Quaternion Rhapsody

Aleks Kleyn

Abstract. In this paper I explore the set of quaternion algebras over fie ld. Quaternion algebra \(E(C, -1, -1) \) is isomorphic to tensor product of complex field \(C \) and quaternion algebra \(H = E(R, -1, -1) \). Considered two sets of quaternion functions, which satisfy to equation similar to Cauchy-Riemann equation for a complex function.

- The set of functions satisfying the equation
 \[
 \frac{\partial f}{\partial x^0} + i \frac{\partial f}{\partial x^1} + j \frac{\partial f}{\partial x^2} + k \frac{\partial f}{\partial x^3} = 0
 \]
- The set of functions satisfying the system of equations
 \[
 \frac{\partial y^0}{\partial x^0} = \frac{\partial y^1}{\partial x^1} = \frac{\partial y^2}{\partial x^2} = \frac{\partial y^3}{\partial x^3},
 \]
 \[
 \frac{\partial y^i}{\partial x^j} = -\frac{\partial y^j}{\partial x^i}, \quad i \neq j
 \]

Dedicated to I. M. Gelfand

Contents

1. Preface ... 1
2. Conventions .. 2
3. Linear Function of Complex Field 3
4. Quaternion Algebra .. 4
5. Tower of Algebras .. 5
6. Quaternion Algebra over Complex Field 7
7. Algebra \(C \otimes (C \otimes H) \) .. 9
8. Quaternion Algebra \(E(R, a, b) \) 11
9. Regular Function ... 15
10. Instead of an Epilogue ... 17
11. References ... 18

1. Preface

When I started my research in area of calculus over division ring, I paid attention to large volume of papers dedicated to regular functions of quaternion and analogue of the Cauchy-Riemann equation. I wanted to understand whether the Cauchy-

Key words and phrases. algebra, linear algebra, division ring, derivative.

Aleks_Kleyn@MailAPS.org.

http://sites.google.com/site/AleksKleyn/.
http://arxiv.org/a/kleyn_a_1.
http://AleksKleyn.blogspot.com/.
Riemann equation appears in the frame of the theory that I explore. This was the reason why I considered division ring as vector space over center. Introduction of basis simplifies some constructions and presents a bridge between the Gâteaux derivative and Jacobian matrix of map. This is exactly the place, where the Cauchy-Riemann equations should appear. The exploration of derivative of function of complex numbers reveals that the Cauchy-Riemann equation has algebraic origin and is related with statement that there exists R-linear function over complex field, however this function is not C-linear. For instance, conjugation of complex number is linear over real field, however it is not linear map over complex field.

In quaternion algebra H, there exist only R-linear map. The corollary of this statement is the ability represent every R-linear map using quaternion and absence of the evident analogue of the Cauchy-Riemann equation in quaternion algebra. However, in numerous papers and books dedicated to calculus over quaternion algebra mathematicians explore sets of maps that have properties similar to properties of functions of complex variable. Some of authors do not restrict themselves to quaternion algebra and explore more general algebras.

In the paper [3], Gelfand explores the quaternion algebra over arbitrary field assuming that product depends on arbitrary parameters. We assume $H = E(R, -1, -1)$. Using this paper, I decided to explore two cases that are important for me. The algebra $E(R, a, b)$ was interesting for me because I supposed to find parameters a, b such that the system of linear equations [2]-(3.2.17) is singular. It was important to understand what happens in this case. When I explored the structure of linear map over division ring it was not evident how non singularity of system of linear equations [2]-(3.2.17) have an influence on answer. However, the solution to this problem was not the one I had expected. It turned out that the system of linear equations is so simple that everybody can see that this system cannot be singular.

I have wrote that the Cauchy-Riemann equation is related with statement that complex field has real field as subfield. I assumed also that similar statement is possible in algebras with enough aggregate center. This is why I expected to see analogue of the Cauchy-Riemann equation in quaternion algebra over complex field. In the course of solving the problem I realized that algebra $E(C, -1, -1)$ is isomorphic to tensor product $C \otimes H$. Therefore linear functions of this algebra satisfy to the Cauchy-Riemann equation for C-component of tensor product. Therefore I can tell the same about Jacobian matrix of arbitrary function. Natural extension of this topic is exploration of tensor product $C \otimes (C \otimes H)$. In particular, I put my attention is non associativity of tensor product.

In the book [2] on the base of which I wrote this paper, I explore the Gâteaux derivative of function over division ring. However in this paper I consider arbitrary algebras that not always are division rings. During the time that I explore the Gâteaux derivative, I realized that this subject can be generalized to more wide set of algebras. I will prepare the complete research later. I wrote this paper in order to explore conditions when the Cauchy-Riemann equations are possible.

2. Conventions

(1) Function and map are synonyms. However according to tradition, correspondence between either rings or vector spaces is called map and map of
either real field or quaternion algebra is called function. I also follow this tradition, although I sometimes write the text where it is not clear what the term should be preferred.

(2) We can consider division ring D as D-vector space of dimension 1. According to this statement, we can explore not only homomorphisms of division ring D_1 into division ring D_2, but also linear maps of division rings. This means that map is multiplicative over maximum possible field. In particular, linear map of division ring D is multiplicative over center $Z(D)$. This statement does not contradict with definition of linear map of field because for field F is true $Z(F) = F$. When field F is different from maximum possible, I explicit tell about this in text.

(3) Let A be free finite dimensional algebra. Considering expansion of element of algebra A relative basis \mathbf{e} we use the same root letter to denote this element and its coordinates. However we do not use vector notation in algebra. In expression a^2, it is not clear whether this is component of expansion of element a relative basis, or this is operation $a^2 = aa$. To make text clearer we use separate color for index of element of algebra. For instance, $a = a^i \mathbf{e}_i$.

(4) If free finite dimensional algebra has unit, then we identify the vector of basis \mathbf{e}_0 with unit of algebra.

(5) Without a doubt, the reader of my articles may have questions, comments, objections. I will appreciate any response.

3. Linear Function of Complex Field

Theorem 3.1 (the Cauchy-Riemann equations). Let us consider complex field C as two-dimensional algebra over real field. Let

\[
\mathbf{e}_C = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}
\]

be the basis of algebra C. Then in this basis product has form

\[
\mathbf{e}_C^2 = -\mathbf{e}_C
\]

and structural constants have form

\[
B^{00}_C = 1 \quad B^{01}_C = 1 \\
B^{10}_C = 1 \quad B^{11}_C = -1
\]

Matrix of linear function

\[
y^i = x^jf_j
\]

of complex field over real field satisfies relationship

\[
f_0^0 = f_1^1 \\
f_0^1 = -f_1^0
\]

Proof. Equations (3.2) and (3.3) follow from equation $i^2 = -1$. Using equation [2]-(3.2.17) we get relationships

\[
f_0^0 = f^k B^p C^{00}_k B^{p0}_r B^{0r}_o + f^r B^0 C^{00}_o B^{0r}_0 + f^1 B^1 C^{10}_1 B^{11}_1 = f^{00} - f^{11}
\]

\[
f_0^1 = f^k B^p C^{00}_k B^{10}_p B^{1r}_r B^{0r}_o + f^r B^0 C^{00}_o B^{1r}_0 + f^1 B^1 C^{10}_0 B^{11}_1 = f^{01} + f^{10}
\]
(3.8) \[f_1^0 = f^{kr} B_{C_k}^p B_{C^0}^r = f^{0r} B_{C_0}^1 B_{C_1}^0 + f^{1r} B_{C_1}^0 B_{C_0}^r = -f_0^1 - f_1^0 \]

(3.9) \[f_1^1 = f^{kr} B_{C_k}^p B_{C^r}^1 = f^{0r} B_{C_0}^1 B_{C_1}^r + f^{1r} B_{C_1}^0 B_{C_0}^r = f_0^0 - f_1^1 \]

(3.4) follows from equations (3.6) and (3.9). (3.5) follows from equations (3.7) and (3.8).

\[\square \]

Theorem 3.2 (the Cauchy-Riemann equations). Since matrix

\[
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1}
\end{pmatrix}
\]

is Jacobian matrix of map of complex variable

\[x = x^0 + x^1 i \rightarrow y = y^0(x^0, x^1) + y^1(x^0, x^1)i \]

over real field, then

(3.10)

\[
\begin{align*}
\frac{\partial y^1}{\partial x^0} &= \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^0}{\partial x^0} &= \frac{\partial y^1}{\partial x^1}
\end{align*}
\]

Proof. The statement of theorem is corollary of theorem 3.1.

\[\square \]

Theorem 3.3. Derivative of function of complex variable satisfies to equation

(3.11) \[\frac{\partial y}{\partial x^0} + i \frac{\partial y}{\partial x^1} = 0 \]

Proof. Equation

\[
\begin{align*}
\frac{\partial y^0}{\partial x^0} + i \frac{\partial y^1}{\partial x^0} + i \frac{\partial y^0}{\partial x^1} - \frac{\partial y^1}{\partial x^1} &= 0
\end{align*}
\]

follows from equations (3.10).

\[\square \]

Equation (3.11) is equivalent to equation

(3.12) \[\begin{pmatrix} 1 & i \end{pmatrix} \begin{pmatrix} \frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1} \end{pmatrix} \begin{pmatrix} 1 \\
i \end{pmatrix} = 0 \]

4. Quaternion Algebra

In this paper I explore the set of quaternion algebras defined in [3].

Definition 4.1. Let \(F \) be field. Extension field \(F(i, j, k) \) is called the quaternion algebra \(E(F, a, b) \) over the field \(F^1 \) if multiplication in algebra \(E \) is defined according to rule

\[
\begin{array}{c|ccc}
{} & i & j & k \\
\hline
i & a & k & aj \\
j & -k & b & -bi \\
k & -aj & bi & -ab
\end{array}
\]

where \(a, b \in F, \ ab \neq 0 \).

\[^1 \text{t follow definition from [3].} \]
Elements of the algebra $E(F, a, b)$ have form
\[x = x^0 + x^1 i + x^2 j + x^3 k \]
where $x^i \in F$, $i = 0, 1, 2, 3$. Quaternion
\[\overline{x} = x^0 - x^1 i - x^2 j - x^3 k \]
is called conjugate to the quaternion x. We define the norm of the quaternion x using equation (4.2)
\[|x|^2 = x\overline{x} = (x^0)^2 - a(x^1)^2 - b(x^2)^2 + ab(x^3)^2 \]
From equation (4.2), it follows that $E(F, a, b)$ is algebra with division only when $a < 0$, $b < 0$. In this case we can renorm basis such that $a = -1$, $b = -1$.

We use symbol $E(F)$ to denote the quaternion division algebra $E(F, -1, -1)$ over the field F. Multiplication in algebra $E(F)$ is defined according to rule (4.3)
\[
\begin{array}{ccc}
 i & j & k \\
 -1 & k & -j \\
 -j & -1 & i \\
 k & j & -1 \\
\end{array}
\]

In algebra $E(F)$, the norm of the quaternion has form (4.4)
\[|x|^2 = x\overline{x} = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2 \]
In this case inverse element has form (4.5)
\[x^{-1} = |x|^{-2}\overline{x} \]
We will use notation $H = E(R, -1, -1)$.

The inner automorphism of quaternion algebra H^2
\[p \rightarrow qpq^{-1} \]
(4.6)
\[q(ix + jy + kz)q^{-1} = ix' + jy' + kz' \]
describes the rotation of the vector with coordinates x, y, z. The norm of quaternion q is irrelevant, although usually we assume $|q| = 1$. If q is written as sum of scalar and vector $q = \cos \alpha + (ia + jb + kc)\sin \alpha$ \quad $a^2 + b^2 + c^2 = 1$
then (4.6) is a rotation of the vector (x, y, z) about the vector (a, b, c) through an angle 2α.

5. TOWER OF ALGEBRAS

Let F_1 be algebra over the field F_2. Let \overline{e}_{12} be basis of algebra F_1 over the field F_2. Let $B_{12,k_{ij}}$ be structural constants of algebra F_1 over the field F_2.

Let F_2 be algebra over the field F_3. Let \overline{e}_{23} be basis of algebra F_2 over the field F_3. Let $B_{23,k_{ij}}$ be structural constants of algebra F_2 over the field F_3.

I will consider the algebra F_1 as direct sum of algebras F_2. Each item of sum I identify with vector of basis \overline{e}_{12}. Accordingly, I can consider algebra F_1 as algebra over field F_3. Let \overline{e}_{13} be basis of algebra F_1 over the field F_3. Index of basis \overline{e}_{13} consists from two indexes: index of fiber and index of vector of basis \overline{e}_{23} in fiber.

\[^2\text{See [6], p.643.}\]
I will identify vector of basis $\bar{e}_{12\cdot i}$ with unit in corresponding fiber. Then

$$\bar{e}_{13\cdot ji} = \bar{e}_{23\cdot j}\bar{e}_{12\cdot i}$$

The product of vectors of basis \bar{e}_{13} has form

$$\bar{e}_{13\cdot ji}\bar{e}_{13\cdot mk} = \bar{e}_{23\cdot j}\bar{e}_{12\cdot i}\bar{e}_{23\cdot m}\bar{e}_{12\cdot k} = B_{23\cdot jm}^a\bar{e}_{23\cdot a}\bar{B}_{12\cdot ik}\bar{e}_{12\cdot b}$$

Because $B_{12\cdot ik}^b \in F_2$, then expansion $B_{12\cdot ik}^b$ relative to basis \bar{e}_{23} has form

$$B_{12\cdot ik}^b = \bar{B}_{12\cdot ik}\bar{e}_{23}^c$$

Let us substitute (5.3) into (5.2)

$$\bar{e}_{13\cdot ji}\bar{e}_{13\cdot mk} = B_{23\cdot jm}^a\bar{e}_{23\cdot a}\bar{B}_{12\cdot ik}\bar{e}_{23\cdot c}\bar{e}_{12\cdot b}$$

Therefore, we can define structural constants of algebra F_1 over field F_3

$$B_{13\cdot db}^\cdot_{ji\cdot mk} = B_{23\cdot jm}^aB_{23\cdot ac}B_{12\cdot bc}$$

To verify construction, let us consider the product

$$\bar{e}_{12\cdot i}\bar{e}_{12\cdot k} = \bar{e}_{13\cdot 00}\bar{e}_{13\cdot 0k}$$

$$= B_{13\cdot 0i\cdot 0k}\bar{e}_{13\cdot db}$$

$$= B_{23\cdot 00}^aB_{23\cdot d}\bar{B}_{12\cdot bc}\bar{e}_{13\cdot db}$$

$$= B_{23\cdot 00}^aB_{23\cdot 0d}B_{12\cdot ik}\bar{e}_{13\cdot bd}$$

$$= B_{23\cdot 0c}B_{12\cdot ik}\bar{e}_{13\cdot bd}$$

On the other hand

$$\bar{e}_{12\cdot i}\bar{e}_{12\cdot k} = B_{12\cdot iki2\cdot b}$$

$$= B_{12\cdot iki2\cdot db}\bar{e}_{12\cdot b}$$

$$= B_{12\cdot iki2\cdot c}\bar{e}_{12\cdot c}$$

$$= B_{12\cdot iki2\cdot dc}\bar{e}_{12\cdot bc}$$

Expressions (5.6), (5.7) coincide.

Theorem 5.1. If $B_{12\cdot ik}^b \in F_3$, then we multiply components $\bar{e}_{12\cdot i}, \bar{e}_{23\cdot k}$ of vector $\bar{e}_{13\cdot ik}$ independently

$$B_{13\cdot db}^\cdot_{ji\cdot mk} = B_{23\cdot jm}^aB_{12\cdot ik}^b$$

Proof. From equation (5.2), it follows

$$\bar{e}_{13\cdot ji}\bar{e}_{13\cdot mk} = B_{23\cdot jm}^a\bar{e}_{23\cdot a}\bar{B}_{12\cdot ik}\bar{e}_{12\cdot b} = B_{23\cdot jm}^aB_{12\cdot ik}^b\bar{e}_{23\cdot ab}$$

Equation (5.8) follows from the equation (5.9).
6. QUATERNION ALGEBRA OVER COMPLEX FIELD

In this section, I will consider quaternion algebra \(E(C, -1, -1) \), where \(C \) is complex field.

Product in algebra \(E(C, -1, -1) \) is defined according to table (6.1).

\(\overline{e}_1 \cdot 1 \)	\(\overline{e}_2 \cdot 1 \)	\(\overline{e}_3 \cdot 1 \)
\(\overline{e}_1 \cdot \overline{e}_2 \cdot 1 \)	\(\overline{e}_1 \cdot \overline{e}_3 \cdot 1 \)	\(\overline{e}_2 \cdot \overline{e}_3 \cdot 1 \)

According to theorem [2]-7.3.1, structural constants of quaternion algebra have form

\[
\begin{align*}
B_{12}^{00} &= 1 & B_{12}^{11} &= 1 & B_{12}^{22} &= 1 & B_{12}^{33} &= 1 \\
B_{12}^{10} &= 1 & B_{12}^{01} &= -1 & B_{12}^{12} &= -1 & B_{12}^{21} &= -1 \\
B_{12}^{20} &= 1 & B_{12}^{31} &= -1 & B_{12}^{22} &= -1 & B_{12}^{13} &= -1 \\
B_{12}^{30} &= 1 & B_{12}^{23} &= 1 & B_{12}^{32} &= -1 & B_{12}^{03} &= -1
\end{align*}
\]

Let \(\overline{e}_{23-k} = \overline{e}_{C-k} \). Product in algebra \(C \) is defined according to rule 3.2. According to theorem 3.1, structural constants of complex field over real field have form (3.3).

Therefore, algebra \(E(C, -1, -1) \) is isomorphic to tensor product \(C \otimes H \). So we can select basis

\[
\overline{e}_{13-ij} = \overline{e}_{C-i} \otimes \overline{e}_{12-j}
\]

(6.2)

Theorem 6.1. Table of product in algebra \(E(C, -1, -1) \) over field \(R \) has form

\(\overline{e}_1 \overline{e}_2 \overline{e}_3 \)	\(\overline{e}_1 \overline{e}_2 \overline{e}_3 \)	\(\overline{e}_1 \overline{e}_2 \overline{e}_3 \)
\(\overline{e}_1 \overline{e}_2 \overline{e}_3 \)	\(\overline{e}_1 \overline{e}_2 \overline{e}_3 \)	\(\overline{e}_1 \overline{e}_2 \overline{e}_3 \)

Proof. Table is written according to equation

\[
(\overline{e}_{C-i} \otimes \overline{e}_{12-k})(\overline{e}_{C-j} \otimes \overline{e}_{12-m}) = (\overline{e}_{C-i} \overline{e}_{C-j}) \otimes (\overline{e}_{12-k} \overline{e}_{12-m})
\]

and definition of basis (6.2).

Theorem 6.2. Structural constants of the algebra \(E(C, -1, -1) \) over field \(R \) have form

\[
\begin{align*}
B_{13}^{00-00} &= 1 & B_{13}^{01-00} &= 1 & B_{13}^{02-00} &= 1 & B_{13}^{03-00} &= 1 \\
B_{13}^{01-01} &= 1 & B_{13}^{02-01} &= -1 & B_{13}^{03-01} &= -1 \\
B_{13}^{02-02} &= 1 & B_{13}^{03-02} &= -1 & B_{13}^{00-02} &= -1 \\
B_{13}^{03-03} &= 1 & B_{13}^{02-03} &= 1 & B_{13}^{01-03} &= -1 & B_{13}^{00-03} &= -1
\end{align*}
\]
Proof. We consider the statement of theorem either as corollary of the theorem 6.1, or as corollary of theorem 5.1.

\[B_{13}^{10-10} = 1, \quad B_{13}^{11-11} = 1, \quad B_{13}^{12-12} = 1, \quad B_{13}^{13-13} = 1 \]

Theorem 6.3 (The Cauchy-Riemann equations). Matrix of linear function

$$y^k = x^m f_{jm}^{ik}$$

of algebra \(E(C, -1, -1)\) satisfies relationship

\[
\begin{align*}
 f_{0i}^{0j} &= f_{1i}^{1j} \\
 f_{0i}^{1j} &= -f_{1i}^{0j}
\end{align*}
\]

(6.3)

\[B_{13}^{10-11} = 1, \quad B_{13}^{10-12} = 1, \quad B_{13}^{11-12} = 1, \quad B_{13}^{11-13} = 1 \]

\[B_{13}^{12-12} = 1, \quad B_{13}^{12-13} = 1, \quad B_{13}^{13-13} = 1 \]

Proof. From equations [2]-[3.2.17], (5.8), (3.3) it follows

\[
\begin{align*}
 f_{0i}^{0j} &= f_{ka-rc}^{ka-rc} B_{13}^{pb-ka-0i} B_{13}^{pb-rc} \\
 &= f_{ka-rc}^{ka-rc} B_{k0}^{pc} B_{12}^{ba} B_{0}^{pr} B_{12}^{j} B_{bc} \\
 &= f_{0a-0c}^{0a-0c} B_{00}^{pc} B_{12}^{ba} B_{0}^{pr} B_{12}^{j} B_{bc} \\
 &= f^{1a-1c} B_{10}^{i1} B_{12}^{ba} B_{11}^{bc} \\
 &= f^{0a-0c} B_{12}^{ba} B_{12}^{j} B_{bc} - f^{1a-1c} B_{12}^{ba} B_{12}^{j} B_{bc} \\
 &= (f^{0a-0c} - f^{1a-1c}) B_{12}^{ba} B_{12}^{j} B_{bc} \\
 f_{0i}^{1j} &= f_{ka-rc}^{ka-rc} B_{13}^{pb-ka-0i} B_{13}^{pb-rc} \\
 &= f_{ka-rc}^{ka-rc} B_{k0}^{pc} B_{12}^{ba} B_{0}^{pr} B_{12}^{j} B_{bc} \\
 &= f^{0a-0c} B_{00}^{pc} B_{12}^{ba} B_{0}^{pr} B_{12}^{j} B_{bc} \\
 &= f^{1a-1c} B_{10}^{i1} B_{12}^{ba} B_{11}^{bc} \\
 &= f^{0a-0c} B_{12}^{ba} B_{12}^{j} B_{bc} + f^{1a-0c} B_{12}^{ba} B_{12}^{j} B_{bc} \\
 &= (f^{0a-1c} + f^{1a-0c}) B_{12}^{ba} B_{12}^{j} B_{bc}
\end{align*}
\]

(6.4)

(6.5)
\(f_{ij} - \frac{\partial f_{ij}}{\partial \alpha} B_{ij} - \frac{\partial f_{ij}}{\partial \beta} B_{ij} \)
\[= f'_{ij} B_{ij} - \frac{\partial f_{ij}}{\partial \alpha} B_{ij} - \frac{\partial f_{ij}}{\partial \beta} B_{ij} \]
(6.6)
\[= f'_{ij} B_{ij} + \frac{\partial f_{ij}}{\partial \alpha} B_{ij} + \frac{\partial f_{ij}}{\partial \beta} B_{ij} \]
(6.7)
\[= f_{ij} + \frac{\partial f_{ij}}{\partial \alpha} B_{ij} + \frac{\partial f_{ij}}{\partial \beta} B_{ij} \]

Equation (6.3) follows from comparison of equations (6.4) and (6.7), (6.5) and (6.6).

Theorem 6.4 (The Cauchy-Riemann equations). Since matrix

\[\left(\frac{\partial y_{ij}}{\partial x_{kl}} \right) \]

is Jacobian matrix of map in algebra \(E(C, -1, -1) \), then

\[\frac{\partial y_{ij}}{\partial x_{kl}} = -\frac{\partial y_{ij}}{\partial x_{kl}} \]

\[\frac{\partial y_{ij}}{\partial x_{kl}} = \frac{\partial y_{ij}}{\partial x_{kl}} \]

Proof. The statement of theorem is corollary of theorem 6.3.

\[\square \]

7. ALGEBRA \(C \otimes (C \otimes H) \)

Algebra \(C \otimes (C \otimes H) \) is not quaternion algebra. However I consider this algebra here because this algebra is similar on algebra \(E(C, -1, -1) = C \otimes H \).

Algebra \(C \otimes (C \otimes H) \) is interesting from other point of view also. When we consider this algebra it becomes evident that tensor product of noncommutative rings is nonassociative. Because \(C \) is field then \(C \otimes C \) is isomorphic to \(C \), and therefore, \((C \otimes C) \otimes H \) is isomorphic \(C \otimes H \). However, because \(H \) is not algebra over complex field, then algebra \(C \otimes (C \otimes H) \) is different from algebra \((C \otimes C) \otimes H = C \otimes H \).

Algebra \(C \otimes (C \otimes H) \) has so large dimension, that it becomes unsuitable to consider product table and structural constants of this algebra. However it is easy to see that structure of this algebra is similar to structure of algebra considered in section 5.

We will represent basis of algebra \(C \otimes (C \otimes H) \) as

\[\tilde{\tau}_{kji} = \tilde{\tau}_{C \otimes k} \otimes (\tilde{\tau}_{C \otimes j} \otimes \tilde{\tau}_{H \otimes i}) \]

(7.1)
where \(\bar{\sigma}_C \) is basis of algebra \(C \) and \(\bar{\sigma}_H \) is basis of algebra \(H \). Correspondingly, the product in algebra \(C \otimes (C \otimes H) \) is defined componentwise
\[
(7.2) \quad a_1 \otimes (a_2 \otimes a_3) b_1 \otimes (b_2 \otimes b_2) = (a_1 b_1) \otimes ((a_2 b_2) \otimes (a_3 b_3))
\]

Theorem 7.1. Structural constants of the algebra \(C \otimes (C \otimes H) \) have form
\[
B_{r-p_{ji}q_{mk}}^{d_{rb}} = B_{C_{p_{ji}}q_{mk}}^{r_{db}} B_{C_{j_{mk}}}^{d_{rb}} B_{H_{i_{jk}}}^{b_{ik}}
\]
where \(B_{C_{pq}} \) are structural constants of complex field, \(B_{H_{ik}} \) are structural constants of quaternion algebra.

Proof. To prove the theorem it is enough to compare following equations
\[
\tau_{p_{ji}} \tau_{q_{mk}} = B_{r-p_{ji}q_{mk}}^{d_{rb}} \\
\tau_{p_{ji}} \tau_{q_{mk}} = \tau_{C_{p_{ji}}q_{mk}} \otimes (\tau_{C_{j_{mk}}} B_{C_{j_{mk}}}^{d_{rb}} B_{H_{i_{jk}}}^{b_{ik}}\tau_{H_{i_{jk}}})
\]
\[
= B_{C_{p_{ji}}q_{mk}}^{r_{db}} B_{C_{j_{mk}}}^{d_{rb}} B_{H_{i_{jk}}}^{b_{ik}}
\]
(7.3)

Theorem 7.2. Structural constants of the algebra \(C \otimes (C \otimes H) \) have form
\[
B^{00b}_{\cdot00\cdot00k} = B_{H_{ik}}^{b_{ik}} \quad B^{01b}_{\cdot01\cdot00k} = B_{H_{ik}}^{b_{ik}} \quad B^{01b}_{\cdot01\cdot01k} = -B_{H_{ik}}^{b_{ik}}
\]
\[
B^{10b}_{\cdot00\cdot10k} = B_{H_{ik}}^{b_{ik}} \quad B^{11b}_{\cdot01\cdot11k} = B_{H_{ik}}^{b_{ik}} \quad B^{11b}_{\cdot01\cdot10k} = -B_{H_{ik}}^{b_{ik}}
\]
\[
B^{10b}_{\cdot10\cdot10k} = B_{H_{ik}}^{b_{ik}} \quad B^{11b}_{\cdot11\cdot01k} = B_{H_{ik}}^{b_{ik}} \quad B^{11b}_{\cdot11\cdot11k} = B_{H_{ik}}^{b_{ik}}
\]
\[
B^{00b}_{\cdot10\cdot10k} = -B_{H_{ik}}^{b_{ik}} \quad B^{01b}_{\cdot10\cdot01k} = B_{H_{ik}}^{b_{ik}} \quad B^{10b}_{\cdot10\cdot00k} = -B_{H_{ik}}^{b_{ik}}
\]
\[
B^{11b}_{\cdot11\cdot00k} = B_{H_{ik}}^{b_{ik}}
\]
(7.4)

Proof. The statement of theorem is corollary of theorems 7.1, 3.1.

Theorem 7.3 (The Cauchy-Riemann equations). Matrix of linear function
\[
y^{ikp} = x^{jmr} f^{kip}_{jmr}
\]
of algebra \(C \otimes (C \otimes H) \) satisfies relationship
\[
f^{00j}_{\cdot00i} = f^{10j}_{\cdot01i} = f^{01j}_{\cdot01i} = f^{11j}_{\cdot11i}
\]
\[
f^{00j}_{\cdot00i} = f^{10j}_{\cdot10i} = -f^{00j}_{\cdot00i} = -f^{10j}_{\cdot01i} = -f^{01j}_{\cdot01i} = -f^{11j}_{\cdot11i}
\]
\[
f^{10j}_{\cdot10i} = -f^{00j}_{\cdot00i} = f^{11j}_{\cdot11i} = -f^{01j}_{\cdot01i} = -f^{10j}_{\cdot01i} = f^{01j}_{\cdot01i}
\]
\[
f^{11j}_{\cdot11i} = -f^{01j}_{\cdot01i} = f^{10j}_{\cdot01i} = f^{00j}_{\cdot00i} = f^{11j}_{\cdot11i}
\]
(7.4)

Proof. Using equations [2]-3.2.17, (7.3), we can repeat computing that we used to prove theorem 6.3. However, it is evident that this computing is different only
by set of indexes. Thus, from theorem 6.3, it follows

\[f_{0j1}^m = f_{1j1}^m \]
\[f_{0j1}^m = -f_{1j1}^m \]

(7.5)

\[f_{p0i}^q = f_{p1i}^q \]
\[f_{p0i}^q = -f_{p1i}^q \]

(7.6)

Equations (7.4) follow from equations (7.5), (7.6). □

Theorem 7.4 (The Cauchy-Riemann equations). Since matrix

\[
\left(\frac{\partial y_{ijp}}{\partial x_{klq}} \right)
\]

is Jacobian matrix of map in algebra \(C \otimes (C \otimes H) \), then

\[
\begin{align*}
\frac{\partial y_{00i}}{\partial x_{00j}} &= \frac{\partial y_{10i}}{\partial x_{10j}} = \frac{\partial y_{01i}}{\partial x_{01j}} = \frac{\partial y_{11i}}{\partial x_{11j}} \\
\frac{\partial y_{00i}}{\partial x_{-01j}} &= \frac{\partial y_{10i}}{\partial x_{11j}} = -\frac{\partial y_{01i}}{\partial x_{00j}} = -\frac{\partial y_{11i}}{\partial x_{00j}} \\
\frac{\partial y_{00i}}{\partial x_{-10j}} &= -\frac{\partial y_{10i}}{\partial x_{10j}} = \frac{\partial y_{01i}}{\partial x_{-00j}} = -\frac{\partial y_{11i}}{\partial x_{10j}} \\
\frac{\partial y_{00i}}{\partial x_{-11j}} &= -\frac{\partial y_{10i}}{\partial x_{11j}} = -\frac{\partial y_{01i}}{\partial x_{-00j}} = \frac{\partial y_{11i}}{\partial x_{00j}}
\end{align*}
\]

Proof. The statement of theorem is corollary of theorem 7.3. □

8. Quaternion Algebra \(E(R, a, b) \)

Assume \(\overline{e}_0 = 1, \overline{e}_1 = i, \overline{e}_2 = j, \overline{e}_3 = k \). According to equation (4.1) structural constants of algebra \(E(R, a, b) \) have form

\[
\begin{align*}
B_{00}^0 &= 1 & B_{01}^1 &= 1 & B_{02}^2 &= 1 & B_{03}^3 &= 1 \\
B_{10}^1 &= 1 & B_{11}^0 &= a & B_{12}^3 &= 1 & B_{13}^2 &= a \\
B_{20}^2 &= 1 & B_{21}^3 &= -1 & B_{22}^0 &= b & B_{23}^1 &= -b \\
B_{30}^3 &= 1 & B_{31}^2 &= -a & B_{32}^1 &= b & B_{33}^0 &= -ab
\end{align*}
\]

Theorem 8.1. Standard components of linear function and coordinates of corresponding linear map over field \(R \) satisfy relationship

\[
\begin{align*}
f_0^0 &= f_0^0 + af_{11}^1 + bf_{22}^2 - abf_{33}^3 \\
f_1^1 &= f_0^0 + af_{11}^1 - bf_{22}^2 + abf_{33}^3 \\
f_2^2 &= f_0^0 - af_{11}^1 + bf_{22}^2 + abf_{33}^3 \\
f_3^3 &= f_0^0 - af_{11}^1 - bf_{22}^2 - abf_{33}^3
\end{align*}
\]

(8.1)
\[
\begin{align*}
\begin{cases}
 f_0^1 &= f_0^{10} + f_1^{10} - bf_2^{23} + bf_3^{32} \\
 f_0^2 &= af_0^{10} + af_1^{10} + abf_2^{23} - abf_3^{32} \\
 f_2^3 &= -f_0^{10} + f_1^{10} + bf_2^{23} + bf_3^{32} \\
 f_3^3 &= -af_0^{10} + af_1^{10} - abf_2^{23} - abf_3^{32} \\
 f_0^4 &= f_0^{10} + f_1^{10} + f_2^{20} - af_3^{31} \\
 f_1^4 &= f_1^{10} + af_0^{10} - f_2^{20} + af_3^{31} \\
 f_2^5 &= bf_0^{10} - abf_1^{10} + bf_2^{20} + abf_3^{31} \\
 f_3^5 &= bf_0^{10} - abf_1^{10} - bf_2^{20} - abf_3^{31} \\
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
 f_0^0 &= \frac{1}{4} f_0^0 + \frac{1}{4} f_1^1 + \frac{1}{4} f_2^2 + \frac{1}{4} f_3^3 \\
 f_1^1 &= \frac{1}{4} f_0^0 + \frac{3}{4} f_1^1 + \frac{1}{4} f_2^2 + \frac{1}{4} f_3^3 \\
 f_2^2 &= \frac{1}{4} f_0^0 - \frac{1}{4} f_1^1 + \frac{1}{4} f_2^2 + \frac{1}{4} f_3^3 \\
 f_3^3 &= -\frac{1}{4} f_0^0 + \frac{1}{4} f_1^1 + \frac{1}{4} f_2^2 - \frac{1}{4} f_3^3 \\
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
 f_0^{10} &= \frac{1}{4a} f_0^0 + \frac{1}{4a} f_1^1 + \frac{1}{4a} f_2^2 + \frac{1}{4a} f_3^3 \\
 f_0^{11} &= \frac{1}{4a} f_1^0 + \frac{1}{4a} f_0^1 + \frac{1}{4a} f_2^2 + \frac{1}{4a} f_3^3 \\
 f_0^{22} &= \frac{1}{4b} f_0^0 - \frac{1}{4b} f_1^1 + \frac{1}{4b} f_2^2 - \frac{1}{4b} f_3^3 \\
 f_0^{33} &= -\frac{1}{4ab} f_0^0 + \frac{1}{4ab} f_1^1 + \frac{1}{4ab} f_2^2 - \frac{1}{4ab} f_3^3 \\
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
 f_0^{20} &= \frac{1}{4b} f_0^0 - \frac{1}{4b} f_1^1 + \frac{1}{4b} f_2^2 - \frac{1}{4b} f_3^3 \\
 f_0^{31} &= \frac{1}{4ab} f_0^0 - \frac{1}{4ab} f_1^1 - \frac{1}{4ab} f_2^2 + \frac{1}{4ab} f_3^3 \\
 f_0^{02} &= \frac{1}{4b} f_0^0 + \frac{1}{4b} f_1^1 + \frac{1}{4b} f_2^2 + \frac{1}{4b} f_3^3 \\
 f_0^{13} &= -\frac{1}{4ab} f_0^0 - \frac{1}{4ab} f_1^1 - \frac{1}{4ab} f_2^2 - \frac{1}{4ab} f_3^3 \\
\end{cases}
\end{align*}
\]
\[\begin{align*}
\{ f^{30} &= \frac{1}{4ab} f^3 + \frac{1}{4} f^1 + \frac{1}{4} f^0 + \frac{1}{4} f^3 \\
\{ f^{21} &= \frac{1}{4ab} f^3 + \frac{1}{4} f^1 + \frac{1}{4} f^0 + \frac{1}{4} f^3 \\
\{ f^{12} &= \frac{1}{4ab} f^3 + \frac{1}{4} f^1 + \frac{1}{4} f^0 + \frac{1}{4} f^3 \\
\{ f^{03} &= \frac{1}{4ab} f^3 + \frac{1}{4} f^1 + \frac{1}{4} f^0 + \frac{1}{4} f^3
\end{align*} \]

(8.8)

Proof. Using equation [2]-3.2.17 we get relationships

\[f^{0}_0 = f^{kr} B^r_{k0} B^r_{pr} \]
\[= f^{00} B^0_{00} B^0_{00} + f^{11} B^1_{10} B^1_{10} + f^{22} B^2_{20} B^2_{20} + f^{33} B^3_{30} B^3_{33} \]
\[= f^{00} + a f^{11} + b f^{22} - a b f^{33} \]

\[f^{1}_0 = f^{kr} B^r_{k0} B^1_{pr} \]
\[= f^{01} B^0_{01} B^1_{10} + f^{10} B^1_{10} B^1_{10} + f^{23} B^2_{20} B^1_{23} + f^{32} B^3_{30} B^3_{32} \]
\[= f^{01} + f^{10} - b f^{23} + b f^{32} \]

\[f^{2}_0 = f^{kr} B^r_{k0} B^2_{pr} \]
\[= f^{02} B^0_{02} B^2_{02} + f^{13} B^1_{10} B^2_{13} + f^{20} B^2_{20} B^2_{20} + f^{31} B^3_{30} B^2_{31} \]
\[= f^{02} + a f^{13} + f^{20} - a f^{31} \]

\[f^{3}_0 = f^{kr} B^r_{k0} B^3_{pr} \]
\[= f^{03} B^0_{03} B^3_{03} + f^{12} B^1_{10} B^3_{12} + f^{21} B^2_{20} B^3_{21} + f^{30} B^3_{30} B^3_{30} \]
\[= f^{03} + f^{12} - f^{21} + f^{30} \]

\[f^{0}_1 = f^{kr} B^r_{k1} B^0_{pr} \]
\[= f^{01} B^0_{01} B^0_{11} + f^{10} B^0_{10} B^0_{10} + f^{23} B^2_{21} B^0_{33} + f^{32} B^3_{31} B^2_{22} \]
\[= a f^{01} + a f^{10} + a b f^{23} - a b f^{32} \]

\[f^{1}_1 = f^{kr} B^r_{k1} B^1_{pr} \]
\[= f^{00} B^0_{10} B^1_{10} + f^{11} B^1_{11} B^1_{01} + f^{22} B^2_{21} B^1_{22} + f^{33} B^3_{31} B^1_{23} \]
\[= f^{00} + a f^{11} - b f^{22} + b f^{33} \]

\[f^{2}_1 = f^{kr} B^r_{k1} B^2_{pr} \]
\[= f^{03} B^0_{03} B^2_{13} + f^{12} B^1_{11} B^2_{02} + f^{21} B^2_{21} B^2_{31} + f^{30} B^3_{31} B^2_{20} \]
\[= a f^{03} + a f^{12} + a f^{21} - a f^{30} \]

\[f^{3}_1 = f^{kr} B^r_{k1} B^3_{pr} \]
\[= f^{02} B^0_{02} B^3_{12} + f^{13} B^1_{11} B^3_{03} + f^{20} B^2_{21} B^3_{30} + f^{31} B^3_{31} B^3_{21} \]
\[= f^{02} + a f^{13} - f^{20} + a f^{31} \]
\[f^0_2 = f^{kr}_v B^2_{v2} B^0_{pr} \]
\[= f^{02}_v B^0_{02} B^0_{22} + f^{13}_v B^1_{12} B^0_{33} + f^{20}_v B^0_{22} B^0_{00} + f^{31}_v B^1_{32} B^0_{11} \]
\[= bf^{02} - abf^{13} + bf^{20} + abf^{31} \]

\[f^1_2 = f^{kr}_v B^1_{v2} B^1_{pr} \]
\[= f^{03}_v B^0_{03} B^1_{23} + f^{12}_v B^1_{12} B^1_{32} + f^{21}_v B^1_{22} B^1_{01} + f^{30}_v B^1_{32} B^1_{10} \]
\[= -bf^{03} + bf^{12} + bf^{21} + bf^{30} \]

\[f^2_2 = f^{kr}_v B^2_{v2} B^2_{pr} \]
\[= f^{00}_v B^0_{00} B^2_{20} + f^{11}_v B^1_{12} B^2_{31} + f^{22}_v B^2_{22} B^0_{02} + f^{33}_v B^1_{32} B^2_{13} \]
\[= f^{00} - af^{11} + bf^{22} + abf^{33} \]

\[f^3_2 = f^{kr}_v B^3_{v2} B^3_{pr} \]
\[= f^{01}_v B^0_{03} B^3_{21} + f^{10}_v B^1_{12} B^3_{30} + f^{23}_v B^1_{22} B^3_{03} + f^{32}_v B^3_{32} B^3_{12} \]
\[= -f^{01} + f^{10} + bf^{23} + bf^{32} \]

\[f^0_3 = f^{kr}_v B^0_{v3} B^0_{pr} \]
\[= f^{03}_v B^0_{03} B^0_{03} + f^{12}_v B^1_{13} B^0_{22} + f^{21}_v B^1_{23} B^0_{11} + f^{30}_v B^0_{03} B^0_{00} \]
\[= -bf^{03} + abf^{12} - abf^{21} - abf^{30} \]

\[f^1_3 = f^{kr}_v B^1_{v3} B^1_{pr} \]
\[= f^{02}_v B^0_{02} B^1_{32} + f^{13}_v B^1_{13} B^1_{23} + f^{20}_v B^1_{23} B^1_{10} + f^{31}_v B^0_{33} B^1_{01} \]
\[= bf^{02} - abf^{13} - bf^{20} - abf^{31} \]

\[f^2_3 = f^{kr}_v B^2_{v3} B^2_{pr} \]
\[= f^{01}_v B^0_{03} B^2_{31} + f^{10}_v B^1_{13} B^2_{20} + f^{23}_v B^1_{23} B^2_{13} + f^{32}_v B^1_{33} B^0_{02} \]
\[= -af^{01} + af^{10} - bf^{23} - abf^{32} \]

\[f^3_3 = f^{kr}_v B^3_{v3} B^3_{pr} \]
\[= f^{00}_v B^0_{00} B^3_{00} + f^{11}_v B^1_{13} B^3_{31} + f^{22}_v B^2_{23} B^3_{12} + f^{33}_v B^3_{33} B^3_{03} \]
\[= f^{00} - af^{11} - bf^{22} - abf^{33} \]

We group these relationships into systems of linear equations (8.1), (8.2), (8.3), (8.4).

(8.5) is solution of system of linear equations (8.1).

(8.6) is solution of system of linear equations (8.2).

(8.7) is solution of system of linear equations (8.3).

(8.8) is solution of system of linear equations (8.4). \(□\)

Theorem 8.2. For any values of parameters \(a \neq 0, b \neq 0\), there exists one to one map between coordinates of linear function of algebra \(E(R, a, b)\) and its standard components.

Proof. The statement of theorem is corollary of theorem 8.1. \(□\)
9. Regular Function

Although there is no analogue of the Cauchy-Riemann equations in quaternion algebra, in different papers mathematicians explore different sets of functions that have properties similar to properties of functions of complex variable. In [4, 5], there is definition of regular function that satisfies to equation

\[
\frac{\partial f}{\partial x^0} + i \frac{\partial f}{\partial x^1} + j \frac{\partial f}{\partial x^2} + k \frac{\partial f}{\partial x^3} = 0
\]

Theorem 9.1. Differential equation (9.1) is equivalent to system of differential equations

\[
\begin{align*}
\frac{\partial f^0}{\partial x^0} - \frac{\partial f^1}{\partial x^1} - \frac{\partial f^2}{\partial x^2} - \frac{\partial f^3}{\partial x^3} &= 0 \\
\frac{\partial f^0}{\partial x^1} + \frac{\partial f^1}{\partial x^0} - \frac{\partial f^2}{\partial x^3} + \frac{\partial f^3}{\partial x^2} &= 0 \\
\frac{\partial f^0}{\partial x^2} + \frac{\partial f^1}{\partial x^3} + \frac{\partial f^2}{\partial x^0} - \frac{\partial f^3}{\partial x^1} &= 0 \\
\frac{\partial f^0}{\partial x^3} - \frac{\partial f^1}{\partial x^2} - \frac{\partial f^2}{\partial x^1} + \frac{\partial f^3}{\partial x^0} &= 0
\end{align*}
\]

Proof. Let us substitute

\[
\frac{\partial f}{\partial x^i} = \frac{\partial f^0}{\partial x^i} + \frac{\partial f^1}{\partial x^i} i + \frac{\partial f^2}{\partial x^i} j + \frac{\partial f^3}{\partial x^i} k
\]

into equation (9.1). We will get

\[
\begin{align*}
\frac{\partial f^0}{\partial x^0} + i \frac{\partial f^1}{\partial x^1} + j \frac{\partial f^2}{\partial x^2} + k \frac{\partial f^3}{\partial x^3} &= \frac{\partial f^0}{\partial x^0} - \frac{\partial f^1}{\partial x^1} - \frac{\partial f^2}{\partial x^2} - \frac{\partial f^3}{\partial x^3} \\
&\quad + i(\frac{\partial f^0}{\partial x^1} + \frac{\partial f^1}{\partial x^0} - \frac{\partial f^2}{\partial x^3} + \frac{\partial f^3}{\partial x^2}) \\
&\quad + j(\frac{\partial f^0}{\partial x^2} + \frac{\partial f^1}{\partial x^3} + \frac{\partial f^2}{\partial x^0} - \frac{\partial f^3}{\partial x^1}) \\
&\quad + k(\frac{\partial f^0}{\partial x^3} - \frac{\partial f^1}{\partial x^2} - \frac{\partial f^2}{\partial x^1} + \frac{\partial f^3}{\partial x^0}) = 0
\end{align*}
\]

The statement of theorem follows from equation (9.4). \(\square\)

In the paper [1], corollary 3.1.2, p. 1000, Deavours proves that the only regular quaternion functions with bounded norm is a constant.

Theorem 9.2. Components of the Gâteaux derivative of regular quaternion function satisfy to equations

\[
\begin{align*}
\frac{\partial q^{00}}{\partial x} + \frac{\partial q^{11}}{\partial x} + \frac{\partial q^{22}}{\partial x} + \frac{\partial q^{33}}{\partial x} &= 0 \\
- \frac{\partial q^{01}}{\partial x} + \frac{\partial q^{10}}{\partial x} + \frac{\partial q^{23}}{\partial x} - \frac{\partial q^{32}}{\partial x} &= 0 \\
- \frac{\partial q^{02}}{\partial x} - \frac{\partial q^{13}}{\partial x} + \frac{\partial q^{20}}{\partial x} + \frac{\partial q^{31}}{\partial x} &= 0 \\
- \frac{\partial q^{03}}{\partial x} - \frac{\partial q^{12}}{\partial x} + \frac{\partial q^{21}}{\partial x} + \frac{\partial q^{30}}{\partial x} &= 0
\end{align*}
\]
Proof. Let us substitute equations \([2]-(7.3.1), [2]-(7.3.3), [2]-(7.3.5), [2]-(7.3.7)\) into equation \((9.2)\). We will get

\[
\frac{\partial f^0}{\partial x^0} \frac{\partial f^1}{\partial x^1} - \frac{\partial f^2}{\partial x^2} - \frac{\partial f^3}{\partial x^3} = 0
\]

\[
= \frac{\partial^{00} y}{\partial x^0} \frac{\partial^{11} y}{\partial x^1} - \frac{\partial^{22} y}{\partial x^2} - \frac{\partial^{33} y}{\partial x^3} - \left(\frac{\partial^{00} y}{\partial x^0} + \frac{\partial^{11} y}{\partial x^1} + \frac{\partial^{22} y}{\partial x^2} + \frac{\partial^{33} y}{\partial x^3} \right)
\]

\[
- \left(\frac{\partial^{00} y}{\partial x^0} + \frac{\partial^{11} y}{\partial x^1} + \frac{\partial^{22} y}{\partial x^2} + \frac{\partial^{33} y}{\partial x^3} \right) - \left(\frac{\partial^{00} y}{\partial x^0} + \frac{\partial^{11} y}{\partial x^1} + \frac{\partial^{22} y}{\partial x^2} + \frac{\partial^{33} y}{\partial x^3} \right)
\]

\[
= -2 \frac{\partial^{00} y}{\partial x^0} - 2 \frac{\partial^{11} y}{\partial x^1} - 2 \frac{\partial^{22} y}{\partial x^2} - 2 \frac{\partial^{33} y}{\partial x^3}
\]

\[
= 0
\]

\[
\frac{\partial f^0}{\partial x^0} + \frac{\partial f^1}{\partial x^1} - \frac{\partial f^2}{\partial x^2} + \frac{\partial f^3}{\partial x^3} = 0
\]

\[
= -\frac{\partial^{01} y}{\partial x^0} + \frac{\partial^{10} y}{\partial x^1} + \frac{\partial^{23} y}{\partial x^2} + \frac{\partial^{32} y}{\partial x^3} + \left(\frac{\partial^{01} y}{\partial x^0} + \frac{\partial^{10} y}{\partial x^1} + \frac{\partial^{23} y}{\partial x^2} + \frac{\partial^{32} y}{\partial x^3} \right)
\]

\[
- \left(\frac{\partial^{01} y}{\partial x^0} + \frac{\partial^{10} y}{\partial x^1} + \frac{\partial^{23} y}{\partial x^2} + \frac{\partial^{32} y}{\partial x^3} \right) + \left(\frac{\partial^{01} y}{\partial x^0} + \frac{\partial^{10} y}{\partial x^1} + \frac{\partial^{23} y}{\partial x^2} + \frac{\partial^{32} y}{\partial x^3} \right)
\]

\[
= -2 \frac{\partial^{01} y}{\partial x^0} + 2 \frac{\partial^{10} y}{\partial x^1} + 2 \frac{\partial^{23} y}{\partial x^2} - 2 \frac{\partial^{32} y}{\partial x^3}
\]

\[
= 0
\]

\[
\frac{\partial f^0}{\partial x^0} + \frac{\partial f^1}{\partial x^1} - \frac{\partial f^2}{\partial x^2} + \frac{\partial f^3}{\partial x^3} = 0
\]

\[
= -\frac{\partial^{02} y}{\partial x^0} + \frac{\partial^{13} y}{\partial x^1} + \frac{\partial^{20} y}{\partial x^2} + \frac{\partial^{31} y}{\partial x^3} + \left(\frac{\partial^{02} y}{\partial x^0} + \frac{\partial^{13} y}{\partial x^1} + \frac{\partial^{20} y}{\partial x^2} + \frac{\partial^{31} y}{\partial x^3} \right)
\]

\[
+ \left(\frac{\partial^{02} y}{\partial x^0} + \frac{\partial^{13} y}{\partial x^1} + \frac{\partial^{20} y}{\partial x^2} + \frac{\partial^{31} y}{\partial x^3} \right) - \left(\frac{\partial^{02} y}{\partial x^0} + \frac{\partial^{13} y}{\partial x^1} + \frac{\partial^{20} y}{\partial x^2} + \frac{\partial^{31} y}{\partial x^3} \right)
\]

\[
= -2 \frac{\partial^{02} y}{\partial x^0} - 2 \frac{\partial^{13} y}{\partial x^1} + 2 \frac{\partial^{20} y}{\partial x^2} + 2 \frac{\partial^{31} y}{\partial x^3}
\]

\[
= 0
\]

\[
\frac{\partial f^0}{\partial x^0} + \frac{\partial f^1}{\partial x^1} - \frac{\partial f^2}{\partial x^2} + \frac{\partial f^3}{\partial x^3} = 0
\]

\[
= -\frac{\partial^{03} y}{\partial x^0} + \frac{\partial^{12} y}{\partial x^1} - \frac{\partial^{21} y}{\partial x^2} + \frac{\partial^{30} y}{\partial x^3} - \left(\frac{\partial^{03} y}{\partial x^0} + \frac{\partial^{12} y}{\partial x^1} - \frac{\partial^{21} y}{\partial x^2} + \frac{\partial^{30} y}{\partial x^3} \right)
\]

\[
- \left(\frac{\partial^{03} y}{\partial x^0} + \frac{\partial^{12} y}{\partial x^1} - \frac{\partial^{21} y}{\partial x^2} + \frac{\partial^{30} y}{\partial x^3} \right) + \left(\frac{\partial^{03} y}{\partial x^0} + \frac{\partial^{12} y}{\partial x^1} - \frac{\partial^{21} y}{\partial x^2} + \frac{\partial^{30} y}{\partial x^3} \right)
\]

\[
= -2 \frac{\partial^{03} y}{\partial x^0} + 2 \frac{\partial^{12} y}{\partial x^1} + 2 \frac{\partial^{21} y}{\partial x^2} + 2 \frac{\partial^{30} y}{\partial x^3}
\]

\[
= 0
\]

□
Theorem 9.3. The Gâteaux differential of regular function over quaternion algebra has form

\[
- \left(\frac{\partial^{11} y}{\partial x} + \frac{\partial^{22} y}{\partial x} + \frac{\partial^{33} y}{\partial x} \right) dx + \frac{\partial^{11} y}{\partial x} idxi + \frac{\partial^{22} y}{\partial x} jdxj + \frac{\partial^{33} y}{\partial x} kdxk \\
+ \left(\frac{\partial^{10} y}{\partial x} + \frac{\partial^{23} y}{\partial x} - \frac{\partial^{32} y}{\partial x} \right) dxj - \frac{\partial^{13} y}{\partial x} idxk + \frac{\partial^{20} y}{\partial x} jdxk + \frac{\partial^{31} y}{\partial x} kdxj \\
+ \left(-\frac{\partial^{12} y}{\partial x} + \frac{\partial^{21} y}{\partial x} + \frac{\partial^{30} y}{\partial x} \right) dsk - \frac{\partial^{12} y}{\partial x} idsk + \frac{\partial^{21} y}{\partial x} jdsk + \frac{\partial^{30} y}{\partial x} kdsk
\]

(9.6)

Proof. The statement of theorem is corollary of theorem [2]-5.2.8. □

Equation (9.1) is equivalent to equation

\[
\begin{pmatrix}
\frac{\partial f^0}{\partial x^0} & \frac{\partial f^0}{\partial x^1} & \frac{\partial f^0}{\partial x^2} & \frac{\partial f^0}{\partial x^3} \\
\frac{\partial f^1}{\partial x^0} & \frac{\partial f^1}{\partial x^1} & \frac{\partial f^1}{\partial x^2} & \frac{\partial f^1}{\partial x^3} \\
\frac{\partial f^2}{\partial x^0} & \frac{\partial f^2}{\partial x^1} & \frac{\partial f^2}{\partial x^2} & \frac{\partial f^2}{\partial x^3} \\
\frac{\partial f^3}{\partial x^0} & \frac{\partial f^3}{\partial x^1} & \frac{\partial f^3}{\partial x^2} & \frac{\partial f^3}{\partial x^3}
\end{pmatrix}
\begin{pmatrix}
1 \\
i \\
j \\
k
\end{pmatrix} = 0
\]

(9.7)

10. INSTEAD OF AN EPILOGUE

The complex field and quaternion algebra have both common properties and differences. These differences make it harder to identify in the quaternion algebra patterns similar to those we have observed in the complex field. Therefore, it is very important to understand these differences.

One of the research directions is finding an analog to the Cauchy-Riemann equation in quaternion algebra. In this paper, I reviewed some studies in this area.

According to the theorem [2]-7.1.1, linear mapping has matrix

\[
\begin{pmatrix}
a_0 & -a_1 \\
a_1 & a_0
\end{pmatrix}
\]

This mapping corresponds to multiplication by the number \(a = a_0 + a_1 i \). The statement follows from equations

\[
(a_0 + a_1 i)(x_0 + x_1 i) = a_0 x_0 - a_1 x_1 + (a_0 x_1 + a_1 x_0)i
\]

\[
\begin{pmatrix}
a_0 & -a_1 \\
a_1 & a_0
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_1
\end{pmatrix} = \begin{pmatrix}
a_0 x_0 - a_1 x_1 \\
a_1 x_0 + a_0 x_1
\end{pmatrix}
\]

I decided to consider a similar class of functions of quaternions. The linear mapping of quaternion algebra

\[
x \to ax
\]
has matrix
\[
\begin{pmatrix}
a^0 & -a^1 & -a^2 & -a^3 \\
a^1 & a^0 & -a^3 & a^2 \\
a^2 & a^3 & a^0 & -a^1 \\
a^3 & -a^2 & a^1 & a^0
\end{pmatrix}
\] (10.1)

It is interesting to consider the class of quaternion functions which has derivative of similar structure. However I think that the structure of the matrix (10.1) is too restrictive for derivative of functions of quaternions and I little relaxed the requirement. I assumed that the derivative satisfies to following equations
\[
\frac{\partial y^i}{\partial x^0} = \frac{\partial y^1}{\partial x^1} = \frac{\partial y^2}{\partial x^2} = \frac{\partial y^3}{\partial x^3}
\] (10.2)
\[
\frac{\partial y^i}{\partial x^j} = -\frac{\partial y^j}{\partial x^i} \quad i \neq j
\] (10.3)

It is easy to see that derivative of function like
\[
y = ax \quad y = xa
\]
satisfies to equations (10.2), (10.3).

Consider the function
\[
y = x^2
\]

Direct calculation gives
\[
y^0 = (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2
y^1 = 2x^0 x^1
y^2 = 2x^0 x^2
y^3 = 2x^0 x^3
\] (10.4)

The derivative of the mapping (10.4) has matrix
\[
\begin{pmatrix}
2x^0 & -2x^1 & -2x^2 & -2x^3 \\
2x^1 & 2x^0 & 0 & 0 \\
2x^2 & 0 & 2x^0 & 0 \\
2x^3 & 0 & 0 & 2x^0
\end{pmatrix}
\] (10.5)

Therefore, the matrix (10.5) satisfies to equations (10.2), (10.3).

Thus, the set of functions whose derivative satisfies to equations (10.2), (10.3) is sufficiently large. The same time, derivative of conjugation does not satisfy these equations.

Without a doubt, this is only the beginning of the study, and many questions must be answered.

11. References

[1] C.A. Deavours, The Quaternion Calculus, American Mathematical Monthly, 80 (1973), pp. 995 - 1008
[2] Aleks Kleyn, Introduction into Calculus over Division Ring, eprint arXiv:0812.4763 (2010)
[3] I. M. Gelfand, M. I. Graev, Representation of Quaternion Groups over Locally Compact and Functional Fields, Funct. Anal. Appl. 2 (1968) 19 - 33;
Izrail Moiseevich Gelfand, Semen Grigorevich Gindikin,
Izrail M. Gelfand: Collected Papers, volume II, 435 - 449, Springer, 1989

[4] Fueter, R. Die Funktionentheorie der Differentialgleichungen $\Delta u = 0$ und $\Delta\Delta u = 0$ mit vier reellen Variablen. Comment. Math. Helv. 7 (1935), 307-330

[5] A. Sudbery, Quaternionic Analysis, Math. Proc. Camb. Phil. Soc. (1979), 85, 199 - 225

[6] Sir William Rowan Hamilton, The Mathematical Papers, Vol. III, Algebra, Cambridge at the University Press, 1967
Этюд о кватернионах

Александр Клейн

Аннотация. В статье рассматривается множество алгебр кватернионов над полем. Алгебра кватернионов $E(C, -1, -1)$ изоморфна тензорному произведению поля комплексных чисел C и алгебры кватернионов $H = E(R, -1, -1)$. Рассмотрено два множества функций алгебры кватернионов, которые могут иметь уравнения похожие на уравнение Коши-Римана для функций комплексной переменной.

• Множество функций, удовлетворяющих уравнению

$$\frac{\partial f}{\partial x^0} + i \frac{\partial f}{\partial x^1} + j \frac{\partial f}{\partial x^2} + k \frac{\partial f}{\partial x^3} = 0$$

• Множество функций, удовлетворяющих системе уравнений

$$\frac{\partial y^i}{\partial x^0} = \frac{\partial y^i}{\partial x^1} = \frac{\partial y^i}{\partial x^2} = \frac{\partial y^i}{\partial x^3}$$
$$\frac{\partial y^j}{\partial x^i} = -\frac{\partial y^i}{\partial x^j} \quad i \neq j$$

Светлой памяти И. М. Гельфанда

СОДЕРЖАНИЕ

1. Предисловие ... 1
2. Согласления ... 3
3. Линейная функция комплексного поля 3
4. Алгебра кватернионов .. 5
5. Башня алгебр ... 6
6. Алгебра кватернионов над полем комплексных чисел 7
7. Алгебра $C \otimes (C \otimes H)$.. 10
8. Алгебра кватернионов $E(R, a, b)$ 12
9. Регулярная функция .. 15
10. Вместо эпилога ... 18
11. Список литературы ... 19

1. ПРЕДИСЛОВИЕ

Когда я начал исследовать математический анализ над телом, я обратил внимание на большое количество статей, посвящённое регулярным функциям кватернионов и аналогу уравнения Коши-Римана. Я хотел понять, появляется

Key words and phrases. алгебра, линейная алгебра, тело, производная.
Aleks_Kleyn@MailAPS.org.
http://sites.google.com/site/AleksKleyn/.
http://arxiv.org/a/kleyn_a_1.
http://AleksKleyn.blogspot.com/.

1
ли уравнение Коши-Римана в рамках той теории, которую я изучаю. Это и послужило толчком к рассмотрению тела как векторного пространства над центром.

Введение базиса упрощает некоторые построения и является своеобразным мостом между произвольной Гато и матрицей Якобы отображения. Это именно то место, где должно появиться уравнение Коши-Римана. Рассмотрение произвольной функции комплексных чисел показывает, что уравнение Коши-Римана имеет алгебраическую природу и связана с тем, что существует R-линейная функция поля комплексных чисел, не являющаяся C-линейной. Например, соотношение комплексного числа линейно над полем действительных чисел, но не является линейным отображением над полем комплексных чисел.

В алгебре кватернионов H существует только R-линейное отображение. Следствием этого является возможность выразить любое R-линейное отображение через кватернион и отсутствие очевидного аналога уравнения Коши-Римана в алгебре кватернионов. Тем не менее, в многочисленных статьях и книгах, посвященных анализу над алгеброй кватернионов, математики изучают множество отображений, свойства которых похожи на свойства функции комплексной переменной. Некоторые авторы не ограничивают себя алгеброй кватернионов и рассматривают более общие алгебры.

В статье [3] Гельфанд рассматривает алгебру кватернионов над произвольным полем и с произвольными параметрами. При этом $H = E(R, -1, -1)$. Опираясь на эту статью, я решил рассмотреть два случая, которые для меня важны.

Алгебра $E(R, a, b)$ была интересна для меня тем, что я хотел подобрать параметры a, b так, что система линейных уравнений (3.2.17) становится вырожденной. Мне было важно понять, что произойдет в этом случае. При изучении структуры линейного отображения над телом для меня было не совсем очевидно, как повлияет на ответ вырожденность системы линейных уравнений (3.2.17). Однако решение этой задачи не дало ожидаемого ответа. Система линейных уравнений оказалась настолько простой, что невооруженным глазом видно, что эта система не может быть вырожденной.

Я писал, что уравнение Коши-Римана связано с тем, что поле комплексных чисел имеет подполе действительных чисел. Я высказал также предположение, что похожее утверждение возможно в алгебрах с достаточно сложным центром. Поэтому в алгебре кватернионов над полем комплексных чисел я ожидал увидеть аналог уравнения Коши-Римана. В ходе решения задачи выяснилось, что алгебра $E(C, -1, -1)$ изоморфна тензорному произведению $C \otimes H$. Поэтому линейные функции этой алгебры, а следовательно, и матрица Якобы произвольного отображения, удовлетворяют уравнению Коши-Римана для компоненты тензорного произведения, порождённой полем C. Естественным продолжением этой темы явилось изучение тензорного произведения $C \otimes (C \otimes H)$. В частности, первое, на что я обратил внимание, - это неассоциативность тензорного произведения.

Алгебра $C \otimes H$ интересна для меня и с другой точки зрения. Поле комплексных чисел является алгебраическим замыканием поля действительных чисел. Не возникает ли подобная связь между алгеброй H и алгеброй $C \otimes H$?

В книге [2], на основе которой написана эта статья я рассматриваю производные Гато функции тела. Однако в этой статье я рассматриваю произвольные
алгебры, которые не всегда являются телом. В течение того времени, что я работаю с производной Гато, я понял, что эта тема может быть обобщена на более широкий класс алгебр. Полное исследование появится позже, я написал эту статью с целью изучить условия появления уравнения Коши-Римана.

2. Соглашения

(1) Функция и отображение - синонимы. Однако существует традиция соответствие между кольцами или векторными пространствами называть отображением, а отображение поля действительных чисел или алгебры кватернионов называть функцией. Я тоже следую этой традиции, хотя встречается текст, в котором неясно, какому термину надо отдать предпочтение.

(2) Тело \(D \) можно рассматривать как \(D \)-векторное пространство размерности 1. Соответственно этому, мы можем изучать не только гомоморфизм тела \(D_1 \) в тело \(D_2 \), но и линейное отображение тел. При этом подразумевается, что отображение мультипликативно над максимально возможным полем. В частности, линейное отображение тела \(D \) мультипликативно над центром \(Z(D) \). Это не противоречит определению линейного отображения поля, так как для поля \(F \) справедливо \(Z(F) = F \). Если поле \(F \) отлично от максимально возможного, то я это явно указываю в тексте.

(3) Пусть \(A \) - свободная конечно мерным алгебра. При разложении элемента алгебры \(A \) относительно базиса \(\{ \} \) мы пользуемся одной и той же корневой буквой для обозначения этого элемента и его координат. Однако в алгебре не принято использовать векторные обозначения. В выражении \(a^2 \) не ясно - это компонента разложения элемента \(a \) относительно базиса или это операция возведения в степень. Для облегчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например, \(a = a^i e_i \)

(4) Если свободная конечномерная алгебра имеет единицу, то мы будем отождествлять вектор базиса \(e_0 \) с единицей алгебры.

(5) Без сомнения, у читателя моих статей могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.

3. Линейная функция комплексного поля

Теорема 3.1 (Уравнения Коши-Римана). Рассмотрим поле комплексных чисел \(C \) как двумерную алгебру над полем действительных чисел. Положим

\[
\mathbf{e}_{C,0} = 1 \quad \mathbf{e}_{C,1} = i
\]

базис алгебры \(C \). Тогда в этом базисе произведение имеет вид

\[
\mathbf{e}_{C,1}^2 = -\mathbf{e}_{C,0}
\]

и структурные константы имеют вид

\[
B_{C,00} = 1 \quad B_{C,01} = 1 \\
B_{C,10} = 1 \quad B_{C,01} = -1
\]
Матрица линейной функции

\[y^i = x^j f^i_j \]

поля комплексных чисел над полем действительных чисел удовлетворяет соотношению

(3.4) \[f^0_0 = f^1_1 \]

(3.5) \[f^1_0 = -f^0_1 \]

Доказательство. Равенства (3.2) и (3.3) следуют из равенства \(i^2 = -1 \). Пользуясь равенством \((3.2.17)\) получаем соотношения

(3.6) \[f^0_0 = f^{k'}_{k0} B C_{k0}^{p} B C_{0r}^{0} = f^{0r}_{00} B C_{00}^{0} B C_{0r}^{0} + f^{1r}_{10} B C_{10}^{1} B C_{1r}^{0} = f^{00} - f^{11} \]

(3.7) \[f^1_0 = f^{k'}_{k0} B C_{k0}^{1} B C_{0r}^{0} = f^{0r}_{00} B C_{00}^{0} B C_{0r}^{0} + f^{1r}_{10} B C_{10}^{1} B C_{1r}^{1} = f^{01} + f^{10} \]

(3.8) \[f^1_1 = f^{k'}_{k0} B C_{k0}^{1} B C_{0r}^{0} = f^{0r}_{01} B C_{01}^{0} B C_{0r}^{1} + f^{1r}_{11} B C_{11}^{1} B C_{1r}^{0} = -f^{01} - f^{10} \]

(3.9) \[f^1_1 = f^{k'}_{k0} B C_{k0}^{1} B C_{0r}^{1} = f^{0r}_{01} B C_{01}^{1} B C_{0r}^{1} + f^{1r}_{11} B C_{11}^{0} B C_{1r}^{1} = f^{00} - f^{11} \]

Из равенств (3.6) и (3.9) следует (3.4). Из равенств (3.7) и (3.8) следует (3.5). □

Теорема 3.2 (Уравнения Коши-Римана). Если матрица

\[
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1}
\end{pmatrix}
\]

является матрицей Якоби функции комплексного переменного

\[x = x^0 + x^1 i \rightarrow y = y^0(x^0, x^1) + y^1(x^0, x^1) i \]

над полем действительных чисел, то

(3.10) \[\frac{\partial y^1}{\partial x^0} = -\frac{\partial y^0}{\partial x^1} \]

\[\frac{\partial y^0}{\partial x^0} = \frac{\partial y^0}{\partial x^1} \]

\[\frac{\partial y^1}{\partial x^1} = -\frac{\partial y^1}{\partial x^0} \]

Доказательство. Следствие теоремы 3.1. □

Теорема 3.3. Производная функции комплексного переменного удовлетворяет равенству

(3.11) \[\frac{\partial y}{\partial x^0} + i \frac{\partial y}{\partial x^1} = 0 \]

Доказательство. Равенство

\[\frac{\partial y^0}{\partial x^0} + i \frac{\partial y^1}{\partial x^0} + i \frac{\partial y^0}{\partial x^1} - \frac{\partial y^1}{\partial x^1} = 0 \]

следует из равенств (3.10). □

Равенство (3.11) эквивалентно равенству

(3.12) \[\frac{1}{i} \begin{pmatrix} \frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1}
\end{pmatrix} \begin{pmatrix} 1 \\
i \end{pmatrix} = 0 \]
4. АЛГЕБРА КВАТЕРНИОНОВ

В этой статье я рассматриваю множество кватернионных алгебр, определённых в \mathbb{R}^3.

Определение 4.1. Пусть F - поле. Расширение $F(i,j,k)$ поля F называется алгеброй $E(F,a,b)$ кватернионов над полем F, если произведение в алгебре E определено согласно правилам

	i	j	k
i	a	k	aj
j	$-k$	b	$-bi$
k	$-aj$	bi	$-ab$

где $a, b \in F, ab \neq 0$.

Элементы алгебры $E(F,a,b)$ имеют вид

$$x = x^0 + x^1i + x^2j + x^3k$$

где $x^i \in F, i = 0, 1, 2, 3$. Кватернион

$$\overline{x} = x^0 - x^1i - x^2j - x^3k$$

называется сопряжённым кватерниону x. Мы определим норму кватерниона x равенством

$$|x|^2 = x\overline{x} = (x^0)^2 - a(x^1)^2 - b(x^2)^2 + ab(x^3)^2$$

Из равенства (4.2) следует, что $E(F,a,b)$ является алгеброй с делением только когда $a < 0, b < 0$. Тогда мы можем пронормировать базис так, что $a = -1, b = -1$.

Мы будем обозначать символом $E(F)$ алгебру $E(F,-1,-1)$ кватернионов с делением над полем F. Произведение в алгебре $E(F)$ определено согласно правилам

	i	j	k
i	-1	k	$-j$
j	$-k$	-1	i
k	j	$-i$	-1

В алгебре $E(F)$ норма кватерниона имеет вид

$$|x|^2 = x\overline{x} = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2$$

При этом обратный элемент имеет вид

$$x^{-1} = |x|^{-2}\overline{x}$$

Мы будем полагать $H = E(R,-1,-1)$.

Внутренний автоморфизм алгебры кватернионов H^2

$$p \mapsto qpq^{-1}$$

$$q(ix + jy + kz)q^{-1} = ix' + jy' + kz'$$

1 Я буду следовать определению из [3].

2 См. [6], с. 643.
описывает вращение вектора с координатами \(x, y, z \). Если \(q \) записан в виде суммы скаляра и вектора

\[
q = \cos \alpha + (ia + jb + kc) \sin \alpha \quad a^2 + b^2 + c^2 = 1
\]

то (4.6) описывает вращение вектора \((x, y, z)\) вокруг вектора \((a, b, c)\) на угол \(2\alpha\).

5. Башня алгебр

Пусть \(F_1 \) - алгебра над полем \(F_2 \). Пусть \(\bar{e}_{12} \) - базис алгебры \(F_1 \) над полем \(F_2 \). Пусть \(B_{12}^{~k\, ij} \) - структурные константы алгебры \(F_1 \) над полем \(F_2 \).

Пусть \(F_2 \) - алгебра над полем \(F_3 \). Пусть \(\bar{e}_{23} \) - базис алгебры \(F_2 \) над полем \(F_3 \). Пусть \(B_{23}^{~k\, ij} \) - структурные константы алгебры \(F_2 \) над полем \(F_3 \).

Я буду рассматривать алгебру \(F_1 \) как прямую сумму алгебр \(F_2 \). Каждое слагаемое суммы я отождествляю с вектором базиса \(\bar{e}_{12} \). Соответственно, я могу рассматривать алгебру \(F_1 \) как алгебру над полем \(F_3 \). Пусть \(\bar{e}_{13} \) - базис алгебры \(F_1 \) над полем \(F_3 \). Индекс базиса \(\bar{e}_{13} \) состоит из двух индексов: индекс слоя и индекса вектора базиса \(\bar{e}_{23} \) в слое.

Я буду отождествлять вектор базиса \(\bar{e}_{12} \) с единицей в соответствующем слое. Тогда

\[
(5.1) \quad \bar{e}_{13}^{\, ji} = \bar{e}_{23}^{\, j} \bar{e}_{12}^{\, i}
\]

Произведение векторов базиса \(\bar{e}_{13} \) имеет вид

\[
(5.2) \quad \bar{e}_{13}^{\, ji} \bar{e}_{13}^{\, mk} = \bar{e}_{23}^{\, j} \bar{e}_{12}^{\, i} \bar{e}_{23}^{\, m} \bar{e}_{12}^{\, k} = B^{a}_{23} \bar{e}_{23}^{\, a} B^{b}_{12} \bar{e}_{12}^{\, b} \]

Так как \(B^{b}_{12} \in F_2 \), то разложение \(B^{b}_{12} \) относительно базиса \(\bar{e}_{23} \) имеет вид

\[
(5.3) \quad B^{b}_{12} = B^{bc}_{12} \bar{e}_{23}^{\, c}
\]

Подставим (5.3) в (5.2)

\[
(5.4) \quad \bar{e}_{13}^{\, ji} \bar{e}_{13}^{\, mk} = B^{a}_{23} \bar{e}_{23}^{\, a} B^{b}_{12} \bar{e}_{12}^{\, b} = B^{a}_{23} \bar{e}_{23}^{\, a} B^{bc}_{12} \bar{e}_{23}^{\, c}
\]

Следовательно, мы можем определить структурные константы алгебры \(F_1 \) над полем \(F_3 \)

\[
(5.5) \quad B^{\cdot b}_{13} = B^{\cdot b}_{23} \bar{e}_{23}^{\, a} B^{a}_{12} \bar{e}_{12}^{\, c}
\]

Чтобы проверить построение, рассмотрим произведение

\[
(5.6) \quad \bar{e}_{12}^{\, i} \bar{e}_{12}^{\, k} = B^{\cdot bc}_{12} \bar{e}_{13}^{\, d} \bar{e}_{13}^{\, db}
\]

Александр Клейн
С другой стороны
\[\tau_{12} \cdot \tau_{12, k} = B_{12, ik} \tau_{12, b} \]
(5.7)
\[= B_{12, ik} \tau_{23, a} \tau_{23, d} \tau_{12, b} \]
\[= B_{12, ik} B_{23, od} \tau_{23, c} \tau_{12, b} \]
\[= B_{12, ik} B_{23, od} \tau_{13, bc} \]
Выражения (5.6), (5.7) совпадают.

Теорема 5.1. Если $B_{ik} \in F_3$, то компоненты $\tau_{12, i}$, $\tau_{23, k}$ вектора $\tau_{13, ik}$ перемножаются независимо
(5.8)
\[B_{13, ji, mk} = B_{23, jm} B_{12, ik} \]
Доказательство. Из равенства (5.2) следует
(5.9)
\[\tau_{13, ji} \tau_{13, mk} = B_{23, a, jm} B_{12, b, ik} \tau_{12, b} = B_{23, a, jm} B_{12, b, ik} \tau_{23, ab} \]
Равенство (5.8) следует из равенства (5.9). □

6. Алгебра кватернионов над полем комплексных чисел
В этом разделе я буду рассматривать алгебру кватернионов $E(C, -1, -1)$, где C - поле комплексных чисел.
Преобразование в алгебре $E(C, -1, -1)$ определено согласно таблице
(6.1)
| $\tau_{12, 1}$ | $\tau_{12, 2}$ | $\tau_{12, 3}$ |
|----------------|----------------|----------------|
| $\tau_{12, 1}$ | -1 | $\tau_{12, 2}$ |
| $\tau_{12, 2}$ | $-\tau_{12, 3}$| $\tau_{12, 1}$ |
| $\tau_{12, 3}$ | $\tau_{12, 2}$ | $-\tau_{12, 1}$|
Согласно теореме [2], структурные константы алгебры кватернионов имеют вид
\[B_{12, 00} = 1, B_{12, 10} = 1, B_{12, 20} = 1, B_{12, 03} = 1 \]
\[B_{12, 10} = 1, B_{12, 11} = -1, B_{12, 12} = 1, B_{12, 13} = -1 \]
\[B_{12, 20} = 1, B_{12, 21} = -1, B_{12, 22} = -1, B_{12, 23} = 1 \]
\[B_{12, 30} = 1, B_{12, 31} = 1, B_{12, 32} = -1, B_{12, 33} = -1 \]
Пусть $\tau_{23, k} = \tau_{C, k}$. Произведение в алгебре C определено согласно правилу (3.2). Согласно теореме 3.1 структурные константы поля комплексных чисел над полем действительных чисел имеют вид (3.3).
Следовательно, алгебра $E(C, -1, -1)$ изоморфна тензорному произведению $C \otimes H$. Поэтому можем выбрать базис
\[\tau_{13, ij} = \tau_{C, i} \otimes \tau_{12, j} \]
(6.2)
\[\tau_{13, 00} = 1 \otimes 1 \]
\[\tau_{13, 01} = 1 \otimes i \]
\[\tau_{13, 02} = 1 \otimes j \]
\[\tau_{13, 03} = 1 \otimes k \]
\[\tau_{13, 10} = i \otimes 1 \]
\[\tau_{13, 11} = i \otimes i \]
\[\tau_{13, 12} = i \otimes j \]
\[\tau_{13, 13} = i \otimes k \]
Теорема 6.1. Таблица произведения алгебры \(E(C, -1, -1) \) над полем \(R \) имеет вид

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
& 1 \otimes i & 1 \otimes j & 1 \otimes k & i \otimes i & i \otimes j & i \otimes k \\
\hline
1 \otimes i & -1 \otimes 1 & 1 \otimes k & -1 \otimes j & 1 \otimes i & -1 \otimes i & -1 \otimes j \\
1 \otimes j & -1 \otimes k & -1 \otimes 1 & 1 \otimes i & -1 \otimes i & i \otimes j & i \otimes k \\
1 \otimes k & 1 \otimes j & -1 \otimes i & 1 \otimes 1 & 1 \otimes k & -1 \otimes k & -1 \otimes i \\
i \otimes i & -i \otimes i & i \otimes j & i \otimes k & i \otimes i & -i \otimes i & -i \otimes j \\
i \otimes j & -i \otimes k & -i \otimes 1 & i \otimes i & -i \otimes i & i \otimes k & i \otimes j \\
i \otimes k & i \otimes j & -i \otimes i & -i \otimes 1 & -1 \otimes k & -1 \otimes j & 1 \otimes 1 \\
\hline
\end{array}
\]

Доказательство. Таблица записана согласно равенству

\[
(\mathfrak{T}_{C,i} \otimes T_{12,k}) (\mathfrak{T}_{C,j} \otimes T_{12,m}) = (\mathfrak{T}_{C,i} \mathfrak{T}_{C,j}) \otimes (T_{12,k} T_{12,m})
\]

и определению базиса (6.2).

Теорема 6.2. Структурные константы алгебры \(E(C, -1, -1) \) над полем \(R \) имеют вид

\[
\begin{align*}
B_{13}^{00} & = 1 & B_{13}^{01} & = 1 & B_{13}^{02} & = 1 & B_{13}^{03} & = 1 \\
B_{13}^{01} & = 1 & B_{13}^{00} & = -1 & B_{13}^{01} & = 1 & B_{13}^{02} & = -1 \\
B_{13}^{02} & = 1 & B_{13}^{01} & = 1 & B_{13}^{02} & = 1 & B_{13}^{03} & = 1 \\
B_{13}^{03} & = 1 & B_{13}^{02} & = 1 & B_{13}^{03} & = 1 & B_{13}^{03} & = 1 \\
B_{13}^{10} & = 1 & B_{13}^{11} & = 1 & B_{13}^{12} & = 1 & B_{13}^{13} & = 1 \\
B_{13}^{11} & = 1 & B_{13}^{10} & = 1 & B_{13}^{11} & = 1 & B_{13}^{12} & = 1 \\
B_{13}^{12} & = 1 & B_{13}^{11} & = 1 & B_{13}^{12} & = 1 & B_{13}^{13} & = 1 \\
B_{13}^{13} & = 1 & B_{13}^{12} & = 1 & B_{13}^{13} & = 1 & B_{13}^{13} & = 1 \\
B_{13}^{20} & = 1 & B_{13}^{21} & = 1 & B_{13}^{22} & = 1 & B_{13}^{23} & = 1 \\
B_{13}^{21} & = 1 & B_{13}^{20} & = 1 & B_{13}^{21} & = 1 & B_{13}^{22} & = 1 \\
B_{13}^{22} & = 1 & B_{13}^{21} & = 1 & B_{13}^{22} & = 1 & B_{13}^{23} & = 1 \\
B_{13}^{23} & = 1 & B_{13}^{22} & = 1 & B_{13}^{23} & = 1 & B_{13}^{23} & = 1 \\
\end{align*}
\]

Доказательство. Утверждение теоремы можно рассматривать либо как следствие теоремы 6.1, либо как следствие теоремы 5.1.

Теорема 6.3 (Уравнения Коши-Римана). Матрица линейной функции

\[
y^{ik} = x^{jm} f^{jk}_{jm}
\]
алгебры $E(C, -1, -1)$ удовлетворяет соотношению

$$f_{-0i}^0j = f_{-1i}^1j$$
$$f_{-0i}^1j = -f_{-1i}^0j$$

(6.3)

Доказательство. Из равенств [2]-(3.2.17), (5.8), (3.3) следует

$$f_{-0i}^0j = f^{ka-rc}_{-13}B_{13}^{pb}B_{13}^{0j} = f^{ka-rc}_{-13}B_{-13}^{pb}B_{13}^{0j}$$

(6.4)

$$+ f^{1a-1c}_{-13}B_{12}^{1b}_{ai}B_{12}^{0j}B_{12}^{j}$$

$$= f^{0a-0c}_{-12}B_{12}^{b}_{ai}B_{12}^{j} - f^{1a-1c}_{-12}B_{12}^{b}_{ai}B_{12}^{j}$$

$$= (f^{0a-0c} - f^{1a-1c}) B_{12}^{b}_{ai}B_{12}^{j}$$

(6.5)

$$f_{-0i}^1j = f^{ka-rc}_{-13}B_{13}^{pb}B_{13}^{1j} = f^{ka-rc}_{-13}B_{-13}^{pb}B_{13}^{1j}$$

$$+ f^{1a-0c}_{-13}B_{12}^{1b}_{ai}B_{12}^{j}$$

$$= f^{0a-1c}_{-12}B_{12}^{b}_{ai}B_{12}^{j} + f^{1a-0c}_{-12}B_{12}^{b}_{ai}B_{12}^{j}$$

$$= (f^{0a-1c} + f^{1a-0c}) B_{12}^{b}_{ai}B_{12}^{j}$$

(6.6)

$$f_{-1i}^0j = f^{ka-rc}_{-13}B_{13}^{pb}B_{13}^{0j}$$

$$= f^{ka-rc}_{-13}B_{-13}^{pb}B_{13}^{0j}$$

$$+ f^{1a-0c}_{-13}B_{12}^{0j}B_{12}^{0j}$$

$$= f^{0a-1c}_{-12}B_{12}^{b}_{ai}B_{12}^{j} - f^{1a-0c}_{-12}B_{12}^{b}_{ai}B_{12}^{j}$$

$$= -(f^{0a-1c} + f^{1a-0c}) B_{12}^{b}_{ai}B_{12}^{j}$$

(6.7)

$$f_{-1i}^1j = f^{ka-rc}_{-13}B_{13}^{pb}B_{13}^{1j}$$

$$= f^{ka-rc}_{-13}B_{-13}^{pb}B_{13}^{1j}$$

$$+ f^{1a-1c}_{-13}B_{12}^{j}B_{12}^{j}$$

$$= f^{0a-0c}_{-12}B_{12}^{b}_{ai}B_{12}^{j} - f^{1a-1c}_{-12}B_{12}^{b}_{ai}B_{12}^{j}$$

$$= (f^{0a-0c} - f^{1a-1c}) B_{12}^{b}_{ai}B_{12}^{j}$$

(6.6)

Равенство (6.3) следует из сравнения равенств (6.4) и (6.7), (6.5) и (6.6). □

Теорема 6.4 (Уравнения Коши-Римана). Если матрица

$$
\left(\frac{\partial y^{ij}}{\partial x^{kl}} \right)
$$
является матрицей Якоби функции в алгебре \(E(C, -1, -1) \), то

\[
\frac{\partial y^{ij}}{\partial x^{0i}} = -\frac{\partial y^{0j}}{\partial x^{1i}}
\]

\[
\frac{\partial y^{0j}}{\partial x^{0i}} = -\frac{\partial y^{ij}}{\partial x^{1i}}
\]

Доказательство. Следствие теоремы 6.3. □

7. АЛГЕБРА \(C \otimes (C \otimes H) \)

Алгебра \(C \otimes (C \otimes H) \) не является алгеброй кватернионов. Однако я рассмотриваю здесь эту алгебру так как в некотором смысле эта алгебра похожа на алгебру \(E(C, -1, -1) = C \otimes H \).

Алгебра \(C \otimes (C \otimes H) \) интересна и с другой точки зрения. При рассмотрении этой алгебры становится очевидным, что тензорное произведение некоммутативных колец неассоциативно. Так как \(C \) - поле, то \(C \otimes C \) изоморфно \(C \), и следовательно, \(C \otimes C \otimes H \) изоморфно \(C \otimes H \). Однако, так как \(H \) не является алгеброй над полем комплексных чисел, то алгебра \(C \otimes (C \otimes H) \) отличается от алгебры \((C \otimes C) \otimes H = C \otimes H \).

Алгебра \(C \otimes (C \otimes H) \) имеет настолько большую размерность, что становится нецелесообразным рассматривать таблицу умножения и структурные константы этой алгебры. Однако нетрудно увидеть, что структура этой алгебры в многом похожа на структуру алгебр, рассмотренных в разделе 5.

Мы будем представлять базис алгебры \(C \otimes (C \otimes H) \) в виде

\[
(7.1) \quad \bar{e}_{kji} = \bar{e}_{C \cdot k} \otimes (\bar{e}_{C \cdot j} \otimes \bar{e}_{H \cdot i})
\]

где \(\bar{e}_{C} \) - базис алгебры \(C \) и \(\bar{e}_{H} \) - базис алгебры \(H \). Соответственно, произведение в алгебре \(C \otimes (C \otimes H) \) определено покомпонентно

\[
(7.2) \quad a_{1} \otimes (a_{2} \otimes a_{3}) b_{1} \otimes (b_{2} \otimes b_{2}) = (a_{1} b_{1}) \otimes ((a_{2} b_{2}) \otimes (a_{3} b_{3}))
\]

Теорема 7.1. Структурные константы алгебры \(C \otimes (C \otimes H) \) имеют вид

\[
B_{rdb}^{\cdot pji \cdot qmk} = B_{C \cdot pq}^{r} B_{C \cdot jm}^{d} B_{H \cdot ik}^{b}
\]

где \(B_{C \cdot pq}^{r} \) - структурные константы поля комплексных чисел, \(B_{H \cdot ik}^{b} \) - структурные константы алгебры кватернионов.

Доказательство. Для доказательства теоремы достаточно сравнить следующие равенства

\[
\bar{e}_{pji} \bar{e}_{qmk} = B_{rdb}^{\cdot pji \cdot qmk} \bar{e}_{rdb}
\]

\[
\bar{e}_{pji} \bar{e}_{qmk} = (\bar{e}_{C \cdot p} \otimes (\bar{e}_{C \cdot j} \otimes \bar{e}_{H \cdot i})) \bar{e}_{C \cdot q} \otimes (\bar{e}_{C \cdot m} \otimes \bar{e}_{H \cdot k}))
\]

\[
= (\bar{e}_{C \cdot p} \bar{e}_{C \cdot q} \otimes (\bar{e}_{C \cdot j} \bar{e}_{C \cdot m} \otimes \bar{e}_{H \cdot i} \bar{e}_{H \cdot k}))
\]

\[
= B_{C \cdot pq}^{r} B_{C \cdot jm}^{d} B_{H \cdot ik}^{b} \bar{e}_{rdb}
\]

\[
= B_{C \cdot pq}^{r} B_{C \cdot jm}^{d} B_{H \cdot ik}^{b} \bar{e}_{rdb}
\]

□
Теорема 7.2. Структурные константы алгебры \(C \otimes (C \otimes H) \) имеют вид

\[
B_{00b}^{00i-00k} = B_{H_{ik}}^b, \quad B_{01b}^{00i-00k} = B_{H_{ik}}^b, \quad B_{01b}^{01i-00k} = -B_{H_{ik}}^b
\]

(7.3)

Доказательство. Утверждение теоремы является следствием теорем 7.1, 3.1.

Теорема 7.3 (Уравнения Коши-Римана). Матрица линейной функции

\[
y_{ijk} = x_{jmr} f_{ijk}^{jmr}
\]

алгебры \(C \otimes (C \otimes H) \) удовлетворяет соотношению

\[
f_{00j}^{00i} = f_{10j}^{10i} = f_{01j}^{01i} = f_{11j}^{11i}
\]

(7.4)

Доказательство. Опираясь на равенства [2-(3.2.17), (7.3), мы можем повторить вычисления, выполненные для доказательства теоремы 6.3. Однако очевидно, что эти вычисления отличаются только набором индексов. Таким образом, из теоремы 6.3 следует

\[
f_{0mk}^{0mj} = f_{1mk}^{1mj}, \quad f_{1mk}^{0mj} = -f_{0mk}^{1mj}
\]

(7.5)

(7.6)

Равенства (7.4) следуют из равенств (7.5), (7.6).

Теорема 7.4 (Уравнения Коши-Римана). Если матрица

\[
\left(\frac{\partial y_{ijp}}{\partial x^{01q}} \right)
\]

...
является матрицей Якоби функции в алгебре \(C \otimes (C \otimes H) \), то

\[
\begin{align*}
\frac{\partial y_{00i}}{\partial x_{00j}} &= \frac{\partial y_{10i}}{\partial x_{10j}} = \frac{\partial y_{01i}}{\partial x_{01j}} = \frac{\partial y_{11i}}{\partial x_{11j}} \\
\frac{\partial y_{01i}}{\partial x_{01j}} &= \frac{\partial y_{11i}}{\partial x_{11j}} = -\frac{\partial y_{00i}}{\partial x_{00j}} = \frac{\partial y_{10i}}{\partial x_{10j}} \\
\frac{\partial y_{00i}}{\partial x_{10j}} &= \frac{\partial y_{10i}}{\partial x_{11j}} = -\frac{\partial y_{01i}}{\partial x_{01j}} = \frac{\partial y_{11i}}{\partial x_{10j}} \\
\frac{\partial y_{01i}}{\partial x_{11j}} &= \frac{\partial y_{11i}}{\partial x_{10j}} = -\frac{\partial y_{00i}}{\partial x_{01j}} = \frac{\partial y_{10i}}{\partial x_{00j}}
\end{align*}
\]

Доказательство. Следствие теоремы 7.3.

\[
\square
\]

8. Алгебра кватернионов \(E(R, a, b) \)

Положим \(\overline{e}_0 = 1, \overline{e}_1 = i, \overline{e}_2 = j, \overline{e}_3 = k \). Согласно равенству (4.1) структурные константы алгебры \(E(R, a, b) \) имеют вид

\[
\begin{align*}
B_{00}^0 &= 1, & B_{01}^1 &= 1, & B_{02}^2 &= 1, & B_{03}^3 &= 1 \\
B_{10}^1 &= 1, & B_{11}^0 &= a, & B_{12}^2 &= 1, & B_{13}^3 &= a \\
B_{20}^2 &= 1, & B_{21}^3 &= -1, & B_{22}^0 &= b, & B_{23}^1 &= -b \\
B_{30}^3 &= 1, & B_{31}^2 &= -a, & B_{32}^1 &= b, & B_{33}^0 &= -ab
\end{align*}
\]

Теорема 8.1. Стандартные компоненты линейной функции и координаты соответствующего линейного преобразования над полем \(R \) удовлетворяют соотношениям

\[
\begin{align}
\left\{ \begin{array}{l}
f_0^0 &= f^{00} + af^{11} + bf^{22} - abf^{33} \\
f_1^1 &= f^{00} + af^{11} - bf^{22} + abf^{33} \\
f_2^2 &= f^{00} - af^{11} + bf^{22} + abf^{33} \\
f_3^3 &= f^{00} - af^{11} - bf^{22} - abf^{33}
\end{array} \right.
\end{align}
\]

(8.1)

\[
\begin{align}
\left\{ \begin{array}{l}
f_0^1 &= f^{01} + f^{10} - bf^{23} + bf^{32} \\
f_1^0 &= af^{01} + af^{10} + abf^{23} - abf^{32} \\
f_2^2 &= -af^{01} + f^{10} + bf^{23} + bf^{32} \\
f_3^3 &= -af^{01} + af^{10} - abf^{23} - abf^{32}
\end{array} \right.
\end{align}
\]

(8.2)

\[
\begin{align}
\left\{ \begin{array}{l}
f_0^2 &= f^{02} + af^{13} + f^{20} - af^{31} \\
f_1^3 &= f^{02} + af^{13} - f^{20} + af^{31} \\
f_2^2 &= bf^{02} - abf^{13} + bf^{20} + abf^{31} \\
f_3^3 &= bf^{02} - abf^{13} - bf^{20} - abf^{31}
\end{array} \right.
\end{align}
\]

(8.3)
Доказательство. Пользуясь равенством (2.17) получаем соотношения

\[f_0^0 = f_k^r B_{k0}^p B_{pr}^0 \]

\[= f_0^0 B_{00}^0 + f_1^1 B_{10}^1 B_{01}^0 + f_2^2 B_{20}^0 B_{22}^0 + f_3^3 B_{30}^3 B_{33}^0 \]

\[= f_0^0 + a f_1^1 + b f_2^2 + ab f_3^3 \]

\[f_1^0 = f_k^r B_{k0}^p B_{pr}^1 \]

\[= f_0^0 B_{00}^0 + f_1^1 B_{10}^1 B_{01}^0 + f_2^2 B_{20}^0 B_{22}^1 + f_3^3 B_{30}^3 B_{32}^1 \]

\[= f_0^0 + f_1^0 + b f_2^2 + b f_3^3 \]

(8.4)

\[
\begin{align*}
 f_3^2 &= f_0^0 + f_1^2 - f_2^1 + f_3^0 \\
 f_1^2 &= af_0^0 + af_1^2 + af_2^1 - af_3^0 \\
 f_2^1 &= -bf_0^0 + bf_1^2 + bf_2^1 + bf_3^0 \\
 f_3^0 &= -abf_0^0 + abf_1^2 - abf_2^1 - abf_3^0
\end{align*}
\]

(8.5)

\[
\begin{align*}
 f_0^0 &= \frac{1}{4} f_0^0 + \frac{1}{4} f_1^1 + \frac{1}{4} f_2^2 + \frac{1}{4} f_3^3 \\
 f_1^1 &= \frac{1}{4a} f_0^0 + \frac{1}{4a} f_1^1 - \frac{1}{4a} f_2^2 - \frac{1}{4a} f_3^3 \\
 f_2^2 &= \frac{1}{4b} f_0^0 - \frac{1}{4b} f_1^1 + \frac{1}{4b} f_2^2 - \frac{1}{4b} f_3^3 \\
 f_3^3 &= -\frac{1}{4ab} f_0^0 + \frac{1}{4ab} f_1^1 - \frac{1}{4ab} f_2^2 + \frac{1}{4ab} f_3^3
\end{align*}
\]

(8.6)

\[
\begin{align*}
 f_2^0 &= \frac{1}{4b} f_0^0 - \frac{1}{4b} f_1^1 + \frac{1}{4b} f_2^2 + \frac{1}{4b} f_3^3 \\
 f_3^1 &= \frac{1}{4ab} f_0^0 - \frac{1}{4ab} f_1^1 - \frac{1}{4ab} f_2^2 - \frac{1}{4ab} f_3^3 \\
 f_1^2 &= \frac{1}{4b} f_0^0 + \frac{1}{4b} f_1^1 + \frac{1}{4b} f_2^2 - \frac{1}{4b} f_3^3 \\
 f_2^3 &= \frac{1}{4ab} f_0^0 + \frac{1}{4ab} f_1^1 + \frac{1}{4ab} f_2^2 + \frac{1}{4ab} f_3^3
\end{align*}
\]

(8.7)

\[
\begin{align*}
 f_3^0 &= -\frac{1}{4ab} f_0^0 + \frac{1}{4b} f_1^1 - \frac{1}{4a} f_2^2 + \frac{1}{4a} f_3^3 \\
 f_2^1 &= -\frac{1}{4ab} f_0^0 + \frac{1}{4b} f_1^1 + \frac{1}{4a} f_2^2 - \frac{1}{4a} f_3^3 \\
 f_1^2 &= \frac{1}{4b} f_0^0 + \frac{1}{4b} f_1^1 + \frac{1}{4a} f_2^2 + \frac{1}{4a} f_3^3 \\
 f_0^3 &= -\frac{1}{4ab} f_0^0 - \frac{1}{4b} f_1^1 + \frac{1}{4a} f_2^2 + \frac{1}{4a} f_3^3
\end{align*}
\]

(8.8)
$f_0^3 = f_{kr} B_{k0}^p B_{pr}^2$

$= f_0^{12} B_{00}^0 B_{02}^2 + f_0^{13} B_{10}^1 B_{13}^2 + f_0^{20} B_{20}^2 B_{20}^0 + f_0^{31} B_{30}^3 B_{31}^2$

$= f_0^{12} + a f_0^{13} + f_0^{20} - a f_0^{31}$

$f_0^3 = f_{kr} B_{k0}^p B_{pr}^3$

$= f_0^{13} B_{00}^0 B_{03}^3 + f_0^{12} B_{10}^1 B_{12}^3 + f_0^{21} B_{20}^2 B_{21}^0 + f_0^{30} B_{30}^3 B_{30}^3$

$= f_0^{13} + f_0^{12} - f_0^{21} + f_0^{30}$

$f_1^0 = f_{kr} B_{k1}^p B_{pr}^0$

$= f_0^{13} B_{01}^1 B_{13}^0 + f_0^{20} B_{21}^0 B_{10}^0 + f_0^{23} B_{31}^0 B_{20}^2 + f_0^{32} B_{30}^2 B_{22}^0$

$= a f_0^{13} + a f_0^{20} + a f_0^{23} - a f_0^{32}$

$f_1^0 = f_{kr} B_{k1}^p B_{pr}^1$

$= f_0^{10} B_{01}^0 B_{10}^1 + f_0^{11} B_{10}^1 B_{11}^0 + f_0^{22} B_{21}^0 B_{22}^1 + f_0^{33} B_{31}^0 B_{33}^1$

$= f_0^{10} + a f_0^{11} - b f_0^{12} + a f_0^{22} + a f_0^{33}$

$f_1^3 = f_{kr} B_{k1}^p B_{pr}^3$

$= f_0^{10} B_{01}^0 B_{13}^3 + f_0^{11} B_{10}^1 B_{10}^3 + f_0^{21} B_{20}^2 B_{21}^1 + f_0^{30} B_{30}^3 B_{30}^3$

$= a f_0^{10} + a f_0^{11} + a f_0^{22} - a f_0^{30}$

$f_2^0 = f_{kr} B_{k2}^p B_{pr}^0$

$= f_0^{12} B_{02}^2 B_{20}^0 + f_0^{13} B_{12}^3 B_{23}^0 + f_0^{20} B_{22}^2 B_{20}^0 + f_0^{31} B_{32}^3 B_{31}^1$

$= b f_0^{12} + a f_0^{13} + b f_0^{20} - a f_0^{31}$

$f_2^1 = f_{kr} B_{k2}^p B_{pr}^1$

$= f_0^{10} B_{02}^0 B_{20}^2 + f_0^{11} B_{12}^1 B_{21}^1 + f_0^{21} B_{22}^0 B_{21}^2 + f_0^{30} B_{32}^3 B_{31}^2$

$= -b f_0^{12} + b f_0^{22} + b f_0^{31}$

$f_2^2 = f_{kr} B_{k2}^p B_{pr}^2$

$= f_0^{13} B_{02}^3 B_{23}^2 + f_0^{12} B_{12}^3 B_{22}^2 + f_0^{22} B_{22}^0 B_{22}^2 + f_0^{33} B_{32}^3 B_{33}^2$

$= f_0^{13} + f_0^{12} + b f_0^{22} + a f_0^{33}$

$f_2^3 = f_{kr} B_{k2}^p B_{pr}^3$

$= f_0^{13} B_{02}^3 B_{23}^0 + f_0^{12} B_{12}^3 B_{20}^0 + f_0^{23} B_{22}^3 B_{23}^0 + f_0^{32} B_{32}^3 B_{32}^2$

$= -f_0^{13} + f_0^{12} + f_0^{23} + b f_0^{32}$
Этюд о кватернионах

$$f_3^0 = f^{kr} B_{k3}^0 B_{p0}^0$$
$$= f_{03}^0 B_{03}^0 B_{33}^0 + f_{12}^0 B_{13}^0 B_{22}^0 + f_{21}^0 B_{23}^0 B_{11}^0 + f_{30}^0 B_{33}^0 B_{00}^0$$
$$= -ab f_{03}^0 + ab f_{12}^0 - ab f_{21}^0 - ab f_{30}^0$$

$$f_3^1 = f^{kr} B_{k3}^0 B_{p1}^1$$
$$= f_{02}^1 B_{03}^0 B_{32}^0 + f_{13}^1 B_{13}^0 B_{23}^0 + f_{20}^1 B_{23}^0 B_{10}^0 + f_{31}^1 B_{33}^0 B_{01}^0$$
$$= bf_{02}^0 - ab f_{13}^0 - b f_{20}^0 - ab f_{31}^0$$

$$f_3^2 = f^{kr} B_{k3}^0 B_{p2}^2$$
$$= f_{01}^0 B_{03}^0 B_{31}^0 + f_{10}^0 B_{13}^0 B_{20}^0 + f_{23}^0 B_{23}^0 B_{13}^0 + f_{32}^0 B_{33}^0 B_{02}^0$$
$$= -af_{01}^0 + af_{10}^0 - ab f_{23}^0 - ab f_{32}^0$$

$$f_3^3 = f^{kr} B_{k3}^0 B_{p3}^3$$
$$= f_{00}^0 B_{03}^0 B_{30}^0 + f_{11}^0 B_{13}^0 B_{21}^0 + f_{22}^0 B_{23}^0 B_{12}^0 + f_{33}^0 B_{33}^0 B_{03}^0$$
$$= f_{00}^0 - af_{11}^0 - b f_{22}^0 - ab f_{33}^0$$

Мы группируем эти соотношения в системы линейных уравнений (8.1), (8.2), (8.3), (8.4).

(8.5) - это решение системы линейных уравнений (8.1).
(8.6) - это решение системы линейных уравнений (8.2).
(8.7) - это решение системы линейных уравнений (8.3).
(8.8) - это решение системы линейных уравнений (8.4).

Теорема 8.2. Для любых значений параметров $a \neq 0$, $b \neq 0$, существует взаимно однозначное соответствие между координатами линейной функции алгебры $E(R, a, b)$ и её стандартными компонентами.

Доказательство. Следствие теоремы 8.1.

9. Регулярная функция

Хотя в алгебре кватернионов нет аналога уравнения Коши-Римана, в различных статьях изучаются различные множества функций, свойства которых похожи на свойства функций комплексного переменного. В [4, 5] определена регулярная функция, которая удовлетворяет уравнению

$$\frac{\partial f}{\partial x^0} + i \frac{\partial f}{\partial x^1} + j \frac{\partial f}{\partial x^2} + k \frac{\partial f}{\partial x^3} = 0$$
Теорема 9.1. Дифференциальное уравнение (9.1) эквивалентно системе дифференциальных уравнений

\[
\begin{align*}
\frac{\partial f^0}{\partial x^0} - \frac{\partial f^1}{\partial x^1} - \frac{\partial f^2}{\partial x^2} - \frac{\partial f^3}{\partial x^3} &= 0 \\
\frac{\partial f^0}{\partial x^1} + \frac{\partial f^1}{\partial x^0} - \frac{\partial f^2}{\partial x^3} + \frac{\partial f^3}{\partial x^2} &= 0 \\
\frac{\partial f^0}{\partial x^2} + \frac{\partial f^2}{\partial x^0} + \frac{\partial f^1}{\partial x^1} - \frac{\partial f^3}{\partial x^1} &= 0 \\
\frac{\partial f^0}{\partial x^3} + \frac{\partial f^3}{\partial x^0} - \frac{\partial f^2}{\partial x^2} + \frac{\partial f^1}{\partial x^1} &= 0
\end{align*}
\]
(9.2)

Доказательство. Подставив

(9.3) \[\frac{\partial f}{\partial x^i} = \frac{\partial f^0}{\partial x^i} + \frac{\partial f^1}{\partial x^i} + \frac{\partial f^2}{\partial x^i} + \frac{\partial f^3}{\partial x^i} \]

в уравнение (9.1), получим

(9.4) \[\frac{\partial f}{\partial x^0} + i \frac{\partial f}{\partial x^1} + j \frac{\partial f}{\partial x^2} + k \frac{\partial f}{\partial x^3} = 0 \]

Утверждение теоремы следует из равенства (9.4).

В статье [1], следствие 3.1.2, п. 1000, показано, что если регулярная функция над алгеброй кватернионов имеет ограниченную норму, то это функция тождественно постоянна.

Теорема 9.2. Компоненты производной Гато регулярной функции над алгеброй кватернионов удовлетворяют равенствам

\[
\begin{align*}
\frac{\partial^0 y}{\partial x} + \frac{\partial^1 y}{\partial x} + \frac{\partial^2 y}{\partial x} + \frac{\partial^3 y}{\partial x} &= 0 \\
- \frac{\partial^0 y}{\partial x} + \frac{\partial^1 y}{\partial x} + \frac{\partial^3 y}{\partial x} - \frac{\partial^2 y}{\partial x} &= 0 \\
- \frac{\partial^0 y}{\partial x} - \frac{\partial^2 y}{\partial x} + \frac{\partial^3 y}{\partial x} + \frac{\partial^1 y}{\partial x} &= 0 \\
- \frac{\partial^0 y}{\partial x} - \frac{\partial^1 y}{\partial x} + \frac{\partial^2 y}{\partial x} + \frac{\partial^3 y}{\partial x} &= 0
\end{align*}
\]
(9.5)
Доказательство. Подставив уравнения [2-(7.3.1), [2-(7.3.3), [2-(7.3.5), [2-(7.3.7) в уравнения (9.2), мы получим

\[
\begin{align*}
\frac{\partial f^0}{\partial x^0} - \frac{\partial f^1}{\partial x^1} - \frac{\partial f^2}{\partial x^2} + \frac{\partial f^3}{\partial x^3} &= 0 \\
\frac{\partial^2 f^0}{\partial x^1 \partial x^2} - \frac{\partial^2 f^1}{\partial x^2 \partial x^1} + \frac{\partial^2 f^2}{\partial x^3 \partial x^1} - \frac{\partial^2 f^3}{\partial x^3 \partial x^1} &= 0 \\
\frac{\partial^3 f^0}{\partial x^1 \partial x^2 \partial x^3} - \frac{\partial^3 f^1}{\partial x^1 \partial x^2 \partial x^3} + \frac{\partial^3 f^2}{\partial x^1 \partial x^2 \partial x^3} - \frac{\partial^3 f^3}{\partial x^1 \partial x^2 \partial x^3} &= 0
\end{align*}
\]

\[\square\]
Теорема 9.3. Дифференциал Гато регулярной функции над алгеброй кватернионов имеет вид

\[- \left(\frac{\partial^{11} y}{\partial x} + \frac{\partial^{22} y}{\partial x} + \frac{\partial^{33} y}{\partial x} \right) dx + \frac{\partial^{11} y}{\partial x} idx i + \frac{\partial^{22} y}{\partial x} jdx j + \frac{\partial^{33} y}{\partial x} kdx k \]

\[+ \left(\frac{\partial^{10} y}{\partial x} + \frac{\partial^{23} y}{\partial x} - \frac{\partial^{32} y}{\partial x} \right) dx i - \frac{\partial^{13} y}{\partial x} idx k + \frac{\partial^{12} y}{\partial x} jdx k - \frac{\partial^{31} y}{\partial x} kdx i \]

\[+ \left(\frac{\partial^{13} y}{\partial x} + \frac{\partial^{20} y}{\partial x} + \frac{\partial^{31} y}{\partial x} \right) dx j - \frac{\partial^{12} y}{\partial x} idx k + \frac{\partial^{21} y}{\partial x} jdx k - \frac{\partial^{30} y}{\partial x} kdx i \]

Доказательство. Утверждение теоремы является следствием теоремы [2]-5.2.8.

Равенство (9.1) эквивалентно равенству

\[(1 \ i \ j \ k)^* = 0 \]

10. Вместо эпилога

Поле комплексных чисел и алгебра кватернионов имеют и общие свойства, и некоторые различия. Эти различия делают более трудной задачу найти в алгебре кватернионов закономерности, подобные знакомым нам в поле комплексных чисел. Поэтому понимание этих различий очень важно.

Одно из направлений исследования - это найти аналог уравнения Коши-Римана в алгебре кватернионов. В статье я проанализировал некоторые исследования в этой области.

Согласно теореме [2]-7.1.1 линейное отображение имеет матрицу

\[\begin{pmatrix} a_0 & -a_1 \\ a_1 & a_0 \end{pmatrix} \]

Это отображение соответствует умножению на число \(a = a_0 + a_1 i \). Утверждение следует из равенств

\[(a_0 + a_1 i)(x_0 + x_1 i) = a_0 x_0 - a_1 x_1 + (a_0 x_1 + a_1 x_0) i \]

Я решил рассмотреть аналогичный класс функций кватернионов. Линейное отображение алгебры кватернионов

\[x \rightarrow ax \]
имеет матрицу

\[
\begin{pmatrix}
a^0 & -a^1 & -a^2 & -a^3 \\
a^1 & a^0 & -a^3 & a^2 \\
a^2 & a^3 & a^0 & -a^1 \\
a^3 & -a^2 & a^1 & a^0 \\
\end{pmatrix}
\] (10.1)

Интересно рассмотреть класс функций кватерниона, которые имеют производную похожей структуры. Однако структура матрицы (10.1) мне представляется несколько жёсткой для производной функции кватернионов и я несколько ослаблю требование. Я буду предполагать, что производная удовлетворяет следующим равенствам

\[
\frac{\partial y^0}{\partial x^0} = \frac{\partial y^1}{\partial x^1} = \frac{\partial y^2}{\partial x^2} = \frac{\partial y^3}{\partial x^3}
\] (10.2)

\[
\frac{\partial y^i}{\partial x^j} = -\frac{\partial y^j}{\partial x^i} \quad i \neq j
\] (10.3)

Нетрудно убедиться, что производная функции вида

\[
y = ax
\]

удовлетворяет равенствам (10.2), (10.3).

Рассмотрим функцию

\[
y = x^2
\]

Непосредственное вычисление даёт

\[
y^0 = (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 \\
y^1 = 2x^0 x^1 \\
y^2 = 2x^0 x^2 \\
y^3 = 2x^0 x^3
\] (10.4)

Производная отображения (10.4) имеет матрицу

\[
\begin{pmatrix}
2x^0 & -2x^1 & -2x^2 & -2x^3 \\
2x^1 & 2x^0 & 0 & 0 \\
2x^2 & 0 & 2x^0 & 0 \\
2x^3 & 0 & 0 & 2x^0 \\
\end{pmatrix}
\] (10.5)

Следовательно, матрица (10.5) удовлетворяет равенствам (10.2), (10.3).

Таким образом, множество функций, производная которых удовлетворяет равенствам (10.2), (10.3) достаточно велико. При этом отображение сопряжения не удовлетворяет этим равенствам.

Без сомнения, это только начало исследования, и немало вопросов должно быть отвечено.

11. Список литературы

[1] C.A. Deavours, The Quaternion Calculus, American Mathematical Monthly, 80 (1973), pp. 995 - 1008
[2] Александр Клейн, Введение в математический анализ над телом, eprint arXiv:0812.4763 (2010)
[3] I. M. Gelfand, M. I. Graev, Representation of Quaternion Groups over Locally Compact and Functional Fields, Functs. Anal. Prilozh. 2 (1968) 20 - 35; Izrail Moiseevich Gelfand, Semen Grigorevich Gindikin, Izrail M. Gelfand: Collected Papers, volume II, 435 - 449, Springer, 1989

[4] Fueter, R. Die Funktionentheorie der Differentialgleichungen $\Delta u = 0$ und $\Delta \Delta u = 0$ mit vier reellen Variablen. Comment. Math. Helv. 7 (1935), 307-330

[5] A. Sudbery, Quaternionic Analysis, Math. Proc. Camb. Phil. Soc. (1979), 85. 199 - 225

[6] Sir William Rowan Hamilton, The Mathematical Papers, Vol. III, Algebra, Cambridge at the University Press, 1967