{W} = N(L)/T(L)_1$, where $T(L)_1$ denotes the unique Iwahori subgroup of $T(L)$. The Frobenius morphism σ induces actions on \tilde{W} and \tilde{W}, which we still denote by σ.

Let $\Gamma = \text{Gal}(\overline{L}/L)$. The Iwahori-Weyl group \tilde{W} contains the affine Weyl group W_a as a normal subgroup and

$$\tilde{W} = W_a \rtimes \Omega,$$

where $\Omega \cong \pi_1(G)_{\Gamma}$ is the normalizer of the alcove a. The Bruhat order on W_a extend in a natural way to \tilde{W}.

Let G_{sc} be the simply connected cover of the derived group of G. Denote by T_{sc} the maximal torus of G_{sc} given by the choice of T. Then we have a natural injective map $X_*(T_{sc})_{\Gamma} \to X_*(T)_{\Gamma}$. We fix a special vertex of a and represent \tilde{W} and W_a as

$$\tilde{W} = X_*(T)_{\Gamma} \rtimes W_0 = \{t^\lambda w; \lambda \in X_*(T)_{\Gamma}, w \in W_0\},$$
$$W_a = X_*(T_{sc})_{\Gamma} \rtimes W_0 = \{t^\lambda w; \lambda \in X_*(T_{sc})_{\Gamma}, w \in W_0\}. $$
1.3. For any \(w \in \tilde{W} \), we choose a representative in \(N(L) \) and also write it as \(w \). By [He2] §3, any \(\sigma \)-conjugacy class of \(G(L) \) contains an element in \(\tilde{W} \). The restriction of Kottwitz map and Newton map on \(\tilde{W} \subset G(L) \) can be described explicitly as follows.

The map \(N(L) \to G(L) \) induces a map \(\tilde{W} \to B(G) \). Here \(\kappa_G(w) \) is the image of \(w \) under the projection \(\tilde{W} \to \Omega \cong \pi_1(G)_\Gamma \to \pi_1(G)_{\Gamma,F} \).

For any \(w \in \tilde{W} \), we consider the element \(w\sigma \in \tilde{W} \times \langle \sigma \rangle \). There exists \(n \in \mathbb{N} \) such that \((w\sigma)^n = t^\lambda \) for some \(\lambda \in X_*(T)_\Gamma \). Let \(\nu_{w,\sigma} = \lambda/n \) and \(\tilde{\nu}_{w,\sigma} \) the unique dominant element in the \(W_0 \)-orbit of \(\nu_{w,\sigma} \). It is known that \(\nu_{w,\sigma} \) is independent of the choice of \(n \) and is \(\Gamma \)-invariant. Moreover, \(\tilde{\nu}_{w,\sigma} \) is the Newton point of \(w \) when regarding \(w \) as an element in \(G(L) \).

1.4. Let \(S \) and \(\tilde{S} \) be the set of simple reflections of \(W_0 \) and \(W_a \) respectively. Then \(\sigma(\tilde{S}) = \tilde{S} \). In general \(S \) is not \(\sigma \)-stable since the special vertex of \(a \) may not be \(\sigma \)-invariant. However, we may write \(\sigma \) as \(\sigma = \tau \circ \sigma_0 \), where \(\sigma_0 \) is a diagram automorphism of \(W_0 \) and the induced action of \(\tau \) on the adjoint group \(G_{ad} \) is inner.

Let \(N \) be the order of \(\sigma_0 \). For \(\mu \in X_*(T) \), we set

\[
\mu^\circ = \frac{1}{N} \sum_{i=0}^{N-1} \sigma_i^\circ(\mu) \in X_*(T)_\Q.
\]

Let \(\mu^\sharp \) be the image of \(\mu \) in \(\pi_1(G)_{\Gamma,F} \). Set

\[
B(G, \mu) = \{ [b] \in B(G); \kappa_G(b) = \mu^\sharp, \nu_b \leq \mu^\circ \}.
\]

The elements in \(B(G, \mu) \) are called the (neutral) acceptable elements for \(\mu \).

Let \(\underline{\mu} \) be the image of \(\mu \) in \(X_*(T)_\Gamma \). The \(\mu \)-admissible set is defined as

\[
\text{Adm}(\mu) = \{ w \in \tilde{W}; w \leq t^x(\mu) \text{ for some } x \in W_0 \}.
\]

Now we may reformulate the main theorem 0.1 as follows.

Theorem 1.1. We keep the notation as in \(\ref{1.4} \). Set \(B(\tilde{W}, \mu, \sigma) = \{ \tilde{\nu}_{w,\sigma}; w \in t^\mu W_a, \tilde{\nu}_{w,\sigma} \leq \mu^\circ \} \). Then

1. The set \(B(\tilde{W}, \mu, \sigma) \) contains a unique maximal element \(\nu \).
2. There exists an element \(w \in \text{Adm}(\mu) \) with \(\tilde{\nu}_{w,\sigma} = \nu \).

2. The maximal element in \(B(G, \mu) \)

2.1. Let \(G_{ad} \) be the adjoint group of \(G \), i.e., the quotient of \(G \) by its center. Since the buildings of \(G \) and \(G_{ad} \) coincide, the choice of an alcove \(a \) in the building of \(G \) determines an alcove of \(G_{ad} \). Then the Iwahori-Weyl group \(\tilde{W}_{ad} \) of \(G_{ad} \) is \(X_*(T_{ad})_\Gamma \rtimes W_0 \). Let \(\pi : G \to G_{ad} \) be
the projection map. Set \(T_{ad} = \pi(T) \). Then \(\pi \) induces maps \(\tilde{W} \to \tilde{W}_{ad} \) and \(X_*(T^+_{Q}) \to X_*(T^+_{ad}) \), which we still denote by \(\pi \).

It is easy to see that \(\pi(\nu_{w,\sigma}) = \nu_{\pi(w),\sigma} \) for \(w \in \tilde{W} \) and \(\pi \) induces a bijection of posets from \(B(\tilde{W}, \mu, \sigma) \) to \(B(\tilde{W}_{ad}, \pi(\mu), \sigma) \). Thus Theorem 1.1 holds for \(B(\tilde{W}, \mu, \sigma) \) if and only if it holds for \(B(\tilde{W}_{ad}, \pi(\mu), \sigma) \).

2.2. In the rest of this section, we assume that \(G \) is adjoint. We write \(\sigma \) as \(\sigma = \text{Ad}(\tau) \circ \sigma_0 \), where \(\tau \in \tilde{W} \) is a length zero element and \(s_0 \) is a diagram automorphism of \(W_0 \). Then \(\nu_{w,\sigma} = \nu_{w,\sigma_0} \) for all \(w \in \tilde{W} \).

Set \(V = X_*(T)_\Gamma \otimes_\mathbb{Z} \mathbb{R} \). For any \(i \in \mathbb{S} \), let \(\omega_i^\vee \in V \) be the fundamental coweight and \(\alpha_i^\vee \in V \) be the simple coroot. We denote by \(\omega_i, \alpha_i \in V^* \) the fundamental weight and simple root, respectively.

We also fix \(\lambda \in X_*(T)_+ \) such that \(\tau \in t^\lambda W_0 \). For each \(\sigma_0 \)-orbit \(c \) of \(\mathbb{S} \), we set \(\omega_c = \sum_{i \in c} \omega_i \), where \(\omega_i \) is the fundamental weight for \(i \). For any \(\nu \in X_*(T)_Q \), we set \(J(\nu) = \{ s \in S; s(\nu) = \nu \} \) and \(I(\nu) = S \backslash J(\nu) \). If \(\nu = \sigma_0 \), then both \(J(\nu) \) and \(I(\nu) \) are \(\sigma_0 \)-stable.

The follow lemma is essentially contained in [Ch]. Due to its importance, we provide a proof for completeness.

Lemma 2.1. Let \(\nu \in X_*(T)_Q^+ \) with \(\sigma_0(\nu) = \nu \). Then \(\nu = \nu_{w,\sigma} \) for some \(w \in t^\mu W_a \) if and only if \(\langle \omega_c, \mu^\circ + \lambda^\circ - \gamma \rangle \in \mathbb{Z} \) for any \(\sigma_0 \)-orbit \(c \) of \(I(\nu) \).

Proof. Since \(\nu_{w,\sigma} = \nu \), we have \(w_\tau = t^\gamma x \) for some \(\gamma \in X_*(T)_\Gamma \) and \(x \in W_{I(\nu)} \). Let \(N_0 \) be the order of \(W_0 \times \langle \sigma_0 \rangle \). Then

\[
\nu_{w,\sigma} = \nu_{w_\tau,\sigma_0} = \frac{1}{N_0} \sum_{k=0}^{N_0-1} (x\sigma_0(x) \cdots \sigma_0^{k-1}(x))\sigma_0^k(\gamma)
\]

\[
\in \frac{1}{N_0} \sum_{k=0}^{N_0-1} \sigma_0^k(\gamma) + \sum_{j \in I(\nu)} \mathbb{Q} \alpha_j^\vee.
\]

\[
= \gamma^\circ + \sum_{j \in I(\nu)} \mathbb{Q} \alpha_j^\vee.
\]

If \(w \in t^\mu W_a \), then \(w_\tau \in t^{\mu + \lambda} W_a \) and \(\mu + \lambda - \gamma \in X_*(T_{sc})_\Gamma \). Hence \(\langle \omega_c, \mu^\circ + \lambda^\circ - \gamma \rangle = \langle \omega_c, \mu + \lambda - \gamma \rangle \in \mathbb{Z} \).

On the other hand, let \(a_c = \langle \omega_c, \mu^\circ + \lambda^\circ - \gamma \rangle \in \mathbb{Z} \) for each \(\sigma_0 \)-orbit \(c \) of \(I(\nu) \). We construct an element \(w \in t^\mu W_a \) such that \(\nu_{w,\sigma} = \nu \).

For each \(\sigma_0 \)-orbit of \(J(\nu) \), we choose a representative. Let \(x \) be the product of these representatives (in some order). Then \(x \) is a \(\sigma_0 \)-twisted Coxeter element of \(W_{I(\nu)} \) in the sense of [Sp, 7.3]. For each \(\sigma_0 \)-orbit \(c \) of \(I(\nu) \), we choose a representative \(\iota_c \). Let \(\alpha^\vee_c \) be the corresponding simple coroot in \(X_*(T_{sc})_\Gamma \). Set \(\beta = \mu + \lambda - \sum_c a_c \alpha^\vee_c \) and \(w = t^\beta x \iota^{-1} \in t^\mu W_a \).
Write \(\beta = h + r \) with \(r \in \sum_{j \in J(v)} \mathbb{Q} \alpha_j^\vee \) and \(h \in \sum_{i \in I(v)} \mathbb{Q} \omega_i^\vee \). Then
\[
\nu_{w, \sigma} = \nu_{w, \sigma_0} = \frac{1}{N_0} \sum_{i=0}^{N_0-1} (x\sigma_0)^i(\beta)
\]
\[
= h^\circ + \frac{1}{N_0} \sum_{k=0}^{N_0-1} (x\sigma_0)^k(r)
\]
\[
= h^\circ + h^\circ + \lambda^\circ - \sum_c a_c(\alpha_i^\vee)_c^\circ - r^\circ,
\]
where the fourth equality is due to the fact that \(x \) is \(\sigma_0 \)-elliptic in \(W_{J(v)} \).
Hence for any \(\sigma_0 \)-orbit \(c \) of \(I(v) \) and any \(j \in J(v) \), we have
\[
\langle \omega, \mu^\circ + \lambda^\circ - \nu_{w, \sigma} \rangle = \langle \omega, \sum_{c'} a_{c'}(\alpha_{i_{c'}}^\vee)^{c'} \rangle = a_c = \langle \omega, \mu^\circ + \lambda^\circ - v \rangle
\]
and
\[
\langle \alpha_j, \mu^\circ + \lambda^\circ - \nu_{w, \sigma} \rangle = \langle \alpha_j, \mu^\circ + \lambda^\circ \rangle = \langle \alpha_j, \mu^\circ + \lambda^\circ - v \rangle,
\]
which means \(\nu_{w, \sigma} = v \) as desired. \(\square \)

Corollary 2.2. \(\mu^\circ \in B(G, \mu) \) if and only if \(\langle \omega, \lambda^\circ \rangle \in \mathbb{Z} \) for any \(\sigma_0 \)-orbit \(c \) of \(I(\mu^\circ) \). In this case, \(\mu^\circ \) is a priori the maximal Newton polygon of \(B(G, \mu) \).

2.3. We follow [Ch, §6]. For any \(\sigma_0 \)-stable subset \(B \) of \(X_\ast(T)_\mathbb{Q}^\dagger \), we define
\[
C_{\geq B} = \{ v \in X_\ast(T)_\mathbb{Q}^\dagger; \sigma_0(v) = v \text{ and } v \geq b, \forall b \in B \}.
\]
We say \(B \) is reduced if \(C_{\geq B} \subseteq C_{\geq B'} \) for any \(\sigma_0 \)-stable proper subset \(B' \subseteq B \).
For any \(i \in S \), let
\[
pr(i) : V = \mathbb{R} \omega_i^\vee \otimes \sum_{j \neq i} \mathbb{R} \alpha_j^\vee \to \mathbb{R} \omega_i^\vee
\]
be the projection map.
Now we prove part (1) of Theorem 1.1

2.4. **Proof of Theorem 1.1 (1).** For any \(\sigma_0 \)-orbit \(c \) of \(S \) and \(i \in c \), we define \(e_i \in \mathbb{Q} \omega_i^\vee \) by
\[
\langle \omega_i, e_i \rangle = \frac{1}{\#C} \max\{ \{ t \in \langle \omega_c, \mu^\circ + \lambda^\circ \rangle + \mathbb{Z}; t \leq \langle \omega_c, \mu^\circ \rangle \} \cup \{ 0 \} \}.
\]
Let \(E_0 = \{ e_i; i \in S \} \) and \(E \subseteq E_0 \) be a \(\sigma_0 \)-stable subset which is reduced and satisfies \(C_{\geq E} = C_{\geq E_0} \). Let \(I(E) = \{ i \in S; e_i \in E \} \). By [Ch, Theorem 6.5], there exists an element \(\nu \in C_{\geq E} \) defined by
\[\mu^\circ + \lambda^\circ - \nu \in X_*(T_{sc})_T \otimes \mathbb{Z} \mathbb{R}, \quad I(\nu) = I(E) \text{ and } \langle \omega_j, \nu \rangle = \langle \omega_j, e_j \rangle \text{ for } j \in I(E), \] which satisfies \(C_{\geq \nu} = C_{\geq E} = C_{\geq E_0} \). Since \(\mu^\circ \in C_{\geq E} \), we have \(\nu \leq \mu^\circ \). By Lemma 2.1, \(\nu \in B(\tilde{W}, \mu, \sigma) \).

Let \(\nu' \in B(\tilde{W}, \mu, \sigma) \). Set \(E(\nu') = \{ \text{pr}_{(j)}(\nu'): j \in I(\nu') \} \). By Lemma 2.1 and the inequality \(\nu' \leq \mu^\circ \), we have, for any \(\sigma_0 \)-orbit \(c \) of \(I(\nu') \) and \(j \in c \), that
\[
\| c \cdot \langle \omega_j, \text{pr}_{(j)}(\nu') \rangle \| \leq \| c \cdot \langle \omega_j, \mu^\circ \rangle \| = \langle \omega_c, \mu^\circ \rangle + \mathbb{Z}
\]
and
\[
\| c \cdot \langle \omega_j, \text{pr}_{(j)}(\nu') \rangle \| \leq \| c \cdot \langle \omega_j, \mu^\circ \rangle \| = \langle \omega_c, \mu^\circ \rangle.
\]
So \(\langle \omega_j, \text{pr}_{(j)}(\nu') \rangle \leq \langle \omega_j, e_j \rangle \), that is, \(\text{pr}_{(j)}(\nu') \leq e_j \leq \nu \) for \(j \in I(\nu') \). By \(\text{[Ch, Lemma 6.2 (i)]} \), we deduce that \(\nu' \leq \nu \). Therefore \(\nu \) is the unique maximal element of \(B(\tilde{W}, \mu, \sigma) \).

3. Reduction to the irreducible case

Lemma 3.1. Let \(\tau \in \Omega \). Then Theorem 1.1 holds for \((\tilde{W}, \mu, \sigma) \) if and only if it holds for \((\tilde{W}, \mu, \tau \sigma \tau^{-1}) \).

Proof. For any \(v \in V, \tilde{\tau}(v) = \tilde{v} \). Thus \(\tau \text{Adm}(\mu) \tau^{-1} = \text{Adm}(\mu) \) and \(\tilde{\nu}_{w, \tau \sigma \tau^{-1}} = \tilde{\tau}(\nu_{w^{-1} \tau \sigma^{-1} \sigma^{-1}}) = \nu_{w^{-1} \tau \sigma^{-1} \sigma^{-1}} \). Therefore \(B(\tilde{W}, \mu, \tau \sigma \tau^{-1}) = B(\tilde{W}, \mu, \sigma) \). Since conjugation by \(\tau \) preserves the Bruhat order, Theorem 1.1 (2) holds for \((\tilde{W}, \mu, \sigma) \) if and only if it holds for \((\tilde{W}, \mu, \tau \sigma \tau^{-1}) \).

3.1. In the rest of this section, we assume that \(G \) is adjoint and \(\sigma \) acts transitively on the set of connected components of the affine Dynkin diagram of \(W_a \). In other words, \(\tilde{W} = \tilde{W}_1 \times \cdots \tilde{W}_m \), where \(\tilde{W}_1 \cong \cdots \cong \tilde{W}_m \) are extended affine Weyl groups of adjoint type with connected affine Dynkin diagram and \(\sigma(\tilde{W}_1) = \tilde{W}_2, \cdots, \sigma(\tilde{W}_m) = \tilde{W}_1 \). After conjugating a suitable element in \(\Omega \), we may assume that \(\sigma = \text{Ad}(\tau) \circ \sigma_0 \) with \(\tau \in \tilde{W}_m \). We may write \(\mu \) as \(\mu = (\mu_1, \cdots, \mu_m) \), where \(\mu_i \) is a dominant coweight for \(\tilde{W}_i \). Set \(\gamma = \sum_{i=1}^{m} \sigma_{m-i}(\mu_i) \). Then the natural projection induces a bijection from \(B(\tilde{W}, \mu, \sigma) \) to \(B(\tilde{W}, \gamma, \sigma^m) \).

Lemma 3.2. We keep the notations in 3.1. If Theorem 1.1 (2) holds for \((\tilde{W}_m, \gamma, \sigma^m) \), then it holds for \((\tilde{W}, \mu, \sigma) \).

Proof. Let \(\nu \) be the maximal element in \(B(\tilde{W}_m, \gamma, \sigma^m) \). By assumption, there exists \(w \in \text{Adm}(\gamma) \) such that \(\tilde{\nu}_{w, \sigma^m} = \nu \). By definition, there exists \(x \) in the finite Weyl group associated to \(\tilde{W}_m \) such that \(w < t^x(\Omega) \). Since \(\ell(t^x(\Omega)) = \sum_{i=1}^{m} \ell(t^x(\sigma_{m-i}(\mu_i))) \), there exists \(w_i \in \tilde{W}_m \) for each \(i \) such that \(w = w_1 \cdots w_m \) and \(w_i < t^x(\sigma_{m-i}(\mu_i)) \) for all \(i \). Hence
\[\sigma_0^{i-m}(w_i) \leq t^{x(\mu)}. \] Set \(y = (\sigma_0^{i-m}(w_i), \ldots, w_m) \in \bar{W}. \) Then \(y \in \text{Adm}(\mu) \) and \(\nu_{y,\sigma} = (\sigma_{\nu_{w,s}}^{i-m}, \ldots, \nu_{w,s}^{i-m}). \) Hence \(\bar{\nu}_{y,\sigma} = (\sigma_0\nu, \ldots, \nu) \) is the maximal element in \(B(\bar{W}, \mu, \sigma). \) \(\square \)

4. Reduction to the superbasic case

4.1. Let \(\epsilon \in \bar{W} \rtimes \langle \sigma \rangle. \) We say that \(\epsilon \) is superbasic if \(\ell(\epsilon) = 0 \) and each \(\epsilon \)-orbit on \(\bar{S} \) is a union of the connected components of the affine Dynkin diagram of \(\bar{W}. \) By [HN1, 3.5], \(\epsilon \) is superbasic if and only if \(W_0 = W_0^{m_1} \times \cdots \times W_0^{m_n}, \) where \(W_i \) is an affine Weyl group of type \(A_{n_i-1} \) and \(\epsilon \) gives an order \(n_i m_i \) permutation on the set of simple reflections of \(W_i^{m_i}. \)

4.2. The main purpose of this section is to reduce to the case where \(\sigma \) is superbasic. We keep the assumption in §2.2.

For any \(J \subset S, \) let \(W_J \) be the subgroup of \(W_0 \) generated by \(s_j \) for \(j \in J \) and \(J W_0 \) be the set of minimal coset representatives in \(W_J \backslash W_0. \) Let \(\bar{W}_J = X_s(T)_T \rtimes W_J. \)

We regard \(\sigma \) as an element in \(\bar{W} \rtimes \langle \sigma_0 \rangle. \) We will construct a superbasic element in \(\bar{W}_J \rtimes \langle \sigma_0 \rangle \) for a suitable subset \(J \subset S \) with \(\sigma_0(J) = J. \) We follow the approach in [HN2 §5].

Let \(V^\sigma \) be the fixed point set of \(\sigma. \) Since \(\sigma \) is an affine transformation on \(V \) of finite order, \(V^\sigma \) is a nonempty affine subspace. Set \(V' = \{ v-c; v \in V^\sigma \}, \) where \(e \) is an arbitrary point of \(V^\sigma. \) Then \(V' \) is the (linear) subspace of \(V \) parallel to \(V^\sigma. \) We choose a generic point \(v_0 \) of \(V' \), i.e., for any root \(\alpha, \langle \alpha, v \rangle = 0 \) implies that \(\langle \alpha, v' \rangle = 0 \) for all \(v' \in V'. \) Let \(\bar{v}_0 \) be the unique dominant element of the \(W_0 \)-orbit of \(v_0. \) We set \(I = I(\bar{v}_0) \) and \(J = J(\bar{v}_0). \) Let \(z \in J W_0 \) be the unique element with \(\bar{v}_0 = z(\bar{v}_0). \) Set \(\sigma^J = z\sigma z^{-1}. \)

Lemma 4.1. The element \(\sigma^J \) is a superbasic element in \(\bar{W}_J \rtimes \langle \sigma_0 \rangle. \)

Proof. Since \(\sigma(0) = \lambda, \sigma(v_0) = v_0 + \lambda \) and \(\sigma^J(\bar{v}_0) = \bar{v}_0 + z(\lambda). \) Write \(\sigma^J \) as \(\sigma^J = t^{\xi(\lambda)}u \sigma_0 \) for some \(u \in W_0. \) Then \(u \sigma_0(\bar{v}_0) = \bar{v}_0. \) Therefore \(\sigma^J(\bar{v}_0) = u^{-1}\bar{v}_0 \) is the unique dominant element in the \(W_0 \)-orbit of \(v_0. \) Hence \(\bar{v}_0 = \sigma(\bar{v}_0) = u^{-1}\bar{v}_0. \) Therefore \(u \in W_J \) and \(\sigma_0(J) = J. \)

Let \(\ell_J \) be the length function on \(\bar{W}_J \rtimes \langle \sigma_0 \rangle. \) By [HN2, Proposition 3.2], \(\ell_J(\sigma^J) = 0. \) Since \(v_0 \) is generic, by [HN2 §5.5], \(V^{\sigma_0} \subset V^{W_J}. \) Therefore there is no nonempty subset of \(J \) that is stable under \(\sigma^J. \) Hence each orbit of \(\sigma^J \) on the set of simple reflections of \(\bar{W}_J \) is a union of connected components of the affine Dynkin diagram of \(\bar{W}_J. \) Hence \(\sigma^J \) is superbasic. \(\square \)
Lemma 4.2. We keep the notations in §4.2. Then
\((1) \) \(z(\lambda)^0 \in \sum_{j \in J} Q\alpha_j^0. \)
\((2) \) Let \(c \) be a \(\sigma_0 \)-orbit of \(S \). Then \(\langle \omega_c, \lambda^0 \rangle \in \mathbb{Z} \) if and only if \(c \in I. \)

Proof. Assume \(z(\lambda) \in r + h \) with \(r \in \sum_{j \in J} Q\alpha_j^0 \) and \(h \in \sum_{i \in I} Q\alpha_i^0. \) Since \(\sigma \) is of length zero, we have \(\nu_{t(z(\lambda))u, \sigma_0} = 0 \), which implies \(h^\circ = 0. \) Hence \(z(\lambda)^0 \in \sum_{j \in J} Q\alpha_j^0 \) and (1) is proved.

Write \(\lambda = z(\lambda) + \theta \) for some \(\theta \in X_*(T_{sc})_\Gamma. \) We have
\[
\langle \omega_c, \lambda^0 \rangle = \langle \omega_c, z(\lambda)^0 \rangle + \langle \omega_c, \theta \rangle = \langle \omega_c, r^0 \rangle + \langle \omega_c, \theta \rangle = \langle \omega_c, r \rangle \quad \text{mod } \mathbb{Z}.
\]
Hence \(\langle \omega_c, \lambda^0 \rangle \in \mathbb{Z} \) if \(c \subset I. \) On the other hand, since \(\sigma^J \) is a superbasic element of \(\tilde{W}_J, \tilde{W}_J \) has only type \(A \) factors. One may check directly that \(\langle \omega_c, r \rangle = \langle \omega_c^J, r \rangle \notin \mathbb{Z} \) for any \(\sigma_0 \)-orbit \(c \) of \(I \) and (2) is proved. \(\square \)

Proposition 4.3. The maximal Newton point of \(B(\tilde{W}, \mu, \sigma) \) is contained in the natural inclusion \(B(\tilde{W}_J, \mu, \sigma^J) \hookrightarrow B(\tilde{W}, \mu, \sigma). \)

Proof. We denote by \(\omega_c^J \in \sum_{j \in J} Q\alpha_j^J \) the corresponding fundamental coweight of \(\Phi_J \) and set \(\omega_c^J = \sum_{j \in c} \omega_c^J \) for any \(\sigma_0 \)-orbit \(c \) of \(J. \) Let \(\nu \) be the maximal Newton point of \(B(\tilde{W}, \mu, \sigma). \) By the proof of Theorem 4.2.1 (1), for each \(\sigma_0 \)-orbit \(c \) of \(S, \)
\[
\langle \omega_c, \mu^0 \rangle \geq \langle \omega_c, \nu \rangle \geq \langle \omega_c, \mu^0 + \lambda^0 \rangle - \lfloor \langle \omega_c, \lambda^0 \rangle \rfloor.
\]

Let \(c \) be a \(\sigma_0 \)-orbit of \(I. \) By Lemma 4.2.2 (2), \(\langle \omega_c, \lambda^0 \rangle \in \mathbb{Z}. \) Hence \(\langle \omega_c, \nu \rangle \) and \(\mu^0 - \nu \in \sum_{j \in J} Q\alpha_j^0. \)

By Lemma 4.2.1 (1), \(z(\lambda)^0 \in \sum_{j \in J} Q\alpha_j^0. \) Thus \(\mu^0 + z(\lambda)^0 - \nu \in \sum_{j \in J} Q\alpha_j^0. \) Now \(\nu^J \) is a \(\sigma_0 \)-orbit in \(I(\nu) \cap J. \) Then
\[
\langle \omega_c^J, \mu^0 + z(\lambda)^0 - \nu \rangle = \langle \omega_c, \mu^0 + z(\lambda)^0 - \nu \rangle = \langle \omega_c, \mu^0 + \lambda^0 - \nu \rangle - \langle \omega_c, \theta \rangle,
\]
where \(\theta = \lambda - z(\lambda) \in X_*(T_{sc})_\Gamma. \) By Lemma 2.1 \(\langle \omega_c^J, \mu^0 + \lambda^0 - \nu \rangle \in \mathbb{Z}. \) Hence \(\langle \omega_c^J, \mu^0 + z(\lambda)^0 - \nu \rangle \in \mathbb{Z}. \) Again by Lemma 2.1, \(\nu \in B(\tilde{W}_J, \mu, \sigma^J). \) \(\square \)

Lemma 4.4. Let \(J \subset S \) and \(x \in \mathcal{J}W_0. \) If \(w, w' \in \tilde{W}_J \) with \(w \leq_J w' \) for the Bruhat order of \(\tilde{W}_J, \) then \(z^{-1}wz \leq z^{-1}w'z \) for the Bruhat order of \(\tilde{W}. \)

Proof. It suffices to consider the case where \(w' = ws_\alpha \) for some positive affine root \(\alpha \) of \(\tilde{W}_J. \) Since \(w' \geq w, \lambda(w) \) is again a positive affine root of \(\tilde{W}_J. \) Since \(x^{-1} \) sends positive affine roots of \(\tilde{W}_J \) to positive affine roots of \(\tilde{W}, \) \(z^{-1}wz = z^{-1}wzs_{\lambda^{-1}(\alpha)} \) and \(z^{-1}w(\alpha) \) is a positive affine root of \(\tilde{W}. \) Hence \(z^{-1}w'z \geq z^{-1}wz. \) \(\square \)
Corollary 4.5. If Theorem 1.1 (2) holds for \(B(\tilde{W}, \mu, \sigma) \), then it holds for \(B(\tilde{W}, \mu, \sigma) \).

Proof. Let \(\nu \) be the maximal Newton point of \(B(\tilde{W}, \mu, \sigma) \), which is also the maximal Newton point of \(B(\tilde{W}_J, \mu, \sigma) \) by Proposition 4.3. By assumption, there exist \(w_1 \in t^\mu(W_a \cap \tilde{W}_J) \) and \(x_1 \in \tilde{W}_J \) such that \(\tilde{\nu}_{w_1, \sigma} = \nu \) and \(w_1 \preceq_J t^{x_1(\mu)} \). Here \(\preceq_J \) is the Bruhat order on \(\tilde{W}_J \) defined with respect to \(J \). Let \(w = z^{-1}w_1z \) and \(x = z^{-1}x_1 \). Then we have \(\tilde{\nu}_{w, \sigma} = \nu, w \in t^\mu W_a \) and \(w \preceq t^x(\mu) \) as desired. \(\square \)

5. The superbasic case

5.1. In this section, we consider the extended affine Weyl group \(\tilde{W} \) of \(G = GL_n \). Then \(\tilde{W} \cong \mathbb{Z}^n \rtimes \mathfrak{S}_n \), where \(\mathfrak{S}_n \) is the permutation group of \(\{1, 2, \ldots, n\} \) which acts on \(\mathbb{Z}^n \cong \bigoplus_{i=1}^n \mathbb{Z}e_i^\vee \) by \(w(e_i^\vee) = e_{w(i)}^\vee \) for \(w \in \mathfrak{S}_n \). Let \(\{e_i\}_{i=1}^n \) be the dual basis. Set \(d = \sum_{i=1}^n e_i \) and \(d^\vee = \sum_{i=1}^n e_i^\vee \). The simple roots and fundamental weights are given by \(\alpha_i = e_i - e_{i+1} \) and \(\omega_i = -\frac{1}{n} d + \sum_{j=1}^i e_j \) respectively for \(i \in [1, n-1] \).

Set \(\sigma_{m,n} = \sum_{j=1}^n e_j^\vee \).

For any positive integer \(m < n \), let \(\sigma_{m,n} = t^{\sigma_{m,n}} u_{m,n} \in t^{\sigma_{m,n}} W_0 \) be the unique length zero element with \(u_m \in W_0 \). Then any superbasic element in \(\tilde{W} \) is of the form \(t^{\sum_{j=1}^n e_j^\vee} \sigma_{m,n} \) for some \(m \) coprime to \(n \).

The main purpose of this section is to prove the following result.

Proposition 5.1. Let \(m < n \) be a positive integer coprime to \(n \). Let \(\mu \in \mathbb{Z}^n \) be a dominant coweight of \(G = GL_n \). Then there exists \(\bar{w} \in \tilde{W} \) and \(x \in W_0 \) such that \(\bar{w} < t^{x(\mu)} \) and \(\bar{\nu}_{\bar{w}, \sigma_{m,n}} - \frac{m}{n} d^\vee \) equals the unique maximal Newton point \(\nu \) of \(B(\tilde{W}, \mu, t^{-\frac{m}{n} d^\vee} \sigma_{m,n}) \).

The proof will be given in §5.6.

5.2. We first show that Proposition 5.1 implies Theorem 1.1 (ii).

By §2.1, we may assume that \(\tilde{W} \) is the Iwahori-Weyl group of an adjoint \(p \)-adic group \(G \). Then by Lemma 3.2 and Lemma 4.3, it suffices to prove the case where \(G = PGL_n \) and \(\sigma \) is superbasic, which follows from Proposition 5.1 and §2.1.

5.3. Now we give an algorithm to construct the maximal element in \(B(\tilde{W}, \mu, \sigma_{m,n}) \).

We recall the definition of \(\mathfrak{a} \)-sequence and \(\chi_{m,n} \) in [Hel §3 & §5].

Let \(r \in \mathbb{N} \) and \(\chi \in \mathbb{Z}^r \). For each \(j \in [1, r] \) we define \(\mathfrak{a}_{\chi}^j : \mathbb{Z}_{\geq 0} \to \mathbb{Z} \) by \(\mathfrak{a}_{\chi}^j(k) = \chi(j - k) \). Here we identify \(l \) with \(l + r \) for \(l \in \mathbb{Z} \). We say \(i \gg_{\chi} j \) if \(\mathfrak{a}_{\chi}^l \geq \mathfrak{a}_{\chi}^j \) in the sense of lexicographic order. If \(\gg_{\chi} \) is a linear order, we define \(\epsilon_{\chi} \in \mathfrak{S}_r \) such that \(\epsilon_{\chi}(i) < \epsilon_{\chi}(j) \) if and only if \(i >_{\chi} j \).
Define $\chi_{m,n} \in \mathbb{Z}^n$ by $\chi_{m,n}(i) = [im] - [(i - 1)m]$ for $i \in [1, n]$. Set $\epsilon_{m,n} = \epsilon_{\chi_{m,n}} \in \mathcal{G}_n$. Since m and n are co-prime, it is well defined. Note that $\epsilon_{m,n}(\chi_{m,n}) = \varpi_{m,n}$.

5.4. Let $S = \cup_{1 \leq i \leq j \leq n} \mathbb{Z}^{[i,j]}$, whose elements are called segments. Let $\eta \subset S$ be a segment. Assume $\eta \in \mathbb{Z}^{[i,j]}$. We call $h(\eta) = i$ and $t(\eta) = j$ the head and the tail of η respectively. We call the nonnegative integer $j - i + 1$ the size of η. We set

$$|\eta| = \sum_{k = h(\eta)}^{t(\eta)} \eta(k), \quad \text{av}(\eta) = \frac{1}{t(\eta) - h(\eta) + 1}|\eta|.$$

Let $[i', j'] \subset [i, j]$ be a sub-interval, we call the restriction $\eta|_{[i', j']}$, defined by η, to $[i', j']$ a subsegment of η and write $\eta|_i = \eta|_{[i,i]}$. Let θ be another segment such that $h(\theta) = t(\eta) + 1$. We denote by $\eta \vee \theta \in \mathbb{Z}^{[h(\eta), t(\theta)]}$ the natural union of η and θ. For $k \in \mathbb{Z}$, we denote by $\eta[k]$ the k-shift of η defined by $\eta[k](i) = \eta(i + k)$. We say two segments are of the same type if they can be identified with each other up to some shift.

For $\eta \in \mathbb{Q}^n \cong \mathbb{Q}^{1,n}$ we denote by $\text{Con}(\eta) \in \mathbb{Q}^2$ the convex hull of the points $(0, 0)$ and $(k, |\eta|_{[1,k]})$ for $k \in [1, n]$. We say a subsegment γ of η is sharp if $\text{av}(\gamma)$ is maximal/minimal among all subsegments of η with the same head/tail. If $\eta = \gamma^1 \vee \gamma^2 \vee \cdots \vee \gamma^s$ with each γ^k a sharp subsegments, then the points $(0, 0)$ and $(t(\gamma^i), |\gamma^1 \vee \cdots \vee \gamma^s|)$ in \mathbb{R}^2 for $i \in [1, s]$ lie on the boundary of $\text{Con}(\eta)$ and their convex hull is just $\text{Con}(\eta)$. We call the dominant vector

$$\text{sl}(\text{Con}(\eta)) = (\text{av}(\gamma^1) \vee \cdots \vee \text{av}(\gamma^s)) \in \mathbb{Q}^s$$

the slope sequence of $\text{Con}(\eta)$. Here for any $\gamma \in S$, we define $\text{av}(\gamma) \in \mathbb{Z}^{[h(\gamma), t(\gamma)]}$ by $\text{av}(\gamma)(i) = \text{av}(\gamma)$ for $i \in [h(\gamma), t(\gamma)]$.

Let $\mu \in \mathbb{Z}^n$ be a dominant coweight. Define $\mu_{m,n} = \mu + \chi_{m,n}$. Then

$$\langle \omega_i, \mu_{m,n} \rangle = \langle \omega_i, \mu \rangle - \left(\frac{mi}{n} - \left\lfloor \frac{mi}{n} \right\rfloor \right) = \langle \omega_i, \mu + \varpi_{m,n} \rangle - \left[\langle \omega_i, \varpi_{m,n} \rangle \right].$$

According to the proof of Theorem 1.1 (1), the slope sequence $\nu = \text{sl}(\text{Con}(\mu_{m,n}))$ is the unique maximal Newton point of $B(G, \mu, \sigma_{m,n})$.

Example 5.2. Now we provide an example.

For a sequence of (distinct) elements i_1, i_2, \ldots, i_r in $[1, n]$, we denote by $\text{cyc}(i_1, i_2, \ldots, i_r) \in \mathcal{G}_n$ the cyclic permutation $i_1 \mapsto i_2 \mapsto \cdots \mapsto i_r \mapsto i_1$, which acts trivially on the remaining elements of $[1, n]$.
Let $n = 8$, $m = 5$ and $\mu = (1, 1, 1, 0, 0, 0, 0, 0)$. Then $\chi_{m,n} = (0, 1, 0, 1, 1, 0, 1, 1) \in \mathbb{Z}^8$, $\epsilon_{m,n} = \text{cyc}(1, 6, 7, 4, 5, 2, 3, 8)$ and $u_{m,n} = \text{cyc}(6, 3, 8, 5, 2, 7, 4, 1)$.

We have the following sharp decomposition:

$$
\mu_{m,n} = (1, 2, 1, 1, 0, 1, 1, 1) = (1, 2) \vee (1) \vee (1, 1) \vee (0, 1, 1).
$$

Hence $\nu = (\frac{3}{2}, \frac{3}{2}, 1, 1, 1, \frac{1}{2}, \frac{1}{2}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3})$. Moreover, one checks that

$$
t_{\epsilon_{m,n}(\mu)} \sigma_{m,n} > t_{\epsilon_{m,n}(\mu)} \sigma_{m,n} \text{cyc}(8, 3)
> t_{\epsilon_{m,n}(\mu)} \sigma_{m,n} \text{cyc}(8, 3) \text{cyc}(1, 3)
> t_{\epsilon_{m,n}(\mu)} \sigma_{m,n} \text{cyc}(8, 3) \text{cyc}(1, 3) \text{cyc}(1, 2).
$$

Set $\bar{w} = t_{\epsilon_{m,n}(\mu)} \sigma_{m,n} \text{cyc}(8, 3) \text{cyc}(1, 3) \text{cyc}(1, 2) \sigma_{m,n}^{-1}$. Then $\bar{w} < t_{\epsilon_{m,n}(\mu)}$ and $\nu_{\bar{w}, \sigma_{m,n}} = \nu$. This verifies Proposition 5.1 in this case.

5.5. Similar to [He1, §5], we use the Euclidean algorithm to give a recursive construction of $\chi_{m,n}$, which plays a crucial role in the proof of Proposition 5.1.

Let $D = \{(i, j) \in \mathbb{Z}^2; i < j \text{ are co-prime}\}$. We define $f : D \rightarrow D \sqcup \{(1, 1)\}$ by

$$
f(m, n) = \begin{cases}
(m(\lfloor \frac{m}{n} \rfloor + 1) - n, m), & \text{if } \frac{n}{m} \geq 2; \\
(n - (n - m) \lfloor \frac{n}{n-m} \rfloor, n - m), & \text{otherwise}.
\end{cases}
$$

Define two types of segments $1_{m,n}$ and $0_{m,n}$ in S by

$$(1_{m,n}, 0_{m,n}) = \begin{cases}
((0(\lfloor \frac{n}{n-m} \rfloor - 1), 1), (0(\lfloor \frac{n}{n-m} \rfloor), 1)), & \text{if } \frac{n}{m} \geq 2; \\
((0, 1(\lfloor \frac{n}{n-m} \rfloor)), (0, 1(\lfloor \frac{n}{n-m} \rfloor - 1))), & \text{otherwise}.
\end{cases}
$$

For $\eta \in S$ and $k \in [h(\eta), t(\eta)]$, set

$$
\eta(k)_{m,n} = \begin{cases}
1_{m,n}, & \text{if } \eta(k) = 1; \\
0_{m,n}, & \text{otherwise}.
\end{cases}
$$

For $k \in [h(\eta), t(\eta)]$, let $\eta_{m,n,k}$ be the shift of $\eta(k)_{m,n}$ whose head is determined recursively as follows:

$$
h(\eta_{m,n,k}) = \begin{cases}
h(\eta), & \text{if } k = h(\eta); \\
t(\eta_{m,n,k-1}) + 1, & \text{if } k > h(\eta).
\end{cases}
$$

Now we define $\phi_{m,n} : S \rightarrow S$ by $\phi_{m,n}(\eta) = \eta_{m,n,h(\eta)} \vee \cdots \vee \eta_{m,n,t(\eta)}$ for $\eta \in S$.

If $f^{h-1}(m, n)$ is defined, we set $\phi_{m,n,h} = \phi_{f^{h-1}(m, n)} \circ \cdots \circ \phi_{m,n}$. Using the Euclidean algorithm, one checks that

$$
\phi_{m,n,h}(\chi_{f^{h}(m, n)}) = \chi_{m,n}.
$$
We say a subsegment γ of $\chi_{m,n}$ is of level h if it is the image of some subsegment γ^h of $\chi_{f^h(m,n)}$ under the map $\phi_{m,n,h}$. When $h = 1$ and γ^h is of size one, we say γ is an elementary subsegment of $\chi_{m,n}$.

Let β^1 and γ^1 be two segments of $\chi^1 = \chi_{f(m,n)}$ and let γ be a level one subsegment of $\chi = \chi_{m,n}$. Using the Euclidean algorithm, we have the following basic facts:

(a) $\text{av}(\beta^1) \geq \text{av}(\gamma^1)$ if and only if $\text{av}(\phi_{m,n}(\beta^1)) \geq \text{av}(\phi_{m,n}(\gamma^1))$.

(b) Each sharp subsegment of γ with the same head is of level one.

(c) If moreover γ is an elementary subsegment of χ, then $\mathbf{a}_\chi^j < \mathbf{a}_\chi^{h(\gamma)-1}$ and $\mathbf{a}_\chi^j < \mathbf{a}_\chi^{h(\gamma)}$ for $j \in [h(\gamma), t(\gamma) - 1]$.

(d) $\mathbf{a}_\chi^j < \mathbf{a}_\chi^k$ if and only if $\mathbf{a}_{\chi,(\phi_{m,n}(\chi^1[i,j]))} < \mathbf{a}_{\chi,(\phi_{m,n}(\chi^1[i,j]))}$.

(e) $\epsilon_{m,n}(n) = 1$.

5.6. Proof of Proposition [5.1]. For $\eta \in \mathcal{S}$ we set $x_\eta = \text{cyc}(h(\eta), h(\eta) + 1, \ldots, t(\eta)) \in \mathcal{S} = \mathcal{S}_i \cup \mathcal{S}_j \cup \mathcal{S}_l$. Similarly, for a sequence $c = (c^1, \ldots, c^\mu)$ of segments, we set $x_c = x_{c^1, \ldots, c^\mu} = x_{c^1} \cdots x_{c^\mu}$. If $\eta = c^1 \lor \cdots \lor c^\mu$, we say c is decomposition of η. Now we are ready to prove Proposition [5.1].

Write $\chi = \chi_{m,n}, \theta = \mu_{m,n}$ and $\epsilon = \epsilon_{m,n}$. For $h \in Z_{\geq 0}$ we set $\phi_h = \phi_{m,n,h}$ and $\chi^h = \chi_{f^h(m,n)}$. By [5.4] we have $\nu = \text{sl}(\text{Con}(\theta))$. The proof will proceed as follows. First we construct a suitable sharp decomposition c of θ. One checks directly $\nu_{w,c,\text{id}} = \text{sl}(\text{Con}(\theta)) = \nu$, where $w_c = t^\theta x_c \in \mathcal{W}$. Then we show that

$$\epsilon w_c \epsilon^{-1} < t^{\epsilon(\mu)} \sigma_{m,n} = \epsilon t^\theta x_\theta \epsilon^{-1}.$$

Set $\tilde{w} = \epsilon w_c \epsilon^{-1} \sigma_{m,n}^{-1}$. Then $\tilde{w} < t^{\epsilon(\mu)}$ and $\nu_{\tilde{w},\sigma_{m,n}} = \nu_{w_c,\epsilon^{-1},\text{id}} = \epsilon(\nu)$. This completes our proof.

Assume $I(\mu) = \{j \in [1, n - 1]; \langle \alpha_j, \mu \rangle \neq 0\} = \{b_1, b_2, \ldots, b_{r-1}\}$ with $b_1 < b_2 < \cdots < b_{r-1}$. We set $b_0 = 0$ and $b_r = n$. Set $\theta^i = \theta^{[b_{i-1}+1, b_i]}$ for $i \in [1, r]$. Then $\theta = \theta^1 \lor \cdots \lor \theta^r$. Suppose we have a sharp decomposition c_i of θ^i for each $i \in [1, r]$. Since $\chi \in \{0, 1\}^{[1, n]}$ and $\theta = \mu + \epsilon$, for any subsegment η^i (resp. η^j) of θ^i (resp. θ^j) we have $\text{av}(\eta^i) \geq \text{av}(\eta^j)$ if $i < j$. Therefore the natural union $c = c_1 \lor \cdots \lor c_r$ forms a sharp decomposition of θ.

Let $1 \leq i \leq r$. We will construct inductively the subsegments $\zeta^i_1, \gamma^i_1, \xi^i_1$ for $j \in [1, l_i]$ (some of them may be empty) such that

(a) $\gamma^i_0 = \theta^i$ and $\gamma^i_{j-1} = \zeta^i_1 \lor \gamma^i_1 \lor \xi^i_1$ for $j \in [1, l_i]$;

(b) ζ^i_1 and ξ^i_1 are sharp subsegments of γ^i_{j-1}; any sharp subsegment of γ^i_1 is also a sharp subsegment of γ^i_{j-1}; γ^i_1 is a sharp subsegments of itself (self-sharp).
(c) For any j, $\epsilon z_{i,j-1} \epsilon^{-1} > \epsilon z_{i,j} \epsilon^{-1}$.

Here
\[z_{i,j} = t^\theta y_{i-1} x_{i}^j v_{i,j}; \]
\[y_{i} = x_{c_1} \cdots x_{c_{i-1}}; \]
\[x_{i}^j = x_{c_1 + \cdots + c_j}, \ldots, x_{i}^j \cdots x_{i}; \]
\[v_{i,j} = x_{c_1 + \cdots + \gamma_i} \cyc(t(\gamma_i^j), n)) = \cyc(h(\gamma_i^j), \ldots, t(\gamma_i^j), b_i + 1, \ldots, n). \]

Once we have (a), (b) and (c) for all i and j, then
\[c_i = (\xi_1^i, \xi_2^i, \ldots, \xi_t_i, \eta_i^i, \zeta_i^i) \]
forms a sharp decomposition of θ^i, and
\[\epsilon t^\theta x_\theta \epsilon^{-1} = \epsilon z_{1,0} \epsilon^{-1} > \cdots > \epsilon z_{1,t_i+1} \epsilon^{-1} = \epsilon z_{2,0} \epsilon^{-1} > \cdots > \epsilon z_{r,t_i+1} \epsilon^{-1} = \epsilon w_e \epsilon^{-1} \]
as desired.

The construction is as follows. Suppose for $1 \leq k < i$ and $0 \leq l \leq j$, c_k, z_l, ξ_l, η_l are already constructed, and moreover $\epsilon z_{i,j-1} \epsilon^{-1} > \epsilon z_{i,j} \epsilon^{-1}$.
We construct $\xi_i^{j+1}, \eta_i^{j+1}, \zeta_i^{j+1}$ and show that $\epsilon z_{i,j} \epsilon^{-1} > \epsilon z_{i,j+1} \epsilon^{-1}$.

If γ_i^j is empty, there is nothing to do. Otherwise, we assume γ_i^j is of level h but not of level $h+1$. Then $\gamma_i^j = \phi_h(\iota)$ for some subsegment ι of χ^h.

Case (I): ι is not a subsegment of any elementary subsegment of χ^h.
Then there exist unique subsegments ζ, γ and ξ of χ^h such that γ is of level one, ζ (resp. ξ) is a proper subsegment of some elementary segment of χ^h with the same tail (resp. head), and $\iota = \zeta \cup \gamma \cup \xi$. Without loss of generality, we may assume that none of γ, ξ and ζ is empty.

Define $\xi_i^{j+1} = \phi_h(\zeta)$, $\gamma_i^{j+1} = \phi_h(\gamma)$ and $\zeta_i^{j+1} = \phi_h(\xi)$. Note that $\av(\chi^h|_b(\zeta), t(\zeta))$ (resp. $\av(\chi^h|_b(\xi), t(\xi))$) is maximal (resp. minimal) among all subsegments of χ^h with the same head (resp. tail). Therefore, (b) follows from §5.5 (a) & (b). For (c), it suffices to show that
\[\epsilon z_{i,j+1} \epsilon^{-1} < \epsilon z_{i,j} \cyc(n, \cyc(h(\xi_i^{j+1}), n)) \epsilon^{-1}; \]
\[\epsilon z_{i,j} \cyc(n, \cyc(h(\xi_i^{j+1}), n)) \epsilon^{-1} < \epsilon z_{i,j} \epsilon^{-1}. \]

Note that $\epsilon z_{i,j+1} \epsilon^{-1} = \epsilon z_{i,j} \cyc(n, \cyc(h(\xi_i^{j+1}), n)) \cyc(h(\xi_i^{j+1})-1, t(\xi_i^{j+1})) \epsilon^{-1}$. By §5.5 (c), we have $a_h^{(\xi_i^{j+1})^{-1}} > a_h^{t(\xi_i^{j+1})}$. Hence by §5.5 (d), $\epsilon h(\xi_i^{j+1})-1 < \epsilon(t(\xi_i^{j+1})))$. If $\theta(h(\xi_i^{j+1})) > \theta(b_i + 1)$, then (d) holds. If $\theta(h(\xi_i^{j+1})) =$
\(\theta(b_i + 1) \), then \(\chi(b_i + 1) = 1 > 0 = \chi(h(\xi_i^{j+1})) \). Hence \(\epsilon(b_i + 1) < \epsilon(h(\xi_i^{j+1})) \). Then (d) still holds.

Since \(\gamma \neq \emptyset \), \(t(\xi_i^{j+1}) \neq n \). By §5.5(e), \(1 = \epsilon(n) < \epsilon(t(\xi_i^{j+1})) \).

If \(\theta(t(\xi_i^{j+1}) + 1) < \theta(h(\xi_i^{j+1})) \), then (e) holds. If \(\theta(t(\xi_i^{j+1}) + 1) = \theta(h(\xi_i^{j+1})) \), then \(\chi(h(\xi_i^{j+1})) = \chi(t(\xi_i^{j+1}) + 1) = 0 \). Since \(\zeta \) is a proper subsegment of some elementary segment of \(\chi^h \) and shares the same tail with it, by §5.5(c) we have that \(A_{\chi^h}^{\xi_i^{j+1}} > A_{\chi^h}^{h(\xi_i^{j+1})} \), and by §5.5(d) we have that \(A_{\chi^h}^{\xi_i^{j+1}} > A_{\chi^h}^{h(\xi_i^{j+1})} \). So \(\epsilon(h(\xi_i^{j+1})) > \epsilon(t(\xi_i^{j+1}) + 1) \). Then (e) still holds.

Case (II): \(\iota \) is a subsegment of some elementary subsegment of \(\chi^h \).

We define \(l_i = j \) and the construction of \(c_i \) is finished. One checks directly that \(\iota \) is self-sharp, hence so is \(\gamma_i^l = \phi_h(\iota) \) by §5.5(a) & (b). If \(t(\gamma_i) = n \), the induction step is finished. Otherwise, it remains to show

\[
(\text{f}) \quad \epsilon z_i \epsilon^{-1} > \epsilon z_i \epsilon^{-1} \cyc(t(\gamma_i^l), n) \epsilon^{-1} = \epsilon z_i \epsilon^{-1}.
\]

Note that \(1 = \epsilon(n) < \epsilon(t(\gamma_i)) \). If \(\theta(h(\gamma_i^l)) > \theta(b_i + 1) \), (f) holds. Otherwise, we have \(\theta(h(\gamma_i^l)) = \theta(b_i + 1) \), \(\chi(h(\gamma_i^l)) = 0 \) and \(\chi(b_i + 1) = 1 \) since \(b_i \in I(\mu) \). Hence \(\epsilon(h(\gamma_i^l)) > \epsilon(b_i + 1) \) and (f) still holds.

References

[Ch] C. Chai, Newton polygon as lattice points, Amer. J. Math. 122 (2000), 967–990.
[HR] T. Haines and M. Rapoport, On parahoric subgroups, Adv. Math. 219 (2008), 188–198.
[He1] X. He, Minimal length elements in conjugacy classes of extended affine Weyl groups, arXiv: 1004.4040.
[He2] X. He, Geometric and homological properties of affine Deligne-Lusztig varieties, Ann. Math. 179 (2014), 367–404.
[He3] X. He, On a conjecture of Kottwitz and Rapoport, in preparation.
[HN1] X. He and S. Nie, Minimal length elements of extended affine Weyl group, II, arXiv:1112.0824, to appear in Compositio Math.
[HN2] X. He and S. Nie, P-alcoves, parabolic subalgebras and cocenters of affine Hecke algebras, arXiv:1310.3940.
[Ko1] R. Kottwitz, Isocrystals with additional structure, Compositio Math. 56 (1985), 201–220.
[Ko2] R. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), 255–339.
[KR1] R. Kottwitz and M. Rapoport, Minuscule alcoves for \(GL_n \) and \(GSp_{2n} \), Manuscripta Math. 102 (2000), 403–428.
[KR2] R. Kottwitz and M. Rapoport, On the existence of F-crystals, Comment. Math. Helv., 78 (2003), 153–184.
[Ra] M. Rapoport, *A guide to the reduction modulo p of Shimura varieties*, Astérisque (2005), no. 298, 271–318.

[Sp] T.A. Springer, *Regular elements of finite reflection groups*, Invent. Math. **25** (1974), 159–198.

Department of Mathematics, University of Maryland, College Park, MD 20742, USA and Department of Mathematics, HKUST, Hong Kong

E-mail address: xuhuahe@gmail.com

Max Planck Institute for mathematics, Vivatsgasse 7, 53111, Bonn, Germany

E-mail address: niesian@amss.ac.cn