Genome-wide survey of cytochrome P450 genes in the salmon louse *Lepeophtheirus salmonis* (Krøyer, 1837)

Joseph L. Humble1, Greta Carmona-Antonanzas1, Carol M. McNair1, David R. Nelson2, David I. Bassett1, Ingibjörg Egholm1, James E. Bron1, Michaël Bekaert1 and Armin Sturm1*

Abstract

Background: The salmon louse (*Lepeophtheirus salmonis*) infests farmed and wild salmonid fishes, causing considerable economic damage to the salmon farming industry. Infestations of farmed salmon are controlled using a combination of non-medicinal approaches and veterinary drug treatments. While *L. salmonis* has developed resistance to most available salmon delousing agents, relatively little is known about the molecular mechanisms involved. Members of the cytochrome P450 (CYP) superfamily are typically monooxygenases, some of which are involved in the biosynthesis and metabolism of endogenous compounds, while others have central roles in the detoxification of xenobiotics. In terrestrial arthropods, insecticide resistance can be based on the enhanced expression of CYPs. The reported research aimed to characterise the CYP superfamily in *L. salmonis* and assess its potential roles in drug resistance.

Methods: *Lepeophtheirus salmonis* CYPs were identified by homology searches of the genome and transcriptome of the parasite. CYP transcript abundance in drug susceptible and multi-resistant *L. salmonis* was assessed by quantitative reverse transcription PCR, taking into account both constitutive expression and expression in parasites exposed to sublethal levels of salmon delousing agents, ecdysteroids and environmental chemicals.

Results: The above strategy led to the identification of 25 CYP genes/pseudogenes in *L. salmonis*, making its CYP superfamily the most compact characterised for any arthropod to date. *Lepeophtheirus salmonis* possesses homologues of a number of arthropod CYP genes with roles in ecdysteroid metabolism, such as the fruit fly genes *dismembered*, *shadow*, *shade*, *spook* and *Cyp18a1*. CYP transcript expression did not differ between one drug susceptible and one multi-resistant strain of *L. salmonis*. Exposure of *L. salmonis* to emamectin benzoate or deltamethrin caused the transcriptional upregulation of certain CYPs. In contrast, neither ecdysteroid nor benzo[a]pyrene exposure affected CYP transcription significantly.

Conclusions: The parasite *L. salmonis* is demonstrated to possess the most compact CYP superfamily characterised for any arthropod to date. The complement of CYP genes in *L. salmonis* includes conserved CYP genes involved in ecdysteroid biosynthesis and metabolism, as well as drug-inducible CYP genes. The present study does not provide evidence for a role of CYP genes in the decreased susceptibility of the multiresistant parasite strain studied.

Keywords: Drug resistance, Aquaculture, Salmon farming, *Lepeophtheirus salmonis*, Caligidae, Cytochrome P450
associated with decreased yield and to the costs of parasite control measures [1, 4]. For 2017, global costs associated with sea louse infections and their control have been estimated at ~£700 million [5]. In addition, concerns have been raised regarding the potential for detrimental impacts of transmission of farm-origin salmon lice to wild salmonid populations, which can be particularly vulnerable to salmon lice associated mortality at the migratory smolt phase of the anadromous life-cycle [6].

At salmon production sites, _L. salmonis_ are managed using an integrated pest management strategy (IPM) employing a range of control approaches to maximize results. In the last five years, there has been an increased implementation of non-medicinal control strategies, which include co-culture with cleaner fish [7, 8], cage designs that reduce infection pressure [9], immunostimulants [10], treatments with freshwater and thermal delousing [11]. Despite this, _L. salmonis_ control still relies significantly on a limited range of veterinary drugs [4]. Licensed salmon delousing agents currently available in the UK include the organophosphate azamethiphos, the pyrethroid deltamethrin (DM) and the non-specific oxidant hydrogen peroxide, all of which are applied as bath treatments, and the macrocyclic lactone emamectin benzoate (EMB), which is administered as an in-feed medication [12]. The repeated use of the same or similar acting compounds can favour the evolution of resistance in parasite populations [13]. Loss of treatment efficacy has been reported for most available drugs [14–17], likely indicative of the development of drug resistance [18–21].

Resistance of terrestrial arthropod pests to insecticides and acaricides is relatively well understood and most commonly involves one or both of two main molecular mechanisms [22]. Resistance can be based on mutations causing specific amino acid substitutions in proteins targeted by the pesticide [23, 24]. Alternatively, resistance can result from enhanced detoxification due to overexpression of enzymes responsible for pesticide metabolism, which typically involves members of three large gene families, the cytochrome P450s (CYPs), carboxylesterases and glutathione transferases [25]. While resistance mechanisms in _L. salmonis_ are still incompletely understood, recent studies provide first insights into the molecular determinants involved. _Lepeophtheirus salmonis_ resistance to the organophosphate azamethiphos is a consequence of a point mutation in an acetylcholinesterase gene [18], whereas hydrogen peroxide resistance is associated with increased catalase expression [26]. Resistance of _L. salmonis_ to EMB has been linked to selective sweeps; however, the genes under selection remain to be identified [27]. Pyrethroid resistance is mainly maternally inherited and associated with specific mitochondrial haplotypes [19], with possible additional roles of target site mutations in voltage gated sodium channels [20].

CYPs constitute a large gene superfamily of haem-containing enzymes present in prokaryotes and eukaryotes [28]. Metazoan CYPs are membrane-bound, locating either to the endoplasmic reticulum or to the inner mitochondrial membrane, and catalyse a diverse range of reactions related to the metabolism of endogenous and foreign chemicals [29]. The CYP superfamily shows high complexity, both between and within species, with the number of CYP loci in arthropod genomes ranging from 36 in the human body louse _Pediculus humanus humanus_ to >200 in the tick _Ixodes scapularis_ [30, 31]. In insects, CYP superfamily members mediate steps in the biosynthesis of ecdysteroids [32], juvenile hormone [33] and cuticle long-chain hydrocarbons [34]. CYPs may further be involved in pheromone biosynthesis and odorant degradation at chemosensory sensilla [35]. Furthermore, a number of CYPs contribute to the biochemical defence against xenobiotics and are involved in the metabolic detoxification of phytotoxins [36] and pesticides [35].

In terrestrial arthropods, insecticide resistance can result from the constitutive upregulation of CYPs (reviewed in [35, 37, 38]), as first suggested by the overexpression of the *Cyp6g1* gene in DDT-resistant laboratory and field populations of _Drosophila melanogaster_ [39]. For certain insect CYPs, roles as resistance factors have been corroborated by the demonstration of catalytic activity in the metabolism of relevant compounds [40, 41], protective effect of transgenic overexpression [42], and reversal of resistance by RNA interference [43, 44]. In _L. salmonis_, roles for CYPs in the toxicology of salmon delousing agents have been suggested based on changes in transcript expression of certain CYPs associated with resistance or previous exposure to treatments [45, 46]. However, the CYP superfamily of _L. salmonis_ has not previously been annotated or systematically assessed regarding its potential roles in drug resistance.

The aim of the present study was to characterise the CYP superfamily in _L. salmonis_ and to obtain insights into potential roles of CYPs in the resistance of this parasite against chemical control agents. CYPs were initially identified by homology searches of _L. salmonis_ genome and transcriptome databases, and subsequently annotated and subjected to phylogenetic analyses. Constitutive transcript expression was compared, for CYPs identified in the _L. salmonis_ transcriptome, between laboratory-cultured strains of multi-resistant and drug-susceptible parasites, and the effects of xenobiotic exposure on CYP transcription were also assessed.
Methods
Salmon lice husbandry
Laboratory-cultured strains of _L. salmonis_ investigated in this study have previously been described [19, 47]. Strain IoA-00 is susceptible to all current salmon delousing agents, whereas strain IoA-02 has previously been shown to be resistant against EMB and DM. Azamethiphos susceptibility of the strains was determined in this study (see below). Since isolation, the strains have been cultured under identical conditions using Atlantic salmon (_Salmon salar_ L.) as host, as described in detail previously [17, 47]. All experimental infections were conducted under UK Home Office licence, and were subject to prior ethical review and appropriate veterinary supervision. Prior to harvesting parasites for experimental use, salmon carrying sea lice were euthanized by percussive stunning followed by destruction of the brain, according to UK Home Office Schedule 1 requirements. Collected parasites were immediately placed into aerated filtered seawater equilibrated to 12 °C and allowed to recover for 2 to 6 h before being randomly allocated to experimental treatments.

Chemical exposure experiments
Lepeophtheirus salmonis bioassays with azamethiphos (Salmosan Vet® 500, 50% w/w azamethiphos) were conducted at 12 °C and involved exposure of parasites to eight drug concentrations (0.46, 1.00, 2.15, 4.64, 10.0, 21.5, 46.4 and 100 µg/l) or seawater (controls). Drug and control treatments were run in duplicate, with each replicate containing each 5 adult males and 5 pre-adult-II or early adult females. Following 60 min of exposure, parasites were transferred to clean seawater and allowed to recover for 24 h before being rated as normal or impaired [18], using a set of behavioural criteria described in detail before [47]. Response data were assessed and the median effective concentration (EC50) derived by probit analysis using Minitab version 16.1.1.

In order to compare transcript expression between drug-susceptible and drug-resistant parasites and to further elucidate potential effects of different environmental and endogenous compounds on transcript abundance, male and female _L. salmonis_ of the above strains were subjected to water-borne chemical exposures of chemicals at sublethal levels. Compounds studied included the salmon delousing agents EMB and DM, the arthropod hormones ecdysone (Ec) and 20-hydroxyecdysone (20HEc) and the environmental pollutant benzo[a]pyrene (BAP). All compounds studied were of analytical grade purity and obtained from Sigma-Aldrich (Dorset, UK).

PEG300 (polyethylene glycol, M_w = 300) was used to solubilise EMB and DM, while ethanol was used to solubilise E, 20HE and BAP. The final level of both solvents in treatments and controls was 0.05% (v/v). No effects of PEG300 on transcript expression were detected in a previous microarray study [45]. Exposure solutions (EMB: 25 and 150 µg/l; DM: 0.05 and 2 µg/l; Ec and 20HEc: 0.02 and 0.2 µg/l; BAP: 0.003 and 0.03 µg/l) were prepared using filtered seawater. Reflecting recommended conditions for immersion bath treatments, _L. salmonis_ were exposed to DM for 30 min, followed by the transfer of animals to clean seawater and 24 h of recovery. Exposure to EMB and all other compounds were for 24 h. After exposure and (if applicable) recovery, the viability of parasites was confirmed by ascertaining the absence of behavioural responses defined for bioassays [47], prior to removal of parasites into RNA stabilisation solution (4.54 M ammonium sulphate, 25 mM trisodium citrate, 20 mM EDTA, pH 5.4). Samples were stored overnight at 4 °C, before transfer to nuclease-free tubes for storage at −80 °C pending RNA extraction.

Identification and annotation of _L. salmonis_ CYP genes
In order to identify _L. salmonis_ CYP sequences, a previously published multi-stage _L. salmonis_ transcriptome (EBI ENA reference ERS237607) [48] was screened for CYP genes by conducting parallel tBLASTn searches (cut-off E-value of 10−5), employing as query sequences the full complement of CYP proteins of different arthropods in which the CYP gene superfamily has been annotated (Tigriopus japonicus [49], Paracyclopina nana [50], Daphnia pulex [51], Drosophila melanogaster [52]). _Daphnia pulex_ sequences were obtained from supplementary materials available in the online version of a previous study [51]; see Additional file 1: Table S1 for accession numbers of sequences). The _L. salmonis_ genome assembly LSalAtl2s (metazoa.ensembl.org) was scanned for CYP sequences using the same strategy, with query sequences further including CYP transcripts identified in the _L. salmonis_ transcriptome. Each CYP locus identified by the above strategies was manually annotated following the criteria of the Cytochrome P450 Nomenclature Committee. The CYP superfamily is subdivided into CYP families containing members of > 40% amino acid identity, and subfamilies comprised of sequences of at least 55% amino acid identity [53]. CYP names consist of the superfamily designation ‘CYP’ followed by a number denoting the family and a letter indicating the subfamily, plus a final number attributed to the isoform.

Methods
Additional file 1: Table S1 for accession numbers). Peptide sequences were aligned using GramAlign v3.0 [55] and analysed using IQ-TREE v1.6.9 [56]. The phylogenetic tree was constructed using a maximum likelihood method implementing the GTR model for heterogeneity among sites and the Dayhoff substitution model [-m Dayhoff+G8+FO] with 1000 bootstrapping iterations [-bb 1000].

RNA extraction

Individual *L. salmonis* were homogenised in 500 µl TriReagent (Sigma-Aldrich) using a bead-beater homogenizer (BioSpec, Bartlesville, Oklahoma, USA) and total RNA was extracted by following the manufacturer’s protocols. RNA was resuspended in MilliQ water (20 µl for females and 15 µl for males). RNA purity and concentration was inspected by spectrophotometry using a NanoDrop ND-1000 (Thermo Fisher Scientific, Paisley, UK) and the values for the 260 nm/280 nm ratio were recorded as within the range of 2.0–2.3, while RNA integrity was assessed by following electrophoresis on horizontal agarose gels and visualization of ethidium bromide-stained bands under UV light.

cDNA synthesis

Total RNA samples were reverse transcribed using BiolineScript Reverse Transcriptase (Bioline, London, UK) following the manufacturer’s protocols. RNA (300 ng) was combined with anchored oligodT (1 µM, Eurofins Genomics, Ebersberg, Germany) and random hexamers (3 µM, Qiagen, Manchester, UK), 1 µM of dNTPs and nuclease-free water in a volume of 10 µl. Following incubation at 70 °C for 5 min and cooling on ice for 5 min, each reaction aliquot received 4 µl RT buffer, 1 µl RiboSafe Inhibitor, 1 µl of BioScript reverse transcriptase, 1 µl DTT (20 mM) and 3 µl nuclease-free water. The reactions were then incubated at 25 °C for 10 min, 42 °C for 30 min and 85 °C for 5 min. In addition to samples, negative controls were included that lacked reverse transcriptase. Products were stored at −20 °C.

RT-PCR and sequencing

In order to confirm *L. salmonis* CYP sequences identified in this study, cDNAs were amplified by reverse transcription polymerase chain reaction (RT-PCR) and sequenced (see Additional file 2: Table S2 for primer sequences). PCR reactions were conducted using the Q5® Hot Start High-Fidelity 2× Master Mix (New England Biolabs, Hitchin, UK) following the manufacturer’s protocol and employing 35 cycles. PCR products were examined by agarose gel electrophoresis and the remaining PCR product was purified (QIAquick PCR Purification Kit, Qia-gen) and submitted to a commercial provider for Sanger sequencing. Sequences obtained for the same PCR products were aligned to obtain contiguous cDNA sequences (Table 1), which were deposited in GenBank (see Additional file 2: Table S2 for accession numbers).

RT-qPCR

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to determine the transcript abundance of CYP sequences identified in the transcriptome. Six male and six female parasites were analysed for each combination of treatment and strain. Primers were designed using primer-BLAST (NCBI) to anneal to, or surround, intron-exon boundaries when available. Primers for target and reference genes (ribosomal subunit 40S, 40S; elongation factor 1-alpha, *elfa*; and hypoxanthine-guanine phosphoribosyltransferase, *hgprt*) [45] (Additional file 3: Table S3) were used at 300 µM with 2.5 µl of a 1:20 dilution of the cDNA synthesis reaction with Luminaris Color HiGreen qPCR Master Mix (Thermo Fisher Scientific) in a total volume of 10 µl. Reactions were performed in technical duplicate for experimental samples and technical triplicate for standard curve, non-template controls and reverse transcriptase controls in a LightCycler 480 II (Roche Diagnostics, Basel, Switzerland) using white 384-well plates. The thermocycling program (95 °C for 10 min, then 40 cycles of 95 °C for 15 s, 60 °C for 30 s, 72 °C for 30 s, then 72 °C for 3 min) was followed by melting curve analysis. Relative transcript quantification was achieved by including on each PCR plate a set of serial dilutions of a pool of all experimental cDNA samples, allowing derivation of the estimated relative copy number of the transcript of interest for each sample, this being corrected for the efficiency of the reaction (Additional file 4: Table S4). The normalized expression values were generated by the ΔΔCt method [57] and the results expressed as mean normalized ratios between the relative units of each target gene and a reference gene index calculated from the geometric mean of the threshold cycles of the three reference genes.

Statistical analyses

As a number of RT-qPCR data sets failed tests of homoscedasticity (Minitab version 17), non-parametric tests were used for statistical analysis of the data. All further tests were conducted in R version 3.4.1, using the packages *rcompanion* and *PMCMR*. The Scheirer-Ray-Hare test was used to assess effects of parasite strain and sex/
stage on transcript expression. The Kruskal–Wallis test was employed to check for effects of chemical treatments. To control the experiment-wise type I error, sequential Bonferroni correction was applied to account for the simultaneous testing of 21 transcripts [58]. Following significant Kruskal–Wallis results, Dunn’s test was used for post-hoc comparisons between chemical treatments to the control group.

Results

Identification of *L. salmonis* CYPs

In order to identify CYPs in *L. salmonis*, homology searches were carried out in a previously published multi-stage transcriptome [48] and a genome assembly (LSalAtl2, metazoan.ensembl.org) of the parasite. In the transcriptome, 25 sequences were identified, all of which except for transcript HACA01014825 could be mapped to genome models of the organism, with some gene models being represented by more than one transcript (Table 1). Transcript HACA01014825 showed signs of pseudogenisation such as multiple in-frame stop codons, mapped to a genome region in supercontig LSalAtl2s111 lacking a gene model. Homology searches of the genome assembly for CYP sequences yielded four further potential CYP loci, three of which were short partial sequences. Taken together, 25 putative CYP genes/pseudogenes were obtained in *L. salmonis* and named according to the current CYP nomenclature (Table 1). Alignment and assessment of the sequences revealed the conservation of motifs present in arthropod CYPs, namely the helix C, helix I, helix K, PERF and haem binding motifs (Additional file 5: Table S5).

Phylogenetic analyses

Lepeophtheirus salmonis CYPs were subjected to phylogenetic analysis together with sequences from crustaceans in which the CYP superfamily has been characterised, i.e. the branchiopod *Daphnia pulex* [51] and the non-parasitic copepods *Tigriopus japonicus* and *Paracyclopina nana* [49, 50] (Fig. 1a). Salmon louse CYPs were further analysed regarding their evolutionary relation to CYPs of the honeybee (*Apis mellifera*) [54] (Fig. 1b). Both analyses differentiated CYP clans as distinct clades, with *L. salmonis* sequences found within the mitochondrial CYP, CYP2 and CYP3 clans. The phylogenetic analysis further suggested that *L. salmonis* possesses homologues of a number of insect Halloween genes encoding CYPs involved in ecdysteroid biosynthesis, including *spook/CYP307A1*, *disembodied/CYP302A1*, *shadow/CYP315A1* and *shade/CYP314A1* but not *phantomi/CYP306A1* (Fig. 1b). Furthermore, *L. salmonis* appeared to possess a homologue of CYP18A1, a 26-hydroxylase functioning in ecdysteroid inactivation.

Transcript expression of *L. salmonis* CYPs

The transcript expression of *L. salmonis* CYPs was studied using quantitative real-time PCR (RT-qPCR) in two previously characterised laboratory-maintained strains of the parasite. Strain IoA-00 is susceptible to all licensed chemical salmon delousing agents, whereas strain IoA-02 is resistant against EMB, DM and azamethiphos (Additional file 4: Table S4). CYP transcript expression was studied in synchronised parasite cohorts of developmental stages typically used for immobility bioassays (male adult, female preadult-II). Eleven of 21 studied CYP transcripts, including representatives from all clans, were differentially expressed between male adult and female preadult-II lice (Fig. 2). In contrast, differences in CYP transcript expression between the two strains investigated were not significant (Fig. 2).

The effects of drugs on CYP transcription were studied for two salmon delousing agents, the pyrethroid DM (Fig. 3) and the macrocyclic lactone EMB (Fig. 4). Experiments involved the exposure of IoA-00 and IoA-02 lice to low sublethal concentrations of the compounds (0.05 µg/l DM; 25 µg/l EMB) and both strains were exposed to higher concentrations (2.0 µg/l DM, 150 µg/l EMB). The latter were sublethal to strain IoA-02, allowing studies of transcript expression, but as expected lethal to IoA-00 (data not shown), with no surviving parasites available for expression studies. Compared to transcript levels in control parasites, treatments with both 0.05 µg/l DM and 25 µg/l EMB caused upregulation of CYP3027H3 in IoA-00 adult males and IoA-02 preadult-II females (Figs. 3, 4). Moreover, an increased transcript abundance of CYP3041E2 was observed in IoA-00 preadult-II females after exposure to 25 µg/l EMB (Fig. 4).

Finally, the effects of the ecdysteroids Ec and 20HEc and the environmental chemical BAP on CYP transcription were investigated in the IoA-02 strain. No significant effects on CYP transcript abundances were observed in the experiment (Additional file 6: Figure S1).

Discussion

The present report provides the first genome-wide survey of the CYP superfamily in *L. salmonis*, a parasite causing considerable economic costs in aquaculture [5]. In the North Atlantic, *L. salmonis* has developed resistance against most chemical control agents [21], including the pyrethroid DM [19, 59] and the macrocyclic lactone EMB [17, 60]. In terrestrial arthropod pests, resistance to pyrethroids [61, 62] and macrocyclic lactones [63, 64] can be based on the enhanced expression of CYPs involved in pesticide metabolism. The present study did not find evidence for altered CYP transcript expression in a multi-resistant *L. salmonis* strain as compared to a drug-susceptible reference strain. However, in both strains,
Table 1 The *Lepeophtheirus salmonis* CYP superfamily. CYPs were identified by homology searches in transcriptome (EBI ENA reference ERS237607) and genome assemblies (LSalAtl2s, ensemble.metazoa.org) and annotated following the criteria of the Cytochrome P450 Nomenclature Committee.

Lepeophtheirus salmonis CYP sequence	Annotation	Accession number	Species	E-value	Identity (%)				
P450 clan	**CYP name**	**Length (aa)**	**Transcript**	**Gene**	**Best BLAST hit**	**Species**	**E-value**	**Identity (%)**	
CYP2	CYP18P1	527	HACA01008353	EMLSAG00000004688	Cytochrome P450 18E1	AKH03496.1	Paracyclopinana	0.00E+00	53.56
CYP2	CYP307N1	476	HACA01014463, HACA01014464	EMLSAG00000001150	Cytochrome P450 307F1	AKH03498.1	Paracyclopinana	5.00E−121	45.09
CYP2	CYP3031C1	526	HACA01022487	EMLSAG00000005163	Cytochrome P450 CYP3031A1	AKH03494.1	Tigropus japonicus	2.00E−124	40.00
CYP2	CYP3038E1	548	HACA01006511	EMLSAG00000005721	Cytochrome P450 CYP3038B1	AKH03498.1	Tigropus kingsejongensis	5.00E−139	42.09
CYP2	CYP3041C1	490	HACA01003809	EMLSAG00000007328	Cytochrome P450 3041B1	AKH033506.1	Paracyclopinana	2.00E−145	48.92
CYP2	CYP3041C2	480	HACA01027076, HACA0103147	EMLSAG00000002359	Cytochrome P450 3041B1	AKH03250.1	Paracyclopinana	9.00E−145	46.30
CYP2	CYP3041D1	481	HACA01029496	EMLSAG00000007758	Cytochrome P450 CYP3041A2	AKH03133.1	Tigropus japonicus	3.00E−123	42.65
CYP2	CYP3041E1	477	HACA01001994, HACA01011887	EMLSAG00000007334	Cytochrome P450 CYP3041A2	AKH03132.1	Tigropus kingsejongensis	9.00E−126	40.57
CYP2	CYP3041E2	482	HACA01000055	EMLSAG00000006822	Cytochrome P450 3041B1	AKH033506.1	Paracyclopinana	2.00E−118	41.19
CYP3	CYP3027H1	484	HACA01003852	EMLSAG000000010829	Cytochrome P450 3A24	ACO15000.1	Caligus clemensi	0.00E+00	65.45
CYP3	CYP3027H2	482	HACA01014781	EMLSAG00000009405	Cytochrome P450 3A24	ACO15000.1	Caligus clemensi	0.00E+00	63.73
CYP3	CYP3027H3	482	HACA01004583	EMLSAG00000005269	Cytochrome P450 3A24	ACO15000.1	Caligus clemensi	0.00E+00	63.09
CYP3	CYP3027H4	494	HACA01012946	EMLSAG00000012088	Cytochrome P450 3A24	ACO15000.1	Caligus clemensi	0.00E+00	62.31
CYP3	CYP3027H−fragment1	197	–	EMLSAG00000010833	Cytochrome P450 3A24	ACO10681.1	Tigropus rogercresseyi	5.00E−33	64.52
CYP3	CYP3027H−fragment2	87	–	EMLSAG00000006848	Cytochrome P450 3A24	ACO10681.1	Tigropus rogercresseyi	7.00E−26	66.20
CYP3	CYP3649A1	537	HACA01001887	EMLSAG00000004666	Cytochrome P450 CYP3025B1	APH1387.1	Tigropus kingsejongensis	3.00E−111	36.08
CYP3	CYP3649A2	537	HACA01004064	EMLSAG00000006058	Cytochrome P450 CYP3025B1	APH1387.1	Tigropus kingsejongensis	2.00E−122	36.02
certain CYPs were upregulated following sublethal drug exposures.

The eukaryotic CYP superfamily is highly diverse, showing complexity within and between species. Molecular phylogenetic analyses of animal CYPs have identified 11 deep-branching clades called CYP clans [29], ten of which emerged early in metazoan evolution [65]. Clan losses occurred in the lineage leading to insects, in which the CYP superfamily is composed of four clans (mitochondrial, CYP2, CYP3 and CYP4). The 25 putative CYP genes/pseudogenes identified in *L. salmonis* in this study could be unequivocally assigned to the mitochondrial, CYP2 and CYP3 clans, which are also present in other crustaceans such as the branchiopod *D. pulex* [51], isopods [66] and the copepods *T. japonicus* and *P. nana* [49, 50]. However, while *L. salmonis* and *P. nana* show an apparent lack of CYP4, this clan is present in other crustaceans [49, 51, 66]. Moreover, the free-living copepods *T. japonicus* and *P. nana* possess CYP20 genes, with *P. nana* additionally having one CYP26 clan gene [49, 50]. The CYP20 and CYP26 clans are present in cnidarians [65], suggesting their emergence prior to the divergence of bilaterians. CYP20 and CYP26 genes have been retained in chordates and lophotrochozoans [67], as well as some arthropods such as chelicerates and myriapods [66], but were lost in lineages leading to insects and most crustacean groups.

The CYP superfamily includes genes that can be classified as environmental response genes [68], as they encode proteins involved in interactions external to the organism. Examples are the CYPs involved in pesticide resistance, which show characteristic traits of environmental

Table 1 (continued)

Lepeophtheirus salmonis CYP sequence	Annotation	Accession number	Species	E-value	Identity (%)					
	P450									
	CYP clan	Length (aa)	Transcript	Gene	Best BLAST hit					
	CYP3	CYP3649A-fragment1	107	–	EMLSAG00000002804ab	Cytochrome P450-like protein 3	ADB28828.1	Tigriopus japonicus	1.00E−08	41.18
	CYP3	CYP3651A1P	492	HACA01014825ab	–	Cytochrome P450 CYP3025B1	APH81387.1	Tigriopus kingsejongensis	8.00E−22	23.72
Mitochondrial	CYP44M1	483	HACA01005509ab	EMLSAG00000008058	Cytochrome P450 CYP44D1	APH81396.1	Tigriopus kingsejongensis	4.00E−144	44.05	
Mitochondrial	CYP44M2	431	HACA01005507abc	EMLSAG00000008058	Cytochrome P450 CYP44D1	APH81396.1	Tigriopus kingsejongensis	7.00E−126	44.34	
Mitochondrial	CYP302A1	470	HACA01015112abc; HACA01015113d	EMLSAG00000005374	Putative ecdysteroid 22-hydroxylase	EFX63066.1	Daphnia pulex	1.00E−144	47.50	
Mitochondrial	CYP314A1	527	HACA01031265ab	EMLSAG00000009224	Cytochrome P450 CYP314A1	AIL94172.1	Tigriopus japonicus	0.00E+00	54.46	
Mitochondrial	CYP315E1	421	–	EMLSAG00000003403abc	Cytochrome P450 CYP315A1	AKH03535.1	Paracyclopina nana	6.00E−85	38.00	
Mitochondrial	CYP3650A1	478	HACA01009722ab	EMLSAG00000005044	Cytochrome P450 3020B1	AKH03536.1	Paracyclopina nana	7.00E−95	36.75	

RT-PCR followed by Sanger sequencing was used to confirm cDNA sequences, which were deposited in GenBank (see Additional file 2: Table S2 for accession numbers)

| a Predicted polypeptide length based on this sequence
| b Partial sequence
| c HACA01003852 contains a one-base deletion disrupting the open reading frame, predicted peptide length according to corrected sequence based on RT-PCR/sequencing data
| d HACA01015113 contains a one-base deletion disrupting the open reading frame, predicted peptide length according to corrected sequence based on RT-PCR/sequencing data
| e Gene model EMLSAG00000003403 is the fusion between a CYP gene and a kinase, probably reflecting an assembly problem. Polypeptide length based on CYP sequence only
response genes such high diversity, frequent expansion by duplication events and fast rates of evolution [69]. In contrast, CYPs involved in the biosynthesis of endogenous compounds such as hormones commonly show conservation between species. In insects, members of the CYP15 family encode epoxidases involved in juvenile hormone biosynthesis, with some differences between insect orders regarding the late steps of juvenile hormone biosynthesis and the chemical identity of the principal juvenile hormone [70]. In crustaceans, juvenile hormone biosynthesis lacks an epoxidation step and methyl farnesoate performs a similar role to juvenile hormone [71]. The failure to identify CYP15 members in *L. salmonis* (this study) is in line with the absence of this CYP family in crustaceans studied so far, such as *D. pulex* [51], *T. japonicus*, *P. nana* [49, 50] and *Neocaridina articulata* [72].

Ecdysteroids are key arthropod hormones with a variety of physiological roles, including the regulation of moulting [73, 74]. In insects and crustaceans, the most important ecdysteroids are Ec and 20HEc. The biosynthesis of these ecdysteroids involves a set of CYPs called the Halloween genes, originally identified in fruit fly [32]. After the conversion of cholesterol of dietary origin to 7-dehydrocholesterol by the Rieske-like oxygenase neverland, halloween genes catalyse the remaining steps of ecdysteroid biosynthesis. The first of these steps, still poorly understood and referred to as "black box" reactions, involves two CYP307 family paralogues in *Drosophila*, spook (CYP307A1) and spookier CYP307A2. Other insects may possess a further paralogue, spookiest (CYP307B1) believed to have a similar role. The remaining Halloween genes, phantom (CYP306A1), disembodied (CYP302A1) and shadow (CYP315A1) and shade (CYP314A1) are hydroxylases modifying the ecdysteroid at the 25-, 22-, 2- and 20-positions, respectively. Further related to ecdysteroid metabolism is CYP18A1 [75], a 26-hydroxylase inactivating the bioactive steroid 20-hydroxyecdysone.

Lepeophtheirus salmonis orthologues of neverland, disembodied and shade have recently been reported and characterised regarding their tissue distribution [76]. The present study further identified putative *L. salmonis* homologues of spook/spookier (CYP307A1/2), shadow (CYP315A1) and shade (CYP314A1) are hydroxylases modifying the ecdysteroid at the 25-, 22-, 2- and 20-positions, respectively. Further related to ecdysteroid metabolism is CYP18A1 [75], a 26-hydroxylase inactivating the bioactive steroid 20-hydroxyecdysone.

![Phylogenetic analysis of 22 L. salmonis CYPs. Peptide sequences were aligned using the programme GramAlign v3.0 [54] and analysed using IQ-TREE v1.6.9 [55].](image-url)

a Phylogenetic tree of CYPs from *L. salmonis* and four arthropod species (*Daphnia pulex*, *Tigriopus japonicus*, *Paracyclopina nana* and *Apis mellifera*). **b** Phylogenetic tree of CYPs from *L. salmonis* and *A. mellifera*. Numbers at the branching points of nodes represent percent bootstrap support values.
have been reported in larval and female adult stages of the parasite [76], with the biosynthesis of the former two hormones requiring 25-hydroxylase activity [78].

Compared to the number of CYP genes in free-living crustaceans, e.g., 75 in the phyllopod *D. pulex* [51] and 52 and 46 in the non-parasitic copepods *T. japonicus* and *P. nana* [49, 50], respectively, the *L. salmonis* CYP superfamily appears very small. A reduction in the size of gene superfamilies with roles in the biochemical defence against xenobiotics has previously been reported from insect ectoparasites lacking free-living stages, such as the human body louse (37 CYPs), compared to non-parasitic insects such as the fruit fly (85 CYPs) or ectoparasites possessing free-living life stages such as mosquitoes (204 CYPs) [30, 79]. Direct exposure to environmental toxins for such species may be reduced as a result of their parasitic lifestyle, with biochemical detoxification pathways of the host providing further protection. Supporting this hypothesis, previous studies of the ABC (ATP-binding cassette) gene family, which encodes membrane transporters many of which function in the detoxification of xenobiotics and endogenous compounds, found that *L. salmonis* possesses only 33 ABC genes [48], compared to 64 members of this gene superfamily in *D. pulex* [80].

In the present study, 11 of 21 studied CYPs differed significantly in transcript expression between preadult-II females and adult males. These stages were selected for study as they appear at the same time in synchronised cohorts of developing parasites and have approximately the same size and are well defined physiologically, whereas the large adult females undergo significant post-moulting growth and cycles of egg production and vitellogenesis [81], making this stage heterogeneous. While the moulting cycle can strongly affect CYP expression in crustaceans [82, 83], as can be expected for CYPs involved in ecdysteroid biosynthesis and metabolism, *L. salmonis* halloween genes and CYP18P1 were not found to be differentially expressed between preadult-II females and adult males in this study. Sex-biased transcript expression of CYPs in *L. salmonis* has previously been described from a microarray study, which included 12 CYPs, of which six showed sex-biased transcription [84].

CYP clan	Gene	Female/Preadult-II	Male/Adult	P-values				
Clan 2	CYP18P1	0.78	1.38	0.85	0.99	0.02824	0.32635	0.86249
	CYP307N1	1.08	0.92	0.87	1.13	0.48842	0.95396	0.02434
	CYP303C1	0.45	0.66	1.39	1.50	0.41892	0.00014	0.56370
	CYP303R1	0.15	0.31	1.77	1.77	0.24821	0.00003	0.35561
	CYP304C1	0.58	1.03	1.33	1.06	0.29870	0.08327	0.08327
	CYP304C2	0.58	0.87	1.30	1.25	0.45292	0.01107	0.32635
	CYP304D1	0.80	1.06	1.00	1.13	0.01304	0.41892	0.45292
	CYP304E1	1.13	1.18	0.77	0.91	0.70739	0.90805	0.43563
	CYP304E2	0.28	0.35	1.41	1.95	0.48842	0.00004	0.77283
	CYP302C1	0.88	0.75	1.09	1.27	0.81736	0.00558	0.24821
	CYP302C2	0.31	0.37	1.57	1.75	0.68611	0.00003	0.95936
	CYP302B1	0.46	0.30	1.37	1.88	0.90807	0.00003	0.16586
	CYP302B4	0.29	0.57	1.23	1.91	0.13333	0.00017	0.95936
	CYP364C1	0.11	0.55	1.47	1.87	0.09407	0.00011	0.56370
	CYP364C2	0.44	0.41	1.63	1.53	0.90807	0.00005	0.81736
	CYP365C1P	0.87	1.07	1.16	0.90	0.60333	0.48842	0.38648
Mitochondria	CYP44M	1.60	1.25	0.42	0.72	0.72903	0.00004	0.09407
	CYP44M2	1.55	1.39	0.43	0.62	0.81736	0.00003	0.48842
	CYP302A1	0.59	1.18	0.98	1.25	0.00389	0.14892	0.27266
	CYP314A1	2.08	1.17	0.32	0.43	0.38648	0.27266	0.64417
	CYP365O1	0.76	0.85	1.07	1.32	0.27266	0.00182	0.68611

Fig. 2 CYP transcript expression in two *L. salmonis* strains. Transcript expression of CYPs was determined by RT-qPCR in preadult-II females and adult males of two *L. salmonis* strains (IoA-00: drug-susceptible, IoA-02: multi-resistant). The transcript abundance in the relevant stage and strain is expressed as fold expression compared to the average expression among all groups, with above average expression highlighted in green and below average expression in red. Effects of strain, sex/stage and interaction of strain and sex/stage were assessed by the Scheirer-Ray-Hare test. *P*-values significant after Bonferroni correction are given in bold print.
In the present study, differences in CYP transcript expression between the multiresistant strain IoA-02 and the drug-susceptible reference strain IoA-00 were not significant. However, exposure to both DM and EMB caused significant transcriptional upregulation of CYP3027H3 in IoA-02 females and IoA-00 males, with EMB exposure further increasing CYP3041E2 transcription in IoA-00 females. In a previous microarray study [46], effects of the pyrethroid cypermethrin on transcript expression in L. salmonis copepodids included 3.8-fold upregulation of CYP3027H4 (referred to as “CYP3A24”, GenBank: JP326960.1) and 5.3- to 7.9-fold upregulation of CYP3649A2 (represented twice and referred to as “CYP6w1” or “CYP6d4”, GenBank: JP317875.1 and JP334550.1). Moreover, transcripts of CYP3031C1 and CYP3041C2, referred to by BLAST annotations as “CYP18A1” and “CYP15A1”, have been found to be constitutively overexpressed in an EMB resistant L. salmonis strain in an earlier microarray study [45]. Taken together, the data from this study and previous microarray studies suggest that a number of L. salmonis CYPs, particularly in clans CYP2 and CYP3, have roles as environmental response genes. Support for such roles of the CYP3027 family is provided by studies with free-living copepods T. japonicus [49] and P. nana [50], in which members of families CYP3027 and CYP2024 were transcriptionally upregulated following crude oil exposure. Interestingly, signature sequences typical for genes with roles in the detoxification of chemicals, such as aryl hydrocarbon responsive elements, xenobiotic responsive elements and metal response elements, were found in the promoter regions of oil-responsive T. japonicus CYPs [49].

Fig. 3 Effects of deltamethrin on CYP transcript expression in L. salmonis. Preadult-II females and adult males of two L. salmonis strains (IoA-00, drug-susceptible; IoA-02, multiresistant) were exposed to deltamethrin (DM0.05, 0.05 µg/l; DM2.00, 2.0 µg/l) for 30 min and allowed to recover for 24 h in clean seawater before CYP transcript abundance was determined by RT-qPCR. Transcript levels in exposed parasites are given as fold expression compared to untreated control animals, with upregulation highlighted in green and downregulation in red. Data were subjected to Kruskal–Wallis tests (bold: significant after Bonferroni correction) followed by post-hoc comparisons to the control group (Dunn’s test; *P < 0.05, **P < 0.01, ***P < 0.001).
Conclusions

The CYP superfamily of *L. salmonis* is the smallest of all arthropods characterised to date. *Lepeophtheirus salmonis* CYPs include conserved genes involved in ecdysteroid biosynthesis and metabolism, as well as drug-inducible genes. In the parasite strains studied, no evidence was found for a role of CYP genes in mediating drug resistance.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s13071-019-3808-x.

Additional file 1: Table S1. Accession numbers of arthropod CYPs.

Additional file 2: Table S2. Oligonucleotide primer sequences used in RT-PCR experiments.

Additional file 3: Table S3. Oligonucleotide primer sequences used in RT-qPCR experiments.

Additional file 4: Table S4. Susceptibility of *L. salmonis* strains to salmon delousing agents.

Additional file 5: Table S5. Conserved motifs in *L. salmonis* CYP predicted amino acid sequences.

Additional file 6: Figure S1. Effects of ecdysteroids and benzo[a]pyrene on *L. salmonis* CYP transcript expression.

Abbreviations

CYP: cytochrome P450; PCR: polymerase chain reaction; RT-PCR: reverse transcription PCR; RT-qPCR: quantitative RT-PCR; IPM: integrated pest management; DDT: dichlorodiphenyltrichloroethane; EC50: median effective concentration; EMB: emamectin benzoate; DM: deltamethrin; Ec: ecdysone; 20HEc: 20-hydroxyecdysone; BaP: benzo[a]pyrene; PEG: polyethylene glycol; Mn: number average molar mass; EDTA: ethylenediaminetetraacetic acid; cDNA: complementary DNA.
Acknowledgements
The authors thank Ketil Malde and Rasmus Skern of the Salmon Louse Genome Project for granting us access to the L. salmonis genome assembly LSalAtl2s prior to its publication on metazoan.ensemble.org and the Fish Vet Group, Inverness, UK, for a sample of Salmonidae. 500.

Authors’ contributions
Design of study: JLH, MB and AS. Homology searches and phylogenetic analyses: JLH, GCA, MB, CMM and AS. RT-PCR and Sanger sequencing: JLH, GCA and CMM. Bioassays, chemical exposures, RNA extractions and RT-qPCR experiments: JLH, GCA, JE and DIB. Data analysis: AS, GCA and MB. Principal manuscript authors: AS and JLH, with further contributions from all participating researchers. All authors read and approved the final manuscript.

Funding
This study was supported by United Kingdom Biotechnology and Biological Sciences Research Council grant BB/L022923/1 awarded to AS. The authors are further thankful to the Scottish Salmon Producers Organisation for financial support and gratefully acknowledge funding received from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. The funders had no role in study design, data collection and analyses, decision to publish, or preparation of the manuscript.

Availability of data and materials
The raw datasets for RT-qPCR analyses and bioassays used in the present study are available from the corresponding author upon request. All other data generated or analysed during this study are included in this published article and its additional files.

Ethics approval and consent to participate
All research projects involving the University of Stirling (UoS) are subject to a thorough Ethical Review Process prior to any work being approved. All projects with UoS participation are required to be submitted to the UoS Animal Welfare Ethical Review Body (AWERB) for approval, irrespective of where experimentation will be carried out. This procedure ensures all ethical issues are addressed before an experiment can be initiated. The present research was assessed by the UoS AWERB and passed the ethical review process. Laboratory infections of Atlantic salmon with L. salmonis were carried out under a valid UK Home Office project license.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK.
2 Department of Microbiology, University of Tennessee, Memphis, TN 38163, USA.

Received: 28 July 2019 Accepted: 15 November 2019

Published online: 27 November 2019

References
1. Boxaspen K. A review of the biology and genetics of sea lice. ICES J Mar Sci. 2006;63:1304–16.
2. Skern-Mauritzen R, Torrisen O, Glover KA. Pacific and Atlantic Lepeophtheirus salmonis (Krøyer, 1836) are allopatric subspecies: Lepeophtheirus salmonis salmonis and L. salmonis onchorhynci subsp. nov. BMC Genet. 2014;15:32.
3. Wagner GN, Varv S, Johnson SC. Physiology and immunology of Lepeophtheirus salmonis infections of salmonids. Trends Parasitol. 2008;24:176–83.
4. Torrisen O, Jones S, Asche F, Guettormsen A, Skilbrei OT, Nilsen F, et al. Salmon lice—impact on wild salmons and salmon aquaculture. J Fish Dis. 2013;36:171–94.
5. Brooker AJ, Skern-Mauritzen R, Bron JE. Production, mortality, and infectivity of planktonic larval sea lice, Lepeophtheirus salmonis (Krøyer, 1837) in current knowledge and implications for epidemiological modelling ICES J Mar Sci. 2018;75:1214–34.
6. Jackson D, Cotter D, Newell J, McEvoy S, O’Donohoe P, Kane F, et al. Impact of Lepeophtheirus salmonis infestations on migrating Atlantic salmon, Salmo salar L., smolts at eight locations in Ireland with an analysis of lice-induced marine mortality. J Fish Dis. 2013;36:273–81.
7. Sayer MD, Treasurier JW, Costello MJ, editors. Wrasse: biology and use in aquaculture. Oxford: Wiley-Blackwell, 1996.
8. Skiftesvik AB, Blom G, Aagrist A-L, Durif CMF, Brownian H, Bjelland RM, et al. Wrasse (Labridae) as cleaner fish in salmonid aquaculture—the Hardangerfjord as a case study. Mar Bio Res. 2014;10:289–300.
9. Sten L, Dømpter T, Bui S, Glareopoulos A, Fosseidengen JE, Wright DW, et al. “Snorkel” sea lice barrier technology reduces sea lice loads on harvest-sized Atlantic salmon with minimal welfare impacts. Aquaculture. 2016;458:29–37.
10. Sutherland BJG, Covello JM, Friend SE, Poley JD, Koczka KW. Host-parasite transcriptomics during immunostimulant-enhanced rejection of salmon lice (Lepeophtheirus salmonis) by Atlantic salmon (Salmo salar). Facets. 2012;4:187–95.
11. Ljungfeldt LER, Quintela M, Besnier F, Nilsen F, Glover KA. A pedigree-based experiment reveals variation in salinity and thermal tolerance in the salmon louse, Lepeophtheirus salmonis. Evol Appl. 2017;10:1007–19.
12. Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture. 2010;306:7–23.
13. Denholm J, Devine GI, Horsberg TE, Sevatsal D, Fellang A, Nolan DV, et al. Analysis and management of resistance to chemotherapeautants in salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae). Pest Manag Sci. 2002;58:528–36.
14. Roth M, Richards RH, Dobson DP, Rae GH. Field trials on the efficacy of the organophosphorus compound azamethiphos for the control of sea lice (Copepoda: Caligidae) infestations of farmed Atlantic salmon (Salmo salar). Aquaculture. 1996;140:217–30.
15. Sevatdal S, Copley L, Wallace C, Jackson D, Horsberg TE. Monitoring of the sensitivity of sea lice (Lepeophtheirus salmonis) to pyrethroids in Norway, Ireland and Scotland using bioassays and probit modelling. Aquaculture. 2005;244:19–27.
16. Treasuru JW, Wadhsworth S, Grant A, Resistance of sea lice, Lepeophtheirus salmonis (Krøyer), to hydrogen peroxide on farmed Atlantic salmon, Salmo salar L. Aquac Res. 2003;3:185–60.
17. Heumann J, Carmichael S, Bron JE, Tildesley A, Sturm A. Molecular cloning and characterisation of a novel P-glycoprotein in the salmon louse Lepeophtheirus salmonis. Comp Biochem Physiol C Toxicol Pharmacol. 2012;155:198–205.
18. Carmona-Antoñanzas G, Bekaert M, Humble JH, Boyd S, Roy W, Bassett DI, et al. Maternal inheritance of deltamethrin resistance in the salmon louse (Lepeophtheirus salmonis) by Atlantic salmon (Salmo salar). Facets. 2017;2:477–95.
19. Heumann J, Carmichael S, Bron JE, Tildesley A, Sturm A. Molecular cloning and characterisation of a novel P-glycoprotein in the salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae). Pest Manag Sci. 2015;71:1612–4.
20. Kaur K, Helgesen KO, Bakke MJ, Horsberg TE. Mechanism behind resistance against the organophosphorus compound azamethiphos in salmon lice (Lepeophtheirus salmonis). PLoS One. 2015;10:e0124220.
21. Carmona-Antoñanzas G, Bekaert M, Humble JH, Boyd S, Roy W, Bassett DI, et al. Maternal inheritance of deltamethrin resistance in the salmon louse Lepeophtheirus salmonis (Krøyer) is associated with unique mtDNA haplotypes. PLoS ONE. 2017;12:e0180625.
22. Carmona-Antoñanzas G, Helgesen KO, Humble JL, Tschesche C, Bakke MJ, Gamble L, et al. Mutations in voltage-gated sodium channels from pyrethroid resistant salmon lice (Lepeophtheirus salmonis). Pest Manag Sci. 2019;75:527–36.
23. Aaen SM, Helgesen KO, Bakke MJ, Kaur K, Horsberg TE. Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol. 2015;31:72–81.
24. Heckel DG. Ecology. Insecticide resistance after Silent Spring. Science. 2012;337:1612–4.
25. French-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature. 1993;363:449–51.
26. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Genet. 1996;2:525–51.
25. Ranson H, Claudianos C, Oertel F, Abgrall C, Hemingway J, Sharakhova MV, et al. Evolution of supergene families associated with insecticide resistance. Science. 2002;298:179–81.

26. Helgesen KO, Bakke MJ, Kaur K, Horsberg TE. Increased catalase activity—a possible resistance mechanism in hydrogen peroxide resistant salmon lice (Lepeophtheirus salmonis). Aquaculture. 2017;468:135–40.

27. Besnir F, Kert M, Skern-Maurtzen R, Lien S, Malde K, Eldsvarden RB, et al. Human-induced evolution caught in action: SNP-array reveals rapid amphi-atlantic spread of pesticide resistance in the salmon ectoparasite Lepeophtheirus salmonis. BMC Genomics. 2014;15:937.

28. Nelson DR. Progress in tracing the evolutionary origins of cytochrome P450. Biochem Biophys Acta. 2011;1814:14–8.

29. Nelson DR. Metazoan cytochrome P450 evolution. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998;121:15–22.

30. Lee SH, Kang JS, Min JS, Yoon KS, Strycharz JP, Johnson R, et al. Decreased detoxification genes and genome size make the human body loose an efficient model to study xenobiotic metabolism. Insect Mol Biol. 2010;19:595–615.

31. Gulla-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, et al. Genomic insights into the loci scapularis tick vector of Lyme disease. Nat Commun. 2016;7:10507.

32. Rewitz KF, O’Connor MB, Gilbert LI. Molecular evolution of the insect Hal‑famil tree of cytochrome P450s in insecticide resistance: impact on the control of mosquito‑borne diseases and use of insecticides on Earth. Philos Trans R Soc B Biol Sci. 2016;371:20150047.

33. Helvig C, Koener JF, Unnithan GC, Feyereisen R. CYP15A1, the insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci USA. 2012;109:14858–63.

34. Feyereisen R. Insect CYP genes and P450 enzymes. In: Gilbert LI, editor. Insect molecular biology and biochemistry. San Diego, CA: Elsevier; 2012. p. 236–316.

35. Tao X-Y, Xue X-Y, Huang Y-P, Chen X-Y, Mao Y-B. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Mol Ecol. 2012;21:4371–85.

36. Ranson H, Ngueguessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.

37. Rewitz KF, O’Connor MB, Gilbert LI. Molecular evolution of the insect Hal‑famil tree of cytochrome P450s in insecticide resistance: impact on the control of mosquito‑borne diseases and use of insecticides on Earth. Philos Trans R Soc B Biol Sci. 2016;371:20150047.

38. Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, et al. Functional conservation. Insect Biochem Mol Biol. 2007;37:741–53.

39. Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, et al. Parasites Vectors (2019) 12:563

40. Helgesen KO, Bakke MJ, Kaur K, Horsberg TE. Increased catalase activity—a possible resistance mechanism in hydrogen peroxide resistant salmon lice (Lepeophtheirus salmonis). Aquaculture. 2017;468:135–40.

41. Zhu F, Parthasarathy R, Bai H, Woithe K, Kaussmann M, Nauen R, et al. A genome‑specific P450 oxidative decarbonylase for cuticular hydrocarbonbiosynthesis. Proc Natl Acad Sci USA. 2008;101:4024–9.

42. Nelson DR. Metazoan cytochrome P450 evolution. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998;121:15–22.

43. Baldwin WS, Marko PB, Nelson DR. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex. BMC Genomics. 2009;10:169.

44. Tijet N, Helvig C, Feyereisen R. The cytochrome P450 gene superfamily in Daphnia melanogaster: annotation, intron-exon organization and phylogeny. Gene. 2001;262:189–98.

45. Nelson DR. Cytochrome P450 Nomenclature. In: Phillips IR, Shephard EA, editors. Cytochrome P450 protocols. Totowa: Humana Press; 2004. p. 1–10.

46. Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol. 2006;15:615–36.

47. Russell DJ. Gram‑Align: fast alignment driven by grammar-based phylogeny. Methods Mol Biol. 2014;1079:171–89.

48. Carmona-Antoñanzas G, Carmichael SN, Heumann J, Christie HRL, Green DM, et al. Time-to-response toxicity analysis as a method for drug susceptibility assessment in salmon lice. Aquaculture. 2016;464:570–5.

49. Carmona-Antoñanzas G, Carmichael SN, Heumann J, Taggart JB, Gharbi K, Bron JE, et al. A survey of the ATP‑binding cassette (ABC) gene superfamily in the salmon louse (Lepeophtheirus salmonis). PLoS One. 2015;10:e0137394.

50. Han J, Won EJ, Hwang DS, Shin KH, Lee YS, Leung KM, et al. Crude oil exposure results in oxidative stress‑mediated dysfunctional development and reproductive in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes. Aquat Toxicol. 2014;152:308–17.

51. Han J, Won EJ, Kim HS, Nelson DR, Lee SJ, Park HG, et al. Identification of the full 46 cytochrome P450 (CYP) complement and modulation of CYP expression in response to water-accommodated fractions of crude oil in the cyclopoid copepod Paracyclopsina nana. Environ Sci Technol. 2015;49:6982–92.

52. Sevatdal S, Horsberg TE. Determination of reduced sensitivity in sea lice (Lepeophtheirus salmonis) to crovadine in a standardized marine assay system. Insect Physiol C Pharmacol Toxicol Endocrinol. 1998;121:15–22.

53. Baldwin WS, Marko PB, Nelson DR. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex. BMC Genomics. 2009;10:169.

54. Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol. 2006;15:615–36.

55. Russell DJ. Gram‑Align: fast alignment driven by grammar-based phylogeny. Methods Mol Biol. 2014;1079:171–89.

56. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ‑TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

57. Pfaffl MW. Quantification strategies in real-time PCR. In: Bustin SA, editor. A-Z of quantitative PCR. La Jolla, CA, USA: International University Line; 2004. p. 87–112.

58. Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43:223–5.

59. Sevatdal S, Horsberg TE. Determination of reduced sensitivity in sea lice (Lepeophtheirus salmonis) to crovadine in a standardized marine assay system. Insect Physiol C Pharmacol Toxicol Endocrinol. 1998;121:15–22.

60. Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43:223–5.

61. Wondji CS, Morgan J, Coetzee M, Hunt RH, Steen K, Black WC, et al. Salmon lice (Lepeophtheirus salmonis). PLoS One. 2013;14:e013862.

62. Sonoda S. Molecular analysis of pyrethroid resistance conferred by target site insensitivity and increased metabolic detoxification in Plutella xylostella. Pest Manag Sci. 2010;66:572–5.

63. Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43:223–5.

64. Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43:223–5.

65. Nelson DR, Goldstone JV, Steggeman JJ. The cytochrome P450 gene superfamily in Daphnia melanogaster: annotation, intron-exon organization and phylogeny. Gene. 2001;262:189–98.

66. Nelson DR. Cytochrome P450 Nomenclature. In: Phillips IR, Shephard EA, editors. Cytochrome P450 protocols. Totowa: Humana Press; 2004. p. 1–10.

67. Pfaffl MW. Quantification strategies in real-time PCR. In: Bustin SA, editor. A-Z of quantitative PCR. La Jolla, CA, USA: International University Line; 2004. p. 87–112.
69. Feyereisen R. Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim Biophys Acta. 2011;1814:19–28.
70. Daimon T, Shinoda T. Function, diversity, and application of insect juvenile hormone epoxidases (CYP15). Biotechnol Appl Biochem. 2013;60:82–91.
71. Qu Z, Kenny NJ, Lam HM, Chan TF, Chu KH, Bendina WG, et al. How did arthropod sesquiterpenoids and ecdysteroids arise? Comparison of hormonal pathway genes in noninsect arthropod genomes. Genome Biol Evol. 2015;7:1951–9.
72. Sin YW, Kenny NJ, Qu Z, Chan KW, Chan KWS, Cheong SP, et al. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata. Gen Comp Endocrinol. 2015;214:167–76.
73. Beckstead RB, Lam G, Thummel CS. Specific transcriptional responses to juvenile hormone and ecdysone in Drosophila. Insect Biochem Mol Biol. 2007;37:570–8.
74. Chang ES, Mykles DL. Regulation of crustacean molting: a review and our perspectives. Gen Comp Endocrinol. 2011;172:523–30.
75. Guittard E, Blais C, Maria A, Panyi JP, Pasricha S, Lumb C, et al. CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Dev Biol. 2011;349:35–45.
76. Sandlund L, Kongshaug H, Horsberg TE, Male R, Nilsen F, Dalvin S. Identification and characterisation of the ecdysone biosynthetic genes neverland, disembodied and shade in the salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae). PLoS ONE. 2018;13:e0194195.
77. Grbić M, Van Leeuwen T, Clark RM, Rombouts S, Rouze P, Grbić V, et al. The genome of Tetramyces urticae reveals herbivorous pest adaptations. Nature. 2011;479:487–92.
78. Mykles DL. Ecdysteroid metabolism in crustaceans. J Steroid Biochem Mol Biol. 2011;127:196–203.
79. Yang T, Liu N. Genome analysis of cytochrome P450s and their expression profiles in insecticide resistant mosquitoes, Culex quinquefasciatus. PLoS ONE. 2011;6:e29418.
80. Sturm A, Cunningham P, Dean M. The ABC transporter gene family of Daphnia pulex. BMC Genomics. 2009;10:170.
81. Eichner C, Frost P, Dysvik B, Jonassen I, Kristiansen B, Nilsen F. Salmon louse (Lepeophtheirus salmonis) transcriptomes during post molting maturation and egg production, revealed using EST-sequencing and microarray analysis. BMC Genomics. 2008;9:126.
82. Hotard K, Zou E. Does crustacean ethoxyresorufin O-deethylase activity vary during the molting cycle? Environ Toxicol Chem. 2013;32:2345–8.
83. Dam E, Rewitz KF, Styrishave B, Andersen O. Cytochrome P450 expression is moult stage specific and regulated by ecdysteroids and xenobiotics in the crab Carcinus maenas. Biochem Biophys Res Commun. 2008;377:1135–40.
84. Poley JD, Sutherland BJ, Jones SR, Koop BF, Fast MD. Sex-biased gene expression and sequence conservation in Pacific and Atlantic salmon lice (Lepeophtheirus salmonis). BMC Genomics. 2016;17:483.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.