Osteoid osteoma masquerading tubercular arthritis or osteomyelitis on MRI: Case series and review of literature

Jatinder Pal Singh, Smita Srivastava, Dharmendra Singh

Departments of Radiology, and Orthopaedic Surgery, Medanta-The Medicity, Gurgaon, Haryana, India

Correspondence: Dr. Jatinder Pal Singh, 201, Tower-10, The Close South, Nirvana Country, Sector-50, Gurgaon, Haryana, India.
E-mail: jpsingh@doctors.org.uk

Abstract

Magnetic resonance imaging (MRI) scans for osteoid osteoma could be misleading and can be misinterpreted as tuberculosis, especially when used as the principal modality of investigation. We retrospectively reviewed cases presenting to our institute for second opinion and selected six cases that were referred to our institute with a provisional diagnosis of tubercular arthritis or osteomyelitis and were identified to have osteoid osteoma. We reviewed the literature on typical and atypical clinical and radiological presentations of osteoid osteoma depending upon their location and present radiological features on MRI that should alert the radiologists toward a correct diagnosis.

Key words: Bone tumor; computed tomography; magnetic resonance imaging; osteoid osteoma; tuberculosis

Introduction

Osteoid osteoma is a common benign osteoblastic lesion comprising 10-12% of all benign bone tumors, most commonly seen in the second and third decades of life. Magnetic resonance imaging (MRI) scans for osteoid osteoma could be misleading and can be misinterpreted as tuberculosis (TB), especially when used as the principal modality of investigation.

MRI has become the investigation of choice for the clinicians in larger centers in India, principally due to improved access with the recent economic growth and also due to the impression that MRI is a “superior investigation.” TB, being highly prevalent in India, is a common radiological diagnosis in cases where MRI reveals juxta-articular marrow edema and soft tissue high signal. It is important for the clinicians and radiologists to be aware of the similarity in the radiological features of TB and osteoid osteoma on MRI scans to prevent misinterpretation. This could prevent unnecessary biopsy or anti-tubercular treatment (ATT) in patients.

We retrospectively reviewed cases presenting to our institute for second opinion and selected six cases that were referred to our institute with a provisional diagnosis of tubercular arthritis or osteomyelitis, and had been prescribed or had completed a course of ATT for a variable length of time before referral and were identified to have intra- or juxta-articular osteoid osteoma. We reviewed the literature on typical and atypical clinical and radiological presentations of osteoid osteoma depending upon their location and present the features on MRI that should alert the radiologists toward a correct diagnosis.

Cases

The first patient (patient 1) was a 14-year-old male who presented with a history of night pain in the left hip. He was diagnosed as tubercular osteomyelitis on the basis of MRI findings and had taken a 6 weeks course of ATT before referral to our hospital. The MRI of the patient [Figure 1] showed bone marrow edema in the proximal femur...
on the left side with thickening of the medial femoral cortex. Although no definite nidus could be appreciated, patient history, failure to respond to therapy, and cortical thickening raised the suspicion of an osteoid osteoma. The patient underwent a computed tomogram (CT) [Figure 2] of his left hip joint, which revealed a 6 × 8 × 14 mm nidus with central calcification and associated cortical sclerosis and periostitis. The patient underwent CT-guided biopsy and radiofrequency ablation. The biopsy confirmed osteoid osteoma and the patient has been symptom-free at the recent follow-up after 10 months.

The second case (patient 2) was a 21-year-old male patient who suffered from upper back pain and presented to our hospital with a diagnosis of Pott’s spine, and had no response from 8 months of ATT. Examination showed tenderness at T8-T9 level with a C-reactive protein (CRP) of 5.0 mg/l and erythrocyte sedimentation rate (ESR) of 4 mm/h. MRI examination [Figure 3] revealed extensive bone marrow edema in the left T9 transverse process, pedicle, posterior aspect of left T9 vertebral body, and left 9th costotransverse joint. Patient was sent for a CT of thoracic spine [Figure 4], which showed sclerosis and expansion of left T9 transverse process with an intrasosseous nidus, highly suggestive of an osteoid osteoma. The patient underwent open surgical excision and biopsy that confirmed the diagnosis of an osteoid osteoma.

The third case (patient 3) was a 14-year-old male who presented with upper back pain persistent throughout the day and was referred to our hospital for a biopsy of an abnormal area of bone marrow edema within T3 lamina, with a diagnosis of TB of spine. The patient had received treatment with ATT for over a week. Review of the external MR images [Figure 5] showed a small nidus that could be appreciated within the lamina of T3 vertebra, along with bony expansion surrounding the bone marrow edema and high signal within the soft tissues around erector spinae muscles. A thin section CT of the dorsal spine [Figure 6] was performed and it revealed a 6-mm intraosseous nidus, with a 2-mm central area of calcification, within the lamina of T3 with bone expansion and surrounding sclerosis. Patient underwent laminectomy in another hospital and the histopathology report confirmed the diagnosis of an osteoid osteoma.

The fourth case (patient 4) was a 24-year-old male who presented with neck pain for the last 2-3 years and an external MRI (not available), which raised the suspicion of tubercular infection with non-specific marrow edema within lamina of C6 and mild syringomyelia. Patient was referred to our hospital for a second opinion, before starting ATT. A repeat MRI was performed as the previous images were not available, and it showed [Figure 7] periarticular bone marrow edema around right C6-C7 facet joint with surrounding soft tissue high signal. On careful review, a subtle 3 mm nidus with a tiny central signal void was suspected in the right C6 inferior articular process. A further CT scan [Figure 8] confirmed the presence of a small subarticular nidus within the right C6 inferior articular process with minimal surrounding sclerosis, consistent with an osteoid osteoma. The patient has opted for non-operative management and is currently on non-steroidal anti-inflammatory drugs (NSAIDs).

The fifth case (patient 5) was a 15-year-old male with right hip pain for 2 months, responding to NSAIDs. He had undergone MRI outside our hospital, which reported the diagnosis as tubercular arthritis. The patient had been
Figure 3: A 21-year-old male with a left D9 transverse process osteoid osteoma - patient 2 (A-C). (A) Coronal STIR, (B) sagittal STIR, and (C) axial T2 fat-saturated images show bone marrow edema in the left D9 transverse process and costotransverse joint (white arrow). On careful review, an oval hypointense intrasosseous lesion (broken white arrow) was identified, which raised the suspicion of an osteoid osteoma nidus.

Figure 4: A 21-year-old male with a left D9 transverse process osteoid osteoma - patient 2 (A-C). (A) Coronal, (B) sagittal, and (C) axial thin section CT images show sclerosis and expansion of left D9 transverse process (black arrow in C), pedicle, and the posterior aspect of adjacent vertebrae with a subarticular osteoid osteoma nidus (white arrow) near the costotransverse joint (black arrow in A). The nidus shows heterogeneous areas of calcification with a thin rim of surrounding halo.
taking ATT for 15-20 days before referral. On review of external MRI [Figure 9], an osteoid osteoma was suspected and a CT [Figure 10A and B] was performed, which showed a 6 × 6 × 12 mm juxtacortical nidus in the right femoral neck with associated sclerosis and mild joint effusion. A CT-guided radiofrequency ablation (RFA) [Figure 10C] was performed and the patient remained symptom-free at 20 months follow-up.

The final case (patient 6) was a 20-year-old male who presented with a history of pain in the right elbow with reduced joint movements for 3-4 months. Pain was present
Singh, et al.: Osteoid osteoma masquerading tubercular arthritis or osteomyelitis on MRI

only at night and was relieved with NSAIDs. Outside MRI suggested an infective lesion, possibly tubercular, within the proximal ulna. The patient presented to our hospital for a biopsy before starting ATT. Review of the external MR images [Figure 11] revealed bone marrow edema within proximal ulna with surrounding soft tissue high signal and joint effusion; however, there remained a suspicion of an osteoid osteoma due to the clinical history. A CT [Figure 12A and B] was performed and it showed a subarticular nidus in the inferior portion of radial notch of ulna, with an eccentric area of calcification and surrounding reactive sclerosis, suggestive of an osteoid osteoma. A CT-guided RFA [Figure 12C] was carried out and the patient has been symptom-free 12 months after the procedure.

Discussion

Osteoid osteoma is a benign osteogenic tumor, usually < 1 cm in size, that accounts for approximately 13.5% of benign...
Mean delay between the onset of symptoms enclosed 1.5 to 3.5 years, and diagnosis of intra-articular osteoma varies from 10-15% of all extrapulmonary forms.

Figure 12: A 20-year-old male with an osteoid osteoma within the radial notch of ulna - patient 6 (A-D). (A) Axial, (B) reconstructed coronal and (C) sagittal. CT images of right elbow with a subarticular osteoid osteoma nidus (white arrow) in the radial notch of ulna, with eccentric calcification, vascular groove (broken black arrow in A), and reactive sclerosis. (D) Axial CT image shows an end-deploying Starburst radiofrequency electrode with its tip (white arrow in D) within the nidus. Note the distal end (black arrow) of the shielded introducer located slightly proximal to the tip of the RF electrode

Bone tumors and 2-3% of all primary bone tumors,[2,3] It consists of a central nidus of atypical woven bone[4] enclosed within a well-vascularized stroma. A peripheral sclerotic reactive zone composed of osteoblastic cells, osteoclasts, and dilated capillaries surround the central nidus.

TB is a major cause of skeletal infection in many parts of the world,[6] with involvement of bone and joints accounting for approximately 10-15% of all extrapulmonary forms.[9] There is similarity in the clinical presentation of the patients with osteoid osteoma and musculoskeletal TB, which could lead to confusion. History of nocturnally aggravating and salicylate-responding pain is characteristic of osteoid osteoma.[4] However, less than 2% of patients present with no pain.[7] Spinal lesions may cause painful scoliosis in osteoid osteoma[6] as well as TB.[8] Intra-articular osteoid osteoma produces non-specific clinical symptoms that may mimic inflammatory mono-arthritis[10,11] and confuses diagnosis.[12,13] The effect of anti-inflammatory drugs does not constitute a proof for diagnosis, since they only demonstrate a low efficiency in intra-articular osteoid osteoma.[12] Mean delay between the onset of symptoms and diagnosis of intra-articular osteoma varies from 1.5 to 3.5 years,[10,14,15] and hence, there is a lot of scope for confusion.

On plain radiographs, the nidus is a small (1 cm or less), oval or round, radiolucent area surrounded by dense cortical bone or periosteal reaction,[14] and is demonstrated in up to 85% of the cases.[17] The amount of reactive bone may vary from minimal, particularly with intramedullary and intra-articular lesions, to extensive sclerosis. Standard radiographs only provide subtle findings in the intra-articular lesion due to the absence of any perilesional sclerosis or periosteal reaction.[12] Radiographic changes in joint TB are absent or non-specific in the early stages of the disease[18] and, hence, are not of much use in differentiating these two pathologies.

MRI remains the modality of choice for bone tumor exploration.[19-21] Some[22,23] believe that MRI has limited value for diagnosis of osteoid osteoma, which may have been due to the relatively low-resolution MRI techniques employed in these studies. Typically, osteoid osteoma shows low signal intensity on T1- and T2-weighted images,[24] with bone marrow edema around the nidus and high contrast enhancement after gadolinium administration. The increased signal intensity of the lesion on T2-weighted or enhanced T1-weighted images has been pathologically correlated with the degree of vascularity of the fibrovascular nidal stroma and the amount of osteoid substance within the nidus.[25,26] Calcified osteoid within the nidus is typically represented as a central area of signal void.[27] Intra-articular lesions may demonstrate synovial thickening apparent on MRI, with the diagnosis confirmed after gadolinium injection. However, precise localization of the nidus may not be easy. The nidus may not be visualized in 35% of the cases because of the associated surrounding perilesional edema, and in 50% of the cases, atypical presentation of the nidus may lead to misdiagnosis.[28] Osteoid osteoma may be mistaken for inflammatory or infectious arthritis, aseptic osteonecrosis of the femoral head, fatigue fracture, radicular syndrome, pigmented villonodular synovitis, or even tubercular arthritis.[10,11,13,24,29,30] Five out of six cases presented in our series had intra- or juxta-articular osteoid osteoma, which explains the cause of confusion.

CT remains the examination of choice when using high-resolution contiguous millimetric thin slices, thus providing accurate data regarding the size and location of the lesion.[21,31] The typical appearance of an intra-articular osteoid osteoma on CT images is that of a round or oval low-attenuation nidus surrounded by varying degrees of sclerosis. Calcification within the nidus is variable, occurring in 50% of cases reported by Kransdorf et al.[1] Patterns of calcification include “punctate, amorphous, or ring-like, due to dense central mineralization.” The density of the tumor increases with age, and thereby provides an indication of the lesion’s maturity.[21] The vascular groove sign, defined as serpiginous or linear grooves extending from the periosteal surface of the cortical bone down to the nidus, is a moderately sensitive but highly specific sign of osteoid osteoma that helps in differentiation and improves confidence in atypical indeterminate cases.[32] These radiating grooves represent prominent enlarged feeding
Table 1: Specific findings on MRI that should alert one to the possibility of an osteoid osteoma over TB

Finding	Description
Marrow edema associated with sclerosis, cortical thickening, or bone expansion	Lesion with central or eccentric signal void (representing calcification within the nidus)
Posterior element involvement with bone marrow and surrounding soft tissue edema, in the absence of abscess formation	Small lesion associated with extensive bone marrow edema
Absence of joint space narrowing or articular surface erosion in juxta-articular lesion	MRI: Magnetic resonance imaging

Bone marrow edema in posterior elements of spine, with surrounding soft tissue edema should be interpreted with caution. All the cases of spinal osteoid osteoma involved only posterior elements, which is not typical in TB. TB of the posterior elements is usually associated with bone destruction, more marked adjacent soft tissue changes, and abscesses formation. Table 1 lists the findings on MRI one should specifically take note of to alert one to the possibility of an osteoid osteoma over TB.

Conclusion

We believe that both high-resolution CT and state-of-the-art high-spatial resolution MRI have the capability to significantly improve the detection of nidus for diagnosis of osteoid osteoma, if we remain aware of their relative common occurrence at juxta- or intra-articular sites, along with being familiar with their specific MRI findings. We would like to emphasize that when a diagnosis of tubercular arthritis or osteomyelitis is being considered on the basis of juxta-articular soft tissue and bone marrow changes or while reviewing external MRI, it is important that (1) images are interpreted with caution, making sure not to miss an inconspicuous nidus; (2) we make sure that state-of-the-art MRI techniques have been used; and (3) a low threshold is kept for performing high-resolution CT imaging, which is the modality of choice for detection of osteoid osteoma lesion.

References

1. Kransdorf MJ, Stull MA, Gilkey FW, Moser RP Jr. Osteoid osteoma. Radiographics 1991;11:671-96.
2. Kitsoulis P, Mantellos G, Vlychou M. Osteoid osteoma. Acta Orthop Belg 2006;72:119-25.
3. Papathanassiou ZG, Megas P, Petsas T, Papachristou DJ, Nilas J, Siablis D. Osteoid osteoma: Diagnosis and treatment. Orthopedics 2008;31:1118.
4. Raviglione MC, Snider DE Jr, Kochi A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA 1995;273:220-6.
5. Mandell GL, Bennett JE, Dolin R. Mycobacterium tuberculosis. In: Mandell GL, Bennett JE, Dolin R, editors. Mandell, Douglas,
Singh, et al.: Osteoid osteoma masquerading tubercular arthritis or osteomyelitis on MRI

and Bennett’s Principles and Practice of Infectious Diseases. Philadelphia, PA: Churchill Livingstone; 1995. p. 2231-43.
6. Bonneville P, Railhac JJ. Ostéome ostéoide, ostéoblastome. Encycl Med Chir App Locomoteur 2001;14:712.
7. Jackson RP, Reckling FW, Mants FA. Osteoid osteoma and osteoblastoma. Similar histologic lesions with different natural histories. Clin Orthop Relat Res 1977;303-13.
8. Zileli M, Cagli S, Bademir G, Ersahin Y. Osteoid osteomas and osteoblastomas of the spine. Neurosurg Focus 2003;15:E5.
9. Linker B. A dangerous curve: The role of history in America’s scoliosis screening programs. Am J Public Health 2012;102:606-16.
10. Szendroi M, Kollo K, Antal I, Lakatos J, Szoke G. Intraarticular osteoid osteoma: Clinical features, imaging results, and comparison with extraarticular localization. J Rheumatol 2004;31:957-64.
11. Kelner H, Späthling S, Küffer G, Herzer P. Intra-articular osteoid osteoma: A rare cause of coxitis. Z Rheumatol 1991;50:114-6.
12. Cassar-Pullicino VN, McCall IW, Wan S. Intra-articular osteoid osteoma. Clin Radiol 1992;45:153-60.
13. Franceschi F, Marinozzi A, Papalia R, Longo UG, Guidali G, Denaro E. Intra- and juxta-articular osteoid osteoma: A diagnostic challenge: Misdiagnosis and successful treatment: A report of four cases. Arch Orthop Trauma Surg 2006;126:660-7.
14. Bauer TW, Zehr RJ, Belhobek GH, Marks KE. Juxta-articular osteoid osteoma. Am J Surg Pathol 1991;15:381-7.
15. Caillieret J, Fontaine C, Ducloix M, Letendart J, Duquennoy A. Osteoid osteoma of the upper extremity of the femur. Rev Chir Orthop Reparatrice Appar Mot 1986;72(Suppl 2):101-3.
16. Bhusnurmath S, Hoch B. Benign bone-forming tumors: Approach to diagnosis and current understanding of pathogenesis. Surg Pathol Clin 2012;5:101-16.
17. Lee EH, Shafi M, Hui JH. Osteoid osteoma: A current review. J Pediatr Orthop 2006;26:695-700.
18. Watts HG, Lifeso RM. Tuberculosis of bones and joints. J Bone Joint Surg Am 1996;78:288-98.
19. Spouge AR, Thain LM. Osteoid osteoma: MR imaging revisited. Clin Imaging 2000;24:19-27.
20. Barbiera F, Bartolotta TV, Lo Casto A, Pardo S, Rosello M, De Maria M. Intra-articular osteoid osteoma: Diagnostic imaging in three cases. Radiol Med 2002;103:464-73.
21. Allen SD, Saituddin A. Imaging of intra-articular osteoid osteoma. Clin Radiol 2003;58:845-52.
22. Sundaram M, McGuire MH. Computed tomography or magnetic resonance for evaluating the solitary tumor or tumor-like lesion of bone? Skeletal Radiol 1988;17:393-401.
23. Goldman AB, Schneider R, Pavlov H. Osteoid osteomas of the femoral neck: Report of four cases evaluated with isotopic bone scanning, CT, and MR imaging. Radiology 1993;186:227-32.
24. Sciacca J, Jaquez A, Mukip S, Trouilhoud P, Baulot E. Intra-articular osteoid osteoma of the hip misdiagnosed by MRI: An unusual cause of unexplained hip pain. Orthop Traumatol Surg Res 2011;97:881-5.
25. Assoun J, Richardi G, Railhac JJ, Baunin C, Fajadet P, Giron J, et al. Osteoid osteoma: MR imaging versus CT. Radiology 1994;191:217-23.
26. Yeager BA, Schieber ML, Wertheim SB, Schmidt RG, Torg JS, Perosio PM, et al. MR imaging of osteoid osteoma of the talus. J Comput Assist Tomogr 1987;11:916-7.
27. Gaeta M, Minutoli F, Pandolfo I, Vinicci S, D’Andrea L, Blandino A. Magnetic resonance imaging findings of osteoid osteoma of the proximal femur. Eur Radiol 2004;14:1582-9.
28. Davies M, Cassar-Pullicino VN, Davies AM, McCall IW, Tyrrell PN. The diagnostic accuracy of MR imaging in osteoid osteoma. Skeletal Radiol 2002;31:559-69.
29. Garg V, Kapoor SK. Osteoid osteoma of scaphoid. J South Orthop Assoc 2003;12:141-2.
30. Bhardwaj P, Sharma C, Sabapathy SR. Synovitis of the wrist joint caused by an intraarticular perforation of an osteoid osteoma of the scaphoid. J Orthop Surg 2012;46:599-601.
31. Aisen AM, Glazer GM. Diagnosis of osteoid osteoma using computed tomography. J Comput Tomogr 1984;8:175-8.
32. Liu PT, Kujak JL, Roberts CC, De Chadarevian JP. The vascular groove sign: A new CT finding associated with osteoid osteomas. AJR Am J Roentgenol 2011;196:168-73.
33. Desai SS. Early diagnosis of spinal tuberculosis by MRI. J Bone Joint Surg Br 1994;76:863-9.
34. Phemister DB. The effect of pressure on articular surfaces in pyogenic and tuberculous arthritides and its bearing on treatment. Ann Surg 1924;80:481-500.
35. Marti-Bonmati L, Aparisi F, Poyatos C, Vilar J. Brodie abscess: Similar histologic lesions with different natural histories. Med Chir App Locomoteur 2001;14:712.
36. Grey AC, Davies AM, Mangham DC, Grimer RJ, Ritchie DA. The ‘penumbra sign’ on T1-weighted MR imaging in subacute osteomyelitis: Frequency, cause and significance. Clin Radiol 1998;53:587-92.

Cite this article as: Singh JP, Srivastava S, Singh D. Osteoid osteoma masquerading tubercular arthritis or osteomyelitis on MRI: Case series and review of literature. Indian J Radiol Imaging 2015;25:261-8.

Source of Support: Nil. Conflict of Interest: None declared.