The modern reverse shoulder arthroplasty and an updated systematic review for each complication: part I

Sarav S. Shah, MD *, Benjamin T. Gaal, BA, Alexander M. Roche, BA, Surenra Namdari, MD, Brian M. Grawe, MD, Macy Lawler, BS, Stewart Dalton, MD, Joseph J. King, MD, Joshua Helmkamp, BS, Grant E. Garrigues, MD, Thomas W. Wright, MD, Bradley S. Schoch, MD, Kyle Flik, MD, Randall J. Otto, MD, Richard Jones, MD, Andrew Jawa, MD, Peter McCann, MD, Joseph Abboud, MD, Gabe Horneff, MD, Glen Ross, MD, Richard Friedman, MD, Eric T. Ricchetti, MD, Douglas Boardman, MD, Robert T. Tashjian, MD, Lawrence V. Gulotta, MD

Background: Globally, reverse shoulder arthroplasty (RSA) has moved away from the Grammont design to modern prosthesis designs. The purpose of this 2-part study was to systematically review each of the most common complications of RSA, limiting each search to publications in 2010 or later. In this part (part I), we examined (1) scapular notching (SN), (2) periprosthetic infection (PJI), (3) mechanical failure (glenoid or humeral component), and (4) neurologic injury (NI).

Methods: Four separate PubMed database searches were performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Overall, 113 studies on SN, 62 on PJI, 34 on mechanical failure, and 48 on NI were included in our reviews. Univariate analysis was performed with the χ² or Fisher exact test.

Results: The Grammont design had a higher SN rate vs. all other designs combined (42.5% vs. 12.3%, \(P < .001 \)). The onlay humeral design had a lower rate than the lateralized glenoid design (10.5% vs. 14.8%, \(P < .001 \)). The PJI rate was 2.4% for primary RSA and 2.6% for revision RSA. The incidence of glenoid and humeral component loosening was 2.3% and 1.4%, respectively. The Grammont design had an increased NI rate vs. all other designs combined (0.9% vs. 0.1%, \(P = .04 \)).

Conclusions: Focused systematic reviews of the recent literature with a large volume of RSAs demonstrate that with the use of non-Grammont modern prosthesis designs, complications including SN, PJI, glenoid component loosening, and NI are significantly reduced compared with previous studies. As the indications for RSA continue to expand, it is imperative to accurately track the rates and types of complications to justify its cost and increased indications.

© 2020 Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Scapular notching

Methods

A systematic review was performed using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The search was performed using the PubMed medical database in February 2019. The search terms used were “scapular notching” OR “notching” OR “reverse shoulder arthroplasty” OR “reverse total shoulder” OR “reverse total shoulder arthroplasty” with filters as follows: date range of January 1, 2010, to December 31, 2018; human species; and English language. The search resulted in 902 total titles. One author (S.S.S.) then reviewed the titles. The inclusion criteria were titles that specified primary or revision RSA. The exclusion criteria were duplicate titles; review different populations) and definitions vary between authors. The reported complication rate is variable among reports and seems to be influenced substantially by the mix of primary and revision procedures included in each study, with 1 study noting the highest rate with RSAs used to revise failed primary RSAs. Other major influences may include prosthesis design and surgeon experience, with some authors advocating that primary shoulder arthroplasty is performed more efficiently by high-volume surgeons. Patient factors including body mass index, diabetes, Parkinson disease, and preoperative American Society of Anesthesiologists score have all been linked to increased complications and/or unfavorable outcomes.

The majority of the published studies on RSA have historically reported on a Grammont-style RSA (glenosphere with a medialized center of rotation [medialized glenoid (MG)] along with an inlay humeral component that medializes the humerus [medialized humerus (MH)]). Lessons learned using this style of prosthesis have led to the introduction of new designs with multiple options for glenosphere lateral offset and eccentricity, different neck-shaft angulations, and humerus-based lateralization (lateralized humerus [LH]). These design modifications translate into different biomechanics compared with the first generation of RSA. As the concept, design, and surgical technique of RSA continue to improve, the rates and types of complications may change over time. One study noted that after implant modifications, there have been statistically significant declines in baseplate failure, humeral dissociation, and glenosphere dissociation.

As the indications and use of RSA continue to expand, it is important to track the rates and types of complications as the procedure continues to develop over time. The purpose of this 2-part study was to provide a focused systematic review of the most common complications of RSA using contemporary prosthetic designs, therefore limiting studies to those published in 2010 or later. In this part (part I), we performed a systematic review of (1) scapular notching (SN), (2) periprosthetic infection (PJI), (3) mechanical failure (glenoid component [GC] and humeral component [HC]), and (4) neurologic injury (NI). Part II covers (1) instability; (2) humeral or glenoid fractures; (3) acromial or scapular spine fractures; and (4) problems or miscellaneous, including complex regional pain syndrome, deltoid injury, hematoma, and heterotopic ossification. We established a study design and specific objectives before commencing each literature research.
articles; editorials; technique articles without reported patient outcomes; cadaveric studies; kinematic, finite element model, or computer model analyses; case reports; survey studies; elastography or histologic studies; cost-benefit analyses; and instructional course lecture articles. After application of these criteria, 428 titles remained for abstract review. Articles that reported 2-year radiographic follow-up, complications, or outcomes and/or notching or SN were included. We excluded case series with ≤20 patients at final follow-up; nonclinical studies; studies not related to RSA; studies with an average follow-up period <24 months; studies that included patients who underwent concomitant tendon transfer; studies of RSA for an indication of PHF. Comparisons were also made to the study of Zumstein et al.223

Methods

A systematic review was performed using PRISMA guidelines.139 The search was performed using 2 common medical databases,
PubMed and Embase, on May 15, 2018 (Fig. 2). The search terms used were “reverse shoulder arthroplasty” and “reverse ball and socket” in the English-language literature. The search resulted in 26,692 total titles. One author (S.N.) then reviewed the titles. The inclusion criteria were titles that specified primary or revision RSA. The exclusion criteria were duplicate titles, review articles, editorials, technique articles without reported patient outcomes, and instructional course lecture articles. After application of these criteria, 654 titles remained for abstract review. We excluded articles that were case series with <10 patients, were not related to RSA, had a minimum average follow-up period < 24 months, included patients who underwent concomitant tendon transfer, or evaluated RSA for an indication of tumor. This process eliminated 551 more articles, leaving 103 for full-text review. Articles that did not meet the inclusion criteria were excluded.

Table III

Studies included	Shoulders	Scapular notching present	Rate, %	P value	
Prosthesis design					
LG or MH	15	1002	148	14.8	
	.001*	vs. MG or LH			
				<.01 vs. LG or LH	
				<.001* vs. MG or MH	
MG or LH	11	1730	181	10.5	
	.02* vs.	LG or LH			
				<.001* vs. MG or MH	
LG or LH	5	279	42	15.0	
	<.001*	vs. MG or MH			
Subtotal	31	3011	371	12.3	
	<.001*	vs. MG or MH			
MG or MH	71	4115	1750	42.5	
	—				
Subtotal of non-Grammont designs in current study	31	3011	371	12.3	<.001* vs. Zumstein et al

LG, lateralized glenoid; MH, medialized humerus; MG, medialized glenoid; LH, lateralized humerus.
The Grammont design (MG or MH) had a higher notching rate vs. all other designs combined (42.5% vs. 12.3%, P < .001). The MG or LH design had a lower rate vs. the LG or MH design (10.5% vs. 14.8%, P < .001). Notching rates, especially for non-Grammont modern designs, have decreased compared with the findings of Zumstein et al (Journal of Shoulder and Elbow Surgery, 2011).

* Statistically significant (P < .05).

Figure 2 Preferred Reporting Items for Systematic Reviews and Meta-analyses diagram for periprosthetic infection.
not report infection rate by indication for RSA were also excluded in the full-text review. Given the few studies that evaluated diagnoses of instability and OA without rotator cuff tear, these diagnoses were eliminated. The definition of PJI was left to the discretion of each study. This final elimination stage resulted in 62 articles for inclusion in the analysis. The rate of PJI after primary and reverse arthroplasty was determined by pooled statistics. Comparisons were also made to the study of Zumstein et al.223

Statistical analysis was performed using SPSS software (version 26). Univariate analysis was performed with the χ² test or, when the expected count for ≥1 cell in the comparison was <5, with the Fisher exact test. The α level for statistical significance was set to .05.

Results

Regarding the level of evidence, the vast majority of the studies were level IV or III studies.1 A total of 4396 patients were included in the analysis at a mean of 4.1 ± 2.4 years follow-up. There were 3065 primary arthroplasties and 1331 revision arthroplasties. Diagnoses in reverse arthroplasty cases included rotator cuff tear arthropathy (CTA) or irreparable rotator cuff tear (n = 2575), acute PHF (n = 329), or sequelae of PHF (n = 161). The PJI rate was 2.4% (73 of 3065) at a mean follow-up of 4.3 years when statistics were pooled from the 45 studies evaluating primary RSAs. When stratified by diagnosis, the PJI rate was 2.4% (64 of 2575) for CTA or irreparable rotator cuff tear (29 studies), 0.9% (3 of 329) for acute fractures (10 studies), and 3.7% (6 of 161) for fracture sequelae (7 studies). The PJI rate was 2.6% (34 of 1331) at a mean follow-up of 3.8 years when statistics were pooled from the 20 studies evaluating revision RSAs. PJI rates have decreased compared with the findings of Zumstein et al.221 (2.4% vs. 3.8%, P = .02) (Table IV).

Mechanical failure

Methods

A systematic review was performed using PRISMA guidelines.139 The search terms used were ((mechanical complications OR complications OR lucent lines OR radiolucency OR loosening OR glenoid loosening OR humeral loosening OR gelenosphere dislocation OR polyethylene dissociation OR polyethylene wear OR screw breakage OR screw loosening) AND (reverse shoulder arthroplasty OR reverse total shoulder OR reverse total shoulder arthroplasty)) with filters as follows: date range of January 1, 2010, to December 31, 2017; human species; and English language. The search resulted in 433 total titles. One author (B.M.G.) then reviewed the titles. The inclusion criteria were studies with ≥50 patients, studies with minimum 2-year clinical and radiographic follow-up, and studies that clearly reported at least one of the following mechanical complications: GC radiolucent lines, GC loosening, GC loosening requiring revision, HC radiolucent lines, HC loosening, or HC loosening requiring revision. The exclusion criteria were studies that did not include ≥50 patients, did not report radiographic results, were not clinical studies, or included TSA patients. After application of these criteria, the abstracts were reviewed. This process left 125 articles for full-text review. Articles that did not have 2-year radiographic follow-up, included <50 patients with 2-year radiographic follow-up, or did not differentiate between prosthetic component dislocation and joint dislocation were also excluded in the full-text review. The definition of mechanical failure on the glenoid or humerus was left to the discretion of each study. This final elimination stage resulted in 34 articles for inclusion in the analysis. Comparisons were made to the study of Zumstein et al.223

Statistical analysis was performed using SPSS software (version 26). Univariate analysis was performed with the χ² test or, when the expected count for ≥1 cell in the comparison was <5, with the Fisher exact test. The α level for statistical significance was set to .05.

Results

The studies were mostly retrospective and provided level III or IV evidence.1 CTA (n = 23) and massive rotator cuff tears (n = 3) were the primary indications for surgery in 26 of the included studies. In 6 studies, the operations were primarily revisions. The number of shoulders included from each study ranged from 50 to 591, and the pooled total was 4825 shoulders. Data on the age of the included patients were available from 30 studies, and the mean age ranged from 48 to 76 years. The mean follow-up period ranged from 26 to 115 months. There were 14 different implants used in 22 of the studies; in the remaining 12 studies, either the implant type was not reported or multiple implants were used but not stratified based on mechanical complications.

The incidence of radiolucent lines around the GC was reported in 12 studies. The incidence ranged from 0% to 60%; 5 studies

1. 4, 8, 19, 20, 22, 24, 26, 29, 37, 38, 41, 51, 54, 59, 62, 64-67, 80, 81, 94, 99, 101, 113, 115-118, 121, 127, 129, 132, 133, 135, 142, 155, 163, 165, 167, 170, 173, 176, 181, 182, 195, 197, 199, 203, 206, 207, 209, 211-213, 215, 216, 219, 222

2. 12, 15, 37, 38, 46, 58, 59, 65, 68, 82, 88, 102, 103, 114, 117, 130, 134, 135, 140, 143, 155, 158, 176, 179, 191, 194, 195, 199, 202, 205, 208, 211, 215, 221

Table IV

Diagnosis	Studies included	Shoulders	Periprosthetic infection present	Rate, %	P value
Primary RSA	45	3065	73	2.4	.73
Revision RSA	20	1331	34	2.6	
CTA or irreparable RCT	29	2575	64	2.4	.07
Acute Fx	10	329	3	0.9	
Fx sequelae	7T	161	6	3.7	
Zumstein et al223	21	782	30	3.8	.02
Current study	65	4396	107	2.4	

RSA, reverse shoulder arthroplasty; CTA, cuff tear arthropathy; RCT, rotator cuff tear; Fx, fracture.

Periprosthetic infection rates have decreased compared with the findings of Zumstein et al.223
reported a rate of 0%, whereas the others reported rates of 1%, 3%, 7%, 10%, 12%, and 60% (pooled mean incidence, 7.7% [103 of 1336]). The rate of GC loosening was reported by 30 studies, and the mean incidence ranged from 0% to 14%, with a pooled mean incidence of 2.3% (89 of 3995). Although there was a higher reported rate of radiolucent lines present, the rate of GC loosening was decreased compared with the findings of Zumstein et al \(^2\) (2.3% vs. 3.5%, \(P = .04\)). The pooled mean incidence of revision for loosening was 2.1% (69 of 2908), with a range of 0% to 14%, based on data available from 26 studies (Table V).

The incidence of radiolucent lines around the HC was reported by 18 studies. The incidence ranged from 0% to 57%, with a pooled mean incidence of 12% (292 of 2419). The rate of HC loosening was reported by 29 studies, with a mean incidence that ranged from 0% to 12% (pooled mean, 1.4% [52 of 3817]). The revision rate for HC loosening was reported by 26 studies and ranged from 0% to 12%, with a pooled mean incidence of 1% (30 of 2920) (Table V).

Neurologic injury

Methods

A systematic review was performed using PRISMA guidelines.\(^{139}\) The search was performed using the PubMed medical database in March 2019 (Fig. 4). The search terms used were ((neurological injury) OR (complication) OR (axillary nerve) OR (iatrogenic nerve injuries) OR (nerve injury) OR (suprascapular nerve) OR (radial nerve) OR (musculoskeletal nerve) AND (reverse shoulder arthroplasty) OR (reverse total shoulder arthroplasty)) with filters as follows: date range of January 1, 2010, to December 31, 2018; human species; and English language. The search resulted in 930 total titles. The inclusion criteria were titles that specified primary or revision RSA. The exclusion criteria were review articles; systematic reviews; editorials; technique articles without reported patient outcomes; cadaveric studies; kinematic, finite element model, or computer model analyses; case reports; survey studies; elastography or histologic studies; cost-benefit analyses; and instructional course lecture articles. After application of these criteria, 230 titles remained for abstract review. Articles were included if they reported complication data and/or reported neurologic or nerve injury, axillary nerve injury, iatrogenic nerve injury, suprascapular nerve injury, radial nerve injury, or musculoskeletal nerve injury. We excluded studies with <15 patients; studies not related to RSA; studies with an average follow-up period < 24 months; and studies that investigated patients who underwent concomitant tendon transfer or evaluated treatment of PJL, blood transfusion rates, venous thromboembolism rates, or RSA for tumor. This process eliminated 165 more articles, leaving 65 for full-text review. Articles that recycled patient data from already-included studies, did not differentiate between anatomic TSA and RSA patients, or did not have 2-year follow-up data on complications were also excluded in the full-text review. This final elimination stage resulted in 48 articles for inclusion in the analysis. The definition of NI was left to the discretion of each study. Two authors (B.T.G. and S.S.S.) reviewed the articles and collected the data.

The rates of NI overall and according to (1) revision status (primary vs. revision arthroplasty), (2) publication date (2010-2015...
Table V
Pooled estimates of mechanical complications following RSA

Component	Glenoid	Humeral	Author
Radiolucent lines, % (n)	7.7 (103 of 1336)	12 (292 of 2419)	Zumstein et al223 Current study
Loosening, % (n)	2.3 (89 of 3995)	1.4 (52 of 3817)	
Revision for loosening, % (n)	2.1 (62 of 2908)	1 (30 of 2920)	

Glenoid radiolucent lines
- Studies included: 21, 212
- Glenoid radiolucent lines present: 23, 103
- Rate, %: 2.9, 7.7
- *P* value: <.001

Glenoid loosening
- Studies included: 21, 30
- Glenoid loosening present: 27, 89
- Rate, %: 3.5, 2.3
- *P* value: .04

Humeral loosening
- Studies included: 21, 29
- Humeral loosening present: 10, 52
- Rate, %: 1.3, 1.4
- *P* value: .85

RSA, reverse shoulder arthroplasty.
Although there was a higher reported rate of radiolucent lines present, the rate of glenoid component loosening was decreased compared with the findings of Zumstein et al (Journal of Shoulder and Elbow Surgery, 2011) (2.3% vs. 3.5%, *P* = .04). Of note, humeral component radiolucent lines were not reported in the study of Zumstein et al.

Figure 4 Preferred Reporting Items for Systematic Reviews and Meta-analyses diagram for neurologic injury.
vs. 2016-2018), (3) diagnosis, (4) CoR, and (5) prosthesis design were determined by pooled statistics. CoR and prosthesis design were defined according to Routman et al.\(^\text{171}\). Of note, revision RSA included failed arthroplasty (hemiarthroplasty, TSA, or RSA) and failed open reduction—internal fixation of PHF. Comparisons were also made to the study of Zumstein et al.\(^\text{223}\).

Statistical analysis was performed using SPSS software (version 26). Univariate analysis was performed with the \(\chi^2\) test or, when the expected count for \(\geq 1\) cell in the comparison was \(<5\), with the Fisher exact test. The \(\alpha\) level for statistical significance was set to \(0.05\).

Results

The studies were mostly retrospective and provided level III evidence (10 studies) or level IV evidence (36 studies), with 2 studies providing level II evidence.\(^\text{1}\) A total of 4135 shoulders were included in the analysis, with a mean age of 70.3 years. The overall rate of NI was 0.6% (23 of 4135 RSAs) at a weighted mean follow-up of 3.4 years; 72.9% of patients were female patients. The majority of reported neurologic complications involved the axillary nerve (14.3%). The Grammont design (MG or MH) had an increased rate of NI compared with the LG or LH designs (Table VI). The subtotal of non-Grammont designs in this study had a decreased rate of NI vs. the findings of Zumstein et al.\(^\text{123}\) (0.1% vs. 1.2%, \(P = .02\)) (Table VII).

Discussion

RSA has demonstrated good clinical outcomes at long-term follow-up,\(^\text{53}\) leading to expanding indications and wider adoption. Authors have reported good results in patients aged \(<\) 55 years,\(^\text{155}\) patients aged \(>65\) years who have OA with an intact rotor cuff,\(^\text{90,193}\) and complex salvage-type clinical situations such as revision for a failed primary RSA.\(^\text{208}\) It has even proved cost-effective in instances such as complex PHFs in elderly patients.\(^\text{154}\)

As the indications continue to expand, it is imperative to accurately track the rates and types of complications to justify the cost. By limiting each search to publications in 2010 or later and by performing a systematic review of each complication, our study was able to examine large sample sizes and provide useful analyses based on diagnosis and prosthesis design that are typically difficult with registry studies or case series. Registry studies have large sample sizes but classically report only revision rates and lack data on specific complication rates without revision.\(^\text{110,136}\) By contrast, case series usually lack large sample sizes that are necessary to make specific comparisons with increased power. Our findings will allow for better patient education and be helpful for surgeon planning for RSA based on diagnosis and prosthesis design.

On the basis of this study, the global SN rate was 29.4% (2431 of 8258) at a mean follow-up of 3.5 years. When stratified by grade, 79.9% of notches were classified as low-grade SN (grade I or II). However, there are multiple variables that may play a role: patient anatomy,\(^\text{157,194}\) surgical approach leading to variable exposure for placement of the baseplate,\(^\text{14}\) length of follow-up,\(^\text{14,14}\) glenosphere size,\(^\text{159}\) eccentric glenosphere,\(^\text{119}\) inferior glenosphere overhang,\(^\text{57,150,169}\) and implant design.\(^\text{16}\) A randomized controlled trial showed that an overarching theme to minimize notching is an inferior glenosphere overhang \(>3.5\) mm,\(^\text{56}\) glenosphere size, eccentric placement, and surgical technique are all options to achieve the same goal of an inferior overhang to minimize notching. When stratified by prosthesis design, the Grammont design (MG or MH) had a significantly higher notch rate vs. all other designs combined (42.5% vs. 12.3%, \(P < .001\)). The MG or LH design had the lowest rate, which was significantly lower vs. the LG or MH design as well. Notching rates, especially those of non-Grammont modern designs, were significantly decreased compared with the findings of Zumstein et al.\(^\text{123}\).

Although severe notching plays a role in glenoid baseplate stability,\(^\text{159}\) the effect of less severe notching on clinical outcomes remains controversial. In their series of 461 shoulders, Lévigne et al.\(^\text{159}\) found no relationship between SN and pain or the Constant-Murley score. In a more recent series of 476 shoulders, Mollon et al.\(^\text{46}\) found significantly lower postoperative Shoulder Pain and Disability Index and Constant-Murley scores in patients with SN than in patients without any notchting. Furthermore, patients with SN were found to have significantly lower active abduction or forward flexion, less strength, and significantly higher complication rates.

Table VI

Studies included	Shoulders	Neurologic injury reported	Rate, % (n)	\(P\) value
Overall	48	4135	23	0.6 (23 of 4135)
Stratified by specific nerve	45	2559	14	—
Axillary nerve	—	—	8	57.2 (8 of 14)
Musculoskeletal nerve	—	—	2	14.3 (2 of 14)
Radial nerve	—	—	1	7.1 (1 of 14)
Ulnar nerve	—	—	1	7.1 (1 of 14)
Prosthesis design				
LG or MH	—	464	1	0.2
MG or LH	—	269	0	0.0
LG or LH	—	17	0	0.0
Subtotal	12	750	1	0.1 ,04 vs. MG or MH
MG or MH	31	1425	13	0.9
Year published				.5
2010-2015	26	2596	16	0.6
2016-2018	22	1539	7	0.5

1, 12, 18, 19, 23, 39, 42, 52, 54, 58, 59, 63, 66, 67, 71, 72, 76, 79, 82, 85, 86, 92, 99, 102, 105, 122, 124, 125, 132, 148, 149, 153, 155, 164, 166, 177, 180, 182, 185, 189, 197, 198, 201, 204, 209, 211, 215, 220

\(^\text{1}\) Statistical significance \((P < .05)\).
On the basis of this study, the PJI infection rate was 2.4% (73 of 3065) at a mean follow-up of 4.3 years for primary RSA cases. The rate was 2.6% (34 of 1331) at a mean follow-up of 3.8 years for revision arthroplasty cases, which is comparable to the 2.8% PJI rate for revision cases found in a recent review. Although the reported PJI rate is significantly lower than that of Zumstein et al, the reported rate of infection for RSA is still higher than that for anatomic shoulder arthroplasty. In a study with a similarly large cohort, the rate of infection for primary anatomic shoulder replacement was 0.5% (24 of 4315 cases). Factors that may explain the RSA infection rate include an increased implant surface, a large subacromial dead space, the compromised general health of some patients, and the complexity of some indications. Additionally, as in previous studies, there was a trend toward higher infection rates in revision surgery groups compared with primary arthroplasty groups.

On the basis of this study, the pooled mean incidence of radiolucent lines and loosening around the GC was 7.7% and 2.3%, respectively. Although there was a higher reported rate of radiolucent lines present, the rate of GC loosening was significantly decreased compared with the findings of Zumstein et al. The pooled mean revision rate for GC loosening was 2.1% (69 of 2908). The pooled mean incidence of radiolucent lines around the HC was 12% (292 of 2419). The pooled mean incidence of HC loosening was 1.4% (52 of 817). The pooled mean revision rate for HC loosening was 1% (25 of 2397).

Because of the forces occurring at the glenoid, most early reports were wary of loosening. Significant mechanical stress at the bone-implant interface may influence bony ingrowth and may impact long-term stability. Our observed lower rate of GC loosening compared with the findings of Zumstein et al may be ascribed to significant advancements in biomaterials. Although lateralized RSA designs have potentially greater loads transferred to the bone-prosthesis interface and premature mechanical failure due to loosening is a concern with these devices, the addition of locking-screw technology, as well as hydroxyapatite coating, and the increased size (5 mm) of peripheral screws have significantly reduced the rate of baseplate failure of a specific lateralized RSA design. To avoid loosening, every effort should be made to optimally fix the GC onto good bone stock at the inferior border of the glenoid.

The rate of HS loosening in our study was similar to the findings of Zumstein et al. In the modern RSA, mainly uncemented HCs are being used in the primary setting. There has been concern that uncemented stems lead to proximal bone resorption and stress shielding; however, early cementless shoulder arthroplasty designs used smooth, press-fit fixation relying on diaphyseal fixation. Current designs incorporate on-growth or ingrowth surfaces and rely on metaphyseal fixation. Advantages of metaphyseal fixation include better vascularity potentially allowing more rapid ingrowth, easier stem removal during revision, and reduced rates of stress shielding. Additionally, Water et al have shown similar clinical and radiologic outcomes in a cohort study comparing patients with cemented and cementless HCs in RSA. Generally, aseptic loosening of the HC is uncommon; infection should also always be suspected as the etiologic source of loosening, and the patient should be managed accordingly.

On the basis of this study, the overall incidence of neurologic complications was 0.6% (23 of 4315 RSAs) at a mean follow-up of 3.4 years. In this study, the Grammont design had a significantly increased NI rate vs. all other designs combined. Primary RSA had a statistically higher NI incidence vs. revisions. An NI rate for revision RSA of 1.1% is consistent with the recent literature. The subtotal of non-Grammont designs had a significantly decreased rate of NI vs. the findings of Zumstein et al. The majority of reported NIs involved the axillary nerve, followed by the suprascapular nerve and radial nerve. Placement of an RSA can threaten the axillary nerve because of its proximity to the humeral metaphysis (average distance in cadaveric study, 8.1 mm) and the inferior glenoid rim (average distance, 13.6 mm). Some authors have suggested that surgeons should routinely palpate or expose the axillary nerve during shoulder arthroplasty in an effort to avoid injury. However, Librizzi et al demonstrated that a low incidence of partial temporary isolated axillary nerve injury (0.7%) can be expected without routine identification of the nerve. Furthermore, posterior and superior drilling for screw placement during base-plate implantation places the suprascapular nerve at risk. The distance from the center of the glenoid to the suprascapular nerve under the transverse scapular ligament is 28.4 mm and the distance.

Table VII

Rates of neurologic injury rates according to publication date (2010-2015 vs. 2016-2018), diagnosis, revision status (primary vs. revision RSA), and center of rotation

Author	Studies included	Shoulders	Neurologic injury reported	Rate, %	P value
Zumstein et al	Subtotal of non-Grammont designs in current study	12	750	1	.02^{**} vs. Zumstein et al
	Subtotal of non-Grammont designs in current study	21	782	9	.06
	Current study	48	4135	23	.06
	RA	845	1943	2	.03^{**} vs. RA
	FA	777	1230	9	.03^{**} vs. RA
	Primary vs. revision RSA	3275	13	0.4	.02
	Revision	845	9	1.1	
	Center of rotation	34	1694	13	.33*
	Lateralized	10	481	1	.2
	Medialized	34	1694	13	.33*

*Statistically significant (P < .05).

^{**} Fisher exact test comparison.
to the spino–glenoid notch is 16.6 mm, both when measured in the mid-lateral direction.112

Subclinical NIs by means of intraoperative neuromonitoring150 or postoperative electromyographic changes108 are common after RSA, whereas the incidence of clinically evident NI is quite rare. Another consideration is that they may be under-reported secondary to spontaneous recovery in many cases.13 Although neurologic complications are considered rare and transient, they may affect the clinical outcome (ie, secondary to decreased deltoid strength from axillary nerve deficit111) and may necessitate operative intervention, that is, neurolysis112 or baseplate screw removal.13 Indirect traction injuries are thought to be the main culprit for these lesions secondary to arm lengthening108 and/or external rotation during humeral and glenoid preparation.116 Avoidance of prolonged periods in these at-risk arm positions, along with intermittent recovery phases in the neutral position, may prove beneficial to decrease the rate of nerve injury.112,113,115,116

Moreover, anatomic studies have shown that lateralization is less harmful in terms of stretch on the axillary nerve vs. distalization.126 Along these lines, prostheses with a lateralized CoR in our study provided useful analyses based on diagnosis and prosthesis design to examine multiple complications with large sample sizes and patient outcomes were not collected; however, our study was able to make comparisons with clinical value.

Conclusion

Focused systematic reviews of the recent literature with a large volume of RSAs demonstrate that with the use of non-Grinnell modern prosthesis designs, complications including SN, PJI, GC loosening, and NI are significantly reduced compared with previous studies. As the indications for RSA continue to expand, it is imperative to accurately track the rates and types of complications to justify its cost and increased indications.

Disclaimer

The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

References

1. Abdel MP, Hattrup SJ, Sperling JW, Cofield RH, Kreofsky CR, Sanchez-Sotelo J. Revision of an unstable hemiarthroplasty or anatomical total shoulder replacement using a reverse design prosthesis. Bone Joint J 2013;95-B: 668–72. https://doi.org/10.1302/0301-620X.95B5.30964.
2. Al-Hadithy N, Domos P, Sewell MD, Pandit R. Reverse shoulder arthroplasty in 41 patients with cuff tear arthropathy with a mean follow-up period of 5 years. J Shoulder Elbow Surg 2014;23:1662–8. https://doi.org/10.1016/j.jse.2014.03.001.
3. Alexiou AE, Feeley BT, Austin LS, Ma CB, Krupp RJ, Ramsey ML, et al. Effect of humeral component version on outcomes in reverse shoulder arthroplasty. Orthopedics 2017;40:179–86. https://doi.org/10.3928/01474447-20170117-04.
4. Alankwende O, Fokin A, Chocas M, Dillon MT, Navarro RA, Yuan EH, et al. Complications in total shoulder and reverse total shoulder arthroplasty by body mass index. J Shoulder Elbow Surg 2017;26:1230–7. https://doi.org/10.1016/j.jse.2016.11.055.
5. Asione F, Domos P, Guarrella V, Chelli M, Boileau P, Walsh G. Long-term humeral complications after Grammont-style reverse shoulder arthroplasty. J Shoulder Elbow Surg 2018;27:1065–71. https://doi.org/10.1016/j.jse.2017.11.028.
6. Athwal GS, Faber KJ. Outcomes of reverse shoulder arthroplasty using a mini 25-mm glenoid baseplate. Int Orthop 2016;40:109–13. https://doi.org/10.1007/s00264-015-2945-x.
7. Athwal GS, MacDermid JC, Reddy KM, Marsh JP, Faber KJ, Drosdowech D. Does bone loss–induced offset–reverse shoulder arthroplasty decrease scapular notching? J Shoulder Elbow Surg 2015;24:468–73. https://doi.org/10.1016/j.jse.2014.08.015.
8. Atoun E, Van Tongel A, Hous N, Narvani A, Relwani J, Abraham R, et al. Reverse shoulder arthroplasty with a short metaphyseal humeral stem. Int Orthop 2014;38:1213–8. https://doi.org/10.1007/s00264-014-2328-8.
9. Bacle G, Növe-Josserand L, Garaud P, Walsh G. Long-term outcomes of reverse total shoulder arthroplasty: a follow-up of a previous study, J Bone Joint Surg Am 2017;99:454–61. https://doi.org/10.2106/JBJS.16.00225.
10. Ballas R, Bèguin L. Results of a stemless reverse shoulder prosthesis at more than 58 months mean without loosening. J Shoulder Elbow Surg 2013;22:e1–6. https://doi.org/10.1016/j.jse.2012.12.005.
11. Barco R, Savidou OD, Sperling JW, Sanchez-Sotelo J, Cofield RH. Complications in reverse shoulder arthroplasty. EFORT Open Rev 2016;1:72–80. https://doi.org/10.1302/2058-5241.1.160003.
12. Baulot E, Sirveau F, Boileau P, Grammont's idea: the story of Paul Grammont's functional surgery concept and the development of the reverse principle. Clin Orthop Relat Res 2011;469:2425–31. https://doi.org/10.1007/s11999-011-1757-y.
13. Beck JD, Irgit KS, Andrysiuk CM, Maloney PJ, Tang X, Harter GD. Reverse total shoulder arthroplasty with a short metaphyseal humeral stem. J Shoulder Elbow Surg 2013;22:863–70. https://doi.org/10.1016/j.jse.2013.05.009.
14. Beurmont J, Garaud P, Favard L. Evaluation of the role of glenosphere design and humeral component retroversion in avoiding scapular notching during reverse shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:151–8. https://doi.org/10.1016/j.jse.2013.05.009.
15. Bigorre N, Anciga R, Bizot P, Hubert L. Predictive factors of scapular notching in patients with reverse shoulder arthroplasty. Orthop Traumatol Surg Res 2014;100:711–4. https://doi.org/10.1016/j.otsr.2014.06.013.
16. Bitzer A, Rojas J, Pattens I, Joseph J, McFarland EG. Incidence and risk factors for aseptic baseplate loosening of reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2018;27:2145–52. https://doi.org/10.1016/j.jse.2018.05.034.
17. Black EM, Roberts SM, Siegel E, Yannopoulos P, Higgins LD, Warner JJ. Failure after reverse total shoulder arthroplasty: what is the success of component revision? J Shoulder Elbow Surg 2015;24:1908–14. https://doi.org/10.1016/j.jse.2015.05.029.
18. Black EM, Roberts SM, Siegel E, Yannopoulos P, Higgins LD, Warner JJ. Reverse shoulder arthroplasty as salvage for failed prior arthroplasty in patients 65 years of age or younger. J Shoulder Elbow Surg 2014;23:1036–42. https://doi.org/10.1016/j.jse.2014.02.019.
19. Bogle A, Budge M, Richman A, Miller RJ, Watier JM, Voyosin L. Radiographic results of fully cemented trabeicular metal reverse shoulder system at 1 and 2 years’ follow-up. J Shoulder Elbow Surg 2013;22:e20–5. https://doi.org/10.1016/j.jse.2012.08.019.
20. Boileau P, Gonzalez JR, Chenuard C, Bicknell R, Walsh G. Reverse total shoulder arthroplasty after failed internal fixation. J Shoulder Elbow Surg 2009;18:600–6. https://doi.org/10.1016/j.jse.2009.03.011.
21. Boileau P, Melis B, Duperron D, Moineau G, Rumian AP, Han Y. Revision surgery of reverse shoulder arthroplasty. J Shoulder Elbow Surg 2013;22:1259–70. https://doi.org/10.1016/j.jse.2013.02.004.
22. Boileau P, Moineau G, Roussanne Y, O'Shea K. Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res 2011;469:2538–67. https://doi.org/10.1007/s11999-011-1775-4.
82. Hernandez NM, Chalmers BP, Wagner ER, Sperling JW, Co

75. Harman M, Frankle M, Vasey M, Banks S. Initial glenoid component

79. Hatta T, Werthel JD, Wagner ER, Itoi E, Steinmann SP, Co

80. Hattrup SJ, Sanchez-Sotelo J, Sperling JW, Co

76. Harmsen S, Casagrande D, Norris T. “Shaped” humeral head autograft reverse

41x402}
